1 /* 2 * kmp_runtime.cpp -- KPTS runtime support library 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_atomic.h" 16 #include "kmp_environment.h" 17 #include "kmp_error.h" 18 #include "kmp_i18n.h" 19 #include "kmp_io.h" 20 #include "kmp_itt.h" 21 #include "kmp_settings.h" 22 #include "kmp_stats.h" 23 #include "kmp_str.h" 24 #include "kmp_wait_release.h" 25 #include "kmp_wrapper_getpid.h" 26 #include "kmp_dispatch.h" 27 #if KMP_USE_HIER_SCHED 28 #include "kmp_dispatch_hier.h" 29 #endif 30 31 #if OMPT_SUPPORT 32 #include "ompt-specific.h" 33 #endif 34 35 /* these are temporary issues to be dealt with */ 36 #define KMP_USE_PRCTL 0 37 38 #if KMP_OS_WINDOWS 39 #include <process.h> 40 #endif 41 42 #include "tsan_annotations.h" 43 44 #if defined(KMP_GOMP_COMPAT) 45 char const __kmp_version_alt_comp[] = 46 KMP_VERSION_PREFIX "alternative compiler support: yes"; 47 #endif /* defined(KMP_GOMP_COMPAT) */ 48 49 char const __kmp_version_omp_api[] = KMP_VERSION_PREFIX "API version: " 50 #if OMP_50_ENABLED 51 "5.0 (201611)"; 52 #elif OMP_45_ENABLED 53 "4.5 (201511)"; 54 #elif OMP_40_ENABLED 55 "4.0 (201307)"; 56 #else 57 "3.1 (201107)"; 58 #endif 59 60 #ifdef KMP_DEBUG 61 char const __kmp_version_lock[] = 62 KMP_VERSION_PREFIX "lock type: run time selectable"; 63 #endif /* KMP_DEBUG */ 64 65 #define KMP_MIN(x, y) ((x) < (y) ? (x) : (y)) 66 67 /* ------------------------------------------------------------------------ */ 68 69 #if KMP_USE_MONITOR 70 kmp_info_t __kmp_monitor; 71 #endif 72 73 /* Forward declarations */ 74 75 void __kmp_cleanup(void); 76 77 static void __kmp_initialize_info(kmp_info_t *, kmp_team_t *, int tid, 78 int gtid); 79 static void __kmp_initialize_team(kmp_team_t *team, int new_nproc, 80 kmp_internal_control_t *new_icvs, 81 ident_t *loc); 82 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 83 static void __kmp_partition_places(kmp_team_t *team, 84 int update_master_only = 0); 85 #endif 86 static void __kmp_do_serial_initialize(void); 87 void __kmp_fork_barrier(int gtid, int tid); 88 void __kmp_join_barrier(int gtid); 89 void __kmp_setup_icv_copy(kmp_team_t *team, int new_nproc, 90 kmp_internal_control_t *new_icvs, ident_t *loc); 91 92 #ifdef USE_LOAD_BALANCE 93 static int __kmp_load_balance_nproc(kmp_root_t *root, int set_nproc); 94 #endif 95 96 static int __kmp_expand_threads(int nNeed); 97 #if KMP_OS_WINDOWS 98 static int __kmp_unregister_root_other_thread(int gtid); 99 #endif 100 static void __kmp_unregister_library(void); // called by __kmp_internal_end() 101 static void __kmp_reap_thread(kmp_info_t *thread, int is_root); 102 kmp_info_t *__kmp_thread_pool_insert_pt = NULL; 103 104 /* Calculate the identifier of the current thread */ 105 /* fast (and somewhat portable) way to get unique identifier of executing 106 thread. Returns KMP_GTID_DNE if we haven't been assigned a gtid. */ 107 int __kmp_get_global_thread_id() { 108 int i; 109 kmp_info_t **other_threads; 110 size_t stack_data; 111 char *stack_addr; 112 size_t stack_size; 113 char *stack_base; 114 115 KA_TRACE( 116 1000, 117 ("*** __kmp_get_global_thread_id: entering, nproc=%d all_nproc=%d\n", 118 __kmp_nth, __kmp_all_nth)); 119 120 /* JPH - to handle the case where __kmpc_end(0) is called immediately prior to 121 a parallel region, made it return KMP_GTID_DNE to force serial_initialize 122 by caller. Had to handle KMP_GTID_DNE at all call-sites, or else guarantee 123 __kmp_init_gtid for this to work. */ 124 125 if (!TCR_4(__kmp_init_gtid)) 126 return KMP_GTID_DNE; 127 128 #ifdef KMP_TDATA_GTID 129 if (TCR_4(__kmp_gtid_mode) >= 3) { 130 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using TDATA\n")); 131 return __kmp_gtid; 132 } 133 #endif 134 if (TCR_4(__kmp_gtid_mode) >= 2) { 135 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using keyed TLS\n")); 136 return __kmp_gtid_get_specific(); 137 } 138 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using internal alg.\n")); 139 140 stack_addr = (char *)&stack_data; 141 other_threads = __kmp_threads; 142 143 /* ATT: The code below is a source of potential bugs due to unsynchronized 144 access to __kmp_threads array. For example: 145 1. Current thread loads other_threads[i] to thr and checks it, it is 146 non-NULL. 147 2. Current thread is suspended by OS. 148 3. Another thread unregisters and finishes (debug versions of free() 149 may fill memory with something like 0xEF). 150 4. Current thread is resumed. 151 5. Current thread reads junk from *thr. 152 TODO: Fix it. --ln */ 153 154 for (i = 0; i < __kmp_threads_capacity; i++) { 155 156 kmp_info_t *thr = (kmp_info_t *)TCR_SYNC_PTR(other_threads[i]); 157 if (!thr) 158 continue; 159 160 stack_size = (size_t)TCR_PTR(thr->th.th_info.ds.ds_stacksize); 161 stack_base = (char *)TCR_PTR(thr->th.th_info.ds.ds_stackbase); 162 163 /* stack grows down -- search through all of the active threads */ 164 165 if (stack_addr <= stack_base) { 166 size_t stack_diff = stack_base - stack_addr; 167 168 if (stack_diff <= stack_size) { 169 /* The only way we can be closer than the allocated */ 170 /* stack size is if we are running on this thread. */ 171 KMP_DEBUG_ASSERT(__kmp_gtid_get_specific() == i); 172 return i; 173 } 174 } 175 } 176 177 /* get specific to try and determine our gtid */ 178 KA_TRACE(1000, 179 ("*** __kmp_get_global_thread_id: internal alg. failed to find " 180 "thread, using TLS\n")); 181 i = __kmp_gtid_get_specific(); 182 183 /*fprintf( stderr, "=== %d\n", i ); */ /* GROO */ 184 185 /* if we havn't been assigned a gtid, then return code */ 186 if (i < 0) 187 return i; 188 189 /* dynamically updated stack window for uber threads to avoid get_specific 190 call */ 191 if (!TCR_4(other_threads[i]->th.th_info.ds.ds_stackgrow)) { 192 KMP_FATAL(StackOverflow, i); 193 } 194 195 stack_base = (char *)other_threads[i]->th.th_info.ds.ds_stackbase; 196 if (stack_addr > stack_base) { 197 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stackbase, stack_addr); 198 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stacksize, 199 other_threads[i]->th.th_info.ds.ds_stacksize + stack_addr - 200 stack_base); 201 } else { 202 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stacksize, 203 stack_base - stack_addr); 204 } 205 206 /* Reprint stack bounds for ubermaster since they have been refined */ 207 if (__kmp_storage_map) { 208 char *stack_end = (char *)other_threads[i]->th.th_info.ds.ds_stackbase; 209 char *stack_beg = stack_end - other_threads[i]->th.th_info.ds.ds_stacksize; 210 __kmp_print_storage_map_gtid(i, stack_beg, stack_end, 211 other_threads[i]->th.th_info.ds.ds_stacksize, 212 "th_%d stack (refinement)", i); 213 } 214 return i; 215 } 216 217 int __kmp_get_global_thread_id_reg() { 218 int gtid; 219 220 if (!__kmp_init_serial) { 221 gtid = KMP_GTID_DNE; 222 } else 223 #ifdef KMP_TDATA_GTID 224 if (TCR_4(__kmp_gtid_mode) >= 3) { 225 KA_TRACE(1000, ("*** __kmp_get_global_thread_id_reg: using TDATA\n")); 226 gtid = __kmp_gtid; 227 } else 228 #endif 229 if (TCR_4(__kmp_gtid_mode) >= 2) { 230 KA_TRACE(1000, ("*** __kmp_get_global_thread_id_reg: using keyed TLS\n")); 231 gtid = __kmp_gtid_get_specific(); 232 } else { 233 KA_TRACE(1000, 234 ("*** __kmp_get_global_thread_id_reg: using internal alg.\n")); 235 gtid = __kmp_get_global_thread_id(); 236 } 237 238 /* we must be a new uber master sibling thread */ 239 if (gtid == KMP_GTID_DNE) { 240 KA_TRACE(10, 241 ("__kmp_get_global_thread_id_reg: Encountered new root thread. " 242 "Registering a new gtid.\n")); 243 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 244 if (!__kmp_init_serial) { 245 __kmp_do_serial_initialize(); 246 gtid = __kmp_gtid_get_specific(); 247 } else { 248 gtid = __kmp_register_root(FALSE); 249 } 250 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 251 /*__kmp_printf( "+++ %d\n", gtid ); */ /* GROO */ 252 } 253 254 KMP_DEBUG_ASSERT(gtid >= 0); 255 256 return gtid; 257 } 258 259 /* caller must hold forkjoin_lock */ 260 void __kmp_check_stack_overlap(kmp_info_t *th) { 261 int f; 262 char *stack_beg = NULL; 263 char *stack_end = NULL; 264 int gtid; 265 266 KA_TRACE(10, ("__kmp_check_stack_overlap: called\n")); 267 if (__kmp_storage_map) { 268 stack_end = (char *)th->th.th_info.ds.ds_stackbase; 269 stack_beg = stack_end - th->th.th_info.ds.ds_stacksize; 270 271 gtid = __kmp_gtid_from_thread(th); 272 273 if (gtid == KMP_GTID_MONITOR) { 274 __kmp_print_storage_map_gtid( 275 gtid, stack_beg, stack_end, th->th.th_info.ds.ds_stacksize, 276 "th_%s stack (%s)", "mon", 277 (th->th.th_info.ds.ds_stackgrow) ? "initial" : "actual"); 278 } else { 279 __kmp_print_storage_map_gtid( 280 gtid, stack_beg, stack_end, th->th.th_info.ds.ds_stacksize, 281 "th_%d stack (%s)", gtid, 282 (th->th.th_info.ds.ds_stackgrow) ? "initial" : "actual"); 283 } 284 } 285 286 /* No point in checking ubermaster threads since they use refinement and 287 * cannot overlap */ 288 gtid = __kmp_gtid_from_thread(th); 289 if (__kmp_env_checks == TRUE && !KMP_UBER_GTID(gtid)) { 290 KA_TRACE(10, 291 ("__kmp_check_stack_overlap: performing extensive checking\n")); 292 if (stack_beg == NULL) { 293 stack_end = (char *)th->th.th_info.ds.ds_stackbase; 294 stack_beg = stack_end - th->th.th_info.ds.ds_stacksize; 295 } 296 297 for (f = 0; f < __kmp_threads_capacity; f++) { 298 kmp_info_t *f_th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[f]); 299 300 if (f_th && f_th != th) { 301 char *other_stack_end = 302 (char *)TCR_PTR(f_th->th.th_info.ds.ds_stackbase); 303 char *other_stack_beg = 304 other_stack_end - (size_t)TCR_PTR(f_th->th.th_info.ds.ds_stacksize); 305 if ((stack_beg > other_stack_beg && stack_beg < other_stack_end) || 306 (stack_end > other_stack_beg && stack_end < other_stack_end)) { 307 308 /* Print the other stack values before the abort */ 309 if (__kmp_storage_map) 310 __kmp_print_storage_map_gtid( 311 -1, other_stack_beg, other_stack_end, 312 (size_t)TCR_PTR(f_th->th.th_info.ds.ds_stacksize), 313 "th_%d stack (overlapped)", __kmp_gtid_from_thread(f_th)); 314 315 __kmp_fatal(KMP_MSG(StackOverlap), KMP_HNT(ChangeStackLimit), 316 __kmp_msg_null); 317 } 318 } 319 } 320 } 321 KA_TRACE(10, ("__kmp_check_stack_overlap: returning\n")); 322 } 323 324 /* ------------------------------------------------------------------------ */ 325 326 void __kmp_infinite_loop(void) { 327 static int done = FALSE; 328 329 while (!done) { 330 KMP_YIELD(TRUE); 331 } 332 } 333 334 #define MAX_MESSAGE 512 335 336 void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2, size_t size, 337 char const *format, ...) { 338 char buffer[MAX_MESSAGE]; 339 va_list ap; 340 341 va_start(ap, format); 342 KMP_SNPRINTF(buffer, sizeof(buffer), "OMP storage map: %p %p%8lu %s\n", p1, 343 p2, (unsigned long)size, format); 344 __kmp_acquire_bootstrap_lock(&__kmp_stdio_lock); 345 __kmp_vprintf(kmp_err, buffer, ap); 346 #if KMP_PRINT_DATA_PLACEMENT 347 int node; 348 if (gtid >= 0) { 349 if (p1 <= p2 && (char *)p2 - (char *)p1 == size) { 350 if (__kmp_storage_map_verbose) { 351 node = __kmp_get_host_node(p1); 352 if (node < 0) /* doesn't work, so don't try this next time */ 353 __kmp_storage_map_verbose = FALSE; 354 else { 355 char *last; 356 int lastNode; 357 int localProc = __kmp_get_cpu_from_gtid(gtid); 358 359 const int page_size = KMP_GET_PAGE_SIZE(); 360 361 p1 = (void *)((size_t)p1 & ~((size_t)page_size - 1)); 362 p2 = (void *)(((size_t)p2 - 1) & ~((size_t)page_size - 1)); 363 if (localProc >= 0) 364 __kmp_printf_no_lock(" GTID %d localNode %d\n", gtid, 365 localProc >> 1); 366 else 367 __kmp_printf_no_lock(" GTID %d\n", gtid); 368 #if KMP_USE_PRCTL 369 /* The more elaborate format is disabled for now because of the prctl 370 * hanging bug. */ 371 do { 372 last = p1; 373 lastNode = node; 374 /* This loop collates adjacent pages with the same host node. */ 375 do { 376 (char *)p1 += page_size; 377 } while (p1 <= p2 && (node = __kmp_get_host_node(p1)) == lastNode); 378 __kmp_printf_no_lock(" %p-%p memNode %d\n", last, (char *)p1 - 1, 379 lastNode); 380 } while (p1 <= p2); 381 #else 382 __kmp_printf_no_lock(" %p-%p memNode %d\n", p1, 383 (char *)p1 + (page_size - 1), 384 __kmp_get_host_node(p1)); 385 if (p1 < p2) { 386 __kmp_printf_no_lock(" %p-%p memNode %d\n", p2, 387 (char *)p2 + (page_size - 1), 388 __kmp_get_host_node(p2)); 389 } 390 #endif 391 } 392 } 393 } else 394 __kmp_printf_no_lock(" %s\n", KMP_I18N_STR(StorageMapWarning)); 395 } 396 #endif /* KMP_PRINT_DATA_PLACEMENT */ 397 __kmp_release_bootstrap_lock(&__kmp_stdio_lock); 398 } 399 400 void __kmp_warn(char const *format, ...) { 401 char buffer[MAX_MESSAGE]; 402 va_list ap; 403 404 if (__kmp_generate_warnings == kmp_warnings_off) { 405 return; 406 } 407 408 va_start(ap, format); 409 410 KMP_SNPRINTF(buffer, sizeof(buffer), "OMP warning: %s\n", format); 411 __kmp_acquire_bootstrap_lock(&__kmp_stdio_lock); 412 __kmp_vprintf(kmp_err, buffer, ap); 413 __kmp_release_bootstrap_lock(&__kmp_stdio_lock); 414 415 va_end(ap); 416 } 417 418 void __kmp_abort_process() { 419 // Later threads may stall here, but that's ok because abort() will kill them. 420 __kmp_acquire_bootstrap_lock(&__kmp_exit_lock); 421 422 if (__kmp_debug_buf) { 423 __kmp_dump_debug_buffer(); 424 } 425 426 if (KMP_OS_WINDOWS) { 427 // Let other threads know of abnormal termination and prevent deadlock 428 // if abort happened during library initialization or shutdown 429 __kmp_global.g.g_abort = SIGABRT; 430 431 /* On Windows* OS by default abort() causes pop-up error box, which stalls 432 nightly testing. Unfortunately, we cannot reliably suppress pop-up error 433 boxes. _set_abort_behavior() works well, but this function is not 434 available in VS7 (this is not problem for DLL, but it is a problem for 435 static OpenMP RTL). SetErrorMode (and so, timelimit utility) does not 436 help, at least in some versions of MS C RTL. 437 438 It seems following sequence is the only way to simulate abort() and 439 avoid pop-up error box. */ 440 raise(SIGABRT); 441 _exit(3); // Just in case, if signal ignored, exit anyway. 442 } else { 443 abort(); 444 } 445 446 __kmp_infinite_loop(); 447 __kmp_release_bootstrap_lock(&__kmp_exit_lock); 448 449 } // __kmp_abort_process 450 451 void __kmp_abort_thread(void) { 452 // TODO: Eliminate g_abort global variable and this function. 453 // In case of abort just call abort(), it will kill all the threads. 454 __kmp_infinite_loop(); 455 } // __kmp_abort_thread 456 457 /* Print out the storage map for the major kmp_info_t thread data structures 458 that are allocated together. */ 459 460 static void __kmp_print_thread_storage_map(kmp_info_t *thr, int gtid) { 461 __kmp_print_storage_map_gtid(gtid, thr, thr + 1, sizeof(kmp_info_t), "th_%d", 462 gtid); 463 464 __kmp_print_storage_map_gtid(gtid, &thr->th.th_info, &thr->th.th_team, 465 sizeof(kmp_desc_t), "th_%d.th_info", gtid); 466 467 __kmp_print_storage_map_gtid(gtid, &thr->th.th_local, &thr->th.th_pri_head, 468 sizeof(kmp_local_t), "th_%d.th_local", gtid); 469 470 __kmp_print_storage_map_gtid( 471 gtid, &thr->th.th_bar[0], &thr->th.th_bar[bs_last_barrier], 472 sizeof(kmp_balign_t) * bs_last_barrier, "th_%d.th_bar", gtid); 473 474 __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_plain_barrier], 475 &thr->th.th_bar[bs_plain_barrier + 1], 476 sizeof(kmp_balign_t), "th_%d.th_bar[plain]", 477 gtid); 478 479 __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_forkjoin_barrier], 480 &thr->th.th_bar[bs_forkjoin_barrier + 1], 481 sizeof(kmp_balign_t), "th_%d.th_bar[forkjoin]", 482 gtid); 483 484 #if KMP_FAST_REDUCTION_BARRIER 485 __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_reduction_barrier], 486 &thr->th.th_bar[bs_reduction_barrier + 1], 487 sizeof(kmp_balign_t), "th_%d.th_bar[reduction]", 488 gtid); 489 #endif // KMP_FAST_REDUCTION_BARRIER 490 } 491 492 /* Print out the storage map for the major kmp_team_t team data structures 493 that are allocated together. */ 494 495 static void __kmp_print_team_storage_map(const char *header, kmp_team_t *team, 496 int team_id, int num_thr) { 497 int num_disp_buff = team->t.t_max_nproc > 1 ? __kmp_dispatch_num_buffers : 2; 498 __kmp_print_storage_map_gtid(-1, team, team + 1, sizeof(kmp_team_t), "%s_%d", 499 header, team_id); 500 501 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[0], 502 &team->t.t_bar[bs_last_barrier], 503 sizeof(kmp_balign_team_t) * bs_last_barrier, 504 "%s_%d.t_bar", header, team_id); 505 506 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_plain_barrier], 507 &team->t.t_bar[bs_plain_barrier + 1], 508 sizeof(kmp_balign_team_t), "%s_%d.t_bar[plain]", 509 header, team_id); 510 511 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_forkjoin_barrier], 512 &team->t.t_bar[bs_forkjoin_barrier + 1], 513 sizeof(kmp_balign_team_t), 514 "%s_%d.t_bar[forkjoin]", header, team_id); 515 516 #if KMP_FAST_REDUCTION_BARRIER 517 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_reduction_barrier], 518 &team->t.t_bar[bs_reduction_barrier + 1], 519 sizeof(kmp_balign_team_t), 520 "%s_%d.t_bar[reduction]", header, team_id); 521 #endif // KMP_FAST_REDUCTION_BARRIER 522 523 __kmp_print_storage_map_gtid( 524 -1, &team->t.t_dispatch[0], &team->t.t_dispatch[num_thr], 525 sizeof(kmp_disp_t) * num_thr, "%s_%d.t_dispatch", header, team_id); 526 527 __kmp_print_storage_map_gtid( 528 -1, &team->t.t_threads[0], &team->t.t_threads[num_thr], 529 sizeof(kmp_info_t *) * num_thr, "%s_%d.t_threads", header, team_id); 530 531 __kmp_print_storage_map_gtid(-1, &team->t.t_disp_buffer[0], 532 &team->t.t_disp_buffer[num_disp_buff], 533 sizeof(dispatch_shared_info_t) * num_disp_buff, 534 "%s_%d.t_disp_buffer", header, team_id); 535 } 536 537 static void __kmp_init_allocator() { 538 #if OMP_50_ENABLED 539 __kmp_init_memkind(); 540 #endif 541 } 542 static void __kmp_fini_allocator() { 543 #if OMP_50_ENABLED 544 __kmp_fini_memkind(); 545 #endif 546 } 547 548 /* ------------------------------------------------------------------------ */ 549 550 #if KMP_DYNAMIC_LIB 551 #if KMP_OS_WINDOWS 552 553 static void __kmp_reset_lock(kmp_bootstrap_lock_t *lck) { 554 // TODO: Change to __kmp_break_bootstrap_lock(). 555 __kmp_init_bootstrap_lock(lck); // make the lock released 556 } 557 558 static void __kmp_reset_locks_on_process_detach(int gtid_req) { 559 int i; 560 int thread_count; 561 562 // PROCESS_DETACH is expected to be called by a thread that executes 563 // ProcessExit() or FreeLibrary(). OS terminates other threads (except the one 564 // calling ProcessExit or FreeLibrary). So, it might be safe to access the 565 // __kmp_threads[] without taking the forkjoin_lock. However, in fact, some 566 // threads can be still alive here, although being about to be terminated. The 567 // threads in the array with ds_thread==0 are most suspicious. Actually, it 568 // can be not safe to access the __kmp_threads[]. 569 570 // TODO: does it make sense to check __kmp_roots[] ? 571 572 // Let's check that there are no other alive threads registered with the OMP 573 // lib. 574 while (1) { 575 thread_count = 0; 576 for (i = 0; i < __kmp_threads_capacity; ++i) { 577 if (!__kmp_threads) 578 continue; 579 kmp_info_t *th = __kmp_threads[i]; 580 if (th == NULL) 581 continue; 582 int gtid = th->th.th_info.ds.ds_gtid; 583 if (gtid == gtid_req) 584 continue; 585 if (gtid < 0) 586 continue; 587 DWORD exit_val; 588 int alive = __kmp_is_thread_alive(th, &exit_val); 589 if (alive) { 590 ++thread_count; 591 } 592 } 593 if (thread_count == 0) 594 break; // success 595 } 596 597 // Assume that I'm alone. Now it might be safe to check and reset locks. 598 // __kmp_forkjoin_lock and __kmp_stdio_lock are expected to be reset. 599 __kmp_reset_lock(&__kmp_forkjoin_lock); 600 #ifdef KMP_DEBUG 601 __kmp_reset_lock(&__kmp_stdio_lock); 602 #endif // KMP_DEBUG 603 } 604 605 BOOL WINAPI DllMain(HINSTANCE hInstDLL, DWORD fdwReason, LPVOID lpReserved) { 606 //__kmp_acquire_bootstrap_lock( &__kmp_initz_lock ); 607 608 switch (fdwReason) { 609 610 case DLL_PROCESS_ATTACH: 611 KA_TRACE(10, ("DllMain: PROCESS_ATTACH\n")); 612 613 return TRUE; 614 615 case DLL_PROCESS_DETACH: 616 KA_TRACE(10, ("DllMain: PROCESS_DETACH T#%d\n", __kmp_gtid_get_specific())); 617 618 if (lpReserved != NULL) { 619 // lpReserved is used for telling the difference: 620 // lpReserved == NULL when FreeLibrary() was called, 621 // lpReserved != NULL when the process terminates. 622 // When FreeLibrary() is called, worker threads remain alive. So they will 623 // release the forkjoin lock by themselves. When the process terminates, 624 // worker threads disappear triggering the problem of unreleased forkjoin 625 // lock as described below. 626 627 // A worker thread can take the forkjoin lock. The problem comes up if 628 // that worker thread becomes dead before it releases the forkjoin lock. 629 // The forkjoin lock remains taken, while the thread executing 630 // DllMain()->PROCESS_DETACH->__kmp_internal_end_library() below will try 631 // to take the forkjoin lock and will always fail, so that the application 632 // will never finish [normally]. This scenario is possible if 633 // __kmpc_end() has not been executed. It looks like it's not a corner 634 // case, but common cases: 635 // - the main function was compiled by an alternative compiler; 636 // - the main function was compiled by icl but without /Qopenmp 637 // (application with plugins); 638 // - application terminates by calling C exit(), Fortran CALL EXIT() or 639 // Fortran STOP. 640 // - alive foreign thread prevented __kmpc_end from doing cleanup. 641 // 642 // This is a hack to work around the problem. 643 // TODO: !!! figure out something better. 644 __kmp_reset_locks_on_process_detach(__kmp_gtid_get_specific()); 645 } 646 647 __kmp_internal_end_library(__kmp_gtid_get_specific()); 648 649 return TRUE; 650 651 case DLL_THREAD_ATTACH: 652 KA_TRACE(10, ("DllMain: THREAD_ATTACH\n")); 653 654 /* if we want to register new siblings all the time here call 655 * __kmp_get_gtid(); */ 656 return TRUE; 657 658 case DLL_THREAD_DETACH: 659 KA_TRACE(10, ("DllMain: THREAD_DETACH T#%d\n", __kmp_gtid_get_specific())); 660 661 __kmp_internal_end_thread(__kmp_gtid_get_specific()); 662 return TRUE; 663 } 664 665 return TRUE; 666 } 667 668 #endif /* KMP_OS_WINDOWS */ 669 #endif /* KMP_DYNAMIC_LIB */ 670 671 /* __kmp_parallel_deo -- Wait until it's our turn. */ 672 void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) { 673 int gtid = *gtid_ref; 674 #ifdef BUILD_PARALLEL_ORDERED 675 kmp_team_t *team = __kmp_team_from_gtid(gtid); 676 #endif /* BUILD_PARALLEL_ORDERED */ 677 678 if (__kmp_env_consistency_check) { 679 if (__kmp_threads[gtid]->th.th_root->r.r_active) 680 #if KMP_USE_DYNAMIC_LOCK 681 __kmp_push_sync(gtid, ct_ordered_in_parallel, loc_ref, NULL, 0); 682 #else 683 __kmp_push_sync(gtid, ct_ordered_in_parallel, loc_ref, NULL); 684 #endif 685 } 686 #ifdef BUILD_PARALLEL_ORDERED 687 if (!team->t.t_serialized) { 688 KMP_MB(); 689 KMP_WAIT(&team->t.t_ordered.dt.t_value, __kmp_tid_from_gtid(gtid), KMP_EQ, 690 NULL); 691 KMP_MB(); 692 } 693 #endif /* BUILD_PARALLEL_ORDERED */ 694 } 695 696 /* __kmp_parallel_dxo -- Signal the next task. */ 697 void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) { 698 int gtid = *gtid_ref; 699 #ifdef BUILD_PARALLEL_ORDERED 700 int tid = __kmp_tid_from_gtid(gtid); 701 kmp_team_t *team = __kmp_team_from_gtid(gtid); 702 #endif /* BUILD_PARALLEL_ORDERED */ 703 704 if (__kmp_env_consistency_check) { 705 if (__kmp_threads[gtid]->th.th_root->r.r_active) 706 __kmp_pop_sync(gtid, ct_ordered_in_parallel, loc_ref); 707 } 708 #ifdef BUILD_PARALLEL_ORDERED 709 if (!team->t.t_serialized) { 710 KMP_MB(); /* Flush all pending memory write invalidates. */ 711 712 /* use the tid of the next thread in this team */ 713 /* TODO replace with general release procedure */ 714 team->t.t_ordered.dt.t_value = ((tid + 1) % team->t.t_nproc); 715 716 KMP_MB(); /* Flush all pending memory write invalidates. */ 717 } 718 #endif /* BUILD_PARALLEL_ORDERED */ 719 } 720 721 /* ------------------------------------------------------------------------ */ 722 /* The BARRIER for a SINGLE process section is always explicit */ 723 724 int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws) { 725 int status; 726 kmp_info_t *th; 727 kmp_team_t *team; 728 729 if (!TCR_4(__kmp_init_parallel)) 730 __kmp_parallel_initialize(); 731 732 #if OMP_50_ENABLED 733 __kmp_resume_if_soft_paused(); 734 #endif 735 736 th = __kmp_threads[gtid]; 737 team = th->th.th_team; 738 status = 0; 739 740 th->th.th_ident = id_ref; 741 742 if (team->t.t_serialized) { 743 status = 1; 744 } else { 745 kmp_int32 old_this = th->th.th_local.this_construct; 746 747 ++th->th.th_local.this_construct; 748 /* try to set team count to thread count--success means thread got the 749 single block */ 750 /* TODO: Should this be acquire or release? */ 751 if (team->t.t_construct == old_this) { 752 status = __kmp_atomic_compare_store_acq(&team->t.t_construct, old_this, 753 th->th.th_local.this_construct); 754 } 755 #if USE_ITT_BUILD 756 if (__itt_metadata_add_ptr && __kmp_forkjoin_frames_mode == 3 && 757 KMP_MASTER_GTID(gtid) && 758 #if OMP_40_ENABLED 759 th->th.th_teams_microtask == NULL && 760 #endif 761 team->t.t_active_level == 762 1) { // Only report metadata by master of active team at level 1 763 __kmp_itt_metadata_single(id_ref); 764 } 765 #endif /* USE_ITT_BUILD */ 766 } 767 768 if (__kmp_env_consistency_check) { 769 if (status && push_ws) { 770 __kmp_push_workshare(gtid, ct_psingle, id_ref); 771 } else { 772 __kmp_check_workshare(gtid, ct_psingle, id_ref); 773 } 774 } 775 #if USE_ITT_BUILD 776 if (status) { 777 __kmp_itt_single_start(gtid); 778 } 779 #endif /* USE_ITT_BUILD */ 780 return status; 781 } 782 783 void __kmp_exit_single(int gtid) { 784 #if USE_ITT_BUILD 785 __kmp_itt_single_end(gtid); 786 #endif /* USE_ITT_BUILD */ 787 if (__kmp_env_consistency_check) 788 __kmp_pop_workshare(gtid, ct_psingle, NULL); 789 } 790 791 /* determine if we can go parallel or must use a serialized parallel region and 792 * how many threads we can use 793 * set_nproc is the number of threads requested for the team 794 * returns 0 if we should serialize or only use one thread, 795 * otherwise the number of threads to use 796 * The forkjoin lock is held by the caller. */ 797 static int __kmp_reserve_threads(kmp_root_t *root, kmp_team_t *parent_team, 798 int master_tid, int set_nthreads 799 #if OMP_40_ENABLED 800 , 801 int enter_teams 802 #endif /* OMP_40_ENABLED */ 803 ) { 804 int capacity; 805 int new_nthreads; 806 KMP_DEBUG_ASSERT(__kmp_init_serial); 807 KMP_DEBUG_ASSERT(root && parent_team); 808 kmp_info_t *this_thr = parent_team->t.t_threads[master_tid]; 809 810 // If dyn-var is set, dynamically adjust the number of desired threads, 811 // according to the method specified by dynamic_mode. 812 new_nthreads = set_nthreads; 813 if (!get__dynamic_2(parent_team, master_tid)) { 814 ; 815 } 816 #ifdef USE_LOAD_BALANCE 817 else if (__kmp_global.g.g_dynamic_mode == dynamic_load_balance) { 818 new_nthreads = __kmp_load_balance_nproc(root, set_nthreads); 819 if (new_nthreads == 1) { 820 KC_TRACE(10, ("__kmp_reserve_threads: T#%d load balance reduced " 821 "reservation to 1 thread\n", 822 master_tid)); 823 return 1; 824 } 825 if (new_nthreads < set_nthreads) { 826 KC_TRACE(10, ("__kmp_reserve_threads: T#%d load balance reduced " 827 "reservation to %d threads\n", 828 master_tid, new_nthreads)); 829 } 830 } 831 #endif /* USE_LOAD_BALANCE */ 832 else if (__kmp_global.g.g_dynamic_mode == dynamic_thread_limit) { 833 new_nthreads = __kmp_avail_proc - __kmp_nth + 834 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 835 if (new_nthreads <= 1) { 836 KC_TRACE(10, ("__kmp_reserve_threads: T#%d thread limit reduced " 837 "reservation to 1 thread\n", 838 master_tid)); 839 return 1; 840 } 841 if (new_nthreads < set_nthreads) { 842 KC_TRACE(10, ("__kmp_reserve_threads: T#%d thread limit reduced " 843 "reservation to %d threads\n", 844 master_tid, new_nthreads)); 845 } else { 846 new_nthreads = set_nthreads; 847 } 848 } else if (__kmp_global.g.g_dynamic_mode == dynamic_random) { 849 if (set_nthreads > 2) { 850 new_nthreads = __kmp_get_random(parent_team->t.t_threads[master_tid]); 851 new_nthreads = (new_nthreads % set_nthreads) + 1; 852 if (new_nthreads == 1) { 853 KC_TRACE(10, ("__kmp_reserve_threads: T#%d dynamic random reduced " 854 "reservation to 1 thread\n", 855 master_tid)); 856 return 1; 857 } 858 if (new_nthreads < set_nthreads) { 859 KC_TRACE(10, ("__kmp_reserve_threads: T#%d dynamic random reduced " 860 "reservation to %d threads\n", 861 master_tid, new_nthreads)); 862 } 863 } 864 } else { 865 KMP_ASSERT(0); 866 } 867 868 // Respect KMP_ALL_THREADS/KMP_DEVICE_THREAD_LIMIT. 869 if (__kmp_nth + new_nthreads - 870 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) > 871 __kmp_max_nth) { 872 int tl_nthreads = __kmp_max_nth - __kmp_nth + 873 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 874 if (tl_nthreads <= 0) { 875 tl_nthreads = 1; 876 } 877 878 // If dyn-var is false, emit a 1-time warning. 879 if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) { 880 __kmp_reserve_warn = 1; 881 __kmp_msg(kmp_ms_warning, 882 KMP_MSG(CantFormThrTeam, set_nthreads, tl_nthreads), 883 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 884 } 885 if (tl_nthreads == 1) { 886 KC_TRACE(10, ("__kmp_reserve_threads: T#%d KMP_DEVICE_THREAD_LIMIT " 887 "reduced reservation to 1 thread\n", 888 master_tid)); 889 return 1; 890 } 891 KC_TRACE(10, ("__kmp_reserve_threads: T#%d KMP_DEVICE_THREAD_LIMIT reduced " 892 "reservation to %d threads\n", 893 master_tid, tl_nthreads)); 894 new_nthreads = tl_nthreads; 895 } 896 897 // Respect OMP_THREAD_LIMIT 898 int cg_nthreads = this_thr->th.th_cg_roots->cg_nthreads; 899 int max_cg_threads = this_thr->th.th_cg_roots->cg_thread_limit; 900 if (cg_nthreads + new_nthreads - 901 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) > 902 max_cg_threads) { 903 int tl_nthreads = max_cg_threads - cg_nthreads + 904 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 905 if (tl_nthreads <= 0) { 906 tl_nthreads = 1; 907 } 908 909 // If dyn-var is false, emit a 1-time warning. 910 if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) { 911 __kmp_reserve_warn = 1; 912 __kmp_msg(kmp_ms_warning, 913 KMP_MSG(CantFormThrTeam, set_nthreads, tl_nthreads), 914 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 915 } 916 if (tl_nthreads == 1) { 917 KC_TRACE(10, ("__kmp_reserve_threads: T#%d OMP_THREAD_LIMIT " 918 "reduced reservation to 1 thread\n", 919 master_tid)); 920 return 1; 921 } 922 KC_TRACE(10, ("__kmp_reserve_threads: T#%d OMP_THREAD_LIMIT reduced " 923 "reservation to %d threads\n", 924 master_tid, tl_nthreads)); 925 new_nthreads = tl_nthreads; 926 } 927 928 // Check if the threads array is large enough, or needs expanding. 929 // See comment in __kmp_register_root() about the adjustment if 930 // __kmp_threads[0] == NULL. 931 capacity = __kmp_threads_capacity; 932 if (TCR_PTR(__kmp_threads[0]) == NULL) { 933 --capacity; 934 } 935 if (__kmp_nth + new_nthreads - 936 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) > 937 capacity) { 938 // Expand the threads array. 939 int slotsRequired = __kmp_nth + new_nthreads - 940 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) - 941 capacity; 942 int slotsAdded = __kmp_expand_threads(slotsRequired); 943 if (slotsAdded < slotsRequired) { 944 // The threads array was not expanded enough. 945 new_nthreads -= (slotsRequired - slotsAdded); 946 KMP_ASSERT(new_nthreads >= 1); 947 948 // If dyn-var is false, emit a 1-time warning. 949 if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) { 950 __kmp_reserve_warn = 1; 951 if (__kmp_tp_cached) { 952 __kmp_msg(kmp_ms_warning, 953 KMP_MSG(CantFormThrTeam, set_nthreads, new_nthreads), 954 KMP_HNT(Set_ALL_THREADPRIVATE, __kmp_tp_capacity), 955 KMP_HNT(PossibleSystemLimitOnThreads), __kmp_msg_null); 956 } else { 957 __kmp_msg(kmp_ms_warning, 958 KMP_MSG(CantFormThrTeam, set_nthreads, new_nthreads), 959 KMP_HNT(SystemLimitOnThreads), __kmp_msg_null); 960 } 961 } 962 } 963 } 964 965 #ifdef KMP_DEBUG 966 if (new_nthreads == 1) { 967 KC_TRACE(10, 968 ("__kmp_reserve_threads: T#%d serializing team after reclaiming " 969 "dead roots and rechecking; requested %d threads\n", 970 __kmp_get_gtid(), set_nthreads)); 971 } else { 972 KC_TRACE(10, ("__kmp_reserve_threads: T#%d allocating %d threads; requested" 973 " %d threads\n", 974 __kmp_get_gtid(), new_nthreads, set_nthreads)); 975 } 976 #endif // KMP_DEBUG 977 return new_nthreads; 978 } 979 980 /* Allocate threads from the thread pool and assign them to the new team. We are 981 assured that there are enough threads available, because we checked on that 982 earlier within critical section forkjoin */ 983 static void __kmp_fork_team_threads(kmp_root_t *root, kmp_team_t *team, 984 kmp_info_t *master_th, int master_gtid) { 985 int i; 986 int use_hot_team; 987 988 KA_TRACE(10, ("__kmp_fork_team_threads: new_nprocs = %d\n", team->t.t_nproc)); 989 KMP_DEBUG_ASSERT(master_gtid == __kmp_get_gtid()); 990 KMP_MB(); 991 992 /* first, let's setup the master thread */ 993 master_th->th.th_info.ds.ds_tid = 0; 994 master_th->th.th_team = team; 995 master_th->th.th_team_nproc = team->t.t_nproc; 996 master_th->th.th_team_master = master_th; 997 master_th->th.th_team_serialized = FALSE; 998 master_th->th.th_dispatch = &team->t.t_dispatch[0]; 999 1000 /* make sure we are not the optimized hot team */ 1001 #if KMP_NESTED_HOT_TEAMS 1002 use_hot_team = 0; 1003 kmp_hot_team_ptr_t *hot_teams = master_th->th.th_hot_teams; 1004 if (hot_teams) { // hot teams array is not allocated if 1005 // KMP_HOT_TEAMS_MAX_LEVEL=0 1006 int level = team->t.t_active_level - 1; // index in array of hot teams 1007 if (master_th->th.th_teams_microtask) { // are we inside the teams? 1008 if (master_th->th.th_teams_size.nteams > 1) { 1009 ++level; // level was not increased in teams construct for 1010 // team_of_masters 1011 } 1012 if (team->t.t_pkfn != (microtask_t)__kmp_teams_master && 1013 master_th->th.th_teams_level == team->t.t_level) { 1014 ++level; // level was not increased in teams construct for 1015 // team_of_workers before the parallel 1016 } // team->t.t_level will be increased inside parallel 1017 } 1018 if (level < __kmp_hot_teams_max_level) { 1019 if (hot_teams[level].hot_team) { 1020 // hot team has already been allocated for given level 1021 KMP_DEBUG_ASSERT(hot_teams[level].hot_team == team); 1022 use_hot_team = 1; // the team is ready to use 1023 } else { 1024 use_hot_team = 0; // AC: threads are not allocated yet 1025 hot_teams[level].hot_team = team; // remember new hot team 1026 hot_teams[level].hot_team_nth = team->t.t_nproc; 1027 } 1028 } else { 1029 use_hot_team = 0; 1030 } 1031 } 1032 #else 1033 use_hot_team = team == root->r.r_hot_team; 1034 #endif 1035 if (!use_hot_team) { 1036 1037 /* install the master thread */ 1038 team->t.t_threads[0] = master_th; 1039 __kmp_initialize_info(master_th, team, 0, master_gtid); 1040 1041 /* now, install the worker threads */ 1042 for (i = 1; i < team->t.t_nproc; i++) { 1043 1044 /* fork or reallocate a new thread and install it in team */ 1045 kmp_info_t *thr = __kmp_allocate_thread(root, team, i); 1046 team->t.t_threads[i] = thr; 1047 KMP_DEBUG_ASSERT(thr); 1048 KMP_DEBUG_ASSERT(thr->th.th_team == team); 1049 /* align team and thread arrived states */ 1050 KA_TRACE(20, ("__kmp_fork_team_threads: T#%d(%d:%d) init arrived " 1051 "T#%d(%d:%d) join =%llu, plain=%llu\n", 1052 __kmp_gtid_from_tid(0, team), team->t.t_id, 0, 1053 __kmp_gtid_from_tid(i, team), team->t.t_id, i, 1054 team->t.t_bar[bs_forkjoin_barrier].b_arrived, 1055 team->t.t_bar[bs_plain_barrier].b_arrived)); 1056 #if OMP_40_ENABLED 1057 thr->th.th_teams_microtask = master_th->th.th_teams_microtask; 1058 thr->th.th_teams_level = master_th->th.th_teams_level; 1059 thr->th.th_teams_size = master_th->th.th_teams_size; 1060 #endif 1061 { // Initialize threads' barrier data. 1062 int b; 1063 kmp_balign_t *balign = team->t.t_threads[i]->th.th_bar; 1064 for (b = 0; b < bs_last_barrier; ++b) { 1065 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 1066 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 1067 #if USE_DEBUGGER 1068 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 1069 #endif 1070 } 1071 } 1072 } 1073 1074 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 1075 __kmp_partition_places(team); 1076 #endif 1077 } 1078 1079 #if OMP_50_ENABLED 1080 if (__kmp_display_affinity && team->t.t_display_affinity != 1) { 1081 for (i = 0; i < team->t.t_nproc; i++) { 1082 kmp_info_t *thr = team->t.t_threads[i]; 1083 if (thr->th.th_prev_num_threads != team->t.t_nproc || 1084 thr->th.th_prev_level != team->t.t_level) { 1085 team->t.t_display_affinity = 1; 1086 break; 1087 } 1088 } 1089 } 1090 #endif 1091 1092 KMP_MB(); 1093 } 1094 1095 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1096 // Propagate any changes to the floating point control registers out to the team 1097 // We try to avoid unnecessary writes to the relevant cache line in the team 1098 // structure, so we don't make changes unless they are needed. 