1 /* 2 * kmp_runtime.cpp -- KPTS runtime support library 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // The LLVM Compiler Infrastructure 8 // 9 // This file is dual licensed under the MIT and the University of Illinois Open 10 // Source Licenses. See LICENSE.txt for details. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "kmp.h" 15 #include "kmp_affinity.h" 16 #include "kmp_atomic.h" 17 #include "kmp_environment.h" 18 #include "kmp_error.h" 19 #include "kmp_i18n.h" 20 #include "kmp_io.h" 21 #include "kmp_itt.h" 22 #include "kmp_settings.h" 23 #include "kmp_stats.h" 24 #include "kmp_str.h" 25 #include "kmp_wait_release.h" 26 #include "kmp_wrapper_getpid.h" 27 #include "kmp_dispatch.h" 28 #if KMP_USE_HIER_SCHED 29 #include "kmp_dispatch_hier.h" 30 #endif 31 32 #if OMPT_SUPPORT 33 #include "ompt-specific.h" 34 #endif 35 36 /* these are temporary issues to be dealt with */ 37 #define KMP_USE_PRCTL 0 38 39 #if KMP_OS_WINDOWS 40 #include <process.h> 41 #endif 42 43 #include "tsan_annotations.h" 44 45 #if defined(KMP_GOMP_COMPAT) 46 char const __kmp_version_alt_comp[] = 47 KMP_VERSION_PREFIX "alternative compiler support: yes"; 48 #endif /* defined(KMP_GOMP_COMPAT) */ 49 50 char const __kmp_version_omp_api[] = KMP_VERSION_PREFIX "API version: " 51 #if OMP_50_ENABLED 52 "5.0 (201611)"; 53 #elif OMP_45_ENABLED 54 "4.5 (201511)"; 55 #elif OMP_40_ENABLED 56 "4.0 (201307)"; 57 #else 58 "3.1 (201107)"; 59 #endif 60 61 #ifdef KMP_DEBUG 62 char const __kmp_version_lock[] = 63 KMP_VERSION_PREFIX "lock type: run time selectable"; 64 #endif /* KMP_DEBUG */ 65 66 #define KMP_MIN(x, y) ((x) < (y) ? (x) : (y)) 67 68 /* ------------------------------------------------------------------------ */ 69 70 #if KMP_USE_MONITOR 71 kmp_info_t __kmp_monitor; 72 #endif 73 74 /* Forward declarations */ 75 76 void __kmp_cleanup(void); 77 78 static void __kmp_initialize_info(kmp_info_t *, kmp_team_t *, int tid, 79 int gtid); 80 static void __kmp_initialize_team(kmp_team_t *team, int new_nproc, 81 kmp_internal_control_t *new_icvs, 82 ident_t *loc); 83 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 84 static void __kmp_partition_places(kmp_team_t *team, 85 int update_master_only = 0); 86 #endif 87 static void __kmp_do_serial_initialize(void); 88 void __kmp_fork_barrier(int gtid, int tid); 89 void __kmp_join_barrier(int gtid); 90 void __kmp_setup_icv_copy(kmp_team_t *team, int new_nproc, 91 kmp_internal_control_t *new_icvs, ident_t *loc); 92 93 #ifdef USE_LOAD_BALANCE 94 static int __kmp_load_balance_nproc(kmp_root_t *root, int set_nproc); 95 #endif 96 97 static int __kmp_expand_threads(int nNeed); 98 #if KMP_OS_WINDOWS 99 static int __kmp_unregister_root_other_thread(int gtid); 100 #endif 101 static void __kmp_unregister_library(void); // called by __kmp_internal_end() 102 static void __kmp_reap_thread(kmp_info_t *thread, int is_root); 103 kmp_info_t *__kmp_thread_pool_insert_pt = NULL; 104 105 /* Calculate the identifier of the current thread */ 106 /* fast (and somewhat portable) way to get unique identifier of executing 107 thread. Returns KMP_GTID_DNE if we haven't been assigned a gtid. */ 108 int __kmp_get_global_thread_id() { 109 int i; 110 kmp_info_t **other_threads; 111 size_t stack_data; 112 char *stack_addr; 113 size_t stack_size; 114 char *stack_base; 115 116 KA_TRACE( 117 1000, 118 ("*** __kmp_get_global_thread_id: entering, nproc=%d all_nproc=%d\n", 119 __kmp_nth, __kmp_all_nth)); 120 121 /* JPH - to handle the case where __kmpc_end(0) is called immediately prior to 122 a parallel region, made it return KMP_GTID_DNE to force serial_initialize 123 by caller. Had to handle KMP_GTID_DNE at all call-sites, or else guarantee 124 __kmp_init_gtid for this to work. */ 125 126 if (!TCR_4(__kmp_init_gtid)) 127 return KMP_GTID_DNE; 128 129 #ifdef KMP_TDATA_GTID 130 if (TCR_4(__kmp_gtid_mode) >= 3) { 131 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using TDATA\n")); 132 return __kmp_gtid; 133 } 134 #endif 135 if (TCR_4(__kmp_gtid_mode) >= 2) { 136 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using keyed TLS\n")); 137 return __kmp_gtid_get_specific(); 138 } 139 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using internal alg.\n")); 140 141 stack_addr = (char *)&stack_data; 142 other_threads = __kmp_threads; 143 144 /* ATT: The code below is a source of potential bugs due to unsynchronized 145 access to __kmp_threads array. For example: 146 1. Current thread loads other_threads[i] to thr and checks it, it is 147 non-NULL. 148 2. Current thread is suspended by OS. 149 3. Another thread unregisters and finishes (debug versions of free() 150 may fill memory with something like 0xEF). 151 4. Current thread is resumed. 152 5. Current thread reads junk from *thr. 153 TODO: Fix it. --ln */ 154 155 for (i = 0; i < __kmp_threads_capacity; i++) { 156 157 kmp_info_t *thr = (kmp_info_t *)TCR_SYNC_PTR(other_threads[i]); 158 if (!thr) 159 continue; 160 161 stack_size = (size_t)TCR_PTR(thr->th.th_info.ds.ds_stacksize); 162 stack_base = (char *)TCR_PTR(thr->th.th_info.ds.ds_stackbase); 163 164 /* stack grows down -- search through all of the active threads */ 165 166 if (stack_addr <= stack_base) { 167 size_t stack_diff = stack_base - stack_addr; 168 169 if (stack_diff <= stack_size) { 170 /* The only way we can be closer than the allocated */ 171 /* stack size is if we are running on this thread. */ 172 KMP_DEBUG_ASSERT(__kmp_gtid_get_specific() == i); 173 return i; 174 } 175 } 176 } 177 178 /* get specific to try and determine our gtid */ 179 KA_TRACE(1000, 180 ("*** __kmp_get_global_thread_id: internal alg. failed to find " 181 "thread, using TLS\n")); 182 i = __kmp_gtid_get_specific(); 183 184 /*fprintf( stderr, "=== %d\n", i ); */ /* GROO */ 185 186 /* if we havn't been assigned a gtid, then return code */ 187 if (i < 0) 188 return i; 189 190 /* dynamically updated stack window for uber threads to avoid get_specific 191 call */ 192 if (!TCR_4(other_threads[i]->th.th_info.ds.ds_stackgrow)) { 193 KMP_FATAL(StackOverflow, i); 194 } 195 196 stack_base = (char *)other_threads[i]->th.th_info.ds.ds_stackbase; 197 if (stack_addr > stack_base) { 198 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stackbase, stack_addr); 199 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stacksize, 200 other_threads[i]->th.th_info.ds.ds_stacksize + stack_addr - 201 stack_base); 202 } else { 203 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stacksize, 204 stack_base - stack_addr); 205 } 206 207 /* Reprint stack bounds for ubermaster since they have been refined */ 208 if (__kmp_storage_map) { 209 char *stack_end = (char *)other_threads[i]->th.th_info.ds.ds_stackbase; 210 char *stack_beg = stack_end - other_threads[i]->th.th_info.ds.ds_stacksize; 211 __kmp_print_storage_map_gtid(i, stack_beg, stack_end, 212 other_threads[i]->th.th_info.ds.ds_stacksize, 213 "th_%d stack (refinement)", i); 214 } 215 return i; 216 } 217 218 int __kmp_get_global_thread_id_reg() { 219 int gtid; 220 221 if (!__kmp_init_serial) { 222 gtid = KMP_GTID_DNE; 223 } else 224 #ifdef KMP_TDATA_GTID 225 if (TCR_4(__kmp_gtid_mode) >= 3) { 226 KA_TRACE(1000, ("*** __kmp_get_global_thread_id_reg: using TDATA\n")); 227 gtid = __kmp_gtid; 228 } else 229 #endif 230 if (TCR_4(__kmp_gtid_mode) >= 2) { 231 KA_TRACE(1000, ("*** __kmp_get_global_thread_id_reg: using keyed TLS\n")); 232 gtid = __kmp_gtid_get_specific(); 233 } else { 234 KA_TRACE(1000, 235 ("*** __kmp_get_global_thread_id_reg: using internal alg.\n")); 236 gtid = __kmp_get_global_thread_id(); 237 } 238 239 /* we must be a new uber master sibling thread */ 240 if (gtid == KMP_GTID_DNE) { 241 KA_TRACE(10, 242 ("__kmp_get_global_thread_id_reg: Encountered new root thread. " 243 "Registering a new gtid.\n")); 244 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 245 if (!__kmp_init_serial) { 246 __kmp_do_serial_initialize(); 247 gtid = __kmp_gtid_get_specific(); 248 } else { 249 gtid = __kmp_register_root(FALSE); 250 } 251 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 252 /*__kmp_printf( "+++ %d\n", gtid ); */ /* GROO */ 253 } 254 255 KMP_DEBUG_ASSERT(gtid >= 0); 256 257 return gtid; 258 } 259 260 /* caller must hold forkjoin_lock */ 261 void __kmp_check_stack_overlap(kmp_info_t *th) { 262 int f; 263 char *stack_beg = NULL; 264 char *stack_end = NULL; 265 int gtid; 266 267 KA_TRACE(10, ("__kmp_check_stack_overlap: called\n")); 268 if (__kmp_storage_map) { 269 stack_end = (char *)th->th.th_info.ds.ds_stackbase; 270 stack_beg = stack_end - th->th.th_info.ds.ds_stacksize; 271 272 gtid = __kmp_gtid_from_thread(th); 273 274 if (gtid == KMP_GTID_MONITOR) { 275 __kmp_print_storage_map_gtid( 276 gtid, stack_beg, stack_end, th->th.th_info.ds.ds_stacksize, 277 "th_%s stack (%s)", "mon", 278 (th->th.th_info.ds.ds_stackgrow) ? "initial" : "actual"); 279 } else { 280 __kmp_print_storage_map_gtid( 281 gtid, stack_beg, stack_end, th->th.th_info.ds.ds_stacksize, 282 "th_%d stack (%s)", gtid, 283 (th->th.th_info.ds.ds_stackgrow) ? "initial" : "actual"); 284 } 285 } 286 287 /* No point in checking ubermaster threads since they use refinement and 288 * cannot overlap */ 289 gtid = __kmp_gtid_from_thread(th); 290 if (__kmp_env_checks == TRUE && !KMP_UBER_GTID(gtid)) { 291 KA_TRACE(10, 292 ("__kmp_check_stack_overlap: performing extensive checking\n")); 293 if (stack_beg == NULL) { 294 stack_end = (char *)th->th.th_info.ds.ds_stackbase; 295 stack_beg = stack_end - th->th.th_info.ds.ds_stacksize; 296 } 297 298 for (f = 0; f < __kmp_threads_capacity; f++) { 299 kmp_info_t *f_th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[f]); 300 301 if (f_th && f_th != th) { 302 char *other_stack_end = 303 (char *)TCR_PTR(f_th->th.th_info.ds.ds_stackbase); 304 char *other_stack_beg = 305 other_stack_end - (size_t)TCR_PTR(f_th->th.th_info.ds.ds_stacksize); 306 if ((stack_beg > other_stack_beg && stack_beg < other_stack_end) || 307 (stack_end > other_stack_beg && stack_end < other_stack_end)) { 308 309 /* Print the other stack values before the abort */ 310 if (__kmp_storage_map) 311 __kmp_print_storage_map_gtid( 312 -1, other_stack_beg, other_stack_end, 313 (size_t)TCR_PTR(f_th->th.th_info.ds.ds_stacksize), 314 "th_%d stack (overlapped)", __kmp_gtid_from_thread(f_th)); 315 316 __kmp_fatal(KMP_MSG(StackOverlap), KMP_HNT(ChangeStackLimit), 317 __kmp_msg_null); 318 } 319 } 320 } 321 } 322 KA_TRACE(10, ("__kmp_check_stack_overlap: returning\n")); 323 } 324 325 /* ------------------------------------------------------------------------ */ 326 327 void __kmp_infinite_loop(void) { 328 static int done = FALSE; 329 330 while (!done) { 331 KMP_YIELD(1); 332 } 333 } 334 335 #define MAX_MESSAGE 512 336 337 void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2, size_t size, 338 char const *format, ...) { 339 char buffer[MAX_MESSAGE]; 340 va_list ap; 341 342 va_start(ap, format); 343 KMP_SNPRINTF(buffer, sizeof(buffer), "OMP storage map: %p %p%8lu %s\n", p1, 344 p2, (unsigned long)size, format); 345 __kmp_acquire_bootstrap_lock(&__kmp_stdio_lock); 346 __kmp_vprintf(kmp_err, buffer, ap); 347 #if KMP_PRINT_DATA_PLACEMENT 348 int node; 349 if (gtid >= 0) { 350 if (p1 <= p2 && (char *)p2 - (char *)p1 == size) { 351 if (__kmp_storage_map_verbose) { 352 node = __kmp_get_host_node(p1); 353 if (node < 0) /* doesn't work, so don't try this next time */ 354 __kmp_storage_map_verbose = FALSE; 355 else { 356 char *last; 357 int lastNode; 358 int localProc = __kmp_get_cpu_from_gtid(gtid); 359 360 const int page_size = KMP_GET_PAGE_SIZE(); 361 362 p1 = (void *)((size_t)p1 & ~((size_t)page_size - 1)); 363 p2 = (void *)(((size_t)p2 - 1) & ~((size_t)page_size - 1)); 364 if (localProc >= 0) 365 __kmp_printf_no_lock(" GTID %d localNode %d\n", gtid, 366 localProc >> 1); 367 else 368 __kmp_printf_no_lock(" GTID %d\n", gtid); 369 #if KMP_USE_PRCTL 370 /* The more elaborate format is disabled for now because of the prctl 371 * hanging bug. */ 372 do { 373 last = p1; 374 lastNode = node; 375 /* This loop collates adjacent pages with the same host node. */ 376 do { 377 (char *)p1 += page_size; 378 } while (p1 <= p2 && (node = __kmp_get_host_node(p1)) == lastNode); 379 __kmp_printf_no_lock(" %p-%p memNode %d\n", last, (char *)p1 - 1, 380 lastNode); 381 } while (p1 <= p2); 382 #else 383 __kmp_printf_no_lock(" %p-%p memNode %d\n", p1, 384 (char *)p1 + (page_size - 1), 385 __kmp_get_host_node(p1)); 386 if (p1 < p2) { 387 __kmp_printf_no_lock(" %p-%p memNode %d\n", p2, 388 (char *)p2 + (page_size - 1), 389 __kmp_get_host_node(p2)); 390 } 391 #endif 392 } 393 } 394 } else 395 __kmp_printf_no_lock(" %s\n", KMP_I18N_STR(StorageMapWarning)); 396 } 397 #endif /* KMP_PRINT_DATA_PLACEMENT */ 398 __kmp_release_bootstrap_lock(&__kmp_stdio_lock); 399 } 400 401 void __kmp_warn(char const *format, ...) { 402 char buffer[MAX_MESSAGE]; 403 va_list ap; 404 405 if (__kmp_generate_warnings == kmp_warnings_off) { 406 return; 407 } 408 409 va_start(ap, format); 410 411 KMP_SNPRINTF(buffer, sizeof(buffer), "OMP warning: %s\n", format); 412 __kmp_acquire_bootstrap_lock(&__kmp_stdio_lock); 413 __kmp_vprintf(kmp_err, buffer, ap); 414 __kmp_release_bootstrap_lock(&__kmp_stdio_lock); 415 416 va_end(ap); 417 } 418 419 void __kmp_abort_process() { 420 // Later threads may stall here, but that's ok because abort() will kill them. 421 __kmp_acquire_bootstrap_lock(&__kmp_exit_lock); 422 423 if (__kmp_debug_buf) { 424 __kmp_dump_debug_buffer(); 425 } 426 427 if (KMP_OS_WINDOWS) { 428 // Let other threads know of abnormal termination and prevent deadlock 429 // if abort happened during library initialization or shutdown 430 __kmp_global.g.g_abort = SIGABRT; 431 432 /* On Windows* OS by default abort() causes pop-up error box, which stalls 433 nightly testing. Unfortunately, we cannot reliably suppress pop-up error 434 boxes. _set_abort_behavior() works well, but this function is not 435 available in VS7 (this is not problem for DLL, but it is a problem for 436 static OpenMP RTL). SetErrorMode (and so, timelimit utility) does not 437 help, at least in some versions of MS C RTL. 438 439 It seems following sequence is the only way to simulate abort() and 440 avoid pop-up error box. */ 441 raise(SIGABRT); 442 _exit(3); // Just in case, if signal ignored, exit anyway. 443 } else { 444 abort(); 445 } 446 447 __kmp_infinite_loop(); 448 __kmp_release_bootstrap_lock(&__kmp_exit_lock); 449 450 } // __kmp_abort_process 451 452 void __kmp_abort_thread(void) { 453 // TODO: Eliminate g_abort global variable and this function. 454 // In case of abort just call abort(), it will kill all the threads. 455 __kmp_infinite_loop(); 456 } // __kmp_abort_thread 457 458 /* Print out the storage map for the major kmp_info_t thread data structures 459 that are allocated together. */ 460 461 static void __kmp_print_thread_storage_map(kmp_info_t *thr, int gtid) { 462 __kmp_print_storage_map_gtid(gtid, thr, thr + 1, sizeof(kmp_info_t), "th_%d", 463 gtid); 464 465 __kmp_print_storage_map_gtid(gtid, &thr->th.th_info, &thr->th.th_team, 466 sizeof(kmp_desc_t), "th_%d.th_info", gtid); 467 468 __kmp_print_storage_map_gtid(gtid, &thr->th.th_local, &thr->th.th_pri_head, 469 sizeof(kmp_local_t), "th_%d.th_local", gtid); 470 471 __kmp_print_storage_map_gtid( 472 gtid, &thr->th.th_bar[0], &thr->th.th_bar[bs_last_barrier], 473 sizeof(kmp_balign_t) * bs_last_barrier, "th_%d.th_bar", gtid); 474 475 __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_plain_barrier], 476 &thr->th.th_bar[bs_plain_barrier + 1], 477 sizeof(kmp_balign_t), "th_%d.th_bar[plain]", 478 gtid); 479 480 __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_forkjoin_barrier], 481 &thr->th.th_bar[bs_forkjoin_barrier + 1], 482 sizeof(kmp_balign_t), "th_%d.th_bar[forkjoin]", 483 gtid); 484 485 #if KMP_FAST_REDUCTION_BARRIER 486 __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_reduction_barrier], 487 &thr->th.th_bar[bs_reduction_barrier + 1], 488 sizeof(kmp_balign_t), "th_%d.th_bar[reduction]", 489 gtid); 490 #endif // KMP_FAST_REDUCTION_BARRIER 491 } 492 493 /* Print out the storage map for the major kmp_team_t team data structures 494 that are allocated together. */ 495 496 static void __kmp_print_team_storage_map(const char *header, kmp_team_t *team, 497 int team_id, int num_thr) { 498 int num_disp_buff = team->t.t_max_nproc > 1 ? __kmp_dispatch_num_buffers : 2; 499 __kmp_print_storage_map_gtid(-1, team, team + 1, sizeof(kmp_team_t), "%s_%d", 500 header, team_id); 501 502 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[0], 503 &team->t.t_bar[bs_last_barrier], 504 sizeof(kmp_balign_team_t) * bs_last_barrier, 505 "%s_%d.t_bar", header, team_id); 506 507 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_plain_barrier], 508 &team->t.t_bar[bs_plain_barrier + 1], 509 sizeof(kmp_balign_team_t), "%s_%d.t_bar[plain]", 510 header, team_id); 511 512 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_forkjoin_barrier], 513 &team->t.t_bar[bs_forkjoin_barrier + 1], 514 sizeof(kmp_balign_team_t), 515 "%s_%d.t_bar[forkjoin]", header, team_id); 516 517 #if KMP_FAST_REDUCTION_BARRIER 518 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_reduction_barrier], 519 &team->t.t_bar[bs_reduction_barrier + 1], 520 sizeof(kmp_balign_team_t), 521 "%s_%d.t_bar[reduction]", header, team_id); 522 #endif // KMP_FAST_REDUCTION_BARRIER 523 524 __kmp_print_storage_map_gtid( 525 -1, &team->t.t_dispatch[0], &team->t.t_dispatch[num_thr], 526 sizeof(kmp_disp_t) * num_thr, "%s_%d.t_dispatch", header, team_id); 527 528 __kmp_print_storage_map_gtid( 529 -1, &team->t.t_threads[0], &team->t.t_threads[num_thr], 530 sizeof(kmp_info_t *) * num_thr, "%s_%d.t_threads", header, team_id); 531 532 __kmp_print_storage_map_gtid(-1, &team->t.t_disp_buffer[0], 533 &team->t.t_disp_buffer[num_disp_buff], 534 sizeof(dispatch_shared_info_t) * num_disp_buff, 535 "%s_%d.t_disp_buffer", header, team_id); 536 537 __kmp_print_storage_map_gtid(-1, &team->t.t_taskq, &team->t.t_copypriv_data, 538 sizeof(kmp_taskq_t), "%s_%d.t_taskq", header, 539 team_id); 540 } 541 542 static void __kmp_init_allocator() { 543 #if OMP_50_ENABLED 544 __kmp_init_memkind(); 545 #endif 546 } 547 static void __kmp_fini_allocator() { 548 #if OMP_50_ENABLED 549 __kmp_fini_memkind(); 550 #endif 551 } 552 553 /* ------------------------------------------------------------------------ */ 554 555 #if KMP_DYNAMIC_LIB 556 #if KMP_OS_WINDOWS 557 558 static void __kmp_reset_lock(kmp_bootstrap_lock_t *lck) { 559 // TODO: Change to __kmp_break_bootstrap_lock(). 560 __kmp_init_bootstrap_lock(lck); // make the lock released 561 } 562 563 static void __kmp_reset_locks_on_process_detach(int gtid_req) { 564 int i; 565 int thread_count; 566 567 // PROCESS_DETACH is expected to be called by a thread that executes 568 // ProcessExit() or FreeLibrary(). OS terminates other threads (except the one 569 // calling ProcessExit or FreeLibrary). So, it might be safe to access the 570 // __kmp_threads[] without taking the forkjoin_lock. However, in fact, some 571 // threads can be still alive here, although being about to be terminated. The 572 // threads in the array with ds_thread==0 are most suspicious. Actually, it 573 // can be not safe to access the __kmp_threads[]. 574 575 // TODO: does it make sense to check __kmp_roots[] ? 576 577 // Let's check that there are no other alive threads registered with the OMP 578 // lib. 579 while (1) { 580 thread_count = 0; 581 for (i = 0; i < __kmp_threads_capacity; ++i) { 582 if (!__kmp_threads) 583 continue; 584 kmp_info_t *th = __kmp_threads[i]; 585 if (th == NULL) 586 continue; 587 int gtid = th->th.th_info.ds.ds_gtid; 588 if (gtid == gtid_req) 589 continue; 590 if (gtid < 0) 591 continue; 592 DWORD exit_val; 593 int alive = __kmp_is_thread_alive(th, &exit_val); 594 if (alive) { 595 ++thread_count; 596 } 597 } 598 if (thread_count == 0) 599 break; // success 600 } 601 602 // Assume that I'm alone. Now it might be safe to check and reset locks. 603 // __kmp_forkjoin_lock and __kmp_stdio_lock are expected to be reset. 604 __kmp_reset_lock(&__kmp_forkjoin_lock); 605 #ifdef KMP_DEBUG 606 __kmp_reset_lock(&__kmp_stdio_lock); 607 #endif // KMP_DEBUG 608 } 609 610 BOOL WINAPI DllMain(HINSTANCE hInstDLL, DWORD fdwReason, LPVOID lpReserved) { 611 //__kmp_acquire_bootstrap_lock( &__kmp_initz_lock ); 612 613 switch (fdwReason) { 614 615 case DLL_PROCESS_ATTACH: 616 KA_TRACE(10, ("DllMain: PROCESS_ATTACH\n")); 617 618 return TRUE; 619 620 case DLL_PROCESS_DETACH: 621 KA_TRACE(10, ("DllMain: PROCESS_DETACH T#%d\n", __kmp_gtid_get_specific())); 622 623 if (lpReserved != NULL) { 624 // lpReserved is used for telling the difference: 625 // lpReserved == NULL when FreeLibrary() was called, 626 // lpReserved != NULL when the process terminates. 627 // When FreeLibrary() is called, worker threads remain alive. So they will 628 // release the forkjoin lock by themselves. When the process terminates, 629 // worker threads disappear triggering the problem of unreleased forkjoin 630 // lock as described below. 631 632 // A worker thread can take the forkjoin lock. The problem comes up if 633 // that worker thread becomes dead before it releases the forkjoin lock. 634 // The forkjoin lock remains taken, while the thread executing 635 // DllMain()->PROCESS_DETACH->__kmp_internal_end_library() below will try 636 // to take the forkjoin lock and will always fail, so that the application 637 // will never finish [normally]. This scenario is possible if 638 // __kmpc_end() has not been executed. It looks like it's not a corner 639 // case, but common cases: 640 // - the main function was compiled by an alternative compiler; 641 // - the main function was compiled by icl but without /Qopenmp 642 // (application with plugins); 643 // - application terminates by calling C exit(), Fortran CALL EXIT() or 644 // Fortran STOP. 645 // - alive foreign thread prevented __kmpc_end from doing cleanup. 646 // 647 // This is a hack to work around the problem. 648 // TODO: !!! figure out something better. 649 __kmp_reset_locks_on_process_detach(__kmp_gtid_get_specific()); 650 } 651 652 __kmp_internal_end_library(__kmp_gtid_get_specific()); 653 654 return TRUE; 655 656 case DLL_THREAD_ATTACH: 657 KA_TRACE(10, ("DllMain: THREAD_ATTACH\n")); 658 659 /* if we want to register new siblings all the time here call 660 * __kmp_get_gtid(); */ 661 return TRUE; 662 663 case DLL_THREAD_DETACH: 664 KA_TRACE(10, ("DllMain: THREAD_DETACH T#%d\n", __kmp_gtid_get_specific())); 665 666 __kmp_internal_end_thread(__kmp_gtid_get_specific()); 667 return TRUE; 668 } 669 670 return TRUE; 671 } 672 673 #endif /* KMP_OS_WINDOWS */ 674 #endif /* KMP_DYNAMIC_LIB */ 675 676 /* Change the library type to "status" and return the old type */ 677 /* called from within initialization routines where __kmp_initz_lock is held */ 678 int __kmp_change_library(int status) { 679 int old_status; 680 681 old_status = __kmp_yield_init & 682 1; // check whether KMP_LIBRARY=throughput (even init count) 683 684 if (status) { 685 __kmp_yield_init |= 1; // throughput => turnaround (odd init count) 686 } else { 687 __kmp_yield_init &= ~1; // turnaround => throughput (even init count) 688 } 689 690 return old_status; // return previous setting of whether 691 // KMP_LIBRARY=throughput 692 } 693 694 /* __kmp_parallel_deo -- Wait until it's our turn. */ 695 void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) { 696 int gtid = *gtid_ref; 697 #ifdef BUILD_PARALLEL_ORDERED 698 kmp_team_t *team = __kmp_team_from_gtid(gtid); 699 #endif /* BUILD_PARALLEL_ORDERED */ 700 701 if (__kmp_env_consistency_check) { 702 if (__kmp_threads[gtid]->th.th_root->r.r_active) 703 #if KMP_USE_DYNAMIC_LOCK 704 __kmp_push_sync(gtid, ct_ordered_in_parallel, loc_ref, NULL, 0); 705 #else 706 __kmp_push_sync(gtid, ct_ordered_in_parallel, loc_ref, NULL); 707 #endif 708 } 709 #ifdef BUILD_PARALLEL_ORDERED 710 if (!team->t.t_serialized) { 711 KMP_MB(); 712 KMP_WAIT_YIELD(&team->t.t_ordered.dt.t_value, __kmp_tid_from_gtid(gtid), 713 KMP_EQ, NULL); 714 KMP_MB(); 715 } 716 #endif /* BUILD_PARALLEL_ORDERED */ 717 } 718 719 /* __kmp_parallel_dxo -- Signal the next task. */ 720 void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) { 721 int gtid = *gtid_ref; 722 #ifdef BUILD_PARALLEL_ORDERED 723 int tid = __kmp_tid_from_gtid(gtid); 724 kmp_team_t *team = __kmp_team_from_gtid(gtid); 725 #endif /* BUILD_PARALLEL_ORDERED */ 726 727 if (__kmp_env_consistency_check) { 728 if (__kmp_threads[gtid]->th.th_root->r.r_active) 729 __kmp_pop_sync(gtid, ct_ordered_in_parallel, loc_ref); 730 } 731 #ifdef BUILD_PARALLEL_ORDERED 732 if (!team->t.t_serialized) { 733 KMP_MB(); /* Flush all pending memory write invalidates. */ 734 735 /* use the tid of the next thread in this team */ 736 /* TODO replace with general release procedure */ 737 team->t.t_ordered.dt.t_value = ((tid + 1) % team->t.t_nproc); 738 739 KMP_MB(); /* Flush all pending memory write invalidates. */ 740 } 741 #endif /* BUILD_PARALLEL_ORDERED */ 742 } 743 744 /* ------------------------------------------------------------------------ */ 745 /* The BARRIER for a SINGLE process section is always explicit */ 746 747 int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws) { 748 int status; 749 kmp_info_t *th; 750 kmp_team_t *team; 751 752 if (!TCR_4(__kmp_init_parallel)) 753 __kmp_parallel_initialize(); 754 755 th = __kmp_threads[gtid]; 756 team = th->th.th_team; 757 status = 0; 758 759 th->th.th_ident = id_ref; 760 761 if (team->t.t_serialized) { 762 status = 1; 763 } else { 764 kmp_int32 old_this = th->th.th_local.this_construct; 765 766 ++th->th.th_local.this_construct; 767 /* try to set team count to thread count--success means thread got the 768 single block */ 769 /* TODO: Should this be acquire or release? */ 770 if (team->t.t_construct == old_this) { 771 status = __kmp_atomic_compare_store_acq(&team->t.t_construct, old_this, 772 th->th.th_local.this_construct); 773 } 774 #if USE_ITT_BUILD 775 if (__itt_metadata_add_ptr && __kmp_forkjoin_frames_mode == 3 && 776 KMP_MASTER_GTID(gtid) && 777 #if OMP_40_ENABLED 778 th->th.th_teams_microtask == NULL && 779 #endif 780 team->t.t_active_level == 781 1) { // Only report metadata by master of active team at level 1 782 __kmp_itt_metadata_single(id_ref); 783 } 784 #endif /* USE_ITT_BUILD */ 785 } 786 787 if (__kmp_env_consistency_check) { 788 if (status && push_ws) { 789 __kmp_push_workshare(gtid, ct_psingle, id_ref); 790 } else { 791 __kmp_check_workshare(gtid, ct_psingle, id_ref); 792 } 793 } 794 #if USE_ITT_BUILD 795 if (status) { 796 __kmp_itt_single_start(gtid); 797 } 798 #endif /* USE_ITT_BUILD */ 799 return status; 800 } 801 802 void __kmp_exit_single(int gtid) { 803 #if USE_ITT_BUILD 804 __kmp_itt_single_end(gtid); 805 #endif /* USE_ITT_BUILD */ 806 if (__kmp_env_consistency_check) 807 __kmp_pop_workshare(gtid, ct_psingle, NULL); 808 } 809 810 /* determine if we can go parallel or must use a serialized parallel region and 811 * how many threads we can use 812 * set_nproc is the number of threads requested for the team 813 * returns 0 if we should serialize or only use one thread, 814 * otherwise the number of threads to use 815 * The forkjoin lock is held by the caller. */ 816 static int __kmp_reserve_threads(kmp_root_t *root, kmp_team_t *parent_team, 817 int master_tid, int set_nthreads 818 #if OMP_40_ENABLED 819 , 820 int enter_teams 821 #endif /* OMP_40_ENABLED */ 822 ) { 823 int capacity; 824 int new_nthreads; 825 KMP_DEBUG_ASSERT(__kmp_init_serial); 826 KMP_DEBUG_ASSERT(root && parent_team); 827 828 // If dyn-var is set, dynamically adjust the number of desired threads, 829 // according to the method specified by dynamic_mode. 830 new_nthreads = set_nthreads; 831 if (!get__dynamic_2(parent_team, master_tid)) { 832 ; 833 } 834 #ifdef USE_LOAD_BALANCE 835 else if (__kmp_global.g.g_dynamic_mode == dynamic_load_balance) { 836 new_nthreads = __kmp_load_balance_nproc(root, set_nthreads); 837 if (new_nthreads == 1) { 838 KC_TRACE(10, ("__kmp_reserve_threads: T#%d load balance reduced " 839 "reservation to 1 thread\n", 840 master_tid)); 841 return 1; 842 } 843 if (new_nthreads < set_nthreads) { 844 KC_TRACE(10, ("__kmp_reserve_threads: T#%d load balance reduced " 845 "reservation to %d threads\n", 846 master_tid, new_nthreads)); 847 } 848 } 849 #endif /* USE_LOAD_BALANCE */ 850 else if (__kmp_global.g.g_dynamic_mode == dynamic_thread_limit) { 851 new_nthreads = __kmp_avail_proc - __kmp_nth + 852 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 853 if (new_nthreads <= 1) { 854 KC_TRACE(10, ("__kmp_reserve_threads: T#%d thread limit reduced " 855 "reservation to 1 thread\n", 856 master_tid)); 857 return 1; 858 } 859 if (new_nthreads < set_nthreads) { 860 KC_TRACE(10, ("__kmp_reserve_threads: T#%d thread limit reduced " 861 "reservation to %d threads\n", 862 master_tid, new_nthreads)); 863 } else { 864 new_nthreads = set_nthreads; 865 } 866 } else if (__kmp_global.g.g_dynamic_mode == dynamic_random) { 867 if (set_nthreads > 2) { 868 new_nthreads = __kmp_get_random(parent_team->t.t_threads[master_tid]); 869 new_nthreads = (new_nthreads % set_nthreads) + 1; 870 if (new_nthreads == 1) { 871 KC_TRACE(10, ("__kmp_reserve_threads: T#%d dynamic random reduced " 872 "reservation to 1 thread\n", 873 master_tid)); 874 return 1; 875 } 876 if (new_nthreads < set_nthreads) { 877 KC_TRACE(10, ("__kmp_reserve_threads: T#%d dynamic random reduced " 878 "reservation to %d threads\n", 879 master_tid, new_nthreads)); 880 } 881 } 882 } else { 883 KMP_ASSERT(0); 884 } 885 886 // Respect KMP_ALL_THREADS/KMP_DEVICE_THREAD_LIMIT. 887 if (__kmp_nth + new_nthreads - 888 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) > 889 __kmp_max_nth) { 890 int tl_nthreads = __kmp_max_nth - __kmp_nth + 891 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 892 if (tl_nthreads <= 0) { 893 tl_nthreads = 1; 894 } 895 896 // If dyn-var is false, emit a 1-time warning. 897 if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) { 898 __kmp_reserve_warn = 1; 899 __kmp_msg(kmp_ms_warning, 900 KMP_MSG(CantFormThrTeam, set_nthreads, tl_nthreads), 901 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 902 } 903 if (tl_nthreads == 1) { 904 KC_TRACE(10, ("__kmp_reserve_threads: T#%d KMP_DEVICE_THREAD_LIMIT " 905 "reduced reservation to 1 thread\n", 906 master_tid)); 907 return 1; 908 } 909 KC_TRACE(10, ("__kmp_reserve_threads: T#%d KMP_DEVICE_THREAD_LIMIT reduced " 910 "reservation to %d threads\n", 911 master_tid, tl_nthreads)); 912 new_nthreads = tl_nthreads; 913 } 914 915 // Respect OMP_THREAD_LIMIT 916 if (root->r.r_cg_nthreads + new_nthreads - 917 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) > 918 __kmp_cg_max_nth) { 919 int tl_nthreads = __kmp_cg_max_nth - root->r.r_cg_nthreads + 920 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 921 if (tl_nthreads <= 0) { 922 tl_nthreads = 1; 923 } 924 925 // If dyn-var is false, emit a 1-time warning. 926 if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) { 927 __kmp_reserve_warn = 1; 928 __kmp_msg(kmp_ms_warning, 929 KMP_MSG(CantFormThrTeam, set_nthreads, tl_nthreads), 930 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 931 } 932 if (tl_nthreads == 1) { 933 KC_TRACE(10, ("__kmp_reserve_threads: T#%d OMP_THREAD_LIMIT " 934 "reduced reservation to 1 thread\n", 935 master_tid)); 936 return 1; 937 } 938 KC_TRACE(10, ("__kmp_reserve_threads: T#%d OMP_THREAD_LIMIT reduced " 939 "reservation to %d threads\n", 940 master_tid, tl_nthreads)); 941 new_nthreads = tl_nthreads; 942 } 943 944 // Check if the threads array is large enough, or needs expanding. 945 // See comment in __kmp_register_root() about the adjustment if 946 // __kmp_threads[0] == NULL. 947 capacity = __kmp_threads_capacity; 948 if (TCR_PTR(__kmp_threads[0]) == NULL) { 949 --capacity; 950 } 951 if (__kmp_nth + new_nthreads - 952 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) > 953 capacity) { 954 // Expand the threads array. 955 int slotsRequired = __kmp_nth + new_nthreads - 956 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) - 957 capacity; 958 int slotsAdded = __kmp_expand_threads(slotsRequired); 959 if (slotsAdded < slotsRequired) { 960 // The threads array was not expanded enough. 961 new_nthreads -= (slotsRequired - slotsAdded); 962 KMP_ASSERT(new_nthreads >= 1); 963 964 // If dyn-var is false, emit a 1-time warning. 965 if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) { 966 __kmp_reserve_warn = 1; 967 if (__kmp_tp_cached) { 968 __kmp_msg(kmp_ms_warning, 969 KMP_MSG(CantFormThrTeam, set_nthreads, new_nthreads), 970 KMP_HNT(Set_ALL_THREADPRIVATE, __kmp_tp_capacity), 971 KMP_HNT(PossibleSystemLimitOnThreads), __kmp_msg_null); 972 } else { 973 __kmp_msg(kmp_ms_warning, 974 KMP_MSG(CantFormThrTeam, set_nthreads, new_nthreads), 975 KMP_HNT(SystemLimitOnThreads), __kmp_msg_null); 976 } 977 } 978 } 979 } 980 981 #ifdef KMP_DEBUG 982 if (new_nthreads == 1) { 983 KC_TRACE(10, 984 ("__kmp_reserve_threads: T#%d serializing team after reclaiming " 985 "dead roots and rechecking; requested %d threads\n", 986 __kmp_get_gtid(), set_nthreads)); 987 } else { 988 KC_TRACE(10, ("__kmp_reserve_threads: T#%d allocating %d threads; requested" 989 " %d threads\n", 990 __kmp_get_gtid(), new_nthreads, set_nthreads)); 991 } 992 #endif // KMP_DEBUG 993 return new_nthreads; 994 } 995 996 /* Allocate threads from the thread pool and assign them to the new team. We are 997 assured that there are enough threads available, because we checked on that 998 earlier within critical section forkjoin */ 999 static void __kmp_fork_team_threads(kmp_root_t *root, kmp_team_t *team, 1000 kmp_info_t *master_th, int master_gtid) { 1001 int i; 1002 int use_hot_team; 1003 1004 KA_TRACE(10, ("__kmp_fork_team_threads: new_nprocs = %d\n", team->t.t_nproc)); 1005 KMP_DEBUG_ASSERT(master_gtid == __kmp_get_gtid()); 1006 KMP_MB(); 1007 1008 /* first, let's setup the master thread */ 1009 master_th->th.th_info.ds.ds_tid = 0; 1010 master_th->th.th_team = team; 1011 master_th->th.th_team_nproc = team->t.t_nproc; 1012 master_th->th.th_team_master = master_th; 1013 master_th->th.th_team_serialized = FALSE; 1014 master_th->th.th_dispatch = &team->t.t_dispatch[0]; 1015 1016 /* make sure we are not the optimized hot team */ 1017 #if KMP_NESTED_HOT_TEAMS 1018 use_hot_team = 0; 1019 kmp_hot_team_ptr_t *hot_teams = master_th->th.th_hot_teams; 1020 if (hot_teams) { // hot teams array is not allocated if 1021 // KMP_HOT_TEAMS_MAX_LEVEL=0 1022 int level = team->t.t_active_level - 1; // index in array of hot teams 1023 if (master_th->th.th_teams_microtask) { // are we inside the teams? 