1 /* 2 * kmp_runtime.cpp -- KPTS runtime support library 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // The LLVM Compiler Infrastructure 8 // 9 // This file is dual licensed under the MIT and the University of Illinois Open 10 // Source Licenses. See LICENSE.txt for details. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "kmp.h" 15 #include "kmp_affinity.h" 16 #include "kmp_atomic.h" 17 #include "kmp_environment.h" 18 #include "kmp_error.h" 19 #include "kmp_i18n.h" 20 #include "kmp_io.h" 21 #include "kmp_itt.h" 22 #include "kmp_settings.h" 23 #include "kmp_stats.h" 24 #include "kmp_str.h" 25 #include "kmp_wait_release.h" 26 #include "kmp_wrapper_getpid.h" 27 28 #if OMPT_SUPPORT 29 #include "ompt-specific.h" 30 #endif 31 32 /* these are temporary issues to be dealt with */ 33 #define KMP_USE_PRCTL 0 34 35 #if KMP_OS_WINDOWS 36 #include <process.h> 37 #endif 38 39 #include "tsan_annotations.h" 40 41 #if defined(KMP_GOMP_COMPAT) 42 char const __kmp_version_alt_comp[] = 43 KMP_VERSION_PREFIX "alternative compiler support: yes"; 44 #endif /* defined(KMP_GOMP_COMPAT) */ 45 46 char const __kmp_version_omp_api[] = KMP_VERSION_PREFIX "API version: " 47 #if OMP_50_ENABLED 48 "5.0 (201611)"; 49 #elif OMP_45_ENABLED 50 "4.5 (201511)"; 51 #elif OMP_40_ENABLED 52 "4.0 (201307)"; 53 #else 54 "3.1 (201107)"; 55 #endif 56 57 #ifdef KMP_DEBUG 58 char const __kmp_version_lock[] = 59 KMP_VERSION_PREFIX "lock type: run time selectable"; 60 #endif /* KMP_DEBUG */ 61 62 #define KMP_MIN(x, y) ((x) < (y) ? (x) : (y)) 63 64 /* ------------------------------------------------------------------------ */ 65 66 kmp_info_t __kmp_monitor; 67 68 /* Forward declarations */ 69 70 void __kmp_cleanup(void); 71 72 static void __kmp_initialize_info(kmp_info_t *, kmp_team_t *, int tid, 73 int gtid); 74 static void __kmp_initialize_team(kmp_team_t *team, int new_nproc, 75 kmp_internal_control_t *new_icvs, 76 ident_t *loc); 77 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 78 static void __kmp_partition_places(kmp_team_t *team, 79 int update_master_only = 0); 80 #endif 81 static void __kmp_do_serial_initialize(void); 82 void __kmp_fork_barrier(int gtid, int tid); 83 void __kmp_join_barrier(int gtid); 84 void __kmp_setup_icv_copy(kmp_team_t *team, int new_nproc, 85 kmp_internal_control_t *new_icvs, ident_t *loc); 86 87 #ifdef USE_LOAD_BALANCE 88 static int __kmp_load_balance_nproc(kmp_root_t *root, int set_nproc); 89 #endif 90 91 static int __kmp_expand_threads(int nWish, int nNeed); 92 #if KMP_OS_WINDOWS 93 static int __kmp_unregister_root_other_thread(int gtid); 94 #endif 95 static void __kmp_unregister_library(void); // called by __kmp_internal_end() 96 static void __kmp_reap_thread(kmp_info_t *thread, int is_root); 97 static kmp_info_t *__kmp_thread_pool_insert_pt = NULL; 98 99 /* Calculate the identifier of the current thread */ 100 /* fast (and somewhat portable) way to get unique identifier of executing 101 thread. Returns KMP_GTID_DNE if we haven't been assigned a gtid. */ 102 int __kmp_get_global_thread_id() { 103 int i; 104 kmp_info_t **other_threads; 105 size_t stack_data; 106 char *stack_addr; 107 size_t stack_size; 108 char *stack_base; 109 110 KA_TRACE( 111 1000, 112 ("*** __kmp_get_global_thread_id: entering, nproc=%d all_nproc=%d\n", 113 __kmp_nth, __kmp_all_nth)); 114 115 /* JPH - to handle the case where __kmpc_end(0) is called immediately prior to 116 a parallel region, made it return KMP_GTID_DNE to force serial_initialize 117 by caller. Had to handle KMP_GTID_DNE at all call-sites, or else guarantee 118 __kmp_init_gtid for this to work. */ 119 120 if (!TCR_4(__kmp_init_gtid)) 121 return KMP_GTID_DNE; 122 123 #ifdef KMP_TDATA_GTID 124 if (TCR_4(__kmp_gtid_mode) >= 3) { 125 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using TDATA\n")); 126 return __kmp_gtid; 127 } 128 #endif 129 if (TCR_4(__kmp_gtid_mode) >= 2) { 130 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using keyed TLS\n")); 131 return __kmp_gtid_get_specific(); 132 } 133 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using internal alg.\n")); 134 135 stack_addr = (char *)&stack_data; 136 other_threads = __kmp_threads; 137 138 /* ATT: The code below is a source of potential bugs due to unsynchronized 139 access to __kmp_threads array. For example: 140 1. Current thread loads other_threads[i] to thr and checks it, it is 141 non-NULL. 142 2. Current thread is suspended by OS. 143 3. Another thread unregisters and finishes (debug versions of free() 144 may fill memory with something like 0xEF). 145 4. Current thread is resumed. 146 5. Current thread reads junk from *thr. 147 TODO: Fix it. --ln */ 148 149 for (i = 0; i < __kmp_threads_capacity; i++) { 150 151 kmp_info_t *thr = (kmp_info_t *)TCR_SYNC_PTR(other_threads[i]); 152 if (!thr) 153 continue; 154 155 stack_size = (size_t)TCR_PTR(thr->th.th_info.ds.ds_stacksize); 156 stack_base = (char *)TCR_PTR(thr->th.th_info.ds.ds_stackbase); 157 158 /* stack grows down -- search through all of the active threads */ 159 160 if (stack_addr <= stack_base) { 161 size_t stack_diff = stack_base - stack_addr; 162 163 if (stack_diff <= stack_size) { 164 /* The only way we can be closer than the allocated */ 165 /* stack size is if we are running on this thread. */ 166 KMP_DEBUG_ASSERT(__kmp_gtid_get_specific() == i); 167 return i; 168 } 169 } 170 } 171 172 /* get specific to try and determine our gtid */ 173 KA_TRACE(1000, 174 ("*** __kmp_get_global_thread_id: internal alg. failed to find " 175 "thread, using TLS\n")); 176 i = __kmp_gtid_get_specific(); 177 178 /*fprintf( stderr, "=== %d\n", i ); */ /* GROO */ 179 180 /* if we havn't been assigned a gtid, then return code */ 181 if (i < 0) 182 return i; 183 184 /* dynamically updated stack window for uber threads to avoid get_specific 185 call */ 186 if (!TCR_4(other_threads[i]->th.th_info.ds.ds_stackgrow)) { 187 KMP_FATAL(StackOverflow, i); 188 } 189 190 stack_base = (char *)other_threads[i]->th.th_info.ds.ds_stackbase; 191 if (stack_addr > stack_base) { 192 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stackbase, stack_addr); 193 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stacksize, 194 other_threads[i]->th.th_info.ds.ds_stacksize + stack_addr - 195 stack_base); 196 } else { 197 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stacksize, 198 stack_base - stack_addr); 199 } 200 201 /* Reprint stack bounds for ubermaster since they have been refined */ 202 if (__kmp_storage_map) { 203 char *stack_end = (char *)other_threads[i]->th.th_info.ds.ds_stackbase; 204 char *stack_beg = stack_end - other_threads[i]->th.th_info.ds.ds_stacksize; 205 __kmp_print_storage_map_gtid(i, stack_beg, stack_end, 206 other_threads[i]->th.th_info.ds.ds_stacksize, 207 "th_%d stack (refinement)", i); 208 } 209 return i; 210 } 211 212 int __kmp_get_global_thread_id_reg() { 213 int gtid; 214 215 if (!__kmp_init_serial) { 216 gtid = KMP_GTID_DNE; 217 } else 218 #ifdef KMP_TDATA_GTID 219 if (TCR_4(__kmp_gtid_mode) >= 3) { 220 KA_TRACE(1000, ("*** __kmp_get_global_thread_id_reg: using TDATA\n")); 221 gtid = __kmp_gtid; 222 } else 223 #endif 224 if (TCR_4(__kmp_gtid_mode) >= 2) { 225 KA_TRACE(1000, ("*** __kmp_get_global_thread_id_reg: using keyed TLS\n")); 226 gtid = __kmp_gtid_get_specific(); 227 } else { 228 KA_TRACE(1000, 229 ("*** __kmp_get_global_thread_id_reg: using internal alg.\n")); 230 gtid = __kmp_get_global_thread_id(); 231 } 232 233 /* we must be a new uber master sibling thread */ 234 if (gtid == KMP_GTID_DNE) { 235 KA_TRACE(10, 236 ("__kmp_get_global_thread_id_reg: Encountered new root thread. " 237 "Registering a new gtid.\n")); 238 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 239 if (!__kmp_init_serial) { 240 __kmp_do_serial_initialize(); 241 gtid = __kmp_gtid_get_specific(); 242 } else { 243 gtid = __kmp_register_root(FALSE); 244 } 245 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 246 /*__kmp_printf( "+++ %d\n", gtid ); */ /* GROO */ 247 } 248 249 KMP_DEBUG_ASSERT(gtid >= 0); 250 251 return gtid; 252 } 253 254 /* caller must hold forkjoin_lock */ 255 void __kmp_check_stack_overlap(kmp_info_t *th) { 256 int f; 257 char *stack_beg = NULL; 258 char *stack_end = NULL; 259 int gtid; 260 261 KA_TRACE(10, ("__kmp_check_stack_overlap: called\n")); 262 if (__kmp_storage_map) { 263 stack_end = (char *)th->th.th_info.ds.ds_stackbase; 264 stack_beg = stack_end - th->th.th_info.ds.ds_stacksize; 265 266 gtid = __kmp_gtid_from_thread(th); 267 268 if (gtid == KMP_GTID_MONITOR) { 269 __kmp_print_storage_map_gtid( 270 gtid, stack_beg, stack_end, th->th.th_info.ds.ds_stacksize, 271 "th_%s stack (%s)", "mon", 272 (th->th.th_info.ds.ds_stackgrow) ? "initial" : "actual"); 273 } else { 274 __kmp_print_storage_map_gtid( 275 gtid, stack_beg, stack_end, th->th.th_info.ds.ds_stacksize, 276 "th_%d stack (%s)", gtid, 277 (th->th.th_info.ds.ds_stackgrow) ? "initial" : "actual"); 278 } 279 } 280 281 /* No point in checking ubermaster threads since they use refinement and 282 * cannot overlap */ 283 gtid = __kmp_gtid_from_thread(th); 284 if (__kmp_env_checks == TRUE && !KMP_UBER_GTID(gtid)) { 285 KA_TRACE(10, 286 ("__kmp_check_stack_overlap: performing extensive checking\n")); 287 if (stack_beg == NULL) { 288 stack_end = (char *)th->th.th_info.ds.ds_stackbase; 289 stack_beg = stack_end - th->th.th_info.ds.ds_stacksize; 290 } 291 292 for (f = 0; f < __kmp_threads_capacity; f++) { 293 kmp_info_t *f_th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[f]); 294 295 if (f_th && f_th != th) { 296 char *other_stack_end = 297 (char *)TCR_PTR(f_th->th.th_info.ds.ds_stackbase); 298 char *other_stack_beg = 299 other_stack_end - (size_t)TCR_PTR(f_th->th.th_info.ds.ds_stacksize); 300 if ((stack_beg > other_stack_beg && stack_beg < other_stack_end) || 301 (stack_end > other_stack_beg && stack_end < other_stack_end)) { 302 303 /* Print the other stack values before the abort */ 304 if (__kmp_storage_map) 305 __kmp_print_storage_map_gtid( 306 -1, other_stack_beg, other_stack_end, 307 (size_t)TCR_PTR(f_th->th.th_info.ds.ds_stacksize), 308 "th_%d stack (overlapped)", __kmp_gtid_from_thread(f_th)); 309 310 __kmp_fatal(KMP_MSG(StackOverlap), KMP_HNT(ChangeStackLimit), 311 __kmp_msg_null); 312 } 313 } 314 } 315 } 316 KA_TRACE(10, ("__kmp_check_stack_overlap: returning\n")); 317 } 318 319 /* ------------------------------------------------------------------------ */ 320 321 void __kmp_infinite_loop(void) { 322 static int done = FALSE; 323 324 while (!done) { 325 KMP_YIELD(1); 326 } 327 } 328 329 #define MAX_MESSAGE 512 330 331 void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2, size_t size, 332 char const *format, ...) { 333 char buffer[MAX_MESSAGE]; 334 va_list ap; 335 336 va_start(ap, format); 337 KMP_SNPRINTF(buffer, sizeof(buffer), "OMP storage map: %p %p%8lu %s\n", p1, 338 p2, (unsigned long)size, format); 339 __kmp_acquire_bootstrap_lock(&__kmp_stdio_lock); 340 __kmp_vprintf(kmp_err, buffer, ap); 341 #if KMP_PRINT_DATA_PLACEMENT 342 int node; 343 if (gtid >= 0) { 344 if (p1 <= p2 && (char *)p2 - (char *)p1 == size) { 345 if (__kmp_storage_map_verbose) { 346 node = __kmp_get_host_node(p1); 347 if (node < 0) /* doesn't work, so don't try this next time */ 348 __kmp_storage_map_verbose = FALSE; 349 else { 350 char *last; 351 int lastNode; 352 int localProc = __kmp_get_cpu_from_gtid(gtid); 353 354 const int page_size = KMP_GET_PAGE_SIZE(); 355 356 p1 = (void *)((size_t)p1 & ~((size_t)page_size - 1)); 357 p2 = (void *)(((size_t)p2 - 1) & ~((size_t)page_size - 1)); 358 if (localProc >= 0) 359 __kmp_printf_no_lock(" GTID %d localNode %d\n", gtid, 360 localProc >> 1); 361 else 362 __kmp_printf_no_lock(" GTID %d\n", gtid); 363 #if KMP_USE_PRCTL 364 /* The more elaborate format is disabled for now because of the prctl 365 * hanging bug. */ 366 do { 367 last = p1; 368 lastNode = node; 369 /* This loop collates adjacent pages with the same host node. */ 370 do { 371 (char *)p1 += page_size; 372 } while (p1 <= p2 && (node = __kmp_get_host_node(p1)) == lastNode); 373 __kmp_printf_no_lock(" %p-%p memNode %d\n", last, (char *)p1 - 1, 374 lastNode); 375 } while (p1 <= p2); 376 #else 377 __kmp_printf_no_lock(" %p-%p memNode %d\n", p1, 378 (char *)p1 + (page_size - 1), 379 __kmp_get_host_node(p1)); 380 if (p1 < p2) { 381 __kmp_printf_no_lock(" %p-%p memNode %d\n", p2, 382 (char *)p2 + (page_size - 1), 383 __kmp_get_host_node(p2)); 384 } 385 #endif 386 } 387 } 388 } else 389 __kmp_printf_no_lock(" %s\n", KMP_I18N_STR(StorageMapWarning)); 390 } 391 #endif /* KMP_PRINT_DATA_PLACEMENT */ 392 __kmp_release_bootstrap_lock(&__kmp_stdio_lock); 393 } 394 395 void __kmp_warn(char const *format, ...) { 396 char buffer[MAX_MESSAGE]; 397 va_list ap; 398 399 if (__kmp_generate_warnings == kmp_warnings_off) { 400 return; 401 } 402 403 va_start(ap, format); 404 405 KMP_SNPRINTF(buffer, sizeof(buffer), "OMP warning: %s\n", format); 406 __kmp_acquire_bootstrap_lock(&__kmp_stdio_lock); 407 __kmp_vprintf(kmp_err, buffer, ap); 408 __kmp_release_bootstrap_lock(&__kmp_stdio_lock); 409 410 va_end(ap); 411 } 412 413 void __kmp_abort_process() { 414 // Later threads may stall here, but that's ok because abort() will kill them. 415 __kmp_acquire_bootstrap_lock(&__kmp_exit_lock); 416 417 if (__kmp_debug_buf) { 418 __kmp_dump_debug_buffer(); 419 } 420 421 if (KMP_OS_WINDOWS) { 422 // Let other threads know of abnormal termination and prevent deadlock 423 // if abort happened during library initialization or shutdown 424 __kmp_global.g.g_abort = SIGABRT; 425 426 /* On Windows* OS by default abort() causes pop-up error box, which stalls 427 nightly testing. Unfortunately, we cannot reliably suppress pop-up error 428 boxes. _set_abort_behavior() works well, but this function is not 429 available in VS7 (this is not problem for DLL, but it is a problem for 430 static OpenMP RTL). SetErrorMode (and so, timelimit utility) does not 431 help, at least in some versions of MS C RTL. 432 433 It seems following sequence is the only way to simulate abort() and 434 avoid pop-up error box. */ 435 raise(SIGABRT); 436 _exit(3); // Just in case, if signal ignored, exit anyway. 437 } else { 438 abort(); 439 } 440 441 __kmp_infinite_loop(); 442 __kmp_release_bootstrap_lock(&__kmp_exit_lock); 443 444 } // __kmp_abort_process 445 446 void __kmp_abort_thread(void) { 447 // TODO: Eliminate g_abort global variable and this function. 448 // In case of abort just call abort(), it will kill all the threads. 449 __kmp_infinite_loop(); 450 } // __kmp_abort_thread 451 452 /* Print out the storage map for the major kmp_info_t thread data structures 453 that are allocated together. */ 454 455 static void __kmp_print_thread_storage_map(kmp_info_t *thr, int gtid) { 456 __kmp_print_storage_map_gtid(gtid, thr, thr + 1, sizeof(kmp_info_t), "th_%d", 457 gtid); 458 459 __kmp_print_storage_map_gtid(gtid, &thr->th.th_info, &thr->th.th_team, 460 sizeof(kmp_desc_t), "th_%d.th_info", gtid); 461 462 __kmp_print_storage_map_gtid(gtid, &thr->th.th_local, &thr->th.th_pri_head, 463 sizeof(kmp_local_t), "th_%d.th_local", gtid); 464 465 __kmp_print_storage_map_gtid( 466 gtid, &thr->th.th_bar[0], &thr->th.th_bar[bs_last_barrier], 467 sizeof(kmp_balign_t) * bs_last_barrier, "th_%d.th_bar", gtid); 468 469 __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_plain_barrier], 470 &thr->th.th_bar[bs_plain_barrier + 1], 471 sizeof(kmp_balign_t), "th_%d.th_bar[plain]", 472 gtid); 473 474 __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_forkjoin_barrier], 475 &thr->th.th_bar[bs_forkjoin_barrier + 1], 476 sizeof(kmp_balign_t), "th_%d.th_bar[forkjoin]", 477 gtid); 478 479 #if KMP_FAST_REDUCTION_BARRIER 480 __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_reduction_barrier], 481 &thr->th.th_bar[bs_reduction_barrier + 1], 482 sizeof(kmp_balign_t), "th_%d.th_bar[reduction]", 483 gtid); 484 #endif // KMP_FAST_REDUCTION_BARRIER 485 } 486 487 /* Print out the storage map for the major kmp_team_t team data structures 488 that are allocated together. */ 489 490 static void __kmp_print_team_storage_map(const char *header, kmp_team_t *team, 491 int team_id, int num_thr) { 492 int num_disp_buff = team->t.t_max_nproc > 1 ? __kmp_dispatch_num_buffers : 2; 493 __kmp_print_storage_map_gtid(-1, team, team + 1, sizeof(kmp_team_t), "%s_%d", 494 header, team_id); 495 496 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[0], 497 &team->t.t_bar[bs_last_barrier], 498 sizeof(kmp_balign_team_t) * bs_last_barrier, 499 "%s_%d.t_bar", header, team_id); 500 501 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_plain_barrier], 502 &team->t.t_bar[bs_plain_barrier + 1], 503 sizeof(kmp_balign_team_t), "%s_%d.t_bar[plain]", 504 header, team_id); 505 506 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_forkjoin_barrier], 507 &team->t.t_bar[bs_forkjoin_barrier + 1], 508 sizeof(kmp_balign_team_t), 509 "%s_%d.t_bar[forkjoin]", header, team_id); 510 511 #if KMP_FAST_REDUCTION_BARRIER 512 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_reduction_barrier], 513 &team->t.t_bar[bs_reduction_barrier + 1], 514 sizeof(kmp_balign_team_t), 515 "%s_%d.t_bar[reduction]", header, team_id); 516 #endif // KMP_FAST_REDUCTION_BARRIER 517 518 __kmp_print_storage_map_gtid( 519 -1, &team->t.t_dispatch[0], &team->t.t_dispatch[num_thr], 520 sizeof(kmp_disp_t) * num_thr, "%s_%d.t_dispatch", header, team_id); 521 522 __kmp_print_storage_map_gtid( 523 -1, &team->t.t_threads[0], &team->t.t_threads[num_thr], 524 sizeof(kmp_info_t *) * num_thr, "%s_%d.t_threads", header, team_id); 525 526 __kmp_print_storage_map_gtid(-1, &team->t.t_disp_buffer[0], 527 &team->t.t_disp_buffer[num_disp_buff], 528 sizeof(dispatch_shared_info_t) * num_disp_buff, 529 "%s_%d.t_disp_buffer", header, team_id); 530 531 __kmp_print_storage_map_gtid(-1, &team->t.t_taskq, &team->t.t_copypriv_data, 532 sizeof(kmp_taskq_t), "%s_%d.t_taskq", header, 533 team_id); 534 } 535 536 static void __kmp_init_allocator() {} 537 static void __kmp_fini_allocator() {} 538 539 /* ------------------------------------------------------------------------ */ 540 541 #ifdef KMP_DYNAMIC_LIB 542 #if KMP_OS_WINDOWS 543 544 static void __kmp_reset_lock(kmp_bootstrap_lock_t *lck) { 545 // TODO: Change to __kmp_break_bootstrap_lock(). 546 __kmp_init_bootstrap_lock(lck); // make the lock released 547 } 548 549 static void __kmp_reset_locks_on_process_detach(int gtid_req) { 550 int i; 551 int thread_count; 552 553 // PROCESS_DETACH is expected to be called by a thread that executes 554 // ProcessExit() or FreeLibrary(). OS terminates other threads (except the one 555 // calling ProcessExit or FreeLibrary). So, it might be safe to access the 556 // __kmp_threads[] without taking the forkjoin_lock. However, in fact, some 557 // threads can be still alive here, although being about to be terminated. The 558 // threads in the array with ds_thread==0 are most suspicious. Actually, it 559 // can be not safe to access the __kmp_threads[]. 560 561 // TODO: does it make sense to check __kmp_roots[] ? 562 563 // Let's check that there are no other alive threads registered with the OMP 564 // lib. 565 while (1) { 566 thread_count = 0; 567 for (i = 0; i < __kmp_threads_capacity; ++i) { 568 if (!__kmp_threads) 569 continue; 570 kmp_info_t *th = __kmp_threads[i]; 571 if (th == NULL) 572 continue; 573 int gtid = th->th.th_info.ds.ds_gtid; 574 if (gtid == gtid_req) 575 continue; 576 if (gtid < 0) 577 continue; 578 DWORD exit_val; 579 int alive = __kmp_is_thread_alive(th, &exit_val); 580 if (alive) { 581 ++thread_count; 582 } 583 } 584 if (thread_count == 0) 585 break; // success 586 } 587 588 // Assume that I'm alone. Now it might be safe to check and reset locks. 589 // __kmp_forkjoin_lock and __kmp_stdio_lock are expected to be reset. 590 __kmp_reset_lock(&__kmp_forkjoin_lock); 591 #ifdef KMP_DEBUG 592 __kmp_reset_lock(&__kmp_stdio_lock); 593 #endif // KMP_DEBUG 594 } 595 596 BOOL WINAPI DllMain(HINSTANCE hInstDLL, DWORD fdwReason, LPVOID lpReserved) { 597 //__kmp_acquire_bootstrap_lock( &__kmp_initz_lock ); 598 599 switch (fdwReason) { 600 601 case DLL_PROCESS_ATTACH: 602 KA_TRACE(10, ("DllMain: PROCESS_ATTACH\n")); 603 604 return TRUE; 605 606 case DLL_PROCESS_DETACH: 607 KA_TRACE(10, ("DllMain: PROCESS_DETACH T#%d\n", __kmp_gtid_get_specific())); 608 609 if (lpReserved != NULL) { 610 // lpReserved is used for telling the difference: 611 // lpReserved == NULL when FreeLibrary() was called, 612 // lpReserved != NULL when the process terminates. 613 // When FreeLibrary() is called, worker threads remain alive. So they will 614 // release the forkjoin lock by themselves. When the process terminates, 615 // worker threads disappear triggering the problem of unreleased forkjoin 616 // lock as described below. 617 618 // A worker thread can take the forkjoin lock. The problem comes up if 619 // that worker thread becomes dead before it releases the forkjoin lock. 620 // The forkjoin lock remains taken, while the thread executing 621 // DllMain()->PROCESS_DETACH->__kmp_internal_end_library() below will try 622 // to take the forkjoin lock and will always fail, so that the application 623 // will never finish [normally]. This scenario is possible if 624 // __kmpc_end() has not been executed. It looks like it's not a corner 625 // case, but common cases: 626 // - the main function was compiled by an alternative compiler; 627 // - the main function was compiled by icl but without /Qopenmp 628 // (application with plugins); 629 // - application terminates by calling C exit(), Fortran CALL EXIT() or 630 // Fortran STOP. 631 // - alive foreign thread prevented __kmpc_end from doing cleanup. 632 // 633 // This is a hack to work around the problem. 634 // TODO: !!! figure out something better. 635 __kmp_reset_locks_on_process_detach(__kmp_gtid_get_specific()); 636 } 637 638 __kmp_internal_end_library(__kmp_gtid_get_specific()); 639 640 return TRUE; 641 642 case DLL_THREAD_ATTACH: 643 KA_TRACE(10, ("DllMain: THREAD_ATTACH\n")); 644 645 /* if we want to register new siblings all the time here call 646 * __kmp_get_gtid(); */ 647 return TRUE; 648 649 case DLL_THREAD_DETACH: 650 KA_TRACE(10, ("DllMain: THREAD_DETACH T#%d\n", __kmp_gtid_get_specific())); 651 652 __kmp_internal_end_thread(__kmp_gtid_get_specific()); 653 return TRUE; 654 } 655 656 return TRUE; 657 } 658 659 #endif /* KMP_OS_WINDOWS */ 660 #endif /* KMP_DYNAMIC_LIB */ 661 662 /* Change the library type to "status" and return the old type */ 663 /* called from within initialization routines where __kmp_initz_lock is held */ 664 int __kmp_change_library(int status) { 665 int old_status; 666 667 old_status = __kmp_yield_init & 668 1; // check whether KMP_LIBRARY=throughput (even init count) 669 670 if (status) { 671 __kmp_yield_init |= 1; // throughput => turnaround (odd init count) 672 } else { 673 __kmp_yield_init &= ~1; // turnaround => throughput (even init count) 674 } 675 676 return old_status; // return previous setting of whether 677 // KMP_LIBRARY=throughput 678 } 679 680 /* __kmp_parallel_deo -- Wait until it's our turn. */ 681 void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) { 682 int gtid = *gtid_ref; 683 #ifdef BUILD_PARALLEL_ORDERED 684 kmp_team_t *team = __kmp_team_from_gtid(gtid); 685 #endif /* BUILD_PARALLEL_ORDERED */ 686 687 if (__kmp_env_consistency_check) { 688 if (__kmp_threads[gtid]->th.th_root->r.r_active) 689 #if KMP_USE_DYNAMIC_LOCK 690 __kmp_push_sync(gtid, ct_ordered_in_parallel, loc_ref, NULL, 0); 691 #else 692 __kmp_push_sync(gtid, ct_ordered_in_parallel, loc_ref, NULL); 693 #endif 694 } 695 #ifdef BUILD_PARALLEL_ORDERED 696 if (!team->t.t_serialized) { 697 KMP_MB(); 698 KMP_WAIT_YIELD(&team->t.t_ordered.dt.t_value, __kmp_tid_from_gtid(gtid), 699 KMP_EQ, NULL); 700 KMP_MB(); 701 } 702 #endif /* BUILD_PARALLEL_ORDERED */ 703 } 704 705 /* __kmp_parallel_dxo -- Signal the next task. */ 706 void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) { 707 int gtid = *gtid_ref; 708 #ifdef BUILD_PARALLEL_ORDERED 709 int tid = __kmp_tid_from_gtid(gtid); 710 kmp_team_t *team = __kmp_team_from_gtid(gtid); 711 #endif /* BUILD_PARALLEL_ORDERED */ 712 713 if (__kmp_env_consistency_check) { 714 if (__kmp_threads[gtid]->th.th_root->r.r_active) 715 __kmp_pop_sync(gtid, ct_ordered_in_parallel, loc_ref); 716 } 717 #ifdef BUILD_PARALLEL_ORDERED 718 if (!team->t.t_serialized) { 719 KMP_MB(); /* Flush all pending memory write invalidates. */ 720 721 /* use the tid of the next thread in this team */ 722 /* TODO replace with general release procedure */ 723 team->t.t_ordered.dt.t_value = ((tid + 1) % team->t.t_nproc); 724 725 KMP_MB(); /* Flush all pending memory write invalidates. */ 726 } 727 #endif /* BUILD_PARALLEL_ORDERED */ 728 } 729 730 /* ------------------------------------------------------------------------ */ 731 /* The BARRIER for a SINGLE process section is always explicit */ 732 733 int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws) { 734 int status; 735 kmp_info_t *th; 736 kmp_team_t *team; 737 738 if (!TCR_4(__kmp_init_parallel)) 739 __kmp_parallel_initialize(); 740 741 th = __kmp_threads[gtid]; 742 team = th->th.th_team; 743 status = 0; 744 745 th->th.th_ident = id_ref; 746 747 if (team->t.t_serialized) { 748 status = 1; 749 } else { 750 kmp_int32 old_this = th->th.th_local.this_construct; 751 752 ++th->th.th_local.this_construct; 753 /* try to set team count to thread count--success means thread got the 754 single block */ 755 /* TODO: Should this be acquire or release? */ 756 if (team->t.t_construct == old_this) { 757 status = KMP_COMPARE_AND_STORE_ACQ32(&team->t.t_construct, old_this, 758 th->th.th_local.this_construct); 759 } 760 #if USE_ITT_BUILD 761 if (__itt_metadata_add_ptr && __kmp_forkjoin_frames_mode == 3 && 762 KMP_MASTER_GTID(gtid) && 763 #if OMP_40_ENABLED 764 th->th.th_teams_microtask == NULL && 765 #endif 766 team->t.t_active_level == 767 1) { // Only report metadata by master of active team at level 1 768 __kmp_itt_metadata_single(id_ref); 769 } 770 #endif /* USE_ITT_BUILD */ 771 } 772 773 if (__kmp_env_consistency_check) { 774 if (status && push_ws) { 775 __kmp_push_workshare(gtid, ct_psingle, id_ref); 776 } else { 777 __kmp_check_workshare(gtid, ct_psingle, id_ref); 778 } 779 } 780 #if USE_ITT_BUILD 781 if (status) { 782 __kmp_itt_single_start(gtid); 783 } 784 #endif /* USE_ITT_BUILD */ 785 return status; 786 } 787 788 void __kmp_exit_single(int gtid) { 789 #if USE_ITT_BUILD 790 __kmp_itt_single_end(gtid); 791 #endif /* USE_ITT_BUILD */ 792 if (__kmp_env_consistency_check) 793 __kmp_pop_workshare(gtid, ct_psingle, NULL); 794 } 795 796 /* determine if we can go parallel or must use a serialized parallel region and 797 * how many threads we can use 798 * set_nproc is the number of threads requested for the team 799 * returns 0 if we should serialize or only use one thread, 800 * otherwise the number of threads to use 801 * The forkjoin lock is held by the caller. */ 802 static int __kmp_reserve_threads(kmp_root_t *root, kmp_team_t *parent_team, 803 int master_tid, int set_nthreads 804 #if OMP_40_ENABLED 805 , 806 int enter_teams 807 #endif /* OMP_40_ENABLED */ 808 ) { 809 int capacity; 810 int new_nthreads; 811 KMP_DEBUG_ASSERT(__kmp_init_serial); 812 KMP_DEBUG_ASSERT(root && parent_team); 813 814 // If dyn-var is set, dynamically adjust the number of desired threads, 815 // according to the method specified by dynamic_mode. 816 new_nthreads = set_nthreads; 817 if (!get__dynamic_2(parent_team, master_tid)) { 818 ; 819 } 820 #ifdef USE_LOAD_BALANCE 821 else if (__kmp_global.g.g_dynamic_mode == dynamic_load_balance) { 822 new_nthreads = __kmp_load_balance_nproc(root, set_nthreads); 823 if (new_nthreads == 1) { 824 KC_TRACE(10, ("__kmp_reserve_threads: T#%d load balance reduced " 825 "reservation to 1 thread\n", 826 master_tid)); 827 return 1; 828 } 829 if (new_nthreads < set_nthreads) { 830 KC_TRACE(10, ("__kmp_reserve_threads: T#%d load balance reduced " 831 "reservation to %d threads\n", 832 master_tid, new_nthreads)); 833 } 834 } 835 #endif /* USE_LOAD_BALANCE */ 836 else if (__kmp_global.g.g_dynamic_mode == dynamic_thread_limit) { 837 new_nthreads = __kmp_avail_proc - __kmp_nth + 838 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 839 if (new_nthreads <= 1) { 840 KC_TRACE(10, ("__kmp_reserve_threads: T#%d thread limit reduced " 841 "reservation to 1 thread\n", 842 master_tid)); 843 return 1; 844 } 845 if (new_nthreads < set_nthreads) { 846 KC_TRACE(10, ("__kmp_reserve_threads: T#%d thread limit reduced " 847 "reservation to %d threads\n", 848 master_tid, new_nthreads)); 849 } else { 850 new_nthreads = set_nthreads; 851 } 852 } else if (__kmp_global.g.g_dynamic_mode == dynamic_random) { 853 if (set_nthreads > 2) { 854 new_nthreads = __kmp_get_random(parent_team->t.t_threads[master_tid]); 855 new_nthreads = (new_nthreads % set_nthreads) + 1; 856 if (new_nthreads == 1) { 857 KC_TRACE(10, ("__kmp_reserve_threads: T#%d dynamic random reduced " 858 "reservation to 1 thread\n", 859 master_tid)); 860 return 1; 861 } 862 if (new_nthreads < set_nthreads) { 863 KC_TRACE(10, ("__kmp_reserve_threads: T#%d dynamic random reduced " 864 "reservation to %d threads\n", 865 master_tid, new_nthreads)); 866 } 867 } 868 } else { 869 KMP_ASSERT(0); 870 } 871 872 // Respect KMP_ALL_THREADS/KMP_DEVICE_THREAD_LIMIT. 873 if (__kmp_nth + new_nthreads - 874 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) > 875 __kmp_max_nth) { 876 int tl_nthreads = __kmp_max_nth - __kmp_nth + 877 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 878 if (tl_nthreads <= 0) { 879 tl_nthreads = 1; 880 } 881 882 // If dyn-var is false, emit a 1-time warning. 883 if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) { 884 __kmp_reserve_warn = 1; 885 __kmp_msg(kmp_ms_warning, 886 KMP_MSG(CantFormThrTeam, set_nthreads, tl_nthreads), 887 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 888 } 889 if (tl_nthreads == 1) { 890 KC_TRACE(10, ("__kmp_reserve_threads: T#%d KMP_DEVICE_THREAD_LIMIT " 891 "reduced reservation to 1 thread\n", 892 master_tid)); 893 return 1; 894 } 895 KC_TRACE(10, ("__kmp_reserve_threads: T#%d KMP_DEVICE_THREAD_LIMIT reduced " 896 "reservation to %d threads\n", 897 master_tid, tl_nthreads)); 898 new_nthreads = tl_nthreads; 899 } 900 901 // Respect OMP_THREAD_LIMIT 902 if (root->r.r_cg_nthreads + new_nthreads - 903 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) > 904 __kmp_cg_max_nth) { 905 int tl_nthreads = __kmp_cg_max_nth - root->r.r_cg_nthreads + 906 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 907 if (tl_nthreads <= 0) { 908 tl_nthreads = 1; 909 } 910 911 // If dyn-var is false, emit a 1-time warning. 912 if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) { 913 __kmp_reserve_warn = 1; 914 __kmp_msg(kmp_ms_warning, 915 KMP_MSG(CantFormThrTeam, set_nthreads, tl_nthreads), 916 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 917 } 918 if (tl_nthreads == 1) { 919 KC_TRACE(10, ("__kmp_reserve_threads: T#%d OMP_THREAD_LIMIT " 920 "reduced reservation to 1 thread\n", 921 master_tid)); 922 return 1; 923 } 924 KC_TRACE(10, ("__kmp_reserve_threads: T#%d OMP_THREAD_LIMIT reduced " 925 "reservation to %d threads\n", 926 master_tid, tl_nthreads)); 927 new_nthreads = tl_nthreads; 928 } 929 930 // Check if the threads array is large enough, or needs expanding. 931 // See comment in __kmp_register_root() about the adjustment if 932 // __kmp_threads[0] == NULL. 933 capacity = __kmp_threads_capacity; 934 if (TCR_PTR(__kmp_threads[0]) == NULL) { 935 --capacity; 936 } 937 if (__kmp_nth + new_nthreads - 938 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) > 939 capacity) { 940 // Expand the threads array. 941 int slotsRequired = __kmp_nth + new_nthreads - 942 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) - 943 capacity; 944 int slotsAdded = __kmp_expand_threads(slotsRequired, slotsRequired); 945 if (slotsAdded < slotsRequired) { 946 // The threads array was not expanded enough. 947 new_nthreads -= (slotsRequired - slotsAdded); 948 KMP_ASSERT(new_nthreads >= 1); 949 950 // If dyn-var is false, emit a 1-time warning. 951 if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) { 952 __kmp_reserve_warn = 1; 953 if (__kmp_tp_cached) { 954 __kmp_msg(kmp_ms_warning, 955 KMP_MSG(CantFormThrTeam, set_nthreads, new_nthreads), 956 KMP_HNT(Set_ALL_THREADPRIVATE, __kmp_tp_capacity), 957 KMP_HNT(PossibleSystemLimitOnThreads), __kmp_msg_null); 958 } else { 959 __kmp_msg(kmp_ms_warning, 960 KMP_MSG(CantFormThrTeam, set_nthreads, new_nthreads), 961 KMP_HNT(SystemLimitOnThreads), __kmp_msg_null); 962 } 963 } 964 } 965 } 966 967 #ifdef KMP_DEBUG 968 if (new_nthreads == 1) { 969 KC_TRACE(10, 970 ("__kmp_reserve_threads: T#%d serializing team after reclaiming " 971 "dead roots and rechecking; requested %d threads\n", 972 __kmp_get_gtid(), set_nthreads)); 973 } else { 974 KC_TRACE(10, ("__kmp_reserve_threads: T#%d allocating %d threads; requested" 975 " %d threads\n", 976 __kmp_get_gtid(), new_nthreads, set_nthreads)); 977 } 978 #endif // KMP_DEBUG 979 return new_nthreads; 980 } 981 982 /* Allocate threads from the thread pool and assign them to the new team. We are 983 assured that there are enough threads available, because we checked on that 984 earlier within critical section forkjoin */ 985 static void __kmp_fork_team_threads(kmp_root_t *root, kmp_team_t *team, 986 kmp_info_t *master_th, int master_gtid) { 987 int i; 988 int use_hot_team; 989 990 KA_TRACE(10, ("__kmp_fork_team_threads: new_nprocs = %d\n", team->t.t_nproc)); 991 KMP_DEBUG_ASSERT(master_gtid == __kmp_get_gtid()); 992 KMP_MB(); 993 994 /* first, let's setup the master thread */ 995 master_th->th.th_info.ds.ds_tid = 0; 996 master_th->th.th_team = team; 997 master_th->th.th_team_nproc = team->t.t_nproc; 998 master_th->th.th_team_master = master_th; 999 master_th->th.th_team_serialized = FALSE; 1000 master_th->th.th_dispatch = &team->t.t_dispatch[0]; 1001 1002 /* make sure we are not the optimized hot team */ 1003 #if KMP_NESTED_HOT_TEAMS 1004 use_hot_team = 0; 1005 kmp_hot_team_ptr_t *hot_teams = master_th->th.th_hot_teams; 1006 if (hot_teams) { // hot teams array is not allocated if 1007 // KMP_HOT_TEAMS_MAX_LEVEL=0 1008 int level = team->t.t_active_level - 1; // index in array of hot teams 1009 if (master_th->th.th_teams_microtask) { // are we inside the teams? 