1 /* 2 * kmp_runtime.cpp -- KPTS runtime support library 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // The LLVM Compiler Infrastructure 8 // 9 // This file is dual licensed under the MIT and the University of Illinois Open 10 // Source Licenses. See LICENSE.txt for details. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "kmp.h" 15 #include "kmp_affinity.h" 16 #include "kmp_atomic.h" 17 #include "kmp_environment.h" 18 #include "kmp_error.h" 19 #include "kmp_i18n.h" 20 #include "kmp_io.h" 21 #include "kmp_itt.h" 22 #include "kmp_settings.h" 23 #include "kmp_stats.h" 24 #include "kmp_str.h" 25 #include "kmp_wait_release.h" 26 #include "kmp_wrapper_getpid.h" 27 #include "kmp_dispatch.h" 28 #if KMP_USE_HIER_SCHED 29 #include "kmp_dispatch_hier.h" 30 #endif 31 32 #if OMPT_SUPPORT 33 #include "ompt-specific.h" 34 #endif 35 36 /* these are temporary issues to be dealt with */ 37 #define KMP_USE_PRCTL 0 38 39 #if KMP_OS_WINDOWS 40 #include <process.h> 41 #endif 42 43 #include "tsan_annotations.h" 44 45 #if defined(KMP_GOMP_COMPAT) 46 char const __kmp_version_alt_comp[] = 47 KMP_VERSION_PREFIX "alternative compiler support: yes"; 48 #endif /* defined(KMP_GOMP_COMPAT) */ 49 50 char const __kmp_version_omp_api[] = KMP_VERSION_PREFIX "API version: " 51 #if OMP_50_ENABLED 52 "5.0 (201611)"; 53 #elif OMP_45_ENABLED 54 "4.5 (201511)"; 55 #elif OMP_40_ENABLED 56 "4.0 (201307)"; 57 #else 58 "3.1 (201107)"; 59 #endif 60 61 #ifdef KMP_DEBUG 62 char const __kmp_version_lock[] = 63 KMP_VERSION_PREFIX "lock type: run time selectable"; 64 #endif /* KMP_DEBUG */ 65 66 #define KMP_MIN(x, y) ((x) < (y) ? (x) : (y)) 67 68 /* ------------------------------------------------------------------------ */ 69 70 #if KMP_USE_MONITOR 71 kmp_info_t __kmp_monitor; 72 #endif 73 74 /* Forward declarations */ 75 76 void __kmp_cleanup(void); 77 78 static void __kmp_initialize_info(kmp_info_t *, kmp_team_t *, int tid, 79 int gtid); 80 static void __kmp_initialize_team(kmp_team_t *team, int new_nproc, 81 kmp_internal_control_t *new_icvs, 82 ident_t *loc); 83 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 84 static void __kmp_partition_places(kmp_team_t *team, 85 int update_master_only = 0); 86 #endif 87 static void __kmp_do_serial_initialize(void); 88 void __kmp_fork_barrier(int gtid, int tid); 89 void __kmp_join_barrier(int gtid); 90 void __kmp_setup_icv_copy(kmp_team_t *team, int new_nproc, 91 kmp_internal_control_t *new_icvs, ident_t *loc); 92 93 #ifdef USE_LOAD_BALANCE 94 static int __kmp_load_balance_nproc(kmp_root_t *root, int set_nproc); 95 #endif 96 97 static int __kmp_expand_threads(int nNeed); 98 #if KMP_OS_WINDOWS 99 static int __kmp_unregister_root_other_thread(int gtid); 100 #endif 101 static void __kmp_unregister_library(void); // called by __kmp_internal_end() 102 static void __kmp_reap_thread(kmp_info_t *thread, int is_root); 103 kmp_info_t *__kmp_thread_pool_insert_pt = NULL; 104 105 /* Calculate the identifier of the current thread */ 106 /* fast (and somewhat portable) way to get unique identifier of executing 107 thread. Returns KMP_GTID_DNE if we haven't been assigned a gtid. */ 108 int __kmp_get_global_thread_id() { 109 int i; 110 kmp_info_t **other_threads; 111 size_t stack_data; 112 char *stack_addr; 113 size_t stack_size; 114 char *stack_base; 115 116 KA_TRACE( 117 1000, 118 ("*** __kmp_get_global_thread_id: entering, nproc=%d all_nproc=%d\n", 119 __kmp_nth, __kmp_all_nth)); 120 121 /* JPH - to handle the case where __kmpc_end(0) is called immediately prior to 122 a parallel region, made it return KMP_GTID_DNE to force serial_initialize 123 by caller. Had to handle KMP_GTID_DNE at all call-sites, or else guarantee 124 __kmp_init_gtid for this to work. */ 125 126 if (!TCR_4(__kmp_init_gtid)) 127 return KMP_GTID_DNE; 128 129 #ifdef KMP_TDATA_GTID 130 if (TCR_4(__kmp_gtid_mode) >= 3) { 131 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using TDATA\n")); 132 return __kmp_gtid; 133 } 134 #endif 135 if (TCR_4(__kmp_gtid_mode) >= 2) { 136 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using keyed TLS\n")); 137 return __kmp_gtid_get_specific(); 138 } 139 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using internal alg.\n")); 140 141 stack_addr = (char *)&stack_data; 142 other_threads = __kmp_threads; 143 144 /* ATT: The code below is a source of potential bugs due to unsynchronized 145 access to __kmp_threads array. For example: 146 1. Current thread loads other_threads[i] to thr and checks it, it is 147 non-NULL. 148 2. Current thread is suspended by OS. 149 3. Another thread unregisters and finishes (debug versions of free() 150 may fill memory with something like 0xEF). 151 4. Current thread is resumed. 152 5. Current thread reads junk from *thr. 153 TODO: Fix it. --ln */ 154 155 for (i = 0; i < __kmp_threads_capacity; i++) { 156 157 kmp_info_t *thr = (kmp_info_t *)TCR_SYNC_PTR(other_threads[i]); 158 if (!thr) 159 continue; 160 161 stack_size = (size_t)TCR_PTR(thr->th.th_info.ds.ds_stacksize); 162 stack_base = (char *)TCR_PTR(thr->th.th_info.ds.ds_stackbase); 163 164 /* stack grows down -- search through all of the active threads */ 165 166 if (stack_addr <= stack_base) { 167 size_t stack_diff = stack_base - stack_addr; 168 169 if (stack_diff <= stack_size) { 170 /* The only way we can be closer than the allocated */ 171 /* stack size is if we are running on this thread. */ 172 KMP_DEBUG_ASSERT(__kmp_gtid_get_specific() == i); 173 return i; 174 } 175 } 176 } 177 178 /* get specific to try and determine our gtid */ 179 KA_TRACE(1000, 180 ("*** __kmp_get_global_thread_id: internal alg. failed to find " 181 "thread, using TLS\n")); 182 i = __kmp_gtid_get_specific(); 183 184 /*fprintf( stderr, "=== %d\n", i ); */ /* GROO */ 185 186 /* if we havn't been assigned a gtid, then return code */ 187 if (i < 0) 188 return i; 189 190 /* dynamically updated stack window for uber threads to avoid get_specific 191 call */ 192 if (!TCR_4(other_threads[i]->th.th_info.ds.ds_stackgrow)) { 193 KMP_FATAL(StackOverflow, i); 194 } 195 196 stack_base = (char *)other_threads[i]->th.th_info.ds.ds_stackbase; 197 if (stack_addr > stack_base) { 198 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stackbase, stack_addr); 199 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stacksize, 200 other_threads[i]->th.th_info.ds.ds_stacksize + stack_addr - 201 stack_base); 202 } else { 203 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stacksize, 204 stack_base - stack_addr); 205 } 206 207 /* Reprint stack bounds for ubermaster since they have been refined */ 208 if (__kmp_storage_map) { 209 char *stack_end = (char *)other_threads[i]->th.th_info.ds.ds_stackbase; 210 char *stack_beg = stack_end - other_threads[i]->th.th_info.ds.ds_stacksize; 211 __kmp_print_storage_map_gtid(i, stack_beg, stack_end, 212 other_threads[i]->th.th_info.ds.ds_stacksize, 213 "th_%d stack (refinement)", i); 214 } 215 return i; 216 } 217 218 int __kmp_get_global_thread_id_reg() { 219 int gtid; 220 221 if (!__kmp_init_serial) { 222 gtid = KMP_GTID_DNE; 223 } else 224 #ifdef KMP_TDATA_GTID 225 if (TCR_4(__kmp_gtid_mode) >= 3) { 226 KA_TRACE(1000, ("*** __kmp_get_global_thread_id_reg: using TDATA\n")); 227 gtid = __kmp_gtid; 228 } else 229 #endif 230 if (TCR_4(__kmp_gtid_mode) >= 2) { 231 KA_TRACE(1000, ("*** __kmp_get_global_thread_id_reg: using keyed TLS\n")); 232 gtid = __kmp_gtid_get_specific(); 233 } else { 234 KA_TRACE(1000, 235 ("*** __kmp_get_global_thread_id_reg: using internal alg.\n")); 236 gtid = __kmp_get_global_thread_id(); 237 } 238 239 /* we must be a new uber master sibling thread */ 240 if (gtid == KMP_GTID_DNE) { 241 KA_TRACE(10, 242 ("__kmp_get_global_thread_id_reg: Encountered new root thread. " 243 "Registering a new gtid.\n")); 244 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 245 if (!__kmp_init_serial) { 246 __kmp_do_serial_initialize(); 247 gtid = __kmp_gtid_get_specific(); 248 } else { 249 gtid = __kmp_register_root(FALSE); 250 } 251 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 252 /*__kmp_printf( "+++ %d\n", gtid ); */ /* GROO */ 253 } 254 255 KMP_DEBUG_ASSERT(gtid >= 0); 256 257 return gtid; 258 } 259 260 /* caller must hold forkjoin_lock */ 261 void __kmp_check_stack_overlap(kmp_info_t *th) { 262 int f; 263 char *stack_beg = NULL; 264 char *stack_end = NULL; 265 int gtid; 266 267 KA_TRACE(10, ("__kmp_check_stack_overlap: called\n")); 268 if (__kmp_storage_map) { 269 stack_end = (char *)th->th.th_info.ds.ds_stackbase; 270 stack_beg = stack_end - th->th.th_info.ds.ds_stacksize; 271 272 gtid = __kmp_gtid_from_thread(th); 273 274 if (gtid == KMP_GTID_MONITOR) { 275 __kmp_print_storage_map_gtid( 276 gtid, stack_beg, stack_end, th->th.th_info.ds.ds_stacksize, 277 "th_%s stack (%s)", "mon", 278 (th->th.th_info.ds.ds_stackgrow) ? "initial" : "actual"); 279 } else { 280 __kmp_print_storage_map_gtid( 281 gtid, stack_beg, stack_end, th->th.th_info.ds.ds_stacksize, 282 "th_%d stack (%s)", gtid, 283 (th->th.th_info.ds.ds_stackgrow) ? "initial" : "actual"); 284 } 285 } 286 287 /* No point in checking ubermaster threads since they use refinement and 288 * cannot overlap */ 289 gtid = __kmp_gtid_from_thread(th); 290 if (__kmp_env_checks == TRUE && !KMP_UBER_GTID(gtid)) { 291 KA_TRACE(10, 292 ("__kmp_check_stack_overlap: performing extensive checking\n")); 293 if (stack_beg == NULL) { 294 stack_end = (char *)th->th.th_info.ds.ds_stackbase; 295 stack_beg = stack_end - th->th.th_info.ds.ds_stacksize; 296 } 297 298 for (f = 0; f < __kmp_threads_capacity; f++) { 299 kmp_info_t *f_th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[f]); 300 301 if (f_th && f_th != th) { 302 char *other_stack_end = 303 (char *)TCR_PTR(f_th->th.th_info.ds.ds_stackbase); 304 char *other_stack_beg = 305 other_stack_end - (size_t)TCR_PTR(f_th->th.th_info.ds.ds_stacksize); 306 if ((stack_beg > other_stack_beg && stack_beg < other_stack_end) || 307 (stack_end > other_stack_beg && stack_end < other_stack_end)) { 308 309 /* Print the other stack values before the abort */ 310 if (__kmp_storage_map) 311 __kmp_print_storage_map_gtid( 312 -1, other_stack_beg, other_stack_end, 313 (size_t)TCR_PTR(f_th->th.th_info.ds.ds_stacksize), 314 "th_%d stack (overlapped)", __kmp_gtid_from_thread(f_th)); 315 316 __kmp_fatal(KMP_MSG(StackOverlap), KMP_HNT(ChangeStackLimit), 317 __kmp_msg_null); 318 } 319 } 320 } 321 } 322 KA_TRACE(10, ("__kmp_check_stack_overlap: returning\n")); 323 } 324 325 /* ------------------------------------------------------------------------ */ 326 327 void __kmp_infinite_loop(void) { 328 static int done = FALSE; 329 330 while (!done) { 331 KMP_YIELD(1); 332 } 333 } 334 335 #define MAX_MESSAGE 512 336 337 void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2, size_t size, 338 char const *format, ...) { 339 char buffer[MAX_MESSAGE]; 340 va_list ap; 341 342 va_start(ap, format); 343 KMP_SNPRINTF(buffer, sizeof(buffer), "OMP storage map: %p %p%8lu %s\n", p1, 344 p2, (unsigned long)size, format); 345 __kmp_acquire_bootstrap_lock(&__kmp_stdio_lock); 346 __kmp_vprintf(kmp_err, buffer, ap); 347 #if KMP_PRINT_DATA_PLACEMENT 348 int node; 349 if (gtid >= 0) { 350 if (p1 <= p2 && (char *)p2 - (char *)p1 == size) { 351 if (__kmp_storage_map_verbose) { 352 node = __kmp_get_host_node(p1); 353 if (node < 0) /* doesn't work, so don't try this next time */ 354 __kmp_storage_map_verbose = FALSE; 355 else { 356 char *last; 357 int lastNode; 358 int localProc = __kmp_get_cpu_from_gtid(gtid); 359 360 const int page_size = KMP_GET_PAGE_SIZE(); 361 362 p1 = (void *)((size_t)p1 & ~((size_t)page_size - 1)); 363 p2 = (void *)(((size_t)p2 - 1) & ~((size_t)page_size - 1)); 364 if (localProc >= 0) 365 __kmp_printf_no_lock(" GTID %d localNode %d\n", gtid, 366 localProc >> 1); 367 else 368 __kmp_printf_no_lock(" GTID %d\n", gtid); 369 #if KMP_USE_PRCTL 370 /* The more elaborate format is disabled for now because of the prctl 371 * hanging bug. */ 372 do { 373 last = p1; 374 lastNode = node; 375 /* This loop collates adjacent pages with the same host node. */ 376 do { 377 (char *)p1 += page_size; 378 } while (p1 <= p2 && (node = __kmp_get_host_node(p1)) == lastNode); 379 __kmp_printf_no_lock(" %p-%p memNode %d\n", last, (char *)p1 - 1, 380 lastNode); 381 } while (p1 <= p2); 382 #else 383 __kmp_printf_no_lock(" %p-%p memNode %d\n", p1, 384 (char *)p1 + (page_size - 1), 385 __kmp_get_host_node(p1)); 386 if (p1 < p2) { 387 __kmp_printf_no_lock(" %p-%p memNode %d\n", p2, 388 (char *)p2 + (page_size - 1), 389 __kmp_get_host_node(p2)); 390 } 391 #endif 392 } 393 } 394 } else 395 __kmp_printf_no_lock(" %s\n", KMP_I18N_STR(StorageMapWarning)); 396 } 397 #endif /* KMP_PRINT_DATA_PLACEMENT */ 398 __kmp_release_bootstrap_lock(&__kmp_stdio_lock); 399 } 400 401 void __kmp_warn(char const *format, ...) { 402 char buffer[MAX_MESSAGE]; 403 va_list ap; 404 405 if (__kmp_generate_warnings == kmp_warnings_off) { 406 return; 407 } 408 409 va_start(ap, format); 410 411 KMP_SNPRINTF(buffer, sizeof(buffer), "OMP warning: %s\n", format); 412 __kmp_acquire_bootstrap_lock(&__kmp_stdio_lock); 413 __kmp_vprintf(kmp_err, buffer, ap); 414 __kmp_release_bootstrap_lock(&__kmp_stdio_lock); 415 416 va_end(ap); 417 } 418 419 void __kmp_abort_process() { 420 // Later threads may stall here, but that's ok because abort() will kill them. 421 __kmp_acquire_bootstrap_lock(&__kmp_exit_lock); 422 423 if (__kmp_debug_buf) { 424 __kmp_dump_debug_buffer(); 425 } 426 427 if (KMP_OS_WINDOWS) { 428 // Let other threads know of abnormal termination and prevent deadlock 429 // if abort happened during library initialization or shutdown 430 __kmp_global.g.g_abort = SIGABRT; 431 432 /* On Windows* OS by default abort() causes pop-up error box, which stalls 433 nightly testing. Unfortunately, we cannot reliably suppress pop-up error 434 boxes. _set_abort_behavior() works well, but this function is not 435 available in VS7 (this is not problem for DLL, but it is a problem for 436 static OpenMP RTL). SetErrorMode (and so, timelimit utility) does not 437 help, at least in some versions of MS C RTL. 438 439 It seems following sequence is the only way to simulate abort() and 440 avoid pop-up error box. */ 441 raise(SIGABRT); 442 _exit(3); // Just in case, if signal ignored, exit anyway. 443 } else { 444 abort(); 445 } 446 447 __kmp_infinite_loop(); 448 __kmp_release_bootstrap_lock(&__kmp_exit_lock); 449 450 } // __kmp_abort_process 451 452 void __kmp_abort_thread(void) { 453 // TODO: Eliminate g_abort global variable and this function. 454 // In case of abort just call abort(), it will kill all the threads. 455 __kmp_infinite_loop(); 456 } // __kmp_abort_thread 457 458 /* Print out the storage map for the major kmp_info_t thread data structures 459 that are allocated together. */ 460 461 static void __kmp_print_thread_storage_map(kmp_info_t *thr, int gtid) { 462 __kmp_print_storage_map_gtid(gtid, thr, thr + 1, sizeof(kmp_info_t), "th_%d", 463 gtid); 464 465 __kmp_print_storage_map_gtid(gtid, &thr->th.th_info, &thr->th.th_team, 466 sizeof(kmp_desc_t), "th_%d.th_info", gtid); 467 468 __kmp_print_storage_map_gtid(gtid, &thr->th.th_local, &thr->th.th_pri_head, 469 sizeof(kmp_local_t), "th_%d.th_local", gtid); 470 471 __kmp_print_storage_map_gtid( 472 gtid, &thr->th.th_bar[0], &thr->th.th_bar[bs_last_barrier], 473 sizeof(kmp_balign_t) * bs_last_barrier, "th_%d.th_bar", gtid); 474 475 __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_plain_barrier], 476 &thr->th.th_bar[bs_plain_barrier + 1], 477 sizeof(kmp_balign_t), "th_%d.th_bar[plain]", 478 gtid); 479 480 __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_forkjoin_barrier], 481 &thr->th.th_bar[bs_forkjoin_barrier + 1], 482 sizeof(kmp_balign_t), "th_%d.th_bar[forkjoin]", 483 gtid); 484 485 #if KMP_FAST_REDUCTION_BARRIER 486 __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_reduction_barrier], 487 &thr->th.th_bar[bs_reduction_barrier + 1], 488 sizeof(kmp_balign_t), "th_%d.th_bar[reduction]", 489 gtid); 490 #endif // KMP_FAST_REDUCTION_BARRIER 491 } 492 493 /* Print out the storage map for the major kmp_team_t team data structures 494 that are allocated together. */ 495 496 static void __kmp_print_team_storage_map(const char *header, kmp_team_t *team, 497 int team_id, int num_thr) { 498 int num_disp_buff = team->t.t_max_nproc > 1 ? __kmp_dispatch_num_buffers : 2; 499 __kmp_print_storage_map_gtid(-1, team, team + 1, sizeof(kmp_team_t), "%s_%d", 500 header, team_id); 501 502 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[0], 503 &team->t.t_bar[bs_last_barrier], 504 sizeof(kmp_balign_team_t) * bs_last_barrier, 505 "%s_%d.t_bar", header, team_id); 506 507 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_plain_barrier], 508 &team->t.t_bar[bs_plain_barrier + 1], 509 sizeof(kmp_balign_team_t), "%s_%d.t_bar[plain]", 510 header, team_id); 511 512 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_forkjoin_barrier], 513 &team->t.t_bar[bs_forkjoin_barrier + 1], 514 sizeof(kmp_balign_team_t), 515 "%s_%d.t_bar[forkjoin]", header, team_id); 516 517 #if KMP_FAST_REDUCTION_BARRIER 518 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_reduction_barrier], 519 &team->t.t_bar[bs_reduction_barrier + 1], 520 sizeof(kmp_balign_team_t), 521 "%s_%d.t_bar[reduction]", header, team_id); 522 #endif // KMP_FAST_REDUCTION_BARRIER 523 524 __kmp_print_storage_map_gtid( 525 -1, &team->t.t_dispatch[0], &team->t.t_dispatch[num_thr], 526 sizeof(kmp_disp_t) * num_thr, "%s_%d.t_dispatch", header, team_id); 527 528 __kmp_print_storage_map_gtid( 529 -1, &team->t.t_threads[0], &team->t.t_threads[num_thr], 530 sizeof(kmp_info_t *) * num_thr, "%s_%d.t_threads", header, team_id); 531 532 __kmp_print_storage_map_gtid(-1, &team->t.t_disp_buffer[0], 533 &team->t.t_disp_buffer[num_disp_buff], 534 sizeof(dispatch_shared_info_t) * num_disp_buff, 535 "%s_%d.t_disp_buffer", header, team_id); 536 537 __kmp_print_storage_map_gtid(-1, &team->t.t_taskq, &team->t.t_copypriv_data, 538 sizeof(kmp_taskq_t), "%s_%d.t_taskq", header, 539 team_id); 540 } 541 542 static void __kmp_init_allocator() { 543 #if OMP_50_ENABLED 544 __kmp_init_memkind(); 545 #endif 546 } 547 static void __kmp_fini_allocator() { 548 #if OMP_50_ENABLED 549 __kmp_fini_memkind(); 550 #endif 551 } 552 553 /* ------------------------------------------------------------------------ */ 554 555 #if KMP_DYNAMIC_LIB 556 #if KMP_OS_WINDOWS 557 558 static void __kmp_reset_lock(kmp_bootstrap_lock_t *lck) { 559 // TODO: Change to __kmp_break_bootstrap_lock(). 560 __kmp_init_bootstrap_lock(lck); // make the lock released 561 } 562 563 static void __kmp_reset_locks_on_process_detach(int gtid_req) { 564 int i; 565 int thread_count; 566 567 // PROCESS_DETACH is expected to be called by a thread that executes 568 // ProcessExit() or FreeLibrary(). OS terminates other threads (except the one 569 // calling ProcessExit or FreeLibrary). So, it might be safe to access the 570 // __kmp_threads[] without taking the forkjoin_lock. However, in fact, some 571 // threads can be still alive here, although being about to be terminated. The 572 // threads in the array with ds_thread==0 are most suspicious. Actually, it 573 // can be not safe to access the __kmp_threads[]. 574 575 // TODO: does it make sense to check __kmp_roots[] ? 576 577 // Let's check that there are no other alive threads registered with the OMP 578 // lib. 579 while (1) { 580 thread_count = 0; 581 for (i = 0; i < __kmp_threads_capacity; ++i) { 582 if (!__kmp_threads) 583 continue; 584 kmp_info_t *th = __kmp_threads[i]; 585 if (th == NULL) 586 continue; 587 int gtid = th->th.th_info.ds.ds_gtid; 588 if (gtid == gtid_req) 589 continue; 590 if (gtid < 0) 591 continue; 592 DWORD exit_val; 593 int alive = __kmp_is_thread_alive(th, &exit_val); 594 if (alive) { 595 ++thread_count; 596 } 597 } 598 if (thread_count == 0) 599 break; // success 600 } 601 602 // Assume that I'm alone. Now it might be safe to check and reset locks. 603 // __kmp_forkjoin_lock and __kmp_stdio_lock are expected to be reset. 604 __kmp_reset_lock(&__kmp_forkjoin_lock); 605 #ifdef KMP_DEBUG 606 __kmp_reset_lock(&__kmp_stdio_lock); 607 #endif // KMP_DEBUG 608 } 609 610 BOOL WINAPI DllMain(HINSTANCE hInstDLL, DWORD fdwReason, LPVOID lpReserved) { 611 //__kmp_acquire_bootstrap_lock( &__kmp_initz_lock ); 612 613 switch (fdwReason) { 614 615 case DLL_PROCESS_ATTACH: 616 KA_TRACE(10, ("DllMain: PROCESS_ATTACH\n")); 617 618 return TRUE; 619 620 case DLL_PROCESS_DETACH: 621 KA_TRACE(10, ("DllMain: PROCESS_DETACH T#%d\n", __kmp_gtid_get_specific())); 622 623 if (lpReserved != NULL) { 624 // lpReserved is used for telling the difference: 625 // lpReserved == NULL when FreeLibrary() was called, 626 // lpReserved != NULL when the process terminates. 627 // When FreeLibrary() is called, worker threads remain alive. So they will 628 // release the forkjoin lock by themselves. When the process terminates, 629 // worker threads disappear triggering the problem of unreleased forkjoin 630 // lock as described below. 631 632 // A worker thread can take the forkjoin lock. The problem comes up if 633 // that worker thread becomes dead before it releases the forkjoin lock. 634 // The forkjoin lock remains taken, while the thread executing 635 // DllMain()->PROCESS_DETACH->__kmp_internal_end_library() below will try 636 // to take the forkjoin lock and will always fail, so that the application 637 // will never finish [normally]. This scenario is possible if 638 // __kmpc_end() has not been executed. It looks like it's not a corner 639 // case, but common cases: 640 // - the main function was compiled by an alternative compiler; 641 // - the main function was compiled by icl but without /Qopenmp 642 // (application with plugins); 643 // - application terminates by calling C exit(), Fortran CALL EXIT() or 644 // Fortran STOP. 645 // - alive foreign thread prevented __kmpc_end from doing cleanup. 646 // 647 // This is a hack to work around the problem. 648 // TODO: !!! figure out something better. 649 __kmp_reset_locks_on_process_detach(__kmp_gtid_get_specific()); 650 } 651 652 __kmp_internal_end_library(__kmp_gtid_get_specific()); 653 654 return TRUE; 655 656 case DLL_THREAD_ATTACH: 657 KA_TRACE(10, ("DllMain: THREAD_ATTACH\n")); 658 659 /* if we want to register new siblings all the time here call 660 * __kmp_get_gtid(); */ 661 return TRUE; 662 663 case DLL_THREAD_DETACH: 664 KA_TRACE(10, ("DllMain: THREAD_DETACH T#%d\n", __kmp_gtid_get_specific())); 665 666 __kmp_internal_end_thread(__kmp_gtid_get_specific()); 667 return TRUE; 668 } 669 670 return TRUE; 671 } 672 673 #endif /* KMP_OS_WINDOWS */ 674 #endif /* KMP_DYNAMIC_LIB */ 675 676 /* Change the library type to "status" and return the old type */ 677 /* called from within initialization routines where __kmp_initz_lock is held */ 678 int __kmp_change_library(int status) { 679 int old_status; 680 681 old_status = __kmp_yield_init & 682 1; // check whether KMP_LIBRARY=throughput (even init count) 683 684 if (status) { 685 __kmp_yield_init |= 1; // throughput => turnaround (odd init count) 686 } else { 687 __kmp_yield_init &= ~1; // turnaround => throughput (even init count) 688 } 689 690 return old_status; // return previous setting of whether 691 // KMP_LIBRARY=throughput 692 } 693 694 /* __kmp_parallel_deo -- Wait until it's our turn. */ 695 void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) { 696 int gtid = *gtid_ref; 697 #ifdef BUILD_PARALLEL_ORDERED 698 kmp_team_t *team = __kmp_team_from_gtid(gtid); 699 #endif /* BUILD_PARALLEL_ORDERED */ 700 701 if (__kmp_env_consistency_check) { 702 if (__kmp_threads[gtid]->th.th_root->r.r_active) 703 #if KMP_USE_DYNAMIC_LOCK 704 __kmp_push_sync(gtid, ct_ordered_in_parallel, loc_ref, NULL, 0); 705 #else 706 __kmp_push_sync(gtid, ct_ordered_in_parallel, loc_ref, NULL); 707 #endif 708 } 709 #ifdef BUILD_PARALLEL_ORDERED 710 if (!team->t.t_serialized) { 711 KMP_MB(); 712 KMP_WAIT_YIELD(&team->t.t_ordered.dt.t_value, __kmp_tid_from_gtid(gtid), 713 KMP_EQ, NULL); 714 KMP_MB(); 715 } 716 #endif /* BUILD_PARALLEL_ORDERED */ 717 } 718 719 /* __kmp_parallel_dxo -- Signal the next task. */ 720 void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) { 721 int gtid = *gtid_ref; 722 #ifdef BUILD_PARALLEL_ORDERED 723 int tid = __kmp_tid_from_gtid(gtid); 724 kmp_team_t *team = __kmp_team_from_gtid(gtid); 725 #endif /* BUILD_PARALLEL_ORDERED */ 726 727 if (__kmp_env_consistency_check) { 728 if (__kmp_threads[gtid]->th.th_root->r.r_active) 729 __kmp_pop_sync(gtid, ct_ordered_in_parallel, loc_ref); 730 } 731 #ifdef BUILD_PARALLEL_ORDERED 732 if (!team->t.t_serialized) { 733 KMP_MB(); /* Flush all pending memory write invalidates. */ 734 735 /* use the tid of the next thread in this team */ 736 /* TODO replace with general release procedure */ 737 team->t.t_ordered.dt.t_value = ((tid + 1) % team->t.t_nproc); 738 739 KMP_MB(); /* Flush all pending memory write invalidates. */ 740 } 741 #endif /* BUILD_PARALLEL_ORDERED */ 742 } 743 744 /* ------------------------------------------------------------------------ */ 745 /* The BARRIER for a SINGLE process section is always explicit */ 746 747 int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws) { 748 int status; 749 kmp_info_t *th; 750 kmp_team_t *team; 751 752 if (!TCR_4(__kmp_init_parallel)) 753 __kmp_parallel_initialize(); 754 755 th = __kmp_threads[gtid]; 756 team = th->th.th_team; 757 status = 0; 758 759 th->th.th_ident = id_ref; 760 761 if (team->t.t_serialized) { 762 status = 1; 763 } else { 764 kmp_int32 old_this = th->th.th_local.this_construct; 765 766 ++th->th.th_local.this_construct; 767 /* try to set team count to thread count--success means thread got the 768 single block */ 769 /* TODO: Should this be acquire or release? */ 770 if (team->t.t_construct == old_this) { 771 status = __kmp_atomic_compare_store_acq(&team->t.t_construct, old_this, 772 th->th.th_local.this_construct); 773 } 774 #if USE_ITT_BUILD 775 if (__itt_metadata_add_ptr && __kmp_forkjoin_frames_mode == 3 && 776 KMP_MASTER_GTID(gtid) && 777 #if OMP_40_ENABLED 778 th->th.th_teams_microtask == NULL && 779 #endif 780 team->t.t_active_level == 781 1) { // Only report metadata by master of active team at level 1 782 __kmp_itt_metadata_single(id_ref); 783 } 784 #endif /* USE_ITT_BUILD */ 785 } 786 787 if (__kmp_env_consistency_check) { 788 if (status && push_ws) { 789 __kmp_push_workshare(gtid, ct_psingle, id_ref); 790 } else { 791 __kmp_check_workshare(gtid, ct_psingle, id_ref); 792 } 793 } 794 #if USE_ITT_BUILD 795 if (status) { 796 __kmp_itt_single_start(gtid); 797 } 798 #endif /* USE_ITT_BUILD */ 799 return status; 800 } 801 802 void __kmp_exit_single(int gtid) { 803 #if USE_ITT_BUILD 804 __kmp_itt_single_end(gtid); 805 #endif /* USE_ITT_BUILD */ 806 if (__kmp_env_consistency_check) 807 __kmp_pop_workshare(gtid, ct_psingle, NULL); 808 } 809 810 /* determine if we can go parallel or must use a serialized parallel region and 811 * how many threads we can use 812 * set_nproc is the number of threads requested for the team 813 * returns 0 if we should serialize or only use one thread, 814 * otherwise the number of threads to use 815 * The forkjoin lock is held by the caller. */ 816 static int __kmp_reserve_threads(kmp_root_t *root, kmp_team_t *parent_team, 817 int master_tid, int set_nthreads 818 #if OMP_40_ENABLED 819 , 820 int enter_teams 821 #endif /* OMP_40_ENABLED */ 822 ) { 823 int capacity; 824 int new_nthreads; 825 KMP_DEBUG_ASSERT(__kmp_init_serial); 826 KMP_DEBUG_ASSERT(root && parent_team); 827 828 // If dyn-var is set, dynamically adjust the number of desired threads, 829 // according to the method specified by dynamic_mode. 830 new_nthreads = set_nthreads; 831 if (!get__dynamic_2(parent_team, master_tid)) { 832 ; 833 } 834 #ifdef USE_LOAD_BALANCE 835 else if (__kmp_global.g.g_dynamic_mode == dynamic_load_balance) { 836 new_nthreads = __kmp_load_balance_nproc(root, set_nthreads); 837 if (new_nthreads == 1) { 838 KC_TRACE(10, ("__kmp_reserve_threads: T#%d load balance reduced " 839 "reservation to 1 thread\n", 840 master_tid)); 841 return 1; 842 } 843 if (new_nthreads < set_nthreads) { 844 KC_TRACE(10, ("__kmp_reserve_threads: T#%d load balance reduced " 845 "reservation to %d threads\n", 846 master_tid, new_nthreads)); 847 } 848 } 849 #endif /* USE_LOAD_BALANCE */ 850 else if (__kmp_global.g.g_dynamic_mode == dynamic_thread_limit) { 851 new_nthreads = __kmp_avail_proc - __kmp_nth + 852 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 853 if (new_nthreads <= 1) { 854 KC_TRACE(10, ("__kmp_reserve_threads: T#%d thread limit reduced " 855 "reservation to 1 thread\n", 856 master_tid)); 857 return 1; 858 } 859 if (new_nthreads < set_nthreads) { 860 KC_TRACE(10, ("__kmp_reserve_threads: T#%d thread limit reduced " 861 "reservation to %d threads\n", 862 master_tid, new_nthreads)); 863 } else { 864 new_nthreads = set_nthreads; 865 } 866 } else if (__kmp_global.g.g_dynamic_mode == dynamic_random) { 867 if (set_nthreads > 2) { 868 new_nthreads = __kmp_get_random(parent_team->t.t_threads[master_tid]); 869 new_nthreads = (new_nthreads % set_nthreads) + 1; 870 if (new_nthreads == 1) { 871 KC_TRACE(10, ("__kmp_reserve_threads: T#%d dynamic random reduced " 872 "reservation to 1 thread\n", 873 master_tid)); 874 return 1; 875 } 876 if (new_nthreads < set_nthreads) { 877 KC_TRACE(10, ("__kmp_reserve_threads: T#%d dynamic random reduced " 878 "reservation to %d threads\n", 879 master_tid, new_nthreads)); 880 } 881 } 882 } else { 883 KMP_ASSERT(0); 884 } 885 886 // Respect KMP_ALL_THREADS/KMP_DEVICE_THREAD_LIMIT. 887 if (__kmp_nth + new_nthreads - 888 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) > 889 __kmp_max_nth) { 890 int tl_nthreads = __kmp_max_nth - __kmp_nth + 891 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 892 if (tl_nthreads <= 0) { 893 tl_nthreads = 1; 894 } 895 896 // If dyn-var is false, emit a 1-time warning. 897 if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) { 898 __kmp_reserve_warn = 1; 899 __kmp_msg(kmp_ms_warning, 900 KMP_MSG(CantFormThrTeam, set_nthreads, tl_nthreads), 901 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 902 } 903 if (tl_nthreads == 1) { 904 KC_TRACE(10, ("__kmp_reserve_threads: T#%d KMP_DEVICE_THREAD_LIMIT " 905 "reduced reservation to 1 thread\n", 906 master_tid)); 907 return 1; 908 } 909 KC_TRACE(10, ("__kmp_reserve_threads: T#%d KMP_DEVICE_THREAD_LIMIT reduced " 910 "reservation to %d threads\n", 911 master_tid, tl_nthreads)); 912 new_nthreads = tl_nthreads; 913 } 914 915 // Respect OMP_THREAD_LIMIT 916 if (root->r.r_cg_nthreads + new_nthreads - 917 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) > 918 __kmp_cg_max_nth) { 919 int tl_nthreads = __kmp_cg_max_nth - root->r.r_cg_nthreads + 920 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 921 if (tl_nthreads <= 0) { 922 tl_nthreads = 1; 923 } 924 925 // If dyn-var is false, emit a 1-time warning. 926 if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) { 927 __kmp_reserve_warn = 1; 928 __kmp_msg(kmp_ms_warning, 929 KMP_MSG(CantFormThrTeam, set_nthreads, tl_nthreads), 930 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 931 } 932 if (tl_nthreads == 1) { 933 KC_TRACE(10, ("__kmp_reserve_threads: T#%d OMP_THREAD_LIMIT " 934 "reduced reservation to 1 thread\n", 935 master_tid)); 936 return 1; 937 } 938 KC_TRACE(10, ("__kmp_reserve_threads: T#%d OMP_THREAD_LIMIT reduced " 939 "reservation to %d threads\n", 940 master_tid, tl_nthreads)); 941 new_nthreads = tl_nthreads; 942 } 943 944 // Check if the threads array is large enough, or needs expanding. 945 // See comment in __kmp_register_root() about the adjustment if 946 // __kmp_threads[0] == NULL. 947 capacity = __kmp_threads_capacity; 948 if (TCR_PTR(__kmp_threads[0]) == NULL) { 949 --capacity; 950 } 951 if (__kmp_nth + new_nthreads - 952 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) > 953 capacity) { 954 // Expand the threads array. 955 int slotsRequired = __kmp_nth + new_nthreads - 956 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) - 957 capacity; 958 int slotsAdded = __kmp_expand_threads(slotsRequired); 959 if (slotsAdded < slotsRequired) { 960 // The threads array was not expanded enough. 961 new_nthreads -= (slotsRequired - slotsAdded); 962 KMP_ASSERT(new_nthreads >= 1); 963 964 // If dyn-var is false, emit a 1-time warning. 965 if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) { 966 __kmp_reserve_warn = 1; 967 if (__kmp_tp_cached) { 968 __kmp_msg(kmp_ms_warning, 969 KMP_MSG(CantFormThrTeam, set_nthreads, new_nthreads), 970 KMP_HNT(Set_ALL_THREADPRIVATE, __kmp_tp_capacity), 971 KMP_HNT(PossibleSystemLimitOnThreads), __kmp_msg_null); 972 } else { 973 __kmp_msg(kmp_ms_warning, 974 KMP_MSG(CantFormThrTeam, set_nthreads, new_nthreads), 975 KMP_HNT(SystemLimitOnThreads), __kmp_msg_null); 976 } 977 } 978 } 979 } 980 981 #ifdef KMP_DEBUG 982 if (new_nthreads == 1) { 983 KC_TRACE(10, 984 ("__kmp_reserve_threads: T#%d serializing team after reclaiming " 985 "dead roots and rechecking; requested %d threads\n", 986 __kmp_get_gtid(), set_nthreads)); 987 } else { 988 KC_TRACE(10, ("__kmp_reserve_threads: T#%d allocating %d threads; requested" 989 " %d threads\n", 990 __kmp_get_gtid(), new_nthreads, set_nthreads)); 991 } 992 #endif // KMP_DEBUG 993 return new_nthreads; 994 } 995 996 /* Allocate threads from the thread pool and assign them to the new team. We are 997 assured that there are enough threads available, because we checked on that 998 earlier within critical section forkjoin */ 999 static void __kmp_fork_team_threads(kmp_root_t *root, kmp_team_t *team, 1000 kmp_info_t *master_th, int master_gtid) { 1001 int i; 1002 int use_hot_team; 1003 1004 KA_TRACE(10, ("__kmp_fork_team_threads: new_nprocs = %d\n", team->t.t_nproc)); 1005 KMP_DEBUG_ASSERT(master_gtid == __kmp_get_gtid()); 1006 KMP_MB(); 1007 1008 /* first, let's setup the master thread */ 1009 master_th->th.th_info.ds.ds_tid = 0; 1010 master_th->th.th_team = team; 1011 master_th->th.th_team_nproc = team->t.t_nproc; 1012 master_th->th.th_team_master = master_th; 1013 master_th->th.th_team_serialized = FALSE; 1014 master_th->th.th_dispatch = &team->t.t_dispatch[0]; 1015 1016 /* make sure we are not the optimized hot team */ 1017 #if KMP_NESTED_HOT_TEAMS 1018 use_hot_team = 0; 1019 kmp_hot_team_ptr_t *hot_teams = master_th->th.th_hot_teams; 1020 if (hot_teams) { // hot teams array is not allocated if 1021 // KMP_HOT_TEAMS_MAX_LEVEL=0 1022 int level = team->t.t_active_level - 1; // index in array of hot teams 1023 if (master_th->th.th_teams_microtask) { // are we inside the teams? 