1 /** @file kmp_stats.cpp
2  * Statistics gathering and processing.
3  */
4 
5 
6 //===----------------------------------------------------------------------===//
7 //
8 //                     The LLVM Compiler Infrastructure
9 //
10 // This file is dual licensed under the MIT and the University of Illinois Open
11 // Source Licenses. See LICENSE.txt for details.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "kmp.h"
16 #include "kmp_str.h"
17 #include "kmp_lock.h"
18 #include "kmp_stats.h"
19 
20 #include <algorithm>
21 #include <sstream>
22 #include <iomanip>
23 #include <stdlib.h>                             // for atexit
24 #include <ctime>
25 
26 #define STRINGIZE2(x) #x
27 #define STRINGIZE(x) STRINGIZE2(x)
28 
29 #define expandName(name,flags,ignore)  {STRINGIZE(name),flags},
30 statInfo timeStat::timerInfo[] = {
31     KMP_FOREACH_TIMER(expandName,0)
32     {"TIMER_LAST", 0}
33 };
34 const statInfo counter::counterInfo[] = {
35     KMP_FOREACH_COUNTER(expandName,0)
36     {"COUNTER_LAST", 0}
37 };
38 #undef expandName
39 
40 #define expandName(ignore1,ignore2,ignore3)  {0.0,0.0,0.0},
41 kmp_stats_output_module::rgb_color kmp_stats_output_module::timerColorInfo[] = {
42     KMP_FOREACH_TIMER(expandName,0)
43     {0.0,0.0,0.0}
44 };
45 #undef expandName
46 
47 const kmp_stats_output_module::rgb_color kmp_stats_output_module::globalColorArray[] = {
48     {1.0, 0.0, 0.0}, // red
49     {1.0, 0.6, 0.0}, // orange
50     {1.0, 1.0, 0.0}, // yellow
51     {0.0, 1.0, 0.0}, // green
52     {0.0, 0.0, 1.0}, // blue
53     {0.6, 0.2, 0.8}, // purple
54     {1.0, 0.0, 1.0}, // magenta
55     {0.0, 0.4, 0.2}, // dark green
56     {1.0, 1.0, 0.6}, // light yellow
57     {0.6, 0.4, 0.6}, // dirty purple
58     {0.0, 1.0, 1.0}, // cyan
59     {1.0, 0.4, 0.8}, // pink
60     {0.5, 0.5, 0.5}, // grey
61     {0.8, 0.7, 0.5}, // brown
62     {0.6, 0.6, 1.0}, // light blue
63     {1.0, 0.7, 0.5}, // peach
64     {0.8, 0.5, 1.0}, // lavender
65     {0.6, 0.0, 0.0}, // dark red
66     {0.7, 0.6, 0.0}, // gold
67     {0.0, 0.0, 0.0}  // black
68 };
69 
70 // Ensure that the atexit handler only runs once.
71 static uint32_t statsPrinted = 0;
72 
73 // output interface
74 static kmp_stats_output_module* __kmp_stats_global_output = NULL;
75 
76 /* ****************************************************** */
77 /* ************* statistic member functions ************* */
78 
79 void statistic::addSample(double sample)
80 {
81     double delta = sample - meanVal;
82 
83     sampleCount = sampleCount + 1;
84     meanVal     = meanVal + delta/sampleCount;
85     m2          = m2 + delta*(sample - meanVal);
86 
87     minVal = std::min(minVal, sample);
88     maxVal = std::max(maxVal, sample);
89 }
90 
91 statistic & statistic::operator+= (const statistic & other)
92 {
93     if (sampleCount == 0)
94     {
95         *this = other;
96         return *this;
97     }
98 
99     uint64_t newSampleCount = sampleCount + other.sampleCount;
100     double dnsc  = double(newSampleCount);
101     double dsc   = double(sampleCount);
102     double dscBydnsc = dsc/dnsc;
103     double dosc  = double(other.sampleCount);
104     double delta = other.meanVal - meanVal;
105 
106     // Try to order these calculations to avoid overflows.
107     // If this were Fortran, then the compiler would not be able to re-order over brackets.
108     // In C++ it may be legal to do that (we certainly hope it doesn't, and CC+ Programming Language 2nd edition
109     // suggests it shouldn't, since it says that exploitation of associativity can only be made if the operation
110     // really is associative (which floating addition isn't...)).