1099 inline static void propagateFPControl(kmp_team_t *team) { 1100 if (__kmp_inherit_fp_control) { 1101 kmp_int16 x87_fpu_control_word; 1102 kmp_uint32 mxcsr; 1103 1104 // Get master values of FPU control flags (both X87 and vector) 1105 __kmp_store_x87_fpu_control_word(&x87_fpu_control_word); 1106 __kmp_store_mxcsr(&mxcsr); 1107 mxcsr &= KMP_X86_MXCSR_MASK; 1108 1109 // There is no point looking at t_fp_control_saved here. 1110 // If it is TRUE, we still have to update the values if they are different 1111 // from those we now have. If it is FALSE we didn't save anything yet, but 1112 // our objective is the same. We have to ensure that the values in the team 1113 // are the same as those we have. 1114 // So, this code achieves what we need whether or not t_fp_control_saved is 1115 // true. By checking whether the value needs updating we avoid unnecessary 1116 // writes that would put the cache-line into a written state, causing all 1117 // threads in the team to have to read it again. 1118 KMP_CHECK_UPDATE(team->t.t_x87_fpu_control_word, x87_fpu_control_word); 1119 KMP_CHECK_UPDATE(team->t.t_mxcsr, mxcsr); 1120 // Although we don't use this value, other code in the runtime wants to know 1121 // whether it should restore them. So we must ensure it is correct. 1122 KMP_CHECK_UPDATE(team->t.t_fp_control_saved, TRUE); 1123 } else { 1124 // Similarly here. Don't write to this cache-line in the team structure 1125 // unless we have to. 1126 KMP_CHECK_UPDATE(team->t.t_fp_control_saved, FALSE); 1127 } 1128 } 1129 1130 // Do the opposite, setting the hardware registers to the updated values from 1131 // the team. 1132 inline static void updateHWFPControl(kmp_team_t *team) { 1133 if (__kmp_inherit_fp_control && team->t.t_fp_control_saved) { 1134 // Only reset the fp control regs if they have been changed in the team. 1135 // the parallel region that we are exiting. 1136 kmp_int16 x87_fpu_control_word; 1137 kmp_uint32 mxcsr; 1138 __kmp_store_x87_fpu_control_word(&x87_fpu_control_word); 1139 __kmp_store_mxcsr(&mxcsr); 1140 mxcsr &= KMP_X86_MXCSR_MASK; 1141 1142 if (team->t.t_x87_fpu_control_word != x87_fpu_control_word) { 1143 __kmp_clear_x87_fpu_status_word(); 1144 __kmp_load_x87_fpu_control_word(&team->t.t_x87_fpu_control_word); 1145 } 1146 1147 if (team->t.t_mxcsr != mxcsr) { 1148 __kmp_load_mxcsr(&team->t.t_mxcsr); 1149 } 1150 } 1151 } 1152 #else 1153 #define propagateFPControl(x) ((void)0) 1154 #define updateHWFPControl(x) ((void)0) 1155 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 1156 1157 static void __kmp_alloc_argv_entries(int argc, kmp_team_t *team, 1158 int realloc); // forward declaration 1159 1160 /* Run a parallel region that has been serialized, so runs only in a team of the 1161 single master thread. */ 1162 void __kmp_serialized_parallel(ident_t *loc, kmp_int32 global_tid) { 1163 kmp_info_t *this_thr; 1164 kmp_team_t *serial_team; 1165 1166 KC_TRACE(10, ("__kmpc_serialized_parallel: called by T#%d\n", global_tid)); 1167 1168 /* Skip all this code for autopar serialized loops since it results in 1169 unacceptable overhead */ 1170 if (loc != NULL && (loc->flags & KMP_IDENT_AUTOPAR)) 1171 return; 1172 1173 if (!TCR_4(__kmp_init_parallel)) 1174 __kmp_parallel_initialize(); 1175 1176 #if OMP_50_ENABLED 1177 __kmp_resume_if_soft_paused(); 1178 #endif 1179 1180 this_thr = __kmp_threads[global_tid]; 1181 serial_team = this_thr->th.th_serial_team; 1182 1183 /* utilize the serialized team held by this thread */ 1184 KMP_DEBUG_ASSERT(serial_team); 1185 KMP_MB(); 1186 1187 if (__kmp_tasking_mode != tskm_immediate_exec) { 1188 KMP_DEBUG_ASSERT( 1189 this_thr->th.th_task_team == 1190 this_thr->th.th_team->t.t_task_team[this_thr->th.th_task_state]); 1191 KMP_DEBUG_ASSERT(serial_team->t.t_task_team[this_thr->th.th_task_state] == 1192 NULL); 1193 KA_TRACE(20, ("__kmpc_serialized_parallel: T#%d pushing task_team %p / " 1194 "team %p, new task_team = NULL\n", 1195 global_tid, this_thr->th.th_task_team, this_thr->th.th_team)); 1196 this_thr->th.th_task_team = NULL; 1197 } 1198 1199 #if OMP_40_ENABLED 1200 kmp_proc_bind_t proc_bind = this_thr->th.th_set_proc_bind; 1201 if (this_thr->th.th_current_task->td_icvs.proc_bind == proc_bind_false) { 1202 proc_bind = proc_bind_false; 1203 } else if (proc_bind == proc_bind_default) { 1204 // No proc_bind clause was specified, so use the current value 1205 // of proc-bind-var for this parallel region. 1206 proc_bind = this_thr->th.th_current_task->td_icvs.proc_bind; 1207 } 1208 // Reset for next parallel region 1209 this_thr->th.th_set_proc_bind = proc_bind_default; 1210 #endif /* OMP_40_ENABLED */ 1211 1212 #if OMPT_SUPPORT 1213 ompt_data_t ompt_parallel_data = ompt_data_none; 1214 ompt_data_t *implicit_task_data; 1215 void *codeptr = OMPT_LOAD_RETURN_ADDRESS(global_tid); 1216 if (ompt_enabled.enabled && 1217 this_thr->th.ompt_thread_info.state != ompt_state_overhead) { 1218 1219 ompt_task_info_t *parent_task_info; 1220 parent_task_info = OMPT_CUR_TASK_INFO(this_thr); 1221 1222 parent_task_info->frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 1223 if (ompt_enabled.ompt_callback_parallel_begin) { 1224 int team_size = 1; 1225 1226 ompt_callbacks.ompt_callback(ompt_callback_parallel_begin)( 1227 &(parent_task_info->task_data), &(parent_task_info->frame), 1228 &ompt_parallel_data, team_size, ompt_parallel_invoker_program, 1229 codeptr); 1230 } 1231 } 1232 #endif // OMPT_SUPPORT 1233 1234 if (this_thr->th.th_team != serial_team) { 1235 // Nested level will be an index in the nested nthreads array 1236 int level = this_thr->th.th_team->t.t_level; 1237 1238 if (serial_team->t.t_serialized) { 1239 /* this serial team was already used 1240 TODO increase performance by making this locks more specific */ 1241 kmp_team_t *new_team; 1242 1243 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 1244 1245 new_team = __kmp_allocate_team(this_thr->th.th_root, 1, 1, 1246 #if OMPT_SUPPORT 1247 ompt_parallel_data, 1248 #endif 1249 #if OMP_40_ENABLED 1250 proc_bind, 1251 #endif 1252 &this_thr->th.th_current_task->td_icvs, 1253 0 USE_NESTED_HOT_ARG(NULL)); 1254 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1255 KMP_ASSERT(new_team); 1256 1257 /* setup new serialized team and install it */ 1258 new_team->t.t_threads[0] = this_thr; 1259 new_team->t.t_parent = this_thr->th.th_team; 1260 serial_team = new_team; 1261 this_thr->th.th_serial_team = serial_team; 1262 1263 KF_TRACE( 1264 10, 1265 ("__kmpc_serialized_parallel: T#%d allocated new serial team %p\n", 1266 global_tid, serial_team)); 1267 1268 /* TODO the above breaks the requirement that if we run out of resources, 1269 then we can still guarantee that serialized teams are ok, since we may 1270 need to allocate a new one */ 1271 } else { 1272 KF_TRACE( 1273 10, 1274 ("__kmpc_serialized_parallel: T#%d reusing cached serial team %p\n", 1275 global_tid, serial_team)); 1276 } 1277 1278 /* we have to initialize this serial team */ 1279 KMP_DEBUG_ASSERT(serial_team->t.t_threads); 1280 KMP_DEBUG_ASSERT(serial_team->t.t_threads[0] == this_thr); 1281 KMP_DEBUG_ASSERT(this_thr->th.th_team != serial_team); 1282 serial_team->t.t_ident = loc; 1283 serial_team->t.t_serialized = 1; 1284 serial_team->t.t_nproc = 1; 1285 serial_team->t.t_parent = this_thr->th.th_team; 1286 serial_team->t.t_sched.sched = this_thr->th.th_team->t.t_sched.sched; 1287 this_thr->th.th_team = serial_team; 1288 serial_team->t.t_master_tid = this_thr->th.th_info.ds.ds_tid; 1289 1290 KF_TRACE(10, ("__kmpc_serialized_parallel: T#d curtask=%p\n", global_tid, 1291 this_thr->th.th_current_task)); 1292 KMP_ASSERT(this_thr->th.th_current_task->td_flags.executing == 1); 1293 this_thr->th.th_current_task->td_flags.executing = 0; 1294 1295 __kmp_push_current_task_to_thread(this_thr, serial_team, 0); 1296 1297 /* TODO: GEH: do ICVs work for nested serialized teams? Don't we need an 1298 implicit task for each serialized task represented by 1299 team->t.t_serialized? */ 1300 copy_icvs(&this_thr->th.th_current_task->td_icvs, 1301 &this_thr->th.th_current_task->td_parent->td_icvs); 1302 1303 // Thread value exists in the nested nthreads array for the next nested 1304 // level 1305 if (__kmp_nested_nth.used && (level + 1 < __kmp_nested_nth.used)) { 1306 this_thr->th.th_current_task->td_icvs.nproc = 1307 __kmp_nested_nth.nth[level + 1]; 1308 } 1309 1310 #if OMP_40_ENABLED 1311 if (__kmp_nested_proc_bind.used && 1312 (level + 1 < __kmp_nested_proc_bind.used)) { 1313 this_thr->th.th_current_task->td_icvs.proc_bind = 1314 __kmp_nested_proc_bind.bind_types[level + 1]; 1315 } 1316 #endif /* OMP_40_ENABLED */ 1317 1318 #if USE_DEBUGGER 1319 serial_team->t.t_pkfn = (microtask_t)(~0); // For the debugger. 1320 #endif 1321 this_thr->th.th_info.ds.ds_tid = 0; 1322 1323 /* set thread cache values */ 1324 this_thr->th.th_team_nproc = 1; 1325 this_thr->th.th_team_master = this_thr; 1326 this_thr->th.th_team_serialized = 1; 1327 1328 serial_team->t.t_level = serial_team->t.t_parent->t.t_level + 1; 1329 serial_team->t.t_active_level = serial_team->t.t_parent->t.t_active_level; 1330 #if OMP_50_ENABLED 1331 serial_team->t.t_def_allocator = this_thr->th.th_def_allocator; // save 1332 #endif 1333 1334 propagateFPControl(serial_team); 1335 1336 /* check if we need to allocate dispatch buffers stack */ 1337 KMP_DEBUG_ASSERT(serial_team->t.t_dispatch); 1338 if (!serial_team->t.t_dispatch->th_disp_buffer) { 1339 serial_team->t.t_dispatch->th_disp_buffer = 1340 (dispatch_private_info_t *)__kmp_allocate( 1341 sizeof(dispatch_private_info_t)); 1342 } 1343 this_thr->th.th_dispatch = serial_team->t.t_dispatch; 1344 1345 KMP_MB(); 1346 1347 } else { 1348 /* this serialized team is already being used, 1349 * that's fine, just add another nested level */ 1350 KMP_DEBUG_ASSERT(this_thr->th.th_team == serial_team); 1351 KMP_DEBUG_ASSERT(serial_team->t.t_threads); 1352 KMP_DEBUG_ASSERT(serial_team->t.t_threads[0] == this_thr); 1353 ++serial_team->t.t_serialized; 1354 this_thr->th.th_team_serialized = serial_team->t.t_serialized; 1355 1356 // Nested level will be an index in the nested nthreads array 1357 int level = this_thr->th.th_team->t.t_level; 1358 // Thread value exists in the nested nthreads array for the next nested 1359 // level 1360 if (__kmp_nested_nth.used && (level + 1 < __kmp_nested_nth.used)) { 1361 this_thr->th.th_current_task->td_icvs.nproc = 1362 __kmp_nested_nth.nth[level + 1]; 1363 } 1364 serial_team->t.t_level++; 1365 KF_TRACE(10, ("__kmpc_serialized_parallel: T#%d increasing nesting level " 1366 "of serial team %p to %d\n", 1367 global_tid, serial_team, serial_team->t.t_level)); 1368 1369 /* allocate/push dispatch buffers stack */ 1370 KMP_DEBUG_ASSERT(serial_team->t.t_dispatch); 1371 { 1372 dispatch_private_info_t *disp_buffer = 1373 (dispatch_private_info_t *)__kmp_allocate( 1374 sizeof(dispatch_private_info_t)); 1375 disp_buffer->next = serial_team->t.t_dispatch->th_disp_buffer; 1376 serial_team->t.t_dispatch->th_disp_buffer = disp_buffer; 1377 } 1378 this_thr->th.th_dispatch = serial_team->t.t_dispatch; 1379 1380 KMP_MB(); 1381 } 1382 #if OMP_40_ENABLED 1383 KMP_CHECK_UPDATE(serial_team->t.t_cancel_request, cancel_noreq); 1384 #endif 1385 1386 #if OMP_50_ENABLED 1387 // Perform the display affinity functionality for 1388 // serialized parallel regions 1389 if (__kmp_display_affinity) { 1390 if (this_thr->th.th_prev_level != serial_team->t.t_level || 1391 this_thr->th.th_prev_num_threads != 1) { 1392 // NULL means use the affinity-format-var ICV 1393 __kmp_aux_display_affinity(global_tid, NULL); 1394 this_thr->th.th_prev_level = serial_team->t.t_level; 1395 this_thr->th.th_prev_num_threads = 1; 1396 } 1397 } 1398 #endif 1399 1400 if (__kmp_env_consistency_check) 1401 __kmp_push_parallel(global_tid, NULL); 1402 #if OMPT_SUPPORT 1403 serial_team->t.ompt_team_info.master_return_address = codeptr; 1404 if (ompt_enabled.enabled && 1405 this_thr->th.ompt_thread_info.state != ompt_state_overhead) { 1406 OMPT_CUR_TASK_INFO(this_thr)->frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 1407 1408 ompt_lw_taskteam_t lw_taskteam; 1409 __ompt_lw_taskteam_init(&lw_taskteam, this_thr, global_tid, 1410 &ompt_parallel_data, codeptr); 1411 1412 __ompt_lw_taskteam_link(&lw_taskteam, this_thr, 1); 1413 // don't use lw_taskteam after linking. content was swaped 1414 1415 /* OMPT implicit task begin */ 1416 implicit_task_data = OMPT_CUR_TASK_DATA(this_thr); 1417 if (ompt_enabled.ompt_callback_implicit_task) { 1418 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1419 ompt_scope_begin, OMPT_CUR_TEAM_DATA(this_thr), 1420 OMPT_CUR_TASK_DATA(this_thr), 1, __kmp_tid_from_gtid(global_tid), ompt_task_implicit); // TODO: Can this be ompt_task_initial? 1421 OMPT_CUR_TASK_INFO(this_thr) 1422 ->thread_num = __kmp_tid_from_gtid(global_tid); 1423 } 1424 1425 /* OMPT state */ 1426 this_thr->th.ompt_thread_info.state = ompt_state_work_parallel; 1427 OMPT_CUR_TASK_INFO(this_thr)->frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 1428 } 1429 #endif 1430 } 1431 1432 /* most of the work for a fork */ 1433 /* return true if we really went parallel, false if serialized */ 1434 int __kmp_fork_call(ident_t *loc, int gtid, 1435 enum fork_context_e call_context, // Intel, GNU, ... 1436 kmp_int32 argc, microtask_t microtask, launch_t invoker, 1437 /* TODO: revert workaround for Intel(R) 64 tracker #96 */ 1438 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 1439 va_list *ap 1440 #else 1441 va_list ap 1442 #endif 1443 ) { 1444 void **argv; 1445 int i; 1446 int master_tid; 1447 int master_this_cons; 1448 kmp_team_t *team; 1449 kmp_team_t *parent_team; 1450 kmp_info_t *master_th; 1451 kmp_root_t *root; 1452 int nthreads; 1453 int master_active; 1454 int master_set_numthreads; 1455 int level; 1456 #if OMP_40_ENABLED 1457 int active_level; 1458 int teams_level; 1459 #endif 1460 #if KMP_NESTED_HOT_TEAMS 1461 kmp_hot_team_ptr_t **p_hot_teams; 1462 #endif 1463 { // KMP_TIME_BLOCK 1464 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_fork_call); 1465 KMP_COUNT_VALUE(OMP_PARALLEL_args, argc); 1466 1467 KA_TRACE(20, ("__kmp_fork_call: enter T#%d\n", gtid)); 1468 if (__kmp_stkpadding > 0 && __kmp_root[gtid] != NULL) { 1469 /* Some systems prefer the stack for the root thread(s) to start with */ 1470 /* some gap from the parent stack to prevent false sharing. */ 1471 void *dummy = KMP_ALLOCA(__kmp_stkpadding); 1472 /* These 2 lines below are so this does not get optimized out */ 1473 if (__kmp_stkpadding > KMP_MAX_STKPADDING) 1474 __kmp_stkpadding += (short)((kmp_int64)dummy); 1475 } 1476 1477 /* initialize if needed */ 1478 KMP_DEBUG_ASSERT( 1479 __kmp_init_serial); // AC: potentially unsafe, not in sync with shutdown 1480 if (!TCR_4(__kmp_init_parallel)) 1481 __kmp_parallel_initialize(); 1482 1483 #if OMP_50_ENABLED 1484 __kmp_resume_if_soft_paused(); 1485 #endif 1486 1487 /* setup current data */ 1488 master_th = __kmp_threads[gtid]; // AC: potentially unsafe, not in sync with 1489 // shutdown 1490 parent_team = master_th->th.th_team; 1491 master_tid = master_th->th.th_info.ds.ds_tid; 1492 master_this_cons = master_th->th.th_local.this_construct; 1493 root = master_th->th.th_root; 1494 master_active = root->r.r_active; 1495 master_set_numthreads = master_th->th.th_set_nproc; 1496 1497 #if OMPT_SUPPORT 1498 ompt_data_t ompt_parallel_data = ompt_data_none; 1499 ompt_data_t *parent_task_data; 1500 ompt_frame_t *ompt_frame; 1501 ompt_data_t *implicit_task_data; 1502 void *return_address = NULL; 1503 1504 if (ompt_enabled.enabled) { 1505 __ompt_get_task_info_internal(0, NULL, &parent_task_data, &ompt_frame, 1506 NULL, NULL); 1507 return_address = OMPT_LOAD_RETURN_ADDRESS(gtid); 1508 } 1509 #endif 1510 1511 // Nested level will be an index in the nested nthreads array 1512 level = parent_team->t.t_level; 1513 // used to launch non-serial teams even if nested is not allowed 1514 active_level = parent_team->t.t_active_level; 1515 #if OMP_40_ENABLED 1516 // needed to check nesting inside the teams 1517 teams_level = master_th->th.th_teams_level; 1518 #endif 1519 #if KMP_NESTED_HOT_TEAMS 1520 p_hot_teams = &master_th->th.th_hot_teams; 1521 if (*p_hot_teams == NULL && __kmp_hot_teams_max_level > 0) { 1522 *p_hot_teams = (kmp_hot_team_ptr_t *)__kmp_allocate( 1523 sizeof(kmp_hot_team_ptr_t) * __kmp_hot_teams_max_level); 1524 (*p_hot_teams)[0].hot_team = root->r.r_hot_team; 1525 // it is either actual or not needed (when active_level > 0) 1526 (*p_hot_teams)[0].hot_team_nth = 1; 1527 } 1528 #endif 1529 1530 #if OMPT_SUPPORT 1531 if (ompt_enabled.enabled) { 1532 if (ompt_enabled.ompt_callback_parallel_begin) { 1533 int team_size = master_set_numthreads 1534 ? master_set_numthreads 1535 : get__nproc_2(parent_team, master_tid); 1536 ompt_callbacks.ompt_callback(ompt_callback_parallel_begin)( 1537 parent_task_data, ompt_frame, &ompt_parallel_data, team_size, 1538 OMPT_INVOKER(call_context), return_address); 1539 } 1540 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1541 } 1542 #endif 1543 1544 master_th->th.th_ident = loc; 1545 1546 #if OMP_40_ENABLED 1547 if (master_th->th.th_teams_microtask && ap && 1548 microtask != (microtask_t)__kmp_teams_master && level == teams_level) { 1549 // AC: This is start of parallel that is nested inside teams construct. 1550 // The team is actual (hot), all workers are ready at the fork barrier. 1551 // No lock needed to initialize the team a bit, then free workers. 1552 parent_team->t.t_ident = loc; 1553 __kmp_alloc_argv_entries(argc, parent_team, TRUE); 1554 parent_team->t.t_argc = argc; 1555 argv = (void **)parent_team->t.t_argv; 1556 for (i = argc - 1; i >= 0; --i) 1557 /* TODO: revert workaround for Intel(R) 64 tracker #96 */ 1558 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 1559 *argv++ = va_arg(*ap, void *); 1560 #else 1561 *argv++ = va_arg(ap, void *); 1562 #endif 1563 // Increment our nested depth levels, but not increase the serialization 1564 if (parent_team == master_th->th.th_serial_team) { 1565 // AC: we are in serialized parallel 1566 __kmpc_serialized_parallel(loc, gtid); 1567 KMP_DEBUG_ASSERT(parent_team->t.t_serialized > 1); 1568 // AC: need this in order enquiry functions work 1569 // correctly, will restore at join time 1570 parent_team->t.t_serialized--; 1571 #if OMPT_SUPPORT 1572 void *dummy; 1573 void **exit_runtime_p; 1574 1575 ompt_lw_taskteam_t lw_taskteam; 1576 1577 if (ompt_enabled.enabled) { 1578 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1579 &ompt_parallel_data, return_address); 1580 exit_runtime_p = &(lw_taskteam.ompt_task_info.frame.exit_frame.ptr); 1581 1582 __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0); 1583 // don't use lw_taskteam after linking. content was swaped 1584 1585 /* OMPT implicit task begin */ 1586 implicit_task_data = OMPT_CUR_TASK_DATA(master_th); 1587 if (ompt_enabled.ompt_callback_implicit_task) { 1588 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1589 ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th), 1590 implicit_task_data, 1, __kmp_tid_from_gtid(gtid), ompt_task_implicit); // TODO: Can this be ompt_task_initial? 1591 OMPT_CUR_TASK_INFO(master_th) 1592 ->thread_num = __kmp_tid_from_gtid(gtid); 1593 } 1594 1595 /* OMPT state */ 1596 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 1597 } else { 1598 exit_runtime_p = &dummy; 1599 } 1600 #endif 1601 1602 { 1603 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1604 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1605 __kmp_invoke_microtask(microtask, gtid, 0, argc, parent_team->t.t_argv 1606 #if OMPT_SUPPORT 1607 , 1608 exit_runtime_p 1609 #endif 1610 ); 1611 } 1612 1613 #if OMPT_SUPPORT 1614 *exit_runtime_p = NULL; 1615 if (ompt_enabled.enabled) { 1616 OMPT_CUR_TASK_INFO(master_th)->frame.exit_frame = ompt_data_none; 1617 if (ompt_enabled.ompt_callback_implicit_task) { 1618 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1619 ompt_scope_end, NULL, implicit_task_data, 1, 1620 OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit); // TODO: Can this be ompt_task_initial? 1621 } 1622 __ompt_lw_taskteam_unlink(master_th); 1623 1624 if (ompt_enabled.ompt_callback_parallel_end) { 1625 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 1626 OMPT_CUR_TEAM_DATA(master_th), OMPT_CUR_TASK_DATA(master_th), 1627 OMPT_INVOKER(call_context), return_address); 1628 } 1629 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1630 } 1631 #endif 1632 return TRUE; 1633 } 1634 1635 parent_team->t.t_pkfn = microtask; 1636 parent_team->t.t_invoke = invoker; 1637 KMP_ATOMIC_INC(&root->r.r_in_parallel); 1638 parent_team->t.t_active_level++; 1639 parent_team->t.t_level++; 1640 #if OMP_50_ENABLED 1641 parent_team->t.t_def_allocator = master_th->th.th_def_allocator; // save 1642 #endif 1643 1644 /* Change number of threads in the team if requested */ 1645 if (master_set_numthreads) { // The parallel has num_threads clause 1646 if (master_set_numthreads < master_th->th.th_teams_size.nth) { 1647 // AC: only can reduce number of threads dynamically, can't increase 1648 kmp_info_t **other_threads = parent_team->t.t_threads; 1649 parent_team->t.t_nproc = master_set_numthreads; 1650 for (i = 0; i < master_set_numthreads; ++i) { 1651 other_threads[i]->th.th_team_nproc = master_set_numthreads; 1652 } 1653 // Keep extra threads hot in the team for possible next parallels 1654 } 1655 master_th->th.th_set_nproc = 0; 1656 } 1657 1658 #if USE_DEBUGGER 1659 if (__kmp_debugging) { // Let debugger override number of threads. 1660 int nth = __kmp_omp_num_threads(loc); 1661 if (nth > 0) { // 0 means debugger doesn't want to change num threads 1662 master_set_numthreads = nth; 1663 } 1664 } 1665 #endif 1666 1667 KF_TRACE(10, ("__kmp_fork_call: before internal fork: root=%p, team=%p, " 1668 "master_th=%p, gtid=%d\n", 1669 root, parent_team, master_th, gtid)); 1670 __kmp_internal_fork(loc, gtid, parent_team); 1671 KF_TRACE(10, ("__kmp_fork_call: after internal fork: root=%p, team=%p, " 1672 "master_th=%p, gtid=%d\n", 1673 root, parent_team, master_th, gtid)); 1674 1675 /* Invoke microtask for MASTER thread */ 1676 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) invoke microtask = %p\n", gtid, 1677 parent_team->t.t_id, parent_team->t.t_pkfn)); 1678 1679 if (!parent_team->t.t_invoke(gtid)) { 1680 KMP_ASSERT2(0, "cannot invoke microtask for MASTER thread"); 1681 } 1682 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) done microtask = %p\n", gtid, 1683 parent_team->t.t_id, parent_team->t.t_pkfn)); 1684 KMP_MB(); /* Flush all pending memory write invalidates. */ 1685 1686 KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid)); 1687 1688 return TRUE; 1689 } // Parallel closely nested in teams construct 1690 #endif /* OMP_40_ENABLED */ 1691 1692 #if KMP_DEBUG 1693 if (__kmp_tasking_mode != tskm_immediate_exec) { 1694 KMP_DEBUG_ASSERT(master_th->th.th_task_team == 1695 parent_team->t.t_task_team[master_th->th.th_task_state]); 1696 } 1697 #endif 1698 1699 if (parent_team->t.t_active_level >= 1700 master_th->th.th_current_task->td_icvs.max_active_levels) { 1701 nthreads = 1; 1702 } else { 1703 #if OMP_40_ENABLED 1704 int enter_teams = ((ap == NULL && active_level == 0) || 1705 (ap && teams_level > 0 && teams_level == level)); 1706 #endif 1707 nthreads = 1708 master_set_numthreads 1709 ? master_set_numthreads 1710 : get__nproc_2( 1711 parent_team, 1712 master_tid); // TODO: get nproc directly from current task 1713 1714 // Check if we need to take forkjoin lock? (no need for serialized 1715 // parallel out of teams construct). This code moved here from 1716 // __kmp_reserve_threads() to speedup nested serialized parallels. 1717 if (nthreads > 1) { 1718 if ((get__max_active_levels(master_th) == 1 && (root->r.r_in_parallel 1719 #if OMP_40_ENABLED 1720 && !enter_teams 1721 #endif /* OMP_40_ENABLED */ 1722 )) || 1723 (__kmp_library == library_serial)) { 1724 KC_TRACE(10, ("__kmp_fork_call: T#%d serializing team; requested %d" 1725 " threads\n", 1726 gtid, nthreads)); 1727 nthreads = 1; 1728 } 1729 } 1730 if (nthreads > 1) { 1731 /* determine how many new threads we can use */ 1732 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 1733 nthreads = __kmp_reserve_threads( 1734 root, parent_team, master_tid, nthreads 1735 #if OMP_40_ENABLED 1736 /* AC: If we execute teams from parallel region (on host), then 1737 teams should be created but each can only have 1 thread if 1738 nesting is disabled. If teams called from serial region, then 1739 teams and their threads should be created regardless of the 1740 nesting setting. */ 1741 , 1742 enter_teams 1743 #endif /* OMP_40_ENABLED */ 1744 ); 1745 if (nthreads == 1) { 1746 // Free lock for single thread execution here; for multi-thread 1747 // execution it will be freed later after team of threads created 1748 // and initialized 1749 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1750 } 1751 } 1752 } 1753 KMP_DEBUG_ASSERT(nthreads > 0); 1754 1755 // If we temporarily changed the set number of threads then restore it now 1756 master_th->th.th_set_nproc = 0; 1757 1758 /* create a serialized parallel region? */ 1759 if (nthreads == 1) { 1760 /* josh todo: hypothetical question: what do we do for OS X*? */ 1761 #if KMP_OS_LINUX && \ 1762 (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) 1763 void *args[argc]; 1764 #else 1765 void **args = (void **)KMP_ALLOCA(argc * sizeof(void *)); 1766 #endif /* KMP_OS_LINUX && ( KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || \ 1767 KMP_ARCH_AARCH64) */ 1768 1769 KA_TRACE(20, 1770 ("__kmp_fork_call: T#%d serializing parallel region\n", gtid)); 1771 1772 __kmpc_serialized_parallel(loc, gtid); 1773 1774 if (call_context == fork_context_intel) { 1775 /* TODO this sucks, use the compiler itself to pass args! :) */ 1776 master_th->th.th_serial_team->t.t_ident = loc; 1777 #if OMP_40_ENABLED 1778 if (!ap) { 1779 // revert change made in __kmpc_serialized_parallel() 1780 master_th->th.th_serial_team->t.t_level--; 1781 // Get args from parent team for teams construct 1782 1783 #if OMPT_SUPPORT 1784 void *dummy; 1785 void **exit_runtime_p; 1786 ompt_task_info_t *task_info; 1787 1788 ompt_lw_taskteam_t lw_taskteam; 1789 1790 if (ompt_enabled.enabled) { 1791 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1792 &ompt_parallel_data, return_address); 1793 1794 __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0); 1795 // don't use lw_taskteam after linking. content was swaped 1796 1797 task_info = OMPT_CUR_TASK_INFO(master_th); 1798 exit_runtime_p = &(task_info->frame.exit_frame.ptr); 1799 if (ompt_enabled.ompt_callback_implicit_task) { 1800 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1801 ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th), 1802 &(task_info->task_data), 1, __kmp_tid_from_gtid(gtid), ompt_task_implicit); // TODO: Can this be ompt_task_initial? 1803 OMPT_CUR_TASK_INFO(master_th) 1804 ->thread_num = __kmp_tid_from_gtid(gtid); 1805 } 1806 1807 /* OMPT state */ 1808 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 1809 } else { 1810 exit_runtime_p = &dummy; 1811 } 1812 #endif 1813 1814 { 1815 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1816 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1817 __kmp_invoke_microtask(microtask, gtid, 0, argc, 1818 parent_team->t.t_argv 1819 #if OMPT_SUPPORT 1820 , 1821 exit_runtime_p 1822 #endif 1823 ); 1824 } 1825 1826 #if OMPT_SUPPORT 1827 if (ompt_enabled.enabled) { 1828 exit_runtime_p = NULL; 1829 if (ompt_enabled.ompt_callback_implicit_task) { 1830 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1831 ompt_scope_end, NULL, &(task_info->task_data), 1, 1832 OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit); // TODO: Can this be ompt_task_initial? 1833 } 1834 1835 __ompt_lw_taskteam_unlink(master_th); 1836 if (ompt_enabled.ompt_callback_parallel_end) { 1837 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 1838 OMPT_CUR_TEAM_DATA(master_th), parent_task_data, 1839 OMPT_INVOKER(call_context), return_address); 1840 } 1841 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1842 } 1843 #endif 1844 } else if (microtask == (microtask_t)__kmp_teams_master) { 1845 KMP_DEBUG_ASSERT(master_th->th.th_team == 1846 master_th->th.th_serial_team); 1847 team = master_th->th.th_team; 1848 // team->t.t_pkfn = microtask; 1849 team->t.t_invoke = invoker; 1850 __kmp_alloc_argv_entries(argc, team, TRUE); 1851 team->t.t_argc = argc; 1852 argv = (void **)team->t.t_argv; 1853 if (ap) { 1854 for (i = argc - 1; i >= 0; --i) 1855 // TODO: revert workaround for Intel(R) 64 tracker #96 1856 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 1857 *argv++ = va_arg(*ap, void *); 1858 #else 1859 *argv++ = va_arg(ap, void *); 1860 #endif 1861 } else { 1862 for (i = 0; i < argc; ++i) 1863 // Get args from parent team for teams construct 1864 argv[i] = parent_team->t.t_argv[i]; 1865 } 1866 // AC: revert change made in __kmpc_serialized_parallel() 1867 // because initial code in teams should have level=0 1868 team->t.t_level--; 1869 // AC: call special invoker for outer "parallel" of teams construct 1870 invoker(gtid); 1871 } else { 1872 #endif /* OMP_40_ENABLED */ 1873 argv = args; 1874 for (i = argc - 1; i >= 0; --i) 1875 // TODO: revert workaround for Intel(R) 64 tracker #96 1876 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 1877 *argv++ = va_arg(*ap, void *); 1878 #else 1879 *argv++ = va_arg(ap, void *); 1880 #endif 1881 KMP_MB(); 1882 1883 #if OMPT_SUPPORT 1884 void *dummy; 1885 void **exit_runtime_p; 1886 ompt_task_info_t *task_info; 1887 1888 ompt_lw_taskteam_t lw_taskteam; 1889 1890 if (ompt_enabled.enabled) { 1891 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1892 &ompt_parallel_data, return_address); 1893 __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0); 1894 // don't use lw_taskteam after linking. content was swaped 1895 task_info = OMPT_CUR_TASK_INFO(master_th); 1896 exit_runtime_p = &(task_info->frame.exit_frame.ptr); 1897 1898 /* OMPT implicit task begin */ 1899 implicit_task_data = OMPT_CUR_TASK_DATA(master_th); 1900 if (ompt_enabled.ompt_callback_implicit_task) { 1901 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1902 ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th), 1903 implicit_task_data, 1, __kmp_tid_from_gtid(gtid), ompt_task_implicit); // TODO: Can this be ompt_task_initial? 1904 OMPT_CUR_TASK_INFO(master_th) 1905 ->thread_num = __kmp_tid_from_gtid(gtid); 1906 } 1907 1908 /* OMPT state */ 1909 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 1910 } else { 1911 exit_runtime_p = &dummy; 1912 } 1913 #endif 1914 1915 { 1916 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1917 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1918 __kmp_invoke_microtask(microtask, gtid, 0, argc, args 1919 #if OMPT_SUPPORT 1920 , 1921 exit_runtime_p 1922 #endif 1923 ); 1924 } 1925 1926 #if OMPT_SUPPORT 1927 if (ompt_enabled.enabled) { 1928 *exit_runtime_p = NULL; 1929 if (ompt_enabled.ompt_callback_implicit_task) { 1930 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1931 ompt_scope_end, NULL, &(task_info->task_data), 1, 1932 OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit); // TODO: Can this be ompt_task_initial? 1933 } 1934 1935 ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th); 1936 __ompt_lw_taskteam_unlink(master_th); 1937 if (ompt_enabled.ompt_callback_parallel_end) { 1938 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 1939 &ompt_parallel_data, parent_task_data, 1940 OMPT_INVOKER(call_context), return_address); 1941 } 1942 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1943 } 1944 #endif 1945 #if OMP_40_ENABLED 1946 } 1947 #endif /* OMP_40_ENABLED */ 1948 } else if (call_context == fork_context_gnu) { 1949 #if OMPT_SUPPORT 1950 ompt_lw_taskteam_t lwt; 1951 __ompt_lw_taskteam_init(&lwt, master_th, gtid, &ompt_parallel_data, 1952 return_address); 1953 1954 lwt.ompt_task_info.frame.exit_frame = ompt_data_none; 1955 __ompt_lw_taskteam_link(&lwt, master_th, 1); 1956 // don't use lw_taskteam after linking. content was swaped 1957 #endif 1958 1959 // we were called from GNU native code 1960 KA_TRACE(20, ("__kmp_fork_call: T#%d serial exit\n", gtid)); 1961 return FALSE; 1962 } else { 1963 KMP_ASSERT2(call_context < fork_context_last, 1964 "__kmp_fork_call: unknown fork_context parameter"); 1965 } 1966 1967 KA_TRACE(20, ("__kmp_fork_call: T#%d serial exit\n", gtid)); 1968 KMP_MB(); 1969 return FALSE; 1970 } // if (nthreads == 1) 1971 1972 // GEH: only modify the executing flag in the case when not serialized 1973 // serialized case is handled in kmpc_serialized_parallel 1974 KF_TRACE(10, ("__kmp_fork_call: parent_team_aclevel=%d, master_th=%p, " 1975 "curtask=%p, curtask_max_aclevel=%d\n", 1976 parent_team->t.t_active_level, master_th, 1977 master_th->th.th_current_task, 1978 master_th->th.th_current_task->td_icvs.max_active_levels)); 1979 // TODO: GEH - cannot do this assertion because root thread not set up as 1980 // executing 1981 // KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 1 ); 1982 master_th->th.th_current_task->td_flags.executing = 0; 1983 1984 #if OMP_40_ENABLED 1985 if (!master_th->th.th_teams_microtask || level > teams_level) 1986 #endif /* OMP_40_ENABLED */ 1987 { 1988 /* Increment our nested depth level */ 1989 KMP_ATOMIC_INC(&root->r.r_in_parallel); 1990 } 1991 1992 // See if we need to make a copy of the ICVs. 1993 int nthreads_icv = master_th->th.th_current_task->td_icvs.nproc; 1994 if ((level + 1 < __kmp_nested_nth.used) && 1995 (__kmp_nested_nth.nth[level + 1] != nthreads_icv)) { 1996 nthreads_icv = __kmp_nested_nth.nth[level + 1]; 1997 } else { 1998 nthreads_icv = 0; // don't update 1999 } 2000 2001 #if OMP_40_ENABLED 2002 // Figure out the proc_bind_policy for the new team. 2003 kmp_proc_bind_t proc_bind = master_th->th.th_set_proc_bind; 2004 kmp_proc_bind_t proc_bind_icv = 2005 proc_bind_default; // proc_bind_default means don't update 2006 if (master_th->th.th_current_task->td_icvs.proc_bind == proc_bind_false) { 2007 proc_bind = proc_bind_false; 2008 } else { 2009 if (proc_bind == proc_bind_default) { 2010 // No proc_bind clause specified; use current proc-bind-var for this 2011 // parallel region 2012 proc_bind = master_th->th.th_current_task->td_icvs.proc_bind; 2013 } 2014 /* else: The proc_bind policy was specified explicitly on parallel clause. 2015 This overrides proc-bind-var for this parallel region, but does not 2016 change proc-bind-var. */ 2017 // Figure the value of proc-bind-var for the child threads. 2018 if ((level + 1 < __kmp_nested_proc_bind.used) && 2019 (__kmp_nested_proc_bind.bind_types[level + 1] != 2020 master_th->th.th_current_task->td_icvs.proc_bind)) { 2021 proc_bind_icv = __kmp_nested_proc_bind.bind_types[level + 1]; 2022 } 2023 } 2024 2025 // Reset for next parallel region 2026 master_th->th.th_set_proc_bind = proc_bind_default; 2027 #endif /* OMP_40_ENABLED */ 2028 2029 if ((nthreads_icv > 0) 2030 #if OMP_40_ENABLED 2031 || (proc_bind_icv != proc_bind_default) 2032 #endif /* OMP_40_ENABLED */ 2033 ) { 2034 kmp_internal_control_t new_icvs; 2035 copy_icvs(&new_icvs, &master_th->th.th_current_task->td_icvs); 2036 new_icvs.next = NULL; 2037 if (nthreads_icv > 0) { 2038 new_icvs.nproc = nthreads_icv; 2039 } 2040 2041 #if OMP_40_ENABLED 2042 if (proc_bind_icv != proc_bind_default) { 2043 new_icvs.proc_bind = proc_bind_icv; 2044 } 2045 #endif /* OMP_40_ENABLED */ 2046 2047 /* allocate a new parallel team */ 2048 KF_TRACE(10, ("__kmp_fork_call: before __kmp_allocate_team\n")); 2049 team = __kmp_allocate_team(root, nthreads, nthreads, 2050 #if OMPT_SUPPORT 2051 ompt_parallel_data, 2052 #endif 2053 #if OMP_40_ENABLED 2054 proc_bind, 2055 #endif 2056 &new_icvs, argc USE_NESTED_HOT_ARG(master_th)); 2057 } else { 2058 /* allocate a new parallel team */ 2059 KF_TRACE(10, ("__kmp_fork_call: before __kmp_allocate_team\n")); 2060 team = __kmp_allocate_team(root, nthreads, nthreads, 2061 #if OMPT_SUPPORT 2062 ompt_parallel_data, 2063 #endif 2064 #if OMP_40_ENABLED 2065 proc_bind, 2066 #endif 2067 &master_th->th.th_current_task->td_icvs, 2068 argc USE_NESTED_HOT_ARG(master_th)); 2069 } 2070 KF_TRACE( 2071 10, ("__kmp_fork_call: after __kmp_allocate_team - team = %p\n", team)); 2072 2073 /* setup the new team */ 2074 KMP_CHECK_UPDATE(team->t.t_master_tid, master_tid); 2075 KMP_CHECK_UPDATE(team->t.t_master_this_cons, master_this_cons); 2076 KMP_CHECK_UPDATE(team->t.t_ident, loc); 2077 KMP_CHECK_UPDATE(team->t.t_parent, parent_team); 2078 KMP_CHECK_UPDATE_SYNC(team->t.t_pkfn, microtask); 2079 #if OMPT_SUPPORT 2080 KMP_CHECK_UPDATE_SYNC(team->t.ompt_team_info.master_return_address, 2081 return_address); 2082 #endif 2083 KMP_CHECK_UPDATE(team->t.t_invoke, invoker); // TODO move to root, maybe 2084 // TODO: parent_team->t.t_level == INT_MAX ??? 2085 #if OMP_40_ENABLED 2086 if (!master_th->th.th_teams_microtask || level > teams_level) { 2087 #endif /* OMP_40_ENABLED */ 2088 int new_level = parent_team->t.t_level + 1; 2089 KMP_CHECK_UPDATE(team->t.t_level, new_level); 2090 new_level = parent_team->t.t_active_level + 1; 2091 KMP_CHECK_UPDATE(team->t.t_active_level, new_level); 2092 #if OMP_40_ENABLED 2093 } else { 2094 // AC: Do not increase parallel level at start of the teams construct 2095 int new_level = parent_team->t.t_level; 2096 KMP_CHECK_UPDATE(team->t.t_level, new_level); 2097 new_level = parent_team->t.t_active_level; 2098 KMP_CHECK_UPDATE(team->t.t_active_level, new_level); 2099 } 2100 #endif /* OMP_40_ENABLED */ 2101 kmp_r_sched_t new_sched = get__sched_2(parent_team, master_tid); 2102 // set master's schedule as new run-time schedule 2103 KMP_CHECK_UPDATE(team->t.t_sched.sched, new_sched.sched); 2104 2105 #if OMP_40_ENABLED 2106 KMP_CHECK_UPDATE(team->t.t_cancel_request, cancel_noreq); 2107 #endif 2108 #if OMP_50_ENABLED 2109 KMP_CHECK_UPDATE(team->t.t_def_allocator, master_th->th.th_def_allocator); 2110 #endif 2111 2112 // Update the floating point rounding in the team if required. 