1 /* 2 * kmp_runtime.cpp -- KPTS runtime support library 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_atomic.h" 16 #include "kmp_environment.h" 17 #include "kmp_error.h" 18 #include "kmp_i18n.h" 19 #include "kmp_io.h" 20 #include "kmp_itt.h" 21 #include "kmp_settings.h" 22 #include "kmp_stats.h" 23 #include "kmp_str.h" 24 #include "kmp_wait_release.h" 25 #include "kmp_wrapper_getpid.h" 26 #include "kmp_dispatch.h" 27 #if KMP_USE_HIER_SCHED 28 #include "kmp_dispatch_hier.h" 29 #endif 30 31 #if OMPT_SUPPORT 32 #include "ompt-specific.h" 33 #endif 34 35 /* these are temporary issues to be dealt with */ 36 #define KMP_USE_PRCTL 0 37 38 #if KMP_OS_WINDOWS 39 #include <process.h> 40 #endif 41 42 #include "tsan_annotations.h" 43 44 #if defined(KMP_GOMP_COMPAT) 45 char const __kmp_version_alt_comp[] = 46 KMP_VERSION_PREFIX "alternative compiler support: yes"; 47 #endif /* defined(KMP_GOMP_COMPAT) */ 48 49 char const __kmp_version_omp_api[] = KMP_VERSION_PREFIX "API version: " 50 #if OMP_50_ENABLED 51 "5.0 (201611)"; 52 #elif OMP_45_ENABLED 53 "4.5 (201511)"; 54 #elif OMP_40_ENABLED 55 "4.0 (201307)"; 56 #else 57 "3.1 (201107)"; 58 #endif 59 60 #ifdef KMP_DEBUG 61 char const __kmp_version_lock[] = 62 KMP_VERSION_PREFIX "lock type: run time selectable"; 63 #endif /* KMP_DEBUG */ 64 65 #define KMP_MIN(x, y) ((x) < (y) ? (x) : (y)) 66 67 /* ------------------------------------------------------------------------ */ 68 69 #if KMP_USE_MONITOR 70 kmp_info_t __kmp_monitor; 71 #endif 72 73 /* Forward declarations */ 74 75 void __kmp_cleanup(void); 76 77 static void __kmp_initialize_info(kmp_info_t *, kmp_team_t *, int tid, 78 int gtid); 79 static void __kmp_initialize_team(kmp_team_t *team, int new_nproc, 80 kmp_internal_control_t *new_icvs, 81 ident_t *loc); 82 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 83 static void __kmp_partition_places(kmp_team_t *team, 84 int update_master_only = 0); 85 #endif 86 static void __kmp_do_serial_initialize(void); 87 void __kmp_fork_barrier(int gtid, int tid); 88 void __kmp_join_barrier(int gtid); 89 void __kmp_setup_icv_copy(kmp_team_t *team, int new_nproc, 90 kmp_internal_control_t *new_icvs, ident_t *loc); 91 92 #ifdef USE_LOAD_BALANCE 93 static int __kmp_load_balance_nproc(kmp_root_t *root, int set_nproc); 94 #endif 95 96 static int __kmp_expand_threads(int nNeed); 97 #if KMP_OS_WINDOWS 98 static int __kmp_unregister_root_other_thread(int gtid); 99 #endif 100 static void __kmp_unregister_library(void); // called by __kmp_internal_end() 101 static void __kmp_reap_thread(kmp_info_t *thread, int is_root); 102 kmp_info_t *__kmp_thread_pool_insert_pt = NULL; 103 104 /* Calculate the identifier of the current thread */ 105 /* fast (and somewhat portable) way to get unique identifier of executing 106 thread. Returns KMP_GTID_DNE if we haven't been assigned a gtid. */ 107 int __kmp_get_global_thread_id() { 108 int i; 109 kmp_info_t **other_threads; 110 size_t stack_data; 111 char *stack_addr; 112 size_t stack_size; 113 char *stack_base; 114 115 KA_TRACE( 116 1000, 117 ("*** __kmp_get_global_thread_id: entering, nproc=%d all_nproc=%d\n", 118 __kmp_nth, __kmp_all_nth)); 119 120 /* JPH - to handle the case where __kmpc_end(0) is called immediately prior to 121 a parallel region, made it return KMP_GTID_DNE to force serial_initialize 122 by caller. Had to handle KMP_GTID_DNE at all call-sites, or else guarantee 123 __kmp_init_gtid for this to work. */ 124 125 if (!TCR_4(__kmp_init_gtid)) 126 return KMP_GTID_DNE; 127 128 #ifdef KMP_TDATA_GTID 129 if (TCR_4(__kmp_gtid_mode) >= 3) { 130 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using TDATA\n")); 131 return __kmp_gtid; 132 } 133 #endif 134 if (TCR_4(__kmp_gtid_mode) >= 2) { 135 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using keyed TLS\n")); 136 return __kmp_gtid_get_specific(); 137 } 138 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using internal alg.\n")); 139 140 stack_addr = (char *)&stack_data; 141 other_threads = __kmp_threads; 142 143 /* ATT: The code below is a source of potential bugs due to unsynchronized 144 access to __kmp_threads array. For example: 145 1. Current thread loads other_threads[i] to thr and checks it, it is 146 non-NULL. 147 2. Current thread is suspended by OS. 148 3. Another thread unregisters and finishes (debug versions of free() 149 may fill memory with something like 0xEF). 150 4. Current thread is resumed. 151 5. Current thread reads junk from *thr. 152 TODO: Fix it. --ln */ 153 154 for (i = 0; i < __kmp_threads_capacity; i++) { 155 156 kmp_info_t *thr = (kmp_info_t *)TCR_SYNC_PTR(other_threads[i]); 157 if (!thr) 158 continue; 159 160 stack_size = (size_t)TCR_PTR(thr->th.th_info.ds.ds_stacksize); 161 stack_base = (char *)TCR_PTR(thr->th.th_info.ds.ds_stackbase); 162 163 /* stack grows down -- search through all of the active threads */ 164 165 if (stack_addr <= stack_base) { 166 size_t stack_diff = stack_base - stack_addr; 167 168 if (stack_diff <= stack_size) { 169 /* The only way we can be closer than the allocated */ 170 /* stack size is if we are running on this thread. */ 171 KMP_DEBUG_ASSERT(__kmp_gtid_get_specific() == i); 172 return i; 173 } 174 } 175 } 176 177 /* get specific to try and determine our gtid */ 178 KA_TRACE(1000, 179 ("*** __kmp_get_global_thread_id: internal alg. failed to find " 180 "thread, using TLS\n")); 181 i = __kmp_gtid_get_specific(); 182 183 /*fprintf( stderr, "=== %d\n", i ); */ /* GROO */ 184 185 /* if we havn't been assigned a gtid, then return code */ 186 if (i < 0) 187 return i; 188 189 /* dynamically updated stack window for uber threads to avoid get_specific 190 call */ 191 if (!TCR_4(other_threads[i]->th.th_info.ds.ds_stackgrow)) { 192 KMP_FATAL(StackOverflow, i); 193 } 194 195 stack_base = (char *)other_threads[i]->th.th_info.ds.ds_stackbase; 196 if (stack_addr > stack_base) { 197 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stackbase, stack_addr); 198 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stacksize, 199 other_threads[i]->th.th_info.ds.ds_stacksize + stack_addr - 200 stack_base); 201 } else { 202 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stacksize, 203 stack_base - stack_addr); 204 } 205 206 /* Reprint stack bounds for ubermaster since they have been refined */ 207 if (__kmp_storage_map) { 208 char *stack_end = (char *)other_threads[i]->th.th_info.ds.ds_stackbase; 209 char *stack_beg = stack_end - other_threads[i]->th.th_info.ds.ds_stacksize; 210 __kmp_print_storage_map_gtid(i, stack_beg, stack_end, 211 other_threads[i]->th.th_info.ds.ds_stacksize, 212 "th_%d stack (refinement)", i); 213 } 214 return i; 215 } 216 217 int __kmp_get_global_thread_id_reg() { 218 int gtid; 219 220 if (!__kmp_init_serial) { 221 gtid = KMP_GTID_DNE; 222 } else 223 #ifdef KMP_TDATA_GTID 224 if (TCR_4(__kmp_gtid_mode) >= 3) { 225 KA_TRACE(1000, ("*** __kmp_get_global_thread_id_reg: using TDATA\n")); 226 gtid = __kmp_gtid; 227 } else 228 #endif 229 if (TCR_4(__kmp_gtid_mode) >= 2) { 230 KA_TRACE(1000, ("*** __kmp_get_global_thread_id_reg: using keyed TLS\n")); 231 gtid = __kmp_gtid_get_specific(); 232 } else { 233 KA_TRACE(1000, 234 ("*** __kmp_get_global_thread_id_reg: using internal alg.\n")); 235 gtid = __kmp_get_global_thread_id(); 236 } 237 238 /* we must be a new uber master sibling thread */ 239 if (gtid == KMP_GTID_DNE) { 240 KA_TRACE(10, 241 ("__kmp_get_global_thread_id_reg: Encountered new root thread. " 242 "Registering a new gtid.\n")); 243 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 244 if (!__kmp_init_serial) { 245 __kmp_do_serial_initialize(); 246 gtid = __kmp_gtid_get_specific(); 247 } else { 248 gtid = __kmp_register_root(FALSE); 249 } 250 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 251 /*__kmp_printf( "+++ %d\n", gtid ); */ /* GROO */ 252 } 253 254 KMP_DEBUG_ASSERT(gtid >= 0); 255 256 return gtid; 257 } 258 259 /* caller must hold forkjoin_lock */ 260 void __kmp_check_stack_overlap(kmp_info_t *th) { 261 int f; 262 char *stack_beg = NULL; 263 char *stack_end = NULL; 264 int gtid; 265 266 KA_TRACE(10, ("__kmp_check_stack_overlap: called\n")); 267 if (__kmp_storage_map) { 268 stack_end = (char *)th->th.th_info.ds.ds_stackbase; 269 stack_beg = stack_end - th->th.th_info.ds.ds_stacksize; 270 271 gtid = __kmp_gtid_from_thread(th); 272 273 if (gtid == KMP_GTID_MONITOR) { 274 __kmp_print_storage_map_gtid( 275 gtid, stack_beg, stack_end, th->th.th_info.ds.ds_stacksize, 276 "th_%s stack (%s)", "mon", 277 (th->th.th_info.ds.ds_stackgrow) ? "initial" : "actual"); 278 } else { 279 __kmp_print_storage_map_gtid( 280 gtid, stack_beg, stack_end, th->th.th_info.ds.ds_stacksize, 281 "th_%d stack (%s)", gtid, 282 (th->th.th_info.ds.ds_stackgrow) ? "initial" : "actual"); 283 } 284 } 285 286 /* No point in checking ubermaster threads since they use refinement and 287 * cannot overlap */ 288 gtid = __kmp_gtid_from_thread(th); 289 if (__kmp_env_checks == TRUE && !KMP_UBER_GTID(gtid)) { 290 KA_TRACE(10, 291 ("__kmp_check_stack_overlap: performing extensive checking\n")); 292 if (stack_beg == NULL) { 293 stack_end = (char *)th->th.th_info.ds.ds_stackbase; 294 stack_beg = stack_end - th->th.th_info.ds.ds_stacksize; 295 } 296 297 for (f = 0; f < __kmp_threads_capacity; f++) { 298 kmp_info_t *f_th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[f]); 299 300 if (f_th && f_th != th) { 301 char *other_stack_end = 302 (char *)TCR_PTR(f_th->th.th_info.ds.ds_stackbase); 303 char *other_stack_beg = 304 other_stack_end - (size_t)TCR_PTR(f_th->th.th_info.ds.ds_stacksize); 305 if ((stack_beg > other_stack_beg && stack_beg < other_stack_end) || 306 (stack_end > other_stack_beg && stack_end < other_stack_end)) { 307 308 /* Print the other stack values before the abort */ 309 if (__kmp_storage_map) 310 __kmp_print_storage_map_gtid( 311 -1, other_stack_beg, other_stack_end, 312 (size_t)TCR_PTR(f_th->th.th_info.ds.ds_stacksize), 313 "th_%d stack (overlapped)", __kmp_gtid_from_thread(f_th)); 314 315 __kmp_fatal(KMP_MSG(StackOverlap), KMP_HNT(ChangeStackLimit), 316 __kmp_msg_null); 317 } 318 } 319 } 320 } 321 KA_TRACE(10, ("__kmp_check_stack_overlap: returning\n")); 322 } 323 324 /* ------------------------------------------------------------------------ */ 325 326 void __kmp_infinite_loop(void) { 327 static int done = FALSE; 328 329 while (!done) { 330 KMP_YIELD(TRUE); 331 } 332 } 333 334 #define MAX_MESSAGE 512 335 336 void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2, size_t size, 337 char const *format, ...) { 338 char buffer[MAX_MESSAGE]; 339 va_list ap; 340 341 va_start(ap, format); 342 KMP_SNPRINTF(buffer, sizeof(buffer), "OMP storage map: %p %p%8lu %s\n", p1, 343 p2, (unsigned long)size, format); 344 __kmp_acquire_bootstrap_lock(&__kmp_stdio_lock); 345 __kmp_vprintf(kmp_err, buffer, ap); 346 #if KMP_PRINT_DATA_PLACEMENT 347 int node; 348 if (gtid >= 0) { 349 if (p1 <= p2 && (char *)p2 - (char *)p1 == size) { 350 if (__kmp_storage_map_verbose) { 351 node = __kmp_get_host_node(p1); 352 if (node < 0) /* doesn't work, so don't try this next time */ 353 __kmp_storage_map_verbose = FALSE; 354 else { 355 char *last; 356 int lastNode; 357 int localProc = __kmp_get_cpu_from_gtid(gtid); 358 359 const int page_size = KMP_GET_PAGE_SIZE(); 360 361 p1 = (void *)((size_t)p1 & ~((size_t)page_size - 1)); 362 p2 = (void *)(((size_t)p2 - 1) & ~((size_t)page_size - 1)); 363 if (localProc >= 0) 364 __kmp_printf_no_lock(" GTID %d localNode %d\n", gtid, 365 localProc >> 1); 366 else 367 __kmp_printf_no_lock(" GTID %d\n", gtid); 368 #if KMP_USE_PRCTL 369 /* The more elaborate format is disabled for now because of the prctl 370 * hanging bug. */ 371 do { 372 last = p1; 373 lastNode = node; 374 /* This loop collates adjacent pages with the same host node. */ 375 do { 376 (char *)p1 += page_size; 377 } while (p1 <= p2 && (node = __kmp_get_host_node(p1)) == lastNode); 378 __kmp_printf_no_lock(" %p-%p memNode %d\n", last, (char *)p1 - 1, 379 lastNode); 380 } while (p1 <= p2); 381 #else 382 __kmp_printf_no_lock(" %p-%p memNode %d\n", p1, 383 (char *)p1 + (page_size - 1), 384 __kmp_get_host_node(p1)); 385 if (p1 < p2) { 386 __kmp_printf_no_lock(" %p-%p memNode %d\n", p2, 387 (char *)p2 + (page_size - 1), 388 __kmp_get_host_node(p2)); 389 } 390 #endif 391 } 392 } 393 } else 394 __kmp_printf_no_lock(" %s\n", KMP_I18N_STR(StorageMapWarning)); 395 } 396 #endif /* KMP_PRINT_DATA_PLACEMENT */ 397 __kmp_release_bootstrap_lock(&__kmp_stdio_lock); 398 } 399 400 void __kmp_warn(char const *format, ...) { 401 char buffer[MAX_MESSAGE]; 402 va_list ap; 403 404 if (__kmp_generate_warnings == kmp_warnings_off) { 405 return; 406 } 407 408 va_start(ap, format); 409 410 KMP_SNPRINTF(buffer, sizeof(buffer), "OMP warning: %s\n", format); 411 __kmp_acquire_bootstrap_lock(&__kmp_stdio_lock); 412 __kmp_vprintf(kmp_err, buffer, ap); 413 __kmp_release_bootstrap_lock(&__kmp_stdio_lock); 414 415 va_end(ap); 416 } 417 418 void __kmp_abort_process() { 419 // Later threads may stall here, but that's ok because abort() will kill them. 420 __kmp_acquire_bootstrap_lock(&__kmp_exit_lock); 421 422 if (__kmp_debug_buf) { 423 __kmp_dump_debug_buffer(); 424 } 425 426 if (KMP_OS_WINDOWS) { 427 // Let other threads know of abnormal termination and prevent deadlock 428 // if abort happened during library initialization or shutdown 429 __kmp_global.g.g_abort = SIGABRT; 430 431 /* On Windows* OS by default abort() causes pop-up error box, which stalls 432 nightly testing. Unfortunately, we cannot reliably suppress pop-up error 433 boxes. _set_abort_behavior() works well, but this function is not 434 available in VS7 (this is not problem for DLL, but it is a problem for 435 static OpenMP RTL). SetErrorMode (and so, timelimit utility) does not 436 help, at least in some versions of MS C RTL. 437 438 It seems following sequence is the only way to simulate abort() and 439 avoid pop-up error box. */ 440 raise(SIGABRT); 441 _exit(3); // Just in case, if signal ignored, exit anyway. 442 } else { 443 abort(); 444 } 445 446 __kmp_infinite_loop(); 447 __kmp_release_bootstrap_lock(&__kmp_exit_lock); 448 449 } // __kmp_abort_process 450 451 void __kmp_abort_thread(void) { 452 // TODO: Eliminate g_abort global variable and this function. 453 // In case of abort just call abort(), it will kill all the threads. 454 __kmp_infinite_loop(); 455 } // __kmp_abort_thread 456 457 /* Print out the storage map for the major kmp_info_t thread data structures 458 that are allocated together. */ 459 460 static void __kmp_print_thread_storage_map(kmp_info_t *thr, int gtid) { 461 __kmp_print_storage_map_gtid(gtid, thr, thr + 1, sizeof(kmp_info_t), "th_%d", 462 gtid); 463 464 __kmp_print_storage_map_gtid(gtid, &thr->th.th_info, &thr->th.th_team, 465 sizeof(kmp_desc_t), "th_%d.th_info", gtid); 466 467 __kmp_print_storage_map_gtid(gtid, &thr->th.th_local, &thr->th.th_pri_head, 468 sizeof(kmp_local_t), "th_%d.th_local", gtid); 469 470 __kmp_print_storage_map_gtid( 471 gtid, &thr->th.th_bar[0], &thr->th.th_bar[bs_last_barrier], 472 sizeof(kmp_balign_t) * bs_last_barrier, "th_%d.th_bar", gtid); 473 474 __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_plain_barrier], 475 &thr->th.th_bar[bs_plain_barrier + 1], 476 sizeof(kmp_balign_t), "th_%d.th_bar[plain]", 477 gtid); 478 479 __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_forkjoin_barrier], 480 &thr->th.th_bar[bs_forkjoin_barrier + 1], 481 sizeof(kmp_balign_t), "th_%d.th_bar[forkjoin]", 482 gtid); 483 484 #if KMP_FAST_REDUCTION_BARRIER 485 __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_reduction_barrier], 486 &thr->th.th_bar[bs_reduction_barrier + 1], 487 sizeof(kmp_balign_t), "th_%d.th_bar[reduction]", 488 gtid); 489 #endif // KMP_FAST_REDUCTION_BARRIER 490 } 491 492 /* Print out the storage map for the major kmp_team_t team data structures 493 that are allocated together. */ 494 495 static void __kmp_print_team_storage_map(const char *header, kmp_team_t *team, 496 int team_id, int num_thr) { 497 int num_disp_buff = team->t.t_max_nproc > 1 ? __kmp_dispatch_num_buffers : 2; 498 __kmp_print_storage_map_gtid(-1, team, team + 1, sizeof(kmp_team_t), "%s_%d", 499 header, team_id); 500 501 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[0], 502 &team->t.t_bar[bs_last_barrier], 503 sizeof(kmp_balign_team_t) * bs_last_barrier, 504 "%s_%d.t_bar", header, team_id); 505 506 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_plain_barrier], 507 &team->t.t_bar[bs_plain_barrier + 1], 508 sizeof(kmp_balign_team_t), "%s_%d.t_bar[plain]", 509 header, team_id); 510 511 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_forkjoin_barrier], 512 &team->t.t_bar[bs_forkjoin_barrier + 1], 513 sizeof(kmp_balign_team_t), 514 "%s_%d.t_bar[forkjoin]", header, team_id); 515 516 #if KMP_FAST_REDUCTION_BARRIER 517 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_reduction_barrier], 518 &team->t.t_bar[bs_reduction_barrier + 1], 519 sizeof(kmp_balign_team_t), 520 "%s_%d.t_bar[reduction]", header, team_id); 521 #endif // KMP_FAST_REDUCTION_BARRIER 522 523 __kmp_print_storage_map_gtid( 524 -1, &team->t.t_dispatch[0], &team->t.t_dispatch[num_thr], 525 sizeof(kmp_disp_t) * num_thr, "%s_%d.t_dispatch", header, team_id); 526 527 __kmp_print_storage_map_gtid( 528 -1, &team->t.t_threads[0], &team->t.t_threads[num_thr], 529 sizeof(kmp_info_t *) * num_thr, "%s_%d.t_threads", header, team_id); 530 531 __kmp_print_storage_map_gtid(-1, &team->t.t_disp_buffer[0], 532 &team->t.t_disp_buffer[num_disp_buff], 533 sizeof(dispatch_shared_info_t) * num_disp_buff, 534 "%s_%d.t_disp_buffer", header, team_id); 535 } 536 537 static void __kmp_init_allocator() { 538 #if OMP_50_ENABLED 539 __kmp_init_memkind(); 540 #endif 541 } 542 static void __kmp_fini_allocator() { 543 #if OMP_50_ENABLED 544 __kmp_fini_memkind(); 545 #endif 546 } 547 548 /* ------------------------------------------------------------------------ */ 549 550 #if KMP_DYNAMIC_LIB 551 #if KMP_OS_WINDOWS 552 553 static void __kmp_reset_lock(kmp_bootstrap_lock_t *lck) { 554 // TODO: Change to __kmp_break_bootstrap_lock(). 555 __kmp_init_bootstrap_lock(lck); // make the lock released 556 } 557 558 static void __kmp_reset_locks_on_process_detach(int gtid_req) { 559 int i; 560 int thread_count; 561 562 // PROCESS_DETACH is expected to be called by a thread that executes 563 // ProcessExit() or FreeLibrary(). OS terminates other threads (except the one 564 // calling ProcessExit or FreeLibrary). So, it might be safe to access the 565 // __kmp_threads[] without taking the forkjoin_lock. However, in fact, some 566 // threads can be still alive here, although being about to be terminated. The 567 // threads in the array with ds_thread==0 are most suspicious. Actually, it 568 // can be not safe to access the __kmp_threads[]. 569 570 // TODO: does it make sense to check __kmp_roots[] ? 571 572 // Let's check that there are no other alive threads registered with the OMP 573 // lib. 574 while (1) { 575 thread_count = 0; 576 for (i = 0; i < __kmp_threads_capacity; ++i) { 577 if (!__kmp_threads) 578 continue; 579 kmp_info_t *th = __kmp_threads[i]; 580 if (th == NULL) 581 continue; 582 int gtid = th->th.th_info.ds.ds_gtid; 583 if (gtid == gtid_req) 584 continue; 585 if (gtid < 0) 586 continue; 587 DWORD exit_val; 588 int alive = __kmp_is_thread_alive(th, &exit_val); 589 if (alive) { 590 ++thread_count; 591 } 592 } 593 if (thread_count == 0) 594 break; // success 595 } 596 597 // Assume that I'm alone. Now it might be safe to check and reset locks. 598 // __kmp_forkjoin_lock and __kmp_stdio_lock are expected to be reset. 599 __kmp_reset_lock(&__kmp_forkjoin_lock); 600 #ifdef KMP_DEBUG 601 __kmp_reset_lock(&__kmp_stdio_lock); 602 #endif // KMP_DEBUG 603 } 604 605 BOOL WINAPI DllMain(HINSTANCE hInstDLL, DWORD fdwReason, LPVOID lpReserved) { 606 //__kmp_acquire_bootstrap_lock( &__kmp_initz_lock ); 607 608 switch (fdwReason) { 609 610 case DLL_PROCESS_ATTACH: 611 KA_TRACE(10, ("DllMain: PROCESS_ATTACH\n")); 612 613 return TRUE; 614 615 case DLL_PROCESS_DETACH: 616 KA_TRACE(10, ("DllMain: PROCESS_DETACH T#%d\n", __kmp_gtid_get_specific())); 617 618 if (lpReserved != NULL) { 619 // lpReserved is used for telling the difference: 620 // lpReserved == NULL when FreeLibrary() was called, 621 // lpReserved != NULL when the process terminates. 622 // When FreeLibrary() is called, worker threads remain alive. So they will 623 // release the forkjoin lock by themselves. When the process terminates, 624 // worker threads disappear triggering the problem of unreleased forkjoin 625 // lock as described below. 626 627 // A worker thread can take the forkjoin lock. The problem comes up if 628 // that worker thread becomes dead before it releases the forkjoin lock. 629 // The forkjoin lock remains taken, while the thread executing 630 // DllMain()->PROCESS_DETACH->__kmp_internal_end_library() below will try 631 // to take the forkjoin lock and will always fail, so that the application 632 // will never finish [normally]. This scenario is possible if 633 // __kmpc_end() has not been executed. It looks like it's not a corner 634 // case, but common cases: 635 // - the main function was compiled by an alternative compiler; 636 // - the main function was compiled by icl but without /Qopenmp 637 // (application with plugins); 638 // - application terminates by calling C exit(), Fortran CALL EXIT() or 639 // Fortran STOP. 640 // - alive foreign thread prevented __kmpc_end from doing cleanup. 641 // 642 // This is a hack to work around the problem. 643 // TODO: !!! figure out something better. 644 __kmp_reset_locks_on_process_detach(__kmp_gtid_get_specific()); 645 } 646 647 __kmp_internal_end_library(__kmp_gtid_get_specific()); 648 649 return TRUE; 650 651 case DLL_THREAD_ATTACH: 652 KA_TRACE(10, ("DllMain: THREAD_ATTACH\n")); 653 654 /* if we want to register new siblings all the time here call 655 * __kmp_get_gtid(); */ 656 return TRUE; 657 658 case DLL_THREAD_DETACH: 659 KA_TRACE(10, ("DllMain: THREAD_DETACH T#%d\n", __kmp_gtid_get_specific())); 660 661 __kmp_internal_end_thread(__kmp_gtid_get_specific()); 662 return TRUE; 663 } 664 665 return TRUE; 666 } 667 668 #endif /* KMP_OS_WINDOWS */ 669 #endif /* KMP_DYNAMIC_LIB */ 670 671 /* __kmp_parallel_deo -- Wait until it's our turn. */ 672 void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) { 673 int gtid = *gtid_ref; 674 #ifdef BUILD_PARALLEL_ORDERED 675 kmp_team_t *team = __kmp_team_from_gtid(gtid); 676 #endif /* BUILD_PARALLEL_ORDERED */ 677 678 if (__kmp_env_consistency_check) { 679 if (__kmp_threads[gtid]->th.th_root->r.r_active) 680 #if KMP_USE_DYNAMIC_LOCK 681 __kmp_push_sync(gtid, ct_ordered_in_parallel, loc_ref, NULL, 0); 682 #else 683 __kmp_push_sync(gtid, ct_ordered_in_parallel, loc_ref, NULL); 684 #endif 685 } 686 #ifdef BUILD_PARALLEL_ORDERED 687 if (!team->t.t_serialized) { 688 KMP_MB(); 689 KMP_WAIT(&team->t.t_ordered.dt.t_value, __kmp_tid_from_gtid(gtid), KMP_EQ, 690 NULL); 691 KMP_MB(); 692 } 693 #endif /* BUILD_PARALLEL_ORDERED */ 694 } 695 696 /* __kmp_parallel_dxo -- Signal the next task. */ 697 void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) { 698 int gtid = *gtid_ref; 699 #ifdef BUILD_PARALLEL_ORDERED 700 int tid = __kmp_tid_from_gtid(gtid); 701 kmp_team_t *team = __kmp_team_from_gtid(gtid); 702 #endif /* BUILD_PARALLEL_ORDERED */ 703 704 if (__kmp_env_consistency_check) { 705 if (__kmp_threads[gtid]->th.th_root->r.r_active) 706 __kmp_pop_sync(gtid, ct_ordered_in_parallel, loc_ref); 707 } 708 #ifdef BUILD_PARALLEL_ORDERED 709 if (!team->t.t_serialized) { 710 KMP_MB(); /* Flush all pending memory write invalidates. */ 711 712 /* use the tid of the next thread in this team */ 713 /* TODO replace with general release procedure */ 714 team->t.t_ordered.dt.t_value = ((tid + 1) % team->t.t_nproc); 715 716 KMP_MB(); /* Flush all pending memory write invalidates. */ 717 } 718 #endif /* BUILD_PARALLEL_ORDERED */ 719 } 720 721 /* ------------------------------------------------------------------------ */ 722 /* The BARRIER for a SINGLE process section is always explicit */ 723 724 int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws) { 725 int status; 726 kmp_info_t *th; 727 kmp_team_t *team; 728 729 if (!TCR_4(__kmp_init_parallel)) 730 __kmp_parallel_initialize(); 731 732 #if OMP_50_ENABLED 733 __kmp_resume_if_soft_paused(); 734 #endif 735 736 th = __kmp_threads[gtid]; 737 team = th->th.th_team; 738 status = 0; 739 740 th->th.th_ident = id_ref; 741 742 if (team->t.t_serialized) { 743 status = 1; 744 } else { 745 kmp_int32 old_this = th->th.th_local.this_construct; 746 747 ++th->th.th_local.this_construct; 748 /* try to set team count to thread count--success means thread got the 749 single block */ 750 /* TODO: Should this be acquire or release? */ 751 if (team->t.t_construct == old_this) { 752 status = __kmp_atomic_compare_store_acq(&team->t.t_construct, old_this, 753 th->th.th_local.this_construct); 754 } 755 #if USE_ITT_BUILD 756 if (__itt_metadata_add_ptr && __kmp_forkjoin_frames_mode == 3 && 757 KMP_MASTER_GTID(gtid) && 758 #if OMP_40_ENABLED 759 th->th.th_teams_microtask == NULL && 760 #endif 761 team->t.t_active_level == 762 1) { // Only report metadata by master of active team at level 1 763 __kmp_itt_metadata_single(id_ref); 764 } 765 #endif /* USE_ITT_BUILD */ 766 } 767 768 if (__kmp_env_consistency_check) { 769 if (status && push_ws) { 770 __kmp_push_workshare(gtid, ct_psingle, id_ref); 771 } else { 772 __kmp_check_workshare(gtid, ct_psingle, id_ref); 773 } 774 } 775 #if USE_ITT_BUILD 776 if (status) { 777 __kmp_itt_single_start(gtid); 778 } 779 #endif /* USE_ITT_BUILD */ 780 return status; 781 } 782 783 void __kmp_exit_single(int gtid) { 784 #if USE_ITT_BUILD 785 __kmp_itt_single_end(gtid); 786 #endif /* USE_ITT_BUILD */ 787 if (__kmp_env_consistency_check) 788 __kmp_pop_workshare(gtid, ct_psingle, NULL); 789 } 790 791 /* determine if we can go parallel or must use a serialized parallel region and 792 * how many threads we can use 793 * set_nproc is the number of threads requested for the team 794 * returns 0 if we should serialize or only use one thread, 795 * otherwise the number of threads to use 796 * The forkjoin lock is held by the caller. */ 797 static int __kmp_reserve_threads(kmp_root_t *root, kmp_team_t *parent_team, 798 int master_tid, int set_nthreads 799 #if OMP_40_ENABLED 800 , 801 int enter_teams 802 #endif /* OMP_40_ENABLED */ 803 ) { 804 int capacity; 805 int new_nthreads; 806 KMP_DEBUG_ASSERT(__kmp_init_serial); 807 KMP_DEBUG_ASSERT(root && parent_team); 808 kmp_info_t *this_thr = parent_team->t.t_threads[master_tid]; 809 810 // If dyn-var is set, dynamically adjust the number of desired threads, 811 // according to the method specified by dynamic_mode. 812 new_nthreads = set_nthreads; 813 if (!get__dynamic_2(parent_team, master_tid)) { 814 ; 815 } 816 #ifdef USE_LOAD_BALANCE 817 else if (__kmp_global.g.g_dynamic_mode == dynamic_load_balance) { 818 new_nthreads = __kmp_load_balance_nproc(root, set_nthreads); 819 if (new_nthreads == 1) { 820 KC_TRACE(10, ("__kmp_reserve_threads: T#%d load balance reduced " 821 "reservation to 1 thread\n", 822 master_tid)); 823 return 1; 824 } 825 if (new_nthreads < set_nthreads) { 826 KC_TRACE(10, ("__kmp_reserve_threads: T#%d load balance reduced " 827 "reservation to %d threads\n", 828 master_tid, new_nthreads)); 829 } 830 } 831 #endif /* USE_LOAD_BALANCE */ 832 else if (__kmp_global.g.g_dynamic_mode == dynamic_thread_limit) { 833 new_nthreads = __kmp_avail_proc - __kmp_nth + 834 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 835 if (new_nthreads <= 1) { 836 KC_TRACE(10, ("__kmp_reserve_threads: T#%d thread limit reduced " 837 "reservation to 1 thread\n", 838 master_tid)); 839 return 1; 840 } 841 if (new_nthreads < set_nthreads) { 842 KC_TRACE(10, ("__kmp_reserve_threads: T#%d thread limit reduced " 843 "reservation to %d threads\n", 844 master_tid, new_nthreads)); 845 } else { 846 new_nthreads = set_nthreads; 847 } 848 } else if (__kmp_global.g.g_dynamic_mode == dynamic_random) { 849 if (set_nthreads > 2) { 850 new_nthreads = __kmp_get_random(parent_team->t.t_threads[master_tid]); 851 new_nthreads = (new_nthreads % set_nthreads) + 1; 852 if (new_nthreads == 1) { 853 KC_TRACE(10, ("__kmp_reserve_threads: T#%d dynamic random reduced " 854 "reservation to 1 thread\n", 855 master_tid)); 856 return 1; 857 } 858 if (new_nthreads < set_nthreads) { 859 KC_TRACE(10, ("__kmp_reserve_threads: T#%d dynamic random reduced " 860 "reservation to %d threads\n", 861 master_tid, new_nthreads)); 862 } 863 } 864 } else { 865 KMP_ASSERT(0); 866 } 867 868 // Respect KMP_ALL_THREADS/KMP_DEVICE_THREAD_LIMIT. 869 if (__kmp_nth + new_nthreads - 870 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) > 871 __kmp_max_nth) { 872 int tl_nthreads = __kmp_max_nth - __kmp_nth + 873 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 874 if (tl_nthreads <= 0) { 875 tl_nthreads = 1; 876 } 877 878 // If dyn-var is false, emit a 1-time warning. 879 if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) { 880 __kmp_reserve_warn = 1; 881 __kmp_msg(kmp_ms_warning, 882 KMP_MSG(CantFormThrTeam, set_nthreads, tl_nthreads), 883 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 884 } 885 if (tl_nthreads == 1) { 886 KC_TRACE(10, ("__kmp_reserve_threads: T#%d KMP_DEVICE_THREAD_LIMIT " 887 "reduced reservation to 1 thread\n", 888 master_tid)); 889 return 1; 890 } 891 KC_TRACE(10, ("__kmp_reserve_threads: T#%d KMP_DEVICE_THREAD_LIMIT reduced " 892 "reservation to %d threads\n", 893 master_tid, tl_nthreads)); 894 new_nthreads = tl_nthreads; 895 } 896 897 // Respect OMP_THREAD_LIMIT 898 int cg_nthreads = this_thr->th.th_cg_roots->cg_nthreads; 899 int max_cg_threads = this_thr->th.th_cg_roots->cg_thread_limit; 900 if (cg_nthreads + new_nthreads - 901 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) > 902 max_cg_threads) { 903 int tl_nthreads = max_cg_threads - cg_nthreads + 904 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 905 if (tl_nthreads <= 0) { 906 tl_nthreads = 1; 907 } 908 909 // If dyn-var is false, emit a 1-time warning. 910 if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) { 911 __kmp_reserve_warn = 1; 912 __kmp_msg(kmp_ms_warning, 913 KMP_MSG(CantFormThrTeam, set_nthreads, tl_nthreads), 914 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 915 } 916 if (tl_nthreads == 1) { 917 KC_TRACE(10, ("__kmp_reserve_threads: T#%d OMP_THREAD_LIMIT " 918 "reduced reservation to 1 thread\n", 919 master_tid)); 920 return 1; 921 } 922 KC_TRACE(10, ("__kmp_reserve_threads: T#%d OMP_THREAD_LIMIT reduced " 923 "reservation to %d threads\n", 924 master_tid, tl_nthreads)); 925 new_nthreads = tl_nthreads; 926 } 927 928 // Check if the threads array is large enough, or needs expanding. 929 // See comment in __kmp_register_root() about the adjustment if 930 // __kmp_threads[0] == NULL. 931 capacity = __kmp_threads_capacity; 932 if (TCR_PTR(__kmp_threads[0]) == NULL) { 933 --capacity; 934 } 935 if (__kmp_nth + new_nthreads - 936 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) > 937 capacity) { 938 // Expand the threads array. 939 int slotsRequired = __kmp_nth + new_nthreads - 940 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) - 941 capacity; 942 int slotsAdded = __kmp_expand_threads(slotsRequired); 943 if (slotsAdded < slotsRequired) { 944 // The threads array was not expanded enough. 945 new_nthreads -= (slotsRequired - slotsAdded); 946 KMP_ASSERT(new_nthreads >= 1); 947 948 // If dyn-var is false, emit a 1-time warning. 949 if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) { 950 __kmp_reserve_warn = 1; 951 if (__kmp_tp_cached) { 952 __kmp_msg(kmp_ms_warning, 953 KMP_MSG(CantFormThrTeam, set_nthreads, new_nthreads), 954 KMP_HNT(Set_ALL_THREADPRIVATE, __kmp_tp_capacity), 955 KMP_HNT(PossibleSystemLimitOnThreads), __kmp_msg_null); 956 } else { 957 __kmp_msg(kmp_ms_warning, 958 KMP_MSG(CantFormThrTeam, set_nthreads, new_nthreads), 959 KMP_HNT(SystemLimitOnThreads), __kmp_msg_null); 960 } 961 } 962 } 963 } 964 965 #ifdef KMP_DEBUG 966 if (new_nthreads == 1) { 967 KC_TRACE(10, 968 ("__kmp_reserve_threads: T#%d serializing team after reclaiming " 969 "dead roots and rechecking; requested %d threads\n", 970 __kmp_get_gtid(), set_nthreads)); 971 } else { 972 KC_TRACE(10, ("__kmp_reserve_threads: T#%d allocating %d threads; requested" 973 " %d threads\n", 974 __kmp_get_gtid(), new_nthreads, set_nthreads)); 975 } 976 #endif // KMP_DEBUG 977 return new_nthreads; 978 } 979 980 /* Allocate threads from the thread pool and assign them to the new team. We are 981 assured that there are enough threads available, because we checked on that 982 earlier within critical section forkjoin */ 983 static void __kmp_fork_team_threads(kmp_root_t *root, kmp_team_t *team, 984 kmp_info_t *master_th, int master_gtid) { 985 int i; 986 int use_hot_team; 987 988 KA_TRACE(10, ("__kmp_fork_team_threads: new_nprocs = %d\n", team->t.t_nproc)); 989 KMP_DEBUG_ASSERT(master_gtid == __kmp_get_gtid()); 990 KMP_MB(); 991 992 /* first, let's setup the master thread */ 993 master_th->th.th_info.ds.ds_tid = 0; 994 master_th->th.th_team = team; 995 master_th->th.th_team_nproc = team->t.t_nproc; 996 master_th->th.th_team_master = master_th; 997 master_th->th.th_team_serialized = FALSE; 998 master_th->th.th_dispatch = &team->t.t_dispatch[0]; 999 1000 /* make sure we are not the optimized hot team */ 1001 #if KMP_NESTED_HOT_TEAMS 1002 use_hot_team = 0; 1003 kmp_hot_team_ptr_t *hot_teams = master_th->th.th_hot_teams; 1004 if (hot_teams) { // hot teams array is not allocated if 1005 // KMP_HOT_TEAMS_MAX_LEVEL=0 1006 int level = team->t.t_active_level - 1; // index in array of hot teams 1007 if (master_th->th.th_teams_microtask) { // are we inside the teams? 1008 if (master_th->th.th_teams_size.nteams > 1) { 1009 ++level; // level was not increased in teams construct for 1010 // team_of_masters 1011 } 1012 if (team->t.t_pkfn != (microtask_t)__kmp_teams_master && 1013 master_th->th.th_teams_level == team->t.t_level) { 1014 ++level; // level was not increased in teams construct for 1015 // team_of_workers before the parallel 1016 } // team->t.t_level will be increased inside parallel 1017 } 1018 if (level < __kmp_hot_teams_max_level) { 1019 if (hot_teams[level].hot_team) { 1020 // hot team has already been allocated for given level 1021 KMP_DEBUG_ASSERT(hot_teams[level].hot_team == team); 1022 use_hot_team = 1; // the team is ready to use 1023 } else { 1024 use_hot_team = 0; // AC: threads are not allocated yet 1025 hot_teams[level].hot_team = team; // remember new hot team 1026 hot_teams[level].hot_team_nth = team->t.t_nproc; 1027 } 1028 } else { 1029 use_hot_team = 0; 1030 } 1031 } 1032 #else 1033 use_hot_team = team == root->r.r_hot_team; 1034 #endif 1035 if (!use_hot_team) { 1036 1037 /* install the master thread */ 1038 team->t.t_threads[0] = master_th; 1039 __kmp_initialize_info(master_th, team, 0, master_gtid); 1040 1041 /* now, install the worker threads */ 1042 for (i = 1; i < team->t.t_nproc; i++) { 1043 1044 /* fork or reallocate a new thread and install it in team */ 1045 kmp_info_t *thr = __kmp_allocate_thread(root, team, i); 1046 team->t.t_threads[i] = thr; 1047 KMP_DEBUG_ASSERT(thr); 1048 KMP_DEBUG_ASSERT(thr->th.th_team == team); 1049 /* align team and thread arrived states */ 1050 KA_TRACE(20, ("__kmp_fork_team_threads: T#%d(%d:%d) init arrived " 1051 "T#%d(%d:%d) join =%llu, plain=%llu\n", 1052 __kmp_gtid_from_tid(0, team), team->t.t_id, 0, 1053 __kmp_gtid_from_tid(i, team), team->t.t_id, i, 1054 team->t.t_bar[bs_forkjoin_barrier].b_arrived, 1055 team->t.t_bar[bs_plain_barrier].b_arrived)); 1056 #if OMP_40_ENABLED 1057 thr->th.th_teams_microtask = master_th->th.th_teams_microtask; 1058 thr->th.th_teams_level = master_th->th.th_teams_level; 1059 thr->th.th_teams_size = master_th->th.th_teams_size; 1060 #endif 1061 { // Initialize threads' barrier data. 1062 int b; 1063 kmp_balign_t *balign = team->t.t_threads[i]->th.th_bar; 1064 for (b = 0; b < bs_last_barrier; ++b) { 1065 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 1066 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 1067 #if USE_DEBUGGER 1068 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 1069 #endif 1070 } 1071 } 1072 } 1073 1074 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 1075 __kmp_partition_places(team); 1076 #endif 1077 } 1078 1079 #if OMP_50_ENABLED 1080 if (__kmp_display_affinity && team->t.t_display_affinity != 1) { 1081 for (i = 0; i < team->t.t_nproc; i++) { 1082 kmp_info_t *thr = team->t.t_threads[i]; 1083 if (thr->th.th_prev_num_threads != team->t.t_nproc || 1084 thr->th.th_prev_level != team->t.t_level) { 1085 team->t.t_display_affinity = 1; 1086 break; 1087 } 1088 } 1089 } 1090 #endif 1091 1092 KMP_MB(); 1093 } 1094 1095 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1096 // Propagate any changes to the floating point control registers out to the team 1097 // We try to avoid unnecessary writes to the relevant cache line in the team 1098 // structure, so we don't make changes unless they are needed. 