111     meanVal     = meanVal*dscBydnsc + other.meanVal*(1-dscBydnsc);
112     m2          = m2 + other.m2 + dscBydnsc*dosc*delta*delta;
113     minVal      = std::min (minVal, other.minVal);
114     maxVal      = std::max (maxVal, other.maxVal);
115     sampleCount = newSampleCount;
116 
117 
118     return *this;
119 }
120 
121 void statistic::scale(double factor)
122 {
123     minVal = minVal*factor;
124     maxVal = maxVal*factor;
125     meanVal= meanVal*factor;
126     m2     = m2*factor*factor;
127     return;
128 }
129 
130 std::string statistic::format(char unit, bool total) const
131 {
132     std::string result = formatSI(sampleCount,9,' ');
133 
134     if (sampleCount == 0)
135     {
136         result = result + std::string(", ") + formatSI(0.0, 9, unit);
137         result = result + std::string(", ") + formatSI(0.0, 9, unit);
138         result = result + std::string(", ") + formatSI(0.0, 9, unit);
139         if (total)
140             result = result + std::string(", ") + formatSI(0.0, 9, unit);
141         result = result + std::string(", ") + formatSI(0.0, 9, unit);
142     }
143     else
144     {
145         result = result + std::string(", ") + formatSI(minVal,  9, unit);
146         result = result + std::string(", ") + formatSI(meanVal, 9, unit);
147         result = result + std::string(", ") + formatSI(maxVal,  9, unit);
148         if (total)
149             result = result + std::string(", ") + formatSI(meanVal*sampleCount, 9, unit);
150         result = result + std::string(", ") + formatSI(getSD(), 9, unit);
151     }
152     return result;
153 }
154 
155 /* ********************************************************** */
156 /* ************* explicitTimer member functions ************* */
157 
158 void explicitTimer::start(timer_e timerEnumValue) {
159     startTime = tsc_tick_count::now();
160     totalPauseTime = 0;
161     if(timeStat::logEvent(timerEnumValue)) {
162         __kmp_stats_thread_ptr->incrementNestValue();
163     }
164     return;
165 }
166 
167 void explicitTimer::stop(timer_e timerEnumValue, kmp_stats_list* stats_ptr /* = nullptr */) {
168     if (startTime.getValue() == 0)
169         return;
170 
171     tsc_tick_count finishTime = tsc_tick_count::now();
172 
173     //stat->addSample ((tsc_tick_count::now() - startTime).ticks());
174     stat->addSample(((finishTime - startTime) - totalPauseTime).ticks());
175 
176     if(timeStat::logEvent(timerEnumValue)) {
177         if(!stats_ptr)
178             stats_ptr = __kmp_stats_thread_ptr;
179         stats_ptr->push_event(startTime.getValue() - __kmp_stats_start_time.getValue(), finishTime.getValue() - __kmp_stats_start_time.getValue(), __kmp_stats_thread_ptr->getNestValue(), timerEnumValue);
180         stats_ptr->decrementNestValue();
181     }
182 
183     /* We accept the risk that we drop a sample because it really did start at t==0. */
184     startTime = 0;
185     return;
186 }
187 
188 /* ************************************************************** */
189 /* ************* partitionedTimers member functions ************* */
190 partitionedTimers::partitionedTimers() {
191     timer_stack.reserve(8);
192 }
193 
194 // add a timer to this collection of partitioned timers.
195 void partitionedTimers::add_timer(explicit_timer_e timer_index, explicitTimer* timer_pointer) {
196     KMP_DEBUG_ASSERT((int)timer_index < (int)EXPLICIT_TIMER_LAST+1);
197     timers[timer_index] = timer_pointer;
198 }
199 
200 // initialize the paritioned timers to an initial timer
201 void partitionedTimers::init(timerPair init_timer_pair) {
202     KMP_DEBUG_ASSERT(this->timer_stack.size() == 0);
203     timer_stack.push_back(init_timer_pair);
204     timers[init_timer_pair.get_index()]->start(init_timer_pair.get_timer());
205 }
206 
207 // stop/save the current timer, and start the new timer (timer_pair)
208 // There is a special condition where if the current timer is equal to
209 // the one you are trying to push, then it only manipulates the stack,
210 // and it won't stop/start the currently running timer.