1024 if (master_th->th.th_teams_size.nteams > 1) { 1025 ++level; // level was not increased in teams construct for 1026 // team_of_masters 1027 } 1028 if (team->t.t_pkfn != (microtask_t)__kmp_teams_master && 1029 master_th->th.th_teams_level == team->t.t_level) { 1030 ++level; // level was not increased in teams construct for 1031 // team_of_workers before the parallel 1032 } // team->t.t_level will be increased inside parallel 1033 } 1034 if (level < __kmp_hot_teams_max_level) { 1035 if (hot_teams[level].hot_team) { 1036 // hot team has already been allocated for given level 1037 KMP_DEBUG_ASSERT(hot_teams[level].hot_team == team); 1038 use_hot_team = 1; // the team is ready to use 1039 } else { 1040 use_hot_team = 0; // AC: threads are not allocated yet 1041 hot_teams[level].hot_team = team; // remember new hot team 1042 hot_teams[level].hot_team_nth = team->t.t_nproc; 1043 } 1044 } else { 1045 use_hot_team = 0; 1046 } 1047 } 1048 #else 1049 use_hot_team = team == root->r.r_hot_team; 1050 #endif 1051 if (!use_hot_team) { 1052 1053 /* install the master thread */ 1054 team->t.t_threads[0] = master_th; 1055 __kmp_initialize_info(master_th, team, 0, master_gtid); 1056 1057 /* now, install the worker threads */ 1058 for (i = 1; i < team->t.t_nproc; i++) { 1059 1060 /* fork or reallocate a new thread and install it in team */ 1061 kmp_info_t *thr = __kmp_allocate_thread(root, team, i); 1062 team->t.t_threads[i] = thr; 1063 KMP_DEBUG_ASSERT(thr); 1064 KMP_DEBUG_ASSERT(thr->th.th_team == team); 1065 /* align team and thread arrived states */ 1066 KA_TRACE(20, ("__kmp_fork_team_threads: T#%d(%d:%d) init arrived " 1067 "T#%d(%d:%d) join =%llu, plain=%llu\n", 1068 __kmp_gtid_from_tid(0, team), team->t.t_id, 0, 1069 __kmp_gtid_from_tid(i, team), team->t.t_id, i, 1070 team->t.t_bar[bs_forkjoin_barrier].b_arrived, 1071 team->t.t_bar[bs_plain_barrier].b_arrived)); 1072 #if OMP_40_ENABLED 1073 thr->th.th_teams_microtask = master_th->th.th_teams_microtask; 1074 thr->th.th_teams_level = master_th->th.th_teams_level; 1075 thr->th.th_teams_size = master_th->th.th_teams_size; 1076 #endif 1077 { // Initialize threads' barrier data. 1078 int b; 1079 kmp_balign_t *balign = team->t.t_threads[i]->th.th_bar; 1080 for (b = 0; b < bs_last_barrier; ++b) { 1081 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 1082 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 1083 #if USE_DEBUGGER 1084 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 1085 #endif 1086 } 1087 } 1088 } 1089 1090 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 1091 __kmp_partition_places(team); 1092 #endif 1093 } 1094 1095 KMP_MB(); 1096 } 1097 1098 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1099 // Propagate any changes to the floating point control registers out to the team 1100 // We try to avoid unnecessary writes to the relevant cache line in the team 1101 // structure, so we don't make changes unless they are needed. 1102 inline static void propagateFPControl(kmp_team_t *team) { 1103 if (__kmp_inherit_fp_control) { 1104 kmp_int16 x87_fpu_control_word; 1105 kmp_uint32 mxcsr; 1106 1107 // Get master values of FPU control flags (both X87 and vector) 1108 __kmp_store_x87_fpu_control_word(&x87_fpu_control_word); 1109 __kmp_store_mxcsr(&mxcsr); 1110 mxcsr &= KMP_X86_MXCSR_MASK; 1111 1112 // There is no point looking at t_fp_control_saved here. 1113 // If it is TRUE, we still have to update the values if they are different 1114 // from those we now have. If it is FALSE we didn't save anything yet, but 1115 // our objective is the same. We have to ensure that the values in the team 1116 // are the same as those we have. 1117 // So, this code achieves what we need whether or not t_fp_control_saved is 1118 // true. By checking whether the value needs updating we avoid unnecessary 1119 // writes that would put the cache-line into a written state, causing all 1120 // threads in the team to have to read it again. 1121 KMP_CHECK_UPDATE(team->t.t_x87_fpu_control_word, x87_fpu_control_word); 1122 KMP_CHECK_UPDATE(team->t.t_mxcsr, mxcsr); 1123 // Although we don't use this value, other code in the runtime wants to know 1124 // whether it should restore them. So we must ensure it is correct. 1125 KMP_CHECK_UPDATE(team->t.t_fp_control_saved, TRUE); 1126 } else { 1127 // Similarly here. Don't write to this cache-line in the team structure 1128 // unless we have to. 1129 KMP_CHECK_UPDATE(team->t.t_fp_control_saved, FALSE); 1130 } 1131 } 1132 1133 // Do the opposite, setting the hardware registers to the updated values from 1134 // the team. 1135 inline static void updateHWFPControl(kmp_team_t *team) { 1136 if (__kmp_inherit_fp_control && team->t.t_fp_control_saved) { 1137 // Only reset the fp control regs if they have been changed in the team. 1138 // the parallel region that we are exiting. 1139 kmp_int16 x87_fpu_control_word; 1140 kmp_uint32 mxcsr; 1141 __kmp_store_x87_fpu_control_word(&x87_fpu_control_word); 1142 __kmp_store_mxcsr(&mxcsr); 1143 mxcsr &= KMP_X86_MXCSR_MASK; 1144 1145 if (team->t.t_x87_fpu_control_word != x87_fpu_control_word) { 1146 __kmp_clear_x87_fpu_status_word(); 1147 __kmp_load_x87_fpu_control_word(&team->t.t_x87_fpu_control_word); 1148 } 1149 1150 if (team->t.t_mxcsr != mxcsr) { 1151 __kmp_load_mxcsr(&team->t.t_mxcsr); 1152 } 1153 } 1154 } 1155 #else 1156 #define propagateFPControl(x) ((void)0) 1157 #define updateHWFPControl(x) ((void)0) 1158 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 1159 1160 static void __kmp_alloc_argv_entries(int argc, kmp_team_t *team, 1161 int realloc); // forward declaration 1162 1163 /* Run a parallel region that has been serialized, so runs only in a team of the 1164 single master thread. */ 1165 void __kmp_serialized_parallel(ident_t *loc, kmp_int32 global_tid) { 1166 kmp_info_t *this_thr; 1167 kmp_team_t *serial_team; 1168 1169 KC_TRACE(10, ("__kmpc_serialized_parallel: called by T#%d\n", global_tid)); 1170 1171 /* Skip all this code for autopar serialized loops since it results in 1172 unacceptable overhead */ 1173 if (loc != NULL && (loc->flags & KMP_IDENT_AUTOPAR)) 1174 return; 1175 1176 if (!TCR_4(__kmp_init_parallel)) 1177 __kmp_parallel_initialize(); 1178 1179 this_thr = __kmp_threads[global_tid]; 1180 serial_team = this_thr->th.th_serial_team; 1181 1182 /* utilize the serialized team held by this thread */ 1183 KMP_DEBUG_ASSERT(serial_team); 1184 KMP_MB(); 1185 1186 if (__kmp_tasking_mode != tskm_immediate_exec) { 1187 KMP_DEBUG_ASSERT( 1188 this_thr->th.th_task_team == 1189 this_thr->th.th_team->t.t_task_team[this_thr->th.th_task_state]); 1190 KMP_DEBUG_ASSERT(serial_team->t.t_task_team[this_thr->th.th_task_state] == 1191 NULL); 1192 KA_TRACE(20, ("__kmpc_serialized_parallel: T#%d pushing task_team %p / " 1193 "team %p, new task_team = NULL\n", 1194 global_tid, this_thr->th.th_task_team, this_thr->th.th_team)); 1195 this_thr->th.th_task_team = NULL; 1196 } 1197 1198 #if OMP_40_ENABLED 1199 kmp_proc_bind_t proc_bind = this_thr->th.th_set_proc_bind; 1200 if (this_thr->th.th_current_task->td_icvs.proc_bind == proc_bind_false) { 1201 proc_bind = proc_bind_false; 1202 } else if (proc_bind == proc_bind_default) { 1203 // No proc_bind clause was specified, so use the current value 1204 // of proc-bind-var for this parallel region. 1205 proc_bind = this_thr->th.th_current_task->td_icvs.proc_bind; 1206 } 1207 // Reset for next parallel region 1208 this_thr->th.th_set_proc_bind = proc_bind_default; 1209 #endif /* OMP_40_ENABLED */ 1210 1211 #if OMPT_SUPPORT 1212 ompt_data_t ompt_parallel_data = ompt_data_none; 1213 ompt_data_t *implicit_task_data; 1214 void *codeptr = OMPT_LOAD_RETURN_ADDRESS(global_tid); 1215 if (ompt_enabled.enabled && 1216 this_thr->th.ompt_thread_info.state != omp_state_overhead) { 1217 1218 ompt_task_info_t *parent_task_info; 1219 parent_task_info = OMPT_CUR_TASK_INFO(this_thr); 1220 1221 parent_task_info->frame.enter_frame = OMPT_GET_FRAME_ADDRESS(1); 1222 if (ompt_enabled.ompt_callback_parallel_begin) { 1223 int team_size = 1; 1224 1225 ompt_callbacks.ompt_callback(ompt_callback_parallel_begin)( 1226 &(parent_task_info->task_data), &(parent_task_info->frame), 1227 &ompt_parallel_data, team_size, ompt_parallel_invoker_program, 1228 codeptr); 1229 } 1230 } 1231 #endif // OMPT_SUPPORT 1232 1233 if (this_thr->th.th_team != serial_team) { 1234 // Nested level will be an index in the nested nthreads array 1235 int level = this_thr->th.th_team->t.t_level; 1236 1237 if (serial_team->t.t_serialized) { 1238 /* this serial team was already used 1239 TODO increase performance by making this locks more specific */ 1240 kmp_team_t *new_team; 1241 1242 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 1243 1244 new_team = __kmp_allocate_team(this_thr->th.th_root, 1, 1, 1245 #if OMPT_SUPPORT 1246 ompt_parallel_data, 1247 #endif 1248 #if OMP_40_ENABLED 1249 proc_bind, 1250 #endif 1251 &this_thr->th.th_current_task->td_icvs, 1252 0 USE_NESTED_HOT_ARG(NULL)); 1253 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1254 KMP_ASSERT(new_team); 1255 1256 /* setup new serialized team and install it */ 1257 new_team->t.t_threads[0] = this_thr; 1258 new_team->t.t_parent = this_thr->th.th_team; 1259 serial_team = new_team; 1260 this_thr->th.th_serial_team = serial_team; 1261 1262 KF_TRACE( 1263 10, 1264 ("__kmpc_serialized_parallel: T#%d allocated new serial team %p\n", 1265 global_tid, serial_team)); 1266 1267 /* TODO the above breaks the requirement that if we run out of resources, 1268 then we can still guarantee that serialized teams are ok, since we may 1269 need to allocate a new one */ 1270 } else { 1271 KF_TRACE( 1272 10, 1273 ("__kmpc_serialized_parallel: T#%d reusing cached serial team %p\n", 1274 global_tid, serial_team)); 1275 } 1276 1277 /* we have to initialize this serial team */ 1278 KMP_DEBUG_ASSERT(serial_team->t.t_threads); 1279 KMP_DEBUG_ASSERT(serial_team->t.t_threads[0] == this_thr); 1280 KMP_DEBUG_ASSERT(this_thr->th.th_team != serial_team); 1281 serial_team->t.t_ident = loc; 1282 serial_team->t.t_serialized = 1; 1283 serial_team->t.t_nproc = 1; 1284 serial_team->t.t_parent = this_thr->th.th_team; 1285 serial_team->t.t_sched.sched = this_thr->th.th_team->t.t_sched.sched; 1286 this_thr->th.th_team = serial_team; 1287 serial_team->t.t_master_tid = this_thr->th.th_info.ds.ds_tid; 1288 1289 KF_TRACE(10, ("__kmpc_serialized_parallel: T#d curtask=%p\n", global_tid, 1290 this_thr->th.th_current_task)); 1291 KMP_ASSERT(this_thr->th.th_current_task->td_flags.executing == 1); 1292 this_thr->th.th_current_task->td_flags.executing = 0; 1293 1294 __kmp_push_current_task_to_thread(this_thr, serial_team, 0); 1295 1296 /* TODO: GEH: do ICVs work for nested serialized teams? Don't we need an 1297 implicit task for each serialized task represented by 1298 team->t.t_serialized? */ 1299 copy_icvs(&this_thr->th.th_current_task->td_icvs, 1300 &this_thr->th.th_current_task->td_parent->td_icvs); 1301 1302 // Thread value exists in the nested nthreads array for the next nested 1303 // level 1304 if (__kmp_nested_nth.used && (level + 1 < __kmp_nested_nth.used)) { 1305 this_thr->th.th_current_task->td_icvs.nproc = 1306 __kmp_nested_nth.nth[level + 1]; 1307 } 1308 1309 #if OMP_40_ENABLED 1310 if (__kmp_nested_proc_bind.used && 1311 (level + 1 < __kmp_nested_proc_bind.used)) { 1312 this_thr->th.th_current_task->td_icvs.proc_bind = 1313 __kmp_nested_proc_bind.bind_types[level + 1]; 1314 } 1315 #endif /* OMP_40_ENABLED */ 1316 1317 #if USE_DEBUGGER 1318 serial_team->t.t_pkfn = (microtask_t)(~0); // For the debugger. 1319 #endif 1320 this_thr->th.th_info.ds.ds_tid = 0; 1321 1322 /* set thread cache values */ 1323 this_thr->th.th_team_nproc = 1; 1324 this_thr->th.th_team_master = this_thr; 1325 this_thr->th.th_team_serialized = 1; 1326 1327 serial_team->t.t_level = serial_team->t.t_parent->t.t_level + 1; 1328 serial_team->t.t_active_level = serial_team->t.t_parent->t.t_active_level; 1329 #if OMP_50_ENABLED 1330 serial_team->t.t_def_allocator = this_thr->th.th_def_allocator; // save 1331 #endif 1332 1333 propagateFPControl(serial_team); 1334 1335 /* check if we need to allocate dispatch buffers stack */ 1336 KMP_DEBUG_ASSERT(serial_team->t.t_dispatch); 1337 if (!serial_team->t.t_dispatch->th_disp_buffer) { 1338 serial_team->t.t_dispatch->th_disp_buffer = 1339 (dispatch_private_info_t *)__kmp_allocate( 1340 sizeof(dispatch_private_info_t)); 1341 } 1342 this_thr->th.th_dispatch = serial_team->t.t_dispatch; 1343 1344 KMP_MB(); 1345 1346 } else { 1347 /* this serialized team is already being used, 1348 * that's fine, just add another nested level */ 1349 KMP_DEBUG_ASSERT(this_thr->th.th_team == serial_team); 1350 KMP_DEBUG_ASSERT(serial_team->t.t_threads); 1351 KMP_DEBUG_ASSERT(serial_team->t.t_threads[0] == this_thr); 1352 ++serial_team->t.t_serialized; 1353 this_thr->th.th_team_serialized = serial_team->t.t_serialized; 1354 1355 // Nested level will be an index in the nested nthreads array 1356 int level = this_thr->th.th_team->t.t_level; 1357 // Thread value exists in the nested nthreads array for the next nested 1358 // level 1359 if (__kmp_nested_nth.used && (level + 1 < __kmp_nested_nth.used)) { 1360 this_thr->th.th_current_task->td_icvs.nproc = 1361 __kmp_nested_nth.nth[level + 1]; 1362 } 1363 serial_team->t.t_level++; 1364 KF_TRACE(10, ("__kmpc_serialized_parallel: T#%d increasing nesting level " 1365 "of serial team %p to %d\n", 1366 global_tid, serial_team, serial_team->t.t_level)); 1367 1368 /* allocate/push dispatch buffers stack */ 1369 KMP_DEBUG_ASSERT(serial_team->t.t_dispatch); 1370 { 1371 dispatch_private_info_t *disp_buffer = 1372 (dispatch_private_info_t *)__kmp_allocate( 1373 sizeof(dispatch_private_info_t)); 1374 disp_buffer->next = serial_team->t.t_dispatch->th_disp_buffer; 1375 serial_team->t.t_dispatch->th_disp_buffer = disp_buffer; 1376 } 1377 this_thr->th.th_dispatch = serial_team->t.t_dispatch; 1378 1379 KMP_MB(); 1380 } 1381 #if OMP_40_ENABLED 1382 KMP_CHECK_UPDATE(serial_team->t.t_cancel_request, cancel_noreq); 1383 #endif 1384 1385 if (__kmp_env_consistency_check) 1386 __kmp_push_parallel(global_tid, NULL); 1387 #if OMPT_SUPPORT 1388 serial_team->t.ompt_team_info.master_return_address = codeptr; 1389 if (ompt_enabled.enabled && 1390 this_thr->th.ompt_thread_info.state != omp_state_overhead) { 1391 OMPT_CUR_TASK_INFO(this_thr)->frame.exit_frame = OMPT_GET_FRAME_ADDRESS(1); 1392 1393 ompt_lw_taskteam_t lw_taskteam; 1394 __ompt_lw_taskteam_init(&lw_taskteam, this_thr, global_tid, 1395 &ompt_parallel_data, codeptr); 1396 1397 __ompt_lw_taskteam_link(&lw_taskteam, this_thr, 1); 1398 // don't use lw_taskteam after linking. content was swaped 1399 1400 /* OMPT implicit task begin */ 1401 implicit_task_data = OMPT_CUR_TASK_DATA(this_thr); 1402 if (ompt_enabled.ompt_callback_implicit_task) { 1403 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1404 ompt_scope_begin, OMPT_CUR_TEAM_DATA(this_thr), 1405 OMPT_CUR_TASK_DATA(this_thr), 1, __kmp_tid_from_gtid(global_tid)); 1406 OMPT_CUR_TASK_INFO(this_thr) 1407 ->thread_num = __kmp_tid_from_gtid(global_tid); 1408 } 1409 1410 /* OMPT state */ 1411 this_thr->th.ompt_thread_info.state = omp_state_work_parallel; 1412 OMPT_CUR_TASK_INFO(this_thr)->frame.exit_frame = OMPT_GET_FRAME_ADDRESS(1); 1413 } 1414 #endif 1415 } 1416 1417 /* most of the work for a fork */ 1418 /* return true if we really went parallel, false if serialized */ 1419 int __kmp_fork_call(ident_t *loc, int gtid, 1420 enum fork_context_e call_context, // Intel, GNU, ... 1421 kmp_int32 argc, microtask_t microtask, launch_t invoker, 1422 /* TODO: revert workaround for Intel(R) 64 tracker #96 */ 1423 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 1424 va_list *ap 1425 #else 1426 va_list ap 1427 #endif 1428 ) { 1429 void **argv; 1430 int i; 1431 int master_tid; 1432 int master_this_cons; 1433 kmp_team_t *team; 1434 kmp_team_t *parent_team; 1435 kmp_info_t *master_th; 1436 kmp_root_t *root; 1437 int nthreads; 1438 int master_active; 1439 int master_set_numthreads; 1440 int level; 1441 #if OMP_40_ENABLED 1442 int active_level; 1443 int teams_level; 1444 #endif 1445 #if KMP_NESTED_HOT_TEAMS 1446 kmp_hot_team_ptr_t **p_hot_teams; 1447 #endif 1448 { // KMP_TIME_BLOCK 1449 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_fork_call); 1450 KMP_COUNT_VALUE(OMP_PARALLEL_args, argc); 1451 1452 KA_TRACE(20, ("__kmp_fork_call: enter T#%d\n", gtid)); 1453 if (__kmp_stkpadding > 0 && __kmp_root[gtid] != NULL) { 1454 /* Some systems prefer the stack for the root thread(s) to start with */ 1455 /* some gap from the parent stack to prevent false sharing. */ 1456 void *dummy = KMP_ALLOCA(__kmp_stkpadding); 1457 /* These 2 lines below are so this does not get optimized out */ 1458 if (__kmp_stkpadding > KMP_MAX_STKPADDING) 1459 __kmp_stkpadding += (short)((kmp_int64)dummy); 1460 } 1461 1462 /* initialize if needed */ 1463 KMP_DEBUG_ASSERT( 1464 __kmp_init_serial); // AC: potentially unsafe, not in sync with shutdown 1465 if (!TCR_4(__kmp_init_parallel)) 1466 __kmp_parallel_initialize(); 1467 1468 /* setup current data */ 1469 master_th = __kmp_threads[gtid]; // AC: potentially unsafe, not in sync with 1470 // shutdown 1471 parent_team = master_th->th.th_team; 1472 master_tid = master_th->th.th_info.ds.ds_tid; 1473 master_this_cons = master_th->th.th_local.this_construct; 1474 root = master_th->th.th_root; 1475 master_active = root->r.r_active; 1476 master_set_numthreads = master_th->th.th_set_nproc; 1477 1478 #if OMPT_SUPPORT 1479 ompt_data_t ompt_parallel_data = ompt_data_none; 1480 ompt_data_t *parent_task_data; 1481 omp_frame_t *ompt_frame; 1482 ompt_data_t *implicit_task_data; 1483 void *return_address = NULL; 1484 1485 if (ompt_enabled.enabled) { 1486 __ompt_get_task_info_internal(0, NULL, &parent_task_data, &ompt_frame, 1487 NULL, NULL); 1488 return_address = OMPT_LOAD_RETURN_ADDRESS(gtid); 1489 } 1490 #endif 1491 1492 // Nested level will be an index in the nested nthreads array 1493 level = parent_team->t.t_level; 1494 // used to launch non-serial teams even if nested is not allowed 1495 active_level = parent_team->t.t_active_level; 1496 #if OMP_40_ENABLED 1497 // needed to check nesting inside the teams 1498 teams_level = master_th->th.th_teams_level; 1499 #endif 1500 #if KMP_NESTED_HOT_TEAMS 1501 p_hot_teams = &master_th->th.th_hot_teams; 1502 if (*p_hot_teams == NULL && __kmp_hot_teams_max_level > 0) { 1503 *p_hot_teams = (kmp_hot_team_ptr_t *)__kmp_allocate( 1504 sizeof(kmp_hot_team_ptr_t) * __kmp_hot_teams_max_level); 1505 (*p_hot_teams)[0].hot_team = root->r.r_hot_team; 1506 // it is either actual or not needed (when active_level > 0) 1507 (*p_hot_teams)[0].hot_team_nth = 1; 1508 } 1509 #endif 1510 1511 #if OMPT_SUPPORT 1512 if (ompt_enabled.enabled) { 1513 if (ompt_enabled.ompt_callback_parallel_begin) { 1514 int team_size = master_set_numthreads 1515 ? master_set_numthreads 1516 : get__nproc_2(parent_team, master_tid); 1517 ompt_callbacks.ompt_callback(ompt_callback_parallel_begin)( 1518 parent_task_data, ompt_frame, &ompt_parallel_data, team_size, 1519 OMPT_INVOKER(call_context), return_address); 1520 } 1521 master_th->th.ompt_thread_info.state = omp_state_overhead; 1522 } 1523 #endif 1524 1525 master_th->th.th_ident = loc; 1526 1527 #if OMP_40_ENABLED 1528 if (master_th->th.th_teams_microtask && ap && 1529 microtask != (microtask_t)__kmp_teams_master && level == teams_level) { 1530 // AC: This is start of parallel that is nested inside teams construct. 1531 // The team is actual (hot), all workers are ready at the fork barrier. 1532 // No lock needed to initialize the team a bit, then free workers. 1533 parent_team->t.t_ident = loc; 1534 __kmp_alloc_argv_entries(argc, parent_team, TRUE); 1535 parent_team->t.t_argc = argc; 1536 argv = (void **)parent_team->t.t_argv; 1537 for (i = argc - 1; i >= 0; --i) 1538 /* TODO: revert workaround for Intel(R) 64 tracker #96 */ 1539 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 1540 *argv++ = va_arg(*ap, void *); 1541 #else 1542 *argv++ = va_arg(ap, void *); 1543 #endif 1544 // Increment our nested depth levels, but not increase the serialization 1545 if (parent_team == master_th->th.th_serial_team) { 1546 // AC: we are in serialized parallel 1547 __kmpc_serialized_parallel(loc, gtid); 1548 KMP_DEBUG_ASSERT(parent_team->t.t_serialized > 1); 1549 // AC: need this in order enquiry functions work 1550 // correctly, will restore at join time 1551 parent_team->t.t_serialized--; 1552 #if OMPT_SUPPORT 1553 void *dummy; 1554 void **exit_runtime_p; 1555 1556 ompt_lw_taskteam_t lw_taskteam; 1557 1558 if (ompt_enabled.enabled) { 1559 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1560 &ompt_parallel_data, return_address); 1561 exit_runtime_p = &(lw_taskteam.ompt_task_info.frame.exit_frame); 1562 1563 __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0); 1564 // don't use lw_taskteam after linking. content was swaped 1565 1566 /* OMPT implicit task begin */ 1567 implicit_task_data = OMPT_CUR_TASK_DATA(master_th); 1568 if (ompt_enabled.ompt_callback_implicit_task) { 1569 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1570 ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th), 1571 implicit_task_data, 1, __kmp_tid_from_gtid(gtid)); 1572 OMPT_CUR_TASK_INFO(master_th) 1573 ->thread_num = __kmp_tid_from_gtid(gtid); 1574 } 1575 1576 /* OMPT state */ 1577 master_th->th.ompt_thread_info.state = omp_state_work_parallel; 1578 } else { 1579 exit_runtime_p = &dummy; 1580 } 1581 #endif 1582 1583 { 1584 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1585 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1586 __kmp_invoke_microtask(microtask, gtid, 0, argc, parent_team->t.t_argv 1587 #if OMPT_SUPPORT 1588 , 1589 exit_runtime_p 1590 #endif 1591 ); 1592 } 1593 1594 #if OMPT_SUPPORT 1595 *exit_runtime_p = NULL; 1596 if (ompt_enabled.enabled) { 1597 OMPT_CUR_TASK_INFO(master_th)->frame.exit_frame = NULL; 1598 if (ompt_enabled.ompt_callback_implicit_task) { 1599 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1600 ompt_scope_end, NULL, implicit_task_data, 1, 1601 OMPT_CUR_TASK_INFO(master_th)->thread_num); 1602 } 1603 __ompt_lw_taskteam_unlink(master_th); 1604 1605 if (ompt_enabled.ompt_callback_parallel_end) { 1606 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 1607 OMPT_CUR_TEAM_DATA(master_th), OMPT_CUR_TASK_DATA(master_th), 1608 OMPT_INVOKER(call_context), return_address); 1609 } 1610 master_th->th.ompt_thread_info.state = omp_state_overhead; 1611 } 1612 #endif 1613 return TRUE; 1614 } 1615 1616 parent_team->t.t_pkfn = microtask; 1617 parent_team->t.t_invoke = invoker; 1618 KMP_ATOMIC_INC(&root->r.r_in_parallel); 1619 parent_team->t.t_active_level++; 1620 parent_team->t.t_level++; 1621 #if OMP_50_ENABLED 1622 parent_team->t.t_def_allocator = master_th->th.th_def_allocator; // save 1623 #endif 1624 1625 /* Change number of threads in the team if requested */ 1626 if (master_set_numthreads) { // The parallel has num_threads clause 1627 if (master_set_numthreads < master_th->th.th_teams_size.nth) { 1628 // AC: only can reduce number of threads dynamically, can't increase 1629 kmp_info_t **other_threads = parent_team->t.t_threads; 1630 parent_team->t.t_nproc = master_set_numthreads; 1631 for (i = 0; i < master_set_numthreads; ++i) { 1632 other_threads[i]->th.th_team_nproc = master_set_numthreads; 1633 } 1634 // Keep extra threads hot in the team for possible next parallels 1635 } 1636 master_th->th.th_set_nproc = 0; 1637 } 1638 1639 #if USE_DEBUGGER 1640 if (__kmp_debugging) { // Let debugger override number of threads. 1641 int nth = __kmp_omp_num_threads(loc); 1642 if (nth > 0) { // 0 means debugger doesn't want to change num threads 1643 master_set_numthreads = nth; 1644 } 1645 } 1646 #endif 1647 1648 KF_TRACE(10, ("__kmp_fork_call: before internal fork: root=%p, team=%p, " 1649 "master_th=%p, gtid=%d\n", 1650 root, parent_team, master_th, gtid)); 1651 __kmp_internal_fork(loc, gtid, parent_team); 1652 KF_TRACE(10, ("__kmp_fork_call: after internal fork: root=%p, team=%p, " 1653 "master_th=%p, gtid=%d\n", 1654 root, parent_team, master_th, gtid)); 1655 1656 /* Invoke microtask for MASTER thread */ 1657 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) invoke microtask = %p\n", gtid, 1658 parent_team->t.t_id, parent_team->t.t_pkfn)); 1659 1660 if (!parent_team->t.t_invoke(gtid)) { 1661 KMP_ASSERT2(0, "cannot invoke microtask for MASTER thread"); 1662 } 1663 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) done microtask = %p\n", gtid, 1664 parent_team->t.t_id, parent_team->t.t_pkfn)); 1665 KMP_MB(); /* Flush all pending memory write invalidates. */ 1666 1667 KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid)); 1668 1669 return TRUE; 1670 } // Parallel closely nested in teams construct 1671 #endif /* OMP_40_ENABLED */ 1672 1673 #if KMP_DEBUG 1674 if (__kmp_tasking_mode != tskm_immediate_exec) { 1675 KMP_DEBUG_ASSERT(master_th->th.th_task_team == 1676 parent_team->t.t_task_team[master_th->th.th_task_state]); 1677 } 1678 #endif 1679 1680 if (parent_team->t.t_active_level >= 1681 master_th->th.th_current_task->td_icvs.max_active_levels) { 1682 nthreads = 1; 1683 } else { 1684 #if OMP_40_ENABLED 1685 int enter_teams = ((ap == NULL && active_level == 0) || 1686 (ap && teams_level > 0 && teams_level == level)); 1687 #endif 1688 nthreads = 1689 master_set_numthreads 1690 ? master_set_numthreads 1691 : get__nproc_2( 1692 parent_team, 1693 master_tid); // TODO: get nproc directly from current task 1694 1695 // Check if we need to take forkjoin lock? (no need for serialized 1696 // parallel out of teams construct). This code moved here from 1697 // __kmp_reserve_threads() to speedup nested serialized parallels. 1698 if (nthreads > 1) { 1699 if ((!get__nested(master_th) && (root->r.r_in_parallel 1700 #if OMP_40_ENABLED 1701 && !enter_teams 1702 #endif /* OMP_40_ENABLED */ 1703 )) || 1704 (__kmp_library == library_serial)) { 1705 KC_TRACE(10, ("__kmp_fork_call: T#%d serializing team; requested %d" 1706 " threads\n", 1707 gtid, nthreads)); 1708 nthreads = 1; 1709 } 1710 } 1711 if (nthreads > 1) { 1712 /* determine how many new threads we can use */ 1713 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 1714 nthreads = __kmp_reserve_threads( 1715 root, parent_team, master_tid, nthreads 1716 #if OMP_40_ENABLED 1717 /* AC: If we execute teams from parallel region (on host), then 1718 teams should be created but each can only have 1 thread if 1719 nesting is disabled. If teams called from serial region, then 1720 teams and their threads should be created regardless of the 1721 nesting setting. */ 1722 , 1723 enter_teams 1724 #endif /* OMP_40_ENABLED */ 1725 ); 1726 if (nthreads == 1) { 1727 // Free lock for single thread execution here; for multi-thread 1728 // execution it will be freed later after team of threads created 1729 // and initialized 1730 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1731 } 1732 } 1733 } 1734 KMP_DEBUG_ASSERT(nthreads > 0); 1735 1736 // If we temporarily changed the set number of threads then restore it now 1737 master_th->th.th_set_nproc = 0; 1738 1739 /* create a serialized parallel region? */ 1740 if (nthreads == 1) { 1741 /* josh todo: hypothetical question: what do we do for OS X*? */ 1742 #if KMP_OS_LINUX && \ 1743 (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) 1744 void *args[argc]; 1745 #else 1746 void **args = (void **)KMP_ALLOCA(argc * sizeof(void *)); 1747 #endif /* KMP_OS_LINUX && ( KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || \ 1748 KMP_ARCH_AARCH64) */ 1749 1750 KA_TRACE(20, 1751 ("__kmp_fork_call: T#%d serializing parallel region\n", gtid)); 1752 1753 __kmpc_serialized_parallel(loc, gtid); 1754 1755 if (call_context == fork_context_intel) { 1756 /* TODO this sucks, use the compiler itself to pass args! :) */ 1757 master_th->th.th_serial_team->t.t_ident = loc; 1758 #if OMP_40_ENABLED 1759 if (!ap) { 1760 // revert change made in __kmpc_serialized_parallel() 1761 master_th->th.th_serial_team->t.t_level--; 1762 // Get args from parent team for teams construct 1763 1764 #if OMPT_SUPPORT 1765 void *dummy; 1766 void **exit_runtime_p; 1767 ompt_task_info_t *task_info; 1768 1769 ompt_lw_taskteam_t lw_taskteam; 1770 1771 if (ompt_enabled.enabled) { 1772 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1773 &ompt_parallel_data, return_address); 1774 1775 __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0); 1776 // don't use lw_taskteam after linking. content was swaped 1777 1778 task_info = OMPT_CUR_TASK_INFO(master_th); 1779 exit_runtime_p = &(task_info->frame.exit_frame); 1780 if (ompt_enabled.ompt_callback_implicit_task) { 1781 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1782 ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th), 1783 &(task_info->task_data), 1, __kmp_tid_from_gtid(gtid)); 1784 OMPT_CUR_TASK_INFO(master_th) 1785 ->thread_num = __kmp_tid_from_gtid(gtid); 1786 } 1787 1788 /* OMPT state */ 1789 master_th->th.ompt_thread_info.state = omp_state_work_parallel; 1790 } else { 1791 exit_runtime_p = &dummy; 1792 } 1793 #endif 1794 1795 { 1796 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1797 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1798 __kmp_invoke_microtask(microtask, gtid, 0, argc, 1799 parent_team->t.t_argv 1800 #if OMPT_SUPPORT 1801 , 1802 exit_runtime_p 1803 #endif 1804 ); 1805 } 1806 1807 #if OMPT_SUPPORT 1808 if (ompt_enabled.enabled) { 1809 exit_runtime_p = NULL; 1810 if (ompt_enabled.ompt_callback_implicit_task) { 1811 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1812 ompt_scope_end, NULL, &(task_info->task_data), 1, 1813 OMPT_CUR_TASK_INFO(master_th)->thread_num); 1814 } 1815 1816 __ompt_lw_taskteam_unlink(master_th); 1817 if (ompt_enabled.ompt_callback_parallel_end) { 1818 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 1819 OMPT_CUR_TEAM_DATA(master_th), parent_task_data, 1820 OMPT_INVOKER(call_context), return_address); 1821 } 1822 master_th->th.ompt_thread_info.state = omp_state_overhead; 1823 } 1824 #endif 1825 } else if (microtask == (microtask_t)__kmp_teams_master) { 1826 KMP_DEBUG_ASSERT(master_th->th.th_team == 1827 master_th->th.th_serial_team); 1828 team = master_th->th.th_team; 1829 // team->t.t_pkfn = microtask; 1830 team->t.t_invoke = invoker; 1831 __kmp_alloc_argv_entries(argc, team, TRUE); 1832 team->t.t_argc = argc; 1833 argv = (void **)team->t.t_argv; 1834 if (ap) { 1835 for (i = argc - 1; i >= 0; --i) 1836 // TODO: revert workaround for Intel(R) 64 tracker #96 1837 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 1838 *argv++ = va_arg(*ap, void *); 1839 #else 1840 *argv++ = va_arg(ap, void *); 1841 #endif 1842 } else { 1843 for (i = 0; i < argc; ++i) 1844 // Get args from parent team for teams construct 1845 argv[i] = parent_team->t.t_argv[i]; 1846 } 1847 // AC: revert change made in __kmpc_serialized_parallel() 1848 // because initial code in teams should have level=0 1849 team->t.t_level--; 1850 // AC: call special invoker for outer "parallel" of teams construct 1851 invoker(gtid); 1852 } else { 1853 #endif /* OMP_40_ENABLED */ 1854 argv = args; 1855 for (i = argc - 1; i >= 0; --i) 1856 // TODO: revert workaround for Intel(R) 64 tracker #96 1857 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 1858 *argv++ = va_arg(*ap, void *); 1859 #else 1860 *argv++ = va_arg(ap, void *); 1861 #endif 1862 KMP_MB(); 1863 1864 #if OMPT_SUPPORT 1865 void *dummy; 1866 void **exit_runtime_p; 1867 ompt_task_info_t *task_info; 1868 1869 ompt_lw_taskteam_t lw_taskteam; 1870 1871 if (ompt_enabled.enabled) { 1872 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1873 &ompt_parallel_data, return_address); 1874 __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0); 1875 // don't use lw_taskteam after linking. content was swaped 1876 task_info = OMPT_CUR_TASK_INFO(master_th); 1877 exit_runtime_p = &(task_info->frame.exit_frame); 1878 1879 /* OMPT implicit task begin */ 1880 implicit_task_data = OMPT_CUR_TASK_DATA(master_th); 1881 if (ompt_enabled.ompt_callback_implicit_task) { 1882 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1883 ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th), 1884 implicit_task_data, 1, __kmp_tid_from_gtid(gtid)); 1885 OMPT_CUR_TASK_INFO(master_th) 1886 ->thread_num = __kmp_tid_from_gtid(gtid); 1887 } 1888 1889 /* OMPT state */ 1890 master_th->th.ompt_thread_info.state = omp_state_work_parallel; 1891 } else { 1892 exit_runtime_p = &dummy; 1893 } 1894 #endif 1895 1896 { 1897 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1898 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1899 __kmp_invoke_microtask(microtask, gtid, 0, argc, args 1900 #if OMPT_SUPPORT 1901 , 1902 exit_runtime_p 1903 #endif 1904 ); 1905 } 1906 1907 #if OMPT_SUPPORT 1908 if (ompt_enabled.enabled) { 1909 *exit_runtime_p = NULL; 1910 if (ompt_enabled.ompt_callback_implicit_task) { 1911 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1912 ompt_scope_end, NULL, &(task_info->task_data), 1, 1913 OMPT_CUR_TASK_INFO(master_th)->thread_num); 1914 } 1915 1916 ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th); 1917 __ompt_lw_taskteam_unlink(master_th); 1918 if (ompt_enabled.ompt_callback_parallel_end) { 1919 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 1920 &ompt_parallel_data, parent_task_data, 1921 OMPT_INVOKER(call_context), return_address); 1922 } 1923 master_th->th.ompt_thread_info.state = omp_state_overhead; 1924 } 1925 #endif 1926 #if OMP_40_ENABLED 1927 } 1928 #endif /* OMP_40_ENABLED */ 1929 } else if (call_context == fork_context_gnu) { 1930 #if OMPT_SUPPORT 1931 ompt_lw_taskteam_t lwt; 1932 __ompt_lw_taskteam_init(&lwt, master_th, gtid, &ompt_parallel_data, 1933 return_address); 1934 1935 lwt.ompt_task_info.frame.exit_frame = NULL; 1936 __ompt_lw_taskteam_link(&lwt, master_th, 1); 1937 // don't use lw_taskteam after linking. content was swaped 1938 #endif 1939 1940 // we were called from GNU native code 1941 KA_TRACE(20, ("__kmp_fork_call: T#%d serial exit\n", gtid)); 1942 return FALSE; 1943 } else { 1944 KMP_ASSERT2(call_context < fork_context_last, 1945 "__kmp_fork_call: unknown fork_context parameter"); 1946 } 1947 1948 KA_TRACE(20, ("__kmp_fork_call: T#%d serial exit\n", gtid)); 1949 KMP_MB(); 1950 return FALSE; 1951 } 1952 1953 // GEH: only modify the executing flag in the case when not serialized 1954 // serialized case is handled in kmpc_serialized_parallel 1955 KF_TRACE(10, ("__kmp_fork_call: parent_team_aclevel=%d, master_th=%p, " 1956 "curtask=%p, curtask_max_aclevel=%d\n", 1957 parent_team->t.t_active_level, master_th, 1958 master_th->th.th_current_task, 1959 master_th->th.th_current_task->td_icvs.max_active_levels)); 1960 // TODO: GEH - cannot do this assertion because root thread not set up as 1961 // executing 1962 // KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 1 ); 1963 master_th->th.th_current_task->td_flags.executing = 0; 1964 1965 #if OMP_40_ENABLED 1966 if (!master_th->th.th_teams_microtask || level > teams_level) 1967 #endif /* OMP_40_ENABLED */ 1968 { 1969 /* Increment our nested depth level */ 1970 KMP_ATOMIC_INC(&root->r.r_in_parallel); 1971 } 1972 1973 // See if we need to make a copy of the ICVs. 1974 int nthreads_icv = master_th->th.th_current_task->td_icvs.nproc; 1975 if ((level + 1 < __kmp_nested_nth.used) && 1976 (__kmp_nested_nth.nth[level + 1] != nthreads_icv)) { 1977 nthreads_icv = __kmp_nested_nth.nth[level + 1]; 1978 } else { 1979 nthreads_icv = 0; // don't update 1980 } 1981 1982 #if OMP_40_ENABLED 1983 // Figure out the proc_bind_policy for the new team. 1984 kmp_proc_bind_t proc_bind = master_th->th.th_set_proc_bind; 1985 kmp_proc_bind_t proc_bind_icv = 1986 proc_bind_default; // proc_bind_default means don't update 1987 if (master_th->th.th_current_task->td_icvs.proc_bind == proc_bind_false) { 1988 proc_bind = proc_bind_false; 1989 } else { 1990 if (proc_bind == proc_bind_default) { 1991 // No proc_bind clause specified; use current proc-bind-var for this 1992 // parallel region 1993 proc_bind = master_th->th.th_current_task->td_icvs.proc_bind; 1994 } 1995 /* else: The proc_bind policy was specified explicitly on parallel clause. 