1010 if (master_th->th.th_teams_size.nteams > 1) { 1011 ++level; // level was not increased in teams construct for 1012 // team_of_masters 1013 } 1014 if (team->t.t_pkfn != (microtask_t)__kmp_teams_master && 1015 master_th->th.th_teams_level == team->t.t_level) { 1016 ++level; // level was not increased in teams construct for 1017 // team_of_workers before the parallel 1018 } // team->t.t_level will be increased inside parallel 1019 } 1020 if (level < __kmp_hot_teams_max_level) { 1021 if (hot_teams[level].hot_team) { 1022 // hot team has already been allocated for given level 1023 KMP_DEBUG_ASSERT(hot_teams[level].hot_team == team); 1024 use_hot_team = 1; // the team is ready to use 1025 } else { 1026 use_hot_team = 0; // AC: threads are not allocated yet 1027 hot_teams[level].hot_team = team; // remember new hot team 1028 hot_teams[level].hot_team_nth = team->t.t_nproc; 1029 } 1030 } else { 1031 use_hot_team = 0; 1032 } 1033 } 1034 #else 1035 use_hot_team = team == root->r.r_hot_team; 1036 #endif 1037 if (!use_hot_team) { 1038 1039 /* install the master thread */ 1040 team->t.t_threads[0] = master_th; 1041 __kmp_initialize_info(master_th, team, 0, master_gtid); 1042 1043 /* now, install the worker threads */ 1044 for (i = 1; i < team->t.t_nproc; i++) { 1045 1046 /* fork or reallocate a new thread and install it in team */ 1047 kmp_info_t *thr = __kmp_allocate_thread(root, team, i); 1048 team->t.t_threads[i] = thr; 1049 KMP_DEBUG_ASSERT(thr); 1050 KMP_DEBUG_ASSERT(thr->th.th_team == team); 1051 /* align team and thread arrived states */ 1052 KA_TRACE(20, ("__kmp_fork_team_threads: T#%d(%d:%d) init arrived " 1053 "T#%d(%d:%d) join =%llu, plain=%llu\n", 1054 __kmp_gtid_from_tid(0, team), team->t.t_id, 0, 1055 __kmp_gtid_from_tid(i, team), team->t.t_id, i, 1056 team->t.t_bar[bs_forkjoin_barrier].b_arrived, 1057 team->t.t_bar[bs_plain_barrier].b_arrived)); 1058 #if OMP_40_ENABLED 1059 thr->th.th_teams_microtask = master_th->th.th_teams_microtask; 1060 thr->th.th_teams_level = master_th->th.th_teams_level; 1061 thr->th.th_teams_size = master_th->th.th_teams_size; 1062 #endif 1063 { // Initialize threads' barrier data. 1064 int b; 1065 kmp_balign_t *balign = team->t.t_threads[i]->th.th_bar; 1066 for (b = 0; b < bs_last_barrier; ++b) { 1067 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 1068 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 1069 #if USE_DEBUGGER 1070 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 1071 #endif 1072 } 1073 } 1074 } 1075 1076 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 1077 __kmp_partition_places(team); 1078 #endif 1079 } 1080 1081 KMP_MB(); 1082 } 1083 1084 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1085 // Propagate any changes to the floating point control registers out to the team 1086 // We try to avoid unnecessary writes to the relevant cache line in the team 1087 // structure, so we don't make changes unless they are needed. 1088 inline static void propagateFPControl(kmp_team_t *team) { 1089 if (__kmp_inherit_fp_control) { 1090 kmp_int16 x87_fpu_control_word; 1091 kmp_uint32 mxcsr; 1092 1093 // Get master values of FPU control flags (both X87 and vector) 1094 __kmp_store_x87_fpu_control_word(&x87_fpu_control_word); 1095 __kmp_store_mxcsr(&mxcsr); 1096 mxcsr &= KMP_X86_MXCSR_MASK; 1097 1098 // There is no point looking at t_fp_control_saved here. 1099 // If it is TRUE, we still have to update the values if they are different 1100 // from those we now have. If it is FALSE we didn't save anything yet, but 1101 // our objective is the same. We have to ensure that the values in the team 1102 // are the same as those we have. 1103 // So, this code achieves what we need whether or not t_fp_control_saved is 1104 // true. By checking whether the value needs updating we avoid unnecessary 1105 // writes that would put the cache-line into a written state, causing all 1106 // threads in the team to have to read it again. 1107 KMP_CHECK_UPDATE(team->t.t_x87_fpu_control_word, x87_fpu_control_word); 1108 KMP_CHECK_UPDATE(team->t.t_mxcsr, mxcsr); 1109 // Although we don't use this value, other code in the runtime wants to know 1110 // whether it should restore them. So we must ensure it is correct. 1111 KMP_CHECK_UPDATE(team->t.t_fp_control_saved, TRUE); 1112 } else { 1113 // Similarly here. Don't write to this cache-line in the team structure 1114 // unless we have to. 1115 KMP_CHECK_UPDATE(team->t.t_fp_control_saved, FALSE); 1116 } 1117 } 1118 1119 // Do the opposite, setting the hardware registers to the updated values from 1120 // the team. 1121 inline static void updateHWFPControl(kmp_team_t *team) { 1122 if (__kmp_inherit_fp_control && team->t.t_fp_control_saved) { 1123 // Only reset the fp control regs if they have been changed in the team. 1124 // the parallel region that we are exiting. 1125 kmp_int16 x87_fpu_control_word; 1126 kmp_uint32 mxcsr; 1127 __kmp_store_x87_fpu_control_word(&x87_fpu_control_word); 1128 __kmp_store_mxcsr(&mxcsr); 1129 mxcsr &= KMP_X86_MXCSR_MASK; 1130 1131 if (team->t.t_x87_fpu_control_word != x87_fpu_control_word) { 1132 __kmp_clear_x87_fpu_status_word(); 1133 __kmp_load_x87_fpu_control_word(&team->t.t_x87_fpu_control_word); 1134 } 1135 1136 if (team->t.t_mxcsr != mxcsr) { 1137 __kmp_load_mxcsr(&team->t.t_mxcsr); 1138 } 1139 } 1140 } 1141 #else 1142 #define propagateFPControl(x) ((void)0) 1143 #define updateHWFPControl(x) ((void)0) 1144 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 1145 1146 static void __kmp_alloc_argv_entries(int argc, kmp_team_t *team, 1147 int realloc); // forward declaration 1148 1149 /* Run a parallel region that has been serialized, so runs only in a team of the 1150 single master thread. */ 1151 void __kmp_serialized_parallel(ident_t *loc, kmp_int32 global_tid) { 1152 kmp_info_t *this_thr; 1153 kmp_team_t *serial_team; 1154 1155 KC_TRACE(10, ("__kmpc_serialized_parallel: called by T#%d\n", global_tid)); 1156 1157 /* Skip all this code for autopar serialized loops since it results in 1158 unacceptable overhead */ 1159 if (loc != NULL && (loc->flags & KMP_IDENT_AUTOPAR)) 1160 return; 1161 1162 if (!TCR_4(__kmp_init_parallel)) 1163 __kmp_parallel_initialize(); 1164 1165 this_thr = __kmp_threads[global_tid]; 1166 serial_team = this_thr->th.th_serial_team; 1167 1168 /* utilize the serialized team held by this thread */ 1169 KMP_DEBUG_ASSERT(serial_team); 1170 KMP_MB(); 1171 1172 if (__kmp_tasking_mode != tskm_immediate_exec) { 1173 KMP_DEBUG_ASSERT( 1174 this_thr->th.th_task_team == 1175 this_thr->th.th_team->t.t_task_team[this_thr->th.th_task_state]); 1176 KMP_DEBUG_ASSERT(serial_team->t.t_task_team[this_thr->th.th_task_state] == 1177 NULL); 1178 KA_TRACE(20, ("__kmpc_serialized_parallel: T#%d pushing task_team %p / " 1179 "team %p, new task_team = NULL\n", 1180 global_tid, this_thr->th.th_task_team, this_thr->th.th_team)); 1181 this_thr->th.th_task_team = NULL; 1182 } 1183 1184 #if OMP_40_ENABLED 1185 kmp_proc_bind_t proc_bind = this_thr->th.th_set_proc_bind; 1186 if (this_thr->th.th_current_task->td_icvs.proc_bind == proc_bind_false) { 1187 proc_bind = proc_bind_false; 1188 } else if (proc_bind == proc_bind_default) { 1189 // No proc_bind clause was specified, so use the current value 1190 // of proc-bind-var for this parallel region. 1191 proc_bind = this_thr->th.th_current_task->td_icvs.proc_bind; 1192 } 1193 // Reset for next parallel region 1194 this_thr->th.th_set_proc_bind = proc_bind_default; 1195 #endif /* OMP_40_ENABLED */ 1196 1197 #if OMPT_SUPPORT 1198 ompt_data_t ompt_parallel_data; 1199 ompt_parallel_data.ptr = NULL; 1200 ompt_data_t *implicit_task_data; 1201 void *codeptr = OMPT_LOAD_RETURN_ADDRESS(global_tid); 1202 if (ompt_enabled.enabled && 1203 this_thr->th.ompt_thread_info.state != omp_state_overhead) { 1204 1205 ompt_task_info_t *parent_task_info; 1206 parent_task_info = OMPT_CUR_TASK_INFO(this_thr); 1207 1208 parent_task_info->frame.enter_frame = OMPT_GET_FRAME_ADDRESS(1); 1209 if (ompt_enabled.ompt_callback_parallel_begin) { 1210 int team_size = 1; 1211 1212 ompt_callbacks.ompt_callback(ompt_callback_parallel_begin)( 1213 &(parent_task_info->task_data), &(parent_task_info->frame), 1214 &ompt_parallel_data, team_size, ompt_invoker_program, codeptr); 1215 } 1216 } 1217 #endif // OMPT_SUPPORT 1218 1219 if (this_thr->th.th_team != serial_team) { 1220 // Nested level will be an index in the nested nthreads array 1221 int level = this_thr->th.th_team->t.t_level; 1222 1223 if (serial_team->t.t_serialized) { 1224 /* this serial team was already used 1225 TODO increase performance by making this locks more specific */ 1226 kmp_team_t *new_team; 1227 1228 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 1229 1230 new_team = __kmp_allocate_team(this_thr->th.th_root, 1, 1, 1231 #if OMPT_SUPPORT 1232 ompt_parallel_data, 1233 #endif 1234 #if OMP_40_ENABLED 1235 proc_bind, 1236 #endif 1237 &this_thr->th.th_current_task->td_icvs, 1238 0 USE_NESTED_HOT_ARG(NULL)); 1239 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1240 KMP_ASSERT(new_team); 1241 1242 /* setup new serialized team and install it */ 1243 new_team->t.t_threads[0] = this_thr; 1244 new_team->t.t_parent = this_thr->th.th_team; 1245 serial_team = new_team; 1246 this_thr->th.th_serial_team = serial_team; 1247 1248 KF_TRACE( 1249 10, 1250 ("__kmpc_serialized_parallel: T#%d allocated new serial team %p\n", 1251 global_tid, serial_team)); 1252 1253 /* TODO the above breaks the requirement that if we run out of resources, 1254 then we can still guarantee that serialized teams are ok, since we may 1255 need to allocate a new one */ 1256 } else { 1257 KF_TRACE( 1258 10, 1259 ("__kmpc_serialized_parallel: T#%d reusing cached serial team %p\n", 1260 global_tid, serial_team)); 1261 } 1262 1263 /* we have to initialize this serial team */ 1264 KMP_DEBUG_ASSERT(serial_team->t.t_threads); 1265 KMP_DEBUG_ASSERT(serial_team->t.t_threads[0] == this_thr); 1266 KMP_DEBUG_ASSERT(this_thr->th.th_team != serial_team); 1267 serial_team->t.t_ident = loc; 1268 serial_team->t.t_serialized = 1; 1269 serial_team->t.t_nproc = 1; 1270 serial_team->t.t_parent = this_thr->th.th_team; 1271 serial_team->t.t_sched.sched = this_thr->th.th_team->t.t_sched.sched; 1272 this_thr->th.th_team = serial_team; 1273 serial_team->t.t_master_tid = this_thr->th.th_info.ds.ds_tid; 1274 1275 KF_TRACE(10, ("__kmpc_serialized_parallel: T#d curtask=%p\n", global_tid, 1276 this_thr->th.th_current_task)); 1277 KMP_ASSERT(this_thr->th.th_current_task->td_flags.executing == 1); 1278 this_thr->th.th_current_task->td_flags.executing = 0; 1279 1280 __kmp_push_current_task_to_thread(this_thr, serial_team, 0); 1281 1282 /* TODO: GEH: do ICVs work for nested serialized teams? Don't we need an 1283 implicit task for each serialized task represented by 1284 team->t.t_serialized? */ 1285 copy_icvs(&this_thr->th.th_current_task->td_icvs, 1286 &this_thr->th.th_current_task->td_parent->td_icvs); 1287 1288 // Thread value exists in the nested nthreads array for the next nested 1289 // level 1290 if (__kmp_nested_nth.used && (level + 1 < __kmp_nested_nth.used)) { 1291 this_thr->th.th_current_task->td_icvs.nproc = 1292 __kmp_nested_nth.nth[level + 1]; 1293 } 1294 1295 #if OMP_40_ENABLED 1296 if (__kmp_nested_proc_bind.used && 1297 (level + 1 < __kmp_nested_proc_bind.used)) { 1298 this_thr->th.th_current_task->td_icvs.proc_bind = 1299 __kmp_nested_proc_bind.bind_types[level + 1]; 1300 } 1301 #endif /* OMP_40_ENABLED */ 1302 1303 #if USE_DEBUGGER 1304 serial_team->t.t_pkfn = (microtask_t)(~0); // For the debugger. 1305 #endif 1306 this_thr->th.th_info.ds.ds_tid = 0; 1307 1308 /* set thread cache values */ 1309 this_thr->th.th_team_nproc = 1; 1310 this_thr->th.th_team_master = this_thr; 1311 this_thr->th.th_team_serialized = 1; 1312 1313 serial_team->t.t_level = serial_team->t.t_parent->t.t_level + 1; 1314 serial_team->t.t_active_level = serial_team->t.t_parent->t.t_active_level; 1315 1316 propagateFPControl(serial_team); 1317 1318 /* check if we need to allocate dispatch buffers stack */ 1319 KMP_DEBUG_ASSERT(serial_team->t.t_dispatch); 1320 if (!serial_team->t.t_dispatch->th_disp_buffer) { 1321 serial_team->t.t_dispatch->th_disp_buffer = 1322 (dispatch_private_info_t *)__kmp_allocate( 1323 sizeof(dispatch_private_info_t)); 1324 } 1325 this_thr->th.th_dispatch = serial_team->t.t_dispatch; 1326 1327 KMP_MB(); 1328 1329 } else { 1330 /* this serialized team is already being used, 1331 * that's fine, just add another nested level */ 1332 KMP_DEBUG_ASSERT(this_thr->th.th_team == serial_team); 1333 KMP_DEBUG_ASSERT(serial_team->t.t_threads); 1334 KMP_DEBUG_ASSERT(serial_team->t.t_threads[0] == this_thr); 1335 ++serial_team->t.t_serialized; 1336 this_thr->th.th_team_serialized = serial_team->t.t_serialized; 1337 1338 // Nested level will be an index in the nested nthreads array 1339 int level = this_thr->th.th_team->t.t_level; 1340 // Thread value exists in the nested nthreads array for the next nested 1341 // level 1342 if (__kmp_nested_nth.used && (level + 1 < __kmp_nested_nth.used)) { 1343 this_thr->th.th_current_task->td_icvs.nproc = 1344 __kmp_nested_nth.nth[level + 1]; 1345 } 1346 serial_team->t.t_level++; 1347 KF_TRACE(10, ("__kmpc_serialized_parallel: T#%d increasing nesting level " 1348 "of serial team %p to %d\n", 1349 global_tid, serial_team, serial_team->t.t_level)); 1350 1351 /* allocate/push dispatch buffers stack */ 1352 KMP_DEBUG_ASSERT(serial_team->t.t_dispatch); 1353 { 1354 dispatch_private_info_t *disp_buffer = 1355 (dispatch_private_info_t *)__kmp_allocate( 1356 sizeof(dispatch_private_info_t)); 1357 disp_buffer->next = serial_team->t.t_dispatch->th_disp_buffer; 1358 serial_team->t.t_dispatch->th_disp_buffer = disp_buffer; 1359 } 1360 this_thr->th.th_dispatch = serial_team->t.t_dispatch; 1361 1362 KMP_MB(); 1363 } 1364 #if OMP_40_ENABLED 1365 KMP_CHECK_UPDATE(serial_team->t.t_cancel_request, cancel_noreq); 1366 #endif 1367 1368 if (__kmp_env_consistency_check) 1369 __kmp_push_parallel(global_tid, NULL); 1370 #if OMPT_SUPPORT 1371 serial_team->t.ompt_team_info.master_return_address = codeptr; 1372 if (ompt_enabled.enabled && 1373 this_thr->th.ompt_thread_info.state != omp_state_overhead) { 1374 OMPT_CUR_TASK_INFO(this_thr)->frame.exit_frame = OMPT_GET_FRAME_ADDRESS(1); 1375 1376 ompt_lw_taskteam_t lw_taskteam; 1377 __ompt_lw_taskteam_init(&lw_taskteam, this_thr, global_tid, 1378 &ompt_parallel_data, codeptr); 1379 1380 __ompt_lw_taskteam_link(&lw_taskteam, this_thr, 1); 1381 // don't use lw_taskteam after linking. content was swaped 1382 1383 /* OMPT implicit task begin */ 1384 implicit_task_data = OMPT_CUR_TASK_DATA(this_thr); 1385 if (ompt_enabled.ompt_callback_implicit_task) { 1386 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1387 ompt_scope_begin, OMPT_CUR_TEAM_DATA(this_thr), 1388 OMPT_CUR_TASK_DATA(this_thr), 1, __kmp_tid_from_gtid(global_tid)); 1389 } 1390 1391 /* OMPT state */ 1392 this_thr->th.ompt_thread_info.state = omp_state_work_parallel; 1393 OMPT_CUR_TASK_INFO(this_thr)->frame.exit_frame = OMPT_GET_FRAME_ADDRESS(1); 1394 } 1395 #endif 1396 } 1397 1398 /* most of the work for a fork */ 1399 /* return true if we really went parallel, false if serialized */ 1400 int __kmp_fork_call(ident_t *loc, int gtid, 1401 enum fork_context_e call_context, // Intel, GNU, ... 1402 kmp_int32 argc, microtask_t microtask, launch_t invoker, 1403 /* TODO: revert workaround for Intel(R) 64 tracker #96 */ 1404 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 1405 va_list *ap 1406 #else 1407 va_list ap 1408 #endif 1409 ) { 1410 void **argv; 1411 int i; 1412 int master_tid; 1413 int master_this_cons; 1414 kmp_team_t *team; 1415 kmp_team_t *parent_team; 1416 kmp_info_t *master_th; 1417 kmp_root_t *root; 1418 int nthreads; 1419 int master_active; 1420 int master_set_numthreads; 1421 int level; 1422 #if OMP_40_ENABLED 1423 int active_level; 1424 int teams_level; 1425 #endif 1426 #if KMP_NESTED_HOT_TEAMS 1427 kmp_hot_team_ptr_t **p_hot_teams; 1428 #endif 1429 { // KMP_TIME_BLOCK 1430 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_fork_call); 1431 KMP_COUNT_VALUE(OMP_PARALLEL_args, argc); 1432 1433 KA_TRACE(20, ("__kmp_fork_call: enter T#%d\n", gtid)); 1434 if (__kmp_stkpadding > 0 && __kmp_root[gtid] != NULL) { 1435 /* Some systems prefer the stack for the root thread(s) to start with */ 1436 /* some gap from the parent stack to prevent false sharing. */ 1437 void *dummy = KMP_ALLOCA(__kmp_stkpadding); 1438 /* These 2 lines below are so this does not get optimized out */ 1439 if (__kmp_stkpadding > KMP_MAX_STKPADDING) 1440 __kmp_stkpadding += (short)((kmp_int64)dummy); 1441 } 1442 1443 /* initialize if needed */ 1444 KMP_DEBUG_ASSERT( 1445 __kmp_init_serial); // AC: potentially unsafe, not in sync with shutdown 1446 if (!TCR_4(__kmp_init_parallel)) 1447 __kmp_parallel_initialize(); 1448 1449 /* setup current data */ 1450 master_th = __kmp_threads[gtid]; // AC: potentially unsafe, not in sync with 1451 // shutdown 1452 parent_team = master_th->th.th_team; 1453 master_tid = master_th->th.th_info.ds.ds_tid; 1454 master_this_cons = master_th->th.th_local.this_construct; 1455 root = master_th->th.th_root; 1456 master_active = root->r.r_active; 1457 master_set_numthreads = master_th->th.th_set_nproc; 1458 1459 #if OMPT_SUPPORT 1460 ompt_data_t ompt_parallel_data; 1461 ompt_parallel_data.ptr = NULL; 1462 ompt_data_t *parent_task_data; 1463 ompt_frame_t *ompt_frame; 1464 ompt_data_t *implicit_task_data; 1465 void *return_address = NULL; 1466 1467 if (ompt_enabled.enabled) { 1468 __ompt_get_task_info_internal(0, NULL, &parent_task_data, &ompt_frame, 1469 NULL, NULL); 1470 return_address = OMPT_LOAD_RETURN_ADDRESS(gtid); 1471 } 1472 #endif 1473 1474 // Nested level will be an index in the nested nthreads array 1475 level = parent_team->t.t_level; 1476 // used to launch non-serial teams even if nested is not allowed 1477 active_level = parent_team->t.t_active_level; 1478 #if OMP_40_ENABLED 1479 // needed to check nesting inside the teams 1480 teams_level = master_th->th.th_teams_level; 1481 #endif 1482 #if KMP_NESTED_HOT_TEAMS 1483 p_hot_teams = &master_th->th.th_hot_teams; 1484 if (*p_hot_teams == NULL && __kmp_hot_teams_max_level > 0) { 1485 *p_hot_teams = (kmp_hot_team_ptr_t *)__kmp_allocate( 1486 sizeof(kmp_hot_team_ptr_t) * __kmp_hot_teams_max_level); 1487 (*p_hot_teams)[0].hot_team = root->r.r_hot_team; 1488 // it is either actual or not needed (when active_level > 0) 1489 (*p_hot_teams)[0].hot_team_nth = 1; 1490 } 1491 #endif 1492 1493 #if OMPT_SUPPORT 1494 if (ompt_enabled.enabled) { 1495 if (ompt_enabled.ompt_callback_parallel_begin) { 1496 int team_size = master_set_numthreads 1497 ? master_set_numthreads 1498 : get__nproc_2(parent_team, master_tid); 1499 ompt_callbacks.ompt_callback(ompt_callback_parallel_begin)( 1500 parent_task_data, ompt_frame, &ompt_parallel_data, team_size, 1501 OMPT_INVOKER(call_context), return_address); 1502 } 1503 master_th->th.ompt_thread_info.state = omp_state_overhead; 1504 } 1505 #endif 1506 1507 master_th->th.th_ident = loc; 1508 1509 #if OMP_40_ENABLED 1510 if (master_th->th.th_teams_microtask && ap && 1511 microtask != (microtask_t)__kmp_teams_master && level == teams_level) { 1512 // AC: This is start of parallel that is nested inside teams construct. 1513 // The team is actual (hot), all workers are ready at the fork barrier. 1514 // No lock needed to initialize the team a bit, then free workers. 1515 parent_team->t.t_ident = loc; 1516 __kmp_alloc_argv_entries(argc, parent_team, TRUE); 1517 parent_team->t.t_argc = argc; 1518 argv = (void **)parent_team->t.t_argv; 1519 for (i = argc - 1; i >= 0; --i) 1520 /* TODO: revert workaround for Intel(R) 64 tracker #96 */ 1521 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 1522 *argv++ = va_arg(*ap, void *); 1523 #else 1524 *argv++ = va_arg(ap, void *); 1525 #endif 1526 // Increment our nested depth levels, but not increase the serialization 1527 if (parent_team == master_th->th.th_serial_team) { 1528 // AC: we are in serialized parallel 1529 __kmpc_serialized_parallel(loc, gtid); 1530 KMP_DEBUG_ASSERT(parent_team->t.t_serialized > 1); 1531 // AC: need this in order enquiry functions work 1532 // correctly, will restore at join time 1533 parent_team->t.t_serialized--; 1534 #if OMPT_SUPPORT 1535 void *dummy; 1536 void **exit_runtime_p; 1537 1538 ompt_lw_taskteam_t lw_taskteam; 1539 1540 if (ompt_enabled.enabled) { 1541 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1542 &ompt_parallel_data, return_address); 1543 exit_runtime_p = &(lw_taskteam.ompt_task_info.frame.exit_frame); 1544 1545 __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0); 1546 // don't use lw_taskteam after linking. content was swaped 1547 1548 /* OMPT implicit task begin */ 1549 implicit_task_data = OMPT_CUR_TASK_DATA(master_th); 1550 if (ompt_enabled.ompt_callback_implicit_task) { 1551 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1552 ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th), 1553 implicit_task_data, 1, __kmp_tid_from_gtid(gtid)); 1554 } 1555 1556 /* OMPT state */ 1557 master_th->th.ompt_thread_info.state = omp_state_work_parallel; 1558 } else { 1559 exit_runtime_p = &dummy; 1560 } 1561 #endif 1562 1563 { 1564 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1565 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1566 __kmp_invoke_microtask(microtask, gtid, 0, argc, parent_team->t.t_argv 1567 #if OMPT_SUPPORT 1568 , 1569 exit_runtime_p 1570 #endif 1571 ); 1572 } 1573 1574 #if OMPT_SUPPORT 1575 *exit_runtime_p = NULL; 1576 if (ompt_enabled.enabled) { 1577 OMPT_CUR_TASK_INFO(master_th)->frame.exit_frame = NULL; 1578 if (ompt_enabled.ompt_callback_implicit_task) { 1579 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1580 ompt_scope_end, NULL, implicit_task_data, 1, 1581 __kmp_tid_from_gtid(gtid)); 1582 } 1583 __ompt_lw_taskteam_unlink(master_th); 1584 1585 if (ompt_enabled.ompt_callback_parallel_end) { 1586 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 1587 OMPT_CUR_TEAM_DATA(master_th), OMPT_CUR_TASK_DATA(master_th), 1588 OMPT_INVOKER(call_context), return_address); 1589 } 1590 master_th->th.ompt_thread_info.state = omp_state_overhead; 1591 } 1592 #endif 1593 return TRUE; 1594 } 1595 1596 parent_team->t.t_pkfn = microtask; 1597 parent_team->t.t_invoke = invoker; 1598 KMP_TEST_THEN_INC32((kmp_int32 *)&root->r.r_in_parallel); 1599 parent_team->t.t_active_level++; 1600 parent_team->t.t_level++; 1601 1602 /* Change number of threads in the team if requested */ 1603 if (master_set_numthreads) { // The parallel has num_threads clause 1604 if (master_set_numthreads < master_th->th.th_teams_size.nth) { 1605 // AC: only can reduce number of threads dynamically, can't increase 1606 kmp_info_t **other_threads = parent_team->t.t_threads; 1607 parent_team->t.t_nproc = master_set_numthreads; 1608 for (i = 0; i < master_set_numthreads; ++i) { 1609 other_threads[i]->th.th_team_nproc = master_set_numthreads; 1610 } 1611 // Keep extra threads hot in the team for possible next parallels 1612 } 1613 master_th->th.th_set_nproc = 0; 1614 } 1615 1616 #if USE_DEBUGGER 1617 if (__kmp_debugging) { // Let debugger override number of threads. 1618 int nth = __kmp_omp_num_threads(loc); 1619 if (nth > 0) { // 0 means debugger doesn't want to change num threads 1620 master_set_numthreads = nth; 1621 } 1622 } 1623 #endif 1624 1625 KF_TRACE(10, ("__kmp_fork_call: before internal fork: root=%p, team=%p, " 1626 "master_th=%p, gtid=%d\n", 1627 root, parent_team, master_th, gtid)); 1628 __kmp_internal_fork(loc, gtid, parent_team); 1629 KF_TRACE(10, ("__kmp_fork_call: after internal fork: root=%p, team=%p, " 1630 "master_th=%p, gtid=%d\n", 1631 root, parent_team, master_th, gtid)); 1632 1633 /* Invoke microtask for MASTER thread */ 1634 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) invoke microtask = %p\n", gtid, 1635 parent_team->t.t_id, parent_team->t.t_pkfn)); 1636 1637 { 1638 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1639 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1640 if (!parent_team->t.t_invoke(gtid)) { 1641 KMP_ASSERT2(0, "cannot invoke microtask for MASTER thread"); 1642 } 1643 } 1644 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) done microtask = %p\n", gtid, 1645 parent_team->t.t_id, parent_team->t.t_pkfn)); 1646 KMP_MB(); /* Flush all pending memory write invalidates. */ 1647 1648 KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid)); 1649 1650 return TRUE; 1651 } // Parallel closely nested in teams construct 1652 #endif /* OMP_40_ENABLED */ 1653 1654 #if KMP_DEBUG 1655 if (__kmp_tasking_mode != tskm_immediate_exec) { 1656 KMP_DEBUG_ASSERT(master_th->th.th_task_team == 1657 parent_team->t.t_task_team[master_th->th.th_task_state]); 1658 } 1659 #endif 1660 1661 if (parent_team->t.t_active_level >= 1662 master_th->th.th_current_task->td_icvs.max_active_levels) { 1663 nthreads = 1; 1664 } else { 1665 #if OMP_40_ENABLED 1666 int enter_teams = ((ap == NULL && active_level == 0) || 1667 (ap && teams_level > 0 && teams_level == level)); 1668 #endif 1669 nthreads = 1670 master_set_numthreads 1671 ? master_set_numthreads 1672 : get__nproc_2( 1673 parent_team, 1674 master_tid); // TODO: get nproc directly from current task 1675 1676 // Check if we need to take forkjoin lock? (no need for serialized 1677 // parallel out of teams construct). This code moved here from 1678 // __kmp_reserve_threads() to speedup nested serialized parallels. 1679 if (nthreads > 1) { 1680 if ((!get__nested(master_th) && (root->r.r_in_parallel 1681 #if OMP_40_ENABLED 1682 && !enter_teams 1683 #endif /* OMP_40_ENABLED */ 1684 )) || 1685 (__kmp_library == library_serial)) { 1686 KC_TRACE(10, ("__kmp_fork_call: T#%d serializing team; requested %d" 1687 " threads\n", 1688 gtid, nthreads)); 1689 nthreads = 1; 1690 } 1691 } 1692 if (nthreads > 1) { 1693 /* determine how many new threads we can use */ 1694 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 1695 nthreads = __kmp_reserve_threads( 1696 root, parent_team, master_tid, nthreads 1697 #if OMP_40_ENABLED 1698 /* AC: If we execute teams from parallel region (on host), then 1699 teams should be created but each can only have 1 thread if 1700 nesting is disabled. If teams called from serial region, then 1701 teams and their threads should be created regardless of the 1702 nesting setting. */ 1703 , 1704 enter_teams 1705 #endif /* OMP_40_ENABLED */ 1706 ); 1707 if (nthreads == 1) { 1708 // Free lock for single thread execution here; for multi-thread 1709 // execution it will be freed later after team of threads created 1710 // and initialized 1711 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1712 } 1713 } 1714 } 1715 KMP_DEBUG_ASSERT(nthreads > 0); 1716 1717 // If we temporarily changed the set number of threads then restore it now 1718 master_th->th.th_set_nproc = 0; 1719 1720 /* create a serialized parallel region? */ 1721 if (nthreads == 1) { 1722 /* josh todo: hypothetical question: what do we do for OS X*? */ 1723 #if KMP_OS_LINUX && \ 1724 (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) 1725 void *args[argc]; 1726 #else 1727 void **args = (void **)KMP_ALLOCA(argc * sizeof(void *)); 1728 #endif /* KMP_OS_LINUX && ( KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || \ 1729 KMP_ARCH_AARCH64) */ 1730 1731 KA_TRACE(20, 1732 ("__kmp_fork_call: T#%d serializing parallel region\n", gtid)); 1733 1734 __kmpc_serialized_parallel(loc, gtid); 1735 1736 if (call_context == fork_context_intel) { 1737 /* TODO this sucks, use the compiler itself to pass args! :) */ 1738 master_th->th.th_serial_team->t.t_ident = loc; 1739 #if OMP_40_ENABLED 1740 if (!ap) { 1741 // revert change made in __kmpc_serialized_parallel() 1742 master_th->th.th_serial_team->t.t_level--; 1743 // Get args from parent team for teams construct 1744 1745 #if OMPT_SUPPORT 1746 void *dummy; 1747 void **exit_runtime_p; 1748 ompt_task_info_t *task_info; 1749 1750 ompt_lw_taskteam_t lw_taskteam; 1751 1752 if (ompt_enabled.enabled) { 1753 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1754 &ompt_parallel_data, return_address); 1755 1756 __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0); 1757 // don't use lw_taskteam after linking. content was swaped 1758 1759 task_info = OMPT_CUR_TASK_INFO(master_th); 1760 exit_runtime_p = &(task_info->frame.exit_frame); 1761 if (ompt_enabled.ompt_callback_implicit_task) { 1762 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1763 ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th), 1764 &(task_info->task_data), 1, __kmp_tid_from_gtid(gtid)); 1765 } 1766 1767 /* OMPT state */ 1768 master_th->th.ompt_thread_info.state = omp_state_work_parallel; 1769 } else { 1770 exit_runtime_p = &dummy; 1771 } 1772 #endif 1773 1774 { 1775 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1776 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1777 __kmp_invoke_microtask(microtask, gtid, 0, argc, 1778 parent_team->t.t_argv 1779 #if OMPT_SUPPORT 1780 , 1781 exit_runtime_p 1782 #endif 1783 ); 1784 } 1785 1786 #if OMPT_SUPPORT 1787 if (ompt_enabled.enabled) { 1788 exit_runtime_p = NULL; 1789 if (ompt_enabled.ompt_callback_implicit_task) { 1790 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1791 ompt_scope_end, NULL, &(task_info->task_data), 1, 1792 __kmp_tid_from_gtid(gtid)); 1793 } 1794 1795 __ompt_lw_taskteam_unlink(master_th); 1796 if (ompt_enabled.ompt_callback_parallel_end) { 1797 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 1798 OMPT_CUR_TEAM_DATA(master_th), parent_task_data, 1799 OMPT_INVOKER(call_context), return_address); 1800 } 1801 master_th->th.ompt_thread_info.state = omp_state_overhead; 1802 } 1803 #endif 1804 } else if (microtask == (microtask_t)__kmp_teams_master) { 1805 KMP_DEBUG_ASSERT(master_th->th.th_team == 1806 master_th->th.th_serial_team); 1807 team = master_th->th.th_team; 1808 // team->t.t_pkfn = microtask; 1809 team->t.t_invoke = invoker; 1810 __kmp_alloc_argv_entries(argc, team, TRUE); 1811 team->t.t_argc = argc; 1812 argv = (void **)team->t.t_argv; 1813 if (ap) { 1814 for (i = argc - 1; i >= 0; --i) 1815 // TODO: revert workaround for Intel(R) 64 tracker #96 1816 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 1817 *argv++ = va_arg(*ap, void *); 1818 #else 1819 *argv++ = va_arg(ap, void *); 1820 #endif 1821 } else { 1822 for (i = 0; i < argc; ++i) 1823 // Get args from parent team for teams construct 1824 argv[i] = parent_team->t.t_argv[i]; 1825 } 1826 // AC: revert change made in __kmpc_serialized_parallel() 1827 // because initial code in teams should have level=0 1828 team->t.t_level--; 1829 // AC: call special invoker for outer "parallel" of teams construct 1830 { 1831 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1832 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1833 invoker(gtid); 1834 } 1835 } else { 1836 #endif /* OMP_40_ENABLED */ 1837 argv = args; 1838 for (i = argc - 1; i >= 0; --i) 1839 // TODO: revert workaround for Intel(R) 64 tracker #96 1840 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 1841 *argv++ = va_arg(*ap, void *); 1842 #else 1843 *argv++ = va_arg(ap, void *); 1844 #endif 1845 KMP_MB(); 1846 1847 #if OMPT_SUPPORT 1848 void *dummy; 1849 void **exit_runtime_p; 1850 ompt_task_info_t *task_info; 1851 1852 ompt_lw_taskteam_t lw_taskteam; 1853 1854 if (ompt_enabled.enabled) { 1855 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1856 &ompt_parallel_data, return_address); 1857 __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0); 1858 // don't use lw_taskteam after linking. content was swaped 1859 task_info = OMPT_CUR_TASK_INFO(master_th); 1860 exit_runtime_p = &(task_info->frame.exit_frame); 1861 1862 /* OMPT implicit task begin */ 1863 implicit_task_data = OMPT_CUR_TASK_DATA(master_th); 1864 if (ompt_enabled.ompt_callback_implicit_task) { 1865 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1866 ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th), 1867 implicit_task_data, 1, __kmp_tid_from_gtid(gtid)); 1868 } 1869 1870 /* OMPT state */ 1871 master_th->th.ompt_thread_info.state = omp_state_work_parallel; 1872 } else { 1873 exit_runtime_p = &dummy; 1874 } 1875 #endif 1876 1877 { 1878 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1879 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1880 __kmp_invoke_microtask(microtask, gtid, 0, argc, args 1881 #if OMPT_SUPPORT 1882 , 1883 exit_runtime_p 1884 #endif 1885 ); 1886 } 1887 1888 #if OMPT_SUPPORT 1889 if (ompt_enabled.enabled) { 1890 *exit_runtime_p = NULL; 1891 if (ompt_enabled.ompt_callback_implicit_task) { 1892 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1893 ompt_scope_end, NULL, &(task_info->task_data), 1, 1894 __kmp_tid_from_gtid(gtid)); 1895 } 1896 1897 ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th); 1898 __ompt_lw_taskteam_unlink(master_th); 1899 if (ompt_enabled.ompt_callback_parallel_end) { 1900 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 1901 &ompt_parallel_data, parent_task_data, 1902 OMPT_INVOKER(call_context), return_address); 1903 } 1904 master_th->th.ompt_thread_info.state = omp_state_overhead; 1905 } 1906 #endif 1907 #if OMP_40_ENABLED 1908 } 1909 #endif /* OMP_40_ENABLED */ 1910 } else if (call_context == fork_context_gnu) { 1911 #if OMPT_SUPPORT 1912 ompt_lw_taskteam_t lwt; 1913 __ompt_lw_taskteam_init(&lwt, master_th, gtid, &ompt_parallel_data, 1914 return_address); 1915 1916 lwt.ompt_task_info.frame.exit_frame = NULL; 1917 __ompt_lw_taskteam_link(&lwt, master_th, 1); 1918 // don't use lw_taskteam after linking. content was swaped 1919 #endif 1920 1921 // we were called from GNU native code 1922 KA_TRACE(20, ("__kmp_fork_call: T#%d serial exit\n", gtid)); 1923 return FALSE; 1924 } else { 1925 KMP_ASSERT2(call_context < fork_context_last, 1926 "__kmp_fork_call: unknown fork_context parameter"); 1927 } 1928 1929 KA_TRACE(20, ("__kmp_fork_call: T#%d serial exit\n", gtid)); 1930 KMP_MB(); 1931 return FALSE; 1932 } 1933 1934 // GEH: only modify the executing flag in the case when not serialized 1935 // serialized case is handled in kmpc_serialized_parallel 1936 KF_TRACE(10, ("__kmp_fork_call: parent_team_aclevel=%d, master_th=%p, " 1937 "curtask=%p, curtask_max_aclevel=%d\n", 1938 parent_team->t.t_active_level, master_th, 1939 master_th->th.th_current_task, 1940 master_th->th.th_current_task->td_icvs.max_active_levels)); 1941 // TODO: GEH - cannot do this assertion because root thread not set up as 1942 // executing 1943 // KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 1 ); 1944 master_th->th.th_current_task->td_flags.executing = 0; 1945 1946 #if OMP_40_ENABLED 1947 if (!master_th->th.th_teams_microtask || level > teams_level) 1948 #endif /* OMP_40_ENABLED */ 1949 { 1950 /* Increment our nested depth level */ 1951 KMP_TEST_THEN_INC32((kmp_int32 *)&root->r.r_in_parallel); 1952 } 1953 1954 // See if we need to make a copy of the ICVs. 1955 int nthreads_icv = master_th->th.th_current_task->td_icvs.nproc; 1956 if ((level + 1 < __kmp_nested_nth.used) && 1957 (__kmp_nested_nth.nth[level + 1] != nthreads_icv)) { 1958 nthreads_icv = __kmp_nested_nth.nth[level + 1]; 1959 } else { 1960 nthreads_icv = 0; // don't update 1961 } 1962 1963 #if OMP_40_ENABLED 1964 // Figure out the proc_bind_policy for the new team. 1965 kmp_proc_bind_t proc_bind = master_th->th.th_set_proc_bind; 1966 kmp_proc_bind_t proc_bind_icv = 1967 proc_bind_default; // proc_bind_default means don't update 1968 if (master_th->th.th_current_task->td_icvs.proc_bind == proc_bind_false) { 1969 proc_bind = proc_bind_false; 1970 } else { 1971 if (proc_bind == proc_bind_default) { 1972 // No proc_bind clause specified; use current proc-bind-var for this 1973 // parallel region 1974 proc_bind = master_th->th.th_current_task->td_icvs.proc_bind; 1975 } 1976 /* else: The proc_bind policy was specified explicitly on parallel clause. 