211 void partitionedTimers::push(timerPair timer_pair) {
212     // get the current timer
213     // stop current timer
214     // push new timer
215     // start the new timer
216     KMP_DEBUG_ASSERT(this->timer_stack.size() > 0);
217     timerPair current_timer = timer_stack.back();
218     timer_stack.push_back(timer_pair);
219     if(current_timer != timer_pair) {
220         timers[current_timer.get_index()]->pause();
221         timers[timer_pair.get_index()]->start(timer_pair.get_timer());
222     }
223 }
224 
225 // stop/discard the current timer, and start the previously saved timer
226 void partitionedTimers::pop() {
227     // get the current timer
228     // stop current timer
229     // pop current timer
230     // get the new current timer and start it back up
231     KMP_DEBUG_ASSERT(this->timer_stack.size() > 1);
232     timerPair current_timer = timer_stack.back();
233     timer_stack.pop_back();
234     timerPair new_timer = timer_stack.back();
235     if(current_timer != new_timer) {
236         timers[current_timer.get_index()]->stop(current_timer.get_timer());
237         timers[new_timer.get_index()]->resume();
238     }
239 }
240 
241 // Wind up all the currently running timers.
242 // This pops off all the timers from the stack and clears the stack
243 // After this is called, init() must be run again to initialize the
244 // stack of timers
245 void partitionedTimers::windup() {
246     while(timer_stack.size() > 1) {
247         this->pop();
248     }
249     if(timer_stack.size() > 0) {
250         timerPair last_timer = timer_stack.back();
251         timer_stack.pop_back();
252         timers[last_timer.get_index()]->stop(last_timer.get_timer());
253     }
254 }
255 
256 /* ******************************************************************* */
257 /* ************* kmp_stats_event_vector member functions ************* */
258 
259 void kmp_stats_event_vector::deallocate() {
260     __kmp_free(events);
261     internal_size = 0;
262     allocated_size = 0;
263     events = NULL;
264 }
265 
266 // This function is for qsort() which requires the compare function to return
267 // either a negative number if event1 < event2, a positive number if event1 > event2
268 // or zero if event1 == event2.
269 // This sorts by start time (lowest to highest).
270 int compare_two_events(const void* event1, const void* event2) {
271     kmp_stats_event* ev1 = (kmp_stats_event*)event1;
272     kmp_stats_event* ev2 = (kmp_stats_event*)event2;
273 
274     if(ev1->getStart() < ev2->getStart()) return -1;
275     else if(ev1->getStart() > ev2->getStart()) return 1;
276     else return 0;
277 }
278 
279 void kmp_stats_event_vector::sort() {
280     qsort(events, internal_size, sizeof(kmp_stats_event), compare_two_events);
281 }
282 
283 /* *********************************************************** */
284 /* ************* kmp_stats_list member functions ************* */
285 
286 // returns a pointer to newly created stats node
287 kmp_stats_list* kmp_stats_list::push_back(int gtid) {
288     kmp_stats_list* newnode = (kmp_stats_list*)__kmp_allocate(sizeof(kmp_stats_list));
289     // placement new, only requires space and pointer and initializes (so __kmp_allocate instead of C++ new[] is used)
290     new (newnode) kmp_stats_list();
291     newnode->setGtid(gtid);
292     newnode->prev = this->prev;
293     newnode->next = this;
294     newnode->prev->next = newnode;
295     newnode->next->prev = newnode;
296     return newnode;
297 }
298 void kmp_stats_list::deallocate() {
299     kmp_stats_list* ptr = this->next;
300     kmp_stats_list* delptr = this->next;
301     while(ptr != this) {
302         delptr = ptr;
303         ptr=ptr->next;
304         // placement new means we have to explicitly call destructor.
