1 /* 2 * kmp_runtime.cpp -- KPTS runtime support library 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_atomic.h" 16 #include "kmp_environment.h" 17 #include "kmp_error.h" 18 #include "kmp_i18n.h" 19 #include "kmp_io.h" 20 #include "kmp_itt.h" 21 #include "kmp_settings.h" 22 #include "kmp_stats.h" 23 #include "kmp_str.h" 24 #include "kmp_wait_release.h" 25 #include "kmp_wrapper_getpid.h" 26 #include "kmp_dispatch.h" 27 #if KMP_USE_HIER_SCHED 28 #include "kmp_dispatch_hier.h" 29 #endif 30 31 #if OMPT_SUPPORT 32 #include "ompt-specific.h" 33 #endif 34 35 /* these are temporary issues to be dealt with */ 36 #define KMP_USE_PRCTL 0 37 38 #if KMP_OS_WINDOWS 39 #include <process.h> 40 #endif 41 42 #include "tsan_annotations.h" 43 44 #if KMP_OS_WINDOWS 45 // windows does not need include files as it doesn't use shared memory 46 #else 47 #include <sys/mman.h> 48 #include <sys/stat.h> 49 #include <fcntl.h> 50 #define SHM_SIZE 1024 51 #endif 52 53 #if defined(KMP_GOMP_COMPAT) 54 char const __kmp_version_alt_comp[] = 55 KMP_VERSION_PREFIX "alternative compiler support: yes"; 56 #endif /* defined(KMP_GOMP_COMPAT) */ 57 58 char const __kmp_version_omp_api[] = 59 KMP_VERSION_PREFIX "API version: 5.0 (201611)"; 60 61 #ifdef KMP_DEBUG 62 char const __kmp_version_lock[] = 63 KMP_VERSION_PREFIX "lock type: run time selectable"; 64 #endif /* KMP_DEBUG */ 65 66 #define KMP_MIN(x, y) ((x) < (y) ? (x) : (y)) 67 68 /* ------------------------------------------------------------------------ */ 69 70 #if KMP_USE_MONITOR 71 kmp_info_t __kmp_monitor; 72 #endif 73 74 /* Forward declarations */ 75 76 void __kmp_cleanup(void); 77 78 static void __kmp_initialize_info(kmp_info_t *, kmp_team_t *, int tid, 79 int gtid); 80 static void __kmp_initialize_team(kmp_team_t *team, int new_nproc, 81 kmp_internal_control_t *new_icvs, 82 ident_t *loc); 83 #if KMP_AFFINITY_SUPPORTED 84 static void __kmp_partition_places(kmp_team_t *team, 85 int update_master_only = 0); 86 #endif 87 static void __kmp_do_serial_initialize(void); 88 void __kmp_fork_barrier(int gtid, int tid); 89 void __kmp_join_barrier(int gtid); 90 void __kmp_setup_icv_copy(kmp_team_t *team, int new_nproc, 91 kmp_internal_control_t *new_icvs, ident_t *loc); 92 93 #ifdef USE_LOAD_BALANCE 94 static int __kmp_load_balance_nproc(kmp_root_t *root, int set_nproc); 95 #endif 96 97 static int __kmp_expand_threads(int nNeed); 98 #if KMP_OS_WINDOWS 99 static int __kmp_unregister_root_other_thread(int gtid); 100 #endif 101 static void __kmp_unregister_library(void); // called by __kmp_internal_end() 102 static void __kmp_reap_thread(kmp_info_t *thread, int is_root); 103 kmp_info_t *__kmp_thread_pool_insert_pt = NULL; 104 105 /* Calculate the identifier of the current thread */ 106 /* fast (and somewhat portable) way to get unique identifier of executing 107 thread. Returns KMP_GTID_DNE if we haven't been assigned a gtid. */ 108 int __kmp_get_global_thread_id() { 109 int i; 110 kmp_info_t **other_threads; 111 size_t stack_data; 112 char *stack_addr; 113 size_t stack_size; 114 char *stack_base; 115 116 KA_TRACE( 117 1000, 118 ("*** __kmp_get_global_thread_id: entering, nproc=%d all_nproc=%d\n", 119 __kmp_nth, __kmp_all_nth)); 120 121 /* JPH - to handle the case where __kmpc_end(0) is called immediately prior to 122 a parallel region, made it return KMP_GTID_DNE to force serial_initialize 123 by caller. Had to handle KMP_GTID_DNE at all call-sites, or else guarantee 124 __kmp_init_gtid for this to work. */ 125 126 if (!TCR_4(__kmp_init_gtid)) 127 return KMP_GTID_DNE; 128 129 #ifdef KMP_TDATA_GTID 130 if (TCR_4(__kmp_gtid_mode) >= 3) { 131 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using TDATA\n")); 132 return __kmp_gtid; 133 } 134 #endif 135 if (TCR_4(__kmp_gtid_mode) >= 2) { 136 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using keyed TLS\n")); 137 return __kmp_gtid_get_specific(); 138 } 139 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using internal alg.\n")); 140 141 stack_addr = (char *)&stack_data; 142 other_threads = __kmp_threads; 143 144 /* ATT: The code below is a source of potential bugs due to unsynchronized 145 access to __kmp_threads array. For example: 146 1. Current thread loads other_threads[i] to thr and checks it, it is 147 non-NULL. 148 2. Current thread is suspended by OS. 149 3. Another thread unregisters and finishes (debug versions of free() 150 may fill memory with something like 0xEF). 151 4. Current thread is resumed. 152 5. Current thread reads junk from *thr. 153 TODO: Fix it. --ln */ 154 155 for (i = 0; i < __kmp_threads_capacity; i++) { 156 157 kmp_info_t *thr = (kmp_info_t *)TCR_SYNC_PTR(other_threads[i]); 158 if (!thr) 159 continue; 160 161 stack_size = (size_t)TCR_PTR(thr->th.th_info.ds.ds_stacksize); 162 stack_base = (char *)TCR_PTR(thr->th.th_info.ds.ds_stackbase); 163 164 /* stack grows down -- search through all of the active threads */ 165 166 if (stack_addr <= stack_base) { 167 size_t stack_diff = stack_base - stack_addr; 168 169 if (stack_diff <= stack_size) { 170 /* The only way we can be closer than the allocated */ 171 /* stack size is if we are running on this thread. */ 172 KMP_DEBUG_ASSERT(__kmp_gtid_get_specific() == i); 173 return i; 174 } 175 } 176 } 177 178 /* get specific to try and determine our gtid */ 179 KA_TRACE(1000, 180 ("*** __kmp_get_global_thread_id: internal alg. failed to find " 181 "thread, using TLS\n")); 182 i = __kmp_gtid_get_specific(); 183 184 /*fprintf( stderr, "=== %d\n", i ); */ /* GROO */ 185 186 /* if we havn't been assigned a gtid, then return code */ 187 if (i < 0) 188 return i; 189 190 /* dynamically updated stack window for uber threads to avoid get_specific 191 call */ 192 if (!TCR_4(other_threads[i]->th.th_info.ds.ds_stackgrow)) { 193 KMP_FATAL(StackOverflow, i); 194 } 195 196 stack_base = (char *)other_threads[i]->th.th_info.ds.ds_stackbase; 197 if (stack_addr > stack_base) { 198 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stackbase, stack_addr); 199 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stacksize, 200 other_threads[i]->th.th_info.ds.ds_stacksize + stack_addr - 201 stack_base); 202 } else { 203 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stacksize, 204 stack_base - stack_addr); 205 } 206 207 /* Reprint stack bounds for ubermaster since they have been refined */ 208 if (__kmp_storage_map) { 209 char *stack_end = (char *)other_threads[i]->th.th_info.ds.ds_stackbase; 210 char *stack_beg = stack_end - other_threads[i]->th.th_info.ds.ds_stacksize; 211 __kmp_print_storage_map_gtid(i, stack_beg, stack_end, 212 other_threads[i]->th.th_info.ds.ds_stacksize, 213 "th_%d stack (refinement)", i); 214 } 215 return i; 216 } 217 218 int __kmp_get_global_thread_id_reg() { 219 int gtid; 220 221 if (!__kmp_init_serial) { 222 gtid = KMP_GTID_DNE; 223 } else 224 #ifdef KMP_TDATA_GTID 225 if (TCR_4(__kmp_gtid_mode) >= 3) { 226 KA_TRACE(1000, ("*** __kmp_get_global_thread_id_reg: using TDATA\n")); 227 gtid = __kmp_gtid; 228 } else 229 #endif 230 if (TCR_4(__kmp_gtid_mode) >= 2) { 231 KA_TRACE(1000, ("*** __kmp_get_global_thread_id_reg: using keyed TLS\n")); 232 gtid = __kmp_gtid_get_specific(); 233 } else { 234 KA_TRACE(1000, 235 ("*** __kmp_get_global_thread_id_reg: using internal alg.\n")); 236 gtid = __kmp_get_global_thread_id(); 237 } 238 239 /* we must be a new uber master sibling thread */ 240 if (gtid == KMP_GTID_DNE) { 241 KA_TRACE(10, 242 ("__kmp_get_global_thread_id_reg: Encountered new root thread. " 243 "Registering a new gtid.\n")); 244 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 245 if (!__kmp_init_serial) { 246 __kmp_do_serial_initialize(); 247 gtid = __kmp_gtid_get_specific(); 248 } else { 249 gtid = __kmp_register_root(FALSE); 250 } 251 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 252 /*__kmp_printf( "+++ %d\n", gtid ); */ /* GROO */ 253 } 254 255 KMP_DEBUG_ASSERT(gtid >= 0); 256 257 return gtid; 258 } 259 260 /* caller must hold forkjoin_lock */ 261 void __kmp_check_stack_overlap(kmp_info_t *th) { 262 int f; 263 char *stack_beg = NULL; 264 char *stack_end = NULL; 265 int gtid; 266 267 KA_TRACE(10, ("__kmp_check_stack_overlap: called\n")); 268 if (__kmp_storage_map) { 269 stack_end = (char *)th->th.th_info.ds.ds_stackbase; 270 stack_beg = stack_end - th->th.th_info.ds.ds_stacksize; 271 272 gtid = __kmp_gtid_from_thread(th); 273 274 if (gtid == KMP_GTID_MONITOR) { 275 __kmp_print_storage_map_gtid( 276 gtid, stack_beg, stack_end, th->th.th_info.ds.ds_stacksize, 277 "th_%s stack (%s)", "mon", 278 (th->th.th_info.ds.ds_stackgrow) ? "initial" : "actual"); 279 } else { 280 __kmp_print_storage_map_gtid( 281 gtid, stack_beg, stack_end, th->th.th_info.ds.ds_stacksize, 282 "th_%d stack (%s)", gtid, 283 (th->th.th_info.ds.ds_stackgrow) ? "initial" : "actual"); 284 } 285 } 286 287 /* No point in checking ubermaster threads since they use refinement and 288 * cannot overlap */ 289 gtid = __kmp_gtid_from_thread(th); 290 if (__kmp_env_checks == TRUE && !KMP_UBER_GTID(gtid)) { 291 KA_TRACE(10, 292 ("__kmp_check_stack_overlap: performing extensive checking\n")); 293 if (stack_beg == NULL) { 294 stack_end = (char *)th->th.th_info.ds.ds_stackbase; 295 stack_beg = stack_end - th->th.th_info.ds.ds_stacksize; 296 } 297 298 for (f = 0; f < __kmp_threads_capacity; f++) { 299 kmp_info_t *f_th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[f]); 300 301 if (f_th && f_th != th) { 302 char *other_stack_end = 303 (char *)TCR_PTR(f_th->th.th_info.ds.ds_stackbase); 304 char *other_stack_beg = 305 other_stack_end - (size_t)TCR_PTR(f_th->th.th_info.ds.ds_stacksize); 306 if ((stack_beg > other_stack_beg && stack_beg < other_stack_end) || 307 (stack_end > other_stack_beg && stack_end < other_stack_end)) { 308 309 /* Print the other stack values before the abort */ 310 if (__kmp_storage_map) 311 __kmp_print_storage_map_gtid( 312 -1, other_stack_beg, other_stack_end, 313 (size_t)TCR_PTR(f_th->th.th_info.ds.ds_stacksize), 314 "th_%d stack (overlapped)", __kmp_gtid_from_thread(f_th)); 315 316 __kmp_fatal(KMP_MSG(StackOverlap), KMP_HNT(ChangeStackLimit), 317 __kmp_msg_null); 318 } 319 } 320 } 321 } 322 KA_TRACE(10, ("__kmp_check_stack_overlap: returning\n")); 323 } 324 325 /* ------------------------------------------------------------------------ */ 326 327 void __kmp_infinite_loop(void) { 328 static int done = FALSE; 329 330 while (!done) { 331 KMP_YIELD(TRUE); 332 } 333 } 334 335 #define MAX_MESSAGE 512 336 337 void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2, size_t size, 338 char const *format, ...) { 339 char buffer[MAX_MESSAGE]; 340 va_list ap; 341 342 va_start(ap, format); 343 KMP_SNPRINTF(buffer, sizeof(buffer), "OMP storage map: %p %p%8lu %s\n", p1, 344 p2, (unsigned long)size, format); 345 __kmp_acquire_bootstrap_lock(&__kmp_stdio_lock); 346 __kmp_vprintf(kmp_err, buffer, ap); 347 #if KMP_PRINT_DATA_PLACEMENT 348 int node; 349 if (gtid >= 0) { 350 if (p1 <= p2 && (char *)p2 - (char *)p1 == size) { 351 if (__kmp_storage_map_verbose) { 352 node = __kmp_get_host_node(p1); 353 if (node < 0) /* doesn't work, so don't try this next time */ 354 __kmp_storage_map_verbose = FALSE; 355 else { 356 char *last; 357 int lastNode; 358 int localProc = __kmp_get_cpu_from_gtid(gtid); 359 360 const int page_size = KMP_GET_PAGE_SIZE(); 361 362 p1 = (void *)((size_t)p1 & ~((size_t)page_size - 1)); 363 p2 = (void *)(((size_t)p2 - 1) & ~((size_t)page_size - 1)); 364 if (localProc >= 0) 365 __kmp_printf_no_lock(" GTID %d localNode %d\n", gtid, 366 localProc >> 1); 367 else 368 __kmp_printf_no_lock(" GTID %d\n", gtid); 369 #if KMP_USE_PRCTL 370 /* The more elaborate format is disabled for now because of the prctl 371 * hanging bug. */ 372 do { 373 last = p1; 374 lastNode = node; 375 /* This loop collates adjacent pages with the same host node. */ 376 do { 377 (char *)p1 += page_size; 378 } while (p1 <= p2 && (node = __kmp_get_host_node(p1)) == lastNode); 379 __kmp_printf_no_lock(" %p-%p memNode %d\n", last, (char *)p1 - 1, 380 lastNode); 381 } while (p1 <= p2); 382 #else 383 __kmp_printf_no_lock(" %p-%p memNode %d\n", p1, 384 (char *)p1 + (page_size - 1), 385 __kmp_get_host_node(p1)); 386 if (p1 < p2) { 387 __kmp_printf_no_lock(" %p-%p memNode %d\n", p2, 388 (char *)p2 + (page_size - 1), 389 __kmp_get_host_node(p2)); 390 } 391 #endif 392 } 393 } 394 } else 395 __kmp_printf_no_lock(" %s\n", KMP_I18N_STR(StorageMapWarning)); 396 } 397 #endif /* KMP_PRINT_DATA_PLACEMENT */ 398 __kmp_release_bootstrap_lock(&__kmp_stdio_lock); 399 } 400 401 void __kmp_warn(char const *format, ...) { 402 char buffer[MAX_MESSAGE]; 403 va_list ap; 404 405 if (__kmp_generate_warnings == kmp_warnings_off) { 406 return; 407 } 408 409 va_start(ap, format); 410 411 KMP_SNPRINTF(buffer, sizeof(buffer), "OMP warning: %s\n", format); 412 __kmp_acquire_bootstrap_lock(&__kmp_stdio_lock); 413 __kmp_vprintf(kmp_err, buffer, ap); 414 __kmp_release_bootstrap_lock(&__kmp_stdio_lock); 415 416 va_end(ap); 417 } 418 419 void __kmp_abort_process() { 420 // Later threads may stall here, but that's ok because abort() will kill them. 421 __kmp_acquire_bootstrap_lock(&__kmp_exit_lock); 422 423 if (__kmp_debug_buf) { 424 __kmp_dump_debug_buffer(); 425 } 426 427 if (KMP_OS_WINDOWS) { 428 // Let other threads know of abnormal termination and prevent deadlock 429 // if abort happened during library initialization or shutdown 430 __kmp_global.g.g_abort = SIGABRT; 431 432 /* On Windows* OS by default abort() causes pop-up error box, which stalls 433 nightly testing. Unfortunately, we cannot reliably suppress pop-up error 434 boxes. _set_abort_behavior() works well, but this function is not 435 available in VS7 (this is not problem for DLL, but it is a problem for 436 static OpenMP RTL). SetErrorMode (and so, timelimit utility) does not 437 help, at least in some versions of MS C RTL. 438 439 It seems following sequence is the only way to simulate abort() and 440 avoid pop-up error box. */ 441 raise(SIGABRT); 442 _exit(3); // Just in case, if signal ignored, exit anyway. 443 } else { 444 __kmp_unregister_library(); 445 abort(); 446 } 447 448 __kmp_infinite_loop(); 449 __kmp_release_bootstrap_lock(&__kmp_exit_lock); 450 451 } // __kmp_abort_process 452 453 void __kmp_abort_thread(void) { 454 // TODO: Eliminate g_abort global variable and this function. 455 // In case of abort just call abort(), it will kill all the threads. 456 __kmp_infinite_loop(); 457 } // __kmp_abort_thread 458 459 /* Print out the storage map for the major kmp_info_t thread data structures 460 that are allocated together. */ 461 462 static void __kmp_print_thread_storage_map(kmp_info_t *thr, int gtid) { 463 __kmp_print_storage_map_gtid(gtid, thr, thr + 1, sizeof(kmp_info_t), "th_%d", 464 gtid); 465 466 __kmp_print_storage_map_gtid(gtid, &thr->th.th_info, &thr->th.th_team, 467 sizeof(kmp_desc_t), "th_%d.th_info", gtid); 468 469 __kmp_print_storage_map_gtid(gtid, &thr->th.th_local, &thr->th.th_pri_head, 470 sizeof(kmp_local_t), "th_%d.th_local", gtid); 471 472 __kmp_print_storage_map_gtid( 473 gtid, &thr->th.th_bar[0], &thr->th.th_bar[bs_last_barrier], 474 sizeof(kmp_balign_t) * bs_last_barrier, "th_%d.th_bar", gtid); 475 476 __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_plain_barrier], 477 &thr->th.th_bar[bs_plain_barrier + 1], 478 sizeof(kmp_balign_t), "th_%d.th_bar[plain]", 479 gtid); 480 481 __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_forkjoin_barrier], 482 &thr->th.th_bar[bs_forkjoin_barrier + 1], 483 sizeof(kmp_balign_t), "th_%d.th_bar[forkjoin]", 484 gtid); 485 486 #if KMP_FAST_REDUCTION_BARRIER 487 __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_reduction_barrier], 488 &thr->th.th_bar[bs_reduction_barrier + 1], 489 sizeof(kmp_balign_t), "th_%d.th_bar[reduction]", 490 gtid); 491 #endif // KMP_FAST_REDUCTION_BARRIER 492 } 493 494 /* Print out the storage map for the major kmp_team_t team data structures 495 that are allocated together. */ 496 497 static void __kmp_print_team_storage_map(const char *header, kmp_team_t *team, 498 int team_id, int num_thr) { 499 int num_disp_buff = team->t.t_max_nproc > 1 ? __kmp_dispatch_num_buffers : 2; 500 __kmp_print_storage_map_gtid(-1, team, team + 1, sizeof(kmp_team_t), "%s_%d", 501 header, team_id); 502 503 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[0], 504 &team->t.t_bar[bs_last_barrier], 505 sizeof(kmp_balign_team_t) * bs_last_barrier, 506 "%s_%d.t_bar", header, team_id); 507 508 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_plain_barrier], 509 &team->t.t_bar[bs_plain_barrier + 1], 510 sizeof(kmp_balign_team_t), "%s_%d.t_bar[plain]", 511 header, team_id); 512 513 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_forkjoin_barrier], 514 &team->t.t_bar[bs_forkjoin_barrier + 1], 515 sizeof(kmp_balign_team_t), 516 "%s_%d.t_bar[forkjoin]", header, team_id); 517 518 #if KMP_FAST_REDUCTION_BARRIER 519 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_reduction_barrier], 520 &team->t.t_bar[bs_reduction_barrier + 1], 521 sizeof(kmp_balign_team_t), 522 "%s_%d.t_bar[reduction]", header, team_id); 523 #endif // KMP_FAST_REDUCTION_BARRIER 524 525 __kmp_print_storage_map_gtid( 526 -1, &team->t.t_dispatch[0], &team->t.t_dispatch[num_thr], 527 sizeof(kmp_disp_t) * num_thr, "%s_%d.t_dispatch", header, team_id); 528 529 __kmp_print_storage_map_gtid( 530 -1, &team->t.t_threads[0], &team->t.t_threads[num_thr], 531 sizeof(kmp_info_t *) * num_thr, "%s_%d.t_threads", header, team_id); 532 533 __kmp_print_storage_map_gtid(-1, &team->t.t_disp_buffer[0], 534 &team->t.t_disp_buffer[num_disp_buff], 535 sizeof(dispatch_shared_info_t) * num_disp_buff, 536 "%s_%d.t_disp_buffer", header, team_id); 537 } 538 539 static void __kmp_init_allocator() { __kmp_init_memkind(); } 540 static void __kmp_fini_allocator() { __kmp_fini_memkind(); } 541 542 /* ------------------------------------------------------------------------ */ 543 544 #if KMP_DYNAMIC_LIB 545 #if KMP_OS_WINDOWS 546 547 static void __kmp_reset_lock(kmp_bootstrap_lock_t *lck) { 548 // TODO: Change to __kmp_break_bootstrap_lock(). 549 __kmp_init_bootstrap_lock(lck); // make the lock released 550 } 551 552 static void __kmp_reset_locks_on_process_detach(int gtid_req) { 553 int i; 554 int thread_count; 555 556 // PROCESS_DETACH is expected to be called by a thread that executes 557 // ProcessExit() or FreeLibrary(). OS terminates other threads (except the one 558 // calling ProcessExit or FreeLibrary). So, it might be safe to access the 559 // __kmp_threads[] without taking the forkjoin_lock. However, in fact, some 560 // threads can be still alive here, although being about to be terminated. The 561 // threads in the array with ds_thread==0 are most suspicious. Actually, it 562 // can be not safe to access the __kmp_threads[]. 563 564 // TODO: does it make sense to check __kmp_roots[] ? 565 566 // Let's check that there are no other alive threads registered with the OMP 567 // lib. 568 while (1) { 569 thread_count = 0; 570 for (i = 0; i < __kmp_threads_capacity; ++i) { 571 if (!__kmp_threads) 572 continue; 573 kmp_info_t *th = __kmp_threads[i]; 574 if (th == NULL) 575 continue; 576 int gtid = th->th.th_info.ds.ds_gtid; 577 if (gtid == gtid_req) 578 continue; 579 if (gtid < 0) 580 continue; 581 DWORD exit_val; 582 int alive = __kmp_is_thread_alive(th, &exit_val); 583 if (alive) { 584 ++thread_count; 585 } 586 } 587 if (thread_count == 0) 588 break; // success 589 } 590 591 // Assume that I'm alone. Now it might be safe to check and reset locks. 592 // __kmp_forkjoin_lock and __kmp_stdio_lock are expected to be reset. 593 __kmp_reset_lock(&__kmp_forkjoin_lock); 594 #ifdef KMP_DEBUG 595 __kmp_reset_lock(&__kmp_stdio_lock); 596 #endif // KMP_DEBUG 597 } 598 599 BOOL WINAPI DllMain(HINSTANCE hInstDLL, DWORD fdwReason, LPVOID lpReserved) { 600 //__kmp_acquire_bootstrap_lock( &__kmp_initz_lock ); 601 602 switch (fdwReason) { 603 604 case DLL_PROCESS_ATTACH: 605 KA_TRACE(10, ("DllMain: PROCESS_ATTACH\n")); 606 607 return TRUE; 608 609 case DLL_PROCESS_DETACH: 610 KA_TRACE(10, ("DllMain: PROCESS_DETACH T#%d\n", __kmp_gtid_get_specific())); 611 612 if (lpReserved != NULL) { 613 // lpReserved is used for telling the difference: 614 // lpReserved == NULL when FreeLibrary() was called, 615 // lpReserved != NULL when the process terminates. 616 // When FreeLibrary() is called, worker threads remain alive. So they will 617 // release the forkjoin lock by themselves. When the process terminates, 618 // worker threads disappear triggering the problem of unreleased forkjoin 619 // lock as described below. 620 621 // A worker thread can take the forkjoin lock. The problem comes up if 622 // that worker thread becomes dead before it releases the forkjoin lock. 623 // The forkjoin lock remains taken, while the thread executing 624 // DllMain()->PROCESS_DETACH->__kmp_internal_end_library() below will try 625 // to take the forkjoin lock and will always fail, so that the application 626 // will never finish [normally]. This scenario is possible if 627 // __kmpc_end() has not been executed. It looks like it's not a corner 628 // case, but common cases: 629 // - the main function was compiled by an alternative compiler; 630 // - the main function was compiled by icl but without /Qopenmp 631 // (application with plugins); 632 // - application terminates by calling C exit(), Fortran CALL EXIT() or 633 // Fortran STOP. 634 // - alive foreign thread prevented __kmpc_end from doing cleanup. 635 // 636 // This is a hack to work around the problem. 637 // TODO: !!! figure out something better. 638 __kmp_reset_locks_on_process_detach(__kmp_gtid_get_specific()); 639 } 640 641 __kmp_internal_end_library(__kmp_gtid_get_specific()); 642 643 return TRUE; 644 645 case DLL_THREAD_ATTACH: 646 KA_TRACE(10, ("DllMain: THREAD_ATTACH\n")); 647 648 /* if we want to register new siblings all the time here call 649 * __kmp_get_gtid(); */ 650 return TRUE; 651 652 case DLL_THREAD_DETACH: 653 KA_TRACE(10, ("DllMain: THREAD_DETACH T#%d\n", __kmp_gtid_get_specific())); 654 655 __kmp_internal_end_thread(__kmp_gtid_get_specific()); 656 return TRUE; 657 } 658 659 return TRUE; 660 } 661 662 #endif /* KMP_OS_WINDOWS */ 663 #endif /* KMP_DYNAMIC_LIB */ 664 665 /* __kmp_parallel_deo -- Wait until it's our turn. */ 666 void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) { 667 int gtid = *gtid_ref; 668 #ifdef BUILD_PARALLEL_ORDERED 669 kmp_team_t *team = __kmp_team_from_gtid(gtid); 670 #endif /* BUILD_PARALLEL_ORDERED */ 671 672 if (__kmp_env_consistency_check) { 673 if (__kmp_threads[gtid]->th.th_root->r.r_active) 674 #if KMP_USE_DYNAMIC_LOCK 675 __kmp_push_sync(gtid, ct_ordered_in_parallel, loc_ref, NULL, 0); 676 #else 677 __kmp_push_sync(gtid, ct_ordered_in_parallel, loc_ref, NULL); 678 #endif 679 } 680 #ifdef BUILD_PARALLEL_ORDERED 681 if (!team->t.t_serialized) { 682 KMP_MB(); 683 KMP_WAIT(&team->t.t_ordered.dt.t_value, __kmp_tid_from_gtid(gtid), KMP_EQ, 684 NULL); 685 KMP_MB(); 686 } 687 #endif /* BUILD_PARALLEL_ORDERED */ 688 } 689 690 /* __kmp_parallel_dxo -- Signal the next task. */ 691 void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) { 692 int gtid = *gtid_ref; 693 #ifdef BUILD_PARALLEL_ORDERED 694 int tid = __kmp_tid_from_gtid(gtid); 695 kmp_team_t *team = __kmp_team_from_gtid(gtid); 696 #endif /* BUILD_PARALLEL_ORDERED */ 697 698 if (__kmp_env_consistency_check) { 699 if (__kmp_threads[gtid]->th.th_root->r.r_active) 700 __kmp_pop_sync(gtid, ct_ordered_in_parallel, loc_ref); 701 } 702 #ifdef BUILD_PARALLEL_ORDERED 703 if (!team->t.t_serialized) { 704 KMP_MB(); /* Flush all pending memory write invalidates. */ 705 706 /* use the tid of the next thread in this team */ 707 /* TODO replace with general release procedure */ 708 team->t.t_ordered.dt.t_value = ((tid + 1) % team->t.t_nproc); 709 710 KMP_MB(); /* Flush all pending memory write invalidates. */ 711 } 712 #endif /* BUILD_PARALLEL_ORDERED */ 713 } 714 715 /* ------------------------------------------------------------------------ */ 716 /* The BARRIER for a SINGLE process section is always explicit */ 717 718 int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws) { 719 int status; 720 kmp_info_t *th; 721 kmp_team_t *team; 722 723 if (!TCR_4(__kmp_init_parallel)) 724 __kmp_parallel_initialize(); 725 __kmp_resume_if_soft_paused(); 726 727 th = __kmp_threads[gtid]; 728 team = th->th.th_team; 729 status = 0; 730 731 th->th.th_ident = id_ref; 732 733 if (team->t.t_serialized) { 734 status = 1; 735 } else { 736 kmp_int32 old_this = th->th.th_local.this_construct; 737 738 ++th->th.th_local.this_construct; 739 /* try to set team count to thread count--success means thread got the 740 single block */ 741 /* TODO: Should this be acquire or release? */ 742 if (team->t.t_construct == old_this) { 743 status = __kmp_atomic_compare_store_acq(&team->t.t_construct, old_this, 744 th->th.th_local.this_construct); 745 } 746 #if USE_ITT_BUILD 747 if (__itt_metadata_add_ptr && __kmp_forkjoin_frames_mode == 3 && 748 KMP_MASTER_GTID(gtid) && th->th.th_teams_microtask == NULL && 749 team->t.t_active_level == 750 1) { // Only report metadata by master of active team at level 1 751 __kmp_itt_metadata_single(id_ref); 752 } 753 #endif /* USE_ITT_BUILD */ 754 } 755 756 if (__kmp_env_consistency_check) { 757 if (status && push_ws) { 758 __kmp_push_workshare(gtid, ct_psingle, id_ref); 759 } else { 760 __kmp_check_workshare(gtid, ct_psingle, id_ref); 761 } 762 } 763 #if USE_ITT_BUILD 764 if (status) { 765 __kmp_itt_single_start(gtid); 766 } 767 #endif /* USE_ITT_BUILD */ 768 return status; 769 } 770 771 void __kmp_exit_single(int gtid) { 772 #if USE_ITT_BUILD 773 __kmp_itt_single_end(gtid); 774 #endif /* USE_ITT_BUILD */ 775 if (__kmp_env_consistency_check) 776 __kmp_pop_workshare(gtid, ct_psingle, NULL); 777 } 778 779 /* determine if we can go parallel or must use a serialized parallel region and 780 * how many threads we can use 781 * set_nproc is the number of threads requested for the team 782 * returns 0 if we should serialize or only use one thread, 783 * otherwise the number of threads to use 784 * The forkjoin lock is held by the caller. */ 785 static int __kmp_reserve_threads(kmp_root_t *root, kmp_team_t *parent_team, 786 int master_tid, int set_nthreads, 787 int enter_teams) { 788 int capacity; 789 int new_nthreads; 790 KMP_DEBUG_ASSERT(__kmp_init_serial); 791 KMP_DEBUG_ASSERT(root && parent_team); 792 kmp_info_t *this_thr = parent_team->t.t_threads[master_tid]; 793 794 // If dyn-var is set, dynamically adjust the number of desired threads, 795 // according to the method specified by dynamic_mode. 796 new_nthreads = set_nthreads; 797 if (!get__dynamic_2(parent_team, master_tid)) { 798 ; 799 } 800 #ifdef USE_LOAD_BALANCE 801 else if (__kmp_global.g.g_dynamic_mode == dynamic_load_balance) { 802 new_nthreads = __kmp_load_balance_nproc(root, set_nthreads); 803 if (new_nthreads == 1) { 804 KC_TRACE(10, ("__kmp_reserve_threads: T#%d load balance reduced " 805 "reservation to 1 thread\n", 806 master_tid)); 807 return 1; 808 } 809 if (new_nthreads < set_nthreads) { 810 KC_TRACE(10, ("__kmp_reserve_threads: T#%d load balance reduced " 811 "reservation to %d threads\n", 812 master_tid, new_nthreads)); 813 } 814 } 815 #endif /* USE_LOAD_BALANCE */ 816 else if (__kmp_global.g.g_dynamic_mode == dynamic_thread_limit) { 817 new_nthreads = __kmp_avail_proc - __kmp_nth + 818 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 819 if (new_nthreads <= 1) { 820 KC_TRACE(10, ("__kmp_reserve_threads: T#%d thread limit reduced " 821 "reservation to 1 thread\n", 822 master_tid)); 823 return 1; 824 } 825 if (new_nthreads < set_nthreads) { 826 KC_TRACE(10, ("__kmp_reserve_threads: T#%d thread limit reduced " 827 "reservation to %d threads\n", 828 master_tid, new_nthreads)); 829 } else { 830 new_nthreads = set_nthreads; 831 } 832 } else if (__kmp_global.g.g_dynamic_mode == dynamic_random) { 833 if (set_nthreads > 2) { 834 new_nthreads = __kmp_get_random(parent_team->t.t_threads[master_tid]); 835 new_nthreads = (new_nthreads % set_nthreads) + 1; 836 if (new_nthreads == 1) { 837 KC_TRACE(10, ("__kmp_reserve_threads: T#%d dynamic random reduced " 838 "reservation to 1 thread\n", 839 master_tid)); 840 return 1; 841 } 842 if (new_nthreads < set_nthreads) { 843 KC_TRACE(10, ("__kmp_reserve_threads: T#%d dynamic random reduced " 844 "reservation to %d threads\n", 845 master_tid, new_nthreads)); 846 } 847 } 848 } else { 849 KMP_ASSERT(0); 850 } 851 852 // Respect KMP_ALL_THREADS/KMP_DEVICE_THREAD_LIMIT. 853 if (__kmp_nth + new_nthreads - 854 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) > 855 __kmp_max_nth) { 856 int tl_nthreads = __kmp_max_nth - __kmp_nth + 857 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 858 if (tl_nthreads <= 0) { 859 tl_nthreads = 1; 860 } 861 862 // If dyn-var is false, emit a 1-time warning. 863 if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) { 864 __kmp_reserve_warn = 1; 865 __kmp_msg(kmp_ms_warning, 866 KMP_MSG(CantFormThrTeam, set_nthreads, tl_nthreads), 867 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 868 } 869 if (tl_nthreads == 1) { 870 KC_TRACE(10, ("__kmp_reserve_threads: T#%d KMP_DEVICE_THREAD_LIMIT " 871 "reduced reservation to 1 thread\n", 872 master_tid)); 873 return 1; 874 } 875 KC_TRACE(10, ("__kmp_reserve_threads: T#%d KMP_DEVICE_THREAD_LIMIT reduced " 876 "reservation to %d threads\n", 877 master_tid, tl_nthreads)); 878 new_nthreads = tl_nthreads; 879 } 880 881 // Respect OMP_THREAD_LIMIT 882 int cg_nthreads = this_thr->th.th_cg_roots->cg_nthreads; 883 int max_cg_threads = this_thr->th.th_cg_roots->cg_thread_limit; 884 if (cg_nthreads + new_nthreads - 885 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) > 886 max_cg_threads) { 887 int tl_nthreads = max_cg_threads - cg_nthreads + 888 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 889 if (tl_nthreads <= 0) { 890 tl_nthreads = 1; 891 } 892 893 // If dyn-var is false, emit a 1-time warning. 894 if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) { 895 __kmp_reserve_warn = 1; 896 __kmp_msg(kmp_ms_warning, 897 KMP_MSG(CantFormThrTeam, set_nthreads, tl_nthreads), 898 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 899 } 900 if (tl_nthreads == 1) { 901 KC_TRACE(10, ("__kmp_reserve_threads: T#%d OMP_THREAD_LIMIT " 902 "reduced reservation to 1 thread\n", 903 master_tid)); 904 return 1; 905 } 906 KC_TRACE(10, ("__kmp_reserve_threads: T#%d OMP_THREAD_LIMIT reduced " 907 "reservation to %d threads\n", 908 master_tid, tl_nthreads)); 909 new_nthreads = tl_nthreads; 910 } 911 912 // Check if the threads array is large enough, or needs expanding. 913 // See comment in __kmp_register_root() about the adjustment if 914 // __kmp_threads[0] == NULL. 915 capacity = __kmp_threads_capacity; 916 if (TCR_PTR(__kmp_threads[0]) == NULL) { 917 --capacity; 918 } 919 if (__kmp_nth + new_nthreads - 920 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) > 921 capacity) { 922 // Expand the threads array. 923 int slotsRequired = __kmp_nth + new_nthreads - 924 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) - 925 capacity; 926 int slotsAdded = __kmp_expand_threads(slotsRequired); 927 if (slotsAdded < slotsRequired) { 928 // The threads array was not expanded enough. 929 new_nthreads -= (slotsRequired - slotsAdded); 930 KMP_ASSERT(new_nthreads >= 1); 931 932 // If dyn-var is false, emit a 1-time warning. 933 if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) { 934 __kmp_reserve_warn = 1; 935 if (__kmp_tp_cached) { 936 __kmp_msg(kmp_ms_warning, 937 KMP_MSG(CantFormThrTeam, set_nthreads, new_nthreads), 938 KMP_HNT(Set_ALL_THREADPRIVATE, __kmp_tp_capacity), 939 KMP_HNT(PossibleSystemLimitOnThreads), __kmp_msg_null); 940 } else { 941 __kmp_msg(kmp_ms_warning, 942 KMP_MSG(CantFormThrTeam, set_nthreads, new_nthreads), 943 KMP_HNT(SystemLimitOnThreads), __kmp_msg_null); 944 } 945 } 946 } 947 } 948 949 #ifdef KMP_DEBUG 950 if (new_nthreads == 1) { 951 KC_TRACE(10, 952 ("__kmp_reserve_threads: T#%d serializing team after reclaiming " 953 "dead roots and rechecking; requested %d threads\n", 954 __kmp_get_gtid(), set_nthreads)); 955 } else { 956 KC_TRACE(10, ("__kmp_reserve_threads: T#%d allocating %d threads; requested" 957 " %d threads\n", 958 __kmp_get_gtid(), new_nthreads, set_nthreads)); 959 } 960 #endif // KMP_DEBUG 961 return new_nthreads; 962 } 963 964 /* Allocate threads from the thread pool and assign them to the new team. We are 965 assured that there are enough threads available, because we checked on that 966 earlier within critical section forkjoin */ 967 static void __kmp_fork_team_threads(kmp_root_t *root, kmp_team_t *team, 968 kmp_info_t *master_th, int master_gtid) { 969 int i; 970 int use_hot_team; 971 972 KA_TRACE(10, ("__kmp_fork_team_threads: new_nprocs = %d\n", team->t.t_nproc)); 973 KMP_DEBUG_ASSERT(master_gtid == __kmp_get_gtid()); 974 KMP_MB(); 975 976 /* first, let's setup the master thread */ 977 master_th->th.th_info.ds.ds_tid = 0; 978 master_th->th.th_team = team; 979 master_th->th.th_team_nproc = team->t.t_nproc; 980 master_th->th.th_team_master = master_th; 981 master_th->th.th_team_serialized = FALSE; 982 master_th->th.th_dispatch = &team->t.t_dispatch[0]; 983 984 /* make sure we are not the optimized hot team */ 985 #if KMP_NESTED_HOT_TEAMS 986 use_hot_team = 0; 987 kmp_hot_team_ptr_t *hot_teams = master_th->th.th_hot_teams; 988 if (hot_teams) { // hot teams array is not allocated if 989 // KMP_HOT_TEAMS_MAX_LEVEL=0 990 int level = team->t.t_active_level - 1; // index in array of hot teams 991 if (master_th->th.th_teams_microtask) { // are we inside the teams? 992 if (master_th->th.th_teams_size.nteams > 1) { 993 ++level; // level was not increased in teams construct for 994 // team_of_masters 995 } 996 if (team->t.t_pkfn != (microtask_t)__kmp_teams_master && 997 master_th->th.th_teams_level == team->t.t_level) { 998 ++level; // level was not increased in teams construct for 999 // team_of_workers before the parallel 1000 } // team->t.t_level will be increased inside parallel 1001 } 1002 if (level < __kmp_hot_teams_max_level) { 1003 if (hot_teams[level].hot_team) { 1004 // hot team has already been allocated for given level 1005 KMP_DEBUG_ASSERT(hot_teams[level].hot_team == team); 1006 use_hot_team = 1; // the team is ready to use 1007 } else { 1008 use_hot_team = 0; // AC: threads are not allocated yet 1009 hot_teams[level].hot_team = team; // remember new hot team 1010 hot_teams[level].hot_team_nth = team->t.t_nproc; 1011 } 1012 } else { 1013 use_hot_team = 0; 1014 } 1015 } 1016 #else 1017 use_hot_team = team == root->r.r_hot_team; 1018 #endif 1019 if (!use_hot_team) { 1020 1021 /* install the master thread */ 1022 team->t.t_threads[0] = master_th; 1023 __kmp_initialize_info(master_th, team, 0, master_gtid); 1024 1025 /* now, install the worker threads */ 1026 for (i = 1; i < team->t.t_nproc; i++) { 1027 1028 /* fork or reallocate a new thread and install it in team */ 1029 kmp_info_t *thr = __kmp_allocate_thread(root, team, i); 1030 team->t.t_threads[i] = thr; 1031 KMP_DEBUG_ASSERT(thr); 1032 KMP_DEBUG_ASSERT(thr->th.th_team == team); 1033 /* align team and thread arrived states */ 1034 KA_TRACE(20, ("__kmp_fork_team_threads: T#%d(%d:%d) init arrived " 1035 "T#%d(%d:%d) join =%llu, plain=%llu\n", 1036 __kmp_gtid_from_tid(0, team), team->t.t_id, 0, 1037 __kmp_gtid_from_tid(i, team), team->t.t_id, i, 1038 team->t.t_bar[bs_forkjoin_barrier].b_arrived, 1039 team->t.t_bar[bs_plain_barrier].b_arrived)); 1040 thr->th.th_teams_microtask = master_th->th.th_teams_microtask; 1041 thr->th.th_teams_level = master_th->th.th_teams_level; 1042 thr->th.th_teams_size = master_th->th.th_teams_size; 1043 { // Initialize threads' barrier data. 1044 int b; 1045 kmp_balign_t *balign = team->t.t_threads[i]->th.th_bar; 1046 for (b = 0; b < bs_last_barrier; ++b) { 1047 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 1048 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 1049 #if USE_DEBUGGER 1050 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 1051 #endif 1052 } 1053 } 1054 } 1055 1056 #if KMP_AFFINITY_SUPPORTED 1057 __kmp_partition_places(team); 1058 #endif 1059 } 1060 1061 if (__kmp_display_affinity && team->t.t_display_affinity != 1) { 1062 for (i = 0; i < team->t.t_nproc; i++) { 1063 kmp_info_t *thr = team->t.t_threads[i]; 1064 if (thr->th.th_prev_num_threads != team->t.t_nproc || 1065 thr->th.th_prev_level != team->t.t_level) { 1066 team->t.t_display_affinity = 1; 1067 break; 1068 } 1069 } 1070 } 1071 1072 KMP_MB(); 1073 } 1074 1075 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1076 // Propagate any changes to the floating point control registers out to the team 1077 // We try to avoid unnecessary writes to the relevant cache line in the team 1078 // structure, so we don't make changes unless they are needed. 1079 inline static void propagateFPControl(kmp_team_t *team) { 1080 if (__kmp_inherit_fp_control) { 1081 kmp_int16 x87_fpu_control_word; 1082 kmp_uint32 mxcsr; 1083 1084 // Get master values of FPU control flags (both X87 and vector) 1085 __kmp_store_x87_fpu_control_word(&x87_fpu_control_word); 1086 __kmp_store_mxcsr(&mxcsr); 1087 mxcsr &= KMP_X86_MXCSR_MASK; 1088 1089 // There is no point looking at t_fp_control_saved here. 1090 // If it is TRUE, we still have to update the values if they are different 1091 // from those we now have. If it is FALSE we didn't save anything yet, but 1092 // our objective is the same. We have to ensure that the values in the team 1093 // are the same as those we have. 1094 // So, this code achieves what we need whether or not t_fp_control_saved is 1095 // true. By checking whether the value needs updating we avoid unnecessary 1096 // writes that would put the cache-line into a written state, causing all 1097 // threads in the team to have to read it again. 