2113 propagateFPControl(team); 2114 2115 if (__kmp_tasking_mode != tskm_immediate_exec) { 2116 // Set master's task team to team's task team. Unless this is hot team, it 2117 // should be NULL. 2118 KMP_DEBUG_ASSERT(master_th->th.th_task_team == 2119 parent_team->t.t_task_team[master_th->th.th_task_state]); 2120 KA_TRACE(20, ("__kmp_fork_call: Master T#%d pushing task_team %p / team " 2121 "%p, new task_team %p / team %p\n", 2122 __kmp_gtid_from_thread(master_th), 2123 master_th->th.th_task_team, parent_team, 2124 team->t.t_task_team[master_th->th.th_task_state], team)); 2125 2126 if (active_level || master_th->th.th_task_team) { 2127 // Take a memo of master's task_state 2128 KMP_DEBUG_ASSERT(master_th->th.th_task_state_memo_stack); 2129 if (master_th->th.th_task_state_top >= 2130 master_th->th.th_task_state_stack_sz) { // increase size 2131 kmp_uint32 new_size = 2 * master_th->th.th_task_state_stack_sz; 2132 kmp_uint8 *old_stack, *new_stack; 2133 kmp_uint32 i; 2134 new_stack = (kmp_uint8 *)__kmp_allocate(new_size); 2135 for (i = 0; i < master_th->th.th_task_state_stack_sz; ++i) { 2136 new_stack[i] = master_th->th.th_task_state_memo_stack[i]; 2137 } 2138 for (i = master_th->th.th_task_state_stack_sz; i < new_size; 2139 ++i) { // zero-init rest of stack 2140 new_stack[i] = 0; 2141 } 2142 old_stack = master_th->th.th_task_state_memo_stack; 2143 master_th->th.th_task_state_memo_stack = new_stack; 2144 master_th->th.th_task_state_stack_sz = new_size; 2145 __kmp_free(old_stack); 2146 } 2147 // Store master's task_state on stack 2148 master_th->th 2149 .th_task_state_memo_stack[master_th->th.th_task_state_top] = 2150 master_th->th.th_task_state; 2151 master_th->th.th_task_state_top++; 2152 #if KMP_NESTED_HOT_TEAMS 2153 if (master_th->th.th_hot_teams && 2154 active_level < __kmp_hot_teams_max_level && 2155 team == master_th->th.th_hot_teams[active_level].hot_team) { 2156 // Restore master's nested state if nested hot team 2157 master_th->th.th_task_state = 2158 master_th->th 2159 .th_task_state_memo_stack[master_th->th.th_task_state_top]; 2160 } else { 2161 #endif 2162 master_th->th.th_task_state = 0; 2163 #if KMP_NESTED_HOT_TEAMS 2164 } 2165 #endif 2166 } 2167 #if !KMP_NESTED_HOT_TEAMS 2168 KMP_DEBUG_ASSERT((master_th->th.th_task_team == NULL) || 2169 (team == root->r.r_hot_team)); 2170 #endif 2171 } 2172 2173 KA_TRACE( 2174 20, 2175 ("__kmp_fork_call: T#%d(%d:%d)->(%d:0) created a team of %d threads\n", 2176 gtid, parent_team->t.t_id, team->t.t_master_tid, team->t.t_id, 2177 team->t.t_nproc)); 2178 KMP_DEBUG_ASSERT(team != root->r.r_hot_team || 2179 (team->t.t_master_tid == 0 && 2180 (team->t.t_parent == root->r.r_root_team || 2181 team->t.t_parent->t.t_serialized))); 2182 KMP_MB(); 2183 2184 /* now, setup the arguments */ 2185 argv = (void **)team->t.t_argv; 2186 #if OMP_40_ENABLED 2187 if (ap) { 2188 #endif /* OMP_40_ENABLED */ 2189 for (i = argc - 1; i >= 0; --i) { 2190 // TODO: revert workaround for Intel(R) 64 tracker #96 2191 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 2192 void *new_argv = va_arg(*ap, void *); 2193 #else 2194 void *new_argv = va_arg(ap, void *); 2195 #endif 2196 KMP_CHECK_UPDATE(*argv, new_argv); 2197 argv++; 2198 } 2199 #if OMP_40_ENABLED 2200 } else { 2201 for (i = 0; i < argc; ++i) { 2202 // Get args from parent team for teams construct 2203 KMP_CHECK_UPDATE(argv[i], team->t.t_parent->t.t_argv[i]); 2204 } 2205 } 2206 #endif /* OMP_40_ENABLED */ 2207 2208 /* now actually fork the threads */ 2209 KMP_CHECK_UPDATE(team->t.t_master_active, master_active); 2210 if (!root->r.r_active) // Only do assignment if it prevents cache ping-pong 2211 root->r.r_active = TRUE; 2212 2213 __kmp_fork_team_threads(root, team, master_th, gtid); 2214 __kmp_setup_icv_copy(team, nthreads, 2215 &master_th->th.th_current_task->td_icvs, loc); 2216 2217 #if OMPT_SUPPORT 2218 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 2219 #endif 2220 2221 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 2222 2223 #if USE_ITT_BUILD 2224 if (team->t.t_active_level == 1 // only report frames at level 1 2225 #if OMP_40_ENABLED 2226 && !master_th->th.th_teams_microtask // not in teams construct 2227 #endif /* OMP_40_ENABLED */ 2228 ) { 2229 #if USE_ITT_NOTIFY 2230 if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) && 2231 (__kmp_forkjoin_frames_mode == 3 || 2232 __kmp_forkjoin_frames_mode == 1)) { 2233 kmp_uint64 tmp_time = 0; 2234 if (__itt_get_timestamp_ptr) 2235 tmp_time = __itt_get_timestamp(); 2236 // Internal fork - report frame begin 2237 master_th->th.th_frame_time = tmp_time; 2238 if (__kmp_forkjoin_frames_mode == 3) 2239 team->t.t_region_time = tmp_time; 2240 } else 2241 // only one notification scheme (either "submit" or "forking/joined", not both) 2242 #endif /* USE_ITT_NOTIFY */ 2243 if ((__itt_frame_begin_v3_ptr || KMP_ITT_DEBUG) && 2244 __kmp_forkjoin_frames && !__kmp_forkjoin_frames_mode) { 2245 // Mark start of "parallel" region for Intel(R) VTune(TM) analyzer. 2246 __kmp_itt_region_forking(gtid, team->t.t_nproc, 0); 2247 } 2248 } 2249 #endif /* USE_ITT_BUILD */ 2250 2251 /* now go on and do the work */ 2252 KMP_DEBUG_ASSERT(team == __kmp_threads[gtid]->th.th_team); 2253 KMP_MB(); 2254 KF_TRACE(10, 2255 ("__kmp_internal_fork : root=%p, team=%p, master_th=%p, gtid=%d\n", 2256 root, team, master_th, gtid)); 2257 2258 #if USE_ITT_BUILD 2259 if (__itt_stack_caller_create_ptr) { 2260 team->t.t_stack_id = 2261 __kmp_itt_stack_caller_create(); // create new stack stitching id 2262 // before entering fork barrier 2263 } 2264 #endif /* USE_ITT_BUILD */ 2265 2266 #if OMP_40_ENABLED 2267 // AC: skip __kmp_internal_fork at teams construct, let only master 2268 // threads execute 2269 if (ap) 2270 #endif /* OMP_40_ENABLED */ 2271 { 2272 __kmp_internal_fork(loc, gtid, team); 2273 KF_TRACE(10, ("__kmp_internal_fork : after : root=%p, team=%p, " 2274 "master_th=%p, gtid=%d\n", 2275 root, team, master_th, gtid)); 2276 } 2277 2278 if (call_context == fork_context_gnu) { 2279 KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid)); 2280 return TRUE; 2281 } 2282 2283 /* Invoke microtask for MASTER thread */ 2284 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) invoke microtask = %p\n", gtid, 2285 team->t.t_id, team->t.t_pkfn)); 2286 } // END of timer KMP_fork_call block 2287 2288 #if KMP_STATS_ENABLED && OMP_40_ENABLED 2289 // If beginning a teams construct, then change thread state 2290 stats_state_e previous_state = KMP_GET_THREAD_STATE(); 2291 if (!ap) { 2292 KMP_SET_THREAD_STATE(stats_state_e::TEAMS_REGION); 2293 } 2294 #endif 2295 2296 if (!team->t.t_invoke(gtid)) { 2297 KMP_ASSERT2(0, "cannot invoke microtask for MASTER thread"); 2298 } 2299 2300 #if KMP_STATS_ENABLED && OMP_40_ENABLED 2301 // If was beginning of a teams construct, then reset thread state 2302 if (!ap) { 2303 KMP_SET_THREAD_STATE(previous_state); 2304 } 2305 #endif 2306 2307 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) done microtask = %p\n", gtid, 2308 team->t.t_id, team->t.t_pkfn)); 2309 KMP_MB(); /* Flush all pending memory write invalidates. */ 2310 2311 KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid)); 2312 2313 #if OMPT_SUPPORT 2314 if (ompt_enabled.enabled) { 2315 master_th->th.ompt_thread_info.state = ompt_state_overhead; 2316 } 2317 #endif 2318 2319 return TRUE; 2320 } 2321 2322 #if OMPT_SUPPORT 2323 static inline void __kmp_join_restore_state(kmp_info_t *thread, 2324 kmp_team_t *team) { 2325 // restore state outside the region 2326 thread->th.ompt_thread_info.state = 2327 ((team->t.t_serialized) ? ompt_state_work_serial 2328 : ompt_state_work_parallel); 2329 } 2330 2331 static inline void __kmp_join_ompt(int gtid, kmp_info_t *thread, 2332 kmp_team_t *team, ompt_data_t *parallel_data, 2333 fork_context_e fork_context, void *codeptr) { 2334 ompt_task_info_t *task_info = __ompt_get_task_info_object(0); 2335 if (ompt_enabled.ompt_callback_parallel_end) { 2336 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 2337 parallel_data, &(task_info->task_data), OMPT_INVOKER(fork_context), 2338 codeptr); 2339 } 2340 2341 task_info->frame.enter_frame = ompt_data_none; 2342 __kmp_join_restore_state(thread, team); 2343 } 2344 #endif 2345 2346 void __kmp_join_call(ident_t *loc, int gtid 2347 #if OMPT_SUPPORT 2348 , 2349 enum fork_context_e fork_context 2350 #endif 2351 #if OMP_40_ENABLED 2352 , 2353 int exit_teams 2354 #endif /* OMP_40_ENABLED */ 2355 ) { 2356 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_join_call); 2357 kmp_team_t *team; 2358 kmp_team_t *parent_team; 2359 kmp_info_t *master_th; 2360 kmp_root_t *root; 2361 int master_active; 2362 2363 KA_TRACE(20, ("__kmp_join_call: enter T#%d\n", gtid)); 2364 2365 /* setup current data */ 2366 master_th = __kmp_threads[gtid]; 2367 root = master_th->th.th_root; 2368 team = master_th->th.th_team; 2369 parent_team = team->t.t_parent; 2370 2371 master_th->th.th_ident = loc; 2372 2373 #if OMPT_SUPPORT 2374 if (ompt_enabled.enabled) { 2375 master_th->th.ompt_thread_info.state = ompt_state_overhead; 2376 } 2377 #endif 2378 2379 #if KMP_DEBUG 2380 if (__kmp_tasking_mode != tskm_immediate_exec && !exit_teams) { 2381 KA_TRACE(20, ("__kmp_join_call: T#%d, old team = %p old task_team = %p, " 2382 "th_task_team = %p\n", 2383 __kmp_gtid_from_thread(master_th), team, 2384 team->t.t_task_team[master_th->th.th_task_state], 2385 master_th->th.th_task_team)); 2386 KMP_DEBUG_ASSERT(master_th->th.th_task_team == 2387 team->t.t_task_team[master_th->th.th_task_state]); 2388 } 2389 #endif 2390 2391 if (team->t.t_serialized) { 2392 #if OMP_40_ENABLED 2393 if (master_th->th.th_teams_microtask) { 2394 // We are in teams construct 2395 int level = team->t.t_level; 2396 int tlevel = master_th->th.th_teams_level; 2397 if (level == tlevel) { 2398 // AC: we haven't incremented it earlier at start of teams construct, 2399 // so do it here - at the end of teams construct 2400 team->t.t_level++; 2401 } else if (level == tlevel + 1) { 2402 // AC: we are exiting parallel inside teams, need to increment 2403 // serialization in order to restore it in the next call to 2404 // __kmpc_end_serialized_parallel 2405 team->t.t_serialized++; 2406 } 2407 } 2408 #endif /* OMP_40_ENABLED */ 2409 __kmpc_end_serialized_parallel(loc, gtid); 2410 2411 #if OMPT_SUPPORT 2412 if (ompt_enabled.enabled) { 2413 __kmp_join_restore_state(master_th, parent_team); 2414 } 2415 #endif 2416 2417 return; 2418 } 2419 2420 master_active = team->t.t_master_active; 2421 2422 #if OMP_40_ENABLED 2423 if (!exit_teams) 2424 #endif /* OMP_40_ENABLED */ 2425 { 2426 // AC: No barrier for internal teams at exit from teams construct. 2427 // But there is barrier for external team (league). 2428 __kmp_internal_join(loc, gtid, team); 2429 } 2430 #if OMP_40_ENABLED 2431 else { 2432 master_th->th.th_task_state = 2433 0; // AC: no tasking in teams (out of any parallel) 2434 } 2435 #endif /* OMP_40_ENABLED */ 2436 2437 KMP_MB(); 2438 2439 #if OMPT_SUPPORT 2440 ompt_data_t *parallel_data = &(team->t.ompt_team_info.parallel_data); 2441 void *codeptr = team->t.ompt_team_info.master_return_address; 2442 #endif 2443 2444 #if USE_ITT_BUILD 2445 if (__itt_stack_caller_create_ptr) { 2446 __kmp_itt_stack_caller_destroy( 2447 (__itt_caller)team->t 2448 .t_stack_id); // destroy the stack stitching id after join barrier 2449 } 2450 2451 // Mark end of "parallel" region for Intel(R) VTune(TM) analyzer. 2452 if (team->t.t_active_level == 1 2453 #if OMP_40_ENABLED 2454 && !master_th->th.th_teams_microtask /* not in teams construct */ 2455 #endif /* OMP_40_ENABLED */ 2456 ) { 2457 master_th->th.th_ident = loc; 2458 // only one notification scheme (either "submit" or "forking/joined", not 2459 // both) 2460 if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) && 2461 __kmp_forkjoin_frames_mode == 3) 2462 __kmp_itt_frame_submit(gtid, team->t.t_region_time, 2463 master_th->th.th_frame_time, 0, loc, 2464 master_th->th.th_team_nproc, 1); 2465 else if ((__itt_frame_end_v3_ptr || KMP_ITT_DEBUG) && 2466 !__kmp_forkjoin_frames_mode && __kmp_forkjoin_frames) 2467 __kmp_itt_region_joined(gtid); 2468 } // active_level == 1 2469 #endif /* USE_ITT_BUILD */ 2470 2471 #if OMP_40_ENABLED 2472 if (master_th->th.th_teams_microtask && !exit_teams && 2473 team->t.t_pkfn != (microtask_t)__kmp_teams_master && 2474 team->t.t_level == master_th->th.th_teams_level + 1) { 2475 // AC: We need to leave the team structure intact at the end of parallel 2476 // inside the teams construct, so that at the next parallel same (hot) team 2477 // works, only adjust nesting levels 2478 2479 /* Decrement our nested depth level */ 2480 team->t.t_level--; 2481 team->t.t_active_level--; 2482 KMP_ATOMIC_DEC(&root->r.r_in_parallel); 2483 2484 // Restore number of threads in the team if needed. This code relies on 2485 // the proper adjustment of th_teams_size.nth after the fork in 2486 // __kmp_teams_master on each teams master in the case that 2487 // __kmp_reserve_threads reduced it. 2488 if (master_th->th.th_team_nproc < master_th->th.th_teams_size.nth) { 2489 int old_num = master_th->th.th_team_nproc; 2490 int new_num = master_th->th.th_teams_size.nth; 2491 kmp_info_t **other_threads = team->t.t_threads; 2492 team->t.t_nproc = new_num; 2493 for (int i = 0; i < old_num; ++i) { 2494 other_threads[i]->th.th_team_nproc = new_num; 2495 } 2496 // Adjust states of non-used threads of the team 2497 for (int i = old_num; i < new_num; ++i) { 2498 // Re-initialize thread's barrier data. 2499 KMP_DEBUG_ASSERT(other_threads[i]); 2500 kmp_balign_t *balign = other_threads[i]->th.th_bar; 2501 for (int b = 0; b < bs_last_barrier; ++b) { 2502 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 2503 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 2504 #if USE_DEBUGGER 2505 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 2506 #endif 2507 } 2508 if (__kmp_tasking_mode != tskm_immediate_exec) { 2509 // Synchronize thread's task state 2510 other_threads[i]->th.th_task_state = master_th->th.th_task_state; 2511 } 2512 } 2513 } 2514 2515 #if OMPT_SUPPORT 2516 if (ompt_enabled.enabled) { 2517 __kmp_join_ompt(gtid, master_th, parent_team, parallel_data, fork_context, 2518 codeptr); 2519 } 2520 #endif 2521 2522 return; 2523 } 2524 #endif /* OMP_40_ENABLED */ 2525 2526 /* do cleanup and restore the parent team */ 2527 master_th->th.th_info.ds.ds_tid = team->t.t_master_tid; 2528 master_th->th.th_local.this_construct = team->t.t_master_this_cons; 2529 2530 master_th->th.th_dispatch = &parent_team->t.t_dispatch[team->t.t_master_tid]; 2531 2532 /* jc: The following lock has instructions with REL and ACQ semantics, 2533 separating the parallel user code called in this parallel region 2534 from the serial user code called after this function returns. */ 2535 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 2536 2537 #if OMP_40_ENABLED 2538 if (!master_th->th.th_teams_microtask || 2539 team->t.t_level > master_th->th.th_teams_level) 2540 #endif /* OMP_40_ENABLED */ 2541 { 2542 /* Decrement our nested depth level */ 2543 KMP_ATOMIC_DEC(&root->r.r_in_parallel); 2544 } 2545 KMP_DEBUG_ASSERT(root->r.r_in_parallel >= 0); 2546 2547 #if OMPT_SUPPORT 2548 if (ompt_enabled.enabled) { 2549 ompt_task_info_t *task_info = __ompt_get_task_info_object(0); 2550 if (ompt_enabled.ompt_callback_implicit_task) { 2551 int ompt_team_size = team->t.t_nproc; 2552 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 2553 ompt_scope_end, NULL, &(task_info->task_data), ompt_team_size, 2554 OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit); // TODO: Can this be ompt_task_initial? 2555 } 2556 2557 task_info->frame.exit_frame = ompt_data_none; 2558 task_info->task_data = ompt_data_none; 2559 } 2560 #endif 2561 2562 KF_TRACE(10, ("__kmp_join_call1: T#%d, this_thread=%p team=%p\n", 0, 2563 master_th, team)); 2564 __kmp_pop_current_task_from_thread(master_th); 2565 2566 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 2567 // Restore master thread's partition. 2568 master_th->th.th_first_place = team->t.t_first_place; 2569 master_th->th.th_last_place = team->t.t_last_place; 2570 #endif /* OMP_40_ENABLED */ 2571 #if OMP_50_ENABLED 2572 master_th->th.th_def_allocator = team->t.t_def_allocator; 2573 #endif 2574 2575 updateHWFPControl(team); 2576 2577 if (root->r.r_active != master_active) 2578 root->r.r_active = master_active; 2579 2580 __kmp_free_team(root, team USE_NESTED_HOT_ARG( 2581 master_th)); // this will free worker threads 2582 2583 /* this race was fun to find. make sure the following is in the critical 2584 region otherwise assertions may fail occasionally since the old team may be 2585 reallocated and the hierarchy appears inconsistent. it is actually safe to 2586 run and won't cause any bugs, but will cause those assertion failures. it's 2587 only one deref&assign so might as well put this in the critical region */ 2588 master_th->th.th_team = parent_team; 2589 master_th->th.th_team_nproc = parent_team->t.t_nproc; 2590 master_th->th.th_team_master = parent_team->t.t_threads[0]; 2591 master_th->th.th_team_serialized = parent_team->t.t_serialized; 2592 2593 /* restore serialized team, if need be */ 2594 if (parent_team->t.t_serialized && 2595 parent_team != master_th->th.th_serial_team && 2596 parent_team != root->r.r_root_team) { 2597 __kmp_free_team(root, 2598 master_th->th.th_serial_team USE_NESTED_HOT_ARG(NULL)); 2599 master_th->th.th_serial_team = parent_team; 2600 } 2601 2602 if (__kmp_tasking_mode != tskm_immediate_exec) { 2603 if (master_th->th.th_task_state_top > 2604 0) { // Restore task state from memo stack 2605 KMP_DEBUG_ASSERT(master_th->th.th_task_state_memo_stack); 2606 // Remember master's state if we re-use this nested hot team 2607 master_th->th.th_task_state_memo_stack[master_th->th.th_task_state_top] = 2608 master_th->th.th_task_state; 2609 --master_th->th.th_task_state_top; // pop 2610 // Now restore state at this level 2611 master_th->th.th_task_state = 2612 master_th->th 2613 .th_task_state_memo_stack[master_th->th.th_task_state_top]; 2614 } 2615 // Copy the task team from the parent team to the master thread 2616 master_th->th.th_task_team = 2617 parent_team->t.t_task_team[master_th->th.th_task_state]; 2618 KA_TRACE(20, 2619 ("__kmp_join_call: Master T#%d restoring task_team %p / team %p\n", 2620 __kmp_gtid_from_thread(master_th), master_th->th.th_task_team, 2621 parent_team)); 2622 } 2623 2624 // TODO: GEH - cannot do this assertion because root thread not set up as 2625 // executing 2626 // KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 0 ); 2627 master_th->th.th_current_task->td_flags.executing = 1; 2628 2629 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 2630 2631 #if OMPT_SUPPORT 2632 if (ompt_enabled.enabled) { 2633 __kmp_join_ompt(gtid, master_th, parent_team, parallel_data, fork_context, 2634 codeptr); 2635 } 2636 #endif 2637 2638 KMP_MB(); 2639 KA_TRACE(20, ("__kmp_join_call: exit T#%d\n", gtid)); 2640 } 2641 2642 /* Check whether we should push an internal control record onto the 2643 serial team stack. If so, do it. */ 2644 void __kmp_save_internal_controls(kmp_info_t *thread) { 2645 2646 if (thread->th.th_team != thread->th.th_serial_team) { 2647 return; 2648 } 2649 if (thread->th.th_team->t.t_serialized > 1) { 2650 int push = 0; 2651 2652 if (thread->th.th_team->t.t_control_stack_top == NULL) { 2653 push = 1; 2654 } else { 2655 if (thread->th.th_team->t.t_control_stack_top->serial_nesting_level != 2656 thread->th.th_team->t.t_serialized) { 2657 push = 1; 2658 } 2659 } 2660 if (push) { /* push a record on the serial team's stack */ 2661 kmp_internal_control_t *control = 2662 (kmp_internal_control_t *)__kmp_allocate( 2663 sizeof(kmp_internal_control_t)); 2664 2665 copy_icvs(control, &thread->th.th_current_task->td_icvs); 2666 2667 control->serial_nesting_level = thread->th.th_team->t.t_serialized; 2668 2669 control->next = thread->th.th_team->t.t_control_stack_top; 2670 thread->th.th_team->t.t_control_stack_top = control; 2671 } 2672 } 2673 } 2674 2675 /* Changes set_nproc */ 2676 void __kmp_set_num_threads(int new_nth, int gtid) { 2677 kmp_info_t *thread; 2678 kmp_root_t *root; 2679 2680 KF_TRACE(10, ("__kmp_set_num_threads: new __kmp_nth = %d\n", new_nth)); 2681 KMP_DEBUG_ASSERT(__kmp_init_serial); 2682 2683 if (new_nth < 1) 2684 new_nth = 1; 2685 else if (new_nth > __kmp_max_nth) 2686 new_nth = __kmp_max_nth; 2687 2688 KMP_COUNT_VALUE(OMP_set_numthreads, new_nth); 2689 thread = __kmp_threads[gtid]; 2690 if (thread->th.th_current_task->td_icvs.nproc == new_nth) 2691 return; // nothing to do 2692 2693 __kmp_save_internal_controls(thread); 2694 2695 set__nproc(thread, new_nth); 2696 2697 // If this omp_set_num_threads() call will cause the hot team size to be 2698 // reduced (in the absence of a num_threads clause), then reduce it now, 2699 // rather than waiting for the next parallel region. 2700 root = thread->th.th_root; 2701 if (__kmp_init_parallel && (!root->r.r_active) && 2702 (root->r.r_hot_team->t.t_nproc > new_nth) 2703 #if KMP_NESTED_HOT_TEAMS 2704 && __kmp_hot_teams_max_level && !__kmp_hot_teams_mode 2705 #endif 2706 ) { 2707 kmp_team_t *hot_team = root->r.r_hot_team; 2708 int f; 2709 2710 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 2711 2712 // Release the extra threads we don't need any more. 2713 for (f = new_nth; f < hot_team->t.t_nproc; f++) { 2714 KMP_DEBUG_ASSERT(hot_team->t.t_threads[f] != NULL); 2715 if (__kmp_tasking_mode != tskm_immediate_exec) { 2716 // When decreasing team size, threads no longer in the team should unref 2717 // task team. 2718 hot_team->t.t_threads[f]->th.th_task_team = NULL; 2719 } 2720 __kmp_free_thread(hot_team->t.t_threads[f]); 2721 hot_team->t.t_threads[f] = NULL; 2722 } 2723 hot_team->t.t_nproc = new_nth; 2724 #if KMP_NESTED_HOT_TEAMS 2725 if (thread->th.th_hot_teams) { 2726 KMP_DEBUG_ASSERT(hot_team == thread->th.th_hot_teams[0].hot_team); 2727 thread->th.th_hot_teams[0].hot_team_nth = new_nth; 2728 } 2729 #endif 2730 2731 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 2732 2733 // Update the t_nproc field in the threads that are still active. 2734 for (f = 0; f < new_nth; f++) { 2735 KMP_DEBUG_ASSERT(hot_team->t.t_threads[f] != NULL); 2736 hot_team->t.t_threads[f]->th.th_team_nproc = new_nth; 2737 } 2738 // Special flag in case omp_set_num_threads() call 2739 hot_team->t.t_size_changed = -1; 2740 } 2741 } 2742 2743 /* Changes max_active_levels */ 2744 void __kmp_set_max_active_levels(int gtid, int max_active_levels) { 2745 kmp_info_t *thread; 2746 2747 KF_TRACE(10, ("__kmp_set_max_active_levels: new max_active_levels for thread " 2748 "%d = (%d)\n", 2749 gtid, max_active_levels)); 2750 KMP_DEBUG_ASSERT(__kmp_init_serial); 2751 2752 // validate max_active_levels 2753 if (max_active_levels < 0) { 2754 KMP_WARNING(ActiveLevelsNegative, max_active_levels); 2755 // We ignore this call if the user has specified a negative value. 2756 // The current setting won't be changed. The last valid setting will be 2757 // used. A warning will be issued (if warnings are allowed as controlled by 2758 // the KMP_WARNINGS env var). 2759 KF_TRACE(10, ("__kmp_set_max_active_levels: the call is ignored: new " 2760 "max_active_levels for thread %d = (%d)\n", 2761 gtid, max_active_levels)); 2762 return; 2763 } 2764 if (max_active_levels <= KMP_MAX_ACTIVE_LEVELS_LIMIT) { 2765 // it's OK, the max_active_levels is within the valid range: [ 0; 2766 // KMP_MAX_ACTIVE_LEVELS_LIMIT ] 2767 // We allow a zero value. (implementation defined behavior) 2768 } else { 2769 KMP_WARNING(ActiveLevelsExceedLimit, max_active_levels, 2770 KMP_MAX_ACTIVE_LEVELS_LIMIT); 2771 max_active_levels = KMP_MAX_ACTIVE_LEVELS_LIMIT; 2772 // Current upper limit is MAX_INT. (implementation defined behavior) 2773 // If the input exceeds the upper limit, we correct the input to be the 2774 // upper limit. (implementation defined behavior) 2775 // Actually, the flow should never get here until we use MAX_INT limit. 2776 } 2777 KF_TRACE(10, ("__kmp_set_max_active_levels: after validation: new " 2778 "max_active_levels for thread %d = (%d)\n", 2779 gtid, max_active_levels)); 2780 2781 thread = __kmp_threads[gtid]; 2782 2783 __kmp_save_internal_controls(thread); 2784 2785 set__max_active_levels(thread, max_active_levels); 2786 } 2787 2788 /* Gets max_active_levels */ 2789 int __kmp_get_max_active_levels(int gtid) { 2790 kmp_info_t *thread; 2791 2792 KF_TRACE(10, ("__kmp_get_max_active_levels: thread %d\n", gtid)); 2793 KMP_DEBUG_ASSERT(__kmp_init_serial); 2794 2795 thread = __kmp_threads[gtid]; 2796 KMP_DEBUG_ASSERT(thread->th.th_current_task); 2797 KF_TRACE(10, ("__kmp_get_max_active_levels: thread %d, curtask=%p, " 2798 "curtask_maxaclevel=%d\n", 2799 gtid, thread->th.th_current_task, 2800 thread->th.th_current_task->td_icvs.max_active_levels)); 2801 return thread->th.th_current_task->td_icvs.max_active_levels; 2802 } 2803 2804 KMP_BUILD_ASSERT(sizeof(kmp_sched_t) == sizeof(int)); 2805 KMP_BUILD_ASSERT(sizeof(enum sched_type) == sizeof(int)); 2806 2807 /* Changes def_sched_var ICV values (run-time schedule kind and chunk) */ 2808 void __kmp_set_schedule(int gtid, kmp_sched_t kind, int chunk) { 2809 kmp_info_t *thread; 2810 kmp_sched_t orig_kind; 2811 // kmp_team_t *team; 2812 2813 KF_TRACE(10, ("__kmp_set_schedule: new schedule for thread %d = (%d, %d)\n", 2814 gtid, (int)kind, chunk)); 2815 KMP_DEBUG_ASSERT(__kmp_init_serial); 2816 2817 // Check if the kind parameter is valid, correct if needed. 2818 // Valid parameters should fit in one of two intervals - standard or extended: 2819 // <lower>, <valid>, <upper_std>, <lower_ext>, <valid>, <upper> 2820 // 2008-01-25: 0, 1 - 4, 5, 100, 101 - 102, 103 2821 orig_kind = kind; 2822 kind = __kmp_sched_without_mods(kind); 2823 2824 if (kind <= kmp_sched_lower || kind >= kmp_sched_upper || 2825 (kind <= kmp_sched_lower_ext && kind >= kmp_sched_upper_std)) { 2826 // TODO: Hint needs attention in case we change the default schedule. 2827 __kmp_msg(kmp_ms_warning, KMP_MSG(ScheduleKindOutOfRange, kind), 2828 KMP_HNT(DefaultScheduleKindUsed, "static, no chunk"), 2829 __kmp_msg_null); 2830 kind = kmp_sched_default; 2831 chunk = 0; // ignore chunk value in case of bad kind 2832 } 2833 2834 thread = __kmp_threads[gtid]; 2835 2836 __kmp_save_internal_controls(thread); 2837 2838 if (kind < kmp_sched_upper_std) { 2839 if (kind == kmp_sched_static && chunk < KMP_DEFAULT_CHUNK) { 2840 // differ static chunked vs. unchunked: chunk should be invalid to 2841 // indicate unchunked schedule (which is the default) 2842 thread->th.th_current_task->td_icvs.sched.r_sched_type = kmp_sch_static; 2843 } else { 2844 thread->th.th_current_task->td_icvs.sched.r_sched_type = 2845 __kmp_sch_map[kind - kmp_sched_lower - 1]; 2846 } 2847 } else { 2848 // __kmp_sch_map[ kind - kmp_sched_lower_ext + kmp_sched_upper_std - 2849 // kmp_sched_lower - 2 ]; 2850 thread->th.th_current_task->td_icvs.sched.r_sched_type = 2851 __kmp_sch_map[kind - kmp_sched_lower_ext + kmp_sched_upper_std - 2852 kmp_sched_lower - 2]; 2853 } 2854 __kmp_sched_apply_mods_intkind( 2855 orig_kind, &(thread->th.th_current_task->td_icvs.sched.r_sched_type)); 2856 if (kind == kmp_sched_auto || chunk < 1) { 2857 // ignore parameter chunk for schedule auto 2858 thread->th.th_current_task->td_icvs.sched.chunk = KMP_DEFAULT_CHUNK; 2859 } else { 2860 thread->th.th_current_task->td_icvs.sched.chunk = chunk; 2861 } 2862 } 2863 2864 /* Gets def_sched_var ICV values */ 2865 void __kmp_get_schedule(int gtid, kmp_sched_t *kind, int *chunk) { 2866 kmp_info_t *thread; 2867 enum sched_type th_type; 2868 2869 KF_TRACE(10, ("__kmp_get_schedule: thread %d\n", gtid)); 2870 KMP_DEBUG_ASSERT(__kmp_init_serial); 2871 2872 thread = __kmp_threads[gtid]; 2873 2874 th_type = thread->th.th_current_task->td_icvs.sched.r_sched_type; 2875 switch (SCHEDULE_WITHOUT_MODIFIERS(th_type)) { 2876 case kmp_sch_static: 2877 case kmp_sch_static_greedy: 2878 case kmp_sch_static_balanced: 2879 *kind = kmp_sched_static; 2880 __kmp_sched_apply_mods_stdkind(kind, th_type); 2881 *chunk = 0; // chunk was not set, try to show this fact via zero value 2882 return; 2883 case kmp_sch_static_chunked: 2884 *kind = kmp_sched_static; 2885 break; 2886 case kmp_sch_dynamic_chunked: 2887 *kind = kmp_sched_dynamic; 2888 break; 2889 case kmp_sch_guided_chunked: 2890 case kmp_sch_guided_iterative_chunked: 2891 case kmp_sch_guided_analytical_chunked: 2892 *kind = kmp_sched_guided; 2893 break; 2894 case kmp_sch_auto: 2895 *kind = kmp_sched_auto; 2896 break; 2897 case kmp_sch_trapezoidal: 2898 *kind = kmp_sched_trapezoidal; 2899 break; 2900 #if KMP_STATIC_STEAL_ENABLED 2901 case kmp_sch_static_steal: 2902 *kind = kmp_sched_static_steal; 2903 break; 2904 #endif 2905 default: 2906 KMP_FATAL(UnknownSchedulingType, th_type); 2907 } 2908 2909 __kmp_sched_apply_mods_stdkind(kind, th_type); 2910 *chunk = thread->th.th_current_task->td_icvs.sched.chunk; 2911 } 2912 2913 int __kmp_get_ancestor_thread_num(int gtid, int level) { 2914 2915 int ii, dd; 2916 kmp_team_t *team; 2917 kmp_info_t *thr; 2918 2919 KF_TRACE(10, ("__kmp_get_ancestor_thread_num: thread %d %d\n", gtid, level)); 2920 KMP_DEBUG_ASSERT(__kmp_init_serial); 2921 2922 // validate level 2923 if (level == 0) 2924 return 0; 2925 if (level < 0) 2926 return -1; 2927 thr = __kmp_threads[gtid]; 2928 team = thr->th.th_team; 2929 ii = team->t.t_level; 2930 if (level > ii) 2931 return -1; 2932 2933 #if OMP_40_ENABLED 2934 if (thr->th.th_teams_microtask) { 2935 // AC: we are in teams region where multiple nested teams have same level 2936 int tlevel = thr->th.th_teams_level; // the level of the teams construct 2937 if (level <= 2938 tlevel) { // otherwise usual algorithm works (will not touch the teams) 2939 KMP_DEBUG_ASSERT(ii >= tlevel); 2940 // AC: As we need to pass by the teams league, we need to artificially 2941 // increase ii 2942 if (ii == tlevel) { 2943 ii += 2; // three teams have same level 2944 } else { 2945 ii++; // two teams have same level 2946 } 2947 } 2948 } 2949 #endif 2950 2951 if (ii == level) 2952 return __kmp_tid_from_gtid(gtid); 2953 2954 dd = team->t.t_serialized; 2955 level++; 2956 while (ii > level) { 2957 for (dd = team->t.t_serialized; (dd > 0) && (ii > level); dd--, ii--) { 2958 } 2959 if ((team->t.t_serialized) && (!dd)) { 2960 team = team->t.t_parent; 2961 continue; 2962 } 2963 if (ii > level) { 2964 team = team->t.t_parent; 2965 dd = team->t.t_serialized; 2966 ii--; 2967 } 2968 } 2969 2970 return (dd > 1) ? (0) : (team->t.t_master_tid); 2971 } 2972 2973 int __kmp_get_team_size(int gtid, int level) { 2974 2975 int ii, dd; 2976 kmp_team_t *team; 2977 kmp_info_t *thr; 2978 2979 KF_TRACE(10, ("__kmp_get_team_size: thread %d %d\n", gtid, level)); 2980 KMP_DEBUG_ASSERT(__kmp_init_serial); 2981 2982 // validate level 2983 if (level == 0) 2984 return 1; 2985 if (level < 0) 2986 return -1; 2987 thr = __kmp_threads[gtid]; 2988 team = thr->th.th_team; 2989 ii = team->t.t_level; 2990 if (level > ii) 2991 return -1; 2992 2993 #if OMP_40_ENABLED 2994 if (thr->th.th_teams_microtask) { 2995 // AC: we are in teams region where multiple nested teams have same level 2996 int tlevel = thr->th.th_teams_level; // the level of the teams construct 2997 if (level <= 2998 tlevel) { // otherwise usual algorithm works (will not touch the teams) 2999 KMP_DEBUG_ASSERT(ii >= tlevel); 3000 // AC: As we need to pass by the teams league, we need to artificially 3001 // increase ii 3002 if (ii == tlevel) { 3003 ii += 2; // three teams have same level 3004 } else { 3005 ii++; // two teams have same level 3006 } 3007 } 3008 } 3009 #endif 3010 3011 while (ii > level) { 3012 for (dd = team->t.t_serialized; (dd > 0) && (ii > level); dd--, ii--) { 3013 } 3014 if (team->t.t_serialized && (!dd)) { 3015 team = team->t.t_parent; 3016 continue; 3017 } 3018 if (ii > level) { 3019 team = team->t.t_parent; 3020 ii--; 3021 } 3022 } 3023 3024 return team->t.t_nproc; 3025 } 3026 3027 kmp_r_sched_t __kmp_get_schedule_global() { 3028 // This routine created because pairs (__kmp_sched, __kmp_chunk) and 3029 // (__kmp_static, __kmp_guided) may be changed by kmp_set_defaults 3030 // independently. So one can get the updated schedule here. 3031 3032 kmp_r_sched_t r_sched; 3033 3034 // create schedule from 4 globals: __kmp_sched, __kmp_chunk, __kmp_static, 3035 // __kmp_guided. __kmp_sched should keep original value, so that user can set 3036 // KMP_SCHEDULE multiple times, and thus have different run-time schedules in 3037 // different roots (even in OMP 2.5) 3038 enum sched_type s = SCHEDULE_WITHOUT_MODIFIERS(__kmp_sched); 3039 #if OMP_45_ENABLED 3040 enum sched_type sched_modifiers = SCHEDULE_GET_MODIFIERS(__kmp_sched); 3041 #endif 3042 if (s == kmp_sch_static) { 3043 // replace STATIC with more detailed schedule (balanced or greedy) 3044 r_sched.r_sched_type = __kmp_static; 3045 } else if (s == kmp_sch_guided_chunked) { 3046 // replace GUIDED with more detailed schedule (iterative or analytical) 3047 r_sched.r_sched_type = __kmp_guided; 3048 } else { // (STATIC_CHUNKED), or (DYNAMIC_CHUNKED), or other 3049 r_sched.r_sched_type = __kmp_sched; 3050 } 3051 #if OMP_45_ENABLED 3052 SCHEDULE_SET_MODIFIERS(r_sched.r_sched_type, sched_modifiers); 3053 #endif 3054 3055 if (__kmp_chunk < KMP_DEFAULT_CHUNK) { 3056 // __kmp_chunk may be wrong here (if it was not ever set) 3057 r_sched.chunk = KMP_DEFAULT_CHUNK; 3058 } else { 3059 r_sched.chunk = __kmp_chunk; 3060 } 3061 3062 return r_sched; 3063 } 3064 3065 /* Allocate (realloc == FALSE) * or reallocate (realloc == TRUE) 3066 at least argc number of *t_argv entries for the requested team. */ 3067 static void __kmp_alloc_argv_entries(int argc, kmp_team_t *team, int realloc) { 3068 3069 KMP_DEBUG_ASSERT(team); 3070 if (!realloc || argc > team->t.t_max_argc) { 3071 3072 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: needed entries=%d, " 3073 "current entries=%d\n", 3074 team->t.t_id, argc, (realloc) ? team->t.t_max_argc : 0)); 3075 /* if previously allocated heap space for args, free them */ 3076 if (realloc && team->t.t_argv != &team->t.t_inline_argv[0]) 3077 __kmp_free((void *)team->t.t_argv); 3078 3079 if (argc <= KMP_INLINE_ARGV_ENTRIES) { 3080 /* use unused space in the cache line for arguments */ 3081 team->t.t_max_argc = KMP_INLINE_ARGV_ENTRIES; 3082 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: inline allocate %d " 3083 "argv entries\n", 3084 team->t.t_id, team->t.t_max_argc)); 3085 team->t.t_argv = &team->t.t_inline_argv[0]; 3086 if (__kmp_storage_map) { 3087 __kmp_print_storage_map_gtid( 3088 -1, &team->t.t_inline_argv[0], 3089 &team->t.t_inline_argv[KMP_INLINE_ARGV_ENTRIES], 3090 (sizeof(void *) * KMP_INLINE_ARGV_ENTRIES), "team_%d.t_inline_argv", 3091 team->t.t_id); 3092 } 3093 } else { 3094 /* allocate space for arguments in the heap */ 3095 team->t.t_max_argc = (argc <= (KMP_MIN_MALLOC_ARGV_ENTRIES >> 1)) 3096 ? KMP_MIN_MALLOC_ARGV_ENTRIES 3097 : 2 * argc; 3098 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: dynamic allocate %d " 3099 "argv entries\n", 3100 team->t.t_id, team->t.t_max_argc)); 3101 team->t.t_argv = 3102 (void **)__kmp_page_allocate(sizeof(void *) * team->t.t_max_argc); 3103 if (__kmp_storage_map) { 3104 __kmp_print_storage_map_gtid(-1, &team->t.t_argv[0], 3105 &team->t.t_argv[team->t.t_max_argc], 3106 sizeof(void *) * team->t.t_max_argc, 3107 "team_%d.t_argv", team->t.t_id); 3108 } 3109 } 3110 } 3111 } 3112 3113 static void __kmp_allocate_team_arrays(kmp_team_t *team, int max_nth) { 3114 int i; 3115 int num_disp_buff = max_nth > 1 ? __kmp_dispatch_num_buffers : 2; 3116 team->t.t_threads = 3117 (kmp_info_t **)__kmp_allocate(sizeof(kmp_info_t *) * max_nth); 3118 team->t.t_disp_buffer = (dispatch_shared_info_t *)__kmp_allocate( 3119 sizeof(dispatch_shared_info_t) * num_disp_buff); 3120 team->t.t_dispatch = 3121 (kmp_disp_t *)__kmp_allocate(sizeof(kmp_disp_t) * max_nth); 3122 team->t.t_implicit_task_taskdata = 3123 (kmp_taskdata_t *)__kmp_allocate(sizeof(kmp_taskdata_t) * max_nth); 3124 team->t.t_max_nproc = max_nth; 3125 3126 /* setup dispatch buffers */ 3127 for (i = 0; i < num_disp_buff; ++i) { 3128 team->t.t_disp_buffer[i].buffer_index = i; 3129 #if OMP_45_ENABLED 3130 team->t.t_disp_buffer[i].doacross_buf_idx = i; 3131 #endif 3132 } 3133 } 3134 3135 static void __kmp_free_team_arrays(kmp_team_t *team) { 3136 /* Note: this does not free the threads in t_threads (__kmp_free_threads) */ 3137 int i; 3138 for (i = 0; i < team->t.t_max_nproc; ++i) { 3139 if (team->t.t_dispatch[i].th_disp_buffer != NULL) { 3140 __kmp_free(team->t.t_dispatch[i].th_disp_buffer); 3141 team->t.t_dispatch[i].th_disp_buffer = NULL; 3142 } 3143 } 3144 #if KMP_USE_HIER_SCHED 3145 __kmp_dispatch_free_hierarchies(team); 3146 #endif 3147 __kmp_free(team->t.t_threads); 3148 __kmp_free(team->t.t_disp_buffer); 3149 __kmp_free(team->t.t_dispatch); 