305         delptr->_event_vector.deallocate();
306         delptr->~kmp_stats_list();
307         __kmp_free(delptr);
308     }
309 }
310 kmp_stats_list::iterator kmp_stats_list::begin() {
311     kmp_stats_list::iterator it;
312     it.ptr = this->next;
313     return it;
314 }
315 kmp_stats_list::iterator kmp_stats_list::end() {
316     kmp_stats_list::iterator it;
317     it.ptr = this;
318     return it;
319 }
320 int kmp_stats_list::size() {
321     int retval;
322     kmp_stats_list::iterator it;
323     for(retval=0, it=begin(); it!=end(); it++, retval++) {}
324     return retval;
325 }
326 
327 /* ********************************************************************* */
328 /* ************* kmp_stats_list::iterator member functions ************* */
329 
330 kmp_stats_list::iterator::iterator() : ptr(NULL) {}
331 kmp_stats_list::iterator::~iterator() {}
332 kmp_stats_list::iterator kmp_stats_list::iterator::operator++() {
333     this->ptr = this->ptr->next;
334     return *this;
335 }
336 kmp_stats_list::iterator kmp_stats_list::iterator::operator++(int dummy) {
337     this->ptr = this->ptr->next;
338     return *this;
339 }
340 kmp_stats_list::iterator kmp_stats_list::iterator::operator--() {
341     this->ptr = this->ptr->prev;
342     return *this;
343 }
344 kmp_stats_list::iterator kmp_stats_list::iterator::operator--(int dummy) {
345     this->ptr = this->ptr->prev;
346     return *this;
347 }
348 bool kmp_stats_list::iterator::operator!=(const kmp_stats_list::iterator & rhs) {
349    return this->ptr!=rhs.ptr;
350 }
351 bool kmp_stats_list::iterator::operator==(const kmp_stats_list::iterator & rhs) {
352    return this->ptr==rhs.ptr;
353 }
354 kmp_stats_list* kmp_stats_list::iterator::operator*() const {
355     return this->ptr;
356 }
357 
358 /* *************************************************************** */
359 /* *************  kmp_stats_output_module functions ************** */
360 
361 const char* kmp_stats_output_module::eventsFileName = NULL;
362 const char* kmp_stats_output_module::plotFileName   = NULL;
363 int kmp_stats_output_module::printPerThreadFlag       = 0;
364 int kmp_stats_output_module::printPerThreadEventsFlag = 0;
365 
366 // init() is called very near the beginning of execution time in the constructor of __kmp_stats_global_output
367 void kmp_stats_output_module::init()
368 {
369     char * statsFileName  = getenv("KMP_STATS_FILE");
370     eventsFileName        = getenv("KMP_STATS_EVENTS_FILE");
371     plotFileName          = getenv("KMP_STATS_PLOT_FILE");
372     char * threadStats    = getenv("KMP_STATS_THREADS");
373     char * threadEvents   = getenv("KMP_STATS_EVENTS");
374 
375     // set the stats output filenames based on environment variables and defaults
376     if(statsFileName) {
377         // append the process id to the output filename
378         // events.csv --> events-pid.csv
379         size_t index;
380         std::string baseFileName, pid, suffix;
381         std::stringstream ss;
382         outputFileName = std::string(statsFileName);
383         index = outputFileName.find_last_of('.');
384         if(index == std::string::npos) {
385             baseFileName = outputFileName;
386         } else {
387             baseFileName = outputFileName.substr(0, index);
388             suffix = outputFileName.substr(index);
389         }
390         ss << getpid();
391         pid = ss.str();
392         outputFileName = baseFileName + "-" + pid + suffix;
393     }
394     eventsFileName = eventsFileName ? eventsFileName : "events.dat";
395     plotFileName   = plotFileName   ? plotFileName   : "events.plt";
396 
397     // set the flags based on environment variables matching: true, on, 1, .true. , .t. , yes
398     printPerThreadFlag        = __kmp_str_match_true(threadStats);
399     printPerThreadEventsFlag  = __kmp_str_match_true(threadEvents);
400 
401     if(printPerThreadEventsFlag) {
402         // assigns a color to each timer for printing
403         setupEventColors();
404     } else {
405         // will clear flag so that no event will be logged
406         timeStat::clearEventFlags();
407     }
408 
409     return;
410 }
411 
412 void kmp_stats_output_module::setupEventColors() {
413     int i;
414     int globalColorIndex = 0;
415     int numGlobalColors = sizeof(globalColorArray) / sizeof(rgb_color);
416     for(i=0;i<TIMER_LAST;i++) {
417         if(timeStat::logEvent((timer_e)i)) {
418             timerColorInfo[i] = globalColorArray[globalColorIndex];
419             globalColorIndex = (globalColorIndex+1)%numGlobalColors;
420         }
421     }
422     return;
423 }
424 
425 void kmp_stats_output_module::printTimerStats(FILE *statsOut, statistic const * theStats, statistic const * totalStats)
426 {
427     fprintf (statsOut, "Timer,                      SampleCount,    Min,      Mean,       Max,     Total,        SD\n");
428     for (timer_e s = timer_e(0); s<TIMER_LAST; s = timer_e(s+1)) {
429         statistic const * stat = &theStats[s];
430         char tag = timeStat::noUnits(s) ? ' ' : 'T';
431 
432         fprintf (statsOut, "%-28s, %s\n", timeStat::name(s), stat->format(tag, true).c_str());
433     }
434     // Also print the Total_ versions of times.