1996 This overrides proc-bind-var for this parallel region, but does not 1997 change proc-bind-var. */ 1998 // Figure the value of proc-bind-var for the child threads. 1999 if ((level + 1 < __kmp_nested_proc_bind.used) && 2000 (__kmp_nested_proc_bind.bind_types[level + 1] != 2001 master_th->th.th_current_task->td_icvs.proc_bind)) { 2002 proc_bind_icv = __kmp_nested_proc_bind.bind_types[level + 1]; 2003 } 2004 } 2005 2006 // Reset for next parallel region 2007 master_th->th.th_set_proc_bind = proc_bind_default; 2008 #endif /* OMP_40_ENABLED */ 2009 2010 if ((nthreads_icv > 0) 2011 #if OMP_40_ENABLED 2012 || (proc_bind_icv != proc_bind_default) 2013 #endif /* OMP_40_ENABLED */ 2014 ) { 2015 kmp_internal_control_t new_icvs; 2016 copy_icvs(&new_icvs, &master_th->th.th_current_task->td_icvs); 2017 new_icvs.next = NULL; 2018 if (nthreads_icv > 0) { 2019 new_icvs.nproc = nthreads_icv; 2020 } 2021 2022 #if OMP_40_ENABLED 2023 if (proc_bind_icv != proc_bind_default) { 2024 new_icvs.proc_bind = proc_bind_icv; 2025 } 2026 #endif /* OMP_40_ENABLED */ 2027 2028 /* allocate a new parallel team */ 2029 KF_TRACE(10, ("__kmp_fork_call: before __kmp_allocate_team\n")); 2030 team = __kmp_allocate_team(root, nthreads, nthreads, 2031 #if OMPT_SUPPORT 2032 ompt_parallel_data, 2033 #endif 2034 #if OMP_40_ENABLED 2035 proc_bind, 2036 #endif 2037 &new_icvs, argc USE_NESTED_HOT_ARG(master_th)); 2038 } else { 2039 /* allocate a new parallel team */ 2040 KF_TRACE(10, ("__kmp_fork_call: before __kmp_allocate_team\n")); 2041 team = __kmp_allocate_team(root, nthreads, nthreads, 2042 #if OMPT_SUPPORT 2043 ompt_parallel_data, 2044 #endif 2045 #if OMP_40_ENABLED 2046 proc_bind, 2047 #endif 2048 &master_th->th.th_current_task->td_icvs, 2049 argc USE_NESTED_HOT_ARG(master_th)); 2050 } 2051 KF_TRACE( 2052 10, ("__kmp_fork_call: after __kmp_allocate_team - team = %p\n", team)); 2053 2054 /* setup the new team */ 2055 KMP_CHECK_UPDATE(team->t.t_master_tid, master_tid); 2056 KMP_CHECK_UPDATE(team->t.t_master_this_cons, master_this_cons); 2057 KMP_CHECK_UPDATE(team->t.t_ident, loc); 2058 KMP_CHECK_UPDATE(team->t.t_parent, parent_team); 2059 KMP_CHECK_UPDATE_SYNC(team->t.t_pkfn, microtask); 2060 #if OMPT_SUPPORT 2061 KMP_CHECK_UPDATE_SYNC(team->t.ompt_team_info.master_return_address, 2062 return_address); 2063 #endif 2064 KMP_CHECK_UPDATE(team->t.t_invoke, invoker); // TODO move to root, maybe 2065 // TODO: parent_team->t.t_level == INT_MAX ??? 2066 #if OMP_40_ENABLED 2067 if (!master_th->th.th_teams_microtask || level > teams_level) { 2068 #endif /* OMP_40_ENABLED */ 2069 int new_level = parent_team->t.t_level + 1; 2070 KMP_CHECK_UPDATE(team->t.t_level, new_level); 2071 new_level = parent_team->t.t_active_level + 1; 2072 KMP_CHECK_UPDATE(team->t.t_active_level, new_level); 2073 #if OMP_40_ENABLED 2074 } else { 2075 // AC: Do not increase parallel level at start of the teams construct 2076 int new_level = parent_team->t.t_level; 2077 KMP_CHECK_UPDATE(team->t.t_level, new_level); 2078 new_level = parent_team->t.t_active_level; 2079 KMP_CHECK_UPDATE(team->t.t_active_level, new_level); 2080 } 2081 #endif /* OMP_40_ENABLED */ 2082 kmp_r_sched_t new_sched = get__sched_2(parent_team, master_tid); 2083 // set master's schedule as new run-time schedule 2084 KMP_CHECK_UPDATE(team->t.t_sched.sched, new_sched.sched); 2085 2086 #if OMP_40_ENABLED 2087 KMP_CHECK_UPDATE(team->t.t_cancel_request, cancel_noreq); 2088 #endif 2089 #if OMP_50_ENABLED 2090 KMP_CHECK_UPDATE(team->t.t_def_allocator, master_th->th.th_def_allocator); 2091 #endif 2092 2093 // Update the floating point rounding in the team if required. 2094 propagateFPControl(team); 2095 2096 if (__kmp_tasking_mode != tskm_immediate_exec) { 2097 // Set master's task team to team's task team. Unless this is hot team, it 2098 // should be NULL. 2099 KMP_DEBUG_ASSERT(master_th->th.th_task_team == 2100 parent_team->t.t_task_team[master_th->th.th_task_state]); 2101 KA_TRACE(20, ("__kmp_fork_call: Master T#%d pushing task_team %p / team " 2102 "%p, new task_team %p / team %p\n", 2103 __kmp_gtid_from_thread(master_th), 2104 master_th->th.th_task_team, parent_team, 2105 team->t.t_task_team[master_th->th.th_task_state], team)); 2106 2107 if (active_level || master_th->th.th_task_team) { 2108 // Take a memo of master's task_state 2109 KMP_DEBUG_ASSERT(master_th->th.th_task_state_memo_stack); 2110 if (master_th->th.th_task_state_top >= 2111 master_th->th.th_task_state_stack_sz) { // increase size 2112 kmp_uint32 new_size = 2 * master_th->th.th_task_state_stack_sz; 2113 kmp_uint8 *old_stack, *new_stack; 2114 kmp_uint32 i; 2115 new_stack = (kmp_uint8 *)__kmp_allocate(new_size); 2116 for (i = 0; i < master_th->th.th_task_state_stack_sz; ++i) { 2117 new_stack[i] = master_th->th.th_task_state_memo_stack[i]; 2118 } 2119 for (i = master_th->th.th_task_state_stack_sz; i < new_size; 2120 ++i) { // zero-init rest of stack 2121 new_stack[i] = 0; 2122 } 2123 old_stack = master_th->th.th_task_state_memo_stack; 2124 master_th->th.th_task_state_memo_stack = new_stack; 2125 master_th->th.th_task_state_stack_sz = new_size; 2126 __kmp_free(old_stack); 2127 } 2128 // Store master's task_state on stack 2129 master_th->th 2130 .th_task_state_memo_stack[master_th->th.th_task_state_top] = 2131 master_th->th.th_task_state; 2132 master_th->th.th_task_state_top++; 2133 #if KMP_NESTED_HOT_TEAMS 2134 if (master_th->th.th_hot_teams && 2135 team == master_th->th.th_hot_teams[active_level].hot_team) { 2136 // Restore master's nested state if nested hot team 2137 master_th->th.th_task_state = 2138 master_th->th 2139 .th_task_state_memo_stack[master_th->th.th_task_state_top]; 2140 } else { 2141 #endif 2142 master_th->th.th_task_state = 0; 2143 #if KMP_NESTED_HOT_TEAMS 2144 } 2145 #endif 2146 } 2147 #if !KMP_NESTED_HOT_TEAMS 2148 KMP_DEBUG_ASSERT((master_th->th.th_task_team == NULL) || 2149 (team == root->r.r_hot_team)); 2150 #endif 2151 } 2152 2153 KA_TRACE( 2154 20, 2155 ("__kmp_fork_call: T#%d(%d:%d)->(%d:0) created a team of %d threads\n", 2156 gtid, parent_team->t.t_id, team->t.t_master_tid, team->t.t_id, 2157 team->t.t_nproc)); 2158 KMP_DEBUG_ASSERT(team != root->r.r_hot_team || 2159 (team->t.t_master_tid == 0 && 2160 (team->t.t_parent == root->r.r_root_team || 2161 team->t.t_parent->t.t_serialized))); 2162 KMP_MB(); 2163 2164 /* now, setup the arguments */ 2165 argv = (void **)team->t.t_argv; 2166 #if OMP_40_ENABLED 2167 if (ap) { 2168 #endif /* OMP_40_ENABLED */ 2169 for (i = argc - 1; i >= 0; --i) { 2170 // TODO: revert workaround for Intel(R) 64 tracker #96 2171 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 2172 void *new_argv = va_arg(*ap, void *); 2173 #else 2174 void *new_argv = va_arg(ap, void *); 2175 #endif 2176 KMP_CHECK_UPDATE(*argv, new_argv); 2177 argv++; 2178 } 2179 #if OMP_40_ENABLED 2180 } else { 2181 for (i = 0; i < argc; ++i) { 2182 // Get args from parent team for teams construct 2183 KMP_CHECK_UPDATE(argv[i], team->t.t_parent->t.t_argv[i]); 2184 } 2185 } 2186 #endif /* OMP_40_ENABLED */ 2187 2188 /* now actually fork the threads */ 2189 KMP_CHECK_UPDATE(team->t.t_master_active, master_active); 2190 if (!root->r.r_active) // Only do assignment if it prevents cache ping-pong 2191 root->r.r_active = TRUE; 2192 2193 __kmp_fork_team_threads(root, team, master_th, gtid); 2194 __kmp_setup_icv_copy(team, nthreads, 2195 &master_th->th.th_current_task->td_icvs, loc); 2196 2197 #if OMPT_SUPPORT 2198 master_th->th.ompt_thread_info.state = omp_state_work_parallel; 2199 #endif 2200 2201 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 2202 2203 #if USE_ITT_BUILD 2204 if (team->t.t_active_level == 1 // only report frames at level 1 2205 #if OMP_40_ENABLED 2206 && !master_th->th.th_teams_microtask // not in teams construct 2207 #endif /* OMP_40_ENABLED */ 2208 ) { 2209 #if USE_ITT_NOTIFY 2210 if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) && 2211 (__kmp_forkjoin_frames_mode == 3 || 2212 __kmp_forkjoin_frames_mode == 1)) { 2213 kmp_uint64 tmp_time = 0; 2214 if (__itt_get_timestamp_ptr) 2215 tmp_time = __itt_get_timestamp(); 2216 // Internal fork - report frame begin 2217 master_th->th.th_frame_time = tmp_time; 2218 if (__kmp_forkjoin_frames_mode == 3) 2219 team->t.t_region_time = tmp_time; 2220 } else 2221 // only one notification scheme (either "submit" or "forking/joined", not both) 2222 #endif /* USE_ITT_NOTIFY */ 2223 if ((__itt_frame_begin_v3_ptr || KMP_ITT_DEBUG) && 2224 __kmp_forkjoin_frames && !__kmp_forkjoin_frames_mode) { 2225 // Mark start of "parallel" region for Intel(R) VTune(TM) analyzer. 2226 __kmp_itt_region_forking(gtid, team->t.t_nproc, 0); 2227 } 2228 } 2229 #endif /* USE_ITT_BUILD */ 2230 2231 /* now go on and do the work */ 2232 KMP_DEBUG_ASSERT(team == __kmp_threads[gtid]->th.th_team); 2233 KMP_MB(); 2234 KF_TRACE(10, 2235 ("__kmp_internal_fork : root=%p, team=%p, master_th=%p, gtid=%d\n", 2236 root, team, master_th, gtid)); 2237 2238 #if USE_ITT_BUILD 2239 if (__itt_stack_caller_create_ptr) { 2240 team->t.t_stack_id = 2241 __kmp_itt_stack_caller_create(); // create new stack stitching id 2242 // before entering fork barrier 2243 } 2244 #endif /* USE_ITT_BUILD */ 2245 2246 #if OMP_40_ENABLED 2247 // AC: skip __kmp_internal_fork at teams construct, let only master 2248 // threads execute 2249 if (ap) 2250 #endif /* OMP_40_ENABLED */ 2251 { 2252 __kmp_internal_fork(loc, gtid, team); 2253 KF_TRACE(10, ("__kmp_internal_fork : after : root=%p, team=%p, " 2254 "master_th=%p, gtid=%d\n", 2255 root, team, master_th, gtid)); 2256 } 2257 2258 if (call_context == fork_context_gnu) { 2259 KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid)); 2260 return TRUE; 2261 } 2262 2263 /* Invoke microtask for MASTER thread */ 2264 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) invoke microtask = %p\n", gtid, 2265 team->t.t_id, team->t.t_pkfn)); 2266 } // END of timer KMP_fork_call block 2267 2268 if (!team->t.t_invoke(gtid)) { 2269 KMP_ASSERT2(0, "cannot invoke microtask for MASTER thread"); 2270 } 2271 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) done microtask = %p\n", gtid, 2272 team->t.t_id, team->t.t_pkfn)); 2273 KMP_MB(); /* Flush all pending memory write invalidates. */ 2274 2275 KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid)); 2276 2277 #if OMPT_SUPPORT 2278 if (ompt_enabled.enabled) { 2279 master_th->th.ompt_thread_info.state = omp_state_overhead; 2280 } 2281 #endif 2282 2283 return TRUE; 2284 } 2285 2286 #if OMPT_SUPPORT 2287 static inline void __kmp_join_restore_state(kmp_info_t *thread, 2288 kmp_team_t *team) { 2289 // restore state outside the region 2290 thread->th.ompt_thread_info.state = 2291 ((team->t.t_serialized) ? omp_state_work_serial 2292 : omp_state_work_parallel); 2293 } 2294 2295 static inline void __kmp_join_ompt(int gtid, kmp_info_t *thread, 2296 kmp_team_t *team, ompt_data_t *parallel_data, 2297 fork_context_e fork_context, void *codeptr) { 2298 ompt_task_info_t *task_info = __ompt_get_task_info_object(0); 2299 if (ompt_enabled.ompt_callback_parallel_end) { 2300 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 2301 parallel_data, &(task_info->task_data), OMPT_INVOKER(fork_context), 2302 codeptr); 2303 } 2304 2305 task_info->frame.enter_frame = NULL; 2306 __kmp_join_restore_state(thread, team); 2307 } 2308 #endif 2309 2310 void __kmp_join_call(ident_t *loc, int gtid 2311 #if OMPT_SUPPORT 2312 , 2313 enum fork_context_e fork_context 2314 #endif 2315 #if OMP_40_ENABLED 2316 , 2317 int exit_teams 2318 #endif /* OMP_40_ENABLED */ 2319 ) { 2320 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_join_call); 2321 kmp_team_t *team; 2322 kmp_team_t *parent_team; 2323 kmp_info_t *master_th; 2324 kmp_root_t *root; 2325 int master_active; 2326 int i; 2327 2328 KA_TRACE(20, ("__kmp_join_call: enter T#%d\n", gtid)); 2329 2330 /* setup current data */ 2331 master_th = __kmp_threads[gtid]; 2332 root = master_th->th.th_root; 2333 team = master_th->th.th_team; 2334 parent_team = team->t.t_parent; 2335 2336 master_th->th.th_ident = loc; 2337 2338 #if OMPT_SUPPORT 2339 if (ompt_enabled.enabled) { 2340 master_th->th.ompt_thread_info.state = omp_state_overhead; 2341 } 2342 #endif 2343 2344 #if KMP_DEBUG 2345 if (__kmp_tasking_mode != tskm_immediate_exec && !exit_teams) { 2346 KA_TRACE(20, ("__kmp_join_call: T#%d, old team = %p old task_team = %p, " 2347 "th_task_team = %p\n", 2348 __kmp_gtid_from_thread(master_th), team, 2349 team->t.t_task_team[master_th->th.th_task_state], 2350 master_th->th.th_task_team)); 2351 KMP_DEBUG_ASSERT(master_th->th.th_task_team == 2352 team->t.t_task_team[master_th->th.th_task_state]); 2353 } 2354 #endif 2355 2356 if (team->t.t_serialized) { 2357 #if OMP_40_ENABLED 2358 if (master_th->th.th_teams_microtask) { 2359 // We are in teams construct 2360 int level = team->t.t_level; 2361 int tlevel = master_th->th.th_teams_level; 2362 if (level == tlevel) { 2363 // AC: we haven't incremented it earlier at start of teams construct, 2364 // so do it here - at the end of teams construct 2365 team->t.t_level++; 2366 } else if (level == tlevel + 1) { 2367 // AC: we are exiting parallel inside teams, need to increment 2368 // serialization in order to restore it in the next call to 2369 // __kmpc_end_serialized_parallel 2370 team->t.t_serialized++; 2371 } 2372 } 2373 #endif /* OMP_40_ENABLED */ 2374 __kmpc_end_serialized_parallel(loc, gtid); 2375 2376 #if OMPT_SUPPORT 2377 if (ompt_enabled.enabled) { 2378 __kmp_join_restore_state(master_th, parent_team); 2379 } 2380 #endif 2381 2382 return; 2383 } 2384 2385 master_active = team->t.t_master_active; 2386 2387 #if OMP_40_ENABLED 2388 if (!exit_teams) 2389 #endif /* OMP_40_ENABLED */ 2390 { 2391 // AC: No barrier for internal teams at exit from teams construct. 2392 // But there is barrier for external team (league). 2393 __kmp_internal_join(loc, gtid, team); 2394 } 2395 #if OMP_40_ENABLED 2396 else { 2397 master_th->th.th_task_state = 2398 0; // AC: no tasking in teams (out of any parallel) 2399 } 2400 #endif /* OMP_40_ENABLED */ 2401 2402 KMP_MB(); 2403 2404 #if OMPT_SUPPORT 2405 ompt_data_t *parallel_data = &(team->t.ompt_team_info.parallel_data); 2406 void *codeptr = team->t.ompt_team_info.master_return_address; 2407 #endif 2408 2409 #if USE_ITT_BUILD 2410 if (__itt_stack_caller_create_ptr) { 2411 __kmp_itt_stack_caller_destroy( 2412 (__itt_caller)team->t 2413 .t_stack_id); // destroy the stack stitching id after join barrier 2414 } 2415 2416 // Mark end of "parallel" region for Intel(R) VTune(TM) analyzer. 2417 if (team->t.t_active_level == 1 2418 #if OMP_40_ENABLED 2419 && !master_th->th.th_teams_microtask /* not in teams construct */ 2420 #endif /* OMP_40_ENABLED */ 2421 ) { 2422 master_th->th.th_ident = loc; 2423 // only one notification scheme (either "submit" or "forking/joined", not 2424 // both) 2425 if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) && 2426 __kmp_forkjoin_frames_mode == 3) 2427 __kmp_itt_frame_submit(gtid, team->t.t_region_time, 2428 master_th->th.th_frame_time, 0, loc, 2429 master_th->th.th_team_nproc, 1); 2430 else if ((__itt_frame_end_v3_ptr || KMP_ITT_DEBUG) && 2431 !__kmp_forkjoin_frames_mode && __kmp_forkjoin_frames) 2432 __kmp_itt_region_joined(gtid); 2433 } // active_level == 1 2434 #endif /* USE_ITT_BUILD */ 2435 2436 #if OMP_40_ENABLED 2437 if (master_th->th.th_teams_microtask && !exit_teams && 2438 team->t.t_pkfn != (microtask_t)__kmp_teams_master && 2439 team->t.t_level == master_th->th.th_teams_level + 1) { 2440 // AC: We need to leave the team structure intact at the end of parallel 2441 // inside the teams construct, so that at the next parallel same (hot) team 2442 // works, only adjust nesting levels 2443 2444 /* Decrement our nested depth level */ 2445 team->t.t_level--; 2446 team->t.t_active_level--; 2447 KMP_ATOMIC_DEC(&root->r.r_in_parallel); 2448 2449 /* Restore number of threads in the team if needed */ 2450 if (master_th->th.th_team_nproc < master_th->th.th_teams_size.nth) { 2451 int old_num = master_th->th.th_team_nproc; 2452 int new_num = master_th->th.th_teams_size.nth; 2453 kmp_info_t **other_threads = team->t.t_threads; 2454 team->t.t_nproc = new_num; 2455 for (i = 0; i < old_num; ++i) { 2456 other_threads[i]->th.th_team_nproc = new_num; 2457 } 2458 // Adjust states of non-used threads of the team 2459 for (i = old_num; i < new_num; ++i) { 2460 // Re-initialize thread's barrier data. 2461 int b; 2462 kmp_balign_t *balign = other_threads[i]->th.th_bar; 2463 for (b = 0; b < bs_last_barrier; ++b) { 2464 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 2465 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 2466 #if USE_DEBUGGER 2467 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 2468 #endif 2469 } 2470 if (__kmp_tasking_mode != tskm_immediate_exec) { 2471 // Synchronize thread's task state 2472 other_threads[i]->th.th_task_state = master_th->th.th_task_state; 2473 } 2474 } 2475 } 2476 2477 #if OMPT_SUPPORT 2478 if (ompt_enabled.enabled) { 2479 __kmp_join_ompt(gtid, master_th, parent_team, parallel_data, fork_context, 2480 codeptr); 2481 } 2482 #endif 2483 2484 return; 2485 } 2486 #endif /* OMP_40_ENABLED */ 2487 2488 /* do cleanup and restore the parent team */ 2489 master_th->th.th_info.ds.ds_tid = team->t.t_master_tid; 2490 master_th->th.th_local.this_construct = team->t.t_master_this_cons; 2491 2492 master_th->th.th_dispatch = &parent_team->t.t_dispatch[team->t.t_master_tid]; 2493 2494 /* jc: The following lock has instructions with REL and ACQ semantics, 2495 separating the parallel user code called in this parallel region 2496 from the serial user code called after this function returns. */ 2497 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 2498 2499 #if OMP_40_ENABLED 2500 if (!master_th->th.th_teams_microtask || 2501 team->t.t_level > master_th->th.th_teams_level) 2502 #endif /* OMP_40_ENABLED */ 2503 { 2504 /* Decrement our nested depth level */ 2505 KMP_ATOMIC_DEC(&root->r.r_in_parallel); 2506 } 2507 KMP_DEBUG_ASSERT(root->r.r_in_parallel >= 0); 2508 2509 #if OMPT_SUPPORT 2510 if (ompt_enabled.enabled) { 2511 ompt_task_info_t *task_info = __ompt_get_task_info_object(0); 2512 if (ompt_enabled.ompt_callback_implicit_task) { 2513 int ompt_team_size = team->t.t_nproc; 2514 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 2515 ompt_scope_end, NULL, &(task_info->task_data), ompt_team_size, 2516 OMPT_CUR_TASK_INFO(master_th)->thread_num); 2517 } 2518 2519 task_info->frame.exit_frame = NULL; 2520 task_info->task_data = ompt_data_none; 2521 } 2522 #endif 2523 2524 KF_TRACE(10, ("__kmp_join_call1: T#%d, this_thread=%p team=%p\n", 0, 2525 master_th, team)); 2526 __kmp_pop_current_task_from_thread(master_th); 2527 2528 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 2529 // Restore master thread's partition. 2530 master_th->th.th_first_place = team->t.t_first_place; 2531 master_th->th.th_last_place = team->t.t_last_place; 2532 #endif /* OMP_40_ENABLED */ 2533 #if OMP_50_ENABLED 2534 master_th->th.th_def_allocator = team->t.t_def_allocator; 2535 #endif 2536 2537 updateHWFPControl(team); 2538 2539 if (root->r.r_active != master_active) 2540 root->r.r_active = master_active; 2541 2542 __kmp_free_team(root, team USE_NESTED_HOT_ARG( 2543 master_th)); // this will free worker threads 2544 2545 /* this race was fun to find. make sure the following is in the critical 2546 region otherwise assertions may fail occasionally since the old team may be 2547 reallocated and the hierarchy appears inconsistent. it is actually safe to 2548 run and won't cause any bugs, but will cause those assertion failures. it's 2549 only one deref&assign so might as well put this in the critical region */ 2550 master_th->th.th_team = parent_team; 2551 master_th->th.th_team_nproc = parent_team->t.t_nproc; 2552 master_th->th.th_team_master = parent_team->t.t_threads[0]; 2553 master_th->th.th_team_serialized = parent_team->t.t_serialized; 2554 2555 /* restore serialized team, if need be */ 2556 if (parent_team->t.t_serialized && 2557 parent_team != master_th->th.th_serial_team && 2558 parent_team != root->r.r_root_team) { 2559 __kmp_free_team(root, 2560 master_th->th.th_serial_team USE_NESTED_HOT_ARG(NULL)); 2561 master_th->th.th_serial_team = parent_team; 2562 } 2563 2564 if (__kmp_tasking_mode != tskm_immediate_exec) { 2565 if (master_th->th.th_task_state_top > 2566 0) { // Restore task state from memo stack 2567 KMP_DEBUG_ASSERT(master_th->th.th_task_state_memo_stack); 2568 // Remember master's state if we re-use this nested hot team 2569 master_th->th.th_task_state_memo_stack[master_th->th.th_task_state_top] = 2570 master_th->th.th_task_state; 2571 --master_th->th.th_task_state_top; // pop 2572 // Now restore state at this level 2573 master_th->th.th_task_state = 2574 master_th->th 2575 .th_task_state_memo_stack[master_th->th.th_task_state_top]; 2576 } 2577 // Copy the task team from the parent team to the master thread 2578 master_th->th.th_task_team = 2579 parent_team->t.t_task_team[master_th->th.th_task_state]; 2580 KA_TRACE(20, 2581 ("__kmp_join_call: Master T#%d restoring task_team %p / team %p\n", 2582 __kmp_gtid_from_thread(master_th), master_th->th.th_task_team, 2583 parent_team)); 2584 } 2585 2586 // TODO: GEH - cannot do this assertion because root thread not set up as 2587 // executing 2588 // KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 0 ); 2589 master_th->th.th_current_task->td_flags.executing = 1; 2590 2591 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 2592 2593 #if OMPT_SUPPORT 2594 if (ompt_enabled.enabled) { 2595 __kmp_join_ompt(gtid, master_th, parent_team, parallel_data, fork_context, 2596 codeptr); 2597 } 2598 #endif 2599 2600 KMP_MB(); 2601 KA_TRACE(20, ("__kmp_join_call: exit T#%d\n", gtid)); 2602 } 2603 2604 /* Check whether we should push an internal control record onto the 2605 serial team stack. If so, do it. */ 2606 void __kmp_save_internal_controls(kmp_info_t *thread) { 2607 2608 if (thread->th.th_team != thread->th.th_serial_team) { 2609 return; 2610 } 2611 if (thread->th.th_team->t.t_serialized > 1) { 2612 int push = 0; 2613 2614 if (thread->th.th_team->t.t_control_stack_top == NULL) { 2615 push = 1; 2616 } else { 2617 if (thread->th.th_team->t.t_control_stack_top->serial_nesting_level != 2618 thread->th.th_team->t.t_serialized) { 2619 push = 1; 2620 } 2621 } 2622 if (push) { /* push a record on the serial team's stack */ 2623 kmp_internal_control_t *control = 2624 (kmp_internal_control_t *)__kmp_allocate( 2625 sizeof(kmp_internal_control_t)); 2626 2627 copy_icvs(control, &thread->th.th_current_task->td_icvs); 2628 2629 control->serial_nesting_level = thread->th.th_team->t.t_serialized; 2630 2631 control->next = thread->th.th_team->t.t_control_stack_top; 2632 thread->th.th_team->t.t_control_stack_top = control; 2633 } 2634 } 2635 } 2636 2637 /* Changes set_nproc */ 2638 void __kmp_set_num_threads(int new_nth, int gtid) { 2639 kmp_info_t *thread; 2640 kmp_root_t *root; 2641 2642 KF_TRACE(10, ("__kmp_set_num_threads: new __kmp_nth = %d\n", new_nth)); 2643 KMP_DEBUG_ASSERT(__kmp_init_serial); 2644 2645 if (new_nth < 1) 2646 new_nth = 1; 2647 else if (new_nth > __kmp_max_nth) 2648 new_nth = __kmp_max_nth; 2649 2650 KMP_COUNT_VALUE(OMP_set_numthreads, new_nth); 2651 thread = __kmp_threads[gtid]; 2652 2653 __kmp_save_internal_controls(thread); 2654 2655 set__nproc(thread, new_nth); 2656 2657 // If this omp_set_num_threads() call will cause the hot team size to be 2658 // reduced (in the absence of a num_threads clause), then reduce it now, 2659 // rather than waiting for the next parallel region. 2660 root = thread->th.th_root; 2661 if (__kmp_init_parallel && (!root->r.r_active) && 2662 (root->r.r_hot_team->t.t_nproc > new_nth) 2663 #if KMP_NESTED_HOT_TEAMS 2664 && __kmp_hot_teams_max_level && !__kmp_hot_teams_mode 2665 #endif 2666 ) { 2667 kmp_team_t *hot_team = root->r.r_hot_team; 2668 int f; 2669 2670 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 2671 2672 // Release the extra threads we don't need any more. 2673 for (f = new_nth; f < hot_team->t.t_nproc; f++) { 2674 KMP_DEBUG_ASSERT(hot_team->t.t_threads[f] != NULL); 2675 if (__kmp_tasking_mode != tskm_immediate_exec) { 2676 // When decreasing team size, threads no longer in the team should unref 2677 // task team. 2678 hot_team->t.t_threads[f]->th.th_task_team = NULL; 2679 } 2680 __kmp_free_thread(hot_team->t.t_threads[f]); 2681 hot_team->t.t_threads[f] = NULL; 2682 } 2683 hot_team->t.t_nproc = new_nth; 2684 #if KMP_NESTED_HOT_TEAMS 2685 if (thread->th.th_hot_teams) { 2686 KMP_DEBUG_ASSERT(hot_team == thread->th.th_hot_teams[0].hot_team); 2687 thread->th.th_hot_teams[0].hot_team_nth = new_nth; 2688 } 2689 #endif 2690 2691 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 2692 2693 // Update the t_nproc field in the threads that are still active. 2694 for (f = 0; f < new_nth; f++) { 2695 KMP_DEBUG_ASSERT(hot_team->t.t_threads[f] != NULL); 2696 hot_team->t.t_threads[f]->th.th_team_nproc = new_nth; 2697 } 2698 // Special flag in case omp_set_num_threads() call 2699 hot_team->t.t_size_changed = -1; 2700 } 2701 } 2702 2703 /* Changes max_active_levels */ 2704 void __kmp_set_max_active_levels(int gtid, int max_active_levels) { 2705 kmp_info_t *thread; 2706 2707 KF_TRACE(10, ("__kmp_set_max_active_levels: new max_active_levels for thread " 2708 "%d = (%d)\n", 2709 gtid, max_active_levels)); 2710 KMP_DEBUG_ASSERT(__kmp_init_serial); 2711 2712 // validate max_active_levels 2713 if (max_active_levels < 0) { 2714 KMP_WARNING(ActiveLevelsNegative, max_active_levels); 2715 // We ignore this call if the user has specified a negative value. 2716 // The current setting won't be changed. The last valid setting will be 2717 // used. A warning will be issued (if warnings are allowed as controlled by 2718 // the KMP_WARNINGS env var). 2719 KF_TRACE(10, ("__kmp_set_max_active_levels: the call is ignored: new " 2720 "max_active_levels for thread %d = (%d)\n", 2721 gtid, max_active_levels)); 2722 return; 2723 } 2724 if (max_active_levels <= KMP_MAX_ACTIVE_LEVELS_LIMIT) { 2725 // it's OK, the max_active_levels is within the valid range: [ 0; 2726 // KMP_MAX_ACTIVE_LEVELS_LIMIT ] 2727 // We allow a zero value. (implementation defined behavior) 2728 } else { 2729 KMP_WARNING(ActiveLevelsExceedLimit, max_active_levels, 2730 KMP_MAX_ACTIVE_LEVELS_LIMIT); 2731 max_active_levels = KMP_MAX_ACTIVE_LEVELS_LIMIT; 2732 // Current upper limit is MAX_INT. (implementation defined behavior) 2733 // If the input exceeds the upper limit, we correct the input to be the 2734 // upper limit. (implementation defined behavior) 2735 // Actually, the flow should never get here until we use MAX_INT limit. 2736 } 2737 KF_TRACE(10, ("__kmp_set_max_active_levels: after validation: new " 2738 "max_active_levels for thread %d = (%d)\n", 2739 gtid, max_active_levels)); 2740 2741 thread = __kmp_threads[gtid]; 2742 2743 __kmp_save_internal_controls(thread); 2744 2745 set__max_active_levels(thread, max_active_levels); 2746 } 2747 2748 /* Gets max_active_levels */ 2749 int __kmp_get_max_active_levels(int gtid) { 2750 kmp_info_t *thread; 2751 2752 KF_TRACE(10, ("__kmp_get_max_active_levels: thread %d\n", gtid)); 2753 KMP_DEBUG_ASSERT(__kmp_init_serial); 2754 2755 thread = __kmp_threads[gtid]; 2756 KMP_DEBUG_ASSERT(thread->th.th_current_task); 2757 KF_TRACE(10, ("__kmp_get_max_active_levels: thread %d, curtask=%p, " 2758 "curtask_maxaclevel=%d\n", 2759 gtid, thread->th.th_current_task, 2760 thread->th.th_current_task->td_icvs.max_active_levels)); 2761 return thread->th.th_current_task->td_icvs.max_active_levels; 2762 } 2763 2764 /* Changes def_sched_var ICV values (run-time schedule kind and chunk) */ 2765 void __kmp_set_schedule(int gtid, kmp_sched_t kind, int chunk) { 2766 kmp_info_t *thread; 2767 // kmp_team_t *team; 2768 2769 KF_TRACE(10, ("__kmp_set_schedule: new schedule for thread %d = (%d, %d)\n", 2770 gtid, (int)kind, chunk)); 2771 KMP_DEBUG_ASSERT(__kmp_init_serial); 2772 2773 // Check if the kind parameter is valid, correct if needed. 2774 // Valid parameters should fit in one of two intervals - standard or extended: 2775 // <lower>, <valid>, <upper_std>, <lower_ext>, <valid>, <upper> 2776 // 2008-01-25: 0, 1 - 4, 5, 100, 101 - 102, 103 2777 if (kind <= kmp_sched_lower || kind >= kmp_sched_upper || 2778 (kind <= kmp_sched_lower_ext && kind >= kmp_sched_upper_std)) { 2779 // TODO: Hint needs attention in case we change the default schedule. 