1024 if (master_th->th.th_teams_size.nteams > 1) { 1025 ++level; // level was not increased in teams construct for 1026 // team_of_masters 1027 } 1028 if (team->t.t_pkfn != (microtask_t)__kmp_teams_master && 1029 master_th->th.th_teams_level == team->t.t_level) { 1030 ++level; // level was not increased in teams construct for 1031 // team_of_workers before the parallel 1032 } // team->t.t_level will be increased inside parallel 1033 } 1034 if (level < __kmp_hot_teams_max_level) { 1035 if (hot_teams[level].hot_team) { 1036 // hot team has already been allocated for given level 1037 KMP_DEBUG_ASSERT(hot_teams[level].hot_team == team); 1038 use_hot_team = 1; // the team is ready to use 1039 } else { 1040 use_hot_team = 0; // AC: threads are not allocated yet 1041 hot_teams[level].hot_team = team; // remember new hot team 1042 hot_teams[level].hot_team_nth = team->t.t_nproc; 1043 } 1044 } else { 1045 use_hot_team = 0; 1046 } 1047 } 1048 #else 1049 use_hot_team = team == root->r.r_hot_team; 1050 #endif 1051 if (!use_hot_team) { 1052 1053 /* install the master thread */ 1054 team->t.t_threads[0] = master_th; 1055 __kmp_initialize_info(master_th, team, 0, master_gtid); 1056 1057 /* now, install the worker threads */ 1058 for (i = 1; i < team->t.t_nproc; i++) { 1059 1060 /* fork or reallocate a new thread and install it in team */ 1061 kmp_info_t *thr = __kmp_allocate_thread(root, team, i); 1062 team->t.t_threads[i] = thr; 1063 KMP_DEBUG_ASSERT(thr); 1064 KMP_DEBUG_ASSERT(thr->th.th_team == team); 1065 /* align team and thread arrived states */ 1066 KA_TRACE(20, ("__kmp_fork_team_threads: T#%d(%d:%d) init arrived " 1067 "T#%d(%d:%d) join =%llu, plain=%llu\n", 1068 __kmp_gtid_from_tid(0, team), team->t.t_id, 0, 1069 __kmp_gtid_from_tid(i, team), team->t.t_id, i, 1070 team->t.t_bar[bs_forkjoin_barrier].b_arrived, 1071 team->t.t_bar[bs_plain_barrier].b_arrived)); 1072 #if OMP_40_ENABLED 1073 thr->th.th_teams_microtask = master_th->th.th_teams_microtask; 1074 thr->th.th_teams_level = master_th->th.th_teams_level; 1075 thr->th.th_teams_size = master_th->th.th_teams_size; 1076 #endif 1077 { // Initialize threads' barrier data. 1078 int b; 1079 kmp_balign_t *balign = team->t.t_threads[i]->th.th_bar; 1080 for (b = 0; b < bs_last_barrier; ++b) { 1081 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 1082 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 1083 #if USE_DEBUGGER 1084 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 1085 #endif 1086 } 1087 } 1088 } 1089 1090 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 1091 __kmp_partition_places(team); 1092 #endif 1093 } 1094 1095 KMP_MB(); 1096 } 1097 1098 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1099 // Propagate any changes to the floating point control registers out to the team 1100 // We try to avoid unnecessary writes to the relevant cache line in the team 1101 // structure, so we don't make changes unless they are needed. 1102 inline static void propagateFPControl(kmp_team_t *team) { 1103 if (__kmp_inherit_fp_control) { 1104 kmp_int16 x87_fpu_control_word; 1105 kmp_uint32 mxcsr; 1106 1107 // Get master values of FPU control flags (both X87 and vector) 1108 __kmp_store_x87_fpu_control_word(&x87_fpu_control_word); 1109 __kmp_store_mxcsr(&mxcsr); 1110 mxcsr &= KMP_X86_MXCSR_MASK; 1111 1112 // There is no point looking at t_fp_control_saved here. 1113 // If it is TRUE, we still have to update the values if they are different 1114 // from those we now have. If it is FALSE we didn't save anything yet, but 1115 // our objective is the same. We have to ensure that the values in the team 1116 // are the same as those we have. 1117 // So, this code achieves what we need whether or not t_fp_control_saved is 1118 // true. By checking whether the value needs updating we avoid unnecessary 1119 // writes that would put the cache-line into a written state, causing all 1120 // threads in the team to have to read it again. 1121 KMP_CHECK_UPDATE(team->t.t_x87_fpu_control_word, x87_fpu_control_word); 1122 KMP_CHECK_UPDATE(team->t.t_mxcsr, mxcsr); 1123 // Although we don't use this value, other code in the runtime wants to know 1124 // whether it should restore them. So we must ensure it is correct. 1125 KMP_CHECK_UPDATE(team->t.t_fp_control_saved, TRUE); 1126 } else { 1127 // Similarly here. Don't write to this cache-line in the team structure 1128 // unless we have to. 1129 KMP_CHECK_UPDATE(team->t.t_fp_control_saved, FALSE); 1130 } 1131 } 1132 1133 // Do the opposite, setting the hardware registers to the updated values from 1134 // the team. 1135 inline static void updateHWFPControl(kmp_team_t *team) { 1136 if (__kmp_inherit_fp_control && team->t.t_fp_control_saved) { 1137 // Only reset the fp control regs if they have been changed in the team. 1138 // the parallel region that we are exiting. 1139 kmp_int16 x87_fpu_control_word; 1140 kmp_uint32 mxcsr; 1141 __kmp_store_x87_fpu_control_word(&x87_fpu_control_word); 1142 __kmp_store_mxcsr(&mxcsr); 1143 mxcsr &= KMP_X86_MXCSR_MASK; 1144 1145 if (team->t.t_x87_fpu_control_word != x87_fpu_control_word) { 1146 __kmp_clear_x87_fpu_status_word(); 1147 __kmp_load_x87_fpu_control_word(&team->t.t_x87_fpu_control_word); 1148 } 1149 1150 if (team->t.t_mxcsr != mxcsr) { 1151 __kmp_load_mxcsr(&team->t.t_mxcsr); 1152 } 1153 } 1154 } 1155 #else 1156 #define propagateFPControl(x) ((void)0) 1157 #define updateHWFPControl(x) ((void)0) 1158 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 1159 1160 static void __kmp_alloc_argv_entries(int argc, kmp_team_t *team, 1161 int realloc); // forward declaration 1162 1163 /* Run a parallel region that has been serialized, so runs only in a team of the 1164 single master thread. */ 1165 void __kmp_serialized_parallel(ident_t *loc, kmp_int32 global_tid) { 1166 kmp_info_t *this_thr; 1167 kmp_team_t *serial_team; 1168 1169 KC_TRACE(10, ("__kmpc_serialized_parallel: called by T#%d\n", global_tid)); 1170 1171 /* Skip all this code for autopar serialized loops since it results in 1172 unacceptable overhead */ 1173 if (loc != NULL && (loc->flags & KMP_IDENT_AUTOPAR)) 1174 return; 1175 1176 if (!TCR_4(__kmp_init_parallel)) 1177 __kmp_parallel_initialize(); 1178 1179 this_thr = __kmp_threads[global_tid]; 1180 serial_team = this_thr->th.th_serial_team; 1181 1182 /* utilize the serialized team held by this thread */ 1183 KMP_DEBUG_ASSERT(serial_team); 1184 KMP_MB(); 1185 1186 if (__kmp_tasking_mode != tskm_immediate_exec) { 1187 KMP_DEBUG_ASSERT( 1188 this_thr->th.th_task_team == 1189 this_thr->th.th_team->t.t_task_team[this_thr->th.th_task_state]); 1190 KMP_DEBUG_ASSERT(serial_team->t.t_task_team[this_thr->th.th_task_state] == 1191 NULL); 1192 KA_TRACE(20, ("__kmpc_serialized_parallel: T#%d pushing task_team %p / " 1193 "team %p, new task_team = NULL\n", 1194 global_tid, this_thr->th.th_task_team, this_thr->th.th_team)); 1195 this_thr->th.th_task_team = NULL; 1196 } 1197 1198 #if OMP_40_ENABLED 1199 kmp_proc_bind_t proc_bind = this_thr->th.th_set_proc_bind; 1200 if (this_thr->th.th_current_task->td_icvs.proc_bind == proc_bind_false) { 1201 proc_bind = proc_bind_false; 1202 } else if (proc_bind == proc_bind_default) { 1203 // No proc_bind clause was specified, so use the current value 1204 // of proc-bind-var for this parallel region. 1205 proc_bind = this_thr->th.th_current_task->td_icvs.proc_bind; 1206 } 1207 // Reset for next parallel region 1208 this_thr->th.th_set_proc_bind = proc_bind_default; 1209 #endif /* OMP_40_ENABLED */ 1210 1211 #if OMPT_SUPPORT 1212 ompt_data_t ompt_parallel_data = ompt_data_none; 1213 ompt_data_t *implicit_task_data; 1214 void *codeptr = OMPT_LOAD_RETURN_ADDRESS(global_tid); 1215 if (ompt_enabled.enabled && 1216 this_thr->th.ompt_thread_info.state != omp_state_overhead) { 1217 1218 ompt_task_info_t *parent_task_info; 1219 parent_task_info = OMPT_CUR_TASK_INFO(this_thr); 1220 1221 parent_task_info->frame.enter_frame = OMPT_GET_FRAME_ADDRESS(1); 1222 if (ompt_enabled.ompt_callback_parallel_begin) { 1223 int team_size = 1; 1224 1225 ompt_callbacks.ompt_callback(ompt_callback_parallel_begin)( 1226 &(parent_task_info->task_data), &(parent_task_info->frame), 1227 &ompt_parallel_data, team_size, ompt_parallel_invoker_program, 1228 codeptr); 1229 } 1230 } 1231 #endif // OMPT_SUPPORT 1232 1233 if (this_thr->th.th_team != serial_team) { 1234 // Nested level will be an index in the nested nthreads array 1235 int level = this_thr->th.th_team->t.t_level; 1236 1237 if (serial_team->t.t_serialized) { 1238 /* this serial team was already used 1239 TODO increase performance by making this locks more specific */ 1240 kmp_team_t *new_team; 1241 1242 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 1243 1244 new_team = __kmp_allocate_team(this_thr->th.th_root, 1, 1, 1245 #if OMPT_SUPPORT 1246 ompt_parallel_data, 1247 #endif 1248 #if OMP_40_ENABLED 1249 proc_bind, 1250 #endif 1251 &this_thr->th.th_current_task->td_icvs, 1252 0 USE_NESTED_HOT_ARG(NULL)); 1253 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1254 KMP_ASSERT(new_team); 1255 1256 /* setup new serialized team and install it */ 1257 new_team->t.t_threads[0] = this_thr; 1258 new_team->t.t_parent = this_thr->th.th_team; 1259 serial_team = new_team; 1260 this_thr->th.th_serial_team = serial_team; 1261 1262 KF_TRACE( 1263 10, 1264 ("__kmpc_serialized_parallel: T#%d allocated new serial team %p\n", 1265 global_tid, serial_team)); 1266 1267 /* TODO the above breaks the requirement that if we run out of resources, 1268 then we can still guarantee that serialized teams are ok, since we may 1269 need to allocate a new one */ 1270 } else { 1271 KF_TRACE( 1272 10, 1273 ("__kmpc_serialized_parallel: T#%d reusing cached serial team %p\n", 1274 global_tid, serial_team)); 1275 } 1276 1277 /* we have to initialize this serial team */ 1278 KMP_DEBUG_ASSERT(serial_team->t.t_threads); 1279 KMP_DEBUG_ASSERT(serial_team->t.t_threads[0] == this_thr); 1280 KMP_DEBUG_ASSERT(this_thr->th.th_team != serial_team); 1281 serial_team->t.t_ident = loc; 1282 serial_team->t.t_serialized = 1; 1283 serial_team->t.t_nproc = 1; 1284 serial_team->t.t_parent = this_thr->th.th_team; 1285 serial_team->t.t_sched.sched = this_thr->th.th_team->t.t_sched.sched; 1286 this_thr->th.th_team = serial_team; 1287 serial_team->t.t_master_tid = this_thr->th.th_info.ds.ds_tid; 1288 1289 KF_TRACE(10, ("__kmpc_serialized_parallel: T#d curtask=%p\n", global_tid, 1290 this_thr->th.th_current_task)); 1291 KMP_ASSERT(this_thr->th.th_current_task->td_flags.executing == 1); 1292 this_thr->th.th_current_task->td_flags.executing = 0; 1293 1294 __kmp_push_current_task_to_thread(this_thr, serial_team, 0); 1295 1296 /* TODO: GEH: do ICVs work for nested serialized teams? Don't we need an 1297 implicit task for each serialized task represented by 1298 team->t.t_serialized? */ 1299 copy_icvs(&this_thr->th.th_current_task->td_icvs, 1300 &this_thr->th.th_current_task->td_parent->td_icvs); 1301 1302 // Thread value exists in the nested nthreads array for the next nested 1303 // level 1304 if (__kmp_nested_nth.used && (level + 1 < __kmp_nested_nth.used)) { 1305 this_thr->th.th_current_task->td_icvs.nproc = 1306 __kmp_nested_nth.nth[level + 1]; 1307 } 1308 1309 #if OMP_40_ENABLED 1310 if (__kmp_nested_proc_bind.used && 1311 (level + 1 < __kmp_nested_proc_bind.used)) { 1312 this_thr->th.th_current_task->td_icvs.proc_bind = 1313 __kmp_nested_proc_bind.bind_types[level + 1]; 1314 } 1315 #endif /* OMP_40_ENABLED */ 1316 1317 #if USE_DEBUGGER 1318 serial_team->t.t_pkfn = (microtask_t)(~0); // For the debugger. 1319 #endif 1320 this_thr->th.th_info.ds.ds_tid = 0; 1321 1322 /* set thread cache values */ 1323 this_thr->th.th_team_nproc = 1; 1324 this_thr->th.th_team_master = this_thr; 1325 this_thr->th.th_team_serialized = 1; 1326 1327 serial_team->t.t_level = serial_team->t.t_parent->t.t_level + 1; 1328 serial_team->t.t_active_level = serial_team->t.t_parent->t.t_active_level; 1329 #if OMP_50_ENABLED 1330 serial_team->t.t_def_allocator = this_thr->th.th_def_allocator; // save 1331 #endif 1332 1333 propagateFPControl(serial_team); 1334 1335 /* check if we need to allocate dispatch buffers stack */ 1336 KMP_DEBUG_ASSERT(serial_team->t.t_dispatch); 1337 if (!serial_team->t.t_dispatch->th_disp_buffer) { 1338 serial_team->t.t_dispatch->th_disp_buffer = 1339 (dispatch_private_info_t *)__kmp_allocate( 1340 sizeof(dispatch_private_info_t)); 1341 } 1342 this_thr->th.th_dispatch = serial_team->t.t_dispatch; 1343 1344 KMP_MB(); 1345 1346 } else { 1347 /* this serialized team is already being used, 1348 * that's fine, just add another nested level */ 1349 KMP_DEBUG_ASSERT(this_thr->th.th_team == serial_team); 1350 KMP_DEBUG_ASSERT(serial_team->t.t_threads); 1351 KMP_DEBUG_ASSERT(serial_team->t.t_threads[0] == this_thr); 1352 ++serial_team->t.t_serialized; 1353 this_thr->th.th_team_serialized = serial_team->t.t_serialized; 1354 1355 // Nested level will be an index in the nested nthreads array 1356 int level = this_thr->th.th_team->t.t_level; 1357 // Thread value exists in the nested nthreads array for the next nested 1358 // level 1359 if (__kmp_nested_nth.used && (level + 1 < __kmp_nested_nth.used)) { 1360 this_thr->th.th_current_task->td_icvs.nproc = 1361 __kmp_nested_nth.nth[level + 1]; 1362 } 1363 serial_team->t.t_level++; 1364 KF_TRACE(10, ("__kmpc_serialized_parallel: T#%d increasing nesting level " 1365 "of serial team %p to %d\n", 1366 global_tid, serial_team, serial_team->t.t_level)); 1367 1368 /* allocate/push dispatch buffers stack */ 1369 KMP_DEBUG_ASSERT(serial_team->t.t_dispatch); 1370 { 1371 dispatch_private_info_t *disp_buffer = 1372 (dispatch_private_info_t *)__kmp_allocate( 1373 sizeof(dispatch_private_info_t)); 1374 disp_buffer->next = serial_team->t.t_dispatch->th_disp_buffer; 1375 serial_team->t.t_dispatch->th_disp_buffer = disp_buffer; 1376 } 1377 this_thr->th.th_dispatch = serial_team->t.t_dispatch; 1378 1379 KMP_MB(); 1380 } 1381 #if OMP_40_ENABLED 1382 KMP_CHECK_UPDATE(serial_team->t.t_cancel_request, cancel_noreq); 1383 #endif 1384 1385 if (__kmp_env_consistency_check) 1386 __kmp_push_parallel(global_tid, NULL); 1387 #if OMPT_SUPPORT 1388 serial_team->t.ompt_team_info.master_return_address = codeptr; 1389 if (ompt_enabled.enabled && 1390 this_thr->th.ompt_thread_info.state != omp_state_overhead) { 1391 OMPT_CUR_TASK_INFO(this_thr)->frame.exit_frame = OMPT_GET_FRAME_ADDRESS(1); 1392 1393 ompt_lw_taskteam_t lw_taskteam; 1394 __ompt_lw_taskteam_init(&lw_taskteam, this_thr, global_tid, 1395 &ompt_parallel_data, codeptr); 1396 1397 __ompt_lw_taskteam_link(&lw_taskteam, this_thr, 1); 1398 // don't use lw_taskteam after linking. content was swaped 1399 1400 /* OMPT implicit task begin */ 1401 implicit_task_data = OMPT_CUR_TASK_DATA(this_thr); 1402 if (ompt_enabled.ompt_callback_implicit_task) { 1403 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1404 ompt_scope_begin, OMPT_CUR_TEAM_DATA(this_thr), 1405 OMPT_CUR_TASK_DATA(this_thr), 1, __kmp_tid_from_gtid(global_tid)); 1406 OMPT_CUR_TASK_INFO(this_thr) 1407 ->thread_num = __kmp_tid_from_gtid(global_tid); 1408 } 1409 1410 /* OMPT state */ 1411 this_thr->th.ompt_thread_info.state = omp_state_work_parallel; 1412 OMPT_CUR_TASK_INFO(this_thr)->frame.exit_frame = OMPT_GET_FRAME_ADDRESS(1); 1413 } 1414 #endif 1415 } 1416 1417 /* most of the work for a fork */ 1418 /* return true if we really went parallel, false if serialized */ 1419 int __kmp_fork_call(ident_t *loc, int gtid, 1420 enum fork_context_e call_context, // Intel, GNU, ... 1421 kmp_int32 argc, microtask_t microtask, launch_t invoker, 1422 /* TODO: revert workaround for Intel(R) 64 tracker #96 */ 1423 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 1424 va_list *ap 1425 #else 1426 va_list ap 1427 #endif 1428 ) { 1429 void **argv; 1430 int i; 1431 int master_tid; 1432 int master_this_cons; 1433 kmp_team_t *team; 1434 kmp_team_t *parent_team; 1435 kmp_info_t *master_th; 1436 kmp_root_t *root; 1437 int nthreads; 1438 int master_active; 1439 int master_set_numthreads; 1440 int level; 1441 #if OMP_40_ENABLED 1442 int active_level; 1443 int teams_level; 1444 #endif 1445 #if KMP_NESTED_HOT_TEAMS 1446 kmp_hot_team_ptr_t **p_hot_teams; 1447 #endif 1448 { // KMP_TIME_BLOCK 1449 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_fork_call); 1450 KMP_COUNT_VALUE(OMP_PARALLEL_args, argc); 1451 1452 KA_TRACE(20, ("__kmp_fork_call: enter T#%d\n", gtid)); 1453 if (__kmp_stkpadding > 0 && __kmp_root[gtid] != NULL) { 1454 /* Some systems prefer the stack for the root thread(s) to start with */ 1455 /* some gap from the parent stack to prevent false sharing. */ 1456 void *dummy = KMP_ALLOCA(__kmp_stkpadding); 1457 /* These 2 lines below are so this does not get optimized out */ 1458 if (__kmp_stkpadding > KMP_MAX_STKPADDING) 1459 __kmp_stkpadding += (short)((kmp_int64)dummy); 1460 } 1461 1462 /* initialize if needed */ 1463 KMP_DEBUG_ASSERT( 1464 __kmp_init_serial); // AC: potentially unsafe, not in sync with shutdown 1465 if (!TCR_4(__kmp_init_parallel)) 1466 __kmp_parallel_initialize(); 1467 1468 /* setup current data */ 1469 master_th = __kmp_threads[gtid]; // AC: potentially unsafe, not in sync with 1470 // shutdown 1471 parent_team = master_th->th.th_team; 1472 master_tid = master_th->th.th_info.ds.ds_tid; 1473 master_this_cons = master_th->th.th_local.this_construct; 1474 root = master_th->th.th_root; 1475 master_active = root->r.r_active; 1476 master_set_numthreads = master_th->th.th_set_nproc; 1477 1478 #if OMPT_SUPPORT 1479 ompt_data_t ompt_parallel_data = ompt_data_none; 1480 ompt_data_t *parent_task_data; 1481 omp_frame_t *ompt_frame; 1482 ompt_data_t *implicit_task_data; 1483 void *return_address = NULL; 1484 1485 if (ompt_enabled.enabled) { 1486 __ompt_get_task_info_internal(0, NULL, &parent_task_data, &ompt_frame, 1487 NULL, NULL); 1488 return_address = OMPT_LOAD_RETURN_ADDRESS(gtid); 1489 } 1490 #endif 1491 1492 // Nested level will be an index in the nested nthreads array 1493 level = parent_team->t.t_level; 1494 // used to launch non-serial teams even if nested is not allowed 1495 active_level = parent_team->t.t_active_level; 1496 #if OMP_40_ENABLED 1497 // needed to check nesting inside the teams 1498 teams_level = master_th->th.th_teams_level; 1499 #endif 1500 #if KMP_NESTED_HOT_TEAMS 1501 p_hot_teams = &master_th->th.th_hot_teams; 1502 if (*p_hot_teams == NULL && __kmp_hot_teams_max_level > 0) { 1503 *p_hot_teams = (kmp_hot_team_ptr_t *)__kmp_allocate( 1504 sizeof(kmp_hot_team_ptr_t) * __kmp_hot_teams_max_level); 1505 (*p_hot_teams)[0].hot_team = root->r.r_hot_team; 1506 // it is either actual or not needed (when active_level > 0) 1507 (*p_hot_teams)[0].hot_team_nth = 1; 1508 } 1509 #endif 1510 1511 #if OMPT_SUPPORT 1512 if (ompt_enabled.enabled) { 1513 if (ompt_enabled.ompt_callback_parallel_begin) { 1514 int team_size = master_set_numthreads 1515 ? master_set_numthreads 1516 : get__nproc_2(parent_team, master_tid); 1517 ompt_callbacks.ompt_callback(ompt_callback_parallel_begin)( 1518 parent_task_data, ompt_frame, &ompt_parallel_data, team_size, 1519 OMPT_INVOKER(call_context), return_address); 1520 } 1521 master_th->th.ompt_thread_info.state = omp_state_overhead; 1522 } 1523 #endif 1524 1525 master_th->th.th_ident = loc; 1526 1527 #if OMP_40_ENABLED 1528 if (master_th->th.th_teams_microtask && ap && 1529 microtask != (microtask_t)__kmp_teams_master && level == teams_level) { 1530 // AC: This is start of parallel that is nested inside teams construct. 1531 // The team is actual (hot), all workers are ready at the fork barrier. 1532 // No lock needed to initialize the team a bit, then free workers. 1533 parent_team->t.t_ident = loc; 1534 __kmp_alloc_argv_entries(argc, parent_team, TRUE); 1535 parent_team->t.t_argc = argc; 1536 argv = (void **)parent_team->t.t_argv; 1537 for (i = argc - 1; i >= 0; --i) 1538 /* TODO: revert workaround for Intel(R) 64 tracker #96 */ 1539 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 1540 *argv++ = va_arg(*ap, void *); 1541 #else 1542 *argv++ = va_arg(ap, void *); 1543 #endif 1544 // Increment our nested depth levels, but not increase the serialization 1545 if (parent_team == master_th->th.th_serial_team) { 1546 // AC: we are in serialized parallel 1547 __kmpc_serialized_parallel(loc, gtid); 1548 KMP_DEBUG_ASSERT(parent_team->t.t_serialized > 1); 1549 // AC: need this in order enquiry functions work 1550 // correctly, will restore at join time 1551 parent_team->t.t_serialized--; 1552 #if OMPT_SUPPORT 1553 void *dummy; 1554 void **exit_runtime_p; 1555 1556 ompt_lw_taskteam_t lw_taskteam; 1557 1558 if (ompt_enabled.enabled) { 1559 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1560 &ompt_parallel_data, return_address); 1561 exit_runtime_p = &(lw_taskteam.ompt_task_info.frame.exit_frame); 1562 1563 __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0); 1564 // don't use lw_taskteam after linking. content was swaped 1565 1566 /* OMPT implicit task begin */ 1567 implicit_task_data = OMPT_CUR_TASK_DATA(master_th); 1568 if (ompt_enabled.ompt_callback_implicit_task) { 1569 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1570 ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th), 1571 implicit_task_data, 1, __kmp_tid_from_gtid(gtid)); 1572 OMPT_CUR_TASK_INFO(master_th) 1573 ->thread_num = __kmp_tid_from_gtid(gtid); 1574 } 1575 1576 /* OMPT state */ 1577 master_th->th.ompt_thread_info.state = omp_state_work_parallel; 1578 } else { 1579 exit_runtime_p = &dummy; 1580 } 1581 #endif 1582 1583 { 1584 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1585 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1586 __kmp_invoke_microtask(microtask, gtid, 0, argc, parent_team->t.t_argv 1587 #if OMPT_SUPPORT 1588 , 1589 exit_runtime_p 1590 #endif 1591 ); 1592 } 1593 1594 #if OMPT_SUPPORT 1595 *exit_runtime_p = NULL; 1596 if (ompt_enabled.enabled) { 1597 OMPT_CUR_TASK_INFO(master_th)->frame.exit_frame = NULL; 1598 if (ompt_enabled.ompt_callback_implicit_task) { 1599 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1600 ompt_scope_end, NULL, implicit_task_data, 1, 1601 OMPT_CUR_TASK_INFO(master_th)->thread_num); 1602 } 1603 __ompt_lw_taskteam_unlink(master_th); 1604 1605 if (ompt_enabled.ompt_callback_parallel_end) { 1606 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 1607 OMPT_CUR_TEAM_DATA(master_th), OMPT_CUR_TASK_DATA(master_th), 1608 OMPT_INVOKER(call_context), return_address); 1609 } 1610 master_th->th.ompt_thread_info.state = omp_state_overhead; 1611 } 1612 #endif 1613 return TRUE; 1614 } 1615 1616 parent_team->t.t_pkfn = microtask; 1617 parent_team->t.t_invoke = invoker; 1618 KMP_ATOMIC_INC(&root->r.r_in_parallel); 1619 parent_team->t.t_active_level++; 1620 parent_team->t.t_level++; 1621 #if OMP_50_ENABLED 1622 parent_team->t.t_def_allocator = master_th->th.th_def_allocator; // save 1623 #endif 1624 1625 /* Change number of threads in the team if requested */ 1626 if (master_set_numthreads) { // The parallel has num_threads clause 1627 if (master_set_numthreads < master_th->th.th_teams_size.nth) { 1628 // AC: only can reduce number of threads dynamically, can't increase 1629 kmp_info_t **other_threads = parent_team->t.t_threads; 1630 parent_team->t.t_nproc = master_set_numthreads; 1631 for (i = 0; i < master_set_numthreads; ++i) { 1632 other_threads[i]->th.th_team_nproc = master_set_numthreads; 1633 } 1634 // Keep extra threads hot in the team for possible next parallels 1635 } 1636 master_th->th.th_set_nproc = 0; 1637 } 1638 1639 #if USE_DEBUGGER 1640 if (__kmp_debugging) { // Let debugger override number of threads. 1641 int nth = __kmp_omp_num_threads(loc); 1642 if (nth > 0) { // 0 means debugger doesn't want to change num threads 1643 master_set_numthreads = nth; 1644 } 1645 } 1646 #endif 1647 1648 KF_TRACE(10, ("__kmp_fork_call: before internal fork: root=%p, team=%p, " 1649 "master_th=%p, gtid=%d\n", 1650 root, parent_team, master_th, gtid)); 1651 __kmp_internal_fork(loc, gtid, parent_team); 1652 KF_TRACE(10, ("__kmp_fork_call: after internal fork: root=%p, team=%p, " 1653 "master_th=%p, gtid=%d\n", 1654 root, parent_team, master_th, gtid)); 1655 1656 /* Invoke microtask for MASTER thread */ 1657 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) invoke microtask = %p\n", gtid, 1658 parent_team->t.t_id, parent_team->t.t_pkfn)); 1659 1660 if (!parent_team->t.t_invoke(gtid)) { 1661 KMP_ASSERT2(0, "cannot invoke microtask for MASTER thread"); 1662 } 1663 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) done microtask = %p\n", gtid, 1664 parent_team->t.t_id, parent_team->t.t_pkfn)); 1665 KMP_MB(); /* Flush all pending memory write invalidates. */ 1666 1667 KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid)); 1668 1669 return TRUE; 1670 } // Parallel closely nested in teams construct 1671 #endif /* OMP_40_ENABLED */ 1672 1673 #if KMP_DEBUG 1674 if (__kmp_tasking_mode != tskm_immediate_exec) { 1675 KMP_DEBUG_ASSERT(master_th->th.th_task_team == 1676 parent_team->t.t_task_team[master_th->th.th_task_state]); 1677 } 1678 #endif 1679 1680 if (parent_team->t.t_active_level >= 1681 master_th->th.th_current_task->td_icvs.max_active_levels) { 1682 nthreads = 1; 1683 } else { 1684 #if OMP_40_ENABLED 1685 int enter_teams = ((ap == NULL && active_level == 0) || 1686 (ap && teams_level > 0 && teams_level == level)); 1687 #endif 1688 nthreads = 1689 master_set_numthreads 1690 ? master_set_numthreads 1691 : get__nproc_2( 1692 parent_team, 1693 master_tid); // TODO: get nproc directly from current task 1694 1695 // Check if we need to take forkjoin lock? (no need for serialized 1696 // parallel out of teams construct). This code moved here from 1697 // __kmp_reserve_threads() to speedup nested serialized parallels. 1698 if (nthreads > 1) { 1699 if ((!get__nested(master_th) && (root->r.r_in_parallel 1700 #if OMP_40_ENABLED 1701 && !enter_teams 1702 #endif /* OMP_40_ENABLED */ 1703 )) || 1704 (__kmp_library == library_serial)) { 1705 KC_TRACE(10, ("__kmp_fork_call: T#%d serializing team; requested %d" 1706 " threads\n", 1707 gtid, nthreads)); 1708 nthreads = 1; 1709 } 1710 } 1711 if (nthreads > 1) { 1712 /* determine how many new threads we can use */ 1713 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 1714 nthreads = __kmp_reserve_threads( 1715 root, parent_team, master_tid, nthreads 1716 #if OMP_40_ENABLED 1717 /* AC: If we execute teams from parallel region (on host), then 1718 teams should be created but each can only have 1 thread if 1719 nesting is disabled. If teams called from serial region, then 1720 teams and their threads should be created regardless of the 1721 nesting setting. */ 1722 , 1723 enter_teams 1724 #endif /* OMP_40_ENABLED */ 1725 ); 1726 if (nthreads == 1) { 1727 // Free lock for single thread execution here; for multi-thread 1728 // execution it will be freed later after team of threads created 1729 // and initialized 1730 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1731 } 1732 } 1733 } 1734 KMP_DEBUG_ASSERT(nthreads > 0); 1735 1736 // If we temporarily changed the set number of threads then restore it now 1737 master_th->th.th_set_nproc = 0; 1738 1739 /* create a serialized parallel region? */ 1740 if (nthreads == 1) { 1741 /* josh todo: hypothetical question: what do we do for OS X*? */ 1742 #if KMP_OS_LINUX && \ 1743 (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) 1744 void *args[argc]; 1745 #else 1746 void **args = (void **)KMP_ALLOCA(argc * sizeof(void *)); 1747 #endif /* KMP_OS_LINUX && ( KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || \ 1748 KMP_ARCH_AARCH64) */ 1749 1750 KA_TRACE(20, 1751 ("__kmp_fork_call: T#%d serializing parallel region\n", gtid)); 1752 1753 __kmpc_serialized_parallel(loc, gtid); 1754 1755 if (call_context == fork_context_intel) { 1756 /* TODO this sucks, use the compiler itself to pass args! :) */ 1757 master_th->th.th_serial_team->t.t_ident = loc; 1758 #if OMP_40_ENABLED 1759 if (!ap) { 1760 // revert change made in __kmpc_serialized_parallel() 1761 master_th->th.th_serial_team->t.t_level--; 1762 // Get args from parent team for teams construct 1763 1764 #if OMPT_SUPPORT 1765 void *dummy; 1766 void **exit_runtime_p; 1767 ompt_task_info_t *task_info; 1768 1769 ompt_lw_taskteam_t lw_taskteam; 1770 1771 if (ompt_enabled.enabled) { 1772 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1773 &ompt_parallel_data, return_address); 1774 1775 __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0); 1776 // don't use lw_taskteam after linking. content was swaped 1777 1778 task_info = OMPT_CUR_TASK_INFO(master_th); 1779 exit_runtime_p = &(task_info->frame.exit_frame); 1780 if (ompt_enabled.ompt_callback_implicit_task) { 1781 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1782 ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th), 1783 &(task_info->task_data), 1, __kmp_tid_from_gtid(gtid)); 1784 OMPT_CUR_TASK_INFO(master_th) 1785 ->thread_num = __kmp_tid_from_gtid(gtid); 1786 } 1787 1788 /* OMPT state */ 1789 master_th->th.ompt_thread_info.state = omp_state_work_parallel; 1790 } else { 1791 exit_runtime_p = &dummy; 1792 } 1793 #endif 1794 1795 { 1796 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1797 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1798 __kmp_invoke_microtask(microtask, gtid, 0, argc, 1799 parent_team->t.t_argv 1800 #if OMPT_SUPPORT 1801 , 1802 exit_runtime_p 1803 #endif 1804 ); 1805 } 1806 1807 #if OMPT_SUPPORT 1808 if (ompt_enabled.enabled) { 1809 exit_runtime_p = NULL; 1810 if (ompt_enabled.ompt_callback_implicit_task) { 1811 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1812 ompt_scope_end, NULL, &(task_info->task_data), 1, 1813 OMPT_CUR_TASK_INFO(master_th)->thread_num); 1814 } 1815 1816 __ompt_lw_taskteam_unlink(master_th); 1817 if (ompt_enabled.ompt_callback_parallel_end) { 1818 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 1819 OMPT_CUR_TEAM_DATA(master_th), parent_task_data, 1820 OMPT_INVOKER(call_context), return_address); 1821 } 1822 master_th->th.ompt_thread_info.state = omp_state_overhead; 1823 } 1824 #endif 1825 } else if (microtask == (microtask_t)__kmp_teams_master) { 1826 KMP_DEBUG_ASSERT(master_th->th.th_team == 1827 master_th->th.th_serial_team); 1828 team = master_th->th.th_team; 1829 // team->t.t_pkfn = microtask; 1830 team->t.t_invoke = invoker; 1831 __kmp_alloc_argv_entries(argc, team, TRUE); 1832 team->t.t_argc = argc; 1833 argv = (void **)team->t.t_argv; 1834 if (ap) { 1835 for (i = argc - 1; i >= 0; --i) 1836 // TODO: revert workaround for Intel(R) 64 tracker #96 1837 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 1838 *argv++ = va_arg(*ap, void *); 1839 #else 1840 *argv++ = va_arg(ap, void *); 1841 #endif 1842 } else { 1843 for (i = 0; i < argc; ++i) 1844 // Get args from parent team for teams construct 1845 argv[i] = parent_team->t.t_argv[i]; 1846 } 1847 // AC: revert change made in __kmpc_serialized_parallel() 1848 // because initial code in teams should have level=0 1849 team->t.t_level--; 1850 // AC: call special invoker for outer "parallel" of teams construct 1851 invoker(gtid); 1852 } else { 1853 #endif /* OMP_40_ENABLED */ 1854 argv = args; 1855 for (i = argc - 1; i >= 0; --i) 1856 // TODO: revert workaround for Intel(R) 64 tracker #96 1857 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 1858 *argv++ = va_arg(*ap, void *); 1859 #else 1860 *argv++ = va_arg(ap, void *); 1861 #endif 1862 KMP_MB(); 1863 1864 #if OMPT_SUPPORT 1865 void *dummy; 1866 void **exit_runtime_p; 1867 ompt_task_info_t *task_info; 1868 1869 ompt_lw_taskteam_t lw_taskteam; 1870 1871 if (ompt_enabled.enabled) { 1872 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1873 &ompt_parallel_data, return_address); 1874 __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0); 1875 // don't use lw_taskteam after linking. content was swaped 1876 task_info = OMPT_CUR_TASK_INFO(master_th); 1877 exit_runtime_p = &(task_info->frame.exit_frame); 1878 1879 /* OMPT implicit task begin */ 1880 implicit_task_data = OMPT_CUR_TASK_DATA(master_th); 1881 if (ompt_enabled.ompt_callback_implicit_task) { 1882 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1883 ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th), 1884 implicit_task_data, 1, __kmp_tid_from_gtid(gtid)); 1885 OMPT_CUR_TASK_INFO(master_th) 1886 ->thread_num = __kmp_tid_from_gtid(gtid); 1887 } 1888 1889 /* OMPT state */ 1890 master_th->th.ompt_thread_info.state = omp_state_work_parallel; 1891 } else { 1892 exit_runtime_p = &dummy; 1893 } 1894 #endif 1895 1896 { 1897 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1898 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1899 __kmp_invoke_microtask(microtask, gtid, 0, argc, args 1900 #if OMPT_SUPPORT 1901 , 1902 exit_runtime_p 1903 #endif 1904 ); 1905 } 1906 1907 #if OMPT_SUPPORT 1908 if (ompt_enabled.enabled) { 1909 *exit_runtime_p = NULL; 1910 if (ompt_enabled.ompt_callback_implicit_task) { 1911 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1912 ompt_scope_end, NULL, &(task_info->task_data), 1, 1913 OMPT_CUR_TASK_INFO(master_th)->thread_num); 1914 } 1915 1916 ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th); 1917 __ompt_lw_taskteam_unlink(master_th); 1918 if (ompt_enabled.ompt_callback_parallel_end) { 1919 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 1920 &ompt_parallel_data, parent_task_data, 1921 OMPT_INVOKER(call_context), return_address); 1922 } 1923 master_th->th.ompt_thread_info.state = omp_state_overhead; 1924 } 1925 #endif 1926 #if OMP_40_ENABLED 1927 } 1928 #endif /* OMP_40_ENABLED */ 1929 } else if (call_context == fork_context_gnu) { 1930 #if OMPT_SUPPORT 1931 ompt_lw_taskteam_t lwt; 1932 __ompt_lw_taskteam_init(&lwt, master_th, gtid, &ompt_parallel_data, 1933 return_address); 1934 1935 lwt.ompt_task_info.frame.exit_frame = NULL; 1936 __ompt_lw_taskteam_link(&lwt, master_th, 1); 1937 // don't use lw_taskteam after linking. content was swaped 1938 #endif 1939 1940 // we were called from GNU native code 1941 KA_TRACE(20, ("__kmp_fork_call: T#%d serial exit\n", gtid)); 1942 return FALSE; 1943 } else { 1944 KMP_ASSERT2(call_context < fork_context_last, 1945 "__kmp_fork_call: unknown fork_context parameter"); 1946 } 1947 1948 KA_TRACE(20, ("__kmp_fork_call: T#%d serial exit\n", gtid)); 1949 KMP_MB(); 1950 return FALSE; 1951 } 1952 1953 // GEH: only modify the executing flag in the case when not serialized 1954 // serialized case is handled in kmpc_serialized_parallel 1955 KF_TRACE(10, ("__kmp_fork_call: parent_team_aclevel=%d, master_th=%p, " 1956 "curtask=%p, curtask_max_aclevel=%d\n", 1957 parent_team->t.t_active_level, master_th, 1958 master_th->th.th_current_task, 1959 master_th->th.th_current_task->td_icvs.max_active_levels)); 1960 // TODO: GEH - cannot do this assertion because root thread not set up as 1961 // executing 1962 // KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 1 ); 1963 master_th->th.th_current_task->td_flags.executing = 0; 1964 1965 #if OMP_40_ENABLED 1966 if (!master_th->th.th_teams_microtask || level > teams_level) 1967 #endif /* OMP_40_ENABLED */ 1968 { 1969 /* Increment our nested depth level */ 1970 KMP_ATOMIC_INC(&root->r.r_in_parallel); 1971 } 1972 1973 // See if we need to make a copy of the ICVs. 1974 int nthreads_icv = master_th->th.th_current_task->td_icvs.nproc; 1975 if ((level + 1 < __kmp_nested_nth.used) && 1976 (__kmp_nested_nth.nth[level + 1] != nthreads_icv)) { 1977 nthreads_icv = __kmp_nested_nth.nth[level + 1]; 1978 } else { 1979 nthreads_icv = 0; // don't update 1980 } 1981 1982 #if OMP_40_ENABLED 1983 // Figure out the proc_bind_policy for the new team. 1984 kmp_proc_bind_t proc_bind = master_th->th.th_set_proc_bind; 1985 kmp_proc_bind_t proc_bind_icv = 1986 proc_bind_default; // proc_bind_default means don't update 1987 if (master_th->th.th_current_task->td_icvs.proc_bind == proc_bind_false) { 1988 proc_bind = proc_bind_false; 1989 } else { 1990 if (proc_bind == proc_bind_default) { 1991 // No proc_bind clause specified; use current proc-bind-var for this 1992 // parallel region 1993 proc_bind = master_th->th.th_current_task->td_icvs.proc_bind; 1994 } 1995 /* else: The proc_bind policy was specified explicitly on parallel clause. 