1098 KMP_CHECK_UPDATE(team->t.t_x87_fpu_control_word, x87_fpu_control_word); 1099 KMP_CHECK_UPDATE(team->t.t_mxcsr, mxcsr); 1100 // Although we don't use this value, other code in the runtime wants to know 1101 // whether it should restore them. So we must ensure it is correct. 1102 KMP_CHECK_UPDATE(team->t.t_fp_control_saved, TRUE); 1103 } else { 1104 // Similarly here. Don't write to this cache-line in the team structure 1105 // unless we have to. 1106 KMP_CHECK_UPDATE(team->t.t_fp_control_saved, FALSE); 1107 } 1108 } 1109 1110 // Do the opposite, setting the hardware registers to the updated values from 1111 // the team. 1112 inline static void updateHWFPControl(kmp_team_t *team) { 1113 if (__kmp_inherit_fp_control && team->t.t_fp_control_saved) { 1114 // Only reset the fp control regs if they have been changed in the team. 1115 // the parallel region that we are exiting. 1116 kmp_int16 x87_fpu_control_word; 1117 kmp_uint32 mxcsr; 1118 __kmp_store_x87_fpu_control_word(&x87_fpu_control_word); 1119 __kmp_store_mxcsr(&mxcsr); 1120 mxcsr &= KMP_X86_MXCSR_MASK; 1121 1122 if (team->t.t_x87_fpu_control_word != x87_fpu_control_word) { 1123 __kmp_clear_x87_fpu_status_word(); 1124 __kmp_load_x87_fpu_control_word(&team->t.t_x87_fpu_control_word); 1125 } 1126 1127 if (team->t.t_mxcsr != mxcsr) { 1128 __kmp_load_mxcsr(&team->t.t_mxcsr); 1129 } 1130 } 1131 } 1132 #else 1133 #define propagateFPControl(x) ((void)0) 1134 #define updateHWFPControl(x) ((void)0) 1135 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 1136 1137 static void __kmp_alloc_argv_entries(int argc, kmp_team_t *team, 1138 int realloc); // forward declaration 1139 1140 /* Run a parallel region that has been serialized, so runs only in a team of the 1141 single master thread. */ 1142 void __kmp_serialized_parallel(ident_t *loc, kmp_int32 global_tid) { 1143 kmp_info_t *this_thr; 1144 kmp_team_t *serial_team; 1145 1146 KC_TRACE(10, ("__kmpc_serialized_parallel: called by T#%d\n", global_tid)); 1147 1148 /* Skip all this code for autopar serialized loops since it results in 1149 unacceptable overhead */ 1150 if (loc != NULL && (loc->flags & KMP_IDENT_AUTOPAR)) 1151 return; 1152 1153 if (!TCR_4(__kmp_init_parallel)) 1154 __kmp_parallel_initialize(); 1155 __kmp_resume_if_soft_paused(); 1156 1157 this_thr = __kmp_threads[global_tid]; 1158 serial_team = this_thr->th.th_serial_team; 1159 1160 /* utilize the serialized team held by this thread */ 1161 KMP_DEBUG_ASSERT(serial_team); 1162 KMP_MB(); 1163 1164 if (__kmp_tasking_mode != tskm_immediate_exec) { 1165 KMP_DEBUG_ASSERT( 1166 this_thr->th.th_task_team == 1167 this_thr->th.th_team->t.t_task_team[this_thr->th.th_task_state]); 1168 KMP_DEBUG_ASSERT(serial_team->t.t_task_team[this_thr->th.th_task_state] == 1169 NULL); 1170 KA_TRACE(20, ("__kmpc_serialized_parallel: T#%d pushing task_team %p / " 1171 "team %p, new task_team = NULL\n", 1172 global_tid, this_thr->th.th_task_team, this_thr->th.th_team)); 1173 this_thr->th.th_task_team = NULL; 1174 } 1175 1176 kmp_proc_bind_t proc_bind = this_thr->th.th_set_proc_bind; 1177 if (this_thr->th.th_current_task->td_icvs.proc_bind == proc_bind_false) { 1178 proc_bind = proc_bind_false; 1179 } else if (proc_bind == proc_bind_default) { 1180 // No proc_bind clause was specified, so use the current value 1181 // of proc-bind-var for this parallel region. 1182 proc_bind = this_thr->th.th_current_task->td_icvs.proc_bind; 1183 } 1184 // Reset for next parallel region 1185 this_thr->th.th_set_proc_bind = proc_bind_default; 1186 1187 #if OMPT_SUPPORT 1188 ompt_data_t ompt_parallel_data = ompt_data_none; 1189 ompt_data_t *implicit_task_data; 1190 void *codeptr = OMPT_LOAD_RETURN_ADDRESS(global_tid); 1191 if (ompt_enabled.enabled && 1192 this_thr->th.ompt_thread_info.state != ompt_state_overhead) { 1193 1194 ompt_task_info_t *parent_task_info; 1195 parent_task_info = OMPT_CUR_TASK_INFO(this_thr); 1196 1197 parent_task_info->frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 1198 if (ompt_enabled.ompt_callback_parallel_begin) { 1199 int team_size = 1; 1200 1201 ompt_callbacks.ompt_callback(ompt_callback_parallel_begin)( 1202 &(parent_task_info->task_data), &(parent_task_info->frame), 1203 &ompt_parallel_data, team_size, 1204 ompt_parallel_invoker_program | ompt_parallel_team, codeptr); 1205 } 1206 } 1207 #endif // OMPT_SUPPORT 1208 1209 if (this_thr->th.th_team != serial_team) { 1210 // Nested level will be an index in the nested nthreads array 1211 int level = this_thr->th.th_team->t.t_level; 1212 1213 if (serial_team->t.t_serialized) { 1214 /* this serial team was already used 1215 TODO increase performance by making this locks more specific */ 1216 kmp_team_t *new_team; 1217 1218 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 1219 1220 new_team = 1221 __kmp_allocate_team(this_thr->th.th_root, 1, 1, 1222 #if OMPT_SUPPORT 1223 ompt_parallel_data, 1224 #endif 1225 proc_bind, &this_thr->th.th_current_task->td_icvs, 1226 0 USE_NESTED_HOT_ARG(NULL)); 1227 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1228 KMP_ASSERT(new_team); 1229 1230 /* setup new serialized team and install it */ 1231 new_team->t.t_threads[0] = this_thr; 1232 new_team->t.t_parent = this_thr->th.th_team; 1233 serial_team = new_team; 1234 this_thr->th.th_serial_team = serial_team; 1235 1236 KF_TRACE( 1237 10, 1238 ("__kmpc_serialized_parallel: T#%d allocated new serial team %p\n", 1239 global_tid, serial_team)); 1240 1241 /* TODO the above breaks the requirement that if we run out of resources, 1242 then we can still guarantee that serialized teams are ok, since we may 1243 need to allocate a new one */ 1244 } else { 1245 KF_TRACE( 1246 10, 1247 ("__kmpc_serialized_parallel: T#%d reusing cached serial team %p\n", 1248 global_tid, serial_team)); 1249 } 1250 1251 /* we have to initialize this serial team */ 1252 KMP_DEBUG_ASSERT(serial_team->t.t_threads); 1253 KMP_DEBUG_ASSERT(serial_team->t.t_threads[0] == this_thr); 1254 KMP_DEBUG_ASSERT(this_thr->th.th_team != serial_team); 1255 serial_team->t.t_ident = loc; 1256 serial_team->t.t_serialized = 1; 1257 serial_team->t.t_nproc = 1; 1258 serial_team->t.t_parent = this_thr->th.th_team; 1259 serial_team->t.t_sched.sched = this_thr->th.th_team->t.t_sched.sched; 1260 this_thr->th.th_team = serial_team; 1261 serial_team->t.t_master_tid = this_thr->th.th_info.ds.ds_tid; 1262 1263 KF_TRACE(10, ("__kmpc_serialized_parallel: T#d curtask=%p\n", global_tid, 1264 this_thr->th.th_current_task)); 1265 KMP_ASSERT(this_thr->th.th_current_task->td_flags.executing == 1); 1266 this_thr->th.th_current_task->td_flags.executing = 0; 1267 1268 __kmp_push_current_task_to_thread(this_thr, serial_team, 0); 1269 1270 /* TODO: GEH: do ICVs work for nested serialized teams? Don't we need an 1271 implicit task for each serialized task represented by 1272 team->t.t_serialized? */ 1273 copy_icvs(&this_thr->th.th_current_task->td_icvs, 1274 &this_thr->th.th_current_task->td_parent->td_icvs); 1275 1276 // Thread value exists in the nested nthreads array for the next nested 1277 // level 1278 if (__kmp_nested_nth.used && (level + 1 < __kmp_nested_nth.used)) { 1279 this_thr->th.th_current_task->td_icvs.nproc = 1280 __kmp_nested_nth.nth[level + 1]; 1281 } 1282 1283 if (__kmp_nested_proc_bind.used && 1284 (level + 1 < __kmp_nested_proc_bind.used)) { 1285 this_thr->th.th_current_task->td_icvs.proc_bind = 1286 __kmp_nested_proc_bind.bind_types[level + 1]; 1287 } 1288 1289 #if USE_DEBUGGER 1290 serial_team->t.t_pkfn = (microtask_t)(~0); // For the debugger. 1291 #endif 1292 this_thr->th.th_info.ds.ds_tid = 0; 1293 1294 /* set thread cache values */ 1295 this_thr->th.th_team_nproc = 1; 1296 this_thr->th.th_team_master = this_thr; 1297 this_thr->th.th_team_serialized = 1; 1298 1299 serial_team->t.t_level = serial_team->t.t_parent->t.t_level + 1; 1300 serial_team->t.t_active_level = serial_team->t.t_parent->t.t_active_level; 1301 serial_team->t.t_def_allocator = this_thr->th.th_def_allocator; // save 1302 1303 propagateFPControl(serial_team); 1304 1305 /* check if we need to allocate dispatch buffers stack */ 1306 KMP_DEBUG_ASSERT(serial_team->t.t_dispatch); 1307 if (!serial_team->t.t_dispatch->th_disp_buffer) { 1308 serial_team->t.t_dispatch->th_disp_buffer = 1309 (dispatch_private_info_t *)__kmp_allocate( 1310 sizeof(dispatch_private_info_t)); 1311 } 1312 this_thr->th.th_dispatch = serial_team->t.t_dispatch; 1313 1314 KMP_MB(); 1315 1316 } else { 1317 /* this serialized team is already being used, 1318 * that's fine, just add another nested level */ 1319 KMP_DEBUG_ASSERT(this_thr->th.th_team == serial_team); 1320 KMP_DEBUG_ASSERT(serial_team->t.t_threads); 1321 KMP_DEBUG_ASSERT(serial_team->t.t_threads[0] == this_thr); 1322 ++serial_team->t.t_serialized; 1323 this_thr->th.th_team_serialized = serial_team->t.t_serialized; 1324 1325 // Nested level will be an index in the nested nthreads array 1326 int level = this_thr->th.th_team->t.t_level; 1327 // Thread value exists in the nested nthreads array for the next nested 1328 // level 1329 if (__kmp_nested_nth.used && (level + 1 < __kmp_nested_nth.used)) { 1330 this_thr->th.th_current_task->td_icvs.nproc = 1331 __kmp_nested_nth.nth[level + 1]; 1332 } 1333 serial_team->t.t_level++; 1334 KF_TRACE(10, ("__kmpc_serialized_parallel: T#%d increasing nesting level " 1335 "of serial team %p to %d\n", 1336 global_tid, serial_team, serial_team->t.t_level)); 1337 1338 /* allocate/push dispatch buffers stack */ 1339 KMP_DEBUG_ASSERT(serial_team->t.t_dispatch); 1340 { 1341 dispatch_private_info_t *disp_buffer = 1342 (dispatch_private_info_t *)__kmp_allocate( 1343 sizeof(dispatch_private_info_t)); 1344 disp_buffer->next = serial_team->t.t_dispatch->th_disp_buffer; 1345 serial_team->t.t_dispatch->th_disp_buffer = disp_buffer; 1346 } 1347 this_thr->th.th_dispatch = serial_team->t.t_dispatch; 1348 1349 KMP_MB(); 1350 } 1351 KMP_CHECK_UPDATE(serial_team->t.t_cancel_request, cancel_noreq); 1352 1353 // Perform the display affinity functionality for 1354 // serialized parallel regions 1355 if (__kmp_display_affinity) { 1356 if (this_thr->th.th_prev_level != serial_team->t.t_level || 1357 this_thr->th.th_prev_num_threads != 1) { 1358 // NULL means use the affinity-format-var ICV 1359 __kmp_aux_display_affinity(global_tid, NULL); 1360 this_thr->th.th_prev_level = serial_team->t.t_level; 1361 this_thr->th.th_prev_num_threads = 1; 1362 } 1363 } 1364 1365 if (__kmp_env_consistency_check) 1366 __kmp_push_parallel(global_tid, NULL); 1367 #if OMPT_SUPPORT 1368 serial_team->t.ompt_team_info.master_return_address = codeptr; 1369 if (ompt_enabled.enabled && 1370 this_thr->th.ompt_thread_info.state != ompt_state_overhead) { 1371 OMPT_CUR_TASK_INFO(this_thr)->frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 1372 1373 ompt_lw_taskteam_t lw_taskteam; 1374 __ompt_lw_taskteam_init(&lw_taskteam, this_thr, global_tid, 1375 &ompt_parallel_data, codeptr); 1376 1377 __ompt_lw_taskteam_link(&lw_taskteam, this_thr, 1); 1378 // don't use lw_taskteam after linking. content was swaped 1379 1380 /* OMPT implicit task begin */ 1381 implicit_task_data = OMPT_CUR_TASK_DATA(this_thr); 1382 if (ompt_enabled.ompt_callback_implicit_task) { 1383 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1384 ompt_scope_begin, OMPT_CUR_TEAM_DATA(this_thr), 1385 OMPT_CUR_TASK_DATA(this_thr), 1, __kmp_tid_from_gtid(global_tid), ompt_task_implicit); // TODO: Can this be ompt_task_initial? 1386 OMPT_CUR_TASK_INFO(this_thr) 1387 ->thread_num = __kmp_tid_from_gtid(global_tid); 1388 } 1389 1390 /* OMPT state */ 1391 this_thr->th.ompt_thread_info.state = ompt_state_work_parallel; 1392 OMPT_CUR_TASK_INFO(this_thr)->frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 1393 } 1394 #endif 1395 } 1396 1397 /* most of the work for a fork */ 1398 /* return true if we really went parallel, false if serialized */ 1399 int __kmp_fork_call(ident_t *loc, int gtid, 1400 enum fork_context_e call_context, // Intel, GNU, ... 1401 kmp_int32 argc, microtask_t microtask, launch_t invoker, 1402 kmp_va_list ap) { 1403 void **argv; 1404 int i; 1405 int master_tid; 1406 int master_this_cons; 1407 kmp_team_t *team; 1408 kmp_team_t *parent_team; 1409 kmp_info_t *master_th; 1410 kmp_root_t *root; 1411 int nthreads; 1412 int master_active; 1413 int master_set_numthreads; 1414 int level; 1415 int active_level; 1416 int teams_level; 1417 #if KMP_NESTED_HOT_TEAMS 1418 kmp_hot_team_ptr_t **p_hot_teams; 1419 #endif 1420 { // KMP_TIME_BLOCK 1421 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_fork_call); 1422 KMP_COUNT_VALUE(OMP_PARALLEL_args, argc); 1423 1424 KA_TRACE(20, ("__kmp_fork_call: enter T#%d\n", gtid)); 1425 if (__kmp_stkpadding > 0 && __kmp_root[gtid] != NULL) { 1426 /* Some systems prefer the stack for the root thread(s) to start with */ 1427 /* some gap from the parent stack to prevent false sharing. */ 1428 void *dummy = KMP_ALLOCA(__kmp_stkpadding); 1429 /* These 2 lines below are so this does not get optimized out */ 1430 if (__kmp_stkpadding > KMP_MAX_STKPADDING) 1431 __kmp_stkpadding += (short)((kmp_int64)dummy); 1432 } 1433 1434 /* initialize if needed */ 1435 KMP_DEBUG_ASSERT( 1436 __kmp_init_serial); // AC: potentially unsafe, not in sync with shutdown 1437 if (!TCR_4(__kmp_init_parallel)) 1438 __kmp_parallel_initialize(); 1439 __kmp_resume_if_soft_paused(); 1440 1441 /* setup current data */ 1442 master_th = __kmp_threads[gtid]; // AC: potentially unsafe, not in sync with 1443 // shutdown 1444 parent_team = master_th->th.th_team; 1445 master_tid = master_th->th.th_info.ds.ds_tid; 1446 master_this_cons = master_th->th.th_local.this_construct; 1447 root = master_th->th.th_root; 1448 master_active = root->r.r_active; 1449 master_set_numthreads = master_th->th.th_set_nproc; 1450 1451 #if OMPT_SUPPORT 1452 ompt_data_t ompt_parallel_data = ompt_data_none; 1453 ompt_data_t *parent_task_data; 1454 ompt_frame_t *ompt_frame; 1455 ompt_data_t *implicit_task_data; 1456 void *return_address = NULL; 1457 1458 if (ompt_enabled.enabled) { 1459 __ompt_get_task_info_internal(0, NULL, &parent_task_data, &ompt_frame, 1460 NULL, NULL); 1461 return_address = OMPT_LOAD_RETURN_ADDRESS(gtid); 1462 } 1463 #endif 1464 1465 // Nested level will be an index in the nested nthreads array 1466 level = parent_team->t.t_level; 1467 // used to launch non-serial teams even if nested is not allowed 1468 active_level = parent_team->t.t_active_level; 1469 // needed to check nesting inside the teams 1470 teams_level = master_th->th.th_teams_level; 1471 #if KMP_NESTED_HOT_TEAMS 1472 p_hot_teams = &master_th->th.th_hot_teams; 1473 if (*p_hot_teams == NULL && __kmp_hot_teams_max_level > 0) { 1474 *p_hot_teams = (kmp_hot_team_ptr_t *)__kmp_allocate( 1475 sizeof(kmp_hot_team_ptr_t) * __kmp_hot_teams_max_level); 1476 (*p_hot_teams)[0].hot_team = root->r.r_hot_team; 1477 // it is either actual or not needed (when active_level > 0) 1478 (*p_hot_teams)[0].hot_team_nth = 1; 1479 } 1480 #endif 1481 1482 #if OMPT_SUPPORT 1483 if (ompt_enabled.enabled) { 1484 if (ompt_enabled.ompt_callback_parallel_begin) { 1485 int team_size = master_set_numthreads 1486 ? master_set_numthreads 1487 : get__nproc_2(parent_team, master_tid); 1488 int flags = OMPT_INVOKER(call_context) | 1489 ((microtask == (microtask_t)__kmp_teams_master) 1490 ? ompt_parallel_league 1491 : ompt_parallel_team); 1492 ompt_callbacks.ompt_callback(ompt_callback_parallel_begin)( 1493 parent_task_data, ompt_frame, &ompt_parallel_data, team_size, flags, 1494 return_address); 1495 } 1496 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1497 } 1498 #endif 1499 1500 master_th->th.th_ident = loc; 1501 1502 if (master_th->th.th_teams_microtask && ap && 1503 microtask != (microtask_t)__kmp_teams_master && level == teams_level) { 1504 // AC: This is start of parallel that is nested inside teams construct. 1505 // The team is actual (hot), all workers are ready at the fork barrier. 1506 // No lock needed to initialize the team a bit, then free workers. 1507 parent_team->t.t_ident = loc; 1508 __kmp_alloc_argv_entries(argc, parent_team, TRUE); 1509 parent_team->t.t_argc = argc; 1510 argv = (void **)parent_team->t.t_argv; 1511 for (i = argc - 1; i >= 0; --i) 1512 *argv++ = va_arg(kmp_va_deref(ap), void *); 1513 // Increment our nested depth levels, but not increase the serialization 1514 if (parent_team == master_th->th.th_serial_team) { 1515 // AC: we are in serialized parallel 1516 __kmpc_serialized_parallel(loc, gtid); 1517 KMP_DEBUG_ASSERT(parent_team->t.t_serialized > 1); 1518 1519 if (call_context == fork_context_gnu) { 1520 // AC: need to decrement t_serialized for enquiry functions to work 1521 // correctly, will restore at join time 1522 parent_team->t.t_serialized--; 1523 return TRUE; 1524 } 1525 1526 #if OMPT_SUPPORT 1527 void *dummy; 1528 void **exit_frame_p; 1529 1530 ompt_lw_taskteam_t lw_taskteam; 1531 1532 if (ompt_enabled.enabled) { 1533 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1534 &ompt_parallel_data, return_address); 1535 exit_frame_p = &(lw_taskteam.ompt_task_info.frame.exit_frame.ptr); 1536 1537 __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0); 1538 // don't use lw_taskteam after linking. content was swaped 1539 1540 /* OMPT implicit task begin */ 1541 implicit_task_data = OMPT_CUR_TASK_DATA(master_th); 1542 if (ompt_enabled.ompt_callback_implicit_task) { 1543 OMPT_CUR_TASK_INFO(master_th) 1544 ->thread_num = __kmp_tid_from_gtid(gtid); 1545 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1546 ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th), 1547 implicit_task_data, 1, 1548 OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit); 1549 } 1550 1551 /* OMPT state */ 1552 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 1553 } else { 1554 exit_frame_p = &dummy; 1555 } 1556 #endif 1557 // AC: need to decrement t_serialized for enquiry functions to work 1558 // correctly, will restore at join time 1559 parent_team->t.t_serialized--; 1560 1561 { 1562 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1563 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1564 __kmp_invoke_microtask(microtask, gtid, 0, argc, parent_team->t.t_argv 1565 #if OMPT_SUPPORT 1566 , 1567 exit_frame_p 1568 #endif 1569 ); 1570 } 1571 1572 #if OMPT_SUPPORT 1573 if (ompt_enabled.enabled) { 1574 *exit_frame_p = NULL; 1575 OMPT_CUR_TASK_INFO(master_th)->frame.exit_frame = ompt_data_none; 1576 if (ompt_enabled.ompt_callback_implicit_task) { 1577 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1578 ompt_scope_end, NULL, implicit_task_data, 1, 1579 OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit); 1580 } 1581 ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th); 1582 __ompt_lw_taskteam_unlink(master_th); 1583 if (ompt_enabled.ompt_callback_parallel_end) { 1584 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 1585 &ompt_parallel_data, OMPT_CUR_TASK_DATA(master_th), 1586 OMPT_INVOKER(call_context) | ompt_parallel_team, 1587 return_address); 1588 } 1589 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1590 } 1591 #endif 1592 return TRUE; 1593 } 1594 1595 parent_team->t.t_pkfn = microtask; 1596 parent_team->t.t_invoke = invoker; 1597 KMP_ATOMIC_INC(&root->r.r_in_parallel); 1598 parent_team->t.t_active_level++; 1599 parent_team->t.t_level++; 1600 parent_team->t.t_def_allocator = master_th->th.th_def_allocator; // save 1601 1602 #if OMPT_SUPPORT 1603 if (ompt_enabled.enabled) { 1604 ompt_lw_taskteam_t lw_taskteam; 1605 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1606 &ompt_parallel_data, return_address); 1607 __ompt_lw_taskteam_link(&lw_taskteam, master_th, 1, true); 1608 } 1609 #endif 1610 1611 /* Change number of threads in the team if requested */ 1612 if (master_set_numthreads) { // The parallel has num_threads clause 1613 if (master_set_numthreads < master_th->th.th_teams_size.nth) { 1614 // AC: only can reduce number of threads dynamically, can't increase 1615 kmp_info_t **other_threads = parent_team->t.t_threads; 1616 parent_team->t.t_nproc = master_set_numthreads; 1617 for (i = 0; i < master_set_numthreads; ++i) { 1618 other_threads[i]->th.th_team_nproc = master_set_numthreads; 1619 } 1620 // Keep extra threads hot in the team for possible next parallels 1621 } 1622 master_th->th.th_set_nproc = 0; 1623 } 1624 1625 #if USE_DEBUGGER 1626 if (__kmp_debugging) { // Let debugger override number of threads. 1627 int nth = __kmp_omp_num_threads(loc); 1628 if (nth > 0) { // 0 means debugger doesn't want to change num threads 1629 master_set_numthreads = nth; 1630 } 1631 } 1632 #endif 1633 1634 #if USE_ITT_BUILD 1635 if (((__itt_frame_submit_v3_ptr && __itt_get_timestamp_ptr) || 1636 KMP_ITT_DEBUG) && 1637 __kmp_forkjoin_frames_mode == 3 && 1638 parent_team->t.t_active_level == 1 // only report frames at level 1 1639 && master_th->th.th_teams_size.nteams == 1) { 1640 kmp_uint64 tmp_time = __itt_get_timestamp(); 1641 master_th->th.th_frame_time = tmp_time; 1642 parent_team->t.t_region_time = tmp_time; 1643 } 1644 if (__itt_stack_caller_create_ptr) { 1645 // create new stack stitching id before entering fork barrier 1646 parent_team->t.t_stack_id = __kmp_itt_stack_caller_create(); 1647 } 1648 #endif /* USE_ITT_BUILD */ 1649 1650 KF_TRACE(10, ("__kmp_fork_call: before internal fork: root=%p, team=%p, " 1651 "master_th=%p, gtid=%d\n", 1652 root, parent_team, master_th, gtid)); 1653 __kmp_internal_fork(loc, gtid, parent_team); 1654 KF_TRACE(10, ("__kmp_fork_call: after internal fork: root=%p, team=%p, " 1655 "master_th=%p, gtid=%d\n", 1656 root, parent_team, master_th, gtid)); 1657 1658 if (call_context == fork_context_gnu) 1659 return TRUE; 1660 1661 /* Invoke microtask for MASTER thread */ 1662 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) invoke microtask = %p\n", gtid, 1663 parent_team->t.t_id, parent_team->t.t_pkfn)); 1664 1665 if (!parent_team->t.t_invoke(gtid)) { 1666 KMP_ASSERT2(0, "cannot invoke microtask for MASTER thread"); 1667 } 1668 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) done microtask = %p\n", gtid, 1669 parent_team->t.t_id, parent_team->t.t_pkfn)); 1670 KMP_MB(); /* Flush all pending memory write invalidates. */ 1671 1672 KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid)); 1673 1674 return TRUE; 1675 } // Parallel closely nested in teams construct 1676 1677 #if KMP_DEBUG 1678 if (__kmp_tasking_mode != tskm_immediate_exec) { 1679 KMP_DEBUG_ASSERT(master_th->th.th_task_team == 1680 parent_team->t.t_task_team[master_th->th.th_task_state]); 1681 } 1682 #endif 1683 1684 if (parent_team->t.t_active_level >= 1685 master_th->th.th_current_task->td_icvs.max_active_levels) { 1686 nthreads = 1; 1687 } else { 1688 int enter_teams = ((ap == NULL && active_level == 0) || 1689 (ap && teams_level > 0 && teams_level == level)); 1690 nthreads = 1691 master_set_numthreads 1692 ? master_set_numthreads 1693 : get__nproc_2( 1694 parent_team, 1695 master_tid); // TODO: get nproc directly from current task 1696 1697 // Check if we need to take forkjoin lock? (no need for serialized 1698 // parallel out of teams construct). This code moved here from 1699 // __kmp_reserve_threads() to speedup nested serialized parallels. 1700 if (nthreads > 1) { 1701 if ((get__max_active_levels(master_th) == 1 && 1702 (root->r.r_in_parallel && !enter_teams)) || 1703 (__kmp_library == library_serial)) { 1704 KC_TRACE(10, ("__kmp_fork_call: T#%d serializing team; requested %d" 1705 " threads\n", 1706 gtid, nthreads)); 1707 nthreads = 1; 1708 } 1709 } 1710 if (nthreads > 1) { 1711 /* determine how many new threads we can use */ 1712 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 1713 /* AC: If we execute teams from parallel region (on host), then teams 1714 should be created but each can only have 1 thread if nesting is 1715 disabled. If teams called from serial region, then teams and their 1716 threads should be created regardless of the nesting setting. */ 1717 nthreads = __kmp_reserve_threads(root, parent_team, master_tid, 1718 nthreads, enter_teams); 1719 if (nthreads == 1) { 1720 // Free lock for single thread execution here; for multi-thread 1721 // execution it will be freed later after team of threads created 1722 // and initialized 1723 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1724 } 1725 } 1726 } 1727 KMP_DEBUG_ASSERT(nthreads > 0); 1728 1729 // If we temporarily changed the set number of threads then restore it now 1730 master_th->th.th_set_nproc = 0; 1731 1732 /* create a serialized parallel region? */ 1733 if (nthreads == 1) { 1734 /* josh todo: hypothetical question: what do we do for OS X*? */ 1735 #if KMP_OS_LINUX && \ 1736 (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) 1737 void *args[argc]; 1738 #else 1739 void **args = (void **)KMP_ALLOCA(argc * sizeof(void *)); 1740 #endif /* KMP_OS_LINUX && ( KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || \ 1741 KMP_ARCH_AARCH64) */ 1742 1743 KA_TRACE(20, 1744 ("__kmp_fork_call: T#%d serializing parallel region\n", gtid)); 1745 1746 __kmpc_serialized_parallel(loc, gtid); 1747 1748 if (call_context == fork_context_intel) { 1749 /* TODO this sucks, use the compiler itself to pass args! :) */ 1750 master_th->th.th_serial_team->t.t_ident = loc; 1751 if (!ap) { 1752 // revert change made in __kmpc_serialized_parallel() 1753 master_th->th.th_serial_team->t.t_level--; 1754 // Get args from parent team for teams construct 1755 1756 #if OMPT_SUPPORT 1757 void *dummy; 1758 void **exit_frame_p; 1759 ompt_task_info_t *task_info; 1760 1761 ompt_lw_taskteam_t lw_taskteam; 1762 1763 if (ompt_enabled.enabled) { 1764 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1765 &ompt_parallel_data, return_address); 1766 1767 __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0); 1768 // don't use lw_taskteam after linking. content was swaped 1769 1770 task_info = OMPT_CUR_TASK_INFO(master_th); 1771 exit_frame_p = &(task_info->frame.exit_frame.ptr); 1772 if (ompt_enabled.ompt_callback_implicit_task) { 1773 OMPT_CUR_TASK_INFO(master_th) 1774 ->thread_num = __kmp_tid_from_gtid(gtid); 1775 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1776 ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th), 1777 &(task_info->task_data), 1, 1778 OMPT_CUR_TASK_INFO(master_th)->thread_num, 1779 ompt_task_implicit); 1780 } 1781 1782 /* OMPT state */ 1783 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 1784 } else { 1785 exit_frame_p = &dummy; 1786 } 1787 #endif 1788 1789 { 1790 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1791 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1792 __kmp_invoke_microtask(microtask, gtid, 0, argc, 1793 parent_team->t.t_argv 1794 #if OMPT_SUPPORT 1795 , 1796 exit_frame_p 1797 #endif 1798 ); 1799 } 1800 1801 #if OMPT_SUPPORT 1802 if (ompt_enabled.enabled) { 1803 *exit_frame_p = NULL; 1804 if (ompt_enabled.ompt_callback_implicit_task) { 1805 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1806 ompt_scope_end, NULL, &(task_info->task_data), 1, 1807 OMPT_CUR_TASK_INFO(master_th)->thread_num, 1808 ompt_task_implicit); 1809 } 1810 ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th); 1811 __ompt_lw_taskteam_unlink(master_th); 1812 if (ompt_enabled.ompt_callback_parallel_end) { 1813 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 1814 &ompt_parallel_data, parent_task_data, 1815 OMPT_INVOKER(call_context) | ompt_parallel_team, 1816 return_address); 1817 } 1818 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1819 } 1820 #endif 1821 } else if (microtask == (microtask_t)__kmp_teams_master) { 1822 KMP_DEBUG_ASSERT(master_th->th.th_team == 1823 master_th->th.th_serial_team); 1824 team = master_th->th.th_team; 1825 // team->t.t_pkfn = microtask; 1826 team->t.t_invoke = invoker; 1827 __kmp_alloc_argv_entries(argc, team, TRUE); 1828 team->t.t_argc = argc; 1829 argv = (void **)team->t.t_argv; 1830 if (ap) { 1831 for (i = argc - 1; i >= 0; --i) 1832 *argv++ = va_arg(kmp_va_deref(ap), void *); 1833 } else { 1834 for (i = 0; i < argc; ++i) 1835 // Get args from parent team for teams construct 1836 argv[i] = parent_team->t.t_argv[i]; 1837 } 1838 // AC: revert change made in __kmpc_serialized_parallel() 1839 // because initial code in teams should have level=0 1840 team->t.t_level--; 1841 // AC: call special invoker for outer "parallel" of teams construct 1842 invoker(gtid); 1843 #if OMPT_SUPPORT 1844 if (ompt_enabled.enabled) { 1845 ompt_task_info_t *task_info = OMPT_CUR_TASK_INFO(master_th); 1846 if (ompt_enabled.ompt_callback_implicit_task) { 1847 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1848 ompt_scope_end, NULL, &(task_info->task_data), 0, 1849 OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_initial); 1850 } 1851 if (ompt_enabled.ompt_callback_parallel_end) { 1852 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 1853 &ompt_parallel_data, parent_task_data, 1854 OMPT_INVOKER(call_context) | ompt_parallel_league, 1855 return_address); 1856 } 1857 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1858 } 1859 #endif 1860 } else { 1861 argv = args; 1862 for (i = argc - 1; i >= 0; --i) 1863 *argv++ = va_arg(kmp_va_deref(ap), void *); 1864 KMP_MB(); 1865 1866 #if OMPT_SUPPORT 1867 void *dummy; 1868 void **exit_frame_p; 1869 ompt_task_info_t *task_info; 1870 1871 ompt_lw_taskteam_t lw_taskteam; 1872 1873 if (ompt_enabled.enabled) { 1874 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1875 &ompt_parallel_data, return_address); 1876 __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0); 1877 // don't use lw_taskteam after linking. content was swaped 1878 task_info = OMPT_CUR_TASK_INFO(master_th); 1879 exit_frame_p = &(task_info->frame.exit_frame.ptr); 1880 1881 /* OMPT implicit task begin */ 1882 implicit_task_data = OMPT_CUR_TASK_DATA(master_th); 1883 if (ompt_enabled.ompt_callback_implicit_task) { 1884 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1885 ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th), 1886 implicit_task_data, 1, __kmp_tid_from_gtid(gtid), 1887 ompt_task_implicit); 1888 OMPT_CUR_TASK_INFO(master_th) 1889 ->thread_num = __kmp_tid_from_gtid(gtid); 1890 } 1891 1892 /* OMPT state */ 1893 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 1894 } else { 1895 exit_frame_p = &dummy; 1896 } 1897 #endif 1898 1899 { 1900 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1901 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1902 __kmp_invoke_microtask(microtask, gtid, 0, argc, args 1903 #if OMPT_SUPPORT 1904 , 1905 exit_frame_p 1906 #endif 1907 ); 1908 } 1909 1910 #if OMPT_SUPPORT 1911 if (ompt_enabled.enabled) { 1912 *exit_frame_p = NULL; 1913 if (ompt_enabled.ompt_callback_implicit_task) { 1914 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1915 ompt_scope_end, NULL, &(task_info->task_data), 1, 1916 OMPT_CUR_TASK_INFO(master_th)->thread_num, 1917 ompt_task_implicit); 1918 } 1919 1920 ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th); 1921 __ompt_lw_taskteam_unlink(master_th); 1922 if (ompt_enabled.ompt_callback_parallel_end) { 1923 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 1924 &ompt_parallel_data, parent_task_data, 1925 OMPT_INVOKER(call_context) | ompt_parallel_team, 1926 return_address); 1927 } 1928 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1929 } 1930 #endif 1931 } 1932 } else if (call_context == fork_context_gnu) { 1933 #if OMPT_SUPPORT 1934 ompt_lw_taskteam_t lwt; 1935 __ompt_lw_taskteam_init(&lwt, master_th, gtid, &ompt_parallel_data, 1936 return_address); 1937 1938 lwt.ompt_task_info.frame.exit_frame = ompt_data_none; 1939 __ompt_lw_taskteam_link(&lwt, master_th, 1); 1940 // don't use lw_taskteam after linking. content was swaped 1941 #endif 1942 1943 // we were called from GNU native code 1944 KA_TRACE(20, ("__kmp_fork_call: T#%d serial exit\n", gtid)); 1945 return FALSE; 1946 } else { 1947 KMP_ASSERT2(call_context < fork_context_last, 1948 "__kmp_fork_call: unknown fork_context parameter"); 1949 } 1950 1951 KA_TRACE(20, ("__kmp_fork_call: T#%d serial exit\n", gtid)); 1952 KMP_MB(); 1953 return FALSE; 1954 } // if (nthreads == 1) 1955 1956 // GEH: only modify the executing flag in the case when not serialized 1957 // serialized case is handled in kmpc_serialized_parallel 1958 KF_TRACE(10, ("__kmp_fork_call: parent_team_aclevel=%d, master_th=%p, " 1959 "curtask=%p, curtask_max_aclevel=%d\n", 1960 parent_team->t.t_active_level, master_th, 1961 master_th->th.th_current_task, 1962 master_th->th.th_current_task->td_icvs.max_active_levels)); 1963 // TODO: GEH - cannot do this assertion because root thread not set up as 1964 // executing 1965 // KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 1 ); 1966 master_th->th.th_current_task->td_flags.executing = 0; 1967 1968 if (!master_th->th.th_teams_microtask || level > teams_level) { 1969 /* Increment our nested depth level */ 1970 KMP_ATOMIC_INC(&root->r.r_in_parallel); 1971 } 1972 1973 // See if we need to make a copy of the ICVs. 1974 int nthreads_icv = master_th->th.th_current_task->td_icvs.nproc; 1975 if ((level + 1 < __kmp_nested_nth.used) && 1976 (__kmp_nested_nth.nth[level + 1] != nthreads_icv)) { 1977 nthreads_icv = __kmp_nested_nth.nth[level + 1]; 1978 } else { 1979 nthreads_icv = 0; // don't update 1980 } 1981 1982 // Figure out the proc_bind_policy for the new team. 1983 kmp_proc_bind_t proc_bind = master_th->th.th_set_proc_bind; 1984 kmp_proc_bind_t proc_bind_icv = 1985 proc_bind_default; // proc_bind_default means don't update 1986 if (master_th->th.th_current_task->td_icvs.proc_bind == proc_bind_false) { 1987 proc_bind = proc_bind_false; 1988 } else { 1989 if (proc_bind == proc_bind_default) { 1990 // No proc_bind clause specified; use current proc-bind-var for this 1991 // parallel region 1992 proc_bind = master_th->th.th_current_task->td_icvs.proc_bind; 1993 } 1994 /* else: The proc_bind policy was specified explicitly on parallel clause. 1995 This overrides proc-bind-var for this parallel region, but does not 1996 change proc-bind-var. */ 1997 // Figure the value of proc-bind-var for the child threads. 1998 if ((level + 1 < __kmp_nested_proc_bind.used) && 1999 (__kmp_nested_proc_bind.bind_types[level + 1] != 2000 master_th->th.th_current_task->td_icvs.proc_bind)) { 2001 proc_bind_icv = __kmp_nested_proc_bind.bind_types[level + 1]; 2002 } 2003 } 2004 2005 // Reset for next parallel region 2006 master_th->th.th_set_proc_bind = proc_bind_default; 2007 2008 if ((nthreads_icv > 0) || (proc_bind_icv != proc_bind_default)) { 2009 kmp_internal_control_t new_icvs; 2010 copy_icvs(&new_icvs, &master_th->th.th_current_task->td_icvs); 2011 new_icvs.next = NULL; 2012 if (nthreads_icv > 0) { 2013 new_icvs.nproc = nthreads_icv; 2014 } 2015 if (proc_bind_icv != proc_bind_default) { 2016 new_icvs.proc_bind = proc_bind_icv; 2017 } 2018 2019 /* allocate a new parallel team */ 2020 KF_TRACE(10, ("__kmp_fork_call: before __kmp_allocate_team\n")); 2021 team = __kmp_allocate_team(root, nthreads, nthreads, 2022 #if OMPT_SUPPORT 2023 ompt_parallel_data, 2024 #endif 2025 proc_bind, &new_icvs, 2026 argc USE_NESTED_HOT_ARG(master_th)); 2027 } else { 2028 /* allocate a new parallel team */ 2029 KF_TRACE(10, ("__kmp_fork_call: before __kmp_allocate_team\n")); 2030 team = __kmp_allocate_team(root, nthreads, nthreads, 2031 #if OMPT_SUPPORT 2032 ompt_parallel_data, 2033 #endif 2034 proc_bind, 2035 &master_th->th.th_current_task->td_icvs, 2036 argc USE_NESTED_HOT_ARG(master_th)); 2037 } 2038 KF_TRACE( 2039 10, ("__kmp_fork_call: after __kmp_allocate_team - team = %p\n", team)); 2040 2041 /* setup the new team */ 2042 KMP_CHECK_UPDATE(team->t.t_master_tid, master_tid); 2043 KMP_CHECK_UPDATE(team->t.t_master_this_cons, master_this_cons); 2044 KMP_CHECK_UPDATE(team->t.t_ident, loc); 2045 KMP_CHECK_UPDATE(team->t.t_parent, parent_team); 2046 KMP_CHECK_UPDATE_SYNC(team->t.t_pkfn, microtask); 2047 #if OMPT_SUPPORT 2048 KMP_CHECK_UPDATE_SYNC(team->t.ompt_team_info.master_return_address, 2049 return_address); 2050 #endif 2051 KMP_CHECK_UPDATE(team->t.t_invoke, invoker); // TODO move to root, maybe 2052 // TODO: parent_team->t.t_level == INT_MAX ??? 2053 if (!master_th->th.th_teams_microtask || level > teams_level) { 2054 int new_level = parent_team->t.t_level + 1; 2055 KMP_CHECK_UPDATE(team->t.t_level, new_level); 2056 new_level = parent_team->t.t_active_level + 1; 2057 KMP_CHECK_UPDATE(team->t.t_active_level, new_level); 2058 } else { 2059 // AC: Do not increase parallel level at start of the teams construct 2060 int new_level = parent_team->t.t_level; 2061 KMP_CHECK_UPDATE(team->t.t_level, new_level); 2062 new_level = parent_team->t.t_active_level; 2063 KMP_CHECK_UPDATE(team->t.t_active_level, new_level); 2064 } 2065 kmp_r_sched_t new_sched = get__sched_2(parent_team, master_tid); 2066 // set master's schedule as new run-time schedule 2067 KMP_CHECK_UPDATE(team->t.t_sched.sched, new_sched.sched); 2068 2069 KMP_CHECK_UPDATE(team->t.t_cancel_request, cancel_noreq); 2070 KMP_CHECK_UPDATE(team->t.t_def_allocator, master_th->th.th_def_allocator); 2071 2072 // Update the floating point rounding in the team if required. 