1099 inline static void propagateFPControl(kmp_team_t *team) { 1100 if (__kmp_inherit_fp_control) { 1101 kmp_int16 x87_fpu_control_word; 1102 kmp_uint32 mxcsr; 1103 1104 // Get master values of FPU control flags (both X87 and vector) 1105 __kmp_store_x87_fpu_control_word(&x87_fpu_control_word); 1106 __kmp_store_mxcsr(&mxcsr); 1107 mxcsr &= KMP_X86_MXCSR_MASK; 1108 1109 // There is no point looking at t_fp_control_saved here. 1110 // If it is TRUE, we still have to update the values if they are different 1111 // from those we now have. If it is FALSE we didn't save anything yet, but 1112 // our objective is the same. We have to ensure that the values in the team 1113 // are the same as those we have. 1114 // So, this code achieves what we need whether or not t_fp_control_saved is 1115 // true. By checking whether the value needs updating we avoid unnecessary 1116 // writes that would put the cache-line into a written state, causing all 1117 // threads in the team to have to read it again. 1118 KMP_CHECK_UPDATE(team->t.t_x87_fpu_control_word, x87_fpu_control_word); 1119 KMP_CHECK_UPDATE(team->t.t_mxcsr, mxcsr); 1120 // Although we don't use this value, other code in the runtime wants to know 1121 // whether it should restore them. So we must ensure it is correct. 1122 KMP_CHECK_UPDATE(team->t.t_fp_control_saved, TRUE); 1123 } else { 1124 // Similarly here. Don't write to this cache-line in the team structure 1125 // unless we have to. 1126 KMP_CHECK_UPDATE(team->t.t_fp_control_saved, FALSE); 1127 } 1128 } 1129 1130 // Do the opposite, setting the hardware registers to the updated values from 1131 // the team. 1132 inline static void updateHWFPControl(kmp_team_t *team) { 1133 if (__kmp_inherit_fp_control && team->t.t_fp_control_saved) { 1134 // Only reset the fp control regs if they have been changed in the team. 1135 // the parallel region that we are exiting. 1136 kmp_int16 x87_fpu_control_word; 1137 kmp_uint32 mxcsr; 1138 __kmp_store_x87_fpu_control_word(&x87_fpu_control_word); 1139 __kmp_store_mxcsr(&mxcsr); 1140 mxcsr &= KMP_X86_MXCSR_MASK; 1141 1142 if (team->t.t_x87_fpu_control_word != x87_fpu_control_word) { 1143 __kmp_clear_x87_fpu_status_word(); 1144 __kmp_load_x87_fpu_control_word(&team->t.t_x87_fpu_control_word); 1145 } 1146 1147 if (team->t.t_mxcsr != mxcsr) { 1148 __kmp_load_mxcsr(&team->t.t_mxcsr); 1149 } 1150 } 1151 } 1152 #else 1153 #define propagateFPControl(x) ((void)0) 1154 #define updateHWFPControl(x) ((void)0) 1155 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 1156 1157 static void __kmp_alloc_argv_entries(int argc, kmp_team_t *team, 1158 int realloc); // forward declaration 1159 1160 /* Run a parallel region that has been serialized, so runs only in a team of the 1161 single master thread. */ 1162 void __kmp_serialized_parallel(ident_t *loc, kmp_int32 global_tid) { 1163 kmp_info_t *this_thr; 1164 kmp_team_t *serial_team; 1165 1166 KC_TRACE(10, ("__kmpc_serialized_parallel: called by T#%d\n", global_tid)); 1167 1168 /* Skip all this code for autopar serialized loops since it results in 1169 unacceptable overhead */ 1170 if (loc != NULL && (loc->flags & KMP_IDENT_AUTOPAR)) 1171 return; 1172 1173 if (!TCR_4(__kmp_init_parallel)) 1174 __kmp_parallel_initialize(); 1175 1176 #if OMP_50_ENABLED 1177 __kmp_resume_if_soft_paused(); 1178 #endif 1179 1180 this_thr = __kmp_threads[global_tid]; 1181 serial_team = this_thr->th.th_serial_team; 1182 1183 /* utilize the serialized team held by this thread */ 1184 KMP_DEBUG_ASSERT(serial_team); 1185 KMP_MB(); 1186 1187 if (__kmp_tasking_mode != tskm_immediate_exec) { 1188 KMP_DEBUG_ASSERT( 1189 this_thr->th.th_task_team == 1190 this_thr->th.th_team->t.t_task_team[this_thr->th.th_task_state]); 1191 KMP_DEBUG_ASSERT(serial_team->t.t_task_team[this_thr->th.th_task_state] == 1192 NULL); 1193 KA_TRACE(20, ("__kmpc_serialized_parallel: T#%d pushing task_team %p / " 1194 "team %p, new task_team = NULL\n", 1195 global_tid, this_thr->th.th_task_team, this_thr->th.th_team)); 1196 this_thr->th.th_task_team = NULL; 1197 } 1198 1199 #if OMP_40_ENABLED 1200 kmp_proc_bind_t proc_bind = this_thr->th.th_set_proc_bind; 1201 if (this_thr->th.th_current_task->td_icvs.proc_bind == proc_bind_false) { 1202 proc_bind = proc_bind_false; 1203 } else if (proc_bind == proc_bind_default) { 1204 // No proc_bind clause was specified, so use the current value 1205 // of proc-bind-var for this parallel region. 1206 proc_bind = this_thr->th.th_current_task->td_icvs.proc_bind; 1207 } 1208 // Reset for next parallel region 1209 this_thr->th.th_set_proc_bind = proc_bind_default; 1210 #endif /* OMP_40_ENABLED */ 1211 1212 #if OMPT_SUPPORT 1213 ompt_data_t ompt_parallel_data = ompt_data_none; 1214 ompt_data_t *implicit_task_data; 1215 void *codeptr = OMPT_LOAD_RETURN_ADDRESS(global_tid); 1216 if (ompt_enabled.enabled && 1217 this_thr->th.ompt_thread_info.state != ompt_state_overhead) { 1218 1219 ompt_task_info_t *parent_task_info; 1220 parent_task_info = OMPT_CUR_TASK_INFO(this_thr); 1221 1222 parent_task_info->frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 1223 if (ompt_enabled.ompt_callback_parallel_begin) { 1224 int team_size = 1; 1225 1226 ompt_callbacks.ompt_callback(ompt_callback_parallel_begin)( 1227 &(parent_task_info->task_data), &(parent_task_info->frame), 1228 &ompt_parallel_data, team_size, ompt_parallel_invoker_program, 1229 codeptr); 1230 } 1231 } 1232 #endif // OMPT_SUPPORT 1233 1234 if (this_thr->th.th_team != serial_team) { 1235 // Nested level will be an index in the nested nthreads array 1236 int level = this_thr->th.th_team->t.t_level; 1237 1238 if (serial_team->t.t_serialized) { 1239 /* this serial team was already used 1240 TODO increase performance by making this locks more specific */ 1241 kmp_team_t *new_team; 1242 1243 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 1244 1245 new_team = __kmp_allocate_team(this_thr->th.th_root, 1, 1, 1246 #if OMPT_SUPPORT 1247 ompt_parallel_data, 1248 #endif 1249 #if OMP_40_ENABLED 1250 proc_bind, 1251 #endif 1252 &this_thr->th.th_current_task->td_icvs, 1253 0 USE_NESTED_HOT_ARG(NULL)); 1254 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1255 KMP_ASSERT(new_team); 1256 1257 /* setup new serialized team and install it */ 1258 new_team->t.t_threads[0] = this_thr; 1259 new_team->t.t_parent = this_thr->th.th_team; 1260 serial_team = new_team; 1261 this_thr->th.th_serial_team = serial_team; 1262 1263 KF_TRACE( 1264 10, 1265 ("__kmpc_serialized_parallel: T#%d allocated new serial team %p\n", 1266 global_tid, serial_team)); 1267 1268 /* TODO the above breaks the requirement that if we run out of resources, 1269 then we can still guarantee that serialized teams are ok, since we may 1270 need to allocate a new one */ 1271 } else { 1272 KF_TRACE( 1273 10, 1274 ("__kmpc_serialized_parallel: T#%d reusing cached serial team %p\n", 1275 global_tid, serial_team)); 1276 } 1277 1278 /* we have to initialize this serial team */ 1279 KMP_DEBUG_ASSERT(serial_team->t.t_threads); 1280 KMP_DEBUG_ASSERT(serial_team->t.t_threads[0] == this_thr); 1281 KMP_DEBUG_ASSERT(this_thr->th.th_team != serial_team); 1282 serial_team->t.t_ident = loc; 1283 serial_team->t.t_serialized = 1; 1284 serial_team->t.t_nproc = 1; 1285 serial_team->t.t_parent = this_thr->th.th_team; 1286 serial_team->t.t_sched.sched = this_thr->th.th_team->t.t_sched.sched; 1287 this_thr->th.th_team = serial_team; 1288 serial_team->t.t_master_tid = this_thr->th.th_info.ds.ds_tid; 1289 1290 KF_TRACE(10, ("__kmpc_serialized_parallel: T#d curtask=%p\n", global_tid, 1291 this_thr->th.th_current_task)); 1292 KMP_ASSERT(this_thr->th.th_current_task->td_flags.executing == 1); 1293 this_thr->th.th_current_task->td_flags.executing = 0; 1294 1295 __kmp_push_current_task_to_thread(this_thr, serial_team, 0); 1296 1297 /* TODO: GEH: do ICVs work for nested serialized teams? Don't we need an 1298 implicit task for each serialized task represented by 1299 team->t.t_serialized? */ 1300 copy_icvs(&this_thr->th.th_current_task->td_icvs, 1301 &this_thr->th.th_current_task->td_parent->td_icvs); 1302 1303 // Thread value exists in the nested nthreads array for the next nested 1304 // level 1305 if (__kmp_nested_nth.used && (level + 1 < __kmp_nested_nth.used)) { 1306 this_thr->th.th_current_task->td_icvs.nproc = 1307 __kmp_nested_nth.nth[level + 1]; 1308 } 1309 1310 #if OMP_40_ENABLED 1311 if (__kmp_nested_proc_bind.used && 1312 (level + 1 < __kmp_nested_proc_bind.used)) { 1313 this_thr->th.th_current_task->td_icvs.proc_bind = 1314 __kmp_nested_proc_bind.bind_types[level + 1]; 1315 } 1316 #endif /* OMP_40_ENABLED */ 1317 1318 #if USE_DEBUGGER 1319 serial_team->t.t_pkfn = (microtask_t)(~0); // For the debugger. 1320 #endif 1321 this_thr->th.th_info.ds.ds_tid = 0; 1322 1323 /* set thread cache values */ 1324 this_thr->th.th_team_nproc = 1; 1325 this_thr->th.th_team_master = this_thr; 1326 this_thr->th.th_team_serialized = 1; 1327 1328 serial_team->t.t_level = serial_team->t.t_parent->t.t_level + 1; 1329 serial_team->t.t_active_level = serial_team->t.t_parent->t.t_active_level; 1330 #if OMP_50_ENABLED 1331 serial_team->t.t_def_allocator = this_thr->th.th_def_allocator; // save 1332 #endif 1333 1334 propagateFPControl(serial_team); 1335 1336 /* check if we need to allocate dispatch buffers stack */ 1337 KMP_DEBUG_ASSERT(serial_team->t.t_dispatch); 1338 if (!serial_team->t.t_dispatch->th_disp_buffer) { 1339 serial_team->t.t_dispatch->th_disp_buffer = 1340 (dispatch_private_info_t *)__kmp_allocate( 1341 sizeof(dispatch_private_info_t)); 1342 } 1343 this_thr->th.th_dispatch = serial_team->t.t_dispatch; 1344 1345 KMP_MB(); 1346 1347 } else { 1348 /* this serialized team is already being used, 1349 * that's fine, just add another nested level */ 1350 KMP_DEBUG_ASSERT(this_thr->th.th_team == serial_team); 1351 KMP_DEBUG_ASSERT(serial_team->t.t_threads); 1352 KMP_DEBUG_ASSERT(serial_team->t.t_threads[0] == this_thr); 1353 ++serial_team->t.t_serialized; 1354 this_thr->th.th_team_serialized = serial_team->t.t_serialized; 1355 1356 // Nested level will be an index in the nested nthreads array 1357 int level = this_thr->th.th_team->t.t_level; 1358 // Thread value exists in the nested nthreads array for the next nested 1359 // level 1360 if (__kmp_nested_nth.used && (level + 1 < __kmp_nested_nth.used)) { 1361 this_thr->th.th_current_task->td_icvs.nproc = 1362 __kmp_nested_nth.nth[level + 1]; 1363 } 1364 serial_team->t.t_level++; 1365 KF_TRACE(10, ("__kmpc_serialized_parallel: T#%d increasing nesting level " 1366 "of serial team %p to %d\n", 1367 global_tid, serial_team, serial_team->t.t_level)); 1368 1369 /* allocate/push dispatch buffers stack */ 1370 KMP_DEBUG_ASSERT(serial_team->t.t_dispatch); 1371 { 1372 dispatch_private_info_t *disp_buffer = 1373 (dispatch_private_info_t *)__kmp_allocate( 1374 sizeof(dispatch_private_info_t)); 1375 disp_buffer->next = serial_team->t.t_dispatch->th_disp_buffer; 1376 serial_team->t.t_dispatch->th_disp_buffer = disp_buffer; 1377 } 1378 this_thr->th.th_dispatch = serial_team->t.t_dispatch; 1379 1380 KMP_MB(); 1381 } 1382 #if OMP_40_ENABLED 1383 KMP_CHECK_UPDATE(serial_team->t.t_cancel_request, cancel_noreq); 1384 #endif 1385 1386 #if OMP_50_ENABLED 1387 // Perform the display affinity functionality for 1388 // serialized parallel regions 1389 if (__kmp_display_affinity) { 1390 if (this_thr->th.th_prev_level != serial_team->t.t_level || 1391 this_thr->th.th_prev_num_threads != 1) { 1392 // NULL means use the affinity-format-var ICV 1393 __kmp_aux_display_affinity(global_tid, NULL); 1394 this_thr->th.th_prev_level = serial_team->t.t_level; 1395 this_thr->th.th_prev_num_threads = 1; 1396 } 1397 } 1398 #endif 1399 1400 if (__kmp_env_consistency_check) 1401 __kmp_push_parallel(global_tid, NULL); 1402 #if OMPT_SUPPORT 1403 serial_team->t.ompt_team_info.master_return_address = codeptr; 1404 if (ompt_enabled.enabled && 1405 this_thr->th.ompt_thread_info.state != ompt_state_overhead) { 1406 OMPT_CUR_TASK_INFO(this_thr)->frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 1407 1408 ompt_lw_taskteam_t lw_taskteam; 1409 __ompt_lw_taskteam_init(&lw_taskteam, this_thr, global_tid, 1410 &ompt_parallel_data, codeptr); 1411 1412 __ompt_lw_taskteam_link(&lw_taskteam, this_thr, 1); 1413 // don't use lw_taskteam after linking. content was swaped 1414 1415 /* OMPT implicit task begin */ 1416 implicit_task_data = OMPT_CUR_TASK_DATA(this_thr); 1417 if (ompt_enabled.ompt_callback_implicit_task) { 1418 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1419 ompt_scope_begin, OMPT_CUR_TEAM_DATA(this_thr), 1420 OMPT_CUR_TASK_DATA(this_thr), 1, __kmp_tid_from_gtid(global_tid), ompt_task_implicit); // TODO: Can this be ompt_task_initial? 1421 OMPT_CUR_TASK_INFO(this_thr) 1422 ->thread_num = __kmp_tid_from_gtid(global_tid); 1423 } 1424 1425 /* OMPT state */ 1426 this_thr->th.ompt_thread_info.state = ompt_state_work_parallel; 1427 OMPT_CUR_TASK_INFO(this_thr)->frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 1428 } 1429 #endif 1430 } 1431 1432 /* most of the work for a fork */ 1433 /* return true if we really went parallel, false if serialized */ 1434 int __kmp_fork_call(ident_t *loc, int gtid, 1435 enum fork_context_e call_context, // Intel, GNU, ... 1436 kmp_int32 argc, microtask_t microtask, launch_t invoker, 1437 /* TODO: revert workaround for Intel(R) 64 tracker #96 */ 1438 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 1439 va_list *ap 1440 #else 1441 va_list ap 1442 #endif 1443 ) { 1444 void **argv; 1445 int i; 1446 int master_tid; 1447 int master_this_cons; 1448 kmp_team_t *team; 1449 kmp_team_t *parent_team; 1450 kmp_info_t *master_th; 1451 kmp_root_t *root; 1452 int nthreads; 1453 int master_active; 1454 int master_set_numthreads; 1455 int level; 1456 #if OMP_40_ENABLED 1457 int active_level; 1458 int teams_level; 1459 #endif 1460 #if KMP_NESTED_HOT_TEAMS 1461 kmp_hot_team_ptr_t **p_hot_teams; 1462 #endif 1463 { // KMP_TIME_BLOCK 1464 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_fork_call); 1465 KMP_COUNT_VALUE(OMP_PARALLEL_args, argc); 1466 1467 KA_TRACE(20, ("__kmp_fork_call: enter T#%d\n", gtid)); 1468 if (__kmp_stkpadding > 0 && __kmp_root[gtid] != NULL) { 1469 /* Some systems prefer the stack for the root thread(s) to start with */ 1470 /* some gap from the parent stack to prevent false sharing. */ 1471 void *dummy = KMP_ALLOCA(__kmp_stkpadding); 1472 /* These 2 lines below are so this does not get optimized out */ 1473 if (__kmp_stkpadding > KMP_MAX_STKPADDING) 1474 __kmp_stkpadding += (short)((kmp_int64)dummy); 1475 } 1476 1477 /* initialize if needed */ 1478 KMP_DEBUG_ASSERT( 1479 __kmp_init_serial); // AC: potentially unsafe, not in sync with shutdown 1480 if (!TCR_4(__kmp_init_parallel)) 1481 __kmp_parallel_initialize(); 1482 1483 #if OMP_50_ENABLED 1484 __kmp_resume_if_soft_paused(); 1485 #endif 1486 1487 /* setup current data */ 1488 master_th = __kmp_threads[gtid]; // AC: potentially unsafe, not in sync with 1489 // shutdown 1490 parent_team = master_th->th.th_team; 1491 master_tid = master_th->th.th_info.ds.ds_tid; 1492 master_this_cons = master_th->th.th_local.this_construct; 1493 root = master_th->th.th_root; 1494 master_active = root->r.r_active; 1495 master_set_numthreads = master_th->th.th_set_nproc; 1496 1497 #if OMPT_SUPPORT 1498 ompt_data_t ompt_parallel_data = ompt_data_none; 1499 ompt_data_t *parent_task_data; 1500 ompt_frame_t *ompt_frame; 1501 ompt_data_t *implicit_task_data; 1502 void *return_address = NULL; 1503 1504 if (ompt_enabled.enabled) { 1505 __ompt_get_task_info_internal(0, NULL, &parent_task_data, &ompt_frame, 1506 NULL, NULL); 1507 return_address = OMPT_LOAD_RETURN_ADDRESS(gtid); 1508 } 1509 #endif 1510 1511 // Nested level will be an index in the nested nthreads array 1512 level = parent_team->t.t_level; 1513 // used to launch non-serial teams even if nested is not allowed 1514 active_level = parent_team->t.t_active_level; 1515 #if OMP_40_ENABLED 1516 // needed to check nesting inside the teams 1517 teams_level = master_th->th.th_teams_level; 1518 #endif 1519 #if KMP_NESTED_HOT_TEAMS 1520 p_hot_teams = &master_th->th.th_hot_teams; 1521 if (*p_hot_teams == NULL && __kmp_hot_teams_max_level > 0) { 1522 *p_hot_teams = (kmp_hot_team_ptr_t *)__kmp_allocate( 1523 sizeof(kmp_hot_team_ptr_t) * __kmp_hot_teams_max_level); 1524 (*p_hot_teams)[0].hot_team = root->r.r_hot_team; 1525 // it is either actual or not needed (when active_level > 0) 1526 (*p_hot_teams)[0].hot_team_nth = 1; 1527 } 1528 #endif 1529 1530 #if OMPT_SUPPORT 1531 if (ompt_enabled.enabled) { 1532 if (ompt_enabled.ompt_callback_parallel_begin) { 1533 int team_size = master_set_numthreads 1534 ? master_set_numthreads 1535 : get__nproc_2(parent_team, master_tid); 1536 ompt_callbacks.ompt_callback(ompt_callback_parallel_begin)( 1537 parent_task_data, ompt_frame, &ompt_parallel_data, team_size, 1538 OMPT_INVOKER(call_context), return_address); 1539 } 1540 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1541 } 1542 #endif 1543 1544 master_th->th.th_ident = loc; 1545 1546 #if OMP_40_ENABLED 1547 if (master_th->th.th_teams_microtask && ap && 1548 microtask != (microtask_t)__kmp_teams_master && level == teams_level) { 1549 // AC: This is start of parallel that is nested inside teams construct. 1550 // The team is actual (hot), all workers are ready at the fork barrier. 1551 // No lock needed to initialize the team a bit, then free workers. 1552 parent_team->t.t_ident = loc; 1553 __kmp_alloc_argv_entries(argc, parent_team, TRUE); 1554 parent_team->t.t_argc = argc; 1555 argv = (void **)parent_team->t.t_argv; 1556 for (i = argc - 1; i >= 0; --i) 1557 /* TODO: revert workaround for Intel(R) 64 tracker #96 */ 1558 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 1559 *argv++ = va_arg(*ap, void *); 1560 #else 1561 *argv++ = va_arg(ap, void *); 1562 #endif 1563 // Increment our nested depth levels, but not increase the serialization 1564 if (parent_team == master_th->th.th_serial_team) { 1565 // AC: we are in serialized parallel 1566 __kmpc_serialized_parallel(loc, gtid); 1567 KMP_DEBUG_ASSERT(parent_team->t.t_serialized > 1); 1568 // AC: need this in order enquiry functions work 1569 // correctly, will restore at join time 1570 parent_team->t.t_serialized--; 1571 #if OMPT_SUPPORT 1572 void *dummy; 1573 void **exit_runtime_p; 1574 1575 ompt_lw_taskteam_t lw_taskteam; 1576 1577 if (ompt_enabled.enabled) { 1578 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1579 &ompt_parallel_data, return_address); 1580 exit_runtime_p = &(lw_taskteam.ompt_task_info.frame.exit_frame.ptr); 1581 1582 __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0); 1583 // don't use lw_taskteam after linking. content was swaped 1584 1585 /* OMPT implicit task begin */ 1586 implicit_task_data = OMPT_CUR_TASK_DATA(master_th); 1587 if (ompt_enabled.ompt_callback_implicit_task) { 1588 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1589 ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th), 1590 implicit_task_data, 1, __kmp_tid_from_gtid(gtid), ompt_task_implicit); // TODO: Can this be ompt_task_initial? 1591 OMPT_CUR_TASK_INFO(master_th) 1592 ->thread_num = __kmp_tid_from_gtid(gtid); 1593 } 1594 1595 /* OMPT state */ 1596 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 1597 } else { 1598 exit_runtime_p = &dummy; 1599 } 1600 #endif 1601 1602 { 1603 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1604 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1605 __kmp_invoke_microtask(microtask, gtid, 0, argc, parent_team->t.t_argv 1606 #if OMPT_SUPPORT 1607 , 1608 exit_runtime_p 1609 #endif 1610 ); 1611 } 1612 1613 #if OMPT_SUPPORT 1614 *exit_runtime_p = NULL; 1615 if (ompt_enabled.enabled) { 1616 OMPT_CUR_TASK_INFO(master_th)->frame.exit_frame = ompt_data_none; 1617 if (ompt_enabled.ompt_callback_implicit_task) { 1618 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1619 ompt_scope_end, NULL, implicit_task_data, 1, 1620 OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit); // TODO: Can this be ompt_task_initial? 1621 } 1622 __ompt_lw_taskteam_unlink(master_th); 1623 1624 if (ompt_enabled.ompt_callback_parallel_end) { 1625 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 1626 OMPT_CUR_TEAM_DATA(master_th), OMPT_CUR_TASK_DATA(master_th), 1627 OMPT_INVOKER(call_context), return_address); 1628 } 1629 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1630 } 1631 #endif 1632 return TRUE; 1633 } 1634 1635 parent_team->t.t_pkfn = microtask; 1636 parent_team->t.t_invoke = invoker; 1637 KMP_ATOMIC_INC(&root->r.r_in_parallel); 1638 parent_team->t.t_active_level++; 1639 parent_team->t.t_level++; 1640 #if OMP_50_ENABLED 1641 parent_team->t.t_def_allocator = master_th->th.th_def_allocator; // save 1642 #endif 1643 1644 /* Change number of threads in the team if requested */ 1645 if (master_set_numthreads) { // The parallel has num_threads clause 1646 if (master_set_numthreads < master_th->th.th_teams_size.nth) { 1647 // AC: only can reduce number of threads dynamically, can't increase 1648 kmp_info_t **other_threads = parent_team->t.t_threads; 1649 parent_team->t.t_nproc = master_set_numthreads; 1650 for (i = 0; i < master_set_numthreads; ++i) { 1651 other_threads[i]->th.th_team_nproc = master_set_numthreads; 1652 } 1653 // Keep extra threads hot in the team for possible next parallels 1654 } 1655 master_th->th.th_set_nproc = 0; 1656 } 1657 1658 #if USE_DEBUGGER 1659 if (__kmp_debugging) { // Let debugger override number of threads. 1660 int nth = __kmp_omp_num_threads(loc); 1661 if (nth > 0) { // 0 means debugger doesn't want to change num threads 1662 master_set_numthreads = nth; 1663 } 1664 } 1665 #endif 1666 1667 KF_TRACE(10, ("__kmp_fork_call: before internal fork: root=%p, team=%p, " 1668 "master_th=%p, gtid=%d\n", 1669 root, parent_team, master_th, gtid)); 1670 __kmp_internal_fork(loc, gtid, parent_team); 1671 KF_TRACE(10, ("__kmp_fork_call: after internal fork: root=%p, team=%p, " 1672 "master_th=%p, gtid=%d\n", 1673 root, parent_team, master_th, gtid)); 1674 1675 /* Invoke microtask for MASTER thread */ 1676 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) invoke microtask = %p\n", gtid, 1677 parent_team->t.t_id, parent_team->t.t_pkfn)); 1678 1679 if (!parent_team->t.t_invoke(gtid)) { 1680 KMP_ASSERT2(0, "cannot invoke microtask for MASTER thread"); 1681 } 1682 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) done microtask = %p\n", gtid, 1683 parent_team->t.t_id, parent_team->t.t_pkfn)); 1684 KMP_MB(); /* Flush all pending memory write invalidates. */ 1685 1686 KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid)); 1687 1688 return TRUE; 1689 } // Parallel closely nested in teams construct 1690 #endif /* OMP_40_ENABLED */ 1691 1692 #if KMP_DEBUG 1693 if (__kmp_tasking_mode != tskm_immediate_exec) { 1694 KMP_DEBUG_ASSERT(master_th->th.th_task_team == 1695 parent_team->t.t_task_team[master_th->th.th_task_state]); 1696 } 1697 #endif 1698 1699 if (parent_team->t.t_active_level >= 1700 master_th->th.th_current_task->td_icvs.max_active_levels) { 1701 nthreads = 1; 1702 } else { 1703 #if OMP_40_ENABLED 1704 int enter_teams = ((ap == NULL && active_level == 0) || 1705 (ap && teams_level > 0 && teams_level == level)); 1706 #endif 1707 nthreads = 1708 master_set_numthreads 1709 ? master_set_numthreads 1710 : get__nproc_2( 1711 parent_team, 1712 master_tid); // TODO: get nproc directly from current task 1713 1714 // Check if we need to take forkjoin lock? (no need for serialized 1715 // parallel out of teams construct). This code moved here from 1716 // __kmp_reserve_threads() to speedup nested serialized parallels. 1717 if (nthreads > 1) { 1718 if ((get__max_active_levels(master_th) == 1 && (root->r.r_in_parallel 1719 #if OMP_40_ENABLED 1720 && !enter_teams 1721 #endif /* OMP_40_ENABLED */ 1722 )) || 1723 (__kmp_library == library_serial)) { 1724 KC_TRACE(10, ("__kmp_fork_call: T#%d serializing team; requested %d" 1725 " threads\n", 1726 gtid, nthreads)); 1727 nthreads = 1; 1728 } 1729 } 1730 if (nthreads > 1) { 1731 /* determine how many new threads we can use */ 1732 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 1733 nthreads = __kmp_reserve_threads( 1734 root, parent_team, master_tid, nthreads 1735 #if OMP_40_ENABLED 1736 /* AC: If we execute teams from parallel region (on host), then 1737 teams should be created but each can only have 1 thread if 1738 nesting is disabled. If teams called from serial region, then 1739 teams and their threads should be created regardless of the 1740 nesting setting. */ 1741 , 1742 enter_teams 1743 #endif /* OMP_40_ENABLED */ 1744 ); 1745 if (nthreads == 1) { 1746 // Free lock for single thread execution here; for multi-thread 1747 // execution it will be freed later after team of threads created 1748 // and initialized 1749 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1750 } 1751 } 1752 } 1753 KMP_DEBUG_ASSERT(nthreads > 0); 1754 1755 // If we temporarily changed the set number of threads then restore it now 1756 master_th->th.th_set_nproc = 0; 1757 1758 /* create a serialized parallel region? */ 1759 if (nthreads == 1) { 1760 /* josh todo: hypothetical question: what do we do for OS X*? */ 1761 #if KMP_OS_LINUX && \ 1762 (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) 1763 void *args[argc]; 1764 #else 1765 void **args = (void **)KMP_ALLOCA(argc * sizeof(void *)); 1766 #endif /* KMP_OS_LINUX && ( KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || \ 1767 KMP_ARCH_AARCH64) */ 1768 1769 KA_TRACE(20, 1770 ("__kmp_fork_call: T#%d serializing parallel region\n", gtid)); 1771 1772 __kmpc_serialized_parallel(loc, gtid); 1773 1774 if (call_context == fork_context_intel) { 1775 /* TODO this sucks, use the compiler itself to pass args! :) */ 1776 master_th->th.th_serial_team->t.t_ident = loc; 1777 #if OMP_40_ENABLED 1778 if (!ap) { 1779 // revert change made in __kmpc_serialized_parallel() 1780 master_th->th.th_serial_team->t.t_level--; 1781 // Get args from parent team for teams construct 1782 1783 #if OMPT_SUPPORT 1784 void *dummy; 1785 void **exit_runtime_p; 1786 ompt_task_info_t *task_info; 1787 1788 ompt_lw_taskteam_t lw_taskteam; 1789 1790 if (ompt_enabled.enabled) { 1791 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1792 &ompt_parallel_data, return_address); 1793 1794 __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0); 1795 // don't use lw_taskteam after linking. content was swaped 1796 1797 task_info = OMPT_CUR_TASK_INFO(master_th); 1798 exit_runtime_p = &(task_info->frame.exit_frame.ptr); 1799 if (ompt_enabled.ompt_callback_implicit_task) { 1800 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1801 ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th), 1802 &(task_info->task_data), 1, __kmp_tid_from_gtid(gtid), ompt_task_implicit); // TODO: Can this be ompt_task_initial? 1803 OMPT_CUR_TASK_INFO(master_th) 1804 ->thread_num = __kmp_tid_from_gtid(gtid); 1805 } 1806 1807 /* OMPT state */ 1808 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 1809 } else { 1810 exit_runtime_p = &dummy; 1811 } 1812 #endif 1813 1814 { 1815 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1816 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1817 __kmp_invoke_microtask(microtask, gtid, 0, argc, 1818 parent_team->t.t_argv 1819 #if OMPT_SUPPORT 1820 , 1821 exit_runtime_p 1822 #endif 1823 ); 1824 } 1825 1826 #if OMPT_SUPPORT 1827 if (ompt_enabled.enabled) { 1828 exit_runtime_p = NULL; 1829 if (ompt_enabled.ompt_callback_implicit_task) { 1830 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1831 ompt_scope_end, NULL, &(task_info->task_data), 1, 1832 OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit); // TODO: Can this be ompt_task_initial? 1833 } 1834 1835 __ompt_lw_taskteam_unlink(master_th); 1836 if (ompt_enabled.ompt_callback_parallel_end) { 1837 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 1838 OMPT_CUR_TEAM_DATA(master_th), parent_task_data, 1839 OMPT_INVOKER(call_context), return_address); 1840 } 1841 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1842 } 1843 #endif 1844 } else if (microtask == (microtask_t)__kmp_teams_master) { 1845 KMP_DEBUG_ASSERT(master_th->th.th_team == 1846 master_th->th.th_serial_team); 1847 team = master_th->th.th_team; 1848 // team->t.t_pkfn = microtask; 1849 team->t.t_invoke = invoker; 1850 __kmp_alloc_argv_entries(argc, team, TRUE); 1851 team->t.t_argc = argc; 1852 argv = (void **)team->t.t_argv; 1853 if (ap) { 1854 for (i = argc - 1; i >= 0; --i) 1855 // TODO: revert workaround for Intel(R) 64 tracker #96 1856 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 1857 *argv++ = va_arg(*ap, void *); 1858 #else 1859 *argv++ = va_arg(ap, void *); 1860 #endif 1861 } else { 1862 for (i = 0; i < argc; ++i) 1863 // Get args from parent team for teams construct 1864 argv[i] = parent_team->t.t_argv[i]; 1865 } 1866 // AC: revert change made in __kmpc_serialized_parallel() 1867 // because initial code in teams should have level=0 1868 team->t.t_level--; 1869 // AC: call special invoker for outer "parallel" of teams construct 1870 invoker(gtid); 1871 } else { 1872 #endif /* OMP_40_ENABLED */ 1873 argv = args; 1874 for (i = argc - 1; i >= 0; --i) 1875 // TODO: revert workaround for Intel(R) 64 tracker #96 1876 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 1877 *argv++ = va_arg(*ap, void *); 1878 #else 1879 *argv++ = va_arg(ap, void *); 1880 #endif 1881 KMP_MB(); 1882 1883 #if OMPT_SUPPORT 1884 void *dummy; 1885 void **exit_runtime_p; 1886 ompt_task_info_t *task_info; 1887 1888 ompt_lw_taskteam_t lw_taskteam; 1889 1890 if (ompt_enabled.enabled) { 1891 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1892 &ompt_parallel_data, return_address); 1893 __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0); 1894 // don't use lw_taskteam after linking. content was swaped 1895 task_info = OMPT_CUR_TASK_INFO(master_th); 1896 exit_runtime_p = &(task_info->frame.exit_frame.ptr); 1897 1898 /* OMPT implicit task begin */ 1899 implicit_task_data = OMPT_CUR_TASK_DATA(master_th); 1900 if (ompt_enabled.ompt_callback_implicit_task) { 1901 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1902 ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th), 1903 implicit_task_data, 1, __kmp_tid_from_gtid(gtid), ompt_task_implicit); // TODO: Can this be ompt_task_initial? 1904 OMPT_CUR_TASK_INFO(master_th) 1905 ->thread_num = __kmp_tid_from_gtid(gtid); 1906 } 1907 1908 /* OMPT state */ 1909 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 1910 } else { 1911 exit_runtime_p = &dummy; 1912 } 1913 #endif 1914 1915 { 1916 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1917 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1918 __kmp_invoke_microtask(microtask, gtid, 0, argc, args 1919 #if OMPT_SUPPORT 1920 , 1921 exit_runtime_p 1922 #endif 1923 ); 1924 } 1925 1926 #if OMPT_SUPPORT 1927 if (ompt_enabled.enabled) { 1928 *exit_runtime_p = NULL; 1929 if (ompt_enabled.ompt_callback_implicit_task) { 1930 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1931 ompt_scope_end, NULL, &(task_info->task_data), 1, 1932 OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit); // TODO: Can this be ompt_task_initial? 1933 } 1934 1935 ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th); 1936 __ompt_lw_taskteam_unlink(master_th); 1937 if (ompt_enabled.ompt_callback_parallel_end) { 1938 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 1939 &ompt_parallel_data, parent_task_data, 1940 OMPT_INVOKER(call_context), return_address); 1941 } 1942 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1943 } 1944 #endif 1945 #if OMP_40_ENABLED 1946 } 1947 #endif /* OMP_40_ENABLED */ 1948 } else if (call_context == fork_context_gnu) { 1949 #if OMPT_SUPPORT 1950 ompt_lw_taskteam_t lwt; 1951 __ompt_lw_taskteam_init(&lwt, master_th, gtid, &ompt_parallel_data, 1952 return_address); 1953 1954 lwt.ompt_task_info.frame.exit_frame = ompt_data_none; 1955 __ompt_lw_taskteam_link(&lwt, master_th, 1); 1956 // don't use lw_taskteam after linking. content was swaped 1957 #endif 1958 1959 // we were called from GNU native code 1960 KA_TRACE(20, ("__kmp_fork_call: T#%d serial exit\n", gtid)); 1961 return FALSE; 1962 } else { 1963 KMP_ASSERT2(call_context < fork_context_last, 1964 "__kmp_fork_call: unknown fork_context parameter"); 1965 } 1966 1967 KA_TRACE(20, ("__kmp_fork_call: T#%d serial exit\n", gtid)); 1968 KMP_MB(); 1969 return FALSE; 1970 } // if (nthreads == 1) 1971 1972 // GEH: only modify the executing flag in the case when not serialized 1973 // serialized case is handled in kmpc_serialized_parallel 1974 KF_TRACE(10, ("__kmp_fork_call: parent_team_aclevel=%d, master_th=%p, " 1975 "curtask=%p, curtask_max_aclevel=%d\n", 1976 parent_team->t.t_active_level, master_th, 1977 master_th->th.th_current_task, 1978 master_th->th.th_current_task->td_icvs.max_active_levels)); 1979 // TODO: GEH - cannot do this assertion because root thread not set up as 1980 // executing 1981 // KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 1 ); 1982 master_th->th.th_current_task->td_flags.executing = 0; 1983 1984 #if OMP_40_ENABLED 1985 if (!master_th->th.th_teams_microtask || level > teams_level) 1986 #endif /* OMP_40_ENABLED */ 1987 { 1988 /* Increment our nested depth level */ 1989 KMP_ATOMIC_INC(&root->r.r_in_parallel); 1990 } 1991 1992 // See if we need to make a copy of the ICVs. 1993 int nthreads_icv = master_th->th.th_current_task->td_icvs.nproc; 1994 if ((level + 1 < __kmp_nested_nth.used) && 1995 (__kmp_nested_nth.nth[level + 1] != nthreads_icv)) { 1996 nthreads_icv = __kmp_nested_nth.nth[level + 1]; 1997 } else { 1998 nthreads_icv = 0; // don't update 1999 } 2000 2001 #if OMP_40_ENABLED 2002 // Figure out the proc_bind_policy for the new team. 2003 kmp_proc_bind_t proc_bind = master_th->th.th_set_proc_bind; 2004 kmp_proc_bind_t proc_bind_icv = 2005 proc_bind_default; // proc_bind_default means don't update 2006 if (master_th->th.th_current_task->td_icvs.proc_bind == proc_bind_false) { 2007 proc_bind = proc_bind_false; 2008 } else { 2009 if (proc_bind == proc_bind_default) { 2010 // No proc_bind clause specified; use current proc-bind-var for this 2011 // parallel region 2012 proc_bind = master_th->th.th_current_task->td_icvs.proc_bind; 2013 } 2014 /* else: The proc_bind policy was specified explicitly on parallel clause. 2015 This overrides proc-bind-var for this parallel region, but does not 2016 change proc-bind-var. */ 2017 // Figure the value of proc-bind-var for the child threads. 2018 if ((level + 1 < __kmp_nested_proc_bind.used) && 2019 (__kmp_nested_proc_bind.bind_types[level + 1] != 2020 master_th->th.th_current_task->td_icvs.proc_bind)) { 2021 proc_bind_icv = __kmp_nested_proc_bind.bind_types[level + 1]; 2022 } 2023 } 2024 2025 // Reset for next parallel region 2026 master_th->th.th_set_proc_bind = proc_bind_default; 2027 #endif /* OMP_40_ENABLED */ 2028 2029 if ((nthreads_icv > 0) 2030 #if OMP_40_ENABLED 2031 || (proc_bind_icv != proc_bind_default) 2032 #endif /* OMP_40_ENABLED */ 2033 ) { 2034 kmp_internal_control_t new_icvs; 2035 copy_icvs(&new_icvs, &master_th->th.th_current_task->td_icvs); 2036 new_icvs.next = NULL; 2037 if (nthreads_icv > 0) { 2038 new_icvs.nproc = nthreads_icv; 2039 } 2040 2041 #if OMP_40_ENABLED 2042 if (proc_bind_icv != proc_bind_default) { 2043 new_icvs.proc_bind = proc_bind_icv; 2044 } 2045 #endif /* OMP_40_ENABLED */ 2046 2047 /* allocate a new parallel team */ 2048 KF_TRACE(10, ("__kmp_fork_call: before __kmp_allocate_team\n")); 2049 team = __kmp_allocate_team(root, nthreads, nthreads, 2050 #if OMPT_SUPPORT 2051 ompt_parallel_data, 2052 #endif 2053 #if OMP_40_ENABLED 2054 proc_bind, 2055 #endif 2056 &new_icvs, argc USE_NESTED_HOT_ARG(master_th)); 2057 } else { 2058 /* allocate a new parallel team */ 2059 KF_TRACE(10, ("__kmp_fork_call: before __kmp_allocate_team\n")); 2060 team = __kmp_allocate_team(root, nthreads, nthreads, 2061 #if OMPT_SUPPORT 2062 ompt_parallel_data, 2063 #endif 2064 #if OMP_40_ENABLED 2065 proc_bind, 2066 #endif 2067 &master_th->th.th_current_task->td_icvs, 2068 argc USE_NESTED_HOT_ARG(master_th)); 2069 } 2070 KF_TRACE( 2071 10, ("__kmp_fork_call: after __kmp_allocate_team - team = %p\n", team)); 2072 2073 /* setup the new team */ 2074 KMP_CHECK_UPDATE(team->t.t_master_tid, master_tid); 2075 KMP_CHECK_UPDATE(team->t.t_master_this_cons, master_this_cons); 2076 KMP_CHECK_UPDATE(team->t.t_ident, loc); 2077 KMP_CHECK_UPDATE(team->t.t_parent, parent_team); 2078 KMP_CHECK_UPDATE_SYNC(team->t.t_pkfn, microtask); 2079 #if OMPT_SUPPORT 2080 KMP_CHECK_UPDATE_SYNC(team->t.ompt_team_info.master_return_address, 2081 return_address); 2082 #endif 2083 KMP_CHECK_UPDATE(team->t.t_invoke, invoker); // TODO move to root, maybe 2084 // TODO: parent_team->t.t_level == INT_MAX ??? 2085 #if OMP_40_ENABLED 2086 if (!master_th->th.th_teams_microtask || level > teams_level) { 2087 #endif /* OMP_40_ENABLED */ 2088 int new_level = parent_team->t.t_level + 1; 2089 KMP_CHECK_UPDATE(team->t.t_level, new_level); 2090 new_level = parent_team->t.t_active_level + 1; 2091 KMP_CHECK_UPDATE(team->t.t_active_level, new_level); 2092 #if OMP_40_ENABLED 2093 } else { 2094 // AC: Do not increase parallel level at start of the teams construct 2095 int new_level = parent_team->t.t_level; 2096 KMP_CHECK_UPDATE(team->t.t_level, new_level); 2097 new_level = parent_team->t.t_active_level; 2098 KMP_CHECK_UPDATE(team->t.t_active_level, new_level); 2099 } 2100 #endif /* OMP_40_ENABLED */ 2101 kmp_r_sched_t new_sched = get__sched_2(parent_team, master_tid); 2102 // set master's schedule as new run-time schedule 2103 KMP_CHECK_UPDATE(team->t.t_sched.sched, new_sched.sched); 2104 2105 #if OMP_40_ENABLED 2106 KMP_CHECK_UPDATE(team->t.t_cancel_request, cancel_noreq); 2107 #endif 2108 #if OMP_50_ENABLED 2109 KMP_CHECK_UPDATE(team->t.t_def_allocator, master_th->th.th_def_allocator); 2110 #endif 2111 2112 // Update the floating point rounding in the team if required. 