1 /* 2 * kmp_runtime.cpp -- KPTS runtime support library 3 */ 4 5 6 //===----------------------------------------------------------------------===// 7 // 8 // The LLVM Compiler Infrastructure 9 // 10 // This file is dual licensed under the MIT and the University of Illinois Open 11 // Source Licenses. See LICENSE.txt for details. 12 // 13 //===----------------------------------------------------------------------===// 14 15 16 #include "kmp.h" 17 #include "kmp_affinity.h" 18 #include "kmp_atomic.h" 19 #include "kmp_environment.h" 20 #include "kmp_error.h" 21 #include "kmp_i18n.h" 22 #include "kmp_io.h" 23 #include "kmp_itt.h" 24 #include "kmp_settings.h" 25 #include "kmp_stats.h" 26 #include "kmp_str.h" 27 #include "kmp_wait_release.h" 28 #include "kmp_wrapper_getpid.h" 29 30 #if OMPT_SUPPORT 31 #include "ompt-specific.h" 32 #endif 33 34 /* these are temporary issues to be dealt with */ 35 #define KMP_USE_PRCTL 0 36 37 #if KMP_OS_WINDOWS 38 #include <process.h> 39 #endif 40 41 #include "tsan_annotations.h" 42 43 #if defined(KMP_GOMP_COMPAT) 44 char const __kmp_version_alt_comp[] = 45 KMP_VERSION_PREFIX "alternative compiler support: yes"; 46 #endif /* defined(KMP_GOMP_COMPAT) */ 47 48 char const __kmp_version_omp_api[] = KMP_VERSION_PREFIX "API version: " 49 #if OMP_50_ENABLED 50 "5.0 (201611)"; 51 #elif OMP_45_ENABLED 52 "4.5 (201511)"; 53 #elif OMP_40_ENABLED 54 "4.0 (201307)"; 55 #else 56 "3.1 (201107)"; 57 #endif 58 59 #ifdef KMP_DEBUG 60 char const __kmp_version_lock[] = 61 KMP_VERSION_PREFIX "lock type: run time selectable"; 62 #endif /* KMP_DEBUG */ 63 64 #define KMP_MIN(x, y) ((x) < (y) ? (x) : (y)) 65 66 /* ------------------------------------------------------------------------ */ 67 68 kmp_info_t __kmp_monitor; 69 70 /* Forward declarations */ 71 72 void __kmp_cleanup(void); 73 74 static void __kmp_initialize_info(kmp_info_t *, kmp_team_t *, int tid, 75 int gtid); 76 static void __kmp_initialize_team(kmp_team_t *team, int new_nproc, 77 kmp_internal_control_t *new_icvs, 78 ident_t *loc); 79 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 80 static void __kmp_partition_places(kmp_team_t *team, 81 int update_master_only = 0); 82 #endif 83 static void __kmp_do_serial_initialize(void); 84 void __kmp_fork_barrier(int gtid, int tid); 85 void __kmp_join_barrier(int gtid); 86 void __kmp_setup_icv_copy(kmp_team_t *team, int new_nproc, 87 kmp_internal_control_t *new_icvs, ident_t *loc); 88 89 #ifdef USE_LOAD_BALANCE 90 static int __kmp_load_balance_nproc(kmp_root_t *root, int set_nproc); 91 #endif 92 93 static int __kmp_expand_threads(int nWish, int nNeed); 94 #if KMP_OS_WINDOWS 95 static int __kmp_unregister_root_other_thread(int gtid); 96 #endif 97 static void __kmp_unregister_library(void); // called by __kmp_internal_end() 98 static void __kmp_reap_thread(kmp_info_t *thread, int is_root); 99 static kmp_info_t *__kmp_thread_pool_insert_pt = NULL; 100 101 /* Calculate the identifier of the current thread */ 102 /* fast (and somewhat portable) way to get unique identifier of executing 103 thread. Returns KMP_GTID_DNE if we haven't been assigned a gtid. */ 104 int __kmp_get_global_thread_id() { 105 int i; 106 kmp_info_t **other_threads; 107 size_t stack_data; 108 char *stack_addr; 109 size_t stack_size; 110 char *stack_base; 111 112 KA_TRACE( 113 1000, 114 ("*** __kmp_get_global_thread_id: entering, nproc=%d all_nproc=%d\n", 115 __kmp_nth, __kmp_all_nth)); 116 117 /* JPH - to handle the case where __kmpc_end(0) is called immediately prior to 118 a parallel region, made it return KMP_GTID_DNE to force serial_initialize 119 by caller. Had to handle KMP_GTID_DNE at all call-sites, or else guarantee 120 __kmp_init_gtid for this to work. */ 121 122 if (!TCR_4(__kmp_init_gtid)) 123 return KMP_GTID_DNE; 124 125 #ifdef KMP_TDATA_GTID 126 if (TCR_4(__kmp_gtid_mode) >= 3) { 127 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using TDATA\n")); 128 return __kmp_gtid; 129 } 130 #endif 131 if (TCR_4(__kmp_gtid_mode) >= 2) { 132 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using keyed TLS\n")); 133 return __kmp_gtid_get_specific(); 134 } 135 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using internal alg.\n")); 136 137 stack_addr = (char *)&stack_data; 138 other_threads = __kmp_threads; 139 140 /* ATT: The code below is a source of potential bugs due to unsynchronized 141 access to __kmp_threads array. For example: 142 1. Current thread loads other_threads[i] to thr and checks it, it is 143 non-NULL. 144 2. Current thread is suspended by OS. 145 3. Another thread unregisters and finishes (debug versions of free() 146 may fill memory with something like 0xEF). 147 4. Current thread is resumed. 148 5. Current thread reads junk from *thr. 149 TODO: Fix it. --ln */ 150 151 for (i = 0; i < __kmp_threads_capacity; i++) { 152 153 kmp_info_t *thr = (kmp_info_t *)TCR_SYNC_PTR(other_threads[i]); 154 if (!thr) 155 continue; 156 157 stack_size = (size_t)TCR_PTR(thr->th.th_info.ds.ds_stacksize); 158 stack_base = (char *)TCR_PTR(thr->th.th_info.ds.ds_stackbase); 159 160 /* stack grows down -- search through all of the active threads */ 161 162 if (stack_addr <= stack_base) { 163 size_t stack_diff = stack_base - stack_addr; 164 165 if (stack_diff <= stack_size) { 166 /* The only way we can be closer than the allocated */ 167 /* stack size is if we are running on this thread. */ 168 KMP_DEBUG_ASSERT(__kmp_gtid_get_specific() == i); 169 return i; 170 } 171 } 172 } 173 174 /* get specific to try and determine our gtid */ 175 KA_TRACE(1000, 176 ("*** __kmp_get_global_thread_id: internal alg. failed to find " 177 "thread, using TLS\n")); 178 i = __kmp_gtid_get_specific(); 179 180 /*fprintf( stderr, "=== %d\n", i ); */ /* GROO */ 181 182 /* if we havn't been assigned a gtid, then return code */ 183 if (i < 0) 184 return i; 185 186 /* dynamically updated stack window for uber threads to avoid get_specific 187 call */ 188 if (!TCR_4(other_threads[i]->th.th_info.ds.ds_stackgrow)) { 189 KMP_FATAL(StackOverflow, i); 190 } 191 192 stack_base = (char *)other_threads[i]->th.th_info.ds.ds_stackbase; 193 if (stack_addr > stack_base) { 194 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stackbase, stack_addr); 195 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stacksize, 196 other_threads[i]->th.th_info.ds.ds_stacksize + stack_addr - 197 stack_base); 198 } else { 199 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stacksize, 200 stack_base - stack_addr); 201 } 202 203 /* Reprint stack bounds for ubermaster since they have been refined */ 204 if (__kmp_storage_map) { 205 char *stack_end = (char *)other_threads[i]->th.th_info.ds.ds_stackbase; 206 char *stack_beg = stack_end - other_threads[i]->th.th_info.ds.ds_stacksize; 207 __kmp_print_storage_map_gtid(i, stack_beg, stack_end, 208 other_threads[i]->th.th_info.ds.ds_stacksize, 209 "th_%d stack (refinement)", i); 210 } 211 return i; 212 } 213 214 int __kmp_get_global_thread_id_reg() { 215 int gtid; 216 217 if (!__kmp_init_serial) { 218 gtid = KMP_GTID_DNE; 219 } else 220 #ifdef KMP_TDATA_GTID 221 if (TCR_4(__kmp_gtid_mode) >= 3) { 222 KA_TRACE(1000, ("*** __kmp_get_global_thread_id_reg: using TDATA\n")); 223 gtid = __kmp_gtid; 224 } else 225 #endif 226 if (TCR_4(__kmp_gtid_mode) >= 2) { 227 KA_TRACE(1000, ("*** __kmp_get_global_thread_id_reg: using keyed TLS\n")); 228 gtid = __kmp_gtid_get_specific(); 229 } else { 230 KA_TRACE(1000, 231 ("*** __kmp_get_global_thread_id_reg: using internal alg.\n")); 232 gtid = __kmp_get_global_thread_id(); 233 } 234 235 /* we must be a new uber master sibling thread */ 236 if (gtid == KMP_GTID_DNE) { 237 KA_TRACE(10, 238 ("__kmp_get_global_thread_id_reg: Encountered new root thread. " 239 "Registering a new gtid.\n")); 240 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 241 if (!__kmp_init_serial) { 242 __kmp_do_serial_initialize(); 243 gtid = __kmp_gtid_get_specific(); 244 } else { 245 gtid = __kmp_register_root(FALSE); 246 } 247 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 248 /*__kmp_printf( "+++ %d\n", gtid ); */ /* GROO */ 249 } 250 251 KMP_DEBUG_ASSERT(gtid >= 0); 252 253 return gtid; 254 } 255 256 /* caller must hold forkjoin_lock */ 257 void __kmp_check_stack_overlap(kmp_info_t *th) { 258 int f; 259 char *stack_beg = NULL; 260 char *stack_end = NULL; 261 int gtid; 262 263 KA_TRACE(10, ("__kmp_check_stack_overlap: called\n")); 264 if (__kmp_storage_map) { 265 stack_end = (char *)th->th.th_info.ds.ds_stackbase; 266 stack_beg = stack_end - th->th.th_info.ds.ds_stacksize; 267 268 gtid = __kmp_gtid_from_thread(th); 269 270 if (gtid == KMP_GTID_MONITOR) { 271 __kmp_print_storage_map_gtid( 272 gtid, stack_beg, stack_end, th->th.th_info.ds.ds_stacksize, 273 "th_%s stack (%s)", "mon", 274 (th->th.th_info.ds.ds_stackgrow) ? "initial" : "actual"); 275 } else { 276 __kmp_print_storage_map_gtid( 277 gtid, stack_beg, stack_end, th->th.th_info.ds.ds_stacksize, 278 "th_%d stack (%s)", gtid, 279 (th->th.th_info.ds.ds_stackgrow) ? "initial" : "actual"); 280 } 281 } 282 283 /* No point in checking ubermaster threads since they use refinement and 284 * cannot overlap */ 285 gtid = __kmp_gtid_from_thread(th); 286 if (__kmp_env_checks == TRUE && !KMP_UBER_GTID(gtid)) { 287 KA_TRACE(10, 288 ("__kmp_check_stack_overlap: performing extensive checking\n")); 289 if (stack_beg == NULL) { 290 stack_end = (char *)th->th.th_info.ds.ds_stackbase; 291 stack_beg = stack_end - th->th.th_info.ds.ds_stacksize; 292 } 293 294 for (f = 0; f < __kmp_threads_capacity; f++) { 295 kmp_info_t *f_th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[f]); 296 297 if (f_th && f_th != th) { 298 char *other_stack_end = 299 (char *)TCR_PTR(f_th->th.th_info.ds.ds_stackbase); 300 char *other_stack_beg = 301 other_stack_end - (size_t)TCR_PTR(f_th->th.th_info.ds.ds_stacksize); 302 if ((stack_beg > other_stack_beg && stack_beg < other_stack_end) || 303 (stack_end > other_stack_beg && stack_end < other_stack_end)) { 304 305 /* Print the other stack values before the abort */ 306 if (__kmp_storage_map) 307 __kmp_print_storage_map_gtid( 308 -1, other_stack_beg, other_stack_end, 309 (size_t)TCR_PTR(f_th->th.th_info.ds.ds_stacksize), 310 "th_%d stack (overlapped)", __kmp_gtid_from_thread(f_th)); 311 312 __kmp_msg(kmp_ms_fatal, KMP_MSG(StackOverlap), 313 KMP_HNT(ChangeStackLimit), __kmp_msg_null); 314 } 315 } 316 } 317 } 318 KA_TRACE(10, ("__kmp_check_stack_overlap: returning\n")); 319 } 320 321 /* ------------------------------------------------------------------------ */ 322 323 void __kmp_infinite_loop(void) { 324 static int done = FALSE; 325 326 while (!done) { 327 KMP_YIELD(1); 328 } 329 } 330 331 #define MAX_MESSAGE 512 332 333 void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2, size_t size, 334 char const *format, ...) { 335 char buffer[MAX_MESSAGE]; 336 va_list ap; 337 338 va_start(ap, format); 339 KMP_SNPRINTF(buffer, sizeof(buffer), "OMP storage map: %p %p%8lu %s\n", p1, 340 p2, (unsigned long)size, format); 341 __kmp_acquire_bootstrap_lock(&__kmp_stdio_lock); 342 __kmp_vprintf(kmp_err, buffer, ap); 343 #if KMP_PRINT_DATA_PLACEMENT 344 int node; 345 if (gtid >= 0) { 346 if (p1 <= p2 && (char *)p2 - (char *)p1 == size) { 347 if (__kmp_storage_map_verbose) { 348 node = __kmp_get_host_node(p1); 349 if (node < 0) /* doesn't work, so don't try this next time */ 350 __kmp_storage_map_verbose = FALSE; 351 else { 352 char *last; 353 int lastNode; 354 int localProc = __kmp_get_cpu_from_gtid(gtid); 355 356 const int page_size = KMP_GET_PAGE_SIZE(); 357 358 p1 = (void *)((size_t)p1 & ~((size_t)page_size - 1)); 359 p2 = (void *)(((size_t)p2 - 1) & ~((size_t)page_size - 1)); 360 if (localProc >= 0) 361 __kmp_printf_no_lock(" GTID %d localNode %d\n", gtid, 362 localProc >> 1); 363 else 364 __kmp_printf_no_lock(" GTID %d\n", gtid); 365 #if KMP_USE_PRCTL 366 /* The more elaborate format is disabled for now because of the prctl 367 * hanging bug. */ 368 do { 369 last = p1; 370 lastNode = node; 371 /* This loop collates adjacent pages with the same host node. */ 372 do { 373 (char *)p1 += page_size; 374 } while (p1 <= p2 && (node = __kmp_get_host_node(p1)) == lastNode); 375 __kmp_printf_no_lock(" %p-%p memNode %d\n", last, (char *)p1 - 1, 376 lastNode); 377 } while (p1 <= p2); 378 #else 379 __kmp_printf_no_lock(" %p-%p memNode %d\n", p1, 380 (char *)p1 + (page_size - 1), 381 __kmp_get_host_node(p1)); 382 if (p1 < p2) { 383 __kmp_printf_no_lock(" %p-%p memNode %d\n", p2, 384 (char *)p2 + (page_size - 1), 385 __kmp_get_host_node(p2)); 386 } 387 #endif 388 } 389 } 390 } else 391 __kmp_printf_no_lock(" %s\n", KMP_I18N_STR(StorageMapWarning)); 392 } 393 #endif /* KMP_PRINT_DATA_PLACEMENT */ 394 __kmp_release_bootstrap_lock(&__kmp_stdio_lock); 395 } 396 397 void __kmp_warn(char const *format, ...) { 398 char buffer[MAX_MESSAGE]; 399 va_list ap; 400 401 if (__kmp_generate_warnings == kmp_warnings_off) { 402 return; 403 } 404 405 va_start(ap, format); 406 407 KMP_SNPRINTF(buffer, sizeof(buffer), "OMP warning: %s\n", format); 408 __kmp_acquire_bootstrap_lock(&__kmp_stdio_lock); 409 __kmp_vprintf(kmp_err, buffer, ap); 410 __kmp_release_bootstrap_lock(&__kmp_stdio_lock); 411 412 va_end(ap); 413 } 414 415 void __kmp_abort_process() { 416 // Later threads may stall here, but that's ok because abort() will kill them. 417 __kmp_acquire_bootstrap_lock(&__kmp_exit_lock); 418 419 if (__kmp_debug_buf) { 420 __kmp_dump_debug_buffer(); 421 }; // if 422 423 if (KMP_OS_WINDOWS) { 424 // Let other threads know of abnormal termination and prevent deadlock 425 // if abort happened during library initialization or shutdown 426 __kmp_global.g.g_abort = SIGABRT; 427 428 /* On Windows* OS by default abort() causes pop-up error box, which stalls 429 nightly testing. Unfortunately, we cannot reliably suppress pop-up error 430 boxes. _set_abort_behavior() works well, but this function is not 431 available in VS7 (this is not problem for DLL, but it is a problem for 432 static OpenMP RTL). SetErrorMode (and so, timelimit utility) does not 433 help, at least in some versions of MS C RTL. 434 435 It seems following sequence is the only way to simulate abort() and 436 avoid pop-up error box. */ 437 raise(SIGABRT); 438 _exit(3); // Just in case, if signal ignored, exit anyway. 439 } else { 440 abort(); 441 }; // if 442 443 __kmp_infinite_loop(); 444 __kmp_release_bootstrap_lock(&__kmp_exit_lock); 445 446 } // __kmp_abort_process 447 448 void __kmp_abort_thread(void) { 449 // TODO: Eliminate g_abort global variable and this function. 450 // In case of abort just call abort(), it will kill all the threads. 451 __kmp_infinite_loop(); 452 } // __kmp_abort_thread 453 454 /* Print out the storage map for the major kmp_info_t thread data structures 455 that are allocated together. */ 456 457 static void __kmp_print_thread_storage_map(kmp_info_t *thr, int gtid) { 458 __kmp_print_storage_map_gtid(gtid, thr, thr + 1, sizeof(kmp_info_t), "th_%d", 459 gtid); 460 461 __kmp_print_storage_map_gtid(gtid, &thr->th.th_info, &thr->th.th_team, 462 sizeof(kmp_desc_t), "th_%d.th_info", gtid); 463 464 __kmp_print_storage_map_gtid(gtid, &thr->th.th_local, &thr->th.th_pri_head, 465 sizeof(kmp_local_t), "th_%d.th_local", gtid); 466 467 __kmp_print_storage_map_gtid( 468 gtid, &thr->th.th_bar[0], &thr->th.th_bar[bs_last_barrier], 469 sizeof(kmp_balign_t) * bs_last_barrier, "th_%d.th_bar", gtid); 470 471 __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_plain_barrier], 472 &thr->th.th_bar[bs_plain_barrier + 1], 473 sizeof(kmp_balign_t), "th_%d.th_bar[plain]", 474 gtid); 475 476 __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_forkjoin_barrier], 477 &thr->th.th_bar[bs_forkjoin_barrier + 1], 478 sizeof(kmp_balign_t), "th_%d.th_bar[forkjoin]", 479 gtid); 480 481 #if KMP_FAST_REDUCTION_BARRIER 482 __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_reduction_barrier], 483 &thr->th.th_bar[bs_reduction_barrier + 1], 484 sizeof(kmp_balign_t), "th_%d.th_bar[reduction]", 485 gtid); 486 #endif // KMP_FAST_REDUCTION_BARRIER 487 } 488 489 /* Print out the storage map for the major kmp_team_t team data structures 490 that are allocated together. */ 491 492 static void __kmp_print_team_storage_map(const char *header, kmp_team_t *team, 493 int team_id, int num_thr) { 494 int num_disp_buff = team->t.t_max_nproc > 1 ? __kmp_dispatch_num_buffers : 2; 495 __kmp_print_storage_map_gtid(-1, team, team + 1, sizeof(kmp_team_t), "%s_%d", 496 header, team_id); 497 498 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[0], 499 &team->t.t_bar[bs_last_barrier], 500 sizeof(kmp_balign_team_t) * bs_last_barrier, 501 "%s_%d.t_bar", header, team_id); 502 503 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_plain_barrier], 504 &team->t.t_bar[bs_plain_barrier + 1], 505 sizeof(kmp_balign_team_t), "%s_%d.t_bar[plain]", 506 header, team_id); 507 508 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_forkjoin_barrier], 509 &team->t.t_bar[bs_forkjoin_barrier + 1], 510 sizeof(kmp_balign_team_t), 511 "%s_%d.t_bar[forkjoin]", header, team_id); 512 513 #if KMP_FAST_REDUCTION_BARRIER 514 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_reduction_barrier], 515 &team->t.t_bar[bs_reduction_barrier + 1], 516 sizeof(kmp_balign_team_t), 517 "%s_%d.t_bar[reduction]", header, team_id); 518 #endif // KMP_FAST_REDUCTION_BARRIER 519 520 __kmp_print_storage_map_gtid( 521 -1, &team->t.t_dispatch[0], &team->t.t_dispatch[num_thr], 522 sizeof(kmp_disp_t) * num_thr, "%s_%d.t_dispatch", header, team_id); 523 524 __kmp_print_storage_map_gtid( 525 -1, &team->t.t_threads[0], &team->t.t_threads[num_thr], 526 sizeof(kmp_info_t *) * num_thr, "%s_%d.t_threads", header, team_id); 527 528 __kmp_print_storage_map_gtid(-1, &team->t.t_disp_buffer[0], 529 &team->t.t_disp_buffer[num_disp_buff], 530 sizeof(dispatch_shared_info_t) * num_disp_buff, 531 "%s_%d.t_disp_buffer", header, team_id); 532 533 __kmp_print_storage_map_gtid(-1, &team->t.t_taskq, &team->t.t_copypriv_data, 534 sizeof(kmp_taskq_t), "%s_%d.t_taskq", header, 535 team_id); 536 } 537 538 static void __kmp_init_allocator() {} 539 static void __kmp_fini_allocator() {} 540 541 /* ------------------------------------------------------------------------ */ 542 543 #ifdef KMP_DYNAMIC_LIB 544 #if KMP_OS_WINDOWS 545 546 static void __kmp_reset_lock(kmp_bootstrap_lock_t *lck) { 547 // TODO: Change to __kmp_break_bootstrap_lock(). 548 __kmp_init_bootstrap_lock(lck); // make the lock released 549 } 550 551 static void __kmp_reset_locks_on_process_detach(int gtid_req) { 552 int i; 553 int thread_count; 554 555 // PROCESS_DETACH is expected to be called by a thread that executes 556 // ProcessExit() or FreeLibrary(). OS terminates other threads (except the one 557 // calling ProcessExit or FreeLibrary). So, it might be safe to access the 558 // __kmp_threads[] without taking the forkjoin_lock. However, in fact, some 559 // threads can be still alive here, although being about to be terminated. The 560 // threads in the array with ds_thread==0 are most suspicious. Actually, it 561 // can be not safe to access the __kmp_threads[]. 562 563 // TODO: does it make sense to check __kmp_roots[] ? 564 565 // Let's check that there are no other alive threads registered with the OMP 566 // lib. 567 while (1) { 568 thread_count = 0; 569 for (i = 0; i < __kmp_threads_capacity; ++i) { 570 if (!__kmp_threads) 571 continue; 572 kmp_info_t *th = __kmp_threads[i]; 573 if (th == NULL) 574 continue; 575 int gtid = th->th.th_info.ds.ds_gtid; 576 if (gtid == gtid_req) 577 continue; 578 if (gtid < 0) 579 continue; 580 DWORD exit_val; 581 int alive = __kmp_is_thread_alive(th, &exit_val); 582 if (alive) { 583 ++thread_count; 584 } 585 } 586 if (thread_count == 0) 587 break; // success 588 } 589 590 // Assume that I'm alone. Now it might be safe to check and reset locks. 591 // __kmp_forkjoin_lock and __kmp_stdio_lock are expected to be reset. 592 __kmp_reset_lock(&__kmp_forkjoin_lock); 593 #ifdef KMP_DEBUG 594 __kmp_reset_lock(&__kmp_stdio_lock); 595 #endif // KMP_DEBUG 596 } 597 598 BOOL WINAPI DllMain(HINSTANCE hInstDLL, DWORD fdwReason, LPVOID lpReserved) { 599 //__kmp_acquire_bootstrap_lock( &__kmp_initz_lock ); 600 601 switch (fdwReason) { 602 603 case DLL_PROCESS_ATTACH: 604 KA_TRACE(10, ("DllMain: PROCESS_ATTACH\n")); 605 606 return TRUE; 607 608 case DLL_PROCESS_DETACH: 609 KA_TRACE(10, ("DllMain: PROCESS_DETACH T#%d\n", __kmp_gtid_get_specific())); 610 611 if (lpReserved != NULL) { 612 // lpReserved is used for telling the difference: 613 // lpReserved == NULL when FreeLibrary() was called, 614 // lpReserved != NULL when the process terminates. 615 // When FreeLibrary() is called, worker threads remain alive. So they will 616 // release the forkjoin lock by themselves. When the process terminates, 617 // worker threads disappear triggering the problem of unreleased forkjoin 618 // lock as described below. 619 620 // A worker thread can take the forkjoin lock. The problem comes up if 621 // that worker thread becomes dead before it releases the forkjoin lock. 622 // The forkjoin lock remains taken, while the thread executing 623 // DllMain()->PROCESS_DETACH->__kmp_internal_end_library() below will try 624 // to take the forkjoin lock and will always fail, so that the application 625 // will never finish [normally]. This scenario is possible if 626 // __kmpc_end() has not been executed. It looks like it's not a corner 627 // case, but common cases: 628 // - the main function was compiled by an alternative compiler; 629 // - the main function was compiled by icl but without /Qopenmp 630 // (application with plugins); 631 // - application terminates by calling C exit(), Fortran CALL EXIT() or 632 // Fortran STOP. 633 // - alive foreign thread prevented __kmpc_end from doing cleanup. 634 // 635 // This is a hack to work around the problem. 636 // TODO: !!! figure out something better. 637 __kmp_reset_locks_on_process_detach(__kmp_gtid_get_specific()); 638 } 639 640 __kmp_internal_end_library(__kmp_gtid_get_specific()); 641 642 return TRUE; 643 644 case DLL_THREAD_ATTACH: 645 KA_TRACE(10, ("DllMain: THREAD_ATTACH\n")); 646 647 /* if we want to register new siblings all the time here call 648 * __kmp_get_gtid(); */ 649 return TRUE; 650 651 case DLL_THREAD_DETACH: 652 KA_TRACE(10, ("DllMain: THREAD_DETACH T#%d\n", __kmp_gtid_get_specific())); 653 654 __kmp_internal_end_thread(__kmp_gtid_get_specific()); 655 return TRUE; 656 } 657 658 return TRUE; 659 } 660 661 #endif /* KMP_OS_WINDOWS */ 662 #endif /* KMP_DYNAMIC_LIB */ 663 664 /* Change the library type to "status" and return the old type */ 665 /* called from within initialization routines where __kmp_initz_lock is held */ 666 int __kmp_change_library(int status) { 667 int old_status; 668 669 old_status = __kmp_yield_init & 670 1; // check whether KMP_LIBRARY=throughput (even init count) 671 672 if (status) { 673 __kmp_yield_init |= 1; // throughput => turnaround (odd init count) 674 } else { 675 __kmp_yield_init &= ~1; // turnaround => throughput (even init count) 676 } 677 678 return old_status; // return previous setting of whether 679 // KMP_LIBRARY=throughput 680 } 681 682 /* __kmp_parallel_deo -- Wait until it's our turn. */ 683 void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) { 684 int gtid = *gtid_ref; 685 #ifdef BUILD_PARALLEL_ORDERED 686 kmp_team_t *team = __kmp_team_from_gtid(gtid); 687 #endif /* BUILD_PARALLEL_ORDERED */ 688 689 if (__kmp_env_consistency_check) { 690 if (__kmp_threads[gtid]->th.th_root->r.r_active) 691 #if KMP_USE_DYNAMIC_LOCK 692 __kmp_push_sync(gtid, ct_ordered_in_parallel, loc_ref, NULL, 0); 693 #else 694 __kmp_push_sync(gtid, ct_ordered_in_parallel, loc_ref, NULL); 695 #endif 696 } 697 #ifdef BUILD_PARALLEL_ORDERED 698 if (!team->t.t_serialized) { 699 KMP_MB(); 700 KMP_WAIT_YIELD(&team->t.t_ordered.dt.t_value, __kmp_tid_from_gtid(gtid), 701 KMP_EQ, NULL); 702 KMP_MB(); 703 } 704 #endif /* BUILD_PARALLEL_ORDERED */ 705 } 706 707 /* __kmp_parallel_dxo -- Signal the next task. */ 708 void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) { 709 int gtid = *gtid_ref; 710 #ifdef BUILD_PARALLEL_ORDERED 711 int tid = __kmp_tid_from_gtid(gtid); 712 kmp_team_t *team = __kmp_team_from_gtid(gtid); 713 #endif /* BUILD_PARALLEL_ORDERED */ 714 715 if (__kmp_env_consistency_check) { 716 if (__kmp_threads[gtid]->th.th_root->r.r_active) 717 __kmp_pop_sync(gtid, ct_ordered_in_parallel, loc_ref); 718 } 719 #ifdef BUILD_PARALLEL_ORDERED 720 if (!team->t.t_serialized) { 721 KMP_MB(); /* Flush all pending memory write invalidates. */ 722 723 /* use the tid of the next thread in this team */ 724 /* TODO replace with general release procedure */ 725 team->t.t_ordered.dt.t_value = ((tid + 1) % team->t.t_nproc); 726 727 #if OMPT_SUPPORT && OMPT_BLAME 728 if (ompt_enabled && 729 ompt_callbacks.ompt_callback(ompt_event_release_ordered)) { 730 /* accept blame for "ordered" waiting */ 731 kmp_info_t *this_thread = __kmp_threads[gtid]; 732 ompt_callbacks.ompt_callback(ompt_event_release_ordered)( 733 this_thread->th.ompt_thread_info.wait_id); 734 } 735 #endif 736 737 KMP_MB(); /* Flush all pending memory write invalidates. */ 738 } 739 #endif /* BUILD_PARALLEL_ORDERED */ 740 } 741 742 /* ------------------------------------------------------------------------ */ 743 /* The BARRIER for a SINGLE process section is always explicit */ 744 745 int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws) { 746 int status; 747 kmp_info_t *th; 748 kmp_team_t *team; 749 750 if (!TCR_4(__kmp_init_parallel)) 751 __kmp_parallel_initialize(); 752 753 th = __kmp_threads[gtid]; 754 team = th->th.th_team; 755 status = 0; 756 757 th->th.th_ident = id_ref; 758 759 if (team->t.t_serialized) { 760 status = 1; 761 } else { 762 kmp_int32 old_this = th->th.th_local.this_construct; 763 764 ++th->th.th_local.this_construct; 765 /* try to set team count to thread count--success means thread got the 766 single block */ 767 /* TODO: Should this be acquire or release? */ 768 if (team->t.t_construct == old_this) { 769 status = KMP_COMPARE_AND_STORE_ACQ32(&team->t.t_construct, old_this, 770 th->th.th_local.this_construct); 771 } 772 #if USE_ITT_BUILD 773 if (__itt_metadata_add_ptr && __kmp_forkjoin_frames_mode == 3 && 774 KMP_MASTER_GTID(gtid) && 775 #if OMP_40_ENABLED 776 th->th.th_teams_microtask == NULL && 777 #endif 778 team->t.t_active_level == 779 1) { // Only report metadata by master of active team at level 1 780 __kmp_itt_metadata_single(id_ref); 781 } 782 #endif /* USE_ITT_BUILD */ 783 } 784 785 if (__kmp_env_consistency_check) { 786 if (status && push_ws) { 787 __kmp_push_workshare(gtid, ct_psingle, id_ref); 788 } else { 789 __kmp_check_workshare(gtid, ct_psingle, id_ref); 790 } 791 } 792 #if USE_ITT_BUILD 793 if (status) { 794 __kmp_itt_single_start(gtid); 795 } 796 #endif /* USE_ITT_BUILD */ 797 return status; 798 } 799 800 void __kmp_exit_single(int gtid) { 801 #if USE_ITT_BUILD 802 __kmp_itt_single_end(gtid); 803 #endif /* USE_ITT_BUILD */ 804 if (__kmp_env_consistency_check) 805 __kmp_pop_workshare(gtid, ct_psingle, NULL); 806 } 807 808 /* determine if we can go parallel or must use a serialized parallel region and 809 * how many threads we can use 810 * set_nproc is the number of threads requested for the team 811 * returns 0 if we should serialize or only use one thread, 812 * otherwise the number of threads to use 813 * The forkjoin lock is held by the caller. */ 814 static int __kmp_reserve_threads(kmp_root_t *root, kmp_team_t *parent_team, 815 int master_tid, int set_nthreads 816 #if OMP_40_ENABLED 817 , 818 int enter_teams 819 #endif /* OMP_40_ENABLED */ 820 ) { 821 int capacity; 822 int new_nthreads; 823 KMP_DEBUG_ASSERT(__kmp_init_serial); 824 KMP_DEBUG_ASSERT(root && parent_team); 825 826 // If dyn-var is set, dynamically adjust the number of desired threads, 827 // according to the method specified by dynamic_mode. 828 new_nthreads = set_nthreads; 829 if (!get__dynamic_2(parent_team, master_tid)) { 830 ; 831 } 832 #ifdef USE_LOAD_BALANCE 833 else if (__kmp_global.g.g_dynamic_mode == dynamic_load_balance) { 834 new_nthreads = __kmp_load_balance_nproc(root, set_nthreads); 835 if (new_nthreads == 1) { 836 KC_TRACE(10, ("__kmp_reserve_threads: T#%d load balance reduced " 837 "reservation to 1 thread\n", 838 master_tid)); 839 return 1; 840 } 841 if (new_nthreads < set_nthreads) { 842 KC_TRACE(10, ("__kmp_reserve_threads: T#%d load balance reduced " 843 "reservation to %d threads\n", 844 master_tid, new_nthreads)); 845 } 846 } 847 #endif /* USE_LOAD_BALANCE */ 848 else if (__kmp_global.g.g_dynamic_mode == dynamic_thread_limit) { 849 new_nthreads = __kmp_avail_proc - __kmp_nth + 850 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 851 if (new_nthreads <= 1) { 852 KC_TRACE(10, ("__kmp_reserve_threads: T#%d thread limit reduced " 853 "reservation to 1 thread\n", 854 master_tid)); 855 return 1; 856 } 857 if (new_nthreads < set_nthreads) { 858 KC_TRACE(10, ("__kmp_reserve_threads: T#%d thread limit reduced " 859 "reservation to %d threads\n", 860 master_tid, new_nthreads)); 861 } else { 862 new_nthreads = set_nthreads; 863 } 864 } else if (__kmp_global.g.g_dynamic_mode == dynamic_random) { 865 if (set_nthreads > 2) { 866 new_nthreads = __kmp_get_random(parent_team->t.t_threads[master_tid]); 867 new_nthreads = (new_nthreads % set_nthreads) + 1; 868 if (new_nthreads == 1) { 869 KC_TRACE(10, ("__kmp_reserve_threads: T#%d dynamic random reduced " 870 "reservation to 1 thread\n", 871 master_tid)); 872 return 1; 873 } 874 if (new_nthreads < set_nthreads) { 875 KC_TRACE(10, ("__kmp_reserve_threads: T#%d dynamic random reduced " 876 "reservation to %d threads\n", 877 master_tid, new_nthreads)); 878 } 879 } 880 } else { 881 KMP_ASSERT(0); 882 } 883 884 // Respect KMP_ALL_THREADS/KMP_DEVICE_THREAD_LIMIT. 885 if (__kmp_nth + new_nthreads - 886 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) > 887 __kmp_max_nth) { 888 int tl_nthreads = __kmp_max_nth - __kmp_nth + 889 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 890 if (tl_nthreads <= 0) { 891 tl_nthreads = 1; 892 } 893 894 // If dyn-var is false, emit a 1-time warning. 895 if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) { 896 __kmp_reserve_warn = 1; 897 __kmp_msg(kmp_ms_warning, 898 KMP_MSG(CantFormThrTeam, set_nthreads, tl_nthreads), 899 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 900 } 901 if (tl_nthreads == 1) { 902 KC_TRACE(10, ("__kmp_reserve_threads: T#%d KMP_DEVICE_THREAD_LIMIT " 903 "reduced reservation to 1 thread\n", 904 master_tid)); 905 return 1; 906 } 907 KC_TRACE(10, ("__kmp_reserve_threads: T#%d KMP_DEVICE_THREAD_LIMIT reduced " 908 "reservation to %d threads\n", 909 master_tid, tl_nthreads)); 910 new_nthreads = tl_nthreads; 911 } 912 913 // Respect OMP_THREAD_LIMIT 914 if (root->r.r_cg_nthreads + new_nthreads - 915 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) > 916 __kmp_cg_max_nth) { 917 int tl_nthreads = __kmp_cg_max_nth - root->r.r_cg_nthreads + 918 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 919 if (tl_nthreads <= 0) { 920 tl_nthreads = 1; 921 } 922 923 // If dyn-var is false, emit a 1-time warning. 924 if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) { 925 __kmp_reserve_warn = 1; 926 __kmp_msg(kmp_ms_warning, 927 KMP_MSG(CantFormThrTeam, set_nthreads, tl_nthreads), 928 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 929 } 930 if (tl_nthreads == 1) { 931 KC_TRACE(10, ("__kmp_reserve_threads: T#%d OMP_THREAD_LIMIT " 932 "reduced reservation to 1 thread\n", 933 master_tid)); 934 return 1; 935 } 936 KC_TRACE(10, ("__kmp_reserve_threads: T#%d OMP_THREAD_LIMIT reduced " 937 "reservation to %d threads\n", 938 master_tid, tl_nthreads)); 939 new_nthreads = tl_nthreads; 940 } 941 942 // Check if the threads array is large enough, or needs expanding. 943 // See comment in __kmp_register_root() about the adjustment if 944 // __kmp_threads[0] == NULL. 945 capacity = __kmp_threads_capacity; 946 if (TCR_PTR(__kmp_threads[0]) == NULL) { 947 --capacity; 948 } 949 if (__kmp_nth + new_nthreads - 950 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) > 951 capacity) { 952 // Expand the threads array. 953 int slotsRequired = __kmp_nth + new_nthreads - 954 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) - 955 capacity; 956 int slotsAdded = __kmp_expand_threads(slotsRequired, slotsRequired); 957 if (slotsAdded < slotsRequired) { 958 // The threads array was not expanded enough. 959 new_nthreads -= (slotsRequired - slotsAdded); 960 KMP_ASSERT(new_nthreads >= 1); 961 962 // If dyn-var is false, emit a 1-time warning. 963 if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) { 964 __kmp_reserve_warn = 1; 965 if (__kmp_tp_cached) { 966 __kmp_msg(kmp_ms_warning, 967 KMP_MSG(CantFormThrTeam, set_nthreads, new_nthreads), 968 KMP_HNT(Set_ALL_THREADPRIVATE, __kmp_tp_capacity), 969 KMP_HNT(PossibleSystemLimitOnThreads), __kmp_msg_null); 970 } else { 971 __kmp_msg(kmp_ms_warning, 972 KMP_MSG(CantFormThrTeam, set_nthreads, new_nthreads), 973 KMP_HNT(SystemLimitOnThreads), __kmp_msg_null); 974 } 975 } 976 } 977 } 978 979 #ifdef KMP_DEBUG 980 if (new_nthreads == 1) { 981 KC_TRACE(10, 982 ("__kmp_reserve_threads: T#%d serializing team after reclaiming " 983 "dead roots and rechecking; requested %d threads\n", 984 __kmp_get_gtid(), set_nthreads)); 985 } else { 986 KC_TRACE(10, ("__kmp_reserve_threads: T#%d allocating %d threads; requested" 987 " %d threads\n", 988 __kmp_get_gtid(), new_nthreads, set_nthreads)); 989 } 990 #endif // KMP_DEBUG 991 return new_nthreads; 992 } 993 994 /* Allocate threads from the thread pool and assign them to the new team. We are 995 assured that there are enough threads available, because we checked on that 996 earlier within critical section forkjoin */ 997 static void __kmp_fork_team_threads(kmp_root_t *root, kmp_team_t *team, 998 kmp_info_t *master_th, int master_gtid) { 999 int i; 1000 int use_hot_team; 1001 1002 KA_TRACE(10, ("__kmp_fork_team_threads: new_nprocs = %d\n", team->t.t_nproc)); 1003 KMP_DEBUG_ASSERT(master_gtid == __kmp_get_gtid()); 1004 KMP_MB(); 1005 1006 /* first, let's setup the master thread */ 1007 master_th->th.th_info.ds.ds_tid = 0; 1008 master_th->th.th_team = team; 1009 master_th->th.th_team_nproc = team->t.t_nproc; 1010 master_th->th.th_team_master = master_th; 1011 master_th->th.th_team_serialized = FALSE; 1012 master_th->th.th_dispatch = &team->t.t_dispatch[0]; 1013 1014 /* make sure we are not the optimized hot team */ 1015 #if KMP_NESTED_HOT_TEAMS 1016 use_hot_team = 0; 1017 kmp_hot_team_ptr_t *hot_teams = master_th->th.th_hot_teams; 1018 if (hot_teams) { // hot teams array is not allocated if 1019 // KMP_HOT_TEAMS_MAX_LEVEL=0 1020 int level = team->t.t_active_level - 1; // index in array of hot teams 1021 if (master_th->th.th_teams_microtask) { // are we inside the teams? 