2073 propagateFPControl(team); 2074 2075 if (__kmp_tasking_mode != tskm_immediate_exec) { 2076 // Set master's task team to team's task team. Unless this is hot team, it 2077 // should be NULL. 2078 KMP_DEBUG_ASSERT(master_th->th.th_task_team == 2079 parent_team->t.t_task_team[master_th->th.th_task_state]); 2080 KA_TRACE(20, ("__kmp_fork_call: Master T#%d pushing task_team %p / team " 2081 "%p, new task_team %p / team %p\n", 2082 __kmp_gtid_from_thread(master_th), 2083 master_th->th.th_task_team, parent_team, 2084 team->t.t_task_team[master_th->th.th_task_state], team)); 2085 2086 if (active_level || master_th->th.th_task_team) { 2087 // Take a memo of master's task_state 2088 KMP_DEBUG_ASSERT(master_th->th.th_task_state_memo_stack); 2089 if (master_th->th.th_task_state_top >= 2090 master_th->th.th_task_state_stack_sz) { // increase size 2091 kmp_uint32 new_size = 2 * master_th->th.th_task_state_stack_sz; 2092 kmp_uint8 *old_stack, *new_stack; 2093 kmp_uint32 i; 2094 new_stack = (kmp_uint8 *)__kmp_allocate(new_size); 2095 for (i = 0; i < master_th->th.th_task_state_stack_sz; ++i) { 2096 new_stack[i] = master_th->th.th_task_state_memo_stack[i]; 2097 } 2098 for (i = master_th->th.th_task_state_stack_sz; i < new_size; 2099 ++i) { // zero-init rest of stack 2100 new_stack[i] = 0; 2101 } 2102 old_stack = master_th->th.th_task_state_memo_stack; 2103 master_th->th.th_task_state_memo_stack = new_stack; 2104 master_th->th.th_task_state_stack_sz = new_size; 2105 __kmp_free(old_stack); 2106 } 2107 // Store master's task_state on stack 2108 master_th->th 2109 .th_task_state_memo_stack[master_th->th.th_task_state_top] = 2110 master_th->th.th_task_state; 2111 master_th->th.th_task_state_top++; 2112 #if KMP_NESTED_HOT_TEAMS 2113 if (master_th->th.th_hot_teams && 2114 active_level < __kmp_hot_teams_max_level && 2115 team == master_th->th.th_hot_teams[active_level].hot_team) { 2116 // Restore master's nested state if nested hot team 2117 master_th->th.th_task_state = 2118 master_th->th 2119 .th_task_state_memo_stack[master_th->th.th_task_state_top]; 2120 } else { 2121 #endif 2122 master_th->th.th_task_state = 0; 2123 #if KMP_NESTED_HOT_TEAMS 2124 } 2125 #endif 2126 } 2127 #if !KMP_NESTED_HOT_TEAMS 2128 KMP_DEBUG_ASSERT((master_th->th.th_task_team == NULL) || 2129 (team == root->r.r_hot_team)); 2130 #endif 2131 } 2132 2133 KA_TRACE( 2134 20, 2135 ("__kmp_fork_call: T#%d(%d:%d)->(%d:0) created a team of %d threads\n", 2136 gtid, parent_team->t.t_id, team->t.t_master_tid, team->t.t_id, 2137 team->t.t_nproc)); 2138 KMP_DEBUG_ASSERT(team != root->r.r_hot_team || 2139 (team->t.t_master_tid == 0 && 2140 (team->t.t_parent == root->r.r_root_team || 2141 team->t.t_parent->t.t_serialized))); 2142 KMP_MB(); 2143 2144 /* now, setup the arguments */ 2145 argv = (void **)team->t.t_argv; 2146 if (ap) { 2147 for (i = argc - 1; i >= 0; --i) { 2148 void *new_argv = va_arg(kmp_va_deref(ap), void *); 2149 KMP_CHECK_UPDATE(*argv, new_argv); 2150 argv++; 2151 } 2152 } else { 2153 for (i = 0; i < argc; ++i) { 2154 // Get args from parent team for teams construct 2155 KMP_CHECK_UPDATE(argv[i], team->t.t_parent->t.t_argv[i]); 2156 } 2157 } 2158 2159 /* now actually fork the threads */ 2160 KMP_CHECK_UPDATE(team->t.t_master_active, master_active); 2161 if (!root->r.r_active) // Only do assignment if it prevents cache ping-pong 2162 root->r.r_active = TRUE; 2163 2164 __kmp_fork_team_threads(root, team, master_th, gtid); 2165 __kmp_setup_icv_copy(team, nthreads, 2166 &master_th->th.th_current_task->td_icvs, loc); 2167 2168 #if OMPT_SUPPORT 2169 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 2170 #endif 2171 2172 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 2173 2174 #if USE_ITT_BUILD 2175 if (team->t.t_active_level == 1 // only report frames at level 1 2176 && !master_th->th.th_teams_microtask) { // not in teams construct 2177 #if USE_ITT_NOTIFY 2178 if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) && 2179 (__kmp_forkjoin_frames_mode == 3 || 2180 __kmp_forkjoin_frames_mode == 1)) { 2181 kmp_uint64 tmp_time = 0; 2182 if (__itt_get_timestamp_ptr) 2183 tmp_time = __itt_get_timestamp(); 2184 // Internal fork - report frame begin 2185 master_th->th.th_frame_time = tmp_time; 2186 if (__kmp_forkjoin_frames_mode == 3) 2187 team->t.t_region_time = tmp_time; 2188 } else 2189 // only one notification scheme (either "submit" or "forking/joined", not both) 2190 #endif /* USE_ITT_NOTIFY */ 2191 if ((__itt_frame_begin_v3_ptr || KMP_ITT_DEBUG) && 2192 __kmp_forkjoin_frames && !__kmp_forkjoin_frames_mode) { 2193 // Mark start of "parallel" region for Intel(R) VTune(TM) analyzer. 2194 __kmp_itt_region_forking(gtid, team->t.t_nproc, 0); 2195 } 2196 } 2197 #endif /* USE_ITT_BUILD */ 2198 2199 /* now go on and do the work */ 2200 KMP_DEBUG_ASSERT(team == __kmp_threads[gtid]->th.th_team); 2201 KMP_MB(); 2202 KF_TRACE(10, 2203 ("__kmp_internal_fork : root=%p, team=%p, master_th=%p, gtid=%d\n", 2204 root, team, master_th, gtid)); 2205 2206 #if USE_ITT_BUILD 2207 if (__itt_stack_caller_create_ptr) { 2208 team->t.t_stack_id = 2209 __kmp_itt_stack_caller_create(); // create new stack stitching id 2210 // before entering fork barrier 2211 } 2212 #endif /* USE_ITT_BUILD */ 2213 2214 // AC: skip __kmp_internal_fork at teams construct, let only master 2215 // threads execute 2216 if (ap) { 2217 __kmp_internal_fork(loc, gtid, team); 2218 KF_TRACE(10, ("__kmp_internal_fork : after : root=%p, team=%p, " 2219 "master_th=%p, gtid=%d\n", 2220 root, team, master_th, gtid)); 2221 } 2222 2223 if (call_context == fork_context_gnu) { 2224 KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid)); 2225 return TRUE; 2226 } 2227 2228 /* Invoke microtask for MASTER thread */ 2229 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) invoke microtask = %p\n", gtid, 2230 team->t.t_id, team->t.t_pkfn)); 2231 } // END of timer KMP_fork_call block 2232 2233 #if KMP_STATS_ENABLED 2234 // If beginning a teams construct, then change thread state 2235 stats_state_e previous_state = KMP_GET_THREAD_STATE(); 2236 if (!ap) { 2237 KMP_SET_THREAD_STATE(stats_state_e::TEAMS_REGION); 2238 } 2239 #endif 2240 2241 if (!team->t.t_invoke(gtid)) { 2242 KMP_ASSERT2(0, "cannot invoke microtask for MASTER thread"); 2243 } 2244 2245 #if KMP_STATS_ENABLED 2246 // If was beginning of a teams construct, then reset thread state 2247 if (!ap) { 2248 KMP_SET_THREAD_STATE(previous_state); 2249 } 2250 #endif 2251 2252 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) done microtask = %p\n", gtid, 2253 team->t.t_id, team->t.t_pkfn)); 2254 KMP_MB(); /* Flush all pending memory write invalidates. */ 2255 2256 KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid)); 2257 2258 #if OMPT_SUPPORT 2259 if (ompt_enabled.enabled) { 2260 master_th->th.ompt_thread_info.state = ompt_state_overhead; 2261 } 2262 #endif 2263 2264 return TRUE; 2265 } 2266 2267 #if OMPT_SUPPORT 2268 static inline void __kmp_join_restore_state(kmp_info_t *thread, 2269 kmp_team_t *team) { 2270 // restore state outside the region 2271 thread->th.ompt_thread_info.state = 2272 ((team->t.t_serialized) ? ompt_state_work_serial 2273 : ompt_state_work_parallel); 2274 } 2275 2276 static inline void __kmp_join_ompt(int gtid, kmp_info_t *thread, 2277 kmp_team_t *team, ompt_data_t *parallel_data, 2278 int flags, void *codeptr) { 2279 ompt_task_info_t *task_info = __ompt_get_task_info_object(0); 2280 if (ompt_enabled.ompt_callback_parallel_end) { 2281 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 2282 parallel_data, &(task_info->task_data), flags, codeptr); 2283 } 2284 2285 task_info->frame.enter_frame = ompt_data_none; 2286 __kmp_join_restore_state(thread, team); 2287 } 2288 #endif 2289 2290 void __kmp_join_call(ident_t *loc, int gtid 2291 #if OMPT_SUPPORT 2292 , 2293 enum fork_context_e fork_context 2294 #endif 2295 , 2296 int exit_teams) { 2297 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_join_call); 2298 kmp_team_t *team; 2299 kmp_team_t *parent_team; 2300 kmp_info_t *master_th; 2301 kmp_root_t *root; 2302 int master_active; 2303 2304 KA_TRACE(20, ("__kmp_join_call: enter T#%d\n", gtid)); 2305 2306 /* setup current data */ 2307 master_th = __kmp_threads[gtid]; 2308 root = master_th->th.th_root; 2309 team = master_th->th.th_team; 2310 parent_team = team->t.t_parent; 2311 2312 master_th->th.th_ident = loc; 2313 2314 #if OMPT_SUPPORT 2315 void *team_microtask = (void *)team->t.t_pkfn; 2316 // For GOMP interface with serialized parallel, need the 2317 // __kmpc_end_serialized_parallel to call hooks for OMPT end-implicit-task 2318 // and end-parallel events. 2319 if (ompt_enabled.enabled && 2320 !(team->t.t_serialized && fork_context == fork_context_gnu)) { 2321 master_th->th.ompt_thread_info.state = ompt_state_overhead; 2322 } 2323 #endif 2324 2325 #if KMP_DEBUG 2326 if (__kmp_tasking_mode != tskm_immediate_exec && !exit_teams) { 2327 KA_TRACE(20, ("__kmp_join_call: T#%d, old team = %p old task_team = %p, " 2328 "th_task_team = %p\n", 2329 __kmp_gtid_from_thread(master_th), team, 2330 team->t.t_task_team[master_th->th.th_task_state], 2331 master_th->th.th_task_team)); 2332 KMP_DEBUG_ASSERT(master_th->th.th_task_team == 2333 team->t.t_task_team[master_th->th.th_task_state]); 2334 } 2335 #endif 2336 2337 if (team->t.t_serialized) { 2338 if (master_th->th.th_teams_microtask) { 2339 // We are in teams construct 2340 int level = team->t.t_level; 2341 int tlevel = master_th->th.th_teams_level; 2342 if (level == tlevel) { 2343 // AC: we haven't incremented it earlier at start of teams construct, 2344 // so do it here - at the end of teams construct 2345 team->t.t_level++; 2346 } else if (level == tlevel + 1) { 2347 // AC: we are exiting parallel inside teams, need to increment 2348 // serialization in order to restore it in the next call to 2349 // __kmpc_end_serialized_parallel 2350 team->t.t_serialized++; 2351 } 2352 } 2353 __kmpc_end_serialized_parallel(loc, gtid); 2354 2355 #if OMPT_SUPPORT 2356 if (ompt_enabled.enabled) { 2357 __kmp_join_restore_state(master_th, parent_team); 2358 } 2359 #endif 2360 2361 return; 2362 } 2363 2364 master_active = team->t.t_master_active; 2365 2366 if (!exit_teams) { 2367 // AC: No barrier for internal teams at exit from teams construct. 2368 // But there is barrier for external team (league). 2369 __kmp_internal_join(loc, gtid, team); 2370 } else { 2371 master_th->th.th_task_state = 2372 0; // AC: no tasking in teams (out of any parallel) 2373 } 2374 2375 KMP_MB(); 2376 2377 #if OMPT_SUPPORT 2378 ompt_data_t *parallel_data = &(team->t.ompt_team_info.parallel_data); 2379 void *codeptr = team->t.ompt_team_info.master_return_address; 2380 #endif 2381 2382 #if USE_ITT_BUILD 2383 if (__itt_stack_caller_create_ptr) { 2384 // destroy the stack stitching id after join barrier 2385 __kmp_itt_stack_caller_destroy((__itt_caller)team->t.t_stack_id); 2386 } 2387 // Mark end of "parallel" region for Intel(R) VTune(TM) analyzer. 2388 if (team->t.t_active_level == 1 && 2389 (!master_th->th.th_teams_microtask || /* not in teams construct */ 2390 master_th->th.th_teams_size.nteams == 1)) { 2391 master_th->th.th_ident = loc; 2392 // only one notification scheme (either "submit" or "forking/joined", not 2393 // both) 2394 if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) && 2395 __kmp_forkjoin_frames_mode == 3) 2396 __kmp_itt_frame_submit(gtid, team->t.t_region_time, 2397 master_th->th.th_frame_time, 0, loc, 2398 master_th->th.th_team_nproc, 1); 2399 else if ((__itt_frame_end_v3_ptr || KMP_ITT_DEBUG) && 2400 !__kmp_forkjoin_frames_mode && __kmp_forkjoin_frames) 2401 __kmp_itt_region_joined(gtid); 2402 } // active_level == 1 2403 #endif /* USE_ITT_BUILD */ 2404 2405 if (master_th->th.th_teams_microtask && !exit_teams && 2406 team->t.t_pkfn != (microtask_t)__kmp_teams_master && 2407 team->t.t_level == master_th->th.th_teams_level + 1) { 2408 // AC: We need to leave the team structure intact at the end of parallel 2409 // inside the teams construct, so that at the next parallel same (hot) team 2410 // works, only adjust nesting levels 2411 #if OMPT_SUPPORT 2412 ompt_data_t ompt_parallel_data = ompt_data_none; 2413 if (ompt_enabled.enabled) { 2414 ompt_task_info_t *task_info = __ompt_get_task_info_object(0); 2415 if (ompt_enabled.ompt_callback_implicit_task) { 2416 int ompt_team_size = team->t.t_nproc; 2417 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 2418 ompt_scope_end, NULL, &(task_info->task_data), ompt_team_size, 2419 OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit); 2420 } 2421 task_info->frame.exit_frame = ompt_data_none; 2422 task_info->task_data = ompt_data_none; 2423 ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th); 2424 __ompt_lw_taskteam_unlink(master_th); 2425 } 2426 #endif 2427 /* Decrement our nested depth level */ 2428 team->t.t_level--; 2429 team->t.t_active_level--; 2430 KMP_ATOMIC_DEC(&root->r.r_in_parallel); 2431 2432 // Restore number of threads in the team if needed. This code relies on 2433 // the proper adjustment of th_teams_size.nth after the fork in 2434 // __kmp_teams_master on each teams master in the case that 2435 // __kmp_reserve_threads reduced it. 2436 if (master_th->th.th_team_nproc < master_th->th.th_teams_size.nth) { 2437 int old_num = master_th->th.th_team_nproc; 2438 int new_num = master_th->th.th_teams_size.nth; 2439 kmp_info_t **other_threads = team->t.t_threads; 2440 team->t.t_nproc = new_num; 2441 for (int i = 0; i < old_num; ++i) { 2442 other_threads[i]->th.th_team_nproc = new_num; 2443 } 2444 // Adjust states of non-used threads of the team 2445 for (int i = old_num; i < new_num; ++i) { 2446 // Re-initialize thread's barrier data. 2447 KMP_DEBUG_ASSERT(other_threads[i]); 2448 kmp_balign_t *balign = other_threads[i]->th.th_bar; 2449 for (int b = 0; b < bs_last_barrier; ++b) { 2450 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 2451 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 2452 #if USE_DEBUGGER 2453 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 2454 #endif 2455 } 2456 if (__kmp_tasking_mode != tskm_immediate_exec) { 2457 // Synchronize thread's task state 2458 other_threads[i]->th.th_task_state = master_th->th.th_task_state; 2459 } 2460 } 2461 } 2462 2463 #if OMPT_SUPPORT 2464 if (ompt_enabled.enabled) { 2465 __kmp_join_ompt(gtid, master_th, parent_team, &ompt_parallel_data, 2466 OMPT_INVOKER(fork_context) | ompt_parallel_team, codeptr); 2467 } 2468 #endif 2469 2470 return; 2471 } 2472 2473 /* do cleanup and restore the parent team */ 2474 master_th->th.th_info.ds.ds_tid = team->t.t_master_tid; 2475 master_th->th.th_local.this_construct = team->t.t_master_this_cons; 2476 2477 master_th->th.th_dispatch = &parent_team->t.t_dispatch[team->t.t_master_tid]; 2478 2479 /* jc: The following lock has instructions with REL and ACQ semantics, 2480 separating the parallel user code called in this parallel region 2481 from the serial user code called after this function returns. */ 2482 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 2483 2484 if (!master_th->th.th_teams_microtask || 2485 team->t.t_level > master_th->th.th_teams_level) { 2486 /* Decrement our nested depth level */ 2487 KMP_ATOMIC_DEC(&root->r.r_in_parallel); 2488 } 2489 KMP_DEBUG_ASSERT(root->r.r_in_parallel >= 0); 2490 2491 #if OMPT_SUPPORT 2492 if (ompt_enabled.enabled) { 2493 ompt_task_info_t *task_info = __ompt_get_task_info_object(0); 2494 if (ompt_enabled.ompt_callback_implicit_task) { 2495 int flags = (team_microtask == (void *)__kmp_teams_master) 2496 ? ompt_task_initial 2497 : ompt_task_implicit; 2498 int ompt_team_size = (flags == ompt_task_initial) ? 0 : team->t.t_nproc; 2499 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 2500 ompt_scope_end, NULL, &(task_info->task_data), ompt_team_size, 2501 OMPT_CUR_TASK_INFO(master_th)->thread_num, flags); 2502 } 2503 task_info->frame.exit_frame = ompt_data_none; 2504 task_info->task_data = ompt_data_none; 2505 } 2506 #endif 2507 2508 KF_TRACE(10, ("__kmp_join_call1: T#%d, this_thread=%p team=%p\n", 0, 2509 master_th, team)); 2510 __kmp_pop_current_task_from_thread(master_th); 2511 2512 #if KMP_AFFINITY_SUPPORTED 2513 // Restore master thread's partition. 2514 master_th->th.th_first_place = team->t.t_first_place; 2515 master_th->th.th_last_place = team->t.t_last_place; 2516 #endif // KMP_AFFINITY_SUPPORTED 2517 master_th->th.th_def_allocator = team->t.t_def_allocator; 2518 2519 updateHWFPControl(team); 2520 2521 if (root->r.r_active != master_active) 2522 root->r.r_active = master_active; 2523 2524 __kmp_free_team(root, team USE_NESTED_HOT_ARG( 2525 master_th)); // this will free worker threads 2526 2527 /* this race was fun to find. make sure the following is in the critical 2528 region otherwise assertions may fail occasionally since the old team may be 2529 reallocated and the hierarchy appears inconsistent. it is actually safe to 2530 run and won't cause any bugs, but will cause those assertion failures. it's 2531 only one deref&assign so might as well put this in the critical region */ 2532 master_th->th.th_team = parent_team; 2533 master_th->th.th_team_nproc = parent_team->t.t_nproc; 2534 master_th->th.th_team_master = parent_team->t.t_threads[0]; 2535 master_th->th.th_team_serialized = parent_team->t.t_serialized; 2536 2537 /* restore serialized team, if need be */ 2538 if (parent_team->t.t_serialized && 2539 parent_team != master_th->th.th_serial_team && 2540 parent_team != root->r.r_root_team) { 2541 __kmp_free_team(root, 2542 master_th->th.th_serial_team USE_NESTED_HOT_ARG(NULL)); 2543 master_th->th.th_serial_team = parent_team; 2544 } 2545 2546 if (__kmp_tasking_mode != tskm_immediate_exec) { 2547 if (master_th->th.th_task_state_top > 2548 0) { // Restore task state from memo stack 2549 KMP_DEBUG_ASSERT(master_th->th.th_task_state_memo_stack); 2550 // Remember master's state if we re-use this nested hot team 2551 master_th->th.th_task_state_memo_stack[master_th->th.th_task_state_top] = 2552 master_th->th.th_task_state; 2553 --master_th->th.th_task_state_top; // pop 2554 // Now restore state at this level 2555 master_th->th.th_task_state = 2556 master_th->th 2557 .th_task_state_memo_stack[master_th->th.th_task_state_top]; 2558 } 2559 // Copy the task team from the parent team to the master thread 2560 master_th->th.th_task_team = 2561 parent_team->t.t_task_team[master_th->th.th_task_state]; 2562 KA_TRACE(20, 2563 ("__kmp_join_call: Master T#%d restoring task_team %p / team %p\n", 2564 __kmp_gtid_from_thread(master_th), master_th->th.th_task_team, 2565 parent_team)); 2566 } 2567 2568 // TODO: GEH - cannot do this assertion because root thread not set up as 2569 // executing 2570 // KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 0 ); 2571 master_th->th.th_current_task->td_flags.executing = 1; 2572 2573 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 2574 2575 #if OMPT_SUPPORT 2576 int flags = 2577 OMPT_INVOKER(fork_context) | 2578 ((team_microtask == (void *)__kmp_teams_master) ? ompt_parallel_league 2579 : ompt_parallel_team); 2580 if (ompt_enabled.enabled) { 2581 __kmp_join_ompt(gtid, master_th, parent_team, parallel_data, flags, 2582 codeptr); 2583 } 2584 #endif 2585 2586 KMP_MB(); 2587 KA_TRACE(20, ("__kmp_join_call: exit T#%d\n", gtid)); 2588 } 2589 2590 /* Check whether we should push an internal control record onto the 2591 serial team stack. If so, do it. */ 2592 void __kmp_save_internal_controls(kmp_info_t *thread) { 2593 2594 if (thread->th.th_team != thread->th.th_serial_team) { 2595 return; 2596 } 2597 if (thread->th.th_team->t.t_serialized > 1) { 2598 int push = 0; 2599 2600 if (thread->th.th_team->t.t_control_stack_top == NULL) { 2601 push = 1; 2602 } else { 2603 if (thread->th.th_team->t.t_control_stack_top->serial_nesting_level != 2604 thread->th.th_team->t.t_serialized) { 2605 push = 1; 2606 } 2607 } 2608 if (push) { /* push a record on the serial team's stack */ 2609 kmp_internal_control_t *control = 2610 (kmp_internal_control_t *)__kmp_allocate( 2611 sizeof(kmp_internal_control_t)); 2612 2613 copy_icvs(control, &thread->th.th_current_task->td_icvs); 2614 2615 control->serial_nesting_level = thread->th.th_team->t.t_serialized; 2616 2617 control->next = thread->th.th_team->t.t_control_stack_top; 2618 thread->th.th_team->t.t_control_stack_top = control; 2619 } 2620 } 2621 } 2622 2623 /* Changes set_nproc */ 2624 void __kmp_set_num_threads(int new_nth, int gtid) { 2625 kmp_info_t *thread; 2626 kmp_root_t *root; 2627 2628 KF_TRACE(10, ("__kmp_set_num_threads: new __kmp_nth = %d\n", new_nth)); 2629 KMP_DEBUG_ASSERT(__kmp_init_serial); 2630 2631 if (new_nth < 1) 2632 new_nth = 1; 2633 else if (new_nth > __kmp_max_nth) 2634 new_nth = __kmp_max_nth; 2635 2636 KMP_COUNT_VALUE(OMP_set_numthreads, new_nth); 2637 thread = __kmp_threads[gtid]; 2638 if (thread->th.th_current_task->td_icvs.nproc == new_nth) 2639 return; // nothing to do 2640 2641 __kmp_save_internal_controls(thread); 2642 2643 set__nproc(thread, new_nth); 2644 2645 // If this omp_set_num_threads() call will cause the hot team size to be 2646 // reduced (in the absence of a num_threads clause), then reduce it now, 2647 // rather than waiting for the next parallel region. 2648 root = thread->th.th_root; 2649 if (__kmp_init_parallel && (!root->r.r_active) && 2650 (root->r.r_hot_team->t.t_nproc > new_nth) 2651 #if KMP_NESTED_HOT_TEAMS 2652 && __kmp_hot_teams_max_level && !__kmp_hot_teams_mode 2653 #endif 2654 ) { 2655 kmp_team_t *hot_team = root->r.r_hot_team; 2656 int f; 2657 2658 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 2659 2660 // Release the extra threads we don't need any more. 2661 for (f = new_nth; f < hot_team->t.t_nproc; f++) { 2662 KMP_DEBUG_ASSERT(hot_team->t.t_threads[f] != NULL); 2663 if (__kmp_tasking_mode != tskm_immediate_exec) { 2664 // When decreasing team size, threads no longer in the team should unref 2665 // task team. 2666 hot_team->t.t_threads[f]->th.th_task_team = NULL; 2667 } 2668 __kmp_free_thread(hot_team->t.t_threads[f]); 2669 hot_team->t.t_threads[f] = NULL; 2670 } 2671 hot_team->t.t_nproc = new_nth; 2672 #if KMP_NESTED_HOT_TEAMS 2673 if (thread->th.th_hot_teams) { 2674 KMP_DEBUG_ASSERT(hot_team == thread->th.th_hot_teams[0].hot_team); 2675 thread->th.th_hot_teams[0].hot_team_nth = new_nth; 2676 } 2677 #endif 2678 2679 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 2680 2681 // Update the t_nproc field in the threads that are still active. 2682 for (f = 0; f < new_nth; f++) { 2683 KMP_DEBUG_ASSERT(hot_team->t.t_threads[f] != NULL); 2684 hot_team->t.t_threads[f]->th.th_team_nproc = new_nth; 2685 } 2686 // Special flag in case omp_set_num_threads() call 2687 hot_team->t.t_size_changed = -1; 2688 } 2689 } 2690 2691 /* Changes max_active_levels */ 2692 void __kmp_set_max_active_levels(int gtid, int max_active_levels) { 2693 kmp_info_t *thread; 2694 2695 KF_TRACE(10, ("__kmp_set_max_active_levels: new max_active_levels for thread " 2696 "%d = (%d)\n", 2697 gtid, max_active_levels)); 2698 KMP_DEBUG_ASSERT(__kmp_init_serial); 2699 2700 // validate max_active_levels 2701 if (max_active_levels < 0) { 2702 KMP_WARNING(ActiveLevelsNegative, max_active_levels); 2703 // We ignore this call if the user has specified a negative value. 2704 // The current setting won't be changed. The last valid setting will be 2705 // used. A warning will be issued (if warnings are allowed as controlled by 2706 // the KMP_WARNINGS env var). 2707 KF_TRACE(10, ("__kmp_set_max_active_levels: the call is ignored: new " 2708 "max_active_levels for thread %d = (%d)\n", 2709 gtid, max_active_levels)); 2710 return; 2711 } 2712 if (max_active_levels <= KMP_MAX_ACTIVE_LEVELS_LIMIT) { 2713 // it's OK, the max_active_levels is within the valid range: [ 0; 2714 // KMP_MAX_ACTIVE_LEVELS_LIMIT ] 2715 // We allow a zero value. (implementation defined behavior) 2716 } else { 2717 KMP_WARNING(ActiveLevelsExceedLimit, max_active_levels, 2718 KMP_MAX_ACTIVE_LEVELS_LIMIT); 2719 max_active_levels = KMP_MAX_ACTIVE_LEVELS_LIMIT; 2720 // Current upper limit is MAX_INT. (implementation defined behavior) 2721 // If the input exceeds the upper limit, we correct the input to be the 2722 // upper limit. (implementation defined behavior) 2723 // Actually, the flow should never get here until we use MAX_INT limit. 2724 } 2725 KF_TRACE(10, ("__kmp_set_max_active_levels: after validation: new " 2726 "max_active_levels for thread %d = (%d)\n", 2727 gtid, max_active_levels)); 2728 2729 thread = __kmp_threads[gtid]; 2730 2731 __kmp_save_internal_controls(thread); 2732 2733 set__max_active_levels(thread, max_active_levels); 2734 } 2735 2736 /* Gets max_active_levels */ 2737 int __kmp_get_max_active_levels(int gtid) { 2738 kmp_info_t *thread; 2739 2740 KF_TRACE(10, ("__kmp_get_max_active_levels: thread %d\n", gtid)); 2741 KMP_DEBUG_ASSERT(__kmp_init_serial); 2742 2743 thread = __kmp_threads[gtid]; 2744 KMP_DEBUG_ASSERT(thread->th.th_current_task); 2745 KF_TRACE(10, ("__kmp_get_max_active_levels: thread %d, curtask=%p, " 2746 "curtask_maxaclevel=%d\n", 2747 gtid, thread->th.th_current_task, 2748 thread->th.th_current_task->td_icvs.max_active_levels)); 2749 return thread->th.th_current_task->td_icvs.max_active_levels; 2750 } 2751 2752 KMP_BUILD_ASSERT(sizeof(kmp_sched_t) == sizeof(int)); 2753 KMP_BUILD_ASSERT(sizeof(enum sched_type) == sizeof(int)); 2754 2755 /* Changes def_sched_var ICV values (run-time schedule kind and chunk) */ 2756 void __kmp_set_schedule(int gtid, kmp_sched_t kind, int chunk) { 2757 kmp_info_t *thread; 2758 kmp_sched_t orig_kind; 2759 // kmp_team_t *team; 2760 2761 KF_TRACE(10, ("__kmp_set_schedule: new schedule for thread %d = (%d, %d)\n", 2762 gtid, (int)kind, chunk)); 2763 KMP_DEBUG_ASSERT(__kmp_init_serial); 2764 2765 // Check if the kind parameter is valid, correct if needed. 2766 // Valid parameters should fit in one of two intervals - standard or extended: 2767 // <lower>, <valid>, <upper_std>, <lower_ext>, <valid>, <upper> 2768 // 2008-01-25: 0, 1 - 4, 5, 100, 101 - 102, 103 2769 orig_kind = kind; 2770 kind = __kmp_sched_without_mods(kind); 2771 2772 if (kind <= kmp_sched_lower || kind >= kmp_sched_upper || 2773 (kind <= kmp_sched_lower_ext && kind >= kmp_sched_upper_std)) { 2774 // TODO: Hint needs attention in case we change the default schedule. 2775 __kmp_msg(kmp_ms_warning, KMP_MSG(ScheduleKindOutOfRange, kind), 2776 KMP_HNT(DefaultScheduleKindUsed, "static, no chunk"), 2777 __kmp_msg_null); 2778 kind = kmp_sched_default; 2779 chunk = 0; // ignore chunk value in case of bad kind 2780 } 2781 2782 thread = __kmp_threads[gtid]; 2783 2784 __kmp_save_internal_controls(thread); 2785 2786 if (kind < kmp_sched_upper_std) { 2787 if (kind == kmp_sched_static && chunk < KMP_DEFAULT_CHUNK) { 2788 // differ static chunked vs. unchunked: chunk should be invalid to 2789 // indicate unchunked schedule (which is the default) 2790 thread->th.th_current_task->td_icvs.sched.r_sched_type = kmp_sch_static; 2791 } else { 2792 thread->th.th_current_task->td_icvs.sched.r_sched_type = 2793 __kmp_sch_map[kind - kmp_sched_lower - 1]; 2794 } 2795 } else { 2796 // __kmp_sch_map[ kind - kmp_sched_lower_ext + kmp_sched_upper_std - 2797 // kmp_sched_lower - 2 ]; 2798 thread->th.th_current_task->td_icvs.sched.r_sched_type = 2799 __kmp_sch_map[kind - kmp_sched_lower_ext + kmp_sched_upper_std - 2800 kmp_sched_lower - 2]; 2801 } 2802 __kmp_sched_apply_mods_intkind( 2803 orig_kind, &(thread->th.th_current_task->td_icvs.sched.r_sched_type)); 2804 if (kind == kmp_sched_auto || chunk < 1) { 2805 // ignore parameter chunk for schedule auto 2806 thread->th.th_current_task->td_icvs.sched.chunk = KMP_DEFAULT_CHUNK; 2807 } else { 2808 thread->th.th_current_task->td_icvs.sched.chunk = chunk; 2809 } 2810 } 2811 2812 /* Gets def_sched_var ICV values */ 2813 void __kmp_get_schedule(int gtid, kmp_sched_t *kind, int *chunk) { 2814 kmp_info_t *thread; 2815 enum sched_type th_type; 2816 2817 KF_TRACE(10, ("__kmp_get_schedule: thread %d\n", gtid)); 2818 KMP_DEBUG_ASSERT(__kmp_init_serial); 2819 2820 thread = __kmp_threads[gtid]; 2821 2822 th_type = thread->th.th_current_task->td_icvs.sched.r_sched_type; 2823 switch (SCHEDULE_WITHOUT_MODIFIERS(th_type)) { 2824 case kmp_sch_static: 2825 case kmp_sch_static_greedy: 2826 case kmp_sch_static_balanced: 2827 *kind = kmp_sched_static; 2828 __kmp_sched_apply_mods_stdkind(kind, th_type); 2829 *chunk = 0; // chunk was not set, try to show this fact via zero value 2830 return; 2831 case kmp_sch_static_chunked: 2832 *kind = kmp_sched_static; 2833 break; 2834 case kmp_sch_dynamic_chunked: 2835 *kind = kmp_sched_dynamic; 2836 break; 2837 case kmp_sch_guided_chunked: 2838 case kmp_sch_guided_iterative_chunked: 2839 case kmp_sch_guided_analytical_chunked: 2840 *kind = kmp_sched_guided; 2841 break; 2842 case kmp_sch_auto: 2843 *kind = kmp_sched_auto; 2844 break; 2845 case kmp_sch_trapezoidal: 2846 *kind = kmp_sched_trapezoidal; 2847 break; 2848 #if KMP_STATIC_STEAL_ENABLED 2849 case kmp_sch_static_steal: 2850 *kind = kmp_sched_static_steal; 2851 break; 2852 #endif 2853 default: 2854 KMP_FATAL(UnknownSchedulingType, th_type); 2855 } 2856 2857 __kmp_sched_apply_mods_stdkind(kind, th_type); 2858 *chunk = thread->th.th_current_task->td_icvs.sched.chunk; 2859 } 2860 2861 int __kmp_get_ancestor_thread_num(int gtid, int level) { 2862 2863 int ii, dd; 2864 kmp_team_t *team; 2865 kmp_info_t *thr; 2866 2867 KF_TRACE(10, ("__kmp_get_ancestor_thread_num: thread %d %d\n", gtid, level)); 2868 KMP_DEBUG_ASSERT(__kmp_init_serial); 2869 2870 // validate level 2871 if (level == 0) 2872 return 0; 2873 if (level < 0) 2874 return -1; 2875 thr = __kmp_threads[gtid]; 2876 team = thr->th.th_team; 2877 ii = team->t.t_level; 2878 if (level > ii) 2879 return -1; 2880 2881 if (thr->th.th_teams_microtask) { 2882 // AC: we are in teams region where multiple nested teams have same level 2883 int tlevel = thr->th.th_teams_level; // the level of the teams construct 2884 if (level <= 2885 tlevel) { // otherwise usual algorithm works (will not touch the teams) 2886 KMP_DEBUG_ASSERT(ii >= tlevel); 2887 // AC: As we need to pass by the teams league, we need to artificially 2888 // increase ii 2889 if (ii == tlevel) { 2890 ii += 2; // three teams have same level 2891 } else { 2892 ii++; // two teams have same level 2893 } 2894 } 2895 } 2896 2897 if (ii == level) 2898 return __kmp_tid_from_gtid(gtid); 2899 2900 dd = team->t.t_serialized; 2901 level++; 2902 while (ii > level) { 2903 for (dd = team->t.t_serialized; (dd > 0) && (ii > level); dd--, ii--) { 2904 } 2905 if ((team->t.t_serialized) && (!dd)) { 2906 team = team->t.t_parent; 2907 continue; 2908 } 2909 if (ii > level) { 2910 team = team->t.t_parent; 2911 dd = team->t.t_serialized; 2912 ii--; 2913 } 2914 } 2915 2916 return (dd > 1) ? (0) : (team->t.t_master_tid); 2917 } 2918 2919 int __kmp_get_team_size(int gtid, int level) { 2920 2921 int ii, dd; 2922 kmp_team_t *team; 2923 kmp_info_t *thr; 2924 2925 KF_TRACE(10, ("__kmp_get_team_size: thread %d %d\n", gtid, level)); 2926 KMP_DEBUG_ASSERT(__kmp_init_serial); 2927 2928 // validate level 2929 if (level == 0) 2930 return 1; 2931 if (level < 0) 2932 return -1; 2933 thr = __kmp_threads[gtid]; 2934 team = thr->th.th_team; 2935 ii = team->t.t_level; 2936 if (level > ii) 2937 return -1; 2938 2939 if (thr->th.th_teams_microtask) { 2940 // AC: we are in teams region where multiple nested teams have same level 2941 int tlevel = thr->th.th_teams_level; // the level of the teams construct 2942 if (level <= 2943 tlevel) { // otherwise usual algorithm works (will not touch the teams) 2944 KMP_DEBUG_ASSERT(ii >= tlevel); 2945 // AC: As we need to pass by the teams league, we need to artificially 2946 // increase ii 2947 if (ii == tlevel) { 2948 ii += 2; // three teams have same level 2949 } else { 2950 ii++; // two teams have same level 2951 } 2952 } 2953 } 2954 2955 while (ii > level) { 2956 for (dd = team->t.t_serialized; (dd > 0) && (ii > level); dd--, ii--) { 2957 } 2958 if (team->t.t_serialized && (!dd)) { 2959 team = team->t.t_parent; 2960 continue; 2961 } 2962 if (ii > level) { 2963 team = team->t.t_parent; 2964 ii--; 2965 } 2966 } 2967 2968 return team->t.t_nproc; 2969 } 2970 2971 kmp_r_sched_t __kmp_get_schedule_global() { 2972 // This routine created because pairs (__kmp_sched, __kmp_chunk) and 2973 // (__kmp_static, __kmp_guided) may be changed by kmp_set_defaults 2974 // independently. So one can get the updated schedule here. 2975 2976 kmp_r_sched_t r_sched; 2977 2978 // create schedule from 4 globals: __kmp_sched, __kmp_chunk, __kmp_static, 2979 // __kmp_guided. __kmp_sched should keep original value, so that user can set 2980 // KMP_SCHEDULE multiple times, and thus have different run-time schedules in 2981 // different roots (even in OMP 2.5) 2982 enum sched_type s = SCHEDULE_WITHOUT_MODIFIERS(__kmp_sched); 2983 enum sched_type sched_modifiers = SCHEDULE_GET_MODIFIERS(__kmp_sched); 2984 if (s == kmp_sch_static) { 2985 // replace STATIC with more detailed schedule (balanced or greedy) 2986 r_sched.r_sched_type = __kmp_static; 2987 } else if (s == kmp_sch_guided_chunked) { 2988 // replace GUIDED with more detailed schedule (iterative or analytical) 2989 r_sched.r_sched_type = __kmp_guided; 2990 } else { // (STATIC_CHUNKED), or (DYNAMIC_CHUNKED), or other 2991 r_sched.r_sched_type = __kmp_sched; 2992 } 2993 SCHEDULE_SET_MODIFIERS(r_sched.r_sched_type, sched_modifiers); 2994 2995 if (__kmp_chunk < KMP_DEFAULT_CHUNK) { 2996 // __kmp_chunk may be wrong here (if it was not ever set) 2997 r_sched.chunk = KMP_DEFAULT_CHUNK; 2998 } else { 2999 r_sched.chunk = __kmp_chunk; 3000 } 3001 3002 return r_sched; 3003 } 3004 3005 /* Allocate (realloc == FALSE) * or reallocate (realloc == TRUE) 3006 at least argc number of *t_argv entries for the requested team. */ 3007 static void __kmp_alloc_argv_entries(int argc, kmp_team_t *team, int realloc) { 3008 3009 KMP_DEBUG_ASSERT(team); 3010 if (!realloc || argc > team->t.t_max_argc) { 3011 3012 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: needed entries=%d, " 3013 "current entries=%d\n", 3014 team->t.t_id, argc, (realloc) ? team->t.t_max_argc : 0)); 3015 /* if previously allocated heap space for args, free them */ 3016 if (realloc && team->t.t_argv != &team->t.t_inline_argv[0]) 3017 __kmp_free((void *)team->t.t_argv); 3018 3019 if (argc <= KMP_INLINE_ARGV_ENTRIES) { 3020 /* use unused space in the cache line for arguments */ 3021 team->t.t_max_argc = KMP_INLINE_ARGV_ENTRIES; 3022 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: inline allocate %d " 3023 "argv entries\n", 3024 team->t.t_id, team->t.t_max_argc)); 3025 team->t.t_argv = &team->t.t_inline_argv[0]; 3026 if (__kmp_storage_map) { 3027 __kmp_print_storage_map_gtid( 3028 -1, &team->t.t_inline_argv[0], 3029 &team->t.t_inline_argv[KMP_INLINE_ARGV_ENTRIES], 3030 (sizeof(void *) * KMP_INLINE_ARGV_ENTRIES), "team_%d.t_inline_argv", 3031 team->t.t_id); 3032 } 3033 } else { 3034 /* allocate space for arguments in the heap */ 3035 team->t.t_max_argc = (argc <= (KMP_MIN_MALLOC_ARGV_ENTRIES >> 1)) 3036 ? KMP_MIN_MALLOC_ARGV_ENTRIES 3037 : 2 * argc; 3038 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: dynamic allocate %d " 3039 "argv entries\n", 3040 team->t.t_id, team->t.t_max_argc)); 3041 team->t.t_argv = 3042 (void **)__kmp_page_allocate(sizeof(void *) * team->t.t_max_argc); 3043 if (__kmp_storage_map) { 3044 __kmp_print_storage_map_gtid(-1, &team->t.t_argv[0], 3045 &team->t.t_argv[team->t.t_max_argc], 3046 sizeof(void *) * team->t.t_max_argc, 3047 "team_%d.t_argv", team->t.t_id); 3048 } 3049 } 3050 } 3051 } 3052 3053 static void __kmp_allocate_team_arrays(kmp_team_t *team, int max_nth) { 3054 int i; 3055 int num_disp_buff = max_nth > 1 ? __kmp_dispatch_num_buffers : 2; 3056 team->t.t_threads = 3057 (kmp_info_t **)__kmp_allocate(sizeof(kmp_info_t *) * max_nth); 3058 team->t.t_disp_buffer = (dispatch_shared_info_t *)__kmp_allocate( 3059 sizeof(dispatch_shared_info_t) * num_disp_buff); 3060 team->t.t_dispatch = 3061 (kmp_disp_t *)__kmp_allocate(sizeof(kmp_disp_t) * max_nth); 3062 team->t.t_implicit_task_taskdata = 3063 (kmp_taskdata_t *)__kmp_allocate(sizeof(kmp_taskdata_t) * max_nth); 3064 team->t.t_max_nproc = max_nth; 3065 3066 /* setup dispatch buffers */ 3067 for (i = 0; i < num_disp_buff; ++i) { 3068 team->t.t_disp_buffer[i].buffer_index = i; 3069 team->t.t_disp_buffer[i].doacross_buf_idx = i; 3070 } 3071 } 3072 3073 static void __kmp_free_team_arrays(kmp_team_t *team) { 3074 /* Note: this does not free the threads in t_threads (__kmp_free_threads) */ 3075 int i; 3076 for (i = 0; i < team->t.t_max_nproc; ++i) { 3077 if (team->t.t_dispatch[i].th_disp_buffer != NULL) { 3078 __kmp_free(team->t.t_dispatch[i].th_disp_buffer); 3079 team->t.t_dispatch[i].th_disp_buffer = NULL; 3080 } 3081 } 3082 #if KMP_USE_HIER_SCHED 3083 __kmp_dispatch_free_hierarchies(team); 3084 #endif 3085 __kmp_free(team->t.t_threads); 3086 __kmp_free(team->t.t_disp_buffer); 3087 __kmp_free(team->t.t_dispatch); 3088 __kmp_free(team->t.t_implicit_task_taskdata); 3089 team->t.t_threads = NULL; 3090 team->t.t_disp_buffer = NULL; 3091 team->t.t_dispatch = NULL; 3092 team->t.t_implicit_task_taskdata = 0; 3093 } 3094 3095 static void __kmp_reallocate_team_arrays(kmp_team_t *team, int max_nth) { 3096 kmp_info_t **oldThreads = team->t.t_threads; 3097 3098 __kmp_free(team->t.t_disp_buffer); 3099 __kmp_free(team->t.t_dispatch); 3100 __kmp_free(team->t.t_implicit_task_taskdata); 3101 __kmp_allocate_team_arrays(team, max_nth); 3102 3103 KMP_MEMCPY(team->t.t_threads, oldThreads, 3104 team->t.t_nproc * sizeof(kmp_info_t *)); 3105 3106 __kmp_free(oldThreads); 3107 } 3108 3109 static kmp_internal_control_t __kmp_get_global_icvs(void) { 3110 3111 kmp_r_sched_t r_sched = 3112 __kmp_get_schedule_global(); // get current state of scheduling globals 3113 3114 KMP_DEBUG_ASSERT(__kmp_nested_proc_bind.used > 0); 3115 3116 kmp_internal_control_t g_icvs = { 3117 0, // int serial_nesting_level; //corresponds to value of th_team_serialized 3118 (kmp_int8)__kmp_global.g.g_dynamic, // internal control for dynamic 3119 // adjustment of threads (per thread) 3120 (kmp_int8)__kmp_env_blocktime, // int bt_set; //internal control for 3121 // whether blocktime is explicitly set 3122 __kmp_dflt_blocktime, // int blocktime; //internal control for blocktime 3123 #if KMP_USE_MONITOR 3124 __kmp_bt_intervals, // int bt_intervals; //internal control for blocktime 3125 // intervals 3126 #endif 3127 __kmp_dflt_team_nth, // int nproc; //internal control for # of threads for 3128 // next parallel region (per thread) 3129 // (use a max ub on value if __kmp_parallel_initialize not called yet) 3130 __kmp_cg_max_nth, // int thread_limit; 3131 __kmp_dflt_max_active_levels, // int max_active_levels; //internal control 3132 // for max_active_levels 3133 r_sched, // kmp_r_sched_t sched; //internal control for runtime schedule 3134 // {sched,chunk} pair 3135 __kmp_nested_proc_bind.bind_types[0], 3136 __kmp_default_device, 3137 NULL // struct kmp_internal_control *next; 3138 }; 3139 3140 return g_icvs; 3141 } 3142 3143 static kmp_internal_control_t __kmp_get_x_global_icvs(const kmp_team_t *team) { 3144 3145 kmp_internal_control_t gx_icvs; 3146 gx_icvs.serial_nesting_level = 3147 0; // probably =team->t.t_serial like in save_inter_controls 3148 copy_icvs(&gx_icvs, &team->t.t_threads[0]->th.th_current_task->td_icvs); 3149 gx_icvs.next = NULL; 3150 3151 return gx_icvs; 3152 } 3153 3154 static void __kmp_initialize_root(kmp_root_t *root) { 3155 int f; 3156 kmp_team_t *root_team; 3157 kmp_team_t *hot_team; 3158 int hot_team_max_nth; 3159 kmp_r_sched_t r_sched = 3160 __kmp_get_schedule_global(); // get current state of scheduling globals 3161 kmp_internal_control_t r_icvs = __kmp_get_global_icvs(); 3162 KMP_DEBUG_ASSERT(root); 3163 KMP_ASSERT(!root->r.r_begin); 3164 3165 /* setup the root state structure */ 3166 __kmp_init_lock(&root->r.r_begin_lock); 3167 root->r.r_begin = FALSE; 3168 root->r.r_active = FALSE; 3169 root->r.r_in_parallel = 0; 3170 root->r.r_blocktime = __kmp_dflt_blocktime; 3171 3172 /* setup the root team for this task */ 3173 /* allocate the root team structure */ 3174 KF_TRACE(10, ("__kmp_initialize_root: before root_team\n")); 3175 3176 root_team = 3177 __kmp_allocate_team(root, 3178 1, // new_nproc 3179 1, // max_nproc 3180 #if OMPT_SUPPORT 3181 ompt_data_none, // root parallel id 3182 #endif 3183 __kmp_nested_proc_bind.bind_types[0], &r_icvs, 3184 0 // argc 3185 USE_NESTED_HOT_ARG(NULL) // master thread is unknown 3186 ); 3187 #if USE_DEBUGGER 3188 // Non-NULL value should be assigned to make the debugger display the root 3189 // team. 3190 TCW_SYNC_PTR(root_team->t.t_pkfn, (microtask_t)(~0)); 3191 #endif 3192 3193 KF_TRACE(10, ("__kmp_initialize_root: after root_team = %p\n", root_team)); 3194 3195 root->r.r_root_team = root_team; 3196 root_team->t.t_control_stack_top = NULL; 3197 3198 /* initialize root team */ 3199 root_team->t.t_threads[0] = NULL; 3200 root_team->t.t_nproc = 1; 3201 root_team->t.t_serialized = 1; 3202 // TODO???: root_team->t.t_max_active_levels = __kmp_dflt_max_active_levels; 3203 root_team->t.t_sched.sched = r_sched.sched; 3204 KA_TRACE( 3205 20, 3206 ("__kmp_initialize_root: init root team %d arrived: join=%u, plain=%u\n", 3207 root_team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 3208 3209 /* setup the hot team for this task */ 3210 /* allocate the hot team structure */ 3211 KF_TRACE(10, ("__kmp_initialize_root: before hot_team\n")); 3212 3213 hot_team = 3214 __kmp_allocate_team(root, 3215 1, // new_nproc 3216 __kmp_dflt_team_nth_ub * 2, // max_nproc 3217 #if OMPT_SUPPORT 3218 ompt_data_none, // root parallel id 3219 #endif 3220 __kmp_nested_proc_bind.bind_types[0], &r_icvs, 3221 0 // argc 3222 USE_NESTED_HOT_ARG(NULL) // master thread is unknown 3223 ); 3224 KF_TRACE(10, ("__kmp_initialize_root: after hot_team = %p\n", hot_team)); 3225 3226 root->r.r_hot_team = hot_team; 3227 root_team->t.t_control_stack_top = NULL; 3228 3229 /* first-time initialization */ 3230 hot_team->t.t_parent = root_team; 3231 3232 /* initialize hot team */ 3233 hot_team_max_nth = hot_team->t.t_max_nproc; 3234 for (f = 0; f < hot_team_max_nth; ++f) { 3235 hot_team->t.t_threads[f] = NULL; 3236 } 3237 hot_team->t.t_nproc = 1; 3238 // TODO???: hot_team->t.t_max_active_levels = __kmp_dflt_max_active_levels; 3239 hot_team->t.t_sched.sched = r_sched.sched; 3240 hot_team->t.t_size_changed = 0; 3241 } 3242 3243 #ifdef KMP_DEBUG 3244 3245 typedef struct kmp_team_list_item { 3246 kmp_team_p const *entry; 3247 struct kmp_team_list_item *next; 3248 } kmp_team_list_item_t; 3249 typedef kmp_team_list_item_t *kmp_team_list_t; 3250 3251 static void __kmp_print_structure_team_accum( // Add team to list of teams. 