2113 propagateFPControl(team); 2114 2115 if (__kmp_tasking_mode != tskm_immediate_exec) { 2116 // Set master's task team to team's task team. Unless this is hot team, it 2117 // should be NULL. 2118 KMP_DEBUG_ASSERT(master_th->th.th_task_team == 2119 parent_team->t.t_task_team[master_th->th.th_task_state]); 2120 KA_TRACE(20, ("__kmp_fork_call: Master T#%d pushing task_team %p / team " 2121 "%p, new task_team %p / team %p\n", 2122 __kmp_gtid_from_thread(master_th), 2123 master_th->th.th_task_team, parent_team, 2124 team->t.t_task_team[master_th->th.th_task_state], team)); 2125 2126 if (active_level || master_th->th.th_task_team) { 2127 // Take a memo of master's task_state 2128 KMP_DEBUG_ASSERT(master_th->th.th_task_state_memo_stack); 2129 if (master_th->th.th_task_state_top >= 2130 master_th->th.th_task_state_stack_sz) { // increase size 2131 kmp_uint32 new_size = 2 * master_th->th.th_task_state_stack_sz; 2132 kmp_uint8 *old_stack, *new_stack; 2133 kmp_uint32 i; 2134 new_stack = (kmp_uint8 *)__kmp_allocate(new_size); 2135 for (i = 0; i < master_th->th.th_task_state_stack_sz; ++i) { 2136 new_stack[i] = master_th->th.th_task_state_memo_stack[i]; 2137 } 2138 for (i = master_th->th.th_task_state_stack_sz; i < new_size; 2139 ++i) { // zero-init rest of stack 2140 new_stack[i] = 0; 2141 } 2142 old_stack = master_th->th.th_task_state_memo_stack; 2143 master_th->th.th_task_state_memo_stack = new_stack; 2144 master_th->th.th_task_state_stack_sz = new_size; 2145 __kmp_free(old_stack); 2146 } 2147 // Store master's task_state on stack 2148 master_th->th 2149 .th_task_state_memo_stack[master_th->th.th_task_state_top] = 2150 master_th->th.th_task_state; 2151 master_th->th.th_task_state_top++; 2152 #if KMP_NESTED_HOT_TEAMS 2153 if (master_th->th.th_hot_teams && 2154 active_level < __kmp_hot_teams_max_level && 2155 team == master_th->th.th_hot_teams[active_level].hot_team) { 2156 // Restore master's nested state if nested hot team 2157 master_th->th.th_task_state = 2158 master_th->th 2159 .th_task_state_memo_stack[master_th->th.th_task_state_top]; 2160 } else { 2161 #endif 2162 master_th->th.th_task_state = 0; 2163 #if KMP_NESTED_HOT_TEAMS 2164 } 2165 #endif 2166 } 2167 #if !KMP_NESTED_HOT_TEAMS 2168 KMP_DEBUG_ASSERT((master_th->th.th_task_team == NULL) || 2169 (team == root->r.r_hot_team)); 2170 #endif 2171 } 2172 2173 KA_TRACE( 2174 20, 2175 ("__kmp_fork_call: T#%d(%d:%d)->(%d:0) created a team of %d threads\n", 2176 gtid, parent_team->t.t_id, team->t.t_master_tid, team->t.t_id, 2177 team->t.t_nproc)); 2178 KMP_DEBUG_ASSERT(team != root->r.r_hot_team || 2179 (team->t.t_master_tid == 0 && 2180 (team->t.t_parent == root->r.r_root_team || 2181 team->t.t_parent->t.t_serialized))); 2182 KMP_MB(); 2183 2184 /* now, setup the arguments */ 2185 argv = (void **)team->t.t_argv; 2186 #if OMP_40_ENABLED 2187 if (ap) { 2188 #endif /* OMP_40_ENABLED */ 2189 for (i = argc - 1; i >= 0; --i) { 2190 // TODO: revert workaround for Intel(R) 64 tracker #96 2191 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 2192 void *new_argv = va_arg(*ap, void *); 2193 #else 2194 void *new_argv = va_arg(ap, void *); 2195 #endif 2196 KMP_CHECK_UPDATE(*argv, new_argv); 2197 argv++; 2198 } 2199 #if OMP_40_ENABLED 2200 } else { 2201 for (i = 0; i < argc; ++i) { 2202 // Get args from parent team for teams construct 2203 KMP_CHECK_UPDATE(argv[i], team->t.t_parent->t.t_argv[i]); 2204 } 2205 } 2206 #endif /* OMP_40_ENABLED */ 2207 2208 /* now actually fork the threads */ 2209 KMP_CHECK_UPDATE(team->t.t_master_active, master_active); 2210 if (!root->r.r_active) // Only do assignment if it prevents cache ping-pong 2211 root->r.r_active = TRUE; 2212 2213 __kmp_fork_team_threads(root, team, master_th, gtid); 2214 __kmp_setup_icv_copy(team, nthreads, 2215 &master_th->th.th_current_task->td_icvs, loc); 2216 2217 #if OMPT_SUPPORT 2218 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 2219 #endif 2220 2221 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 2222 2223 #if USE_ITT_BUILD 2224 if (team->t.t_active_level == 1 // only report frames at level 1 2225 #if OMP_40_ENABLED 2226 && !master_th->th.th_teams_microtask // not in teams construct 2227 #endif /* OMP_40_ENABLED */ 2228 ) { 2229 #if USE_ITT_NOTIFY 2230 if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) && 2231 (__kmp_forkjoin_frames_mode == 3 || 2232 __kmp_forkjoin_frames_mode == 1)) { 2233 kmp_uint64 tmp_time = 0; 2234 if (__itt_get_timestamp_ptr) 2235 tmp_time = __itt_get_timestamp(); 2236 // Internal fork - report frame begin 2237 master_th->th.th_frame_time = tmp_time; 2238 if (__kmp_forkjoin_frames_mode == 3) 2239 team->t.t_region_time = tmp_time; 2240 } else 2241 // only one notification scheme (either "submit" or "forking/joined", not both) 2242 #endif /* USE_ITT_NOTIFY */ 2243 if ((__itt_frame_begin_v3_ptr || KMP_ITT_DEBUG) && 2244 __kmp_forkjoin_frames && !__kmp_forkjoin_frames_mode) { 2245 // Mark start of "parallel" region for Intel(R) VTune(TM) analyzer. 2246 __kmp_itt_region_forking(gtid, team->t.t_nproc, 0); 2247 } 2248 } 2249 #endif /* USE_ITT_BUILD */ 2250 2251 /* now go on and do the work */ 2252 KMP_DEBUG_ASSERT(team == __kmp_threads[gtid]->th.th_team); 2253 KMP_MB(); 2254 KF_TRACE(10, 2255 ("__kmp_internal_fork : root=%p, team=%p, master_th=%p, gtid=%d\n", 2256 root, team, master_th, gtid)); 2257 2258 #if USE_ITT_BUILD 2259 if (__itt_stack_caller_create_ptr) { 2260 team->t.t_stack_id = 2261 __kmp_itt_stack_caller_create(); // create new stack stitching id 2262 // before entering fork barrier 2263 } 2264 #endif /* USE_ITT_BUILD */ 2265 2266 #if OMP_40_ENABLED 2267 // AC: skip __kmp_internal_fork at teams construct, let only master 2268 // threads execute 2269 if (ap) 2270 #endif /* OMP_40_ENABLED */ 2271 { 2272 __kmp_internal_fork(loc, gtid, team); 2273 KF_TRACE(10, ("__kmp_internal_fork : after : root=%p, team=%p, " 2274 "master_th=%p, gtid=%d\n", 2275 root, team, master_th, gtid)); 2276 } 2277 2278 if (call_context == fork_context_gnu) { 2279 KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid)); 2280 return TRUE; 2281 } 2282 2283 /* Invoke microtask for MASTER thread */ 2284 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) invoke microtask = %p\n", gtid, 2285 team->t.t_id, team->t.t_pkfn)); 2286 } // END of timer KMP_fork_call block 2287 2288 #if KMP_STATS_ENABLED && OMP_40_ENABLED 2289 // If beginning a teams construct, then change thread state 2290 stats_state_e previous_state = KMP_GET_THREAD_STATE(); 2291 if (!ap) { 2292 KMP_SET_THREAD_STATE(stats_state_e::TEAMS_REGION); 2293 } 2294 #endif 2295 2296 if (!team->t.t_invoke(gtid)) { 2297 KMP_ASSERT2(0, "cannot invoke microtask for MASTER thread"); 2298 } 2299 2300 #if KMP_STATS_ENABLED && OMP_40_ENABLED 2301 // If was beginning of a teams construct, then reset thread state 2302 if (!ap) { 2303 KMP_SET_THREAD_STATE(previous_state); 2304 } 2305 #endif 2306 2307 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) done microtask = %p\n", gtid, 2308 team->t.t_id, team->t.t_pkfn)); 2309 KMP_MB(); /* Flush all pending memory write invalidates. */ 2310 2311 KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid)); 2312 2313 #if OMPT_SUPPORT 2314 if (ompt_enabled.enabled) { 2315 master_th->th.ompt_thread_info.state = ompt_state_overhead; 2316 } 2317 #endif 2318 2319 return TRUE; 2320 } 2321 2322 #if OMPT_SUPPORT 2323 static inline void __kmp_join_restore_state(kmp_info_t *thread, 2324 kmp_team_t *team) { 2325 // restore state outside the region 2326 thread->th.ompt_thread_info.state = 2327 ((team->t.t_serialized) ? ompt_state_work_serial 2328 : ompt_state_work_parallel); 2329 } 2330 2331 static inline void __kmp_join_ompt(int gtid, kmp_info_t *thread, 2332 kmp_team_t *team, ompt_data_t *parallel_data, 2333 fork_context_e fork_context, void *codeptr) { 2334 ompt_task_info_t *task_info = __ompt_get_task_info_object(0); 2335 if (ompt_enabled.ompt_callback_parallel_end) { 2336 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 2337 parallel_data, &(task_info->task_data), OMPT_INVOKER(fork_context), 2338 codeptr); 2339 } 2340 2341 task_info->frame.enter_frame = ompt_data_none; 2342 __kmp_join_restore_state(thread, team); 2343 } 2344 #endif 2345 2346 void __kmp_join_call(ident_t *loc, int gtid 2347 #if OMPT_SUPPORT 2348 , 2349 enum fork_context_e fork_context 2350 #endif 2351 #if OMP_40_ENABLED 2352 , 2353 int exit_teams 2354 #endif /* OMP_40_ENABLED */ 2355 ) { 2356 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_join_call); 2357 kmp_team_t *team; 2358 kmp_team_t *parent_team; 2359 kmp_info_t *master_th; 2360 kmp_root_t *root; 2361 int master_active; 2362 2363 KA_TRACE(20, ("__kmp_join_call: enter T#%d\n", gtid)); 2364 2365 /* setup current data */ 2366 master_th = __kmp_threads[gtid]; 2367 root = master_th->th.th_root; 2368 team = master_th->th.th_team; 2369 parent_team = team->t.t_parent; 2370 2371 master_th->th.th_ident = loc; 2372 2373 #if OMPT_SUPPORT 2374 if (ompt_enabled.enabled) { 2375 master_th->th.ompt_thread_info.state = ompt_state_overhead; 2376 } 2377 #endif 2378 2379 #if KMP_DEBUG 2380 if (__kmp_tasking_mode != tskm_immediate_exec && !exit_teams) { 2381 KA_TRACE(20, ("__kmp_join_call: T#%d, old team = %p old task_team = %p, " 2382 "th_task_team = %p\n", 2383 __kmp_gtid_from_thread(master_th), team, 2384 team->t.t_task_team[master_th->th.th_task_state], 2385 master_th->th.th_task_team)); 2386 KMP_DEBUG_ASSERT(master_th->th.th_task_team == 2387 team->t.t_task_team[master_th->th.th_task_state]); 2388 } 2389 #endif 2390 2391 if (team->t.t_serialized) { 2392 #if OMP_40_ENABLED 2393 if (master_th->th.th_teams_microtask) { 2394 // We are in teams construct 2395 int level = team->t.t_level; 2396 int tlevel = master_th->th.th_teams_level; 2397 if (level == tlevel) { 2398 // AC: we haven't incremented it earlier at start of teams construct, 2399 // so do it here - at the end of teams construct 2400 team->t.t_level++; 2401 } else if (level == tlevel + 1) { 2402 // AC: we are exiting parallel inside teams, need to increment 2403 // serialization in order to restore it in the next call to 2404 // __kmpc_end_serialized_parallel 2405 team->t.t_serialized++; 2406 } 2407 } 2408 #endif /* OMP_40_ENABLED */ 2409 __kmpc_end_serialized_parallel(loc, gtid); 2410 2411 #if OMPT_SUPPORT 2412 if (ompt_enabled.enabled) { 2413 __kmp_join_restore_state(master_th, parent_team); 2414 } 2415 #endif 2416 2417 return; 2418 } 2419 2420 master_active = team->t.t_master_active; 2421 2422 #if OMP_40_ENABLED 2423 if (!exit_teams) 2424 #endif /* OMP_40_ENABLED */ 2425 { 2426 // AC: No barrier for internal teams at exit from teams construct. 2427 // But there is barrier for external team (league). 2428 __kmp_internal_join(loc, gtid, team); 2429 } 2430 #if OMP_40_ENABLED 2431 else { 2432 master_th->th.th_task_state = 2433 0; // AC: no tasking in teams (out of any parallel) 2434 } 2435 #endif /* OMP_40_ENABLED */ 2436 2437 KMP_MB(); 2438 2439 #if OMPT_SUPPORT 2440 ompt_data_t *parallel_data = &(team->t.ompt_team_info.parallel_data); 2441 void *codeptr = team->t.ompt_team_info.master_return_address; 2442 #endif 2443 2444 #if USE_ITT_BUILD 2445 if (__itt_stack_caller_create_ptr) { 2446 __kmp_itt_stack_caller_destroy( 2447 (__itt_caller)team->t 2448 .t_stack_id); // destroy the stack stitching id after join barrier 2449 } 2450 2451 // Mark end of "parallel" region for Intel(R) VTune(TM) analyzer. 2452 if (team->t.t_active_level == 1 2453 #if OMP_40_ENABLED 2454 && !master_th->th.th_teams_microtask /* not in teams construct */ 2455 #endif /* OMP_40_ENABLED */ 2456 ) { 2457 master_th->th.th_ident = loc; 2458 // only one notification scheme (either "submit" or "forking/joined", not 2459 // both) 2460 if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) && 2461 __kmp_forkjoin_frames_mode == 3) 2462 __kmp_itt_frame_submit(gtid, team->t.t_region_time, 2463 master_th->th.th_frame_time, 0, loc, 2464 master_th->th.th_team_nproc, 1); 2465 else if ((__itt_frame_end_v3_ptr || KMP_ITT_DEBUG) && 2466 !__kmp_forkjoin_frames_mode && __kmp_forkjoin_frames) 2467 __kmp_itt_region_joined(gtid); 2468 } // active_level == 1 2469 #endif /* USE_ITT_BUILD */ 2470 2471 #if OMP_40_ENABLED 2472 if (master_th->th.th_teams_microtask && !exit_teams && 2473 team->t.t_pkfn != (microtask_t)__kmp_teams_master && 2474 team->t.t_level == master_th->th.th_teams_level + 1) { 2475 // AC: We need to leave the team structure intact at the end of parallel 2476 // inside the teams construct, so that at the next parallel same (hot) team 2477 // works, only adjust nesting levels 2478 2479 /* Decrement our nested depth level */ 2480 team->t.t_level--; 2481 team->t.t_active_level--; 2482 KMP_ATOMIC_DEC(&root->r.r_in_parallel); 2483 2484 // Restore number of threads in the team if needed. This code relies on 2485 // the proper adjustment of th_teams_size.nth after the fork in 2486 // __kmp_teams_master on each teams master in the case that 2487 // __kmp_reserve_threads reduced it. 2488 if (master_th->th.th_team_nproc < master_th->th.th_teams_size.nth) { 2489 int old_num = master_th->th.th_team_nproc; 2490 int new_num = master_th->th.th_teams_size.nth; 2491 kmp_info_t **other_threads = team->t.t_threads; 2492 team->t.t_nproc = new_num; 2493 for (int i = 0; i < old_num; ++i) { 2494 other_threads[i]->th.th_team_nproc = new_num; 2495 } 2496 // Adjust states of non-used threads of the team 2497 for (int i = old_num; i < new_num; ++i) { 2498 // Re-initialize thread's barrier data. 2499 KMP_DEBUG_ASSERT(other_threads[i]); 2500 kmp_balign_t *balign = other_threads[i]->th.th_bar; 2501 for (int b = 0; b < bs_last_barrier; ++b) { 2502 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 2503 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 2504 #if USE_DEBUGGER 2505 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 2506 #endif 2507 } 2508 if (__kmp_tasking_mode != tskm_immediate_exec) { 2509 // Synchronize thread's task state 2510 other_threads[i]->th.th_task_state = master_th->th.th_task_state; 2511 } 2512 } 2513 } 2514 2515 #if OMPT_SUPPORT 2516 if (ompt_enabled.enabled) { 2517 __kmp_join_ompt(gtid, master_th, parent_team, parallel_data, fork_context, 2518 codeptr); 2519 } 2520 #endif 2521 2522 return; 2523 } 2524 #endif /* OMP_40_ENABLED */ 2525 2526 /* do cleanup and restore the parent team */ 2527 master_th->th.th_info.ds.ds_tid = team->t.t_master_tid; 2528 master_th->th.th_local.this_construct = team->t.t_master_this_cons; 2529 2530 master_th->th.th_dispatch = &parent_team->t.t_dispatch[team->t.t_master_tid]; 2531 2532 /* jc: The following lock has instructions with REL and ACQ semantics, 2533 separating the parallel user code called in this parallel region 2534 from the serial user code called after this function returns. */ 2535 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 2536 2537 #if OMP_40_ENABLED 2538 if (!master_th->th.th_teams_microtask || 2539 team->t.t_level > master_th->th.th_teams_level) 2540 #endif /* OMP_40_ENABLED */ 2541 { 2542 /* Decrement our nested depth level */ 2543 KMP_ATOMIC_DEC(&root->r.r_in_parallel); 2544 } 2545 KMP_DEBUG_ASSERT(root->r.r_in_parallel >= 0); 2546 2547 #if OMPT_SUPPORT 2548 if (ompt_enabled.enabled) { 2549 ompt_task_info_t *task_info = __ompt_get_task_info_object(0); 2550 if (ompt_enabled.ompt_callback_implicit_task) { 2551 int ompt_team_size = team->t.t_nproc; 2552 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 2553 ompt_scope_end, NULL, &(task_info->task_data), ompt_team_size, 2554 OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit); // TODO: Can this be ompt_task_initial? 2555 } 2556 2557 task_info->frame.exit_frame = ompt_data_none; 2558 task_info->task_data = ompt_data_none; 2559 } 2560 #endif 2561 2562 KF_TRACE(10, ("__kmp_join_call1: T#%d, this_thread=%p team=%p\n", 0, 2563 master_th, team)); 2564 __kmp_pop_current_task_from_thread(master_th); 2565 2566 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 2567 // Restore master thread's partition. 2568 master_th->th.th_first_place = team->t.t_first_place; 2569 master_th->th.th_last_place = team->t.t_last_place; 2570 #endif /* OMP_40_ENABLED */ 2571 #if OMP_50_ENABLED 2572 master_th->th.th_def_allocator = team->t.t_def_allocator; 2573 #endif 2574 2575 updateHWFPControl(team); 2576 2577 if (root->r.r_active != master_active) 2578 root->r.r_active = master_active; 2579 2580 __kmp_free_team(root, team USE_NESTED_HOT_ARG( 2581 master_th)); // this will free worker threads 2582 2583 /* this race was fun to find. make sure the following is in the critical 2584 region otherwise assertions may fail occasionally since the old team may be 2585 reallocated and the hierarchy appears inconsistent. it is actually safe to 2586 run and won't cause any bugs, but will cause those assertion failures. it's 2587 only one deref&assign so might as well put this in the critical region */ 2588 master_th->th.th_team = parent_team; 2589 master_th->th.th_team_nproc = parent_team->t.t_nproc; 2590 master_th->th.th_team_master = parent_team->t.t_threads[0]; 2591 master_th->th.th_team_serialized = parent_team->t.t_serialized; 2592 2593 /* restore serialized team, if need be */ 2594 if (parent_team->t.t_serialized && 2595 parent_team != master_th->th.th_serial_team && 2596 parent_team != root->r.r_root_team) { 2597 __kmp_free_team(root, 2598 master_th->th.th_serial_team USE_NESTED_HOT_ARG(NULL)); 2599 master_th->th.th_serial_team = parent_team; 2600 } 2601 2602 if (__kmp_tasking_mode != tskm_immediate_exec) { 2603 if (master_th->th.th_task_state_top > 2604 0) { // Restore task state from memo stack 2605 KMP_DEBUG_ASSERT(master_th->th.th_task_state_memo_stack); 2606 // Remember master's state if we re-use this nested hot team 2607 master_th->th.th_task_state_memo_stack[master_th->th.th_task_state_top] = 2608 master_th->th.th_task_state; 2609 --master_th->th.th_task_state_top; // pop 2610 // Now restore state at this level 2611 master_th->th.th_task_state = 2612 master_th->th 2613 .th_task_state_memo_stack[master_th->th.th_task_state_top]; 2614 } 2615 // Copy the task team from the parent team to the master thread 2616 master_th->th.th_task_team = 2617 parent_team->t.t_task_team[master_th->th.th_task_state]; 2618 KA_TRACE(20, 2619 ("__kmp_join_call: Master T#%d restoring task_team %p / team %p\n", 2620 __kmp_gtid_from_thread(master_th), master_th->th.th_task_team, 2621 parent_team)); 2622 } 2623 2624 // TODO: GEH - cannot do this assertion because root thread not set up as 2625 // executing 2626 // KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 0 ); 2627 master_th->th.th_current_task->td_flags.executing = 1; 2628 2629 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 2630 2631 #if OMPT_SUPPORT 2632 if (ompt_enabled.enabled) { 2633 __kmp_join_ompt(gtid, master_th, parent_team, parallel_data, fork_context, 2634 codeptr); 2635 } 2636 #endif 2637 2638 KMP_MB(); 2639 KA_TRACE(20, ("__kmp_join_call: exit T#%d\n", gtid)); 2640 } 2641 2642 /* Check whether we should push an internal control record onto the 2643 serial team stack. If so, do it. */ 2644 void __kmp_save_internal_controls(kmp_info_t *thread) { 2645 2646 if (thread->th.th_team != thread->th.th_serial_team) { 2647 return; 2648 } 2649 if (thread->th.th_team->t.t_serialized > 1) { 2650 int push = 0; 2651 2652 if (thread->th.th_team->t.t_control_stack_top == NULL) { 2653 push = 1; 2654 } else { 2655 if (thread->th.th_team->t.t_control_stack_top->serial_nesting_level != 2656 thread->th.th_team->t.t_serialized) { 2657 push = 1; 2658 } 2659 } 2660 if (push) { /* push a record on the serial team's stack */ 2661 kmp_internal_control_t *control = 2662 (kmp_internal_control_t *)__kmp_allocate( 2663 sizeof(kmp_internal_control_t)); 2664 2665 copy_icvs(control, &thread->th.th_current_task->td_icvs); 2666 2667 control->serial_nesting_level = thread->th.th_team->t.t_serialized; 2668 2669 control->next = thread->th.th_team->t.t_control_stack_top; 2670 thread->th.th_team->t.t_control_stack_top = control; 2671 } 2672 } 2673 } 2674 2675 /* Changes set_nproc */ 2676 void __kmp_set_num_threads(int new_nth, int gtid) { 2677 kmp_info_t *thread; 2678 kmp_root_t *root; 2679 2680 KF_TRACE(10, ("__kmp_set_num_threads: new __kmp_nth = %d\n", new_nth)); 2681 KMP_DEBUG_ASSERT(__kmp_init_serial); 2682 2683 if (new_nth < 1) 2684 new_nth = 1; 2685 else if (new_nth > __kmp_max_nth) 2686 new_nth = __kmp_max_nth; 2687 2688 KMP_COUNT_VALUE(OMP_set_numthreads, new_nth); 2689 thread = __kmp_threads[gtid]; 2690 if (thread->th.th_current_task->td_icvs.nproc == new_nth) 2691 return; // nothing to do 2692 2693 __kmp_save_internal_controls(thread); 2694 2695 set__nproc(thread, new_nth); 2696 2697 // If this omp_set_num_threads() call will cause the hot team size to be 2698 // reduced (in the absence of a num_threads clause), then reduce it now, 2699 // rather than waiting for the next parallel region. 2700 root = thread->th.th_root; 2701 if (__kmp_init_parallel && (!root->r.r_active) && 2702 (root->r.r_hot_team->t.t_nproc > new_nth) 2703 #if KMP_NESTED_HOT_TEAMS 2704 && __kmp_hot_teams_max_level && !__kmp_hot_teams_mode 2705 #endif 2706 ) { 2707 kmp_team_t *hot_team = root->r.r_hot_team; 2708 int f; 2709 2710 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 2711 2712 // Release the extra threads we don't need any more. 2713 for (f = new_nth; f < hot_team->t.t_nproc; f++) { 2714 KMP_DEBUG_ASSERT(hot_team->t.t_threads[f] != NULL); 2715 if (__kmp_tasking_mode != tskm_immediate_exec) { 2716 // When decreasing team size, threads no longer in the team should unref 2717 // task team. 2718 hot_team->t.t_threads[f]->th.th_task_team = NULL; 2719 } 2720 __kmp_free_thread(hot_team->t.t_threads[f]); 2721 hot_team->t.t_threads[f] = NULL; 2722 } 2723 hot_team->t.t_nproc = new_nth; 2724 #if KMP_NESTED_HOT_TEAMS 2725 if (thread->th.th_hot_teams) { 2726 KMP_DEBUG_ASSERT(hot_team == thread->th.th_hot_teams[0].hot_team); 2727 thread->th.th_hot_teams[0].hot_team_nth = new_nth; 2728 } 2729 #endif 2730 2731 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 2732 2733 // Update the t_nproc field in the threads that are still active. 2734 for (f = 0; f < new_nth; f++) { 2735 KMP_DEBUG_ASSERT(hot_team->t.t_threads[f] != NULL); 2736 hot_team->t.t_threads[f]->th.th_team_nproc = new_nth; 2737 } 2738 // Special flag in case omp_set_num_threads() call 2739 hot_team->t.t_size_changed = -1; 2740 } 2741 } 2742 2743 /* Changes max_active_levels */ 2744 void __kmp_set_max_active_levels(int gtid, int max_active_levels) { 2745 kmp_info_t *thread; 2746 2747 KF_TRACE(10, ("__kmp_set_max_active_levels: new max_active_levels for thread " 2748 "%d = (%d)\n", 2749 gtid, max_active_levels)); 2750 KMP_DEBUG_ASSERT(__kmp_init_serial); 2751 2752 // validate max_active_levels 2753 if (max_active_levels < 0) { 2754 KMP_WARNING(ActiveLevelsNegative, max_active_levels); 2755 // We ignore this call if the user has specified a negative value. 2756 // The current setting won't be changed. The last valid setting will be 2757 // used. A warning will be issued (if warnings are allowed as controlled by 2758 // the KMP_WARNINGS env var). 2759 KF_TRACE(10, ("__kmp_set_max_active_levels: the call is ignored: new " 2760 "max_active_levels for thread %d = (%d)\n", 2761 gtid, max_active_levels)); 2762 return; 2763 } 2764 if (max_active_levels <= KMP_MAX_ACTIVE_LEVELS_LIMIT) { 2765 // it's OK, the max_active_levels is within the valid range: [ 0; 2766 // KMP_MAX_ACTIVE_LEVELS_LIMIT ] 2767 // We allow a zero value. (implementation defined behavior) 2768 } else { 2769 KMP_WARNING(ActiveLevelsExceedLimit, max_active_levels, 2770 KMP_MAX_ACTIVE_LEVELS_LIMIT); 2771 max_active_levels = KMP_MAX_ACTIVE_LEVELS_LIMIT; 2772 // Current upper limit is MAX_INT. (implementation defined behavior) 2773 // If the input exceeds the upper limit, we correct the input to be the 2774 // upper limit. (implementation defined behavior) 2775 // Actually, the flow should never get here until we use MAX_INT limit. 2776 } 2777 KF_TRACE(10, ("__kmp_set_max_active_levels: after validation: new " 2778 "max_active_levels for thread %d = (%d)\n", 2779 gtid, max_active_levels)); 2780 2781 thread = __kmp_threads[gtid]; 2782 2783 __kmp_save_internal_controls(thread); 2784 2785 set__max_active_levels(thread, max_active_levels); 2786 } 2787 2788 /* Gets max_active_levels */ 2789 int __kmp_get_max_active_levels(int gtid) { 2790 kmp_info_t *thread; 2791 2792 KF_TRACE(10, ("__kmp_get_max_active_levels: thread %d\n", gtid)); 2793 KMP_DEBUG_ASSERT(__kmp_init_serial); 2794 2795 thread = __kmp_threads[gtid]; 2796 KMP_DEBUG_ASSERT(thread->th.th_current_task); 2797 KF_TRACE(10, ("__kmp_get_max_active_levels: thread %d, curtask=%p, " 2798 "curtask_maxaclevel=%d\n", 2799 gtid, thread->th.th_current_task, 2800 thread->th.th_current_task->td_icvs.max_active_levels)); 2801 return thread->th.th_current_task->td_icvs.max_active_levels; 2802 } 2803 2804 KMP_BUILD_ASSERT(sizeof(kmp_sched_t) == sizeof(int)); 2805 KMP_BUILD_ASSERT(sizeof(enum sched_type) == sizeof(int)); 2806 2807 /* Changes def_sched_var ICV values (run-time schedule kind and chunk) */ 2808 void __kmp_set_schedule(int gtid, kmp_sched_t kind, int chunk) { 2809 kmp_info_t *thread; 2810 kmp_sched_t orig_kind; 2811 // kmp_team_t *team; 2812 2813 KF_TRACE(10, ("__kmp_set_schedule: new schedule for thread %d = (%d, %d)\n", 2814 gtid, (int)kind, chunk)); 2815 KMP_DEBUG_ASSERT(__kmp_init_serial); 2816 2817 // Check if the kind parameter is valid, correct if needed. 2818 // Valid parameters should fit in one of two intervals - standard or extended: 2819 // <lower>, <valid>, <upper_std>, <lower_ext>, <valid>, <upper> 2820 // 2008-01-25: 0, 1 - 4, 5, 100, 101 - 102, 103 2821 orig_kind = kind; 2822 kind = __kmp_sched_without_mods(kind); 2823 2824 if (kind <= kmp_sched_lower || kind >= kmp_sched_upper || 2825 (kind <= kmp_sched_lower_ext && kind >= kmp_sched_upper_std)) { 2826 // TODO: Hint needs attention in case we change the default schedule. 2827 __kmp_msg(kmp_ms_warning, KMP_MSG(ScheduleKindOutOfRange, kind), 2828 KMP_HNT(DefaultScheduleKindUsed, "static, no chunk"), 2829 __kmp_msg_null); 2830 kind = kmp_sched_default; 2831 chunk = 0; // ignore chunk value in case of bad kind 2832 } 2833 2834 thread = __kmp_threads[gtid]; 2835 2836 __kmp_save_internal_controls(thread); 2837 2838 if (kind < kmp_sched_upper_std) { 2839 if (kind == kmp_sched_static && chunk < KMP_DEFAULT_CHUNK) { 2840 // differ static chunked vs. unchunked: chunk should be invalid to 2841 // indicate unchunked schedule (which is the default) 2842 thread->th.th_current_task->td_icvs.sched.r_sched_type = kmp_sch_static; 2843 } else { 2844 thread->th.th_current_task->td_icvs.sched.r_sched_type = 2845 __kmp_sch_map[kind - kmp_sched_lower - 1]; 2846 } 2847 } else { 2848 // __kmp_sch_map[ kind - kmp_sched_lower_ext + kmp_sched_upper_std - 2849 // kmp_sched_lower - 2 ]; 2850 thread->th.th_current_task->td_icvs.sched.r_sched_type = 2851 __kmp_sch_map[kind - kmp_sched_lower_ext + kmp_sched_upper_std - 2852 kmp_sched_lower - 2]; 2853 } 2854 __kmp_sched_apply_mods_intkind( 2855 orig_kind, &(thread->th.th_current_task->td_icvs.sched.r_sched_type)); 2856 if (kind == kmp_sched_auto || chunk < 1) { 2857 // ignore parameter chunk for schedule auto 2858 thread->th.th_current_task->td_icvs.sched.chunk = KMP_DEFAULT_CHUNK; 2859 } else { 2860 thread->th.th_current_task->td_icvs.sched.chunk = chunk; 2861 } 2862 } 2863 2864 /* Gets def_sched_var ICV values */ 2865 void __kmp_get_schedule(int gtid, kmp_sched_t *kind, int *chunk) { 2866 kmp_info_t *thread; 2867 enum sched_type th_type; 2868 2869 KF_TRACE(10, ("__kmp_get_schedule: thread %d\n", gtid)); 2870 KMP_DEBUG_ASSERT(__kmp_init_serial); 2871 2872 thread = __kmp_threads[gtid]; 2873 2874 th_type = thread->th.th_current_task->td_icvs.sched.r_sched_type; 2875 switch (SCHEDULE_WITHOUT_MODIFIERS(th_type)) { 2876 case kmp_sch_static: 2877 case kmp_sch_static_greedy: 2878 case kmp_sch_static_balanced: 2879 *kind = kmp_sched_static; 2880 __kmp_sched_apply_mods_stdkind(kind, th_type); 2881 *chunk = 0; // chunk was not set, try to show this fact via zero value 2882 return; 2883 case kmp_sch_static_chunked: 2884 *kind = kmp_sched_static; 2885 break; 2886 case kmp_sch_dynamic_chunked: 2887 *kind = kmp_sched_dynamic; 2888 break; 2889 case kmp_sch_guided_chunked: 2890 case kmp_sch_guided_iterative_chunked: 2891 case kmp_sch_guided_analytical_chunked: 2892 *kind = kmp_sched_guided; 2893 break; 2894 case kmp_sch_auto: 2895 *kind = kmp_sched_auto; 2896 break; 2897 case kmp_sch_trapezoidal: 2898 *kind = kmp_sched_trapezoidal; 2899 break; 2900 #if KMP_STATIC_STEAL_ENABLED 2901 case kmp_sch_static_steal: 2902 *kind = kmp_sched_static_steal; 2903 break; 2904 #endif 2905 default: 2906 KMP_FATAL(UnknownSchedulingType, th_type); 2907 } 2908 2909 __kmp_sched_apply_mods_stdkind(kind, th_type); 2910 *chunk = thread->th.th_current_task->td_icvs.sched.chunk; 2911 } 2912 2913 int __kmp_get_ancestor_thread_num(int gtid, int level) { 2914 2915 int ii, dd; 2916 kmp_team_t *team; 2917 kmp_info_t *thr; 2918 2919 KF_TRACE(10, ("__kmp_get_ancestor_thread_num: thread %d %d\n", gtid, level)); 2920 KMP_DEBUG_ASSERT(__kmp_init_serial); 2921 2922 // validate level 2923 if (level == 0) 2924 return 0; 2925 if (level < 0) 2926 return -1; 2927 thr = __kmp_threads[gtid]; 2928 team = thr->th.th_team; 2929 ii = team->t.t_level; 2930 if (level > ii) 2931 return -1; 2932 2933 #if OMP_40_ENABLED 2934 if (thr->th.th_teams_microtask) { 2935 // AC: we are in teams region where multiple nested teams have same level 2936 int tlevel = thr->th.th_teams_level; // the level of the teams construct 2937 if (level <= 2938 tlevel) { // otherwise usual algorithm works (will not touch the teams) 2939 KMP_DEBUG_ASSERT(ii >= tlevel); 2940 // AC: As we need to pass by the teams league, we need to artificially 2941 // increase ii 2942 if (ii == tlevel) { 2943 ii += 2; // three teams have same level 2944 } else { 2945 ii++; // two teams have same level 2946 } 2947 } 2948 } 2949 #endif 2950 2951 if (ii == level) 2952 return __kmp_tid_from_gtid(gtid); 2953 2954 dd = team->t.t_serialized; 2955 level++; 2956 while (ii > level) { 2957 for (dd = team->t.t_serialized; (dd > 0) && (ii > level); dd--, ii--) { 2958 } 2959 if ((team->t.t_serialized) && (!dd)) { 2960 team = team->t.t_parent; 2961 continue; 2962 } 2963 if (ii > level) { 2964 team = team->t.t_parent; 2965 dd = team->t.t_serialized; 2966 ii--; 2967 } 2968 } 2969 2970 return (dd > 1) ? (0) : (team->t.t_master_tid); 2971 } 2972 2973 int __kmp_get_team_size(int gtid, int level) { 2974 2975 int ii, dd; 2976 kmp_team_t *team; 2977 kmp_info_t *thr; 2978 2979 KF_TRACE(10, ("__kmp_get_team_size: thread %d %d\n", gtid, level)); 2980 KMP_DEBUG_ASSERT(__kmp_init_serial); 2981 2982 // validate level 2983 if (level == 0) 2984 return 1; 2985 if (level < 0) 2986 return -1; 2987 thr = __kmp_threads[gtid]; 2988 team = thr->th.th_team; 2989 ii = team->t.t_level; 2990 if (level > ii) 2991 return -1; 2992 2993 #if OMP_40_ENABLED 2994 if (thr->th.th_teams_microtask) { 2995 // AC: we are in teams region where multiple nested teams have same level 2996 int tlevel = thr->th.th_teams_level; // the level of the teams construct 2997 if (level <= 2998 tlevel) { // otherwise usual algorithm works (will not touch the teams) 2999 KMP_DEBUG_ASSERT(ii >= tlevel); 3000 // AC: As we need to pass by the teams league, we need to artificially 3001 // increase ii 3002 if (ii == tlevel) { 3003 ii += 2; // three teams have same level 3004 } else { 3005 ii++; // two teams have same level 3006 } 3007 } 3008 } 3009 #endif 3010 3011 while (ii > level) { 3012 for (dd = team->t.t_serialized; (dd > 0) && (ii > level); dd--, ii--) { 3013 } 3014 if (team->t.t_serialized && (!dd)) { 3015 team = team->t.t_parent; 3016 continue; 3017 } 3018 if (ii > level) { 3019 team = team->t.t_parent; 3020 ii--; 3021 } 3022 } 3023 3024 return team->t.t_nproc; 3025 } 3026 3027 kmp_r_sched_t __kmp_get_schedule_global() { 3028 // This routine created because pairs (__kmp_sched, __kmp_chunk) and 3029 // (__kmp_static, __kmp_guided) may be changed by kmp_set_defaults 3030 // independently. So one can get the updated schedule here. 3031 3032 kmp_r_sched_t r_sched; 3033 3034 // create schedule from 4 globals: __kmp_sched, __kmp_chunk, __kmp_static, 3035 // __kmp_guided. __kmp_sched should keep original value, so that user can set 3036 // KMP_SCHEDULE multiple times, and thus have different run-time schedules in 3037 // different roots (even in OMP 2.5) 3038 enum sched_type s = SCHEDULE_WITHOUT_MODIFIERS(__kmp_sched); 3039 #if OMP_45_ENABLED 3040 enum sched_type sched_modifiers = SCHEDULE_GET_MODIFIERS(__kmp_sched); 3041 #endif 3042 if (s == kmp_sch_static) { 3043 // replace STATIC with more detailed schedule (balanced or greedy) 3044 r_sched.r_sched_type = __kmp_static; 3045 } else if (s == kmp_sch_guided_chunked) { 3046 // replace GUIDED with more detailed schedule (iterative or analytical) 3047 r_sched.r_sched_type = __kmp_guided; 3048 } else { // (STATIC_CHUNKED), or (DYNAMIC_CHUNKED), or other 3049 r_sched.r_sched_type = __kmp_sched; 3050 } 3051 #if OMP_45_ENABLED 3052 SCHEDULE_SET_MODIFIERS(r_sched.r_sched_type, sched_modifiers); 3053 #endif 3054 3055 if (__kmp_chunk < KMP_DEFAULT_CHUNK) { 3056 // __kmp_chunk may be wrong here (if it was not ever set) 3057 r_sched.chunk = KMP_DEFAULT_CHUNK; 3058 } else { 3059 r_sched.chunk = __kmp_chunk; 3060 } 3061 3062 return r_sched; 3063 } 3064 3065 /* Allocate (realloc == FALSE) * or reallocate (realloc == TRUE) 3066 at least argc number of *t_argv entries for the requested team. */ 3067 static void __kmp_alloc_argv_entries(int argc, kmp_team_t *team, int realloc) { 3068 3069 KMP_DEBUG_ASSERT(team); 3070 if (!realloc || argc > team->t.t_max_argc) { 3071 3072 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: needed entries=%d, " 3073 "current entries=%d\n", 3074 team->t.t_id, argc, (realloc) ? team->t.t_max_argc : 0)); 3075 /* if previously allocated heap space for args, free them */ 3076 if (realloc && team->t.t_argv != &team->t.t_inline_argv[0]) 3077 __kmp_free((void *)team->t.t_argv); 3078 3079 if (argc <= KMP_INLINE_ARGV_ENTRIES) { 3080 /* use unused space in the cache line for arguments */ 3081 team->t.t_max_argc = KMP_INLINE_ARGV_ENTRIES; 3082 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: inline allocate %d " 3083 "argv entries\n", 3084 team->t.t_id, team->t.t_max_argc)); 3085 team->t.t_argv = &team->t.t_inline_argv[0]; 3086 if (__kmp_storage_map) { 3087 __kmp_print_storage_map_gtid( 3088 -1, &team->t.t_inline_argv[0], 3089 &team->t.t_inline_argv[KMP_INLINE_ARGV_ENTRIES], 3090 (sizeof(void *) * KMP_INLINE_ARGV_ENTRIES), "team_%d.t_inline_argv", 3091 team->t.t_id); 3092 } 3093 } else { 3094 /* allocate space for arguments in the heap */ 3095 team->t.t_max_argc = (argc <= (KMP_MIN_MALLOC_ARGV_ENTRIES >> 1)) 3096 ? KMP_MIN_MALLOC_ARGV_ENTRIES 3097 : 2 * argc; 3098 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: dynamic allocate %d " 3099 "argv entries\n", 3100 team->t.t_id, team->t.t_max_argc)); 3101 team->t.t_argv = 3102 (void **)__kmp_page_allocate(sizeof(void *) * team->t.t_max_argc); 3103 if (__kmp_storage_map) { 3104 __kmp_print_storage_map_gtid(-1, &team->t.t_argv[0], 3105 &team->t.t_argv[team->t.t_max_argc], 3106 sizeof(void *) * team->t.t_max_argc, 3107 "team_%d.t_argv", team->t.t_id); 3108 } 3109 } 3110 } 3111 } 3112 3113 static void __kmp_allocate_team_arrays(kmp_team_t *team, int max_nth) { 3114 int i; 3115 int num_disp_buff = max_nth > 1 ? __kmp_dispatch_num_buffers : 2; 3116 team->t.t_threads = 3117 (kmp_info_t **)__kmp_allocate(sizeof(kmp_info_t *) * max_nth); 3118 team->t.t_disp_buffer = (dispatch_shared_info_t *)__kmp_allocate( 3119 sizeof(dispatch_shared_info_t) * num_disp_buff); 3120 team->t.t_dispatch = 3121 (kmp_disp_t *)__kmp_allocate(sizeof(kmp_disp_t) * max_nth); 3122 team->t.t_implicit_task_taskdata = 3123 (kmp_taskdata_t *)__kmp_allocate(sizeof(kmp_taskdata_t) * max_nth); 3124 team->t.t_max_nproc = max_nth; 3125 3126 /* setup dispatch buffers */ 3127 for (i = 0; i < num_disp_buff; ++i) { 3128 team->t.t_disp_buffer[i].buffer_index = i; 3129 #if OMP_45_ENABLED 3130 team->t.t_disp_buffer[i].doacross_buf_idx = i; 3131 #endif 3132 } 3133 } 3134 3135 static void __kmp_free_team_arrays(kmp_team_t *team) { 3136 /* Note: this does not free the threads in t_threads (__kmp_free_threads) */ 3137 int i; 3138 for (i = 0; i < team->t.t_max_nproc; ++i) { 3139 if (team->t.t_dispatch[i].th_disp_buffer != NULL) { 3140 __kmp_free(team->t.t_dispatch[i].th_disp_buffer); 3141 team->t.t_dispatch[i].th_disp_buffer = NULL; 3142 } 3143 } 3144 #if KMP_USE_HIER_SCHED 3145 __kmp_dispatch_free_hierarchies(team); 3146 #endif 3147 __kmp_free(team->t.t_threads); 3148 __kmp_free(team->t.t_disp_buffer); 3149 __kmp_free(team->t.t_dispatch); 3150 __kmp_free(team->t.t_implicit_task_taskdata); 3151 team->t.t_threads = NULL; 3152 team->t.t_disp_buffer = NULL; 3153 team->t.t_dispatch = NULL; 3154 team->t.t_implicit_task_taskdata = 0; 3155 } 3156 3157 static void __kmp_reallocate_team_arrays(kmp_team_t *team, int max_nth) { 3158 kmp_info_t **oldThreads = team->t.t_threads; 3159 3160 __kmp_free(team->t.t_disp_buffer); 3161 __kmp_free(team->t.t_dispatch); 3162 __kmp_free(team->t.t_implicit_task_taskdata); 3163 __kmp_allocate_team_arrays(team, max_nth); 3164 3165 KMP_MEMCPY(team->t.t_threads, oldThreads, 3166 team->t.t_nproc * sizeof(kmp_info_t *)); 3167 3168 __kmp_free(oldThreads); 3169 } 3170 3171 static kmp_internal_control_t __kmp_get_global_icvs(void) { 3172 3173 kmp_r_sched_t r_sched = 3174 __kmp_get_schedule_global(); // get current state of scheduling globals 3175 3176 #if OMP_40_ENABLED 3177 KMP_DEBUG_ASSERT(__kmp_nested_proc_bind.used > 0); 3178 #endif /* OMP_40_ENABLED */ 3179 3180 kmp_internal_control_t g_icvs = { 3181 0, // int serial_nesting_level; //corresponds to value of th_team_serialized 3182 (kmp_int8)__kmp_global.g.g_dynamic, // internal control for dynamic 3183 // adjustment of threads (per thread) 3184 (kmp_int8)__kmp_env_blocktime, // int bt_set; //internal control for 3185 // whether blocktime is explicitly set 3186 __kmp_dflt_blocktime, // int blocktime; //internal control for blocktime 3187 #if KMP_USE_MONITOR 3188 __kmp_bt_intervals, // int bt_intervals; //internal control for blocktime 3189 // intervals 3190 #endif 3191 __kmp_dflt_team_nth, // int nproc; //internal control for # of threads for 3192 // next parallel region (per thread) 3193 // (use a max ub on value if __kmp_parallel_initialize not called yet) 3194 __kmp_cg_max_nth, // int thread_limit; 3195 __kmp_dflt_max_active_levels, // int max_active_levels; //internal control 3196 // for max_active_levels 3197 r_sched, // kmp_r_sched_t sched; //internal control for runtime schedule 3198 // {sched,chunk} pair 3199 #if OMP_40_ENABLED 3200 __kmp_nested_proc_bind.bind_types[0], 3201 __kmp_default_device, 3202 #endif /* OMP_40_ENABLED */ 3203 NULL // struct kmp_internal_control *next; 3204 }; 3205 3206 return g_icvs; 3207 } 3208 3209 static kmp_internal_control_t __kmp_get_x_global_icvs(const kmp_team_t *team) { 3210 3211 kmp_internal_control_t gx_icvs; 3212 gx_icvs.serial_nesting_level = 3213 0; // probably =team->t.t_serial like in save_inter_controls 3214 copy_icvs(&gx_icvs, &team->t.t_threads[0]->th.th_current_task->td_icvs); 3215 gx_icvs.next = NULL; 3216 3217 return gx_icvs; 3218 } 3219 3220 static void __kmp_initialize_root(kmp_root_t *root) { 3221 int f; 3222 kmp_team_t *root_team; 3223 kmp_team_t *hot_team; 3224 int hot_team_max_nth; 3225 kmp_r_sched_t r_sched = 3226 __kmp_get_schedule_global(); // get current state of scheduling globals 3227 kmp_internal_control_t r_icvs = __kmp_get_global_icvs(); 3228 KMP_DEBUG_ASSERT(root); 3229 KMP_ASSERT(!root->r.r_begin); 3230 3231 /* setup the root state structure */ 3232 __kmp_init_lock(&root->r.r_begin_lock); 3233 root->r.r_begin = FALSE; 3234 root->r.r_active = FALSE; 3235 root->r.r_in_parallel = 0; 3236 root->r.r_blocktime = __kmp_dflt_blocktime; 3237 3238 /* setup the root team for this task */ 3239 /* allocate the root team structure */ 3240 KF_TRACE(10, ("__kmp_initialize_root: before root_team\n")); 3241 3242 root_team = 3243 __kmp_allocate_team(root, 3244 1, // new_nproc 3245 1, // max_nproc 3246 #if OMPT_SUPPORT 3247 ompt_data_none, // root parallel id 3248 #endif 3249 #if OMP_40_ENABLED 3250 __kmp_nested_proc_bind.bind_types[0], 3251 #endif 3252 &r_icvs, 3253 0 // argc 3254 USE_NESTED_HOT_ARG(NULL) // master thread is unknown 3255 ); 3256 #if USE_DEBUGGER 3257 // Non-NULL value should be assigned to make the debugger display the root 3258 // team. 3259 TCW_SYNC_PTR(root_team->t.t_pkfn, (microtask_t)(~0)); 3260 #endif 3261 3262 KF_TRACE(10, ("__kmp_initialize_root: after root_team = %p\n", root_team)); 3263 3264 root->r.r_root_team = root_team; 3265 root_team->t.t_control_stack_top = NULL; 3266 3267 /* initialize root team */ 3268 root_team->t.t_threads[0] = NULL; 3269 root_team->t.t_nproc = 1; 3270 root_team->t.t_serialized = 1; 3271 // TODO???: root_team->t.t_max_active_levels = __kmp_dflt_max_active_levels; 3272 root_team->t.t_sched.sched = r_sched.sched; 3273 KA_TRACE( 3274 20, 3275 ("__kmp_initialize_root: init root team %d arrived: join=%u, plain=%u\n", 3276 root_team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 3277 3278 /* setup the hot team for this task */ 3279 /* allocate the hot team structure */ 3280 KF_TRACE(10, ("__kmp_initialize_root: before hot_team\n")); 3281 3282 hot_team = 3283 __kmp_allocate_team(root, 3284 1, // new_nproc 3285 __kmp_dflt_team_nth_ub * 2, // max_nproc 3286 #if OMPT_SUPPORT 3287 ompt_data_none, // root parallel id 3288 #endif 3289 #if OMP_40_ENABLED 3290 __kmp_nested_proc_bind.bind_types[0], 3291 #endif 3292 &r_icvs, 3293 0 // argc 3294 USE_NESTED_HOT_ARG(NULL) // master thread is unknown 3295 ); 3296 KF_TRACE(10, ("__kmp_initialize_root: after hot_team = %p\n", hot_team)); 3297 3298 root->r.r_hot_team = hot_team; 3299 root_team->t.t_control_stack_top = NULL; 3300 3301 /* first-time initialization */ 3302 hot_team->t.t_parent = root_team; 3303 3304 /* initialize hot team */ 3305 hot_team_max_nth = hot_team->t.t_max_nproc; 3306 for (f = 0; f < hot_team_max_nth; ++f) { 3307 hot_team->t.t_threads[f] = NULL; 3308 } 3309 hot_team->t.t_nproc = 1; 3310 // TODO???: hot_team->t.t_max_active_levels = __kmp_dflt_max_active_levels; 3311 hot_team->t.t_sched.sched = r_sched.sched; 3312 hot_team->t.t_size_changed = 0; 3313 } 3314 3315 #ifdef KMP_DEBUG 3316 3317 typedef struct kmp_team_list_item { 3318 kmp_team_p const *entry; 3319 struct kmp_team_list_item *next; 3320 } kmp_team_list_item_t; 3321 typedef kmp_team_list_item_t *kmp_team_list_t; 3322 3323 static void __kmp_print_structure_team_accum( // Add team to list of teams. 3324 kmp_team_list_t list, // List of teams. 3325 kmp_team_p const *team // Team to add. 3326 ) { 3327 3328 // List must terminate with item where both entry and next are NULL. 3329 // Team is added to the list only once. 3330 // List is sorted in ascending order by team id. 3331 // Team id is *not* a key. 3332 3333 kmp_team_list_t l; 3334 3335 KMP_DEBUG_ASSERT(list != NULL); 3336 if (team == NULL) { 3337 return; 3338 } 3339 3340 __kmp_print_structure_team_accum(list, team->t.t_parent); 3341 __kmp_print_structure_team_accum(list, team->t.t_next_pool); 3342 3343 // Search list for the team. 3344 l = list; 3345 while (l->next != NULL && l->entry != team) { 3346 l = l->next; 3347 } 3348 if (l->next != NULL) { 3349 return; // Team has been added before, exit. 3350 } 3351 3352 // Team is not found. Search list again for insertion point. 3353 l = list; 3354 while (l->next != NULL && l->entry->t.t_id <= team->t.t_id) { 3355 l = l->next; 3356 } 3357 3358 // Insert team. 3359 { 3360 kmp_team_list_item_t *item = (kmp_team_list_item_t *)KMP_INTERNAL_MALLOC( 3361 sizeof(kmp_team_list_item_t)); 3362 *item = *l; 3363 l->entry = team; 3364 l->next = item; 3365 } 3366 } 3367 3368 static void __kmp_print_structure_team(char const *title, kmp_team_p const *team 3369 3370 ) { 3371 __kmp_printf("%s", title); 3372 if (team != NULL) { 3373 __kmp_printf("%2x %p\n", team->t.t_id, team); 3374 } else { 3375 __kmp_printf(" - (nil)\n"); 3376 } 3377 } 3378 3379 static void __kmp_print_structure_thread(char const *title, 3380 kmp_info_p const *thread) { 3381 __kmp_printf("%s", title); 3382 if (thread != NULL) { 3383 __kmp_printf("%2d %p\n", thread->th.th_info.ds.ds_gtid, thread); 3384 } else { 3385 __kmp_printf(" - (nil)\n"); 3386 } 3387 } 3388 3389 void __kmp_print_structure(void) { 3390 3391 kmp_team_list_t list; 3392 3393 // Initialize list of teams. 3394 list = 3395 (kmp_team_list_item_t *)KMP_INTERNAL_MALLOC(sizeof(kmp_team_list_item_t)); 3396 list->entry = NULL; 3397 list->next = NULL; 3398 3399 __kmp_printf("\n------------------------------\nGlobal Thread " 3400 "Table\n------------------------------\n"); 3401 { 3402 int gtid; 3403 for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) { 3404 __kmp_printf("%2d", gtid); 3405 if (__kmp_threads != NULL) { 3406 __kmp_printf(" %p", __kmp_threads[gtid]); 3407 } 3408 if (__kmp_root != NULL) { 3409 __kmp_printf(" %p", __kmp_root[gtid]); 3410 } 3411 __kmp_printf("\n"); 3412 } 3413 } 3414 3415 // Print out __kmp_threads array. 3416 __kmp_printf("\n------------------------------\nThreads\n--------------------" 3417 "----------\n"); 3418 if (__kmp_threads != NULL) { 3419 int gtid; 3420 for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) { 3421 kmp_info_t const *thread = __kmp_threads[gtid]; 3422 if (thread != NULL) { 3423 __kmp_printf("GTID %2d %p:\n", gtid, thread); 3424 __kmp_printf(" Our Root: %p\n", thread->th.th_root); 3425 __kmp_print_structure_team(" Our Team: ", thread->th.th_team); 3426 __kmp_print_structure_team(" Serial Team: ", 3427 thread->th.th_serial_team); 3428 __kmp_printf(" Threads: %2d\n", thread->th.th_team_nproc); 3429 __kmp_print_structure_thread(" Master: ", 3430 thread->th.th_team_master); 3431 __kmp_printf(" Serialized?: %2d\n", thread->th.th_team_serialized); 3432 __kmp_printf(" Set NProc: %2d\n", thread->th.th_set_nproc); 3433 #if OMP_40_ENABLED 3434 __kmp_printf(" Set Proc Bind: %2d\n", thread->th.th_set_proc_bind); 3435 #endif 3436 __kmp_print_structure_thread(" Next in pool: ", 3437 thread->th.th_next_pool); 3438 __kmp_printf("\n"); 3439 __kmp_print_structure_team_accum(list, thread->th.th_team); 3440 __kmp_print_structure_team_accum(list, thread->th.th_serial_team); 3441 } 3442 } 3443 } else { 3444 __kmp_printf("Threads array is not allocated.\n"); 3445 } 3446 3447 // Print out __kmp_root array. 3448 __kmp_printf("\n------------------------------\nUbers\n----------------------" 3449 "--------\n"); 3450 if (__kmp_root != NULL) { 3451 int gtid; 3452 for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) { 3453 kmp_root_t const *root = __kmp_root[gtid]; 3454 if (root != NULL) { 3455 __kmp_printf("GTID %2d %p:\n", gtid, root); 3456 __kmp_print_structure_team(" Root Team: ", root->r.r_root_team); 3457 __kmp_print_structure_team(" Hot Team: ", root->r.r_hot_team); 3458 __kmp_print_structure_thread(" Uber Thread: ", 3459 root->r.r_uber_thread); 3460 __kmp_printf(" Active?: %2d\n", root->r.r_active); 3461 __kmp_printf(" In Parallel: %2d\n", 3462 KMP_ATOMIC_LD_RLX(&root->r.r_in_parallel)); 3463 __kmp_printf("\n"); 3464 __kmp_print_structure_team_accum(list, root->r.r_root_team); 3465 __kmp_print_structure_team_accum(list, root->r.r_hot_team); 3466 } 3467 } 3468 } else { 3469 __kmp_printf("Ubers array is not allocated.\n"); 3470 } 3471 3472 __kmp_printf("\n------------------------------\nTeams\n----------------------" 3473 "--------\n"); 3474 while (list->next != NULL) { 3475 kmp_team_p const *team = list->entry; 3476 int i; 3477 __kmp_printf("Team %2x %p:\n", team->t.t_id, team); 3478 __kmp_print_structure_team(" Parent Team: ", team->t.t_parent); 3479 __kmp_printf(" Master TID: %2d\n", team->t.t_master_tid); 3480 __kmp_printf(" Max threads: %2d\n", team->t.t_max_nproc); 3481 __kmp_printf(" Levels of serial: %2d\n", team->t.t_serialized); 3482 __kmp_printf(" Number threads: %2d\n", team->t.t_nproc); 3483 for (i = 0; i < team->t.t_nproc; ++i) { 3484 __kmp_printf(" Thread %2d: ", i); 3485 __kmp_print_structure_thread("", team->t.t_threads[i]); 3486 } 3487 __kmp_print_structure_team(" Next in pool: ", team->t.t_next_pool); 3488 __kmp_printf("\n"); 3489 list = list->next; 3490 } 3491 3492 // Print out __kmp_thread_pool and __kmp_team_pool. 3493 __kmp_printf("\n------------------------------\nPools\n----------------------" 3494 "--------\n"); 3495 __kmp_print_structure_thread("Thread pool: ", 3496 CCAST(kmp_info_t *, __kmp_thread_pool)); 3497 __kmp_print_structure_team("Team pool: ", 3498 CCAST(kmp_team_t *, __kmp_team_pool)); 3499 __kmp_printf("\n"); 3500 3501 // Free team list. 3502 while (list != NULL) { 3503 kmp_team_list_item_t *item = list; 3504 list = list->next; 3505 KMP_INTERNAL_FREE(item); 3506 } 3507 } 3508 3509 #endif 3510 3511 //--------------------------------------------------------------------------- 3512 // Stuff for per-thread fast random number generator 3513 // Table of primes 3514 static const unsigned __kmp_primes[] = { 3515 0x9e3779b1, 0xffe6cc59, 0x2109f6dd, 0x43977ab5, 0xba5703f5, 0xb495a877, 3516 0xe1626741, 0x79695e6b, 0xbc98c09f, 0xd5bee2b3, 0x287488f9, 0x3af18231, 3517 0x9677cd4d, 0xbe3a6929, 0xadc6a877, 0xdcf0674b, 0xbe4d6fe9, 0x5f15e201, 3518 0x99afc3fd, 0xf3f16801, 0xe222cfff, 0x24ba5fdb, 0x0620452d, 0x79f149e3, 3519 0xc8b93f49, 0x972702cd, 0xb07dd827, 0x6c97d5ed, 0x085a3d61, 0x46eb5ea7, 3520 0x3d9910ed, 0x2e687b5b, 0x29609227, 0x6eb081f1, 0x0954c4e1, 0x9d114db9, 3521 0x542acfa9, 0xb3e6bd7b, 0x0742d917, 0xe9f3ffa7, 0x54581edb, 0xf2480f45, 3522 0x0bb9288f, 0xef1affc7, 0x85fa0ca7, 0x3ccc14db, 0xe6baf34b, 0x343377f7, 3523 0x5ca19031, 0xe6d9293b, 0xf0a9f391, 0x5d2e980b, 0xfc411073, 0xc3749363, 3524 0xb892d829, 0x3549366b, 0x629750ad, 0xb98294e5, 0x892d9483, 0xc235baf3, 3525 0x3d2402a3, 0x6bdef3c9, 0xbec333cd, 0x40c9520f}; 3526 3527 //--------------------------------------------------------------------------- 3528 // __kmp_get_random: Get a random number using a linear congruential method. 3529 unsigned short __kmp_get_random(kmp_info_t *thread) { 3530 unsigned x = thread->th.th_x; 3531 unsigned short r = x >> 16; 3532 3533 thread->th.th_x = x * thread->th.th_a + 1; 3534 3535 KA_TRACE(30, ("__kmp_get_random: THREAD: %d, RETURN: %u\n", 3536 thread->th.th_info.ds.ds_tid, r)); 3537 3538 return r; 3539 } 3540 //-------------------------------------------------------- 3541 // __kmp_init_random: Initialize a random number generator 3542 void __kmp_init_random(kmp_info_t *thread) { 3543 unsigned seed = thread->th.th_info.ds.ds_tid; 3544 3545 thread->th.th_a = 3546 __kmp_primes[seed % (sizeof(__kmp_primes) / sizeof(__kmp_primes[0]))]; 3547 thread->th.th_x = (seed + 1) * thread->th.th_a + 1; 3548 KA_TRACE(30, 3549 ("__kmp_init_random: THREAD: %u; A: %u\n", seed, thread->th.th_a)); 3550 } 3551 3552 #if KMP_OS_WINDOWS 3553 /* reclaim array entries for root threads that are already dead, returns number 3554 * reclaimed */ 3555 static int __kmp_reclaim_dead_roots(void) { 3556 int i, r = 0; 3557 3558 for (i = 0; i < __kmp_threads_capacity; ++i) { 3559 if (KMP_UBER_GTID(i) && 3560 !__kmp_still_running((kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[i])) && 3561 !__kmp_root[i] 3562 ->r.r_active) { // AC: reclaim only roots died in non-active state 3563 r += __kmp_unregister_root_other_thread(i); 3564 } 3565 } 3566 return r; 3567 } 3568 #endif 3569 3570 /* This function attempts to create free entries in __kmp_threads and 3571 __kmp_root, and returns the number of free entries generated. 3572 3573 For Windows* OS static library, the first mechanism used is to reclaim array 3574 entries for root threads that are already dead. 3575 3576 On all platforms, expansion is attempted on the arrays __kmp_threads_ and 3577 __kmp_root, with appropriate update to __kmp_threads_capacity. Array 3578 capacity is increased by doubling with clipping to __kmp_tp_capacity, if 3579 threadprivate cache array has been created. Synchronization with 3580 __kmpc_threadprivate_cached is done using __kmp_tp_cached_lock. 3581 3582 After any dead root reclamation, if the clipping value allows array expansion 3583 to result in the generation of a total of nNeed free slots, the function does 3584 that expansion. If not, nothing is done beyond the possible initial root 3585 thread reclamation. 3586 3587 If any argument is negative, the behavior is undefined. */ 3588 static int __kmp_expand_threads(int nNeed) { 3589 int added = 0; 3590 int minimumRequiredCapacity; 3591 int newCapacity; 3592 kmp_info_t **newThreads; 3593 kmp_root_t **newRoot; 3594 3595 // All calls to __kmp_expand_threads should be under __kmp_forkjoin_lock, so 3596 // resizing __kmp_threads does not need additional protection if foreign 3597 // threads are present 3598 3599 #if KMP_OS_WINDOWS && !KMP_DYNAMIC_LIB 3600 /* only for Windows static library */ 3601 /* reclaim array entries for root threads that are already dead */ 3602 added = __kmp_reclaim_dead_roots(); 3603 3604 if (nNeed) { 3605 nNeed -= added; 3606 if (nNeed < 0) 3607 nNeed = 0; 3608 } 3609 #endif 3610 if (nNeed <= 0) 3611 return added; 3612 3613 // Note that __kmp_threads_capacity is not bounded by __kmp_max_nth. If 3614 // __kmp_max_nth is set to some value less than __kmp_sys_max_nth by the 3615 // user via KMP_DEVICE_THREAD_LIMIT, then __kmp_threads_capacity may become 3616 // > __kmp_max_nth in one of two ways: 3617 // 3618 // 1) The initialization thread (gtid = 0) exits. __kmp_threads[0] 3619 // may not be resused by another thread, so we may need to increase 3620 // __kmp_threads_capacity to __kmp_max_nth + 1. 3621 // 3622 // 2) New foreign root(s) are encountered. We always register new foreign 3623 // roots. This may cause a smaller # of threads to be allocated at 3624 // subsequent parallel regions, but the worker threads hang around (and 3625 // eventually go to sleep) and need slots in the __kmp_threads[] array. 3626 // 3627 // Anyway, that is the reason for moving the check to see if 3628 // __kmp_max_nth was exceeded into __kmp_reserve_threads() 3629 // instead of having it performed here. -BB 3630 3631 KMP_DEBUG_ASSERT(__kmp_sys_max_nth >= __kmp_threads_capacity); 3632 3633 /* compute expansion headroom to check if we can expand */ 3634 if (__kmp_sys_max_nth - __kmp_threads_capacity < nNeed) { 3635 /* possible expansion too small -- give up */ 3636 return added; 3637 } 3638 minimumRequiredCapacity = __kmp_threads_capacity + nNeed; 3639 3640 newCapacity = __kmp_threads_capacity; 3641 do { 3642 newCapacity = newCapacity <= (__kmp_sys_max_nth >> 1) ? (newCapacity << 1) 3643 : __kmp_sys_max_nth; 3644 } while (newCapacity < minimumRequiredCapacity); 3645 newThreads = (kmp_info_t **)__kmp_allocate( 3646 (sizeof(kmp_info_t *) + sizeof(kmp_root_t *)) * newCapacity + CACHE_LINE); 3647 newRoot = 3648 (kmp_root_t **)((char *)newThreads + sizeof(kmp_info_t *) * newCapacity); 3649 KMP_MEMCPY(newThreads, __kmp_threads, 3650 __kmp_threads_capacity * sizeof(kmp_info_t *)); 3651 KMP_MEMCPY(newRoot, __kmp_root, 3652 __kmp_threads_capacity * sizeof(kmp_root_t *)); 3653 3654 kmp_info_t **temp_threads = __kmp_threads; 3655 *(kmp_info_t * *volatile *)&__kmp_threads = newThreads; 3656 *(kmp_root_t * *volatile *)&__kmp_root = newRoot; 3657 __kmp_free(temp_threads); 3658 added += newCapacity - __kmp_threads_capacity; 3659 *(volatile int *)&__kmp_threads_capacity = newCapacity; 3660 3661 if (newCapacity > __kmp_tp_capacity) { 3662 __kmp_acquire_bootstrap_lock(&__kmp_tp_cached_lock); 3663 if (__kmp_tp_cached && newCapacity > __kmp_tp_capacity) { 3664 __kmp_threadprivate_resize_cache(newCapacity); 3665 } else { // increase __kmp_tp_capacity to correspond with kmp_threads size 3666 *(volatile int *)&__kmp_tp_capacity = newCapacity; 3667 } 3668 __kmp_release_bootstrap_lock(&__kmp_tp_cached_lock); 3669 } 3670 3671 return added; 3672 } 3673 3674 /* Register the current thread as a root thread and obtain our gtid. We must 3675 have the __kmp_initz_lock held at this point. Argument TRUE only if are the 3676 thread that calls from __kmp_do_serial_initialize() */ 3677 int __kmp_register_root(int initial_thread) { 3678 kmp_info_t *root_thread; 3679 kmp_root_t *root; 3680 int gtid; 3681 int capacity; 3682 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 3683 KA_TRACE(20, ("__kmp_register_root: entered\n")); 3684 KMP_MB(); 3685 3686 /* 2007-03-02: 3687 If initial thread did not invoke OpenMP RTL yet, and this thread is not an 3688 initial one, "__kmp_all_nth >= __kmp_threads_capacity" condition does not 3689 work as expected -- it may return false (that means there is at least one 3690 empty slot in __kmp_threads array), but it is possible the only free slot 3691 is #0, which is reserved for initial thread and so cannot be used for this 3692 one. Following code workarounds this bug. 3693 3694 However, right solution seems to be not reserving slot #0 for initial 3695 thread because: 3696 (1) there is no magic in slot #0, 3697 (2) we cannot detect initial thread reliably (the first thread which does 3698 serial initialization may be not a real initial thread). 3699 */ 3700 capacity = __kmp_threads_capacity; 3701 if (!initial_thread && TCR_PTR(__kmp_threads[0]) == NULL) { 3702 --capacity; 3703 } 3704 3705 /* see if there are too many threads */ 3706 if (__kmp_all_nth >= capacity && !__kmp_expand_threads(1)) { 3707 if (__kmp_tp_cached) { 3708 __kmp_fatal(KMP_MSG(CantRegisterNewThread), 3709 KMP_HNT(Set_ALL_THREADPRIVATE, __kmp_tp_capacity), 3710 KMP_HNT(PossibleSystemLimitOnThreads), __kmp_msg_null); 3711 } else { 3712 __kmp_fatal(KMP_MSG(CantRegisterNewThread), KMP_HNT(SystemLimitOnThreads), 3713 __kmp_msg_null); 3714 } 3715 } 3716 3717 /* find an available thread slot */ 3718 /* Don't reassign the zero slot since we need that to only be used by initial 3719 thread */ 3720 for (gtid = (initial_thread ? 0 : 1); TCR_PTR(__kmp_threads[gtid]) != NULL; 3721 gtid++) 3722 ; 3723 KA_TRACE(1, 3724 ("__kmp_register_root: found slot in threads array: T#%d\n", gtid)); 3725 KMP_ASSERT(gtid < __kmp_threads_capacity); 3726 3727 /* update global accounting */ 3728 __kmp_all_nth++; 3729 TCW_4(__kmp_nth, __kmp_nth + 1); 3730 3731 // if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) for low 3732 // numbers of procs, and method #2 (keyed API call) for higher numbers. 3733 if (__kmp_adjust_gtid_mode) { 3734 if (__kmp_all_nth >= __kmp_tls_gtid_min) { 3735 if (TCR_4(__kmp_gtid_mode) != 2) { 3736 TCW_4(__kmp_gtid_mode, 2); 3737 } 3738 } else { 3739 if (TCR_4(__kmp_gtid_mode) != 1) { 3740 TCW_4(__kmp_gtid_mode, 1); 3741 } 3742 } 3743 } 3744 3745 #ifdef KMP_ADJUST_BLOCKTIME 3746 /* Adjust blocktime to zero if necessary */ 3747 /* Middle initialization might not have occurred yet */ 3748 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 3749 if (__kmp_nth > __kmp_avail_proc) { 3750 __kmp_zero_bt = TRUE; 3751 } 3752 } 3753 #endif /* KMP_ADJUST_BLOCKTIME */ 3754 3755 /* setup this new hierarchy */ 3756 if (!(root = __kmp_root[gtid])) { 3757 root = __kmp_root[gtid] = (kmp_root_t *)__kmp_allocate(sizeof(kmp_root_t)); 3758 KMP_DEBUG_ASSERT(!root->r.r_root_team); 3759 } 3760 3761 #if KMP_STATS_ENABLED 3762 // Initialize stats as soon as possible (right after gtid assignment). 3763 __kmp_stats_thread_ptr = __kmp_stats_list->push_back(gtid); 3764 __kmp_stats_thread_ptr->startLife(); 3765 KMP_SET_THREAD_STATE(SERIAL_REGION); 3766 KMP_INIT_PARTITIONED_TIMERS(OMP_serial); 3767 #endif 3768 __kmp_initialize_root(root); 3769 3770 /* setup new root thread structure */ 3771 if (root->r.r_uber_thread) { 3772 root_thread = root->r.r_uber_thread; 3773 } else { 3774 root_thread = (kmp_info_t *)__kmp_allocate(sizeof(kmp_info_t)); 3775 if (__kmp_storage_map) { 3776 __kmp_print_thread_storage_map(root_thread, gtid); 3777 } 3778 root_thread->th.th_info.ds.ds_gtid = gtid; 3779 #if OMPT_SUPPORT 3780 root_thread->th.ompt_thread_info.thread_data = ompt_data_none; 3781 #endif 3782 root_thread->th.th_root = root; 3783 if (__kmp_env_consistency_check) { 3784 root_thread->th.th_cons = __kmp_allocate_cons_stack(gtid); 3785 } 3786 #if USE_FAST_MEMORY 3787 __kmp_initialize_fast_memory(root_thread); 3788 #endif /* USE_FAST_MEMORY */ 3789 3790 #if KMP_USE_BGET 3791 KMP_DEBUG_ASSERT(root_thread->th.th_local.bget_data == NULL); 3792 __kmp_initialize_bget(root_thread); 3793 #endif 3794 __kmp_init_random(root_thread); // Initialize random number generator 3795 } 3796 3797 /* setup the serial team held in reserve by the root thread */ 3798 if (!root_thread->th.th_serial_team) { 3799 kmp_internal_control_t r_icvs = __kmp_get_global_icvs(); 3800 KF_TRACE(10, ("__kmp_register_root: before serial_team\n")); 3801 root_thread->th.th_serial_team = 3802 __kmp_allocate_team(root, 1, 1, 3803 #if OMPT_SUPPORT 3804 ompt_data_none, // root parallel id 3805 #endif 3806 #if OMP_40_ENABLED 3807 proc_bind_default, 3808 #endif 3809 &r_icvs, 0 USE_NESTED_HOT_ARG(NULL)); 3810 } 3811 KMP_ASSERT(root_thread->th.th_serial_team); 3812 KF_TRACE(10, ("__kmp_register_root: after serial_team = %p\n", 3813 root_thread->th.th_serial_team)); 3814 3815 /* drop root_thread into place */ 3816 TCW_SYNC_PTR(__kmp_threads[gtid], root_thread); 3817 3818 root->r.r_root_team->t.t_threads[0] = root_thread; 3819 root->r.r_hot_team->t.t_threads[0] = root_thread; 3820 root_thread->th.th_serial_team->t.t_threads[0] = root_thread; 3821 // AC: the team created in reserve, not for execution (it is unused for now). 3822 root_thread->th.th_serial_team->t.t_serialized = 0; 3823 root->r.r_uber_thread = root_thread; 3824 3825 /* initialize the thread, get it ready to go */ 3826 __kmp_initialize_info(root_thread, root->r.r_root_team, 0, gtid); 3827 TCW_4(__kmp_init_gtid, TRUE); 3828 3829 /* prepare the master thread for get_gtid() */ 3830 __kmp_gtid_set_specific(gtid); 3831 3832 #if USE_ITT_BUILD 3833 __kmp_itt_thread_name(gtid); 3834 #endif /* USE_ITT_BUILD */ 3835 3836 #ifdef KMP_TDATA_GTID 3837 __kmp_gtid = gtid; 3838 #endif 3839 __kmp_create_worker(gtid, root_thread, __kmp_stksize); 3840 KMP_DEBUG_ASSERT(__kmp_gtid_get_specific() == gtid); 3841 3842 KA_TRACE(20, ("__kmp_register_root: T#%d init T#%d(%d:%d) arrived: join=%u, " 3843 "plain=%u\n", 3844 gtid, __kmp_gtid_from_tid(0, root->r.r_hot_team), 3845 root->r.r_hot_team->t.t_id, 0, KMP_INIT_BARRIER_STATE, 3846 KMP_INIT_BARRIER_STATE)); 3847 { // Initialize barrier data. 3848 int b; 3849 for (b = 0; b < bs_last_barrier; ++b) { 3850 root_thread->th.th_bar[b].bb.b_arrived = KMP_INIT_BARRIER_STATE; 3851 #if USE_DEBUGGER 3852 root_thread->th.th_bar[b].bb.b_worker_arrived = 0; 3853 #endif 3854 } 3855 } 3856 KMP_DEBUG_ASSERT(root->r.r_hot_team->t.t_bar[bs_forkjoin_barrier].b_arrived == 3857 KMP_INIT_BARRIER_STATE); 3858 3859 #if KMP_AFFINITY_SUPPORTED 3860 #if OMP_40_ENABLED 3861 root_thread->th.th_current_place = KMP_PLACE_UNDEFINED; 3862 root_thread->th.th_new_place = KMP_PLACE_UNDEFINED; 3863 root_thread->th.th_first_place = KMP_PLACE_UNDEFINED; 3864 root_thread->th.th_last_place = KMP_PLACE_UNDEFINED; 3865 #endif 3866 if (TCR_4(__kmp_init_middle)) { 3867 __kmp_affinity_set_init_mask(gtid, TRUE); 3868 } 3869 #endif /* KMP_AFFINITY_SUPPORTED */ 3870 #if OMP_50_ENABLED 3871 root_thread->th.th_def_allocator = __kmp_def_allocator; 3872 root_thread->th.th_prev_level = 0; 3873 root_thread->th.th_prev_num_threads = 1; 3874 #endif 3875 3876 kmp_cg_root_t *tmp = (kmp_cg_root_t *)__kmp_allocate(sizeof(kmp_cg_root_t)); 3877 tmp->cg_root = root_thread; 3878 tmp->cg_thread_limit = __kmp_cg_max_nth; 3879 tmp->cg_nthreads = 1; 3880 KA_TRACE(100, ("__kmp_register_root: Thread %p created node %p with" 3881 " cg_nthreads init to 1\n", 3882 root_thread, tmp)); 3883 tmp->up = NULL; 3884 root_thread->th.th_cg_roots = tmp; 3885 3886 __kmp_root_counter++; 3887 3888 #if OMPT_SUPPORT 3889 if (!initial_thread && ompt_enabled.enabled) { 3890 3891 kmp_info_t *root_thread = ompt_get_thread(); 3892 3893 ompt_set_thread_state(root_thread, ompt_state_overhead); 3894 3895 if (ompt_enabled.ompt_callback_thread_begin) { 3896 ompt_callbacks.ompt_callback(ompt_callback_thread_begin)( 3897 ompt_thread_initial, __ompt_get_thread_data_internal()); 3898 } 3899 ompt_data_t *task_data; 3900 ompt_data_t *parallel_data; 3901 __ompt_get_task_info_internal(0, NULL, &task_data, NULL, ¶llel_data, NULL); 3902 if (ompt_enabled.ompt_callback_implicit_task) { 3903 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 3904 ompt_scope_begin, parallel_data, task_data, 1, 1, ompt_task_initial); 3905 } 3906 3907 ompt_set_thread_state(root_thread, ompt_state_work_serial); 3908 } 3909 #endif 3910 3911 KMP_MB(); 3912 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 3913 3914 return gtid; 3915 } 3916 3917 #if KMP_NESTED_HOT_TEAMS 3918 static int __kmp_free_hot_teams(kmp_root_t *root, kmp_info_t *thr, int level, 3919 const int max_level) { 3920 int i, n, nth; 3921 kmp_hot_team_ptr_t *hot_teams = thr->th.th_hot_teams; 3922 if (!hot_teams || !hot_teams[level].hot_team) { 3923 return 0; 3924 } 3925 KMP_DEBUG_ASSERT(level < max_level); 3926 kmp_team_t *team = hot_teams[level].hot_team; 3927 nth = hot_teams[level].hot_team_nth; 3928 n = nth - 1; // master is not freed 3929 if (level < max_level - 1) { 3930 for (i = 0; i < nth; ++i) { 3931 kmp_info_t *th = team->t.t_threads[i]; 3932 n += __kmp_free_hot_teams(root, th, level + 1, max_level); 3933 if (i > 0 && th->th.th_hot_teams) { 3934 __kmp_free(th->th.th_hot_teams); 3935 th->th.th_hot_teams = NULL; 3936 } 3937 } 3938 } 3939 __kmp_free_team(root, team, NULL); 3940 return n; 3941 } 3942 #endif 3943 3944 // Resets a root thread and clear its root and hot teams. 3945 // Returns the number of __kmp_threads entries directly and indirectly freed. 3946 static int __kmp_reset_root(int gtid, kmp_root_t *root) { 3947 kmp_team_t *root_team = root->r.r_root_team; 3948 kmp_team_t *hot_team = root->r.r_hot_team; 3949 int n = hot_team->t.t_nproc; 3950 int i; 3951 3952 KMP_DEBUG_ASSERT(!root->r.r_active); 3953 3954 root->r.r_root_team = NULL; 3955 root->r.r_hot_team = NULL; 3956 // __kmp_free_team() does not free hot teams, so we have to clear r_hot_team 3957 // before call to __kmp_free_team(). 3958 __kmp_free_team(root, root_team USE_NESTED_HOT_ARG(NULL)); 3959 #if KMP_NESTED_HOT_TEAMS 3960 if (__kmp_hot_teams_max_level > 3961 0) { // need to free nested hot teams and their threads if any 3962 for (i = 0; i < hot_team->t.t_nproc; ++i) { 3963 kmp_info_t *th = hot_team->t.t_threads[i]; 3964 if (__kmp_hot_teams_max_level > 1) { 3965 n += __kmp_free_hot_teams(root, th, 1, __kmp_hot_teams_max_level); 3966 } 3967 if (th->th.th_hot_teams) { 3968 __kmp_free(th->th.th_hot_teams); 3969 th->th.th_hot_teams = NULL; 3970 } 3971 } 3972 } 3973 #endif 3974 __kmp_free_team(root, hot_team USE_NESTED_HOT_ARG(NULL)); 3975 3976 // Before we can reap the thread, we need to make certain that all other 3977 // threads in the teams that had this root as ancestor have stopped trying to 3978 // steal tasks. 3979 if (__kmp_tasking_mode != tskm_immediate_exec) { 3980 __kmp_wait_to_unref_task_teams(); 3981 } 3982 3983 #if KMP_OS_WINDOWS 3984 /* Close Handle of root duplicated in __kmp_create_worker (tr #62919) */ 3985 KA_TRACE( 3986 10, ("__kmp_reset_root: free handle, th = %p, handle = %" KMP_UINTPTR_SPEC 3987 "\n", 3988 (LPVOID) & (root->r.r_uber_thread->th), 3989 root->r.r_uber_thread->th.th_info.ds.ds_thread)); 3990 __kmp_free_handle(root->r.r_uber_thread->th.th_info.ds.ds_thread); 3991 #endif /* KMP_OS_WINDOWS */ 3992 3993 #if OMPT_SUPPORT 3994 ompt_data_t *task_data; 3995 ompt_data_t *parallel_data; 3996 __ompt_get_task_info_internal(0, NULL, &task_data, NULL, ¶llel_data, NULL); 3997 if (ompt_enabled.ompt_callback_implicit_task) { 3998 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 3999 ompt_scope_end, parallel_data, task_data, 0, 1, ompt_task_initial); 4000 } 4001 if (ompt_enabled.ompt_callback_thread_end) { 4002 ompt_callbacks.ompt_callback(ompt_callback_thread_end)( 4003 &(root->r.r_uber_thread->th.ompt_thread_info.thread_data)); 4004 } 4005 #endif 4006 4007 TCW_4(__kmp_nth, 4008 __kmp_nth - 1); // __kmp_reap_thread will decrement __kmp_all_nth. 4009 i = root->r.r_uber_thread->th.th_cg_roots->cg_nthreads--; 4010 KA_TRACE(100, ("__kmp_reset_root: Thread %p decrement cg_nthreads on node %p" 4011 " to %d\n", 4012 root->r.r_uber_thread, root->r.r_uber_thread->th.th_cg_roots, 4013 root->r.r_uber_thread->th.th_cg_roots->cg_nthreads)); 4014 if (i == 1) { 4015 // need to free contention group structure 4016 KMP_DEBUG_ASSERT(root->r.r_uber_thread == 4017 root->r.r_uber_thread->th.th_cg_roots->cg_root); 4018 KMP_DEBUG_ASSERT(root->r.r_uber_thread->th.th_cg_roots->up == NULL); 4019 __kmp_free(root->r.r_uber_thread->th.th_cg_roots); 4020 root->r.r_uber_thread->th.th_cg_roots = NULL; 4021 } 4022 __kmp_reap_thread(root->r.r_uber_thread, 1); 4023 4024 // We canot put root thread to __kmp_thread_pool, so we have to reap it istead 4025 // of freeing. 4026 root->r.r_uber_thread = NULL; 4027 /* mark root as no longer in use */ 4028 root->r.r_begin = FALSE; 4029 4030 return n; 4031 } 4032 4033 void __kmp_unregister_root_current_thread(int gtid) { 4034 KA_TRACE(1, ("__kmp_unregister_root_current_thread: enter T#%d\n", gtid)); 4035 /* this lock should be ok, since unregister_root_current_thread is never 4036 called during an abort, only during a normal close. furthermore, if you 4037 have the forkjoin lock, you should never try to get the initz lock */ 4038 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 4039 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 4040 KC_TRACE(10, ("__kmp_unregister_root_current_thread: already finished, " 4041 "exiting T#%d\n", 4042 gtid)); 4043 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 4044 return; 4045 } 4046 kmp_root_t *root = __kmp_root[gtid]; 4047 4048 KMP_DEBUG_ASSERT(__kmp_threads && __kmp_threads[gtid]); 4049 KMP_ASSERT(KMP_UBER_GTID(gtid)); 4050 KMP_ASSERT(root == __kmp_threads[gtid]->th.th_root); 4051 KMP_ASSERT(root->r.r_active == FALSE); 4052 4053 KMP_MB(); 4054 4055 #if OMP_45_ENABLED 4056 kmp_info_t *thread = __kmp_threads[gtid]; 4057 kmp_team_t *team = thread->th.th_team; 4058 kmp_task_team_t *task_team = thread->th.th_task_team; 4059 4060 // we need to wait for the proxy tasks before finishing the thread 4061 if (task_team != NULL && task_team->tt.tt_found_proxy_tasks) { 4062 #if OMPT_SUPPORT 4063 // the runtime is shutting down so we won't report any events 4064 thread->th.ompt_thread_info.state = ompt_state_undefined; 4065 #endif 4066 __kmp_task_team_wait(thread, team USE_ITT_BUILD_ARG(NULL)); 4067 } 4068 #endif 4069 4070 __kmp_reset_root(gtid, root); 4071 4072 /* free up this thread slot */ 4073 __kmp_gtid_set_specific(KMP_GTID_DNE); 4074 #ifdef KMP_TDATA_GTID 4075 __kmp_gtid = KMP_GTID_DNE; 4076 #endif 4077 4078 KMP_MB(); 4079 KC_TRACE(10, 4080 ("__kmp_unregister_root_current_thread: T#%d unregistered\n", gtid)); 4081 4082 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 4083 } 4084 4085 #if KMP_OS_WINDOWS 4086 /* __kmp_forkjoin_lock must be already held 4087 Unregisters a root thread that is not the current thread. Returns the number 4088 of __kmp_threads entries freed as a result. */ 4089 static int __kmp_unregister_root_other_thread(int gtid) { 4090 kmp_root_t *root = __kmp_root[gtid]; 4091 int r; 4092 4093 KA_TRACE(1, ("__kmp_unregister_root_other_thread: enter T#%d\n", gtid)); 4094 KMP_DEBUG_ASSERT(__kmp_threads && __kmp_threads[gtid]); 4095 KMP_ASSERT(KMP_UBER_GTID(gtid)); 4096 KMP_ASSERT(root == __kmp_threads[gtid]->th.th_root); 4097 KMP_ASSERT(root->r.r_active == FALSE); 4098 4099 r = __kmp_reset_root(gtid, root); 4100 KC_TRACE(10, 4101 ("__kmp_unregister_root_other_thread: T#%d unregistered\n", gtid)); 4102 return r; 4103 } 4104 #endif 4105 4106 #if KMP_DEBUG 4107 void __kmp_task_info() { 4108 4109 kmp_int32 gtid = __kmp_entry_gtid(); 4110 kmp_int32 tid = __kmp_tid_from_gtid(gtid); 4111 kmp_info_t *this_thr = __kmp_threads[gtid]; 4112 kmp_team_t *steam = this_thr->th.th_serial_team; 4113 kmp_team_t *team = this_thr->th.th_team; 4114 4115 __kmp_printf( 4116 "__kmp_task_info: gtid=%d tid=%d t_thread=%p team=%p steam=%p curtask=%p " 4117 "ptask=%p\n", 4118 gtid, tid, this_thr, team, steam, this_thr->th.th_current_task, 4119 team->t.t_implicit_task_taskdata[tid].td_parent); 4120 } 4121 #endif // KMP_DEBUG 4122 4123 /* TODO optimize with one big memclr, take out what isn't needed, split 4124 responsibility to workers as much as possible, and delay initialization of 4125 features as much as possible */ 4126 static void __kmp_initialize_info(kmp_info_t *this_thr, kmp_team_t *team, 4127 int tid, int gtid) { 4128 /* this_thr->th.th_info.ds.ds_gtid is setup in 4129 kmp_allocate_thread/create_worker. 4130 this_thr->th.th_serial_team is setup in __kmp_allocate_thread */ 4131 kmp_info_t *master = team->t.t_threads[0]; 4132 KMP_DEBUG_ASSERT(this_thr != NULL); 4133 KMP_DEBUG_ASSERT(this_thr->th.th_serial_team); 4134 KMP_DEBUG_ASSERT(team); 4135 KMP_DEBUG_ASSERT(team->t.t_threads); 4136 KMP_DEBUG_ASSERT(team->t.t_dispatch); 4137 KMP_DEBUG_ASSERT(master); 4138 KMP_DEBUG_ASSERT(master->th.th_root); 4139 4140 KMP_MB(); 4141 4142 TCW_SYNC_PTR(this_thr->th.th_team, team); 4143 4144 this_thr->th.th_info.ds.ds_tid = tid; 4145 this_thr->th.th_set_nproc = 0; 4146 if (__kmp_tasking_mode != tskm_immediate_exec) 4147 // When tasking is possible, threads are not safe to reap until they are 4148 // done tasking; this will be set when tasking code is exited in wait 4149 this_thr->th.th_reap_state = KMP_NOT_SAFE_TO_REAP; 4150 else // no tasking --> always safe to reap 4151 this_thr->th.th_reap_state = KMP_SAFE_TO_REAP; 4152 #if OMP_40_ENABLED 4153 this_thr->th.th_set_proc_bind = proc_bind_default; 4154 #if KMP_AFFINITY_SUPPORTED 4155 this_thr->th.th_new_place = this_thr->th.th_current_place; 4156 #endif 4157 #endif 4158 this_thr->th.th_root = master->th.th_root; 4159 4160 /* setup the thread's cache of the team structure */ 4161 this_thr->th.th_team_nproc = team->t.t_nproc; 4162 this_thr->th.th_team_master = master; 4163 this_thr->th.th_team_serialized = team->t.t_serialized; 4164 TCW_PTR(this_thr->th.th_sleep_loc, NULL); 4165 4166 KMP_DEBUG_ASSERT(team->t.t_implicit_task_taskdata); 4167 4168 KF_TRACE(10, ("__kmp_initialize_info1: T#%d:%d this_thread=%p curtask=%p\n", 4169 tid, gtid, this_thr, this_thr->th.th_current_task)); 4170 4171 __kmp_init_implicit_task(this_thr->th.th_team_master->th.th_ident, this_thr, 4172 team, tid, TRUE); 4173 4174 KF_TRACE(10, ("__kmp_initialize_info2: T#%d:%d this_thread=%p curtask=%p\n", 4175 tid, gtid, this_thr, this_thr->th.th_current_task)); 4176 // TODO: Initialize ICVs from parent; GEH - isn't that already done in 4177 // __kmp_initialize_team()? 