3150 __kmp_free(team->t.t_implicit_task_taskdata); 3151 team->t.t_threads = NULL; 3152 team->t.t_disp_buffer = NULL; 3153 team->t.t_dispatch = NULL; 3154 team->t.t_implicit_task_taskdata = 0; 3155 } 3156 3157 static void __kmp_reallocate_team_arrays(kmp_team_t *team, int max_nth) { 3158 kmp_info_t **oldThreads = team->t.t_threads; 3159 3160 __kmp_free(team->t.t_disp_buffer); 3161 __kmp_free(team->t.t_dispatch); 3162 __kmp_free(team->t.t_implicit_task_taskdata); 3163 __kmp_allocate_team_arrays(team, max_nth); 3164 3165 KMP_MEMCPY(team->t.t_threads, oldThreads, 3166 team->t.t_nproc * sizeof(kmp_info_t *)); 3167 3168 __kmp_free(oldThreads); 3169 } 3170 3171 static kmp_internal_control_t __kmp_get_global_icvs(void) { 3172 3173 kmp_r_sched_t r_sched = 3174 __kmp_get_schedule_global(); // get current state of scheduling globals 3175 3176 #if OMP_40_ENABLED 3177 KMP_DEBUG_ASSERT(__kmp_nested_proc_bind.used > 0); 3178 #endif /* OMP_40_ENABLED */ 3179 3180 kmp_internal_control_t g_icvs = { 3181 0, // int serial_nesting_level; //corresponds to value of th_team_serialized 3182 (kmp_int8)__kmp_global.g.g_dynamic, // internal control for dynamic 3183 // adjustment of threads (per thread) 3184 (kmp_int8)__kmp_env_blocktime, // int bt_set; //internal control for 3185 // whether blocktime is explicitly set 3186 __kmp_dflt_blocktime, // int blocktime; //internal control for blocktime 3187 #if KMP_USE_MONITOR 3188 __kmp_bt_intervals, // int bt_intervals; //internal control for blocktime 3189 // intervals 3190 #endif 3191 __kmp_dflt_team_nth, // int nproc; //internal control for # of threads for 3192 // next parallel region (per thread) 3193 // (use a max ub on value if __kmp_parallel_initialize not called yet) 3194 __kmp_cg_max_nth, // int thread_limit; 3195 __kmp_dflt_max_active_levels, // int max_active_levels; //internal control 3196 // for max_active_levels 3197 r_sched, // kmp_r_sched_t sched; //internal control for runtime schedule 3198 // {sched,chunk} pair 3199 #if OMP_40_ENABLED 3200 __kmp_nested_proc_bind.bind_types[0], 3201 __kmp_default_device, 3202 #endif /* OMP_40_ENABLED */ 3203 NULL // struct kmp_internal_control *next; 3204 }; 3205 3206 return g_icvs; 3207 } 3208 3209 static kmp_internal_control_t __kmp_get_x_global_icvs(const kmp_team_t *team) { 3210 3211 kmp_internal_control_t gx_icvs; 3212 gx_icvs.serial_nesting_level = 3213 0; // probably =team->t.t_serial like in save_inter_controls 3214 copy_icvs(&gx_icvs, &team->t.t_threads[0]->th.th_current_task->td_icvs); 3215 gx_icvs.next = NULL; 3216 3217 return gx_icvs; 3218 } 3219 3220 static void __kmp_initialize_root(kmp_root_t *root) { 3221 int f; 3222 kmp_team_t *root_team; 3223 kmp_team_t *hot_team; 3224 int hot_team_max_nth; 3225 kmp_r_sched_t r_sched = 3226 __kmp_get_schedule_global(); // get current state of scheduling globals 3227 kmp_internal_control_t r_icvs = __kmp_get_global_icvs(); 3228 KMP_DEBUG_ASSERT(root); 3229 KMP_ASSERT(!root->r.r_begin); 3230 3231 /* setup the root state structure */ 3232 __kmp_init_lock(&root->r.r_begin_lock); 3233 root->r.r_begin = FALSE; 3234 root->r.r_active = FALSE; 3235 root->r.r_in_parallel = 0; 3236 root->r.r_blocktime = __kmp_dflt_blocktime; 3237 3238 /* setup the root team for this task */ 3239 /* allocate the root team structure */ 3240 KF_TRACE(10, ("__kmp_initialize_root: before root_team\n")); 3241 3242 root_team = 3243 __kmp_allocate_team(root, 3244 1, // new_nproc 3245 1, // max_nproc 3246 #if OMPT_SUPPORT 3247 ompt_data_none, // root parallel id 3248 #endif 3249 #if OMP_40_ENABLED 3250 __kmp_nested_proc_bind.bind_types[0], 3251 #endif 3252 &r_icvs, 3253 0 // argc 3254 USE_NESTED_HOT_ARG(NULL) // master thread is unknown 3255 ); 3256 #if USE_DEBUGGER 3257 // Non-NULL value should be assigned to make the debugger display the root 3258 // team. 3259 TCW_SYNC_PTR(root_team->t.t_pkfn, (microtask_t)(~0)); 3260 #endif 3261 3262 KF_TRACE(10, ("__kmp_initialize_root: after root_team = %p\n", root_team)); 3263 3264 root->r.r_root_team = root_team; 3265 root_team->t.t_control_stack_top = NULL; 3266 3267 /* initialize root team */ 3268 root_team->t.t_threads[0] = NULL; 3269 root_team->t.t_nproc = 1; 3270 root_team->t.t_serialized = 1; 3271 // TODO???: root_team->t.t_max_active_levels = __kmp_dflt_max_active_levels; 3272 root_team->t.t_sched.sched = r_sched.sched; 3273 KA_TRACE( 3274 20, 3275 ("__kmp_initialize_root: init root team %d arrived: join=%u, plain=%u\n", 3276 root_team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 3277 3278 /* setup the hot team for this task */ 3279 /* allocate the hot team structure */ 3280 KF_TRACE(10, ("__kmp_initialize_root: before hot_team\n")); 3281 3282 hot_team = 3283 __kmp_allocate_team(root, 3284 1, // new_nproc 3285 __kmp_dflt_team_nth_ub * 2, // max_nproc 3286 #if OMPT_SUPPORT 3287 ompt_data_none, // root parallel id 3288 #endif 3289 #if OMP_40_ENABLED 3290 __kmp_nested_proc_bind.bind_types[0], 3291 #endif 3292 &r_icvs, 3293 0 // argc 3294 USE_NESTED_HOT_ARG(NULL) // master thread is unknown 3295 ); 3296 KF_TRACE(10, ("__kmp_initialize_root: after hot_team = %p\n", hot_team)); 3297 3298 root->r.r_hot_team = hot_team; 3299 root_team->t.t_control_stack_top = NULL; 3300 3301 /* first-time initialization */ 3302 hot_team->t.t_parent = root_team; 3303 3304 /* initialize hot team */ 3305 hot_team_max_nth = hot_team->t.t_max_nproc; 3306 for (f = 0; f < hot_team_max_nth; ++f) { 3307 hot_team->t.t_threads[f] = NULL; 3308 } 3309 hot_team->t.t_nproc = 1; 3310 // TODO???: hot_team->t.t_max_active_levels = __kmp_dflt_max_active_levels; 3311 hot_team->t.t_sched.sched = r_sched.sched; 3312 hot_team->t.t_size_changed = 0; 3313 } 3314 3315 #ifdef KMP_DEBUG 3316 3317 typedef struct kmp_team_list_item { 3318 kmp_team_p const *entry; 3319 struct kmp_team_list_item *next; 3320 } kmp_team_list_item_t; 3321 typedef kmp_team_list_item_t *kmp_team_list_t; 3322 3323 static void __kmp_print_structure_team_accum( // Add team to list of teams. 3324 kmp_team_list_t list, // List of teams. 3325 kmp_team_p const *team // Team to add. 3326 ) { 3327 3328 // List must terminate with item where both entry and next are NULL. 3329 // Team is added to the list only once. 3330 // List is sorted in ascending order by team id. 3331 // Team id is *not* a key. 3332 3333 kmp_team_list_t l; 3334 3335 KMP_DEBUG_ASSERT(list != NULL); 3336 if (team == NULL) { 3337 return; 3338 } 3339 3340 __kmp_print_structure_team_accum(list, team->t.t_parent); 3341 __kmp_print_structure_team_accum(list, team->t.t_next_pool); 3342 3343 // Search list for the team. 3344 l = list; 3345 while (l->next != NULL && l->entry != team) { 3346 l = l->next; 3347 } 3348 if (l->next != NULL) { 3349 return; // Team has been added before, exit. 3350 } 3351 3352 // Team is not found. Search list again for insertion point. 3353 l = list; 3354 while (l->next != NULL && l->entry->t.t_id <= team->t.t_id) { 3355 l = l->next; 3356 } 3357 3358 // Insert team. 3359 { 3360 kmp_team_list_item_t *item = (kmp_team_list_item_t *)KMP_INTERNAL_MALLOC( 3361 sizeof(kmp_team_list_item_t)); 3362 *item = *l; 3363 l->entry = team; 3364 l->next = item; 3365 } 3366 } 3367 3368 static void __kmp_print_structure_team(char const *title, kmp_team_p const *team 3369 3370 ) { 3371 __kmp_printf("%s", title); 3372 if (team != NULL) { 3373 __kmp_printf("%2x %p\n", team->t.t_id, team); 3374 } else { 3375 __kmp_printf(" - (nil)\n"); 3376 } 3377 } 3378 3379 static void __kmp_print_structure_thread(char const *title, 3380 kmp_info_p const *thread) { 3381 __kmp_printf("%s", title); 3382 if (thread != NULL) { 3383 __kmp_printf("%2d %p\n", thread->th.th_info.ds.ds_gtid, thread); 3384 } else { 3385 __kmp_printf(" - (nil)\n"); 3386 } 3387 } 3388 3389 void __kmp_print_structure(void) { 3390 3391 kmp_team_list_t list; 3392 3393 // Initialize list of teams. 3394 list = 3395 (kmp_team_list_item_t *)KMP_INTERNAL_MALLOC(sizeof(kmp_team_list_item_t)); 3396 list->entry = NULL; 3397 list->next = NULL; 3398 3399 __kmp_printf("\n------------------------------\nGlobal Thread " 3400 "Table\n------------------------------\n"); 3401 { 3402 int gtid; 3403 for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) { 3404 __kmp_printf("%2d", gtid); 3405 if (__kmp_threads != NULL) { 3406 __kmp_printf(" %p", __kmp_threads[gtid]); 3407 } 3408 if (__kmp_root != NULL) { 3409 __kmp_printf(" %p", __kmp_root[gtid]); 3410 } 3411 __kmp_printf("\n"); 3412 } 3413 } 3414 3415 // Print out __kmp_threads array. 3416 __kmp_printf("\n------------------------------\nThreads\n--------------------" 3417 "----------\n"); 3418 if (__kmp_threads != NULL) { 3419 int gtid; 3420 for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) { 3421 kmp_info_t const *thread = __kmp_threads[gtid]; 3422 if (thread != NULL) { 3423 __kmp_printf("GTID %2d %p:\n", gtid, thread); 3424 __kmp_printf(" Our Root: %p\n", thread->th.th_root); 3425 __kmp_print_structure_team(" Our Team: ", thread->th.th_team); 3426 __kmp_print_structure_team(" Serial Team: ", 3427 thread->th.th_serial_team); 3428 __kmp_printf(" Threads: %2d\n", thread->th.th_team_nproc); 3429 __kmp_print_structure_thread(" Master: ", 3430 thread->th.th_team_master); 3431 __kmp_printf(" Serialized?: %2d\n", thread->th.th_team_serialized); 3432 __kmp_printf(" Set NProc: %2d\n", thread->th.th_set_nproc); 3433 #if OMP_40_ENABLED 3434 __kmp_printf(" Set Proc Bind: %2d\n", thread->th.th_set_proc_bind); 3435 #endif 3436 __kmp_print_structure_thread(" Next in pool: ", 3437 thread->th.th_next_pool); 3438 __kmp_printf("\n"); 3439 __kmp_print_structure_team_accum(list, thread->th.th_team); 3440 __kmp_print_structure_team_accum(list, thread->th.th_serial_team); 3441 } 3442 } 3443 } else { 3444 __kmp_printf("Threads array is not allocated.\n"); 3445 } 3446 3447 // Print out __kmp_root array. 3448 __kmp_printf("\n------------------------------\nUbers\n----------------------" 3449 "--------\n"); 3450 if (__kmp_root != NULL) { 3451 int gtid; 3452 for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) { 3453 kmp_root_t const *root = __kmp_root[gtid]; 3454 if (root != NULL) { 3455 __kmp_printf("GTID %2d %p:\n", gtid, root); 3456 __kmp_print_structure_team(" Root Team: ", root->r.r_root_team); 3457 __kmp_print_structure_team(" Hot Team: ", root->r.r_hot_team); 3458 __kmp_print_structure_thread(" Uber Thread: ", 3459 root->r.r_uber_thread); 3460 __kmp_printf(" Active?: %2d\n", root->r.r_active); 3461 __kmp_printf(" In Parallel: %2d\n", 3462 KMP_ATOMIC_LD_RLX(&root->r.r_in_parallel)); 3463 __kmp_printf("\n"); 3464 __kmp_print_structure_team_accum(list, root->r.r_root_team); 3465 __kmp_print_structure_team_accum(list, root->r.r_hot_team); 3466 } 3467 } 3468 } else { 3469 __kmp_printf("Ubers array is not allocated.\n"); 3470 } 3471 3472 __kmp_printf("\n------------------------------\nTeams\n----------------------" 3473 "--------\n"); 3474 while (list->next != NULL) { 3475 kmp_team_p const *team = list->entry; 3476 int i; 3477 __kmp_printf("Team %2x %p:\n", team->t.t_id, team); 3478 __kmp_print_structure_team(" Parent Team: ", team->t.t_parent); 3479 __kmp_printf(" Master TID: %2d\n", team->t.t_master_tid); 3480 __kmp_printf(" Max threads: %2d\n", team->t.t_max_nproc); 3481 __kmp_printf(" Levels of serial: %2d\n", team->t.t_serialized); 3482 __kmp_printf(" Number threads: %2d\n", team->t.t_nproc); 3483 for (i = 0; i < team->t.t_nproc; ++i) { 3484 __kmp_printf(" Thread %2d: ", i); 3485 __kmp_print_structure_thread("", team->t.t_threads[i]); 3486 } 3487 __kmp_print_structure_team(" Next in pool: ", team->t.t_next_pool); 3488 __kmp_printf("\n"); 3489 list = list->next; 3490 } 3491 3492 // Print out __kmp_thread_pool and __kmp_team_pool. 3493 __kmp_printf("\n------------------------------\nPools\n----------------------" 3494 "--------\n"); 3495 __kmp_print_structure_thread("Thread pool: ", 3496 CCAST(kmp_info_t *, __kmp_thread_pool)); 3497 __kmp_print_structure_team("Team pool: ", 3498 CCAST(kmp_team_t *, __kmp_team_pool)); 3499 __kmp_printf("\n"); 3500 3501 // Free team list. 3502 while (list != NULL) { 3503 kmp_team_list_item_t *item = list; 3504 list = list->next; 3505 KMP_INTERNAL_FREE(item); 3506 } 3507 } 3508 3509 #endif 3510 3511 //--------------------------------------------------------------------------- 3512 // Stuff for per-thread fast random number generator 3513 // Table of primes 3514 static const unsigned __kmp_primes[] = { 3515 0x9e3779b1, 0xffe6cc59, 0x2109f6dd, 0x43977ab5, 0xba5703f5, 0xb495a877, 3516 0xe1626741, 0x79695e6b, 0xbc98c09f, 0xd5bee2b3, 0x287488f9, 0x3af18231, 3517 0x9677cd4d, 0xbe3a6929, 0xadc6a877, 0xdcf0674b, 0xbe4d6fe9, 0x5f15e201, 3518 0x99afc3fd, 0xf3f16801, 0xe222cfff, 0x24ba5fdb, 0x0620452d, 0x79f149e3, 3519 0xc8b93f49, 0x972702cd, 0xb07dd827, 0x6c97d5ed, 0x085a3d61, 0x46eb5ea7, 3520 0x3d9910ed, 0x2e687b5b, 0x29609227, 0x6eb081f1, 0x0954c4e1, 0x9d114db9, 3521 0x542acfa9, 0xb3e6bd7b, 0x0742d917, 0xe9f3ffa7, 0x54581edb, 0xf2480f45, 3522 0x0bb9288f, 0xef1affc7, 0x85fa0ca7, 0x3ccc14db, 0xe6baf34b, 0x343377f7, 3523 0x5ca19031, 0xe6d9293b, 0xf0a9f391, 0x5d2e980b, 0xfc411073, 0xc3749363, 3524 0xb892d829, 0x3549366b, 0x629750ad, 0xb98294e5, 0x892d9483, 0xc235baf3, 3525 0x3d2402a3, 0x6bdef3c9, 0xbec333cd, 0x40c9520f}; 3526 3527 //--------------------------------------------------------------------------- 3528 // __kmp_get_random: Get a random number using a linear congruential method. 3529 unsigned short __kmp_get_random(kmp_info_t *thread) { 3530 unsigned x = thread->th.th_x; 3531 unsigned short r = x >> 16; 3532 3533 thread->th.th_x = x * thread->th.th_a + 1; 3534 3535 KA_TRACE(30, ("__kmp_get_random: THREAD: %d, RETURN: %u\n", 3536 thread->th.th_info.ds.ds_tid, r)); 3537 3538 return r; 3539 } 3540 //-------------------------------------------------------- 3541 // __kmp_init_random: Initialize a random number generator 3542 void __kmp_init_random(kmp_info_t *thread) { 3543 unsigned seed = thread->th.th_info.ds.ds_tid; 3544 3545 thread->th.th_a = 3546 __kmp_primes[seed % (sizeof(__kmp_primes) / sizeof(__kmp_primes[0]))]; 3547 thread->th.th_x = (seed + 1) * thread->th.th_a + 1; 3548 KA_TRACE(30, 3549 ("__kmp_init_random: THREAD: %u; A: %u\n", seed, thread->th.th_a)); 3550 } 3551 3552 #if KMP_OS_WINDOWS 3553 /* reclaim array entries for root threads that are already dead, returns number 3554 * reclaimed */ 3555 static int __kmp_reclaim_dead_roots(void) { 3556 int i, r = 0; 3557 3558 for (i = 0; i < __kmp_threads_capacity; ++i) { 3559 if (KMP_UBER_GTID(i) && 3560 !__kmp_still_running((kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[i])) && 3561 !__kmp_root[i] 3562 ->r.r_active) { // AC: reclaim only roots died in non-active state 3563 r += __kmp_unregister_root_other_thread(i); 3564 } 3565 } 3566 return r; 3567 } 3568 #endif 3569 3570 /* This function attempts to create free entries in __kmp_threads and 3571 __kmp_root, and returns the number of free entries generated. 3572 3573 For Windows* OS static library, the first mechanism used is to reclaim array 3574 entries for root threads that are already dead. 3575 3576 On all platforms, expansion is attempted on the arrays __kmp_threads_ and 3577 __kmp_root, with appropriate update to __kmp_threads_capacity. Array 3578 capacity is increased by doubling with clipping to __kmp_tp_capacity, if 3579 threadprivate cache array has been created. Synchronization with 3580 __kmpc_threadprivate_cached is done using __kmp_tp_cached_lock. 3581 3582 After any dead root reclamation, if the clipping value allows array expansion 3583 to result in the generation of a total of nNeed free slots, the function does 3584 that expansion. If not, nothing is done beyond the possible initial root 3585 thread reclamation. 3586 3587 If any argument is negative, the behavior is undefined. */ 3588 static int __kmp_expand_threads(int nNeed) { 3589 int added = 0; 3590 int minimumRequiredCapacity; 3591 int newCapacity; 3592 kmp_info_t **newThreads; 3593 kmp_root_t **newRoot; 3594 3595 // All calls to __kmp_expand_threads should be under __kmp_forkjoin_lock, so 3596 // resizing __kmp_threads does not need additional protection if foreign 3597 // threads are present 3598 3599 #if KMP_OS_WINDOWS && !KMP_DYNAMIC_LIB 3600 /* only for Windows static library */ 3601 /* reclaim array entries for root threads that are already dead */ 3602 added = __kmp_reclaim_dead_roots(); 3603 3604 if (nNeed) { 3605 nNeed -= added; 3606 if (nNeed < 0) 3607 nNeed = 0; 3608 } 3609 #endif 3610 if (nNeed <= 0) 3611 return added; 3612 3613 // Note that __kmp_threads_capacity is not bounded by __kmp_max_nth. If 3614 // __kmp_max_nth is set to some value less than __kmp_sys_max_nth by the 3615 // user via KMP_DEVICE_THREAD_LIMIT, then __kmp_threads_capacity may become 3616 // > __kmp_max_nth in one of two ways: 3617 // 3618 // 1) The initialization thread (gtid = 0) exits. __kmp_threads[0] 3619 // may not be resused by another thread, so we may need to increase 3620 // __kmp_threads_capacity to __kmp_max_nth + 1. 3621 // 3622 // 2) New foreign root(s) are encountered. We always register new foreign 3623 // roots. This may cause a smaller # of threads to be allocated at 3624 // subsequent parallel regions, but the worker threads hang around (and 3625 // eventually go to sleep) and need slots in the __kmp_threads[] array. 3626 // 3627 // Anyway, that is the reason for moving the check to see if 3628 // __kmp_max_nth was exceeded into __kmp_reserve_threads() 3629 // instead of having it performed here. -BB 3630 3631 KMP_DEBUG_ASSERT(__kmp_sys_max_nth >= __kmp_threads_capacity); 3632 3633 /* compute expansion headroom to check if we can expand */ 3634 if (__kmp_sys_max_nth - __kmp_threads_capacity < nNeed) { 3635 /* possible expansion too small -- give up */ 3636 return added; 3637 } 3638 minimumRequiredCapacity = __kmp_threads_capacity + nNeed; 3639 3640 newCapacity = __kmp_threads_capacity; 3641 do { 3642 newCapacity = newCapacity <= (__kmp_sys_max_nth >> 1) ? (newCapacity << 1) 3643 : __kmp_sys_max_nth; 3644 } while (newCapacity < minimumRequiredCapacity); 3645 newThreads = (kmp_info_t **)__kmp_allocate( 3646 (sizeof(kmp_info_t *) + sizeof(kmp_root_t *)) * newCapacity + CACHE_LINE); 3647 newRoot = 3648 (kmp_root_t **)((char *)newThreads + sizeof(kmp_info_t *) * newCapacity); 3649 KMP_MEMCPY(newThreads, __kmp_threads, 3650 __kmp_threads_capacity * sizeof(kmp_info_t *)); 3651 KMP_MEMCPY(newRoot, __kmp_root, 3652 __kmp_threads_capacity * sizeof(kmp_root_t *)); 3653 3654 kmp_info_t **temp_threads = __kmp_threads; 3655 *(kmp_info_t * *volatile *)&__kmp_threads = newThreads; 3656 *(kmp_root_t * *volatile *)&__kmp_root = newRoot; 3657 __kmp_free(temp_threads); 3658 added += newCapacity - __kmp_threads_capacity; 3659 *(volatile int *)&__kmp_threads_capacity = newCapacity; 3660 3661 if (newCapacity > __kmp_tp_capacity) { 3662 __kmp_acquire_bootstrap_lock(&__kmp_tp_cached_lock); 3663 if (__kmp_tp_cached && newCapacity > __kmp_tp_capacity) { 3664 __kmp_threadprivate_resize_cache(newCapacity); 3665 } else { // increase __kmp_tp_capacity to correspond with kmp_threads size 3666 *(volatile int *)&__kmp_tp_capacity = newCapacity; 3667 } 3668 __kmp_release_bootstrap_lock(&__kmp_tp_cached_lock); 3669 } 3670 3671 return added; 3672 } 3673 3674 /* Register the current thread as a root thread and obtain our gtid. We must 3675 have the __kmp_initz_lock held at this point. Argument TRUE only if are the 3676 thread that calls from __kmp_do_serial_initialize() */ 3677 int __kmp_register_root(int initial_thread) { 3678 kmp_info_t *root_thread; 3679 kmp_root_t *root; 3680 int gtid; 3681 int capacity; 3682 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 3683 KA_TRACE(20, ("__kmp_register_root: entered\n")); 3684 KMP_MB(); 3685 3686 /* 2007-03-02: 3687 If initial thread did not invoke OpenMP RTL yet, and this thread is not an 3688 initial one, "__kmp_all_nth >= __kmp_threads_capacity" condition does not 3689 work as expected -- it may return false (that means there is at least one 3690 empty slot in __kmp_threads array), but it is possible the only free slot 3691 is #0, which is reserved for initial thread and so cannot be used for this 3692 one. Following code workarounds this bug. 3693 3694 However, right solution seems to be not reserving slot #0 for initial 3695 thread because: 3696 (1) there is no magic in slot #0, 3697 (2) we cannot detect initial thread reliably (the first thread which does 3698 serial initialization may be not a real initial thread). 3699 */ 3700 capacity = __kmp_threads_capacity; 3701 if (!initial_thread && TCR_PTR(__kmp_threads[0]) == NULL) { 3702 --capacity; 3703 } 3704 3705 /* see if there are too many threads */ 3706 if (__kmp_all_nth >= capacity && !__kmp_expand_threads(1)) { 3707 if (__kmp_tp_cached) { 3708 __kmp_fatal(KMP_MSG(CantRegisterNewThread), 3709 KMP_HNT(Set_ALL_THREADPRIVATE, __kmp_tp_capacity), 3710 KMP_HNT(PossibleSystemLimitOnThreads), __kmp_msg_null); 3711 } else { 3712 __kmp_fatal(KMP_MSG(CantRegisterNewThread), KMP_HNT(SystemLimitOnThreads), 3713 __kmp_msg_null); 3714 } 3715 } 3716 3717 /* find an available thread slot */ 3718 /* Don't reassign the zero slot since we need that to only be used by initial 3719 thread */ 3720 for (gtid = (initial_thread ? 0 : 1); TCR_PTR(__kmp_threads[gtid]) != NULL; 3721 gtid++) 3722 ; 3723 KA_TRACE(1, 3724 ("__kmp_register_root: found slot in threads array: T#%d\n", gtid)); 3725 KMP_ASSERT(gtid < __kmp_threads_capacity); 3726 3727 /* update global accounting */ 3728 __kmp_all_nth++; 3729 TCW_4(__kmp_nth, __kmp_nth + 1); 3730 3731 // if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) for low 3732 // numbers of procs, and method #2 (keyed API call) for higher numbers. 3733 if (__kmp_adjust_gtid_mode) { 3734 if (__kmp_all_nth >= __kmp_tls_gtid_min) { 3735 if (TCR_4(__kmp_gtid_mode) != 2) { 3736 TCW_4(__kmp_gtid_mode, 2); 3737 } 3738 } else { 3739 if (TCR_4(__kmp_gtid_mode) != 1) { 3740 TCW_4(__kmp_gtid_mode, 1); 3741 } 3742 } 3743 } 3744 3745 #ifdef KMP_ADJUST_BLOCKTIME 3746 /* Adjust blocktime to zero if necessary */ 3747 /* Middle initialization might not have occurred yet */ 3748 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 3749 if (__kmp_nth > __kmp_avail_proc) { 3750 __kmp_zero_bt = TRUE; 3751 } 3752 } 3753 #endif /* KMP_ADJUST_BLOCKTIME */ 3754 3755 /* setup this new hierarchy */ 3756 if (!(root = __kmp_root[gtid])) { 3757 root = __kmp_root[gtid] = (kmp_root_t *)__kmp_allocate(sizeof(kmp_root_t)); 3758 KMP_DEBUG_ASSERT(!root->r.r_root_team); 3759 } 3760 3761 #if KMP_STATS_ENABLED 3762 // Initialize stats as soon as possible (right after gtid assignment). 3763 __kmp_stats_thread_ptr = __kmp_stats_list->push_back(gtid); 3764 __kmp_stats_thread_ptr->startLife(); 3765 KMP_SET_THREAD_STATE(SERIAL_REGION); 3766 KMP_INIT_PARTITIONED_TIMERS(OMP_serial); 3767 #endif 3768 __kmp_initialize_root(root); 3769 3770 /* setup new root thread structure */ 3771 if (root->r.r_uber_thread) { 3772 root_thread = root->r.r_uber_thread; 3773 } else { 3774 root_thread = (kmp_info_t *)__kmp_allocate(sizeof(kmp_info_t)); 3775 if (__kmp_storage_map) { 3776 __kmp_print_thread_storage_map(root_thread, gtid); 3777 } 3778 root_thread->th.th_info.ds.ds_gtid = gtid; 3779 #if OMPT_SUPPORT 3780 root_thread->th.ompt_thread_info.thread_data = ompt_data_none; 3781 #endif 3782 root_thread->th.th_root = root; 3783 if (__kmp_env_consistency_check) { 3784 root_thread->th.th_cons = __kmp_allocate_cons_stack(gtid); 3785 } 3786 #if USE_FAST_MEMORY 3787 __kmp_initialize_fast_memory(root_thread); 3788 #endif /* USE_FAST_MEMORY */ 3789 3790 #if KMP_USE_BGET 3791 KMP_DEBUG_ASSERT(root_thread->th.th_local.bget_data == NULL); 3792 __kmp_initialize_bget(root_thread); 3793 #endif 3794 __kmp_init_random(root_thread); // Initialize random number generator 3795 } 3796 3797 /* setup the serial team held in reserve by the root thread */ 3798 if (!root_thread->th.th_serial_team) { 3799 kmp_internal_control_t r_icvs = __kmp_get_global_icvs(); 3800 KF_TRACE(10, ("__kmp_register_root: before serial_team\n")); 3801 root_thread->th.th_serial_team = 3802 __kmp_allocate_team(root, 1, 1, 3803 #if OMPT_SUPPORT 3804 ompt_data_none, // root parallel id 3805 #endif 3806 #if OMP_40_ENABLED 3807 proc_bind_default, 3808 #endif 3809 &r_icvs, 0 USE_NESTED_HOT_ARG(NULL)); 3810 } 3811 KMP_ASSERT(root_thread->th.th_serial_team); 3812 KF_TRACE(10, ("__kmp_register_root: after serial_team = %p\n", 3813 root_thread->th.th_serial_team)); 3814 3815 /* drop root_thread into place */ 3816 TCW_SYNC_PTR(__kmp_threads[gtid], root_thread); 3817 3818 root->r.r_root_team->t.t_threads[0] = root_thread; 3819 root->r.r_hot_team->t.t_threads[0] = root_thread; 3820 root_thread->th.th_serial_team->t.t_threads[0] = root_thread; 3821 // AC: the team created in reserve, not for execution (it is unused for now). 3822 root_thread->th.th_serial_team->t.t_serialized = 0; 3823 root->r.r_uber_thread = root_thread; 3824 3825 /* initialize the thread, get it ready to go */ 3826 __kmp_initialize_info(root_thread, root->r.r_root_team, 0, gtid); 3827 TCW_4(__kmp_init_gtid, TRUE); 3828 3829 /* prepare the master thread for get_gtid() */ 3830 __kmp_gtid_set_specific(gtid); 3831 3832 #if USE_ITT_BUILD 3833 __kmp_itt_thread_name(gtid); 3834 #endif /* USE_ITT_BUILD */ 3835 3836 #ifdef KMP_TDATA_GTID 3837 __kmp_gtid = gtid; 3838 #endif 3839 __kmp_create_worker(gtid, root_thread, __kmp_stksize); 3840 KMP_DEBUG_ASSERT(__kmp_gtid_get_specific() == gtid); 3841 3842 KA_TRACE(20, ("__kmp_register_root: T#%d init T#%d(%d:%d) arrived: join=%u, " 3843 "plain=%u\n", 3844 gtid, __kmp_gtid_from_tid(0, root->r.r_hot_team), 3845 root->r.r_hot_team->t.t_id, 0, KMP_INIT_BARRIER_STATE, 3846 KMP_INIT_BARRIER_STATE)); 3847 { // Initialize barrier data. 3848 int b; 3849 for (b = 0; b < bs_last_barrier; ++b) { 3850 root_thread->th.th_bar[b].bb.b_arrived = KMP_INIT_BARRIER_STATE; 3851 #if USE_DEBUGGER 3852 root_thread->th.th_bar[b].bb.b_worker_arrived = 0; 3853 #endif 3854 } 3855 } 3856 KMP_DEBUG_ASSERT(root->r.r_hot_team->t.t_bar[bs_forkjoin_barrier].b_arrived == 3857 KMP_INIT_BARRIER_STATE); 3858 3859 #if KMP_AFFINITY_SUPPORTED 3860 #if OMP_40_ENABLED 3861 root_thread->th.th_current_place = KMP_PLACE_UNDEFINED; 3862 root_thread->th.th_new_place = KMP_PLACE_UNDEFINED; 3863 root_thread->th.th_first_place = KMP_PLACE_UNDEFINED; 3864 root_thread->th.th_last_place = KMP_PLACE_UNDEFINED; 3865 #endif 3866 if (TCR_4(__kmp_init_middle)) { 3867 __kmp_affinity_set_init_mask(gtid, TRUE); 3868 } 3869 #endif /* KMP_AFFINITY_SUPPORTED */ 3870 #if OMP_50_ENABLED 3871 root_thread->th.th_def_allocator = __kmp_def_allocator; 3872 root_thread->th.th_prev_level = 0; 3873 root_thread->th.th_prev_num_threads = 1; 3874 #endif 3875 3876 kmp_cg_root_t *tmp = (kmp_cg_root_t *)__kmp_allocate(sizeof(kmp_cg_root_t)); 3877 tmp->cg_root = root_thread; 3878 tmp->cg_thread_limit = __kmp_cg_max_nth; 3879 tmp->cg_nthreads = 1; 3880 KA_TRACE(100, ("__kmp_register_root: Thread %p created node %p with" 3881 " cg_nthreads init to 1\n", 3882 root_thread, tmp)); 3883 tmp->up = NULL; 3884 root_thread->th.th_cg_roots = tmp; 3885 3886 __kmp_root_counter++; 3887 3888 #if OMPT_SUPPORT 3889 if (!initial_thread && ompt_enabled.enabled) { 3890 3891 kmp_info_t *root_thread = ompt_get_thread(); 3892 3893 ompt_set_thread_state(root_thread, ompt_state_overhead); 3894 3895 if (ompt_enabled.ompt_callback_thread_begin) { 3896 ompt_callbacks.ompt_callback(ompt_callback_thread_begin)( 3897 ompt_thread_initial, __ompt_get_thread_data_internal()); 3898 } 3899 ompt_data_t *task_data; 3900 ompt_data_t *parallel_data; 3901 __ompt_get_task_info_internal(0, NULL, &task_data, NULL, ¶llel_data, NULL); 3902 if (ompt_enabled.ompt_callback_implicit_task) { 3903 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 3904 ompt_scope_begin, parallel_data, task_data, 1, 1, ompt_task_initial); 3905 } 3906 3907 ompt_set_thread_state(root_thread, ompt_state_work_serial); 3908 } 3909 #endif 3910 3911 KMP_MB(); 3912 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 3913 3914 return gtid; 3915 } 3916 3917 #if KMP_NESTED_HOT_TEAMS 3918 static int __kmp_free_hot_teams(kmp_root_t *root, kmp_info_t *thr, int level, 3919 const int max_level) { 3920 int i, n, nth; 3921 kmp_hot_team_ptr_t *hot_teams = thr->th.th_hot_teams; 3922 if (!hot_teams || !hot_teams[level].hot_team) { 3923 return 0; 3924 } 3925 KMP_DEBUG_ASSERT(level < max_level); 3926 kmp_team_t *team = hot_teams[level].hot_team; 3927 nth = hot_teams[level].hot_team_nth; 3928 n = nth - 1; // master is not freed 3929 if (level < max_level - 1) { 3930 for (i = 0; i < nth; ++i) { 3931 kmp_info_t *th = team->t.t_threads[i]; 3932 n += __kmp_free_hot_teams(root, th, level + 1, max_level); 3933 if (i > 0 && th->th.th_hot_teams) { 3934 __kmp_free(th->th.th_hot_teams); 3935 th->th.th_hot_teams = NULL; 3936 } 3937 } 3938 } 3939 __kmp_free_team(root, team, NULL); 3940 return n; 3941 } 3942 #endif 3943 3944 // Resets a root thread and clear its root and hot teams. 3945 // Returns the number of __kmp_threads entries directly and indirectly freed. 3946 static int __kmp_reset_root(int gtid, kmp_root_t *root) { 3947 kmp_team_t *root_team = root->r.r_root_team; 3948 kmp_team_t *hot_team = root->r.r_hot_team; 3949 int n = hot_team->t.t_nproc; 3950 int i; 3951 3952 KMP_DEBUG_ASSERT(!root->r.r_active); 3953 3954 root->r.r_root_team = NULL; 3955 root->r.r_hot_team = NULL; 3956 // __kmp_free_team() does not free hot teams, so we have to clear r_hot_team 3957 // before call to __kmp_free_team(). 3958 __kmp_free_team(root, root_team USE_NESTED_HOT_ARG(NULL)); 3959 #if KMP_NESTED_HOT_TEAMS 3960 if (__kmp_hot_teams_max_level > 3961 0) { // need to free nested hot teams and their threads if any 3962 for (i = 0; i < hot_team->t.t_nproc; ++i) { 3963 kmp_info_t *th = hot_team->t.t_threads[i]; 3964 if (__kmp_hot_teams_max_level > 1) { 3965 n += __kmp_free_hot_teams(root, th, 1, __kmp_hot_teams_max_level); 3966 } 3967 if (th->th.th_hot_teams) { 3968 __kmp_free(th->th.th_hot_teams); 3969 th->th.th_hot_teams = NULL; 3970 } 3971 } 3972 } 3973 #endif 3974 __kmp_free_team(root, hot_team USE_NESTED_HOT_ARG(NULL)); 3975 3976 // Before we can reap the thread, we need to make certain that all other 3977 // threads in the teams that had this root as ancestor have stopped trying to 3978 // steal tasks. 3979 if (__kmp_tasking_mode != tskm_immediate_exec) { 3980 __kmp_wait_to_unref_task_teams(); 3981 } 3982 3983 #if KMP_OS_WINDOWS 3984 /* Close Handle of root duplicated in __kmp_create_worker (tr #62919) */ 3985 KA_TRACE( 3986 10, ("__kmp_reset_root: free handle, th = %p, handle = %" KMP_UINTPTR_SPEC 3987 "\n", 3988 (LPVOID) & (root->r.r_uber_thread->th), 3989 root->r.r_uber_thread->th.th_info.ds.ds_thread)); 3990 __kmp_free_handle(root->r.r_uber_thread->th.th_info.ds.ds_thread); 3991 #endif /* KMP_OS_WINDOWS */ 3992 3993 #if OMPT_SUPPORT 3994 ompt_data_t *task_data; 3995 ompt_data_t *parallel_data; 3996 __ompt_get_task_info_internal(0, NULL, &task_data, NULL, ¶llel_data, NULL); 3997 if (ompt_enabled.ompt_callback_implicit_task) { 3998 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 3999 ompt_scope_end, parallel_data, task_data, 0, 1, ompt_task_initial); 4000 } 4001 if (ompt_enabled.ompt_callback_thread_end) { 4002 ompt_callbacks.ompt_callback(ompt_callback_thread_end)( 4003 &(root->r.r_uber_thread->th.ompt_thread_info.thread_data)); 4004 } 4005 #endif 4006 4007 TCW_4(__kmp_nth, 4008 __kmp_nth - 1); // __kmp_reap_thread will decrement __kmp_all_nth. 4009 i = root->r.r_uber_thread->th.th_cg_roots->cg_nthreads--; 4010 KA_TRACE(100, ("__kmp_reset_root: Thread %p decrement cg_nthreads on node %p" 4011 " to %d\n", 4012 root->r.r_uber_thread, root->r.r_uber_thread->th.th_cg_roots, 4013 root->r.r_uber_thread->th.th_cg_roots->cg_nthreads)); 4014 if (i == 1) { 4015 // need to free contention group structure 4016 KMP_DEBUG_ASSERT(root->r.r_uber_thread == 4017 root->r.r_uber_thread->th.th_cg_roots->cg_root); 4018 KMP_DEBUG_ASSERT(root->r.r_uber_thread->th.th_cg_roots->up == NULL); 4019 __kmp_free(root->r.r_uber_thread->th.th_cg_roots); 4020 root->r.r_uber_thread->th.th_cg_roots = NULL; 4021 } 4022 __kmp_reap_thread(root->r.r_uber_thread, 1); 4023 4024 // We canot put root thread to __kmp_thread_pool, so we have to reap it istead 4025 // of freeing. 4026 root->r.r_uber_thread = NULL; 4027 /* mark root as no longer in use */ 4028 root->r.r_begin = FALSE; 4029 4030 return n; 4031 } 4032 4033 void __kmp_unregister_root_current_thread(int gtid) { 4034 KA_TRACE(1, ("__kmp_unregister_root_current_thread: enter T#%d\n", gtid)); 4035 /* this lock should be ok, since unregister_root_current_thread is never 4036 called during an abort, only during a normal close. furthermore, if you 4037 have the forkjoin lock, you should never try to get the initz lock */ 4038 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 4039 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 4040 KC_TRACE(10, ("__kmp_unregister_root_current_thread: already finished, " 4041 "exiting T#%d\n", 4042 gtid)); 4043 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 4044 return; 4045 } 4046 kmp_root_t *root = __kmp_root[gtid]; 4047 4048 KMP_DEBUG_ASSERT(__kmp_threads && __kmp_threads[gtid]); 4049 KMP_ASSERT(KMP_UBER_GTID(gtid)); 4050 KMP_ASSERT(root == __kmp_threads[gtid]->th.th_root); 4051 KMP_ASSERT(root->r.r_active == FALSE); 4052 4053 KMP_MB(); 4054 4055 #if OMP_45_ENABLED 4056 kmp_info_t *thread = __kmp_threads[gtid]; 4057 kmp_team_t *team = thread->th.th_team; 4058 kmp_task_team_t *task_team = thread->th.th_task_team; 4059 4060 // we need to wait for the proxy tasks before finishing the thread 4061 if (task_team != NULL && task_team->tt.tt_found_proxy_tasks) { 4062 #if OMPT_SUPPORT 4063 // the runtime is shutting down so we won't report any events 4064 thread->th.ompt_thread_info.state = ompt_state_undefined; 4065 #endif 4066 __kmp_task_team_wait(thread, team USE_ITT_BUILD_ARG(NULL)); 4067 } 4068 #endif 4069 4070 __kmp_reset_root(gtid, root); 4071 4072 /* free up this thread slot */ 4073 __kmp_gtid_set_specific(KMP_GTID_DNE); 4074 #ifdef KMP_TDATA_GTID 4075 __kmp_gtid = KMP_GTID_DNE; 4076 #endif 4077 4078 KMP_MB(); 4079 KC_TRACE(10, 4080 ("__kmp_unregister_root_current_thread: T#%d unregistered\n", gtid)); 4081 4082 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 4083 } 4084 4085 #if KMP_OS_WINDOWS 4086 /* __kmp_forkjoin_lock must be already held 4087 Unregisters a root thread that is not the current thread. Returns the number 4088 of __kmp_threads entries freed as a result. */ 4089 static int __kmp_unregister_root_other_thread(int gtid) { 4090 kmp_root_t *root = __kmp_root[gtid]; 4091 int r; 4092 4093 KA_TRACE(1, ("__kmp_unregister_root_other_thread: enter T#%d\n", gtid)); 4094 KMP_DEBUG_ASSERT(__kmp_threads && __kmp_threads[gtid]); 4095 KMP_ASSERT(KMP_UBER_GTID(gtid)); 4096 KMP_ASSERT(root == __kmp_threads[gtid]->th.th_root); 4097 KMP_ASSERT(root->r.r_active == FALSE); 4098 4099 r = __kmp_reset_root(gtid, root); 4100 KC_TRACE(10, 4101 ("__kmp_unregister_root_other_thread: T#%d unregistered\n", gtid)); 4102 return r; 4103 } 4104 #endif 4105 4106 #if KMP_DEBUG 4107 void __kmp_task_info() { 4108 4109 kmp_int32 gtid = __kmp_entry_gtid(); 4110 kmp_int32 tid = __kmp_tid_from_gtid(gtid); 4111 kmp_info_t *this_thr = __kmp_threads[gtid]; 4112 kmp_team_t *steam = this_thr->th.th_serial_team; 4113 kmp_team_t *team = this_thr->th.th_team; 4114 4115 __kmp_printf( 4116 "__kmp_task_info: gtid=%d tid=%d t_thread=%p team=%p steam=%p curtask=%p " 4117 "ptask=%p\n", 4118 gtid, tid, this_thr, team, steam, this_thr->th.th_current_task, 4119 team->t.t_implicit_task_taskdata[tid].td_parent); 4120 } 4121 #endif // KMP_DEBUG 4122 4123 /* TODO optimize with one big memclr, take out what isn't needed, split 4124 responsibility to workers as much as possible, and delay initialization of 4125 features as much as possible */ 4126 static void __kmp_initialize_info(kmp_info_t *this_thr, kmp_team_t *team, 4127 int tid, int gtid) { 4128 /* this_thr->th.th_info.ds.ds_gtid is setup in 4129 kmp_allocate_thread/create_worker. 4130 this_thr->th.th_serial_team is setup in __kmp_allocate_thread */ 4131 kmp_info_t *master = team->t.t_threads[0]; 4132 KMP_DEBUG_ASSERT(this_thr != NULL); 4133 KMP_DEBUG_ASSERT(this_thr->th.th_serial_team); 4134 KMP_DEBUG_ASSERT(team); 4135 KMP_DEBUG_ASSERT(team->t.t_threads); 4136 KMP_DEBUG_ASSERT(team->t.t_dispatch); 4137 KMP_DEBUG_ASSERT(master); 4138 KMP_DEBUG_ASSERT(master->th.th_root); 4139 4140 KMP_MB(); 4141 4142 TCW_SYNC_PTR(this_thr->th.th_team, team); 4143 4144 this_thr->th.th_info.ds.ds_tid = tid; 4145 this_thr->th.th_set_nproc = 0; 4146 if (__kmp_tasking_mode != tskm_immediate_exec) 4147 // When tasking is possible, threads are not safe to reap until they are 4148 // done tasking; this will be set when tasking code is exited in wait 4149 this_thr->th.th_reap_state = KMP_NOT_SAFE_TO_REAP; 4150 else // no tasking --> always safe to reap 4151 this_thr->th.th_reap_state = KMP_SAFE_TO_REAP; 4152 #if OMP_40_ENABLED 4153 this_thr->th.th_set_proc_bind = proc_bind_default; 4154 #if KMP_AFFINITY_SUPPORTED 4155 this_thr->th.th_new_place = this_thr->th.th_current_place; 4156 #endif 4157 #endif 4158 this_thr->th.th_root = master->th.th_root; 4159 4160 /* setup the thread's cache of the team structure */ 4161 this_thr->th.th_team_nproc = team->t.t_nproc; 4162 this_thr->th.th_team_master = master; 4163 this_thr->th.th_team_serialized = team->t.t_serialized; 4164 TCW_PTR(this_thr->th.th_sleep_loc, NULL); 4165 4166 KMP_DEBUG_ASSERT(team->t.t_implicit_task_taskdata); 4167 4168 KF_TRACE(10, ("__kmp_initialize_info1: T#%d:%d this_thread=%p curtask=%p\n", 4169 tid, gtid, this_thr, this_thr->th.th_current_task)); 4170 4171 __kmp_init_implicit_task(this_thr->th.th_team_master->th.th_ident, this_thr, 4172 team, tid, TRUE); 4173 4174 KF_TRACE(10, ("__kmp_initialize_info2: T#%d:%d this_thread=%p curtask=%p\n", 4175 tid, gtid, this_thr, this_thr->th.th_current_task)); 4176 // TODO: Initialize ICVs from parent; GEH - isn't that already done in 4177 // __kmp_initialize_team()? 