435     for (timer_e s = timer_e(0); s<TIMER_LAST; s = timer_e(s+1)) {
436         char tag = timeStat::noUnits(s) ? ' ' : 'T';
437         if (totalStats && !timeStat::noTotal(s))
438             fprintf(statsOut, "Total_%-22s, %s\n", timeStat::name(s), totalStats[s].format(tag, true).c_str());
439     }
440 }
441 
442 void kmp_stats_output_module::printCounterStats(FILE *statsOut, statistic const * theStats)
443 {
444     fprintf (statsOut, "Counter,                 ThreadCount,    Min,      Mean,       Max,     Total,        SD\n");
445     for (int s = 0; s<COUNTER_LAST; s++) {
446         statistic const * stat = &theStats[s];
447         fprintf (statsOut, "%-25s, %s\n", counter::name(counter_e(s)), stat->format(' ', true).c_str());
448     }
449 }
450 
451 void kmp_stats_output_module::printCounters(FILE * statsOut, counter const * theCounters)
452 {
453     // We print all the counters even if they are zero.
454     // That makes it easier to slice them into a spreadsheet if you need to.
455     fprintf (statsOut, "\nCounter,                    Count\n");
456     for (int c = 0; c<COUNTER_LAST; c++) {
457         counter const * stat = &theCounters[c];
458         fprintf (statsOut, "%-25s, %s\n", counter::name(counter_e(c)), formatSI(stat->getValue(), 9, ' ').c_str());
459     }
460 }
461 
462 void kmp_stats_output_module::printEvents(FILE* eventsOut, kmp_stats_event_vector* theEvents, int gtid) {
463     // sort by start time before printing
464     theEvents->sort();
465     for (int i = 0; i < theEvents->size(); i++) {
466         kmp_stats_event ev = theEvents->at(i);
467         rgb_color color = getEventColor(ev.getTimerName());
468         fprintf(eventsOut, "%d %lu %lu %1.1f rgb(%1.1f,%1.1f,%1.1f) %s\n",
469                 gtid,
470                 ev.getStart(),
471                 ev.getStop(),
472                 1.2 - (ev.getNestLevel() * 0.2),
473                 color.r, color.g, color.b,
474                 timeStat::name(ev.getTimerName())
475                );
476     }
477     return;
478 }
479 
480 void kmp_stats_output_module::windupExplicitTimers()
481 {
482     // Wind up any explicit timers. We assume that it's fair at this point to just walk all the explcit timers in all threads
483     // and say "it's over".
484     // If the timer wasn't running, this won't record anything anyway.
