1 /* 2 * kmp_runtime.cpp -- KPTS runtime support library 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // The LLVM Compiler Infrastructure 8 // 9 // This file is dual licensed under the MIT and the University of Illinois Open 10 // Source Licenses. See LICENSE.txt for details. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "kmp.h" 15 #include "kmp_affinity.h" 16 #include "kmp_atomic.h" 17 #include "kmp_environment.h" 18 #include "kmp_error.h" 19 #include "kmp_i18n.h" 20 #include "kmp_io.h" 21 #include "kmp_itt.h" 22 #include "kmp_settings.h" 23 #include "kmp_stats.h" 24 #include "kmp_str.h" 25 #include "kmp_wait_release.h" 26 #include "kmp_wrapper_getpid.h" 27 28 #if OMPT_SUPPORT 29 #include "ompt-specific.h" 30 #endif 31 32 /* these are temporary issues to be dealt with */ 33 #define KMP_USE_PRCTL 0 34 35 #if KMP_OS_WINDOWS 36 #include <process.h> 37 #endif 38 39 #include "tsan_annotations.h" 40 41 #if defined(KMP_GOMP_COMPAT) 42 char const __kmp_version_alt_comp[] = 43 KMP_VERSION_PREFIX "alternative compiler support: yes"; 44 #endif /* defined(KMP_GOMP_COMPAT) */ 45 46 char const __kmp_version_omp_api[] = KMP_VERSION_PREFIX "API version: " 47 #if OMP_50_ENABLED 48 "5.0 (201611)"; 49 #elif OMP_45_ENABLED 50 "4.5 (201511)"; 51 #elif OMP_40_ENABLED 52 "4.0 (201307)"; 53 #else 54 "3.1 (201107)"; 55 #endif 56 57 #ifdef KMP_DEBUG 58 char const __kmp_version_lock[] = 59 KMP_VERSION_PREFIX "lock type: run time selectable"; 60 #endif /* KMP_DEBUG */ 61 62 #define KMP_MIN(x, y) ((x) < (y) ? (x) : (y)) 63 64 /* ------------------------------------------------------------------------ */ 65 66 kmp_info_t __kmp_monitor; 67 68 /* Forward declarations */ 69 70 void __kmp_cleanup(void); 71 72 static void __kmp_initialize_info(kmp_info_t *, kmp_team_t *, int tid, 73 int gtid); 74 static void __kmp_initialize_team(kmp_team_t *team, int new_nproc, 75 kmp_internal_control_t *new_icvs, 76 ident_t *loc); 77 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 78 static void __kmp_partition_places(kmp_team_t *team, 79 int update_master_only = 0); 80 #endif 81 static void __kmp_do_serial_initialize(void); 82 void __kmp_fork_barrier(int gtid, int tid); 83 void __kmp_join_barrier(int gtid); 84 void __kmp_setup_icv_copy(kmp_team_t *team, int new_nproc, 85 kmp_internal_control_t *new_icvs, ident_t *loc); 86 87 #ifdef USE_LOAD_BALANCE 88 static int __kmp_load_balance_nproc(kmp_root_t *root, int set_nproc); 89 #endif 90 91 static int __kmp_expand_threads(int nNeed); 92 #if KMP_OS_WINDOWS 93 static int __kmp_unregister_root_other_thread(int gtid); 94 #endif 95 static void __kmp_unregister_library(void); // called by __kmp_internal_end() 96 static void __kmp_reap_thread(kmp_info_t *thread, int is_root); 97 kmp_info_t *__kmp_thread_pool_insert_pt = NULL; 98 99 /* Calculate the identifier of the current thread */ 100 /* fast (and somewhat portable) way to get unique identifier of executing 101 thread. Returns KMP_GTID_DNE if we haven't been assigned a gtid. */ 102 int __kmp_get_global_thread_id() { 103 int i; 104 kmp_info_t **other_threads; 105 size_t stack_data; 106 char *stack_addr; 107 size_t stack_size; 108 char *stack_base; 109 110 KA_TRACE( 111 1000, 112 ("*** __kmp_get_global_thread_id: entering, nproc=%d all_nproc=%d\n", 113 __kmp_nth, __kmp_all_nth)); 114 115 /* JPH - to handle the case where __kmpc_end(0) is called immediately prior to 116 a parallel region, made it return KMP_GTID_DNE to force serial_initialize 117 by caller. Had to handle KMP_GTID_DNE at all call-sites, or else guarantee 118 __kmp_init_gtid for this to work. */ 119 120 if (!TCR_4(__kmp_init_gtid)) 121 return KMP_GTID_DNE; 122 123 #ifdef KMP_TDATA_GTID 124 if (TCR_4(__kmp_gtid_mode) >= 3) { 125 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using TDATA\n")); 126 return __kmp_gtid; 127 } 128 #endif 129 if (TCR_4(__kmp_gtid_mode) >= 2) { 130 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using keyed TLS\n")); 131 return __kmp_gtid_get_specific(); 132 } 133 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using internal alg.\n")); 134 135 stack_addr = (char *)&stack_data; 136 other_threads = __kmp_threads; 137 138 /* ATT: The code below is a source of potential bugs due to unsynchronized 139 access to __kmp_threads array. For example: 140 1. Current thread loads other_threads[i] to thr and checks it, it is 141 non-NULL. 142 2. Current thread is suspended by OS. 143 3. Another thread unregisters and finishes (debug versions of free() 144 may fill memory with something like 0xEF). 145 4. Current thread is resumed. 146 5. Current thread reads junk from *thr. 147 TODO: Fix it. --ln */ 148 149 for (i = 0; i < __kmp_threads_capacity; i++) { 150 151 kmp_info_t *thr = (kmp_info_t *)TCR_SYNC_PTR(other_threads[i]); 152 if (!thr) 153 continue; 154 155 stack_size = (size_t)TCR_PTR(thr->th.th_info.ds.ds_stacksize); 156 stack_base = (char *)TCR_PTR(thr->th.th_info.ds.ds_stackbase); 157 158 /* stack grows down -- search through all of the active threads */ 159 160 if (stack_addr <= stack_base) { 161 size_t stack_diff = stack_base - stack_addr; 162 163 if (stack_diff <= stack_size) { 164 /* The only way we can be closer than the allocated */ 165 /* stack size is if we are running on this thread. */ 166 KMP_DEBUG_ASSERT(__kmp_gtid_get_specific() == i); 167 return i; 168 } 169 } 170 } 171 172 /* get specific to try and determine our gtid */ 173 KA_TRACE(1000, 174 ("*** __kmp_get_global_thread_id: internal alg. failed to find " 175 "thread, using TLS\n")); 176 i = __kmp_gtid_get_specific(); 177 178 /*fprintf( stderr, "=== %d\n", i ); */ /* GROO */ 179 180 /* if we havn't been assigned a gtid, then return code */ 181 if (i < 0) 182 return i; 183 184 /* dynamically updated stack window for uber threads to avoid get_specific 185 call */ 186 if (!TCR_4(other_threads[i]->th.th_info.ds.ds_stackgrow)) { 187 KMP_FATAL(StackOverflow, i); 188 } 189 190 stack_base = (char *)other_threads[i]->th.th_info.ds.ds_stackbase; 191 if (stack_addr > stack_base) { 192 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stackbase, stack_addr); 193 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stacksize, 194 other_threads[i]->th.th_info.ds.ds_stacksize + stack_addr - 195 stack_base); 196 } else { 197 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stacksize, 198 stack_base - stack_addr); 199 } 200 201 /* Reprint stack bounds for ubermaster since they have been refined */ 202 if (__kmp_storage_map) { 203 char *stack_end = (char *)other_threads[i]->th.th_info.ds.ds_stackbase; 204 char *stack_beg = stack_end - other_threads[i]->th.th_info.ds.ds_stacksize; 205 __kmp_print_storage_map_gtid(i, stack_beg, stack_end, 206 other_threads[i]->th.th_info.ds.ds_stacksize, 207 "th_%d stack (refinement)", i); 208 } 209 return i; 210 } 211 212 int __kmp_get_global_thread_id_reg() { 213 int gtid; 214 215 if (!__kmp_init_serial) { 216 gtid = KMP_GTID_DNE; 217 } else 218 #ifdef KMP_TDATA_GTID 219 if (TCR_4(__kmp_gtid_mode) >= 3) { 220 KA_TRACE(1000, ("*** __kmp_get_global_thread_id_reg: using TDATA\n")); 221 gtid = __kmp_gtid; 222 } else 223 #endif 224 if (TCR_4(__kmp_gtid_mode) >= 2) { 225 KA_TRACE(1000, ("*** __kmp_get_global_thread_id_reg: using keyed TLS\n")); 226 gtid = __kmp_gtid_get_specific(); 227 } else { 228 KA_TRACE(1000, 229 ("*** __kmp_get_global_thread_id_reg: using internal alg.\n")); 230 gtid = __kmp_get_global_thread_id(); 231 } 232 233 /* we must be a new uber master sibling thread */ 234 if (gtid == KMP_GTID_DNE) { 235 KA_TRACE(10, 236 ("__kmp_get_global_thread_id_reg: Encountered new root thread. " 237 "Registering a new gtid.\n")); 238 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 239 if (!__kmp_init_serial) { 240 __kmp_do_serial_initialize(); 241 gtid = __kmp_gtid_get_specific(); 242 } else { 243 gtid = __kmp_register_root(FALSE); 244 } 245 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 246 /*__kmp_printf( "+++ %d\n", gtid ); */ /* GROO */ 247 } 248 249 KMP_DEBUG_ASSERT(gtid >= 0); 250 251 return gtid; 252 } 253 254 /* caller must hold forkjoin_lock */ 255 void __kmp_check_stack_overlap(kmp_info_t *th) { 256 int f; 257 char *stack_beg = NULL; 258 char *stack_end = NULL; 259 int gtid; 260 261 KA_TRACE(10, ("__kmp_check_stack_overlap: called\n")); 262 if (__kmp_storage_map) { 263 stack_end = (char *)th->th.th_info.ds.ds_stackbase; 264 stack_beg = stack_end - th->th.th_info.ds.ds_stacksize; 265 266 gtid = __kmp_gtid_from_thread(th); 267 268 if (gtid == KMP_GTID_MONITOR) { 269 __kmp_print_storage_map_gtid( 270 gtid, stack_beg, stack_end, th->th.th_info.ds.ds_stacksize, 271 "th_%s stack (%s)", "mon", 272 (th->th.th_info.ds.ds_stackgrow) ? "initial" : "actual"); 273 } else { 274 __kmp_print_storage_map_gtid( 275 gtid, stack_beg, stack_end, th->th.th_info.ds.ds_stacksize, 276 "th_%d stack (%s)", gtid, 277 (th->th.th_info.ds.ds_stackgrow) ? "initial" : "actual"); 278 } 279 } 280 281 /* No point in checking ubermaster threads since they use refinement and 282 * cannot overlap */ 283 gtid = __kmp_gtid_from_thread(th); 284 if (__kmp_env_checks == TRUE && !KMP_UBER_GTID(gtid)) { 285 KA_TRACE(10, 286 ("__kmp_check_stack_overlap: performing extensive checking\n")); 287 if (stack_beg == NULL) { 288 stack_end = (char *)th->th.th_info.ds.ds_stackbase; 289 stack_beg = stack_end - th->th.th_info.ds.ds_stacksize; 290 } 291 292 for (f = 0; f < __kmp_threads_capacity; f++) { 293 kmp_info_t *f_th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[f]); 294 295 if (f_th && f_th != th) { 296 char *other_stack_end = 297 (char *)TCR_PTR(f_th->th.th_info.ds.ds_stackbase); 298 char *other_stack_beg = 299 other_stack_end - (size_t)TCR_PTR(f_th->th.th_info.ds.ds_stacksize); 300 if ((stack_beg > other_stack_beg && stack_beg < other_stack_end) || 301 (stack_end > other_stack_beg && stack_end < other_stack_end)) { 302 303 /* Print the other stack values before the abort */ 304 if (__kmp_storage_map) 305 __kmp_print_storage_map_gtid( 306 -1, other_stack_beg, other_stack_end, 307 (size_t)TCR_PTR(f_th->th.th_info.ds.ds_stacksize), 308 "th_%d stack (overlapped)", __kmp_gtid_from_thread(f_th)); 309 310 __kmp_fatal(KMP_MSG(StackOverlap), KMP_HNT(ChangeStackLimit), 311 __kmp_msg_null); 312 } 313 } 314 } 315 } 316 KA_TRACE(10, ("__kmp_check_stack_overlap: returning\n")); 317 } 318 319 /* ------------------------------------------------------------------------ */ 320 321 void __kmp_infinite_loop(void) { 322 static int done = FALSE; 323 324 while (!done) { 325 KMP_YIELD(1); 326 } 327 } 328 329 #define MAX_MESSAGE 512 330 331 void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2, size_t size, 332 char const *format, ...) { 333 char buffer[MAX_MESSAGE]; 334 va_list ap; 335 336 va_start(ap, format); 337 KMP_SNPRINTF(buffer, sizeof(buffer), "OMP storage map: %p %p%8lu %s\n", p1, 338 p2, (unsigned long)size, format); 339 __kmp_acquire_bootstrap_lock(&__kmp_stdio_lock); 340 __kmp_vprintf(kmp_err, buffer, ap); 341 #if KMP_PRINT_DATA_PLACEMENT 342 int node; 343 if (gtid >= 0) { 344 if (p1 <= p2 && (char *)p2 - (char *)p1 == size) { 345 if (__kmp_storage_map_verbose) { 346 node = __kmp_get_host_node(p1); 347 if (node < 0) /* doesn't work, so don't try this next time */ 348 __kmp_storage_map_verbose = FALSE; 349 else { 350 char *last; 351 int lastNode; 352 int localProc = __kmp_get_cpu_from_gtid(gtid); 353 354 const int