3252 kmp_team_list_t list, // List of teams. 3253 kmp_team_p const *team // Team to add. 3254 ) { 3255 3256 // List must terminate with item where both entry and next are NULL. 3257 // Team is added to the list only once. 3258 // List is sorted in ascending order by team id. 3259 // Team id is *not* a key. 3260 3261 kmp_team_list_t l; 3262 3263 KMP_DEBUG_ASSERT(list != NULL); 3264 if (team == NULL) { 3265 return; 3266 } 3267 3268 __kmp_print_structure_team_accum(list, team->t.t_parent); 3269 __kmp_print_structure_team_accum(list, team->t.t_next_pool); 3270 3271 // Search list for the team. 3272 l = list; 3273 while (l->next != NULL && l->entry != team) { 3274 l = l->next; 3275 } 3276 if (l->next != NULL) { 3277 return; // Team has been added before, exit. 3278 } 3279 3280 // Team is not found. Search list again for insertion point. 3281 l = list; 3282 while (l->next != NULL && l->entry->t.t_id <= team->t.t_id) { 3283 l = l->next; 3284 } 3285 3286 // Insert team. 3287 { 3288 kmp_team_list_item_t *item = (kmp_team_list_item_t *)KMP_INTERNAL_MALLOC( 3289 sizeof(kmp_team_list_item_t)); 3290 *item = *l; 3291 l->entry = team; 3292 l->next = item; 3293 } 3294 } 3295 3296 static void __kmp_print_structure_team(char const *title, kmp_team_p const *team 3297 3298 ) { 3299 __kmp_printf("%s", title); 3300 if (team != NULL) { 3301 __kmp_printf("%2x %p\n", team->t.t_id, team); 3302 } else { 3303 __kmp_printf(" - (nil)\n"); 3304 } 3305 } 3306 3307 static void __kmp_print_structure_thread(char const *title, 3308 kmp_info_p const *thread) { 3309 __kmp_printf("%s", title); 3310 if (thread != NULL) { 3311 __kmp_printf("%2d %p\n", thread->th.th_info.ds.ds_gtid, thread); 3312 } else { 3313 __kmp_printf(" - (nil)\n"); 3314 } 3315 } 3316 3317 void __kmp_print_structure(void) { 3318 3319 kmp_team_list_t list; 3320 3321 // Initialize list of teams. 3322 list = 3323 (kmp_team_list_item_t *)KMP_INTERNAL_MALLOC(sizeof(kmp_team_list_item_t)); 3324 list->entry = NULL; 3325 list->next = NULL; 3326 3327 __kmp_printf("\n------------------------------\nGlobal Thread " 3328 "Table\n------------------------------\n"); 3329 { 3330 int gtid; 3331 for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) { 3332 __kmp_printf("%2d", gtid); 3333 if (__kmp_threads != NULL) { 3334 __kmp_printf(" %p", __kmp_threads[gtid]); 3335 } 3336 if (__kmp_root != NULL) { 3337 __kmp_printf(" %p", __kmp_root[gtid]); 3338 } 3339 __kmp_printf("\n"); 3340 } 3341 } 3342 3343 // Print out __kmp_threads array. 3344 __kmp_printf("\n------------------------------\nThreads\n--------------------" 3345 "----------\n"); 3346 if (__kmp_threads != NULL) { 3347 int gtid; 3348 for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) { 3349 kmp_info_t const *thread = __kmp_threads[gtid]; 3350 if (thread != NULL) { 3351 __kmp_printf("GTID %2d %p:\n", gtid, thread); 3352 __kmp_printf(" Our Root: %p\n", thread->th.th_root); 3353 __kmp_print_structure_team(" Our Team: ", thread->th.th_team); 3354 __kmp_print_structure_team(" Serial Team: ", 3355 thread->th.th_serial_team); 3356 __kmp_printf(" Threads: %2d\n", thread->th.th_team_nproc); 3357 __kmp_print_structure_thread(" Master: ", 3358 thread->th.th_team_master); 3359 __kmp_printf(" Serialized?: %2d\n", thread->th.th_team_serialized); 3360 __kmp_printf(" Set NProc: %2d\n", thread->th.th_set_nproc); 3361 __kmp_printf(" Set Proc Bind: %2d\n", thread->th.th_set_proc_bind); 3362 __kmp_print_structure_thread(" Next in pool: ", 3363 thread->th.th_next_pool); 3364 __kmp_printf("\n"); 3365 __kmp_print_structure_team_accum(list, thread->th.th_team); 3366 __kmp_print_structure_team_accum(list, thread->th.th_serial_team); 3367 } 3368 } 3369 } else { 3370 __kmp_printf("Threads array is not allocated.\n"); 3371 } 3372 3373 // Print out __kmp_root array. 3374 __kmp_printf("\n------------------------------\nUbers\n----------------------" 3375 "--------\n"); 3376 if (__kmp_root != NULL) { 3377 int gtid; 3378 for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) { 3379 kmp_root_t const *root = __kmp_root[gtid]; 3380 if (root != NULL) { 3381 __kmp_printf("GTID %2d %p:\n", gtid, root); 3382 __kmp_print_structure_team(" Root Team: ", root->r.r_root_team); 3383 __kmp_print_structure_team(" Hot Team: ", root->r.r_hot_team); 3384 __kmp_print_structure_thread(" Uber Thread: ", 3385 root->r.r_uber_thread); 3386 __kmp_printf(" Active?: %2d\n", root->r.r_active); 3387 __kmp_printf(" In Parallel: %2d\n", 3388 KMP_ATOMIC_LD_RLX(&root->r.r_in_parallel)); 3389 __kmp_printf("\n"); 3390 __kmp_print_structure_team_accum(list, root->r.r_root_team); 3391 __kmp_print_structure_team_accum(list, root->r.r_hot_team); 3392 } 3393 } 3394 } else { 3395 __kmp_printf("Ubers array is not allocated.\n"); 3396 } 3397 3398 __kmp_printf("\n------------------------------\nTeams\n----------------------" 3399 "--------\n"); 3400 while (list->next != NULL) { 3401 kmp_team_p const *team = list->entry; 3402 int i; 3403 __kmp_printf("Team %2x %p:\n", team->t.t_id, team); 3404 __kmp_print_structure_team(" Parent Team: ", team->t.t_parent); 3405 __kmp_printf(" Master TID: %2d\n", team->t.t_master_tid); 3406 __kmp_printf(" Max threads: %2d\n", team->t.t_max_nproc); 3407 __kmp_printf(" Levels of serial: %2d\n", team->t.t_serialized); 3408 __kmp_printf(" Number threads: %2d\n", team->t.t_nproc); 3409 for (i = 0; i < team->t.t_nproc; ++i) { 3410 __kmp_printf(" Thread %2d: ", i); 3411 __kmp_print_structure_thread("", team->t.t_threads[i]); 3412 } 3413 __kmp_print_structure_team(" Next in pool: ", team->t.t_next_pool); 3414 __kmp_printf("\n"); 3415 list = list->next; 3416 } 3417 3418 // Print out __kmp_thread_pool and __kmp_team_pool. 3419 __kmp_printf("\n------------------------------\nPools\n----------------------" 3420 "--------\n"); 3421 __kmp_print_structure_thread("Thread pool: ", 3422 CCAST(kmp_info_t *, __kmp_thread_pool)); 3423 __kmp_print_structure_team("Team pool: ", 3424 CCAST(kmp_team_t *, __kmp_team_pool)); 3425 __kmp_printf("\n"); 3426 3427 // Free team list. 3428 while (list != NULL) { 3429 kmp_team_list_item_t *item = list; 3430 list = list->next; 3431 KMP_INTERNAL_FREE(item); 3432 } 3433 } 3434 3435 #endif 3436 3437 //--------------------------------------------------------------------------- 3438 // Stuff for per-thread fast random number generator 3439 // Table of primes 3440 static const unsigned __kmp_primes[] = { 3441 0x9e3779b1, 0xffe6cc59, 0x2109f6dd, 0x43977ab5, 0xba5703f5, 0xb495a877, 3442 0xe1626741, 0x79695e6b, 0xbc98c09f, 0xd5bee2b3, 0x287488f9, 0x3af18231, 3443 0x9677cd4d, 0xbe3a6929, 0xadc6a877, 0xdcf0674b, 0xbe4d6fe9, 0x5f15e201, 3444 0x99afc3fd, 0xf3f16801, 0xe222cfff, 0x24ba5fdb, 0x0620452d, 0x79f149e3, 3445 0xc8b93f49, 0x972702cd, 0xb07dd827, 0x6c97d5ed, 0x085a3d61, 0x46eb5ea7, 3446 0x3d9910ed, 0x2e687b5b, 0x29609227, 0x6eb081f1, 0x0954c4e1, 0x9d114db9, 3447 0x542acfa9, 0xb3e6bd7b, 0x0742d917, 0xe9f3ffa7, 0x54581edb, 0xf2480f45, 3448 0x0bb9288f, 0xef1affc7, 0x85fa0ca7, 0x3ccc14db, 0xe6baf34b, 0x343377f7, 3449 0x5ca19031, 0xe6d9293b, 0xf0a9f391, 0x5d2e980b, 0xfc411073, 0xc3749363, 3450 0xb892d829, 0x3549366b, 0x629750ad, 0xb98294e5, 0x892d9483, 0xc235baf3, 3451 0x3d2402a3, 0x6bdef3c9, 0xbec333cd, 0x40c9520f}; 3452 3453 //--------------------------------------------------------------------------- 3454 // __kmp_get_random: Get a random number using a linear congruential method. 3455 unsigned short __kmp_get_random(kmp_info_t *thread) { 3456 unsigned x = thread->th.th_x; 3457 unsigned short r = x >> 16; 3458 3459 thread->th.th_x = x * thread->th.th_a + 1; 3460 3461 KA_TRACE(30, ("__kmp_get_random: THREAD: %d, RETURN: %u\n", 3462 thread->th.th_info.ds.ds_tid, r)); 3463 3464 return r; 3465 } 3466 //-------------------------------------------------------- 3467 // __kmp_init_random: Initialize a random number generator 3468 void __kmp_init_random(kmp_info_t *thread) { 3469 unsigned seed = thread->th.th_info.ds.ds_tid; 3470 3471 thread->th.th_a = 3472 __kmp_primes[seed % (sizeof(__kmp_primes) / sizeof(__kmp_primes[0]))]; 3473 thread->th.th_x = (seed + 1) * thread->th.th_a + 1; 3474 KA_TRACE(30, 3475 ("__kmp_init_random: THREAD: %u; A: %u\n", seed, thread->th.th_a)); 3476 } 3477 3478 #if KMP_OS_WINDOWS 3479 /* reclaim array entries for root threads that are already dead, returns number 3480 * reclaimed */ 3481 static int __kmp_reclaim_dead_roots(void) { 3482 int i, r = 0; 3483 3484 for (i = 0; i < __kmp_threads_capacity; ++i) { 3485 if (KMP_UBER_GTID(i) && 3486 !__kmp_still_running((kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[i])) && 3487 !__kmp_root[i] 3488 ->r.r_active) { // AC: reclaim only roots died in non-active state 3489 r += __kmp_unregister_root_other_thread(i); 3490 } 3491 } 3492 return r; 3493 } 3494 #endif 3495 3496 /* This function attempts to create free entries in __kmp_threads and 3497 __kmp_root, and returns the number of free entries generated. 3498 3499 For Windows* OS static library, the first mechanism used is to reclaim array 3500 entries for root threads that are already dead. 3501 3502 On all platforms, expansion is attempted on the arrays __kmp_threads_ and 3503 __kmp_root, with appropriate update to __kmp_threads_capacity. Array 3504 capacity is increased by doubling with clipping to __kmp_tp_capacity, if 3505 threadprivate cache array has been created. Synchronization with 3506 __kmpc_threadprivate_cached is done using __kmp_tp_cached_lock. 3507 3508 After any dead root reclamation, if the clipping value allows array expansion 3509 to result in the generation of a total of nNeed free slots, the function does 3510 that expansion. If not, nothing is done beyond the possible initial root 3511 thread reclamation. 3512 3513 If any argument is negative, the behavior is undefined. */ 3514 static int __kmp_expand_threads(int nNeed) { 3515 int added = 0; 3516 int minimumRequiredCapacity; 3517 int newCapacity; 3518 kmp_info_t **newThreads; 3519 kmp_root_t **newRoot; 3520 3521 // All calls to __kmp_expand_threads should be under __kmp_forkjoin_lock, so 3522 // resizing __kmp_threads does not need additional protection if foreign 3523 // threads are present 3524 3525 #if KMP_OS_WINDOWS && !KMP_DYNAMIC_LIB 3526 /* only for Windows static library */ 3527 /* reclaim array entries for root threads that are already dead */ 3528 added = __kmp_reclaim_dead_roots(); 3529 3530 if (nNeed) { 3531 nNeed -= added; 3532 if (nNeed < 0) 3533 nNeed = 0; 3534 } 3535 #endif 3536 if (nNeed <= 0) 3537 return added; 3538 3539 // Note that __kmp_threads_capacity is not bounded by __kmp_max_nth. If 3540 // __kmp_max_nth is set to some value less than __kmp_sys_max_nth by the 3541 // user via KMP_DEVICE_THREAD_LIMIT, then __kmp_threads_capacity may become 3542 // > __kmp_max_nth in one of two ways: 3543 // 3544 // 1) The initialization thread (gtid = 0) exits. __kmp_threads[0] 3545 // may not be reused by another thread, so we may need to increase 3546 // __kmp_threads_capacity to __kmp_max_nth + 1. 3547 // 3548 // 2) New foreign root(s) are encountered. We always register new foreign 3549 // roots. This may cause a smaller # of threads to be allocated at 3550 // subsequent parallel regions, but the worker threads hang around (and 3551 // eventually go to sleep) and need slots in the __kmp_threads[] array. 3552 // 3553 // Anyway, that is the reason for moving the check to see if 3554 // __kmp_max_nth was exceeded into __kmp_reserve_threads() 3555 // instead of having it performed here. -BB 3556 3557 KMP_DEBUG_ASSERT(__kmp_sys_max_nth >= __kmp_threads_capacity); 3558 3559 /* compute expansion headroom to check if we can expand */ 3560 if (__kmp_sys_max_nth - __kmp_threads_capacity < nNeed) { 3561 /* possible expansion too small -- give up */ 3562 return added; 3563 } 3564 minimumRequiredCapacity = __kmp_threads_capacity + nNeed; 3565 3566 newCapacity = __kmp_threads_capacity; 3567 do { 3568 newCapacity = newCapacity <= (__kmp_sys_max_nth >> 1) ? (newCapacity << 1) 3569 : __kmp_sys_max_nth; 3570 } while (newCapacity < minimumRequiredCapacity); 3571 newThreads = (kmp_info_t **)__kmp_allocate( 3572 (sizeof(kmp_info_t *) + sizeof(kmp_root_t *)) * newCapacity + CACHE_LINE); 3573 newRoot = 3574 (kmp_root_t **)((char *)newThreads + sizeof(kmp_info_t *) * newCapacity); 3575 KMP_MEMCPY(newThreads, __kmp_threads, 3576 __kmp_threads_capacity * sizeof(kmp_info_t *)); 3577 KMP_MEMCPY(newRoot, __kmp_root, 3578 __kmp_threads_capacity * sizeof(kmp_root_t *)); 3579 3580 kmp_info_t **temp_threads = __kmp_threads; 3581 *(kmp_info_t * *volatile *)&__kmp_threads = newThreads; 3582 *(kmp_root_t * *volatile *)&__kmp_root = newRoot; 3583 __kmp_free(temp_threads); 3584 added += newCapacity - __kmp_threads_capacity; 3585 *(volatile int *)&__kmp_threads_capacity = newCapacity; 3586 3587 if (newCapacity > __kmp_tp_capacity) { 3588 __kmp_acquire_bootstrap_lock(&__kmp_tp_cached_lock); 3589 if (__kmp_tp_cached && newCapacity > __kmp_tp_capacity) { 3590 __kmp_threadprivate_resize_cache(newCapacity); 3591 } else { // increase __kmp_tp_capacity to correspond with kmp_threads size 3592 *(volatile int *)&__kmp_tp_capacity = newCapacity; 3593 } 3594 __kmp_release_bootstrap_lock(&__kmp_tp_cached_lock); 3595 } 3596 3597 return added; 3598 } 3599 3600 /* Register the current thread as a root thread and obtain our gtid. We must 3601 have the __kmp_initz_lock held at this point. Argument TRUE only if are the 3602 thread that calls from __kmp_do_serial_initialize() */ 3603 int __kmp_register_root(int initial_thread) { 3604 kmp_info_t *root_thread; 3605 kmp_root_t *root; 3606 int gtid; 3607 int capacity; 3608 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 3609 KA_TRACE(20, ("__kmp_register_root: entered\n")); 3610 KMP_MB(); 3611 3612 /* 2007-03-02: 3613 If initial thread did not invoke OpenMP RTL yet, and this thread is not an 3614 initial one, "__kmp_all_nth >= __kmp_threads_capacity" condition does not 3615 work as expected -- it may return false (that means there is at least one 3616 empty slot in __kmp_threads array), but it is possible the only free slot 3617 is #0, which is reserved for initial thread and so cannot be used for this 3618 one. Following code workarounds this bug. 3619 3620 However, right solution seems to be not reserving slot #0 for initial 3621 thread because: 3622 (1) there is no magic in slot #0, 3623 (2) we cannot detect initial thread reliably (the first thread which does 3624 serial initialization may be not a real initial thread). 3625 */ 3626 capacity = __kmp_threads_capacity; 3627 if (!initial_thread && TCR_PTR(__kmp_threads[0]) == NULL) { 3628 --capacity; 3629 } 3630 3631 /* see if there are too many threads */ 3632 if (__kmp_all_nth >= capacity && !__kmp_expand_threads(1)) { 3633 if (__kmp_tp_cached) { 3634 __kmp_fatal(KMP_MSG(CantRegisterNewThread), 3635 KMP_HNT(Set_ALL_THREADPRIVATE, __kmp_tp_capacity), 3636 KMP_HNT(PossibleSystemLimitOnThreads), __kmp_msg_null); 3637 } else { 3638 __kmp_fatal(KMP_MSG(CantRegisterNewThread), KMP_HNT(SystemLimitOnThreads), 3639 __kmp_msg_null); 3640 } 3641 } 3642 3643 /* find an available thread slot */ 3644 /* Don't reassign the zero slot since we need that to only be used by initial 3645 thread */ 3646 for (gtid = (initial_thread ? 0 : 1); TCR_PTR(__kmp_threads[gtid]) != NULL; 3647 gtid++) 3648 ; 3649 KA_TRACE(1, 3650 ("__kmp_register_root: found slot in threads array: T#%d\n", gtid)); 3651 KMP_ASSERT(gtid < __kmp_threads_capacity); 3652 3653 /* update global accounting */ 3654 __kmp_all_nth++; 3655 TCW_4(__kmp_nth, __kmp_nth + 1); 3656 3657 // if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) for low 3658 // numbers of procs, and method #2 (keyed API call) for higher numbers. 3659 if (__kmp_adjust_gtid_mode) { 3660 if (__kmp_all_nth >= __kmp_tls_gtid_min) { 3661 if (TCR_4(__kmp_gtid_mode) != 2) { 3662 TCW_4(__kmp_gtid_mode, 2); 3663 } 3664 } else { 3665 if (TCR_4(__kmp_gtid_mode) != 1) { 3666 TCW_4(__kmp_gtid_mode, 1); 3667 } 3668 } 3669 } 3670 3671 #ifdef KMP_ADJUST_BLOCKTIME 3672 /* Adjust blocktime to zero if necessary */ 3673 /* Middle initialization might not have occurred yet */ 3674 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 3675 if (__kmp_nth > __kmp_avail_proc) { 3676 __kmp_zero_bt = TRUE; 3677 } 3678 } 3679 #endif /* KMP_ADJUST_BLOCKTIME */ 3680 3681 /* setup this new hierarchy */ 3682 if (!(root = __kmp_root[gtid])) { 3683 root = __kmp_root[gtid] = (kmp_root_t *)__kmp_allocate(sizeof(kmp_root_t)); 3684 KMP_DEBUG_ASSERT(!root->r.r_root_team); 3685 } 3686 3687 #if KMP_STATS_ENABLED 3688 // Initialize stats as soon as possible (right after gtid assignment). 3689 __kmp_stats_thread_ptr = __kmp_stats_list->push_back(gtid); 3690 __kmp_stats_thread_ptr->startLife(); 3691 KMP_SET_THREAD_STATE(SERIAL_REGION); 3692 KMP_INIT_PARTITIONED_TIMERS(OMP_serial); 3693 #endif 3694 __kmp_initialize_root(root); 3695 3696 /* setup new root thread structure */ 3697 if (root->r.r_uber_thread) { 3698 root_thread = root->r.r_uber_thread; 3699 } else { 3700 root_thread = (kmp_info_t *)__kmp_allocate(sizeof(kmp_info_t)); 3701 if (__kmp_storage_map) { 3702 __kmp_print_thread_storage_map(root_thread, gtid); 3703 } 3704 root_thread->th.th_info.ds.ds_gtid = gtid; 3705 #if OMPT_SUPPORT 3706 root_thread->th.ompt_thread_info.thread_data = ompt_data_none; 3707 #endif 3708 root_thread->th.th_root = root; 3709 if (__kmp_env_consistency_check) { 3710 root_thread->th.th_cons = __kmp_allocate_cons_stack(gtid); 3711 } 3712 #if USE_FAST_MEMORY 3713 __kmp_initialize_fast_memory(root_thread); 3714 #endif /* USE_FAST_MEMORY */ 3715 3716 #if KMP_USE_BGET 3717 KMP_DEBUG_ASSERT(root_thread->th.th_local.bget_data == NULL); 3718 __kmp_initialize_bget(root_thread); 3719 #endif 3720 __kmp_init_random(root_thread); // Initialize random number generator 3721 } 3722 3723 /* setup the serial team held in reserve by the root thread */ 3724 if (!root_thread->th.th_serial_team) { 3725 kmp_internal_control_t r_icvs = __kmp_get_global_icvs(); 3726 KF_TRACE(10, ("__kmp_register_root: before serial_team\n")); 3727 root_thread->th.th_serial_team = __kmp_allocate_team( 3728 root, 1, 1, 3729 #if OMPT_SUPPORT 3730 ompt_data_none, // root parallel id 3731 #endif 3732 proc_bind_default, &r_icvs, 0 USE_NESTED_HOT_ARG(NULL)); 3733 } 3734 KMP_ASSERT(root_thread->th.th_serial_team); 3735 KF_TRACE(10, ("__kmp_register_root: after serial_team = %p\n", 3736 root_thread->th.th_serial_team)); 3737 3738 /* drop root_thread into place */ 3739 TCW_SYNC_PTR(__kmp_threads[gtid], root_thread); 3740 3741 root->r.r_root_team->t.t_threads[0] = root_thread; 3742 root->r.r_hot_team->t.t_threads[0] = root_thread; 3743 root_thread->th.th_serial_team->t.t_threads[0] = root_thread; 3744 // AC: the team created in reserve, not for execution (it is unused for now). 3745 root_thread->th.th_serial_team->t.t_serialized = 0; 3746 root->r.r_uber_thread = root_thread; 3747 3748 /* initialize the thread, get it ready to go */ 3749 __kmp_initialize_info(root_thread, root->r.r_root_team, 0, gtid); 3750 TCW_4(__kmp_init_gtid, TRUE); 3751 3752 /* prepare the master thread for get_gtid() */ 3753 __kmp_gtid_set_specific(gtid); 3754 3755 #if USE_ITT_BUILD 3756 __kmp_itt_thread_name(gtid); 3757 #endif /* USE_ITT_BUILD */ 3758 3759 #ifdef KMP_TDATA_GTID 3760 __kmp_gtid = gtid; 3761 #endif 3762 __kmp_create_worker(gtid, root_thread, __kmp_stksize); 3763 KMP_DEBUG_ASSERT(__kmp_gtid_get_specific() == gtid); 3764 3765 KA_TRACE(20, ("__kmp_register_root: T#%d init T#%d(%d:%d) arrived: join=%u, " 3766 "plain=%u\n", 3767 gtid, __kmp_gtid_from_tid(0, root->r.r_hot_team), 3768 root->r.r_hot_team->t.t_id, 0, KMP_INIT_BARRIER_STATE, 3769 KMP_INIT_BARRIER_STATE)); 3770 { // Initialize barrier data. 3771 int b; 3772 for (b = 0; b < bs_last_barrier; ++b) { 3773 root_thread->th.th_bar[b].bb.b_arrived = KMP_INIT_BARRIER_STATE; 3774 #if USE_DEBUGGER 3775 root_thread->th.th_bar[b].bb.b_worker_arrived = 0; 3776 #endif 3777 } 3778 } 3779 KMP_DEBUG_ASSERT(root->r.r_hot_team->t.t_bar[bs_forkjoin_barrier].b_arrived == 3780 KMP_INIT_BARRIER_STATE); 3781 3782 #if KMP_AFFINITY_SUPPORTED 3783 root_thread->th.th_current_place = KMP_PLACE_UNDEFINED; 3784 root_thread->th.th_new_place = KMP_PLACE_UNDEFINED; 3785 root_thread->th.th_first_place = KMP_PLACE_UNDEFINED; 3786 root_thread->th.th_last_place = KMP_PLACE_UNDEFINED; 3787 if (TCR_4(__kmp_init_middle)) { 3788 __kmp_affinity_set_init_mask(gtid, TRUE); 3789 } 3790 #endif /* KMP_AFFINITY_SUPPORTED */ 3791 root_thread->th.th_def_allocator = __kmp_def_allocator; 3792 root_thread->th.th_prev_level = 0; 3793 root_thread->th.th_prev_num_threads = 1; 3794 3795 kmp_cg_root_t *tmp = (kmp_cg_root_t *)__kmp_allocate(sizeof(kmp_cg_root_t)); 3796 tmp->cg_root = root_thread; 3797 tmp->cg_thread_limit = __kmp_cg_max_nth; 3798 tmp->cg_nthreads = 1; 3799 KA_TRACE(100, ("__kmp_register_root: Thread %p created node %p with" 3800 " cg_nthreads init to 1\n", 3801 root_thread, tmp)); 3802 tmp->up = NULL; 3803 root_thread->th.th_cg_roots = tmp; 3804 3805 __kmp_root_counter++; 3806 3807 #if OMPT_SUPPORT 3808 if (!initial_thread && ompt_enabled.enabled) { 3809 3810 kmp_info_t *root_thread = ompt_get_thread(); 3811 3812 ompt_set_thread_state(root_thread, ompt_state_overhead); 3813 3814 if (ompt_enabled.ompt_callback_thread_begin) { 3815 ompt_callbacks.ompt_callback(ompt_callback_thread_begin)( 3816 ompt_thread_initial, __ompt_get_thread_data_internal()); 3817 } 3818 ompt_data_t *task_data; 3819 ompt_data_t *parallel_data; 3820 __ompt_get_task_info_internal(0, NULL, &task_data, NULL, ¶llel_data, NULL); 3821 if (ompt_enabled.ompt_callback_implicit_task) { 3822 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 3823 ompt_scope_begin, parallel_data, task_data, 1, 1, ompt_task_initial); 3824 } 3825 3826 ompt_set_thread_state(root_thread, ompt_state_work_serial); 3827 } 3828 #endif 3829 3830 KMP_MB(); 3831 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 3832 3833 return gtid; 3834 } 3835 3836 #if KMP_NESTED_HOT_TEAMS 3837 static int __kmp_free_hot_teams(kmp_root_t *root, kmp_info_t *thr, int level, 3838 const int max_level) { 3839 int i, n, nth; 3840 kmp_hot_team_ptr_t *hot_teams = thr->th.th_hot_teams; 3841 if (!hot_teams || !hot_teams[level].hot_team) { 3842 return 0; 3843 } 3844 KMP_DEBUG_ASSERT(level < max_level); 3845 kmp_team_t *team = hot_teams[level].hot_team; 3846 nth = hot_teams[level].hot_team_nth; 3847 n = nth - 1; // master is not freed 3848 if (level < max_level - 1) { 3849 for (i = 0; i < nth; ++i) { 3850 kmp_info_t *th = team->t.t_threads[i]; 3851 n += __kmp_free_hot_teams(root, th, level + 1, max_level); 3852 if (i > 0 && th->th.th_hot_teams) { 3853 __kmp_free(th->th.th_hot_teams); 3854 th->th.th_hot_teams = NULL; 3855 } 3856 } 3857 } 3858 __kmp_free_team(root, team, NULL); 3859 return n; 3860 } 3861 #endif 3862 3863 // Resets a root thread and clear its root and hot teams. 3864 // Returns the number of __kmp_threads entries directly and indirectly freed. 3865 static int __kmp_reset_root(int gtid, kmp_root_t *root) { 3866 kmp_team_t *root_team = root->r.r_root_team; 3867 kmp_team_t *hot_team = root->r.r_hot_team; 3868 int n = hot_team->t.t_nproc; 3869 int i; 3870 3871 KMP_DEBUG_ASSERT(!root->r.r_active); 3872 3873 root->r.r_root_team = NULL; 3874 root->r.r_hot_team = NULL; 3875 // __kmp_free_team() does not free hot teams, so we have to clear r_hot_team 3876 // before call to __kmp_free_team(). 3877 __kmp_free_team(root, root_team USE_NESTED_HOT_ARG(NULL)); 3878 #if KMP_NESTED_HOT_TEAMS 3879 if (__kmp_hot_teams_max_level > 3880 0) { // need to free nested hot teams and their threads if any 3881 for (i = 0; i < hot_team->t.t_nproc; ++i) { 3882 kmp_info_t *th = hot_team->t.t_threads[i]; 3883 if (__kmp_hot_teams_max_level > 1) { 3884 n += __kmp_free_hot_teams(root, th, 1, __kmp_hot_teams_max_level); 3885 } 3886 if (th->th.th_hot_teams) { 3887 __kmp_free(th->th.th_hot_teams); 3888 th->th.th_hot_teams = NULL; 3889 } 3890 } 3891 } 3892 #endif 3893 __kmp_free_team(root, hot_team USE_NESTED_HOT_ARG(NULL)); 3894 3895 // Before we can reap the thread, we need to make certain that all other 3896 // threads in the teams that had this root as ancestor have stopped trying to 3897 // steal tasks. 3898 if (__kmp_tasking_mode != tskm_immediate_exec) { 3899 __kmp_wait_to_unref_task_teams(); 3900 } 3901 3902 #if KMP_OS_WINDOWS 3903 /* Close Handle of root duplicated in __kmp_create_worker (tr #62919) */ 3904 KA_TRACE( 3905 10, ("__kmp_reset_root: free handle, th = %p, handle = %" KMP_UINTPTR_SPEC 3906 "\n", 3907 (LPVOID) & (root->r.r_uber_thread->th), 3908 root->r.r_uber_thread->th.th_info.ds.ds_thread)); 3909 __kmp_free_handle(root->r.r_uber_thread->th.th_info.ds.ds_thread); 3910 #endif /* KMP_OS_WINDOWS */ 3911 3912 #if OMPT_SUPPORT 3913 ompt_data_t *task_data; 3914 ompt_data_t *parallel_data; 3915 __ompt_get_task_info_internal(0, NULL, &task_data, NULL, ¶llel_data, NULL); 3916 if (ompt_enabled.ompt_callback_implicit_task) { 3917 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 3918 ompt_scope_end, parallel_data, task_data, 0, 1, ompt_task_initial); 3919 } 3920 if (ompt_enabled.ompt_callback_thread_end) { 3921 ompt_callbacks.ompt_callback(ompt_callback_thread_end)( 3922 &(root->r.r_uber_thread->th.ompt_thread_info.thread_data)); 3923 } 3924 #endif 3925 3926 TCW_4(__kmp_nth, 3927 __kmp_nth - 1); // __kmp_reap_thread will decrement __kmp_all_nth. 3928 i = root->r.r_uber_thread->th.th_cg_roots->cg_nthreads--; 3929 KA_TRACE(100, ("__kmp_reset_root: Thread %p decrement cg_nthreads on node %p" 3930 " to %d\n", 3931 root->r.r_uber_thread, root->r.r_uber_thread->th.th_cg_roots, 3932 root->r.r_uber_thread->th.th_cg_roots->cg_nthreads)); 3933 if (i == 1) { 3934 // need to free contention group structure 3935 KMP_DEBUG_ASSERT(root->r.r_uber_thread == 3936 root->r.r_uber_thread->th.th_cg_roots->cg_root); 3937 KMP_DEBUG_ASSERT(root->r.r_uber_thread->th.th_cg_roots->up == NULL); 3938 __kmp_free(root->r.r_uber_thread->th.th_cg_roots); 3939 root->r.r_uber_thread->th.th_cg_roots = NULL; 3940 } 3941 __kmp_reap_thread(root->r.r_uber_thread, 1); 3942 3943 // We canot put root thread to __kmp_thread_pool, so we have to reap it 3944 // instead of freeing. 3945 root->r.r_uber_thread = NULL; 3946 /* mark root as no longer in use */ 3947 root->r.r_begin = FALSE; 3948 3949 return n; 3950 } 3951 3952 void __kmp_unregister_root_current_thread(int gtid) { 3953 KA_TRACE(1, ("__kmp_unregister_root_current_thread: enter T#%d\n", gtid)); 3954 /* this lock should be ok, since unregister_root_current_thread is never 3955 called during an abort, only during a normal close. furthermore, if you 3956 have the forkjoin lock, you should never try to get the initz lock */ 3957 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 3958 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 3959 KC_TRACE(10, ("__kmp_unregister_root_current_thread: already finished, " 3960 "exiting T#%d\n", 3961 gtid)); 3962 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 3963 return; 3964 } 3965 kmp_root_t *root = __kmp_root[gtid]; 3966 3967 KMP_DEBUG_ASSERT(__kmp_threads && __kmp_threads[gtid]); 3968 KMP_ASSERT(KMP_UBER_GTID(gtid)); 3969 KMP_ASSERT(root == __kmp_threads[gtid]->th.th_root); 3970 KMP_ASSERT(root->r.r_active == FALSE); 3971 3972 KMP_MB(); 3973 3974 kmp_info_t *thread = __kmp_threads[gtid]; 3975 kmp_team_t *team = thread->th.th_team; 3976 kmp_task_team_t *task_team = thread->th.th_task_team; 3977 3978 // we need to wait for the proxy tasks before finishing the thread 3979 if (task_team != NULL && task_team->tt.tt_found_proxy_tasks) { 3980 #if OMPT_SUPPORT 3981 // the runtime is shutting down so we won't report any events 3982 thread->th.ompt_thread_info.state = ompt_state_undefined; 3983 #endif 3984 __kmp_task_team_wait(thread, team USE_ITT_BUILD_ARG(NULL)); 3985 } 3986 3987 __kmp_reset_root(gtid, root); 3988 3989 KMP_MB(); 3990 KC_TRACE(10, 3991 ("__kmp_unregister_root_current_thread: T#%d unregistered\n", gtid)); 3992 3993 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 3994 } 3995 3996 #if KMP_OS_WINDOWS 3997 /* __kmp_forkjoin_lock must be already held 3998 Unregisters a root thread that is not the current thread. Returns the number 3999 of __kmp_threads entries freed as a result. */ 4000 static int __kmp_unregister_root_other_thread(int gtid) { 4001 kmp_root_t *root = __kmp_root[gtid]; 4002 int r; 4003 4004 KA_TRACE(1, ("__kmp_unregister_root_other_thread: enter T#%d\n", gtid)); 4005 KMP_DEBUG_ASSERT(__kmp_threads && __kmp_threads[gtid]); 4006 KMP_ASSERT(KMP_UBER_GTID(gtid)); 4007 KMP_ASSERT(root == __kmp_threads[gtid]->th.th_root); 4008 KMP_ASSERT(root->r.r_active == FALSE); 4009 4010 r = __kmp_reset_root(gtid, root); 4011 KC_TRACE(10, 4012 ("__kmp_unregister_root_other_thread: T#%d unregistered\n", gtid)); 4013 return r; 4014 } 4015 #endif 4016 4017 #if KMP_DEBUG 4018 void __kmp_task_info() { 4019 4020 kmp_int32 gtid = __kmp_entry_gtid(); 4021 kmp_int32 tid = __kmp_tid_from_gtid(gtid); 4022 kmp_info_t *this_thr = __kmp_threads[gtid]; 4023 kmp_team_t *steam = this_thr->th.th_serial_team; 4024 kmp_team_t *team = this_thr->th.th_team; 4025 4026 __kmp_printf( 4027 "__kmp_task_info: gtid=%d tid=%d t_thread=%p team=%p steam=%p curtask=%p " 4028 "ptask=%p\n", 4029 gtid, tid, this_thr, team, steam, this_thr->th.th_current_task, 4030 team->t.t_implicit_task_taskdata[tid].td_parent); 4031 } 4032 #endif // KMP_DEBUG 4033 4034 /* TODO optimize with one big memclr, take out what isn't needed, split 4035 responsibility to workers as much as possible, and delay initialization of 4036 features as much as possible */ 4037 static void __kmp_initialize_info(kmp_info_t *this_thr, kmp_team_t *team, 4038 int tid, int gtid) { 4039 /* this_thr->th.th_info.ds.ds_gtid is setup in 4040 kmp_allocate_thread/create_worker. 4041 this_thr->th.th_serial_team is setup in __kmp_allocate_thread */ 4042 kmp_info_t *master = team->t.t_threads[0]; 4043 KMP_DEBUG_ASSERT(this_thr != NULL); 4044 KMP_DEBUG_ASSERT(this_thr->th.th_serial_team); 4045 KMP_DEBUG_ASSERT(team); 4046 KMP_DEBUG_ASSERT(team->t.t_threads); 4047 KMP_DEBUG_ASSERT(team->t.t_dispatch); 4048 KMP_DEBUG_ASSERT(master); 4049 KMP_DEBUG_ASSERT(master->th.th_root); 4050 4051 KMP_MB(); 4052 4053 TCW_SYNC_PTR(this_thr->th.th_team, team); 4054 4055 this_thr->th.th_info.ds.ds_tid = tid; 4056 this_thr->th.th_set_nproc = 0; 4057 if (__kmp_tasking_mode != tskm_immediate_exec) 4058 // When tasking is possible, threads are not safe to reap until they are 4059 // done tasking; this will be set when tasking code is exited in wait 4060 this_thr->th.th_reap_state = KMP_NOT_SAFE_TO_REAP; 4061 else // no tasking --> always safe to reap 4062 this_thr->th.th_reap_state = KMP_SAFE_TO_REAP; 4063 this_thr->th.th_set_proc_bind = proc_bind_default; 4064 #if KMP_AFFINITY_SUPPORTED 4065 this_thr->th.th_new_place = this_thr->th.th_current_place; 4066 #endif 4067 this_thr->th.th_root = master->th.th_root; 4068 4069 /* setup the thread's cache of the team structure */ 4070 this_thr->th.th_team_nproc = team->t.t_nproc; 4071 this_thr->th.th_team_master = master; 4072 this_thr->th.th_team_serialized = team->t.t_serialized; 4073 TCW_PTR(this_thr->th.th_sleep_loc, NULL); 4074 4075 KMP_DEBUG_ASSERT(team->t.t_implicit_task_taskdata); 4076 4077 KF_TRACE(10, ("__kmp_initialize_info1: T#%d:%d this_thread=%p curtask=%p\n", 4078 tid, gtid, this_thr, this_thr->th.th_current_task)); 4079 4080 __kmp_init_implicit_task(this_thr->th.th_team_master->th.th_ident, this_thr, 4081 team, tid, TRUE); 4082 4083 KF_TRACE(10, ("__kmp_initialize_info2: T#%d:%d this_thread=%p curtask=%p\n", 4084 tid, gtid, this_thr, this_thr->th.th_current_task)); 4085 // TODO: Initialize ICVs from parent; GEH - isn't that already done in 4086 // __kmp_initialize_team()? 4087 4088 /* TODO no worksharing in speculative threads */ 4089 this_thr->th.th_dispatch = &team->t.t_dispatch[tid]; 4090 4091 this_thr->th.th_local.this_construct = 0; 4092 4093 if (!this_thr->th.th_pri_common) { 4094 this_thr->th.th_pri_common = 4095 (struct common_table *)__kmp_allocate(sizeof(struct common_table)); 4096 if (__kmp_storage_map) { 4097 __kmp_print_storage_map_gtid( 4098 gtid, this_thr->th.th_pri_common, this_thr->th.th_pri_common + 1, 4099 sizeof(struct common_table), "th_%d.th_pri_common\n", gtid); 4100 } 4101 this_thr->th.th_pri_head = NULL; 4102 } 4103 4104 if (this_thr != master && // Master's CG root is initialized elsewhere 4105 this_thr->th.th_cg_roots != master->th.th_cg_roots) { // CG root not set 4106 // Make new thread's CG root same as master's 4107 KMP_DEBUG_ASSERT(master->th.th_cg_roots); 4108 kmp_cg_root_t *tmp = this_thr->th.th_cg_roots; 4109 if (tmp) { 4110 // worker changes CG, need to check if old CG should be freed 4111 int i = tmp->cg_nthreads--; 4112 KA_TRACE(100, ("__kmp_initialize_info: Thread %p decrement cg_nthreads" 4113 " on node %p of thread %p to %d\n", 4114 this_thr, tmp, tmp->cg_root, tmp->cg_nthreads)); 4115 if (i == 1) { 4116 __kmp_free(tmp); // last thread left CG --> free it 4117 } 4118 } 4119 this_thr->th.th_cg_roots = master->th.th_cg_roots; 4120 // Increment new thread's CG root's counter to add the new thread 4121 this_thr->th.th_cg_roots->cg_nthreads++; 4122 KA_TRACE(100, ("__kmp_initialize_info: Thread %p increment cg_nthreads on" 4123 " node %p of thread %p to %d\n", 4124 this_thr, this_thr->th.th_cg_roots, 4125 this_thr->th.th_cg_roots->cg_root, 4126 this_thr->th.th_cg_roots->cg_nthreads)); 4127 this_thr->th.th_current_task->td_icvs.thread_limit = 4128 this_thr->th.th_cg_roots->cg_thread_limit; 4129 } 4130 4131 /* Initialize dynamic dispatch */ 4132 { 4133 volatile kmp_disp_t *dispatch = this_thr->th.th_dispatch; 4134 // Use team max_nproc since this will never change for the team. 4135 size_t disp_size = 4136 sizeof(dispatch_private_info_t) * 4137 (team->t.t_max_nproc == 1 ? 