4178 4179 /* TODO no worksharing in speculative threads */ 4180 this_thr->th.th_dispatch = &team->t.t_dispatch[tid]; 4181 4182 this_thr->th.th_local.this_construct = 0; 4183 4184 if (!this_thr->th.th_pri_common) { 4185 this_thr->th.th_pri_common = 4186 (struct common_table *)__kmp_allocate(sizeof(struct common_table)); 4187 if (__kmp_storage_map) { 4188 __kmp_print_storage_map_gtid( 4189 gtid, this_thr->th.th_pri_common, this_thr->th.th_pri_common + 1, 4190 sizeof(struct common_table), "th_%d.th_pri_common\n", gtid); 4191 } 4192 this_thr->th.th_pri_head = NULL; 4193 } 4194 4195 if (this_thr != master && // Master's CG root is initialized elsewhere 4196 this_thr->th.th_cg_roots != master->th.th_cg_roots) { // CG root not set 4197 // Make new thread's CG root same as master's 4198 KMP_DEBUG_ASSERT(master->th.th_cg_roots); 4199 this_thr->th.th_cg_roots = master->th.th_cg_roots; 4200 // Increment new thread's CG root's counter to add the new thread 4201 this_thr->th.th_cg_roots->cg_nthreads++; 4202 KA_TRACE(100, ("__kmp_initialize_info: Thread %p increment cg_nthreads on" 4203 " node %p of thread %p to %d\n", 4204 this_thr, this_thr->th.th_cg_roots, 4205 this_thr->th.th_cg_roots->cg_root, 4206 this_thr->th.th_cg_roots->cg_nthreads)); 4207 this_thr->th.th_current_task->td_icvs.thread_limit = 4208 this_thr->th.th_cg_roots->cg_thread_limit; 4209 } 4210 4211 /* Initialize dynamic dispatch */ 4212 { 4213 volatile kmp_disp_t *dispatch = this_thr->th.th_dispatch; 4214 // Use team max_nproc since this will never change for the team. 4215 size_t disp_size = 4216 sizeof(dispatch_private_info_t) * 4217 (team->t.t_max_nproc == 1 ? 1 : __kmp_dispatch_num_buffers); 4218 KD_TRACE(10, ("__kmp_initialize_info: T#%d max_nproc: %d\n", gtid, 4219 team->t.t_max_nproc)); 4220 KMP_ASSERT(dispatch); 4221 KMP_DEBUG_ASSERT(team->t.t_dispatch); 4222 KMP_DEBUG_ASSERT(dispatch == &team->t.t_dispatch[tid]); 4223 4224 dispatch->th_disp_index = 0; 4225 #if OMP_45_ENABLED 4226 dispatch->th_doacross_buf_idx = 0; 4227 #endif 4228 if (!dispatch->th_disp_buffer) { 4229 dispatch->th_disp_buffer = 4230 (dispatch_private_info_t *)__kmp_allocate(disp_size); 4231 4232 if (__kmp_storage_map) { 4233 __kmp_print_storage_map_gtid( 4234 gtid, &dispatch->th_disp_buffer[0], 4235 &dispatch->th_disp_buffer[team->t.t_max_nproc == 1 4236 ? 1 4237 : __kmp_dispatch_num_buffers], 4238 disp_size, "th_%d.th_dispatch.th_disp_buffer " 4239 "(team_%d.t_dispatch[%d].th_disp_buffer)", 4240 gtid, team->t.t_id, gtid); 4241 } 4242 } else { 4243 memset(&dispatch->th_disp_buffer[0], '\0', disp_size); 4244 } 4245 4246 dispatch->th_dispatch_pr_current = 0; 4247 dispatch->th_dispatch_sh_current = 0; 4248 4249 dispatch->th_deo_fcn = 0; /* ORDERED */ 4250 dispatch->th_dxo_fcn = 0; /* END ORDERED */ 4251 } 4252 4253 this_thr->th.th_next_pool = NULL; 4254 4255 if (!this_thr->th.th_task_state_memo_stack) { 4256 size_t i; 4257 this_thr->th.th_task_state_memo_stack = 4258 (kmp_uint8 *)__kmp_allocate(4 * sizeof(kmp_uint8)); 4259 this_thr->th.th_task_state_top = 0; 4260 this_thr->th.th_task_state_stack_sz = 4; 4261 for (i = 0; i < this_thr->th.th_task_state_stack_sz; 4262 ++i) // zero init the stack 4263 this_thr->th.th_task_state_memo_stack[i] = 0; 4264 } 4265 4266 KMP_DEBUG_ASSERT(!this_thr->th.th_spin_here); 4267 KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0); 4268 4269 KMP_MB(); 4270 } 4271 4272 /* allocate a new thread for the requesting team. this is only called from 4273 within a forkjoin critical section. we will first try to get an available 4274 thread from the thread pool. if none is available, we will fork a new one 4275 assuming we are able to create a new one. this should be assured, as the 4276 caller should check on this first. */ 4277 kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team, 4278 int new_tid) { 4279 kmp_team_t *serial_team; 4280 kmp_info_t *new_thr; 4281 int new_gtid; 4282 4283 KA_TRACE(20, ("__kmp_allocate_thread: T#%d\n", __kmp_get_gtid())); 4284 KMP_DEBUG_ASSERT(root && team); 4285 #if !KMP_NESTED_HOT_TEAMS 4286 KMP_DEBUG_ASSERT(KMP_MASTER_GTID(__kmp_get_gtid())); 4287 #endif 4288 KMP_MB(); 4289 4290 /* first, try to get one from the thread pool */ 4291 if (__kmp_thread_pool) { 4292 new_thr = CCAST(kmp_info_t *, __kmp_thread_pool); 4293 __kmp_thread_pool = (volatile kmp_info_t *)new_thr->th.th_next_pool; 4294 if (new_thr == __kmp_thread_pool_insert_pt) { 4295 __kmp_thread_pool_insert_pt = NULL; 4296 } 4297 TCW_4(new_thr->th.th_in_pool, FALSE); 4298 __kmp_suspend_initialize_thread(new_thr); 4299 __kmp_lock_suspend_mx(new_thr); 4300 if (new_thr->th.th_active_in_pool == TRUE) { 4301 KMP_DEBUG_ASSERT(new_thr->th.th_active == TRUE); 4302 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 4303 new_thr->th.th_active_in_pool = FALSE; 4304 } 4305 __kmp_unlock_suspend_mx(new_thr); 4306 4307 KA_TRACE(20, ("__kmp_allocate_thread: T#%d using thread T#%d\n", 4308 __kmp_get_gtid(), new_thr->th.th_info.ds.ds_gtid)); 4309 KMP_ASSERT(!new_thr->th.th_team); 4310 KMP_DEBUG_ASSERT(__kmp_nth < __kmp_threads_capacity); 4311 4312 /* setup the thread structure */ 4313 __kmp_initialize_info(new_thr, team, new_tid, 4314 new_thr->th.th_info.ds.ds_gtid); 4315 KMP_DEBUG_ASSERT(new_thr->th.th_serial_team); 4316 4317 TCW_4(__kmp_nth, __kmp_nth + 1); 4318 4319 new_thr->th.th_task_state = 0; 4320 new_thr->th.th_task_state_top = 0; 4321 new_thr->th.th_task_state_stack_sz = 4; 4322 4323 #ifdef KMP_ADJUST_BLOCKTIME 4324 /* Adjust blocktime back to zero if necessary */ 4325 /* Middle initialization might not have occurred yet */ 4326 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 4327 if (__kmp_nth > __kmp_avail_proc) { 4328 __kmp_zero_bt = TRUE; 4329 } 4330 } 4331 #endif /* KMP_ADJUST_BLOCKTIME */ 4332 4333 #if KMP_DEBUG 4334 // If thread entered pool via __kmp_free_thread, wait_flag should != 4335 // KMP_BARRIER_PARENT_FLAG. 4336 int b; 4337 kmp_balign_t *balign = new_thr->th.th_bar; 4338 for (b = 0; b < bs_last_barrier; ++b) 4339 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 4340 #endif 4341 4342 KF_TRACE(10, ("__kmp_allocate_thread: T#%d using thread %p T#%d\n", 4343 __kmp_get_gtid(), new_thr, new_thr->th.th_info.ds.ds_gtid)); 4344 4345 KMP_MB(); 4346 return new_thr; 4347 } 4348 4349 /* no, well fork a new one */ 4350 KMP_ASSERT(__kmp_nth == __kmp_all_nth); 4351 KMP_ASSERT(__kmp_all_nth < __kmp_threads_capacity); 4352 4353 #if KMP_USE_MONITOR 4354 // If this is the first worker thread the RTL is creating, then also 4355 // launch the monitor thread. We try to do this as early as possible. 4356 if (!TCR_4(__kmp_init_monitor)) { 4357 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock); 4358 if (!TCR_4(__kmp_init_monitor)) { 4359 KF_TRACE(10, ("before __kmp_create_monitor\n")); 4360 TCW_4(__kmp_init_monitor, 1); 4361 __kmp_create_monitor(&__kmp_monitor); 4362 KF_TRACE(10, ("after __kmp_create_monitor\n")); 4363 #if KMP_OS_WINDOWS 4364 // AC: wait until monitor has started. This is a fix for CQ232808. 4365 // The reason is that if the library is loaded/unloaded in a loop with 4366 // small (parallel) work in between, then there is high probability that 4367 // monitor thread started after the library shutdown. At shutdown it is 4368 // too late to cope with the problem, because when the master is in 4369 // DllMain (process detach) the monitor has no chances to start (it is 4370 // blocked), and master has no means to inform the monitor that the 4371 // library has gone, because all the memory which the monitor can access 4372 // is going to be released/reset. 4373 while (TCR_4(__kmp_init_monitor) < 2) { 4374 KMP_YIELD(TRUE); 4375 } 4376 KF_TRACE(10, ("after monitor thread has started\n")); 4377 #endif 4378 } 4379 __kmp_release_bootstrap_lock(&__kmp_monitor_lock); 4380 } 4381 #endif 4382 4383 KMP_MB(); 4384 for (new_gtid = 1; TCR_PTR(__kmp_threads[new_gtid]) != NULL; ++new_gtid) { 4385 KMP_DEBUG_ASSERT(new_gtid < __kmp_threads_capacity); 4386 } 4387 4388 /* allocate space for it. */ 4389 new_thr = (kmp_info_t *)__kmp_allocate(sizeof(kmp_info_t)); 4390 4391 TCW_SYNC_PTR(__kmp_threads[new_gtid], new_thr); 4392 4393 if (__kmp_storage_map) { 4394 __kmp_print_thread_storage_map(new_thr, new_gtid); 4395 } 4396 4397 // add the reserve serialized team, initialized from the team's master thread 4398 { 4399 kmp_internal_control_t r_icvs = __kmp_get_x_global_icvs(team); 4400 KF_TRACE(10, ("__kmp_allocate_thread: before th_serial/serial_team\n")); 4401 new_thr->th.th_serial_team = serial_team = 4402 (kmp_team_t *)__kmp_allocate_team(root, 1, 1, 4403 #if OMPT_SUPPORT 4404 ompt_data_none, // root parallel id 4405 #endif 4406 #if OMP_40_ENABLED 4407 proc_bind_default, 4408 #endif 4409 &r_icvs, 0 USE_NESTED_HOT_ARG(NULL)); 4410 } 4411 KMP_ASSERT(serial_team); 4412 serial_team->t.t_serialized = 0; // AC: the team created in reserve, not for 4413 // execution (it is unused for now). 4414 serial_team->t.t_threads[0] = new_thr; 4415 KF_TRACE(10, 4416 ("__kmp_allocate_thread: after th_serial/serial_team : new_thr=%p\n", 4417 new_thr)); 4418 4419 /* setup the thread structures */ 4420 __kmp_initialize_info(new_thr, team, new_tid, new_gtid); 4421 4422 #if USE_FAST_MEMORY 4423 __kmp_initialize_fast_memory(new_thr); 4424 #endif /* USE_FAST_MEMORY */ 4425 4426 #if KMP_USE_BGET 4427 KMP_DEBUG_ASSERT(new_thr->th.th_local.bget_data == NULL); 4428 __kmp_initialize_bget(new_thr); 4429 #endif 4430 4431 __kmp_init_random(new_thr); // Initialize random number generator 4432 4433 /* Initialize these only once when thread is grabbed for a team allocation */ 4434 KA_TRACE(20, 4435 ("__kmp_allocate_thread: T#%d init go fork=%u, plain=%u\n", 4436 __kmp_get_gtid(), KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 4437 4438 int b; 4439 kmp_balign_t *balign = new_thr->th.th_bar; 4440 for (b = 0; b < bs_last_barrier; ++b) { 4441 balign[b].bb.b_go = KMP_INIT_BARRIER_STATE; 4442 balign[b].bb.team = NULL; 4443 balign[b].bb.wait_flag = KMP_BARRIER_NOT_WAITING; 4444 balign[b].bb.use_oncore_barrier = 0; 4445 } 4446 4447 new_thr->th.th_spin_here = FALSE; 4448 new_thr->th.th_next_waiting = 0; 4449 #if KMP_OS_UNIX 4450 new_thr->th.th_blocking = false; 4451 #endif 4452 4453 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 4454 new_thr->th.th_current_place = KMP_PLACE_UNDEFINED; 4455 new_thr->th.th_new_place = KMP_PLACE_UNDEFINED; 4456 new_thr->th.th_first_place = KMP_PLACE_UNDEFINED; 4457 new_thr->th.th_last_place = KMP_PLACE_UNDEFINED; 4458 #endif 4459 #if OMP_50_ENABLED 4460 new_thr->th.th_def_allocator = __kmp_def_allocator; 4461 new_thr->th.th_prev_level = 0; 4462 new_thr->th.th_prev_num_threads = 1; 4463 #endif 4464 4465 TCW_4(new_thr->th.th_in_pool, FALSE); 4466 new_thr->th.th_active_in_pool = FALSE; 4467 TCW_4(new_thr->th.th_active, TRUE); 4468 4469 /* adjust the global counters */ 4470 __kmp_all_nth++; 4471 __kmp_nth++; 4472 4473 // if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) for low 4474 // numbers of procs, and method #2 (keyed API call) for higher numbers. 4475 if (__kmp_adjust_gtid_mode) { 4476 if (__kmp_all_nth >= __kmp_tls_gtid_min) { 4477 if (TCR_4(__kmp_gtid_mode) != 2) { 4478 TCW_4(__kmp_gtid_mode, 2); 4479 } 4480 } else { 4481 if (TCR_4(__kmp_gtid_mode) != 1) { 4482 TCW_4(__kmp_gtid_mode, 1); 4483 } 4484 } 4485 } 4486 4487 #ifdef KMP_ADJUST_BLOCKTIME 4488 /* Adjust blocktime back to zero if necessary */ 4489 /* Middle initialization might not have occurred yet */ 4490 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 4491 if (__kmp_nth > __kmp_avail_proc) { 4492 __kmp_zero_bt = TRUE; 4493 } 4494 } 4495 #endif /* KMP_ADJUST_BLOCKTIME */ 4496 4497 /* actually fork it and create the new worker thread */ 4498 KF_TRACE( 4499 10, ("__kmp_allocate_thread: before __kmp_create_worker: %p\n", new_thr)); 4500 __kmp_create_worker(new_gtid, new_thr, __kmp_stksize); 4501 KF_TRACE(10, 4502 ("__kmp_allocate_thread: after __kmp_create_worker: %p\n", new_thr)); 4503 4504 KA_TRACE(20, ("__kmp_allocate_thread: T#%d forked T#%d\n", __kmp_get_gtid(), 4505 new_gtid)); 4506 KMP_MB(); 4507 return new_thr; 4508 } 4509 4510 /* Reinitialize team for reuse. 4511 The hot team code calls this case at every fork barrier, so EPCC barrier 4512 test are extremely sensitive to changes in it, esp. writes to the team 4513 struct, which cause a cache invalidation in all threads. 4514 IF YOU TOUCH THIS ROUTINE, RUN EPCC C SYNCBENCH ON A BIG-IRON MACHINE!!! */ 4515 static void __kmp_reinitialize_team(kmp_team_t *team, 4516 kmp_internal_control_t *new_icvs, 4517 ident_t *loc) { 4518 KF_TRACE(10, ("__kmp_reinitialize_team: enter this_thread=%p team=%p\n", 4519 team->t.t_threads[0], team)); 4520 KMP_DEBUG_ASSERT(team && new_icvs); 4521 KMP_DEBUG_ASSERT((!TCR_4(__kmp_init_parallel)) || new_icvs->nproc); 4522 KMP_CHECK_UPDATE(team->t.t_ident, loc); 4523 4524 KMP_CHECK_UPDATE(team->t.t_id, KMP_GEN_TEAM_ID()); 4525 // Copy ICVs to the master thread's implicit taskdata 4526 __kmp_init_implicit_task(loc, team->t.t_threads[0], team, 0, FALSE); 4527 copy_icvs(&team->t.t_implicit_task_taskdata[0].td_icvs, new_icvs); 4528 4529 KF_TRACE(10, ("__kmp_reinitialize_team: exit this_thread=%p team=%p\n", 4530 team->t.t_threads[0], team)); 4531 } 4532 4533 /* Initialize the team data structure. 4534 This assumes the t_threads and t_max_nproc are already set. 4535 Also, we don't touch the arguments */ 4536 static void __kmp_initialize_team(kmp_team_t *team, int new_nproc, 4537 kmp_internal_control_t *new_icvs, 4538 ident_t *loc) { 4539 KF_TRACE(10, ("__kmp_initialize_team: enter: team=%p\n", team)); 4540 4541 /* verify */ 4542 KMP_DEBUG_ASSERT(team); 4543 KMP_DEBUG_ASSERT(new_nproc <= team->t.t_max_nproc); 4544 KMP_DEBUG_ASSERT(team->t.t_threads); 4545 KMP_MB(); 4546 4547 team->t.t_master_tid = 0; /* not needed */ 4548 /* team->t.t_master_bar; not needed */ 4549 team->t.t_serialized = new_nproc > 1 ? 0 : 1; 4550 team->t.t_nproc = new_nproc; 4551 4552 /* team->t.t_parent = NULL; TODO not needed & would mess up hot team */ 4553 team->t.t_next_pool = NULL; 4554 /* memset( team->t.t_threads, 0, sizeof(kmp_info_t*)*new_nproc ); would mess 4555 * up hot team */ 4556 4557 TCW_SYNC_PTR(team->t.t_pkfn, NULL); /* not needed */ 4558 team->t.t_invoke = NULL; /* not needed */ 4559 4560 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 4561 team->t.t_sched.sched = new_icvs->sched.sched; 4562 4563 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4564 team->t.t_fp_control_saved = FALSE; /* not needed */ 4565 team->t.t_x87_fpu_control_word = 0; /* not needed */ 4566 team->t.t_mxcsr = 0; /* not needed */ 4567 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4568 4569 team->t.t_construct = 0; 4570 4571 team->t.t_ordered.dt.t_value = 0; 4572 team->t.t_master_active = FALSE; 4573 4574 #ifdef KMP_DEBUG 4575 team->t.t_copypriv_data = NULL; /* not necessary, but nice for debugging */ 4576 #endif 4577 #if KMP_OS_WINDOWS 4578 team->t.t_copyin_counter = 0; /* for barrier-free copyin implementation */ 4579 #endif 4580 4581 team->t.t_control_stack_top = NULL; 4582 4583 __kmp_reinitialize_team(team, new_icvs, loc); 4584 4585 KMP_MB(); 4586 KF_TRACE(10, ("__kmp_initialize_team: exit: team=%p\n", team)); 4587 } 4588 4589 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 4590 /* Sets full mask for thread and returns old mask, no changes to structures. */ 4591 static void 4592 __kmp_set_thread_affinity_mask_full_tmp(kmp_affin_mask_t *old_mask) { 4593 if (KMP_AFFINITY_CAPABLE()) { 4594 int status; 4595 if (old_mask != NULL) { 4596 status = __kmp_get_system_affinity(old_mask, TRUE); 4597 int error = errno; 4598 if (status != 0) { 4599 __kmp_fatal(KMP_MSG(ChangeThreadAffMaskError), KMP_ERR(error), 4600 __kmp_msg_null); 4601 } 4602 } 4603 __kmp_set_system_affinity(__kmp_affin_fullMask, TRUE); 4604 } 4605 } 4606 #endif 4607 4608 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 4609 4610 // __kmp_partition_places() is the heart of the OpenMP 4.0 affinity mechanism. 4611 // It calculats the worker + master thread's partition based upon the parent 4612 // thread's partition, and binds each worker to a thread in their partition. 4613 // The master thread's partition should already include its current binding. 4614 static void __kmp_partition_places(kmp_team_t *team, int update_master_only) { 4615 // Copy the master thread's place partion to the team struct 4616 kmp_info_t *master_th = team->t.t_threads[0]; 4617 KMP_DEBUG_ASSERT(master_th != NULL); 4618 kmp_proc_bind_t proc_bind = team->t.t_proc_bind; 4619 int first_place = master_th->th.th_first_place; 4620 int last_place = master_th->th.th_last_place; 4621 int masters_place = master_th->th.th_current_place; 4622 team->t.t_first_place = first_place; 4623 team->t.t_last_place = last_place; 4624 4625 KA_TRACE(20, ("__kmp_partition_places: enter: proc_bind = %d T#%d(%d:0) " 4626 "bound to place %d partition = [%d,%d]\n", 4627 proc_bind, __kmp_gtid_from_thread(team->t.t_threads[0]), 4628 team->t.t_id, masters_place, first_place, last_place)); 4629 4630 switch (proc_bind) { 4631 4632 case proc_bind_default: 4633 // serial teams might have the proc_bind policy set to proc_bind_default. It 4634 // doesn't matter, as we don't rebind master thread for any proc_bind policy 4635 KMP_DEBUG_ASSERT(team->t.t_nproc == 1); 4636 break; 4637 4638 case proc_bind_master: { 4639 int f; 4640 int n_th = team->t.t_nproc; 4641 for (f = 1; f < n_th; f++) { 4642 kmp_info_t *th = team->t.t_threads[f]; 4643 KMP_DEBUG_ASSERT(th != NULL); 4644 th->th.th_first_place = first_place; 4645 th->th.th_last_place = last_place; 4646 th->th.th_new_place = masters_place; 4647 #if OMP_50_ENABLED 4648 if (__kmp_display_affinity && masters_place != th->th.th_current_place && 4649 team->t.t_display_affinity != 1) { 4650 team->t.t_display_affinity = 1; 4651 } 4652 #endif 4653 4654 KA_TRACE(100, ("__kmp_partition_places: master: T#%d(%d:%d) place %d " 4655 "partition = [%d,%d]\n", 4656 __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, 4657 f, masters_place, first_place, last_place)); 4658 } 4659 } break; 4660 4661 case proc_bind_close: { 4662 int f; 4663 int n_th = team->t.t_nproc; 4664 int n_places; 4665 if (first_place <= last_place) { 4666 n_places = last_place - first_place + 1; 4667 } else { 4668 n_places = __kmp_affinity_num_masks - first_place + last_place + 1; 4669 } 4670 if (n_th <= n_places) { 4671 int place = masters_place; 4672 for (f = 1; f < n_th; f++) { 4673 kmp_info_t *th = team->t.t_threads[f]; 4674 KMP_DEBUG_ASSERT(th != NULL); 4675 4676 if (place == last_place) { 4677 place = first_place; 4678 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4679 place = 0; 4680 } else { 4681 place++; 4682 } 4683 th->th.th_first_place = first_place; 4684 th->th.th_last_place = last_place; 4685 th->th.th_new_place = place; 4686 #if OMP_50_ENABLED 4687 if (__kmp_display_affinity && place != th->th.th_current_place && 4688 team->t.t_display_affinity != 1) { 4689 team->t.t_display_affinity = 1; 4690 } 4691 #endif 4692 4693 KA_TRACE(100, ("__kmp_partition_places: close: T#%d(%d:%d) place %d " 4694 "partition = [%d,%d]\n", 4695 __kmp_gtid_from_thread(team->t.t_threads[f]), 4696 team->t.t_id, f, place, first_place, last_place)); 4697 } 4698 } else { 4699 int S, rem, gap, s_count; 4700 S = n_th / n_places; 4701 s_count = 0; 4702 rem = n_th - (S * n_places); 4703 gap = rem > 0 ? n_places / rem : n_places; 4704 int place = masters_place; 4705 int gap_ct = gap; 4706 for (f = 0; f < n_th; f++) { 4707 kmp_info_t *th = team->t.t_threads[f]; 4708 KMP_DEBUG_ASSERT(th != NULL); 4709 4710 th->th.th_first_place = first_place; 4711 th->th.th_last_place = last_place; 4712 th->th.th_new_place = place; 4713 #if OMP_50_ENABLED 4714 if (__kmp_display_affinity && place != th->th.th_current_place && 4715 team->t.t_display_affinity != 1) { 4716 team->t.t_display_affinity = 1; 4717 } 4718 #endif 4719 s_count++; 4720 4721 if ((s_count == S) && rem && (gap_ct == gap)) { 4722 // do nothing, add an extra thread to place on next iteration 4723 } else if ((s_count == S + 1) && rem && (gap_ct == gap)) { 4724 // we added an extra thread to this place; move to next place 4725 if (place == last_place) { 4726 place = first_place; 4727 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4728 place = 0; 4729 } else { 4730 place++; 4731 } 4732 s_count = 0; 4733 gap_ct = 1; 4734 rem--; 4735 } else if (s_count == S) { // place full; don't add extra 4736 if (place == last_place) { 4737 place = first_place; 4738 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4739 place = 0; 4740 } else { 4741 place++; 4742 } 4743 gap_ct++; 4744 s_count = 0; 4745 } 4746 4747 KA_TRACE(100, 4748 ("__kmp_partition_places: close: T#%d(%d:%d) place %d " 4749 "partition = [%d,%d]\n", 4750 __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, f, 4751 th->th.th_new_place, first_place, last_place)); 4752 } 4753 KMP_DEBUG_ASSERT(place == masters_place); 4754 } 4755 } break; 4756 4757 case proc_bind_spread: { 4758 int f; 4759 int n_th = team->t.t_nproc; 4760 int n_places; 4761 int thidx; 4762 if (first_place <= last_place) { 4763 n_places = last_place - first_place + 1; 4764 } else { 4765 n_places = __kmp_affinity_num_masks - first_place + last_place + 1; 4766 } 4767 if (n_th <= n_places) { 4768 int place = -1; 4769 4770 if (n_places != static_cast<int>(__kmp_affinity_num_masks)) { 4771 int S = n_places / n_th; 4772 int s_count, rem, gap, gap_ct; 4773 4774 place = masters_place; 4775 rem = n_places - n_th * S; 4776 gap = rem ? n_th / rem : 1; 4777 gap_ct = gap; 4778 thidx = n_th; 4779 if (update_master_only == 1) 4780 thidx = 1; 4781 for (f = 0; f < thidx; f++) { 4782 kmp_info_t *th = team->t.t_threads[f]; 4783 KMP_DEBUG_ASSERT(th != NULL); 4784 4785 th->th.th_first_place = place; 4786 th->th.th_new_place = place; 4787 #if OMP_50_ENABLED 4788 if (__kmp_display_affinity && place != th->th.th_current_place && 4789 team->t.t_display_affinity != 1) { 4790 team->t.t_display_affinity = 1; 4791 } 4792 #endif 4793 s_count = 1; 4794 while (s_count < S) { 4795 if (place == last_place) { 4796 place = first_place; 4797 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4798 place = 0; 4799 } else { 4800 place++; 4801 } 4802 s_count++; 4803 } 4804 if (rem && (gap_ct == gap)) { 4805 if (place == last_place) { 4806 place = first_place; 4807 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4808 place = 0; 4809 } else { 4810 place++; 4811 } 4812 rem--; 4813 gap_ct = 0; 4814 } 4815 th->th.th_last_place = place; 4816 gap_ct++; 4817 4818 if (place == last_place) { 4819 place = first_place; 4820 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4821 place = 0; 4822 } else { 4823 place++; 4824 } 4825 4826 KA_TRACE(100, 4827 ("__kmp_partition_places: spread: T#%d(%d:%d) place %d " 4828 "partition = [%d,%d], __kmp_affinity_num_masks: %u\n", 4829 __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, 4830 f, th->th.th_new_place, th->th.th_first_place, 4831 th->th.th_last_place, __kmp_affinity_num_masks)); 4832 } 4833 } else { 4834 /* Having uniform space of available computation places I can create 4835 T partitions of round(P/T) size and put threads into the first 4836 place of each partition. */ 4837 double current = static_cast<double>(masters_place); 4838 double spacing = 4839 (static_cast<double>(n_places + 1) / static_cast<double>(n_th)); 4840 int first, last; 4841 kmp_info_t *th; 4842 4843 thidx = n_th + 1; 4844 if (update_master_only == 1) 4845 thidx = 1; 4846 for (f = 0; f < thidx; f++) { 4847 first = static_cast<int>(current); 4848 last = static_cast<int>(current + spacing) - 1; 4849 KMP_DEBUG_ASSERT(last >= first); 4850 if (first >= n_places) { 4851 if (masters_place) { 4852 first -= n_places; 4853 last -= n_places; 4854 if (first == (masters_place + 1)) { 4855 KMP_DEBUG_ASSERT(f == n_th); 4856 first--; 4857 } 4858 if (last == masters_place) { 4859 KMP_DEBUG_ASSERT(f == (n_th - 1)); 4860 last--; 4861 } 4862 } else { 4863 KMP_DEBUG_ASSERT(f == n_th); 4864 first = 0; 4865 last = 0; 4866 } 4867 } 4868 if (last >= n_places) { 4869 last = (n_places - 1); 4870 } 4871 place = first; 4872 current += spacing; 4873 if (f < n_th) { 4874 KMP_DEBUG_ASSERT(0 <= first); 4875 KMP_DEBUG_ASSERT(n_places > first); 4876 KMP_DEBUG_ASSERT(0 <= last); 4877 KMP_DEBUG_ASSERT(n_places > last); 4878 KMP_DEBUG_ASSERT(last_place >= first_place); 4879 th = team->t.t_threads[f]; 4880 KMP_DEBUG_ASSERT(th); 4881 th->th.th_first_place = first; 4882 th->th.th_new_place = place; 4883 th->th.th_last_place = last; 4884 #if OMP_50_ENABLED 4885 if (__kmp_display_affinity && place != th->th.th_current_place && 4886 team->t.t_display_affinity != 1) { 4887 team->t.t_display_affinity = 1; 4888 } 4889 #endif 4890 KA_TRACE(100, 4891 ("__kmp_partition_places: spread: T#%d(%d:%d) place %d " 4892 "partition = [%d,%d], spacing = %.4f\n", 4893 __kmp_gtid_from_thread(team->t.t_threads[f]), 4894 team->t.t_id, f, th->th.th_new_place, 4895 th->th.th_first_place, th->th.th_last_place, spacing)); 4896 } 4897 } 4898 } 4899 KMP_DEBUG_ASSERT(update_master_only || place == masters_place); 4900 } else { 4901 int S, rem, gap, s_count; 4902 S = n_th / n_places; 4903 s_count = 0; 4904 rem = n_th - (S * n_places); 4905 gap = rem > 0 ? n_places / rem : n_places; 4906 int place = masters_place; 4907 int gap_ct = gap; 4908 thidx = n_th; 4909 if (update_master_only == 1) 4910 thidx = 1; 4911 for (f = 0; f < thidx; f++) { 4912 kmp_info_t *th = team->t.t_threads[f]; 4913 KMP_DEBUG_ASSERT(th != NULL); 4914 4915 th->th.th_first_place = place; 4916 th->th.th_last_place = place; 4917 th->th.th_new_place = place; 4918 #if OMP_50_ENABLED 4919 if (__kmp_display_affinity && place != th->th.th_current_place && 4920 team->t.t_display_affinity != 1) { 4921 team->t.t_display_affinity = 1; 4922 } 4923 #endif 4924 s_count++; 4925 4926 if ((s_count == S) && rem && (gap_ct == gap)) { 4927 // do nothing, add an extra thread to place on next iteration 4928 } else if ((s_count == S + 1) && rem && (gap_ct == gap)) { 4929 // we added an extra thread to this place; move on to next place 4930 if (place == last_place) { 4931 place = first_place; 4932 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4933 place = 0; 4934 } else { 4935 place++; 4936 } 4937 s_count = 0; 4938 gap_ct = 1; 4939 rem--; 4940 } else if (s_count == S) { // place is full; don't add extra thread 4941 if (place == last_place) { 4942 place = first_place; 4943 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4944 place = 0; 4945 } else { 4946 place++; 4947 } 4948 gap_ct++; 4949 s_count = 0; 4950 } 4951 4952 KA_TRACE(100, ("__kmp_partition_places: spread: T#%d(%d:%d) place %d " 4953 "partition = [%d,%d]\n", 4954 __kmp_gtid_from_thread(team->t.t_threads[f]), 4955 team->t.t_id, f, th->th.th_new_place, 4956 th->th.th_first_place, th->th.th_last_place)); 4957 } 4958 KMP_DEBUG_ASSERT(update_master_only || place == masters_place); 4959 } 4960 } break; 4961 4962 default: 4963 break; 4964 } 4965 4966 KA_TRACE(20, ("__kmp_partition_places: exit T#%d\n", team->t.t_id)); 4967 } 4968 4969 #endif /* OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED */ 4970 4971 /* allocate a new team data structure to use. take one off of the free pool if 4972 available */ 4973 kmp_team_t * 4974 __kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc, 4975 #if OMPT_SUPPORT 4976 ompt_data_t ompt_parallel_data, 4977 #endif 4978 #if OMP_40_ENABLED 4979 kmp_proc_bind_t new_proc_bind, 4980 #endif 4981 kmp_internal_control_t *new_icvs, 4982 int argc USE_NESTED_HOT_ARG(kmp_info_t *master)) { 4983 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_allocate_team); 4984 int f; 4985 kmp_team_t *team; 4986 int use_hot_team = !root->r.r_active; 4987 int level = 0; 4988 4989 KA_TRACE(20, ("__kmp_allocate_team: called\n")); 4990 KMP_DEBUG_ASSERT(new_nproc >= 1 && argc >= 0); 4991 KMP_DEBUG_ASSERT(max_nproc >= new_nproc); 4992 KMP_MB(); 4993 4994 #if KMP_NESTED_HOT_TEAMS 4995 kmp_hot_team_ptr_t *hot_teams; 4996 if (master) { 4997 team = master->th.th_team; 4998 level = team->t.t_active_level; 4999 if (master->th.th_teams_microtask) { // in teams construct? 5000 if (master->th.th_teams_size.nteams > 1 && 5001 ( // #teams > 1 5002 team->t.t_pkfn == 5003 (microtask_t)__kmp_teams_master || // inner fork of the teams 5004 master->th.th_teams_level < 5005 team->t.t_level)) { // or nested parallel inside the teams 5006 ++level; // not increment if #teams==1, or for outer fork of the teams; 5007 // increment otherwise 5008 } 5009 } 5010 hot_teams = master->th.th_hot_teams; 5011 if (level < __kmp_hot_teams_max_level && hot_teams && 5012 hot_teams[level] 5013 .hot_team) { // hot team has already been allocated for given level 5014 use_hot_team = 1; 5015 } else { 5016 use_hot_team = 0; 5017 } 5018 } 5019 #endif 5020 // Optimization to use a "hot" team 5021 if (use_hot_team && new_nproc > 1) { 5022 KMP_DEBUG_ASSERT(new_nproc <= max_nproc); 5023 #if KMP_NESTED_HOT_TEAMS 5024 team = hot_teams[level].hot_team; 5025 #else 5026 team = root->r.r_hot_team; 5027 #endif 5028 #if KMP_DEBUG 5029 if (__kmp_tasking_mode != tskm_immediate_exec) { 5030 KA_TRACE(20, ("__kmp_allocate_team: hot team task_team[0] = %p " 5031 "task_team[1] = %p before reinit\n", 5032 team->t.t_task_team[0], team->t.t_task_team[1])); 5033 } 5034 #endif 5035 5036 // Has the number of threads changed? 5037 /* Let's assume the most common case is that the number of threads is 5038 unchanged, and put that case first. */ 5039 if (team->t.t_nproc == new_nproc) { // Check changes in number of threads 5040 KA_TRACE(20, ("__kmp_allocate_team: reusing hot team\n")); 5041 // This case can mean that omp_set_num_threads() was called and the hot 5042 // team size was already reduced, so we check the special flag 5043 if (team->t.t_size_changed == -1) { 5044 team->t.t_size_changed = 1; 5045 } else { 5046 KMP_CHECK_UPDATE(team->t.t_size_changed, 0); 5047 } 5048 5049 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 5050 kmp_r_sched_t new_sched = new_icvs->sched; 5051 // set master's schedule as new run-time schedule 5052 KMP_CHECK_UPDATE(team->t.t_sched.sched, new_sched.sched); 5053 5054 __kmp_reinitialize_team(team, new_icvs, 5055 root->r.r_uber_thread->th.th_ident); 5056 5057 KF_TRACE(10, ("__kmp_allocate_team2: T#%d, this_thread=%p team=%p\n", 0, 5058 team->t.t_threads[0], team)); 5059 __kmp_push_current_task_to_thread(team->t.t_threads[0], team, 0); 5060 5061 #if OMP_40_ENABLED 5062 #if KMP_AFFINITY_SUPPORTED 5063 if ((team->t.t_size_changed == 0) && 5064 (team->t.t_proc_bind == new_proc_bind)) { 5065 if (new_proc_bind == proc_bind_spread) { 5066 __kmp_partition_places( 5067 team, 1); // add flag to update only master for spread 5068 } 5069 KA_TRACE(200, ("__kmp_allocate_team: reusing hot team #%d bindings: " 5070 "proc_bind = %d, partition = [%d,%d]\n", 5071 team->t.t_id, new_proc_bind, team->t.t_first_place, 5072 team->t.t_last_place)); 5073 } else { 5074 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5075 __kmp_partition_places(team); 5076 } 5077 #else 5078 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5079 #endif /* KMP_AFFINITY_SUPPORTED */ 5080 #endif /* OMP_40_ENABLED */ 5081 } else if (team->t.t_nproc > new_nproc) { 5082 KA_TRACE(20, 5083 ("__kmp_allocate_team: decreasing hot team thread count to %d\n", 5084 new_nproc)); 5085 5086 team->t.t_size_changed = 1; 5087 #if KMP_NESTED_HOT_TEAMS 5088 if (__kmp_hot_teams_mode == 0) { 5089 // AC: saved number of threads should correspond to team's value in this 5090 // mode, can be bigger in mode 1, when hot team has threads in reserve 5091 KMP_DEBUG_ASSERT(hot_teams[level].hot_team_nth == team->t.t_nproc); 5092 hot_teams[level].hot_team_nth = new_nproc; 5093 #endif // KMP_NESTED_HOT_TEAMS 5094 /* release the extra threads we don't need any more */ 5095 for (f = new_nproc; f < team->t.t_nproc; f++) { 5096 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5097 if (__kmp_tasking_mode != tskm_immediate_exec) { 5098 // When decreasing team size, threads no longer in the team should 5099 // unref task team. 5100 team->t.t_threads[f]->th.th_task_team = NULL; 5101 } 5102 __kmp_free_thread(team->t.t_threads[f]); 5103 team->t.t_threads[f] = NULL; 5104 } 5105 #if KMP_NESTED_HOT_TEAMS 5106 } // (__kmp_hot_teams_mode == 0) 5107 else { 5108 // When keeping extra threads in team, switch threads to wait on own 5109 // b_go flag 5110 for (f = new_nproc; f < team->t.t_nproc; ++f) { 5111 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5112 kmp_balign_t *balign = team->t.t_threads[f]->th.th_bar; 5113 for (int b = 0; b < bs_last_barrier; ++b) { 5114 if (balign[b].bb.wait_flag == KMP_BARRIER_PARENT_FLAG) { 5115 balign[b].bb.wait_flag = KMP_BARRIER_SWITCH_TO_OWN_FLAG; 5116 } 5117 KMP_CHECK_UPDATE(balign[b].bb.leaf_kids, 0); 5118 } 5119 } 5120 } 5121 #endif // KMP_NESTED_HOT_TEAMS 5122 team->t.t_nproc = new_nproc; 5123 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 5124 KMP_CHECK_UPDATE(team->t.t_sched.sched, new_icvs->sched.sched); 5125 __kmp_reinitialize_team(team, new_icvs, 5126 root->r.r_uber_thread->th.th_ident); 5127 5128 // Update remaining threads 5129 for (f = 0; f < new_nproc; ++f) { 5130 team->t.t_threads[f]->th.th_team_nproc = new_nproc; 5131 } 5132 5133 // restore the current task state of the master thread: should be the 5134 // implicit task 5135 KF_TRACE(10, ("__kmp_allocate_team: T#%d, this_thread=%p team=%p\n", 0, 5136 team->t.t_threads[0], team)); 5137 5138 __kmp_push_current_task_to_thread(team->t.t_threads[0], team, 0); 5139 5140 #ifdef KMP_DEBUG 5141 for (f = 0; f < team->t.t_nproc; f++) { 5142 KMP_DEBUG_ASSERT(team->t.t_threads[f] && 5143 team->t.t_threads[f]->th.th_team_nproc == 5144 team->t.t_nproc); 5145 } 5146 #endif 5147 5148 #if OMP_40_ENABLED 5149 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5150 #if KMP_AFFINITY_SUPPORTED 5151 __kmp_partition_places(team); 5152 #endif 5153 #endif 5154 } else { // team->t.t_nproc < new_nproc 5155 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 5156 kmp_affin_mask_t *old_mask; 5157 if (KMP_AFFINITY_CAPABLE()) { 5158 KMP_CPU_ALLOC(old_mask); 5159 } 5160 #endif 5161 5162 KA_TRACE(20, 5163 ("__kmp_allocate_team: increasing hot team thread count to %d\n", 5164 new_nproc)); 5165 5166 team->t.t_size_changed = 1; 5167 5168 #if KMP_NESTED_HOT_TEAMS 5169 int avail_threads = hot_teams[level].hot_team_nth; 5170 if (new_nproc < avail_threads) 5171 avail_threads = new_nproc; 5172 kmp_info_t **other_threads = team->t.t_threads; 5173 for (f = team->t.t_nproc; f < avail_threads; ++f) { 5174 // Adjust barrier data of reserved threads (if any) of the team 5175 // Other data will be set in __kmp_initialize_info() below. 5176 int b; 5177 kmp_balign_t *balign = other_threads[f]->th.th_bar; 5178 for (b = 0; b < bs_last_barrier; ++b) { 5179 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 5180 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 5181 #if USE_DEBUGGER 5182 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 5183 #endif 5184 } 5185 } 5186 if (hot_teams[level].hot_team_nth >= new_nproc) { 5187 // we have all needed threads in reserve, no need to allocate any 5188 // this only possible in mode 1, cannot have reserved threads in mode 0 5189 KMP_DEBUG_ASSERT(__kmp_hot_teams_mode == 1); 5190 team->t.t_nproc = new_nproc; // just get reserved threads involved 5191 } else { 5192 // we may have some threads in reserve, but not enough 5193 team->t.t_nproc = 5194 hot_teams[level] 5195 .hot_team_nth; // get reserved threads involved if any 5196 hot_teams[level].hot_team_nth = new_nproc; // adjust hot team max size 5197 #endif // KMP_NESTED_HOT_TEAMS 5198 if (team->t.t_max_nproc < new_nproc) { 5199 /* reallocate larger arrays */ 5200 __kmp_reallocate_team_arrays(team, new_nproc); 5201 __kmp_reinitialize_team(team, new_icvs, NULL); 5202 } 5203 5204 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 5205 /* Temporarily set full mask for master thread before creation of 5206 workers. The reason is that workers inherit the affinity from master, 5207 so if a lot of workers are created on the single core quickly, they 5208 don't get a chance to set their own affinity for a long time. */ 5209 __kmp_set_thread_affinity_mask_full_tmp(old_mask); 5210 #endif 5211 5212 /* allocate new threads for the hot team */ 5213 for (f = team->t.t_nproc; f < new_nproc; f++) { 5214 kmp_info_t *new_worker = __kmp_allocate_thread(root, team, f); 5215 KMP_DEBUG_ASSERT(new_worker); 5216 team->t.t_threads[f] = new_worker; 5217 5218 KA_TRACE(20, 5219 ("__kmp_allocate_team: team %d init T#%d arrived: " 5220 "join=%llu, plain=%llu\n", 5221 team->t.t_id, __kmp_gtid_from_tid(f, team), team->t.t_id, f, 5222 team->t.t_bar[bs_forkjoin_barrier].b_arrived, 5223 team->t.t_bar[bs_plain_barrier].b_arrived)); 5224 5225 { // Initialize barrier data for new threads. 