1 /* 2 * kmp_runtime.cpp -- KPTS runtime support library 3 */ 4 5 6 //===----------------------------------------------------------------------===// 7 // 8 // The LLVM Compiler Infrastructure 9 // 10 // This file is dual licensed under the MIT and the University of Illinois Open 11 // Source Licenses. See LICENSE.txt for details. 12 // 13 //===----------------------------------------------------------------------===// 14 15 16 #include "kmp.h" 17 #include "kmp_atomic.h" 18 #include "kmp_wrapper_getpid.h" 19 #include "kmp_environment.h" 20 #include "kmp_itt.h" 21 #include "kmp_str.h" 22 #include "kmp_settings.h" 23 #include "kmp_i18n.h" 24 #include "kmp_io.h" 25 #include "kmp_error.h" 26 #include "kmp_stats.h" 27 #include "kmp_wait_release.h" 28 #include "kmp_affinity.h" 29 30 #if OMPT_SUPPORT 31 #include "ompt-specific.h" 32 #endif 33 34 /* these are temporary issues to be dealt with */ 35 #define KMP_USE_PRCTL 0 36 37 #if KMP_OS_WINDOWS 38 #include <process.h> 39 #endif 40 41 #include "tsan_annotations.h" 42 43 #if defined(KMP_GOMP_COMPAT) 44 char const __kmp_version_alt_comp[] = KMP_VERSION_PREFIX "alternative compiler support: yes"; 45 #endif /* defined(KMP_GOMP_COMPAT) */ 46 47 char const __kmp_version_omp_api[] = KMP_VERSION_PREFIX "API version: " 48 #if OMP_50_ENABLED 49 "5.0 (201611)"; 50 #elif OMP_45_ENABLED 51 "4.5 (201511)"; 52 #elif OMP_40_ENABLED 53 "4.0 (201307)"; 54 #else 55 "3.1 (201107)"; 56 #endif 57 58 #ifdef KMP_DEBUG 59 char const __kmp_version_lock[] = KMP_VERSION_PREFIX "lock type: run time selectable"; 60 #endif /* KMP_DEBUG */ 61 62 #define KMP_MIN( x, y ) ( (x) < (y) ? (x) : (y) ) 63 64 /* ------------------------------------------------------------------------ */ 65 /* ------------------------------------------------------------------------ */ 66 67 kmp_info_t __kmp_monitor; 68 69 /* ------------------------------------------------------------------------ */ 70 /* ------------------------------------------------------------------------ */ 71 72 /* Forward declarations */ 73 74 void __kmp_cleanup( void ); 75 76 static void __kmp_initialize_info( kmp_info_t *, kmp_team_t *, int tid, int gtid ); 77 static void __kmp_initialize_team( kmp_team_t * team, int new_nproc, kmp_internal_control_t * new_icvs, ident_t * loc ); 78 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 79 static void __kmp_partition_places( kmp_team_t *team, int update_master_only=0 ); 80 #endif 81 static void __kmp_do_serial_initialize( void ); 82 void __kmp_fork_barrier( int gtid, int tid ); 83 void __kmp_join_barrier( int gtid ); 84 void __kmp_setup_icv_copy( kmp_team_t *team, int new_nproc, kmp_internal_control_t * new_icvs, ident_t *loc ); 85 86 #ifdef USE_LOAD_BALANCE 87 static int __kmp_load_balance_nproc( kmp_root_t * root, int set_nproc ); 88 #endif 89 90 static int __kmp_expand_threads(int nWish, int nNeed); 91 #if KMP_OS_WINDOWS 92 static int __kmp_unregister_root_other_thread( int gtid ); 93 #endif 94 static void __kmp_unregister_library( void ); // called by __kmp_internal_end() 95 static void __kmp_reap_thread( kmp_info_t * thread, int is_root ); 96 static kmp_info_t *__kmp_thread_pool_insert_pt = NULL; 97 98 /* ------------------------------------------------------------------------ */ 99 /* ------------------------------------------------------------------------ */ 100 101 /* Calculate the identifier of the current thread */ 102 /* fast (and somewhat portable) way to get unique */ 103 /* identifier of executing thread. */ 104 /* returns KMP_GTID_DNE if we haven't been assigned a gtid */ 105 106 int 107 __kmp_get_global_thread_id( ) 108 { 109 int i; 110 kmp_info_t **other_threads; 111 size_t stack_data; 112 char *stack_addr; 113 size_t stack_size; 114 char *stack_base; 115 116 KA_TRACE( 1000, ( "*** __kmp_get_global_thread_id: entering, nproc=%d all_nproc=%d\n", 117 __kmp_nth, __kmp_all_nth )); 118 119 /* JPH - to handle the case where __kmpc_end(0) is called immediately prior to a 120 parallel region, made it return KMP_GTID_DNE to force serial_initialize by 121 caller. Had to handle KMP_GTID_DNE at all call-sites, or else guarantee 122 __kmp_init_gtid for this to work. */ 123 124 if ( !TCR_4(__kmp_init_gtid) ) return KMP_GTID_DNE; 125 126 #ifdef KMP_TDATA_GTID 127 if ( TCR_4(__kmp_gtid_mode) >= 3) { 128 KA_TRACE( 1000, ( "*** __kmp_get_global_thread_id: using TDATA\n" )); 129 return __kmp_gtid; 130 } 131 #endif 132 if ( TCR_4(__kmp_gtid_mode) >= 2) { 133 KA_TRACE( 1000, ( "*** __kmp_get_global_thread_id: using keyed TLS\n" )); 134 return __kmp_gtid_get_specific(); 135 } 136 KA_TRACE( 1000, ( "*** __kmp_get_global_thread_id: using internal alg.\n" )); 137 138 stack_addr = (char*) & stack_data; 139 other_threads = __kmp_threads; 140 141 /* 142 ATT: The code below is a source of potential bugs due to unsynchronized access to 143 __kmp_threads array. For example: 144 1. Current thread loads other_threads[i] to thr and checks it, it is non-NULL. 145 2. Current thread is suspended by OS. 146 3. Another thread unregisters and finishes (debug versions of free() may fill memory 147 with something like 0xEF). 148 4. Current thread is resumed. 149 5. Current thread reads junk from *thr. 150 TODO: Fix it. 151 --ln 152 */ 153 154 for( i = 0 ; i < __kmp_threads_capacity ; i++ ) { 155 156 kmp_info_t *thr = (kmp_info_t *)TCR_SYNC_PTR(other_threads[i]); 157 if( !thr ) continue; 158 159 stack_size = (size_t)TCR_PTR(thr->th.th_info.ds.ds_stacksize); 160 stack_base = (char *)TCR_PTR(thr->th.th_info.ds.ds_stackbase); 161 162 /* stack grows down -- search through all of the active threads */ 163 164 if( stack_addr <= stack_base ) { 165 size_t stack_diff = stack_base - stack_addr; 166 167 if( stack_diff <= stack_size ) { 168 /* The only way we can be closer than the allocated */ 169 /* stack size is if we are running on this thread. */ 170 KMP_DEBUG_ASSERT( __kmp_gtid_get_specific() == i ); 171 return i; 172 } 173 } 174 } 175 176 /* get specific to try and determine our gtid */ 177 KA_TRACE( 1000, ( "*** __kmp_get_global_thread_id: internal alg. failed to find " 178 "thread, using TLS\n" )); 179 i = __kmp_gtid_get_specific(); 180 181 /*fprintf( stderr, "=== %d\n", i ); */ /* GROO */ 182 183 /* if we havn't been assigned a gtid, then return code */ 184 if( i<0 ) return i; 185 186 /* dynamically updated stack window for uber threads to avoid get_specific call */ 187 if( ! TCR_4(other_threads[i]->th.th_info.ds.ds_stackgrow) ) { 188 KMP_FATAL( StackOverflow, i ); 189 } 190 191 stack_base = (char *) other_threads[i]->th.th_info.ds.ds_stackbase; 192 if( stack_addr > stack_base ) { 193 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stackbase, stack_addr); 194 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stacksize, 195 other_threads[i]->th.th_info.ds.ds_stacksize + stack_addr - stack_base); 196 } else { 197 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stacksize, stack_base - stack_addr); 198 } 199 200 /* Reprint stack bounds for ubermaster since they have been refined */ 201 if ( __kmp_storage_map ) { 202 char *stack_end = (char *) other_threads[i]->th.th_info.ds.ds_stackbase; 203 char *stack_beg = stack_end - other_threads[i]->th.th_info.ds.ds_stacksize; 204 __kmp_print_storage_map_gtid( i, stack_beg, stack_end, 205 other_threads[i]->th.th_info.ds.ds_stacksize, 206 "th_%d stack (refinement)", i ); 207 } 208 return i; 209 } 210 211 int 212 __kmp_get_global_thread_id_reg( ) 213 { 214 int gtid; 215 216 if ( !__kmp_init_serial ) { 217 gtid = KMP_GTID_DNE; 218 } else 219 #ifdef KMP_TDATA_GTID 220 if ( TCR_4(__kmp_gtid_mode) >= 3 ) { 221 KA_TRACE( 1000, ( "*** __kmp_get_global_thread_id_reg: using TDATA\n" )); 222 gtid = __kmp_gtid; 223 } else 224 #endif 225 if ( TCR_4(__kmp_gtid_mode) >= 2 ) { 226 KA_TRACE( 1000, ( "*** __kmp_get_global_thread_id_reg: using keyed TLS\n" )); 227 gtid = __kmp_gtid_get_specific(); 228 } else { 229 KA_TRACE( 1000, ( "*** __kmp_get_global_thread_id_reg: using internal alg.\n" )); 230 gtid = __kmp_get_global_thread_id(); 231 } 232 233 /* we must be a new uber master sibling thread */ 234 if( gtid == KMP_GTID_DNE ) { 235 KA_TRACE( 10, ( "__kmp_get_global_thread_id_reg: Encountered new root thread. " 236 "Registering a new gtid.\n" )); 237 __kmp_acquire_bootstrap_lock( &__kmp_initz_lock ); 238 if( !__kmp_init_serial ) { 239 __kmp_do_serial_initialize(); 240 gtid = __kmp_gtid_get_specific(); 241 } else { 242 gtid = __kmp_register_root(FALSE); 243 } 244 __kmp_release_bootstrap_lock( &__kmp_initz_lock ); 245 /*__kmp_printf( "+++ %d\n", gtid ); */ /* GROO */ 246 } 247 248 KMP_DEBUG_ASSERT( gtid >=0 ); 249 250 return gtid; 251 } 252 253 /* caller must hold forkjoin_lock */ 254 void 255 __kmp_check_stack_overlap( kmp_info_t *th ) 256 { 257 int f; 258 char *stack_beg = NULL; 259 char *stack_end = NULL; 260 int gtid; 261 262 KA_TRACE(10,("__kmp_check_stack_overlap: called\n")); 263 if ( __kmp_storage_map ) { 264 stack_end = (char *) th->th.th_info.ds.ds_stackbase; 265 stack_beg = stack_end - th->th.th_info.ds.ds_stacksize; 266 267 gtid = __kmp_gtid_from_thread( th ); 268 269 if (gtid == KMP_GTID_MONITOR) { 270 __kmp_print_storage_map_gtid( gtid, stack_beg, stack_end, th->th.th_info.ds.ds_stacksize, 271 "th_%s stack (%s)", "mon", 272 ( th->th.th_info.ds.ds_stackgrow ) ? "initial" : "actual" ); 273 } else { 274 __kmp_print_storage_map_gtid( gtid, stack_beg, stack_end, th->th.th_info.ds.ds_stacksize, 275 "th_%d stack (%s)", gtid, 276 ( th->th.th_info.ds.ds_stackgrow ) ? "initial" : "actual" ); 277 } 278 } 279 280 /* No point in checking ubermaster threads since they use refinement and cannot overlap */ 281 gtid = __kmp_gtid_from_thread( th ); 282 if ( __kmp_env_checks == TRUE && !KMP_UBER_GTID(gtid)) 283 { 284 KA_TRACE(10,("__kmp_check_stack_overlap: performing extensive checking\n")); 285 if ( stack_beg == NULL ) { 286 stack_end = (char *) th->th.th_info.ds.ds_stackbase; 287 stack_beg = stack_end - th->th.th_info.ds.ds_stacksize; 288 } 289 290 for( f=0 ; f < __kmp_threads_capacity ; f++ ) { 291 kmp_info_t *f_th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[f]); 292 293 if( f_th && f_th != th ) { 294 char *other_stack_end = (char *)TCR_PTR(f_th->th.th_info.ds.ds_stackbase); 295 char *other_stack_beg = other_stack_end - 296 (size_t)TCR_PTR(f_th->th.th_info.ds.ds_stacksize); 297 if((stack_beg > other_stack_beg && stack_beg < other_stack_end) || 298 (stack_end > other_stack_beg && stack_end < other_stack_end)) { 299 300 /* Print the other stack values before the abort */ 301 if ( __kmp_storage_map ) 302 __kmp_print_storage_map_gtid( -1, other_stack_beg, other_stack_end, 303 (size_t)TCR_PTR(f_th->th.th_info.ds.ds_stacksize), 304 "th_%d stack (overlapped)", 305 __kmp_gtid_from_thread( f_th ) ); 306 307 __kmp_msg( kmp_ms_fatal, KMP_MSG( StackOverlap ), KMP_HNT( ChangeStackLimit ), __kmp_msg_null ); 308 } 309 } 310 } 311 } 312 KA_TRACE(10,("__kmp_check_stack_overlap: returning\n")); 313 } 314 315 316 /* ------------------------------------------------------------------------ */ 317 318 /* ------------------------------------------------------------------------ */ 319 320 void 321 __kmp_infinite_loop( void ) 322 { 323 static int done = FALSE; 324 325 while (! done) { 326 KMP_YIELD( 1 ); 327 } 328 } 329 330 #define MAX_MESSAGE 512 331 332 void 333 __kmp_print_storage_map_gtid( int gtid, void *p1, void *p2, size_t size, char const *format, ...) { 334 char buffer[MAX_MESSAGE]; 335 va_list ap; 336 337 va_start( ap, format); 338 KMP_SNPRINTF( buffer, sizeof(buffer), "OMP storage map: %p %p%8lu %s\n", p1, p2, (unsigned long) size, format ); 339 __kmp_acquire_bootstrap_lock( & __kmp_stdio_lock ); 340 __kmp_vprintf( kmp_err, buffer, ap ); 341 #if KMP_PRINT_DATA_PLACEMENT 342 int node; 343 if(gtid >= 0) { 344 if(p1 <= p2 && (char*)p2 - (char*)p1 == size) { 345 if( __kmp_storage_map_verbose ) { 346 node = __kmp_get_host_node(p1); 347 if(node < 0) /* doesn't work, so don't try this next time */ 348 __kmp_storage_map_verbose = FALSE; 349 else { 350 char *last; 351 int lastNode; 352 int localProc = __kmp_get_cpu_from_gtid(gtid); 353 354 const int page_size = KMP_GET_PAGE_SIZE(); 355 356 p1 = (void *)( (size_t)p1 & ~((size_t)page_size - 1) ); 357 p2 = (void *)( ((size_t) p2 - 1) & ~((size_t)page_size - 1) ); 358 if(localProc >= 0) 359 __kmp_printf_no_lock(" GTID %d localNode %d\n", gtid, localProc>>1); 360 else 361 __kmp_printf_no_lock(" GTID %d\n", gtid); 362 # if KMP_USE_PRCTL 363 /* The more elaborate format is disabled for now because of the prctl hanging bug. */ 364 do { 365 last = p1; 366 lastNode = node; 367 /* This loop collates adjacent pages with the same host node. */ 368 do { 369 (char*)p1 += page_size; 370 } while(p1 <= p2 && (node = __kmp_get_host_node(p1)) == lastNode); 371 __kmp_printf_no_lock(" %p-%p memNode %d\n", last, 372 (char*)p1 - 1, lastNode); 373 } while(p1 <= p2); 374 # else 375 __kmp_printf_no_lock(" %p-%p memNode %d\n", p1, 376 (char*)p1 + (page_size - 1), __kmp_get_host_node(p1)); 377 if(p1 < p2) { 378 __kmp_printf_no_lock(" %p-%p memNode %d\n", p2, 379 (char*)p2 + (page_size - 1), __kmp_get_host_node(p2)); 380 } 381 # endif 382 } 383 } 384 } else 385 __kmp_printf_no_lock(" %s\n", KMP_I18N_STR( StorageMapWarning ) ); 386 } 387 #endif /* KMP_PRINT_DATA_PLACEMENT */ 388 __kmp_release_bootstrap_lock( & __kmp_stdio_lock ); 389 } 390 391 void 392 __kmp_warn( char const * format, ... ) 393 { 394 char buffer[MAX_MESSAGE]; 395 va_list ap; 396 397 if ( __kmp_generate_warnings == kmp_warnings_off ) { 398 return; 399 } 400 401 va_start( ap, format ); 402 403 KMP_SNPRINTF( buffer, sizeof(buffer) , "OMP warning: %s\n", format ); 404 __kmp_acquire_bootstrap_lock( & __kmp_stdio_lock ); 405 __kmp_vprintf( kmp_err, buffer, ap ); 406 __kmp_release_bootstrap_lock( & __kmp_stdio_lock ); 407 408 va_end( ap ); 409 } 410 411 void 412 __kmp_abort_process() 413 { 414 415 // Later threads may stall here, but that's ok because abort() will kill them. 416 __kmp_acquire_bootstrap_lock( & __kmp_exit_lock ); 417 418 if ( __kmp_debug_buf ) { 419 __kmp_dump_debug_buffer(); 420 }; // if 421 422 if ( KMP_OS_WINDOWS ) { 423 // Let other threads know of abnormal termination and prevent deadlock 424 // if abort happened during library initialization or shutdown 425 __kmp_global.g.g_abort = SIGABRT; 426 427 /* 428 On Windows* OS by default abort() causes pop-up error box, which stalls nightly testing. 429 Unfortunately, we cannot reliably suppress pop-up error boxes. _set_abort_behavior() 430 works well, but this function is not available in VS7 (this is not problem for DLL, but 431 it is a problem for static OpenMP RTL). SetErrorMode (and so, timelimit utility) does 432 not help, at least in some versions of MS C RTL. 433 434 It seems following sequence is the only way to simulate abort() and avoid pop-up error 435 box. 436 */ 437 raise( SIGABRT ); 438 _exit( 3 ); // Just in case, if signal ignored, exit anyway. 439 } else { 440 abort(); 441 }; // if 442 443 __kmp_infinite_loop(); 444 __kmp_release_bootstrap_lock( & __kmp_exit_lock ); 445 446 } // __kmp_abort_process 447 448 void 449 __kmp_abort_thread( void ) 450 { 451 // TODO: Eliminate g_abort global variable and this function. 452 // In case of abort just call abort(), it will kill all the threads. 453 __kmp_infinite_loop(); 454 } // __kmp_abort_thread 455 456 /* ------------------------------------------------------------------------ */ 457 458 /* 459 * Print out the storage map for the major kmp_info_t thread data structures 460 * that are allocated together. 461 */ 462 463 static void 464 __kmp_print_thread_storage_map( kmp_info_t *thr, int gtid ) 465 { 466 __kmp_print_storage_map_gtid( gtid, thr, thr + 1, sizeof(kmp_info_t), "th_%d", gtid ); 467 468 __kmp_print_storage_map_gtid( gtid, &thr->th.th_info, &thr->th.th_team, sizeof(kmp_desc_t), 469 "th_%d.th_info", gtid ); 470 471 __kmp_print_storage_map_gtid( gtid, &thr->th.th_local, &thr->th.th_pri_head, sizeof(kmp_local_t), 472 "th_%d.th_local", gtid ); 473 474 __kmp_print_storage_map_gtid( gtid, &thr->th.th_bar[0], &thr->th.th_bar[bs_last_barrier], 475 sizeof(kmp_balign_t) * bs_last_barrier, "th_%d.th_bar", gtid ); 476 477 __kmp_print_storage_map_gtid( gtid, &thr->th.th_bar[bs_plain_barrier], 478 &thr->th.th_bar[bs_plain_barrier+1], 479 sizeof(kmp_balign_t), "th_%d.th_bar[plain]", gtid); 480 481 __kmp_print_storage_map_gtid( gtid, &thr->th.th_bar[bs_forkjoin_barrier], 482 &thr->th.th_bar[bs_forkjoin_barrier+1], 483 sizeof(kmp_balign_t), "th_%d.th_bar[forkjoin]", gtid); 484 485 #if KMP_FAST_REDUCTION_BARRIER 486 __kmp_print_storage_map_gtid( gtid, &thr->th.th_bar[bs_reduction_barrier], 487 &thr->th.th_bar[bs_reduction_barrier+1], 488 sizeof(kmp_balign_t), "th_%d.th_bar[reduction]", gtid); 489 #endif // KMP_FAST_REDUCTION_BARRIER 490 } 491 492 /* 493 * Print out the storage map for the major kmp_team_t team data structures 494 * that are allocated together. 495 */ 496 497 static void 498 __kmp_print_team_storage_map( const char *header, kmp_team_t *team, int team_id, int num_thr ) 499 { 500 int num_disp_buff = team->t.t_max_nproc > 1 ? __kmp_dispatch_num_buffers : 2; 501 __kmp_print_storage_map_gtid( -1, team, team + 1, sizeof(kmp_team_t), "%s_%d", 502 header, team_id ); 503 504 __kmp_print_storage_map_gtid( -1, &team->t.t_bar[0], &team->t.t_bar[bs_last_barrier], 505 sizeof(kmp_balign_team_t) * bs_last_barrier, "%s_%d.t_bar", header, team_id ); 506 507 508 __kmp_print_storage_map_gtid( -1, &team->t.t_bar[bs_plain_barrier], &team->t.t_bar[bs_plain_barrier+1], 509 sizeof(kmp_balign_team_t), "%s_%d.t_bar[plain]", header, team_id ); 510 511 __kmp_print_storage_map_gtid( -1, &team->t.t_bar[bs_forkjoin_barrier], &team->t.t_bar[bs_forkjoin_barrier+1], 512 sizeof(kmp_balign_team_t), "%s_%d.t_bar[forkjoin]", header, team_id ); 513 514 #if KMP_FAST_REDUCTION_BARRIER 515 __kmp_print_storage_map_gtid( -1, &team->t.t_bar[bs_reduction_barrier], &team->t.t_bar[bs_reduction_barrier+1], 516 sizeof(kmp_balign_team_t), "%s_%d.t_bar[reduction]", header, team_id ); 517 #endif // KMP_FAST_REDUCTION_BARRIER 518 519 __kmp_print_storage_map_gtid( -1, &team->t.t_dispatch[0], &team->t.t_dispatch[num_thr], 520 sizeof(kmp_disp_t) * num_thr, "%s_%d.t_dispatch", header, team_id ); 521 522 __kmp_print_storage_map_gtid( -1, &team->t.t_threads[0], &team->t.t_threads[num_thr], 523 sizeof(kmp_info_t *) * num_thr, "%s_%d.t_threads", header, team_id ); 524 525 __kmp_print_storage_map_gtid( -1, &team->t.t_disp_buffer[0], &team->t.t_disp_buffer[num_disp_buff], 526 sizeof(dispatch_shared_info_t) * num_disp_buff, "%s_%d.t_disp_buffer", 527 header, team_id ); 528 529 530 __kmp_print_storage_map_gtid( -1, &team->t.t_taskq, &team->t.t_copypriv_data, 531 sizeof(kmp_taskq_t), "%s_%d.t_taskq", header, team_id ); 532 } 533 534 static void __kmp_init_allocator() {} 535 static void __kmp_fini_allocator() {} 536 537 /* ------------------------------------------------------------------------ */ 538 539 #ifdef KMP_DYNAMIC_LIB 540 # if KMP_OS_WINDOWS 541 542 static void 543 __kmp_reset_lock( kmp_bootstrap_lock_t* lck ) { 544 // TODO: Change to __kmp_break_bootstrap_lock(). 545 __kmp_init_bootstrap_lock( lck ); // make the lock released 546 } 547 548 static void 549 __kmp_reset_locks_on_process_detach( int gtid_req ) { 550 int i; 551 int thread_count; 552 553 // PROCESS_DETACH is expected to be called by a thread 554 // that executes ProcessExit() or FreeLibrary(). 555 // OS terminates other threads (except the one calling ProcessExit or FreeLibrary). 556 // So, it might be safe to access the __kmp_threads[] without taking the forkjoin_lock. 557 // However, in fact, some threads can be still alive here, although being about to be terminated. 558 // The threads in the array with ds_thread==0 are most suspicious. 559 // Actually, it can be not safe to access the __kmp_threads[]. 560 561 // TODO: does it make sense to check __kmp_roots[] ? 562 563 // Let's check that there are no other alive threads registered with the OMP lib. 564 while( 1 ) { 565 thread_count = 0; 566 for( i = 0; i < __kmp_threads_capacity; ++i ) { 567 if( !__kmp_threads ) continue; 568 kmp_info_t* th = __kmp_threads[ i ]; 569 if( th == NULL ) continue; 570 int gtid = th->th.th_info.ds.ds_gtid; 571 if( gtid == gtid_req ) continue; 572 if( gtid < 0 ) continue; 573 DWORD exit_val; 574 int alive = __kmp_is_thread_alive( th, &exit_val ); 575 if( alive ) { 576 ++thread_count; 577 } 578 } 579 if( thread_count == 0 ) break; // success 580 } 581 582 // Assume that I'm alone. 583 584 // Now it might be probably safe to check and reset locks. 585 // __kmp_forkjoin_lock and __kmp_stdio_lock are expected to be reset. 586 __kmp_reset_lock( &__kmp_forkjoin_lock ); 587 #ifdef KMP_DEBUG 588 __kmp_reset_lock( &__kmp_stdio_lock ); 589 #endif // KMP_DEBUG 590 } 591 592 BOOL WINAPI 593 DllMain( HINSTANCE hInstDLL, DWORD fdwReason, LPVOID lpReserved ) { 594 //__kmp_acquire_bootstrap_lock( &__kmp_initz_lock ); 595 596 switch( fdwReason ) { 597 598 case DLL_PROCESS_ATTACH: 599 KA_TRACE( 10, ("DllMain: PROCESS_ATTACH\n" )); 600 601 return TRUE; 602 603 case DLL_PROCESS_DETACH: 604 KA_TRACE( 10, ("DllMain: PROCESS_DETACH T#%d\n", 605 __kmp_gtid_get_specific() )); 606 607 if( lpReserved != NULL ) 608 { 609 // lpReserved is used for telling the difference: 610 // lpReserved == NULL when FreeLibrary() was called, 611 // lpReserved != NULL when the process terminates. 612 // When FreeLibrary() is called, worker threads remain alive. 613 // So they will release the forkjoin lock by themselves. 614 // When the process terminates, worker threads disappear triggering 615 // the problem of unreleased forkjoin lock as described below. 616 617 // A worker thread can take the forkjoin lock. 618 // The problem comes up if that worker thread becomes dead 619 // before it releases the forkjoin lock. 620 // The forkjoin lock remains taken, while the thread 621 // executing DllMain()->PROCESS_DETACH->__kmp_internal_end_library() below 622 // will try to take the forkjoin lock and will always fail, 623 // so that the application will never finish [normally]. 624 // This scenario is possible if __kmpc_end() has not been executed. 625 // It looks like it's not a corner case, but common cases: 626 // - the main function was compiled by an alternative compiler; 627 // - the main function was compiled by icl but without /Qopenmp (application with plugins); 628 // - application terminates by calling C exit(), Fortran CALL EXIT() or Fortran STOP. 629 // - alive foreign thread prevented __kmpc_end from doing cleanup. 630 631 // This is a hack to work around the problem. 632 // TODO: !!! to figure out something better. 633 __kmp_reset_locks_on_process_detach( __kmp_gtid_get_specific() ); 634 } 635 636 __kmp_internal_end_library( __kmp_gtid_get_specific() ); 637 638 return TRUE; 639 640 case DLL_THREAD_ATTACH: 641 KA_TRACE( 10, ("DllMain: THREAD_ATTACH\n" )); 642 643 /* if we wanted to register new siblings all the time here call 644 * __kmp_get_gtid(); */ 645 return TRUE; 646 647 case DLL_THREAD_DETACH: 648 KA_TRACE( 10, ("DllMain: THREAD_DETACH T#%d\n", 649 __kmp_gtid_get_specific() )); 650 651 __kmp_internal_end_thread( __kmp_gtid_get_specific() ); 652 return TRUE; 653 } 654 655 return TRUE; 656 } 657 658 # endif /* KMP_OS_WINDOWS */ 659 #endif /* KMP_DYNAMIC_LIB */ 660 661 662 /* ------------------------------------------------------------------------ */ 663 664 /* Change the library type to "status" and return the old type */ 665 /* called from within initialization routines where __kmp_initz_lock is held */ 666 int 667 __kmp_change_library( int status ) 668 { 669 int old_status; 670 671 old_status = __kmp_yield_init & 1; // check whether KMP_LIBRARY=throughput (even init count) 672 673 if (status) { 674 __kmp_yield_init |= 1; // throughput => turnaround (odd init count) 675 } 676 else { 677 __kmp_yield_init &= ~1; // turnaround => throughput (even init count) 678 } 679 680 return old_status; // return previous setting of whether KMP_LIBRARY=throughput 681 } 682 683 /* ------------------------------------------------------------------------ */ 684 /* ------------------------------------------------------------------------ */ 685 686 /* __kmp_parallel_deo -- 687 * Wait until it's our turn. 688 */ 689 void 690 __kmp_parallel_deo( int *gtid_ref, int *cid_ref, ident_t *loc_ref ) 691 { 692 int gtid = *gtid_ref; 693 #ifdef BUILD_PARALLEL_ORDERED 694 kmp_team_t *team = __kmp_team_from_gtid( gtid ); 695 #endif /* BUILD_PARALLEL_ORDERED */ 696 697 if( __kmp_env_consistency_check ) { 698 if( __kmp_threads[gtid]->th.th_root->r.r_active ) 699 #if KMP_USE_DYNAMIC_LOCK 700 __kmp_push_sync( gtid, ct_ordered_in_parallel, loc_ref, NULL, 0 ); 701 #else 702 __kmp_push_sync( gtid, ct_ordered_in_parallel, loc_ref, NULL ); 703 #endif 704 } 705 #ifdef BUILD_PARALLEL_ORDERED 706 if( !team->t.t_serialized ) { 707 KMP_MB(); 708 KMP_WAIT_YIELD(&team->t.t_ordered.dt.t_value, __kmp_tid_from_gtid( gtid ), KMP_EQ, NULL); 709 KMP_MB(); 710 } 711 #endif /* BUILD_PARALLEL_ORDERED */ 712 } 713 714 /* __kmp_parallel_dxo -- 715 * Signal the next task. 716 */ 717 718 void 719 __kmp_parallel_dxo( int *gtid_ref, int *cid_ref, ident_t *loc_ref ) 720 { 721 int gtid = *gtid_ref; 722 #ifdef BUILD_PARALLEL_ORDERED 723 int tid = __kmp_tid_from_gtid( gtid ); 724 kmp_team_t *team = __kmp_team_from_gtid( gtid ); 725 #endif /* BUILD_PARALLEL_ORDERED */ 726 727 if( __kmp_env_consistency_check ) { 728 if( __kmp_threads[gtid]->th.th_root->r.r_active ) 729 __kmp_pop_sync( gtid, ct_ordered_in_parallel, loc_ref ); 730 } 731 #ifdef BUILD_PARALLEL_ORDERED 732 if ( ! team->t.t_serialized ) { 733 KMP_MB(); /* Flush all pending memory write invalidates. */ 734 735 /* use the tid of the next thread in this team */ 736 /* TODO repleace with general release procedure */ 737 team->t.t_ordered.dt.t_value = ((tid + 1) % team->t.t_nproc ); 738 739 #if OMPT_SUPPORT && OMPT_BLAME 740 if (ompt_enabled && 741 ompt_callbacks.ompt_callback(ompt_event_release_ordered)) { 742 /* accept blame for "ordered" waiting */ 743 kmp_info_t *this_thread = __kmp_threads[gtid]; 744 ompt_callbacks.ompt_callback(ompt_event_release_ordered)( 745 this_thread->th.ompt_thread_info.wait_id); 746 } 747 #endif 748 749 KMP_MB(); /* Flush all pending memory write invalidates. */ 750 } 751 #endif /* BUILD_PARALLEL_ORDERED */ 752 } 753 754 /* ------------------------------------------------------------------------ */ 755 /* ------------------------------------------------------------------------ */ 756 757 /* ------------------------------------------------------------------------ */ 758 /* ------------------------------------------------------------------------ */ 759 760 /* The BARRIER for a SINGLE process section is always explicit */ 761 762 int 763 __kmp_enter_single( int gtid, ident_t *id_ref, int push_ws ) 764 { 765 int status; 766 kmp_info_t *th; 767 kmp_team_t *team; 768 769 if( ! TCR_4(__kmp_init_parallel) ) 770 __kmp_parallel_initialize(); 771 772 th = __kmp_threads[ gtid ]; 773 team = th->th.th_team; 774 status = 0; 775 776 th->th.th_ident = id_ref; 777 778 if ( team->t.t_serialized ) { 779 status = 1; 780 } else { 781 kmp_int32 old_this = th->th.th_local.this_construct; 782 783 ++th->th.th_local.this_construct; 784 /* try to set team count to thread count--success means thread got the 785 single block 786 */ 787 /* TODO: Should this be acquire or release? */ 788 if (team->t.t_construct == old_this) { 789 status = KMP_COMPARE_AND_STORE_ACQ32(&team->t.t_construct, old_this, 790 th->th.th_local.this_construct); 791 } 792 #if USE_ITT_BUILD 793 if ( __itt_metadata_add_ptr && __kmp_forkjoin_frames_mode == 3 && KMP_MASTER_GTID(gtid) && 794 #if OMP_40_ENABLED 795 th->th.th_teams_microtask == NULL && 796 #endif 797 team->t.t_active_level == 1 ) 798 { // Only report metadata by master of active team at level 1 799 __kmp_itt_metadata_single( id_ref ); 800 } 801 #endif /* USE_ITT_BUILD */ 802 } 803 804 if( __kmp_env_consistency_check ) { 805 if (status && push_ws) { 806 __kmp_push_workshare( gtid, ct_psingle, id_ref ); 807 } else { 808 __kmp_check_workshare( gtid, ct_psingle, id_ref ); 809 } 810 } 811 #if USE_ITT_BUILD 812 if ( status ) { 813 __kmp_itt_single_start( gtid ); 814 } 815 #endif /* USE_ITT_BUILD */ 816 return status; 817 } 818 819 void 820 __kmp_exit_single( int gtid ) 821 { 822 #if USE_ITT_BUILD 823 __kmp_itt_single_end( gtid ); 824 #endif /* USE_ITT_BUILD */ 825 if( __kmp_env_consistency_check ) 826 __kmp_pop_workshare( gtid, ct_psingle, NULL ); 827 } 828 829 830 /* 831 * determine if we can go parallel or must use a serialized parallel region and 832 * how many threads we can use 833 * set_nproc is the number of threads requested for the team 834 * returns 0 if we should serialize or only use one thread, 835 * otherwise the number of threads to use 836 * The forkjoin lock is held by the caller. 837 */ 838 static int 839 __kmp_reserve_threads( kmp_root_t *root, kmp_team_t *parent_team, 840 int master_tid, int set_nthreads 841 #if OMP_40_ENABLED 842 , int enter_teams 843 #endif /* OMP_40_ENABLED */ 844 ) 845 { 846 int capacity; 847 int new_nthreads; 848 KMP_DEBUG_ASSERT( __kmp_init_serial ); 849 KMP_DEBUG_ASSERT( root && parent_team ); 850 851 // 852 // If dyn-var is set, dynamically adjust the number of desired threads, 853 // according to the method specified by dynamic_mode. 854 // 855 new_nthreads = set_nthreads; 856 if ( ! get__dynamic_2( parent_team, master_tid ) ) { 857 ; 858 } 859 #ifdef USE_LOAD_BALANCE 860 else if ( __kmp_global.g.g_dynamic_mode == dynamic_load_balance ) { 861 new_nthreads = __kmp_load_balance_nproc( root, set_nthreads ); 862 if ( new_nthreads == 1 ) { 863 KC_TRACE( 10, ( "__kmp_reserve_threads: T#%d load balance reduced reservation to 1 thread\n", 864 master_tid )); 865 return 1; 866 } 867 if ( new_nthreads < set_nthreads ) { 868 KC_TRACE( 10, ( "__kmp_reserve_threads: T#%d load balance reduced reservation to %d threads\n", 869 master_tid, new_nthreads )); 870 } 871 } 872 #endif /* USE_LOAD_BALANCE */ 873 else if ( __kmp_global.g.g_dynamic_mode == dynamic_thread_limit ) { 874 new_nthreads = __kmp_avail_proc - __kmp_nth + (root->r.r_active ? 1 875 : root->r.r_hot_team->t.t_nproc); 876 if ( new_nthreads <= 1 ) { 877 KC_TRACE( 10, ( "__kmp_reserve_threads: T#%d thread limit reduced reservation to 1 thread\n", 878 master_tid )); 879 return 1; 880 } 881 if ( new_nthreads < set_nthreads ) { 882 KC_TRACE( 10, ( "__kmp_reserve_threads: T#%d thread limit reduced reservation to %d threads\n", 883 master_tid, new_nthreads )); 884 } 885 else { 886 new_nthreads = set_nthreads; 887 } 888 } 889 else if ( __kmp_global.g.g_dynamic_mode == dynamic_random ) { 890 if ( set_nthreads > 2 ) { 891 new_nthreads = __kmp_get_random( parent_team->t.t_threads[master_tid] ); 892 new_nthreads = ( new_nthreads % set_nthreads ) + 1; 893 if ( new_nthreads == 1 ) { 894 KC_TRACE( 10, ( "__kmp_reserve_threads: T#%d dynamic random reduced reservation to 1 thread\n", 895 master_tid )); 896 return 1; 897 } 898 if ( new_nthreads < set_nthreads ) { 899 KC_TRACE( 10, ( "__kmp_reserve_threads: T#%d dynamic random reduced reservation to %d threads\n", 900 master_tid, new_nthreads )); 901 } 902 } 903 } 904 else { 905 KMP_ASSERT( 0 ); 906 } 907 908 // 909 // Respect KMP_ALL_THREADS, KMP_MAX_THREADS, OMP_THREAD_LIMIT. 910 // 911 if ( __kmp_nth + new_nthreads - ( root->r.r_active ? 1 : 912 root->r.r_hot_team->t.t_nproc ) > __kmp_max_nth ) { 913 int tl_nthreads = __kmp_max_nth - __kmp_nth + ( root->r.r_active ? 1 : 914 root->r.r_hot_team->t.t_nproc ); 915 if ( tl_nthreads <= 0 ) { 916 tl_nthreads = 1; 917 } 918 919 // 920 // If dyn-var is false, emit a 1-time warning. 921 // 922 if ( ! get__dynamic_2( parent_team, master_tid ) 923 && ( ! __kmp_reserve_warn ) ) { 924 __kmp_reserve_warn = 1; 925 __kmp_msg( 926 kmp_ms_warning, 927 KMP_MSG( CantFormThrTeam, set_nthreads, tl_nthreads ), 928 KMP_HNT( Unset_ALL_THREADS ), 929 __kmp_msg_null 930 ); 931 } 932 if ( tl_nthreads == 1 ) { 933 KC_TRACE( 10, ( "__kmp_reserve_threads: T#%d KMP_ALL_THREADS reduced reservation to 1 thread\n", 934 master_tid )); 935 return 1; 936 } 937 KC_TRACE( 10, ( "__kmp_reserve_threads: T#%d KMP_ALL_THREADS reduced reservation to %d threads\n", 938 master_tid, tl_nthreads )); 939 new_nthreads = tl_nthreads; 940 } 941 942 // 943 // Check if the threads array is large enough, or needs expanding. 944 // 945 // See comment in __kmp_register_root() about the adjustment if 946 // __kmp_threads[0] == NULL. 947 // 948 capacity = __kmp_threads_capacity; 949 if ( TCR_PTR(__kmp_threads[0]) == NULL ) { 950 --capacity; 951 } 952 if ( __kmp_nth + new_nthreads - ( root->r.r_active ? 1 : 953 root->r.r_hot_team->t.t_nproc ) > capacity ) { 954 // 955 // Expand the threads array. 956 // 957 int slotsRequired = __kmp_nth + new_nthreads - ( root->r.r_active ? 1 : 958 root->r.r_hot_team->t.t_nproc ) - capacity; 959 int slotsAdded = __kmp_expand_threads(slotsRequired, slotsRequired); 960 if ( slotsAdded < slotsRequired ) { 961 // 962 // The threads array was not expanded enough. 963 // 964 new_nthreads -= ( slotsRequired - slotsAdded ); 965 KMP_ASSERT( new_nthreads >= 1 ); 966 967 // 968 // If dyn-var is false, emit a 1-time warning. 969 // 970 if ( ! get__dynamic_2( parent_team, master_tid ) 971 && ( ! __kmp_reserve_warn ) ) { 972 __kmp_reserve_warn = 1; 973 if ( __kmp_tp_cached ) { 974 __kmp_msg( 975 kmp_ms_warning, 976 KMP_MSG( CantFormThrTeam, set_nthreads, new_nthreads ), 977 KMP_HNT( Set_ALL_THREADPRIVATE, __kmp_tp_capacity ), 978 KMP_HNT( PossibleSystemLimitOnThreads ), 979 __kmp_msg_null 980 ); 981 } 982 else { 983 __kmp_msg( 984 kmp_ms_warning, 985 KMP_MSG( CantFormThrTeam, set_nthreads, new_nthreads ), 986 KMP_HNT( SystemLimitOnThreads ), 987 __kmp_msg_null 988 ); 989 } 990 } 991 } 992 } 993 994 if ( new_nthreads == 1 ) { 995 KC_TRACE( 10, ( "__kmp_reserve_threads: T#%d serializing team after reclaiming dead roots and rechecking; requested %d threads\n", 996 __kmp_get_gtid(), set_nthreads ) ); 997 return 1; 998 } 999 1000 KC_TRACE( 10, ( "__kmp_reserve_threads: T#%d allocating %d threads; requested %d threads\n", 1001 __kmp_get_gtid(), new_nthreads, set_nthreads )); 1002 return new_nthreads; 1003 } 1004 1005 /* ------------------------------------------------------------------------ */ 1006 /* ------------------------------------------------------------------------ */ 1007 1008 /* allocate threads from the thread pool and assign them to the new team */ 1009 /* we are assured that there are enough threads available, because we 1010 * checked on that earlier within critical section forkjoin */ 1011 1012 static void 1013 __kmp_fork_team_threads( kmp_root_t *root, kmp_team_t *team, 1014 kmp_info_t *master_th, int master_gtid ) 1015 { 1016 int i; 1017 int use_hot_team; 1018 1019 KA_TRACE( 10, ("__kmp_fork_team_threads: new_nprocs = %d\n", team->t.t_nproc ) ); 1020 KMP_DEBUG_ASSERT( master_gtid == __kmp_get_gtid() ); 1021 KMP_MB(); 1022 1023 /* first, let's setup the master thread */ 1024 master_th->th.th_info.ds.ds_tid = 0; 1025 master_th->th.th_team = team; 1026 master_th->th.th_team_nproc = team->t.t_nproc; 1027 master_th->th.th_team_master = master_th; 1028 master_th->th.th_team_serialized = FALSE; 1029 master_th->th.th_dispatch = & team->t.t_dispatch[ 0 ]; 1030 1031 /* make sure we are not the optimized hot team */ 1032 #if KMP_NESTED_HOT_TEAMS 1033 use_hot_team = 0; 1034 kmp_hot_team_ptr_t *hot_teams = master_th->th.th_hot_teams; 1035 if( hot_teams ) { // hot teams array is not allocated if KMP_HOT_TEAMS_MAX_LEVEL=0 1036 int level = team->t.t_active_level - 1; // index in array of hot teams 1037 if( master_th->th.th_teams_microtask ) { // are we inside the teams? 