2780 __kmp_msg(kmp_ms_warning, KMP_MSG(ScheduleKindOutOfRange, kind), 2781 KMP_HNT(DefaultScheduleKindUsed, "static, no chunk"), 2782 __kmp_msg_null); 2783 kind = kmp_sched_default; 2784 chunk = 0; // ignore chunk value in case of bad kind 2785 } 2786 2787 thread = __kmp_threads[gtid]; 2788 2789 __kmp_save_internal_controls(thread); 2790 2791 if (kind < kmp_sched_upper_std) { 2792 if (kind == kmp_sched_static && chunk < KMP_DEFAULT_CHUNK) { 2793 // differ static chunked vs. unchunked: chunk should be invalid to 2794 // indicate unchunked schedule (which is the default) 2795 thread->th.th_current_task->td_icvs.sched.r_sched_type = kmp_sch_static; 2796 } else { 2797 thread->th.th_current_task->td_icvs.sched.r_sched_type = 2798 __kmp_sch_map[kind - kmp_sched_lower - 1]; 2799 } 2800 } else { 2801 // __kmp_sch_map[ kind - kmp_sched_lower_ext + kmp_sched_upper_std - 2802 // kmp_sched_lower - 2 ]; 2803 thread->th.th_current_task->td_icvs.sched.r_sched_type = 2804 __kmp_sch_map[kind - kmp_sched_lower_ext + kmp_sched_upper_std - 2805 kmp_sched_lower - 2]; 2806 } 2807 if (kind == kmp_sched_auto || chunk < 1) { 2808 // ignore parameter chunk for schedule auto 2809 thread->th.th_current_task->td_icvs.sched.chunk = KMP_DEFAULT_CHUNK; 2810 } else { 2811 thread->th.th_current_task->td_icvs.sched.chunk = chunk; 2812 } 2813 } 2814 2815 /* Gets def_sched_var ICV values */ 2816 void __kmp_get_schedule(int gtid, kmp_sched_t *kind, int *chunk) { 2817 kmp_info_t *thread; 2818 enum sched_type th_type; 2819 2820 KF_TRACE(10, ("__kmp_get_schedule: thread %d\n", gtid)); 2821 KMP_DEBUG_ASSERT(__kmp_init_serial); 2822 2823 thread = __kmp_threads[gtid]; 2824 2825 th_type = thread->th.th_current_task->td_icvs.sched.r_sched_type; 2826 2827 switch (th_type) { 2828 case kmp_sch_static: 2829 case kmp_sch_static_greedy: 2830 case kmp_sch_static_balanced: 2831 *kind = kmp_sched_static; 2832 *chunk = 0; // chunk was not set, try to show this fact via zero value 2833 return; 2834 case kmp_sch_static_chunked: 2835 *kind = kmp_sched_static; 2836 break; 2837 case kmp_sch_dynamic_chunked: 2838 *kind = kmp_sched_dynamic; 2839 break; 2840 case kmp_sch_guided_chunked: 2841 case kmp_sch_guided_iterative_chunked: 2842 case kmp_sch_guided_analytical_chunked: 2843 *kind = kmp_sched_guided; 2844 break; 2845 case kmp_sch_auto: 2846 *kind = kmp_sched_auto; 2847 break; 2848 case kmp_sch_trapezoidal: 2849 *kind = kmp_sched_trapezoidal; 2850 break; 2851 #if KMP_STATIC_STEAL_ENABLED 2852 case kmp_sch_static_steal: 2853 *kind = kmp_sched_static_steal; 2854 break; 2855 #endif 2856 default: 2857 KMP_FATAL(UnknownSchedulingType, th_type); 2858 } 2859 2860 *chunk = thread->th.th_current_task->td_icvs.sched.chunk; 2861 } 2862 2863 int __kmp_get_ancestor_thread_num(int gtid, int level) { 2864 2865 int ii, dd; 2866 kmp_team_t *team; 2867 kmp_info_t *thr; 2868 2869 KF_TRACE(10, ("__kmp_get_ancestor_thread_num: thread %d %d\n", gtid, level)); 2870 KMP_DEBUG_ASSERT(__kmp_init_serial); 2871 2872 // validate level 2873 if (level == 0) 2874 return 0; 2875 if (level < 0) 2876 return -1; 2877 thr = __kmp_threads[gtid]; 2878 team = thr->th.th_team; 2879 ii = team->t.t_level; 2880 if (level > ii) 2881 return -1; 2882 2883 #if OMP_40_ENABLED 2884 if (thr->th.th_teams_microtask) { 2885 // AC: we are in teams region where multiple nested teams have same level 2886 int tlevel = thr->th.th_teams_level; // the level of the teams construct 2887 if (level <= 2888 tlevel) { // otherwise usual algorithm works (will not touch the teams) 2889 KMP_DEBUG_ASSERT(ii >= tlevel); 2890 // AC: As we need to pass by the teams league, we need to artificially 2891 // increase ii 2892 if (ii == tlevel) { 2893 ii += 2; // three teams have same level 2894 } else { 2895 ii++; // two teams have same level 2896 } 2897 } 2898 } 2899 #endif 2900 2901 if (ii == level) 2902 return __kmp_tid_from_gtid(gtid); 2903 2904 dd = team->t.t_serialized; 2905 level++; 2906 while (ii > level) { 2907 for (dd = team->t.t_serialized; (dd > 0) && (ii > level); dd--, ii--) { 2908 } 2909 if ((team->t.t_serialized) && (!dd)) { 2910 team = team->t.t_parent; 2911 continue; 2912 } 2913 if (ii > level) { 2914 team = team->t.t_parent; 2915 dd = team->t.t_serialized; 2916 ii--; 2917 } 2918 } 2919 2920 return (dd > 1) ? (0) : (team->t.t_master_tid); 2921 } 2922 2923 int __kmp_get_team_size(int gtid, int level) { 2924 2925 int ii, dd; 2926 kmp_team_t *team; 2927 kmp_info_t *thr; 2928 2929 KF_TRACE(10, ("__kmp_get_team_size: thread %d %d\n", gtid, level)); 2930 KMP_DEBUG_ASSERT(__kmp_init_serial); 2931 2932 // validate level 2933 if (level == 0) 2934 return 1; 2935 if (level < 0) 2936 return -1; 2937 thr = __kmp_threads[gtid]; 2938 team = thr->th.th_team; 2939 ii = team->t.t_level; 2940 if (level > ii) 2941 return -1; 2942 2943 #if OMP_40_ENABLED 2944 if (thr->th.th_teams_microtask) { 2945 // AC: we are in teams region where multiple nested teams have same level 2946 int tlevel = thr->th.th_teams_level; // the level of the teams construct 2947 if (level <= 2948 tlevel) { // otherwise usual algorithm works (will not touch the teams) 2949 KMP_DEBUG_ASSERT(ii >= tlevel); 2950 // AC: As we need to pass by the teams league, we need to artificially 2951 // increase ii 2952 if (ii == tlevel) { 2953 ii += 2; // three teams have same level 2954 } else { 2955 ii++; // two teams have same level 2956 } 2957 } 2958 } 2959 #endif 2960 2961 while (ii > level) { 2962 for (dd = team->t.t_serialized; (dd > 0) && (ii > level); dd--, ii--) { 2963 } 2964 if (team->t.t_serialized && (!dd)) { 2965 team = team->t.t_parent; 2966 continue; 2967 } 2968 if (ii > level) { 2969 team = team->t.t_parent; 2970 ii--; 2971 } 2972 } 2973 2974 return team->t.t_nproc; 2975 } 2976 2977 kmp_r_sched_t __kmp_get_schedule_global() { 2978 // This routine created because pairs (__kmp_sched, __kmp_chunk) and 2979 // (__kmp_static, __kmp_guided) may be changed by kmp_set_defaults 2980 // independently. So one can get the updated schedule here. 2981 2982 kmp_r_sched_t r_sched; 2983 2984 // create schedule from 4 globals: __kmp_sched, __kmp_chunk, __kmp_static, 2985 // __kmp_guided. __kmp_sched should keep original value, so that user can set 2986 // KMP_SCHEDULE multiple times, and thus have different run-time schedules in 2987 // different roots (even in OMP 2.5) 2988 if (__kmp_sched == kmp_sch_static) { 2989 // replace STATIC with more detailed schedule (balanced or greedy) 2990 r_sched.r_sched_type = __kmp_static; 2991 } else if (__kmp_sched == kmp_sch_guided_chunked) { 2992 // replace GUIDED with more detailed schedule (iterative or analytical) 2993 r_sched.r_sched_type = __kmp_guided; 2994 } else { // (STATIC_CHUNKED), or (DYNAMIC_CHUNKED), or other 2995 r_sched.r_sched_type = __kmp_sched; 2996 } 2997 2998 if (__kmp_chunk < KMP_DEFAULT_CHUNK) { 2999 // __kmp_chunk may be wrong here (if it was not ever set) 3000 r_sched.chunk = KMP_DEFAULT_CHUNK; 3001 } else { 3002 r_sched.chunk = __kmp_chunk; 3003 } 3004 3005 return r_sched; 3006 } 3007 3008 /* Allocate (realloc == FALSE) * or reallocate (realloc == TRUE) 3009 at least argc number of *t_argv entries for the requested team. */ 3010 static void __kmp_alloc_argv_entries(int argc, kmp_team_t *team, int realloc) { 3011 3012 KMP_DEBUG_ASSERT(team); 3013 if (!realloc || argc > team->t.t_max_argc) { 3014 3015 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: needed entries=%d, " 3016 "current entries=%d\n", 3017 team->t.t_id, argc, (realloc) ? team->t.t_max_argc : 0)); 3018 /* if previously allocated heap space for args, free them */ 3019 if (realloc && team->t.t_argv != &team->t.t_inline_argv[0]) 3020 __kmp_free((void *)team->t.t_argv); 3021 3022 if (argc <= KMP_INLINE_ARGV_ENTRIES) { 3023 /* use unused space in the cache line for arguments */ 3024 team->t.t_max_argc = KMP_INLINE_ARGV_ENTRIES; 3025 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: inline allocate %d " 3026 "argv entries\n", 3027 team->t.t_id, team->t.t_max_argc)); 3028 team->t.t_argv = &team->t.t_inline_argv[0]; 3029 if (__kmp_storage_map) { 3030 __kmp_print_storage_map_gtid( 3031 -1, &team->t.t_inline_argv[0], 3032 &team->t.t_inline_argv[KMP_INLINE_ARGV_ENTRIES], 3033 (sizeof(void *) * KMP_INLINE_ARGV_ENTRIES), "team_%d.t_inline_argv", 3034 team->t.t_id); 3035 } 3036 } else { 3037 /* allocate space for arguments in the heap */ 3038 team->t.t_max_argc = (argc <= (KMP_MIN_MALLOC_ARGV_ENTRIES >> 1)) 3039 ? KMP_MIN_MALLOC_ARGV_ENTRIES 3040 : 2 * argc; 3041 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: dynamic allocate %d " 3042 "argv entries\n", 3043 team->t.t_id, team->t.t_max_argc)); 3044 team->t.t_argv = 3045 (void **)__kmp_page_allocate(sizeof(void *) * team->t.t_max_argc); 3046 if (__kmp_storage_map) { 3047 __kmp_print_storage_map_gtid(-1, &team->t.t_argv[0], 3048 &team->t.t_argv[team->t.t_max_argc], 3049 sizeof(void *) * team->t.t_max_argc, 3050 "team_%d.t_argv", team->t.t_id); 3051 } 3052 } 3053 } 3054 } 3055 3056 static void __kmp_allocate_team_arrays(kmp_team_t *team, int max_nth) { 3057 int i; 3058 int num_disp_buff = max_nth > 1 ? __kmp_dispatch_num_buffers : 2; 3059 team->t.t_threads = 3060 (kmp_info_t **)__kmp_allocate(sizeof(kmp_info_t *) * max_nth); 3061 team->t.t_disp_buffer = (dispatch_shared_info_t *)__kmp_allocate( 3062 sizeof(dispatch_shared_info_t) * num_disp_buff); 3063 team->t.t_dispatch = 3064 (kmp_disp_t *)__kmp_allocate(sizeof(kmp_disp_t) * max_nth); 3065 team->t.t_implicit_task_taskdata = 3066 (kmp_taskdata_t *)__kmp_allocate(sizeof(kmp_taskdata_t) * max_nth); 3067 team->t.t_max_nproc = max_nth; 3068 3069 /* setup dispatch buffers */ 3070 for (i = 0; i < num_disp_buff; ++i) { 3071 team->t.t_disp_buffer[i].buffer_index = i; 3072 #if OMP_45_ENABLED 3073 team->t.t_disp_buffer[i].doacross_buf_idx = i; 3074 #endif 3075 } 3076 } 3077 3078 static void __kmp_free_team_arrays(kmp_team_t *team) { 3079 /* Note: this does not free the threads in t_threads (__kmp_free_threads) */ 3080 int i; 3081 for (i = 0; i < team->t.t_max_nproc; ++i) { 3082 if (team->t.t_dispatch[i].th_disp_buffer != NULL) { 3083 __kmp_free(team->t.t_dispatch[i].th_disp_buffer); 3084 team->t.t_dispatch[i].th_disp_buffer = NULL; 3085 } 3086 } 3087 #if KMP_USE_HIER_SCHED 3088 __kmp_dispatch_free_hierarchies(team); 3089 #endif 3090 __kmp_free(team->t.t_threads); 3091 __kmp_free(team->t.t_disp_buffer); 3092 __kmp_free(team->t.t_dispatch); 3093 __kmp_free(team->t.t_implicit_task_taskdata); 3094 team->t.t_threads = NULL; 3095 team->t.t_disp_buffer = NULL; 3096 team->t.t_dispatch = NULL; 3097 team->t.t_implicit_task_taskdata = 0; 3098 } 3099 3100 static void __kmp_reallocate_team_arrays(kmp_team_t *team, int max_nth) { 3101 kmp_info_t **oldThreads = team->t.t_threads; 3102 3103 __kmp_free(team->t.t_disp_buffer); 3104 __kmp_free(team->t.t_dispatch); 3105 __kmp_free(team->t.t_implicit_task_taskdata); 3106 __kmp_allocate_team_arrays(team, max_nth); 3107 3108 KMP_MEMCPY(team->t.t_threads, oldThreads, 3109 team->t.t_nproc * sizeof(kmp_info_t *)); 3110 3111 __kmp_free(oldThreads); 3112 } 3113 3114 static kmp_internal_control_t __kmp_get_global_icvs(void) { 3115 3116 kmp_r_sched_t r_sched = 3117 __kmp_get_schedule_global(); // get current state of scheduling globals 3118 3119 #if OMP_40_ENABLED 3120 KMP_DEBUG_ASSERT(__kmp_nested_proc_bind.used > 0); 3121 #endif /* OMP_40_ENABLED */ 3122 3123 kmp_internal_control_t g_icvs = { 3124 0, // int serial_nesting_level; //corresponds to value of th_team_serialized 3125 (kmp_int8)__kmp_dflt_nested, // int nested; //internal control 3126 // for nested parallelism (per thread) 3127 (kmp_int8)__kmp_global.g.g_dynamic, // internal control for dynamic 3128 // adjustment of threads (per thread) 3129 (kmp_int8)__kmp_env_blocktime, // int bt_set; //internal control for 3130 // whether blocktime is explicitly set 3131 __kmp_dflt_blocktime, // int blocktime; //internal control for blocktime 3132 #if KMP_USE_MONITOR 3133 __kmp_bt_intervals, // int bt_intervals; //internal control for blocktime 3134 // intervals 3135 #endif 3136 __kmp_dflt_team_nth, // int nproc; //internal control for # of threads for 3137 // next parallel region (per thread) 3138 // (use a max ub on value if __kmp_parallel_initialize not called yet) 3139 __kmp_dflt_max_active_levels, // int max_active_levels; //internal control 3140 // for max_active_levels 3141 r_sched, // kmp_r_sched_t sched; //internal control for runtime schedule 3142 // {sched,chunk} pair 3143 #if OMP_40_ENABLED 3144 __kmp_nested_proc_bind.bind_types[0], 3145 __kmp_default_device, 3146 #endif /* OMP_40_ENABLED */ 3147 NULL // struct kmp_internal_control *next; 3148 }; 3149 3150 return g_icvs; 3151 } 3152 3153 static kmp_internal_control_t __kmp_get_x_global_icvs(const kmp_team_t *team) { 3154 3155 kmp_internal_control_t gx_icvs; 3156 gx_icvs.serial_nesting_level = 3157 0; // probably =team->t.t_serial like in save_inter_controls 3158 copy_icvs(&gx_icvs, &team->t.t_threads[0]->th.th_current_task->td_icvs); 3159 gx_icvs.next = NULL; 3160 3161 return gx_icvs; 3162 } 3163 3164 static void __kmp_initialize_root(kmp_root_t *root) { 3165 int f; 3166 kmp_team_t *root_team; 3167 kmp_team_t *hot_team; 3168 int hot_team_max_nth; 3169 kmp_r_sched_t r_sched = 3170 __kmp_get_schedule_global(); // get current state of scheduling globals 3171 kmp_internal_control_t r_icvs = __kmp_get_global_icvs(); 3172 KMP_DEBUG_ASSERT(root); 3173 KMP_ASSERT(!root->r.r_begin); 3174 3175 /* setup the root state structure */ 3176 __kmp_init_lock(&root->r.r_begin_lock); 3177 root->r.r_begin = FALSE; 3178 root->r.r_active = FALSE; 3179 root->r.r_in_parallel = 0; 3180 root->r.r_blocktime = __kmp_dflt_blocktime; 3181 root->r.r_nested = __kmp_dflt_nested; 3182 root->r.r_cg_nthreads = 1; 3183 3184 /* setup the root team for this task */ 3185 /* allocate the root team structure */ 3186 KF_TRACE(10, ("__kmp_initialize_root: before root_team\n")); 3187 3188 root_team = 3189 __kmp_allocate_team(root, 3190 1, // new_nproc 3191 1, // max_nproc 3192 #if OMPT_SUPPORT 3193 ompt_data_none, // root parallel id 3194 #endif 3195 #if OMP_40_ENABLED 3196 __kmp_nested_proc_bind.bind_types[0], 3197 #endif 3198 &r_icvs, 3199 0 // argc 3200 USE_NESTED_HOT_ARG(NULL) // master thread is unknown 3201 ); 3202 #if USE_DEBUGGER 3203 // Non-NULL value should be assigned to make the debugger display the root 3204 // team. 3205 TCW_SYNC_PTR(root_team->t.t_pkfn, (microtask_t)(~0)); 3206 #endif 3207 3208 KF_TRACE(10, ("__kmp_initialize_root: after root_team = %p\n", root_team)); 3209 3210 root->r.r_root_team = root_team; 3211 root_team->t.t_control_stack_top = NULL; 3212 3213 /* initialize root team */ 3214 root_team->t.t_threads[0] = NULL; 3215 root_team->t.t_nproc = 1; 3216 root_team->t.t_serialized = 1; 3217 // TODO???: root_team->t.t_max_active_levels = __kmp_dflt_max_active_levels; 3218 root_team->t.t_sched.sched = r_sched.sched; 3219 KA_TRACE( 3220 20, 3221 ("__kmp_initialize_root: init root team %d arrived: join=%u, plain=%u\n", 3222 root_team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 3223 3224 /* setup the hot team for this task */ 3225 /* allocate the hot team structure */ 3226 KF_TRACE(10, ("__kmp_initialize_root: before hot_team\n")); 3227 3228 hot_team = 3229 __kmp_allocate_team(root, 3230 1, // new_nproc 3231 __kmp_dflt_team_nth_ub * 2, // max_nproc 3232 #if OMPT_SUPPORT 3233 ompt_data_none, // root parallel id 3234 #endif 3235 #if OMP_40_ENABLED 3236 __kmp_nested_proc_bind.bind_types[0], 3237 #endif 3238 &r_icvs, 3239 0 // argc 3240 USE_NESTED_HOT_ARG(NULL) // master thread is unknown 3241 ); 3242 KF_TRACE(10, ("__kmp_initialize_root: after hot_team = %p\n", hot_team)); 3243 3244 root->r.r_hot_team = hot_team; 3245 root_team->t.t_control_stack_top = NULL; 3246 3247 /* first-time initialization */ 3248 hot_team->t.t_parent = root_team; 3249 3250 /* initialize hot team */ 3251 hot_team_max_nth = hot_team->t.t_max_nproc; 3252 for (f = 0; f < hot_team_max_nth; ++f) { 3253 hot_team->t.t_threads[f] = NULL; 3254 } 3255 hot_team->t.t_nproc = 1; 3256 // TODO???: hot_team->t.t_max_active_levels = __kmp_dflt_max_active_levels; 3257 hot_team->t.t_sched.sched = r_sched.sched; 3258 hot_team->t.t_size_changed = 0; 3259 } 3260 3261 #ifdef KMP_DEBUG 3262 3263 typedef struct kmp_team_list_item { 3264 kmp_team_p const *entry; 3265 struct kmp_team_list_item *next; 3266 } kmp_team_list_item_t; 3267 typedef kmp_team_list_item_t *kmp_team_list_t; 3268 3269 static void __kmp_print_structure_team_accum( // Add team to list of teams. 3270 kmp_team_list_t list, // List of teams. 3271 kmp_team_p const *team // Team to add. 3272 ) { 3273 3274 // List must terminate with item where both entry and next are NULL. 3275 // Team is added to the list only once. 3276 // List is sorted in ascending order by team id. 3277 // Team id is *not* a key. 3278 3279 kmp_team_list_t l; 3280 3281 KMP_DEBUG_ASSERT(list != NULL); 3282 if (team == NULL) { 3283 return; 3284 } 3285 3286 __kmp_print_structure_team_accum(list, team->t.t_parent); 3287 __kmp_print_structure_team_accum(list, team->t.t_next_pool); 3288 3289 // Search list for the team. 3290 l = list; 3291 while (l->next != NULL && l->entry != team) { 3292 l = l->next; 3293 } 3294 if (l->next != NULL) { 3295 return; // Team has been added before, exit. 3296 } 3297 3298 // Team is not found. Search list again for insertion point. 3299 l = list; 3300 while (l->next != NULL && l->entry->t.t_id <= team->t.t_id) { 3301 l = l->next; 3302 } 3303 3304 // Insert team. 3305 { 3306 kmp_team_list_item_t *item = (kmp_team_list_item_t *)KMP_INTERNAL_MALLOC( 3307 sizeof(kmp_team_list_item_t)); 3308 *item = *l; 3309 l->entry = team; 3310 l->next = item; 3311 } 3312 } 3313 3314 static void __kmp_print_structure_team(char const *title, kmp_team_p const *team 3315 3316 ) { 3317 __kmp_printf("%s", title); 3318 if (team != NULL) { 3319 __kmp_printf("%2x %p\n", team->t.t_id, team); 3320 } else { 3321 __kmp_printf(" - (nil)\n"); 3322 } 3323 } 3324 3325 static void __kmp_print_structure_thread(char const *title, 3326 kmp_info_p const *thread) { 3327 __kmp_printf("%s", title); 3328 if (thread != NULL) { 3329 __kmp_printf("%2d %p\n", thread->th.th_info.ds.ds_gtid, thread); 3330 } else { 3331 __kmp_printf(" - (nil)\n"); 3332 } 3333 } 3334 3335 void __kmp_print_structure(void) { 3336 3337 kmp_team_list_t list; 3338 3339 // Initialize list of teams. 3340 list = 3341 (kmp_team_list_item_t *)KMP_INTERNAL_MALLOC(sizeof(kmp_team_list_item_t)); 3342 list->entry = NULL; 3343 list->next = NULL; 3344 3345 __kmp_printf("\n------------------------------\nGlobal Thread " 3346 "Table\n------------------------------\n"); 3347 { 3348 int gtid; 3349 for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) { 3350 __kmp_printf("%2d", gtid); 3351 if (__kmp_threads != NULL) { 3352 __kmp_printf(" %p", __kmp_threads[gtid]); 3353 } 3354 if (__kmp_root != NULL) { 3355 __kmp_printf(" %p", __kmp_root[gtid]); 3356 } 3357 __kmp_printf("\n"); 3358 } 3359 } 3360 3361 // Print out __kmp_threads array. 3362 __kmp_printf("\n------------------------------\nThreads\n--------------------" 3363 "----------\n"); 3364 if (__kmp_threads != NULL) { 3365 int gtid; 3366 for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) { 3367 kmp_info_t const *thread = __kmp_threads[gtid]; 3368 if (thread != NULL) { 3369 __kmp_printf("GTID %2d %p:\n", gtid, thread); 3370 __kmp_printf(" Our Root: %p\n", thread->th.th_root); 3371 __kmp_print_structure_team(" Our Team: ", thread->th.th_team); 3372 __kmp_print_structure_team(" Serial Team: ", 3373 thread->th.th_serial_team); 3374 __kmp_printf(" Threads: %2d\n", thread->th.th_team_nproc); 3375 __kmp_print_structure_thread(" Master: ", 3376 thread->th.th_team_master); 3377 __kmp_printf(" Serialized?: %2d\n", thread->th.th_team_serialized); 3378 __kmp_printf(" Set NProc: %2d\n", thread->th.th_set_nproc); 3379 #if OMP_40_ENABLED 3380 __kmp_printf(" Set Proc Bind: %2d\n", thread->th.th_set_proc_bind); 3381 #endif 3382 __kmp_print_structure_thread(" Next in pool: ", 3383 thread->th.th_next_pool); 3384 __kmp_printf("\n"); 3385 __kmp_print_structure_team_accum(list, thread->th.th_team); 3386 __kmp_print_structure_team_accum(list, thread->th.th_serial_team); 3387 } 3388 } 3389 } else { 3390 __kmp_printf("Threads array is not allocated.\n"); 3391 } 3392 3393 // Print out __kmp_root array. 3394 __kmp_printf("\n------------------------------\nUbers\n----------------------" 3395 "--------\n"); 3396 if (__kmp_root != NULL) { 3397 int gtid; 3398 for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) { 3399 kmp_root_t const *root = __kmp_root[gtid]; 3400 if (root != NULL) { 3401 __kmp_printf("GTID %2d %p:\n", gtid, root); 3402 __kmp_print_structure_team(" Root Team: ", root->r.r_root_team); 3403 __kmp_print_structure_team(" Hot Team: ", root->r.r_hot_team); 3404 __kmp_print_structure_thread(" Uber Thread: ", 3405 root->r.r_uber_thread); 3406 __kmp_printf(" Active?: %2d\n", root->r.r_active); 3407 __kmp_printf(" Nested?: %2d\n", root->r.r_nested); 3408 __kmp_printf(" In Parallel: %2d\n", 3409 KMP_ATOMIC_LD_RLX(&root->r.r_in_parallel)); 3410 __kmp_printf("\n"); 3411 __kmp_print_structure_team_accum(list, root->r.r_root_team); 3412 __kmp_print_structure_team_accum(list, root->r.r_hot_team); 3413 } 3414 } 3415 } else { 3416 __kmp_printf("Ubers array is not allocated.\n"); 3417 } 3418 3419 __kmp_printf("\n------------------------------\nTeams\n----------------------" 3420 "--------\n"); 3421 while (list->next != NULL) { 3422 kmp_team_p const *team = list->entry; 3423 int i; 3424 __kmp_printf("Team %2x %p:\n", team->t.t_id, team); 3425 __kmp_print_structure_team(" Parent Team: ", team->t.t_parent); 3426 __kmp_printf(" Master TID: %2d\n", team->t.t_master_tid); 3427 __kmp_printf(" Max threads: %2d\n", team->t.t_max_nproc); 3428 __kmp_printf(" Levels of serial: %2d\n", team->t.t_serialized); 3429 __kmp_printf(" Number threads: %2d\n", team->t.t_nproc); 3430 for (i = 0; i < team->t.t_nproc; ++i) { 3431 __kmp_printf(" Thread %2d: ", i); 3432 __kmp_print_structure_thread("", team->t.t_threads[i]); 3433 } 3434 __kmp_print_structure_team(" Next in pool: ", team->t.t_next_pool); 3435 __kmp_printf("\n"); 3436 list = list->next; 3437 } 3438 3439 // Print out __kmp_thread_pool and __kmp_team_pool. 3440 __kmp_printf("\n------------------------------\nPools\n----------------------" 3441 "--------\n"); 3442 __kmp_print_structure_thread("Thread pool: ", 3443 CCAST(kmp_info_t *, __kmp_thread_pool)); 3444 __kmp_print_structure_team("Team pool: ", 3445 CCAST(kmp_team_t *, __kmp_team_pool)); 3446 __kmp_printf("\n"); 3447 3448 // Free team list. 3449 while (list != NULL) { 3450 kmp_team_list_item_t *item = list; 3451 list = list->next; 3452 KMP_INTERNAL_FREE(item); 3453 } 3454 } 3455 3456 #endif 3457 3458 //--------------------------------------------------------------------------- 3459 // Stuff for per-thread fast random number generator 3460 // Table of primes 3461 static const unsigned __kmp_primes[] = { 3462 0x9e3779b1, 0xffe6cc59, 0x2109f6dd, 0x43977ab5, 0xba5703f5, 0xb495a877, 3463 0xe1626741, 0x79695e6b, 0xbc98c09f, 0xd5bee2b3, 0x287488f9, 0x3af18231, 3464 0x9677cd4d, 0xbe3a6929, 0xadc6a877, 0xdcf0674b, 0xbe4d6fe9, 0x5f15e201, 3465 0x99afc3fd, 0xf3f16801, 0xe222cfff, 0x24ba5fdb, 0x0620452d, 0x79f149e3, 3466 0xc8b93f49, 0x972702cd, 0xb07dd827, 0x6c97d5ed, 0x085a3d61, 0x46eb5ea7, 3467 0x3d9910ed, 0x2e687b5b, 0x29609227, 0x6eb081f1, 0x0954c4e1, 0x9d114db9, 3468 0x542acfa9, 0xb3e6bd7b, 0x0742d917, 0xe9f3ffa7, 0x54581edb, 0xf2480f45, 3469 0x0bb9288f, 0xef1affc7, 0x85fa0ca7, 0x3ccc14db, 0xe6baf34b, 0x343377f7, 3470 0x5ca19031, 0xe6d9293b, 0xf0a9f391, 0x5d2e980b, 0xfc411073, 0xc3749363, 3471 0xb892d829, 0x3549366b, 0x629750ad, 0xb98294e5, 0x892d9483, 0xc235baf3, 3472 0x3d2402a3, 0x6bdef3c9, 0xbec333cd, 0x40c9520f}; 3473 3474 //--------------------------------------------------------------------------- 3475 // __kmp_get_random: Get a random number using a linear congruential method. 3476 unsigned short __kmp_get_random(kmp_info_t *thread) { 3477 unsigned x = thread->th.th_x; 3478 unsigned short r = x >> 16; 3479 3480 thread->th.th_x = x * thread->th.th_a + 1; 3481 3482 KA_TRACE(30, ("__kmp_get_random: THREAD: %d, RETURN: %u\n", 3483 thread->th.th_info.ds.ds_tid, r)); 3484 3485 return r; 3486 } 3487 //-------------------------------------------------------- 3488 // __kmp_init_random: Initialize a random number generator 3489 void __kmp_init_random(kmp_info_t *thread) { 3490 unsigned seed = thread->th.th_info.ds.ds_tid; 3491 3492 thread->th.th_a = 3493 __kmp_primes[seed % (sizeof(__kmp_primes) / sizeof(__kmp_primes[0]))]; 3494 thread->th.th_x = (seed + 1) * thread->th.th_a + 1; 3495 KA_TRACE(30, 3496 ("__kmp_init_random: THREAD: %u; A: %u\n", seed, thread->th.th_a)); 3497 } 3498 3499 #if KMP_OS_WINDOWS 3500 /* reclaim array entries for root threads that are already dead, returns number 3501 * reclaimed */ 3502 static int __kmp_reclaim_dead_roots(void) { 3503 int i, r = 0; 3504 3505 for (i = 0; i < __kmp_threads_capacity; ++i) { 3506 if (KMP_UBER_GTID(i) && 3507 !__kmp_still_running((kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[i])) && 3508 !__kmp_root[i] 3509 ->r.r_active) { // AC: reclaim only roots died in non-active state 3510 r += __kmp_unregister_root_other_thread(i); 3511 } 3512 } 3513 return r; 3514 } 3515 #endif 3516 3517 /* This function attempts to create free entries in __kmp_threads and 3518 __kmp_root, and returns the number of free entries generated. 3519 3520 For Windows* OS static library, the first mechanism used is to reclaim array 3521 entries for root threads that are already dead. 3522 3523 On all platforms, expansion is attempted on the arrays __kmp_threads_ and 3524 __kmp_root, with appropriate update to __kmp_threads_capacity. Array 3525 capacity is increased by doubling with clipping to __kmp_tp_capacity, if 3526 threadprivate cache array has been created. Synchronization with 3527 __kmpc_threadprivate_cached is done using __kmp_tp_cached_lock. 3528 3529 After any dead root reclamation, if the clipping value allows array expansion 3530 to result in the generation of a total of nNeed free slots, the function does 3531 that expansion. If not, nothing is done beyond the possible initial root 3532 thread reclamation. 3533 3534 If any argument is negative, the behavior is undefined. */ 3535 static int __kmp_expand_threads(int nNeed) { 3536 int added = 0; 3537 int minimumRequiredCapacity; 3538 int newCapacity; 3539 kmp_info_t **newThreads; 3540 kmp_root_t **newRoot; 3541 3542 // All calls to __kmp_expand_threads should be under __kmp_forkjoin_lock, so 3543 // resizing __kmp_threads does not need additional protection if foreign 3544 // threads are present 3545 3546 #if KMP_OS_WINDOWS && !KMP_DYNAMIC_LIB 3547 /* only for Windows static library */ 3548 /* reclaim array entries for root threads that are already dead */ 3549 added = __kmp_reclaim_dead_roots(); 3550 3551 if (nNeed) { 3552 nNeed -= added; 3553 if (nNeed < 0) 3554 nNeed = 0; 3555 } 3556 #endif 3557 if (nNeed <= 0) 3558 return added; 3559 3560 // Note that __kmp_threads_capacity is not bounded by __kmp_max_nth. If 3561 // __kmp_max_nth is set to some value less than __kmp_sys_max_nth by the 3562 // user via KMP_DEVICE_THREAD_LIMIT, then __kmp_threads_capacity may become 3563 // > __kmp_max_nth in one of two ways: 3564 // 3565 // 1) The initialization thread (gtid = 0) exits. __kmp_threads[0] 3566 // may not be resused by another thread, so we may need to increase 3567 // __kmp_threads_capacity to __kmp_max_nth + 1. 3568 // 3569 // 2) New foreign root(s) are encountered. We always register new foreign 3570 // roots. This may cause a smaller # of threads to be allocated at 3571 // subsequent parallel regions, but the worker threads hang around (and 3572 // eventually go to sleep) and need slots in the __kmp_threads[] array. 3573 // 3574 // Anyway, that is the reason for moving the check to see if 3575 // __kmp_max_nth was exceeded into __kmp_reserve_threads() 3576 // instead of having it performed here. -BB 3577 3578 KMP_DEBUG_ASSERT(__kmp_sys_max_nth >= __kmp_threads_capacity); 3579 3580 /* compute expansion headroom to check if we can expand */ 3581 if (__kmp_sys_max_nth - __kmp_threads_capacity < nNeed) { 3582 /* possible expansion too small -- give up */ 3583 return added; 3584 } 3585 minimumRequiredCapacity = __kmp_threads_capacity + nNeed; 3586 3587 newCapacity = __kmp_threads_capacity; 3588 do { 3589 newCapacity = newCapacity <= (__kmp_sys_max_nth >> 1) ? (newCapacity << 1) 3590 : __kmp_sys_max_nth; 3591 } while (newCapacity < minimumRequiredCapacity); 3592 newThreads = (kmp_info_t **)__kmp_allocate( 3593 (sizeof(kmp_info_t *) + sizeof(kmp_root_t *)) * newCapacity + CACHE_LINE); 3594 newRoot = 3595 (kmp_root_t **)((char *)newThreads + sizeof(kmp_info_t *) * newCapacity); 3596 KMP_MEMCPY(newThreads, __kmp_threads, 3597 __kmp_threads_capacity * sizeof(kmp_info_t *)); 3598 KMP_MEMCPY(newRoot, __kmp_root, 3599 __kmp_threads_capacity * sizeof(kmp_root_t *)); 3600 3601 kmp_info_t **temp_threads = __kmp_threads; 3602 *(kmp_info_t * *volatile *)&__kmp_threads = newThreads; 3603 *(kmp_root_t * *volatile *)&__kmp_root = newRoot; 3604 __kmp_free(temp_threads); 3605 added += newCapacity - __kmp_threads_capacity; 3606 *(volatile int *)&__kmp_threads_capacity = newCapacity; 3607 3608 if (newCapacity > __kmp_tp_capacity) { 3609 __kmp_acquire_bootstrap_lock(&__kmp_tp_cached_lock); 3610 if (__kmp_tp_cached && newCapacity > __kmp_tp_capacity) { 3611 __kmp_threadprivate_resize_cache(newCapacity); 3612 } else { // increase __kmp_tp_capacity to correspond with kmp_threads size 3613 *(volatile int *)&__kmp_tp_capacity = newCapacity; 3614 } 3615 __kmp_release_bootstrap_lock(&__kmp_tp_cached_lock); 3616 } 3617 3618 return added; 3619 } 3620 3621 /* Register the current thread as a root thread and obtain our gtid. We must 3622 have the __kmp_initz_lock held at this point. Argument TRUE only if are the 3623 thread that calls from __kmp_do_serial_initialize() */ 3624 int __kmp_register_root(int initial_thread) { 3625 kmp_info_t *root_thread; 3626 kmp_root_t *root; 3627 int gtid; 3628 int capacity; 3629 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 3630 KA_TRACE(20, ("__kmp_register_root: entered\n")); 3631 KMP_MB(); 3632 3633 /* 2007-03-02: 3634 If initial thread did not invoke OpenMP RTL yet, and this thread is not an 3635 initial one, "__kmp_all_nth >= __kmp_threads_capacity" condition does not 3636 work as expected -- it may return false (that means there is at least one 3637 empty slot in __kmp_threads array), but it is possible the only free slot 3638 is #0, which is reserved for initial thread and so cannot be used for this 3639 one. Following code workarounds this bug. 3640 3641 However, right solution seems to be not reserving slot #0 for initial 3642 thread because: 3643 (1) there is no magic in slot #0, 3644 (2) we cannot detect initial thread reliably (the first thread which does 3645 serial initialization may be not a real initial thread). 3646 */ 3647 capacity = __kmp_threads_capacity; 3648 if (!initial_thread && TCR_PTR(__kmp_threads[0]) == NULL) { 3649 --capacity; 3650 } 3651 3652 /* see if there are too many threads */ 3653 if (__kmp_all_nth >= capacity && !__kmp_expand_threads(1)) { 3654 if (__kmp_tp_cached) { 3655 __kmp_fatal(KMP_MSG(CantRegisterNewThread), 3656 KMP_HNT(Set_ALL_THREADPRIVATE, __kmp_tp_capacity), 3657 KMP_HNT(PossibleSystemLimitOnThreads), __kmp_msg_null); 3658 } else { 3659 __kmp_fatal(KMP_MSG(CantRegisterNewThread), KMP_HNT(SystemLimitOnThreads), 3660 __kmp_msg_null); 3661 } 3662 } 3663 3664 /* find an available thread slot */ 3665 /* Don't reassign the zero slot since we need that to only be used by initial 3666 thread */ 3667 for (gtid = (initial_thread ? 0 : 1); TCR_PTR(__kmp_threads[gtid]) != NULL; 3668 gtid++) 3669 ; 3670 KA_TRACE(1, 3671 ("__kmp_register_root: found slot in threads array: T#%d\n", gtid)); 3672 KMP_ASSERT(gtid < __kmp_threads_capacity); 3673 3674 /* update global accounting */ 3675 __kmp_all_nth++; 3676 TCW_4(__kmp_nth, __kmp_nth + 1); 3677 3678 // if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) for low 3679 // numbers of procs, and method #2 (keyed API call) for higher numbers. 3680 if (__kmp_adjust_gtid_mode) { 3681 if (__kmp_all_nth >= __kmp_tls_gtid_min) { 3682 if (TCR_4(__kmp_gtid_mode) != 2) { 3683 TCW_4(__kmp_gtid_mode, 2); 3684 } 3685 } else { 3686 if (TCR_4(__kmp_gtid_mode) != 1) { 3687 TCW_4(__kmp_gtid_mode, 1); 3688 } 3689 } 3690 } 3691 3692 #ifdef KMP_ADJUST_BLOCKTIME 3693 /* Adjust blocktime to zero if necessary */ 3694 /* Middle initialization might not have occurred yet */ 3695 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 3696 if (__kmp_nth > __kmp_avail_proc) { 3697 __kmp_zero_bt = TRUE; 3698 } 3699 } 3700 #endif /* KMP_ADJUST_BLOCKTIME */ 3701 3702 /* setup this new hierarchy */ 3703 if (!(root = __kmp_root[gtid])) { 3704 root = __kmp_root[gtid] = (kmp_root_t *)__kmp_allocate(sizeof(kmp_root_t)); 3705 KMP_DEBUG_ASSERT(!root->r.r_root_team); 3706 } 3707 3708 #if KMP_STATS_ENABLED 3709 // Initialize stats as soon as possible (right after gtid assignment). 3710 __kmp_stats_thread_ptr = __kmp_stats_list->push_back(gtid); 3711 __kmp_stats_thread_ptr->startLife(); 3712 KMP_SET_THREAD_STATE(SERIAL_REGION); 3713 KMP_INIT_PARTITIONED_TIMERS(OMP_serial); 3714 #endif 3715 __kmp_initialize_root(root); 3716 3717 /* setup new root thread structure */ 3718 if (root->r.r_uber_thread) { 3719 root_thread = root->r.r_uber_thread; 3720 } else { 3721 root_thread = (kmp_info_t *)__kmp_allocate(sizeof(kmp_info_t)); 3722 if (__kmp_storage_map) { 3723 __kmp_print_thread_storage_map(root_thread, gtid); 3724 } 3725 root_thread->th.th_info.ds.ds_gtid = gtid; 3726 #if OMPT_SUPPORT 3727 root_thread->th.ompt_thread_info.thread_data = ompt_data_none; 3728 #endif 3729 root_thread->th.th_root = root; 3730 if (__kmp_env_consistency_check) { 3731 root_thread->th.th_cons = __kmp_allocate_cons_stack(gtid); 3732 } 3733 #if USE_FAST_MEMORY 3734 __kmp_initialize_fast_memory(root_thread); 3735 #endif /* USE_FAST_MEMORY */ 3736 3737 #if KMP_USE_BGET 3738 KMP_DEBUG_ASSERT(root_thread->th.th_local.bget_data == NULL); 3739 __kmp_initialize_bget(root_thread); 3740 #endif 3741 __kmp_init_random(root_thread); // Initialize random number generator 3742 } 3743 3744 /* setup the serial team held in reserve by the root thread */ 3745 if (!root_thread->th.th_serial_team) { 3746 kmp_internal_control_t r_icvs = __kmp_get_global_icvs(); 3747 KF_TRACE(10, ("__kmp_register_root: before serial_team\n")); 3748 root_thread->th.th_serial_team = 3749 __kmp_allocate_team(root, 1, 1, 3750 #if OMPT_SUPPORT 3751 ompt_data_none, // root parallel id 3752 #endif 3753 #if OMP_40_ENABLED 3754 proc_bind_default, 3755 #endif 3756 &r_icvs, 0 USE_NESTED_HOT_ARG(NULL)); 3757 } 3758 KMP_ASSERT(root_thread->th.th_serial_team); 3759 KF_TRACE(10, ("__kmp_register_root: after serial_team = %p\n", 3760 root_thread->th.th_serial_team)); 3761 3762 /* drop root_thread into place */ 3763 TCW_SYNC_PTR(__kmp_threads[gtid], root_thread); 3764 3765 root->r.r_root_team->t.t_threads[0] = root_thread; 3766 root->r.r_hot_team->t.t_threads[0] = root_thread; 3767 root_thread->th.th_serial_team->t.t_threads[0] = root_thread; 3768 // AC: the team created in reserve, not for execution (it is unused for now). 3769 root_thread->th.th_serial_team->t.t_serialized = 0; 3770 root->r.r_uber_thread = root_thread; 3771 3772 /* initialize the thread, get it ready to go */ 3773 __kmp_initialize_info(root_thread, root->r.r_root_team, 0, gtid); 3774 TCW_4(__kmp_init_gtid, TRUE); 3775 3776 /* prepare the master thread for get_gtid() */ 3777 __kmp_gtid_set_specific(gtid); 3778 3779 #if USE_ITT_BUILD 3780 __kmp_itt_thread_name(gtid); 3781 #endif /* USE_ITT_BUILD */ 3782 3783 #ifdef KMP_TDATA_GTID 3784 __kmp_gtid = gtid; 3785 #endif 3786 __kmp_create_worker(gtid, root_thread, __kmp_stksize); 3787 KMP_DEBUG_ASSERT(__kmp_gtid_get_specific() == gtid); 3788 3789 KA_TRACE(20, ("__kmp_register_root: T#%d init T#%d(%d:%d) arrived: join=%u, " 3790 "plain=%u\n", 3791 gtid, __kmp_gtid_from_tid(0, root->r.r_hot_team), 3792 root->r.r_hot_team->t.t_id, 0, KMP_INIT_BARRIER_STATE, 3793 KMP_INIT_BARRIER_STATE)); 3794 { // Initialize barrier data. 3795 int b; 3796 for (b = 0; b < bs_last_barrier; ++b) { 3797 root_thread->th.th_bar[b].bb.b_arrived = KMP_INIT_BARRIER_STATE; 3798 #if USE_DEBUGGER 3799 root_thread->th.th_bar[b].bb.b_worker_arrived = 0; 3800 #endif 3801 } 3802 } 3803 KMP_DEBUG_ASSERT(root->r.r_hot_team->t.t_bar[bs_forkjoin_barrier].b_arrived == 3804 KMP_INIT_BARRIER_STATE); 3805 3806 #if KMP_AFFINITY_SUPPORTED 3807 #if OMP_40_ENABLED 3808 root_thread->th.th_current_place = KMP_PLACE_UNDEFINED; 3809 root_thread->th.th_new_place = KMP_PLACE_UNDEFINED; 3810 root_thread->th.th_first_place = KMP_PLACE_UNDEFINED; 3811 root_thread->th.th_last_place = KMP_PLACE_UNDEFINED; 3812 #endif 3813 if (TCR_4(__kmp_init_middle)) { 3814 __kmp_affinity_set_init_mask(gtid, TRUE); 3815 } 3816 #endif /* KMP_AFFINITY_SUPPORTED */ 3817 #if OMP_50_ENABLED 3818 root_thread->th.th_def_allocator = __kmp_def_allocator; 3819 #endif 3820 3821 __kmp_root_counter++; 3822 3823 #if OMPT_SUPPORT 3824 if (!initial_thread && ompt_enabled.enabled) { 3825 3826 kmp_info_t *root_thread = ompt_get_thread(); 3827 3828 ompt_set_thread_state(root_thread, omp_state_overhead); 3829 3830 if (ompt_enabled.ompt_callback_thread_begin) { 3831 ompt_callbacks.ompt_callback(ompt_callback_thread_begin)( 3832 ompt_thread_initial, __ompt_get_thread_data_internal()); 3833 } 3834 ompt_data_t *task_data; 3835 __ompt_get_task_info_internal(0, NULL, &task_data, NULL, NULL, NULL); 3836 if (ompt_enabled.ompt_callback_task_create) { 3837 ompt_callbacks.ompt_callback(ompt_callback_task_create)( 3838 NULL, NULL, task_data, ompt_task_initial, 0, NULL); 3839 // initial task has nothing to return to 3840 } 3841 3842 ompt_set_thread_state(root_thread, omp_state_work_serial); 3843 } 3844 #endif 3845 3846 KMP_MB(); 3847 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 3848 3849 return gtid; 3850 } 3851 3852 #if KMP_NESTED_HOT_TEAMS 3853 static int __kmp_free_hot_teams(kmp_root_t *root, kmp_info_t *thr, int level, 3854 const int max_level) { 3855 int i, n, nth; 3856 kmp_hot_team_ptr_t *hot_teams = thr->th.th_hot_teams; 3857 if (!hot_teams || !hot_teams[level].hot_team) { 3858 return 0; 3859 } 3860 KMP_DEBUG_ASSERT(level < max_level); 3861 kmp_team_t *team = hot_teams[level].hot_team; 3862 nth = hot_teams[level].hot_team_nth; 3863 n = nth - 1; // master is not freed 3864 if (level < max_level - 1) { 3865 for (i = 0; i < nth; ++i) { 3866 kmp_info_t *th = team->t.t_threads[i]; 3867 n += __kmp_free_hot_teams(root, th, level + 1, max_level); 3868 if (i > 0 && th->th.th_hot_teams) { 3869 __kmp_free(th->th.th_hot_teams); 3870 th->th.th_hot_teams = NULL; 3871 } 3872 } 3873 } 3874 __kmp_free_team(root, team, NULL); 3875 return n; 3876 } 3877 #endif 3878 3879 // Resets a root thread and clear its root and hot teams. 