1022 if (master_th->th.th_teams_size.nteams > 1) { 1023 ++level; // level was not increased in teams construct for 1024 // team_of_masters 1025 } 1026 if (team->t.t_pkfn != (microtask_t)__kmp_teams_master && 1027 master_th->th.th_teams_level == team->t.t_level) { 1028 ++level; // level was not increased in teams construct for 1029 // team_of_workers before the parallel 1030 } // team->t.t_level will be increased inside parallel 1031 } 1032 if (level < __kmp_hot_teams_max_level) { 1033 if (hot_teams[level].hot_team) { 1034 // hot team has already been allocated for given level 1035 KMP_DEBUG_ASSERT(hot_teams[level].hot_team == team); 1036 use_hot_team = 1; // the team is ready to use 1037 } else { 1038 use_hot_team = 0; // AC: threads are not allocated yet 1039 hot_teams[level].hot_team = team; // remember new hot team 1040 hot_teams[level].hot_team_nth = team->t.t_nproc; 1041 } 1042 } else { 1043 use_hot_team = 0; 1044 } 1045 } 1046 #else 1047 use_hot_team = team == root->r.r_hot_team; 1048 #endif 1049 if (!use_hot_team) { 1050 1051 /* install the master thread */ 1052 team->t.t_threads[0] = master_th; 1053 __kmp_initialize_info(master_th, team, 0, master_gtid); 1054 1055 /* now, install the worker threads */ 1056 for (i = 1; i < team->t.t_nproc; i++) { 1057 1058 /* fork or reallocate a new thread and install it in team */ 1059 kmp_info_t *thr = __kmp_allocate_thread(root, team, i); 1060 team->t.t_threads[i] = thr; 1061 KMP_DEBUG_ASSERT(thr); 1062 KMP_DEBUG_ASSERT(thr->th.th_team == team); 1063 /* align team and thread arrived states */ 1064 KA_TRACE(20, ("__kmp_fork_team_threads: T#%d(%d:%d) init arrived " 1065 "T#%d(%d:%d) join =%llu, plain=%llu\n", 1066 __kmp_gtid_from_tid(0, team), team->t.t_id, 0, 1067 __kmp_gtid_from_tid(i, team), team->t.t_id, i, 1068 team->t.t_bar[bs_forkjoin_barrier].b_arrived, 1069 team->t.t_bar[bs_plain_barrier].b_arrived)); 1070 #if OMP_40_ENABLED 1071 thr->th.th_teams_microtask = master_th->th.th_teams_microtask; 1072 thr->th.th_teams_level = master_th->th.th_teams_level; 1073 thr->th.th_teams_size = master_th->th.th_teams_size; 1074 #endif 1075 { // Initialize threads' barrier data. 1076 int b; 1077 kmp_balign_t *balign = team->t.t_threads[i]->th.th_bar; 1078 for (b = 0; b < bs_last_barrier; ++b) { 1079 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 1080 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 1081 #if USE_DEBUGGER 1082 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 1083 #endif 1084 }; // for b 1085 } 1086 } 1087 1088 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 1089 __kmp_partition_places(team); 1090 #endif 1091 } 1092 1093 KMP_MB(); 1094 } 1095 1096 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1097 // Propagate any changes to the floating point control registers out to the team 1098 // We try to avoid unnecessary writes to the relevant cache line in the team 1099 // structure, so we don't make changes unless they are needed. 1100 inline static void propagateFPControl(kmp_team_t *team) { 1101 if (__kmp_inherit_fp_control) { 1102 kmp_int16 x87_fpu_control_word; 1103 kmp_uint32 mxcsr; 1104 1105 // Get master values of FPU control flags (both X87 and vector) 1106 __kmp_store_x87_fpu_control_word(&x87_fpu_control_word); 1107 __kmp_store_mxcsr(&mxcsr); 1108 mxcsr &= KMP_X86_MXCSR_MASK; 1109 1110 // There is no point looking at t_fp_control_saved here. 1111 // If it is TRUE, we still have to update the values if they are different from 1112 // those we now have. 1113 // If it is FALSE we didn't save anything yet, but our objective is the same. We 1114 // have to ensure that the values in the team are the same as those we have. 1115 // So, this code achieves what we need whether or not t_fp_control_saved is 1116 // true. By checking whether the value needs updating we avoid unnecessary 1117 // writes that would put the cache-line into a written state, causing all 1118 // threads in the team to have to read it again. 1119 KMP_CHECK_UPDATE(team->t.t_x87_fpu_control_word, x87_fpu_control_word); 1120 KMP_CHECK_UPDATE(team->t.t_mxcsr, mxcsr); 1121 // Although we don't use this value, other code in the runtime wants to know 1122 // whether it should restore them. So we must ensure it is correct. 1123 KMP_CHECK_UPDATE(team->t.t_fp_control_saved, TRUE); 1124 } else { 1125 // Similarly here. Don't write to this cache-line in the team structure 1126 // unless we have to. 1127 KMP_CHECK_UPDATE(team->t.t_fp_control_saved, FALSE); 1128 } 1129 } 1130 1131 // Do the opposite, setting the hardware registers to the updated values from 1132 // the team. 1133 inline static void updateHWFPControl(kmp_team_t *team) { 1134 if (__kmp_inherit_fp_control && team->t.t_fp_control_saved) { 1135 // Only reset the fp control regs if they have been changed in the team. 1136 // the parallel region that we are exiting. 1137 kmp_int16 x87_fpu_control_word; 1138 kmp_uint32 mxcsr; 1139 __kmp_store_x87_fpu_control_word(&x87_fpu_control_word); 1140 __kmp_store_mxcsr(&mxcsr); 1141 mxcsr &= KMP_X86_MXCSR_MASK; 1142 1143 if (team->t.t_x87_fpu_control_word != x87_fpu_control_word) { 1144 __kmp_clear_x87_fpu_status_word(); 1145 __kmp_load_x87_fpu_control_word(&team->t.t_x87_fpu_control_word); 1146 } 1147 1148 if (team->t.t_mxcsr != mxcsr) { 1149 __kmp_load_mxcsr(&team->t.t_mxcsr); 1150 } 1151 } 1152 } 1153 #else 1154 #define propagateFPControl(x) ((void)0) 1155 #define updateHWFPControl(x) ((void)0) 1156 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 1157 1158 static void __kmp_alloc_argv_entries(int argc, kmp_team_t *team, 1159 int realloc); // forward declaration 1160 1161 /* Run a parallel region that has been serialized, so runs only in a team of the 1162 single master thread. */ 1163 void __kmp_serialized_parallel(ident_t *loc, kmp_int32 global_tid) { 1164 kmp_info_t *this_thr; 1165 kmp_team_t *serial_team; 1166 1167 KC_TRACE(10, ("__kmpc_serialized_parallel: called by T#%d\n", global_tid)); 1168 1169 /* Skip all this code for autopar serialized loops since it results in 1170 unacceptable overhead */ 1171 if (loc != NULL && (loc->flags & KMP_IDENT_AUTOPAR)) 1172 return; 1173 1174 if (!TCR_4(__kmp_init_parallel)) 1175 __kmp_parallel_initialize(); 1176 1177 this_thr = __kmp_threads[global_tid]; 1178 serial_team = this_thr->th.th_serial_team; 1179 1180 /* utilize the serialized team held by this thread */ 1181 KMP_DEBUG_ASSERT(serial_team); 1182 KMP_MB(); 1183 1184 if (__kmp_tasking_mode != tskm_immediate_exec) { 1185 KMP_DEBUG_ASSERT( 1186 this_thr->th.th_task_team == 1187 this_thr->th.th_team->t.t_task_team[this_thr->th.th_task_state]); 1188 KMP_DEBUG_ASSERT(serial_team->t.t_task_team[this_thr->th.th_task_state] == 1189 NULL); 1190 KA_TRACE(20, ("__kmpc_serialized_parallel: T#%d pushing task_team %p / " 1191 "team %p, new task_team = NULL\n", 1192 global_tid, this_thr->th.th_task_team, this_thr->th.th_team)); 1193 this_thr->th.th_task_team = NULL; 1194 } 1195 1196 #if OMP_40_ENABLED 1197 kmp_proc_bind_t proc_bind = this_thr->th.th_set_proc_bind; 1198 if (this_thr->th.th_current_task->td_icvs.proc_bind == proc_bind_false) { 1199 proc_bind = proc_bind_false; 1200 } else if (proc_bind == proc_bind_default) { 1201 // No proc_bind clause was specified, so use the current value 1202 // of proc-bind-var for this parallel region. 1203 proc_bind = this_thr->th.th_current_task->td_icvs.proc_bind; 1204 } 1205 // Reset for next parallel region 1206 this_thr->th.th_set_proc_bind = proc_bind_default; 1207 #endif /* OMP_40_ENABLED */ 1208 1209 if (this_thr->th.th_team != serial_team) { 1210 // Nested level will be an index in the nested nthreads array 1211 int level = this_thr->th.th_team->t.t_level; 1212 1213 if (serial_team->t.t_serialized) { 1214 /* this serial team was already used 1215 TODO increase performance by making this locks more specific */ 1216 kmp_team_t *new_team; 1217 1218 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 1219 1220 #if OMPT_SUPPORT 1221 ompt_parallel_id_t ompt_parallel_id = __ompt_parallel_id_new(global_tid); 1222 #endif 1223 1224 new_team = __kmp_allocate_team(this_thr->th.th_root, 1, 1, 1225 #if OMPT_SUPPORT 1226 ompt_parallel_id, 1227 #endif 1228 #if OMP_40_ENABLED 1229 proc_bind, 1230 #endif 1231 &this_thr->th.th_current_task->td_icvs, 1232 0 USE_NESTED_HOT_ARG(NULL)); 1233 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1234 KMP_ASSERT(new_team); 1235 1236 /* setup new serialized team and install it */ 1237 new_team->t.t_threads[0] = this_thr; 1238 new_team->t.t_parent = this_thr->th.th_team; 1239 serial_team = new_team; 1240 this_thr->th.th_serial_team = serial_team; 1241 1242 KF_TRACE( 1243 10, 1244 ("__kmpc_serialized_parallel: T#%d allocated new serial team %p\n", 1245 global_tid, serial_team)); 1246 1247 /* TODO the above breaks the requirement that if we run out of resources, 1248 then we can still guarantee that serialized teams are ok, since we may 1249 need to allocate a new one */ 1250 } else { 1251 KF_TRACE( 1252 10, 1253 ("__kmpc_serialized_parallel: T#%d reusing cached serial team %p\n", 1254 global_tid, serial_team)); 1255 } 1256 1257 /* we have to initialize this serial team */ 1258 KMP_DEBUG_ASSERT(serial_team->t.t_threads); 1259 KMP_DEBUG_ASSERT(serial_team->t.t_threads[0] == this_thr); 1260 KMP_DEBUG_ASSERT(this_thr->th.th_team != serial_team); 1261 serial_team->t.t_ident = loc; 1262 serial_team->t.t_serialized = 1; 1263 serial_team->t.t_nproc = 1; 1264 serial_team->t.t_parent = this_thr->th.th_team; 1265 serial_team->t.t_sched = this_thr->th.th_team->t.t_sched; 1266 this_thr->th.th_team = serial_team; 1267 serial_team->t.t_master_tid = this_thr->th.th_info.ds.ds_tid; 1268 1269 KF_TRACE(10, ("__kmpc_serialized_parallel: T#d curtask=%p\n", global_tid, 1270 this_thr->th.th_current_task)); 1271 KMP_ASSERT(this_thr->th.th_current_task->td_flags.executing == 1); 1272 this_thr->th.th_current_task->td_flags.executing = 0; 1273 1274 __kmp_push_current_task_to_thread(this_thr, serial_team, 0); 1275 1276 /* TODO: GEH: do ICVs work for nested serialized teams? Don't we need an 1277 implicit task for each serialized task represented by 1278 team->t.t_serialized? */ 1279 copy_icvs(&this_thr->th.th_current_task->td_icvs, 1280 &this_thr->th.th_current_task->td_parent->td_icvs); 1281 1282 // Thread value exists in the nested nthreads array for the next nested 1283 // level 1284 if (__kmp_nested_nth.used && (level + 1 < __kmp_nested_nth.used)) { 1285 this_thr->th.th_current_task->td_icvs.nproc = 1286 __kmp_nested_nth.nth[level + 1]; 1287 } 1288 1289 #if OMP_40_ENABLED 1290 if (__kmp_nested_proc_bind.used && 1291 (level + 1 < __kmp_nested_proc_bind.used)) { 1292 this_thr->th.th_current_task->td_icvs.proc_bind = 1293 __kmp_nested_proc_bind.bind_types[level + 1]; 1294 } 1295 #endif /* OMP_40_ENABLED */ 1296 1297 #if USE_DEBUGGER 1298 serial_team->t.t_pkfn = (microtask_t)(~0); // For the debugger. 1299 #endif 1300 this_thr->th.th_info.ds.ds_tid = 0; 1301 1302 /* set thread cache values */ 1303 this_thr->th.th_team_nproc = 1; 1304 this_thr->th.th_team_master = this_thr; 1305 this_thr->th.th_team_serialized = 1; 1306 1307 serial_team->t.t_level = serial_team->t.t_parent->t.t_level + 1; 1308 serial_team->t.t_active_level = serial_team->t.t_parent->t.t_active_level; 1309 1310 propagateFPControl(serial_team); 1311 1312 /* check if we need to allocate dispatch buffers stack */ 1313 KMP_DEBUG_ASSERT(serial_team->t.t_dispatch); 1314 if (!serial_team->t.t_dispatch->th_disp_buffer) { 1315 serial_team->t.t_dispatch->th_disp_buffer = 1316 (dispatch_private_info_t *)__kmp_allocate( 1317 sizeof(dispatch_private_info_t)); 1318 } 1319 this_thr->th.th_dispatch = serial_team->t.t_dispatch; 1320 1321 #if OMPT_SUPPORT 1322 ompt_parallel_id_t ompt_parallel_id = __ompt_parallel_id_new(global_tid); 1323 __ompt_team_assign_id(serial_team, ompt_parallel_id); 1324 #endif 1325 1326 KMP_MB(); 1327 1328 } else { 1329 /* this serialized team is already being used, 1330 * that's fine, just add another nested level */ 1331 KMP_DEBUG_ASSERT(this_thr->th.th_team == serial_team); 1332 KMP_DEBUG_ASSERT(serial_team->t.t_threads); 1333 KMP_DEBUG_ASSERT(serial_team->t.t_threads[0] == this_thr); 1334 ++serial_team->t.t_serialized; 1335 this_thr->th.th_team_serialized = serial_team->t.t_serialized; 1336 1337 // Nested level will be an index in the nested nthreads array 1338 int level = this_thr->th.th_team->t.t_level; 1339 // Thread value exists in the nested nthreads array for the next nested 1340 // level 1341 if (__kmp_nested_nth.used && (level + 1 < __kmp_nested_nth.used)) { 1342 this_thr->th.th_current_task->td_icvs.nproc = 1343 __kmp_nested_nth.nth[level + 1]; 1344 } 1345 serial_team->t.t_level++; 1346 KF_TRACE(10, ("__kmpc_serialized_parallel: T#%d increasing nesting level " 1347 "of serial team %p to %d\n", 1348 global_tid, serial_team, serial_team->t.t_level)); 1349 1350 /* allocate/push dispatch buffers stack */ 1351 KMP_DEBUG_ASSERT(serial_team->t.t_dispatch); 1352 { 1353 dispatch_private_info_t *disp_buffer = 1354 (dispatch_private_info_t *)__kmp_allocate( 1355 sizeof(dispatch_private_info_t)); 1356 disp_buffer->next = serial_team->t.t_dispatch->th_disp_buffer; 1357 serial_team->t.t_dispatch->th_disp_buffer = disp_buffer; 1358 } 1359 this_thr->th.th_dispatch = serial_team->t.t_dispatch; 1360 1361 KMP_MB(); 1362 } 1363 #if OMP_40_ENABLED 1364 KMP_CHECK_UPDATE(serial_team->t.t_cancel_request, cancel_noreq); 1365 #endif 1366 1367 if (__kmp_env_consistency_check) 1368 __kmp_push_parallel(global_tid, NULL); 1369 } 1370 1371 /* most of the work for a fork */ 1372 /* return true if we really went parallel, false if serialized */ 1373 int __kmp_fork_call(ident_t *loc, int gtid, 1374 enum fork_context_e call_context, // Intel, GNU, ... 1375 kmp_int32 argc, 1376 #if OMPT_SUPPORT 1377 void *unwrapped_task, 1378 #endif 1379 microtask_t microtask, launch_t invoker, 1380 /* TODO: revert workaround for Intel(R) 64 tracker #96 */ 1381 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 1382 va_list *ap 1383 #else 1384 va_list ap 1385 #endif 1386 ) { 1387 void **argv; 1388 int i; 1389 int master_tid; 1390 int master_this_cons; 1391 kmp_team_t *team; 1392 kmp_team_t *parent_team; 1393 kmp_info_t *master_th; 1394 kmp_root_t *root; 1395 int nthreads; 1396 int master_active; 1397 int master_set_numthreads; 1398 int level; 1399 #if OMP_40_ENABLED 1400 int active_level; 1401 int teams_level; 1402 #endif 1403 #if KMP_NESTED_HOT_TEAMS 1404 kmp_hot_team_ptr_t **p_hot_teams; 1405 #endif 1406 { // KMP_TIME_BLOCK 1407 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_fork_call); 1408 KMP_COUNT_VALUE(OMP_PARALLEL_args, argc); 1409 1410 KA_TRACE(20, ("__kmp_fork_call: enter T#%d\n", gtid)); 1411 if (__kmp_stkpadding > 0 && __kmp_root[gtid] != NULL) { 1412 /* Some systems prefer the stack for the root thread(s) to start with */ 1413 /* some gap from the parent stack to prevent false sharing. */ 1414 void *dummy = KMP_ALLOCA(__kmp_stkpadding); 1415 /* These 2 lines below are so this does not get optimized out */ 1416 if (__kmp_stkpadding > KMP_MAX_STKPADDING) 1417 __kmp_stkpadding += (short)((kmp_int64)dummy); 1418 } 1419 1420 /* initialize if needed */ 1421 KMP_DEBUG_ASSERT( 1422 __kmp_init_serial); // AC: potentially unsafe, not in sync with shutdown 1423 if (!TCR_4(__kmp_init_parallel)) 1424 __kmp_parallel_initialize(); 1425 1426 /* setup current data */ 1427 master_th = __kmp_threads[gtid]; // AC: potentially unsafe, not in sync with 1428 // shutdown 1429 parent_team = master_th->th.th_team; 1430 master_tid = master_th->th.th_info.ds.ds_tid; 1431 master_this_cons = master_th->th.th_local.this_construct; 1432 root = master_th->th.th_root; 1433 master_active = root->r.r_active; 1434 master_set_numthreads = master_th->th.th_set_nproc; 1435 1436 #if OMPT_SUPPORT 1437 ompt_parallel_id_t ompt_parallel_id; 1438 ompt_task_id_t ompt_task_id; 1439 ompt_frame_t *ompt_frame; 1440 ompt_task_id_t my_task_id; 1441 ompt_parallel_id_t my_parallel_id; 1442 1443 if (ompt_enabled) { 1444 ompt_parallel_id = __ompt_parallel_id_new(gtid); 1445 ompt_task_id = __ompt_get_task_id_internal(0); 1446 ompt_frame = __ompt_get_task_frame_internal(0); 1447 } 1448 #endif 1449 1450 // Nested level will be an index in the nested nthreads array 1451 level = parent_team->t.t_level; 1452 // used to launch non-serial teams even if nested is not allowed 1453 active_level = parent_team->t.t_active_level; 1454 #if OMP_40_ENABLED 1455 // needed to check nesting inside the teams 1456 teams_level = master_th->th.th_teams_level; 1457 #endif 1458 #if KMP_NESTED_HOT_TEAMS 1459 p_hot_teams = &master_th->th.th_hot_teams; 1460 if (*p_hot_teams == NULL && __kmp_hot_teams_max_level > 0) { 1461 *p_hot_teams = (kmp_hot_team_ptr_t *)__kmp_allocate( 1462 sizeof(kmp_hot_team_ptr_t) * __kmp_hot_teams_max_level); 1463 (*p_hot_teams)[0].hot_team = root->r.r_hot_team; 1464 // it is either actual or not needed (when active_level > 0) 1465 (*p_hot_teams)[0].hot_team_nth = 1; 1466 } 1467 #endif 1468 1469 #if OMPT_SUPPORT 1470 if (ompt_enabled && 1471 ompt_callbacks.ompt_callback(ompt_event_parallel_begin)) { 1472 int team_size = master_set_numthreads; 1473 1474 ompt_callbacks.ompt_callback(ompt_event_parallel_begin)( 1475 ompt_task_id, ompt_frame, ompt_parallel_id, team_size, unwrapped_task, 1476 OMPT_INVOKER(call_context)); 1477 } 1478 #endif 1479 1480 master_th->th.th_ident = loc; 1481 1482 #if OMP_40_ENABLED 1483 if (master_th->th.th_teams_microtask && ap && 1484 microtask != (microtask_t)__kmp_teams_master && level == teams_level) { 1485 // AC: This is start of parallel that is nested inside teams construct. 1486 // The team is actual (hot), all workers are ready at the fork barrier. 1487 // No lock needed to initialize the team a bit, then free workers. 1488 parent_team->t.t_ident = loc; 1489 __kmp_alloc_argv_entries(argc, parent_team, TRUE); 1490 parent_team->t.t_argc = argc; 1491 argv = (void **)parent_team->t.t_argv; 1492 for (i = argc - 1; i >= 0; --i) 1493 /* TODO: revert workaround for Intel(R) 64 tracker #96 */ 1494 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 1495 *argv++ = va_arg(*ap, void *); 1496 #else 1497 *argv++ = va_arg(ap, void *); 1498 #endif 1499 // Increment our nested depth levels, but not increase the serialization 1500 if (parent_team == master_th->th.th_serial_team) { 1501 // AC: we are in serialized parallel 1502 __kmpc_serialized_parallel(loc, gtid); 1503 KMP_DEBUG_ASSERT(parent_team->t.t_serialized > 1); 1504 // AC: need this in order enquiry functions work 1505 // correctly, will restore at join time 1506 parent_team->t.t_serialized--; 1507 #if OMPT_SUPPORT 1508 void *dummy; 1509 void **exit_runtime_p; 1510 1511 ompt_lw_taskteam_t lw_taskteam; 1512 1513 if (ompt_enabled) { 1514 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, unwrapped_task, 1515 ompt_parallel_id); 1516 lw_taskteam.ompt_task_info.task_id = __ompt_task_id_new(gtid); 1517 exit_runtime_p = 1518 &(lw_taskteam.ompt_task_info.frame.exit_runtime_frame); 1519 1520 __ompt_lw_taskteam_link(&lw_taskteam, master_th); 1521 1522 #if OMPT_TRACE 1523 /* OMPT implicit task begin */ 1524 my_task_id = lw_taskteam.ompt_task_info.task_id; 1525 my_parallel_id = parent_team->t.ompt_team_info.parallel_id; 1526 if (ompt_callbacks.ompt_callback(ompt_event_implicit_task_begin)) { 1527 ompt_callbacks.ompt_callback(ompt_event_implicit_task_begin)( 1528 my_parallel_id, my_task_id); 1529 } 1530 #endif 1531 1532 /* OMPT state */ 1533 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 1534 } else { 1535 exit_runtime_p = &dummy; 1536 } 1537 #endif 1538 1539 { 1540 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1541 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1542 __kmp_invoke_microtask(microtask, gtid, 0, argc, parent_team->t.t_argv 1543 #if OMPT_SUPPORT 1544 , 1545 exit_runtime_p 1546 #endif 1547 ); 1548 } 1549 1550 #if OMPT_SUPPORT 1551 *exit_runtime_p = NULL; 1552 if (ompt_enabled) { 1553 #if OMPT_TRACE 1554 lw_taskteam.ompt_task_info.frame.exit_runtime_frame = NULL; 1555 1556 if (ompt_callbacks.ompt_callback(ompt_event_implicit_task_end)) { 1557 ompt_callbacks.ompt_callback(ompt_event_implicit_task_end)( 1558 ompt_parallel_id, ompt_task_id); 1559 } 1560 1561 __ompt_lw_taskteam_unlink(master_th); 1562 // reset clear the task id only after unlinking the task 1563 lw_taskteam.ompt_task_info.task_id = ompt_task_id_none; 1564 #endif 1565 1566 if (ompt_callbacks.ompt_callback(ompt_event_parallel_end)) { 1567 ompt_callbacks.ompt_callback(ompt_event_parallel_end)( 1568 ompt_parallel_id, ompt_task_id, OMPT_INVOKER(call_context)); 1569 } 1570 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1571 } 1572 #endif 1573 return TRUE; 1574 } 1575 1576 parent_team->t.t_pkfn = microtask; 1577 #if OMPT_SUPPORT 1578 parent_team->t.ompt_team_info.microtask = unwrapped_task; 1579 #endif 1580 parent_team->t.t_invoke = invoker; 1581 KMP_TEST_THEN_INC32((kmp_int32 *)&root->r.r_in_parallel); 1582 parent_team->t.t_active_level++; 1583 parent_team->t.t_level++; 1584 1585 /* Change number of threads in the team if requested */ 1586 if (master_set_numthreads) { // The parallel has num_threads clause 1587 if (master_set_numthreads < master_th->th.th_teams_size.nth) { 1588 // AC: only can reduce number of threads dynamically, can't increase 1589 kmp_info_t **other_threads = parent_team->t.t_threads; 1590 parent_team->t.t_nproc = master_set_numthreads; 1591 for (i = 0; i < master_set_numthreads; ++i) { 1592 other_threads[i]->th.th_team_nproc = master_set_numthreads; 1593 } 1594 // Keep extra threads hot in the team for possible next parallels 1595 } 1596 master_th->th.th_set_nproc = 0; 1597 } 1598 1599 #if USE_DEBUGGER 1600 if (__kmp_debugging) { // Let debugger override number of threads. 1601 int nth = __kmp_omp_num_threads(loc); 1602 if (nth > 0) { // 0 means debugger doesn't want to change num threads 1603 master_set_numthreads = nth; 1604 }; // if 1605 }; // if 1606 #endif 1607 1608 KF_TRACE(10, ("__kmp_fork_call: before internal fork: root=%p, team=%p, " 1609 "master_th=%p, gtid=%d\n", 1610 root, parent_team, master_th, gtid)); 1611 __kmp_internal_fork(loc, gtid, parent_team); 1612 KF_TRACE(10, ("__kmp_fork_call: after internal fork: root=%p, team=%p, " 1613 "master_th=%p, gtid=%d\n", 1614 root, parent_team, master_th, gtid)); 1615 1616 /* Invoke microtask for MASTER thread */ 1617 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) invoke microtask = %p\n", gtid, 1618 parent_team->t.t_id, parent_team->t.t_pkfn)); 1619 1620 { 1621 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1622 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1623 if (!parent_team->t.t_invoke(gtid)) { 1624 KMP_ASSERT2(0, "cannot invoke microtask for MASTER thread"); 1625 } 1626 } 1627 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) done microtask = %p\n", gtid, 1628 parent_team->t.t_id, parent_team->t.t_pkfn)); 1629 KMP_MB(); /* Flush all pending memory write invalidates. */ 1630 1631 KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid)); 1632 1633 return TRUE; 1634 } // Parallel closely nested in teams construct 1635 #endif /* OMP_40_ENABLED */ 1636 1637 #if KMP_DEBUG 1638 if (__kmp_tasking_mode != tskm_immediate_exec) { 1639 KMP_DEBUG_ASSERT(master_th->th.th_task_team == 1640 parent_team->t.t_task_team[master_th->th.th_task_state]); 1641 } 1642 #endif 1643 1644 if (parent_team->t.t_active_level >= 1645 master_th->th.th_current_task->td_icvs.max_active_levels) { 1646 nthreads = 1; 1647 } else { 1648 #if OMP_40_ENABLED 1649 int enter_teams = ((ap == NULL && active_level == 0) || 1650 (ap && teams_level > 0 && teams_level == level)); 1651 #endif 1652 nthreads = 1653 master_set_numthreads 1654 ? master_set_numthreads 1655 : get__nproc_2( 1656 parent_team, 1657 master_tid); // TODO: get nproc directly from current task 1658 1659 // Check if we need to take forkjoin lock? (no need for serialized 1660 // parallel out of teams construct). This code moved here from 1661 // __kmp_reserve_threads() to speedup nested serialized parallels. 1662 if (nthreads > 1) { 1663 if ((!get__nested(master_th) && (root->r.r_in_parallel 1664 #if OMP_40_ENABLED 1665 && !enter_teams 1666 #endif /* OMP_40_ENABLED */ 1667 )) || 1668 (__kmp_library == library_serial)) { 1669 KC_TRACE(10, ("__kmp_fork_call: T#%d serializing team; requested %d" 1670 " threads\n", 1671 gtid, nthreads)); 1672 nthreads = 1; 1673 } 1674 } 1675 if (nthreads > 1) { 1676 /* determine how many new threads we can use */ 1677 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 1678 nthreads = __kmp_reserve_threads( 1679 root, parent_team, master_tid, nthreads 1680 #if OMP_40_ENABLED 1681 /* AC: If we execute teams from parallel region (on host), then 1682 teams should be created but each can only have 1 thread if 1683 nesting is disabled. If teams called from serial region, then 1684 teams and their threads should be created regardless of the 1685 nesting setting. */ 1686 , 1687 enter_teams 1688 #endif /* OMP_40_ENABLED */ 1689 ); 1690 if (nthreads == 1) { 1691 // Free lock for single thread execution here; for multi-thread 1692 // execution it will be freed later after team of threads created 1693 // and initialized 1694 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1695 } 1696 } 1697 } 1698 KMP_DEBUG_ASSERT(nthreads > 0); 1699 1700 // If we temporarily changed the set number of threads then restore it now 1701 master_th->th.th_set_nproc = 0; 1702 1703 /* create a serialized parallel region? */ 1704 if (nthreads == 1) { 1705 /* josh todo: hypothetical question: what do we do for OS X*? */ 1706 #if KMP_OS_LINUX && \ 1707 (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) 1708 void *args[argc]; 1709 #else 1710 void **args = (void **)KMP_ALLOCA(argc * sizeof(void *)); 1711 #endif /* KMP_OS_LINUX && ( KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || \ 1712 KMP_ARCH_AARCH64) */ 1713 1714 KA_TRACE(20, 1715 ("__kmp_fork_call: T#%d serializing parallel region\n", gtid)); 1716 1717 __kmpc_serialized_parallel(loc, gtid); 1718 1719 if (call_context == fork_context_intel) { 1720 /* TODO this sucks, use the compiler itself to pass args! :) */ 1721 master_th->th.th_serial_team->t.t_ident = loc; 1722 #if OMP_40_ENABLED 1723 if (!ap) { 1724 // revert change made in __kmpc_serialized_parallel() 1725 master_th->th.th_serial_team->t.t_level--; 1726 // Get args from parent team for teams construct 1727 1728 #if OMPT_SUPPORT 1729 void *dummy; 1730 void **exit_runtime_p; 1731 1732 ompt_lw_taskteam_t lw_taskteam; 1733 1734 if (ompt_enabled) { 1735 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1736 unwrapped_task, ompt_parallel_id); 1737 lw_taskteam.ompt_task_info.task_id = __ompt_task_id_new(gtid); 1738 exit_runtime_p = 1739 &(lw_taskteam.ompt_task_info.frame.exit_runtime_frame); 1740 1741 __ompt_lw_taskteam_link(&lw_taskteam, master_th); 1742 1743 #if OMPT_TRACE 1744 my_task_id = lw_taskteam.ompt_task_info.task_id; 1745 if (ompt_callbacks.ompt_callback(ompt_event_implicit_task_begin)) { 1746 ompt_callbacks.ompt_callback(ompt_event_implicit_task_begin)( 1747 ompt_parallel_id, my_task_id); 1748 } 1749 #endif 1750 1751 /* OMPT state */ 1752 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 1753 } else { 1754 exit_runtime_p = &dummy; 1755 } 1756 #endif 1757 1758 { 1759 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1760 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1761 __kmp_invoke_microtask(microtask, gtid, 0, argc, 1762 parent_team->t.t_argv 1763 #if OMPT_SUPPORT 1764 , 1765 exit_runtime_p 1766 #endif 1767 ); 1768 } 1769 1770 #if OMPT_SUPPORT 1771 *exit_runtime_p = NULL; 1772 if (ompt_enabled) { 1773 lw_taskteam.ompt_task_info.frame.exit_runtime_frame = NULL; 1774 1775 #if OMPT_TRACE 1776 if (ompt_callbacks.ompt_callback(ompt_event_implicit_task_end)) { 1777 ompt_callbacks.ompt_callback(ompt_event_implicit_task_end)( 1778 ompt_parallel_id, ompt_task_id); 1779 } 1780 #endif 1781 1782 __ompt_lw_taskteam_unlink(master_th); 1783 // reset clear the task id only after unlinking the task 1784 lw_taskteam.ompt_task_info.task_id = ompt_task_id_none; 1785 1786 if (ompt_callbacks.ompt_callback(ompt_event_parallel_end)) { 1787 ompt_callbacks.ompt_callback(ompt_event_parallel_end)( 1788 ompt_parallel_id, ompt_task_id, OMPT_INVOKER(call_context)); 1789 } 1790 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1791 } 1792 #endif 1793 } else if (microtask == (microtask_t)__kmp_teams_master) { 1794 KMP_DEBUG_ASSERT(master_th->th.th_team == 1795 master_th->th.th_serial_team); 1796 team = master_th->th.th_team; 1797 // team->t.t_pkfn = microtask; 1798 team->t.t_invoke = invoker; 1799 __kmp_alloc_argv_entries(argc, team, TRUE); 1800 team->t.t_argc = argc; 1801 argv = (void **)team->t.t_argv; 1802 if (ap) { 1803 for (i = argc - 1; i >= 0; --i) 1804 // TODO: revert workaround for Intel(R) 64 tracker #96 1805 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 1806 *argv++ = va_arg(*ap, void *); 1807 #else 1808 *argv++ = va_arg(ap, void *); 1809 #endif 1810 } else { 1811 for (i = 0; i < argc; ++i) 1812 // Get args from parent team for teams construct 1813 argv[i] = parent_team->t.t_argv[i]; 1814 } 1815 // AC: revert change made in __kmpc_serialized_parallel() 1816 // because initial code in teams should have level=0 1817 team->t.t_level--; 1818 // AC: call special invoker for outer "parallel" of teams construct 1819 { 1820 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1821 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1822 invoker(gtid); 1823 } 1824 } else { 1825 #endif /* OMP_40_ENABLED */ 1826 argv = args; 1827 for (i = argc - 1; i >= 0; --i) 1828 // TODO: revert workaround for Intel(R) 64 tracker #96 1829 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 1830 *argv++ = va_arg(*ap, void *); 1831 #else 1832 *argv++ = va_arg(ap, void *); 1833 #endif 1834 KMP_MB(); 1835 1836 #if OMPT_SUPPORT 1837 void *dummy; 1838 void **exit_runtime_p; 1839 1840 ompt_lw_taskteam_t lw_taskteam; 1841 1842 if (ompt_enabled) { 1843 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1844 unwrapped_task, ompt_parallel_id); 1845 lw_taskteam.ompt_task_info.task_id = __ompt_task_id_new(gtid); 1846 exit_runtime_p = 1847 &(lw_taskteam.ompt_task_info.frame.exit_runtime_frame); 1848 1849 __ompt_lw_taskteam_link(&lw_taskteam, master_th); 1850 1851 #if OMPT_TRACE 1852 /* OMPT implicit task begin */ 1853 my_task_id = lw_taskteam.ompt_task_info.task_id; 1854 my_parallel_id = ompt_parallel_id; 1855 if (ompt_callbacks.ompt_callback(ompt_event_implicit_task_begin)) { 1856 ompt_callbacks.ompt_callback(ompt_event_implicit_task_begin)( 1857 my_parallel_id, my_task_id); 1858 } 1859 #endif 1860 1861 /* OMPT state */ 1862 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 1863 } else { 1864 exit_runtime_p = &dummy; 1865 } 1866 #endif 1867 1868 { 1869 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1870 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1871 __kmp_invoke_microtask(microtask, gtid, 0, argc, args 1872 #if OMPT_SUPPORT 1873 , 1874 exit_runtime_p 1875 #endif 1876 ); 1877 } 1878 1879 #if OMPT_SUPPORT 1880 *exit_runtime_p = NULL; 1881 if (ompt_enabled) { 1882 #if OMPT_TRACE 1883 lw_taskteam.ompt_task_info.frame.exit_runtime_frame = NULL; 1884 1885 if (ompt_callbacks.ompt_callback(ompt_event_implicit_task_end)) { 1886 ompt_callbacks.ompt_callback(ompt_event_implicit_task_end)( 1887 my_parallel_id, my_task_id); 1888 } 1889 #endif 1890 1891 __ompt_lw_taskteam_unlink(master_th); 1892 // reset clear the task id only after unlinking the task 1893 lw_taskteam.ompt_task_info.task_id = ompt_task_id_none; 1894 1895 if (ompt_callbacks.ompt_callback(ompt_event_parallel_end)) { 1896 ompt_callbacks.ompt_callback(ompt_event_parallel_end)( 1897 ompt_parallel_id, ompt_task_id, OMPT_INVOKER(call_context)); 1898 } 1899 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1900 } 1901 #endif 1902 #if OMP_40_ENABLED 1903 } 1904 #endif /* OMP_40_ENABLED */ 1905 } else if (call_context == fork_context_gnu) { 1906 #if OMPT_SUPPORT 1907 ompt_lw_taskteam_t *lwt = 1908 (ompt_lw_taskteam_t *)__kmp_allocate(sizeof(ompt_lw_taskteam_t)); 1909 __ompt_lw_taskteam_init(lwt, master_th, gtid, unwrapped_task, 1910 ompt_parallel_id); 1911 1912 lwt->ompt_task_info.task_id = __ompt_task_id_new(gtid); 1913 lwt->ompt_task_info.frame.exit_runtime_frame = NULL; 1914 __ompt_lw_taskteam_link(lwt, master_th); 1915 #endif 1916 1917 // we were called from GNU native code 1918 KA_TRACE(20, ("__kmp_fork_call: T#%d serial exit\n", gtid)); 1919 return FALSE; 1920 } else { 1921 KMP_ASSERT2(call_context < fork_context_last, 1922 "__kmp_fork_call: unknown fork_context parameter"); 1923 } 1924 1925 KA_TRACE(20, ("__kmp_fork_call: T#%d serial exit\n", gtid)); 1926 KMP_MB(); 1927 return FALSE; 1928 } 1929 1930 // GEH: only modify the executing flag in the case when not serialized 1931 // serialized case is handled in kmpc_serialized_parallel 1932 KF_TRACE(10, ("__kmp_fork_call: parent_team_aclevel=%d, master_th=%p, " 1933 "curtask=%p, curtask_max_aclevel=%d\n", 1934 parent_team->t.t_active_level, master_th, 1935 master_th->th.th_current_task, 1936 master_th->th.th_current_task->td_icvs.max_active_levels)); 1937 // TODO: GEH - cannot do this assertion because root thread not set up as 1938 // executing 1939 // KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 1 ); 1940 master_th->th.th_current_task->td_flags.executing = 0; 1941 1942 #if OMP_40_ENABLED 1943 if (!master_th->th.th_teams_microtask || level > teams_level) 1944 #endif /* OMP_40_ENABLED */ 1945 { 1946 /* Increment our nested depth level */ 1947 KMP_TEST_THEN_INC32((kmp_int32 *)&root->r.r_in_parallel); 1948 } 1949 1950 // See if we need to make a copy of the ICVs. 1951 int nthreads_icv = master_th->th.th_current_task->td_icvs.nproc; 1952 if ((level + 1 < __kmp_nested_nth.used) && 1953 (__kmp_nested_nth.nth[level + 1] != nthreads_icv)) { 1954 nthreads_icv = __kmp_nested_nth.nth[level + 1]; 1955 } else { 1956 nthreads_icv = 0; // don't update 1957 } 1958 1959 #if OMP_40_ENABLED 1960 // Figure out the proc_bind_policy for the new team. 1961 kmp_proc_bind_t proc_bind = master_th->th.th_set_proc_bind; 1962 kmp_proc_bind_t proc_bind_icv = 1963 proc_bind_default; // proc_bind_default means don't update 1964 if (master_th->th.th_current_task->td_icvs.proc_bind == proc_bind_false) { 1965 proc_bind = proc_bind_false; 1966 } else { 1967 if (proc_bind == proc_bind_default) { 1968 // No proc_bind clause specified; use current proc-bind-var for this 1969 // parallel region 1970 proc_bind = master_th->th.th_current_task->td_icvs.proc_bind; 1971 } 1972 /* else: The proc_bind policy was specified explicitly on parallel clause. 