1038 if( master_th->th.th_teams_size.nteams > 1 ) { 1039 ++level; // level was not increased in teams construct for team_of_masters 1040 } 1041 if( team->t.t_pkfn != (microtask_t)__kmp_teams_master && 1042 master_th->th.th_teams_level == team->t.t_level ) { 1043 ++level; // level was not increased in teams construct for team_of_workers before the parallel 1044 } // team->t.t_level will be increased inside parallel 1045 } 1046 if( level < __kmp_hot_teams_max_level ) { 1047 if( hot_teams[level].hot_team ) { 1048 // hot team has already been allocated for given level 1049 KMP_DEBUG_ASSERT(hot_teams[level].hot_team == team); 1050 use_hot_team = 1; // the team is ready to use 1051 } else { 1052 use_hot_team = 0; // AC: threads are not allocated yet 1053 hot_teams[level].hot_team = team; // remember new hot team 1054 hot_teams[level].hot_team_nth = team->t.t_nproc; 1055 } 1056 } else { 1057 use_hot_team = 0; 1058 } 1059 } 1060 #else 1061 use_hot_team = team == root->r.r_hot_team; 1062 #endif 1063 if ( !use_hot_team ) { 1064 1065 /* install the master thread */ 1066 team->t.t_threads[ 0 ] = master_th; 1067 __kmp_initialize_info( master_th, team, 0, master_gtid ); 1068 1069 /* now, install the worker threads */ 1070 for ( i=1 ; i < team->t.t_nproc ; i++ ) { 1071 1072 /* fork or reallocate a new thread and install it in team */ 1073 kmp_info_t *thr = __kmp_allocate_thread( root, team, i ); 1074 team->t.t_threads[ i ] = thr; 1075 KMP_DEBUG_ASSERT( thr ); 1076 KMP_DEBUG_ASSERT( thr->th.th_team == team ); 1077 /* align team and thread arrived states */ 1078 KA_TRACE( 20, ("__kmp_fork_team_threads: T#%d(%d:%d) init arrived T#%d(%d:%d) join =%llu, plain=%llu\n", 1079 __kmp_gtid_from_tid( 0, team ), team->t.t_id, 0, 1080 __kmp_gtid_from_tid( i, team ), team->t.t_id, i, 1081 team->t.t_bar[ bs_forkjoin_barrier ].b_arrived, 1082 team->t.t_bar[ bs_plain_barrier ].b_arrived ) ); 1083 #if OMP_40_ENABLED 1084 thr->th.th_teams_microtask = master_th->th.th_teams_microtask; 1085 thr->th.th_teams_level = master_th->th.th_teams_level; 1086 thr->th.th_teams_size = master_th->th.th_teams_size; 1087 #endif 1088 { // Initialize threads' barrier data. 1089 int b; 1090 kmp_balign_t * balign = team->t.t_threads[ i ]->th.th_bar; 1091 for ( b = 0; b < bs_last_barrier; ++ b ) { 1092 balign[ b ].bb.b_arrived = team->t.t_bar[ b ].b_arrived; 1093 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 1094 #if USE_DEBUGGER 1095 balign[ b ].bb.b_worker_arrived = team->t.t_bar[ b ].b_team_arrived; 1096 #endif 1097 }; // for b 1098 } 1099 } 1100 1101 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 1102 __kmp_partition_places( team ); 1103 #endif 1104 1105 } 1106 1107 KMP_MB(); 1108 } 1109 1110 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1111 // 1112 // Propagate any changes to the floating point control registers out to the team 1113 // We try to avoid unnecessary writes to the relevant cache line in the team structure, 1114 // so we don't make changes unless they are needed. 1115 // 1116 inline static void 1117 propagateFPControl(kmp_team_t * team) 1118 { 1119 if ( __kmp_inherit_fp_control ) { 1120 kmp_int16 x87_fpu_control_word; 1121 kmp_uint32 mxcsr; 1122 1123 // Get master values of FPU control flags (both X87 and vector) 1124 __kmp_store_x87_fpu_control_word( &x87_fpu_control_word ); 1125 __kmp_store_mxcsr( &mxcsr ); 1126 mxcsr &= KMP_X86_MXCSR_MASK; 1127 1128 // There is no point looking at t_fp_control_saved here. 1129 // If it is TRUE, we still have to update the values if they are different from those we now have. 1130 // If it is FALSE we didn't save anything yet, but our objective is the same. We have to ensure 1131 // that the values in the team are the same as those we have. 1132 // So, this code achieves what we need whether or not t_fp_control_saved is true. 1133 // By checking whether the value needs updating we avoid unnecessary writes that would put the 1134 // cache-line into a written state, causing all threads in the team to have to read it again. 1135 KMP_CHECK_UPDATE(team->t.t_x87_fpu_control_word, x87_fpu_control_word); 1136 KMP_CHECK_UPDATE(team->t.t_mxcsr, mxcsr); 1137 // Although we don't use this value, other code in the runtime wants to know whether it should restore them. 1138 // So we must ensure it is correct. 1139 KMP_CHECK_UPDATE(team->t.t_fp_control_saved, TRUE); 1140 } 1141 else { 1142 // Similarly here. Don't write to this cache-line in the team structure unless we have to. 1143 KMP_CHECK_UPDATE(team->t.t_fp_control_saved, FALSE); 1144 } 1145 } 1146 1147 // Do the opposite, setting the hardware registers to the updated values from the team. 1148 inline static void 1149 updateHWFPControl(kmp_team_t * team) 1150 { 1151 if ( __kmp_inherit_fp_control && team->t.t_fp_control_saved ) { 1152 // 1153 // Only reset the fp control regs if they have been changed in the team. 1154 // the parallel region that we are exiting. 1155 // 1156 kmp_int16 x87_fpu_control_word; 1157 kmp_uint32 mxcsr; 1158 __kmp_store_x87_fpu_control_word( &x87_fpu_control_word ); 1159 __kmp_store_mxcsr( &mxcsr ); 1160 mxcsr &= KMP_X86_MXCSR_MASK; 1161 1162 if ( team->t.t_x87_fpu_control_word != x87_fpu_control_word ) { 1163 __kmp_clear_x87_fpu_status_word(); 1164 __kmp_load_x87_fpu_control_word( &team->t.t_x87_fpu_control_word ); 1165 } 1166 1167 if ( team->t.t_mxcsr != mxcsr ) { 1168 __kmp_load_mxcsr( &team->t.t_mxcsr ); 1169 } 1170 } 1171 } 1172 #else 1173 # define propagateFPControl(x) ((void)0) 1174 # define updateHWFPControl(x) ((void)0) 1175 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 1176 1177 static void 1178 __kmp_alloc_argv_entries( int argc, kmp_team_t *team, int realloc ); // forward declaration 1179 1180 /* 1181 * Run a parallel region that has been serialized, so runs only in a team of the single master thread. 1182 */ 1183 void 1184 __kmp_serialized_parallel(ident_t *loc, kmp_int32 global_tid) 1185 { 1186 kmp_info_t *this_thr; 1187 kmp_team_t *serial_team; 1188 1189 KC_TRACE( 10, ("__kmpc_serialized_parallel: called by T#%d\n", global_tid ) ); 1190 1191 /* Skip all this code for autopar serialized loops since it results in 1192 unacceptable overhead */ 1193 if( loc != NULL && (loc->flags & KMP_IDENT_AUTOPAR ) ) 1194 return; 1195 1196 if( ! TCR_4( __kmp_init_parallel ) ) 1197 __kmp_parallel_initialize(); 1198 1199 this_thr = __kmp_threads[ global_tid ]; 1200 serial_team = this_thr->th.th_serial_team; 1201 1202 /* utilize the serialized team held by this thread */ 1203 KMP_DEBUG_ASSERT( serial_team ); 1204 KMP_MB(); 1205 1206 if ( __kmp_tasking_mode != tskm_immediate_exec ) { 1207 KMP_DEBUG_ASSERT(this_thr->th.th_task_team == this_thr->th.th_team->t.t_task_team[this_thr->th.th_task_state]); 1208 KMP_DEBUG_ASSERT( serial_team->t.t_task_team[this_thr->th.th_task_state] == NULL ); 1209 KA_TRACE( 20, ( "__kmpc_serialized_parallel: T#%d pushing task_team %p / team %p, new task_team = NULL\n", 1210 global_tid, this_thr->th.th_task_team, this_thr->th.th_team ) ); 1211 this_thr->th.th_task_team = NULL; 1212 } 1213 1214 #if OMP_40_ENABLED 1215 kmp_proc_bind_t proc_bind = this_thr->th.th_set_proc_bind; 1216 if ( this_thr->th.th_current_task->td_icvs.proc_bind == proc_bind_false ) { 1217 proc_bind = proc_bind_false; 1218 } 1219 else if ( proc_bind == proc_bind_default ) { 1220 // 1221 // No proc_bind clause was specified, so use the current value 1222 // of proc-bind-var for this parallel region. 1223 // 1224 proc_bind = this_thr->th.th_current_task->td_icvs.proc_bind; 1225 } 1226 // 1227 // Reset for next parallel region 1228 // 1229 this_thr->th.th_set_proc_bind = proc_bind_default; 1230 #endif /* OMP_40_ENABLED */ 1231 1232 if( this_thr->th.th_team != serial_team ) { 1233 // Nested level will be an index in the nested nthreads array 1234 int level = this_thr->th.th_team->t.t_level; 1235 1236 if( serial_team->t.t_serialized ) { 1237 /* this serial team was already used 1238 * TODO increase performance by making this locks more specific */ 1239 kmp_team_t *new_team; 1240 1241 __kmp_acquire_bootstrap_lock( &__kmp_forkjoin_lock ); 1242 1243 #if OMPT_SUPPORT 1244 ompt_parallel_id_t ompt_parallel_id = __ompt_parallel_id_new(global_tid); 1245 #endif 1246 1247 new_team = __kmp_allocate_team(this_thr->th.th_root, 1, 1, 1248 #if OMPT_SUPPORT 1249 ompt_parallel_id, 1250 #endif 1251 #if OMP_40_ENABLED 1252 proc_bind, 1253 #endif 1254 & this_thr->th.th_current_task->td_icvs, 1255 0 USE_NESTED_HOT_ARG(NULL) ); 1256 __kmp_release_bootstrap_lock( &__kmp_forkjoin_lock ); 1257 KMP_ASSERT( new_team ); 1258 1259 /* setup new serialized team and install it */ 1260 new_team->t.t_threads[0] = this_thr; 1261 new_team->t.t_parent = this_thr->th.th_team; 1262 serial_team = new_team; 1263 this_thr->th.th_serial_team = serial_team; 1264 1265 KF_TRACE( 10, ( "__kmpc_serialized_parallel: T#%d allocated new serial team %p\n", 1266 global_tid, serial_team ) ); 1267 1268 1269 /* TODO the above breaks the requirement that if we run out of 1270 * resources, then we can still guarantee that serialized teams 1271 * are ok, since we may need to allocate a new one */ 1272 } else { 1273 KF_TRACE( 10, ( "__kmpc_serialized_parallel: T#%d reusing cached serial team %p\n", 1274 global_tid, serial_team ) ); 1275 } 1276 1277 /* we have to initialize this serial team */ 1278 KMP_DEBUG_ASSERT( serial_team->t.t_threads ); 1279 KMP_DEBUG_ASSERT( serial_team->t.t_threads[0] == this_thr ); 1280 KMP_DEBUG_ASSERT( this_thr->th.th_team != serial_team ); 1281 serial_team->t.t_ident = loc; 1282 serial_team->t.t_serialized = 1; 1283 serial_team->t.t_nproc = 1; 1284 serial_team->t.t_parent = this_thr->th.th_team; 1285 serial_team->t.t_sched = this_thr->th.th_team->t.t_sched; 1286 this_thr->th.th_team = serial_team; 1287 serial_team->t.t_master_tid = this_thr->th.th_info.ds.ds_tid; 1288 1289 KF_TRACE( 10, ( "__kmpc_serialized_parallel: T#d curtask=%p\n", 1290 global_tid, this_thr->th.th_current_task ) ); 1291 KMP_ASSERT( this_thr->th.th_current_task->td_flags.executing == 1 ); 1292 this_thr->th.th_current_task->td_flags.executing = 0; 1293 1294 __kmp_push_current_task_to_thread( this_thr, serial_team, 0 ); 1295 1296 /* TODO: GEH: do the ICVs work for nested serialized teams? Don't we need an implicit task for 1297 each serialized task represented by team->t.t_serialized? */ 1298 copy_icvs( 1299 & this_thr->th.th_current_task->td_icvs, 1300 & this_thr->th.th_current_task->td_parent->td_icvs ); 1301 1302 // Thread value exists in the nested nthreads array for the next nested level 1303 if ( __kmp_nested_nth.used && ( level + 1 < __kmp_nested_nth.used ) ) { 1304 this_thr->th.th_current_task->td_icvs.nproc = __kmp_nested_nth.nth[ level + 1 ]; 1305 } 1306 1307 #if OMP_40_ENABLED 1308 if ( __kmp_nested_proc_bind.used && ( level + 1 < __kmp_nested_proc_bind.used ) ) { 1309 this_thr->th.th_current_task->td_icvs.proc_bind 1310 = __kmp_nested_proc_bind.bind_types[ level + 1 ]; 1311 } 1312 #endif /* OMP_40_ENABLED */ 1313 1314 #if USE_DEBUGGER 1315 serial_team->t.t_pkfn = (microtask_t)( ~0 ); // For the debugger. 1316 #endif 1317 this_thr->th.th_info.ds.ds_tid = 0; 1318 1319 /* set thread cache values */ 1320 this_thr->th.th_team_nproc = 1; 1321 this_thr->th.th_team_master = this_thr; 1322 this_thr->th.th_team_serialized = 1; 1323 1324 serial_team->t.t_level = serial_team->t.t_parent->t.t_level + 1; 1325 serial_team->t.t_active_level = serial_team->t.t_parent->t.t_active_level; 1326 1327 propagateFPControl (serial_team); 1328 1329 /* check if we need to allocate dispatch buffers stack */ 1330 KMP_DEBUG_ASSERT(serial_team->t.t_dispatch); 1331 if ( !serial_team->t.t_dispatch->th_disp_buffer ) { 1332 serial_team->t.t_dispatch->th_disp_buffer = (dispatch_private_info_t *) 1333 __kmp_allocate( sizeof( dispatch_private_info_t ) ); 1334 } 1335 this_thr->th.th_dispatch = serial_team->t.t_dispatch; 1336 1337 #if OMPT_SUPPORT 1338 ompt_parallel_id_t ompt_parallel_id = __ompt_parallel_id_new(global_tid); 1339 __ompt_team_assign_id(serial_team, ompt_parallel_id); 1340 #endif 1341 1342 KMP_MB(); 1343 1344 } else { 1345 /* this serialized team is already being used, 1346 * that's fine, just add another nested level */ 1347 KMP_DEBUG_ASSERT( this_thr->th.th_team == serial_team ); 1348 KMP_DEBUG_ASSERT( serial_team->t.t_threads ); 1349 KMP_DEBUG_ASSERT( serial_team->t.t_threads[0] == this_thr ); 1350 ++ serial_team->t.t_serialized; 1351 this_thr->th.th_team_serialized = serial_team->t.t_serialized; 1352 1353 // Nested level will be an index in the nested nthreads array 1354 int level = this_thr->th.th_team->t.t_level; 1355 // Thread value exists in the nested nthreads array for the next nested level 1356 if ( __kmp_nested_nth.used && ( level + 1 < __kmp_nested_nth.used ) ) { 1357 this_thr->th.th_current_task->td_icvs.nproc = __kmp_nested_nth.nth[ level + 1 ]; 1358 } 1359 serial_team->t.t_level++; 1360 KF_TRACE( 10, ( "__kmpc_serialized_parallel: T#%d increasing nesting level of serial team %p to %d\n", 1361 global_tid, serial_team, serial_team->t.t_level ) ); 1362 1363 /* allocate/push dispatch buffers stack */ 1364 KMP_DEBUG_ASSERT(serial_team->t.t_dispatch); 1365 { 1366 dispatch_private_info_t * disp_buffer = (dispatch_private_info_t *) 1367 __kmp_allocate( sizeof( dispatch_private_info_t ) ); 1368 disp_buffer->next = serial_team->t.t_dispatch->th_disp_buffer; 1369 serial_team->t.t_dispatch->th_disp_buffer = disp_buffer; 1370 } 1371 this_thr->th.th_dispatch = serial_team->t.t_dispatch; 1372 1373 KMP_MB(); 1374 } 1375 #if OMP_40_ENABLED 1376 KMP_CHECK_UPDATE(serial_team->t.t_cancel_request, cancel_noreq); 1377 #endif 1378 1379 if ( __kmp_env_consistency_check ) 1380 __kmp_push_parallel( global_tid, NULL ); 1381 1382 } 1383 1384 /* most of the work for a fork */ 1385 /* return true if we really went parallel, false if serialized */ 1386 int 1387 __kmp_fork_call( 1388 ident_t * loc, 1389 int gtid, 1390 enum fork_context_e call_context, // Intel, GNU, ... 1391 kmp_int32 argc, 1392 #if OMPT_SUPPORT 1393 void *unwrapped_task, 1394 #endif 1395 microtask_t microtask, 1396 launch_t invoker, 1397 /* TODO: revert workaround for Intel(R) 64 tracker #96 */ 1398 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 1399 va_list * ap 1400 #else 1401 va_list ap 1402 #endif 1403 ) 1404 { 1405 void **argv; 1406 int i; 1407 int master_tid; 1408 int master_this_cons; 1409 kmp_team_t *team; 1410 kmp_team_t *parent_team; 1411 kmp_info_t *master_th; 1412 kmp_root_t *root; 1413 int nthreads; 1414 int master_active; 1415 int master_set_numthreads; 1416 int level; 1417 #if OMP_40_ENABLED 1418 int active_level; 1419 int teams_level; 1420 #endif 1421 #if KMP_NESTED_HOT_TEAMS 1422 kmp_hot_team_ptr_t **p_hot_teams; 1423 #endif 1424 { // KMP_TIME_BLOCK 1425 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_fork_call); 1426 KMP_COUNT_VALUE(OMP_PARALLEL_args, argc); 1427 1428 KA_TRACE( 20, ("__kmp_fork_call: enter T#%d\n", gtid )); 1429 if ( __kmp_stkpadding > 0 && __kmp_root[gtid] != NULL ) { 1430 /* Some systems prefer the stack for the root thread(s) to start with */ 1431 /* some gap from the parent stack to prevent false sharing. */ 1432 void *dummy = KMP_ALLOCA(__kmp_stkpadding); 1433 /* These 2 lines below are so this does not get optimized out */ 1434 if ( __kmp_stkpadding > KMP_MAX_STKPADDING ) 1435 __kmp_stkpadding += (short)((kmp_int64)dummy); 1436 } 1437 1438 /* initialize if needed */ 1439 KMP_DEBUG_ASSERT( __kmp_init_serial ); // AC: potentially unsafe, not in sync with shutdown 1440 if( ! TCR_4(__kmp_init_parallel) ) 1441 __kmp_parallel_initialize(); 1442 1443 /* setup current data */ 1444 master_th = __kmp_threads[ gtid ]; // AC: potentially unsafe, not in sync with shutdown 1445 parent_team = master_th->th.th_team; 1446 master_tid = master_th->th.th_info.ds.ds_tid; 1447 master_this_cons = master_th->th.th_local.this_construct; 1448 root = master_th->th.th_root; 1449 master_active = root->r.r_active; 1450 master_set_numthreads = master_th->th.th_set_nproc; 1451 1452 #if OMPT_SUPPORT 1453 ompt_parallel_id_t ompt_parallel_id; 1454 ompt_task_id_t ompt_task_id; 1455 ompt_frame_t *ompt_frame; 1456 ompt_task_id_t my_task_id; 1457 ompt_parallel_id_t my_parallel_id; 1458 1459 if (ompt_enabled) { 1460 ompt_parallel_id = __ompt_parallel_id_new(gtid); 1461 ompt_task_id = __ompt_get_task_id_internal(0); 1462 ompt_frame = __ompt_get_task_frame_internal(0); 1463 } 1464 #endif 1465 1466 // Nested level will be an index in the nested nthreads array 1467 level = parent_team->t.t_level; 1468 active_level = parent_team->t.t_active_level; // is used to launch non-serial teams even if nested is not allowed 1469 #if OMP_40_ENABLED 1470 teams_level = master_th->th.th_teams_level; // needed to check nesting inside the teams 1471 #endif 1472 #if KMP_NESTED_HOT_TEAMS 1473 p_hot_teams = &master_th->th.th_hot_teams; 1474 if( *p_hot_teams == NULL && __kmp_hot_teams_max_level > 0 ) { 1475 *p_hot_teams = (kmp_hot_team_ptr_t*)__kmp_allocate( 1476 sizeof(kmp_hot_team_ptr_t) * __kmp_hot_teams_max_level); 1477 (*p_hot_teams)[0].hot_team = root->r.r_hot_team; 1478 (*p_hot_teams)[0].hot_team_nth = 1; // it is either actual or not needed (when active_level > 0) 1479 } 1480 #endif 1481 1482 #if OMPT_SUPPORT 1483 if (ompt_enabled && 1484 ompt_callbacks.ompt_callback(ompt_event_parallel_begin)) { 1485 int team_size = master_set_numthreads; 1486 1487 ompt_callbacks.ompt_callback(ompt_event_parallel_begin)( 1488 ompt_task_id, ompt_frame, ompt_parallel_id, 1489 team_size, unwrapped_task, OMPT_INVOKER(call_context)); 1490 } 1491 #endif 1492 1493 master_th->th.th_ident = loc; 1494 1495 #if OMP_40_ENABLED 1496 if ( master_th->th.th_teams_microtask && 1497 ap && microtask != (microtask_t)__kmp_teams_master && level == teams_level ) { 1498 // AC: This is start of parallel that is nested inside teams construct. 1499 // The team is actual (hot), all workers are ready at the fork barrier. 1500 // No lock needed to initialize the team a bit, then free workers. 1501 parent_team->t.t_ident = loc; 1502 __kmp_alloc_argv_entries( argc, parent_team, TRUE ); 1503 parent_team->t.t_argc = argc; 1504 argv = (void**)parent_team->t.t_argv; 1505 for( i=argc-1; i >= 0; --i ) 1506 /* TODO: revert workaround for Intel(R) 64 tracker #96 */ 1507 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 1508 *argv++ = va_arg( *ap, void * ); 1509 #else 1510 *argv++ = va_arg( ap, void * ); 1511 #endif 1512 /* Increment our nested depth levels, but not increase the serialization */ 1513 if ( parent_team == master_th->th.th_serial_team ) { 1514 // AC: we are in serialized parallel 1515 __kmpc_serialized_parallel(loc, gtid); 1516 KMP_DEBUG_ASSERT( parent_team->t.t_serialized > 1 ); 1517 parent_team->t.t_serialized--; // AC: need this in order enquiry functions 1518 // work correctly, will restore at join time 1519 1520 #if OMPT_SUPPORT 1521 void *dummy; 1522 void **exit_runtime_p; 1523 1524 ompt_lw_taskteam_t lw_taskteam; 1525 1526 if (ompt_enabled) { 1527 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1528 unwrapped_task, ompt_parallel_id); 1529 lw_taskteam.ompt_task_info.task_id = __ompt_task_id_new(gtid); 1530 exit_runtime_p = &(lw_taskteam.ompt_task_info.frame.exit_runtime_frame); 1531 1532 __ompt_lw_taskteam_link(&lw_taskteam, master_th); 1533 1534 #if OMPT_TRACE 1535 /* OMPT implicit task begin */ 1536 my_task_id = lw_taskteam.ompt_task_info.task_id; 1537 my_parallel_id = parent_team->t.ompt_team_info.parallel_id; 1538 if (ompt_callbacks.ompt_callback(ompt_event_implicit_task_begin)) { 1539 ompt_callbacks.ompt_callback(ompt_event_implicit_task_begin)( 1540 my_parallel_id, my_task_id); 1541 } 1542 #endif 1543 1544 /* OMPT state */ 1545 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 1546 } else { 1547 exit_runtime_p = &dummy; 1548 } 1549 #endif 1550 1551 { 1552 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1553 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1554 __kmp_invoke_microtask( microtask, gtid, 0, argc, parent_team->t.t_argv 1555 #if OMPT_SUPPORT 1556 , exit_runtime_p 1557 #endif 1558 ); 1559 } 1560 1561 #if OMPT_SUPPORT 1562 *exit_runtime_p = NULL; 1563 if (ompt_enabled) { 1564 #if OMPT_TRACE 1565 lw_taskteam.ompt_task_info.frame.exit_runtime_frame = NULL; 1566 1567 if (ompt_callbacks.ompt_callback(ompt_event_implicit_task_end)) { 1568 ompt_callbacks.ompt_callback(ompt_event_implicit_task_end)( 1569 ompt_parallel_id, ompt_task_id); 1570 } 1571 1572 __ompt_lw_taskteam_unlink(master_th); 1573 // reset clear the task id only after unlinking the task 1574 lw_taskteam.ompt_task_info.task_id = ompt_task_id_none; 1575 #endif 1576 1577 if (ompt_callbacks.ompt_callback(ompt_event_parallel_end)) { 1578 ompt_callbacks.ompt_callback(ompt_event_parallel_end)( 1579 ompt_parallel_id, ompt_task_id, 1580 OMPT_INVOKER(call_context)); 1581 } 1582 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1583 } 1584 #endif 1585 return TRUE; 1586 } 1587 1588 parent_team->t.t_pkfn = microtask; 1589 #if OMPT_SUPPORT 1590 parent_team->t.ompt_team_info.microtask = unwrapped_task; 1591 #endif 1592 parent_team->t.t_invoke = invoker; 1593 KMP_TEST_THEN_INC32( (kmp_int32*) &root->r.r_in_parallel ); 1594 parent_team->t.t_active_level ++; 1595 parent_team->t.t_level ++; 1596 1597 /* Change number of threads in the team if requested */ 1598 if ( master_set_numthreads ) { // The parallel has num_threads clause 1599 if ( master_set_numthreads < master_th->th.th_teams_size.nth ) { 1600 // AC: only can reduce the number of threads dynamically, cannot increase 1601 kmp_info_t **other_threads = parent_team->t.t_threads; 1602 parent_team->t.t_nproc = master_set_numthreads; 1603 for ( i = 0; i < master_set_numthreads; ++i ) { 1604 other_threads[i]->th.th_team_nproc = master_set_numthreads; 1605 } 1606 // Keep extra threads hot in the team for possible next parallels 1607 } 1608 master_th->th.th_set_nproc = 0; 1609 } 1610 1611 #if USE_DEBUGGER 1612 if ( __kmp_debugging ) { // Let debugger override number of threads. 1613 int nth = __kmp_omp_num_threads( loc ); 1614 if ( nth > 0 ) { // 0 means debugger does not want to change number of threads. 1615 master_set_numthreads = nth; 1616 }; // if 1617 }; // if 1618 #endif 1619 1620 KF_TRACE( 10, ( "__kmp_fork_call: before internal fork: root=%p, team=%p, master_th=%p, gtid=%d\n", root, parent_team, master_th, gtid ) ); 1621 __kmp_internal_fork( loc, gtid, parent_team ); 1622 KF_TRACE( 10, ( "__kmp_fork_call: after internal fork: root=%p, team=%p, master_th=%p, gtid=%d\n", root, parent_team, master_th, gtid ) ); 1623 1624 /* Invoke microtask for MASTER thread */ 1625 KA_TRACE( 20, ("__kmp_fork_call: T#%d(%d:0) invoke microtask = %p\n", 1626 gtid, parent_team->t.t_id, parent_team->t.t_pkfn ) ); 1627 1628 { 1629 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1630 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1631 if (! parent_team->t.t_invoke( gtid )) { 1632 KMP_ASSERT2( 0, "cannot invoke microtask for MASTER thread" ); 1633 } 1634 } 1635 KA_TRACE( 20, ("__kmp_fork_call: T#%d(%d:0) done microtask = %p\n", 1636 gtid, parent_team->t.t_id, parent_team->t.t_pkfn ) ); 1637 KMP_MB(); /* Flush all pending memory write invalidates. */ 1638 1639 KA_TRACE( 20, ("__kmp_fork_call: parallel exit T#%d\n", gtid )); 1640 1641 return TRUE; 1642 } // Parallel closely nested in teams construct 1643 #endif /* OMP_40_ENABLED */ 1644 1645 #if KMP_DEBUG 1646 if ( __kmp_tasking_mode != tskm_immediate_exec ) { 1647 KMP_DEBUG_ASSERT(master_th->th.th_task_team == parent_team->t.t_task_team[master_th->th.th_task_state]); 1648 } 1649 #endif 1650 1651 if ( parent_team->t.t_active_level >= master_th->th.th_current_task->td_icvs.max_active_levels ) { 1652 nthreads = 1; 1653 } else { 1654 #if OMP_40_ENABLED 1655 int enter_teams = ((ap==NULL && active_level==0)||(ap && teams_level>0 && teams_level==level)); 1656 #endif 1657 nthreads = master_set_numthreads ? 1658 master_set_numthreads : get__nproc_2( parent_team, master_tid ); // TODO: get nproc directly from current task 1659 1660 // Check if we need to take forkjoin lock? (no need for serialized parallel out of teams construct). 1661 // This code moved here from __kmp_reserve_threads() to speedup nested serialized parallels. 1662 if (nthreads > 1) { 1663 if ( ( !get__nested(master_th) && (root->r.r_in_parallel 1664 #if OMP_40_ENABLED 1665 && !enter_teams 1666 #endif /* OMP_40_ENABLED */ 1667 ) ) || ( __kmp_library == library_serial ) ) { 1668 KC_TRACE( 10, ( "__kmp_fork_call: T#%d serializing team; requested %d threads\n", 1669 gtid, nthreads )); 1670 nthreads = 1; 1671 } 1672 } 1673 if ( nthreads > 1 ) { 1674 /* determine how many new threads we can use */ 1675 __kmp_acquire_bootstrap_lock( &__kmp_forkjoin_lock ); 1676 1677 nthreads = __kmp_reserve_threads(root, parent_team, master_tid, nthreads 1678 #if OMP_40_ENABLED 1679 /* AC: If we execute teams from parallel region (on host), then teams should be created 1680 but each can only have 1 thread if nesting is disabled. If teams called from serial region, 1681 then teams and their threads should be created regardless of the nesting setting. */ 1682 , enter_teams 1683 #endif /* OMP_40_ENABLED */ 1684 ); 1685 if ( nthreads == 1 ) { 1686 // Free lock for single thread execution here; 1687 // for multi-thread execution it will be freed later 1688 // after team of threads created and initialized 1689 __kmp_release_bootstrap_lock( &__kmp_forkjoin_lock ); 1690 } 1691 } 1692 } 1693 KMP_DEBUG_ASSERT( nthreads > 0 ); 1694 1695 /* If we temporarily changed the set number of threads then restore it now */ 1696 master_th->th.th_set_nproc = 0; 1697 1698 /* create a serialized parallel region? */ 1699 if ( nthreads == 1 ) { 1700 /* josh todo: hypothetical question: what do we do for OS X*? */ 1701 #if KMP_OS_LINUX && ( KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) 1702 void * args[ argc ]; 1703 #else 1704 void * * args = (void**) KMP_ALLOCA( argc * sizeof( void * ) ); 1705 #endif /* KMP_OS_LINUX && ( KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) */ 1706 1707 KA_TRACE( 20, ("__kmp_fork_call: T#%d serializing parallel region\n", gtid )); 1708 1709 __kmpc_serialized_parallel(loc, gtid); 1710 1711 if ( call_context == fork_context_intel ) { 1712 /* TODO this sucks, use the compiler itself to pass args! :) */ 1713 master_th->th.th_serial_team->t.t_ident = loc; 1714 #if OMP_40_ENABLED 1715 if ( !ap ) { 1716 // revert change made in __kmpc_serialized_parallel() 1717 master_th->th.th_serial_team->t.t_level--; 1718 // Get args from parent team for teams construct 1719 1720 #if OMPT_SUPPORT 1721 void *dummy; 1722 void **exit_runtime_p; 1723 1724 ompt_lw_taskteam_t lw_taskteam; 1725 1726 if (ompt_enabled) { 1727 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1728 unwrapped_task, ompt_parallel_id); 1729 lw_taskteam.ompt_task_info.task_id = __ompt_task_id_new(gtid); 1730 exit_runtime_p = &(lw_taskteam.ompt_task_info.frame.exit_runtime_frame); 1731 1732 __ompt_lw_taskteam_link(&lw_taskteam, master_th); 1733 1734 #if OMPT_TRACE 1735 my_task_id = lw_taskteam.ompt_task_info.task_id; 1736 if (ompt_callbacks.ompt_callback(ompt_event_implicit_task_begin)) { 1737 ompt_callbacks.ompt_callback(ompt_event_implicit_task_begin)( 1738 ompt_parallel_id, my_task_id); 1739 } 1740 #endif 1741 1742 /* OMPT state */ 1743 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 1744 } else { 1745 exit_runtime_p = &dummy; 1746 } 1747 #endif 1748 1749 { 1750 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1751 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1752 __kmp_invoke_microtask( microtask, gtid, 0, argc, parent_team->t.t_argv 1753 #if OMPT_SUPPORT 1754 , exit_runtime_p 1755 #endif 1756 ); 1757 } 1758 1759 #if OMPT_SUPPORT 1760 *exit_runtime_p = NULL; 1761 if (ompt_enabled) { 1762 lw_taskteam.ompt_task_info.frame.exit_runtime_frame = NULL; 1763 1764 #if OMPT_TRACE 1765 if (ompt_callbacks.ompt_callback(ompt_event_implicit_task_end)) { 1766 ompt_callbacks.ompt_callback(ompt_event_implicit_task_end)( 1767 ompt_parallel_id, ompt_task_id); 1768 } 1769 #endif 1770 1771 __ompt_lw_taskteam_unlink(master_th); 1772 // reset clear the task id only after unlinking the task 1773 lw_taskteam.ompt_task_info.task_id = ompt_task_id_none; 1774 1775 if (ompt_callbacks.ompt_callback(ompt_event_parallel_end)) { 1776 ompt_callbacks.ompt_callback(ompt_event_parallel_end)( 1777 ompt_parallel_id, ompt_task_id, 1778 OMPT_INVOKER(call_context)); 1779 } 1780 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1781 } 1782 #endif 1783 } else if ( microtask == (microtask_t)__kmp_teams_master ) { 1784 KMP_DEBUG_ASSERT( master_th->th.th_team == master_th->th.th_serial_team ); 1785 team = master_th->th.th_team; 1786 //team->t.t_pkfn = microtask; 1787 team->t.t_invoke = invoker; 1788 __kmp_alloc_argv_entries( argc, team, TRUE ); 1789 team->t.t_argc = argc; 1790 argv = (void**) team->t.t_argv; 1791 if ( ap ) { 1792 for( i=argc-1; i >= 0; --i ) 1793 // TODO: revert workaround for Intel(R) 64 tracker #96 1794 # if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 1795 *argv++ = va_arg( *ap, void * ); 1796 # else 1797 *argv++ = va_arg( ap, void * ); 1798 # endif 1799 } else { 1800 for( i=0; i < argc; ++i ) 1801 // Get args from parent team for teams construct 1802 argv[i] = parent_team->t.t_argv[i]; 1803 } 1804 // AC: revert change made in __kmpc_serialized_parallel() 1805 // because initial code in teams should have level=0 1806 team->t.t_level--; 1807 // AC: call special invoker for outer "parallel" of the teams construct 1808 { 1809 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1810 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1811 invoker(gtid); 1812 } 1813 } else { 1814 #endif /* OMP_40_ENABLED */ 1815 argv = args; 1816 for( i=argc-1; i >= 0; --i ) 1817 // TODO: revert workaround for Intel(R) 64 tracker #96 1818 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 1819 *argv++ = va_arg( *ap, void * ); 1820 #else 1821 *argv++ = va_arg( ap, void * ); 1822 #endif 1823 KMP_MB(); 1824 1825 #if OMPT_SUPPORT 1826 void *dummy; 1827 void **exit_runtime_p; 1828 1829 ompt_lw_taskteam_t lw_taskteam; 1830 1831 if (ompt_enabled) { 1832 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1833 unwrapped_task, ompt_parallel_id); 1834 lw_taskteam.ompt_task_info.task_id = __ompt_task_id_new(gtid); 1835 exit_runtime_p = &(lw_taskteam.ompt_task_info.frame.exit_runtime_frame); 1836 1837 __ompt_lw_taskteam_link(&lw_taskteam, master_th); 1838 1839 #if OMPT_TRACE 1840 /* OMPT implicit task begin */ 1841 my_task_id = lw_taskteam.ompt_task_info.task_id; 1842 my_parallel_id = ompt_parallel_id; 1843 if (ompt_callbacks.ompt_callback(ompt_event_implicit_task_begin)) { 1844 ompt_callbacks.ompt_callback(ompt_event_implicit_task_begin)( 1845 my_parallel_id, my_task_id); 1846 } 1847 #endif 1848 1849 /* OMPT state */ 1850 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 1851 } else { 1852 exit_runtime_p = &dummy; 1853 } 1854 #endif 1855 1856 { 1857 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1858 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1859 __kmp_invoke_microtask( microtask, gtid, 0, argc, args 1860 #if OMPT_SUPPORT 1861 , exit_runtime_p 1862 #endif 1863 ); 1864 } 1865 1866 #if OMPT_SUPPORT 1867 *exit_runtime_p = NULL; 1868 if (ompt_enabled) { 1869 #if OMPT_TRACE 1870 lw_taskteam.ompt_task_info.frame.exit_runtime_frame = NULL; 1871 1872 if (ompt_callbacks.ompt_callback(ompt_event_implicit_task_end)) { 1873 ompt_callbacks.ompt_callback(ompt_event_implicit_task_end)( 1874 my_parallel_id, my_task_id); 1875 } 1876 #endif 1877 1878 __ompt_lw_taskteam_unlink(master_th); 1879 // reset clear the task id only after unlinking the task 1880 lw_taskteam.ompt_task_info.task_id = ompt_task_id_none; 1881 1882 if (ompt_callbacks.ompt_callback(ompt_event_parallel_end)) { 1883 ompt_callbacks.ompt_callback(ompt_event_parallel_end)( 1884 ompt_parallel_id, ompt_task_id, 1885 OMPT_INVOKER(call_context)); 1886 } 1887 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1888 } 1889 #endif 1890 #if OMP_40_ENABLED 1891 } 1892 #endif /* OMP_40_ENABLED */ 1893 } 1894 else if ( call_context == fork_context_gnu ) { 1895 #if OMPT_SUPPORT 1896 ompt_lw_taskteam_t *lwt = (ompt_lw_taskteam_t *) 1897 __kmp_allocate(sizeof(ompt_lw_taskteam_t)); 1898 __ompt_lw_taskteam_init(lwt, master_th, gtid, 1899 unwrapped_task, ompt_parallel_id); 1900 1901 lwt->ompt_task_info.task_id = __ompt_task_id_new(gtid); 1902 lwt->ompt_task_info.frame.exit_runtime_frame = NULL; 1903 __ompt_lw_taskteam_link(lwt, master_th); 1904 #endif 1905 1906 // we were called from GNU native code 1907 KA_TRACE( 20, ("__kmp_fork_call: T#%d serial exit\n", gtid )); 1908 return FALSE; 1909 } 1910 else { 1911 KMP_ASSERT2( call_context < fork_context_last, "__kmp_fork_call: unknown fork_context parameter" ); 1912 } 1913 1914 1915 KA_TRACE( 20, ("__kmp_fork_call: T#%d serial exit\n", gtid )); 1916 KMP_MB(); 1917 return FALSE; 1918 } 1919 1920 // GEH: only modify the executing flag in the case when not serialized 1921 // serialized case is handled in kmpc_serialized_parallel 1922 KF_TRACE( 10, ( "__kmp_fork_call: parent_team_aclevel=%d, master_th=%p, curtask=%p, curtask_max_aclevel=%d\n", 1923 parent_team->t.t_active_level, master_th, master_th->th.th_current_task, 1924 master_th->th.th_current_task->td_icvs.max_active_levels ) ); 1925 // TODO: GEH - cannot do this assertion because root thread not set up as executing 1926 // KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 1 ); 1927 master_th->th.th_current_task->td_flags.executing = 0; 1928 1929 #if OMP_40_ENABLED 1930 if ( !master_th->th.th_teams_microtask || level > teams_level ) 1931 #endif /* OMP_40_ENABLED */ 1932 { 1933 /* Increment our nested depth level */ 1934 KMP_TEST_THEN_INC32( (kmp_int32*) &root->r.r_in_parallel ); 1935 } 1936 1937 // See if we need to make a copy of the ICVs. 1938 int nthreads_icv = master_th->th.th_current_task->td_icvs.nproc; 1939 if ((level+1 < __kmp_nested_nth.used) && (__kmp_nested_nth.nth[level+1] != nthreads_icv)) { 1940 nthreads_icv = __kmp_nested_nth.nth[level+1]; 1941 } 1942 else { 1943 nthreads_icv = 0; // don't update 1944 } 1945 1946 #if OMP_40_ENABLED 1947 // Figure out the proc_bind_policy for the new team. 1948 kmp_proc_bind_t proc_bind = master_th->th.th_set_proc_bind; 1949 kmp_proc_bind_t proc_bind_icv = proc_bind_default; // proc_bind_default means don't update 1950 if ( master_th->th.th_current_task->td_icvs.proc_bind == proc_bind_false ) { 1951 proc_bind = proc_bind_false; 1952 } 1953 else { 1954 if (proc_bind == proc_bind_default) { 1955 // No proc_bind clause specified; use current proc-bind-var for this parallel region 1956 proc_bind = master_th->th.th_current_task->td_icvs.proc_bind; 1957 } 1958 /* else: The proc_bind policy was specified explicitly on parallel clause. This 1959 overrides proc-bind-var for this parallel region, but does not change proc-bind-var. */ 1960 // Figure the value of proc-bind-var for the child threads. 