3880 // Returns the number of __kmp_threads entries directly and indirectly freed. 3881 static int __kmp_reset_root(int gtid, kmp_root_t *root) { 3882 kmp_team_t *root_team = root->r.r_root_team; 3883 kmp_team_t *hot_team = root->r.r_hot_team; 3884 int n = hot_team->t.t_nproc; 3885 int i; 3886 3887 KMP_DEBUG_ASSERT(!root->r.r_active); 3888 3889 root->r.r_root_team = NULL; 3890 root->r.r_hot_team = NULL; 3891 // __kmp_free_team() does not free hot teams, so we have to clear r_hot_team 3892 // before call to __kmp_free_team(). 3893 __kmp_free_team(root, root_team USE_NESTED_HOT_ARG(NULL)); 3894 #if KMP_NESTED_HOT_TEAMS 3895 if (__kmp_hot_teams_max_level > 3896 0) { // need to free nested hot teams and their threads if any 3897 for (i = 0; i < hot_team->t.t_nproc; ++i) { 3898 kmp_info_t *th = hot_team->t.t_threads[i]; 3899 if (__kmp_hot_teams_max_level > 1) { 3900 n += __kmp_free_hot_teams(root, th, 1, __kmp_hot_teams_max_level); 3901 } 3902 if (th->th.th_hot_teams) { 3903 __kmp_free(th->th.th_hot_teams); 3904 th->th.th_hot_teams = NULL; 3905 } 3906 } 3907 } 3908 #endif 3909 __kmp_free_team(root, hot_team USE_NESTED_HOT_ARG(NULL)); 3910 3911 // Before we can reap the thread, we need to make certain that all other 3912 // threads in the teams that had this root as ancestor have stopped trying to 3913 // steal tasks. 3914 if (__kmp_tasking_mode != tskm_immediate_exec) { 3915 __kmp_wait_to_unref_task_teams(); 3916 } 3917 3918 #if KMP_OS_WINDOWS 3919 /* Close Handle of root duplicated in __kmp_create_worker (tr #62919) */ 3920 KA_TRACE( 3921 10, ("__kmp_reset_root: free handle, th = %p, handle = %" KMP_UINTPTR_SPEC 3922 "\n", 3923 (LPVOID) & (root->r.r_uber_thread->th), 3924 root->r.r_uber_thread->th.th_info.ds.ds_thread)); 3925 __kmp_free_handle(root->r.r_uber_thread->th.th_info.ds.ds_thread); 3926 #endif /* KMP_OS_WINDOWS */ 3927 3928 #if OMPT_SUPPORT 3929 if (ompt_enabled.ompt_callback_thread_end) { 3930 ompt_callbacks.ompt_callback(ompt_callback_thread_end)( 3931 &(root->r.r_uber_thread->th.ompt_thread_info.thread_data)); 3932 } 3933 #endif 3934 3935 TCW_4(__kmp_nth, 3936 __kmp_nth - 1); // __kmp_reap_thread will decrement __kmp_all_nth. 3937 root->r.r_cg_nthreads--; 3938 3939 __kmp_reap_thread(root->r.r_uber_thread, 1); 3940 3941 // We canot put root thread to __kmp_thread_pool, so we have to reap it istead 3942 // of freeing. 3943 root->r.r_uber_thread = NULL; 3944 /* mark root as no longer in use */ 3945 root->r.r_begin = FALSE; 3946 3947 return n; 3948 } 3949 3950 void __kmp_unregister_root_current_thread(int gtid) { 3951 KA_TRACE(1, ("__kmp_unregister_root_current_thread: enter T#%d\n", gtid)); 3952 /* this lock should be ok, since unregister_root_current_thread is never 3953 called during an abort, only during a normal close. furthermore, if you 3954 have the forkjoin lock, you should never try to get the initz lock */ 3955 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 3956 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 3957 KC_TRACE(10, ("__kmp_unregister_root_current_thread: already finished, " 3958 "exiting T#%d\n", 3959 gtid)); 3960 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 3961 return; 3962 } 3963 kmp_root_t *root = __kmp_root[gtid]; 3964 3965 KMP_DEBUG_ASSERT(__kmp_threads && __kmp_threads[gtid]); 3966 KMP_ASSERT(KMP_UBER_GTID(gtid)); 3967 KMP_ASSERT(root == __kmp_threads[gtid]->th.th_root); 3968 KMP_ASSERT(root->r.r_active == FALSE); 3969 3970 KMP_MB(); 3971 3972 #if OMP_45_ENABLED 3973 kmp_info_t *thread = __kmp_threads[gtid]; 3974 kmp_team_t *team = thread->th.th_team; 3975 kmp_task_team_t *task_team = thread->th.th_task_team; 3976 3977 // we need to wait for the proxy tasks before finishing the thread 3978 if (task_team != NULL && task_team->tt.tt_found_proxy_tasks) { 3979 #if OMPT_SUPPORT 3980 // the runtime is shutting down so we won't report any events 3981 thread->th.ompt_thread_info.state = omp_state_undefined; 3982 #endif 3983 __kmp_task_team_wait(thread, team USE_ITT_BUILD_ARG(NULL)); 3984 } 3985 #endif 3986 3987 __kmp_reset_root(gtid, root); 3988 3989 /* free up this thread slot */ 3990 __kmp_gtid_set_specific(KMP_GTID_DNE); 3991 #ifdef KMP_TDATA_GTID 3992 __kmp_gtid = KMP_GTID_DNE; 3993 #endif 3994 3995 KMP_MB(); 3996 KC_TRACE(10, 3997 ("__kmp_unregister_root_current_thread: T#%d unregistered\n", gtid)); 3998 3999 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 4000 } 4001 4002 #if KMP_OS_WINDOWS 4003 /* __kmp_forkjoin_lock must be already held 4004 Unregisters a root thread that is not the current thread. Returns the number 4005 of __kmp_threads entries freed as a result. */ 4006 static int __kmp_unregister_root_other_thread(int gtid) { 4007 kmp_root_t *root = __kmp_root[gtid]; 4008 int r; 4009 4010 KA_TRACE(1, ("__kmp_unregister_root_other_thread: enter T#%d\n", gtid)); 4011 KMP_DEBUG_ASSERT(__kmp_threads && __kmp_threads[gtid]); 4012 KMP_ASSERT(KMP_UBER_GTID(gtid)); 4013 KMP_ASSERT(root == __kmp_threads[gtid]->th.th_root); 4014 KMP_ASSERT(root->r.r_active == FALSE); 4015 4016 r = __kmp_reset_root(gtid, root); 4017 KC_TRACE(10, 4018 ("__kmp_unregister_root_other_thread: T#%d unregistered\n", gtid)); 4019 return r; 4020 } 4021 #endif 4022 4023 #if KMP_DEBUG 4024 void __kmp_task_info() { 4025 4026 kmp_int32 gtid = __kmp_entry_gtid(); 4027 kmp_int32 tid = __kmp_tid_from_gtid(gtid); 4028 kmp_info_t *this_thr = __kmp_threads[gtid]; 4029 kmp_team_t *steam = this_thr->th.th_serial_team; 4030 kmp_team_t *team = this_thr->th.th_team; 4031 4032 __kmp_printf( 4033 "__kmp_task_info: gtid=%d tid=%d t_thread=%p team=%p steam=%p curtask=%p " 4034 "ptask=%p\n", 4035 gtid, tid, this_thr, team, steam, this_thr->th.th_current_task, 4036 team->t.t_implicit_task_taskdata[tid].td_parent); 4037 } 4038 #endif // KMP_DEBUG 4039 4040 /* TODO optimize with one big memclr, take out what isn't needed, split 4041 responsibility to workers as much as possible, and delay initialization of 4042 features as much as possible */ 4043 static void __kmp_initialize_info(kmp_info_t *this_thr, kmp_team_t *team, 4044 int tid, int gtid) { 4045 /* this_thr->th.th_info.ds.ds_gtid is setup in 4046 kmp_allocate_thread/create_worker. 4047 this_thr->th.th_serial_team is setup in __kmp_allocate_thread */ 4048 kmp_info_t *master = team->t.t_threads[0]; 4049 KMP_DEBUG_ASSERT(this_thr != NULL); 4050 KMP_DEBUG_ASSERT(this_thr->th.th_serial_team); 4051 KMP_DEBUG_ASSERT(team); 4052 KMP_DEBUG_ASSERT(team->t.t_threads); 4053 KMP_DEBUG_ASSERT(team->t.t_dispatch); 4054 KMP_DEBUG_ASSERT(master); 4055 KMP_DEBUG_ASSERT(master->th.th_root); 4056 4057 KMP_MB(); 4058 4059 TCW_SYNC_PTR(this_thr->th.th_team, team); 4060 4061 this_thr->th.th_info.ds.ds_tid = tid; 4062 this_thr->th.th_set_nproc = 0; 4063 if (__kmp_tasking_mode != tskm_immediate_exec) 4064 // When tasking is possible, threads are not safe to reap until they are 4065 // done tasking; this will be set when tasking code is exited in wait 4066 this_thr->th.th_reap_state = KMP_NOT_SAFE_TO_REAP; 4067 else // no tasking --> always safe to reap 4068 this_thr->th.th_reap_state = KMP_SAFE_TO_REAP; 4069 #if OMP_40_ENABLED 4070 this_thr->th.th_set_proc_bind = proc_bind_default; 4071 #if KMP_AFFINITY_SUPPORTED 4072 this_thr->th.th_new_place = this_thr->th.th_current_place; 4073 #endif 4074 #endif 4075 this_thr->th.th_root = master->th.th_root; 4076 4077 /* setup the thread's cache of the team structure */ 4078 this_thr->th.th_team_nproc = team->t.t_nproc; 4079 this_thr->th.th_team_master = master; 4080 this_thr->th.th_team_serialized = team->t.t_serialized; 4081 TCW_PTR(this_thr->th.th_sleep_loc, NULL); 4082 4083 KMP_DEBUG_ASSERT(team->t.t_implicit_task_taskdata); 4084 4085 KF_TRACE(10, ("__kmp_initialize_info1: T#%d:%d this_thread=%p curtask=%p\n", 4086 tid, gtid, this_thr, this_thr->th.th_current_task)); 4087 4088 __kmp_init_implicit_task(this_thr->th.th_team_master->th.th_ident, this_thr, 4089 team, tid, TRUE); 4090 4091 KF_TRACE(10, ("__kmp_initialize_info2: T#%d:%d this_thread=%p curtask=%p\n", 4092 tid, gtid, this_thr, this_thr->th.th_current_task)); 4093 // TODO: Initialize ICVs from parent; GEH - isn't that already done in 4094 // __kmp_initialize_team()? 4095 4096 /* TODO no worksharing in speculative threads */ 4097 this_thr->th.th_dispatch = &team->t.t_dispatch[tid]; 4098 4099 this_thr->th.th_local.this_construct = 0; 4100 4101 if (!this_thr->th.th_pri_common) { 4102 this_thr->th.th_pri_common = 4103 (struct common_table *)__kmp_allocate(sizeof(struct common_table)); 4104 if (__kmp_storage_map) { 4105 __kmp_print_storage_map_gtid( 4106 gtid, this_thr->th.th_pri_common, this_thr->th.th_pri_common + 1, 4107 sizeof(struct common_table), "th_%d.th_pri_common\n", gtid); 4108 } 4109 this_thr->th.th_pri_head = NULL; 4110 } 4111 4112 /* Initialize dynamic dispatch */ 4113 { 4114 volatile kmp_disp_t *dispatch = this_thr->th.th_dispatch; 4115 // Use team max_nproc since this will never change for the team. 4116 size_t disp_size = 4117 sizeof(dispatch_private_info_t) * 4118 (team->t.t_max_nproc == 1 ? 1 : __kmp_dispatch_num_buffers); 4119 KD_TRACE(10, ("__kmp_initialize_info: T#%d max_nproc: %d\n", gtid, 4120 team->t.t_max_nproc)); 4121 KMP_ASSERT(dispatch); 4122 KMP_DEBUG_ASSERT(team->t.t_dispatch); 4123 KMP_DEBUG_ASSERT(dispatch == &team->t.t_dispatch[tid]); 4124 4125 dispatch->th_disp_index = 0; 4126 #if OMP_45_ENABLED 4127 dispatch->th_doacross_buf_idx = 0; 4128 #endif 4129 if (!dispatch->th_disp_buffer) { 4130 dispatch->th_disp_buffer = 4131 (dispatch_private_info_t *)__kmp_allocate(disp_size); 4132 4133 if (__kmp_storage_map) { 4134 __kmp_print_storage_map_gtid( 4135 gtid, &dispatch->th_disp_buffer[0], 4136 &dispatch->th_disp_buffer[team->t.t_max_nproc == 1 4137 ? 1 4138 : __kmp_dispatch_num_buffers], 4139 disp_size, "th_%d.th_dispatch.th_disp_buffer " 4140 "(team_%d.t_dispatch[%d].th_disp_buffer)", 4141 gtid, team->t.t_id, gtid); 4142 } 4143 } else { 4144 memset(&dispatch->th_disp_buffer[0], '\0', disp_size); 4145 } 4146 4147 dispatch->th_dispatch_pr_current = 0; 4148 dispatch->th_dispatch_sh_current = 0; 4149 4150 dispatch->th_deo_fcn = 0; /* ORDERED */ 4151 dispatch->th_dxo_fcn = 0; /* END ORDERED */ 4152 } 4153 4154 this_thr->th.th_next_pool = NULL; 4155 4156 if (!this_thr->th.th_task_state_memo_stack) { 4157 size_t i; 4158 this_thr->th.th_task_state_memo_stack = 4159 (kmp_uint8 *)__kmp_allocate(4 * sizeof(kmp_uint8)); 4160 this_thr->th.th_task_state_top = 0; 4161 this_thr->th.th_task_state_stack_sz = 4; 4162 for (i = 0; i < this_thr->th.th_task_state_stack_sz; 4163 ++i) // zero init the stack 4164 this_thr->th.th_task_state_memo_stack[i] = 0; 4165 } 4166 4167 KMP_DEBUG_ASSERT(!this_thr->th.th_spin_here); 4168 KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0); 4169 4170 KMP_MB(); 4171 } 4172 4173 /* allocate a new thread for the requesting team. this is only called from 4174 within a forkjoin critical section. we will first try to get an available 4175 thread from the thread pool. if none is available, we will fork a new one 4176 assuming we are able to create a new one. this should be assured, as the 4177 caller should check on this first. */ 4178 kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team, 4179 int new_tid) { 4180 kmp_team_t *serial_team; 4181 kmp_info_t *new_thr; 4182 int new_gtid; 4183 4184 KA_TRACE(20, ("__kmp_allocate_thread: T#%d\n", __kmp_get_gtid())); 4185 KMP_DEBUG_ASSERT(root && team); 4186 #if !KMP_NESTED_HOT_TEAMS 4187 KMP_DEBUG_ASSERT(KMP_MASTER_GTID(__kmp_get_gtid())); 4188 #endif 4189 KMP_MB(); 4190 4191 /* first, try to get one from the thread pool */ 4192 if (__kmp_thread_pool) { 4193 4194 new_thr = CCAST(kmp_info_t *, __kmp_thread_pool); 4195 __kmp_thread_pool = (volatile kmp_info_t *)new_thr->th.th_next_pool; 4196 if (new_thr == __kmp_thread_pool_insert_pt) { 4197 __kmp_thread_pool_insert_pt = NULL; 4198 } 4199 TCW_4(new_thr->th.th_in_pool, FALSE); 4200 // Don't touch th_active_in_pool or th_active. 4201 // The worker thread adjusts those flags as it sleeps/awakens. 4202 __kmp_thread_pool_nth--; 4203 4204 KA_TRACE(20, ("__kmp_allocate_thread: T#%d using thread T#%d\n", 4205 __kmp_get_gtid(), new_thr->th.th_info.ds.ds_gtid)); 4206 KMP_ASSERT(!new_thr->th.th_team); 4207 KMP_DEBUG_ASSERT(__kmp_nth < __kmp_threads_capacity); 4208 KMP_DEBUG_ASSERT(__kmp_thread_pool_nth >= 0); 4209 4210 /* setup the thread structure */ 4211 __kmp_initialize_info(new_thr, team, new_tid, 4212 new_thr->th.th_info.ds.ds_gtid); 4213 KMP_DEBUG_ASSERT(new_thr->th.th_serial_team); 4214 4215 TCW_4(__kmp_nth, __kmp_nth + 1); 4216 root->r.r_cg_nthreads++; 4217 4218 new_thr->th.th_task_state = 0; 4219 new_thr->th.th_task_state_top = 0; 4220 new_thr->th.th_task_state_stack_sz = 4; 4221 4222 #ifdef KMP_ADJUST_BLOCKTIME 4223 /* Adjust blocktime back to zero if necessary */ 4224 /* Middle initialization might not have occurred yet */ 4225 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 4226 if (__kmp_nth > __kmp_avail_proc) { 4227 __kmp_zero_bt = TRUE; 4228 } 4229 } 4230 #endif /* KMP_ADJUST_BLOCKTIME */ 4231 4232 #if KMP_DEBUG 4233 // If thread entered pool via __kmp_free_thread, wait_flag should != 4234 // KMP_BARRIER_PARENT_FLAG. 4235 int b; 4236 kmp_balign_t *balign = new_thr->th.th_bar; 4237 for (b = 0; b < bs_last_barrier; ++b) 4238 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 4239 #endif 4240 4241 KF_TRACE(10, ("__kmp_allocate_thread: T#%d using thread %p T#%d\n", 4242 __kmp_get_gtid(), new_thr, new_thr->th.th_info.ds.ds_gtid)); 4243 4244 KMP_MB(); 4245 return new_thr; 4246 } 4247 4248 /* no, well fork a new one */ 4249 KMP_ASSERT(__kmp_nth == __kmp_all_nth); 4250 KMP_ASSERT(__kmp_all_nth < __kmp_threads_capacity); 4251 4252 #if KMP_USE_MONITOR 4253 // If this is the first worker thread the RTL is creating, then also 4254 // launch the monitor thread. We try to do this as early as possible. 4255 if (!TCR_4(__kmp_init_monitor)) { 4256 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock); 4257 if (!TCR_4(__kmp_init_monitor)) { 4258 KF_TRACE(10, ("before __kmp_create_monitor\n")); 4259 TCW_4(__kmp_init_monitor, 1); 4260 __kmp_create_monitor(&__kmp_monitor); 4261 KF_TRACE(10, ("after __kmp_create_monitor\n")); 4262 #if KMP_OS_WINDOWS 4263 // AC: wait until monitor has started. This is a fix for CQ232808. 4264 // The reason is that if the library is loaded/unloaded in a loop with 4265 // small (parallel) work in between, then there is high probability that 4266 // monitor thread started after the library shutdown. At shutdown it is 4267 // too late to cope with the problem, because when the master is in 4268 // DllMain (process detach) the monitor has no chances to start (it is 4269 // blocked), and master has no means to inform the monitor that the 4270 // library has gone, because all the memory which the monitor can access 4271 // is going to be released/reset. 4272 while (TCR_4(__kmp_init_monitor) < 2) { 4273 KMP_YIELD(TRUE); 4274 } 4275 KF_TRACE(10, ("after monitor thread has started\n")); 4276 #endif 4277 } 4278 __kmp_release_bootstrap_lock(&__kmp_monitor_lock); 4279 } 4280 #endif 4281 4282 KMP_MB(); 4283 for (new_gtid = 1; TCR_PTR(__kmp_threads[new_gtid]) != NULL; ++new_gtid) { 4284 KMP_DEBUG_ASSERT(new_gtid < __kmp_threads_capacity); 4285 } 4286 4287 /* allocate space for it. */ 4288 new_thr = (kmp_info_t *)__kmp_allocate(sizeof(kmp_info_t)); 4289 4290 TCW_SYNC_PTR(__kmp_threads[new_gtid], new_thr); 4291 4292 if (__kmp_storage_map) { 4293 __kmp_print_thread_storage_map(new_thr, new_gtid); 4294 } 4295 4296 // add the reserve serialized team, initialized from the team's master thread 4297 { 4298 kmp_internal_control_t r_icvs = __kmp_get_x_global_icvs(team); 4299 KF_TRACE(10, ("__kmp_allocate_thread: before th_serial/serial_team\n")); 4300 new_thr->th.th_serial_team = serial_team = 4301 (kmp_team_t *)__kmp_allocate_team(root, 1, 1, 4302 #if OMPT_SUPPORT 4303 ompt_data_none, // root parallel id 4304 #endif 4305 #if OMP_40_ENABLED 4306 proc_bind_default, 4307 #endif 4308 &r_icvs, 0 USE_NESTED_HOT_ARG(NULL)); 4309 } 4310 KMP_ASSERT(serial_team); 4311 serial_team->t.t_serialized = 0; // AC: the team created in reserve, not for 4312 // execution (it is unused for now). 4313 serial_team->t.t_threads[0] = new_thr; 4314 KF_TRACE(10, 4315 ("__kmp_allocate_thread: after th_serial/serial_team : new_thr=%p\n", 4316 new_thr)); 4317 4318 /* setup the thread structures */ 4319 __kmp_initialize_info(new_thr, team, new_tid, new_gtid); 4320 4321 #if USE_FAST_MEMORY 4322 __kmp_initialize_fast_memory(new_thr); 4323 #endif /* USE_FAST_MEMORY */ 4324 4325 #if KMP_USE_BGET 4326 KMP_DEBUG_ASSERT(new_thr->th.th_local.bget_data == NULL); 4327 __kmp_initialize_bget(new_thr); 4328 #endif 4329 4330 __kmp_init_random(new_thr); // Initialize random number generator 4331 4332 /* Initialize these only once when thread is grabbed for a team allocation */ 4333 KA_TRACE(20, 4334 ("__kmp_allocate_thread: T#%d init go fork=%u, plain=%u\n", 4335 __kmp_get_gtid(), KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 4336 4337 int b; 4338 kmp_balign_t *balign = new_thr->th.th_bar; 4339 for (b = 0; b < bs_last_barrier; ++b) { 4340 balign[b].bb.b_go = KMP_INIT_BARRIER_STATE; 4341 balign[b].bb.team = NULL; 4342 balign[b].bb.wait_flag = KMP_BARRIER_NOT_WAITING; 4343 balign[b].bb.use_oncore_barrier = 0; 4344 } 4345 4346 new_thr->th.th_spin_here = FALSE; 4347 new_thr->th.th_next_waiting = 0; 4348 #if KMP_OS_UNIX 4349 new_thr->th.th_blocking = false; 4350 #endif 4351 4352 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 4353 new_thr->th.th_current_place = KMP_PLACE_UNDEFINED; 4354 new_thr->th.th_new_place = KMP_PLACE_UNDEFINED; 4355 new_thr->th.th_first_place = KMP_PLACE_UNDEFINED; 4356 new_thr->th.th_last_place = KMP_PLACE_UNDEFINED; 4357 #endif 4358 #if OMP_50_ENABLED 4359 new_thr->th.th_def_allocator = __kmp_def_allocator; 4360 #endif 4361 4362 TCW_4(new_thr->th.th_in_pool, FALSE); 4363 new_thr->th.th_active_in_pool = FALSE; 4364 TCW_4(new_thr->th.th_active, TRUE); 4365 4366 /* adjust the global counters */ 4367 __kmp_all_nth++; 4368 __kmp_nth++; 4369 4370 root->r.r_cg_nthreads++; 4371 4372 // if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) for low 4373 // numbers of procs, and method #2 (keyed API call) for higher numbers. 4374 if (__kmp_adjust_gtid_mode) { 4375 if (__kmp_all_nth >= __kmp_tls_gtid_min) { 4376 if (TCR_4(__kmp_gtid_mode) != 2) { 4377 TCW_4(__kmp_gtid_mode, 2); 4378 } 4379 } else { 4380 if (TCR_4(__kmp_gtid_mode) != 1) { 4381 TCW_4(__kmp_gtid_mode, 1); 4382 } 4383 } 4384 } 4385 4386 #ifdef KMP_ADJUST_BLOCKTIME 4387 /* Adjust blocktime back to zero if necessary */ 4388 /* Middle initialization might not have occurred yet */ 4389 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 4390 if (__kmp_nth > __kmp_avail_proc) { 4391 __kmp_zero_bt = TRUE; 4392 } 4393 } 4394 #endif /* KMP_ADJUST_BLOCKTIME */ 4395 4396 /* actually fork it and create the new worker thread */ 4397 KF_TRACE( 4398 10, ("__kmp_allocate_thread: before __kmp_create_worker: %p\n", new_thr)); 4399 __kmp_create_worker(new_gtid, new_thr, __kmp_stksize); 4400 KF_TRACE(10, 4401 ("__kmp_allocate_thread: after __kmp_create_worker: %p\n", new_thr)); 4402 4403 KA_TRACE(20, ("__kmp_allocate_thread: T#%d forked T#%d\n", __kmp_get_gtid(), 4404 new_gtid)); 4405 KMP_MB(); 4406 return new_thr; 4407 } 4408 4409 /* Reinitialize team for reuse. 4410 The hot team code calls this case at every fork barrier, so EPCC barrier 4411 test are extremely sensitive to changes in it, esp. writes to the team 4412 struct, which cause a cache invalidation in all threads. 4413 IF YOU TOUCH THIS ROUTINE, RUN EPCC C SYNCBENCH ON A BIG-IRON MACHINE!!! */ 4414 static void __kmp_reinitialize_team(kmp_team_t *team, 4415 kmp_internal_control_t *new_icvs, 4416 ident_t *loc) { 4417 KF_TRACE(10, ("__kmp_reinitialize_team: enter this_thread=%p team=%p\n", 4418 team->t.t_threads[0], team)); 4419 KMP_DEBUG_ASSERT(team && new_icvs); 4420 KMP_DEBUG_ASSERT((!TCR_4(__kmp_init_parallel)) || new_icvs->nproc); 4421 KMP_CHECK_UPDATE(team->t.t_ident, loc); 4422 4423 KMP_CHECK_UPDATE(team->t.t_id, KMP_GEN_TEAM_ID()); 4424 // Copy ICVs to the master thread's implicit taskdata 4425 __kmp_init_implicit_task(loc, team->t.t_threads[0], team, 0, FALSE); 4426 copy_icvs(&team->t.t_implicit_task_taskdata[0].td_icvs, new_icvs); 4427 4428 KF_TRACE(10, ("__kmp_reinitialize_team: exit this_thread=%p team=%p\n", 4429 team->t.t_threads[0], team)); 4430 } 4431 4432 /* Initialize the team data structure. 4433 This assumes the t_threads and t_max_nproc are already set. 4434 Also, we don't touch the arguments */ 4435 static void __kmp_initialize_team(kmp_team_t *team, int new_nproc, 4436 kmp_internal_control_t *new_icvs, 4437 ident_t *loc) { 4438 KF_TRACE(10, ("__kmp_initialize_team: enter: team=%p\n", team)); 4439 4440 /* verify */ 4441 KMP_DEBUG_ASSERT(team); 4442 KMP_DEBUG_ASSERT(new_nproc <= team->t.t_max_nproc); 4443 KMP_DEBUG_ASSERT(team->t.t_threads); 4444 KMP_MB(); 4445 4446 team->t.t_master_tid = 0; /* not needed */ 4447 /* team->t.t_master_bar; not needed */ 4448 team->t.t_serialized = new_nproc > 1 ? 0 : 1; 4449 team->t.t_nproc = new_nproc; 4450 4451 /* team->t.t_parent = NULL; TODO not needed & would mess up hot team */ 4452 team->t.t_next_pool = NULL; 4453 /* memset( team->t.t_threads, 0, sizeof(kmp_info_t*)*new_nproc ); would mess 4454 * up hot team */ 4455 4456 TCW_SYNC_PTR(team->t.t_pkfn, NULL); /* not needed */ 4457 team->t.t_invoke = NULL; /* not needed */ 4458 4459 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 4460 team->t.t_sched.sched = new_icvs->sched.sched; 4461 4462 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4463 team->t.t_fp_control_saved = FALSE; /* not needed */ 4464 team->t.t_x87_fpu_control_word = 0; /* not needed */ 4465 team->t.t_mxcsr = 0; /* not needed */ 4466 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4467 4468 team->t.t_construct = 0; 4469 4470 team->t.t_ordered.dt.t_value = 0; 4471 team->t.t_master_active = FALSE; 4472 4473 memset(&team->t.t_taskq, '\0', sizeof(kmp_taskq_t)); 4474 4475 #ifdef KMP_DEBUG 4476 team->t.t_copypriv_data = NULL; /* not necessary, but nice for debugging */ 4477 #endif 4478 #if KMP_OS_WINDOWS 4479 team->t.t_copyin_counter = 0; /* for barrier-free copyin implementation */ 4480 #endif 4481 4482 team->t.t_control_stack_top = NULL; 4483 4484 __kmp_reinitialize_team(team, new_icvs, loc); 4485 4486 KMP_MB(); 4487 KF_TRACE(10, ("__kmp_initialize_team: exit: team=%p\n", team)); 4488 } 4489 4490 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 4491 /* Sets full mask for thread and returns old mask, no changes to structures. */ 4492 static void 4493 __kmp_set_thread_affinity_mask_full_tmp(kmp_affin_mask_t *old_mask) { 4494 if (KMP_AFFINITY_CAPABLE()) { 4495 int status; 4496 if (old_mask != NULL) { 4497 status = __kmp_get_system_affinity(old_mask, TRUE); 4498 int error = errno; 4499 if (status != 0) { 4500 __kmp_fatal(KMP_MSG(ChangeThreadAffMaskError), KMP_ERR(error), 4501 __kmp_msg_null); 4502 } 4503 } 4504 __kmp_set_system_affinity(__kmp_affin_fullMask, TRUE); 4505 } 4506 } 4507 #endif 4508 4509 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 4510 4511 // __kmp_partition_places() is the heart of the OpenMP 4.0 affinity mechanism. 4512 // It calculats the worker + master thread's partition based upon the parent 4513 // thread's partition, and binds each worker to a thread in their partition. 4514 // The master thread's partition should already include its current binding. 4515 static void __kmp_partition_places(kmp_team_t *team, int update_master_only) { 4516 // Copy the master thread's place partion to the team struct 4517 kmp_info_t *master_th = team->t.t_threads[0]; 4518 KMP_DEBUG_ASSERT(master_th != NULL); 4519 kmp_proc_bind_t proc_bind = team->t.t_proc_bind; 4520 int first_place = master_th->th.th_first_place; 4521 int last_place = master_th->th.th_last_place; 4522 int masters_place = master_th->th.th_current_place; 4523 team->t.t_first_place = first_place; 4524 team->t.t_last_place = last_place; 4525 4526 KA_TRACE(20, ("__kmp_partition_places: enter: proc_bind = %d T#%d(%d:0) " 4527 "bound to place %d partition = [%d,%d]\n", 4528 proc_bind, __kmp_gtid_from_thread(team->t.t_threads[0]), 4529 team->t.t_id, masters_place, first_place, last_place)); 4530 4531 switch (proc_bind) { 4532 4533 case proc_bind_default: 4534 // serial teams might have the proc_bind policy set to proc_bind_default. It 4535 // doesn't matter, as we don't rebind master thread for any proc_bind policy 4536 KMP_DEBUG_ASSERT(team->t.t_nproc == 1); 4537 break; 4538 4539 case proc_bind_master: { 4540 int f; 4541 int n_th = team->t.t_nproc; 4542 for (f = 1; f < n_th; f++) { 4543 kmp_info_t *th = team->t.t_threads[f]; 4544 KMP_DEBUG_ASSERT(th != NULL); 4545 th->th.th_first_place = first_place; 4546 th->th.th_last_place = last_place; 4547 th->th.th_new_place = masters_place; 4548 4549 KA_TRACE(100, ("__kmp_partition_places: master: T#%d(%d:%d) place %d " 4550 "partition = [%d,%d]\n", 4551 __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, 4552 f, masters_place, first_place, last_place)); 4553 } 4554 } break; 4555 4556 case proc_bind_close: { 4557 int f; 4558 int n_th = team->t.t_nproc; 4559 int n_places; 4560 if (first_place <= last_place) { 4561 n_places = last_place - first_place + 1; 4562 } else { 4563 n_places = __kmp_affinity_num_masks - first_place + last_place + 1; 4564 } 4565 if (n_th <= n_places) { 4566 int place = masters_place; 4567 for (f = 1; f < n_th; f++) { 4568 kmp_info_t *th = team->t.t_threads[f]; 4569 KMP_DEBUG_ASSERT(th != NULL); 4570 4571 if (place == last_place) { 4572 place = first_place; 4573 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4574 place = 0; 4575 } else { 4576 place++; 4577 } 4578 th->th.th_first_place = first_place; 4579 th->th.th_last_place = last_place; 4580 th->th.th_new_place = place; 4581 4582 KA_TRACE(100, ("__kmp_partition_places: close: T#%d(%d:%d) place %d " 4583 "partition = [%d,%d]\n", 4584 __kmp_gtid_from_thread(team->t.t_threads[f]), 4585 team->t.t_id, f, place, first_place, last_place)); 4586 } 4587 } else { 4588 int S, rem, gap, s_count; 4589 S = n_th / n_places; 4590 s_count = 0; 4591 rem = n_th - (S * n_places); 4592 gap = rem > 0 ? n_places / rem : n_places; 4593 int place = masters_place; 4594 int gap_ct = gap; 4595 for (f = 0; f < n_th; f++) { 4596 kmp_info_t *th = team->t.t_threads[f]; 4597 KMP_DEBUG_ASSERT(th != NULL); 4598 4599 th->th.th_first_place = first_place; 4600 th->th.th_last_place = last_place; 4601 th->th.th_new_place = place; 4602 s_count++; 4603 4604 if ((s_count == S) && rem && (gap_ct == gap)) { 4605 // do nothing, add an extra thread to place on next iteration 4606 } else if ((s_count == S + 1) && rem && (gap_ct == gap)) { 4607 // we added an extra thread to this place; move to next place 4608 if (place == last_place) { 4609 place = first_place; 4610 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4611 place = 0; 4612 } else { 4613 place++; 4614 } 4615 s_count = 0; 4616 gap_ct = 1; 4617 rem--; 4618 } else if (s_count == S) { // place full; don't add extra 4619 if (place == last_place) { 4620 place = first_place; 4621 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4622 place = 0; 4623 } else { 4624 place++; 4625 } 4626 gap_ct++; 4627 s_count = 0; 4628 } 4629 4630 KA_TRACE(100, 4631 ("__kmp_partition_places: close: T#%d(%d:%d) place %d " 4632 "partition = [%d,%d]\n", 4633 __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, f, 4634 th->th.th_new_place, first_place, last_place)); 4635 } 4636 KMP_DEBUG_ASSERT(place == masters_place); 4637 } 4638 } break; 4639 4640 case proc_bind_spread: { 4641 int f; 4642 int n_th = team->t.t_nproc; 4643 int n_places; 4644 int thidx; 4645 if (first_place <= last_place) { 4646 n_places = last_place - first_place + 1; 4647 } else { 4648 n_places = __kmp_affinity_num_masks - first_place + last_place + 1; 4649 } 4650 if (n_th <= n_places) { 4651 int place = -1; 4652 4653 if (n_places != static_cast<int>(__kmp_affinity_num_masks)) { 4654 int S = n_places / n_th; 4655 int s_count, rem, gap, gap_ct; 4656 4657 place = masters_place; 4658 rem = n_places - n_th * S; 4659 gap = rem ? n_th / rem : 1; 4660 gap_ct = gap; 4661 thidx = n_th; 4662 if (update_master_only == 1) 4663 thidx = 1; 4664 for (f = 0; f < thidx; f++) { 4665 kmp_info_t *th = team->t.t_threads[f]; 4666 KMP_DEBUG_ASSERT(th != NULL); 4667 4668 th->th.th_first_place = place; 4669 th->th.th_new_place = place; 4670 s_count = 1; 4671 while (s_count < S) { 4672 if (place == last_place) { 4673 place = first_place; 4674 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4675 place = 0; 4676 } else { 4677 place++; 4678 } 4679 s_count++; 4680 } 4681 if (rem && (gap_ct == gap)) { 4682 if (place == last_place) { 4683 place = first_place; 4684 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4685 place = 0; 4686 } else { 4687 place++; 4688 } 4689 rem--; 4690 gap_ct = 0; 4691 } 4692 th->th.th_last_place = place; 4693 gap_ct++; 4694 4695 if (place == last_place) { 4696 place = first_place; 4697 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4698 place = 0; 4699 } else { 4700 place++; 4701 } 4702 4703 KA_TRACE(100, 4704 ("__kmp_partition_places: spread: T#%d(%d:%d) place %d " 4705 "partition = [%d,%d], __kmp_affinity_num_masks: %u\n", 4706 __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, 4707 f, th->th.th_new_place, th->th.th_first_place, 4708 th->th.th_last_place, __kmp_affinity_num_masks)); 4709 } 4710 } else { 4711 /* Having uniform space of available computation places I can create 4712 T partitions of round(P/T) size and put threads into the first 4713 place of each partition. */ 4714 double current = static_cast<double>(masters_place); 4715 double spacing = 4716 (static_cast<double>(n_places + 1) / static_cast<double>(n_th)); 4717 int first, last; 4718 kmp_info_t *th; 4719 4720 thidx = n_th + 1; 4721 if (update_master_only == 1) 4722 thidx = 1; 4723 for (f = 0; f < thidx; f++) { 4724 first = static_cast<int>(current); 4725 last = static_cast<int>(current + spacing) - 1; 4726 KMP_DEBUG_ASSERT(last >= first); 4727 if (first >= n_places) { 4728 if (masters_place) { 4729 first -= n_places; 4730 last -= n_places; 4731 if (first == (masters_place + 1)) { 4732 KMP_DEBUG_ASSERT(f == n_th); 4733 first--; 4734 } 4735 if (last == masters_place) { 4736 KMP_DEBUG_ASSERT(f == (n_th - 1)); 4737 last--; 4738 } 4739 } else { 4740 KMP_DEBUG_ASSERT(f == n_th); 4741 first = 0; 4742 last = 0; 4743 } 4744 } 4745 if (last >= n_places) { 4746 last = (n_places - 1); 4747 } 4748 place = first; 4749 current += spacing; 4750 if (f < n_th) { 4751 KMP_DEBUG_ASSERT(0 <= first); 4752 KMP_DEBUG_ASSERT(n_places > first); 4753 KMP_DEBUG_ASSERT(0 <= last); 4754 KMP_DEBUG_ASSERT(n_places > last); 4755 KMP_DEBUG_ASSERT(last_place >= first_place); 4756 th = team->t.t_threads[f]; 4757 KMP_DEBUG_ASSERT(th); 4758 th->th.th_first_place = first; 4759 th->th.th_new_place = place; 4760 th->th.th_last_place = last; 4761 4762 KA_TRACE(100, 4763 ("__kmp_partition_places: spread: T#%d(%d:%d) place %d " 4764 "partition = [%d,%d], spacing = %.4f\n", 4765 __kmp_gtid_from_thread(team->t.t_threads[f]), 4766 team->t.t_id, f, th->th.th_new_place, 4767 th->th.th_first_place, th->th.th_last_place, spacing)); 4768 } 4769 } 4770 } 4771 KMP_DEBUG_ASSERT(update_master_only || place == masters_place); 4772 } else { 4773 int S, rem, gap, s_count; 4774 S = n_th / n_places; 4775 s_count = 0; 4776 rem = n_th - (S * n_places); 4777 gap = rem > 0 ? n_places / rem : n_places; 4778 int place = masters_place; 4779 int gap_ct = gap; 4780 thidx = n_th; 4781 if (update_master_only == 1) 4782 thidx = 1; 4783 for (f = 0; f < thidx; f++) { 4784 kmp_info_t *th = team->t.t_threads[f]; 4785 KMP_DEBUG_ASSERT(th != NULL); 4786 4787 th->th.th_first_place = place; 4788 th->th.th_last_place = place; 4789 th->th.th_new_place = place; 4790 s_count++; 4791 4792 if ((s_count == S) && rem && (gap_ct == gap)) { 4793 // do nothing, add an extra thread to place on next iteration 4794 } else if ((s_count == S + 1) && rem && (gap_ct == gap)) { 4795 // we added an extra thread to this place; move on to next place 4796 if (place == last_place) { 4797 place = first_place; 4798 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4799 place = 0; 4800 } else { 4801 place++; 4802 } 4803 s_count = 0; 4804 gap_ct = 1; 4805 rem--; 4806 } else if (s_count == S) { // place is full; don't add extra thread 4807 if (place == last_place) { 4808 place = first_place; 4809 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4810 place = 0; 4811 } else { 4812 place++; 4813 } 4814 gap_ct++; 4815 s_count = 0; 4816 } 4817 4818 KA_TRACE(100, ("__kmp_partition_places: spread: T#%d(%d:%d) place %d " 4819 "partition = [%d,%d]\n", 4820 __kmp_gtid_from_thread(team->t.t_threads[f]), 4821 team->t.t_id, f, th->th.th_new_place, 4822 th->th.th_first_place, th->th.th_last_place)); 4823 } 4824 KMP_DEBUG_ASSERT(update_master_only || place == masters_place); 4825 } 4826 } break; 4827 4828 default: 4829 break; 4830 } 4831 4832 KA_TRACE(20, ("__kmp_partition_places: exit T#%d\n", team->t.t_id)); 4833 } 4834 4835 #endif /* OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED */ 4836 4837 /* allocate a new team data structure to use. take one off of the free pool if 4838 available */ 4839 kmp_team_t * 4840 __kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc, 4841 #if OMPT_SUPPORT 4842 ompt_data_t ompt_parallel_data, 4843 #endif 4844 #if OMP_40_ENABLED 4845 kmp_proc_bind_t new_proc_bind, 4846 #endif 4847 kmp_internal_control_t *new_icvs, 4848 int argc USE_NESTED_HOT_ARG(kmp_info_t *master)) { 4849 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_allocate_team); 4850 int f; 4851 kmp_team_t *team; 4852 int use_hot_team = !root->r.r_active; 4853 int level = 0; 4854 4855 KA_TRACE(20, ("__kmp_allocate_team: called\n")); 4856 KMP_DEBUG_ASSERT(new_nproc >= 1 && argc >= 0); 4857 KMP_DEBUG_ASSERT(max_nproc >= new_nproc); 4858 KMP_MB(); 4859 4860 #if KMP_NESTED_HOT_TEAMS 4861 kmp_hot_team_ptr_t *hot_teams; 4862 if (master) { 4863 team = master->th.th_team; 4864 level = team->t.t_active_level; 4865 if (master->th.th_teams_microtask) { // in teams construct? 