1996 This overrides proc-bind-var for this parallel region, but does not 1997 change proc-bind-var. */ 1998 // Figure the value of proc-bind-var for the child threads. 1999 if ((level + 1 < __kmp_nested_proc_bind.used) && 2000 (__kmp_nested_proc_bind.bind_types[level + 1] != 2001 master_th->th.th_current_task->td_icvs.proc_bind)) { 2002 proc_bind_icv = __kmp_nested_proc_bind.bind_types[level + 1]; 2003 } 2004 } 2005 2006 // Reset for next parallel region 2007 master_th->th.th_set_proc_bind = proc_bind_default; 2008 #endif /* OMP_40_ENABLED */ 2009 2010 if ((nthreads_icv > 0) 2011 #if OMP_40_ENABLED 2012 || (proc_bind_icv != proc_bind_default) 2013 #endif /* OMP_40_ENABLED */ 2014 ) { 2015 kmp_internal_control_t new_icvs; 2016 copy_icvs(&new_icvs, &master_th->th.th_current_task->td_icvs); 2017 new_icvs.next = NULL; 2018 if (nthreads_icv > 0) { 2019 new_icvs.nproc = nthreads_icv; 2020 } 2021 2022 #if OMP_40_ENABLED 2023 if (proc_bind_icv != proc_bind_default) { 2024 new_icvs.proc_bind = proc_bind_icv; 2025 } 2026 #endif /* OMP_40_ENABLED */ 2027 2028 /* allocate a new parallel team */ 2029 KF_TRACE(10, ("__kmp_fork_call: before __kmp_allocate_team\n")); 2030 team = __kmp_allocate_team(root, nthreads, nthreads, 2031 #if OMPT_SUPPORT 2032 ompt_parallel_data, 2033 #endif 2034 #if OMP_40_ENABLED 2035 proc_bind, 2036 #endif 2037 &new_icvs, argc USE_NESTED_HOT_ARG(master_th)); 2038 } else { 2039 /* allocate a new parallel team */ 2040 KF_TRACE(10, ("__kmp_fork_call: before __kmp_allocate_team\n")); 2041 team = __kmp_allocate_team(root, nthreads, nthreads, 2042 #if OMPT_SUPPORT 2043 ompt_parallel_data, 2044 #endif 2045 #if OMP_40_ENABLED 2046 proc_bind, 2047 #endif 2048 &master_th->th.th_current_task->td_icvs, 2049 argc USE_NESTED_HOT_ARG(master_th)); 2050 } 2051 KF_TRACE( 2052 10, ("__kmp_fork_call: after __kmp_allocate_team - team = %p\n", team)); 2053 2054 /* setup the new team */ 2055 KMP_CHECK_UPDATE(team->t.t_master_tid, master_tid); 2056 KMP_CHECK_UPDATE(team->t.t_master_this_cons, master_this_cons); 2057 KMP_CHECK_UPDATE(team->t.t_ident, loc); 2058 KMP_CHECK_UPDATE(team->t.t_parent, parent_team); 2059 KMP_CHECK_UPDATE_SYNC(team->t.t_pkfn, microtask); 2060 #if OMPT_SUPPORT 2061 KMP_CHECK_UPDATE_SYNC(team->t.ompt_team_info.master_return_address, 2062 return_address); 2063 #endif 2064 KMP_CHECK_UPDATE(team->t.t_invoke, invoker); // TODO move to root, maybe 2065 // TODO: parent_team->t.t_level == INT_MAX ??? 2066 #if OMP_40_ENABLED 2067 if (!master_th->th.th_teams_microtask || level > teams_level) { 2068 #endif /* OMP_40_ENABLED */ 2069 int new_level = parent_team->t.t_level + 1; 2070 KMP_CHECK_UPDATE(team->t.t_level, new_level); 2071 new_level = parent_team->t.t_active_level + 1; 2072 KMP_CHECK_UPDATE(team->t.t_active_level, new_level); 2073 #if OMP_40_ENABLED 2074 } else { 2075 // AC: Do not increase parallel level at start of the teams construct 2076 int new_level = parent_team->t.t_level; 2077 KMP_CHECK_UPDATE(team->t.t_level, new_level); 2078 new_level = parent_team->t.t_active_level; 2079 KMP_CHECK_UPDATE(team->t.t_active_level, new_level); 2080 } 2081 #endif /* OMP_40_ENABLED */ 2082 kmp_r_sched_t new_sched = get__sched_2(parent_team, master_tid); 2083 // set master's schedule as new run-time schedule 2084 KMP_CHECK_UPDATE(team->t.t_sched.sched, new_sched.sched); 2085 2086 #if OMP_40_ENABLED 2087 KMP_CHECK_UPDATE(team->t.t_cancel_request, cancel_noreq); 2088 #endif 2089 #if OMP_50_ENABLED 2090 KMP_CHECK_UPDATE(team->t.t_def_allocator, master_th->th.th_def_allocator); 2091 #endif 2092 2093 // Update the floating point rounding in the team if required. 2094 propagateFPControl(team); 2095 2096 if (__kmp_tasking_mode != tskm_immediate_exec) { 2097 // Set master's task team to team's task team. Unless this is hot team, it 2098 // should be NULL. 2099 KMP_DEBUG_ASSERT(master_th->th.th_task_team == 2100 parent_team->t.t_task_team[master_th->th.th_task_state]); 2101 KA_TRACE(20, ("__kmp_fork_call: Master T#%d pushing task_team %p / team " 2102 "%p, new task_team %p / team %p\n", 2103 __kmp_gtid_from_thread(master_th), 2104 master_th->th.th_task_team, parent_team, 2105 team->t.t_task_team[master_th->th.th_task_state], team)); 2106 2107 if (active_level || master_th->th.th_task_team) { 2108 // Take a memo of master's task_state 2109 KMP_DEBUG_ASSERT(master_th->th.th_task_state_memo_stack); 2110 if (master_th->th.th_task_state_top >= 2111 master_th->th.th_task_state_stack_sz) { // increase size 2112 kmp_uint32 new_size = 2 * master_th->th.th_task_state_stack_sz; 2113 kmp_uint8 *old_stack, *new_stack; 2114 kmp_uint32 i; 2115 new_stack = (kmp_uint8 *)__kmp_allocate(new_size); 2116 for (i = 0; i < master_th->th.th_task_state_stack_sz; ++i) { 2117 new_stack[i] = master_th->th.th_task_state_memo_stack[i]; 2118 } 2119 for (i = master_th->th.th_task_state_stack_sz; i < new_size; 2120 ++i) { // zero-init rest of stack 2121 new_stack[i] = 0; 2122 } 2123 old_stack = master_th->th.th_task_state_memo_stack; 2124 master_th->th.th_task_state_memo_stack = new_stack; 2125 master_th->th.th_task_state_stack_sz = new_size; 2126 __kmp_free(old_stack); 2127 } 2128 // Store master's task_state on stack 2129 master_th->th 2130 .th_task_state_memo_stack[master_th->th.th_task_state_top] = 2131 master_th->th.th_task_state; 2132 master_th->th.th_task_state_top++; 2133 #if KMP_NESTED_HOT_TEAMS 2134 if (master_th->th.th_hot_teams && 2135 active_level < __kmp_hot_teams_max_level && 2136 team == master_th->th.th_hot_teams[active_level].hot_team) { 2137 // Restore master's nested state if nested hot team 2138 master_th->th.th_task_state = 2139 master_th->th 2140 .th_task_state_memo_stack[master_th->th.th_task_state_top]; 2141 } else { 2142 #endif 2143 master_th->th.th_task_state = 0; 2144 #if KMP_NESTED_HOT_TEAMS 2145 } 2146 #endif 2147 } 2148 #if !KMP_NESTED_HOT_TEAMS 2149 KMP_DEBUG_ASSERT((master_th->th.th_task_team == NULL) || 2150 (team == root->r.r_hot_team)); 2151 #endif 2152 } 2153 2154 KA_TRACE( 2155 20, 2156 ("__kmp_fork_call: T#%d(%d:%d)->(%d:0) created a team of %d threads\n", 2157 gtid, parent_team->t.t_id, team->t.t_master_tid, team->t.t_id, 2158 team->t.t_nproc)); 2159 KMP_DEBUG_ASSERT(team != root->r.r_hot_team || 2160 (team->t.t_master_tid == 0 && 2161 (team->t.t_parent == root->r.r_root_team || 2162 team->t.t_parent->t.t_serialized))); 2163 KMP_MB(); 2164 2165 /* now, setup the arguments */ 2166 argv = (void **)team->t.t_argv; 2167 #if OMP_40_ENABLED 2168 if (ap) { 2169 #endif /* OMP_40_ENABLED */ 2170 for (i = argc - 1; i >= 0; --i) { 2171 // TODO: revert workaround for Intel(R) 64 tracker #96 2172 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 2173 void *new_argv = va_arg(*ap, void *); 2174 #else 2175 void *new_argv = va_arg(ap, void *); 2176 #endif 2177 KMP_CHECK_UPDATE(*argv, new_argv); 2178 argv++; 2179 } 2180 #if OMP_40_ENABLED 2181 } else { 2182 for (i = 0; i < argc; ++i) { 2183 // Get args from parent team for teams construct 2184 KMP_CHECK_UPDATE(argv[i], team->t.t_parent->t.t_argv[i]); 2185 } 2186 } 2187 #endif /* OMP_40_ENABLED */ 2188 2189 /* now actually fork the threads */ 2190 KMP_CHECK_UPDATE(team->t.t_master_active, master_active); 2191 if (!root->r.r_active) // Only do assignment if it prevents cache ping-pong 2192 root->r.r_active = TRUE; 2193 2194 __kmp_fork_team_threads(root, team, master_th, gtid); 2195 __kmp_setup_icv_copy(team, nthreads, 2196 &master_th->th.th_current_task->td_icvs, loc); 2197 2198 #if OMPT_SUPPORT 2199 master_th->th.ompt_thread_info.state = omp_state_work_parallel; 2200 #endif 2201 2202 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 2203 2204 #if USE_ITT_BUILD 2205 if (team->t.t_active_level == 1 // only report frames at level 1 2206 #if OMP_40_ENABLED 2207 && !master_th->th.th_teams_microtask // not in teams construct 2208 #endif /* OMP_40_ENABLED */ 2209 ) { 2210 #if USE_ITT_NOTIFY 2211 if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) && 2212 (__kmp_forkjoin_frames_mode == 3 || 2213 __kmp_forkjoin_frames_mode == 1)) { 2214 kmp_uint64 tmp_time = 0; 2215 if (__itt_get_timestamp_ptr) 2216 tmp_time = __itt_get_timestamp(); 2217 // Internal fork - report frame begin 2218 master_th->th.th_frame_time = tmp_time; 2219 if (__kmp_forkjoin_frames_mode == 3) 2220 team->t.t_region_time = tmp_time; 2221 } else 2222 // only one notification scheme (either "submit" or "forking/joined", not both) 2223 #endif /* USE_ITT_NOTIFY */ 2224 if ((__itt_frame_begin_v3_ptr || KMP_ITT_DEBUG) && 2225 __kmp_forkjoin_frames && !__kmp_forkjoin_frames_mode) { 2226 // Mark start of "parallel" region for Intel(R) VTune(TM) analyzer. 2227 __kmp_itt_region_forking(gtid, team->t.t_nproc, 0); 2228 } 2229 } 2230 #endif /* USE_ITT_BUILD */ 2231 2232 /* now go on and do the work */ 2233 KMP_DEBUG_ASSERT(team == __kmp_threads[gtid]->th.th_team); 2234 KMP_MB(); 2235 KF_TRACE(10, 2236 ("__kmp_internal_fork : root=%p, team=%p, master_th=%p, gtid=%d\n", 2237 root, team, master_th, gtid)); 2238 2239 #if USE_ITT_BUILD 2240 if (__itt_stack_caller_create_ptr) { 2241 team->t.t_stack_id = 2242 __kmp_itt_stack_caller_create(); // create new stack stitching id 2243 // before entering fork barrier 2244 } 2245 #endif /* USE_ITT_BUILD */ 2246 2247 #if OMP_40_ENABLED 2248 // AC: skip __kmp_internal_fork at teams construct, let only master 2249 // threads execute 2250 if (ap) 2251 #endif /* OMP_40_ENABLED */ 2252 { 2253 __kmp_internal_fork(loc, gtid, team); 2254 KF_TRACE(10, ("__kmp_internal_fork : after : root=%p, team=%p, " 2255 "master_th=%p, gtid=%d\n", 2256 root, team, master_th, gtid)); 2257 } 2258 2259 if (call_context == fork_context_gnu) { 2260 KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid)); 2261 return TRUE; 2262 } 2263 2264 /* Invoke microtask for MASTER thread */ 2265 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) invoke microtask = %p\n", gtid, 2266 team->t.t_id, team->t.t_pkfn)); 2267 } // END of timer KMP_fork_call block 2268 2269 if (!team->t.t_invoke(gtid)) { 2270 KMP_ASSERT2(0, "cannot invoke microtask for MASTER thread"); 2271 } 2272 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) done microtask = %p\n", gtid, 2273 team->t.t_id, team->t.t_pkfn)); 2274 KMP_MB(); /* Flush all pending memory write invalidates. */ 2275 2276 KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid)); 2277 2278 #if OMPT_SUPPORT 2279 if (ompt_enabled.enabled) { 2280 master_th->th.ompt_thread_info.state = omp_state_overhead; 2281 } 2282 #endif 2283 2284 return TRUE; 2285 } 2286 2287 #if OMPT_SUPPORT 2288 static inline void __kmp_join_restore_state(kmp_info_t *thread, 2289 kmp_team_t *team) { 2290 // restore state outside the region 2291 thread->th.ompt_thread_info.state = 2292 ((team->t.t_serialized) ? omp_state_work_serial 2293 : omp_state_work_parallel); 2294 } 2295 2296 static inline void __kmp_join_ompt(int gtid, kmp_info_t *thread, 2297 kmp_team_t *team, ompt_data_t *parallel_data, 2298 fork_context_e fork_context, void *codeptr) { 2299 ompt_task_info_t *task_info = __ompt_get_task_info_object(0); 2300 if (ompt_enabled.ompt_callback_parallel_end) { 2301 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 2302 parallel_data, &(task_info->task_data), OMPT_INVOKER(fork_context), 2303 codeptr); 2304 } 2305 2306 task_info->frame.enter_frame = NULL; 2307 __kmp_join_restore_state(thread, team); 2308 } 2309 #endif 2310 2311 void __kmp_join_call(ident_t *loc, int gtid 2312 #if OMPT_SUPPORT 2313 , 2314 enum fork_context_e fork_context 2315 #endif 2316 #if OMP_40_ENABLED 2317 , 2318 int exit_teams 2319 #endif /* OMP_40_ENABLED */ 2320 ) { 2321 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_join_call); 2322 kmp_team_t *team; 2323 kmp_team_t *parent_team; 2324 kmp_info_t *master_th; 2325 kmp_root_t *root; 2326 int master_active; 2327 int i; 2328 2329 KA_TRACE(20, ("__kmp_join_call: enter T#%d\n", gtid)); 2330 2331 /* setup current data */ 2332 master_th = __kmp_threads[gtid]; 2333 root = master_th->th.th_root; 2334 team = master_th->th.th_team; 2335 parent_team = team->t.t_parent; 2336 2337 master_th->th.th_ident = loc; 2338 2339 #if OMPT_SUPPORT 2340 if (ompt_enabled.enabled) { 2341 master_th->th.ompt_thread_info.state = omp_state_overhead; 2342 } 2343 #endif 2344 2345 #if KMP_DEBUG 2346 if (__kmp_tasking_mode != tskm_immediate_exec && !exit_teams) { 2347 KA_TRACE(20, ("__kmp_join_call: T#%d, old team = %p old task_team = %p, " 2348 "th_task_team = %p\n", 2349 __kmp_gtid_from_thread(master_th), team, 2350 team->t.t_task_team[master_th->th.th_task_state], 2351 master_th->th.th_task_team)); 2352 KMP_DEBUG_ASSERT(master_th->th.th_task_team == 2353 team->t.t_task_team[master_th->th.th_task_state]); 2354 } 2355 #endif 2356 2357 if (team->t.t_serialized) { 2358 #if OMP_40_ENABLED 2359 if (master_th->th.th_teams_microtask) { 2360 // We are in teams construct 2361 int level = team->t.t_level; 2362 int tlevel = master_th->th.th_teams_level; 2363 if (level == tlevel) { 2364 // AC: we haven't incremented it earlier at start of teams construct, 2365 // so do it here - at the end of teams construct 2366 team->t.t_level++; 2367 } else if (level == tlevel + 1) { 2368 // AC: we are exiting parallel inside teams, need to increment 2369 // serialization in order to restore it in the next call to 2370 // __kmpc_end_serialized_parallel 2371 team->t.t_serialized++; 2372 } 2373 } 2374 #endif /* OMP_40_ENABLED */ 2375 __kmpc_end_serialized_parallel(loc, gtid); 2376 2377 #if OMPT_SUPPORT 2378 if (ompt_enabled.enabled) { 2379 __kmp_join_restore_state(master_th, parent_team); 2380 } 2381 #endif 2382 2383 return; 2384 } 2385 2386 master_active = team->t.t_master_active; 2387 2388 #if OMP_40_ENABLED 2389 if (!exit_teams) 2390 #endif /* OMP_40_ENABLED */ 2391 { 2392 // AC: No barrier for internal teams at exit from teams construct. 2393 // But there is barrier for external team (league). 2394 __kmp_internal_join(loc, gtid, team); 2395 } 2396 #if OMP_40_ENABLED 2397 else { 2398 master_th->th.th_task_state = 2399 0; // AC: no tasking in teams (out of any parallel) 2400 } 2401 #endif /* OMP_40_ENABLED */ 2402 2403 KMP_MB(); 2404 2405 #if OMPT_SUPPORT 2406 ompt_data_t *parallel_data = &(team->t.ompt_team_info.parallel_data); 2407 void *codeptr = team->t.ompt_team_info.master_return_address; 2408 #endif 2409 2410 #if USE_ITT_BUILD 2411 if (__itt_stack_caller_create_ptr) { 2412 __kmp_itt_stack_caller_destroy( 2413 (__itt_caller)team->t 2414 .t_stack_id); // destroy the stack stitching id after join barrier 2415 } 2416 2417 // Mark end of "parallel" region for Intel(R) VTune(TM) analyzer. 2418 if (team->t.t_active_level == 1 2419 #if OMP_40_ENABLED 2420 && !master_th->th.th_teams_microtask /* not in teams construct */ 2421 #endif /* OMP_40_ENABLED */ 2422 ) { 2423 master_th->th.th_ident = loc; 2424 // only one notification scheme (either "submit" or "forking/joined", not 2425 // both) 2426 if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) && 2427 __kmp_forkjoin_frames_mode == 3) 2428 __kmp_itt_frame_submit(gtid, team->t.t_region_time, 2429 master_th->th.th_frame_time, 0, loc, 2430 master_th->th.th_team_nproc, 1); 2431 else if ((__itt_frame_end_v3_ptr || KMP_ITT_DEBUG) && 2432 !__kmp_forkjoin_frames_mode && __kmp_forkjoin_frames) 2433 __kmp_itt_region_joined(gtid); 2434 } // active_level == 1 2435 #endif /* USE_ITT_BUILD */ 2436 2437 #if OMP_40_ENABLED 2438 if (master_th->th.th_teams_microtask && !exit_teams && 2439 team->t.t_pkfn != (microtask_t)__kmp_teams_master && 2440 team->t.t_level == master_th->th.th_teams_level + 1) { 2441 // AC: We need to leave the team structure intact at the end of parallel 2442 // inside the teams construct, so that at the next parallel same (hot) team 2443 // works, only adjust nesting levels 2444 2445 /* Decrement our nested depth level */ 2446 team->t.t_level--; 2447 team->t.t_active_level--; 2448 KMP_ATOMIC_DEC(&root->r.r_in_parallel); 2449 2450 /* Restore number of threads in the team if needed */ 2451 if (master_th->th.th_team_nproc < master_th->th.th_teams_size.nth) { 2452 int old_num = master_th->th.th_team_nproc; 2453 int new_num = master_th->th.th_teams_size.nth; 2454 kmp_info_t **other_threads = team->t.t_threads; 2455 team->t.t_nproc = new_num; 2456 for (i = 0; i < old_num; ++i) { 2457 other_threads[i]->th.th_team_nproc = new_num; 2458 } 2459 // Adjust states of non-used threads of the team 2460 for (i = old_num; i < new_num; ++i) { 2461 // Re-initialize thread's barrier data. 2462 int b; 2463 kmp_balign_t *balign = other_threads[i]->th.th_bar; 2464 for (b = 0; b < bs_last_barrier; ++b) { 2465 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 2466 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 2467 #if USE_DEBUGGER 2468 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 2469 #endif 2470 } 2471 if (__kmp_tasking_mode != tskm_immediate_exec) { 2472 // Synchronize thread's task state 2473 other_threads[i]->th.th_task_state = master_th->th.th_task_state; 2474 } 2475 } 2476 } 2477 2478 #if OMPT_SUPPORT 2479 if (ompt_enabled.enabled) { 2480 __kmp_join_ompt(gtid, master_th, parent_team, parallel_data, fork_context, 2481 codeptr); 2482 } 2483 #endif 2484 2485 return; 2486 } 2487 #endif /* OMP_40_ENABLED */ 2488 2489 /* do cleanup and restore the parent team */ 2490 master_th->th.th_info.ds.ds_tid = team->t.t_master_tid; 2491 master_th->th.th_local.this_construct = team->t.t_master_this_cons; 2492 2493 master_th->th.th_dispatch = &parent_team->t.t_dispatch[team->t.t_master_tid]; 2494 2495 /* jc: The following lock has instructions with REL and ACQ semantics, 2496 separating the parallel user code called in this parallel region 2497 from the serial user code called after this function returns. */ 2498 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 2499 2500 #if OMP_40_ENABLED 2501 if (!master_th->th.th_teams_microtask || 2502 team->t.t_level > master_th->th.th_teams_level) 2503 #endif /* OMP_40_ENABLED */ 2504 { 2505 /* Decrement our nested depth level */ 2506 KMP_ATOMIC_DEC(&root->r.r_in_parallel); 2507 } 2508 KMP_DEBUG_ASSERT(root->r.r_in_parallel >= 0); 2509 2510 #if OMPT_SUPPORT 2511 if (ompt_enabled.enabled) { 2512 ompt_task_info_t *task_info = __ompt_get_task_info_object(0); 2513 if (ompt_enabled.ompt_callback_implicit_task) { 2514 int ompt_team_size = team->t.t_nproc; 2515 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 2516 ompt_scope_end, NULL, &(task_info->task_data), ompt_team_size, 2517 OMPT_CUR_TASK_INFO(master_th)->thread_num); 2518 } 2519 2520 task_info->frame.exit_frame = NULL; 2521 task_info->task_data = ompt_data_none; 2522 } 2523 #endif 2524 2525 KF_TRACE(10, ("__kmp_join_call1: T#%d, this_thread=%p team=%p\n", 0, 2526 master_th, team)); 2527 __kmp_pop_current_task_from_thread(master_th); 2528 2529 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 2530 // Restore master thread's partition. 2531 master_th->th.th_first_place = team->t.t_first_place; 2532 master_th->th.th_last_place = team->t.t_last_place; 2533 #endif /* OMP_40_ENABLED */ 2534 #if OMP_50_ENABLED 2535 master_th->th.th_def_allocator = team->t.t_def_allocator; 2536 #endif 2537 2538 updateHWFPControl(team); 2539 2540 if (root->r.r_active != master_active) 2541 root->r.r_active = master_active; 2542 2543 __kmp_free_team(root, team USE_NESTED_HOT_ARG( 2544 master_th)); // this will free worker threads 2545 2546 /* this race was fun to find. make sure the following is in the critical 2547 region otherwise assertions may fail occasionally since the old team may be 2548 reallocated and the hierarchy appears inconsistent. it is actually safe to 2549 run and won't cause any bugs, but will cause those assertion failures. it's 2550 only one deref&assign so might as well put this in the critical region */ 2551 master_th->th.th_team = parent_team; 2552 master_th->th.th_team_nproc = parent_team->t.t_nproc; 2553 master_th->th.th_team_master = parent_team->t.t_threads[0]; 2554 master_th->th.th_team_serialized = parent_team->t.t_serialized; 2555 2556 /* restore serialized team, if need be */ 2557 if (parent_team->t.t_serialized && 2558 parent_team != master_th->th.th_serial_team && 2559 parent_team != root->r.r_root_team) { 2560 __kmp_free_team(root, 2561 master_th->th.th_serial_team USE_NESTED_HOT_ARG(NULL)); 2562 master_th->th.th_serial_team = parent_team; 2563 } 2564 2565 if (__kmp_tasking_mode != tskm_immediate_exec) { 2566 if (master_th->th.th_task_state_top > 2567 0) { // Restore task state from memo stack 2568 KMP_DEBUG_ASSERT(master_th->th.th_task_state_memo_stack); 2569 // Remember master's state if we re-use this nested hot team 2570 master_th->th.th_task_state_memo_stack[master_th->th.th_task_state_top] = 2571 master_th->th.th_task_state; 2572 --master_th->th.th_task_state_top; // pop 2573 // Now restore state at this level 2574 master_th->th.th_task_state = 2575 master_th->th 2576 .th_task_state_memo_stack[master_th->th.th_task_state_top]; 2577 } 2578 // Copy the task team from the parent team to the master thread 2579 master_th->th.th_task_team = 2580 parent_team->t.t_task_team[master_th->th.th_task_state]; 2581 KA_TRACE(20, 2582 ("__kmp_join_call: Master T#%d restoring task_team %p / team %p\n", 2583 __kmp_gtid_from_thread(master_th), master_th->th.th_task_team, 2584 parent_team)); 2585 } 2586 2587 // TODO: GEH - cannot do this assertion because root thread not set up as 2588 // executing 2589 // KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 0 ); 2590 master_th->th.th_current_task->td_flags.executing = 1; 2591 2592 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 2593 2594 #if OMPT_SUPPORT 2595 if (ompt_enabled.enabled) { 2596 __kmp_join_ompt(gtid, master_th, parent_team, parallel_data, fork_context, 2597 codeptr); 2598 } 2599 #endif 2600 2601 KMP_MB(); 2602 KA_TRACE(20, ("__kmp_join_call: exit T#%d\n", gtid)); 2603 } 2604 2605 /* Check whether we should push an internal control record onto the 2606 serial team stack. If so, do it. */ 2607 void __kmp_save_internal_controls(kmp_info_t *thread) { 2608 2609 if (thread->th.th_team != thread->th.th_serial_team) { 2610 return; 2611 } 2612 if (thread->th.th_team->t.t_serialized > 1) { 2613 int push = 0; 2614 2615 if (thread->th.th_team->t.t_control_stack_top == NULL) { 2616 push = 1; 2617 } else { 2618 if (thread->th.th_team->t.t_control_stack_top->serial_nesting_level != 2619 thread->th.th_team->t.t_serialized) { 2620 push = 1; 2621 } 2622 } 2623 if (push) { /* push a record on the serial team's stack */ 2624 kmp_internal_control_t *control = 2625 (kmp_internal_control_t *)__kmp_allocate( 2626 sizeof(kmp_internal_control_t)); 2627 2628 copy_icvs(control, &thread->th.th_current_task->td_icvs); 2629 2630 control->serial_nesting_level = thread->th.th_team->t.t_serialized; 2631 2632 control->next = thread->th.th_team->t.t_control_stack_top; 2633 thread->th.th_team->t.t_control_stack_top = control; 2634 } 2635 } 2636 } 2637 2638 /* Changes set_nproc */ 2639 void __kmp_set_num_threads(int new_nth, int gtid) { 2640 kmp_info_t *thread; 2641 kmp_root_t *root; 2642 2643 KF_TRACE(10, ("__kmp_set_num_threads: new __kmp_nth = %d\n", new_nth)); 2644 KMP_DEBUG_ASSERT(__kmp_init_serial); 2645 2646 if (new_nth < 1) 2647 new_nth = 1; 2648 else if (new_nth > __kmp_max_nth) 2649 new_nth = __kmp_max_nth; 2650 2651 KMP_COUNT_VALUE(OMP_set_numthreads, new_nth); 2652 thread = __kmp_threads[gtid]; 2653 if (thread->th.th_current_task->td_icvs.nproc == new_nth) 2654 return; // nothing to do 2655 2656 __kmp_save_internal_controls(thread); 2657 2658 set__nproc(thread, new_nth); 2659 2660 // If this omp_set_num_threads() call will cause the hot team size to be 2661 // reduced (in the absence of a num_threads clause), then reduce it now, 2662 // rather than waiting for the next parallel region. 2663 root = thread->th.th_root; 2664 if (__kmp_init_parallel && (!root->r.r_active) && 2665 (root->r.r_hot_team->t.t_nproc > new_nth) 2666 #if KMP_NESTED_HOT_TEAMS 2667 && __kmp_hot_teams_max_level && !__kmp_hot_teams_mode 2668 #endif 2669 ) { 2670 kmp_team_t *hot_team = root->r.r_hot_team; 2671 int f; 2672 2673 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 2674 2675 // Release the extra threads we don't need any more. 2676 for (f = new_nth; f < hot_team->t.t_nproc; f++) { 2677 KMP_DEBUG_ASSERT(hot_team->t.t_threads[f] != NULL); 2678 if (__kmp_tasking_mode != tskm_immediate_exec) { 2679 // When decreasing team size, threads no longer in the team should unref 2680 // task team. 2681 hot_team->t.t_threads[f]->th.th_task_team = NULL; 2682 } 2683 __kmp_free_thread(hot_team->t.t_threads[f]); 2684 hot_team->t.t_threads[f] = NULL; 2685 } 2686 hot_team->t.t_nproc = new_nth; 2687 #if KMP_NESTED_HOT_TEAMS 2688 if (thread->th.th_hot_teams) { 2689 KMP_DEBUG_ASSERT(hot_team == thread->th.th_hot_teams[0].hot_team); 2690 thread->th.th_hot_teams[0].hot_team_nth = new_nth; 2691 } 2692 #endif 2693 2694 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 2695 2696 // Update the t_nproc field in the threads that are still active. 2697 for (f = 0; f < new_nth; f++) { 2698 KMP_DEBUG_ASSERT(hot_team->t.t_threads[f] != NULL); 2699 hot_team->t.t_threads[f]->th.th_team_nproc = new_nth; 2700 } 2701 // Special flag in case omp_set_num_threads() call 2702 hot_team->t.t_size_changed = -1; 2703 } 2704 } 2705 2706 /* Changes max_active_levels */ 2707 void __kmp_set_max_active_levels(int gtid, int max_active_levels) { 2708 kmp_info_t *thread; 2709 2710 KF_TRACE(10, ("__kmp_set_max_active_levels: new max_active_levels for thread " 2711 "%d = (%d)\n", 2712 gtid, max_active_levels)); 2713 KMP_DEBUG_ASSERT(__kmp_init_serial); 2714 2715 // validate max_active_levels 2716 if (max_active_levels < 0) { 2717 KMP_WARNING(ActiveLevelsNegative, max_active_levels); 2718 // We ignore this call if the user has specified a negative value. 2719 // The current setting won't be changed. The last valid setting will be 2720 // used. A warning will be issued (if warnings are allowed as controlled by 2721 // the KMP_WARNINGS env var). 2722 KF_TRACE(10, ("__kmp_set_max_active_levels: the call is ignored: new " 2723 "max_active_levels for thread %d = (%d)\n", 2724 gtid, max_active_levels)); 2725 return; 2726 } 2727 if (max_active_levels <= KMP_MAX_ACTIVE_LEVELS_LIMIT) { 2728 // it's OK, the max_active_levels is within the valid range: [ 0; 2729 // KMP_MAX_ACTIVE_LEVELS_LIMIT ] 2730 // We allow a zero value. (implementation defined behavior) 2731 } else { 2732 KMP_WARNING(ActiveLevelsExceedLimit, max_active_levels, 2733 KMP_MAX_ACTIVE_LEVELS_LIMIT); 2734 max_active_levels = KMP_MAX_ACTIVE_LEVELS_LIMIT; 2735 // Current upper limit is MAX_INT. (implementation defined behavior) 2736 // If the input exceeds the upper limit, we correct the input to be the 2737 // upper limit. (implementation defined behavior) 2738 // Actually, the flow should never get here until we use MAX_INT limit. 2739 } 2740 KF_TRACE(10, ("__kmp_set_max_active_levels: after validation: new " 2741 "max_active_levels for thread %d = (%d)\n", 2742 gtid, max_active_levels)); 2743 2744 thread = __kmp_threads[gtid]; 2745 2746 __kmp_save_internal_controls(thread); 2747 2748 set__max_active_levels(thread, max_active_levels); 2749 } 2750 2751 /* Gets max_active_levels */ 2752 int __kmp_get_max_active_levels(int gtid) { 2753 kmp_info_t *thread; 2754 2755 KF_TRACE(10, ("__kmp_get_max_active_levels: thread %d\n", gtid)); 2756 KMP_DEBUG_ASSERT(__kmp_init_serial); 2757 2758 thread = __kmp_threads[gtid]; 2759 KMP_DEBUG_ASSERT(thread->th.th_current_task); 2760 KF_TRACE(10, ("__kmp_get_max_active_levels: thread %d, curtask=%p, " 2761 "curtask_maxaclevel=%d\n", 2762 gtid, thread->th.th_current_task, 2763 thread->th.th_current_task->td_icvs.max_active_levels)); 2764 return thread->th.th_current_task->td_icvs.max_active_levels; 2765 } 2766 2767 /* Changes def_sched_var ICV values (run-time schedule kind and chunk) */ 2768 void __kmp_set_schedule(int gtid, kmp_sched_t kind, int chunk) { 2769 kmp_info_t *thread; 2770 // kmp_team_t *team; 2771 2772 KF_TRACE(10, ("__kmp_set_schedule: new schedule for thread %d = (%d, %d)\n", 2773 gtid, (int)kind, chunk)); 2774 KMP_DEBUG_ASSERT(__kmp_init_serial); 2775 2776 // Check if the kind parameter is valid, correct if needed. 2777 // Valid parameters should fit in one of two intervals - standard or extended: 2778 // <lower>, <valid>, <upper_std>, <lower_ext>, <valid>, <upper> 2779 // 2008-01-25: 0, 1 - 4, 5, 100, 101 - 102, 103 2780 if (kind <= kmp_sched_lower || kind >= kmp_sched_upper || 2781 (kind <= kmp_sched_lower_ext && kind >= kmp_sched_upper_std)) { 2782 // TODO: Hint needs attention in case we change the default schedule. 