1977 This overrides proc-bind-var for this parallel region, but does not 1978 change proc-bind-var. */ 1979 // Figure the value of proc-bind-var for the child threads. 1980 if ((level + 1 < __kmp_nested_proc_bind.used) && 1981 (__kmp_nested_proc_bind.bind_types[level + 1] != 1982 master_th->th.th_current_task->td_icvs.proc_bind)) { 1983 proc_bind_icv = __kmp_nested_proc_bind.bind_types[level + 1]; 1984 } 1985 } 1986 1987 // Reset for next parallel region 1988 master_th->th.th_set_proc_bind = proc_bind_default; 1989 #endif /* OMP_40_ENABLED */ 1990 1991 if ((nthreads_icv > 0) 1992 #if OMP_40_ENABLED 1993 || (proc_bind_icv != proc_bind_default) 1994 #endif /* OMP_40_ENABLED */ 1995 ) { 1996 kmp_internal_control_t new_icvs; 1997 copy_icvs(&new_icvs, &master_th->th.th_current_task->td_icvs); 1998 new_icvs.next = NULL; 1999 if (nthreads_icv > 0) { 2000 new_icvs.nproc = nthreads_icv; 2001 } 2002 2003 #if OMP_40_ENABLED 2004 if (proc_bind_icv != proc_bind_default) { 2005 new_icvs.proc_bind = proc_bind_icv; 2006 } 2007 #endif /* OMP_40_ENABLED */ 2008 2009 /* allocate a new parallel team */ 2010 KF_TRACE(10, ("__kmp_fork_call: before __kmp_allocate_team\n")); 2011 team = __kmp_allocate_team(root, nthreads, nthreads, 2012 #if OMPT_SUPPORT 2013 ompt_parallel_data, 2014 #endif 2015 #if OMP_40_ENABLED 2016 proc_bind, 2017 #endif 2018 &new_icvs, argc USE_NESTED_HOT_ARG(master_th)); 2019 } else { 2020 /* allocate a new parallel team */ 2021 KF_TRACE(10, ("__kmp_fork_call: before __kmp_allocate_team\n")); 2022 team = __kmp_allocate_team(root, nthreads, nthreads, 2023 #if OMPT_SUPPORT 2024 ompt_parallel_data, 2025 #endif 2026 #if OMP_40_ENABLED 2027 proc_bind, 2028 #endif 2029 &master_th->th.th_current_task->td_icvs, 2030 argc USE_NESTED_HOT_ARG(master_th)); 2031 } 2032 KF_TRACE( 2033 10, ("__kmp_fork_call: after __kmp_allocate_team - team = %p\n", team)); 2034 2035 /* setup the new team */ 2036 KMP_CHECK_UPDATE(team->t.t_master_tid, master_tid); 2037 KMP_CHECK_UPDATE(team->t.t_master_this_cons, master_this_cons); 2038 KMP_CHECK_UPDATE(team->t.t_ident, loc); 2039 KMP_CHECK_UPDATE(team->t.t_parent, parent_team); 2040 KMP_CHECK_UPDATE_SYNC(team->t.t_pkfn, microtask); 2041 #if OMPT_SUPPORT 2042 KMP_CHECK_UPDATE_SYNC(team->t.ompt_team_info.master_return_address, 2043 return_address); 2044 #endif 2045 KMP_CHECK_UPDATE(team->t.t_invoke, invoker); // TODO move to root, maybe 2046 // TODO: parent_team->t.t_level == INT_MAX ??? 2047 #if OMP_40_ENABLED 2048 if (!master_th->th.th_teams_microtask || level > teams_level) { 2049 #endif /* OMP_40_ENABLED */ 2050 int new_level = parent_team->t.t_level + 1; 2051 KMP_CHECK_UPDATE(team->t.t_level, new_level); 2052 new_level = parent_team->t.t_active_level + 1; 2053 KMP_CHECK_UPDATE(team->t.t_active_level, new_level); 2054 #if OMP_40_ENABLED 2055 } else { 2056 // AC: Do not increase parallel level at start of the teams construct 2057 int new_level = parent_team->t.t_level; 2058 KMP_CHECK_UPDATE(team->t.t_level, new_level); 2059 new_level = parent_team->t.t_active_level; 2060 KMP_CHECK_UPDATE(team->t.t_active_level, new_level); 2061 } 2062 #endif /* OMP_40_ENABLED */ 2063 kmp_r_sched_t new_sched = get__sched_2(parent_team, master_tid); 2064 // set master's schedule as new run-time schedule 2065 KMP_CHECK_UPDATE(team->t.t_sched.sched, new_sched.sched); 2066 2067 #if OMP_40_ENABLED 2068 KMP_CHECK_UPDATE(team->t.t_cancel_request, cancel_noreq); 2069 #endif 2070 2071 // Update the floating point rounding in the team if required. 2072 propagateFPControl(team); 2073 2074 if (__kmp_tasking_mode != tskm_immediate_exec) { 2075 // Set master's task team to team's task team. Unless this is hot team, it 2076 // should be NULL. 2077 KMP_DEBUG_ASSERT(master_th->th.th_task_team == 2078 parent_team->t.t_task_team[master_th->th.th_task_state]); 2079 KA_TRACE(20, ("__kmp_fork_call: Master T#%d pushing task_team %p / team " 2080 "%p, new task_team %p / team %p\n", 2081 __kmp_gtid_from_thread(master_th), 2082 master_th->th.th_task_team, parent_team, 2083 team->t.t_task_team[master_th->th.th_task_state], team)); 2084 2085 if (active_level || master_th->th.th_task_team) { 2086 // Take a memo of master's task_state 2087 KMP_DEBUG_ASSERT(master_th->th.th_task_state_memo_stack); 2088 if (master_th->th.th_task_state_top >= 2089 master_th->th.th_task_state_stack_sz) { // increase size 2090 kmp_uint32 new_size = 2 * master_th->th.th_task_state_stack_sz; 2091 kmp_uint8 *old_stack, *new_stack; 2092 kmp_uint32 i; 2093 new_stack = (kmp_uint8 *)__kmp_allocate(new_size); 2094 for (i = 0; i < master_th->th.th_task_state_stack_sz; ++i) { 2095 new_stack[i] = master_th->th.th_task_state_memo_stack[i]; 2096 } 2097 for (i = master_th->th.th_task_state_stack_sz; i < new_size; 2098 ++i) { // zero-init rest of stack 2099 new_stack[i] = 0; 2100 } 2101 old_stack = master_th->th.th_task_state_memo_stack; 2102 master_th->th.th_task_state_memo_stack = new_stack; 2103 master_th->th.th_task_state_stack_sz = new_size; 2104 __kmp_free(old_stack); 2105 } 2106 // Store master's task_state on stack 2107 master_th->th 2108 .th_task_state_memo_stack[master_th->th.th_task_state_top] = 2109 master_th->th.th_task_state; 2110 master_th->th.th_task_state_top++; 2111 #if KMP_NESTED_HOT_TEAMS 2112 if (team == master_th->th.th_hot_teams[active_level].hot_team) { 2113 // Restore master's nested state if nested hot team 2114 master_th->th.th_task_state = 2115 master_th->th 2116 .th_task_state_memo_stack[master_th->th.th_task_state_top]; 2117 } else { 2118 #endif 2119 master_th->th.th_task_state = 0; 2120 #if KMP_NESTED_HOT_TEAMS 2121 } 2122 #endif 2123 } 2124 #if !KMP_NESTED_HOT_TEAMS 2125 KMP_DEBUG_ASSERT((master_th->th.th_task_team == NULL) || 2126 (team == root->r.r_hot_team)); 2127 #endif 2128 } 2129 2130 KA_TRACE( 2131 20, 2132 ("__kmp_fork_call: T#%d(%d:%d)->(%d:0) created a team of %d threads\n", 2133 gtid, parent_team->t.t_id, team->t.t_master_tid, team->t.t_id, 2134 team->t.t_nproc)); 2135 KMP_DEBUG_ASSERT(team != root->r.r_hot_team || 2136 (team->t.t_master_tid == 0 && 2137 (team->t.t_parent == root->r.r_root_team || 2138 team->t.t_parent->t.t_serialized))); 2139 KMP_MB(); 2140 2141 /* now, setup the arguments */ 2142 argv = (void **)team->t.t_argv; 2143 #if OMP_40_ENABLED 2144 if (ap) { 2145 #endif /* OMP_40_ENABLED */ 2146 for (i = argc - 1; i >= 0; --i) { 2147 // TODO: revert workaround for Intel(R) 64 tracker #96 2148 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 2149 void *new_argv = va_arg(*ap, void *); 2150 #else 2151 void *new_argv = va_arg(ap, void *); 2152 #endif 2153 KMP_CHECK_UPDATE(*argv, new_argv); 2154 argv++; 2155 } 2156 #if OMP_40_ENABLED 2157 } else { 2158 for (i = 0; i < argc; ++i) { 2159 // Get args from parent team for teams construct 2160 KMP_CHECK_UPDATE(argv[i], team->t.t_parent->t.t_argv[i]); 2161 } 2162 } 2163 #endif /* OMP_40_ENABLED */ 2164 2165 /* now actually fork the threads */ 2166 KMP_CHECK_UPDATE(team->t.t_master_active, master_active); 2167 if (!root->r.r_active) // Only do assignment if it prevents cache ping-pong 2168 root->r.r_active = TRUE; 2169 2170 __kmp_fork_team_threads(root, team, master_th, gtid); 2171 __kmp_setup_icv_copy(team, nthreads, 2172 &master_th->th.th_current_task->td_icvs, loc); 2173 2174 #if OMPT_SUPPORT 2175 master_th->th.ompt_thread_info.state = omp_state_work_parallel; 2176 #endif 2177 2178 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 2179 2180 #if USE_ITT_BUILD 2181 if (team->t.t_active_level == 1 // only report frames at level 1 2182 #if OMP_40_ENABLED 2183 && !master_th->th.th_teams_microtask // not in teams construct 2184 #endif /* OMP_40_ENABLED */ 2185 ) { 2186 #if USE_ITT_NOTIFY 2187 if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) && 2188 (__kmp_forkjoin_frames_mode == 3 || 2189 __kmp_forkjoin_frames_mode == 1)) { 2190 kmp_uint64 tmp_time = 0; 2191 if (__itt_get_timestamp_ptr) 2192 tmp_time = __itt_get_timestamp(); 2193 // Internal fork - report frame begin 2194 master_th->th.th_frame_time = tmp_time; 2195 if (__kmp_forkjoin_frames_mode == 3) 2196 team->t.t_region_time = tmp_time; 2197 } else 2198 // only one notification scheme (either "submit" or "forking/joined", not both) 2199 #endif /* USE_ITT_NOTIFY */ 2200 if ((__itt_frame_begin_v3_ptr || KMP_ITT_DEBUG) && 2201 __kmp_forkjoin_frames && !__kmp_forkjoin_frames_mode) { 2202 // Mark start of "parallel" region for Intel(R) VTune(TM) analyzer. 2203 __kmp_itt_region_forking(gtid, team->t.t_nproc, 0); 2204 } 2205 } 2206 #endif /* USE_ITT_BUILD */ 2207 2208 /* now go on and do the work */ 2209 KMP_DEBUG_ASSERT(team == __kmp_threads[gtid]->th.th_team); 2210 KMP_MB(); 2211 KF_TRACE(10, 2212 ("__kmp_internal_fork : root=%p, team=%p, master_th=%p, gtid=%d\n", 2213 root, team, master_th, gtid)); 2214 2215 #if USE_ITT_BUILD 2216 if (__itt_stack_caller_create_ptr) { 2217 team->t.t_stack_id = 2218 __kmp_itt_stack_caller_create(); // create new stack stitching id 2219 // before entering fork barrier 2220 } 2221 #endif /* USE_ITT_BUILD */ 2222 2223 #if OMP_40_ENABLED 2224 // AC: skip __kmp_internal_fork at teams construct, let only master 2225 // threads execute 2226 if (ap) 2227 #endif /* OMP_40_ENABLED */ 2228 { 2229 __kmp_internal_fork(loc, gtid, team); 2230 KF_TRACE(10, ("__kmp_internal_fork : after : root=%p, team=%p, " 2231 "master_th=%p, gtid=%d\n", 2232 root, team, master_th, gtid)); 2233 } 2234 2235 if (call_context == fork_context_gnu) { 2236 KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid)); 2237 return TRUE; 2238 } 2239 2240 /* Invoke microtask for MASTER thread */ 2241 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) invoke microtask = %p\n", gtid, 2242 team->t.t_id, team->t.t_pkfn)); 2243 } // END of timer KMP_fork_call block 2244 2245 { 2246 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 2247 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 2248 if (!team->t.t_invoke(gtid)) { 2249 KMP_ASSERT2(0, "cannot invoke microtask for MASTER thread"); 2250 } 2251 } 2252 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) done microtask = %p\n", gtid, 2253 team->t.t_id, team->t.t_pkfn)); 2254 KMP_MB(); /* Flush all pending memory write invalidates. */ 2255 2256 KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid)); 2257 2258 #if OMPT_SUPPORT 2259 if (ompt_enabled.enabled) { 2260 master_th->th.ompt_thread_info.state = omp_state_overhead; 2261 } 2262 #endif 2263 2264 return TRUE; 2265 } 2266 2267 #if OMPT_SUPPORT 2268 static inline void __kmp_join_restore_state(kmp_info_t *thread, 2269 kmp_team_t *team) { 2270 // restore state outside the region 2271 thread->th.ompt_thread_info.state = 2272 ((team->t.t_serialized) ? omp_state_work_serial 2273 : omp_state_work_parallel); 2274 } 2275 2276 static inline void __kmp_join_ompt(int gtid, kmp_info_t *thread, 2277 kmp_team_t *team, ompt_data_t *parallel_data, 2278 fork_context_e fork_context, void *codeptr) { 2279 ompt_task_info_t *task_info = __ompt_get_task_info_object(0); 2280 if (ompt_enabled.ompt_callback_parallel_end) { 2281 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 2282 parallel_data, &(task_info->task_data), OMPT_INVOKER(fork_context), 2283 codeptr); 2284 } 2285 2286 task_info->frame.enter_frame = NULL; 2287 __kmp_join_restore_state(thread, team); 2288 } 2289 #endif 2290 2291 void __kmp_join_call(ident_t *loc, int gtid 2292 #if OMPT_SUPPORT 2293 , 2294 enum fork_context_e fork_context 2295 #endif 2296 #if OMP_40_ENABLED 2297 , 2298 int exit_teams 2299 #endif /* OMP_40_ENABLED */ 2300 ) { 2301 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_join_call); 2302 kmp_team_t *team; 2303 kmp_team_t *parent_team; 2304 kmp_info_t *master_th; 2305 kmp_root_t *root; 2306 int master_active; 2307 int i; 2308 2309 KA_TRACE(20, ("__kmp_join_call: enter T#%d\n", gtid)); 2310 2311 /* setup current data */ 2312 master_th = __kmp_threads[gtid]; 2313 root = master_th->th.th_root; 2314 team = master_th->th.th_team; 2315 parent_team = team->t.t_parent; 2316 2317 master_th->th.th_ident = loc; 2318 2319 #if OMPT_SUPPORT 2320 if (ompt_enabled.enabled) { 2321 master_th->th.ompt_thread_info.state = omp_state_overhead; 2322 } 2323 #endif 2324 2325 #if KMP_DEBUG 2326 if (__kmp_tasking_mode != tskm_immediate_exec && !exit_teams) { 2327 KA_TRACE(20, ("__kmp_join_call: T#%d, old team = %p old task_team = %p, " 2328 "th_task_team = %p\n", 2329 __kmp_gtid_from_thread(master_th), team, 2330 team->t.t_task_team[master_th->th.th_task_state], 2331 master_th->th.th_task_team)); 2332 KMP_DEBUG_ASSERT(master_th->th.th_task_team == 2333 team->t.t_task_team[master_th->th.th_task_state]); 2334 } 2335 #endif 2336 2337 if (team->t.t_serialized) { 2338 #if OMP_40_ENABLED 2339 if (master_th->th.th_teams_microtask) { 2340 // We are in teams construct 2341 int level = team->t.t_level; 2342 int tlevel = master_th->th.th_teams_level; 2343 if (level == tlevel) { 2344 // AC: we haven't incremented it earlier at start of teams construct, 2345 // so do it here - at the end of teams construct 2346 team->t.t_level++; 2347 } else if (level == tlevel + 1) { 2348 // AC: we are exiting parallel inside teams, need to increment 2349 // serialization in order to restore it in the next call to 2350 // __kmpc_end_serialized_parallel 2351 team->t.t_serialized++; 2352 } 2353 } 2354 #endif /* OMP_40_ENABLED */ 2355 __kmpc_end_serialized_parallel(loc, gtid); 2356 2357 #if OMPT_SUPPORT 2358 if (ompt_enabled.enabled) { 2359 __kmp_join_restore_state(master_th, parent_team); 2360 } 2361 #endif 2362 2363 return; 2364 } 2365 2366 master_active = team->t.t_master_active; 2367 2368 #if OMP_40_ENABLED 2369 if (!exit_teams) 2370 #endif /* OMP_40_ENABLED */ 2371 { 2372 // AC: No barrier for internal teams at exit from teams construct. 2373 // But there is barrier for external team (league). 2374 __kmp_internal_join(loc, gtid, team); 2375 } 2376 #if OMP_40_ENABLED 2377 else { 2378 master_th->th.th_task_state = 2379 0; // AC: no tasking in teams (out of any parallel) 2380 } 2381 #endif /* OMP_40_ENABLED */ 2382 2383 KMP_MB(); 2384 2385 #if OMPT_SUPPORT 2386 ompt_data_t *parallel_data = &(team->t.ompt_team_info.parallel_data); 2387 void *codeptr = team->t.ompt_team_info.master_return_address; 2388 #endif 2389 2390 #if USE_ITT_BUILD 2391 if (__itt_stack_caller_create_ptr) { 2392 __kmp_itt_stack_caller_destroy( 2393 (__itt_caller)team->t 2394 .t_stack_id); // destroy the stack stitching id after join barrier 2395 } 2396 2397 // Mark end of "parallel" region for Intel(R) VTune(TM) analyzer. 2398 if (team->t.t_active_level == 1 2399 #if OMP_40_ENABLED 2400 && !master_th->th.th_teams_microtask /* not in teams construct */ 2401 #endif /* OMP_40_ENABLED */ 2402 ) { 2403 master_th->th.th_ident = loc; 2404 // only one notification scheme (either "submit" or "forking/joined", not 2405 // both) 2406 if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) && 2407 __kmp_forkjoin_frames_mode == 3) 2408 __kmp_itt_frame_submit(gtid, team->t.t_region_time, 2409 master_th->th.th_frame_time, 0, loc, 2410 master_th->th.th_team_nproc, 1); 2411 else if ((__itt_frame_end_v3_ptr || KMP_ITT_DEBUG) && 2412 !__kmp_forkjoin_frames_mode && __kmp_forkjoin_frames) 2413 __kmp_itt_region_joined(gtid); 2414 } // active_level == 1 2415 #endif /* USE_ITT_BUILD */ 2416 2417 #if OMP_40_ENABLED 2418 if (master_th->th.th_teams_microtask && !exit_teams && 2419 team->t.t_pkfn != (microtask_t)__kmp_teams_master && 2420 team->t.t_level == master_th->th.th_teams_level + 1) { 2421 // AC: We need to leave the team structure intact at the end of parallel 2422 // inside the teams construct, so that at the next parallel same (hot) team 2423 // works, only adjust nesting levels 2424 2425 /* Decrement our nested depth level */ 2426 team->t.t_level--; 2427 team->t.t_active_level--; 2428 KMP_TEST_THEN_DEC32((kmp_int32 *)&root->r.r_in_parallel); 2429 2430 /* Restore number of threads in the team if needed */ 2431 if (master_th->th.th_team_nproc < master_th->th.th_teams_size.nth) { 2432 int old_num = master_th->th.th_team_nproc; 2433 int new_num = master_th->th.th_teams_size.nth; 2434 kmp_info_t **other_threads = team->t.t_threads; 2435 team->t.t_nproc = new_num; 2436 for (i = 0; i < old_num; ++i) { 2437 other_threads[i]->th.th_team_nproc = new_num; 2438 } 2439 // Adjust states of non-used threads of the team 2440 for (i = old_num; i < new_num; ++i) { 2441 // Re-initialize thread's barrier data. 2442 int b; 2443 kmp_balign_t *balign = other_threads[i]->th.th_bar; 2444 for (b = 0; b < bs_last_barrier; ++b) { 2445 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 2446 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 2447 #if USE_DEBUGGER 2448 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 2449 #endif 2450 } 2451 if (__kmp_tasking_mode != tskm_immediate_exec) { 2452 // Synchronize thread's task state 2453 other_threads[i]->th.th_task_state = master_th->th.th_task_state; 2454 } 2455 } 2456 } 2457 2458 #if OMPT_SUPPORT 2459 if (ompt_enabled.enabled) { 2460 __kmp_join_ompt(gtid, master_th, parent_team, parallel_data, fork_context, 2461 codeptr); 2462 } 2463 #endif 2464 2465 return; 2466 } 2467 #endif /* OMP_40_ENABLED */ 2468 2469 /* do cleanup and restore the parent team */ 2470 master_th->th.th_info.ds.ds_tid = team->t.t_master_tid; 2471 master_th->th.th_local.this_construct = team->t.t_master_this_cons; 2472 2473 master_th->th.th_dispatch = &parent_team->t.t_dispatch[team->t.t_master_tid]; 2474 2475 /* jc: The following lock has instructions with REL and ACQ semantics, 2476 separating the parallel user code called in this parallel region 2477 from the serial user code called after this function returns. */ 2478 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 2479 2480 #if OMP_40_ENABLED 2481 if (!master_th->th.th_teams_microtask || 2482 team->t.t_level > master_th->th.th_teams_level) 2483 #endif /* OMP_40_ENABLED */ 2484 { 2485 /* Decrement our nested depth level */ 2486 KMP_TEST_THEN_DEC32((kmp_int32 *)&root->r.r_in_parallel); 2487 } 2488 KMP_DEBUG_ASSERT(root->r.r_in_parallel >= 0); 2489 2490 #if OMPT_SUPPORT 2491 if (ompt_enabled.enabled) { 2492 ompt_task_info_t *task_info = __ompt_get_task_info_object(0); 2493 if (ompt_enabled.ompt_callback_implicit_task) { 2494 int ompt_team_size = team->t.t_nproc; 2495 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 2496 ompt_scope_end, NULL, &(task_info->task_data), ompt_team_size, 2497 __kmp_tid_from_gtid(gtid)); 2498 } 2499 2500 task_info->frame.exit_frame = NULL; 2501 task_info->task_data = ompt_data_none; 2502 } 2503 #endif 2504 2505 KF_TRACE(10, ("__kmp_join_call1: T#%d, this_thread=%p team=%p\n", 0, 2506 master_th, team)); 2507 __kmp_pop_current_task_from_thread(master_th); 2508 2509 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 2510 // Restore master thread's partition. 2511 master_th->th.th_first_place = team->t.t_first_place; 2512 master_th->th.th_last_place = team->t.t_last_place; 2513 #endif /* OMP_40_ENABLED */ 2514 2515 updateHWFPControl(team); 2516 2517 if (root->r.r_active != master_active) 2518 root->r.r_active = master_active; 2519 2520 __kmp_free_team(root, team USE_NESTED_HOT_ARG( 2521 master_th)); // this will free worker threads 2522 2523 /* this race was fun to find. make sure the following is in the critical 2524 region otherwise assertions may fail occasionally since the old team may be 2525 reallocated and the hierarchy appears inconsistent. it is actually safe to 2526 run and won't cause any bugs, but will cause those assertion failures. it's 2527 only one deref&assign so might as well put this in the critical region */ 2528 master_th->th.th_team = parent_team; 2529 master_th->th.th_team_nproc = parent_team->t.t_nproc; 2530 master_th->th.th_team_master = parent_team->t.t_threads[0]; 2531 master_th->th.th_team_serialized = parent_team->t.t_serialized; 2532 2533 /* restore serialized team, if need be */ 2534 if (parent_team->t.t_serialized && 2535 parent_team != master_th->th.th_serial_team && 2536 parent_team != root->r.r_root_team) { 2537 __kmp_free_team(root, 2538 master_th->th.th_serial_team USE_NESTED_HOT_ARG(NULL)); 2539 master_th->th.th_serial_team = parent_team; 2540 } 2541 2542 if (__kmp_tasking_mode != tskm_immediate_exec) { 2543 if (master_th->th.th_task_state_top > 2544 0) { // Restore task state from memo stack 2545 KMP_DEBUG_ASSERT(master_th->th.th_task_state_memo_stack); 2546 // Remember master's state if we re-use this nested hot team 2547 master_th->th.th_task_state_memo_stack[master_th->th.th_task_state_top] = 2548 master_th->th.th_task_state; 2549 --master_th->th.th_task_state_top; // pop 2550 // Now restore state at this level 2551 master_th->th.th_task_state = 2552 master_th->th 2553 .th_task_state_memo_stack[master_th->th.th_task_state_top]; 2554 } 2555 // Copy the task team from the parent team to the master thread 2556 master_th->th.th_task_team = 2557 parent_team->t.t_task_team[master_th->th.th_task_state]; 2558 KA_TRACE(20, 2559 ("__kmp_join_call: Master T#%d restoring task_team %p / team %p\n", 2560 __kmp_gtid_from_thread(master_th), master_th->th.th_task_team, 2561 parent_team)); 2562 } 2563 2564 // TODO: GEH - cannot do this assertion because root thread not set up as 2565 // executing 2566 // KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 0 ); 2567 master_th->th.th_current_task->td_flags.executing = 1; 2568 2569 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 2570 2571 #if OMPT_SUPPORT 2572 if (ompt_enabled.enabled) { 2573 __kmp_join_ompt(gtid, master_th, parent_team, parallel_data, fork_context, 2574 codeptr); 2575 } 2576 #endif 2577 2578 KMP_MB(); 2579 KA_TRACE(20, ("__kmp_join_call: exit T#%d\n", gtid)); 2580 } 2581 2582 /* Check whether we should push an internal control record onto the 2583 serial team stack. If so, do it. */ 2584 void __kmp_save_internal_controls(kmp_info_t *thread) { 2585 2586 if (thread->th.th_team != thread->th.th_serial_team) { 2587 return; 2588 } 2589 if (thread->th.th_team->t.t_serialized > 1) { 2590 int push = 0; 2591 2592 if (thread->th.th_team->t.t_control_stack_top == NULL) { 2593 push = 1; 2594 } else { 2595 if (thread->th.th_team->t.t_control_stack_top->serial_nesting_level != 2596 thread->th.th_team->t.t_serialized) { 2597 push = 1; 2598 } 2599 } 2600 if (push) { /* push a record on the serial team's stack */ 2601 kmp_internal_control_t *control = 2602 (kmp_internal_control_t *)__kmp_allocate( 2603 sizeof(kmp_internal_control_t)); 2604 2605 copy_icvs(control, &thread->th.th_current_task->td_icvs); 2606 2607 control->serial_nesting_level = thread->th.th_team->t.t_serialized; 2608 2609 control->next = thread->th.th_team->t.t_control_stack_top; 2610 thread->th.th_team->t.t_control_stack_top = control; 2611 } 2612 } 2613 } 2614 2615 /* Changes set_nproc */ 2616 void __kmp_set_num_threads(int new_nth, int gtid) { 2617 kmp_info_t *thread; 2618 kmp_root_t *root; 2619 2620 KF_TRACE(10, ("__kmp_set_num_threads: new __kmp_nth = %d\n", new_nth)); 2621 KMP_DEBUG_ASSERT(__kmp_init_serial); 2622 2623 if (new_nth < 1) 2624 new_nth = 1; 2625 else if (new_nth > __kmp_max_nth) 2626 new_nth = __kmp_max_nth; 2627 2628 KMP_COUNT_VALUE(OMP_set_numthreads, new_nth); 2629 thread = __kmp_threads[gtid]; 2630 2631 __kmp_save_internal_controls(thread); 2632 2633 set__nproc(thread, new_nth); 2634 2635 // If this omp_set_num_threads() call will cause the hot team size to be 2636 // reduced (in the absence of a num_threads clause), then reduce it now, 2637 // rather than waiting for the next parallel region. 2638 root = thread->th.th_root; 2639 if (__kmp_init_parallel && (!root->r.r_active) && 2640 (root->r.r_hot_team->t.t_nproc > new_nth) 2641 #if KMP_NESTED_HOT_TEAMS 2642 && __kmp_hot_teams_max_level && !__kmp_hot_teams_mode 2643 #endif 2644 ) { 2645 kmp_team_t *hot_team = root->r.r_hot_team; 2646 int f; 2647 2648 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 2649 2650 // Release the extra threads we don't need any more. 2651 for (f = new_nth; f < hot_team->t.t_nproc; f++) { 2652 KMP_DEBUG_ASSERT(hot_team->t.t_threads[f] != NULL); 2653 if (__kmp_tasking_mode != tskm_immediate_exec) { 2654 // When decreasing team size, threads no longer in the team should unref 2655 // task team. 2656 hot_team->t.t_threads[f]->th.th_task_team = NULL; 2657 } 2658 __kmp_free_thread(hot_team->t.t_threads[f]); 2659 hot_team->t.t_threads[f] = NULL; 2660 } 2661 hot_team->t.t_nproc = new_nth; 2662 #if KMP_NESTED_HOT_TEAMS 2663 if (thread->th.th_hot_teams) { 2664 KMP_DEBUG_ASSERT(hot_team == thread->th.th_hot_teams[0].hot_team); 2665 thread->th.th_hot_teams[0].hot_team_nth = new_nth; 2666 } 2667 #endif 2668 2669 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 2670 2671 // Update the t_nproc field in the threads that are still active. 2672 for (f = 0; f < new_nth; f++) { 2673 KMP_DEBUG_ASSERT(hot_team->t.t_threads[f] != NULL); 2674 hot_team->t.t_threads[f]->th.th_team_nproc = new_nth; 2675 } 2676 // Special flag in case omp_set_num_threads() call 2677 hot_team->t.t_size_changed = -1; 2678 } 2679 } 2680 2681 /* Changes max_active_levels */ 2682 void __kmp_set_max_active_levels(int gtid, int max_active_levels) { 2683 kmp_info_t *thread; 2684 2685 KF_TRACE(10, ("__kmp_set_max_active_levels: new max_active_levels for thread " 2686 "%d = (%d)\n", 2687 gtid, max_active_levels)); 2688 KMP_DEBUG_ASSERT(__kmp_init_serial); 2689 2690 // validate max_active_levels 2691 if (max_active_levels < 0) { 2692 KMP_WARNING(ActiveLevelsNegative, max_active_levels); 2693 // We ignore this call if the user has specified a negative value. 2694 // The current setting won't be changed. The last valid setting will be 2695 // used. A warning will be issued (if warnings are allowed as controlled by 2696 // the KMP_WARNINGS env var). 2697 KF_TRACE(10, ("__kmp_set_max_active_levels: the call is ignored: new " 2698 "max_active_levels for thread %d = (%d)\n", 2699 gtid, max_active_levels)); 2700 return; 2701 } 2702 if (max_active_levels <= KMP_MAX_ACTIVE_LEVELS_LIMIT) { 2703 // it's OK, the max_active_levels is within the valid range: [ 0; 2704 // KMP_MAX_ACTIVE_LEVELS_LIMIT ] 2705 // We allow a zero value. (implementation defined behavior) 2706 } else { 2707 KMP_WARNING(ActiveLevelsExceedLimit, max_active_levels, 2708 KMP_MAX_ACTIVE_LEVELS_LIMIT); 2709 max_active_levels = KMP_MAX_ACTIVE_LEVELS_LIMIT; 2710 // Current upper limit is MAX_INT. (implementation defined behavior) 2711 // If the input exceeds the upper limit, we correct the input to be the 2712 // upper limit. (implementation defined behavior) 2713 // Actually, the flow should never get here until we use MAX_INT limit. 2714 } 2715 KF_TRACE(10, ("__kmp_set_max_active_levels: after validation: new " 2716 "max_active_levels for thread %d = (%d)\n", 2717 gtid, max_active_levels)); 2718 2719 thread = __kmp_threads[gtid]; 2720 2721 __kmp_save_internal_controls(thread); 2722 2723 set__max_active_levels(thread, max_active_levels); 2724 } 2725 2726 /* Gets max_active_levels */ 2727 int __kmp_get_max_active_levels(int gtid) { 2728 kmp_info_t *thread; 2729 2730 KF_TRACE(10, ("__kmp_get_max_active_levels: thread %d\n", gtid)); 2731 KMP_DEBUG_ASSERT(__kmp_init_serial); 2732 2733 thread = __kmp_threads[gtid]; 2734 KMP_DEBUG_ASSERT(thread->th.th_current_task); 2735 KF_TRACE(10, ("__kmp_get_max_active_levels: thread %d, curtask=%p, " 2736 "curtask_maxaclevel=%d\n", 2737 gtid, thread->th.th_current_task, 2738 thread->th.th_current_task->td_icvs.max_active_levels)); 2739 return thread->th.th_current_task->td_icvs.max_active_levels; 2740 } 2741 2742 /* Changes def_sched_var ICV values (run-time schedule kind and chunk) */ 2743 void __kmp_set_schedule(int gtid, kmp_sched_t kind, int chunk) { 2744 kmp_info_t *thread; 2745 // kmp_team_t *team; 2746 2747 KF_TRACE(10, ("__kmp_set_schedule: new schedule for thread %d = (%d, %d)\n", 2748 gtid, (int)kind, chunk)); 2749 KMP_DEBUG_ASSERT(__kmp_init_serial); 2750 2751 // Check if the kind parameter is valid, correct if needed. 2752 // Valid parameters should fit in one of two intervals - standard or extended: 2753 // <lower>, <valid>, <upper_std>, <lower_ext>, <valid>, <upper> 2754 // 2008-01-25: 0, 1 - 4, 5, 100, 101 - 102, 103 2755 if (kind <= kmp_sched_lower || kind >= kmp_sched_upper || 2756 (kind <= kmp_sched_lower_ext && kind >= kmp_sched_upper_std)) { 2757 // TODO: Hint needs attention in case we change the default schedule. 