1973 This overrides proc-bind-var for this parallel region, but does not 1974 change proc-bind-var. */ 1975 // Figure the value of proc-bind-var for the child threads. 1976 if ((level + 1 < __kmp_nested_proc_bind.used) && 1977 (__kmp_nested_proc_bind.bind_types[level + 1] != 1978 master_th->th.th_current_task->td_icvs.proc_bind)) { 1979 proc_bind_icv = __kmp_nested_proc_bind.bind_types[level + 1]; 1980 } 1981 } 1982 1983 // Reset for next parallel region 1984 master_th->th.th_set_proc_bind = proc_bind_default; 1985 #endif /* OMP_40_ENABLED */ 1986 1987 if ((nthreads_icv > 0) 1988 #if OMP_40_ENABLED 1989 || (proc_bind_icv != proc_bind_default) 1990 #endif /* OMP_40_ENABLED */ 1991 ) { 1992 kmp_internal_control_t new_icvs; 1993 copy_icvs(&new_icvs, &master_th->th.th_current_task->td_icvs); 1994 new_icvs.next = NULL; 1995 if (nthreads_icv > 0) { 1996 new_icvs.nproc = nthreads_icv; 1997 } 1998 1999 #if OMP_40_ENABLED 2000 if (proc_bind_icv != proc_bind_default) { 2001 new_icvs.proc_bind = proc_bind_icv; 2002 } 2003 #endif /* OMP_40_ENABLED */ 2004 2005 /* allocate a new parallel team */ 2006 KF_TRACE(10, ("__kmp_fork_call: before __kmp_allocate_team\n")); 2007 team = __kmp_allocate_team(root, nthreads, nthreads, 2008 #if OMPT_SUPPORT 2009 ompt_parallel_id, 2010 #endif 2011 #if OMP_40_ENABLED 2012 proc_bind, 2013 #endif 2014 &new_icvs, argc USE_NESTED_HOT_ARG(master_th)); 2015 } else { 2016 /* allocate a new parallel team */ 2017 KF_TRACE(10, ("__kmp_fork_call: before __kmp_allocate_team\n")); 2018 team = __kmp_allocate_team(root, nthreads, nthreads, 2019 #if OMPT_SUPPORT 2020 ompt_parallel_id, 2021 #endif 2022 #if OMP_40_ENABLED 2023 proc_bind, 2024 #endif 2025 &master_th->th.th_current_task->td_icvs, 2026 argc USE_NESTED_HOT_ARG(master_th)); 2027 } 2028 KF_TRACE( 2029 10, ("__kmp_fork_call: after __kmp_allocate_team - team = %p\n", team)); 2030 2031 /* setup the new team */ 2032 KMP_CHECK_UPDATE(team->t.t_master_tid, master_tid); 2033 KMP_CHECK_UPDATE(team->t.t_master_this_cons, master_this_cons); 2034 KMP_CHECK_UPDATE(team->t.t_ident, loc); 2035 KMP_CHECK_UPDATE(team->t.t_parent, parent_team); 2036 KMP_CHECK_UPDATE_SYNC(team->t.t_pkfn, microtask); 2037 #if OMPT_SUPPORT 2038 KMP_CHECK_UPDATE_SYNC(team->t.ompt_team_info.microtask, unwrapped_task); 2039 #endif 2040 KMP_CHECK_UPDATE(team->t.t_invoke, invoker); // TODO move to root, maybe 2041 // TODO: parent_team->t.t_level == INT_MAX ??? 2042 #if OMP_40_ENABLED 2043 if (!master_th->th.th_teams_microtask || level > teams_level) { 2044 #endif /* OMP_40_ENABLED */ 2045 int new_level = parent_team->t.t_level + 1; 2046 KMP_CHECK_UPDATE(team->t.t_level, new_level); 2047 new_level = parent_team->t.t_active_level + 1; 2048 KMP_CHECK_UPDATE(team->t.t_active_level, new_level); 2049 #if OMP_40_ENABLED 2050 } else { 2051 // AC: Do not increase parallel level at start of the teams construct 2052 int new_level = parent_team->t.t_level; 2053 KMP_CHECK_UPDATE(team->t.t_level, new_level); 2054 new_level = parent_team->t.t_active_level; 2055 KMP_CHECK_UPDATE(team->t.t_active_level, new_level); 2056 } 2057 #endif /* OMP_40_ENABLED */ 2058 kmp_r_sched_t new_sched = get__sched_2(parent_team, master_tid); 2059 if (team->t.t_sched.r_sched_type != new_sched.r_sched_type || 2060 team->t.t_sched.chunk != new_sched.chunk) 2061 team->t.t_sched = 2062 new_sched; // set master's schedule as new run-time schedule 2063 2064 #if OMP_40_ENABLED 2065 KMP_CHECK_UPDATE(team->t.t_cancel_request, cancel_noreq); 2066 #endif 2067 2068 // Update the floating point rounding in the team if required. 2069 propagateFPControl(team); 2070 2071 if (__kmp_tasking_mode != tskm_immediate_exec) { 2072 // Set master's task team to team's task team. Unless this is hot team, it 2073 // should be NULL. 2074 KMP_DEBUG_ASSERT(master_th->th.th_task_team == 2075 parent_team->t.t_task_team[master_th->th.th_task_state]); 2076 KA_TRACE(20, ("__kmp_fork_call: Master T#%d pushing task_team %p / team " 2077 "%p, new task_team %p / team %p\n", 2078 __kmp_gtid_from_thread(master_th), 2079 master_th->th.th_task_team, parent_team, 2080 team->t.t_task_team[master_th->th.th_task_state], team)); 2081 2082 if (active_level || master_th->th.th_task_team) { 2083 // Take a memo of master's task_state 2084 KMP_DEBUG_ASSERT(master_th->th.th_task_state_memo_stack); 2085 if (master_th->th.th_task_state_top >= 2086 master_th->th.th_task_state_stack_sz) { // increase size 2087 kmp_uint32 new_size = 2 * master_th->th.th_task_state_stack_sz; 2088 kmp_uint8 *old_stack, *new_stack; 2089 kmp_uint32 i; 2090 new_stack = (kmp_uint8 *)__kmp_allocate(new_size); 2091 for (i = 0; i < master_th->th.th_task_state_stack_sz; ++i) { 2092 new_stack[i] = master_th->th.th_task_state_memo_stack[i]; 2093 } 2094 for (i = master_th->th.th_task_state_stack_sz; i < new_size; 2095 ++i) { // zero-init rest of stack 2096 new_stack[i] = 0; 2097 } 2098 old_stack = master_th->th.th_task_state_memo_stack; 2099 master_th->th.th_task_state_memo_stack = new_stack; 2100 master_th->th.th_task_state_stack_sz = new_size; 2101 __kmp_free(old_stack); 2102 } 2103 // Store master's task_state on stack 2104 master_th->th 2105 .th_task_state_memo_stack[master_th->th.th_task_state_top] = 2106 master_th->th.th_task_state; 2107 master_th->th.th_task_state_top++; 2108 #if KMP_NESTED_HOT_TEAMS 2109 if (team == master_th->th.th_hot_teams[active_level].hot_team) { 2110 // Restore master's nested state if nested hot team 2111 master_th->th.th_task_state = 2112 master_th->th 2113 .th_task_state_memo_stack[master_th->th.th_task_state_top]; 2114 } else { 2115 #endif 2116 master_th->th.th_task_state = 0; 2117 #if KMP_NESTED_HOT_TEAMS 2118 } 2119 #endif 2120 } 2121 #if !KMP_NESTED_HOT_TEAMS 2122 KMP_DEBUG_ASSERT((master_th->th.th_task_team == NULL) || 2123 (team == root->r.r_hot_team)); 2124 #endif 2125 } 2126 2127 KA_TRACE( 2128 20, 2129 ("__kmp_fork_call: T#%d(%d:%d)->(%d:0) created a team of %d threads\n", 2130 gtid, parent_team->t.t_id, team->t.t_master_tid, team->t.t_id, 2131 team->t.t_nproc)); 2132 KMP_DEBUG_ASSERT(team != root->r.r_hot_team || 2133 (team->t.t_master_tid == 0 && 2134 (team->t.t_parent == root->r.r_root_team || 2135 team->t.t_parent->t.t_serialized))); 2136 KMP_MB(); 2137 2138 /* now, setup the arguments */ 2139 argv = (void **)team->t.t_argv; 2140 #if OMP_40_ENABLED 2141 if (ap) { 2142 #endif /* OMP_40_ENABLED */ 2143 for (i = argc - 1; i >= 0; --i) { 2144 // TODO: revert workaround for Intel(R) 64 tracker #96 2145 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 2146 void *new_argv = va_arg(*ap, void *); 2147 #else 2148 void *new_argv = va_arg(ap, void *); 2149 #endif 2150 KMP_CHECK_UPDATE(*argv, new_argv); 2151 argv++; 2152 } 2153 #if OMP_40_ENABLED 2154 } else { 2155 for (i = 0; i < argc; ++i) { 2156 // Get args from parent team for teams construct 2157 KMP_CHECK_UPDATE(argv[i], team->t.t_parent->t.t_argv[i]); 2158 } 2159 } 2160 #endif /* OMP_40_ENABLED */ 2161 2162 /* now actually fork the threads */ 2163 KMP_CHECK_UPDATE(team->t.t_master_active, master_active); 2164 if (!root->r.r_active) // Only do assignment if it prevents cache ping-pong 2165 root->r.r_active = TRUE; 2166 2167 __kmp_fork_team_threads(root, team, master_th, gtid); 2168 __kmp_setup_icv_copy(team, nthreads, 2169 &master_th->th.th_current_task->td_icvs, loc); 2170 2171 #if OMPT_SUPPORT 2172 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 2173 #endif 2174 2175 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 2176 2177 #if USE_ITT_BUILD 2178 if (team->t.t_active_level == 1 // only report frames at level 1 2179 #if OMP_40_ENABLED 2180 && !master_th->th.th_teams_microtask // not in teams construct 2181 #endif /* OMP_40_ENABLED */ 2182 ) { 2183 #if USE_ITT_NOTIFY 2184 if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) && 2185 (__kmp_forkjoin_frames_mode == 3 || 2186 __kmp_forkjoin_frames_mode == 1)) { 2187 kmp_uint64 tmp_time = 0; 2188 if (__itt_get_timestamp_ptr) 2189 tmp_time = __itt_get_timestamp(); 2190 // Internal fork - report frame begin 2191 master_th->th.th_frame_time = tmp_time; 2192 if (__kmp_forkjoin_frames_mode == 3) 2193 team->t.t_region_time = tmp_time; 2194 } else 2195 // only one notification scheme (either "submit" or "forking/joined", not both) 2196 #endif /* USE_ITT_NOTIFY */ 2197 if ((__itt_frame_begin_v3_ptr || KMP_ITT_DEBUG) && 2198 __kmp_forkjoin_frames && !__kmp_forkjoin_frames_mode) { 2199 // Mark start of "parallel" region for VTune. 2200 __kmp_itt_region_forking(gtid, team->t.t_nproc, 0); 2201 } 2202 } 2203 #endif /* USE_ITT_BUILD */ 2204 2205 /* now go on and do the work */ 2206 KMP_DEBUG_ASSERT(team == __kmp_threads[gtid]->th.th_team); 2207 KMP_MB(); 2208 KF_TRACE(10, 2209 ("__kmp_internal_fork : root=%p, team=%p, master_th=%p, gtid=%d\n", 2210 root, team, master_th, gtid)); 2211 2212 #if USE_ITT_BUILD 2213 if (__itt_stack_caller_create_ptr) { 2214 team->t.t_stack_id = 2215 __kmp_itt_stack_caller_create(); // create new stack stitching id 2216 // before entering fork barrier 2217 } 2218 #endif /* USE_ITT_BUILD */ 2219 2220 #if OMP_40_ENABLED 2221 // AC: skip __kmp_internal_fork at teams construct, let only master 2222 // threads execute 2223 if (ap) 2224 #endif /* OMP_40_ENABLED */ 2225 { 2226 __kmp_internal_fork(loc, gtid, team); 2227 KF_TRACE(10, ("__kmp_internal_fork : after : root=%p, team=%p, " 2228 "master_th=%p, gtid=%d\n", 2229 root, team, master_th, gtid)); 2230 } 2231 2232 if (call_context == fork_context_gnu) { 2233 KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid)); 2234 return TRUE; 2235 } 2236 2237 /* Invoke microtask for MASTER thread */ 2238 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) invoke microtask = %p\n", gtid, 2239 team->t.t_id, team->t.t_pkfn)); 2240 } // END of timer KMP_fork_call block 2241 2242 { 2243 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 2244 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 2245 if (!team->t.t_invoke(gtid)) { 2246 KMP_ASSERT2(0, "cannot invoke microtask for MASTER thread"); 2247 } 2248 } 2249 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) done microtask = %p\n", gtid, 2250 team->t.t_id, team->t.t_pkfn)); 2251 KMP_MB(); /* Flush all pending memory write invalidates. */ 2252 2253 KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid)); 2254 2255 #if OMPT_SUPPORT 2256 if (ompt_enabled) { 2257 master_th->th.ompt_thread_info.state = ompt_state_overhead; 2258 } 2259 #endif 2260 2261 return TRUE; 2262 } 2263 2264 #if OMPT_SUPPORT 2265 static inline void __kmp_join_restore_state(kmp_info_t *thread, 2266 kmp_team_t *team) { 2267 // restore state outside the region 2268 thread->th.ompt_thread_info.state = 2269 ((team->t.t_serialized) ? ompt_state_work_serial 2270 : ompt_state_work_parallel); 2271 } 2272 2273 static inline void __kmp_join_ompt(kmp_info_t *thread, kmp_team_t *team, 2274 ompt_parallel_id_t parallel_id, 2275 fork_context_e fork_context) { 2276 ompt_task_info_t *task_info = __ompt_get_taskinfo(0); 2277 if (ompt_callbacks.ompt_callback(ompt_event_parallel_end)) { 2278 ompt_callbacks.ompt_callback(ompt_event_parallel_end)( 2279 parallel_id, task_info->task_id, OMPT_INVOKER(fork_context)); 2280 } 2281 2282 task_info->frame.reenter_runtime_frame = NULL; 2283 __kmp_join_restore_state(thread, team); 2284 } 2285 #endif 2286 2287 void __kmp_join_call(ident_t *loc, int gtid 2288 #if OMPT_SUPPORT 2289 , 2290 enum fork_context_e fork_context 2291 #endif 2292 #if OMP_40_ENABLED 2293 , 2294 int exit_teams 2295 #endif /* OMP_40_ENABLED */ 2296 ) { 2297 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_join_call); 2298 kmp_team_t *team; 2299 kmp_team_t *parent_team; 2300 kmp_info_t *master_th; 2301 kmp_root_t *root; 2302 int master_active; 2303 int i; 2304 2305 KA_TRACE(20, ("__kmp_join_call: enter T#%d\n", gtid)); 2306 2307 /* setup current data */ 2308 master_th = __kmp_threads[gtid]; 2309 root = master_th->th.th_root; 2310 team = master_th->th.th_team; 2311 parent_team = team->t.t_parent; 2312 2313 master_th->th.th_ident = loc; 2314 2315 #if OMPT_SUPPORT 2316 if (ompt_enabled) { 2317 master_th->th.ompt_thread_info.state = ompt_state_overhead; 2318 } 2319 #endif 2320 2321 #if KMP_DEBUG 2322 if (__kmp_tasking_mode != tskm_immediate_exec && !exit_teams) { 2323 KA_TRACE(20, ("__kmp_join_call: T#%d, old team = %p old task_team = %p, " 2324 "th_task_team = %p\n", 2325 __kmp_gtid_from_thread(master_th), team, 2326 team->t.t_task_team[master_th->th.th_task_state], 2327 master_th->th.th_task_team)); 2328 KMP_DEBUG_ASSERT(master_th->th.th_task_team == 2329 team->t.t_task_team[master_th->th.th_task_state]); 2330 } 2331 #endif 2332 2333 if (team->t.t_serialized) { 2334 #if OMP_40_ENABLED 2335 if (master_th->th.th_teams_microtask) { 2336 // We are in teams construct 2337 int level = team->t.t_level; 2338 int tlevel = master_th->th.th_teams_level; 2339 if (level == tlevel) { 2340 // AC: we haven't incremented it earlier at start of teams construct, 2341 // so do it here - at the end of teams construct 2342 team->t.t_level++; 2343 } else if (level == tlevel + 1) { 2344 // AC: we are exiting parallel inside teams, need to increment 2345 // serialization in order to restore it in the next call to 2346 // __kmpc_end_serialized_parallel 2347 team->t.t_serialized++; 2348 } 2349 } 2350 #endif /* OMP_40_ENABLED */ 2351 __kmpc_end_serialized_parallel(loc, gtid); 2352 2353 #if OMPT_SUPPORT 2354 if (ompt_enabled) { 2355 __kmp_join_restore_state(master_th, parent_team); 2356 } 2357 #endif 2358 2359 return; 2360 } 2361 2362 master_active = team->t.t_master_active; 2363 2364 #if OMP_40_ENABLED 2365 if (!exit_teams) 2366 #endif /* OMP_40_ENABLED */ 2367 { 2368 // AC: No barrier for internal teams at exit from teams construct. 2369 // But there is barrier for external team (league). 2370 __kmp_internal_join(loc, gtid, team); 2371 } 2372 #if OMP_40_ENABLED 2373 else { 2374 master_th->th.th_task_state = 2375 0; // AC: no tasking in teams (out of any parallel) 2376 } 2377 #endif /* OMP_40_ENABLED */ 2378 2379 KMP_MB(); 2380 2381 #if OMPT_SUPPORT 2382 ompt_parallel_id_t parallel_id = team->t.ompt_team_info.parallel_id; 2383 #endif 2384 2385 #if USE_ITT_BUILD 2386 if (__itt_stack_caller_create_ptr) { 2387 __kmp_itt_stack_caller_destroy( 2388 (__itt_caller)team->t 2389 .t_stack_id); // destroy the stack stitching id after join barrier 2390 } 2391 2392 // Mark end of "parallel" region for VTune. 2393 if (team->t.t_active_level == 1 2394 #if OMP_40_ENABLED 2395 && !master_th->th.th_teams_microtask /* not in teams construct */ 2396 #endif /* OMP_40_ENABLED */ 2397 ) { 2398 master_th->th.th_ident = loc; 2399 // only one notification scheme (either "submit" or "forking/joined", not 2400 // both) 2401 if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) && 2402 __kmp_forkjoin_frames_mode == 3) 2403 __kmp_itt_frame_submit(gtid, team->t.t_region_time, 2404 master_th->th.th_frame_time, 0, loc, 2405 master_th->th.th_team_nproc, 1); 2406 else if ((__itt_frame_end_v3_ptr || KMP_ITT_DEBUG) && 2407 !__kmp_forkjoin_frames_mode && __kmp_forkjoin_frames) 2408 __kmp_itt_region_joined(gtid); 2409 } // active_level == 1 2410 #endif /* USE_ITT_BUILD */ 2411 2412 #if OMP_40_ENABLED 2413 if (master_th->th.th_teams_microtask && !exit_teams && 2414 team->t.t_pkfn != (microtask_t)__kmp_teams_master && 2415 team->t.t_level == master_th->th.th_teams_level + 1) { 2416 // AC: We need to leave the team structure intact at the end of parallel 2417 // inside the teams construct, so that at the next parallel same (hot) team 2418 // works, only adjust nesting levels 2419 2420 /* Decrement our nested depth level */ 2421 team->t.t_level--; 2422 team->t.t_active_level--; 2423 KMP_TEST_THEN_DEC32((kmp_int32 *)&root->r.r_in_parallel); 2424 2425 /* Restore number of threads in the team if needed */ 2426 if (master_th->th.th_team_nproc < master_th->th.th_teams_size.nth) { 2427 int old_num = master_th->th.th_team_nproc; 2428 int new_num = master_th->th.th_teams_size.nth; 2429 kmp_info_t **other_threads = team->t.t_threads; 2430 team->t.t_nproc = new_num; 2431 for (i = 0; i < old_num; ++i) { 2432 other_threads[i]->th.th_team_nproc = new_num; 2433 } 2434 // Adjust states of non-used threads of the team 2435 for (i = old_num; i < new_num; ++i) { 2436 // Re-initialize thread's barrier data. 2437 int b; 2438 kmp_balign_t *balign = other_threads[i]->th.th_bar; 2439 for (b = 0; b < bs_last_barrier; ++b) { 2440 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 2441 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 2442 #if USE_DEBUGGER 2443 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 2444 #endif 2445 } 2446 if (__kmp_tasking_mode != tskm_immediate_exec) { 2447 // Synchronize thread's task state 2448 other_threads[i]->th.th_task_state = master_th->th.th_task_state; 2449 } 2450 } 2451 } 2452 2453 #if OMPT_SUPPORT 2454 if (ompt_enabled) { 2455 __kmp_join_ompt(master_th, parent_team, parallel_id, fork_context); 2456 } 2457 #endif 2458 2459 return; 2460 } 2461 #endif /* OMP_40_ENABLED */ 2462 2463 /* do cleanup and restore the parent team */ 2464 master_th->th.th_info.ds.ds_tid = team->t.t_master_tid; 2465 master_th->th.th_local.this_construct = team->t.t_master_this_cons; 2466 2467 master_th->th.th_dispatch = &parent_team->t.t_dispatch[team->t.t_master_tid]; 2468 2469 /* jc: The following lock has instructions with REL and ACQ semantics, 2470 separating the parallel user code called in this parallel region 2471 from the serial user code called after this function returns. */ 2472 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 2473 2474 #if OMP_40_ENABLED 2475 if (!master_th->th.th_teams_microtask || 2476 team->t.t_level > master_th->th.th_teams_level) 2477 #endif /* OMP_40_ENABLED */ 2478 { 2479 /* Decrement our nested depth level */ 2480 KMP_TEST_THEN_DEC32((kmp_int32 *)&root->r.r_in_parallel); 2481 } 2482 KMP_DEBUG_ASSERT(root->r.r_in_parallel >= 0); 2483 2484 #if OMPT_SUPPORT && OMPT_TRACE 2485 if (ompt_enabled) { 2486 ompt_task_info_t *task_info = __ompt_get_taskinfo(0); 2487 if (ompt_callbacks.ompt_callback(ompt_event_implicit_task_end)) { 2488 ompt_callbacks.ompt_callback(ompt_event_implicit_task_end)( 2489 parallel_id, task_info->task_id); 2490 } 2491 task_info->frame.exit_runtime_frame = NULL; 2492 task_info->task_id = 0; 2493 } 2494 #endif 2495 2496 KF_TRACE(10, ("__kmp_join_call1: T#%d, this_thread=%p team=%p\n", 0, 2497 master_th, team)); 2498 __kmp_pop_current_task_from_thread(master_th); 2499 2500 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 2501 // Restore master thread's partition. 2502 master_th->th.th_first_place = team->t.t_first_place; 2503 master_th->th.th_last_place = team->t.t_last_place; 2504 #endif /* OMP_40_ENABLED */ 2505 2506 updateHWFPControl(team); 2507 2508 if (root->r.r_active != master_active) 2509 root->r.r_active = master_active; 2510 2511 __kmp_free_team(root, team USE_NESTED_HOT_ARG( 2512 master_th)); // this will free worker threads 2513 2514 /* this race was fun to find. make sure the following is in the critical 2515 region otherwise assertions may fail occasionally since the old team may be 2516 reallocated and the hierarchy appears inconsistent. it is actually safe to 2517 run and won't cause any bugs, but will cause those assertion failures. it's 2518 only one deref&assign so might as well put this in the critical region */ 2519 master_th->th.th_team = parent_team; 2520 master_th->th.th_team_nproc = parent_team->t.t_nproc; 2521 master_th->th.th_team_master = parent_team->t.t_threads[0]; 2522 master_th->th.th_team_serialized = parent_team->t.t_serialized; 2523 2524 /* restore serialized team, if need be */ 2525 if (parent_team->t.t_serialized && 2526 parent_team != master_th->th.th_serial_team && 2527 parent_team != root->r.r_root_team) { 2528 __kmp_free_team(root, 2529 master_th->th.th_serial_team USE_NESTED_HOT_ARG(NULL)); 2530 master_th->th.th_serial_team = parent_team; 2531 } 2532 2533 if (__kmp_tasking_mode != tskm_immediate_exec) { 2534 if (master_th->th.th_task_state_top > 2535 0) { // Restore task state from memo stack 2536 KMP_DEBUG_ASSERT(master_th->th.th_task_state_memo_stack); 2537 // Remember master's state if we re-use this nested hot team 2538 master_th->th.th_task_state_memo_stack[master_th->th.th_task_state_top] = 2539 master_th->th.th_task_state; 2540 --master_th->th.th_task_state_top; // pop 2541 // Now restore state at this level 2542 master_th->th.th_task_state = 2543 master_th->th 2544 .th_task_state_memo_stack[master_th->th.th_task_state_top]; 2545 } 2546 // Copy the task team from the parent team to the master thread 2547 master_th->th.th_task_team = 2548 parent_team->t.t_task_team[master_th->th.th_task_state]; 2549 KA_TRACE(20, 2550 ("__kmp_join_call: Master T#%d restoring task_team %p / team %p\n", 2551 __kmp_gtid_from_thread(master_th), master_th->th.th_task_team, 2552 parent_team)); 2553 } 2554 2555 // TODO: GEH - cannot do this assertion because root thread not set up as 2556 // executing 2557 // KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 0 ); 2558 master_th->th.th_current_task->td_flags.executing = 1; 2559 2560 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 2561 2562 #if OMPT_SUPPORT 2563 if (ompt_enabled) { 2564 __kmp_join_ompt(master_th, parent_team, parallel_id, fork_context); 2565 } 2566 #endif 2567 2568 KMP_MB(); 2569 KA_TRACE(20, ("__kmp_join_call: exit T#%d\n", gtid)); 2570 } 2571 2572 /* Check whether we should push an internal control record onto the 2573 serial team stack. If so, do it. */ 2574 void __kmp_save_internal_controls(kmp_info_t *thread) { 2575 2576 if (thread->th.th_team != thread->th.th_serial_team) { 2577 return; 2578 } 2579 if (thread->th.th_team->t.t_serialized > 1) { 2580 int push = 0; 2581 2582 if (thread->th.th_team->t.t_control_stack_top == NULL) { 2583 push = 1; 2584 } else { 2585 if (thread->th.th_team->t.t_control_stack_top->serial_nesting_level != 2586 thread->th.th_team->t.t_serialized) { 2587 push = 1; 2588 } 2589 } 2590 if (push) { /* push a record on the serial team's stack */ 2591 kmp_internal_control_t *control = 2592 (kmp_internal_control_t *)__kmp_allocate( 2593 sizeof(kmp_internal_control_t)); 2594 2595 copy_icvs(control, &thread->th.th_current_task->td_icvs); 2596 2597 control->serial_nesting_level = thread->th.th_team->t.t_serialized; 2598 2599 control->next = thread->th.th_team->t.t_control_stack_top; 2600 thread->th.th_team->t.t_control_stack_top = control; 2601 } 2602 } 2603 } 2604 2605 /* Changes set_nproc */ 2606 void __kmp_set_num_threads(int new_nth, int gtid) { 2607 kmp_info_t *thread; 2608 kmp_root_t *root; 2609 2610 KF_TRACE(10, ("__kmp_set_num_threads: new __kmp_nth = %d\n", new_nth)); 2611 KMP_DEBUG_ASSERT(__kmp_init_serial); 2612 2613 if (new_nth < 1) 2614 new_nth = 1; 2615 else if (new_nth > __kmp_max_nth) 2616 new_nth = __kmp_max_nth; 2617 2618 KMP_COUNT_VALUE(OMP_set_numthreads, new_nth); 2619 thread = __kmp_threads[gtid]; 2620 2621 __kmp_save_internal_controls(thread); 2622 2623 set__nproc(thread, new_nth); 2624 2625 // If this omp_set_num_threads() call will cause the hot team size to be 2626 // reduced (in the absence of a num_threads clause), then reduce it now, 2627 // rather than waiting for the next parallel region. 2628 root = thread->th.th_root; 2629 if (__kmp_init_parallel && (!root->r.r_active) && 2630 (root->r.r_hot_team->t.t_nproc > new_nth) 2631 #if KMP_NESTED_HOT_TEAMS 2632 && __kmp_hot_teams_max_level && !__kmp_hot_teams_mode 2633 #endif 2634 ) { 2635 kmp_team_t *hot_team = root->r.r_hot_team; 2636 int f; 2637 2638 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 2639 2640 // Release the extra threads we don't need any more. 2641 for (f = new_nth; f < hot_team->t.t_nproc; f++) { 2642 KMP_DEBUG_ASSERT(hot_team->t.t_threads[f] != NULL); 2643 if (__kmp_tasking_mode != tskm_immediate_exec) { 2644 // When decreasing team size, threads no longer in the team should unref 2645 // task team. 2646 hot_team->t.t_threads[f]->th.th_task_team = NULL; 2647 } 2648 __kmp_free_thread(hot_team->t.t_threads[f]); 2649 hot_team->t.t_threads[f] = NULL; 2650 } 2651 hot_team->t.t_nproc = new_nth; 2652 #if KMP_NESTED_HOT_TEAMS 2653 if (thread->th.th_hot_teams) { 2654 KMP_DEBUG_ASSERT(hot_team == thread->th.th_hot_teams[0].hot_team); 2655 thread->th.th_hot_teams[0].hot_team_nth = new_nth; 2656 } 2657 #endif 2658 2659 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 2660 2661 // Update the t_nproc field in the threads that are still active. 2662 for (f = 0; f < new_nth; f++) { 2663 KMP_DEBUG_ASSERT(hot_team->t.t_threads[f] != NULL); 2664 hot_team->t.t_threads[f]->th.th_team_nproc = new_nth; 2665 } 2666 // Special flag in case omp_set_num_threads() call 2667 hot_team->t.t_size_changed = -1; 2668 } 2669 } 2670 2671 /* Changes max_active_levels */ 2672 void __kmp_set_max_active_levels(int gtid, int max_active_levels) { 2673 kmp_info_t *thread; 2674 2675 KF_TRACE(10, ("__kmp_set_max_active_levels: new max_active_levels for thread " 2676 "%d = (%d)\n", 2677 gtid, max_active_levels)); 2678 KMP_DEBUG_ASSERT(__kmp_init_serial); 2679 2680 // validate max_active_levels 2681 if (max_active_levels < 0) { 2682 KMP_WARNING(ActiveLevelsNegative, max_active_levels); 2683 // We ignore this call if the user has specified a negative value. 2684 // The current setting won't be changed. The last valid setting will be 2685 // used. A warning will be issued (if warnings are allowed as controlled by 2686 // the KMP_WARNINGS env var). 2687 KF_TRACE(10, ("__kmp_set_max_active_levels: the call is ignored: new " 2688 "max_active_levels for thread %d = (%d)\n", 2689 gtid, max_active_levels)); 2690 return; 2691 } 2692 if (max_active_levels <= KMP_MAX_ACTIVE_LEVELS_LIMIT) { 2693 // it's OK, the max_active_levels is within the valid range: [ 0; 2694 // KMP_MAX_ACTIVE_LEVELS_LIMIT ] 2695 // We allow a zero value. (implementation defined behavior) 2696 } else { 2697 KMP_WARNING(ActiveLevelsExceedLimit, max_active_levels, 2698 KMP_MAX_ACTIVE_LEVELS_LIMIT); 2699 max_active_levels = KMP_MAX_ACTIVE_LEVELS_LIMIT; 2700 // Current upper limit is MAX_INT. (implementation defined behavior) 2701 // If the input exceeds the upper limit, we correct the input to be the 2702 // upper limit. (implementation defined behavior) 2703 // Actually, the flow should never get here until we use MAX_INT limit. 2704 } 2705 KF_TRACE(10, ("__kmp_set_max_active_levels: after validation: new " 2706 "max_active_levels for thread %d = (%d)\n", 2707 gtid, max_active_levels)); 2708 2709 thread = __kmp_threads[gtid]; 2710 2711 __kmp_save_internal_controls(thread); 2712 2713 set__max_active_levels(thread, max_active_levels); 2714 } 2715 2716 /* Gets max_active_levels */ 2717 int __kmp_get_max_active_levels(int gtid) { 2718 kmp_info_t *thread; 2719 2720 KF_TRACE(10, ("__kmp_get_max_active_levels: thread %d\n", gtid)); 2721 KMP_DEBUG_ASSERT(__kmp_init_serial); 2722 2723 thread = __kmp_threads[gtid]; 2724 KMP_DEBUG_ASSERT(thread->th.th_current_task); 2725 KF_TRACE(10, ("__kmp_get_max_active_levels: thread %d, curtask=%p, " 2726 "curtask_maxaclevel=%d\n", 2727 gtid, thread->th.th_current_task, 2728 thread->th.th_current_task->td_icvs.max_active_levels)); 2729 return thread->th.th_current_task->td_icvs.max_active_levels; 2730 } 2731 2732 /* Changes def_sched_var ICV values (run-time schedule kind and chunk) */ 2733 void __kmp_set_schedule(int gtid, kmp_sched_t kind, int chunk) { 2734 kmp_info_t *thread; 2735 // kmp_team_t *team; 2736 2737 KF_TRACE(10, ("__kmp_set_schedule: new schedule for thread %d = (%d, %d)\n", 2738 gtid, (int)kind, chunk)); 2739 KMP_DEBUG_ASSERT(__kmp_init_serial); 2740 2741 // Check if the kind parameter is valid, correct if needed. 2742 // Valid parameters should fit in one of two intervals - standard or extended: 2743 // <lower>, <valid>, <upper_std>, <lower_ext>, <valid>, <upper> 2744 // 2008-01-25: 0, 1 - 4, 5, 100, 101 - 102, 103 2745 if (kind <= kmp_sched_lower || kind >= kmp_sched_upper || 2746 (kind <= kmp_sched_lower_ext && kind >= kmp_sched_upper_std)) { 2747 // TODO: Hint needs attention in case we change the default schedule. 