2783 __kmp_msg(kmp_ms_warning, KMP_MSG(ScheduleKindOutOfRange, kind), 2784 KMP_HNT(DefaultScheduleKindUsed, "static, no chunk"), 2785 __kmp_msg_null); 2786 kind = kmp_sched_default; 2787 chunk = 0; // ignore chunk value in case of bad kind 2788 } 2789 2790 thread = __kmp_threads[gtid]; 2791 2792 __kmp_save_internal_controls(thread); 2793 2794 if (kind < kmp_sched_upper_std) { 2795 if (kind == kmp_sched_static && chunk < KMP_DEFAULT_CHUNK) { 2796 // differ static chunked vs. unchunked: chunk should be invalid to 2797 // indicate unchunked schedule (which is the default) 2798 thread->th.th_current_task->td_icvs.sched.r_sched_type = kmp_sch_static; 2799 } else { 2800 thread->th.th_current_task->td_icvs.sched.r_sched_type = 2801 __kmp_sch_map[kind - kmp_sched_lower - 1]; 2802 } 2803 } else { 2804 // __kmp_sch_map[ kind - kmp_sched_lower_ext + kmp_sched_upper_std - 2805 // kmp_sched_lower - 2 ]; 2806 thread->th.th_current_task->td_icvs.sched.r_sched_type = 2807 __kmp_sch_map[kind - kmp_sched_lower_ext + kmp_sched_upper_std - 2808 kmp_sched_lower - 2]; 2809 } 2810 if (kind == kmp_sched_auto || chunk < 1) { 2811 // ignore parameter chunk for schedule auto 2812 thread->th.th_current_task->td_icvs.sched.chunk = KMP_DEFAULT_CHUNK; 2813 } else { 2814 thread->th.th_current_task->td_icvs.sched.chunk = chunk; 2815 } 2816 } 2817 2818 /* Gets def_sched_var ICV values */ 2819 void __kmp_get_schedule(int gtid, kmp_sched_t *kind, int *chunk) { 2820 kmp_info_t *thread; 2821 enum sched_type th_type; 2822 2823 KF_TRACE(10, ("__kmp_get_schedule: thread %d\n", gtid)); 2824 KMP_DEBUG_ASSERT(__kmp_init_serial); 2825 2826 thread = __kmp_threads[gtid]; 2827 2828 th_type = thread->th.th_current_task->td_icvs.sched.r_sched_type; 2829 2830 switch (th_type) { 2831 case kmp_sch_static: 2832 case kmp_sch_static_greedy: 2833 case kmp_sch_static_balanced: 2834 *kind = kmp_sched_static; 2835 *chunk = 0; // chunk was not set, try to show this fact via zero value 2836 return; 2837 case kmp_sch_static_chunked: 2838 *kind = kmp_sched_static; 2839 break; 2840 case kmp_sch_dynamic_chunked: 2841 *kind = kmp_sched_dynamic; 2842 break; 2843 case kmp_sch_guided_chunked: 2844 case kmp_sch_guided_iterative_chunked: 2845 case kmp_sch_guided_analytical_chunked: 2846 *kind = kmp_sched_guided; 2847 break; 2848 case kmp_sch_auto: 2849 *kind = kmp_sched_auto; 2850 break; 2851 case kmp_sch_trapezoidal: 2852 *kind = kmp_sched_trapezoidal; 2853 break; 2854 #if KMP_STATIC_STEAL_ENABLED 2855 case kmp_sch_static_steal: 2856 *kind = kmp_sched_static_steal; 2857 break; 2858 #endif 2859 default: 2860 KMP_FATAL(UnknownSchedulingType, th_type); 2861 } 2862 2863 *chunk = thread->th.th_current_task->td_icvs.sched.chunk; 2864 } 2865 2866 int __kmp_get_ancestor_thread_num(int gtid, int level) { 2867 2868 int ii, dd; 2869 kmp_team_t *team; 2870 kmp_info_t *thr; 2871 2872 KF_TRACE(10, ("__kmp_get_ancestor_thread_num: thread %d %d\n", gtid, level)); 2873 KMP_DEBUG_ASSERT(__kmp_init_serial); 2874 2875 // validate level 2876 if (level == 0) 2877 return 0; 2878 if (level < 0) 2879 return -1; 2880 thr = __kmp_threads[gtid]; 2881 team = thr->th.th_team; 2882 ii = team->t.t_level; 2883 if (level > ii) 2884 return -1; 2885 2886 #if OMP_40_ENABLED 2887 if (thr->th.th_teams_microtask) { 2888 // AC: we are in teams region where multiple nested teams have same level 2889 int tlevel = thr->th.th_teams_level; // the level of the teams construct 2890 if (level <= 2891 tlevel) { // otherwise usual algorithm works (will not touch the teams) 2892 KMP_DEBUG_ASSERT(ii >= tlevel); 2893 // AC: As we need to pass by the teams league, we need to artificially 2894 // increase ii 2895 if (ii == tlevel) { 2896 ii += 2; // three teams have same level 2897 } else { 2898 ii++; // two teams have same level 2899 } 2900 } 2901 } 2902 #endif 2903 2904 if (ii == level) 2905 return __kmp_tid_from_gtid(gtid); 2906 2907 dd = team->t.t_serialized; 2908 level++; 2909 while (ii > level) { 2910 for (dd = team->t.t_serialized; (dd > 0) && (ii > level); dd--, ii--) { 2911 } 2912 if ((team->t.t_serialized) && (!dd)) { 2913 team = team->t.t_parent; 2914 continue; 2915 } 2916 if (ii > level) { 2917 team = team->t.t_parent; 2918 dd = team->t.t_serialized; 2919 ii--; 2920 } 2921 } 2922 2923 return (dd > 1) ? (0) : (team->t.t_master_tid); 2924 } 2925 2926 int __kmp_get_team_size(int gtid, int level) { 2927 2928 int ii, dd; 2929 kmp_team_t *team; 2930 kmp_info_t *thr; 2931 2932 KF_TRACE(10, ("__kmp_get_team_size: thread %d %d\n", gtid, level)); 2933 KMP_DEBUG_ASSERT(__kmp_init_serial); 2934 2935 // validate level 2936 if (level == 0) 2937 return 1; 2938 if (level < 0) 2939 return -1; 2940 thr = __kmp_threads[gtid]; 2941 team = thr->th.th_team; 2942 ii = team->t.t_level; 2943 if (level > ii) 2944 return -1; 2945 2946 #if OMP_40_ENABLED 2947 if (thr->th.th_teams_microtask) { 2948 // AC: we are in teams region where multiple nested teams have same level 2949 int tlevel = thr->th.th_teams_level; // the level of the teams construct 2950 if (level <= 2951 tlevel) { // otherwise usual algorithm works (will not touch the teams) 2952 KMP_DEBUG_ASSERT(ii >= tlevel); 2953 // AC: As we need to pass by the teams league, we need to artificially 2954 // increase ii 2955 if (ii == tlevel) { 2956 ii += 2; // three teams have same level 2957 } else { 2958 ii++; // two teams have same level 2959 } 2960 } 2961 } 2962 #endif 2963 2964 while (ii > level) { 2965 for (dd = team->t.t_serialized; (dd > 0) && (ii > level); dd--, ii--) { 2966 } 2967 if (team->t.t_serialized && (!dd)) { 2968 team = team->t.t_parent; 2969 continue; 2970 } 2971 if (ii > level) { 2972 team = team->t.t_parent; 2973 ii--; 2974 } 2975 } 2976 2977 return team->t.t_nproc; 2978 } 2979 2980 kmp_r_sched_t __kmp_get_schedule_global() { 2981 // This routine created because pairs (__kmp_sched, __kmp_chunk) and 2982 // (__kmp_static, __kmp_guided) may be changed by kmp_set_defaults 2983 // independently. So one can get the updated schedule here. 2984 2985 kmp_r_sched_t r_sched; 2986 2987 // create schedule from 4 globals: __kmp_sched, __kmp_chunk, __kmp_static, 2988 // __kmp_guided. __kmp_sched should keep original value, so that user can set 2989 // KMP_SCHEDULE multiple times, and thus have different run-time schedules in 2990 // different roots (even in OMP 2.5) 2991 if (__kmp_sched == kmp_sch_static) { 2992 // replace STATIC with more detailed schedule (balanced or greedy) 2993 r_sched.r_sched_type = __kmp_static; 2994 } else if (__kmp_sched == kmp_sch_guided_chunked) { 2995 // replace GUIDED with more detailed schedule (iterative or analytical) 2996 r_sched.r_sched_type = __kmp_guided; 2997 } else { // (STATIC_CHUNKED), or (DYNAMIC_CHUNKED), or other 2998 r_sched.r_sched_type = __kmp_sched; 2999 } 3000 3001 if (__kmp_chunk < KMP_DEFAULT_CHUNK) { 3002 // __kmp_chunk may be wrong here (if it was not ever set) 3003 r_sched.chunk = KMP_DEFAULT_CHUNK; 3004 } else { 3005 r_sched.chunk = __kmp_chunk; 3006 } 3007 3008 return r_sched; 3009 } 3010 3011 /* Allocate (realloc == FALSE) * or reallocate (realloc == TRUE) 3012 at least argc number of *t_argv entries for the requested team. */ 3013 static void __kmp_alloc_argv_entries(int argc, kmp_team_t *team, int realloc) { 3014 3015 KMP_DEBUG_ASSERT(team); 3016 if (!realloc || argc > team->t.t_max_argc) { 3017 3018 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: needed entries=%d, " 3019 "current entries=%d\n", 3020 team->t.t_id, argc, (realloc) ? team->t.t_max_argc : 0)); 3021 /* if previously allocated heap space for args, free them */ 3022 if (realloc && team->t.t_argv != &team->t.t_inline_argv[0]) 3023 __kmp_free((void *)team->t.t_argv); 3024 3025 if (argc <= KMP_INLINE_ARGV_ENTRIES) { 3026 /* use unused space in the cache line for arguments */ 3027 team->t.t_max_argc = KMP_INLINE_ARGV_ENTRIES; 3028 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: inline allocate %d " 3029 "argv entries\n", 3030 team->t.t_id, team->t.t_max_argc)); 3031 team->t.t_argv = &team->t.t_inline_argv[0]; 3032 if (__kmp_storage_map) { 3033 __kmp_print_storage_map_gtid( 3034 -1, &team->t.t_inline_argv[0], 3035 &team->t.t_inline_argv[KMP_INLINE_ARGV_ENTRIES], 3036 (sizeof(void *) * KMP_INLINE_ARGV_ENTRIES), "team_%d.t_inline_argv", 3037 team->t.t_id); 3038 } 3039 } else { 3040 /* allocate space for arguments in the heap */ 3041 team->t.t_max_argc = (argc <= (KMP_MIN_MALLOC_ARGV_ENTRIES >> 1)) 3042 ? KMP_MIN_MALLOC_ARGV_ENTRIES 3043 : 2 * argc; 3044 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: dynamic allocate %d " 3045 "argv entries\n", 3046 team->t.t_id, team->t.t_max_argc)); 3047 team->t.t_argv = 3048 (void **)__kmp_page_allocate(sizeof(void *) * team->t.t_max_argc); 3049 if (__kmp_storage_map) { 3050 __kmp_print_storage_map_gtid(-1, &team->t.t_argv[0], 3051 &team->t.t_argv[team->t.t_max_argc], 3052 sizeof(void *) * team->t.t_max_argc, 3053 "team_%d.t_argv", team->t.t_id); 3054 } 3055 } 3056 } 3057 } 3058 3059 static void __kmp_allocate_team_arrays(kmp_team_t *team, int max_nth) { 3060 int i; 3061 int num_disp_buff = max_nth > 1 ? __kmp_dispatch_num_buffers : 2; 3062 team->t.t_threads = 3063 (kmp_info_t **)__kmp_allocate(sizeof(kmp_info_t *) * max_nth); 3064 team->t.t_disp_buffer = (dispatch_shared_info_t *)__kmp_allocate( 3065 sizeof(dispatch_shared_info_t) * num_disp_buff); 3066 team->t.t_dispatch = 3067 (kmp_disp_t *)__kmp_allocate(sizeof(kmp_disp_t) * max_nth); 3068 team->t.t_implicit_task_taskdata = 3069 (kmp_taskdata_t *)__kmp_allocate(sizeof(kmp_taskdata_t) * max_nth); 3070 team->t.t_max_nproc = max_nth; 3071 3072 /* setup dispatch buffers */ 3073 for (i = 0; i < num_disp_buff; ++i) { 3074 team->t.t_disp_buffer[i].buffer_index = i; 3075 #if OMP_45_ENABLED 3076 team->t.t_disp_buffer[i].doacross_buf_idx = i; 3077 #endif 3078 } 3079 } 3080 3081 static void __kmp_free_team_arrays(kmp_team_t *team) { 3082 /* Note: this does not free the threads in t_threads (__kmp_free_threads) */ 3083 int i; 3084 for (i = 0; i < team->t.t_max_nproc; ++i) { 3085 if (team->t.t_dispatch[i].th_disp_buffer != NULL) { 3086 __kmp_free(team->t.t_dispatch[i].th_disp_buffer); 3087 team->t.t_dispatch[i].th_disp_buffer = NULL; 3088 } 3089 } 3090 #if KMP_USE_HIER_SCHED 3091 __kmp_dispatch_free_hierarchies(team); 3092 #endif 3093 __kmp_free(team->t.t_threads); 3094 __kmp_free(team->t.t_disp_buffer); 3095 __kmp_free(team->t.t_dispatch); 3096 __kmp_free(team->t.t_implicit_task_taskdata); 3097 team->t.t_threads = NULL; 3098 team->t.t_disp_buffer = NULL; 3099 team->t.t_dispatch = NULL; 3100 team->t.t_implicit_task_taskdata = 0; 3101 } 3102 3103 static void __kmp_reallocate_team_arrays(kmp_team_t *team, int max_nth) { 3104 kmp_info_t **oldThreads = team->t.t_threads; 3105 3106 __kmp_free(team->t.t_disp_buffer); 3107 __kmp_free(team->t.t_dispatch); 3108 __kmp_free(team->t.t_implicit_task_taskdata); 3109 __kmp_allocate_team_arrays(team, max_nth); 3110 3111 KMP_MEMCPY(team->t.t_threads, oldThreads, 3112 team->t.t_nproc * sizeof(kmp_info_t *)); 3113 3114 __kmp_free(oldThreads); 3115 } 3116 3117 static kmp_internal_control_t __kmp_get_global_icvs(void) { 3118 3119 kmp_r_sched_t r_sched = 3120 __kmp_get_schedule_global(); // get current state of scheduling globals 3121 3122 #if OMP_40_ENABLED 3123 KMP_DEBUG_ASSERT(__kmp_nested_proc_bind.used > 0); 3124 #endif /* OMP_40_ENABLED */ 3125 3126 kmp_internal_control_t g_icvs = { 3127 0, // int serial_nesting_level; //corresponds to value of th_team_serialized 3128 (kmp_int8)__kmp_dflt_nested, // int nested; //internal control 3129 // for nested parallelism (per thread) 3130 (kmp_int8)__kmp_global.g.g_dynamic, // internal control for dynamic 3131 // adjustment of threads (per thread) 3132 (kmp_int8)__kmp_env_blocktime, // int bt_set; //internal control for 3133 // whether blocktime is explicitly set 3134 __kmp_dflt_blocktime, // int blocktime; //internal control for blocktime 3135 #if KMP_USE_MONITOR 3136 __kmp_bt_intervals, // int bt_intervals; //internal control for blocktime 3137 // intervals 3138 #endif 3139 __kmp_dflt_team_nth, // int nproc; //internal control for # of threads for 3140 // next parallel region (per thread) 3141 // (use a max ub on value if __kmp_parallel_initialize not called yet) 3142 __kmp_dflt_max_active_levels, // int max_active_levels; //internal control 3143 // for max_active_levels 3144 r_sched, // kmp_r_sched_t sched; //internal control for runtime schedule 3145 // {sched,chunk} pair 3146 #if OMP_40_ENABLED 3147 __kmp_nested_proc_bind.bind_types[0], 3148 __kmp_default_device, 3149 #endif /* OMP_40_ENABLED */ 3150 NULL // struct kmp_internal_control *next; 3151 }; 3152 3153 return g_icvs; 3154 } 3155 3156 static kmp_internal_control_t __kmp_get_x_global_icvs(const kmp_team_t *team) { 3157 3158 kmp_internal_control_t gx_icvs; 3159 gx_icvs.serial_nesting_level = 3160 0; // probably =team->t.t_serial like in save_inter_controls 3161 copy_icvs(&gx_icvs, &team->t.t_threads[0]->th.th_current_task->td_icvs); 3162 gx_icvs.next = NULL; 3163 3164 return gx_icvs; 3165 } 3166 3167 static void __kmp_initialize_root(kmp_root_t *root) { 3168 int f; 3169 kmp_team_t *root_team; 3170 kmp_team_t *hot_team; 3171 int hot_team_max_nth; 3172 kmp_r_sched_t r_sched = 3173 __kmp_get_schedule_global(); // get current state of scheduling globals 3174 kmp_internal_control_t r_icvs = __kmp_get_global_icvs(); 3175 KMP_DEBUG_ASSERT(root); 3176 KMP_ASSERT(!root->r.r_begin); 3177 3178 /* setup the root state structure */ 3179 __kmp_init_lock(&root->r.r_begin_lock); 3180 root->r.r_begin = FALSE; 3181 root->r.r_active = FALSE; 3182 root->r.r_in_parallel = 0; 3183 root->r.r_blocktime = __kmp_dflt_blocktime; 3184 root->r.r_nested = __kmp_dflt_nested; 3185 root->r.r_cg_nthreads = 1; 3186 3187 /* setup the root team for this task */ 3188 /* allocate the root team structure */ 3189 KF_TRACE(10, ("__kmp_initialize_root: before root_team\n")); 3190 3191 root_team = 3192 __kmp_allocate_team(root, 3193 1, // new_nproc 3194 1, // max_nproc 3195 #if OMPT_SUPPORT 3196 ompt_data_none, // root parallel id 3197 #endif 3198 #if OMP_40_ENABLED 3199 __kmp_nested_proc_bind.bind_types[0], 3200 #endif 3201 &r_icvs, 3202 0 // argc 3203 USE_NESTED_HOT_ARG(NULL) // master thread is unknown 3204 ); 3205 #if USE_DEBUGGER 3206 // Non-NULL value should be assigned to make the debugger display the root 3207 // team. 3208 TCW_SYNC_PTR(root_team->t.t_pkfn, (microtask_t)(~0)); 3209 #endif 3210 3211 KF_TRACE(10, ("__kmp_initialize_root: after root_team = %p\n", root_team)); 3212 3213 root->r.r_root_team = root_team; 3214 root_team->t.t_control_stack_top = NULL; 3215 3216 /* initialize root team */ 3217 root_team->t.t_threads[0] = NULL; 3218 root_team->t.t_nproc = 1; 3219 root_team->t.t_serialized = 1; 3220 // TODO???: root_team->t.t_max_active_levels = __kmp_dflt_max_active_levels; 3221 root_team->t.t_sched.sched = r_sched.sched; 3222 KA_TRACE( 3223 20, 3224 ("__kmp_initialize_root: init root team %d arrived: join=%u, plain=%u\n", 3225 root_team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 3226 3227 /* setup the hot team for this task */ 3228 /* allocate the hot team structure */ 3229 KF_TRACE(10, ("__kmp_initialize_root: before hot_team\n")); 3230 3231 hot_team = 3232 __kmp_allocate_team(root, 3233 1, // new_nproc 3234 __kmp_dflt_team_nth_ub * 2, // max_nproc 3235 #if OMPT_SUPPORT 3236 ompt_data_none, // root parallel id 3237 #endif 3238 #if OMP_40_ENABLED 3239 __kmp_nested_proc_bind.bind_types[0], 3240 #endif 3241 &r_icvs, 3242 0 // argc 3243 USE_NESTED_HOT_ARG(NULL) // master thread is unknown 3244 ); 3245 KF_TRACE(10, ("__kmp_initialize_root: after hot_team = %p\n", hot_team)); 3246 3247 root->r.r_hot_team = hot_team; 3248 root_team->t.t_control_stack_top = NULL; 3249 3250 /* first-time initialization */ 3251 hot_team->t.t_parent = root_team; 3252 3253 /* initialize hot team */ 3254 hot_team_max_nth = hot_team->t.t_max_nproc; 3255 for (f = 0; f < hot_team_max_nth; ++f) { 3256 hot_team->t.t_threads[f] = NULL; 3257 } 3258 hot_team->t.t_nproc = 1; 3259 // TODO???: hot_team->t.t_max_active_levels = __kmp_dflt_max_active_levels; 3260 hot_team->t.t_sched.sched = r_sched.sched; 3261 hot_team->t.t_size_changed = 0; 3262 } 3263 3264 #ifdef KMP_DEBUG 3265 3266 typedef struct kmp_team_list_item { 3267 kmp_team_p const *entry; 3268 struct kmp_team_list_item *next; 3269 } kmp_team_list_item_t; 3270 typedef kmp_team_list_item_t *kmp_team_list_t; 3271 3272 static void __kmp_print_structure_team_accum( // Add team to list of teams. 3273 kmp_team_list_t list, // List of teams. 3274 kmp_team_p const *team // Team to add. 3275 ) { 3276 3277 // List must terminate with item where both entry and next are NULL. 3278 // Team is added to the list only once. 3279 // List is sorted in ascending order by team id. 3280 // Team id is *not* a key. 3281 3282 kmp_team_list_t l; 3283 3284 KMP_DEBUG_ASSERT(list != NULL); 3285 if (team == NULL) { 3286 return; 3287 } 3288 3289 __kmp_print_structure_team_accum(list, team->t.t_parent); 3290 __kmp_print_structure_team_accum(list, team->t.t_next_pool); 3291 3292 // Search list for the team. 3293 l = list; 3294 while (l->next != NULL && l->entry != team) { 3295 l = l->next; 3296 } 3297 if (l->next != NULL) { 3298 return; // Team has been added before, exit. 3299 } 3300 3301 // Team is not found. Search list again for insertion point. 3302 l = list; 3303 while (l->next != NULL && l->entry->t.t_id <= team->t.t_id) { 3304 l = l->next; 3305 } 3306 3307 // Insert team. 3308 { 3309 kmp_team_list_item_t *item = (kmp_team_list_item_t *)KMP_INTERNAL_MALLOC( 3310 sizeof(kmp_team_list_item_t)); 3311 *item = *l; 3312 l->entry = team; 3313 l->next = item; 3314 } 3315 } 3316 3317 static void __kmp_print_structure_team(char const *title, kmp_team_p const *team 3318 3319 ) { 3320 __kmp_printf("%s", title); 3321 if (team != NULL) { 3322 __kmp_printf("%2x %p\n", team->t.t_id, team); 3323 } else { 3324 __kmp_printf(" - (nil)\n"); 3325 } 3326 } 3327 3328 static void __kmp_print_structure_thread(char const *title, 3329 kmp_info_p const *thread) { 3330 __kmp_printf("%s", title); 3331 if (thread != NULL) { 3332 __kmp_printf("%2d %p\n", thread->th.th_info.ds.ds_gtid, thread); 3333 } else { 3334 __kmp_printf(" - (nil)\n"); 3335 } 3336 } 3337 3338 void __kmp_print_structure(void) { 3339 3340 kmp_team_list_t list; 3341 3342 // Initialize list of teams. 3343 list = 3344 (kmp_team_list_item_t *)KMP_INTERNAL_MALLOC(sizeof(kmp_team_list_item_t)); 3345 list->entry = NULL; 3346 list->next = NULL; 3347 3348 __kmp_printf("\n------------------------------\nGlobal Thread " 3349 "Table\n------------------------------\n"); 3350 { 3351 int gtid; 3352 for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) { 3353 __kmp_printf("%2d", gtid); 3354 if (__kmp_threads != NULL) { 3355 __kmp_printf(" %p", __kmp_threads[gtid]); 3356 } 3357 if (__kmp_root != NULL) { 3358 __kmp_printf(" %p", __kmp_root[gtid]); 3359 } 3360 __kmp_printf("\n"); 3361 } 3362 } 3363 3364 // Print out __kmp_threads array. 3365 __kmp_printf("\n------------------------------\nThreads\n--------------------" 3366 "----------\n"); 3367 if (__kmp_threads != NULL) { 3368 int gtid; 3369 for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) { 3370 kmp_info_t const *thread = __kmp_threads[gtid]; 3371 if (thread != NULL) { 3372 __kmp_printf("GTID %2d %p:\n", gtid, thread); 3373 __kmp_printf(" Our Root: %p\n", thread->th.th_root); 3374 __kmp_print_structure_team(" Our Team: ", thread->th.th_team); 3375 __kmp_print_structure_team(" Serial Team: ", 3376 thread->th.th_serial_team); 3377 __kmp_printf(" Threads: %2d\n", thread->th.th_team_nproc); 3378 __kmp_print_structure_thread(" Master: ", 3379 thread->th.th_team_master); 3380 __kmp_printf(" Serialized?: %2d\n", thread->th.th_team_serialized); 3381 __kmp_printf(" Set NProc: %2d\n", thread->th.th_set_nproc); 3382 #if OMP_40_ENABLED 3383 __kmp_printf(" Set Proc Bind: %2d\n", thread->th.th_set_proc_bind); 3384 #endif 3385 __kmp_print_structure_thread(" Next in pool: ", 3386 thread->th.th_next_pool); 3387 __kmp_printf("\n"); 3388 __kmp_print_structure_team_accum(list, thread->th.th_team); 3389 __kmp_print_structure_team_accum(list, thread->th.th_serial_team); 3390 } 3391 } 3392 } else { 3393 __kmp_printf("Threads array is not allocated.\n"); 3394 } 3395 3396 // Print out __kmp_root array. 3397 __kmp_printf("\n------------------------------\nUbers\n----------------------" 3398 "--------\n"); 3399 if (__kmp_root != NULL) { 3400 int gtid; 3401 for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) { 3402 kmp_root_t const *root = __kmp_root[gtid]; 3403 if (root != NULL) { 3404 __kmp_printf("GTID %2d %p:\n", gtid, root); 3405 __kmp_print_structure_team(" Root Team: ", root->r.r_root_team); 3406 __kmp_print_structure_team(" Hot Team: ", root->r.r_hot_team); 3407 __kmp_print_structure_thread(" Uber Thread: ", 3408 root->r.r_uber_thread); 3409 __kmp_printf(" Active?: %2d\n", root->r.r_active); 3410 __kmp_printf(" Nested?: %2d\n", root->r.r_nested); 3411 __kmp_printf(" In Parallel: %2d\n", 3412 KMP_ATOMIC_LD_RLX(&root->r.r_in_parallel)); 3413 __kmp_printf("\n"); 3414 __kmp_print_structure_team_accum(list, root->r.r_root_team); 3415 __kmp_print_structure_team_accum(list, root->r.r_hot_team); 3416 } 3417 } 3418 } else { 3419 __kmp_printf("Ubers array is not allocated.\n"); 3420 } 3421 3422 __kmp_printf("\n------------------------------\nTeams\n----------------------" 3423 "--------\n"); 3424 while (list->next != NULL) { 3425 kmp_team_p const *team = list->entry; 3426 int i; 3427 __kmp_printf("Team %2x %p:\n", team->t.t_id, team); 3428 __kmp_print_structure_team(" Parent Team: ", team->t.t_parent); 3429 __kmp_printf(" Master TID: %2d\n", team->t.t_master_tid); 3430 __kmp_printf(" Max threads: %2d\n", team->t.t_max_nproc); 3431 __kmp_printf(" Levels of serial: %2d\n", team->t.t_serialized); 3432 __kmp_printf(" Number threads: %2d\n", team->t.t_nproc); 3433 for (i = 0; i < team->t.t_nproc; ++i) { 3434 __kmp_printf(" Thread %2d: ", i); 3435 __kmp_print_structure_thread("", team->t.t_threads[i]); 3436 } 3437 __kmp_print_structure_team(" Next in pool: ", team->t.t_next_pool); 3438 __kmp_printf("\n"); 3439 list = list->next; 3440 } 3441 3442 // Print out __kmp_thread_pool and __kmp_team_pool. 3443 __kmp_printf("\n------------------------------\nPools\n----------------------" 3444 "--------\n"); 3445 __kmp_print_structure_thread("Thread pool: ", 3446 CCAST(kmp_info_t *, __kmp_thread_pool)); 3447 __kmp_print_structure_team("Team pool: ", 3448 CCAST(kmp_team_t *, __kmp_team_pool)); 3449 __kmp_printf("\n"); 3450 3451 // Free team list. 3452 while (list != NULL) { 3453 kmp_team_list_item_t *item = list; 3454 list = list->next; 3455 KMP_INTERNAL_FREE(item); 3456 } 3457 } 3458 3459 #endif 3460 3461 //--------------------------------------------------------------------------- 3462 // Stuff for per-thread fast random number generator 3463 // Table of primes 3464 static const unsigned __kmp_primes[] = { 3465 0x9e3779b1, 0xffe6cc59, 0x2109f6dd, 0x43977ab5, 0xba5703f5, 0xb495a877, 3466 0xe1626741, 0x79695e6b, 0xbc98c09f, 0xd5bee2b3, 0x287488f9, 0x3af18231, 3467 0x9677cd4d, 0xbe3a6929, 0xadc6a877, 0xdcf0674b, 0xbe4d6fe9, 0x5f15e201, 3468 0x99afc3fd, 0xf3f16801, 0xe222cfff, 0x24ba5fdb, 0x0620452d, 0x79f149e3, 3469 0xc8b93f49, 0x972702cd, 0xb07dd827, 0x6c97d5ed, 0x085a3d61, 0x46eb5ea7, 3470 0x3d9910ed, 0x2e687b5b, 0x29609227, 0x6eb081f1, 0x0954c4e1, 0x9d114db9, 3471 0x542acfa9, 0xb3e6bd7b, 0x0742d917, 0xe9f3ffa7, 0x54581edb, 0xf2480f45, 3472 0x0bb9288f, 0xef1affc7, 0x85fa0ca7, 0x3ccc14db, 0xe6baf34b, 0x343377f7, 3473 0x5ca19031, 0xe6d9293b, 0xf0a9f391, 0x5d2e980b, 0xfc411073, 0xc3749363, 3474 0xb892d829, 0x3549366b, 0x629750ad, 0xb98294e5, 0x892d9483, 0xc235baf3, 3475 0x3d2402a3, 0x6bdef3c9, 0xbec333cd, 0x40c9520f}; 3476 3477 //--------------------------------------------------------------------------- 3478 // __kmp_get_random: Get a random number using a linear congruential method. 3479 unsigned short __kmp_get_random(kmp_info_t *thread) { 3480 unsigned x = thread->th.th_x; 3481 unsigned short r = x >> 16; 3482 3483 thread->th.th_x = x * thread->th.th_a + 1; 3484 3485 KA_TRACE(30, ("__kmp_get_random: THREAD: %d, RETURN: %u\n", 3486 thread->th.th_info.ds.ds_tid, r)); 3487 3488 return r; 3489 } 3490 //-------------------------------------------------------- 3491 // __kmp_init_random: Initialize a random number generator 3492 void __kmp_init_random(kmp_info_t *thread) { 3493 unsigned seed = thread->th.th_info.ds.ds_tid; 3494 3495 thread->th.th_a = 3496 __kmp_primes[seed % (sizeof(__kmp_primes) / sizeof(__kmp_primes[0]))]; 3497 thread->th.th_x = (seed + 1) * thread->th.th_a + 1; 3498 KA_TRACE(30, 3499 ("__kmp_init_random: THREAD: %u; A: %u\n", seed, thread->th.th_a)); 3500 } 3501 3502 #if KMP_OS_WINDOWS 3503 /* reclaim array entries for root threads that are already dead, returns number 3504 * reclaimed */ 3505 static int __kmp_reclaim_dead_roots(void) { 3506 int i, r = 0; 3507 3508 for (i = 0; i < __kmp_threads_capacity; ++i) { 3509 if (KMP_UBER_GTID(i) && 3510 !__kmp_still_running((kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[i])) && 3511 !__kmp_root[i] 3512 ->r.r_active) { // AC: reclaim only roots died in non-active state 3513 r += __kmp_unregister_root_other_thread(i); 3514 } 3515 } 3516 return r; 3517 } 3518 #endif 3519 3520 /* This function attempts to create free entries in __kmp_threads and 3521 __kmp_root, and returns the number of free entries generated. 3522 3523 For Windows* OS static library, the first mechanism used is to reclaim array 3524 entries for root threads that are already dead. 3525 3526 On all platforms, expansion is attempted on the arrays __kmp_threads_ and 3527 __kmp_root, with appropriate update to __kmp_threads_capacity. Array 3528 capacity is increased by doubling with clipping to __kmp_tp_capacity, if 3529 threadprivate cache array has been created. Synchronization with 3530 __kmpc_threadprivate_cached is done using __kmp_tp_cached_lock. 3531 3532 After any dead root reclamation, if the clipping value allows array expansion 3533 to result in the generation of a total of nNeed free slots, the function does 3534 that expansion. If not, nothing is done beyond the possible initial root 3535 thread reclamation. 3536 3537 If any argument is negative, the behavior is undefined. */ 3538 static int __kmp_expand_threads(int nNeed) { 3539 int added = 0; 3540 int minimumRequiredCapacity; 3541 int newCapacity; 3542 kmp_info_t **newThreads; 3543 kmp_root_t **newRoot; 3544 3545 // All calls to __kmp_expand_threads should be under __kmp_forkjoin_lock, so 3546 // resizing __kmp_threads does not need additional protection if foreign 3547 // threads are present 3548 3549 #if KMP_OS_WINDOWS && !KMP_DYNAMIC_LIB 3550 /* only for Windows static library */ 3551 /* reclaim array entries for root threads that are already dead */ 3552 added = __kmp_reclaim_dead_roots(); 3553 3554 if (nNeed) { 3555 nNeed -= added; 3556 if (nNeed < 0) 3557 nNeed = 0; 3558 } 3559 #endif 3560 if (nNeed <= 0) 3561 return added; 3562 3563 // Note that __kmp_threads_capacity is not bounded by __kmp_max_nth. If 3564 // __kmp_max_nth is set to some value less than __kmp_sys_max_nth by the 3565 // user via KMP_DEVICE_THREAD_LIMIT, then __kmp_threads_capacity may become 3566 // > __kmp_max_nth in one of two ways: 3567 // 3568 // 1) The initialization thread (gtid = 0) exits. __kmp_threads[0] 3569 // may not be resused by another thread, so we may need to increase 3570 // __kmp_threads_capacity to __kmp_max_nth + 1. 3571 // 3572 // 2) New foreign root(s) are encountered. We always register new foreign 3573 // roots. This may cause a smaller # of threads to be allocated at 3574 // subsequent parallel regions, but the worker threads hang around (and 3575 // eventually go to sleep) and need slots in the __kmp_threads[] array. 3576 // 3577 // Anyway, that is the reason for moving the check to see if 3578 // __kmp_max_nth was exceeded into __kmp_reserve_threads() 3579 // instead of having it performed here. -BB 3580 3581 KMP_DEBUG_ASSERT(__kmp_sys_max_nth >= __kmp_threads_capacity); 3582 3583 /* compute expansion headroom to check if we can expand */ 3584 if (__kmp_sys_max_nth - __kmp_threads_capacity < nNeed) { 3585 /* possible expansion too small -- give up */ 3586 return added; 3587 } 3588 minimumRequiredCapacity = __kmp_threads_capacity + nNeed; 3589 3590 newCapacity = __kmp_threads_capacity; 3591 do { 3592 newCapacity = newCapacity <= (__kmp_sys_max_nth >> 1) ? (newCapacity << 1) 3593 : __kmp_sys_max_nth; 3594 } while (newCapacity < minimumRequiredCapacity); 3595 newThreads = (kmp_info_t **)__kmp_allocate( 3596 (sizeof(kmp_info_t *) + sizeof(kmp_root_t *)) * newCapacity + CACHE_LINE); 3597 newRoot = 3598 (kmp_root_t **)((char *)newThreads + sizeof(kmp_info_t *) * newCapacity); 3599 KMP_MEMCPY(newThreads, __kmp_threads, 3600 __kmp_threads_capacity * sizeof(kmp_info_t *)); 3601 KMP_MEMCPY(newRoot, __kmp_root, 3602 __kmp_threads_capacity * sizeof(kmp_root_t *)); 3603 3604 kmp_info_t **temp_threads = __kmp_threads; 3605 *(kmp_info_t * *volatile *)&__kmp_threads = newThreads; 3606 *(kmp_root_t * *volatile *)&__kmp_root = newRoot; 3607 __kmp_free(temp_threads); 3608 added += newCapacity - __kmp_threads_capacity; 3609 *(volatile int *)&__kmp_threads_capacity = newCapacity; 3610 3611 if (newCapacity > __kmp_tp_capacity) { 3612 __kmp_acquire_bootstrap_lock(&__kmp_tp_cached_lock); 3613 if (__kmp_tp_cached && newCapacity > __kmp_tp_capacity) { 3614 __kmp_threadprivate_resize_cache(newCapacity); 3615 } else { // increase __kmp_tp_capacity to correspond with kmp_threads size 3616 *(volatile int *)&__kmp_tp_capacity = newCapacity; 3617 } 3618 __kmp_release_bootstrap_lock(&__kmp_tp_cached_lock); 3619 } 3620 3621 return added; 3622 } 3623 3624 /* Register the current thread as a root thread and obtain our gtid. We must 3625 have the __kmp_initz_lock held at this point. Argument TRUE only if are the 3626 thread that calls from __kmp_do_serial_initialize() */ 3627 int __kmp_register_root(int initial_thread) { 3628 kmp_info_t *root_thread; 3629 kmp_root_t *root; 3630 int gtid; 3631 int capacity; 3632 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 3633 KA_TRACE(20, ("__kmp_register_root: entered\n")); 3634 KMP_MB(); 3635 3636 /* 2007-03-02: 3637 If initial thread did not invoke OpenMP RTL yet, and this thread is not an 3638 initial one, "__kmp_all_nth >= __kmp_threads_capacity" condition does not 3639 work as expected -- it may return false (that means there is at least one 3640 empty slot in __kmp_threads array), but it is possible the only free slot 3641 is #0, which is reserved for initial thread and so cannot be used for this 3642 one. Following code workarounds this bug. 3643 3644 However, right solution seems to be not reserving slot #0 for initial 3645 thread because: 3646 (1) there is no magic in slot #0, 3647 (2) we cannot detect initial thread reliably (the first thread which does 3648 serial initialization may be not a real initial thread). 3649 */ 3650 capacity = __kmp_threads_capacity; 3651 if (!initial_thread && TCR_PTR(__kmp_threads[0]) == NULL) { 3652 --capacity; 3653 } 3654 3655 /* see if there are too many threads */ 3656 if (__kmp_all_nth >= capacity && !__kmp_expand_threads(1)) { 3657 if (__kmp_tp_cached) { 3658 __kmp_fatal(KMP_MSG(CantRegisterNewThread), 3659 KMP_HNT(Set_ALL_THREADPRIVATE, __kmp_tp_capacity), 3660 KMP_HNT(PossibleSystemLimitOnThreads), __kmp_msg_null); 3661 } else { 3662 __kmp_fatal(KMP_MSG(CantRegisterNewThread), KMP_HNT(SystemLimitOnThreads), 3663 __kmp_msg_null); 3664 } 3665 } 3666 3667 /* find an available thread slot */ 3668 /* Don't reassign the zero slot since we need that to only be used by initial 3669 thread */ 3670 for (gtid = (initial_thread ? 0 : 1); TCR_PTR(__kmp_threads[gtid]) != NULL; 3671 gtid++) 3672 ; 3673 KA_TRACE(1, 3674 ("__kmp_register_root: found slot in threads array: T#%d\n", gtid)); 3675 KMP_ASSERT(gtid < __kmp_threads_capacity); 3676 3677 /* update global accounting */ 3678 __kmp_all_nth++; 3679 TCW_4(__kmp_nth, __kmp_nth + 1); 3680 3681 // if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) for low 3682 // numbers of procs, and method #2 (keyed API call) for higher numbers. 3683 if (__kmp_adjust_gtid_mode) { 3684 if (__kmp_all_nth >= __kmp_tls_gtid_min) { 3685 if (TCR_4(__kmp_gtid_mode) != 2) { 3686 TCW_4(__kmp_gtid_mode, 2); 3687 } 3688 } else { 3689 if (TCR_4(__kmp_gtid_mode) != 1) { 3690 TCW_4(__kmp_gtid_mode, 1); 3691 } 3692 } 3693 } 3694 3695 #ifdef KMP_ADJUST_BLOCKTIME 3696 /* Adjust blocktime to zero if necessary */ 3697 /* Middle initialization might not have occurred yet */ 3698 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 3699 if (__kmp_nth > __kmp_avail_proc) { 3700 __kmp_zero_bt = TRUE; 3701 } 3702 } 3703 #endif /* KMP_ADJUST_BLOCKTIME */ 3704 3705 /* setup this new hierarchy */ 3706 if (!(root = __kmp_root[gtid])) { 3707 root = __kmp_root[gtid] = (kmp_root_t *)__kmp_allocate(sizeof(kmp_root_t)); 3708 KMP_DEBUG_ASSERT(!root->r.r_root_team); 3709 } 3710 3711 #if KMP_STATS_ENABLED 3712 // Initialize stats as soon as possible (right after gtid assignment). 3713 __kmp_stats_thread_ptr = __kmp_stats_list->push_back(gtid); 3714 __kmp_stats_thread_ptr->startLife(); 3715 KMP_SET_THREAD_STATE(SERIAL_REGION); 3716 KMP_INIT_PARTITIONED_TIMERS(OMP_serial); 3717 #endif 3718 __kmp_initialize_root(root); 3719 3720 /* setup new root thread structure */ 3721 if (root->r.r_uber_thread) { 3722 root_thread = root->r.r_uber_thread; 3723 } else { 3724 root_thread = (kmp_info_t *)__kmp_allocate(sizeof(kmp_info_t)); 3725 if (__kmp_storage_map) { 3726 __kmp_print_thread_storage_map(root_thread, gtid); 3727 } 3728 root_thread->th.th_info.ds.ds_gtid = gtid; 3729 #if OMPT_SUPPORT 3730 root_thread->th.ompt_thread_info.thread_data = ompt_data_none; 3731 #endif 3732 root_thread->th.th_root = root; 3733 if (__kmp_env_consistency_check) { 3734 root_thread->th.th_cons = __kmp_allocate_cons_stack(gtid); 3735 } 3736 #if USE_FAST_MEMORY 3737 __kmp_initialize_fast_memory(root_thread); 3738 #endif /* USE_FAST_MEMORY */ 3739 3740 #if KMP_USE_BGET 3741 KMP_DEBUG_ASSERT(root_thread->th.th_local.bget_data == NULL); 3742 __kmp_initialize_bget(root_thread); 3743 #endif 3744 __kmp_init_random(root_thread); // Initialize random number generator 3745 } 3746 3747 /* setup the serial team held in reserve by the root thread */ 3748 if (!root_thread->th.th_serial_team) { 3749 kmp_internal_control_t r_icvs = __kmp_get_global_icvs(); 3750 KF_TRACE(10, ("__kmp_register_root: before serial_team\n")); 3751 root_thread->th.th_serial_team = 3752 __kmp_allocate_team(root, 1, 1, 3753 #if OMPT_SUPPORT 3754 ompt_data_none, // root parallel id 3755 #endif 3756 #if OMP_40_ENABLED 3757 proc_bind_default, 3758 #endif 3759 &r_icvs, 0 USE_NESTED_HOT_ARG(NULL)); 3760 } 3761 KMP_ASSERT(root_thread->th.th_serial_team); 3762 KF_TRACE(10, ("__kmp_register_root: after serial_team = %p\n", 3763 root_thread->th.th_serial_team)); 3764 3765 /* drop root_thread into place */ 3766 TCW_SYNC_PTR(__kmp_threads[gtid], root_thread); 3767 3768 root->r.r_root_team->t.t_threads[0] = root_thread; 3769 root->r.r_hot_team->t.t_threads[0] = root_thread; 3770 root_thread->th.th_serial_team->t.t_threads[0] = root_thread; 3771 // AC: the team created in reserve, not for execution (it is unused for now). 3772 root_thread->th.th_serial_team->t.t_serialized = 0; 3773 root->r.r_uber_thread = root_thread; 3774 3775 /* initialize the thread, get it ready to go */ 3776 __kmp_initialize_info(root_thread, root->r.r_root_team, 0, gtid); 3777 TCW_4(__kmp_init_gtid, TRUE); 3778 3779 /* prepare the master thread for get_gtid() */ 3780 __kmp_gtid_set_specific(gtid); 3781 3782 #if USE_ITT_BUILD 3783 __kmp_itt_thread_name(gtid); 3784 #endif /* USE_ITT_BUILD */ 3785 3786 #ifdef KMP_TDATA_GTID 3787 __kmp_gtid = gtid; 3788 #endif 3789 __kmp_create_worker(gtid, root_thread, __kmp_stksize); 3790 KMP_DEBUG_ASSERT(__kmp_gtid_get_specific() == gtid); 3791 3792 KA_TRACE(20, ("__kmp_register_root: T#%d init T#%d(%d:%d) arrived: join=%u, " 3793 "plain=%u\n", 3794 gtid, __kmp_gtid_from_tid(0, root->r.r_hot_team), 3795 root->r.r_hot_team->t.t_id, 0, KMP_INIT_BARRIER_STATE, 3796 KMP_INIT_BARRIER_STATE)); 3797 { // Initialize barrier data. 3798 int b; 3799 for (b = 0; b < bs_last_barrier; ++b) { 3800 root_thread->th.th_bar[b].bb.b_arrived = KMP_INIT_BARRIER_STATE; 3801 #if USE_DEBUGGER 3802 root_thread->th.th_bar[b].bb.b_worker_arrived = 0; 3803 #endif 3804 } 3805 } 3806 KMP_DEBUG_ASSERT(root->r.r_hot_team->t.t_bar[bs_forkjoin_barrier].b_arrived == 3807 KMP_INIT_BARRIER_STATE); 3808 3809 #if KMP_AFFINITY_SUPPORTED 3810 #if OMP_40_ENABLED 3811 root_thread->th.th_current_place = KMP_PLACE_UNDEFINED; 3812 root_thread->th.th_new_place = KMP_PLACE_UNDEFINED; 3813 root_thread->th.th_first_place = KMP_PLACE_UNDEFINED; 3814 root_thread->th.th_last_place = KMP_PLACE_UNDEFINED; 3815 #endif 3816 if (TCR_4(__kmp_init_middle)) { 3817 __kmp_affinity_set_init_mask(gtid, TRUE); 3818 } 3819 #endif /* KMP_AFFINITY_SUPPORTED */ 3820 #if OMP_50_ENABLED 3821 root_thread->th.th_def_allocator = __kmp_def_allocator; 3822 #endif 3823 3824 __kmp_root_counter++; 3825 3826 #if OMPT_SUPPORT 3827 if (!initial_thread && ompt_enabled.enabled) { 3828 3829 kmp_info_t *root_thread = ompt_get_thread(); 3830 3831 ompt_set_thread_state(root_thread, omp_state_overhead); 3832 3833 if (ompt_enabled.ompt_callback_thread_begin) { 3834 ompt_callbacks.ompt_callback(ompt_callback_thread_begin)( 3835 ompt_thread_initial, __ompt_get_thread_data_internal()); 3836 } 3837 ompt_data_t *task_data; 3838 __ompt_get_task_info_internal(0, NULL, &task_data, NULL, NULL, NULL); 3839 if (ompt_enabled.ompt_callback_task_create) { 3840 ompt_callbacks.ompt_callback(ompt_callback_task_create)( 3841 NULL, NULL, task_data, ompt_task_initial, 0, NULL); 3842 // initial task has nothing to return to 3843 } 3844 3845 ompt_set_thread_state(root_thread, omp_state_work_serial); 3846 } 3847 #endif 3848 3849 KMP_MB(); 3850 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 3851 3852 return gtid; 3853 } 3854 3855 #if KMP_NESTED_HOT_TEAMS 3856 static int __kmp_free_hot_teams(kmp_root_t *root, kmp_info_t *thr, int level, 3857 const int max_level) { 3858 int i, n, nth; 3859 kmp_hot_team_ptr_t *hot_teams = thr->th.th_hot_teams; 3860 if (!hot_teams || !hot_teams[level].hot_team) { 3861 return 0; 3862 } 3863 KMP_DEBUG_ASSERT(level < max_level); 3864 kmp_team_t *team = hot_teams[level].hot_team; 3865 nth = hot_teams[level].hot_team_nth; 3866 n = nth - 1; // master is not freed 3867 if (level < max_level - 1) { 3868 for (i = 0; i < nth; ++i) { 3869 kmp_info_t *th = team->t.t_threads[i]; 3870 n += __kmp_free_hot_teams(root, th, level + 1, max_level); 3871 if (i > 0 && th->th.th_hot_teams) { 3872 __kmp_free(th->th.th_hot_teams); 3873 th->th.th_hot_teams = NULL; 3874 } 3875 } 3876 } 3877 __kmp_free_team(root, team, NULL); 3878 return n; 3879 } 3880 #endif 3881 3882 // Resets a root thread and clear its root and hot teams. 