1 : __kmp_dispatch_num_buffers); 4138 KD_TRACE(10, ("__kmp_initialize_info: T#%d max_nproc: %d\n", gtid, 4139 team->t.t_max_nproc)); 4140 KMP_ASSERT(dispatch); 4141 KMP_DEBUG_ASSERT(team->t.t_dispatch); 4142 KMP_DEBUG_ASSERT(dispatch == &team->t.t_dispatch[tid]); 4143 4144 dispatch->th_disp_index = 0; 4145 dispatch->th_doacross_buf_idx = 0; 4146 if (!dispatch->th_disp_buffer) { 4147 dispatch->th_disp_buffer = 4148 (dispatch_private_info_t *)__kmp_allocate(disp_size); 4149 4150 if (__kmp_storage_map) { 4151 __kmp_print_storage_map_gtid( 4152 gtid, &dispatch->th_disp_buffer[0], 4153 &dispatch->th_disp_buffer[team->t.t_max_nproc == 1 4154 ? 1 4155 : __kmp_dispatch_num_buffers], 4156 disp_size, "th_%d.th_dispatch.th_disp_buffer " 4157 "(team_%d.t_dispatch[%d].th_disp_buffer)", 4158 gtid, team->t.t_id, gtid); 4159 } 4160 } else { 4161 memset(&dispatch->th_disp_buffer[0], '\0', disp_size); 4162 } 4163 4164 dispatch->th_dispatch_pr_current = 0; 4165 dispatch->th_dispatch_sh_current = 0; 4166 4167 dispatch->th_deo_fcn = 0; /* ORDERED */ 4168 dispatch->th_dxo_fcn = 0; /* END ORDERED */ 4169 } 4170 4171 this_thr->th.th_next_pool = NULL; 4172 4173 if (!this_thr->th.th_task_state_memo_stack) { 4174 size_t i; 4175 this_thr->th.th_task_state_memo_stack = 4176 (kmp_uint8 *)__kmp_allocate(4 * sizeof(kmp_uint8)); 4177 this_thr->th.th_task_state_top = 0; 4178 this_thr->th.th_task_state_stack_sz = 4; 4179 for (i = 0; i < this_thr->th.th_task_state_stack_sz; 4180 ++i) // zero init the stack 4181 this_thr->th.th_task_state_memo_stack[i] = 0; 4182 } 4183 4184 KMP_DEBUG_ASSERT(!this_thr->th.th_spin_here); 4185 KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0); 4186 4187 KMP_MB(); 4188 } 4189 4190 /* allocate a new thread for the requesting team. this is only called from 4191 within a forkjoin critical section. we will first try to get an available 4192 thread from the thread pool. if none is available, we will fork a new one 4193 assuming we are able to create a new one. this should be assured, as the 4194 caller should check on this first. */ 4195 kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team, 4196 int new_tid) { 4197 kmp_team_t *serial_team; 4198 kmp_info_t *new_thr; 4199 int new_gtid; 4200 4201 KA_TRACE(20, ("__kmp_allocate_thread: T#%d\n", __kmp_get_gtid())); 4202 KMP_DEBUG_ASSERT(root && team); 4203 #if !KMP_NESTED_HOT_TEAMS 4204 KMP_DEBUG_ASSERT(KMP_MASTER_GTID(__kmp_get_gtid())); 4205 #endif 4206 KMP_MB(); 4207 4208 /* first, try to get one from the thread pool */ 4209 if (__kmp_thread_pool) { 4210 new_thr = CCAST(kmp_info_t *, __kmp_thread_pool); 4211 __kmp_thread_pool = (volatile kmp_info_t *)new_thr->th.th_next_pool; 4212 if (new_thr == __kmp_thread_pool_insert_pt) { 4213 __kmp_thread_pool_insert_pt = NULL; 4214 } 4215 TCW_4(new_thr->th.th_in_pool, FALSE); 4216 __kmp_suspend_initialize_thread(new_thr); 4217 __kmp_lock_suspend_mx(new_thr); 4218 if (new_thr->th.th_active_in_pool == TRUE) { 4219 KMP_DEBUG_ASSERT(new_thr->th.th_active == TRUE); 4220 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 4221 new_thr->th.th_active_in_pool = FALSE; 4222 } 4223 __kmp_unlock_suspend_mx(new_thr); 4224 4225 KA_TRACE(20, ("__kmp_allocate_thread: T#%d using thread T#%d\n", 4226 __kmp_get_gtid(), new_thr->th.th_info.ds.ds_gtid)); 4227 KMP_ASSERT(!new_thr->th.th_team); 4228 KMP_DEBUG_ASSERT(__kmp_nth < __kmp_threads_capacity); 4229 4230 /* setup the thread structure */ 4231 __kmp_initialize_info(new_thr, team, new_tid, 4232 new_thr->th.th_info.ds.ds_gtid); 4233 KMP_DEBUG_ASSERT(new_thr->th.th_serial_team); 4234 4235 TCW_4(__kmp_nth, __kmp_nth + 1); 4236 4237 new_thr->th.th_task_state = 0; 4238 new_thr->th.th_task_state_top = 0; 4239 new_thr->th.th_task_state_stack_sz = 4; 4240 4241 #ifdef KMP_ADJUST_BLOCKTIME 4242 /* Adjust blocktime back to zero if necessary */ 4243 /* Middle initialization might not have occurred yet */ 4244 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 4245 if (__kmp_nth > __kmp_avail_proc) { 4246 __kmp_zero_bt = TRUE; 4247 } 4248 } 4249 #endif /* KMP_ADJUST_BLOCKTIME */ 4250 4251 #if KMP_DEBUG 4252 // If thread entered pool via __kmp_free_thread, wait_flag should != 4253 // KMP_BARRIER_PARENT_FLAG. 4254 int b; 4255 kmp_balign_t *balign = new_thr->th.th_bar; 4256 for (b = 0; b < bs_last_barrier; ++b) 4257 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 4258 #endif 4259 4260 KF_TRACE(10, ("__kmp_allocate_thread: T#%d using thread %p T#%d\n", 4261 __kmp_get_gtid(), new_thr, new_thr->th.th_info.ds.ds_gtid)); 4262 4263 KMP_MB(); 4264 return new_thr; 4265 } 4266 4267 /* no, well fork a new one */ 4268 KMP_ASSERT(__kmp_nth == __kmp_all_nth); 4269 KMP_ASSERT(__kmp_all_nth < __kmp_threads_capacity); 4270 4271 #if KMP_USE_MONITOR 4272 // If this is the first worker thread the RTL is creating, then also 4273 // launch the monitor thread. We try to do this as early as possible. 4274 if (!TCR_4(__kmp_init_monitor)) { 4275 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock); 4276 if (!TCR_4(__kmp_init_monitor)) { 4277 KF_TRACE(10, ("before __kmp_create_monitor\n")); 4278 TCW_4(__kmp_init_monitor, 1); 4279 __kmp_create_monitor(&__kmp_monitor); 4280 KF_TRACE(10, ("after __kmp_create_monitor\n")); 4281 #if KMP_OS_WINDOWS 4282 // AC: wait until monitor has started. This is a fix for CQ232808. 4283 // The reason is that if the library is loaded/unloaded in a loop with 4284 // small (parallel) work in between, then there is high probability that 4285 // monitor thread started after the library shutdown. At shutdown it is 4286 // too late to cope with the problem, because when the master is in 4287 // DllMain (process detach) the monitor has no chances to start (it is 4288 // blocked), and master has no means to inform the monitor that the 4289 // library has gone, because all the memory which the monitor can access 4290 // is going to be released/reset. 4291 while (TCR_4(__kmp_init_monitor) < 2) { 4292 KMP_YIELD(TRUE); 4293 } 4294 KF_TRACE(10, ("after monitor thread has started\n")); 4295 #endif 4296 } 4297 __kmp_release_bootstrap_lock(&__kmp_monitor_lock); 4298 } 4299 #endif 4300 4301 KMP_MB(); 4302 for (new_gtid = 1; TCR_PTR(__kmp_threads[new_gtid]) != NULL; ++new_gtid) { 4303 KMP_DEBUG_ASSERT(new_gtid < __kmp_threads_capacity); 4304 } 4305 4306 /* allocate space for it. */ 4307 new_thr = (kmp_info_t *)__kmp_allocate(sizeof(kmp_info_t)); 4308 4309 TCW_SYNC_PTR(__kmp_threads[new_gtid], new_thr); 4310 4311 #if USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG 4312 // suppress race conditions detection on synchronization flags in debug mode 4313 // this helps to analyze library internals eliminating false positives 4314 __itt_suppress_mark_range( 4315 __itt_suppress_range, __itt_suppress_threading_errors, 4316 &new_thr->th.th_sleep_loc, sizeof(new_thr->th.th_sleep_loc)); 4317 __itt_suppress_mark_range( 4318 __itt_suppress_range, __itt_suppress_threading_errors, 4319 &new_thr->th.th_reap_state, sizeof(new_thr->th.th_reap_state)); 4320 #if KMP_OS_WINDOWS 4321 __itt_suppress_mark_range( 4322 __itt_suppress_range, __itt_suppress_threading_errors, 4323 &new_thr->th.th_suspend_init, sizeof(new_thr->th.th_suspend_init)); 4324 #else 4325 __itt_suppress_mark_range(__itt_suppress_range, 4326 __itt_suppress_threading_errors, 4327 &new_thr->th.th_suspend_init_count, 4328 sizeof(new_thr->th.th_suspend_init_count)); 4329 #endif 4330 // TODO: check if we need to also suppress b_arrived flags 4331 __itt_suppress_mark_range(__itt_suppress_range, 4332 __itt_suppress_threading_errors, 4333 CCAST(kmp_uint64 *, &new_thr->th.th_bar[0].bb.b_go), 4334 sizeof(new_thr->th.th_bar[0].bb.b_go)); 4335 __itt_suppress_mark_range(__itt_suppress_range, 4336 __itt_suppress_threading_errors, 4337 CCAST(kmp_uint64 *, &new_thr->th.th_bar[1].bb.b_go), 4338 sizeof(new_thr->th.th_bar[1].bb.b_go)); 4339 __itt_suppress_mark_range(__itt_suppress_range, 4340 __itt_suppress_threading_errors, 4341 CCAST(kmp_uint64 *, &new_thr->th.th_bar[2].bb.b_go), 4342 sizeof(new_thr->th.th_bar[2].bb.b_go)); 4343 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG */ 4344 if (__kmp_storage_map) { 4345 __kmp_print_thread_storage_map(new_thr, new_gtid); 4346 } 4347 4348 // add the reserve serialized team, initialized from the team's master thread 4349 { 4350 kmp_internal_control_t r_icvs = __kmp_get_x_global_icvs(team); 4351 KF_TRACE(10, ("__kmp_allocate_thread: before th_serial/serial_team\n")); 4352 new_thr->th.th_serial_team = serial_team = 4353 (kmp_team_t *)__kmp_allocate_team(root, 1, 1, 4354 #if OMPT_SUPPORT 4355 ompt_data_none, // root parallel id 4356 #endif 4357 proc_bind_default, &r_icvs, 4358 0 USE_NESTED_HOT_ARG(NULL)); 4359 } 4360 KMP_ASSERT(serial_team); 4361 serial_team->t.t_serialized = 0; // AC: the team created in reserve, not for 4362 // execution (it is unused for now). 4363 serial_team->t.t_threads[0] = new_thr; 4364 KF_TRACE(10, 4365 ("__kmp_allocate_thread: after th_serial/serial_team : new_thr=%p\n", 4366 new_thr)); 4367 4368 /* setup the thread structures */ 4369 __kmp_initialize_info(new_thr, team, new_tid, new_gtid); 4370 4371 #if USE_FAST_MEMORY 4372 __kmp_initialize_fast_memory(new_thr); 4373 #endif /* USE_FAST_MEMORY */ 4374 4375 #if KMP_USE_BGET 4376 KMP_DEBUG_ASSERT(new_thr->th.th_local.bget_data == NULL); 4377 __kmp_initialize_bget(new_thr); 4378 #endif 4379 4380 __kmp_init_random(new_thr); // Initialize random number generator 4381 4382 /* Initialize these only once when thread is grabbed for a team allocation */ 4383 KA_TRACE(20, 4384 ("__kmp_allocate_thread: T#%d init go fork=%u, plain=%u\n", 4385 __kmp_get_gtid(), KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 4386 4387 int b; 4388 kmp_balign_t *balign = new_thr->th.th_bar; 4389 for (b = 0; b < bs_last_barrier; ++b) { 4390 balign[b].bb.b_go = KMP_INIT_BARRIER_STATE; 4391 balign[b].bb.team = NULL; 4392 balign[b].bb.wait_flag = KMP_BARRIER_NOT_WAITING; 4393 balign[b].bb.use_oncore_barrier = 0; 4394 } 4395 4396 new_thr->th.th_spin_here = FALSE; 4397 new_thr->th.th_next_waiting = 0; 4398 #if KMP_OS_UNIX 4399 new_thr->th.th_blocking = false; 4400 #endif 4401 4402 #if KMP_AFFINITY_SUPPORTED 4403 new_thr->th.th_current_place = KMP_PLACE_UNDEFINED; 4404 new_thr->th.th_new_place = KMP_PLACE_UNDEFINED; 4405 new_thr->th.th_first_place = KMP_PLACE_UNDEFINED; 4406 new_thr->th.th_last_place = KMP_PLACE_UNDEFINED; 4407 #endif 4408 new_thr->th.th_def_allocator = __kmp_def_allocator; 4409 new_thr->th.th_prev_level = 0; 4410 new_thr->th.th_prev_num_threads = 1; 4411 4412 TCW_4(new_thr->th.th_in_pool, FALSE); 4413 new_thr->th.th_active_in_pool = FALSE; 4414 TCW_4(new_thr->th.th_active, TRUE); 4415 4416 /* adjust the global counters */ 4417 __kmp_all_nth++; 4418 __kmp_nth++; 4419 4420 // if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) for low 4421 // numbers of procs, and method #2 (keyed API call) for higher numbers. 4422 if (__kmp_adjust_gtid_mode) { 4423 if (__kmp_all_nth >= __kmp_tls_gtid_min) { 4424 if (TCR_4(__kmp_gtid_mode) != 2) { 4425 TCW_4(__kmp_gtid_mode, 2); 4426 } 4427 } else { 4428 if (TCR_4(__kmp_gtid_mode) != 1) { 4429 TCW_4(__kmp_gtid_mode, 1); 4430 } 4431 } 4432 } 4433 4434 #ifdef KMP_ADJUST_BLOCKTIME 4435 /* Adjust blocktime back to zero if necessary */ 4436 /* Middle initialization might not have occurred yet */ 4437 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 4438 if (__kmp_nth > __kmp_avail_proc) { 4439 __kmp_zero_bt = TRUE; 4440 } 4441 } 4442 #endif /* KMP_ADJUST_BLOCKTIME */ 4443 4444 /* actually fork it and create the new worker thread */ 4445 KF_TRACE( 4446 10, ("__kmp_allocate_thread: before __kmp_create_worker: %p\n", new_thr)); 4447 __kmp_create_worker(new_gtid, new_thr, __kmp_stksize); 4448 KF_TRACE(10, 4449 ("__kmp_allocate_thread: after __kmp_create_worker: %p\n", new_thr)); 4450 4451 KA_TRACE(20, ("__kmp_allocate_thread: T#%d forked T#%d\n", __kmp_get_gtid(), 4452 new_gtid)); 4453 KMP_MB(); 4454 return new_thr; 4455 } 4456 4457 /* Reinitialize team for reuse. 4458 The hot team code calls this case at every fork barrier, so EPCC barrier 4459 test are extremely sensitive to changes in it, esp. writes to the team 4460 struct, which cause a cache invalidation in all threads. 4461 IF YOU TOUCH THIS ROUTINE, RUN EPCC C SYNCBENCH ON A BIG-IRON MACHINE!!! */ 4462 static void __kmp_reinitialize_team(kmp_team_t *team, 4463 kmp_internal_control_t *new_icvs, 4464 ident_t *loc) { 4465 KF_TRACE(10, ("__kmp_reinitialize_team: enter this_thread=%p team=%p\n", 4466 team->t.t_threads[0], team)); 4467 KMP_DEBUG_ASSERT(team && new_icvs); 4468 KMP_DEBUG_ASSERT((!TCR_4(__kmp_init_parallel)) || new_icvs->nproc); 4469 KMP_CHECK_UPDATE(team->t.t_ident, loc); 4470 4471 KMP_CHECK_UPDATE(team->t.t_id, KMP_GEN_TEAM_ID()); 4472 // Copy ICVs to the master thread's implicit taskdata 4473 __kmp_init_implicit_task(loc, team->t.t_threads[0], team, 0, FALSE); 4474 copy_icvs(&team->t.t_implicit_task_taskdata[0].td_icvs, new_icvs); 4475 4476 KF_TRACE(10, ("__kmp_reinitialize_team: exit this_thread=%p team=%p\n", 4477 team->t.t_threads[0], team)); 4478 } 4479 4480 /* Initialize the team data structure. 4481 This assumes the t_threads and t_max_nproc are already set. 4482 Also, we don't touch the arguments */ 4483 static void __kmp_initialize_team(kmp_team_t *team, int new_nproc, 4484 kmp_internal_control_t *new_icvs, 4485 ident_t *loc) { 4486 KF_TRACE(10, ("__kmp_initialize_team: enter: team=%p\n", team)); 4487 4488 /* verify */ 4489 KMP_DEBUG_ASSERT(team); 4490 KMP_DEBUG_ASSERT(new_nproc <= team->t.t_max_nproc); 4491 KMP_DEBUG_ASSERT(team->t.t_threads); 4492 KMP_MB(); 4493 4494 team->t.t_master_tid = 0; /* not needed */ 4495 /* team->t.t_master_bar; not needed */ 4496 team->t.t_serialized = new_nproc > 1 ? 0 : 1; 4497 team->t.t_nproc = new_nproc; 4498 4499 /* team->t.t_parent = NULL; TODO not needed & would mess up hot team */ 4500 team->t.t_next_pool = NULL; 4501 /* memset( team->t.t_threads, 0, sizeof(kmp_info_t*)*new_nproc ); would mess 4502 * up hot team */ 4503 4504 TCW_SYNC_PTR(team->t.t_pkfn, NULL); /* not needed */ 4505 team->t.t_invoke = NULL; /* not needed */ 4506 4507 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 4508 team->t.t_sched.sched = new_icvs->sched.sched; 4509 4510 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4511 team->t.t_fp_control_saved = FALSE; /* not needed */ 4512 team->t.t_x87_fpu_control_word = 0; /* not needed */ 4513 team->t.t_mxcsr = 0; /* not needed */ 4514 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4515 4516 team->t.t_construct = 0; 4517 4518 team->t.t_ordered.dt.t_value = 0; 4519 team->t.t_master_active = FALSE; 4520 4521 #ifdef KMP_DEBUG 4522 team->t.t_copypriv_data = NULL; /* not necessary, but nice for debugging */ 4523 #endif 4524 #if KMP_OS_WINDOWS 4525 team->t.t_copyin_counter = 0; /* for barrier-free copyin implementation */ 4526 #endif 4527 4528 team->t.t_control_stack_top = NULL; 4529 4530 __kmp_reinitialize_team(team, new_icvs, loc); 4531 4532 KMP_MB(); 4533 KF_TRACE(10, ("__kmp_initialize_team: exit: team=%p\n", team)); 4534 } 4535 4536 #if (KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED 4537 /* Sets full mask for thread and returns old mask, no changes to structures. */ 4538 static void 4539 __kmp_set_thread_affinity_mask_full_tmp(kmp_affin_mask_t *old_mask) { 4540 if (KMP_AFFINITY_CAPABLE()) { 4541 int status; 4542 if (old_mask != NULL) { 4543 status = __kmp_get_system_affinity(old_mask, TRUE); 4544 int error = errno; 4545 if (status != 0) { 4546 __kmp_fatal(KMP_MSG(ChangeThreadAffMaskError), KMP_ERR(error), 4547 __kmp_msg_null); 4548 } 4549 } 4550 __kmp_set_system_affinity(__kmp_affin_fullMask, TRUE); 4551 } 4552 } 4553 #endif 4554 4555 #if KMP_AFFINITY_SUPPORTED 4556 4557 // __kmp_partition_places() is the heart of the OpenMP 4.0 affinity mechanism. 4558 // It calculates the worker + master thread's partition based upon the parent 4559 // thread's partition, and binds each worker to a thread in their partition. 4560 // The master thread's partition should already include its current binding. 4561 static void __kmp_partition_places(kmp_team_t *team, int update_master_only) { 4562 // Copy the master thread's place partition to the team struct 4563 kmp_info_t *master_th = team->t.t_threads[0]; 4564 KMP_DEBUG_ASSERT(master_th != NULL); 4565 kmp_proc_bind_t proc_bind = team->t.t_proc_bind; 4566 int first_place = master_th->th.th_first_place; 4567 int last_place = master_th->th.th_last_place; 4568 int masters_place = master_th->th.th_current_place; 4569 team->t.t_first_place = first_place; 4570 team->t.t_last_place = last_place; 4571 4572 KA_TRACE(20, ("__kmp_partition_places: enter: proc_bind = %d T#%d(%d:0) " 4573 "bound to place %d partition = [%d,%d]\n", 4574 proc_bind, __kmp_gtid_from_thread(team->t.t_threads[0]), 4575 team->t.t_id, masters_place, first_place, last_place)); 4576 4577 switch (proc_bind) { 4578 4579 case proc_bind_default: 4580 // serial teams might have the proc_bind policy set to proc_bind_default. It 4581 // doesn't matter, as we don't rebind master thread for any proc_bind policy 4582 KMP_DEBUG_ASSERT(team->t.t_nproc == 1); 4583 break; 4584 4585 case proc_bind_master: { 4586 int f; 4587 int n_th = team->t.t_nproc; 4588 for (f = 1; f < n_th; f++) { 4589 kmp_info_t *th = team->t.t_threads[f]; 4590 KMP_DEBUG_ASSERT(th != NULL); 4591 th->th.th_first_place = first_place; 4592 th->th.th_last_place = last_place; 4593 th->th.th_new_place = masters_place; 4594 if (__kmp_display_affinity && masters_place != th->th.th_current_place && 4595 team->t.t_display_affinity != 1) { 4596 team->t.t_display_affinity = 1; 4597 } 4598 4599 KA_TRACE(100, ("__kmp_partition_places: master: T#%d(%d:%d) place %d " 4600 "partition = [%d,%d]\n", 4601 __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, 4602 f, masters_place, first_place, last_place)); 4603 } 4604 } break; 4605 4606 case proc_bind_close: { 4607 int f; 4608 int n_th = team->t.t_nproc; 4609 int n_places; 4610 if (first_place <= last_place) { 4611 n_places = last_place - first_place + 1; 4612 } else { 4613 n_places = __kmp_affinity_num_masks - first_place + last_place + 1; 4614 } 4615 if (n_th <= n_places) { 4616 int place = masters_place; 4617 for (f = 1; f < n_th; f++) { 4618 kmp_info_t *th = team->t.t_threads[f]; 4619 KMP_DEBUG_ASSERT(th != NULL); 4620 4621 if (place == last_place) { 4622 place = first_place; 4623 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4624 place = 0; 4625 } else { 4626 place++; 4627 } 4628 th->th.th_first_place = first_place; 4629 th->th.th_last_place = last_place; 4630 th->th.th_new_place = place; 4631 if (__kmp_display_affinity && place != th->th.th_current_place && 4632 team->t.t_display_affinity != 1) { 4633 team->t.t_display_affinity = 1; 4634 } 4635 4636 KA_TRACE(100, ("__kmp_partition_places: close: T#%d(%d:%d) place %d " 4637 "partition = [%d,%d]\n", 4638 __kmp_gtid_from_thread(team->t.t_threads[f]), 4639 team->t.t_id, f, place, first_place, last_place)); 4640 } 4641 } else { 4642 int S, rem, gap, s_count; 4643 S = n_th / n_places; 4644 s_count = 0; 4645 rem = n_th - (S * n_places); 4646 gap = rem > 0 ? n_places / rem : n_places; 4647 int place = masters_place; 4648 int gap_ct = gap; 4649 for (f = 0; f < n_th; f++) { 4650 kmp_info_t *th = team->t.t_threads[f]; 4651 KMP_DEBUG_ASSERT(th != NULL); 4652 4653 th->th.th_first_place = first_place; 4654 th->th.th_last_place = last_place; 4655 th->th.th_new_place = place; 4656 if (__kmp_display_affinity && place != th->th.th_current_place && 4657 team->t.t_display_affinity != 1) { 4658 team->t.t_display_affinity = 1; 4659 } 4660 s_count++; 4661 4662 if ((s_count == S) && rem && (gap_ct == gap)) { 4663 // do nothing, add an extra thread to place on next iteration 4664 } else if ((s_count == S + 1) && rem && (gap_ct == gap)) { 4665 // we added an extra thread to this place; move to next place 4666 if (place == last_place) { 4667 place = first_place; 4668 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4669 place = 0; 4670 } else { 4671 place++; 4672 } 4673 s_count = 0; 4674 gap_ct = 1; 4675 rem--; 4676 } else if (s_count == S) { // place full; don't add extra 4677 if (place == last_place) { 4678 place = first_place; 4679 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4680 place = 0; 4681 } else { 4682 place++; 4683 } 4684 gap_ct++; 4685 s_count = 0; 4686 } 4687 4688 KA_TRACE(100, 4689 ("__kmp_partition_places: close: T#%d(%d:%d) place %d " 4690 "partition = [%d,%d]\n", 4691 __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, f, 4692 th->th.th_new_place, first_place, last_place)); 4693 } 4694 KMP_DEBUG_ASSERT(place == masters_place); 4695 } 4696 } break; 4697 4698 case proc_bind_spread: { 4699 int f; 4700 int n_th = team->t.t_nproc; 4701 int n_places; 4702 int thidx; 4703 if (first_place <= last_place) { 4704 n_places = last_place - first_place + 1; 4705 } else { 4706 n_places = __kmp_affinity_num_masks - first_place + last_place + 1; 4707 } 4708 if (n_th <= n_places) { 4709 int place = -1; 4710 4711 if (n_places != static_cast<int>(__kmp_affinity_num_masks)) { 4712 int S = n_places / n_th; 4713 int s_count, rem, gap, gap_ct; 4714 4715 place = masters_place; 4716 rem = n_places - n_th * S; 4717 gap = rem ? n_th / rem : 1; 4718 gap_ct = gap; 4719 thidx = n_th; 4720 if (update_master_only == 1) 4721 thidx = 1; 4722 for (f = 0; f < thidx; f++) { 4723 kmp_info_t *th = team->t.t_threads[f]; 4724 KMP_DEBUG_ASSERT(th != NULL); 4725 4726 th->th.th_first_place = place; 4727 th->th.th_new_place = place; 4728 if (__kmp_display_affinity && place != th->th.th_current_place && 4729 team->t.t_display_affinity != 1) { 4730 team->t.t_display_affinity = 1; 4731 } 4732 s_count = 1; 4733 while (s_count < S) { 4734 if (place == last_place) { 4735 place = first_place; 4736 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4737 place = 0; 4738 } else { 4739 place++; 4740 } 4741 s_count++; 4742 } 4743 if (rem && (gap_ct == gap)) { 4744 if (place == last_place) { 4745 place = first_place; 4746 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4747 place = 0; 4748 } else { 4749 place++; 4750 } 4751 rem--; 4752 gap_ct = 0; 4753 } 4754 th->th.th_last_place = place; 4755 gap_ct++; 4756 4757 if (place == last_place) { 4758 place = first_place; 4759 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4760 place = 0; 4761 } else { 4762 place++; 4763 } 4764 4765 KA_TRACE(100, 4766 ("__kmp_partition_places: spread: T#%d(%d:%d) place %d " 4767 "partition = [%d,%d], __kmp_affinity_num_masks: %u\n", 4768 __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, 4769 f, th->th.th_new_place, th->th.th_first_place, 4770 th->th.th_last_place, __kmp_affinity_num_masks)); 4771 } 4772 } else { 4773 /* Having uniform space of available computation places I can create 4774 T partitions of round(P/T) size and put threads into the first 4775 place of each partition. */ 4776 double current = static_cast<double>(masters_place); 4777 double spacing = 4778 (static_cast<double>(n_places + 1) / static_cast<double>(n_th)); 4779 int first, last; 4780 kmp_info_t *th; 4781 4782 thidx = n_th + 1; 4783 if (update_master_only == 1) 4784 thidx = 1; 4785 for (f = 0; f < thidx; f++) { 4786 first = static_cast<int>(current); 4787 last = static_cast<int>(current + spacing) - 1; 4788 KMP_DEBUG_ASSERT(last >= first); 4789 if (first >= n_places) { 4790 if (masters_place) { 4791 first -= n_places; 4792 last -= n_places; 4793 if (first == (masters_place + 1)) { 4794 KMP_DEBUG_ASSERT(f == n_th); 4795 first--; 4796 } 4797 if (last == masters_place) { 4798 KMP_DEBUG_ASSERT(f == (n_th - 1)); 4799 last--; 4800 } 4801 } else { 4802 KMP_DEBUG_ASSERT(f == n_th); 4803 first = 0; 4804 last = 0; 4805 } 4806 } 4807 if (last >= n_places) { 4808 last = (n_places - 1); 4809 } 4810 place = first; 4811 current += spacing; 4812 if (f < n_th) { 4813 KMP_DEBUG_ASSERT(0 <= first); 4814 KMP_DEBUG_ASSERT(n_places > first); 4815 KMP_DEBUG_ASSERT(0 <= last); 4816 KMP_DEBUG_ASSERT(n_places > last); 4817 KMP_DEBUG_ASSERT(last_place >= first_place); 4818 th = team->t.t_threads[f]; 4819 KMP_DEBUG_ASSERT(th); 4820 th->th.th_first_place = first; 4821 th->th.th_new_place = place; 4822 th->th.th_last_place = last; 4823 if (__kmp_display_affinity && place != th->th.th_current_place && 4824 team->t.t_display_affinity != 1) { 4825 team->t.t_display_affinity = 1; 4826 } 4827 KA_TRACE(100, 4828 ("__kmp_partition_places: spread: T#%d(%d:%d) place %d " 4829 "partition = [%d,%d], spacing = %.4f\n", 4830 __kmp_gtid_from_thread(team->t.t_threads[f]), 4831 team->t.t_id, f, th->th.th_new_place, 4832 th->th.th_first_place, th->th.th_last_place, spacing)); 4833 } 4834 } 4835 } 4836 KMP_DEBUG_ASSERT(update_master_only || place == masters_place); 4837 } else { 4838 int S, rem, gap, s_count; 4839 S = n_th / n_places; 4840 s_count = 0; 4841 rem = n_th - (S * n_places); 4842 gap = rem > 0 ? n_places / rem : n_places; 4843 int place = masters_place; 4844 int gap_ct = gap; 4845 thidx = n_th; 4846 if (update_master_only == 1) 4847 thidx = 1; 4848 for (f = 0; f < thidx; f++) { 4849 kmp_info_t *th = team->t.t_threads[f]; 4850 KMP_DEBUG_ASSERT(th != NULL); 4851 4852 th->th.th_first_place = place; 4853 th->th.th_last_place = place; 4854 th->th.th_new_place = place; 4855 if (__kmp_display_affinity && place != th->th.th_current_place && 4856 team->t.t_display_affinity != 1) { 4857 team->t.t_display_affinity = 1; 4858 } 4859 s_count++; 4860 4861 if ((s_count == S) && rem && (gap_ct == gap)) { 4862 // do nothing, add an extra thread to place on next iteration 4863 } else if ((s_count == S + 1) && rem && (gap_ct == gap)) { 4864 // we added an extra thread to this place; move on to next place 4865 if (place == last_place) { 4866 place = first_place; 4867 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4868 place = 0; 4869 } else { 4870 place++; 4871 } 4872 s_count = 0; 4873 gap_ct = 1; 4874 rem--; 4875 } else if (s_count == S) { // place is full; don't add extra thread 4876 if (place == last_place) { 4877 place = first_place; 4878 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4879 place = 0; 4880 } else { 4881 place++; 4882 } 4883 gap_ct++; 4884 s_count = 0; 4885 } 4886 4887 KA_TRACE(100, ("__kmp_partition_places: spread: T#%d(%d:%d) place %d " 4888 "partition = [%d,%d]\n", 4889 __kmp_gtid_from_thread(team->t.t_threads[f]), 4890 team->t.t_id, f, th->th.th_new_place, 4891 th->th.th_first_place, th->th.th_last_place)); 4892 } 4893 KMP_DEBUG_ASSERT(update_master_only || place == masters_place); 4894 } 4895 } break; 4896 4897 default: 4898 break; 4899 } 4900 4901 KA_TRACE(20, ("__kmp_partition_places: exit T#%d\n", team->t.t_id)); 4902 } 4903 4904 #endif // KMP_AFFINITY_SUPPORTED 4905 4906 /* allocate a new team data structure to use. take one off of the free pool if 4907 available */ 4908 kmp_team_t * 4909 __kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc, 4910 #if OMPT_SUPPORT 4911 ompt_data_t ompt_parallel_data, 4912 #endif 4913 kmp_proc_bind_t new_proc_bind, 4914 kmp_internal_control_t *new_icvs, 4915 int argc USE_NESTED_HOT_ARG(kmp_info_t *master)) { 4916 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_allocate_team); 4917 int f; 4918 kmp_team_t *team; 4919 int use_hot_team = !root->r.r_active; 4920 int level = 0; 4921 4922 KA_TRACE(20, ("__kmp_allocate_team: called\n")); 4923 KMP_DEBUG_ASSERT(new_nproc >= 1 && argc >= 0); 4924 KMP_DEBUG_ASSERT(max_nproc >= new_nproc); 4925 KMP_MB(); 4926 4927 #if KMP_NESTED_HOT_TEAMS 4928 kmp_hot_team_ptr_t *hot_teams; 4929 if (master) { 4930 team = master->th.th_team; 4931 level = team->t.t_active_level; 4932 if (master->th.th_teams_microtask) { // in teams construct? 4933 if (master->th.th_teams_size.nteams > 1 && 4934 ( // #teams > 1 4935 team->t.t_pkfn == 4936 (microtask_t)__kmp_teams_master || // inner fork of the teams 4937 master->th.th_teams_level < 4938 team->t.t_level)) { // or nested parallel inside the teams 4939 ++level; // not increment if #teams==1, or for outer fork of the teams; 4940 // increment otherwise 4941 } 4942 } 4943 hot_teams = master->th.th_hot_teams; 4944 if (level < __kmp_hot_teams_max_level && hot_teams && 4945 hot_teams[level].hot_team) { 4946 // hot team has already been allocated for given level 4947 use_hot_team = 1; 4948 } else { 4949 use_hot_team = 0; 4950 } 4951 } else { 4952 // check we won't access uninitialized hot_teams, just in case 4953 KMP_DEBUG_ASSERT(new_nproc == 1); 4954 } 4955 #endif 4956 // Optimization to use a "hot" team 4957 if (use_hot_team && new_nproc > 1) { 4958 KMP_DEBUG_ASSERT(new_nproc <= max_nproc); 4959 #if KMP_NESTED_HOT_TEAMS 4960 team = hot_teams[level].hot_team; 4961 #else 4962 team = root->r.r_hot_team; 4963 #endif 4964 #if KMP_DEBUG 4965 if (__kmp_tasking_mode != tskm_immediate_exec) { 4966 KA_TRACE(20, ("__kmp_allocate_team: hot team task_team[0] = %p " 4967 "task_team[1] = %p before reinit\n", 4968 team->t.t_task_team[0], team->t.t_task_team[1])); 4969 } 4970 #endif 4971 4972 // Has the number of threads changed? 4973 /* Let's assume the most common case is that the number of threads is 4974 unchanged, and put that case first. */ 4975 if (team->t.t_nproc == new_nproc) { // Check changes in number of threads 4976 KA_TRACE(20, ("__kmp_allocate_team: reusing hot team\n")); 4977 // This case can mean that omp_set_num_threads() was called and the hot 4978 // team size was already reduced, so we check the special flag 4979 if (team->t.t_size_changed == -1) { 4980 team->t.t_size_changed = 1; 4981 } else { 4982 KMP_CHECK_UPDATE(team->t.t_size_changed, 0); 4983 } 4984 4985 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 4986 kmp_r_sched_t new_sched = new_icvs->sched; 4987 // set master's schedule as new run-time schedule 4988 KMP_CHECK_UPDATE(team->t.t_sched.sched, new_sched.sched); 4989 4990 __kmp_reinitialize_team(team, new_icvs, 4991 root->r.r_uber_thread->th.th_ident); 4992 4993 KF_TRACE(10, ("__kmp_allocate_team2: T#%d, this_thread=%p team=%p\n", 0, 4994 team->t.t_threads[0], team)); 4995 __kmp_push_current_task_to_thread(team->t.t_threads[0], team, 0); 4996 4997 #if KMP_AFFINITY_SUPPORTED 4998 if ((team->t.t_size_changed == 0) && 4999 (team->t.t_proc_bind == new_proc_bind)) { 5000 if (new_proc_bind == proc_bind_spread) { 5001 __kmp_partition_places( 5002 team, 1); // add flag to update only master for spread 5003 } 5004 KA_TRACE(200, ("__kmp_allocate_team: reusing hot team #%d bindings: " 5005 "proc_bind = %d, partition = [%d,%d]\n", 5006 team->t.t_id, new_proc_bind, team->t.t_first_place, 5007 team->t.t_last_place)); 5008 } else { 5009 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5010 __kmp_partition_places(team); 5011 } 5012 #else 5013 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5014 #endif /* KMP_AFFINITY_SUPPORTED */ 5015 } else if (team->t.t_nproc > new_nproc) { 5016 KA_TRACE(20, 5017 ("__kmp_allocate_team: decreasing hot team thread count to %d\n", 5018 new_nproc)); 5019 5020 team->t.t_size_changed = 1; 5021 #if KMP_NESTED_HOT_TEAMS 5022 if (__kmp_hot_teams_mode == 0) { 5023 // AC: saved number of threads should correspond to team's value in this 5024 // mode, can be bigger in mode 1, when hot team has threads in reserve 5025 KMP_DEBUG_ASSERT(hot_teams[level].hot_team_nth == team->t.t_nproc); 5026 hot_teams[level].hot_team_nth = new_nproc; 5027 #endif // KMP_NESTED_HOT_TEAMS 5028 /* release the extra threads we don't need any more */ 5029 for (f = new_nproc; f < team->t.t_nproc; f++) { 5030 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5031 if (__kmp_tasking_mode != tskm_immediate_exec) { 5032 // When decreasing team size, threads no longer in the team should 5033 // unref task team. 5034 team->t.t_threads[f]->th.th_task_team = NULL; 5035 } 5036 __kmp_free_thread(team->t.t_threads[f]); 5037 team->t.t_threads[f] = NULL; 5038 } 5039 #if KMP_NESTED_HOT_TEAMS 5040 } // (__kmp_hot_teams_mode == 0) 5041 else { 5042 // When keeping extra threads in team, switch threads to wait on own 5043 // b_go flag 5044 for (f = new_nproc; f < team->t.t_nproc; ++f) { 5045 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5046 kmp_balign_t *balign = team->t.t_threads[f]->th.th_bar; 5047 for (int b = 0; b < bs_last_barrier; ++b) { 5048 if (balign[b].bb.wait_flag == KMP_BARRIER_PARENT_FLAG) { 5049 balign[b].bb.wait_flag = KMP_BARRIER_SWITCH_TO_OWN_FLAG; 5050 } 5051 KMP_CHECK_UPDATE(balign[b].bb.leaf_kids, 0); 5052 } 5053 } 5054 } 5055 #endif // KMP_NESTED_HOT_TEAMS 5056 team->t.t_nproc = new_nproc; 5057 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 5058 KMP_CHECK_UPDATE(team->t.t_sched.sched, new_icvs->sched.sched); 5059 __kmp_reinitialize_team(team, new_icvs, 5060 root->r.r_uber_thread->th.th_ident); 5061 5062 // Update remaining threads 5063 for (f = 0; f < new_nproc; ++f) { 5064 team->t.t_threads[f]->th.th_team_nproc = new_nproc; 5065 } 5066 5067 // restore the current task state of the master thread: should be the 5068 // implicit task 5069 KF_TRACE(10, ("__kmp_allocate_team: T#%d, this_thread=%p team=%p\n", 0, 5070 team->t.t_threads[0], team)); 5071 5072 __kmp_push_current_task_to_thread(team->t.t_threads[0], team, 0); 5073 5074 #ifdef KMP_DEBUG 5075 for (f = 0; f < team->t.t_nproc; f++) { 5076 KMP_DEBUG_ASSERT(team->t.t_threads[f] && 5077 team->t.t_threads[f]->th.th_team_nproc == 5078 team->t.t_nproc); 5079 } 5080 #endif 5081 5082 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5083 #if KMP_AFFINITY_SUPPORTED 5084 __kmp_partition_places(team); 5085 #endif 5086 } else { // team->t.t_nproc < new_nproc 5087 #if (KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED 5088 kmp_affin_mask_t *old_mask; 5089 if (KMP_AFFINITY_CAPABLE()) { 5090 KMP_CPU_ALLOC(old_mask); 5091 } 5092 #endif 5093 5094 KA_TRACE(20, 5095 ("__kmp_allocate_team: increasing hot team thread count to %d\n", 5096 new_nproc)); 5097 5098 team->t.t_size_changed = 1; 5099 5100 #if KMP_NESTED_HOT_TEAMS 5101 int avail_threads = hot_teams[level].hot_team_nth; 5102 if (new_nproc < avail_threads) 5103 avail_threads = new_nproc; 5104 kmp_info_t **other_threads = team->t.t_threads; 5105 for (f = team->t.t_nproc; f < avail_threads; ++f) { 5106 // Adjust barrier data of reserved threads (if any) of the team 5107 // Other data will be set in __kmp_initialize_info() below. 5108 int b; 5109 kmp_balign_t *balign = other_threads[f]->th.th_bar; 5110 for (b = 0; b < bs_last_barrier; ++b) { 5111 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 5112 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 5113 #if USE_DEBUGGER 5114 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 5115 #endif 5116 } 5117 } 5118 if (hot_teams[level].hot_team_nth >= new_nproc) { 5119 // we have all needed threads in reserve, no need to allocate any 5120 // this only possible in mode 1, cannot have reserved threads in mode 0 5121 KMP_DEBUG_ASSERT(__kmp_hot_teams_mode == 1); 5122 team->t.t_nproc = new_nproc; // just get reserved threads involved 5123 } else { 5124 // we may have some threads in reserve, but not enough 5125 team->t.t_nproc = 5126 hot_teams[level] 5127 .hot_team_nth; // get reserved threads involved if any 5128 hot_teams[level].hot_team_nth = new_nproc; // adjust hot team max size 5129 #endif // KMP_NESTED_HOT_TEAMS 5130 if (team->t.t_max_nproc < new_nproc) { 5131 /* reallocate larger arrays */ 5132 __kmp_reallocate_team_arrays(team, new_nproc); 5133 __kmp_reinitialize_team(team, new_icvs, NULL); 5134 } 5135 5136 #if (KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED 5137 /* Temporarily set full mask for master thread before creation of 5138 workers. The reason is that workers inherit the affinity from master, 5139 so if a lot of workers are created on the single core quickly, they 5140 don't get a chance to set their own affinity for a long time. */ 5141 __kmp_set_thread_affinity_mask_full_tmp(old_mask); 5142 #endif 5143 5144 /* allocate new threads for the hot team */ 5145 for (f = team->t.t_nproc; f < new_nproc; f++) { 5146 kmp_info_t *new_worker = __kmp_allocate_thread(root, team, f); 5147 KMP_DEBUG_ASSERT(new_worker); 5148 team->t.t_threads[f] = new_worker; 5149 5150 KA_TRACE(20, 5151 ("__kmp_allocate_team: team %d init T#%d arrived: " 5152 "join=%llu, plain=%llu\n", 5153 team->t.t_id, __kmp_gtid_from_tid(f, team), team->t.t_id, f, 5154 team->t.t_bar[bs_forkjoin_barrier].b_arrived, 5155 team->t.t_bar[bs_plain_barrier].b_arrived)); 5156 5157 { // Initialize barrier data for new threads. 5158 int b; 5159 kmp_balign_t *balign = new_worker->th.th_bar; 5160 for (b = 0; b < bs_last_barrier; ++b) { 5161 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 5162 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != 5163 KMP_BARRIER_PARENT_FLAG); 5164 #if USE_DEBUGGER 5165 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 5166 #endif 5167 } 5168 } 5169 } 5170 5171 #if (KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED 5172 if (KMP_AFFINITY_CAPABLE()) { 5173 /* Restore initial master thread's affinity mask */ 5174 __kmp_set_system_affinity(old_mask, TRUE); 5175 KMP_CPU_FREE(old_mask); 5176 } 5177 #endif 5178 #if KMP_NESTED_HOT_TEAMS 5179 } // end of check of t_nproc vs. new_nproc vs. hot_team_nth 5180 #endif // KMP_NESTED_HOT_TEAMS 5181 /* make sure everyone is syncronized */ 5182 int old_nproc = team->t.t_nproc; // save old value and use to update only 5183 // new threads below 5184 __kmp_initialize_team(team, new_nproc, new_icvs, 5185 root->r.r_uber_thread->th.th_ident); 5186 5187 /* reinitialize the threads */ 5188 KMP_DEBUG_ASSERT(team->t.t_nproc == new_nproc); 5189 for (f = 0; f < team->t.t_nproc; ++f) 5190 __kmp_initialize_info(team->t.t_threads[f], team, f, 5191 __kmp_gtid_from_tid(f, team)); 5192 5193 if (level) { // set th_task_state for new threads in nested hot team 5194 // __kmp_initialize_info() no longer zeroes th_task_state, so we should 5195 // only need to set the th_task_state for the new threads. th_task_state 5196 // for master thread will not be accurate until after this in 5197 // __kmp_fork_call(), so we look to the master's memo_stack to get the 5198 // correct value. 