2748 __kmp_msg(kmp_ms_warning, KMP_MSG(ScheduleKindOutOfRange, kind), 2749 KMP_HNT(DefaultScheduleKindUsed, "static, no chunk"), 2750 __kmp_msg_null); 2751 kind = kmp_sched_default; 2752 chunk = 0; // ignore chunk value in case of bad kind 2753 } 2754 2755 thread = __kmp_threads[gtid]; 2756 2757 __kmp_save_internal_controls(thread); 2758 2759 if (kind < kmp_sched_upper_std) { 2760 if (kind == kmp_sched_static && chunk < KMP_DEFAULT_CHUNK) { 2761 // differ static chunked vs. unchunked: chunk should be invalid to 2762 // indicate unchunked schedule (which is the default) 2763 thread->th.th_current_task->td_icvs.sched.r_sched_type = kmp_sch_static; 2764 } else { 2765 thread->th.th_current_task->td_icvs.sched.r_sched_type = 2766 __kmp_sch_map[kind - kmp_sched_lower - 1]; 2767 } 2768 } else { 2769 // __kmp_sch_map[ kind - kmp_sched_lower_ext + kmp_sched_upper_std - 2770 // kmp_sched_lower - 2 ]; 2771 thread->th.th_current_task->td_icvs.sched.r_sched_type = 2772 __kmp_sch_map[kind - kmp_sched_lower_ext + kmp_sched_upper_std - 2773 kmp_sched_lower - 2]; 2774 } 2775 if (kind == kmp_sched_auto || chunk < 1) { 2776 // ignore parameter chunk for schedule auto 2777 thread->th.th_current_task->td_icvs.sched.chunk = KMP_DEFAULT_CHUNK; 2778 } else { 2779 thread->th.th_current_task->td_icvs.sched.chunk = chunk; 2780 } 2781 } 2782 2783 /* Gets def_sched_var ICV values */ 2784 void __kmp_get_schedule(int gtid, kmp_sched_t *kind, int *chunk) { 2785 kmp_info_t *thread; 2786 enum sched_type th_type; 2787 2788 KF_TRACE(10, ("__kmp_get_schedule: thread %d\n", gtid)); 2789 KMP_DEBUG_ASSERT(__kmp_init_serial); 2790 2791 thread = __kmp_threads[gtid]; 2792 2793 th_type = thread->th.th_current_task->td_icvs.sched.r_sched_type; 2794 2795 switch (th_type) { 2796 case kmp_sch_static: 2797 case kmp_sch_static_greedy: 2798 case kmp_sch_static_balanced: 2799 *kind = kmp_sched_static; 2800 *chunk = 0; // chunk was not set, try to show this fact via zero value 2801 return; 2802 case kmp_sch_static_chunked: 2803 *kind = kmp_sched_static; 2804 break; 2805 case kmp_sch_dynamic_chunked: 2806 *kind = kmp_sched_dynamic; 2807 break; 2808 case kmp_sch_guided_chunked: 2809 case kmp_sch_guided_iterative_chunked: 2810 case kmp_sch_guided_analytical_chunked: 2811 *kind = kmp_sched_guided; 2812 break; 2813 case kmp_sch_auto: 2814 *kind = kmp_sched_auto; 2815 break; 2816 case kmp_sch_trapezoidal: 2817 *kind = kmp_sched_trapezoidal; 2818 break; 2819 #if KMP_STATIC_STEAL_ENABLED 2820 case kmp_sch_static_steal: 2821 *kind = kmp_sched_static_steal; 2822 break; 2823 #endif 2824 default: 2825 KMP_FATAL(UnknownSchedulingType, th_type); 2826 } 2827 2828 *chunk = thread->th.th_current_task->td_icvs.sched.chunk; 2829 } 2830 2831 int __kmp_get_ancestor_thread_num(int gtid, int level) { 2832 2833 int ii, dd; 2834 kmp_team_t *team; 2835 kmp_info_t *thr; 2836 2837 KF_TRACE(10, ("__kmp_get_ancestor_thread_num: thread %d %d\n", gtid, level)); 2838 KMP_DEBUG_ASSERT(__kmp_init_serial); 2839 2840 // validate level 2841 if (level == 0) 2842 return 0; 2843 if (level < 0) 2844 return -1; 2845 thr = __kmp_threads[gtid]; 2846 team = thr->th.th_team; 2847 ii = team->t.t_level; 2848 if (level > ii) 2849 return -1; 2850 2851 #if OMP_40_ENABLED 2852 if (thr->th.th_teams_microtask) { 2853 // AC: we are in teams region where multiple nested teams have same level 2854 int tlevel = thr->th.th_teams_level; // the level of the teams construct 2855 if (level <= 2856 tlevel) { // otherwise usual algorithm works (will not touch the teams) 2857 KMP_DEBUG_ASSERT(ii >= tlevel); 2858 // AC: As we need to pass by the teams league, we need to artificially 2859 // increase ii 2860 if (ii == tlevel) { 2861 ii += 2; // three teams have same level 2862 } else { 2863 ii++; // two teams have same level 2864 } 2865 } 2866 } 2867 #endif 2868 2869 if (ii == level) 2870 return __kmp_tid_from_gtid(gtid); 2871 2872 dd = team->t.t_serialized; 2873 level++; 2874 while (ii > level) { 2875 for (dd = team->t.t_serialized; (dd > 0) && (ii > level); dd--, ii--) { 2876 } 2877 if ((team->t.t_serialized) && (!dd)) { 2878 team = team->t.t_parent; 2879 continue; 2880 } 2881 if (ii > level) { 2882 team = team->t.t_parent; 2883 dd = team->t.t_serialized; 2884 ii--; 2885 } 2886 } 2887 2888 return (dd > 1) ? (0) : (team->t.t_master_tid); 2889 } 2890 2891 int __kmp_get_team_size(int gtid, int level) { 2892 2893 int ii, dd; 2894 kmp_team_t *team; 2895 kmp_info_t *thr; 2896 2897 KF_TRACE(10, ("__kmp_get_team_size: thread %d %d\n", gtid, level)); 2898 KMP_DEBUG_ASSERT(__kmp_init_serial); 2899 2900 // validate level 2901 if (level == 0) 2902 return 1; 2903 if (level < 0) 2904 return -1; 2905 thr = __kmp_threads[gtid]; 2906 team = thr->th.th_team; 2907 ii = team->t.t_level; 2908 if (level > ii) 2909 return -1; 2910 2911 #if OMP_40_ENABLED 2912 if (thr->th.th_teams_microtask) { 2913 // AC: we are in teams region where multiple nested teams have same level 2914 int tlevel = thr->th.th_teams_level; // the level of the teams construct 2915 if (level <= 2916 tlevel) { // otherwise usual algorithm works (will not touch the teams) 2917 KMP_DEBUG_ASSERT(ii >= tlevel); 2918 // AC: As we need to pass by the teams league, we need to artificially 2919 // increase ii 2920 if (ii == tlevel) { 2921 ii += 2; // three teams have same level 2922 } else { 2923 ii++; // two teams have same level 2924 } 2925 } 2926 } 2927 #endif 2928 2929 while (ii > level) { 2930 for (dd = team->t.t_serialized; (dd > 0) && (ii > level); dd--, ii--) { 2931 } 2932 if (team->t.t_serialized && (!dd)) { 2933 team = team->t.t_parent; 2934 continue; 2935 } 2936 if (ii > level) { 2937 team = team->t.t_parent; 2938 ii--; 2939 } 2940 } 2941 2942 return team->t.t_nproc; 2943 } 2944 2945 kmp_r_sched_t __kmp_get_schedule_global() { 2946 // This routine created because pairs (__kmp_sched, __kmp_chunk) and 2947 // (__kmp_static, __kmp_guided) may be changed by kmp_set_defaults 2948 // independently. So one can get the updated schedule here. 2949 2950 kmp_r_sched_t r_sched; 2951 2952 // create schedule from 4 globals: __kmp_sched, __kmp_chunk, __kmp_static, 2953 // __kmp_guided. __kmp_sched should keep original value, so that user can set 2954 // KMP_SCHEDULE multiple times, and thus have different run-time schedules in 2955 // different roots (even in OMP 2.5) 2956 if (__kmp_sched == kmp_sch_static) { 2957 r_sched.r_sched_type = __kmp_static; // replace STATIC with more detailed 2958 // schedule (balanced or greedy) 2959 } else if (__kmp_sched == kmp_sch_guided_chunked) { 2960 r_sched.r_sched_type = __kmp_guided; // replace GUIDED with more detailed 2961 // schedule (iterative or analytical) 2962 } else { 2963 r_sched.r_sched_type = 2964 __kmp_sched; // (STATIC_CHUNKED), or (DYNAMIC_CHUNKED), or other 2965 } 2966 2967 if (__kmp_chunk < KMP_DEFAULT_CHUNK) { // __kmp_chunk may be wrong here (if it 2968 // was not ever set) 2969 r_sched.chunk = KMP_DEFAULT_CHUNK; 2970 } else { 2971 r_sched.chunk = __kmp_chunk; 2972 } 2973 2974 return r_sched; 2975 } 2976 2977 /* Allocate (realloc == FALSE) * or reallocate (realloc == TRUE) 2978 at least argc number of *t_argv entries for the requested team. */ 2979 static void __kmp_alloc_argv_entries(int argc, kmp_team_t *team, int realloc) { 2980 2981 KMP_DEBUG_ASSERT(team); 2982 if (!realloc || argc > team->t.t_max_argc) { 2983 2984 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: needed entries=%d, " 2985 "current entries=%d\n", 2986 team->t.t_id, argc, (realloc) ? team->t.t_max_argc : 0)); 2987 /* if previously allocated heap space for args, free them */ 2988 if (realloc && team->t.t_argv != &team->t.t_inline_argv[0]) 2989 __kmp_free((void *)team->t.t_argv); 2990 2991 if (argc <= KMP_INLINE_ARGV_ENTRIES) { 2992 /* use unused space in the cache line for arguments */ 2993 team->t.t_max_argc = KMP_INLINE_ARGV_ENTRIES; 2994 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: inline allocate %d " 2995 "argv entries\n", 2996 team->t.t_id, team->t.t_max_argc)); 2997 team->t.t_argv = &team->t.t_inline_argv[0]; 2998 if (__kmp_storage_map) { 2999 __kmp_print_storage_map_gtid( 3000 -1, &team->t.t_inline_argv[0], 3001 &team->t.t_inline_argv[KMP_INLINE_ARGV_ENTRIES], 3002 (sizeof(void *) * KMP_INLINE_ARGV_ENTRIES), "team_%d.t_inline_argv", 3003 team->t.t_id); 3004 } 3005 } else { 3006 /* allocate space for arguments in the heap */ 3007 team->t.t_max_argc = (argc <= (KMP_MIN_MALLOC_ARGV_ENTRIES >> 1)) 3008 ? KMP_MIN_MALLOC_ARGV_ENTRIES 3009 : 2 * argc; 3010 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: dynamic allocate %d " 3011 "argv entries\n", 3012 team->t.t_id, team->t.t_max_argc)); 3013 team->t.t_argv = 3014 (void **)__kmp_page_allocate(sizeof(void *) * team->t.t_max_argc); 3015 if (__kmp_storage_map) { 3016 __kmp_print_storage_map_gtid(-1, &team->t.t_argv[0], 3017 &team->t.t_argv[team->t.t_max_argc], 3018 sizeof(void *) * team->t.t_max_argc, 3019 "team_%d.t_argv", team->t.t_id); 3020 } 3021 } 3022 } 3023 } 3024 3025 static void __kmp_allocate_team_arrays(kmp_team_t *team, int max_nth) { 3026 int i; 3027 int num_disp_buff = max_nth > 1 ? __kmp_dispatch_num_buffers : 2; 3028 team->t.t_threads = 3029 (kmp_info_t **)__kmp_allocate(sizeof(kmp_info_t *) * max_nth); 3030 team->t.t_disp_buffer = (dispatch_shared_info_t *)__kmp_allocate( 3031 sizeof(dispatch_shared_info_t) * num_disp_buff); 3032 team->t.t_dispatch = 3033 (kmp_disp_t *)__kmp_allocate(sizeof(kmp_disp_t) * max_nth); 3034 team->t.t_implicit_task_taskdata = 3035 (kmp_taskdata_t *)__kmp_allocate(sizeof(kmp_taskdata_t) * max_nth); 3036 team->t.t_max_nproc = max_nth; 3037 3038 /* setup dispatch buffers */ 3039 for (i = 0; i < num_disp_buff; ++i) { 3040 team->t.t_disp_buffer[i].buffer_index = i; 3041 #if OMP_45_ENABLED 3042 team->t.t_disp_buffer[i].doacross_buf_idx = i; 3043 #endif 3044 } 3045 } 3046 3047 static void __kmp_free_team_arrays(kmp_team_t *team) { 3048 /* Note: this does not free the threads in t_threads (__kmp_free_threads) */ 3049 int i; 3050 for (i = 0; i < team->t.t_max_nproc; ++i) { 3051 if (team->t.t_dispatch[i].th_disp_buffer != NULL) { 3052 __kmp_free(team->t.t_dispatch[i].th_disp_buffer); 3053 team->t.t_dispatch[i].th_disp_buffer = NULL; 3054 }; // if 3055 }; // for 3056 __kmp_free(team->t.t_threads); 3057 __kmp_free(team->t.t_disp_buffer); 3058 __kmp_free(team->t.t_dispatch); 3059 __kmp_free(team->t.t_implicit_task_taskdata); 3060 team->t.t_threads = NULL; 3061 team->t.t_disp_buffer = NULL; 3062 team->t.t_dispatch = NULL; 3063 team->t.t_implicit_task_taskdata = 0; 3064 } 3065 3066 static void __kmp_reallocate_team_arrays(kmp_team_t *team, int max_nth) { 3067 kmp_info_t **oldThreads = team->t.t_threads; 3068 3069 __kmp_free(team->t.t_disp_buffer); 3070 __kmp_free(team->t.t_dispatch); 3071 __kmp_free(team->t.t_implicit_task_taskdata); 3072 __kmp_allocate_team_arrays(team, max_nth); 3073 3074 KMP_MEMCPY(team->t.t_threads, oldThreads, 3075 team->t.t_nproc * sizeof(kmp_info_t *)); 3076 3077 __kmp_free(oldThreads); 3078 } 3079 3080 static kmp_internal_control_t __kmp_get_global_icvs(void) { 3081 3082 kmp_r_sched_t r_sched = 3083 __kmp_get_schedule_global(); // get current state of scheduling globals 3084 3085 #if OMP_40_ENABLED 3086 KMP_DEBUG_ASSERT(__kmp_nested_proc_bind.used > 0); 3087 #endif /* OMP_40_ENABLED */ 3088 3089 kmp_internal_control_t g_icvs = { 3090 0, // int serial_nesting_level; //corresponds to value of th_team_serialized 3091 (kmp_int8)__kmp_dflt_nested, // int nested; //internal control 3092 // for nested parallelism (per thread) 3093 (kmp_int8)__kmp_global.g.g_dynamic, // internal control for dynamic 3094 // adjustment of threads (per thread) 3095 (kmp_int8)__kmp_env_blocktime, // int bt_set; //internal control for 3096 // whether blocktime is explicitly set 3097 __kmp_dflt_blocktime, // int blocktime; //internal control for blocktime 3098 #if KMP_USE_MONITOR 3099 __kmp_bt_intervals, // int bt_intervals; //internal control for blocktime 3100 // intervals 3101 #endif 3102 __kmp_dflt_team_nth, // int nproc; //internal control for # of threads for 3103 // next parallel region (per thread) 3104 // (use a max ub on value if __kmp_parallel_initialize not called yet) 3105 __kmp_dflt_max_active_levels, // int max_active_levels; //internal control 3106 // for max_active_levels 3107 r_sched, // kmp_r_sched_t sched; //internal control for runtime schedule 3108 // {sched,chunk} pair 3109 #if OMP_40_ENABLED 3110 __kmp_nested_proc_bind.bind_types[0], 3111 __kmp_default_device, 3112 #endif /* OMP_40_ENABLED */ 3113 NULL // struct kmp_internal_control *next; 3114 }; 3115 3116 return g_icvs; 3117 } 3118 3119 static kmp_internal_control_t __kmp_get_x_global_icvs(const kmp_team_t *team) { 3120 3121 kmp_internal_control_t gx_icvs; 3122 gx_icvs.serial_nesting_level = 3123 0; // probably =team->t.t_serial like in save_inter_controls 3124 copy_icvs(&gx_icvs, &team->t.t_threads[0]->th.th_current_task->td_icvs); 3125 gx_icvs.next = NULL; 3126 3127 return gx_icvs; 3128 } 3129 3130 static void __kmp_initialize_root(kmp_root_t *root) { 3131 int f; 3132 kmp_team_t *root_team; 3133 kmp_team_t *hot_team; 3134 int hot_team_max_nth; 3135 kmp_r_sched_t r_sched = 3136 __kmp_get_schedule_global(); // get current state of scheduling globals 3137 kmp_internal_control_t r_icvs = __kmp_get_global_icvs(); 3138 KMP_DEBUG_ASSERT(root); 3139 KMP_ASSERT(!root->r.r_begin); 3140 3141 /* setup the root state structure */ 3142 __kmp_init_lock(&root->r.r_begin_lock); 3143 root->r.r_begin = FALSE; 3144 root->r.r_active = FALSE; 3145 root->r.r_in_parallel = 0; 3146 root->r.r_blocktime = __kmp_dflt_blocktime; 3147 root->r.r_nested = __kmp_dflt_nested; 3148 root->r.r_cg_nthreads = 1; 3149 3150 /* setup the root team for this task */ 3151 /* allocate the root team structure */ 3152 KF_TRACE(10, ("__kmp_initialize_root: before root_team\n")); 3153 3154 root_team = 3155 __kmp_allocate_team(root, 3156 1, // new_nproc 3157 1, // max_nproc 3158 #if OMPT_SUPPORT 3159 0, // root parallel id 3160 #endif 3161 #if OMP_40_ENABLED 3162 __kmp_nested_proc_bind.bind_types[0], 3163 #endif 3164 &r_icvs, 3165 0 // argc 3166 USE_NESTED_HOT_ARG(NULL) // master thread is unknown 3167 ); 3168 #if USE_DEBUGGER 3169 // Non-NULL value should be assigned to make the debugger display the root 3170 // team. 3171 TCW_SYNC_PTR(root_team->t.t_pkfn, (microtask_t)(~0)); 3172 #endif 3173 3174 KF_TRACE(10, ("__kmp_initialize_root: after root_team = %p\n", root_team)); 3175 3176 root->r.r_root_team = root_team; 3177 root_team->t.t_control_stack_top = NULL; 3178 3179 /* initialize root team */ 3180 root_team->t.t_threads[0] = NULL; 3181 root_team->t.t_nproc = 1; 3182 root_team->t.t_serialized = 1; 3183 // TODO???: root_team->t.t_max_active_levels = __kmp_dflt_max_active_levels; 3184 root_team->t.t_sched.r_sched_type = r_sched.r_sched_type; 3185 root_team->t.t_sched.chunk = r_sched.chunk; 3186 KA_TRACE( 3187 20, 3188 ("__kmp_initialize_root: init root team %d arrived: join=%u, plain=%u\n", 3189 root_team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 3190 3191 /* setup the hot team for this task */ 3192 /* allocate the hot team structure */ 3193 KF_TRACE(10, ("__kmp_initialize_root: before hot_team\n")); 3194 3195 hot_team = 3196 __kmp_allocate_team(root, 3197 1, // new_nproc 3198 __kmp_dflt_team_nth_ub * 2, // max_nproc 3199 #if OMPT_SUPPORT 3200 0, // root parallel id 3201 #endif 3202 #if OMP_40_ENABLED 3203 __kmp_nested_proc_bind.bind_types[0], 3204 #endif 3205 &r_icvs, 3206 0 // argc 3207 USE_NESTED_HOT_ARG(NULL) // master thread is unknown 3208 ); 3209 KF_TRACE(10, ("__kmp_initialize_root: after hot_team = %p\n", hot_team)); 3210 3211 root->r.r_hot_team = hot_team; 3212 root_team->t.t_control_stack_top = NULL; 3213 3214 /* first-time initialization */ 3215 hot_team->t.t_parent = root_team; 3216 3217 /* initialize hot team */ 3218 hot_team_max_nth = hot_team->t.t_max_nproc; 3219 for (f = 0; f < hot_team_max_nth; ++f) { 3220 hot_team->t.t_threads[f] = NULL; 3221 }; // for 3222 hot_team->t.t_nproc = 1; 3223 // TODO???: hot_team->t.t_max_active_levels = __kmp_dflt_max_active_levels; 3224 hot_team->t.t_sched.r_sched_type = r_sched.r_sched_type; 3225 hot_team->t.t_sched.chunk = r_sched.chunk; 3226 hot_team->t.t_size_changed = 0; 3227 } 3228 3229 #ifdef KMP_DEBUG 3230 3231 typedef struct kmp_team_list_item { 3232 kmp_team_p const *entry; 3233 struct kmp_team_list_item *next; 3234 } kmp_team_list_item_t; 3235 typedef kmp_team_list_item_t *kmp_team_list_t; 3236 3237 static void __kmp_print_structure_team_accum( // Add team to list of teams. 3238 kmp_team_list_t list, // List of teams. 3239 kmp_team_p const *team // Team to add. 3240 ) { 3241 3242 // List must terminate with item where both entry and next are NULL. 3243 // Team is added to the list only once. 3244 // List is sorted in ascending order by team id. 3245 // Team id is *not* a key. 3246 3247 kmp_team_list_t l; 3248 3249 KMP_DEBUG_ASSERT(list != NULL); 3250 if (team == NULL) { 3251 return; 3252 }; // if 3253 3254 __kmp_print_structure_team_accum(list, team->t.t_parent); 3255 __kmp_print_structure_team_accum(list, team->t.t_next_pool); 3256 3257 // Search list for the team. 3258 l = list; 3259 while (l->next != NULL && l->entry != team) { 3260 l = l->next; 3261 }; // while 3262 if (l->next != NULL) { 3263 return; // Team has been added before, exit. 3264 }; // if 3265 3266 // Team is not found. Search list again for insertion point. 3267 l = list; 3268 while (l->next != NULL && l->entry->t.t_id <= team->t.t_id) { 3269 l = l->next; 3270 }; // while 3271 3272 // Insert team. 3273 { 3274 kmp_team_list_item_t *item = (kmp_team_list_item_t *)KMP_INTERNAL_MALLOC( 3275 sizeof(kmp_team_list_item_t)); 3276 *item = *l; 3277 l->entry = team; 3278 l->next = item; 3279 } 3280 } 3281 3282 static void __kmp_print_structure_team(char const *title, kmp_team_p const *team 3283 3284 ) { 3285 __kmp_printf("%s", title); 3286 if (team != NULL) { 3287 __kmp_printf("%2x %p\n", team->t.t_id, team); 3288 } else { 3289 __kmp_printf(" - (nil)\n"); 3290 }; // if 3291 } 3292 3293 static void __kmp_print_structure_thread(char const *title, 3294 kmp_info_p const *thread) { 3295 __kmp_printf("%s", title); 3296 if (thread != NULL) { 3297 __kmp_printf("%2d %p\n", thread->th.th_info.ds.ds_gtid, thread); 3298 } else { 3299 __kmp_printf(" - (nil)\n"); 3300 }; // if 3301 } 3302 3303 void __kmp_print_structure(void) { 3304 3305 kmp_team_list_t list; 3306 3307 // Initialize list of teams. 3308 list = 3309 (kmp_team_list_item_t *)KMP_INTERNAL_MALLOC(sizeof(kmp_team_list_item_t)); 3310 list->entry = NULL; 3311 list->next = NULL; 3312 3313 __kmp_printf("\n------------------------------\nGlobal Thread " 3314 "Table\n------------------------------\n"); 3315 { 3316 int gtid; 3317 for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) { 3318 __kmp_printf("%2d", gtid); 3319 if (__kmp_threads != NULL) { 3320 __kmp_printf(" %p", __kmp_threads[gtid]); 3321 }; // if 3322 if (__kmp_root != NULL) { 3323 __kmp_printf(" %p", __kmp_root[gtid]); 3324 }; // if 3325 __kmp_printf("\n"); 3326 }; // for gtid 3327 } 3328 3329 // Print out __kmp_threads array. 3330 __kmp_printf("\n------------------------------\nThreads\n--------------------" 3331 "----------\n"); 3332 if (__kmp_threads != NULL) { 3333 int gtid; 3334 for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) { 3335 kmp_info_t const *thread = __kmp_threads[gtid]; 3336 if (thread != NULL) { 3337 __kmp_printf("GTID %2d %p:\n", gtid, thread); 3338 __kmp_printf(" Our Root: %p\n", thread->th.th_root); 3339 __kmp_print_structure_team(" Our Team: ", thread->th.th_team); 3340 __kmp_print_structure_team(" Serial Team: ", 3341 thread->th.th_serial_team); 3342 __kmp_printf(" Threads: %2d\n", thread->th.th_team_nproc); 3343 __kmp_print_structure_thread(" Master: ", 3344 thread->th.th_team_master); 3345 __kmp_printf(" Serialized?: %2d\n", thread->th.th_team_serialized); 3346 __kmp_printf(" Set NProc: %2d\n", thread->th.th_set_nproc); 3347 #if OMP_40_ENABLED 3348 __kmp_printf(" Set Proc Bind: %2d\n", thread->th.th_set_proc_bind); 3349 #endif 3350 __kmp_print_structure_thread(" Next in pool: ", 3351 thread->th.th_next_pool); 3352 __kmp_printf("\n"); 3353 __kmp_print_structure_team_accum(list, thread->th.th_team); 3354 __kmp_print_structure_team_accum(list, thread->th.th_serial_team); 3355 }; // if 3356 }; // for gtid 3357 } else { 3358 __kmp_printf("Threads array is not allocated.\n"); 3359 }; // if 3360 3361 // Print out __kmp_root array. 3362 __kmp_printf("\n------------------------------\nUbers\n----------------------" 3363 "--------\n"); 3364 if (__kmp_root != NULL) { 3365 int gtid; 3366 for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) { 3367 kmp_root_t const *root = __kmp_root[gtid]; 3368 if (root != NULL) { 3369 __kmp_printf("GTID %2d %p:\n", gtid, root); 3370 __kmp_print_structure_team(" Root Team: ", root->r.r_root_team); 3371 __kmp_print_structure_team(" Hot Team: ", root->r.r_hot_team); 3372 __kmp_print_structure_thread(" Uber Thread: ", 3373 root->r.r_uber_thread); 3374 __kmp_printf(" Active?: %2d\n", root->r.r_active); 3375 __kmp_printf(" Nested?: %2d\n", root->r.r_nested); 3376 __kmp_printf(" In Parallel: %2d\n", root->r.r_in_parallel); 3377 __kmp_printf("\n"); 3378 __kmp_print_structure_team_accum(list, root->r.r_root_team); 3379 __kmp_print_structure_team_accum(list, root->r.r_hot_team); 3380 }; // if 3381 }; // for gtid 3382 } else { 3383 __kmp_printf("Ubers array is not allocated.\n"); 3384 }; // if 3385 3386 __kmp_printf("\n------------------------------\nTeams\n----------------------" 3387 "--------\n"); 3388 while (list->next != NULL) { 3389 kmp_team_p const *team = list->entry; 3390 int i; 3391 __kmp_printf("Team %2x %p:\n", team->t.t_id, team); 3392 __kmp_print_structure_team(" Parent Team: ", team->t.t_parent); 3393 __kmp_printf(" Master TID: %2d\n", team->t.t_master_tid); 3394 __kmp_printf(" Max threads: %2d\n", team->t.t_max_nproc); 3395 __kmp_printf(" Levels of serial: %2d\n", team->t.t_serialized); 3396 __kmp_printf(" Number threads: %2d\n", team->t.t_nproc); 3397 for (i = 0; i < team->t.t_nproc; ++i) { 3398 __kmp_printf(" Thread %2d: ", i); 3399 __kmp_print_structure_thread("", team->t.t_threads[i]); 3400 }; // for i 3401 __kmp_print_structure_team(" Next in pool: ", team->t.t_next_pool); 3402 __kmp_printf("\n"); 3403 list = list->next; 3404 }; // while 3405 3406 // Print out __kmp_thread_pool and __kmp_team_pool. 3407 __kmp_printf("\n------------------------------\nPools\n----------------------" 3408 "--------\n"); 3409 __kmp_print_structure_thread("Thread pool: ", 3410 CCAST(kmp_info_t *, __kmp_thread_pool)); 3411 __kmp_print_structure_team("Team pool: ", 3412 CCAST(kmp_team_t *, __kmp_team_pool)); 3413 __kmp_printf("\n"); 3414 3415 // Free team list. 3416 while (list != NULL) { 3417 kmp_team_list_item_t *item = list; 3418 list = list->next; 3419 KMP_INTERNAL_FREE(item); 3420 }; // while 3421 } 3422 3423 #endif 3424 3425 //--------------------------------------------------------------------------- 3426 // Stuff for per-thread fast random number generator 3427 // Table of primes 3428 static const unsigned __kmp_primes[] = { 3429 0x9e3779b1, 0xffe6cc59, 0x2109f6dd, 0x43977ab5, 0xba5703f5, 0xb495a877, 3430 0xe1626741, 0x79695e6b, 0xbc98c09f, 0xd5bee2b3, 0x287488f9, 0x3af18231, 3431 0x9677cd4d, 0xbe3a6929, 0xadc6a877, 0xdcf0674b, 0xbe4d6fe9, 0x5f15e201, 3432 0x99afc3fd, 0xf3f16801, 0xe222cfff, 0x24ba5fdb, 0x0620452d, 0x79f149e3, 3433 0xc8b93f49, 0x972702cd, 0xb07dd827, 0x6c97d5ed, 0x085a3d61, 0x46eb5ea7, 3434 0x3d9910ed, 0x2e687b5b, 0x29609227, 0x6eb081f1, 0x0954c4e1, 0x9d114db9, 3435 0x542acfa9, 0xb3e6bd7b, 0x0742d917, 0xe9f3ffa7, 0x54581edb, 0xf2480f45, 3436 0x0bb9288f, 0xef1affc7, 0x85fa0ca7, 0x3ccc14db, 0xe6baf34b, 0x343377f7, 3437 0x5ca19031, 0xe6d9293b, 0xf0a9f391, 0x5d2e980b, 0xfc411073, 0xc3749363, 3438 0xb892d829, 0x3549366b, 0x629750ad, 0xb98294e5, 0x892d9483, 0xc235baf3, 3439 0x3d2402a3, 0x6bdef3c9, 0xbec333cd, 0x40c9520f}; 3440 3441 //--------------------------------------------------------------------------- 3442 // __kmp_get_random: Get a random number using a linear congruential method. 3443 unsigned short __kmp_get_random(kmp_info_t *thread) { 3444 unsigned x = thread->th.th_x; 3445 unsigned short r = x >> 16; 3446 3447 thread->th.th_x = x * thread->th.th_a + 1; 3448 3449 KA_TRACE(30, ("__kmp_get_random: THREAD: %d, RETURN: %u\n", 3450 thread->th.th_info.ds.ds_tid, r)); 3451 3452 return r; 3453 } 3454 //-------------------------------------------------------- 3455 // __kmp_init_random: Initialize a random number generator 3456 void __kmp_init_random(kmp_info_t *thread) { 3457 unsigned seed = thread->th.th_info.ds.ds_tid; 3458 3459 thread->th.th_a = 3460 __kmp_primes[seed % (sizeof(__kmp_primes) / sizeof(__kmp_primes[0]))]; 3461 thread->th.th_x = (seed + 1) * thread->th.th_a + 1; 3462 KA_TRACE(30, 3463 ("__kmp_init_random: THREAD: %u; A: %u\n", seed, thread->th.th_a)); 3464 } 3465 3466 #if KMP_OS_WINDOWS 3467 /* reclaim array entries for root threads that are already dead, returns number 3468 * reclaimed */ 3469 static int __kmp_reclaim_dead_roots(void) { 3470 int i, r = 0; 3471 3472 for (i = 0; i < __kmp_threads_capacity; ++i) { 3473 if (KMP_UBER_GTID(i) && 3474 !__kmp_still_running((kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[i])) && 3475 !__kmp_root[i] 3476 ->r.r_active) { // AC: reclaim only roots died in non-active state 3477 r += __kmp_unregister_root_other_thread(i); 3478 } 3479 } 3480 return r; 3481 } 3482 #endif 3483 3484 /* This function attempts to create free entries in __kmp_threads and 3485 __kmp_root, and returns the number of free entries generated. 3486 3487 For Windows* OS static library, the first mechanism used is to reclaim array 3488 entries for root threads that are already dead. 3489 3490 On all platforms, expansion is attempted on the arrays __kmp_threads_ and 3491 __kmp_root, with appropriate update to __kmp_threads_capacity. Array 3492 capacity is increased by doubling with clipping to __kmp_tp_capacity, if 3493 threadprivate cache array has been created. Synchronization with 3494 __kmpc_threadprivate_cached is done using __kmp_tp_cached_lock. 3495 3496 After any dead root reclamation, if the clipping value allows array expansion 3497 to result in the generation of a total of nWish free slots, the function does 3498 that expansion. If not, but the clipping value allows array expansion to 3499 result in the generation of a total of nNeed free slots, the function does 3500 that expansion. Otherwise, nothing is done beyond the possible initial root 3501 thread reclamation. However, if nNeed is zero, a best-effort attempt is made 3502 to fulfil nWish as far as possible, i.e. the function will attempt to create 3503 as many free slots as possible up to nWish. 3504 3505 If any argument is negative, the behavior is undefined. */ 3506 static int __kmp_expand_threads(int nWish, int nNeed) { 3507 int added = 0; 3508 int old_tp_cached; 3509 int __kmp_actual_max_nth; 3510 3511 if (nNeed > nWish) /* normalize the arguments */ 3512 nWish = nNeed; 3513 #if KMP_OS_WINDOWS && !defined KMP_DYNAMIC_LIB 3514 /* only for Windows static library */ 3515 /* reclaim array entries for root threads that are already dead */ 3516 added = __kmp_reclaim_dead_roots(); 3517 3518 if (nNeed) { 3519 nNeed -= added; 3520 if (nNeed < 0) 3521 nNeed = 0; 3522 } 3523 if (nWish) { 3524 nWish -= added; 3525 if (nWish < 0) 3526 nWish = 0; 3527 } 3528 #endif 3529 if (nWish <= 0) 3530 return added; 3531 3532 while (1) { 3533 int nTarget; 3534 int minimumRequiredCapacity; 3535 int newCapacity; 3536 kmp_info_t **newThreads; 3537 kmp_root_t **newRoot; 3538 3539 // Note that __kmp_threads_capacity is not bounded by __kmp_max_nth. If 3540 // __kmp_max_nth is set to some value less than __kmp_sys_max_nth by the 3541 // user via KMP_DEVICE_THREAD_LIMIT, then __kmp_threads_capacity may become 3542 // > __kmp_max_nth in one of two ways: 3543 // 3544 // 1) The initialization thread (gtid = 0) exits. __kmp_threads[0] 3545 // may not be resused by another thread, so we may need to increase 3546 // __kmp_threads_capacity to __kmp_max_nth + 1. 3547 // 3548 // 2) New foreign root(s) are encountered. We always register new foreign 3549 // roots. This may cause a smaller # of threads to be allocated at 3550 // subsequent parallel regions, but the worker threads hang around (and 3551 // eventually go to sleep) and need slots in the __kmp_threads[] array. 3552 // 3553 // Anyway, that is the reason for moving the check to see if 3554 // __kmp_max_nth was exceeded into __kmp_reserve_threads() 3555 // instead of having it performed here. -BB 3556 old_tp_cached = __kmp_tp_cached; 3557 __kmp_actual_max_nth = 3558 old_tp_cached ? __kmp_tp_capacity : __kmp_sys_max_nth; 3559 KMP_DEBUG_ASSERT(__kmp_actual_max_nth >= __kmp_threads_capacity); 3560 3561 /* compute expansion headroom to check if we can expand and whether to aim 3562 for nWish or nNeed */ 3563 nTarget = nWish; 3564 if (__kmp_actual_max_nth - __kmp_threads_capacity < nTarget) { 3565 /* can't fulfil nWish, so try nNeed */ 3566 if (nNeed) { 3567 nTarget = nNeed; 3568 if (__kmp_actual_max_nth - __kmp_threads_capacity < nTarget) { 3569 /* possible expansion too small -- give up */ 3570 break; 3571 } 3572 } else { 3573 /* best-effort */ 3574 nTarget = __kmp_actual_max_nth - __kmp_threads_capacity; 3575 if (!nTarget) { 3576 /* can expand at all -- give up */ 3577 break; 3578 } 3579 } 3580 } 3581 minimumRequiredCapacity = __kmp_threads_capacity + nTarget; 3582 3583 newCapacity = __kmp_threads_capacity; 3584 do { 3585 newCapacity = newCapacity <= (__kmp_actual_max_nth >> 1) 3586 ? (newCapacity << 1) 3587 : __kmp_actual_max_nth; 3588 } while (newCapacity < minimumRequiredCapacity); 3589 newThreads = (kmp_info_t **)__kmp_allocate( 3590 (sizeof(kmp_info_t *) + sizeof(kmp_root_t *)) * newCapacity + 3591 CACHE_LINE); 3592 newRoot = (kmp_root_t **)((char *)newThreads + 3593 sizeof(kmp_info_t *) * newCapacity); 3594 KMP_MEMCPY(newThreads, __kmp_threads, 3595 __kmp_threads_capacity * sizeof(kmp_info_t *)); 3596 KMP_MEMCPY(newRoot, __kmp_root, 3597 __kmp_threads_capacity * sizeof(kmp_root_t *)); 3598 memset(newThreads + __kmp_threads_capacity, 0, 3599 (newCapacity - __kmp_threads_capacity) * sizeof(kmp_info_t *)); 3600 memset(newRoot + __kmp_threads_capacity, 0, 3601 (newCapacity - __kmp_threads_capacity) * sizeof(kmp_root_t *)); 3602 3603 if (!old_tp_cached && __kmp_tp_cached && newCapacity > __kmp_tp_capacity) { 3604 /* __kmp_tp_cached has changed, i.e. __kmpc_threadprivate_cached has 3605 allocated a threadprivate cache while we were allocating the expanded 3606 array, and our new capacity is larger than the threadprivate cache 3607 capacity, so we should deallocate the expanded arrays and try again. 3608 This is the first check of a double-check pair. */ 3609 __kmp_free(newThreads); 3610 continue; /* start over and try again */ 3611 } 3612 __kmp_acquire_bootstrap_lock(&__kmp_tp_cached_lock); 3613 if (!old_tp_cached && __kmp_tp_cached && newCapacity > __kmp_tp_capacity) { 3614 /* Same check as above, but this time with the lock so we can be sure if 3615 we can succeed. */ 3616 __kmp_release_bootstrap_lock(&__kmp_tp_cached_lock); 3617 __kmp_free(newThreads); 3618 continue; /* start over and try again */ 3619 } else { 3620 /* success */ 3621 // __kmp_free( __kmp_threads ); // ATT: It leads to crash. Need to be 3622 // investigated. 3623 *(kmp_info_t * *volatile *)&__kmp_threads = newThreads; 3624 *(kmp_root_t * *volatile *)&__kmp_root = newRoot; 3625 added += newCapacity - __kmp_threads_capacity; 3626 *(volatile int *)&__kmp_threads_capacity = newCapacity; 3627 __kmp_release_bootstrap_lock(&__kmp_tp_cached_lock); 3628 break; /* succeeded, so we can exit the loop */ 3629 } 3630 } 3631 return added; 3632 } 3633 3634 /* Register the current thread as a root thread and obtain our gtid. We must 3635 have the __kmp_initz_lock held at this point. Argument TRUE only if are the 3636 thread that calls from __kmp_do_serial_initialize() */ 3637 int __kmp_register_root(int initial_thread) { 3638 kmp_info_t *root_thread; 3639 kmp_root_t *root; 3640 int gtid; 3641 int capacity; 3642 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 3643 KA_TRACE(20, ("__kmp_register_root: entered\n")); 3644 KMP_MB(); 3645 3646 /* 2007-03-02: 3647 If initial thread did not invoke OpenMP RTL yet, and this thread is not an 3648 initial one, "__kmp_all_nth >= __kmp_threads_capacity" condition does not 3649 work as expected -- it may return false (that means there is at least one 3650 empty slot in __kmp_threads array), but it is possible the only free slot 3651 is #0, which is reserved for initial thread and so cannot be used for this 3652 one. Following code workarounds this bug. 3653 3654 However, right solution seems to be not reserving slot #0 for initial 3655 thread because: 3656 (1) there is no magic in slot #0, 3657 (2) we cannot detect initial thread reliably (the first thread which does 3658 serial initialization may be not a real initial thread). 3659 */ 3660 capacity = __kmp_threads_capacity; 3661 if (!initial_thread && TCR_PTR(__kmp_threads[0]) == NULL) { 3662 --capacity; 3663 }; // if 3664 3665 /* see if there are too many threads */ 3666 if (__kmp_all_nth >= capacity && !__kmp_expand_threads(1, 1)) { 3667 if (__kmp_tp_cached) { 3668 __kmp_msg(kmp_ms_fatal, KMP_MSG(CantRegisterNewThread), 3669 KMP_HNT(Set_ALL_THREADPRIVATE, __kmp_tp_capacity), 3670 KMP_HNT(PossibleSystemLimitOnThreads), __kmp_msg_null); 3671 } else { 3672 __kmp_msg(kmp_ms_fatal, KMP_MSG(CantRegisterNewThread), 3673 KMP_HNT(SystemLimitOnThreads), __kmp_msg_null); 3674 } 3675 }; // if 3676 3677 /* find an available thread slot */ 3678 /* Don't reassign the zero slot since we need that to only be used by initial 3679 thread */ 3680 for (gtid = (initial_thread ? 0 : 1); TCR_PTR(__kmp_threads[gtid]) != NULL; 3681 gtid++) 3682 ; 3683 KA_TRACE(1, 3684 ("__kmp_register_root: found slot in threads array: T#%d\n", gtid)); 3685 KMP_ASSERT(gtid < __kmp_threads_capacity); 3686 3687 /* update global accounting */ 3688 __kmp_all_nth++; 3689 TCW_4(__kmp_nth, __kmp_nth + 1); 3690 3691 // if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) for low 3692 // numbers of procs, and method #2 (keyed API call) for higher numbers. 3693 if (__kmp_adjust_gtid_mode) { 3694 if (__kmp_all_nth >= __kmp_tls_gtid_min) { 3695 if (TCR_4(__kmp_gtid_mode) != 2) { 3696 TCW_4(__kmp_gtid_mode, 2); 3697 } 3698 } else { 3699 if (TCR_4(__kmp_gtid_mode) != 1) { 3700 TCW_4(__kmp_gtid_mode, 1); 3701 } 3702 } 3703 } 3704 3705 #ifdef KMP_ADJUST_BLOCKTIME 3706 /* Adjust blocktime to zero if necessary */ 3707 /* Middle initialization might not have occurred yet */ 3708 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 3709 if (__kmp_nth > __kmp_avail_proc) { 3710 __kmp_zero_bt = TRUE; 3711 } 3712 } 3713 #endif /* KMP_ADJUST_BLOCKTIME */ 3714 3715 /* setup this new hierarchy */ 3716 if (!(root = __kmp_root[gtid])) { 3717 root = __kmp_root[gtid] = (kmp_root_t *)__kmp_allocate(sizeof(kmp_root_t)); 3718 KMP_DEBUG_ASSERT(!root->r.r_root_team); 3719 } 3720 3721 #if KMP_STATS_ENABLED 3722 // Initialize stats as soon as possible (right after gtid assignment). 3723 __kmp_stats_thread_ptr = __kmp_stats_list->push_back(gtid); 3724 KMP_START_EXPLICIT_TIMER(OMP_worker_thread_life); 3725 KMP_SET_THREAD_STATE(SERIAL_REGION); 3726 KMP_INIT_PARTITIONED_TIMERS(OMP_serial); 3727 #endif 3728 __kmp_initialize_root(root); 3729 3730 /* setup new root thread structure */ 3731 if (root->r.r_uber_thread) { 3732 root_thread = root->r.r_uber_thread; 3733 } else { 3734 root_thread = (kmp_info_t *)__kmp_allocate(sizeof(kmp_info_t)); 3735 if (__kmp_storage_map) { 3736 __kmp_print_thread_storage_map(root_thread, gtid); 3737 } 3738 root_thread->th.th_info.ds.ds_gtid = gtid; 3739 root_thread->th.th_root = root; 3740 if (__kmp_env_consistency_check) { 3741 root_thread->th.th_cons = __kmp_allocate_cons_stack(gtid); 3742 } 3743 #if USE_FAST_MEMORY 3744 __kmp_initialize_fast_memory(root_thread); 3745 #endif /* USE_FAST_MEMORY */ 3746 3747 #if KMP_USE_BGET 3748 KMP_DEBUG_ASSERT(root_thread->th.th_local.bget_data == NULL); 3749 __kmp_initialize_bget(root_thread); 3750 #endif 3751 __kmp_init_random(root_thread); // Initialize random number generator 3752 } 3753 3754 /* setup the serial team held in reserve by the root thread */ 3755 if (!root_thread->th.th_serial_team) { 3756 kmp_internal_control_t r_icvs = __kmp_get_global_icvs(); 3757 KF_TRACE(10, ("__kmp_register_root: before serial_team\n")); 3758 root_thread->th.th_serial_team = 3759 __kmp_allocate_team(root, 1, 1, 3760 #if OMPT_SUPPORT 3761 0, // root parallel id 3762 #endif 3763 #if OMP_40_ENABLED 3764 proc_bind_default, 3765 #endif 3766 &r_icvs, 0 USE_NESTED_HOT_ARG(NULL)); 3767 } 3768 KMP_ASSERT(root_thread->th.th_serial_team); 3769 KF_TRACE(10, ("__kmp_register_root: after serial_team = %p\n", 3770 root_thread->th.th_serial_team)); 3771 3772 /* drop root_thread into place */ 3773 TCW_SYNC_PTR(__kmp_threads[gtid], root_thread); 3774 3775 root->r.r_root_team->t.t_threads[0] = root_thread; 3776 root->r.r_hot_team->t.t_threads[0] = root_thread; 3777 root_thread->th.th_serial_team->t.t_threads[0] = root_thread; 3778 // AC: the team created in reserve, not for execution (it is unused for now). 3779 root_thread->th.th_serial_team->t.t_serialized = 0; 3780 root->r.r_uber_thread = root_thread; 3781 3782 /* initialize the thread, get it ready to go */ 3783 __kmp_initialize_info(root_thread, root->r.r_root_team, 0, gtid); 3784 TCW_4(__kmp_init_gtid, TRUE); 3785 3786 /* prepare the master thread for get_gtid() */ 3787 __kmp_gtid_set_specific(gtid); 3788 3789 #if USE_ITT_BUILD 3790 __kmp_itt_thread_name(gtid); 3791 #endif /* USE_ITT_BUILD */ 3792 3793 #ifdef KMP_TDATA_GTID 3794 __kmp_gtid = gtid; 3795 #endif 3796 __kmp_create_worker(gtid, root_thread, __kmp_stksize); 3797 KMP_DEBUG_ASSERT(__kmp_gtid_get_specific() == gtid); 3798 3799 KA_TRACE(20, ("__kmp_register_root: T#%d init T#%d(%d:%d) arrived: join=%u, " 3800 "plain=%u\n", 3801 gtid, __kmp_gtid_from_tid(0, root->r.r_hot_team), 3802 root->r.r_hot_team->t.t_id, 0, KMP_INIT_BARRIER_STATE, 3803 KMP_INIT_BARRIER_STATE)); 3804 { // Initialize barrier data. 3805 int b; 3806 for (b = 0; b < bs_last_barrier; ++b) { 3807 root_thread->th.th_bar[b].bb.b_arrived = KMP_INIT_BARRIER_STATE; 3808 #if USE_DEBUGGER 3809 root_thread->th.th_bar[b].bb.b_worker_arrived = 0; 3810 #endif 3811 }; // for 3812 } 3813 KMP_DEBUG_ASSERT(root->r.r_hot_team->t.t_bar[bs_forkjoin_barrier].b_arrived == 3814 KMP_INIT_BARRIER_STATE); 3815 3816 #if KMP_AFFINITY_SUPPORTED 3817 #if OMP_40_ENABLED 3818 root_thread->th.th_current_place = KMP_PLACE_UNDEFINED; 3819 root_thread->th.th_new_place = KMP_PLACE_UNDEFINED; 3820 root_thread->th.th_first_place = KMP_PLACE_UNDEFINED; 3821 root_thread->th.th_last_place = KMP_PLACE_UNDEFINED; 3822 #endif 3823 3824 if (TCR_4(__kmp_init_middle)) { 3825 __kmp_affinity_set_init_mask(gtid, TRUE); 3826 } 3827 #endif /* KMP_AFFINITY_SUPPORTED */ 3828 3829 __kmp_root_counter++; 3830 3831 KMP_MB(); 3832 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 3833 3834 return gtid; 3835 } 3836 3837 #if KMP_NESTED_HOT_TEAMS 3838 static int __kmp_free_hot_teams(kmp_root_t *root, kmp_info_t *thr, int level, 3839 const int max_level) { 3840 int i, n, nth; 3841 kmp_hot_team_ptr_t *hot_teams = thr->th.th_hot_teams; 3842 if (!hot_teams || !hot_teams[level].hot_team) { 3843 return 0; 3844 } 3845 KMP_DEBUG_ASSERT(level < max_level); 3846 kmp_team_t *team = hot_teams[level].hot_team; 3847 nth = hot_teams[level].hot_team_nth; 3848 n = nth - 1; // master is not freed 3849 if (level < max_level - 1) { 3850 for (i = 0; i < nth; ++i) { 3851 kmp_info_t *th = team->t.t_threads[i]; 3852 n += __kmp_free_hot_teams(root, th, level + 1, max_level); 3853 if (i > 0 && th->th.th_hot_teams) { 3854 __kmp_free(th->th.th_hot_teams); 3855 th->th.th_hot_teams = NULL; 3856 } 3857 } 3858 } 3859 __kmp_free_team(root, team, NULL); 3860 return n; 3861 } 3862 #endif 3863 3864 // Resets a root thread and clear its root and hot teams. 