3883 // Returns the number of __kmp_threads entries directly and indirectly freed. 3884 static int __kmp_reset_root(int gtid, kmp_root_t *root) { 3885 kmp_team_t *root_team = root->r.r_root_team; 3886 kmp_team_t *hot_team = root->r.r_hot_team; 3887 int n = hot_team->t.t_nproc; 3888 int i; 3889 3890 KMP_DEBUG_ASSERT(!root->r.r_active); 3891 3892 root->r.r_root_team = NULL; 3893 root->r.r_hot_team = NULL; 3894 // __kmp_free_team() does not free hot teams, so we have to clear r_hot_team 3895 // before call to __kmp_free_team(). 3896 __kmp_free_team(root, root_team USE_NESTED_HOT_ARG(NULL)); 3897 #if KMP_NESTED_HOT_TEAMS 3898 if (__kmp_hot_teams_max_level > 3899 0) { // need to free nested hot teams and their threads if any 3900 for (i = 0; i < hot_team->t.t_nproc; ++i) { 3901 kmp_info_t *th = hot_team->t.t_threads[i]; 3902 if (__kmp_hot_teams_max_level > 1) { 3903 n += __kmp_free_hot_teams(root, th, 1, __kmp_hot_teams_max_level); 3904 } 3905 if (th->th.th_hot_teams) { 3906 __kmp_free(th->th.th_hot_teams); 3907 th->th.th_hot_teams = NULL; 3908 } 3909 } 3910 } 3911 #endif 3912 __kmp_free_team(root, hot_team USE_NESTED_HOT_ARG(NULL)); 3913 3914 // Before we can reap the thread, we need to make certain that all other 3915 // threads in the teams that had this root as ancestor have stopped trying to 3916 // steal tasks. 3917 if (__kmp_tasking_mode != tskm_immediate_exec) { 3918 __kmp_wait_to_unref_task_teams(); 3919 } 3920 3921 #if KMP_OS_WINDOWS 3922 /* Close Handle of root duplicated in __kmp_create_worker (tr #62919) */ 3923 KA_TRACE( 3924 10, ("__kmp_reset_root: free handle, th = %p, handle = %" KMP_UINTPTR_SPEC 3925 "\n", 3926 (LPVOID) & (root->r.r_uber_thread->th), 3927 root->r.r_uber_thread->th.th_info.ds.ds_thread)); 3928 __kmp_free_handle(root->r.r_uber_thread->th.th_info.ds.ds_thread); 3929 #endif /* KMP_OS_WINDOWS */ 3930 3931 #if OMPT_SUPPORT 3932 if (ompt_enabled.ompt_callback_thread_end) { 3933 ompt_callbacks.ompt_callback(ompt_callback_thread_end)( 3934 &(root->r.r_uber_thread->th.ompt_thread_info.thread_data)); 3935 } 3936 #endif 3937 3938 TCW_4(__kmp_nth, 3939 __kmp_nth - 1); // __kmp_reap_thread will decrement __kmp_all_nth. 3940 root->r.r_cg_nthreads--; 3941 3942 __kmp_reap_thread(root->r.r_uber_thread, 1); 3943 3944 // We canot put root thread to __kmp_thread_pool, so we have to reap it istead 3945 // of freeing. 3946 root->r.r_uber_thread = NULL; 3947 /* mark root as no longer in use */ 3948 root->r.r_begin = FALSE; 3949 3950 return n; 3951 } 3952 3953 void __kmp_unregister_root_current_thread(int gtid) { 3954 KA_TRACE(1, ("__kmp_unregister_root_current_thread: enter T#%d\n", gtid)); 3955 /* this lock should be ok, since unregister_root_current_thread is never 3956 called during an abort, only during a normal close. furthermore, if you 3957 have the forkjoin lock, you should never try to get the initz lock */ 3958 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 3959 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 3960 KC_TRACE(10, ("__kmp_unregister_root_current_thread: already finished, " 3961 "exiting T#%d\n", 3962 gtid)); 3963 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 3964 return; 3965 } 3966 kmp_root_t *root = __kmp_root[gtid]; 3967 3968 KMP_DEBUG_ASSERT(__kmp_threads && __kmp_threads[gtid]); 3969 KMP_ASSERT(KMP_UBER_GTID(gtid)); 3970 KMP_ASSERT(root == __kmp_threads[gtid]->th.th_root); 3971 KMP_ASSERT(root->r.r_active == FALSE); 3972 3973 KMP_MB(); 3974 3975 #if OMP_45_ENABLED 3976 kmp_info_t *thread = __kmp_threads[gtid]; 3977 kmp_team_t *team = thread->th.th_team; 3978 kmp_task_team_t *task_team = thread->th.th_task_team; 3979 3980 // we need to wait for the proxy tasks before finishing the thread 3981 if (task_team != NULL && task_team->tt.tt_found_proxy_tasks) { 3982 #if OMPT_SUPPORT 3983 // the runtime is shutting down so we won't report any events 3984 thread->th.ompt_thread_info.state = omp_state_undefined; 3985 #endif 3986 __kmp_task_team_wait(thread, team USE_ITT_BUILD_ARG(NULL)); 3987 } 3988 #endif 3989 3990 __kmp_reset_root(gtid, root); 3991 3992 /* free up this thread slot */ 3993 __kmp_gtid_set_specific(KMP_GTID_DNE); 3994 #ifdef KMP_TDATA_GTID 3995 __kmp_gtid = KMP_GTID_DNE; 3996 #endif 3997 3998 KMP_MB(); 3999 KC_TRACE(10, 4000 ("__kmp_unregister_root_current_thread: T#%d unregistered\n", gtid)); 4001 4002 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 4003 } 4004 4005 #if KMP_OS_WINDOWS 4006 /* __kmp_forkjoin_lock must be already held 4007 Unregisters a root thread that is not the current thread. Returns the number 4008 of __kmp_threads entries freed as a result. */ 4009 static int __kmp_unregister_root_other_thread(int gtid) { 4010 kmp_root_t *root = __kmp_root[gtid]; 4011 int r; 4012 4013 KA_TRACE(1, ("__kmp_unregister_root_other_thread: enter T#%d\n", gtid)); 4014 KMP_DEBUG_ASSERT(__kmp_threads && __kmp_threads[gtid]); 4015 KMP_ASSERT(KMP_UBER_GTID(gtid)); 4016 KMP_ASSERT(root == __kmp_threads[gtid]->th.th_root); 4017 KMP_ASSERT(root->r.r_active == FALSE); 4018 4019 r = __kmp_reset_root(gtid, root); 4020 KC_TRACE(10, 4021 ("__kmp_unregister_root_other_thread: T#%d unregistered\n", gtid)); 4022 return r; 4023 } 4024 #endif 4025 4026 #if KMP_DEBUG 4027 void __kmp_task_info() { 4028 4029 kmp_int32 gtid = __kmp_entry_gtid(); 4030 kmp_int32 tid = __kmp_tid_from_gtid(gtid); 4031 kmp_info_t *this_thr = __kmp_threads[gtid]; 4032 kmp_team_t *steam = this_thr->th.th_serial_team; 4033 kmp_team_t *team = this_thr->th.th_team; 4034 4035 __kmp_printf( 4036 "__kmp_task_info: gtid=%d tid=%d t_thread=%p team=%p steam=%p curtask=%p " 4037 "ptask=%p\n", 4038 gtid, tid, this_thr, team, steam, this_thr->th.th_current_task, 4039 team->t.t_implicit_task_taskdata[tid].td_parent); 4040 } 4041 #endif // KMP_DEBUG 4042 4043 /* TODO optimize with one big memclr, take out what isn't needed, split 4044 responsibility to workers as much as possible, and delay initialization of 4045 features as much as possible */ 4046 static void __kmp_initialize_info(kmp_info_t *this_thr, kmp_team_t *team, 4047 int tid, int gtid) { 4048 /* this_thr->th.th_info.ds.ds_gtid is setup in 4049 kmp_allocate_thread/create_worker. 4050 this_thr->th.th_serial_team is setup in __kmp_allocate_thread */ 4051 kmp_info_t *master = team->t.t_threads[0]; 4052 KMP_DEBUG_ASSERT(this_thr != NULL); 4053 KMP_DEBUG_ASSERT(this_thr->th.th_serial_team); 4054 KMP_DEBUG_ASSERT(team); 4055 KMP_DEBUG_ASSERT(team->t.t_threads); 4056 KMP_DEBUG_ASSERT(team->t.t_dispatch); 4057 KMP_DEBUG_ASSERT(master); 4058 KMP_DEBUG_ASSERT(master->th.th_root); 4059 4060 KMP_MB(); 4061 4062 TCW_SYNC_PTR(this_thr->th.th_team, team); 4063 4064 this_thr->th.th_info.ds.ds_tid = tid; 4065 this_thr->th.th_set_nproc = 0; 4066 if (__kmp_tasking_mode != tskm_immediate_exec) 4067 // When tasking is possible, threads are not safe to reap until they are 4068 // done tasking; this will be set when tasking code is exited in wait 4069 this_thr->th.th_reap_state = KMP_NOT_SAFE_TO_REAP; 4070 else // no tasking --> always safe to reap 4071 this_thr->th.th_reap_state = KMP_SAFE_TO_REAP; 4072 #if OMP_40_ENABLED 4073 this_thr->th.th_set_proc_bind = proc_bind_default; 4074 #if KMP_AFFINITY_SUPPORTED 4075 this_thr->th.th_new_place = this_thr->th.th_current_place; 4076 #endif 4077 #endif 4078 this_thr->th.th_root = master->th.th_root; 4079 4080 /* setup the thread's cache of the team structure */ 4081 this_thr->th.th_team_nproc = team->t.t_nproc; 4082 this_thr->th.th_team_master = master; 4083 this_thr->th.th_team_serialized = team->t.t_serialized; 4084 TCW_PTR(this_thr->th.th_sleep_loc, NULL); 4085 4086 KMP_DEBUG_ASSERT(team->t.t_implicit_task_taskdata); 4087 4088 KF_TRACE(10, ("__kmp_initialize_info1: T#%d:%d this_thread=%p curtask=%p\n", 4089 tid, gtid, this_thr, this_thr->th.th_current_task)); 4090 4091 __kmp_init_implicit_task(this_thr->th.th_team_master->th.th_ident, this_thr, 4092 team, tid, TRUE); 4093 4094 KF_TRACE(10, ("__kmp_initialize_info2: T#%d:%d this_thread=%p curtask=%p\n", 4095 tid, gtid, this_thr, this_thr->th.th_current_task)); 4096 // TODO: Initialize ICVs from parent; GEH - isn't that already done in 4097 // __kmp_initialize_team()? 4098 4099 /* TODO no worksharing in speculative threads */ 4100 this_thr->th.th_dispatch = &team->t.t_dispatch[tid]; 4101 4102 this_thr->th.th_local.this_construct = 0; 4103 4104 if (!this_thr->th.th_pri_common) { 4105 this_thr->th.th_pri_common = 4106 (struct common_table *)__kmp_allocate(sizeof(struct common_table)); 4107 if (__kmp_storage_map) { 4108 __kmp_print_storage_map_gtid( 4109 gtid, this_thr->th.th_pri_common, this_thr->th.th_pri_common + 1, 4110 sizeof(struct common_table), "th_%d.th_pri_common\n", gtid); 4111 } 4112 this_thr->th.th_pri_head = NULL; 4113 } 4114 4115 /* Initialize dynamic dispatch */ 4116 { 4117 volatile kmp_disp_t *dispatch = this_thr->th.th_dispatch; 4118 // Use team max_nproc since this will never change for the team. 4119 size_t disp_size = 4120 sizeof(dispatch_private_info_t) * 4121 (team->t.t_max_nproc == 1 ? 1 : __kmp_dispatch_num_buffers); 4122 KD_TRACE(10, ("__kmp_initialize_info: T#%d max_nproc: %d\n", gtid, 4123 team->t.t_max_nproc)); 4124 KMP_ASSERT(dispatch); 4125 KMP_DEBUG_ASSERT(team->t.t_dispatch); 4126 KMP_DEBUG_ASSERT(dispatch == &team->t.t_dispatch[tid]); 4127 4128 dispatch->th_disp_index = 0; 4129 #if OMP_45_ENABLED 4130 dispatch->th_doacross_buf_idx = 0; 4131 #endif 4132 if (!dispatch->th_disp_buffer) { 4133 dispatch->th_disp_buffer = 4134 (dispatch_private_info_t *)__kmp_allocate(disp_size); 4135 4136 if (__kmp_storage_map) { 4137 __kmp_print_storage_map_gtid( 4138 gtid, &dispatch->th_disp_buffer[0], 4139 &dispatch->th_disp_buffer[team->t.t_max_nproc == 1 4140 ? 1 4141 : __kmp_dispatch_num_buffers], 4142 disp_size, "th_%d.th_dispatch.th_disp_buffer " 4143 "(team_%d.t_dispatch[%d].th_disp_buffer)", 4144 gtid, team->t.t_id, gtid); 4145 } 4146 } else { 4147 memset(&dispatch->th_disp_buffer[0], '\0', disp_size); 4148 } 4149 4150 dispatch->th_dispatch_pr_current = 0; 4151 dispatch->th_dispatch_sh_current = 0; 4152 4153 dispatch->th_deo_fcn = 0; /* ORDERED */ 4154 dispatch->th_dxo_fcn = 0; /* END ORDERED */ 4155 } 4156 4157 this_thr->th.th_next_pool = NULL; 4158 4159 if (!this_thr->th.th_task_state_memo_stack) { 4160 size_t i; 4161 this_thr->th.th_task_state_memo_stack = 4162 (kmp_uint8 *)__kmp_allocate(4 * sizeof(kmp_uint8)); 4163 this_thr->th.th_task_state_top = 0; 4164 this_thr->th.th_task_state_stack_sz = 4; 4165 for (i = 0; i < this_thr->th.th_task_state_stack_sz; 4166 ++i) // zero init the stack 4167 this_thr->th.th_task_state_memo_stack[i] = 0; 4168 } 4169 4170 KMP_DEBUG_ASSERT(!this_thr->th.th_spin_here); 4171 KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0); 4172 4173 KMP_MB(); 4174 } 4175 4176 /* allocate a new thread for the requesting team. this is only called from 4177 within a forkjoin critical section. we will first try to get an available 4178 thread from the thread pool. if none is available, we will fork a new one 4179 assuming we are able to create a new one. this should be assured, as the 4180 caller should check on this first. */ 4181 kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team, 4182 int new_tid) { 4183 kmp_team_t *serial_team; 4184 kmp_info_t *new_thr; 4185 int new_gtid; 4186 4187 KA_TRACE(20, ("__kmp_allocate_thread: T#%d\n", __kmp_get_gtid())); 4188 KMP_DEBUG_ASSERT(root && team); 4189 #if !KMP_NESTED_HOT_TEAMS 4190 KMP_DEBUG_ASSERT(KMP_MASTER_GTID(__kmp_get_gtid())); 4191 #endif 4192 KMP_MB(); 4193 4194 /* first, try to get one from the thread pool */ 4195 if (__kmp_thread_pool) { 4196 4197 new_thr = CCAST(kmp_info_t *, __kmp_thread_pool); 4198 __kmp_thread_pool = (volatile kmp_info_t *)new_thr->th.th_next_pool; 4199 if (new_thr == __kmp_thread_pool_insert_pt) { 4200 __kmp_thread_pool_insert_pt = NULL; 4201 } 4202 TCW_4(new_thr->th.th_in_pool, FALSE); 4203 // Don't touch th_active_in_pool or th_active. 4204 // The worker thread adjusts those flags as it sleeps/awakens. 4205 __kmp_thread_pool_nth--; 4206 4207 KA_TRACE(20, ("__kmp_allocate_thread: T#%d using thread T#%d\n", 4208 __kmp_get_gtid(), new_thr->th.th_info.ds.ds_gtid)); 4209 KMP_ASSERT(!new_thr->th.th_team); 4210 KMP_DEBUG_ASSERT(__kmp_nth < __kmp_threads_capacity); 4211 KMP_DEBUG_ASSERT(__kmp_thread_pool_nth >= 0); 4212 4213 /* setup the thread structure */ 4214 __kmp_initialize_info(new_thr, team, new_tid, 4215 new_thr->th.th_info.ds.ds_gtid); 4216 KMP_DEBUG_ASSERT(new_thr->th.th_serial_team); 4217 4218 TCW_4(__kmp_nth, __kmp_nth + 1); 4219 root->r.r_cg_nthreads++; 4220 4221 new_thr->th.th_task_state = 0; 4222 new_thr->th.th_task_state_top = 0; 4223 new_thr->th.th_task_state_stack_sz = 4; 4224 4225 #ifdef KMP_ADJUST_BLOCKTIME 4226 /* Adjust blocktime back to zero if necessary */ 4227 /* Middle initialization might not have occurred yet */ 4228 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 4229 if (__kmp_nth > __kmp_avail_proc) { 4230 __kmp_zero_bt = TRUE; 4231 } 4232 } 4233 #endif /* KMP_ADJUST_BLOCKTIME */ 4234 4235 #if KMP_DEBUG 4236 // If thread entered pool via __kmp_free_thread, wait_flag should != 4237 // KMP_BARRIER_PARENT_FLAG. 4238 int b; 4239 kmp_balign_t *balign = new_thr->th.th_bar; 4240 for (b = 0; b < bs_last_barrier; ++b) 4241 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 4242 #endif 4243 4244 KF_TRACE(10, ("__kmp_allocate_thread: T#%d using thread %p T#%d\n", 4245 __kmp_get_gtid(), new_thr, new_thr->th.th_info.ds.ds_gtid)); 4246 4247 KMP_MB(); 4248 return new_thr; 4249 } 4250 4251 /* no, well fork a new one */ 4252 KMP_ASSERT(__kmp_nth == __kmp_all_nth); 4253 KMP_ASSERT(__kmp_all_nth < __kmp_threads_capacity); 4254 4255 #if KMP_USE_MONITOR 4256 // If this is the first worker thread the RTL is creating, then also 4257 // launch the monitor thread. We try to do this as early as possible. 4258 if (!TCR_4(__kmp_init_monitor)) { 4259 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock); 4260 if (!TCR_4(__kmp_init_monitor)) { 4261 KF_TRACE(10, ("before __kmp_create_monitor\n")); 4262 TCW_4(__kmp_init_monitor, 1); 4263 __kmp_create_monitor(&__kmp_monitor); 4264 KF_TRACE(10, ("after __kmp_create_monitor\n")); 4265 #if KMP_OS_WINDOWS 4266 // AC: wait until monitor has started. This is a fix for CQ232808. 4267 // The reason is that if the library is loaded/unloaded in a loop with 4268 // small (parallel) work in between, then there is high probability that 4269 // monitor thread started after the library shutdown. At shutdown it is 4270 // too late to cope with the problem, because when the master is in 4271 // DllMain (process detach) the monitor has no chances to start (it is 4272 // blocked), and master has no means to inform the monitor that the 4273 // library has gone, because all the memory which the monitor can access 4274 // is going to be released/reset. 4275 while (TCR_4(__kmp_init_monitor) < 2) { 4276 KMP_YIELD(TRUE); 4277 } 4278 KF_TRACE(10, ("after monitor thread has started\n")); 4279 #endif 4280 } 4281 __kmp_release_bootstrap_lock(&__kmp_monitor_lock); 4282 } 4283 #endif 4284 4285 KMP_MB(); 4286 for (new_gtid = 1; TCR_PTR(__kmp_threads[new_gtid]) != NULL; ++new_gtid) { 4287 KMP_DEBUG_ASSERT(new_gtid < __kmp_threads_capacity); 4288 } 4289 4290 /* allocate space for it. */ 4291 new_thr = (kmp_info_t *)__kmp_allocate(sizeof(kmp_info_t)); 4292 4293 TCW_SYNC_PTR(__kmp_threads[new_gtid], new_thr); 4294 4295 if (__kmp_storage_map) { 4296 __kmp_print_thread_storage_map(new_thr, new_gtid); 4297 } 4298 4299 // add the reserve serialized team, initialized from the team's master thread 4300 { 4301 kmp_internal_control_t r_icvs = __kmp_get_x_global_icvs(team); 4302 KF_TRACE(10, ("__kmp_allocate_thread: before th_serial/serial_team\n")); 4303 new_thr->th.th_serial_team = serial_team = 4304 (kmp_team_t *)__kmp_allocate_team(root, 1, 1, 4305 #if OMPT_SUPPORT 4306 ompt_data_none, // root parallel id 4307 #endif 4308 #if OMP_40_ENABLED 4309 proc_bind_default, 4310 #endif 4311 &r_icvs, 0 USE_NESTED_HOT_ARG(NULL)); 4312 } 4313 KMP_ASSERT(serial_team); 4314 serial_team->t.t_serialized = 0; // AC: the team created in reserve, not for 4315 // execution (it is unused for now). 4316 serial_team->t.t_threads[0] = new_thr; 4317 KF_TRACE(10, 4318 ("__kmp_allocate_thread: after th_serial/serial_team : new_thr=%p\n", 4319 new_thr)); 4320 4321 /* setup the thread structures */ 4322 __kmp_initialize_info(new_thr, team, new_tid, new_gtid); 4323 4324 #if USE_FAST_MEMORY 4325 __kmp_initialize_fast_memory(new_thr); 4326 #endif /* USE_FAST_MEMORY */ 4327 4328 #if KMP_USE_BGET 4329 KMP_DEBUG_ASSERT(new_thr->th.th_local.bget_data == NULL); 4330 __kmp_initialize_bget(new_thr); 4331 #endif 4332 4333 __kmp_init_random(new_thr); // Initialize random number generator 4334 4335 /* Initialize these only once when thread is grabbed for a team allocation */ 4336 KA_TRACE(20, 4337 ("__kmp_allocate_thread: T#%d init go fork=%u, plain=%u\n", 4338 __kmp_get_gtid(), KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 4339 4340 int b; 4341 kmp_balign_t *balign = new_thr->th.th_bar; 4342 for (b = 0; b < bs_last_barrier; ++b) { 4343 balign[b].bb.b_go = KMP_INIT_BARRIER_STATE; 4344 balign[b].bb.team = NULL; 4345 balign[b].bb.wait_flag = KMP_BARRIER_NOT_WAITING; 4346 balign[b].bb.use_oncore_barrier = 0; 4347 } 4348 4349 new_thr->th.th_spin_here = FALSE; 4350 new_thr->th.th_next_waiting = 0; 4351 #if KMP_OS_UNIX 4352 new_thr->th.th_blocking = false; 4353 #endif 4354 4355 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 4356 new_thr->th.th_current_place = KMP_PLACE_UNDEFINED; 4357 new_thr->th.th_new_place = KMP_PLACE_UNDEFINED; 4358 new_thr->th.th_first_place = KMP_PLACE_UNDEFINED; 4359 new_thr->th.th_last_place = KMP_PLACE_UNDEFINED; 4360 #endif 4361 #if OMP_50_ENABLED 4362 new_thr->th.th_def_allocator = __kmp_def_allocator; 4363 #endif 4364 4365 TCW_4(new_thr->th.th_in_pool, FALSE); 4366 new_thr->th.th_active_in_pool = FALSE; 4367 TCW_4(new_thr->th.th_active, TRUE); 4368 4369 /* adjust the global counters */ 4370 __kmp_all_nth++; 4371 __kmp_nth++; 4372 4373 root->r.r_cg_nthreads++; 4374 4375 // if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) for low 4376 // numbers of procs, and method #2 (keyed API call) for higher numbers. 4377 if (__kmp_adjust_gtid_mode) { 4378 if (__kmp_all_nth >= __kmp_tls_gtid_min) { 4379 if (TCR_4(__kmp_gtid_mode) != 2) { 4380 TCW_4(__kmp_gtid_mode, 2); 4381 } 4382 } else { 4383 if (TCR_4(__kmp_gtid_mode) != 1) { 4384 TCW_4(__kmp_gtid_mode, 1); 4385 } 4386 } 4387 } 4388 4389 #ifdef KMP_ADJUST_BLOCKTIME 4390 /* Adjust blocktime back to zero if necessary */ 4391 /* Middle initialization might not have occurred yet */ 4392 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 4393 if (__kmp_nth > __kmp_avail_proc) { 4394 __kmp_zero_bt = TRUE; 4395 } 4396 } 4397 #endif /* KMP_ADJUST_BLOCKTIME */ 4398 4399 /* actually fork it and create the new worker thread */ 4400 KF_TRACE( 4401 10, ("__kmp_allocate_thread: before __kmp_create_worker: %p\n", new_thr)); 4402 __kmp_create_worker(new_gtid, new_thr, __kmp_stksize); 4403 KF_TRACE(10, 4404 ("__kmp_allocate_thread: after __kmp_create_worker: %p\n", new_thr)); 4405 4406 KA_TRACE(20, ("__kmp_allocate_thread: T#%d forked T#%d\n", __kmp_get_gtid(), 4407 new_gtid)); 4408 KMP_MB(); 4409 return new_thr; 4410 } 4411 4412 /* Reinitialize team for reuse. 4413 The hot team code calls this case at every fork barrier, so EPCC barrier 4414 test are extremely sensitive to changes in it, esp. writes to the team 4415 struct, which cause a cache invalidation in all threads. 4416 IF YOU TOUCH THIS ROUTINE, RUN EPCC C SYNCBENCH ON A BIG-IRON MACHINE!!! */ 4417 static void __kmp_reinitialize_team(kmp_team_t *team, 4418 kmp_internal_control_t *new_icvs, 4419 ident_t *loc) { 4420 KF_TRACE(10, ("__kmp_reinitialize_team: enter this_thread=%p team=%p\n", 4421 team->t.t_threads[0], team)); 4422 KMP_DEBUG_ASSERT(team && new_icvs); 4423 KMP_DEBUG_ASSERT((!TCR_4(__kmp_init_parallel)) || new_icvs->nproc); 4424 KMP_CHECK_UPDATE(team->t.t_ident, loc); 4425 4426 KMP_CHECK_UPDATE(team->t.t_id, KMP_GEN_TEAM_ID()); 4427 // Copy ICVs to the master thread's implicit taskdata 4428 __kmp_init_implicit_task(loc, team->t.t_threads[0], team, 0, FALSE); 4429 copy_icvs(&team->t.t_implicit_task_taskdata[0].td_icvs, new_icvs); 4430 4431 KF_TRACE(10, ("__kmp_reinitialize_team: exit this_thread=%p team=%p\n", 4432 team->t.t_threads[0], team)); 4433 } 4434 4435 /* Initialize the team data structure. 4436 This assumes the t_threads and t_max_nproc are already set. 4437 Also, we don't touch the arguments */ 4438 static void __kmp_initialize_team(kmp_team_t *team, int new_nproc, 4439 kmp_internal_control_t *new_icvs, 4440 ident_t *loc) { 4441 KF_TRACE(10, ("__kmp_initialize_team: enter: team=%p\n", team)); 4442 4443 /* verify */ 4444 KMP_DEBUG_ASSERT(team); 4445 KMP_DEBUG_ASSERT(new_nproc <= team->t.t_max_nproc); 4446 KMP_DEBUG_ASSERT(team->t.t_threads); 4447 KMP_MB(); 4448 4449 team->t.t_master_tid = 0; /* not needed */ 4450 /* team->t.t_master_bar; not needed */ 4451 team->t.t_serialized = new_nproc > 1 ? 0 : 1; 4452 team->t.t_nproc = new_nproc; 4453 4454 /* team->t.t_parent = NULL; TODO not needed & would mess up hot team */ 4455 team->t.t_next_pool = NULL; 4456 /* memset( team->t.t_threads, 0, sizeof(kmp_info_t*)*new_nproc ); would mess 4457 * up hot team */ 4458 4459 TCW_SYNC_PTR(team->t.t_pkfn, NULL); /* not needed */ 4460 team->t.t_invoke = NULL; /* not needed */ 4461 4462 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 4463 team->t.t_sched.sched = new_icvs->sched.sched; 4464 4465 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4466 team->t.t_fp_control_saved = FALSE; /* not needed */ 4467 team->t.t_x87_fpu_control_word = 0; /* not needed */ 4468 team->t.t_mxcsr = 0; /* not needed */ 4469 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4470 4471 team->t.t_construct = 0; 4472 4473 team->t.t_ordered.dt.t_value = 0; 4474 team->t.t_master_active = FALSE; 4475 4476 memset(&team->t.t_taskq, '\0', sizeof(kmp_taskq_t)); 4477 4478 #ifdef KMP_DEBUG 4479 team->t.t_copypriv_data = NULL; /* not necessary, but nice for debugging */ 4480 #endif 4481 #if KMP_OS_WINDOWS 4482 team->t.t_copyin_counter = 0; /* for barrier-free copyin implementation */ 4483 #endif 4484 4485 team->t.t_control_stack_top = NULL; 4486 4487 __kmp_reinitialize_team(team, new_icvs, loc); 4488 4489 KMP_MB(); 4490 KF_TRACE(10, ("__kmp_initialize_team: exit: team=%p\n", team)); 4491 } 4492 4493 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 4494 /* Sets full mask for thread and returns old mask, no changes to structures. */ 4495 static void 4496 __kmp_set_thread_affinity_mask_full_tmp(kmp_affin_mask_t *old_mask) { 4497 if (KMP_AFFINITY_CAPABLE()) { 4498 int status; 4499 if (old_mask != NULL) { 4500 status = __kmp_get_system_affinity(old_mask, TRUE); 4501 int error = errno; 4502 if (status != 0) { 4503 __kmp_fatal(KMP_MSG(ChangeThreadAffMaskError), KMP_ERR(error), 4504 __kmp_msg_null); 4505 } 4506 } 4507 __kmp_set_system_affinity(__kmp_affin_fullMask, TRUE); 4508 } 4509 } 4510 #endif 4511 4512 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 4513 4514 // __kmp_partition_places() is the heart of the OpenMP 4.0 affinity mechanism. 4515 // It calculats the worker + master thread's partition based upon the parent 4516 // thread's partition, and binds each worker to a thread in their partition. 4517 // The master thread's partition should already include its current binding. 4518 static void __kmp_partition_places(kmp_team_t *team, int update_master_only) { 4519 // Copy the master thread's place partion to the team struct 4520 kmp_info_t *master_th = team->t.t_threads[0]; 4521 KMP_DEBUG_ASSERT(master_th != NULL); 4522 kmp_proc_bind_t proc_bind = team->t.t_proc_bind; 4523 int first_place = master_th->th.th_first_place; 4524 int last_place = master_th->th.th_last_place; 4525 int masters_place = master_th->th.th_current_place; 4526 team->t.t_first_place = first_place; 4527 team->t.t_last_place = last_place; 4528 4529 KA_TRACE(20, ("__kmp_partition_places: enter: proc_bind = %d T#%d(%d:0) " 4530 "bound to place %d partition = [%d,%d]\n", 4531 proc_bind, __kmp_gtid_from_thread(team->t.t_threads[0]), 4532 team->t.t_id, masters_place, first_place, last_place)); 4533 4534 switch (proc_bind) { 4535 4536 case proc_bind_default: 4537 // serial teams might have the proc_bind policy set to proc_bind_default. It 4538 // doesn't matter, as we don't rebind master thread for any proc_bind policy 4539 KMP_DEBUG_ASSERT(team->t.t_nproc == 1); 4540 break; 4541 4542 case proc_bind_master: { 4543 int f; 4544 int n_th = team->t.t_nproc; 4545 for (f = 1; f < n_th; f++) { 4546 kmp_info_t *th = team->t.t_threads[f]; 4547 KMP_DEBUG_ASSERT(th != NULL); 4548 th->th.th_first_place = first_place; 4549 th->th.th_last_place = last_place; 4550 th->th.th_new_place = masters_place; 4551 4552 KA_TRACE(100, ("__kmp_partition_places: master: T#%d(%d:%d) place %d " 4553 "partition = [%d,%d]\n", 4554 __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, 4555 f, masters_place, first_place, last_place)); 4556 } 4557 } break; 4558 4559 case proc_bind_close: { 4560 int f; 4561 int n_th = team->t.t_nproc; 4562 int n_places; 4563 if (first_place <= last_place) { 4564 n_places = last_place - first_place + 1; 4565 } else { 4566 n_places = __kmp_affinity_num_masks - first_place + last_place + 1; 4567 } 4568 if (n_th <= n_places) { 4569 int place = masters_place; 4570 for (f = 1; f < n_th; f++) { 4571 kmp_info_t *th = team->t.t_threads[f]; 4572 KMP_DEBUG_ASSERT(th != NULL); 4573 4574 if (place == last_place) { 4575 place = first_place; 4576 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4577 place = 0; 4578 } else { 4579 place++; 4580 } 4581 th->th.th_first_place = first_place; 4582 th->th.th_last_place = last_place; 4583 th->th.th_new_place = place; 4584 4585 KA_TRACE(100, ("__kmp_partition_places: close: T#%d(%d:%d) place %d " 4586 "partition = [%d,%d]\n", 4587 __kmp_gtid_from_thread(team->t.t_threads[f]), 4588 team->t.t_id, f, place, first_place, last_place)); 4589 } 4590 } else { 4591 int S, rem, gap, s_count; 4592 S = n_th / n_places; 4593 s_count = 0; 4594 rem = n_th - (S * n_places); 4595 gap = rem > 0 ? n_places / rem : n_places; 4596 int place = masters_place; 4597 int gap_ct = gap; 4598 for (f = 0; f < n_th; f++) { 4599 kmp_info_t *th = team->t.t_threads[f]; 4600 KMP_DEBUG_ASSERT(th != NULL); 4601 4602 th->th.th_first_place = first_place; 4603 th->th.th_last_place = last_place; 4604 th->th.th_new_place = place; 4605 s_count++; 4606 4607 if ((s_count == S) && rem && (gap_ct == gap)) { 4608 // do nothing, add an extra thread to place on next iteration 4609 } else if ((s_count == S + 1) && rem && (gap_ct == gap)) { 4610 // we added an extra thread to this place; move to next place 4611 if (place == last_place) { 4612 place = first_place; 4613 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4614 place = 0; 4615 } else { 4616 place++; 4617 } 4618 s_count = 0; 4619 gap_ct = 1; 4620 rem--; 4621 } else if (s_count == S) { // place full; don't add extra 4622 if (place == last_place) { 4623 place = first_place; 4624 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4625 place = 0; 4626 } else { 4627 place++; 4628 } 4629 gap_ct++; 4630 s_count = 0; 4631 } 4632 4633 KA_TRACE(100, 4634 ("__kmp_partition_places: close: T#%d(%d:%d) place %d " 4635 "partition = [%d,%d]\n", 4636 __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, f, 4637 th->th.th_new_place, first_place, last_place)); 4638 } 4639 KMP_DEBUG_ASSERT(place == masters_place); 4640 } 4641 } break; 4642 4643 case proc_bind_spread: { 4644 int f; 4645 int n_th = team->t.t_nproc; 4646 int n_places; 4647 int thidx; 4648 if (first_place <= last_place) { 4649 n_places = last_place - first_place + 1; 4650 } else { 4651 n_places = __kmp_affinity_num_masks - first_place + last_place + 1; 4652 } 4653 if (n_th <= n_places) { 4654 int place = -1; 4655 4656 if (n_places != static_cast<int>(__kmp_affinity_num_masks)) { 4657 int S = n_places / n_th; 4658 int s_count, rem, gap, gap_ct; 4659 4660 place = masters_place; 4661 rem = n_places - n_th * S; 4662 gap = rem ? n_th / rem : 1; 4663 gap_ct = gap; 4664 thidx = n_th; 4665 if (update_master_only == 1) 4666 thidx = 1; 4667 for (f = 0; f < thidx; f++) { 4668 kmp_info_t *th = team->t.t_threads[f]; 4669 KMP_DEBUG_ASSERT(th != NULL); 4670 4671 th->th.th_first_place = place; 4672 th->th.th_new_place = place; 4673 s_count = 1; 4674 while (s_count < S) { 4675 if (place == last_place) { 4676 place = first_place; 4677 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4678 place = 0; 4679 } else { 4680 place++; 4681 } 4682 s_count++; 4683 } 4684 if (rem && (gap_ct == gap)) { 4685 if (place == last_place) { 4686 place = first_place; 4687 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4688 place = 0; 4689 } else { 4690 place++; 4691 } 4692 rem--; 4693 gap_ct = 0; 4694 } 4695 th->th.th_last_place = place; 4696 gap_ct++; 4697 4698 if (place == last_place) { 4699 place = first_place; 4700 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4701 place = 0; 4702 } else { 4703 place++; 4704 } 4705 4706 KA_TRACE(100, 4707 ("__kmp_partition_places: spread: T#%d(%d:%d) place %d " 4708 "partition = [%d,%d], __kmp_affinity_num_masks: %u\n", 4709 __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, 4710 f, th->th.th_new_place, th->th.th_first_place, 4711 th->th.th_last_place, __kmp_affinity_num_masks)); 4712 } 4713 } else { 4714 /* Having uniform space of available computation places I can create 4715 T partitions of round(P/T) size and put threads into the first 4716 place of each partition. */ 4717 double current = static_cast<double>(masters_place); 4718 double spacing = 4719 (static_cast<double>(n_places + 1) / static_cast<double>(n_th)); 4720 int first, last; 4721 kmp_info_t *th; 4722 4723 thidx = n_th + 1; 4724 if (update_master_only == 1) 4725 thidx = 1; 4726 for (f = 0; f < thidx; f++) { 4727 first = static_cast<int>(current); 4728 last = static_cast<int>(current + spacing) - 1; 4729 KMP_DEBUG_ASSERT(last >= first); 4730 if (first >= n_places) { 4731 if (masters_place) { 4732 first -= n_places; 4733 last -= n_places; 4734 if (first == (masters_place + 1)) { 4735 KMP_DEBUG_ASSERT(f == n_th); 4736 first--; 4737 } 4738 if (last == masters_place) { 4739 KMP_DEBUG_ASSERT(f == (n_th - 1)); 4740 last--; 4741 } 4742 } else { 4743 KMP_DEBUG_ASSERT(f == n_th); 4744 first = 0; 4745 last = 0; 4746 } 4747 } 4748 if (last >= n_places) { 4749 last = (n_places - 1); 4750 } 4751 place = first; 4752 current += spacing; 4753 if (f < n_th) { 4754 KMP_DEBUG_ASSERT(0 <= first); 4755 KMP_DEBUG_ASSERT(n_places > first); 4756 KMP_DEBUG_ASSERT(0 <= last); 4757 KMP_DEBUG_ASSERT(n_places > last); 4758 KMP_DEBUG_ASSERT(last_place >= first_place); 4759 th = team->t.t_threads[f]; 4760 KMP_DEBUG_ASSERT(th); 4761 th->th.th_first_place = first; 4762 th->th.th_new_place = place; 4763 th->th.th_last_place = last; 4764 4765 KA_TRACE(100, 4766 ("__kmp_partition_places: spread: T#%d(%d:%d) place %d " 4767 "partition = [%d,%d], spacing = %.4f\n", 4768 __kmp_gtid_from_thread(team->t.t_threads[f]), 4769 team->t.t_id, f, th->th.th_new_place, 4770 th->th.th_first_place, th->th.th_last_place, spacing)); 4771 } 4772 } 4773 } 4774 KMP_DEBUG_ASSERT(update_master_only || place == masters_place); 4775 } else { 4776 int S, rem, gap, s_count; 4777 S = n_th / n_places; 4778 s_count = 0; 4779 rem = n_th - (S * n_places); 4780 gap = rem > 0 ? n_places / rem : n_places; 4781 int place = masters_place; 4782 int gap_ct = gap; 4783 thidx = n_th; 4784 if (update_master_only == 1) 4785 thidx = 1; 4786 for (f = 0; f < thidx; f++) { 4787 kmp_info_t *th = team->t.t_threads[f]; 4788 KMP_DEBUG_ASSERT(th != NULL); 4789 4790 th->th.th_first_place = place; 4791 th->th.th_last_place = place; 4792 th->th.th_new_place = place; 4793 s_count++; 4794 4795 if ((s_count == S) && rem && (gap_ct == gap)) { 4796 // do nothing, add an extra thread to place on next iteration 4797 } else if ((s_count == S + 1) && rem && (gap_ct == gap)) { 4798 // we added an extra thread to this place; move on to next place 4799 if (place == last_place) { 4800 place = first_place; 4801 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4802 place = 0; 4803 } else { 4804 place++; 4805 } 4806 s_count = 0; 4807 gap_ct = 1; 4808 rem--; 4809 } else if (s_count == S) { // place is full; don't add extra thread 4810 if (place == last_place) { 4811 place = first_place; 4812 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4813 place = 0; 4814 } else { 4815 place++; 4816 } 4817 gap_ct++; 4818 s_count = 0; 4819 } 4820 4821 KA_TRACE(100, ("__kmp_partition_places: spread: T#%d(%d:%d) place %d " 4822 "partition = [%d,%d]\n", 4823 __kmp_gtid_from_thread(team->t.t_threads[f]), 4824 team->t.t_id, f, th->th.th_new_place, 4825 th->th.th_first_place, th->th.th_last_place)); 4826 } 4827 KMP_DEBUG_ASSERT(update_master_only || place == masters_place); 4828 } 4829 } break; 4830 4831 default: 4832 break; 4833 } 4834 4835 KA_TRACE(20, ("__kmp_partition_places: exit T#%d\n", team->t.t_id)); 4836 } 4837 4838 #endif /* OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED */ 4839 4840 /* allocate a new team data structure to use. take one off of the free pool if 4841 available */ 4842 kmp_team_t * 4843 __kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc, 4844 #if OMPT_SUPPORT 4845 ompt_data_t ompt_parallel_data, 4846 #endif 4847 #if OMP_40_ENABLED 4848 kmp_proc_bind_t new_proc_bind, 4849 #endif 4850 kmp_internal_control_t *new_icvs, 4851 int argc USE_NESTED_HOT_ARG(kmp_info_t *master)) { 4852 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_allocate_team); 4853 int f; 4854 kmp_team_t *team; 4855 int use_hot_team = !root->r.r_active; 4856 int level = 0; 4857 4858 KA_TRACE(20, ("__kmp_allocate_team: called\n")); 4859 KMP_DEBUG_ASSERT(new_nproc >= 1 && argc >= 0); 4860 KMP_DEBUG_ASSERT(max_nproc >= new_nproc); 4861 KMP_MB(); 4862 4863 #if KMP_NESTED_HOT_TEAMS 4864 kmp_hot_team_ptr_t *hot_teams; 4865 if (master) { 4866 team = master->th.th_team; 4867 level = team->t.t_active_level; 4868 if (master->th.th_teams_microtask) { // in teams construct? 