5226 int b; 5227 kmp_balign_t *balign = new_worker->th.th_bar; 5228 for (b = 0; b < bs_last_barrier; ++b) { 5229 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 5230 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != 5231 KMP_BARRIER_PARENT_FLAG); 5232 #if USE_DEBUGGER 5233 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 5234 #endif 5235 } 5236 } 5237 } 5238 5239 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 5240 if (KMP_AFFINITY_CAPABLE()) { 5241 /* Restore initial master thread's affinity mask */ 5242 __kmp_set_system_affinity(old_mask, TRUE); 5243 KMP_CPU_FREE(old_mask); 5244 } 5245 #endif 5246 #if KMP_NESTED_HOT_TEAMS 5247 } // end of check of t_nproc vs. new_nproc vs. hot_team_nth 5248 #endif // KMP_NESTED_HOT_TEAMS 5249 /* make sure everyone is syncronized */ 5250 int old_nproc = team->t.t_nproc; // save old value and use to update only 5251 // new threads below 5252 __kmp_initialize_team(team, new_nproc, new_icvs, 5253 root->r.r_uber_thread->th.th_ident); 5254 5255 /* reinitialize the threads */ 5256 KMP_DEBUG_ASSERT(team->t.t_nproc == new_nproc); 5257 for (f = 0; f < team->t.t_nproc; ++f) 5258 __kmp_initialize_info(team->t.t_threads[f], team, f, 5259 __kmp_gtid_from_tid(f, team)); 5260 5261 if (level) { // set th_task_state for new threads in nested hot team 5262 // __kmp_initialize_info() no longer zeroes th_task_state, so we should 5263 // only need to set the th_task_state for the new threads. th_task_state 5264 // for master thread will not be accurate until after this in 5265 // __kmp_fork_call(), so we look to the master's memo_stack to get the 5266 // correct value. 5267 for (f = old_nproc; f < team->t.t_nproc; ++f) 5268 team->t.t_threads[f]->th.th_task_state = 5269 team->t.t_threads[0]->th.th_task_state_memo_stack[level]; 5270 } else { // set th_task_state for new threads in non-nested hot team 5271 int old_state = 5272 team->t.t_threads[0]->th.th_task_state; // copy master's state 5273 for (f = old_nproc; f < team->t.t_nproc; ++f) 5274 team->t.t_threads[f]->th.th_task_state = old_state; 5275 } 5276 5277 #ifdef KMP_DEBUG 5278 for (f = 0; f < team->t.t_nproc; ++f) { 5279 KMP_DEBUG_ASSERT(team->t.t_threads[f] && 5280 team->t.t_threads[f]->th.th_team_nproc == 5281 team->t.t_nproc); 5282 } 5283 #endif 5284 5285 #if OMP_40_ENABLED 5286 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5287 #if KMP_AFFINITY_SUPPORTED 5288 __kmp_partition_places(team); 5289 #endif 5290 #endif 5291 } // Check changes in number of threads 5292 5293 #if OMP_40_ENABLED 5294 kmp_info_t *master = team->t.t_threads[0]; 5295 if (master->th.th_teams_microtask) { 5296 for (f = 1; f < new_nproc; ++f) { 5297 // propagate teams construct specific info to workers 5298 kmp_info_t *thr = team->t.t_threads[f]; 5299 thr->th.th_teams_microtask = master->th.th_teams_microtask; 5300 thr->th.th_teams_level = master->th.th_teams_level; 5301 thr->th.th_teams_size = master->th.th_teams_size; 5302 } 5303 } 5304 #endif /* OMP_40_ENABLED */ 5305 #if KMP_NESTED_HOT_TEAMS 5306 if (level) { 5307 // Sync barrier state for nested hot teams, not needed for outermost hot 5308 // team. 5309 for (f = 1; f < new_nproc; ++f) { 5310 kmp_info_t *thr = team->t.t_threads[f]; 5311 int b; 5312 kmp_balign_t *balign = thr->th.th_bar; 5313 for (b = 0; b < bs_last_barrier; ++b) { 5314 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 5315 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 5316 #if USE_DEBUGGER 5317 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 5318 #endif 5319 } 5320 } 5321 } 5322 #endif // KMP_NESTED_HOT_TEAMS 5323 5324 /* reallocate space for arguments if necessary */ 5325 __kmp_alloc_argv_entries(argc, team, TRUE); 5326 KMP_CHECK_UPDATE(team->t.t_argc, argc); 5327 // The hot team re-uses the previous task team, 5328 // if untouched during the previous release->gather phase. 5329 5330 KF_TRACE(10, (" hot_team = %p\n", team)); 5331 5332 #if KMP_DEBUG 5333 if (__kmp_tasking_mode != tskm_immediate_exec) { 5334 KA_TRACE(20, ("__kmp_allocate_team: hot team task_team[0] = %p " 5335 "task_team[1] = %p after reinit\n", 5336 team->t.t_task_team[0], team->t.t_task_team[1])); 5337 } 5338 #endif 5339 5340 #if OMPT_SUPPORT 5341 __ompt_team_assign_id(team, ompt_parallel_data); 5342 #endif 5343 5344 KMP_MB(); 5345 5346 return team; 5347 } 5348 5349 /* next, let's try to take one from the team pool */ 5350 KMP_MB(); 5351 for (team = CCAST(kmp_team_t *, __kmp_team_pool); (team);) { 5352 /* TODO: consider resizing undersized teams instead of reaping them, now 5353 that we have a resizing mechanism */ 5354 if (team->t.t_max_nproc >= max_nproc) { 5355 /* take this team from the team pool */ 5356 __kmp_team_pool = team->t.t_next_pool; 5357 5358 /* setup the team for fresh use */ 5359 __kmp_initialize_team(team, new_nproc, new_icvs, NULL); 5360 5361 KA_TRACE(20, ("__kmp_allocate_team: setting task_team[0] %p and " 5362 "task_team[1] %p to NULL\n", 5363 &team->t.t_task_team[0], &team->t.t_task_team[1])); 5364 team->t.t_task_team[0] = NULL; 5365 team->t.t_task_team[1] = NULL; 5366 5367 /* reallocate space for arguments if necessary */ 5368 __kmp_alloc_argv_entries(argc, team, TRUE); 5369 KMP_CHECK_UPDATE(team->t.t_argc, argc); 5370 5371 KA_TRACE( 5372 20, ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n", 5373 team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 5374 { // Initialize barrier data. 5375 int b; 5376 for (b = 0; b < bs_last_barrier; ++b) { 5377 team->t.t_bar[b].b_arrived = KMP_INIT_BARRIER_STATE; 5378 #if USE_DEBUGGER 5379 team->t.t_bar[b].b_master_arrived = 0; 5380 team->t.t_bar[b].b_team_arrived = 0; 5381 #endif 5382 } 5383 } 5384 5385 #if OMP_40_ENABLED 5386 team->t.t_proc_bind = new_proc_bind; 5387 #endif 5388 5389 KA_TRACE(20, ("__kmp_allocate_team: using team from pool %d.\n", 5390 team->t.t_id)); 5391 5392 #if OMPT_SUPPORT 5393 __ompt_team_assign_id(team, ompt_parallel_data); 5394 #endif 5395 5396 KMP_MB(); 5397 5398 return team; 5399 } 5400 5401 /* reap team if it is too small, then loop back and check the next one */ 5402 // not sure if this is wise, but, will be redone during the hot-teams 5403 // rewrite. 5404 /* TODO: Use technique to find the right size hot-team, don't reap them */ 5405 team = __kmp_reap_team(team); 5406 __kmp_team_pool = team; 5407 } 5408 5409 /* nothing available in the pool, no matter, make a new team! */ 5410 KMP_MB(); 5411 team = (kmp_team_t *)__kmp_allocate(sizeof(kmp_team_t)); 5412 5413 /* and set it up */ 5414 team->t.t_max_nproc = max_nproc; 5415 /* NOTE well, for some reason allocating one big buffer and dividing it up 5416 seems to really hurt performance a lot on the P4, so, let's not use this */ 5417 __kmp_allocate_team_arrays(team, max_nproc); 5418 5419 KA_TRACE(20, ("__kmp_allocate_team: making a new team\n")); 5420 __kmp_initialize_team(team, new_nproc, new_icvs, NULL); 5421 5422 KA_TRACE(20, ("__kmp_allocate_team: setting task_team[0] %p and task_team[1] " 5423 "%p to NULL\n", 5424 &team->t.t_task_team[0], &team->t.t_task_team[1])); 5425 team->t.t_task_team[0] = NULL; // to be removed, as __kmp_allocate zeroes 5426 // memory, no need to duplicate 5427 team->t.t_task_team[1] = NULL; // to be removed, as __kmp_allocate zeroes 5428 // memory, no need to duplicate 5429 5430 if (__kmp_storage_map) { 5431 __kmp_print_team_storage_map("team", team, team->t.t_id, new_nproc); 5432 } 5433 5434 /* allocate space for arguments */ 5435 __kmp_alloc_argv_entries(argc, team, FALSE); 5436 team->t.t_argc = argc; 5437 5438 KA_TRACE(20, 5439 ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n", 5440 team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 5441 { // Initialize barrier data. 5442 int b; 5443 for (b = 0; b < bs_last_barrier; ++b) { 5444 team->t.t_bar[b].b_arrived = KMP_INIT_BARRIER_STATE; 5445 #if USE_DEBUGGER 5446 team->t.t_bar[b].b_master_arrived = 0; 5447 team->t.t_bar[b].b_team_arrived = 0; 5448 #endif 5449 } 5450 } 5451 5452 #if OMP_40_ENABLED 5453 team->t.t_proc_bind = new_proc_bind; 5454 #endif 5455 5456 #if OMPT_SUPPORT 5457 __ompt_team_assign_id(team, ompt_parallel_data); 5458 team->t.ompt_serialized_team_info = NULL; 5459 #endif 5460 5461 KMP_MB(); 5462 5463 KA_TRACE(20, ("__kmp_allocate_team: done creating a new team %d.\n", 5464 team->t.t_id)); 5465 5466 return team; 5467 } 5468 5469 /* TODO implement hot-teams at all levels */ 5470 /* TODO implement lazy thread release on demand (disband request) */ 5471 5472 /* free the team. return it to the team pool. release all the threads 5473 * associated with it */ 5474 void __kmp_free_team(kmp_root_t *root, 5475 kmp_team_t *team USE_NESTED_HOT_ARG(kmp_info_t *master)) { 5476 int f; 5477 KA_TRACE(20, ("__kmp_free_team: T#%d freeing team %d\n", __kmp_get_gtid(), 5478 team->t.t_id)); 5479 5480 /* verify state */ 5481 KMP_DEBUG_ASSERT(root); 5482 KMP_DEBUG_ASSERT(team); 5483 KMP_DEBUG_ASSERT(team->t.t_nproc <= team->t.t_max_nproc); 5484 KMP_DEBUG_ASSERT(team->t.t_threads); 5485 5486 int use_hot_team = team == root->r.r_hot_team; 5487 #if KMP_NESTED_HOT_TEAMS 5488 int level; 5489 kmp_hot_team_ptr_t *hot_teams; 5490 if (master) { 5491 level = team->t.t_active_level - 1; 5492 if (master->th.th_teams_microtask) { // in teams construct? 5493 if (master->th.th_teams_size.nteams > 1) { 5494 ++level; // level was not increased in teams construct for 5495 // team_of_masters 5496 } 5497 if (team->t.t_pkfn != (microtask_t)__kmp_teams_master && 5498 master->th.th_teams_level == team->t.t_level) { 5499 ++level; // level was not increased in teams construct for 5500 // team_of_workers before the parallel 5501 } // team->t.t_level will be increased inside parallel 5502 } 5503 hot_teams = master->th.th_hot_teams; 5504 if (level < __kmp_hot_teams_max_level) { 5505 KMP_DEBUG_ASSERT(team == hot_teams[level].hot_team); 5506 use_hot_team = 1; 5507 } 5508 } 5509 #endif // KMP_NESTED_HOT_TEAMS 5510 5511 /* team is done working */ 5512 TCW_SYNC_PTR(team->t.t_pkfn, 5513 NULL); // Important for Debugging Support Library. 5514 #if KMP_OS_WINDOWS 5515 team->t.t_copyin_counter = 0; // init counter for possible reuse 5516 #endif 5517 // Do not reset pointer to parent team to NULL for hot teams. 5518 5519 /* if we are non-hot team, release our threads */ 5520 if (!use_hot_team) { 5521 if (__kmp_tasking_mode != tskm_immediate_exec) { 5522 // Wait for threads to reach reapable state 5523 for (f = 1; f < team->t.t_nproc; ++f) { 5524 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5525 kmp_info_t *th = team->t.t_threads[f]; 5526 volatile kmp_uint32 *state = &th->th.th_reap_state; 5527 while (*state != KMP_SAFE_TO_REAP) { 5528 #if KMP_OS_WINDOWS 5529 // On Windows a thread can be killed at any time, check this 5530 DWORD ecode; 5531 if (!__kmp_is_thread_alive(th, &ecode)) { 5532 *state = KMP_SAFE_TO_REAP; // reset the flag for dead thread 5533 break; 5534 } 5535 #endif 5536 // first check if thread is sleeping 5537 kmp_flag_64 fl(&th->th.th_bar[bs_forkjoin_barrier].bb.b_go, th); 5538 if (fl.is_sleeping()) 5539 fl.resume(__kmp_gtid_from_thread(th)); 5540 KMP_CPU_PAUSE(); 5541 } 5542 } 5543 5544 // Delete task teams 5545 int tt_idx; 5546 for (tt_idx = 0; tt_idx < 2; ++tt_idx) { 5547 kmp_task_team_t *task_team = team->t.t_task_team[tt_idx]; 5548 if (task_team != NULL) { 5549 for (f = 0; f < team->t.t_nproc; ++f) { // threads unref task teams 5550 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5551 team->t.t_threads[f]->th.th_task_team = NULL; 5552 } 5553 KA_TRACE( 5554 20, 5555 ("__kmp_free_team: T#%d deactivating task_team %p on team %d\n", 5556 __kmp_get_gtid(), task_team, team->t.t_id)); 5557 #if KMP_NESTED_HOT_TEAMS 5558 __kmp_free_task_team(master, task_team); 5559 #endif 5560 team->t.t_task_team[tt_idx] = NULL; 5561 } 5562 } 5563 } 5564 5565 // Reset pointer to parent team only for non-hot teams. 5566 team->t.t_parent = NULL; 5567 team->t.t_level = 0; 5568 team->t.t_active_level = 0; 5569 5570 /* free the worker threads */ 5571 for (f = 1; f < team->t.t_nproc; ++f) { 5572 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5573 __kmp_free_thread(team->t.t_threads[f]); 5574 team->t.t_threads[f] = NULL; 5575 } 5576 5577 /* put the team back in the team pool */ 5578 /* TODO limit size of team pool, call reap_team if pool too large */ 5579 team->t.t_next_pool = CCAST(kmp_team_t *, __kmp_team_pool); 5580 __kmp_team_pool = (volatile kmp_team_t *)team; 5581 } else { // Check if team was created for the masters in a teams construct 5582 // See if first worker is a CG root 5583 KMP_DEBUG_ASSERT(team->t.t_threads[1] && 5584 team->t.t_threads[1]->th.th_cg_roots); 5585 if (team->t.t_threads[1]->th.th_cg_roots->cg_root == team->t.t_threads[1]) { 5586 // Clean up the CG root nodes on workers so that this team can be re-used 5587 for (f = 1; f < team->t.t_nproc; ++f) { 5588 kmp_info_t *thr = team->t.t_threads[f]; 5589 KMP_DEBUG_ASSERT(thr && thr->th.th_cg_roots && 5590 thr->th.th_cg_roots->cg_root == thr); 5591 // Pop current CG root off list 5592 kmp_cg_root_t *tmp = thr->th.th_cg_roots; 5593 thr->th.th_cg_roots = tmp->up; 5594 KA_TRACE(100, ("__kmp_free_team: Thread %p popping node %p and moving" 5595 " up to node %p. cg_nthreads was %d\n", 5596 thr, tmp, thr->th.th_cg_roots, tmp->cg_nthreads)); 5597 __kmp_free(tmp); 5598 // Restore current task's thread_limit from CG root 5599 if (thr->th.th_cg_roots) 5600 thr->th.th_current_task->td_icvs.thread_limit = 5601 thr->th.th_cg_roots->cg_thread_limit; 5602 } 5603 } 5604 } 5605 5606 KMP_MB(); 5607 } 5608 5609 /* reap the team. destroy it, reclaim all its resources and free its memory */ 5610 kmp_team_t *__kmp_reap_team(kmp_team_t *team) { 5611 kmp_team_t *next_pool = team->t.t_next_pool; 5612 5613 KMP_DEBUG_ASSERT(team); 5614 KMP_DEBUG_ASSERT(team->t.t_dispatch); 5615 KMP_DEBUG_ASSERT(team->t.t_disp_buffer); 5616 KMP_DEBUG_ASSERT(team->t.t_threads); 5617 KMP_DEBUG_ASSERT(team->t.t_argv); 5618 5619 /* TODO clean the threads that are a part of this? */ 5620 5621 /* free stuff */ 5622 __kmp_free_team_arrays(team); 5623 if (team->t.t_argv != &team->t.t_inline_argv[0]) 5624 __kmp_free((void *)team->t.t_argv); 5625 __kmp_free(team); 5626 5627 KMP_MB(); 5628 return next_pool; 5629 } 5630 5631 // Free the thread. Don't reap it, just place it on the pool of available 5632 // threads. 5633 // 5634 // Changes for Quad issue 527845: We need a predictable OMP tid <-> gtid 5635 // binding for the affinity mechanism to be useful. 5636 // 5637 // Now, we always keep the free list (__kmp_thread_pool) sorted by gtid. 5638 // However, we want to avoid a potential performance problem by always 5639 // scanning through the list to find the correct point at which to insert 5640 // the thread (potential N**2 behavior). To do this we keep track of the 5641 // last place a thread struct was inserted (__kmp_thread_pool_insert_pt). 5642 // With single-level parallelism, threads will always be added to the tail 5643 // of the list, kept track of by __kmp_thread_pool_insert_pt. With nested 5644 // parallelism, all bets are off and we may need to scan through the entire 5645 // free list. 5646 // 5647 // This change also has a potentially large performance benefit, for some 5648 // applications. Previously, as threads were freed from the hot team, they 5649 // would be placed back on the free list in inverse order. If the hot team 5650 // grew back to it's original size, then the freed thread would be placed 5651 // back on the hot team in reverse order. This could cause bad cache 5652 // locality problems on programs where the size of the hot team regularly 5653 // grew and shrunk. 5654 // 5655 // Now, for single-level parallelism, the OMP tid is alway == gtid. 5656 void __kmp_free_thread(kmp_info_t *this_th) { 5657 int gtid; 5658 kmp_info_t **scan; 5659 5660 KA_TRACE(20, ("__kmp_free_thread: T#%d putting T#%d back on free pool.\n", 5661 __kmp_get_gtid(), this_th->th.th_info.ds.ds_gtid)); 5662 5663 KMP_DEBUG_ASSERT(this_th); 5664 5665 // When moving thread to pool, switch thread to wait on own b_go flag, and 5666 // uninitialized (NULL team). 5667 int b; 5668 kmp_balign_t *balign = this_th->th.th_bar; 5669 for (b = 0; b < bs_last_barrier; ++b) { 5670 if (balign[b].bb.wait_flag == KMP_BARRIER_PARENT_FLAG) 5671 balign[b].bb.wait_flag = KMP_BARRIER_SWITCH_TO_OWN_FLAG; 5672 balign[b].bb.team = NULL; 5673 balign[b].bb.leaf_kids = 0; 5674 } 5675 this_th->th.th_task_state = 0; 5676 this_th->th.th_reap_state = KMP_SAFE_TO_REAP; 5677 5678 /* put thread back on the free pool */ 5679 TCW_PTR(this_th->th.th_team, NULL); 5680 TCW_PTR(this_th->th.th_root, NULL); 5681 TCW_PTR(this_th->th.th_dispatch, NULL); /* NOT NEEDED */ 5682 5683 while (this_th->th.th_cg_roots) { 5684 this_th->th.th_cg_roots->cg_nthreads--; 5685 KA_TRACE(100, ("__kmp_free_thread: Thread %p decrement cg_nthreads on node" 5686 " %p of thread %p to %d\n", 5687 this_th, this_th->th.th_cg_roots, 5688 this_th->th.th_cg_roots->cg_root, 5689 this_th->th.th_cg_roots->cg_nthreads)); 5690 kmp_cg_root_t *tmp = this_th->th.th_cg_roots; 5691 if (tmp->cg_root == this_th) { // Thread is a cg_root 5692 KMP_DEBUG_ASSERT(tmp->cg_nthreads == 0); 5693 KA_TRACE( 5694 5, ("__kmp_free_thread: Thread %p freeing node %p\n", this_th, tmp)); 5695 this_th->th.th_cg_roots = tmp->up; 5696 __kmp_free(tmp); 5697 } else { // Worker thread 5698 this_th->th.th_cg_roots = NULL; 5699 break; 5700 } 5701 } 5702 5703 /* If the implicit task assigned to this thread can be used by other threads 5704 * -> multiple threads can share the data and try to free the task at 5705 * __kmp_reap_thread at exit. This duplicate use of the task data can happen 5706 * with higher probability when hot team is disabled but can occurs even when 5707 * the hot team is enabled */ 5708 __kmp_free_implicit_task(this_th); 5709 this_th->th.th_current_task = NULL; 5710 5711 // If the __kmp_thread_pool_insert_pt is already past the new insert 5712 // point, then we need to re-scan the entire list. 5713 gtid = this_th->th.th_info.ds.ds_gtid; 5714 if (__kmp_thread_pool_insert_pt != NULL) { 5715 KMP_DEBUG_ASSERT(__kmp_thread_pool != NULL); 5716 if (__kmp_thread_pool_insert_pt->th.th_info.ds.ds_gtid > gtid) { 5717 __kmp_thread_pool_insert_pt = NULL; 5718 } 5719 } 5720 5721 // Scan down the list to find the place to insert the thread. 5722 // scan is the address of a link in the list, possibly the address of 5723 // __kmp_thread_pool itself. 5724 // 5725 // In the absence of nested parallism, the for loop will have 0 iterations. 5726 if (__kmp_thread_pool_insert_pt != NULL) { 5727 scan = &(__kmp_thread_pool_insert_pt->th.th_next_pool); 5728 } else { 5729 scan = CCAST(kmp_info_t **, &__kmp_thread_pool); 5730 } 5731 for (; (*scan != NULL) && ((*scan)->th.th_info.ds.ds_gtid < gtid); 5732 scan = &((*scan)->th.th_next_pool)) 5733 ; 5734 5735 // Insert the new element on the list, and set __kmp_thread_pool_insert_pt 5736 // to its address. 5737 TCW_PTR(this_th->th.th_next_pool, *scan); 5738 __kmp_thread_pool_insert_pt = *scan = this_th; 5739 KMP_DEBUG_ASSERT((this_th->th.th_next_pool == NULL) || 5740 (this_th->th.th_info.ds.ds_gtid < 5741 this_th->th.th_next_pool->th.th_info.ds.ds_gtid)); 5742 TCW_4(this_th->th.th_in_pool, TRUE); 5743 __kmp_suspend_initialize_thread(this_th); 5744 __kmp_lock_suspend_mx(this_th); 5745 if (this_th->th.th_active == TRUE) { 5746 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth); 5747 this_th->th.th_active_in_pool = TRUE; 5748 } 5749 #if KMP_DEBUG 5750 else { 5751 KMP_DEBUG_ASSERT(this_th->th.th_active_in_pool == FALSE); 5752 } 5753 #endif 5754 __kmp_unlock_suspend_mx(this_th); 5755 5756 TCW_4(__kmp_nth, __kmp_nth - 1); 5757 5758 #ifdef KMP_ADJUST_BLOCKTIME 5759 /* Adjust blocktime back to user setting or default if necessary */ 5760 /* Middle initialization might never have occurred */ 5761 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 5762 KMP_DEBUG_ASSERT(__kmp_avail_proc > 0); 5763 if (__kmp_nth <= __kmp_avail_proc) { 5764 __kmp_zero_bt = FALSE; 5765 } 5766 } 5767 #endif /* KMP_ADJUST_BLOCKTIME */ 5768 5769 KMP_MB(); 5770 } 5771 5772 /* ------------------------------------------------------------------------ */ 5773 5774 void *__kmp_launch_thread(kmp_info_t *this_thr) { 5775 int gtid = this_thr->th.th_info.ds.ds_gtid; 5776 /* void *stack_data;*/ 5777 kmp_team_t *(*volatile pteam); 5778 5779 KMP_MB(); 5780 KA_TRACE(10, ("__kmp_launch_thread: T#%d start\n", gtid)); 5781 5782 if (__kmp_env_consistency_check) { 5783 this_thr->th.th_cons = __kmp_allocate_cons_stack(gtid); // ATT: Memory leak? 5784 } 5785 5786 #if OMPT_SUPPORT 5787 ompt_data_t *thread_data; 5788 if (ompt_enabled.enabled) { 5789 thread_data = &(this_thr->th.ompt_thread_info.thread_data); 5790 *thread_data = ompt_data_none; 5791 5792 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 5793 this_thr->th.ompt_thread_info.wait_id = 0; 5794 this_thr->th.ompt_thread_info.idle_frame = OMPT_GET_FRAME_ADDRESS(0); 5795 if (ompt_enabled.ompt_callback_thread_begin) { 5796 ompt_callbacks.ompt_callback(ompt_callback_thread_begin)( 5797 ompt_thread_worker, thread_data); 5798 } 5799 } 5800 #endif 5801 5802 #if OMPT_SUPPORT 5803 if (ompt_enabled.enabled) { 5804 this_thr->th.ompt_thread_info.state = ompt_state_idle; 5805 } 5806 #endif 5807 /* This is the place where threads wait for work */ 5808 while (!TCR_4(__kmp_global.g.g_done)) { 5809 KMP_DEBUG_ASSERT(this_thr == __kmp_threads[gtid]); 5810 KMP_MB(); 5811 5812 /* wait for work to do */ 5813 KA_TRACE(20, ("__kmp_launch_thread: T#%d waiting for work\n", gtid)); 5814 5815 /* No tid yet since not part of a team */ 5816 __kmp_fork_barrier(gtid, KMP_GTID_DNE); 5817 5818 #if OMPT_SUPPORT 5819 if (ompt_enabled.enabled) { 5820 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 5821 } 5822 #endif 5823 5824 pteam = (kmp_team_t * (*))(&this_thr->th.th_team); 5825 5826 /* have we been allocated? */ 5827 if (TCR_SYNC_PTR(*pteam) && !TCR_4(__kmp_global.g.g_done)) { 5828 /* we were just woken up, so run our new task */ 5829 if (TCR_SYNC_PTR((*pteam)->t.t_pkfn) != NULL) { 5830 int rc; 5831 KA_TRACE(20, 5832 ("__kmp_launch_thread: T#%d(%d:%d) invoke microtask = %p\n", 5833 gtid, (*pteam)->t.t_id, __kmp_tid_from_gtid(gtid), 5834 (*pteam)->t.t_pkfn)); 5835 5836 updateHWFPControl(*pteam); 5837 5838 #if OMPT_SUPPORT 5839 if (ompt_enabled.enabled) { 5840 this_thr->th.ompt_thread_info.state = ompt_state_work_parallel; 5841 } 5842 #endif 5843 5844 rc = (*pteam)->t.t_invoke(gtid); 5845 KMP_ASSERT(rc); 5846 5847 KMP_MB(); 5848 KA_TRACE(20, ("__kmp_launch_thread: T#%d(%d:%d) done microtask = %p\n", 5849 gtid, (*pteam)->t.t_id, __kmp_tid_from_gtid(gtid), 5850 (*pteam)->t.t_pkfn)); 5851 } 5852 #if OMPT_SUPPORT 5853 if (ompt_enabled.enabled) { 5854 /* no frame set while outside task */ 5855 __ompt_get_task_info_object(0)->frame.exit_frame = ompt_data_none; 5856 5857 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 5858 } 5859 #endif 5860 /* join barrier after parallel region */ 5861 __kmp_join_barrier(gtid); 5862 } 5863 } 5864 TCR_SYNC_PTR((intptr_t)__kmp_global.g.g_done); 5865 5866 #if OMPT_SUPPORT 5867 if (ompt_enabled.ompt_callback_thread_end) { 5868 ompt_callbacks.ompt_callback(ompt_callback_thread_end)(thread_data); 5869 } 5870 #endif 5871 5872 this_thr->th.th_task_team = NULL; 5873 /* run the destructors for the threadprivate data for this thread */ 5874 __kmp_common_destroy_gtid(gtid); 5875 5876 KA_TRACE(10, ("__kmp_launch_thread: T#%d done\n", gtid)); 5877 KMP_MB(); 5878 return this_thr; 5879 } 5880 5881 /* ------------------------------------------------------------------------ */ 5882 5883 void __kmp_internal_end_dest(void *specific_gtid) { 5884 #if KMP_COMPILER_ICC 5885 #pragma warning(push) 5886 #pragma warning(disable : 810) // conversion from "void *" to "int" may lose 5887 // significant bits 5888 #endif 5889 // Make sure no significant bits are lost 5890 int gtid = (kmp_intptr_t)specific_gtid - 1; 5891 #if KMP_COMPILER_ICC 5892 #pragma warning(pop) 5893 #endif 5894 5895 KA_TRACE(30, ("__kmp_internal_end_dest: T#%d\n", gtid)); 5896 /* NOTE: the gtid is stored as gitd+1 in the thread-local-storage 5897 * this is because 0 is reserved for the nothing-stored case */ 5898 5899 /* josh: One reason for setting the gtid specific data even when it is being 5900 destroyed by pthread is to allow gtid lookup through thread specific data 5901 (__kmp_gtid_get_specific). Some of the code, especially stat code, 5902 that gets executed in the call to __kmp_internal_end_thread, actually 5903 gets the gtid through the thread specific data. Setting it here seems 5904 rather inelegant and perhaps wrong, but allows __kmp_internal_end_thread 5905 to run smoothly. 5906 todo: get rid of this after we remove the dependence on 5907 __kmp_gtid_get_specific */ 5908 if (gtid >= 0 && KMP_UBER_GTID(gtid)) 5909 __kmp_gtid_set_specific(gtid); 5910 #ifdef KMP_TDATA_GTID 5911 __kmp_gtid = gtid; 5912 #endif 5913 __kmp_internal_end_thread(gtid); 5914 } 5915 5916 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB 5917 5918 // 2009-09-08 (lev): It looks the destructor does not work. In simple test cases 5919 // destructors work perfectly, but in real libomp.so I have no evidence it is 5920 // ever called. However, -fini linker option in makefile.mk works fine. 5921 5922 __attribute__((destructor)) void __kmp_internal_end_dtor(void) { 5923 __kmp_internal_end_atexit(); 5924 } 5925 5926 void __kmp_internal_end_fini(void) { __kmp_internal_end_atexit(); } 5927 5928 #endif 5929 5930 /* [Windows] josh: when the atexit handler is called, there may still be more 5931 than one thread alive */ 5932 void __kmp_internal_end_atexit(void) { 5933 KA_TRACE(30, ("__kmp_internal_end_atexit\n")); 5934 /* [Windows] 5935 josh: ideally, we want to completely shutdown the library in this atexit 5936 handler, but stat code that depends on thread specific data for gtid fails 5937 because that data becomes unavailable at some point during the shutdown, so 5938 we call __kmp_internal_end_thread instead. We should eventually remove the 5939 dependency on __kmp_get_specific_gtid in the stat code and use 5940 __kmp_internal_end_library to cleanly shutdown the library. 5941 5942 // TODO: Can some of this comment about GVS be removed? 5943 I suspect that the offending stat code is executed when the calling thread 5944 tries to clean up a dead root thread's data structures, resulting in GVS 5945 code trying to close the GVS structures for that thread, but since the stat 5946 code uses __kmp_get_specific_gtid to get the gtid with the assumption that 5947 the calling thread is cleaning up itself instead of another thread, it get 5948 confused. This happens because allowing a thread to unregister and cleanup 5949 another thread is a recent modification for addressing an issue. 5950 Based on the current design (20050722), a thread may end up 5951 trying to unregister another thread only if thread death does not trigger 5952 the calling of __kmp_internal_end_thread. For Linux* OS, there is the 5953 thread specific data destructor function to detect thread death. For 5954 Windows dynamic, there is DllMain(THREAD_DETACH). For Windows static, there 5955 is nothing. Thus, the workaround is applicable only for Windows static 5956 stat library. */ 5957 __kmp_internal_end_library(-1); 5958 #if KMP_OS_WINDOWS 5959 __kmp_close_console(); 5960 #endif 5961 } 5962 5963 static void __kmp_reap_thread(kmp_info_t *thread, int is_root) { 5964 // It is assumed __kmp_forkjoin_lock is acquired. 5965 5966 int gtid; 5967 5968 KMP_DEBUG_ASSERT(thread != NULL); 5969 5970 gtid = thread->th.th_info.ds.ds_gtid; 5971 5972 if (!is_root) { 5973 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { 5974 /* Assume the threads are at the fork barrier here */ 5975 KA_TRACE( 5976 20, ("__kmp_reap_thread: releasing T#%d from fork barrier for reap\n", 5977 gtid)); 5978 /* Need release fence here to prevent seg faults for tree forkjoin barrier 5979 * (GEH) */ 5980 ANNOTATE_HAPPENS_BEFORE(thread); 5981 kmp_flag_64 flag(&thread->th.th_bar[bs_forkjoin_barrier].bb.b_go, thread); 5982 __kmp_release_64(&flag); 5983 } 5984 5985 // Terminate OS thread. 5986 __kmp_reap_worker(thread); 5987 5988 // The thread was killed asynchronously. If it was actively 5989 // spinning in the thread pool, decrement the global count. 5990 // 5991 // There is a small timing hole here - if the worker thread was just waking 5992 // up after sleeping in the pool, had reset it's th_active_in_pool flag but 5993 // not decremented the global counter __kmp_thread_pool_active_nth yet, then 5994 // the global counter might not get updated. 5995 // 5996 // Currently, this can only happen as the library is unloaded, 5997 // so there are no harmful side effects. 5998 if (thread->th.th_active_in_pool) { 5999 thread->th.th_active_in_pool = FALSE; 6000 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 6001 KMP_DEBUG_ASSERT(__kmp_thread_pool_active_nth >= 0); 6002 } 6003 } 6004 6005 __kmp_free_implicit_task(thread); 6006 6007 // Free the fast memory for tasking 6008 #if USE_FAST_MEMORY 6009 __kmp_free_fast_memory(thread); 6010 #endif /* USE_FAST_MEMORY */ 6011 6012 __kmp_suspend_uninitialize_thread(thread); 6013 6014 KMP_DEBUG_ASSERT(__kmp_threads[gtid] == thread); 6015 TCW_SYNC_PTR(__kmp_threads[gtid], NULL); 6016 6017 --__kmp_all_nth; 6018 // __kmp_nth was decremented when thread is added to the pool. 6019 6020 #ifdef KMP_ADJUST_BLOCKTIME 6021 /* Adjust blocktime back to user setting or default if necessary */ 6022 /* Middle initialization might never have occurred */ 6023 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 6024 KMP_DEBUG_ASSERT(__kmp_avail_proc > 0); 6025 if (__kmp_nth <= __kmp_avail_proc) { 6026 __kmp_zero_bt = FALSE; 6027 } 6028 } 6029 #endif /* KMP_ADJUST_BLOCKTIME */ 6030 6031 /* free the memory being used */ 6032 if (__kmp_env_consistency_check) { 6033 if (thread->th.th_cons) { 6034 __kmp_free_cons_stack(thread->th.th_cons); 6035 thread->th.th_cons = NULL; 6036 } 6037 } 6038 6039 if (thread->th.th_pri_common != NULL) { 6040 __kmp_free(thread->th.th_pri_common); 6041 thread->th.th_pri_common = NULL; 6042 } 6043 6044 if (thread->th.th_task_state_memo_stack != NULL) { 6045 __kmp_free(thread->th.th_task_state_memo_stack); 6046 thread->th.th_task_state_memo_stack = NULL; 6047 } 6048 6049 #if KMP_USE_BGET 6050 if (thread->th.th_local.bget_data != NULL) { 6051 __kmp_finalize_bget(thread); 6052 } 6053 #endif 6054 6055 #if KMP_AFFINITY_SUPPORTED 6056 if (thread->th.th_affin_mask != NULL) { 6057 KMP_CPU_FREE(thread->th.th_affin_mask); 6058 thread->th.th_affin_mask = NULL; 6059 } 6060 #endif /* KMP_AFFINITY_SUPPORTED */ 6061 6062 #if KMP_USE_HIER_SCHED 6063 if (thread->th.th_hier_bar_data != NULL) { 6064 __kmp_free(thread->th.th_hier_bar_data); 6065 thread->th.th_hier_bar_data = NULL; 6066 } 6067 #endif 6068 6069 __kmp_reap_team(thread->th.th_serial_team); 6070 thread->th.th_serial_team = NULL; 6071 __kmp_free(thread); 6072 6073 KMP_MB(); 6074 6075 } // __kmp_reap_thread 6076 6077 static void __kmp_internal_end(void) { 6078 int i; 6079 6080 /* First, unregister the library */ 6081 __kmp_unregister_library(); 6082 6083 #if KMP_OS_WINDOWS 6084 /* In Win static library, we can't tell when a root actually dies, so we 6085 reclaim the data structures for any root threads that have died but not 6086 unregistered themselves, in order to shut down cleanly. 6087 In Win dynamic library we also can't tell when a thread dies. */ 6088 __kmp_reclaim_dead_roots(); // AC: moved here to always clean resources of 6089 // dead roots 6090 #endif 6091 6092 for (i = 0; i < __kmp_threads_capacity; i++) 6093 if (__kmp_root[i]) 6094 if (__kmp_root[i]->r.r_active) 6095 break; 6096 KMP_MB(); /* Flush all pending memory write invalidates. */ 6097 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 6098 6099 if (i < __kmp_threads_capacity) { 6100 #if KMP_USE_MONITOR 6101 // 2009-09-08 (lev): Other alive roots found. Why do we kill the monitor?? 6102 KMP_MB(); /* Flush all pending memory write invalidates. */ 6103 6104 // Need to check that monitor was initialized before reaping it. If we are 6105 // called form __kmp_atfork_child (which sets __kmp_init_parallel = 0), then 6106 // __kmp_monitor will appear to contain valid data, but it is only valid in 6107 // the parent process, not the child. 6108 // New behavior (201008): instead of keying off of the flag 6109 // __kmp_init_parallel, the monitor thread creation is keyed off 6110 // of the new flag __kmp_init_monitor. 6111 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock); 6112 if (TCR_4(__kmp_init_monitor)) { 6113 __kmp_reap_monitor(&__kmp_monitor); 6114 TCW_4(__kmp_init_monitor, 0); 6115 } 6116 __kmp_release_bootstrap_lock(&__kmp_monitor_lock); 6117 KA_TRACE(10, ("__kmp_internal_end: monitor reaped\n")); 6118 #endif // KMP_USE_MONITOR 6119 } else { 6120 /* TODO move this to cleanup code */ 6121 #ifdef KMP_DEBUG 6122 /* make sure that everything has properly ended */ 6123 for (i = 0; i < __kmp_threads_capacity; i++) { 6124 if (__kmp_root[i]) { 6125 // KMP_ASSERT( ! KMP_UBER_GTID( i ) ); // AC: 6126 // there can be uber threads alive here 6127 KMP_ASSERT(!__kmp_root[i]->r.r_active); // TODO: can they be active? 6128 } 6129 } 6130 #endif 6131 6132 KMP_MB(); 6133 6134 // Reap the worker threads. 6135 // This is valid for now, but be careful if threads are reaped sooner. 6136 while (__kmp_thread_pool != NULL) { // Loop thru all the thread in the pool. 6137 // Get the next thread from the pool. 6138 kmp_info_t *thread = CCAST(kmp_info_t *, __kmp_thread_pool); 6139 __kmp_thread_pool = thread->th.th_next_pool; 6140 // Reap it. 6141 KMP_DEBUG_ASSERT(thread->th.th_reap_state == KMP_SAFE_TO_REAP); 6142 thread->th.th_next_pool = NULL; 6143 thread->th.th_in_pool = FALSE; 6144 __kmp_reap_thread(thread, 0); 6145 } 6146 __kmp_thread_pool_insert_pt = NULL; 6147 6148 // Reap teams. 6149 while (__kmp_team_pool != NULL) { // Loop thru all the teams in the pool. 6150 // Get the next team from the pool. 6151 kmp_team_t *team = CCAST(kmp_team_t *, __kmp_team_pool); 6152 __kmp_team_pool = team->t.t_next_pool; 6153 // Reap it. 6154 team->t.t_next_pool = NULL; 6155 __kmp_reap_team(team); 6156 } 6157 6158 __kmp_reap_task_teams(); 6159 6160 #if KMP_OS_UNIX 6161 // Threads that are not reaped should not access any resources since they 6162 // are going to be deallocated soon, so the shutdown sequence should wait 6163 // until all threads either exit the final spin-waiting loop or begin 6164 // sleeping after the given blocktime. 6165 for (i = 0; i < __kmp_threads_capacity; i++) { 6166 kmp_info_t *thr = __kmp_threads[i]; 6167 while (thr && KMP_ATOMIC_LD_ACQ(&thr->th.th_blocking)) 6168 KMP_CPU_PAUSE(); 6169 } 6170 #endif 6171 6172 for (i = 0; i < __kmp_threads_capacity; ++i) { 6173 // TBD: Add some checking... 6174 // Something like KMP_DEBUG_ASSERT( __kmp_thread[ i ] == NULL ); 6175 } 6176 6177 /* Make sure all threadprivate destructors get run by joining with all 6178 worker threads before resetting this flag */ 6179 TCW_SYNC_4(__kmp_init_common, FALSE); 6180 6181 KA_TRACE(10, ("__kmp_internal_end: all workers reaped\n")); 6182 KMP_MB(); 6183 6184 #if KMP_USE_MONITOR 6185 // See note above: One of the possible fixes for CQ138434 / CQ140126 6186 // 6187 // FIXME: push both code fragments down and CSE them? 6188 // push them into __kmp_cleanup() ? 6189 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock); 6190 if (TCR_4(__kmp_init_monitor)) { 6191 __kmp_reap_monitor(&__kmp_monitor); 6192 TCW_4(__kmp_init_monitor, 0); 6193 } 6194 __kmp_release_bootstrap_lock(&__kmp_monitor_lock); 6195 KA_TRACE(10, ("__kmp_internal_end: monitor reaped\n")); 6196 #endif 6197 } /* else !__kmp_global.t_active */ 6198 TCW_4(__kmp_init_gtid, FALSE); 6199 KMP_MB(); /* Flush all pending memory write invalidates. */ 6200 6201 __kmp_cleanup(); 6202 #if OMPT_SUPPORT 6203 ompt_fini(); 6204 #endif 6205 } 6206 6207 void __kmp_internal_end_library(int gtid_req) { 6208 /* if we have already cleaned up, don't try again, it wouldn't be pretty */ 6209 /* this shouldn't be a race condition because __kmp_internal_end() is the 6210 only place to clear __kmp_serial_init */ 6211 /* we'll check this later too, after we get the lock */ 6212 // 2009-09-06: We do not set g_abort without setting g_done. This check looks 6213 // redundaant, because the next check will work in any case. 6214 if (__kmp_global.g.g_abort) { 6215 KA_TRACE(11, ("__kmp_internal_end_library: abort, exiting\n")); 6216 /* TODO abort? */ 6217 return; 6218 } 6219 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6220 KA_TRACE(10, ("__kmp_internal_end_library: already finished\n")); 6221 return; 6222 } 6223 6224 KMP_MB(); /* Flush all pending memory write invalidates. */ 6225 6226 /* find out who we are and what we should do */ 6227 { 6228 int gtid = (gtid_req >= 0) ? gtid_req : __kmp_gtid_get_specific(); 6229 KA_TRACE( 6230 10, ("__kmp_internal_end_library: enter T#%d (%d)\n", gtid, gtid_req)); 6231 if (gtid == KMP_GTID_SHUTDOWN) { 6232 KA_TRACE(10, ("__kmp_internal_end_library: !