2758 __kmp_msg(kmp_ms_warning, KMP_MSG(ScheduleKindOutOfRange, kind), 2759 KMP_HNT(DefaultScheduleKindUsed, "static, no chunk"), 2760 __kmp_msg_null); 2761 kind = kmp_sched_default; 2762 chunk = 0; // ignore chunk value in case of bad kind 2763 } 2764 2765 thread = __kmp_threads[gtid]; 2766 2767 __kmp_save_internal_controls(thread); 2768 2769 if (kind < kmp_sched_upper_std) { 2770 if (kind == kmp_sched_static && chunk < KMP_DEFAULT_CHUNK) { 2771 // differ static chunked vs. unchunked: chunk should be invalid to 2772 // indicate unchunked schedule (which is the default) 2773 thread->th.th_current_task->td_icvs.sched.r_sched_type = kmp_sch_static; 2774 } else { 2775 thread->th.th_current_task->td_icvs.sched.r_sched_type = 2776 __kmp_sch_map[kind - kmp_sched_lower - 1]; 2777 } 2778 } else { 2779 // __kmp_sch_map[ kind - kmp_sched_lower_ext + kmp_sched_upper_std - 2780 // kmp_sched_lower - 2 ]; 2781 thread->th.th_current_task->td_icvs.sched.r_sched_type = 2782 __kmp_sch_map[kind - kmp_sched_lower_ext + kmp_sched_upper_std - 2783 kmp_sched_lower - 2]; 2784 } 2785 if (kind == kmp_sched_auto || chunk < 1) { 2786 // ignore parameter chunk for schedule auto 2787 thread->th.th_current_task->td_icvs.sched.chunk = KMP_DEFAULT_CHUNK; 2788 } else { 2789 thread->th.th_current_task->td_icvs.sched.chunk = chunk; 2790 } 2791 } 2792 2793 /* Gets def_sched_var ICV values */ 2794 void __kmp_get_schedule(int gtid, kmp_sched_t *kind, int *chunk) { 2795 kmp_info_t *thread; 2796 enum sched_type th_type; 2797 2798 KF_TRACE(10, ("__kmp_get_schedule: thread %d\n", gtid)); 2799 KMP_DEBUG_ASSERT(__kmp_init_serial); 2800 2801 thread = __kmp_threads[gtid]; 2802 2803 th_type = thread->th.th_current_task->td_icvs.sched.r_sched_type; 2804 2805 switch (th_type) { 2806 case kmp_sch_static: 2807 case kmp_sch_static_greedy: 2808 case kmp_sch_static_balanced: 2809 *kind = kmp_sched_static; 2810 *chunk = 0; // chunk was not set, try to show this fact via zero value 2811 return; 2812 case kmp_sch_static_chunked: 2813 *kind = kmp_sched_static; 2814 break; 2815 case kmp_sch_dynamic_chunked: 2816 *kind = kmp_sched_dynamic; 2817 break; 2818 case kmp_sch_guided_chunked: 2819 case kmp_sch_guided_iterative_chunked: 2820 case kmp_sch_guided_analytical_chunked: 2821 *kind = kmp_sched_guided; 2822 break; 2823 case kmp_sch_auto: 2824 *kind = kmp_sched_auto; 2825 break; 2826 case kmp_sch_trapezoidal: 2827 *kind = kmp_sched_trapezoidal; 2828 break; 2829 #if KMP_STATIC_STEAL_ENABLED 2830 case kmp_sch_static_steal: 2831 *kind = kmp_sched_static_steal; 2832 break; 2833 #endif 2834 default: 2835 KMP_FATAL(UnknownSchedulingType, th_type); 2836 } 2837 2838 *chunk = thread->th.th_current_task->td_icvs.sched.chunk; 2839 } 2840 2841 int __kmp_get_ancestor_thread_num(int gtid, int level) { 2842 2843 int ii, dd; 2844 kmp_team_t *team; 2845 kmp_info_t *thr; 2846 2847 KF_TRACE(10, ("__kmp_get_ancestor_thread_num: thread %d %d\n", gtid, level)); 2848 KMP_DEBUG_ASSERT(__kmp_init_serial); 2849 2850 // validate level 2851 if (level == 0) 2852 return 0; 2853 if (level < 0) 2854 return -1; 2855 thr = __kmp_threads[gtid]; 2856 team = thr->th.th_team; 2857 ii = team->t.t_level; 2858 if (level > ii) 2859 return -1; 2860 2861 #if OMP_40_ENABLED 2862 if (thr->th.th_teams_microtask) { 2863 // AC: we are in teams region where multiple nested teams have same level 2864 int tlevel = thr->th.th_teams_level; // the level of the teams construct 2865 if (level <= 2866 tlevel) { // otherwise usual algorithm works (will not touch the teams) 2867 KMP_DEBUG_ASSERT(ii >= tlevel); 2868 // AC: As we need to pass by the teams league, we need to artificially 2869 // increase ii 2870 if (ii == tlevel) { 2871 ii += 2; // three teams have same level 2872 } else { 2873 ii++; // two teams have same level 2874 } 2875 } 2876 } 2877 #endif 2878 2879 if (ii == level) 2880 return __kmp_tid_from_gtid(gtid); 2881 2882 dd = team->t.t_serialized; 2883 level++; 2884 while (ii > level) { 2885 for (dd = team->t.t_serialized; (dd > 0) && (ii > level); dd--, ii--) { 2886 } 2887 if ((team->t.t_serialized) && (!dd)) { 2888 team = team->t.t_parent; 2889 continue; 2890 } 2891 if (ii > level) { 2892 team = team->t.t_parent; 2893 dd = team->t.t_serialized; 2894 ii--; 2895 } 2896 } 2897 2898 return (dd > 1) ? (0) : (team->t.t_master_tid); 2899 } 2900 2901 int __kmp_get_team_size(int gtid, int level) { 2902 2903 int ii, dd; 2904 kmp_team_t *team; 2905 kmp_info_t *thr; 2906 2907 KF_TRACE(10, ("__kmp_get_team_size: thread %d %d\n", gtid, level)); 2908 KMP_DEBUG_ASSERT(__kmp_init_serial); 2909 2910 // validate level 2911 if (level == 0) 2912 return 1; 2913 if (level < 0) 2914 return -1; 2915 thr = __kmp_threads[gtid]; 2916 team = thr->th.th_team; 2917 ii = team->t.t_level; 2918 if (level > ii) 2919 return -1; 2920 2921 #if OMP_40_ENABLED 2922 if (thr->th.th_teams_microtask) { 2923 // AC: we are in teams region where multiple nested teams have same level 2924 int tlevel = thr->th.th_teams_level; // the level of the teams construct 2925 if (level <= 2926 tlevel) { // otherwise usual algorithm works (will not touch the teams) 2927 KMP_DEBUG_ASSERT(ii >= tlevel); 2928 // AC: As we need to pass by the teams league, we need to artificially 2929 // increase ii 2930 if (ii == tlevel) { 2931 ii += 2; // three teams have same level 2932 } else { 2933 ii++; // two teams have same level 2934 } 2935 } 2936 } 2937 #endif 2938 2939 while (ii > level) { 2940 for (dd = team->t.t_serialized; (dd > 0) && (ii > level); dd--, ii--) { 2941 } 2942 if (team->t.t_serialized && (!dd)) { 2943 team = team->t.t_parent; 2944 continue; 2945 } 2946 if (ii > level) { 2947 team = team->t.t_parent; 2948 ii--; 2949 } 2950 } 2951 2952 return team->t.t_nproc; 2953 } 2954 2955 kmp_r_sched_t __kmp_get_schedule_global() { 2956 // This routine created because pairs (__kmp_sched, __kmp_chunk) and 2957 // (__kmp_static, __kmp_guided) may be changed by kmp_set_defaults 2958 // independently. So one can get the updated schedule here. 2959 2960 kmp_r_sched_t r_sched; 2961 2962 // create schedule from 4 globals: __kmp_sched, __kmp_chunk, __kmp_static, 2963 // __kmp_guided. __kmp_sched should keep original value, so that user can set 2964 // KMP_SCHEDULE multiple times, and thus have different run-time schedules in 2965 // different roots (even in OMP 2.5) 2966 if (__kmp_sched == kmp_sch_static) { 2967 // replace STATIC with more detailed schedule (balanced or greedy) 2968 r_sched.r_sched_type = __kmp_static; 2969 } else if (__kmp_sched == kmp_sch_guided_chunked) { 2970 // replace GUIDED with more detailed schedule (iterative or analytical) 2971 r_sched.r_sched_type = __kmp_guided; 2972 } else { // (STATIC_CHUNKED), or (DYNAMIC_CHUNKED), or other 2973 r_sched.r_sched_type = __kmp_sched; 2974 } 2975 2976 if (__kmp_chunk < KMP_DEFAULT_CHUNK) { 2977 // __kmp_chunk may be wrong here (if it was not ever set) 2978 r_sched.chunk = KMP_DEFAULT_CHUNK; 2979 } else { 2980 r_sched.chunk = __kmp_chunk; 2981 } 2982 2983 return r_sched; 2984 } 2985 2986 /* Allocate (realloc == FALSE) * or reallocate (realloc == TRUE) 2987 at least argc number of *t_argv entries for the requested team. */ 2988 static void __kmp_alloc_argv_entries(int argc, kmp_team_t *team, int realloc) { 2989 2990 KMP_DEBUG_ASSERT(team); 2991 if (!realloc || argc > team->t.t_max_argc) { 2992 2993 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: needed entries=%d, " 2994 "current entries=%d\n", 2995 team->t.t_id, argc, (realloc) ? team->t.t_max_argc : 0)); 2996 /* if previously allocated heap space for args, free them */ 2997 if (realloc && team->t.t_argv != &team->t.t_inline_argv[0]) 2998 __kmp_free((void *)team->t.t_argv); 2999 3000 if (argc <= KMP_INLINE_ARGV_ENTRIES) { 3001 /* use unused space in the cache line for arguments */ 3002 team->t.t_max_argc = KMP_INLINE_ARGV_ENTRIES; 3003 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: inline allocate %d " 3004 "argv entries\n", 3005 team->t.t_id, team->t.t_max_argc)); 3006 team->t.t_argv = &team->t.t_inline_argv[0]; 3007 if (__kmp_storage_map) { 3008 __kmp_print_storage_map_gtid( 3009 -1, &team->t.t_inline_argv[0], 3010 &team->t.t_inline_argv[KMP_INLINE_ARGV_ENTRIES], 3011 (sizeof(void *) * KMP_INLINE_ARGV_ENTRIES), "team_%d.t_inline_argv", 3012 team->t.t_id); 3013 } 3014 } else { 3015 /* allocate space for arguments in the heap */ 3016 team->t.t_max_argc = (argc <= (KMP_MIN_MALLOC_ARGV_ENTRIES >> 1)) 3017 ? KMP_MIN_MALLOC_ARGV_ENTRIES 3018 : 2 * argc; 3019 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: dynamic allocate %d " 3020 "argv entries\n", 3021 team->t.t_id, team->t.t_max_argc)); 3022 team->t.t_argv = 3023 (void **)__kmp_page_allocate(sizeof(void *) * team->t.t_max_argc); 3024 if (__kmp_storage_map) { 3025 __kmp_print_storage_map_gtid(-1, &team->t.t_argv[0], 3026 &team->t.t_argv[team->t.t_max_argc], 3027 sizeof(void *) * team->t.t_max_argc, 3028 "team_%d.t_argv", team->t.t_id); 3029 } 3030 } 3031 } 3032 } 3033 3034 static void __kmp_allocate_team_arrays(kmp_team_t *team, int max_nth) { 3035 int i; 3036 int num_disp_buff = max_nth > 1 ? __kmp_dispatch_num_buffers : 2; 3037 team->t.t_threads = 3038 (kmp_info_t **)__kmp_allocate(sizeof(kmp_info_t *) * max_nth); 3039 team->t.t_disp_buffer = (dispatch_shared_info_t *)__kmp_allocate( 3040 sizeof(dispatch_shared_info_t) * num_disp_buff); 3041 team->t.t_dispatch = 3042 (kmp_disp_t *)__kmp_allocate(sizeof(kmp_disp_t) * max_nth); 3043 team->t.t_implicit_task_taskdata = 3044 (kmp_taskdata_t *)__kmp_allocate(sizeof(kmp_taskdata_t) * max_nth); 3045 team->t.t_max_nproc = max_nth; 3046 3047 /* setup dispatch buffers */ 3048 for (i = 0; i < num_disp_buff; ++i) { 3049 team->t.t_disp_buffer[i].buffer_index = i; 3050 #if OMP_45_ENABLED 3051 team->t.t_disp_buffer[i].doacross_buf_idx = i; 3052 #endif 3053 } 3054 } 3055 3056 static void __kmp_free_team_arrays(kmp_team_t *team) { 3057 /* Note: this does not free the threads in t_threads (__kmp_free_threads) */ 3058 int i; 3059 for (i = 0; i < team->t.t_max_nproc; ++i) { 3060 if (team->t.t_dispatch[i].th_disp_buffer != NULL) { 3061 __kmp_free(team->t.t_dispatch[i].th_disp_buffer); 3062 team->t.t_dispatch[i].th_disp_buffer = NULL; 3063 } 3064 } 3065 __kmp_free(team->t.t_threads); 3066 __kmp_free(team->t.t_disp_buffer); 3067 __kmp_free(team->t.t_dispatch); 3068 __kmp_free(team->t.t_implicit_task_taskdata); 3069 team->t.t_threads = NULL; 3070 team->t.t_disp_buffer = NULL; 3071 team->t.t_dispatch = NULL; 3072 team->t.t_implicit_task_taskdata = 0; 3073 } 3074 3075 static void __kmp_reallocate_team_arrays(kmp_team_t *team, int max_nth) { 3076 kmp_info_t **oldThreads = team->t.t_threads; 3077 3078 __kmp_free(team->t.t_disp_buffer); 3079 __kmp_free(team->t.t_dispatch); 3080 __kmp_free(team->t.t_implicit_task_taskdata); 3081 __kmp_allocate_team_arrays(team, max_nth); 3082 3083 KMP_MEMCPY(team->t.t_threads, oldThreads, 3084 team->t.t_nproc * sizeof(kmp_info_t *)); 3085 3086 __kmp_free(oldThreads); 3087 } 3088 3089 static kmp_internal_control_t __kmp_get_global_icvs(void) { 3090 3091 kmp_r_sched_t r_sched = 3092 __kmp_get_schedule_global(); // get current state of scheduling globals 3093 3094 #if OMP_40_ENABLED 3095 KMP_DEBUG_ASSERT(__kmp_nested_proc_bind.used > 0); 3096 #endif /* OMP_40_ENABLED */ 3097 3098 kmp_internal_control_t g_icvs = { 3099 0, // int serial_nesting_level; //corresponds to value of th_team_serialized 3100 (kmp_int8)__kmp_dflt_nested, // int nested; //internal control 3101 // for nested parallelism (per thread) 3102 (kmp_int8)__kmp_global.g.g_dynamic, // internal control for dynamic 3103 // adjustment of threads (per thread) 3104 (kmp_int8)__kmp_env_blocktime, // int bt_set; //internal control for 3105 // whether blocktime is explicitly set 3106 __kmp_dflt_blocktime, // int blocktime; //internal control for blocktime 3107 #if KMP_USE_MONITOR 3108 __kmp_bt_intervals, // int bt_intervals; //internal control for blocktime 3109 // intervals 3110 #endif 3111 __kmp_dflt_team_nth, // int nproc; //internal control for # of threads for 3112 // next parallel region (per thread) 3113 // (use a max ub on value if __kmp_parallel_initialize not called yet) 3114 __kmp_dflt_max_active_levels, // int max_active_levels; //internal control 3115 // for max_active_levels 3116 r_sched, // kmp_r_sched_t sched; //internal control for runtime schedule 3117 // {sched,chunk} pair 3118 #if OMP_40_ENABLED 3119 __kmp_nested_proc_bind.bind_types[0], 3120 __kmp_default_device, 3121 #endif /* OMP_40_ENABLED */ 3122 NULL // struct kmp_internal_control *next; 3123 }; 3124 3125 return g_icvs; 3126 } 3127 3128 static kmp_internal_control_t __kmp_get_x_global_icvs(const kmp_team_t *team) { 3129 3130 kmp_internal_control_t gx_icvs; 3131 gx_icvs.serial_nesting_level = 3132 0; // probably =team->t.t_serial like in save_inter_controls 3133 copy_icvs(&gx_icvs, &team->t.t_threads[0]->th.th_current_task->td_icvs); 3134 gx_icvs.next = NULL; 3135 3136 return gx_icvs; 3137 } 3138 3139 static void __kmp_initialize_root(kmp_root_t *root) { 3140 int f; 3141 kmp_team_t *root_team; 3142 kmp_team_t *hot_team; 3143 int hot_team_max_nth; 3144 kmp_r_sched_t r_sched = 3145 __kmp_get_schedule_global(); // get current state of scheduling globals 3146 kmp_internal_control_t r_icvs = __kmp_get_global_icvs(); 3147 KMP_DEBUG_ASSERT(root); 3148 KMP_ASSERT(!root->r.r_begin); 3149 3150 /* setup the root state structure */ 3151 __kmp_init_lock(&root->r.r_begin_lock); 3152 root->r.r_begin = FALSE; 3153 root->r.r_active = FALSE; 3154 root->r.r_in_parallel = 0; 3155 root->r.r_blocktime = __kmp_dflt_blocktime; 3156 root->r.r_nested = __kmp_dflt_nested; 3157 root->r.r_cg_nthreads = 1; 3158 3159 /* setup the root team for this task */ 3160 /* allocate the root team structure */ 3161 KF_TRACE(10, ("__kmp_initialize_root: before root_team\n")); 3162 3163 root_team = 3164 __kmp_allocate_team(root, 3165 1, // new_nproc 3166 1, // max_nproc 3167 #if OMPT_SUPPORT 3168 ompt_data_none, // root parallel id 3169 #endif 3170 #if OMP_40_ENABLED 3171 __kmp_nested_proc_bind.bind_types[0], 3172 #endif 3173 &r_icvs, 3174 0 // argc 3175 USE_NESTED_HOT_ARG(NULL) // master thread is unknown 3176 ); 3177 #if USE_DEBUGGER 3178 // Non-NULL value should be assigned to make the debugger display the root 3179 // team. 3180 TCW_SYNC_PTR(root_team->t.t_pkfn, (microtask_t)(~0)); 3181 #endif 3182 3183 KF_TRACE(10, ("__kmp_initialize_root: after root_team = %p\n", root_team)); 3184 3185 root->r.r_root_team = root_team; 3186 root_team->t.t_control_stack_top = NULL; 3187 3188 /* initialize root team */ 3189 root_team->t.t_threads[0] = NULL; 3190 root_team->t.t_nproc = 1; 3191 root_team->t.t_serialized = 1; 3192 // TODO???: root_team->t.t_max_active_levels = __kmp_dflt_max_active_levels; 3193 root_team->t.t_sched.sched = r_sched.sched; 3194 KA_TRACE( 3195 20, 3196 ("__kmp_initialize_root: init root team %d arrived: join=%u, plain=%u\n", 3197 root_team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 3198 3199 /* setup the hot team for this task */ 3200 /* allocate the hot team structure */ 3201 KF_TRACE(10, ("__kmp_initialize_root: before hot_team\n")); 3202 3203 hot_team = 3204 __kmp_allocate_team(root, 3205 1, // new_nproc 3206 __kmp_dflt_team_nth_ub * 2, // max_nproc 3207 #if OMPT_SUPPORT 3208 ompt_data_none, // root parallel id 3209 #endif 3210 #if OMP_40_ENABLED 3211 __kmp_nested_proc_bind.bind_types[0], 3212 #endif 3213 &r_icvs, 3214 0 // argc 3215 USE_NESTED_HOT_ARG(NULL) // master thread is unknown 3216 ); 3217 KF_TRACE(10, ("__kmp_initialize_root: after hot_team = %p\n", hot_team)); 3218 3219 root->r.r_hot_team = hot_team; 3220 root_team->t.t_control_stack_top = NULL; 3221 3222 /* first-time initialization */ 3223 hot_team->t.t_parent = root_team; 3224 3225 /* initialize hot team */ 3226 hot_team_max_nth = hot_team->t.t_max_nproc; 3227 for (f = 0; f < hot_team_max_nth; ++f) { 3228 hot_team->t.t_threads[f] = NULL; 3229 } 3230 hot_team->t.t_nproc = 1; 3231 // TODO???: hot_team->t.t_max_active_levels = __kmp_dflt_max_active_levels; 3232 hot_team->t.t_sched.sched = r_sched.sched; 3233 hot_team->t.t_size_changed = 0; 3234 } 3235 3236 #ifdef KMP_DEBUG 3237 3238 typedef struct kmp_team_list_item { 3239 kmp_team_p const *entry; 3240 struct kmp_team_list_item *next; 3241 } kmp_team_list_item_t; 3242 typedef kmp_team_list_item_t *kmp_team_list_t; 3243 3244 static void __kmp_print_structure_team_accum( // Add team to list of teams. 3245 kmp_team_list_t list, // List of teams. 3246 kmp_team_p const *team // Team to add. 3247 ) { 3248 3249 // List must terminate with item where both entry and next are NULL. 3250 // Team is added to the list only once. 3251 // List is sorted in ascending order by team id. 3252 // Team id is *not* a key. 3253 3254 kmp_team_list_t l; 3255 3256 KMP_DEBUG_ASSERT(list != NULL); 3257 if (team == NULL) { 3258 return; 3259 } 3260 3261 __kmp_print_structure_team_accum(list, team->t.t_parent); 3262 __kmp_print_structure_team_accum(list, team->t.t_next_pool); 3263 3264 // Search list for the team. 3265 l = list; 3266 while (l->next != NULL && l->entry != team) { 3267 l = l->next; 3268 } 3269 if (l->next != NULL) { 3270 return; // Team has been added before, exit. 3271 } 3272 3273 // Team is not found. Search list again for insertion point. 3274 l = list; 3275 while (l->next != NULL && l->entry->t.t_id <= team->t.t_id) { 3276 l = l->next; 3277 } 3278 3279 // Insert team. 3280 { 3281 kmp_team_list_item_t *item = (kmp_team_list_item_t *)KMP_INTERNAL_MALLOC( 3282 sizeof(kmp_team_list_item_t)); 3283 *item = *l; 3284 l->entry = team; 3285 l->next = item; 3286 } 3287 } 3288 3289 static void __kmp_print_structure_team(char const *title, kmp_team_p const *team 3290 3291 ) { 3292 __kmp_printf("%s", title); 3293 if (team != NULL) { 3294 __kmp_printf("%2x %p\n", team->t.t_id, team); 3295 } else { 3296 __kmp_printf(" - (nil)\n"); 3297 } 3298 } 3299 3300 static void __kmp_print_structure_thread(char const *title, 3301 kmp_info_p const *thread) { 3302 __kmp_printf("%s", title); 3303 if (thread != NULL) { 3304 __kmp_printf("%2d %p\n", thread->th.th_info.ds.ds_gtid, thread); 3305 } else { 3306 __kmp_printf(" - (nil)\n"); 3307 } 3308 } 3309 3310 void __kmp_print_structure(void) { 3311 3312 kmp_team_list_t list; 3313 3314 // Initialize list of teams. 3315 list = 3316 (kmp_team_list_item_t *)KMP_INTERNAL_MALLOC(sizeof(kmp_team_list_item_t)); 3317 list->entry = NULL; 3318 list->next = NULL; 3319 3320 __kmp_printf("\n------------------------------\nGlobal Thread " 3321 "Table\n------------------------------\n"); 3322 { 3323 int gtid; 3324 for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) { 3325 __kmp_printf("%2d", gtid); 3326 if (__kmp_threads != NULL) { 3327 __kmp_printf(" %p", __kmp_threads[gtid]); 3328 } 3329 if (__kmp_root != NULL) { 3330 __kmp_printf(" %p", __kmp_root[gtid]); 3331 } 3332 __kmp_printf("\n"); 3333 } 3334 } 3335 3336 // Print out __kmp_threads array. 3337 __kmp_printf("\n------------------------------\nThreads\n--------------------" 3338 "----------\n"); 3339 if (__kmp_threads != NULL) { 3340 int gtid; 3341 for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) { 3342 kmp_info_t const *thread = __kmp_threads[gtid]; 3343 if (thread != NULL) { 3344 __kmp_printf("GTID %2d %p:\n", gtid, thread); 3345 __kmp_printf(" Our Root: %p\n", thread->th.th_root); 3346 __kmp_print_structure_team(" Our Team: ", thread->th.th_team); 3347 __kmp_print_structure_team(" Serial Team: ", 3348 thread->th.th_serial_team); 3349 __kmp_printf(" Threads: %2d\n", thread->th.th_team_nproc); 3350 __kmp_print_structure_thread(" Master: ", 3351 thread->th.th_team_master); 3352 __kmp_printf(" Serialized?: %2d\n", thread->th.th_team_serialized); 3353 __kmp_printf(" Set NProc: %2d\n", thread->th.th_set_nproc); 3354 #if OMP_40_ENABLED 3355 __kmp_printf(" Set Proc Bind: %2d\n", thread->th.th_set_proc_bind); 3356 #endif 3357 __kmp_print_structure_thread(" Next in pool: ", 3358 thread->th.th_next_pool); 3359 __kmp_printf("\n"); 3360 __kmp_print_structure_team_accum(list, thread->th.th_team); 3361 __kmp_print_structure_team_accum(list, thread->th.th_serial_team); 3362 } 3363 } 3364 } else { 3365 __kmp_printf("Threads array is not allocated.\n"); 3366 } 3367 3368 // Print out __kmp_root array. 3369 __kmp_printf("\n------------------------------\nUbers\n----------------------" 3370 "--------\n"); 3371 if (__kmp_root != NULL) { 3372 int gtid; 3373 for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) { 3374 kmp_root_t const *root = __kmp_root[gtid]; 3375 if (root != NULL) { 3376 __kmp_printf("GTID %2d %p:\n", gtid, root); 3377 __kmp_print_structure_team(" Root Team: ", root->r.r_root_team); 3378 __kmp_print_structure_team(" Hot Team: ", root->r.r_hot_team); 3379 __kmp_print_structure_thread(" Uber Thread: ", 3380 root->r.r_uber_thread); 3381 __kmp_printf(" Active?: %2d\n", root->r.r_active); 3382 __kmp_printf(" Nested?: %2d\n", root->r.r_nested); 3383 __kmp_printf(" In Parallel: %2d\n", root->r.r_in_parallel); 3384 __kmp_printf("\n"); 3385 __kmp_print_structure_team_accum(list, root->r.r_root_team); 3386 __kmp_print_structure_team_accum(list, root->r.r_hot_team); 3387 } 3388 } 3389 } else { 3390 __kmp_printf("Ubers array is not allocated.\n"); 3391 } 3392 3393 __kmp_printf("\n------------------------------\nTeams\n----------------------" 3394 "--------\n"); 3395 while (list->next != NULL) { 3396 kmp_team_p const *team = list->entry; 3397 int i; 3398 __kmp_printf("Team %2x %p:\n", team->t.t_id, team); 3399 __kmp_print_structure_team(" Parent Team: ", team->t.t_parent); 3400 __kmp_printf(" Master TID: %2d\n", team->t.t_master_tid); 3401 __kmp_printf(" Max threads: %2d\n", team->t.t_max_nproc); 3402 __kmp_printf(" Levels of serial: %2d\n", team->t.t_serialized); 3403 __kmp_printf(" Number threads: %2d\n", team->t.t_nproc); 3404 for (i = 0; i < team->t.t_nproc; ++i) { 3405 __kmp_printf(" Thread %2d: ", i); 3406 __kmp_print_structure_thread("", team->t.t_threads[i]); 3407 } 3408 __kmp_print_structure_team(" Next in pool: ", team->t.t_next_pool); 3409 __kmp_printf("\n"); 3410 list = list->next; 3411 } 3412 3413 // Print out __kmp_thread_pool and __kmp_team_pool. 3414 __kmp_printf("\n------------------------------\nPools\n----------------------" 3415 "--------\n"); 3416 __kmp_print_structure_thread("Thread pool: ", 3417 CCAST(kmp_info_t *, __kmp_thread_pool)); 3418 __kmp_print_structure_team("Team pool: ", 3419 CCAST(kmp_team_t *, __kmp_team_pool)); 3420 __kmp_printf("\n"); 3421 3422 // Free team list. 3423 while (list != NULL) { 3424 kmp_team_list_item_t *item = list; 3425 list = list->next; 3426 KMP_INTERNAL_FREE(item); 3427 } 3428 } 3429 3430 #endif 3431 3432 //--------------------------------------------------------------------------- 3433 // Stuff for per-thread fast random number generator 3434 // Table of primes 3435 static const unsigned __kmp_primes[] = { 3436 0x9e3779b1, 0xffe6cc59, 0x2109f6dd, 0x43977ab5, 0xba5703f5, 0xb495a877, 3437 0xe1626741, 0x79695e6b, 0xbc98c09f, 0xd5bee2b3, 0x287488f9, 0x3af18231, 3438 0x9677cd4d, 0xbe3a6929, 0xadc6a877, 0xdcf0674b, 0xbe4d6fe9, 0x5f15e201, 3439 0x99afc3fd, 0xf3f16801, 0xe222cfff, 0x24ba5fdb, 0x0620452d, 0x79f149e3, 3440 0xc8b93f49, 0x972702cd, 0xb07dd827, 0x6c97d5ed, 0x085a3d61, 0x46eb5ea7, 3441 0x3d9910ed, 0x2e687b5b, 0x29609227, 0x6eb081f1, 0x0954c4e1, 0x9d114db9, 3442 0x542acfa9, 0xb3e6bd7b, 0x0742d917, 0xe9f3ffa7, 0x54581edb, 0xf2480f45, 3443 0x0bb9288f, 0xef1affc7, 0x85fa0ca7, 0x3ccc14db, 0xe6baf34b, 0x343377f7, 3444 0x5ca19031, 0xe6d9293b, 0xf0a9f391, 0x5d2e980b, 0xfc411073, 0xc3749363, 3445 0xb892d829, 0x3549366b, 0x629750ad, 0xb98294e5, 0x892d9483, 0xc235baf3, 3446 0x3d2402a3, 0x6bdef3c9, 0xbec333cd, 0x40c9520f}; 3447 3448 //--------------------------------------------------------------------------- 3449 // __kmp_get_random: Get a random number using a linear congruential method. 3450 unsigned short __kmp_get_random(kmp_info_t *thread) { 3451 unsigned x = thread->th.th_x; 3452 unsigned short r = x >> 16; 3453 3454 thread->th.th_x = x * thread->th.th_a + 1; 3455 3456 KA_TRACE(30, ("__kmp_get_random: THREAD: %d, RETURN: %u\n", 3457 thread->th.th_info.ds.ds_tid, r)); 3458 3459 return r; 3460 } 3461 //-------------------------------------------------------- 3462 // __kmp_init_random: Initialize a random number generator 3463 void __kmp_init_random(kmp_info_t *thread) { 3464 unsigned seed = thread->th.th_info.ds.ds_tid; 3465 3466 thread->th.th_a = 3467 __kmp_primes[seed % (sizeof(__kmp_primes) / sizeof(__kmp_primes[0]))]; 3468 thread->th.th_x = (seed + 1) * thread->th.th_a + 1; 3469 KA_TRACE(30, 3470 ("__kmp_init_random: THREAD: %u; A: %u\n", seed, thread->th.th_a)); 3471 } 3472 3473 #if KMP_OS_WINDOWS 3474 /* reclaim array entries for root threads that are already dead, returns number 3475 * reclaimed */ 3476 static int __kmp_reclaim_dead_roots(void) { 3477 int i, r = 0; 3478 3479 for (i = 0; i < __kmp_threads_capacity; ++i) { 3480 if (KMP_UBER_GTID(i) && 3481 !__kmp_still_running((kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[i])) && 3482 !__kmp_root[i] 3483 ->r.r_active) { // AC: reclaim only roots died in non-active state 3484 r += __kmp_unregister_root_other_thread(i); 3485 } 3486 } 3487 return r; 3488 } 3489 #endif 3490 3491 /* This function attempts to create free entries in __kmp_threads and 3492 __kmp_root, and returns the number of free entries generated. 3493 3494 For Windows* OS static library, the first mechanism used is to reclaim array 3495 entries for root threads that are already dead. 3496 3497 On all platforms, expansion is attempted on the arrays __kmp_threads_ and 3498 __kmp_root, with appropriate update to __kmp_threads_capacity. Array 3499 capacity is increased by doubling with clipping to __kmp_tp_capacity, if 3500 threadprivate cache array has been created. Synchronization with 3501 __kmpc_threadprivate_cached is done using __kmp_tp_cached_lock. 3502 3503 After any dead root reclamation, if the clipping value allows array expansion 3504 to result in the generation of a total of nWish free slots, the function does 3505 that expansion. If not, but the clipping value allows array expansion to 3506 result in the generation of a total of nNeed free slots, the function does 3507 that expansion. Otherwise, nothing is done beyond the possible initial root 3508 thread reclamation. However, if nNeed is zero, a best-effort attempt is made 3509 to fulfil nWish as far as possible, i.e. the function will attempt to create 3510 as many free slots as possible up to nWish. 3511 3512 If any argument is negative, the behavior is undefined. */ 3513 static int __kmp_expand_threads(int nWish, int nNeed) { 3514 int added = 0; 3515 int old_tp_cached; 3516 int __kmp_actual_max_nth; 3517 3518 if (nNeed > nWish) /* normalize the arguments */ 3519 nWish = nNeed; 3520 #if KMP_OS_WINDOWS && !defined KMP_DYNAMIC_LIB 3521 /* only for Windows static library */ 3522 /* reclaim array entries for root threads that are already dead */ 3523 added = __kmp_reclaim_dead_roots(); 3524 3525 if (nNeed) { 3526 nNeed -= added; 3527 if (nNeed < 0) 3528 nNeed = 0; 3529 } 3530 if (nWish) { 3531 nWish -= added; 3532 if (nWish < 0) 3533 nWish = 0; 3534 } 3535 #endif 3536 if (nWish <= 0) 3537 return added; 3538 3539 while (1) { 3540 int nTarget; 3541 int minimumRequiredCapacity; 3542 int newCapacity; 3543 kmp_info_t **newThreads; 3544 kmp_root_t **newRoot; 3545 3546 // Note that __kmp_threads_capacity is not bounded by __kmp_max_nth. If 3547 // __kmp_max_nth is set to some value less than __kmp_sys_max_nth by the 3548 // user via KMP_DEVICE_THREAD_LIMIT, then __kmp_threads_capacity may become 3549 // > __kmp_max_nth in one of two ways: 3550 // 3551 // 1) The initialization thread (gtid = 0) exits. __kmp_threads[0] 3552 // may not be resused by another thread, so we may need to increase 3553 // __kmp_threads_capacity to __kmp_max_nth + 1. 3554 // 3555 // 2) New foreign root(s) are encountered. We always register new foreign 3556 // roots. This may cause a smaller # of threads to be allocated at 3557 // subsequent parallel regions, but the worker threads hang around (and 3558 // eventually go to sleep) and need slots in the __kmp_threads[] array. 3559 // 3560 // Anyway, that is the reason for moving the check to see if 3561 // __kmp_max_nth was exceeded into __kmp_reserve_threads() 3562 // instead of having it performed here. -BB 3563 old_tp_cached = __kmp_tp_cached; 3564 __kmp_actual_max_nth = 3565 old_tp_cached ? __kmp_tp_capacity : __kmp_sys_max_nth; 3566 KMP_DEBUG_ASSERT(__kmp_actual_max_nth >= __kmp_threads_capacity); 3567 3568 /* compute expansion headroom to check if we can expand and whether to aim 3569 for nWish or nNeed */ 3570 nTarget = nWish; 3571 if (__kmp_actual_max_nth - __kmp_threads_capacity < nTarget) { 3572 /* can't fulfil nWish, so try nNeed */ 3573 if (nNeed) { 3574 nTarget = nNeed; 3575 if (__kmp_actual_max_nth - __kmp_threads_capacity < nTarget) { 3576 /* possible expansion too small -- give up */ 3577 break; 3578 } 3579 } else { 3580 /* best-effort */ 3581 nTarget = __kmp_actual_max_nth - __kmp_threads_capacity; 3582 if (!nTarget) { 3583 /* can expand at all -- give up */ 3584 break; 3585 } 3586 } 3587 } 3588 minimumRequiredCapacity = __kmp_threads_capacity + nTarget; 3589 3590 newCapacity = __kmp_threads_capacity; 3591 do { 3592 newCapacity = newCapacity <= (__kmp_actual_max_nth >> 1) 3593 ? (newCapacity << 1) 3594 : __kmp_actual_max_nth; 3595 } while (newCapacity < minimumRequiredCapacity); 3596 newThreads = (kmp_info_t **)__kmp_allocate( 3597 (sizeof(kmp_info_t *) + sizeof(kmp_root_t *)) * newCapacity + 3598 CACHE_LINE); 3599 newRoot = (kmp_root_t **)((char *)newThreads + 3600 sizeof(kmp_info_t *) * newCapacity); 3601 KMP_MEMCPY(newThreads, __kmp_threads, 3602 __kmp_threads_capacity * sizeof(kmp_info_t *)); 3603 KMP_MEMCPY(newRoot, __kmp_root, 3604 __kmp_threads_capacity * sizeof(kmp_root_t *)); 3605 memset(newThreads + __kmp_threads_capacity, 0, 3606 (newCapacity - __kmp_threads_capacity) * sizeof(kmp_info_t *)); 3607 memset(newRoot + __kmp_threads_capacity, 0, 3608 (newCapacity - __kmp_threads_capacity) * sizeof(kmp_root_t *)); 3609 3610 if (!old_tp_cached && __kmp_tp_cached && newCapacity > __kmp_tp_capacity) { 3611 /* __kmp_tp_cached has changed, i.e. __kmpc_threadprivate_cached has 3612 allocated a threadprivate cache while we were allocating the expanded 3613 array, and our new capacity is larger than the threadprivate cache 3614 capacity, so we should deallocate the expanded arrays and try again. 3615 This is the first check of a double-check pair. */ 3616 __kmp_free(newThreads); 3617 continue; /* start over and try again */ 3618 } 3619 __kmp_acquire_bootstrap_lock(&__kmp_tp_cached_lock); 3620 if (!old_tp_cached && __kmp_tp_cached && newCapacity > __kmp_tp_capacity) { 3621 /* Same check as above, but this time with the lock so we can be sure if 3622 we can succeed. */ 3623 __kmp_release_bootstrap_lock(&__kmp_tp_cached_lock); 3624 __kmp_free(newThreads); 3625 continue; /* start over and try again */ 3626 } else { 3627 /* success */ 3628 // __kmp_free( __kmp_threads ); // ATT: It leads to crash. Need to be 3629 // investigated. 3630 *(kmp_info_t * *volatile *)&__kmp_threads = newThreads; 3631 *(kmp_root_t * *volatile *)&__kmp_root = newRoot; 3632 added += newCapacity - __kmp_threads_capacity; 3633 *(volatile int *)&__kmp_threads_capacity = newCapacity; 3634 __kmp_release_bootstrap_lock(&__kmp_tp_cached_lock); 3635 break; /* succeeded, so we can exit the loop */ 3636 } 3637 } 3638 return added; 3639 } 3640 3641 /* Register the current thread as a root thread and obtain our gtid. We must 3642 have the __kmp_initz_lock held at this point. Argument TRUE only if are the 3643 thread that calls from __kmp_do_serial_initialize() */ 3644 int __kmp_register_root(int initial_thread) { 3645 kmp_info_t *root_thread; 3646 kmp_root_t *root; 3647 int gtid; 3648 int capacity; 3649 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 3650 KA_TRACE(20, ("__kmp_register_root: entered\n")); 3651 KMP_MB(); 3652 3653 /* 2007-03-02: 3654 If initial thread did not invoke OpenMP RTL yet, and this thread is not an 3655 initial one, "__kmp_all_nth >= __kmp_threads_capacity" condition does not 3656 work as expected -- it may return false (that means there is at least one 3657 empty slot in __kmp_threads array), but it is possible the only free slot 3658 is #0, which is reserved for initial thread and so cannot be used for this 3659 one. Following code workarounds this bug. 3660 3661 However, right solution seems to be not reserving slot #0 for initial 3662 thread because: 3663 (1) there is no magic in slot #0, 3664 (2) we cannot detect initial thread reliably (the first thread which does 3665 serial initialization may be not a real initial thread). 3666 */ 3667 capacity = __kmp_threads_capacity; 3668 if (!initial_thread && TCR_PTR(__kmp_threads[0]) == NULL) { 3669 --capacity; 3670 } 3671 3672 /* see if there are too many threads */ 3673 if (__kmp_all_nth >= capacity && !__kmp_expand_threads(1, 1)) { 3674 if (__kmp_tp_cached) { 3675 __kmp_fatal(KMP_MSG(CantRegisterNewThread), 3676 KMP_HNT(Set_ALL_THREADPRIVATE, __kmp_tp_capacity), 3677 KMP_HNT(PossibleSystemLimitOnThreads), __kmp_msg_null); 3678 } else { 3679 __kmp_fatal(KMP_MSG(CantRegisterNewThread), KMP_HNT(SystemLimitOnThreads), 3680 __kmp_msg_null); 3681 } 3682 } 3683 3684 /* find an available thread slot */ 3685 /* Don't reassign the zero slot since we need that to only be used by initial 3686 thread */ 3687 for (gtid = (initial_thread ? 0 : 1); TCR_PTR(__kmp_threads[gtid]) != NULL; 3688 gtid++) 3689 ; 3690 KA_TRACE(1, 3691 ("__kmp_register_root: found slot in threads array: T#%d\n", gtid)); 3692 KMP_ASSERT(gtid < __kmp_threads_capacity); 3693 3694 /* update global accounting */ 3695 __kmp_all_nth++; 3696 TCW_4(__kmp_nth, __kmp_nth + 1); 3697 3698 // if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) for low 3699 // numbers of procs, and method #2 (keyed API call) for higher numbers. 3700 if (__kmp_adjust_gtid_mode) { 3701 if (__kmp_all_nth >= __kmp_tls_gtid_min) { 3702 if (TCR_4(__kmp_gtid_mode) != 2) { 3703 TCW_4(__kmp_gtid_mode, 2); 3704 } 3705 } else { 3706 if (TCR_4(__kmp_gtid_mode) != 1) { 3707 TCW_4(__kmp_gtid_mode, 1); 3708 } 3709 } 3710 } 3711 3712 #ifdef KMP_ADJUST_BLOCKTIME 3713 /* Adjust blocktime to zero if necessary */ 3714 /* Middle initialization might not have occurred yet */ 3715 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 3716 if (__kmp_nth > __kmp_avail_proc) { 3717 __kmp_zero_bt = TRUE; 3718 } 3719 } 3720 #endif /* KMP_ADJUST_BLOCKTIME */ 3721 3722 /* setup this new hierarchy */ 3723 if (!(root = __kmp_root[gtid])) { 3724 root = __kmp_root[gtid] = (kmp_root_t *)__kmp_allocate(sizeof(kmp_root_t)); 3725 KMP_DEBUG_ASSERT(!root->r.r_root_team); 3726 } 3727 3728 #if KMP_STATS_ENABLED 3729 // Initialize stats as soon as possible (right after gtid assignment). 3730 __kmp_stats_thread_ptr = __kmp_stats_list->push_back(gtid); 3731 KMP_START_EXPLICIT_TIMER(OMP_worker_thread_life); 3732 KMP_SET_THREAD_STATE(SERIAL_REGION); 3733 KMP_INIT_PARTITIONED_TIMERS(OMP_serial); 3734 #endif 3735 __kmp_initialize_root(root); 3736 3737 /* setup new root thread structure */ 3738 if (root->r.r_uber_thread) { 3739 root_thread = root->r.r_uber_thread; 3740 } else { 3741 root_thread = (kmp_info_t *)__kmp_allocate(sizeof(kmp_info_t)); 3742 if (__kmp_storage_map) { 3743 __kmp_print_thread_storage_map(root_thread, gtid); 3744 } 3745 root_thread->th.th_info.ds.ds_gtid = gtid; 3746 #if OMPT_SUPPORT 3747 root_thread->th.ompt_thread_info.thread_data.ptr = NULL; 3748 #endif 3749 root_thread->th.th_root = root; 3750 if (__kmp_env_consistency_check) { 3751 root_thread->th.th_cons = __kmp_allocate_cons_stack(gtid); 3752 } 3753 #if USE_FAST_MEMORY 3754 __kmp_initialize_fast_memory(root_thread); 3755 #endif /* USE_FAST_MEMORY */ 3756 3757 #if KMP_USE_BGET 3758 KMP_DEBUG_ASSERT(root_thread->th.th_local.bget_data == NULL); 3759 __kmp_initialize_bget(root_thread); 3760 #endif 3761 __kmp_init_random(root_thread); // Initialize random number generator 3762 } 3763 3764 /* setup the serial team held in reserve by the root thread */ 3765 if (!root_thread->th.th_serial_team) { 3766 kmp_internal_control_t r_icvs = __kmp_get_global_icvs(); 3767 KF_TRACE(10, ("__kmp_register_root: before serial_team\n")); 3768 root_thread->th.th_serial_team = 3769 __kmp_allocate_team(root, 1, 1, 3770 #if OMPT_SUPPORT 3771 ompt_data_none, // root parallel id 3772 #endif 3773 #if OMP_40_ENABLED 3774 proc_bind_default, 3775 #endif 3776 &r_icvs, 0 USE_NESTED_HOT_ARG(NULL)); 3777 } 3778 KMP_ASSERT(root_thread->th.th_serial_team); 3779 KF_TRACE(10, ("__kmp_register_root: after serial_team = %p\n", 3780 root_thread->th.th_serial_team)); 3781 3782 /* drop root_thread into place */ 3783 TCW_SYNC_PTR(__kmp_threads[gtid], root_thread); 3784 3785 root->r.r_root_team->t.t_threads[0] = root_thread; 3786 root->r.r_hot_team->t.t_threads[0] = root_thread; 3787 root_thread->th.th_serial_team->t.t_threads[0] = root_thread; 3788 // AC: the team created in reserve, not for execution (it is unused for now). 3789 root_thread->th.th_serial_team->t.t_serialized = 0; 3790 root->r.r_uber_thread = root_thread; 3791 3792 /* initialize the thread, get it ready to go */ 3793 __kmp_initialize_info(root_thread, root->r.r_root_team, 0, gtid); 3794 TCW_4(__kmp_init_gtid, TRUE); 3795 3796 /* prepare the master thread for get_gtid() */ 3797 __kmp_gtid_set_specific(gtid); 3798 3799 #if USE_ITT_BUILD 3800 __kmp_itt_thread_name(gtid); 3801 #endif /* USE_ITT_BUILD */ 3802 3803 #ifdef KMP_TDATA_GTID 3804 __kmp_gtid = gtid; 3805 #endif 3806 __kmp_create_worker(gtid, root_thread, __kmp_stksize); 3807 KMP_DEBUG_ASSERT(__kmp_gtid_get_specific() == gtid); 3808 3809 KA_TRACE(20, ("__kmp_register_root: T#%d init T#%d(%d:%d) arrived: join=%u, " 3810 "plain=%u\n", 3811 gtid, __kmp_gtid_from_tid(0, root->r.r_hot_team), 3812 root->r.r_hot_team->t.t_id, 0, KMP_INIT_BARRIER_STATE, 3813 KMP_INIT_BARRIER_STATE)); 3814 { // Initialize barrier data. 3815 int b; 3816 for (b = 0; b < bs_last_barrier; ++b) { 3817 root_thread->th.th_bar[b].bb.b_arrived = KMP_INIT_BARRIER_STATE; 3818 #if USE_DEBUGGER 3819 root_thread->th.th_bar[b].bb.b_worker_arrived = 0; 3820 #endif 3821 } 3822 } 3823 KMP_DEBUG_ASSERT(root->r.r_hot_team->t.t_bar[bs_forkjoin_barrier].b_arrived == 3824 KMP_INIT_BARRIER_STATE); 3825 3826 #if KMP_AFFINITY_SUPPORTED 3827 #if OMP_40_ENABLED 3828 root_thread->th.th_current_place = KMP_PLACE_UNDEFINED; 3829 root_thread->th.th_new_place = KMP_PLACE_UNDEFINED; 3830 root_thread->th.th_first_place = KMP_PLACE_UNDEFINED; 3831 root_thread->th.th_last_place = KMP_PLACE_UNDEFINED; 3832 #endif 3833 3834 if (TCR_4(__kmp_init_middle)) { 3835 __kmp_affinity_set_init_mask(gtid, TRUE); 3836 } 3837 #endif /* KMP_AFFINITY_SUPPORTED */ 3838 3839 __kmp_root_counter++; 3840 3841 #if OMPT_SUPPORT 3842 if (!initial_thread && ompt_enabled.enabled) { 3843 3844 ompt_thread_t *root_thread = ompt_get_thread(); 3845 3846 ompt_set_thread_state(root_thread, omp_state_overhead); 3847 3848 if (ompt_enabled.ompt_callback_thread_begin) { 3849 ompt_callbacks.ompt_callback(ompt_callback_thread_begin)( 3850 ompt_thread_initial, __ompt_get_thread_data_internal()); 3851 } 3852 ompt_data_t *task_data; 3853 __ompt_get_task_info_internal(0, NULL, &task_data, NULL, NULL, NULL); 3854 if (ompt_enabled.ompt_callback_task_create) { 3855 ompt_callbacks.ompt_callback(ompt_callback_task_create)( 3856 NULL, NULL, task_data, ompt_task_initial, 0, NULL); 3857 // initial task has nothing to return to 3858 } 3859 3860 ompt_set_thread_state(root_thread, omp_state_work_serial); 3861 } 3862 #endif 3863 3864 KMP_MB(); 3865 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 3866 3867 return gtid; 3868 } 3869 3870 #if KMP_NESTED_HOT_TEAMS 3871 static int __kmp_free_hot_teams(kmp_root_t *root, kmp_info_t *thr, int level, 3872 const int max_level) { 3873 int i, n, nth; 3874 kmp_hot_team_ptr_t *hot_teams = thr->th.th_hot_teams; 3875 if (!hot_teams || !hot_teams[level].hot_team) { 3876 return 0; 3877 } 3878 KMP_DEBUG_ASSERT(level < max_level); 3879 kmp_team_t *team = hot_teams[level].hot_team; 3880 nth = hot_teams[level].hot_team_nth; 3881 n = nth - 1; // master is not freed 3882 if (level < max_level - 1) { 3883 for (i = 0; i < nth; ++i) { 3884 kmp_info_t *th = team->t.t_threads[i]; 3885 n += __kmp_free_hot_teams(root, th, level + 1, max_level); 3886 if (i > 0 && th->th.th_hot_teams) { 3887 __kmp_free(th->th.th_hot_teams); 3888 th->th.th_hot_teams = NULL; 3889 } 3890 } 3891 } 3892 __kmp_free_team(root, team, NULL); 3893 return n; 3894 } 3895 #endif 3896 3897 // Resets a root thread and clear its root and hot teams. 