5199 for (f = old_nproc; f < team->t.t_nproc; ++f) 5200 team->t.t_threads[f]->th.th_task_state = 5201 team->t.t_threads[0]->th.th_task_state_memo_stack[level]; 5202 } else { // set th_task_state for new threads in non-nested hot team 5203 int old_state = 5204 team->t.t_threads[0]->th.th_task_state; // copy master's state 5205 for (f = old_nproc; f < team->t.t_nproc; ++f) 5206 team->t.t_threads[f]->th.th_task_state = old_state; 5207 } 5208 5209 #ifdef KMP_DEBUG 5210 for (f = 0; f < team->t.t_nproc; ++f) { 5211 KMP_DEBUG_ASSERT(team->t.t_threads[f] && 5212 team->t.t_threads[f]->th.th_team_nproc == 5213 team->t.t_nproc); 5214 } 5215 #endif 5216 5217 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5218 #if KMP_AFFINITY_SUPPORTED 5219 __kmp_partition_places(team); 5220 #endif 5221 } // Check changes in number of threads 5222 5223 kmp_info_t *master = team->t.t_threads[0]; 5224 if (master->th.th_teams_microtask) { 5225 for (f = 1; f < new_nproc; ++f) { 5226 // propagate teams construct specific info to workers 5227 kmp_info_t *thr = team->t.t_threads[f]; 5228 thr->th.th_teams_microtask = master->th.th_teams_microtask; 5229 thr->th.th_teams_level = master->th.th_teams_level; 5230 thr->th.th_teams_size = master->th.th_teams_size; 5231 } 5232 } 5233 #if KMP_NESTED_HOT_TEAMS 5234 if (level) { 5235 // Sync barrier state for nested hot teams, not needed for outermost hot 5236 // team. 5237 for (f = 1; f < new_nproc; ++f) { 5238 kmp_info_t *thr = team->t.t_threads[f]; 5239 int b; 5240 kmp_balign_t *balign = thr->th.th_bar; 5241 for (b = 0; b < bs_last_barrier; ++b) { 5242 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 5243 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 5244 #if USE_DEBUGGER 5245 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 5246 #endif 5247 } 5248 } 5249 } 5250 #endif // KMP_NESTED_HOT_TEAMS 5251 5252 /* reallocate space for arguments if necessary */ 5253 __kmp_alloc_argv_entries(argc, team, TRUE); 5254 KMP_CHECK_UPDATE(team->t.t_argc, argc); 5255 // The hot team re-uses the previous task team, 5256 // if untouched during the previous release->gather phase. 5257 5258 KF_TRACE(10, (" hot_team = %p\n", team)); 5259 5260 #if KMP_DEBUG 5261 if (__kmp_tasking_mode != tskm_immediate_exec) { 5262 KA_TRACE(20, ("__kmp_allocate_team: hot team task_team[0] = %p " 5263 "task_team[1] = %p after reinit\n", 5264 team->t.t_task_team[0], team->t.t_task_team[1])); 5265 } 5266 #endif 5267 5268 #if OMPT_SUPPORT 5269 __ompt_team_assign_id(team, ompt_parallel_data); 5270 #endif 5271 5272 KMP_MB(); 5273 5274 return team; 5275 } 5276 5277 /* next, let's try to take one from the team pool */ 5278 KMP_MB(); 5279 for (team = CCAST(kmp_team_t *, __kmp_team_pool); (team);) { 5280 /* TODO: consider resizing undersized teams instead of reaping them, now 5281 that we have a resizing mechanism */ 5282 if (team->t.t_max_nproc >= max_nproc) { 5283 /* take this team from the team pool */ 5284 __kmp_team_pool = team->t.t_next_pool; 5285 5286 /* setup the team for fresh use */ 5287 __kmp_initialize_team(team, new_nproc, new_icvs, NULL); 5288 5289 KA_TRACE(20, ("__kmp_allocate_team: setting task_team[0] %p and " 5290 "task_team[1] %p to NULL\n", 5291 &team->t.t_task_team[0], &team->t.t_task_team[1])); 5292 team->t.t_task_team[0] = NULL; 5293 team->t.t_task_team[1] = NULL; 5294 5295 /* reallocate space for arguments if necessary */ 5296 __kmp_alloc_argv_entries(argc, team, TRUE); 5297 KMP_CHECK_UPDATE(team->t.t_argc, argc); 5298 5299 KA_TRACE( 5300 20, ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n", 5301 team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 5302 { // Initialize barrier data. 5303 int b; 5304 for (b = 0; b < bs_last_barrier; ++b) { 5305 team->t.t_bar[b].b_arrived = KMP_INIT_BARRIER_STATE; 5306 #if USE_DEBUGGER 5307 team->t.t_bar[b].b_master_arrived = 0; 5308 team->t.t_bar[b].b_team_arrived = 0; 5309 #endif 5310 } 5311 } 5312 5313 team->t.t_proc_bind = new_proc_bind; 5314 5315 KA_TRACE(20, ("__kmp_allocate_team: using team from pool %d.\n", 5316 team->t.t_id)); 5317 5318 #if OMPT_SUPPORT 5319 __ompt_team_assign_id(team, ompt_parallel_data); 5320 #endif 5321 5322 KMP_MB(); 5323 5324 return team; 5325 } 5326 5327 /* reap team if it is too small, then loop back and check the next one */ 5328 // not sure if this is wise, but, will be redone during the hot-teams 5329 // rewrite. 5330 /* TODO: Use technique to find the right size hot-team, don't reap them */ 5331 team = __kmp_reap_team(team); 5332 __kmp_team_pool = team; 5333 } 5334 5335 /* nothing available in the pool, no matter, make a new team! */ 5336 KMP_MB(); 5337 team = (kmp_team_t *)__kmp_allocate(sizeof(kmp_team_t)); 5338 5339 /* and set it up */ 5340 team->t.t_max_nproc = max_nproc; 5341 /* NOTE well, for some reason allocating one big buffer and dividing it up 5342 seems to really hurt performance a lot on the P4, so, let's not use this */ 5343 __kmp_allocate_team_arrays(team, max_nproc); 5344 5345 KA_TRACE(20, ("__kmp_allocate_team: making a new team\n")); 5346 __kmp_initialize_team(team, new_nproc, new_icvs, NULL); 5347 5348 KA_TRACE(20, ("__kmp_allocate_team: setting task_team[0] %p and task_team[1] " 5349 "%p to NULL\n", 5350 &team->t.t_task_team[0], &team->t.t_task_team[1])); 5351 team->t.t_task_team[0] = NULL; // to be removed, as __kmp_allocate zeroes 5352 // memory, no need to duplicate 5353 team->t.t_task_team[1] = NULL; // to be removed, as __kmp_allocate zeroes 5354 // memory, no need to duplicate 5355 5356 if (__kmp_storage_map) { 5357 __kmp_print_team_storage_map("team", team, team->t.t_id, new_nproc); 5358 } 5359 5360 /* allocate space for arguments */ 5361 __kmp_alloc_argv_entries(argc, team, FALSE); 5362 team->t.t_argc = argc; 5363 5364 KA_TRACE(20, 5365 ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n", 5366 team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 5367 { // Initialize barrier data. 5368 int b; 5369 for (b = 0; b < bs_last_barrier; ++b) { 5370 team->t.t_bar[b].b_arrived = KMP_INIT_BARRIER_STATE; 5371 #if USE_DEBUGGER 5372 team->t.t_bar[b].b_master_arrived = 0; 5373 team->t.t_bar[b].b_team_arrived = 0; 5374 #endif 5375 } 5376 } 5377 5378 team->t.t_proc_bind = new_proc_bind; 5379 5380 #if OMPT_SUPPORT 5381 __ompt_team_assign_id(team, ompt_parallel_data); 5382 team->t.ompt_serialized_team_info = NULL; 5383 #endif 5384 5385 KMP_MB(); 5386 5387 KA_TRACE(20, ("__kmp_allocate_team: done creating a new team %d.\n", 5388 team->t.t_id)); 5389 5390 return team; 5391 } 5392 5393 /* TODO implement hot-teams at all levels */ 5394 /* TODO implement lazy thread release on demand (disband request) */ 5395 5396 /* free the team. return it to the team pool. release all the threads 5397 * associated with it */ 5398 void __kmp_free_team(kmp_root_t *root, 5399 kmp_team_t *team USE_NESTED_HOT_ARG(kmp_info_t *master)) { 5400 int f; 5401 KA_TRACE(20, ("__kmp_free_team: T#%d freeing team %d\n", __kmp_get_gtid(), 5402 team->t.t_id)); 5403 5404 /* verify state */ 5405 KMP_DEBUG_ASSERT(root); 5406 KMP_DEBUG_ASSERT(team); 5407 KMP_DEBUG_ASSERT(team->t.t_nproc <= team->t.t_max_nproc); 5408 KMP_DEBUG_ASSERT(team->t.t_threads); 5409 5410 int use_hot_team = team == root->r.r_hot_team; 5411 #if KMP_NESTED_HOT_TEAMS 5412 int level; 5413 kmp_hot_team_ptr_t *hot_teams; 5414 if (master) { 5415 level = team->t.t_active_level - 1; 5416 if (master->th.th_teams_microtask) { // in teams construct? 5417 if (master->th.th_teams_size.nteams > 1) { 5418 ++level; // level was not increased in teams construct for 5419 // team_of_masters 5420 } 5421 if (team->t.t_pkfn != (microtask_t)__kmp_teams_master && 5422 master->th.th_teams_level == team->t.t_level) { 5423 ++level; // level was not increased in teams construct for 5424 // team_of_workers before the parallel 5425 } // team->t.t_level will be increased inside parallel 5426 } 5427 hot_teams = master->th.th_hot_teams; 5428 if (level < __kmp_hot_teams_max_level) { 5429 KMP_DEBUG_ASSERT(team == hot_teams[level].hot_team); 5430 use_hot_team = 1; 5431 } 5432 } 5433 #endif // KMP_NESTED_HOT_TEAMS 5434 5435 /* team is done working */ 5436 TCW_SYNC_PTR(team->t.t_pkfn, 5437 NULL); // Important for Debugging Support Library. 5438 #if KMP_OS_WINDOWS 5439 team->t.t_copyin_counter = 0; // init counter for possible reuse 5440 #endif 5441 // Do not reset pointer to parent team to NULL for hot teams. 5442 5443 /* if we are non-hot team, release our threads */ 5444 if (!use_hot_team) { 5445 if (__kmp_tasking_mode != tskm_immediate_exec) { 5446 // Wait for threads to reach reapable state 5447 for (f = 1; f < team->t.t_nproc; ++f) { 5448 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5449 kmp_info_t *th = team->t.t_threads[f]; 5450 volatile kmp_uint32 *state = &th->th.th_reap_state; 5451 while (*state != KMP_SAFE_TO_REAP) { 5452 #if KMP_OS_WINDOWS 5453 // On Windows a thread can be killed at any time, check this 5454 DWORD ecode; 5455 if (!__kmp_is_thread_alive(th, &ecode)) { 5456 *state = KMP_SAFE_TO_REAP; // reset the flag for dead thread 5457 break; 5458 } 5459 #endif 5460 // first check if thread is sleeping 5461 kmp_flag_64 fl(&th->th.th_bar[bs_forkjoin_barrier].bb.b_go, th); 5462 if (fl.is_sleeping()) 5463 fl.resume(__kmp_gtid_from_thread(th)); 5464 KMP_CPU_PAUSE(); 5465 } 5466 } 5467 5468 // Delete task teams 5469 int tt_idx; 5470 for (tt_idx = 0; tt_idx < 2; ++tt_idx) { 5471 kmp_task_team_t *task_team = team->t.t_task_team[tt_idx]; 5472 if (task_team != NULL) { 5473 for (f = 0; f < team->t.t_nproc; ++f) { // threads unref task teams 5474 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5475 team->t.t_threads[f]->th.th_task_team = NULL; 5476 } 5477 KA_TRACE( 5478 20, 5479 ("__kmp_free_team: T#%d deactivating task_team %p on team %d\n", 5480 __kmp_get_gtid(), task_team, team->t.t_id)); 5481 #if KMP_NESTED_HOT_TEAMS 5482 __kmp_free_task_team(master, task_team); 5483 #endif 5484 team->t.t_task_team[tt_idx] = NULL; 5485 } 5486 } 5487 } 5488 5489 // Reset pointer to parent team only for non-hot teams. 5490 team->t.t_parent = NULL; 5491 team->t.t_level = 0; 5492 team->t.t_active_level = 0; 5493 5494 /* free the worker threads */ 5495 for (f = 1; f < team->t.t_nproc; ++f) { 5496 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5497 __kmp_free_thread(team->t.t_threads[f]); 5498 team->t.t_threads[f] = NULL; 5499 } 5500 5501 /* put the team back in the team pool */ 5502 /* TODO limit size of team pool, call reap_team if pool too large */ 5503 team->t.t_next_pool = CCAST(kmp_team_t *, __kmp_team_pool); 5504 __kmp_team_pool = (volatile kmp_team_t *)team; 5505 } else { // Check if team was created for the masters in a teams construct 5506 // See if first worker is a CG root 5507 KMP_DEBUG_ASSERT(team->t.t_threads[1] && 5508 team->t.t_threads[1]->th.th_cg_roots); 5509 if (team->t.t_threads[1]->th.th_cg_roots->cg_root == team->t.t_threads[1]) { 5510 // Clean up the CG root nodes on workers so that this team can be re-used 5511 for (f = 1; f < team->t.t_nproc; ++f) { 5512 kmp_info_t *thr = team->t.t_threads[f]; 5513 KMP_DEBUG_ASSERT(thr && thr->th.th_cg_roots && 5514 thr->th.th_cg_roots->cg_root == thr); 5515 // Pop current CG root off list 5516 kmp_cg_root_t *tmp = thr->th.th_cg_roots; 5517 thr->th.th_cg_roots = tmp->up; 5518 KA_TRACE(100, ("__kmp_free_team: Thread %p popping node %p and moving" 5519 " up to node %p. cg_nthreads was %d\n", 5520 thr, tmp, thr->th.th_cg_roots, tmp->cg_nthreads)); 5521 int i = tmp->cg_nthreads--; 5522 if (i == 1) { 5523 __kmp_free(tmp); // free CG if we are the last thread in it 5524 } 5525 // Restore current task's thread_limit from CG root 5526 if (thr->th.th_cg_roots) 5527 thr->th.th_current_task->td_icvs.thread_limit = 5528 thr->th.th_cg_roots->cg_thread_limit; 5529 } 5530 } 5531 } 5532 5533 KMP_MB(); 5534 } 5535 5536 /* reap the team. destroy it, reclaim all its resources and free its memory */ 5537 kmp_team_t *__kmp_reap_team(kmp_team_t *team) { 5538 kmp_team_t *next_pool = team->t.t_next_pool; 5539 5540 KMP_DEBUG_ASSERT(team); 5541 KMP_DEBUG_ASSERT(team->t.t_dispatch); 5542 KMP_DEBUG_ASSERT(team->t.t_disp_buffer); 5543 KMP_DEBUG_ASSERT(team->t.t_threads); 5544 KMP_DEBUG_ASSERT(team->t.t_argv); 5545 5546 /* TODO clean the threads that are a part of this? */ 5547 5548 /* free stuff */ 5549 __kmp_free_team_arrays(team); 5550 if (team->t.t_argv != &team->t.t_inline_argv[0]) 5551 __kmp_free((void *)team->t.t_argv); 5552 __kmp_free(team); 5553 5554 KMP_MB(); 5555 return next_pool; 5556 } 5557 5558 // Free the thread. Don't reap it, just place it on the pool of available 5559 // threads. 5560 // 5561 // Changes for Quad issue 527845: We need a predictable OMP tid <-> gtid 5562 // binding for the affinity mechanism to be useful. 5563 // 5564 // Now, we always keep the free list (__kmp_thread_pool) sorted by gtid. 5565 // However, we want to avoid a potential performance problem by always 5566 // scanning through the list to find the correct point at which to insert 5567 // the thread (potential N**2 behavior). To do this we keep track of the 5568 // last place a thread struct was inserted (__kmp_thread_pool_insert_pt). 5569 // With single-level parallelism, threads will always be added to the tail 5570 // of the list, kept track of by __kmp_thread_pool_insert_pt. With nested 5571 // parallelism, all bets are off and we may need to scan through the entire 5572 // free list. 5573 // 5574 // This change also has a potentially large performance benefit, for some 5575 // applications. Previously, as threads were freed from the hot team, they 5576 // would be placed back on the free list in inverse order. If the hot team 5577 // grew back to it's original size, then the freed thread would be placed 5578 // back on the hot team in reverse order. This could cause bad cache 5579 // locality problems on programs where the size of the hot team regularly 5580 // grew and shrunk. 5581 // 5582 // Now, for single-level parallelism, the OMP tid is always == gtid. 5583 void __kmp_free_thread(kmp_info_t *this_th) { 5584 int gtid; 5585 kmp_info_t **scan; 5586 5587 KA_TRACE(20, ("__kmp_free_thread: T#%d putting T#%d back on free pool.\n", 5588 __kmp_get_gtid(), this_th->th.th_info.ds.ds_gtid)); 5589 5590 KMP_DEBUG_ASSERT(this_th); 5591 5592 // When moving thread to pool, switch thread to wait on own b_go flag, and 5593 // uninitialized (NULL team). 5594 int b; 5595 kmp_balign_t *balign = this_th->th.th_bar; 5596 for (b = 0; b < bs_last_barrier; ++b) { 5597 if (balign[b].bb.wait_flag == KMP_BARRIER_PARENT_FLAG) 5598 balign[b].bb.wait_flag = KMP_BARRIER_SWITCH_TO_OWN_FLAG; 5599 balign[b].bb.team = NULL; 5600 balign[b].bb.leaf_kids = 0; 5601 } 5602 this_th->th.th_task_state = 0; 5603 this_th->th.th_reap_state = KMP_SAFE_TO_REAP; 5604 5605 /* put thread back on the free pool */ 5606 TCW_PTR(this_th->th.th_team, NULL); 5607 TCW_PTR(this_th->th.th_root, NULL); 5608 TCW_PTR(this_th->th.th_dispatch, NULL); /* NOT NEEDED */ 5609 5610 while (this_th->th.th_cg_roots) { 5611 this_th->th.th_cg_roots->cg_nthreads--; 5612 KA_TRACE(100, ("__kmp_free_thread: Thread %p decrement cg_nthreads on node" 5613 " %p of thread %p to %d\n", 5614 this_th, this_th->th.th_cg_roots, 5615 this_th->th.th_cg_roots->cg_root, 5616 this_th->th.th_cg_roots->cg_nthreads)); 5617 kmp_cg_root_t *tmp = this_th->th.th_cg_roots; 5618 if (tmp->cg_root == this_th) { // Thread is a cg_root 5619 KMP_DEBUG_ASSERT(tmp->cg_nthreads == 0); 5620 KA_TRACE( 5621 5, ("__kmp_free_thread: Thread %p freeing node %p\n", this_th, tmp)); 5622 this_th->th.th_cg_roots = tmp->up; 5623 __kmp_free(tmp); 5624 } else { // Worker thread 5625 if (tmp->cg_nthreads == 0) { // last thread leaves contention group 5626 __kmp_free(tmp); 5627 } 5628 this_th->th.th_cg_roots = NULL; 5629 break; 5630 } 5631 } 5632 5633 /* If the implicit task assigned to this thread can be used by other threads 5634 * -> multiple threads can share the data and try to free the task at 5635 * __kmp_reap_thread at exit. This duplicate use of the task data can happen 5636 * with higher probability when hot team is disabled but can occurs even when 5637 * the hot team is enabled */ 5638 __kmp_free_implicit_task(this_th); 5639 this_th->th.th_current_task = NULL; 5640 5641 // If the __kmp_thread_pool_insert_pt is already past the new insert 5642 // point, then we need to re-scan the entire list. 5643 gtid = this_th->th.th_info.ds.ds_gtid; 5644 if (__kmp_thread_pool_insert_pt != NULL) { 5645 KMP_DEBUG_ASSERT(__kmp_thread_pool != NULL); 5646 if (__kmp_thread_pool_insert_pt->th.th_info.ds.ds_gtid > gtid) { 5647 __kmp_thread_pool_insert_pt = NULL; 5648 } 5649 } 5650 5651 // Scan down the list to find the place to insert the thread. 5652 // scan is the address of a link in the list, possibly the address of 5653 // __kmp_thread_pool itself. 5654 // 5655 // In the absence of nested parallelism, the for loop will have 0 iterations. 5656 if (__kmp_thread_pool_insert_pt != NULL) { 5657 scan = &(__kmp_thread_pool_insert_pt->th.th_next_pool); 5658 } else { 5659 scan = CCAST(kmp_info_t **, &__kmp_thread_pool); 5660 } 5661 for (; (*scan != NULL) && ((*scan)->th.th_info.ds.ds_gtid < gtid); 5662 scan = &((*scan)->th.th_next_pool)) 5663 ; 5664 5665 // Insert the new element on the list, and set __kmp_thread_pool_insert_pt 5666 // to its address. 5667 TCW_PTR(this_th->th.th_next_pool, *scan); 5668 __kmp_thread_pool_insert_pt = *scan = this_th; 5669 KMP_DEBUG_ASSERT((this_th->th.th_next_pool == NULL) || 5670 (this_th->th.th_info.ds.ds_gtid < 5671 this_th->th.th_next_pool->th.th_info.ds.ds_gtid)); 5672 TCW_4(this_th->th.th_in_pool, TRUE); 5673 __kmp_suspend_initialize_thread(this_th); 5674 __kmp_lock_suspend_mx(this_th); 5675 if (this_th->th.th_active == TRUE) { 5676 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth); 5677 this_th->th.th_active_in_pool = TRUE; 5678 } 5679 #if KMP_DEBUG 5680 else { 5681 KMP_DEBUG_ASSERT(this_th->th.th_active_in_pool == FALSE); 5682 } 5683 #endif 5684 __kmp_unlock_suspend_mx(this_th); 5685 5686 TCW_4(__kmp_nth, __kmp_nth - 1); 5687 5688 #ifdef KMP_ADJUST_BLOCKTIME 5689 /* Adjust blocktime back to user setting or default if necessary */ 5690 /* Middle initialization might never have occurred */ 5691 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 5692 KMP_DEBUG_ASSERT(__kmp_avail_proc > 0); 5693 if (__kmp_nth <= __kmp_avail_proc) { 5694 __kmp_zero_bt = FALSE; 5695 } 5696 } 5697 #endif /* KMP_ADJUST_BLOCKTIME */ 5698 5699 KMP_MB(); 5700 } 5701 5702 /* ------------------------------------------------------------------------ */ 5703 5704 void *__kmp_launch_thread(kmp_info_t *this_thr) { 5705 int gtid = this_thr->th.th_info.ds.ds_gtid; 5706 /* void *stack_data;*/ 5707 kmp_team_t **volatile pteam; 5708 5709 KMP_MB(); 5710 KA_TRACE(10, ("__kmp_launch_thread: T#%d start\n", gtid)); 5711 5712 if (__kmp_env_consistency_check) { 5713 this_thr->th.th_cons = __kmp_allocate_cons_stack(gtid); // ATT: Memory leak? 5714 } 5715 5716 #if OMPT_SUPPORT 5717 ompt_data_t *thread_data; 5718 if (ompt_enabled.enabled) { 5719 thread_data = &(this_thr->th.ompt_thread_info.thread_data); 5720 *thread_data = ompt_data_none; 5721 5722 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 5723 this_thr->th.ompt_thread_info.wait_id = 0; 5724 this_thr->th.ompt_thread_info.idle_frame = OMPT_GET_FRAME_ADDRESS(0); 5725 this_thr->th.ompt_thread_info.parallel_flags = 0; 5726 if (ompt_enabled.ompt_callback_thread_begin) { 5727 ompt_callbacks.ompt_callback(ompt_callback_thread_begin)( 5728 ompt_thread_worker, thread_data); 5729 } 5730 this_thr->th.ompt_thread_info.state = ompt_state_idle; 5731 } 5732 #endif 5733 5734 /* This is the place where threads wait for work */ 5735 while (!TCR_4(__kmp_global.g.g_done)) { 5736 KMP_DEBUG_ASSERT(this_thr == __kmp_threads[gtid]); 5737 KMP_MB(); 5738 5739 /* wait for work to do */ 5740 KA_TRACE(20, ("__kmp_launch_thread: T#%d waiting for work\n", gtid)); 5741 5742 /* No tid yet since not part of a team */ 5743 __kmp_fork_barrier(gtid, KMP_GTID_DNE); 5744 5745 #if OMPT_SUPPORT 5746 if (ompt_enabled.enabled) { 5747 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 5748 } 5749 #endif 5750 5751 pteam = &this_thr->th.th_team; 5752 5753 /* have we been allocated? */ 5754 if (TCR_SYNC_PTR(*pteam) && !TCR_4(__kmp_global.g.g_done)) { 5755 /* we were just woken up, so run our new task */ 5756 if (TCR_SYNC_PTR((*pteam)->t.t_pkfn) != NULL) { 5757 int rc; 5758 KA_TRACE(20, 5759 ("__kmp_launch_thread: T#%d(%d:%d) invoke microtask = %p\n", 5760 gtid, (*pteam)->t.t_id, __kmp_tid_from_gtid(gtid), 5761 (*pteam)->t.t_pkfn)); 5762 5763 updateHWFPControl(*pteam); 5764 5765 #if OMPT_SUPPORT 5766 if (ompt_enabled.enabled) { 5767 this_thr->th.ompt_thread_info.state = ompt_state_work_parallel; 5768 } 5769 #endif 5770 5771 rc = (*pteam)->t.t_invoke(gtid); 5772 KMP_ASSERT(rc); 5773 5774 KMP_MB(); 5775 KA_TRACE(20, ("__kmp_launch_thread: T#%d(%d:%d) done microtask = %p\n", 5776 gtid, (*pteam)->t.t_id, __kmp_tid_from_gtid(gtid), 5777 (*pteam)->t.t_pkfn)); 5778 } 5779 #if OMPT_SUPPORT 5780 if (ompt_enabled.enabled) { 5781 /* no frame set while outside task */ 5782 __ompt_get_task_info_object(0)->frame.exit_frame = ompt_data_none; 5783 5784 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 5785 } 5786 #endif 5787 /* join barrier after parallel region */ 5788 __kmp_join_barrier(gtid); 5789 } 5790 } 5791 TCR_SYNC_PTR((intptr_t)__kmp_global.g.g_done); 5792 5793 #if OMPT_SUPPORT 5794 if (ompt_enabled.ompt_callback_thread_end) { 5795 ompt_callbacks.ompt_callback(ompt_callback_thread_end)(thread_data); 5796 } 5797 #endif 5798 5799 this_thr->th.th_task_team = NULL; 5800 /* run the destructors for the threadprivate data for this thread */ 5801 __kmp_common_destroy_gtid(gtid); 5802 5803 KA_TRACE(10, ("__kmp_launch_thread: T#%d done\n", gtid)); 5804 KMP_MB(); 5805 return this_thr; 5806 } 5807 5808 /* ------------------------------------------------------------------------ */ 5809 5810 void __kmp_internal_end_dest(void *specific_gtid) { 5811 #if KMP_COMPILER_ICC 5812 #pragma warning(push) 5813 #pragma warning(disable : 810) // conversion from "void *" to "int" may lose 5814 // significant bits 5815 #endif 5816 // Make sure no significant bits are lost 5817 int gtid = (kmp_intptr_t)specific_gtid - 1; 5818 #if KMP_COMPILER_ICC 5819 #pragma warning(pop) 5820 #endif 5821 5822 KA_TRACE(30, ("__kmp_internal_end_dest: T#%d\n", gtid)); 5823 /* NOTE: the gtid is stored as gitd+1 in the thread-local-storage 5824 * this is because 0 is reserved for the nothing-stored case */ 5825 5826 __kmp_internal_end_thread(gtid); 5827 } 5828 5829 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB 5830 5831 __attribute__((destructor)) void __kmp_internal_end_dtor(void) { 5832 __kmp_internal_end_atexit(); 5833 } 5834 5835 #endif 5836 5837 /* [Windows] josh: when the atexit handler is called, there may still be more 5838 than one thread alive */ 5839 void __kmp_internal_end_atexit(void) { 5840 KA_TRACE(30, ("__kmp_internal_end_atexit\n")); 5841 /* [Windows] 5842 josh: ideally, we want to completely shutdown the library in this atexit 5843 handler, but stat code that depends on thread specific data for gtid fails 5844 because that data becomes unavailable at some point during the shutdown, so 5845 we call __kmp_internal_end_thread instead. We should eventually remove the 5846 dependency on __kmp_get_specific_gtid in the stat code and use 5847 __kmp_internal_end_library to cleanly shutdown the library. 5848 5849 // TODO: Can some of this comment about GVS be removed? 5850 I suspect that the offending stat code is executed when the calling thread 5851 tries to clean up a dead root thread's data structures, resulting in GVS 5852 code trying to close the GVS structures for that thread, but since the stat 5853 code uses __kmp_get_specific_gtid to get the gtid with the assumption that 5854 the calling thread is cleaning up itself instead of another thread, it get 5855 confused. This happens because allowing a thread to unregister and cleanup 5856 another thread is a recent modification for addressing an issue. 5857 Based on the current design (20050722), a thread may end up 5858 trying to unregister another thread only if thread death does not trigger 5859 the calling of __kmp_internal_end_thread. For Linux* OS, there is the 5860 thread specific data destructor function to detect thread death. For 5861 Windows dynamic, there is DllMain(THREAD_DETACH). For Windows static, there 5862 is nothing. Thus, the workaround is applicable only for Windows static 5863 stat library. */ 5864 __kmp_internal_end_library(-1); 5865 #if KMP_OS_WINDOWS 5866 __kmp_close_console(); 5867 #endif 5868 } 5869 5870 static void __kmp_reap_thread(kmp_info_t *thread, int is_root) { 5871 // It is assumed __kmp_forkjoin_lock is acquired. 5872 5873 int gtid; 5874 5875 KMP_DEBUG_ASSERT(thread != NULL); 5876 5877 gtid = thread->th.th_info.ds.ds_gtid; 5878 5879 if (!is_root) { 5880 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { 5881 /* Assume the threads are at the fork barrier here */ 5882 KA_TRACE( 5883 20, ("__kmp_reap_thread: releasing T#%d from fork barrier for reap\n", 5884 gtid)); 5885 /* Need release fence here to prevent seg faults for tree forkjoin barrier 5886 * (GEH) */ 5887 ANNOTATE_HAPPENS_BEFORE(thread); 5888 kmp_flag_64 flag(&thread->th.th_bar[bs_forkjoin_barrier].bb.b_go, thread); 5889 __kmp_release_64(&flag); 5890 } 5891 5892 // Terminate OS thread. 5893 __kmp_reap_worker(thread); 5894 5895 // The thread was killed asynchronously. If it was actively 5896 // spinning in the thread pool, decrement the global count. 5897 // 5898 // There is a small timing hole here - if the worker thread was just waking 5899 // up after sleeping in the pool, had reset it's th_active_in_pool flag but 5900 // not decremented the global counter __kmp_thread_pool_active_nth yet, then 5901 // the global counter might not get updated. 5902 // 5903 // Currently, this can only happen as the library is unloaded, 5904 // so there are no harmful side effects. 5905 if (thread->th.th_active_in_pool) { 5906 thread->th.th_active_in_pool = FALSE; 5907 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 5908 KMP_DEBUG_ASSERT(__kmp_thread_pool_active_nth >= 0); 5909 } 5910 } 5911 5912 __kmp_free_implicit_task(thread); 5913 5914 // Free the fast memory for tasking 5915 #if USE_FAST_MEMORY 5916 __kmp_free_fast_memory(thread); 5917 #endif /* USE_FAST_MEMORY */ 5918 5919 __kmp_suspend_uninitialize_thread(thread); 5920 5921 KMP_DEBUG_ASSERT(__kmp_threads[gtid] == thread); 5922 TCW_SYNC_PTR(__kmp_threads[gtid], NULL); 5923 5924 --__kmp_all_nth; 5925 // __kmp_nth was decremented when thread is added to the pool. 5926 5927 #ifdef KMP_ADJUST_BLOCKTIME 5928 /* Adjust blocktime back to user setting or default if necessary */ 5929 /* Middle initialization might never have occurred */ 5930 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 5931 KMP_DEBUG_ASSERT(__kmp_avail_proc > 0); 5932 if (__kmp_nth <= __kmp_avail_proc) { 5933 __kmp_zero_bt = FALSE; 5934 } 5935 } 5936 #endif /* KMP_ADJUST_BLOCKTIME */ 5937 5938 /* free the memory being used */ 5939 if (__kmp_env_consistency_check) { 5940 if (thread->th.th_cons) { 5941 __kmp_free_cons_stack(thread->th.th_cons); 5942 thread->th.th_cons = NULL; 5943 } 5944 } 5945 5946 if (thread->th.th_pri_common != NULL) { 5947 __kmp_free(thread->th.th_pri_common); 5948 thread->th.th_pri_common = NULL; 5949 } 5950 5951 if (thread->th.th_task_state_memo_stack != NULL) { 5952 __kmp_free(thread->th.th_task_state_memo_stack); 5953 thread->th.th_task_state_memo_stack = NULL; 5954 } 5955 5956 #if KMP_USE_BGET 5957 if (thread->th.th_local.bget_data != NULL) { 5958 __kmp_finalize_bget(thread); 5959 } 5960 #endif 5961 5962 #if KMP_AFFINITY_SUPPORTED 5963 if (thread->th.th_affin_mask != NULL) { 5964 KMP_CPU_FREE(thread->th.th_affin_mask); 5965 thread->th.th_affin_mask = NULL; 5966 } 5967 #endif /* KMP_AFFINITY_SUPPORTED */ 5968 5969 #if KMP_USE_HIER_SCHED 5970 if (thread->th.th_hier_bar_data != NULL) { 5971 __kmp_free(thread->th.th_hier_bar_data); 5972 thread->th.th_hier_bar_data = NULL; 5973 } 5974 #endif 5975 5976 __kmp_reap_team(thread->th.th_serial_team); 5977 thread->th.th_serial_team = NULL; 5978 __kmp_free(thread); 5979 5980 KMP_MB(); 5981 5982 } // __kmp_reap_thread 5983 5984 static void __kmp_internal_end(void) { 5985 int i; 5986 5987 /* First, unregister the library */ 5988 __kmp_unregister_library(); 5989 5990 #if KMP_OS_WINDOWS 5991 /* In Win static library, we can't tell when a root actually dies, so we 5992 reclaim the data structures for any root threads that have died but not 5993 unregistered themselves, in order to shut down cleanly. 5994 In Win dynamic library we also can't tell when a thread dies. */ 5995 __kmp_reclaim_dead_roots(); // AC: moved here to always clean resources of 5996 // dead roots 5997 #endif 5998 5999 for (i = 0; i < __kmp_threads_capacity; i++) 6000 if (__kmp_root[i]) 6001 if (__kmp_root[i]->r.r_active) 6002 break; 6003 KMP_MB(); /* Flush all pending memory write invalidates. */ 6004 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 6005 6006 if (i < __kmp_threads_capacity) { 6007 #if KMP_USE_MONITOR 6008 // 2009-09-08 (lev): Other alive roots found. Why do we kill the monitor?? 6009 KMP_MB(); /* Flush all pending memory write invalidates. */ 6010 6011 // Need to check that monitor was initialized before reaping it. If we are 6012 // called form __kmp_atfork_child (which sets __kmp_init_parallel = 0), then 6013 // __kmp_monitor will appear to contain valid data, but it is only valid in 6014 // the parent process, not the child. 6015 // New behavior (201008): instead of keying off of the flag 6016 // __kmp_init_parallel, the monitor thread creation is keyed off 6017 // of the new flag __kmp_init_monitor. 6018 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock); 6019 if (TCR_4(__kmp_init_monitor)) { 6020 __kmp_reap_monitor(&__kmp_monitor); 6021 TCW_4(__kmp_init_monitor, 0); 6022 } 6023 __kmp_release_bootstrap_lock(&__kmp_monitor_lock); 6024 KA_TRACE(10, ("__kmp_internal_end: monitor reaped\n")); 6025 #endif // KMP_USE_MONITOR 6026 } else { 6027 /* TODO move this to cleanup code */ 6028 #ifdef KMP_DEBUG 6029 /* make sure that everything has properly ended */ 6030 for (i = 0; i < __kmp_threads_capacity; i++) { 6031 if (__kmp_root[i]) { 6032 // KMP_ASSERT( ! KMP_UBER_GTID( i ) ); // AC: 6033 // there can be uber threads alive here 6034 KMP_ASSERT(!__kmp_root[i]->r.r_active); // TODO: can they be active? 6035 } 6036 } 6037 #endif 6038 6039 KMP_MB(); 6040 6041 // Reap the worker threads. 6042 // This is valid for now, but be careful if threads are reaped sooner. 6043 while (__kmp_thread_pool != NULL) { // Loop thru all the thread in the pool. 6044 // Get the next thread from the pool. 6045 kmp_info_t *thread = CCAST(kmp_info_t *, __kmp_thread_pool); 6046 __kmp_thread_pool = thread->th.th_next_pool; 6047 // Reap it. 6048 KMP_DEBUG_ASSERT(thread->th.th_reap_state == KMP_SAFE_TO_REAP); 6049 thread->th.th_next_pool = NULL; 6050 thread->th.th_in_pool = FALSE; 6051 __kmp_reap_thread(thread, 0); 6052 } 6053 __kmp_thread_pool_insert_pt = NULL; 6054 6055 // Reap teams. 6056 while (__kmp_team_pool != NULL) { // Loop thru all the teams in the pool. 6057 // Get the next team from the pool. 6058 kmp_team_t *team = CCAST(kmp_team_t *, __kmp_team_pool); 6059 __kmp_team_pool = team->t.t_next_pool; 6060 // Reap it. 6061 team->t.t_next_pool = NULL; 6062 __kmp_reap_team(team); 6063 } 6064 6065 __kmp_reap_task_teams(); 6066 6067 #if KMP_OS_UNIX 6068 // Threads that are not reaped should not access any resources since they 6069 // are going to be deallocated soon, so the shutdown sequence should wait 6070 // until all threads either exit the final spin-waiting loop or begin 6071 // sleeping after the given blocktime. 6072 for (i = 0; i < __kmp_threads_capacity; i++) { 6073 kmp_info_t *thr = __kmp_threads[i]; 6074 while (thr && KMP_ATOMIC_LD_ACQ(&thr->th.th_blocking)) 6075 KMP_CPU_PAUSE(); 6076 } 6077 #endif 6078 6079 for (i = 0; i < __kmp_threads_capacity; ++i) { 6080 // TBD: Add some checking... 6081 // Something like KMP_DEBUG_ASSERT( __kmp_thread[ i ] == NULL ); 6082 } 6083 6084 /* Make sure all threadprivate destructors get run by joining with all 6085 worker threads before resetting this flag */ 6086 TCW_SYNC_4(__kmp_init_common, FALSE); 6087 6088 KA_TRACE(10, ("__kmp_internal_end: all workers reaped\n")); 6089 KMP_MB(); 6090 6091 #if KMP_USE_MONITOR 6092 // See note above: One of the possible fixes for CQ138434 / CQ140126 6093 // 6094 // FIXME: push both code fragments down and CSE them? 6095 // push them into __kmp_cleanup() ? 6096 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock); 6097 if (TCR_4(__kmp_init_monitor)) { 6098 __kmp_reap_monitor(&__kmp_monitor); 6099 TCW_4(__kmp_init_monitor, 0); 6100 } 6101 __kmp_release_bootstrap_lock(&__kmp_monitor_lock); 6102 KA_TRACE(10, ("__kmp_internal_end: monitor reaped\n")); 6103 #endif 6104 } /* else !__kmp_global.t_active */ 6105 TCW_4(__kmp_init_gtid, FALSE); 6106 KMP_MB(); /* Flush all pending memory write invalidates. */ 6107 6108 __kmp_cleanup(); 6109 #if OMPT_SUPPORT 6110 ompt_fini(); 6111 #endif 6112 } 6113 6114 void __kmp_internal_end_library(int gtid_req) { 6115 /* if we have already cleaned up, don't try again, it wouldn't be pretty */ 6116 /* this shouldn't be a race condition because __kmp_internal_end() is the 6117 only place to clear __kmp_serial_init */ 6118 /* we'll check this later too, after we get the lock */ 6119 // 2009-09-06: We do not set g_abort without setting g_done. This check looks 6120 // redundant, because the next check will work in any case. 6121 if (__kmp_global.g.g_abort) { 6122 KA_TRACE(11, ("__kmp_internal_end_library: abort, exiting\n")); 6123 /* TODO abort? */ 6124 return; 6125 } 6126 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6127 KA_TRACE(10, ("__kmp_internal_end_library: already finished\n")); 6128 return; 6129 } 6130 6131 KMP_MB(); /* Flush all pending memory write invalidates. */ 6132 /* find out who we are and what we should do */ 6133 { 6134 int gtid = (gtid_req >= 0) ? gtid_req : __kmp_gtid_get_specific(); 6135 KA_TRACE( 6136 10, ("__kmp_internal_end_library: enter T#%d (%d)\n", gtid, gtid_req)); 6137 if (gtid == KMP_GTID_SHUTDOWN) { 6138 KA_TRACE(10, ("__kmp_internal_end_library: !__kmp_init_runtime, system " 6139 "already shutdown\n")); 6140 return; 6141 } else if (gtid == KMP_GTID_MONITOR) { 6142 KA_TRACE(10, ("__kmp_internal_end_library: monitor thread, gtid not " 6143 "registered, or system shutdown\n")); 6144 return; 6145 } else if (gtid == KMP_GTID_DNE) { 6146 KA_TRACE(10, ("__kmp_internal_end_library: gtid not registered or system " 6147 "shutdown\n")); 6148 /* we don't know who we are, but we may still shutdown the library */ 6149 } else if (KMP_UBER_GTID(gtid)) { 6150 /* unregister ourselves as an uber thread. gtid is no longer valid */ 6151 if (__kmp_root[gtid]->r.r_active) { 6152 __kmp_global.g.g_abort = -1; 6153 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 6154 __kmp_unregister_library(); 6155 KA_TRACE(10, 6156 ("__kmp_internal_end_library: root still active, abort T#%d\n", 6157 gtid)); 6158 return; 6159 } else { 6160 KA_TRACE( 6161 10, 6162 ("__kmp_internal_end_library: unregistering sibling T#%d\n", gtid)); 6163 __kmp_unregister_root_current_thread(gtid); 6164 } 6165 } else { 6166 /* worker threads may call this function through the atexit handler, if they 6167 * call exit() */ 6168 /* For now, skip the usual subsequent processing and just dump the debug buffer. 6169 TODO: do a thorough shutdown instead */ 6170 #ifdef DUMP_DEBUG_ON_EXIT 6171 if (__kmp_debug_buf) 6172 __kmp_dump_debug_buffer(); 6173 #endif 6174 // added unregister library call here when we switch to shm linux 6175 // if we don't, it will leave lots of files in /dev/shm 6176 // cleanup shared memory file before exiting. 6177 __kmp_unregister_library(); 6178 return; 6179 } 6180 } 6181 /* synchronize the termination process */ 6182 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6183 6184 /* have we already finished */ 6185 if (__kmp_global.g.g_abort) { 6186 KA_TRACE(10, ("__kmp_internal_end_library: abort, exiting\n")); 6187 /* TODO abort? */ 6188 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6189 return; 6190 } 6191 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6192 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6193 return; 6194 } 6195 6196 /* We need this lock to enforce mutex between this reading of 6197 __kmp_threads_capacity and the writing by __kmp_register_root. 6198 Alternatively, we can use a counter of roots that is atomically updated by 6199 __kmp_get_global_thread_id_reg, __kmp_do_serial_initialize and 6200 __kmp_internal_end_*. */ 6201 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 6202 6203 /* now we can safely conduct the actual termination */ 6204 __kmp_internal_end(); 6205 6206 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 6207 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6208 6209 KA_TRACE(10, ("__kmp_internal_end_library: exit\n")); 6210 6211 #ifdef DUMP_DEBUG_ON_EXIT 6212 if (__kmp_debug_buf) 6213 __kmp_dump_debug_buffer(); 6214 #endif 6215 6216 #if KMP_OS_WINDOWS 6217 __kmp_close_console(); 6218 #endif 6219 6220 __kmp_fini_allocator(); 6221 6222 } // __kmp_internal_end_library 6223 6224 void __kmp_internal_end_thread(int gtid_req) { 6225 int i; 6226 6227 /* if we have already cleaned up, don't try again, it wouldn't be pretty */ 6228 /* this shouldn't be a race condition because __kmp_internal_end() is the 6229 * only place to clear __kmp_serial_init */ 6230 /* we'll check this later too, after we get the lock */ 6231 // 2009-09-06: We do not set g_abort without setting g_done. This check looks 6232 // redundant, because the next check will work in any case. 6233 if (__kmp_global.g.g_abort) { 6234 KA_TRACE(11, ("__kmp_internal_end_thread: abort, exiting\n")); 6235 /* TODO abort? */ 6236 return; 6237 } 6238 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6239 KA_TRACE(10, ("__kmp_internal_end_thread: already finished\n")); 6240 return; 6241 } 6242 6243 KMP_MB(); /* Flush all pending memory write invalidates. */ 6244 6245 /* find out who we are and what we should do */ 6246 { 6247 int gtid = (gtid_req >= 0) ? gtid_req : __kmp_gtid_get_specific(); 6248 KA_TRACE(10, 6249 ("__kmp_internal_end_thread: enter T#%d (%d)\n", gtid, gtid_req)); 6250 if (gtid == KMP_GTID_SHUTDOWN) { 6251 KA_TRACE(10, ("__kmp_internal_end_thread: !