485     kmp_stats_list::iterator it;
486     for(it = __kmp_stats_list->begin(); it != __kmp_stats_list->end(); it++) {
487         kmp_stats_list* ptr = *it;
488         ptr->getPartitionedTimers()->windup();
489         for (int timer=0; timer<EXPLICIT_TIMER_LAST; timer++) {
490             ptr->getExplicitTimer(explicit_timer_e(timer))->stop((timer_e)timer, ptr);
491         }
492     }
493 }
494 
495 void kmp_stats_output_module::printPloticusFile() {
496     int i;
497     int size = __kmp_stats_list->size();
498     FILE* plotOut = fopen(plotFileName, "w+");
499 
500     fprintf(plotOut, "#proc page\n"
501                      "   pagesize: 15 10\n"
502                      "   scale: 1.0\n\n");
503 
504     fprintf(plotOut, "#proc getdata\n"
505                      "   file: %s\n\n",
506                      eventsFileName);
507 
508     fprintf(plotOut, "#proc areadef\n"
509                      "   title: OpenMP Sampling Timeline\n"
510                      "   titledetails: align=center size=16\n"
511                      "   rectangle: 1 1 13 9\n"
512                      "   xautorange: datafield=2,3\n"
513                      "   yautorange: -1 %d\n\n",
514                      size);
515 
516     fprintf(plotOut, "#proc xaxis\n"
517                      "   stubs: inc\n"
518                      "   stubdetails: size=12\n"
519                      "   label: Time (ticks)\n"
520                      "   labeldetails: size=14\n\n");
521 
522     fprintf(plotOut, "#proc yaxis\n"
523                      "   stubs: inc 1\n"
524                      "   stubrange: 0 %d\n"
525                      "   stubdetails: size=12\n"
526                      "   label: Thread #\n"
527                      "   labeldetails: size=14\n\n",
528                      size-1);
529 
530     fprintf(plotOut, "#proc bars\n"
531                      "   exactcolorfield: 5\n"
532                      "   axis: x\n"
533                      "   locfield: 1\n"
534                      "   segmentfields: 2 3\n"
535                      "   barwidthfield: 4\n\n");
536 
537     // create legend entries corresponding to the timer color
538     for(i=0;i<TIMER_LAST;i++) {
539         if(timeStat::logEvent((timer_e)i)) {
540             rgb_color c = getEventColor((timer_e)i);
541             fprintf(plotOut, "#proc legendentry\n"
542                              "   sampletype: color\n"
543                              "   label: %s\n"
544                              "   details: rgb(%1.1f,%1.1f,%1.1f)\n\n",
545                              timeStat::name((timer_e)i),
546                              c.r, c.g, c.b);
547 
548         }
549     }
550 
551     fprintf(plotOut, "#proc legend\n"
552                      "   format: down\n"
553                      "   location: max max\n\n");
554     fclose(plotOut);
555     return;
556 }
557 
558 /*
559  * Print some useful information about
560  *    * the date and time this experiment ran.
561  *    * the machine on which it ran.
562  * We output all of this as stylised comments, though we may decide to parse some of it.
563  */
564 void kmp_stats_output_module::printHeaderInfo(FILE * statsOut)
565 {
566     std::time_t now = std::time(0);
567     char buffer[40];
568     char hostName[80];
569 
570     std::strftime(&buffer[0], sizeof(buffer), "%c", std::localtime(&now));
571     fprintf (statsOut, "# Time of run: %s\n", &buffer[0]);
572     if (gethostname(&hostName[0], sizeof(hostName)) == 0)
573         fprintf (statsOut,"# Hostname: %s\n", &hostName[0]);
574 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
575     fprintf (statsOut, "# CPU:  %s\n", &__kmp_cpuinfo.name[0]);
576     fprintf (statsOut, "# Family: %d, Model: %d, Stepping: %d\n", __kmp_cpuinfo.family, __kmp_cpuinfo.model, __kmp_cpuinfo.stepping);
577     if (__kmp_cpuinfo.frequency == 0)
578         fprintf (statsOut, "# Nominal frequency: Unknown\n");
579     else
580         fprintf (statsOut, "# Nominal frequency: %sz\n", formatSI(double(__kmp_cpuinfo.frequency),9,'H').c_str());
581 #endif
582 }
583 
584 void kmp_stats_output_module::outputStats(const char* heading)
585 {
586     // Stop all the explicit timers in all threads
587     // Do this before declaring the local statistics because thay have constructors so will take time to create.
588     windupExplicitTimers();
589 
590     statistic allStats[TIMER_LAST];
591     statistic totalStats[TIMER_LAST];           /* Synthesized, cross threads versions of normal timer stats */
592     statistic allCounters[COUNTER_LAST];
593 
594     FILE * statsOut = !outputFileName.empty() ? fopen (outputFileName.c_str(), "a+") : stderr;
595     if (!statsOut)
596         statsOut = stderr;
597 
598     FILE * eventsOut;
599     if (eventPrintingEnabled()) {
600         eventsOut = fopen(eventsFileName, "w+");
601     }
602 
603     printHeaderInfo (statsOut);
604     fprintf(statsOut, "%s\n",heading);
605     // Accumulate across threads.
606     kmp_stats_list::iterator it;
607     for (it = __kmp_stats_list->begin(); it != __kmp_stats_list->end(); it++) {
608         int t = (*it)->getGtid();
609         // Output per thread stats if requested.