4869 if (master->th.th_teams_size.nteams > 1 && 4870 ( // #teams > 1 4871 team->t.t_pkfn == 4872 (microtask_t)__kmp_teams_master || // inner fork of the teams 4873 master->th.th_teams_level < 4874 team->t.t_level)) { // or nested parallel inside the teams 4875 ++level; // not increment if #teams==1, or for outer fork of the teams; 4876 // increment otherwise 4877 } 4878 } 4879 hot_teams = master->th.th_hot_teams; 4880 if (level < __kmp_hot_teams_max_level && hot_teams && 4881 hot_teams[level] 4882 .hot_team) { // hot team has already been allocated for given level 4883 use_hot_team = 1; 4884 } else { 4885 use_hot_team = 0; 4886 } 4887 } 4888 #endif 4889 // Optimization to use a "hot" team 4890 if (use_hot_team && new_nproc > 1) { 4891 KMP_DEBUG_ASSERT(new_nproc == max_nproc); 4892 #if KMP_NESTED_HOT_TEAMS 4893 team = hot_teams[level].hot_team; 4894 #else 4895 team = root->r.r_hot_team; 4896 #endif 4897 #if KMP_DEBUG 4898 if (__kmp_tasking_mode != tskm_immediate_exec) { 4899 KA_TRACE(20, ("__kmp_allocate_team: hot team task_team[0] = %p " 4900 "task_team[1] = %p before reinit\n", 4901 team->t.t_task_team[0], team->t.t_task_team[1])); 4902 } 4903 #endif 4904 4905 // Has the number of threads changed? 4906 /* Let's assume the most common case is that the number of threads is 4907 unchanged, and put that case first. */ 4908 if (team->t.t_nproc == new_nproc) { // Check changes in number of threads 4909 KA_TRACE(20, ("__kmp_allocate_team: reusing hot team\n")); 4910 // This case can mean that omp_set_num_threads() was called and the hot 4911 // team size was already reduced, so we check the special flag 4912 if (team->t.t_size_changed == -1) { 4913 team->t.t_size_changed = 1; 4914 } else { 4915 KMP_CHECK_UPDATE(team->t.t_size_changed, 0); 4916 } 4917 4918 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 4919 kmp_r_sched_t new_sched = new_icvs->sched; 4920 // set master's schedule as new run-time schedule 4921 KMP_CHECK_UPDATE(team->t.t_sched.sched, new_sched.sched); 4922 4923 __kmp_reinitialize_team(team, new_icvs, 4924 root->r.r_uber_thread->th.th_ident); 4925 4926 KF_TRACE(10, ("__kmp_allocate_team2: T#%d, this_thread=%p team=%p\n", 0, 4927 team->t.t_threads[0], team)); 4928 __kmp_push_current_task_to_thread(team->t.t_threads[0], team, 0); 4929 4930 #if OMP_40_ENABLED 4931 #if KMP_AFFINITY_SUPPORTED 4932 if ((team->t.t_size_changed == 0) && 4933 (team->t.t_proc_bind == new_proc_bind)) { 4934 if (new_proc_bind == proc_bind_spread) { 4935 __kmp_partition_places( 4936 team, 1); // add flag to update only master for spread 4937 } 4938 KA_TRACE(200, ("__kmp_allocate_team: reusing hot team #%d bindings: " 4939 "proc_bind = %d, partition = [%d,%d]\n", 4940 team->t.t_id, new_proc_bind, team->t.t_first_place, 4941 team->t.t_last_place)); 4942 } else { 4943 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 4944 __kmp_partition_places(team); 4945 } 4946 #else 4947 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 4948 #endif /* KMP_AFFINITY_SUPPORTED */ 4949 #endif /* OMP_40_ENABLED */ 4950 } else if (team->t.t_nproc > new_nproc) { 4951 KA_TRACE(20, 4952 ("__kmp_allocate_team: decreasing hot team thread count to %d\n", 4953 new_nproc)); 4954 4955 team->t.t_size_changed = 1; 4956 #if KMP_NESTED_HOT_TEAMS 4957 if (__kmp_hot_teams_mode == 0) { 4958 // AC: saved number of threads should correspond to team's value in this 4959 // mode, can be bigger in mode 1, when hot team has threads in reserve 4960 KMP_DEBUG_ASSERT(hot_teams[level].hot_team_nth == team->t.t_nproc); 4961 hot_teams[level].hot_team_nth = new_nproc; 4962 #endif // KMP_NESTED_HOT_TEAMS 4963 /* release the extra threads we don't need any more */ 4964 for (f = new_nproc; f < team->t.t_nproc; f++) { 4965 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 4966 if (__kmp_tasking_mode != tskm_immediate_exec) { 4967 // When decreasing team size, threads no longer in the team should 4968 // unref task team. 4969 team->t.t_threads[f]->th.th_task_team = NULL; 4970 } 4971 __kmp_free_thread(team->t.t_threads[f]); 4972 team->t.t_threads[f] = NULL; 4973 } 4974 #if KMP_NESTED_HOT_TEAMS 4975 } // (__kmp_hot_teams_mode == 0) 4976 else { 4977 // When keeping extra threads in team, switch threads to wait on own 4978 // b_go flag 4979 for (f = new_nproc; f < team->t.t_nproc; ++f) { 4980 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 4981 kmp_balign_t *balign = team->t.t_threads[f]->th.th_bar; 4982 for (int b = 0; b < bs_last_barrier; ++b) { 4983 if (balign[b].bb.wait_flag == KMP_BARRIER_PARENT_FLAG) { 4984 balign[b].bb.wait_flag = KMP_BARRIER_SWITCH_TO_OWN_FLAG; 4985 } 4986 KMP_CHECK_UPDATE(balign[b].bb.leaf_kids, 0); 4987 } 4988 } 4989 } 4990 #endif // KMP_NESTED_HOT_TEAMS 4991 team->t.t_nproc = new_nproc; 4992 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 4993 KMP_CHECK_UPDATE(team->t.t_sched.sched, new_icvs->sched.sched); 4994 __kmp_reinitialize_team(team, new_icvs, 4995 root->r.r_uber_thread->th.th_ident); 4996 4997 /* update the remaining threads */ 4998 for (f = 0; f < new_nproc; ++f) { 4999 team->t.t_threads[f]->th.th_team_nproc = new_nproc; 5000 } 5001 // restore the current task state of the master thread: should be the 5002 // implicit task 5003 KF_TRACE(10, ("__kmp_allocate_team: T#%d, this_thread=%p team=%p\n", 0, 5004 team->t.t_threads[0], team)); 5005 5006 __kmp_push_current_task_to_thread(team->t.t_threads[0], team, 0); 5007 5008 #ifdef KMP_DEBUG 5009 for (f = 0; f < team->t.t_nproc; f++) { 5010 KMP_DEBUG_ASSERT(team->t.t_threads[f] && 5011 team->t.t_threads[f]->th.th_team_nproc == 5012 team->t.t_nproc); 5013 } 5014 #endif 5015 5016 #if OMP_40_ENABLED 5017 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5018 #if KMP_AFFINITY_SUPPORTED 5019 __kmp_partition_places(team); 5020 #endif 5021 #endif 5022 } else { // team->t.t_nproc < new_nproc 5023 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 5024 kmp_affin_mask_t *old_mask; 5025 if (KMP_AFFINITY_CAPABLE()) { 5026 KMP_CPU_ALLOC(old_mask); 5027 } 5028 #endif 5029 5030 KA_TRACE(20, 5031 ("__kmp_allocate_team: increasing hot team thread count to %d\n", 5032 new_nproc)); 5033 5034 team->t.t_size_changed = 1; 5035 5036 #if KMP_NESTED_HOT_TEAMS 5037 int avail_threads = hot_teams[level].hot_team_nth; 5038 if (new_nproc < avail_threads) 5039 avail_threads = new_nproc; 5040 kmp_info_t **other_threads = team->t.t_threads; 5041 for (f = team->t.t_nproc; f < avail_threads; ++f) { 5042 // Adjust barrier data of reserved threads (if any) of the team 5043 // Other data will be set in __kmp_initialize_info() below. 5044 int b; 5045 kmp_balign_t *balign = other_threads[f]->th.th_bar; 5046 for (b = 0; b < bs_last_barrier; ++b) { 5047 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 5048 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 5049 #if USE_DEBUGGER 5050 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 5051 #endif 5052 } 5053 } 5054 if (hot_teams[level].hot_team_nth >= new_nproc) { 5055 // we have all needed threads in reserve, no need to allocate any 5056 // this only possible in mode 1, cannot have reserved threads in mode 0 5057 KMP_DEBUG_ASSERT(__kmp_hot_teams_mode == 1); 5058 team->t.t_nproc = new_nproc; // just get reserved threads involved 5059 } else { 5060 // we may have some threads in reserve, but not enough 5061 team->t.t_nproc = 5062 hot_teams[level] 5063 .hot_team_nth; // get reserved threads involved if any 5064 hot_teams[level].hot_team_nth = new_nproc; // adjust hot team max size 5065 #endif // KMP_NESTED_HOT_TEAMS 5066 if (team->t.t_max_nproc < new_nproc) { 5067 /* reallocate larger arrays */ 5068 __kmp_reallocate_team_arrays(team, new_nproc); 5069 __kmp_reinitialize_team(team, new_icvs, NULL); 5070 } 5071 5072 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 5073 /* Temporarily set full mask for master thread before creation of 5074 workers. The reason is that workers inherit the affinity from master, 5075 so if a lot of workers are created on the single core quickly, they 5076 don't get a chance to set their own affinity for a long time. */ 5077 __kmp_set_thread_affinity_mask_full_tmp(old_mask); 5078 #endif 5079 5080 /* allocate new threads for the hot team */ 5081 for (f = team->t.t_nproc; f < new_nproc; f++) { 5082 kmp_info_t *new_worker = __kmp_allocate_thread(root, team, f); 5083 KMP_DEBUG_ASSERT(new_worker); 5084 team->t.t_threads[f] = new_worker; 5085 5086 KA_TRACE(20, 5087 ("__kmp_allocate_team: team %d init T#%d arrived: " 5088 "join=%llu, plain=%llu\n", 5089 team->t.t_id, __kmp_gtid_from_tid(f, team), team->t.t_id, f, 5090 team->t.t_bar[bs_forkjoin_barrier].b_arrived, 5091 team->t.t_bar[bs_plain_barrier].b_arrived)); 5092 5093 { // Initialize barrier data for new threads. 5094 int b; 5095 kmp_balign_t *balign = new_worker->th.th_bar; 5096 for (b = 0; b < bs_last_barrier; ++b) { 5097 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 5098 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != 5099 KMP_BARRIER_PARENT_FLAG); 5100 #if USE_DEBUGGER 5101 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 5102 #endif 5103 } 5104 } 5105 } 5106 5107 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 5108 if (KMP_AFFINITY_CAPABLE()) { 5109 /* Restore initial master thread's affinity mask */ 5110 __kmp_set_system_affinity(old_mask, TRUE); 5111 KMP_CPU_FREE(old_mask); 5112 } 5113 #endif 5114 #if KMP_NESTED_HOT_TEAMS 5115 } // end of check of t_nproc vs. new_nproc vs. hot_team_nth 5116 #endif // KMP_NESTED_HOT_TEAMS 5117 /* make sure everyone is syncronized */ 5118 int old_nproc = team->t.t_nproc; // save old value and use to update only 5119 // new threads below 5120 __kmp_initialize_team(team, new_nproc, new_icvs, 5121 root->r.r_uber_thread->th.th_ident); 5122 5123 /* reinitialize the threads */ 5124 KMP_DEBUG_ASSERT(team->t.t_nproc == new_nproc); 5125 for (f = 0; f < team->t.t_nproc; ++f) 5126 __kmp_initialize_info(team->t.t_threads[f], team, f, 5127 __kmp_gtid_from_tid(f, team)); 5128 if (level) { // set th_task_state for new threads in nested hot team 5129 // __kmp_initialize_info() no longer zeroes th_task_state, so we should 5130 // only need to set the th_task_state for the new threads. th_task_state 5131 // for master thread will not be accurate until after this in 5132 // __kmp_fork_call(), so we look to the master's memo_stack to get the 5133 // correct value. 5134 for (f = old_nproc; f < team->t.t_nproc; ++f) 5135 team->t.t_threads[f]->th.th_task_state = 5136 team->t.t_threads[0]->th.th_task_state_memo_stack[level]; 5137 } else { // set th_task_state for new threads in non-nested hot team 5138 int old_state = 5139 team->t.t_threads[0]->th.th_task_state; // copy master's state 5140 for (f = old_nproc; f < team->t.t_nproc; ++f) 5141 team->t.t_threads[f]->th.th_task_state = old_state; 5142 } 5143 5144 #ifdef KMP_DEBUG 5145 for (f = 0; f < team->t.t_nproc; ++f) { 5146 KMP_DEBUG_ASSERT(team->t.t_threads[f] && 5147 team->t.t_threads[f]->th.th_team_nproc == 5148 team->t.t_nproc); 5149 } 5150 #endif 5151 5152 #if OMP_40_ENABLED 5153 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5154 #if KMP_AFFINITY_SUPPORTED 5155 __kmp_partition_places(team); 5156 #endif 5157 #endif 5158 } // Check changes in number of threads 5159 5160 #if OMP_40_ENABLED 5161 kmp_info_t *master = team->t.t_threads[0]; 5162 if (master->th.th_teams_microtask) { 5163 for (f = 1; f < new_nproc; ++f) { 5164 // propagate teams construct specific info to workers 5165 kmp_info_t *thr = team->t.t_threads[f]; 5166 thr->th.th_teams_microtask = master->th.th_teams_microtask; 5167 thr->th.th_teams_level = master->th.th_teams_level; 5168 thr->th.th_teams_size = master->th.th_teams_size; 5169 } 5170 } 5171 #endif /* OMP_40_ENABLED */ 5172 #if KMP_NESTED_HOT_TEAMS 5173 if (level) { 5174 // Sync barrier state for nested hot teams, not needed for outermost hot 5175 // team. 5176 for (f = 1; f < new_nproc; ++f) { 5177 kmp_info_t *thr = team->t.t_threads[f]; 5178 int b; 5179 kmp_balign_t *balign = thr->th.th_bar; 5180 for (b = 0; b < bs_last_barrier; ++b) { 5181 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 5182 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 5183 #if USE_DEBUGGER 5184 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 5185 #endif 5186 } 5187 } 5188 } 5189 #endif // KMP_NESTED_HOT_TEAMS 5190 5191 /* reallocate space for arguments if necessary */ 5192 __kmp_alloc_argv_entries(argc, team, TRUE); 5193 KMP_CHECK_UPDATE(team->t.t_argc, argc); 5194 // The hot team re-uses the previous task team, 5195 // if untouched during the previous release->gather phase. 5196 5197 KF_TRACE(10, (" hot_team = %p\n", team)); 5198 5199 #if KMP_DEBUG 5200 if (__kmp_tasking_mode != tskm_immediate_exec) { 5201 KA_TRACE(20, ("__kmp_allocate_team: hot team task_team[0] = %p " 5202 "task_team[1] = %p after reinit\n", 5203 team->t.t_task_team[0], team->t.t_task_team[1])); 5204 } 5205 #endif 5206 5207 #if OMPT_SUPPORT 5208 __ompt_team_assign_id(team, ompt_parallel_data); 5209 #endif 5210 5211 KMP_MB(); 5212 5213 return team; 5214 } 5215 5216 /* next, let's try to take one from the team pool */ 5217 KMP_MB(); 5218 for (team = CCAST(kmp_team_t *, __kmp_team_pool); (team);) { 5219 /* TODO: consider resizing undersized teams instead of reaping them, now 5220 that we have a resizing mechanism */ 5221 if (team->t.t_max_nproc >= max_nproc) { 5222 /* take this team from the team pool */ 5223 __kmp_team_pool = team->t.t_next_pool; 5224 5225 /* setup the team for fresh use */ 5226 __kmp_initialize_team(team, new_nproc, new_icvs, NULL); 5227 5228 KA_TRACE(20, ("__kmp_allocate_team: setting task_team[0] %p and " 5229 "task_team[1] %p to NULL\n", 5230 &team->t.t_task_team[0], &team->t.t_task_team[1])); 5231 team->t.t_task_team[0] = NULL; 5232 team->t.t_task_team[1] = NULL; 5233 5234 /* reallocate space for arguments if necessary */ 5235 __kmp_alloc_argv_entries(argc, team, TRUE); 5236 KMP_CHECK_UPDATE(team->t.t_argc, argc); 5237 5238 KA_TRACE( 5239 20, ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n", 5240 team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 5241 { // Initialize barrier data. 5242 int b; 5243 for (b = 0; b < bs_last_barrier; ++b) { 5244 team->t.t_bar[b].b_arrived = KMP_INIT_BARRIER_STATE; 5245 #if USE_DEBUGGER 5246 team->t.t_bar[b].b_master_arrived = 0; 5247 team->t.t_bar[b].b_team_arrived = 0; 5248 #endif 5249 } 5250 } 5251 5252 #if OMP_40_ENABLED 5253 team->t.t_proc_bind = new_proc_bind; 5254 #endif 5255 5256 KA_TRACE(20, ("__kmp_allocate_team: using team from pool %d.\n", 5257 team->t.t_id)); 5258 5259 #if OMPT_SUPPORT 5260 __ompt_team_assign_id(team, ompt_parallel_data); 5261 #endif 5262 5263 KMP_MB(); 5264 5265 return team; 5266 } 5267 5268 /* reap team if it is too small, then loop back and check the next one */ 5269 // not sure if this is wise, but, will be redone during the hot-teams 5270 // rewrite. 5271 /* TODO: Use technique to find the right size hot-team, don't reap them */ 5272 team = __kmp_reap_team(team); 5273 __kmp_team_pool = team; 5274 } 5275 5276 /* nothing available in the pool, no matter, make a new team! */ 5277 KMP_MB(); 5278 team = (kmp_team_t *)__kmp_allocate(sizeof(kmp_team_t)); 5279 5280 /* and set it up */ 5281 team->t.t_max_nproc = max_nproc; 5282 /* NOTE well, for some reason allocating one big buffer and dividing it up 5283 seems to really hurt performance a lot on the P4, so, let's not use this */ 5284 __kmp_allocate_team_arrays(team, max_nproc); 5285 5286 KA_TRACE(20, ("__kmp_allocate_team: making a new team\n")); 5287 __kmp_initialize_team(team, new_nproc, new_icvs, NULL); 5288 5289 KA_TRACE(20, ("__kmp_allocate_team: setting task_team[0] %p and task_team[1] " 5290 "%p to NULL\n", 5291 &team->t.t_task_team[0], &team->t.t_task_team[1])); 5292 team->t.t_task_team[0] = NULL; // to be removed, as __kmp_allocate zeroes 5293 // memory, no need to duplicate 5294 team->t.t_task_team[1] = NULL; // to be removed, as __kmp_allocate zeroes 5295 // memory, no need to duplicate 5296 5297 if (__kmp_storage_map) { 5298 __kmp_print_team_storage_map("team", team, team->t.t_id, new_nproc); 5299 } 5300 5301 /* allocate space for arguments */ 5302 __kmp_alloc_argv_entries(argc, team, FALSE); 5303 team->t.t_argc = argc; 5304 5305 KA_TRACE(20, 5306 ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n", 5307 team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 5308 { // Initialize barrier data. 5309 int b; 5310 for (b = 0; b < bs_last_barrier; ++b) { 5311 team->t.t_bar[b].b_arrived = KMP_INIT_BARRIER_STATE; 5312 #if USE_DEBUGGER 5313 team->t.t_bar[b].b_master_arrived = 0; 5314 team->t.t_bar[b].b_team_arrived = 0; 5315 #endif 5316 } 5317 } 5318 5319 #if OMP_40_ENABLED 5320 team->t.t_proc_bind = new_proc_bind; 5321 #endif 5322 5323 #if OMPT_SUPPORT 5324 __ompt_team_assign_id(team, ompt_parallel_data); 5325 team->t.ompt_serialized_team_info = NULL; 5326 #endif 5327 5328 KMP_MB(); 5329 5330 KA_TRACE(20, ("__kmp_allocate_team: done creating a new team %d.\n", 5331 team->t.t_id)); 5332 5333 return team; 5334 } 5335 5336 /* TODO implement hot-teams at all levels */ 5337 /* TODO implement lazy thread release on demand (disband request) */ 5338 5339 /* free the team. return it to the team pool. release all the threads 5340 * associated with it */ 5341 void __kmp_free_team(kmp_root_t *root, 5342 kmp_team_t *team USE_NESTED_HOT_ARG(kmp_info_t *master)) { 5343 int f; 5344 KA_TRACE(20, ("__kmp_free_team: T#%d freeing team %d\n", __kmp_get_gtid(), 5345 team->t.t_id)); 5346 5347 /* verify state */ 5348 KMP_DEBUG_ASSERT(root); 5349 KMP_DEBUG_ASSERT(team); 5350 KMP_DEBUG_ASSERT(team->t.t_nproc <= team->t.t_max_nproc); 5351 KMP_DEBUG_ASSERT(team->t.t_threads); 5352 5353 int use_hot_team = team == root->r.r_hot_team; 5354 #if KMP_NESTED_HOT_TEAMS 5355 int level; 5356 kmp_hot_team_ptr_t *hot_teams; 5357 if (master) { 5358 level = team->t.t_active_level - 1; 5359 if (master->th.th_teams_microtask) { // in teams construct? 5360 if (master->th.th_teams_size.nteams > 1) { 5361 ++level; // level was not increased in teams construct for 5362 // team_of_masters 5363 } 5364 if (team->t.t_pkfn != (microtask_t)__kmp_teams_master && 5365 master->th.th_teams_level == team->t.t_level) { 5366 ++level; // level was not increased in teams construct for 5367 // team_of_workers before the parallel 5368 } // team->t.t_level will be increased inside parallel 5369 } 5370 hot_teams = master->th.th_hot_teams; 5371 if (level < __kmp_hot_teams_max_level) { 5372 KMP_DEBUG_ASSERT(team == hot_teams[level].hot_team); 5373 use_hot_team = 1; 5374 } 5375 } 5376 #endif // KMP_NESTED_HOT_TEAMS 5377 5378 /* team is done working */ 5379 TCW_SYNC_PTR(team->t.t_pkfn, 5380 NULL); // Important for Debugging Support Library. 5381 #if KMP_OS_WINDOWS 5382 team->t.t_copyin_counter = 0; // init counter for possible reuse 5383 #endif 5384 // Do not reset pointer to parent team to NULL for hot teams. 5385 5386 /* if we are non-hot team, release our threads */ 5387 if (!use_hot_team) { 5388 if (__kmp_tasking_mode != tskm_immediate_exec) { 5389 // Wait for threads to reach reapable state 5390 for (f = 1; f < team->t.t_nproc; ++f) { 5391 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5392 kmp_info_t *th = team->t.t_threads[f]; 5393 volatile kmp_uint32 *state = &th->th.th_reap_state; 5394 while (*state != KMP_SAFE_TO_REAP) { 5395 #if KMP_OS_WINDOWS 5396 // On Windows a thread can be killed at any time, check this 5397 DWORD ecode; 5398 if (!__kmp_is_thread_alive(th, &ecode)) { 5399 *state = KMP_SAFE_TO_REAP; // reset the flag for dead thread 5400 break; 5401 } 5402 #endif 5403 // first check if thread is sleeping 5404 kmp_flag_64 fl(&th->th.th_bar[bs_forkjoin_barrier].bb.b_go, th); 5405 if (fl.is_sleeping()) 5406 fl.resume(__kmp_gtid_from_thread(th)); 5407 KMP_CPU_PAUSE(); 5408 } 5409 } 5410 5411 // Delete task teams 5412 int tt_idx; 5413 for (tt_idx = 0; tt_idx < 2; ++tt_idx) { 5414 kmp_task_team_t *task_team = team->t.t_task_team[tt_idx]; 5415 if (task_team != NULL) { 5416 for (f = 0; f < team->t.t_nproc; 5417 ++f) { // Have all threads unref task teams 5418 team->t.t_threads[f]->th.th_task_team = NULL; 5419 } 5420 KA_TRACE( 5421 20, 5422 ("__kmp_free_team: T#%d deactivating task_team %p on team %d\n", 5423 __kmp_get_gtid(), task_team, team->t.t_id)); 5424 #if KMP_NESTED_HOT_TEAMS 5425 __kmp_free_task_team(master, task_team); 5426 #endif 5427 team->t.t_task_team[tt_idx] = NULL; 5428 } 5429 } 5430 } 5431 5432 // Reset pointer to parent team only for non-hot teams. 5433 team->t.t_parent = NULL; 5434 team->t.t_level = 0; 5435 team->t.t_active_level = 0; 5436 5437 /* free the worker threads */ 5438 for (f = 1; f < team->t.t_nproc; ++f) { 5439 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5440 __kmp_free_thread(team->t.t_threads[f]); 5441 team->t.t_threads[f] = NULL; 5442 } 5443 5444 /* put the team back in the team pool */ 5445 /* TODO limit size of team pool, call reap_team if pool too large */ 5446 team->t.t_next_pool = CCAST(kmp_team_t *, __kmp_team_pool); 5447 __kmp_team_pool = (volatile kmp_team_t *)team; 5448 } 5449 5450 KMP_MB(); 5451 } 5452 5453 /* reap the team. destroy it, reclaim all its resources and free its memory */ 5454 kmp_team_t *__kmp_reap_team(kmp_team_t *team) { 5455 kmp_team_t *next_pool = team->t.t_next_pool; 5456 5457 KMP_DEBUG_ASSERT(team); 5458 KMP_DEBUG_ASSERT(team->t.t_dispatch); 5459 KMP_DEBUG_ASSERT(team->t.t_disp_buffer); 5460 KMP_DEBUG_ASSERT(team->t.t_threads); 5461 KMP_DEBUG_ASSERT(team->t.t_argv); 5462 5463 /* TODO clean the threads that are a part of this? */ 5464 5465 /* free stuff */ 5466 __kmp_free_team_arrays(team); 5467 if (team->t.t_argv != &team->t.t_inline_argv[0]) 5468 __kmp_free((void *)team->t.t_argv); 5469 __kmp_free(team); 5470 5471 KMP_MB(); 5472 return next_pool; 5473 } 5474 5475 // Free the thread. Don't reap it, just place it on the pool of available 5476 // threads. 5477 // 5478 // Changes for Quad issue 527845: We need a predictable OMP tid <-> gtid 5479 // binding for the affinity mechanism to be useful. 5480 // 5481 // Now, we always keep the free list (__kmp_thread_pool) sorted by gtid. 5482 // However, we want to avoid a potential performance problem by always 5483 // scanning through the list to find the correct point at which to insert 5484 // the thread (potential N**2 behavior). To do this we keep track of the 5485 // last place a thread struct was inserted (__kmp_thread_pool_insert_pt). 5486 // With single-level parallelism, threads will always be added to the tail 5487 // of the list, kept track of by __kmp_thread_pool_insert_pt. With nested 5488 // parallelism, all bets are off and we may need to scan through the entire 5489 // free list. 5490 // 5491 // This change also has a potentially large performance benefit, for some 5492 // applications. Previously, as threads were freed from the hot team, they 5493 // would be placed back on the free list in inverse order. If the hot team 5494 // grew back to it's original size, then the freed thread would be placed 5495 // back on the hot team in reverse order. This could cause bad cache 5496 // locality problems on programs where the size of the hot team regularly 5497 // grew and shrunk. 5498 // 5499 // Now, for single-level parallelism, the OMP tid is alway == gtid. 5500 void __kmp_free_thread(kmp_info_t *this_th) { 5501 int gtid; 5502 kmp_info_t **scan; 5503 kmp_root_t *root = this_th->th.th_root; 5504 5505 KA_TRACE(20, ("__kmp_free_thread: T#%d putting T#%d back on free pool.\n", 5506 __kmp_get_gtid(), this_th->th.th_info.ds.ds_gtid)); 5507 5508 KMP_DEBUG_ASSERT(this_th); 5509 5510 // When moving thread to pool, switch thread to wait on own b_go flag, and 5511 // uninitialized (NULL team). 5512 int b; 5513 kmp_balign_t *balign = this_th->th.th_bar; 5514 for (b = 0; b < bs_last_barrier; ++b) { 5515 if (balign[b].bb.wait_flag == KMP_BARRIER_PARENT_FLAG) 5516 balign[b].bb.wait_flag = KMP_BARRIER_SWITCH_TO_OWN_FLAG; 5517 balign[b].bb.team = NULL; 5518 balign[b].bb.leaf_kids = 0; 5519 } 5520 this_th->th.th_task_state = 0; 5521 this_th->th.th_reap_state = KMP_SAFE_TO_REAP; 5522 5523 /* put thread back on the free pool */ 5524 TCW_PTR(this_th->th.th_team, NULL); 5525 TCW_PTR(this_th->th.th_root, NULL); 5526 TCW_PTR(this_th->th.th_dispatch, NULL); /* NOT NEEDED */ 5527 5528 /* If the implicit task assigned to this thread can be used by other threads 5529 * -> multiple threads can share the data and try to free the task at 5530 * __kmp_reap_thread at exit. This duplicate use of the task data can happen 5531 * with higher probability when hot team is disabled but can occurs even when 5532 * the hot team is enabled */ 5533 __kmp_free_implicit_task(this_th); 5534 this_th->th.th_current_task = NULL; 5535 5536 // If the __kmp_thread_pool_insert_pt is already past the new insert 5537 // point, then we need to re-scan the entire list. 5538 gtid = this_th->th.th_info.ds.ds_gtid; 5539 if (__kmp_thread_pool_insert_pt != NULL) { 5540 KMP_DEBUG_ASSERT(__kmp_thread_pool != NULL); 5541 if (__kmp_thread_pool_insert_pt->th.th_info.ds.ds_gtid > gtid) { 5542 __kmp_thread_pool_insert_pt = NULL; 5543 } 5544 } 5545 5546 // Scan down the list to find the place to insert the thread. 5547 // scan is the address of a link in the list, possibly the address of 5548 // __kmp_thread_pool itself. 5549 // 5550 // In the absence of nested parallism, the for loop will have 0 iterations. 5551 if (__kmp_thread_pool_insert_pt != NULL) { 5552 scan = &(__kmp_thread_pool_insert_pt->th.th_next_pool); 5553 } else { 5554 scan = CCAST(kmp_info_t **, &__kmp_thread_pool); 5555 } 5556 for (; (*scan != NULL) && ((*scan)->th.th_info.ds.ds_gtid < gtid); 5557 scan = &((*scan)->th.th_next_pool)) 5558 ; 5559 5560 // Insert the new element on the list, and set __kmp_thread_pool_insert_pt 5561 // to its address. 5562 TCW_PTR(this_th->th.th_next_pool, *scan); 5563 __kmp_thread_pool_insert_pt = *scan = this_th; 5564 KMP_DEBUG_ASSERT((this_th->th.th_next_pool == NULL) || 5565 (this_th->th.th_info.ds.ds_gtid < 5566 this_th->th.th_next_pool->th.th_info.ds.ds_gtid)); 5567 TCW_4(this_th->th.th_in_pool, TRUE); 5568 __kmp_thread_pool_nth++; 5569 5570 TCW_4(__kmp_nth, __kmp_nth - 1); 5571 root->r.r_cg_nthreads--; 5572 5573 #ifdef KMP_ADJUST_BLOCKTIME 5574 /* Adjust blocktime back to user setting or default if necessary */ 5575 /* Middle initialization might never have occurred */ 5576 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 5577 KMP_DEBUG_ASSERT(__kmp_avail_proc > 0); 5578 if (__kmp_nth <= __kmp_avail_proc) { 5579 __kmp_zero_bt = FALSE; 5580 } 5581 } 5582 #endif /* KMP_ADJUST_BLOCKTIME */ 5583 5584 KMP_MB(); 5585 } 5586 5587 /* ------------------------------------------------------------------------ */ 5588 5589 void *__kmp_launch_thread(kmp_info_t *this_thr) { 5590 int gtid = this_thr->th.th_info.ds.ds_gtid; 5591 /* void *stack_data;*/ 5592 kmp_team_t *(*volatile pteam); 5593 5594 KMP_MB(); 5595 KA_TRACE(10, ("__kmp_launch_thread: T#%d start\n", gtid)); 5596 5597 if (__kmp_env_consistency_check) { 5598 this_thr->th.th_cons = __kmp_allocate_cons_stack(gtid); // ATT: Memory leak? 5599 } 5600 5601 #if OMPT_SUPPORT 5602 ompt_data_t *thread_data; 5603 if (ompt_enabled.enabled) { 5604 thread_data = &(this_thr->th.ompt_thread_info.thread_data); 5605 *thread_data = ompt_data_none; 5606 5607 this_thr->th.ompt_thread_info.state = omp_state_overhead; 5608 this_thr->th.ompt_thread_info.wait_id = 0; 5609 this_thr->th.ompt_thread_info.idle_frame = OMPT_GET_FRAME_ADDRESS(0); 5610 if (ompt_enabled.ompt_callback_thread_begin) { 5611 ompt_callbacks.ompt_callback(ompt_callback_thread_begin)( 5612 ompt_thread_worker, thread_data); 5613 } 5614 } 5615 #endif 5616 5617 #if OMPT_SUPPORT 5618 if (ompt_enabled.enabled) { 5619 this_thr->th.ompt_thread_info.state = omp_state_idle; 5620 } 5621 #endif 5622 /* This is the place where threads wait for work */ 5623 while (!TCR_4(__kmp_global.g.g_done)) { 5624 KMP_DEBUG_ASSERT(this_thr == __kmp_threads[gtid]); 5625 KMP_MB(); 5626 5627 /* wait for work to do */ 5628 KA_TRACE(20, ("__kmp_launch_thread: T#%d waiting for work\n", gtid)); 5629 5630 /* No tid yet since not part of a team */ 5631 __kmp_fork_barrier(gtid, KMP_GTID_DNE); 5632 5633 #if OMPT_SUPPORT 5634 if (ompt_enabled.enabled) { 5635 this_thr->th.ompt_thread_info.state = omp_state_overhead; 5636 } 5637 #endif 5638 5639 pteam = (kmp_team_t * (*))(&this_thr->th.th_team); 5640 5641 /* have we been allocated? */ 5642 if (TCR_SYNC_PTR(*pteam) && !TCR_4(__kmp_global.g.g_done)) { 5643 /* we were just woken up, so run our new task */ 5644 if (TCR_SYNC_PTR((*pteam)->t.t_pkfn) != NULL) { 5645 int rc; 5646 KA_TRACE(20, 5647 ("__kmp_launch_thread: T#%d(%d:%d) invoke microtask = %p\n", 5648 gtid, (*pteam)->t.t_id, __kmp_tid_from_gtid(gtid), 5649 (*pteam)->t.t_pkfn)); 5650 5651 updateHWFPControl(*pteam); 5652 5653 #if OMPT_SUPPORT 5654 if (ompt_enabled.enabled) { 5655 this_thr->th.ompt_thread_info.state = omp_state_work_parallel; 5656 } 5657 #endif 5658 5659 rc = (*pteam)->t.t_invoke(gtid); 5660 KMP_ASSERT(rc); 5661 5662 KMP_MB(); 5663 KA_TRACE(20, ("__kmp_launch_thread: T#%d(%d:%d) done microtask = %p\n", 5664 gtid, (*pteam)->t.t_id, __kmp_tid_from_gtid(gtid), 5665 (*pteam)->t.t_pkfn)); 5666 } 5667 #if OMPT_SUPPORT 5668 if (ompt_enabled.enabled) { 5669 /* no frame set while outside task */ 5670 __ompt_get_task_info_object(0)->frame.exit_frame = NULL; 5671 5672 this_thr->th.ompt_thread_info.state = omp_state_overhead; 5673 } 5674 #endif 5675 /* join barrier after parallel region */ 5676 __kmp_join_barrier(gtid); 5677 } 5678 } 5679 TCR_SYNC_PTR((intptr_t)__kmp_global.g.g_done); 5680 5681 #if OMPT_SUPPORT 5682 if (ompt_enabled.ompt_callback_thread_end) { 5683 ompt_callbacks.ompt_callback(ompt_callback_thread_end)(thread_data); 5684 } 5685 #endif 5686 5687 this_thr->th.th_task_team = NULL; 5688 /* run the destructors for the threadprivate data for this thread */ 5689 __kmp_common_destroy_gtid(gtid); 5690 5691 KA_TRACE(10, ("__kmp_launch_thread: T#%d done\n", gtid)); 5692 KMP_MB(); 5693 return this_thr; 5694 } 5695 5696 /* ------------------------------------------------------------------------ */ 5697 5698 void __kmp_internal_end_dest(void *specific_gtid) { 5699 #if KMP_COMPILER_ICC 5700 #pragma warning(push) 5701 #pragma warning(disable : 810) // conversion from "void *" to "int" may lose 5702 // significant bits 5703 #endif 5704 // Make sure no significant bits are lost 5705 int gtid = (kmp_intptr_t)specific_gtid - 1; 5706 #if KMP_COMPILER_ICC 5707 #pragma warning(pop) 5708 #endif 5709 5710 KA_TRACE(30, ("__kmp_internal_end_dest: T#%d\n", gtid)); 5711 /* NOTE: the gtid is stored as gitd+1 in the thread-local-storage 5712 * this is because 0 is reserved for the nothing-stored case */ 5713 5714 /* josh: One reason for setting the gtid specific data even when it is being 5715 destroyed by pthread is to allow gtid lookup through thread specific data 5716 (__kmp_gtid_get_specific). Some of the code, especially stat code, 5717 that gets executed in the call to __kmp_internal_end_thread, actually 5718 gets the gtid through the thread specific data. Setting it here seems 5719 rather inelegant and perhaps wrong, but allows __kmp_internal_end_thread 5720 to run smoothly. 5721 todo: get rid of this after we remove the dependence on 5722 __kmp_gtid_get_specific */ 5723 if (gtid >= 0 && KMP_UBER_GTID(gtid)) 5724 __kmp_gtid_set_specific(gtid); 5725 #ifdef KMP_TDATA_GTID 5726 __kmp_gtid = gtid; 5727 #endif 5728 __kmp_internal_end_thread(gtid); 5729 } 5730 5731 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB 5732 5733 // 2009-09-08 (lev): It looks the destructor does not work. In simple test cases 5734 // destructors work perfectly, but in real libomp.so I have no evidence it is 5735 // ever called. However, -fini linker option in makefile.mk works fine. 5736 5737 __attribute__((destructor)) void __kmp_internal_end_dtor(void) { 5738 __kmp_internal_end_atexit(); 5739 } 5740 5741 void __kmp_internal_end_fini(void) { __kmp_internal_end_atexit(); } 5742 5743 #endif 5744 5745 /* [Windows] josh: when the atexit handler is called, there may still be more 5746 than one thread alive */ 5747 void __kmp_internal_end_atexit(void) { 5748 KA_TRACE(30, ("__kmp_internal_end_atexit\n")); 5749 /* [Windows] 5750 josh: ideally, we want to completely shutdown the library in this atexit 5751 handler, but stat code that depends on thread specific data for gtid fails 5752 because that data becomes unavailable at some point during the shutdown, so 5753 we call __kmp_internal_end_thread instead. We should eventually remove the 5754 dependency on __kmp_get_specific_gtid in the stat code and use 5755 __kmp_internal_end_library to cleanly shutdown the library. 5756 5757 // TODO: Can some of this comment about GVS be removed? 5758 I suspect that the offending stat code is executed when the calling thread 5759 tries to clean up a dead root thread's data structures, resulting in GVS 5760 code trying to close the GVS structures for that thread, but since the stat 5761 code uses __kmp_get_specific_gtid to get the gtid with the assumption that 5762 the calling thread is cleaning up itself instead of another thread, it get 5763 confused. This happens because allowing a thread to unregister and cleanup 5764 another thread is a recent modification for addressing an issue. 5765 Based on the current design (20050722), a thread may end up 5766 trying to unregister another thread only if thread death does not trigger 5767 the calling of __kmp_internal_end_thread. For Linux* OS, there is the 5768 thread specific data destructor function to detect thread death. For 5769 Windows dynamic, there is DllMain(THREAD_DETACH). For Windows static, there 5770 is nothing. Thus, the workaround is applicable only for Windows static 5771 stat library. */ 5772 __kmp_internal_end_library(-1); 5773 #if KMP_OS_WINDOWS 5774 __kmp_close_console(); 5775 #endif 5776 } 5777 5778 static void __kmp_reap_thread(kmp_info_t *thread, int is_root) { 5779 // It is assumed __kmp_forkjoin_lock is acquired. 5780 5781 int gtid; 5782 5783 KMP_DEBUG_ASSERT(thread != NULL); 5784 5785 gtid = thread->th.th_info.ds.ds_gtid; 5786 5787 if (!is_root) { 5788 5789 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { 5790 /* Assume the threads are at the fork barrier here */ 5791 KA_TRACE( 5792 20, ("__kmp_reap_thread: releasing T#%d from fork barrier for reap\n", 5793 gtid)); 5794 /* Need release fence here to prevent seg faults for tree forkjoin barrier 5795 * (GEH) */ 5796 ANNOTATE_HAPPENS_BEFORE(thread); 5797 kmp_flag_64 flag(&thread->th.th_bar[bs_forkjoin_barrier].bb.b_go, thread); 5798 __kmp_release_64(&flag); 5799 } 5800 5801 // Terminate OS thread. 