page_size = KMP_GET_PAGE_SIZE(); 355 356 p1 = (void *)((size_t)p1 & ~((size_t)page_size - 1)); 357 p2 = (void *)(((size_t)p2 - 1) & ~((size_t)page_size - 1)); 358 if (localProc >= 0) 359 __kmp_printf_no_lock(" GTID %d localNode %d\n", gtid, 360 localProc >> 1); 361 else 362 __kmp_printf_no_lock(" GTID %d\n", gtid); 363 #if KMP_USE_PRCTL 364 /* The more elaborate format is disabled for now because of the prctl 365 * hanging bug. */ 366 do { 367 last = p1; 368 lastNode = node; 369 /* This loop collates adjacent pages with the same host node. */ 370 do { 371 (char *)p1 += page_size; 372 } while (p1 <= p2 && (node = __kmp_get_host_node(p1)) == lastNode); 373 __kmp_printf_no_lock(" %p-%p memNode %d\n", last, (char *)p1 - 1, 374 lastNode); 375 } while (p1 <= p2); 376 #else 377 __kmp_printf_no_lock(" %p-%p memNode %d\n", p1, 378 (char *)p1 + (page_size - 1), 379 __kmp_get_host_node(p1)); 380 if (p1 < p2) { 381 __kmp_printf_no_lock(" %p-%p memNode %d\n", p2, 382 (char *)p2 + (page_size - 1), 383 __kmp_get_host_node(p2)); 384 } 385 #endif 386 } 387 } 388 } else 389 __kmp_printf_no_lock(" %s\n", KMP_I18N_STR(StorageMapWarning)); 390 } 391 #endif /* KMP_PRINT_DATA_PLACEMENT */ 392 __kmp_release_bootstrap_lock(&__kmp_stdio_lock); 393 } 394 395 void __kmp_warn(char const *format, ...) { 396 char buffer[MAX_MESSAGE]; 397 va_list ap; 398 399 if (__kmp_generate_warnings == kmp_warnings_off) { 400 return; 401 } 402 403 va_start(ap, format); 404 405 KMP_SNPRINTF(buffer, sizeof(buffer), "OMP warning: %s\n", format); 406 __kmp_acquire_bootstrap_lock(&__kmp_stdio_lock); 407 __kmp_vprintf(kmp_err, buffer, ap); 408 __kmp_release_bootstrap_lock(&__kmp_stdio_lock); 409 410 va_end(ap); 411 } 412 413 void __kmp_abort_process() { 414 // Later threads may stall here, but that's ok because abort() will kill them. 415 __kmp_acquire_bootstrap_lock(&__kmp_exit_lock); 416 417 if (__kmp_debug_buf) { 418 __kmp_dump_debug_buffer(); 419 } 420 421 if (KMP_OS_WINDOWS) { 422 // Let other threads know of abnormal termination and prevent deadlock 423 // if abort happened during library initialization or shutdown 424 __kmp_global.g.g_abort = SIGABRT; 425 426 /* On Windows* OS by default abort() causes pop-up error box, which stalls 427 nightly testing. Unfortunately, we cannot reliably suppress pop-up error 428 boxes. _set_abort_behavior() works well, but this function is not 429 available in VS7 (this is not problem for DLL, but it is a problem for 430 static OpenMP RTL). SetErrorMode (and so, timelimit utility) does not 431 help, at least in some versions of MS C RTL. 432 433 It seems following sequence is the only way to simulate abort() and 434 avoid pop-up error box. */ 435 raise(SIGABRT); 436 _exit(3); // Just in case, if signal ignored, exit anyway. 437 } else { 438 abort(); 439 } 440 441 __kmp_infinite_loop(); 442 __kmp_release_bootstrap_lock(&__kmp_exit_lock); 443 444 } // __kmp_abort_process 445 446 void __kmp_abort_thread(void) { 447 // TODO: Eliminate g_abort global variable and this function. 448 // In case of abort just call abort(), it will kill all the threads. 449 __kmp_infinite_loop(); 450 } // __kmp_abort_thread 451 452 /* Print out the storage map for the major kmp_info_t thread data structures 453 that are allocated together. */ 454 455 static void __kmp_print_thread_storage_map(kmp_info_t *thr, int gtid) { 456 __kmp_print_storage_map_gtid(gtid, thr, thr + 1, sizeof(kmp_info_t), "th_%d", 457 gtid); 458 459 __kmp_print_storage_map_gtid(gtid, &thr->th.th_info, &thr->th.th_team, 460 sizeof(kmp_desc_t), "th_%d.th_info", gtid); 461 462 __kmp_print_storage_map_gtid(gtid, &thr->th.th_local, &thr->th.th_pri_head, 463 sizeof(kmp_local_t), "th_%d.th_local", gtid); 464 465 __kmp_print_storage_map_gtid( 466 gtid, &thr->th.th_bar[0], &thr->th.th_bar[bs_last_barrier], 467 sizeof(kmp_balign_t) * bs_last_barrier, "th_%d.th_bar", gtid); 468 469 __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_plain_barrier], 470 &thr->th.th_bar[bs_plain_barrier + 1], 471 sizeof(kmp_balign_t), "th_%d.th_bar[plain]", 472 gtid); 473 474 __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_forkjoin_barrier], 475 &thr->th.th_bar[bs_forkjoin_barrier + 1], 476 sizeof(kmp_balign_t), "th_%d.th_bar[forkjoin]", 477 gtid); 478 479 #if KMP_FAST_REDUCTION_BARRIER 480 __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_reduction_barrier], 481 &thr->th.th_bar[bs_reduction_barrier + 1], 482 sizeof(kmp_balign_t), "th_%d.th_bar[reduction]", 483 gtid); 484 #endif // KMP_FAST_REDUCTION_BARRIER 485 } 486 487 /* Print out the storage map for the major kmp_team_t team data structures 488 that are allocated together. */ 489 490 static void __kmp_print_team_storage_map(const char *header, kmp_team_t *team, 491 int team_id, int num_thr) { 492 int num_disp_buff = team->t.t_max_nproc > 1 ? __kmp_dispatch_num_buffers : 2; 493 __kmp_print_storage_map_gtid(-1, team, team + 1, sizeof(kmp_team_t), "%s_%d", 494 header, team_id); 495 496 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[0], 497 &team->t.t_bar[bs_last_barrier], 498 sizeof(kmp_balign_team_t) * bs_last_barrier, 499 "%s_%d.t_bar", header, team_id); 500 501 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_plain_barrier], 502 &team->t.t_bar[bs_plain_barrier + 1], 503 sizeof(kmp_balign_team_t), "%s_%d.t_bar[plain]", 504 header, team_id); 505 506 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_forkjoin_barrier], 507 &team->t.t_bar[bs_forkjoin_barrier + 1], 508 sizeof(kmp_balign_team_t), 509 "%s_%d.t_bar[forkjoin]", header, team_id); 510 511 #if KMP_FAST_REDUCTION_BARRIER 512 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_reduction_barrier], 513 &team->t.t_bar[bs_reduction_barrier + 1], 514 sizeof(kmp_balign_team_t), 515 "%s_%d.t_bar[reduction]", header, team_id); 516 #endif // KMP_FAST_REDUCTION_BARRIER 517 518 __kmp_print_storage_map_gtid( 519 -1, &team->t.t_dispatch[0], &team->t.t_dispatch[num_thr], 520 sizeof(kmp_disp_t) * num_thr, "%s_%d.t_dispatch", header, team_id); 521 522 __kmp_print_storage_map_gtid( 523 -1, &team->t.t_threads[0], &team->t.t_threads[num_thr], 524 sizeof(kmp_info_t *) * num_thr, "%s_%d.t_threads", header, team_id); 525 526 __kmp_print_storage_map_gtid(-1, &team->t.t_disp_buffer[0], 527 &team->t.t_disp_buffer[num_disp_buff], 528 sizeof(dispatch_shared_info_t) * num_disp_buff, 529 "%s_%d.t_disp_buffer", header, team_id); 530 531 __kmp_print_storage_map_gtid(-1, &team->t.t_taskq, &team->t.t_copypriv_data, 532 sizeof(kmp_taskq_t), "%s_%d.t_taskq", header, 533 team_id); 534 } 535 536 static void __kmp_init_allocator() {} 537 static void __kmp_fini_allocator() {} 538 539 /* ------------------------------------------------------------------------ */ 540 541 #ifdef KMP_DYNAMIC_LIB 542 #if KMP_OS_WINDOWS 543 544 static void __kmp_reset_lock(kmp_bootstrap_lock_t *lck) { 545 // TODO: Change to __kmp_break_bootstrap_lock(). 546 __kmp_init_bootstrap_lock(lck); // make the lock released 547 } 548 549 static void __kmp_reset_locks_on_process_detach(int gtid_req) { 550 int i; 551 int thread_count; 552 553 // PROCESS_DETACH is expected to be called by a thread that executes 554 // ProcessExit() or FreeLibrary(). OS terminates other threads (except the one 555 // calling ProcessExit or FreeLibrary). So, it might be safe to access the 556 // __kmp_threads[] without taking the forkjoin_lock. However, in fact, some 557 // threads can be still alive here, although being about to be terminated. The 558 // threads in the array with ds_thread==0 are most suspicious. Actually, it 559 // can be not safe to access the __kmp_threads[]. 560 561 // TODO: does it make sense to check __kmp_roots[] ? 562 563 // Let's check that there are no other alive threads registered with the OMP 564 // lib. 565 while (1) { 566 thread_count = 0; 567 for (i = 0; i < __kmp_threads_capacity; ++i) { 568 if (!__kmp_threads) 569 continue; 570 kmp_info_t *th = __kmp_threads[i]; 571 if (th == NULL) 572 continue; 573 int gtid = th->th.th_info.ds.ds_gtid; 574 if (gtid == gtid_req) 575 continue; 576 if (gtid < 0) 577 continue; 578 DWORD exit_val; 579 int alive = __kmp_is_thread_alive(th, &exit_val); 580 if (alive) { 581 ++thread_count; 582 } 583 } 584 if (thread_count == 0) 585 break; // success 586 } 587 588 // Assume that I'm alone. Now it might be safe to check and reset locks. 589 // __kmp_forkjoin_lock and __kmp_stdio_lock are expected to be reset. 590 __kmp_reset_lock(&__kmp_forkjoin_lock); 591 #ifdef KMP_DEBUG 592 __kmp_reset_lock(&__kmp_stdio_lock); 593 #endif // KMP_DEBUG 594 } 595 596 BOOL WINAPI DllMain(HINSTANCE hInstDLL, DWORD fdwReason, LPVOID lpReserved) { 597 //__kmp_acquire_bootstrap_lock( &__kmp_initz_lock ); 598 599 switch (fdwReason) { 600 601 case DLL_PROCESS_ATTACH: 602 KA_TRACE(10, ("DllMain: PROCESS_ATTACH\n")); 603 604 return TRUE; 605 606 case DLL_PROCESS_DETACH: 607 KA_TRACE(10, ("DllMain: PROCESS_DETACH T#%d\n", __kmp_gtid_get_specific())); 608 609 if (lpReserved != NULL) { 610 // lpReserved is used for telling the difference: 611 // lpReserved == NULL when FreeLibrary() was called, 612 // lpReserved != NULL when the process terminates. 613 // When FreeLibrary() is called, worker threads remain alive. So they will 614 // release the forkjoin lock by themselves. When the process terminates, 615 // worker threads disappear triggering the problem of unreleased forkjoin 616 // lock as described below. 617 618 // A worker thread can take the forkjoin lock. The problem comes up if 619 // that worker thread becomes dead before it releases the forkjoin lock. 620 // The forkjoin lock remains taken, while the thread executing 621 // DllMain()->PROCESS_DETACH->__kmp_internal_end_library() below will try 622 // to take the forkjoin lock and will always fail, so that the application 623 // will never finish [normally]. This scenario is possible if 624 // __kmpc_end() has not been executed. It looks like it's not a corner 625 // case, but common cases: 626 // - the main function was compiled by an alternative compiler; 627 // - the main function was compiled by icl but without /Qopenmp 628 // (application with plugins); 629 // - application terminates by calling C exit(), Fortran CALL EXIT() or 630 // Fortran STOP. 631 // - alive foreign thread prevented __kmpc_end from doing cleanup. 632 // 633 // This is a hack to work around the problem. 634 // TODO: !!! figure out something better. 