4178 4179 /* TODO no worksharing in speculative threads */ 4180 this_thr->th.th_dispatch = &team->t.t_dispatch[tid]; 4181 4182 this_thr->th.th_local.this_construct = 0; 4183 4184 if (!this_thr->th.th_pri_common) { 4185 this_thr->th.th_pri_common = 4186 (struct common_table *)__kmp_allocate(sizeof(struct common_table)); 4187 if (__kmp_storage_map) { 4188 __kmp_print_storage_map_gtid( 4189 gtid, this_thr->th.th_pri_common, this_thr->th.th_pri_common + 1, 4190 sizeof(struct common_table), "th_%d.th_pri_common\n", gtid); 4191 } 4192 this_thr->th.th_pri_head = NULL; 4193 } 4194 4195 if (this_thr != master && // Master's CG root is initialized elsewhere 4196 this_thr->th.th_cg_roots != master->th.th_cg_roots) { // CG root not set 4197 // Make new thread's CG root same as master's 4198 KMP_DEBUG_ASSERT(master->th.th_cg_roots); 4199 kmp_cg_root_t *tmp = this_thr->th.th_cg_roots; 4200 if (tmp) { 4201 // worker changes CG, need to check if old CG should be freed 4202 int i = tmp->cg_nthreads--; 4203 KA_TRACE(100, ("__kmp_initialize_info: Thread %p decrement cg_nthreads" 4204 " on node %p of thread %p to %d\n", 4205 this_thr, tmp, tmp->cg_root, tmp->cg_nthreads)); 4206 if (i == 1) { 4207 __kmp_free(tmp); // last thread left CG --> free it 4208 } 4209 } 4210 this_thr->th.th_cg_roots = master->th.th_cg_roots; 4211 // Increment new thread's CG root's counter to add the new thread 4212 this_thr->th.th_cg_roots->cg_nthreads++; 4213 KA_TRACE(100, ("__kmp_initialize_info: Thread %p increment cg_nthreads on" 4214 " node %p of thread %p to %d\n", 4215 this_thr, this_thr->th.th_cg_roots, 4216 this_thr->th.th_cg_roots->cg_root, 4217 this_thr->th.th_cg_roots->cg_nthreads)); 4218 this_thr->th.th_current_task->td_icvs.thread_limit = 4219 this_thr->th.th_cg_roots->cg_thread_limit; 4220 } 4221 4222 /* Initialize dynamic dispatch */ 4223 { 4224 volatile kmp_disp_t *dispatch = this_thr->th.th_dispatch; 4225 // Use team max_nproc since this will never change for the team. 4226 size_t disp_size = 4227 sizeof(dispatch_private_info_t) * 4228 (team->t.t_max_nproc == 1 ? 1 : __kmp_dispatch_num_buffers); 4229 KD_TRACE(10, ("__kmp_initialize_info: T#%d max_nproc: %d\n", gtid, 4230 team->t.t_max_nproc)); 4231 KMP_ASSERT(dispatch); 4232 KMP_DEBUG_ASSERT(team->t.t_dispatch); 4233 KMP_DEBUG_ASSERT(dispatch == &team->t.t_dispatch[tid]); 4234 4235 dispatch->th_disp_index = 0; 4236 #if OMP_45_ENABLED 4237 dispatch->th_doacross_buf_idx = 0; 4238 #endif 4239 if (!dispatch->th_disp_buffer) { 4240 dispatch->th_disp_buffer = 4241 (dispatch_private_info_t *)__kmp_allocate(disp_size); 4242 4243 if (__kmp_storage_map) { 4244 __kmp_print_storage_map_gtid( 4245 gtid, &dispatch->th_disp_buffer[0], 4246 &dispatch->th_disp_buffer[team->t.t_max_nproc == 1 4247 ? 1 4248 : __kmp_dispatch_num_buffers], 4249 disp_size, "th_%d.th_dispatch.th_disp_buffer " 4250 "(team_%d.t_dispatch[%d].th_disp_buffer)", 4251 gtid, team->t.t_id, gtid); 4252 } 4253 } else { 4254 memset(&dispatch->th_disp_buffer[0], '\0', disp_size); 4255 } 4256 4257 dispatch->th_dispatch_pr_current = 0; 4258 dispatch->th_dispatch_sh_current = 0; 4259 4260 dispatch->th_deo_fcn = 0; /* ORDERED */ 4261 dispatch->th_dxo_fcn = 0; /* END ORDERED */ 4262 } 4263 4264 this_thr->th.th_next_pool = NULL; 4265 4266 if (!this_thr->th.th_task_state_memo_stack) { 4267 size_t i; 4268 this_thr->th.th_task_state_memo_stack = 4269 (kmp_uint8 *)__kmp_allocate(4 * sizeof(kmp_uint8)); 4270 this_thr->th.th_task_state_top = 0; 4271 this_thr->th.th_task_state_stack_sz = 4; 4272 for (i = 0; i < this_thr->th.th_task_state_stack_sz; 4273 ++i) // zero init the stack 4274 this_thr->th.th_task_state_memo_stack[i] = 0; 4275 } 4276 4277 KMP_DEBUG_ASSERT(!this_thr->th.th_spin_here); 4278 KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0); 4279 4280 KMP_MB(); 4281 } 4282 4283 /* allocate a new thread for the requesting team. this is only called from 4284 within a forkjoin critical section. we will first try to get an available 4285 thread from the thread pool. if none is available, we will fork a new one 4286 assuming we are able to create a new one. this should be assured, as the 4287 caller should check on this first. */ 4288 kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team, 4289 int new_tid) { 4290 kmp_team_t *serial_team; 4291 kmp_info_t *new_thr; 4292 int new_gtid; 4293 4294 KA_TRACE(20, ("__kmp_allocate_thread: T#%d\n", __kmp_get_gtid())); 4295 KMP_DEBUG_ASSERT(root && team); 4296 #if !KMP_NESTED_HOT_TEAMS 4297 KMP_DEBUG_ASSERT(KMP_MASTER_GTID(__kmp_get_gtid())); 4298 #endif 4299 KMP_MB(); 4300 4301 /* first, try to get one from the thread pool */ 4302 if (__kmp_thread_pool) { 4303 new_thr = CCAST(kmp_info_t *, __kmp_thread_pool); 4304 __kmp_thread_pool = (volatile kmp_info_t *)new_thr->th.th_next_pool; 4305 if (new_thr == __kmp_thread_pool_insert_pt) { 4306 __kmp_thread_pool_insert_pt = NULL; 4307 } 4308 TCW_4(new_thr->th.th_in_pool, FALSE); 4309 __kmp_suspend_initialize_thread(new_thr); 4310 __kmp_lock_suspend_mx(new_thr); 4311 if (new_thr->th.th_active_in_pool == TRUE) { 4312 KMP_DEBUG_ASSERT(new_thr->th.th_active == TRUE); 4313 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 4314 new_thr->th.th_active_in_pool = FALSE; 4315 } 4316 __kmp_unlock_suspend_mx(new_thr); 4317 4318 KA_TRACE(20, ("__kmp_allocate_thread: T#%d using thread T#%d\n", 4319 __kmp_get_gtid(), new_thr->th.th_info.ds.ds_gtid)); 4320 KMP_ASSERT(!new_thr->th.th_team); 4321 KMP_DEBUG_ASSERT(__kmp_nth < __kmp_threads_capacity); 4322 4323 /* setup the thread structure */ 4324 __kmp_initialize_info(new_thr, team, new_tid, 4325 new_thr->th.th_info.ds.ds_gtid); 4326 KMP_DEBUG_ASSERT(new_thr->th.th_serial_team); 4327 4328 TCW_4(__kmp_nth, __kmp_nth + 1); 4329 4330 new_thr->th.th_task_state = 0; 4331 new_thr->th.th_task_state_top = 0; 4332 new_thr->th.th_task_state_stack_sz = 4; 4333 4334 #ifdef KMP_ADJUST_BLOCKTIME 4335 /* Adjust blocktime back to zero if necessary */ 4336 /* Middle initialization might not have occurred yet */ 4337 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 4338 if (__kmp_nth > __kmp_avail_proc) { 4339 __kmp_zero_bt = TRUE; 4340 } 4341 } 4342 #endif /* KMP_ADJUST_BLOCKTIME */ 4343 4344 #if KMP_DEBUG 4345 // If thread entered pool via __kmp_free_thread, wait_flag should != 4346 // KMP_BARRIER_PARENT_FLAG. 4347 int b; 4348 kmp_balign_t *balign = new_thr->th.th_bar; 4349 for (b = 0; b < bs_last_barrier; ++b) 4350 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 4351 #endif 4352 4353 KF_TRACE(10, ("__kmp_allocate_thread: T#%d using thread %p T#%d\n", 4354 __kmp_get_gtid(), new_thr, new_thr->th.th_info.ds.ds_gtid)); 4355 4356 KMP_MB(); 4357 return new_thr; 4358 } 4359 4360 /* no, well fork a new one */ 4361 KMP_ASSERT(__kmp_nth == __kmp_all_nth); 4362 KMP_ASSERT(__kmp_all_nth < __kmp_threads_capacity); 4363 4364 #if KMP_USE_MONITOR 4365 // If this is the first worker thread the RTL is creating, then also 4366 // launch the monitor thread. We try to do this as early as possible. 4367 if (!TCR_4(__kmp_init_monitor)) { 4368 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock); 4369 if (!TCR_4(__kmp_init_monitor)) { 4370 KF_TRACE(10, ("before __kmp_create_monitor\n")); 4371 TCW_4(__kmp_init_monitor, 1); 4372 __kmp_create_monitor(&__kmp_monitor); 4373 KF_TRACE(10, ("after __kmp_create_monitor\n")); 4374 #if KMP_OS_WINDOWS 4375 // AC: wait until monitor has started. This is a fix for CQ232808. 4376 // The reason is that if the library is loaded/unloaded in a loop with 4377 // small (parallel) work in between, then there is high probability that 4378 // monitor thread started after the library shutdown. At shutdown it is 4379 // too late to cope with the problem, because when the master is in 4380 // DllMain (process detach) the monitor has no chances to start (it is 4381 // blocked), and master has no means to inform the monitor that the 4382 // library has gone, because all the memory which the monitor can access 4383 // is going to be released/reset. 4384 while (TCR_4(__kmp_init_monitor) < 2) { 4385 KMP_YIELD(TRUE); 4386 } 4387 KF_TRACE(10, ("after monitor thread has started\n")); 4388 #endif 4389 } 4390 __kmp_release_bootstrap_lock(&__kmp_monitor_lock); 4391 } 4392 #endif 4393 4394 KMP_MB(); 4395 for (new_gtid = 1; TCR_PTR(__kmp_threads[new_gtid]) != NULL; ++new_gtid) { 4396 KMP_DEBUG_ASSERT(new_gtid < __kmp_threads_capacity); 4397 } 4398 4399 /* allocate space for it. */ 4400 new_thr = (kmp_info_t *)__kmp_allocate(sizeof(kmp_info_t)); 4401 4402 TCW_SYNC_PTR(__kmp_threads[new_gtid], new_thr); 4403 4404 if (__kmp_storage_map) { 4405 __kmp_print_thread_storage_map(new_thr, new_gtid); 4406 } 4407 4408 // add the reserve serialized team, initialized from the team's master thread 4409 { 4410 kmp_internal_control_t r_icvs = __kmp_get_x_global_icvs(team); 4411 KF_TRACE(10, ("__kmp_allocate_thread: before th_serial/serial_team\n")); 4412 new_thr->th.th_serial_team = serial_team = 4413 (kmp_team_t *)__kmp_allocate_team(root, 1, 1, 4414 #if OMPT_SUPPORT 4415 ompt_data_none, // root parallel id 4416 #endif 4417 #if OMP_40_ENABLED 4418 proc_bind_default, 4419 #endif 4420 &r_icvs, 0 USE_NESTED_HOT_ARG(NULL)); 4421 } 4422 KMP_ASSERT(serial_team); 4423 serial_team->t.t_serialized = 0; // AC: the team created in reserve, not for 4424 // execution (it is unused for now). 4425 serial_team->t.t_threads[0] = new_thr; 4426 KF_TRACE(10, 4427 ("__kmp_allocate_thread: after th_serial/serial_team : new_thr=%p\n", 4428 new_thr)); 4429 4430 /* setup the thread structures */ 4431 __kmp_initialize_info(new_thr, team, new_tid, new_gtid); 4432 4433 #if USE_FAST_MEMORY 4434 __kmp_initialize_fast_memory(new_thr); 4435 #endif /* USE_FAST_MEMORY */ 4436 4437 #if KMP_USE_BGET 4438 KMP_DEBUG_ASSERT(new_thr->th.th_local.bget_data == NULL); 4439 __kmp_initialize_bget(new_thr); 4440 #endif 4441 4442 __kmp_init_random(new_thr); // Initialize random number generator 4443 4444 /* Initialize these only once when thread is grabbed for a team allocation */ 4445 KA_TRACE(20, 4446 ("__kmp_allocate_thread: T#%d init go fork=%u, plain=%u\n", 4447 __kmp_get_gtid(), KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 4448 4449 int b; 4450 kmp_balign_t *balign = new_thr->th.th_bar; 4451 for (b = 0; b < bs_last_barrier; ++b) { 4452 balign[b].bb.b_go = KMP_INIT_BARRIER_STATE; 4453 balign[b].bb.team = NULL; 4454 balign[b].bb.wait_flag = KMP_BARRIER_NOT_WAITING; 4455 balign[b].bb.use_oncore_barrier = 0; 4456 } 4457 4458 new_thr->th.th_spin_here = FALSE; 4459 new_thr->th.th_next_waiting = 0; 4460 #if KMP_OS_UNIX 4461 new_thr->th.th_blocking = false; 4462 #endif 4463 4464 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 4465 new_thr->th.th_current_place = KMP_PLACE_UNDEFINED; 4466 new_thr->th.th_new_place = KMP_PLACE_UNDEFINED; 4467 new_thr->th.th_first_place = KMP_PLACE_UNDEFINED; 4468 new_thr->th.th_last_place = KMP_PLACE_UNDEFINED; 4469 #endif 4470 #if OMP_50_ENABLED 4471 new_thr->th.th_def_allocator = __kmp_def_allocator; 4472 new_thr->th.th_prev_level = 0; 4473 new_thr->th.th_prev_num_threads = 1; 4474 #endif 4475 4476 TCW_4(new_thr->th.th_in_pool, FALSE); 4477 new_thr->th.th_active_in_pool = FALSE; 4478 TCW_4(new_thr->th.th_active, TRUE); 4479 4480 /* adjust the global counters */ 4481 __kmp_all_nth++; 4482 __kmp_nth++; 4483 4484 // if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) for low 4485 // numbers of procs, and method #2 (keyed API call) for higher numbers. 4486 if (__kmp_adjust_gtid_mode) { 4487 if (__kmp_all_nth >= __kmp_tls_gtid_min) { 4488 if (TCR_4(__kmp_gtid_mode) != 2) { 4489 TCW_4(__kmp_gtid_mode, 2); 4490 } 4491 } else { 4492 if (TCR_4(__kmp_gtid_mode) != 1) { 4493 TCW_4(__kmp_gtid_mode, 1); 4494 } 4495 } 4496 } 4497 4498 #ifdef KMP_ADJUST_BLOCKTIME 4499 /* Adjust blocktime back to zero if necessary */ 4500 /* Middle initialization might not have occurred yet */ 4501 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 4502 if (__kmp_nth > __kmp_avail_proc) { 4503 __kmp_zero_bt = TRUE; 4504 } 4505 } 4506 #endif /* KMP_ADJUST_BLOCKTIME */ 4507 4508 /* actually fork it and create the new worker thread */ 4509 KF_TRACE( 4510 10, ("__kmp_allocate_thread: before __kmp_create_worker: %p\n", new_thr)); 4511 __kmp_create_worker(new_gtid, new_thr, __kmp_stksize); 4512 KF_TRACE(10, 4513 ("__kmp_allocate_thread: after __kmp_create_worker: %p\n", new_thr)); 4514 4515 KA_TRACE(20, ("__kmp_allocate_thread: T#%d forked T#%d\n", __kmp_get_gtid(), 4516 new_gtid)); 4517 KMP_MB(); 4518 return new_thr; 4519 } 4520 4521 /* Reinitialize team for reuse. 4522 The hot team code calls this case at every fork barrier, so EPCC barrier 4523 test are extremely sensitive to changes in it, esp. writes to the team 4524 struct, which cause a cache invalidation in all threads. 4525 IF YOU TOUCH THIS ROUTINE, RUN EPCC C SYNCBENCH ON A BIG-IRON MACHINE!!! */ 4526 static void __kmp_reinitialize_team(kmp_team_t *team, 4527 kmp_internal_control_t *new_icvs, 4528 ident_t *loc) { 4529 KF_TRACE(10, ("__kmp_reinitialize_team: enter this_thread=%p team=%p\n", 4530 team->t.t_threads[0], team)); 4531 KMP_DEBUG_ASSERT(team && new_icvs); 4532 KMP_DEBUG_ASSERT((!TCR_4(__kmp_init_parallel)) || new_icvs->nproc); 4533 KMP_CHECK_UPDATE(team->t.t_ident, loc); 4534 4535 KMP_CHECK_UPDATE(team->t.t_id, KMP_GEN_TEAM_ID()); 4536 // Copy ICVs to the master thread's implicit taskdata 4537 __kmp_init_implicit_task(loc, team->t.t_threads[0], team, 0, FALSE); 4538 copy_icvs(&team->t.t_implicit_task_taskdata[0].td_icvs, new_icvs); 4539 4540 KF_TRACE(10, ("__kmp_reinitialize_team: exit this_thread=%p team=%p\n", 4541 team->t.t_threads[0], team)); 4542 } 4543 4544 /* Initialize the team data structure. 4545 This assumes the t_threads and t_max_nproc are already set. 4546 Also, we don't touch the arguments */ 4547 static void __kmp_initialize_team(kmp_team_t *team, int new_nproc, 4548 kmp_internal_control_t *new_icvs, 4549 ident_t *loc) { 4550 KF_TRACE(10, ("__kmp_initialize_team: enter: team=%p\n", team)); 4551 4552 /* verify */ 4553 KMP_DEBUG_ASSERT(team); 4554 KMP_DEBUG_ASSERT(new_nproc <= team->t.t_max_nproc); 4555 KMP_DEBUG_ASSERT(team->t.t_threads); 4556 KMP_MB(); 4557 4558 team->t.t_master_tid = 0; /* not needed */ 4559 /* team->t.t_master_bar; not needed */ 4560 team->t.t_serialized = new_nproc > 1 ? 0 : 1; 4561 team->t.t_nproc = new_nproc; 4562 4563 /* team->t.t_parent = NULL; TODO not needed & would mess up hot team */ 4564 team->t.t_next_pool = NULL; 4565 /* memset( team->t.t_threads, 0, sizeof(kmp_info_t*)*new_nproc ); would mess 4566 * up hot team */ 4567 4568 TCW_SYNC_PTR(team->t.t_pkfn, NULL); /* not needed */ 4569 team->t.t_invoke = NULL; /* not needed */ 4570 4571 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 4572 team->t.t_sched.sched = new_icvs->sched.sched; 4573 4574 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4575 team->t.t_fp_control_saved = FALSE; /* not needed */ 4576 team->t.t_x87_fpu_control_word = 0; /* not needed */ 4577 team->t.t_mxcsr = 0; /* not needed */ 4578 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4579 4580 team->t.t_construct = 0; 4581 4582 team->t.t_ordered.dt.t_value = 0; 4583 team->t.t_master_active = FALSE; 4584 4585 #ifdef KMP_DEBUG 4586 team->t.t_copypriv_data = NULL; /* not necessary, but nice for debugging */ 4587 #endif 4588 #if KMP_OS_WINDOWS 4589 team->t.t_copyin_counter = 0; /* for barrier-free copyin implementation */ 4590 #endif 4591 4592 team->t.t_control_stack_top = NULL; 4593 4594 __kmp_reinitialize_team(team, new_icvs, loc); 4595 4596 KMP_MB(); 4597 KF_TRACE(10, ("__kmp_initialize_team: exit: team=%p\n", team)); 4598 } 4599 4600 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 4601 /* Sets full mask for thread and returns old mask, no changes to structures. */ 4602 static void 4603 __kmp_set_thread_affinity_mask_full_tmp(kmp_affin_mask_t *old_mask) { 4604 if (KMP_AFFINITY_CAPABLE()) { 4605 int status; 4606 if (old_mask != NULL) { 4607 status = __kmp_get_system_affinity(old_mask, TRUE); 4608 int error = errno; 4609 if (status != 0) { 4610 __kmp_fatal(KMP_MSG(ChangeThreadAffMaskError), KMP_ERR(error), 4611 __kmp_msg_null); 4612 } 4613 } 4614 __kmp_set_system_affinity(__kmp_affin_fullMask, TRUE); 4615 } 4616 } 4617 #endif 4618 4619 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 4620 4621 // __kmp_partition_places() is the heart of the OpenMP 4.0 affinity mechanism. 4622 // It calculats the worker + master thread's partition based upon the parent 4623 // thread's partition, and binds each worker to a thread in their partition. 4624 // The master thread's partition should already include its current binding. 4625 static void __kmp_partition_places(kmp_team_t *team, int update_master_only) { 4626 // Copy the master thread's place partion to the team struct 4627 kmp_info_t *master_th = team->t.t_threads[0]; 4628 KMP_DEBUG_ASSERT(master_th != NULL); 4629 kmp_proc_bind_t proc_bind = team->t.t_proc_bind; 4630 int first_place = master_th->th.th_first_place; 4631 int last_place = master_th->th.th_last_place; 4632 int masters_place = master_th->th.th_current_place; 4633 team->t.t_first_place = first_place; 4634 team->t.t_last_place = last_place; 4635 4636 KA_TRACE(20, ("__kmp_partition_places: enter: proc_bind = %d T#%d(%d:0) " 4637 "bound to place %d partition = [%d,%d]\n", 4638 proc_bind, __kmp_gtid_from_thread(team->t.t_threads[0]), 4639 team->t.t_id, masters_place, first_place, last_place)); 4640 4641 switch (proc_bind) { 4642 4643 case proc_bind_default: 4644 // serial teams might have the proc_bind policy set to proc_bind_default. It 4645 // doesn't matter, as we don't rebind master thread for any proc_bind policy 4646 KMP_DEBUG_ASSERT(team->t.t_nproc == 1); 4647 break; 4648 4649 case proc_bind_master: { 4650 int f; 4651 int n_th = team->t.t_nproc; 4652 for (f = 1; f < n_th; f++) { 4653 kmp_info_t *th = team->t.t_threads[f]; 4654 KMP_DEBUG_ASSERT(th != NULL); 4655 th->th.th_first_place = first_place; 4656 th->th.th_last_place = last_place; 4657 th->th.th_new_place = masters_place; 4658 #if OMP_50_ENABLED 4659 if (__kmp_display_affinity && masters_place != th->th.th_current_place && 4660 team->t.t_display_affinity != 1) { 4661 team->t.t_display_affinity = 1; 4662 } 4663 #endif 4664 4665 KA_TRACE(100, ("__kmp_partition_places: master: T#%d(%d:%d) place %d " 4666 "partition = [%d,%d]\n", 4667 __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, 4668 f, masters_place, first_place, last_place)); 4669 } 4670 } break; 4671 4672 case proc_bind_close: { 4673 int f; 4674 int n_th = team->t.t_nproc; 4675 int n_places; 4676 if (first_place <= last_place) { 4677 n_places = last_place - first_place + 1; 4678 } else { 4679 n_places = __kmp_affinity_num_masks - first_place + last_place + 1; 4680 } 4681 if (n_th <= n_places) { 4682 int place = masters_place; 4683 for (f = 1; f < n_th; f++) { 4684 kmp_info_t *th = team->t.t_threads[f]; 4685 KMP_DEBUG_ASSERT(th != NULL); 4686 4687 if (place == last_place) { 4688 place = first_place; 4689 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4690 place = 0; 4691 } else { 4692 place++; 4693 } 4694 th->th.th_first_place = first_place; 4695 th->th.th_last_place = last_place; 4696 th->th.th_new_place = place; 4697 #if OMP_50_ENABLED 4698 if (__kmp_display_affinity && place != th->th.th_current_place && 4699 team->t.t_display_affinity != 1) { 4700 team->t.t_display_affinity = 1; 4701 } 4702 #endif 4703 4704 KA_TRACE(100, ("__kmp_partition_places: close: T#%d(%d:%d) place %d " 4705 "partition = [%d,%d]\n", 4706 __kmp_gtid_from_thread(team->t.t_threads[f]), 4707 team->t.t_id, f, place, first_place, last_place)); 4708 } 4709 } else { 4710 int S, rem, gap, s_count; 4711 S = n_th / n_places; 4712 s_count = 0; 4713 rem = n_th - (S * n_places); 4714 gap = rem > 0 ? n_places / rem : n_places; 4715 int place = masters_place; 4716 int gap_ct = gap; 4717 for (f = 0; f < n_th; f++) { 4718 kmp_info_t *th = team->t.t_threads[f]; 4719 KMP_DEBUG_ASSERT(th != NULL); 4720 4721 th->th.th_first_place = first_place; 4722 th->th.th_last_place = last_place; 4723 th->th.th_new_place = place; 4724 #if OMP_50_ENABLED 4725 if (__kmp_display_affinity && place != th->th.th_current_place && 4726 team->t.t_display_affinity != 1) { 4727 team->t.t_display_affinity = 1; 4728 } 4729 #endif 4730 s_count++; 4731 4732 if ((s_count == S) && rem && (gap_ct == gap)) { 4733 // do nothing, add an extra thread to place on next iteration 4734 } else if ((s_count == S + 1) && rem && (gap_ct == gap)) { 4735 // we added an extra thread to this place; move to next place 4736 if (place == last_place) { 4737 place = first_place; 4738 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4739 place = 0; 4740 } else { 4741 place++; 4742 } 4743 s_count = 0; 4744 gap_ct = 1; 4745 rem--; 4746 } else if (s_count == S) { // place full; don't add extra 4747 if (place == last_place) { 4748 place = first_place; 4749 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4750 place = 0; 4751 } else { 4752 place++; 4753 } 4754 gap_ct++; 4755 s_count = 0; 4756 } 4757 4758 KA_TRACE(100, 4759 ("__kmp_partition_places: close: T#%d(%d:%d) place %d " 4760 "partition = [%d,%d]\n", 4761 __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, f, 4762 th->th.th_new_place, first_place, last_place)); 4763 } 4764 KMP_DEBUG_ASSERT(place == masters_place); 4765 } 4766 } break; 4767 4768 case proc_bind_spread: { 4769 int f; 4770 int n_th = team->t.t_nproc; 4771 int n_places; 4772 int thidx; 4773 if (first_place <= last_place) { 4774 n_places = last_place - first_place + 1; 4775 } else { 4776 n_places = __kmp_affinity_num_masks - first_place + last_place + 1; 4777 } 4778 if (n_th <= n_places) { 4779 int place = -1; 4780 4781 if (n_places != static_cast<int>(__kmp_affinity_num_masks)) { 4782 int S = n_places / n_th; 4783 int s_count, rem, gap, gap_ct; 4784 4785 place = masters_place; 4786 rem = n_places - n_th * S; 4787 gap = rem ? n_th / rem : 1; 4788 gap_ct = gap; 4789 thidx = n_th; 4790 if (update_master_only == 1) 4791 thidx = 1; 4792 for (f = 0; f < thidx; f++) { 4793 kmp_info_t *th = team->t.t_threads[f]; 4794 KMP_DEBUG_ASSERT(th != NULL); 4795 4796 th->th.th_first_place = place; 4797 th->th.th_new_place = place; 4798 #if OMP_50_ENABLED 4799 if (__kmp_display_affinity && place != th->th.th_current_place && 4800 team->t.t_display_affinity != 1) { 4801 team->t.t_display_affinity = 1; 4802 } 4803 #endif 4804 s_count = 1; 4805 while (s_count < S) { 4806 if (place == last_place) { 4807 place = first_place; 4808 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4809 place = 0; 4810 } else { 4811 place++; 4812 } 4813 s_count++; 4814 } 4815 if (rem && (gap_ct == gap)) { 4816 if (place == last_place) { 4817 place = first_place; 4818 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4819 place = 0; 4820 } else { 4821 place++; 4822 } 4823 rem--; 4824 gap_ct = 0; 4825 } 4826 th->th.th_last_place = place; 4827 gap_ct++; 4828 4829 if (place == last_place) { 4830 place = first_place; 4831 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4832 place = 0; 4833 } else { 4834 place++; 4835 } 4836 4837 KA_TRACE(100, 4838 ("__kmp_partition_places: spread: T#%d(%d:%d) place %d " 4839 "partition = [%d,%d], __kmp_affinity_num_masks: %u\n", 4840 __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, 4841 f, th->th.th_new_place, th->th.th_first_place, 4842 th->th.th_last_place, __kmp_affinity_num_masks)); 4843 } 4844 } else { 4845 /* Having uniform space of available computation places I can create 4846 T partitions of round(P/T) size and put threads into the first 4847 place of each partition. */ 4848 double current = static_cast<double>(masters_place); 4849 double spacing = 4850 (static_cast<double>(n_places + 1) / static_cast<double>(n_th)); 4851 int first, last; 4852 kmp_info_t *th; 4853 4854 thidx = n_th + 1; 4855 if (update_master_only == 1) 4856 thidx = 1; 4857 for (f = 0; f < thidx; f++) { 4858 first = static_cast<int>(current); 4859 last = static_cast<int>(current + spacing) - 1; 4860 KMP_DEBUG_ASSERT(last >= first); 4861 if (first >= n_places) { 4862 if (masters_place) { 4863 first -= n_places; 4864 last -= n_places; 4865 if (first == (masters_place + 1)) { 4866 KMP_DEBUG_ASSERT(f == n_th); 4867 first--; 4868 } 4869 if (last == masters_place) { 4870 KMP_DEBUG_ASSERT(f == (n_th - 1)); 4871 last--; 4872 } 4873 } else { 4874 KMP_DEBUG_ASSERT(f == n_th); 4875 first = 0; 4876 last = 0; 4877 } 4878 } 4879 if (last >= n_places) { 4880 last = (n_places - 1); 4881 } 4882 place = first; 4883 current += spacing; 4884 if (f < n_th) { 4885 KMP_DEBUG_ASSERT(0 <= first); 4886 KMP_DEBUG_ASSERT(n_places > first); 4887 KMP_DEBUG_ASSERT(0 <= last); 4888 KMP_DEBUG_ASSERT(n_places > last); 4889 KMP_DEBUG_ASSERT(last_place >= first_place); 4890 th = team->t.t_threads[f]; 4891 KMP_DEBUG_ASSERT(th); 4892 th->th.th_first_place = first; 4893 th->th.th_new_place = place; 4894 th->th.th_last_place = last; 4895 #if OMP_50_ENABLED 4896 if (__kmp_display_affinity && place != th->th.th_current_place && 4897 team->t.t_display_affinity != 1) { 4898 team->t.t_display_affinity = 1; 4899 } 4900 #endif 4901 KA_TRACE(100, 4902 ("__kmp_partition_places: spread: T#%d(%d:%d) place %d " 4903 "partition = [%d,%d], spacing = %.4f\n", 4904 __kmp_gtid_from_thread(team->t.t_threads[f]), 4905 team->t.t_id, f, th->th.th_new_place, 4906 th->th.th_first_place, th->th.th_last_place, spacing)); 4907 } 4908 } 4909 } 4910 KMP_DEBUG_ASSERT(update_master_only || place == masters_place); 4911 } else { 4912 int S, rem, gap, s_count; 4913 S = n_th / n_places; 4914 s_count = 0; 4915 rem = n_th - (S * n_places); 4916 gap = rem > 0 ? n_places / rem : n_places; 4917 int place = masters_place; 4918 int gap_ct = gap; 4919 thidx = n_th; 4920 if (update_master_only == 1) 4921 thidx = 1; 4922 for (f = 0; f < thidx; f++) { 4923 kmp_info_t *th = team->t.t_threads[f]; 4924 KMP_DEBUG_ASSERT(th != NULL); 4925 4926 th->th.th_first_place = place; 4927 th->th.th_last_place = place; 4928 th->th.th_new_place = place; 4929 #if OMP_50_ENABLED 4930 if (__kmp_display_affinity && place != th->th.th_current_place && 4931 team->t.t_display_affinity != 1) { 4932 team->t.t_display_affinity = 1; 4933 } 4934 #endif 4935 s_count++; 4936 4937 if ((s_count == S) && rem && (gap_ct == gap)) { 4938 // do nothing, add an extra thread to place on next iteration 4939 } else if ((s_count == S + 1) && rem && (gap_ct == gap)) { 4940 // we added an extra thread to this place; move on to next place 4941 if (place == last_place) { 4942 place = first_place; 4943 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4944 place = 0; 4945 } else { 4946 place++; 4947 } 4948 s_count = 0; 4949 gap_ct = 1; 4950 rem--; 4951 } else if (s_count == S) { // place is full; don't add extra thread 4952 if (place == last_place) { 4953 place = first_place; 4954 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4955 place = 0; 4956 } else { 4957 place++; 4958 } 4959 gap_ct++; 4960 s_count = 0; 4961 } 4962 4963 KA_TRACE(100, ("__kmp_partition_places: spread: T#%d(%d:%d) place %d " 4964 "partition = [%d,%d]\n", 4965 __kmp_gtid_from_thread(team->t.t_threads[f]), 4966 team->t.t_id, f, th->th.th_new_place, 4967 th->th.th_first_place, th->th.th_last_place)); 4968 } 4969 KMP_DEBUG_ASSERT(update_master_only || place == masters_place); 4970 } 4971 } break; 4972 4973 default: 4974 break; 4975 } 4976 4977 KA_TRACE(20, ("__kmp_partition_places: exit T#%d\n", team->t.t_id)); 4978 } 4979 4980 #endif /* OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED */ 4981 4982 /* allocate a new team data structure to use. take one off of the free pool if 4983 available */ 4984 kmp_team_t * 4985 __kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc, 4986 #if OMPT_SUPPORT 4987 ompt_data_t ompt_parallel_data, 4988 #endif 4989 #if OMP_40_ENABLED 4990 kmp_proc_bind_t new_proc_bind, 4991 #endif 4992 kmp_internal_control_t *new_icvs, 4993 int argc USE_NESTED_HOT_ARG(kmp_info_t *master)) { 4994 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_allocate_team); 4995 int f; 4996 kmp_team_t *team; 4997 int use_hot_team = !root->r.r_active; 4998 int level = 0; 4999 5000 KA_TRACE(20, ("__kmp_allocate_team: called\n")); 5001 KMP_DEBUG_ASSERT(new_nproc >= 1 && argc >= 0); 5002 KMP_DEBUG_ASSERT(max_nproc >= new_nproc); 5003 KMP_MB(); 5004 5005 #if KMP_NESTED_HOT_TEAMS 5006 kmp_hot_team_ptr_t *hot_teams; 5007 if (master) { 5008 team = master->th.th_team; 5009 level = team->t.t_active_level; 5010 if (master->th.th_teams_microtask) { // in teams construct? 5011 if (master->th.th_teams_size.nteams > 1 && 5012 ( // #teams > 1 5013 team->t.t_pkfn == 5014 (microtask_t)__kmp_teams_master || // inner fork of the teams 5015 master->th.th_teams_level < 5016 team->t.t_level)) { // or nested parallel inside the teams 5017 ++level; // not increment if #teams==1, or for outer fork of the teams; 5018 // increment otherwise 5019 } 5020 } 5021 hot_teams = master->th.th_hot_teams; 5022 if (level < __kmp_hot_teams_max_level && hot_teams && 5023 hot_teams[level] 5024 .hot_team) { // hot team has already been allocated for given level 5025 use_hot_team = 1; 5026 } else { 5027 use_hot_team = 0; 5028 } 5029 } 5030 #endif 5031 // Optimization to use a "hot" team 5032 if (use_hot_team && new_nproc > 1) { 5033 KMP_DEBUG_ASSERT(new_nproc <= max_nproc); 5034 #if KMP_NESTED_HOT_TEAMS 5035 team = hot_teams[level].hot_team; 5036 #else 5037 team = root->r.r_hot_team; 5038 #endif 5039 #if KMP_DEBUG 5040 if (__kmp_tasking_mode != tskm_immediate_exec) { 5041 KA_TRACE(20, ("__kmp_allocate_team: hot team task_team[0] = %p " 5042 "task_team[1] = %p before reinit\n", 5043 team->t.t_task_team[0], team->t.t_task_team[1])); 5044 } 5045 #endif 5046 5047 // Has the number of threads changed? 5048 /* Let's assume the most common case is that the number of threads is 5049 unchanged, and put that case first. */ 5050 if (team->t.t_nproc == new_nproc) { // Check changes in number of threads 5051 KA_TRACE(20, ("__kmp_allocate_team: reusing hot team\n")); 5052 // This case can mean that omp_set_num_threads() was called and the hot 5053 // team size was already reduced, so we check the special flag 5054 if (team->t.t_size_changed == -1) { 5055 team->t.t_size_changed = 1; 5056 } else { 5057 KMP_CHECK_UPDATE(team->t.t_size_changed, 0); 5058 } 5059 5060 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 5061 kmp_r_sched_t new_sched = new_icvs->sched; 5062 // set master's schedule as new run-time schedule 5063 KMP_CHECK_UPDATE(team->t.t_sched.sched, new_sched.sched); 5064 5065 __kmp_reinitialize_team(team, new_icvs, 5066 root->r.r_uber_thread->th.th_ident); 5067 5068 KF_TRACE(10, ("__kmp_allocate_team2: T#%d, this_thread=%p team=%p\n", 0, 5069 team->t.t_threads[0], team)); 5070 __kmp_push_current_task_to_thread(team->t.t_threads[0], team, 0); 5071 5072 #if OMP_40_ENABLED 5073 #if KMP_AFFINITY_SUPPORTED 5074 if ((team->t.t_size_changed == 0) && 5075 (team->t.t_proc_bind == new_proc_bind)) { 5076 if (new_proc_bind == proc_bind_spread) { 5077 __kmp_partition_places( 5078 team, 1); // add flag to update only master for spread 5079 } 5080 KA_TRACE(200, ("__kmp_allocate_team: reusing hot team #%d bindings: " 5081 "proc_bind = %d, partition = [%d,%d]\n", 5082 team->t.t_id, new_proc_bind, team->t.t_first_place, 5083 team->t.t_last_place)); 5084 } else { 5085 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5086 __kmp_partition_places(team); 5087 } 5088 #else 5089 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5090 #endif /* KMP_AFFINITY_SUPPORTED */ 5091 #endif /* OMP_40_ENABLED */ 5092 } else if (team->t.t_nproc > new_nproc) { 5093 KA_TRACE(20, 5094 ("__kmp_allocate_team: decreasing hot team thread count to %d\n", 5095 new_nproc)); 5096 5097 team->t.t_size_changed = 1; 5098 #if KMP_NESTED_HOT_TEAMS 5099 if (__kmp_hot_teams_mode == 0) { 5100 // AC: saved number of threads should correspond to team's value in this 5101 // mode, can be bigger in mode 1, when hot team has threads in reserve 5102 KMP_DEBUG_ASSERT(hot_teams[level].hot_team_nth == team->t.t_nproc); 5103 hot_teams[level].hot_team_nth = new_nproc; 5104 #endif // KMP_NESTED_HOT_TEAMS 5105 /* release the extra threads we don't need any more */ 5106 for (f = new_nproc; f < team->t.t_nproc; f++) { 5107 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5108 if (__kmp_tasking_mode != tskm_immediate_exec) { 5109 // When decreasing team size, threads no longer in the team should 5110 // unref task team. 5111 team->t.t_threads[f]->th.th_task_team = NULL; 5112 } 5113 __kmp_free_thread(team->t.t_threads[f]); 5114 team->t.t_threads[f] = NULL; 5115 } 5116 #if KMP_NESTED_HOT_TEAMS 5117 } // (__kmp_hot_teams_mode == 0) 5118 else { 5119 // When keeping extra threads in team, switch threads to wait on own 5120 // b_go flag 5121 for (f = new_nproc; f < team->t.t_nproc; ++f) { 5122 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5123 kmp_balign_t *balign = team->t.t_threads[f]->th.th_bar; 5124 for (int b = 0; b < bs_last_barrier; ++b) { 5125 if (balign[b].bb.wait_flag == KMP_BARRIER_PARENT_FLAG) { 5126 balign[b].bb.wait_flag = KMP_BARRIER_SWITCH_TO_OWN_FLAG; 5127 } 5128 KMP_CHECK_UPDATE(balign[b].bb.leaf_kids, 0); 5129 } 5130 } 5131 } 5132 #endif // KMP_NESTED_HOT_TEAMS 5133 team->t.t_nproc = new_nproc; 5134 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 5135 KMP_CHECK_UPDATE(team->t.t_sched.sched, new_icvs->sched.sched); 5136 __kmp_reinitialize_team(team, new_icvs, 5137 root->r.r_uber_thread->th.th_ident); 5138 5139 // Update remaining threads 5140 for (f = 0; f < new_nproc; ++f) { 5141 team->t.t_threads[f]->th.th_team_nproc = new_nproc; 5142 } 5143 5144 // restore the current task state of the master thread: should be the 5145 // implicit task 5146 KF_TRACE(10, ("__kmp_allocate_team: T#%d, this_thread=%p team=%p\n", 0, 5147 team->t.t_threads[0], team)); 5148 5149 __kmp_push_current_task_to_thread(team->t.t_threads[0], team, 0); 5150 5151 #ifdef KMP_DEBUG 5152 for (f = 0; f < team->t.t_nproc; f++) { 5153 KMP_DEBUG_ASSERT(team->t.t_threads[f] && 5154 team->t.t_threads[f]->th.th_team_nproc == 5155 team->t.t_nproc); 5156 } 5157 #endif 5158 5159 #if OMP_40_ENABLED 5160 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5161 #if KMP_AFFINITY_SUPPORTED 5162 __kmp_partition_places(team); 5163 #endif 5164 #endif 5165 } else { // team->t.t_nproc < new_nproc 5166 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 5167 kmp_affin_mask_t *old_mask; 5168 if (KMP_AFFINITY_CAPABLE()) { 5169 KMP_CPU_ALLOC(old_mask); 5170 } 5171 #endif 5172 5173 KA_TRACE(20, 5174 ("__kmp_allocate_team: increasing hot team thread count to %d\n", 5175 new_nproc)); 5176 5177 team->t.t_size_changed = 1; 5178 5179 #if KMP_NESTED_HOT_TEAMS 5180 int avail_threads = hot_teams[level].hot_team_nth; 5181 if (new_nproc < avail_threads) 5182 avail_threads = new_nproc; 5183 kmp_info_t **other_threads = team->t.t_threads; 5184 for (f = team->t.t_nproc; f < avail_threads; ++f) { 5185 // Adjust barrier data of reserved threads (if any) of the team 5186 // Other data will be set in __kmp_initialize_info() below. 5187 int b; 5188 kmp_balign_t *balign = other_threads[f]->th.th_bar; 5189 for (b = 0; b < bs_last_barrier; ++b) { 5190 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 5191 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 5192 #if USE_DEBUGGER 5193 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 5194 #endif 5195 } 5196 } 5197 if (hot_teams[level].hot_team_nth >= new_nproc) { 5198 // we have all needed threads in reserve, no need to allocate any 5199 // this only possible in mode 1, cannot have reserved threads in mode 0 5200 KMP_DEBUG_ASSERT(__kmp_hot_teams_mode == 1); 5201 team->t.t_nproc = new_nproc; // just get reserved threads involved 5202 } else { 5203 // we may have some threads in reserve, but not enough 5204 team->t.t_nproc = 5205 hot_teams[level] 5206 .hot_team_nth; // get reserved threads involved if any 5207 hot_teams[level].hot_team_nth = new_nproc; // adjust hot team max size 5208 #endif // KMP_NESTED_HOT_TEAMS 5209 if (team->t.t_max_nproc < new_nproc) { 5210 /* reallocate larger arrays */ 5211 __kmp_reallocate_team_arrays(team, new_nproc); 5212 __kmp_reinitialize_team(team, new_icvs, NULL); 5213 } 5214 5215 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 5216 /* Temporarily set full mask for master thread before creation of 5217 workers. The reason is that workers inherit the affinity from master, 5218 so if a lot of workers are created on the single core quickly, they 5219 don't get a chance to set their own affinity for a long time. */ 5220 __kmp_set_thread_affinity_mask_full_tmp(old_mask); 5221 #endif 5222 5223 /* allocate new threads for the hot team */ 5224 for (f = team->t.t_nproc; f < new_nproc; f++) { 5225 kmp_info_t *new_worker = __kmp_allocate_thread(root, team, f); 5226 KMP_DEBUG_ASSERT(new_worker); 5227 team->t.t_threads[f] = new_worker; 5228 5229 KA_TRACE(20, 5230 ("__kmp_allocate_team: team %d init T#%d arrived: " 5231 "join=%llu, plain=%llu\n", 5232 team->t.t_id, __kmp_gtid_from_tid(f, team), team->t.t_id, f, 5233 team->t.t_bar[bs_forkjoin_barrier].b_arrived, 5234 team->t.t_bar[bs_plain_barrier].b_arrived)); 5235 5236 { // Initialize barrier data for new threads. 