__kmp_init_runtime, system " 6233 "already shutdown\n")); 6234 return; 6235 } else if (gtid == KMP_GTID_MONITOR) { 6236 KA_TRACE(10, ("__kmp_internal_end_library: monitor thread, gtid not " 6237 "registered, or system shutdown\n")); 6238 return; 6239 } else if (gtid == KMP_GTID_DNE) { 6240 KA_TRACE(10, ("__kmp_internal_end_library: gtid not registered or system " 6241 "shutdown\n")); 6242 /* we don't know who we are, but we may still shutdown the library */ 6243 } else if (KMP_UBER_GTID(gtid)) { 6244 /* unregister ourselves as an uber thread. gtid is no longer valid */ 6245 if (__kmp_root[gtid]->r.r_active) { 6246 __kmp_global.g.g_abort = -1; 6247 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 6248 KA_TRACE(10, 6249 ("__kmp_internal_end_library: root still active, abort T#%d\n", 6250 gtid)); 6251 return; 6252 } else { 6253 KA_TRACE( 6254 10, 6255 ("__kmp_internal_end_library: unregistering sibling T#%d\n", gtid)); 6256 __kmp_unregister_root_current_thread(gtid); 6257 } 6258 } else { 6259 /* worker threads may call this function through the atexit handler, if they 6260 * call exit() */ 6261 /* For now, skip the usual subsequent processing and just dump the debug buffer. 6262 TODO: do a thorough shutdown instead */ 6263 #ifdef DUMP_DEBUG_ON_EXIT 6264 if (__kmp_debug_buf) 6265 __kmp_dump_debug_buffer(); 6266 #endif 6267 return; 6268 } 6269 } 6270 /* synchronize the termination process */ 6271 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6272 6273 /* have we already finished */ 6274 if (__kmp_global.g.g_abort) { 6275 KA_TRACE(10, ("__kmp_internal_end_library: abort, exiting\n")); 6276 /* TODO abort? */ 6277 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6278 return; 6279 } 6280 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6281 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6282 return; 6283 } 6284 6285 /* We need this lock to enforce mutex between this reading of 6286 __kmp_threads_capacity and the writing by __kmp_register_root. 6287 Alternatively, we can use a counter of roots that is atomically updated by 6288 __kmp_get_global_thread_id_reg, __kmp_do_serial_initialize and 6289 __kmp_internal_end_*. */ 6290 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 6291 6292 /* now we can safely conduct the actual termination */ 6293 __kmp_internal_end(); 6294 6295 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 6296 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6297 6298 KA_TRACE(10, ("__kmp_internal_end_library: exit\n")); 6299 6300 #ifdef DUMP_DEBUG_ON_EXIT 6301 if (__kmp_debug_buf) 6302 __kmp_dump_debug_buffer(); 6303 #endif 6304 6305 #if KMP_OS_WINDOWS 6306 __kmp_close_console(); 6307 #endif 6308 6309 __kmp_fini_allocator(); 6310 6311 } // __kmp_internal_end_library 6312 6313 void __kmp_internal_end_thread(int gtid_req) { 6314 int i; 6315 6316 /* if we have already cleaned up, don't try again, it wouldn't be pretty */ 6317 /* this shouldn't be a race condition because __kmp_internal_end() is the 6318 * only place to clear __kmp_serial_init */ 6319 /* we'll check this later too, after we get the lock */ 6320 // 2009-09-06: We do not set g_abort without setting g_done. This check looks 6321 // redundant, because the next check will work in any case. 6322 if (__kmp_global.g.g_abort) { 6323 KA_TRACE(11, ("__kmp_internal_end_thread: abort, exiting\n")); 6324 /* TODO abort? */ 6325 return; 6326 } 6327 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6328 KA_TRACE(10, ("__kmp_internal_end_thread: already finished\n")); 6329 return; 6330 } 6331 6332 KMP_MB(); /* Flush all pending memory write invalidates. */ 6333 6334 /* find out who we are and what we should do */ 6335 { 6336 int gtid = (gtid_req >= 0) ? gtid_req : __kmp_gtid_get_specific(); 6337 KA_TRACE(10, 6338 ("__kmp_internal_end_thread: enter T#%d (%d)\n", gtid, gtid_req)); 6339 if (gtid == KMP_GTID_SHUTDOWN) { 6340 KA_TRACE(10, ("__kmp_internal_end_thread: !__kmp_init_runtime, system " 6341 "already shutdown\n")); 6342 return; 6343 } else if (gtid == KMP_GTID_MONITOR) { 6344 KA_TRACE(10, ("__kmp_internal_end_thread: monitor thread, gtid not " 6345 "registered, or system shutdown\n")); 6346 return; 6347 } else if (gtid == KMP_GTID_DNE) { 6348 KA_TRACE(10, ("__kmp_internal_end_thread: gtid not registered or system " 6349 "shutdown\n")); 6350 return; 6351 /* we don't know who we are */ 6352 } else if (KMP_UBER_GTID(gtid)) { 6353 /* unregister ourselves as an uber thread. gtid is no longer valid */ 6354 if (__kmp_root[gtid]->r.r_active) { 6355 __kmp_global.g.g_abort = -1; 6356 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 6357 KA_TRACE(10, 6358 ("__kmp_internal_end_thread: root still active, abort T#%d\n", 6359 gtid)); 6360 return; 6361 } else { 6362 KA_TRACE(10, ("__kmp_internal_end_thread: unregistering sibling T#%d\n", 6363 gtid)); 6364 __kmp_unregister_root_current_thread(gtid); 6365 } 6366 } else { 6367 /* just a worker thread, let's leave */ 6368 KA_TRACE(10, ("__kmp_internal_end_thread: worker thread T#%d\n", gtid)); 6369 6370 if (gtid >= 0) { 6371 __kmp_threads[gtid]->th.th_task_team = NULL; 6372 } 6373 6374 KA_TRACE(10, 6375 ("__kmp_internal_end_thread: worker thread done, exiting T#%d\n", 6376 gtid)); 6377 return; 6378 } 6379 } 6380 #if KMP_DYNAMIC_LIB 6381 #if OMP_50_ENABLED 6382 if (__kmp_pause_status != kmp_hard_paused) 6383 #endif 6384 // AC: lets not shutdown the dynamic library at the exit of uber thread, 6385 // because we will better shutdown later in the library destructor. 6386 { 6387 KA_TRACE(10, ("__kmp_internal_end_thread: exiting T#%d\n", gtid_req)); 6388 return; 6389 } 6390 #endif 6391 /* synchronize the termination process */ 6392 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6393 6394 /* have we already finished */ 6395 if (__kmp_global.g.g_abort) { 6396 KA_TRACE(10, ("__kmp_internal_end_thread: abort, exiting\n")); 6397 /* TODO abort? */ 6398 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6399 return; 6400 } 6401 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6402 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6403 return; 6404 } 6405 6406 /* We need this lock to enforce mutex between this reading of 6407 __kmp_threads_capacity and the writing by __kmp_register_root. 6408 Alternatively, we can use a counter of roots that is atomically updated by 6409 __kmp_get_global_thread_id_reg, __kmp_do_serial_initialize and 6410 __kmp_internal_end_*. */ 6411 6412 /* should we finish the run-time? are all siblings done? */ 6413 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 6414 6415 for (i = 0; i < __kmp_threads_capacity; ++i) { 6416 if (KMP_UBER_GTID(i)) { 6417 KA_TRACE( 6418 10, 6419 ("__kmp_internal_end_thread: remaining sibling task: gtid==%d\n", i)); 6420 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 6421 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6422 return; 6423 } 6424 } 6425 6426 /* now we can safely conduct the actual termination */ 6427 6428 __kmp_internal_end(); 6429 6430 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 6431 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6432 6433 KA_TRACE(10, ("__kmp_internal_end_thread: exit T#%d\n", gtid_req)); 6434 6435 #ifdef DUMP_DEBUG_ON_EXIT 6436 if (__kmp_debug_buf) 6437 __kmp_dump_debug_buffer(); 6438 #endif 6439 } // __kmp_internal_end_thread 6440 6441 // ----------------------------------------------------------------------------- 6442 // Library registration stuff. 6443 6444 static long __kmp_registration_flag = 0; 6445 // Random value used to indicate library initialization. 6446 static char *__kmp_registration_str = NULL; 6447 // Value to be saved in env var __KMP_REGISTERED_LIB_<pid>. 6448 6449 static inline char *__kmp_reg_status_name() { 6450 /* On RHEL 3u5 if linked statically, getpid() returns different values in 6451 each thread. If registration and unregistration go in different threads 6452 (omp_misc_other_root_exit.cpp test case), the name of registered_lib_env 6453 env var can not be found, because the name will contain different pid. */ 6454 return __kmp_str_format("__KMP_REGISTERED_LIB_%d", (int)getpid()); 6455 } // __kmp_reg_status_get 6456 6457 void __kmp_register_library_startup(void) { 6458 6459 char *name = __kmp_reg_status_name(); // Name of the environment variable. 6460 int done = 0; 6461 union { 6462 double dtime; 6463 long ltime; 6464 } time; 6465 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 6466 __kmp_initialize_system_tick(); 6467 #endif 6468 __kmp_read_system_time(&time.dtime); 6469 __kmp_registration_flag = 0xCAFE0000L | (time.ltime & 0x0000FFFFL); 6470 __kmp_registration_str = 6471 __kmp_str_format("%p-%lx-%s", &__kmp_registration_flag, 6472 __kmp_registration_flag, KMP_LIBRARY_FILE); 6473 6474 KA_TRACE(50, ("__kmp_register_library_startup: %s=\"%s\"\n", name, 6475 __kmp_registration_str)); 6476 6477 while (!done) { 6478 6479 char *value = NULL; // Actual value of the environment variable. 6480 6481 // Set environment variable, but do not overwrite if it is exist. 6482 __kmp_env_set(name, __kmp_registration_str, 0); 6483 // Check the variable is written. 6484 value = __kmp_env_get(name); 6485 if (value != NULL && strcmp(value, __kmp_registration_str) == 0) { 6486 6487 done = 1; // Ok, environment variable set successfully, exit the loop. 6488 6489 } else { 6490 6491 // Oops. Write failed. Another copy of OpenMP RTL is in memory. 6492 // Check whether it alive or dead. 6493 int neighbor = 0; // 0 -- unknown status, 1 -- alive, 2 -- dead. 6494 char *tail = value; 6495 char *flag_addr_str = NULL; 6496 char *flag_val_str = NULL; 6497 char const *file_name = NULL; 6498 __kmp_str_split(tail, '-', &flag_addr_str, &tail); 6499 __kmp_str_split(tail, '-', &flag_val_str, &tail); 6500 file_name = tail; 6501 if (tail != NULL) { 6502 long *flag_addr = 0; 6503 long flag_val = 0; 6504 KMP_SSCANF(flag_addr_str, "%p", RCAST(void**, &flag_addr)); 6505 KMP_SSCANF(flag_val_str, "%lx", &flag_val); 6506 if (flag_addr != 0 && flag_val != 0 && strcmp(file_name, "") != 0) { 6507 // First, check whether environment-encoded address is mapped into 6508 // addr space. 6509 // If so, dereference it to see if it still has the right value. 6510 if (__kmp_is_address_mapped(flag_addr) && *flag_addr == flag_val) { 6511 neighbor = 1; 6512 } else { 6513 // If not, then we know the other copy of the library is no longer 6514 // running. 6515 neighbor = 2; 6516 } 6517 } 6518 } 6519 switch (neighbor) { 6520 case 0: // Cannot parse environment variable -- neighbor status unknown. 6521 // Assume it is the incompatible format of future version of the 6522 // library. Assume the other library is alive. 6523 // WARN( ... ); // TODO: Issue a warning. 6524 file_name = "unknown library"; 6525 KMP_FALLTHROUGH(); 6526 // Attention! Falling to the next case. That's intentional. 6527 case 1: { // Neighbor is alive. 6528 // Check it is allowed. 6529 char *duplicate_ok = __kmp_env_get("KMP_DUPLICATE_LIB_OK"); 6530 if (!__kmp_str_match_true(duplicate_ok)) { 6531 // That's not allowed. Issue fatal error. 6532 __kmp_fatal(KMP_MSG(DuplicateLibrary, KMP_LIBRARY_FILE, file_name), 6533 KMP_HNT(DuplicateLibrary), __kmp_msg_null); 6534 } 6535 KMP_INTERNAL_FREE(duplicate_ok); 6536 __kmp_duplicate_library_ok = 1; 6537 done = 1; // Exit the loop. 6538 } break; 6539 case 2: { // Neighbor is dead. 6540 // Clear the variable and try to register library again. 6541 __kmp_env_unset(name); 6542 } break; 6543 default: { KMP_DEBUG_ASSERT(0); } break; 6544 } 6545 } 6546 KMP_INTERNAL_FREE((void *)value); 6547 } 6548 KMP_INTERNAL_FREE((void *)name); 6549 6550 } // func __kmp_register_library_startup 6551 6552 void __kmp_unregister_library(void) { 6553 6554 char *name = __kmp_reg_status_name(); 6555 char *value = __kmp_env_get(name); 6556 6557 KMP_DEBUG_ASSERT(__kmp_registration_flag != 0); 6558 KMP_DEBUG_ASSERT(__kmp_registration_str != NULL); 6559 if (value != NULL && strcmp(value, __kmp_registration_str) == 0) { 6560 // Ok, this is our variable. Delete it. 6561 __kmp_env_unset(name); 6562 } 6563 6564 KMP_INTERNAL_FREE(__kmp_registration_str); 6565 KMP_INTERNAL_FREE(value); 6566 KMP_INTERNAL_FREE(name); 6567 6568 __kmp_registration_flag = 0; 6569 __kmp_registration_str = NULL; 6570 6571 } // __kmp_unregister_library 6572 6573 // End of Library registration stuff. 6574 // ----------------------------------------------------------------------------- 6575 6576 #if KMP_MIC_SUPPORTED 6577 6578 static void __kmp_check_mic_type() { 6579 kmp_cpuid_t cpuid_state = {0}; 6580 kmp_cpuid_t *cs_p = &cpuid_state; 6581 __kmp_x86_cpuid(1, 0, cs_p); 6582 // We don't support mic1 at the moment 6583 if ((cs_p->eax & 0xff0) == 0xB10) { 6584 __kmp_mic_type = mic2; 6585 } else if ((cs_p->eax & 0xf0ff0) == 0x50670) { 6586 __kmp_mic_type = mic3; 6587 } else { 6588 __kmp_mic_type = non_mic; 6589 } 6590 } 6591 6592 #endif /* KMP_MIC_SUPPORTED */ 6593 6594 static void __kmp_do_serial_initialize(void) { 6595 int i, gtid; 6596 int size; 6597 6598 KA_TRACE(10, ("__kmp_do_serial_initialize: enter\n")); 6599 6600 KMP_DEBUG_ASSERT(sizeof(kmp_int32) == 4); 6601 KMP_DEBUG_ASSERT(sizeof(kmp_uint32) == 4); 6602 KMP_DEBUG_ASSERT(sizeof(kmp_int64) == 8); 6603 KMP_DEBUG_ASSERT(sizeof(kmp_uint64) == 8); 6604 KMP_DEBUG_ASSERT(sizeof(kmp_intptr_t) == sizeof(void *)); 6605 6606 #if OMPT_SUPPORT 6607 ompt_pre_init(); 6608 #endif 6609 6610 __kmp_validate_locks(); 6611 6612 /* Initialize internal memory allocator */ 6613 __kmp_init_allocator(); 6614 6615 /* Register the library startup via an environment variable and check to see 6616 whether another copy of the library is already registered. */ 6617 6618 __kmp_register_library_startup(); 6619 6620 /* TODO reinitialization of library */ 6621 if (TCR_4(__kmp_global.g.g_done)) { 6622 KA_TRACE(10, ("__kmp_do_serial_initialize: reinitialization of library\n")); 6623 } 6624 6625 __kmp_global.g.g_abort = 0; 6626 TCW_SYNC_4(__kmp_global.g.g_done, FALSE); 6627 6628 /* initialize the locks */ 6629 #if KMP_USE_ADAPTIVE_LOCKS 6630 #if KMP_DEBUG_ADAPTIVE_LOCKS 6631 __kmp_init_speculative_stats(); 6632 #endif 6633 #endif 6634 #if KMP_STATS_ENABLED 6635 __kmp_stats_init(); 6636 #endif 6637 __kmp_init_lock(&__kmp_global_lock); 6638 __kmp_init_queuing_lock(&__kmp_dispatch_lock); 6639 __kmp_init_lock(&__kmp_debug_lock); 6640 __kmp_init_atomic_lock(&__kmp_atomic_lock); 6641 __kmp_init_atomic_lock(&__kmp_atomic_lock_1i); 6642 __kmp_init_atomic_lock(&__kmp_atomic_lock_2i); 6643 __kmp_init_atomic_lock(&__kmp_atomic_lock_4i); 6644 __kmp_init_atomic_lock(&__kmp_atomic_lock_4r); 6645 __kmp_init_atomic_lock(&__kmp_atomic_lock_8i); 6646 __kmp_init_atomic_lock(&__kmp_atomic_lock_8r); 6647 __kmp_init_atomic_lock(&__kmp_atomic_lock_8c); 6648 __kmp_init_atomic_lock(&__kmp_atomic_lock_10r); 6649 __kmp_init_atomic_lock(&__kmp_atomic_lock_16r); 6650 __kmp_init_atomic_lock(&__kmp_atomic_lock_16c); 6651 __kmp_init_atomic_lock(&__kmp_atomic_lock_20c); 6652 __kmp_init_atomic_lock(&__kmp_atomic_lock_32c); 6653 __kmp_init_bootstrap_lock(&__kmp_forkjoin_lock); 6654 __kmp_init_bootstrap_lock(&__kmp_exit_lock); 6655 #if KMP_USE_MONITOR 6656 __kmp_init_bootstrap_lock(&__kmp_monitor_lock); 6657 #endif 6658 __kmp_init_bootstrap_lock(&__kmp_tp_cached_lock); 6659 6660 /* conduct initialization and initial setup of configuration */ 6661 6662 __kmp_runtime_initialize(); 6663 6664 #if KMP_MIC_SUPPORTED 6665 __kmp_check_mic_type(); 6666 #endif 6667 6668 // Some global variable initialization moved here from kmp_env_initialize() 6669 #ifdef KMP_DEBUG 6670 kmp_diag = 0; 6671 #endif 6672 __kmp_abort_delay = 0; 6673 6674 // From __kmp_init_dflt_team_nth() 6675 /* assume the entire machine will be used */ 6676 __kmp_dflt_team_nth_ub = __kmp_xproc; 6677 if (__kmp_dflt_team_nth_ub < KMP_MIN_NTH) { 6678 __kmp_dflt_team_nth_ub = KMP_MIN_NTH; 6679 } 6680 if (__kmp_dflt_team_nth_ub > __kmp_sys_max_nth) { 6681 __kmp_dflt_team_nth_ub = __kmp_sys_max_nth; 6682 } 6683 __kmp_max_nth = __kmp_sys_max_nth; 6684 __kmp_cg_max_nth = __kmp_sys_max_nth; 6685 __kmp_teams_max_nth = __kmp_xproc; // set a "reasonable" default 6686 if (__kmp_teams_max_nth > __kmp_sys_max_nth) { 6687 __kmp_teams_max_nth = __kmp_sys_max_nth; 6688 } 6689 6690 // Three vars below moved here from __kmp_env_initialize() "KMP_BLOCKTIME" 6691 // part 6692 __kmp_dflt_blocktime = KMP_DEFAULT_BLOCKTIME; 6693 #if KMP_USE_MONITOR 6694 __kmp_monitor_wakeups = 6695 KMP_WAKEUPS_FROM_BLOCKTIME(__kmp_dflt_blocktime, __kmp_monitor_wakeups); 6696 __kmp_bt_intervals = 6697 KMP_INTERVALS_FROM_BLOCKTIME(__kmp_dflt_blocktime, __kmp_monitor_wakeups); 6698 #endif 6699 // From "KMP_LIBRARY" part of __kmp_env_initialize() 6700 __kmp_library = library_throughput; 6701 // From KMP_SCHEDULE initialization 6702 __kmp_static = kmp_sch_static_balanced; 6703 // AC: do not use analytical here, because it is non-monotonous 6704 //__kmp_guided = kmp_sch_guided_iterative_chunked; 6705 //__kmp_auto = kmp_sch_guided_analytical_chunked; // AC: it is the default, no 6706 // need to repeat assignment 6707 // Barrier initialization. Moved here from __kmp_env_initialize() Barrier branch 6708 // bit control and barrier method control parts 6709 #if KMP_FAST_REDUCTION_BARRIER 6710 #define kmp_reduction_barrier_gather_bb ((int)1) 6711 #define kmp_reduction_barrier_release_bb ((int)1) 6712 #define kmp_reduction_barrier_gather_pat bp_hyper_bar 6713 #define kmp_reduction_barrier_release_pat bp_hyper_bar 6714 #endif // KMP_FAST_REDUCTION_BARRIER 6715 for (i = bs_plain_barrier; i < bs_last_barrier; i++) { 6716 __kmp_barrier_gather_branch_bits[i] = __kmp_barrier_gather_bb_dflt; 6717 __kmp_barrier_release_branch_bits[i] = __kmp_barrier_release_bb_dflt; 6718 __kmp_barrier_gather_pattern[i] = __kmp_barrier_gather_pat_dflt; 6719 __kmp_barrier_release_pattern[i] = __kmp_barrier_release_pat_dflt; 6720 #if KMP_FAST_REDUCTION_BARRIER 6721 if (i == bs_reduction_barrier) { // tested and confirmed on ALTIX only ( 6722 // lin_64 ): hyper,1 6723 __kmp_barrier_gather_branch_bits[i] = kmp_reduction_barrier_gather_bb; 6724 __kmp_barrier_release_branch_bits[i] = kmp_reduction_barrier_release_bb; 6725 __kmp_barrier_gather_pattern[i] = kmp_reduction_barrier_gather_pat; 6726 __kmp_barrier_release_pattern[i] = kmp_reduction_barrier_release_pat; 6727 } 6728 #endif // KMP_FAST_REDUCTION_BARRIER 6729 } 6730 #if KMP_FAST_REDUCTION_BARRIER 6731 #undef kmp_reduction_barrier_release_pat 6732 #undef kmp_reduction_barrier_gather_pat 6733 #undef kmp_reduction_barrier_release_bb 6734 #undef kmp_reduction_barrier_gather_bb 6735 #endif // KMP_FAST_REDUCTION_BARRIER 6736 #if KMP_MIC_SUPPORTED 6737 if (__kmp_mic_type == mic2) { // KNC 6738 // AC: plane=3,2, forkjoin=2,1 are optimal for 240 threads on KNC 6739 __kmp_barrier_gather_branch_bits[bs_plain_barrier] = 3; // plain gather 6740 __kmp_barrier_release_branch_bits[bs_forkjoin_barrier] = 6741 1; // forkjoin release 6742 __kmp_barrier_gather_pattern[bs_forkjoin_barrier] = bp_hierarchical_bar; 6743 __kmp_barrier_release_pattern[bs_forkjoin_barrier] = bp_hierarchical_bar; 6744 } 6745 #if KMP_FAST_REDUCTION_BARRIER 6746 if (__kmp_mic_type == mic2) { // KNC 6747 __kmp_barrier_gather_pattern[bs_reduction_barrier] = bp_hierarchical_bar; 6748 __kmp_barrier_release_pattern[bs_reduction_barrier] = bp_hierarchical_bar; 6749 } 6750 #endif // KMP_FAST_REDUCTION_BARRIER 6751 #endif // KMP_MIC_SUPPORTED 6752 6753 // From KMP_CHECKS initialization 6754 #ifdef KMP_DEBUG 6755 __kmp_env_checks = TRUE; /* development versions have the extra checks */ 6756 #else 6757 __kmp_env_checks = FALSE; /* port versions do not have the extra checks */ 6758 #endif 6759 6760 // From "KMP_FOREIGN_THREADS_THREADPRIVATE" initialization 6761 __kmp_foreign_tp = TRUE; 6762 6763 __kmp_global.g.g_dynamic = FALSE; 6764 __kmp_global.g.g_dynamic_mode = dynamic_default; 6765 6766 __kmp_env_initialize(NULL); 6767 6768 // Print all messages in message catalog for testing purposes. 6769 #ifdef KMP_DEBUG 6770 char const *val = __kmp_env_get("KMP_DUMP_CATALOG"); 6771 if (__kmp_str_match_true(val)) { 6772 kmp_str_buf_t buffer; 6773 __kmp_str_buf_init(&buffer); 6774 __kmp_i18n_dump_catalog(&buffer); 6775 __kmp_printf("%s", buffer.str); 6776 __kmp_str_buf_free(&buffer); 6777 } 6778 __kmp_env_free(&val); 6779 #endif 6780 6781 __kmp_threads_capacity = 6782 __kmp_initial_threads_capacity(__kmp_dflt_team_nth_ub); 6783 // Moved here from __kmp_env_initialize() "KMP_ALL_THREADPRIVATE" part 6784 __kmp_tp_capacity = __kmp_default_tp_capacity( 6785 __kmp_dflt_team_nth_ub, __kmp_max_nth, __kmp_allThreadsSpecified); 6786 6787 // If the library is shut down properly, both pools must be NULL. Just in 6788 // case, set them to NULL -- some memory may leak, but subsequent code will 6789 // work even if pools are not freed. 6790 KMP_DEBUG_ASSERT(__kmp_thread_pool == NULL); 6791 KMP_DEBUG_ASSERT(__kmp_thread_pool_insert_pt == NULL); 6792 KMP_DEBUG_ASSERT(__kmp_team_pool == NULL); 6793 __kmp_thread_pool = NULL; 6794 __kmp_thread_pool_insert_pt = NULL; 6795 __kmp_team_pool = NULL; 6796 6797 /* Allocate all of the variable sized records */ 6798 /* NOTE: __kmp_threads_capacity entries are allocated, but the arrays are 6799 * expandable */ 6800 /* Since allocation is cache-aligned, just add extra padding at the end */ 6801 size = 6802 (sizeof(kmp_info_t *) + sizeof(kmp_root_t *)) * __kmp_threads_capacity + 6803 CACHE_LINE; 6804 __kmp_threads = (kmp_info_t **)__kmp_allocate(size); 6805 __kmp_root = (kmp_root_t **)((char *)__kmp_threads + 6806 sizeof(kmp_info_t *) * __kmp_threads_capacity); 6807 6808 /* init thread counts */ 6809 KMP_DEBUG_ASSERT(__kmp_all_nth == 6810 0); // Asserts fail if the library is reinitializing and 6811 KMP_DEBUG_ASSERT(__kmp_nth == 0); // something was wrong in termination. 6812 __kmp_all_nth = 0; 6813 __kmp_nth = 0; 6814 6815 /* setup the uber master thread and hierarchy */ 6816 gtid = __kmp_register_root(TRUE); 6817 KA_TRACE(10, ("__kmp_do_serial_initialize T#%d\n", gtid)); 6818 KMP_ASSERT(KMP_UBER_GTID(gtid)); 6819 KMP_ASSERT(KMP_INITIAL_GTID(gtid)); 6820 6821 KMP_MB(); /* Flush all pending memory write invalidates. */ 6822 6823 __kmp_common_initialize(); 6824 6825 #if KMP_OS_UNIX 6826 /* invoke the child fork handler */ 6827 __kmp_register_atfork(); 6828 #endif 6829 6830 #if !KMP_DYNAMIC_LIB 6831 { 6832 /* Invoke the exit handler when the program finishes, only for static 6833 library. For dynamic library, we already have _fini and DllMain. */ 6834 int rc = atexit(__kmp_internal_end_atexit); 6835 if (rc != 0) { 6836 __kmp_fatal(KMP_MSG(FunctionError, "atexit()"), KMP_ERR(rc), 6837 __kmp_msg_null); 6838 } 6839 } 6840 #endif 6841 6842 #if KMP_HANDLE_SIGNALS 6843 #if KMP_OS_UNIX 6844 /* NOTE: make sure that this is called before the user installs their own 6845 signal handlers so that the user handlers are called first. this way they 6846 can return false, not call our handler, avoid terminating the library, and 6847 continue execution where they left off. */ 6848 __kmp_install_signals(FALSE); 6849 #endif /* KMP_OS_UNIX */ 6850 #if KMP_OS_WINDOWS 6851 __kmp_install_signals(TRUE); 6852 #endif /* KMP_OS_WINDOWS */ 6853 #endif 6854 6855 /* we have finished the serial initialization */ 6856 __kmp_init_counter++; 6857 6858 __kmp_init_serial = TRUE; 6859 6860 if (__kmp_settings) { 6861 __kmp_env_print(); 6862 } 6863 6864 #if OMP_40_ENABLED 6865 if (__kmp_display_env || __kmp_display_env_verbose) { 6866 __kmp_env_print_2(); 6867 } 6868 #endif // OMP_40_ENABLED 6869 6870 #if OMPT_SUPPORT 6871 ompt_post_init(); 6872 #endif 6873 6874 KMP_MB(); 6875 6876 KA_TRACE(10, ("__kmp_do_serial_initialize: exit\n")); 6877 } 6878 6879 void __kmp_serial_initialize(void) { 6880 if (__kmp_init_serial) { 6881 return; 6882 } 6883 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6884 if (__kmp_init_serial) { 6885 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6886 return; 6887 } 6888 __kmp_do_serial_initialize(); 6889 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6890 } 6891 6892 static void __kmp_do_middle_initialize(void) { 6893 int i, j; 6894 int prev_dflt_team_nth; 6895 6896 if (!__kmp_init_serial) { 6897 __kmp_do_serial_initialize(); 6898 } 6899 6900 KA_TRACE(10, ("__kmp_middle_initialize: enter\n")); 6901 6902 // Save the previous value for the __kmp_dflt_team_nth so that 6903 // we can avoid some reinitialization if it hasn't changed. 6904 prev_dflt_team_nth = __kmp_dflt_team_nth; 6905 6906 #if KMP_AFFINITY_SUPPORTED 6907 // __kmp_affinity_initialize() will try to set __kmp_ncores to the 6908 // number of cores on the machine. 6909 __kmp_affinity_initialize(); 6910 6911 // Run through the __kmp_threads array and set the affinity mask 6912 // for each root thread that is currently registered with the RTL. 6913 for (i = 0; i < __kmp_threads_capacity; i++) { 6914 if (TCR_PTR(__kmp_threads[i]) != NULL) { 6915 __kmp_affinity_set_init_mask(i, TRUE); 6916 } 6917 } 6918 #endif /* KMP_AFFINITY_SUPPORTED */ 6919 6920 KMP_ASSERT(__kmp_xproc > 0); 6921 if (__kmp_avail_proc == 0) { 6922 __kmp_avail_proc = __kmp_xproc; 6923 } 6924 6925 // If there were empty places in num_threads list (OMP_NUM_THREADS=,,2,3), 6926 // correct them now 6927 j = 0; 6928 while ((j < __kmp_nested_nth.used) && !__kmp_nested_nth.nth[j]) { 6929 __kmp_nested_nth.nth[j] = __kmp_dflt_team_nth = __kmp_dflt_team_nth_ub = 6930 __kmp_avail_proc; 6931 j++; 6932 } 6933 6934 if (__kmp_dflt_team_nth == 0) { 6935 #ifdef KMP_DFLT_NTH_CORES 6936 // Default #threads = #cores 6937 __kmp_dflt_team_nth = __kmp_ncores; 6938 KA_TRACE(20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = " 6939 "__kmp_ncores (%d)\n", 6940 __kmp_dflt_team_nth)); 6941 #else 6942 // Default #threads = #available OS procs 6943 __kmp_dflt_team_nth = __kmp_avail_proc; 6944 KA_TRACE(20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = " 6945 "__kmp_avail_proc(%d)\n", 6946 __kmp_dflt_team_nth)); 6947 #endif /* KMP_DFLT_NTH_CORES */ 6948 } 6949 6950 if (__kmp_dflt_team_nth < KMP_MIN_NTH) { 6951 __kmp_dflt_team_nth = KMP_MIN_NTH; 6952 } 6953 if (__kmp_dflt_team_nth > __kmp_sys_max_nth) { 6954 __kmp_dflt_team_nth = __kmp_sys_max_nth; 6955 } 6956 6957 // There's no harm in continuing if the following check fails, 6958 // but it indicates an error in the previous logic. 6959 KMP_DEBUG_ASSERT(__kmp_dflt_team_nth <= __kmp_dflt_team_nth_ub); 6960 6961 if (__kmp_dflt_team_nth != prev_dflt_team_nth) { 6962 // Run through the __kmp_threads array and set the num threads icv for each 6963 // root thread that is currently registered with the RTL (which has not 6964 // already explicitly set its nthreads-var with a call to 6965 // omp_set_num_threads()). 6966 for (i = 0; i < __kmp_threads_capacity; i++) { 6967 kmp_info_t *thread = __kmp_threads[i]; 6968 if (thread == NULL) 6969 continue; 6970 if (thread->th.th_current_task->td_icvs.nproc != 0) 6971 continue; 6972 6973 set__nproc(__kmp_threads[i], __kmp_dflt_team_nth); 6974 } 6975 } 6976 KA_TRACE( 6977 20, 6978 ("__kmp_middle_initialize: final value for __kmp_dflt_team_nth = %d\n", 6979 __kmp_dflt_team_nth)); 6980 6981 #ifdef KMP_ADJUST_BLOCKTIME 6982 /* Adjust blocktime to zero if necessary now that __kmp_avail_proc is set */ 6983 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 6984 KMP_DEBUG_ASSERT(__kmp_avail_proc > 0); 6985 if (__kmp_nth > __kmp_avail_proc) { 6986 __kmp_zero_bt = TRUE; 6987 } 6988 } 6989 #endif /* KMP_ADJUST_BLOCKTIME */ 6990 6991 /* we have finished middle initialization */ 6992 TCW_SYNC_4(__kmp_init_middle, TRUE); 6993 6994 KA_TRACE(10, ("__kmp_do_middle_initialize: exit\n")); 6995 } 6996 6997 void __kmp_middle_initialize(void) { 6998 if (__kmp_init_middle) { 6999 return; 7000 } 7001 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 7002 if (__kmp_init_middle) { 7003 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7004 return; 7005 } 7006 __kmp_do_middle_initialize(); 7007 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7008 } 7009 7010 void __kmp_parallel_initialize(void) { 7011 int gtid = __kmp_entry_gtid(); // this might be a new root 7012 7013 /* synchronize parallel initialization (for sibling) */ 7014 if (TCR_4(__kmp_init_parallel)) 7015 return; 7016 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 7017 if (TCR_4(__kmp_init_parallel)) { 7018 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7019 return; 7020 } 7021 7022 /* TODO reinitialization after we have already shut down */ 7023 if (TCR_4(__kmp_global.g.g_done)) { 7024 KA_TRACE( 7025 10, 7026 ("__kmp_parallel_initialize: attempt to init while shutting down\n")); 7027 __kmp_infinite_loop(); 7028 } 7029 7030 /* jc: The lock __kmp_initz_lock is already held, so calling 7031 __kmp_serial_initialize would cause a deadlock. So we call 7032 __kmp_do_serial_initialize directly. */ 7033 if (!__kmp_init_middle) { 7034 __kmp_do_middle_initialize(); 7035 } 7036 7037 #if OMP_50_ENABLED 7038 __kmp_resume_if_hard_paused(); 7039 #endif 7040 7041 /* begin initialization */ 7042 KA_TRACE(10, ("__kmp_parallel_initialize: enter\n")); 7043 KMP_ASSERT(KMP_UBER_GTID(gtid)); 7044 7045 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 7046 // Save the FP control regs. 7047 // Worker threads will set theirs to these values at thread startup. 7048 __kmp_store_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word); 7049 __kmp_store_mxcsr(&__kmp_init_mxcsr); 7050 __kmp_init_mxcsr &= KMP_X86_MXCSR_MASK; 7051 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 7052 7053 #if KMP_OS_UNIX 7054 #if KMP_HANDLE_SIGNALS 7055 /* must be after __kmp_serial_initialize */ 7056 __kmp_install_signals(TRUE); 7057 #endif 7058 #endif 7059 7060 __kmp_suspend_initialize(); 7061 7062 #if defined(USE_LOAD_BALANCE) 7063 if (__kmp_global.g.g_dynamic_mode == dynamic_default) { 7064 __kmp_global.g.g_dynamic_mode = dynamic_load_balance; 7065 } 7066 #else 7067 if (__kmp_global.g.g_dynamic_mode == dynamic_default) { 7068 __kmp_global.g.g_dynamic_mode = dynamic_thread_limit; 7069 } 7070 #endif 7071 7072 if (__kmp_version) { 7073 __kmp_print_version_2(); 7074 } 7075 7076 /* we have finished parallel initialization */ 7077 TCW_SYNC_4(__kmp_init_parallel, TRUE); 7078 7079 KMP_MB(); 7080 KA_TRACE(10, ("__kmp_parallel_initialize: exit\n")); 7081 7082 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7083 } 7084 7085 /* ------------------------------------------------------------------------ */ 7086 7087 void __kmp_run_before_invoked_task(int gtid, int tid, kmp_info_t *this_thr, 7088 kmp_team_t *team) { 7089 kmp_disp_t *dispatch; 7090 7091 KMP_MB(); 7092 7093 /* none of the threads have encountered any constructs, yet. */ 7094 this_thr->th.th_local.this_construct = 0; 7095 #if KMP_CACHE_MANAGE 7096 KMP_CACHE_PREFETCH(&this_thr->th.th_bar[bs_forkjoin_barrier].bb.b_arrived); 7097 #endif /* KMP_CACHE_MANAGE */ 7098 dispatch = (kmp_disp_t *)TCR_PTR(this_thr->th.th_dispatch); 7099 KMP_DEBUG_ASSERT(dispatch); 7100 KMP_DEBUG_ASSERT(team->t.t_dispatch); 7101 // KMP_DEBUG_ASSERT( this_thr->th.th_dispatch == &team->t.t_dispatch[ 7102 // this_thr->th.th_info.ds.ds_tid ] ); 7103 7104 dispatch->th_disp_index = 0; /* reset the dispatch buffer counter */ 7105 #if OMP_45_ENABLED 7106 dispatch->th_doacross_buf_idx = 7107 0; /* reset the doacross dispatch buffer counter */ 7108 #endif 7109 if (__kmp_env_consistency_check) 7110 __kmp_push_parallel(gtid, team->t.t_ident); 7111 7112 KMP_MB(); /* Flush all pending memory write invalidates. */ 7113 } 7114 7115 void __kmp_run_after_invoked_task(int gtid, int tid, kmp_info_t *this_thr, 7116 kmp_team_t *team) { 7117 if (__kmp_env_consistency_check) 7118 __kmp_pop_parallel(gtid, team->t.t_ident); 7119 7120 __kmp_finish_implicit_task(this_thr); 7121 } 7122 7123 int __kmp_invoke_task_func(int gtid) { 7124 int rc; 7125 int tid = __kmp_tid_from_gtid(gtid); 7126 kmp_info_t *this_thr = __kmp_threads[gtid]; 7127 kmp_team_t *team = this_thr->th.th_team; 7128 7129 __kmp_run_before_invoked_task(gtid, tid, this_thr, team); 7130 #if USE_ITT_BUILD 7131 if (__itt_stack_caller_create_ptr) { 7132 __kmp_itt_stack_callee_enter( 7133 (__itt_caller) 7134 team->t.t_stack_id); // inform ittnotify about entering user's code 7135 } 7136 #endif /* USE_ITT_BUILD */ 7137 #if INCLUDE_SSC_MARKS 7138 SSC_MARK_INVOKING(); 7139 #endif 7140 7141 #if OMPT_SUPPORT 7142 void *dummy; 7143 void **exit_runtime_p; 7144 ompt_data_t *my_task_data; 7145 ompt_data_t *my_parallel_data; 7146 int ompt_team_size; 7147 7148 if (ompt_enabled.enabled) { 7149 exit_runtime_p = &( 7150 team->t.t_implicit_task_taskdata[tid].ompt_task_info.frame.exit_frame.ptr); 7151 } else { 7152 exit_runtime_p = &dummy; 7153 } 7154 7155 my_task_data = 7156 &(team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data); 7157 my_parallel_data = &(team->t.ompt_team_info.parallel_data); 7158 if (ompt_enabled.ompt_callback_implicit_task) { 7159 ompt_team_size = team->t.t_nproc; 7160 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 7161 ompt_scope_begin, my_parallel_data, my_task_data, ompt_team_size, 7162 __kmp_tid_from_gtid(gtid), ompt_task_implicit); // TODO: Can this be ompt_task_initial? 7163 OMPT_CUR_TASK_INFO(this_thr)->thread_num = __kmp_tid_from_gtid(gtid); 7164 } 7165 #endif 7166 7167 #if KMP_STATS_ENABLED 7168 stats_state_e previous_state = KMP_GET_THREAD_STATE(); 7169 if (previous_state == stats_state_e::TEAMS_REGION) { 7170 KMP_PUSH_PARTITIONED_TIMER(OMP_teams); 7171 } else { 7172 KMP_PUSH_PARTITIONED_TIMER(OMP_parallel); 7173 } 7174 KMP_SET_THREAD_STATE(IMPLICIT_TASK); 7175 #endif 7176 7177 rc = __kmp_invoke_microtask((microtask_t)TCR_SYNC_PTR(team->t.t_pkfn), gtid, 7178 tid, (int)team->t.t_argc, (void **)team->t.t_argv 7179 #if OMPT_SUPPORT 7180 , 7181 exit_runtime_p 7182 #endif 7183 ); 7184 #if OMPT_SUPPORT 7185 *exit_runtime_p = NULL; 7186 #endif 7187 7188 #if KMP_STATS_ENABLED 7189 if (previous_state == stats_state_e::TEAMS_REGION) { 7190 KMP_SET_THREAD_STATE(previous_state); 7191 } 7192 KMP_POP_PARTITIONED_TIMER(); 7193 #endif 7194 7195 #if USE_ITT_BUILD 7196 if (__itt_stack_caller_create_ptr) { 7197 __kmp_itt_stack_callee_leave( 7198 (__itt_caller) 7199 team->t.t_stack_id); // inform ittnotify about leaving user's code 7200 } 7201 #endif /* USE_ITT_BUILD */ 7202 __kmp_run_after_invoked_task(gtid, tid, this_thr, team); 7203 7204 return rc; 7205 } 7206 7207 #if OMP_40_ENABLED 7208 void __kmp_teams_master(int gtid) { 7209 // This routine is called by all master threads in teams construct 7210 kmp_info_t *thr = __kmp_threads[gtid]; 7211 kmp_team_t *team = thr->th.th_team; 7212 ident_t *loc = team->t.t_ident; 7213 thr->th.th_set_nproc = thr->th.th_teams_size.nth; 7214 KMP_DEBUG_ASSERT(thr->th.th_teams_microtask); 7215 KMP_DEBUG_ASSERT(thr->th.th_set_nproc); 7216 KA_TRACE(20, ("__kmp_teams_master: T#%d, Tid %d, microtask %p\n", gtid, 7217 __kmp_tid_from_gtid(gtid), thr->th.th_teams_microtask)); 7218 7219 // This thread is a new CG root. Set up the proper variables. 7220 kmp_cg_root_t *tmp = (kmp_cg_root_t *)__kmp_allocate(sizeof(kmp_cg_root_t)); 7221 tmp->cg_root = thr; // Make thr the CG root 7222 // Init to thread limit that was stored when league masters were forked 7223 tmp->cg_thread_limit = thr->th.th_current_task->td_icvs.thread_limit; 7224 tmp->cg_nthreads = 1; // Init counter to one active thread, this one 7225 KA_TRACE(100, ("__kmp_teams_master: Thread %p created node %p and init" 7226 " cg_threads to 1\n", 7227 thr, tmp)); 7228 tmp->up = thr->th.th_cg_roots; 7229 thr->th.th_cg_roots = tmp; 7230 7231 // Launch league of teams now, but not let workers execute 7232 // (they hang on fork barrier until next parallel) 7233 #if INCLUDE_SSC_MARKS 7234 SSC_MARK_FORKING(); 7235 #endif 7236 __kmp_fork_call(loc, gtid, fork_context_intel, team->t.t_argc, 7237 (microtask_t)thr->th.th_teams_microtask, // "wrapped" task 7238 VOLATILE_CAST(launch_t) __kmp_invoke_task_func, NULL); 7239 #if INCLUDE_SSC_MARKS 7240 SSC_MARK_JOINING(); 7241 #endif 7242 // If the team size was reduced from the limit, set it to the new size 7243 if (thr->th.th_team_nproc < thr->th.th_teams_size.nth) 7244 thr->th.th_teams_size.nth = thr->th.th_team_nproc; 7245 // AC: last parameter "1" eliminates join barrier which won't work because 7246 // worker threads are in a fork barrier waiting for more parallel regions 7247 __kmp_join_call(loc, gtid 7248 #if OMPT_SUPPORT 7249 , 7250 fork_context_intel 7251 #endif 7252 , 7253 1); 7254 } 7255 7256 int __kmp_invoke_teams_master(int gtid) { 7257 kmp_info_t *this_thr = __kmp_threads[gtid]; 7258 kmp_team_t *team = this_thr->th.th_team; 7259 #if KMP_DEBUG 7260 if (!__kmp_threads[gtid]->th.th_team->t.t_serialized) 7261 KMP_DEBUG_ASSERT((void *)__kmp_threads[gtid]->th.th_team->t.t_pkfn == 7262 (void *)__kmp_teams_master); 7263 #endif 7264 __kmp_run_before_invoked_task(gtid, 0, this_thr, team); 7265 __kmp_teams_master(gtid); 7266 __kmp_run_after_invoked_task(gtid, 0, this_thr, team); 7267 return 1; 7268 } 7269 #endif /* OMP_40_ENABLED */ 7270 7271 /* this sets the requested number of threads for the next parallel region 7272 encountered by this team. since this should be enclosed in the forkjoin 7273 critical section it should avoid race conditions with assymmetrical nested 7274 parallelism */ 7275 7276 void __kmp_push_num_threads(ident_t *id, int gtid, int num_threads) { 7277 kmp_info_t *thr = __kmp_threads[gtid]; 7278 7279 if (num_threads > 0) 7280 thr->th.th_set_nproc = num_threads; 7281 } 7282 7283 #if OMP_40_ENABLED 7284 7285 /* this sets the requested number of teams for the teams region and/or 7286 the number of threads for the next parallel region encountered */ 7287 void __kmp_push_num_teams(ident_t *id, int gtid, int num_teams, 7288 int num_threads) { 7289 kmp_info_t *thr = __kmp_threads[gtid]; 7290 KMP_DEBUG_ASSERT(num_teams >= 0); 7291 KMP_DEBUG_ASSERT(num_threads >= 0); 7292 7293 if (num_teams == 0) 7294 num_teams = 1; // default number of teams is 1. 