635 __kmp_reset_locks_on_process_detach(__kmp_gtid_get_specific()); 636 } 637 638 __kmp_internal_end_library(__kmp_gtid_get_specific()); 639 640 return TRUE; 641 642 case DLL_THREAD_ATTACH: 643 KA_TRACE(10, ("DllMain: THREAD_ATTACH\n")); 644 645 /* if we want to register new siblings all the time here call 646 * __kmp_get_gtid(); */ 647 return TRUE; 648 649 case DLL_THREAD_DETACH: 650 KA_TRACE(10, ("DllMain: THREAD_DETACH T#%d\n", __kmp_gtid_get_specific())); 651 652 __kmp_internal_end_thread(__kmp_gtid_get_specific()); 653 return TRUE; 654 } 655 656 return TRUE; 657 } 658 659 #endif /* KMP_OS_WINDOWS */ 660 #endif /* KMP_DYNAMIC_LIB */ 661 662 /* Change the library type to "status" and return the old type */ 663 /* called from within initialization routines where __kmp_initz_lock is held */ 664 int __kmp_change_library(int status) { 665 int old_status; 666 667 old_status = __kmp_yield_init & 668 1; // check whether KMP_LIBRARY=throughput (even init count) 669 670 if (status) { 671 __kmp_yield_init |= 1; // throughput => turnaround (odd init count) 672 } else { 673 __kmp_yield_init &= ~1; // turnaround => throughput (even init count) 674 } 675 676 return old_status; // return previous setting of whether 677 // KMP_LIBRARY=throughput 678 } 679 680 /* __kmp_parallel_deo -- Wait until it's our turn. */ 681 void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) { 682 int gtid = *gtid_ref; 683 #ifdef BUILD_PARALLEL_ORDERED 684 kmp_team_t *team = __kmp_team_from_gtid(gtid); 685 #endif /* BUILD_PARALLEL_ORDERED */ 686 687 if (__kmp_env_consistency_check) { 688 if (__kmp_threads[gtid]->th.th_root->r.r_active) 689 #if KMP_USE_DYNAMIC_LOCK 690 __kmp_push_sync(gtid, ct_ordered_in_parallel, loc_ref, NULL, 0); 691 #else 692 __kmp_push_sync(gtid, ct_ordered_in_parallel, loc_ref, NULL); 693 #endif 694 } 695 #ifdef BUILD_PARALLEL_ORDERED 696 if (!team->t.t_serialized) { 697 KMP_MB(); 698 KMP_WAIT_YIELD(&team->t.t_ordered.dt.t_value, __kmp_tid_from_gtid(gtid), 699 KMP_EQ, NULL); 700 KMP_MB(); 701 } 702 #endif /* BUILD_PARALLEL_ORDERED */ 703 } 704 705 /* __kmp_parallel_dxo -- Signal the next task. */ 706 void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) { 707 int gtid = *gtid_ref; 708 #ifdef BUILD_PARALLEL_ORDERED 709 int tid = __kmp_tid_from_gtid(gtid); 710 kmp_team_t *team = __kmp_team_from_gtid(gtid); 711 #endif /* BUILD_PARALLEL_ORDERED */ 712 713 if (__kmp_env_consistency_check) { 714 if (__kmp_threads[gtid]->th.th_root->r.r_active) 715 __kmp_pop_sync(gtid, ct_ordered_in_parallel, loc_ref); 716 } 717 #ifdef BUILD_PARALLEL_ORDERED 718 if (!team->t.t_serialized) { 719 KMP_MB(); /* Flush all pending memory write invalidates. */ 720 721 /* use the tid of the next thread in this team */ 722 /* TODO replace with general release procedure */ 723 team->t.t_ordered.dt.t_value = ((tid + 1) % team->t.t_nproc); 724 725 KMP_MB(); /* Flush all pending memory write invalidates. */ 726 } 727 #endif /* BUILD_PARALLEL_ORDERED */ 728 } 729 730 /* ------------------------------------------------------------------------ */ 731 /* The BARRIER for a SINGLE process section is always explicit */ 732 733 int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws) { 734 int status; 735 kmp_info_t *th; 736 kmp_team_t *team; 737 738 if (!TCR_4(__kmp_init_parallel)) 739 __kmp_parallel_initialize(); 740 741 th = __kmp_threads[gtid]; 742 team = th->th.th_team; 743 status = 0; 744 745 th->th.th_ident = id_ref; 746 747 if (team->t.t_serialized) { 748 status = 1; 749 } else { 750 kmp_int32 old_this = th->th.th_local.this_construct; 751 752 ++th->th.th_local.this_construct; 753 /* try to set team count to thread count--success means thread got the 754 single block */ 755 /* TODO: Should this be acquire or release? */ 756 if (team->t.t_construct == old_this) { 757 status = KMP_COMPARE_AND_STORE_ACQ32(&team->t.t_construct, old_this, 758 th->th.th_local.this_construct); 759 } 760 #if USE_ITT_BUILD 761 if (__itt_metadata_add_ptr && __kmp_forkjoin_frames_mode == 3 && 762 KMP_MASTER_GTID(gtid) && 763 #if OMP_40_ENABLED 764 th->th.th_teams_microtask == NULL && 765 #endif 766 team->t.t_active_level == 767 1) { // Only report metadata by master of active team at level 1 768 __kmp_itt_metadata_single(id_ref); 769 } 770 #endif /* USE_ITT_BUILD */ 771 } 772 773 if (__kmp_env_consistency_check) { 774 if (status && push_ws) { 775 __kmp_push_workshare(gtid, ct_psingle, id_ref); 776 } else { 777 __kmp_check_workshare(gtid, ct_psingle, id_ref); 778 } 779 } 780 #if USE_ITT_BUILD 781 if (status) { 782 __kmp_itt_single_start(gtid); 783 } 784 #endif /* USE_ITT_BUILD */ 785 return status; 786 } 787 788 void __kmp_exit_single(int gtid) { 789 #if USE_ITT_BUILD 790 __kmp_itt_single_end(gtid); 791 #endif /* USE_ITT_BUILD */ 792 if (__kmp_env_consistency_check) 793 __kmp_pop_workshare(gtid, ct_psingle, NULL); 794 } 795 796 /* determine if we can go parallel or must use a serialized parallel region and 797 * how many threads we can use 798 * set_nproc is the number of threads requested for the team 799 * returns 0 if we should serialize or only use one thread, 800 * otherwise the number of threads to use 801 * The forkjoin lock is held by the caller. */ 802 static int __kmp_reserve_threads(kmp_root_t *root, kmp_team_t *parent_team, 803 int master_tid, int set_nthreads 804 #if OMP_40_ENABLED 805 , 806 int enter_teams 807 #endif /* OMP_40_ENABLED */ 808 ) { 809 int capacity; 810 int new_nthreads; 811 KMP_DEBUG_ASSERT(__kmp_init_serial); 812 KMP_DEBUG_ASSERT(root && parent_team); 813 814 // If dyn-var is set, dynamically adjust the number of desired threads, 815 // according to the method specified by dynamic_mode. 816 new_nthreads = set_nthreads; 817 if (!get__dynamic_2(parent_team, master_tid)) { 818 ; 819 } 820 #ifdef USE_LOAD_BALANCE 821 else if (__kmp_global.g.g_dynamic_mode == dynamic_load_balance) { 822 new_nthreads = __kmp_load_balance_nproc(root, set_nthreads); 823 if (new_nthreads == 1) { 824 KC_TRACE(10, ("__kmp_reserve_threads: T#%d load balance reduced " 825 "reservation to 1 thread\n", 826 master_tid)); 827 return 1; 828 } 829 if (new_nthreads < set_nthreads) { 830 KC_TRACE(10, ("__kmp_reserve_threads: T#%d load balance reduced " 831 "reservation to %d threads\n", 832 master_tid, new_nthreads)); 833 } 834 } 835 #endif /* USE_LOAD_BALANCE */ 836 else if (__kmp_global.g.g_dynamic_mode == dynamic_thread_limit) { 837 new_nthreads = __kmp_avail_proc - __kmp_nth + 838 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 839 if (new_nthreads <= 1) { 840 KC_TRACE(10, ("__kmp_reserve_threads: T#%d thread limit reduced " 841 "reservation to 1 thread\n", 842 master_tid)); 843 return 1; 844 } 845 if (new_nthreads < set_nthreads) { 846 KC_TRACE(10, ("__kmp_reserve_threads: T#%d thread limit reduced " 847 "reservation to %d threads\n", 848 master_tid, new_nthreads)); 849 } else { 850 new_nthreads = set_nthreads; 851 } 852 } else if (__kmp_global.g.g_dynamic_mode == dynamic_random) { 853 if (set_nthreads > 2) { 854 new_nthreads = __kmp_get_random(parent_team->t.t_threads[master_tid]); 855 new_nthreads = (new_nthreads % set_nthreads) + 1; 856 if (new_nthreads == 1) { 857 KC_TRACE(10, ("__kmp_reserve_threads: T#%d dynamic random reduced " 858 "reservation to 1 thread\n", 859 master_tid)); 860 return 1; 861 } 862 if (new_nthreads < set_nthreads) { 863 KC_TRACE(10, ("__kmp_reserve_threads: T#%d dynamic random reduced " 864 "reservation to %d threads\n", 865 master_tid, new_nthreads)); 866 } 867 } 868 } else { 869 KMP_ASSERT(0); 870 } 871 872 // Respect KMP_ALL_THREADS/KMP_DEVICE_THREAD_LIMIT. 873 if (__kmp_nth + new_nthreads - 874 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) > 875 __kmp_max_nth) { 876 int tl_nthreads = __kmp_max_nth - __kmp_nth + 877 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 878 if (tl_nthreads <= 0) { 879 tl_nthreads = 1; 880 } 881 882 // If dyn-var is false, emit a 1-time warning. 883 if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) { 884 __kmp_reserve_warn = 1; 885 __kmp_msg(kmp_ms_warning, 886 KMP_MSG(CantFormThrTeam, set_nthreads, tl_nthreads), 887 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 888 } 889 if (tl_nthreads == 1) { 890 KC_TRACE(10, ("__kmp_reserve_threads: T#%d KMP_DEVICE_THREAD_LIMIT " 891 "reduced reservation to 1 thread\n", 892 master_tid)); 893 return 1; 894 } 895 KC_TRACE(10, ("__kmp_reserve_threads: T#%d KMP_DEVICE_THREAD_LIMIT reduced " 896 "reservation to %d threads\n", 897 master_tid, tl_nthreads)); 898 new_nthreads = tl_nthreads; 899 } 900 901 // Respect OMP_THREAD_LIMIT 902 if (root->r.r_cg_nthreads + new_nthreads - 903 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) > 904 __kmp_cg_max_nth) { 905 int tl_nthreads = __kmp_cg_max_nth - root->r.r_cg_nthreads + 906 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 907 if (tl_nthreads <= 0) { 908 tl_nthreads = 1; 909 } 910 911 // If dyn-var is false, emit a 1-time warning. 912 if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) { 913 __kmp_reserve_warn = 1; 914 __kmp_msg(kmp_ms_warning, 915 KMP_MSG(CantFormThrTeam, set_nthreads, tl_nthreads), 916 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 917 } 918 if (tl_nthreads == 1) { 919 KC_TRACE(10, ("__kmp_reserve_threads: T#%d OMP_THREAD_LIMIT " 920 "reduced reservation to 1 thread\n", 921 master_tid)); 922 return 1; 923 } 924 KC_TRACE(10, ("__kmp_reserve_threads: T#%d OMP_THREAD_LIMIT reduced " 925 "reservation to %d threads\n", 926 master_tid, tl_nthreads)); 927 new_nthreads = tl_nthreads; 928 } 929 930 // Check if the threads array is large enough, or needs expanding. 931 // See comment in __kmp_register_root() about the adjustment if 932 // __kmp_threads[0] == NULL. 933 capacity = __kmp_threads_capacity; 934 if (TCR_PTR(__kmp_threads[0]) == NULL) { 935 --capacity; 936 } 937 if (__kmp_nth + new_nthreads - 938 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) > 939 capacity) { 940 // Expand the threads array. 941 int slotsRequired = __kmp_nth + new_nthreads - 942 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) - 943 capacity; 944 int slotsAdded = __kmp_expand_threads(slotsRequired); 945 if (slotsAdded < slotsRequired) { 946 // The threads array was not expanded enough. 947 new_nthreads -= (slotsRequired - slotsAdded); 948 KMP_ASSERT(new_nthreads >= 1); 949 950 // If dyn-var is false, emit a 1-time warning. 951 if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) { 952 __kmp_reserve_warn = 1; 953 if (__kmp_tp_cached) { 954 __kmp_msg(kmp_ms_warning, 955 KMP_MSG(CantFormThrTeam, set_nthreads, new_nthreads), 956 KMP_HNT(Set_ALL_THREADPRIVATE, __kmp_tp_capacity), 957 KMP_HNT(PossibleSystemLimitOnThreads), __kmp_msg_null); 958 } else { 959 __kmp_msg(kmp_ms_warning, 960 KMP_MSG(CantFormThrTeam, set_nthreads, new_nthreads), 961 KMP_HNT(SystemLimitOnThreads), __kmp_msg_null); 962 } 963 } 964 } 965 } 966 967 #ifdef KMP_DEBUG 968 if (new_nthreads == 1) { 969 KC_TRACE(10, 970 ("__kmp_reserve_threads: T#%d serializing team after reclaiming " 971 "dead roots and rechecking; requested %d threads\n", 972 __kmp_get_gtid(), set_nthreads)); 973 } else { 974 KC_TRACE(10, ("__kmp_reserve_threads: T#%d allocating %d threads; requested" 975 " %d threads\n", 976 __kmp_get_gtid(), new_nthreads, set_nthreads)); 977 } 978 #endif // KMP_DEBUG 979 return new_nthreads; 980 } 981 982 /* Allocate threads from the thread pool and assign them to the new team. We are 983 assured that there are enough threads available, because we checked on that 984 earlier within critical section forkjoin */ 985 static void __kmp_fork_team_threads(kmp_root_t *root, kmp_team_t *team, 986 kmp_info_t *master_th, int master_gtid) { 987 int i; 988 int use_hot_team; 989 990 KA_TRACE(10, ("__kmp_fork_team_threads: new_nprocs = %d\n", team->t.t_nproc)); 991 KMP_DEBUG_ASSERT(master_gtid == __kmp_get_gtid()); 992 KMP_MB(); 993 994 /* first, let's setup the master thread */ 995 master_th->th.th_info.ds.ds_tid = 0; 996 master_th->th.th_team = team; 997 master_th->th.th_team_nproc = team->t.t_nproc; 998 master_th->th.th_team_master = master_th; 999 master_th->th.th_team_serialized = FALSE; 1000 master_th->th.th_dispatch = &team->t.t_dispatch[0]; 1001 1002 /* make sure we are not the optimized hot team */ 1003 #if KMP_NESTED_HOT_TEAMS 1004 use_hot_team = 0; 1005 kmp_hot_team_ptr_t *hot_teams = master_th->th.th_hot_teams; 1006 if (hot_teams) { // hot teams array is not allocated if 1007 // KMP_HOT_TEAMS_MAX_LEVEL=0 1008 int level = team->t.t_active_level - 1; // index in array of hot teams 1009 if (master_th->th.th_teams_microtask) { // are we inside the teams? 