610         if (printPerThreadFlag) {
611             fprintf (statsOut, "Thread %d\n", t);
612             printTimerStats (statsOut, (*it)->getTimers(), 0);
613             printCounters   (statsOut, (*it)->getCounters());
614             fprintf (statsOut,"\n");
615         }
616         // Output per thread events if requested.
617         if (eventPrintingEnabled()) {
618             kmp_stats_event_vector events = (*it)->getEventVector();
619             printEvents(eventsOut, &events, t);
620         }
621 
622         // Accumulate timers.
623         for (timer_e s = timer_e(0); s<TIMER_LAST; s = timer_e(s+1)) {
624             // See if we should ignore this timer when aggregating
625             if ((timeStat::masterOnly(s) && (t != 0)) || // Timer is only valid on the master and this thread is a worker
626                 (timeStat::workerOnly(s) && (t == 0))    // Timer is only valid on a worker and this thread is the master
627                )
628             {
629                 continue;
630             }
631 
632             statistic * threadStat = (*it)->getTimer(s);
633             allStats[s] += *threadStat;
634 
635             // Add Total stats for timers that are valid in more than one thread
636             if (!timeStat::noTotal(s))
637                 totalStats[s].addSample(threadStat->getTotal());
638         }
639 
640         // Accumulate counters.
641         for (counter_e c = counter_e(0); c<COUNTER_LAST; c = counter_e(c+1)) {
642             if (counter::masterOnly(c) && t != 0)
643                 continue;
644             allCounters[c].addSample ((*it)->getCounter(c)->getValue());
645         }
646     }
647 
648     if (eventPrintingEnabled()) {
649         printPloticusFile();
650         fclose(eventsOut);
651     }
652 
653     fprintf (statsOut, "Aggregate for all threads\n");
654     printTimerStats (statsOut, &allStats[0], &totalStats[0]);
655     fprintf (statsOut, "\n");
656     printCounterStats (statsOut, &allCounters[0]);
657 
658     if (statsOut != stderr)
659         fclose(statsOut);
660 }
661 
662 /* ************************************************** */
663 /* *************  exported C functions ************** */
664 
665 // no name mangling for these functions, we want the c files to be able to get at these functions
666 extern "C" {
667 
668 void __kmp_reset_stats()
669 {
670     kmp_stats_list::iterator it;
671     for(it = __kmp_stats_list->begin(); it != __kmp_stats_list->end(); it++) {
672         timeStat * timers     = (*it)->getTimers();
673         counter * counters    = (*it)->getCounters();
674         explicitTimer * eTimers = (*it)->getExplicitTimers();
675 
676         for (int t = 0; t<TIMER_LAST; t++)
677             timers[t].reset();
678 
679         for (int c = 0; c<COUNTER_LAST; c++)
680             counters[c].reset();
681 
682         for (int t=0; t<EXPLICIT_TIMER_LAST; t++)
683             eTimers[t].reset();
684 
685         // reset the event vector so all previous events are "erased"
686         (*it)->resetEventVector();
687     }
688 }
689 
690 // This function will reset all stats and stop all threads' explicit timers if they haven't been stopped already.
691 void __kmp_output_stats(const char * heading)
692 {
693     __kmp_stats_global_output->outputStats(heading);
694     __kmp_reset_stats();
695 }
696 
697 void __kmp_accumulate_stats_at_exit(void)
698 {
699     // Only do this once.
700     if (KMP_XCHG_FIXED32(&statsPrinted, 1) != 0)
701         return;
702 
703     __kmp_output_stats("Statistics on exit");
704 }
705 
706 void __kmp_stats_init(void)
707 {
708     __kmp_init_tas_lock( & __kmp_stats_lock );
709     __kmp_stats_start_time = tsc_tick_count::now();
710     __kmp_stats_global_output = new kmp_stats_output_module();
711     __kmp_stats_list = new kmp_stats_list();
712 }
713 
714 void __kmp_stats_fini(void)
715 {
716     __kmp_accumulate_stats_at_exit();
717     __kmp_stats_list->deallocate();
718     delete __kmp_stats_global_output;
719     delete __kmp_stats_list;
720 }
721 
722 } // extern "C"
723 
724