3898 // Returns the number of __kmp_threads entries directly and indirectly freed. 3899 static int __kmp_reset_root(int gtid, kmp_root_t *root) { 3900 kmp_team_t *root_team = root->r.r_root_team; 3901 kmp_team_t *hot_team = root->r.r_hot_team; 3902 int n = hot_team->t.t_nproc; 3903 int i; 3904 3905 KMP_DEBUG_ASSERT(!root->r.r_active); 3906 3907 root->r.r_root_team = NULL; 3908 root->r.r_hot_team = NULL; 3909 // __kmp_free_team() does not free hot teams, so we have to clear r_hot_team 3910 // before call to __kmp_free_team(). 3911 __kmp_free_team(root, root_team USE_NESTED_HOT_ARG(NULL)); 3912 #if KMP_NESTED_HOT_TEAMS 3913 if (__kmp_hot_teams_max_level > 3914 0) { // need to free nested hot teams and their threads if any 3915 for (i = 0; i < hot_team->t.t_nproc; ++i) { 3916 kmp_info_t *th = hot_team->t.t_threads[i]; 3917 if (__kmp_hot_teams_max_level > 1) { 3918 n += __kmp_free_hot_teams(root, th, 1, __kmp_hot_teams_max_level); 3919 } 3920 if (th->th.th_hot_teams) { 3921 __kmp_free(th->th.th_hot_teams); 3922 th->th.th_hot_teams = NULL; 3923 } 3924 } 3925 } 3926 #endif 3927 __kmp_free_team(root, hot_team USE_NESTED_HOT_ARG(NULL)); 3928 3929 // Before we can reap the thread, we need to make certain that all other 3930 // threads in the teams that had this root as ancestor have stopped trying to 3931 // steal tasks. 3932 if (__kmp_tasking_mode != tskm_immediate_exec) { 3933 __kmp_wait_to_unref_task_teams(); 3934 } 3935 3936 #if KMP_OS_WINDOWS 3937 /* Close Handle of root duplicated in __kmp_create_worker (tr #62919) */ 3938 KA_TRACE( 3939 10, ("__kmp_reset_root: free handle, th = %p, handle = %" KMP_UINTPTR_SPEC 3940 "\n", 3941 (LPVOID) & (root->r.r_uber_thread->th), 3942 root->r.r_uber_thread->th.th_info.ds.ds_thread)); 3943 __kmp_free_handle(root->r.r_uber_thread->th.th_info.ds.ds_thread); 3944 #endif /* KMP_OS_WINDOWS */ 3945 3946 #if OMPT_SUPPORT 3947 if (ompt_enabled.ompt_callback_thread_end) { 3948 ompt_callbacks.ompt_callback(ompt_callback_thread_end)( 3949 &(root->r.r_uber_thread->th.ompt_thread_info.thread_data)); 3950 } 3951 #endif 3952 3953 TCW_4(__kmp_nth, 3954 __kmp_nth - 1); // __kmp_reap_thread will decrement __kmp_all_nth. 3955 root->r.r_cg_nthreads--; 3956 3957 __kmp_reap_thread(root->r.r_uber_thread, 1); 3958 3959 // We canot put root thread to __kmp_thread_pool, so we have to reap it istead 3960 // of freeing. 3961 root->r.r_uber_thread = NULL; 3962 /* mark root as no longer in use */ 3963 root->r.r_begin = FALSE; 3964 3965 return n; 3966 } 3967 3968 void __kmp_unregister_root_current_thread(int gtid) { 3969 KA_TRACE(1, ("__kmp_unregister_root_current_thread: enter T#%d\n", gtid)); 3970 /* this lock should be ok, since unregister_root_current_thread is never 3971 called during an abort, only during a normal close. furthermore, if you 3972 have the forkjoin lock, you should never try to get the initz lock */ 3973 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 3974 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 3975 KC_TRACE(10, ("__kmp_unregister_root_current_thread: already finished, " 3976 "exiting T#%d\n", 3977 gtid)); 3978 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 3979 return; 3980 } 3981 kmp_root_t *root = __kmp_root[gtid]; 3982 3983 KMP_DEBUG_ASSERT(__kmp_threads && __kmp_threads[gtid]); 3984 KMP_ASSERT(KMP_UBER_GTID(gtid)); 3985 KMP_ASSERT(root == __kmp_threads[gtid]->th.th_root); 3986 KMP_ASSERT(root->r.r_active == FALSE); 3987 3988 KMP_MB(); 3989 3990 #if OMP_45_ENABLED 3991 kmp_info_t *thread = __kmp_threads[gtid]; 3992 kmp_team_t *team = thread->th.th_team; 3993 kmp_task_team_t *task_team = thread->th.th_task_team; 3994 3995 // we need to wait for the proxy tasks before finishing the thread 3996 if (task_team != NULL && task_team->tt.tt_found_proxy_tasks) { 3997 #if OMPT_SUPPORT 3998 // the runtime is shutting down so we won't report any events 3999 thread->th.ompt_thread_info.state = omp_state_undefined; 4000 #endif 4001 __kmp_task_team_wait(thread, team USE_ITT_BUILD_ARG(NULL)); 4002 } 4003 #endif 4004 4005 __kmp_reset_root(gtid, root); 4006 4007 /* free up this thread slot */ 4008 __kmp_gtid_set_specific(KMP_GTID_DNE); 4009 #ifdef KMP_TDATA_GTID 4010 __kmp_gtid = KMP_GTID_DNE; 4011 #endif 4012 4013 KMP_MB(); 4014 KC_TRACE(10, 4015 ("__kmp_unregister_root_current_thread: T#%d unregistered\n", gtid)); 4016 4017 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 4018 } 4019 4020 #if KMP_OS_WINDOWS 4021 /* __kmp_forkjoin_lock must be already held 4022 Unregisters a root thread that is not the current thread. Returns the number 4023 of __kmp_threads entries freed as a result. */ 4024 static int __kmp_unregister_root_other_thread(int gtid) { 4025 kmp_root_t *root = __kmp_root[gtid]; 4026 int r; 4027 4028 KA_TRACE(1, ("__kmp_unregister_root_other_thread: enter T#%d\n", gtid)); 4029 KMP_DEBUG_ASSERT(__kmp_threads && __kmp_threads[gtid]); 4030 KMP_ASSERT(KMP_UBER_GTID(gtid)); 4031 KMP_ASSERT(root == __kmp_threads[gtid]->th.th_root); 4032 KMP_ASSERT(root->r.r_active == FALSE); 4033 4034 r = __kmp_reset_root(gtid, root); 4035 KC_TRACE(10, 4036 ("__kmp_unregister_root_other_thread: T#%d unregistered\n", gtid)); 4037 return r; 4038 } 4039 #endif 4040 4041 #if KMP_DEBUG 4042 void __kmp_task_info() { 4043 4044 kmp_int32 gtid = __kmp_entry_gtid(); 4045 kmp_int32 tid = __kmp_tid_from_gtid(gtid); 4046 kmp_info_t *this_thr = __kmp_threads[gtid]; 4047 kmp_team_t *steam = this_thr->th.th_serial_team; 4048 kmp_team_t *team = this_thr->th.th_team; 4049 4050 __kmp_printf("__kmp_task_info: gtid=%d tid=%d t_thread=%p team=%p curtask=%p " 4051 "ptask=%p\n", 4052 gtid, tid, this_thr, team, this_thr->th.th_current_task, 4053 team->t.t_implicit_task_taskdata[tid].td_parent); 4054 } 4055 #endif // KMP_DEBUG 4056 4057 /* TODO optimize with one big memclr, take out what isn't needed, split 4058 responsibility to workers as much as possible, and delay initialization of 4059 features as much as possible */ 4060 static void __kmp_initialize_info(kmp_info_t *this_thr, kmp_team_t *team, 4061 int tid, int gtid) { 4062 /* this_thr->th.th_info.ds.ds_gtid is setup in 4063 kmp_allocate_thread/create_worker. 4064 this_thr->th.th_serial_team is setup in __kmp_allocate_thread */ 4065 kmp_info_t *master = team->t.t_threads[0]; 4066 KMP_DEBUG_ASSERT(this_thr != NULL); 4067 KMP_DEBUG_ASSERT(this_thr->th.th_serial_team); 4068 KMP_DEBUG_ASSERT(team); 4069 KMP_DEBUG_ASSERT(team->t.t_threads); 4070 KMP_DEBUG_ASSERT(team->t.t_dispatch); 4071 KMP_DEBUG_ASSERT(master); 4072 KMP_DEBUG_ASSERT(master->th.th_root); 4073 4074 KMP_MB(); 4075 4076 TCW_SYNC_PTR(this_thr->th.th_team, team); 4077 4078 this_thr->th.th_info.ds.ds_tid = tid; 4079 this_thr->th.th_set_nproc = 0; 4080 if (__kmp_tasking_mode != tskm_immediate_exec) 4081 // When tasking is possible, threads are not safe to reap until they are 4082 // done tasking; this will be set when tasking code is exited in wait 4083 this_thr->th.th_reap_state = KMP_NOT_SAFE_TO_REAP; 4084 else // no tasking --> always safe to reap 4085 this_thr->th.th_reap_state = KMP_SAFE_TO_REAP; 4086 #if OMP_40_ENABLED 4087 this_thr->th.th_set_proc_bind = proc_bind_default; 4088 #if KMP_AFFINITY_SUPPORTED 4089 this_thr->th.th_new_place = this_thr->th.th_current_place; 4090 #endif 4091 #endif 4092 this_thr->th.th_root = master->th.th_root; 4093 4094 /* setup the thread's cache of the team structure */ 4095 this_thr->th.th_team_nproc = team->t.t_nproc; 4096 this_thr->th.th_team_master = master; 4097 this_thr->th.th_team_serialized = team->t.t_serialized; 4098 TCW_PTR(this_thr->th.th_sleep_loc, NULL); 4099 4100 KMP_DEBUG_ASSERT(team->t.t_implicit_task_taskdata); 4101 4102 KF_TRACE(10, ("__kmp_initialize_info1: T#%d:%d this_thread=%p curtask=%p\n", 4103 tid, gtid, this_thr, this_thr->th.th_current_task)); 4104 4105 __kmp_init_implicit_task(this_thr->th.th_team_master->th.th_ident, this_thr, 4106 team, tid, TRUE); 4107 4108 KF_TRACE(10, ("__kmp_initialize_info2: T#%d:%d this_thread=%p curtask=%p\n", 4109 tid, gtid, this_thr, this_thr->th.th_current_task)); 4110 // TODO: Initialize ICVs from parent; GEH - isn't that already done in 4111 // __kmp_initialize_team()? 4112 4113 /* TODO no worksharing in speculative threads */ 4114 this_thr->th.th_dispatch = &team->t.t_dispatch[tid]; 4115 4116 this_thr->th.th_local.this_construct = 0; 4117 4118 if (!this_thr->th.th_pri_common) { 4119 this_thr->th.th_pri_common = 4120 (struct common_table *)__kmp_allocate(sizeof(struct common_table)); 4121 if (__kmp_storage_map) { 4122 __kmp_print_storage_map_gtid( 4123 gtid, this_thr->th.th_pri_common, this_thr->th.th_pri_common + 1, 4124 sizeof(struct common_table), "th_%d.th_pri_common\n", gtid); 4125 } 4126 this_thr->th.th_pri_head = NULL; 4127 } 4128 4129 /* Initialize dynamic dispatch */ 4130 { 4131 volatile kmp_disp_t *dispatch = this_thr->th.th_dispatch; 4132 // Use team max_nproc since this will never change for the team. 4133 size_t disp_size = 4134 sizeof(dispatch_private_info_t) * 4135 (team->t.t_max_nproc == 1 ? 1 : __kmp_dispatch_num_buffers); 4136 KD_TRACE(10, ("__kmp_initialize_info: T#%d max_nproc: %d\n", gtid, 4137 team->t.t_max_nproc)); 4138 KMP_ASSERT(dispatch); 4139 KMP_DEBUG_ASSERT(team->t.t_dispatch); 4140 KMP_DEBUG_ASSERT(dispatch == &team->t.t_dispatch[tid]); 4141 4142 dispatch->th_disp_index = 0; 4143 #if OMP_45_ENABLED 4144 dispatch->th_doacross_buf_idx = 0; 4145 #endif 4146 if (!dispatch->th_disp_buffer) { 4147 dispatch->th_disp_buffer = 4148 (dispatch_private_info_t *)__kmp_allocate(disp_size); 4149 4150 if (__kmp_storage_map) { 4151 __kmp_print_storage_map_gtid( 4152 gtid, &dispatch->th_disp_buffer[0], 4153 &dispatch->th_disp_buffer[team->t.t_max_nproc == 1 4154 ? 1 4155 : __kmp_dispatch_num_buffers], 4156 disp_size, "th_%d.th_dispatch.th_disp_buffer " 4157 "(team_%d.t_dispatch[%d].th_disp_buffer)", 4158 gtid, team->t.t_id, gtid); 4159 } 4160 } else { 4161 memset(&dispatch->th_disp_buffer[0], '\0', disp_size); 4162 } 4163 4164 dispatch->th_dispatch_pr_current = 0; 4165 dispatch->th_dispatch_sh_current = 0; 4166 4167 dispatch->th_deo_fcn = 0; /* ORDERED */ 4168 dispatch->th_dxo_fcn = 0; /* END ORDERED */ 4169 } 4170 4171 this_thr->th.th_next_pool = NULL; 4172 4173 if (!this_thr->th.th_task_state_memo_stack) { 4174 size_t i; 4175 this_thr->th.th_task_state_memo_stack = 4176 (kmp_uint8 *)__kmp_allocate(4 * sizeof(kmp_uint8)); 4177 this_thr->th.th_task_state_top = 0; 4178 this_thr->th.th_task_state_stack_sz = 4; 4179 for (i = 0; i < this_thr->th.th_task_state_stack_sz; 4180 ++i) // zero init the stack 4181 this_thr->th.th_task_state_memo_stack[i] = 0; 4182 } 4183 4184 KMP_DEBUG_ASSERT(!this_thr->th.th_spin_here); 4185 KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0); 4186 4187 KMP_MB(); 4188 } 4189 4190 /* allocate a new thread for the requesting team. this is only called from 4191 within a forkjoin critical section. we will first try to get an available 4192 thread from the thread pool. if none is available, we will fork a new one 4193 assuming we are able to create a new one. this should be assured, as the 4194 caller should check on this first. */ 4195 kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team, 4196 int new_tid) { 4197 kmp_team_t *serial_team; 4198 kmp_info_t *new_thr; 4199 int new_gtid; 4200 4201 KA_TRACE(20, ("__kmp_allocate_thread: T#%d\n", __kmp_get_gtid())); 4202 KMP_DEBUG_ASSERT(root && team); 4203 #if !KMP_NESTED_HOT_TEAMS 4204 KMP_DEBUG_ASSERT(KMP_MASTER_GTID(__kmp_get_gtid())); 4205 #endif 4206 KMP_MB(); 4207 4208 /* first, try to get one from the thread pool */ 4209 if (__kmp_thread_pool) { 4210 4211 new_thr = CCAST(kmp_info_t *, __kmp_thread_pool); 4212 __kmp_thread_pool = (volatile kmp_info_t *)new_thr->th.th_next_pool; 4213 if (new_thr == __kmp_thread_pool_insert_pt) { 4214 __kmp_thread_pool_insert_pt = NULL; 4215 } 4216 TCW_4(new_thr->th.th_in_pool, FALSE); 4217 // Don't touch th_active_in_pool or th_active. 4218 // The worker thread adjusts those flags as it sleeps/awakens. 4219 __kmp_thread_pool_nth--; 4220 4221 KA_TRACE(20, ("__kmp_allocate_thread: T#%d using thread T#%d\n", 4222 __kmp_get_gtid(), new_thr->th.th_info.ds.ds_gtid)); 4223 KMP_ASSERT(!new_thr->th.th_team); 4224 KMP_DEBUG_ASSERT(__kmp_nth < __kmp_threads_capacity); 4225 KMP_DEBUG_ASSERT(__kmp_thread_pool_nth >= 0); 4226 4227 /* setup the thread structure */ 4228 __kmp_initialize_info(new_thr, team, new_tid, 4229 new_thr->th.th_info.ds.ds_gtid); 4230 KMP_DEBUG_ASSERT(new_thr->th.th_serial_team); 4231 4232 TCW_4(__kmp_nth, __kmp_nth + 1); 4233 root->r.r_cg_nthreads++; 4234 4235 new_thr->th.th_task_state = 0; 4236 new_thr->th.th_task_state_top = 0; 4237 new_thr->th.th_task_state_stack_sz = 4; 4238 4239 #ifdef KMP_ADJUST_BLOCKTIME 4240 /* Adjust blocktime back to zero if necessary */ 4241 /* Middle initialization might not have occurred yet */ 4242 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 4243 if (__kmp_nth > __kmp_avail_proc) { 4244 __kmp_zero_bt = TRUE; 4245 } 4246 } 4247 #endif /* KMP_ADJUST_BLOCKTIME */ 4248 4249 #if KMP_DEBUG 4250 // If thread entered pool via __kmp_free_thread, wait_flag should != 4251 // KMP_BARRIER_PARENT_FLAG. 4252 int b; 4253 kmp_balign_t *balign = new_thr->th.th_bar; 4254 for (b = 0; b < bs_last_barrier; ++b) 4255 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 4256 #endif 4257 4258 KF_TRACE(10, ("__kmp_allocate_thread: T#%d using thread %p T#%d\n", 4259 __kmp_get_gtid(), new_thr, new_thr->th.th_info.ds.ds_gtid)); 4260 4261 KMP_MB(); 4262 return new_thr; 4263 } 4264 4265 /* no, well fork a new one */ 4266 KMP_ASSERT(__kmp_nth == __kmp_all_nth); 4267 KMP_ASSERT(__kmp_all_nth < __kmp_threads_capacity); 4268 4269 #if KMP_USE_MONITOR 4270 // If this is the first worker thread the RTL is creating, then also 4271 // launch the monitor thread. We try to do this as early as possible. 4272 if (!TCR_4(__kmp_init_monitor)) { 4273 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock); 4274 if (!TCR_4(__kmp_init_monitor)) { 4275 KF_TRACE(10, ("before __kmp_create_monitor\n")); 4276 TCW_4(__kmp_init_monitor, 1); 4277 __kmp_create_monitor(&__kmp_monitor); 4278 KF_TRACE(10, ("after __kmp_create_monitor\n")); 4279 #if KMP_OS_WINDOWS 4280 // AC: wait until monitor has started. This is a fix for CQ232808. 4281 // The reason is that if the library is loaded/unloaded in a loop with 4282 // small (parallel) work in between, then there is high probability that 4283 // monitor thread started after the library shutdown. At shutdown it is 4284 // too late to cope with the problem, because when the master is in 4285 // DllMain (process detach) the monitor has no chances to start (it is 4286 // blocked), and master has no means to inform the monitor that the 4287 // library has gone, because all the memory which the monitor can access 4288 // is going to be released/reset. 4289 while (TCR_4(__kmp_init_monitor) < 2) { 4290 KMP_YIELD(TRUE); 4291 } 4292 KF_TRACE(10, ("after monitor thread has started\n")); 4293 #endif 4294 } 4295 __kmp_release_bootstrap_lock(&__kmp_monitor_lock); 4296 } 4297 #endif 4298 4299 KMP_MB(); 4300 for (new_gtid = 1; TCR_PTR(__kmp_threads[new_gtid]) != NULL; ++new_gtid) { 4301 KMP_DEBUG_ASSERT(new_gtid < __kmp_threads_capacity); 4302 } 4303 4304 /* allocate space for it. */ 4305 new_thr = (kmp_info_t *)__kmp_allocate(sizeof(kmp_info_t)); 4306 4307 TCW_SYNC_PTR(__kmp_threads[new_gtid], new_thr); 4308 4309 if (__kmp_storage_map) { 4310 __kmp_print_thread_storage_map(new_thr, new_gtid); 4311 } 4312 4313 // add the reserve serialized team, initialized from the team's master thread 4314 { 4315 kmp_internal_control_t r_icvs = __kmp_get_x_global_icvs(team); 4316 KF_TRACE(10, ("__kmp_allocate_thread: before th_serial/serial_team\n")); 4317 new_thr->th.th_serial_team = serial_team = 4318 (kmp_team_t *)__kmp_allocate_team(root, 1, 1, 4319 #if OMPT_SUPPORT 4320 ompt_data_none, // root parallel id 4321 #endif 4322 #if OMP_40_ENABLED 4323 proc_bind_default, 4324 #endif 4325 &r_icvs, 0 USE_NESTED_HOT_ARG(NULL)); 4326 } 4327 KMP_ASSERT(serial_team); 4328 serial_team->t.t_serialized = 0; // AC: the team created in reserve, not for 4329 // execution (it is unused for now). 4330 serial_team->t.t_threads[0] = new_thr; 4331 KF_TRACE(10, 4332 ("__kmp_allocate_thread: after th_serial/serial_team : new_thr=%p\n", 4333 new_thr)); 4334 4335 /* setup the thread structures */ 4336 __kmp_initialize_info(new_thr, team, new_tid, new_gtid); 4337 4338 #if USE_FAST_MEMORY 4339 __kmp_initialize_fast_memory(new_thr); 4340 #endif /* USE_FAST_MEMORY */ 4341 4342 #if KMP_USE_BGET 4343 KMP_DEBUG_ASSERT(new_thr->th.th_local.bget_data == NULL); 4344 __kmp_initialize_bget(new_thr); 4345 #endif 4346 4347 __kmp_init_random(new_thr); // Initialize random number generator 4348 4349 /* Initialize these only once when thread is grabbed for a team allocation */ 4350 KA_TRACE(20, 4351 ("__kmp_allocate_thread: T#%d init go fork=%u, plain=%u\n", 4352 __kmp_get_gtid(), KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 4353 4354 int b; 4355 kmp_balign_t *balign = new_thr->th.th_bar; 4356 for (b = 0; b < bs_last_barrier; ++b) { 4357 balign[b].bb.b_go = KMP_INIT_BARRIER_STATE; 4358 balign[b].bb.team = NULL; 4359 balign[b].bb.wait_flag = KMP_BARRIER_NOT_WAITING; 4360 balign[b].bb.use_oncore_barrier = 0; 4361 } 4362 4363 new_thr->th.th_spin_here = FALSE; 4364 new_thr->th.th_next_waiting = 0; 4365 4366 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 4367 new_thr->th.th_current_place = KMP_PLACE_UNDEFINED; 4368 new_thr->th.th_new_place = KMP_PLACE_UNDEFINED; 4369 new_thr->th.th_first_place = KMP_PLACE_UNDEFINED; 4370 new_thr->th.th_last_place = KMP_PLACE_UNDEFINED; 4371 #endif 4372 4373 TCW_4(new_thr->th.th_in_pool, FALSE); 4374 new_thr->th.th_active_in_pool = FALSE; 4375 TCW_4(new_thr->th.th_active, TRUE); 4376 4377 /* adjust the global counters */ 4378 __kmp_all_nth++; 4379 __kmp_nth++; 4380 4381 root->r.r_cg_nthreads++; 4382 4383 // if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) for low 4384 // numbers of procs, and method #2 (keyed API call) for higher numbers. 4385 if (__kmp_adjust_gtid_mode) { 4386 if (__kmp_all_nth >= __kmp_tls_gtid_min) { 4387 if (TCR_4(__kmp_gtid_mode) != 2) { 4388 TCW_4(__kmp_gtid_mode, 2); 4389 } 4390 } else { 4391 if (TCR_4(__kmp_gtid_mode) != 1) { 4392 TCW_4(__kmp_gtid_mode, 1); 4393 } 4394 } 4395 } 4396 4397 #ifdef KMP_ADJUST_BLOCKTIME 4398 /* Adjust blocktime back to zero if necessary */ 4399 /* Middle initialization might not have occurred yet */ 4400 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 4401 if (__kmp_nth > __kmp_avail_proc) { 4402 __kmp_zero_bt = TRUE; 4403 } 4404 } 4405 #endif /* KMP_ADJUST_BLOCKTIME */ 4406 4407 /* actually fork it and create the new worker thread */ 4408 KF_TRACE( 4409 10, ("__kmp_allocate_thread: before __kmp_create_worker: %p\n", new_thr)); 4410 __kmp_create_worker(new_gtid, new_thr, __kmp_stksize); 4411 KF_TRACE(10, 4412 ("__kmp_allocate_thread: after __kmp_create_worker: %p\n", new_thr)); 4413 4414 KA_TRACE(20, ("__kmp_allocate_thread: T#%d forked T#%d\n", __kmp_get_gtid(), 4415 new_gtid)); 4416 KMP_MB(); 4417 return new_thr; 4418 } 4419 4420 /* Reinitialize team for reuse. 4421 The hot team code calls this case at every fork barrier, so EPCC barrier 4422 test are extremely sensitive to changes in it, esp. writes to the team 4423 struct, which cause a cache invalidation in all threads. 4424 IF YOU TOUCH THIS ROUTINE, RUN EPCC C SYNCBENCH ON A BIG-IRON MACHINE!!! */ 4425 static void __kmp_reinitialize_team(kmp_team_t *team, 4426 kmp_internal_control_t *new_icvs, 4427 ident_t *loc) { 4428 KF_TRACE(10, ("__kmp_reinitialize_team: enter this_thread=%p team=%p\n", 4429 team->t.t_threads[0], team)); 4430 KMP_DEBUG_ASSERT(team && new_icvs); 4431 KMP_DEBUG_ASSERT((!TCR_4(__kmp_init_parallel)) || new_icvs->nproc); 4432 KMP_CHECK_UPDATE(team->t.t_ident, loc); 4433 4434 KMP_CHECK_UPDATE(team->t.t_id, KMP_GEN_TEAM_ID()); 4435 // Copy ICVs to the master thread's implicit taskdata 4436 __kmp_init_implicit_task(loc, team->t.t_threads[0], team, 0, FALSE); 4437 copy_icvs(&team->t.t_implicit_task_taskdata[0].td_icvs, new_icvs); 4438 4439 KF_TRACE(10, ("__kmp_reinitialize_team: exit this_thread=%p team=%p\n", 4440 team->t.t_threads[0], team)); 4441 } 4442 4443 /* Initialize the team data structure. 4444 This assumes the t_threads and t_max_nproc are already set. 4445 Also, we don't touch the arguments */ 4446 static void __kmp_initialize_team(kmp_team_t *team, int new_nproc, 4447 kmp_internal_control_t *new_icvs, 4448 ident_t *loc) { 4449 KF_TRACE(10, ("__kmp_initialize_team: enter: team=%p\n", team)); 4450 4451 /* verify */ 4452 KMP_DEBUG_ASSERT(team); 4453 KMP_DEBUG_ASSERT(new_nproc <= team->t.t_max_nproc); 4454 KMP_DEBUG_ASSERT(team->t.t_threads); 4455 KMP_MB(); 4456 4457 team->t.t_master_tid = 0; /* not needed */ 4458 /* team->t.t_master_bar; not needed */ 4459 team->t.t_serialized = new_nproc > 1 ? 0 : 1; 4460 team->t.t_nproc = new_nproc; 4461 4462 /* team->t.t_parent = NULL; TODO not needed & would mess up hot team */ 4463 team->t.t_next_pool = NULL; 4464 /* memset( team->t.t_threads, 0, sizeof(kmp_info_t*)*new_nproc ); would mess 4465 * up hot team */ 4466 4467 TCW_SYNC_PTR(team->t.t_pkfn, NULL); /* not needed */ 4468 team->t.t_invoke = NULL; /* not needed */ 4469 4470 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 4471 team->t.t_sched.sched = new_icvs->sched.sched; 4472 4473 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4474 team->t.t_fp_control_saved = FALSE; /* not needed */ 4475 team->t.t_x87_fpu_control_word = 0; /* not needed */ 4476 team->t.t_mxcsr = 0; /* not needed */ 4477 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4478 4479 team->t.t_construct = 0; 4480 4481 team->t.t_ordered.dt.t_value = 0; 4482 team->t.t_master_active = FALSE; 4483 4484 memset(&team->t.t_taskq, '\0', sizeof(kmp_taskq_t)); 4485 4486 #ifdef KMP_DEBUG 4487 team->t.t_copypriv_data = NULL; /* not necessary, but nice for debugging */ 4488 #endif 4489 team->t.t_copyin_counter = 0; /* for barrier-free copyin implementation */ 4490 4491 team->t.t_control_stack_top = NULL; 4492 4493 __kmp_reinitialize_team(team, new_icvs, loc); 4494 4495 KMP_MB(); 4496 KF_TRACE(10, ("__kmp_initialize_team: exit: team=%p\n", team)); 4497 } 4498 4499 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 4500 /* Sets full mask for thread and returns old mask, no changes to structures. */ 4501 static void 4502 __kmp_set_thread_affinity_mask_full_tmp(kmp_affin_mask_t *old_mask) { 4503 if (KMP_AFFINITY_CAPABLE()) { 4504 int status; 4505 if (old_mask != NULL) { 4506 status = __kmp_get_system_affinity(old_mask, TRUE); 4507 int error = errno; 4508 if (status != 0) { 4509 __kmp_fatal(KMP_MSG(ChangeThreadAffMaskError), KMP_ERR(error), 4510 __kmp_msg_null); 4511 } 4512 } 4513 __kmp_set_system_affinity(__kmp_affin_fullMask, TRUE); 4514 } 4515 } 4516 #endif 4517 4518 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 4519 4520 // __kmp_partition_places() is the heart of the OpenMP 4.0 affinity mechanism. 4521 // It calculats the worker + master thread's partition based upon the parent 4522 // thread's partition, and binds each worker to a thread in their partition. 4523 // The master thread's partition should already include its current binding. 4524 static void __kmp_partition_places(kmp_team_t *team, int update_master_only) { 4525 // Copy the master thread's place partion to the team struct 4526 kmp_info_t *master_th = team->t.t_threads[0]; 4527 KMP_DEBUG_ASSERT(master_th != NULL); 4528 kmp_proc_bind_t proc_bind = team->t.t_proc_bind; 4529 int first_place = master_th->th.th_first_place; 4530 int last_place = master_th->th.th_last_place; 4531 int masters_place = master_th->th.th_current_place; 4532 team->t.t_first_place = first_place; 4533 team->t.t_last_place = last_place; 4534 4535 KA_TRACE(20, ("__kmp_partition_places: enter: proc_bind = %d T#%d(%d:0) " 4536 "bound to place %d partition = [%d,%d]\n", 4537 proc_bind, __kmp_gtid_from_thread(team->t.t_threads[0]), 4538 team->t.t_id, masters_place, first_place, last_place)); 4539 4540 switch (proc_bind) { 4541 4542 case proc_bind_default: 4543 // serial teams might have the proc_bind policy set to proc_bind_default. It 4544 // doesn't matter, as we don't rebind master thread for any proc_bind policy 4545 KMP_DEBUG_ASSERT(team->t.t_nproc == 1); 4546 break; 4547 4548 case proc_bind_master: { 4549 int f; 4550 int n_th = team->t.t_nproc; 4551 for (f = 1; f < n_th; f++) { 4552 kmp_info_t *th = team->t.t_threads[f]; 4553 KMP_DEBUG_ASSERT(th != NULL); 4554 th->th.th_first_place = first_place; 4555 th->th.th_last_place = last_place; 4556 th->th.th_new_place = masters_place; 4557 4558 KA_TRACE(100, ("__kmp_partition_places: master: T#%d(%d:%d) place %d " 4559 "partition = [%d,%d]\n", 4560 __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, 4561 f, masters_place, first_place, last_place)); 4562 } 4563 } break; 4564 4565 case proc_bind_close: { 4566 int f; 4567 int n_th = team->t.t_nproc; 4568 int n_places; 4569 if (first_place <= last_place) { 4570 n_places = last_place - first_place + 1; 4571 } else { 4572 n_places = __kmp_affinity_num_masks - first_place + last_place + 1; 4573 } 4574 if (n_th <= n_places) { 4575 int place = masters_place; 4576 for (f = 1; f < n_th; f++) { 4577 kmp_info_t *th = team->t.t_threads[f]; 4578 KMP_DEBUG_ASSERT(th != NULL); 4579 4580 if (place == last_place) { 4581 place = first_place; 4582 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4583 place = 0; 4584 } else { 4585 place++; 4586 } 4587 th->th.th_first_place = first_place; 4588 th->th.th_last_place = last_place; 4589 th->th.th_new_place = place; 4590 4591 KA_TRACE(100, ("__kmp_partition_places: close: T#%d(%d:%d) place %d " 4592 "partition = [%d,%d]\n", 4593 __kmp_gtid_from_thread(team->t.t_threads[f]), 4594 team->t.t_id, f, place, first_place, last_place)); 4595 } 4596 } else { 4597 int S, rem, gap, s_count; 4598 S = n_th / n_places; 4599 s_count = 0; 4600 rem = n_th - (S * n_places); 4601 gap = rem > 0 ? n_places / rem : n_places; 4602 int place = masters_place; 4603 int gap_ct = gap; 4604 for (f = 0; f < n_th; f++) { 4605 kmp_info_t *th = team->t.t_threads[f]; 4606 KMP_DEBUG_ASSERT(th != NULL); 4607 4608 th->th.th_first_place = first_place; 4609 th->th.th_last_place = last_place; 4610 th->th.th_new_place = place; 4611 s_count++; 4612 4613 if ((s_count == S) && rem && (gap_ct == gap)) { 4614 // do nothing, add an extra thread to place on next iteration 4615 } else if ((s_count == S + 1) && rem && (gap_ct == gap)) { 4616 // we added an extra thread to this place; move to next place 4617 if (place == last_place) { 4618 place = first_place; 4619 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4620 place = 0; 4621 } else { 4622 place++; 4623 } 4624 s_count = 0; 4625 gap_ct = 1; 4626 rem--; 4627 } else if (s_count == S) { // place full; don't add extra 4628 if (place == last_place) { 4629 place = first_place; 4630 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4631 place = 0; 4632 } else { 4633 place++; 4634 } 4635 gap_ct++; 4636 s_count = 0; 4637 } 4638 4639 KA_TRACE(100, 4640 ("__kmp_partition_places: close: T#%d(%d:%d) place %d " 4641 "partition = [%d,%d]\n", 4642 __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, f, 4643 th->th.th_new_place, first_place, last_place)); 4644 } 4645 KMP_DEBUG_ASSERT(place == masters_place); 4646 } 4647 } break; 4648 4649 case proc_bind_spread: { 4650 int f; 4651 int n_th = team->t.t_nproc; 4652 int n_places; 4653 int thidx; 4654 if (first_place <= last_place) { 4655 n_places = last_place - first_place + 1; 4656 } else { 4657 n_places = __kmp_affinity_num_masks - first_place + last_place + 1; 4658 } 4659 if (n_th <= n_places) { 4660 int place = -1; 4661 4662 if (n_places != static_cast<int>(__kmp_affinity_num_masks)) { 4663 int S = n_places / n_th; 4664 int s_count, rem, gap, gap_ct; 4665 4666 place = masters_place; 4667 rem = n_places - n_th * S; 4668 gap = rem ? n_th / rem : 1; 4669 gap_ct = gap; 4670 thidx = n_th; 4671 if (update_master_only == 1) 4672 thidx = 1; 4673 for (f = 0; f < thidx; f++) { 4674 kmp_info_t *th = team->t.t_threads[f]; 4675 KMP_DEBUG_ASSERT(th != NULL); 4676 4677 th->th.th_first_place = place; 4678 th->th.th_new_place = place; 4679 s_count = 1; 4680 while (s_count < S) { 4681 if (place == last_place) { 4682 place = first_place; 4683 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4684 place = 0; 4685 } else { 4686 place++; 4687 } 4688 s_count++; 4689 } 4690 if (rem && (gap_ct == gap)) { 4691 if (place == last_place) { 4692 place = first_place; 4693 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4694 place = 0; 4695 } else { 4696 place++; 4697 } 4698 rem--; 4699 gap_ct = 0; 4700 } 4701 th->th.th_last_place = place; 4702 gap_ct++; 4703 4704 if (place == last_place) { 4705 place = first_place; 4706 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4707 place = 0; 4708 } else { 4709 place++; 4710 } 4711 4712 KA_TRACE(100, 4713 ("__kmp_partition_places: spread: T#%d(%d:%d) place %d " 4714 "partition = [%d,%d], __kmp_affinity_num_masks: %u\n", 4715 __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, 4716 f, th->th.th_new_place, th->th.th_first_place, 4717 th->th.th_last_place, __kmp_affinity_num_masks)); 4718 } 4719 } else { 4720 /* Having uniform space of available computation places I can create 4721 T partitions of round(P/T) size and put threads into the first 4722 place of each partition. */ 4723 double current = static_cast<double>(masters_place); 4724 double spacing = 4725 (static_cast<double>(n_places + 1) / static_cast<double>(n_th)); 4726 int first, last; 4727 kmp_info_t *th; 4728 4729 thidx = n_th + 1; 4730 if (update_master_only == 1) 4731 thidx = 1; 4732 for (f = 0; f < thidx; f++) { 4733 first = static_cast<int>(current); 4734 last = static_cast<int>(current + spacing) - 1; 4735 KMP_DEBUG_ASSERT(last >= first); 4736 if (first >= n_places) { 4737 if (masters_place) { 4738 first -= n_places; 4739 last -= n_places; 4740 if (first == (masters_place + 1)) { 4741 KMP_DEBUG_ASSERT(f == n_th); 4742 first--; 4743 } 4744 if (last == masters_place) { 4745 KMP_DEBUG_ASSERT(f == (n_th - 1)); 4746 last--; 4747 } 4748 } else { 4749 KMP_DEBUG_ASSERT(f == n_th); 4750 first = 0; 4751 last = 0; 4752 } 4753 } 4754 if (last >= n_places) { 4755 last = (n_places - 1); 4756 } 4757 place = first; 4758 current += spacing; 4759 if (f < n_th) { 4760 KMP_DEBUG_ASSERT(0 <= first); 4761 KMP_DEBUG_ASSERT(n_places > first); 4762 KMP_DEBUG_ASSERT(0 <= last); 4763 KMP_DEBUG_ASSERT(n_places > last); 4764 KMP_DEBUG_ASSERT(last_place >= first_place); 4765 th = team->t.t_threads[f]; 4766 KMP_DEBUG_ASSERT(th); 4767 th->th.th_first_place = first; 4768 th->th.th_new_place = place; 4769 th->th.th_last_place = last; 4770 4771 KA_TRACE(100, 4772 ("__kmp_partition_places: spread: T#%d(%d:%d) place %d " 4773 "partition = [%d,%d], spacing = %.4f\n", 4774 __kmp_gtid_from_thread(team->t.t_threads[f]), 4775 team->t.t_id, f, th->th.th_new_place, 4776 th->th.th_first_place, th->th.th_last_place, spacing)); 4777 } 4778 } 4779 } 4780 KMP_DEBUG_ASSERT(update_master_only || place == masters_place); 4781 } else { 4782 int S, rem, gap, s_count; 4783 S = n_th / n_places; 4784 s_count = 0; 4785 rem = n_th - (S * n_places); 4786 gap = rem > 0 ? n_places / rem : n_places; 4787 int place = masters_place; 4788 int gap_ct = gap; 4789 thidx = n_th; 4790 if (update_master_only == 1) 4791 thidx = 1; 4792 for (f = 0; f < thidx; f++) { 4793 kmp_info_t *th = team->t.t_threads[f]; 4794 KMP_DEBUG_ASSERT(th != NULL); 4795 4796 th->th.th_first_place = place; 4797 th->th.th_last_place = place; 4798 th->th.th_new_place = place; 4799 s_count++; 4800 4801 if ((s_count == S) && rem && (gap_ct == gap)) { 4802 // do nothing, add an extra thread to place on next iteration 4803 } else if ((s_count == S + 1) && rem && (gap_ct == gap)) { 4804 // we added an extra thread to this place; move on to next place 4805 if (place == last_place) { 4806 place = first_place; 4807 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4808 place = 0; 4809 } else { 4810 place++; 4811 } 4812 s_count = 0; 4813 gap_ct = 1; 4814 rem--; 4815 } else if (s_count == S) { // place is full; don't add extra thread 4816 if (place == last_place) { 4817 place = first_place; 4818 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4819 place = 0; 4820 } else { 4821 place++; 4822 } 4823 gap_ct++; 4824 s_count = 0; 4825 } 4826 4827 KA_TRACE(100, ("__kmp_partition_places: spread: T#%d(%d:%d) place %d " 4828 "partition = [%d,%d]\n", 4829 __kmp_gtid_from_thread(team->t.t_threads[f]), 4830 team->t.t_id, f, th->th.th_new_place, 4831 th->th.th_first_place, th->th.th_last_place)); 4832 } 4833 KMP_DEBUG_ASSERT(update_master_only || place == masters_place); 4834 } 4835 } break; 4836 4837 default: 4838 break; 4839 } 4840 4841 KA_TRACE(20, ("__kmp_partition_places: exit T#%d\n", team->t.t_id)); 4842 } 4843 4844 #endif /* OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED */ 4845 4846 /* allocate a new team data structure to use. take one off of the free pool if 4847 available */ 4848 kmp_team_t * 4849 __kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc, 4850 #if OMPT_SUPPORT 4851 ompt_data_t ompt_parallel_data, 4852 #endif 4853 #if OMP_40_ENABLED 4854 kmp_proc_bind_t new_proc_bind, 4855 #endif 4856 kmp_internal_control_t *new_icvs, 4857 int argc USE_NESTED_HOT_ARG(kmp_info_t *master)) { 4858 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_allocate_team); 4859 int f; 4860 kmp_team_t *team; 4861 int use_hot_team = !root->r.r_active; 4862 int level = 0; 4863 4864 KA_TRACE(20, ("__kmp_allocate_team: called\n")); 4865 KMP_DEBUG_ASSERT(new_nproc >= 1 && argc >= 0); 4866 KMP_DEBUG_ASSERT(max_nproc >= new_nproc); 4867 KMP_MB(); 4868 4869 #if KMP_NESTED_HOT_TEAMS 4870 kmp_hot_team_ptr_t *hot_teams; 4871 if (master) { 4872 team = master->th.th_team; 4873 level = team->t.t_active_level; 4874 if (master->th.th_teams_microtask) { // in teams construct? 