1010 if (master_th->th.th_teams_size.nteams > 1) { 1011 ++level; // level was not increased in teams construct for 1012 // team_of_masters 1013 } 1014 if (team->t.t_pkfn != (microtask_t)__kmp_teams_master && 1015 master_th->th.th_teams_level == team->t.t_level) { 1016 ++level; // level was not increased in teams construct for 1017 // team_of_workers before the parallel 1018 } // team->t.t_level will be increased inside parallel 1019 } 1020 if (level < __kmp_hot_teams_max_level) { 1021 if (hot_teams[level].hot_team) { 1022 // hot team has already been allocated for given level 1023 KMP_DEBUG_ASSERT(hot_teams[level].hot_team == team); 1024 use_hot_team = 1; // the team is ready to use 1025 } else { 1026 use_hot_team = 0; // AC: threads are not allocated yet 1027 hot_teams[level].hot_team = team; // remember new hot team 1028 hot_teams[level].hot_team_nth = team->t.t_nproc; 1029 } 1030 } else { 1031 use_hot_team = 0; 1032 } 1033 } 1034 #else 1035 use_hot_team = team == root->r.r_hot_team; 1036 #endif 1037 if (!use_hot_team) { 1038 1039 /* install the master thread */ 1040 team->t.t_threads[0] = master_th; 1041 __kmp_initialize_info(master_th, team, 0, master_gtid); 1042 1043 /* now, install the worker threads */ 1044 for (i = 1; i < team->t.t_nproc; i++) { 1045 1046 /* fork or reallocate a new thread and install it in team */ 1047 kmp_info_t *thr = __kmp_allocate_thread(root, team, i); 1048 team->t.t_threads[i] = thr; 1049 KMP_DEBUG_ASSERT(thr); 1050 KMP_DEBUG_ASSERT(thr->th.th_team == team); 1051 /* align team and thread arrived states */ 1052 KA_TRACE(20, ("__kmp_fork_team_threads: T#%d(%d:%d) init arrived " 1053 "T#%d(%d:%d) join =%llu, plain=%llu\n", 1054 __kmp_gtid_from_tid(0, team), team->t.t_id, 0, 1055 __kmp_gtid_from_tid(i, team), team->t.t_id, i, 1056 team->t.t_bar[bs_forkjoin_barrier].b_arrived, 1057 team->t.t_bar[bs_plain_barrier].b_arrived)); 1058 #if OMP_40_ENABLED 1059 thr->th.th_teams_microtask = master_th->th.th_teams_microtask; 1060 thr->th.th_teams_level = master_th->th.th_teams_level; 1061 thr->th.th_teams_size = master_th->th.th_teams_size; 1062 #endif 1063 { // Initialize threads' barrier data. 1064 int b; 1065 kmp_balign_t *balign = team->t.t_threads[i]->th.th_bar; 1066 for (b = 0; b < bs_last_barrier; ++b) { 1067 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 1068 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 1069 #if USE_DEBUGGER 1070 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 1071 #endif 1072 } 1073 } 1074 } 1075 1076 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 1077 __kmp_partition_places(team); 1078 #endif 1079 } 1080 1081 KMP_MB(); 1082 } 1083 1084 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1085 // Propagate any changes to the floating point control registers out to the team 1086 // We try to avoid unnecessary writes to the relevant cache line in the team 1087 // structure, so we don't make changes unless they are needed. 1088 inline static void propagateFPControl(kmp_team_t *team) { 1089 if (__kmp_inherit_fp_control) { 1090 kmp_int16 x87_fpu_control_word; 1091 kmp_uint32 mxcsr; 1092 1093 // Get master values of FPU control flags (both X87 and vector) 1094 __kmp_store_x87_fpu_control_word(&x87_fpu_control_word); 1095 __kmp_store_mxcsr(&mxcsr); 1096 mxcsr &= KMP_X86_MXCSR_MASK; 1097 1098 // There is no point looking at t_fp_control_saved here. 1099 // If it is TRUE, we still have to update the values if they are different 1100 // from those we now have. If it is FALSE we didn't save anything yet, but 1101 // our objective is the same. We have to ensure that the values in the team 1102 // are the same as those we have. 1103 // So, this code achieves what we need whether or not t_fp_control_saved is 1104 // true. By checking whether the value needs updating we avoid unnecessary 1105 // writes that would put the cache-line into a written state, causing all 1106 // threads in the team to have to read it again. 1107 KMP_CHECK_UPDATE(team->t.t_x87_fpu_control_word, x87_fpu_control_word); 1108 KMP_CHECK_UPDATE(team->t.t_mxcsr, mxcsr); 1109 // Although we don't use this value, other code in the runtime wants to know 1110 // whether it should restore them. So we must ensure it is correct. 1111 KMP_CHECK_UPDATE(team->t.t_fp_control_saved, TRUE); 1112 } else { 1113 // Similarly here. Don't write to this cache-line in the team structure 1114 // unless we have to. 1115 KMP_CHECK_UPDATE(team->t.t_fp_control_saved, FALSE); 1116 } 1117 } 1118 1119 // Do the opposite, setting the hardware registers to the updated values from 1120 // the team. 1121 inline static void updateHWFPControl(kmp_team_t *team) { 1122 if (__kmp_inherit_fp_control && team->t.t_fp_control_saved) { 1123 // Only reset the fp control regs if they have been changed in the team. 1124 // the parallel region that we are exiting. 1125 kmp_int16 x87_fpu_control_word; 1126 kmp_uint32 mxcsr; 1127 __kmp_store_x87_fpu_control_word(&x87_fpu_control_word); 1128 __kmp_store_mxcsr(&mxcsr); 1129 mxcsr &= KMP_X86_MXCSR_MASK; 1130 1131 if (team->t.t_x87_fpu_control_word != x87_fpu_control_word) { 1132 __kmp_clear_x87_fpu_status_word(); 1133 __kmp_load_x87_fpu_control_word(&team->t.t_x87_fpu_control_word); 1134 } 1135 1136 if (team->t.t_mxcsr != mxcsr) { 1137 __kmp_load_mxcsr(&team->t.t_mxcsr); 1138 } 1139 } 1140 } 1141 #else 1142 #define propagateFPControl(x) ((void)0) 1143 #define updateHWFPControl(x) ((void)0) 1144 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 1145 1146 static void __kmp_alloc_argv_entries(int argc, kmp_team_t *team, 1147 int realloc); // forward declaration 1148 1149 /* Run a parallel region that has been serialized, so runs only in a team of the 1150 single master thread. */ 1151 void __kmp_serialized_parallel(ident_t *loc, kmp_int32 global_tid) { 1152 kmp_info_t *this_thr; 1153 kmp_team_t *serial_team; 1154 1155 KC_TRACE(10, ("__kmpc_serialized_parallel: called by T#%d\n", global_tid)); 1156 1157 /* Skip all this code for autopar serialized loops since it results in 1158 unacceptable overhead */ 1159 if (loc != NULL && (loc->flags & KMP_IDENT_AUTOPAR)) 1160 return; 1161 1162 if (!TCR_4(__kmp_init_parallel)) 1163 __kmp_parallel_initialize(); 1164 1165 this_thr = __kmp_threads[global_tid]; 1166 serial_team = this_thr->th.th_serial_team; 1167 1168 /* utilize the serialized team held by this thread */ 1169 KMP_DEBUG_ASSERT(serial_team); 1170 KMP_MB(); 1171 1172 if (__kmp_tasking_mode != tskm_immediate_exec) { 1173 KMP_DEBUG_ASSERT( 1174 this_thr->th.th_task_team == 1175 this_thr->th.th_team->t.t_task_team[this_thr->th.th_task_state]); 1176 KMP_DEBUG_ASSERT(serial_team->t.t_task_team[this_thr->th.th_task_state] == 1177 NULL); 1178 KA_TRACE(20, ("__kmpc_serialized_parallel: T#%d pushing task_team %p / " 1179 "team %p, new task_team = NULL\n", 1180 global_tid, this_thr->th.th_task_team, this_thr->th.th_team)); 1181 this_thr->th.th_task_team = NULL; 1182 } 1183 1184 #if OMP_40_ENABLED 1185 kmp_proc_bind_t proc_bind = this_thr->th.th_set_proc_bind; 1186 if (this_thr->th.th_current_task->td_icvs.proc_bind == proc_bind_false) { 1187 proc_bind = proc_bind_false; 1188 } else if (proc_bind == proc_bind_default) { 1189 // No proc_bind clause was specified, so use the current value 1190 // of proc-bind-var for this parallel region. 1191 proc_bind = this_thr->th.th_current_task->td_icvs.proc_bind; 1192 } 1193 // Reset for next parallel region 1194 this_thr->th.th_set_proc_bind = proc_bind_default; 1195 #endif /* OMP_40_ENABLED */ 1196 1197 #if OMPT_SUPPORT 1198 ompt_data_t ompt_parallel_data; 1199 ompt_parallel_data.ptr = NULL; 1200 ompt_data_t *implicit_task_data; 1201 void *codeptr = OMPT_LOAD_RETURN_ADDRESS(global_tid); 1202 if (ompt_enabled.enabled && 1203 this_thr->th.ompt_thread_info.state != omp_state_overhead) { 1204 1205 ompt_task_info_t *parent_task_info; 1206 parent_task_info = OMPT_CUR_TASK_INFO(this_thr); 1207 1208 parent_task_info->frame.enter_frame = OMPT_GET_FRAME_ADDRESS(1); 1209 if (ompt_enabled.ompt_callback_parallel_begin) { 1210 int team_size = 1; 1211 1212 ompt_callbacks.ompt_callback(ompt_callback_parallel_begin)( 1213 &(parent_task_info->task_data), &(parent_task_info->frame), 1214 &ompt_parallel_data, team_size, ompt_invoker_program, codeptr); 1215 } 1216 } 1217 #endif // OMPT_SUPPORT 1218 1219 if (this_thr->th.th_team != serial_team) { 1220 // Nested level will be an index in the nested nthreads array 1221 int level = this_thr->th.th_team->t.t_level; 1222 1223 if (serial_team->t.t_serialized) { 1224 /* this serial team was already used 1225 TODO increase performance by making this locks more specific */ 1226 kmp_team_t *new_team; 1227 1228 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 1229 1230 new_team = __kmp_allocate_team(this_thr->th.th_root, 1, 1, 1231 #if OMPT_SUPPORT 1232 ompt_parallel_data, 1233 #endif 1234 #if OMP_40_ENABLED 1235 proc_bind, 1236 #endif 1237 &this_thr->th.th_current_task->td_icvs, 1238 0 USE_NESTED_HOT_ARG(NULL)); 1239 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1240 KMP_ASSERT(new_team); 1241 1242 /* setup new serialized team and install it */ 1243 new_team->t.t_threads[0] = this_thr; 1244 new_team->t.t_parent = this_thr->th.th_team; 1245 serial_team = new_team; 1246 this_thr->th.th_serial_team = serial_team; 1247 1248 KF_TRACE( 1249 10, 1250 ("__kmpc_serialized_parallel: T#%d allocated new serial team %p\n", 1251 global_tid, serial_team)); 1252 1253 /* TODO the above breaks the requirement that if we run out of resources, 1254 then we can still guarantee that serialized teams are ok, since we may 1255 need to allocate a new one */ 1256 } else { 1257 KF_TRACE( 1258 10, 1259 ("__kmpc_serialized_parallel: T#%d reusing cached serial team %p\n", 1260 global_tid, serial_team)); 1261 } 1262 1263 /* we have to initialize this serial team */ 1264 KMP_DEBUG_ASSERT(serial_team->t.t_threads); 1265 KMP_DEBUG_ASSERT(serial_team->t.t_threads[0] == this_thr); 1266 KMP_DEBUG_ASSERT(this_thr->th.th_team != serial_team); 1267 serial_team->t.t_ident = loc; 1268 serial_team->t.t_serialized = 1; 1269 serial_team->t.t_nproc = 1; 1270 serial_team->t.t_parent = this_thr->th.th_team; 1271 serial_team->t.t_sched.sched = this_thr->th.th_team->t.t_sched.sched; 1272 this_thr->th.th_team = serial_team; 1273 serial_team->t.t_master_tid = this_thr->th.th_info.ds.ds_tid; 1274 1275 KF_TRACE(10, ("__kmpc_serialized_parallel: T#d curtask=%p\n", global_tid, 1276 this_thr->th.th_current_task)); 1277 KMP_ASSERT(this_thr->th.th_current_task->td_flags.executing == 1); 1278 this_thr->th.th_current_task->td_flags.executing = 0; 1279 1280 __kmp_push_current_task_to_thread(this_thr, serial_team, 0); 1281 1282 /* TODO: GEH: do ICVs work for nested serialized teams? Don't we need an 1283 implicit task for each serialized task represented by 1284 team->t.t_serialized? */ 1285 copy_icvs(&this_thr->th.th_current_task->td_icvs, 1286 &this_thr->th.th_current_task->td_parent->td_icvs); 1287 1288 // Thread value exists in the nested nthreads array for the next nested 1289 // level 1290 if (__kmp_nested_nth.used && (level + 1 < __kmp_nested_nth.used)) { 1291 this_thr->th.th_current_task->td_icvs.nproc = 1292 __kmp_nested_nth.nth[level + 1]; 1293 } 1294 1295 #if OMP_40_ENABLED 1296 if (__kmp_nested_proc_bind.used && 1297 (level + 1 < __kmp_nested_proc_bind.used)) { 1298 this_thr->th.th_current_task->td_icvs.proc_bind = 1299 __kmp_nested_proc_bind.bind_types[level + 1]; 1300 } 1301 #endif /* OMP_40_ENABLED */ 1302 1303 #if USE_DEBUGGER 1304 serial_team->t.t_pkfn = (microtask_t)(~0); // For the debugger. 