1961 if ((level+1 < __kmp_nested_proc_bind.used) 1962 && (__kmp_nested_proc_bind.bind_types[level+1] != master_th->th.th_current_task->td_icvs.proc_bind)) { 1963 proc_bind_icv = __kmp_nested_proc_bind.bind_types[level+1]; 1964 } 1965 } 1966 1967 // Reset for next parallel region 1968 master_th->th.th_set_proc_bind = proc_bind_default; 1969 #endif /* OMP_40_ENABLED */ 1970 1971 if ((nthreads_icv > 0) 1972 #if OMP_40_ENABLED 1973 || (proc_bind_icv != proc_bind_default) 1974 #endif /* OMP_40_ENABLED */ 1975 ) { 1976 kmp_internal_control_t new_icvs; 1977 copy_icvs(&new_icvs, &master_th->th.th_current_task->td_icvs); 1978 new_icvs.next = NULL; 1979 if (nthreads_icv > 0) { 1980 new_icvs.nproc = nthreads_icv; 1981 } 1982 1983 #if OMP_40_ENABLED 1984 if (proc_bind_icv != proc_bind_default) { 1985 new_icvs.proc_bind = proc_bind_icv; 1986 } 1987 #endif /* OMP_40_ENABLED */ 1988 1989 /* allocate a new parallel team */ 1990 KF_TRACE( 10, ( "__kmp_fork_call: before __kmp_allocate_team\n" ) ); 1991 team = __kmp_allocate_team(root, nthreads, nthreads, 1992 #if OMPT_SUPPORT 1993 ompt_parallel_id, 1994 #endif 1995 #if OMP_40_ENABLED 1996 proc_bind, 1997 #endif 1998 &new_icvs, argc USE_NESTED_HOT_ARG(master_th) ); 1999 } else { 2000 /* allocate a new parallel team */ 2001 KF_TRACE( 10, ( "__kmp_fork_call: before __kmp_allocate_team\n" ) ); 2002 team = __kmp_allocate_team(root, nthreads, nthreads, 2003 #if OMPT_SUPPORT 2004 ompt_parallel_id, 2005 #endif 2006 #if OMP_40_ENABLED 2007 proc_bind, 2008 #endif 2009 &master_th->th.th_current_task->td_icvs, argc 2010 USE_NESTED_HOT_ARG(master_th) ); 2011 } 2012 KF_TRACE( 10, ( "__kmp_fork_call: after __kmp_allocate_team - team = %p\n", team ) ); 2013 2014 /* setup the new team */ 2015 KMP_CHECK_UPDATE(team->t.t_master_tid, master_tid); 2016 KMP_CHECK_UPDATE(team->t.t_master_this_cons, master_this_cons); 2017 KMP_CHECK_UPDATE(team->t.t_ident, loc); 2018 KMP_CHECK_UPDATE(team->t.t_parent, parent_team); 2019 KMP_CHECK_UPDATE_SYNC(team->t.t_pkfn, microtask); 2020 #if OMPT_SUPPORT 2021 KMP_CHECK_UPDATE_SYNC(team->t.ompt_team_info.microtask, unwrapped_task); 2022 #endif 2023 KMP_CHECK_UPDATE(team->t.t_invoke, invoker); /* TODO move this to root, maybe */ 2024 // TODO: parent_team->t.t_level == INT_MAX ??? 2025 #if OMP_40_ENABLED 2026 if ( !master_th->th.th_teams_microtask || level > teams_level ) { 2027 #endif /* OMP_40_ENABLED */ 2028 int new_level = parent_team->t.t_level + 1; 2029 KMP_CHECK_UPDATE(team->t.t_level, new_level); 2030 new_level = parent_team->t.t_active_level + 1; 2031 KMP_CHECK_UPDATE(team->t.t_active_level, new_level); 2032 #if OMP_40_ENABLED 2033 } else { 2034 // AC: Do not increase parallel level at start of the teams construct 2035 int new_level = parent_team->t.t_level; 2036 KMP_CHECK_UPDATE(team->t.t_level, new_level); 2037 new_level = parent_team->t.t_active_level; 2038 KMP_CHECK_UPDATE(team->t.t_active_level, new_level); 2039 } 2040 #endif /* OMP_40_ENABLED */ 2041 kmp_r_sched_t new_sched = get__sched_2(parent_team, master_tid); 2042 if (team->t.t_sched.r_sched_type != new_sched.r_sched_type || team->t.t_sched.chunk != new_sched.chunk) 2043 team->t.t_sched = new_sched; // set master's schedule as new run-time schedule 2044 2045 #if OMP_40_ENABLED 2046 KMP_CHECK_UPDATE(team->t.t_cancel_request, cancel_noreq); 2047 #endif 2048 2049 // Update the floating point rounding in the team if required. 2050 propagateFPControl(team); 2051 2052 if ( __kmp_tasking_mode != tskm_immediate_exec ) { 2053 // Set master's task team to team's task team. Unless this is hot team, it should be NULL. 2054 #if 0 2055 // Patch out an assertion that trips while the runtime seems to operate correctly. 2056 // Avoiding the preconditions that cause the assertion to trip has been promised as a forthcoming patch. 2057 KMP_DEBUG_ASSERT(master_th->th.th_task_team == parent_team->t.t_task_team[master_th->th.th_task_state]); 2058 #endif 2059 KA_TRACE( 20, ( "__kmp_fork_call: Master T#%d pushing task_team %p / team %p, new task_team %p / team %p\n", 2060 __kmp_gtid_from_thread( master_th ), master_th->th.th_task_team, 2061 parent_team, team->t.t_task_team[master_th->th.th_task_state], team ) ); 2062 2063 if ( active_level || master_th->th.th_task_team ) { 2064 // Take a memo of master's task_state 2065 KMP_DEBUG_ASSERT(master_th->th.th_task_state_memo_stack); 2066 if (master_th->th.th_task_state_top >= master_th->th.th_task_state_stack_sz) { // increase size 2067 kmp_uint32 new_size = 2*master_th->th.th_task_state_stack_sz; 2068 kmp_uint8 *old_stack, *new_stack; 2069 kmp_uint32 i; 2070 new_stack = (kmp_uint8 *)__kmp_allocate(new_size); 2071 for (i=0; i<master_th->th.th_task_state_stack_sz; ++i) { 2072 new_stack[i] = master_th->th.th_task_state_memo_stack[i]; 2073 } 2074 for (i=master_th->th.th_task_state_stack_sz; i<new_size; ++i) { // zero-init rest of stack 2075 new_stack[i] = 0; 2076 } 2077 old_stack = master_th->th.th_task_state_memo_stack; 2078 master_th->th.th_task_state_memo_stack = new_stack; 2079 master_th->th.th_task_state_stack_sz = new_size; 2080 __kmp_free(old_stack); 2081 } 2082 // Store master's task_state on stack 2083 master_th->th.th_task_state_memo_stack[master_th->th.th_task_state_top] = master_th->th.th_task_state; 2084 master_th->th.th_task_state_top++; 2085 #if KMP_NESTED_HOT_TEAMS 2086 if (team == master_th->th.th_hot_teams[active_level].hot_team) { // Restore master's nested state if nested hot team 2087 master_th->th.th_task_state = master_th->th.th_task_state_memo_stack[master_th->th.th_task_state_top]; 2088 } 2089 else { 2090 #endif 2091 master_th->th.th_task_state = 0; 2092 #if KMP_NESTED_HOT_TEAMS 2093 } 2094 #endif 2095 } 2096 #if !KMP_NESTED_HOT_TEAMS 2097 KMP_DEBUG_ASSERT((master_th->th.th_task_team == NULL) || (team == root->r.r_hot_team)); 2098 #endif 2099 } 2100 2101 KA_TRACE( 20, ("__kmp_fork_call: T#%d(%d:%d)->(%d:0) created a team of %d threads\n", 2102 gtid, parent_team->t.t_id, team->t.t_master_tid, team->t.t_id, team->t.t_nproc )); 2103 KMP_DEBUG_ASSERT( team != root->r.r_hot_team || 2104 ( team->t.t_master_tid == 0 && 2105 ( team->t.t_parent == root->r.r_root_team || team->t.t_parent->t.t_serialized ) )); 2106 KMP_MB(); 2107 2108 /* now, setup the arguments */ 2109 argv = (void**)team->t.t_argv; 2110 #if OMP_40_ENABLED 2111 if ( ap ) { 2112 #endif /* OMP_40_ENABLED */ 2113 for ( i=argc-1; i >= 0; --i ) { 2114 // TODO: revert workaround for Intel(R) 64 tracker #96 2115 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 2116 void *new_argv = va_arg(*ap, void *); 2117 #else 2118 void *new_argv = va_arg(ap, void *); 2119 #endif 2120 KMP_CHECK_UPDATE(*argv, new_argv); 2121 argv++; 2122 } 2123 #if OMP_40_ENABLED 2124 } else { 2125 for ( i=0; i < argc; ++i ) { 2126 // Get args from parent team for teams construct 2127 KMP_CHECK_UPDATE(argv[i], team->t.t_parent->t.t_argv[i]); 2128 } 2129 } 2130 #endif /* OMP_40_ENABLED */ 2131 2132 /* now actually fork the threads */ 2133 KMP_CHECK_UPDATE(team->t.t_master_active, master_active); 2134 if (!root->r.r_active) // Only do assignment if it prevents cache ping-pong 2135 root->r.r_active = TRUE; 2136 2137 __kmp_fork_team_threads( root, team, master_th, gtid ); 2138 __kmp_setup_icv_copy( team, nthreads, &master_th->th.th_current_task->td_icvs, loc ); 2139 2140 #if OMPT_SUPPORT 2141 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 2142 #endif 2143 2144 __kmp_release_bootstrap_lock( &__kmp_forkjoin_lock ); 2145 2146 #if USE_ITT_BUILD 2147 if ( team->t.t_active_level == 1 // only report frames at level 1 2148 # if OMP_40_ENABLED 2149 && !master_th->th.th_teams_microtask // not in teams construct 2150 # endif /* OMP_40_ENABLED */ 2151 ) { 2152 #if USE_ITT_NOTIFY 2153 if ( ( __itt_frame_submit_v3_ptr || KMP_ITT_DEBUG ) && 2154 ( __kmp_forkjoin_frames_mode == 3 || __kmp_forkjoin_frames_mode == 1 ) ) 2155 { 2156 kmp_uint64 tmp_time = 0; 2157 if ( __itt_get_timestamp_ptr ) 2158 tmp_time = __itt_get_timestamp(); 2159 // Internal fork - report frame begin 2160 master_th->th.th_frame_time = tmp_time; 2161 if ( __kmp_forkjoin_frames_mode == 3 ) 2162 team->t.t_region_time = tmp_time; 2163 } else // only one notification scheme (either "submit" or "forking/joined", not both) 2164 #endif /* USE_ITT_NOTIFY */ 2165 if ( ( __itt_frame_begin_v3_ptr || KMP_ITT_DEBUG ) && 2166 __kmp_forkjoin_frames && !__kmp_forkjoin_frames_mode ) 2167 { // Mark start of "parallel" region for VTune. 2168 __kmp_itt_region_forking(gtid, team->t.t_nproc, 0); 2169 } 2170 } 2171 #endif /* USE_ITT_BUILD */ 2172 2173 /* now go on and do the work */ 2174 KMP_DEBUG_ASSERT( team == __kmp_threads[gtid]->th.th_team ); 2175 KMP_MB(); 2176 KF_TRACE(10, ("__kmp_internal_fork : root=%p, team=%p, master_th=%p, gtid=%d\n", 2177 root, team, master_th, gtid)); 2178 2179 #if USE_ITT_BUILD 2180 if ( __itt_stack_caller_create_ptr ) { 2181 team->t.t_stack_id = __kmp_itt_stack_caller_create(); // create new stack stitching id before entering fork barrier 2182 } 2183 #endif /* USE_ITT_BUILD */ 2184 2185 #if OMP_40_ENABLED 2186 if ( ap ) // AC: skip __kmp_internal_fork at teams construct, let only master threads execute 2187 #endif /* OMP_40_ENABLED */ 2188 { 2189 __kmp_internal_fork( loc, gtid, team ); 2190 KF_TRACE(10, ("__kmp_internal_fork : after : root=%p, team=%p, master_th=%p, gtid=%d\n", 2191 root, team, master_th, gtid)); 2192 } 2193 2194 if (call_context == fork_context_gnu) { 2195 KA_TRACE( 20, ("__kmp_fork_call: parallel exit T#%d\n", gtid )); 2196 return TRUE; 2197 } 2198 2199 /* Invoke microtask for MASTER thread */ 2200 KA_TRACE( 20, ("__kmp_fork_call: T#%d(%d:0) invoke microtask = %p\n", 2201 gtid, team->t.t_id, team->t.t_pkfn ) ); 2202 } // END of timer KMP_fork_call block 2203 2204 { 2205 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 2206 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 2207 if (! team->t.t_invoke( gtid )) { 2208 KMP_ASSERT2( 0, "cannot invoke microtask for MASTER thread" ); 2209 } 2210 } 2211 KA_TRACE( 20, ("__kmp_fork_call: T#%d(%d:0) done microtask = %p\n", 2212 gtid, team->t.t_id, team->t.t_pkfn ) ); 2213 KMP_MB(); /* Flush all pending memory write invalidates. */ 2214 2215 KA_TRACE( 20, ("__kmp_fork_call: parallel exit T#%d\n", gtid )); 2216 2217 #if OMPT_SUPPORT 2218 if (ompt_enabled) { 2219 master_th->th.ompt_thread_info.state = ompt_state_overhead; 2220 } 2221 #endif 2222 2223 return TRUE; 2224 } 2225 2226 #if OMPT_SUPPORT 2227 static inline void 2228 __kmp_join_restore_state( 2229 kmp_info_t *thread, 2230 kmp_team_t *team) 2231 { 2232 // restore state outside the region 2233 thread->th.ompt_thread_info.state = ((team->t.t_serialized) ? 2234 ompt_state_work_serial : ompt_state_work_parallel); 2235 } 2236 2237 static inline void 2238 __kmp_join_ompt( 2239 kmp_info_t *thread, 2240 kmp_team_t *team, 2241 ompt_parallel_id_t parallel_id, 2242 fork_context_e fork_context) 2243 { 2244 ompt_task_info_t *task_info = __ompt_get_taskinfo(0); 2245 if (ompt_callbacks.ompt_callback(ompt_event_parallel_end)) { 2246 ompt_callbacks.ompt_callback(ompt_event_parallel_end)( 2247 parallel_id, task_info->task_id, OMPT_INVOKER(fork_context)); 2248 } 2249 2250 task_info->frame.reenter_runtime_frame = NULL; 2251 __kmp_join_restore_state(thread,team); 2252 } 2253 #endif 2254 2255 void 2256 __kmp_join_call(ident_t *loc, int gtid 2257 #if OMPT_SUPPORT 2258 , enum fork_context_e fork_context 2259 #endif 2260 #if OMP_40_ENABLED 2261 , int exit_teams 2262 #endif /* OMP_40_ENABLED */ 2263 ) 2264 { 2265 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_join_call); 2266 kmp_team_t *team; 2267 kmp_team_t *parent_team; 2268 kmp_info_t *master_th; 2269 kmp_root_t *root; 2270 int master_active; 2271 int i; 2272 2273 KA_TRACE( 20, ("__kmp_join_call: enter T#%d\n", gtid )); 2274 2275 /* setup current data */ 2276 master_th = __kmp_threads[ gtid ]; 2277 root = master_th->th.th_root; 2278 team = master_th->th.th_team; 2279 parent_team = team->t.t_parent; 2280 2281 master_th->th.th_ident = loc; 2282 2283 #if OMPT_SUPPORT 2284 if (ompt_enabled) { 2285 master_th->th.ompt_thread_info.state = ompt_state_overhead; 2286 } 2287 #endif 2288 2289 #if KMP_DEBUG 2290 if (__kmp_tasking_mode != tskm_immediate_exec && !exit_teams) { 2291 KA_TRACE( 20, ( "__kmp_join_call: T#%d, old team = %p old task_team = %p, th_task_team = %p\n", 2292 __kmp_gtid_from_thread( master_th ), team, 2293 team->t.t_task_team[master_th->th.th_task_state], master_th->th.th_task_team) ); 2294 KMP_DEBUG_ASSERT( master_th->th.th_task_team == team->t.t_task_team[master_th->th.th_task_state] ); 2295 } 2296 #endif 2297 2298 if( team->t.t_serialized ) { 2299 #if OMP_40_ENABLED 2300 if ( master_th->th.th_teams_microtask ) { 2301 // We are in teams construct 2302 int level = team->t.t_level; 2303 int tlevel = master_th->th.th_teams_level; 2304 if ( level == tlevel ) { 2305 // AC: we haven't incremented it earlier at start of teams construct, 2306 // so do it here - at the end of teams construct 2307 team->t.t_level++; 2308 } else if ( level == tlevel + 1 ) { 2309 // AC: we are exiting parallel inside teams, need to increment serialization 2310 // in order to restore it in the next call to __kmpc_end_serialized_parallel 2311 team->t.t_serialized++; 2312 } 2313 } 2314 #endif /* OMP_40_ENABLED */ 2315 __kmpc_end_serialized_parallel( loc, gtid ); 2316 2317 #if OMPT_SUPPORT 2318 if (ompt_enabled) { 2319 __kmp_join_restore_state(master_th, parent_team); 2320 } 2321 #endif 2322 2323 return; 2324 } 2325 2326 master_active = team->t.t_master_active; 2327 2328 #if OMP_40_ENABLED 2329 if (!exit_teams) 2330 #endif /* OMP_40_ENABLED */ 2331 { 2332 // AC: No barrier for internal teams at exit from teams construct. 2333 // But there is barrier for external team (league). 2334 __kmp_internal_join( loc, gtid, team ); 2335 } 2336 #if OMP_40_ENABLED 2337 else { 2338 master_th->th.th_task_state = 0; // AC: no tasking in teams (out of any parallel) 2339 } 2340 #endif /* OMP_40_ENABLED */ 2341 2342 KMP_MB(); 2343 2344 #if OMPT_SUPPORT 2345 ompt_parallel_id_t parallel_id = team->t.ompt_team_info.parallel_id; 2346 #endif 2347 2348 #if USE_ITT_BUILD 2349 if ( __itt_stack_caller_create_ptr ) { 2350 __kmp_itt_stack_caller_destroy( (__itt_caller)team->t.t_stack_id ); // destroy the stack stitching id after join barrier 2351 } 2352 2353 // Mark end of "parallel" region for VTune. 2354 if ( team->t.t_active_level == 1 2355 # if OMP_40_ENABLED 2356 && !master_th->th.th_teams_microtask /* not in teams construct */ 2357 # endif /* OMP_40_ENABLED */ 2358 ) { 2359 master_th->th.th_ident = loc; 2360 // only one notification scheme (either "submit" or "forking/joined", not both) 2361 if ( ( __itt_frame_submit_v3_ptr || KMP_ITT_DEBUG ) && __kmp_forkjoin_frames_mode == 3 ) 2362 __kmp_itt_frame_submit( gtid, team->t.t_region_time, master_th->th.th_frame_time, 2363 0, loc, master_th->th.th_team_nproc, 1 ); 2364 else if ( ( __itt_frame_end_v3_ptr || KMP_ITT_DEBUG ) && 2365 ! __kmp_forkjoin_frames_mode && __kmp_forkjoin_frames ) 2366 __kmp_itt_region_joined( gtid ); 2367 } // active_level == 1 2368 #endif /* USE_ITT_BUILD */ 2369 2370 #if OMP_40_ENABLED 2371 if ( master_th->th.th_teams_microtask && 2372 !exit_teams && 2373 team->t.t_pkfn != (microtask_t)__kmp_teams_master && 2374 team->t.t_level == master_th->th.th_teams_level + 1 ) { 2375 // AC: We need to leave the team structure intact at the end 2376 // of parallel inside the teams construct, so that at the next 2377 // parallel same (hot) team works, only adjust nesting levels 2378 2379 /* Decrement our nested depth level */ 2380 team->t.t_level --; 2381 team->t.t_active_level --; 2382 KMP_TEST_THEN_DEC32( (kmp_int32*) &root->r.r_in_parallel ); 2383 2384 /* Restore number of threads in the team if needed */ 2385 if ( master_th->th.th_team_nproc < master_th->th.th_teams_size.nth ) { 2386 int old_num = master_th->th.th_team_nproc; 2387 int new_num = master_th->th.th_teams_size.nth; 2388 kmp_info_t **other_threads = team->t.t_threads; 2389 team->t.t_nproc = new_num; 2390 for ( i = 0; i < old_num; ++i ) { 2391 other_threads[i]->th.th_team_nproc = new_num; 2392 } 2393 // Adjust states of non-used threads of the team 2394 for ( i = old_num; i < new_num; ++i ) { 2395 // Re-initialize thread's barrier data. 2396 int b; 2397 kmp_balign_t * balign = other_threads[i]->th.th_bar; 2398 for ( b = 0; b < bs_last_barrier; ++ b ) { 2399 balign[ b ].bb.b_arrived = team->t.t_bar[ b ].b_arrived; 2400 KMP_DEBUG_ASSERT(balign[ b ].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 2401 #if USE_DEBUGGER 2402 balign[ b ].bb.b_worker_arrived = team->t.t_bar[ b ].b_team_arrived; 2403 #endif 2404 } 2405 if ( __kmp_tasking_mode != tskm_immediate_exec ) { 2406 // Synchronize thread's task state 2407 other_threads[i]->th.th_task_state = master_th->th.th_task_state; 2408 } 2409 } 2410 } 2411 2412 #if OMPT_SUPPORT 2413 if (ompt_enabled) { 2414 __kmp_join_ompt(master_th, parent_team, parallel_id, fork_context); 2415 } 2416 #endif 2417 2418 return; 2419 } 2420 #endif /* OMP_40_ENABLED */ 2421 2422 /* do cleanup and restore the parent team */ 2423 master_th->th.th_info .ds.ds_tid = team->t.t_master_tid; 2424 master_th->th.th_local.this_construct = team->t.t_master_this_cons; 2425 2426 master_th->th.th_dispatch = 2427 & parent_team->t.t_dispatch[ team->t.t_master_tid ]; 2428 2429 /* jc: The following lock has instructions with REL and ACQ semantics, 2430 separating the parallel user code called in this parallel region 2431 from the serial user code called after this function returns. 2432 */ 2433 __kmp_acquire_bootstrap_lock( &__kmp_forkjoin_lock ); 2434 2435 #if OMP_40_ENABLED 2436 if ( !master_th->th.th_teams_microtask || team->t.t_level > master_th->th.th_teams_level ) 2437 #endif /* OMP_40_ENABLED */ 2438 { 2439 /* Decrement our nested depth level */ 2440 KMP_TEST_THEN_DEC32( (kmp_int32*) &root->r.r_in_parallel ); 2441 } 2442 KMP_DEBUG_ASSERT( root->r.r_in_parallel >= 0 ); 2443 2444 #if OMPT_SUPPORT && OMPT_TRACE 2445 if(ompt_enabled){ 2446 ompt_task_info_t *task_info = __ompt_get_taskinfo(0); 2447 if (ompt_callbacks.ompt_callback(ompt_event_implicit_task_end)) { 2448 ompt_callbacks.ompt_callback(ompt_event_implicit_task_end)( 2449 parallel_id, task_info->task_id); 2450 } 2451 task_info->frame.exit_runtime_frame = NULL; 2452 task_info->task_id = 0; 2453 } 2454 #endif 2455 2456 KF_TRACE( 10, ("__kmp_join_call1: T#%d, this_thread=%p team=%p\n", 2457 0, master_th, team ) ); 2458 __kmp_pop_current_task_from_thread( master_th ); 2459 2460 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 2461 // 2462 // Restore master thread's partition. 2463 // 2464 master_th->th.th_first_place = team->t.t_first_place; 2465 master_th->th.th_last_place = team->t.t_last_place; 2466 #endif /* OMP_40_ENABLED */ 2467 2468 updateHWFPControl (team); 2469 2470 if ( root->r.r_active != master_active ) 2471 root->r.r_active = master_active; 2472 2473 __kmp_free_team( root, team USE_NESTED_HOT_ARG(master_th) ); // this will free worker threads 2474 2475 /* this race was fun to find. make sure the following is in the critical 2476 * region otherwise assertions may fail occasionally since the old team 2477 * may be reallocated and the hierarchy appears inconsistent. it is 2478 * actually safe to run and won't cause any bugs, but will cause those 2479 * assertion failures. it's only one deref&assign so might as well put this 2480 * in the critical region */ 2481 master_th->th.th_team = parent_team; 2482 master_th->th.th_team_nproc = parent_team->t.t_nproc; 2483 master_th->th.th_team_master = parent_team->t.t_threads[0]; 2484 master_th->th.th_team_serialized = parent_team->t.t_serialized; 2485 2486 /* restore serialized team, if need be */ 2487 if( parent_team->t.t_serialized && 2488 parent_team != master_th->th.th_serial_team && 2489 parent_team != root->r.r_root_team ) { 2490 __kmp_free_team( root, master_th->th.th_serial_team USE_NESTED_HOT_ARG(NULL) ); 2491 master_th->th.th_serial_team = parent_team; 2492 } 2493 2494 if ( __kmp_tasking_mode != tskm_immediate_exec ) { 2495 if (master_th->th.th_task_state_top > 0) { // Restore task state from memo stack 2496 KMP_DEBUG_ASSERT(master_th->th.th_task_state_memo_stack); 2497 // Remember master's state if we re-use this nested hot team 2498 master_th->th.th_task_state_memo_stack[master_th->th.th_task_state_top] = master_th->th.th_task_state; 2499 --master_th->th.th_task_state_top; // pop 2500 // Now restore state at this level 2501 master_th->th.th_task_state = master_th->th.th_task_state_memo_stack[master_th->th.th_task_state_top]; 2502 } 2503 // Copy the task team from the parent team to the master thread 2504 master_th->th.th_task_team = parent_team->t.t_task_team[master_th->th.th_task_state]; 2505 KA_TRACE( 20, ( "__kmp_join_call: Master T#%d restoring task_team %p / team %p\n", 2506 __kmp_gtid_from_thread( master_th ), master_th->th.th_task_team, parent_team ) ); 2507 } 2508 2509 // TODO: GEH - cannot do this assertion because root thread not set up as executing 2510 // KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 0 ); 2511 master_th->th.th_current_task->td_flags.executing = 1; 2512 2513 __kmp_release_bootstrap_lock( &__kmp_forkjoin_lock ); 2514 2515 #if OMPT_SUPPORT 2516 if (ompt_enabled) { 2517 __kmp_join_ompt(master_th, parent_team, parallel_id, fork_context); 2518 } 2519 #endif 2520 2521 KMP_MB(); 2522 KA_TRACE( 20, ("__kmp_join_call: exit T#%d\n", gtid )); 2523 } 2524 2525 /* ------------------------------------------------------------------------ */ 2526 /* ------------------------------------------------------------------------ */ 2527 2528 /* Check whether we should push an internal control record onto the 2529 serial team stack. If so, do it. */ 2530 void 2531 __kmp_save_internal_controls ( kmp_info_t * thread ) 2532 { 2533 2534 if ( thread->th.th_team != thread->th.th_serial_team ) { 2535 return; 2536 } 2537 if (thread->th.th_team->t.t_serialized > 1) { 2538 int push = 0; 2539 2540 if (thread->th.th_team->t.t_control_stack_top == NULL) { 2541 push = 1; 2542 } else { 2543 if ( thread->th.th_team->t.t_control_stack_top->serial_nesting_level != 2544 thread->th.th_team->t.t_serialized ) { 2545 push = 1; 2546 } 2547 } 2548 if (push) { /* push a record on the serial team's stack */ 2549 kmp_internal_control_t * control = (kmp_internal_control_t *) __kmp_allocate(sizeof(kmp_internal_control_t)); 2550 2551 copy_icvs( control, & thread->th.th_current_task->td_icvs ); 2552 2553 control->serial_nesting_level = thread->th.th_team->t.t_serialized; 2554 2555 control->next = thread->th.th_team->t.t_control_stack_top; 2556 thread->th.th_team->t.t_control_stack_top = control; 2557 } 2558 } 2559 } 2560 2561 /* Changes set_nproc */ 2562 void 2563 __kmp_set_num_threads( int new_nth, int gtid ) 2564 { 2565 kmp_info_t *thread; 2566 kmp_root_t *root; 2567 2568 KF_TRACE( 10, ("__kmp_set_num_threads: new __kmp_nth = %d\n", new_nth )); 2569 KMP_DEBUG_ASSERT( __kmp_init_serial ); 2570 2571 if (new_nth < 1) 2572 new_nth = 1; 2573 else if (new_nth > __kmp_max_nth) 2574 new_nth = __kmp_max_nth; 2575 2576 KMP_COUNT_VALUE(OMP_set_numthreads, new_nth); 2577 thread = __kmp_threads[gtid]; 2578 2579 __kmp_save_internal_controls( thread ); 2580 2581 set__nproc( thread, new_nth ); 2582 2583 // 2584 // If this omp_set_num_threads() call will cause the hot team size to be 2585 // reduced (in the absence of a num_threads clause), then reduce it now, 2586 // rather than waiting for the next parallel region. 2587 // 2588 root = thread->th.th_root; 2589 if ( __kmp_init_parallel && ( ! root->r.r_active ) 2590 && ( root->r.r_hot_team->t.t_nproc > new_nth ) 2591 #if KMP_NESTED_HOT_TEAMS 2592 && __kmp_hot_teams_max_level && !__kmp_hot_teams_mode 2593 #endif 2594 ) { 2595 kmp_team_t *hot_team = root->r.r_hot_team; 2596 int f; 2597 2598 __kmp_acquire_bootstrap_lock( &__kmp_forkjoin_lock ); 2599 2600 // Release the extra threads we don't need any more. 2601 for ( f = new_nth; f < hot_team->t.t_nproc; f++ ) { 2602 KMP_DEBUG_ASSERT( hot_team->t.t_threads[f] != NULL ); 2603 if ( __kmp_tasking_mode != tskm_immediate_exec) { 2604 // When decreasing team size, threads no longer in the team should unref task team. 2605 hot_team->t.t_threads[f]->th.th_task_team = NULL; 2606 } 2607 __kmp_free_thread( hot_team->t.t_threads[f] ); 2608 hot_team->t.t_threads[f] = NULL; 2609 } 2610 hot_team->t.t_nproc = new_nth; 2611 #if KMP_NESTED_HOT_TEAMS 2612 if( thread->th.th_hot_teams ) { 2613 KMP_DEBUG_ASSERT( hot_team == thread->th.th_hot_teams[0].hot_team ); 2614 thread->th.th_hot_teams[0].hot_team_nth = new_nth; 2615 } 2616 #endif 2617 2618 __kmp_release_bootstrap_lock( &__kmp_forkjoin_lock ); 2619 2620 // 2621 // Update the t_nproc field in the threads that are still active. 2622 // 2623 for( f=0 ; f < new_nth; f++ ) { 2624 KMP_DEBUG_ASSERT( hot_team->t.t_threads[f] != NULL ); 2625 hot_team->t.t_threads[f]->th.th_team_nproc = new_nth; 2626 } 2627 // Special flag in case omp_set_num_threads() call 2628 hot_team->t.t_size_changed = -1; 2629 } 2630 } 2631 2632 /* Changes max_active_levels */ 2633 void 2634 __kmp_set_max_active_levels( int gtid, int max_active_levels ) 2635 { 2636 kmp_info_t *thread; 2637 2638 KF_TRACE( 10, ( "__kmp_set_max_active_levels: new max_active_levels for thread %d = (%d)\n", gtid, max_active_levels ) ); 2639 KMP_DEBUG_ASSERT( __kmp_init_serial ); 2640 2641 // validate max_active_levels 2642 if( max_active_levels < 0 ) { 2643 KMP_WARNING( ActiveLevelsNegative, max_active_levels ); 2644 // We ignore this call if the user has specified a negative value. 2645 // The current setting won't be changed. The last valid setting will be used. 2646 // A warning will be issued (if warnings are allowed as controlled by the KMP_WARNINGS env var). 2647 KF_TRACE( 10, ( "__kmp_set_max_active_levels: the call is ignored: new max_active_levels for thread %d = (%d)\n", gtid, max_active_levels ) ); 2648 return; 2649 } 2650 if( max_active_levels <= KMP_MAX_ACTIVE_LEVELS_LIMIT ) { 2651 // it's OK, the max_active_levels is within the valid range: [ 0; KMP_MAX_ACTIVE_LEVELS_LIMIT ] 2652 // We allow a zero value. (implementation defined behavior) 2653 } else { 2654 KMP_WARNING( ActiveLevelsExceedLimit, max_active_levels, KMP_MAX_ACTIVE_LEVELS_LIMIT ); 2655 max_active_levels = KMP_MAX_ACTIVE_LEVELS_LIMIT; 2656 // Current upper limit is MAX_INT. (implementation defined behavior) 2657 // If the input exceeds the upper limit, we correct the input to be the upper limit. (implementation defined behavior) 2658 // Actually, the flow should never get here until we use MAX_INT limit. 2659 } 2660 KF_TRACE( 10, ( "__kmp_set_max_active_levels: after validation: new max_active_levels for thread %d = (%d)\n", gtid, max_active_levels ) ); 2661 2662 thread = __kmp_threads[ gtid ]; 2663 2664 __kmp_save_internal_controls( thread ); 2665 2666 set__max_active_levels( thread, max_active_levels ); 2667 2668 } 2669 2670 /* Gets max_active_levels */ 2671 int 2672 __kmp_get_max_active_levels( int gtid ) 2673 { 2674 kmp_info_t *thread; 2675 2676 KF_TRACE( 10, ( "__kmp_get_max_active_levels: thread %d\n", gtid ) ); 2677 KMP_DEBUG_ASSERT( __kmp_init_serial ); 2678 2679 thread = __kmp_threads[ gtid ]; 2680 KMP_DEBUG_ASSERT( thread->th.th_current_task ); 2681 KF_TRACE( 10, ( "__kmp_get_max_active_levels: thread %d, curtask=%p, curtask_maxaclevel=%d\n", 2682 gtid, thread->th.th_current_task, thread->th.th_current_task->td_icvs.max_active_levels ) ); 2683 return thread->th.th_current_task->td_icvs.max_active_levels; 2684 } 2685 2686 /* Changes def_sched_var ICV values (run-time schedule kind and chunk) */ 2687 void 2688 __kmp_set_schedule( int gtid, kmp_sched_t kind, int chunk ) 2689 { 2690 kmp_info_t *thread; 2691 // kmp_team_t *team; 2692 2693 KF_TRACE( 10, ("__kmp_set_schedule: new schedule for thread %d = (%d, %d)\n", gtid, (int)kind, chunk )); 2694 KMP_DEBUG_ASSERT( __kmp_init_serial ); 2695 2696 // Check if the kind parameter is valid, correct if needed. 2697 // Valid parameters should fit in one of two intervals - standard or extended: 2698 // <lower>, <valid>, <upper_std>, <lower_ext>, <valid>, <upper> 2699 // 2008-01-25: 0, 1 - 4, 5, 100, 101 - 102, 103 2700 if ( kind <= kmp_sched_lower || kind >= kmp_sched_upper || 2701 ( kind <= kmp_sched_lower_ext && kind >= kmp_sched_upper_std ) ) 2702 { 2703 // TODO: Hint needs attention in case we change the default schedule. 2704 __kmp_msg( 2705 kmp_ms_warning, 2706 KMP_MSG( ScheduleKindOutOfRange, kind ), 2707 KMP_HNT( DefaultScheduleKindUsed, "static, no chunk" ), 2708 __kmp_msg_null 2709 ); 2710 kind = kmp_sched_default; 2711 chunk = 0; // ignore chunk value in case of bad kind 2712 } 2713 2714 thread = __kmp_threads[ gtid ]; 2715 2716 __kmp_save_internal_controls( thread ); 2717 2718 if ( kind < kmp_sched_upper_std ) { 2719 if ( kind == kmp_sched_static && chunk < KMP_DEFAULT_CHUNK ) { 2720 // differ static chunked vs. unchunked: 2721 // chunk should be invalid to indicate unchunked schedule (which is the default) 2722 thread->th.th_current_task->td_icvs.sched.r_sched_type = kmp_sch_static; 2723 } else { 2724 thread->th.th_current_task->td_icvs.sched.r_sched_type = __kmp_sch_map[ kind - kmp_sched_lower - 1 ]; 2725 } 2726 } else { 2727 // __kmp_sch_map[ kind - kmp_sched_lower_ext + kmp_sched_upper_std - kmp_sched_lower - 2 ]; 2728 thread->th.th_current_task->td_icvs.sched.r_sched_type = 2729 __kmp_sch_map[ kind - kmp_sched_lower_ext + kmp_sched_upper_std - kmp_sched_lower - 2 ]; 2730 } 2731 if ( kind == kmp_sched_auto ) { 2732 // ignore parameter chunk for schedule auto 2733 thread->th.th_current_task->td_icvs.sched.chunk = KMP_DEFAULT_CHUNK; 2734 } else { 2735 thread->th.th_current_task->td_icvs.sched.chunk = chunk; 2736 } 2737 } 2738 2739 /* Gets def_sched_var ICV values */ 2740 void 2741 __kmp_get_schedule( int gtid, kmp_sched_t * kind, int * chunk ) 2742 { 2743 kmp_info_t *thread; 2744 enum sched_type th_type; 2745 2746 KF_TRACE( 10, ("__kmp_get_schedule: thread %d\n", gtid )); 2747 KMP_DEBUG_ASSERT( __kmp_init_serial ); 2748 2749 thread = __kmp_threads[ gtid ]; 2750 2751 th_type = thread->th.th_current_task->td_icvs.sched.r_sched_type; 2752 2753 switch ( th_type ) { 2754 case kmp_sch_static: 2755 case kmp_sch_static_greedy: 2756 case kmp_sch_static_balanced: 2757 *kind = kmp_sched_static; 2758 *chunk = 0; // chunk was not set, try to show this fact via zero value 2759 return; 2760 case kmp_sch_static_chunked: 2761 *kind = kmp_sched_static; 2762 break; 2763 case kmp_sch_dynamic_chunked: 2764 *kind = kmp_sched_dynamic; 2765 break; 2766 case kmp_sch_guided_chunked: 2767 case kmp_sch_guided_iterative_chunked: 2768 case kmp_sch_guided_analytical_chunked: 2769 *kind = kmp_sched_guided; 2770 break; 2771 case kmp_sch_auto: 2772 *kind = kmp_sched_auto; 2773 break; 2774 case kmp_sch_trapezoidal: 2775 *kind = kmp_sched_trapezoidal; 2776 break; 2777 #if KMP_STATIC_STEAL_ENABLED 2778 case kmp_sch_static_steal: 2779 *kind = kmp_sched_static_steal; 2780 break; 2781 #endif 2782 default: 2783 KMP_FATAL( UnknownSchedulingType, th_type ); 2784 } 2785 2786 *chunk = thread->th.th_current_task->td_icvs.sched.chunk; 2787 } 2788 2789 int 2790 __kmp_get_ancestor_thread_num( int gtid, int level ) { 2791 2792 int ii, dd; 2793 kmp_team_t *team; 2794 kmp_info_t *thr; 2795 2796 KF_TRACE( 10, ("__kmp_get_ancestor_thread_num: thread %d %d\n", gtid, level )); 2797 KMP_DEBUG_ASSERT( __kmp_init_serial ); 2798 2799 // validate level 2800 if( level == 0 ) return 0; 2801 if( level < 0 ) return -1; 2802 thr = __kmp_threads[ gtid ]; 2803 team = thr->th.th_team; 2804 ii = team->t.t_level; 2805 if( level > ii ) return -1; 2806 2807 #if OMP_40_ENABLED 2808 if( thr->th.th_teams_microtask ) { 2809 // AC: we are in teams region where multiple nested teams have same level 2810 int tlevel = thr->th.th_teams_level; // the level of the teams construct 2811 if( level <= tlevel ) { // otherwise usual algorithm works (will not touch the teams) 2812 KMP_DEBUG_ASSERT( ii >= tlevel ); 2813 // AC: As we need to pass by the teams league, we need to artificially increase ii 2814 if ( ii == tlevel ) { 2815 ii += 2; // three teams have same level 2816 } else { 2817 ii ++; // two teams have same level 2818 } 2819 } 2820 } 2821 #endif 2822 2823 if( ii == level ) return __kmp_tid_from_gtid( gtid ); 2824 2825 dd = team->t.t_serialized; 2826 level++; 2827 while( ii > level ) 2828 { 2829 for( dd = team->t.t_serialized; ( dd > 0 ) && ( ii > level ); dd--, ii-- ) 2830 { 2831 } 2832 if( ( team->t.t_serialized ) && ( !dd ) ) { 2833 team = team->t.t_parent; 2834 continue; 2835 } 2836 if( ii > level ) { 2837 team = team->t.t_parent; 2838 dd = team->t.t_serialized; 2839 ii--; 2840 } 2841 } 2842 2843 return ( dd > 1 ) ? ( 0 ) : ( team->t.t_master_tid ); 2844 } 2845 2846 int 2847 __kmp_get_team_size( int gtid, int level ) { 2848 2849 int ii, dd; 2850 kmp_team_t *team; 2851 kmp_info_t *thr; 2852 2853 KF_TRACE( 10, ("__kmp_get_team_size: thread %d %d\n", gtid, level )); 2854 KMP_DEBUG_ASSERT( __kmp_init_serial ); 2855 2856 // validate level 2857 if( level == 0 ) return 1; 2858 if( level < 0 ) return -1; 2859 thr = __kmp_threads[ gtid ]; 2860 team = thr->th.th_team; 2861 ii = team->t.t_level; 2862 if( level > ii ) return -1; 2863 2864 #if OMP_40_ENABLED 2865 if( thr->th.th_teams_microtask ) { 2866 // AC: we are in teams region where multiple nested teams have same level 2867 int tlevel = thr->th.th_teams_level; // the level of the teams construct 2868 if( level <= tlevel ) { // otherwise usual algorithm works (will not touch the teams) 2869 KMP_DEBUG_ASSERT( ii >= tlevel ); 2870 // AC: As we need to pass by the teams league, we need to artificially increase ii 2871 if ( ii == tlevel ) { 2872 ii += 2; // three teams have same level 2873 } else { 2874 ii ++; // two teams have same level 2875 } 2876 } 2877 } 2878 #endif 2879 2880 while( ii > level ) 2881 { 2882 for( dd = team->t.t_serialized; ( dd > 0 ) && ( ii > level ); dd--, ii-- ) 2883 { 2884 } 2885 if( team->t.t_serialized && ( !dd ) ) { 2886 team = team->t.t_parent; 2887 continue; 2888 } 2889 if( ii > level ) { 2890 team = team->t.t_parent; 2891 ii--; 2892 } 2893 } 2894 2895 return team->t.t_nproc; 2896 } 2897 2898 kmp_r_sched_t 2899 __kmp_get_schedule_global() { 2900 // This routine created because pairs (__kmp_sched, __kmp_chunk) and (__kmp_static, __kmp_guided) 2901 // may be changed by kmp_set_defaults independently. So one can get the updated schedule here. 2902 2903 kmp_r_sched_t r_sched; 2904 2905 // create schedule from 4 globals: __kmp_sched, __kmp_chunk, __kmp_static, __kmp_guided 2906 // __kmp_sched should keep original value, so that user can set KMP_SCHEDULE multiple times, 2907 // and thus have different run-time schedules in different roots (even in OMP 2.5) 2908 if ( __kmp_sched == kmp_sch_static ) { 2909 r_sched.r_sched_type = __kmp_static; // replace STATIC with more detailed schedule (balanced or greedy) 2910 } else if ( __kmp_sched == kmp_sch_guided_chunked ) { 2911 r_sched.r_sched_type = __kmp_guided; // replace GUIDED with more detailed schedule (iterative or analytical) 2912 } else { 2913 r_sched.r_sched_type = __kmp_sched; // (STATIC_CHUNKED), or (DYNAMIC_CHUNKED), or other 2914 } 2915 2916 if ( __kmp_chunk < KMP_DEFAULT_CHUNK ) { // __kmp_chunk may be wrong here (if it was not ever set) 2917 r_sched.chunk = KMP_DEFAULT_CHUNK; 2918 } else { 2919 r_sched.chunk = __kmp_chunk; 2920 } 2921 2922 return r_sched; 2923 } 2924 2925 /* ------------------------------------------------------------------------ */ 2926 /* ------------------------------------------------------------------------ */ 2927 2928 2929 /* 2930 * Allocate (realloc == FALSE) * or reallocate (realloc == TRUE) 2931 * at least argc number of *t_argv entries for the requested team. 2932 */ 2933 static void 2934 __kmp_alloc_argv_entries( int argc, kmp_team_t *team, int realloc ) 2935 { 2936 2937 KMP_DEBUG_ASSERT( team ); 2938 if( !realloc || argc > team->t.t_max_argc ) { 2939 2940 KA_TRACE( 100, ( "__kmp_alloc_argv_entries: team %d: needed entries=%d, current entries=%d\n", 2941 team->t.t_id, argc, ( realloc ) ? team->t.t_max_argc : 0 )); 2942 /* if previously allocated heap space for args, free them */ 2943 if ( realloc && team->t.t_argv != &team->t.t_inline_argv[0] ) 2944 __kmp_free( (void *) team->t.t_argv ); 2945 2946 if ( argc <= KMP_INLINE_ARGV_ENTRIES ) { 2947 /* use unused space in the cache line for arguments */ 2948 team->t.t_max_argc = KMP_INLINE_ARGV_ENTRIES; 2949 KA_TRACE( 100, ( "__kmp_alloc_argv_entries: team %d: inline allocate %d argv entries\n", 2950 team->t.t_id, team->t.t_max_argc )); 2951 team->t.t_argv = &team->t.t_inline_argv[0]; 2952 if ( __kmp_storage_map ) { 2953 __kmp_print_storage_map_gtid( -1, &team->t.t_inline_argv[0], 2954 &team->t.t_inline_argv[KMP_INLINE_ARGV_ENTRIES], 2955 (sizeof(void *) * KMP_INLINE_ARGV_ENTRIES), 2956 "team_%d.t_inline_argv", 2957 team->t.t_id ); 2958 } 2959 } else { 2960 /* allocate space for arguments in the heap */ 2961 team->t.t_max_argc = ( argc <= (KMP_MIN_MALLOC_ARGV_ENTRIES >> 1 )) ? 