__kmp_init_runtime, system " 6252 "already shutdown\n")); 6253 return; 6254 } else if (gtid == KMP_GTID_MONITOR) { 6255 KA_TRACE(10, ("__kmp_internal_end_thread: monitor thread, gtid not " 6256 "registered, or system shutdown\n")); 6257 return; 6258 } else if (gtid == KMP_GTID_DNE) { 6259 KA_TRACE(10, ("__kmp_internal_end_thread: gtid not registered or system " 6260 "shutdown\n")); 6261 return; 6262 /* we don't know who we are */ 6263 } else if (KMP_UBER_GTID(gtid)) { 6264 /* unregister ourselves as an uber thread. gtid is no longer valid */ 6265 if (__kmp_root[gtid]->r.r_active) { 6266 __kmp_global.g.g_abort = -1; 6267 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 6268 KA_TRACE(10, 6269 ("__kmp_internal_end_thread: root still active, abort T#%d\n", 6270 gtid)); 6271 return; 6272 } else { 6273 KA_TRACE(10, ("__kmp_internal_end_thread: unregistering sibling T#%d\n", 6274 gtid)); 6275 __kmp_unregister_root_current_thread(gtid); 6276 } 6277 } else { 6278 /* just a worker thread, let's leave */ 6279 KA_TRACE(10, ("__kmp_internal_end_thread: worker thread T#%d\n", gtid)); 6280 6281 if (gtid >= 0) { 6282 __kmp_threads[gtid]->th.th_task_team = NULL; 6283 } 6284 6285 KA_TRACE(10, 6286 ("__kmp_internal_end_thread: worker thread done, exiting T#%d\n", 6287 gtid)); 6288 return; 6289 } 6290 } 6291 #if KMP_DYNAMIC_LIB 6292 if (__kmp_pause_status != kmp_hard_paused) 6293 // AC: lets not shutdown the dynamic library at the exit of uber thread, 6294 // because we will better shutdown later in the library destructor. 6295 { 6296 KA_TRACE(10, ("__kmp_internal_end_thread: exiting T#%d\n", gtid_req)); 6297 return; 6298 } 6299 #endif 6300 /* synchronize the termination process */ 6301 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6302 6303 /* have we already finished */ 6304 if (__kmp_global.g.g_abort) { 6305 KA_TRACE(10, ("__kmp_internal_end_thread: abort, exiting\n")); 6306 /* TODO abort? */ 6307 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6308 return; 6309 } 6310 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6311 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6312 return; 6313 } 6314 6315 /* We need this lock to enforce mutex between this reading of 6316 __kmp_threads_capacity and the writing by __kmp_register_root. 6317 Alternatively, we can use a counter of roots that is atomically updated by 6318 __kmp_get_global_thread_id_reg, __kmp_do_serial_initialize and 6319 __kmp_internal_end_*. */ 6320 6321 /* should we finish the run-time? are all siblings done? */ 6322 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 6323 6324 for (i = 0; i < __kmp_threads_capacity; ++i) { 6325 if (KMP_UBER_GTID(i)) { 6326 KA_TRACE( 6327 10, 6328 ("__kmp_internal_end_thread: remaining sibling task: gtid==%d\n", i)); 6329 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 6330 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6331 return; 6332 } 6333 } 6334 6335 /* now we can safely conduct the actual termination */ 6336 6337 __kmp_internal_end(); 6338 6339 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 6340 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6341 6342 KA_TRACE(10, ("__kmp_internal_end_thread: exit T#%d\n", gtid_req)); 6343 6344 #ifdef DUMP_DEBUG_ON_EXIT 6345 if (__kmp_debug_buf) 6346 __kmp_dump_debug_buffer(); 6347 #endif 6348 } // __kmp_internal_end_thread 6349 6350 // ----------------------------------------------------------------------------- 6351 // Library registration stuff. 6352 6353 static long __kmp_registration_flag = 0; 6354 // Random value used to indicate library initialization. 6355 static char *__kmp_registration_str = NULL; 6356 // Value to be saved in env var __KMP_REGISTERED_LIB_<pid>. 6357 6358 static inline char *__kmp_reg_status_name() { 6359 /* On RHEL 3u5 if linked statically, getpid() returns different values in 6360 each thread. If registration and unregistration go in different threads 6361 (omp_misc_other_root_exit.cpp test case), the name of registered_lib_env 6362 env var can not be found, because the name will contain different pid. */ 6363 return __kmp_str_format("__KMP_REGISTERED_LIB_%d", (int)getpid()); 6364 } // __kmp_reg_status_get 6365 6366 void __kmp_register_library_startup(void) { 6367 6368 char *name = __kmp_reg_status_name(); // Name of the environment variable. 6369 int done = 0; 6370 union { 6371 double dtime; 6372 long ltime; 6373 } time; 6374 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 6375 __kmp_initialize_system_tick(); 6376 #endif 6377 __kmp_read_system_time(&time.dtime); 6378 __kmp_registration_flag = 0xCAFE0000L | (time.ltime & 0x0000FFFFL); 6379 __kmp_registration_str = 6380 __kmp_str_format("%p-%lx-%s", &__kmp_registration_flag, 6381 __kmp_registration_flag, KMP_LIBRARY_FILE); 6382 6383 KA_TRACE(50, ("__kmp_register_library_startup: %s=\"%s\"\n", name, 6384 __kmp_registration_str)); 6385 6386 while (!done) { 6387 6388 char *value = NULL; // Actual value of the environment variable. 6389 6390 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB // shared memory is with dynamic library 6391 char *shm_name = __kmp_str_format("/%s", name); 6392 int shm_preexist = 0; 6393 char *data1; 6394 int fd1 = shm_open(shm_name, O_CREAT | O_EXCL | O_RDWR, 0666); 6395 if ((fd1 == -1) && (errno == EEXIST)) { 6396 // file didn't open because it already exists. 6397 // try opening existing file 6398 fd1 = shm_open(shm_name, O_RDWR, 0666); 6399 if (fd1 == -1) { // file didn't open 6400 // error out here 6401 __kmp_fatal(KMP_MSG(FunctionError, "Can't open SHM"), KMP_ERR(0), 6402 __kmp_msg_null); 6403 } else { 6404 // able to open existing file 6405 shm_preexist = 1; 6406 } 6407 } else if (fd1 == -1) { // SHM didn't open; it was due to error other than 6408 // already exists. 6409 // error out here. 6410 __kmp_fatal(KMP_MSG(FunctionError, "Can't open SHM2"), KMP_ERR(errno), 6411 __kmp_msg_null); 6412 } 6413 if (shm_preexist == 0) { 6414 // we created SHM now set size 6415 if (ftruncate(fd1, SHM_SIZE) == -1) { 6416 // error occured setting size; 6417 __kmp_fatal(KMP_MSG(FunctionError, "Can't set size of SHM"), 6418 KMP_ERR(errno), __kmp_msg_null); 6419 } 6420 } 6421 data1 = 6422 (char *)mmap(0, SHM_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd1, 0); 6423 if (data1 == MAP_FAILED) { 6424 // failed to map shared memory 6425 __kmp_fatal(KMP_MSG(FunctionError, "Can't map SHM"), KMP_ERR(errno), 6426 __kmp_msg_null); 6427 } 6428 if (shm_preexist == 0) { // set data to SHM, set value 6429 KMP_STRCPY_S(data1, SHM_SIZE, __kmp_registration_str); 6430 } 6431 // Read value from either what we just wrote or existing file. 6432 value = __kmp_str_format("%s", data1); // read value from SHM 6433 munmap(data1, SHM_SIZE); 6434 close(fd1); 6435 #else // Windows and unix with static library 6436 // Set environment variable, but do not overwrite if it is exist. 6437 __kmp_env_set(name, __kmp_registration_str, 0); 6438 // read value to see if it got set 6439 value = __kmp_env_get(name); 6440 #endif 6441 6442 if (value != NULL && strcmp(value, __kmp_registration_str) == 0) { 6443 done = 1; // Ok, environment variable set successfully, exit the loop. 6444 } else { 6445 // Oops. Write failed. Another copy of OpenMP RTL is in memory. 6446 // Check whether it alive or dead. 6447 int neighbor = 0; // 0 -- unknown status, 1 -- alive, 2 -- dead. 6448 char *tail = value; 6449 char *flag_addr_str = NULL; 6450 char *flag_val_str = NULL; 6451 char const *file_name = NULL; 6452 __kmp_str_split(tail, '-', &flag_addr_str, &tail); 6453 __kmp_str_split(tail, '-', &flag_val_str, &tail); 6454 file_name = tail; 6455 if (tail != NULL) { 6456 long *flag_addr = 0; 6457 long flag_val = 0; 6458 KMP_SSCANF(flag_addr_str, "%p", RCAST(void**, &flag_addr)); 6459 KMP_SSCANF(flag_val_str, "%lx", &flag_val); 6460 if (flag_addr != 0 && flag_val != 0 && strcmp(file_name, "") != 0) { 6461 // First, check whether environment-encoded address is mapped into 6462 // addr space. 6463 // If so, dereference it to see if it still has the right value. 6464 if (__kmp_is_address_mapped(flag_addr) && *flag_addr == flag_val) { 6465 neighbor = 1; 6466 } else { 6467 // If not, then we know the other copy of the library is no longer 6468 // running. 6469 neighbor = 2; 6470 } 6471 } 6472 } 6473 switch (neighbor) { 6474 case 0: // Cannot parse environment variable -- neighbor status unknown. 6475 // Assume it is the incompatible format of future version of the 6476 // library. Assume the other library is alive. 6477 // WARN( ... ); // TODO: Issue a warning. 6478 file_name = "unknown library"; 6479 KMP_FALLTHROUGH(); 6480 // Attention! Falling to the next case. That's intentional. 6481 case 1: { // Neighbor is alive. 6482 // Check it is allowed. 6483 char *duplicate_ok = __kmp_env_get("KMP_DUPLICATE_LIB_OK"); 6484 if (!__kmp_str_match_true(duplicate_ok)) { 6485 // That's not allowed. Issue fatal error. 6486 __kmp_fatal(KMP_MSG(DuplicateLibrary, KMP_LIBRARY_FILE, file_name), 6487 KMP_HNT(DuplicateLibrary), __kmp_msg_null); 6488 } 6489 KMP_INTERNAL_FREE(duplicate_ok); 6490 __kmp_duplicate_library_ok = 1; 6491 done = 1; // Exit the loop. 6492 } break; 6493 case 2: { // Neighbor is dead. 6494 6495 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB // shared memory is with dynamic library 6496 // close shared memory. 6497 shm_unlink(shm_name); // this removes file in /dev/shm 6498 #else 6499 // Clear the variable and try to register library again. 6500 __kmp_env_unset(name); 6501 #endif 6502 } break; 6503 default: { KMP_DEBUG_ASSERT(0); } break; 6504 } 6505 } 6506 KMP_INTERNAL_FREE((void *)value); 6507 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB // shared memory is with dynamic library 6508 KMP_INTERNAL_FREE((void *)shm_name); 6509 #endif 6510 } // while 6511 KMP_INTERNAL_FREE((void *)name); 6512 6513 } // func __kmp_register_library_startup 6514 6515 void __kmp_unregister_library(void) { 6516 6517 char *name = __kmp_reg_status_name(); 6518 char *value = NULL; 6519 6520 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB // shared memory is with dynamic library 6521 char *shm_name = __kmp_str_format("/%s", name); 6522 int fd1 = shm_open(shm_name, O_RDONLY, 0666); 6523 if (fd1 == -1) { 6524 // file did not open. return. 6525 return; 6526 } 6527 char *data1 = (char *)mmap(0, SHM_SIZE, PROT_READ, MAP_SHARED, fd1, 0); 6528 if (data1 != MAP_FAILED) { 6529 value = __kmp_str_format("%s", data1); // read value from SHM 6530 munmap(data1, SHM_SIZE); 6531 } 6532 close(fd1); 6533 #else 6534 value = __kmp_env_get(name); 6535 #endif 6536 6537 KMP_DEBUG_ASSERT(__kmp_registration_flag != 0); 6538 KMP_DEBUG_ASSERT(__kmp_registration_str != NULL); 6539 if (value != NULL && strcmp(value, __kmp_registration_str) == 0) { 6540 // Ok, this is our variable. Delete it. 6541 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB // shared memory is with dynamic library 6542 shm_unlink(shm_name); // this removes file in /dev/shm 6543 #else 6544 __kmp_env_unset(name); 6545 #endif 6546 } 6547 6548 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB // shared memory is with dynamic library 6549 KMP_INTERNAL_FREE(shm_name); 6550 #endif 6551 6552 KMP_INTERNAL_FREE(__kmp_registration_str); 6553 KMP_INTERNAL_FREE(value); 6554 KMP_INTERNAL_FREE(name); 6555 6556 __kmp_registration_flag = 0; 6557 __kmp_registration_str = NULL; 6558 6559 } // __kmp_unregister_library 6560 6561 // End of Library registration stuff. 6562 // ----------------------------------------------------------------------------- 6563 6564 #if KMP_MIC_SUPPORTED 6565 6566 static void __kmp_check_mic_type() { 6567 kmp_cpuid_t cpuid_state = {0}; 6568 kmp_cpuid_t *cs_p = &cpuid_state; 6569 __kmp_x86_cpuid(1, 0, cs_p); 6570 // We don't support mic1 at the moment 6571 if ((cs_p->eax & 0xff0) == 0xB10) { 6572 __kmp_mic_type = mic2; 6573 } else if ((cs_p->eax & 0xf0ff0) == 0x50670) { 6574 __kmp_mic_type = mic3; 6575 } else { 6576 __kmp_mic_type = non_mic; 6577 } 6578 } 6579 6580 #endif /* KMP_MIC_SUPPORTED */ 6581 6582 static void __kmp_do_serial_initialize(void) { 6583 int i, gtid; 6584 int size; 6585 6586 KA_TRACE(10, ("__kmp_do_serial_initialize: enter\n")); 6587 6588 KMP_DEBUG_ASSERT(sizeof(kmp_int32) == 4); 6589 KMP_DEBUG_ASSERT(sizeof(kmp_uint32) == 4); 6590 KMP_DEBUG_ASSERT(sizeof(kmp_int64) == 8); 6591 KMP_DEBUG_ASSERT(sizeof(kmp_uint64) == 8); 6592 KMP_DEBUG_ASSERT(sizeof(kmp_intptr_t) == sizeof(void *)); 6593 6594 #if OMPT_SUPPORT 6595 ompt_pre_init(); 6596 #endif 6597 6598 __kmp_validate_locks(); 6599 6600 /* Initialize internal memory allocator */ 6601 __kmp_init_allocator(); 6602 6603 /* Register the library startup via an environment variable and check to see 6604 whether another copy of the library is already registered. */ 6605 6606 __kmp_register_library_startup(); 6607 6608 /* TODO reinitialization of library */ 6609 if (TCR_4(__kmp_global.g.g_done)) { 6610 KA_TRACE(10, ("__kmp_do_serial_initialize: reinitialization of library\n")); 6611 } 6612 6613 __kmp_global.g.g_abort = 0; 6614 TCW_SYNC_4(__kmp_global.g.g_done, FALSE); 6615 6616 /* initialize the locks */ 6617 #if KMP_USE_ADAPTIVE_LOCKS 6618 #if KMP_DEBUG_ADAPTIVE_LOCKS 6619 __kmp_init_speculative_stats(); 6620 #endif 6621 #endif 6622 #if KMP_STATS_ENABLED 6623 __kmp_stats_init(); 6624 #endif 6625 __kmp_init_lock(&__kmp_global_lock); 6626 __kmp_init_queuing_lock(&__kmp_dispatch_lock); 6627 __kmp_init_lock(&__kmp_debug_lock); 6628 __kmp_init_atomic_lock(&__kmp_atomic_lock); 6629 __kmp_init_atomic_lock(&__kmp_atomic_lock_1i); 6630 __kmp_init_atomic_lock(&__kmp_atomic_lock_2i); 6631 __kmp_init_atomic_lock(&__kmp_atomic_lock_4i); 6632 __kmp_init_atomic_lock(&__kmp_atomic_lock_4r); 6633 __kmp_init_atomic_lock(&__kmp_atomic_lock_8i); 6634 __kmp_init_atomic_lock(&__kmp_atomic_lock_8r); 6635 __kmp_init_atomic_lock(&__kmp_atomic_lock_8c); 6636 __kmp_init_atomic_lock(&__kmp_atomic_lock_10r); 6637 __kmp_init_atomic_lock(&__kmp_atomic_lock_16r); 6638 __kmp_init_atomic_lock(&__kmp_atomic_lock_16c); 6639 __kmp_init_atomic_lock(&__kmp_atomic_lock_20c); 6640 __kmp_init_atomic_lock(&__kmp_atomic_lock_32c); 6641 __kmp_init_bootstrap_lock(&__kmp_forkjoin_lock); 6642 __kmp_init_bootstrap_lock(&__kmp_exit_lock); 6643 #if KMP_USE_MONITOR 6644 __kmp_init_bootstrap_lock(&__kmp_monitor_lock); 6645 #endif 6646 __kmp_init_bootstrap_lock(&__kmp_tp_cached_lock); 6647 6648 /* conduct initialization and initial setup of configuration */ 6649 6650 __kmp_runtime_initialize(); 6651 6652 #if KMP_MIC_SUPPORTED 6653 __kmp_check_mic_type(); 6654 #endif 6655 6656 // Some global variable initialization moved here from kmp_env_initialize() 6657 #ifdef KMP_DEBUG 6658 kmp_diag = 0; 6659 #endif 6660 __kmp_abort_delay = 0; 6661 6662 // From __kmp_init_dflt_team_nth() 6663 /* assume the entire machine will be used */ 6664 __kmp_dflt_team_nth_ub = __kmp_xproc; 6665 if (__kmp_dflt_team_nth_ub < KMP_MIN_NTH) { 6666 __kmp_dflt_team_nth_ub = KMP_MIN_NTH; 6667 } 6668 if (__kmp_dflt_team_nth_ub > __kmp_sys_max_nth) { 6669 __kmp_dflt_team_nth_ub = __kmp_sys_max_nth; 6670 } 6671 __kmp_max_nth = __kmp_sys_max_nth; 6672 __kmp_cg_max_nth = __kmp_sys_max_nth; 6673 __kmp_teams_max_nth = __kmp_xproc; // set a "reasonable" default 6674 if (__kmp_teams_max_nth > __kmp_sys_max_nth) { 6675 __kmp_teams_max_nth = __kmp_sys_max_nth; 6676 } 6677 6678 // Three vars below moved here from __kmp_env_initialize() "KMP_BLOCKTIME" 6679 // part 6680 __kmp_dflt_blocktime = KMP_DEFAULT_BLOCKTIME; 6681 #if KMP_USE_MONITOR 6682 __kmp_monitor_wakeups = 6683 KMP_WAKEUPS_FROM_BLOCKTIME(__kmp_dflt_blocktime, __kmp_monitor_wakeups); 6684 __kmp_bt_intervals = 6685 KMP_INTERVALS_FROM_BLOCKTIME(__kmp_dflt_blocktime, __kmp_monitor_wakeups); 6686 #endif 6687 // From "KMP_LIBRARY" part of __kmp_env_initialize() 6688 __kmp_library = library_throughput; 6689 // From KMP_SCHEDULE initialization 6690 __kmp_static = kmp_sch_static_balanced; 6691 // AC: do not use analytical here, because it is non-monotonous 6692 //__kmp_guided = kmp_sch_guided_iterative_chunked; 6693 //__kmp_auto = kmp_sch_guided_analytical_chunked; // AC: it is the default, no 6694 // need to repeat assignment 6695 // Barrier initialization. Moved here from __kmp_env_initialize() Barrier branch 6696 // bit control and barrier method control parts 6697 #if KMP_FAST_REDUCTION_BARRIER 6698 #define kmp_reduction_barrier_gather_bb ((int)1) 6699 #define kmp_reduction_barrier_release_bb ((int)1) 6700 #define kmp_reduction_barrier_gather_pat bp_hyper_bar 6701 #define kmp_reduction_barrier_release_pat bp_hyper_bar 6702 #endif // KMP_FAST_REDUCTION_BARRIER 6703 for (i = bs_plain_barrier; i < bs_last_barrier; i++) { 6704 __kmp_barrier_gather_branch_bits[i] = __kmp_barrier_gather_bb_dflt; 6705 __kmp_barrier_release_branch_bits[i] = __kmp_barrier_release_bb_dflt; 6706 __kmp_barrier_gather_pattern[i] = __kmp_barrier_gather_pat_dflt; 6707 __kmp_barrier_release_pattern[i] = __kmp_barrier_release_pat_dflt; 6708 #if KMP_FAST_REDUCTION_BARRIER 6709 if (i == bs_reduction_barrier) { // tested and confirmed on ALTIX only ( 6710 // lin_64 ): hyper,1 6711 __kmp_barrier_gather_branch_bits[i] = kmp_reduction_barrier_gather_bb; 6712 __kmp_barrier_release_branch_bits[i] = kmp_reduction_barrier_release_bb; 6713 __kmp_barrier_gather_pattern[i] = kmp_reduction_barrier_gather_pat; 6714 __kmp_barrier_release_pattern[i] = kmp_reduction_barrier_release_pat; 6715 } 6716 #endif // KMP_FAST_REDUCTION_BARRIER 6717 } 6718 #if KMP_FAST_REDUCTION_BARRIER 6719 #undef kmp_reduction_barrier_release_pat 6720 #undef kmp_reduction_barrier_gather_pat 6721 #undef kmp_reduction_barrier_release_bb 6722 #undef kmp_reduction_barrier_gather_bb 6723 #endif // KMP_FAST_REDUCTION_BARRIER 6724 #if KMP_MIC_SUPPORTED 6725 if (__kmp_mic_type == mic2) { // KNC 6726 // AC: plane=3,2, forkjoin=2,1 are optimal for 240 threads on KNC 6727 __kmp_barrier_gather_branch_bits[bs_plain_barrier] = 3; // plain gather 6728 __kmp_barrier_release_branch_bits[bs_forkjoin_barrier] = 6729 1; // forkjoin release 6730 __kmp_barrier_gather_pattern[bs_forkjoin_barrier] = bp_hierarchical_bar; 6731 __kmp_barrier_release_pattern[bs_forkjoin_barrier] = bp_hierarchical_bar; 6732 } 6733 #if KMP_FAST_REDUCTION_BARRIER 6734 if (__kmp_mic_type == mic2) { // KNC 6735 __kmp_barrier_gather_pattern[bs_reduction_barrier] = bp_hierarchical_bar; 6736 __kmp_barrier_release_pattern[bs_reduction_barrier] = bp_hierarchical_bar; 6737 } 6738 #endif // KMP_FAST_REDUCTION_BARRIER 6739 #endif // KMP_MIC_SUPPORTED 6740 6741 // From KMP_CHECKS initialization 6742 #ifdef KMP_DEBUG 6743 __kmp_env_checks = TRUE; /* development versions have the extra checks */ 6744 #else 6745 __kmp_env_checks = FALSE; /* port versions do not have the extra checks */ 6746 #endif 6747 6748 // From "KMP_FOREIGN_THREADS_THREADPRIVATE" initialization 6749 __kmp_foreign_tp = TRUE; 6750 6751 __kmp_global.g.g_dynamic = FALSE; 6752 __kmp_global.g.g_dynamic_mode = dynamic_default; 6753 6754 __kmp_env_initialize(NULL); 6755 6756 // Print all messages in message catalog for testing purposes. 6757 #ifdef KMP_DEBUG 6758 char const *val = __kmp_env_get("KMP_DUMP_CATALOG"); 6759 if (__kmp_str_match_true(val)) { 6760 kmp_str_buf_t buffer; 6761 __kmp_str_buf_init(&buffer); 6762 __kmp_i18n_dump_catalog(&buffer); 6763 __kmp_printf("%s", buffer.str); 6764 __kmp_str_buf_free(&buffer); 6765 } 6766 __kmp_env_free(&val); 6767 #endif 6768 6769 __kmp_threads_capacity = 6770 __kmp_initial_threads_capacity(__kmp_dflt_team_nth_ub); 6771 // Moved here from __kmp_env_initialize() "KMP_ALL_THREADPRIVATE" part 6772 __kmp_tp_capacity = __kmp_default_tp_capacity( 6773 __kmp_dflt_team_nth_ub, __kmp_max_nth, __kmp_allThreadsSpecified); 6774 6775 // If the library is shut down properly, both pools must be NULL. Just in 6776 // case, set them to NULL -- some memory may leak, but subsequent code will 6777 // work even if pools are not freed. 6778 KMP_DEBUG_ASSERT(__kmp_thread_pool == NULL); 6779 KMP_DEBUG_ASSERT(__kmp_thread_pool_insert_pt == NULL); 6780 KMP_DEBUG_ASSERT(__kmp_team_pool == NULL); 6781 __kmp_thread_pool = NULL; 6782 __kmp_thread_pool_insert_pt = NULL; 6783 __kmp_team_pool = NULL; 6784 6785 /* Allocate all of the variable sized records */ 6786 /* NOTE: __kmp_threads_capacity entries are allocated, but the arrays are 6787 * expandable */ 6788 /* Since allocation is cache-aligned, just add extra padding at the end */ 6789 size = 6790 (sizeof(kmp_info_t *) + sizeof(kmp_root_t *)) * __kmp_threads_capacity + 6791 CACHE_LINE; 6792 __kmp_threads = (kmp_info_t **)__kmp_allocate(size); 6793 __kmp_root = (kmp_root_t **)((char *)__kmp_threads + 6794 sizeof(kmp_info_t *) * __kmp_threads_capacity); 6795 6796 /* init thread counts */ 6797 KMP_DEBUG_ASSERT(__kmp_all_nth == 6798 0); // Asserts fail if the library is reinitializing and 6799 KMP_DEBUG_ASSERT(__kmp_nth == 0); // something was wrong in termination. 6800 __kmp_all_nth = 0; 6801 __kmp_nth = 0; 6802 6803 /* setup the uber master thread and hierarchy */ 6804 gtid = __kmp_register_root(TRUE); 6805 KA_TRACE(10, ("__kmp_do_serial_initialize T#%d\n", gtid)); 6806 KMP_ASSERT(KMP_UBER_GTID(gtid)); 6807 KMP_ASSERT(KMP_INITIAL_GTID(gtid)); 6808 6809 KMP_MB(); /* Flush all pending memory write invalidates. */ 6810 6811 __kmp_common_initialize(); 6812 6813 #if KMP_OS_UNIX 6814 /* invoke the child fork handler */ 6815 __kmp_register_atfork(); 6816 #endif 6817 6818 #if !KMP_DYNAMIC_LIB 6819 { 6820 /* Invoke the exit handler when the program finishes, only for static 6821 library. For dynamic library, we already have _fini and DllMain. */ 6822 int rc = atexit(__kmp_internal_end_atexit); 6823 if (rc != 0) { 6824 __kmp_fatal(KMP_MSG(FunctionError, "atexit()"), KMP_ERR(rc), 6825 __kmp_msg_null); 6826 } 6827 } 6828 #endif 6829 6830 #if KMP_HANDLE_SIGNALS 6831 #if KMP_OS_UNIX 6832 /* NOTE: make sure that this is called before the user installs their own 6833 signal handlers so that the user handlers are called first. this way they 6834 can return false, not call our handler, avoid terminating the library, and 6835 continue execution where they left off. */ 6836 __kmp_install_signals(FALSE); 6837 #endif /* KMP_OS_UNIX */ 6838 #if KMP_OS_WINDOWS 6839 __kmp_install_signals(TRUE); 6840 #endif /* KMP_OS_WINDOWS */ 6841 #endif 6842 6843 /* we have finished the serial initialization */ 6844 __kmp_init_counter++; 6845 6846 __kmp_init_serial = TRUE; 6847 6848 if (__kmp_settings) { 6849 __kmp_env_print(); 6850 } 6851 6852 if (__kmp_display_env || __kmp_display_env_verbose) { 6853 __kmp_env_print_2(); 6854 } 6855 6856 #if OMPT_SUPPORT 6857 ompt_post_init(); 6858 #endif 6859 6860 KMP_MB(); 6861 6862 KA_TRACE(10, ("__kmp_do_serial_initialize: exit\n")); 6863 } 6864 6865 void __kmp_serial_initialize(void) { 6866 if (__kmp_init_serial) { 6867 return; 6868 } 6869 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6870 if (__kmp_init_serial) { 6871 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6872 return; 6873 } 6874 __kmp_do_serial_initialize(); 6875 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6876 } 6877 6878 static void __kmp_do_middle_initialize(void) { 6879 int i, j; 6880 int prev_dflt_team_nth; 6881 6882 if (!__kmp_init_serial) { 6883 __kmp_do_serial_initialize(); 6884 } 6885 6886 KA_TRACE(10, ("__kmp_middle_initialize: enter\n")); 6887 6888 // Save the previous value for the __kmp_dflt_team_nth so that 6889 // we can avoid some reinitialization if it hasn't changed. 6890 prev_dflt_team_nth = __kmp_dflt_team_nth; 6891 6892 #if KMP_AFFINITY_SUPPORTED 6893 // __kmp_affinity_initialize() will try to set __kmp_ncores to the 6894 // number of cores on the machine. 6895 __kmp_affinity_initialize(); 6896 6897 // Run through the __kmp_threads array and set the affinity mask 6898 // for each root thread that is currently registered with the RTL. 6899 for (i = 0; i < __kmp_threads_capacity; i++) { 6900 if (TCR_PTR(__kmp_threads[i]) != NULL) { 6901 __kmp_affinity_set_init_mask(i, TRUE); 6902 } 6903 } 6904 #endif /* KMP_AFFINITY_SUPPORTED */ 6905 6906 KMP_ASSERT(__kmp_xproc > 0); 6907 if (__kmp_avail_proc == 0) { 6908 __kmp_avail_proc = __kmp_xproc; 6909 } 6910 6911 // If there were empty places in num_threads list (OMP_NUM_THREADS=,,2,3), 6912 // correct them now 6913 j = 0; 6914 while ((j < __kmp_nested_nth.used) && !__kmp_nested_nth.nth[j]) { 6915 __kmp_nested_nth.nth[j] = __kmp_dflt_team_nth = __kmp_dflt_team_nth_ub = 6916 __kmp_avail_proc; 6917 j++; 6918 } 6919 6920 if (__kmp_dflt_team_nth == 0) { 6921 #ifdef KMP_DFLT_NTH_CORES 6922 // Default #threads = #cores 6923 __kmp_dflt_team_nth = __kmp_ncores; 6924 KA_TRACE(20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = " 6925 "__kmp_ncores (%d)\n", 6926 __kmp_dflt_team_nth)); 6927 #else 6928 // Default #threads = #available OS procs 6929 __kmp_dflt_team_nth = __kmp_avail_proc; 6930 KA_TRACE(20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = " 6931 "__kmp_avail_proc(%d)\n", 6932 __kmp_dflt_team_nth)); 6933 #endif /* KMP_DFLT_NTH_CORES */ 6934 } 6935 6936 if (__kmp_dflt_team_nth < KMP_MIN_NTH) { 6937 __kmp_dflt_team_nth = KMP_MIN_NTH; 6938 } 6939 if (__kmp_dflt_team_nth > __kmp_sys_max_nth) { 6940 __kmp_dflt_team_nth = __kmp_sys_max_nth; 6941 } 6942 6943 // There's no harm in continuing if the following check fails, 6944 // but it indicates an error in the previous logic. 6945 KMP_DEBUG_ASSERT(__kmp_dflt_team_nth <= __kmp_dflt_team_nth_ub); 6946 6947 if (__kmp_dflt_team_nth != prev_dflt_team_nth) { 6948 // Run through the __kmp_threads array and set the num threads icv for each 6949 // root thread that is currently registered with the RTL (which has not 6950 // already explicitly set its nthreads-var with a call to 6951 // omp_set_num_threads()). 6952 for (i = 0; i < __kmp_threads_capacity; i++) { 6953 kmp_info_t *thread = __kmp_threads[i]; 6954 if (thread == NULL) 6955 continue; 6956 if (thread->th.th_current_task->td_icvs.nproc != 0) 6957 continue; 6958 6959 set__nproc(__kmp_threads[i], __kmp_dflt_team_nth); 6960 } 6961 } 6962 KA_TRACE( 6963 20, 6964 ("__kmp_middle_initialize: final value for __kmp_dflt_team_nth = %d\n", 6965 __kmp_dflt_team_nth)); 6966 6967 #ifdef KMP_ADJUST_BLOCKTIME 6968 /* Adjust blocktime to zero if necessary now that __kmp_avail_proc is set */ 6969 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 6970 KMP_DEBUG_ASSERT(__kmp_avail_proc > 0); 6971 if (__kmp_nth > __kmp_avail_proc) { 6972 __kmp_zero_bt = TRUE; 6973 } 6974 } 6975 #endif /* KMP_ADJUST_BLOCKTIME */ 6976 6977 /* we have finished middle initialization */ 6978 TCW_SYNC_4(__kmp_init_middle, TRUE); 6979 6980 KA_TRACE(10, ("__kmp_do_middle_initialize: exit\n")); 6981 } 6982 6983 void __kmp_middle_initialize(void) { 6984 if (__kmp_init_middle) { 6985 return; 6986 } 6987 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6988 if (__kmp_init_middle) { 6989 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6990 return; 6991 } 6992 __kmp_do_middle_initialize(); 6993 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6994 } 6995 6996 void __kmp_parallel_initialize(void) { 6997 int gtid = __kmp_entry_gtid(); // this might be a new root 6998 6999 /* synchronize parallel initialization (for sibling) */ 7000 if (TCR_4(__kmp_init_parallel)) 7001 return; 7002 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 7003 if (TCR_4(__kmp_init_parallel)) { 7004 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7005 return; 7006 } 7007 7008 /* TODO reinitialization after we have already shut down */ 7009 if (TCR_4(__kmp_global.g.g_done)) { 7010 KA_TRACE( 7011 10, 7012 ("__kmp_parallel_initialize: attempt to init while shutting down\n")); 7013 __kmp_infinite_loop(); 7014 } 7015 7016 /* jc: The lock __kmp_initz_lock is already held, so calling 7017 __kmp_serial_initialize would cause a deadlock. So we call 7018 __kmp_do_serial_initialize directly. */ 7019 if (!__kmp_init_middle) { 7020 __kmp_do_middle_initialize(); 7021 } 7022 __kmp_resume_if_hard_paused(); 7023 7024 /* begin initialization */ 7025 KA_TRACE(10, ("__kmp_parallel_initialize: enter\n")); 7026 KMP_ASSERT(KMP_UBER_GTID(gtid)); 7027 7028 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 7029 // Save the FP control regs. 7030 // Worker threads will set theirs to these values at thread startup. 7031 __kmp_store_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word); 7032 __kmp_store_mxcsr(&__kmp_init_mxcsr); 7033 __kmp_init_mxcsr &= KMP_X86_MXCSR_MASK; 7034 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 7035 7036 #if KMP_OS_UNIX 7037 #if KMP_HANDLE_SIGNALS 7038 /* must be after __kmp_serial_initialize */ 7039 __kmp_install_signals(TRUE); 7040 #endif 7041 #endif 7042 7043 __kmp_suspend_initialize(); 7044 7045 #if defined(USE_LOAD_BALANCE) 7046 if (__kmp_global.g.g_dynamic_mode == dynamic_default) { 7047 __kmp_global.g.g_dynamic_mode = dynamic_load_balance; 7048 } 7049 #else 7050 if (__kmp_global.g.g_dynamic_mode == dynamic_default) { 7051 __kmp_global.g.g_dynamic_mode = dynamic_thread_limit; 7052 } 7053 #endif 7054 7055 if (__kmp_version) { 7056 __kmp_print_version_2(); 7057 } 7058 7059 /* we have finished parallel initialization */ 7060 TCW_SYNC_4(__kmp_init_parallel, TRUE); 7061 7062 KMP_MB(); 7063 KA_TRACE(10, ("__kmp_parallel_initialize: exit\n")); 7064 7065 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7066 } 7067 7068 /* ------------------------------------------------------------------------ */ 7069 7070 void __kmp_run_before_invoked_task(int gtid, int tid, kmp_info_t *this_thr, 7071 kmp_team_t *team) { 7072 kmp_disp_t *dispatch; 7073 7074 KMP_MB(); 7075 7076 /* none of the threads have encountered any constructs, yet. */ 7077 this_thr->th.th_local.this_construct = 0; 7078 #if KMP_CACHE_MANAGE 7079 KMP_CACHE_PREFETCH(&this_thr->th.th_bar[bs_forkjoin_barrier].bb.b_arrived); 7080 #endif /* KMP_CACHE_MANAGE */ 7081 dispatch = (kmp_disp_t *)TCR_PTR(this_thr->th.th_dispatch); 7082 KMP_DEBUG_ASSERT(dispatch); 7083 KMP_DEBUG_ASSERT(team->t.t_dispatch); 7084 // KMP_DEBUG_ASSERT( this_thr->th.th_dispatch == &team->t.t_dispatch[ 7085 // this_thr->th.th_info.ds.ds_tid ] ); 7086 7087 dispatch->th_disp_index = 0; /* reset the dispatch buffer counter */ 7088 dispatch->th_doacross_buf_idx = 0; // reset doacross dispatch buffer counter 7089 if (__kmp_env_consistency_check) 7090 __kmp_push_parallel(gtid, team->t.t_ident); 7091 7092 KMP_MB(); /* Flush all pending memory write invalidates. */ 7093 } 7094 7095 void __kmp_run_after_invoked_task(int gtid, int tid, kmp_info_t *this_thr, 7096 kmp_team_t *team) { 7097 if (__kmp_env_consistency_check) 7098 __kmp_pop_parallel(gtid, team->t.t_ident); 7099 7100 __kmp_finish_implicit_task(this_thr); 7101 } 7102 7103 int __kmp_invoke_task_func(int gtid) { 7104 int rc; 7105 int tid = __kmp_tid_from_gtid(gtid); 7106 kmp_info_t *this_thr = __kmp_threads[gtid]; 7107 kmp_team_t *team = this_thr->th.th_team; 7108 7109 __kmp_run_before_invoked_task(gtid, tid, this_thr, team); 7110 #if USE_ITT_BUILD 7111 if (__itt_stack_caller_create_ptr) { 7112 __kmp_itt_stack_callee_enter( 7113 (__itt_caller) 7114 team->t.t_stack_id); // inform ittnotify about entering user's code 7115 } 7116 #endif /* USE_ITT_BUILD */ 7117 #if INCLUDE_SSC_MARKS 7118 SSC_MARK_INVOKING(); 7119 #endif 7120 7121 #if OMPT_SUPPORT 7122 void *dummy; 7123 void **exit_frame_p; 7124 ompt_data_t *my_task_data; 7125 ompt_data_t *my_parallel_data; 7126 int ompt_team_size; 7127 7128 if (ompt_enabled.enabled) { 7129 exit_frame_p = &( 7130 team->t.t_implicit_task_taskdata[tid].ompt_task_info.frame.exit_frame.ptr); 7131 } else { 7132 exit_frame_p = &dummy; 7133 } 7134 7135 my_task_data = 7136 &(team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data); 7137 my_parallel_data = &(team->t.ompt_team_info.parallel_data); 7138 if (ompt_enabled.ompt_callback_implicit_task) { 7139 ompt_team_size = team->t.t_nproc; 7140 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 7141 ompt_scope_begin, my_parallel_data, my_task_data, ompt_team_size, 7142 __kmp_tid_from_gtid(gtid), ompt_task_implicit); 7143 OMPT_CUR_TASK_INFO(this_thr)->thread_num = __kmp_tid_from_gtid(gtid); 7144 } 7145 #endif 7146 7147 #if KMP_STATS_ENABLED 7148 stats_state_e previous_state = KMP_GET_THREAD_STATE(); 7149 if (previous_state == stats_state_e::TEAMS_REGION) { 7150 KMP_PUSH_PARTITIONED_TIMER(OMP_teams); 7151 } else { 7152 KMP_PUSH_PARTITIONED_TIMER(OMP_parallel); 7153 } 7154 KMP_SET_THREAD_STATE(IMPLICIT_TASK); 7155 #endif 7156 7157 rc = __kmp_invoke_microtask((microtask_t)TCR_SYNC_PTR(team->t.t_pkfn), gtid, 7158 tid, (int)team->t.t_argc, (void **)team->t.t_argv 7159 #if OMPT_SUPPORT 7160 , 7161 exit_frame_p 7162 #endif 7163 ); 7164 #if OMPT_SUPPORT 7165 *exit_frame_p = NULL; 7166 this_thr->th.ompt_thread_info.parallel_flags |= ompt_parallel_team; 7167 #endif 7168 7169 #if KMP_STATS_ENABLED 7170 if (previous_state == stats_state_e::TEAMS_REGION) { 7171 KMP_SET_THREAD_STATE(previous_state); 7172 } 7173 KMP_POP_PARTITIONED_TIMER(); 7174 #endif 7175 7176 #if USE_ITT_BUILD 7177 if (__itt_stack_caller_create_ptr) { 7178 __kmp_itt_stack_callee_leave( 7179 (__itt_caller) 7180 team->t.t_stack_id); // inform ittnotify about leaving user's code 7181 } 7182 #endif /* USE_ITT_BUILD */ 7183 __kmp_run_after_invoked_task(gtid, tid, this_thr, team); 7184 7185 return rc; 7186 } 7187 7188 void __kmp_teams_master(int gtid) { 7189 // This routine is called by all master threads in teams construct 7190 kmp_info_t *thr = __kmp_threads[gtid]; 7191 kmp_team_t *team = thr->th.th_team; 7192 ident_t *loc = team->t.t_ident; 7193 thr->th.th_set_nproc = thr->th.th_teams_size.nth; 7194 KMP_DEBUG_ASSERT(thr->th.th_teams_microtask); 7195 KMP_DEBUG_ASSERT(thr->th.th_set_nproc); 7196 KA_TRACE(20, ("__kmp_teams_master: T#%d, Tid %d, microtask %p\n", gtid, 7197 __kmp_tid_from_gtid(gtid), thr->th.th_teams_microtask)); 7198 7199 // This thread is a new CG root. Set up the proper variables. 7200 kmp_cg_root_t *tmp = (kmp_cg_root_t *)__kmp_allocate(sizeof(kmp_cg_root_t)); 7201 tmp->cg_root = thr; // Make thr the CG root 7202 // Init to thread limit that was stored when league masters were forked 7203 tmp->cg_thread_limit = thr->th.th_current_task->td_icvs.thread_limit; 7204 tmp->cg_nthreads = 1; // Init counter to one active thread, this one 7205 KA_TRACE(100, ("__kmp_teams_master: Thread %p created node %p and init" 7206 " cg_nthreads to 1\n", 7207 thr, tmp)); 7208 tmp->up = thr->th.th_cg_roots; 7209 thr->th.th_cg_roots = tmp; 7210 7211 // Launch league of teams now, but not let workers execute 7212 // (they hang on fork barrier until next parallel) 7213 #if INCLUDE_SSC_MARKS 7214 SSC_MARK_FORKING(); 7215 #endif 7216 __kmp_fork_call(loc, gtid, fork_context_intel, team->t.t_argc, 7217 (microtask_t)thr->th.th_teams_microtask, // "wrapped" task 7218 VOLATILE_CAST(launch_t) __kmp_invoke_task_func, NULL); 7219 #if INCLUDE_SSC_MARKS 7220 SSC_MARK_JOINING(); 7221 #endif 7222 // If the team size was reduced from the limit, set it to the new size 7223 if (thr->th.th_team_nproc < thr->th.th_teams_size.nth) 7224 thr->th.th_teams_size.nth = thr->th.th_team_nproc; 7225 // AC: last parameter "1" eliminates join barrier which won't work because 7226 // worker threads are in a fork barrier waiting for more parallel regions 7227 __kmp_join_call(loc, gtid 7228 #if OMPT_SUPPORT 7229 , 7230 fork_context_intel 7231 #endif 7232 , 7233 1); 7234 } 7235 7236 int __kmp_invoke_teams_master(int gtid) { 7237 kmp_info_t *this_thr = __kmp_threads[gtid]; 7238 kmp_team_t *team = this_thr->th.th_team; 7239 #if KMP_DEBUG 7240 if (!__kmp_threads[gtid]->th.th_team->t.t_serialized) 7241 KMP_DEBUG_ASSERT((void *)__kmp_threads[gtid]->th.th_team->t.t_pkfn == 7242 (void *)__kmp_teams_master); 7243 #endif 7244 __kmp_run_before_invoked_task(gtid, 0, this_thr, team); 7245 #if OMPT_SUPPORT 7246 int tid = __kmp_tid_from_gtid(gtid); 7247 ompt_data_t *task_data = 7248 &team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data; 7249 ompt_data_t *parallel_data = &team->t.ompt_team_info.parallel_data; 7250 if (ompt_enabled.ompt_callback_implicit_task) { 7251 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 7252 ompt_scope_begin, parallel_data, task_data, team->t.t_nproc, tid, 7253 ompt_task_initial); 7254 OMPT_CUR_TASK_INFO(this_thr)->thread_num = tid; 7255 } 7256 #endif 7257 __kmp_teams_master(gtid); 7258 #if OMPT_SUPPORT 7259 this_thr->th.ompt_thread_info.parallel_flags |= ompt_parallel_league; 7260 #endif 7261 __kmp_run_after_invoked_task(gtid, 0, this_thr, team); 7262 return 1; 7263 } 7264 7265 /* this sets the requested number of threads for the next parallel region 7266 encountered by this team. since this should be enclosed in the forkjoin 7267 critical section it should avoid race conditions with asymmetrical nested 7268 parallelism */ 7269 7270 void __kmp_push_num_threads(ident_t *id, int gtid, int num_threads) { 7271 kmp_info_t *thr = __kmp_threads[gtid]; 7272 7273 if (num_threads > 0) 7274 thr->th.th_set_nproc = num_threads; 7275 } 7276 7277 /* this sets the requested number of teams for the teams region and/or 7278 the number of threads for the next parallel region encountered */ 7279 void __kmp_push_num_teams(ident_t *id, int gtid, int num_teams, 7280 int num_threads) { 7281 kmp_info_t *thr = __kmp_threads[gtid]; 7282 KMP_DEBUG_ASSERT(num_teams >= 0); 7283 KMP_DEBUG_ASSERT(num_threads >= 0); 7284 7285 if (num_teams == 0) 7286 num_teams = 1; // default number of teams is 1. 