3865 // Returns the number of __kmp_threads entries directly and indirectly freed. 3866 static int __kmp_reset_root(int gtid, kmp_root_t *root) { 3867 kmp_team_t *root_team = root->r.r_root_team; 3868 kmp_team_t *hot_team = root->r.r_hot_team; 3869 int n = hot_team->t.t_nproc; 3870 int i; 3871 3872 KMP_DEBUG_ASSERT(!root->r.r_active); 3873 3874 root->r.r_root_team = NULL; 3875 root->r.r_hot_team = NULL; 3876 // __kmp_free_team() does not free hot teams, so we have to clear r_hot_team 3877 // before call to __kmp_free_team(). 3878 __kmp_free_team(root, root_team USE_NESTED_HOT_ARG(NULL)); 3879 #if KMP_NESTED_HOT_TEAMS 3880 if (__kmp_hot_teams_max_level > 3881 0) { // need to free nested hot teams and their threads if any 3882 for (i = 0; i < hot_team->t.t_nproc; ++i) { 3883 kmp_info_t *th = hot_team->t.t_threads[i]; 3884 if (__kmp_hot_teams_max_level > 1) { 3885 n += __kmp_free_hot_teams(root, th, 1, __kmp_hot_teams_max_level); 3886 } 3887 if (th->th.th_hot_teams) { 3888 __kmp_free(th->th.th_hot_teams); 3889 th->th.th_hot_teams = NULL; 3890 } 3891 } 3892 } 3893 #endif 3894 __kmp_free_team(root, hot_team USE_NESTED_HOT_ARG(NULL)); 3895 3896 // Before we can reap the thread, we need to make certain that all other 3897 // threads in the teams that had this root as ancestor have stopped trying to 3898 // steal tasks. 3899 if (__kmp_tasking_mode != tskm_immediate_exec) { 3900 __kmp_wait_to_unref_task_teams(); 3901 } 3902 3903 #if KMP_OS_WINDOWS 3904 /* Close Handle of root duplicated in __kmp_create_worker (tr #62919) */ 3905 KA_TRACE( 3906 10, ("__kmp_reset_root: free handle, th = %p, handle = %" KMP_UINTPTR_SPEC 3907 "\n", 3908 (LPVOID) & (root->r.r_uber_thread->th), 3909 root->r.r_uber_thread->th.th_info.ds.ds_thread)); 3910 __kmp_free_handle(root->r.r_uber_thread->th.th_info.ds.ds_thread); 3911 #endif /* KMP_OS_WINDOWS */ 3912 3913 #if OMPT_SUPPORT 3914 if (ompt_enabled && ompt_callbacks.ompt_callback(ompt_event_thread_end)) { 3915 int gtid = __kmp_get_gtid(); 3916 __ompt_thread_end(ompt_thread_initial, gtid); 3917 } 3918 #endif 3919 3920 TCW_4(__kmp_nth, 3921 __kmp_nth - 1); // __kmp_reap_thread will decrement __kmp_all_nth. 3922 root->r.r_cg_nthreads--; 3923 3924 __kmp_reap_thread(root->r.r_uber_thread, 1); 3925 3926 // We canot put root thread to __kmp_thread_pool, so we have to reap it istead 3927 // of freeing. 3928 root->r.r_uber_thread = NULL; 3929 /* mark root as no longer in use */ 3930 root->r.r_begin = FALSE; 3931 3932 return n; 3933 } 3934 3935 void __kmp_unregister_root_current_thread(int gtid) { 3936 KA_TRACE(1, ("__kmp_unregister_root_current_thread: enter T#%d\n", gtid)); 3937 /* this lock should be ok, since unregister_root_current_thread is never 3938 called during an abort, only during a normal close. furthermore, if you 3939 have the forkjoin lock, you should never try to get the initz lock */ 3940 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 3941 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 3942 KC_TRACE(10, ("__kmp_unregister_root_current_thread: already finished, " 3943 "exiting T#%d\n", 3944 gtid)); 3945 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 3946 return; 3947 } 3948 kmp_root_t *root = __kmp_root[gtid]; 3949 3950 KMP_DEBUG_ASSERT(__kmp_threads && __kmp_threads[gtid]); 3951 KMP_ASSERT(KMP_UBER_GTID(gtid)); 3952 KMP_ASSERT(root == __kmp_threads[gtid]->th.th_root); 3953 KMP_ASSERT(root->r.r_active == FALSE); 3954 3955 KMP_MB(); 3956 3957 #if OMP_45_ENABLED 3958 kmp_info_t *thread = __kmp_threads[gtid]; 3959 kmp_team_t *team = thread->th.th_team; 3960 kmp_task_team_t *task_team = thread->th.th_task_team; 3961 3962 // we need to wait for the proxy tasks before finishing the thread 3963 if (task_team != NULL && task_team->tt.tt_found_proxy_tasks) { 3964 #if OMPT_SUPPORT 3965 // the runtime is shutting down so we won't report any events 3966 thread->th.ompt_thread_info.state = ompt_state_undefined; 3967 #endif 3968 __kmp_task_team_wait(thread, team USE_ITT_BUILD_ARG(NULL)); 3969 } 3970 #endif 3971 3972 __kmp_reset_root(gtid, root); 3973 3974 /* free up this thread slot */ 3975 __kmp_gtid_set_specific(KMP_GTID_DNE); 3976 #ifdef KMP_TDATA_GTID 3977 __kmp_gtid = KMP_GTID_DNE; 3978 #endif 3979 3980 KMP_MB(); 3981 KC_TRACE(10, 3982 ("__kmp_unregister_root_current_thread: T#%d unregistered\n", gtid)); 3983 3984 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 3985 } 3986 3987 #if KMP_OS_WINDOWS 3988 /* __kmp_forkjoin_lock must be already held 3989 Unregisters a root thread that is not the current thread. Returns the number 3990 of __kmp_threads entries freed as a result. */ 3991 static int __kmp_unregister_root_other_thread(int gtid) { 3992 kmp_root_t *root = __kmp_root[gtid]; 3993 int r; 3994 3995 KA_TRACE(1, ("__kmp_unregister_root_other_thread: enter T#%d\n", gtid)); 3996 KMP_DEBUG_ASSERT(__kmp_threads && __kmp_threads[gtid]); 3997 KMP_ASSERT(KMP_UBER_GTID(gtid)); 3998 KMP_ASSERT(root == __kmp_threads[gtid]->th.th_root); 3999 KMP_ASSERT(root->r.r_active == FALSE); 4000 4001 r = __kmp_reset_root(gtid, root); 4002 KC_TRACE(10, 4003 ("__kmp_unregister_root_other_thread: T#%d unregistered\n", gtid)); 4004 return r; 4005 } 4006 #endif 4007 4008 #if KMP_DEBUG 4009 void __kmp_task_info() { 4010 4011 kmp_int32 gtid = __kmp_entry_gtid(); 4012 kmp_int32 tid = __kmp_tid_from_gtid(gtid); 4013 kmp_info_t *this_thr = __kmp_threads[gtid]; 4014 kmp_team_t *steam = this_thr->th.th_serial_team; 4015 kmp_team_t *team = this_thr->th.th_team; 4016 4017 __kmp_printf("__kmp_task_info: gtid=%d tid=%d t_thread=%p team=%p curtask=%p " 4018 "ptask=%p\n", 4019 gtid, tid, this_thr, team, this_thr->th.th_current_task, 4020 team->t.t_implicit_task_taskdata[tid].td_parent); 4021 } 4022 #endif // KMP_DEBUG 4023 4024 /* TODO optimize with one big memclr, take out what isn't needed, split 4025 responsibility to workers as much as possible, and delay initialization of 4026 features as much as possible */ 4027 static void __kmp_initialize_info(kmp_info_t *this_thr, kmp_team_t *team, 4028 int tid, int gtid) { 4029 /* this_thr->th.th_info.ds.ds_gtid is setup in 4030 kmp_allocate_thread/create_worker. 4031 this_thr->th.th_serial_team is setup in __kmp_allocate_thread */ 4032 kmp_info_t *master = team->t.t_threads[0]; 4033 KMP_DEBUG_ASSERT(this_thr != NULL); 4034 KMP_DEBUG_ASSERT(this_thr->th.th_serial_team); 4035 KMP_DEBUG_ASSERT(team); 4036 KMP_DEBUG_ASSERT(team->t.t_threads); 4037 KMP_DEBUG_ASSERT(team->t.t_dispatch); 4038 KMP_DEBUG_ASSERT(master); 4039 KMP_DEBUG_ASSERT(master->th.th_root); 4040 4041 KMP_MB(); 4042 4043 TCW_SYNC_PTR(this_thr->th.th_team, team); 4044 4045 this_thr->th.th_info.ds.ds_tid = tid; 4046 this_thr->th.th_set_nproc = 0; 4047 if (__kmp_tasking_mode != tskm_immediate_exec) 4048 // When tasking is possible, threads are not safe to reap until they are 4049 // done tasking; this will be set when tasking code is exited in wait 4050 this_thr->th.th_reap_state = KMP_NOT_SAFE_TO_REAP; 4051 else // no tasking --> always safe to reap 4052 this_thr->th.th_reap_state = KMP_SAFE_TO_REAP; 4053 #if OMP_40_ENABLED 4054 this_thr->th.th_set_proc_bind = proc_bind_default; 4055 #if KMP_AFFINITY_SUPPORTED 4056 this_thr->th.th_new_place = this_thr->th.th_current_place; 4057 #endif 4058 #endif 4059 this_thr->th.th_root = master->th.th_root; 4060 4061 /* setup the thread's cache of the team structure */ 4062 this_thr->th.th_team_nproc = team->t.t_nproc; 4063 this_thr->th.th_team_master = master; 4064 this_thr->th.th_team_serialized = team->t.t_serialized; 4065 TCW_PTR(this_thr->th.th_sleep_loc, NULL); 4066 4067 KMP_DEBUG_ASSERT(team->t.t_implicit_task_taskdata); 4068 4069 KF_TRACE(10, ("__kmp_initialize_info1: T#%d:%d this_thread=%p curtask=%p\n", 4070 tid, gtid, this_thr, this_thr->th.th_current_task)); 4071 4072 __kmp_init_implicit_task(this_thr->th.th_team_master->th.th_ident, this_thr, 4073 team, tid, TRUE); 4074 4075 KF_TRACE(10, ("__kmp_initialize_info2: T#%d:%d this_thread=%p curtask=%p\n", 4076 tid, gtid, this_thr, this_thr->th.th_current_task)); 4077 // TODO: Initialize ICVs from parent; GEH - isn't that already done in 4078 // __kmp_initialize_team()? 4079 4080 /* TODO no worksharing in speculative threads */ 4081 this_thr->th.th_dispatch = &team->t.t_dispatch[tid]; 4082 4083 this_thr->th.th_local.this_construct = 0; 4084 4085 #ifdef BUILD_TV 4086 this_thr->th.th_local.tv_data = 0; 4087 #endif 4088 4089 if (!this_thr->th.th_pri_common) { 4090 this_thr->th.th_pri_common = 4091 (struct common_table *)__kmp_allocate(sizeof(struct common_table)); 4092 if (__kmp_storage_map) { 4093 __kmp_print_storage_map_gtid( 4094 gtid, this_thr->th.th_pri_common, this_thr->th.th_pri_common + 1, 4095 sizeof(struct common_table), "th_%d.th_pri_common\n", gtid); 4096 }; // if 4097 this_thr->th.th_pri_head = NULL; 4098 }; // if 4099 4100 /* Initialize dynamic dispatch */ 4101 { 4102 volatile kmp_disp_t *dispatch = this_thr->th.th_dispatch; 4103 // Use team max_nproc since this will never change for the team. 4104 size_t disp_size = 4105 sizeof(dispatch_private_info_t) * 4106 (team->t.t_max_nproc == 1 ? 1 : __kmp_dispatch_num_buffers); 4107 KD_TRACE(10, ("__kmp_initialize_info: T#%d max_nproc: %d\n", gtid, 4108 team->t.t_max_nproc)); 4109 KMP_ASSERT(dispatch); 4110 KMP_DEBUG_ASSERT(team->t.t_dispatch); 4111 KMP_DEBUG_ASSERT(dispatch == &team->t.t_dispatch[tid]); 4112 4113 dispatch->th_disp_index = 0; 4114 #if OMP_45_ENABLED 4115 dispatch->th_doacross_buf_idx = 0; 4116 #endif 4117 if (!dispatch->th_disp_buffer) { 4118 dispatch->th_disp_buffer = 4119 (dispatch_private_info_t *)__kmp_allocate(disp_size); 4120 4121 if (__kmp_storage_map) { 4122 __kmp_print_storage_map_gtid( 4123 gtid, &dispatch->th_disp_buffer[0], 4124 &dispatch->th_disp_buffer[team->t.t_max_nproc == 1 4125 ? 1 4126 : __kmp_dispatch_num_buffers], 4127 disp_size, "th_%d.th_dispatch.th_disp_buffer " 4128 "(team_%d.t_dispatch[%d].th_disp_buffer)", 4129 gtid, team->t.t_id, gtid); 4130 } 4131 } else { 4132 memset(&dispatch->th_disp_buffer[0], '\0', disp_size); 4133 } 4134 4135 dispatch->th_dispatch_pr_current = 0; 4136 dispatch->th_dispatch_sh_current = 0; 4137 4138 dispatch->th_deo_fcn = 0; /* ORDERED */ 4139 dispatch->th_dxo_fcn = 0; /* END ORDERED */ 4140 } 4141 4142 this_thr->th.th_next_pool = NULL; 4143 4144 if (!this_thr->th.th_task_state_memo_stack) { 4145 size_t i; 4146 this_thr->th.th_task_state_memo_stack = 4147 (kmp_uint8 *)__kmp_allocate(4 * sizeof(kmp_uint8)); 4148 this_thr->th.th_task_state_top = 0; 4149 this_thr->th.th_task_state_stack_sz = 4; 4150 for (i = 0; i < this_thr->th.th_task_state_stack_sz; 4151 ++i) // zero init the stack 4152 this_thr->th.th_task_state_memo_stack[i] = 0; 4153 } 4154 4155 KMP_DEBUG_ASSERT(!this_thr->th.th_spin_here); 4156 KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0); 4157 4158 KMP_MB(); 4159 } 4160 4161 /* allocate a new thread for the requesting team. this is only called from 4162 within a forkjoin critical section. we will first try to get an available 4163 thread from the thread pool. if none is available, we will fork a new one 4164 assuming we are able to create a new one. this should be assured, as the 4165 caller should check on this first. */ 4166 kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team, 4167 int new_tid) { 4168 kmp_team_t *serial_team; 4169 kmp_info_t *new_thr; 4170 int new_gtid; 4171 4172 KA_TRACE(20, ("__kmp_allocate_thread: T#%d\n", __kmp_get_gtid())); 4173 KMP_DEBUG_ASSERT(root && team); 4174 #if !KMP_NESTED_HOT_TEAMS 4175 KMP_DEBUG_ASSERT(KMP_MASTER_GTID(__kmp_get_gtid())); 4176 #endif 4177 KMP_MB(); 4178 4179 /* first, try to get one from the thread pool */ 4180 if (__kmp_thread_pool) { 4181 4182 new_thr = CCAST(kmp_info_t *, __kmp_thread_pool); 4183 __kmp_thread_pool = (volatile kmp_info_t *)new_thr->th.th_next_pool; 4184 if (new_thr == __kmp_thread_pool_insert_pt) { 4185 __kmp_thread_pool_insert_pt = NULL; 4186 } 4187 TCW_4(new_thr->th.th_in_pool, FALSE); 4188 // Don't touch th_active_in_pool or th_active. 4189 // The worker thread adjusts those flags as it sleeps/awakens. 4190 __kmp_thread_pool_nth--; 4191 4192 KA_TRACE(20, ("__kmp_allocate_thread: T#%d using thread T#%d\n", 4193 __kmp_get_gtid(), new_thr->th.th_info.ds.ds_gtid)); 4194 KMP_ASSERT(!new_thr->th.th_team); 4195 KMP_DEBUG_ASSERT(__kmp_nth < __kmp_threads_capacity); 4196 KMP_DEBUG_ASSERT(__kmp_thread_pool_nth >= 0); 4197 4198 /* setup the thread structure */ 4199 __kmp_initialize_info(new_thr, team, new_tid, 4200 new_thr->th.th_info.ds.ds_gtid); 4201 KMP_DEBUG_ASSERT(new_thr->th.th_serial_team); 4202 4203 TCW_4(__kmp_nth, __kmp_nth + 1); 4204 root->r.r_cg_nthreads++; 4205 4206 new_thr->th.th_task_state = 0; 4207 new_thr->th.th_task_state_top = 0; 4208 new_thr->th.th_task_state_stack_sz = 4; 4209 4210 #ifdef KMP_ADJUST_BLOCKTIME 4211 /* Adjust blocktime back to zero if necessary */ 4212 /* Middle initialization might not have occurred yet */ 4213 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 4214 if (__kmp_nth > __kmp_avail_proc) { 4215 __kmp_zero_bt = TRUE; 4216 } 4217 } 4218 #endif /* KMP_ADJUST_BLOCKTIME */ 4219 4220 #if KMP_DEBUG 4221 // If thread entered pool via __kmp_free_thread, wait_flag should != 4222 // KMP_BARRIER_PARENT_FLAG. 4223 int b; 4224 kmp_balign_t *balign = new_thr->th.th_bar; 4225 for (b = 0; b < bs_last_barrier; ++b) 4226 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 4227 #endif 4228 4229 KF_TRACE(10, ("__kmp_allocate_thread: T#%d using thread %p T#%d\n", 4230 __kmp_get_gtid(), new_thr, new_thr->th.th_info.ds.ds_gtid)); 4231 4232 KMP_MB(); 4233 return new_thr; 4234 } 4235 4236 /* no, well fork a new one */ 4237 KMP_ASSERT(__kmp_nth == __kmp_all_nth); 4238 KMP_ASSERT(__kmp_all_nth < __kmp_threads_capacity); 4239 4240 #if KMP_USE_MONITOR 4241 // If this is the first worker thread the RTL is creating, then also 4242 // launch the monitor thread. We try to do this as early as possible. 4243 if (!TCR_4(__kmp_init_monitor)) { 4244 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock); 4245 if (!TCR_4(__kmp_init_monitor)) { 4246 KF_TRACE(10, ("before __kmp_create_monitor\n")); 4247 TCW_4(__kmp_init_monitor, 1); 4248 __kmp_create_monitor(&__kmp_monitor); 4249 KF_TRACE(10, ("after __kmp_create_monitor\n")); 4250 #if KMP_OS_WINDOWS 4251 // AC: wait until monitor has started. This is a fix for CQ232808. 4252 // The reason is that if the library is loaded/unloaded in a loop with 4253 // small (parallel) work in between, then there is high probability that 4254 // monitor thread started after the library shutdown. At shutdown it is 4255 // too late to cope with the problem, because when the master is in 4256 // DllMain (process detach) the monitor has no chances to start (it is 4257 // blocked), and master has no means to inform the monitor that the 4258 // library has gone, because all the memory which the monitor can access 4259 // is going to be released/reset. 4260 while (TCR_4(__kmp_init_monitor) < 2) { 4261 KMP_YIELD(TRUE); 4262 } 4263 KF_TRACE(10, ("after monitor thread has started\n")); 4264 #endif 4265 } 4266 __kmp_release_bootstrap_lock(&__kmp_monitor_lock); 4267 } 4268 #endif 4269 4270 KMP_MB(); 4271 for (new_gtid = 1; TCR_PTR(__kmp_threads[new_gtid]) != NULL; ++new_gtid) { 4272 KMP_DEBUG_ASSERT(new_gtid < __kmp_threads_capacity); 4273 } 4274 4275 /* allocate space for it. */ 4276 new_thr = (kmp_info_t *)__kmp_allocate(sizeof(kmp_info_t)); 4277 4278 TCW_SYNC_PTR(__kmp_threads[new_gtid], new_thr); 4279 4280 if (__kmp_storage_map) { 4281 __kmp_print_thread_storage_map(new_thr, new_gtid); 4282 } 4283 4284 // add the reserve serialized team, initialized from the team's master thread 4285 { 4286 kmp_internal_control_t r_icvs = __kmp_get_x_global_icvs(team); 4287 KF_TRACE(10, ("__kmp_allocate_thread: before th_serial/serial_team\n")); 4288 new_thr->th.th_serial_team = serial_team = 4289 (kmp_team_t *)__kmp_allocate_team(root, 1, 1, 4290 #if OMPT_SUPPORT 4291 0, // root parallel id 4292 #endif 4293 #if OMP_40_ENABLED 4294 proc_bind_default, 4295 #endif 4296 &r_icvs, 0 USE_NESTED_HOT_ARG(NULL)); 4297 } 4298 KMP_ASSERT(serial_team); 4299 serial_team->t.t_serialized = 0; // AC: the team created in reserve, not for 4300 // execution (it is unused for now). 4301 serial_team->t.t_threads[0] = new_thr; 4302 KF_TRACE(10, 4303 ("__kmp_allocate_thread: after th_serial/serial_team : new_thr=%p\n", 4304 new_thr)); 4305 4306 /* setup the thread structures */ 4307 __kmp_initialize_info(new_thr, team, new_tid, new_gtid); 4308 4309 #if USE_FAST_MEMORY 4310 __kmp_initialize_fast_memory(new_thr); 4311 #endif /* USE_FAST_MEMORY */ 4312 4313 #if KMP_USE_BGET 4314 KMP_DEBUG_ASSERT(new_thr->th.th_local.bget_data == NULL); 4315 __kmp_initialize_bget(new_thr); 4316 #endif 4317 4318 __kmp_init_random(new_thr); // Initialize random number generator 4319 4320 /* Initialize these only once when thread is grabbed for a team allocation */ 4321 KA_TRACE(20, 4322 ("__kmp_allocate_thread: T#%d init go fork=%u, plain=%u\n", 4323 __kmp_get_gtid(), KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 4324 4325 int b; 4326 kmp_balign_t *balign = new_thr->th.th_bar; 4327 for (b = 0; b < bs_last_barrier; ++b) { 4328 balign[b].bb.b_go = KMP_INIT_BARRIER_STATE; 4329 balign[b].bb.team = NULL; 4330 balign[b].bb.wait_flag = KMP_BARRIER_NOT_WAITING; 4331 balign[b].bb.use_oncore_barrier = 0; 4332 } 4333 4334 new_thr->th.th_spin_here = FALSE; 4335 new_thr->th.th_next_waiting = 0; 4336 4337 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 4338 new_thr->th.th_current_place = KMP_PLACE_UNDEFINED; 4339 new_thr->th.th_new_place = KMP_PLACE_UNDEFINED; 4340 new_thr->th.th_first_place = KMP_PLACE_UNDEFINED; 4341 new_thr->th.th_last_place = KMP_PLACE_UNDEFINED; 4342 #endif 4343 4344 TCW_4(new_thr->th.th_in_pool, FALSE); 4345 new_thr->th.th_active_in_pool = FALSE; 4346 TCW_4(new_thr->th.th_active, TRUE); 4347 4348 /* adjust the global counters */ 4349 __kmp_all_nth++; 4350 __kmp_nth++; 4351 4352 root->r.r_cg_nthreads++; 4353 4354 // if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) for low 4355 // numbers of procs, and method #2 (keyed API call) for higher numbers. 4356 if (__kmp_adjust_gtid_mode) { 4357 if (__kmp_all_nth >= __kmp_tls_gtid_min) { 4358 if (TCR_4(__kmp_gtid_mode) != 2) { 4359 TCW_4(__kmp_gtid_mode, 2); 4360 } 4361 } else { 4362 if (TCR_4(__kmp_gtid_mode) != 1) { 4363 TCW_4(__kmp_gtid_mode, 1); 4364 } 4365 } 4366 } 4367 4368 #ifdef KMP_ADJUST_BLOCKTIME 4369 /* Adjust blocktime back to zero if necessary */ 4370 /* Middle initialization might not have occurred yet */ 4371 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 4372 if (__kmp_nth > __kmp_avail_proc) { 4373 __kmp_zero_bt = TRUE; 4374 } 4375 } 4376 #endif /* KMP_ADJUST_BLOCKTIME */ 4377 4378 /* actually fork it and create the new worker thread */ 4379 KF_TRACE( 4380 10, ("__kmp_allocate_thread: before __kmp_create_worker: %p\n", new_thr)); 4381 __kmp_create_worker(new_gtid, new_thr, __kmp_stksize); 4382 KF_TRACE(10, 4383 ("__kmp_allocate_thread: after __kmp_create_worker: %p\n", new_thr)); 4384 4385 KA_TRACE(20, ("__kmp_allocate_thread: T#%d forked T#%d\n", __kmp_get_gtid(), 4386 new_gtid)); 4387 KMP_MB(); 4388 return new_thr; 4389 } 4390 4391 /* Reinitialize team for reuse. 4392 The hot team code calls this case at every fork barrier, so EPCC barrier 4393 test are extremely sensitive to changes in it, esp. writes to the team 4394 struct, which cause a cache invalidation in all threads. 4395 IF YOU TOUCH THIS ROUTINE, RUN EPCC C SYNCBENCH ON A BIG-IRON MACHINE!!! */ 4396 static void __kmp_reinitialize_team(kmp_team_t *team, 4397 kmp_internal_control_t *new_icvs, 4398 ident_t *loc) { 4399 KF_TRACE(10, ("__kmp_reinitialize_team: enter this_thread=%p team=%p\n", 4400 team->t.t_threads[0], team)); 4401 KMP_DEBUG_ASSERT(team && new_icvs); 4402 KMP_DEBUG_ASSERT((!TCR_4(__kmp_init_parallel)) || new_icvs->nproc); 4403 KMP_CHECK_UPDATE(team->t.t_ident, loc); 4404 4405 KMP_CHECK_UPDATE(team->t.t_id, KMP_GEN_TEAM_ID()); 4406 // Copy ICVs to the master thread's implicit taskdata 4407 __kmp_init_implicit_task(loc, team->t.t_threads[0], team, 0, FALSE); 4408 copy_icvs(&team->t.t_implicit_task_taskdata[0].td_icvs, new_icvs); 4409 4410 KF_TRACE(10, ("__kmp_reinitialize_team: exit this_thread=%p team=%p\n", 4411 team->t.t_threads[0], team)); 4412 } 4413 4414 /* Initialize the team data structure. 4415 This assumes the t_threads and t_max_nproc are already set. 4416 Also, we don't touch the arguments */ 4417 static void __kmp_initialize_team(kmp_team_t *team, int new_nproc, 4418 kmp_internal_control_t *new_icvs, 4419 ident_t *loc) { 4420 KF_TRACE(10, ("__kmp_initialize_team: enter: team=%p\n", team)); 4421 4422 /* verify */ 4423 KMP_DEBUG_ASSERT(team); 4424 KMP_DEBUG_ASSERT(new_nproc <= team->t.t_max_nproc); 4425 KMP_DEBUG_ASSERT(team->t.t_threads); 4426 KMP_MB(); 4427 4428 team->t.t_master_tid = 0; /* not needed */ 4429 /* team->t.t_master_bar; not needed */ 4430 team->t.t_serialized = new_nproc > 1 ? 0 : 1; 4431 team->t.t_nproc = new_nproc; 4432 4433 /* team->t.t_parent = NULL; TODO not needed & would mess up hot team */ 4434 team->t.t_next_pool = NULL; 4435 /* memset( team->t.t_threads, 0, sizeof(kmp_info_t*)*new_nproc ); would mess 4436 * up hot team */ 4437 4438 TCW_SYNC_PTR(team->t.t_pkfn, NULL); /* not needed */ 4439 team->t.t_invoke = NULL; /* not needed */ 4440 4441 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 4442 team->t.t_sched = new_icvs->sched; 4443 4444 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4445 team->t.t_fp_control_saved = FALSE; /* not needed */ 4446 team->t.t_x87_fpu_control_word = 0; /* not needed */ 4447 team->t.t_mxcsr = 0; /* not needed */ 4448 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4449 4450 team->t.t_construct = 0; 4451 __kmp_init_lock(&team->t.t_single_lock); 4452 4453 team->t.t_ordered.dt.t_value = 0; 4454 team->t.t_master_active = FALSE; 4455 4456 memset(&team->t.t_taskq, '\0', sizeof(kmp_taskq_t)); 4457 4458 #ifdef KMP_DEBUG 4459 team->t.t_copypriv_data = NULL; /* not necessary, but nice for debugging */ 4460 #endif 4461 team->t.t_copyin_counter = 0; /* for barrier-free copyin implementation */ 4462 4463 team->t.t_control_stack_top = NULL; 4464 4465 __kmp_reinitialize_team(team, new_icvs, loc); 4466 4467 KMP_MB(); 4468 KF_TRACE(10, ("__kmp_initialize_team: exit: team=%p\n", team)); 4469 } 4470 4471 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 4472 /* Sets full mask for thread and returns old mask, no changes to structures. */ 4473 static void 4474 __kmp_set_thread_affinity_mask_full_tmp(kmp_affin_mask_t *old_mask) { 4475 if (KMP_AFFINITY_CAPABLE()) { 4476 int status; 4477 if (old_mask != NULL) { 4478 status = __kmp_get_system_affinity(old_mask, TRUE); 4479 int error = errno; 4480 if (status != 0) { 4481 __kmp_msg(kmp_ms_fatal, KMP_MSG(ChangeThreadAffMaskError), 4482 KMP_ERR(error), __kmp_msg_null); 4483 } 4484 } 4485 __kmp_set_system_affinity(__kmp_affin_fullMask, TRUE); 4486 } 4487 } 4488 #endif 4489 4490 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 4491 4492 // __kmp_partition_places() is the heart of the OpenMP 4.0 affinity mechanism. 4493 // It calculats the worker + master thread's partition based upon the parent 4494 // thread's partition, and binds each worker to a thread in their partition. 4495 // The master thread's partition should already include its current binding. 4496 static void __kmp_partition_places(kmp_team_t *team, int update_master_only) { 4497 // Copy the master thread's place partion to the team struct 4498 kmp_info_t *master_th = team->t.t_threads[0]; 4499 KMP_DEBUG_ASSERT(master_th != NULL); 4500 kmp_proc_bind_t proc_bind = team->t.t_proc_bind; 4501 int first_place = master_th->th.th_first_place; 4502 int last_place = master_th->th.th_last_place; 4503 int masters_place = master_th->th.th_current_place; 4504 team->t.t_first_place = first_place; 4505 team->t.t_last_place = last_place; 4506 4507 KA_TRACE(20, ("__kmp_partition_places: enter: proc_bind = %d T#%d(%d:0) " 4508 "bound to place %d partition = [%d,%d]\n", 4509 proc_bind, __kmp_gtid_from_thread(team->t.t_threads[0]), 4510 team->t.t_id, masters_place, first_place, last_place)); 4511 4512 switch (proc_bind) { 4513 4514 case proc_bind_default: 4515 // serial teams might have the proc_bind policy set to proc_bind_default. It 4516 // doesn't matter, as we don't rebind master thread for any proc_bind policy 4517 KMP_DEBUG_ASSERT(team->t.t_nproc == 1); 4518 break; 4519 4520 case proc_bind_master: { 4521 int f; 4522 int n_th = team->t.t_nproc; 4523 for (f = 1; f < n_th; f++) { 4524 kmp_info_t *th = team->t.t_threads[f]; 4525 KMP_DEBUG_ASSERT(th != NULL); 4526 th->th.th_first_place = first_place; 4527 th->th.th_last_place = last_place; 4528 th->th.th_new_place = masters_place; 4529 4530 KA_TRACE(100, ("__kmp_partition_places: master: T#%d(%d:%d) place %d " 4531 "partition = [%d,%d]\n", 4532 __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, 4533 f, masters_place, first_place, last_place)); 4534 } 4535 } break; 4536 4537 case proc_bind_close: { 4538 int f; 4539 int n_th = team->t.t_nproc; 4540 int n_places; 4541 if (first_place <= last_place) { 4542 n_places = last_place - first_place + 1; 4543 } else { 4544 n_places = __kmp_affinity_num_masks - first_place + last_place + 1; 4545 } 4546 if (n_th <= n_places) { 4547 int place = masters_place; 4548 for (f = 1; f < n_th; f++) { 4549 kmp_info_t *th = team->t.t_threads[f]; 4550 KMP_DEBUG_ASSERT(th != NULL); 4551 4552 if (place == last_place) { 4553 place = first_place; 4554 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4555 place = 0; 4556 } else { 4557 place++; 4558 } 4559 th->th.th_first_place = first_place; 4560 th->th.th_last_place = last_place; 4561 th->th.th_new_place = place; 4562 4563 KA_TRACE(100, ("__kmp_partition_places: close: T#%d(%d:%d) place %d " 4564 "partition = [%d,%d]\n", 4565 __kmp_gtid_from_thread(team->t.t_threads[f]), 4566 team->t.t_id, f, place, first_place, last_place)); 4567 } 4568 } else { 4569 int S, rem, gap, s_count; 4570 S = n_th / n_places; 4571 s_count = 0; 4572 rem = n_th - (S * n_places); 4573 gap = rem > 0 ? n_places / rem : n_places; 4574 int place = masters_place; 4575 int gap_ct = gap; 4576 for (f = 0; f < n_th; f++) { 4577 kmp_info_t *th = team->t.t_threads[f]; 4578 KMP_DEBUG_ASSERT(th != NULL); 4579 4580 th->th.th_first_place = first_place; 4581 th->th.th_last_place = last_place; 4582 th->th.th_new_place = place; 4583 s_count++; 4584 4585 if ((s_count == S) && rem && (gap_ct == gap)) { 4586 // do nothing, add an extra thread to place on next iteration 4587 } else if ((s_count == S + 1) && rem && (gap_ct == gap)) { 4588 // we added an extra thread to this place; move to next place 4589 if (place == last_place) { 4590 place = first_place; 4591 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4592 place = 0; 4593 } else { 4594 place++; 4595 } 4596 s_count = 0; 4597 gap_ct = 1; 4598 rem--; 4599 } else if (s_count == S) { // place full; don't add extra 4600 if (place == last_place) { 4601 place = first_place; 4602 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4603 place = 0; 4604 } else { 4605 place++; 4606 } 4607 gap_ct++; 4608 s_count = 0; 4609 } 4610 4611 KA_TRACE(100, 4612 ("__kmp_partition_places: close: T#%d(%d:%d) place %d " 4613 "partition = [%d,%d]\n", 4614 __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, f, 4615 th->th.th_new_place, first_place, last_place)); 4616 } 4617 KMP_DEBUG_ASSERT(place == masters_place); 4618 } 4619 } break; 4620 4621 case proc_bind_spread: { 4622 int f; 4623 int n_th = team->t.t_nproc; 4624 int n_places; 4625 int thidx; 4626 if (first_place <= last_place) { 4627 n_places = last_place - first_place + 1; 4628 } else { 4629 n_places = __kmp_affinity_num_masks - first_place + last_place + 1; 4630 } 4631 if (n_th <= n_places) { 4632 int place = -1; 4633 4634 if (n_places != static_cast<int>(__kmp_affinity_num_masks)) { 4635 int S = n_places / n_th; 4636 int s_count, rem, gap, gap_ct; 4637 4638 place = masters_place; 4639 rem = n_places - n_th * S; 4640 gap = rem ? n_th / rem : 1; 4641 gap_ct = gap; 4642 thidx = n_th; 4643 if (update_master_only == 1) 4644 thidx = 1; 4645 for (f = 0; f < thidx; f++) { 4646 kmp_info_t *th = team->t.t_threads[f]; 4647 KMP_DEBUG_ASSERT(th != NULL); 4648 4649 th->th.th_first_place = place; 4650 th->th.th_new_place = place; 4651 s_count = 1; 4652 while (s_count < S) { 4653 if (place == last_place) { 4654 place = first_place; 4655 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4656 place = 0; 4657 } else { 4658 place++; 4659 } 4660 s_count++; 4661 } 4662 if (rem && (gap_ct == gap)) { 4663 if (place == last_place) { 4664 place = first_place; 4665 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4666 place = 0; 4667 } else { 4668 place++; 4669 } 4670 rem--; 4671 gap_ct = 0; 4672 } 4673 th->th.th_last_place = place; 4674 gap_ct++; 4675 4676 if (place == last_place) { 4677 place = first_place; 4678 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4679 place = 0; 4680 } else { 4681 place++; 4682 } 4683 4684 KA_TRACE(100, ("__kmp_partition_places: spread: T#%d(%d:%d) place %d " 4685 "partition = [%d,%d], __kmp_affinity_num_masks: %u\n", 4686 __kmp_gtid_from_thread(team->t.t_threads[f]), 4687 team->t.t_id, f, th->th.th_new_place, 4688 th->th.th_first_place, th->th.th_last_place, 4689 __kmp_affinity_num_masks)); 4690 } 4691 } else { 4692 /* Having uniform space of available computation places I can create 4693 T partitions of round(P/T) size and put threads into the first 4694 place of each partition. */ 4695 double current = static_cast<double>(masters_place); 4696 double spacing = 4697 (static_cast<double>(n_places + 1) / static_cast<double>(n_th)); 4698 int first, last; 4699 kmp_info_t *th; 4700 4701 thidx = n_th + 1; 4702 if (update_master_only == 1) 4703 thidx = 1; 4704 for (f = 0; f < thidx; f++) { 4705 first = static_cast<int>(current); 4706 last = static_cast<int>(current + spacing) - 1; 4707 KMP_DEBUG_ASSERT(last >= first); 4708 if (first >= n_places) { 4709 if (masters_place) { 4710 first -= n_places; 4711 last -= n_places; 4712 if (first == (masters_place + 1)) { 4713 KMP_DEBUG_ASSERT(f == n_th); 4714 first--; 4715 } 4716 if (last == masters_place) { 4717 KMP_DEBUG_ASSERT(f == (n_th - 1)); 4718 last--; 4719 } 4720 } else { 4721 KMP_DEBUG_ASSERT(f == n_th); 4722 first = 0; 4723 last = 0; 4724 } 4725 } 4726 if (last >= n_places) { 4727 last = (n_places - 1); 4728 } 4729 place = first; 4730 current += spacing; 4731 if (f < n_th) { 4732 KMP_DEBUG_ASSERT(0 <= first); 4733 KMP_DEBUG_ASSERT(n_places > first); 4734 KMP_DEBUG_ASSERT(0 <= last); 4735 KMP_DEBUG_ASSERT(n_places > last); 4736 KMP_DEBUG_ASSERT(last_place >= first_place); 4737 th = team->t.t_threads[f]; 4738 KMP_DEBUG_ASSERT(th); 4739 th->th.th_first_place = first; 4740 th->th.th_new_place = place; 4741 th->th.th_last_place = last; 4742 4743 KA_TRACE(100, ("__kmp_partition_places: spread: T#%d(%d:%d) place %d " 4744 "partition = [%d,%d], spacing = %.4f\n", 4745 __kmp_gtid_from_thread(team->t.t_threads[f]), 4746 team->t.t_id, f, th->th.th_new_place, 4747 th->th.th_first_place, th->th.th_last_place, 4748 spacing)); 4749 } 4750 } 4751 } 4752 KMP_DEBUG_ASSERT(update_master_only || place == masters_place); 4753 } else { 4754 int S, rem, gap, s_count; 4755 S = n_th / n_places; 4756 s_count = 0; 4757 rem = n_th - (S * n_places); 4758 gap = rem > 0 ? n_places / rem : n_places; 4759 int place = masters_place; 4760 int gap_ct = gap; 4761 thidx = n_th; 4762 if (update_master_only == 1) 4763 thidx = 1; 4764 for (f = 0; f < thidx; f++) { 4765 kmp_info_t *th = team->t.t_threads[f]; 4766 KMP_DEBUG_ASSERT(th != NULL); 4767 4768 th->th.th_first_place = place; 4769 th->th.th_last_place = place; 4770 th->th.th_new_place = place; 4771 s_count++; 4772 4773 if ((s_count == S) && rem && (gap_ct == gap)) { 4774 // do nothing, add an extra thread to place on next iteration 4775 } else if ((s_count == S + 1) && rem && (gap_ct == gap)) { 4776 // we added an extra thread to this place; move on to next place 4777 if (place == last_place) { 4778 place = first_place; 4779 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4780 place = 0; 4781 } else { 4782 place++; 4783 } 4784 s_count = 0; 4785 gap_ct = 1; 4786 rem--; 4787 } else if (s_count == S) { // place is full; don't add extra thread 4788 if (place == last_place) { 4789 place = first_place; 4790 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4791 place = 0; 4792 } else { 4793 place++; 4794 } 4795 gap_ct++; 4796 s_count = 0; 4797 } 4798 4799 KA_TRACE(100, ("__kmp_partition_places: spread: T#%d(%d:%d) place %d " 4800 "partition = [%d,%d]\n", 4801 __kmp_gtid_from_thread(team->t.t_threads[f]), 4802 team->t.t_id, f, th->th.th_new_place, 4803 th->th.th_first_place, th->th.th_last_place)); 4804 } 4805 KMP_DEBUG_ASSERT(update_master_only || place == masters_place); 4806 } 4807 } break; 4808 4809 default: 4810 break; 4811 } 4812 4813 KA_TRACE(20, ("__kmp_partition_places: exit T#%d\n", team->t.t_id)); 4814 } 4815 4816 #endif /* OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED */ 4817 4818 /* allocate a new team data structure to use. take one off of the free pool if 4819 available */ 4820 kmp_team_t * 4821 __kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc, 4822 #if OMPT_SUPPORT 4823 ompt_parallel_id_t ompt_parallel_id, 4824 #endif 4825 #if OMP_40_ENABLED 4826 kmp_proc_bind_t new_proc_bind, 4827 #endif 4828 kmp_internal_control_t *new_icvs, 4829 int argc USE_NESTED_HOT_ARG(kmp_info_t *master)) { 4830 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_allocate_team); 4831 int f; 4832 kmp_team_t *team; 4833 int use_hot_team = !root->r.r_active; 4834 int level = 0; 4835 4836 KA_TRACE(20, ("__kmp_allocate_team: called\n")); 4837 KMP_DEBUG_ASSERT(new_nproc >= 1 && argc >= 0); 4838 KMP_DEBUG_ASSERT(max_nproc >= new_nproc); 4839 KMP_MB(); 4840 4841 #if KMP_NESTED_HOT_TEAMS 4842 kmp_hot_team_ptr_t *hot_teams; 4843 if (master) { 4844 team = master->th.th_team; 4845 level = team->t.t_active_level; 4846 if (master->th.th_teams_microtask) { // in teams construct? 