2962 KMP_MIN_MALLOC_ARGV_ENTRIES : 2 * argc; 2963 KA_TRACE( 100, ( "__kmp_alloc_argv_entries: team %d: dynamic allocate %d argv entries\n", 2964 team->t.t_id, team->t.t_max_argc )); 2965 team->t.t_argv = (void**) __kmp_page_allocate( sizeof(void*) * team->t.t_max_argc ); 2966 if ( __kmp_storage_map ) { 2967 __kmp_print_storage_map_gtid( -1, &team->t.t_argv[0], &team->t.t_argv[team->t.t_max_argc], 2968 sizeof(void *) * team->t.t_max_argc, "team_%d.t_argv", 2969 team->t.t_id ); 2970 } 2971 } 2972 } 2973 } 2974 2975 static void 2976 __kmp_allocate_team_arrays(kmp_team_t *team, int max_nth) 2977 { 2978 int i; 2979 int num_disp_buff = max_nth > 1 ? __kmp_dispatch_num_buffers : 2; 2980 team->t.t_threads = (kmp_info_t**) __kmp_allocate( sizeof(kmp_info_t*) * max_nth ); 2981 team->t.t_disp_buffer = (dispatch_shared_info_t*) 2982 __kmp_allocate( sizeof(dispatch_shared_info_t) * num_disp_buff ); 2983 team->t.t_dispatch = (kmp_disp_t*) __kmp_allocate( sizeof(kmp_disp_t) * max_nth ); 2984 team->t.t_implicit_task_taskdata = (kmp_taskdata_t*) __kmp_allocate( sizeof(kmp_taskdata_t) * max_nth ); 2985 team->t.t_max_nproc = max_nth; 2986 2987 /* setup dispatch buffers */ 2988 for(i = 0 ; i < num_disp_buff; ++i) { 2989 team->t.t_disp_buffer[i].buffer_index = i; 2990 #if OMP_45_ENABLED 2991 team->t.t_disp_buffer[i].doacross_buf_idx = i; 2992 #endif 2993 } 2994 } 2995 2996 static void 2997 __kmp_free_team_arrays(kmp_team_t *team) { 2998 /* Note: this does not free the threads in t_threads (__kmp_free_threads) */ 2999 int i; 3000 for ( i = 0; i < team->t.t_max_nproc; ++ i ) { 3001 if ( team->t.t_dispatch[ i ].th_disp_buffer != NULL ) { 3002 __kmp_free( team->t.t_dispatch[ i ].th_disp_buffer ); 3003 team->t.t_dispatch[ i ].th_disp_buffer = NULL; 3004 }; // if 3005 }; // for 3006 __kmp_free(team->t.t_threads); 3007 __kmp_free(team->t.t_disp_buffer); 3008 __kmp_free(team->t.t_dispatch); 3009 __kmp_free(team->t.t_implicit_task_taskdata); 3010 team->t.t_threads = NULL; 3011 team->t.t_disp_buffer = NULL; 3012 team->t.t_dispatch = NULL; 3013 team->t.t_implicit_task_taskdata = 0; 3014 } 3015 3016 static void 3017 __kmp_reallocate_team_arrays(kmp_team_t *team, int max_nth) { 3018 kmp_info_t **oldThreads = team->t.t_threads; 3019 3020 __kmp_free(team->t.t_disp_buffer); 3021 __kmp_free(team->t.t_dispatch); 3022 __kmp_free(team->t.t_implicit_task_taskdata); 3023 __kmp_allocate_team_arrays(team, max_nth); 3024 3025 KMP_MEMCPY(team->t.t_threads, oldThreads, team->t.t_nproc * sizeof (kmp_info_t*)); 3026 3027 __kmp_free(oldThreads); 3028 } 3029 3030 static kmp_internal_control_t 3031 __kmp_get_global_icvs( void ) { 3032 3033 kmp_r_sched_t r_sched = __kmp_get_schedule_global(); // get current state of scheduling globals 3034 3035 #if OMP_40_ENABLED 3036 KMP_DEBUG_ASSERT( __kmp_nested_proc_bind.used > 0 ); 3037 #endif /* OMP_40_ENABLED */ 3038 3039 kmp_internal_control_t g_icvs = { 3040 0, //int serial_nesting_level; //corresponds to the value of the th_team_serialized field 3041 (kmp_int8)__kmp_dflt_nested, //int nested; //internal control for nested parallelism (per thread) 3042 (kmp_int8)__kmp_global.g.g_dynamic, //internal control for dynamic adjustment of threads (per thread) 3043 (kmp_int8)__kmp_env_blocktime, //int bt_set; //internal control for whether blocktime is explicitly set 3044 __kmp_dflt_blocktime, //int blocktime; //internal control for blocktime 3045 #if KMP_USE_MONITOR 3046 __kmp_bt_intervals, //int bt_intervals; //internal control for blocktime intervals 3047 #endif 3048 __kmp_dflt_team_nth, //int nproc; //internal control for # of threads for next parallel region (per thread) 3049 // (use a max ub on value if __kmp_parallel_initialize not called yet) 3050 __kmp_dflt_max_active_levels, //int max_active_levels; //internal control for max_active_levels 3051 r_sched, //kmp_r_sched_t sched; //internal control for runtime schedule {sched,chunk} pair 3052 #if OMP_40_ENABLED 3053 __kmp_nested_proc_bind.bind_types[0], 3054 __kmp_default_device, 3055 #endif /* OMP_40_ENABLED */ 3056 NULL //struct kmp_internal_control *next; 3057 }; 3058 3059 return g_icvs; 3060 } 3061 3062 static kmp_internal_control_t 3063 __kmp_get_x_global_icvs( const kmp_team_t *team ) { 3064 3065 kmp_internal_control_t gx_icvs; 3066 gx_icvs.serial_nesting_level = 0; // probably =team->t.t_serial like in save_inter_controls 3067 copy_icvs( & gx_icvs, & team->t.t_threads[0]->th.th_current_task->td_icvs ); 3068 gx_icvs.next = NULL; 3069 3070 return gx_icvs; 3071 } 3072 3073 static void 3074 __kmp_initialize_root( kmp_root_t *root ) 3075 { 3076 int f; 3077 kmp_team_t *root_team; 3078 kmp_team_t *hot_team; 3079 int hot_team_max_nth; 3080 kmp_r_sched_t r_sched = __kmp_get_schedule_global(); // get current state of scheduling globals 3081 kmp_internal_control_t r_icvs = __kmp_get_global_icvs(); 3082 KMP_DEBUG_ASSERT( root ); 3083 KMP_ASSERT( ! root->r.r_begin ); 3084 3085 /* setup the root state structure */ 3086 __kmp_init_lock( &root->r.r_begin_lock ); 3087 root->r.r_begin = FALSE; 3088 root->r.r_active = FALSE; 3089 root->r.r_in_parallel = 0; 3090 root->r.r_blocktime = __kmp_dflt_blocktime; 3091 root->r.r_nested = __kmp_dflt_nested; 3092 3093 /* setup the root team for this task */ 3094 /* allocate the root team structure */ 3095 KF_TRACE( 10, ( "__kmp_initialize_root: before root_team\n" ) ); 3096 3097 root_team = 3098 __kmp_allocate_team( 3099 root, 3100 1, // new_nproc 3101 1, // max_nproc 3102 #if OMPT_SUPPORT 3103 0, // root parallel id 3104 #endif 3105 #if OMP_40_ENABLED 3106 __kmp_nested_proc_bind.bind_types[0], 3107 #endif 3108 &r_icvs, 3109 0 // argc 3110 USE_NESTED_HOT_ARG(NULL) // master thread is unknown 3111 ); 3112 #if USE_DEBUGGER 3113 // Non-NULL value should be assigned to make the debugger display the root team. 3114 TCW_SYNC_PTR(root_team->t.t_pkfn, (microtask_t)( ~ 0 )); 3115 #endif 3116 3117 KF_TRACE( 10, ( "__kmp_initialize_root: after root_team = %p\n", root_team ) ); 3118 3119 root->r.r_root_team = root_team; 3120 root_team->t.t_control_stack_top = NULL; 3121 3122 /* initialize root team */ 3123 root_team->t.t_threads[0] = NULL; 3124 root_team->t.t_nproc = 1; 3125 root_team->t.t_serialized = 1; 3126 // TODO???: root_team->t.t_max_active_levels = __kmp_dflt_max_active_levels; 3127 root_team->t.t_sched.r_sched_type = r_sched.r_sched_type; 3128 root_team->t.t_sched.chunk = r_sched.chunk; 3129 KA_TRACE( 20, ("__kmp_initialize_root: init root team %d arrived: join=%u, plain=%u\n", 3130 root_team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE )); 3131 3132 /* setup the hot team for this task */ 3133 /* allocate the hot team structure */ 3134 KF_TRACE( 10, ( "__kmp_initialize_root: before hot_team\n" ) ); 3135 3136 hot_team = 3137 __kmp_allocate_team( 3138 root, 3139 1, // new_nproc 3140 __kmp_dflt_team_nth_ub * 2, // max_nproc 3141 #if OMPT_SUPPORT 3142 0, // root parallel id 3143 #endif 3144 #if OMP_40_ENABLED 3145 __kmp_nested_proc_bind.bind_types[0], 3146 #endif 3147 &r_icvs, 3148 0 // argc 3149 USE_NESTED_HOT_ARG(NULL) // master thread is unknown 3150 ); 3151 KF_TRACE( 10, ( "__kmp_initialize_root: after hot_team = %p\n", hot_team ) ); 3152 3153 root->r.r_hot_team = hot_team; 3154 root_team->t.t_control_stack_top = NULL; 3155 3156 /* first-time initialization */ 3157 hot_team->t.t_parent = root_team; 3158 3159 /* initialize hot team */ 3160 hot_team_max_nth = hot_team->t.t_max_nproc; 3161 for ( f = 0; f < hot_team_max_nth; ++ f ) { 3162 hot_team->t.t_threads[ f ] = NULL; 3163 }; // for 3164 hot_team->t.t_nproc = 1; 3165 // TODO???: hot_team->t.t_max_active_levels = __kmp_dflt_max_active_levels; 3166 hot_team->t.t_sched.r_sched_type = r_sched.r_sched_type; 3167 hot_team->t.t_sched.chunk = r_sched.chunk; 3168 hot_team->t.t_size_changed = 0; 3169 } 3170 3171 #ifdef KMP_DEBUG 3172 3173 3174 typedef struct kmp_team_list_item { 3175 kmp_team_p const * entry; 3176 struct kmp_team_list_item * next; 3177 } kmp_team_list_item_t; 3178 typedef kmp_team_list_item_t * kmp_team_list_t; 3179 3180 3181 static void 3182 __kmp_print_structure_team_accum( // Add team to list of teams. 3183 kmp_team_list_t list, // List of teams. 3184 kmp_team_p const * team // Team to add. 3185 ) { 3186 3187 // List must terminate with item where both entry and next are NULL. 3188 // Team is added to the list only once. 3189 // List is sorted in ascending order by team id. 3190 // Team id is *not* a key. 3191 3192 kmp_team_list_t l; 3193 3194 KMP_DEBUG_ASSERT( list != NULL ); 3195 if ( team == NULL ) { 3196 return; 3197 }; // if 3198 3199 __kmp_print_structure_team_accum( list, team->t.t_parent ); 3200 __kmp_print_structure_team_accum( list, team->t.t_next_pool ); 3201 3202 // Search list for the team. 3203 l = list; 3204 while ( l->next != NULL && l->entry != team ) { 3205 l = l->next; 3206 }; // while 3207 if ( l->next != NULL ) { 3208 return; // Team has been added before, exit. 3209 }; // if 3210 3211 // Team is not found. Search list again for insertion point. 3212 l = list; 3213 while ( l->next != NULL && l->entry->t.t_id <= team->t.t_id ) { 3214 l = l->next; 3215 }; // while 3216 3217 // Insert team. 3218 { 3219 kmp_team_list_item_t * item = 3220 (kmp_team_list_item_t *)KMP_INTERNAL_MALLOC( sizeof( kmp_team_list_item_t ) ); 3221 * item = * l; 3222 l->entry = team; 3223 l->next = item; 3224 } 3225 3226 } 3227 3228 static void 3229 __kmp_print_structure_team( 3230 char const * title, 3231 kmp_team_p const * team 3232 3233 ) { 3234 __kmp_printf( "%s", title ); 3235 if ( team != NULL ) { 3236 __kmp_printf( "%2x %p\n", team->t.t_id, team ); 3237 } else { 3238 __kmp_printf( " - (nil)\n" ); 3239 }; // if 3240 } 3241 3242 static void 3243 __kmp_print_structure_thread( 3244 char const * title, 3245 kmp_info_p const * thread 3246 3247 ) { 3248 __kmp_printf( "%s", title ); 3249 if ( thread != NULL ) { 3250 __kmp_printf( "%2d %p\n", thread->th.th_info.ds.ds_gtid, thread ); 3251 } else { 3252 __kmp_printf( " - (nil)\n" ); 3253 }; // if 3254 } 3255 3256 void 3257 __kmp_print_structure( 3258 void 3259 ) { 3260 3261 kmp_team_list_t list; 3262 3263 // Initialize list of teams. 3264 list = (kmp_team_list_item_t *)KMP_INTERNAL_MALLOC( sizeof( kmp_team_list_item_t ) ); 3265 list->entry = NULL; 3266 list->next = NULL; 3267 3268 __kmp_printf( "\n------------------------------\nGlobal Thread Table\n------------------------------\n" ); 3269 { 3270 int gtid; 3271 for ( gtid = 0; gtid < __kmp_threads_capacity; ++ gtid ) { 3272 __kmp_printf( "%2d", gtid ); 3273 if ( __kmp_threads != NULL ) { 3274 __kmp_printf( " %p", __kmp_threads[ gtid ] ); 3275 }; // if 3276 if ( __kmp_root != NULL ) { 3277 __kmp_printf( " %p", __kmp_root[ gtid ] ); 3278 }; // if 3279 __kmp_printf( "\n" ); 3280 }; // for gtid 3281 } 3282 3283 // Print out __kmp_threads array. 3284 __kmp_printf( "\n------------------------------\nThreads\n------------------------------\n" ); 3285 if ( __kmp_threads != NULL ) { 3286 int gtid; 3287 for ( gtid = 0; gtid < __kmp_threads_capacity; ++ gtid ) { 3288 kmp_info_t const * thread = __kmp_threads[ gtid ]; 3289 if ( thread != NULL ) { 3290 __kmp_printf( "GTID %2d %p:\n", gtid, thread ); 3291 __kmp_printf( " Our Root: %p\n", thread->th.th_root ); 3292 __kmp_print_structure_team( " Our Team: ", thread->th.th_team ); 3293 __kmp_print_structure_team( " Serial Team: ", thread->th.th_serial_team ); 3294 __kmp_printf( " Threads: %2d\n", thread->th.th_team_nproc ); 3295 __kmp_print_structure_thread( " Master: ", thread->th.th_team_master ); 3296 __kmp_printf( " Serialized?: %2d\n", thread->th.th_team_serialized ); 3297 __kmp_printf( " Set NProc: %2d\n", thread->th.th_set_nproc ); 3298 #if OMP_40_ENABLED 3299 __kmp_printf( " Set Proc Bind: %2d\n", thread->th.th_set_proc_bind ); 3300 #endif 3301 __kmp_print_structure_thread( " Next in pool: ", thread->th.th_next_pool ); 3302 __kmp_printf( "\n" ); 3303 __kmp_print_structure_team_accum( list, thread->th.th_team ); 3304 __kmp_print_structure_team_accum( list, thread->th.th_serial_team ); 3305 }; // if 3306 }; // for gtid 3307 } else { 3308 __kmp_printf( "Threads array is not allocated.\n" ); 3309 }; // if 3310 3311 // Print out __kmp_root array. 3312 __kmp_printf( "\n------------------------------\nUbers\n------------------------------\n" ); 3313 if ( __kmp_root != NULL ) { 3314 int gtid; 3315 for ( gtid = 0; gtid < __kmp_threads_capacity; ++ gtid ) { 3316 kmp_root_t const * root = __kmp_root[ gtid ]; 3317 if ( root != NULL ) { 3318 __kmp_printf( "GTID %2d %p:\n", gtid, root ); 3319 __kmp_print_structure_team( " Root Team: ", root->r.r_root_team ); 3320 __kmp_print_structure_team( " Hot Team: ", root->r.r_hot_team ); 3321 __kmp_print_structure_thread( " Uber Thread: ", root->r.r_uber_thread ); 3322 __kmp_printf( " Active?: %2d\n", root->r.r_active ); 3323 __kmp_printf( " Nested?: %2d\n", root->r.r_nested ); 3324 __kmp_printf( " In Parallel: %2d\n", root->r.r_in_parallel ); 3325 __kmp_printf( "\n" ); 3326 __kmp_print_structure_team_accum( list, root->r.r_root_team ); 3327 __kmp_print_structure_team_accum( list, root->r.r_hot_team ); 3328 }; // if 3329 }; // for gtid 3330 } else { 3331 __kmp_printf( "Ubers array is not allocated.\n" ); 3332 }; // if 3333 3334 __kmp_printf( "\n------------------------------\nTeams\n------------------------------\n" ); 3335 while ( list->next != NULL ) { 3336 kmp_team_p const * team = list->entry; 3337 int i; 3338 __kmp_printf( "Team %2x %p:\n", team->t.t_id, team ); 3339 __kmp_print_structure_team( " Parent Team: ", team->t.t_parent ); 3340 __kmp_printf( " Master TID: %2d\n", team->t.t_master_tid ); 3341 __kmp_printf( " Max threads: %2d\n", team->t.t_max_nproc ); 3342 __kmp_printf( " Levels of serial: %2d\n", team->t.t_serialized ); 3343 __kmp_printf( " Number threads: %2d\n", team->t.t_nproc ); 3344 for ( i = 0; i < team->t.t_nproc; ++ i ) { 3345 __kmp_printf( " Thread %2d: ", i ); 3346 __kmp_print_structure_thread( "", team->t.t_threads[ i ] ); 3347 }; // for i 3348 __kmp_print_structure_team( " Next in pool: ", team->t.t_next_pool ); 3349 __kmp_printf( "\n" ); 3350 list = list->next; 3351 }; // while 3352 3353 // Print out __kmp_thread_pool and __kmp_team_pool. 3354 __kmp_printf( "\n------------------------------\nPools\n------------------------------\n" ); 3355 __kmp_print_structure_thread( "Thread pool: ", (kmp_info_t *)__kmp_thread_pool ); 3356 __kmp_print_structure_team( "Team pool: ", (kmp_team_t *)__kmp_team_pool ); 3357 __kmp_printf( "\n" ); 3358 3359 // Free team list. 3360 while ( list != NULL ) { 3361 kmp_team_list_item_t * item = list; 3362 list = list->next; 3363 KMP_INTERNAL_FREE( item ); 3364 }; // while 3365 3366 } 3367 3368 #endif 3369 3370 3371 //--------------------------------------------------------------------------- 3372 // Stuff for per-thread fast random number generator 3373 // Table of primes 3374 3375 static const unsigned __kmp_primes[] = { 3376 0x9e3779b1, 0xffe6cc59, 0x2109f6dd, 0x43977ab5, 3377 0xba5703f5, 0xb495a877, 0xe1626741, 0x79695e6b, 3378 0xbc98c09f, 0xd5bee2b3, 0x287488f9, 0x3af18231, 3379 0x9677cd4d, 0xbe3a6929, 0xadc6a877, 0xdcf0674b, 3380 0xbe4d6fe9, 0x5f15e201, 0x99afc3fd, 0xf3f16801, 3381 0xe222cfff, 0x24ba5fdb, 0x0620452d, 0x79f149e3, 3382 0xc8b93f49, 0x972702cd, 0xb07dd827, 0x6c97d5ed, 3383 0x085a3d61, 0x46eb5ea7, 0x3d9910ed, 0x2e687b5b, 3384 0x29609227, 0x6eb081f1, 0x0954c4e1, 0x9d114db9, 3385 0x542acfa9, 0xb3e6bd7b, 0x0742d917, 0xe9f3ffa7, 3386 0x54581edb, 0xf2480f45, 0x0bb9288f, 0xef1affc7, 3387 0x85fa0ca7, 0x3ccc14db, 0xe6baf34b, 0x343377f7, 3388 0x5ca19031, 0xe6d9293b, 0xf0a9f391, 0x5d2e980b, 3389 0xfc411073, 0xc3749363, 0xb892d829, 0x3549366b, 3390 0x629750ad, 0xb98294e5, 0x892d9483, 0xc235baf3, 3391 0x3d2402a3, 0x6bdef3c9, 0xbec333cd, 0x40c9520f 3392 }; 3393 3394 //--------------------------------------------------------------------------- 3395 // __kmp_get_random: Get a random number using a linear congruential method. 3396 3397 unsigned short 3398 __kmp_get_random( kmp_info_t * thread ) 3399 { 3400 unsigned x = thread->th.th_x; 3401 unsigned short r = x>>16; 3402 3403 thread->th.th_x = x*thread->th.th_a+1; 3404 3405 KA_TRACE(30, ("__kmp_get_random: THREAD: %d, RETURN: %u\n", 3406 thread->th.th_info.ds.ds_tid, r) ); 3407 3408 return r; 3409 } 3410 //-------------------------------------------------------- 3411 // __kmp_init_random: Initialize a random number generator 3412 3413 void 3414 __kmp_init_random( kmp_info_t * thread ) 3415 { 3416 unsigned seed = thread->th.th_info.ds.ds_tid; 3417 3418 thread->th.th_a = __kmp_primes[seed%(sizeof(__kmp_primes)/sizeof(__kmp_primes[0]))]; 3419 thread->th.th_x = (seed+1)*thread->th.th_a+1; 3420 KA_TRACE(30, ("__kmp_init_random: THREAD: %u; A: %u\n", seed, thread->th.th_a) ); 3421 } 3422 3423 3424 #if KMP_OS_WINDOWS 3425 /* reclaim array entries for root threads that are already dead, returns number reclaimed */ 3426 static int 3427 __kmp_reclaim_dead_roots(void) { 3428 int i, r = 0; 3429 3430 for(i = 0; i < __kmp_threads_capacity; ++i) { 3431 if( KMP_UBER_GTID( i ) && 3432 !__kmp_still_running((kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[i])) && 3433 !__kmp_root[i]->r.r_active ) { // AC: reclaim only roots died in non-active state 3434 r += __kmp_unregister_root_other_thread(i); 3435 } 3436 } 3437 return r; 3438 } 3439 #endif 3440 3441 /* 3442 This function attempts to create free entries in __kmp_threads and __kmp_root, and returns the number of 3443 free entries generated. 3444 3445 For Windows* OS static library, the first mechanism used is to reclaim array entries for root threads that are 3446 already dead. 3447 3448 On all platforms, expansion is attempted on the arrays __kmp_threads_ and __kmp_root, with appropriate 3449 update to __kmp_threads_capacity. Array capacity is increased by doubling with clipping to 3450 __kmp_tp_capacity, if threadprivate cache array has been created. 3451 Synchronization with __kmpc_threadprivate_cached is done using __kmp_tp_cached_lock. 3452 3453 After any dead root reclamation, if the clipping value allows array expansion to result in the generation 3454 of a total of nWish free slots, the function does that expansion. If not, but the clipping value allows 3455 array expansion to result in the generation of a total of nNeed free slots, the function does that expansion. 3456 Otherwise, nothing is done beyond the possible initial root thread reclamation. However, if nNeed is zero, 3457 a best-effort attempt is made to fulfil nWish as far as possible, i.e. the function will attempt to create 3458 as many free slots as possible up to nWish. 3459 3460 If any argument is negative, the behavior is undefined. 3461 */ 3462 static int 3463 __kmp_expand_threads(int nWish, int nNeed) { 3464 int added = 0; 3465 int old_tp_cached; 3466 int __kmp_actual_max_nth; 3467 3468 if(nNeed > nWish) /* normalize the arguments */ 3469 nWish = nNeed; 3470 #if KMP_OS_WINDOWS && !defined KMP_DYNAMIC_LIB 3471 /* only for Windows static library */ 3472 /* reclaim array entries for root threads that are already dead */ 3473 added = __kmp_reclaim_dead_roots(); 3474 3475 if(nNeed) { 3476 nNeed -= added; 3477 if(nNeed < 0) 3478 nNeed = 0; 3479 } 3480 if(nWish) { 3481 nWish -= added; 3482 if(nWish < 0) 3483 nWish = 0; 3484 } 3485 #endif 3486 if(nWish <= 0) 3487 return added; 3488 3489 while(1) { 3490 int nTarget; 3491 int minimumRequiredCapacity; 3492 int newCapacity; 3493 kmp_info_t **newThreads; 3494 kmp_root_t **newRoot; 3495 3496 // 3497 // Note that __kmp_threads_capacity is not bounded by __kmp_max_nth. 3498 // If __kmp_max_nth is set to some value less than __kmp_sys_max_nth 3499 // by the user via OMP_THREAD_LIMIT, then __kmp_threads_capacity may 3500 // become > __kmp_max_nth in one of two ways: 3501 // 3502 // 1) The initialization thread (gtid = 0) exits. __kmp_threads[0] 3503 // may not be resused by another thread, so we may need to increase 3504 // __kmp_threads_capacity to __kmp_max_threads + 1. 3505 // 3506 // 2) New foreign root(s) are encountered. We always register new 3507 // foreign roots. This may cause a smaller # of threads to be 3508 // allocated at subsequent parallel regions, but the worker threads 3509 // hang around (and eventually go to sleep) and need slots in the 3510 // __kmp_threads[] array. 3511 // 3512 // Anyway, that is the reason for moving the check to see if 3513 // __kmp_max_threads was exceeded into __kmp_reseerve_threads() 3514 // instead of having it performed here. -BB 3515 // 3516 old_tp_cached = __kmp_tp_cached; 3517 __kmp_actual_max_nth = old_tp_cached ? __kmp_tp_capacity : __kmp_sys_max_nth; 3518 KMP_DEBUG_ASSERT(__kmp_actual_max_nth >= __kmp_threads_capacity); 3519 3520 /* compute expansion headroom to check if we can expand and whether to aim for nWish or nNeed */ 3521 nTarget = nWish; 3522 if(__kmp_actual_max_nth - __kmp_threads_capacity < nTarget) { 3523 /* can't fulfil nWish, so try nNeed */ 3524 if(nNeed) { 3525 nTarget = nNeed; 3526 if(__kmp_actual_max_nth - __kmp_threads_capacity < nTarget) { 3527 /* possible expansion too small -- give up */ 3528 break; 3529 } 3530 } else { 3531 /* best-effort */ 3532 nTarget = __kmp_actual_max_nth - __kmp_threads_capacity; 3533 if(!nTarget) { 3534 /* can expand at all -- give up */ 3535 break; 3536 } 3537 } 3538 } 3539 minimumRequiredCapacity = __kmp_threads_capacity + nTarget; 3540 3541 newCapacity = __kmp_threads_capacity; 3542 do{ 3543 newCapacity = 3544 newCapacity <= (__kmp_actual_max_nth >> 1) ? 3545 (newCapacity << 1) : 3546 __kmp_actual_max_nth; 3547 } while(newCapacity < minimumRequiredCapacity); 3548 newThreads = (kmp_info_t**) __kmp_allocate((sizeof(kmp_info_t*) + sizeof(kmp_root_t*)) * newCapacity + CACHE_LINE); 3549 newRoot = (kmp_root_t**) ((char*)newThreads + sizeof(kmp_info_t*) * newCapacity ); 3550 KMP_MEMCPY(newThreads, __kmp_threads, __kmp_threads_capacity * sizeof(kmp_info_t*)); 3551 KMP_MEMCPY(newRoot, __kmp_root, __kmp_threads_capacity * sizeof(kmp_root_t*)); 3552 memset(newThreads + __kmp_threads_capacity, 0, 3553 (newCapacity - __kmp_threads_capacity) * sizeof(kmp_info_t*)); 3554 memset(newRoot + __kmp_threads_capacity, 0, 3555 (newCapacity - __kmp_threads_capacity) * sizeof(kmp_root_t*)); 3556 3557 if(!old_tp_cached && __kmp_tp_cached && newCapacity > __kmp_tp_capacity) { 3558 /* __kmp_tp_cached has changed, i.e. __kmpc_threadprivate_cached has allocated a threadprivate cache 3559 while we were allocating the expanded array, and our new capacity is larger than the threadprivate 3560 cache capacity, so we should deallocate the expanded arrays and try again. This is the first check 3561 of a double-check pair. 3562 */ 3563 __kmp_free(newThreads); 3564 continue; /* start over and try again */ 3565 } 3566 __kmp_acquire_bootstrap_lock(&__kmp_tp_cached_lock); 3567 if(!old_tp_cached && __kmp_tp_cached && newCapacity > __kmp_tp_capacity) { 3568 /* Same check as above, but this time with the lock so we can be sure if we can succeed. */ 3569 __kmp_release_bootstrap_lock(&__kmp_tp_cached_lock); 3570 __kmp_free(newThreads); 3571 continue; /* start over and try again */ 3572 } else { 3573 /* success */ 3574 // __kmp_free( __kmp_threads ); // ATT: It leads to crash. Need to be investigated. 3575 // 3576 *(kmp_info_t**volatile*)&__kmp_threads = newThreads; 3577 *(kmp_root_t**volatile*)&__kmp_root = newRoot; 3578 added += newCapacity - __kmp_threads_capacity; 3579 *(volatile int*)&__kmp_threads_capacity = newCapacity; 3580 __kmp_release_bootstrap_lock(&__kmp_tp_cached_lock); 3581 break; /* succeeded, so we can exit the loop */ 3582 } 3583 } 3584 return added; 3585 } 3586 3587 /* register the current thread as a root thread and obtain our gtid */ 3588 /* we must have the __kmp_initz_lock held at this point */ 3589 /* Argument TRUE only if are the thread that calls from __kmp_do_serial_initialize() */ 3590 int 3591 __kmp_register_root( int initial_thread ) 3592 { 3593 kmp_info_t *root_thread; 3594 kmp_root_t *root; 3595 int gtid; 3596 int capacity; 3597 __kmp_acquire_bootstrap_lock( &__kmp_forkjoin_lock ); 3598 KA_TRACE( 20, ("__kmp_register_root: entered\n")); 3599 KMP_MB(); 3600 3601 3602 /* 3603 2007-03-02: 3604 3605 If initial thread did not invoke OpenMP RTL yet, and this thread is not an initial one, 3606 "__kmp_all_nth >= __kmp_threads_capacity" condition does not work as expected -- it may 3607 return false (that means there is at least one empty slot in __kmp_threads array), but it 3608 is possible the only free slot is #0, which is reserved for initial thread and so cannot be 3609 used for this one. Following code workarounds this bug. 3610 3611 However, right solution seems to be not reserving slot #0 for initial thread because: 3612 (1) there is no magic in slot #0, 3613 (2) we cannot detect initial thread reliably (the first thread which does serial 3614 initialization may be not a real initial thread). 3615 */ 3616 capacity = __kmp_threads_capacity; 3617 if ( ! initial_thread && TCR_PTR(__kmp_threads[0]) == NULL ) { 3618 -- capacity; 3619 }; // if 3620 3621 /* see if there are too many threads */ 3622 if ( __kmp_all_nth >= capacity && !__kmp_expand_threads( 1, 1 ) ) { 3623 if ( __kmp_tp_cached ) { 3624 __kmp_msg( 3625 kmp_ms_fatal, 3626 KMP_MSG( CantRegisterNewThread ), 3627 KMP_HNT( Set_ALL_THREADPRIVATE, __kmp_tp_capacity ), 3628 KMP_HNT( PossibleSystemLimitOnThreads ), 3629 __kmp_msg_null 3630 ); 3631 } 3632 else { 3633 __kmp_msg( 3634 kmp_ms_fatal, 3635 KMP_MSG( CantRegisterNewThread ), 3636 KMP_HNT( SystemLimitOnThreads ), 3637 __kmp_msg_null 3638 ); 3639 } 3640 }; // if 3641 3642 /* find an available thread slot */ 3643 /* Don't reassign the zero slot since we need that to only be used by initial 3644 thread */ 3645 for( gtid=(initial_thread ? 0 : 1) ; TCR_PTR(__kmp_threads[gtid]) != NULL ; gtid++ ) 3646 ; 3647 KA_TRACE( 1, ("__kmp_register_root: found slot in threads array: T#%d\n", gtid )); 3648 KMP_ASSERT( gtid < __kmp_threads_capacity ); 3649 3650 /* update global accounting */ 3651 __kmp_all_nth ++; 3652 TCW_4(__kmp_nth, __kmp_nth + 1); 3653 3654 // 3655 // if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) 3656 // for low numbers of procs, and method #2 (keyed API call) for higher 3657 // numbers of procs. 3658 // 3659 if ( __kmp_adjust_gtid_mode ) { 3660 if ( __kmp_all_nth >= __kmp_tls_gtid_min ) { 3661 if ( TCR_4(__kmp_gtid_mode) != 2) { 3662 TCW_4(__kmp_gtid_mode, 2); 3663 } 3664 } 3665 else { 3666 if (TCR_4(__kmp_gtid_mode) != 1 ) { 3667 TCW_4(__kmp_gtid_mode, 1); 3668 } 3669 } 3670 } 3671 3672 #ifdef KMP_ADJUST_BLOCKTIME 3673 /* Adjust blocktime to zero if necessary */ 3674 /* Middle initialization might not have occurred yet */ 3675 if ( !__kmp_env_blocktime && ( __kmp_avail_proc > 0 ) ) { 3676 if ( __kmp_nth > __kmp_avail_proc ) { 3677 __kmp_zero_bt = TRUE; 3678 } 3679 } 3680 #endif /* KMP_ADJUST_BLOCKTIME */ 3681 3682 /* setup this new hierarchy */ 3683 if( ! ( root = __kmp_root[gtid] )) { 3684 root = __kmp_root[gtid] = (kmp_root_t*) __kmp_allocate( sizeof(kmp_root_t) ); 3685 KMP_DEBUG_ASSERT( ! root->r.r_root_team ); 3686 } 3687 3688 #if KMP_STATS_ENABLED 3689 // Initialize stats as soon as possible (right after gtid assignment). 3690 __kmp_stats_thread_ptr = __kmp_stats_list->push_back(gtid); 3691 KMP_START_EXPLICIT_TIMER(OMP_worker_thread_life); 3692 KMP_SET_THREAD_STATE(SERIAL_REGION); 3693 KMP_INIT_PARTITIONED_TIMERS(OMP_serial); 3694 #endif 3695 __kmp_initialize_root( root ); 3696 3697 /* setup new root thread structure */ 3698 if( root->r.r_uber_thread ) { 3699 root_thread = root->r.r_uber_thread; 3700 } else { 3701 root_thread = (kmp_info_t*) __kmp_allocate( sizeof(kmp_info_t) ); 3702 if ( __kmp_storage_map ) { 3703 __kmp_print_thread_storage_map( root_thread, gtid ); 3704 } 3705 root_thread->th.th_info .ds.ds_gtid = gtid; 3706 root_thread->th.th_root = root; 3707 if( __kmp_env_consistency_check ) { 3708 root_thread->th.th_cons = __kmp_allocate_cons_stack( gtid ); 3709 } 3710 #if USE_FAST_MEMORY 3711 __kmp_initialize_fast_memory( root_thread ); 3712 #endif /* USE_FAST_MEMORY */ 3713 3714 #if KMP_USE_BGET 3715 KMP_DEBUG_ASSERT( root_thread->th.th_local.bget_data == NULL ); 3716 __kmp_initialize_bget( root_thread ); 3717 #endif 3718 __kmp_init_random( root_thread ); // Initialize random number generator 3719 } 3720 3721 /* setup the serial team held in reserve by the root thread */ 3722 if( ! root_thread->th.th_serial_team ) { 3723 kmp_internal_control_t r_icvs = __kmp_get_global_icvs(); 3724 KF_TRACE( 10, ( "__kmp_register_root: before serial_team\n" ) ); 3725 3726 root_thread->th.th_serial_team = __kmp_allocate_team( root, 1, 1, 3727 #if OMPT_SUPPORT 3728 0, // root parallel id 3729 #endif 3730 #if OMP_40_ENABLED 3731 proc_bind_default, 3732 #endif 3733 &r_icvs, 3734 0 USE_NESTED_HOT_ARG(NULL) ); 3735 } 3736 KMP_ASSERT( root_thread->th.th_serial_team ); 3737 KF_TRACE( 10, ( "__kmp_register_root: after serial_team = %p\n", 3738 root_thread->th.th_serial_team ) ); 3739 3740 /* drop root_thread into place */ 3741 TCW_SYNC_PTR(__kmp_threads[gtid], root_thread); 3742 3743 root->r.r_root_team->t.t_threads[0] = root_thread; 3744 root->r.r_hot_team ->t.t_threads[0] = root_thread; 3745 root_thread->th.th_serial_team->t.t_threads[0] = root_thread; 3746 root_thread->th.th_serial_team->t.t_serialized = 0; // AC: the team created in reserve, not for execution (it is unused for now). 