5802 __kmp_reap_worker(thread); 5803 5804 // The thread was killed asynchronously. If it was actively 5805 // spinning in the thread pool, decrement the global count. 5806 // 5807 // There is a small timing hole here - if the worker thread was just waking 5808 // up after sleeping in the pool, had reset it's th_active_in_pool flag but 5809 // not decremented the global counter __kmp_thread_pool_active_nth yet, then 5810 // the global counter might not get updated. 5811 // 5812 // Currently, this can only happen as the library is unloaded, 5813 // so there are no harmful side effects. 5814 if (thread->th.th_active_in_pool) { 5815 thread->th.th_active_in_pool = FALSE; 5816 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 5817 KMP_DEBUG_ASSERT(__kmp_thread_pool_active_nth >= 0); 5818 } 5819 5820 // Decrement # of [worker] threads in the pool. 5821 KMP_DEBUG_ASSERT(__kmp_thread_pool_nth > 0); 5822 --__kmp_thread_pool_nth; 5823 } 5824 5825 __kmp_free_implicit_task(thread); 5826 5827 // Free the fast memory for tasking 5828 #if USE_FAST_MEMORY 5829 __kmp_free_fast_memory(thread); 5830 #endif /* USE_FAST_MEMORY */ 5831 5832 __kmp_suspend_uninitialize_thread(thread); 5833 5834 KMP_DEBUG_ASSERT(__kmp_threads[gtid] == thread); 5835 TCW_SYNC_PTR(__kmp_threads[gtid], NULL); 5836 5837 --__kmp_all_nth; 5838 // __kmp_nth was decremented when thread is added to the pool. 5839 5840 #ifdef KMP_ADJUST_BLOCKTIME 5841 /* Adjust blocktime back to user setting or default if necessary */ 5842 /* Middle initialization might never have occurred */ 5843 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 5844 KMP_DEBUG_ASSERT(__kmp_avail_proc > 0); 5845 if (__kmp_nth <= __kmp_avail_proc) { 5846 __kmp_zero_bt = FALSE; 5847 } 5848 } 5849 #endif /* KMP_ADJUST_BLOCKTIME */ 5850 5851 /* free the memory being used */ 5852 if (__kmp_env_consistency_check) { 5853 if (thread->th.th_cons) { 5854 __kmp_free_cons_stack(thread->th.th_cons); 5855 thread->th.th_cons = NULL; 5856 } 5857 } 5858 5859 if (thread->th.th_pri_common != NULL) { 5860 __kmp_free(thread->th.th_pri_common); 5861 thread->th.th_pri_common = NULL; 5862 } 5863 5864 if (thread->th.th_task_state_memo_stack != NULL) { 5865 __kmp_free(thread->th.th_task_state_memo_stack); 5866 thread->th.th_task_state_memo_stack = NULL; 5867 } 5868 5869 #if KMP_USE_BGET 5870 if (thread->th.th_local.bget_data != NULL) { 5871 __kmp_finalize_bget(thread); 5872 } 5873 #endif 5874 5875 #if KMP_AFFINITY_SUPPORTED 5876 if (thread->th.th_affin_mask != NULL) { 5877 KMP_CPU_FREE(thread->th.th_affin_mask); 5878 thread->th.th_affin_mask = NULL; 5879 } 5880 #endif /* KMP_AFFINITY_SUPPORTED */ 5881 5882 #if KMP_USE_HIER_SCHED 5883 if (thread->th.th_hier_bar_data != NULL) { 5884 __kmp_free(thread->th.th_hier_bar_data); 5885 thread->th.th_hier_bar_data = NULL; 5886 } 5887 #endif 5888 5889 __kmp_reap_team(thread->th.th_serial_team); 5890 thread->th.th_serial_team = NULL; 5891 __kmp_free(thread); 5892 5893 KMP_MB(); 5894 5895 } // __kmp_reap_thread 5896 5897 static void __kmp_internal_end(void) { 5898 int i; 5899 5900 /* First, unregister the library */ 5901 __kmp_unregister_library(); 5902 5903 #if KMP_OS_WINDOWS 5904 /* In Win static library, we can't tell when a root actually dies, so we 5905 reclaim the data structures for any root threads that have died but not 5906 unregistered themselves, in order to shut down cleanly. 5907 In Win dynamic library we also can't tell when a thread dies. */ 5908 __kmp_reclaim_dead_roots(); // AC: moved here to always clean resources of 5909 // dead roots 5910 #endif 5911 5912 for (i = 0; i < __kmp_threads_capacity; i++) 5913 if (__kmp_root[i]) 5914 if (__kmp_root[i]->r.r_active) 5915 break; 5916 KMP_MB(); /* Flush all pending memory write invalidates. */ 5917 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 5918 5919 if (i < __kmp_threads_capacity) { 5920 #if KMP_USE_MONITOR 5921 // 2009-09-08 (lev): Other alive roots found. Why do we kill the monitor?? 5922 KMP_MB(); /* Flush all pending memory write invalidates. */ 5923 5924 // Need to check that monitor was initialized before reaping it. If we are 5925 // called form __kmp_atfork_child (which sets __kmp_init_parallel = 0), then 5926 // __kmp_monitor will appear to contain valid data, but it is only valid in 5927 // the parent process, not the child. 5928 // New behavior (201008): instead of keying off of the flag 5929 // __kmp_init_parallel, the monitor thread creation is keyed off 5930 // of the new flag __kmp_init_monitor. 5931 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock); 5932 if (TCR_4(__kmp_init_monitor)) { 5933 __kmp_reap_monitor(&__kmp_monitor); 5934 TCW_4(__kmp_init_monitor, 0); 5935 } 5936 __kmp_release_bootstrap_lock(&__kmp_monitor_lock); 5937 KA_TRACE(10, ("__kmp_internal_end: monitor reaped\n")); 5938 #endif // KMP_USE_MONITOR 5939 } else { 5940 /* TODO move this to cleanup code */ 5941 #ifdef KMP_DEBUG 5942 /* make sure that everything has properly ended */ 5943 for (i = 0; i < __kmp_threads_capacity; i++) { 5944 if (__kmp_root[i]) { 5945 // KMP_ASSERT( ! KMP_UBER_GTID( i ) ); // AC: 5946 // there can be uber threads alive here 5947 KMP_ASSERT(!__kmp_root[i]->r.r_active); // TODO: can they be active? 5948 } 5949 } 5950 #endif 5951 5952 KMP_MB(); 5953 5954 // Reap the worker threads. 5955 // This is valid for now, but be careful if threads are reaped sooner. 5956 while (__kmp_thread_pool != NULL) { // Loop thru all the thread in the pool. 5957 // Get the next thread from the pool. 5958 kmp_info_t *thread = CCAST(kmp_info_t *, __kmp_thread_pool); 5959 __kmp_thread_pool = thread->th.th_next_pool; 5960 // Reap it. 5961 KMP_DEBUG_ASSERT(thread->th.th_reap_state == KMP_SAFE_TO_REAP); 5962 thread->th.th_next_pool = NULL; 5963 thread->th.th_in_pool = FALSE; 5964 __kmp_reap_thread(thread, 0); 5965 } 5966 __kmp_thread_pool_insert_pt = NULL; 5967 5968 // Reap teams. 5969 while (__kmp_team_pool != NULL) { // Loop thru all the teams in the pool. 5970 // Get the next team from the pool. 5971 kmp_team_t *team = CCAST(kmp_team_t *, __kmp_team_pool); 5972 __kmp_team_pool = team->t.t_next_pool; 5973 // Reap it. 5974 team->t.t_next_pool = NULL; 5975 __kmp_reap_team(team); 5976 } 5977 5978 __kmp_reap_task_teams(); 5979 5980 #if KMP_OS_UNIX 5981 // Threads that are not reaped should not access any resources since they 5982 // are going to be deallocated soon, so the shutdown sequence should wait 5983 // until all threads either exit the final spin-waiting loop or begin 5984 // sleeping after the given blocktime. 5985 for (i = 0; i < __kmp_threads_capacity; i++) { 5986 kmp_info_t *thr = __kmp_threads[i]; 5987 while (thr && KMP_ATOMIC_LD_ACQ(&thr->th.th_blocking)) 5988 KMP_CPU_PAUSE(); 5989 } 5990 #endif 5991 5992 for (i = 0; i < __kmp_threads_capacity; ++i) { 5993 // TBD: Add some checking... 5994 // Something like KMP_DEBUG_ASSERT( __kmp_thread[ i ] == NULL ); 5995 } 5996 5997 /* Make sure all threadprivate destructors get run by joining with all 5998 worker threads before resetting this flag */ 5999 TCW_SYNC_4(__kmp_init_common, FALSE); 6000 6001 KA_TRACE(10, ("__kmp_internal_end: all workers reaped\n")); 6002 KMP_MB(); 6003 6004 #if KMP_USE_MONITOR 6005 // See note above: One of the possible fixes for CQ138434 / CQ140126 6006 // 6007 // FIXME: push both code fragments down and CSE them? 6008 // push them into __kmp_cleanup() ? 6009 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock); 6010 if (TCR_4(__kmp_init_monitor)) { 6011 __kmp_reap_monitor(&__kmp_monitor); 6012 TCW_4(__kmp_init_monitor, 0); 6013 } 6014 __kmp_release_bootstrap_lock(&__kmp_monitor_lock); 6015 KA_TRACE(10, ("__kmp_internal_end: monitor reaped\n")); 6016 #endif 6017 } /* else !__kmp_global.t_active */ 6018 TCW_4(__kmp_init_gtid, FALSE); 6019 KMP_MB(); /* Flush all pending memory write invalidates. */ 6020 6021 __kmp_cleanup(); 6022 #if OMPT_SUPPORT 6023 ompt_fini(); 6024 #endif 6025 } 6026 6027 void __kmp_internal_end_library(int gtid_req) { 6028 /* if we have already cleaned up, don't try again, it wouldn't be pretty */ 6029 /* this shouldn't be a race condition because __kmp_internal_end() is the 6030 only place to clear __kmp_serial_init */ 6031 /* we'll check this later too, after we get the lock */ 6032 // 2009-09-06: We do not set g_abort without setting g_done. This check looks 6033 // redundaant, because the next check will work in any case. 6034 if (__kmp_global.g.g_abort) { 6035 KA_TRACE(11, ("__kmp_internal_end_library: abort, exiting\n")); 6036 /* TODO abort? */ 6037 return; 6038 } 6039 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6040 KA_TRACE(10, ("__kmp_internal_end_library: already finished\n")); 6041 return; 6042 } 6043 6044 KMP_MB(); /* Flush all pending memory write invalidates. */ 6045 6046 /* find out who we are and what we should do */ 6047 { 6048 int gtid = (gtid_req >= 0) ? gtid_req : __kmp_gtid_get_specific(); 6049 KA_TRACE( 6050 10, ("__kmp_internal_end_library: enter T#%d (%d)\n", gtid, gtid_req)); 6051 if (gtid == KMP_GTID_SHUTDOWN) { 6052 KA_TRACE(10, ("__kmp_internal_end_library: !__kmp_init_runtime, system " 6053 "already shutdown\n")); 6054 return; 6055 } else if (gtid == KMP_GTID_MONITOR) { 6056 KA_TRACE(10, ("__kmp_internal_end_library: monitor thread, gtid not " 6057 "registered, or system shutdown\n")); 6058 return; 6059 } else if (gtid == KMP_GTID_DNE) { 6060 KA_TRACE(10, ("__kmp_internal_end_library: gtid not registered or system " 6061 "shutdown\n")); 6062 /* we don't know who we are, but we may still shutdown the library */ 6063 } else if (KMP_UBER_GTID(gtid)) { 6064 /* unregister ourselves as an uber thread. gtid is no longer valid */ 6065 if (__kmp_root[gtid]->r.r_active) { 6066 __kmp_global.g.g_abort = -1; 6067 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 6068 KA_TRACE(10, 6069 ("__kmp_internal_end_library: root still active, abort T#%d\n", 6070 gtid)); 6071 return; 6072 } else { 6073 KA_TRACE( 6074 10, 6075 ("__kmp_internal_end_library: unregistering sibling T#%d\n", gtid)); 6076 __kmp_unregister_root_current_thread(gtid); 6077 } 6078 } else { 6079 /* worker threads may call this function through the atexit handler, if they 6080 * call exit() */ 6081 /* For now, skip the usual subsequent processing and just dump the debug buffer. 6082 TODO: do a thorough shutdown instead */ 6083 #ifdef DUMP_DEBUG_ON_EXIT 6084 if (__kmp_debug_buf) 6085 __kmp_dump_debug_buffer(); 6086 #endif 6087 return; 6088 } 6089 } 6090 /* synchronize the termination process */ 6091 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6092 6093 /* have we already finished */ 6094 if (__kmp_global.g.g_abort) { 6095 KA_TRACE(10, ("__kmp_internal_end_library: abort, exiting\n")); 6096 /* TODO abort? */ 6097 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6098 return; 6099 } 6100 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6101 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6102 return; 6103 } 6104 6105 /* We need this lock to enforce mutex between this reading of 6106 __kmp_threads_capacity and the writing by __kmp_register_root. 6107 Alternatively, we can use a counter of roots that is atomically updated by 6108 __kmp_get_global_thread_id_reg, __kmp_do_serial_initialize and 6109 __kmp_internal_end_*. */ 6110 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 6111 6112 /* now we can safely conduct the actual termination */ 6113 __kmp_internal_end(); 6114 6115 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 6116 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6117 6118 KA_TRACE(10, ("__kmp_internal_end_library: exit\n")); 6119 6120 #ifdef DUMP_DEBUG_ON_EXIT 6121 if (__kmp_debug_buf) 6122 __kmp_dump_debug_buffer(); 6123 #endif 6124 6125 #if KMP_OS_WINDOWS 6126 __kmp_close_console(); 6127 #endif 6128 6129 __kmp_fini_allocator(); 6130 6131 } // __kmp_internal_end_library 6132 6133 void __kmp_internal_end_thread(int gtid_req) { 6134 int i; 6135 6136 /* if we have already cleaned up, don't try again, it wouldn't be pretty */ 6137 /* this shouldn't be a race condition because __kmp_internal_end() is the 6138 * only place to clear __kmp_serial_init */ 6139 /* we'll check this later too, after we get the lock */ 6140 // 2009-09-06: We do not set g_abort without setting g_done. This check looks 6141 // redundant, because the next check will work in any case. 6142 if (__kmp_global.g.g_abort) { 6143 KA_TRACE(11, ("__kmp_internal_end_thread: abort, exiting\n")); 6144 /* TODO abort? */ 6145 return; 6146 } 6147 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6148 KA_TRACE(10, ("__kmp_internal_end_thread: already finished\n")); 6149 return; 6150 } 6151 6152 KMP_MB(); /* Flush all pending memory write invalidates. */ 6153 6154 /* find out who we are and what we should do */ 6155 { 6156 int gtid = (gtid_req >= 0) ? gtid_req : __kmp_gtid_get_specific(); 6157 KA_TRACE(10, 6158 ("__kmp_internal_end_thread: enter T#%d (%d)\n", gtid, gtid_req)); 6159 if (gtid == KMP_GTID_SHUTDOWN) { 6160 KA_TRACE(10, ("__kmp_internal_end_thread: !__kmp_init_runtime, system " 6161 "already shutdown\n")); 6162 return; 6163 } else if (gtid == KMP_GTID_MONITOR) { 6164 KA_TRACE(10, ("__kmp_internal_end_thread: monitor thread, gtid not " 6165 "registered, or system shutdown\n")); 6166 return; 6167 } else if (gtid == KMP_GTID_DNE) { 6168 KA_TRACE(10, ("__kmp_internal_end_thread: gtid not registered or system " 6169 "shutdown\n")); 6170 return; 6171 /* we don't know who we are */ 6172 } else if (KMP_UBER_GTID(gtid)) { 6173 /* unregister ourselves as an uber thread. gtid is no longer valid */ 6174 if (__kmp_root[gtid]->r.r_active) { 6175 __kmp_global.g.g_abort = -1; 6176 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 6177 KA_TRACE(10, 6178 ("__kmp_internal_end_thread: root still active, abort T#%d\n", 6179 gtid)); 6180 return; 6181 } else { 6182 KA_TRACE(10, ("__kmp_internal_end_thread: unregistering sibling T#%d\n", 6183 gtid)); 6184 __kmp_unregister_root_current_thread(gtid); 6185 } 6186 } else { 6187 /* just a worker thread, let's leave */ 6188 KA_TRACE(10, ("__kmp_internal_end_thread: worker thread T#%d\n", gtid)); 6189 6190 if (gtid >= 0) { 6191 __kmp_threads[gtid]->th.th_task_team = NULL; 6192 } 6193 6194 KA_TRACE(10, 6195 ("__kmp_internal_end_thread: worker thread done, exiting T#%d\n", 6196 gtid)); 6197 return; 6198 } 6199 } 6200 #if KMP_DYNAMIC_LIB 6201 // AC: lets not shutdown the Linux* OS dynamic library at the exit of uber 6202 // thread, because we will better shutdown later in the library destructor. 6203 // The reason of this change is performance problem when non-openmp thread in 6204 // a loop forks and joins many openmp threads. We can save a lot of time 6205 // keeping worker threads alive until the program shutdown. 6206 // OM: Removed Linux* OS restriction to fix the crash on OS X* (DPD200239966) 6207 // and Windows(DPD200287443) that occurs when using critical sections from 6208 // foreign threads. 6209 KA_TRACE(10, ("__kmp_internal_end_thread: exiting T#%d\n", gtid_req)); 6210 return; 6211 #endif 6212 /* synchronize the termination process */ 6213 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6214 6215 /* have we already finished */ 6216 if (__kmp_global.g.g_abort) { 6217 KA_TRACE(10, ("__kmp_internal_end_thread: abort, exiting\n")); 6218 /* TODO abort? */ 6219 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6220 return; 6221 } 6222 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6223 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6224 return; 6225 } 6226 6227 /* We need this lock to enforce mutex between this reading of 6228 __kmp_threads_capacity and the writing by __kmp_register_root. 6229 Alternatively, we can use a counter of roots that is atomically updated by 6230 __kmp_get_global_thread_id_reg, __kmp_do_serial_initialize and 6231 __kmp_internal_end_*. */ 6232 6233 /* should we finish the run-time? are all siblings done? */ 6234 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 6235 6236 for (i = 0; i < __kmp_threads_capacity; ++i) { 6237 if (KMP_UBER_GTID(i)) { 6238 KA_TRACE( 6239 10, 6240 ("__kmp_internal_end_thread: remaining sibling task: gtid==%d\n", i)); 6241 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 6242 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6243 return; 6244 } 6245 } 6246 6247 /* now we can safely conduct the actual termination */ 6248 6249 __kmp_internal_end(); 6250 6251 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 6252 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6253 6254 KA_TRACE(10, ("__kmp_internal_end_thread: exit T#%d\n", gtid_req)); 6255 6256 #ifdef DUMP_DEBUG_ON_EXIT 6257 if (__kmp_debug_buf) 6258 __kmp_dump_debug_buffer(); 6259 #endif 6260 } // __kmp_internal_end_thread 6261 6262 // ----------------------------------------------------------------------------- 6263 // Library registration stuff. 6264 6265 static long __kmp_registration_flag = 0; 6266 // Random value used to indicate library initialization. 6267 static char *__kmp_registration_str = NULL; 6268 // Value to be saved in env var __KMP_REGISTERED_LIB_<pid>. 6269 6270 static inline char *__kmp_reg_status_name() { 6271 /* On RHEL 3u5 if linked statically, getpid() returns different values in 6272 each thread. If registration and unregistration go in different threads 6273 (omp_misc_other_root_exit.cpp test case), the name of registered_lib_env 6274 env var can not be found, because the name will contain different pid. */ 6275 return __kmp_str_format("__KMP_REGISTERED_LIB_%d", (int)getpid()); 6276 } // __kmp_reg_status_get 6277 6278 void __kmp_register_library_startup(void) { 6279 6280 char *name = __kmp_reg_status_name(); // Name of the environment variable. 6281 int done = 0; 6282 union { 6283 double dtime; 6284 long ltime; 6285 } time; 6286 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 6287 __kmp_initialize_system_tick(); 6288 #endif 6289 __kmp_read_system_time(&time.dtime); 6290 __kmp_registration_flag = 0xCAFE0000L | (time.ltime & 0x0000FFFFL); 6291 __kmp_registration_str = 6292 __kmp_str_format("%p-%lx-%s", &__kmp_registration_flag, 6293 __kmp_registration_flag, KMP_LIBRARY_FILE); 6294 6295 KA_TRACE(50, ("__kmp_register_library_startup: %s=\"%s\"\n", name, 6296 __kmp_registration_str)); 6297 6298 while (!done) { 6299 6300 char *value = NULL; // Actual value of the environment variable. 6301 6302 // Set environment variable, but do not overwrite if it is exist. 6303 __kmp_env_set(name, __kmp_registration_str, 0); 6304 // Check the variable is written. 6305 value = __kmp_env_get(name); 6306 if (value != NULL && strcmp(value, __kmp_registration_str) == 0) { 6307 6308 done = 1; // Ok, environment variable set successfully, exit the loop. 6309 6310 } else { 6311 6312 // Oops. Write failed. Another copy of OpenMP RTL is in memory. 6313 // Check whether it alive or dead. 6314 int neighbor = 0; // 0 -- unknown status, 1 -- alive, 2 -- dead. 6315 char *tail = value; 6316 char *flag_addr_str = NULL; 6317 char *flag_val_str = NULL; 6318 char const *file_name = NULL; 6319 __kmp_str_split(tail, '-', &flag_addr_str, &tail); 6320 __kmp_str_split(tail, '-', &flag_val_str, &tail); 6321 file_name = tail; 6322 if (tail != NULL) { 6323 long *flag_addr = 0; 6324 long flag_val = 0; 6325 KMP_SSCANF(flag_addr_str, "%p", RCAST(void**, &flag_addr)); 6326 KMP_SSCANF(flag_val_str, "%lx", &flag_val); 6327 if (flag_addr != 0 && flag_val != 0 && strcmp(file_name, "") != 0) { 6328 // First, check whether environment-encoded address is mapped into 6329 // addr space. 6330 // If so, dereference it to see if it still has the right value. 6331 if (__kmp_is_address_mapped(flag_addr) && *flag_addr == flag_val) { 6332 neighbor = 1; 6333 } else { 6334 // If not, then we know the other copy of the library is no longer 6335 // running. 6336 neighbor = 2; 6337 } 6338 } 6339 } 6340 switch (neighbor) { 6341 case 0: // Cannot parse environment variable -- neighbor status unknown. 6342 // Assume it is the incompatible format of future version of the 6343 // library. Assume the other library is alive. 6344 // WARN( ... ); // TODO: Issue a warning. 6345 file_name = "unknown library"; 6346 // Attention! Falling to the next case. That's intentional. 6347 case 1: { // Neighbor is alive. 6348 // Check it is allowed. 6349 char *duplicate_ok = __kmp_env_get("KMP_DUPLICATE_LIB_OK"); 6350 if (!__kmp_str_match_true(duplicate_ok)) { 6351 // That's not allowed. Issue fatal error. 6352 __kmp_fatal(KMP_MSG(DuplicateLibrary, KMP_LIBRARY_FILE, file_name), 6353 KMP_HNT(DuplicateLibrary), __kmp_msg_null); 6354 } 6355 KMP_INTERNAL_FREE(duplicate_ok); 6356 __kmp_duplicate_library_ok = 1; 6357 done = 1; // Exit the loop. 6358 } break; 6359 case 2: { // Neighbor is dead. 6360 // Clear the variable and try to register library again. 6361 __kmp_env_unset(name); 6362 } break; 6363 default: { KMP_DEBUG_ASSERT(0); } break; 6364 } 6365 } 6366 KMP_INTERNAL_FREE((void *)value); 6367 } 6368 KMP_INTERNAL_FREE((void *)name); 6369 6370 } // func __kmp_register_library_startup 6371 6372 void __kmp_unregister_library(void) { 6373 6374 char *name = __kmp_reg_status_name(); 6375 char *value = __kmp_env_get(name); 6376 6377 KMP_DEBUG_ASSERT(__kmp_registration_flag != 0); 6378 KMP_DEBUG_ASSERT(__kmp_registration_str != NULL); 6379 if (value != NULL && strcmp(value, __kmp_registration_str) == 0) { 6380 // Ok, this is our variable. Delete it. 6381 __kmp_env_unset(name); 6382 } 6383 6384 KMP_INTERNAL_FREE(__kmp_registration_str); 6385 KMP_INTERNAL_FREE(value); 6386 KMP_INTERNAL_FREE(name); 6387 6388 __kmp_registration_flag = 0; 6389 __kmp_registration_str = NULL; 6390 6391 } // __kmp_unregister_library 6392 6393 // End of Library registration stuff. 6394 // ----------------------------------------------------------------------------- 6395 6396 #if KMP_MIC_SUPPORTED 6397 6398 static void __kmp_check_mic_type() { 6399 kmp_cpuid_t cpuid_state = {0}; 6400 kmp_cpuid_t *cs_p = &cpuid_state; 6401 __kmp_x86_cpuid(1, 0, cs_p); 6402 // We don't support mic1 at the moment 6403 if ((cs_p->eax & 0xff0) == 0xB10) { 6404 __kmp_mic_type = mic2; 6405 } else if ((cs_p->eax & 0xf0ff0) == 0x50670) { 6406 __kmp_mic_type = mic3; 6407 } else { 6408 __kmp_mic_type = non_mic; 6409 } 6410 } 6411 6412 #endif /* KMP_MIC_SUPPORTED */ 6413 6414 static void __kmp_do_serial_initialize(void) { 6415 int i, gtid; 6416 int size; 6417 6418 KA_TRACE(10, ("__kmp_do_serial_initialize: enter\n")); 6419 6420 KMP_DEBUG_ASSERT(sizeof(kmp_int32) == 4); 6421 KMP_DEBUG_ASSERT(sizeof(kmp_uint32) == 4); 6422 KMP_DEBUG_ASSERT(sizeof(kmp_int64) == 8); 6423 KMP_DEBUG_ASSERT(sizeof(kmp_uint64) == 8); 6424 KMP_DEBUG_ASSERT(sizeof(kmp_intptr_t) == sizeof(void *)); 6425 6426 #if OMPT_SUPPORT 6427 ompt_pre_init(); 6428 #endif 6429 6430 __kmp_validate_locks(); 6431 6432 /* Initialize internal memory allocator */ 6433 __kmp_init_allocator(); 6434 6435 /* Register the library startup via an environment variable and check to see 6436 whether another copy of the library is already registered. */ 6437 6438 __kmp_register_library_startup(); 6439 6440 /* TODO reinitialization of library */ 6441 if (TCR_4(__kmp_global.g.g_done)) { 6442 KA_TRACE(10, ("__kmp_do_serial_initialize: reinitialization of library\n")); 6443 } 6444 6445 __kmp_global.g.g_abort = 0; 6446 TCW_SYNC_4(__kmp_global.g.g_done, FALSE); 6447 6448 /* initialize the locks */ 6449 #if KMP_USE_ADAPTIVE_LOCKS 6450 #if KMP_DEBUG_ADAPTIVE_LOCKS 6451 __kmp_init_speculative_stats(); 6452 #endif 6453 #endif 6454 #if KMP_STATS_ENABLED 6455 __kmp_stats_init(); 6456 #endif 6457 __kmp_init_lock(&__kmp_global_lock); 6458 __kmp_init_queuing_lock(&__kmp_dispatch_lock); 6459 __kmp_init_lock(&__kmp_debug_lock); 6460 __kmp_init_atomic_lock(&__kmp_atomic_lock); 6461 __kmp_init_atomic_lock(&__kmp_atomic_lock_1i); 6462 __kmp_init_atomic_lock(&__kmp_atomic_lock_2i); 6463 __kmp_init_atomic_lock(&__kmp_atomic_lock_4i); 6464 __kmp_init_atomic_lock(&__kmp_atomic_lock_4r); 6465 __kmp_init_atomic_lock(&__kmp_atomic_lock_8i); 6466 __kmp_init_atomic_lock(&__kmp_atomic_lock_8r); 6467 __kmp_init_atomic_lock(&__kmp_atomic_lock_8c); 6468 __kmp_init_atomic_lock(&__kmp_atomic_lock_10r); 6469 __kmp_init_atomic_lock(&__kmp_atomic_lock_16r); 6470 __kmp_init_atomic_lock(&__kmp_atomic_lock_16c); 6471 __kmp_init_atomic_lock(&__kmp_atomic_lock_20c); 6472 __kmp_init_atomic_lock(&__kmp_atomic_lock_32c); 6473 __kmp_init_bootstrap_lock(&__kmp_forkjoin_lock); 6474 __kmp_init_bootstrap_lock(&__kmp_exit_lock); 6475 #if KMP_USE_MONITOR 6476 __kmp_init_bootstrap_lock(&__kmp_monitor_lock); 6477 #endif 6478 __kmp_init_bootstrap_lock(&__kmp_tp_cached_lock); 6479 6480 /* conduct initialization and initial setup of configuration */ 6481 6482 __kmp_runtime_initialize(); 6483 6484 #if KMP_MIC_SUPPORTED 6485 __kmp_check_mic_type(); 6486 #endif 6487 6488 // Some global variable initialization moved here from kmp_env_initialize() 6489 #ifdef KMP_DEBUG 6490 kmp_diag = 0; 6491 #endif 6492 __kmp_abort_delay = 0; 6493 6494 // From __kmp_init_dflt_team_nth() 6495 /* assume the entire machine will be used */ 6496 __kmp_dflt_team_nth_ub = __kmp_xproc; 6497 if (__kmp_dflt_team_nth_ub < KMP_MIN_NTH) { 6498 __kmp_dflt_team_nth_ub = KMP_MIN_NTH; 6499 } 6500 if (__kmp_dflt_team_nth_ub > __kmp_sys_max_nth) { 6501 __kmp_dflt_team_nth_ub = __kmp_sys_max_nth; 6502 } 6503 __kmp_max_nth = __kmp_sys_max_nth; 6504 __kmp_cg_max_nth = __kmp_sys_max_nth; 6505 __kmp_teams_max_nth = __kmp_xproc; // set a "reasonable" default 6506 if (__kmp_teams_max_nth > __kmp_sys_max_nth) { 6507 __kmp_teams_max_nth = __kmp_sys_max_nth; 6508 } 6509 6510 // Three vars below moved here from __kmp_env_initialize() "KMP_BLOCKTIME" 6511 // part 6512 __kmp_dflt_blocktime = KMP_DEFAULT_BLOCKTIME; 6513 #if KMP_USE_MONITOR 6514 __kmp_monitor_wakeups = 6515 KMP_WAKEUPS_FROM_BLOCKTIME(__kmp_dflt_blocktime, __kmp_monitor_wakeups); 6516 __kmp_bt_intervals = 6517 KMP_INTERVALS_FROM_BLOCKTIME(__kmp_dflt_blocktime, __kmp_monitor_wakeups); 6518 #endif 6519 // From "KMP_LIBRARY" part of __kmp_env_initialize() 6520 __kmp_library = library_throughput; 6521 // From KMP_SCHEDULE initialization 6522 __kmp_static = kmp_sch_static_balanced; 6523 // AC: do not use analytical here, because it is non-monotonous 6524 //__kmp_guided = kmp_sch_guided_iterative_chunked; 6525 //__kmp_auto = kmp_sch_guided_analytical_chunked; // AC: it is the default, no 6526 // need to repeat assignment 6527 // Barrier initialization. Moved here from __kmp_env_initialize() Barrier branch 6528 // bit control and barrier method control parts 6529 #if KMP_FAST_REDUCTION_BARRIER 6530 #define kmp_reduction_barrier_gather_bb ((int)1) 6531 #define kmp_reduction_barrier_release_bb ((int)1) 6532 #define kmp_reduction_barrier_gather_pat bp_hyper_bar 6533 #define kmp_reduction_barrier_release_pat bp_hyper_bar 6534 #endif // KMP_FAST_REDUCTION_BARRIER 6535 for (i = bs_plain_barrier; i < bs_last_barrier; i++) { 6536 __kmp_barrier_gather_branch_bits[i] = __kmp_barrier_gather_bb_dflt; 6537 __kmp_barrier_release_branch_bits[i] = __kmp_barrier_release_bb_dflt; 6538 __kmp_barrier_gather_pattern[i] = __kmp_barrier_gather_pat_dflt; 6539 __kmp_barrier_release_pattern[i] = __kmp_barrier_release_pat_dflt; 6540 #if KMP_FAST_REDUCTION_BARRIER 6541 if (i == bs_reduction_barrier) { // tested and confirmed on ALTIX only ( 6542 // lin_64 ): hyper,1 6543 __kmp_barrier_gather_branch_bits[i] = kmp_reduction_barrier_gather_bb; 6544 __kmp_barrier_release_branch_bits[i] = kmp_reduction_barrier_release_bb; 6545 __kmp_barrier_gather_pattern[i] = kmp_reduction_barrier_gather_pat; 6546 __kmp_barrier_release_pattern[i] = kmp_reduction_barrier_release_pat; 6547 } 6548 #endif // KMP_FAST_REDUCTION_BARRIER 6549 } 6550 #if KMP_FAST_REDUCTION_BARRIER 6551 #undef kmp_reduction_barrier_release_pat 6552 #undef kmp_reduction_barrier_gather_pat 6553 #undef kmp_reduction_barrier_release_bb 6554 #undef kmp_reduction_barrier_gather_bb 6555 #endif // KMP_FAST_REDUCTION_BARRIER 6556 #if KMP_MIC_SUPPORTED 6557 if (__kmp_mic_type == mic2) { // KNC 6558 // AC: plane=3,2, forkjoin=2,1 are optimal for 240 threads on KNC 6559 __kmp_barrier_gather_branch_bits[bs_plain_barrier] = 3; // plain gather 6560 __kmp_barrier_release_branch_bits[bs_forkjoin_barrier] = 6561 1; // forkjoin release 6562 __kmp_barrier_gather_pattern[bs_forkjoin_barrier] = bp_hierarchical_bar; 6563 __kmp_barrier_release_pattern[bs_forkjoin_barrier] = bp_hierarchical_bar; 6564 } 6565 #if KMP_FAST_REDUCTION_BARRIER 6566 if (__kmp_mic_type == mic2) { // KNC 6567 __kmp_barrier_gather_pattern[bs_reduction_barrier] = bp_hierarchical_bar; 6568 __kmp_barrier_release_pattern[bs_reduction_barrier] = bp_hierarchical_bar; 6569 } 6570 #endif // KMP_FAST_REDUCTION_BARRIER 6571 #endif // KMP_MIC_SUPPORTED 6572 6573 // From KMP_CHECKS initialization 6574 #ifdef KMP_DEBUG 6575 __kmp_env_checks = TRUE; /* development versions have the extra checks */ 6576 #else 6577 __kmp_env_checks = FALSE; /* port versions do not have the extra checks */ 6578 #endif 6579 6580 // From "KMP_FOREIGN_THREADS_THREADPRIVATE" initialization 6581 __kmp_foreign_tp = TRUE; 6582 6583 __kmp_global.g.g_dynamic = FALSE; 6584 __kmp_global.g.g_dynamic_mode = dynamic_default; 6585 6586 __kmp_env_initialize(NULL); 6587 6588 // Print all messages in message catalog for testing purposes. 6589 #ifdef KMP_DEBUG 6590 char const *val = __kmp_env_get("KMP_DUMP_CATALOG"); 6591 if (__kmp_str_match_true(val)) { 6592 kmp_str_buf_t buffer; 6593 __kmp_str_buf_init(&buffer); 6594 __kmp_i18n_dump_catalog(&buffer); 6595 __kmp_printf("%s", buffer.str); 6596 __kmp_str_buf_free(&buffer); 6597 } 6598 __kmp_env_free(&val); 6599 #endif 6600 6601 __kmp_threads_capacity = 6602 __kmp_initial_threads_capacity(__kmp_dflt_team_nth_ub); 6603 // Moved here from __kmp_env_initialize() "KMP_ALL_THREADPRIVATE" part 6604 __kmp_tp_capacity = __kmp_default_tp_capacity( 6605 __kmp_dflt_team_nth_ub, __kmp_max_nth, __kmp_allThreadsSpecified); 6606 6607 // If the library is shut down properly, both pools must be NULL. Just in 6608 // case, set them to NULL -- some memory may leak, but subsequent code will 6609 // work even if pools are not freed. 6610 KMP_DEBUG_ASSERT(__kmp_thread_pool == NULL); 6611 KMP_DEBUG_ASSERT(__kmp_thread_pool_insert_pt == NULL); 6612 KMP_DEBUG_ASSERT(__kmp_team_pool == NULL); 6613 __kmp_thread_pool = NULL; 6614 __kmp_thread_pool_insert_pt = NULL; 6615 __kmp_team_pool = NULL; 6616 6617 /* Allocate all of the variable sized records */ 6618 /* NOTE: __kmp_threads_capacity entries are allocated, but the arrays are 6619 * expandable */ 6620 /* Since allocation is cache-aligned, just add extra padding at the end */ 6621 size = 6622 (sizeof(kmp_info_t *) + sizeof(kmp_root_t *)) * __kmp_threads_capacity + 6623 CACHE_LINE; 6624 __kmp_threads = (kmp_info_t **)__kmp_allocate(size); 6625 __kmp_root = (kmp_root_t **)((char *)__kmp_threads + 6626 sizeof(kmp_info_t *) * __kmp_threads_capacity); 6627 6628 /* init thread counts */ 6629 KMP_DEBUG_ASSERT(__kmp_all_nth == 6630 0); // Asserts fail if the library is reinitializing and 6631 KMP_DEBUG_ASSERT(__kmp_nth == 0); // something was wrong in termination. 6632 __kmp_all_nth = 0; 6633 __kmp_nth = 0; 6634 6635 /* setup the uber master thread and hierarchy */ 6636 gtid = __kmp_register_root(TRUE); 6637 KA_TRACE(10, ("__kmp_do_serial_initialize T#%d\n", gtid)); 6638 KMP_ASSERT(KMP_UBER_GTID(gtid)); 6639 KMP_ASSERT(KMP_INITIAL_GTID(gtid)); 6640 6641 KMP_MB(); /* Flush all pending memory write invalidates. */ 6642 6643 __kmp_common_initialize(); 6644 6645 #if KMP_OS_UNIX 6646 /* invoke the child fork handler */ 6647 __kmp_register_atfork(); 6648 #endif 6649 6650 #if !KMP_DYNAMIC_LIB 6651 { 6652 /* Invoke the exit handler when the program finishes, only for static 6653 library. For dynamic library, we already have _fini and DllMain. */ 6654 int rc = atexit(__kmp_internal_end_atexit); 6655 if (rc != 0) { 6656 __kmp_fatal(KMP_MSG(FunctionError, "atexit()"), KMP_ERR(rc), 6657 __kmp_msg_null); 6658 } 6659 } 6660 #endif 6661 6662 #if KMP_HANDLE_SIGNALS 6663 #if KMP_OS_UNIX 6664 /* NOTE: make sure that this is called before the user installs their own 6665 signal handlers so that the user handlers are called first. this way they 6666 can return false, not call our handler, avoid terminating the library, and 6667 continue execution where they left off. */ 6668 __kmp_install_signals(FALSE); 6669 #endif /* KMP_OS_UNIX */ 6670 #if KMP_OS_WINDOWS 6671 __kmp_install_signals(TRUE); 6672 #endif /* KMP_OS_WINDOWS */ 6673 #endif 6674 6675 /* we have finished the serial initialization */ 6676 __kmp_init_counter++; 6677 6678 __kmp_init_serial = TRUE; 6679 6680 if (__kmp_settings) { 6681 __kmp_env_print(); 6682 } 6683 6684 #if OMP_40_ENABLED 6685 if (__kmp_display_env || __kmp_display_env_verbose) { 6686 __kmp_env_print_2(); 6687 } 6688 #endif // OMP_40_ENABLED 6689 6690 #if OMPT_SUPPORT 6691 ompt_post_init(); 6692 #endif 6693 6694 KMP_MB(); 6695 6696 KA_TRACE(10, ("__kmp_do_serial_initialize: exit\n")); 6697 } 6698 6699 void __kmp_serial_initialize(void) { 6700 if (__kmp_init_serial) { 6701 return; 6702 } 6703 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6704 if (__kmp_init_serial) { 6705 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6706 return; 6707 } 6708 __kmp_do_serial_initialize(); 6709 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6710 } 6711 6712 static void __kmp_do_middle_initialize(void) { 6713 int i, j; 6714 int prev_dflt_team_nth; 6715 6716 if (!__kmp_init_serial) { 6717 __kmp_do_serial_initialize(); 6718 } 6719 6720 KA_TRACE(10, ("__kmp_middle_initialize: enter\n")); 6721 6722 // Save the previous value for the __kmp_dflt_team_nth so that 6723 // we can avoid some reinitialization if it hasn't changed. 6724 prev_dflt_team_nth = __kmp_dflt_team_nth; 6725 6726 #if KMP_AFFINITY_SUPPORTED 6727 // __kmp_affinity_initialize() will try to set __kmp_ncores to the 6728 // number of cores on the machine. 6729 __kmp_affinity_initialize(); 6730 6731 // Run through the __kmp_threads array and set the affinity mask 6732 // for each root thread that is currently registered with the RTL. 6733 for (i = 0; i < __kmp_threads_capacity; i++) { 6734 if (TCR_PTR(__kmp_threads[i]) != NULL) { 6735 __kmp_affinity_set_init_mask(i, TRUE); 6736 } 6737 } 6738 #endif /* KMP_AFFINITY_SUPPORTED */ 6739 6740 KMP_ASSERT(__kmp_xproc > 0); 6741 if (__kmp_avail_proc == 0) { 6742 __kmp_avail_proc = __kmp_xproc; 6743 } 6744 6745 // If there were empty places in num_threads list (OMP_NUM_THREADS=,,2,3), 6746 // correct them now 6747 j = 0; 6748 while ((j < __kmp_nested_nth.used) && !