7295 if (num_teams > __kmp_teams_max_nth) { // if too many teams requested? 7296 if (!__kmp_reserve_warn) { 7297 __kmp_reserve_warn = 1; 7298 __kmp_msg(kmp_ms_warning, 7299 KMP_MSG(CantFormThrTeam, num_teams, __kmp_teams_max_nth), 7300 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 7301 } 7302 num_teams = __kmp_teams_max_nth; 7303 } 7304 // Set number of teams (number of threads in the outer "parallel" of the 7305 // teams) 7306 thr->th.th_set_nproc = thr->th.th_teams_size.nteams = num_teams; 7307 7308 // Remember the number of threads for inner parallel regions 7309 if (num_threads == 0) { 7310 if (!TCR_4(__kmp_init_middle)) 7311 __kmp_middle_initialize(); // get __kmp_avail_proc calculated 7312 num_threads = __kmp_avail_proc / num_teams; 7313 if (num_teams * num_threads > __kmp_teams_max_nth) { 7314 // adjust num_threads w/o warning as it is not user setting 7315 num_threads = __kmp_teams_max_nth / num_teams; 7316 } 7317 } else { 7318 // This thread will be the master of the league masters 7319 // Store new thread limit; old limit is saved in th_cg_roots list 7320 thr->th.th_current_task->td_icvs.thread_limit = num_threads; 7321 7322 if (num_teams * num_threads > __kmp_teams_max_nth) { 7323 int new_threads = __kmp_teams_max_nth / num_teams; 7324 if (!__kmp_reserve_warn) { // user asked for too many threads 7325 __kmp_reserve_warn = 1; // conflicts with KMP_TEAMS_THREAD_LIMIT 7326 __kmp_msg(kmp_ms_warning, 7327 KMP_MSG(CantFormThrTeam, num_threads, new_threads), 7328 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 7329 } 7330 num_threads = new_threads; 7331 } 7332 } 7333 thr->th.th_teams_size.nth = num_threads; 7334 } 7335 7336 // Set the proc_bind var to use in the following parallel region. 7337 void __kmp_push_proc_bind(ident_t *id, int gtid, kmp_proc_bind_t proc_bind) { 7338 kmp_info_t *thr = __kmp_threads[gtid]; 7339 thr->th.th_set_proc_bind = proc_bind; 7340 } 7341 7342 #endif /* OMP_40_ENABLED */ 7343 7344 /* Launch the worker threads into the microtask. */ 7345 7346 void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team) { 7347 kmp_info_t *this_thr = __kmp_threads[gtid]; 7348 7349 #ifdef KMP_DEBUG 7350 int f; 7351 #endif /* KMP_DEBUG */ 7352 7353 KMP_DEBUG_ASSERT(team); 7354 KMP_DEBUG_ASSERT(this_thr->th.th_team == team); 7355 KMP_ASSERT(KMP_MASTER_GTID(gtid)); 7356 KMP_MB(); /* Flush all pending memory write invalidates. */ 7357 7358 team->t.t_construct = 0; /* no single directives seen yet */ 7359 team->t.t_ordered.dt.t_value = 7360 0; /* thread 0 enters the ordered section first */ 7361 7362 /* Reset the identifiers on the dispatch buffer */ 7363 KMP_DEBUG_ASSERT(team->t.t_disp_buffer); 7364 if (team->t.t_max_nproc > 1) { 7365 int i; 7366 for (i = 0; i < __kmp_dispatch_num_buffers; ++i) { 7367 team->t.t_disp_buffer[i].buffer_index = i; 7368 #if OMP_45_ENABLED 7369 team->t.t_disp_buffer[i].doacross_buf_idx = i; 7370 #endif 7371 } 7372 } else { 7373 team->t.t_disp_buffer[0].buffer_index = 0; 7374 #if OMP_45_ENABLED 7375 team->t.t_disp_buffer[0].doacross_buf_idx = 0; 7376 #endif 7377 } 7378 7379 KMP_MB(); /* Flush all pending memory write invalidates. */ 7380 KMP_ASSERT(this_thr->th.th_team == team); 7381 7382 #ifdef KMP_DEBUG 7383 for (f = 0; f < team->t.t_nproc; f++) { 7384 KMP_DEBUG_ASSERT(team->t.t_threads[f] && 7385 team->t.t_threads[f]->th.th_team_nproc == team->t.t_nproc); 7386 } 7387 #endif /* KMP_DEBUG */ 7388 7389 /* release the worker threads so they may begin working */ 7390 __kmp_fork_barrier(gtid, 0); 7391 } 7392 7393 void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team) { 7394 kmp_info_t *this_thr = __kmp_threads[gtid]; 7395 7396 KMP_DEBUG_ASSERT(team); 7397 KMP_DEBUG_ASSERT(this_thr->th.th_team == team); 7398 KMP_ASSERT(KMP_MASTER_GTID(gtid)); 7399 KMP_MB(); /* Flush all pending memory write invalidates. */ 7400 7401 /* Join barrier after fork */ 7402 7403 #ifdef KMP_DEBUG 7404 if (__kmp_threads[gtid] && 7405 __kmp_threads[gtid]->th.th_team_nproc != team->t.t_nproc) { 7406 __kmp_printf("GTID: %d, __kmp_threads[%d]=%p\n", gtid, gtid, 7407 __kmp_threads[gtid]); 7408 __kmp_printf("__kmp_threads[%d]->th.th_team_nproc=%d, TEAM: %p, " 7409 "team->t.t_nproc=%d\n", 7410 gtid, __kmp_threads[gtid]->th.th_team_nproc, team, 7411 team->t.t_nproc); 7412 __kmp_print_structure(); 7413 } 7414 KMP_DEBUG_ASSERT(__kmp_threads[gtid] && 7415 __kmp_threads[gtid]->th.th_team_nproc == team->t.t_nproc); 7416 #endif /* KMP_DEBUG */ 7417 7418 __kmp_join_barrier(gtid); /* wait for everyone */ 7419 #if OMPT_SUPPORT 7420 if (ompt_enabled.enabled && 7421 this_thr->th.ompt_thread_info.state == ompt_state_wait_barrier_implicit) { 7422 int ds_tid = this_thr->th.th_info.ds.ds_tid; 7423 ompt_data_t *task_data = OMPT_CUR_TASK_DATA(this_thr); 7424 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 7425 #if OMPT_OPTIONAL 7426 void *codeptr = NULL; 7427 if (KMP_MASTER_TID(ds_tid) && 7428 (ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait) || 7429 ompt_callbacks.ompt_callback(ompt_callback_sync_region))) 7430 codeptr = OMPT_CUR_TEAM_INFO(this_thr)->master_return_address; 7431 7432 if (ompt_enabled.ompt_callback_sync_region_wait) { 7433 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 7434 ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, task_data, 7435 codeptr); 7436 } 7437 if (ompt_enabled.ompt_callback_sync_region) { 7438 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 7439 ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, task_data, 7440 codeptr); 7441 } 7442 #endif 7443 if (!KMP_MASTER_TID(ds_tid) && ompt_enabled.ompt_callback_implicit_task) { 7444 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 7445 ompt_scope_end, NULL, task_data, 0, ds_tid, ompt_task_implicit); // TODO: Can this be ompt_task_initial? 7446 } 7447 } 7448 #endif 7449 7450 KMP_MB(); /* Flush all pending memory write invalidates. */ 7451 KMP_ASSERT(this_thr->th.th_team == team); 7452 } 7453 7454 /* ------------------------------------------------------------------------ */ 7455 7456 #ifdef USE_LOAD_BALANCE 7457 7458 // Return the worker threads actively spinning in the hot team, if we 7459 // are at the outermost level of parallelism. Otherwise, return 0. 7460 static int __kmp_active_hot_team_nproc(kmp_root_t *root) { 7461 int i; 7462 int retval; 7463 kmp_team_t *hot_team; 7464 7465 if (root->r.r_active) { 7466 return 0; 7467 } 7468 hot_team = root->r.r_hot_team; 7469 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { 7470 return hot_team->t.t_nproc - 1; // Don't count master thread 7471 } 7472 7473 // Skip the master thread - it is accounted for elsewhere. 7474 retval = 0; 7475 for (i = 1; i < hot_team->t.t_nproc; i++) { 7476 if (hot_team->t.t_threads[i]->th.th_active) { 7477 retval++; 7478 } 7479 } 7480 return retval; 7481 } 7482 7483 // Perform an automatic adjustment to the number of 7484 // threads used by the next parallel region. 7485 static int __kmp_load_balance_nproc(kmp_root_t *root, int set_nproc) { 7486 int retval; 7487 int pool_active; 7488 int hot_team_active; 7489 int team_curr_active; 7490 int system_active; 7491 7492 KB_TRACE(20, ("__kmp_load_balance_nproc: called root:%p set_nproc:%d\n", root, 7493 set_nproc)); 7494 KMP_DEBUG_ASSERT(root); 7495 KMP_DEBUG_ASSERT(root->r.r_root_team->t.t_threads[0] 7496 ->th.th_current_task->td_icvs.dynamic == TRUE); 7497 KMP_DEBUG_ASSERT(set_nproc > 1); 7498 7499 if (set_nproc == 1) { 7500 KB_TRACE(20, ("__kmp_load_balance_nproc: serial execution.\n")); 7501 return 1; 7502 } 7503 7504 // Threads that are active in the thread pool, active in the hot team for this 7505 // particular root (if we are at the outer par level), and the currently 7506 // executing thread (to become the master) are available to add to the new 7507 // team, but are currently contributing to the system load, and must be 7508 // accounted for. 7509 pool_active = __kmp_thread_pool_active_nth; 7510 hot_team_active = __kmp_active_hot_team_nproc(root); 7511 team_curr_active = pool_active + hot_team_active + 1; 7512 7513 // Check the system load. 7514 system_active = __kmp_get_load_balance(__kmp_avail_proc + team_curr_active); 7515 KB_TRACE(30, ("__kmp_load_balance_nproc: system active = %d pool active = %d " 7516 "hot team active = %d\n", 7517 system_active, pool_active, hot_team_active)); 7518 7519 if (system_active < 0) { 7520 // There was an error reading the necessary info from /proc, so use the 7521 // thread limit algorithm instead. Once we set __kmp_global.g.g_dynamic_mode 7522 // = dynamic_thread_limit, we shouldn't wind up getting back here. 7523 __kmp_global.g.g_dynamic_mode = dynamic_thread_limit; 7524 KMP_WARNING(CantLoadBalUsing, "KMP_DYNAMIC_MODE=thread limit"); 7525 7526 // Make this call behave like the thread limit algorithm. 7527 retval = __kmp_avail_proc - __kmp_nth + 7528 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 7529 if (retval > set_nproc) { 7530 retval = set_nproc; 7531 } 7532 if (retval < KMP_MIN_NTH) { 7533 retval = KMP_MIN_NTH; 7534 } 7535 7536 KB_TRACE(20, ("__kmp_load_balance_nproc: thread limit exit. retval:%d\n", 7537 retval)); 7538 return retval; 7539 } 7540 7541 // There is a slight delay in the load balance algorithm in detecting new 7542 // running procs. The real system load at this instant should be at least as 7543 // large as the #active omp thread that are available to add to the team. 7544 if (system_active < team_curr_active) { 7545 system_active = team_curr_active; 7546 } 7547 retval = __kmp_avail_proc - system_active + team_curr_active; 7548 if (retval > set_nproc) { 7549 retval = set_nproc; 7550 } 7551 if (retval < KMP_MIN_NTH) { 7552 retval = KMP_MIN_NTH; 7553 } 7554 7555 KB_TRACE(20, ("__kmp_load_balance_nproc: exit. retval:%d\n", retval)); 7556 return retval; 7557 } // __kmp_load_balance_nproc() 7558 7559 #endif /* USE_LOAD_BALANCE */ 7560 7561 /* ------------------------------------------------------------------------ */ 7562 7563 /* NOTE: this is called with the __kmp_init_lock held */ 7564 void __kmp_cleanup(void) { 7565 int f; 7566 7567 KA_TRACE(10, ("__kmp_cleanup: enter\n")); 7568 7569 if (TCR_4(__kmp_init_parallel)) { 7570 #if KMP_HANDLE_SIGNALS 7571 __kmp_remove_signals(); 7572 #endif 7573 TCW_4(__kmp_init_parallel, FALSE); 7574 } 7575 7576 if (TCR_4(__kmp_init_middle)) { 7577 #if KMP_AFFINITY_SUPPORTED 7578 __kmp_affinity_uninitialize(); 7579 #endif /* KMP_AFFINITY_SUPPORTED */ 7580 __kmp_cleanup_hierarchy(); 7581 TCW_4(__kmp_init_middle, FALSE); 7582 } 7583 7584 KA_TRACE(10, ("__kmp_cleanup: go serial cleanup\n")); 7585 7586 if (__kmp_init_serial) { 7587 __kmp_runtime_destroy(); 7588 __kmp_init_serial = FALSE; 7589 } 7590 7591 __kmp_cleanup_threadprivate_caches(); 7592 7593 for (f = 0; f < __kmp_threads_capacity; f++) { 7594 if (__kmp_root[f] != NULL) { 7595 __kmp_free(__kmp_root[f]); 7596 __kmp_root[f] = NULL; 7597 } 7598 } 7599 __kmp_free(__kmp_threads); 7600 // __kmp_threads and __kmp_root were allocated at once, as single block, so 7601 // there is no need in freeing __kmp_root. 7602 __kmp_threads = NULL; 7603 __kmp_root = NULL; 7604 __kmp_threads_capacity = 0; 7605 7606 #if KMP_USE_DYNAMIC_LOCK 7607 __kmp_cleanup_indirect_user_locks(); 7608 #else 7609 __kmp_cleanup_user_locks(); 7610 #endif 7611 7612 #if KMP_AFFINITY_SUPPORTED 7613 KMP_INTERNAL_FREE(CCAST(char *, __kmp_cpuinfo_file)); 7614 __kmp_cpuinfo_file = NULL; 7615 #endif /* KMP_AFFINITY_SUPPORTED */ 7616 7617 #if KMP_USE_ADAPTIVE_LOCKS 7618 #if KMP_DEBUG_ADAPTIVE_LOCKS 7619 __kmp_print_speculative_stats(); 7620 #endif 7621 #endif 7622 KMP_INTERNAL_FREE(__kmp_nested_nth.nth); 7623 __kmp_nested_nth.nth = NULL; 7624 __kmp_nested_nth.size = 0; 7625 __kmp_nested_nth.used = 0; 7626 KMP_INTERNAL_FREE(__kmp_nested_proc_bind.bind_types); 7627 __kmp_nested_proc_bind.bind_types = NULL; 7628 __kmp_nested_proc_bind.size = 0; 7629 __kmp_nested_proc_bind.used = 0; 7630 #if OMP_50_ENABLED 7631 if (__kmp_affinity_format) { 7632 KMP_INTERNAL_FREE(__kmp_affinity_format); 7633 __kmp_affinity_format = NULL; 7634 } 7635 #endif 7636 7637 __kmp_i18n_catclose(); 7638 7639 #if KMP_USE_HIER_SCHED 7640 __kmp_hier_scheds.deallocate(); 7641 #endif 7642 7643 #if KMP_STATS_ENABLED 7644 __kmp_stats_fini(); 7645 #endif 7646 7647 KA_TRACE(10, ("__kmp_cleanup: exit\n")); 7648 } 7649 7650 /* ------------------------------------------------------------------------ */ 7651 7652 int __kmp_ignore_mppbeg(void) { 7653 char *env; 7654 7655 if ((env = getenv("KMP_IGNORE_MPPBEG")) != NULL) { 7656 if (__kmp_str_match_false(env)) 7657 return FALSE; 7658 } 7659 // By default __kmpc_begin() is no-op. 7660 return TRUE; 7661 } 7662 7663 int __kmp_ignore_mppend(void) { 7664 char *env; 7665 7666 if ((env = getenv("KMP_IGNORE_MPPEND")) != NULL) { 7667 if (__kmp_str_match_false(env)) 7668 return FALSE; 7669 } 7670 // By default __kmpc_end() is no-op. 7671 return TRUE; 7672 } 7673 7674 void __kmp_internal_begin(void) { 7675 int gtid; 7676 kmp_root_t *root; 7677 7678 /* this is a very important step as it will register new sibling threads 7679 and assign these new uber threads a new gtid */ 7680 gtid = __kmp_entry_gtid(); 7681 root = __kmp_threads[gtid]->th.th_root; 7682 KMP_ASSERT(KMP_UBER_GTID(gtid)); 7683 7684 if (root->r.r_begin) 7685 return; 7686 __kmp_acquire_lock(&root->r.r_begin_lock, gtid); 7687 if (root->r.r_begin) { 7688 __kmp_release_lock(&root->r.r_begin_lock, gtid); 7689 return; 7690 } 7691 7692 root->r.r_begin = TRUE; 7693 7694 __kmp_release_lock(&root->r.r_begin_lock, gtid); 7695 } 7696 7697 /* ------------------------------------------------------------------------ */ 7698 7699 void __kmp_user_set_library(enum library_type arg) { 7700 int gtid; 7701 kmp_root_t *root; 7702 kmp_info_t *thread; 7703 7704 /* first, make sure we are initialized so we can get our gtid */ 7705 7706 gtid = __kmp_entry_gtid(); 7707 thread = __kmp_threads[gtid]; 7708 7709 root = thread->th.th_root; 7710 7711 KA_TRACE(20, ("__kmp_user_set_library: enter T#%d, arg: %d, %d\n", gtid, arg, 7712 library_serial)); 7713 if (root->r.r_in_parallel) { /* Must be called in serial section of top-level 7714 thread */ 7715 KMP_WARNING(SetLibraryIncorrectCall); 7716 return; 7717 } 7718 7719 switch (arg) { 7720 case library_serial: 7721 thread->th.th_set_nproc = 0; 7722 set__nproc(thread, 1); 7723 break; 7724 case library_turnaround: 7725 thread->th.th_set_nproc = 0; 7726 set__nproc(thread, __kmp_dflt_team_nth ? __kmp_dflt_team_nth 7727 : __kmp_dflt_team_nth_ub); 7728 break; 7729 case library_throughput: 7730 thread->th.th_set_nproc = 0; 7731 set__nproc(thread, __kmp_dflt_team_nth ? __kmp_dflt_team_nth 7732 : __kmp_dflt_team_nth_ub); 7733 break; 7734 default: 7735 KMP_FATAL(UnknownLibraryType, arg); 7736 } 7737 7738 __kmp_aux_set_library(arg); 7739 } 7740 7741 void __kmp_aux_set_stacksize(size_t arg) { 7742 if (!__kmp_init_serial) 7743 __kmp_serial_initialize(); 7744 7745 #if KMP_OS_DARWIN 7746 if (arg & (0x1000 - 1)) { 7747 arg &= ~(0x1000 - 1); 7748 if (arg + 0x1000) /* check for overflow if we round up */ 7749 arg += 0x1000; 7750 } 7751 #endif 7752 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 7753 7754 /* only change the default stacksize before the first parallel region */ 7755 if (!TCR_4(__kmp_init_parallel)) { 7756 size_t value = arg; /* argument is in bytes */ 7757 7758 if (value < __kmp_sys_min_stksize) 7759 value = __kmp_sys_min_stksize; 7760 else if (value > KMP_MAX_STKSIZE) 7761 value = KMP_MAX_STKSIZE; 7762 7763 __kmp_stksize = value; 7764 7765 __kmp_env_stksize = TRUE; /* was KMP_STACKSIZE specified? */ 7766 } 7767 7768 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7769 } 7770 7771 /* set the behaviour of the runtime library */ 7772 /* TODO this can cause some odd behaviour with sibling parallelism... */ 7773 void __kmp_aux_set_library(enum library_type arg) { 7774 __kmp_library = arg; 7775 7776 switch (__kmp_library) { 7777 case library_serial: { 7778 KMP_INFORM(LibraryIsSerial); 7779 } break; 7780 case library_turnaround: 7781 if (__kmp_use_yield == 1 && !__kmp_use_yield_exp_set) 7782 __kmp_use_yield = 2; // only yield when oversubscribed 7783 break; 7784 case library_throughput: 7785 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) 7786 __kmp_dflt_blocktime = 200; 7787 break; 7788 default: 7789 KMP_FATAL(UnknownLibraryType, arg); 7790 } 7791 } 7792 7793 /* Getting team information common for all team API */ 7794 // Returns NULL if not in teams construct 7795 static kmp_team_t *__kmp_aux_get_team_info(int &teams_serialized) { 7796 kmp_info_t *thr = __kmp_entry_thread(); 7797 teams_serialized = 0; 7798 if (thr->th.th_teams_microtask) { 7799 kmp_team_t *team = thr->th.th_team; 7800 int tlevel = thr->th.th_teams_level; // the level of the teams construct 7801 int ii = team->t.t_level; 7802 teams_serialized = team->t.t_serialized; 7803 int level = tlevel + 1; 7804 KMP_DEBUG_ASSERT(ii >= tlevel); 7805 while (ii > level) { 7806 for (teams_serialized = team->t.t_serialized; 7807 (teams_serialized > 0) && (ii > level); teams_serialized--, ii--) { 7808 } 7809 if (team->t.t_serialized && (!teams_serialized)) { 7810 team = team->t.t_parent; 7811 continue; 7812 } 7813 if (ii > level) { 7814 team = team->t.t_parent; 7815 ii--; 7816 } 7817 } 7818 return team; 7819 } 7820 return NULL; 7821 } 7822 7823 int __kmp_aux_get_team_num() { 7824 int serialized; 7825 kmp_team_t *team = __kmp_aux_get_team_info(serialized); 7826 if (team) { 7827 if (serialized > 1) { 7828 return 0; // teams region is serialized ( 1 team of 1 thread ). 7829 } else { 7830 return team->t.t_master_tid; 7831 } 7832 } 7833 return 0; 7834 } 7835 7836 int __kmp_aux_get_num_teams() { 7837 int serialized; 7838 kmp_team_t *team = __kmp_aux_get_team_info(serialized); 7839 if (team) { 7840 if (serialized > 1) { 7841 return 1; 7842 } else { 7843 return team->t.t_parent->t.t_nproc; 7844 } 7845 } 7846 return 1; 7847 } 7848 7849 /* ------------------------------------------------------------------------ */ 7850 7851 #if OMP_50_ENABLED 7852 /* 7853 * Affinity Format Parser 7854 * 7855 * Field is in form of: %[[[0].]size]type 7856 * % and type are required (%% means print a literal '%') 7857 * type is either single char or long name surrounded by {}, 7858 * e.g., N or {num_threads} 7859 * 0 => leading zeros 7860 * . => right justified when size is specified 7861 * by default output is left justified 7862 * size is the *minimum* field length 7863 * All other characters are printed as is 7864 * 7865 * Available field types: 7866 * L {thread_level} - omp_get_level() 7867 * n {thread_num} - omp_get_thread_num() 7868 * h {host} - name of host machine 7869 * P {process_id} - process id (integer) 7870 * T {thread_identifier} - native thread identifier (integer) 7871 * N {num_threads} - omp_get_num_threads() 7872 * A {ancestor_tnum} - omp_get_ancestor_thread_num(omp_get_level()-1) 7873 * a {thread_affinity} - comma separated list of integers or integer ranges 7874 * (values of affinity mask) 7875 * 7876 * Implementation-specific field types can be added 7877 * If a type is unknown, print "undefined" 7878 */ 7879 7880 // Structure holding the short name, long name, and corresponding data type 7881 // for snprintf. A table of these will represent the entire valid keyword 7882 // field types. 7883 typedef struct kmp_affinity_format_field_t { 7884 char short_name; // from spec e.g., L -> thread level 7885 const char *long_name; // from spec thread_level -> thread level 7886 char field_format; // data type for snprintf (typically 'd' or 's' 7887 // for integer or string) 7888 } kmp_affinity_format_field_t; 7889 7890 static const kmp_affinity_format_field_t __kmp_affinity_format_table[] = { 7891 #if KMP_AFFINITY_SUPPORTED 7892 {'A', "thread_affinity", 's'}, 7893 #endif 7894 {'t', "team_num", 'd'}, 7895 {'T', "num_teams", 'd'}, 7896 {'L', "nesting_level", 'd'}, 7897 {'n', "thread_num", 'd'}, 7898 {'N', "num_threads", 'd'}, 7899 {'a', "ancestor_tnum", 'd'}, 7900 {'H', "host", 's'}, 7901 {'P', "process_id", 'd'}, 7902 {'i', "native_thread_id", 'd'}}; 7903 7904 // Return the number of characters it takes to hold field 7905 static int __kmp_aux_capture_affinity_field(int gtid, const kmp_info_t *th, 7906 const char **ptr, 7907 kmp_str_buf_t *field_buffer) { 7908 int rc, format_index, field_value; 7909 const char *width_left, *width_right; 7910 bool pad_zeros, right_justify, parse_long_name, found_valid_name; 7911 static const int FORMAT_SIZE = 20; 7912 char format[FORMAT_SIZE] = {0}; 7913 char absolute_short_name = 0; 7914 7915 KMP_DEBUG_ASSERT(gtid >= 0); 7916 KMP_DEBUG_ASSERT(th); 7917 KMP_DEBUG_ASSERT(**ptr == '%'); 7918 KMP_DEBUG_ASSERT(field_buffer); 7919 7920 __kmp_str_buf_clear(field_buffer); 7921 7922 // Skip the initial % 7923 (*ptr)++; 7924 7925 // Check for %% first 7926 if (**ptr == '%') { 7927 __kmp_str_buf_cat(field_buffer, "%", 1); 7928 (*ptr)++; // skip over the second % 7929 return 1; 7930 } 7931 7932 // Parse field modifiers if they are present 7933 pad_zeros = false; 7934 if (**ptr == '0') { 7935 pad_zeros = true; 7936 (*ptr)++; // skip over 0 7937 } 7938 right_justify = false; 7939 if (**ptr == '.') { 7940 right_justify = true; 7941 (*ptr)++; // skip over . 7942 } 7943 // Parse width of field: [width_left, width_right) 7944 width_left = width_right = NULL; 7945 if (**ptr >= '0' && **ptr <= '9') { 7946 width_left = *ptr; 7947 SKIP_DIGITS(*ptr); 7948 width_right = *ptr; 7949 } 7950 7951 // Create the format for KMP_SNPRINTF based on flags parsed above 7952 format_index = 0; 7953 format[format_index++] = '%'; 7954 if (!right_justify) 7955 format[format_index++] = '-'; 7956 if (pad_zeros) 7957 format[format_index++] = '0'; 7958 if (width_left && width_right) { 7959 int i = 0; 7960 // Only allow 8 digit number widths. 7961 // This also prevents overflowing format variable 7962 while (i < 8 && width_left < width_right) { 7963 format[format_index++] = *width_left; 7964 width_left++; 7965 i++; 7966 } 7967 } 7968 7969 // Parse a name (long or short) 7970 // Canonicalize the name into absolute_short_name 7971 found_valid_name = false; 7972 parse_long_name = (**ptr == '{'); 7973 if (parse_long_name) 7974 (*ptr)++; // skip initial left brace 7975 for (size_t i = 0; i < sizeof(__kmp_affinity_format_table) / 7976 sizeof(__kmp_affinity_format_table[0]); 7977 ++i) { 7978 char short_name = __kmp_affinity_format_table[i].short_name; 7979 const char *long_name = __kmp_affinity_format_table[i].long_name; 7980 char field_format = __kmp_affinity_format_table[i].field_format; 7981 if (parse_long_name) { 7982 int length = KMP_STRLEN(long_name); 7983 if (strncmp(*ptr, long_name, length) == 0) { 7984 found_valid_name = true; 7985 (*ptr) += length; // skip the long name 7986 } 7987 } else if (**ptr == short_name) { 7988 found_valid_name = true; 7989 (*ptr)++; // skip the short name 7990 } 7991 if (found_valid_name) { 7992 format[format_index++] = field_format; 7993 format[format_index++] = '\0'; 7994 absolute_short_name = short_name; 7995 break; 7996 } 7997 } 7998 if (parse_long_name) { 7999 if (**ptr != '}') { 8000 absolute_short_name = 0; 8001 } else { 8002 (*ptr)++; // skip over the right brace 8003 } 8004 } 8005 8006 // Attempt to fill the buffer with the requested 8007 // value using snprintf within __kmp_str_buf_print() 8008 switch (absolute_short_name) { 8009 case 't': 8010 rc = __kmp_str_buf_print(field_buffer, format, __kmp_aux_get_team_num()); 8011 break; 8012 case 'T': 8013 rc = __kmp_str_buf_print(field_buffer, format, __kmp_aux_get_num_teams()); 8014 break; 8015 case 'L': 8016 rc = __kmp_str_buf_print(field_buffer, format, th->th.th_team->t.t_level); 8017 break; 8018 case 'n': 8019 rc = __kmp_str_buf_print(field_buffer, format, __kmp_tid_from_gtid(gtid)); 8020 break; 8021 case 'H': { 8022 static const int BUFFER_SIZE = 256; 8023 char buf[BUFFER_SIZE]; 8024 __kmp_expand_host_name(buf, BUFFER_SIZE); 8025 rc = __kmp_str_buf_print(field_buffer, format, buf); 8026 } break; 8027 case 'P': 8028 rc = __kmp_str_buf_print(field_buffer, format, getpid()); 8029 break; 8030 case 'i': 8031 rc = __kmp_str_buf_print(field_buffer, format, __kmp_gettid()); 8032 break; 8033 case 'N': 8034 rc = __kmp_str_buf_print(field_buffer, format, th->th.th_team->t.t_nproc); 8035 break; 8036 case 'a': 8037 field_value = 8038 __kmp_get_ancestor_thread_num(gtid, th->th.th_team->t.t_level - 1); 8039 rc = __kmp_str_buf_print(field_buffer, format, field_value); 8040 break; 8041 #if KMP_AFFINITY_SUPPORTED 8042 case 'A': { 8043 kmp_str_buf_t buf; 8044 __kmp_str_buf_init(&buf); 8045 __kmp_affinity_str_buf_mask(&buf, th->th.th_affin_mask); 8046 rc = __kmp_str_buf_print(field_buffer, format, buf.str); 8047 __kmp_str_buf_free(&buf); 8048 } break; 8049 #endif 8050 default: 8051 // According to spec, If an implementation does not have info for field 8052 // type, then "undefined" is printed 8053 rc = __kmp_str_buf_print(field_buffer, "%s", "undefined"); 8054 // Skip the field 8055 if (parse_long_name) { 8056 SKIP_TOKEN(*ptr); 8057 if (**ptr == '}') 8058 (*ptr)++; 8059 } else { 8060 (*ptr)++; 8061 } 8062 } 8063 8064 KMP_ASSERT(format_index <= FORMAT_SIZE); 8065 return rc; 8066 } 8067 8068 /* 8069 * Return number of characters needed to hold the affinity string 8070 * (not including null byte character) 8071 * The resultant string is printed to buffer, which the caller can then 8072 * handle afterwards 8073 */ 8074 size_t __kmp_aux_capture_affinity(int gtid, const char *format, 8075 kmp_str_buf_t *buffer) { 8076 const char *parse_ptr; 8077 size_t retval; 8078 const kmp_info_t *th; 8079 kmp_str_buf_t field; 8080 8081 KMP_DEBUG_ASSERT(buffer); 8082 KMP_DEBUG_ASSERT(gtid >= 0); 8083 8084 __kmp_str_buf_init(&field); 8085 __kmp_str_buf_clear(buffer); 8086 8087 th = __kmp_threads[gtid]; 8088 retval = 0; 8089 8090 // If format is NULL or zero-length string, then we use 8091 // affinity-format-var ICV 8092 parse_ptr = format; 8093 if (parse_ptr == NULL || *parse_ptr == '\0') { 8094 parse_ptr = __kmp_affinity_format; 8095 } 8096 KMP_DEBUG_ASSERT(parse_ptr); 8097 8098 while (*parse_ptr != '\0') { 8099 // Parse a field 8100 if (*parse_ptr == '%') { 8101 // Put field in the buffer 8102 int rc = __kmp_aux_capture_affinity_field(gtid, th, &parse_ptr, &field); 8103 __kmp_str_buf_catbuf(buffer, &field); 8104 retval += rc; 8105 } else { 8106 // Put literal character in buffer 8107 __kmp_str_buf_cat(buffer, parse_ptr, 1); 8108 retval++; 8109 parse_ptr++; 8110 } 8111 } 8112 __kmp_str_buf_free(&field); 8113 return retval; 8114 } 8115 8116 // Displays the affinity string to stdout 8117 void __kmp_aux_display_affinity(int gtid, const char *format) { 8118 kmp_str_buf_t buf; 8119 __kmp_str_buf_init(&buf); 8120 __kmp_aux_capture_affinity(gtid, format, &buf); 8121 __kmp_fprintf(kmp_out, "%s" KMP_END_OF_LINE, buf.str); 8122 __kmp_str_buf_free(&buf); 8123 } 8124 #endif // OMP_50_ENABLED 8125 8126 /* ------------------------------------------------------------------------ */ 8127 8128 void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid) { 8129 int blocktime = arg; /* argument is in milliseconds */ 8130 #if KMP_USE_MONITOR 8131 int bt_intervals; 8132 #endif 8133 int bt_set; 8134 8135 __kmp_save_internal_controls(thread); 8136 8137 /* Normalize and set blocktime for the teams */ 8138 if (blocktime < KMP_MIN_BLOCKTIME) 8139 blocktime = KMP_MIN_BLOCKTIME; 8140 else if (blocktime > KMP_MAX_BLOCKTIME) 8141 blocktime = KMP_MAX_BLOCKTIME; 8142 8143 set__blocktime_team(thread->th.th_team, tid, blocktime); 8144 set__blocktime_team(thread->th.th_serial_team, 0, blocktime); 8145 8146 #if KMP_USE_MONITOR 8147 /* Calculate and set blocktime intervals for the teams */ 8148 bt_intervals = KMP_INTERVALS_FROM_BLOCKTIME(blocktime, __kmp_monitor_wakeups); 8149 8150 set__bt_intervals_team(thread->th.th_team, tid, bt_intervals); 8151 set__bt_intervals_team(thread->th.th_serial_team, 0, bt_intervals); 8152 #endif 8153 8154 /* Set whether blocktime has been set to "TRUE" */ 8155 bt_set = TRUE; 8156 8157 set__bt_set_team(thread->th.th_team, tid, bt_set); 8158 set__bt_set_team(thread->th.th_serial_team, 0, bt_set); 8159 #if KMP_USE_MONITOR 8160 KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d, " 8161 "bt_intervals=%d, monitor_updates=%d\n", 8162 __kmp_gtid_from_tid(tid, thread->th.th_team), 8163 thread->th.th_team->t.t_id, tid, blocktime, bt_intervals, 8164 __kmp_monitor_wakeups)); 8165 #else 8166 KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d\n", 8167 __kmp_gtid_from_tid(tid, thread->th.th_team), 8168 thread->th.th_team->t.t_id, tid, blocktime)); 8169 #endif 8170 } 8171 8172 void __kmp_aux_set_defaults(char const *str, int len) { 8173 if (!__kmp_init_serial) { 8174 __kmp_serial_initialize(); 8175 } 8176 __kmp_env_initialize(str); 8177 8178 if (__kmp_settings 8179 #if OMP_40_ENABLED 8180 || __kmp_display_env || __kmp_display_env_verbose 8181 #endif // OMP_40_ENABLED 8182 ) { 8183 __kmp_env_print(); 8184 } 8185 } // __kmp_aux_set_defaults 8186 8187 /* ------------------------------------------------------------------------ */ 8188 /* internal fast reduction routines */ 8189 8190 PACKED_REDUCTION_METHOD_T 8191 __kmp_determine_reduction_method( 8192 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, 8193 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data), 8194 kmp_critical_name *lck) { 8195 8196 // Default reduction method: critical construct ( lck != NULL, like in current 8197 // PAROPT ) 8198 // If ( reduce_data!=NULL && reduce_func!=NULL ): the tree-reduction method 8199 // can be selected by RTL 8200 // If loc->flags contains KMP_IDENT_ATOMIC_REDUCE, the atomic reduce method 8201 // can be selected by RTL 8202 // Finally, it's up to OpenMP RTL to make a decision on which method to select 8203 // among generated by PAROPT. 8204 8205 PACKED_REDUCTION_METHOD_T retval; 8206 8207 int team_size; 8208 8209 KMP_DEBUG_ASSERT(loc); // it would be nice to test ( loc != 0 ) 8210 KMP_DEBUG_ASSERT(lck); // it would be nice to test ( lck != 0 ) 8211 8212 #define FAST_REDUCTION_ATOMIC_METHOD_GENERATED \ 8213 ((loc->flags & (KMP_IDENT_ATOMIC_REDUCE)) == (KMP_IDENT_ATOMIC_REDUCE)) 8214 #define FAST_REDUCTION_TREE_METHOD_GENERATED ((reduce_data) && (reduce_func)) 8215 8216 retval = critical_reduce_block; 8217 8218 // another choice of getting a team size (with 1 dynamic deference) is slower 8219 team_size = __kmp_get_team_num_threads(global_tid); 8220 if (team_size == 1) { 8221 8222 retval = empty_reduce_block; 8223 8224 } else { 8225 8226 int atomic_available = FAST_REDUCTION_ATOMIC_METHOD_GENERATED; 8227 8228 #if KMP_ARCH_X86_64 || KMP_ARCH_PPC64 || KMP_ARCH_AARCH64 || KMP_ARCH_MIPS64 8229 8230 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 8231 KMP_OS_OPENBSD || KMP_OS_WINDOWS || KMP_OS_DARWIN || KMP_OS_HURD 8232 8233 int teamsize_cutoff = 4; 8234 8235 #if KMP_MIC_SUPPORTED 8236 if (__kmp_mic_type != non_mic) { 8237 teamsize_cutoff = 8; 8238 } 8239 #endif 8240 int tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED; 8241 if (tree_available) { 8242 if (team_size <= teamsize_cutoff) { 8243 if (atomic_available) { 8244 retval = atomic_reduce_block; 8245 } 8246 } else { 8247 retval = TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER; 8248 } 8249 } else if (atomic_available) { 8250 retval = atomic_reduce_block; 8251 } 8252 #else 8253 #error "Unknown or unsupported OS" 8254 #endif // KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || 8255 // KMP_OS_OPENBSD || KMP_OS_WINDOWS || KMP_OS_DARWIN || KMP_OS_HURD 8256 8257 #elif KMP_ARCH_X86 || KMP_ARCH_ARM || KMP_ARCH_AARCH || KMP_ARCH_MIPS 8258 8259 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS || KMP_OS_HURD 8260 8261 // basic tuning 8262 8263 if (atomic_available) { 8264 if (num_vars <= 2) { // && ( team_size <= 8 ) due to false-sharing ??? 8265 retval = atomic_reduce_block; 8266 } 8267 } // otherwise: use critical section 8268 8269 #elif KMP_OS_DARWIN 8270 8271 int tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED; 8272 if (atomic_available && (num_vars <= 3)) { 8273 retval = atomic_reduce_block; 8274 } else if (tree_available) { 8275 if ((reduce_size > (9 * sizeof(kmp_real64))) && 8276 (reduce_size < (2000 * sizeof(kmp_real64)))) { 8277 retval = TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER; 8278 } 8279 } // otherwise: use critical section 8280 8281 #else 8282 #error "Unknown or unsupported OS" 8283 #endif 8284 8285 #else 8286 #error "Unknown or unsupported architecture" 8287 #endif 8288 } 8289 8290 // KMP_FORCE_REDUCTION 8291 8292 // If the team is serialized (team_size == 1), ignore the forced reduction 8293 // method and stay with the unsynchronized method (empty_reduce_block) 8294 if (__kmp_force_reduction_method != reduction_method_not_defined && 8295 team_size != 1) { 8296 8297 PACKED_REDUCTION_METHOD_T forced_retval = critical_reduce_block; 8298 8299 int atomic_available, tree_available; 8300 8301 switch ((forced_retval = __kmp_force_reduction_method)) { 8302 case critical_reduce_block: 8303 KMP_ASSERT(lck); // lck should be != 0 8304 break; 8305 8306 case atomic_reduce_block: 8307 atomic_available = FAST_REDUCTION_ATOMIC_METHOD_GENERATED; 8308 if (!atomic_available) { 8309 KMP_WARNING(RedMethodNotSupported, "atomic"); 8310 forced_retval = critical_reduce_block; 8311 } 8312 break; 8313 8314 case tree_reduce_block: 8315 tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED; 8316 if (!tree_available) { 8317 KMP_WARNING(RedMethodNotSupported, "tree"); 8318 forced_retval = critical_reduce_block; 8319 } else { 8320 #if KMP_FAST_REDUCTION_BARRIER 8321 forced_retval = TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER; 8322 #endif 8323 } 8324 break; 8325 8326 default: 8327 KMP_ASSERT(0); // "unsupported method specified" 8328 } 8329 8330 retval = forced_retval; 8331 } 8332 8333 KA_TRACE(10, ("reduction method selected=%08x\n", retval)); 8334 8335 #undef FAST_REDUCTION_TREE_METHOD_GENERATED 8336 #undef FAST_REDUCTION_ATOMIC_METHOD_GENERATED 8337 8338 return (retval); 8339 } 8340 8341 // this function is for testing set/get/determine reduce method 8342 kmp_int32 __kmp_get_reduce_method(void) { 8343 return ((__kmp_entry_thread()->th.th_local.packed_reduction_method) >> 8); 8344 } 8345 8346 #if OMP_50_ENABLED 8347 8348 // Soft pause sets up threads to ignore blocktime and just go to sleep. 8349 // Spin-wait code checks __kmp_pause_status and reacts accordingly. 8350 void __kmp_soft_pause() { __kmp_pause_status = kmp_soft_paused; } 8351 8352 // Hard pause shuts down the runtime completely. Resume happens naturally when 8353 // OpenMP is used subsequently. 8354 void __kmp_hard_pause() { 8355 __kmp_pause_status = kmp_hard_paused; 8356 __kmp_internal_end_thread(-1); 8357 } 8358 8359 // Soft resume sets __kmp_pause_status, and wakes up all threads. 8360 void __kmp_resume_if_soft_paused() { 8361 if (__kmp_pause_status == kmp_soft_paused) { 8362 __kmp_pause_status = kmp_not_paused; 8363 8364 for (int gtid = 1; gtid < __kmp_threads_capacity; ++gtid) { 8365 kmp_info_t *thread = __kmp_threads[gtid]; 8366 if (thread) { // Wake it if sleeping 8367 kmp_flag_64 fl(&thread->th.th_bar[bs_forkjoin_barrier].bb.b_go, thread); 8368 if (fl.is_sleeping()) 8369 fl.resume(gtid); 8370 else if (__kmp_try_suspend_mx(thread)) { // got suspend lock 8371 __kmp_unlock_suspend_mx(thread); // unlock it; it won't sleep 8372 } else { // thread holds the lock and may sleep soon 8373 do { // until either the thread sleeps, or we can get the lock 8374 if (fl.is_sleeping()) { 8375 fl.resume(gtid); 8376 break; 8377 } else if (__kmp_try_suspend_mx(thread)) { 8378 __kmp_unlock_suspend_mx(thread); 8379 break; 8380 } 8381 } while (1); 8382 } 8383 } 8384 } 8385 } 8386 } 8387 8388 // This function is called via __kmpc_pause_resource. Returns 0 if successful. 8389 // TODO: add warning messages 8390 int __kmp_pause_resource(kmp_pause_status_t level) { 8391 if (level == kmp_not_paused) { // requesting resume 8392 if (__kmp_pause_status == kmp_not_paused) { 8393 // error message about runtime not being paused, so can't resume 8394 return 1; 8395 } else { 8396 KMP_DEBUG_ASSERT(__kmp_pause_status == kmp_soft_paused || 8397 __kmp_pause_status == kmp_hard_paused); 8398 __kmp_pause_status = kmp_not_paused; 8399 return 0; 8400 } 8401 } else if (level == kmp_soft_paused) { // requesting soft pause 8402 if (__kmp_pause_status != kmp_not_paused) { 8403 // error message about already being paused 8404 return 1; 8405 } else { 8406 __kmp_soft_pause(); 8407 return 0; 8408 } 8409 } else if (level == kmp_hard_paused) { // requesting hard pause 8410 if (__kmp_pause_status != kmp_not_paused) { 8411 // error message about already being paused 8412 return 1; 8413 } else { 8414 __kmp_hard_pause(); 8415 return 0; 8416 } 8417 } else { 8418 // error message about invalid level 8419 return 1; 8420 } 8421 } 8422 8423 #endif // OMP_50_ENABLED 8424