4875 if (master->th.th_teams_size.nteams > 1 && 4876 ( // #teams > 1 4877 team->t.t_pkfn == 4878 (microtask_t)__kmp_teams_master || // inner fork of the teams 4879 master->th.th_teams_level < 4880 team->t.t_level)) { // or nested parallel inside the teams 4881 ++level; // not increment if #teams==1, or for outer fork of the teams; 4882 // increment otherwise 4883 } 4884 } 4885 hot_teams = master->th.th_hot_teams; 4886 if (level < __kmp_hot_teams_max_level && hot_teams && 4887 hot_teams[level] 4888 .hot_team) { // hot team has already been allocated for given level 4889 use_hot_team = 1; 4890 } else { 4891 use_hot_team = 0; 4892 } 4893 } 4894 #endif 4895 // Optimization to use a "hot" team 4896 if (use_hot_team && new_nproc > 1) { 4897 KMP_DEBUG_ASSERT(new_nproc == max_nproc); 4898 #if KMP_NESTED_HOT_TEAMS 4899 team = hot_teams[level].hot_team; 4900 #else 4901 team = root->r.r_hot_team; 4902 #endif 4903 #if KMP_DEBUG 4904 if (__kmp_tasking_mode != tskm_immediate_exec) { 4905 KA_TRACE(20, ("__kmp_allocate_team: hot team task_team[0] = %p " 4906 "task_team[1] = %p before reinit\n", 4907 team->t.t_task_team[0], team->t.t_task_team[1])); 4908 } 4909 #endif 4910 4911 // Has the number of threads changed? 4912 /* Let's assume the most common case is that the number of threads is 4913 unchanged, and put that case first. */ 4914 if (team->t.t_nproc == new_nproc) { // Check changes in number of threads 4915 KA_TRACE(20, ("__kmp_allocate_team: reusing hot team\n")); 4916 // This case can mean that omp_set_num_threads() was called and the hot 4917 // team size was already reduced, so we check the special flag 4918 if (team->t.t_size_changed == -1) { 4919 team->t.t_size_changed = 1; 4920 } else { 4921 KMP_CHECK_UPDATE(team->t.t_size_changed, 0); 4922 } 4923 4924 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 4925 kmp_r_sched_t new_sched = new_icvs->sched; 4926 // set master's schedule as new run-time schedule 4927 KMP_CHECK_UPDATE(team->t.t_sched.sched, new_sched.sched); 4928 4929 __kmp_reinitialize_team(team, new_icvs, 4930 root->r.r_uber_thread->th.th_ident); 4931 4932 KF_TRACE(10, ("__kmp_allocate_team2: T#%d, this_thread=%p team=%p\n", 0, 4933 team->t.t_threads[0], team)); 4934 __kmp_push_current_task_to_thread(team->t.t_threads[0], team, 0); 4935 4936 #if OMP_40_ENABLED 4937 #if KMP_AFFINITY_SUPPORTED 4938 if ((team->t.t_size_changed == 0) && 4939 (team->t.t_proc_bind == new_proc_bind)) { 4940 if (new_proc_bind == proc_bind_spread) { 4941 __kmp_partition_places( 4942 team, 1); // add flag to update only master for spread 4943 } 4944 KA_TRACE(200, ("__kmp_allocate_team: reusing hot team #%d bindings: " 4945 "proc_bind = %d, partition = [%d,%d]\n", 4946 team->t.t_id, new_proc_bind, team->t.t_first_place, 4947 team->t.t_last_place)); 4948 } else { 4949 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 4950 __kmp_partition_places(team); 4951 } 4952 #else 4953 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 4954 #endif /* KMP_AFFINITY_SUPPORTED */ 4955 #endif /* OMP_40_ENABLED */ 4956 } else if (team->t.t_nproc > new_nproc) { 4957 KA_TRACE(20, 4958 ("__kmp_allocate_team: decreasing hot team thread count to %d\n", 4959 new_nproc)); 4960 4961 team->t.t_size_changed = 1; 4962 #if KMP_NESTED_HOT_TEAMS 4963 if (__kmp_hot_teams_mode == 0) { 4964 // AC: saved number of threads should correspond to team's value in this 4965 // mode, can be bigger in mode 1, when hot team has threads in reserve 4966 KMP_DEBUG_ASSERT(hot_teams[level].hot_team_nth == team->t.t_nproc); 4967 hot_teams[level].hot_team_nth = new_nproc; 4968 #endif // KMP_NESTED_HOT_TEAMS 4969 /* release the extra threads we don't need any more */ 4970 for (f = new_nproc; f < team->t.t_nproc; f++) { 4971 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 4972 if (__kmp_tasking_mode != tskm_immediate_exec) { 4973 // When decreasing team size, threads no longer in the team should 4974 // unref task team. 4975 team->t.t_threads[f]->th.th_task_team = NULL; 4976 } 4977 __kmp_free_thread(team->t.t_threads[f]); 4978 team->t.t_threads[f] = NULL; 4979 } 4980 #if KMP_NESTED_HOT_TEAMS 4981 } // (__kmp_hot_teams_mode == 0) 4982 else { 4983 // When keeping extra threads in team, switch threads to wait on own 4984 // b_go flag 4985 for (f = new_nproc; f < team->t.t_nproc; ++f) { 4986 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 4987 kmp_balign_t *balign = team->t.t_threads[f]->th.th_bar; 4988 for (int b = 0; b < bs_last_barrier; ++b) { 4989 if (balign[b].bb.wait_flag == KMP_BARRIER_PARENT_FLAG) { 4990 balign[b].bb.wait_flag = KMP_BARRIER_SWITCH_TO_OWN_FLAG; 4991 } 4992 KMP_CHECK_UPDATE(balign[b].bb.leaf_kids, 0); 4993 } 4994 } 4995 } 4996 #endif // KMP_NESTED_HOT_TEAMS 4997 team->t.t_nproc = new_nproc; 4998 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 4999 KMP_CHECK_UPDATE(team->t.t_sched.sched, new_icvs->sched.sched); 5000 __kmp_reinitialize_team(team, new_icvs, 5001 root->r.r_uber_thread->th.th_ident); 5002 5003 /* update the remaining threads */ 5004 for (f = 0; f < new_nproc; ++f) { 5005 team->t.t_threads[f]->th.th_team_nproc = new_nproc; 5006 } 5007 // restore the current task state of the master thread: should be the 5008 // implicit task 5009 KF_TRACE(10, ("__kmp_allocate_team: T#%d, this_thread=%p team=%p\n", 0, 5010 team->t.t_threads[0], team)); 5011 5012 __kmp_push_current_task_to_thread(team->t.t_threads[0], team, 0); 5013 5014 #ifdef KMP_DEBUG 5015 for (f = 0; f < team->t.t_nproc; f++) { 5016 KMP_DEBUG_ASSERT(team->t.t_threads[f] && 5017 team->t.t_threads[f]->th.th_team_nproc == 5018 team->t.t_nproc); 5019 } 5020 #endif 5021 5022 #if OMP_40_ENABLED 5023 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5024 #if KMP_AFFINITY_SUPPORTED 5025 __kmp_partition_places(team); 5026 #endif 5027 #endif 5028 } else { // team->t.t_nproc < new_nproc 5029 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 5030 kmp_affin_mask_t *old_mask; 5031 if (KMP_AFFINITY_CAPABLE()) { 5032 KMP_CPU_ALLOC(old_mask); 5033 } 5034 #endif 5035 5036 KA_TRACE(20, 5037 ("__kmp_allocate_team: increasing hot team thread count to %d\n", 5038 new_nproc)); 5039 5040 team->t.t_size_changed = 1; 5041 5042 #if KMP_NESTED_HOT_TEAMS 5043 int avail_threads = hot_teams[level].hot_team_nth; 5044 if (new_nproc < avail_threads) 5045 avail_threads = new_nproc; 5046 kmp_info_t **other_threads = team->t.t_threads; 5047 for (f = team->t.t_nproc; f < avail_threads; ++f) { 5048 // Adjust barrier data of reserved threads (if any) of the team 5049 // Other data will be set in __kmp_initialize_info() below. 5050 int b; 5051 kmp_balign_t *balign = other_threads[f]->th.th_bar; 5052 for (b = 0; b < bs_last_barrier; ++b) { 5053 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 5054 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 5055 #if USE_DEBUGGER 5056 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 5057 #endif 5058 } 5059 } 5060 if (hot_teams[level].hot_team_nth >= new_nproc) { 5061 // we have all needed threads in reserve, no need to allocate any 5062 // this only possible in mode 1, cannot have reserved threads in mode 0 5063 KMP_DEBUG_ASSERT(__kmp_hot_teams_mode == 1); 5064 team->t.t_nproc = new_nproc; // just get reserved threads involved 5065 } else { 5066 // we may have some threads in reserve, but not enough 5067 team->t.t_nproc = 5068 hot_teams[level] 5069 .hot_team_nth; // get reserved threads involved if any 5070 hot_teams[level].hot_team_nth = new_nproc; // adjust hot team max size 5071 #endif // KMP_NESTED_HOT_TEAMS 5072 if (team->t.t_max_nproc < new_nproc) { 5073 /* reallocate larger arrays */ 5074 __kmp_reallocate_team_arrays(team, new_nproc); 5075 __kmp_reinitialize_team(team, new_icvs, NULL); 5076 } 5077 5078 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 5079 /* Temporarily set full mask for master thread before creation of 5080 workers. The reason is that workers inherit the affinity from master, 5081 so if a lot of workers are created on the single core quickly, they 5082 don't get a chance to set their own affinity for a long time. */ 5083 __kmp_set_thread_affinity_mask_full_tmp(old_mask); 5084 #endif 5085 5086 /* allocate new threads for the hot team */ 5087 for (f = team->t.t_nproc; f < new_nproc; f++) { 5088 kmp_info_t *new_worker = __kmp_allocate_thread(root, team, f); 5089 KMP_DEBUG_ASSERT(new_worker); 5090 team->t.t_threads[f] = new_worker; 5091 5092 KA_TRACE(20, 5093 ("__kmp_allocate_team: team %d init T#%d arrived: " 5094 "join=%llu, plain=%llu\n", 5095 team->t.t_id, __kmp_gtid_from_tid(f, team), team->t.t_id, f, 5096 team->t.t_bar[bs_forkjoin_barrier].b_arrived, 5097 team->t.t_bar[bs_plain_barrier].b_arrived)); 5098 5099 { // Initialize barrier data for new threads. 5100 int b; 5101 kmp_balign_t *balign = new_worker->th.th_bar; 5102 for (b = 0; b < bs_last_barrier; ++b) { 5103 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 5104 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != 5105 KMP_BARRIER_PARENT_FLAG); 5106 #if USE_DEBUGGER 5107 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 5108 #endif 5109 } 5110 } 5111 } 5112 5113 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 5114 if (KMP_AFFINITY_CAPABLE()) { 5115 /* Restore initial master thread's affinity mask */ 5116 __kmp_set_system_affinity(old_mask, TRUE); 5117 KMP_CPU_FREE(old_mask); 5118 } 5119 #endif 5120 #if KMP_NESTED_HOT_TEAMS 5121 } // end of check of t_nproc vs. new_nproc vs. hot_team_nth 5122 #endif // KMP_NESTED_HOT_TEAMS 5123 /* make sure everyone is syncronized */ 5124 int old_nproc = team->t.t_nproc; // save old value and use to update only 5125 // new threads below 5126 __kmp_initialize_team(team, new_nproc, new_icvs, 5127 root->r.r_uber_thread->th.th_ident); 5128 5129 /* reinitialize the threads */ 5130 KMP_DEBUG_ASSERT(team->t.t_nproc == new_nproc); 5131 for (f = 0; f < team->t.t_nproc; ++f) 5132 __kmp_initialize_info(team->t.t_threads[f], team, f, 5133 __kmp_gtid_from_tid(f, team)); 5134 if (level) { // set th_task_state for new threads in nested hot team 5135 // __kmp_initialize_info() no longer zeroes th_task_state, so we should 5136 // only need to set the th_task_state for the new threads. th_task_state 5137 // for master thread will not be accurate until after this in 5138 // __kmp_fork_call(), so we look to the master's memo_stack to get the 5139 // correct value. 5140 for (f = old_nproc; f < team->t.t_nproc; ++f) 5141 team->t.t_threads[f]->th.th_task_state = 5142 team->t.t_threads[0]->th.th_task_state_memo_stack[level]; 5143 } else { // set th_task_state for new threads in non-nested hot team 5144 int old_state = 5145 team->t.t_threads[0]->th.th_task_state; // copy master's state 5146 for (f = old_nproc; f < team->t.t_nproc; ++f) 5147 team->t.t_threads[f]->th.th_task_state = old_state; 5148 } 5149 5150 #ifdef KMP_DEBUG 5151 for (f = 0; f < team->t.t_nproc; ++f) { 5152 KMP_DEBUG_ASSERT(team->t.t_threads[f] && 5153 team->t.t_threads[f]->th.th_team_nproc == 5154 team->t.t_nproc); 5155 } 5156 #endif 5157 5158 #if OMP_40_ENABLED 5159 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5160 #if KMP_AFFINITY_SUPPORTED 5161 __kmp_partition_places(team); 5162 #endif 5163 #endif 5164 } // Check changes in number of threads 5165 5166 #if OMP_40_ENABLED 5167 kmp_info_t *master = team->t.t_threads[0]; 5168 if (master->th.th_teams_microtask) { 5169 for (f = 1; f < new_nproc; ++f) { 5170 // propagate teams construct specific info to workers 5171 kmp_info_t *thr = team->t.t_threads[f]; 5172 thr->th.th_teams_microtask = master->th.th_teams_microtask; 5173 thr->th.th_teams_level = master->th.th_teams_level; 5174 thr->th.th_teams_size = master->th.th_teams_size; 5175 } 5176 } 5177 #endif /* OMP_40_ENABLED */ 5178 #if KMP_NESTED_HOT_TEAMS 5179 if (level) { 5180 // Sync barrier state for nested hot teams, not needed for outermost hot 5181 // team. 5182 for (f = 1; f < new_nproc; ++f) { 5183 kmp_info_t *thr = team->t.t_threads[f]; 5184 int b; 5185 kmp_balign_t *balign = thr->th.th_bar; 5186 for (b = 0; b < bs_last_barrier; ++b) { 5187 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 5188 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 5189 #if USE_DEBUGGER 5190 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 5191 #endif 5192 } 5193 } 5194 } 5195 #endif // KMP_NESTED_HOT_TEAMS 5196 5197 /* reallocate space for arguments if necessary */ 5198 __kmp_alloc_argv_entries(argc, team, TRUE); 5199 KMP_CHECK_UPDATE(team->t.t_argc, argc); 5200 // The hot team re-uses the previous task team, 5201 // if untouched during the previous release->gather phase. 5202 5203 KF_TRACE(10, (" hot_team = %p\n", team)); 5204 5205 #if KMP_DEBUG 5206 if (__kmp_tasking_mode != tskm_immediate_exec) { 5207 KA_TRACE(20, ("__kmp_allocate_team: hot team task_team[0] = %p " 5208 "task_team[1] = %p after reinit\n", 5209 team->t.t_task_team[0], team->t.t_task_team[1])); 5210 } 5211 #endif 5212 5213 #if OMPT_SUPPORT 5214 __ompt_team_assign_id(team, ompt_parallel_data); 5215 #endif 5216 5217 KMP_MB(); 5218 5219 return team; 5220 } 5221 5222 /* next, let's try to take one from the team pool */ 5223 KMP_MB(); 5224 for (team = CCAST(kmp_team_t *, __kmp_team_pool); (team);) { 5225 /* TODO: consider resizing undersized teams instead of reaping them, now 5226 that we have a resizing mechanism */ 5227 if (team->t.t_max_nproc >= max_nproc) { 5228 /* take this team from the team pool */ 5229 __kmp_team_pool = team->t.t_next_pool; 5230 5231 /* setup the team for fresh use */ 5232 __kmp_initialize_team(team, new_nproc, new_icvs, NULL); 5233 5234 KA_TRACE(20, ("__kmp_allocate_team: setting task_team[0] %p and " 5235 "task_team[1] %p to NULL\n", 5236 &team->t.t_task_team[0], &team->t.t_task_team[1])); 5237 team->t.t_task_team[0] = NULL; 5238 team->t.t_task_team[1] = NULL; 5239 5240 /* reallocate space for arguments if necessary */ 5241 __kmp_alloc_argv_entries(argc, team, TRUE); 5242 KMP_CHECK_UPDATE(team->t.t_argc, argc); 5243 5244 KA_TRACE( 5245 20, ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n", 5246 team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 5247 { // Initialize barrier data. 5248 int b; 5249 for (b = 0; b < bs_last_barrier; ++b) { 5250 team->t.t_bar[b].b_arrived = KMP_INIT_BARRIER_STATE; 5251 #if USE_DEBUGGER 5252 team->t.t_bar[b].b_master_arrived = 0; 5253 team->t.t_bar[b].b_team_arrived = 0; 5254 #endif 5255 } 5256 } 5257 5258 #if OMP_40_ENABLED 5259 team->t.t_proc_bind = new_proc_bind; 5260 #endif 5261 5262 KA_TRACE(20, ("__kmp_allocate_team: using team from pool %d.\n", 5263 team->t.t_id)); 5264 5265 #if OMPT_SUPPORT 5266 __ompt_team_assign_id(team, ompt_parallel_data); 5267 #endif 5268 5269 KMP_MB(); 5270 5271 return team; 5272 } 5273 5274 /* reap team if it is too small, then loop back and check the next one */ 5275 // not sure if this is wise, but, will be redone during the hot-teams 5276 // rewrite. 5277 /* TODO: Use technique to find the right size hot-team, don't reap them */ 5278 team = __kmp_reap_team(team); 5279 __kmp_team_pool = team; 5280 } 5281 5282 /* nothing available in the pool, no matter, make a new team! */ 5283 KMP_MB(); 5284 team = (kmp_team_t *)__kmp_allocate(sizeof(kmp_team_t)); 5285 5286 /* and set it up */ 5287 team->t.t_max_nproc = max_nproc; 5288 /* NOTE well, for some reason allocating one big buffer and dividing it up 5289 seems to really hurt performance a lot on the P4, so, let's not use this */ 5290 __kmp_allocate_team_arrays(team, max_nproc); 5291 5292 KA_TRACE(20, ("__kmp_allocate_team: making a new team\n")); 5293 __kmp_initialize_team(team, new_nproc, new_icvs, NULL); 5294 5295 KA_TRACE(20, ("__kmp_allocate_team: setting task_team[0] %p and task_team[1] " 5296 "%p to NULL\n", 5297 &team->t.t_task_team[0], &team->t.t_task_team[1])); 5298 team->t.t_task_team[0] = NULL; // to be removed, as __kmp_allocate zeroes 5299 // memory, no need to duplicate 5300 team->t.t_task_team[1] = NULL; // to be removed, as __kmp_allocate zeroes 5301 // memory, no need to duplicate 5302 5303 if (__kmp_storage_map) { 5304 __kmp_print_team_storage_map("team", team, team->t.t_id, new_nproc); 5305 } 5306 5307 /* allocate space for arguments */ 5308 __kmp_alloc_argv_entries(argc, team, FALSE); 5309 team->t.t_argc = argc; 5310 5311 KA_TRACE(20, 5312 ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n", 5313 team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 5314 { // Initialize barrier data. 5315 int b; 5316 for (b = 0; b < bs_last_barrier; ++b) { 5317 team->t.t_bar[b].b_arrived = KMP_INIT_BARRIER_STATE; 5318 #if USE_DEBUGGER 5319 team->t.t_bar[b].b_master_arrived = 0; 5320 team->t.t_bar[b].b_team_arrived = 0; 5321 #endif 5322 } 5323 } 5324 5325 #if OMP_40_ENABLED 5326 team->t.t_proc_bind = new_proc_bind; 5327 #endif 5328 5329 #if OMPT_SUPPORT 5330 __ompt_team_assign_id(team, ompt_parallel_data); 5331 team->t.ompt_serialized_team_info = NULL; 5332 #endif 5333 5334 KMP_MB(); 5335 5336 KA_TRACE(20, ("__kmp_allocate_team: done creating a new team %d.\n", 5337 team->t.t_id)); 5338 5339 return team; 5340 } 5341 5342 /* TODO implement hot-teams at all levels */ 5343 /* TODO implement lazy thread release on demand (disband request) */ 5344 5345 /* free the team. return it to the team pool. release all the threads 5346 * associated with it */ 5347 void __kmp_free_team(kmp_root_t *root, 5348 kmp_team_t *team USE_NESTED_HOT_ARG(kmp_info_t *master)) { 5349 int f; 5350 KA_TRACE(20, ("__kmp_free_team: T#%d freeing team %d\n", __kmp_get_gtid(), 5351 team->t.t_id)); 5352 5353 /* verify state */ 5354 KMP_DEBUG_ASSERT(root); 5355 KMP_DEBUG_ASSERT(team); 5356 KMP_DEBUG_ASSERT(team->t.t_nproc <= team->t.t_max_nproc); 5357 KMP_DEBUG_ASSERT(team->t.t_threads); 5358 5359 int use_hot_team = team == root->r.r_hot_team; 5360 #if KMP_NESTED_HOT_TEAMS 5361 int level; 5362 kmp_hot_team_ptr_t *hot_teams; 5363 if (master) { 5364 level = team->t.t_active_level - 1; 5365 if (master->th.th_teams_microtask) { // in teams construct? 5366 if (master->th.th_teams_size.nteams > 1) { 5367 ++level; // level was not increased in teams construct for 5368 // team_of_masters 5369 } 5370 if (team->t.t_pkfn != (microtask_t)__kmp_teams_master && 5371 master->th.th_teams_level == team->t.t_level) { 5372 ++level; // level was not increased in teams construct for 5373 // team_of_workers before the parallel 5374 } // team->t.t_level will be increased inside parallel 5375 } 5376 hot_teams = master->th.th_hot_teams; 5377 if (level < __kmp_hot_teams_max_level) { 5378 KMP_DEBUG_ASSERT(team == hot_teams[level].hot_team); 5379 use_hot_team = 1; 5380 } 5381 } 5382 #endif // KMP_NESTED_HOT_TEAMS 5383 5384 /* team is done working */ 5385 TCW_SYNC_PTR(team->t.t_pkfn, 5386 NULL); // Important for Debugging Support Library. 5387 team->t.t_copyin_counter = 0; // init counter for possible reuse 5388 // Do not reset pointer to parent team to NULL for hot teams. 5389 5390 /* if we are non-hot team, release our threads */ 5391 if (!use_hot_team) { 5392 if (__kmp_tasking_mode != tskm_immediate_exec) { 5393 // Wait for threads to reach reapable state 5394 for (f = 1; f < team->t.t_nproc; ++f) { 5395 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5396 kmp_info_t *th = team->t.t_threads[f]; 5397 volatile kmp_uint32 *state = &th->th.th_reap_state; 5398 while (*state != KMP_SAFE_TO_REAP) { 5399 #if KMP_OS_WINDOWS 5400 // On Windows a thread can be killed at any time, check this 5401 DWORD ecode; 5402 if (!__kmp_is_thread_alive(th, &ecode)) { 5403 *state = KMP_SAFE_TO_REAP; // reset the flag for dead thread 5404 break; 5405 } 5406 #endif 5407 // first check if thread is sleeping 5408 kmp_flag_64 fl(&th->th.th_bar[bs_forkjoin_barrier].bb.b_go, th); 5409 if (fl.is_sleeping()) 5410 fl.resume(__kmp_gtid_from_thread(th)); 5411 KMP_CPU_PAUSE(); 5412 } 5413 } 5414 5415 // Delete task teams 5416 int tt_idx; 5417 for (tt_idx = 0; tt_idx < 2; ++tt_idx) { 5418 kmp_task_team_t *task_team = team->t.t_task_team[tt_idx]; 5419 if (task_team != NULL) { 5420 for (f = 0; f < team->t.t_nproc; 5421 ++f) { // Have all threads unref task teams 5422 team->t.t_threads[f]->th.th_task_team = NULL; 5423 } 5424 KA_TRACE( 5425 20, 5426 ("__kmp_free_team: T#%d deactivating task_team %p on team %d\n", 5427 __kmp_get_gtid(), task_team, team->t.t_id)); 5428 #if KMP_NESTED_HOT_TEAMS 5429 __kmp_free_task_team(master, task_team); 5430 #endif 5431 team->t.t_task_team[tt_idx] = NULL; 5432 } 5433 } 5434 } 5435 5436 // Reset pointer to parent team only for non-hot teams. 5437 team->t.t_parent = NULL; 5438 team->t.t_level = 0; 5439 team->t.t_active_level = 0; 5440 5441 /* free the worker threads */ 5442 for (f = 1; f < team->t.t_nproc; ++f) { 5443 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5444 __kmp_free_thread(team->t.t_threads[f]); 5445 team->t.t_threads[f] = NULL; 5446 } 5447 5448 /* put the team back in the team pool */ 5449 /* TODO limit size of team pool, call reap_team if pool too large */ 5450 team->t.t_next_pool = CCAST(kmp_team_t *, __kmp_team_pool); 5451 __kmp_team_pool = (volatile kmp_team_t *)team; 5452 } 5453 5454 KMP_MB(); 5455 } 5456 5457 /* reap the team. destroy it, reclaim all its resources and free its memory */ 5458 kmp_team_t *__kmp_reap_team(kmp_team_t *team) { 5459 kmp_team_t *next_pool = team->t.t_next_pool; 5460 5461 KMP_DEBUG_ASSERT(team); 5462 KMP_DEBUG_ASSERT(team->t.t_dispatch); 5463 KMP_DEBUG_ASSERT(team->t.t_disp_buffer); 5464 KMP_DEBUG_ASSERT(team->t.t_threads); 5465 KMP_DEBUG_ASSERT(team->t.t_argv); 5466 5467 /* TODO clean the threads that are a part of this? */ 5468 5469 /* free stuff */ 5470 __kmp_free_team_arrays(team); 5471 if (team->t.t_argv != &team->t.t_inline_argv[0]) 5472 __kmp_free((void *)team->t.t_argv); 5473 __kmp_free(team); 5474 5475 KMP_MB(); 5476 return next_pool; 5477 } 5478 5479 // Free the thread. Don't reap it, just place it on the pool of available 5480 // threads. 5481 // 5482 // Changes for Quad issue 527845: We need a predictable OMP tid <-> gtid 5483 // binding for the affinity mechanism to be useful. 5484 // 5485 // Now, we always keep the free list (__kmp_thread_pool) sorted by gtid. 5486 // However, we want to avoid a potential performance problem by always 5487 // scanning through the list to find the correct point at which to insert 5488 // the thread (potential N**2 behavior). To do this we keep track of the 5489 // last place a thread struct was inserted (__kmp_thread_pool_insert_pt). 5490 // With single-level parallelism, threads will always be added to the tail 5491 // of the list, kept track of by __kmp_thread_pool_insert_pt. With nested 5492 // parallelism, all bets are off and we may need to scan through the entire 5493 // free list. 5494 // 5495 // This change also has a potentially large performance benefit, for some 5496 // applications. Previously, as threads were freed from the hot team, they 5497 // would be placed back on the free list in inverse order. If the hot team 5498 // grew back to it's original size, then the freed thread would be placed 5499 // back on the hot team in reverse order. This could cause bad cache 5500 // locality problems on programs where the size of the hot team regularly 5501 // grew and shrunk. 5502 // 5503 // Now, for single-level parallelism, the OMP tid is alway == gtid. 5504 void __kmp_free_thread(kmp_info_t *this_th) { 5505 int gtid; 5506 kmp_info_t **scan; 5507 kmp_root_t *root = this_th->th.th_root; 5508 5509 KA_TRACE(20, ("__kmp_free_thread: T#%d putting T#%d back on free pool.\n", 5510 __kmp_get_gtid(), this_th->th.th_info.ds.ds_gtid)); 5511 5512 KMP_DEBUG_ASSERT(this_th); 5513 5514 // When moving thread to pool, switch thread to wait on own b_go flag, and 5515 // uninitialized (NULL team). 5516 int b; 5517 kmp_balign_t *balign = this_th->th.th_bar; 5518 for (b = 0; b < bs_last_barrier; ++b) { 5519 if (balign[b].bb.wait_flag == KMP_BARRIER_PARENT_FLAG) 5520 balign[b].bb.wait_flag = KMP_BARRIER_SWITCH_TO_OWN_FLAG; 5521 balign[b].bb.team = NULL; 5522 balign[b].bb.leaf_kids = 0; 5523 } 5524 this_th->th.th_task_state = 0; 5525 5526 /* put thread back on the free pool */ 5527 TCW_PTR(this_th->th.th_team, NULL); 5528 TCW_PTR(this_th->th.th_root, NULL); 5529 TCW_PTR(this_th->th.th_dispatch, NULL); /* NOT NEEDED */ 5530 5531 // If the __kmp_thread_pool_insert_pt is already past the new insert 5532 // point, then we need to re-scan the entire list. 5533 gtid = this_th->th.th_info.ds.ds_gtid; 5534 if (__kmp_thread_pool_insert_pt != NULL) { 5535 KMP_DEBUG_ASSERT(__kmp_thread_pool != NULL); 5536 if (__kmp_thread_pool_insert_pt->th.th_info.ds.ds_gtid > gtid) { 5537 __kmp_thread_pool_insert_pt = NULL; 5538 } 5539 } 5540 5541 // Scan down the list to find the place to insert the thread. 5542 // scan is the address of a link in the list, possibly the address of 5543 // __kmp_thread_pool itself. 5544 // 5545 // In the absence of nested parallism, the for loop will have 0 iterations. 5546 if (__kmp_thread_pool_insert_pt != NULL) { 5547 scan = &(__kmp_thread_pool_insert_pt->th.th_next_pool); 5548 } else { 5549 scan = CCAST(kmp_info_t **, &__kmp_thread_pool); 5550 } 5551 for (; (*scan != NULL) && ((*scan)->th.th_info.ds.ds_gtid < gtid); 5552 scan = &((*scan)->th.th_next_pool)) 5553 ; 5554 5555 // Insert the new element on the list, and set __kmp_thread_pool_insert_pt 5556 // to its address. 5557 TCW_PTR(this_th->th.th_next_pool, *scan); 5558 __kmp_thread_pool_insert_pt = *scan = this_th; 5559 KMP_DEBUG_ASSERT((this_th->th.th_next_pool == NULL) || 5560 (this_th->th.th_info.ds.ds_gtid < 5561 this_th->th.th_next_pool->th.th_info.ds.ds_gtid)); 5562 TCW_4(this_th->th.th_in_pool, TRUE); 5563 __kmp_thread_pool_nth++; 5564 5565 TCW_4(__kmp_nth, __kmp_nth - 1); 5566 root->r.r_cg_nthreads--; 5567 5568 #ifdef KMP_ADJUST_BLOCKTIME 5569 /* Adjust blocktime back to user setting or default if necessary */ 5570 /* Middle initialization might never have occurred */ 5571 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 5572 KMP_DEBUG_ASSERT(__kmp_avail_proc > 0); 5573 if (__kmp_nth <= __kmp_avail_proc) { 5574 __kmp_zero_bt = FALSE; 5575 } 5576 } 5577 #endif /* KMP_ADJUST_BLOCKTIME */ 5578 5579 KMP_MB(); 5580 } 5581 5582 /* ------------------------------------------------------------------------ */ 5583 5584 void *__kmp_launch_thread(kmp_info_t *this_thr) { 5585 int gtid = this_thr->th.th_info.ds.ds_gtid; 5586 /* void *stack_data;*/ 5587 kmp_team_t *(*volatile pteam); 5588 5589 KMP_MB(); 5590 KA_TRACE(10, ("__kmp_launch_thread: T#%d start\n", gtid)); 5591 5592 if (__kmp_env_consistency_check) { 5593 this_thr->th.th_cons = __kmp_allocate_cons_stack(gtid); // ATT: Memory leak? 5594 } 5595 5596 #if OMPT_SUPPORT 5597 ompt_data_t *thread_data; 5598 if (ompt_enabled.enabled) { 5599 thread_data = &(this_thr->th.ompt_thread_info.thread_data); 5600 thread_data->ptr = NULL; 5601 5602 this_thr->th.ompt_thread_info.state = omp_state_overhead; 5603 this_thr->th.ompt_thread_info.wait_id = 0; 5604 this_thr->th.ompt_thread_info.idle_frame = OMPT_GET_FRAME_ADDRESS(0); 5605 if (ompt_enabled.ompt_callback_thread_begin) { 5606 ompt_callbacks.ompt_callback(ompt_callback_thread_begin)( 5607 ompt_thread_worker, thread_data); 5608 } 5609 } 5610 #endif 5611 5612 #if OMPT_SUPPORT 5613 if (ompt_enabled.enabled) { 5614 this_thr->th.ompt_thread_info.state = omp_state_idle; 5615 } 5616 #endif 5617 /* This is the place where threads wait for work */ 5618 while (!TCR_4(__kmp_global.g.g_done)) { 5619 KMP_DEBUG_ASSERT(this_thr == __kmp_threads[gtid]); 5620 KMP_MB(); 5621 5622 /* wait for work to do */ 5623 KA_TRACE(20, ("__kmp_launch_thread: T#%d waiting for work\n", gtid)); 5624 5625 /* No tid yet since not part of a team */ 5626 __kmp_fork_barrier(gtid, KMP_GTID_DNE); 5627 5628 #if OMPT_SUPPORT 5629 if (ompt_enabled.enabled) { 5630 this_thr->th.ompt_thread_info.state = omp_state_overhead; 5631 } 5632 #endif 5633 5634 pteam = (kmp_team_t * (*))(&this_thr->th.th_team); 5635 5636 /* have we been allocated? */ 5637 if (TCR_SYNC_PTR(*pteam) && !TCR_4(__kmp_global.g.g_done)) { 5638 /* we were just woken up, so run our new task */ 5639 if (TCR_SYNC_PTR((*pteam)->t.t_pkfn) != NULL) { 5640 int rc; 5641 KA_TRACE(20, 5642 ("__kmp_launch_thread: T#%d(%d:%d) invoke microtask = %p\n", 5643 gtid, (*pteam)->t.t_id, __kmp_tid_from_gtid(gtid), 5644 (*pteam)->t.t_pkfn)); 5645 5646 updateHWFPControl(*pteam); 5647 5648 #if OMPT_SUPPORT 5649 if (ompt_enabled.enabled) { 5650 this_thr->th.ompt_thread_info.state = omp_state_work_parallel; 5651 } 5652 #endif 5653 5654 { 5655 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 5656 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 5657 rc = (*pteam)->t.t_invoke(gtid); 5658 } 5659 KMP_ASSERT(rc); 5660 5661 KMP_MB(); 5662 KA_TRACE(20, ("__kmp_launch_thread: T#%d(%d:%d) done microtask = %p\n", 5663 gtid, (*pteam)->t.t_id, __kmp_tid_from_gtid(gtid), 5664 (*pteam)->t.t_pkfn)); 5665 } 5666 #if OMPT_SUPPORT 5667 if (ompt_enabled.enabled) { 5668 /* no frame set while outside task */ 5669 __ompt_get_task_info_object(0)->frame.exit_frame = NULL; 5670 5671 this_thr->th.ompt_thread_info.state = omp_state_overhead; 5672 this_thr->th.ompt_thread_info.task_data = *OMPT_CUR_TASK_DATA(this_thr); 5673 } 5674 #endif 5675 /* join barrier after parallel region */ 5676 __kmp_join_barrier(gtid); 5677 } 5678 } 5679 TCR_SYNC_PTR((intptr_t)__kmp_global.g.g_done); 5680 5681 #if OMPT_SUPPORT 5682 if (ompt_enabled.ompt_callback_thread_end) { 5683 ompt_callbacks.ompt_callback(ompt_callback_thread_end)(thread_data); 5684 } 5685 #endif 5686 5687 this_thr->th.th_task_team = NULL; 5688 /* run the destructors for the threadprivate data for this thread */ 5689 __kmp_common_destroy_gtid(gtid); 5690 5691 KA_TRACE(10, ("__kmp_launch_thread: T#%d done\n", gtid)); 5692 KMP_MB(); 5693 return this_thr; 5694 } 5695 5696 /* ------------------------------------------------------------------------ */ 5697 5698 void __kmp_internal_end_dest(void *specific_gtid) { 5699 #if KMP_COMPILER_ICC 5700 #pragma warning(push) 5701 #pragma warning(disable : 810) // conversion from "void *" to "int" may lose 5702 // significant bits 5703 #endif 5704 // Make sure no significant bits are lost 5705 int gtid = (kmp_intptr_t)specific_gtid - 1; 5706 #if KMP_COMPILER_ICC 5707 #pragma warning(pop) 5708 #endif 5709 5710 KA_TRACE(30, ("__kmp_internal_end_dest: T#%d\n", gtid)); 5711 /* NOTE: the gtid is stored as gitd+1 in the thread-local-storage 5712 * this is because 0 is reserved for the nothing-stored case */ 5713 5714 /* josh: One reason for setting the gtid specific data even when it is being 5715 destroyed by pthread is to allow gtid lookup through thread specific data 5716 (__kmp_gtid_get_specific). Some of the code, especially stat code, 5717 that gets executed in the call to __kmp_internal_end_thread, actually 5718 gets the gtid through the thread specific data. Setting it here seems 5719 rather inelegant and perhaps wrong, but allows __kmp_internal_end_thread 5720 to run smoothly. 5721 todo: get rid of this after we remove the dependence on 5722 __kmp_gtid_get_specific */ 5723 if (gtid >= 0 && KMP_UBER_GTID(gtid)) 5724 __kmp_gtid_set_specific(gtid); 5725 #ifdef KMP_TDATA_GTID 5726 __kmp_gtid = gtid; 5727 #endif 5728 __kmp_internal_end_thread(gtid); 5729 } 5730 5731 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB 5732 5733 // 2009-09-08 (lev): It looks the destructor does not work. In simple test cases 5734 // destructors work perfectly, but in real libomp.so I have no evidence it is 5735 // ever called. However, -fini linker option in makefile.mk works fine. 5736 5737 __attribute__((destructor)) void __kmp_internal_end_dtor(void) { 5738 __kmp_internal_end_atexit(); 5739 } 5740 5741 void __kmp_internal_end_fini(void) { __kmp_internal_end_atexit(); } 5742 5743 #endif 5744 5745 /* [Windows] josh: when the atexit handler is called, there may still be more 5746 than one thread alive */ 5747 void __kmp_internal_end_atexit(void) { 5748 KA_TRACE(30, ("__kmp_internal_end_atexit\n")); 5749 /* [Windows] 5750 josh: ideally, we want to completely shutdown the library in this atexit 5751 handler, but stat code that depends on thread specific data for gtid fails 5752 because that data becomes unavailable at some point during the shutdown, so 5753 we call __kmp_internal_end_thread instead. We should eventually remove the 5754 dependency on __kmp_get_specific_gtid in the stat code and use 5755 __kmp_internal_end_library to cleanly shutdown the library. 5756 5757 // TODO: Can some of this comment about GVS be removed? 5758 I suspect that the offending stat code is executed when the calling thread 5759 tries to clean up a dead root thread's data structures, resulting in GVS 5760 code trying to close the GVS structures for that thread, but since the stat 5761 code uses __kmp_get_specific_gtid to get the gtid with the assumption that 5762 the calling thread is cleaning up itself instead of another thread, it get 5763 confused. This happens because allowing a thread to unregister and cleanup 5764 another thread is a recent modification for addressing an issue. 5765 Based on the current design (20050722), a thread may end up 5766 trying to unregister another thread only if thread death does not trigger 5767 the calling of __kmp_internal_end_thread. For Linux* OS, there is the 5768 thread specific data destructor function to detect thread death. For 5769 Windows dynamic, there is DllMain(THREAD_DETACH). For Windows static, there 5770 is nothing. Thus, the workaround is applicable only for Windows static 5771 stat library. */ 5772 __kmp_internal_end_library(-1); 5773 #if KMP_OS_WINDOWS 5774 __kmp_close_console(); 5775 #endif 5776 } 5777 5778 static void __kmp_reap_thread(kmp_info_t *thread, int is_root) { 5779 // It is assumed __kmp_forkjoin_lock is acquired. 