__kmp_nested_nth.nth[j]) { 6749 __kmp_nested_nth.nth[j] = __kmp_dflt_team_nth = __kmp_dflt_team_nth_ub = 6750 __kmp_avail_proc; 6751 j++; 6752 } 6753 6754 if (__kmp_dflt_team_nth == 0) { 6755 #ifdef KMP_DFLT_NTH_CORES 6756 // Default #threads = #cores 6757 __kmp_dflt_team_nth = __kmp_ncores; 6758 KA_TRACE(20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = " 6759 "__kmp_ncores (%d)\n", 6760 __kmp_dflt_team_nth)); 6761 #else 6762 // Default #threads = #available OS procs 6763 __kmp_dflt_team_nth = __kmp_avail_proc; 6764 KA_TRACE(20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = " 6765 "__kmp_avail_proc(%d)\n", 6766 __kmp_dflt_team_nth)); 6767 #endif /* KMP_DFLT_NTH_CORES */ 6768 } 6769 6770 if (__kmp_dflt_team_nth < KMP_MIN_NTH) { 6771 __kmp_dflt_team_nth = KMP_MIN_NTH; 6772 } 6773 if (__kmp_dflt_team_nth > __kmp_sys_max_nth) { 6774 __kmp_dflt_team_nth = __kmp_sys_max_nth; 6775 } 6776 6777 // There's no harm in continuing if the following check fails, 6778 // but it indicates an error in the previous logic. 6779 KMP_DEBUG_ASSERT(__kmp_dflt_team_nth <= __kmp_dflt_team_nth_ub); 6780 6781 if (__kmp_dflt_team_nth != prev_dflt_team_nth) { 6782 // Run through the __kmp_threads array and set the num threads icv for each 6783 // root thread that is currently registered with the RTL (which has not 6784 // already explicitly set its nthreads-var with a call to 6785 // omp_set_num_threads()). 6786 for (i = 0; i < __kmp_threads_capacity; i++) { 6787 kmp_info_t *thread = __kmp_threads[i]; 6788 if (thread == NULL) 6789 continue; 6790 if (thread->th.th_current_task->td_icvs.nproc != 0) 6791 continue; 6792 6793 set__nproc(__kmp_threads[i], __kmp_dflt_team_nth); 6794 } 6795 } 6796 KA_TRACE( 6797 20, 6798 ("__kmp_middle_initialize: final value for __kmp_dflt_team_nth = %d\n", 6799 __kmp_dflt_team_nth)); 6800 6801 #ifdef KMP_ADJUST_BLOCKTIME 6802 /* Adjust blocktime to zero if necessary now that __kmp_avail_proc is set */ 6803 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 6804 KMP_DEBUG_ASSERT(__kmp_avail_proc > 0); 6805 if (__kmp_nth > __kmp_avail_proc) { 6806 __kmp_zero_bt = TRUE; 6807 } 6808 } 6809 #endif /* KMP_ADJUST_BLOCKTIME */ 6810 6811 /* we have finished middle initialization */ 6812 TCW_SYNC_4(__kmp_init_middle, TRUE); 6813 6814 KA_TRACE(10, ("__kmp_do_middle_initialize: exit\n")); 6815 } 6816 6817 void __kmp_middle_initialize(void) { 6818 if (__kmp_init_middle) { 6819 return; 6820 } 6821 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6822 if (__kmp_init_middle) { 6823 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6824 return; 6825 } 6826 __kmp_do_middle_initialize(); 6827 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6828 } 6829 6830 void __kmp_parallel_initialize(void) { 6831 int gtid = __kmp_entry_gtid(); // this might be a new root 6832 6833 /* synchronize parallel initialization (for sibling) */ 6834 if (TCR_4(__kmp_init_parallel)) 6835 return; 6836 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6837 if (TCR_4(__kmp_init_parallel)) { 6838 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6839 return; 6840 } 6841 6842 /* TODO reinitialization after we have already shut down */ 6843 if (TCR_4(__kmp_global.g.g_done)) { 6844 KA_TRACE( 6845 10, 6846 ("__kmp_parallel_initialize: attempt to init while shutting down\n")); 6847 __kmp_infinite_loop(); 6848 } 6849 6850 /* jc: The lock __kmp_initz_lock is already held, so calling 6851 __kmp_serial_initialize would cause a deadlock. So we call 6852 __kmp_do_serial_initialize directly. */ 6853 if (!__kmp_init_middle) { 6854 __kmp_do_middle_initialize(); 6855 } 6856 6857 /* begin initialization */ 6858 KA_TRACE(10, ("__kmp_parallel_initialize: enter\n")); 6859 KMP_ASSERT(KMP_UBER_GTID(gtid)); 6860 6861 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 6862 // Save the FP control regs. 6863 // Worker threads will set theirs to these values at thread startup. 6864 __kmp_store_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word); 6865 __kmp_store_mxcsr(&__kmp_init_mxcsr); 6866 __kmp_init_mxcsr &= KMP_X86_MXCSR_MASK; 6867 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 6868 6869 #if KMP_OS_UNIX 6870 #if KMP_HANDLE_SIGNALS 6871 /* must be after __kmp_serial_initialize */ 6872 __kmp_install_signals(TRUE); 6873 #endif 6874 #endif 6875 6876 __kmp_suspend_initialize(); 6877 6878 #if defined(USE_LOAD_BALANCE) 6879 if (__kmp_global.g.g_dynamic_mode == dynamic_default) { 6880 __kmp_global.g.g_dynamic_mode = dynamic_load_balance; 6881 } 6882 #else 6883 if (__kmp_global.g.g_dynamic_mode == dynamic_default) { 6884 __kmp_global.g.g_dynamic_mode = dynamic_thread_limit; 6885 } 6886 #endif 6887 6888 if (__kmp_version) { 6889 __kmp_print_version_2(); 6890 } 6891 6892 /* we have finished parallel initialization */ 6893 TCW_SYNC_4(__kmp_init_parallel, TRUE); 6894 6895 KMP_MB(); 6896 KA_TRACE(10, ("__kmp_parallel_initialize: exit\n")); 6897 6898 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6899 } 6900 6901 /* ------------------------------------------------------------------------ */ 6902 6903 void __kmp_run_before_invoked_task(int gtid, int tid, kmp_info_t *this_thr, 6904 kmp_team_t *team) { 6905 kmp_disp_t *dispatch; 6906 6907 KMP_MB(); 6908 6909 /* none of the threads have encountered any constructs, yet. */ 6910 this_thr->th.th_local.this_construct = 0; 6911 #if KMP_CACHE_MANAGE 6912 KMP_CACHE_PREFETCH(&this_thr->th.th_bar[bs_forkjoin_barrier].bb.b_arrived); 6913 #endif /* KMP_CACHE_MANAGE */ 6914 dispatch = (kmp_disp_t *)TCR_PTR(this_thr->th.th_dispatch); 6915 KMP_DEBUG_ASSERT(dispatch); 6916 KMP_DEBUG_ASSERT(team->t.t_dispatch); 6917 // KMP_DEBUG_ASSERT( this_thr->th.th_dispatch == &team->t.t_dispatch[ 6918 // this_thr->th.th_info.ds.ds_tid ] ); 6919 6920 dispatch->th_disp_index = 0; /* reset the dispatch buffer counter */ 6921 #if OMP_45_ENABLED 6922 dispatch->th_doacross_buf_idx = 6923 0; /* reset the doacross dispatch buffer counter */ 6924 #endif 6925 if (__kmp_env_consistency_check) 6926 __kmp_push_parallel(gtid, team->t.t_ident); 6927 6928 KMP_MB(); /* Flush all pending memory write invalidates. */ 6929 } 6930 6931 void __kmp_run_after_invoked_task(int gtid, int tid, kmp_info_t *this_thr, 6932 kmp_team_t *team) { 6933 if (__kmp_env_consistency_check) 6934 __kmp_pop_parallel(gtid, team->t.t_ident); 6935 6936 __kmp_finish_implicit_task(this_thr); 6937 } 6938 6939 int __kmp_invoke_task_func(int gtid) { 6940 int rc; 6941 int tid = __kmp_tid_from_gtid(gtid); 6942 kmp_info_t *this_thr = __kmp_threads[gtid]; 6943 kmp_team_t *team = this_thr->th.th_team; 6944 6945 __kmp_run_before_invoked_task(gtid, tid, this_thr, team); 6946 #if USE_ITT_BUILD 6947 if (__itt_stack_caller_create_ptr) { 6948 __kmp_itt_stack_callee_enter( 6949 (__itt_caller) 6950 team->t.t_stack_id); // inform ittnotify about entering user's code 6951 } 6952 #endif /* USE_ITT_BUILD */ 6953 #if INCLUDE_SSC_MARKS 6954 SSC_MARK_INVOKING(); 6955 #endif 6956 6957 #if OMPT_SUPPORT 6958 void *dummy; 6959 void **exit_runtime_p; 6960 ompt_data_t *my_task_data; 6961 ompt_data_t *my_parallel_data; 6962 int ompt_team_size; 6963 6964 if (ompt_enabled.enabled) { 6965 exit_runtime_p = &( 6966 team->t.t_implicit_task_taskdata[tid].ompt_task_info.frame.exit_frame); 6967 } else { 6968 exit_runtime_p = &dummy; 6969 } 6970 6971 my_task_data = 6972 &(team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data); 6973 my_parallel_data = &(team->t.ompt_team_info.parallel_data); 6974 if (ompt_enabled.ompt_callback_implicit_task) { 6975 ompt_team_size = team->t.t_nproc; 6976 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 6977 ompt_scope_begin, my_parallel_data, my_task_data, ompt_team_size, 6978 __kmp_tid_from_gtid(gtid)); 6979 OMPT_CUR_TASK_INFO(this_thr)->thread_num = __kmp_tid_from_gtid(gtid); 6980 } 6981 #endif 6982 6983 { 6984 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 6985 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 6986 rc = 6987 __kmp_invoke_microtask((microtask_t)TCR_SYNC_PTR(team->t.t_pkfn), gtid, 6988 tid, (int)team->t.t_argc, (void **)team->t.t_argv 6989 #if OMPT_SUPPORT 6990 , 6991 exit_runtime_p 6992 #endif 6993 ); 6994 #if OMPT_SUPPORT 6995 *exit_runtime_p = NULL; 6996 #endif 6997 } 6998 6999 #if USE_ITT_BUILD 7000 if (__itt_stack_caller_create_ptr) { 7001 __kmp_itt_stack_callee_leave( 7002 (__itt_caller) 7003 team->t.t_stack_id); // inform ittnotify about leaving user's code 7004 } 7005 #endif /* USE_ITT_BUILD */ 7006 __kmp_run_after_invoked_task(gtid, tid, this_thr, team); 7007 7008 return rc; 7009 } 7010 7011 #if OMP_40_ENABLED 7012 void __kmp_teams_master(int gtid) { 7013 // This routine is called by all master threads in teams construct 7014 kmp_info_t *thr = __kmp_threads[gtid]; 7015 kmp_team_t *team = thr->th.th_team; 7016 ident_t *loc = team->t.t_ident; 7017 thr->th.th_set_nproc = thr->th.th_teams_size.nth; 7018 KMP_DEBUG_ASSERT(thr->th.th_teams_microtask); 7019 KMP_DEBUG_ASSERT(thr->th.th_set_nproc); 7020 KA_TRACE(20, ("__kmp_teams_master: T#%d, Tid %d, microtask %p\n", gtid, 7021 __kmp_tid_from_gtid(gtid), thr->th.th_teams_microtask)); 7022 // Launch league of teams now, but not let workers execute 7023 // (they hang on fork barrier until next parallel) 7024 #if INCLUDE_SSC_MARKS 7025 SSC_MARK_FORKING(); 7026 #endif 7027 __kmp_fork_call(loc, gtid, fork_context_intel, team->t.t_argc, 7028 (microtask_t)thr->th.th_teams_microtask, // "wrapped" task 7029 VOLATILE_CAST(launch_t) __kmp_invoke_task_func, NULL); 7030 #if INCLUDE_SSC_MARKS 7031 SSC_MARK_JOINING(); 7032 #endif 7033 7034 // AC: last parameter "1" eliminates join barrier which won't work because 7035 // worker threads are in a fork barrier waiting for more parallel regions 7036 __kmp_join_call(loc, gtid 7037 #if OMPT_SUPPORT 7038 , 7039 fork_context_intel 7040 #endif 7041 , 7042 1); 7043 } 7044 7045 int __kmp_invoke_teams_master(int gtid) { 7046 kmp_info_t *this_thr = __kmp_threads[gtid]; 7047 kmp_team_t *team = this_thr->th.th_team; 7048 #if KMP_DEBUG 7049 if (!__kmp_threads[gtid]->th.th_team->t.t_serialized) 7050 KMP_DEBUG_ASSERT((void *)__kmp_threads[gtid]->th.th_team->t.t_pkfn == 7051 (void *)__kmp_teams_master); 7052 #endif 7053 __kmp_run_before_invoked_task(gtid, 0, this_thr, team); 7054 __kmp_teams_master(gtid); 7055 __kmp_run_after_invoked_task(gtid, 0, this_thr, team); 7056 return 1; 7057 } 7058 #endif /* OMP_40_ENABLED */ 7059 7060 /* this sets the requested number of threads for the next parallel region 7061 encountered by this team. since this should be enclosed in the forkjoin 7062 critical section it should avoid race conditions with assymmetrical nested 7063 parallelism */ 7064 7065 void __kmp_push_num_threads(ident_t *id, int gtid, int num_threads) { 7066 kmp_info_t *thr = __kmp_threads[gtid]; 7067 7068 if (num_threads > 0) 7069 thr->th.th_set_nproc = num_threads; 7070 } 7071 7072 #if OMP_40_ENABLED 7073 7074 /* this sets the requested number of teams for the teams region and/or 7075 the number of threads for the next parallel region encountered */ 7076 void __kmp_push_num_teams(ident_t *id, int gtid, int num_teams, 7077 int num_threads) { 7078 kmp_info_t *thr = __kmp_threads[gtid]; 7079 KMP_DEBUG_ASSERT(num_teams >= 0); 7080 KMP_DEBUG_ASSERT(num_threads >= 0); 7081 7082 if (num_teams == 0) 7083 num_teams = 1; // default number of teams is 1. 7084 if (num_teams > __kmp_teams_max_nth) { // if too many teams requested? 7085 if (!__kmp_reserve_warn) { 7086 __kmp_reserve_warn = 1; 7087 __kmp_msg(kmp_ms_warning, 7088 KMP_MSG(CantFormThrTeam, num_teams, __kmp_teams_max_nth), 7089 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 7090 } 7091 num_teams = __kmp_teams_max_nth; 7092 } 7093 // Set number of teams (number of threads in the outer "parallel" of the 7094 // teams) 7095 thr->th.th_set_nproc = thr->th.th_teams_size.nteams = num_teams; 7096 7097 // Remember the number of threads for inner parallel regions 7098 if (num_threads == 0) { 7099 if (!TCR_4(__kmp_init_middle)) 7100 __kmp_middle_initialize(); // get __kmp_avail_proc calculated 7101 num_threads = __kmp_avail_proc / num_teams; 7102 if (num_teams * num_threads > __kmp_teams_max_nth) { 7103 // adjust num_threads w/o warning as it is not user setting 7104 num_threads = __kmp_teams_max_nth / num_teams; 7105 } 7106 } else { 7107 if (num_teams * num_threads > __kmp_teams_max_nth) { 7108 int new_threads = __kmp_teams_max_nth / num_teams; 7109 if (!__kmp_reserve_warn) { // user asked for too many threads 7110 __kmp_reserve_warn = 1; // that conflicts with KMP_TEAMS_THREAD_LIMIT 7111 __kmp_msg(kmp_ms_warning, 7112 KMP_MSG(CantFormThrTeam, num_threads, new_threads), 7113 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 7114 } 7115 num_threads = new_threads; 7116 } 7117 } 7118 thr->th.th_teams_size.nth = num_threads; 7119 } 7120 7121 // Set the proc_bind var to use in the following parallel region. 7122 void __kmp_push_proc_bind(ident_t *id, int gtid, kmp_proc_bind_t proc_bind) { 7123 kmp_info_t *thr = __kmp_threads[gtid]; 7124 thr->th.th_set_proc_bind = proc_bind; 7125 } 7126 7127 #endif /* OMP_40_ENABLED */ 7128 7129 /* Launch the worker threads into the microtask. */ 7130 7131 void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team) { 7132 kmp_info_t *this_thr = __kmp_threads[gtid]; 7133 7134 #ifdef KMP_DEBUG 7135 int f; 7136 #endif /* KMP_DEBUG */ 7137 7138 KMP_DEBUG_ASSERT(team); 7139 KMP_DEBUG_ASSERT(this_thr->th.th_team == team); 7140 KMP_ASSERT(KMP_MASTER_GTID(gtid)); 7141 KMP_MB(); /* Flush all pending memory write invalidates. */ 7142 7143 team->t.t_construct = 0; /* no single directives seen yet */ 7144 team->t.t_ordered.dt.t_value = 7145 0; /* thread 0 enters the ordered section first */ 7146 7147 /* Reset the identifiers on the dispatch buffer */ 7148 KMP_DEBUG_ASSERT(team->t.t_disp_buffer); 7149 if (team->t.t_max_nproc > 1) { 7150 int i; 7151 for (i = 0; i < __kmp_dispatch_num_buffers; ++i) { 7152 team->t.t_disp_buffer[i].buffer_index = i; 7153 #if OMP_45_ENABLED 7154 team->t.t_disp_buffer[i].doacross_buf_idx = i; 7155 #endif 7156 } 7157 } else { 7158 team->t.t_disp_buffer[0].buffer_index = 0; 7159 #if OMP_45_ENABLED 7160 team->t.t_disp_buffer[0].doacross_buf_idx = 0; 7161 #endif 7162 } 7163 7164 KMP_MB(); /* Flush all pending memory write invalidates. */ 7165 KMP_ASSERT(this_thr->th.th_team == team); 7166 7167 #ifdef KMP_DEBUG 7168 for (f = 0; f < team->t.t_nproc; f++) { 7169 KMP_DEBUG_ASSERT(team->t.t_threads[f] && 7170 team->t.t_threads[f]->th.th_team_nproc == team->t.t_nproc); 7171 } 7172 #endif /* KMP_DEBUG */ 7173 7174 /* release the worker threads so they may begin working */ 7175 __kmp_fork_barrier(gtid, 0); 7176 } 7177 7178 void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team) { 7179 kmp_info_t *this_thr = __kmp_threads[gtid]; 7180 7181 KMP_DEBUG_ASSERT(team); 7182 KMP_DEBUG_ASSERT(this_thr->th.th_team == team); 7183 KMP_ASSERT(KMP_MASTER_GTID(gtid)); 7184 KMP_MB(); /* Flush all pending memory write invalidates. */ 7185 7186 /* Join barrier after fork */ 7187 7188 #ifdef KMP_DEBUG 7189 if (__kmp_threads[gtid] && 7190 __kmp_threads[gtid]->th.th_team_nproc != team->t.t_nproc) { 7191 __kmp_printf("GTID: %d, __kmp_threads[%d]=%p\n", gtid, gtid, 7192 __kmp_threads[gtid]); 7193 __kmp_printf("__kmp_threads[%d]->th.th_team_nproc=%d, TEAM: %p, " 7194 "team->t.t_nproc=%d\n", 7195 gtid, __kmp_threads[gtid]->th.th_team_nproc, team, 7196 team->t.t_nproc); 7197 __kmp_print_structure(); 7198 } 7199 KMP_DEBUG_ASSERT(__kmp_threads[gtid] && 7200 __kmp_threads[gtid]->th.th_team_nproc == team->t.t_nproc); 7201 #endif /* KMP_DEBUG */ 7202 7203 __kmp_join_barrier(gtid); /* wait for everyone */ 7204 #if OMPT_SUPPORT 7205 if (ompt_enabled.enabled && 7206 this_thr->th.ompt_thread_info.state == omp_state_wait_barrier_implicit) { 7207 int ds_tid = this_thr->th.th_info.ds.ds_tid; 7208 ompt_data_t *task_data = OMPT_CUR_TASK_DATA(this_thr); 7209 this_thr->th.ompt_thread_info.state = omp_state_overhead; 7210 #if OMPT_OPTIONAL 7211 void *codeptr = NULL; 7212 if (KMP_MASTER_TID(ds_tid) && 7213 (ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait) || 7214 ompt_callbacks.ompt_callback(ompt_callback_sync_region))) 7215 codeptr = OMPT_CUR_TEAM_INFO(this_thr)->master_return_address; 7216 7217 if (ompt_enabled.ompt_callback_sync_region_wait) { 7218 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 7219 ompt_sync_region_barrier, ompt_scope_end, NULL, task_data, codeptr); 7220 } 7221 if (ompt_enabled.ompt_callback_sync_region) { 7222 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 7223 ompt_sync_region_barrier, ompt_scope_end, NULL, task_data, codeptr); 7224 } 7225 #endif 7226 if (!KMP_MASTER_TID(ds_tid) && ompt_enabled.ompt_callback_implicit_task) { 7227 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 7228 ompt_scope_end, NULL, task_data, 0, ds_tid); 7229 } 7230 } 7231 #endif 7232 7233 KMP_MB(); /* Flush all pending memory write invalidates. */ 7234 KMP_ASSERT(this_thr->th.th_team == team); 7235 } 7236 7237 /* ------------------------------------------------------------------------ */ 7238 7239 #ifdef USE_LOAD_BALANCE 7240 7241 // Return the worker threads actively spinning in the hot team, if we 7242 // are at the outermost level of parallelism. Otherwise, return 0. 7243 static int __kmp_active_hot_team_nproc(kmp_root_t *root) { 7244 int i; 7245 int retval; 7246 kmp_team_t *hot_team; 7247 7248 if (root->r.r_active) { 7249 return 0; 7250 } 7251 hot_team = root->r.r_hot_team; 7252 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { 7253 return hot_team->t.t_nproc - 1; // Don't count master thread 7254 } 7255 7256 // Skip the master thread - it is accounted for elsewhere. 7257 retval = 0; 7258 for (i = 1; i < hot_team->t.t_nproc; i++) { 7259 if (hot_team->t.t_threads[i]->th.th_active) { 7260 retval++; 7261 } 7262 } 7263 return retval; 7264 } 7265 7266 // Perform an automatic adjustment to the number of 7267 // threads used by the next parallel region. 7268 static int __kmp_load_balance_nproc(kmp_root_t *root, int set_nproc) { 7269 int retval; 7270 int pool_active; 7271 int hot_team_active; 7272 int team_curr_active; 7273 int system_active; 7274 7275 KB_TRACE(20, ("__kmp_load_balance_nproc: called root:%p set_nproc:%d\n", root, 7276 set_nproc)); 7277 KMP_DEBUG_ASSERT(root); 7278 KMP_DEBUG_ASSERT(root->r.r_root_team->t.t_threads[0] 7279 ->th.th_current_task->td_icvs.dynamic == TRUE); 7280 KMP_DEBUG_ASSERT(set_nproc > 1); 7281 7282 if (set_nproc == 1) { 7283 KB_TRACE(20, ("__kmp_load_balance_nproc: serial execution.\n")); 7284 return 1; 7285 } 7286 7287 // Threads that are active in the thread pool, active in the hot team for this 7288 // particular root (if we are at the outer par level), and the currently 7289 // executing thread (to become the master) are available to add to the new 7290 // team, but are currently contributing to the system load, and must be 7291 // accounted for. 7292 pool_active = __kmp_thread_pool_active_nth; 7293 hot_team_active = __kmp_active_hot_team_nproc(root); 7294 team_curr_active = pool_active + hot_team_active + 1; 7295 7296 // Check the system load. 7297 system_active = __kmp_get_load_balance(__kmp_avail_proc + team_curr_active); 7298 KB_TRACE(30, ("__kmp_load_balance_nproc: system active = %d pool active = %d " 7299 "hot team active = %d\n", 7300 system_active, pool_active, hot_team_active)); 7301 7302 if (system_active < 0) { 7303 // There was an error reading the necessary info from /proc, so use the 7304 // thread limit algorithm instead. Once we set __kmp_global.g.g_dynamic_mode 7305 // = dynamic_thread_limit, we shouldn't wind up getting back here. 7306 __kmp_global.g.g_dynamic_mode = dynamic_thread_limit; 7307 KMP_WARNING(CantLoadBalUsing, "KMP_DYNAMIC_MODE=thread limit"); 7308 7309 // Make this call behave like the thread limit algorithm. 7310 retval = __kmp_avail_proc - __kmp_nth + 7311 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 7312 if (retval > set_nproc) { 7313 retval = set_nproc; 7314 } 7315 if (retval < KMP_MIN_NTH) { 7316 retval = KMP_MIN_NTH; 7317 } 7318 7319 KB_TRACE(20, ("__kmp_load_balance_nproc: thread limit exit. retval:%d\n", 7320 retval)); 7321 return retval; 7322 } 7323 7324 // There is a slight delay in the load balance algorithm in detecting new 7325 // running procs. The real system load at this instant should be at least as 7326 // large as the #active omp thread that are available to add to the team. 7327 if (system_active < team_curr_active) { 7328 system_active = team_curr_active; 7329 } 7330 retval = __kmp_avail_proc - system_active + team_curr_active; 7331 if (retval > set_nproc) { 7332 retval = set_nproc; 7333 } 7334 if (retval < KMP_MIN_NTH) { 7335 retval = KMP_MIN_NTH; 7336 } 7337 7338 KB_TRACE(20, ("__kmp_load_balance_nproc: exit. retval:%d\n", retval)); 7339 return retval; 7340 } // __kmp_load_balance_nproc() 7341 7342 #endif /* USE_LOAD_BALANCE */ 7343 7344 /* ------------------------------------------------------------------------ */ 7345 7346 /* NOTE: this is called with the __kmp_init_lock held */ 7347 void __kmp_cleanup(void) { 7348 int f; 7349 7350 KA_TRACE(10, ("__kmp_cleanup: enter\n")); 7351 7352 if (TCR_4(__kmp_init_parallel)) { 7353 #if KMP_HANDLE_SIGNALS 7354 __kmp_remove_signals(); 7355 #endif 7356 TCW_4(__kmp_init_parallel, FALSE); 7357 } 7358 7359 if (TCR_4(__kmp_init_middle)) { 7360 #if KMP_AFFINITY_SUPPORTED 7361 __kmp_affinity_uninitialize(); 7362 #endif /* KMP_AFFINITY_SUPPORTED */ 7363 __kmp_cleanup_hierarchy(); 7364 TCW_4(__kmp_init_middle, FALSE); 7365 } 7366 7367 KA_TRACE(10, ("__kmp_cleanup: go serial cleanup\n")); 7368 7369 if (__kmp_init_serial) { 7370 __kmp_runtime_destroy(); 7371 __kmp_init_serial = FALSE; 7372 } 7373 7374 __kmp_cleanup_threadprivate_caches(); 7375 7376 for (f = 0; f < __kmp_threads_capacity; f++) { 7377 if (__kmp_root[f] != NULL) { 7378 __kmp_free(__kmp_root[f]); 7379 __kmp_root[f] = NULL; 7380 } 7381 } 7382 __kmp_free(__kmp_threads); 7383 // __kmp_threads and __kmp_root were allocated at once, as single block, so 7384 // there is no need in freeing __kmp_root. 7385 __kmp_threads = NULL; 7386 __kmp_root = NULL; 7387 __kmp_threads_capacity = 0; 7388 7389 #if KMP_USE_DYNAMIC_LOCK 7390 __kmp_cleanup_indirect_user_locks(); 7391 #else 7392 __kmp_cleanup_user_locks(); 7393 #endif 7394 7395 #if KMP_AFFINITY_SUPPORTED 7396 KMP_INTERNAL_FREE(CCAST(char *, __kmp_cpuinfo_file)); 7397 __kmp_cpuinfo_file = NULL; 7398 #endif /* KMP_AFFINITY_SUPPORTED */ 7399 7400 #if KMP_USE_ADAPTIVE_LOCKS 7401 #if KMP_DEBUG_ADAPTIVE_LOCKS 7402 __kmp_print_speculative_stats(); 7403 #endif 7404 #endif 7405 KMP_INTERNAL_FREE(__kmp_nested_nth.nth); 7406 __kmp_nested_nth.nth = NULL; 7407 __kmp_nested_nth.size = 0; 7408 __kmp_nested_nth.used = 0; 7409 KMP_INTERNAL_FREE(__kmp_nested_proc_bind.bind_types); 7410 __kmp_nested_proc_bind.bind_types = NULL; 7411 __kmp_nested_proc_bind.size = 0; 7412 __kmp_nested_proc_bind.used = 0; 7413 7414 __kmp_i18n_catclose(); 7415 7416 #if KMP_USE_HIER_SCHED 7417 __kmp_hier_scheds.deallocate(); 7418 #endif 7419 7420 #if KMP_STATS_ENABLED 7421 __kmp_stats_fini(); 7422 #endif 7423 7424 KA_TRACE(10, ("__kmp_cleanup: exit\n")); 7425 } 7426 7427 /* ------------------------------------------------------------------------ */ 7428 7429 int __kmp_ignore_mppbeg(void) { 7430 char *env; 7431 7432 if ((env = getenv("KMP_IGNORE_MPPBEG")) != NULL) { 7433 if (__kmp_str_match_false(env)) 7434 return FALSE; 7435 } 7436 // By default __kmpc_begin() is no-op. 7437 return TRUE; 7438 } 7439 7440 int __kmp_ignore_mppend(void) { 7441 char *env; 7442 7443 if ((env = getenv("KMP_IGNORE_MPPEND")) != NULL) { 7444 if (__kmp_str_match_false(env)) 7445 return FALSE; 7446 } 7447 // By default __kmpc_end() is no-op. 7448 return TRUE; 7449 } 7450 7451 void __kmp_internal_begin(void) { 7452 int gtid; 7453 kmp_root_t *root; 7454 7455 /* this is a very important step as it will register new sibling threads 7456 and assign these new uber threads a new gtid */ 7457 gtid = __kmp_entry_gtid(); 7458 root = __kmp_threads[gtid]->th.th_root; 7459 KMP_ASSERT(KMP_UBER_GTID(gtid)); 7460 7461 if (root->r.r_begin) 7462 return; 7463 __kmp_acquire_lock(&root->r.r_begin_lock, gtid); 7464 if (root->r.r_begin) { 7465 __kmp_release_lock(&root->r.r_begin_lock, gtid); 7466 return; 7467 } 7468 7469 root->r.r_begin = TRUE; 7470 7471 __kmp_release_lock(&root->r.r_begin_lock, gtid); 7472 } 7473 7474 /* ------------------------------------------------------------------------ */ 7475 7476 void __kmp_user_set_library(enum library_type arg) { 7477 int gtid; 7478 kmp_root_t *root; 7479 kmp_info_t *thread; 7480 7481 /* first, make sure we are initialized so we can get our gtid */ 7482 7483 gtid = __kmp_entry_gtid(); 7484 thread = __kmp_threads[gtid]; 7485 7486 root = thread->th.th_root; 7487 7488 KA_TRACE(20, ("__kmp_user_set_library: enter T#%d, arg: %d, %d\n", gtid, arg, 7489 library_serial)); 7490 if (root->r.r_in_parallel) { /* Must be called in serial section of top-level 7491 thread */ 7492 KMP_WARNING(SetLibraryIncorrectCall); 7493 return; 7494 } 7495 7496 switch (arg) { 7497 case library_serial: 7498 thread->th.th_set_nproc = 0; 7499 set__nproc(thread, 1); 7500 break; 7501 case library_turnaround: 7502 thread->th.th_set_nproc = 0; 7503 set__nproc(thread, __kmp_dflt_team_nth ? __kmp_dflt_team_nth 7504 : __kmp_dflt_team_nth_ub); 7505 break; 7506 case library_throughput: 7507 thread->th.th_set_nproc = 0; 7508 set__nproc(thread, __kmp_dflt_team_nth ? __kmp_dflt_team_nth 7509 : __kmp_dflt_team_nth_ub); 7510 break; 7511 default: 7512 KMP_FATAL(UnknownLibraryType, arg); 7513 } 7514 7515 __kmp_aux_set_library(arg); 7516 } 7517 7518 void __kmp_aux_set_stacksize(size_t arg) { 7519 if (!__kmp_init_serial) 7520 __kmp_serial_initialize(); 7521 7522 #if KMP_OS_DARWIN 7523 if (arg & (0x1000 - 1)) { 7524 arg &= ~(0x1000 - 1); 7525 if (arg + 0x1000) /* check for overflow if we round up */ 7526 arg += 0x1000; 7527 } 7528 #endif 7529 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 7530 7531 /* only change the default stacksize before the first parallel region */ 7532 if (!TCR_4(__kmp_init_parallel)) { 7533 size_t value = arg; /* argument is in bytes */ 7534 7535 if (value < __kmp_sys_min_stksize) 7536 value = __kmp_sys_min_stksize; 7537 else if (value > KMP_MAX_STKSIZE) 7538 value = KMP_MAX_STKSIZE; 7539 7540 __kmp_stksize = value; 7541 7542 __kmp_env_stksize = TRUE; /* was KMP_STACKSIZE specified? */ 7543 } 7544 7545 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7546 } 7547 7548 /* set the behaviour of the runtime library */ 7549 /* TODO this can cause some odd behaviour with sibling parallelism... */ 7550 void __kmp_aux_set_library(enum library_type arg) { 7551 __kmp_library = arg; 7552 7553 switch (__kmp_library) { 7554 case library_serial: { 7555 KMP_INFORM(LibraryIsSerial); 7556 (void)__kmp_change_library(TRUE); 7557 } break; 7558 case library_turnaround: 7559 (void)__kmp_change_library(TRUE); 7560 break; 7561 case library_throughput: 7562 (void)__kmp_change_library(FALSE); 7563 break; 7564 default: 7565 KMP_FATAL(UnknownLibraryType, arg); 7566 } 7567 } 7568 7569 /* ------------------------------------------------------------------------ */ 7570 7571 void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid) { 7572 int blocktime = arg; /* argument is in milliseconds */ 7573 #if KMP_USE_MONITOR 7574 int bt_intervals; 7575 #endif 7576 int bt_set; 7577 7578 __kmp_save_internal_controls(thread); 7579 7580 /* Normalize and set blocktime for the teams */ 7581 if (blocktime < KMP_MIN_BLOCKTIME) 7582 blocktime = KMP_MIN_BLOCKTIME; 7583 else if (blocktime > KMP_MAX_BLOCKTIME) 7584 blocktime = KMP_MAX_BLOCKTIME; 7585 7586 set__blocktime_team(thread->th.th_team, tid, blocktime); 7587 set__blocktime_team(thread->th.th_serial_team, 0, blocktime); 7588 7589 #if KMP_USE_MONITOR 7590 /* Calculate and set blocktime intervals for the teams */ 7591 bt_intervals = KMP_INTERVALS_FROM_BLOCKTIME(blocktime, __kmp_monitor_wakeups); 7592 7593 set__bt_intervals_team(thread->th.th_team, tid, bt_intervals); 7594 set__bt_intervals_team(thread->th.th_serial_team, 0, bt_intervals); 7595 #endif 7596 7597 /* Set whether blocktime has been set to "TRUE" */ 7598 bt_set = TRUE; 7599 7600 set__bt_set_team(thread->th.th_team, tid, bt_set); 7601 set__bt_set_team(thread->th.th_serial_team, 0, bt_set); 7602 #if KMP_USE_MONITOR 7603 KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d, " 7604 "bt_intervals=%d, monitor_updates=%d\n", 7605 __kmp_gtid_from_tid(tid, thread->th.th_team), 7606 thread->th.th_team->t.t_id, tid, blocktime, bt_intervals, 7607 __kmp_monitor_wakeups)); 7608 #else 7609 KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d\n", 7610 __kmp_gtid_from_tid(tid, thread->th.th_team), 7611 thread->th.th_team->t.t_id, tid, blocktime)); 7612 #endif 7613 } 7614 7615 void __kmp_aux_set_defaults(char const *str, int len) { 7616 if (!__kmp_init_serial) { 7617 __kmp_serial_initialize(); 7618 } 7619 __kmp_env_initialize(str); 7620 7621 if (__kmp_settings 7622 #if OMP_40_ENABLED 7623 || __kmp_display_env || __kmp_display_env_verbose 7624 #endif // OMP_40_ENABLED 7625 ) { 7626 __kmp_env_print(); 7627 } 7628 } // __kmp_aux_set_defaults 7629 7630 /* ------------------------------------------------------------------------ */ 7631 /* internal fast reduction routines */ 7632 7633 PACKED_REDUCTION_METHOD_T 7634 __kmp_determine_reduction_method( 7635 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, 7636 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data), 7637 kmp_critical_name *lck) { 7638 7639 // Default reduction method: critical construct ( lck != NULL, like in current 7640 // PAROPT ) 7641 // If ( reduce_data!=NULL && reduce_func!=NULL ): the tree-reduction method 7642 // can be selected by RTL 7643 // If loc->flags contains KMP_IDENT_ATOMIC_REDUCE, the atomic reduce method 7644 // can be selected by RTL 7645 // Finally, it's up to OpenMP RTL to make a decision on which method to select 7646 // among generated by PAROPT. 7647 7648 PACKED_REDUCTION_METHOD_T retval; 7649 7650 int team_size; 7651 7652 KMP_DEBUG_ASSERT(loc); // it would be nice to test ( loc != 0 ) 7653 KMP_DEBUG_ASSERT(lck); // it would be nice to test ( lck != 0 ) 7654 7655 #define FAST_REDUCTION_ATOMIC_METHOD_GENERATED \ 7656 ((loc->flags & (KMP_IDENT_ATOMIC_REDUCE)) == (KMP_IDENT_ATOMIC_REDUCE)) 7657 #define FAST_REDUCTION_TREE_METHOD_GENERATED ((reduce_data) && (reduce_func)) 7658 7659 retval = critical_reduce_block; 7660 7661 // another choice of getting a team size (with 1 dynamic deference) is slower 7662 team_size = __kmp_get_team_num_threads(global_tid); 7663 if (team_size == 1) { 7664 7665 retval = empty_reduce_block; 7666 7667 } else { 7668 7669 int atomic_available = FAST_REDUCTION_ATOMIC_METHOD_GENERATED; 7670 7671 #if KMP_ARCH_X86_64 || KMP_ARCH_PPC64 || KMP_ARCH_AARCH64 || KMP_ARCH_MIPS64 7672 7673 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 7674 KMP_OS_OPENBSD || KMP_OS_WINDOWS || KMP_OS_DARWIN || KMP_OS_HURD 7675 7676 int teamsize_cutoff = 4; 7677 7678 #if KMP_MIC_SUPPORTED 7679 if (__kmp_mic_type != non_mic) { 7680 teamsize_cutoff = 8; 7681 } 7682 #endif 7683 int tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED; 7684 if (tree_available) { 7685 if (team_size <= teamsize_cutoff) { 7686 if (atomic_available) { 7687 retval = atomic_reduce_block; 7688 } 7689 } else { 7690 retval = TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER; 7691 } 7692 } else if (atomic_available) { 7693 retval = atomic_reduce_block; 7694 } 7695 #else 7696 #error "Unknown or unsupported OS" 7697 #endif // KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || 7698 // KMP_OS_OPENBSD || KMP_OS_WINDOWS || KMP_OS_DARWIN || KMP_OS_HURD 7699 7700 #elif KMP_ARCH_X86 || KMP_ARCH_ARM || KMP_ARCH_AARCH || KMP_ARCH_MIPS 7701 7702 #if KMP_OS_LINUX || KMP_OS_WINDOWS || KMP_OS_HURD 7703 7704 // basic tuning 7705 7706 if (atomic_available) { 7707 if (num_vars <= 2) { // && ( team_size <= 8 ) due to false-sharing ??? 7708 retval = atomic_reduce_block; 7709 } 7710 } // otherwise: use critical section 7711 7712 #elif KMP_OS_DARWIN 7713 7714 int tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED; 7715 if (atomic_available && (num_vars <= 3)) { 7716 retval = atomic_reduce_block; 7717 } else if (tree_available) { 7718 if ((reduce_size > (9 * sizeof(kmp_real64))) && 7719 (reduce_size < (2000 * sizeof(kmp_real64)))) { 7720 retval = TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER; 7721 } 7722 } // otherwise: use critical section 7723 7724 #else 7725 #error "Unknown or unsupported OS" 7726 #endif 7727 7728 #else 7729 #error "Unknown or unsupported architecture" 7730 #endif 7731 } 7732 7733 // KMP_FORCE_REDUCTION 7734 7735 // If the team is serialized (team_size == 1), ignore the forced reduction 7736 // method and stay with the unsynchronized method (empty_reduce_block) 7737 if (__kmp_force_reduction_method != reduction_method_not_defined && 7738 team_size != 1) { 7739 7740 PACKED_REDUCTION_METHOD_T forced_retval = critical_reduce_block; 7741 7742 int atomic_available, tree_available; 7743 7744 switch ((forced_retval = __kmp_force_reduction_method)) { 7745 case critical_reduce_block: 7746 KMP_ASSERT(lck); // lck should be != 0 7747 break; 7748 7749 case atomic_reduce_block: 7750 atomic_available = FAST_REDUCTION_ATOMIC_METHOD_GENERATED; 7751 if (!atomic_available) { 7752 KMP_WARNING(RedMethodNotSupported, "atomic"); 7753 forced_retval = critical_reduce_block; 7754 } 7755 break; 7756 7757 case tree_reduce_block: 7758 tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED; 7759 if (!tree_available) { 7760 KMP_WARNING(RedMethodNotSupported, "tree"); 7761 forced_retval = critical_reduce_block; 7762 } else { 7763 #if KMP_FAST_REDUCTION_BARRIER 7764 forced_retval = TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER; 7765 #endif 7766 } 7767 break; 7768 7769 default: 7770 KMP_ASSERT(0); // "unsupported method specified" 7771 } 7772 7773 retval = forced_retval; 7774 } 7775 7776 KA_TRACE(10, ("reduction method selected=%08x\n", retval)); 7777 7778 #undef FAST_REDUCTION_TREE_METHOD_GENERATED 7779 #undef FAST_REDUCTION_ATOMIC_METHOD_GENERATED 7780 7781 return (retval); 7782 } 7783 7784 // this function is for testing set/get/determine reduce method 7785 kmp_int32 __kmp_get_reduce_method(void) { 7786 return ((__kmp_entry_thread()->th.th_local.packed_reduction_method) >> 8); 7787 } 7788