1305 #endif 1306 this_thr->th.th_info.ds.ds_tid = 0; 1307 1308 /* set thread cache values */ 1309 this_thr->th.th_team_nproc = 1; 1310 this_thr->th.th_team_master = this_thr; 1311 this_thr->th.th_team_serialized = 1; 1312 1313 serial_team->t.t_level = serial_team->t.t_parent->t.t_level + 1; 1314 serial_team->t.t_active_level = serial_team->t.t_parent->t.t_active_level; 1315 1316 propagateFPControl(serial_team); 1317 1318 /* check if we need to allocate dispatch buffers stack */ 1319 KMP_DEBUG_ASSERT(serial_team->t.t_dispatch); 1320 if (!serial_team->t.t_dispatch->th_disp_buffer) { 1321 serial_team->t.t_dispatch->th_disp_buffer = 1322 (dispatch_private_info_t *)__kmp_allocate( 1323 sizeof(dispatch_private_info_t)); 1324 } 1325 this_thr->th.th_dispatch = serial_team->t.t_dispatch; 1326 1327 KMP_MB(); 1328 1329 } else { 1330 /* this serialized team is already being used, 1331 * that's fine, just add another nested level */ 1332 KMP_DEBUG_ASSERT(this_thr->th.th_team == serial_team); 1333 KMP_DEBUG_ASSERT(serial_team->t.t_threads); 1334 KMP_DEBUG_ASSERT(serial_team->t.t_threads[0] == this_thr); 1335 ++serial_team->t.t_serialized; 1336 this_thr->th.th_team_serialized = serial_team->t.t_serialized; 1337 1338 // Nested level will be an index in the nested nthreads array 1339 int level = this_thr->th.th_team->t.t_level; 1340 // Thread value exists in the nested nthreads array for the next nested 1341 // level 1342 if (__kmp_nested_nth.used && (level + 1 < __kmp_nested_nth.used)) { 1343 this_thr->th.th_current_task->td_icvs.nproc = 1344 __kmp_nested_nth.nth[level + 1]; 1345 } 1346 serial_team->t.t_level++; 1347 KF_TRACE(10, ("__kmpc_serialized_parallel: T#%d increasing nesting level " 1348 "of serial team %p to %d\n", 1349 global_tid, serial_team, serial_team->t.t_level)); 1350 1351 /* allocate/push dispatch buffers stack */ 1352 KMP_DEBUG_ASSERT(serial_team->t.t_dispatch); 1353 { 1354 dispatch_private_info_t *disp_buffer = 1355 (dispatch_private_info_t *)__kmp_allocate( 1356 sizeof(dispatch_private_info_t)); 1357 disp_buffer->next = serial_team->t.t_dispatch->th_disp_buffer; 1358 serial_team->t.t_dispatch->th_disp_buffer = disp_buffer; 1359 } 1360 this_thr->th.th_dispatch = serial_team->t.t_dispatch; 1361 1362 KMP_MB(); 1363 } 1364 #if OMP_40_ENABLED 1365 KMP_CHECK_UPDATE(serial_team->t.t_cancel_request, cancel_noreq); 1366 #endif 1367 1368 if (__kmp_env_consistency_check) 1369 __kmp_push_parallel(global_tid, NULL); 1370 #if OMPT_SUPPORT 1371 serial_team->t.ompt_team_info.master_return_address = codeptr; 1372 if (ompt_enabled.enabled && 1373 this_thr->th.ompt_thread_info.state != omp_state_overhead) { 1374 OMPT_CUR_TASK_INFO(this_thr)->frame.exit_frame = OMPT_GET_FRAME_ADDRESS(1); 1375 1376 ompt_lw_taskteam_t lw_taskteam; 1377 __ompt_lw_taskteam_init(&lw_taskteam, this_thr, global_tid, 1378 &ompt_parallel_data, codeptr); 1379 1380 __ompt_lw_taskteam_link(&lw_taskteam, this_thr, 1); 1381 // don't use lw_taskteam after linking. content was swaped 1382 1383 /* OMPT implicit task begin */ 1384 implicit_task_data = OMPT_CUR_TASK_DATA(this_thr); 1385 if (ompt_enabled.ompt_callback_implicit_task) { 1386 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1387 ompt_scope_begin, OMPT_CUR_TEAM_DATA(this_thr), 1388 OMPT_CUR_TASK_DATA(this_thr), 1, __kmp_tid_from_gtid(global_tid)); 1389 } 1390 1391 /* OMPT state */ 1392 this_thr->th.ompt_thread_info.state = omp_state_work_parallel; 1393 OMPT_CUR_TASK_INFO(this_thr)->frame.exit_frame = OMPT_GET_FRAME_ADDRESS(1); 1394 } 1395 #endif 1396 } 1397 1398 /* most of the work for a fork */ 1399 /* return true if we really went parallel, false if serialized */ 1400 int __kmp_fork_call(ident_t *loc, int gtid, 1401 enum fork_context_e call_context, // Intel, GNU, ... 1402 kmp_int32 argc, microtask_t microtask, launch_t invoker, 1403 /* TODO: revert workaround for Intel(R) 64 tracker #96 */ 1404 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 1405 va_list *ap 1406 #else 1407 va_list ap 1408 #endif 1409 ) { 1410 void **argv; 1411 int i; 1412 int master_tid; 1413 int master_this_cons; 1414 kmp_team_t *team; 1415 kmp_team_t *parent_team; 1416 kmp_info_t *master_th; 1417 kmp_root_t *root; 1418 int nthreads; 1419 int master_active; 1420 int master_set_numthreads; 1421 int level; 1422 #if OMP_40_ENABLED 1423 int active_level; 1424 int teams_level; 1425 #endif 1426 #if KMP_NESTED_HOT_TEAMS 1427 kmp_hot_team_ptr_t **p_hot_teams; 1428 #endif 1429 { // KMP_TIME_BLOCK 1430 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_fork_call); 1431 KMP_COUNT_VALUE(OMP_PARALLEL_args, argc); 1432 1433 KA_TRACE(20, ("__kmp_fork_call: enter T#%d\n", gtid)); 1434 if (__kmp_stkpadding > 0 && __kmp_root[gtid] != NULL) { 1435 /* Some systems prefer the stack for the root thread(s) to start with */ 1436 /* some gap from the parent stack to prevent false sharing. */ 1437 void *dummy = KMP_ALLOCA(__kmp_stkpadding); 1438 /* These 2 lines below are so this does not get optimized out */ 1439 if (__kmp_stkpadding > KMP_MAX_STKPADDING) 1440 __kmp_stkpadding += (short)((kmp_int64)dummy); 1441 } 1442 1443 /* initialize if needed */ 1444 KMP_DEBUG_ASSERT( 1445 __kmp_init_serial); // AC: potentially unsafe, not in sync with shutdown 1446 if (!TCR_4(__kmp_init_parallel)) 1447 __kmp_parallel_initialize(); 1448 1449 /* setup current data */ 1450 master_th = __kmp_threads[gtid]; // AC: potentially unsafe, not in sync with 1451 // shutdown 1452 parent_team = master_th->th.th_team; 1453 master_tid = master_th->th.th_info.ds.ds_tid; 1454 master_this_cons = master_th->th.th_local.this_construct; 1455 root = master_th->th.th_root; 1456 master_active = root->r.r_active; 1457 master_set_numthreads = master_th->th.th_set_nproc; 1458 1459 #if OMPT_SUPPORT 1460 ompt_data_t ompt_parallel_data; 1461 ompt_parallel_data.ptr = NULL; 1462 ompt_data_t *parent_task_data; 1463 ompt_frame_t *ompt_frame; 1464 ompt_data_t *implicit_task_data; 1465 void *return_address = NULL; 1466 1467 if (ompt_enabled.enabled) { 1468 __ompt_get_task_info_internal(0, NULL, &parent_task_data, &ompt_frame, 1469 NULL, NULL); 1470 return_address = OMPT_LOAD_RETURN_ADDRESS(gtid); 1471 } 1472 #endif 1473 1474 // Nested level will be an index in the nested nthreads array 1475 level = parent_team->t.t_level; 1476 // used to launch non-serial teams even if nested is not allowed 1477 active_level = parent_team->t.t_active_level; 1478 #if OMP_40_ENABLED 1479 // needed to check nesting inside the teams 1480 teams_level = master_th->th.th_teams_level; 1481 #endif 1482 #if KMP_NESTED_HOT_TEAMS 1483 p_hot_teams = &master_th->th.th_hot_teams; 1484 if (*p_hot_teams == NULL && __kmp_hot_teams_max_level > 0) { 1485 *p_hot_teams = (kmp_hot_team_ptr_t *)__kmp_allocate( 1486 sizeof(kmp_hot_team_ptr_t) * __kmp_hot_teams_max_level); 1487 (*p_hot_teams)[0].hot_team = root->r.r_hot_team; 1488 // it is either actual or not needed (when active_level > 0) 1489 (*p_hot_teams)[0].hot_team_nth = 1; 1490 } 1491 #endif 1492 1493 #if OMPT_SUPPORT 1494 if (ompt_enabled.enabled) { 1495 if (ompt_enabled.ompt_callback_parallel_begin) { 1496 int team_size = master_set_numthreads 1497 ? master_set_numthreads 1498 : get__nproc_2(parent_team, master_tid); 1499 ompt_callbacks.ompt_callback(ompt_callback_parallel_begin)( 1500 parent_task_data, ompt_frame, &ompt_parallel_data, team_size, 1501 OMPT_INVOKER(call_context), return_address); 1502 } 1503 master_th->th.ompt_thread_info.state = omp_state_overhead; 1504 } 1505 #endif 1506 1507 master_th->th.th_ident = loc; 1508 1509 #if OMP_40_ENABLED 1510 if (master_th->th.th_teams_microtask && ap && 1511 microtask != (microtask_t)__kmp_teams_master && level == teams_level) { 1512 // AC: This is start of parallel that is nested inside teams construct. 1513 // The team is actual (hot), all workers are ready at the fork barrier. 1514 // No lock needed to initialize the team a bit, then free workers. 1515 parent_team->t.t_ident = loc; 1516 __kmp_alloc_argv_entries(argc, parent_team, TRUE); 1517 parent_team->t.t_argc = argc; 1518 argv = (void **)parent_team->t.t_argv; 1519 for (i = argc - 1; i >= 0; --i) 1520 /* TODO: revert workaround for Intel(R) 64 tracker #96 */ 1521 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 1522 *argv++ = va_arg(*ap, void *); 1523 #else 1524 *argv++ = va_arg(ap, void *); 1525 #endif 1526 // Increment our nested depth levels, but not increase the serialization 1527 if (parent_team == master_th->th.th_serial_team) { 1528 // AC: we are in serialized parallel 1529 __kmpc_serialized_parallel(loc, gtid); 1530 KMP_DEBUG_ASSERT(parent_team->t.t_serialized > 1); 1531 // AC: need this in order enquiry functions work 1532 // correctly, will restore at join time 1533 parent_team->t.t_serialized--; 1534 #if OMPT_SUPPORT 1535 void *dummy; 1536 void **exit_runtime_p; 1537 1538 ompt_lw_taskteam_t lw_taskteam; 1539 1540 if (ompt_enabled.enabled) { 1541 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1542 &ompt_parallel_data, return_address); 1543 exit_runtime_p = &(lw_taskteam.ompt_task_info.frame.exit_frame); 1544 1545 __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0); 1546 // don't use lw_taskteam after linking. content was swaped 1547 1548 /* OMPT implicit task begin */ 1549 implicit_task_data = OMPT_CUR_TASK_DATA(master_th); 1550 if (ompt_enabled.ompt_callback_implicit_task) { 1551 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1552 ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th), 1553 implicit_task_data, 1, __kmp_tid_from_gtid(gtid)); 1554 } 1555 1556 /* OMPT state */ 1557 master_th->th.ompt_thread_info.state = omp_state_work_parallel; 1558 } else { 1559 exit_runtime_p = &dummy; 1560 } 1561 #endif 1562 1563 { 1564 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1565 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1566 __kmp_invoke_microtask(microtask, gtid, 0, argc, parent_team->t.t_argv 1567 #if OMPT_SUPPORT 1568 , 1569 exit_runtime_p 1570 #endif 1571 ); 1572 } 1573 1574 #if OMPT_SUPPORT 1575 *exit_runtime_p = NULL; 1576 if (ompt_enabled.enabled) { 1577 OMPT_CUR_TASK_INFO(master_th)->frame.exit_frame = NULL; 1578 if (ompt_enabled.ompt_callback_implicit_task) { 1579 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1580 ompt_scope_end, NULL, implicit_task_data, 1, 1581 __kmp_tid_from_gtid(gtid)); 1582 } 1583 __ompt_lw_taskteam_unlink(master_th); 1584 1585 if (ompt_enabled.ompt_callback_parallel_end) { 1586 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 1587 OMPT_CUR_TEAM_DATA(master_th), OMPT_CUR_TASK_DATA(master_th), 1588 OMPT_INVOKER(call_context), return_address); 1589 } 1590 master_th->th.ompt_thread_info.state = omp_state_overhead; 1591 } 1592 #endif 1593 return TRUE; 1594 } 1595 1596 parent_team->t.t_pkfn = microtask; 1597 parent_team->t.t_invoke = invoker; 1598 KMP_TEST_THEN_INC32((kmp_int32 *)&root->r.r_in_parallel); 1599 parent_team->t.t_active_level++; 1600 parent_team->t.t_level++; 1601 1602 /* Change number of threads in the team if requested */ 1603 if (master_set_numthreads) { // The parallel has num_threads clause 1604 if (master_set_numthreads < master_th->th.th_teams_size.nth) { 1605 // AC: only can reduce number of threads dynamically, can't increase 1606 kmp_info_t **other_threads = parent_team->t.t_threads; 1607 parent_team->t.t_nproc = master_set_numthreads; 1608 for (i = 0; i < master_set_numthreads; ++i) { 1609 other_threads[i]->th.th_team_nproc = master_set_numthreads; 1610 } 1611 // Keep extra threads hot in the team for possible next parallels 1612 } 1613 master_th->th.th_set_nproc = 0; 1614 } 1615 1616 #if USE_DEBUGGER 1617 if (__kmp_debugging) { // Let debugger override number of threads. 