3747 root->r.r_uber_thread = root_thread; 3748 3749 /* initialize the thread, get it ready to go */ 3750 __kmp_initialize_info( root_thread, root->r.r_root_team, 0, gtid ); 3751 TCW_4(__kmp_init_gtid, TRUE); 3752 3753 /* prepare the master thread for get_gtid() */ 3754 __kmp_gtid_set_specific( gtid ); 3755 3756 #if USE_ITT_BUILD 3757 __kmp_itt_thread_name( gtid ); 3758 #endif /* USE_ITT_BUILD */ 3759 3760 #ifdef KMP_TDATA_GTID 3761 __kmp_gtid = gtid; 3762 #endif 3763 __kmp_create_worker( gtid, root_thread, __kmp_stksize ); 3764 KMP_DEBUG_ASSERT( __kmp_gtid_get_specific() == gtid ); 3765 3766 KA_TRACE( 20, ("__kmp_register_root: T#%d init T#%d(%d:%d) arrived: join=%u, plain=%u\n", 3767 gtid, __kmp_gtid_from_tid( 0, root->r.r_hot_team ), 3768 root->r.r_hot_team->t.t_id, 0, KMP_INIT_BARRIER_STATE, 3769 KMP_INIT_BARRIER_STATE ) ); 3770 { // Initialize barrier data. 3771 int b; 3772 for ( b = 0; b < bs_last_barrier; ++ b ) { 3773 root_thread->th.th_bar[ b ].bb.b_arrived = KMP_INIT_BARRIER_STATE; 3774 #if USE_DEBUGGER 3775 root_thread->th.th_bar[ b ].bb.b_worker_arrived = 0; 3776 #endif 3777 }; // for 3778 } 3779 KMP_DEBUG_ASSERT( root->r.r_hot_team->t.t_bar[ bs_forkjoin_barrier ].b_arrived == KMP_INIT_BARRIER_STATE ); 3780 3781 #if KMP_AFFINITY_SUPPORTED 3782 # if OMP_40_ENABLED 3783 root_thread->th.th_current_place = KMP_PLACE_UNDEFINED; 3784 root_thread->th.th_new_place = KMP_PLACE_UNDEFINED; 3785 root_thread->th.th_first_place = KMP_PLACE_UNDEFINED; 3786 root_thread->th.th_last_place = KMP_PLACE_UNDEFINED; 3787 # endif 3788 3789 if ( TCR_4(__kmp_init_middle) ) { 3790 __kmp_affinity_set_init_mask( gtid, TRUE ); 3791 } 3792 #endif /* KMP_AFFINITY_SUPPORTED */ 3793 3794 __kmp_root_counter ++; 3795 3796 KMP_MB(); 3797 __kmp_release_bootstrap_lock( &__kmp_forkjoin_lock ); 3798 3799 return gtid; 3800 } 3801 3802 #if KMP_NESTED_HOT_TEAMS 3803 static int 3804 __kmp_free_hot_teams( kmp_root_t *root, kmp_info_t *thr, int level, const int max_level ) 3805 { 3806 int i, n, nth; 3807 kmp_hot_team_ptr_t *hot_teams = thr->th.th_hot_teams; 3808 if( !hot_teams || !hot_teams[level].hot_team ) { 3809 return 0; 3810 } 3811 KMP_DEBUG_ASSERT( level < max_level ); 3812 kmp_team_t *team = hot_teams[level].hot_team; 3813 nth = hot_teams[level].hot_team_nth; 3814 n = nth - 1; // master is not freed 3815 if( level < max_level - 1 ) { 3816 for( i = 0; i < nth; ++i ) { 3817 kmp_info_t *th = team->t.t_threads[i]; 3818 n += __kmp_free_hot_teams( root, th, level + 1, max_level ); 3819 if( i > 0 && th->th.th_hot_teams ) { 3820 __kmp_free( th->th.th_hot_teams ); 3821 th->th.th_hot_teams = NULL; 3822 } 3823 } 3824 } 3825 __kmp_free_team( root, team, NULL ); 3826 return n; 3827 } 3828 #endif 3829 3830 /* Resets a root thread and clear its root and hot teams. 3831 Returns the number of __kmp_threads entries directly and indirectly freed. 3832 */ 3833 static int 3834 __kmp_reset_root(int gtid, kmp_root_t *root) 3835 { 3836 kmp_team_t * root_team = root->r.r_root_team; 3837 kmp_team_t * hot_team = root->r.r_hot_team; 3838 int n = hot_team->t.t_nproc; 3839 int i; 3840 3841 KMP_DEBUG_ASSERT( ! root->r.r_active ); 3842 3843 root->r.r_root_team = NULL; 3844 root->r.r_hot_team = NULL; 3845 // __kmp_free_team() does not free hot teams, so we have to clear r_hot_team before call 3846 // to __kmp_free_team(). 3847 __kmp_free_team( root, root_team USE_NESTED_HOT_ARG(NULL) ); 3848 #if KMP_NESTED_HOT_TEAMS 3849 if( __kmp_hot_teams_max_level > 0 ) { // need to free nested hot teams and their threads if any 3850 for( i = 0; i < hot_team->t.t_nproc; ++i ) { 3851 kmp_info_t *th = hot_team->t.t_threads[i]; 3852 if( __kmp_hot_teams_max_level > 1 ) { 3853 n += __kmp_free_hot_teams( root, th, 1, __kmp_hot_teams_max_level ); 3854 } 3855 if( th->th.th_hot_teams ) { 3856 __kmp_free( th->th.th_hot_teams ); 3857 th->th.th_hot_teams = NULL; 3858 } 3859 } 3860 } 3861 #endif 3862 __kmp_free_team( root, hot_team USE_NESTED_HOT_ARG(NULL) ); 3863 3864 // 3865 // Before we can reap the thread, we need to make certain that all 3866 // other threads in the teams that had this root as ancestor have stopped trying to steal tasks. 3867 // 3868 if ( __kmp_tasking_mode != tskm_immediate_exec ) { 3869 __kmp_wait_to_unref_task_teams(); 3870 } 3871 3872 #if KMP_OS_WINDOWS 3873 /* Close Handle of root duplicated in __kmp_create_worker (tr #62919) */ 3874 KA_TRACE( 10, ("__kmp_reset_root: free handle, th = %p, handle = %" KMP_UINTPTR_SPEC "\n", 3875 (LPVOID)&(root->r.r_uber_thread->th), 3876 root->r.r_uber_thread->th.th_info.ds.ds_thread ) ); 3877 __kmp_free_handle( root->r.r_uber_thread->th.th_info.ds.ds_thread ); 3878 #endif /* KMP_OS_WINDOWS */ 3879 3880 #if OMPT_SUPPORT 3881 if (ompt_enabled && 3882 ompt_callbacks.ompt_callback(ompt_event_thread_end)) { 3883 int gtid = __kmp_get_gtid(); 3884 __ompt_thread_end(ompt_thread_initial, gtid); 3885 } 3886 #endif 3887 3888 TCW_4(__kmp_nth, __kmp_nth - 1); // __kmp_reap_thread will decrement __kmp_all_nth. 3889 __kmp_reap_thread( root->r.r_uber_thread, 1 ); 3890 3891 // We canot put root thread to __kmp_thread_pool, so we have to reap it istead of freeing. 3892 root->r.r_uber_thread = NULL; 3893 /* mark root as no longer in use */ 3894 root->r.r_begin = FALSE; 3895 3896 return n; 3897 } 3898 3899 void 3900 __kmp_unregister_root_current_thread( int gtid ) 3901 { 3902 KA_TRACE( 1, ("__kmp_unregister_root_current_thread: enter T#%d\n", gtid )); 3903 /* this lock should be ok, since unregister_root_current_thread is never called during 3904 * and abort, only during a normal close. furthermore, if you have the 3905 * forkjoin lock, you should never try to get the initz lock */ 3906 3907 __kmp_acquire_bootstrap_lock( &__kmp_forkjoin_lock ); 3908 if( TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial ) { 3909 KC_TRACE( 10, ("__kmp_unregister_root_current_thread: already finished, exiting T#%d\n", gtid )); 3910 __kmp_release_bootstrap_lock( &__kmp_forkjoin_lock ); 3911 return; 3912 } 3913 kmp_root_t *root = __kmp_root[gtid]; 3914 3915 KMP_DEBUG_ASSERT( __kmp_threads && __kmp_threads[gtid] ); 3916 KMP_ASSERT( KMP_UBER_GTID( gtid )); 3917 KMP_ASSERT( root == __kmp_threads[gtid]->th.th_root ); 3918 KMP_ASSERT( root->r.r_active == FALSE ); 3919 3920 3921 KMP_MB(); 3922 3923 #if OMP_45_ENABLED 3924 kmp_info_t * thread = __kmp_threads[gtid]; 3925 kmp_team_t * team = thread->th.th_team; 3926 kmp_task_team_t * task_team = thread->th.th_task_team; 3927 3928 // we need to wait for the proxy tasks before finishing the thread 3929 if ( task_team != NULL && task_team->tt.tt_found_proxy_tasks ) { 3930 #if OMPT_SUPPORT 3931 // the runtime is shutting down so we won't report any events 3932 thread->th.ompt_thread_info.state = ompt_state_undefined; 3933 #endif 3934 __kmp_task_team_wait(thread, team USE_ITT_BUILD_ARG(NULL)); 3935 } 3936 #endif 3937 3938 __kmp_reset_root(gtid, root); 3939 3940 /* free up this thread slot */ 3941 __kmp_gtid_set_specific( KMP_GTID_DNE ); 3942 #ifdef KMP_TDATA_GTID 3943 __kmp_gtid = KMP_GTID_DNE; 3944 #endif 3945 3946 KMP_MB(); 3947 KC_TRACE( 10, ("__kmp_unregister_root_current_thread: T#%d unregistered\n", gtid )); 3948 3949 __kmp_release_bootstrap_lock( &__kmp_forkjoin_lock ); 3950 } 3951 3952 #if KMP_OS_WINDOWS 3953 /* __kmp_forkjoin_lock must be already held 3954 Unregisters a root thread that is not the current thread. Returns the number of 3955 __kmp_threads entries freed as a result. 3956 */ 3957 static int 3958 __kmp_unregister_root_other_thread( int gtid ) 3959 { 3960 kmp_root_t *root = __kmp_root[gtid]; 3961 int r; 3962 3963 KA_TRACE( 1, ("__kmp_unregister_root_other_thread: enter T#%d\n", gtid )); 3964 KMP_DEBUG_ASSERT( __kmp_threads && __kmp_threads[gtid] ); 3965 KMP_ASSERT( KMP_UBER_GTID( gtid )); 3966 KMP_ASSERT( root == __kmp_threads[gtid]->th.th_root ); 3967 KMP_ASSERT( root->r.r_active == FALSE ); 3968 3969 r = __kmp_reset_root(gtid, root); 3970 KC_TRACE( 10, ("__kmp_unregister_root_other_thread: T#%d unregistered\n", gtid )); 3971 return r; 3972 } 3973 #endif 3974 3975 #if KMP_DEBUG 3976 void __kmp_task_info() { 3977 3978 kmp_int32 gtid = __kmp_entry_gtid(); 3979 kmp_int32 tid = __kmp_tid_from_gtid( gtid ); 3980 kmp_info_t *this_thr = __kmp_threads[ gtid ]; 3981 kmp_team_t *steam = this_thr->th.th_serial_team; 3982 kmp_team_t *team = this_thr->th.th_team; 3983 3984 __kmp_printf( "__kmp_task_info: gtid=%d tid=%d t_thread=%p team=%p curtask=%p ptask=%p\n", 3985 gtid, tid, this_thr, team, this_thr->th.th_current_task, team->t.t_implicit_task_taskdata[tid].td_parent ); 3986 } 3987 #endif // KMP_DEBUG 3988 3989 /* TODO optimize with one big memclr, take out what isn't needed, 3990 * split responsibility to workers as much as possible, and delay 3991 * initialization of features as much as possible */ 3992 static void 3993 __kmp_initialize_info( kmp_info_t *this_thr, kmp_team_t *team, int tid, int gtid ) 3994 { 3995 /* this_thr->th.th_info.ds.ds_gtid is setup in kmp_allocate_thread/create_worker 3996 * this_thr->th.th_serial_team is setup in __kmp_allocate_thread */ 3997 kmp_info_t *master = team->t.t_threads[0]; 3998 KMP_DEBUG_ASSERT( this_thr != NULL ); 3999 KMP_DEBUG_ASSERT( this_thr->th.th_serial_team ); 4000 KMP_DEBUG_ASSERT( team ); 4001 KMP_DEBUG_ASSERT( team->t.t_threads ); 4002 KMP_DEBUG_ASSERT( team->t.t_dispatch ); 4003 KMP_DEBUG_ASSERT( master ); 4004 KMP_DEBUG_ASSERT( master->th.th_root ); 4005 4006 KMP_MB(); 4007 4008 TCW_SYNC_PTR(this_thr->th.th_team, team); 4009 4010 this_thr->th.th_info.ds.ds_tid = tid; 4011 this_thr->th.th_set_nproc = 0; 4012 if (__kmp_tasking_mode != tskm_immediate_exec) 4013 // When tasking is possible, threads are not safe to reap until they are 4014 // done tasking; this will be set when tasking code is exited in wait 4015 this_thr->th.th_reap_state = KMP_NOT_SAFE_TO_REAP; 4016 else // no tasking --> always safe to reap 4017 this_thr->th.th_reap_state = KMP_SAFE_TO_REAP; 4018 #if OMP_40_ENABLED 4019 this_thr->th.th_set_proc_bind = proc_bind_default; 4020 # if KMP_AFFINITY_SUPPORTED 4021 this_thr->th.th_new_place = this_thr->th.th_current_place; 4022 # endif 4023 #endif 4024 this_thr->th.th_root = master->th.th_root; 4025 4026 /* setup the thread's cache of the team structure */ 4027 this_thr->th.th_team_nproc = team->t.t_nproc; 4028 this_thr->th.th_team_master = master; 4029 this_thr->th.th_team_serialized = team->t.t_serialized; 4030 TCW_PTR(this_thr->th.th_sleep_loc, NULL); 4031 4032 KMP_DEBUG_ASSERT( team->t.t_implicit_task_taskdata ); 4033 4034 KF_TRACE( 10, ( "__kmp_initialize_info1: T#%d:%d this_thread=%p curtask=%p\n", 4035 tid, gtid, this_thr, this_thr->th.th_current_task ) ); 4036 4037 __kmp_init_implicit_task( this_thr->th.th_team_master->th.th_ident, this_thr, team, tid, TRUE ); 4038 4039 KF_TRACE( 10, ( "__kmp_initialize_info2: T#%d:%d this_thread=%p curtask=%p\n", 4040 tid, gtid, this_thr, this_thr->th.th_current_task ) ); 4041 // TODO: Initialize ICVs from parent; GEH - isn't that already done in __kmp_initialize_team()? 4042 4043 /* TODO no worksharing in speculative threads */ 4044 this_thr->th.th_dispatch = &team->t.t_dispatch[ tid ]; 4045 4046 this_thr->th.th_local.this_construct = 0; 4047 4048 #ifdef BUILD_TV 4049 this_thr->th.th_local.tv_data = 0; 4050 #endif 4051 4052 if ( ! this_thr->th.th_pri_common ) { 4053 this_thr->th.th_pri_common = (struct common_table *) __kmp_allocate( sizeof(struct common_table) ); 4054 if ( __kmp_storage_map ) { 4055 __kmp_print_storage_map_gtid( 4056 gtid, this_thr->th.th_pri_common, this_thr->th.th_pri_common + 1, 4057 sizeof( struct common_table ), "th_%d.th_pri_common\n", gtid 4058 ); 4059 }; // if 4060 this_thr->th.th_pri_head = NULL; 4061 }; // if 4062 4063 /* Initialize dynamic dispatch */ 4064 { 4065 volatile kmp_disp_t *dispatch = this_thr->th.th_dispatch; 4066 /* 4067 * Use team max_nproc since this will never change for the team. 4068 */ 4069 size_t disp_size = sizeof( dispatch_private_info_t ) * 4070 ( team->t.t_max_nproc == 1 ? 1 : __kmp_dispatch_num_buffers ); 4071 KD_TRACE( 10, ("__kmp_initialize_info: T#%d max_nproc: %d\n", gtid, team->t.t_max_nproc ) ); 4072 KMP_ASSERT( dispatch ); 4073 KMP_DEBUG_ASSERT( team->t.t_dispatch ); 4074 KMP_DEBUG_ASSERT( dispatch == &team->t.t_dispatch[ tid ] ); 4075 4076 dispatch->th_disp_index = 0; 4077 #if OMP_45_ENABLED 4078 dispatch->th_doacross_buf_idx = 0; 4079 #endif 4080 if( ! dispatch->th_disp_buffer ) { 4081 dispatch->th_disp_buffer = (dispatch_private_info_t *) __kmp_allocate( disp_size ); 4082 4083 if ( __kmp_storage_map ) { 4084 __kmp_print_storage_map_gtid( gtid, &dispatch->th_disp_buffer[ 0 ], 4085 &dispatch->th_disp_buffer[ team->t.t_max_nproc == 1 ? 1 : __kmp_dispatch_num_buffers ], 4086 disp_size, "th_%d.th_dispatch.th_disp_buffer " 4087 "(team_%d.t_dispatch[%d].th_disp_buffer)", 4088 gtid, team->t.t_id, gtid ); 4089 } 4090 } else { 4091 memset( & dispatch->th_disp_buffer[0], '\0', disp_size ); 4092 } 4093 4094 dispatch->th_dispatch_pr_current = 0; 4095 dispatch->th_dispatch_sh_current = 0; 4096 4097 dispatch->th_deo_fcn = 0; /* ORDERED */ 4098 dispatch->th_dxo_fcn = 0; /* END ORDERED */ 4099 } 4100 4101 this_thr->th.th_next_pool = NULL; 4102 4103 if (!this_thr->th.th_task_state_memo_stack) { 4104 size_t i; 4105 this_thr->th.th_task_state_memo_stack = (kmp_uint8 *) __kmp_allocate( 4*sizeof(kmp_uint8) ); 4106 this_thr->th.th_task_state_top = 0; 4107 this_thr->th.th_task_state_stack_sz = 4; 4108 for (i=0; i<this_thr->th.th_task_state_stack_sz; ++i) // zero init the stack 4109 this_thr->th.th_task_state_memo_stack[i] = 0; 4110 } 4111 4112 KMP_DEBUG_ASSERT( !this_thr->th.th_spin_here ); 4113 KMP_DEBUG_ASSERT( this_thr->th.th_next_waiting == 0 ); 4114 4115 KMP_MB(); 4116 } 4117 4118 4119 /* allocate a new thread for the requesting team. this is only called from within a 4120 * forkjoin critical section. we will first try to get an available thread from the 4121 * thread pool. if none is available, we will fork a new one assuming we are able 4122 * to create a new one. this should be assured, as the caller should check on this 4123 * first. 4124 */ 4125 kmp_info_t * 4126 __kmp_allocate_thread( kmp_root_t *root, kmp_team_t *team, int new_tid ) 4127 { 4128 kmp_team_t *serial_team; 4129 kmp_info_t *new_thr; 4130 int new_gtid; 4131 4132 KA_TRACE( 20, ("__kmp_allocate_thread: T#%d\n", __kmp_get_gtid() )); 4133 KMP_DEBUG_ASSERT( root && team ); 4134 #if !KMP_NESTED_HOT_TEAMS 4135 KMP_DEBUG_ASSERT( KMP_MASTER_GTID( __kmp_get_gtid() )); 4136 #endif 4137 KMP_MB(); 4138 4139 /* first, try to get one from the thread pool */ 4140 if ( __kmp_thread_pool ) { 4141 4142 new_thr = (kmp_info_t*)__kmp_thread_pool; 4143 __kmp_thread_pool = (volatile kmp_info_t *) new_thr->th.th_next_pool; 4144 if ( new_thr == __kmp_thread_pool_insert_pt ) { 4145 __kmp_thread_pool_insert_pt = NULL; 4146 } 4147 TCW_4(new_thr->th.th_in_pool, FALSE); 4148 // 4149 // Don't touch th_active_in_pool or th_active. 4150 // The worker thread adjusts those flags as it sleeps/awakens. 4151 // 4152 __kmp_thread_pool_nth--; 4153 4154 KA_TRACE( 20, ("__kmp_allocate_thread: T#%d using thread T#%d\n", 4155 __kmp_get_gtid(), new_thr->th.th_info.ds.ds_gtid )); 4156 KMP_ASSERT( ! new_thr->th.th_team ); 4157 KMP_DEBUG_ASSERT( __kmp_nth < __kmp_threads_capacity ); 4158 KMP_DEBUG_ASSERT( __kmp_thread_pool_nth >= 0 ); 4159 4160 /* setup the thread structure */ 4161 __kmp_initialize_info( new_thr, team, new_tid, new_thr->th.th_info.ds.ds_gtid ); 4162 KMP_DEBUG_ASSERT( new_thr->th.th_serial_team ); 4163 4164 TCW_4(__kmp_nth, __kmp_nth + 1); 4165 4166 new_thr->th.th_task_state = 0; 4167 new_thr->th.th_task_state_top = 0; 4168 new_thr->th.th_task_state_stack_sz = 4; 4169 4170 #ifdef KMP_ADJUST_BLOCKTIME 4171 /* Adjust blocktime back to zero if necessar y */ 4172 /* Middle initialization might not have occurred yet */ 4173 if ( !__kmp_env_blocktime && ( __kmp_avail_proc > 0 ) ) { 4174 if ( __kmp_nth > __kmp_avail_proc ) { 4175 __kmp_zero_bt = TRUE; 4176 } 4177 } 4178 #endif /* KMP_ADJUST_BLOCKTIME */ 4179 4180 #if KMP_DEBUG 4181 // If thread entered pool via __kmp_free_thread, wait_flag should != KMP_BARRIER_PARENT_FLAG. 4182 int b; 4183 kmp_balign_t * balign = new_thr->th.th_bar; 4184 for( b = 0; b < bs_last_barrier; ++ b ) 4185 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 4186 #endif 4187 4188 KF_TRACE( 10, ("__kmp_allocate_thread: T#%d using thread %p T#%d\n", 4189 __kmp_get_gtid(), new_thr, new_thr->th.th_info.ds.ds_gtid )); 4190 4191 KMP_MB(); 4192 return new_thr; 4193 } 4194 4195 4196 /* no, well fork a new one */ 4197 KMP_ASSERT( __kmp_nth == __kmp_all_nth ); 4198 KMP_ASSERT( __kmp_all_nth < __kmp_threads_capacity ); 4199 4200 #if KMP_USE_MONITOR 4201 // 4202 // If this is the first worker thread the RTL is creating, then also 4203 // launch the monitor thread. We try to do this as early as possible. 4204 // 4205 if ( ! TCR_4( __kmp_init_monitor ) ) { 4206 __kmp_acquire_bootstrap_lock( & __kmp_monitor_lock ); 4207 if ( ! TCR_4( __kmp_init_monitor ) ) { 4208 KF_TRACE( 10, ( "before __kmp_create_monitor\n" ) ); 4209 TCW_4( __kmp_init_monitor, 1 ); 4210 __kmp_create_monitor( & __kmp_monitor ); 4211 KF_TRACE( 10, ( "after __kmp_create_monitor\n" ) ); 4212 #if KMP_OS_WINDOWS 4213 // AC: wait until monitor has started. This is a fix for CQ232808. 4214 // The reason is that if the library is loaded/unloaded in a loop with small (parallel) 4215 // work in between, then there is high probability that monitor thread started after 4216 // the library shutdown. At shutdown it is too late to cope with the problem, because 4217 // when the master is in DllMain (process detach) the monitor has no chances to start 4218 // (it is blocked), and master has no means to inform the monitor that the library has gone, 4219 // because all the memory which the monitor can access is going to be released/reset. 4220 while ( TCR_4(__kmp_init_monitor) < 2 ) { 4221 KMP_YIELD( TRUE ); 4222 } 4223 KF_TRACE( 10, ( "after monitor thread has started\n" ) ); 4224 #endif 4225 } 4226 __kmp_release_bootstrap_lock( & __kmp_monitor_lock ); 4227 } 4228 #endif 4229 4230 KMP_MB(); 4231 for( new_gtid=1 ; TCR_PTR(__kmp_threads[new_gtid]) != NULL; ++new_gtid ) { 4232 KMP_DEBUG_ASSERT( new_gtid < __kmp_threads_capacity ); 4233 } 4234 4235 /* allocate space for it. */ 4236 new_thr = (kmp_info_t*) __kmp_allocate( sizeof(kmp_info_t) ); 4237 4238 TCW_SYNC_PTR(__kmp_threads[new_gtid], new_thr); 4239 4240 if ( __kmp_storage_map ) { 4241 __kmp_print_thread_storage_map( new_thr, new_gtid ); 4242 } 4243 4244 /* add the reserve serialized team, initialized from the team's master thread */ 4245 { 4246 kmp_internal_control_t r_icvs = __kmp_get_x_global_icvs( team ); 4247 KF_TRACE( 10, ( "__kmp_allocate_thread: before th_serial/serial_team\n" ) ); 4248 4249 new_thr->th.th_serial_team = serial_team = 4250 (kmp_team_t*) __kmp_allocate_team( root, 1, 1, 4251 #if OMPT_SUPPORT 4252 0, // root parallel id 4253 #endif 4254 #if OMP_40_ENABLED 4255 proc_bind_default, 4256 #endif 4257 &r_icvs, 4258 0 USE_NESTED_HOT_ARG(NULL) ); 4259 } 4260 KMP_ASSERT ( serial_team ); 4261 serial_team->t.t_serialized = 0; // AC: the team created in reserve, not for execution (it is unused for now). 4262 serial_team->t.t_threads[0] = new_thr; 4263 KF_TRACE( 10, ( "__kmp_allocate_thread: after th_serial/serial_team : new_thr=%p\n", 4264 new_thr ) ); 4265 4266 /* setup the thread structures */ 4267 __kmp_initialize_info( new_thr, team, new_tid, new_gtid ); 4268 4269 #if USE_FAST_MEMORY 4270 __kmp_initialize_fast_memory( new_thr ); 4271 #endif /* USE_FAST_MEMORY */ 4272 4273 #if KMP_USE_BGET 4274 KMP_DEBUG_ASSERT( new_thr->th.th_local.bget_data == NULL ); 4275 __kmp_initialize_bget( new_thr ); 4276 #endif 4277 4278 __kmp_init_random( new_thr ); // Initialize random number generator 4279 4280 /* Initialize these only once when thread is grabbed for a team allocation */ 4281 KA_TRACE( 20, ("__kmp_allocate_thread: T#%d init go fork=%u, plain=%u\n", 4282 __kmp_get_gtid(), KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE )); 4283 4284 int b; 4285 kmp_balign_t * balign = new_thr->th.th_bar; 4286 for(b=0; b<bs_last_barrier; ++b) { 4287 balign[b].bb.b_go = KMP_INIT_BARRIER_STATE; 4288 balign[b].bb.team = NULL; 4289 balign[b].bb.wait_flag = KMP_BARRIER_NOT_WAITING; 4290 balign[b].bb.use_oncore_barrier = 0; 4291 } 4292 4293 new_thr->th.th_spin_here = FALSE; 4294 new_thr->th.th_next_waiting = 0; 4295 4296 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 4297 new_thr->th.th_current_place = KMP_PLACE_UNDEFINED; 4298 new_thr->th.th_new_place = KMP_PLACE_UNDEFINED; 4299 new_thr->th.th_first_place = KMP_PLACE_UNDEFINED; 4300 new_thr->th.th_last_place = KMP_PLACE_UNDEFINED; 4301 #endif 4302 4303 TCW_4(new_thr->th.th_in_pool, FALSE); 4304 new_thr->th.th_active_in_pool = FALSE; 4305 TCW_4(new_thr->th.th_active, TRUE); 4306 4307 /* adjust the global counters */ 4308 __kmp_all_nth ++; 4309 __kmp_nth ++; 4310 4311 // 4312 // if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) 4313 // for low numbers of procs, and method #2 (keyed API call) for higher 4314 // numbers of procs. 4315 // 4316 if ( __kmp_adjust_gtid_mode ) { 4317 if ( __kmp_all_nth >= __kmp_tls_gtid_min ) { 4318 if ( TCR_4(__kmp_gtid_mode) != 2) { 4319 TCW_4(__kmp_gtid_mode, 2); 4320 } 4321 } 4322 else { 4323 if (TCR_4(__kmp_gtid_mode) != 1 ) { 4324 TCW_4(__kmp_gtid_mode, 1); 4325 } 4326 } 4327 } 4328 4329 #ifdef KMP_ADJUST_BLOCKTIME 4330 /* Adjust blocktime back to zero if necessary */ 4331 /* Middle initialization might not have occurred yet */ 4332 if ( !__kmp_env_blocktime && ( __kmp_avail_proc > 0 ) ) { 4333 if ( __kmp_nth > __kmp_avail_proc ) { 4334 __kmp_zero_bt = TRUE; 4335 } 4336 } 4337 #endif /* KMP_ADJUST_BLOCKTIME */ 4338 4339 /* actually fork it and create the new worker thread */ 4340 KF_TRACE( 10, ("__kmp_allocate_thread: before __kmp_create_worker: %p\n", new_thr )); 4341 __kmp_create_worker( new_gtid, new_thr, __kmp_stksize ); 4342 KF_TRACE( 10, ("__kmp_allocate_thread: after __kmp_create_worker: %p\n", new_thr )); 4343 4344 KA_TRACE( 20, ("__kmp_allocate_thread: T#%d forked T#%d\n", __kmp_get_gtid(), new_gtid )); 4345 KMP_MB(); 4346 return new_thr; 4347 } 4348 4349 /* 4350 * reinitialize team for reuse. 4351 * 4352 * The hot team code calls this case at every fork barrier, so EPCC barrier 4353 * test are extremely sensitive to changes in it, esp. writes to the team 4354 * struct, which cause a cache invalidation in all threads. 4355 * 4356 * IF YOU TOUCH THIS ROUTINE, RUN EPCC C SYNCBENCH ON A BIG-IRON MACHINE!!! 4357 */ 4358 static void 4359 __kmp_reinitialize_team( kmp_team_t *team, kmp_internal_control_t *new_icvs, ident_t *loc ) { 4360 KF_TRACE( 10, ( "__kmp_reinitialize_team: enter this_thread=%p team=%p\n", 4361 team->t.t_threads[0], team ) ); 4362 KMP_DEBUG_ASSERT( team && new_icvs); 4363 KMP_DEBUG_ASSERT( ( ! TCR_4(__kmp_init_parallel) ) || new_icvs->nproc ); 4364 KMP_CHECK_UPDATE(team->t.t_ident, loc); 4365 4366 KMP_CHECK_UPDATE(team->t.t_id, KMP_GEN_TEAM_ID()); 4367 4368 // Copy ICVs to the master thread's implicit taskdata 4369 __kmp_init_implicit_task( loc, team->t.t_threads[0], team, 0, FALSE ); 4370 copy_icvs(&team->t.t_implicit_task_taskdata[0].td_icvs, new_icvs); 4371 4372 KF_TRACE( 10, ( "__kmp_reinitialize_team: exit this_thread=%p team=%p\n", 4373 team->t.t_threads[0], team ) ); 4374 } 4375 4376 4377 /* initialize the team data structure 4378 * this assumes the t_threads and t_max_nproc are already set 4379 * also, we don't touch the arguments */ 4380 static void 4381 __kmp_initialize_team( 4382 kmp_team_t * team, 4383 int new_nproc, 4384 kmp_internal_control_t * new_icvs, 4385 ident_t * loc 4386 ) { 4387 KF_TRACE( 10, ( "__kmp_initialize_team: enter: team=%p\n", team ) ); 4388 4389 /* verify */ 4390 KMP_DEBUG_ASSERT( team ); 4391 KMP_DEBUG_ASSERT( new_nproc <= team->t.t_max_nproc ); 4392 KMP_DEBUG_ASSERT( team->t.t_threads ); 4393 KMP_MB(); 4394 4395 team->t.t_master_tid = 0; /* not needed */ 4396 /* team->t.t_master_bar; not needed */ 4397 team->t.t_serialized = new_nproc > 1 ? 0 : 1; 4398 team->t.t_nproc = new_nproc; 4399 4400 /* team->t.t_parent = NULL; TODO not needed & would mess up hot team */ 4401 team->t.t_next_pool = NULL; 4402 /* memset( team->t.t_threads, 0, sizeof(kmp_info_t*)*new_nproc ); would mess up hot team */ 4403 4404 TCW_SYNC_PTR(team->t.t_pkfn, NULL); /* not needed */ 4405 team->t.t_invoke = NULL; /* not needed */ 4406 4407 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 4408 team->t.t_sched = new_icvs->sched; 4409 4410 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4411 team->t.t_fp_control_saved = FALSE; /* not needed */ 4412 team->t.t_x87_fpu_control_word = 0; /* not needed */ 4413 team->t.t_mxcsr = 0; /* not needed */ 4414 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4415 4416 team->t.t_construct = 0; 4417 __kmp_init_lock( & team->t.t_single_lock ); 4418 4419 team->t.t_ordered .dt.t_value = 0; 4420 team->t.t_master_active = FALSE; 4421 4422 memset( & team->t.t_taskq, '\0', sizeof( kmp_taskq_t )); 4423 4424 #ifdef KMP_DEBUG 4425 team->t.t_copypriv_data = NULL; /* not necessary, but nice for debugging */ 4426 #endif 4427 team->t.t_copyin_counter = 0; /* for barrier-free copyin implementation */ 4428 4429 team->t.t_control_stack_top = NULL; 4430 4431 __kmp_reinitialize_team( team, new_icvs, loc ); 4432 4433 KMP_MB(); 4434 KF_TRACE( 10, ( "__kmp_initialize_team: exit: team=%p\n", team ) ); 4435 } 4436 4437 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 4438 /* Sets full mask for thread and returns old mask, no changes to structures. */ 4439 static void 4440 __kmp_set_thread_affinity_mask_full_tmp( kmp_affin_mask_t *old_mask ) 4441 { 4442 if ( KMP_AFFINITY_CAPABLE() ) { 4443 int status; 4444 if ( old_mask != NULL ) { 4445 status = __kmp_get_system_affinity( old_mask, TRUE ); 4446 int error = errno; 4447 if ( status != 0 ) { 4448 __kmp_msg( 4449 kmp_ms_fatal, 4450 KMP_MSG( ChangeThreadAffMaskError ), 4451 KMP_ERR( error ), 4452 __kmp_msg_null 4453 ); 4454 } 4455 } 4456 __kmp_set_system_affinity( __kmp_affin_fullMask, TRUE ); 4457 } 4458 } 4459 #endif 4460 4461 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 4462 4463 // 4464 // __kmp_partition_places() is the heart of the OpenMP 4.0 affinity mechanism. 4465 // It calculats the worker + master thread's partition based upon the parent 4466 // thread's partition, and binds each worker to a thread in their partition. 4467 // The master thread's partition should already include its current binding. 4468 // 4469 static void 4470 __kmp_partition_places( kmp_team_t *team, int update_master_only ) 4471 { 4472 // 4473 // Copy the master thread's place partion to the team struct 4474 // 4475 kmp_info_t *master_th = team->t.t_threads[0]; 4476 KMP_DEBUG_ASSERT( master_th != NULL ); 4477 kmp_proc_bind_t proc_bind = team->t.t_proc_bind; 4478 int first_place = master_th->th.th_first_place; 4479 int last_place = master_th->th.th_last_place; 4480 int masters_place = master_th->th.th_current_place; 4481 team->t.t_first_place = first_place; 4482 team->t.t_last_place = last_place; 4483 4484 KA_TRACE( 20, ("__kmp_partition_places: enter: proc_bind = %d T#%d(%d:0) bound to place %d partition = [%d,%d]\n", 4485 proc_bind, __kmp_gtid_from_thread( team->t.t_threads[0] ), team->t.t_id, 4486 masters_place, first_place, last_place ) ); 4487 4488 switch ( proc_bind ) { 4489 4490 case proc_bind_default: 4491 // 4492 // serial teams might have the proc_bind policy set to 4493 // proc_bind_default. It doesn't matter, as we don't 4494 // rebind the master thread for any proc_bind policy. 4495 // 4496 KMP_DEBUG_ASSERT( team->t.t_nproc == 1 ); 4497 break; 4498 4499 case proc_bind_master: 4500 { 4501 int f; 4502 int n_th = team->t.t_nproc; 4503 for ( f = 1; f < n_th; f++ ) { 4504 kmp_info_t *th = team->t.t_threads[f]; 4505 KMP_DEBUG_ASSERT( th != NULL ); 4506 th->th.th_first_place = first_place; 4507 th->th.th_last_place = last_place; 4508 th->th.th_new_place = masters_place; 4509 4510 KA_TRACE( 100, ("__kmp_partition_places: master: T#%d(%d:%d) place %d partition = [%d,%d]\n", 4511 __kmp_gtid_from_thread( team->t.t_threads[f] ), 4512 team->t.t_id, f, masters_place, first_place, last_place ) ); 4513 } 4514 } 4515 break; 4516 4517 case proc_bind_close: 4518 { 4519 int f; 4520 int n_th = team->t.t_nproc; 4521 int n_places; 4522 if ( first_place <= last_place ) { 4523 n_places = last_place - first_place + 1; 4524 } 4525 else { 4526 n_places = __kmp_affinity_num_masks - first_place + last_place + 1; 4527 } 4528 if ( n_th <= n_places ) { 4529 int place = masters_place; 4530 for ( f = 1; f < n_th; f++ ) { 4531 kmp_info_t *th = team->t.t_threads[f]; 4532 KMP_DEBUG_ASSERT( th != NULL ); 4533 4534 if ( place == last_place ) { 4535 place = first_place; 4536 } 4537 else if ( place == (int)(__kmp_affinity_num_masks - 1) ) { 4538 place = 0; 4539 } 4540 else { 4541 place++; 4542 } 4543 th->th.th_first_place = first_place; 4544 th->th.th_last_place = last_place; 4545 th->th.th_new_place = place; 4546 4547 KA_TRACE( 100, ("__kmp_partition_places: close: T#%d(%d:%d) place %d partition = [%d,%d]\n", 4548 __kmp_gtid_from_thread( team->t.t_threads[f] ), 4549 team->t.t_id, f, place, first_place, last_place ) ); 4550 } 4551 } 4552 else { 4553 int S, rem, gap, s_count; 4554 S = n_th / n_places; 4555 s_count = 0; 4556 rem = n_th - ( S * n_places ); 4557 gap = rem > 0 ? n_places/rem : n_places; 4558 int place = masters_place; 4559 int gap_ct = gap; 4560 for ( f = 0; f < n_th; f++ ) { 4561 kmp_info_t *th = team->t.t_threads[f]; 4562 KMP_DEBUG_ASSERT( th != NULL ); 4563 4564 th->th.th_first_place = first_place; 4565 th->th.th_last_place = last_place; 4566 th->th.th_new_place = place; 4567 s_count++; 4568 4569 if ( (s_count == S) && rem && (gap_ct == gap) ) { 4570 // do nothing, add an extra thread to place on next iteration 4571 } 4572 else if ( (s_count == S+1) && rem && (gap_ct == gap) ) { 4573 // we added an extra thread to this place; move to next place 4574 if ( place == last_place ) { 4575 place = first_place; 4576 } 4577 else if ( place == (int)(__kmp_affinity_num_masks - 1) ) { 4578 place = 0; 4579 } 4580 else { 4581 place++; 4582 } 4583 s_count = 0; 4584 gap_ct = 1; 4585 rem--; 4586 } 4587 else if (s_count == S) { // place full; don't add extra 4588 if ( place == last_place ) { 4589 place = first_place; 4590 } 4591 else if ( place == (int)(__kmp_affinity_num_masks - 1) ) { 4592 place = 0; 4593 } 4594 else { 4595 place++; 4596 } 4597 gap_ct++; 4598 s_count = 0; 4599 } 4600 4601 KA_TRACE( 100, ("__kmp_partition_places: close: T#%d(%d:%d) place %d partition = [%d,%d]\n", 4602 __kmp_gtid_from_thread( team->t.t_threads[f] ), 4603 team->t.t_id, f, th->th.th_new_place, first_place, 4604 last_place ) ); 4605 } 4606 KMP_DEBUG_ASSERT( place == masters_place ); 4607 } 4608 } 4609 break; 4610 4611 case proc_bind_spread: 4612 { 4613 int f; 4614 int n_th = team->t.t_nproc; 4615 int n_places; 4616 int thidx; 4617 if ( first_place <= last_place ) { 4618 n_places = last_place - first_place + 1; 4619 } 4620 else { 4621 n_places = __kmp_affinity_num_masks - first_place + last_place + 1; 4622 } 4623 if ( n_th <= n_places ) { 4624 int place = masters_place; 4625 int S = n_places/n_th; 4626 int s_count, rem, gap, gap_ct; 4627 rem = n_places - n_th*S; 4628 gap = rem ? n_th/rem : 1; 4629 gap_ct = gap; 4630 thidx = n_th; 4631 if (update_master_only == 1) 4632 thidx = 1; 4633 for ( f = 0; f < thidx; f++ ) { 4634 kmp_info_t *th = team->t.t_threads[f]; 4635 KMP_DEBUG_ASSERT( th != NULL ); 4636 4637 th->th.th_first_place = place; 4638 th->th.th_new_place = place; 4639 s_count = 1; 4640 while (s_count < S) { 4641 if ( place == last_place ) { 4642 place = first_place; 4643 } 4644 else if ( place == (int)(__kmp_affinity_num_masks - 1) ) { 4645 place = 0; 4646 } 4647 else { 4648 place++; 4649 } 4650 s_count++; 4651 } 4652 if (rem && (gap_ct == gap)) { 4653 if ( place == last_place ) { 4654 place = first_place; 4655 } 4656 else if ( place == (int)(__kmp_affinity_num_masks - 1) ) { 4657 place = 0; 4658 } 4659 else { 4660 place++; 4661 } 4662 rem--; 4663 gap_ct = 0; 4664 } 4665 th->th.th_last_place = place; 4666 gap_ct++; 4667 4668 if ( place == last_place ) { 4669 place = first_place; 4670 } 4671 else if ( place == (int)(__kmp_affinity_num_masks - 1) ) { 4672 place = 0; 4673 } 4674 else { 4675 place++; 4676 } 4677 4678 KA_TRACE( 100, ("__kmp_partition_places: spread: T#%d(%d:%d) place %d partition = [%d,%d]\n", 4679 __kmp_gtid_from_thread( team->t.t_threads[f] ), 4680 team->t.t_id, f, th->th.th_new_place, 4681 th->th.th_first_place, th->th.th_last_place ) ); 4682 } 4683 KMP_DEBUG_ASSERT( update_master_only || place == masters_place ); 4684 } 4685 else { 4686 int S, rem, gap, s_count; 4687 S = n_th / n_places; 4688 s_count = 0; 4689 rem = n_th - ( S * n_places ); 4690 gap = rem > 0 ? n_places/rem : n_places; 4691 int place = masters_place; 4692 int gap_ct = gap; 4693 thidx = n_th; 4694 if (update_master_only == 1) 4695 thidx = 1; 4696 for ( f = 0; f < thidx; f++ ) { 4697 kmp_info_t *th = team->t.t_threads[f]; 4698 KMP_DEBUG_ASSERT( th != NULL ); 4699 4700 th->th.th_first_place = place; 4701 th->th.th_last_place = place; 4702 th->th.th_new_place = place; 4703 s_count++; 4704 4705 if ( (s_count == S) && rem && (gap_ct == gap) ) { 4706 // do nothing, add an extra thread to place on next iteration 4707 } 4708 else if ( (s_count == S+1) && rem && (gap_ct == gap) ) { 4709 // we added an extra thread to this place; move on to next place 4710 if ( place == last_place ) { 4711 place = first_place; 4712 } 4713 else if ( place == (int)(__kmp_affinity_num_masks - 1) ) { 4714 place = 0; 4715 } 4716 else { 4717 place++; 4718 } 4719 s_count = 0; 4720 gap_ct = 1; 4721 rem--; 4722 } 4723 else if (s_count == S) { // place is full; don't add extra thread 4724 if ( place == last_place ) { 4725 place = first_place; 4726 } 4727 else if ( place == (int)(__kmp_affinity_num_masks - 1) ) { 4728 place = 0; 4729 } 4730 else { 4731 place++; 4732 } 4733 gap_ct++; 4734 s_count = 0; 4735 } 4736 4737 KA_TRACE( 100, ("__kmp_partition_places: spread: T#%d(%d:%d) place %d partition = [%d,%d]\n", 4738 __kmp_gtid_from_thread( team->t.t_threads[f] ), 4739 team->t.t_id, f, th->th.th_new_place, 4740 th->th.th_first_place, th->th.th_last_place) ); 4741 } 4742 KMP_DEBUG_ASSERT( update_master_only || place == masters_place ); 4743 } 4744 } 4745 break; 4746 4747 default: 4748 break; 4749 } 4750 4751 KA_TRACE( 20, ("__kmp_partition_places: exit T#%d\n", team->t.t_id ) ); 4752 } 4753 4754 #endif /* OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED */ 4755 4756 /* allocate a new team data structure to use. take one off of the free pool if available */ 4757 kmp_team_t * 4758 __kmp_allocate_team( kmp_root_t *root, int new_nproc, int max_nproc, 4759 #if OMPT_SUPPORT 4760 ompt_parallel_id_t ompt_parallel_id, 4761 #endif 4762 #if OMP_40_ENABLED 4763 kmp_proc_bind_t new_proc_bind, 4764 #endif 4765 kmp_internal_control_t *new_icvs, 4766 int argc USE_NESTED_HOT_ARG(kmp_info_t *master) ) 4767 { 4768 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_allocate_team); 4769 int f; 4770 kmp_team_t *team; 4771 int use_hot_team = ! root->r.r_active; 4772 int level = 0; 4773 4774 KA_TRACE( 20, ("__kmp_allocate_team: called\n")); 4775 KMP_DEBUG_ASSERT( new_nproc >=1 && argc >=0 ); 4776 KMP_DEBUG_ASSERT( max_nproc >= new_nproc ); 4777 KMP_MB(); 4778 4779 #if KMP_NESTED_HOT_TEAMS 4780 kmp_hot_team_ptr_t *hot_teams; 4781 if( master ) { 4782 team = master->th.th_team; 4783 level = team->t.t_active_level; 4784 if( master->th.th_teams_microtask ) { // in teams construct? 