4847 if (master->th.th_teams_size.nteams > 1 && 4848 ( // #teams > 1 4849 team->t.t_pkfn == 4850 (microtask_t)__kmp_teams_master || // inner fork of the teams 4851 master->th.th_teams_level < 4852 team->t.t_level)) { // or nested parallel inside the teams 4853 ++level; // not increment if #teams==1, or for outer fork of the teams; 4854 // increment otherwise 4855 } 4856 } 4857 hot_teams = master->th.th_hot_teams; 4858 if (level < __kmp_hot_teams_max_level && hot_teams && 4859 hot_teams[level] 4860 .hot_team) { // hot team has already been allocated for given level 4861 use_hot_team = 1; 4862 } else { 4863 use_hot_team = 0; 4864 } 4865 } 4866 #endif 4867 // Optimization to use a "hot" team 4868 if (use_hot_team && new_nproc > 1) { 4869 KMP_DEBUG_ASSERT(new_nproc == max_nproc); 4870 #if KMP_NESTED_HOT_TEAMS 4871 team = hot_teams[level].hot_team; 4872 #else 4873 team = root->r.r_hot_team; 4874 #endif 4875 #if KMP_DEBUG 4876 if (__kmp_tasking_mode != tskm_immediate_exec) { 4877 KA_TRACE(20, ("__kmp_allocate_team: hot team task_team[0] = %p " 4878 "task_team[1] = %p before reinit\n", 4879 team->t.t_task_team[0], team->t.t_task_team[1])); 4880 } 4881 #endif 4882 4883 // Has the number of threads changed? 4884 /* Let's assume the most common case is that the number of threads is 4885 unchanged, and put that case first. */ 4886 if (team->t.t_nproc == new_nproc) { // Check changes in number of threads 4887 KA_TRACE(20, ("__kmp_allocate_team: reusing hot team\n")); 4888 // This case can mean that omp_set_num_threads() was called and the hot 4889 // team size was already reduced, so we check the special flag 4890 if (team->t.t_size_changed == -1) { 4891 team->t.t_size_changed = 1; 4892 } else { 4893 KMP_CHECK_UPDATE(team->t.t_size_changed, 0); 4894 } 4895 4896 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 4897 kmp_r_sched_t new_sched = new_icvs->sched; 4898 if (team->t.t_sched.r_sched_type != new_sched.r_sched_type || 4899 team->t.t_sched.chunk != new_sched.chunk) 4900 team->t.t_sched = 4901 new_sched; // set master's schedule as new run-time schedule 4902 4903 __kmp_reinitialize_team(team, new_icvs, 4904 root->r.r_uber_thread->th.th_ident); 4905 4906 KF_TRACE(10, ("__kmp_allocate_team2: T#%d, this_thread=%p team=%p\n", 0, 4907 team->t.t_threads[0], team)); 4908 __kmp_push_current_task_to_thread(team->t.t_threads[0], team, 0); 4909 4910 #if OMP_40_ENABLED 4911 #if KMP_AFFINITY_SUPPORTED 4912 if ((team->t.t_size_changed == 0) && 4913 (team->t.t_proc_bind == new_proc_bind)) { 4914 if (new_proc_bind == proc_bind_spread) { 4915 __kmp_partition_places( 4916 team, 1); // add flag to update only master for spread 4917 } 4918 KA_TRACE(200, ("__kmp_allocate_team: reusing hot team #%d bindings: " 4919 "proc_bind = %d, partition = [%d,%d]\n", 4920 team->t.t_id, new_proc_bind, team->t.t_first_place, 4921 team->t.t_last_place)); 4922 } else { 4923 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 4924 __kmp_partition_places(team); 4925 } 4926 #else 4927 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 4928 #endif /* KMP_AFFINITY_SUPPORTED */ 4929 #endif /* OMP_40_ENABLED */ 4930 } else if (team->t.t_nproc > new_nproc) { 4931 KA_TRACE(20, 4932 ("__kmp_allocate_team: decreasing hot team thread count to %d\n", 4933 new_nproc)); 4934 4935 team->t.t_size_changed = 1; 4936 #if KMP_NESTED_HOT_TEAMS 4937 if (__kmp_hot_teams_mode == 0) { 4938 // AC: saved number of threads should correspond to team's value in this 4939 // mode, can be bigger in mode 1, when hot team has threads in reserve 4940 KMP_DEBUG_ASSERT(hot_teams[level].hot_team_nth == team->t.t_nproc); 4941 hot_teams[level].hot_team_nth = new_nproc; 4942 #endif // KMP_NESTED_HOT_TEAMS 4943 /* release the extra threads we don't need any more */ 4944 for (f = new_nproc; f < team->t.t_nproc; f++) { 4945 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 4946 if (__kmp_tasking_mode != tskm_immediate_exec) { 4947 // When decreasing team size, threads no longer in the team should 4948 // unref task team. 4949 team->t.t_threads[f]->th.th_task_team = NULL; 4950 } 4951 __kmp_free_thread(team->t.t_threads[f]); 4952 team->t.t_threads[f] = NULL; 4953 } 4954 #if KMP_NESTED_HOT_TEAMS 4955 } // (__kmp_hot_teams_mode == 0) 4956 else { 4957 // When keeping extra threads in team, switch threads to wait on own 4958 // b_go flag 4959 for (f = new_nproc; f < team->t.t_nproc; ++f) { 4960 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 4961 kmp_balign_t *balign = team->t.t_threads[f]->th.th_bar; 4962 for (int b = 0; b < bs_last_barrier; ++b) { 4963 if (balign[b].bb.wait_flag == KMP_BARRIER_PARENT_FLAG) { 4964 balign[b].bb.wait_flag = KMP_BARRIER_SWITCH_TO_OWN_FLAG; 4965 } 4966 KMP_CHECK_UPDATE(balign[b].bb.leaf_kids, 0); 4967 } 4968 } 4969 } 4970 #endif // KMP_NESTED_HOT_TEAMS 4971 team->t.t_nproc = new_nproc; 4972 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 4973 if (team->t.t_sched.r_sched_type != new_icvs->sched.r_sched_type || 4974 team->t.t_sched.chunk != new_icvs->sched.chunk) 4975 team->t.t_sched = new_icvs->sched; 4976 __kmp_reinitialize_team(team, new_icvs, 4977 root->r.r_uber_thread->th.th_ident); 4978 4979 /* update the remaining threads */ 4980 for (f = 0; f < new_nproc; ++f) { 4981 team->t.t_threads[f]->th.th_team_nproc = new_nproc; 4982 } 4983 // restore the current task state of the master thread: should be the 4984 // implicit task 4985 KF_TRACE(10, ("__kmp_allocate_team: T#%d, this_thread=%p team=%p\n", 0, 4986 team->t.t_threads[0], team)); 4987 4988 __kmp_push_current_task_to_thread(team->t.t_threads[0], team, 0); 4989 4990 #ifdef KMP_DEBUG 4991 for (f = 0; f < team->t.t_nproc; f++) { 4992 KMP_DEBUG_ASSERT(team->t.t_threads[f] && 4993 team->t.t_threads[f]->th.th_team_nproc == 4994 team->t.t_nproc); 4995 } 4996 #endif 4997 4998 #if OMP_40_ENABLED 4999 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5000 #if KMP_AFFINITY_SUPPORTED 5001 __kmp_partition_places(team); 5002 #endif 5003 #endif 5004 } else { // team->t.t_nproc < new_nproc 5005 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 5006 kmp_affin_mask_t *old_mask; 5007 if (KMP_AFFINITY_CAPABLE()) { 5008 KMP_CPU_ALLOC(old_mask); 5009 } 5010 #endif 5011 5012 KA_TRACE(20, 5013 ("__kmp_allocate_team: increasing hot team thread count to %d\n", 5014 new_nproc)); 5015 5016 team->t.t_size_changed = 1; 5017 5018 #if KMP_NESTED_HOT_TEAMS 5019 int avail_threads = hot_teams[level].hot_team_nth; 5020 if (new_nproc < avail_threads) 5021 avail_threads = new_nproc; 5022 kmp_info_t **other_threads = team->t.t_threads; 5023 for (f = team->t.t_nproc; f < avail_threads; ++f) { 5024 // Adjust barrier data of reserved threads (if any) of the team 5025 // Other data will be set in __kmp_initialize_info() below. 5026 int b; 5027 kmp_balign_t *balign = other_threads[f]->th.th_bar; 5028 for (b = 0; b < bs_last_barrier; ++b) { 5029 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 5030 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 5031 #if USE_DEBUGGER 5032 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 5033 #endif 5034 } 5035 } 5036 if (hot_teams[level].hot_team_nth >= new_nproc) { 5037 // we have all needed threads in reserve, no need to allocate any 5038 // this only possible in mode 1, cannot have reserved threads in mode 0 5039 KMP_DEBUG_ASSERT(__kmp_hot_teams_mode == 1); 5040 team->t.t_nproc = new_nproc; // just get reserved threads involved 5041 } else { 5042 // we may have some threads in reserve, but not enough 5043 team->t.t_nproc = 5044 hot_teams[level] 5045 .hot_team_nth; // get reserved threads involved if any 5046 hot_teams[level].hot_team_nth = new_nproc; // adjust hot team max size 5047 #endif // KMP_NESTED_HOT_TEAMS 5048 if (team->t.t_max_nproc < new_nproc) { 5049 /* reallocate larger arrays */ 5050 __kmp_reallocate_team_arrays(team, new_nproc); 5051 __kmp_reinitialize_team(team, new_icvs, NULL); 5052 } 5053 5054 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 5055 /* Temporarily set full mask for master thread before creation of 5056 workers. The reason is that workers inherit the affinity from master, 5057 so if a lot of workers are created on the single core quickly, they 5058 don't get a chance to set their own affinity for a long time. */ 5059 __kmp_set_thread_affinity_mask_full_tmp(old_mask); 5060 #endif 5061 5062 /* allocate new threads for the hot team */ 5063 for (f = team->t.t_nproc; f < new_nproc; f++) { 5064 kmp_info_t *new_worker = __kmp_allocate_thread(root, team, f); 5065 KMP_DEBUG_ASSERT(new_worker); 5066 team->t.t_threads[f] = new_worker; 5067 5068 KA_TRACE(20, 5069 ("__kmp_allocate_team: team %d init T#%d arrived: " 5070 "join=%llu, plain=%llu\n", 5071 team->t.t_id, __kmp_gtid_from_tid(f, team), team->t.t_id, f, 5072 team->t.t_bar[bs_forkjoin_barrier].b_arrived, 5073 team->t.t_bar[bs_plain_barrier].b_arrived)); 5074 5075 { // Initialize barrier data for new threads. 5076 int b; 5077 kmp_balign_t *balign = new_worker->th.th_bar; 5078 for (b = 0; b < bs_last_barrier; ++b) { 5079 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 5080 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != 5081 KMP_BARRIER_PARENT_FLAG); 5082 #if USE_DEBUGGER 5083 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 5084 #endif 5085 } 5086 } 5087 } 5088 5089 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 5090 if (KMP_AFFINITY_CAPABLE()) { 5091 /* Restore initial master thread's affinity mask */ 5092 __kmp_set_system_affinity(old_mask, TRUE); 5093 KMP_CPU_FREE(old_mask); 5094 } 5095 #endif 5096 #if KMP_NESTED_HOT_TEAMS 5097 } // end of check of t_nproc vs. new_nproc vs. hot_team_nth 5098 #endif // KMP_NESTED_HOT_TEAMS 5099 /* make sure everyone is syncronized */ 5100 int old_nproc = team->t.t_nproc; // save old value and use to update only 5101 // new threads below 5102 __kmp_initialize_team(team, new_nproc, new_icvs, 5103 root->r.r_uber_thread->th.th_ident); 5104 5105 /* reinitialize the threads */ 5106 KMP_DEBUG_ASSERT(team->t.t_nproc == new_nproc); 5107 for (f = 0; f < team->t.t_nproc; ++f) 5108 __kmp_initialize_info(team->t.t_threads[f], team, f, 5109 __kmp_gtid_from_tid(f, team)); 5110 if (level) { // set th_task_state for new threads in nested hot team 5111 // __kmp_initialize_info() no longer zeroes th_task_state, so we should 5112 // only need to set the th_task_state for the new threads. th_task_state 5113 // for master thread will not be accurate until after this in 5114 // __kmp_fork_call(), so we look to the master's memo_stack to get the 5115 // correct value. 5116 for (f = old_nproc; f < team->t.t_nproc; ++f) 5117 team->t.t_threads[f]->th.th_task_state = 5118 team->t.t_threads[0]->th.th_task_state_memo_stack[level]; 5119 } else { // set th_task_state for new threads in non-nested hot team 5120 int old_state = 5121 team->t.t_threads[0]->th.th_task_state; // copy master's state 5122 for (f = old_nproc; f < team->t.t_nproc; ++f) 5123 team->t.t_threads[f]->th.th_task_state = old_state; 5124 } 5125 5126 #ifdef KMP_DEBUG 5127 for (f = 0; f < team->t.t_nproc; ++f) { 5128 KMP_DEBUG_ASSERT(team->t.t_threads[f] && 5129 team->t.t_threads[f]->th.th_team_nproc == 5130 team->t.t_nproc); 5131 } 5132 #endif 5133 5134 #if OMP_40_ENABLED 5135 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5136 #if KMP_AFFINITY_SUPPORTED 5137 __kmp_partition_places(team); 5138 #endif 5139 #endif 5140 } // Check changes in number of threads 5141 5142 #if OMP_40_ENABLED 5143 kmp_info_t *master = team->t.t_threads[0]; 5144 if (master->th.th_teams_microtask) { 5145 for (f = 1; f < new_nproc; ++f) { 5146 // propagate teams construct specific info to workers 5147 kmp_info_t *thr = team->t.t_threads[f]; 5148 thr->th.th_teams_microtask = master->th.th_teams_microtask; 5149 thr->th.th_teams_level = master->th.th_teams_level; 5150 thr->th.th_teams_size = master->th.th_teams_size; 5151 } 5152 } 5153 #endif /* OMP_40_ENABLED */ 5154 #if KMP_NESTED_HOT_TEAMS 5155 if (level) { 5156 // Sync barrier state for nested hot teams, not needed for outermost hot 5157 // team. 5158 for (f = 1; f < new_nproc; ++f) { 5159 kmp_info_t *thr = team->t.t_threads[f]; 5160 int b; 5161 kmp_balign_t *balign = thr->th.th_bar; 5162 for (b = 0; b < bs_last_barrier; ++b) { 5163 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 5164 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 5165 #if USE_DEBUGGER 5166 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 5167 #endif 5168 } 5169 } 5170 } 5171 #endif // KMP_NESTED_HOT_TEAMS 5172 5173 /* reallocate space for arguments if necessary */ 5174 __kmp_alloc_argv_entries(argc, team, TRUE); 5175 KMP_CHECK_UPDATE(team->t.t_argc, argc); 5176 // The hot team re-uses the previous task team, 5177 // if untouched during the previous release->gather phase. 5178 5179 KF_TRACE(10, (" hot_team = %p\n", team)); 5180 5181 #if KMP_DEBUG 5182 if (__kmp_tasking_mode != tskm_immediate_exec) { 5183 KA_TRACE(20, ("__kmp_allocate_team: hot team task_team[0] = %p " 5184 "task_team[1] = %p after reinit\n", 5185 team->t.t_task_team[0], team->t.t_task_team[1])); 5186 } 5187 #endif 5188 5189 #if OMPT_SUPPORT 5190 __ompt_team_assign_id(team, ompt_parallel_id); 5191 #endif 5192 5193 KMP_MB(); 5194 5195 return team; 5196 } 5197 5198 /* next, let's try to take one from the team pool */ 5199 KMP_MB(); 5200 for (team = CCAST(kmp_team_t *, __kmp_team_pool); (team);) { 5201 /* TODO: consider resizing undersized teams instead of reaping them, now 5202 that we have a resizing mechanism */ 5203 if (team->t.t_max_nproc >= max_nproc) { 5204 /* take this team from the team pool */ 5205 __kmp_team_pool = team->t.t_next_pool; 5206 5207 /* setup the team for fresh use */ 5208 __kmp_initialize_team(team, new_nproc, new_icvs, NULL); 5209 5210 KA_TRACE(20, ("__kmp_allocate_team: setting task_team[0] %p and " 5211 "task_team[1] %p to NULL\n", 5212 &team->t.t_task_team[0], &team->t.t_task_team[1])); 5213 team->t.t_task_team[0] = NULL; 5214 team->t.t_task_team[1] = NULL; 5215 5216 /* reallocate space for arguments if necessary */ 5217 __kmp_alloc_argv_entries(argc, team, TRUE); 5218 KMP_CHECK_UPDATE(team->t.t_argc, argc); 5219 5220 KA_TRACE( 5221 20, ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n", 5222 team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 5223 { // Initialize barrier data. 5224 int b; 5225 for (b = 0; b < bs_last_barrier; ++b) { 5226 team->t.t_bar[b].b_arrived = KMP_INIT_BARRIER_STATE; 5227 #if USE_DEBUGGER 5228 team->t.t_bar[b].b_master_arrived = 0; 5229 team->t.t_bar[b].b_team_arrived = 0; 5230 #endif 5231 } 5232 } 5233 5234 #if OMP_40_ENABLED 5235 team->t.t_proc_bind = new_proc_bind; 5236 #endif 5237 5238 KA_TRACE(20, ("__kmp_allocate_team: using team from pool %d.\n", 5239 team->t.t_id)); 5240 5241 #if OMPT_SUPPORT 5242 __ompt_team_assign_id(team, ompt_parallel_id); 5243 #endif 5244 5245 KMP_MB(); 5246 5247 return team; 5248 } 5249 5250 /* reap team if it is too small, then loop back and check the next one */ 5251 // not sure if this is wise, but, will be redone during the hot-teams rewrite. 5252 /* TODO: Use technique to find the right size hot-team, don't reap them */ 5253 team = __kmp_reap_team(team); 5254 __kmp_team_pool = team; 5255 } 5256 5257 /* nothing available in the pool, no matter, make a new team! */ 5258 KMP_MB(); 5259 team = (kmp_team_t *)__kmp_allocate(sizeof(kmp_team_t)); 5260 5261 /* and set it up */ 5262 team->t.t_max_nproc = max_nproc; 5263 /* NOTE well, for some reason allocating one big buffer and dividing it up 5264 seems to really hurt performance a lot on the P4, so, let's not use this */ 5265 __kmp_allocate_team_arrays(team, max_nproc); 5266 5267 KA_TRACE(20, ("__kmp_allocate_team: making a new team\n")); 5268 __kmp_initialize_team(team, new_nproc, new_icvs, NULL); 5269 5270 KA_TRACE(20, ("__kmp_allocate_team: setting task_team[0] %p and task_team[1] " 5271 "%p to NULL\n", 5272 &team->t.t_task_team[0], &team->t.t_task_team[1])); 5273 team->t.t_task_team[0] = NULL; // to be removed, as __kmp_allocate zeroes 5274 // memory, no need to duplicate 5275 team->t.t_task_team[1] = NULL; // to be removed, as __kmp_allocate zeroes 5276 // memory, no need to duplicate 5277 5278 if (__kmp_storage_map) { 5279 __kmp_print_team_storage_map("team", team, team->t.t_id, new_nproc); 5280 } 5281 5282 /* allocate space for arguments */ 5283 __kmp_alloc_argv_entries(argc, team, FALSE); 5284 team->t.t_argc = argc; 5285 5286 KA_TRACE(20, 5287 ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n", 5288 team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 5289 { // Initialize barrier data. 5290 int b; 5291 for (b = 0; b < bs_last_barrier; ++b) { 5292 team->t.t_bar[b].b_arrived = KMP_INIT_BARRIER_STATE; 5293 #if USE_DEBUGGER 5294 team->t.t_bar[b].b_master_arrived = 0; 5295 team->t.t_bar[b].b_team_arrived = 0; 5296 #endif 5297 } 5298 } 5299 5300 #if OMP_40_ENABLED 5301 team->t.t_proc_bind = new_proc_bind; 5302 #endif 5303 5304 #if OMPT_SUPPORT 5305 __ompt_team_assign_id(team, ompt_parallel_id); 5306 team->t.ompt_serialized_team_info = NULL; 5307 #endif 5308 5309 KMP_MB(); 5310 5311 KA_TRACE(20, ("__kmp_allocate_team: done creating a new team %d.\n", 5312 team->t.t_id)); 5313 5314 return team; 5315 } 5316 5317 /* TODO implement hot-teams at all levels */ 5318 /* TODO implement lazy thread release on demand (disband request) */ 5319 5320 /* free the team. return it to the team pool. release all the threads 5321 * associated with it */ 5322 void __kmp_free_team(kmp_root_t *root, 5323 kmp_team_t *team USE_NESTED_HOT_ARG(kmp_info_t *master)) { 5324 int f; 5325 KA_TRACE(20, ("__kmp_free_team: T#%d freeing team %d\n", __kmp_get_gtid(), 5326 team->t.t_id)); 5327 5328 /* verify state */ 5329 KMP_DEBUG_ASSERT(root); 5330 KMP_DEBUG_ASSERT(team); 5331 KMP_DEBUG_ASSERT(team->t.t_nproc <= team->t.t_max_nproc); 5332 KMP_DEBUG_ASSERT(team->t.t_threads); 5333 5334 int use_hot_team = team == root->r.r_hot_team; 5335 #if KMP_NESTED_HOT_TEAMS 5336 int level; 5337 kmp_hot_team_ptr_t *hot_teams; 5338 if (master) { 5339 level = team->t.t_active_level - 1; 5340 if (master->th.th_teams_microtask) { // in teams construct? 5341 if (master->th.th_teams_size.nteams > 1) { 5342 ++level; // level was not increased in teams construct for 5343 // team_of_masters 5344 } 5345 if (team->t.t_pkfn != (microtask_t)__kmp_teams_master && 5346 master->th.th_teams_level == team->t.t_level) { 5347 ++level; // level was not increased in teams construct for 5348 // team_of_workers before the parallel 5349 } // team->t.t_level will be increased inside parallel 5350 } 5351 hot_teams = master->th.th_hot_teams; 5352 if (level < __kmp_hot_teams_max_level) { 5353 KMP_DEBUG_ASSERT(team == hot_teams[level].hot_team); 5354 use_hot_team = 1; 5355 } 5356 } 5357 #endif // KMP_NESTED_HOT_TEAMS 5358 5359 /* team is done working */ 5360 TCW_SYNC_PTR(team->t.t_pkfn, 5361 NULL); // Important for Debugging Support Library. 5362 team->t.t_copyin_counter = 0; // init counter for possible reuse 5363 // Do not reset pointer to parent team to NULL for hot teams. 5364 5365 /* if we are non-hot team, release our threads */ 5366 if (!use_hot_team) { 5367 if (__kmp_tasking_mode != tskm_immediate_exec) { 5368 // Wait for threads to reach reapable state 5369 for (f = 1; f < team->t.t_nproc; ++f) { 5370 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5371 kmp_info_t *th = team->t.t_threads[f]; 5372 volatile kmp_uint32 *state = &th->th.th_reap_state; 5373 while (*state != KMP_SAFE_TO_REAP) { 5374 #if KMP_OS_WINDOWS 5375 // On Windows a thread can be killed at any time, check this 5376 DWORD ecode; 5377 if (!__kmp_is_thread_alive(th, &ecode)) { 5378 *state = KMP_SAFE_TO_REAP; // reset the flag for dead thread 5379 break; 5380 } 5381 #endif 5382 // first check if thread is sleeping 5383 kmp_flag_64 fl(&th->th.th_bar[bs_forkjoin_barrier].bb.b_go, th); 5384 if (fl.is_sleeping()) 5385 fl.resume(__kmp_gtid_from_thread(th)); 5386 KMP_CPU_PAUSE(); 5387 } 5388 } 5389 5390 // Delete task teams 5391 int tt_idx; 5392 for (tt_idx = 0; tt_idx < 2; ++tt_idx) { 5393 kmp_task_team_t *task_team = team->t.t_task_team[tt_idx]; 5394 if (task_team != NULL) { 5395 for (f = 0; f < team->t.t_nproc; 5396 ++f) { // Have all threads unref task teams 5397 team->t.t_threads[f]->th.th_task_team = NULL; 5398 } 5399 KA_TRACE( 5400 20, 5401 ("__kmp_free_team: T#%d deactivating task_team %p on team %d\n", 5402 __kmp_get_gtid(), task_team, team->t.t_id)); 5403 #if KMP_NESTED_HOT_TEAMS 5404 __kmp_free_task_team(master, task_team); 5405 #endif 5406 team->t.t_task_team[tt_idx] = NULL; 5407 } 5408 } 5409 } 5410 5411 // Reset pointer to parent team only for non-hot teams. 5412 team->t.t_parent = NULL; 5413 team->t.t_level = 0; 5414 team->t.t_active_level = 0; 5415 5416 /* free the worker threads */ 5417 for (f = 1; f < team->t.t_nproc; ++f) { 5418 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5419 __kmp_free_thread(team->t.t_threads[f]); 5420 team->t.t_threads[f] = NULL; 5421 } 5422 5423 /* put the team back in the team pool */ 5424 /* TODO limit size of team pool, call reap_team if pool too large */ 5425 team->t.t_next_pool = CCAST(kmp_team_t *, __kmp_team_pool); 5426 __kmp_team_pool = (volatile kmp_team_t *)team; 5427 } 5428 5429 KMP_MB(); 5430 } 5431 5432 /* reap the team. destroy it, reclaim all its resources and free its memory */ 5433 kmp_team_t *__kmp_reap_team(kmp_team_t *team) { 5434 kmp_team_t *next_pool = team->t.t_next_pool; 5435 5436 KMP_DEBUG_ASSERT(team); 5437 KMP_DEBUG_ASSERT(team->t.t_dispatch); 5438 KMP_DEBUG_ASSERT(team->t.t_disp_buffer); 5439 KMP_DEBUG_ASSERT(team->t.t_threads); 5440 KMP_DEBUG_ASSERT(team->t.t_argv); 5441 5442 /* TODO clean the threads that are a part of this? */ 5443 5444 /* free stuff */ 5445 __kmp_free_team_arrays(team); 5446 if (team->t.t_argv != &team->t.t_inline_argv[0]) 5447 __kmp_free((void *)team->t.t_argv); 5448 __kmp_free(team); 5449 5450 KMP_MB(); 5451 return next_pool; 5452 } 5453 5454 // Free the thread. Don't reap it, just place it on the pool of available 5455 // threads. 5456 // 5457 // Changes for Quad issue 527845: We need a predictable OMP tid <-> gtid 5458 // binding for the affinity mechanism to be useful. 5459 // 5460 // Now, we always keep the free list (__kmp_thread_pool) sorted by gtid. 5461 // However, we want to avoid a potential performance problem by always 5462 // scanning through the list to find the correct point at which to insert 5463 // the thread (potential N**2 behavior). To do this we keep track of the 5464 // last place a thread struct was inserted (__kmp_thread_pool_insert_pt). 5465 // With single-level parallelism, threads will always be added to the tail 5466 // of the list, kept track of by __kmp_thread_pool_insert_pt. With nested 5467 // parallelism, all bets are off and we may need to scan through the entire 5468 // free list. 5469 // 5470 // This change also has a potentially large performance benefit, for some 5471 // applications. Previously, as threads were freed from the hot team, they 5472 // would be placed back on the free list in inverse order. If the hot team 5473 // grew back to it's original size, then the freed thread would be placed 5474 // back on the hot team in reverse order. This could cause bad cache 5475 // locality problems on programs where the size of the hot team regularly 5476 // grew and shrunk. 5477 // 5478 // Now, for single-level parallelism, the OMP tid is alway == gtid. 5479 void __kmp_free_thread(kmp_info_t *this_th) { 5480 int gtid; 5481 kmp_info_t **scan; 5482 kmp_root_t *root = this_th->th.th_root; 5483 5484 KA_TRACE(20, ("__kmp_free_thread: T#%d putting T#%d back on free pool.\n", 5485 __kmp_get_gtid(), this_th->th.th_info.ds.ds_gtid)); 5486 5487 KMP_DEBUG_ASSERT(this_th); 5488 5489 // When moving thread to pool, switch thread to wait on own b_go flag, and 5490 // uninitialized (NULL team). 5491 int b; 5492 kmp_balign_t *balign = this_th->th.th_bar; 5493 for (b = 0; b < bs_last_barrier; ++b) { 5494 if (balign[b].bb.wait_flag == KMP_BARRIER_PARENT_FLAG) 5495 balign[b].bb.wait_flag = KMP_BARRIER_SWITCH_TO_OWN_FLAG; 5496 balign[b].bb.team = NULL; 5497 balign[b].bb.leaf_kids = 0; 5498 } 5499 this_th->th.th_task_state = 0; 5500 5501 /* put thread back on the free pool */ 5502 TCW_PTR(this_th->th.th_team, NULL); 5503 TCW_PTR(this_th->th.th_root, NULL); 5504 TCW_PTR(this_th->th.th_dispatch, NULL); /* NOT NEEDED */ 5505 5506 // If the __kmp_thread_pool_insert_pt is already past the new insert 5507 // point, then we need to re-scan the entire list. 5508 gtid = this_th->th.th_info.ds.ds_gtid; 5509 if (__kmp_thread_pool_insert_pt != NULL) { 5510 KMP_DEBUG_ASSERT(__kmp_thread_pool != NULL); 5511 if (__kmp_thread_pool_insert_pt->th.th_info.ds.ds_gtid > gtid) { 5512 __kmp_thread_pool_insert_pt = NULL; 5513 } 5514 } 5515 5516 // Scan down the list to find the place to insert the thread. 5517 // scan is the address of a link in the list, possibly the address of 5518 // __kmp_thread_pool itself. 5519 // 5520 // In the absence of nested parallism, the for loop will have 0 iterations. 5521 if (__kmp_thread_pool_insert_pt != NULL) { 5522 scan = &(__kmp_thread_pool_insert_pt->th.th_next_pool); 5523 } else { 5524 scan = CCAST(kmp_info_t **, &__kmp_thread_pool); 5525 } 5526 for (; (*scan != NULL) && ((*scan)->th.th_info.ds.ds_gtid < gtid); 5527 scan = &((*scan)->th.th_next_pool)) 5528 ; 5529 5530 // Insert the new element on the list, and set __kmp_thread_pool_insert_pt 5531 // to its address. 5532 TCW_PTR(this_th->th.th_next_pool, *scan); 5533 __kmp_thread_pool_insert_pt = *scan = this_th; 5534 KMP_DEBUG_ASSERT((this_th->th.th_next_pool == NULL) || 5535 (this_th->th.th_info.ds.ds_gtid < 5536 this_th->th.th_next_pool->th.th_info.ds.ds_gtid)); 5537 TCW_4(this_th->th.th_in_pool, TRUE); 5538 __kmp_thread_pool_nth++; 5539 5540 TCW_4(__kmp_nth, __kmp_nth - 1); 5541 root->r.r_cg_nthreads--; 5542 5543 #ifdef KMP_ADJUST_BLOCKTIME 5544 /* Adjust blocktime back to user setting or default if necessary */ 5545 /* Middle initialization might never have occurred */ 5546 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 5547 KMP_DEBUG_ASSERT(__kmp_avail_proc > 0); 5548 if (__kmp_nth <= __kmp_avail_proc) { 5549 __kmp_zero_bt = FALSE; 5550 } 5551 } 5552 #endif /* KMP_ADJUST_BLOCKTIME */ 5553 5554 KMP_MB(); 5555 } 5556 5557 /* ------------------------------------------------------------------------ */ 5558 5559 void *__kmp_launch_thread(kmp_info_t *this_thr) { 5560 int gtid = this_thr->th.th_info.ds.ds_gtid; 5561 /* void *stack_data;*/ 5562 kmp_team_t *(*volatile pteam); 5563 5564 KMP_MB(); 5565 KA_TRACE(10, ("__kmp_launch_thread: T#%d start\n", gtid)); 5566 5567 if (__kmp_env_consistency_check) { 5568 this_thr->th.th_cons = __kmp_allocate_cons_stack(gtid); // ATT: Memory leak? 5569 } 5570 5571 #if OMPT_SUPPORT 5572 if (ompt_enabled) { 5573 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 5574 this_thr->th.ompt_thread_info.wait_id = 0; 5575 this_thr->th.ompt_thread_info.idle_frame = __builtin_frame_address(0); 5576 if (ompt_callbacks.ompt_callback(ompt_event_thread_begin)) { 5577 __ompt_thread_begin(ompt_thread_worker, gtid); 5578 } 5579 } 5580 #endif 5581 5582 /* This is the place where threads wait for work */ 5583 while (!TCR_4(__kmp_global.g.g_done)) { 5584 KMP_DEBUG_ASSERT(this_thr == __kmp_threads[gtid]); 5585 KMP_MB(); 5586 5587 /* wait for work to do */ 5588 KA_TRACE(20, ("__kmp_launch_thread: T#%d waiting for work\n", gtid)); 5589 5590 #if OMPT_SUPPORT 5591 if (ompt_enabled) { 5592 this_thr->th.ompt_thread_info.state = ompt_state_idle; 5593 } 5594 #endif 5595 5596 /* No tid yet since not part of a team */ 5597 __kmp_fork_barrier(gtid, KMP_GTID_DNE); 5598 5599 #if OMPT_SUPPORT 5600 if (ompt_enabled) { 5601 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 5602 } 5603 #endif 5604 5605 pteam = (kmp_team_t * (*))(&this_thr->th.th_team); 5606 5607 /* have we been allocated? */ 5608 if (TCR_SYNC_PTR(*pteam) && !TCR_4(__kmp_global.g.g_done)) { 5609 #if OMPT_SUPPORT 5610 ompt_task_info_t *task_info; 5611 ompt_parallel_id_t my_parallel_id; 5612 if (ompt_enabled) { 5613 task_info = __ompt_get_taskinfo(0); 5614 my_parallel_id = (*pteam)->t.ompt_team_info.parallel_id; 5615 } 5616 #endif 5617 /* we were just woken up, so run our new task */ 5618 if (TCR_SYNC_PTR((*pteam)->t.t_pkfn) != NULL) { 5619 int rc; 5620 KA_TRACE(20, 5621 ("__kmp_launch_thread: T#%d(%d:%d) invoke microtask = %p\n", 5622 gtid, (*pteam)->t.t_id, __kmp_tid_from_gtid(gtid), 5623 (*pteam)->t.t_pkfn)); 5624 5625 updateHWFPControl(*pteam); 5626 5627 #if OMPT_SUPPORT 5628 if (ompt_enabled) { 5629 this_thr->th.ompt_thread_info.state = ompt_state_work_parallel; 5630 // Initialize OMPT task id for implicit task. 5631 int tid = __kmp_tid_from_gtid(gtid); 5632 task_info->task_id = __ompt_task_id_new(tid); 5633 } 5634 #endif 5635 5636 { 5637 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 5638 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 5639 rc = (*pteam)->t.t_invoke(gtid); 5640 } 5641 KMP_ASSERT(rc); 5642 5643 #if OMPT_SUPPORT 5644 if (ompt_enabled) { 5645 /* no frame set while outside task */ 5646 task_info->frame.exit_runtime_frame = NULL; 5647 5648 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 5649 } 5650 #endif 5651 KMP_MB(); 5652 KA_TRACE(20, ("__kmp_launch_thread: T#%d(%d:%d) done microtask = %p\n", 5653 gtid, (*pteam)->t.t_id, __kmp_tid_from_gtid(gtid), 5654 (*pteam)->t.t_pkfn)); 5655 } 5656 /* join barrier after parallel region */ 5657 __kmp_join_barrier(gtid); 5658 #if OMPT_SUPPORT && OMPT_TRACE 5659 if (ompt_enabled) { 5660 if (ompt_callbacks.ompt_callback(ompt_event_implicit_task_end)) { 5661 // don't access *pteam here: it may have already been freed 5662 // by the master thread behind the barrier (possible race) 5663 ompt_callbacks.ompt_callback(ompt_event_implicit_task_end)( 5664 my_parallel_id, task_info->task_id); 5665 } 5666 task_info->frame.exit_runtime_frame = NULL; 5667 task_info->task_id = 0; 5668 } 5669 #endif 5670 } 5671 } 5672 TCR_SYNC_PTR((intptr_t)__kmp_global.g.g_done); 5673 5674 #if OMPT_SUPPORT 5675 if (ompt_enabled && ompt_callbacks.ompt_callback(ompt_event_thread_end)) { 5676 __ompt_thread_end(ompt_thread_worker, gtid); 5677 } 5678 #endif 5679 5680 this_thr->th.th_task_team = NULL; 5681 /* run the destructors for the threadprivate data for this thread */ 5682 __kmp_common_destroy_gtid(gtid); 5683 5684 KA_TRACE(10, ("__kmp_launch_thread: T#%d done\n", gtid)); 5685 KMP_MB(); 5686 return this_thr; 5687 } 5688 5689 /* ------------------------------------------------------------------------ */ 5690 5691 void __kmp_internal_end_dest(void *specific_gtid) { 5692 #if KMP_COMPILER_ICC 5693 #pragma warning(push) 5694 #pragma warning(disable : 810) // conversion from "void *" to "int" may lose 5695 // significant bits 5696 #endif 5697 // Make sure no significant bits are lost 5698 int gtid = (kmp_intptr_t)specific_gtid - 1; 5699 #if KMP_COMPILER_ICC 5700 #pragma warning(pop) 5701 #endif 5702 5703 KA_TRACE(30, ("__kmp_internal_end_dest: T#%d\n", gtid)); 5704 /* NOTE: the gtid is stored as gitd+1 in the thread-local-storage 5705 * this is because 0 is reserved for the nothing-stored case */ 5706 5707 /* josh: One reason for setting the gtid specific data even when it is being 5708 destroyed by pthread is to allow gtid lookup through thread specific data 5709 (__kmp_gtid_get_specific). Some of the code, especially stat code, 5710 that gets executed in the call to __kmp_internal_end_thread, actually 5711 gets the gtid through the thread specific data. Setting it here seems 5712 rather inelegant and perhaps wrong, but allows __kmp_internal_end_thread 5713 to run smoothly. 5714 todo: get rid of this after we remove the dependence on 5715 __kmp_gtid_get_specific */ 5716 if (gtid >= 0 && KMP_UBER_GTID(gtid)) 5717 __kmp_gtid_set_specific(gtid); 5718 #ifdef KMP_TDATA_GTID 5719 __kmp_gtid = gtid; 5720 #endif 5721 __kmp_internal_end_thread(gtid); 5722 } 5723 5724 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB 5725 5726 // 2009-09-08 (lev): It looks the destructor does not work. In simple test cases 5727 // destructors work perfectly, but in real libomp.so I have no evidence it is 5728 // ever called. However, -fini linker option in makefile.mk works fine. 5729 5730 __attribute__((destructor)) void __kmp_internal_end_dtor(void) { 5731 __kmp_internal_end_atexit(); 5732 } 5733 5734 void __kmp_internal_end_fini(void) { __kmp_internal_end_atexit(); } 5735 5736 #endif 5737 5738 /* [Windows] josh: when the atexit handler is called, there may still be more 5739 than one thread alive */ 5740 void __kmp_internal_end_atexit(void) { 5741 KA_TRACE(30, ("__kmp_internal_end_atexit\n")); 5742 /* [Windows] 5743 josh: ideally, we want to completely shutdown the library in this atexit 5744 handler, but stat code that depends on thread specific data for gtid fails 5745 because that data becomes unavailable at some point during the shutdown, so 5746 we call __kmp_internal_end_thread instead. We should eventually remove the 5747 dependency on __kmp_get_specific_gtid in the stat code and use 5748 __kmp_internal_end_library to cleanly shutdown the library. 5749 5750 // TODO: Can some of this comment about GVS be removed? 5751 I suspect that the offending stat code is executed when the calling thread 5752 tries to clean up a dead root thread's data structures, resulting in GVS 5753 code trying to close the GVS structures for that thread, but since the stat 5754 code uses __kmp_get_specific_gtid to get the gtid with the assumption that 5755 the calling thread is cleaning up itself instead of another thread, it get 5756 confused. This happens because allowing a thread to unregister and cleanup 5757 another thread is a recent modification for addressing an issue. 