4866 if (master->th.th_teams_size.nteams > 1 && 4867 ( // #teams > 1 4868 team->t.t_pkfn == 4869 (microtask_t)__kmp_teams_master || // inner fork of the teams 4870 master->th.th_teams_level < 4871 team->t.t_level)) { // or nested parallel inside the teams 4872 ++level; // not increment if #teams==1, or for outer fork of the teams; 4873 // increment otherwise 4874 } 4875 } 4876 hot_teams = master->th.th_hot_teams; 4877 if (level < __kmp_hot_teams_max_level && hot_teams && 4878 hot_teams[level] 4879 .hot_team) { // hot team has already been allocated for given level 4880 use_hot_team = 1; 4881 } else { 4882 use_hot_team = 0; 4883 } 4884 } 4885 #endif 4886 // Optimization to use a "hot" team 4887 if (use_hot_team && new_nproc > 1) { 4888 KMP_DEBUG_ASSERT(new_nproc == max_nproc); 4889 #if KMP_NESTED_HOT_TEAMS 4890 team = hot_teams[level].hot_team; 4891 #else 4892 team = root->r.r_hot_team; 4893 #endif 4894 #if KMP_DEBUG 4895 if (__kmp_tasking_mode != tskm_immediate_exec) { 4896 KA_TRACE(20, ("__kmp_allocate_team: hot team task_team[0] = %p " 4897 "task_team[1] = %p before reinit\n", 4898 team->t.t_task_team[0], team->t.t_task_team[1])); 4899 } 4900 #endif 4901 4902 // Has the number of threads changed? 4903 /* Let's assume the most common case is that the number of threads is 4904 unchanged, and put that case first. */ 4905 if (team->t.t_nproc == new_nproc) { // Check changes in number of threads 4906 KA_TRACE(20, ("__kmp_allocate_team: reusing hot team\n")); 4907 // This case can mean that omp_set_num_threads() was called and the hot 4908 // team size was already reduced, so we check the special flag 4909 if (team->t.t_size_changed == -1) { 4910 team->t.t_size_changed = 1; 4911 } else { 4912 KMP_CHECK_UPDATE(team->t.t_size_changed, 0); 4913 } 4914 4915 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 4916 kmp_r_sched_t new_sched = new_icvs->sched; 4917 // set master's schedule as new run-time schedule 4918 KMP_CHECK_UPDATE(team->t.t_sched.sched, new_sched.sched); 4919 4920 __kmp_reinitialize_team(team, new_icvs, 4921 root->r.r_uber_thread->th.th_ident); 4922 4923 KF_TRACE(10, ("__kmp_allocate_team2: T#%d, this_thread=%p team=%p\n", 0, 4924 team->t.t_threads[0], team)); 4925 __kmp_push_current_task_to_thread(team->t.t_threads[0], team, 0); 4926 4927 #if OMP_40_ENABLED 4928 #if KMP_AFFINITY_SUPPORTED 4929 if ((team->t.t_size_changed == 0) && 4930 (team->t.t_proc_bind == new_proc_bind)) { 4931 if (new_proc_bind == proc_bind_spread) { 4932 __kmp_partition_places( 4933 team, 1); // add flag to update only master for spread 4934 } 4935 KA_TRACE(200, ("__kmp_allocate_team: reusing hot team #%d bindings: " 4936 "proc_bind = %d, partition = [%d,%d]\n", 4937 team->t.t_id, new_proc_bind, team->t.t_first_place, 4938 team->t.t_last_place)); 4939 } else { 4940 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 4941 __kmp_partition_places(team); 4942 } 4943 #else 4944 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 4945 #endif /* KMP_AFFINITY_SUPPORTED */ 4946 #endif /* OMP_40_ENABLED */ 4947 } else if (team->t.t_nproc > new_nproc) { 4948 KA_TRACE(20, 4949 ("__kmp_allocate_team: decreasing hot team thread count to %d\n", 4950 new_nproc)); 4951 4952 team->t.t_size_changed = 1; 4953 #if KMP_NESTED_HOT_TEAMS 4954 if (__kmp_hot_teams_mode == 0) { 4955 // AC: saved number of threads should correspond to team's value in this 4956 // mode, can be bigger in mode 1, when hot team has threads in reserve 4957 KMP_DEBUG_ASSERT(hot_teams[level].hot_team_nth == team->t.t_nproc); 4958 hot_teams[level].hot_team_nth = new_nproc; 4959 #endif // KMP_NESTED_HOT_TEAMS 4960 /* release the extra threads we don't need any more */ 4961 for (f = new_nproc; f < team->t.t_nproc; f++) { 4962 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 4963 if (__kmp_tasking_mode != tskm_immediate_exec) { 4964 // When decreasing team size, threads no longer in the team should 4965 // unref task team. 4966 team->t.t_threads[f]->th.th_task_team = NULL; 4967 } 4968 __kmp_free_thread(team->t.t_threads[f]); 4969 team->t.t_threads[f] = NULL; 4970 } 4971 #if KMP_NESTED_HOT_TEAMS 4972 } // (__kmp_hot_teams_mode == 0) 4973 else { 4974 // When keeping extra threads in team, switch threads to wait on own 4975 // b_go flag 4976 for (f = new_nproc; f < team->t.t_nproc; ++f) { 4977 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 4978 kmp_balign_t *balign = team->t.t_threads[f]->th.th_bar; 4979 for (int b = 0; b < bs_last_barrier; ++b) { 4980 if (balign[b].bb.wait_flag == KMP_BARRIER_PARENT_FLAG) { 4981 balign[b].bb.wait_flag = KMP_BARRIER_SWITCH_TO_OWN_FLAG; 4982 } 4983 KMP_CHECK_UPDATE(balign[b].bb.leaf_kids, 0); 4984 } 4985 } 4986 } 4987 #endif // KMP_NESTED_HOT_TEAMS 4988 team->t.t_nproc = new_nproc; 4989 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 4990 KMP_CHECK_UPDATE(team->t.t_sched.sched, new_icvs->sched.sched); 4991 __kmp_reinitialize_team(team, new_icvs, 4992 root->r.r_uber_thread->th.th_ident); 4993 4994 /* update the remaining threads */ 4995 for (f = 0; f < new_nproc; ++f) { 4996 team->t.t_threads[f]->th.th_team_nproc = new_nproc; 4997 } 4998 // restore the current task state of the master thread: should be the 4999 // implicit task 5000 KF_TRACE(10, ("__kmp_allocate_team: T#%d, this_thread=%p team=%p\n", 0, 5001 team->t.t_threads[0], team)); 5002 5003 __kmp_push_current_task_to_thread(team->t.t_threads[0], team, 0); 5004 5005 #ifdef KMP_DEBUG 5006 for (f = 0; f < team->t.t_nproc; f++) { 5007 KMP_DEBUG_ASSERT(team->t.t_threads[f] && 5008 team->t.t_threads[f]->th.th_team_nproc == 5009 team->t.t_nproc); 5010 } 5011 #endif 5012 5013 #if OMP_40_ENABLED 5014 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5015 #if KMP_AFFINITY_SUPPORTED 5016 __kmp_partition_places(team); 5017 #endif 5018 #endif 5019 } else { // team->t.t_nproc < new_nproc 5020 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 5021 kmp_affin_mask_t *old_mask; 5022 if (KMP_AFFINITY_CAPABLE()) { 5023 KMP_CPU_ALLOC(old_mask); 5024 } 5025 #endif 5026 5027 KA_TRACE(20, 5028 ("__kmp_allocate_team: increasing hot team thread count to %d\n", 5029 new_nproc)); 5030 5031 team->t.t_size_changed = 1; 5032 5033 #if KMP_NESTED_HOT_TEAMS 5034 int avail_threads = hot_teams[level].hot_team_nth; 5035 if (new_nproc < avail_threads) 5036 avail_threads = new_nproc; 5037 kmp_info_t **other_threads = team->t.t_threads; 5038 for (f = team->t.t_nproc; f < avail_threads; ++f) { 5039 // Adjust barrier data of reserved threads (if any) of the team 5040 // Other data will be set in __kmp_initialize_info() below. 5041 int b; 5042 kmp_balign_t *balign = other_threads[f]->th.th_bar; 5043 for (b = 0; b < bs_last_barrier; ++b) { 5044 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 5045 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 5046 #if USE_DEBUGGER 5047 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 5048 #endif 5049 } 5050 } 5051 if (hot_teams[level].hot_team_nth >= new_nproc) { 5052 // we have all needed threads in reserve, no need to allocate any 5053 // this only possible in mode 1, cannot have reserved threads in mode 0 5054 KMP_DEBUG_ASSERT(__kmp_hot_teams_mode == 1); 5055 team->t.t_nproc = new_nproc; // just get reserved threads involved 5056 } else { 5057 // we may have some threads in reserve, but not enough 5058 team->t.t_nproc = 5059 hot_teams[level] 5060 .hot_team_nth; // get reserved threads involved if any 5061 hot_teams[level].hot_team_nth = new_nproc; // adjust hot team max size 5062 #endif // KMP_NESTED_HOT_TEAMS 5063 if (team->t.t_max_nproc < new_nproc) { 5064 /* reallocate larger arrays */ 5065 __kmp_reallocate_team_arrays(team, new_nproc); 5066 __kmp_reinitialize_team(team, new_icvs, NULL); 5067 } 5068 5069 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 5070 /* Temporarily set full mask for master thread before creation of 5071 workers. The reason is that workers inherit the affinity from master, 5072 so if a lot of workers are created on the single core quickly, they 5073 don't get a chance to set their own affinity for a long time. */ 5074 __kmp_set_thread_affinity_mask_full_tmp(old_mask); 5075 #endif 5076 5077 /* allocate new threads for the hot team */ 5078 for (f = team->t.t_nproc; f < new_nproc; f++) { 5079 kmp_info_t *new_worker = __kmp_allocate_thread(root, team, f); 5080 KMP_DEBUG_ASSERT(new_worker); 5081 team->t.t_threads[f] = new_worker; 5082 5083 KA_TRACE(20, 5084 ("__kmp_allocate_team: team %d init T#%d arrived: " 5085 "join=%llu, plain=%llu\n", 5086 team->t.t_id, __kmp_gtid_from_tid(f, team), team->t.t_id, f, 5087 team->t.t_bar[bs_forkjoin_barrier].b_arrived, 5088 team->t.t_bar[bs_plain_barrier].b_arrived)); 5089 5090 { // Initialize barrier data for new threads. 5091 int b; 5092 kmp_balign_t *balign = new_worker->th.th_bar; 5093 for (b = 0; b < bs_last_barrier; ++b) { 5094 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 5095 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != 5096 KMP_BARRIER_PARENT_FLAG); 5097 #if USE_DEBUGGER 5098 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 5099 #endif 5100 } 5101 } 5102 } 5103 5104 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 5105 if (KMP_AFFINITY_CAPABLE()) { 5106 /* Restore initial master thread's affinity mask */ 5107 __kmp_set_system_affinity(old_mask, TRUE); 5108 KMP_CPU_FREE(old_mask); 5109 } 5110 #endif 5111 #if KMP_NESTED_HOT_TEAMS 5112 } // end of check of t_nproc vs. new_nproc vs. hot_team_nth 5113 #endif // KMP_NESTED_HOT_TEAMS 5114 /* make sure everyone is syncronized */ 5115 int old_nproc = team->t.t_nproc; // save old value and use to update only 5116 // new threads below 5117 __kmp_initialize_team(team, new_nproc, new_icvs, 5118 root->r.r_uber_thread->th.th_ident); 5119 5120 /* reinitialize the threads */ 5121 KMP_DEBUG_ASSERT(team->t.t_nproc == new_nproc); 5122 for (f = 0; f < team->t.t_nproc; ++f) 5123 __kmp_initialize_info(team->t.t_threads[f], team, f, 5124 __kmp_gtid_from_tid(f, team)); 5125 if (level) { // set th_task_state for new threads in nested hot team 5126 // __kmp_initialize_info() no longer zeroes th_task_state, so we should 5127 // only need to set the th_task_state for the new threads. th_task_state 5128 // for master thread will not be accurate until after this in 5129 // __kmp_fork_call(), so we look to the master's memo_stack to get the 5130 // correct value. 5131 for (f = old_nproc; f < team->t.t_nproc; ++f) 5132 team->t.t_threads[f]->th.th_task_state = 5133 team->t.t_threads[0]->th.th_task_state_memo_stack[level]; 5134 } else { // set th_task_state for new threads in non-nested hot team 5135 int old_state = 5136 team->t.t_threads[0]->th.th_task_state; // copy master's state 5137 for (f = old_nproc; f < team->t.t_nproc; ++f) 5138 team->t.t_threads[f]->th.th_task_state = old_state; 5139 } 5140 5141 #ifdef KMP_DEBUG 5142 for (f = 0; f < team->t.t_nproc; ++f) { 5143 KMP_DEBUG_ASSERT(team->t.t_threads[f] && 5144 team->t.t_threads[f]->th.th_team_nproc == 5145 team->t.t_nproc); 5146 } 5147 #endif 5148 5149 #if OMP_40_ENABLED 5150 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5151 #if KMP_AFFINITY_SUPPORTED 5152 __kmp_partition_places(team); 5153 #endif 5154 #endif 5155 } // Check changes in number of threads 5156 5157 #if OMP_40_ENABLED 5158 kmp_info_t *master = team->t.t_threads[0]; 5159 if (master->th.th_teams_microtask) { 5160 for (f = 1; f < new_nproc; ++f) { 5161 // propagate teams construct specific info to workers 5162 kmp_info_t *thr = team->t.t_threads[f]; 5163 thr->th.th_teams_microtask = master->th.th_teams_microtask; 5164 thr->th.th_teams_level = master->th.th_teams_level; 5165 thr->th.th_teams_size = master->th.th_teams_size; 5166 } 5167 } 5168 #endif /* OMP_40_ENABLED */ 5169 #if KMP_NESTED_HOT_TEAMS 5170 if (level) { 5171 // Sync barrier state for nested hot teams, not needed for outermost hot 5172 // team. 5173 for (f = 1; f < new_nproc; ++f) { 5174 kmp_info_t *thr = team->t.t_threads[f]; 5175 int b; 5176 kmp_balign_t *balign = thr->th.th_bar; 5177 for (b = 0; b < bs_last_barrier; ++b) { 5178 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 5179 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 5180 #if USE_DEBUGGER 5181 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 5182 #endif 5183 } 5184 } 5185 } 5186 #endif // KMP_NESTED_HOT_TEAMS 5187 5188 /* reallocate space for arguments if necessary */ 5189 __kmp_alloc_argv_entries(argc, team, TRUE); 5190 KMP_CHECK_UPDATE(team->t.t_argc, argc); 5191 // The hot team re-uses the previous task team, 5192 // if untouched during the previous release->gather phase. 5193 5194 KF_TRACE(10, (" hot_team = %p\n", team)); 5195 5196 #if KMP_DEBUG 5197 if (__kmp_tasking_mode != tskm_immediate_exec) { 5198 KA_TRACE(20, ("__kmp_allocate_team: hot team task_team[0] = %p " 5199 "task_team[1] = %p after reinit\n", 5200 team->t.t_task_team[0], team->t.t_task_team[1])); 5201 } 5202 #endif 5203 5204 #if OMPT_SUPPORT 5205 __ompt_team_assign_id(team, ompt_parallel_data); 5206 #endif 5207 5208 KMP_MB(); 5209 5210 return team; 5211 } 5212 5213 /* next, let's try to take one from the team pool */ 5214 KMP_MB(); 5215 for (team = CCAST(kmp_team_t *, __kmp_team_pool); (team);) { 5216 /* TODO: consider resizing undersized teams instead of reaping them, now 5217 that we have a resizing mechanism */ 5218 if (team->t.t_max_nproc >= max_nproc) { 5219 /* take this team from the team pool */ 5220 __kmp_team_pool = team->t.t_next_pool; 5221 5222 /* setup the team for fresh use */ 5223 __kmp_initialize_team(team, new_nproc, new_icvs, NULL); 5224 5225 KA_TRACE(20, ("__kmp_allocate_team: setting task_team[0] %p and " 5226 "task_team[1] %p to NULL\n", 5227 &team->t.t_task_team[0], &team->t.t_task_team[1])); 5228 team->t.t_task_team[0] = NULL; 5229 team->t.t_task_team[1] = NULL; 5230 5231 /* reallocate space for arguments if necessary */ 5232 __kmp_alloc_argv_entries(argc, team, TRUE); 5233 KMP_CHECK_UPDATE(team->t.t_argc, argc); 5234 5235 KA_TRACE( 5236 20, ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n", 5237 team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 5238 { // Initialize barrier data. 5239 int b; 5240 for (b = 0; b < bs_last_barrier; ++b) { 5241 team->t.t_bar[b].b_arrived = KMP_INIT_BARRIER_STATE; 5242 #if USE_DEBUGGER 5243 team->t.t_bar[b].b_master_arrived = 0; 5244 team->t.t_bar[b].b_team_arrived = 0; 5245 #endif 5246 } 5247 } 5248 5249 #if OMP_40_ENABLED 5250 team->t.t_proc_bind = new_proc_bind; 5251 #endif 5252 5253 KA_TRACE(20, ("__kmp_allocate_team: using team from pool %d.\n", 5254 team->t.t_id)); 5255 5256 #if OMPT_SUPPORT 5257 __ompt_team_assign_id(team, ompt_parallel_data); 5258 #endif 5259 5260 KMP_MB(); 5261 5262 return team; 5263 } 5264 5265 /* reap team if it is too small, then loop back and check the next one */ 5266 // not sure if this is wise, but, will be redone during the hot-teams 5267 // rewrite. 5268 /* TODO: Use technique to find the right size hot-team, don't reap them */ 5269 team = __kmp_reap_team(team); 5270 __kmp_team_pool = team; 5271 } 5272 5273 /* nothing available in the pool, no matter, make a new team! */ 5274 KMP_MB(); 5275 team = (kmp_team_t *)__kmp_allocate(sizeof(kmp_team_t)); 5276 5277 /* and set it up */ 5278 team->t.t_max_nproc = max_nproc; 5279 /* NOTE well, for some reason allocating one big buffer and dividing it up 5280 seems to really hurt performance a lot on the P4, so, let's not use this */ 5281 __kmp_allocate_team_arrays(team, max_nproc); 5282 5283 KA_TRACE(20, ("__kmp_allocate_team: making a new team\n")); 5284 __kmp_initialize_team(team, new_nproc, new_icvs, NULL); 5285 5286 KA_TRACE(20, ("__kmp_allocate_team: setting task_team[0] %p and task_team[1] " 5287 "%p to NULL\n", 5288 &team->t.t_task_team[0], &team->t.t_task_team[1])); 5289 team->t.t_task_team[0] = NULL; // to be removed, as __kmp_allocate zeroes 5290 // memory, no need to duplicate 5291 team->t.t_task_team[1] = NULL; // to be removed, as __kmp_allocate zeroes 5292 // memory, no need to duplicate 5293 5294 if (__kmp_storage_map) { 5295 __kmp_print_team_storage_map("team", team, team->t.t_id, new_nproc); 5296 } 5297 5298 /* allocate space for arguments */ 5299 __kmp_alloc_argv_entries(argc, team, FALSE); 5300 team->t.t_argc = argc; 5301 5302 KA_TRACE(20, 5303 ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n", 5304 team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 5305 { // Initialize barrier data. 5306 int b; 5307 for (b = 0; b < bs_last_barrier; ++b) { 5308 team->t.t_bar[b].b_arrived = KMP_INIT_BARRIER_STATE; 5309 #if USE_DEBUGGER 5310 team->t.t_bar[b].b_master_arrived = 0; 5311 team->t.t_bar[b].b_team_arrived = 0; 5312 #endif 5313 } 5314 } 5315 5316 #if OMP_40_ENABLED 5317 team->t.t_proc_bind = new_proc_bind; 5318 #endif 5319 5320 #if OMPT_SUPPORT 5321 __ompt_team_assign_id(team, ompt_parallel_data); 5322 team->t.ompt_serialized_team_info = NULL; 5323 #endif 5324 5325 KMP_MB(); 5326 5327 KA_TRACE(20, ("__kmp_allocate_team: done creating a new team %d.\n", 5328 team->t.t_id)); 5329 5330 return team; 5331 } 5332 5333 /* TODO implement hot-teams at all levels */ 5334 /* TODO implement lazy thread release on demand (disband request) */ 5335 5336 /* free the team. return it to the team pool. release all the threads 5337 * associated with it */ 5338 void __kmp_free_team(kmp_root_t *root, 5339 kmp_team_t *team USE_NESTED_HOT_ARG(kmp_info_t *master)) { 5340 int f; 5341 KA_TRACE(20, ("__kmp_free_team: T#%d freeing team %d\n", __kmp_get_gtid(), 5342 team->t.t_id)); 5343 5344 /* verify state */ 5345 KMP_DEBUG_ASSERT(root); 5346 KMP_DEBUG_ASSERT(team); 5347 KMP_DEBUG_ASSERT(team->t.t_nproc <= team->t.t_max_nproc); 5348 KMP_DEBUG_ASSERT(team->t.t_threads); 5349 5350 int use_hot_team = team == root->r.r_hot_team; 5351 #if KMP_NESTED_HOT_TEAMS 5352 int level; 5353 kmp_hot_team_ptr_t *hot_teams; 5354 if (master) { 5355 level = team->t.t_active_level - 1; 5356 if (master->th.th_teams_microtask) { // in teams construct? 5357 if (master->th.th_teams_size.nteams > 1) { 5358 ++level; // level was not increased in teams construct for 5359 // team_of_masters 5360 } 5361 if (team->t.t_pkfn != (microtask_t)__kmp_teams_master && 5362 master->th.th_teams_level == team->t.t_level) { 5363 ++level; // level was not increased in teams construct for 5364 // team_of_workers before the parallel 5365 } // team->t.t_level will be increased inside parallel 5366 } 5367 hot_teams = master->th.th_hot_teams; 5368 if (level < __kmp_hot_teams_max_level) { 5369 KMP_DEBUG_ASSERT(team == hot_teams[level].hot_team); 5370 use_hot_team = 1; 5371 } 5372 } 5373 #endif // KMP_NESTED_HOT_TEAMS 5374 5375 /* team is done working */ 5376 TCW_SYNC_PTR(team->t.t_pkfn, 5377 NULL); // Important for Debugging Support Library. 5378 #if KMP_OS_WINDOWS 5379 team->t.t_copyin_counter = 0; // init counter for possible reuse 5380 #endif 5381 // Do not reset pointer to parent team to NULL for hot teams. 5382 5383 /* if we are non-hot team, release our threads */ 5384 if (!use_hot_team) { 5385 if (__kmp_tasking_mode != tskm_immediate_exec) { 5386 // Wait for threads to reach reapable state 5387 for (f = 1; f < team->t.t_nproc; ++f) { 5388 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5389 kmp_info_t *th = team->t.t_threads[f]; 5390 volatile kmp_uint32 *state = &th->th.th_reap_state; 5391 while (*state != KMP_SAFE_TO_REAP) { 5392 #if KMP_OS_WINDOWS 5393 // On Windows a thread can be killed at any time, check this 5394 DWORD ecode; 5395 if (!__kmp_is_thread_alive(th, &ecode)) { 5396 *state = KMP_SAFE_TO_REAP; // reset the flag for dead thread 5397 break; 5398 } 5399 #endif 5400 // first check if thread is sleeping 5401 kmp_flag_64 fl(&th->th.th_bar[bs_forkjoin_barrier].bb.b_go, th); 5402 if (fl.is_sleeping()) 5403 fl.resume(__kmp_gtid_from_thread(th)); 5404 KMP_CPU_PAUSE(); 5405 } 5406 } 5407 5408 // Delete task teams 5409 int tt_idx; 5410 for (tt_idx = 0; tt_idx < 2; ++tt_idx) { 5411 kmp_task_team_t *task_team = team->t.t_task_team[tt_idx]; 5412 if (task_team != NULL) { 5413 for (f = 0; f < team->t.t_nproc; 5414 ++f) { // Have all threads unref task teams 5415 team->t.t_threads[f]->th.th_task_team = NULL; 5416 } 5417 KA_TRACE( 5418 20, 5419 ("__kmp_free_team: T#%d deactivating task_team %p on team %d\n", 5420 __kmp_get_gtid(), task_team, team->t.t_id)); 5421 #if KMP_NESTED_HOT_TEAMS 5422 __kmp_free_task_team(master, task_team); 5423 #endif 5424 team->t.t_task_team[tt_idx] = NULL; 5425 } 5426 } 5427 } 5428 5429 // Reset pointer to parent team only for non-hot teams. 5430 team->t.t_parent = NULL; 5431 team->t.t_level = 0; 5432 team->t.t_active_level = 0; 5433 5434 /* free the worker threads */ 5435 for (f = 1; f < team->t.t_nproc; ++f) { 5436 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5437 __kmp_free_thread(team->t.t_threads[f]); 5438 team->t.t_threads[f] = NULL; 5439 } 5440 5441 /* put the team back in the team pool */ 5442 /* TODO limit size of team pool, call reap_team if pool too large */ 5443 team->t.t_next_pool = CCAST(kmp_team_t *, __kmp_team_pool); 5444 __kmp_team_pool = (volatile kmp_team_t *)team; 5445 } 5446 5447 KMP_MB(); 5448 } 5449 5450 /* reap the team. destroy it, reclaim all its resources and free its memory */ 5451 kmp_team_t *__kmp_reap_team(kmp_team_t *team) { 5452 kmp_team_t *next_pool = team->t.t_next_pool; 5453 5454 KMP_DEBUG_ASSERT(team); 5455 KMP_DEBUG_ASSERT(team->t.t_dispatch); 5456 KMP_DEBUG_ASSERT(team->t.t_disp_buffer); 5457 KMP_DEBUG_ASSERT(team->t.t_threads); 5458 KMP_DEBUG_ASSERT(team->t.t_argv); 5459 5460 /* TODO clean the threads that are a part of this? */ 5461 5462 /* free stuff */ 5463 __kmp_free_team_arrays(team); 5464 if (team->t.t_argv != &team->t.t_inline_argv[0]) 5465 __kmp_free((void *)team->t.t_argv); 5466 __kmp_free(team); 5467 5468 KMP_MB(); 5469 return next_pool; 5470 } 5471 5472 // Free the thread. Don't reap it, just place it on the pool of available 5473 // threads. 5474 // 5475 // Changes for Quad issue 527845: We need a predictable OMP tid <-> gtid 5476 // binding for the affinity mechanism to be useful. 5477 // 5478 // Now, we always keep the free list (__kmp_thread_pool) sorted by gtid. 5479 // However, we want to avoid a potential performance problem by always 5480 // scanning through the list to find the correct point at which to insert 5481 // the thread (potential N**2 behavior). To do this we keep track of the 5482 // last place a thread struct was inserted (__kmp_thread_pool_insert_pt). 5483 // With single-level parallelism, threads will always be added to the tail 5484 // of the list, kept track of by __kmp_thread_pool_insert_pt. With nested 5485 // parallelism, all bets are off and we may need to scan through the entire 5486 // free list. 5487 // 5488 // This change also has a potentially large performance benefit, for some 5489 // applications. Previously, as threads were freed from the hot team, they 5490 // would be placed back on the free list in inverse order. If the hot team 5491 // grew back to it's original size, then the freed thread would be placed 5492 // back on the hot team in reverse order. This could cause bad cache 5493 // locality problems on programs where the size of the hot team regularly 5494 // grew and shrunk. 5495 // 5496 // Now, for single-level parallelism, the OMP tid is alway == gtid. 5497 void __kmp_free_thread(kmp_info_t *this_th) { 5498 int gtid; 5499 kmp_info_t **scan; 5500 kmp_root_t *root = this_th->th.th_root; 5501 5502 KA_TRACE(20, ("__kmp_free_thread: T#%d putting T#%d back on free pool.\n", 5503 __kmp_get_gtid(), this_th->th.th_info.ds.ds_gtid)); 5504 5505 KMP_DEBUG_ASSERT(this_th); 5506 5507 // When moving thread to pool, switch thread to wait on own b_go flag, and 5508 // uninitialized (NULL team). 5509 int b; 5510 kmp_balign_t *balign = this_th->th.th_bar; 5511 for (b = 0; b < bs_last_barrier; ++b) { 5512 if (balign[b].bb.wait_flag == KMP_BARRIER_PARENT_FLAG) 5513 balign[b].bb.wait_flag = KMP_BARRIER_SWITCH_TO_OWN_FLAG; 5514 balign[b].bb.team = NULL; 5515 balign[b].bb.leaf_kids = 0; 5516 } 5517 this_th->th.th_task_state = 0; 5518 this_th->th.th_reap_state = KMP_SAFE_TO_REAP; 5519 5520 /* put thread back on the free pool */ 5521 TCW_PTR(this_th->th.th_team, NULL); 5522 TCW_PTR(this_th->th.th_root, NULL); 5523 TCW_PTR(this_th->th.th_dispatch, NULL); /* NOT NEEDED */ 5524 5525 /* If the implicit task assigned to this thread can be used by other threads 5526 * -> multiple threads can share the data and try to free the task at 5527 * __kmp_reap_thread at exit. This duplicate use of the task data can happen 5528 * with higher probability when hot team is disabled but can occurs even when 5529 * the hot team is enabled */ 5530 __kmp_free_implicit_task(this_th); 5531 this_th->th.th_current_task = NULL; 5532 5533 // If the __kmp_thread_pool_insert_pt is already past the new insert 5534 // point, then we need to re-scan the entire list. 5535 gtid = this_th->th.th_info.ds.ds_gtid; 5536 if (__kmp_thread_pool_insert_pt != NULL) { 5537 KMP_DEBUG_ASSERT(__kmp_thread_pool != NULL); 5538 if (__kmp_thread_pool_insert_pt->th.th_info.ds.ds_gtid > gtid) { 5539 __kmp_thread_pool_insert_pt = NULL; 5540 } 5541 } 5542 5543 // Scan down the list to find the place to insert the thread. 5544 // scan is the address of a link in the list, possibly the address of 5545 // __kmp_thread_pool itself. 5546 // 5547 // In the absence of nested parallism, the for loop will have 0 iterations. 5548 if (__kmp_thread_pool_insert_pt != NULL) { 5549 scan = &(__kmp_thread_pool_insert_pt->th.th_next_pool); 5550 } else { 5551 scan = CCAST(kmp_info_t **, &__kmp_thread_pool); 5552 } 5553 for (; (*scan != NULL) && ((*scan)->th.th_info.ds.ds_gtid < gtid); 5554 scan = &((*scan)->th.th_next_pool)) 5555 ; 5556 5557 // Insert the new element on the list, and set __kmp_thread_pool_insert_pt 5558 // to its address. 5559 TCW_PTR(this_th->th.th_next_pool, *scan); 5560 __kmp_thread_pool_insert_pt = *scan = this_th; 5561 KMP_DEBUG_ASSERT((this_th->th.th_next_pool == NULL) || 5562 (this_th->th.th_info.ds.ds_gtid < 5563 this_th->th.th_next_pool->th.th_info.ds.ds_gtid)); 5564 TCW_4(this_th->th.th_in_pool, TRUE); 5565 __kmp_thread_pool_nth++; 5566 5567 TCW_4(__kmp_nth, __kmp_nth - 1); 5568 root->r.r_cg_nthreads--; 5569 5570 #ifdef KMP_ADJUST_BLOCKTIME 5571 /* Adjust blocktime back to user setting or default if necessary */ 5572 /* Middle initialization might never have occurred */ 5573 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 5574 KMP_DEBUG_ASSERT(__kmp_avail_proc > 0); 5575 if (__kmp_nth <= __kmp_avail_proc) { 5576 __kmp_zero_bt = FALSE; 5577 } 5578 } 5579 #endif /* KMP_ADJUST_BLOCKTIME */ 5580 5581 KMP_MB(); 5582 } 5583 5584 /* ------------------------------------------------------------------------ */ 5585 5586 void *__kmp_launch_thread(kmp_info_t *this_thr) { 5587 int gtid = this_thr->th.th_info.ds.ds_gtid; 5588 /* void *stack_data;*/ 5589 kmp_team_t *(*volatile pteam); 5590 5591 KMP_MB(); 5592 KA_TRACE(10, ("__kmp_launch_thread: T#%d start\n", gtid)); 5593 5594 if (__kmp_env_consistency_check) { 5595 this_thr->th.th_cons = __kmp_allocate_cons_stack(gtid); // ATT: Memory leak? 5596 } 5597 5598 #if OMPT_SUPPORT 5599 ompt_data_t *thread_data; 5600 if (ompt_enabled.enabled) { 5601 thread_data = &(this_thr->th.ompt_thread_info.thread_data); 5602 *thread_data = ompt_data_none; 5603 5604 this_thr->th.ompt_thread_info.state = omp_state_overhead; 5605 this_thr->th.ompt_thread_info.wait_id = 0; 5606 this_thr->th.ompt_thread_info.idle_frame = OMPT_GET_FRAME_ADDRESS(0); 5607 if (ompt_enabled.ompt_callback_thread_begin) { 5608 ompt_callbacks.ompt_callback(ompt_callback_thread_begin)( 5609 ompt_thread_worker, thread_data); 5610 } 5611 } 5612 #endif 5613 5614 #if OMPT_SUPPORT 5615 if (ompt_enabled.enabled) { 5616 this_thr->th.ompt_thread_info.state = omp_state_idle; 5617 } 5618 #endif 5619 /* This is the place where threads wait for work */ 5620 while (!TCR_4(__kmp_global.g.g_done)) { 5621 KMP_DEBUG_ASSERT(this_thr == __kmp_threads[gtid]); 5622 KMP_MB(); 5623 5624 /* wait for work to do */ 5625 KA_TRACE(20, ("__kmp_launch_thread: T#%d waiting for work\n", gtid)); 5626 5627 /* No tid yet since not part of a team */ 5628 __kmp_fork_barrier(gtid, KMP_GTID_DNE); 5629 5630 #if OMPT_SUPPORT 5631 if (ompt_enabled.enabled) { 5632 this_thr->th.ompt_thread_info.state = omp_state_overhead; 5633 } 5634 #endif 5635 5636 pteam = (kmp_team_t * (*))(&this_thr->th.th_team); 5637 5638 /* have we been allocated? */ 5639 if (TCR_SYNC_PTR(*pteam) && !TCR_4(__kmp_global.g.g_done)) { 5640 /* we were just woken up, so run our new task */ 5641 if (TCR_SYNC_PTR((*pteam)->t.t_pkfn) != NULL) { 5642 int rc; 5643 KA_TRACE(20, 5644 ("__kmp_launch_thread: T#%d(%d:%d) invoke microtask = %p\n", 5645 gtid, (*pteam)->t.t_id, __kmp_tid_from_gtid(gtid), 5646 (*pteam)->t.t_pkfn)); 5647 5648 updateHWFPControl(*pteam); 5649 5650 #if OMPT_SUPPORT 5651 if (ompt_enabled.enabled) { 5652 this_thr->th.ompt_thread_info.state = omp_state_work_parallel; 5653 } 5654 #endif 5655 5656 rc = (*pteam)->t.t_invoke(gtid); 5657 KMP_ASSERT(rc); 5658 5659 KMP_MB(); 5660 KA_TRACE(20, ("__kmp_launch_thread: T#%d(%d:%d) done microtask = %p\n", 5661 gtid, (*pteam)->t.t_id, __kmp_tid_from_gtid(gtid), 5662 (*pteam)->t.t_pkfn)); 5663 } 5664 #if OMPT_SUPPORT 5665 if (ompt_enabled.enabled) { 5666 /* no frame set while outside task */ 5667 __ompt_get_task_info_object(0)->frame.exit_frame = NULL; 5668 5669 this_thr->th.ompt_thread_info.state = omp_state_overhead; 5670 } 5671 #endif 5672 /* join barrier after parallel region */ 5673 __kmp_join_barrier(gtid); 5674 } 5675 } 5676 TCR_SYNC_PTR((intptr_t)__kmp_global.g.g_done); 5677 5678 #if OMPT_SUPPORT 5679 if (ompt_enabled.ompt_callback_thread_end) { 5680 ompt_callbacks.ompt_callback(ompt_callback_thread_end)(thread_data); 5681 } 5682 #endif 5683 5684 this_thr->th.th_task_team = NULL; 5685 /* run the destructors for the threadprivate data for this thread */ 5686 __kmp_common_destroy_gtid(gtid); 5687 5688 KA_TRACE(10, ("__kmp_launch_thread: T#%d done\n", gtid)); 5689 KMP_MB(); 5690 return this_thr; 5691 } 5692 5693 /* ------------------------------------------------------------------------ */ 5694 5695 void __kmp_internal_end_dest(void *specific_gtid) { 5696 #if KMP_COMPILER_ICC 5697 #pragma warning(push) 5698 #pragma warning(disable : 810) // conversion from "void *" to "int" may lose 5699 // significant bits 5700 #endif 5701 // Make sure no significant bits are lost 5702 int gtid = (kmp_intptr_t)specific_gtid - 1; 5703 #if KMP_COMPILER_ICC 5704 #pragma warning(pop) 5705 #endif 5706 5707 KA_TRACE(30, ("__kmp_internal_end_dest: T#%d\n", gtid)); 5708 /* NOTE: the gtid is stored as gitd+1 in the thread-local-storage 5709 * this is because 0 is reserved for the nothing-stored case */ 5710 5711 /* josh: One reason for setting the gtid specific data even when it is being 5712 destroyed by pthread is to allow gtid lookup through thread specific data 5713 (__kmp_gtid_get_specific). Some of the code, especially stat code, 5714 that gets executed in the call to __kmp_internal_end_thread, actually 5715 gets the gtid through the thread specific data. Setting it here seems 5716 rather inelegant and perhaps wrong, but allows __kmp_internal_end_thread 5717 to run smoothly. 5718 todo: get rid of this after we remove the dependence on 5719 __kmp_gtid_get_specific */ 5720 if (gtid >= 0 && KMP_UBER_GTID(gtid)) 5721 __kmp_gtid_set_specific(gtid); 5722 #ifdef KMP_TDATA_GTID 5723 __kmp_gtid = gtid; 5724 #endif 5725 __kmp_internal_end_thread(gtid); 5726 } 5727 5728 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB 5729 5730 // 2009-09-08 (lev): It looks the destructor does not work. In simple test cases 5731 // destructors work perfectly, but in real libomp.so I have no evidence it is 5732 // ever called. However, -fini linker option in makefile.mk works fine. 5733 5734 __attribute__((destructor)) void __kmp_internal_end_dtor(void) { 5735 __kmp_internal_end_atexit(); 5736 } 5737 5738 void __kmp_internal_end_fini(void) { __kmp_internal_end_atexit(); } 5739 5740 #endif 5741 5742 /* [Windows] josh: when the atexit handler is called, there may still be more 5743 than one thread alive */ 5744 void __kmp_internal_end_atexit(void) { 5745 KA_TRACE(30, ("__kmp_internal_end_atexit\n")); 5746 /* [Windows] 5747 josh: ideally, we want to completely shutdown the library in this atexit 5748 handler, but stat code that depends on thread specific data for gtid fails 5749 because that data becomes unavailable at some point during the shutdown, so 5750 we call __kmp_internal_end_thread instead. We should eventually remove the 5751 dependency on __kmp_get_specific_gtid in the stat code and use 5752 __kmp_internal_end_library to cleanly shutdown the library. 5753 5754 // TODO: Can some of this comment about GVS be removed? 5755 I suspect that the offending stat code is executed when the calling thread 5756 tries to clean up a dead root thread's data structures, resulting in GVS 5757 code trying to close the GVS structures for that thread, but since the stat 5758 code uses __kmp_get_specific_gtid to get the gtid with the assumption that 5759 the calling thread is cleaning up itself instead of another thread, it get 5760 confused. This happens because allowing a thread to unregister and cleanup 5761 another thread is a recent modification for addressing an issue. 5762 Based on the current design (20050722), a thread may end up 5763 trying to unregister another thread only if thread death does not trigger 5764 the calling of __kmp_internal_end_thread. For Linux* OS, there is the 5765 thread specific data destructor function to detect thread death. For 5766 Windows dynamic, there is DllMain(THREAD_DETACH). For Windows static, there 5767 is nothing. Thus, the workaround is applicable only for Windows static 5768 stat library. */ 5769 __kmp_internal_end_library(-1); 5770 #if KMP_OS_WINDOWS 5771 __kmp_close_console(); 5772 #endif 5773 } 5774 5775 static void __kmp_reap_thread(kmp_info_t *thread, int is_root) { 5776 // It is assumed __kmp_forkjoin_lock is acquired. 5777 5778 int gtid; 5779 5780 KMP_DEBUG_ASSERT(thread != NULL); 5781 5782 gtid = thread->th.th_info.ds.ds_gtid; 5783 5784 if (!is_root) { 5785 5786 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { 5787 /* Assume the threads are at the fork barrier here */ 5788 KA_TRACE( 5789 20, ("__kmp_reap_thread: releasing T#%d from fork barrier for reap\n", 5790 gtid)); 5791 /* Need release fence here to prevent seg faults for tree forkjoin barrier 5792 * (GEH) */ 5793 ANNOTATE_HAPPENS_BEFORE(thread); 5794 kmp_flag_64 flag(&thread->th.th_bar[bs_forkjoin_barrier].bb.b_go, thread); 5795 __kmp_release_64(&flag); 5796 } 5797 5798 // Terminate OS thread. 