4785 if( master->th.th_teams_size.nteams > 1 && ( // #teams > 1 4786 team->t.t_pkfn == (microtask_t)__kmp_teams_master || // inner fork of the teams 4787 master->th.th_teams_level < team->t.t_level ) ) { // or nested parallel inside the teams 4788 ++level; // not increment if #teams==1, or for outer fork of the teams; increment otherwise 4789 } 4790 } 4791 hot_teams = master->th.th_hot_teams; 4792 if( level < __kmp_hot_teams_max_level && hot_teams && hot_teams[level].hot_team ) 4793 { // hot team has already been allocated for given level 4794 use_hot_team = 1; 4795 } else { 4796 use_hot_team = 0; 4797 } 4798 } 4799 #endif 4800 // Optimization to use a "hot" team 4801 if( use_hot_team && new_nproc > 1 ) { 4802 KMP_DEBUG_ASSERT( new_nproc == max_nproc ); 4803 #if KMP_NESTED_HOT_TEAMS 4804 team = hot_teams[level].hot_team; 4805 #else 4806 team = root->r.r_hot_team; 4807 #endif 4808 #if KMP_DEBUG 4809 if ( __kmp_tasking_mode != tskm_immediate_exec ) { 4810 KA_TRACE( 20, ("__kmp_allocate_team: hot team task_team[0] = %p task_team[1] = %p before reinit\n", 4811 team->t.t_task_team[0], team->t.t_task_team[1] )); 4812 } 4813 #endif 4814 4815 // Has the number of threads changed? 4816 /* Let's assume the most common case is that the number of threads is unchanged, and 4817 put that case first. */ 4818 if (team->t.t_nproc == new_nproc) { // Check changes in number of threads 4819 KA_TRACE( 20, ("__kmp_allocate_team: reusing hot team\n" )); 4820 // This case can mean that omp_set_num_threads() was called and the hot team size 4821 // was already reduced, so we check the special flag 4822 if ( team->t.t_size_changed == -1 ) { 4823 team->t.t_size_changed = 1; 4824 } else { 4825 KMP_CHECK_UPDATE(team->t.t_size_changed, 0); 4826 } 4827 4828 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 4829 kmp_r_sched_t new_sched = new_icvs->sched; 4830 if (team->t.t_sched.r_sched_type != new_sched.r_sched_type || 4831 team->t.t_sched.chunk != new_sched.chunk) 4832 team->t.t_sched = new_sched; // set master's schedule as new run-time schedule 4833 4834 __kmp_reinitialize_team( team, new_icvs, root->r.r_uber_thread->th.th_ident ); 4835 4836 KF_TRACE( 10, ("__kmp_allocate_team2: T#%d, this_thread=%p team=%p\n", 4837 0, team->t.t_threads[0], team ) ); 4838 __kmp_push_current_task_to_thread( team->t.t_threads[ 0 ], team, 0 ); 4839 4840 #if OMP_40_ENABLED 4841 # if KMP_AFFINITY_SUPPORTED 4842 if ( ( team->t.t_size_changed == 0 ) 4843 && ( team->t.t_proc_bind == new_proc_bind ) ) { 4844 if (new_proc_bind == proc_bind_spread) { 4845 __kmp_partition_places(team, 1); // add flag to update only master for spread 4846 } 4847 KA_TRACE( 200, ("__kmp_allocate_team: reusing hot team #%d bindings: proc_bind = %d, partition = [%d,%d]\n", 4848 team->t.t_id, new_proc_bind, team->t.t_first_place, 4849 team->t.t_last_place ) ); 4850 } 4851 else { 4852 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 4853 __kmp_partition_places( team ); 4854 } 4855 # else 4856 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 4857 # endif /* KMP_AFFINITY_SUPPORTED */ 4858 #endif /* OMP_40_ENABLED */ 4859 } 4860 else if( team->t.t_nproc > new_nproc ) { 4861 KA_TRACE( 20, ("__kmp_allocate_team: decreasing hot team thread count to %d\n", new_nproc )); 4862 4863 team->t.t_size_changed = 1; 4864 #if KMP_NESTED_HOT_TEAMS 4865 if( __kmp_hot_teams_mode == 0 ) { 4866 // AC: saved number of threads should correspond to team's value in this mode, 4867 // can be bigger in mode 1, when hot team has some threads in reserve 4868 KMP_DEBUG_ASSERT(hot_teams[level].hot_team_nth == team->t.t_nproc); 4869 hot_teams[level].hot_team_nth = new_nproc; 4870 #endif // KMP_NESTED_HOT_TEAMS 4871 /* release the extra threads we don't need any more */ 4872 for( f = new_nproc ; f < team->t.t_nproc ; f++ ) { 4873 KMP_DEBUG_ASSERT( team->t.t_threads[ f ] ); 4874 if ( __kmp_tasking_mode != tskm_immediate_exec) { 4875 // When decreasing team size, threads no longer in the team should unref task team. 4876 team->t.t_threads[f]->th.th_task_team = NULL; 4877 } 4878 __kmp_free_thread( team->t.t_threads[ f ] ); 4879 team->t.t_threads[ f ] = NULL; 4880 } 4881 #if KMP_NESTED_HOT_TEAMS 4882 } // (__kmp_hot_teams_mode == 0) 4883 else { 4884 // When keeping extra threads in team, switch threads to wait on own b_go flag 4885 for (f=new_nproc; f<team->t.t_nproc; ++f) { 4886 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 4887 kmp_balign_t *balign = team->t.t_threads[f]->th.th_bar; 4888 for (int b=0; b<bs_last_barrier; ++b) { 4889 if (balign[b].bb.wait_flag == KMP_BARRIER_PARENT_FLAG) { 4890 balign[b].bb.wait_flag = KMP_BARRIER_SWITCH_TO_OWN_FLAG; 4891 } 4892 KMP_CHECK_UPDATE(balign[b].bb.leaf_kids, 0); 4893 } 4894 } 4895 } 4896 #endif // KMP_NESTED_HOT_TEAMS 4897 team->t.t_nproc = new_nproc; 4898 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 4899 if (team->t.t_sched.r_sched_type != new_icvs->sched.r_sched_type || 4900 team->t.t_sched.chunk != new_icvs->sched.chunk) 4901 team->t.t_sched = new_icvs->sched; 4902 __kmp_reinitialize_team( team, new_icvs, root->r.r_uber_thread->th.th_ident ); 4903 4904 /* update the remaining threads */ 4905 for(f = 0; f < new_nproc; ++f) { 4906 team->t.t_threads[f]->th.th_team_nproc = new_nproc; 4907 } 4908 // restore the current task state of the master thread: should be the implicit task 4909 KF_TRACE( 10, ("__kmp_allocate_team: T#%d, this_thread=%p team=%p\n", 4910 0, team->t.t_threads[0], team ) ); 4911 4912 __kmp_push_current_task_to_thread( team->t.t_threads[ 0 ], team, 0 ); 4913 4914 #ifdef KMP_DEBUG 4915 for ( f = 0; f < team->t.t_nproc; f++ ) { 4916 KMP_DEBUG_ASSERT( team->t.t_threads[f] && 4917 team->t.t_threads[f]->th.th_team_nproc == team->t.t_nproc ); 4918 } 4919 #endif 4920 4921 #if OMP_40_ENABLED 4922 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 4923 # if KMP_AFFINITY_SUPPORTED 4924 __kmp_partition_places( team ); 4925 # endif 4926 #endif 4927 } 4928 else { // team->t.t_nproc < new_nproc 4929 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 4930 kmp_affin_mask_t *old_mask; 4931 if ( KMP_AFFINITY_CAPABLE() ) { 4932 KMP_CPU_ALLOC(old_mask); 4933 } 4934 #endif 4935 4936 KA_TRACE( 20, ("__kmp_allocate_team: increasing hot team thread count to %d\n", new_nproc )); 4937 4938 team->t.t_size_changed = 1; 4939 4940 #if KMP_NESTED_HOT_TEAMS 4941 int avail_threads = hot_teams[level].hot_team_nth; 4942 if( new_nproc < avail_threads ) 4943 avail_threads = new_nproc; 4944 kmp_info_t **other_threads = team->t.t_threads; 4945 for ( f = team->t.t_nproc; f < avail_threads; ++f ) { 4946 // Adjust barrier data of reserved threads (if any) of the team 4947 // Other data will be set in __kmp_initialize_info() below. 4948 int b; 4949 kmp_balign_t * balign = other_threads[f]->th.th_bar; 4950 for ( b = 0; b < bs_last_barrier; ++ b ) { 4951 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 4952 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 4953 #if USE_DEBUGGER 4954 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 4955 #endif 4956 } 4957 } 4958 if( hot_teams[level].hot_team_nth >= new_nproc ) { 4959 // we have all needed threads in reserve, no need to allocate any 4960 // this only possible in mode 1, cannot have reserved threads in mode 0 4961 KMP_DEBUG_ASSERT(__kmp_hot_teams_mode == 1); 4962 team->t.t_nproc = new_nproc; // just get reserved threads involved 4963 } else { 4964 // we may have some threads in reserve, but not enough 4965 team->t.t_nproc = hot_teams[level].hot_team_nth; // get reserved threads involved if any 4966 hot_teams[level].hot_team_nth = new_nproc; // adjust hot team max size 4967 #endif // KMP_NESTED_HOT_TEAMS 4968 if(team->t.t_max_nproc < new_nproc) { 4969 /* reallocate larger arrays */ 4970 __kmp_reallocate_team_arrays(team, new_nproc); 4971 __kmp_reinitialize_team( team, new_icvs, NULL ); 4972 } 4973 4974 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 4975 /* Temporarily set full mask for master thread before 4976 creation of workers. The reason is that workers inherit 4977 the affinity from master, so if a lot of workers are 4978 created on the single core quickly, they don't get 4979 a chance to set their own affinity for a long time. 4980 */ 4981 __kmp_set_thread_affinity_mask_full_tmp( old_mask ); 4982 #endif 4983 4984 /* allocate new threads for the hot team */ 4985 for( f = team->t.t_nproc ; f < new_nproc ; f++ ) { 4986 kmp_info_t * new_worker = __kmp_allocate_thread( root, team, f ); 4987 KMP_DEBUG_ASSERT( new_worker ); 4988 team->t.t_threads[ f ] = new_worker; 4989 4990 KA_TRACE( 20, ("__kmp_allocate_team: team %d init T#%d arrived: join=%llu, plain=%llu\n", 4991 team->t.t_id, __kmp_gtid_from_tid( f, team ), team->t.t_id, f, 4992 team->t.t_bar[bs_forkjoin_barrier].b_arrived, 4993 team->t.t_bar[bs_plain_barrier].b_arrived ) ); 4994 4995 { // Initialize barrier data for new threads. 4996 int b; 4997 kmp_balign_t * balign = new_worker->th.th_bar; 4998 for( b = 0; b < bs_last_barrier; ++ b ) { 4999 balign[ b ].bb.b_arrived = team->t.t_bar[ b ].b_arrived; 5000 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 5001 #if USE_DEBUGGER 5002 balign[ b ].bb.b_worker_arrived = team->t.t_bar[ b ].b_team_arrived; 5003 #endif 5004 } 5005 } 5006 } 5007 5008 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 5009 if ( KMP_AFFINITY_CAPABLE() ) { 5010 /* Restore initial master thread's affinity mask */ 5011 __kmp_set_system_affinity( old_mask, TRUE ); 5012 KMP_CPU_FREE(old_mask); 5013 } 5014 #endif 5015 #if KMP_NESTED_HOT_TEAMS 5016 } // end of check of t_nproc vs. new_nproc vs. hot_team_nth 5017 #endif // KMP_NESTED_HOT_TEAMS 5018 /* make sure everyone is syncronized */ 5019 int old_nproc = team->t.t_nproc; // save old value and use to update only new threads below 5020 __kmp_initialize_team( team, new_nproc, new_icvs, root->r.r_uber_thread->th.th_ident ); 5021 5022 /* reinitialize the threads */ 5023 KMP_DEBUG_ASSERT(team->t.t_nproc == new_nproc); 5024 for (f=0; f < team->t.t_nproc; ++f) 5025 __kmp_initialize_info( team->t.t_threads[ f ], team, f, __kmp_gtid_from_tid( f, team ) ); 5026 if (level) { // set th_task_state for new threads in nested hot team 5027 // __kmp_initialize_info() no longer zeroes th_task_state, so we should only need to set the 5028 // th_task_state for the new threads. th_task_state for master thread will not be accurate until 5029 // after this in __kmp_fork_call(), so we look to the master's memo_stack to get the correct value. 5030 for (f=old_nproc; f < team->t.t_nproc; ++f) 5031 team->t.t_threads[f]->th.th_task_state = team->t.t_threads[0]->th.th_task_state_memo_stack[level]; 5032 } 5033 else { // set th_task_state for new threads in non-nested hot team 5034 int old_state = team->t.t_threads[0]->th.th_task_state; // copy master's state 5035 for (f=old_nproc; f < team->t.t_nproc; ++f) 5036 team->t.t_threads[f]->th.th_task_state = old_state; 5037 } 5038 5039 #ifdef KMP_DEBUG 5040 for ( f = 0; f < team->t.t_nproc; ++ f ) { 5041 KMP_DEBUG_ASSERT( team->t.t_threads[f] && 5042 team->t.t_threads[f]->th.th_team_nproc == team->t.t_nproc ); 5043 } 5044 #endif 5045 5046 #if OMP_40_ENABLED 5047 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5048 # if KMP_AFFINITY_SUPPORTED 5049 __kmp_partition_places( team ); 5050 # endif 5051 #endif 5052 } // Check changes in number of threads 5053 5054 #if OMP_40_ENABLED 5055 kmp_info_t *master = team->t.t_threads[0]; 5056 if( master->th.th_teams_microtask ) { 5057 for( f = 1; f < new_nproc; ++f ) { 5058 // propagate teams construct specific info to workers 5059 kmp_info_t *thr = team->t.t_threads[f]; 5060 thr->th.th_teams_microtask = master->th.th_teams_microtask; 5061 thr->th.th_teams_level = master->th.th_teams_level; 5062 thr->th.th_teams_size = master->th.th_teams_size; 5063 } 5064 } 5065 #endif /* OMP_40_ENABLED */ 5066 #if KMP_NESTED_HOT_TEAMS 5067 if( level ) { 5068 // Sync barrier state for nested hot teams, not needed for outermost hot team. 5069 for( f = 1; f < new_nproc; ++f ) { 5070 kmp_info_t *thr = team->t.t_threads[f]; 5071 int b; 5072 kmp_balign_t * balign = thr->th.th_bar; 5073 for( b = 0; b < bs_last_barrier; ++ b ) { 5074 balign[ b ].bb.b_arrived = team->t.t_bar[ b ].b_arrived; 5075 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 5076 #if USE_DEBUGGER 5077 balign[ b ].bb.b_worker_arrived = team->t.t_bar[ b ].b_team_arrived; 5078 #endif 5079 } 5080 } 5081 } 5082 #endif // KMP_NESTED_HOT_TEAMS 5083 5084 /* reallocate space for arguments if necessary */ 5085 __kmp_alloc_argv_entries( argc, team, TRUE ); 5086 KMP_CHECK_UPDATE(team->t.t_argc, argc); 5087 // 5088 // The hot team re-uses the previous task team, 5089 // if untouched during the previous release->gather phase. 5090 // 5091 5092 KF_TRACE( 10, ( " hot_team = %p\n", team ) ); 5093 5094 #if KMP_DEBUG 5095 if ( __kmp_tasking_mode != tskm_immediate_exec ) { 5096 KA_TRACE( 20, ("__kmp_allocate_team: hot team task_team[0] = %p task_team[1] = %p after reinit\n", 5097 team->t.t_task_team[0], team->t.t_task_team[1] )); 5098 } 5099 #endif 5100 5101 #if OMPT_SUPPORT 5102 __ompt_team_assign_id(team, ompt_parallel_id); 5103 #endif 5104 5105 KMP_MB(); 5106 5107 return team; 5108 } 5109 5110 /* next, let's try to take one from the team pool */ 5111 KMP_MB(); 5112 for( team = (kmp_team_t*) __kmp_team_pool ; (team) ; ) 5113 { 5114 /* TODO: consider resizing undersized teams instead of reaping them, now that we have a resizing mechanism */ 5115 if ( team->t.t_max_nproc >= max_nproc ) { 5116 /* take this team from the team pool */ 5117 __kmp_team_pool = team->t.t_next_pool; 5118 5119 /* setup the team for fresh use */ 5120 __kmp_initialize_team( team, new_nproc, new_icvs, NULL ); 5121 5122 KA_TRACE( 20, ( "__kmp_allocate_team: setting task_team[0] %p and task_team[1] %p to NULL\n", 5123 &team->t.t_task_team[0], &team->t.t_task_team[1]) ); 5124 team->t.t_task_team[0] = NULL; 5125 team->t.t_task_team[1] = NULL; 5126 5127 /* reallocate space for arguments if necessary */ 5128 __kmp_alloc_argv_entries( argc, team, TRUE ); 5129 KMP_CHECK_UPDATE(team->t.t_argc, argc); 5130 5131 KA_TRACE( 20, ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n", 5132 team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE )); 5133 { // Initialize barrier data. 5134 int b; 5135 for ( b = 0; b < bs_last_barrier; ++ b) { 5136 team->t.t_bar[ b ].b_arrived = KMP_INIT_BARRIER_STATE; 5137 #if USE_DEBUGGER 5138 team->t.t_bar[ b ].b_master_arrived = 0; 5139 team->t.t_bar[ b ].b_team_arrived = 0; 5140 #endif 5141 } 5142 } 5143 5144 #if OMP_40_ENABLED 5145 team->t.t_proc_bind = new_proc_bind; 5146 #endif 5147 5148 KA_TRACE( 20, ("__kmp_allocate_team: using team from pool %d.\n", team->t.t_id )); 5149 5150 #if OMPT_SUPPORT 5151 __ompt_team_assign_id(team, ompt_parallel_id); 5152 #endif 5153 5154 KMP_MB(); 5155 5156 return team; 5157 } 5158 5159 /* reap team if it is too small, then loop back and check the next one */ 5160 /* not sure if this is wise, but, will be redone during the hot-teams rewrite. */ 5161 /* TODO: Use technique to find the right size hot-team, don't reap them */ 5162 team = __kmp_reap_team( team ); 5163 __kmp_team_pool = team; 5164 } 5165 5166 /* nothing available in the pool, no matter, make a new team! */ 5167 KMP_MB(); 5168 team = (kmp_team_t*) __kmp_allocate( sizeof( kmp_team_t ) ); 5169 5170 /* and set it up */ 5171 team->t.t_max_nproc = max_nproc; 5172 /* NOTE well, for some reason allocating one big buffer and dividing it 5173 * up seems to really hurt performance a lot on the P4, so, let's not use 5174 * this... */ 5175 __kmp_allocate_team_arrays( team, max_nproc ); 5176 5177 KA_TRACE( 20, ( "__kmp_allocate_team: making a new team\n" ) ); 5178 __kmp_initialize_team( team, new_nproc, new_icvs, NULL ); 5179 5180 KA_TRACE( 20, ( "__kmp_allocate_team: setting task_team[0] %p and task_team[1] %p to NULL\n", 5181 &team->t.t_task_team[0], &team->t.t_task_team[1] ) ); 5182 team->t.t_task_team[0] = NULL; // to be removed, as __kmp_allocate zeroes memory, no need to duplicate 5183 team->t.t_task_team[1] = NULL; // to be removed, as __kmp_allocate zeroes memory, no need to duplicate 5184 5185 if ( __kmp_storage_map ) { 5186 __kmp_print_team_storage_map( "team", team, team->t.t_id, new_nproc ); 5187 } 5188 5189 /* allocate space for arguments */ 5190 __kmp_alloc_argv_entries( argc, team, FALSE ); 5191 team->t.t_argc = argc; 5192 5193 KA_TRACE( 20, ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n", 5194 team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE )); 5195 { // Initialize barrier data. 5196 int b; 5197 for ( b = 0; b < bs_last_barrier; ++ b ) { 5198 team->t.t_bar[ b ].b_arrived = KMP_INIT_BARRIER_STATE; 5199 #if USE_DEBUGGER 5200 team->t.t_bar[ b ].b_master_arrived = 0; 5201 team->t.t_bar[ b ].b_team_arrived = 0; 5202 #endif 5203 } 5204 } 5205 5206 #if OMP_40_ENABLED 5207 team->t.t_proc_bind = new_proc_bind; 5208 #endif 5209 5210 #if OMPT_SUPPORT 5211 __ompt_team_assign_id(team, ompt_parallel_id); 5212 team->t.ompt_serialized_team_info = NULL; 5213 #endif 5214 5215 KMP_MB(); 5216 5217 KA_TRACE( 20, ("__kmp_allocate_team: done creating a new team %d.\n", team->t.t_id )); 5218 5219 return team; 5220 } 5221 5222 /* TODO implement hot-teams at all levels */ 5223 /* TODO implement lazy thread release on demand (disband request) */ 5224 5225 /* free the team. return it to the team pool. release all the threads 5226 * associated with it */ 5227 void 5228 __kmp_free_team( kmp_root_t *root, kmp_team_t *team USE_NESTED_HOT_ARG(kmp_info_t *master) ) 5229 { 5230 int f; 5231 KA_TRACE( 20, ("__kmp_free_team: T#%d freeing team %d\n", __kmp_get_gtid(), team->t.t_id )); 5232 5233 /* verify state */ 5234 KMP_DEBUG_ASSERT( root ); 5235 KMP_DEBUG_ASSERT( team ); 5236 KMP_DEBUG_ASSERT( team->t.t_nproc <= team->t.t_max_nproc ); 5237 KMP_DEBUG_ASSERT( team->t.t_threads ); 5238 5239 int use_hot_team = team == root->r.r_hot_team; 5240 #if KMP_NESTED_HOT_TEAMS 5241 int level; 5242 kmp_hot_team_ptr_t *hot_teams; 5243 if( master ) { 5244 level = team->t.t_active_level - 1; 5245 if( master->th.th_teams_microtask ) { // in teams construct? 5246 if( master->th.th_teams_size.nteams > 1 ) { 5247 ++level; // level was not increased in teams construct for team_of_masters 5248 } 5249 if( team->t.t_pkfn != (microtask_t)__kmp_teams_master && 5250 master->th.th_teams_level == team->t.t_level ) { 5251 ++level; // level was not increased in teams construct for team_of_workers before the parallel 5252 } // team->t.t_level will be increased inside parallel 5253 } 5254 hot_teams = master->th.th_hot_teams; 5255 if( level < __kmp_hot_teams_max_level ) { 5256 KMP_DEBUG_ASSERT( team == hot_teams[level].hot_team ); 5257 use_hot_team = 1; 5258 } 5259 } 5260 #endif // KMP_NESTED_HOT_TEAMS 5261 5262 /* team is done working */ 5263 TCW_SYNC_PTR(team->t.t_pkfn, NULL); // Important for Debugging Support Library. 5264 team->t.t_copyin_counter = 0; // init counter for possible reuse 5265 // Do not reset pointer to parent team to NULL for hot teams. 5266 5267 /* if we are non-hot team, release our threads */ 5268 if( ! use_hot_team ) { 5269 if (__kmp_tasking_mode != tskm_immediate_exec) { 5270 // Wait for threads to reach reapable state 5271 for (f = 1; f < team->t.t_nproc; ++f) { 5272 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5273 kmp_info_t *th = team->t.t_threads[f]; 5274 volatile kmp_uint32 *state = &th->th.th_reap_state; 5275 while (*state != KMP_SAFE_TO_REAP) { 5276 #if KMP_OS_WINDOWS 5277 // On Windows a thread can be killed at any time, check this 5278 DWORD ecode; 5279 if (!__kmp_is_thread_alive(th, &ecode)) { 5280 *state = KMP_SAFE_TO_REAP; // reset the flag for dead thread 5281 break; 5282 } 5283 #endif 5284 // first check if thread is sleeping 5285 kmp_flag_64 fl(&th->th.th_bar[bs_forkjoin_barrier].bb.b_go, th); 5286 if (fl.is_sleeping()) 5287 fl.resume(__kmp_gtid_from_thread(th)); 5288 KMP_CPU_PAUSE(); 5289 } 5290 } 5291 5292 // Delete task teams 5293 int tt_idx; 5294 for (tt_idx=0; tt_idx<2; ++tt_idx) { 5295 kmp_task_team_t *task_team = team->t.t_task_team[tt_idx]; 5296 if ( task_team != NULL ) { 5297 for (f=0; f<team->t.t_nproc; ++f) { // Have all threads unref task teams 5298 team->t.t_threads[f]->th.th_task_team = NULL; 5299 } 5300 KA_TRACE( 20, ( "__kmp_free_team: T#%d deactivating task_team %p on team %d\n", __kmp_get_gtid(), task_team, team->t.t_id ) ); 5301 #if KMP_NESTED_HOT_TEAMS 5302 __kmp_free_task_team( master, task_team ); 5303 #endif 5304 team->t.t_task_team[tt_idx] = NULL; 5305 } 5306 } 5307 } 5308 5309 // Reset pointer to parent team only for non-hot teams. 5310 team->t.t_parent = NULL; 5311 team->t.t_level = 0; 5312 team->t.t_active_level = 0; 5313 5314 /* free the worker threads */ 5315 for ( f = 1; f < team->t.t_nproc; ++ f ) { 5316 KMP_DEBUG_ASSERT( team->t.t_threads[ f ] ); 5317 __kmp_free_thread( team->t.t_threads[ f ] ); 5318 team->t.t_threads[ f ] = NULL; 5319 } 5320 5321 /* put the team back in the team pool */ 5322 /* TODO limit size of team pool, call reap_team if pool too large */ 5323 team->t.t_next_pool = (kmp_team_t*) __kmp_team_pool; 5324 __kmp_team_pool = (volatile kmp_team_t*) team; 5325 } 5326 5327 KMP_MB(); 5328 } 5329 5330 5331 /* reap the team. destroy it, reclaim all its resources and free its memory */ 5332 kmp_team_t * 5333 __kmp_reap_team( kmp_team_t *team ) 5334 { 5335 kmp_team_t *next_pool = team->t.t_next_pool; 5336 5337 KMP_DEBUG_ASSERT( team ); 5338 KMP_DEBUG_ASSERT( team->t.t_dispatch ); 5339 KMP_DEBUG_ASSERT( team->t.t_disp_buffer ); 5340 KMP_DEBUG_ASSERT( team->t.t_threads ); 5341 KMP_DEBUG_ASSERT( team->t.t_argv ); 5342 5343 /* TODO clean the threads that are a part of this? */ 5344 5345 /* free stuff */ 5346 5347 __kmp_free_team_arrays( team ); 5348 if ( team->t.t_argv != &team->t.t_inline_argv[0] ) 5349 __kmp_free( (void*) team->t.t_argv ); 5350 __kmp_free( team ); 5351 5352 KMP_MB(); 5353 return next_pool; 5354 } 5355 5356 // 5357 // Free the thread. Don't reap it, just place it on the pool of available 5358 // threads. 5359 // 5360 // Changes for Quad issue 527845: We need a predictable OMP tid <-> gtid 5361 // binding for the affinity mechanism to be useful. 5362 // 5363 // Now, we always keep the free list (__kmp_thread_pool) sorted by gtid. 5364 // However, we want to avoid a potential performance problem by always 5365 // scanning through the list to find the correct point at which to insert 5366 // the thread (potential N**2 behavior). To do this we keep track of the 5367 // last place a thread struct was inserted (__kmp_thread_pool_insert_pt). 5368 // With single-level parallelism, threads will always be added to the tail 5369 // of the list, kept track of by __kmp_thread_pool_insert_pt. With nested 5370 // parallelism, all bets are off and we may need to scan through the entire 5371 // free list. 5372 // 5373 // This change also has a potentially large performance benefit, for some 5374 // applications. Previously, as threads were freed from the hot team, they 5375 // would be placed back on the free list in inverse order. If the hot team 5376 // grew back to it's original size, then the freed thread would be placed 5377 // back on the hot team in reverse order. This could cause bad cache 5378 // locality problems on programs where the size of the hot team regularly 5379 // grew and shrunk. 5380 // 5381 // Now, for single-level parallelism, the OMP tid is alway == gtid. 5382 // 5383 void 5384 __kmp_free_thread( kmp_info_t *this_th ) 5385 { 5386 int gtid; 5387 kmp_info_t **scan; 5388 5389 KA_TRACE( 20, ("__kmp_free_thread: T#%d putting T#%d back on free pool.\n", 5390 __kmp_get_gtid(), this_th->th.th_info.ds.ds_gtid )); 5391 5392 KMP_DEBUG_ASSERT( this_th ); 5393 5394 // When moving thread to pool, switch thread to wait on own b_go flag, and uninitialized (NULL team). 5395 int b; 5396 kmp_balign_t *balign = this_th->th.th_bar; 5397 for (b=0; b<bs_last_barrier; ++b) { 5398 if (balign[b].bb.wait_flag == KMP_BARRIER_PARENT_FLAG) 5399 balign[b].bb.wait_flag = KMP_BARRIER_SWITCH_TO_OWN_FLAG; 5400 balign[b].bb.team = NULL; 5401 balign[b].bb.leaf_kids = 0; 5402 } 5403 this_th->th.th_task_state = 0; 5404 5405 /* put thread back on the free pool */ 5406 TCW_PTR(this_th->th.th_team, NULL); 5407 TCW_PTR(this_th->th.th_root, NULL); 5408 TCW_PTR(this_th->th.th_dispatch, NULL); /* NOT NEEDED */ 5409 5410 // 5411 // If the __kmp_thread_pool_insert_pt is already past the new insert 5412 // point, then we need to re-scan the entire list. 5413 // 5414 gtid = this_th->th.th_info.ds.ds_gtid; 5415 if ( __kmp_thread_pool_insert_pt != NULL ) { 5416 KMP_DEBUG_ASSERT( __kmp_thread_pool != NULL ); 5417 if ( __kmp_thread_pool_insert_pt->th.th_info.ds.ds_gtid > gtid ) { 5418 __kmp_thread_pool_insert_pt = NULL; 5419 } 5420 } 5421 5422 // 5423 // Scan down the list to find the place to insert the thread. 5424 // scan is the address of a link in the list, possibly the address of 5425 // __kmp_thread_pool itself. 5426 // 5427 // In the absence of nested parallism, the for loop will have 0 iterations. 5428 // 5429 if ( __kmp_thread_pool_insert_pt != NULL ) { 5430 scan = &( __kmp_thread_pool_insert_pt->th.th_next_pool ); 5431 } 5432 else { 5433 scan = (kmp_info_t **)&__kmp_thread_pool; 5434 } 5435 for (; ( *scan != NULL ) && ( (*scan)->th.th_info.ds.ds_gtid < gtid ); 5436 scan = &( (*scan)->th.th_next_pool ) ); 5437 5438 // 5439 // Insert the new element on the list, and set __kmp_thread_pool_insert_pt 5440 // to its address. 5441 // 5442 TCW_PTR(this_th->th.th_next_pool, *scan); 5443 __kmp_thread_pool_insert_pt = *scan = this_th; 5444 KMP_DEBUG_ASSERT( ( this_th->th.th_next_pool == NULL ) 5445 || ( this_th->th.th_info.ds.ds_gtid 5446 < this_th->th.th_next_pool->th.th_info.ds.ds_gtid ) ); 5447 TCW_4(this_th->th.th_in_pool, TRUE); 5448 __kmp_thread_pool_nth++; 5449 5450 TCW_4(__kmp_nth, __kmp_nth - 1); 5451 5452 #ifdef KMP_ADJUST_BLOCKTIME 5453 /* Adjust blocktime back to user setting or default if necessary */ 5454 /* Middle initialization might never have occurred */ 5455 if ( !__kmp_env_blocktime && ( __kmp_avail_proc > 0 ) ) { 5456 KMP_DEBUG_ASSERT( __kmp_avail_proc > 0 ); 5457 if ( __kmp_nth <= __kmp_avail_proc ) { 5458 __kmp_zero_bt = FALSE; 5459 } 5460 } 5461 #endif /* KMP_ADJUST_BLOCKTIME */ 5462 5463 KMP_MB(); 5464 } 5465 5466 5467 /* ------------------------------------------------------------------------ */ 5468 5469 void * 5470 __kmp_launch_thread( kmp_info_t *this_thr ) 5471 { 5472 int gtid = this_thr->th.th_info.ds.ds_gtid; 5473 /* void *stack_data;*/ 5474 kmp_team_t *(*volatile pteam); 5475 5476 KMP_MB(); 5477 KA_TRACE( 10, ("__kmp_launch_thread: T#%d start\n", gtid ) ); 5478 5479 if( __kmp_env_consistency_check ) { 5480 this_thr->th.th_cons = __kmp_allocate_cons_stack( gtid ); // ATT: Memory leak? 5481 } 5482 5483 #if OMPT_SUPPORT 5484 if (ompt_enabled) { 5485 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 5486 this_thr->th.ompt_thread_info.wait_id = 0; 5487 this_thr->th.ompt_thread_info.idle_frame = __builtin_frame_address(0); 5488 if (ompt_callbacks.ompt_callback(ompt_event_thread_begin)) { 5489 __ompt_thread_begin(ompt_thread_worker, gtid); 5490 } 5491 } 5492 #endif 5493 5494 /* This is the place where threads wait for work */ 5495 while( ! TCR_4(__kmp_global.g.g_done) ) { 5496 KMP_DEBUG_ASSERT( this_thr == __kmp_threads[ gtid ] ); 5497 KMP_MB(); 5498 5499 /* wait for work to do */ 5500 KA_TRACE( 20, ("__kmp_launch_thread: T#%d waiting for work\n", gtid )); 5501 5502 #if OMPT_SUPPORT 5503 if (ompt_enabled) { 5504 this_thr->th.ompt_thread_info.state = ompt_state_idle; 5505 } 5506 #endif 5507 5508 /* No tid yet since not part of a team */ 5509 __kmp_fork_barrier( gtid, KMP_GTID_DNE ); 5510 5511 #if OMPT_SUPPORT 5512 if (ompt_enabled) { 5513 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 5514 } 5515 #endif 5516 5517 pteam = (kmp_team_t *(*))(& this_thr->th.th_team); 5518 5519 /* have we been allocated? */ 5520 if ( TCR_SYNC_PTR(*pteam) && !TCR_4(__kmp_global.g.g_done) ) { 5521 #if OMPT_SUPPORT 5522 ompt_task_info_t *task_info; 5523 ompt_parallel_id_t my_parallel_id; 5524 if (ompt_enabled) { 5525 task_info = __ompt_get_taskinfo(0); 5526 my_parallel_id = (*pteam)->t.ompt_team_info.parallel_id; 5527 } 5528 #endif 5529 /* we were just woken up, so run our new task */ 5530 if ( TCR_SYNC_PTR((*pteam)->t.t_pkfn) != NULL ) { 5531 int rc; 5532 KA_TRACE(20, ("__kmp_launch_thread: T#%d(%d:%d) invoke microtask = %p\n", 5533 gtid, (*pteam)->t.t_id, __kmp_tid_from_gtid(gtid), (*pteam)->t.t_pkfn)); 5534 5535 updateHWFPControl (*pteam); 5536 5537 #if OMPT_SUPPORT 5538 if (ompt_enabled) { 5539 this_thr->th.ompt_thread_info.state = ompt_state_work_parallel; 5540 // Initialize OMPT task id for implicit task. 5541 int tid = __kmp_tid_from_gtid(gtid); 5542 task_info->task_id = __ompt_task_id_new(tid); 5543 } 5544 #endif 5545 5546 { 5547 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 5548 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 5549 rc = (*pteam)->t.t_invoke( gtid ); 5550 } 5551 KMP_ASSERT( rc ); 5552 5553 #if OMPT_SUPPORT 5554 if (ompt_enabled) { 5555 /* no frame set while outside task */ 5556 task_info->frame.exit_runtime_frame = NULL; 5557 5558 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 5559 } 5560 #endif 5561 KMP_MB(); 5562 KA_TRACE(20, ("__kmp_launch_thread: T#%d(%d:%d) done microtask = %p\n", 5563 gtid, (*pteam)->t.t_id, __kmp_tid_from_gtid(gtid), (*pteam)->t.t_pkfn)); 5564 } 5565 /* join barrier after parallel region */ 5566 __kmp_join_barrier( gtid ); 5567 #if OMPT_SUPPORT && OMPT_TRACE 5568 if (ompt_enabled) { 5569 if (ompt_callbacks.ompt_callback(ompt_event_implicit_task_end)) { 5570 // don't access *pteam here: it may have already been freed 5571 // by the master thread behind the barrier (possible race) 5572 ompt_callbacks.ompt_callback(ompt_event_implicit_task_end)( 5573 my_parallel_id, task_info->task_id); 5574 } 5575 task_info->frame.exit_runtime_frame = NULL; 5576 task_info->task_id = 0; 5577 } 5578 #endif 5579 } 5580 } 5581 TCR_SYNC_PTR((intptr_t)__kmp_global.g.g_done); 5582 5583 #if OMPT_SUPPORT 5584 if (ompt_enabled && 5585 ompt_callbacks.ompt_callback(ompt_event_thread_end)) { 5586 __ompt_thread_end(ompt_thread_worker, gtid); 5587 } 5588 #endif 5589 5590 this_thr->th.th_task_team = NULL; 5591 /* run the destructors for the threadprivate data for this thread */ 5592 __kmp_common_destroy_gtid( gtid ); 5593 5594 KA_TRACE( 10, ("__kmp_launch_thread: T#%d done\n", gtid ) ); 5595 KMP_MB(); 5596 return this_thr; 5597 } 5598 5599 /* ------------------------------------------------------------------------ */ 5600 /* ------------------------------------------------------------------------ */ 5601 5602 void 5603 __kmp_internal_end_dest( void *specific_gtid ) 5604 { 5605 #if KMP_COMPILER_ICC 5606 #pragma warning( push ) 5607 #pragma warning( disable: 810 ) // conversion from "void *" to "int" may lose significant bits 5608 #endif 5609 // Make sure no significant bits are lost 5610 int gtid = (kmp_intptr_t)specific_gtid - 1; 5611 #if KMP_COMPILER_ICC 5612 #pragma warning( pop ) 5613 #endif 5614 5615 KA_TRACE( 30, ("__kmp_internal_end_dest: T#%d\n", gtid)); 5616 /* NOTE: the gtid is stored as gitd+1 in the thread-local-storage 5617 * this is because 0 is reserved for the nothing-stored case */ 5618 5619 /* josh: One reason for setting the gtid specific data even when it is being 5620 destroyed by pthread is to allow gtid lookup through thread specific data 5621 (__kmp_gtid_get_specific). Some of the code, especially stat code, 5622 that gets executed in the call to __kmp_internal_end_thread, actually 5623 gets the gtid through the thread specific data. Setting it here seems 5624 rather inelegant and perhaps wrong, but allows __kmp_internal_end_thread 5625 to run smoothly. 5626 todo: get rid of this after we remove the dependence on 5627 __kmp_gtid_get_specific 5628 */ 5629 if(gtid >= 0 && KMP_UBER_GTID(gtid)) 5630 __kmp_gtid_set_specific( gtid ); 5631 #ifdef KMP_TDATA_GTID 5632 __kmp_gtid = gtid; 5633 #endif 5634 __kmp_internal_end_thread( gtid ); 5635 } 5636 5637 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB 5638 5639 // 2009-09-08 (lev): It looks the destructor does not work. In simple test cases destructors work 5640 // perfectly, but in real libomp.so I have no evidence it is ever called. However, -fini linker 5641 // option in makefile.mk works fine. 5642 5643 __attribute__(( destructor )) 5644 void 5645 __kmp_internal_end_dtor( void ) 5646 { 5647 __kmp_internal_end_atexit(); 5648 } 5649 5650 void 5651 __kmp_internal_end_fini( void ) 5652 { 5653 __kmp_internal_end_atexit(); 5654 } 5655 5656 #endif 5657 5658 /* [Windows] josh: when the atexit handler is called, there may still be more than one thread alive */ 5659 void 5660 __kmp_internal_end_atexit( void ) 5661 { 5662 KA_TRACE( 30, ( "__kmp_internal_end_atexit\n" ) ); 5663 /* [Windows] 5664 josh: ideally, we want to completely shutdown the library in this atexit handler, but 5665 stat code that depends on thread specific data for gtid fails because that data becomes 5666 unavailable at some point during the shutdown, so we call __kmp_internal_end_thread 5667 instead. We should eventually remove the dependency on __kmp_get_specific_gtid in the 5668 stat code and use __kmp_internal_end_library to cleanly shutdown the library. 5669 5670 // TODO: Can some of this comment about GVS be removed? 5671 I suspect that the offending stat code is executed when the calling thread tries to 5672 clean up a dead root thread's data structures, resulting in GVS code trying to close 5673 the GVS structures for that thread, but since the stat code uses 5674 __kmp_get_specific_gtid to get the gtid with the assumption that the calling thread is 5675 cleaning up itself instead of another thread, it gets confused. This happens because 5676 allowing a thread to unregister and cleanup another thread is a recent modification for 5677 addressing an issue with Maxon Cinema4D. Based on the current design (20050722), a 5678 thread may end up trying to unregister another thread only if thread death does not 5679 trigger the calling of __kmp_internal_end_thread. For Linux* OS, there is the thread 5680 specific data destructor function to detect thread death. For Windows dynamic, there 5681 is DllMain(THREAD_DETACH). For Windows static, there is nothing. Thus, the 5682 workaround is applicable only for Windows static stat library. 5683 */ 5684 __kmp_internal_end_library( -1 ); 5685 #if KMP_OS_WINDOWS 5686 __kmp_close_console(); 5687 #endif 5688 } 5689 5690 static void 5691 __kmp_reap_thread( 5692 kmp_info_t * thread, 5693 int is_root 5694 ) { 5695 5696 // It is assumed __kmp_forkjoin_lock is acquired. 