5758 Based on the current design (20050722), a thread may end up 5759 trying to unregister another thread only if thread death does not trigger 5760 the calling of __kmp_internal_end_thread. For Linux* OS, there is the 5761 thread specific data destructor function to detect thread death. For 5762 Windows dynamic, there is DllMain(THREAD_DETACH). For Windows static, there 5763 is nothing. Thus, the workaround is applicable only for Windows static 5764 stat library. */ 5765 __kmp_internal_end_library(-1); 5766 #if KMP_OS_WINDOWS 5767 __kmp_close_console(); 5768 #endif 5769 } 5770 5771 static void __kmp_reap_thread(kmp_info_t *thread, int is_root) { 5772 // It is assumed __kmp_forkjoin_lock is acquired. 5773 5774 int gtid; 5775 5776 KMP_DEBUG_ASSERT(thread != NULL); 5777 5778 gtid = thread->th.th_info.ds.ds_gtid; 5779 5780 if (!is_root) { 5781 5782 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { 5783 /* Assume the threads are at the fork barrier here */ 5784 KA_TRACE( 5785 20, ("__kmp_reap_thread: releasing T#%d from fork barrier for reap\n", 5786 gtid)); 5787 /* Need release fence here to prevent seg faults for tree forkjoin barrier 5788 * (GEH) */ 5789 ANNOTATE_HAPPENS_BEFORE(thread); 5790 kmp_flag_64 flag(&thread->th.th_bar[bs_forkjoin_barrier].bb.b_go, thread); 5791 __kmp_release_64(&flag); 5792 }; // if 5793 5794 // Terminate OS thread. 5795 __kmp_reap_worker(thread); 5796 5797 // The thread was killed asynchronously. If it was actively 5798 // spinning in the thread pool, decrement the global count. 5799 // 5800 // There is a small timing hole here - if the worker thread was just waking 5801 // up after sleeping in the pool, had reset it's th_active_in_pool flag but 5802 // not decremented the global counter __kmp_thread_pool_active_nth yet, then 5803 // the global counter might not get updated. 5804 // 5805 // Currently, this can only happen as the library is unloaded, 5806 // so there are no harmful side effects. 5807 if (thread->th.th_active_in_pool) { 5808 thread->th.th_active_in_pool = FALSE; 5809 KMP_TEST_THEN_DEC32(&__kmp_thread_pool_active_nth); 5810 KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0); 5811 } 5812 5813 // Decrement # of [worker] threads in the pool. 5814 KMP_DEBUG_ASSERT(__kmp_thread_pool_nth > 0); 5815 --__kmp_thread_pool_nth; 5816 }; // if 5817 5818 __kmp_free_implicit_task(thread); 5819 5820 // Free the fast memory for tasking 5821 #if USE_FAST_MEMORY 5822 __kmp_free_fast_memory(thread); 5823 #endif /* USE_FAST_MEMORY */ 5824 5825 __kmp_suspend_uninitialize_thread(thread); 5826 5827 KMP_DEBUG_ASSERT(__kmp_threads[gtid] == thread); 5828 TCW_SYNC_PTR(__kmp_threads[gtid], NULL); 5829 5830 --__kmp_all_nth; 5831 // __kmp_nth was decremented when thread is added to the pool. 5832 5833 #ifdef KMP_ADJUST_BLOCKTIME 5834 /* Adjust blocktime back to user setting or default if necessary */ 5835 /* Middle initialization might never have occurred */ 5836 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 5837 KMP_DEBUG_ASSERT(__kmp_avail_proc > 0); 5838 if (__kmp_nth <= __kmp_avail_proc) { 5839 __kmp_zero_bt = FALSE; 5840 } 5841 } 5842 #endif /* KMP_ADJUST_BLOCKTIME */ 5843 5844 /* free the memory being used */ 5845 if (__kmp_env_consistency_check) { 5846 if (thread->th.th_cons) { 5847 __kmp_free_cons_stack(thread->th.th_cons); 5848 thread->th.th_cons = NULL; 5849 }; // if 5850 } 5851 5852 if (thread->th.th_pri_common != NULL) { 5853 __kmp_free(thread->th.th_pri_common); 5854 thread->th.th_pri_common = NULL; 5855 }; // if 5856 5857 if (thread->th.th_task_state_memo_stack != NULL) { 5858 __kmp_free(thread->th.th_task_state_memo_stack); 5859 thread->th.th_task_state_memo_stack = NULL; 5860 } 5861 5862 #if KMP_USE_BGET 5863 if (thread->th.th_local.bget_data != NULL) { 5864 __kmp_finalize_bget(thread); 5865 }; // if 5866 #endif 5867 5868 #if KMP_AFFINITY_SUPPORTED 5869 if (thread->th.th_affin_mask != NULL) { 5870 KMP_CPU_FREE(thread->th.th_affin_mask); 5871 thread->th.th_affin_mask = NULL; 5872 }; // if 5873 #endif /* KMP_AFFINITY_SUPPORTED */ 5874 5875 __kmp_reap_team(thread->th.th_serial_team); 5876 thread->th.th_serial_team = NULL; 5877 __kmp_free(thread); 5878 5879 KMP_MB(); 5880 5881 } // __kmp_reap_thread 5882 5883 static void __kmp_internal_end(void) { 5884 int i; 5885 5886 /* First, unregister the library */ 5887 __kmp_unregister_library(); 5888 5889 #if KMP_OS_WINDOWS 5890 /* In Win static library, we can't tell when a root actually dies, so we 5891 reclaim the data structures for any root threads that have died but not 5892 unregistered themselves, in order to shut down cleanly. 5893 In Win dynamic library we also can't tell when a thread dies. */ 5894 __kmp_reclaim_dead_roots(); // AC: moved here to always clean resources of 5895 // dead roots 5896 #endif 5897 5898 for (i = 0; i < __kmp_threads_capacity; i++) 5899 if (__kmp_root[i]) 5900 if (__kmp_root[i]->r.r_active) 5901 break; 5902 KMP_MB(); /* Flush all pending memory write invalidates. */ 5903 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 5904 5905 if (i < __kmp_threads_capacity) { 5906 #if KMP_USE_MONITOR 5907 // 2009-09-08 (lev): Other alive roots found. Why do we kill the monitor?? 5908 KMP_MB(); /* Flush all pending memory write invalidates. */ 5909 5910 // Need to check that monitor was initialized before reaping it. If we are 5911 // called form __kmp_atfork_child (which sets __kmp_init_parallel = 0), then 5912 // __kmp_monitor will appear to contain valid data, but it is only valid in the 5913 // parent process, not the child. 5914 // New behavior (201008): instead of keying off of the flag 5915 // __kmp_init_parallel, the monitor thread creation is keyed off 5916 // of the new flag __kmp_init_monitor. 5917 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock); 5918 if (TCR_4(__kmp_init_monitor)) { 5919 __kmp_reap_monitor(&__kmp_monitor); 5920 TCW_4(__kmp_init_monitor, 0); 5921 } 5922 __kmp_release_bootstrap_lock(&__kmp_monitor_lock); 5923 KA_TRACE(10, ("__kmp_internal_end: monitor reaped\n")); 5924 #endif // KMP_USE_MONITOR 5925 } else { 5926 /* TODO move this to cleanup code */ 5927 #ifdef KMP_DEBUG 5928 /* make sure that everything has properly ended */ 5929 for (i = 0; i < __kmp_threads_capacity; i++) { 5930 if (__kmp_root[i]) { 5931 // KMP_ASSERT( ! KMP_UBER_GTID( i ) ); // AC: 5932 // there can be uber threads alive here 5933 KMP_ASSERT(!__kmp_root[i]->r.r_active); // TODO: can they be active? 5934 } 5935 } 5936 #endif 5937 5938 KMP_MB(); 5939 5940 // Reap the worker threads. 5941 // This is valid for now, but be careful if threads are reaped sooner. 5942 while (__kmp_thread_pool != NULL) { // Loop thru all the thread in the pool. 5943 // Get the next thread from the pool. 5944 kmp_info_t *thread = CCAST(kmp_info_t *, __kmp_thread_pool); 5945 __kmp_thread_pool = thread->th.th_next_pool; 5946 // Reap it. 5947 KMP_DEBUG_ASSERT(thread->th.th_reap_state == KMP_SAFE_TO_REAP); 5948 thread->th.th_next_pool = NULL; 5949 thread->th.th_in_pool = FALSE; 5950 __kmp_reap_thread(thread, 0); 5951 }; // while 5952 __kmp_thread_pool_insert_pt = NULL; 5953 5954 // Reap teams. 5955 while (__kmp_team_pool != NULL) { // Loop thru all the teams in the pool. 5956 // Get the next team from the pool. 5957 kmp_team_t *team = CCAST(kmp_team_t *, __kmp_team_pool); 5958 __kmp_team_pool = team->t.t_next_pool; 5959 // Reap it. 5960 team->t.t_next_pool = NULL; 5961 __kmp_reap_team(team); 5962 }; // while 5963 5964 __kmp_reap_task_teams(); 5965 5966 for (i = 0; i < __kmp_threads_capacity; ++i) { 5967 // TBD: Add some checking... 5968 // Something like KMP_DEBUG_ASSERT( __kmp_thread[ i ] == NULL ); 5969 } 5970 5971 /* Make sure all threadprivate destructors get run by joining with all 5972 worker threads before resetting this flag */ 5973 TCW_SYNC_4(__kmp_init_common, FALSE); 5974 5975 KA_TRACE(10, ("__kmp_internal_end: all workers reaped\n")); 5976 KMP_MB(); 5977 5978 #if KMP_USE_MONITOR 5979 // See note above: One of the possible fixes for CQ138434 / CQ140126 5980 // 5981 // FIXME: push both code fragments down and CSE them? 5982 // push them into __kmp_cleanup() ? 5983 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock); 5984 if (TCR_4(__kmp_init_monitor)) { 5985 __kmp_reap_monitor(&__kmp_monitor); 5986 TCW_4(__kmp_init_monitor, 0); 5987 } 5988 __kmp_release_bootstrap_lock(&__kmp_monitor_lock); 5989 KA_TRACE(10, ("__kmp_internal_end: monitor reaped\n")); 5990 #endif 5991 } /* else !__kmp_global.t_active */ 5992 TCW_4(__kmp_init_gtid, FALSE); 5993 KMP_MB(); /* Flush all pending memory write invalidates. */ 5994 5995 __kmp_cleanup(); 5996 #if OMPT_SUPPORT 5997 ompt_fini(); 5998 #endif 5999 } 6000 6001 void __kmp_internal_end_library(int gtid_req) { 6002 /* if we have already cleaned up, don't try again, it wouldn't be pretty */ 6003 /* this shouldn't be a race condition because __kmp_internal_end() is the 6004 only place to clear __kmp_serial_init */ 6005 /* we'll check this later too, after we get the lock */ 6006 // 2009-09-06: We do not set g_abort without setting g_done. This check looks 6007 // redundaant, because the next check will work in any case. 6008 if (__kmp_global.g.g_abort) { 6009 KA_TRACE(11, ("__kmp_internal_end_library: abort, exiting\n")); 6010 /* TODO abort? */ 6011 return; 6012 } 6013 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6014 KA_TRACE(10, ("__kmp_internal_end_library: already finished\n")); 6015 return; 6016 } 6017 6018 KMP_MB(); /* Flush all pending memory write invalidates. */ 6019 6020 /* find out who we are and what we should do */ 6021 { 6022 int gtid = (gtid_req >= 0) ? gtid_req : __kmp_gtid_get_specific(); 6023 KA_TRACE( 6024 10, ("__kmp_internal_end_library: enter T#%d (%d)\n", gtid, gtid_req)); 6025 if (gtid == KMP_GTID_SHUTDOWN) { 6026 KA_TRACE(10, ("__kmp_internal_end_library: !__kmp_init_runtime, system " 6027 "already shutdown\n")); 6028 return; 6029 } else if (gtid == KMP_GTID_MONITOR) { 6030 KA_TRACE(10, ("__kmp_internal_end_library: monitor thread, gtid not " 6031 "registered, or system shutdown\n")); 6032 return; 6033 } else if (gtid == KMP_GTID_DNE) { 6034 KA_TRACE(10, ("__kmp_internal_end_library: gtid not registered or system " 6035 "shutdown\n")); 6036 /* we don't know who we are, but we may still shutdown the library */ 6037 } else if (KMP_UBER_GTID(gtid)) { 6038 /* unregister ourselves as an uber thread. gtid is no longer valid */ 6039 if (__kmp_root[gtid]->r.r_active) { 6040 __kmp_global.g.g_abort = -1; 6041 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 6042 KA_TRACE(10, 6043 ("__kmp_internal_end_library: root still active, abort T#%d\n", 6044 gtid)); 6045 return; 6046 } else { 6047 KA_TRACE( 6048 10, 6049 ("__kmp_internal_end_library: unregistering sibling T#%d\n", gtid)); 6050 __kmp_unregister_root_current_thread(gtid); 6051 } 6052 } else { 6053 /* worker threads may call this function through the atexit handler, if they 6054 * call exit() */ 6055 /* For now, skip the usual subsequent processing and just dump the debug buffer. 6056 TODO: do a thorough shutdown instead */ 6057 #ifdef DUMP_DEBUG_ON_EXIT 6058 if (__kmp_debug_buf) 6059 __kmp_dump_debug_buffer(); 6060 #endif 6061 return; 6062 } 6063 } 6064 /* synchronize the termination process */ 6065 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6066 6067 /* have we already finished */ 6068 if (__kmp_global.g.g_abort) { 6069 KA_TRACE(10, ("__kmp_internal_end_library: abort, exiting\n")); 6070 /* TODO abort? */ 6071 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6072 return; 6073 } 6074 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6075 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6076 return; 6077 } 6078 6079 /* We need this lock to enforce mutex between this reading of 6080 __kmp_threads_capacity and the writing by __kmp_register_root. 6081 Alternatively, we can use a counter of roots that is atomically updated by 6082 __kmp_get_global_thread_id_reg, __kmp_do_serial_initialize and 6083 __kmp_internal_end_*. */ 6084 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 6085 6086 /* now we can safely conduct the actual termination */ 6087 __kmp_internal_end(); 6088 6089 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 6090 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6091 6092 KA_TRACE(10, ("__kmp_internal_end_library: exit\n")); 6093 6094 #ifdef DUMP_DEBUG_ON_EXIT 6095 if (__kmp_debug_buf) 6096 __kmp_dump_debug_buffer(); 6097 #endif 6098 6099 #if KMP_OS_WINDOWS 6100 __kmp_close_console(); 6101 #endif 6102 6103 __kmp_fini_allocator(); 6104 6105 } // __kmp_internal_end_library 6106 6107 void __kmp_internal_end_thread(int gtid_req) { 6108 int i; 6109 6110 /* if we have already cleaned up, don't try again, it wouldn't be pretty */ 6111 /* this shouldn't be a race condition because __kmp_internal_end() is the 6112 * only place to clear __kmp_serial_init */ 6113 /* we'll check this later too, after we get the lock */ 6114 // 2009-09-06: We do not set g_abort without setting g_done. This check looks 6115 // redundant, because the next check will work in any case. 6116 if (__kmp_global.g.g_abort) { 6117 KA_TRACE(11, ("__kmp_internal_end_thread: abort, exiting\n")); 6118 /* TODO abort? */ 6119 return; 6120 } 6121 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6122 KA_TRACE(10, ("__kmp_internal_end_thread: already finished\n")); 6123 return; 6124 } 6125 6126 KMP_MB(); /* Flush all pending memory write invalidates. */ 6127 6128 /* find out who we are and what we should do */ 6129 { 6130 int gtid = (gtid_req >= 0) ? gtid_req : __kmp_gtid_get_specific(); 6131 KA_TRACE(10, 6132 ("__kmp_internal_end_thread: enter T#%d (%d)\n", gtid, gtid_req)); 6133 if (gtid == KMP_GTID_SHUTDOWN) { 6134 KA_TRACE(10, ("__kmp_internal_end_thread: !__kmp_init_runtime, system " 6135 "already shutdown\n")); 6136 return; 6137 } else if (gtid == KMP_GTID_MONITOR) { 6138 KA_TRACE(10, ("__kmp_internal_end_thread: monitor thread, gtid not " 6139 "registered, or system shutdown\n")); 6140 return; 6141 } else if (gtid == KMP_GTID_DNE) { 6142 KA_TRACE(10, ("__kmp_internal_end_thread: gtid not registered or system " 6143 "shutdown\n")); 6144 return; 6145 /* we don't know who we are */ 6146 } else if (KMP_UBER_GTID(gtid)) { 6147 /* unregister ourselves as an uber thread. gtid is no longer valid */ 6148 if (__kmp_root[gtid]->r.r_active) { 6149 __kmp_global.g.g_abort = -1; 6150 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 6151 KA_TRACE(10, 6152 ("__kmp_internal_end_thread: root still active, abort T#%d\n", 6153 gtid)); 6154 return; 6155 } else { 6156 KA_TRACE(10, ("__kmp_internal_end_thread: unregistering sibling T#%d\n", 6157 gtid)); 6158 __kmp_unregister_root_current_thread(gtid); 6159 } 6160 } else { 6161 /* just a worker thread, let's leave */ 6162 KA_TRACE(10, ("__kmp_internal_end_thread: worker thread T#%d\n", gtid)); 6163 6164 if (gtid >= 0) { 6165 __kmp_threads[gtid]->th.th_task_team = NULL; 6166 } 6167 6168 KA_TRACE(10, 6169 ("__kmp_internal_end_thread: worker thread done, exiting T#%d\n", 6170 gtid)); 6171 return; 6172 } 6173 } 6174 #if defined KMP_DYNAMIC_LIB 6175 // AC: lets not shutdown the Linux* OS dynamic library at the exit of uber 6176 // thread, because we will better shutdown later in the library destructor. 6177 // The reason of this change is performance problem when non-openmp thread in 6178 // a loop forks and joins many openmp threads. We can save a lot of time 6179 // keeping worker threads alive until the program shutdown. 6180 // OM: Removed Linux* OS restriction to fix the crash on OS X* (DPD200239966) 6181 // and Windows(DPD200287443) that occurs when using critical sections from 6182 // foreign threads. 6183 KA_TRACE(10, ("__kmp_internal_end_thread: exiting T#%d\n", gtid_req)); 6184 return; 6185 #endif 6186 /* synchronize the termination process */ 6187 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6188 6189 /* have we already finished */ 6190 if (__kmp_global.g.g_abort) { 6191 KA_TRACE(10, ("__kmp_internal_end_thread: abort, exiting\n")); 6192 /* TODO abort? */ 6193 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6194 return; 6195 } 6196 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6197 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6198 return; 6199 } 6200 6201 /* We need this lock to enforce mutex between this reading of 6202 __kmp_threads_capacity and the writing by __kmp_register_root. 6203 Alternatively, we can use a counter of roots that is atomically updated by 6204 __kmp_get_global_thread_id_reg, __kmp_do_serial_initialize and 6205 __kmp_internal_end_*. */ 6206 6207 /* should we finish the run-time? are all siblings done? */ 6208 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 6209 6210 for (i = 0; i < __kmp_threads_capacity; ++i) { 6211 if (KMP_UBER_GTID(i)) { 6212 KA_TRACE( 6213 10, 6214 ("__kmp_internal_end_thread: remaining sibling task: gtid==%d\n", i)); 6215 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 6216 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6217 return; 6218 }; 6219 } 6220 6221 /* now we can safely conduct the actual termination */ 6222 6223 __kmp_internal_end(); 6224 6225 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 6226 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6227 6228 KA_TRACE(10, ("__kmp_internal_end_thread: exit T#%d\n", gtid_req)); 6229 6230 #ifdef DUMP_DEBUG_ON_EXIT 6231 if (__kmp_debug_buf) 6232 __kmp_dump_debug_buffer(); 6233 #endif 6234 } // __kmp_internal_end_thread 6235 6236 // ----------------------------------------------------------------------------- 6237 // Library registration stuff. 6238 6239 static long __kmp_registration_flag = 0; 6240 // Random value used to indicate library initialization. 6241 static char *__kmp_registration_str = NULL; 6242 // Value to be saved in env var __KMP_REGISTERED_LIB_<pid>. 6243 6244 static inline char *__kmp_reg_status_name() { 6245 /* On RHEL 3u5 if linked statically, getpid() returns different values in 6246 each thread. If registration and unregistration go in different threads 6247 (omp_misc_other_root_exit.cpp test case), the name of registered_lib_env 6248 env var can not be found, because the name will contain different pid. */ 6249 return __kmp_str_format("__KMP_REGISTERED_LIB_%d", (int)getpid()); 6250 } // __kmp_reg_status_get 6251 6252 void __kmp_register_library_startup(void) { 6253 6254 char *name = __kmp_reg_status_name(); // Name of the environment variable. 6255 int done = 0; 6256 union { 6257 double dtime; 6258 long ltime; 6259 } time; 6260 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 6261 __kmp_initialize_system_tick(); 6262 #endif 6263 __kmp_read_system_time(&time.dtime); 6264 __kmp_registration_flag = 0xCAFE0000L | (time.ltime & 0x0000FFFFL); 6265 __kmp_registration_str = 6266 __kmp_str_format("%p-%lx-%s", &__kmp_registration_flag, 6267 __kmp_registration_flag, KMP_LIBRARY_FILE); 6268 6269 KA_TRACE(50, ("__kmp_register_library_startup: %s=\"%s\"\n", name, 6270 __kmp_registration_str)); 6271 6272 while (!done) { 6273 6274 char *value = NULL; // Actual value of the environment variable. 6275 6276 // Set environment variable, but do not overwrite if it is exist. 6277 __kmp_env_set(name, __kmp_registration_str, 0); 6278 // Check the variable is written. 6279 value = __kmp_env_get(name); 6280 if (value != NULL && strcmp(value, __kmp_registration_str) == 0) { 6281 6282 done = 1; // Ok, environment variable set successfully, exit the loop. 6283 6284 } else { 6285 6286 // Oops. Write failed. Another copy of OpenMP RTL is in memory. 6287 // Check whether it alive or dead. 6288 int neighbor = 0; // 0 -- unknown status, 1 -- alive, 2 -- dead. 6289 char *tail = value; 6290 char *flag_addr_str = NULL; 6291 char *flag_val_str = NULL; 6292 char const *file_name = NULL; 6293 __kmp_str_split(tail, '-', &flag_addr_str, &tail); 6294 __kmp_str_split(tail, '-', &flag_val_str, &tail); 6295 file_name = tail; 6296 if (tail != NULL) { 6297 long *flag_addr = 0; 6298 long flag_val = 0; 6299 KMP_SSCANF(flag_addr_str, "%p", &flag_addr); 6300 KMP_SSCANF(flag_val_str, "%lx", &flag_val); 6301 if (flag_addr != 0 && flag_val != 0 && strcmp(file_name, "") != 0) { 6302 // First, check whether environment-encoded address is mapped into 6303 // addr space. 6304 // If so, dereference it to see if it still has the right value. 6305 if (__kmp_is_address_mapped(flag_addr) && *flag_addr == flag_val) { 6306 neighbor = 1; 6307 } else { 6308 // If not, then we know the other copy of the library is no longer 6309 // running. 6310 neighbor = 2; 6311 }; // if 6312 }; // if 6313 }; // if 6314 switch (neighbor) { 6315 case 0: // Cannot parse environment variable -- neighbor status unknown. 6316 // Assume it is the incompatible format of future version of the 6317 // library. Assume the other library is alive. 6318 // WARN( ... ); // TODO: Issue a warning. 6319 file_name = "unknown library"; 6320 // Attention! Falling to the next case. That's intentional. 6321 case 1: { // Neighbor is alive. 6322 // Check it is allowed. 6323 char *duplicate_ok = __kmp_env_get("KMP_DUPLICATE_LIB_OK"); 6324 if (!__kmp_str_match_true(duplicate_ok)) { 6325 // That's not allowed. Issue fatal error. 6326 __kmp_msg(kmp_ms_fatal, 6327 KMP_MSG(DuplicateLibrary, KMP_LIBRARY_FILE, file_name), 6328 KMP_HNT(DuplicateLibrary), __kmp_msg_null); 6329 }; // if 6330 KMP_INTERNAL_FREE(duplicate_ok); 6331 __kmp_duplicate_library_ok = 1; 6332 done = 1; // Exit the loop. 6333 } break; 6334 case 2: { // Neighbor is dead. 6335 // Clear the variable and try to register library again. 6336 __kmp_env_unset(name); 6337 } break; 6338 default: { KMP_DEBUG_ASSERT(0); } break; 6339 }; // switch 6340 6341 }; // if 6342 KMP_INTERNAL_FREE((void *)value); 6343 6344 }; // while 6345 KMP_INTERNAL_FREE((void *)name); 6346 6347 } // func __kmp_register_library_startup 6348 6349 void __kmp_unregister_library(void) { 6350 6351 char *name = __kmp_reg_status_name(); 6352 char *value = __kmp_env_get(name); 6353 6354 KMP_DEBUG_ASSERT(__kmp_registration_flag != 0); 6355 KMP_DEBUG_ASSERT(__kmp_registration_str != NULL); 6356 if (value != NULL && strcmp(value, __kmp_registration_str) == 0) { 6357 // Ok, this is our variable. Delete it. 6358 __kmp_env_unset(name); 6359 }; // if 6360 6361 KMP_INTERNAL_FREE(__kmp_registration_str); 6362 KMP_INTERNAL_FREE(value); 6363 KMP_INTERNAL_FREE(name); 6364 6365 __kmp_registration_flag = 0; 6366 __kmp_registration_str = NULL; 6367 6368 } // __kmp_unregister_library 6369 6370 // End of Library registration stuff. 6371 // ----------------------------------------------------------------------------- 6372 6373 #if KMP_MIC_SUPPORTED 6374 6375 static void __kmp_check_mic_type() { 6376 kmp_cpuid_t cpuid_state = {0}; 6377 kmp_cpuid_t *cs_p = &cpuid_state; 6378 __kmp_x86_cpuid(1, 0, cs_p); 6379 // We don't support mic1 at the moment 6380 if ((cs_p->eax & 0xff0) == 0xB10) { 6381 __kmp_mic_type = mic2; 6382 } else if ((cs_p->eax & 0xf0ff0) == 0x50670) { 6383 __kmp_mic_type = mic3; 6384 } else { 6385 __kmp_mic_type = non_mic; 6386 } 6387 } 6388 6389 #endif /* KMP_MIC_SUPPORTED */ 6390 6391 static void __kmp_do_serial_initialize(void) { 6392 int i, gtid; 6393 int size; 6394 6395 KA_TRACE(10, ("__kmp_do_serial_initialize: enter\n")); 6396 6397 KMP_DEBUG_ASSERT(sizeof(kmp_int32) == 4); 6398 KMP_DEBUG_ASSERT(sizeof(kmp_uint32) == 4); 6399 KMP_DEBUG_ASSERT(sizeof(kmp_int64) == 8); 6400 KMP_DEBUG_ASSERT(sizeof(kmp_uint64) == 8); 6401 KMP_DEBUG_ASSERT(sizeof(kmp_intptr_t) == sizeof(void *)); 6402 6403 #if OMPT_SUPPORT 6404 ompt_pre_init(); 6405 #endif 6406 6407 __kmp_validate_locks(); 6408 6409 /* Initialize internal memory allocator */ 6410 __kmp_init_allocator(); 6411 6412 /* Register the library startup via an environment variable and check to see 6413 whether another copy of the library is already registered. */ 6414 6415 __kmp_register_library_startup(); 6416 6417 /* TODO reinitialization of library */ 6418 if (TCR_4(__kmp_global.g.g_done)) { 6419 KA_TRACE(10, ("__kmp_do_serial_initialize: reinitialization of library\n")); 6420 } 6421 6422 __kmp_global.g.g_abort = 0; 6423 TCW_SYNC_4(__kmp_global.g.g_done, FALSE); 6424 6425 /* initialize the locks */ 6426 #if KMP_USE_ADAPTIVE_LOCKS 6427 #if KMP_DEBUG_ADAPTIVE_LOCKS 6428 __kmp_init_speculative_stats(); 6429 #endif 6430 #endif 6431 #if KMP_STATS_ENABLED 6432 __kmp_stats_init(); 6433 #endif 6434 __kmp_init_lock(&__kmp_global_lock); 6435 __kmp_init_queuing_lock(&__kmp_dispatch_lock); 6436 __kmp_init_lock(&__kmp_debug_lock); 6437 __kmp_init_atomic_lock(&__kmp_atomic_lock); 6438 __kmp_init_atomic_lock(&__kmp_atomic_lock_1i); 6439 __kmp_init_atomic_lock(&__kmp_atomic_lock_2i); 6440 __kmp_init_atomic_lock(&__kmp_atomic_lock_4i); 6441 __kmp_init_atomic_lock(&__kmp_atomic_lock_4r); 6442 __kmp_init_atomic_lock(&__kmp_atomic_lock_8i); 6443 __kmp_init_atomic_lock(&__kmp_atomic_lock_8r); 6444 __kmp_init_atomic_lock(&__kmp_atomic_lock_8c); 6445 __kmp_init_atomic_lock(&__kmp_atomic_lock_10r); 6446 __kmp_init_atomic_lock(&__kmp_atomic_lock_16r); 6447 __kmp_init_atomic_lock(&__kmp_atomic_lock_16c); 6448 __kmp_init_atomic_lock(&__kmp_atomic_lock_20c); 6449 __kmp_init_atomic_lock(&__kmp_atomic_lock_32c); 6450 __kmp_init_bootstrap_lock(&__kmp_forkjoin_lock); 6451 __kmp_init_bootstrap_lock(&__kmp_exit_lock); 6452 #if KMP_USE_MONITOR 6453 __kmp_init_bootstrap_lock(&__kmp_monitor_lock); 6454 #endif 6455 __kmp_init_bootstrap_lock(&__kmp_tp_cached_lock); 6456 6457 /* conduct initialization and initial setup of configuration */ 6458 6459 __kmp_runtime_initialize(); 6460 6461 #if KMP_MIC_SUPPORTED 6462 __kmp_check_mic_type(); 6463 #endif 6464 6465 // Some global variable initialization moved here from kmp_env_initialize() 6466 #ifdef KMP_DEBUG 6467 kmp_diag = 0; 6468 #endif 6469 __kmp_abort_delay = 0; 6470 6471 // From __kmp_init_dflt_team_nth() 6472 /* assume the entire machine will be used */ 6473 __kmp_dflt_team_nth_ub = __kmp_xproc; 6474 if (__kmp_dflt_team_nth_ub < KMP_MIN_NTH) { 6475 __kmp_dflt_team_nth_ub = KMP_MIN_NTH; 6476 } 6477 if (__kmp_dflt_team_nth_ub > __kmp_sys_max_nth) { 6478 __kmp_dflt_team_nth_ub = __kmp_sys_max_nth; 6479 } 6480 __kmp_max_nth = __kmp_sys_max_nth; 6481 __kmp_cg_max_nth = __kmp_sys_max_nth; 6482 __kmp_teams_max_nth = __kmp_xproc; // set a "reasonable" default 6483 if (__kmp_teams_max_nth > __kmp_sys_max_nth) { 6484 __kmp_teams_max_nth = __kmp_sys_max_nth; 6485 } 6486 6487 // Three vars below moved here from __kmp_env_initialize() "KMP_BLOCKTIME" 6488 // part 6489 __kmp_dflt_blocktime = KMP_DEFAULT_BLOCKTIME; 6490 #if KMP_USE_MONITOR 6491 __kmp_monitor_wakeups = 6492 KMP_WAKEUPS_FROM_BLOCKTIME(__kmp_dflt_blocktime, __kmp_monitor_wakeups); 6493 __kmp_bt_intervals = 6494 KMP_INTERVALS_FROM_BLOCKTIME(__kmp_dflt_blocktime, __kmp_monitor_wakeups); 6495 #endif 6496 // From "KMP_LIBRARY" part of __kmp_env_initialize() 6497 __kmp_library = library_throughput; 6498 // From KMP_SCHEDULE initialization 6499 __kmp_static = kmp_sch_static_balanced; 6500 // AC: do not use analytical here, because it is non-monotonous 6501 //__kmp_guided = kmp_sch_guided_iterative_chunked; 6502 //__kmp_auto = kmp_sch_guided_analytical_chunked; // AC: it is the default, no 6503 // need to repeat assignment 6504 // Barrier initialization. Moved here from __kmp_env_initialize() Barrier branch 6505 // bit control and barrier method control parts 6506 #if KMP_FAST_REDUCTION_BARRIER 6507 #define kmp_reduction_barrier_gather_bb ((int)1) 6508 #define kmp_reduction_barrier_release_bb ((int)1) 6509 #define kmp_reduction_barrier_gather_pat bp_hyper_bar 6510 #define kmp_reduction_barrier_release_pat bp_hyper_bar 6511 #endif // KMP_FAST_REDUCTION_BARRIER 6512 for (i = bs_plain_barrier; i < bs_last_barrier; i++) { 6513 __kmp_barrier_gather_branch_bits[i] = __kmp_barrier_gather_bb_dflt; 6514 __kmp_barrier_release_branch_bits[i] = __kmp_barrier_release_bb_dflt; 6515 __kmp_barrier_gather_pattern[i] = __kmp_barrier_gather_pat_dflt; 6516 __kmp_barrier_release_pattern[i] = __kmp_barrier_release_pat_dflt; 6517 #if KMP_FAST_REDUCTION_BARRIER 6518 if (i == bs_reduction_barrier) { // tested and confirmed on ALTIX only ( 6519 // lin_64 ): hyper,1 6520 __kmp_barrier_gather_branch_bits[i] = kmp_reduction_barrier_gather_bb; 6521 __kmp_barrier_release_branch_bits[i] = kmp_reduction_barrier_release_bb; 6522 __kmp_barrier_gather_pattern[i] = kmp_reduction_barrier_gather_pat; 6523 __kmp_barrier_release_pattern[i] = kmp_reduction_barrier_release_pat; 6524 } 6525 #endif // KMP_FAST_REDUCTION_BARRIER 6526 } 6527 #if KMP_FAST_REDUCTION_BARRIER 6528 #undef kmp_reduction_barrier_release_pat 6529 #undef kmp_reduction_barrier_gather_pat 6530 #undef kmp_reduction_barrier_release_bb 6531 #undef kmp_reduction_barrier_gather_bb 6532 #endif // KMP_FAST_REDUCTION_BARRIER 6533 #if KMP_MIC_SUPPORTED 6534 if (__kmp_mic_type == mic2) { // KNC 6535 // AC: plane=3,2, forkjoin=2,1 are optimal for 240 threads on KNC 6536 __kmp_barrier_gather_branch_bits[bs_plain_barrier] = 3; // plain gather 6537 __kmp_barrier_release_branch_bits[bs_forkjoin_barrier] = 6538 1; // forkjoin release 6539 __kmp_barrier_gather_pattern[bs_forkjoin_barrier] = bp_hierarchical_bar; 6540 __kmp_barrier_release_pattern[bs_forkjoin_barrier] = bp_hierarchical_bar; 6541 } 6542 #if KMP_FAST_REDUCTION_BARRIER 6543 if (__kmp_mic_type == mic2) { // KNC 6544 __kmp_barrier_gather_pattern[bs_reduction_barrier] = bp_hierarchical_bar; 6545 __kmp_barrier_release_pattern[bs_reduction_barrier] = bp_hierarchical_bar; 6546 } 6547 #endif // KMP_FAST_REDUCTION_BARRIER 6548 #endif // KMP_MIC_SUPPORTED 6549 6550 // From KMP_CHECKS initialization 6551 #ifdef KMP_DEBUG 6552 __kmp_env_checks = TRUE; /* development versions have the extra checks */ 6553 #else 6554 __kmp_env_checks = FALSE; /* port versions do not have the extra checks */ 6555 #endif 6556 6557 // From "KMP_FOREIGN_THREADS_THREADPRIVATE" initialization 6558 __kmp_foreign_tp = TRUE; 6559 6560 __kmp_global.g.g_dynamic = FALSE; 6561 __kmp_global.g.g_dynamic_mode = dynamic_default; 6562 6563 __kmp_env_initialize(NULL); 6564 6565 // Print all messages in message catalog for testing purposes. 6566 #ifdef KMP_DEBUG 6567 char const *val = __kmp_env_get("KMP_DUMP_CATALOG"); 6568 if (__kmp_str_match_true(val)) { 6569 kmp_str_buf_t buffer; 6570 __kmp_str_buf_init(&buffer); 6571 __kmp_i18n_dump_catalog(&buffer); 6572 __kmp_printf("%s", buffer.str); 6573 __kmp_str_buf_free(&buffer); 6574 }; // if 6575 __kmp_env_free(&val); 6576 #endif 6577 6578 __kmp_threads_capacity = 6579 __kmp_initial_threads_capacity(__kmp_dflt_team_nth_ub); 6580 // Moved here from __kmp_env_initialize() "KMP_ALL_THREADPRIVATE" part 6581 __kmp_tp_capacity = __kmp_default_tp_capacity( 6582 __kmp_dflt_team_nth_ub, __kmp_max_nth, __kmp_allThreadsSpecified); 6583 6584 // If the library is shut down properly, both pools must be NULL. Just in 6585 // case, set them to NULL -- some memory may leak, but subsequent code will 6586 // work even if pools are not freed. 6587 KMP_DEBUG_ASSERT(__kmp_thread_pool == NULL); 6588 KMP_DEBUG_ASSERT(__kmp_thread_pool_insert_pt == NULL); 6589 KMP_DEBUG_ASSERT(__kmp_team_pool == NULL); 6590 __kmp_thread_pool = NULL; 6591 __kmp_thread_pool_insert_pt = NULL; 6592 __kmp_team_pool = NULL; 6593 6594 /* Allocate all of the variable sized records */ 6595 /* NOTE: __kmp_threads_capacity entries are allocated, but the arrays are 6596 * expandable */ 6597 /* Since allocation is cache-aligned, just add extra padding at the end */ 6598 size = 6599 (sizeof(kmp_info_t *) + sizeof(kmp_root_t *)) * __kmp_threads_capacity + 6600 CACHE_LINE; 6601 __kmp_threads = (kmp_info_t **)__kmp_allocate(size); 6602 __kmp_root = (kmp_root_t **)((char *)__kmp_threads + 6603 sizeof(kmp_info_t *) * __kmp_threads_capacity); 6604 6605 /* init thread counts */ 6606 KMP_DEBUG_ASSERT(__kmp_all_nth == 6607 0); // Asserts fail if the library is reinitializing and 6608 KMP_DEBUG_ASSERT(__kmp_nth == 0); // something was wrong in termination. 6609 __kmp_all_nth = 0; 6610 __kmp_nth = 0; 6611 6612 /* setup the uber master thread and hierarchy */ 6613 gtid = __kmp_register_root(TRUE); 6614 KA_TRACE(10, ("__kmp_do_serial_initialize T#%d\n", gtid)); 6615 KMP_ASSERT(KMP_UBER_GTID(gtid)); 6616 KMP_ASSERT(KMP_INITIAL_GTID(gtid)); 6617 6618 KMP_MB(); /* Flush all pending memory write invalidates. */ 6619 6620 __kmp_common_initialize(); 6621 6622 #if KMP_OS_UNIX 6623 /* invoke the child fork handler */ 6624 __kmp_register_atfork(); 6625 #endif 6626 6627 #if !defined KMP_DYNAMIC_LIB 6628 { 6629 /* Invoke the exit handler when the program finishes, only for static 6630 library. For dynamic library, we already have _fini and DllMain. */ 6631 int rc = atexit(__kmp_internal_end_atexit); 6632 if (rc != 0) { 6633 __kmp_msg(kmp_ms_fatal, KMP_MSG(FunctionError, "atexit()"), KMP_ERR(rc), 6634 __kmp_msg_null); 6635 }; // if 6636 } 6637 #endif 6638 6639 #if KMP_HANDLE_SIGNALS 6640 #if KMP_OS_UNIX 6641 /* NOTE: make sure that this is called before the user installs their own 6642 signal handlers so that the user handlers are called first. this way they 6643 can return false, not call our handler, avoid terminating the library, and 6644 continue execution where they left off. */ 6645 __kmp_install_signals(FALSE); 6646 #endif /* KMP_OS_UNIX */ 6647 #if KMP_OS_WINDOWS 6648 __kmp_install_signals(TRUE); 6649 #endif /* KMP_OS_WINDOWS */ 6650 #endif 6651 6652 /* we have finished the serial initialization */ 6653 __kmp_init_counter++; 6654 6655 __kmp_init_serial = TRUE; 6656 6657 if (__kmp_settings) { 6658 __kmp_env_print(); 6659 } 6660 6661 #if OMP_40_ENABLED 6662 if (__kmp_display_env || __kmp_display_env_verbose) { 6663 __kmp_env_print_2(); 6664 } 6665 #endif // OMP_40_ENABLED 6666 6667 #if OMPT_SUPPORT 6668 ompt_post_init(); 6669 #endif 6670 6671 KMP_MB(); 6672 6673 KA_TRACE(10, ("__kmp_do_serial_initialize: exit\n")); 6674 } 6675 6676 void __kmp_serial_initialize(void) { 6677 if (__kmp_init_serial) { 6678 return; 6679 } 6680 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6681 if (__kmp_init_serial) { 6682 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6683 return; 6684 } 6685 __kmp_do_serial_initialize(); 6686 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6687 } 6688 6689 static void __kmp_do_middle_initialize(void) { 6690 int i, j; 6691 int prev_dflt_team_nth; 6692 6693 if (!