5780 5781 int gtid; 5782 5783 KMP_DEBUG_ASSERT(thread != NULL); 5784 5785 gtid = thread->th.th_info.ds.ds_gtid; 5786 5787 if (!is_root) { 5788 5789 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { 5790 /* Assume the threads are at the fork barrier here */ 5791 KA_TRACE( 5792 20, ("__kmp_reap_thread: releasing T#%d from fork barrier for reap\n", 5793 gtid)); 5794 /* Need release fence here to prevent seg faults for tree forkjoin barrier 5795 * (GEH) */ 5796 ANNOTATE_HAPPENS_BEFORE(thread); 5797 kmp_flag_64 flag(&thread->th.th_bar[bs_forkjoin_barrier].bb.b_go, thread); 5798 __kmp_release_64(&flag); 5799 } 5800 5801 // Terminate OS thread. 5802 __kmp_reap_worker(thread); 5803 5804 // The thread was killed asynchronously. If it was actively 5805 // spinning in the thread pool, decrement the global count. 5806 // 5807 // There is a small timing hole here - if the worker thread was just waking 5808 // up after sleeping in the pool, had reset it's th_active_in_pool flag but 5809 // not decremented the global counter __kmp_thread_pool_active_nth yet, then 5810 // the global counter might not get updated. 5811 // 5812 // Currently, this can only happen as the library is unloaded, 5813 // so there are no harmful side effects. 5814 if (thread->th.th_active_in_pool) { 5815 thread->th.th_active_in_pool = FALSE; 5816 KMP_TEST_THEN_DEC32(&__kmp_thread_pool_active_nth); 5817 KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0); 5818 } 5819 5820 // Decrement # of [worker] threads in the pool. 5821 KMP_DEBUG_ASSERT(__kmp_thread_pool_nth > 0); 5822 --__kmp_thread_pool_nth; 5823 } 5824 5825 __kmp_free_implicit_task(thread); 5826 5827 // Free the fast memory for tasking 5828 #if USE_FAST_MEMORY 5829 __kmp_free_fast_memory(thread); 5830 #endif /* USE_FAST_MEMORY */ 5831 5832 __kmp_suspend_uninitialize_thread(thread); 5833 5834 KMP_DEBUG_ASSERT(__kmp_threads[gtid] == thread); 5835 TCW_SYNC_PTR(__kmp_threads[gtid], NULL); 5836 5837 --__kmp_all_nth; 5838 // __kmp_nth was decremented when thread is added to the pool. 5839 5840 #ifdef KMP_ADJUST_BLOCKTIME 5841 /* Adjust blocktime back to user setting or default if necessary */ 5842 /* Middle initialization might never have occurred */ 5843 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 5844 KMP_DEBUG_ASSERT(__kmp_avail_proc > 0); 5845 if (__kmp_nth <= __kmp_avail_proc) { 5846 __kmp_zero_bt = FALSE; 5847 } 5848 } 5849 #endif /* KMP_ADJUST_BLOCKTIME */ 5850 5851 /* free the memory being used */ 5852 if (__kmp_env_consistency_check) { 5853 if (thread->th.th_cons) { 5854 __kmp_free_cons_stack(thread->th.th_cons); 5855 thread->th.th_cons = NULL; 5856 } 5857 } 5858 5859 if (thread->th.th_pri_common != NULL) { 5860 __kmp_free(thread->th.th_pri_common); 5861 thread->th.th_pri_common = NULL; 5862 } 5863 5864 if (thread->th.th_task_state_memo_stack != NULL) { 5865 __kmp_free(thread->th.th_task_state_memo_stack); 5866 thread->th.th_task_state_memo_stack = NULL; 5867 } 5868 5869 #if KMP_USE_BGET 5870 if (thread->th.th_local.bget_data != NULL) { 5871 __kmp_finalize_bget(thread); 5872 } 5873 #endif 5874 5875 #if KMP_AFFINITY_SUPPORTED 5876 if (thread->th.th_affin_mask != NULL) { 5877 KMP_CPU_FREE(thread->th.th_affin_mask); 5878 thread->th.th_affin_mask = NULL; 5879 } 5880 #endif /* KMP_AFFINITY_SUPPORTED */ 5881 5882 __kmp_reap_team(thread->th.th_serial_team); 5883 thread->th.th_serial_team = NULL; 5884 __kmp_free(thread); 5885 5886 KMP_MB(); 5887 5888 } // __kmp_reap_thread 5889 5890 static void __kmp_internal_end(void) { 5891 int i; 5892 5893 /* First, unregister the library */ 5894 __kmp_unregister_library(); 5895 5896 #if KMP_OS_WINDOWS 5897 /* In Win static library, we can't tell when a root actually dies, so we 5898 reclaim the data structures for any root threads that have died but not 5899 unregistered themselves, in order to shut down cleanly. 5900 In Win dynamic library we also can't tell when a thread dies. */ 5901 __kmp_reclaim_dead_roots(); // AC: moved here to always clean resources of 5902 // dead roots 5903 #endif 5904 5905 for (i = 0; i < __kmp_threads_capacity; i++) 5906 if (__kmp_root[i]) 5907 if (__kmp_root[i]->r.r_active) 5908 break; 5909 KMP_MB(); /* Flush all pending memory write invalidates. */ 5910 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 5911 5912 if (i < __kmp_threads_capacity) { 5913 #if KMP_USE_MONITOR 5914 // 2009-09-08 (lev): Other alive roots found. Why do we kill the monitor?? 5915 KMP_MB(); /* Flush all pending memory write invalidates. */ 5916 5917 // Need to check that monitor was initialized before reaping it. If we are 5918 // called form __kmp_atfork_child (which sets __kmp_init_parallel = 0), then 5919 // __kmp_monitor will appear to contain valid data, but it is only valid in 5920 // the parent process, not the child. 5921 // New behavior (201008): instead of keying off of the flag 5922 // __kmp_init_parallel, the monitor thread creation is keyed off 5923 // of the new flag __kmp_init_monitor. 5924 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock); 5925 if (TCR_4(__kmp_init_monitor)) { 5926 __kmp_reap_monitor(&__kmp_monitor); 5927 TCW_4(__kmp_init_monitor, 0); 5928 } 5929 __kmp_release_bootstrap_lock(&__kmp_monitor_lock); 5930 KA_TRACE(10, ("__kmp_internal_end: monitor reaped\n")); 5931 #endif // KMP_USE_MONITOR 5932 } else { 5933 /* TODO move this to cleanup code */ 5934 #ifdef KMP_DEBUG 5935 /* make sure that everything has properly ended */ 5936 for (i = 0; i < __kmp_threads_capacity; i++) { 5937 if (__kmp_root[i]) { 5938 // KMP_ASSERT( ! KMP_UBER_GTID( i ) ); // AC: 5939 // there can be uber threads alive here 5940 KMP_ASSERT(!__kmp_root[i]->r.r_active); // TODO: can they be active? 5941 } 5942 } 5943 #endif 5944 5945 KMP_MB(); 5946 5947 // Reap the worker threads. 5948 // This is valid for now, but be careful if threads are reaped sooner. 5949 while (__kmp_thread_pool != NULL) { // Loop thru all the thread in the pool. 5950 // Get the next thread from the pool. 5951 kmp_info_t *thread = CCAST(kmp_info_t *, __kmp_thread_pool); 5952 __kmp_thread_pool = thread->th.th_next_pool; 5953 // Reap it. 5954 KMP_DEBUG_ASSERT(thread->th.th_reap_state == KMP_SAFE_TO_REAP); 5955 thread->th.th_next_pool = NULL; 5956 thread->th.th_in_pool = FALSE; 5957 __kmp_reap_thread(thread, 0); 5958 } 5959 __kmp_thread_pool_insert_pt = NULL; 5960 5961 // Reap teams. 5962 while (__kmp_team_pool != NULL) { // Loop thru all the teams in the pool. 5963 // Get the next team from the pool. 5964 kmp_team_t *team = CCAST(kmp_team_t *, __kmp_team_pool); 5965 __kmp_team_pool = team->t.t_next_pool; 5966 // Reap it. 5967 team->t.t_next_pool = NULL; 5968 __kmp_reap_team(team); 5969 } 5970 5971 __kmp_reap_task_teams(); 5972 5973 for (i = 0; i < __kmp_threads_capacity; ++i) { 5974 // TBD: Add some checking... 5975 // Something like KMP_DEBUG_ASSERT( __kmp_thread[ i ] == NULL ); 5976 } 5977 5978 /* Make sure all threadprivate destructors get run by joining with all 5979 worker threads before resetting this flag */ 5980 TCW_SYNC_4(__kmp_init_common, FALSE); 5981 5982 KA_TRACE(10, ("__kmp_internal_end: all workers reaped\n")); 5983 KMP_MB(); 5984 5985 #if KMP_USE_MONITOR 5986 // See note above: One of the possible fixes for CQ138434 / CQ140126 5987 // 5988 // FIXME: push both code fragments down and CSE them? 5989 // push them into __kmp_cleanup() ? 5990 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock); 5991 if (TCR_4(__kmp_init_monitor)) { 5992 __kmp_reap_monitor(&__kmp_monitor); 5993 TCW_4(__kmp_init_monitor, 0); 5994 } 5995 __kmp_release_bootstrap_lock(&__kmp_monitor_lock); 5996 KA_TRACE(10, ("__kmp_internal_end: monitor reaped\n")); 5997 #endif 5998 } /* else !__kmp_global.t_active */ 5999 TCW_4(__kmp_init_gtid, FALSE); 6000 KMP_MB(); /* Flush all pending memory write invalidates. */ 6001 6002 __kmp_cleanup(); 6003 #if OMPT_SUPPORT 6004 ompt_fini(); 6005 #endif 6006 } 6007 6008 void __kmp_internal_end_library(int gtid_req) { 6009 /* if we have already cleaned up, don't try again, it wouldn't be pretty */ 6010 /* this shouldn't be a race condition because __kmp_internal_end() is the 6011 only place to clear __kmp_serial_init */ 6012 /* we'll check this later too, after we get the lock */ 6013 // 2009-09-06: We do not set g_abort without setting g_done. This check looks 6014 // redundaant, because the next check will work in any case. 6015 if (__kmp_global.g.g_abort) { 6016 KA_TRACE(11, ("__kmp_internal_end_library: abort, exiting\n")); 6017 /* TODO abort? */ 6018 return; 6019 } 6020 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6021 KA_TRACE(10, ("__kmp_internal_end_library: already finished\n")); 6022 return; 6023 } 6024 6025 KMP_MB(); /* Flush all pending memory write invalidates. */ 6026 6027 /* find out who we are and what we should do */ 6028 { 6029 int gtid = (gtid_req >= 0) ? gtid_req : __kmp_gtid_get_specific(); 6030 KA_TRACE( 6031 10, ("__kmp_internal_end_library: enter T#%d (%d)\n", gtid, gtid_req)); 6032 if (gtid == KMP_GTID_SHUTDOWN) { 6033 KA_TRACE(10, ("__kmp_internal_end_library: !__kmp_init_runtime, system " 6034 "already shutdown\n")); 6035 return; 6036 } else if (gtid == KMP_GTID_MONITOR) { 6037 KA_TRACE(10, ("__kmp_internal_end_library: monitor thread, gtid not " 6038 "registered, or system shutdown\n")); 6039 return; 6040 } else if (gtid == KMP_GTID_DNE) { 6041 KA_TRACE(10, ("__kmp_internal_end_library: gtid not registered or system " 6042 "shutdown\n")); 6043 /* we don't know who we are, but we may still shutdown the library */ 6044 } else if (KMP_UBER_GTID(gtid)) { 6045 /* unregister ourselves as an uber thread. gtid is no longer valid */ 6046 if (__kmp_root[gtid]->r.r_active) { 6047 __kmp_global.g.g_abort = -1; 6048 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 6049 KA_TRACE(10, 6050 ("__kmp_internal_end_library: root still active, abort T#%d\n", 6051 gtid)); 6052 return; 6053 } else { 6054 KA_TRACE( 6055 10, 6056 ("__kmp_internal_end_library: unregistering sibling T#%d\n", gtid)); 6057 __kmp_unregister_root_current_thread(gtid); 6058 } 6059 } else { 6060 /* worker threads may call this function through the atexit handler, if they 6061 * call exit() */ 6062 /* For now, skip the usual subsequent processing and just dump the debug buffer. 6063 TODO: do a thorough shutdown instead */ 6064 #ifdef DUMP_DEBUG_ON_EXIT 6065 if (__kmp_debug_buf) 6066 __kmp_dump_debug_buffer(); 6067 #endif 6068 return; 6069 } 6070 } 6071 /* synchronize the termination process */ 6072 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6073 6074 /* have we already finished */ 6075 if (__kmp_global.g.g_abort) { 6076 KA_TRACE(10, ("__kmp_internal_end_library: abort, exiting\n")); 6077 /* TODO abort? */ 6078 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6079 return; 6080 } 6081 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6082 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6083 return; 6084 } 6085 6086 /* We need this lock to enforce mutex between this reading of 6087 __kmp_threads_capacity and the writing by __kmp_register_root. 6088 Alternatively, we can use a counter of roots that is atomically updated by 6089 __kmp_get_global_thread_id_reg, __kmp_do_serial_initialize and 6090 __kmp_internal_end_*. */ 6091 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 6092 6093 /* now we can safely conduct the actual termination */ 6094 __kmp_internal_end(); 6095 6096 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 6097 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6098 6099 KA_TRACE(10, ("__kmp_internal_end_library: exit\n")); 6100 6101 #ifdef DUMP_DEBUG_ON_EXIT 6102 if (__kmp_debug_buf) 6103 __kmp_dump_debug_buffer(); 6104 #endif 6105 6106 #if KMP_OS_WINDOWS 6107 __kmp_close_console(); 6108 #endif 6109 6110 __kmp_fini_allocator(); 6111 6112 } // __kmp_internal_end_library 6113 6114 void __kmp_internal_end_thread(int gtid_req) { 6115 int i; 6116 6117 /* if we have already cleaned up, don't try again, it wouldn't be pretty */ 6118 /* this shouldn't be a race condition because __kmp_internal_end() is the 6119 * only place to clear __kmp_serial_init */ 6120 /* we'll check this later too, after we get the lock */ 6121 // 2009-09-06: We do not set g_abort without setting g_done. This check looks 6122 // redundant, because the next check will work in any case. 6123 if (__kmp_global.g.g_abort) { 6124 KA_TRACE(11, ("__kmp_internal_end_thread: abort, exiting\n")); 6125 /* TODO abort? */ 6126 return; 6127 } 6128 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6129 KA_TRACE(10, ("__kmp_internal_end_thread: already finished\n")); 6130 return; 6131 } 6132 6133 KMP_MB(); /* Flush all pending memory write invalidates. */ 6134 6135 /* find out who we are and what we should do */ 6136 { 6137 int gtid = (gtid_req >= 0) ? gtid_req : __kmp_gtid_get_specific(); 6138 KA_TRACE(10, 6139 ("__kmp_internal_end_thread: enter T#%d (%d)\n", gtid, gtid_req)); 6140 if (gtid == KMP_GTID_SHUTDOWN) { 6141 KA_TRACE(10, ("__kmp_internal_end_thread: !__kmp_init_runtime, system " 6142 "already shutdown\n")); 6143 return; 6144 } else if (gtid == KMP_GTID_MONITOR) { 6145 KA_TRACE(10, ("__kmp_internal_end_thread: monitor thread, gtid not " 6146 "registered, or system shutdown\n")); 6147 return; 6148 } else if (gtid == KMP_GTID_DNE) { 6149 KA_TRACE(10, ("__kmp_internal_end_thread: gtid not registered or system " 6150 "shutdown\n")); 6151 return; 6152 /* we don't know who we are */ 6153 } else if (KMP_UBER_GTID(gtid)) { 6154 /* unregister ourselves as an uber thread. gtid is no longer valid */ 6155 if (__kmp_root[gtid]->r.r_active) { 6156 __kmp_global.g.g_abort = -1; 6157 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 6158 KA_TRACE(10, 6159 ("__kmp_internal_end_thread: root still active, abort T#%d\n", 6160 gtid)); 6161 return; 6162 } else { 6163 KA_TRACE(10, ("__kmp_internal_end_thread: unregistering sibling T#%d\n", 6164 gtid)); 6165 __kmp_unregister_root_current_thread(gtid); 6166 } 6167 } else { 6168 /* just a worker thread, let's leave */ 6169 KA_TRACE(10, ("__kmp_internal_end_thread: worker thread T#%d\n", gtid)); 6170 6171 if (gtid >= 0) { 6172 __kmp_threads[gtid]->th.th_task_team = NULL; 6173 } 6174 6175 KA_TRACE(10, 6176 ("__kmp_internal_end_thread: worker thread done, exiting T#%d\n", 6177 gtid)); 6178 return; 6179 } 6180 } 6181 #if defined KMP_DYNAMIC_LIB 6182 // AC: lets not shutdown the Linux* OS dynamic library at the exit of uber 6183 // thread, because we will better shutdown later in the library destructor. 6184 // The reason of this change is performance problem when non-openmp thread in 6185 // a loop forks and joins many openmp threads. We can save a lot of time 6186 // keeping worker threads alive until the program shutdown. 6187 // OM: Removed Linux* OS restriction to fix the crash on OS X* (DPD200239966) 6188 // and Windows(DPD200287443) that occurs when using critical sections from 6189 // foreign threads. 6190 KA_TRACE(10, ("__kmp_internal_end_thread: exiting T#%d\n", gtid_req)); 6191 return; 6192 #endif 6193 /* synchronize the termination process */ 6194 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6195 6196 /* have we already finished */ 6197 if (__kmp_global.g.g_abort) { 6198 KA_TRACE(10, ("__kmp_internal_end_thread: abort, exiting\n")); 6199 /* TODO abort? */ 6200 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6201 return; 6202 } 6203 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6204 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6205 return; 6206 } 6207 6208 /* We need this lock to enforce mutex between this reading of 6209 __kmp_threads_capacity and the writing by __kmp_register_root. 6210 Alternatively, we can use a counter of roots that is atomically updated by 6211 __kmp_get_global_thread_id_reg, __kmp_do_serial_initialize and 6212 __kmp_internal_end_*. */ 6213 6214 /* should we finish the run-time? are all siblings done? */ 6215 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 6216 6217 for (i = 0; i < __kmp_threads_capacity; ++i) { 6218 if (KMP_UBER_GTID(i)) { 6219 KA_TRACE( 6220 10, 6221 ("__kmp_internal_end_thread: remaining sibling task: gtid==%d\n", i)); 6222 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 6223 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6224 return; 6225 } 6226 } 6227 6228 /* now we can safely conduct the actual termination */ 6229 6230 __kmp_internal_end(); 6231 6232 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 6233 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6234 6235 KA_TRACE(10, ("__kmp_internal_end_thread: exit T#%d\n", gtid_req)); 6236 6237 #ifdef DUMP_DEBUG_ON_EXIT 6238 if (__kmp_debug_buf) 6239 __kmp_dump_debug_buffer(); 6240 #endif 6241 } // __kmp_internal_end_thread 6242 6243 // ----------------------------------------------------------------------------- 6244 // Library registration stuff. 6245 6246 static long __kmp_registration_flag = 0; 6247 // Random value used to indicate library initialization. 6248 static char *__kmp_registration_str = NULL; 6249 // Value to be saved in env var __KMP_REGISTERED_LIB_<pid>. 6250 6251 static inline char *__kmp_reg_status_name() { 6252 /* On RHEL 3u5 if linked statically, getpid() returns different values in 6253 each thread. If registration and unregistration go in different threads 6254 (omp_misc_other_root_exit.cpp test case), the name of registered_lib_env 6255 env var can not be found, because the name will contain different pid. */ 6256 return __kmp_str_format("__KMP_REGISTERED_LIB_%d", (int)getpid()); 6257 } // __kmp_reg_status_get 6258 6259 void __kmp_register_library_startup(void) { 6260 6261 char *name = __kmp_reg_status_name(); // Name of the environment variable. 6262 int done = 0; 6263 union { 6264 double dtime; 6265 long ltime; 6266 } time; 6267 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 6268 __kmp_initialize_system_tick(); 6269 #endif 6270 __kmp_read_system_time(&time.dtime); 6271 __kmp_registration_flag = 0xCAFE0000L | (time.ltime & 0x0000FFFFL); 6272 __kmp_registration_str = 6273 __kmp_str_format("%p-%lx-%s", &__kmp_registration_flag, 6274 __kmp_registration_flag, KMP_LIBRARY_FILE); 6275 6276 KA_TRACE(50, ("__kmp_register_library_startup: %s=\"%s\"\n", name, 6277 __kmp_registration_str)); 6278 6279 while (!done) { 6280 6281 char *value = NULL; // Actual value of the environment variable. 6282 6283 // Set environment variable, but do not overwrite if it is exist. 6284 __kmp_env_set(name, __kmp_registration_str, 0); 6285 // Check the variable is written. 6286 value = __kmp_env_get(name); 6287 if (value != NULL && strcmp(value, __kmp_registration_str) == 0) { 6288 6289 done = 1; // Ok, environment variable set successfully, exit the loop. 6290 6291 } else { 6292 6293 // Oops. Write failed. Another copy of OpenMP RTL is in memory. 6294 // Check whether it alive or dead. 6295 int neighbor = 0; // 0 -- unknown status, 1 -- alive, 2 -- dead. 6296 char *tail = value; 6297 char *flag_addr_str = NULL; 6298 char *flag_val_str = NULL; 6299 char const *file_name = NULL; 6300 __kmp_str_split(tail, '-', &flag_addr_str, &tail); 6301 __kmp_str_split(tail, '-', &flag_val_str, &tail); 6302 file_name = tail; 6303 if (tail != NULL) { 6304 long *flag_addr = 0; 6305 long flag_val = 0; 6306 KMP_SSCANF(flag_addr_str, "%p", &flag_addr); 6307 KMP_SSCANF(flag_val_str, "%lx", &flag_val); 6308 if (flag_addr != 0 && flag_val != 0 && strcmp(file_name, "") != 0) { 6309 // First, check whether environment-encoded address is mapped into 6310 // addr space. 6311 // If so, dereference it to see if it still has the right value. 6312 if (__kmp_is_address_mapped(flag_addr) && *flag_addr == flag_val) { 6313 neighbor = 1; 6314 } else { 6315 // If not, then we know the other copy of the library is no longer 6316 // running. 6317 neighbor = 2; 6318 } 6319 } 6320 } 6321 switch (neighbor) { 6322 case 0: // Cannot parse environment variable -- neighbor status unknown. 6323 // Assume it is the incompatible format of future version of the 6324 // library. Assume the other library is alive. 6325 // WARN( ... ); // TODO: Issue a warning. 6326 file_name = "unknown library"; 6327 // Attention! Falling to the next case. That's intentional. 6328 case 1: { // Neighbor is alive. 6329 // Check it is allowed. 6330 char *duplicate_ok = __kmp_env_get("KMP_DUPLICATE_LIB_OK"); 6331 if (!__kmp_str_match_true(duplicate_ok)) { 6332 // That's not allowed. Issue fatal error. 6333 __kmp_fatal(KMP_MSG(DuplicateLibrary, KMP_LIBRARY_FILE, file_name), 6334 KMP_HNT(DuplicateLibrary), __kmp_msg_null); 6335 } 6336 KMP_INTERNAL_FREE(duplicate_ok); 6337 __kmp_duplicate_library_ok = 1; 6338 done = 1; // Exit the loop. 6339 } break; 6340 case 2: { // Neighbor is dead. 6341 // Clear the variable and try to register library again. 6342 __kmp_env_unset(name); 6343 } break; 6344 default: { KMP_DEBUG_ASSERT(0); } break; 6345 } 6346 } 6347 KMP_INTERNAL_FREE((void *)value); 6348 } 6349 KMP_INTERNAL_FREE((void *)name); 6350 6351 } // func __kmp_register_library_startup 6352 6353 void __kmp_unregister_library(void) { 6354 6355 char *name = __kmp_reg_status_name(); 6356 char *value = __kmp_env_get(name); 6357 6358 KMP_DEBUG_ASSERT(__kmp_registration_flag != 0); 6359 KMP_DEBUG_ASSERT(__kmp_registration_str != NULL); 6360 if (value != NULL && strcmp(value, __kmp_registration_str) == 0) { 6361 // Ok, this is our variable. Delete it. 6362 __kmp_env_unset(name); 6363 } 6364 6365 KMP_INTERNAL_FREE(__kmp_registration_str); 6366 KMP_INTERNAL_FREE(value); 6367 KMP_INTERNAL_FREE(name); 6368 6369 __kmp_registration_flag = 0; 6370 __kmp_registration_str = NULL; 6371 6372 } // __kmp_unregister_library 6373 6374 // End of Library registration stuff. 6375 // ----------------------------------------------------------------------------- 6376 6377 #if KMP_MIC_SUPPORTED 6378 6379 static void __kmp_check_mic_type() { 6380 kmp_cpuid_t cpuid_state = {0}; 6381 kmp_cpuid_t *cs_p = &cpuid_state; 6382 __kmp_x86_cpuid(1, 0, cs_p); 6383 // We don't support mic1 at the moment 6384 if ((cs_p->eax & 0xff0) == 0xB10) { 6385 __kmp_mic_type = mic2; 6386 } else if ((cs_p->eax & 0xf0ff0) == 0x50670) { 6387 __kmp_mic_type = mic3; 6388 } else { 6389 __kmp_mic_type = non_mic; 6390 } 6391 } 6392 6393 #endif /* KMP_MIC_SUPPORTED */ 6394 6395 static void __kmp_do_serial_initialize(void) { 6396 int i, gtid; 6397 int size; 6398 6399 KA_TRACE(10, ("__kmp_do_serial_initialize: enter\n")); 6400 6401 KMP_DEBUG_ASSERT(sizeof(kmp_int32) == 4); 6402 KMP_DEBUG_ASSERT(sizeof(kmp_uint32) == 4); 6403 KMP_DEBUG_ASSERT(sizeof(kmp_int64) == 8); 6404 KMP_DEBUG_ASSERT(sizeof(kmp_uint64) == 8); 6405 KMP_DEBUG_ASSERT(sizeof(kmp_intptr_t) == sizeof(void *)); 6406 6407 #if OMPT_SUPPORT 6408 ompt_pre_init(); 6409 #endif 6410 6411 __kmp_validate_locks(); 6412 6413 /* Initialize internal memory allocator */ 6414 __kmp_init_allocator(); 6415 6416 /* Register the library startup via an environment variable and check to see 6417 whether another copy of the library is already registered. */ 6418 6419 __kmp_register_library_startup(); 6420 6421 /* TODO reinitialization of library */ 6422 if (TCR_4(__kmp_global.g.g_done)) { 6423 KA_TRACE(10, ("__kmp_do_serial_initialize: reinitialization of library\n")); 6424 } 6425 6426 __kmp_global.g.g_abort = 0; 6427 TCW_SYNC_4(__kmp_global.g.g_done, FALSE); 6428 6429 /* initialize the locks */ 6430 #if KMP_USE_ADAPTIVE_LOCKS 6431 #if KMP_DEBUG_ADAPTIVE_LOCKS 6432 __kmp_init_speculative_stats(); 6433 #endif 6434 #endif 6435 #if KMP_STATS_ENABLED 6436 __kmp_stats_init(); 6437 #endif 6438 __kmp_init_lock(&__kmp_global_lock); 6439 __kmp_init_queuing_lock(&__kmp_dispatch_lock); 6440 __kmp_init_lock(&__kmp_debug_lock); 6441 __kmp_init_atomic_lock(&__kmp_atomic_lock); 6442 __kmp_init_atomic_lock(&__kmp_atomic_lock_1i); 6443 __kmp_init_atomic_lock(&__kmp_atomic_lock_2i); 6444 __kmp_init_atomic_lock(&__kmp_atomic_lock_4i); 6445 __kmp_init_atomic_lock(&__kmp_atomic_lock_4r); 6446 __kmp_init_atomic_lock(&__kmp_atomic_lock_8i); 6447 __kmp_init_atomic_lock(&__kmp_atomic_lock_8r); 6448 __kmp_init_atomic_lock(&__kmp_atomic_lock_8c); 6449 __kmp_init_atomic_lock(&__kmp_atomic_lock_10r); 6450 __kmp_init_atomic_lock(&__kmp_atomic_lock_16r); 6451 __kmp_init_atomic_lock(&__kmp_atomic_lock_16c); 6452 __kmp_init_atomic_lock(&__kmp_atomic_lock_20c); 6453 __kmp_init_atomic_lock(&__kmp_atomic_lock_32c); 6454 __kmp_init_bootstrap_lock(&__kmp_forkjoin_lock); 6455 __kmp_init_bootstrap_lock(&__kmp_exit_lock); 6456 #if KMP_USE_MONITOR 6457 __kmp_init_bootstrap_lock(&__kmp_monitor_lock); 6458 #endif 6459 __kmp_init_bootstrap_lock(&__kmp_tp_cached_lock); 6460 6461 /* conduct initialization and initial setup of configuration */ 6462 6463 __kmp_runtime_initialize(); 6464 6465 #if KMP_MIC_SUPPORTED 6466 __kmp_check_mic_type(); 6467 #endif 6468 6469 // Some global variable initialization moved here from kmp_env_initialize() 6470 #ifdef KMP_DEBUG 6471 kmp_diag = 0; 6472 #endif 6473 __kmp_abort_delay = 0; 6474 6475 // From __kmp_init_dflt_team_nth() 6476 /* assume the entire machine will be used */ 6477 __kmp_dflt_team_nth_ub = __kmp_xproc; 6478 if (__kmp_dflt_team_nth_ub < KMP_MIN_NTH) { 6479 __kmp_dflt_team_nth_ub = KMP_MIN_NTH; 6480 } 6481 if (__kmp_dflt_team_nth_ub > __kmp_sys_max_nth) { 6482 __kmp_dflt_team_nth_ub = __kmp_sys_max_nth; 6483 } 6484 __kmp_max_nth = __kmp_sys_max_nth; 6485 __kmp_cg_max_nth = __kmp_sys_max_nth; 6486 __kmp_teams_max_nth = __kmp_xproc; // set a "reasonable" default 6487 if (__kmp_teams_max_nth > __kmp_sys_max_nth) { 6488 __kmp_teams_max_nth = __kmp_sys_max_nth; 6489 } 6490 6491 // Three vars below moved here from __kmp_env_initialize() "KMP_BLOCKTIME" 6492 // part 6493 __kmp_dflt_blocktime = KMP_DEFAULT_BLOCKTIME; 6494 #if KMP_USE_MONITOR 6495 __kmp_monitor_wakeups = 6496 KMP_WAKEUPS_FROM_BLOCKTIME(__kmp_dflt_blocktime, __kmp_monitor_wakeups); 6497 __kmp_bt_intervals = 6498 KMP_INTERVALS_FROM_BLOCKTIME(__kmp_dflt_blocktime, __kmp_monitor_wakeups); 6499 #endif 6500 // From "KMP_LIBRARY" part of __kmp_env_initialize() 6501 __kmp_library = library_throughput; 6502 // From KMP_SCHEDULE initialization 6503 __kmp_static = kmp_sch_static_balanced; 6504 // AC: do not use analytical here, because it is non-monotonous 6505 //__kmp_guided = kmp_sch_guided_iterative_chunked; 6506 //__kmp_auto = kmp_sch_guided_analytical_chunked; // AC: it is the default, no 6507 // need to repeat assignment 6508 // Barrier initialization. Moved here from __kmp_env_initialize() Barrier branch 6509 // bit control and barrier method control parts 6510 #if KMP_FAST_REDUCTION_BARRIER 6511 #define kmp_reduction_barrier_gather_bb ((int)1) 6512 #define kmp_reduction_barrier_release_bb ((int)1) 6513 #define kmp_reduction_barrier_gather_pat bp_hyper_bar 6514 #define kmp_reduction_barrier_release_pat bp_hyper_bar 6515 #endif // KMP_FAST_REDUCTION_BARRIER 6516 for (i = bs_plain_barrier; i < bs_last_barrier; i++) { 6517 __kmp_barrier_gather_branch_bits[i] = __kmp_barrier_gather_bb_dflt; 6518 __kmp_barrier_release_branch_bits[i] = __kmp_barrier_release_bb_dflt; 6519 __kmp_barrier_gather_pattern[i] = __kmp_barrier_gather_pat_dflt; 6520 __kmp_barrier_release_pattern[i] = __kmp_barrier_release_pat_dflt; 6521 #if KMP_FAST_REDUCTION_BARRIER 6522 if (i == bs_reduction_barrier) { // tested and confirmed on ALTIX only ( 6523 // lin_64 ): hyper,1 6524 __kmp_barrier_gather_branch_bits[i] = kmp_reduction_barrier_gather_bb; 6525 __kmp_barrier_release_branch_bits[i] = kmp_reduction_barrier_release_bb; 6526 __kmp_barrier_gather_pattern[i] = kmp_reduction_barrier_gather_pat; 6527 __kmp_barrier_release_pattern[i] = kmp_reduction_barrier_release_pat; 6528 } 6529 #endif // KMP_FAST_REDUCTION_BARRIER 6530 } 6531 #if KMP_FAST_REDUCTION_BARRIER 6532 #undef kmp_reduction_barrier_release_pat 6533 #undef kmp_reduction_barrier_gather_pat 6534 #undef kmp_reduction_barrier_release_bb 6535 #undef kmp_reduction_barrier_gather_bb 6536 #endif // KMP_FAST_REDUCTION_BARRIER 6537 #if KMP_MIC_SUPPORTED 6538 if (__kmp_mic_type == mic2) { // KNC 6539 // AC: plane=3,2, forkjoin=2,1 are optimal for 240 threads on KNC 6540 __kmp_barrier_gather_branch_bits[bs_plain_barrier] = 3; // plain gather 6541 __kmp_barrier_release_branch_bits[bs_forkjoin_barrier] = 6542 1; // forkjoin release 6543 __kmp_barrier_gather_pattern[bs_forkjoin_barrier] = bp_hierarchical_bar; 6544 __kmp_barrier_release_pattern[bs_forkjoin_barrier] = bp_hierarchical_bar; 6545 } 6546 #if KMP_FAST_REDUCTION_BARRIER 6547 if (__kmp_mic_type == mic2) { // KNC 6548 __kmp_barrier_gather_pattern[bs_reduction_barrier] = bp_hierarchical_bar; 6549 __kmp_barrier_release_pattern[bs_reduction_barrier] = bp_hierarchical_bar; 6550 } 6551 #endif // KMP_FAST_REDUCTION_BARRIER 6552 #endif // KMP_MIC_SUPPORTED 6553 6554 // From KMP_CHECKS initialization 6555 #ifdef KMP_DEBUG 6556 __kmp_env_checks = TRUE; /* development versions have the extra checks */ 6557 #else 6558 __kmp_env_checks = FALSE; /* port versions do not have the extra checks */ 6559 #endif 6560 6561 // From "KMP_FOREIGN_THREADS_THREADPRIVATE" initialization 6562 __kmp_foreign_tp = TRUE; 6563 6564 __kmp_global.g.g_dynamic = FALSE; 6565 __kmp_global.g.g_dynamic_mode = dynamic_default; 6566 6567 __kmp_env_initialize(NULL); 6568 6569 // Print all messages in message catalog for testing purposes. 6570 #ifdef KMP_DEBUG 6571 char const *val = __kmp_env_get("KMP_DUMP_CATALOG"); 6572 if (__kmp_str_match_true(val)) { 6573 kmp_str_buf_t buffer; 6574 __kmp_str_buf_init(&buffer); 6575 __kmp_i18n_dump_catalog(&buffer); 6576 __kmp_printf("%s", buffer.str); 6577 __kmp_str_buf_free(&buffer); 6578 } 6579 __kmp_env_free(&val); 6580 #endif 6581 6582 __kmp_threads_capacity = 6583 __kmp_initial_threads_capacity(__kmp_dflt_team_nth_ub); 6584 // Moved here from __kmp_env_initialize() "KMP_ALL_THREADPRIVATE" part 6585 __kmp_tp_capacity = __kmp_default_tp_capacity( 6586 __kmp_dflt_team_nth_ub, __kmp_max_nth, __kmp_allThreadsSpecified); 6587 6588 // If the library is shut down properly, both pools must be NULL. Just in 6589 // case, set them to NULL -- some memory may leak, but subsequent code will 6590 // work even if pools are not freed. 6591 KMP_DEBUG_ASSERT(__kmp_thread_pool == NULL); 6592 KMP_DEBUG_ASSERT(__kmp_thread_pool_insert_pt == NULL); 6593 KMP_DEBUG_ASSERT(__kmp_team_pool == NULL); 6594 __kmp_thread_pool = NULL; 6595 __kmp_thread_pool_insert_pt = NULL; 6596 __kmp_team_pool = NULL; 6597 6598 /* Allocate all of the variable sized records */ 6599 /* NOTE: __kmp_threads_capacity entries are allocated, but the arrays are 6600 * expandable */ 6601 /* Since allocation is cache-aligned, just add extra padding at the end */ 6602 size = 6603 (sizeof(kmp_info_t *) + sizeof(kmp_root_t *)) * __kmp_threads_capacity + 6604 CACHE_LINE; 6605 __kmp_threads = (kmp_info_t **)__kmp_allocate(size); 6606 __kmp_root = (kmp_root_t **)((char *)__kmp_threads + 6607 sizeof(kmp_info_t *) * __kmp_threads_capacity); 6608 6609 /* init thread counts */ 6610 KMP_DEBUG_ASSERT(__kmp_all_nth == 6611 0); // Asserts fail if the library is reinitializing and 6612 KMP_DEBUG_ASSERT(__kmp_nth == 0); // something was wrong in termination. 6613 __kmp_all_nth = 0; 6614 __kmp_nth = 0; 6615 6616 /* setup the uber master thread and hierarchy */ 6617 gtid = __kmp_register_root(TRUE); 6618 KA_TRACE(10, ("__kmp_do_serial_initialize T#%d\n", gtid)); 6619 KMP_ASSERT(KMP_UBER_GTID(gtid)); 6620 KMP_ASSERT(KMP_INITIAL_GTID(gtid)); 6621 6622 KMP_MB(); /* Flush all pending memory write invalidates. */ 6623 6624 __kmp_common_initialize(); 6625 6626 #if KMP_OS_UNIX 6627 /* invoke the child fork handler */ 6628 __kmp_register_atfork(); 6629 #endif 6630 6631 #if !defined KMP_DYNAMIC_LIB 6632 { 6633 /* Invoke the exit handler when the program finishes, only for static 6634 library. For dynamic library, we already have _fini and DllMain. */ 6635 int rc = atexit(__kmp_internal_end_atexit); 6636 if (rc != 0) { 6637 __kmp_fatal(KMP_MSG(FunctionError, "atexit()"), KMP_ERR(rc), 6638 __kmp_msg_null); 6639 } 6640 } 6641 #endif 6642 6643 #if KMP_HANDLE_SIGNALS 6644 #if KMP_OS_UNIX 6645 /* NOTE: make sure that this is called before the user installs their own 6646 signal handlers so that the user handlers are called first. this way they 6647 can return false, not call our handler, avoid terminating the library, and 6648 continue execution where they left off. */ 6649 __kmp_install_signals(FALSE); 6650 #endif /* KMP_OS_UNIX */ 6651 #if KMP_OS_WINDOWS 6652 __kmp_install_signals(TRUE); 6653 #endif /* KMP_OS_WINDOWS */ 6654 #endif 6655 6656 /* we have finished the serial initialization */ 6657 __kmp_init_counter++; 6658 6659 __kmp_init_serial = TRUE; 6660 6661 if (__kmp_settings) { 6662 __kmp_env_print(); 6663 } 6664 6665 #if OMP_40_ENABLED 6666 if (__kmp_display_env || __kmp_display_env_verbose) { 6667 __kmp_env_print_2(); 6668 } 6669 #endif // OMP_40_ENABLED 6670 6671 #if OMPT_SUPPORT 6672 ompt_post_init(); 6673 #endif 6674 6675 KMP_MB(); 6676 6677 KA_TRACE(10, ("__kmp_do_serial_initialize: exit\n")); 6678 } 6679 6680 void __kmp_serial_initialize(void) { 6681 if (__kmp_init_serial) { 6682 return; 6683 } 6684 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6685 if (__kmp_init_serial) { 6686 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6687 return; 6688 } 6689 __kmp_do_serial_initialize(); 6690 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6691 } 6692 6693 static void __kmp_do_middle_initialize(void) { 6694 int i, j; 6695 int prev_dflt_team_nth; 6696 6697 if (!__kmp_init_serial) { 6698 __kmp_do_serial_initialize(); 6699 } 6700 6701 KA_TRACE(10, ("__kmp_middle_initialize: enter\n")); 6702 6703 // Save the previous value for the __kmp_dflt_team_nth so that 6704 // we can avoid some reinitialization if it hasn't changed. 6705 prev_dflt_team_nth = __kmp_dflt_team_nth; 6706 6707 #if KMP_AFFINITY_SUPPORTED 6708 // __kmp_affinity_initialize() will try to set __kmp_ncores to the 6709 // number of cores on the machine. 