5799 __kmp_reap_worker(thread); 5800 5801 // The thread was killed asynchronously. If it was actively 5802 // spinning in the thread pool, decrement the global count. 5803 // 5804 // There is a small timing hole here - if the worker thread was just waking 5805 // up after sleeping in the pool, had reset it's th_active_in_pool flag but 5806 // not decremented the global counter __kmp_thread_pool_active_nth yet, then 5807 // the global counter might not get updated. 5808 // 5809 // Currently, this can only happen as the library is unloaded, 5810 // so there are no harmful side effects. 5811 if (thread->th.th_active_in_pool) { 5812 thread->th.th_active_in_pool = FALSE; 5813 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 5814 KMP_DEBUG_ASSERT(__kmp_thread_pool_active_nth >= 0); 5815 } 5816 5817 // Decrement # of [worker] threads in the pool. 5818 KMP_DEBUG_ASSERT(__kmp_thread_pool_nth > 0); 5819 --__kmp_thread_pool_nth; 5820 } 5821 5822 __kmp_free_implicit_task(thread); 5823 5824 // Free the fast memory for tasking 5825 #if USE_FAST_MEMORY 5826 __kmp_free_fast_memory(thread); 5827 #endif /* USE_FAST_MEMORY */ 5828 5829 __kmp_suspend_uninitialize_thread(thread); 5830 5831 KMP_DEBUG_ASSERT(__kmp_threads[gtid] == thread); 5832 TCW_SYNC_PTR(__kmp_threads[gtid], NULL); 5833 5834 --__kmp_all_nth; 5835 // __kmp_nth was decremented when thread is added to the pool. 5836 5837 #ifdef KMP_ADJUST_BLOCKTIME 5838 /* Adjust blocktime back to user setting or default if necessary */ 5839 /* Middle initialization might never have occurred */ 5840 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 5841 KMP_DEBUG_ASSERT(__kmp_avail_proc > 0); 5842 if (__kmp_nth <= __kmp_avail_proc) { 5843 __kmp_zero_bt = FALSE; 5844 } 5845 } 5846 #endif /* KMP_ADJUST_BLOCKTIME */ 5847 5848 /* free the memory being used */ 5849 if (__kmp_env_consistency_check) { 5850 if (thread->th.th_cons) { 5851 __kmp_free_cons_stack(thread->th.th_cons); 5852 thread->th.th_cons = NULL; 5853 } 5854 } 5855 5856 if (thread->th.th_pri_common != NULL) { 5857 __kmp_free(thread->th.th_pri_common); 5858 thread->th.th_pri_common = NULL; 5859 } 5860 5861 if (thread->th.th_task_state_memo_stack != NULL) { 5862 __kmp_free(thread->th.th_task_state_memo_stack); 5863 thread->th.th_task_state_memo_stack = NULL; 5864 } 5865 5866 #if KMP_USE_BGET 5867 if (thread->th.th_local.bget_data != NULL) { 5868 __kmp_finalize_bget(thread); 5869 } 5870 #endif 5871 5872 #if KMP_AFFINITY_SUPPORTED 5873 if (thread->th.th_affin_mask != NULL) { 5874 KMP_CPU_FREE(thread->th.th_affin_mask); 5875 thread->th.th_affin_mask = NULL; 5876 } 5877 #endif /* KMP_AFFINITY_SUPPORTED */ 5878 5879 #if KMP_USE_HIER_SCHED 5880 if (thread->th.th_hier_bar_data != NULL) { 5881 __kmp_free(thread->th.th_hier_bar_data); 5882 thread->th.th_hier_bar_data = NULL; 5883 } 5884 #endif 5885 5886 __kmp_reap_team(thread->th.th_serial_team); 5887 thread->th.th_serial_team = NULL; 5888 __kmp_free(thread); 5889 5890 KMP_MB(); 5891 5892 } // __kmp_reap_thread 5893 5894 static void __kmp_internal_end(void) { 5895 int i; 5896 5897 /* First, unregister the library */ 5898 __kmp_unregister_library(); 5899 5900 #if KMP_OS_WINDOWS 5901 /* In Win static library, we can't tell when a root actually dies, so we 5902 reclaim the data structures for any root threads that have died but not 5903 unregistered themselves, in order to shut down cleanly. 5904 In Win dynamic library we also can't tell when a thread dies. */ 5905 __kmp_reclaim_dead_roots(); // AC: moved here to always clean resources of 5906 // dead roots 5907 #endif 5908 5909 for (i = 0; i < __kmp_threads_capacity; i++) 5910 if (__kmp_root[i]) 5911 if (__kmp_root[i]->r.r_active) 5912 break; 5913 KMP_MB(); /* Flush all pending memory write invalidates. */ 5914 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 5915 5916 if (i < __kmp_threads_capacity) { 5917 #if KMP_USE_MONITOR 5918 // 2009-09-08 (lev): Other alive roots found. Why do we kill the monitor?? 5919 KMP_MB(); /* Flush all pending memory write invalidates. */ 5920 5921 // Need to check that monitor was initialized before reaping it. If we are 5922 // called form __kmp_atfork_child (which sets __kmp_init_parallel = 0), then 5923 // __kmp_monitor will appear to contain valid data, but it is only valid in 5924 // the parent process, not the child. 5925 // New behavior (201008): instead of keying off of the flag 5926 // __kmp_init_parallel, the monitor thread creation is keyed off 5927 // of the new flag __kmp_init_monitor. 5928 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock); 5929 if (TCR_4(__kmp_init_monitor)) { 5930 __kmp_reap_monitor(&__kmp_monitor); 5931 TCW_4(__kmp_init_monitor, 0); 5932 } 5933 __kmp_release_bootstrap_lock(&__kmp_monitor_lock); 5934 KA_TRACE(10, ("__kmp_internal_end: monitor reaped\n")); 5935 #endif // KMP_USE_MONITOR 5936 } else { 5937 /* TODO move this to cleanup code */ 5938 #ifdef KMP_DEBUG 5939 /* make sure that everything has properly ended */ 5940 for (i = 0; i < __kmp_threads_capacity; i++) { 5941 if (__kmp_root[i]) { 5942 // KMP_ASSERT( ! KMP_UBER_GTID( i ) ); // AC: 5943 // there can be uber threads alive here 5944 KMP_ASSERT(!__kmp_root[i]->r.r_active); // TODO: can they be active? 5945 } 5946 } 5947 #endif 5948 5949 KMP_MB(); 5950 5951 // Reap the worker threads. 5952 // This is valid for now, but be careful if threads are reaped sooner. 5953 while (__kmp_thread_pool != NULL) { // Loop thru all the thread in the pool. 5954 // Get the next thread from the pool. 5955 kmp_info_t *thread = CCAST(kmp_info_t *, __kmp_thread_pool); 5956 __kmp_thread_pool = thread->th.th_next_pool; 5957 // Reap it. 5958 KMP_DEBUG_ASSERT(thread->th.th_reap_state == KMP_SAFE_TO_REAP); 5959 thread->th.th_next_pool = NULL; 5960 thread->th.th_in_pool = FALSE; 5961 __kmp_reap_thread(thread, 0); 5962 } 5963 __kmp_thread_pool_insert_pt = NULL; 5964 5965 // Reap teams. 5966 while (__kmp_team_pool != NULL) { // Loop thru all the teams in the pool. 5967 // Get the next team from the pool. 5968 kmp_team_t *team = CCAST(kmp_team_t *, __kmp_team_pool); 5969 __kmp_team_pool = team->t.t_next_pool; 5970 // Reap it. 5971 team->t.t_next_pool = NULL; 5972 __kmp_reap_team(team); 5973 } 5974 5975 __kmp_reap_task_teams(); 5976 5977 #if KMP_OS_UNIX 5978 // Threads that are not reaped should not access any resources since they 5979 // are going to be deallocated soon, so the shutdown sequence should wait 5980 // until all threads either exit the final spin-waiting loop or begin 5981 // sleeping after the given blocktime. 5982 for (i = 0; i < __kmp_threads_capacity; i++) { 5983 kmp_info_t *thr = __kmp_threads[i]; 5984 while (thr && KMP_ATOMIC_LD_ACQ(&thr->th.th_blocking)) 5985 KMP_CPU_PAUSE(); 5986 } 5987 #endif 5988 5989 for (i = 0; i < __kmp_threads_capacity; ++i) { 5990 // TBD: Add some checking... 5991 // Something like KMP_DEBUG_ASSERT( __kmp_thread[ i ] == NULL ); 5992 } 5993 5994 /* Make sure all threadprivate destructors get run by joining with all 5995 worker threads before resetting this flag */ 5996 TCW_SYNC_4(__kmp_init_common, FALSE); 5997 5998 KA_TRACE(10, ("__kmp_internal_end: all workers reaped\n")); 5999 KMP_MB(); 6000 6001 #if KMP_USE_MONITOR 6002 // See note above: One of the possible fixes for CQ138434 / CQ140126 6003 // 6004 // FIXME: push both code fragments down and CSE them? 6005 // push them into __kmp_cleanup() ? 6006 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock); 6007 if (TCR_4(__kmp_init_monitor)) { 6008 __kmp_reap_monitor(&__kmp_monitor); 6009 TCW_4(__kmp_init_monitor, 0); 6010 } 6011 __kmp_release_bootstrap_lock(&__kmp_monitor_lock); 6012 KA_TRACE(10, ("__kmp_internal_end: monitor reaped\n")); 6013 #endif 6014 } /* else !__kmp_global.t_active */ 6015 TCW_4(__kmp_init_gtid, FALSE); 6016 KMP_MB(); /* Flush all pending memory write invalidates. */ 6017 6018 __kmp_cleanup(); 6019 #if OMPT_SUPPORT 6020 ompt_fini(); 6021 #endif 6022 } 6023 6024 void __kmp_internal_end_library(int gtid_req) { 6025 /* if we have already cleaned up, don't try again, it wouldn't be pretty */ 6026 /* this shouldn't be a race condition because __kmp_internal_end() is the 6027 only place to clear __kmp_serial_init */ 6028 /* we'll check this later too, after we get the lock */ 6029 // 2009-09-06: We do not set g_abort without setting g_done. This check looks 6030 // redundaant, because the next check will work in any case. 6031 if (__kmp_global.g.g_abort) { 6032 KA_TRACE(11, ("__kmp_internal_end_library: abort, exiting\n")); 6033 /* TODO abort? */ 6034 return; 6035 } 6036 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6037 KA_TRACE(10, ("__kmp_internal_end_library: already finished\n")); 6038 return; 6039 } 6040 6041 KMP_MB(); /* Flush all pending memory write invalidates. */ 6042 6043 /* find out who we are and what we should do */ 6044 { 6045 int gtid = (gtid_req >= 0) ? gtid_req : __kmp_gtid_get_specific(); 6046 KA_TRACE( 6047 10, ("__kmp_internal_end_library: enter T#%d (%d)\n", gtid, gtid_req)); 6048 if (gtid == KMP_GTID_SHUTDOWN) { 6049 KA_TRACE(10, ("__kmp_internal_end_library: !__kmp_init_runtime, system " 6050 "already shutdown\n")); 6051 return; 6052 } else if (gtid == KMP_GTID_MONITOR) { 6053 KA_TRACE(10, ("__kmp_internal_end_library: monitor thread, gtid not " 6054 "registered, or system shutdown\n")); 6055 return; 6056 } else if (gtid == KMP_GTID_DNE) { 6057 KA_TRACE(10, ("__kmp_internal_end_library: gtid not registered or system " 6058 "shutdown\n")); 6059 /* we don't know who we are, but we may still shutdown the library */ 6060 } else if (KMP_UBER_GTID(gtid)) { 6061 /* unregister ourselves as an uber thread. gtid is no longer valid */ 6062 if (__kmp_root[gtid]->r.r_active) { 6063 __kmp_global.g.g_abort = -1; 6064 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 6065 KA_TRACE(10, 6066 ("__kmp_internal_end_library: root still active, abort T#%d\n", 6067 gtid)); 6068 return; 6069 } else { 6070 KA_TRACE( 6071 10, 6072 ("__kmp_internal_end_library: unregistering sibling T#%d\n", gtid)); 6073 __kmp_unregister_root_current_thread(gtid); 6074 } 6075 } else { 6076 /* worker threads may call this function through the atexit handler, if they 6077 * call exit() */ 6078 /* For now, skip the usual subsequent processing and just dump the debug buffer. 6079 TODO: do a thorough shutdown instead */ 6080 #ifdef DUMP_DEBUG_ON_EXIT 6081 if (__kmp_debug_buf) 6082 __kmp_dump_debug_buffer(); 6083 #endif 6084 return; 6085 } 6086 } 6087 /* synchronize the termination process */ 6088 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6089 6090 /* have we already finished */ 6091 if (__kmp_global.g.g_abort) { 6092 KA_TRACE(10, ("__kmp_internal_end_library: abort, exiting\n")); 6093 /* TODO abort? */ 6094 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6095 return; 6096 } 6097 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6098 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6099 return; 6100 } 6101 6102 /* We need this lock to enforce mutex between this reading of 6103 __kmp_threads_capacity and the writing by __kmp_register_root. 6104 Alternatively, we can use a counter of roots that is atomically updated by 6105 __kmp_get_global_thread_id_reg, __kmp_do_serial_initialize and 6106 __kmp_internal_end_*. */ 6107 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 6108 6109 /* now we can safely conduct the actual termination */ 6110 __kmp_internal_end(); 6111 6112 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 6113 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6114 6115 KA_TRACE(10, ("__kmp_internal_end_library: exit\n")); 6116 6117 #ifdef DUMP_DEBUG_ON_EXIT 6118 if (__kmp_debug_buf) 6119 __kmp_dump_debug_buffer(); 6120 #endif 6121 6122 #if KMP_OS_WINDOWS 6123 __kmp_close_console(); 6124 #endif 6125 6126 __kmp_fini_allocator(); 6127 6128 } // __kmp_internal_end_library 6129 6130 void __kmp_internal_end_thread(int gtid_req) { 6131 int i; 6132 6133 /* if we have already cleaned up, don't try again, it wouldn't be pretty */ 6134 /* this shouldn't be a race condition because __kmp_internal_end() is the 6135 * only place to clear __kmp_serial_init */ 6136 /* we'll check this later too, after we get the lock */ 6137 // 2009-09-06: We do not set g_abort without setting g_done. This check looks 6138 // redundant, because the next check will work in any case. 6139 if (__kmp_global.g.g_abort) { 6140 KA_TRACE(11, ("__kmp_internal_end_thread: abort, exiting\n")); 6141 /* TODO abort? */ 6142 return; 6143 } 6144 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6145 KA_TRACE(10, ("__kmp_internal_end_thread: already finished\n")); 6146 return; 6147 } 6148 6149 KMP_MB(); /* Flush all pending memory write invalidates. */ 6150 6151 /* find out who we are and what we should do */ 6152 { 6153 int gtid = (gtid_req >= 0) ? gtid_req : __kmp_gtid_get_specific(); 6154 KA_TRACE(10, 6155 ("__kmp_internal_end_thread: enter T#%d (%d)\n", gtid, gtid_req)); 6156 if (gtid == KMP_GTID_SHUTDOWN) { 6157 KA_TRACE(10, ("__kmp_internal_end_thread: !__kmp_init_runtime, system " 6158 "already shutdown\n")); 6159 return; 6160 } else if (gtid == KMP_GTID_MONITOR) { 6161 KA_TRACE(10, ("__kmp_internal_end_thread: monitor thread, gtid not " 6162 "registered, or system shutdown\n")); 6163 return; 6164 } else if (gtid == KMP_GTID_DNE) { 6165 KA_TRACE(10, ("__kmp_internal_end_thread: gtid not registered or system " 6166 "shutdown\n")); 6167 return; 6168 /* we don't know who we are */ 6169 } else if (KMP_UBER_GTID(gtid)) { 6170 /* unregister ourselves as an uber thread. gtid is no longer valid */ 6171 if (__kmp_root[gtid]->r.r_active) { 6172 __kmp_global.g.g_abort = -1; 6173 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 6174 KA_TRACE(10, 6175 ("__kmp_internal_end_thread: root still active, abort T#%d\n", 6176 gtid)); 6177 return; 6178 } else { 6179 KA_TRACE(10, ("__kmp_internal_end_thread: unregistering sibling T#%d\n", 6180 gtid)); 6181 __kmp_unregister_root_current_thread(gtid); 6182 } 6183 } else { 6184 /* just a worker thread, let's leave */ 6185 KA_TRACE(10, ("__kmp_internal_end_thread: worker thread T#%d\n", gtid)); 6186 6187 if (gtid >= 0) { 6188 __kmp_threads[gtid]->th.th_task_team = NULL; 6189 } 6190 6191 KA_TRACE(10, 6192 ("__kmp_internal_end_thread: worker thread done, exiting T#%d\n", 6193 gtid)); 6194 return; 6195 } 6196 } 6197 #if KMP_DYNAMIC_LIB 6198 // AC: lets not shutdown the Linux* OS dynamic library at the exit of uber 6199 // thread, because we will better shutdown later in the library destructor. 6200 // The reason of this change is performance problem when non-openmp thread in 6201 // a loop forks and joins many openmp threads. We can save a lot of time 6202 // keeping worker threads alive until the program shutdown. 6203 // OM: Removed Linux* OS restriction to fix the crash on OS X* (DPD200239966) 6204 // and Windows(DPD200287443) that occurs when using critical sections from 6205 // foreign threads. 6206 KA_TRACE(10, ("__kmp_internal_end_thread: exiting T#%d\n", gtid_req)); 6207 return; 6208 #endif 6209 /* synchronize the termination process */ 6210 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6211 6212 /* have we already finished */ 6213 if (__kmp_global.g.g_abort) { 6214 KA_TRACE(10, ("__kmp_internal_end_thread: abort, exiting\n")); 6215 /* TODO abort? */ 6216 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6217 return; 6218 } 6219 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6220 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6221 return; 6222 } 6223 6224 /* We need this lock to enforce mutex between this reading of 6225 __kmp_threads_capacity and the writing by __kmp_register_root. 6226 Alternatively, we can use a counter of roots that is atomically updated by 6227 __kmp_get_global_thread_id_reg, __kmp_do_serial_initialize and 6228 __kmp_internal_end_*. */ 6229 6230 /* should we finish the run-time? are all siblings done? */ 6231 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 6232 6233 for (i = 0; i < __kmp_threads_capacity; ++i) { 6234 if (KMP_UBER_GTID(i)) { 6235 KA_TRACE( 6236 10, 6237 ("__kmp_internal_end_thread: remaining sibling task: gtid==%d\n", i)); 6238 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 6239 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6240 return; 6241 } 6242 } 6243 6244 /* now we can safely conduct the actual termination */ 6245 6246 __kmp_internal_end(); 6247 6248 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 6249 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6250 6251 KA_TRACE(10, ("__kmp_internal_end_thread: exit T#%d\n", gtid_req)); 6252 6253 #ifdef DUMP_DEBUG_ON_EXIT 6254 if (__kmp_debug_buf) 6255 __kmp_dump_debug_buffer(); 6256 #endif 6257 } // __kmp_internal_end_thread 6258 6259 // ----------------------------------------------------------------------------- 6260 // Library registration stuff. 6261 6262 static long __kmp_registration_flag = 0; 6263 // Random value used to indicate library initialization. 6264 static char *__kmp_registration_str = NULL; 6265 // Value to be saved in env var __KMP_REGISTERED_LIB_<pid>. 6266 6267 static inline char *__kmp_reg_status_name() { 6268 /* On RHEL 3u5 if linked statically, getpid() returns different values in 6269 each thread. If registration and unregistration go in different threads 6270 (omp_misc_other_root_exit.cpp test case), the name of registered_lib_env 6271 env var can not be found, because the name will contain different pid. */ 6272 return __kmp_str_format("__KMP_REGISTERED_LIB_%d", (int)getpid()); 6273 } // __kmp_reg_status_get 6274 6275 void __kmp_register_library_startup(void) { 6276 6277 char *name = __kmp_reg_status_name(); // Name of the environment variable. 6278 int done = 0; 6279 union { 6280 double dtime; 6281 long ltime; 6282 } time; 6283 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 6284 __kmp_initialize_system_tick(); 6285 #endif 6286 __kmp_read_system_time(&time.dtime); 6287 __kmp_registration_flag = 0xCAFE0000L | (time.ltime & 0x0000FFFFL); 6288 __kmp_registration_str = 6289 __kmp_str_format("%p-%lx-%s", &__kmp_registration_flag, 6290 __kmp_registration_flag, KMP_LIBRARY_FILE); 6291 6292 KA_TRACE(50, ("__kmp_register_library_startup: %s=\"%s\"\n", name, 6293 __kmp_registration_str)); 6294 6295 while (!done) { 6296 6297 char *value = NULL; // Actual value of the environment variable. 6298 6299 // Set environment variable, but do not overwrite if it is exist. 6300 __kmp_env_set(name, __kmp_registration_str, 0); 6301 // Check the variable is written. 6302 value = __kmp_env_get(name); 6303 if (value != NULL && strcmp(value, __kmp_registration_str) == 0) { 6304 6305 done = 1; // Ok, environment variable set successfully, exit the loop. 6306 6307 } else { 6308 6309 // Oops. Write failed. Another copy of OpenMP RTL is in memory. 6310 // Check whether it alive or dead. 6311 int neighbor = 0; // 0 -- unknown status, 1 -- alive, 2 -- dead. 6312 char *tail = value; 6313 char *flag_addr_str = NULL; 6314 char *flag_val_str = NULL; 6315 char const *file_name = NULL; 6316 __kmp_str_split(tail, '-', &flag_addr_str, &tail); 6317 __kmp_str_split(tail, '-', &flag_val_str, &tail); 6318 file_name = tail; 6319 if (tail != NULL) { 6320 long *flag_addr = 0; 6321 long flag_val = 0; 6322 KMP_SSCANF(flag_addr_str, "%p", RCAST(void**, &flag_addr)); 6323 KMP_SSCANF(flag_val_str, "%lx", &flag_val); 6324 if (flag_addr != 0 && flag_val != 0 && strcmp(file_name, "") != 0) { 6325 // First, check whether environment-encoded address is mapped into 6326 // addr space. 6327 // If so, dereference it to see if it still has the right value. 6328 if (__kmp_is_address_mapped(flag_addr) && *flag_addr == flag_val) { 6329 neighbor = 1; 6330 } else { 6331 // If not, then we know the other copy of the library is no longer 6332 // running. 6333 neighbor = 2; 6334 } 6335 } 6336 } 6337 switch (neighbor) { 6338 case 0: // Cannot parse environment variable -- neighbor status unknown. 6339 // Assume it is the incompatible format of future version of the 6340 // library. Assume the other library is alive. 6341 // WARN( ... ); // TODO: Issue a warning. 6342 file_name = "unknown library"; 6343 // Attention! Falling to the next case. That's intentional. 6344 case 1: { // Neighbor is alive. 6345 // Check it is allowed. 6346 char *duplicate_ok = __kmp_env_get("KMP_DUPLICATE_LIB_OK"); 6347 if (!__kmp_str_match_true(duplicate_ok)) { 6348 // That's not allowed. Issue fatal error. 6349 __kmp_fatal(KMP_MSG(DuplicateLibrary, KMP_LIBRARY_FILE, file_name), 6350 KMP_HNT(DuplicateLibrary), __kmp_msg_null); 6351 } 6352 KMP_INTERNAL_FREE(duplicate_ok); 6353 __kmp_duplicate_library_ok = 1; 6354 done = 1; // Exit the loop. 6355 } break; 6356 case 2: { // Neighbor is dead. 6357 // Clear the variable and try to register library again. 6358 __kmp_env_unset(name); 6359 } break; 6360 default: { KMP_DEBUG_ASSERT(0); } break; 6361 } 6362 } 6363 KMP_INTERNAL_FREE((void *)value); 6364 } 6365 KMP_INTERNAL_FREE((void *)name); 6366 6367 } // func __kmp_register_library_startup 6368 6369 void __kmp_unregister_library(void) { 6370 6371 char *name = __kmp_reg_status_name(); 6372 char *value = __kmp_env_get(name); 6373 6374 KMP_DEBUG_ASSERT(__kmp_registration_flag != 0); 6375 KMP_DEBUG_ASSERT(__kmp_registration_str != NULL); 6376 if (value != NULL && strcmp(value, __kmp_registration_str) == 0) { 6377 // Ok, this is our variable. Delete it. 6378 __kmp_env_unset(name); 6379 } 6380 6381 KMP_INTERNAL_FREE(__kmp_registration_str); 6382 KMP_INTERNAL_FREE(value); 6383 KMP_INTERNAL_FREE(name); 6384 6385 __kmp_registration_flag = 0; 6386 __kmp_registration_str = NULL; 6387 6388 } // __kmp_unregister_library 6389 6390 // End of Library registration stuff. 6391 // ----------------------------------------------------------------------------- 6392 6393 #if KMP_MIC_SUPPORTED 6394 6395 static void __kmp_check_mic_type() { 6396 kmp_cpuid_t cpuid_state = {0}; 6397 kmp_cpuid_t *cs_p = &cpuid_state; 6398 __kmp_x86_cpuid(1, 0, cs_p); 6399 // We don't support mic1 at the moment 6400 if ((cs_p->eax & 0xff0) == 0xB10) { 6401 __kmp_mic_type = mic2; 6402 } else if ((cs_p->eax & 0xf0ff0) == 0x50670) { 6403 __kmp_mic_type = mic3; 6404 } else { 6405 __kmp_mic_type = non_mic; 6406 } 6407 } 6408 6409 #endif /* KMP_MIC_SUPPORTED */ 6410 6411 static void __kmp_do_serial_initialize(void) { 6412 int i, gtid; 6413 int size; 6414 6415 KA_TRACE(10, ("__kmp_do_serial_initialize: enter\n")); 6416 6417 KMP_DEBUG_ASSERT(sizeof(kmp_int32) == 4); 6418 KMP_DEBUG_ASSERT(sizeof(kmp_uint32) == 4); 6419 KMP_DEBUG_ASSERT(sizeof(kmp_int64) == 8); 6420 KMP_DEBUG_ASSERT(sizeof(kmp_uint64) == 8); 6421 KMP_DEBUG_ASSERT(sizeof(kmp_intptr_t) == sizeof(void *)); 6422 6423 #if OMPT_SUPPORT 6424 ompt_pre_init(); 6425 #endif 6426 6427 __kmp_validate_locks(); 6428 6429 /* Initialize internal memory allocator */ 6430 __kmp_init_allocator(); 6431 6432 /* Register the library startup via an environment variable and check to see 6433 whether another copy of the library is already registered. */ 6434 6435 __kmp_register_library_startup(); 6436 6437 /* TODO reinitialization of library */ 6438 if (TCR_4(__kmp_global.g.g_done)) { 6439 KA_TRACE(10, ("__kmp_do_serial_initialize: reinitialization of library\n")); 6440 } 6441 6442 __kmp_global.g.g_abort = 0; 6443 TCW_SYNC_4(__kmp_global.g.g_done, FALSE); 6444 6445 /* initialize the locks */ 6446 #if KMP_USE_ADAPTIVE_LOCKS 6447 #if KMP_DEBUG_ADAPTIVE_LOCKS 6448 __kmp_init_speculative_stats(); 6449 #endif 6450 #endif 6451 #if KMP_STATS_ENABLED 6452 __kmp_stats_init(); 6453 #endif 6454 __kmp_init_lock(&__kmp_global_lock); 6455 __kmp_init_queuing_lock(&__kmp_dispatch_lock); 6456 __kmp_init_lock(&__kmp_debug_lock); 6457 __kmp_init_atomic_lock(&__kmp_atomic_lock); 6458 __kmp_init_atomic_lock(&__kmp_atomic_lock_1i); 6459 __kmp_init_atomic_lock(&__kmp_atomic_lock_2i); 6460 __kmp_init_atomic_lock(&__kmp_atomic_lock_4i); 6461 __kmp_init_atomic_lock(&__kmp_atomic_lock_4r); 6462 __kmp_init_atomic_lock(&__kmp_atomic_lock_8i); 6463 __kmp_init_atomic_lock(&__kmp_atomic_lock_8r); 6464 __kmp_init_atomic_lock(&__kmp_atomic_lock_8c); 6465 __kmp_init_atomic_lock(&__kmp_atomic_lock_10r); 6466 __kmp_init_atomic_lock(&__kmp_atomic_lock_16r); 6467 __kmp_init_atomic_lock(&__kmp_atomic_lock_16c); 6468 __kmp_init_atomic_lock(&__kmp_atomic_lock_20c); 6469 __kmp_init_atomic_lock(&__kmp_atomic_lock_32c); 6470 __kmp_init_bootstrap_lock(&__kmp_forkjoin_lock); 6471 __kmp_init_bootstrap_lock(&__kmp_exit_lock); 6472 #if KMP_USE_MONITOR 6473 __kmp_init_bootstrap_lock(&__kmp_monitor_lock); 6474 #endif 6475 __kmp_init_bootstrap_lock(&__kmp_tp_cached_lock); 6476 6477 /* conduct initialization and initial setup of configuration */ 6478 6479 __kmp_runtime_initialize(); 6480 6481 #if KMP_MIC_SUPPORTED 6482 __kmp_check_mic_type(); 6483 #endif 6484 6485 // Some global variable initialization moved here from kmp_env_initialize() 6486 #ifdef KMP_DEBUG 6487 kmp_diag = 0; 6488 #endif 6489 __kmp_abort_delay = 0; 6490 6491 // From __kmp_init_dflt_team_nth() 6492 /* assume the entire machine will be used */ 6493 __kmp_dflt_team_nth_ub = __kmp_xproc; 6494 if (__kmp_dflt_team_nth_ub < KMP_MIN_NTH) { 6495 __kmp_dflt_team_nth_ub = KMP_MIN_NTH; 6496 } 6497 if (__kmp_dflt_team_nth_ub > __kmp_sys_max_nth) { 6498 __kmp_dflt_team_nth_ub = __kmp_sys_max_nth; 6499 } 6500 __kmp_max_nth = __kmp_sys_max_nth; 6501 __kmp_cg_max_nth = __kmp_sys_max_nth; 6502 __kmp_teams_max_nth = __kmp_xproc; // set a "reasonable" default 6503 if (__kmp_teams_max_nth > __kmp_sys_max_nth) { 6504 __kmp_teams_max_nth = __kmp_sys_max_nth; 6505 } 6506 6507 // Three vars below moved here from __kmp_env_initialize() "KMP_BLOCKTIME" 6508 // part 6509 __kmp_dflt_blocktime = KMP_DEFAULT_BLOCKTIME; 6510 #if KMP_USE_MONITOR 6511 __kmp_monitor_wakeups = 6512 KMP_WAKEUPS_FROM_BLOCKTIME(__kmp_dflt_blocktime, __kmp_monitor_wakeups); 6513 __kmp_bt_intervals = 6514 KMP_INTERVALS_FROM_BLOCKTIME(__kmp_dflt_blocktime, __kmp_monitor_wakeups); 6515 #endif 6516 // From "KMP_LIBRARY" part of __kmp_env_initialize() 6517 __kmp_library = library_throughput; 6518 // From KMP_SCHEDULE initialization 6519 __kmp_static = kmp_sch_static_balanced; 6520 // AC: do not use analytical here, because it is non-monotonous 6521 //__kmp_guided = kmp_sch_guided_iterative_chunked; 6522 //__kmp_auto = kmp_sch_guided_analytical_chunked; // AC: it is the default, no 6523 // need to repeat assignment 6524 // Barrier initialization. Moved here from __kmp_env_initialize() Barrier branch 6525 // bit control and barrier method control parts 6526 #if KMP_FAST_REDUCTION_BARRIER 6527 #define kmp_reduction_barrier_gather_bb ((int)1) 6528 #define kmp_reduction_barrier_release_bb ((int)1) 6529 #define kmp_reduction_barrier_gather_pat bp_hyper_bar 6530 #define kmp_reduction_barrier_release_pat bp_hyper_bar 6531 #endif // KMP_FAST_REDUCTION_BARRIER 6532 for (i = bs_plain_barrier; i < bs_last_barrier; i++) { 6533 __kmp_barrier_gather_branch_bits[i] = __kmp_barrier_gather_bb_dflt; 6534 __kmp_barrier_release_branch_bits[i] = __kmp_barrier_release_bb_dflt; 6535 __kmp_barrier_gather_pattern[i] = __kmp_barrier_gather_pat_dflt; 6536 __kmp_barrier_release_pattern[i] = __kmp_barrier_release_pat_dflt; 6537 #if KMP_FAST_REDUCTION_BARRIER 6538 if (i == bs_reduction_barrier) { // tested and confirmed on ALTIX only ( 6539 // lin_64 ): hyper,1 6540 __kmp_barrier_gather_branch_bits[i] = kmp_reduction_barrier_gather_bb; 6541 __kmp_barrier_release_branch_bits[i] = kmp_reduction_barrier_release_bb; 6542 __kmp_barrier_gather_pattern[i] = kmp_reduction_barrier_gather_pat; 6543 __kmp_barrier_release_pattern[i] = kmp_reduction_barrier_release_pat; 6544 } 6545 #endif // KMP_FAST_REDUCTION_BARRIER 6546 } 6547 #if KMP_FAST_REDUCTION_BARRIER 6548 #undef kmp_reduction_barrier_release_pat 6549 #undef kmp_reduction_barrier_gather_pat 6550 #undef kmp_reduction_barrier_release_bb 6551 #undef kmp_reduction_barrier_gather_bb 6552 #endif // KMP_FAST_REDUCTION_BARRIER 6553 #if KMP_MIC_SUPPORTED 6554 if (__kmp_mic_type == mic2) { // KNC 6555 // AC: plane=3,2, forkjoin=2,1 are optimal for 240 threads on KNC 6556 __kmp_barrier_gather_branch_bits[bs_plain_barrier] = 3; // plain gather 6557 __kmp_barrier_release_branch_bits[bs_forkjoin_barrier] = 6558 1; // forkjoin release 6559 __kmp_barrier_gather_pattern[bs_forkjoin_barrier] = bp_hierarchical_bar; 6560 __kmp_barrier_release_pattern[bs_forkjoin_barrier] = bp_hierarchical_bar; 6561 } 6562 #if KMP_FAST_REDUCTION_BARRIER 6563 if (__kmp_mic_type == mic2) { // KNC 6564 __kmp_barrier_gather_pattern[bs_reduction_barrier] = bp_hierarchical_bar; 6565 __kmp_barrier_release_pattern[bs_reduction_barrier] = bp_hierarchical_bar; 6566 } 6567 #endif // KMP_FAST_REDUCTION_BARRIER 6568 #endif // KMP_MIC_SUPPORTED 6569 6570 // From KMP_CHECKS initialization 6571 #ifdef KMP_DEBUG 6572 __kmp_env_checks = TRUE; /* development versions have the extra checks */ 6573 #else 6574 __kmp_env_checks = FALSE; /* port versions do not have the extra checks */ 6575 #endif 6576 6577 // From "KMP_FOREIGN_THREADS_THREADPRIVATE" initialization 6578 __kmp_foreign_tp = TRUE; 6579 6580 __kmp_global.g.g_dynamic = FALSE; 6581 __kmp_global.g.g_dynamic_mode = dynamic_default; 6582 6583 __kmp_env_initialize(NULL); 6584 6585 // Print all messages in message catalog for testing purposes. 6586 #ifdef KMP_DEBUG 6587 char const *val = __kmp_env_get("KMP_DUMP_CATALOG"); 6588 if (__kmp_str_match_true(val)) { 6589 kmp_str_buf_t buffer; 6590 __kmp_str_buf_init(&buffer); 6591 __kmp_i18n_dump_catalog(&buffer); 6592 __kmp_printf("%s", buffer.str); 6593 __kmp_str_buf_free(&buffer); 6594 } 6595 __kmp_env_free(&val); 6596 #endif 6597 6598 __kmp_threads_capacity = 6599 __kmp_initial_threads_capacity(__kmp_dflt_team_nth_ub); 6600 // Moved here from __kmp_env_initialize() "KMP_ALL_THREADPRIVATE" part 6601 __kmp_tp_capacity = __kmp_default_tp_capacity( 6602 __kmp_dflt_team_nth_ub, __kmp_max_nth, __kmp_allThreadsSpecified); 6603 6604 // If the library is shut down properly, both pools must be NULL. Just in 6605 // case, set them to NULL -- some memory may leak, but subsequent code will 6606 // work even if pools are not freed. 6607 KMP_DEBUG_ASSERT(__kmp_thread_pool == NULL); 6608 KMP_DEBUG_ASSERT(__kmp_thread_pool_insert_pt == NULL); 6609 KMP_DEBUG_ASSERT(__kmp_team_pool == NULL); 6610 __kmp_thread_pool = NULL; 6611 __kmp_thread_pool_insert_pt = NULL; 6612 __kmp_team_pool = NULL; 6613 6614 /* Allocate all of the variable sized records */ 6615 /* NOTE: __kmp_threads_capacity entries are allocated, but the arrays are 6616 * expandable */ 6617 /* Since allocation is cache-aligned, just add extra padding at the end */ 6618 size = 6619 (sizeof(kmp_info_t *) + sizeof(kmp_root_t *)) * __kmp_threads_capacity + 6620 CACHE_LINE; 6621 __kmp_threads = (kmp_info_t **)__kmp_allocate(size); 6622 __kmp_root = (kmp_root_t **)((char *)__kmp_threads + 6623 sizeof(kmp_info_t *) * __kmp_threads_capacity); 6624 6625 /* init thread counts */ 6626 KMP_DEBUG_ASSERT(__kmp_all_nth == 6627 0); // Asserts fail if the library is reinitializing and 6628 KMP_DEBUG_ASSERT(__kmp_nth == 0); // something was wrong in termination. 6629 __kmp_all_nth = 0; 6630 __kmp_nth = 0; 6631 6632 /* setup the uber master thread and hierarchy */ 6633 gtid = __kmp_register_root(TRUE); 6634 KA_TRACE(10, ("__kmp_do_serial_initialize T#%d\n", gtid)); 6635 KMP_ASSERT(KMP_UBER_GTID(gtid)); 6636 KMP_ASSERT(KMP_INITIAL_GTID(gtid)); 6637 6638 KMP_MB(); /* Flush all pending memory write invalidates. */ 6639 6640 __kmp_common_initialize(); 6641 6642 #if KMP_OS_UNIX 6643 /* invoke the child fork handler */ 6644 __kmp_register_atfork(); 6645 #endif 6646 6647 #if !KMP_DYNAMIC_LIB 6648 { 6649 /* Invoke the exit handler when the program finishes, only for static 6650 library. For dynamic library, we already have _fini and DllMain. */ 6651 int rc = atexit(__kmp_internal_end_atexit); 6652 if (rc != 0) { 6653 __kmp_fatal(KMP_MSG(FunctionError, "atexit()"), KMP_ERR(rc), 6654 __kmp_msg_null); 6655 } 6656 } 6657 #endif 6658 6659 #if KMP_HANDLE_SIGNALS 6660 #if KMP_OS_UNIX 6661 /* NOTE: make sure that this is called before the user installs their own 6662 signal handlers so that the user handlers are called first. this way they 6663 can return false, not call our handler, avoid terminating the library, and 6664 continue execution where they left off. */ 6665 __kmp_install_signals(FALSE); 6666 #endif /* KMP_OS_UNIX */ 6667 #if KMP_OS_WINDOWS 6668 __kmp_install_signals(TRUE); 6669 #endif /* KMP_OS_WINDOWS */ 6670 #endif 6671 6672 /* we have finished the serial initialization */ 6673 __kmp_init_counter++; 6674 6675 __kmp_init_serial = TRUE; 6676 6677 if (__kmp_settings) { 6678 __kmp_env_print(); 6679 } 6680 6681 #if OMP_40_ENABLED 6682 if (__kmp_display_env || __kmp_display_env_verbose) { 6683 __kmp_env_print_2(); 6684 } 6685 #endif // OMP_40_ENABLED 6686 6687 #if OMPT_SUPPORT 6688 ompt_post_init(); 6689 #endif 6690 6691 KMP_MB(); 6692 6693 KA_TRACE(10, ("__kmp_do_serial_initialize: exit\n")); 6694 } 6695 6696 void __kmp_serial_initialize(void) { 6697 if (__kmp_init_serial) { 6698 return; 6699 } 6700 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6701 if (__kmp_init_serial) { 6702 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6703 return; 6704 } 6705 __kmp_do_serial_initialize(); 6706 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6707 } 6708 6709 static void __kmp_do_middle_initialize(void) { 6710 int i, j; 6711 int prev_dflt_team_nth; 6712 6713 if (!__kmp_init_serial) { 6714 __kmp_do_serial_initialize(); 6715 } 6716 6717 KA_TRACE(10, ("__kmp_middle_initialize: enter\n")); 6718 6719 // Save the previous value for the __kmp_dflt_team_nth so that 6720 // we can avoid some reinitialization if it hasn't changed. 6721 prev_dflt_team_nth = __kmp_dflt_team_nth; 6722 6723 #if KMP_AFFINITY_SUPPORTED 6724 // __kmp_affinity_initialize() will try to set __kmp_ncores to the 6725 // number of cores on the machine. 6726 __kmp_affinity_initialize(); 6727 6728 // Run through the __kmp_threads array and set the affinity mask 6729 // for each root thread that is currently registered with the RTL. 6730 for (i = 0; i < __kmp_threads_capacity; i++) { 6731 if (TCR_PTR(__kmp_threads[i]) != NULL) { 6732 __kmp_affinity_set_init_mask(i, TRUE); 6733 } 6734 } 6735 #endif /* KMP_AFFINITY_SUPPORTED */ 6736 6737 KMP_ASSERT(__kmp_xproc > 0); 6738 if (__kmp_avail_proc == 0) { 6739 __kmp_avail_proc = __kmp_xproc; 6740 } 6741 6742 // If there were empty places in num_threads list (OMP_NUM_THREADS=,,2,3), 6743 // correct them now 6744 j = 0; 6745 while ((j < __kmp_nested_nth.used) && !