5697 5698 int gtid; 5699 5700 KMP_DEBUG_ASSERT( thread != NULL ); 5701 5702 gtid = thread->th.th_info.ds.ds_gtid; 5703 5704 if ( ! is_root ) { 5705 5706 if ( __kmp_dflt_blocktime != KMP_MAX_BLOCKTIME ) { 5707 /* Assume the threads are at the fork barrier here */ 5708 KA_TRACE( 20, ("__kmp_reap_thread: releasing T#%d from fork barrier for reap\n", gtid ) ); 5709 /* Need release fence here to prevent seg faults for tree forkjoin barrier (GEH) */ 5710 ANNOTATE_HAPPENS_BEFORE(thread); 5711 kmp_flag_64 flag(&thread->th.th_bar[ bs_forkjoin_barrier ].bb.b_go, thread); 5712 __kmp_release_64(&flag); 5713 }; // if 5714 5715 // Terminate OS thread. 5716 __kmp_reap_worker( thread ); 5717 5718 // 5719 // The thread was killed asynchronously. If it was actively 5720 // spinning in the thread pool, decrement the global count. 5721 // 5722 // There is a small timing hole here - if the worker thread was 5723 // just waking up after sleeping in the pool, had reset it's 5724 // th_active_in_pool flag but not decremented the global counter 5725 // __kmp_thread_pool_active_nth yet, then the global counter 5726 // might not get updated. 5727 // 5728 // Currently, this can only happen as the library is unloaded, 5729 // so there are no harmful side effects. 5730 // 5731 if ( thread->th.th_active_in_pool ) { 5732 thread->th.th_active_in_pool = FALSE; 5733 KMP_TEST_THEN_DEC32( 5734 (kmp_int32 *) &__kmp_thread_pool_active_nth ); 5735 KMP_DEBUG_ASSERT( TCR_4(__kmp_thread_pool_active_nth) >= 0 ); 5736 } 5737 5738 // Decrement # of [worker] threads in the pool. 5739 KMP_DEBUG_ASSERT( __kmp_thread_pool_nth > 0 ); 5740 --__kmp_thread_pool_nth; 5741 }; // if 5742 5743 __kmp_free_implicit_task(thread); 5744 5745 // Free the fast memory for tasking 5746 #if USE_FAST_MEMORY 5747 __kmp_free_fast_memory( thread ); 5748 #endif /* USE_FAST_MEMORY */ 5749 5750 __kmp_suspend_uninitialize_thread( thread ); 5751 5752 KMP_DEBUG_ASSERT( __kmp_threads[ gtid ] == thread ); 5753 TCW_SYNC_PTR(__kmp_threads[gtid], NULL); 5754 5755 -- __kmp_all_nth; 5756 // __kmp_nth was decremented when thread is added to the pool. 5757 5758 #ifdef KMP_ADJUST_BLOCKTIME 5759 /* Adjust blocktime back to user setting or default if necessary */ 5760 /* Middle initialization might never have occurred */ 5761 if ( !__kmp_env_blocktime && ( __kmp_avail_proc > 0 ) ) { 5762 KMP_DEBUG_ASSERT( __kmp_avail_proc > 0 ); 5763 if ( __kmp_nth <= __kmp_avail_proc ) { 5764 __kmp_zero_bt = FALSE; 5765 } 5766 } 5767 #endif /* KMP_ADJUST_BLOCKTIME */ 5768 5769 /* free the memory being used */ 5770 if( __kmp_env_consistency_check ) { 5771 if ( thread->th.th_cons ) { 5772 __kmp_free_cons_stack( thread->th.th_cons ); 5773 thread->th.th_cons = NULL; 5774 }; // if 5775 } 5776 5777 if ( thread->th.th_pri_common != NULL ) { 5778 __kmp_free( thread->th.th_pri_common ); 5779 thread->th.th_pri_common = NULL; 5780 }; // if 5781 5782 if (thread->th.th_task_state_memo_stack != NULL) { 5783 __kmp_free(thread->th.th_task_state_memo_stack); 5784 thread->th.th_task_state_memo_stack = NULL; 5785 } 5786 5787 #if KMP_USE_BGET 5788 if ( thread->th.th_local.bget_data != NULL ) { 5789 __kmp_finalize_bget( thread ); 5790 }; // if 5791 #endif 5792 5793 #if KMP_AFFINITY_SUPPORTED 5794 if ( thread->th.th_affin_mask != NULL ) { 5795 KMP_CPU_FREE( thread->th.th_affin_mask ); 5796 thread->th.th_affin_mask = NULL; 5797 }; // if 5798 #endif /* KMP_AFFINITY_SUPPORTED */ 5799 5800 __kmp_reap_team( thread->th.th_serial_team ); 5801 thread->th.th_serial_team = NULL; 5802 __kmp_free( thread ); 5803 5804 KMP_MB(); 5805 5806 } // __kmp_reap_thread 5807 5808 static void 5809 __kmp_internal_end(void) 5810 { 5811 int i; 5812 5813 /* First, unregister the library */ 5814 __kmp_unregister_library(); 5815 5816 #if KMP_OS_WINDOWS 5817 /* In Win static library, we can't tell when a root actually dies, so we 5818 reclaim the data structures for any root threads that have died but not 5819 unregistered themselves, in order to shut down cleanly. 5820 In Win dynamic library we also can't tell when a thread dies. 5821 */ 5822 __kmp_reclaim_dead_roots(); // AC: moved here to always clean resources of dead roots 5823 #endif 5824 5825 for( i=0 ; i<__kmp_threads_capacity ; i++ ) 5826 if( __kmp_root[i] ) 5827 if( __kmp_root[i]->r.r_active ) 5828 break; 5829 KMP_MB(); /* Flush all pending memory write invalidates. */ 5830 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 5831 5832 if ( i < __kmp_threads_capacity ) { 5833 #if KMP_USE_MONITOR 5834 // 2009-09-08 (lev): Other alive roots found. Why do we kill the monitor?? 5835 KMP_MB(); /* Flush all pending memory write invalidates. */ 5836 5837 // 5838 // Need to check that monitor was initialized before reaping it. 5839 // If we are called form __kmp_atfork_child (which sets 5840 // __kmp_init_parallel = 0), then __kmp_monitor will appear to 5841 // contain valid data, but it is only valid in the parent process, 5842 // not the child. 5843 // 5844 // New behavior (201008): instead of keying off of the flag 5845 // __kmp_init_parallel, the monitor thread creation is keyed off 5846 // of the new flag __kmp_init_monitor. 5847 // 5848 __kmp_acquire_bootstrap_lock( & __kmp_monitor_lock ); 5849 if ( TCR_4( __kmp_init_monitor ) ) { 5850 __kmp_reap_monitor( & __kmp_monitor ); 5851 TCW_4( __kmp_init_monitor, 0 ); 5852 } 5853 __kmp_release_bootstrap_lock( & __kmp_monitor_lock ); 5854 KA_TRACE( 10, ("__kmp_internal_end: monitor reaped\n" ) ); 5855 #endif // KMP_USE_MONITOR 5856 } else { 5857 /* TODO move this to cleanup code */ 5858 #ifdef KMP_DEBUG 5859 /* make sure that everything has properly ended */ 5860 for ( i = 0; i < __kmp_threads_capacity; i++ ) { 5861 if( __kmp_root[i] ) { 5862 // KMP_ASSERT( ! KMP_UBER_GTID( i ) ); // AC: there can be uber threads alive here 5863 KMP_ASSERT( ! __kmp_root[i]->r.r_active ); // TODO: can they be active? 5864 } 5865 } 5866 #endif 5867 5868 KMP_MB(); 5869 5870 // Reap the worker threads. 5871 // This is valid for now, but be careful if threads are reaped sooner. 5872 while ( __kmp_thread_pool != NULL ) { // Loop thru all the thread in the pool. 5873 // Get the next thread from the pool. 5874 kmp_info_t * thread = (kmp_info_t *) __kmp_thread_pool; 5875 __kmp_thread_pool = thread->th.th_next_pool; 5876 // Reap it. 5877 KMP_DEBUG_ASSERT(thread->th.th_reap_state == KMP_SAFE_TO_REAP); 5878 thread->th.th_next_pool = NULL; 5879 thread->th.th_in_pool = FALSE; 5880 __kmp_reap_thread( thread, 0 ); 5881 }; // while 5882 __kmp_thread_pool_insert_pt = NULL; 5883 5884 // Reap teams. 5885 while ( __kmp_team_pool != NULL ) { // Loop thru all the teams in the pool. 5886 // Get the next team from the pool. 5887 kmp_team_t * team = (kmp_team_t *) __kmp_team_pool; 5888 __kmp_team_pool = team->t.t_next_pool; 5889 // Reap it. 5890 team->t.t_next_pool = NULL; 5891 __kmp_reap_team( team ); 5892 }; // while 5893 5894 __kmp_reap_task_teams( ); 5895 5896 for ( i = 0; i < __kmp_threads_capacity; ++ i ) { 5897 // TBD: Add some checking... 5898 // Something like KMP_DEBUG_ASSERT( __kmp_thread[ i ] == NULL ); 5899 } 5900 5901 /* Make sure all threadprivate destructors get run by joining with all worker 5902 threads before resetting this flag */ 5903 TCW_SYNC_4(__kmp_init_common, FALSE); 5904 5905 KA_TRACE( 10, ("__kmp_internal_end: all workers reaped\n" ) ); 5906 KMP_MB(); 5907 5908 #if KMP_USE_MONITOR 5909 // 5910 // See note above: One of the possible fixes for CQ138434 / CQ140126 5911 // 5912 // FIXME: push both code fragments down and CSE them? 5913 // push them into __kmp_cleanup() ? 5914 // 5915 __kmp_acquire_bootstrap_lock( & __kmp_monitor_lock ); 5916 if ( TCR_4( __kmp_init_monitor ) ) { 5917 __kmp_reap_monitor( & __kmp_monitor ); 5918 TCW_4( __kmp_init_monitor, 0 ); 5919 } 5920 __kmp_release_bootstrap_lock( & __kmp_monitor_lock ); 5921 KA_TRACE( 10, ("__kmp_internal_end: monitor reaped\n" ) ); 5922 #endif 5923 } /* else !__kmp_global.t_active */ 5924 TCW_4(__kmp_init_gtid, FALSE); 5925 KMP_MB(); /* Flush all pending memory write invalidates. */ 5926 5927 __kmp_cleanup(); 5928 #if OMPT_SUPPORT 5929 ompt_fini(); 5930 #endif 5931 } 5932 5933 void 5934 __kmp_internal_end_library( int gtid_req ) 5935 { 5936 /* if we have already cleaned up, don't try again, it wouldn't be pretty */ 5937 /* this shouldn't be a race condition because __kmp_internal_end() is the 5938 * only place to clear __kmp_serial_init */ 5939 /* we'll check this later too, after we get the lock */ 5940 // 2009-09-06: We do not set g_abort without setting g_done. This check looks redundaant, 5941 // because the next check will work in any case. 5942 if( __kmp_global.g.g_abort ) { 5943 KA_TRACE( 11, ("__kmp_internal_end_library: abort, exiting\n" )); 5944 /* TODO abort? */ 5945 return; 5946 } 5947 if( TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial ) { 5948 KA_TRACE( 10, ("__kmp_internal_end_library: already finished\n" )); 5949 return; 5950 } 5951 5952 5953 KMP_MB(); /* Flush all pending memory write invalidates. */ 5954 5955 /* find out who we are and what we should do */ 5956 { 5957 int gtid = (gtid_req>=0) ? gtid_req : __kmp_gtid_get_specific(); 5958 KA_TRACE( 10, ("__kmp_internal_end_library: enter T#%d (%d)\n", gtid, gtid_req )); 5959 if( gtid == KMP_GTID_SHUTDOWN ) { 5960 KA_TRACE( 10, ("__kmp_internal_end_library: !__kmp_init_runtime, system already shutdown\n" )); 5961 return; 5962 } else if( gtid == KMP_GTID_MONITOR ) { 5963 KA_TRACE( 10, ("__kmp_internal_end_library: monitor thread, gtid not registered, or system shutdown\n" )); 5964 return; 5965 } else if( gtid == KMP_GTID_DNE ) { 5966 KA_TRACE( 10, ("__kmp_internal_end_library: gtid not registered or system shutdown\n" )); 5967 /* we don't know who we are, but we may still shutdown the library */ 5968 } else if( KMP_UBER_GTID( gtid )) { 5969 /* unregister ourselves as an uber thread. gtid is no longer valid */ 5970 if( __kmp_root[gtid]->r.r_active ) { 5971 __kmp_global.g.g_abort = -1; 5972 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 5973 KA_TRACE( 10, ("__kmp_internal_end_library: root still active, abort T#%d\n", gtid )); 5974 return; 5975 } else { 5976 KA_TRACE( 10, ("__kmp_internal_end_library: unregistering sibling T#%d\n", gtid )); 5977 __kmp_unregister_root_current_thread( gtid ); 5978 } 5979 } else { 5980 /* worker threads may call this function through the atexit handler, if they call exit() */ 5981 /* For now, skip the usual subsequent processing and just dump the debug buffer. 5982 TODO: do a thorough shutdown instead 5983 */ 5984 #ifdef DUMP_DEBUG_ON_EXIT 5985 if ( __kmp_debug_buf ) 5986 __kmp_dump_debug_buffer( ); 5987 #endif 5988 return; 5989 } 5990 } 5991 /* synchronize the termination process */ 5992 __kmp_acquire_bootstrap_lock( &__kmp_initz_lock ); 5993 5994 /* have we already finished */ 5995 if( __kmp_global.g.g_abort ) { 5996 KA_TRACE( 10, ("__kmp_internal_end_library: abort, exiting\n" )); 5997 /* TODO abort? */ 5998 __kmp_release_bootstrap_lock( &__kmp_initz_lock ); 5999 return; 6000 } 6001 if( TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial ) { 6002 __kmp_release_bootstrap_lock( &__kmp_initz_lock ); 6003 return; 6004 } 6005 6006 /* We need this lock to enforce mutex between this reading of 6007 __kmp_threads_capacity and the writing by __kmp_register_root. 6008 Alternatively, we can use a counter of roots that is 6009 atomically updated by __kmp_get_global_thread_id_reg, 6010 __kmp_do_serial_initialize and __kmp_internal_end_*. 6011 */ 6012 __kmp_acquire_bootstrap_lock( &__kmp_forkjoin_lock ); 6013 6014 /* now we can safely conduct the actual termination */ 6015 __kmp_internal_end(); 6016 6017 __kmp_release_bootstrap_lock( &__kmp_forkjoin_lock ); 6018 __kmp_release_bootstrap_lock( &__kmp_initz_lock ); 6019 6020 KA_TRACE( 10, ("__kmp_internal_end_library: exit\n" ) ); 6021 6022 #ifdef DUMP_DEBUG_ON_EXIT 6023 if ( __kmp_debug_buf ) 6024 __kmp_dump_debug_buffer(); 6025 #endif 6026 6027 #if KMP_OS_WINDOWS 6028 __kmp_close_console(); 6029 #endif 6030 6031 __kmp_fini_allocator(); 6032 6033 } // __kmp_internal_end_library 6034 6035 void 6036 __kmp_internal_end_thread( int gtid_req ) 6037 { 6038 int i; 6039 6040 /* if we have already cleaned up, don't try again, it wouldn't be pretty */ 6041 /* this shouldn't be a race condition because __kmp_internal_end() is the 6042 * only place to clear __kmp_serial_init */ 6043 /* we'll check this later too, after we get the lock */ 6044 // 2009-09-06: We do not set g_abort without setting g_done. This check looks redundant, 6045 // because the next check will work in any case. 6046 if( __kmp_global.g.g_abort ) { 6047 KA_TRACE( 11, ("__kmp_internal_end_thread: abort, exiting\n" )); 6048 /* TODO abort? */ 6049 return; 6050 } 6051 if( TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial ) { 6052 KA_TRACE( 10, ("__kmp_internal_end_thread: already finished\n" )); 6053 return; 6054 } 6055 6056 KMP_MB(); /* Flush all pending memory write invalidates. */ 6057 6058 /* find out who we are and what we should do */ 6059 { 6060 int gtid = (gtid_req>=0) ? gtid_req : __kmp_gtid_get_specific(); 6061 KA_TRACE( 10, ("__kmp_internal_end_thread: enter T#%d (%d)\n", gtid, gtid_req )); 6062 if( gtid == KMP_GTID_SHUTDOWN ) { 6063 KA_TRACE( 10, ("__kmp_internal_end_thread: !__kmp_init_runtime, system already shutdown\n" )); 6064 return; 6065 } else if( gtid == KMP_GTID_MONITOR ) { 6066 KA_TRACE( 10, ("__kmp_internal_end_thread: monitor thread, gtid not registered, or system shutdown\n" )); 6067 return; 6068 } else if( gtid == KMP_GTID_DNE ) { 6069 KA_TRACE( 10, ("__kmp_internal_end_thread: gtid not registered or system shutdown\n" )); 6070 return; 6071 /* we don't know who we are */ 6072 } else if( KMP_UBER_GTID( gtid )) { 6073 /* unregister ourselves as an uber thread. gtid is no longer valid */ 6074 if( __kmp_root[gtid]->r.r_active ) { 6075 __kmp_global.g.g_abort = -1; 6076 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 6077 KA_TRACE( 10, ("__kmp_internal_end_thread: root still active, abort T#%d\n", gtid )); 6078 return; 6079 } else { 6080 KA_TRACE( 10, ("__kmp_internal_end_thread: unregistering sibling T#%d\n", gtid )); 6081 __kmp_unregister_root_current_thread( gtid ); 6082 } 6083 } else { 6084 /* just a worker thread, let's leave */ 6085 KA_TRACE( 10, ("__kmp_internal_end_thread: worker thread T#%d\n", gtid )); 6086 6087 if ( gtid >= 0 ) { 6088 __kmp_threads[gtid]->th.th_task_team = NULL; 6089 } 6090 6091 KA_TRACE( 10, ("__kmp_internal_end_thread: worker thread done, exiting T#%d\n", gtid )); 6092 return; 6093 } 6094 } 6095 #if defined KMP_DYNAMIC_LIB 6096 // AC: lets not shutdown the Linux* OS dynamic library at the exit of uber thread, 6097 // because we will better shutdown later in the library destructor. 6098 // The reason of this change is performance problem when non-openmp thread 6099 // in a loop forks and joins many openmp threads. We can save a lot of time 6100 // keeping worker threads alive until the program shutdown. 6101 // OM: Removed Linux* OS restriction to fix the crash on OS X* (DPD200239966) and 6102 // Windows(DPD200287443) that occurs when using critical sections from foreign threads. 6103 KA_TRACE( 10, ("__kmp_internal_end_thread: exiting T#%d\n", gtid_req) ); 6104 return; 6105 #endif 6106 /* synchronize the termination process */ 6107 __kmp_acquire_bootstrap_lock( &__kmp_initz_lock ); 6108 6109 /* have we already finished */ 6110 if( __kmp_global.g.g_abort ) { 6111 KA_TRACE( 10, ("__kmp_internal_end_thread: abort, exiting\n" )); 6112 /* TODO abort? */ 6113 __kmp_release_bootstrap_lock( &__kmp_initz_lock ); 6114 return; 6115 } 6116 if( TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial ) { 6117 __kmp_release_bootstrap_lock( &__kmp_initz_lock ); 6118 return; 6119 } 6120 6121 /* We need this lock to enforce mutex between this reading of 6122 __kmp_threads_capacity and the writing by __kmp_register_root. 6123 Alternatively, we can use a counter of roots that is 6124 atomically updated by __kmp_get_global_thread_id_reg, 6125 __kmp_do_serial_initialize and __kmp_internal_end_*. 6126 */ 6127 6128 /* should we finish the run-time? are all siblings done? */ 6129 __kmp_acquire_bootstrap_lock( &__kmp_forkjoin_lock ); 6130 6131 for ( i = 0; i < __kmp_threads_capacity; ++ i ) { 6132 if ( KMP_UBER_GTID( i ) ) { 6133 KA_TRACE( 10, ("__kmp_internal_end_thread: remaining sibling task: gtid==%d\n", i )); 6134 __kmp_release_bootstrap_lock( &__kmp_forkjoin_lock ); 6135 __kmp_release_bootstrap_lock( &__kmp_initz_lock ); 6136 return; 6137 }; 6138 } 6139 6140 /* now we can safely conduct the actual termination */ 6141 6142 __kmp_internal_end(); 6143 6144 __kmp_release_bootstrap_lock( &__kmp_forkjoin_lock ); 6145 __kmp_release_bootstrap_lock( &__kmp_initz_lock ); 6146 6147 KA_TRACE( 10, ("__kmp_internal_end_thread: exit T#%d\n", gtid_req ) ); 6148 6149 #ifdef DUMP_DEBUG_ON_EXIT 6150 if ( __kmp_debug_buf ) 6151 __kmp_dump_debug_buffer(); 6152 #endif 6153 } // __kmp_internal_end_thread 6154 6155 // ------------------------------------------------------------------------------------------------- 6156 // Library registration stuff. 6157 6158 static long __kmp_registration_flag = 0; 6159 // Random value used to indicate library initialization. 6160 static char * __kmp_registration_str = NULL; 6161 // Value to be saved in env var __KMP_REGISTERED_LIB_<pid>. 6162 6163 6164 static inline 6165 char * 6166 __kmp_reg_status_name() { 6167 /* 6168 On RHEL 3u5 if linked statically, getpid() returns different values in each thread. 6169 If registration and unregistration go in different threads (omp_misc_other_root_exit.cpp test case), 6170 the name of registered_lib_env env var can not be found, because the name will contain different pid. 6171 */ 6172 return __kmp_str_format( "__KMP_REGISTERED_LIB_%d", (int) getpid() ); 6173 } // __kmp_reg_status_get 6174 6175 6176 void 6177 __kmp_register_library_startup( 6178 void 6179 ) { 6180 6181 char * name = __kmp_reg_status_name(); // Name of the environment variable. 6182 int done = 0; 6183 union { 6184 double dtime; 6185 long ltime; 6186 } time; 6187 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 6188 __kmp_initialize_system_tick(); 6189 #endif 6190 __kmp_read_system_time( & time.dtime ); 6191 __kmp_registration_flag = 0xCAFE0000L | ( time.ltime & 0x0000FFFFL ); 6192 __kmp_registration_str = 6193 __kmp_str_format( 6194 "%p-%lx-%s", 6195 & __kmp_registration_flag, 6196 __kmp_registration_flag, 6197 KMP_LIBRARY_FILE 6198 ); 6199 6200 KA_TRACE( 50, ( "__kmp_register_library_startup: %s=\"%s\"\n", name, __kmp_registration_str ) ); 6201 6202 while ( ! done ) { 6203 6204 char * value = NULL; // Actual value of the environment variable. 6205 6206 // Set environment variable, but do not overwrite if it is exist. 6207 __kmp_env_set( name, __kmp_registration_str, 0 ); 6208 // Check the variable is written. 6209 value = __kmp_env_get( name ); 6210 if ( value != NULL && strcmp( value, __kmp_registration_str ) == 0 ) { 6211 6212 done = 1; // Ok, environment variable set successfully, exit the loop. 6213 6214 } else { 6215 6216 // Oops. Write failed. Another copy of OpenMP RTL is in memory. 6217 // Check whether it alive or dead. 6218 int neighbor = 0; // 0 -- unknown status, 1 -- alive, 2 -- dead. 6219 char * tail = value; 6220 char * flag_addr_str = NULL; 6221 char * flag_val_str = NULL; 6222 char const * file_name = NULL; 6223 __kmp_str_split( tail, '-', & flag_addr_str, & tail ); 6224 __kmp_str_split( tail, '-', & flag_val_str, & tail ); 6225 file_name = tail; 6226 if ( tail != NULL ) { 6227 long * flag_addr = 0; 6228 long flag_val = 0; 6229 KMP_SSCANF( flag_addr_str, "%p", & flag_addr ); 6230 KMP_SSCANF( flag_val_str, "%lx", & flag_val ); 6231 if ( flag_addr != 0 && flag_val != 0 && strcmp( file_name, "" ) != 0 ) { 6232 // First, check whether environment-encoded address is mapped into addr space. 6233 // If so, dereference it to see if it still has the right value. 6234 6235 if ( __kmp_is_address_mapped( flag_addr ) && * flag_addr == flag_val ) { 6236 neighbor = 1; 6237 } else { 6238 // If not, then we know the other copy of the library is no longer running. 6239 neighbor = 2; 6240 }; // if 6241 }; // if 6242 }; // if 6243 switch ( neighbor ) { 6244 case 0 : // Cannot parse environment variable -- neighbor status unknown. 6245 // Assume it is the incompatible format of future version of the library. 6246 // Assume the other library is alive. 6247 // WARN( ... ); // TODO: Issue a warning. 6248 file_name = "unknown library"; 6249 // Attention! Falling to the next case. That's intentional. 6250 case 1 : { // Neighbor is alive. 6251 // Check it is allowed. 6252 char * duplicate_ok = __kmp_env_get( "KMP_DUPLICATE_LIB_OK" ); 6253 if ( ! __kmp_str_match_true( duplicate_ok ) ) { 6254 // That's not allowed. Issue fatal error. 6255 __kmp_msg( 6256 kmp_ms_fatal, 6257 KMP_MSG( DuplicateLibrary, KMP_LIBRARY_FILE, file_name ), 6258 KMP_HNT( DuplicateLibrary ), 6259 __kmp_msg_null 6260 ); 6261 }; // if 6262 KMP_INTERNAL_FREE( duplicate_ok ); 6263 __kmp_duplicate_library_ok = 1; 6264 done = 1; // Exit the loop. 6265 } break; 6266 case 2 : { // Neighbor is dead. 6267 // Clear the variable and try to register library again. 6268 __kmp_env_unset( name ); 6269 } break; 6270 default : { 6271 KMP_DEBUG_ASSERT( 0 ); 6272 } break; 6273 }; // switch 6274 6275 }; // if 6276 KMP_INTERNAL_FREE( (void *) value ); 6277 6278 }; // while 6279 KMP_INTERNAL_FREE( (void *) name ); 6280 6281 } // func __kmp_register_library_startup 6282 6283 6284 void 6285 __kmp_unregister_library( void ) { 6286 6287 char * name = __kmp_reg_status_name(); 6288 char * value = __kmp_env_get( name ); 6289 6290 KMP_DEBUG_ASSERT( __kmp_registration_flag != 0 ); 6291 KMP_DEBUG_ASSERT( __kmp_registration_str != NULL ); 6292 if ( value != NULL && strcmp( value, __kmp_registration_str ) == 0 ) { 6293 // Ok, this is our variable. Delete it. 6294 __kmp_env_unset( name ); 6295 }; // if 6296 6297 KMP_INTERNAL_FREE( __kmp_registration_str ); 6298 KMP_INTERNAL_FREE( value ); 6299 KMP_INTERNAL_FREE( name ); 6300 6301 __kmp_registration_flag = 0; 6302 __kmp_registration_str = NULL; 6303 6304 } // __kmp_unregister_library 6305 6306 6307 // End of Library registration stuff. 6308 // ------------------------------------------------------------------------------------------------- 6309 6310 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 6311 6312 static void __kmp_check_mic_type() 6313 { 6314 kmp_cpuid_t cpuid_state = {0}; 6315 kmp_cpuid_t * cs_p = &cpuid_state; 6316 __kmp_x86_cpuid(1, 0, cs_p); 6317 // We don't support mic1 at the moment 6318 if( (cs_p->eax & 0xff0) == 0xB10 ) { 6319 __kmp_mic_type = mic2; 6320 } else if( (cs_p->eax & 0xf0ff0) == 0x50670 ) { 6321 __kmp_mic_type = mic3; 6322 } else { 6323 __kmp_mic_type = non_mic; 6324 } 6325 } 6326 6327 #endif /* KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) */ 6328 6329 static void 6330 __kmp_do_serial_initialize( void ) 6331 { 6332 int i, gtid; 6333 int size; 6334 6335 KA_TRACE( 10, ("__kmp_do_serial_initialize: enter\n" ) ); 6336 6337 KMP_DEBUG_ASSERT( sizeof( kmp_int32 ) == 4 ); 6338 KMP_DEBUG_ASSERT( sizeof( kmp_uint32 ) == 4 ); 6339 KMP_DEBUG_ASSERT( sizeof( kmp_int64 ) == 8 ); 6340 KMP_DEBUG_ASSERT( sizeof( kmp_uint64 ) == 8 ); 6341 KMP_DEBUG_ASSERT( sizeof( kmp_intptr_t ) == sizeof( void * ) ); 6342 6343 #if OMPT_SUPPORT 6344 ompt_pre_init(); 6345 #endif 6346 6347 __kmp_validate_locks(); 6348 6349 /* Initialize internal memory allocator */ 6350 __kmp_init_allocator(); 6351 6352 /* Register the library startup via an environment variable 6353 and check to see whether another copy of the library is already 6354 registered. */ 6355 6356 __kmp_register_library_startup( ); 6357 6358 /* TODO reinitialization of library */ 6359 if( TCR_4(__kmp_global.g.g_done) ) { 6360 KA_TRACE( 10, ("__kmp_do_serial_initialize: reinitialization of library\n" ) ); 6361 } 6362 6363 __kmp_global.g.g_abort = 0; 6364 TCW_SYNC_4(__kmp_global.g.g_done, FALSE); 6365 6366 /* initialize the locks */ 6367 #if KMP_USE_ADAPTIVE_LOCKS 6368 #if KMP_DEBUG_ADAPTIVE_LOCKS 6369 __kmp_init_speculative_stats(); 6370 #endif 6371 #endif 6372 #if KMP_STATS_ENABLED 6373 __kmp_stats_init(); 6374 #endif 6375 __kmp_init_lock( & __kmp_global_lock ); 6376 __kmp_init_queuing_lock( & __kmp_dispatch_lock ); 6377 __kmp_init_lock( & __kmp_debug_lock ); 6378 __kmp_init_atomic_lock( & __kmp_atomic_lock ); 6379 __kmp_init_atomic_lock( & __kmp_atomic_lock_1i ); 6380 __kmp_init_atomic_lock( & __kmp_atomic_lock_2i ); 6381 __kmp_init_atomic_lock( & __kmp_atomic_lock_4i ); 6382 __kmp_init_atomic_lock( & __kmp_atomic_lock_4r ); 6383 __kmp_init_atomic_lock( & __kmp_atomic_lock_8i ); 6384 __kmp_init_atomic_lock( & __kmp_atomic_lock_8r ); 6385 __kmp_init_atomic_lock( & __kmp_atomic_lock_8c ); 6386 __kmp_init_atomic_lock( & __kmp_atomic_lock_10r ); 6387 __kmp_init_atomic_lock( & __kmp_atomic_lock_16r ); 6388 __kmp_init_atomic_lock( & __kmp_atomic_lock_16c ); 6389 __kmp_init_atomic_lock( & __kmp_atomic_lock_20c ); 6390 __kmp_init_atomic_lock( & __kmp_atomic_lock_32c ); 6391 __kmp_init_bootstrap_lock( & __kmp_forkjoin_lock ); 6392 __kmp_init_bootstrap_lock( & __kmp_exit_lock ); 6393 #if KMP_USE_MONITOR 6394 __kmp_init_bootstrap_lock( & __kmp_monitor_lock ); 6395 #endif 6396 __kmp_init_bootstrap_lock( & __kmp_tp_cached_lock ); 6397 6398 /* conduct initialization and initial setup of configuration */ 6399 6400 __kmp_runtime_initialize(); 6401 6402 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 6403 __kmp_check_mic_type(); 6404 #endif 6405 6406 // Some global variable initialization moved here from kmp_env_initialize() 6407 #ifdef KMP_DEBUG 6408 kmp_diag = 0; 6409 #endif 6410 __kmp_abort_delay = 0; 6411 6412 // From __kmp_init_dflt_team_nth() 6413 /* assume the entire machine will be used */ 6414 __kmp_dflt_team_nth_ub = __kmp_xproc; 6415 if( __kmp_dflt_team_nth_ub < KMP_MIN_NTH ) { 6416 __kmp_dflt_team_nth_ub = KMP_MIN_NTH; 6417 } 6418 if( __kmp_dflt_team_nth_ub > __kmp_sys_max_nth ) { 6419 __kmp_dflt_team_nth_ub = __kmp_sys_max_nth; 6420 } 6421 __kmp_max_nth = __kmp_sys_max_nth; 6422 6423 // Three vars below moved here from __kmp_env_initialize() "KMP_BLOCKTIME" part 6424 __kmp_dflt_blocktime = KMP_DEFAULT_BLOCKTIME; 6425 #if KMP_USE_MONITOR 6426 __kmp_monitor_wakeups = KMP_WAKEUPS_FROM_BLOCKTIME( __kmp_dflt_blocktime, __kmp_monitor_wakeups ); 6427 __kmp_bt_intervals = KMP_INTERVALS_FROM_BLOCKTIME( __kmp_dflt_blocktime, __kmp_monitor_wakeups ); 6428 #endif 6429 // From "KMP_LIBRARY" part of __kmp_env_initialize() 6430 __kmp_library = library_throughput; 6431 // From KMP_SCHEDULE initialization 6432 __kmp_static = kmp_sch_static_balanced; 6433 // AC: do not use analytical here, because it is non-monotonous 6434 //__kmp_guided = kmp_sch_guided_iterative_chunked; 6435 //__kmp_auto = kmp_sch_guided_analytical_chunked; // AC: it is the default, no need to repeate assignment 6436 // Barrier initialization. Moved here from __kmp_env_initialize() Barrier branch bit control and barrier method 6437 // control parts 6438 #if KMP_FAST_REDUCTION_BARRIER 6439 #define kmp_reduction_barrier_gather_bb ((int)1) 6440 #define kmp_reduction_barrier_release_bb ((int)1) 6441 #define kmp_reduction_barrier_gather_pat bp_hyper_bar 6442 #define kmp_reduction_barrier_release_pat bp_hyper_bar 6443 #endif // KMP_FAST_REDUCTION_BARRIER 6444 for ( i=bs_plain_barrier; i<bs_last_barrier; i++ ) { 6445 __kmp_barrier_gather_branch_bits [ i ] = __kmp_barrier_gather_bb_dflt; 6446 __kmp_barrier_release_branch_bits[ i ] = __kmp_barrier_release_bb_dflt; 6447 __kmp_barrier_gather_pattern [ i ] = __kmp_barrier_gather_pat_dflt; 6448 __kmp_barrier_release_pattern[ i ] = __kmp_barrier_release_pat_dflt; 6449 #if KMP_FAST_REDUCTION_BARRIER 6450 if( i == bs_reduction_barrier ) { // tested and confirmed on ALTIX only ( lin_64 ): hyper,1 6451 __kmp_barrier_gather_branch_bits [ i ] = kmp_reduction_barrier_gather_bb; 6452 __kmp_barrier_release_branch_bits[ i ] = kmp_reduction_barrier_release_bb; 6453 __kmp_barrier_gather_pattern [ i ] = kmp_reduction_barrier_gather_pat; 6454 __kmp_barrier_release_pattern[ i ] = kmp_reduction_barrier_release_pat; 6455 } 6456 #endif // KMP_FAST_REDUCTION_BARRIER 6457 } 6458 #if KMP_FAST_REDUCTION_BARRIER 6459 #undef kmp_reduction_barrier_release_pat 6460 #undef kmp_reduction_barrier_gather_pat 6461 #undef kmp_reduction_barrier_release_bb 6462 #undef kmp_reduction_barrier_gather_bb 6463 #endif // KMP_FAST_REDUCTION_BARRIER 6464 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 6465 if (__kmp_mic_type == mic2) { // KNC 6466 // AC: plane=3,2, forkjoin=2,1 are optimal for 240 threads on KNC 6467 __kmp_barrier_gather_branch_bits [ bs_plain_barrier ] = 3; // plain gather 6468 __kmp_barrier_release_branch_bits[ bs_forkjoin_barrier ] = 1; // forkjoin release 6469 __kmp_barrier_gather_pattern [ bs_forkjoin_barrier ] = bp_hierarchical_bar; 6470 __kmp_barrier_release_pattern[ bs_forkjoin_barrier ] = bp_hierarchical_bar; 6471 } 6472 #if KMP_FAST_REDUCTION_BARRIER 6473 if (__kmp_mic_type == mic2) { // KNC 6474 __kmp_barrier_gather_pattern [ bs_reduction_barrier ] = bp_hierarchical_bar; 6475 __kmp_barrier_release_pattern[ bs_reduction_barrier ] = bp_hierarchical_bar; 6476 } 6477 #endif 6478 #endif 6479 6480 // From KMP_CHECKS initialization 6481 #ifdef KMP_DEBUG 6482 __kmp_env_checks = TRUE; /* development versions have the extra checks */ 6483 #else 6484 __kmp_env_checks = FALSE; /* port versions do not have the extra checks */ 6485 #endif 6486 6487 // From "KMP_FOREIGN_THREADS_THREADPRIVATE" initialization 6488 __kmp_foreign_tp = TRUE; 6489 6490 __kmp_global.g.g_dynamic = FALSE; 6491 __kmp_global.g.g_dynamic_mode = dynamic_default; 6492 6493 __kmp_env_initialize( NULL ); 6494 6495 // Print all messages in message catalog for testing purposes. 6496 #ifdef KMP_DEBUG 6497 char const * val = __kmp_env_get( "KMP_DUMP_CATALOG" ); 6498 if ( __kmp_str_match_true( val ) ) { 6499 kmp_str_buf_t buffer; 6500 __kmp_str_buf_init( & buffer ); 6501 __kmp_i18n_dump_catalog( & buffer ); 6502 __kmp_printf( "%s", buffer.str ); 6503 __kmp_str_buf_free( & buffer ); 6504 }; // if 6505 __kmp_env_free( & val ); 6506 #endif 6507 6508 __kmp_threads_capacity = __kmp_initial_threads_capacity( __kmp_dflt_team_nth_ub ); 6509 // Moved here from __kmp_env_initialize() "KMP_ALL_THREADPRIVATE" part 6510 __kmp_tp_capacity = __kmp_default_tp_capacity(__kmp_dflt_team_nth_ub, __kmp_max_nth, __kmp_allThreadsSpecified); 6511 6512 // If the library is shut down properly, both pools must be NULL. Just in case, set them 6513 // to NULL -- some memory may leak, but subsequent code will work even if pools are not freed. 6514 KMP_DEBUG_ASSERT( __kmp_thread_pool == NULL ); 6515 KMP_DEBUG_ASSERT( __kmp_thread_pool_insert_pt == NULL ); 6516 KMP_DEBUG_ASSERT( __kmp_team_pool == NULL ); 6517 __kmp_thread_pool = NULL; 6518 __kmp_thread_pool_insert_pt = NULL; 6519 __kmp_team_pool = NULL; 6520 6521 /* Allocate all of the variable sized records */ 6522 /* NOTE: __kmp_threads_capacity entries are allocated, but the arrays are expandable */ 6523 /* Since allocation is cache-aligned, just add extra padding at the end */ 6524 size = (sizeof(kmp_info_t*) + sizeof(kmp_root_t*))*__kmp_threads_capacity + CACHE_LINE; 6525 __kmp_threads = (kmp_info_t**) __kmp_allocate( size ); 6526 __kmp_root = (kmp_root_t**) ((char*)__kmp_threads + sizeof(kmp_info_t*) * __kmp_threads_capacity ); 6527 6528 /* init thread counts */ 6529 KMP_DEBUG_ASSERT( __kmp_all_nth == 0 ); // Asserts fail if the library is reinitializing and 6530 KMP_DEBUG_ASSERT( __kmp_nth == 0 ); // something was wrong in termination. 6531 __kmp_all_nth = 0; 6532 __kmp_nth = 0; 6533 6534 /* setup the uber master thread and hierarchy */ 6535 gtid = __kmp_register_root( TRUE ); 6536 KA_TRACE( 10, ("__kmp_do_serial_initialize T#%d\n", gtid )); 6537 KMP_ASSERT( KMP_UBER_GTID( gtid ) ); 6538 KMP_ASSERT( KMP_INITIAL_GTID( gtid ) ); 6539 6540 KMP_MB(); /* Flush all pending memory write invalidates. */ 6541 6542 __kmp_common_initialize(); 6543 6544 #if KMP_OS_UNIX 6545 /* invoke the child fork handler */ 6546 __kmp_register_atfork(); 6547 #endif 6548 6549 #if ! defined KMP_DYNAMIC_LIB 6550 { 6551 /* Invoke the exit handler when the program finishes, only for static library. 6552 For dynamic library, we already have _fini and DllMain. 6553 */ 6554 int rc = atexit( __kmp_internal_end_atexit ); 6555 if ( rc != 0 ) { 6556 __kmp_msg( kmp_ms_fatal, KMP_MSG( FunctionError, "atexit()" ), KMP_ERR( rc ), __kmp_msg_null ); 6557 }; // if 6558 } 6559 #endif 6560 6561 #if KMP_HANDLE_SIGNALS 6562 #if KMP_OS_UNIX 6563 /* NOTE: make sure that this is called before the user installs 6564 * their own signal handlers so that the user handlers 6565 * are called first. this way they can return false, 6566 * not call our handler, avoid terminating the library, 6567 * and continue execution where they left off. */ 6568 __kmp_install_signals( FALSE ); 6569 #endif /* KMP_OS_UNIX */ 6570 #if KMP_OS_WINDOWS 6571 __kmp_install_signals( TRUE ); 6572 #endif /* KMP_OS_WINDOWS */ 6573 #endif 6574 6575 /* we have finished the serial initialization */ 6576 __kmp_init_counter ++; 6577 6578 __kmp_init_serial = TRUE; 6579 6580 if (__kmp_settings) { 6581 __kmp_env_print(); 6582 } 6583 6584 #if OMP_40_ENABLED 6585 if (__kmp_display_env || __kmp_display_env_verbose) { 6586 __kmp_env_print_2(); 6587 } 6588 #endif // OMP_40_ENABLED 6589 6590 #if OMPT_SUPPORT 6591 ompt_post_init(); 6592 #endif 6593 6594 KMP_MB(); 6595 6596 KA_TRACE( 10, ("__kmp_do_serial_initialize: exit\n" ) ); 6597 } 6598 6599 void 6600 __kmp_serial_initialize( void ) 6601 { 6602 if ( __kmp_init_serial ) { 6603 return; 6604 } 6605 __kmp_acquire_bootstrap_lock( &__kmp_initz_lock ); 6606 if ( __kmp_init_serial ) { 6607 __kmp_release_bootstrap_lock( &__kmp_initz_lock ); 6608 return; 6609 } 6610 __kmp_do_serial_initialize(); 6611 __kmp_release_bootstrap_lock( &__kmp_initz_lock ); 6612 } 6613 6614 static void 6615 __kmp_do_middle_initialize( void ) 6616 { 6617 int i, j; 6618 int prev_dflt_team_nth; 6619 6620 if( !__kmp_init_serial ) { 6621 __kmp_do_serial_initialize(); 6622 } 6623 6624 KA_TRACE( 10, ("__kmp_middle_initialize: enter\n" ) ); 6625 6626 // 6627 // Save the previous value for the __kmp_dflt_team_nth so that 6628 // we can avoid some reinitialization if it hasn't changed. 6629 // 6630 prev_dflt_team_nth = __kmp_dflt_team_nth; 6631 6632 #if KMP_AFFINITY_SUPPORTED 6633 // 6634 // __kmp_affinity_initialize() will try to set __kmp_ncores to the 6635 // number of cores on the machine. 