1618 int nth = __kmp_omp_num_threads(loc); 1619 if (nth > 0) { // 0 means debugger doesn't want to change num threads 1620 master_set_numthreads = nth; 1621 } 1622 } 1623 #endif 1624 1625 KF_TRACE(10, ("__kmp_fork_call: before internal fork: root=%p, team=%p, " 1626 "master_th=%p, gtid=%d\n", 1627 root, parent_team, master_th, gtid)); 1628 __kmp_internal_fork(loc, gtid, parent_team); 1629 KF_TRACE(10, ("__kmp_fork_call: after internal fork: root=%p, team=%p, " 1630 "master_th=%p, gtid=%d\n", 1631 root, parent_team, master_th, gtid)); 1632 1633 /* Invoke microtask for MASTER thread */ 1634 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) invoke microtask = %p\n", gtid, 1635 parent_team->t.t_id, parent_team->t.t_pkfn)); 1636 1637 { 1638 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1639 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1640 if (!parent_team->t.t_invoke(gtid)) { 1641 KMP_ASSERT2(0, "cannot invoke microtask for MASTER thread"); 1642 } 1643 } 1644 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) done microtask = %p\n", gtid, 1645 parent_team->t.t_id, parent_team->t.t_pkfn)); 1646 KMP_MB(); /* Flush all pending memory write invalidates. */ 1647 1648 KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid)); 1649 1650 return TRUE; 1651 } // Parallel closely nested in teams construct 1652 #endif /* OMP_40_ENABLED */ 1653 1654 #if KMP_DEBUG 1655 if (__kmp_tasking_mode != tskm_immediate_exec) { 1656 KMP_DEBUG_ASSERT(master_th->th.th_task_team == 1657 parent_team->t.t_task_team[master_th->th.th_task_state]); 1658 } 1659 #endif 1660 1661 if (parent_team->t.t_active_level >= 1662 master_th->th.th_current_task->td_icvs.max_active_levels) { 1663 nthreads = 1; 1664 } else { 1665 #if OMP_40_ENABLED 1666 int enter_teams = ((ap == NULL && active_level == 0) || 1667 (ap && teams_level > 0 && teams_level == level)); 1668 #endif 1669 nthreads = 1670 master_set_numthreads 1671 ? master_set_numthreads 1672 : get__nproc_2( 1673 parent_team, 1674 master_tid); // TODO: get nproc directly from current task 1675 1676 // Check if we need to take forkjoin lock? (no need for serialized 1677 // parallel out of teams construct). This code moved here from 1678 // __kmp_reserve_threads() to speedup nested serialized parallels. 1679 if (nthreads > 1) { 1680 if ((!get__nested(master_th) && (root->r.r_in_parallel 1681 #if OMP_40_ENABLED 1682 && !enter_teams 1683 #endif /* OMP_40_ENABLED */ 1684 )) || 1685 (__kmp_library == library_serial)) { 1686 KC_TRACE(10, ("__kmp_fork_call: T#%d serializing team; requested %d" 1687 " threads\n", 1688 gtid, nthreads)); 1689 nthreads = 1; 1690 } 1691 } 1692 if (nthreads > 1) { 1693 /* determine how many new threads we can use */ 1694 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 1695 nthreads = __kmp_reserve_threads( 1696 root, parent_team, master_tid, nthreads 1697 #if OMP_40_ENABLED 1698 /* AC: If we execute teams from parallel region (on host), then 1699 teams should be created but each can only have 1 thread if 1700 nesting is disabled. If teams called from serial region, then 1701 teams and their threads should be created regardless of the 1702 nesting setting. */ 1703 , 1704 enter_teams 1705 #endif /* OMP_40_ENABLED */ 1706 ); 1707 if (nthreads == 1) { 1708 // Free lock for single thread execution here; for multi-thread 1709 // execution it will be freed later after team of threads created 1710 // and initialized 1711 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1712 } 1713 } 1714 } 1715 KMP_DEBUG_ASSERT(nthreads > 0); 1716 1717 // If we temporarily changed the set number of threads then restore it now 1718 master_th->th.th_set_nproc = 0; 1719 1720 /* create a serialized parallel region? */ 1721 if (nthreads == 1) { 1722 /* josh todo: hypothetical question: what do we do for OS X*? */ 1723 #if KMP_OS_LINUX && \ 1724 (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) 1725 void *args[argc]; 1726 #else 1727 void **args = (void **)KMP_ALLOCA(argc * sizeof(void *)); 1728 #endif /* KMP_OS_LINUX && ( KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || \ 1729 KMP_ARCH_AARCH64) */ 1730 1731 KA_TRACE(20, 1732 ("__kmp_fork_call: T#%d serializing parallel region\n", gtid)); 1733 1734 __kmpc_serialized_parallel(loc, gtid); 1735 1736 if (call_context == fork_context_intel) { 1737 /* TODO this sucks, use the compiler itself to pass args! :) */ 1738 master_th->th.th_serial_team->t.t_ident = loc; 1739 #if OMP_40_ENABLED 1740 if (!ap) { 1741 // revert change made in __kmpc_serialized_parallel() 1742 master_th->th.th_serial_team->t.t_level--; 1743 // Get args from parent team for teams construct 1744 1745 #if OMPT_SUPPORT 1746 void *dummy; 1747 void **exit_runtime_p; 1748 ompt_task_info_t *task_info; 1749 1750 ompt_lw_taskteam_t lw_taskteam; 1751 1752 if (ompt_enabled.enabled) { 1753 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1754 &ompt_parallel_data, return_address); 1755 1756 __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0); 1757 // don't use lw_taskteam after linking. content was swaped 1758 1759 task_info = OMPT_CUR_TASK_INFO(master_th); 1760 exit_runtime_p = &(task_info->frame.exit_frame); 1761 if (ompt_enabled.ompt_callback_implicit_task) { 1762 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1763 ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th), 1764 &(task_info->task_data), 1, __kmp_tid_from_gtid(gtid)); 1765 } 1766 1767 /* OMPT state */ 1768 master_th->th.ompt_thread_info.state = omp_state_work_parallel; 1769 } else { 1770 exit_runtime_p = &dummy; 1771 } 1772 #endif 1773 1774 { 1775 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1776 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1777 __kmp_invoke_microtask(microtask, gtid, 0, argc, 1778 parent_team->t.t_argv 1779 #if OMPT_SUPPORT 1780 , 1781 exit_runtime_p 1782 #endif 1783 ); 1784 } 1785 1786 #if OMPT_SUPPORT 1787 if (ompt_enabled.enabled) { 1788 exit_runtime_p = NULL; 1789 if (ompt_enabled.ompt_callback_implicit_task) { 1790 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1791 ompt_scope_end, NULL, &(task_info->task_data), 1, 1792 __kmp_tid_from_gtid(gtid)); 1793 } 1794 1795 __ompt_lw_taskteam_unlink(master_th); 1796 if (ompt_enabled.ompt_callback_parallel_end) { 1797 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 1798 OMPT_CUR_TEAM_DATA(master_th), parent_task_data, 1799 OMPT_INVOKER(call_context), return_address); 1800 } 1801 master_th->th.ompt_thread_info.state = omp_state_overhead; 1802 } 1803 #endif 1804 } else if (microtask == (microtask_t)__kmp_teams_master) { 1805 KMP_DEBUG_ASSERT(master_th->th.th_team == 1806 master_th->th.th_serial_team); 1807 team = master_th->th.th_team; 1808 // team->t.t_pkfn = microtask; 1809 team->t.t_invoke = invoker; 1810 __kmp_alloc_argv_entries(argc, team, TRUE); 1811 team->t.t_argc = argc; 1812 argv = (void **)team->t.t_argv; 1813 if (ap) { 1814 for (i = argc - 1; i >= 0; --i) 1815 // TODO: revert workaround for Intel(R) 64 tracker #96 1816 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 1817 *argv++ = va_arg(*ap, void *); 1818 #else 1819 *argv++ = va_arg(ap, void *); 1820 #endif 1821 } else { 1822 for (i = 0; i < argc; ++i) 1823 // Get args from parent team for teams construct 1824 argv[i] = parent_team->t.t_argv[i]; 1825 } 1826 // AC: revert change made in __kmpc_serialized_parallel() 1827 // because initial code in teams should have level=0 1828 team->t.t_level--; 1829 // AC: call special invoker for outer "parallel" of teams construct 1830 { 1831 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1832 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1833 invoker(gtid); 1834 } 1835 } else { 1836 #endif /* OMP_40_ENABLED */ 1837 argv = args; 1838 for (i = argc - 1; i >= 0; --i) 1839 // TODO: revert workaround for Intel(R) 64 tracker #96 1840 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 1841 *argv++ = va_arg(*ap, void *); 1842 #else 1843 *argv++ = va_arg(ap, void *); 1844 #endif 1845 KMP_MB(); 1846 1847 #if OMPT_SUPPORT 1848 void *dummy; 1849 void **exit_runtime_p; 1850 ompt_task_info_t *task_info; 1851 1852 ompt_lw_taskteam_t lw_taskteam; 1853 1854 if (ompt_enabled.enabled) { 1855 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1856 &ompt_parallel_data, return_address); 1857 __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0); 1858 // don't use lw_taskteam after linking. content was swaped 1859 task_info = OMPT_CUR_TASK_INFO(master_th); 1860 exit_runtime_p = &(task_info->frame.exit_frame); 1861 1862 /* OMPT implicit task begin */ 1863 implicit_task_data = OMPT_CUR_TASK_DATA(master_th); 1864 if (ompt_enabled.ompt_callback_implicit_task) { 1865 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1866 ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th), 1867 implicit_task_data, 1, __kmp_tid_from_gtid(gtid)); 1868 } 1869 1870 /* OMPT state */ 1871 master_th->th.ompt_thread_info.state = omp_state_work_parallel; 1872 } else { 1873 exit_runtime_p = &dummy; 1874 } 1875 #endif 1876 1877 { 1878 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1879 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1880 __kmp_invoke_microtask(microtask, gtid, 0, argc, args 1881 #if OMPT_SUPPORT 1882 , 1883 exit_runtime_p 1884 #endif 1885 ); 1886 } 1887 1888 #if OMPT_SUPPORT 1889 if (ompt_enabled.enabled) { 1890 *exit_runtime_p = NULL; 1891 if (ompt_enabled.ompt_callback_implicit_task) { 1892 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1893 ompt_scope_end, NULL, &(task_info->task_data), 1, 1894 __kmp_tid_from_gtid(gtid)); 1895 } 1896 1897 ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th); 1898 __ompt_lw_taskteam_unlink(master_th); 1899 if (ompt_enabled.ompt_callback_parallel_end) { 1900 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 1901 &ompt_parallel_data, parent_task_data, 1902 OMPT_INVOKER(call_context), return_address); 1903 } 1904 master_th->th.ompt_thread_info.state = omp_state_overhead; 1905 } 1906 #endif 1907 #if OMP_40_ENABLED 1908 } 1909 #endif /* OMP_40_ENABLED */ 1910 } else if (call_context == fork_context_gnu) { 1911 #if OMPT_SUPPORT 1912 ompt_lw_taskteam_t lwt; 1913 __ompt_lw_taskteam_init(&lwt, master_th, gtid, &ompt_parallel_data, 1914 return_address); 1915 1916 lwt.ompt_task_info.frame.exit_frame = NULL; 1917 __ompt_lw_taskteam_link(&lwt, master_th, 1); 1918 // don't use lw_taskteam after linking. content was swaped 1919 #endif 1920 1921 // we were called from GNU native code 1922 KA_TRACE(20, ("__kmp_fork_call: T#%d serial exit\n", gtid)); 1923 return FALSE; 1924 } else { 1925 KMP_ASSERT2(call_context < fork_context_last, 1926 "__kmp_fork_call: unknown fork_context parameter"); 1927 } 1928 1929 KA_TRACE(20, ("__kmp_fork_call: T#%d serial exit\n", gtid)); 1930 KMP_MB(); 1931 return FALSE; 1932 } 1933 1934 // GEH: only modify the executing flag in the case when not serialized 1935 // serialized case is handled in kmpc_serialized_parallel 1936 KF_TRACE(10, ("__kmp_fork_call: parent_team_aclevel=%d, master_th=%p, " 1937 "curtask=%p, curtask_max_aclevel=%d\n", 1938 parent_team->t.t_active_level, master_th, 1939 master_th->th.th_current_task, 1940 master_th->th.th_current_task->td_icvs.max_active_levels)); 1941 // TODO: GEH - cannot do this assertion because root thread not set up as 1942 // executing 1943 // KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 1 ); 1944 master_th->th.th_current_task->td_flags.executing = 0; 1945 1946 #if OMP_40_ENABLED 1947 if (!master_th->th.th_teams_microtask || level > teams_level) 1948 #endif /* OMP_40_ENABLED */ 1949 { 1950 /* Increment our nested depth level */ 1951 KMP_TEST_THEN_INC32((kmp_int32 *)&root->r.r_in_parallel); 1952 } 1953 1954 // See if we need to make a copy of the ICVs. 1955 int nthreads_icv = master_th->th.th_current_task->td_icvs.nproc; 1956 if ((level + 1 < __kmp_nested_nth.used) && 1957 (__kmp_nested_nth.nth[level + 1] != nthreads_icv)) { 1958 nthreads_icv = __kmp_nested_nth.nth[level + 1]; 1959 } else { 1960 nthreads_icv = 0; // don't update 1961 } 1962 1963 #if OMP_40_ENABLED 1964 // Figure out the proc_bind_policy for the new team. 1965 kmp_proc_bind_t proc_bind = master_th->th.th_set_proc_bind; 1966 kmp_proc_bind_t proc_bind_icv = 1967 proc_bind_default; // proc_bind_default means don't update 1968 if (master_th->th.th_current_task->td_icvs.proc_bind == proc_bind_false) { 1969 proc_bind = proc_bind_false; 1970 } else { 1971 if (proc_bind == proc_bind_default) { 1972 // No proc_bind clause specified; use current proc-bind-var for this 1973 // parallel region 1974 proc_bind = master_th->th.th_current_task->td_icvs.proc_bind; 1975 } 1976 /* else: The proc_bind policy was specified explicitly on parallel clause. 1977 This overrides proc-bind-var for this parallel region, but does not 1978 change proc-bind-var. */ 1979 // Figure the value of proc-bind-var for the child threads. 1980 if ((level + 1 < __kmp_nested_proc_bind.used) && 1981 (__kmp_nested_proc_bind.bind_types[level + 1] != 1982 master_th->th.th_current_task->td_icvs.proc_bind)) { 1983 proc_bind_icv = __kmp_nested_proc_bind.bind_types[level + 1]; 1984 } 1985 } 1986 1987 // Reset for next parallel region 1988 master_th->th.th_set_proc_bind = proc_bind_default; 1989 #endif /* OMP_40_ENABLED */ 1990 1991 if ((nthreads_icv > 0) 1992 #if OMP_40_ENABLED 1993 || (proc_bind_icv != proc_bind_default) 1994 #endif /* OMP_40_ENABLED */ 1995 ) { 1996 kmp_internal_control_t new_icvs; 1997 copy_icvs(&new_icvs, &master_th->th.th_current_task->td_icvs); 1998 new_icvs.next = NULL; 1999 if (nthreads_icv > 0) { 2000 new_icvs.nproc = nthreads_icv; 2001 } 2002 2003 #if OMP_40_ENABLED 2004 if (proc_bind_icv != proc_bind_default) { 2005 new_icvs.proc_bind = proc_bind_icv; 2006 } 2007 #endif /* OMP_40_ENABLED */ 2008 2009 /* allocate a new parallel team */ 2010 KF_TRACE(10, ("__kmp_fork_call: before __kmp_allocate_team\n")); 2011 team = __kmp_allocate_team(root, nthreads, nthreads, 2012 #if OMPT_SUPPORT 2013 ompt_parallel_data, 2014 #endif 2015 #if OMP_40_ENABLED 2016 proc_bind, 2017 #endif 2018 &new_icvs, argc USE_NESTED_HOT_ARG(master_th)); 2019 } else { 2020 /* allocate a new parallel team */ 2021 KF_TRACE(10, ("__kmp_fork_call: before __kmp_allocate_team\n")); 2022 team = __kmp_allocate_team(root, nthreads, nthreads, 2023 #if OMPT_SUPPORT 2024 ompt_parallel_data, 2025 #endif 2026 #if OMP_40_ENABLED 2027 proc_bind, 2028 #endif 2029 &master_th->th.th_current_task->td_icvs, 2030 argc USE_NESTED_HOT_ARG(master_th)); 2031 } 2032 KF_TRACE( 2033 10, ("__kmp_fork_call: after __kmp_allocate_team - team = %p\n", team)); 2034 2035 /* setup the new team */ 2036 KMP_CHECK_UPDATE(team->t.t_master_tid, master_tid); 2037 KMP_CHECK_UPDATE(team->t.t_master_this_cons, master_this_cons); 2038 KMP_CHECK_UPDATE(team->t.t_ident, loc); 2039 KMP_CHECK_UPDATE(team->t.t_parent, parent_team); 2040 KMP_CHECK_UPDATE_SYNC(team->t.t_pkfn, microtask); 2041 #if OMPT_SUPPORT 2042 KMP_CHECK_UPDATE_SYNC(team->t.ompt_team_info.master_return_address, 2043 return_address); 2044 #endif 2045 KMP_CHECK_UPDATE(team->t.t_invoke, invoker); // TODO move to root, maybe 2046 // TODO: parent_team->t.t_level == INT_MAX ??? 2047 #if OMP_40_ENABLED 2048 if (!master_th->th.th_teams_microtask || level > teams_level) { 2049 #endif /* OMP_40_ENABLED */ 2050 int new_level = parent_team->t.t_level + 1; 2051 KMP_CHECK_UPDATE(team->t.t_level, new_level); 2052 new_level = parent_team->t.t_active_level + 1; 2053 KMP_CHECK_UPDATE(team->t.t_active_level, new_level); 2054 #if OMP_40_ENABLED 2055 } else { 2056 // AC: Do not increase parallel level at start of the teams construct 2057 int new_level = parent_team->t.t_level; 2058 KMP_CHECK_UPDATE(team->t.t_level, new_level); 2059 new_level = parent_team->t.t_active_level; 2060 KMP_CHECK_UPDATE(team->t.t_active_level, new_level); 2061 } 2062 #endif /* OMP_40_ENABLED */ 2063 kmp_r_sched_t new_sched = get__sched_2(parent_team, master_tid); 2064 // set master's schedule as new run-time schedule 2065 KMP_CHECK_UPDATE(team->t.t_sched.sched, new_sched.sched); 2066 2067 #if OMP_40_ENABLED 2068 KMP_CHECK_UPDATE(team->t.t_cancel_request, cancel_noreq); 2069 #endif 2070 2071 // Update the floating point rounding in the team if required. 2072 propagateFPControl(team); 2073 2074 if (__kmp_tasking_mode != tskm_immediate_exec) { 2075 // Set master's task team to team's task team. Unless this is hot team, it 2076 // should be NULL. 2077 KMP_DEBUG_ASSERT(master_th->th.th_task_team == 2078 parent_team->t.t_task_team[master_th->th.th_task_state]); 2079 KA_TRACE(20, ("__kmp_fork_call: Master T#%d pushing task_team %p / team " 2080 "%p, new task_team %p / team %p\n", 2081 __kmp_gtid_from_thread(master_th), 2082 master_th->th.th_task_team, parent_team, 2083 team->t.t_task_team[master_th->th.th_task_state], team)); 2084 2085 if (active_level || master_th->th.th_task_team) { 2086 // Take a memo of master's task_state 2087 KMP_DEBUG_ASSERT(master_th->th.th_task_state_memo_stack); 2088 if (master_th->th.th_task_state_top >= 2089 master_th->th.th_task_state_stack_sz) { // increase size 2090 kmp_uint32 new_size = 2 * master_th->th.th_task_state_stack_sz; 2091 kmp_uint8 *old_stack, *new_stack; 2092 kmp_uint32 i; 2093 new_stack = (kmp_uint8 *)__kmp_allocate(new_size); 2094 for (i = 0; i < master_th->th.th_task_state_stack_sz; ++i) { 2095 new_stack[i] = master_th->th.th_task_state_memo_stack[i]; 2096 } 2097 for (i = master_th->th.th_task_state_stack_sz; i < new_size; 2098 ++i) { // zero-init rest of stack 2099 new_stack[i] = 0; 2100 } 2101 old_stack = master_th->th.th_task_state_memo_stack; 2102 master_th->th.th_task_state_memo_stack = new_stack; 2103 master_th->th.th_task_state_stack_sz = new_size; 2104 __kmp_free(old_stack); 2105 } 2106 // Store master's task_state on stack 2107 master_th->th 2108 .th_task_state_memo_stack[master_th->th.th_task_state_top] = 2109 master_th->th.th_task_state; 2110 master_th->th.th_task_state_top++; 2111 #if KMP_NESTED_HOT_TEAMS 2112 if (team == master_th->th.th_hot_teams[active_level].hot_team) { 2113 // Restore master's nested state if nested hot team 2114 master_th->th.th_task_state = 2115 master_th->th 2116 .th_task_state_memo_stack[master_th->th.th_task_state_top]; 2117 } else { 2118 #endif 2119 master_th->th.th_task_state = 0; 2120 #if KMP_NESTED_HOT_TEAMS 2121 } 2122 #endif 2123 } 2124 #if !KMP_NESTED_HOT_TEAMS 2125 KMP_DEBUG_ASSERT((master_th->th.th_task_team == NULL) || 2126 (team == root->r.r_hot_team)); 2127 #endif 2128 } 2129 2130 KA_TRACE( 2131 20, 2132 ("__kmp_fork_call: T#%d(%d:%d)->(%d:0) created a team of %d threads\n", 2133 gtid, parent_team->t.t_id, team->t.t_master_tid, team->t.t_id, 2134 team->t.t_nproc)); 2135 KMP_DEBUG_ASSERT(team != root->r.r_hot_team || 2136 (team->t.t_master_tid == 0 && 2137 (team->t.t_parent == root->r.r_root_team || 2138 team->t.t_parent->t.t_serialized))); 2139 KMP_MB(); 2140 2141 /* now, setup the arguments */ 2142 argv = (void **)team->t.t_argv; 2143 #if OMP_40_ENABLED 2144 if (ap) { 2145 #endif /* OMP_40_ENABLED */ 2146 for (i = argc - 1; i >= 0; --i) { 2147 // TODO: revert workaround for Intel(R) 64 tracker #96 2148 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 2149 void *new_argv = va_arg(*ap, void *); 2150 #else 2151 void *new_argv = va_arg(ap, void *); 2152 #endif 2153 KMP_CHECK_UPDATE(*argv, new_argv); 2154 argv++; 2155 } 2156 #if OMP_40_ENABLED 2157 } else { 2158 for (i = 0; i < argc; ++i) { 2159 // Get args from parent team for teams construct 2160 KMP_CHECK_UPDATE(argv[i], team->t.t_parent->t.t_argv[i]); 2161 } 2162 } 2163 #endif /* OMP_40_ENABLED */ 2164 2165 /* now actually fork the threads */ 2166 KMP_CHECK_UPDATE(team->t.t_master_active, master_active); 2167 if (!root->r.r_active) // Only do assignment if it prevents cache ping-pong 2168 root->r.r_active = TRUE; 2169 2170 __kmp_fork_team_threads(root, team, master_th, gtid); 2171 __kmp_setup_icv_copy(team, nthreads, 2172 &master_th->th.th_current_task->td_icvs, loc); 2173 2174 #if OMPT_SUPPORT 2175 master_th->th.ompt_thread_info.state = omp_state_work_parallel; 2176 #endif 2177 2178 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 2179 2180 #if USE_ITT_BUILD 2181 if (team->t.t_active_level == 1 // only report frames at level 1 2182 #if OMP_40_ENABLED 2183 && !master_th->th.th_teams_microtask // not in teams construct 2184 #endif /* OMP_40_ENABLED */ 2185 ) { 2186 #if USE_ITT_NOTIFY 2187 if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) && 2188 (__kmp_forkjoin_frames_mode == 3 || 2189 __kmp_forkjoin_frames_mode == 1)) { 2190 kmp_uint64 tmp_time = 0; 2191 if (__itt_get_timestamp_ptr) 2192 tmp_time = __itt_get_timestamp(); 2193 // Internal fork - report frame begin 2194 master_th->th.th_frame_time = tmp_time; 2195 if (__kmp_forkjoin_frames_mode == 3) 2196 team->t.t_region_time = tmp_time; 2197 } else 2198 // only one notification scheme (either "submit" or "forking/joined", not both) 2199 #endif /* USE_ITT_NOTIFY */ 2200 if ((__itt_frame_begin_v3_ptr || KMP_ITT_DEBUG) && 2201 __kmp_forkjoin_frames && !__kmp_forkjoin_frames_mode) { 2202 // Mark start of "parallel" region for Intel(R) VTune(TM) analyzer. 