5237 int b; 5238 kmp_balign_t *balign = new_worker->th.th_bar; 5239 for (b = 0; b < bs_last_barrier; ++b) { 5240 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 5241 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != 5242 KMP_BARRIER_PARENT_FLAG); 5243 #if USE_DEBUGGER 5244 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 5245 #endif 5246 } 5247 } 5248 } 5249 5250 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 5251 if (KMP_AFFINITY_CAPABLE()) { 5252 /* Restore initial master thread's affinity mask */ 5253 __kmp_set_system_affinity(old_mask, TRUE); 5254 KMP_CPU_FREE(old_mask); 5255 } 5256 #endif 5257 #if KMP_NESTED_HOT_TEAMS 5258 } // end of check of t_nproc vs. new_nproc vs. hot_team_nth 5259 #endif // KMP_NESTED_HOT_TEAMS 5260 /* make sure everyone is syncronized */ 5261 int old_nproc = team->t.t_nproc; // save old value and use to update only 5262 // new threads below 5263 __kmp_initialize_team(team, new_nproc, new_icvs, 5264 root->r.r_uber_thread->th.th_ident); 5265 5266 /* reinitialize the threads */ 5267 KMP_DEBUG_ASSERT(team->t.t_nproc == new_nproc); 5268 for (f = 0; f < team->t.t_nproc; ++f) 5269 __kmp_initialize_info(team->t.t_threads[f], team, f, 5270 __kmp_gtid_from_tid(f, team)); 5271 5272 if (level) { // set th_task_state for new threads in nested hot team 5273 // __kmp_initialize_info() no longer zeroes th_task_state, so we should 5274 // only need to set the th_task_state for the new threads. th_task_state 5275 // for master thread will not be accurate until after this in 5276 // __kmp_fork_call(), so we look to the master's memo_stack to get the 5277 // correct value. 5278 for (f = old_nproc; f < team->t.t_nproc; ++f) 5279 team->t.t_threads[f]->th.th_task_state = 5280 team->t.t_threads[0]->th.th_task_state_memo_stack[level]; 5281 } else { // set th_task_state for new threads in non-nested hot team 5282 int old_state = 5283 team->t.t_threads[0]->th.th_task_state; // copy master's state 5284 for (f = old_nproc; f < team->t.t_nproc; ++f) 5285 team->t.t_threads[f]->th.th_task_state = old_state; 5286 } 5287 5288 #ifdef KMP_DEBUG 5289 for (f = 0; f < team->t.t_nproc; ++f) { 5290 KMP_DEBUG_ASSERT(team->t.t_threads[f] && 5291 team->t.t_threads[f]->th.th_team_nproc == 5292 team->t.t_nproc); 5293 } 5294 #endif 5295 5296 #if OMP_40_ENABLED 5297 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5298 #if KMP_AFFINITY_SUPPORTED 5299 __kmp_partition_places(team); 5300 #endif 5301 #endif 5302 } // Check changes in number of threads 5303 5304 #if OMP_40_ENABLED 5305 kmp_info_t *master = team->t.t_threads[0]; 5306 if (master->th.th_teams_microtask) { 5307 for (f = 1; f < new_nproc; ++f) { 5308 // propagate teams construct specific info to workers 5309 kmp_info_t *thr = team->t.t_threads[f]; 5310 thr->th.th_teams_microtask = master->th.th_teams_microtask; 5311 thr->th.th_teams_level = master->th.th_teams_level; 5312 thr->th.th_teams_size = master->th.th_teams_size; 5313 } 5314 } 5315 #endif /* OMP_40_ENABLED */ 5316 #if KMP_NESTED_HOT_TEAMS 5317 if (level) { 5318 // Sync barrier state for nested hot teams, not needed for outermost hot 5319 // team. 5320 for (f = 1; f < new_nproc; ++f) { 5321 kmp_info_t *thr = team->t.t_threads[f]; 5322 int b; 5323 kmp_balign_t *balign = thr->th.th_bar; 5324 for (b = 0; b < bs_last_barrier; ++b) { 5325 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 5326 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 5327 #if USE_DEBUGGER 5328 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 5329 #endif 5330 } 5331 } 5332 } 5333 #endif // KMP_NESTED_HOT_TEAMS 5334 5335 /* reallocate space for arguments if necessary */ 5336 __kmp_alloc_argv_entries(argc, team, TRUE); 5337 KMP_CHECK_UPDATE(team->t.t_argc, argc); 5338 // The hot team re-uses the previous task team, 5339 // if untouched during the previous release->gather phase. 5340 5341 KF_TRACE(10, (" hot_team = %p\n", team)); 5342 5343 #if KMP_DEBUG 5344 if (__kmp_tasking_mode != tskm_immediate_exec) { 5345 KA_TRACE(20, ("__kmp_allocate_team: hot team task_team[0] = %p " 5346 "task_team[1] = %p after reinit\n", 5347 team->t.t_task_team[0], team->t.t_task_team[1])); 5348 } 5349 #endif 5350 5351 #if OMPT_SUPPORT 5352 __ompt_team_assign_id(team, ompt_parallel_data); 5353 #endif 5354 5355 KMP_MB(); 5356 5357 return team; 5358 } 5359 5360 /* next, let's try to take one from the team pool */ 5361 KMP_MB(); 5362 for (team = CCAST(kmp_team_t *, __kmp_team_pool); (team);) { 5363 /* TODO: consider resizing undersized teams instead of reaping them, now 5364 that we have a resizing mechanism */ 5365 if (team->t.t_max_nproc >= max_nproc) { 5366 /* take this team from the team pool */ 5367 __kmp_team_pool = team->t.t_next_pool; 5368 5369 /* setup the team for fresh use */ 5370 __kmp_initialize_team(team, new_nproc, new_icvs, NULL); 5371 5372 KA_TRACE(20, ("__kmp_allocate_team: setting task_team[0] %p and " 5373 "task_team[1] %p to NULL\n", 5374 &team->t.t_task_team[0], &team->t.t_task_team[1])); 5375 team->t.t_task_team[0] = NULL; 5376 team->t.t_task_team[1] = NULL; 5377 5378 /* reallocate space for arguments if necessary */ 5379 __kmp_alloc_argv_entries(argc, team, TRUE); 5380 KMP_CHECK_UPDATE(team->t.t_argc, argc); 5381 5382 KA_TRACE( 5383 20, ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n", 5384 team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 5385 { // Initialize barrier data. 5386 int b; 5387 for (b = 0; b < bs_last_barrier; ++b) { 5388 team->t.t_bar[b].b_arrived = KMP_INIT_BARRIER_STATE; 5389 #if USE_DEBUGGER 5390 team->t.t_bar[b].b_master_arrived = 0; 5391 team->t.t_bar[b].b_team_arrived = 0; 5392 #endif 5393 } 5394 } 5395 5396 #if OMP_40_ENABLED 5397 team->t.t_proc_bind = new_proc_bind; 5398 #endif 5399 5400 KA_TRACE(20, ("__kmp_allocate_team: using team from pool %d.\n", 5401 team->t.t_id)); 5402 5403 #if OMPT_SUPPORT 5404 __ompt_team_assign_id(team, ompt_parallel_data); 5405 #endif 5406 5407 KMP_MB(); 5408 5409 return team; 5410 } 5411 5412 /* reap team if it is too small, then loop back and check the next one */ 5413 // not sure if this is wise, but, will be redone during the hot-teams 5414 // rewrite. 5415 /* TODO: Use technique to find the right size hot-team, don't reap them */ 5416 team = __kmp_reap_team(team); 5417 __kmp_team_pool = team; 5418 } 5419 5420 /* nothing available in the pool, no matter, make a new team! */ 5421 KMP_MB(); 5422 team = (kmp_team_t *)__kmp_allocate(sizeof(kmp_team_t)); 5423 5424 /* and set it up */ 5425 team->t.t_max_nproc = max_nproc; 5426 /* NOTE well, for some reason allocating one big buffer and dividing it up 5427 seems to really hurt performance a lot on the P4, so, let's not use this */ 5428 __kmp_allocate_team_arrays(team, max_nproc); 5429 5430 KA_TRACE(20, ("__kmp_allocate_team: making a new team\n")); 5431 __kmp_initialize_team(team, new_nproc, new_icvs, NULL); 5432 5433 KA_TRACE(20, ("__kmp_allocate_team: setting task_team[0] %p and task_team[1] " 5434 "%p to NULL\n", 5435 &team->t.t_task_team[0], &team->t.t_task_team[1])); 5436 team->t.t_task_team[0] = NULL; // to be removed, as __kmp_allocate zeroes 5437 // memory, no need to duplicate 5438 team->t.t_task_team[1] = NULL; // to be removed, as __kmp_allocate zeroes 5439 // memory, no need to duplicate 5440 5441 if (__kmp_storage_map) { 5442 __kmp_print_team_storage_map("team", team, team->t.t_id, new_nproc); 5443 } 5444 5445 /* allocate space for arguments */ 5446 __kmp_alloc_argv_entries(argc, team, FALSE); 5447 team->t.t_argc = argc; 5448 5449 KA_TRACE(20, 5450 ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n", 5451 team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 5452 { // Initialize barrier data. 5453 int b; 5454 for (b = 0; b < bs_last_barrier; ++b) { 5455 team->t.t_bar[b].b_arrived = KMP_INIT_BARRIER_STATE; 5456 #if USE_DEBUGGER 5457 team->t.t_bar[b].b_master_arrived = 0; 5458 team->t.t_bar[b].b_team_arrived = 0; 5459 #endif 5460 } 5461 } 5462 5463 #if OMP_40_ENABLED 5464 team->t.t_proc_bind = new_proc_bind; 5465 #endif 5466 5467 #if OMPT_SUPPORT 5468 __ompt_team_assign_id(team, ompt_parallel_data); 5469 team->t.ompt_serialized_team_info = NULL; 5470 #endif 5471 5472 KMP_MB(); 5473 5474 KA_TRACE(20, ("__kmp_allocate_team: done creating a new team %d.\n", 5475 team->t.t_id)); 5476 5477 return team; 5478 } 5479 5480 /* TODO implement hot-teams at all levels */ 5481 /* TODO implement lazy thread release on demand (disband request) */ 5482 5483 /* free the team. return it to the team pool. release all the threads 5484 * associated with it */ 5485 void __kmp_free_team(kmp_root_t *root, 5486 kmp_team_t *team USE_NESTED_HOT_ARG(kmp_info_t *master)) { 5487 int f; 5488 KA_TRACE(20, ("__kmp_free_team: T#%d freeing team %d\n", __kmp_get_gtid(), 5489 team->t.t_id)); 5490 5491 /* verify state */ 5492 KMP_DEBUG_ASSERT(root); 5493 KMP_DEBUG_ASSERT(team); 5494 KMP_DEBUG_ASSERT(team->t.t_nproc <= team->t.t_max_nproc); 5495 KMP_DEBUG_ASSERT(team->t.t_threads); 5496 5497 int use_hot_team = team == root->r.r_hot_team; 5498 #if KMP_NESTED_HOT_TEAMS 5499 int level; 5500 kmp_hot_team_ptr_t *hot_teams; 5501 if (master) { 5502 level = team->t.t_active_level - 1; 5503 if (master->th.th_teams_microtask) { // in teams construct? 5504 if (master->th.th_teams_size.nteams > 1) { 5505 ++level; // level was not increased in teams construct for 5506 // team_of_masters 5507 } 5508 if (team->t.t_pkfn != (microtask_t)__kmp_teams_master && 5509 master->th.th_teams_level == team->t.t_level) { 5510 ++level; // level was not increased in teams construct for 5511 // team_of_workers before the parallel 5512 } // team->t.t_level will be increased inside parallel 5513 } 5514 hot_teams = master->th.th_hot_teams; 5515 if (level < __kmp_hot_teams_max_level) { 5516 KMP_DEBUG_ASSERT(team == hot_teams[level].hot_team); 5517 use_hot_team = 1; 5518 } 5519 } 5520 #endif // KMP_NESTED_HOT_TEAMS 5521 5522 /* team is done working */ 5523 TCW_SYNC_PTR(team->t.t_pkfn, 5524 NULL); // Important for Debugging Support Library. 5525 #if KMP_OS_WINDOWS 5526 team->t.t_copyin_counter = 0; // init counter for possible reuse 5527 #endif 5528 // Do not reset pointer to parent team to NULL for hot teams. 5529 5530 /* if we are non-hot team, release our threads */ 5531 if (!use_hot_team) { 5532 if (__kmp_tasking_mode != tskm_immediate_exec) { 5533 // Wait for threads to reach reapable state 5534 for (f = 1; f < team->t.t_nproc; ++f) { 5535 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5536 kmp_info_t *th = team->t.t_threads[f]; 5537 volatile kmp_uint32 *state = &th->th.th_reap_state; 5538 while (*state != KMP_SAFE_TO_REAP) { 5539 #if KMP_OS_WINDOWS 5540 // On Windows a thread can be killed at any time, check this 5541 DWORD ecode; 5542 if (!__kmp_is_thread_alive(th, &ecode)) { 5543 *state = KMP_SAFE_TO_REAP; // reset the flag for dead thread 5544 break; 5545 } 5546 #endif 5547 // first check if thread is sleeping 5548 kmp_flag_64 fl(&th->th.th_bar[bs_forkjoin_barrier].bb.b_go, th); 5549 if (fl.is_sleeping()) 5550 fl.resume(__kmp_gtid_from_thread(th)); 5551 KMP_CPU_PAUSE(); 5552 } 5553 } 5554 5555 // Delete task teams 5556 int tt_idx; 5557 for (tt_idx = 0; tt_idx < 2; ++tt_idx) { 5558 kmp_task_team_t *task_team = team->t.t_task_team[tt_idx]; 5559 if (task_team != NULL) { 5560 for (f = 0; f < team->t.t_nproc; ++f) { // threads unref task teams 5561 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5562 team->t.t_threads[f]->th.th_task_team = NULL; 5563 } 5564 KA_TRACE( 5565 20, 5566 ("__kmp_free_team: T#%d deactivating task_team %p on team %d\n", 5567 __kmp_get_gtid(), task_team, team->t.t_id)); 5568 #if KMP_NESTED_HOT_TEAMS 5569 __kmp_free_task_team(master, task_team); 5570 #endif 5571 team->t.t_task_team[tt_idx] = NULL; 5572 } 5573 } 5574 } 5575 5576 // Reset pointer to parent team only for non-hot teams. 5577 team->t.t_parent = NULL; 5578 team->t.t_level = 0; 5579 team->t.t_active_level = 0; 5580 5581 /* free the worker threads */ 5582 for (f = 1; f < team->t.t_nproc; ++f) { 5583 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5584 __kmp_free_thread(team->t.t_threads[f]); 5585 team->t.t_threads[f] = NULL; 5586 } 5587 5588 /* put the team back in the team pool */ 5589 /* TODO limit size of team pool, call reap_team if pool too large */ 5590 team->t.t_next_pool = CCAST(kmp_team_t *, __kmp_team_pool); 5591 __kmp_team_pool = (volatile kmp_team_t *)team; 5592 } else { // Check if team was created for the masters in a teams construct 5593 // See if first worker is a CG root 5594 KMP_DEBUG_ASSERT(team->t.t_threads[1] && 5595 team->t.t_threads[1]->th.th_cg_roots); 5596 if (team->t.t_threads[1]->th.th_cg_roots->cg_root == team->t.t_threads[1]) { 5597 // Clean up the CG root nodes on workers so that this team can be re-used 5598 for (f = 1; f < team->t.t_nproc; ++f) { 5599 kmp_info_t *thr = team->t.t_threads[f]; 5600 KMP_DEBUG_ASSERT(thr && thr->th.th_cg_roots && 5601 thr->th.th_cg_roots->cg_root == thr); 5602 // Pop current CG root off list 5603 kmp_cg_root_t *tmp = thr->th.th_cg_roots; 5604 thr->th.th_cg_roots = tmp->up; 5605 KA_TRACE(100, ("__kmp_free_team: Thread %p popping node %p and moving" 5606 " up to node %p. cg_nthreads was %d\n", 5607 thr, tmp, thr->th.th_cg_roots, tmp->cg_nthreads)); 5608 int i = tmp->cg_nthreads--; 5609 if (i == 1) { 5610 __kmp_free(tmp); // free CG if we are the last thread in it 5611 } 5612 // Restore current task's thread_limit from CG root 5613 if (thr->th.th_cg_roots) 5614 thr->th.th_current_task->td_icvs.thread_limit = 5615 thr->th.th_cg_roots->cg_thread_limit; 5616 } 5617 } 5618 } 5619 5620 KMP_MB(); 5621 } 5622 5623 /* reap the team. destroy it, reclaim all its resources and free its memory */ 5624 kmp_team_t *__kmp_reap_team(kmp_team_t *team) { 5625 kmp_team_t *next_pool = team->t.t_next_pool; 5626 5627 KMP_DEBUG_ASSERT(team); 5628 KMP_DEBUG_ASSERT(team->t.t_dispatch); 5629 KMP_DEBUG_ASSERT(team->t.t_disp_buffer); 5630 KMP_DEBUG_ASSERT(team->t.t_threads); 5631 KMP_DEBUG_ASSERT(team->t.t_argv); 5632 5633 /* TODO clean the threads that are a part of this? */ 5634 5635 /* free stuff */ 5636 __kmp_free_team_arrays(team); 5637 if (team->t.t_argv != &team->t.t_inline_argv[0]) 5638 __kmp_free((void *)team->t.t_argv); 5639 __kmp_free(team); 5640 5641 KMP_MB(); 5642 return next_pool; 5643 } 5644 5645 // Free the thread. Don't reap it, just place it on the pool of available 5646 // threads. 5647 // 5648 // Changes for Quad issue 527845: We need a predictable OMP tid <-> gtid 5649 // binding for the affinity mechanism to be useful. 5650 // 5651 // Now, we always keep the free list (__kmp_thread_pool) sorted by gtid. 5652 // However, we want to avoid a potential performance problem by always 5653 // scanning through the list to find the correct point at which to insert 5654 // the thread (potential N**2 behavior). To do this we keep track of the 5655 // last place a thread struct was inserted (__kmp_thread_pool_insert_pt). 5656 // With single-level parallelism, threads will always be added to the tail 5657 // of the list, kept track of by __kmp_thread_pool_insert_pt. With nested 5658 // parallelism, all bets are off and we may need to scan through the entire 5659 // free list. 5660 // 5661 // This change also has a potentially large performance benefit, for some 5662 // applications. Previously, as threads were freed from the hot team, they 5663 // would be placed back on the free list in inverse order. If the hot team 5664 // grew back to it's original size, then the freed thread would be placed 5665 // back on the hot team in reverse order. This could cause bad cache 5666 // locality problems on programs where the size of the hot team regularly 5667 // grew and shrunk. 5668 // 5669 // Now, for single-level parallelism, the OMP tid is alway == gtid. 5670 void __kmp_free_thread(kmp_info_t *this_th) { 5671 int gtid; 5672 kmp_info_t **scan; 5673 5674 KA_TRACE(20, ("__kmp_free_thread: T#%d putting T#%d back on free pool.\n", 5675 __kmp_get_gtid(), this_th->th.th_info.ds.ds_gtid)); 5676 5677 KMP_DEBUG_ASSERT(this_th); 5678 5679 // When moving thread to pool, switch thread to wait on own b_go flag, and 5680 // uninitialized (NULL team). 5681 int b; 5682 kmp_balign_t *balign = this_th->th.th_bar; 5683 for (b = 0; b < bs_last_barrier; ++b) { 5684 if (balign[b].bb.wait_flag == KMP_BARRIER_PARENT_FLAG) 5685 balign[b].bb.wait_flag = KMP_BARRIER_SWITCH_TO_OWN_FLAG; 5686 balign[b].bb.team = NULL; 5687 balign[b].bb.leaf_kids = 0; 5688 } 5689 this_th->th.th_task_state = 0; 5690 this_th->th.th_reap_state = KMP_SAFE_TO_REAP; 5691 5692 /* put thread back on the free pool */ 5693 TCW_PTR(this_th->th.th_team, NULL); 5694 TCW_PTR(this_th->th.th_root, NULL); 5695 TCW_PTR(this_th->th.th_dispatch, NULL); /* NOT NEEDED */ 5696 5697 while (this_th->th.th_cg_roots) { 5698 this_th->th.th_cg_roots->cg_nthreads--; 5699 KA_TRACE(100, ("__kmp_free_thread: Thread %p decrement cg_nthreads on node" 5700 " %p of thread %p to %d\n", 5701 this_th, this_th->th.th_cg_roots, 5702 this_th->th.th_cg_roots->cg_root, 5703 this_th->th.th_cg_roots->cg_nthreads)); 5704 kmp_cg_root_t *tmp = this_th->th.th_cg_roots; 5705 if (tmp->cg_root == this_th) { // Thread is a cg_root 5706 KMP_DEBUG_ASSERT(tmp->cg_nthreads == 0); 5707 KA_TRACE( 5708 5, ("__kmp_free_thread: Thread %p freeing node %p\n", this_th, tmp)); 5709 this_th->th.th_cg_roots = tmp->up; 5710 __kmp_free(tmp); 5711 } else { // Worker thread 5712 if (tmp->cg_nthreads == 0) { // last thread leaves contention group 5713 __kmp_free(tmp); 5714 } 5715 this_th->th.th_cg_roots = NULL; 5716 break; 5717 } 5718 } 5719 5720 /* If the implicit task assigned to this thread can be used by other threads 5721 * -> multiple threads can share the data and try to free the task at 5722 * __kmp_reap_thread at exit. This duplicate use of the task data can happen 5723 * with higher probability when hot team is disabled but can occurs even when 5724 * the hot team is enabled */ 5725 __kmp_free_implicit_task(this_th); 5726 this_th->th.th_current_task = NULL; 5727 5728 // If the __kmp_thread_pool_insert_pt is already past the new insert 5729 // point, then we need to re-scan the entire list. 5730 gtid = this_th->th.th_info.ds.ds_gtid; 5731 if (__kmp_thread_pool_insert_pt != NULL) { 5732 KMP_DEBUG_ASSERT(__kmp_thread_pool != NULL); 5733 if (__kmp_thread_pool_insert_pt->th.th_info.ds.ds_gtid > gtid) { 5734 __kmp_thread_pool_insert_pt = NULL; 5735 } 5736 } 5737 5738 // Scan down the list to find the place to insert the thread. 5739 // scan is the address of a link in the list, possibly the address of 5740 // __kmp_thread_pool itself. 5741 // 5742 // In the absence of nested parallism, the for loop will have 0 iterations. 5743 if (__kmp_thread_pool_insert_pt != NULL) { 5744 scan = &(__kmp_thread_pool_insert_pt->th.th_next_pool); 5745 } else { 5746 scan = CCAST(kmp_info_t **, &__kmp_thread_pool); 5747 } 5748 for (; (*scan != NULL) && ((*scan)->th.th_info.ds.ds_gtid < gtid); 5749 scan = &((*scan)->th.th_next_pool)) 5750 ; 5751 5752 // Insert the new element on the list, and set __kmp_thread_pool_insert_pt 5753 // to its address. 5754 TCW_PTR(this_th->th.th_next_pool, *scan); 5755 __kmp_thread_pool_insert_pt = *scan = this_th; 5756 KMP_DEBUG_ASSERT((this_th->th.th_next_pool == NULL) || 5757 (this_th->th.th_info.ds.ds_gtid < 5758 this_th->th.th_next_pool->th.th_info.ds.ds_gtid)); 5759 TCW_4(this_th->th.th_in_pool, TRUE); 5760 __kmp_suspend_initialize_thread(this_th); 5761 __kmp_lock_suspend_mx(this_th); 5762 if (this_th->th.th_active == TRUE) { 5763 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth); 5764 this_th->th.th_active_in_pool = TRUE; 5765 } 5766 #if KMP_DEBUG 5767 else { 5768 KMP_DEBUG_ASSERT(this_th->th.th_active_in_pool == FALSE); 5769 } 5770 #endif 5771 __kmp_unlock_suspend_mx(this_th); 5772 5773 TCW_4(__kmp_nth, __kmp_nth - 1); 5774 5775 #ifdef KMP_ADJUST_BLOCKTIME 5776 /* Adjust blocktime back to user setting or default if necessary */ 5777 /* Middle initialization might never have occurred */ 5778 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 5779 KMP_DEBUG_ASSERT(__kmp_avail_proc > 0); 5780 if (__kmp_nth <= __kmp_avail_proc) { 5781 __kmp_zero_bt = FALSE; 5782 } 5783 } 5784 #endif /* KMP_ADJUST_BLOCKTIME */ 5785 5786 KMP_MB(); 5787 } 5788 5789 /* ------------------------------------------------------------------------ */ 5790 5791 void *__kmp_launch_thread(kmp_info_t *this_thr) { 5792 int gtid = this_thr->th.th_info.ds.ds_gtid; 5793 /* void *stack_data;*/ 5794 kmp_team_t *(*volatile pteam); 5795 5796 KMP_MB(); 5797 KA_TRACE(10, ("__kmp_launch_thread: T#%d start\n", gtid)); 5798 5799 if (__kmp_env_consistency_check) { 5800 this_thr->th.th_cons = __kmp_allocate_cons_stack(gtid); // ATT: Memory leak? 5801 } 5802 5803 #if OMPT_SUPPORT 5804 ompt_data_t *thread_data; 5805 if (ompt_enabled.enabled) { 5806 thread_data = &(this_thr->th.ompt_thread_info.thread_data); 5807 *thread_data = ompt_data_none; 5808 5809 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 5810 this_thr->th.ompt_thread_info.wait_id = 0; 5811 this_thr->th.ompt_thread_info.idle_frame = OMPT_GET_FRAME_ADDRESS(0); 5812 if (ompt_enabled.ompt_callback_thread_begin) { 5813 ompt_callbacks.ompt_callback(ompt_callback_thread_begin)( 5814 ompt_thread_worker, thread_data); 5815 } 5816 } 5817 #endif 5818 5819 #if OMPT_SUPPORT 5820 if (ompt_enabled.enabled) { 5821 this_thr->th.ompt_thread_info.state = ompt_state_idle; 5822 } 5823 #endif 5824 /* This is the place where threads wait for work */ 5825 while (!TCR_4(__kmp_global.g.g_done)) { 5826 KMP_DEBUG_ASSERT(this_thr == __kmp_threads[gtid]); 5827 KMP_MB(); 5828 5829 /* wait for work to do */ 5830 KA_TRACE(20, ("__kmp_launch_thread: T#%d waiting for work\n", gtid)); 5831 5832 /* No tid yet since not part of a team */ 5833 __kmp_fork_barrier(gtid, KMP_GTID_DNE); 5834 5835 #if OMPT_SUPPORT 5836 if (ompt_enabled.enabled) { 5837 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 5838 } 5839 #endif 5840 5841 pteam = (kmp_team_t * (*))(&this_thr->th.th_team); 5842 5843 /* have we been allocated? */ 5844 if (TCR_SYNC_PTR(*pteam) && !TCR_4(__kmp_global.g.g_done)) { 5845 /* we were just woken up, so run our new task */ 5846 if (TCR_SYNC_PTR((*pteam)->t.t_pkfn) != NULL) { 5847 int rc; 5848 KA_TRACE(20, 5849 ("__kmp_launch_thread: T#%d(%d:%d) invoke microtask = %p\n", 5850 gtid, (*pteam)->t.t_id, __kmp_tid_from_gtid(gtid), 5851 (*pteam)->t.t_pkfn)); 5852 5853 updateHWFPControl(*pteam); 5854 5855 #if OMPT_SUPPORT 5856 if (ompt_enabled.enabled) { 5857 this_thr->th.ompt_thread_info.state = ompt_state_work_parallel; 5858 } 5859 #endif 5860 5861 rc = (*pteam)->t.t_invoke(gtid); 5862 KMP_ASSERT(rc); 5863 5864 KMP_MB(); 5865 KA_TRACE(20, ("__kmp_launch_thread: T#%d(%d:%d) done microtask = %p\n", 5866 gtid, (*pteam)->t.t_id, __kmp_tid_from_gtid(gtid), 5867 (*pteam)->t.t_pkfn)); 5868 } 5869 #if OMPT_SUPPORT 5870 if (ompt_enabled.enabled) { 5871 /* no frame set while outside task */ 5872 __ompt_get_task_info_object(0)->frame.exit_frame = ompt_data_none; 5873 5874 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 5875 } 5876 #endif 5877 /* join barrier after parallel region */ 5878 __kmp_join_barrier(gtid); 5879 } 5880 } 5881 TCR_SYNC_PTR((intptr_t)__kmp_global.g.g_done); 5882 5883 #if OMPT_SUPPORT 5884 if (ompt_enabled.ompt_callback_thread_end) { 5885 ompt_callbacks.ompt_callback(ompt_callback_thread_end)(thread_data); 5886 } 5887 #endif 5888 5889 this_thr->th.th_task_team = NULL; 5890 /* run the destructors for the threadprivate data for this thread */ 5891 __kmp_common_destroy_gtid(gtid); 5892 5893 KA_TRACE(10, ("__kmp_launch_thread: T#%d done\n", gtid)); 5894 KMP_MB(); 5895 return this_thr; 5896 } 5897 5898 /* ------------------------------------------------------------------------ */ 5899 5900 void __kmp_internal_end_dest(void *specific_gtid) { 5901 #if KMP_COMPILER_ICC 5902 #pragma warning(push) 5903 #pragma warning(disable : 810) // conversion from "void *" to "int" may lose 5904 // significant bits 5905 #endif 5906 // Make sure no significant bits are lost 5907 int gtid = (kmp_intptr_t)specific_gtid - 1; 5908 #if KMP_COMPILER_ICC 5909 #pragma warning(pop) 5910 #endif 5911 5912 KA_TRACE(30, ("__kmp_internal_end_dest: T#%d\n", gtid)); 5913 /* NOTE: the gtid is stored as gitd+1 in the thread-local-storage 5914 * this is because 0 is reserved for the nothing-stored case */ 5915 5916 /* josh: One reason for setting the gtid specific data even when it is being 5917 destroyed by pthread is to allow gtid lookup through thread specific data 5918 (__kmp_gtid_get_specific). Some of the code, especially stat code, 5919 that gets executed in the call to __kmp_internal_end_thread, actually 5920 gets the gtid through the thread specific data. Setting it here seems 5921 rather inelegant and perhaps wrong, but allows __kmp_internal_end_thread 5922 to run smoothly. 5923 todo: get rid of this after we remove the dependence on 5924 __kmp_gtid_get_specific */ 5925 if (gtid >= 0 && KMP_UBER_GTID(gtid)) 5926 __kmp_gtid_set_specific(gtid); 5927 #ifdef KMP_TDATA_GTID 5928 __kmp_gtid = gtid; 5929 #endif 5930 __kmp_internal_end_thread(gtid); 5931 } 5932 5933 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB 5934 5935 // 2009-09-08 (lev): It looks the destructor does not work. In simple test cases 5936 // destructors work perfectly, but in real libomp.so I have no evidence it is 5937 // ever called. However, -fini linker option in makefile.mk works fine. 5938 5939 __attribute__((destructor)) void __kmp_internal_end_dtor(void) { 5940 __kmp_internal_end_atexit(); 5941 } 5942 5943 void __kmp_internal_end_fini(void) { __kmp_internal_end_atexit(); } 5944 5945 #endif 5946 5947 /* [Windows] josh: when the atexit handler is called, there may still be more 5948 than one thread alive */ 5949 void __kmp_internal_end_atexit(void) { 5950 KA_TRACE(30, ("__kmp_internal_end_atexit\n")); 5951 /* [Windows] 5952 josh: ideally, we want to completely shutdown the library in this atexit 5953 handler, but stat code that depends on thread specific data for gtid fails 5954 because that data becomes unavailable at some point during the shutdown, so 5955 we call __kmp_internal_end_thread instead. We should eventually remove the 5956 dependency on __kmp_get_specific_gtid in the stat code and use 5957 __kmp_internal_end_library to cleanly shutdown the library. 5958 5959 // TODO: Can some of this comment about GVS be removed? 5960 I suspect that the offending stat code is executed when the calling thread 5961 tries to clean up a dead root thread's data structures, resulting in GVS 5962 code trying to close the GVS structures for that thread, but since the stat 5963 code uses __kmp_get_specific_gtid to get the gtid with the assumption that 5964 the calling thread is cleaning up itself instead of another thread, it get 5965 confused. This happens because allowing a thread to unregister and cleanup 5966 another thread is a recent modification for addressing an issue. 5967 Based on the current design (20050722), a thread may end up 5968 trying to unregister another thread only if thread death does not trigger 5969 the calling of __kmp_internal_end_thread. For Linux* OS, there is the 5970 thread specific data destructor function to detect thread death. For 5971 Windows dynamic, there is DllMain(THREAD_DETACH). For Windows static, there 5972 is nothing. Thus, the workaround is applicable only for Windows static 5973 stat library. */ 5974 __kmp_internal_end_library(-1); 5975 #if KMP_OS_WINDOWS 5976 __kmp_close_console(); 5977 #endif 5978 } 5979 5980 static void __kmp_reap_thread(kmp_info_t *thread, int is_root) { 5981 // It is assumed __kmp_forkjoin_lock is acquired. 5982 5983 int gtid; 5984 5985 KMP_DEBUG_ASSERT(thread != NULL); 5986 5987 gtid = thread->th.th_info.ds.ds_gtid; 5988 5989 if (!is_root) { 5990 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { 5991 /* Assume the threads are at the fork barrier here */ 5992 KA_TRACE( 5993 20, ("__kmp_reap_thread: releasing T#%d from fork barrier for reap\n", 5994 gtid)); 5995 /* Need release fence here to prevent seg faults for tree forkjoin barrier 5996 * (GEH) */ 5997 ANNOTATE_HAPPENS_BEFORE(thread); 5998 kmp_flag_64 flag(&thread->th.th_bar[bs_forkjoin_barrier].bb.b_go, thread); 5999 __kmp_release_64(&flag); 6000 } 6001 6002 // Terminate OS thread. 6003 __kmp_reap_worker(thread); 6004 6005 // The thread was killed asynchronously. If it was actively 6006 // spinning in the thread pool, decrement the global count. 6007 // 6008 // There is a small timing hole here - if the worker thread was just waking 6009 // up after sleeping in the pool, had reset it's th_active_in_pool flag but 6010 // not decremented the global counter __kmp_thread_pool_active_nth yet, then 6011 // the global counter might not get updated. 6012 // 6013 // Currently, this can only happen as the library is unloaded, 6014 // so there are no harmful side effects. 6015 if (thread->th.th_active_in_pool) { 6016 thread->th.th_active_in_pool = FALSE; 6017 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 6018 KMP_DEBUG_ASSERT(__kmp_thread_pool_active_nth >= 0); 6019 } 6020 } 6021 6022 __kmp_free_implicit_task(thread); 6023 6024 // Free the fast memory for tasking 6025 #if USE_FAST_MEMORY 6026 __kmp_free_fast_memory(thread); 6027 #endif /* USE_FAST_MEMORY */ 6028 6029 __kmp_suspend_uninitialize_thread(thread); 6030 6031 KMP_DEBUG_ASSERT(__kmp_threads[gtid] == thread); 6032 TCW_SYNC_PTR(__kmp_threads[gtid], NULL); 6033 6034 --__kmp_all_nth; 6035 // __kmp_nth was decremented when thread is added to the pool. 6036 6037 #ifdef KMP_ADJUST_BLOCKTIME 6038 /* Adjust blocktime back to user setting or default if necessary */ 6039 /* Middle initialization might never have occurred */ 6040 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 6041 KMP_DEBUG_ASSERT(__kmp_avail_proc > 0); 6042 if (__kmp_nth <= __kmp_avail_proc) { 6043 __kmp_zero_bt = FALSE; 6044 } 6045 } 6046 #endif /* KMP_ADJUST_BLOCKTIME */ 6047 6048 /* free the memory being used */ 6049 if (__kmp_env_consistency_check) { 6050 if (thread->th.th_cons) { 6051 __kmp_free_cons_stack(thread->th.th_cons); 6052 thread->th.th_cons = NULL; 6053 } 6054 } 6055 6056 if (thread->th.th_pri_common != NULL) { 6057 __kmp_free(thread->th.th_pri_common); 6058 thread->th.th_pri_common = NULL; 6059 } 6060 6061 if (thread->th.th_task_state_memo_stack != NULL) { 6062 __kmp_free(thread->th.th_task_state_memo_stack); 6063 thread->th.th_task_state_memo_stack = NULL; 6064 } 6065 6066 #if KMP_USE_BGET 6067 if (thread->th.th_local.bget_data != NULL) { 6068 __kmp_finalize_bget(thread); 6069 } 6070 #endif 6071 6072 #if KMP_AFFINITY_SUPPORTED 6073 if (thread->th.th_affin_mask != NULL) { 6074 KMP_CPU_FREE(thread->th.th_affin_mask); 6075 thread->th.th_affin_mask = NULL; 6076 } 6077 #endif /* KMP_AFFINITY_SUPPORTED */ 6078 6079 #if KMP_USE_HIER_SCHED 6080 if (thread->th.th_hier_bar_data != NULL) { 6081 __kmp_free(thread->th.th_hier_bar_data); 6082 thread->th.th_hier_bar_data = NULL; 6083 } 6084 #endif 6085 6086 __kmp_reap_team(thread->th.th_serial_team); 6087 thread->th.th_serial_team = NULL; 6088 __kmp_free(thread); 6089 6090 KMP_MB(); 6091 6092 } // __kmp_reap_thread 6093 6094 static void __kmp_internal_end(void) { 6095 int i; 6096 6097 /* First, unregister the library */ 6098 __kmp_unregister_library(); 6099 6100 #if KMP_OS_WINDOWS 6101 /* In Win static library, we can't tell when a root actually dies, so we 6102 reclaim the data structures for any root threads that have died but not 6103 unregistered themselves, in order to shut down cleanly. 6104 In Win dynamic library we also can't tell when a thread dies. */ 6105 __kmp_reclaim_dead_roots(); // AC: moved here to always clean resources of 6106 // dead roots 6107 #endif 6108 6109 for (i = 0; i < __kmp_threads_capacity; i++) 6110 if (__kmp_root[i]) 6111 if (__kmp_root[i]->r.r_active) 6112 break; 6113 KMP_MB(); /* Flush all pending memory write invalidates. */ 6114 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 6115 6116 if (i < __kmp_threads_capacity) { 6117 #if KMP_USE_MONITOR 6118 // 2009-09-08 (lev): Other alive roots found. Why do we kill the monitor?? 6119 KMP_MB(); /* Flush all pending memory write invalidates. */ 6120 6121 // Need to check that monitor was initialized before reaping it. If we are 6122 // called form __kmp_atfork_child (which sets __kmp_init_parallel = 0), then 6123 // __kmp_monitor will appear to contain valid data, but it is only valid in 6124 // the parent process, not the child. 6125 // New behavior (201008): instead of keying off of the flag 6126 // __kmp_init_parallel, the monitor thread creation is keyed off 6127 // of the new flag __kmp_init_monitor. 6128 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock); 6129 if (TCR_4(__kmp_init_monitor)) { 6130 __kmp_reap_monitor(&__kmp_monitor); 6131 TCW_4(__kmp_init_monitor, 0); 6132 } 6133 __kmp_release_bootstrap_lock(&__kmp_monitor_lock); 6134 KA_TRACE(10, ("__kmp_internal_end: monitor reaped\n")); 6135 #endif // KMP_USE_MONITOR 6136 } else { 6137 /* TODO move this to cleanup code */ 6138 #ifdef KMP_DEBUG 6139 /* make sure that everything has properly ended */ 6140 for (i = 0; i < __kmp_threads_capacity; i++) { 6141 if (__kmp_root[i]) { 6142 // KMP_ASSERT( ! KMP_UBER_GTID( i ) ); // AC: 6143 // there can be uber threads alive here 6144 KMP_ASSERT(!__kmp_root[i]->r.r_active); // TODO: can they be active? 6145 } 6146 } 6147 #endif 6148 6149 KMP_MB(); 6150 6151 // Reap the worker threads. 6152 // This is valid for now, but be careful if threads are reaped sooner. 6153 while (__kmp_thread_pool != NULL) { // Loop thru all the thread in the pool. 6154 // Get the next thread from the pool. 6155 kmp_info_t *thread = CCAST(kmp_info_t *, __kmp_thread_pool); 6156 __kmp_thread_pool = thread->th.th_next_pool; 6157 // Reap it. 6158 KMP_DEBUG_ASSERT(thread->th.th_reap_state == KMP_SAFE_TO_REAP); 6159 thread->th.th_next_pool = NULL; 6160 thread->th.th_in_pool = FALSE; 6161 __kmp_reap_thread(thread, 0); 6162 } 6163 __kmp_thread_pool_insert_pt = NULL; 6164 6165 // Reap teams. 6166 while (__kmp_team_pool != NULL) { // Loop thru all the teams in the pool. 6167 // Get the next team from the pool. 6168 kmp_team_t *team = CCAST(kmp_team_t *, __kmp_team_pool); 6169 __kmp_team_pool = team->t.t_next_pool; 6170 // Reap it. 6171 team->t.t_next_pool = NULL; 6172 __kmp_reap_team(team); 6173 } 6174 6175 __kmp_reap_task_teams(); 6176 6177 #if KMP_OS_UNIX 6178 // Threads that are not reaped should not access any resources since they 6179 // are going to be deallocated soon, so the shutdown sequence should wait 6180 // until all threads either exit the final spin-waiting loop or begin 6181 // sleeping after the given blocktime. 6182 for (i = 0; i < __kmp_threads_capacity; i++) { 6183 kmp_info_t *thr = __kmp_threads[i]; 6184 while (thr && KMP_ATOMIC_LD_ACQ(&thr->th.th_blocking)) 6185 KMP_CPU_PAUSE(); 6186 } 6187 #endif 6188 6189 for (i = 0; i < __kmp_threads_capacity; ++i) { 6190 // TBD: Add some checking... 6191 // Something like KMP_DEBUG_ASSERT( __kmp_thread[ i ] == NULL ); 6192 } 6193 6194 /* Make sure all threadprivate destructors get run by joining with all 6195 worker threads before resetting this flag */ 6196 TCW_SYNC_4(__kmp_init_common, FALSE); 6197 6198 KA_TRACE(10, ("__kmp_internal_end: all workers reaped\n")); 6199 KMP_MB(); 6200 6201 #if KMP_USE_MONITOR 6202 // See note above: One of the possible fixes for CQ138434 / CQ140126 6203 // 6204 // FIXME: push both code fragments down and CSE them? 6205 // push them into __kmp_cleanup() ? 6206 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock); 6207 if (TCR_4(__kmp_init_monitor)) { 6208 __kmp_reap_monitor(&__kmp_monitor); 6209 TCW_4(__kmp_init_monitor, 0); 6210 } 6211 __kmp_release_bootstrap_lock(&__kmp_monitor_lock); 6212 KA_TRACE(10, ("__kmp_internal_end: monitor reaped\n")); 6213 #endif 6214 } /* else !__kmp_global.t_active */ 6215 TCW_4(__kmp_init_gtid, FALSE); 6216 KMP_MB(); /* Flush all pending memory write invalidates. */ 6217 6218 __kmp_cleanup(); 6219 #if OMPT_SUPPORT 6220 ompt_fini(); 6221 #endif 6222 } 6223 6224 void __kmp_internal_end_library(int gtid_req) { 6225 /* if we have already cleaned up, don't try again, it wouldn't be pretty */ 6226 /* this shouldn't be a race condition because __kmp_internal_end() is the 6227 only place to clear __kmp_serial_init */ 6228 /* we'll check this later too, after we get the lock */ 6229 // 2009-09-06: We do not set g_abort without setting g_done. This check looks 6230 // redundaant, because the next check will work in any case. 6231 if (__kmp_global.g.g_abort) { 6232 KA_TRACE(11, ("__kmp_internal_end_library: abort, exiting\n")); 6233 /* TODO abort? */ 6234 return; 6235 } 6236 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6237 KA_TRACE(10, ("__kmp_internal_end_library: already finished\n")); 6238 return; 6239 } 6240 6241 KMP_MB(); /* Flush all pending memory write invalidates. */ 6242 6243 /* find out who we are and what we should do */ 6244 { 6245 int gtid = (gtid_req >= 0) ? gtid_req : __kmp_gtid_get_specific(); 6246 KA_TRACE( 6247 10, ("__kmp_internal_end_library: enter T#%d (%d)\n", gtid, gtid_req)); 6248 if (gtid == KMP_GTID_SHUTDOWN) { 6249 KA_TRACE(10, ("__kmp_internal_end_library: !