7287 if (num_teams > __kmp_teams_max_nth) { // if too many teams requested? 7288 if (!__kmp_reserve_warn) { 7289 __kmp_reserve_warn = 1; 7290 __kmp_msg(kmp_ms_warning, 7291 KMP_MSG(CantFormThrTeam, num_teams, __kmp_teams_max_nth), 7292 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 7293 } 7294 num_teams = __kmp_teams_max_nth; 7295 } 7296 // Set number of teams (number of threads in the outer "parallel" of the 7297 // teams) 7298 thr->th.th_set_nproc = thr->th.th_teams_size.nteams = num_teams; 7299 7300 // Remember the number of threads for inner parallel regions 7301 if (!TCR_4(__kmp_init_middle)) 7302 __kmp_middle_initialize(); // get internal globals calculated 7303 KMP_DEBUG_ASSERT(__kmp_avail_proc); 7304 KMP_DEBUG_ASSERT(__kmp_dflt_team_nth); 7305 if (num_threads == 0) { 7306 num_threads = __kmp_avail_proc / num_teams; 7307 // adjust num_threads w/o warning as it is not user setting 7308 // num_threads = min(num_threads, nthreads-var, thread-limit-var) 7309 // no thread_limit clause specified - do not change thread-limit-var ICV 7310 if (num_threads > __kmp_dflt_team_nth) { 7311 num_threads = __kmp_dflt_team_nth; // honor nthreads-var ICV 7312 } 7313 if (num_threads > thr->th.th_current_task->td_icvs.thread_limit) { 7314 num_threads = thr->th.th_current_task->td_icvs.thread_limit; 7315 } // prevent team size to exceed thread-limit-var 7316 if (num_teams * num_threads > __kmp_teams_max_nth) { 7317 num_threads = __kmp_teams_max_nth / num_teams; 7318 } 7319 } else { 7320 // This thread will be the master of the league masters 7321 // Store new thread limit; old limit is saved in th_cg_roots list 7322 thr->th.th_current_task->td_icvs.thread_limit = num_threads; 7323 // num_threads = min(num_threads, nthreads-var) 7324 if (num_threads > __kmp_dflt_team_nth) { 7325 num_threads = __kmp_dflt_team_nth; // honor nthreads-var ICV 7326 } 7327 if (num_teams * num_threads > __kmp_teams_max_nth) { 7328 int new_threads = __kmp_teams_max_nth / num_teams; 7329 if (!__kmp_reserve_warn) { // user asked for too many threads 7330 __kmp_reserve_warn = 1; // conflicts with KMP_TEAMS_THREAD_LIMIT 7331 __kmp_msg(kmp_ms_warning, 7332 KMP_MSG(CantFormThrTeam, num_threads, new_threads), 7333 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 7334 } 7335 num_threads = new_threads; 7336 } 7337 } 7338 thr->th.th_teams_size.nth = num_threads; 7339 } 7340 7341 // Set the proc_bind var to use in the following parallel region. 7342 void __kmp_push_proc_bind(ident_t *id, int gtid, kmp_proc_bind_t proc_bind) { 7343 kmp_info_t *thr = __kmp_threads[gtid]; 7344 thr->th.th_set_proc_bind = proc_bind; 7345 } 7346 7347 /* Launch the worker threads into the microtask. */ 7348 7349 void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team) { 7350 kmp_info_t *this_thr = __kmp_threads[gtid]; 7351 7352 #ifdef KMP_DEBUG 7353 int f; 7354 #endif /* KMP_DEBUG */ 7355 7356 KMP_DEBUG_ASSERT(team); 7357 KMP_DEBUG_ASSERT(this_thr->th.th_team == team); 7358 KMP_ASSERT(KMP_MASTER_GTID(gtid)); 7359 KMP_MB(); /* Flush all pending memory write invalidates. */ 7360 7361 team->t.t_construct = 0; /* no single directives seen yet */ 7362 team->t.t_ordered.dt.t_value = 7363 0; /* thread 0 enters the ordered section first */ 7364 7365 /* Reset the identifiers on the dispatch buffer */ 7366 KMP_DEBUG_ASSERT(team->t.t_disp_buffer); 7367 if (team->t.t_max_nproc > 1) { 7368 int i; 7369 for (i = 0; i < __kmp_dispatch_num_buffers; ++i) { 7370 team->t.t_disp_buffer[i].buffer_index = i; 7371 team->t.t_disp_buffer[i].doacross_buf_idx = i; 7372 } 7373 } else { 7374 team->t.t_disp_buffer[0].buffer_index = 0; 7375 team->t.t_disp_buffer[0].doacross_buf_idx = 0; 7376 } 7377 7378 KMP_MB(); /* Flush all pending memory write invalidates. */ 7379 KMP_ASSERT(this_thr->th.th_team == team); 7380 7381 #ifdef KMP_DEBUG 7382 for (f = 0; f < team->t.t_nproc; f++) { 7383 KMP_DEBUG_ASSERT(team->t.t_threads[f] && 7384 team->t.t_threads[f]->th.th_team_nproc == team->t.t_nproc); 7385 } 7386 #endif /* KMP_DEBUG */ 7387 7388 /* release the worker threads so they may begin working */ 7389 __kmp_fork_barrier(gtid, 0); 7390 } 7391 7392 void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team) { 7393 kmp_info_t *this_thr = __kmp_threads[gtid]; 7394 7395 KMP_DEBUG_ASSERT(team); 7396 KMP_DEBUG_ASSERT(this_thr->th.th_team == team); 7397 KMP_ASSERT(KMP_MASTER_GTID(gtid)); 7398 KMP_MB(); /* Flush all pending memory write invalidates. */ 7399 7400 /* Join barrier after fork */ 7401 7402 #ifdef KMP_DEBUG 7403 if (__kmp_threads[gtid] && 7404 __kmp_threads[gtid]->th.th_team_nproc != team->t.t_nproc) { 7405 __kmp_printf("GTID: %d, __kmp_threads[%d]=%p\n", gtid, gtid, 7406 __kmp_threads[gtid]); 7407 __kmp_printf("__kmp_threads[%d]->th.th_team_nproc=%d, TEAM: %p, " 7408 "team->t.t_nproc=%d\n", 7409 gtid, __kmp_threads[gtid]->th.th_team_nproc, team, 7410 team->t.t_nproc); 7411 __kmp_print_structure(); 7412 } 7413 KMP_DEBUG_ASSERT(__kmp_threads[gtid] && 7414 __kmp_threads[gtid]->th.th_team_nproc == team->t.t_nproc); 7415 #endif /* KMP_DEBUG */ 7416 7417 __kmp_join_barrier(gtid); /* wait for everyone */ 7418 #if OMPT_SUPPORT 7419 if (ompt_enabled.enabled && 7420 this_thr->th.ompt_thread_info.state == ompt_state_wait_barrier_implicit) { 7421 int ds_tid = this_thr->th.th_info.ds.ds_tid; 7422 ompt_data_t *task_data = OMPT_CUR_TASK_DATA(this_thr); 7423 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 7424 #if OMPT_OPTIONAL 7425 void *codeptr = NULL; 7426 if (KMP_MASTER_TID(ds_tid) && 7427 (ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait) || 7428 ompt_callbacks.ompt_callback(ompt_callback_sync_region))) 7429 codeptr = OMPT_CUR_TEAM_INFO(this_thr)->master_return_address; 7430 7431 if (ompt_enabled.ompt_callback_sync_region_wait) { 7432 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 7433 ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, task_data, 7434 codeptr); 7435 } 7436 if (ompt_enabled.ompt_callback_sync_region) { 7437 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 7438 ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, task_data, 7439 codeptr); 7440 } 7441 #endif 7442 if (!KMP_MASTER_TID(ds_tid) && ompt_enabled.ompt_callback_implicit_task) { 7443 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 7444 ompt_scope_end, NULL, task_data, 0, ds_tid, ompt_task_implicit); // TODO: Can this be ompt_task_initial? 7445 } 7446 } 7447 #endif 7448 7449 KMP_MB(); /* Flush all pending memory write invalidates. */ 7450 KMP_ASSERT(this_thr->th.th_team == team); 7451 } 7452 7453 /* ------------------------------------------------------------------------ */ 7454 7455 #ifdef USE_LOAD_BALANCE 7456 7457 // Return the worker threads actively spinning in the hot team, if we 7458 // are at the outermost level of parallelism. Otherwise, return 0. 7459 static int __kmp_active_hot_team_nproc(kmp_root_t *root) { 7460 int i; 7461 int retval; 7462 kmp_team_t *hot_team; 7463 7464 if (root->r.r_active) { 7465 return 0; 7466 } 7467 hot_team = root->r.r_hot_team; 7468 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { 7469 return hot_team->t.t_nproc - 1; // Don't count master thread 7470 } 7471 7472 // Skip the master thread - it is accounted for elsewhere. 7473 retval = 0; 7474 for (i = 1; i < hot_team->t.t_nproc; i++) { 7475 if (hot_team->t.t_threads[i]->th.th_active) { 7476 retval++; 7477 } 7478 } 7479 return retval; 7480 } 7481 7482 // Perform an automatic adjustment to the number of 7483 // threads used by the next parallel region. 7484 static int __kmp_load_balance_nproc(kmp_root_t *root, int set_nproc) { 7485 int retval; 7486 int pool_active; 7487 int hot_team_active; 7488 int team_curr_active; 7489 int system_active; 7490 7491 KB_TRACE(20, ("__kmp_load_balance_nproc: called root:%p set_nproc:%d\n", root, 7492 set_nproc)); 7493 KMP_DEBUG_ASSERT(root); 7494 KMP_DEBUG_ASSERT(root->r.r_root_team->t.t_threads[0] 7495 ->th.th_current_task->td_icvs.dynamic == TRUE); 7496 KMP_DEBUG_ASSERT(set_nproc > 1); 7497 7498 if (set_nproc == 1) { 7499 KB_TRACE(20, ("__kmp_load_balance_nproc: serial execution.\n")); 7500 return 1; 7501 } 7502 7503 // Threads that are active in the thread pool, active in the hot team for this 7504 // particular root (if we are at the outer par level), and the currently 7505 // executing thread (to become the master) are available to add to the new 7506 // team, but are currently contributing to the system load, and must be 7507 // accounted for. 7508 pool_active = __kmp_thread_pool_active_nth; 7509 hot_team_active = __kmp_active_hot_team_nproc(root); 7510 team_curr_active = pool_active + hot_team_active + 1; 7511 7512 // Check the system load. 7513 system_active = __kmp_get_load_balance(__kmp_avail_proc + team_curr_active); 7514 KB_TRACE(30, ("__kmp_load_balance_nproc: system active = %d pool active = %d " 7515 "hot team active = %d\n", 7516 system_active, pool_active, hot_team_active)); 7517 7518 if (system_active < 0) { 7519 // There was an error reading the necessary info from /proc, so use the 7520 // thread limit algorithm instead. Once we set __kmp_global.g.g_dynamic_mode 7521 // = dynamic_thread_limit, we shouldn't wind up getting back here. 7522 __kmp_global.g.g_dynamic_mode = dynamic_thread_limit; 7523 KMP_WARNING(CantLoadBalUsing, "KMP_DYNAMIC_MODE=thread limit"); 7524 7525 // Make this call behave like the thread limit algorithm. 7526 retval = __kmp_avail_proc - __kmp_nth + 7527 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 7528 if (retval > set_nproc) { 7529 retval = set_nproc; 7530 } 7531 if (retval < KMP_MIN_NTH) { 7532 retval = KMP_MIN_NTH; 7533 } 7534 7535 KB_TRACE(20, ("__kmp_load_balance_nproc: thread limit exit. retval:%d\n", 7536 retval)); 7537 return retval; 7538 } 7539 7540 // There is a slight delay in the load balance algorithm in detecting new 7541 // running procs. The real system load at this instant should be at least as 7542 // large as the #active omp thread that are available to add to the team. 7543 if (system_active < team_curr_active) { 7544 system_active = team_curr_active; 7545 } 7546 retval = __kmp_avail_proc - system_active + team_curr_active; 7547 if (retval > set_nproc) { 7548 retval = set_nproc; 7549 } 7550 if (retval < KMP_MIN_NTH) { 7551 retval = KMP_MIN_NTH; 7552 } 7553 7554 KB_TRACE(20, ("__kmp_load_balance_nproc: exit. retval:%d\n", retval)); 7555 return retval; 7556 } // __kmp_load_balance_nproc() 7557 7558 #endif /* USE_LOAD_BALANCE */ 7559 7560 /* ------------------------------------------------------------------------ */ 7561 7562 /* NOTE: this is called with the __kmp_init_lock held */ 7563 void __kmp_cleanup(void) { 7564 int f; 7565 7566 KA_TRACE(10, ("__kmp_cleanup: enter\n")); 7567 7568 if (TCR_4(__kmp_init_parallel)) { 7569 #if KMP_HANDLE_SIGNALS 7570 __kmp_remove_signals(); 7571 #endif 7572 TCW_4(__kmp_init_parallel, FALSE); 7573 } 7574 7575 if (TCR_4(__kmp_init_middle)) { 7576 #if KMP_AFFINITY_SUPPORTED 7577 __kmp_affinity_uninitialize(); 7578 #endif /* KMP_AFFINITY_SUPPORTED */ 7579 __kmp_cleanup_hierarchy(); 7580 TCW_4(__kmp_init_middle, FALSE); 7581 } 7582 7583 KA_TRACE(10, ("__kmp_cleanup: go serial cleanup\n")); 7584 7585 if (__kmp_init_serial) { 7586 __kmp_runtime_destroy(); 7587 __kmp_init_serial = FALSE; 7588 } 7589 7590 __kmp_cleanup_threadprivate_caches(); 7591 7592 for (f = 0; f < __kmp_threads_capacity; f++) { 7593 if (__kmp_root[f] != NULL) { 7594 __kmp_free(__kmp_root[f]); 7595 __kmp_root[f] = NULL; 7596 } 7597 } 7598 __kmp_free(__kmp_threads); 7599 // __kmp_threads and __kmp_root were allocated at once, as single block, so 7600 // there is no need in freeing __kmp_root. 7601 __kmp_threads = NULL; 7602 __kmp_root = NULL; 7603 __kmp_threads_capacity = 0; 7604 7605 #if KMP_USE_DYNAMIC_LOCK 7606 __kmp_cleanup_indirect_user_locks(); 7607 #else 7608 __kmp_cleanup_user_locks(); 7609 #endif 7610 7611 #if KMP_AFFINITY_SUPPORTED 7612 KMP_INTERNAL_FREE(CCAST(char *, __kmp_cpuinfo_file)); 7613 __kmp_cpuinfo_file = NULL; 7614 #endif /* KMP_AFFINITY_SUPPORTED */ 7615 7616 #if KMP_USE_ADAPTIVE_LOCKS 7617 #if KMP_DEBUG_ADAPTIVE_LOCKS 7618 __kmp_print_speculative_stats(); 7619 #endif 7620 #endif 7621 KMP_INTERNAL_FREE(__kmp_nested_nth.nth); 7622 __kmp_nested_nth.nth = NULL; 7623 __kmp_nested_nth.size = 0; 7624 __kmp_nested_nth.used = 0; 7625 KMP_INTERNAL_FREE(__kmp_nested_proc_bind.bind_types); 7626 __kmp_nested_proc_bind.bind_types = NULL; 7627 __kmp_nested_proc_bind.size = 0; 7628 __kmp_nested_proc_bind.used = 0; 7629 if (__kmp_affinity_format) { 7630 KMP_INTERNAL_FREE(__kmp_affinity_format); 7631 __kmp_affinity_format = NULL; 7632 } 7633 7634 __kmp_i18n_catclose(); 7635 7636 #if KMP_USE_HIER_SCHED 7637 __kmp_hier_scheds.deallocate(); 7638 #endif 7639 7640 #if KMP_STATS_ENABLED 7641 __kmp_stats_fini(); 7642 #endif 7643 7644 KA_TRACE(10, ("__kmp_cleanup: exit\n")); 7645 } 7646 7647 /* ------------------------------------------------------------------------ */ 7648 7649 int __kmp_ignore_mppbeg(void) { 7650 char *env; 7651 7652 if ((env = getenv("KMP_IGNORE_MPPBEG")) != NULL) { 7653 if (__kmp_str_match_false(env)) 7654 return FALSE; 7655 } 7656 // By default __kmpc_begin() is no-op. 7657 return TRUE; 7658 } 7659 7660 int __kmp_ignore_mppend(void) { 7661 char *env; 7662 7663 if ((env = getenv("KMP_IGNORE_MPPEND")) != NULL) { 7664 if (__kmp_str_match_false(env)) 7665 return FALSE; 7666 } 7667 // By default __kmpc_end() is no-op. 7668 return TRUE; 7669 } 7670 7671 void __kmp_internal_begin(void) { 7672 int gtid; 7673 kmp_root_t *root; 7674 7675 /* this is a very important step as it will register new sibling threads 7676 and assign these new uber threads a new gtid */ 7677 gtid = __kmp_entry_gtid(); 7678 root = __kmp_threads[gtid]->th.th_root; 7679 KMP_ASSERT(KMP_UBER_GTID(gtid)); 7680 7681 if (root->r.r_begin) 7682 return; 7683 __kmp_acquire_lock(&root->r.r_begin_lock, gtid); 7684 if (root->r.r_begin) { 7685 __kmp_release_lock(&root->r.r_begin_lock, gtid); 7686 return; 7687 } 7688 7689 root->r.r_begin = TRUE; 7690 7691 __kmp_release_lock(&root->r.r_begin_lock, gtid); 7692 } 7693 7694 /* ------------------------------------------------------------------------ */ 7695 7696 void __kmp_user_set_library(enum library_type arg) { 7697 int gtid; 7698 kmp_root_t *root; 7699 kmp_info_t *thread; 7700 7701 /* first, make sure we are initialized so we can get our gtid */ 7702 7703 gtid = __kmp_entry_gtid(); 7704 thread = __kmp_threads[gtid]; 7705 7706 root = thread->th.th_root; 7707 7708 KA_TRACE(20, ("__kmp_user_set_library: enter T#%d, arg: %d, %d\n", gtid, arg, 7709 library_serial)); 7710 if (root->r.r_in_parallel) { /* Must be called in serial section of top-level 7711 thread */ 7712 KMP_WARNING(SetLibraryIncorrectCall); 7713 return; 7714 } 7715 7716 switch (arg) { 7717 case library_serial: 7718 thread->th.th_set_nproc = 0; 7719 set__nproc(thread, 1); 7720 break; 7721 case library_turnaround: 7722 thread->th.th_set_nproc = 0; 7723 set__nproc(thread, __kmp_dflt_team_nth ? __kmp_dflt_team_nth 7724 : __kmp_dflt_team_nth_ub); 7725 break; 7726 case library_throughput: 7727 thread->th.th_set_nproc = 0; 7728 set__nproc(thread, __kmp_dflt_team_nth ? __kmp_dflt_team_nth 7729 : __kmp_dflt_team_nth_ub); 7730 break; 7731 default: 7732 KMP_FATAL(UnknownLibraryType, arg); 7733 } 7734 7735 __kmp_aux_set_library(arg); 7736 } 7737 7738 void __kmp_aux_set_stacksize(size_t arg) { 7739 if (!__kmp_init_serial) 7740 __kmp_serial_initialize(); 7741 7742 #if KMP_OS_DARWIN 7743 if (arg & (0x1000 - 1)) { 7744 arg &= ~(0x1000 - 1); 7745 if (arg + 0x1000) /* check for overflow if we round up */ 7746 arg += 0x1000; 7747 } 7748 #endif 7749 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 7750 7751 /* only change the default stacksize before the first parallel region */ 7752 if (!TCR_4(__kmp_init_parallel)) { 7753 size_t value = arg; /* argument is in bytes */ 7754 7755 if (value < __kmp_sys_min_stksize) 7756 value = __kmp_sys_min_stksize; 7757 else if (value > KMP_MAX_STKSIZE) 7758 value = KMP_MAX_STKSIZE; 7759 7760 __kmp_stksize = value; 7761 7762 __kmp_env_stksize = TRUE; /* was KMP_STACKSIZE specified? */ 7763 } 7764 7765 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7766 } 7767 7768 /* set the behaviour of the runtime library */ 7769 /* TODO this can cause some odd behaviour with sibling parallelism... */ 7770 void __kmp_aux_set_library(enum library_type arg) { 7771 __kmp_library = arg; 7772 7773 switch (__kmp_library) { 7774 case library_serial: { 7775 KMP_INFORM(LibraryIsSerial); 7776 } break; 7777 case library_turnaround: 7778 if (__kmp_use_yield == 1 && !__kmp_use_yield_exp_set) 7779 __kmp_use_yield = 2; // only yield when oversubscribed 7780 break; 7781 case library_throughput: 7782 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) 7783 __kmp_dflt_blocktime = 200; 7784 break; 7785 default: 7786 KMP_FATAL(UnknownLibraryType, arg); 7787 } 7788 } 7789 7790 /* Getting team information common for all team API */ 7791 // Returns NULL if not in teams construct 7792 static kmp_team_t *__kmp_aux_get_team_info(int &teams_serialized) { 7793 kmp_info_t *thr = __kmp_entry_thread(); 7794 teams_serialized = 0; 7795 if (thr->th.th_teams_microtask) { 7796 kmp_team_t *team = thr->th.th_team; 7797 int tlevel = thr->th.th_teams_level; // the level of the teams construct 7798 int ii = team->t.t_level; 7799 teams_serialized = team->t.t_serialized; 7800 int level = tlevel + 1; 7801 KMP_DEBUG_ASSERT(ii >= tlevel); 7802 while (ii > level) { 7803 for (teams_serialized = team->t.t_serialized; 7804 (teams_serialized > 0) && (ii > level); teams_serialized--, ii--) { 7805 } 7806 if (team->t.t_serialized && (!teams_serialized)) { 7807 team = team->t.t_parent; 7808 continue; 7809 } 7810 if (ii > level) { 7811 team = team->t.t_parent; 7812 ii--; 7813 } 7814 } 7815 return team; 7816 } 7817 return NULL; 7818 } 7819 7820 int __kmp_aux_get_team_num() { 7821 int serialized; 7822 kmp_team_t *team = __kmp_aux_get_team_info(serialized); 7823 if (team) { 7824 if (serialized > 1) { 7825 return 0; // teams region is serialized ( 1 team of 1 thread ). 7826 } else { 7827 return team->t.t_master_tid; 7828 } 7829 } 7830 return 0; 7831 } 7832 7833 int __kmp_aux_get_num_teams() { 7834 int serialized; 7835 kmp_team_t *team = __kmp_aux_get_team_info(serialized); 7836 if (team) { 7837 if (serialized > 1) { 7838 return 1; 7839 } else { 7840 return team->t.t_parent->t.t_nproc; 7841 } 7842 } 7843 return 1; 7844 } 7845 7846 /* ------------------------------------------------------------------------ */ 7847 7848 /* 7849 * Affinity Format Parser 7850 * 7851 * Field is in form of: %[[[0].]size]type 7852 * % and type are required (%% means print a literal '%') 7853 * type is either single char or long name surrounded by {}, 7854 * e.g., N or {num_threads} 7855 * 0 => leading zeros 7856 * . => right justified when size is specified 7857 * by default output is left justified 7858 * size is the *minimum* field length 7859 * All other characters are printed as is 7860 * 7861 * Available field types: 7862 * L {thread_level} - omp_get_level() 7863 * n {thread_num} - omp_get_thread_num() 7864 * h {host} - name of host machine 7865 * P {process_id} - process id (integer) 7866 * T {thread_identifier} - native thread identifier (integer) 7867 * N {num_threads} - omp_get_num_threads() 7868 * A {ancestor_tnum} - omp_get_ancestor_thread_num(omp_get_level()-1) 7869 * a {thread_affinity} - comma separated list of integers or integer ranges 7870 * (values of affinity mask) 7871 * 7872 * Implementation-specific field types can be added 7873 * If a type is unknown, print "undefined" 7874 */ 7875 7876 // Structure holding the short name, long name, and corresponding data type 7877 // for snprintf. A table of these will represent the entire valid keyword 7878 // field types. 7879 typedef struct kmp_affinity_format_field_t { 7880 char short_name; // from spec e.g., L -> thread level 7881 const char *long_name; // from spec thread_level -> thread level 7882 char field_format; // data type for snprintf (typically 'd' or 's' 7883 // for integer or string) 7884 } kmp_affinity_format_field_t; 7885 7886 static const kmp_affinity_format_field_t __kmp_affinity_format_table[] = { 7887 #if KMP_AFFINITY_SUPPORTED 7888 {'A', "thread_affinity", 's'}, 7889 #endif 7890 {'t', "team_num", 'd'}, 7891 {'T', "num_teams", 'd'}, 7892 {'L', "nesting_level", 'd'}, 7893 {'n', "thread_num", 'd'}, 7894 {'N', "num_threads", 'd'}, 7895 {'a', "ancestor_tnum", 'd'}, 7896 {'H', "host", 's'}, 7897 {'P', "process_id", 'd'}, 7898 {'i', "native_thread_id", 'd'}}; 7899 7900 // Return the number of characters it takes to hold field 7901 static int __kmp_aux_capture_affinity_field(int gtid, const kmp_info_t *th, 7902 const char **ptr, 7903 kmp_str_buf_t *field_buffer) { 7904 int rc, format_index, field_value; 7905 const char *width_left, *width_right; 7906 bool pad_zeros, right_justify, parse_long_name, found_valid_name; 7907 static const int FORMAT_SIZE = 20; 7908 char format[FORMAT_SIZE] = {0}; 7909 char absolute_short_name = 0; 7910 7911 KMP_DEBUG_ASSERT(gtid >= 0); 7912 KMP_DEBUG_ASSERT(th); 7913 KMP_DEBUG_ASSERT(**ptr == '%'); 7914 KMP_DEBUG_ASSERT(field_buffer); 7915 7916 __kmp_str_buf_clear(field_buffer); 7917 7918 // Skip the initial % 7919 (*ptr)++; 7920 7921 // Check for %% first 7922 if (**ptr == '%') { 7923 __kmp_str_buf_cat(field_buffer, "%", 1); 7924 (*ptr)++; // skip over the second % 7925 return 1; 7926 } 7927 7928 // Parse field modifiers if they are present 7929 pad_zeros = false; 7930 if (**ptr == '0') { 7931 pad_zeros = true; 7932 (*ptr)++; // skip over 0 7933 } 7934 right_justify = false; 7935 if (**ptr == '.') { 7936 right_justify = true; 7937 (*ptr)++; // skip over . 7938 } 7939 // Parse width of field: [width_left, width_right) 7940 width_left = width_right = NULL; 7941 if (**ptr >= '0' && **ptr <= '9') { 7942 width_left = *ptr; 7943 SKIP_DIGITS(*ptr); 7944 width_right = *ptr; 7945 } 7946 7947 // Create the format for KMP_SNPRINTF based on flags parsed above 7948 format_index = 0; 7949 format[format_index++] = '%'; 7950 if (!right_justify) 7951 format[format_index++] = '-'; 7952 if (pad_zeros) 7953 format[format_index++] = '0'; 7954 if (width_left && width_right) { 7955 int i = 0; 7956 // Only allow 8 digit number widths. 7957 // This also prevents overflowing format variable 7958 while (i < 8 && width_left < width_right) { 7959 format[format_index++] = *width_left; 7960 width_left++; 7961 i++; 7962 } 7963 } 7964 7965 // Parse a name (long or short) 7966 // Canonicalize the name into absolute_short_name 7967 found_valid_name = false; 7968 parse_long_name = (**ptr == '{'); 7969 if (parse_long_name) 7970 (*ptr)++; // skip initial left brace 7971 for (size_t i = 0; i < sizeof(__kmp_affinity_format_table) / 7972 sizeof(__kmp_affinity_format_table[0]); 7973 ++i) { 7974 char short_name = __kmp_affinity_format_table[i].short_name; 7975 const char *long_name = __kmp_affinity_format_table[i].long_name; 7976 char field_format = __kmp_affinity_format_table[i].field_format; 7977 if (parse_long_name) { 7978 int length = KMP_STRLEN(long_name); 7979 if (strncmp(*ptr, long_name, length) == 0) { 7980 found_valid_name = true; 7981 (*ptr) += length; // skip the long name 7982 } 7983 } else if (**ptr == short_name) { 7984 found_valid_name = true; 7985 (*ptr)++; // skip the short name 7986 } 7987 if (found_valid_name) { 7988 format[format_index++] = field_format; 7989 format[format_index++] = '\0'; 7990 absolute_short_name = short_name; 7991 break; 7992 } 7993 } 7994 if (parse_long_name) { 7995 if (**ptr != '}') { 7996 absolute_short_name = 0; 7997 } else { 7998 (*ptr)++; // skip over the right brace 7999 } 8000 } 8001 8002 // Attempt to fill the buffer with the requested 8003 // value using snprintf within __kmp_str_buf_print() 8004 switch (absolute_short_name) { 8005 case 't': 8006 rc = __kmp_str_buf_print(field_buffer, format, __kmp_aux_get_team_num()); 8007 break; 8008 case 'T': 8009 rc = __kmp_str_buf_print(field_buffer, format, __kmp_aux_get_num_teams()); 8010 break; 8011 case 'L': 8012 rc = __kmp_str_buf_print(field_buffer, format, th->th.th_team->t.t_level); 8013 break; 8014 case 'n': 8015 rc = __kmp_str_buf_print(field_buffer, format, __kmp_tid_from_gtid(gtid)); 8016 break; 8017 case 'H': { 8018 static const int BUFFER_SIZE = 256; 8019 char buf[BUFFER_SIZE]; 8020 __kmp_expand_host_name(buf, BUFFER_SIZE); 8021 rc = __kmp_str_buf_print(field_buffer, format, buf); 8022 } break; 8023 case 'P': 8024 rc = __kmp_str_buf_print(field_buffer, format, getpid()); 8025 break; 8026 case 'i': 8027 rc = __kmp_str_buf_print(field_buffer, format, __kmp_gettid()); 8028 break; 8029 case 'N': 8030 rc = __kmp_str_buf_print(field_buffer, format, th->th.th_team->t.t_nproc); 8031 break; 8032 case 'a': 8033 field_value = 8034 __kmp_get_ancestor_thread_num(gtid, th->th.th_team->t.t_level - 1); 8035 rc = __kmp_str_buf_print(field_buffer, format, field_value); 8036 break; 8037 #if KMP_AFFINITY_SUPPORTED 8038 case 'A': { 8039 kmp_str_buf_t buf; 8040 __kmp_str_buf_init(&buf); 8041 __kmp_affinity_str_buf_mask(&buf, th->th.th_affin_mask); 8042 rc = __kmp_str_buf_print(field_buffer, format, buf.str); 8043 __kmp_str_buf_free(&buf); 8044 } break; 8045 #endif 8046 default: 8047 // According to spec, If an implementation does not have info for field 8048 // type, then "undefined" is printed 8049 rc = __kmp_str_buf_print(field_buffer, "%s", "undefined"); 8050 // Skip the field 8051 if (parse_long_name) { 8052 SKIP_TOKEN(*ptr); 8053 if (**ptr == '}') 8054 (*ptr)++; 8055 } else { 8056 (*ptr)++; 8057 } 8058 } 8059 8060 KMP_ASSERT(format_index <= FORMAT_SIZE); 8061 return rc; 8062 } 8063 8064 /* 8065 * Return number of characters needed to hold the affinity string 8066 * (not including null byte character) 8067 * The resultant string is printed to buffer, which the caller can then 8068 * handle afterwards 8069 */ 8070 size_t __kmp_aux_capture_affinity(int gtid, const char *format, 8071 kmp_str_buf_t *buffer) { 8072 const char *parse_ptr; 8073 size_t retval; 8074 const kmp_info_t *th; 8075 kmp_str_buf_t field; 8076 8077 KMP_DEBUG_ASSERT(buffer); 8078 KMP_DEBUG_ASSERT(gtid >= 0); 8079 8080 __kmp_str_buf_init(&field); 8081 __kmp_str_buf_clear(buffer); 8082 8083 th = __kmp_threads[gtid]; 8084 retval = 0; 8085 8086 // If format is NULL or zero-length string, then we use 8087 // affinity-format-var ICV 8088 parse_ptr = format; 8089 if (parse_ptr == NULL || *parse_ptr == '\0') { 8090 parse_ptr = __kmp_affinity_format; 8091 } 8092 KMP_DEBUG_ASSERT(parse_ptr); 8093 8094 while (*parse_ptr != '\0') { 8095 // Parse a field 8096 if (*parse_ptr == '%') { 8097 // Put field in the buffer 8098 int rc = __kmp_aux_capture_affinity_field(gtid, th, &parse_ptr, &field); 8099 __kmp_str_buf_catbuf(buffer, &field); 8100 retval += rc; 8101 } else { 8102 // Put literal character in buffer 8103 __kmp_str_buf_cat(buffer, parse_ptr, 1); 8104 retval++; 8105 parse_ptr++; 8106 } 8107 } 8108 __kmp_str_buf_free(&field); 8109 return retval; 8110 } 8111 8112 // Displays the affinity string to stdout 8113 void __kmp_aux_display_affinity(int gtid, const char *format) { 8114 kmp_str_buf_t buf; 8115 __kmp_str_buf_init(&buf); 8116 __kmp_aux_capture_affinity(gtid, format, &buf); 8117 __kmp_fprintf(kmp_out, "%s" KMP_END_OF_LINE, buf.str); 8118 __kmp_str_buf_free(&buf); 8119 } 8120 8121 /* ------------------------------------------------------------------------ */ 8122 8123 void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid) { 8124 int blocktime = arg; /* argument is in milliseconds */ 8125 #if KMP_USE_MONITOR 8126 int bt_intervals; 8127 #endif 8128 int bt_set; 8129 8130 __kmp_save_internal_controls(thread); 8131 8132 /* Normalize and set blocktime for the teams */ 8133 if (blocktime < KMP_MIN_BLOCKTIME) 8134 blocktime = KMP_MIN_BLOCKTIME; 8135 else if (blocktime > KMP_MAX_BLOCKTIME) 8136 blocktime = KMP_MAX_BLOCKTIME; 8137 8138 set__blocktime_team(thread->th.th_team, tid, blocktime); 8139 set__blocktime_team(thread->th.th_serial_team, 0, blocktime); 8140 8141 #if KMP_USE_MONITOR 8142 /* Calculate and set blocktime intervals for the teams */ 8143 bt_intervals = KMP_INTERVALS_FROM_BLOCKTIME(blocktime, __kmp_monitor_wakeups); 8144 8145 set__bt_intervals_team(thread->th.th_team, tid, bt_intervals); 8146 set__bt_intervals_team(thread->th.th_serial_team, 0, bt_intervals); 8147 #endif 8148 8149 /* Set whether blocktime has been set to "TRUE" */ 8150 bt_set = TRUE; 8151 8152 set__bt_set_team(thread->th.th_team, tid, bt_set); 8153 set__bt_set_team(thread->th.th_serial_team, 0, bt_set); 8154 #if KMP_USE_MONITOR 8155 KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d, " 8156 "bt_intervals=%d, monitor_updates=%d\n", 8157 __kmp_gtid_from_tid(tid, thread->th.th_team), 8158 thread->th.th_team->t.t_id, tid, blocktime, bt_intervals, 8159 __kmp_monitor_wakeups)); 8160 #else 8161 KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d\n", 8162 __kmp_gtid_from_tid(tid, thread->th.th_team), 8163 thread->th.th_team->t.t_id, tid, blocktime)); 8164 #endif 8165 } 8166 8167 void __kmp_aux_set_defaults(char const *str, int len) { 8168 if (!__kmp_init_serial) { 8169 __kmp_serial_initialize(); 8170 } 8171 __kmp_env_initialize(str); 8172 8173 if (__kmp_settings || __kmp_display_env || __kmp_display_env_verbose) { 8174 __kmp_env_print(); 8175 } 8176 } // __kmp_aux_set_defaults 8177 8178 /* ------------------------------------------------------------------------ */ 8179 /* internal fast reduction routines */ 8180 8181 PACKED_REDUCTION_METHOD_T 8182 __kmp_determine_reduction_method( 8183 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, 8184 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data), 8185 kmp_critical_name *lck) { 8186 8187 // Default reduction method: critical construct ( lck != NULL, like in current 8188 // PAROPT ) 8189 // If ( reduce_data!=NULL && reduce_func!=NULL ): the tree-reduction method 8190 // can be selected by RTL 8191 // If loc->flags contains KMP_IDENT_ATOMIC_REDUCE, the atomic reduce method 8192 // can be selected by RTL 8193 // Finally, it's up to OpenMP RTL to make a decision on which method to select 8194 // among generated by PAROPT. 8195 8196 PACKED_REDUCTION_METHOD_T retval; 8197 8198 int team_size; 8199 8200 KMP_DEBUG_ASSERT(loc); // it would be nice to test ( loc != 0 ) 8201 KMP_DEBUG_ASSERT(lck); // it would be nice to test ( lck != 0 ) 8202 8203 #define FAST_REDUCTION_ATOMIC_METHOD_GENERATED \ 8204 ((loc->flags & (KMP_IDENT_ATOMIC_REDUCE)) == (KMP_IDENT_ATOMIC_REDUCE)) 8205 #define FAST_REDUCTION_TREE_METHOD_GENERATED ((reduce_data) && (reduce_func)) 8206 8207 retval = critical_reduce_block; 8208 8209 // another choice of getting a team size (with 1 dynamic deference) is slower 8210 team_size = __kmp_get_team_num_threads(global_tid); 8211 if (team_size == 1) { 8212 8213 retval = empty_reduce_block; 8214 8215 } else { 8216 8217 int atomic_available = FAST_REDUCTION_ATOMIC_METHOD_GENERATED; 8218 8219 #if KMP_ARCH_X86_64 || KMP_ARCH_PPC64 || KMP_ARCH_AARCH64 || \ 8220 KMP_ARCH_MIPS64 || KMP_ARCH_RISCV64 8221 8222 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 8223 KMP_OS_OPENBSD || KMP_OS_WINDOWS || KMP_OS_DARWIN || KMP_OS_HURD 8224 8225 int teamsize_cutoff = 4; 8226 8227 #if KMP_MIC_SUPPORTED 8228 if (__kmp_mic_type != non_mic) { 8229 teamsize_cutoff = 8; 8230 } 8231 #endif 8232 int tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED; 8233 if (tree_available) { 8234 if (team_size <= teamsize_cutoff) { 8235 if (atomic_available) { 8236 retval = atomic_reduce_block; 8237 } 8238 } else { 8239 retval = TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER; 8240 } 8241 } else if (atomic_available) { 8242 retval = atomic_reduce_block; 8243 } 8244 #else 8245 #error "Unknown or unsupported OS" 8246 #endif // KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || 8247 // KMP_OS_OPENBSD || KMP_OS_WINDOWS || KMP_OS_DARWIN || KMP_OS_HURD 8248 8249 #elif KMP_ARCH_X86 || KMP_ARCH_ARM || KMP_ARCH_AARCH || KMP_ARCH_MIPS 8250 8251 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS || KMP_OS_HURD 8252 8253 // basic tuning 8254 8255 if (atomic_available) { 8256 if (num_vars <= 2) { // && ( team_size <= 8 ) due to false-sharing ??? 8257 retval = atomic_reduce_block; 8258 } 8259 } // otherwise: use critical section 8260 8261 #elif KMP_OS_DARWIN 8262 8263 int tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED; 8264 if (atomic_available && (num_vars <= 3)) { 8265 retval = atomic_reduce_block; 8266 } else if (tree_available) { 8267 if ((reduce_size > (9 * sizeof(kmp_real64))) && 8268 (reduce_size < (2000 * sizeof(kmp_real64)))) { 8269 retval = TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER; 8270 } 8271 } // otherwise: use critical section 8272 8273 #else 8274 #error "Unknown or unsupported OS" 8275 #endif 8276 8277 #else 8278 #error "Unknown or unsupported architecture" 8279 #endif 8280 } 8281 8282 // KMP_FORCE_REDUCTION 8283 8284 // If the team is serialized (team_size == 1), ignore the forced reduction 8285 // method and stay with the unsynchronized method (empty_reduce_block) 8286 if (__kmp_force_reduction_method != reduction_method_not_defined && 8287 team_size != 1) { 8288 8289 PACKED_REDUCTION_METHOD_T forced_retval = critical_reduce_block; 8290 8291 int atomic_available, tree_available; 8292 8293 switch ((forced_retval = __kmp_force_reduction_method)) { 8294 case critical_reduce_block: 8295 KMP_ASSERT(lck); // lck should be != 0 8296 break; 8297 8298 case atomic_reduce_block: 8299 atomic_available = FAST_REDUCTION_ATOMIC_METHOD_GENERATED; 8300 if (!atomic_available) { 8301 KMP_WARNING(RedMethodNotSupported, "atomic"); 8302 forced_retval = critical_reduce_block; 8303 } 8304 break; 8305 8306 case tree_reduce_block: 8307 tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED; 8308 if (!tree_available) { 8309 KMP_WARNING(RedMethodNotSupported, "tree"); 8310 forced_retval = critical_reduce_block; 8311 } else { 8312 #if KMP_FAST_REDUCTION_BARRIER 8313 forced_retval = TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER; 8314 #endif 8315 } 8316 break; 8317 8318 default: 8319 KMP_ASSERT(0); // "unsupported method specified" 8320 } 8321 8322 retval = forced_retval; 8323 } 8324 8325 KA_TRACE(10, ("reduction method selected=%08x\n", retval)); 8326 8327 #undef FAST_REDUCTION_TREE_METHOD_GENERATED 8328 #undef FAST_REDUCTION_ATOMIC_METHOD_GENERATED 8329 8330 return (retval); 8331 } 8332 // this function is for testing set/get/determine reduce method 8333 kmp_int32 __kmp_get_reduce_method(void) { 8334 return ((__kmp_entry_thread()->th.th_local.packed_reduction_method) >> 8); 8335 } 8336 8337 // Soft pause sets up threads to ignore blocktime and just go to sleep. 8338 // Spin-wait code checks __kmp_pause_status and reacts accordingly. 8339 void __kmp_soft_pause() { __kmp_pause_status = kmp_soft_paused; } 8340 8341 // Hard pause shuts down the runtime completely. Resume happens naturally when 8342 // OpenMP is used subsequently. 8343 void __kmp_hard_pause() { 8344 __kmp_pause_status = kmp_hard_paused; 8345 __kmp_internal_end_thread(-1); 8346 } 8347 8348 // Soft resume sets __kmp_pause_status, and wakes up all threads. 8349 void __kmp_resume_if_soft_paused() { 8350 if (__kmp_pause_status == kmp_soft_paused) { 8351 __kmp_pause_status = kmp_not_paused; 8352 8353 for (int gtid = 1; gtid < __kmp_threads_capacity; ++gtid) { 8354 kmp_info_t *thread = __kmp_threads[gtid]; 8355 if (thread) { // Wake it if sleeping 8356 kmp_flag_64 fl(&thread->th.th_bar[bs_forkjoin_barrier].bb.b_go, thread); 8357 if (fl.is_sleeping()) 8358 fl.resume(gtid); 8359 else if (__kmp_try_suspend_mx(thread)) { // got suspend lock 8360 __kmp_unlock_suspend_mx(thread); // unlock it; it won't sleep 8361 } else { // thread holds the lock and may sleep soon 8362 do { // until either the thread sleeps, or we can get the lock 8363 if (fl.is_sleeping()) { 8364 fl.resume(gtid); 8365 break; 8366 } else if (__kmp_try_suspend_mx(thread)) { 8367 __kmp_unlock_suspend_mx(thread); 8368 break; 8369 } 8370 } while (1); 8371 } 8372 } 8373 } 8374 } 8375 } 8376 8377 // This function is called via __kmpc_pause_resource. Returns 0 if successful. 8378 // TODO: add warning messages 8379 int __kmp_pause_resource(kmp_pause_status_t level) { 8380 if (level == kmp_not_paused) { // requesting resume 8381 if (__kmp_pause_status == kmp_not_paused) { 8382 // error message about runtime not being paused, so can't resume 8383 return 1; 8384 } else { 8385 KMP_DEBUG_ASSERT(__kmp_pause_status == kmp_soft_paused || 8386 __kmp_pause_status == kmp_hard_paused); 8387 __kmp_pause_status = kmp_not_paused; 8388 return 0; 8389 } 8390 } else if (level == kmp_soft_paused) { // requesting soft pause 8391 if (__kmp_pause_status != kmp_not_paused) { 8392 // error message about already being paused 8393 return 1; 8394 } else { 8395 __kmp_soft_pause(); 8396 return 0; 8397 } 8398 } else if (level == kmp_hard_paused) { // requesting hard pause 8399 if (__kmp_pause_status != kmp_not_paused) { 8400 // error message about already being paused 8401 return 1; 8402 } else { 8403 __kmp_hard_pause(); 8404 return 0; 8405 } 8406 } else { 8407 // error message about invalid level 8408 return 1; 8409 } 8410 } 8411 8412 8413 void __kmp_omp_display_env(int verbose) { 8414 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 8415 if (__kmp_init_serial == 0) 8416 __kmp_do_serial_initialize(); 8417 __kmp_display_env_impl(!verbose, verbose); 8418 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 8419 } 8420