__kmp_nested_nth.nth[j]) { 6746 __kmp_nested_nth.nth[j] = __kmp_dflt_team_nth = __kmp_dflt_team_nth_ub = 6747 __kmp_avail_proc; 6748 j++; 6749 } 6750 6751 if (__kmp_dflt_team_nth == 0) { 6752 #ifdef KMP_DFLT_NTH_CORES 6753 // Default #threads = #cores 6754 __kmp_dflt_team_nth = __kmp_ncores; 6755 KA_TRACE(20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = " 6756 "__kmp_ncores (%d)\n", 6757 __kmp_dflt_team_nth)); 6758 #else 6759 // Default #threads = #available OS procs 6760 __kmp_dflt_team_nth = __kmp_avail_proc; 6761 KA_TRACE(20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = " 6762 "__kmp_avail_proc(%d)\n", 6763 __kmp_dflt_team_nth)); 6764 #endif /* KMP_DFLT_NTH_CORES */ 6765 } 6766 6767 if (__kmp_dflt_team_nth < KMP_MIN_NTH) { 6768 __kmp_dflt_team_nth = KMP_MIN_NTH; 6769 } 6770 if (__kmp_dflt_team_nth > __kmp_sys_max_nth) { 6771 __kmp_dflt_team_nth = __kmp_sys_max_nth; 6772 } 6773 6774 // There's no harm in continuing if the following check fails, 6775 // but it indicates an error in the previous logic. 6776 KMP_DEBUG_ASSERT(__kmp_dflt_team_nth <= __kmp_dflt_team_nth_ub); 6777 6778 if (__kmp_dflt_team_nth != prev_dflt_team_nth) { 6779 // Run through the __kmp_threads array and set the num threads icv for each 6780 // root thread that is currently registered with the RTL (which has not 6781 // already explicitly set its nthreads-var with a call to 6782 // omp_set_num_threads()). 6783 for (i = 0; i < __kmp_threads_capacity; i++) { 6784 kmp_info_t *thread = __kmp_threads[i]; 6785 if (thread == NULL) 6786 continue; 6787 if (thread->th.th_current_task->td_icvs.nproc != 0) 6788 continue; 6789 6790 set__nproc(__kmp_threads[i], __kmp_dflt_team_nth); 6791 } 6792 } 6793 KA_TRACE( 6794 20, 6795 ("__kmp_middle_initialize: final value for __kmp_dflt_team_nth = %d\n", 6796 __kmp_dflt_team_nth)); 6797 6798 #ifdef KMP_ADJUST_BLOCKTIME 6799 /* Adjust blocktime to zero if necessary now that __kmp_avail_proc is set */ 6800 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 6801 KMP_DEBUG_ASSERT(__kmp_avail_proc > 0); 6802 if (__kmp_nth > __kmp_avail_proc) { 6803 __kmp_zero_bt = TRUE; 6804 } 6805 } 6806 #endif /* KMP_ADJUST_BLOCKTIME */ 6807 6808 /* we have finished middle initialization */ 6809 TCW_SYNC_4(__kmp_init_middle, TRUE); 6810 6811 KA_TRACE(10, ("__kmp_do_middle_initialize: exit\n")); 6812 } 6813 6814 void __kmp_middle_initialize(void) { 6815 if (__kmp_init_middle) { 6816 return; 6817 } 6818 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6819 if (__kmp_init_middle) { 6820 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6821 return; 6822 } 6823 __kmp_do_middle_initialize(); 6824 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6825 } 6826 6827 void __kmp_parallel_initialize(void) { 6828 int gtid = __kmp_entry_gtid(); // this might be a new root 6829 6830 /* synchronize parallel initialization (for sibling) */ 6831 if (TCR_4(__kmp_init_parallel)) 6832 return; 6833 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6834 if (TCR_4(__kmp_init_parallel)) { 6835 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6836 return; 6837 } 6838 6839 /* TODO reinitialization after we have already shut down */ 6840 if (TCR_4(__kmp_global.g.g_done)) { 6841 KA_TRACE( 6842 10, 6843 ("__kmp_parallel_initialize: attempt to init while shutting down\n")); 6844 __kmp_infinite_loop(); 6845 } 6846 6847 /* jc: The lock __kmp_initz_lock is already held, so calling 6848 __kmp_serial_initialize would cause a deadlock. So we call 6849 __kmp_do_serial_initialize directly. */ 6850 if (!__kmp_init_middle) { 6851 __kmp_do_middle_initialize(); 6852 } 6853 6854 /* begin initialization */ 6855 KA_TRACE(10, ("__kmp_parallel_initialize: enter\n")); 6856 KMP_ASSERT(KMP_UBER_GTID(gtid)); 6857 6858 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 6859 // Save the FP control regs. 6860 // Worker threads will set theirs to these values at thread startup. 6861 __kmp_store_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word); 6862 __kmp_store_mxcsr(&__kmp_init_mxcsr); 6863 __kmp_init_mxcsr &= KMP_X86_MXCSR_MASK; 6864 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 6865 6866 #if KMP_OS_UNIX 6867 #if KMP_HANDLE_SIGNALS 6868 /* must be after __kmp_serial_initialize */ 6869 __kmp_install_signals(TRUE); 6870 #endif 6871 #endif 6872 6873 __kmp_suspend_initialize(); 6874 6875 #if defined(USE_LOAD_BALANCE) 6876 if (__kmp_global.g.g_dynamic_mode == dynamic_default) { 6877 __kmp_global.g.g_dynamic_mode = dynamic_load_balance; 6878 } 6879 #else 6880 if (__kmp_global.g.g_dynamic_mode == dynamic_default) { 6881 __kmp_global.g.g_dynamic_mode = dynamic_thread_limit; 6882 } 6883 #endif 6884 6885 if (__kmp_version) { 6886 __kmp_print_version_2(); 6887 } 6888 6889 /* we have finished parallel initialization */ 6890 TCW_SYNC_4(__kmp_init_parallel, TRUE); 6891 6892 KMP_MB(); 6893 KA_TRACE(10, ("__kmp_parallel_initialize: exit\n")); 6894 6895 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6896 } 6897 6898 /* ------------------------------------------------------------------------ */ 6899 6900 void __kmp_run_before_invoked_task(int gtid, int tid, kmp_info_t *this_thr, 6901 kmp_team_t *team) { 6902 kmp_disp_t *dispatch; 6903 6904 KMP_MB(); 6905 6906 /* none of the threads have encountered any constructs, yet. */ 6907 this_thr->th.th_local.this_construct = 0; 6908 #if KMP_CACHE_MANAGE 6909 KMP_CACHE_PREFETCH(&this_thr->th.th_bar[bs_forkjoin_barrier].bb.b_arrived); 6910 #endif /* KMP_CACHE_MANAGE */ 6911 dispatch = (kmp_disp_t *)TCR_PTR(this_thr->th.th_dispatch); 6912 KMP_DEBUG_ASSERT(dispatch); 6913 KMP_DEBUG_ASSERT(team->t.t_dispatch); 6914 // KMP_DEBUG_ASSERT( this_thr->th.th_dispatch == &team->t.t_dispatch[ 6915 // this_thr->th.th_info.ds.ds_tid ] ); 6916 6917 dispatch->th_disp_index = 0; /* reset the dispatch buffer counter */ 6918 #if OMP_45_ENABLED 6919 dispatch->th_doacross_buf_idx = 6920 0; /* reset the doacross dispatch buffer counter */ 6921 #endif 6922 if (__kmp_env_consistency_check) 6923 __kmp_push_parallel(gtid, team->t.t_ident); 6924 6925 KMP_MB(); /* Flush all pending memory write invalidates. */ 6926 } 6927 6928 void __kmp_run_after_invoked_task(int gtid, int tid, kmp_info_t *this_thr, 6929 kmp_team_t *team) { 6930 if (__kmp_env_consistency_check) 6931 __kmp_pop_parallel(gtid, team->t.t_ident); 6932 6933 __kmp_finish_implicit_task(this_thr); 6934 } 6935 6936 int __kmp_invoke_task_func(int gtid) { 6937 int rc; 6938 int tid = __kmp_tid_from_gtid(gtid); 6939 kmp_info_t *this_thr = __kmp_threads[gtid]; 6940 kmp_team_t *team = this_thr->th.th_team; 6941 6942 __kmp_run_before_invoked_task(gtid, tid, this_thr, team); 6943 #if USE_ITT_BUILD 6944 if (__itt_stack_caller_create_ptr) { 6945 __kmp_itt_stack_callee_enter( 6946 (__itt_caller) 6947 team->t.t_stack_id); // inform ittnotify about entering user's code 6948 } 6949 #endif /* USE_ITT_BUILD */ 6950 #if INCLUDE_SSC_MARKS 6951 SSC_MARK_INVOKING(); 6952 #endif 6953 6954 #if OMPT_SUPPORT 6955 void *dummy; 6956 void **exit_runtime_p; 6957 ompt_data_t *my_task_data; 6958 ompt_data_t *my_parallel_data; 6959 int ompt_team_size; 6960 6961 if (ompt_enabled.enabled) { 6962 exit_runtime_p = &( 6963 team->t.t_implicit_task_taskdata[tid].ompt_task_info.frame.exit_frame); 6964 } else { 6965 exit_runtime_p = &dummy; 6966 } 6967 6968 my_task_data = 6969 &(team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data); 6970 my_parallel_data = &(team->t.ompt_team_info.parallel_data); 6971 if (ompt_enabled.ompt_callback_implicit_task) { 6972 ompt_team_size = team->t.t_nproc; 6973 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 6974 ompt_scope_begin, my_parallel_data, my_task_data, ompt_team_size, 6975 __kmp_tid_from_gtid(gtid)); 6976 OMPT_CUR_TASK_INFO(this_thr)->thread_num = __kmp_tid_from_gtid(gtid); 6977 } 6978 #endif 6979 6980 { 6981 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 6982 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 6983 rc = 6984 __kmp_invoke_microtask((microtask_t)TCR_SYNC_PTR(team->t.t_pkfn), gtid, 6985 tid, (int)team->t.t_argc, (void **)team->t.t_argv 6986 #if OMPT_SUPPORT 6987 , 6988 exit_runtime_p 6989 #endif 6990 ); 6991 #if OMPT_SUPPORT 6992 *exit_runtime_p = NULL; 6993 #endif 6994 } 6995 6996 #if USE_ITT_BUILD 6997 if (__itt_stack_caller_create_ptr) { 6998 __kmp_itt_stack_callee_leave( 6999 (__itt_caller) 7000 team->t.t_stack_id); // inform ittnotify about leaving user's code 7001 } 7002 #endif /* USE_ITT_BUILD */ 7003 __kmp_run_after_invoked_task(gtid, tid, this_thr, team); 7004 7005 return rc; 7006 } 7007 7008 #if OMP_40_ENABLED 7009 void __kmp_teams_master(int gtid) { 7010 // This routine is called by all master threads in teams construct 7011 kmp_info_t *thr = __kmp_threads[gtid]; 7012 kmp_team_t *team = thr->th.th_team; 7013 ident_t *loc = team->t.t_ident; 7014 thr->th.th_set_nproc = thr->th.th_teams_size.nth; 7015 KMP_DEBUG_ASSERT(thr->th.th_teams_microtask); 7016 KMP_DEBUG_ASSERT(thr->th.th_set_nproc); 7017 KA_TRACE(20, ("__kmp_teams_master: T#%d, Tid %d, microtask %p\n", gtid, 7018 __kmp_tid_from_gtid(gtid), thr->th.th_teams_microtask)); 7019 // Launch league of teams now, but not let workers execute 7020 // (they hang on fork barrier until next parallel) 7021 #if INCLUDE_SSC_MARKS 7022 SSC_MARK_FORKING(); 7023 #endif 7024 __kmp_fork_call(loc, gtid, fork_context_intel, team->t.t_argc, 7025 (microtask_t)thr->th.th_teams_microtask, // "wrapped" task 7026 VOLATILE_CAST(launch_t) __kmp_invoke_task_func, NULL); 7027 #if INCLUDE_SSC_MARKS 7028 SSC_MARK_JOINING(); 7029 #endif 7030 7031 // AC: last parameter "1" eliminates join barrier which won't work because 7032 // worker threads are in a fork barrier waiting for more parallel regions 7033 __kmp_join_call(loc, gtid 7034 #if OMPT_SUPPORT 7035 , 7036 fork_context_intel 7037 #endif 7038 , 7039 1); 7040 } 7041 7042 int __kmp_invoke_teams_master(int gtid) { 7043 kmp_info_t *this_thr = __kmp_threads[gtid]; 7044 kmp_team_t *team = this_thr->th.th_team; 7045 #if KMP_DEBUG 7046 if (!__kmp_threads[gtid]->th.th_team->t.t_serialized) 7047 KMP_DEBUG_ASSERT((void *)__kmp_threads[gtid]->th.th_team->t.t_pkfn == 7048 (void *)__kmp_teams_master); 7049 #endif 7050 __kmp_run_before_invoked_task(gtid, 0, this_thr, team); 7051 __kmp_teams_master(gtid); 7052 __kmp_run_after_invoked_task(gtid, 0, this_thr, team); 7053 return 1; 7054 } 7055 #endif /* OMP_40_ENABLED */ 7056 7057 /* this sets the requested number of threads for the next parallel region 7058 encountered by this team. since this should be enclosed in the forkjoin 7059 critical section it should avoid race conditions with assymmetrical nested 7060 parallelism */ 7061 7062 void __kmp_push_num_threads(ident_t *id, int gtid, int num_threads) { 7063 kmp_info_t *thr = __kmp_threads[gtid]; 7064 7065 if (num_threads > 0) 7066 thr->th.th_set_nproc = num_threads; 7067 } 7068 7069 #if OMP_40_ENABLED 7070 7071 /* this sets the requested number of teams for the teams region and/or 7072 the number of threads for the next parallel region encountered */ 7073 void __kmp_push_num_teams(ident_t *id, int gtid, int num_teams, 7074 int num_threads) { 7075 kmp_info_t *thr = __kmp_threads[gtid]; 7076 KMP_DEBUG_ASSERT(num_teams >= 0); 7077 KMP_DEBUG_ASSERT(num_threads >= 0); 7078 7079 if (num_teams == 0) 7080 num_teams = 1; // default number of teams is 1. 7081 if (num_teams > __kmp_teams_max_nth) { // if too many teams requested? 7082 if (!__kmp_reserve_warn) { 7083 __kmp_reserve_warn = 1; 7084 __kmp_msg(kmp_ms_warning, 7085 KMP_MSG(CantFormThrTeam, num_teams, __kmp_teams_max_nth), 7086 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 7087 } 7088 num_teams = __kmp_teams_max_nth; 7089 } 7090 // Set number of teams (number of threads in the outer "parallel" of the 7091 // teams) 7092 thr->th.th_set_nproc = thr->th.th_teams_size.nteams = num_teams; 7093 7094 // Remember the number of threads for inner parallel regions 7095 if (num_threads == 0) { 7096 if (!TCR_4(__kmp_init_middle)) 7097 __kmp_middle_initialize(); // get __kmp_avail_proc calculated 7098 num_threads = __kmp_avail_proc / num_teams; 7099 if (num_teams * num_threads > __kmp_teams_max_nth) { 7100 // adjust num_threads w/o warning as it is not user setting 7101 num_threads = __kmp_teams_max_nth / num_teams; 7102 } 7103 } else { 7104 if (num_teams * num_threads > __kmp_teams_max_nth) { 7105 int new_threads = __kmp_teams_max_nth / num_teams; 7106 if (!__kmp_reserve_warn) { // user asked for too many threads 7107 __kmp_reserve_warn = 1; // that conflicts with KMP_TEAMS_THREAD_LIMIT 7108 __kmp_msg(kmp_ms_warning, 7109 KMP_MSG(CantFormThrTeam, num_threads, new_threads), 7110 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 7111 } 7112 num_threads = new_threads; 7113 } 7114 } 7115 thr->th.th_teams_size.nth = num_threads; 7116 } 7117 7118 // Set the proc_bind var to use in the following parallel region. 7119 void __kmp_push_proc_bind(ident_t *id, int gtid, kmp_proc_bind_t proc_bind) { 7120 kmp_info_t *thr = __kmp_threads[gtid]; 7121 thr->th.th_set_proc_bind = proc_bind; 7122 } 7123 7124 #endif /* OMP_40_ENABLED */ 7125 7126 /* Launch the worker threads into the microtask. */ 7127 7128 void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team) { 7129 kmp_info_t *this_thr = __kmp_threads[gtid]; 7130 7131 #ifdef KMP_DEBUG 7132 int f; 7133 #endif /* KMP_DEBUG */ 7134 7135 KMP_DEBUG_ASSERT(team); 7136 KMP_DEBUG_ASSERT(this_thr->th.th_team == team); 7137 KMP_ASSERT(KMP_MASTER_GTID(gtid)); 7138 KMP_MB(); /* Flush all pending memory write invalidates. */ 7139 7140 team->t.t_construct = 0; /* no single directives seen yet */ 7141 team->t.t_ordered.dt.t_value = 7142 0; /* thread 0 enters the ordered section first */ 7143 7144 /* Reset the identifiers on the dispatch buffer */ 7145 KMP_DEBUG_ASSERT(team->t.t_disp_buffer); 7146 if (team->t.t_max_nproc > 1) { 7147 int i; 7148 for (i = 0; i < __kmp_dispatch_num_buffers; ++i) { 7149 team->t.t_disp_buffer[i].buffer_index = i; 7150 #if OMP_45_ENABLED 7151 team->t.t_disp_buffer[i].doacross_buf_idx = i; 7152 #endif 7153 } 7154 } else { 7155 team->t.t_disp_buffer[0].buffer_index = 0; 7156 #if OMP_45_ENABLED 7157 team->t.t_disp_buffer[0].doacross_buf_idx = 0; 7158 #endif 7159 } 7160 7161 KMP_MB(); /* Flush all pending memory write invalidates. */ 7162 KMP_ASSERT(this_thr->th.th_team == team); 7163 7164 #ifdef KMP_DEBUG 7165 for (f = 0; f < team->t.t_nproc; f++) { 7166 KMP_DEBUG_ASSERT(team->t.t_threads[f] && 7167 team->t.t_threads[f]->th.th_team_nproc == team->t.t_nproc); 7168 } 7169 #endif /* KMP_DEBUG */ 7170 7171 /* release the worker threads so they may begin working */ 7172 __kmp_fork_barrier(gtid, 0); 7173 } 7174 7175 void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team) { 7176 kmp_info_t *this_thr = __kmp_threads[gtid]; 7177 7178 KMP_DEBUG_ASSERT(team); 7179 KMP_DEBUG_ASSERT(this_thr->th.th_team == team); 7180 KMP_ASSERT(KMP_MASTER_GTID(gtid)); 7181 KMP_MB(); /* Flush all pending memory write invalidates. */ 7182 7183 /* Join barrier after fork */ 7184 7185 #ifdef KMP_DEBUG 7186 if (__kmp_threads[gtid] && 7187 __kmp_threads[gtid]->th.th_team_nproc != team->t.t_nproc) { 7188 __kmp_printf("GTID: %d, __kmp_threads[%d]=%p\n", gtid, gtid, 7189 __kmp_threads[gtid]); 7190 __kmp_printf("__kmp_threads[%d]->th.th_team_nproc=%d, TEAM: %p, " 7191 "team->t.t_nproc=%d\n", 7192 gtid, __kmp_threads[gtid]->th.th_team_nproc, team, 7193 team->t.t_nproc); 7194 __kmp_print_structure(); 7195 } 7196 KMP_DEBUG_ASSERT(__kmp_threads[gtid] && 7197 __kmp_threads[gtid]->th.th_team_nproc == team->t.t_nproc); 7198 #endif /* KMP_DEBUG */ 7199 7200 __kmp_join_barrier(gtid); /* wait for everyone */ 7201 #if OMPT_SUPPORT 7202 if (ompt_enabled.enabled && 7203 this_thr->th.ompt_thread_info.state == omp_state_wait_barrier_implicit) { 7204 int ds_tid = this_thr->th.th_info.ds.ds_tid; 7205 ompt_data_t *task_data = OMPT_CUR_TASK_DATA(this_thr); 7206 this_thr->th.ompt_thread_info.state = omp_state_overhead; 7207 #if OMPT_OPTIONAL 7208 void *codeptr = NULL; 7209 if (KMP_MASTER_TID(ds_tid) && 7210 (ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait) || 7211 ompt_callbacks.ompt_callback(ompt_callback_sync_region))) 7212 codeptr = OMPT_CUR_TEAM_INFO(this_thr)->master_return_address; 7213 7214 if (ompt_enabled.ompt_callback_sync_region_wait) { 7215 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 7216 ompt_sync_region_barrier, ompt_scope_end, NULL, task_data, codeptr); 7217 } 7218 if (ompt_enabled.ompt_callback_sync_region) { 7219 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 7220 ompt_sync_region_barrier, ompt_scope_end, NULL, task_data, codeptr); 7221 } 7222 #endif 7223 if (!KMP_MASTER_TID(ds_tid) && ompt_enabled.ompt_callback_implicit_task) { 7224 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 7225 ompt_scope_end, NULL, task_data, 0, ds_tid); 7226 } 7227 } 7228 #endif 7229 7230 KMP_MB(); /* Flush all pending memory write invalidates. */ 7231 KMP_ASSERT(this_thr->th.th_team == team); 7232 } 7233 7234 /* ------------------------------------------------------------------------ */ 7235 7236 #ifdef USE_LOAD_BALANCE 7237 7238 // Return the worker threads actively spinning in the hot team, if we 7239 // are at the outermost level of parallelism. Otherwise, return 0. 7240 static int __kmp_active_hot_team_nproc(kmp_root_t *root) { 7241 int i; 7242 int retval; 7243 kmp_team_t *hot_team; 7244 7245 if (root->r.r_active) { 7246 return 0; 7247 } 7248 hot_team = root->r.r_hot_team; 7249 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { 7250 return hot_team->t.t_nproc - 1; // Don't count master thread 7251 } 7252 7253 // Skip the master thread - it is accounted for elsewhere. 7254 retval = 0; 7255 for (i = 1; i < hot_team->t.t_nproc; i++) { 7256 if (hot_team->t.t_threads[i]->th.th_active) { 7257 retval++; 7258 } 7259 } 7260 return retval; 7261 } 7262 7263 // Perform an automatic adjustment to the number of 7264 // threads used by the next parallel region. 7265 static int __kmp_load_balance_nproc(kmp_root_t *root, int set_nproc) { 7266 int retval; 7267 int pool_active; 7268 int hot_team_active; 7269 int team_curr_active; 7270 int system_active; 7271 7272 KB_TRACE(20, ("__kmp_load_balance_nproc: called root:%p set_nproc:%d\n", root, 7273 set_nproc)); 7274 KMP_DEBUG_ASSERT(root); 7275 KMP_DEBUG_ASSERT(root->r.r_root_team->t.t_threads[0] 7276 ->th.th_current_task->td_icvs.dynamic == TRUE); 7277 KMP_DEBUG_ASSERT(set_nproc > 1); 7278 7279 if (set_nproc == 1) { 7280 KB_TRACE(20, ("__kmp_load_balance_nproc: serial execution.\n")); 7281 return 1; 7282 } 7283 7284 // Threads that are active in the thread pool, active in the hot team for this 7285 // particular root (if we are at the outer par level), and the currently 7286 // executing thread (to become the master) are available to add to the new 7287 // team, but are currently contributing to the system load, and must be 7288 // accounted for. 7289 pool_active = __kmp_thread_pool_active_nth; 7290 hot_team_active = __kmp_active_hot_team_nproc(root); 7291 team_curr_active = pool_active + hot_team_active + 1; 7292 7293 // Check the system load. 7294 system_active = __kmp_get_load_balance(__kmp_avail_proc + team_curr_active); 7295 KB_TRACE(30, ("__kmp_load_balance_nproc: system active = %d pool active = %d " 7296 "hot team active = %d\n", 7297 system_active, pool_active, hot_team_active)); 7298 7299 if (system_active < 0) { 7300 // There was an error reading the necessary info from /proc, so use the 7301 // thread limit algorithm instead. Once we set __kmp_global.g.g_dynamic_mode 7302 // = dynamic_thread_limit, we shouldn't wind up getting back here. 7303 __kmp_global.g.g_dynamic_mode = dynamic_thread_limit; 7304 KMP_WARNING(CantLoadBalUsing, "KMP_DYNAMIC_MODE=thread limit"); 7305 7306 // Make this call behave like the thread limit algorithm. 7307 retval = __kmp_avail_proc - __kmp_nth + 7308 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 7309 if (retval > set_nproc) { 7310 retval = set_nproc; 7311 } 7312 if (retval < KMP_MIN_NTH) { 7313 retval = KMP_MIN_NTH; 7314 } 7315 7316 KB_TRACE(20, ("__kmp_load_balance_nproc: thread limit exit. retval:%d\n", 7317 retval)); 7318 return retval; 7319 } 7320 7321 // There is a slight delay in the load balance algorithm in detecting new 7322 // running procs. The real system load at this instant should be at least as 7323 // large as the #active omp thread that are available to add to the team. 7324 if (system_active < team_curr_active) { 7325 system_active = team_curr_active; 7326 } 7327 retval = __kmp_avail_proc - system_active + team_curr_active; 7328 if (retval > set_nproc) { 7329 retval = set_nproc; 7330 } 7331 if (retval < KMP_MIN_NTH) { 7332 retval = KMP_MIN_NTH; 7333 } 7334 7335 KB_TRACE(20, ("__kmp_load_balance_nproc: exit. retval:%d\n", retval)); 7336 return retval; 7337 } // __kmp_load_balance_nproc() 7338 7339 #endif /* USE_LOAD_BALANCE */ 7340 7341 /* ------------------------------------------------------------------------ */ 7342 7343 /* NOTE: this is called with the __kmp_init_lock held */ 7344 void __kmp_cleanup(void) { 7345 int f; 7346 7347 KA_TRACE(10, ("__kmp_cleanup: enter\n")); 7348 7349 if (TCR_4(__kmp_init_parallel)) { 7350 #if KMP_HANDLE_SIGNALS 7351 __kmp_remove_signals(); 7352 #endif 7353 TCW_4(__kmp_init_parallel, FALSE); 7354 } 7355 7356 if (TCR_4(__kmp_init_middle)) { 7357 #if KMP_AFFINITY_SUPPORTED 7358 __kmp_affinity_uninitialize(); 7359 #endif /* KMP_AFFINITY_SUPPORTED */ 7360 __kmp_cleanup_hierarchy(); 7361 TCW_4(__kmp_init_middle, FALSE); 7362 } 7363 7364 KA_TRACE(10, ("__kmp_cleanup: go serial cleanup\n")); 7365 7366 if (__kmp_init_serial) { 7367 __kmp_runtime_destroy(); 7368 __kmp_init_serial = FALSE; 7369 } 7370 7371 __kmp_cleanup_threadprivate_caches(); 7372 7373 for (f = 0; f < __kmp_threads_capacity; f++) { 7374 if (__kmp_root[f] != NULL) { 7375 __kmp_free(__kmp_root[f]); 7376 __kmp_root[f] = NULL; 7377 } 7378 } 7379 __kmp_free(__kmp_threads); 7380 // __kmp_threads and __kmp_root were allocated at once, as single block, so 7381 // there is no need in freeing __kmp_root. 7382 __kmp_threads = NULL; 7383 __kmp_root = NULL; 7384 __kmp_threads_capacity = 0; 7385 7386 #if KMP_USE_DYNAMIC_LOCK 7387 __kmp_cleanup_indirect_user_locks(); 7388 #else 7389 __kmp_cleanup_user_locks(); 7390 #endif 7391 7392 #if KMP_AFFINITY_SUPPORTED 7393 KMP_INTERNAL_FREE(CCAST(char *, __kmp_cpuinfo_file)); 7394 __kmp_cpuinfo_file = NULL; 7395 #endif /* KMP_AFFINITY_SUPPORTED */ 7396 7397 #if KMP_USE_ADAPTIVE_LOCKS 7398 #if KMP_DEBUG_ADAPTIVE_LOCKS 7399 __kmp_print_speculative_stats(); 7400 #endif 7401 #endif 7402 KMP_INTERNAL_FREE(__kmp_nested_nth.nth); 7403 __kmp_nested_nth.nth = NULL; 7404 __kmp_nested_nth.size = 0; 7405 __kmp_nested_nth.used = 0; 7406 KMP_INTERNAL_FREE(__kmp_nested_proc_bind.bind_types); 7407 __kmp_nested_proc_bind.bind_types = NULL; 7408 __kmp_nested_proc_bind.size = 0; 7409 __kmp_nested_proc_bind.used = 0; 7410 7411 __kmp_i18n_catclose(); 7412 7413 #if KMP_USE_HIER_SCHED 7414 __kmp_hier_scheds.deallocate(); 7415 #endif 7416 7417 #if KMP_STATS_ENABLED 7418 __kmp_stats_fini(); 7419 #endif 7420 7421 KA_TRACE(10, ("__kmp_cleanup: exit\n")); 7422 } 7423 7424 /* ------------------------------------------------------------------------ */ 7425 7426 int __kmp_ignore_mppbeg(void) { 7427 char *env; 7428 7429 if ((env = getenv("KMP_IGNORE_MPPBEG")) != NULL) { 7430 if (__kmp_str_match_false(env)) 7431 return FALSE; 7432 } 7433 // By default __kmpc_begin() is no-op. 7434 return TRUE; 7435 } 7436 7437 int __kmp_ignore_mppend(void) { 7438 char *env; 7439 7440 if ((env = getenv("KMP_IGNORE_MPPEND")) != NULL) { 7441 if (__kmp_str_match_false(env)) 7442 return FALSE; 7443 } 7444 // By default __kmpc_end() is no-op. 7445 return TRUE; 7446 } 7447 7448 void __kmp_internal_begin(void) { 7449 int gtid; 7450 kmp_root_t *root; 7451 7452 /* this is a very important step as it will register new sibling threads 7453 and assign these new uber threads a new gtid */ 7454 gtid = __kmp_entry_gtid(); 7455 root = __kmp_threads[gtid]->th.th_root; 7456 KMP_ASSERT(KMP_UBER_GTID(gtid)); 7457 7458 if (root->r.r_begin) 7459 return; 7460 __kmp_acquire_lock(&root->r.r_begin_lock, gtid); 7461 if (root->r.r_begin) { 7462 __kmp_release_lock(&root->r.r_begin_lock, gtid); 7463 return; 7464 } 7465 7466 root->r.r_begin = TRUE; 7467 7468 __kmp_release_lock(&root->r.r_begin_lock, gtid); 7469 } 7470 7471 /* ------------------------------------------------------------------------ */ 7472 7473 void __kmp_user_set_library(enum library_type arg) { 7474 int gtid; 7475 kmp_root_t *root; 7476 kmp_info_t *thread; 7477 7478 /* first, make sure we are initialized so we can get our gtid */ 7479 7480 gtid = __kmp_entry_gtid(); 7481 thread = __kmp_threads[gtid]; 7482 7483 root = thread->th.th_root; 7484 7485 KA_TRACE(20, ("__kmp_user_set_library: enter T#%d, arg: %d, %d\n", gtid, arg, 7486 library_serial)); 7487 if (root->r.r_in_parallel) { /* Must be called in serial section of top-level 7488 thread */ 7489 KMP_WARNING(SetLibraryIncorrectCall); 7490 return; 7491 } 7492 7493 switch (arg) { 7494 case library_serial: 7495 thread->th.th_set_nproc = 0; 7496 set__nproc(thread, 1); 7497 break; 7498 case library_turnaround: 7499 thread->th.th_set_nproc = 0; 7500 set__nproc(thread, __kmp_dflt_team_nth ? __kmp_dflt_team_nth 7501 : __kmp_dflt_team_nth_ub); 7502 break; 7503 case library_throughput: 7504 thread->th.th_set_nproc = 0; 7505 set__nproc(thread, __kmp_dflt_team_nth ? __kmp_dflt_team_nth 7506 : __kmp_dflt_team_nth_ub); 7507 break; 7508 default: 7509 KMP_FATAL(UnknownLibraryType, arg); 7510 } 7511 7512 __kmp_aux_set_library(arg); 7513 } 7514 7515 void __kmp_aux_set_stacksize(size_t arg) { 7516 if (!__kmp_init_serial) 7517 __kmp_serial_initialize(); 7518 7519 #if KMP_OS_DARWIN 7520 if (arg & (0x1000 - 1)) { 7521 arg &= ~(0x1000 - 1); 7522 if (arg + 0x1000) /* check for overflow if we round up */ 7523 arg += 0x1000; 7524 } 7525 #endif 7526 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 7527 7528 /* only change the default stacksize before the first parallel region */ 7529 if (!TCR_4(__kmp_init_parallel)) { 7530 size_t value = arg; /* argument is in bytes */ 7531 7532 if (value < __kmp_sys_min_stksize) 7533 value = __kmp_sys_min_stksize; 7534 else if (value > KMP_MAX_STKSIZE) 7535 value = KMP_MAX_STKSIZE; 7536 7537 __kmp_stksize = value; 7538 7539 __kmp_env_stksize = TRUE; /* was KMP_STACKSIZE specified? */ 7540 } 7541 7542 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7543 } 7544 7545 /* set the behaviour of the runtime library */ 7546 /* TODO this can cause some odd behaviour with sibling parallelism... */ 7547 void __kmp_aux_set_library(enum library_type arg) { 7548 __kmp_library = arg; 7549 7550 switch (__kmp_library) { 7551 case library_serial: { 7552 KMP_INFORM(LibraryIsSerial); 7553 (void)__kmp_change_library(TRUE); 7554 } break; 7555 case library_turnaround: 7556 (void)__kmp_change_library(TRUE); 7557 break; 7558 case library_throughput: 7559 (void)__kmp_change_library(FALSE); 7560 break; 7561 default: 7562 KMP_FATAL(UnknownLibraryType, arg); 7563 } 7564 } 7565 7566 /* ------------------------------------------------------------------------ */ 7567 7568 void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid) { 7569 int blocktime = arg; /* argument is in milliseconds */ 7570 #if KMP_USE_MONITOR 7571 int bt_intervals; 7572 #endif 7573 int bt_set; 7574 7575 __kmp_save_internal_controls(thread); 7576 7577 /* Normalize and set blocktime for the teams */ 7578 if (blocktime < KMP_MIN_BLOCKTIME) 7579 blocktime = KMP_MIN_BLOCKTIME; 7580 else if (blocktime > KMP_MAX_BLOCKTIME) 7581 blocktime = KMP_MAX_BLOCKTIME; 7582 7583 set__blocktime_team(thread->th.th_team, tid, blocktime); 7584 set__blocktime_team(thread->th.th_serial_team, 0, blocktime); 7585 7586 #if KMP_USE_MONITOR 7587 /* Calculate and set blocktime intervals for the teams */ 7588 bt_intervals = KMP_INTERVALS_FROM_BLOCKTIME(blocktime, __kmp_monitor_wakeups); 7589 7590 set__bt_intervals_team(thread->th.th_team, tid, bt_intervals); 7591 set__bt_intervals_team(thread->th.th_serial_team, 0, bt_intervals); 7592 #endif 7593 7594 /* Set whether blocktime has been set to "TRUE" */ 7595 bt_set = TRUE; 7596 7597 set__bt_set_team(thread->th.th_team, tid, bt_set); 7598 set__bt_set_team(thread->th.th_serial_team, 0, bt_set); 7599 #if KMP_USE_MONITOR 7600 KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d, " 7601 "bt_intervals=%d, monitor_updates=%d\n", 7602 __kmp_gtid_from_tid(tid, thread->th.th_team), 7603 thread->th.th_team->t.t_id, tid, blocktime, bt_intervals, 7604 __kmp_monitor_wakeups)); 7605 #else 7606 KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d\n", 7607 __kmp_gtid_from_tid(tid, thread->th.th_team), 7608 thread->th.th_team->t.t_id, tid, blocktime)); 7609 #endif 7610 } 7611 7612 void __kmp_aux_set_defaults(char const *str, int len) { 7613 if (!__kmp_init_serial) { 7614 __kmp_serial_initialize(); 7615 } 7616 __kmp_env_initialize(str); 7617 7618 if (__kmp_settings 7619 #if OMP_40_ENABLED 7620 || __kmp_display_env || __kmp_display_env_verbose 7621 #endif // OMP_40_ENABLED 7622 ) { 7623 __kmp_env_print(); 7624 } 7625 } // __kmp_aux_set_defaults 7626 7627 /* ------------------------------------------------------------------------ */ 7628 /* internal fast reduction routines */ 7629 7630 PACKED_REDUCTION_METHOD_T 7631 __kmp_determine_reduction_method( 7632 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, 7633 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data), 7634 kmp_critical_name *lck) { 7635 7636 // Default reduction method: critical construct ( lck != NULL, like in current 7637 // PAROPT ) 7638 // If ( reduce_data!=NULL && reduce_func!=NULL ): the tree-reduction method 7639 // can be selected by RTL 7640 // If loc->flags contains KMP_IDENT_ATOMIC_REDUCE, the atomic reduce method 7641 // can be selected by RTL 7642 // Finally, it's up to OpenMP RTL to make a decision on which method to select 7643 // among generated by PAROPT. 7644 7645 PACKED_REDUCTION_METHOD_T retval; 7646 7647 int team_size; 7648 7649 KMP_DEBUG_ASSERT(loc); // it would be nice to test ( loc != 0 ) 7650 KMP_DEBUG_ASSERT(lck); // it would be nice to test ( lck != 0 ) 7651 7652 #define FAST_REDUCTION_ATOMIC_METHOD_GENERATED \ 7653 ((loc->flags & (KMP_IDENT_ATOMIC_REDUCE)) == (KMP_IDENT_ATOMIC_REDUCE)) 7654 #define FAST_REDUCTION_TREE_METHOD_GENERATED ((reduce_data) && (reduce_func)) 7655 7656 retval = critical_reduce_block; 7657 7658 // another choice of getting a team size (with 1 dynamic deference) is slower 7659 team_size = __kmp_get_team_num_threads(global_tid); 7660 if (team_size == 1) { 7661 7662 retval = empty_reduce_block; 7663 7664 } else { 7665 7666 int atomic_available = FAST_REDUCTION_ATOMIC_METHOD_GENERATED; 7667 7668 #if KMP_ARCH_X86_64 || KMP_ARCH_PPC64 || KMP_ARCH_AARCH64 || KMP_ARCH_MIPS64 7669 7670 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_WINDOWS || \ 7671 KMP_OS_DARWIN || KMP_OS_HURD 7672 7673 int teamsize_cutoff = 4; 7674 7675 #if KMP_MIC_SUPPORTED 7676 if (__kmp_mic_type != non_mic) { 7677 teamsize_cutoff = 8; 7678 } 7679 #endif 7680 int tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED; 7681 if (tree_available) { 7682 if (team_size <= teamsize_cutoff) { 7683 if (atomic_available) { 7684 retval = atomic_reduce_block; 7685 } 7686 } else { 7687 retval = TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER; 7688 } 7689 } else if (atomic_available) { 7690 retval = atomic_reduce_block; 7691 } 7692 #else 7693 #error "Unknown or unsupported OS" 7694 #endif // KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_WINDOWS || 7695 // KMP_OS_DARWIN 7696 7697 #elif KMP_ARCH_X86 || KMP_ARCH_ARM || KMP_ARCH_AARCH || KMP_ARCH_MIPS 7698 7699 #if KMP_OS_LINUX || KMP_OS_WINDOWS || KMP_OS_HURD 7700 7701 // basic tuning 7702 7703 if (atomic_available) { 7704 if (num_vars <= 2) { // && ( team_size <= 8 ) due to false-sharing ??? 7705 retval = atomic_reduce_block; 7706 } 7707 } // otherwise: use critical section 7708 7709 #elif KMP_OS_DARWIN 7710 7711 int tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED; 7712 if (atomic_available && (num_vars <= 3)) { 7713 retval = atomic_reduce_block; 7714 } else if (tree_available) { 7715 if ((reduce_size > (9 * sizeof(kmp_real64))) && 7716 (reduce_size < (2000 * sizeof(kmp_real64)))) { 7717 retval = TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER; 7718 } 7719 } // otherwise: use critical section 7720 7721 #else 7722 #error "Unknown or unsupported OS" 7723 #endif 7724 7725 #else 7726 #error "Unknown or unsupported architecture" 7727 #endif 7728 } 7729 7730 // KMP_FORCE_REDUCTION 7731 7732 // If the team is serialized (team_size == 1), ignore the forced reduction 7733 // method and stay with the unsynchronized method (empty_reduce_block) 7734 if (__kmp_force_reduction_method != reduction_method_not_defined && 7735 team_size != 1) { 7736 7737 PACKED_REDUCTION_METHOD_T forced_retval = critical_reduce_block; 7738 7739 int atomic_available, tree_available; 7740 7741 switch ((forced_retval = __kmp_force_reduction_method)) { 7742 case critical_reduce_block: 7743 KMP_ASSERT(lck); // lck should be != 0 7744 break; 7745 7746 case atomic_reduce_block: 7747 atomic_available = FAST_REDUCTION_ATOMIC_METHOD_GENERATED; 7748 if (!atomic_available) { 7749 KMP_WARNING(RedMethodNotSupported, "atomic"); 7750 forced_retval = critical_reduce_block; 7751 } 7752 break; 7753 7754 case tree_reduce_block: 7755 tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED; 7756 if (!tree_available) { 7757 KMP_WARNING(RedMethodNotSupported, "tree"); 7758 forced_retval = critical_reduce_block; 7759 } else { 7760 #if KMP_FAST_REDUCTION_BARRIER 7761 forced_retval = TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER; 7762 #endif 7763 } 7764 break; 7765 7766 default: 7767 KMP_ASSERT(0); // "unsupported method specified" 7768 } 7769 7770 retval = forced_retval; 7771 } 7772 7773 KA_TRACE(10, ("reduction method selected=%08x\n", retval)); 7774 7775 #undef FAST_REDUCTION_TREE_METHOD_GENERATED 7776 #undef FAST_REDUCTION_ATOMIC_METHOD_GENERATED 7777 7778 return (retval); 7779 } 7780 7781 // this function is for testing set/get/determine reduce method 7782 kmp_int32 __kmp_get_reduce_method(void) { 7783 return ((__kmp_entry_thread()->th.th_local.packed_reduction_method) >> 8); 7784 } 7785