__kmp_init_runtime, system " 6250 "already shutdown\n")); 6251 return; 6252 } else if (gtid == KMP_GTID_MONITOR) { 6253 KA_TRACE(10, ("__kmp_internal_end_library: monitor thread, gtid not " 6254 "registered, or system shutdown\n")); 6255 return; 6256 } else if (gtid == KMP_GTID_DNE) { 6257 KA_TRACE(10, ("__kmp_internal_end_library: gtid not registered or system " 6258 "shutdown\n")); 6259 /* we don't know who we are, but we may still shutdown the library */ 6260 } else if (KMP_UBER_GTID(gtid)) { 6261 /* unregister ourselves as an uber thread. gtid is no longer valid */ 6262 if (__kmp_root[gtid]->r.r_active) { 6263 __kmp_global.g.g_abort = -1; 6264 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 6265 KA_TRACE(10, 6266 ("__kmp_internal_end_library: root still active, abort T#%d\n", 6267 gtid)); 6268 return; 6269 } else { 6270 KA_TRACE( 6271 10, 6272 ("__kmp_internal_end_library: unregistering sibling T#%d\n", gtid)); 6273 __kmp_unregister_root_current_thread(gtid); 6274 } 6275 } else { 6276 /* worker threads may call this function through the atexit handler, if they 6277 * call exit() */ 6278 /* For now, skip the usual subsequent processing and just dump the debug buffer. 6279 TODO: do a thorough shutdown instead */ 6280 #ifdef DUMP_DEBUG_ON_EXIT 6281 if (__kmp_debug_buf) 6282 __kmp_dump_debug_buffer(); 6283 #endif 6284 return; 6285 } 6286 } 6287 /* synchronize the termination process */ 6288 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6289 6290 /* have we already finished */ 6291 if (__kmp_global.g.g_abort) { 6292 KA_TRACE(10, ("__kmp_internal_end_library: abort, exiting\n")); 6293 /* TODO abort? */ 6294 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6295 return; 6296 } 6297 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6298 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6299 return; 6300 } 6301 6302 /* We need this lock to enforce mutex between this reading of 6303 __kmp_threads_capacity and the writing by __kmp_register_root. 6304 Alternatively, we can use a counter of roots that is atomically updated by 6305 __kmp_get_global_thread_id_reg, __kmp_do_serial_initialize and 6306 __kmp_internal_end_*. */ 6307 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 6308 6309 /* now we can safely conduct the actual termination */ 6310 __kmp_internal_end(); 6311 6312 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 6313 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6314 6315 KA_TRACE(10, ("__kmp_internal_end_library: exit\n")); 6316 6317 #ifdef DUMP_DEBUG_ON_EXIT 6318 if (__kmp_debug_buf) 6319 __kmp_dump_debug_buffer(); 6320 #endif 6321 6322 #if KMP_OS_WINDOWS 6323 __kmp_close_console(); 6324 #endif 6325 6326 __kmp_fini_allocator(); 6327 6328 } // __kmp_internal_end_library 6329 6330 void __kmp_internal_end_thread(int gtid_req) { 6331 int i; 6332 6333 /* if we have already cleaned up, don't try again, it wouldn't be pretty */ 6334 /* this shouldn't be a race condition because __kmp_internal_end() is the 6335 * only place to clear __kmp_serial_init */ 6336 /* we'll check this later too, after we get the lock */ 6337 // 2009-09-06: We do not set g_abort without setting g_done. This check looks 6338 // redundant, because the next check will work in any case. 6339 if (__kmp_global.g.g_abort) { 6340 KA_TRACE(11, ("__kmp_internal_end_thread: abort, exiting\n")); 6341 /* TODO abort? */ 6342 return; 6343 } 6344 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6345 KA_TRACE(10, ("__kmp_internal_end_thread: already finished\n")); 6346 return; 6347 } 6348 6349 KMP_MB(); /* Flush all pending memory write invalidates. */ 6350 6351 /* find out who we are and what we should do */ 6352 { 6353 int gtid = (gtid_req >= 0) ? gtid_req : __kmp_gtid_get_specific(); 6354 KA_TRACE(10, 6355 ("__kmp_internal_end_thread: enter T#%d (%d)\n", gtid, gtid_req)); 6356 if (gtid == KMP_GTID_SHUTDOWN) { 6357 KA_TRACE(10, ("__kmp_internal_end_thread: !__kmp_init_runtime, system " 6358 "already shutdown\n")); 6359 return; 6360 } else if (gtid == KMP_GTID_MONITOR) { 6361 KA_TRACE(10, ("__kmp_internal_end_thread: monitor thread, gtid not " 6362 "registered, or system shutdown\n")); 6363 return; 6364 } else if (gtid == KMP_GTID_DNE) { 6365 KA_TRACE(10, ("__kmp_internal_end_thread: gtid not registered or system " 6366 "shutdown\n")); 6367 return; 6368 /* we don't know who we are */ 6369 } else if (KMP_UBER_GTID(gtid)) { 6370 /* unregister ourselves as an uber thread. gtid is no longer valid */ 6371 if (__kmp_root[gtid]->r.r_active) { 6372 __kmp_global.g.g_abort = -1; 6373 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 6374 KA_TRACE(10, 6375 ("__kmp_internal_end_thread: root still active, abort T#%d\n", 6376 gtid)); 6377 return; 6378 } else { 6379 KA_TRACE(10, ("__kmp_internal_end_thread: unregistering sibling T#%d\n", 6380 gtid)); 6381 __kmp_unregister_root_current_thread(gtid); 6382 } 6383 } else { 6384 /* just a worker thread, let's leave */ 6385 KA_TRACE(10, ("__kmp_internal_end_thread: worker thread T#%d\n", gtid)); 6386 6387 if (gtid >= 0) { 6388 __kmp_threads[gtid]->th.th_task_team = NULL; 6389 } 6390 6391 KA_TRACE(10, 6392 ("__kmp_internal_end_thread: worker thread done, exiting T#%d\n", 6393 gtid)); 6394 return; 6395 } 6396 } 6397 #if KMP_DYNAMIC_LIB 6398 #if OMP_50_ENABLED 6399 if (__kmp_pause_status != kmp_hard_paused) 6400 #endif 6401 // AC: lets not shutdown the dynamic library at the exit of uber thread, 6402 // because we will better shutdown later in the library destructor. 6403 { 6404 KA_TRACE(10, ("__kmp_internal_end_thread: exiting T#%d\n", gtid_req)); 6405 return; 6406 } 6407 #endif 6408 /* synchronize the termination process */ 6409 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6410 6411 /* have we already finished */ 6412 if (__kmp_global.g.g_abort) { 6413 KA_TRACE(10, ("__kmp_internal_end_thread: abort, exiting\n")); 6414 /* TODO abort? */ 6415 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6416 return; 6417 } 6418 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6419 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6420 return; 6421 } 6422 6423 /* We need this lock to enforce mutex between this reading of 6424 __kmp_threads_capacity and the writing by __kmp_register_root. 6425 Alternatively, we can use a counter of roots that is atomically updated by 6426 __kmp_get_global_thread_id_reg, __kmp_do_serial_initialize and 6427 __kmp_internal_end_*. */ 6428 6429 /* should we finish the run-time? are all siblings done? */ 6430 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 6431 6432 for (i = 0; i < __kmp_threads_capacity; ++i) { 6433 if (KMP_UBER_GTID(i)) { 6434 KA_TRACE( 6435 10, 6436 ("__kmp_internal_end_thread: remaining sibling task: gtid==%d\n", i)); 6437 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 6438 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6439 return; 6440 } 6441 } 6442 6443 /* now we can safely conduct the actual termination */ 6444 6445 __kmp_internal_end(); 6446 6447 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 6448 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6449 6450 KA_TRACE(10, ("__kmp_internal_end_thread: exit T#%d\n", gtid_req)); 6451 6452 #ifdef DUMP_DEBUG_ON_EXIT 6453 if (__kmp_debug_buf) 6454 __kmp_dump_debug_buffer(); 6455 #endif 6456 } // __kmp_internal_end_thread 6457 6458 // ----------------------------------------------------------------------------- 6459 // Library registration stuff. 6460 6461 static long __kmp_registration_flag = 0; 6462 // Random value used to indicate library initialization. 6463 static char *__kmp_registration_str = NULL; 6464 // Value to be saved in env var __KMP_REGISTERED_LIB_<pid>. 6465 6466 static inline char *__kmp_reg_status_name() { 6467 /* On RHEL 3u5 if linked statically, getpid() returns different values in 6468 each thread. If registration and unregistration go in different threads 6469 (omp_misc_other_root_exit.cpp test case), the name of registered_lib_env 6470 env var can not be found, because the name will contain different pid. */ 6471 return __kmp_str_format("__KMP_REGISTERED_LIB_%d", (int)getpid()); 6472 } // __kmp_reg_status_get 6473 6474 void __kmp_register_library_startup(void) { 6475 6476 char *name = __kmp_reg_status_name(); // Name of the environment variable. 6477 int done = 0; 6478 union { 6479 double dtime; 6480 long ltime; 6481 } time; 6482 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 6483 __kmp_initialize_system_tick(); 6484 #endif 6485 __kmp_read_system_time(&time.dtime); 6486 __kmp_registration_flag = 0xCAFE0000L | (time.ltime & 0x0000FFFFL); 6487 __kmp_registration_str = 6488 __kmp_str_format("%p-%lx-%s", &__kmp_registration_flag, 6489 __kmp_registration_flag, KMP_LIBRARY_FILE); 6490 6491 KA_TRACE(50, ("__kmp_register_library_startup: %s=\"%s\"\n", name, 6492 __kmp_registration_str)); 6493 6494 while (!done) { 6495 6496 char *value = NULL; // Actual value of the environment variable. 6497 6498 // Set environment variable, but do not overwrite if it is exist. 6499 __kmp_env_set(name, __kmp_registration_str, 0); 6500 // Check the variable is written. 6501 value = __kmp_env_get(name); 6502 if (value != NULL && strcmp(value, __kmp_registration_str) == 0) { 6503 6504 done = 1; // Ok, environment variable set successfully, exit the loop. 6505 6506 } else { 6507 6508 // Oops. Write failed. Another copy of OpenMP RTL is in memory. 6509 // Check whether it alive or dead. 6510 int neighbor = 0; // 0 -- unknown status, 1 -- alive, 2 -- dead. 6511 char *tail = value; 6512 char *flag_addr_str = NULL; 6513 char *flag_val_str = NULL; 6514 char const *file_name = NULL; 6515 __kmp_str_split(tail, '-', &flag_addr_str, &tail); 6516 __kmp_str_split(tail, '-', &flag_val_str, &tail); 6517 file_name = tail; 6518 if (tail != NULL) { 6519 long *flag_addr = 0; 6520 long flag_val = 0; 6521 KMP_SSCANF(flag_addr_str, "%p", RCAST(void**, &flag_addr)); 6522 KMP_SSCANF(flag_val_str, "%lx", &flag_val); 6523 if (flag_addr != 0 && flag_val != 0 && strcmp(file_name, "") != 0) { 6524 // First, check whether environment-encoded address is mapped into 6525 // addr space. 6526 // If so, dereference it to see if it still has the right value. 6527 if (__kmp_is_address_mapped(flag_addr) && *flag_addr == flag_val) { 6528 neighbor = 1; 6529 } else { 6530 // If not, then we know the other copy of the library is no longer 6531 // running. 6532 neighbor = 2; 6533 } 6534 } 6535 } 6536 switch (neighbor) { 6537 case 0: // Cannot parse environment variable -- neighbor status unknown. 6538 // Assume it is the incompatible format of future version of the 6539 // library. Assume the other library is alive. 6540 // WARN( ... ); // TODO: Issue a warning. 6541 file_name = "unknown library"; 6542 KMP_FALLTHROUGH(); 6543 // Attention! Falling to the next case. That's intentional. 6544 case 1: { // Neighbor is alive. 6545 // Check it is allowed. 6546 char *duplicate_ok = __kmp_env_get("KMP_DUPLICATE_LIB_OK"); 6547 if (!__kmp_str_match_true(duplicate_ok)) { 6548 // That's not allowed. Issue fatal error. 6549 __kmp_fatal(KMP_MSG(DuplicateLibrary, KMP_LIBRARY_FILE, file_name), 6550 KMP_HNT(DuplicateLibrary), __kmp_msg_null); 6551 } 6552 KMP_INTERNAL_FREE(duplicate_ok); 6553 __kmp_duplicate_library_ok = 1; 6554 done = 1; // Exit the loop. 6555 } break; 6556 case 2: { // Neighbor is dead. 6557 // Clear the variable and try to register library again. 6558 __kmp_env_unset(name); 6559 } break; 6560 default: { KMP_DEBUG_ASSERT(0); } break; 6561 } 6562 } 6563 KMP_INTERNAL_FREE((void *)value); 6564 } 6565 KMP_INTERNAL_FREE((void *)name); 6566 6567 } // func __kmp_register_library_startup 6568 6569 void __kmp_unregister_library(void) { 6570 6571 char *name = __kmp_reg_status_name(); 6572 char *value = __kmp_env_get(name); 6573 6574 KMP_DEBUG_ASSERT(__kmp_registration_flag != 0); 6575 KMP_DEBUG_ASSERT(__kmp_registration_str != NULL); 6576 if (value != NULL && strcmp(value, __kmp_registration_str) == 0) { 6577 // Ok, this is our variable. Delete it. 6578 __kmp_env_unset(name); 6579 } 6580 6581 KMP_INTERNAL_FREE(__kmp_registration_str); 6582 KMP_INTERNAL_FREE(value); 6583 KMP_INTERNAL_FREE(name); 6584 6585 __kmp_registration_flag = 0; 6586 __kmp_registration_str = NULL; 6587 6588 } // __kmp_unregister_library 6589 6590 // End of Library registration stuff. 6591 // ----------------------------------------------------------------------------- 6592 6593 #if KMP_MIC_SUPPORTED 6594 6595 static void __kmp_check_mic_type() { 6596 kmp_cpuid_t cpuid_state = {0}; 6597 kmp_cpuid_t *cs_p = &cpuid_state; 6598 __kmp_x86_cpuid(1, 0, cs_p); 6599 // We don't support mic1 at the moment 6600 if ((cs_p->eax & 0xff0) == 0xB10) { 6601 __kmp_mic_type = mic2; 6602 } else if ((cs_p->eax & 0xf0ff0) == 0x50670) { 6603 __kmp_mic_type = mic3; 6604 } else { 6605 __kmp_mic_type = non_mic; 6606 } 6607 } 6608 6609 #endif /* KMP_MIC_SUPPORTED */ 6610 6611 static void __kmp_do_serial_initialize(void) { 6612 int i, gtid; 6613 int size; 6614 6615 KA_TRACE(10, ("__kmp_do_serial_initialize: enter\n")); 6616 6617 KMP_DEBUG_ASSERT(sizeof(kmp_int32) == 4); 6618 KMP_DEBUG_ASSERT(sizeof(kmp_uint32) == 4); 6619 KMP_DEBUG_ASSERT(sizeof(kmp_int64) == 8); 6620 KMP_DEBUG_ASSERT(sizeof(kmp_uint64) == 8); 6621 KMP_DEBUG_ASSERT(sizeof(kmp_intptr_t) == sizeof(void *)); 6622 6623 #if OMPT_SUPPORT 6624 ompt_pre_init(); 6625 #endif 6626 6627 __kmp_validate_locks(); 6628 6629 /* Initialize internal memory allocator */ 6630 __kmp_init_allocator(); 6631 6632 /* Register the library startup via an environment variable and check to see 6633 whether another copy of the library is already registered. */ 6634 6635 __kmp_register_library_startup(); 6636 6637 /* TODO reinitialization of library */ 6638 if (TCR_4(__kmp_global.g.g_done)) { 6639 KA_TRACE(10, ("__kmp_do_serial_initialize: reinitialization of library\n")); 6640 } 6641 6642 __kmp_global.g.g_abort = 0; 6643 TCW_SYNC_4(__kmp_global.g.g_done, FALSE); 6644 6645 /* initialize the locks */ 6646 #if KMP_USE_ADAPTIVE_LOCKS 6647 #if KMP_DEBUG_ADAPTIVE_LOCKS 6648 __kmp_init_speculative_stats(); 6649 #endif 6650 #endif 6651 #if KMP_STATS_ENABLED 6652 __kmp_stats_init(); 6653 #endif 6654 __kmp_init_lock(&__kmp_global_lock); 6655 __kmp_init_queuing_lock(&__kmp_dispatch_lock); 6656 __kmp_init_lock(&__kmp_debug_lock); 6657 __kmp_init_atomic_lock(&__kmp_atomic_lock); 6658 __kmp_init_atomic_lock(&__kmp_atomic_lock_1i); 6659 __kmp_init_atomic_lock(&__kmp_atomic_lock_2i); 6660 __kmp_init_atomic_lock(&__kmp_atomic_lock_4i); 6661 __kmp_init_atomic_lock(&__kmp_atomic_lock_4r); 6662 __kmp_init_atomic_lock(&__kmp_atomic_lock_8i); 6663 __kmp_init_atomic_lock(&__kmp_atomic_lock_8r); 6664 __kmp_init_atomic_lock(&__kmp_atomic_lock_8c); 6665 __kmp_init_atomic_lock(&__kmp_atomic_lock_10r); 6666 __kmp_init_atomic_lock(&__kmp_atomic_lock_16r); 6667 __kmp_init_atomic_lock(&__kmp_atomic_lock_16c); 6668 __kmp_init_atomic_lock(&__kmp_atomic_lock_20c); 6669 __kmp_init_atomic_lock(&__kmp_atomic_lock_32c); 6670 __kmp_init_bootstrap_lock(&__kmp_forkjoin_lock); 6671 __kmp_init_bootstrap_lock(&__kmp_exit_lock); 6672 #if KMP_USE_MONITOR 6673 __kmp_init_bootstrap_lock(&__kmp_monitor_lock); 6674 #endif 6675 __kmp_init_bootstrap_lock(&__kmp_tp_cached_lock); 6676 6677 /* conduct initialization and initial setup of configuration */ 6678 6679 __kmp_runtime_initialize(); 6680 6681 #if KMP_MIC_SUPPORTED 6682 __kmp_check_mic_type(); 6683 #endif 6684 6685 // Some global variable initialization moved here from kmp_env_initialize() 6686 #ifdef KMP_DEBUG 6687 kmp_diag = 0; 6688 #endif 6689 __kmp_abort_delay = 0; 6690 6691 // From __kmp_init_dflt_team_nth() 6692 /* assume the entire machine will be used */ 6693 __kmp_dflt_team_nth_ub = __kmp_xproc; 6694 if (__kmp_dflt_team_nth_ub < KMP_MIN_NTH) { 6695 __kmp_dflt_team_nth_ub = KMP_MIN_NTH; 6696 } 6697 if (__kmp_dflt_team_nth_ub > __kmp_sys_max_nth) { 6698 __kmp_dflt_team_nth_ub = __kmp_sys_max_nth; 6699 } 6700 __kmp_max_nth = __kmp_sys_max_nth; 6701 __kmp_cg_max_nth = __kmp_sys_max_nth; 6702 __kmp_teams_max_nth = __kmp_xproc; // set a "reasonable" default 6703 if (__kmp_teams_max_nth > __kmp_sys_max_nth) { 6704 __kmp_teams_max_nth = __kmp_sys_max_nth; 6705 } 6706 6707 // Three vars below moved here from __kmp_env_initialize() "KMP_BLOCKTIME" 6708 // part 6709 __kmp_dflt_blocktime = KMP_DEFAULT_BLOCKTIME; 6710 #if KMP_USE_MONITOR 6711 __kmp_monitor_wakeups = 6712 KMP_WAKEUPS_FROM_BLOCKTIME(__kmp_dflt_blocktime, __kmp_monitor_wakeups); 6713 __kmp_bt_intervals = 6714 KMP_INTERVALS_FROM_BLOCKTIME(__kmp_dflt_blocktime, __kmp_monitor_wakeups); 6715 #endif 6716 // From "KMP_LIBRARY" part of __kmp_env_initialize() 6717 __kmp_library = library_throughput; 6718 // From KMP_SCHEDULE initialization 6719 __kmp_static = kmp_sch_static_balanced; 6720 // AC: do not use analytical here, because it is non-monotonous 6721 //__kmp_guided = kmp_sch_guided_iterative_chunked; 6722 //__kmp_auto = kmp_sch_guided_analytical_chunked; // AC: it is the default, no 6723 // need to repeat assignment 6724 // Barrier initialization. Moved here from __kmp_env_initialize() Barrier branch 6725 // bit control and barrier method control parts 6726 #if KMP_FAST_REDUCTION_BARRIER 6727 #define kmp_reduction_barrier_gather_bb ((int)1) 6728 #define kmp_reduction_barrier_release_bb ((int)1) 6729 #define kmp_reduction_barrier_gather_pat bp_hyper_bar 6730 #define kmp_reduction_barrier_release_pat bp_hyper_bar 6731 #endif // KMP_FAST_REDUCTION_BARRIER 6732 for (i = bs_plain_barrier; i < bs_last_barrier; i++) { 6733 __kmp_barrier_gather_branch_bits[i] = __kmp_barrier_gather_bb_dflt; 6734 __kmp_barrier_release_branch_bits[i] = __kmp_barrier_release_bb_dflt; 6735 __kmp_barrier_gather_pattern[i] = __kmp_barrier_gather_pat_dflt; 6736 __kmp_barrier_release_pattern[i] = __kmp_barrier_release_pat_dflt; 6737 #if KMP_FAST_REDUCTION_BARRIER 6738 if (i == bs_reduction_barrier) { // tested and confirmed on ALTIX only ( 6739 // lin_64 ): hyper,1 6740 __kmp_barrier_gather_branch_bits[i] = kmp_reduction_barrier_gather_bb; 6741 __kmp_barrier_release_branch_bits[i] = kmp_reduction_barrier_release_bb; 6742 __kmp_barrier_gather_pattern[i] = kmp_reduction_barrier_gather_pat; 6743 __kmp_barrier_release_pattern[i] = kmp_reduction_barrier_release_pat; 6744 } 6745 #endif // KMP_FAST_REDUCTION_BARRIER 6746 } 6747 #if KMP_FAST_REDUCTION_BARRIER 6748 #undef kmp_reduction_barrier_release_pat 6749 #undef kmp_reduction_barrier_gather_pat 6750 #undef kmp_reduction_barrier_release_bb 6751 #undef kmp_reduction_barrier_gather_bb 6752 #endif // KMP_FAST_REDUCTION_BARRIER 6753 #if KMP_MIC_SUPPORTED 6754 if (__kmp_mic_type == mic2) { // KNC 6755 // AC: plane=3,2, forkjoin=2,1 are optimal for 240 threads on KNC 6756 __kmp_barrier_gather_branch_bits[bs_plain_barrier] = 3; // plain gather 6757 __kmp_barrier_release_branch_bits[bs_forkjoin_barrier] = 6758 1; // forkjoin release 6759 __kmp_barrier_gather_pattern[bs_forkjoin_barrier] = bp_hierarchical_bar; 6760 __kmp_barrier_release_pattern[bs_forkjoin_barrier] = bp_hierarchical_bar; 6761 } 6762 #if KMP_FAST_REDUCTION_BARRIER 6763 if (__kmp_mic_type == mic2) { // KNC 6764 __kmp_barrier_gather_pattern[bs_reduction_barrier] = bp_hierarchical_bar; 6765 __kmp_barrier_release_pattern[bs_reduction_barrier] = bp_hierarchical_bar; 6766 } 6767 #endif // KMP_FAST_REDUCTION_BARRIER 6768 #endif // KMP_MIC_SUPPORTED 6769 6770 // From KMP_CHECKS initialization 6771 #ifdef KMP_DEBUG 6772 __kmp_env_checks = TRUE; /* development versions have the extra checks */ 6773 #else 6774 __kmp_env_checks = FALSE; /* port versions do not have the extra checks */ 6775 #endif 6776 6777 // From "KMP_FOREIGN_THREADS_THREADPRIVATE" initialization 6778 __kmp_foreign_tp = TRUE; 6779 6780 __kmp_global.g.g_dynamic = FALSE; 6781 __kmp_global.g.g_dynamic_mode = dynamic_default; 6782 6783 __kmp_env_initialize(NULL); 6784 6785 // Print all messages in message catalog for testing purposes. 6786 #ifdef KMP_DEBUG 6787 char const *val = __kmp_env_get("KMP_DUMP_CATALOG"); 6788 if (__kmp_str_match_true(val)) { 6789 kmp_str_buf_t buffer; 6790 __kmp_str_buf_init(&buffer); 6791 __kmp_i18n_dump_catalog(&buffer); 6792 __kmp_printf("%s", buffer.str); 6793 __kmp_str_buf_free(&buffer); 6794 } 6795 __kmp_env_free(&val); 6796 #endif 6797 6798 __kmp_threads_capacity = 6799 __kmp_initial_threads_capacity(__kmp_dflt_team_nth_ub); 6800 // Moved here from __kmp_env_initialize() "KMP_ALL_THREADPRIVATE" part 6801 __kmp_tp_capacity = __kmp_default_tp_capacity( 6802 __kmp_dflt_team_nth_ub, __kmp_max_nth, __kmp_allThreadsSpecified); 6803 6804 // If the library is shut down properly, both pools must be NULL. Just in 6805 // case, set them to NULL -- some memory may leak, but subsequent code will 6806 // work even if pools are not freed. 6807 KMP_DEBUG_ASSERT(__kmp_thread_pool == NULL); 6808 KMP_DEBUG_ASSERT(__kmp_thread_pool_insert_pt == NULL); 6809 KMP_DEBUG_ASSERT(__kmp_team_pool == NULL); 6810 __kmp_thread_pool = NULL; 6811 __kmp_thread_pool_insert_pt = NULL; 6812 __kmp_team_pool = NULL; 6813 6814 /* Allocate all of the variable sized records */ 6815 /* NOTE: __kmp_threads_capacity entries are allocated, but the arrays are 6816 * expandable */ 6817 /* Since allocation is cache-aligned, just add extra padding at the end */ 6818 size = 6819 (sizeof(kmp_info_t *) + sizeof(kmp_root_t *)) * __kmp_threads_capacity + 6820 CACHE_LINE; 6821 __kmp_threads = (kmp_info_t **)__kmp_allocate(size); 6822 __kmp_root = (kmp_root_t **)((char *)__kmp_threads + 6823 sizeof(kmp_info_t *) * __kmp_threads_capacity); 6824 6825 /* init thread counts */ 6826 KMP_DEBUG_ASSERT(__kmp_all_nth == 6827 0); // Asserts fail if the library is reinitializing and 6828 KMP_DEBUG_ASSERT(__kmp_nth == 0); // something was wrong in termination. 6829 __kmp_all_nth = 0; 6830 __kmp_nth = 0; 6831 6832 /* setup the uber master thread and hierarchy */ 6833 gtid = __kmp_register_root(TRUE); 6834 KA_TRACE(10, ("__kmp_do_serial_initialize T#%d\n", gtid)); 6835 KMP_ASSERT(KMP_UBER_GTID(gtid)); 6836 KMP_ASSERT(KMP_INITIAL_GTID(gtid)); 6837 6838 KMP_MB(); /* Flush all pending memory write invalidates. */ 6839 6840 __kmp_common_initialize(); 6841 6842 #if KMP_OS_UNIX 6843 /* invoke the child fork handler */ 6844 __kmp_register_atfork(); 6845 #endif 6846 6847 #if !KMP_DYNAMIC_LIB 6848 { 6849 /* Invoke the exit handler when the program finishes, only for static 6850 library. For dynamic library, we already have _fini and DllMain. */ 6851 int rc = atexit(__kmp_internal_end_atexit); 6852 if (rc != 0) { 6853 __kmp_fatal(KMP_MSG(FunctionError, "atexit()"), KMP_ERR(rc), 6854 __kmp_msg_null); 6855 } 6856 } 6857 #endif 6858 6859 #if KMP_HANDLE_SIGNALS 6860 #if KMP_OS_UNIX 6861 /* NOTE: make sure that this is called before the user installs their own 6862 signal handlers so that the user handlers are called first. this way they 6863 can return false, not call our handler, avoid terminating the library, and 6864 continue execution where they left off. */ 6865 __kmp_install_signals(FALSE); 6866 #endif /* KMP_OS_UNIX */ 6867 #if KMP_OS_WINDOWS 6868 __kmp_install_signals(TRUE); 6869 #endif /* KMP_OS_WINDOWS */ 6870 #endif 6871 6872 /* we have finished the serial initialization */ 6873 __kmp_init_counter++; 6874 6875 __kmp_init_serial = TRUE; 6876 6877 if (__kmp_settings) { 6878 __kmp_env_print(); 6879 } 6880 6881 #if OMP_40_ENABLED 6882 if (__kmp_display_env || __kmp_display_env_verbose) { 6883 __kmp_env_print_2(); 6884 } 6885 #endif // OMP_40_ENABLED 6886 6887 #if OMPT_SUPPORT 6888 ompt_post_init(); 6889 #endif 6890 6891 KMP_MB(); 6892 6893 KA_TRACE(10, ("__kmp_do_serial_initialize: exit\n")); 6894 } 6895 6896 void __kmp_serial_initialize(void) { 6897 if (__kmp_init_serial) { 6898 return; 6899 } 6900 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6901 if (__kmp_init_serial) { 6902 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6903 return; 6904 } 6905 __kmp_do_serial_initialize(); 6906 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6907 } 6908 6909 static void __kmp_do_middle_initialize(void) { 6910 int i, j; 6911 int prev_dflt_team_nth; 6912 6913 if (!__kmp_init_serial) { 6914 __kmp_do_serial_initialize(); 6915 } 6916 6917 KA_TRACE(10, ("__kmp_middle_initialize: enter\n")); 6918 6919 // Save the previous value for the __kmp_dflt_team_nth so that 6920 // we can avoid some reinitialization if it hasn't changed. 6921 prev_dflt_team_nth = __kmp_dflt_team_nth; 6922 6923 #if KMP_AFFINITY_SUPPORTED 6924 // __kmp_affinity_initialize() will try to set __kmp_ncores to the 6925 // number of cores on the machine. 6926 __kmp_affinity_initialize(); 6927 6928 // Run through the __kmp_threads array and set the affinity mask 6929 // for each root thread that is currently registered with the RTL. 6930 for (i = 0; i < __kmp_threads_capacity; i++) { 6931 if (TCR_PTR(__kmp_threads[i]) != NULL) { 6932 __kmp_affinity_set_init_mask(i, TRUE); 6933 } 6934 } 6935 #endif /* KMP_AFFINITY_SUPPORTED */ 6936 6937 KMP_ASSERT(__kmp_xproc > 0); 6938 if (__kmp_avail_proc == 0) { 6939 __kmp_avail_proc = __kmp_xproc; 6940 } 6941 6942 // If there were empty places in num_threads list (OMP_NUM_THREADS=,,2,3), 6943 // correct them now 6944 j = 0; 6945 while ((j < __kmp_nested_nth.used) && !__kmp_nested_nth.nth[j]) { 6946 __kmp_nested_nth.nth[j] = __kmp_dflt_team_nth = __kmp_dflt_team_nth_ub = 6947 __kmp_avail_proc; 6948 j++; 6949 } 6950 6951 if (__kmp_dflt_team_nth == 0) { 6952 #ifdef KMP_DFLT_NTH_CORES 6953 // Default #threads = #cores 6954 __kmp_dflt_team_nth = __kmp_ncores; 6955 KA_TRACE(20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = " 6956 "__kmp_ncores (%d)\n", 6957 __kmp_dflt_team_nth)); 6958 #else 6959 // Default #threads = #available OS procs 6960 __kmp_dflt_team_nth = __kmp_avail_proc; 6961 KA_TRACE(20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = " 6962 "__kmp_avail_proc(%d)\n", 6963 __kmp_dflt_team_nth)); 6964 #endif /* KMP_DFLT_NTH_CORES */ 6965 } 6966 6967 if (__kmp_dflt_team_nth < KMP_MIN_NTH) { 6968 __kmp_dflt_team_nth = KMP_MIN_NTH; 6969 } 6970 if (__kmp_dflt_team_nth > __kmp_sys_max_nth) { 6971 __kmp_dflt_team_nth = __kmp_sys_max_nth; 6972 } 6973 6974 // There's no harm in continuing if the following check fails, 6975 // but it indicates an error in the previous logic. 6976 KMP_DEBUG_ASSERT(__kmp_dflt_team_nth <= __kmp_dflt_team_nth_ub); 6977 6978 if (__kmp_dflt_team_nth != prev_dflt_team_nth) { 6979 // Run through the __kmp_threads array and set the num threads icv for each 6980 // root thread that is currently registered with the RTL (which has not 6981 // already explicitly set its nthreads-var with a call to 6982 // omp_set_num_threads()). 6983 for (i = 0; i < __kmp_threads_capacity; i++) { 6984 kmp_info_t *thread = __kmp_threads[i]; 6985 if (thread == NULL) 6986 continue; 6987 if (thread->th.th_current_task->td_icvs.nproc != 0) 6988 continue; 6989 6990 set__nproc(__kmp_threads[i], __kmp_dflt_team_nth); 6991 } 6992 } 6993 KA_TRACE( 6994 20, 6995 ("__kmp_middle_initialize: final value for __kmp_dflt_team_nth = %d\n", 6996 __kmp_dflt_team_nth)); 6997 6998 #ifdef KMP_ADJUST_BLOCKTIME 6999 /* Adjust blocktime to zero if necessary now that __kmp_avail_proc is set */ 7000 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 7001 KMP_DEBUG_ASSERT(__kmp_avail_proc > 0); 7002 if (__kmp_nth > __kmp_avail_proc) { 7003 __kmp_zero_bt = TRUE; 7004 } 7005 } 7006 #endif /* KMP_ADJUST_BLOCKTIME */ 7007 7008 /* we have finished middle initialization */ 7009 TCW_SYNC_4(__kmp_init_middle, TRUE); 7010 7011 KA_TRACE(10, ("__kmp_do_middle_initialize: exit\n")); 7012 } 7013 7014 void __kmp_middle_initialize(void) { 7015 if (__kmp_init_middle) { 7016 return; 7017 } 7018 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 7019 if (__kmp_init_middle) { 7020 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7021 return; 7022 } 7023 __kmp_do_middle_initialize(); 7024 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7025 } 7026 7027 void __kmp_parallel_initialize(void) { 7028 int gtid = __kmp_entry_gtid(); // this might be a new root 7029 7030 /* synchronize parallel initialization (for sibling) */ 7031 if (TCR_4(__kmp_init_parallel)) 7032 return; 7033 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 7034 if (TCR_4(__kmp_init_parallel)) { 7035 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7036 return; 7037 } 7038 7039 /* TODO reinitialization after we have already shut down */ 7040 if (TCR_4(__kmp_global.g.g_done)) { 7041 KA_TRACE( 7042 10, 7043 ("__kmp_parallel_initialize: attempt to init while shutting down\n")); 7044 __kmp_infinite_loop(); 7045 } 7046 7047 /* jc: The lock __kmp_initz_lock is already held, so calling 7048 __kmp_serial_initialize would cause a deadlock. So we call 7049 __kmp_do_serial_initialize directly. */ 7050 if (!__kmp_init_middle) { 7051 __kmp_do_middle_initialize(); 7052 } 7053 7054 #if OMP_50_ENABLED 7055 __kmp_resume_if_hard_paused(); 7056 #endif 7057 7058 /* begin initialization */ 7059 KA_TRACE(10, ("__kmp_parallel_initialize: enter\n")); 7060 KMP_ASSERT(KMP_UBER_GTID(gtid)); 7061 7062 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 7063 // Save the FP control regs. 7064 // Worker threads will set theirs to these values at thread startup. 7065 __kmp_store_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word); 7066 __kmp_store_mxcsr(&__kmp_init_mxcsr); 7067 __kmp_init_mxcsr &= KMP_X86_MXCSR_MASK; 7068 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 7069 7070 #if KMP_OS_UNIX 7071 #if KMP_HANDLE_SIGNALS 7072 /* must be after __kmp_serial_initialize */ 7073 __kmp_install_signals(TRUE); 7074 #endif 7075 #endif 7076 7077 __kmp_suspend_initialize(); 7078 7079 #if defined(USE_LOAD_BALANCE) 7080 if (__kmp_global.g.g_dynamic_mode == dynamic_default) { 7081 __kmp_global.g.g_dynamic_mode = dynamic_load_balance; 7082 } 7083 #else 7084 if (__kmp_global.g.g_dynamic_mode == dynamic_default) { 7085 __kmp_global.g.g_dynamic_mode = dynamic_thread_limit; 7086 } 7087 #endif 7088 7089 if (__kmp_version) { 7090 __kmp_print_version_2(); 7091 } 7092 7093 /* we have finished parallel initialization */ 7094 TCW_SYNC_4(__kmp_init_parallel, TRUE); 7095 7096 KMP_MB(); 7097 KA_TRACE(10, ("__kmp_parallel_initialize: exit\n")); 7098 7099 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7100 } 7101 7102 /* ------------------------------------------------------------------------ */ 7103 7104 void __kmp_run_before_invoked_task(int gtid, int tid, kmp_info_t *this_thr, 7105 kmp_team_t *team) { 7106 kmp_disp_t *dispatch; 7107 7108 KMP_MB(); 7109 7110 /* none of the threads have encountered any constructs, yet. */ 7111 this_thr->th.th_local.this_construct = 0; 7112 #if KMP_CACHE_MANAGE 7113 KMP_CACHE_PREFETCH(&this_thr->th.th_bar[bs_forkjoin_barrier].bb.b_arrived); 7114 #endif /* KMP_CACHE_MANAGE */ 7115 dispatch = (kmp_disp_t *)TCR_PTR(this_thr->th.th_dispatch); 7116 KMP_DEBUG_ASSERT(dispatch); 7117 KMP_DEBUG_ASSERT(team->t.t_dispatch); 7118 // KMP_DEBUG_ASSERT( this_thr->th.th_dispatch == &team->t.t_dispatch[ 7119 // this_thr->th.th_info.ds.ds_tid ] ); 7120 7121 dispatch->th_disp_index = 0; /* reset the dispatch buffer counter */ 7122 #if OMP_45_ENABLED 7123 dispatch->th_doacross_buf_idx = 7124 0; /* reset the doacross dispatch buffer counter */ 7125 #endif 7126 if (__kmp_env_consistency_check) 7127 __kmp_push_parallel(gtid, team->t.t_ident); 7128 7129 KMP_MB(); /* Flush all pending memory write invalidates. */ 7130 } 7131 7132 void __kmp_run_after_invoked_task(int gtid, int tid, kmp_info_t *this_thr, 7133 kmp_team_t *team) { 7134 if (__kmp_env_consistency_check) 7135 __kmp_pop_parallel(gtid, team->t.t_ident); 7136 7137 __kmp_finish_implicit_task(this_thr); 7138 } 7139 7140 int __kmp_invoke_task_func(int gtid) { 7141 int rc; 7142 int tid = __kmp_tid_from_gtid(gtid); 7143 kmp_info_t *this_thr = __kmp_threads[gtid]; 7144 kmp_team_t *team = this_thr->th.th_team; 7145 7146 __kmp_run_before_invoked_task(gtid, tid, this_thr, team); 7147 #if USE_ITT_BUILD 7148 if (__itt_stack_caller_create_ptr) { 7149 __kmp_itt_stack_callee_enter( 7150 (__itt_caller) 7151 team->t.t_stack_id); // inform ittnotify about entering user's code 7152 } 7153 #endif /* USE_ITT_BUILD */ 7154 #if INCLUDE_SSC_MARKS 7155 SSC_MARK_INVOKING(); 7156 #endif 7157 7158 #if OMPT_SUPPORT 7159 void *dummy; 7160 void **exit_runtime_p; 7161 ompt_data_t *my_task_data; 7162 ompt_data_t *my_parallel_data; 7163 int ompt_team_size; 7164 7165 if (ompt_enabled.enabled) { 7166 exit_runtime_p = &( 7167 team->t.t_implicit_task_taskdata[tid].ompt_task_info.frame.exit_frame.ptr); 7168 } else { 7169 exit_runtime_p = &dummy; 7170 } 7171 7172 my_task_data = 7173 &(team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data); 7174 my_parallel_data = &(team->t.ompt_team_info.parallel_data); 7175 if (ompt_enabled.ompt_callback_implicit_task) { 7176 ompt_team_size = team->t.t_nproc; 7177 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 7178 ompt_scope_begin, my_parallel_data, my_task_data, ompt_team_size, 7179 __kmp_tid_from_gtid(gtid), ompt_task_implicit); // TODO: Can this be ompt_task_initial? 7180 OMPT_CUR_TASK_INFO(this_thr)->thread_num = __kmp_tid_from_gtid(gtid); 7181 } 7182 #endif 7183 7184 #if KMP_STATS_ENABLED 7185 stats_state_e previous_state = KMP_GET_THREAD_STATE(); 7186 if (previous_state == stats_state_e::TEAMS_REGION) { 7187 KMP_PUSH_PARTITIONED_TIMER(OMP_teams); 7188 } else { 7189 KMP_PUSH_PARTITIONED_TIMER(OMP_parallel); 7190 } 7191 KMP_SET_THREAD_STATE(IMPLICIT_TASK); 7192 #endif 7193 7194 rc = __kmp_invoke_microtask((microtask_t)TCR_SYNC_PTR(team->t.t_pkfn), gtid, 7195 tid, (int)team->t.t_argc, (void **)team->t.t_argv 7196 #if OMPT_SUPPORT 7197 , 7198 exit_runtime_p 7199 #endif 7200 ); 7201 #if OMPT_SUPPORT 7202 *exit_runtime_p = NULL; 7203 #endif 7204 7205 #if KMP_STATS_ENABLED 7206 if (previous_state == stats_state_e::TEAMS_REGION) { 7207 KMP_SET_THREAD_STATE(previous_state); 7208 } 7209 KMP_POP_PARTITIONED_TIMER(); 7210 #endif 7211 7212 #if USE_ITT_BUILD 7213 if (__itt_stack_caller_create_ptr) { 7214 __kmp_itt_stack_callee_leave( 7215 (__itt_caller) 7216 team->t.t_stack_id); // inform ittnotify about leaving user's code 7217 } 7218 #endif /* USE_ITT_BUILD */ 7219 __kmp_run_after_invoked_task(gtid, tid, this_thr, team); 7220 7221 return rc; 7222 } 7223 7224 #if OMP_40_ENABLED 7225 void __kmp_teams_master(int gtid) { 7226 // This routine is called by all master threads in teams construct 7227 kmp_info_t *thr = __kmp_threads[gtid]; 7228 kmp_team_t *team = thr->th.th_team; 7229 ident_t *loc = team->t.t_ident; 7230 thr->th.th_set_nproc = thr->th.th_teams_size.nth; 7231 KMP_DEBUG_ASSERT(thr->th.th_teams_microtask); 7232 KMP_DEBUG_ASSERT(thr->th.th_set_nproc); 7233 KA_TRACE(20, ("__kmp_teams_master: T#%d, Tid %d, microtask %p\n", gtid, 7234 __kmp_tid_from_gtid(gtid), thr->th.th_teams_microtask)); 7235 7236 // This thread is a new CG root. Set up the proper variables. 7237 kmp_cg_root_t *tmp = (kmp_cg_root_t *)__kmp_allocate(sizeof(kmp_cg_root_t)); 7238 tmp->cg_root = thr; // Make thr the CG root 7239 // Init to thread limit that was stored when league masters were forked 7240 tmp->cg_thread_limit = thr->th.th_current_task->td_icvs.thread_limit; 7241 tmp->cg_nthreads = 1; // Init counter to one active thread, this one 7242 KA_TRACE(100, ("__kmp_teams_master: Thread %p created node %p and init" 7243 " cg_nthreads to 1\n", 7244 thr, tmp)); 7245 tmp->up = thr->th.th_cg_roots; 7246 thr->th.th_cg_roots = tmp; 7247 7248 // Launch league of teams now, but not let workers execute 7249 // (they hang on fork barrier until next parallel) 7250 #if INCLUDE_SSC_MARKS 7251 SSC_MARK_FORKING(); 7252 #endif 7253 __kmp_fork_call(loc, gtid, fork_context_intel, team->t.t_argc, 7254 (microtask_t)thr->th.th_teams_microtask, // "wrapped" task 7255 VOLATILE_CAST(launch_t) __kmp_invoke_task_func, NULL); 7256 #if INCLUDE_SSC_MARKS 7257 SSC_MARK_JOINING(); 7258 #endif 7259 // If the team size was reduced from the limit, set it to the new size 7260 if (thr->th.th_team_nproc < thr->th.th_teams_size.nth) 7261 thr->th.th_teams_size.nth = thr->th.th_team_nproc; 7262 // AC: last parameter "1" eliminates join barrier which won't work because 7263 // worker threads are in a fork barrier waiting for more parallel regions 7264 __kmp_join_call(loc, gtid 7265 #if OMPT_SUPPORT 7266 , 7267 fork_context_intel 7268 #endif 7269 , 7270 1); 7271 } 7272 7273 int __kmp_invoke_teams_master(int gtid) { 7274 kmp_info_t *this_thr = __kmp_threads[gtid]; 7275 kmp_team_t *team = this_thr->th.th_team; 7276 #if KMP_DEBUG 7277 if (!__kmp_threads[gtid]->th.th_team->t.t_serialized) 7278 KMP_DEBUG_ASSERT((void *)__kmp_threads[gtid]->th.th_team->t.t_pkfn == 7279 (void *)__kmp_teams_master); 7280 #endif 7281 __kmp_run_before_invoked_task(gtid, 0, this_thr, team); 7282 __kmp_teams_master(gtid); 7283 __kmp_run_after_invoked_task(gtid, 0, this_thr, team); 7284 return 1; 7285 } 7286 #endif /* OMP_40_ENABLED */ 7287 7288 /* this sets the requested number of threads for the next parallel region 7289 encountered by this team. since this should be enclosed in the forkjoin 7290 critical section it should avoid race conditions with assymmetrical nested 7291 parallelism */ 7292 7293 void __kmp_push_num_threads(ident_t *id, int gtid, int num_threads) { 7294 kmp_info_t *thr = __kmp_threads[gtid]; 7295 7296 if (num_threads > 0) 7297 thr->th.th_set_nproc = num_threads; 7298 } 7299 7300 #if OMP_40_ENABLED 7301 7302 /* this sets the requested number of teams for the teams region and/or 7303 the number of threads for the next parallel region encountered */ 7304 void __kmp_push_num_teams(ident_t *id, int gtid, int num_teams, 7305 int num_threads) { 7306 kmp_info_t *thr = __kmp_threads[gtid]; 7307 KMP_DEBUG_ASSERT(num_teams >= 0); 7308 KMP_DEBUG_ASSERT(num_threads >= 0); 7309 7310 if (num_teams == 0) 7311 num_teams = 1; // default number of teams is 1. 