6636 // 6637 __kmp_affinity_initialize(); 6638 6639 // 6640 // Run through the __kmp_threads array and set the affinity mask 6641 // for each root thread that is currently registered with the RTL. 6642 // 6643 for ( i = 0; i < __kmp_threads_capacity; i++ ) { 6644 if ( TCR_PTR( __kmp_threads[ i ] ) != NULL ) { 6645 __kmp_affinity_set_init_mask( i, TRUE ); 6646 } 6647 } 6648 #endif /* KMP_AFFINITY_SUPPORTED */ 6649 6650 KMP_ASSERT( __kmp_xproc > 0 ); 6651 if ( __kmp_avail_proc == 0 ) { 6652 __kmp_avail_proc = __kmp_xproc; 6653 } 6654 6655 // If there were empty places in num_threads list (OMP_NUM_THREADS=,,2,3), correct them now 6656 j = 0; 6657 while ( ( j < __kmp_nested_nth.used ) && ! __kmp_nested_nth.nth[ j ] ) { 6658 __kmp_nested_nth.nth[ j ] = __kmp_dflt_team_nth = __kmp_dflt_team_nth_ub = __kmp_avail_proc; 6659 j++; 6660 } 6661 6662 if ( __kmp_dflt_team_nth == 0 ) { 6663 #ifdef KMP_DFLT_NTH_CORES 6664 // 6665 // Default #threads = #cores 6666 // 6667 __kmp_dflt_team_nth = __kmp_ncores; 6668 KA_TRACE( 20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = __kmp_ncores (%d)\n", 6669 __kmp_dflt_team_nth ) ); 6670 #else 6671 // 6672 // Default #threads = #available OS procs 6673 // 6674 __kmp_dflt_team_nth = __kmp_avail_proc; 6675 KA_TRACE( 20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = __kmp_avail_proc(%d)\n", 6676 __kmp_dflt_team_nth ) ); 6677 #endif /* KMP_DFLT_NTH_CORES */ 6678 } 6679 6680 if ( __kmp_dflt_team_nth < KMP_MIN_NTH ) { 6681 __kmp_dflt_team_nth = KMP_MIN_NTH; 6682 } 6683 if( __kmp_dflt_team_nth > __kmp_sys_max_nth ) { 6684 __kmp_dflt_team_nth = __kmp_sys_max_nth; 6685 } 6686 6687 // 6688 // There's no harm in continuing if the following check fails, 6689 // but it indicates an error in the previous logic. 6690 // 6691 KMP_DEBUG_ASSERT( __kmp_dflt_team_nth <= __kmp_dflt_team_nth_ub ); 6692 6693 if ( __kmp_dflt_team_nth != prev_dflt_team_nth ) { 6694 // 6695 // Run through the __kmp_threads array and set the num threads icv 6696 // for each root thread that is currently registered with the RTL 6697 // (which has not already explicitly set its nthreads-var with a 6698 // call to omp_set_num_threads()). 6699 // 6700 for ( i = 0; i < __kmp_threads_capacity; i++ ) { 6701 kmp_info_t *thread = __kmp_threads[ i ]; 6702 if ( thread == NULL ) continue; 6703 if ( thread->th.th_current_task->td_icvs.nproc != 0 ) continue; 6704 6705 set__nproc( __kmp_threads[ i ], __kmp_dflt_team_nth ); 6706 } 6707 } 6708 KA_TRACE( 20, ("__kmp_middle_initialize: final value for __kmp_dflt_team_nth = %d\n", 6709 __kmp_dflt_team_nth) ); 6710 6711 #ifdef KMP_ADJUST_BLOCKTIME 6712 /* Adjust blocktime to zero if necessary */ 6713 /* now that __kmp_avail_proc is set */ 6714 if ( !__kmp_env_blocktime && ( __kmp_avail_proc > 0 ) ) { 6715 KMP_DEBUG_ASSERT( __kmp_avail_proc > 0 ); 6716 if ( __kmp_nth > __kmp_avail_proc ) { 6717 __kmp_zero_bt = TRUE; 6718 } 6719 } 6720 #endif /* KMP_ADJUST_BLOCKTIME */ 6721 6722 /* we have finished middle initialization */ 6723 TCW_SYNC_4(__kmp_init_middle, TRUE); 6724 6725 KA_TRACE( 10, ("__kmp_do_middle_initialize: exit\n" ) ); 6726 } 6727 6728 void 6729 __kmp_middle_initialize( void ) 6730 { 6731 if ( __kmp_init_middle ) { 6732 return; 6733 } 6734 __kmp_acquire_bootstrap_lock( &__kmp_initz_lock ); 6735 if ( __kmp_init_middle ) { 6736 __kmp_release_bootstrap_lock( &__kmp_initz_lock ); 6737 return; 6738 } 6739 __kmp_do_middle_initialize(); 6740 __kmp_release_bootstrap_lock( &__kmp_initz_lock ); 6741 } 6742 6743 void 6744 __kmp_parallel_initialize( void ) 6745 { 6746 int gtid = __kmp_entry_gtid(); // this might be a new root 6747 6748 /* synchronize parallel initialization (for sibling) */ 6749 if( TCR_4(__kmp_init_parallel) ) return; 6750 __kmp_acquire_bootstrap_lock( &__kmp_initz_lock ); 6751 if( TCR_4(__kmp_init_parallel) ) { __kmp_release_bootstrap_lock( &__kmp_initz_lock ); return; } 6752 6753 /* TODO reinitialization after we have already shut down */ 6754 if( TCR_4(__kmp_global.g.g_done) ) { 6755 KA_TRACE( 10, ("__kmp_parallel_initialize: attempt to init while shutting down\n" ) ); 6756 __kmp_infinite_loop(); 6757 } 6758 6759 /* jc: The lock __kmp_initz_lock is already held, so calling __kmp_serial_initialize 6760 would cause a deadlock. So we call __kmp_do_serial_initialize directly. 6761 */ 6762 if( !__kmp_init_middle ) { 6763 __kmp_do_middle_initialize(); 6764 } 6765 6766 /* begin initialization */ 6767 KA_TRACE( 10, ("__kmp_parallel_initialize: enter\n" ) ); 6768 KMP_ASSERT( KMP_UBER_GTID( gtid ) ); 6769 6770 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 6771 // 6772 // Save the FP control regs. 6773 // Worker threads will set theirs to these values at thread startup. 6774 // 6775 __kmp_store_x87_fpu_control_word( &__kmp_init_x87_fpu_control_word ); 6776 __kmp_store_mxcsr( &__kmp_init_mxcsr ); 6777 __kmp_init_mxcsr &= KMP_X86_MXCSR_MASK; 6778 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 6779 6780 #if KMP_OS_UNIX 6781 # if KMP_HANDLE_SIGNALS 6782 /* must be after __kmp_serial_initialize */ 6783 __kmp_install_signals( TRUE ); 6784 # endif 6785 #endif 6786 6787 __kmp_suspend_initialize(); 6788 6789 #if defined(USE_LOAD_BALANCE) 6790 if ( __kmp_global.g.g_dynamic_mode == dynamic_default ) { 6791 __kmp_global.g.g_dynamic_mode = dynamic_load_balance; 6792 } 6793 #else 6794 if ( __kmp_global.g.g_dynamic_mode == dynamic_default ) { 6795 __kmp_global.g.g_dynamic_mode = dynamic_thread_limit; 6796 } 6797 #endif 6798 6799 if ( __kmp_version ) { 6800 __kmp_print_version_2(); 6801 } 6802 6803 /* we have finished parallel initialization */ 6804 TCW_SYNC_4(__kmp_init_parallel, TRUE); 6805 6806 KMP_MB(); 6807 KA_TRACE( 10, ("__kmp_parallel_initialize: exit\n" ) ); 6808 6809 __kmp_release_bootstrap_lock( &__kmp_initz_lock ); 6810 } 6811 6812 6813 /* ------------------------------------------------------------------------ */ 6814 6815 void 6816 __kmp_run_before_invoked_task( int gtid, int tid, kmp_info_t *this_thr, 6817 kmp_team_t *team ) 6818 { 6819 kmp_disp_t *dispatch; 6820 6821 KMP_MB(); 6822 6823 /* none of the threads have encountered any constructs, yet. */ 6824 this_thr->th.th_local.this_construct = 0; 6825 #if KMP_CACHE_MANAGE 6826 KMP_CACHE_PREFETCH( &this_thr->th.th_bar[ bs_forkjoin_barrier ].bb.b_arrived ); 6827 #endif /* KMP_CACHE_MANAGE */ 6828 dispatch = (kmp_disp_t *)TCR_PTR(this_thr->th.th_dispatch); 6829 KMP_DEBUG_ASSERT( dispatch ); 6830 KMP_DEBUG_ASSERT( team->t.t_dispatch ); 6831 //KMP_DEBUG_ASSERT( this_thr->th.th_dispatch == &team->t.t_dispatch[ this_thr->th.th_info.ds.ds_tid ] ); 6832 6833 dispatch->th_disp_index = 0; /* reset the dispatch buffer counter */ 6834 #if OMP_45_ENABLED 6835 dispatch->th_doacross_buf_idx = 0; /* reset the doacross dispatch buffer counter */ 6836 #endif 6837 if( __kmp_env_consistency_check ) 6838 __kmp_push_parallel( gtid, team->t.t_ident ); 6839 6840 KMP_MB(); /* Flush all pending memory write invalidates. */ 6841 } 6842 6843 void 6844 __kmp_run_after_invoked_task( int gtid, int tid, kmp_info_t *this_thr, 6845 kmp_team_t *team ) 6846 { 6847 if( __kmp_env_consistency_check ) 6848 __kmp_pop_parallel( gtid, team->t.t_ident ); 6849 6850 __kmp_finish_implicit_task(this_thr); 6851 } 6852 6853 int 6854 __kmp_invoke_task_func( int gtid ) 6855 { 6856 int rc; 6857 int tid = __kmp_tid_from_gtid( gtid ); 6858 kmp_info_t *this_thr = __kmp_threads[ gtid ]; 6859 kmp_team_t *team = this_thr->th.th_team; 6860 6861 __kmp_run_before_invoked_task( gtid, tid, this_thr, team ); 6862 #if USE_ITT_BUILD 6863 if ( __itt_stack_caller_create_ptr ) { 6864 __kmp_itt_stack_callee_enter( (__itt_caller)team->t.t_stack_id ); // inform ittnotify about entering user's code 6865 } 6866 #endif /* USE_ITT_BUILD */ 6867 #if INCLUDE_SSC_MARKS 6868 SSC_MARK_INVOKING(); 6869 #endif 6870 6871 #if OMPT_SUPPORT 6872 void *dummy; 6873 void **exit_runtime_p; 6874 ompt_task_id_t my_task_id; 6875 ompt_parallel_id_t my_parallel_id; 6876 6877 if (ompt_enabled) { 6878 exit_runtime_p = &(team->t.t_implicit_task_taskdata[tid]. 6879 ompt_task_info.frame.exit_runtime_frame); 6880 } else { 6881 exit_runtime_p = &dummy; 6882 } 6883 6884 #if OMPT_TRACE 6885 my_task_id = team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_id; 6886 my_parallel_id = team->t.ompt_team_info.parallel_id; 6887 if (ompt_enabled && 6888 ompt_callbacks.ompt_callback(ompt_event_implicit_task_begin)) { 6889 ompt_callbacks.ompt_callback(ompt_event_implicit_task_begin)( 6890 my_parallel_id, my_task_id); 6891 } 6892 #endif 6893 #endif 6894 6895 { 6896 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 6897 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 6898 rc = __kmp_invoke_microtask( (microtask_t) TCR_SYNC_PTR(team->t.t_pkfn), 6899 gtid, tid, (int) team->t.t_argc, (void **) team->t.t_argv 6900 #if OMPT_SUPPORT 6901 , exit_runtime_p 6902 #endif 6903 ); 6904 #if OMPT_SUPPORT 6905 *exit_runtime_p = NULL; 6906 #endif 6907 } 6908 6909 #if USE_ITT_BUILD 6910 if ( __itt_stack_caller_create_ptr ) { 6911 __kmp_itt_stack_callee_leave( (__itt_caller)team->t.t_stack_id ); // inform ittnotify about leaving user's code 6912 } 6913 #endif /* USE_ITT_BUILD */ 6914 __kmp_run_after_invoked_task( gtid, tid, this_thr, team ); 6915 6916 return rc; 6917 } 6918 6919 #if OMP_40_ENABLED 6920 void 6921 __kmp_teams_master( int gtid ) 6922 { 6923 // This routine is called by all master threads in teams construct 6924 kmp_info_t *thr = __kmp_threads[ gtid ]; 6925 kmp_team_t *team = thr->th.th_team; 6926 ident_t *loc = team->t.t_ident; 6927 thr->th.th_set_nproc = thr->th.th_teams_size.nth; 6928 KMP_DEBUG_ASSERT( thr->th.th_teams_microtask ); 6929 KMP_DEBUG_ASSERT( thr->th.th_set_nproc ); 6930 KA_TRACE( 20, ("__kmp_teams_master: T#%d, Tid %d, microtask %p\n", 6931 gtid, __kmp_tid_from_gtid( gtid ), thr->th.th_teams_microtask ) ); 6932 // Launch league of teams now, but not let workers execute 6933 // (they hang on fork barrier until next parallel) 6934 #if INCLUDE_SSC_MARKS 6935 SSC_MARK_FORKING(); 6936 #endif 6937 __kmp_fork_call( loc, gtid, fork_context_intel, 6938 team->t.t_argc, 6939 #if OMPT_SUPPORT 6940 (void *)thr->th.th_teams_microtask, // "unwrapped" task 6941 #endif 6942 (microtask_t)thr->th.th_teams_microtask, // "wrapped" task 6943 VOLATILE_CAST(launch_t) __kmp_invoke_task_func, 6944 NULL ); 6945 #if INCLUDE_SSC_MARKS 6946 SSC_MARK_JOINING(); 6947 #endif 6948 6949 // AC: last parameter "1" eliminates join barrier which won't work because 6950 // worker threads are in a fork barrier waiting for more parallel regions 6951 __kmp_join_call( loc, gtid 6952 #if OMPT_SUPPORT 6953 , fork_context_intel 6954 #endif 6955 , 1 ); 6956 } 6957 6958 int 6959 __kmp_invoke_teams_master( int gtid ) 6960 { 6961 kmp_info_t *this_thr = __kmp_threads[ gtid ]; 6962 kmp_team_t *team = this_thr->th.th_team; 6963 #if KMP_DEBUG 6964 if ( !__kmp_threads[gtid]-> th.th_team->t.t_serialized ) 6965 KMP_DEBUG_ASSERT( (void*)__kmp_threads[gtid]-> th.th_team->t.t_pkfn == (void*)__kmp_teams_master ); 6966 #endif 6967 __kmp_run_before_invoked_task( gtid, 0, this_thr, team ); 6968 __kmp_teams_master( gtid ); 6969 __kmp_run_after_invoked_task( gtid, 0, this_thr, team ); 6970 return 1; 6971 } 6972 #endif /* OMP_40_ENABLED */ 6973 6974 /* this sets the requested number of threads for the next parallel region 6975 * encountered by this team */ 6976 /* since this should be enclosed in the forkjoin critical section it 6977 * should avoid race conditions with assymmetrical nested parallelism */ 6978 6979 void 6980 __kmp_push_num_threads( ident_t *id, int gtid, int num_threads ) 6981 { 6982 kmp_info_t *thr = __kmp_threads[gtid]; 6983 6984 if( num_threads > 0 ) 6985 thr->th.th_set_nproc = num_threads; 6986 } 6987 6988 #if OMP_40_ENABLED 6989 6990 /* this sets the requested number of teams for the teams region and/or 6991 * the number of threads for the next parallel region encountered */ 6992 void 6993 __kmp_push_num_teams( ident_t *id, int gtid, int num_teams, int num_threads ) 6994 { 6995 kmp_info_t *thr = __kmp_threads[gtid]; 6996 KMP_DEBUG_ASSERT(num_teams >= 0); 6997 KMP_DEBUG_ASSERT(num_threads >= 0); 6998 6999 if( num_teams == 0 ) 7000 num_teams = 1; // default number of teams is 1. 7001 if( num_teams > __kmp_max_nth ) { // if too many teams requested? 7002 if ( !__kmp_reserve_warn ) { 7003 __kmp_reserve_warn = 1; 7004 __kmp_msg( 7005 kmp_ms_warning, 7006 KMP_MSG( CantFormThrTeam, num_teams, __kmp_max_nth ), 7007 KMP_HNT( Unset_ALL_THREADS ), 7008 __kmp_msg_null 7009 ); 7010 } 7011 num_teams = __kmp_max_nth; 7012 } 7013 // Set number of teams (number of threads in the outer "parallel" of the teams) 7014 thr->th.th_set_nproc = thr->th.th_teams_size.nteams = num_teams; 7015 7016 // Remember the number of threads for inner parallel regions 7017 if( num_threads == 0 ) { 7018 if( !TCR_4(__kmp_init_middle) ) 7019 __kmp_middle_initialize(); // get __kmp_avail_proc calculated 7020 num_threads = __kmp_avail_proc / num_teams; 7021 if( num_teams * num_threads > __kmp_max_nth ) { 7022 // adjust num_threads w/o warning as it is not user setting 7023 num_threads = __kmp_max_nth / num_teams; 7024 } 7025 } else { 7026 if( num_teams * num_threads > __kmp_max_nth ) { 7027 int new_threads = __kmp_max_nth / num_teams; 7028 if ( !__kmp_reserve_warn ) { // user asked for too many threads 7029 __kmp_reserve_warn = 1; // that conflicts with OMP_THREAD_LIMIT 7030 __kmp_msg( 7031 kmp_ms_warning, 7032 KMP_MSG( CantFormThrTeam, num_threads, new_threads ), 7033 KMP_HNT( Unset_ALL_THREADS ), 7034 __kmp_msg_null 7035 ); 7036 } 7037 num_threads = new_threads; 7038 } 7039 } 7040 thr->th.th_teams_size.nth = num_threads; 7041 } 7042 7043 7044 // 7045 // Set the proc_bind var to use in the following parallel region. 7046 // 7047 void 7048 __kmp_push_proc_bind( ident_t *id, int gtid, kmp_proc_bind_t proc_bind ) 7049 { 7050 kmp_info_t *thr = __kmp_threads[gtid]; 7051 thr->th.th_set_proc_bind = proc_bind; 7052 } 7053 7054 #endif /* OMP_40_ENABLED */ 7055 7056 /* Launch the worker threads into the microtask. */ 7057 7058 void 7059 __kmp_internal_fork( ident_t *id, int gtid, kmp_team_t *team ) 7060 { 7061 kmp_info_t *this_thr = __kmp_threads[gtid]; 7062 7063 #ifdef KMP_DEBUG 7064 int f; 7065 #endif /* KMP_DEBUG */ 7066 7067 KMP_DEBUG_ASSERT( team ); 7068 KMP_DEBUG_ASSERT( this_thr->th.th_team == team ); 7069 KMP_ASSERT( KMP_MASTER_GTID(gtid) ); 7070 KMP_MB(); /* Flush all pending memory write invalidates. */ 7071 7072 team->t.t_construct = 0; /* no single directives seen yet */ 7073 team->t.t_ordered.dt.t_value = 0; /* thread 0 enters the ordered section first */ 7074 7075 /* Reset the identifiers on the dispatch buffer */ 7076 KMP_DEBUG_ASSERT( team->t.t_disp_buffer ); 7077 if ( team->t.t_max_nproc > 1 ) { 7078 int i; 7079 for (i = 0; i < __kmp_dispatch_num_buffers; ++i) { 7080 team->t.t_disp_buffer[ i ].buffer_index = i; 7081 #if OMP_45_ENABLED 7082 team->t.t_disp_buffer[i].doacross_buf_idx = i; 7083 #endif 7084 } 7085 } else { 7086 team->t.t_disp_buffer[ 0 ].buffer_index = 0; 7087 #if OMP_45_ENABLED 7088 team->t.t_disp_buffer[0].doacross_buf_idx = 0; 7089 #endif 7090 } 7091 7092 KMP_MB(); /* Flush all pending memory write invalidates. */ 7093 KMP_ASSERT( this_thr->th.th_team == team ); 7094 7095 #ifdef KMP_DEBUG 7096 for( f=0 ; f<team->t.t_nproc ; f++ ) { 7097 KMP_DEBUG_ASSERT( team->t.t_threads[f] && 7098 team->t.t_threads[f]->th.th_team_nproc == team->t.t_nproc ); 7099 } 7100 #endif /* KMP_DEBUG */ 7101 7102 /* release the worker threads so they may begin working */ 7103 __kmp_fork_barrier( gtid, 0 ); 7104 } 7105 7106 7107 void 7108 __kmp_internal_join( ident_t *id, int gtid, kmp_team_t *team ) 7109 { 7110 kmp_info_t *this_thr = __kmp_threads[gtid]; 7111 7112 KMP_DEBUG_ASSERT( team ); 7113 KMP_DEBUG_ASSERT( this_thr->th.th_team == team ); 7114 KMP_ASSERT( KMP_MASTER_GTID(gtid) ); 7115 KMP_MB(); /* Flush all pending memory write invalidates. */ 7116 7117 /* Join barrier after fork */ 7118 7119 #ifdef KMP_DEBUG 7120 if (__kmp_threads[gtid] && __kmp_threads[gtid]->th.th_team_nproc != team->t.t_nproc ) { 7121 __kmp_printf("GTID: %d, __kmp_threads[%d]=%p\n",gtid, gtid, __kmp_threads[gtid]); 7122 __kmp_printf("__kmp_threads[%d]->th.th_team_nproc=%d, TEAM: %p, team->t.t_nproc=%d\n", 7123 gtid, __kmp_threads[gtid]->th.th_team_nproc, team, team->t.t_nproc); 7124 __kmp_print_structure(); 7125 } 7126 KMP_DEBUG_ASSERT( __kmp_threads[gtid] && 7127 __kmp_threads[gtid]->th.th_team_nproc == team->t.t_nproc ); 7128 #endif /* KMP_DEBUG */ 7129 7130 __kmp_join_barrier( gtid ); /* wait for everyone */ 7131 7132 KMP_MB(); /* Flush all pending memory write invalidates. */ 7133 KMP_ASSERT( this_thr->th.th_team == team ); 7134 } 7135 7136 7137 /* ------------------------------------------------------------------------ */ 7138 /* ------------------------------------------------------------------------ */ 7139 7140 #ifdef USE_LOAD_BALANCE 7141 7142 // 7143 // Return the worker threads actively spinning in the hot team, if we 7144 // are at the outermost level of parallelism. Otherwise, return 0. 7145 // 7146 static int 7147 __kmp_active_hot_team_nproc( kmp_root_t *root ) 7148 { 7149 int i; 7150 int retval; 7151 kmp_team_t *hot_team; 7152 7153 if ( root->r.r_active ) { 7154 return 0; 7155 } 7156 hot_team = root->r.r_hot_team; 7157 if ( __kmp_dflt_blocktime == KMP_MAX_BLOCKTIME ) { 7158 return hot_team->t.t_nproc - 1; // Don't count master thread 7159 } 7160 7161 // 7162 // Skip the master thread - it is accounted for elsewhere. 7163 // 7164 retval = 0; 7165 for ( i = 1; i < hot_team->t.t_nproc; i++ ) { 7166 if ( hot_team->t.t_threads[i]->th.th_active ) { 7167 retval++; 7168 } 7169 } 7170 return retval; 7171 } 7172 7173 // 7174 // Perform an automatic adjustment to the number of 7175 // threads used by the next parallel region. 7176 // 7177 static int 7178 __kmp_load_balance_nproc( kmp_root_t *root, int set_nproc ) 7179 { 7180 int retval; 7181 int pool_active; 7182 int hot_team_active; 7183 int team_curr_active; 7184 int system_active; 7185 7186 KB_TRACE( 20, ("__kmp_load_balance_nproc: called root:%p set_nproc:%d\n", 7187 root, set_nproc ) ); 7188 KMP_DEBUG_ASSERT( root ); 7189 KMP_DEBUG_ASSERT( root->r.r_root_team->t.t_threads[0]->th.th_current_task->td_icvs.dynamic == TRUE ); 7190 KMP_DEBUG_ASSERT( set_nproc > 1 ); 7191 7192 if ( set_nproc == 1) { 7193 KB_TRACE( 20, ("__kmp_load_balance_nproc: serial execution.\n" ) ); 7194 return 1; 7195 } 7196 7197 // 7198 // Threads that are active in the thread pool, active in the hot team 7199 // for this particular root (if we are at the outer par level), and 7200 // the currently executing thread (to become the master) are available 7201 // to add to the new team, but are currently contributing to the system 7202 // load, and must be accounted for. 7203 // 7204 pool_active = TCR_4(__kmp_thread_pool_active_nth); 7205 hot_team_active = __kmp_active_hot_team_nproc( root ); 7206 team_curr_active = pool_active + hot_team_active + 1; 7207 7208 // 7209 // Check the system load. 7210 // 7211 system_active = __kmp_get_load_balance( __kmp_avail_proc + team_curr_active ); 7212 KB_TRACE( 30, ("__kmp_load_balance_nproc: system active = %d pool active = %d hot team active = %d\n", 7213 system_active, pool_active, hot_team_active ) ); 7214 7215 if ( system_active < 0 ) { 7216 // 7217 // There was an error reading the necessary info from /proc, 7218 // so use the thread limit algorithm instead. Once we set 7219 // __kmp_global.g.g_dynamic_mode = dynamic_thread_limit, 7220 // we shouldn't wind up getting back here. 7221 // 7222 __kmp_global.g.g_dynamic_mode = dynamic_thread_limit; 7223 KMP_WARNING( CantLoadBalUsing, "KMP_DYNAMIC_MODE=thread limit" ); 7224 7225 // 7226 // Make this call behave like the thread limit algorithm. 7227 // 7228 retval = __kmp_avail_proc - __kmp_nth + (root->r.r_active ? 1 7229 : root->r.r_hot_team->t.t_nproc); 7230 if ( retval > set_nproc ) { 7231 retval = set_nproc; 7232 } 7233 if ( retval < KMP_MIN_NTH ) { 7234 retval = KMP_MIN_NTH; 7235 } 7236 7237 KB_TRACE( 20, ("__kmp_load_balance_nproc: thread limit exit. retval:%d\n", retval ) ); 7238 return retval; 7239 } 7240 7241 // 7242 // There is a slight delay in the load balance algorithm in detecting 7243 // new running procs. The real system load at this instant should be 7244 // at least as large as the #active omp thread that are available to 7245 // add to the team. 7246 // 7247 if ( system_active < team_curr_active ) { 7248 system_active = team_curr_active; 7249 } 7250 retval = __kmp_avail_proc - system_active + team_curr_active; 7251 if ( retval > set_nproc ) { 7252 retval = set_nproc; 7253 } 7254 if ( retval < KMP_MIN_NTH ) { 7255 retval = KMP_MIN_NTH; 7256 } 7257 7258 KB_TRACE( 20, ("__kmp_load_balance_nproc: exit. retval:%d\n", retval ) ); 7259 return retval; 7260 } // __kmp_load_balance_nproc() 7261 7262 #endif /* USE_LOAD_BALANCE */ 7263 7264 /* ------------------------------------------------------------------------ */ 7265 /* ------------------------------------------------------------------------ */ 7266 7267 /* NOTE: this is called with the __kmp_init_lock held */ 7268 void 7269 __kmp_cleanup( void ) 7270 { 7271 int f; 7272 7273 KA_TRACE( 10, ("__kmp_cleanup: enter\n" ) ); 7274 7275 if (TCR_4(__kmp_init_parallel)) { 7276 #if KMP_HANDLE_SIGNALS 7277 __kmp_remove_signals(); 7278 #endif 7279 TCW_4(__kmp_init_parallel, FALSE); 7280 } 7281 7282 if (TCR_4(__kmp_init_middle)) { 7283 #if KMP_AFFINITY_SUPPORTED 7284 __kmp_affinity_uninitialize(); 7285 #endif /* KMP_AFFINITY_SUPPORTED */ 7286 __kmp_cleanup_hierarchy(); 7287 TCW_4(__kmp_init_middle, FALSE); 7288 } 7289 7290 KA_TRACE( 10, ("__kmp_cleanup: go serial cleanup\n" ) ); 7291 7292 if (__kmp_init_serial) { 7293 __kmp_runtime_destroy(); 7294 __kmp_init_serial = FALSE; 7295 } 7296 7297 for ( f = 0; f < __kmp_threads_capacity; f++ ) { 7298 if ( __kmp_root[ f ] != NULL ) { 7299 __kmp_free( __kmp_root[ f ] ); 7300 __kmp_root[ f ] = NULL; 7301 } 7302 } 7303 __kmp_free( __kmp_threads ); 7304 // __kmp_threads and __kmp_root were allocated at once, as single block, so there is no need in 7305 // freeing __kmp_root. 7306 __kmp_threads = NULL; 7307 __kmp_root = NULL; 7308 __kmp_threads_capacity = 0; 7309 7310 #if KMP_USE_DYNAMIC_LOCK 7311 __kmp_cleanup_indirect_user_locks(); 7312 #else 7313 __kmp_cleanup_user_locks(); 7314 #endif 7315 7316 #if KMP_AFFINITY_SUPPORTED 7317 KMP_INTERNAL_FREE( (void *) __kmp_cpuinfo_file ); 7318 __kmp_cpuinfo_file = NULL; 7319 #endif /* KMP_AFFINITY_SUPPORTED */ 7320 7321 #if KMP_USE_ADAPTIVE_LOCKS 7322 #if KMP_DEBUG_ADAPTIVE_LOCKS 7323 __kmp_print_speculative_stats(); 7324 #endif 7325 #endif 7326 KMP_INTERNAL_FREE( __kmp_nested_nth.nth ); 7327 __kmp_nested_nth.nth = NULL; 7328 __kmp_nested_nth.size = 0; 7329 __kmp_nested_nth.used = 0; 7330 KMP_INTERNAL_FREE( __kmp_nested_proc_bind.bind_types ); 7331 __kmp_nested_proc_bind.bind_types = NULL; 7332 __kmp_nested_proc_bind.size = 0; 7333 __kmp_nested_proc_bind.used = 0; 7334 7335 __kmp_i18n_catclose(); 7336 7337 #if KMP_STATS_ENABLED 7338 __kmp_stats_fini(); 7339 #endif 7340 7341 KA_TRACE( 10, ("__kmp_cleanup: exit\n" ) ); 7342 } 7343 7344 /* ------------------------------------------------------------------------ */ 7345 /* ------------------------------------------------------------------------ */ 7346 7347 int 7348 __kmp_ignore_mppbeg( void ) 7349 { 7350 char *env; 7351 7352 if ((env = getenv( "KMP_IGNORE_MPPBEG" )) != NULL) { 7353 if (__kmp_str_match_false( env )) 7354 return FALSE; 7355 } 7356 // By default __kmpc_begin() is no-op. 7357 return TRUE; 7358 } 7359 7360 int 7361 __kmp_ignore_mppend( void ) 7362 { 7363 char *env; 7364 7365 if ((env = getenv( "KMP_IGNORE_MPPEND" )) != NULL) { 7366 if (__kmp_str_match_false( env )) 7367 return FALSE; 7368 } 7369 // By default __kmpc_end() is no-op. 7370 return TRUE; 7371 } 7372 7373 void 7374 __kmp_internal_begin( void ) 7375 { 7376 int gtid; 7377 kmp_root_t *root; 7378 7379 /* this is a very important step as it will register new sibling threads 7380 * and assign these new uber threads a new gtid */ 7381 gtid = __kmp_entry_gtid(); 7382 root = __kmp_threads[ gtid ]->th.th_root; 7383 KMP_ASSERT( KMP_UBER_GTID( gtid )); 7384 7385 if( root->r.r_begin ) return; 7386 __kmp_acquire_lock( &root->r.r_begin_lock, gtid ); 7387 if( root->r.r_begin ) { 7388 __kmp_release_lock( & root->r.r_begin_lock, gtid ); 7389 return; 7390 } 7391 7392 root->r.r_begin = TRUE; 7393 7394 __kmp_release_lock( & root->r.r_begin_lock, gtid ); 7395 } 7396 7397 7398 /* ------------------------------------------------------------------------ */ 7399 /* ------------------------------------------------------------------------ */ 7400 7401 void 7402 __kmp_user_set_library (enum library_type arg) 7403 { 7404 int gtid; 7405 kmp_root_t *root; 7406 kmp_info_t *thread; 7407 7408 /* first, make sure we are initialized so we can get our gtid */ 7409 7410 gtid = __kmp_entry_gtid(); 7411 thread = __kmp_threads[ gtid ]; 7412 7413 root = thread->th.th_root; 7414 7415 KA_TRACE( 20, ("__kmp_user_set_library: enter T#%d, arg: %d, %d\n", gtid, arg, library_serial )); 7416 if (root->r.r_in_parallel) { /* Must be called in serial section of top-level thread */ 7417 KMP_WARNING( SetLibraryIncorrectCall ); 7418 return; 7419 } 7420 7421 switch ( arg ) { 7422 case library_serial : 7423 thread->th.th_set_nproc = 0; 7424 set__nproc( thread, 1 ); 7425 break; 7426 case library_turnaround : 7427 thread->th.th_set_nproc = 0; 7428 set__nproc( thread, __kmp_dflt_team_nth ? __kmp_dflt_team_nth : __kmp_dflt_team_nth_ub ); 7429 break; 7430 case library_throughput : 7431 thread->th.th_set_nproc = 0; 7432 set__nproc( thread, __kmp_dflt_team_nth ? __kmp_dflt_team_nth : __kmp_dflt_team_nth_ub ); 7433 break; 7434 default: 7435 KMP_FATAL( UnknownLibraryType, arg ); 7436 } 7437 7438 __kmp_aux_set_library ( arg ); 7439 } 7440 7441 void 7442 __kmp_aux_set_stacksize( size_t arg ) 7443 { 7444 if (! __kmp_init_serial) 7445 __kmp_serial_initialize(); 7446 7447 #if KMP_OS_DARWIN 7448 if (arg & (0x1000 - 1)) { 7449 arg &= ~(0x1000 - 1); 7450 if(arg + 0x1000) /* check for overflow if we round up */ 7451 arg += 0x1000; 7452 } 7453 #endif 7454 __kmp_acquire_bootstrap_lock( &__kmp_initz_lock ); 7455 7456 /* only change the default stacksize before the first parallel region */ 7457 if (! TCR_4(__kmp_init_parallel)) { 7458 size_t value = arg; /* argument is in bytes */ 7459 7460 if (value < __kmp_sys_min_stksize ) 7461 value = __kmp_sys_min_stksize ; 7462 else if (value > KMP_MAX_STKSIZE) 7463 value = KMP_MAX_STKSIZE; 7464 7465 __kmp_stksize = value; 7466 7467 __kmp_env_stksize = TRUE; /* was KMP_STACKSIZE specified? */ 7468 } 7469 7470 __kmp_release_bootstrap_lock( &__kmp_initz_lock ); 7471 } 7472 7473 /* set the behaviour of the runtime library */ 7474 /* TODO this can cause some odd behaviour with sibling parallelism... */ 7475 void 7476 __kmp_aux_set_library (enum library_type arg) 7477 { 7478 __kmp_library = arg; 7479 7480 switch ( __kmp_library ) { 7481 case library_serial : 7482 { 7483 KMP_INFORM( LibraryIsSerial ); 7484 (void) __kmp_change_library( TRUE ); 7485 } 7486 break; 7487 case library_turnaround : 7488 (void) __kmp_change_library( TRUE ); 7489 break; 7490 case library_throughput : 7491 (void) __kmp_change_library( FALSE ); 7492 break; 7493 default: 7494 KMP_FATAL( UnknownLibraryType, arg ); 7495 } 7496 } 7497 7498 /* ------------------------------------------------------------------------ */ 7499 /* ------------------------------------------------------------------------ */ 7500 7501 void 7502 __kmp_aux_set_blocktime (int arg, kmp_info_t *thread, int tid) 7503 { 7504 int blocktime = arg; /* argument is in milliseconds */ 7505 #if KMP_USE_MONITOR 7506 int bt_intervals; 7507 #endif 7508 int bt_set; 7509 7510 __kmp_save_internal_controls( thread ); 7511 7512 /* Normalize and set blocktime for the teams */ 7513 if (blocktime < KMP_MIN_BLOCKTIME) 7514 blocktime = KMP_MIN_BLOCKTIME; 7515 else if (blocktime > KMP_MAX_BLOCKTIME) 7516 blocktime = KMP_MAX_BLOCKTIME; 7517 7518 set__blocktime_team( thread->th.th_team, tid, blocktime ); 7519 set__blocktime_team( thread->th.th_serial_team, 0, blocktime ); 7520 7521 #if KMP_USE_MONITOR 7522 /* Calculate and set blocktime intervals for the teams */ 7523 bt_intervals = KMP_INTERVALS_FROM_BLOCKTIME(blocktime, __kmp_monitor_wakeups); 7524 7525 set__bt_intervals_team( thread->th.th_team, tid, bt_intervals ); 7526 set__bt_intervals_team( thread->th.th_serial_team, 0, bt_intervals ); 7527 #endif 7528 7529 /* Set whether blocktime has been set to "TRUE" */ 7530 bt_set = TRUE; 7531 7532 set__bt_set_team( thread->th.th_team, tid, bt_set ); 7533 set__bt_set_team( thread->th.th_serial_team, 0, bt_set ); 7534 #if KMP_USE_MONITOR 7535 KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d, " 7536 "bt_intervals=%d, monitor_updates=%d\n", 7537 __kmp_gtid_from_tid(tid, thread->th.th_team), 7538 thread->th.th_team->t.t_id, tid, blocktime, bt_intervals, 7539 __kmp_monitor_wakeups)); 7540 #else 7541 KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d\n", 7542 __kmp_gtid_from_tid(tid, thread->th.th_team), 7543 thread->th.th_team->t.t_id, tid, blocktime)); 7544 #endif 7545 } 7546 7547 void 7548 __kmp_aux_set_defaults( 7549 char const * str, 7550 int len 7551 ) { 7552 if ( ! __kmp_init_serial ) { 7553 __kmp_serial_initialize(); 7554 }; 7555 __kmp_env_initialize( str ); 7556 7557 if (__kmp_settings 7558 #if OMP_40_ENABLED 7559 || __kmp_display_env || __kmp_display_env_verbose 7560 #endif // OMP_40_ENABLED 7561 ) { 7562 __kmp_env_print(); 7563 } 7564 } // __kmp_aux_set_defaults 7565 7566 /* ------------------------------------------------------------------------ */ 7567 7568 /* 7569 * internal fast reduction routines 7570 */ 7571 7572 PACKED_REDUCTION_METHOD_T 7573 __kmp_determine_reduction_method( ident_t *loc, kmp_int32 global_tid, 7574 kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data), 7575 kmp_critical_name *lck ) 7576 { 7577 7578 // Default reduction method: critical construct ( lck != NULL, like in current PAROPT ) 7579 // If ( reduce_data!=NULL && reduce_func!=NULL ): the tree-reduction method can be selected by RTL 7580 // If loc->flags contains KMP_IDENT_ATOMIC_REDUCE, the atomic reduce method can be selected by RTL 7581 // Finally, it's up to OpenMP RTL to make a decision on which method to select among generated by PAROPT. 7582 7583 PACKED_REDUCTION_METHOD_T retval; 7584 7585 int team_size; 7586 7587 KMP_DEBUG_ASSERT( loc ); // it would be nice to test ( loc != 0 ) 7588 KMP_DEBUG_ASSERT( lck ); // it would be nice to test ( lck != 0 ) 7589 7590 #define FAST_REDUCTION_ATOMIC_METHOD_GENERATED ( ( loc->flags & ( KMP_IDENT_ATOMIC_REDUCE ) ) == ( KMP_IDENT_ATOMIC_REDUCE ) ) 7591 #define FAST_REDUCTION_TREE_METHOD_GENERATED ( ( reduce_data ) && ( reduce_func ) ) 7592 7593 retval = critical_reduce_block; 7594 7595 team_size = __kmp_get_team_num_threads( global_tid ); // another choice of getting a team size ( with 1 dynamic deference ) is slower 7596 7597 if( team_size == 1 ) { 7598 7599 retval = empty_reduce_block; 7600 7601 } else { 7602 7603 int atomic_available = FAST_REDUCTION_ATOMIC_METHOD_GENERATED; 7604 int tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED; 7605 7606 #if KMP_ARCH_X86_64 || KMP_ARCH_PPC64 || KMP_ARCH_AARCH64 || KMP_ARCH_MIPS64 7607 7608 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_WINDOWS || KMP_OS_DARWIN 7609 7610 int teamsize_cutoff = 4; 7611 7612 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 7613 if( __kmp_mic_type != non_mic ) { 7614 teamsize_cutoff = 8; 7615 } 7616 #endif 7617 if( tree_available ) { 7618 if( team_size <= teamsize_cutoff ) { 7619 if ( atomic_available ) { 7620 retval = atomic_reduce_block; 7621 } 7622 } else { 7623 retval = TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER; 7624 } 7625 } else if ( atomic_available ) { 7626 retval = atomic_reduce_block; 7627 } 7628 #else 7629 #error "Unknown or unsupported OS" 7630 #endif // KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_WINDOWS || KMP_OS_DARWIN 7631 7632 #elif KMP_ARCH_X86 || KMP_ARCH_ARM || KMP_ARCH_AARCH || KMP_ARCH_MIPS 7633 7634 #if KMP_OS_LINUX || KMP_OS_WINDOWS 7635 7636 // basic tuning 7637 7638 if( atomic_available ) { 7639 if( num_vars <= 2 ) { // && ( team_size <= 8 ) due to false-sharing ??? 7640 retval = atomic_reduce_block; 7641 } 7642 } // otherwise: use critical section 7643 7644 #elif KMP_OS_DARWIN 7645 7646 if( atomic_available && ( num_vars <= 3 ) ) { 7647 retval = atomic_reduce_block; 7648 } else if( tree_available ) { 7649 if( ( reduce_size > ( 9 * sizeof( kmp_real64 ) ) ) && ( reduce_size < ( 2000 * sizeof( kmp_real64 ) ) ) ) { 7650 retval = TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER; 7651 } 7652 } // otherwise: use critical section 7653 7654 #else 7655 #error "Unknown or unsupported OS" 7656 #endif 7657 7658 #else 7659 #error "Unknown or unsupported architecture" 7660 #endif 7661 7662 } 7663 7664 // KMP_FORCE_REDUCTION 7665 7666 // If the team is serialized (team_size == 1), ignore the forced reduction 7667 // method and stay with the unsynchronized method (empty_reduce_block) 7668 if( __kmp_force_reduction_method != reduction_method_not_defined && team_size != 1) { 7669 7670 PACKED_REDUCTION_METHOD_T forced_retval = critical_reduce_block; 7671 7672 int atomic_available, tree_available; 7673 7674 switch( ( forced_retval = __kmp_force_reduction_method ) ) 7675 { 7676 case critical_reduce_block: 7677 KMP_ASSERT( lck ); // lck should be != 0 7678 break; 7679 7680 case atomic_reduce_block: 7681 atomic_available = FAST_REDUCTION_ATOMIC_METHOD_GENERATED; 7682 if( ! atomic_available ) { 7683 KMP_WARNING(RedMethodNotSupported, "atomic"); 7684 forced_retval = critical_reduce_block; 7685 } 7686 break; 7687 7688 case tree_reduce_block: 7689 tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED; 7690 if( ! tree_available ) { 7691 KMP_WARNING(RedMethodNotSupported, "tree"); 7692 forced_retval = critical_reduce_block; 7693 } else { 7694 #if KMP_FAST_REDUCTION_BARRIER 7695 forced_retval = TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER; 7696 #endif 7697 } 7698 break; 7699 7700 default: 7701 KMP_ASSERT( 0 ); // "unsupported method specified" 7702 } 7703 7704 retval = forced_retval; 7705 } 7706 7707 KA_TRACE(10, ( "reduction method selected=%08x\n", retval ) ); 7708 7709 #undef FAST_REDUCTION_TREE_METHOD_GENERATED 7710 #undef FAST_REDUCTION_ATOMIC_METHOD_GENERATED 7711 7712 return ( retval ); 7713 } 7714 7715 // this function is for testing set/get/determine reduce method 7716 kmp_int32 7717 __kmp_get_reduce_method( void ) { 7718 return ( ( __kmp_entry_thread()->th.th_local.packed_reduction_method ) >> 8 ); 7719 } 7720 7721 /* ------------------------------------------------------------------------ */ 7722