6710 __kmp_affinity_initialize(); 6711 6712 // Run through the __kmp_threads array and set the affinity mask 6713 // for each root thread that is currently registered with the RTL. 6714 for (i = 0; i < __kmp_threads_capacity; i++) { 6715 if (TCR_PTR(__kmp_threads[i]) != NULL) { 6716 __kmp_affinity_set_init_mask(i, TRUE); 6717 } 6718 } 6719 #endif /* KMP_AFFINITY_SUPPORTED */ 6720 6721 KMP_ASSERT(__kmp_xproc > 0); 6722 if (__kmp_avail_proc == 0) { 6723 __kmp_avail_proc = __kmp_xproc; 6724 } 6725 6726 // If there were empty places in num_threads list (OMP_NUM_THREADS=,,2,3), 6727 // correct them now 6728 j = 0; 6729 while ((j < __kmp_nested_nth.used) && !__kmp_nested_nth.nth[j]) { 6730 __kmp_nested_nth.nth[j] = __kmp_dflt_team_nth = __kmp_dflt_team_nth_ub = 6731 __kmp_avail_proc; 6732 j++; 6733 } 6734 6735 if (__kmp_dflt_team_nth == 0) { 6736 #ifdef KMP_DFLT_NTH_CORES 6737 // Default #threads = #cores 6738 __kmp_dflt_team_nth = __kmp_ncores; 6739 KA_TRACE(20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = " 6740 "__kmp_ncores (%d)\n", 6741 __kmp_dflt_team_nth)); 6742 #else 6743 // Default #threads = #available OS procs 6744 __kmp_dflt_team_nth = __kmp_avail_proc; 6745 KA_TRACE(20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = " 6746 "__kmp_avail_proc(%d)\n", 6747 __kmp_dflt_team_nth)); 6748 #endif /* KMP_DFLT_NTH_CORES */ 6749 } 6750 6751 if (__kmp_dflt_team_nth < KMP_MIN_NTH) { 6752 __kmp_dflt_team_nth = KMP_MIN_NTH; 6753 } 6754 if (__kmp_dflt_team_nth > __kmp_sys_max_nth) { 6755 __kmp_dflt_team_nth = __kmp_sys_max_nth; 6756 } 6757 6758 // There's no harm in continuing if the following check fails, 6759 // but it indicates an error in the previous logic. 6760 KMP_DEBUG_ASSERT(__kmp_dflt_team_nth <= __kmp_dflt_team_nth_ub); 6761 6762 if (__kmp_dflt_team_nth != prev_dflt_team_nth) { 6763 // Run through the __kmp_threads array and set the num threads icv for each 6764 // root thread that is currently registered with the RTL (which has not 6765 // already explicitly set its nthreads-var with a call to 6766 // omp_set_num_threads()). 6767 for (i = 0; i < __kmp_threads_capacity; i++) { 6768 kmp_info_t *thread = __kmp_threads[i]; 6769 if (thread == NULL) 6770 continue; 6771 if (thread->th.th_current_task->td_icvs.nproc != 0) 6772 continue; 6773 6774 set__nproc(__kmp_threads[i], __kmp_dflt_team_nth); 6775 } 6776 } 6777 KA_TRACE( 6778 20, 6779 ("__kmp_middle_initialize: final value for __kmp_dflt_team_nth = %d\n", 6780 __kmp_dflt_team_nth)); 6781 6782 #ifdef KMP_ADJUST_BLOCKTIME 6783 /* Adjust blocktime to zero if necessary now that __kmp_avail_proc is set */ 6784 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 6785 KMP_DEBUG_ASSERT(__kmp_avail_proc > 0); 6786 if (__kmp_nth > __kmp_avail_proc) { 6787 __kmp_zero_bt = TRUE; 6788 } 6789 } 6790 #endif /* KMP_ADJUST_BLOCKTIME */ 6791 6792 /* we have finished middle initialization */ 6793 TCW_SYNC_4(__kmp_init_middle, TRUE); 6794 6795 KA_TRACE(10, ("__kmp_do_middle_initialize: exit\n")); 6796 } 6797 6798 void __kmp_middle_initialize(void) { 6799 if (__kmp_init_middle) { 6800 return; 6801 } 6802 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6803 if (__kmp_init_middle) { 6804 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6805 return; 6806 } 6807 __kmp_do_middle_initialize(); 6808 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6809 } 6810 6811 void __kmp_parallel_initialize(void) { 6812 int gtid = __kmp_entry_gtid(); // this might be a new root 6813 6814 /* synchronize parallel initialization (for sibling) */ 6815 if (TCR_4(__kmp_init_parallel)) 6816 return; 6817 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6818 if (TCR_4(__kmp_init_parallel)) { 6819 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6820 return; 6821 } 6822 6823 /* TODO reinitialization after we have already shut down */ 6824 if (TCR_4(__kmp_global.g.g_done)) { 6825 KA_TRACE( 6826 10, 6827 ("__kmp_parallel_initialize: attempt to init while shutting down\n")); 6828 __kmp_infinite_loop(); 6829 } 6830 6831 /* jc: The lock __kmp_initz_lock is already held, so calling 6832 __kmp_serial_initialize would cause a deadlock. So we call 6833 __kmp_do_serial_initialize directly. */ 6834 if (!__kmp_init_middle) { 6835 __kmp_do_middle_initialize(); 6836 } 6837 6838 /* begin initialization */ 6839 KA_TRACE(10, ("__kmp_parallel_initialize: enter\n")); 6840 KMP_ASSERT(KMP_UBER_GTID(gtid)); 6841 6842 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 6843 // Save the FP control regs. 6844 // Worker threads will set theirs to these values at thread startup. 6845 __kmp_store_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word); 6846 __kmp_store_mxcsr(&__kmp_init_mxcsr); 6847 __kmp_init_mxcsr &= KMP_X86_MXCSR_MASK; 6848 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 6849 6850 #if KMP_OS_UNIX 6851 #if KMP_HANDLE_SIGNALS 6852 /* must be after __kmp_serial_initialize */ 6853 __kmp_install_signals(TRUE); 6854 #endif 6855 #endif 6856 6857 __kmp_suspend_initialize(); 6858 6859 #if defined(USE_LOAD_BALANCE) 6860 if (__kmp_global.g.g_dynamic_mode == dynamic_default) { 6861 __kmp_global.g.g_dynamic_mode = dynamic_load_balance; 6862 } 6863 #else 6864 if (__kmp_global.g.g_dynamic_mode == dynamic_default) { 6865 __kmp_global.g.g_dynamic_mode = dynamic_thread_limit; 6866 } 6867 #endif 6868 6869 if (__kmp_version) { 6870 __kmp_print_version_2(); 6871 } 6872 6873 /* we have finished parallel initialization */ 6874 TCW_SYNC_4(__kmp_init_parallel, TRUE); 6875 6876 KMP_MB(); 6877 KA_TRACE(10, ("__kmp_parallel_initialize: exit\n")); 6878 6879 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6880 } 6881 6882 /* ------------------------------------------------------------------------ */ 6883 6884 void __kmp_run_before_invoked_task(int gtid, int tid, kmp_info_t *this_thr, 6885 kmp_team_t *team) { 6886 kmp_disp_t *dispatch; 6887 6888 KMP_MB(); 6889 6890 /* none of the threads have encountered any constructs, yet. */ 6891 this_thr->th.th_local.this_construct = 0; 6892 #if KMP_CACHE_MANAGE 6893 KMP_CACHE_PREFETCH(&this_thr->th.th_bar[bs_forkjoin_barrier].bb.b_arrived); 6894 #endif /* KMP_CACHE_MANAGE */ 6895 dispatch = (kmp_disp_t *)TCR_PTR(this_thr->th.th_dispatch); 6896 KMP_DEBUG_ASSERT(dispatch); 6897 KMP_DEBUG_ASSERT(team->t.t_dispatch); 6898 // KMP_DEBUG_ASSERT( this_thr->th.th_dispatch == &team->t.t_dispatch[ 6899 // this_thr->th.th_info.ds.ds_tid ] ); 6900 6901 dispatch->th_disp_index = 0; /* reset the dispatch buffer counter */ 6902 #if OMP_45_ENABLED 6903 dispatch->th_doacross_buf_idx = 6904 0; /* reset the doacross dispatch buffer counter */ 6905 #endif 6906 if (__kmp_env_consistency_check) 6907 __kmp_push_parallel(gtid, team->t.t_ident); 6908 6909 KMP_MB(); /* Flush all pending memory write invalidates. */ 6910 } 6911 6912 void __kmp_run_after_invoked_task(int gtid, int tid, kmp_info_t *this_thr, 6913 kmp_team_t *team) { 6914 if (__kmp_env_consistency_check) 6915 __kmp_pop_parallel(gtid, team->t.t_ident); 6916 6917 __kmp_finish_implicit_task(this_thr); 6918 } 6919 6920 int __kmp_invoke_task_func(int gtid) { 6921 int rc; 6922 int tid = __kmp_tid_from_gtid(gtid); 6923 kmp_info_t *this_thr = __kmp_threads[gtid]; 6924 kmp_team_t *team = this_thr->th.th_team; 6925 6926 __kmp_run_before_invoked_task(gtid, tid, this_thr, team); 6927 #if USE_ITT_BUILD 6928 if (__itt_stack_caller_create_ptr) { 6929 __kmp_itt_stack_callee_enter( 6930 (__itt_caller) 6931 team->t.t_stack_id); // inform ittnotify about entering user's code 6932 } 6933 #endif /* USE_ITT_BUILD */ 6934 #if INCLUDE_SSC_MARKS 6935 SSC_MARK_INVOKING(); 6936 #endif 6937 6938 #if OMPT_SUPPORT 6939 void *dummy; 6940 void **exit_runtime_p; 6941 ompt_data_t *my_task_data; 6942 ompt_data_t *my_parallel_data; 6943 int ompt_team_size; 6944 6945 if (ompt_enabled.enabled) { 6946 exit_runtime_p = &( 6947 team->t.t_implicit_task_taskdata[tid].ompt_task_info.frame.exit_frame); 6948 } else { 6949 exit_runtime_p = &dummy; 6950 } 6951 6952 my_task_data = 6953 &(team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data); 6954 my_parallel_data = &(team->t.ompt_team_info.parallel_data); 6955 if (ompt_enabled.ompt_callback_implicit_task) { 6956 ompt_team_size = team->t.t_nproc; 6957 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 6958 ompt_scope_begin, my_parallel_data, my_task_data, ompt_team_size, 6959 __kmp_tid_from_gtid(gtid)); 6960 } 6961 #endif 6962 6963 { 6964 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 6965 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 6966 rc = 6967 __kmp_invoke_microtask((microtask_t)TCR_SYNC_PTR(team->t.t_pkfn), gtid, 6968 tid, (int)team->t.t_argc, (void **)team->t.t_argv 6969 #if OMPT_SUPPORT 6970 , 6971 exit_runtime_p 6972 #endif 6973 ); 6974 #if OMPT_SUPPORT 6975 *exit_runtime_p = NULL; 6976 #endif 6977 } 6978 6979 #if USE_ITT_BUILD 6980 if (__itt_stack_caller_create_ptr) { 6981 __kmp_itt_stack_callee_leave( 6982 (__itt_caller) 6983 team->t.t_stack_id); // inform ittnotify about leaving user's code 6984 } 6985 #endif /* USE_ITT_BUILD */ 6986 __kmp_run_after_invoked_task(gtid, tid, this_thr, team); 6987 6988 return rc; 6989 } 6990 6991 #if OMP_40_ENABLED 6992 void __kmp_teams_master(int gtid) { 6993 // This routine is called by all master threads in teams construct 6994 kmp_info_t *thr = __kmp_threads[gtid]; 6995 kmp_team_t *team = thr->th.th_team; 6996 ident_t *loc = team->t.t_ident; 6997 thr->th.th_set_nproc = thr->th.th_teams_size.nth; 6998 KMP_DEBUG_ASSERT(thr->th.th_teams_microtask); 6999 KMP_DEBUG_ASSERT(thr->th.th_set_nproc); 7000 KA_TRACE(20, ("__kmp_teams_master: T#%d, Tid %d, microtask %p\n", gtid, 7001 __kmp_tid_from_gtid(gtid), thr->th.th_teams_microtask)); 7002 // Launch league of teams now, but not let workers execute 7003 // (they hang on fork barrier until next parallel) 7004 #if INCLUDE_SSC_MARKS 7005 SSC_MARK_FORKING(); 7006 #endif 7007 __kmp_fork_call(loc, gtid, fork_context_intel, team->t.t_argc, 7008 (microtask_t)thr->th.th_teams_microtask, // "wrapped" task 7009 VOLATILE_CAST(launch_t) __kmp_invoke_task_func, NULL); 7010 #if INCLUDE_SSC_MARKS 7011 SSC_MARK_JOINING(); 7012 #endif 7013 7014 // AC: last parameter "1" eliminates join barrier which won't work because 7015 // worker threads are in a fork barrier waiting for more parallel regions 7016 __kmp_join_call(loc, gtid 7017 #if OMPT_SUPPORT 7018 , 7019 fork_context_intel 7020 #endif 7021 , 7022 1); 7023 } 7024 7025 int __kmp_invoke_teams_master(int gtid) { 7026 kmp_info_t *this_thr = __kmp_threads[gtid]; 7027 kmp_team_t *team = this_thr->th.th_team; 7028 #if KMP_DEBUG 7029 if (!__kmp_threads[gtid]->th.th_team->t.t_serialized) 7030 KMP_DEBUG_ASSERT((void *)__kmp_threads[gtid]->th.th_team->t.t_pkfn == 7031 (void *)__kmp_teams_master); 7032 #endif 7033 __kmp_run_before_invoked_task(gtid, 0, this_thr, team); 7034 __kmp_teams_master(gtid); 7035 __kmp_run_after_invoked_task(gtid, 0, this_thr, team); 7036 return 1; 7037 } 7038 #endif /* OMP_40_ENABLED */ 7039 7040 /* this sets the requested number of threads for the next parallel region 7041 encountered by this team. since this should be enclosed in the forkjoin 7042 critical section it should avoid race conditions with assymmetrical nested 7043 parallelism */ 7044 7045 void __kmp_push_num_threads(ident_t *id, int gtid, int num_threads) { 7046 kmp_info_t *thr = __kmp_threads[gtid]; 7047 7048 if (num_threads > 0) 7049 thr->th.th_set_nproc = num_threads; 7050 } 7051 7052 #if OMP_40_ENABLED 7053 7054 /* this sets the requested number of teams for the teams region and/or 7055 the number of threads for the next parallel region encountered */ 7056 void __kmp_push_num_teams(ident_t *id, int gtid, int num_teams, 7057 int num_threads) { 7058 kmp_info_t *thr = __kmp_threads[gtid]; 7059 KMP_DEBUG_ASSERT(num_teams >= 0); 7060 KMP_DEBUG_ASSERT(num_threads >= 0); 7061 7062 if (num_teams == 0) 7063 num_teams = 1; // default number of teams is 1. 7064 if (num_teams > __kmp_teams_max_nth) { // if too many teams requested? 7065 if (!__kmp_reserve_warn) { 7066 __kmp_reserve_warn = 1; 7067 __kmp_msg(kmp_ms_warning, 7068 KMP_MSG(CantFormThrTeam, num_teams, __kmp_teams_max_nth), 7069 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 7070 } 7071 num_teams = __kmp_teams_max_nth; 7072 } 7073 // Set number of teams (number of threads in the outer "parallel" of the 7074 // teams) 7075 thr->th.th_set_nproc = thr->th.th_teams_size.nteams = num_teams; 7076 7077 // Remember the number of threads for inner parallel regions 7078 if (num_threads == 0) { 7079 if (!TCR_4(__kmp_init_middle)) 7080 __kmp_middle_initialize(); // get __kmp_avail_proc calculated 7081 num_threads = __kmp_avail_proc / num_teams; 7082 if (num_teams * num_threads > __kmp_teams_max_nth) { 7083 // adjust num_threads w/o warning as it is not user setting 7084 num_threads = __kmp_teams_max_nth / num_teams; 7085 } 7086 } else { 7087 if (num_teams * num_threads > __kmp_teams_max_nth) { 7088 int new_threads = __kmp_teams_max_nth / num_teams; 7089 if (!__kmp_reserve_warn) { // user asked for too many threads 7090 __kmp_reserve_warn = 1; // that conflicts with KMP_TEAMS_THREAD_LIMIT 7091 __kmp_msg(kmp_ms_warning, 7092 KMP_MSG(CantFormThrTeam, num_threads, new_threads), 7093 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 7094 } 7095 num_threads = new_threads; 7096 } 7097 } 7098 thr->th.th_teams_size.nth = num_threads; 7099 } 7100 7101 // Set the proc_bind var to use in the following parallel region. 7102 void __kmp_push_proc_bind(ident_t *id, int gtid, kmp_proc_bind_t proc_bind) { 7103 kmp_info_t *thr = __kmp_threads[gtid]; 7104 thr->th.th_set_proc_bind = proc_bind; 7105 } 7106 7107 #endif /* OMP_40_ENABLED */ 7108 7109 /* Launch the worker threads into the microtask. */ 7110 7111 void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team) { 7112 kmp_info_t *this_thr = __kmp_threads[gtid]; 7113 7114 #ifdef KMP_DEBUG 7115 int f; 7116 #endif /* KMP_DEBUG */ 7117 7118 KMP_DEBUG_ASSERT(team); 7119 KMP_DEBUG_ASSERT(this_thr->th.th_team == team); 7120 KMP_ASSERT(KMP_MASTER_GTID(gtid)); 7121 KMP_MB(); /* Flush all pending memory write invalidates. */ 7122 7123 team->t.t_construct = 0; /* no single directives seen yet */ 7124 team->t.t_ordered.dt.t_value = 7125 0; /* thread 0 enters the ordered section first */ 7126 7127 /* Reset the identifiers on the dispatch buffer */ 7128 KMP_DEBUG_ASSERT(team->t.t_disp_buffer); 7129 if (team->t.t_max_nproc > 1) { 7130 int i; 7131 for (i = 0; i < __kmp_dispatch_num_buffers; ++i) { 7132 team->t.t_disp_buffer[i].buffer_index = i; 7133 #if OMP_45_ENABLED 7134 team->t.t_disp_buffer[i].doacross_buf_idx = i; 7135 #endif 7136 } 7137 } else { 7138 team->t.t_disp_buffer[0].buffer_index = 0; 7139 #if OMP_45_ENABLED 7140 team->t.t_disp_buffer[0].doacross_buf_idx = 0; 7141 #endif 7142 } 7143 7144 KMP_MB(); /* Flush all pending memory write invalidates. */ 7145 KMP_ASSERT(this_thr->th.th_team == team); 7146 7147 #ifdef KMP_DEBUG 7148 for (f = 0; f < team->t.t_nproc; f++) { 7149 KMP_DEBUG_ASSERT(team->t.t_threads[f] && 7150 team->t.t_threads[f]->th.th_team_nproc == team->t.t_nproc); 7151 } 7152 #endif /* KMP_DEBUG */ 7153 7154 /* release the worker threads so they may begin working */ 7155 __kmp_fork_barrier(gtid, 0); 7156 } 7157 7158 void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team) { 7159 kmp_info_t *this_thr = __kmp_threads[gtid]; 7160 7161 KMP_DEBUG_ASSERT(team); 7162 KMP_DEBUG_ASSERT(this_thr->th.th_team == team); 7163 KMP_ASSERT(KMP_MASTER_GTID(gtid)); 7164 KMP_MB(); /* Flush all pending memory write invalidates. */ 7165 7166 /* Join barrier after fork */ 7167 7168 #ifdef KMP_DEBUG 7169 if (__kmp_threads[gtid] && 7170 __kmp_threads[gtid]->th.th_team_nproc != team->t.t_nproc) { 7171 __kmp_printf("GTID: %d, __kmp_threads[%d]=%p\n", gtid, gtid, 7172 __kmp_threads[gtid]); 7173 __kmp_printf("__kmp_threads[%d]->th.th_team_nproc=%d, TEAM: %p, " 7174 "team->t.t_nproc=%d\n", 7175 gtid, __kmp_threads[gtid]->th.th_team_nproc, team, 7176 team->t.t_nproc); 7177 __kmp_print_structure(); 7178 } 7179 KMP_DEBUG_ASSERT(__kmp_threads[gtid] && 7180 __kmp_threads[gtid]->th.th_team_nproc == team->t.t_nproc); 7181 #endif /* KMP_DEBUG */ 7182 7183 __kmp_join_barrier(gtid); /* wait for everyone */ 7184 #if OMPT_SUPPORT 7185 int ds_tid = this_thr->th.th_info.ds.ds_tid; 7186 if (this_thr->th.ompt_thread_info.state == omp_state_wait_barrier_implicit) { 7187 ompt_data_t *tId = OMPT_CUR_TASK_DATA(this_thr); 7188 ompt_data_t *pId = OMPT_CUR_TEAM_DATA(this_thr); 7189 this_thr->th.ompt_thread_info.state = omp_state_overhead; 7190 #if OMPT_OPTIONAL 7191 void *codeptr = NULL; 7192 if (KMP_MASTER_TID(ds_tid) && 7193 (ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait) || 7194 ompt_callbacks.ompt_callback(ompt_callback_sync_region))) 7195 codeptr = OMPT_CUR_TEAM_INFO(this_thr)->master_return_address; 7196 7197 if (ompt_enabled.ompt_callback_sync_region_wait) { 7198 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 7199 ompt_sync_region_barrier, ompt_scope_end, pId, tId, codeptr); 7200 } 7201 if (ompt_enabled.ompt_callback_sync_region) { 7202 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 7203 ompt_sync_region_barrier, ompt_scope_end, pId, tId, codeptr); 7204 } 7205 #endif 7206 if (!KMP_MASTER_TID(ds_tid) && ompt_enabled.ompt_callback_implicit_task) { 7207 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 7208 ompt_scope_end, NULL, tId, 0, ds_tid); 7209 } 7210 // return to idle state 7211 this_thr->th.ompt_thread_info.state = omp_state_overhead; 7212 } 7213 #endif 7214 7215 KMP_MB(); /* Flush all pending memory write invalidates. */ 7216 KMP_ASSERT(this_thr->th.th_team == team); 7217 } 7218 7219 /* ------------------------------------------------------------------------ */ 7220 7221 #ifdef USE_LOAD_BALANCE 7222 7223 // Return the worker threads actively spinning in the hot team, if we 7224 // are at the outermost level of parallelism. Otherwise, return 0. 7225 static int __kmp_active_hot_team_nproc(kmp_root_t *root) { 7226 int i; 7227 int retval; 7228 kmp_team_t *hot_team; 7229 7230 if (root->r.r_active) { 7231 return 0; 7232 } 7233 hot_team = root->r.r_hot_team; 7234 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { 7235 return hot_team->t.t_nproc - 1; // Don't count master thread 7236 } 7237 7238 // Skip the master thread - it is accounted for elsewhere. 7239 retval = 0; 7240 for (i = 1; i < hot_team->t.t_nproc; i++) { 7241 if (hot_team->t.t_threads[i]->th.th_active) { 7242 retval++; 7243 } 7244 } 7245 return retval; 7246 } 7247 7248 // Perform an automatic adjustment to the number of 7249 // threads used by the next parallel region. 7250 static int __kmp_load_balance_nproc(kmp_root_t *root, int set_nproc) { 7251 int retval; 7252 int pool_active; 7253 int hot_team_active; 7254 int team_curr_active; 7255 int system_active; 7256 7257 KB_TRACE(20, ("__kmp_load_balance_nproc: called root:%p set_nproc:%d\n", root, 7258 set_nproc)); 7259 KMP_DEBUG_ASSERT(root); 7260 KMP_DEBUG_ASSERT(root->r.r_root_team->t.t_threads[0] 7261 ->th.th_current_task->td_icvs.dynamic == TRUE); 7262 KMP_DEBUG_ASSERT(set_nproc > 1); 7263 7264 if (set_nproc == 1) { 7265 KB_TRACE(20, ("__kmp_load_balance_nproc: serial execution.\n")); 7266 return 1; 7267 } 7268 7269 // Threads that are active in the thread pool, active in the hot team for this 7270 // particular root (if we are at the outer par level), and the currently 7271 // executing thread (to become the master) are available to add to the new 7272 // team, but are currently contributing to the system load, and must be 7273 // accounted for. 7274 pool_active = TCR_4(__kmp_thread_pool_active_nth); 7275 hot_team_active = __kmp_active_hot_team_nproc(root); 7276 team_curr_active = pool_active + hot_team_active + 1; 7277 7278 // Check the system load. 7279 system_active = __kmp_get_load_balance(__kmp_avail_proc + team_curr_active); 7280 KB_TRACE(30, ("__kmp_load_balance_nproc: system active = %d pool active = %d " 7281 "hot team active = %d\n", 7282 system_active, pool_active, hot_team_active)); 7283 7284 if (system_active < 0) { 7285 // There was an error reading the necessary info from /proc, so use the 7286 // thread limit algorithm instead. Once we set __kmp_global.g.g_dynamic_mode 7287 // = dynamic_thread_limit, we shouldn't wind up getting back here. 7288 __kmp_global.g.g_dynamic_mode = dynamic_thread_limit; 7289 KMP_WARNING(CantLoadBalUsing, "KMP_DYNAMIC_MODE=thread limit"); 7290 7291 // Make this call behave like the thread limit algorithm. 7292 retval = __kmp_avail_proc - __kmp_nth + 7293 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 7294 if (retval > set_nproc) { 7295 retval = set_nproc; 7296 } 7297 if (retval < KMP_MIN_NTH) { 7298 retval = KMP_MIN_NTH; 7299 } 7300 7301 KB_TRACE(20, ("__kmp_load_balance_nproc: thread limit exit. retval:%d\n", 7302 retval)); 7303 return retval; 7304 } 7305 7306 // There is a slight delay in the load balance algorithm in detecting new 7307 // running procs. The real system load at this instant should be at least as 7308 // large as the #active omp thread that are available to add to the team. 7309 if (system_active < team_curr_active) { 7310 system_active = team_curr_active; 7311 } 7312 retval = __kmp_avail_proc - system_active + team_curr_active; 7313 if (retval > set_nproc) { 7314 retval = set_nproc; 7315 } 7316 if (retval < KMP_MIN_NTH) { 7317 retval = KMP_MIN_NTH; 7318 } 7319 7320 KB_TRACE(20, ("__kmp_load_balance_nproc: exit. retval:%d\n", retval)); 7321 return retval; 7322 } // __kmp_load_balance_nproc() 7323 7324 #endif /* USE_LOAD_BALANCE */ 7325 7326 /* ------------------------------------------------------------------------ */ 7327 7328 /* NOTE: this is called with the __kmp_init_lock held */ 7329 void __kmp_cleanup(void) { 7330 int f; 7331 7332 KA_TRACE(10, ("__kmp_cleanup: enter\n")); 7333 7334 if (TCR_4(__kmp_init_parallel)) { 7335 #if KMP_HANDLE_SIGNALS 7336 __kmp_remove_signals(); 7337 #endif 7338 TCW_4(__kmp_init_parallel, FALSE); 7339 } 7340 7341 if (TCR_4(__kmp_init_middle)) { 7342 #if KMP_AFFINITY_SUPPORTED 7343 __kmp_affinity_uninitialize(); 7344 #endif /* KMP_AFFINITY_SUPPORTED */ 7345 __kmp_cleanup_hierarchy(); 7346 TCW_4(__kmp_init_middle, FALSE); 7347 } 7348 7349 KA_TRACE(10, ("__kmp_cleanup: go serial cleanup\n")); 7350 7351 if (__kmp_init_serial) { 7352 __kmp_runtime_destroy(); 7353 __kmp_init_serial = FALSE; 7354 } 7355 7356 for (f = 0; f < __kmp_threads_capacity; f++) { 7357 if (__kmp_root[f] != NULL) { 7358 __kmp_free(__kmp_root[f]); 7359 __kmp_root[f] = NULL; 7360 } 7361 } 7362 __kmp_free(__kmp_threads); 7363 // __kmp_threads and __kmp_root were allocated at once, as single block, so 7364 // there is no need in freeing __kmp_root. 7365 __kmp_threads = NULL; 7366 __kmp_root = NULL; 7367 __kmp_threads_capacity = 0; 7368 7369 #if KMP_USE_DYNAMIC_LOCK 7370 __kmp_cleanup_indirect_user_locks(); 7371 #else 7372 __kmp_cleanup_user_locks(); 7373 #endif 7374 7375 #if KMP_AFFINITY_SUPPORTED 7376 KMP_INTERNAL_FREE(CCAST(char *, __kmp_cpuinfo_file)); 7377 __kmp_cpuinfo_file = NULL; 7378 #endif /* KMP_AFFINITY_SUPPORTED */ 7379 7380 #if KMP_USE_ADAPTIVE_LOCKS 7381 #if KMP_DEBUG_ADAPTIVE_LOCKS 7382 __kmp_print_speculative_stats(); 7383 #endif 7384 #endif 7385 KMP_INTERNAL_FREE(__kmp_nested_nth.nth); 7386 __kmp_nested_nth.nth = NULL; 7387 __kmp_nested_nth.size = 0; 7388 __kmp_nested_nth.used = 0; 7389 KMP_INTERNAL_FREE(__kmp_nested_proc_bind.bind_types); 7390 __kmp_nested_proc_bind.bind_types = NULL; 7391 __kmp_nested_proc_bind.size = 0; 7392 __kmp_nested_proc_bind.used = 0; 7393 7394 __kmp_i18n_catclose(); 7395 7396 #if KMP_STATS_ENABLED 7397 __kmp_stats_fini(); 7398 #endif 7399 7400 KA_TRACE(10, ("__kmp_cleanup: exit\n")); 7401 } 7402 7403 /* ------------------------------------------------------------------------ */ 7404 7405 int __kmp_ignore_mppbeg(void) { 7406 char *env; 7407 7408 if ((env = getenv("KMP_IGNORE_MPPBEG")) != NULL) { 7409 if (__kmp_str_match_false(env)) 7410 return FALSE; 7411 } 7412 // By default __kmpc_begin() is no-op. 7413 return TRUE; 7414 } 7415 7416 int __kmp_ignore_mppend(void) { 7417 char *env; 7418 7419 if ((env = getenv("KMP_IGNORE_MPPEND")) != NULL) { 7420 if (__kmp_str_match_false(env)) 7421 return FALSE; 7422 } 7423 // By default __kmpc_end() is no-op. 7424 return TRUE; 7425 } 7426 7427 void __kmp_internal_begin(void) { 7428 int gtid; 7429 kmp_root_t *root; 7430 7431 /* this is a very important step as it will register new sibling threads 7432 and assign these new uber threads a new gtid */ 7433 gtid = __kmp_entry_gtid(); 7434 root = __kmp_threads[gtid]->th.th_root; 7435 KMP_ASSERT(KMP_UBER_GTID(gtid)); 7436 7437 if (root->r.r_begin) 7438 return; 7439 __kmp_acquire_lock(&root->r.r_begin_lock, gtid); 7440 if (root->r.r_begin) { 7441 __kmp_release_lock(&root->r.r_begin_lock, gtid); 7442 return; 7443 } 7444 7445 root->r.r_begin = TRUE; 7446 7447 __kmp_release_lock(&root->r.r_begin_lock, gtid); 7448 } 7449 7450 /* ------------------------------------------------------------------------ */ 7451 7452 void __kmp_user_set_library(enum library_type arg) { 7453 int gtid; 7454 kmp_root_t *root; 7455 kmp_info_t *thread; 7456 7457 /* first, make sure we are initialized so we can get our gtid */ 7458 7459 gtid = __kmp_entry_gtid(); 7460 thread = __kmp_threads[gtid]; 7461 7462 root = thread->th.th_root; 7463 7464 KA_TRACE(20, ("__kmp_user_set_library: enter T#%d, arg: %d, %d\n", gtid, arg, 7465 library_serial)); 7466 if (root->r.r_in_parallel) { /* Must be called in serial section of top-level 7467 thread */ 7468 KMP_WARNING(SetLibraryIncorrectCall); 7469 return; 7470 } 7471 7472 switch (arg) { 7473 case library_serial: 7474 thread->th.th_set_nproc = 0; 7475 set__nproc(thread, 1); 7476 break; 7477 case library_turnaround: 7478 thread->th.th_set_nproc = 0; 7479 set__nproc(thread, __kmp_dflt_team_nth ? __kmp_dflt_team_nth 7480 : __kmp_dflt_team_nth_ub); 7481 break; 7482 case library_throughput: 7483 thread->th.th_set_nproc = 0; 7484 set__nproc(thread, __kmp_dflt_team_nth ? __kmp_dflt_team_nth 7485 : __kmp_dflt_team_nth_ub); 7486 break; 7487 default: 7488 KMP_FATAL(UnknownLibraryType, arg); 7489 } 7490 7491 __kmp_aux_set_library(arg); 7492 } 7493 7494 void __kmp_aux_set_stacksize(size_t arg) { 7495 if (!__kmp_init_serial) 7496 __kmp_serial_initialize(); 7497 7498 #if KMP_OS_DARWIN 7499 if (arg & (0x1000 - 1)) { 7500 arg &= ~(0x1000 - 1); 7501 if (arg + 0x1000) /* check for overflow if we round up */ 7502 arg += 0x1000; 7503 } 7504 #endif 7505 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 7506 7507 /* only change the default stacksize before the first parallel region */ 7508 if (!TCR_4(__kmp_init_parallel)) { 7509 size_t value = arg; /* argument is in bytes */ 7510 7511 if (value < __kmp_sys_min_stksize) 7512 value = __kmp_sys_min_stksize; 7513 else if (value > KMP_MAX_STKSIZE) 7514 value = KMP_MAX_STKSIZE; 7515 7516 __kmp_stksize = value; 7517 7518 __kmp_env_stksize = TRUE; /* was KMP_STACKSIZE specified? */ 7519 } 7520 7521 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7522 } 7523 7524 /* set the behaviour of the runtime library */ 7525 /* TODO this can cause some odd behaviour with sibling parallelism... */ 7526 void __kmp_aux_set_library(enum library_type arg) { 7527 __kmp_library = arg; 7528 7529 switch (__kmp_library) { 7530 case library_serial: { 7531 KMP_INFORM(LibraryIsSerial); 7532 (void)__kmp_change_library(TRUE); 7533 } break; 7534 case library_turnaround: 7535 (void)__kmp_change_library(TRUE); 7536 break; 7537 case library_throughput: 7538 (void)__kmp_change_library(FALSE); 7539 break; 7540 default: 7541 KMP_FATAL(UnknownLibraryType, arg); 7542 } 7543 } 7544 7545 /* ------------------------------------------------------------------------ */ 7546 7547 void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid) { 7548 int blocktime = arg; /* argument is in milliseconds */ 7549 #if KMP_USE_MONITOR 7550 int bt_intervals; 7551 #endif 7552 int bt_set; 7553 7554 __kmp_save_internal_controls(thread); 7555 7556 /* Normalize and set blocktime for the teams */ 7557 if (blocktime < KMP_MIN_BLOCKTIME) 7558 blocktime = KMP_MIN_BLOCKTIME; 7559 else if (blocktime > KMP_MAX_BLOCKTIME) 7560 blocktime = KMP_MAX_BLOCKTIME; 7561 7562 set__blocktime_team(thread->th.th_team, tid, blocktime); 7563 set__blocktime_team(thread->th.th_serial_team, 0, blocktime); 7564 7565 #if KMP_USE_MONITOR 7566 /* Calculate and set blocktime intervals for the teams */ 7567 bt_intervals = KMP_INTERVALS_FROM_BLOCKTIME(blocktime, __kmp_monitor_wakeups); 7568 7569 set__bt_intervals_team(thread->th.th_team, tid, bt_intervals); 7570 set__bt_intervals_team(thread->th.th_serial_team, 0, bt_intervals); 7571 #endif 7572 7573 /* Set whether blocktime has been set to "TRUE" */ 7574 bt_set = TRUE; 7575 7576 set__bt_set_team(thread->th.th_team, tid, bt_set); 7577 set__bt_set_team(thread->th.th_serial_team, 0, bt_set); 7578 #if KMP_USE_MONITOR 7579 KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d, " 7580 "bt_intervals=%d, monitor_updates=%d\n", 7581 __kmp_gtid_from_tid(tid, thread->th.th_team), 7582 thread->th.th_team->t.t_id, tid, blocktime, bt_intervals, 7583 __kmp_monitor_wakeups)); 7584 #else 7585 KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d\n", 7586 __kmp_gtid_from_tid(tid, thread->th.th_team), 7587 thread->th.th_team->t.t_id, tid, blocktime)); 7588 #endif 7589 } 7590 7591 void __kmp_aux_set_defaults(char const *str, int len) { 7592 if (!__kmp_init_serial) { 7593 __kmp_serial_initialize(); 7594 } 7595 __kmp_env_initialize(str); 7596 7597 if (__kmp_settings 7598 #if OMP_40_ENABLED 7599 || __kmp_display_env || __kmp_display_env_verbose 7600 #endif // OMP_40_ENABLED 7601 ) { 7602 __kmp_env_print(); 7603 } 7604 } // __kmp_aux_set_defaults 7605 7606 /* ------------------------------------------------------------------------ */ 7607 /* internal fast reduction routines */ 7608 7609 PACKED_REDUCTION_METHOD_T 7610 __kmp_determine_reduction_method( 7611 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, 7612 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data), 7613 kmp_critical_name *lck) { 7614 7615 // Default reduction method: critical construct ( lck != NULL, like in current 7616 // PAROPT ) 7617 // If ( reduce_data!=NULL && reduce_func!=NULL ): the tree-reduction method 7618 // can be selected by RTL 7619 // If loc->flags contains KMP_IDENT_ATOMIC_REDUCE, the atomic reduce method 7620 // can be selected by RTL 7621 // Finally, it's up to OpenMP RTL to make a decision on which method to select 7622 // among generated by PAROPT. 7623 7624 PACKED_REDUCTION_METHOD_T retval; 7625 7626 int team_size; 7627 7628 KMP_DEBUG_ASSERT(loc); // it would be nice to test ( loc != 0 ) 7629 KMP_DEBUG_ASSERT(lck); // it would be nice to test ( lck != 0 ) 7630 7631 #define FAST_REDUCTION_ATOMIC_METHOD_GENERATED \ 7632 ((loc->flags & (KMP_IDENT_ATOMIC_REDUCE)) == (KMP_IDENT_ATOMIC_REDUCE)) 7633 #define FAST_REDUCTION_TREE_METHOD_GENERATED ((reduce_data) && (reduce_func)) 7634 7635 retval = critical_reduce_block; 7636 7637 // another choice of getting a team size (with 1 dynamic deference) is slower 7638 team_size = __kmp_get_team_num_threads(global_tid); 7639 if (team_size == 1) { 7640 7641 retval = empty_reduce_block; 7642 7643 } else { 7644 7645 int atomic_available = FAST_REDUCTION_ATOMIC_METHOD_GENERATED; 7646 int tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED; 7647 7648 #if KMP_ARCH_X86_64 || KMP_ARCH_PPC64 || KMP_ARCH_AARCH64 || KMP_ARCH_MIPS64 7649 7650 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_WINDOWS || \ 7651 KMP_OS_DARWIN 7652 7653 int teamsize_cutoff = 4; 7654 7655 #if KMP_MIC_SUPPORTED 7656 if (__kmp_mic_type != non_mic) { 7657 teamsize_cutoff = 8; 7658 } 7659 #endif 7660 if (tree_available) { 7661 if (team_size <= teamsize_cutoff) { 7662 if (atomic_available) { 7663 retval = atomic_reduce_block; 7664 } 7665 } else { 7666 retval = TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER; 7667 } 7668 } else if (atomic_available) { 7669 retval = atomic_reduce_block; 7670 } 7671 #else 7672 #error "Unknown or unsupported OS" 7673 #endif // KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_WINDOWS || 7674 // KMP_OS_DARWIN 7675 7676 #elif KMP_ARCH_X86 || KMP_ARCH_ARM || KMP_ARCH_AARCH || KMP_ARCH_MIPS 7677 7678 #if KMP_OS_LINUX || KMP_OS_WINDOWS 7679 7680 // basic tuning 7681 7682 if (atomic_available) { 7683 if (num_vars <= 2) { // && ( team_size <= 8 ) due to false-sharing ??? 7684 retval = atomic_reduce_block; 7685 } 7686 } // otherwise: use critical section 7687 7688 #elif KMP_OS_DARWIN 7689 7690 if (atomic_available && (num_vars <= 3)) { 7691 retval = atomic_reduce_block; 7692 } else if (tree_available) { 7693 if ((reduce_size > (9 * sizeof(kmp_real64))) && 7694 (reduce_size < (2000 * sizeof(kmp_real64)))) { 7695 retval = TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER; 7696 } 7697 } // otherwise: use critical section 7698 7699 #else 7700 #error "Unknown or unsupported OS" 7701 #endif 7702 7703 #else 7704 #error "Unknown or unsupported architecture" 7705 #endif 7706 } 7707 7708 // KMP_FORCE_REDUCTION 7709 7710 // If the team is serialized (team_size == 1), ignore the forced reduction 7711 // method and stay with the unsynchronized method (empty_reduce_block) 7712 if (__kmp_force_reduction_method != reduction_method_not_defined && 7713 team_size != 1) { 7714 7715 PACKED_REDUCTION_METHOD_T forced_retval = critical_reduce_block; 7716 7717 int atomic_available, tree_available; 7718 7719 switch ((forced_retval = __kmp_force_reduction_method)) { 7720 case critical_reduce_block: 7721 KMP_ASSERT(lck); // lck should be != 0 7722 break; 7723 7724 case atomic_reduce_block: 7725 atomic_available = FAST_REDUCTION_ATOMIC_METHOD_GENERATED; 7726 if (!atomic_available) { 7727 KMP_WARNING(RedMethodNotSupported, "atomic"); 7728 forced_retval = critical_reduce_block; 7729 } 7730 break; 7731 7732 case tree_reduce_block: 7733 tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED; 7734 if (!tree_available) { 7735 KMP_WARNING(RedMethodNotSupported, "tree"); 7736 forced_retval = critical_reduce_block; 7737 } else { 7738 #if KMP_FAST_REDUCTION_BARRIER 7739 forced_retval = TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER; 7740 #endif 7741 } 7742 break; 7743 7744 default: 7745 KMP_ASSERT(0); // "unsupported method specified" 7746 } 7747 7748 retval = forced_retval; 7749 } 7750 7751 KA_TRACE(10, ("reduction method selected=%08x\n", retval)); 7752 7753 #undef FAST_REDUCTION_TREE_METHOD_GENERATED 7754 #undef FAST_REDUCTION_ATOMIC_METHOD_GENERATED 7755 7756 return (retval); 7757 } 7758 7759 // this function is for testing set/get/determine reduce method 7760 kmp_int32 __kmp_get_reduce_method(void) { 7761 return ((__kmp_entry_thread()->th.th_local.packed_reduction_method) >> 8); 7762 } 7763