7312 if (num_teams > __kmp_teams_max_nth) { // if too many teams requested? 7313 if (!__kmp_reserve_warn) { 7314 __kmp_reserve_warn = 1; 7315 __kmp_msg(kmp_ms_warning, 7316 KMP_MSG(CantFormThrTeam, num_teams, __kmp_teams_max_nth), 7317 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 7318 } 7319 num_teams = __kmp_teams_max_nth; 7320 } 7321 // Set number of teams (number of threads in the outer "parallel" of the 7322 // teams) 7323 thr->th.th_set_nproc = thr->th.th_teams_size.nteams = num_teams; 7324 7325 // Remember the number of threads for inner parallel regions 7326 if (num_threads == 0) { 7327 if (!TCR_4(__kmp_init_middle)) 7328 __kmp_middle_initialize(); // get __kmp_avail_proc calculated 7329 num_threads = __kmp_avail_proc / num_teams; 7330 if (num_teams * num_threads > __kmp_teams_max_nth) { 7331 // adjust num_threads w/o warning as it is not user setting 7332 num_threads = __kmp_teams_max_nth / num_teams; 7333 } 7334 } else { 7335 // This thread will be the master of the league masters 7336 // Store new thread limit; old limit is saved in th_cg_roots list 7337 thr->th.th_current_task->td_icvs.thread_limit = num_threads; 7338 7339 if (num_teams * num_threads > __kmp_teams_max_nth) { 7340 int new_threads = __kmp_teams_max_nth / num_teams; 7341 if (!__kmp_reserve_warn) { // user asked for too many threads 7342 __kmp_reserve_warn = 1; // conflicts with KMP_TEAMS_THREAD_LIMIT 7343 __kmp_msg(kmp_ms_warning, 7344 KMP_MSG(CantFormThrTeam, num_threads, new_threads), 7345 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 7346 } 7347 num_threads = new_threads; 7348 } 7349 } 7350 thr->th.th_teams_size.nth = num_threads; 7351 } 7352 7353 // Set the proc_bind var to use in the following parallel region. 7354 void __kmp_push_proc_bind(ident_t *id, int gtid, kmp_proc_bind_t proc_bind) { 7355 kmp_info_t *thr = __kmp_threads[gtid]; 7356 thr->th.th_set_proc_bind = proc_bind; 7357 } 7358 7359 #endif /* OMP_40_ENABLED */ 7360 7361 /* Launch the worker threads into the microtask. */ 7362 7363 void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team) { 7364 kmp_info_t *this_thr = __kmp_threads[gtid]; 7365 7366 #ifdef KMP_DEBUG 7367 int f; 7368 #endif /* KMP_DEBUG */ 7369 7370 KMP_DEBUG_ASSERT(team); 7371 KMP_DEBUG_ASSERT(this_thr->th.th_team == team); 7372 KMP_ASSERT(KMP_MASTER_GTID(gtid)); 7373 KMP_MB(); /* Flush all pending memory write invalidates. */ 7374 7375 team->t.t_construct = 0; /* no single directives seen yet */ 7376 team->t.t_ordered.dt.t_value = 7377 0; /* thread 0 enters the ordered section first */ 7378 7379 /* Reset the identifiers on the dispatch buffer */ 7380 KMP_DEBUG_ASSERT(team->t.t_disp_buffer); 7381 if (team->t.t_max_nproc > 1) { 7382 int i; 7383 for (i = 0; i < __kmp_dispatch_num_buffers; ++i) { 7384 team->t.t_disp_buffer[i].buffer_index = i; 7385 #if OMP_45_ENABLED 7386 team->t.t_disp_buffer[i].doacross_buf_idx = i; 7387 #endif 7388 } 7389 } else { 7390 team->t.t_disp_buffer[0].buffer_index = 0; 7391 #if OMP_45_ENABLED 7392 team->t.t_disp_buffer[0].doacross_buf_idx = 0; 7393 #endif 7394 } 7395 7396 KMP_MB(); /* Flush all pending memory write invalidates. */ 7397 KMP_ASSERT(this_thr->th.th_team == team); 7398 7399 #ifdef KMP_DEBUG 7400 for (f = 0; f < team->t.t_nproc; f++) { 7401 KMP_DEBUG_ASSERT(team->t.t_threads[f] && 7402 team->t.t_threads[f]->th.th_team_nproc == team->t.t_nproc); 7403 } 7404 #endif /* KMP_DEBUG */ 7405 7406 /* release the worker threads so they may begin working */ 7407 __kmp_fork_barrier(gtid, 0); 7408 } 7409 7410 void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team) { 7411 kmp_info_t *this_thr = __kmp_threads[gtid]; 7412 7413 KMP_DEBUG_ASSERT(team); 7414 KMP_DEBUG_ASSERT(this_thr->th.th_team == team); 7415 KMP_ASSERT(KMP_MASTER_GTID(gtid)); 7416 KMP_MB(); /* Flush all pending memory write invalidates. */ 7417 7418 /* Join barrier after fork */ 7419 7420 #ifdef KMP_DEBUG 7421 if (__kmp_threads[gtid] && 7422 __kmp_threads[gtid]->th.th_team_nproc != team->t.t_nproc) { 7423 __kmp_printf("GTID: %d, __kmp_threads[%d]=%p\n", gtid, gtid, 7424 __kmp_threads[gtid]); 7425 __kmp_printf("__kmp_threads[%d]->th.th_team_nproc=%d, TEAM: %p, " 7426 "team->t.t_nproc=%d\n", 7427 gtid, __kmp_threads[gtid]->th.th_team_nproc, team, 7428 team->t.t_nproc); 7429 __kmp_print_structure(); 7430 } 7431 KMP_DEBUG_ASSERT(__kmp_threads[gtid] && 7432 __kmp_threads[gtid]->th.th_team_nproc == team->t.t_nproc); 7433 #endif /* KMP_DEBUG */ 7434 7435 __kmp_join_barrier(gtid); /* wait for everyone */ 7436 #if OMPT_SUPPORT 7437 if (ompt_enabled.enabled && 7438 this_thr->th.ompt_thread_info.state == ompt_state_wait_barrier_implicit) { 7439 int ds_tid = this_thr->th.th_info.ds.ds_tid; 7440 ompt_data_t *task_data = OMPT_CUR_TASK_DATA(this_thr); 7441 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 7442 #if OMPT_OPTIONAL 7443 void *codeptr = NULL; 7444 if (KMP_MASTER_TID(ds_tid) && 7445 (ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait) || 7446 ompt_callbacks.ompt_callback(ompt_callback_sync_region))) 7447 codeptr = OMPT_CUR_TEAM_INFO(this_thr)->master_return_address; 7448 7449 if (ompt_enabled.ompt_callback_sync_region_wait) { 7450 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 7451 ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, task_data, 7452 codeptr); 7453 } 7454 if (ompt_enabled.ompt_callback_sync_region) { 7455 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 7456 ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, task_data, 7457 codeptr); 7458 } 7459 #endif 7460 if (!KMP_MASTER_TID(ds_tid) && ompt_enabled.ompt_callback_implicit_task) { 7461 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 7462 ompt_scope_end, NULL, task_data, 0, ds_tid, ompt_task_implicit); // TODO: Can this be ompt_task_initial? 7463 } 7464 } 7465 #endif 7466 7467 KMP_MB(); /* Flush all pending memory write invalidates. */ 7468 KMP_ASSERT(this_thr->th.th_team == team); 7469 } 7470 7471 /* ------------------------------------------------------------------------ */ 7472 7473 #ifdef USE_LOAD_BALANCE 7474 7475 // Return the worker threads actively spinning in the hot team, if we 7476 // are at the outermost level of parallelism. Otherwise, return 0. 7477 static int __kmp_active_hot_team_nproc(kmp_root_t *root) { 7478 int i; 7479 int retval; 7480 kmp_team_t *hot_team; 7481 7482 if (root->r.r_active) { 7483 return 0; 7484 } 7485 hot_team = root->r.r_hot_team; 7486 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { 7487 return hot_team->t.t_nproc - 1; // Don't count master thread 7488 } 7489 7490 // Skip the master thread - it is accounted for elsewhere. 7491 retval = 0; 7492 for (i = 1; i < hot_team->t.t_nproc; i++) { 7493 if (hot_team->t.t_threads[i]->th.th_active) { 7494 retval++; 7495 } 7496 } 7497 return retval; 7498 } 7499 7500 // Perform an automatic adjustment to the number of 7501 // threads used by the next parallel region. 7502 static int __kmp_load_balance_nproc(kmp_root_t *root, int set_nproc) { 7503 int retval; 7504 int pool_active; 7505 int hot_team_active; 7506 int team_curr_active; 7507 int system_active; 7508 7509 KB_TRACE(20, ("__kmp_load_balance_nproc: called root:%p set_nproc:%d\n", root, 7510 set_nproc)); 7511 KMP_DEBUG_ASSERT(root); 7512 KMP_DEBUG_ASSERT(root->r.r_root_team->t.t_threads[0] 7513 ->th.th_current_task->td_icvs.dynamic == TRUE); 7514 KMP_DEBUG_ASSERT(set_nproc > 1); 7515 7516 if (set_nproc == 1) { 7517 KB_TRACE(20, ("__kmp_load_balance_nproc: serial execution.\n")); 7518 return 1; 7519 } 7520 7521 // Threads that are active in the thread pool, active in the hot team for this 7522 // particular root (if we are at the outer par level), and the currently 7523 // executing thread (to become the master) are available to add to the new 7524 // team, but are currently contributing to the system load, and must be 7525 // accounted for. 7526 pool_active = __kmp_thread_pool_active_nth; 7527 hot_team_active = __kmp_active_hot_team_nproc(root); 7528 team_curr_active = pool_active + hot_team_active + 1; 7529 7530 // Check the system load. 7531 system_active = __kmp_get_load_balance(__kmp_avail_proc + team_curr_active); 7532 KB_TRACE(30, ("__kmp_load_balance_nproc: system active = %d pool active = %d " 7533 "hot team active = %d\n", 7534 system_active, pool_active, hot_team_active)); 7535 7536 if (system_active < 0) { 7537 // There was an error reading the necessary info from /proc, so use the 7538 // thread limit algorithm instead. Once we set __kmp_global.g.g_dynamic_mode 7539 // = dynamic_thread_limit, we shouldn't wind up getting back here. 7540 __kmp_global.g.g_dynamic_mode = dynamic_thread_limit; 7541 KMP_WARNING(CantLoadBalUsing, "KMP_DYNAMIC_MODE=thread limit"); 7542 7543 // Make this call behave like the thread limit algorithm. 7544 retval = __kmp_avail_proc - __kmp_nth + 7545 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 7546 if (retval > set_nproc) { 7547 retval = set_nproc; 7548 } 7549 if (retval < KMP_MIN_NTH) { 7550 retval = KMP_MIN_NTH; 7551 } 7552 7553 KB_TRACE(20, ("__kmp_load_balance_nproc: thread limit exit. retval:%d\n", 7554 retval)); 7555 return retval; 7556 } 7557 7558 // There is a slight delay in the load balance algorithm in detecting new 7559 // running procs. The real system load at this instant should be at least as 7560 // large as the #active omp thread that are available to add to the team. 7561 if (system_active < team_curr_active) { 7562 system_active = team_curr_active; 7563 } 7564 retval = __kmp_avail_proc - system_active + team_curr_active; 7565 if (retval > set_nproc) { 7566 retval = set_nproc; 7567 } 7568 if (retval < KMP_MIN_NTH) { 7569 retval = KMP_MIN_NTH; 7570 } 7571 7572 KB_TRACE(20, ("__kmp_load_balance_nproc: exit. retval:%d\n", retval)); 7573 return retval; 7574 } // __kmp_load_balance_nproc() 7575 7576 #endif /* USE_LOAD_BALANCE */ 7577 7578 /* ------------------------------------------------------------------------ */ 7579 7580 /* NOTE: this is called with the __kmp_init_lock held */ 7581 void __kmp_cleanup(void) { 7582 int f; 7583 7584 KA_TRACE(10, ("__kmp_cleanup: enter\n")); 7585 7586 if (TCR_4(__kmp_init_parallel)) { 7587 #if KMP_HANDLE_SIGNALS 7588 __kmp_remove_signals(); 7589 #endif 7590 TCW_4(__kmp_init_parallel, FALSE); 7591 } 7592 7593 if (TCR_4(__kmp_init_middle)) { 7594 #if KMP_AFFINITY_SUPPORTED 7595 __kmp_affinity_uninitialize(); 7596 #endif /* KMP_AFFINITY_SUPPORTED */ 7597 __kmp_cleanup_hierarchy(); 7598 TCW_4(__kmp_init_middle, FALSE); 7599 } 7600 7601 KA_TRACE(10, ("__kmp_cleanup: go serial cleanup\n")); 7602 7603 if (__kmp_init_serial) { 7604 __kmp_runtime_destroy(); 7605 __kmp_init_serial = FALSE; 7606 } 7607 7608 __kmp_cleanup_threadprivate_caches(); 7609 7610 for (f = 0; f < __kmp_threads_capacity; f++) { 7611 if (__kmp_root[f] != NULL) { 7612 __kmp_free(__kmp_root[f]); 7613 __kmp_root[f] = NULL; 7614 } 7615 } 7616 __kmp_free(__kmp_threads); 7617 // __kmp_threads and __kmp_root were allocated at once, as single block, so 7618 // there is no need in freeing __kmp_root. 7619 __kmp_threads = NULL; 7620 __kmp_root = NULL; 7621 __kmp_threads_capacity = 0; 7622 7623 #if KMP_USE_DYNAMIC_LOCK 7624 __kmp_cleanup_indirect_user_locks(); 7625 #else 7626 __kmp_cleanup_user_locks(); 7627 #endif 7628 7629 #if KMP_AFFINITY_SUPPORTED 7630 KMP_INTERNAL_FREE(CCAST(char *, __kmp_cpuinfo_file)); 7631 __kmp_cpuinfo_file = NULL; 7632 #endif /* KMP_AFFINITY_SUPPORTED */ 7633 7634 #if KMP_USE_ADAPTIVE_LOCKS 7635 #if KMP_DEBUG_ADAPTIVE_LOCKS 7636 __kmp_print_speculative_stats(); 7637 #endif 7638 #endif 7639 KMP_INTERNAL_FREE(__kmp_nested_nth.nth); 7640 __kmp_nested_nth.nth = NULL; 7641 __kmp_nested_nth.size = 0; 7642 __kmp_nested_nth.used = 0; 7643 KMP_INTERNAL_FREE(__kmp_nested_proc_bind.bind_types); 7644 __kmp_nested_proc_bind.bind_types = NULL; 7645 __kmp_nested_proc_bind.size = 0; 7646 __kmp_nested_proc_bind.used = 0; 7647 #if OMP_50_ENABLED 7648 if (__kmp_affinity_format) { 7649 KMP_INTERNAL_FREE(__kmp_affinity_format); 7650 __kmp_affinity_format = NULL; 7651 } 7652 #endif 7653 7654 __kmp_i18n_catclose(); 7655 7656 #if KMP_USE_HIER_SCHED 7657 __kmp_hier_scheds.deallocate(); 7658 #endif 7659 7660 #if KMP_STATS_ENABLED 7661 __kmp_stats_fini(); 7662 #endif 7663 7664 KA_TRACE(10, ("__kmp_cleanup: exit\n")); 7665 } 7666 7667 /* ------------------------------------------------------------------------ */ 7668 7669 int __kmp_ignore_mppbeg(void) { 7670 char *env; 7671 7672 if ((env = getenv("KMP_IGNORE_MPPBEG")) != NULL) { 7673 if (__kmp_str_match_false(env)) 7674 return FALSE; 7675 } 7676 // By default __kmpc_begin() is no-op. 7677 return TRUE; 7678 } 7679 7680 int __kmp_ignore_mppend(void) { 7681 char *env; 7682 7683 if ((env = getenv("KMP_IGNORE_MPPEND")) != NULL) { 7684 if (__kmp_str_match_false(env)) 7685 return FALSE; 7686 } 7687 // By default __kmpc_end() is no-op. 7688 return TRUE; 7689 } 7690 7691 void __kmp_internal_begin(void) { 7692 int gtid; 7693 kmp_root_t *root; 7694 7695 /* this is a very important step as it will register new sibling threads 7696 and assign these new uber threads a new gtid */ 7697 gtid = __kmp_entry_gtid(); 7698 root = __kmp_threads[gtid]->th.th_root; 7699 KMP_ASSERT(KMP_UBER_GTID(gtid)); 7700 7701 if (root->r.r_begin) 7702 return; 7703 __kmp_acquire_lock(&root->r.r_begin_lock, gtid); 7704 if (root->r.r_begin) { 7705 __kmp_release_lock(&root->r.r_begin_lock, gtid); 7706 return; 7707 } 7708 7709 root->r.r_begin = TRUE; 7710 7711 __kmp_release_lock(&root->r.r_begin_lock, gtid); 7712 } 7713 7714 /* ------------------------------------------------------------------------ */ 7715 7716 void __kmp_user_set_library(enum library_type arg) { 7717 int gtid; 7718 kmp_root_t *root; 7719 kmp_info_t *thread; 7720 7721 /* first, make sure we are initialized so we can get our gtid */ 7722 7723 gtid = __kmp_entry_gtid(); 7724 thread = __kmp_threads[gtid]; 7725 7726 root = thread->th.th_root; 7727 7728 KA_TRACE(20, ("__kmp_user_set_library: enter T#%d, arg: %d, %d\n", gtid, arg, 7729 library_serial)); 7730 if (root->r.r_in_parallel) { /* Must be called in serial section of top-level 7731 thread */ 7732 KMP_WARNING(SetLibraryIncorrectCall); 7733 return; 7734 } 7735 7736 switch (arg) { 7737 case library_serial: 7738 thread->th.th_set_nproc = 0; 7739 set__nproc(thread, 1); 7740 break; 7741 case library_turnaround: 7742 thread->th.th_set_nproc = 0; 7743 set__nproc(thread, __kmp_dflt_team_nth ? __kmp_dflt_team_nth 7744 : __kmp_dflt_team_nth_ub); 7745 break; 7746 case library_throughput: 7747 thread->th.th_set_nproc = 0; 7748 set__nproc(thread, __kmp_dflt_team_nth ? __kmp_dflt_team_nth 7749 : __kmp_dflt_team_nth_ub); 7750 break; 7751 default: 7752 KMP_FATAL(UnknownLibraryType, arg); 7753 } 7754 7755 __kmp_aux_set_library(arg); 7756 } 7757 7758 void __kmp_aux_set_stacksize(size_t arg) { 7759 if (!__kmp_init_serial) 7760 __kmp_serial_initialize(); 7761 7762 #if KMP_OS_DARWIN 7763 if (arg & (0x1000 - 1)) { 7764 arg &= ~(0x1000 - 1); 7765 if (arg + 0x1000) /* check for overflow if we round up */ 7766 arg += 0x1000; 7767 } 7768 #endif 7769 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 7770 7771 /* only change the default stacksize before the first parallel region */ 7772 if (!TCR_4(__kmp_init_parallel)) { 7773 size_t value = arg; /* argument is in bytes */ 7774 7775 if (value < __kmp_sys_min_stksize) 7776 value = __kmp_sys_min_stksize; 7777 else if (value > KMP_MAX_STKSIZE) 7778 value = KMP_MAX_STKSIZE; 7779 7780 __kmp_stksize = value; 7781 7782 __kmp_env_stksize = TRUE; /* was KMP_STACKSIZE specified? */ 7783 } 7784 7785 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7786 } 7787 7788 /* set the behaviour of the runtime library */ 7789 /* TODO this can cause some odd behaviour with sibling parallelism... */ 7790 void __kmp_aux_set_library(enum library_type arg) { 7791 __kmp_library = arg; 7792 7793 switch (__kmp_library) { 7794 case library_serial: { 7795 KMP_INFORM(LibraryIsSerial); 7796 } break; 7797 case library_turnaround: 7798 if (__kmp_use_yield == 1 && !__kmp_use_yield_exp_set) 7799 __kmp_use_yield = 2; // only yield when oversubscribed 7800 break; 7801 case library_throughput: 7802 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) 7803 __kmp_dflt_blocktime = 200; 7804 break; 7805 default: 7806 KMP_FATAL(UnknownLibraryType, arg); 7807 } 7808 } 7809 7810 /* Getting team information common for all team API */ 7811 // Returns NULL if not in teams construct 7812 static kmp_team_t *__kmp_aux_get_team_info(int &teams_serialized) { 7813 kmp_info_t *thr = __kmp_entry_thread(); 7814 teams_serialized = 0; 7815 if (thr->th.th_teams_microtask) { 7816 kmp_team_t *team = thr->th.th_team; 7817 int tlevel = thr->th.th_teams_level; // the level of the teams construct 7818 int ii = team->t.t_level; 7819 teams_serialized = team->t.t_serialized; 7820 int level = tlevel + 1; 7821 KMP_DEBUG_ASSERT(ii >= tlevel); 7822 while (ii > level) { 7823 for (teams_serialized = team->t.t_serialized; 7824 (teams_serialized > 0) && (ii > level); teams_serialized--, ii--) { 7825 } 7826 if (team->t.t_serialized && (!teams_serialized)) { 7827 team = team->t.t_parent; 7828 continue; 7829 } 7830 if (ii > level) { 7831 team = team->t.t_parent; 7832 ii--; 7833 } 7834 } 7835 return team; 7836 } 7837 return NULL; 7838 } 7839 7840 int __kmp_aux_get_team_num() { 7841 int serialized; 7842 kmp_team_t *team = __kmp_aux_get_team_info(serialized); 7843 if (team) { 7844 if (serialized > 1) { 7845 return 0; // teams region is serialized ( 1 team of 1 thread ). 7846 } else { 7847 return team->t.t_master_tid; 7848 } 7849 } 7850 return 0; 7851 } 7852 7853 int __kmp_aux_get_num_teams() { 7854 int serialized; 7855 kmp_team_t *team = __kmp_aux_get_team_info(serialized); 7856 if (team) { 7857 if (serialized > 1) { 7858 return 1; 7859 } else { 7860 return team->t.t_parent->t.t_nproc; 7861 } 7862 } 7863 return 1; 7864 } 7865 7866 /* ------------------------------------------------------------------------ */ 7867 7868 #if OMP_50_ENABLED 7869 /* 7870 * Affinity Format Parser 7871 * 7872 * Field is in form of: %[[[0].]size]type 7873 * % and type are required (%% means print a literal '%') 7874 * type is either single char or long name surrounded by {}, 7875 * e.g., N or {num_threads} 7876 * 0 => leading zeros 7877 * . => right justified when size is specified 7878 * by default output is left justified 7879 * size is the *minimum* field length 7880 * All other characters are printed as is 7881 * 7882 * Available field types: 7883 * L {thread_level} - omp_get_level() 7884 * n {thread_num} - omp_get_thread_num() 7885 * h {host} - name of host machine 7886 * P {process_id} - process id (integer) 7887 * T {thread_identifier} - native thread identifier (integer) 7888 * N {num_threads} - omp_get_num_threads() 7889 * A {ancestor_tnum} - omp_get_ancestor_thread_num(omp_get_level()-1) 7890 * a {thread_affinity} - comma separated list of integers or integer ranges 7891 * (values of affinity mask) 7892 * 7893 * Implementation-specific field types can be added 7894 * If a type is unknown, print "undefined" 7895 */ 7896 7897 // Structure holding the short name, long name, and corresponding data type 7898 // for snprintf. A table of these will represent the entire valid keyword 7899 // field types. 7900 typedef struct kmp_affinity_format_field_t { 7901 char short_name; // from spec e.g., L -> thread level 7902 const char *long_name; // from spec thread_level -> thread level 7903 char field_format; // data type for snprintf (typically 'd' or 's' 7904 // for integer or string) 7905 } kmp_affinity_format_field_t; 7906 7907 static const kmp_affinity_format_field_t __kmp_affinity_format_table[] = { 7908 #if KMP_AFFINITY_SUPPORTED 7909 {'A', "thread_affinity", 's'}, 7910 #endif 7911 {'t', "team_num", 'd'}, 7912 {'T', "num_teams", 'd'}, 7913 {'L', "nesting_level", 'd'}, 7914 {'n', "thread_num", 'd'}, 7915 {'N', "num_threads", 'd'}, 7916 {'a', "ancestor_tnum", 'd'}, 7917 {'H', "host", 's'}, 7918 {'P', "process_id", 'd'}, 7919 {'i', "native_thread_id", 'd'}}; 7920 7921 // Return the number of characters it takes to hold field 7922 static int __kmp_aux_capture_affinity_field(int gtid, const kmp_info_t *th, 7923 const char **ptr, 7924 kmp_str_buf_t *field_buffer) { 7925 int rc, format_index, field_value; 7926 const char *width_left, *width_right; 7927 bool pad_zeros, right_justify, parse_long_name, found_valid_name; 7928 static const int FORMAT_SIZE = 20; 7929 char format[FORMAT_SIZE] = {0}; 7930 char absolute_short_name = 0; 7931 7932 KMP_DEBUG_ASSERT(gtid >= 0); 7933 KMP_DEBUG_ASSERT(th); 7934 KMP_DEBUG_ASSERT(**ptr == '%'); 7935 KMP_DEBUG_ASSERT(field_buffer); 7936 7937 __kmp_str_buf_clear(field_buffer); 7938 7939 // Skip the initial % 7940 (*ptr)++; 7941 7942 // Check for %% first 7943 if (**ptr == '%') { 7944 __kmp_str_buf_cat(field_buffer, "%", 1); 7945 (*ptr)++; // skip over the second % 7946 return 1; 7947 } 7948 7949 // Parse field modifiers if they are present 7950 pad_zeros = false; 7951 if (**ptr == '0') { 7952 pad_zeros = true; 7953 (*ptr)++; // skip over 0 7954 } 7955 right_justify = false; 7956 if (**ptr == '.') { 7957 right_justify = true; 7958 (*ptr)++; // skip over . 7959 } 7960 // Parse width of field: [width_left, width_right) 7961 width_left = width_right = NULL; 7962 if (**ptr >= '0' && **ptr <= '9') { 7963 width_left = *ptr; 7964 SKIP_DIGITS(*ptr); 7965 width_right = *ptr; 7966 } 7967 7968 // Create the format for KMP_SNPRINTF based on flags parsed above 7969 format_index = 0; 7970 format[format_index++] = '%'; 7971 if (!right_justify) 7972 format[format_index++] = '-'; 7973 if (pad_zeros) 7974 format[format_index++] = '0'; 7975 if (width_left && width_right) { 7976 int i = 0; 7977 // Only allow 8 digit number widths. 7978 // This also prevents overflowing format variable 7979 while (i < 8 && width_left < width_right) { 7980 format[format_index++] = *width_left; 7981 width_left++; 7982 i++; 7983 } 7984 } 7985 7986 // Parse a name (long or short) 7987 // Canonicalize the name into absolute_short_name 7988 found_valid_name = false; 7989 parse_long_name = (**ptr == '{'); 7990 if (parse_long_name) 7991 (*ptr)++; // skip initial left brace 7992 for (size_t i = 0; i < sizeof(__kmp_affinity_format_table) / 7993 sizeof(__kmp_affinity_format_table[0]); 7994 ++i) { 7995 char short_name = __kmp_affinity_format_table[i].short_name; 7996 const char *long_name = __kmp_affinity_format_table[i].long_name; 7997 char field_format = __kmp_affinity_format_table[i].field_format; 7998 if (parse_long_name) { 7999 int length = KMP_STRLEN(long_name); 8000 if (strncmp(*ptr, long_name, length) == 0) { 8001 found_valid_name = true; 8002 (*ptr) += length; // skip the long name 8003 } 8004 } else if (**ptr == short_name) { 8005 found_valid_name = true; 8006 (*ptr)++; // skip the short name 8007 } 8008 if (found_valid_name) { 8009 format[format_index++] = field_format; 8010 format[format_index++] = '\0'; 8011 absolute_short_name = short_name; 8012 break; 8013 } 8014 } 8015 if (parse_long_name) { 8016 if (**ptr != '}') { 8017 absolute_short_name = 0; 8018 } else { 8019 (*ptr)++; // skip over the right brace 8020 } 8021 } 8022 8023 // Attempt to fill the buffer with the requested 8024 // value using snprintf within __kmp_str_buf_print() 8025 switch (absolute_short_name) { 8026 case 't': 8027 rc = __kmp_str_buf_print(field_buffer, format, __kmp_aux_get_team_num()); 8028 break; 8029 case 'T': 8030 rc = __kmp_str_buf_print(field_buffer, format, __kmp_aux_get_num_teams()); 8031 break; 8032 case 'L': 8033 rc = __kmp_str_buf_print(field_buffer, format, th->th.th_team->t.t_level); 8034 break; 8035 case 'n': 8036 rc = __kmp_str_buf_print(field_buffer, format, __kmp_tid_from_gtid(gtid)); 8037 break; 8038 case 'H': { 8039 static const int BUFFER_SIZE = 256; 8040 char buf[BUFFER_SIZE]; 8041 __kmp_expand_host_name(buf, BUFFER_SIZE); 8042 rc = __kmp_str_buf_print(field_buffer, format, buf); 8043 } break; 8044 case 'P': 8045 rc = __kmp_str_buf_print(field_buffer, format, getpid()); 8046 break; 8047 case 'i': 8048 rc = __kmp_str_buf_print(field_buffer, format, __kmp_gettid()); 8049 break; 8050 case 'N': 8051 rc = __kmp_str_buf_print(field_buffer, format, th->th.th_team->t.t_nproc); 8052 break; 8053 case 'a': 8054 field_value = 8055 __kmp_get_ancestor_thread_num(gtid, th->th.th_team->t.t_level - 1); 8056 rc = __kmp_str_buf_print(field_buffer, format, field_value); 8057 break; 8058 #if KMP_AFFINITY_SUPPORTED 8059 case 'A': { 8060 kmp_str_buf_t buf; 8061 __kmp_str_buf_init(&buf); 8062 __kmp_affinity_str_buf_mask(&buf, th->th.th_affin_mask); 8063 rc = __kmp_str_buf_print(field_buffer, format, buf.str); 8064 __kmp_str_buf_free(&buf); 8065 } break; 8066 #endif 8067 default: 8068 // According to spec, If an implementation does not have info for field 8069 // type, then "undefined" is printed 8070 rc = __kmp_str_buf_print(field_buffer, "%s", "undefined"); 8071 // Skip the field 8072 if (parse_long_name) { 8073 SKIP_TOKEN(*ptr); 8074 if (**ptr == '}') 8075 (*ptr)++; 8076 } else { 8077 (*ptr)++; 8078 } 8079 } 8080 8081 KMP_ASSERT(format_index <= FORMAT_SIZE); 8082 return rc; 8083 } 8084 8085 /* 8086 * Return number of characters needed to hold the affinity string 8087 * (not including null byte character) 8088 * The resultant string is printed to buffer, which the caller can then 8089 * handle afterwards 8090 */ 8091 size_t __kmp_aux_capture_affinity(int gtid, const char *format, 8092 kmp_str_buf_t *buffer) { 8093 const char *parse_ptr; 8094 size_t retval; 8095 const kmp_info_t *th; 8096 kmp_str_buf_t field; 8097 8098 KMP_DEBUG_ASSERT(buffer); 8099 KMP_DEBUG_ASSERT(gtid >= 0); 8100 8101 __kmp_str_buf_init(&field); 8102 __kmp_str_buf_clear(buffer); 8103 8104 th = __kmp_threads[gtid]; 8105 retval = 0; 8106 8107 // If format is NULL or zero-length string, then we use 8108 // affinity-format-var ICV 8109 parse_ptr = format; 8110 if (parse_ptr == NULL || *parse_ptr == '\0') { 8111 parse_ptr = __kmp_affinity_format; 8112 } 8113 KMP_DEBUG_ASSERT(parse_ptr); 8114 8115 while (*parse_ptr != '\0') { 8116 // Parse a field 8117 if (*parse_ptr == '%') { 8118 // Put field in the buffer 8119 int rc = __kmp_aux_capture_affinity_field(gtid, th, &parse_ptr, &field); 8120 __kmp_str_buf_catbuf(buffer, &field); 8121 retval += rc; 8122 } else { 8123 // Put literal character in buffer 8124 __kmp_str_buf_cat(buffer, parse_ptr, 1); 8125 retval++; 8126 parse_ptr++; 8127 } 8128 } 8129 __kmp_str_buf_free(&field); 8130 return retval; 8131 } 8132 8133 // Displays the affinity string to stdout 8134 void __kmp_aux_display_affinity(int gtid, const char *format) { 8135 kmp_str_buf_t buf; 8136 __kmp_str_buf_init(&buf); 8137 __kmp_aux_capture_affinity(gtid, format, &buf); 8138 __kmp_fprintf(kmp_out, "%s" KMP_END_OF_LINE, buf.str); 8139 __kmp_str_buf_free(&buf); 8140 } 8141 #endif // OMP_50_ENABLED 8142 8143 /* ------------------------------------------------------------------------ */ 8144 8145 void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid) { 8146 int blocktime = arg; /* argument is in milliseconds */ 8147 #if KMP_USE_MONITOR 8148 int bt_intervals; 8149 #endif 8150 int bt_set; 8151 8152 __kmp_save_internal_controls(thread); 8153 8154 /* Normalize and set blocktime for the teams */ 8155 if (blocktime < KMP_MIN_BLOCKTIME) 8156 blocktime = KMP_MIN_BLOCKTIME; 8157 else if (blocktime > KMP_MAX_BLOCKTIME) 8158 blocktime = KMP_MAX_BLOCKTIME; 8159 8160 set__blocktime_team(thread->th.th_team, tid, blocktime); 8161 set__blocktime_team(thread->th.th_serial_team, 0, blocktime); 8162 8163 #if KMP_USE_MONITOR 8164 /* Calculate and set blocktime intervals for the teams */ 8165 bt_intervals = KMP_INTERVALS_FROM_BLOCKTIME(blocktime, __kmp_monitor_wakeups); 8166 8167 set__bt_intervals_team(thread->th.th_team, tid, bt_intervals); 8168 set__bt_intervals_team(thread->th.th_serial_team, 0, bt_intervals); 8169 #endif 8170 8171 /* Set whether blocktime has been set to "TRUE" */ 8172 bt_set = TRUE; 8173 8174 set__bt_set_team(thread->th.th_team, tid, bt_set); 8175 set__bt_set_team(thread->th.th_serial_team, 0, bt_set); 8176 #if KMP_USE_MONITOR 8177 KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d, " 8178 "bt_intervals=%d, monitor_updates=%d\n", 8179 __kmp_gtid_from_tid(tid, thread->th.th_team), 8180 thread->th.th_team->t.t_id, tid, blocktime, bt_intervals, 8181 __kmp_monitor_wakeups)); 8182 #else 8183 KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d\n", 8184 __kmp_gtid_from_tid(tid, thread->th.th_team), 8185 thread->th.th_team->t.t_id, tid, blocktime)); 8186 #endif 8187 } 8188 8189 void __kmp_aux_set_defaults(char const *str, int len) { 8190 if (!__kmp_init_serial) { 8191 __kmp_serial_initialize(); 8192 } 8193 __kmp_env_initialize(str); 8194 8195 if (__kmp_settings 8196 #if OMP_40_ENABLED 8197 || __kmp_display_env || __kmp_display_env_verbose 8198 #endif // OMP_40_ENABLED 8199 ) { 8200 __kmp_env_print(); 8201 } 8202 } // __kmp_aux_set_defaults 8203 8204 /* ------------------------------------------------------------------------ */ 8205 /* internal fast reduction routines */ 8206 8207 PACKED_REDUCTION_METHOD_T 8208 __kmp_determine_reduction_method( 8209 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, 8210 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data), 8211 kmp_critical_name *lck) { 8212 8213 // Default reduction method: critical construct ( lck != NULL, like in current 8214 // PAROPT ) 8215 // If ( reduce_data!=NULL && reduce_func!=NULL ): the tree-reduction method 8216 // can be selected by RTL 8217 // If loc->flags contains KMP_IDENT_ATOMIC_REDUCE, the atomic reduce method 8218 // can be selected by RTL 8219 // Finally, it's up to OpenMP RTL to make a decision on which method to select 8220 // among generated by PAROPT. 8221 8222 PACKED_REDUCTION_METHOD_T retval; 8223 8224 int team_size; 8225 8226 KMP_DEBUG_ASSERT(loc); // it would be nice to test ( loc != 0 ) 8227 KMP_DEBUG_ASSERT(lck); // it would be nice to test ( lck != 0 ) 8228 8229 #define FAST_REDUCTION_ATOMIC_METHOD_GENERATED \ 8230 ((loc->flags & (KMP_IDENT_ATOMIC_REDUCE)) == (KMP_IDENT_ATOMIC_REDUCE)) 8231 #define FAST_REDUCTION_TREE_METHOD_GENERATED ((reduce_data) && (reduce_func)) 8232 8233 retval = critical_reduce_block; 8234 8235 // another choice of getting a team size (with 1 dynamic deference) is slower 8236 team_size = __kmp_get_team_num_threads(global_tid); 8237 if (team_size == 1) { 8238 8239 retval = empty_reduce_block; 8240 8241 } else { 8242 8243 int atomic_available = FAST_REDUCTION_ATOMIC_METHOD_GENERATED; 8244 8245 #if KMP_ARCH_X86_64 || KMP_ARCH_PPC64 || KMP_ARCH_AARCH64 || KMP_ARCH_MIPS64 8246 8247 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 8248 KMP_OS_OPENBSD || KMP_OS_WINDOWS || KMP_OS_DARWIN || KMP_OS_HURD 8249 8250 int teamsize_cutoff = 4; 8251 8252 #if KMP_MIC_SUPPORTED 8253 if (__kmp_mic_type != non_mic) { 8254 teamsize_cutoff = 8; 8255 } 8256 #endif 8257 int tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED; 8258 if (tree_available) { 8259 if (team_size <= teamsize_cutoff) { 8260 if (atomic_available) { 8261 retval = atomic_reduce_block; 8262 } 8263 } else { 8264 retval = TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER; 8265 } 8266 } else if (atomic_available) { 8267 retval = atomic_reduce_block; 8268 } 8269 #else 8270 #error "Unknown or unsupported OS" 8271 #endif // KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || 8272 // KMP_OS_OPENBSD || KMP_OS_WINDOWS || KMP_OS_DARWIN || KMP_OS_HURD 8273 8274 #elif KMP_ARCH_X86 || KMP_ARCH_ARM || KMP_ARCH_AARCH || KMP_ARCH_MIPS 8275 8276 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS || KMP_OS_HURD 8277 8278 // basic tuning 8279 8280 if (atomic_available) { 8281 if (num_vars <= 2) { // && ( team_size <= 8 ) due to false-sharing ??? 8282 retval = atomic_reduce_block; 8283 } 8284 } // otherwise: use critical section 8285 8286 #elif KMP_OS_DARWIN 8287 8288 int tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED; 8289 if (atomic_available && (num_vars <= 3)) { 8290 retval = atomic_reduce_block; 8291 } else if (tree_available) { 8292 if ((reduce_size > (9 * sizeof(kmp_real64))) && 8293 (reduce_size < (2000 * sizeof(kmp_real64)))) { 8294 retval = TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER; 8295 } 8296 } // otherwise: use critical section 8297 8298 #else 8299 #error "Unknown or unsupported OS" 8300 #endif 8301 8302 #else 8303 #error "Unknown or unsupported architecture" 8304 #endif 8305 } 8306 8307 // KMP_FORCE_REDUCTION 8308 8309 // If the team is serialized (team_size == 1), ignore the forced reduction 8310 // method and stay with the unsynchronized method (empty_reduce_block) 8311 if (__kmp_force_reduction_method != reduction_method_not_defined && 8312 team_size != 1) { 8313 8314 PACKED_REDUCTION_METHOD_T forced_retval = critical_reduce_block; 8315 8316 int atomic_available, tree_available; 8317 8318 switch ((forced_retval = __kmp_force_reduction_method)) { 8319 case critical_reduce_block: 8320 KMP_ASSERT(lck); // lck should be != 0 8321 break; 8322 8323 case atomic_reduce_block: 8324 atomic_available = FAST_REDUCTION_ATOMIC_METHOD_GENERATED; 8325 if (!atomic_available) { 8326 KMP_WARNING(RedMethodNotSupported, "atomic"); 8327 forced_retval = critical_reduce_block; 8328 } 8329 break; 8330 8331 case tree_reduce_block: 8332 tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED; 8333 if (!tree_available) { 8334 KMP_WARNING(RedMethodNotSupported, "tree"); 8335 forced_retval = critical_reduce_block; 8336 } else { 8337 #if KMP_FAST_REDUCTION_BARRIER 8338 forced_retval = TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER; 8339 #endif 8340 } 8341 break; 8342 8343 default: 8344 KMP_ASSERT(0); // "unsupported method specified" 8345 } 8346 8347 retval = forced_retval; 8348 } 8349 8350 KA_TRACE(10, ("reduction method selected=%08x\n", retval)); 8351 8352 #undef FAST_REDUCTION_TREE_METHOD_GENERATED 8353 #undef FAST_REDUCTION_ATOMIC_METHOD_GENERATED 8354 8355 return (retval); 8356 } 8357 8358 // this function is for testing set/get/determine reduce method 8359 kmp_int32 __kmp_get_reduce_method(void) { 8360 return ((__kmp_entry_thread()->th.th_local.packed_reduction_method) >> 8); 8361 } 8362 8363 #if OMP_50_ENABLED 8364 8365 // Soft pause sets up threads to ignore blocktime and just go to sleep. 8366 // Spin-wait code checks __kmp_pause_status and reacts accordingly. 8367 void __kmp_soft_pause() { __kmp_pause_status = kmp_soft_paused; } 8368 8369 // Hard pause shuts down the runtime completely. Resume happens naturally when 8370 // OpenMP is used subsequently. 8371 void __kmp_hard_pause() { 8372 __kmp_pause_status = kmp_hard_paused; 8373 __kmp_internal_end_thread(-1); 8374 } 8375 8376 // Soft resume sets __kmp_pause_status, and wakes up all threads. 8377 void __kmp_resume_if_soft_paused() { 8378 if (__kmp_pause_status == kmp_soft_paused) { 8379 __kmp_pause_status = kmp_not_paused; 8380 8381 for (int gtid = 1; gtid < __kmp_threads_capacity; ++gtid) { 8382 kmp_info_t *thread = __kmp_threads[gtid]; 8383 if (thread) { // Wake it if sleeping 8384 kmp_flag_64 fl(&thread->th.th_bar[bs_forkjoin_barrier].bb.b_go, thread); 8385 if (fl.is_sleeping()) 8386 fl.resume(gtid); 8387 else if (__kmp_try_suspend_mx(thread)) { // got suspend lock 8388 __kmp_unlock_suspend_mx(thread); // unlock it; it won't sleep 8389 } else { // thread holds the lock and may sleep soon 8390 do { // until either the thread sleeps, or we can get the lock 8391 if (fl.is_sleeping()) { 8392 fl.resume(gtid); 8393 break; 8394 } else if (__kmp_try_suspend_mx(thread)) { 8395 __kmp_unlock_suspend_mx(thread); 8396 break; 8397 } 8398 } while (1); 8399 } 8400 } 8401 } 8402 } 8403 } 8404 8405 // This function is called via __kmpc_pause_resource. Returns 0 if successful. 8406 // TODO: add warning messages 8407 int __kmp_pause_resource(kmp_pause_status_t level) { 8408 if (level == kmp_not_paused) { // requesting resume 8409 if (__kmp_pause_status == kmp_not_paused) { 8410 // error message about runtime not being paused, so can't resume 8411 return 1; 8412 } else { 8413 KMP_DEBUG_ASSERT(__kmp_pause_status == kmp_soft_paused || 8414 __kmp_pause_status == kmp_hard_paused); 8415 __kmp_pause_status = kmp_not_paused; 8416 return 0; 8417 } 8418 } else if (level == kmp_soft_paused) { // requesting soft pause 8419 if (__kmp_pause_status != kmp_not_paused) { 8420 // error message about already being paused 8421 return 1; 8422 } else { 8423 __kmp_soft_pause(); 8424 return 0; 8425 } 8426 } else if (level == kmp_hard_paused) { // requesting hard pause 8427 if (__kmp_pause_status != kmp_not_paused) { 8428 // error message about already being paused 8429 return 1; 8430 } else { 8431 __kmp_hard_pause(); 8432 return 0; 8433 } 8434 } else { 8435 // error message about invalid level 8436 return 1; 8437 } 8438 } 8439 8440 #endif // OMP_50_ENABLED 8441