__kmp_init_serial) { 6694 __kmp_do_serial_initialize(); 6695 } 6696 6697 KA_TRACE(10, ("__kmp_middle_initialize: enter\n")); 6698 6699 // Save the previous value for the __kmp_dflt_team_nth so that 6700 // we can avoid some reinitialization if it hasn't changed. 6701 prev_dflt_team_nth = __kmp_dflt_team_nth; 6702 6703 #if KMP_AFFINITY_SUPPORTED 6704 // __kmp_affinity_initialize() will try to set __kmp_ncores to the 6705 // number of cores on the machine. 6706 __kmp_affinity_initialize(); 6707 6708 // Run through the __kmp_threads array and set the affinity mask 6709 // for each root thread that is currently registered with the RTL. 6710 for (i = 0; i < __kmp_threads_capacity; i++) { 6711 if (TCR_PTR(__kmp_threads[i]) != NULL) { 6712 __kmp_affinity_set_init_mask(i, TRUE); 6713 } 6714 } 6715 #endif /* KMP_AFFINITY_SUPPORTED */ 6716 6717 KMP_ASSERT(__kmp_xproc > 0); 6718 if (__kmp_avail_proc == 0) { 6719 __kmp_avail_proc = __kmp_xproc; 6720 } 6721 6722 // If there were empty places in num_threads list (OMP_NUM_THREADS=,,2,3), 6723 // correct them now 6724 j = 0; 6725 while ((j < __kmp_nested_nth.used) && !__kmp_nested_nth.nth[j]) { 6726 __kmp_nested_nth.nth[j] = __kmp_dflt_team_nth = __kmp_dflt_team_nth_ub = 6727 __kmp_avail_proc; 6728 j++; 6729 } 6730 6731 if (__kmp_dflt_team_nth == 0) { 6732 #ifdef KMP_DFLT_NTH_CORES 6733 // Default #threads = #cores 6734 __kmp_dflt_team_nth = __kmp_ncores; 6735 KA_TRACE(20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = " 6736 "__kmp_ncores (%d)\n", 6737 __kmp_dflt_team_nth)); 6738 #else 6739 // Default #threads = #available OS procs 6740 __kmp_dflt_team_nth = __kmp_avail_proc; 6741 KA_TRACE(20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = " 6742 "__kmp_avail_proc(%d)\n", 6743 __kmp_dflt_team_nth)); 6744 #endif /* KMP_DFLT_NTH_CORES */ 6745 } 6746 6747 if (__kmp_dflt_team_nth < KMP_MIN_NTH) { 6748 __kmp_dflt_team_nth = KMP_MIN_NTH; 6749 } 6750 if (__kmp_dflt_team_nth > __kmp_sys_max_nth) { 6751 __kmp_dflt_team_nth = __kmp_sys_max_nth; 6752 } 6753 6754 // There's no harm in continuing if the following check fails, 6755 // but it indicates an error in the previous logic. 6756 KMP_DEBUG_ASSERT(__kmp_dflt_team_nth <= __kmp_dflt_team_nth_ub); 6757 6758 if (__kmp_dflt_team_nth != prev_dflt_team_nth) { 6759 // Run through the __kmp_threads array and set the num threads icv for each 6760 // root thread that is currently registered with the RTL (which has not 6761 // already explicitly set its nthreads-var with a call to 6762 // omp_set_num_threads()). 6763 for (i = 0; i < __kmp_threads_capacity; i++) { 6764 kmp_info_t *thread = __kmp_threads[i]; 6765 if (thread == NULL) 6766 continue; 6767 if (thread->th.th_current_task->td_icvs.nproc != 0) 6768 continue; 6769 6770 set__nproc(__kmp_threads[i], __kmp_dflt_team_nth); 6771 } 6772 } 6773 KA_TRACE( 6774 20, 6775 ("__kmp_middle_initialize: final value for __kmp_dflt_team_nth = %d\n", 6776 __kmp_dflt_team_nth)); 6777 6778 #ifdef KMP_ADJUST_BLOCKTIME 6779 /* Adjust blocktime to zero if necessary now that __kmp_avail_proc is set */ 6780 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 6781 KMP_DEBUG_ASSERT(__kmp_avail_proc > 0); 6782 if (__kmp_nth > __kmp_avail_proc) { 6783 __kmp_zero_bt = TRUE; 6784 } 6785 } 6786 #endif /* KMP_ADJUST_BLOCKTIME */ 6787 6788 /* we have finished middle initialization */ 6789 TCW_SYNC_4(__kmp_init_middle, TRUE); 6790 6791 KA_TRACE(10, ("__kmp_do_middle_initialize: exit\n")); 6792 } 6793 6794 void __kmp_middle_initialize(void) { 6795 if (__kmp_init_middle) { 6796 return; 6797 } 6798 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6799 if (__kmp_init_middle) { 6800 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6801 return; 6802 } 6803 __kmp_do_middle_initialize(); 6804 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6805 } 6806 6807 void __kmp_parallel_initialize(void) { 6808 int gtid = __kmp_entry_gtid(); // this might be a new root 6809 6810 /* synchronize parallel initialization (for sibling) */ 6811 if (TCR_4(__kmp_init_parallel)) 6812 return; 6813 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6814 if (TCR_4(__kmp_init_parallel)) { 6815 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6816 return; 6817 } 6818 6819 /* TODO reinitialization after we have already shut down */ 6820 if (TCR_4(__kmp_global.g.g_done)) { 6821 KA_TRACE( 6822 10, 6823 ("__kmp_parallel_initialize: attempt to init while shutting down\n")); 6824 __kmp_infinite_loop(); 6825 } 6826 6827 /* jc: The lock __kmp_initz_lock is already held, so calling 6828 __kmp_serial_initialize would cause a deadlock. So we call 6829 __kmp_do_serial_initialize directly. */ 6830 if (!__kmp_init_middle) { 6831 __kmp_do_middle_initialize(); 6832 } 6833 6834 /* begin initialization */ 6835 KA_TRACE(10, ("__kmp_parallel_initialize: enter\n")); 6836 KMP_ASSERT(KMP_UBER_GTID(gtid)); 6837 6838 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 6839 // Save the FP control regs. 6840 // Worker threads will set theirs to these values at thread startup. 6841 __kmp_store_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word); 6842 __kmp_store_mxcsr(&__kmp_init_mxcsr); 6843 __kmp_init_mxcsr &= KMP_X86_MXCSR_MASK; 6844 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 6845 6846 #if KMP_OS_UNIX 6847 #if KMP_HANDLE_SIGNALS 6848 /* must be after __kmp_serial_initialize */ 6849 __kmp_install_signals(TRUE); 6850 #endif 6851 #endif 6852 6853 __kmp_suspend_initialize(); 6854 6855 #if defined(USE_LOAD_BALANCE) 6856 if (__kmp_global.g.g_dynamic_mode == dynamic_default) { 6857 __kmp_global.g.g_dynamic_mode = dynamic_load_balance; 6858 } 6859 #else 6860 if (__kmp_global.g.g_dynamic_mode == dynamic_default) { 6861 __kmp_global.g.g_dynamic_mode = dynamic_thread_limit; 6862 } 6863 #endif 6864 6865 if (__kmp_version) { 6866 __kmp_print_version_2(); 6867 } 6868 6869 /* we have finished parallel initialization */ 6870 TCW_SYNC_4(__kmp_init_parallel, TRUE); 6871 6872 KMP_MB(); 6873 KA_TRACE(10, ("__kmp_parallel_initialize: exit\n")); 6874 6875 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6876 } 6877 6878 /* ------------------------------------------------------------------------ */ 6879 6880 void __kmp_run_before_invoked_task(int gtid, int tid, kmp_info_t *this_thr, 6881 kmp_team_t *team) { 6882 kmp_disp_t *dispatch; 6883 6884 KMP_MB(); 6885 6886 /* none of the threads have encountered any constructs, yet. */ 6887 this_thr->th.th_local.this_construct = 0; 6888 #if KMP_CACHE_MANAGE 6889 KMP_CACHE_PREFETCH(&this_thr->th.th_bar[bs_forkjoin_barrier].bb.b_arrived); 6890 #endif /* KMP_CACHE_MANAGE */ 6891 dispatch = (kmp_disp_t *)TCR_PTR(this_thr->th.th_dispatch); 6892 KMP_DEBUG_ASSERT(dispatch); 6893 KMP_DEBUG_ASSERT(team->t.t_dispatch); 6894 // KMP_DEBUG_ASSERT( this_thr->th.th_dispatch == &team->t.t_dispatch[ 6895 // this_thr->th.th_info.ds.ds_tid ] ); 6896 6897 dispatch->th_disp_index = 0; /* reset the dispatch buffer counter */ 6898 #if OMP_45_ENABLED 6899 dispatch->th_doacross_buf_idx = 6900 0; /* reset the doacross dispatch buffer counter */ 6901 #endif 6902 if (__kmp_env_consistency_check) 6903 __kmp_push_parallel(gtid, team->t.t_ident); 6904 6905 KMP_MB(); /* Flush all pending memory write invalidates. */ 6906 } 6907 6908 void __kmp_run_after_invoked_task(int gtid, int tid, kmp_info_t *this_thr, 6909 kmp_team_t *team) { 6910 if (__kmp_env_consistency_check) 6911 __kmp_pop_parallel(gtid, team->t.t_ident); 6912 6913 __kmp_finish_implicit_task(this_thr); 6914 } 6915 6916 int __kmp_invoke_task_func(int gtid) { 6917 int rc; 6918 int tid = __kmp_tid_from_gtid(gtid); 6919 kmp_info_t *this_thr = __kmp_threads[gtid]; 6920 kmp_team_t *team = this_thr->th.th_team; 6921 6922 __kmp_run_before_invoked_task(gtid, tid, this_thr, team); 6923 #if USE_ITT_BUILD 6924 if (__itt_stack_caller_create_ptr) { 6925 __kmp_itt_stack_callee_enter( 6926 (__itt_caller) 6927 team->t.t_stack_id); // inform ittnotify about entering user's code 6928 } 6929 #endif /* USE_ITT_BUILD */ 6930 #if INCLUDE_SSC_MARKS 6931 SSC_MARK_INVOKING(); 6932 #endif 6933 6934 #if OMPT_SUPPORT 6935 void *dummy; 6936 void **exit_runtime_p; 6937 ompt_task_id_t my_task_id; 6938 ompt_parallel_id_t my_parallel_id; 6939 6940 if (ompt_enabled) { 6941 exit_runtime_p = &(team->t.t_implicit_task_taskdata[tid] 6942 .ompt_task_info.frame.exit_runtime_frame); 6943 } else { 6944 exit_runtime_p = &dummy; 6945 } 6946 6947 #if OMPT_TRACE 6948 my_task_id = team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_id; 6949 my_parallel_id = team->t.ompt_team_info.parallel_id; 6950 if (ompt_enabled && 6951 ompt_callbacks.ompt_callback(ompt_event_implicit_task_begin)) { 6952 ompt_callbacks.ompt_callback(ompt_event_implicit_task_begin)(my_parallel_id, 6953 my_task_id); 6954 } 6955 #endif 6956 #endif 6957 6958 { 6959 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 6960 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 6961 rc = 6962 __kmp_invoke_microtask((microtask_t)TCR_SYNC_PTR(team->t.t_pkfn), gtid, 6963 tid, (int)team->t.t_argc, (void **)team->t.t_argv 6964 #if OMPT_SUPPORT 6965 , 6966 exit_runtime_p 6967 #endif 6968 ); 6969 #if OMPT_SUPPORT 6970 *exit_runtime_p = NULL; 6971 #endif 6972 } 6973 6974 #if USE_ITT_BUILD 6975 if (__itt_stack_caller_create_ptr) { 6976 __kmp_itt_stack_callee_leave( 6977 (__itt_caller) 6978 team->t.t_stack_id); // inform ittnotify about leaving user's code 6979 } 6980 #endif /* USE_ITT_BUILD */ 6981 __kmp_run_after_invoked_task(gtid, tid, this_thr, team); 6982 6983 return rc; 6984 } 6985 6986 #if OMP_40_ENABLED 6987 void __kmp_teams_master(int gtid) { 6988 // This routine is called by all master threads in teams construct 6989 kmp_info_t *thr = __kmp_threads[gtid]; 6990 kmp_team_t *team = thr->th.th_team; 6991 ident_t *loc = team->t.t_ident; 6992 thr->th.th_set_nproc = thr->th.th_teams_size.nth; 6993 KMP_DEBUG_ASSERT(thr->th.th_teams_microtask); 6994 KMP_DEBUG_ASSERT(thr->th.th_set_nproc); 6995 KA_TRACE(20, ("__kmp_teams_master: T#%d, Tid %d, microtask %p\n", gtid, 6996 __kmp_tid_from_gtid(gtid), thr->th.th_teams_microtask)); 6997 // Launch league of teams now, but not let workers execute 6998 // (they hang on fork barrier until next parallel) 6999 #if INCLUDE_SSC_MARKS 7000 SSC_MARK_FORKING(); 7001 #endif 7002 __kmp_fork_call(loc, gtid, fork_context_intel, team->t.t_argc, 7003 #if OMPT_SUPPORT 7004 (void *)thr->th.th_teams_microtask, // "unwrapped" task 7005 #endif 7006 (microtask_t)thr->th.th_teams_microtask, // "wrapped" task 7007 VOLATILE_CAST(launch_t) __kmp_invoke_task_func, NULL); 7008 #if INCLUDE_SSC_MARKS 7009 SSC_MARK_JOINING(); 7010 #endif 7011 7012 // AC: last parameter "1" eliminates join barrier which won't work because 7013 // worker threads are in a fork barrier waiting for more parallel regions 7014 __kmp_join_call(loc, gtid 7015 #if OMPT_SUPPORT 7016 , 7017 fork_context_intel 7018 #endif 7019 , 7020 1); 7021 } 7022 7023 int __kmp_invoke_teams_master(int gtid) { 7024 kmp_info_t *this_thr = __kmp_threads[gtid]; 7025 kmp_team_t *team = this_thr->th.th_team; 7026 #if KMP_DEBUG 7027 if (!__kmp_threads[gtid]->th.th_team->t.t_serialized) 7028 KMP_DEBUG_ASSERT((void *)__kmp_threads[gtid]->th.th_team->t.t_pkfn == 7029 (void *)__kmp_teams_master); 7030 #endif 7031 __kmp_run_before_invoked_task(gtid, 0, this_thr, team); 7032 __kmp_teams_master(gtid); 7033 __kmp_run_after_invoked_task(gtid, 0, this_thr, team); 7034 return 1; 7035 } 7036 #endif /* OMP_40_ENABLED */ 7037 7038 /* this sets the requested number of threads for the next parallel region 7039 encountered by this team. since this should be enclosed in the forkjoin 7040 critical section it should avoid race conditions with assymmetrical nested 7041 parallelism */ 7042 7043 void __kmp_push_num_threads(ident_t *id, int gtid, int num_threads) { 7044 kmp_info_t *thr = __kmp_threads[gtid]; 7045 7046 if (num_threads > 0) 7047 thr->th.th_set_nproc = num_threads; 7048 } 7049 7050 #if OMP_40_ENABLED 7051 7052 /* this sets the requested number of teams for the teams region and/or 7053 the number of threads for the next parallel region encountered */ 7054 void __kmp_push_num_teams(ident_t *id, int gtid, int num_teams, 7055 int num_threads) { 7056 kmp_info_t *thr = __kmp_threads[gtid]; 7057 KMP_DEBUG_ASSERT(num_teams >= 0); 7058 KMP_DEBUG_ASSERT(num_threads >= 0); 7059 7060 if (num_teams == 0) 7061 num_teams = 1; // default number of teams is 1. 7062 if (num_teams > __kmp_teams_max_nth) { // if too many teams requested? 7063 if (!__kmp_reserve_warn) { 7064 __kmp_reserve_warn = 1; 7065 __kmp_msg(kmp_ms_warning, 7066 KMP_MSG(CantFormThrTeam, num_teams, __kmp_teams_max_nth), 7067 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 7068 } 7069 num_teams = __kmp_teams_max_nth; 7070 } 7071 // Set number of teams (number of threads in the outer "parallel" of the 7072 // teams) 7073 thr->th.th_set_nproc = thr->th.th_teams_size.nteams = num_teams; 7074 7075 // Remember the number of threads for inner parallel regions 7076 if (num_threads == 0) { 7077 if (!TCR_4(__kmp_init_middle)) 7078 __kmp_middle_initialize(); // get __kmp_avail_proc calculated 7079 num_threads = __kmp_avail_proc / num_teams; 7080 if (num_teams * num_threads > __kmp_teams_max_nth) { 7081 // adjust num_threads w/o warning as it is not user setting 7082 num_threads = __kmp_teams_max_nth / num_teams; 7083 } 7084 } else { 7085 if (num_teams * num_threads > __kmp_teams_max_nth) { 7086 int new_threads = __kmp_teams_max_nth / num_teams; 7087 if (!__kmp_reserve_warn) { // user asked for too many threads 7088 __kmp_reserve_warn = 1; // that conflicts with KMP_TEAMS_THREAD_LIMIT 7089 __kmp_msg(kmp_ms_warning, 7090 KMP_MSG(CantFormThrTeam, num_threads, new_threads), 7091 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 7092 } 7093 num_threads = new_threads; 7094 } 7095 } 7096 thr->th.th_teams_size.nth = num_threads; 7097 } 7098 7099 // Set the proc_bind var to use in the following parallel region. 7100 void __kmp_push_proc_bind(ident_t *id, int gtid, kmp_proc_bind_t proc_bind) { 7101 kmp_info_t *thr = __kmp_threads[gtid]; 7102 thr->th.th_set_proc_bind = proc_bind; 7103 } 7104 7105 #endif /* OMP_40_ENABLED */ 7106 7107 /* Launch the worker threads into the microtask. */ 7108 7109 void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team) { 7110 kmp_info_t *this_thr = __kmp_threads[gtid]; 7111 7112 #ifdef KMP_DEBUG 7113 int f; 7114 #endif /* KMP_DEBUG */ 7115 7116 KMP_DEBUG_ASSERT(team); 7117 KMP_DEBUG_ASSERT(this_thr->th.th_team == team); 7118 KMP_ASSERT(KMP_MASTER_GTID(gtid)); 7119 KMP_MB(); /* Flush all pending memory write invalidates. */ 7120 7121 team->t.t_construct = 0; /* no single directives seen yet */ 7122 team->t.t_ordered.dt.t_value = 7123 0; /* thread 0 enters the ordered section first */ 7124 7125 /* Reset the identifiers on the dispatch buffer */ 7126 KMP_DEBUG_ASSERT(team->t.t_disp_buffer); 7127 if (team->t.t_max_nproc > 1) { 7128 int i; 7129 for (i = 0; i < __kmp_dispatch_num_buffers; ++i) { 7130 team->t.t_disp_buffer[i].buffer_index = i; 7131 #if OMP_45_ENABLED 7132 team->t.t_disp_buffer[i].doacross_buf_idx = i; 7133 #endif 7134 } 7135 } else { 7136 team->t.t_disp_buffer[0].buffer_index = 0; 7137 #if OMP_45_ENABLED 7138 team->t.t_disp_buffer[0].doacross_buf_idx = 0; 7139 #endif 7140 } 7141 7142 KMP_MB(); /* Flush all pending memory write invalidates. */ 7143 KMP_ASSERT(this_thr->th.th_team == team); 7144 7145 #ifdef KMP_DEBUG 7146 for (f = 0; f < team->t.t_nproc; f++) { 7147 KMP_DEBUG_ASSERT(team->t.t_threads[f] && 7148 team->t.t_threads[f]->th.th_team_nproc == team->t.t_nproc); 7149 } 7150 #endif /* KMP_DEBUG */ 7151 7152 /* release the worker threads so they may begin working */ 7153 __kmp_fork_barrier(gtid, 0); 7154 } 7155 7156 void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team) { 7157 kmp_info_t *this_thr = __kmp_threads[gtid]; 7158 7159 KMP_DEBUG_ASSERT(team); 7160 KMP_DEBUG_ASSERT(this_thr->th.th_team == team); 7161 KMP_ASSERT(KMP_MASTER_GTID(gtid)); 7162 KMP_MB(); /* Flush all pending memory write invalidates. */ 7163 7164 /* Join barrier after fork */ 7165 7166 #ifdef KMP_DEBUG 7167 if (__kmp_threads[gtid] && 7168 __kmp_threads[gtid]->th.th_team_nproc != team->t.t_nproc) { 7169 __kmp_printf("GTID: %d, __kmp_threads[%d]=%p\n", gtid, gtid, 7170 __kmp_threads[gtid]); 7171 __kmp_printf("__kmp_threads[%d]->th.th_team_nproc=%d, TEAM: %p, " 7172 "team->t.t_nproc=%d\n", 7173 gtid, __kmp_threads[gtid]->th.th_team_nproc, team, 7174 team->t.t_nproc); 7175 __kmp_print_structure(); 7176 } 7177 KMP_DEBUG_ASSERT(__kmp_threads[gtid] && 7178 __kmp_threads[gtid]->th.th_team_nproc == team->t.t_nproc); 7179 #endif /* KMP_DEBUG */ 7180 7181 __kmp_join_barrier(gtid); /* wait for everyone */ 7182 7183 KMP_MB(); /* Flush all pending memory write invalidates. */ 7184 KMP_ASSERT(this_thr->th.th_team == team); 7185 } 7186 7187 /* ------------------------------------------------------------------------ */ 7188 7189 #ifdef USE_LOAD_BALANCE 7190 7191 // Return the worker threads actively spinning in the hot team, if we 7192 // are at the outermost level of parallelism. Otherwise, return 0. 7193 static int __kmp_active_hot_team_nproc(kmp_root_t *root) { 7194 int i; 7195 int retval; 7196 kmp_team_t *hot_team; 7197 7198 if (root->r.r_active) { 7199 return 0; 7200 } 7201 hot_team = root->r.r_hot_team; 7202 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { 7203 return hot_team->t.t_nproc - 1; // Don't count master thread 7204 } 7205 7206 // Skip the master thread - it is accounted for elsewhere. 7207 retval = 0; 7208 for (i = 1; i < hot_team->t.t_nproc; i++) { 7209 if (hot_team->t.t_threads[i]->th.th_active) { 7210 retval++; 7211 } 7212 } 7213 return retval; 7214 } 7215 7216 // Perform an automatic adjustment to the number of 7217 // threads used by the next parallel region. 7218 static int __kmp_load_balance_nproc(kmp_root_t *root, int set_nproc) { 7219 int retval; 7220 int pool_active; 7221 int hot_team_active; 7222 int team_curr_active; 7223 int system_active; 7224 7225 KB_TRACE(20, ("__kmp_load_balance_nproc: called root:%p set_nproc:%d\n", root, 7226 set_nproc)); 7227 KMP_DEBUG_ASSERT(root); 7228 KMP_DEBUG_ASSERT(root->r.r_root_team->t.t_threads[0] 7229 ->th.th_current_task->td_icvs.dynamic == TRUE); 7230 KMP_DEBUG_ASSERT(set_nproc > 1); 7231 7232 if (set_nproc == 1) { 7233 KB_TRACE(20, ("__kmp_load_balance_nproc: serial execution.\n")); 7234 return 1; 7235 } 7236 7237 // Threads that are active in the thread pool, active in the hot team for this 7238 // particular root (if we are at the outer par level), and the currently 7239 // executing thread (to become the master) are available to add to the new 7240 // team, but are currently contributing to the system load, and must be 7241 // accounted for. 7242 pool_active = TCR_4(__kmp_thread_pool_active_nth); 7243 hot_team_active = __kmp_active_hot_team_nproc(root); 7244 team_curr_active = pool_active + hot_team_active + 1; 7245 7246 // Check the system load. 7247 system_active = __kmp_get_load_balance(__kmp_avail_proc + team_curr_active); 7248 KB_TRACE(30, ("__kmp_load_balance_nproc: system active = %d pool active = %d " 7249 "hot team active = %d\n", 7250 system_active, pool_active, hot_team_active)); 7251 7252 if (system_active < 0) { 7253 // There was an error reading the necessary info from /proc, so use the 7254 // thread limit algorithm instead. Once we set __kmp_global.g.g_dynamic_mode 7255 // = dynamic_thread_limit, we shouldn't wind up getting back here. 7256 __kmp_global.g.g_dynamic_mode = dynamic_thread_limit; 7257 KMP_WARNING(CantLoadBalUsing, "KMP_DYNAMIC_MODE=thread limit"); 7258 7259 // Make this call behave like the thread limit algorithm. 7260 retval = __kmp_avail_proc - __kmp_nth + 7261 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 7262 if (retval > set_nproc) { 7263 retval = set_nproc; 7264 } 7265 if (retval < KMP_MIN_NTH) { 7266 retval = KMP_MIN_NTH; 7267 } 7268 7269 KB_TRACE(20, ("__kmp_load_balance_nproc: thread limit exit. retval:%d\n", 7270 retval)); 7271 return retval; 7272 } 7273 7274 // There is a slight delay in the load balance algorithm in detecting new 7275 // running procs. The real system load at this instant should be at least as 7276 // large as the #active omp thread that are available to add to the team. 7277 if (system_active < team_curr_active) { 7278 system_active = team_curr_active; 7279 } 7280 retval = __kmp_avail_proc - system_active + team_curr_active; 7281 if (retval > set_nproc) { 7282 retval = set_nproc; 7283 } 7284 if (retval < KMP_MIN_NTH) { 7285 retval = KMP_MIN_NTH; 7286 } 7287 7288 KB_TRACE(20, ("__kmp_load_balance_nproc: exit. retval:%d\n", retval)); 7289 return retval; 7290 } // __kmp_load_balance_nproc() 7291 7292 #endif /* USE_LOAD_BALANCE */ 7293 7294 /* ------------------------------------------------------------------------ */ 7295 7296 /* NOTE: this is called with the __kmp_init_lock held */ 7297 void __kmp_cleanup(void) { 7298 int f; 7299 7300 KA_TRACE(10, ("__kmp_cleanup: enter\n")); 7301 7302 if (TCR_4(__kmp_init_parallel)) { 7303 #if KMP_HANDLE_SIGNALS 7304 __kmp_remove_signals(); 7305 #endif 7306 TCW_4(__kmp_init_parallel, FALSE); 7307 } 7308 7309 if (TCR_4(__kmp_init_middle)) { 7310 #if KMP_AFFINITY_SUPPORTED 7311 __kmp_affinity_uninitialize(); 7312 #endif /* KMP_AFFINITY_SUPPORTED */ 7313 __kmp_cleanup_hierarchy(); 7314 TCW_4(__kmp_init_middle, FALSE); 7315 } 7316 7317 KA_TRACE(10, ("__kmp_cleanup: go serial cleanup\n")); 7318 7319 if (__kmp_init_serial) { 7320 __kmp_runtime_destroy(); 7321 __kmp_init_serial = FALSE; 7322 } 7323 7324 for (f = 0; f < __kmp_threads_capacity; f++) { 7325 if (__kmp_root[f] != NULL) { 7326 __kmp_free(__kmp_root[f]); 7327 __kmp_root[f] = NULL; 7328 } 7329 } 7330 __kmp_free(__kmp_threads); 7331 // __kmp_threads and __kmp_root were allocated at once, as single block, so 7332 // there is no need in freeing __kmp_root. 7333 __kmp_threads = NULL; 7334 __kmp_root = NULL; 7335 __kmp_threads_capacity = 0; 7336 7337 #if KMP_USE_DYNAMIC_LOCK 7338 __kmp_cleanup_indirect_user_locks(); 7339 #else 7340 __kmp_cleanup_user_locks(); 7341 #endif 7342 7343 #if KMP_AFFINITY_SUPPORTED 7344 KMP_INTERNAL_FREE(CCAST(char *, __kmp_cpuinfo_file)); 7345 __kmp_cpuinfo_file = NULL; 7346 #endif /* KMP_AFFINITY_SUPPORTED */ 7347 7348 #if KMP_USE_ADAPTIVE_LOCKS 7349 #if KMP_DEBUG_ADAPTIVE_LOCKS 7350 __kmp_print_speculative_stats(); 7351 #endif 7352 #endif 7353 KMP_INTERNAL_FREE(__kmp_nested_nth.nth); 7354 __kmp_nested_nth.nth = NULL; 7355 __kmp_nested_nth.size = 0; 7356 __kmp_nested_nth.used = 0; 7357 KMP_INTERNAL_FREE(__kmp_nested_proc_bind.bind_types); 7358 __kmp_nested_proc_bind.bind_types = NULL; 7359 __kmp_nested_proc_bind.size = 0; 7360 __kmp_nested_proc_bind.used = 0; 7361 7362 __kmp_i18n_catclose(); 7363 7364 #if KMP_STATS_ENABLED 7365 __kmp_stats_fini(); 7366 #endif 7367 7368 KA_TRACE(10, ("__kmp_cleanup: exit\n")); 7369 } 7370 7371 /* ------------------------------------------------------------------------ */ 7372 7373 int __kmp_ignore_mppbeg(void) { 7374 char *env; 7375 7376 if ((env = getenv("KMP_IGNORE_MPPBEG")) != NULL) { 7377 if (__kmp_str_match_false(env)) 7378 return FALSE; 7379 } 7380 // By default __kmpc_begin() is no-op. 7381 return TRUE; 7382 } 7383 7384 int __kmp_ignore_mppend(void) { 7385 char *env; 7386 7387 if ((env = getenv("KMP_IGNORE_MPPEND")) != NULL) { 7388 if (__kmp_str_match_false(env)) 7389 return FALSE; 7390 } 7391 // By default __kmpc_end() is no-op. 7392 return TRUE; 7393 } 7394 7395 void __kmp_internal_begin(void) { 7396 int gtid; 7397 kmp_root_t *root; 7398 7399 /* this is a very important step as it will register new sibling threads 7400 and assign these new uber threads a new gtid */ 7401 gtid = __kmp_entry_gtid(); 7402 root = __kmp_threads[gtid]->th.th_root; 7403 KMP_ASSERT(KMP_UBER_GTID(gtid)); 7404 7405 if (root->r.r_begin) 7406 return; 7407 __kmp_acquire_lock(&root->r.r_begin_lock, gtid); 7408 if (root->r.r_begin) { 7409 __kmp_release_lock(&root->r.r_begin_lock, gtid); 7410 return; 7411 } 7412 7413 root->r.r_begin = TRUE; 7414 7415 __kmp_release_lock(&root->r.r_begin_lock, gtid); 7416 } 7417 7418 /* ------------------------------------------------------------------------ */ 7419 7420 void __kmp_user_set_library(enum library_type arg) { 7421 int gtid; 7422 kmp_root_t *root; 7423 kmp_info_t *thread; 7424 7425 /* first, make sure we are initialized so we can get our gtid */ 7426 7427 gtid = __kmp_entry_gtid(); 7428 thread = __kmp_threads[gtid]; 7429 7430 root = thread->th.th_root; 7431 7432 KA_TRACE(20, ("__kmp_user_set_library: enter T#%d, arg: %d, %d\n", gtid, arg, 7433 library_serial)); 7434 if (root->r.r_in_parallel) { /* Must be called in serial section of top-level 7435 thread */ 7436 KMP_WARNING(SetLibraryIncorrectCall); 7437 return; 7438 } 7439 7440 switch (arg) { 7441 case library_serial: 7442 thread->th.th_set_nproc = 0; 7443 set__nproc(thread, 1); 7444 break; 7445 case library_turnaround: 7446 thread->th.th_set_nproc = 0; 7447 set__nproc(thread, __kmp_dflt_team_nth ? __kmp_dflt_team_nth 7448 : __kmp_dflt_team_nth_ub); 7449 break; 7450 case library_throughput: 7451 thread->th.th_set_nproc = 0; 7452 set__nproc(thread, __kmp_dflt_team_nth ? __kmp_dflt_team_nth 7453 : __kmp_dflt_team_nth_ub); 7454 break; 7455 default: 7456 KMP_FATAL(UnknownLibraryType, arg); 7457 } 7458 7459 __kmp_aux_set_library(arg); 7460 } 7461 7462 void __kmp_aux_set_stacksize(size_t arg) { 7463 if (!__kmp_init_serial) 7464 __kmp_serial_initialize(); 7465 7466 #if KMP_OS_DARWIN 7467 if (arg & (0x1000 - 1)) { 7468 arg &= ~(0x1000 - 1); 7469 if (arg + 0x1000) /* check for overflow if we round up */ 7470 arg += 0x1000; 7471 } 7472 #endif 7473 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 7474 7475 /* only change the default stacksize before the first parallel region */ 7476 if (!TCR_4(__kmp_init_parallel)) { 7477 size_t value = arg; /* argument is in bytes */ 7478 7479 if (value < __kmp_sys_min_stksize) 7480 value = __kmp_sys_min_stksize; 7481 else if (value > KMP_MAX_STKSIZE) 7482 value = KMP_MAX_STKSIZE; 7483 7484 __kmp_stksize = value; 7485 7486 __kmp_env_stksize = TRUE; /* was KMP_STACKSIZE specified? */ 7487 } 7488 7489 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7490 } 7491 7492 /* set the behaviour of the runtime library */ 7493 /* TODO this can cause some odd behaviour with sibling parallelism... */ 7494 void __kmp_aux_set_library(enum library_type arg) { 7495 __kmp_library = arg; 7496 7497 switch (__kmp_library) { 7498 case library_serial: { 7499 KMP_INFORM(LibraryIsSerial); 7500 (void)__kmp_change_library(TRUE); 7501 } break; 7502 case library_turnaround: 7503 (void)__kmp_change_library(TRUE); 7504 break; 7505 case library_throughput: 7506 (void)__kmp_change_library(FALSE); 7507 break; 7508 default: 7509 KMP_FATAL(UnknownLibraryType, arg); 7510 } 7511 } 7512 7513 /* ------------------------------------------------------------------------ */ 7514 7515 void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid) { 7516 int blocktime = arg; /* argument is in milliseconds */ 7517 #if KMP_USE_MONITOR 7518 int bt_intervals; 7519 #endif 7520 int bt_set; 7521 7522 __kmp_save_internal_controls(thread); 7523 7524 /* Normalize and set blocktime for the teams */ 7525 if (blocktime < KMP_MIN_BLOCKTIME) 7526 blocktime = KMP_MIN_BLOCKTIME; 7527 else if (blocktime > KMP_MAX_BLOCKTIME) 7528 blocktime = KMP_MAX_BLOCKTIME; 7529 7530 set__blocktime_team(thread->th.th_team, tid, blocktime); 7531 set__blocktime_team(thread->th.th_serial_team, 0, blocktime); 7532 7533 #if KMP_USE_MONITOR 7534 /* Calculate and set blocktime intervals for the teams */ 7535 bt_intervals = KMP_INTERVALS_FROM_BLOCKTIME(blocktime, __kmp_monitor_wakeups); 7536 7537 set__bt_intervals_team(thread->th.th_team, tid, bt_intervals); 7538 set__bt_intervals_team(thread->th.th_serial_team, 0, bt_intervals); 7539 #endif 7540 7541 /* Set whether blocktime has been set to "TRUE" */ 7542 bt_set = TRUE; 7543 7544 set__bt_set_team(thread->th.th_team, tid, bt_set); 7545 set__bt_set_team(thread->th.th_serial_team, 0, bt_set); 7546 #if KMP_USE_MONITOR 7547 KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d, " 7548 "bt_intervals=%d, monitor_updates=%d\n", 7549 __kmp_gtid_from_tid(tid, thread->th.th_team), 7550 thread->th.th_team->t.t_id, tid, blocktime, bt_intervals, 7551 __kmp_monitor_wakeups)); 7552 #else 7553 KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d\n", 7554 __kmp_gtid_from_tid(tid, thread->th.th_team), 7555 thread->th.th_team->t.t_id, tid, blocktime)); 7556 #endif 7557 } 7558 7559 void __kmp_aux_set_defaults(char const *str, int len) { 7560 if (!__kmp_init_serial) { 7561 __kmp_serial_initialize(); 7562 }; 7563 __kmp_env_initialize(str); 7564 7565 if (__kmp_settings 7566 #if OMP_40_ENABLED 7567 || __kmp_display_env || __kmp_display_env_verbose 7568 #endif // OMP_40_ENABLED 7569 ) { 7570 __kmp_env_print(); 7571 } 7572 } // __kmp_aux_set_defaults 7573 7574 /* ------------------------------------------------------------------------ */ 7575 /* internal fast reduction routines */ 7576 7577 PACKED_REDUCTION_METHOD_T 7578 __kmp_determine_reduction_method( 7579 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, 7580 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data), 7581 kmp_critical_name *lck) { 7582 7583 // Default reduction method: critical construct ( lck != NULL, like in current 7584 // PAROPT ) 7585 // If ( reduce_data!=NULL && reduce_func!=NULL ): the tree-reduction method 7586 // can be selected by RTL 7587 // If loc->flags contains KMP_IDENT_ATOMIC_REDUCE, the atomic reduce method 7588 // can be selected by RTL 7589 // Finally, it's up to OpenMP RTL to make a decision on which method to select 7590 // among generated by PAROPT. 7591 7592 PACKED_REDUCTION_METHOD_T retval; 7593 7594 int team_size; 7595 7596 KMP_DEBUG_ASSERT(loc); // it would be nice to test ( loc != 0 ) 7597 KMP_DEBUG_ASSERT(lck); // it would be nice to test ( lck != 0 ) 7598 7599 #define FAST_REDUCTION_ATOMIC_METHOD_GENERATED \ 7600 ((loc->flags & (KMP_IDENT_ATOMIC_REDUCE)) == (KMP_IDENT_ATOMIC_REDUCE)) 7601 #define FAST_REDUCTION_TREE_METHOD_GENERATED ((reduce_data) && (reduce_func)) 7602 7603 retval = critical_reduce_block; 7604 7605 // another choice of getting a team size (with 1 dynamic deference) is slower 7606 team_size = __kmp_get_team_num_threads(global_tid); 7607 if (team_size == 1) { 7608 7609 retval = empty_reduce_block; 7610 7611 } else { 7612 7613 int atomic_available = FAST_REDUCTION_ATOMIC_METHOD_GENERATED; 7614 int tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED; 7615 7616 #if KMP_ARCH_X86_64 || KMP_ARCH_PPC64 || KMP_ARCH_AARCH64 || KMP_ARCH_MIPS64 7617 7618 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_WINDOWS || \ 7619 KMP_OS_DARWIN 7620 7621 int teamsize_cutoff = 4; 7622 7623 #if KMP_MIC_SUPPORTED 7624 if (__kmp_mic_type != non_mic) { 7625 teamsize_cutoff = 8; 7626 } 7627 #endif 7628 if (tree_available) { 7629 if (team_size <= teamsize_cutoff) { 7630 if (atomic_available) { 7631 retval = atomic_reduce_block; 7632 } 7633 } else { 7634 retval = TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER; 7635 } 7636 } else if (atomic_available) { 7637 retval = atomic_reduce_block; 7638 } 7639 #else 7640 #error "Unknown or unsupported OS" 7641 #endif // KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_WINDOWS || 7642 // KMP_OS_DARWIN 7643 7644 #elif KMP_ARCH_X86 || KMP_ARCH_ARM || KMP_ARCH_AARCH || KMP_ARCH_MIPS 7645 7646 #if KMP_OS_LINUX || KMP_OS_WINDOWS 7647 7648 // basic tuning 7649 7650 if (atomic_available) { 7651 if (num_vars <= 2) { // && ( team_size <= 8 ) due to false-sharing ??? 7652 retval = atomic_reduce_block; 7653 } 7654 } // otherwise: use critical section 7655 7656 #elif KMP_OS_DARWIN 7657 7658 if (atomic_available && (num_vars <= 3)) { 7659 retval = atomic_reduce_block; 7660 } else if (tree_available) { 7661 if ((reduce_size > (9 * sizeof(kmp_real64))) && 7662 (reduce_size < (2000 * sizeof(kmp_real64)))) { 7663 retval = TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER; 7664 } 7665 } // otherwise: use critical section 7666 7667 #else 7668 #error "Unknown or unsupported OS" 7669 #endif 7670 7671 #else 7672 #error "Unknown or unsupported architecture" 7673 #endif 7674 } 7675 7676 // KMP_FORCE_REDUCTION 7677 7678 // If the team is serialized (team_size == 1), ignore the forced reduction 7679 // method and stay with the unsynchronized method (empty_reduce_block) 7680 if (__kmp_force_reduction_method != reduction_method_not_defined && 7681 team_size != 1) { 7682 7683 PACKED_REDUCTION_METHOD_T forced_retval = critical_reduce_block; 7684 7685 int atomic_available, tree_available; 7686 7687 switch ((forced_retval = __kmp_force_reduction_method)) { 7688 case critical_reduce_block: 7689 KMP_ASSERT(lck); // lck should be != 0 7690 break; 7691 7692 case atomic_reduce_block: 7693 atomic_available = FAST_REDUCTION_ATOMIC_METHOD_GENERATED; 7694 if (!atomic_available) { 7695 KMP_WARNING(RedMethodNotSupported, "atomic"); 7696 forced_retval = critical_reduce_block; 7697 } 7698 break; 7699 7700 case tree_reduce_block: 7701 tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED; 7702 if (!tree_available) { 7703 KMP_WARNING(RedMethodNotSupported, "tree"); 7704 forced_retval = critical_reduce_block; 7705 } else { 7706 #if KMP_FAST_REDUCTION_BARRIER 7707 forced_retval = TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER; 7708 #endif 7709 } 7710 break; 7711 7712 default: 7713 KMP_ASSERT(0); // "unsupported method specified" 7714 } 7715 7716 retval = forced_retval; 7717 } 7718 7719 KA_TRACE(10, ("reduction method selected=%08x\n", retval)); 7720 7721 #undef FAST_REDUCTION_TREE_METHOD_GENERATED 7722 #undef FAST_REDUCTION_ATOMIC_METHOD_GENERATED 7723 7724 return (retval); 7725 } 7726 7727 // this function is for testing set/get/determine reduce method 7728 kmp_int32 __kmp_get_reduce_method(void) { 7729 return ((__kmp_entry_thread()->th.th_local.packed_reduction_method) >> 8); 7730 } 7731