2203 __kmp_itt_region_forking(gtid, team->t.t_nproc, 0); 2204 } 2205 } 2206 #endif /* USE_ITT_BUILD */ 2207 2208 /* now go on and do the work */ 2209 KMP_DEBUG_ASSERT(team == __kmp_threads[gtid]->th.th_team); 2210 KMP_MB(); 2211 KF_TRACE(10, 2212 ("__kmp_internal_fork : root=%p, team=%p, master_th=%p, gtid=%d\n", 2213 root, team, master_th, gtid)); 2214 2215 #if USE_ITT_BUILD 2216 if (__itt_stack_caller_create_ptr) { 2217 team->t.t_stack_id = 2218 __kmp_itt_stack_caller_create(); // create new stack stitching id 2219 // before entering fork barrier 2220 } 2221 #endif /* USE_ITT_BUILD */ 2222 2223 #if OMP_40_ENABLED 2224 // AC: skip __kmp_internal_fork at teams construct, let only master 2225 // threads execute 2226 if (ap) 2227 #endif /* OMP_40_ENABLED */ 2228 { 2229 __kmp_internal_fork(loc, gtid, team); 2230 KF_TRACE(10, ("__kmp_internal_fork : after : root=%p, team=%p, " 2231 "master_th=%p, gtid=%d\n", 2232 root, team, master_th, gtid)); 2233 } 2234 2235 if (call_context == fork_context_gnu) { 2236 KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid)); 2237 return TRUE; 2238 } 2239 2240 /* Invoke microtask for MASTER thread */ 2241 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) invoke microtask = %p\n", gtid, 2242 team->t.t_id, team->t.t_pkfn)); 2243 } // END of timer KMP_fork_call block 2244 2245 { 2246 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 2247 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 2248 if (!team->t.t_invoke(gtid)) { 2249 KMP_ASSERT2(0, "cannot invoke microtask for MASTER thread"); 2250 } 2251 } 2252 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) done microtask = %p\n", gtid, 2253 team->t.t_id, team->t.t_pkfn)); 2254 KMP_MB(); /* Flush all pending memory write invalidates. */ 2255 2256 KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid)); 2257 2258 #if OMPT_SUPPORT 2259 if (ompt_enabled.enabled) { 2260 master_th->th.ompt_thread_info.state = omp_state_overhead; 2261 } 2262 #endif 2263 2264 return TRUE; 2265 } 2266 2267 #if OMPT_SUPPORT 2268 static inline void __kmp_join_restore_state(kmp_info_t *thread, 2269 kmp_team_t *team) { 2270 // restore state outside the region 2271 thread->th.ompt_thread_info.state = 2272 ((team->t.t_serialized) ? omp_state_work_serial 2273 : omp_state_work_parallel); 2274 } 2275 2276 static inline void __kmp_join_ompt(int gtid, kmp_info_t *thread, 2277 kmp_team_t *team, ompt_data_t *parallel_data, 2278 fork_context_e fork_context, void *codeptr) { 2279 ompt_task_info_t *task_info = __ompt_get_task_info_object(0); 2280 if (ompt_enabled.ompt_callback_parallel_end) { 2281 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 2282 parallel_data, &(task_info->task_data), OMPT_INVOKER(fork_context), 2283 codeptr); 2284 } 2285 2286 task_info->frame.enter_frame = NULL; 2287 __kmp_join_restore_state(thread, team); 2288 } 2289 #endif 2290 2291 void __kmp_join_call(ident_t *loc, int gtid 2292 #if OMPT_SUPPORT 2293 , 2294 enum fork_context_e fork_context 2295 #endif 2296 #if OMP_40_ENABLED 2297 , 2298 int exit_teams 2299 #endif /* OMP_40_ENABLED */ 2300 ) { 2301 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_join_call); 2302 kmp_team_t *team; 2303 kmp_team_t *parent_team; 2304 kmp_info_t *master_th; 2305 kmp_root_t *root; 2306 int master_active; 2307 int i; 2308 2309 KA_TRACE(20, ("__kmp_join_call: enter T#%d\n", gtid)); 2310 2311 /* setup current data */ 2312 master_th = __kmp_threads[gtid]; 2313 root = master_th->th.th_root; 2314 team = master_th->th.th_team; 2315 parent_team = team->t.t_parent; 2316 2317 master_th->th.th_ident = loc; 2318 2319 #if OMPT_SUPPORT 2320 if (ompt_enabled.enabled) { 2321 master_th->th.ompt_thread_info.state = omp_state_overhead; 2322 } 2323 #endif 2324 2325 #if KMP_DEBUG 2326 if (__kmp_tasking_mode != tskm_immediate_exec && !exit_teams) { 2327 KA_TRACE(20, ("__kmp_join_call: T#%d, old team = %p old task_team = %p, " 2328 "th_task_team = %p\n", 2329 __kmp_gtid_from_thread(master_th), team, 2330 team->t.t_task_team[master_th->th.th_task_state], 2331 master_th->th.th_task_team)); 2332 KMP_DEBUG_ASSERT(master_th->th.th_task_team == 2333 team->t.t_task_team[master_th->th.th_task_state]); 2334 } 2335 #endif 2336 2337 if (team->t.t_serialized) { 2338 #if OMP_40_ENABLED 2339 if (master_th->th.th_teams_microtask) { 2340 // We are in teams construct 2341 int level = team->t.t_level; 2342 int tlevel = master_th->th.th_teams_level; 2343 if (level == tlevel) { 2344 // AC: we haven't incremented it earlier at start of teams construct, 2345 // so do it here - at the end of teams construct 2346 team->t.t_level++; 2347 } else if (level == tlevel + 1) { 2348 // AC: we are exiting parallel inside teams, need to increment 2349 // serialization in order to restore it in the next call to 2350 // __kmpc_end_serialized_parallel 2351 team->t.t_serialized++; 2352 } 2353 } 2354 #endif /* OMP_40_ENABLED */ 2355 __kmpc_end_serialized_parallel(loc, gtid); 2356 2357 #if OMPT_SUPPORT 2358 if (ompt_enabled.enabled) { 2359 __kmp_join_restore_state(master_th, parent_team); 2360 } 2361 #endif 2362 2363 return; 2364 } 2365 2366 master_active = team->t.t_master_active; 2367 2368 #if OMP_40_ENABLED 2369 if (!exit_teams) 2370 #endif /* OMP_40_ENABLED */ 2371 { 2372 // AC: No barrier for internal teams at exit from teams construct. 2373 // But there is barrier for external team (league). 2374 __kmp_internal_join(loc, gtid, team); 2375 } 2376 #if OMP_40_ENABLED 2377 else { 2378 master_th->th.th_task_state = 2379 0; // AC: no tasking in teams (out of any parallel) 2380 } 2381 #endif /* OMP_40_ENABLED */ 2382 2383 KMP_MB(); 2384 2385 #if OMPT_SUPPORT 2386 ompt_data_t *parallel_data = &(team->t.ompt_team_info.parallel_data); 2387 void *codeptr = team->t.ompt_team_info.master_return_address; 2388 #endif 2389 2390 #if USE_ITT_BUILD 2391 if (__itt_stack_caller_create_ptr) { 2392 __kmp_itt_stack_caller_destroy( 2393 (__itt_caller)team->t 2394 .t_stack_id); // destroy the stack stitching id after join barrier 2395 } 2396 2397 // Mark end of "parallel" region for Intel(R) VTune(TM) analyzer. 2398 if (team->t.t_active_level == 1 2399 #if OMP_40_ENABLED 2400 && !master_th->th.th_teams_microtask /* not in teams construct */ 2401 #endif /* OMP_40_ENABLED */ 2402 ) { 2403 master_th->th.th_ident = loc; 2404 // only one notification scheme (either "submit" or "forking/joined", not 2405 // both) 2406 if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) && 2407 __kmp_forkjoin_frames_mode == 3) 2408 __kmp_itt_frame_submit(gtid, team->t.t_region_time, 2409 master_th->th.th_frame_time, 0, loc, 2410 master_th->th.th_team_nproc, 1); 2411 else if ((__itt_frame_end_v3_ptr || KMP_ITT_DEBUG) && 2412 !__kmp_forkjoin_frames_mode && __kmp_forkjoin_frames) 2413 __kmp_itt_region_joined(gtid); 2414 } // active_level == 1 2415 #endif /* USE_ITT_BUILD */ 2416 2417 #if OMP_40_ENABLED 2418 if (master_th->th.th_teams_microtask && !exit_teams && 2419 team->t.t_pkfn != (microtask_t)__kmp_teams_master && 2420 team->t.t_level == master_th->th.th_teams_level + 1) { 2421 // AC: We need to leave the team structure intact at the end of parallel 2422 // inside the teams construct, so that at the next parallel same (hot) team 2423 // works, only adjust nesting levels 2424 2425 /* Decrement our nested depth level */ 2426 team->t.t_level--; 2427 team->t.t_active_level--; 2428 KMP_TEST_THEN_DEC32((kmp_int32 *)&root->r.r_in_parallel); 2429 2430 /* Restore number of threads in the team if needed */ 2431 if (master_th->th.th_team_nproc < master_th->th.th_teams_size.nth) { 2432 int old_num = master_th->th.th_team_nproc; 2433 int new_num = master_th->th.th_teams_size.nth; 2434 kmp_info_t **other_threads = team->t.t_threads; 2435 team->t.t_nproc = new_num; 2436 for (i = 0; i < old_num; ++i) { 2437 other_threads[i]->th.th_team_nproc = new_num; 2438 } 2439 // Adjust states of non-used threads of the team 2440 for (i = old_num; i < new_num; ++i) { 2441 // Re-initialize thread's barrier data. 2442 int b; 2443 kmp_balign_t *balign = other_threads[i]->th.th_bar; 2444 for (b = 0; b < bs_last_barrier; ++b) { 2445 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 2446 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 2447 #if USE_DEBUGGER 2448 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 2449 #endif 2450 } 2451 if (__kmp_tasking_mode != tskm_immediate_exec) { 2452 // Synchronize thread's task state 2453 other_threads[i]->th.th_task_state = master_th->th.th_task_state; 2454 } 2455 } 2456 } 2457 2458 #if OMPT_SUPPORT 2459 if (ompt_enabled.enabled) { 2460 __kmp_join_ompt(gtid, master_th, parent_team, parallel_data, fork_context, 2461 codeptr); 2462 } 2463 #endif 2464 2465 return; 2466 } 2467 #endif /* OMP_40_ENABLED */ 2468 2469 /* do cleanup and restore the parent team */ 2470 master_th->th.th_info.ds.ds_tid = team->t.t_master_tid; 2471 master_th->th.th_local.this_construct = team->t.t_master_this_cons; 2472 2473 master_th->th.th_dispatch = &parent_team->t.t_dispatch[team->t.t_master_tid]; 2474 2475 /* jc: The following lock has instructions with REL and ACQ semantics, 2476 separating the parallel user code called in this parallel region 2477 from the serial user code called after this function returns. */ 2478 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 2479 2480 #if OMP_40_ENABLED 2481 if (!master_th->th.th_teams_microtask || 2482 team->t.t_level > master_th->th.th_teams_level) 2483 #endif /* OMP_40_ENABLED */ 2484 { 2485 /* Decrement our nested depth level */ 2486 KMP_TEST_THEN_DEC32((kmp_int32 *)&root->r.r_in_parallel); 2487 } 2488 KMP_DEBUG_ASSERT(root->r.r_in_parallel >= 0); 2489 2490 #if OMPT_SUPPORT 2491 if (ompt_enabled.enabled) { 2492 ompt_task_info_t *task_info = __ompt_get_task_info_object(0); 2493 if (ompt_enabled.ompt_callback_implicit_task) { 2494 int ompt_team_size = team->t.t_nproc; 2495 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 2496 ompt_scope_end, NULL, &(task_info->task_data), ompt_team_size, 2497 __kmp_tid_from_gtid(gtid)); 2498 } 2499 2500 task_info->frame.exit_frame = NULL; 2501 task_info->task_data = ompt_data_none; 2502 } 2503 #endif 2504 2505 KF_TRACE(10, ("__kmp_join_call1: T#%d, this_thread=%p team=%p\n", 0, 2506 master_th, team)); 2507 __kmp_pop_current_task_from_thread(master_th); 2508 2509 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 2510 // Restore master thread's partition. 2511 master_th->th.th_first_place = team->t.t_first_place; 2512 master_th->th.th_last_place = team->t.t_last_place; 2513 #endif /* OMP_40_ENABLED */ 2514 2515 updateHWFPControl(team); 2516 2517 if (root->r.r_active != master_active) 2518 root->r.r_active = master_active; 2519 2520 __kmp_free_team(root, team USE_NESTED_HOT_ARG( 2521 master_th)); // this will free worker threads 2522 2523 /* this race was fun to find. make sure the following is in the critical 2524 region otherwise assertions may fail occasionally since the old team may be 2525 reallocated and the hierarchy appears inconsistent. it is actually safe to 2526 run and won't cause any bugs, but will cause those assertion failures. it's 2527 only one deref&assign so might as well put this in the critical region */ 2528 master_th->th.th_team = parent_team; 2529 master_th->th.th_team_nproc = parent_team->t.t_nproc; 2530 master_th->th.th_team_master = parent_team->t.t_threads[0]; 2531 master_th->th.th_team_serialized = parent_team->t.t_serialized; 2532 2533 /* restore serialized team, if need be */ 2534 if (parent_team->t.t_serialized && 2535 parent_team != master_th->th.th_serial_team && 2536 parent_team != root->r.r_root_team) { 2537 __kmp_free_team(root, 2538 master_th->th.th_serial_team USE_NESTED_HOT_ARG(NULL)); 2539 master_th->th.th_serial_team = parent_team; 2540 } 2541 2542 if (__kmp_tasking_mode != tskm_immediate_exec) { 2543 if (master_th->th.th_task_state_top > 2544 0) { // Restore task state from memo stack 2545 KMP_DEBUG_ASSERT(master_th->th.th_task_state_memo_stack); 2546 // Remember master's state if we re-use this nested hot team 2547 master_th->th.th_task_state_memo_stack[master_th->th.th_task_state_top] = 2548 master_th->th.th_task_state; 2549 --master_th->th.th_task_state_top; // pop 2550 // Now restore state at this level 2551 master_th->th.th_task_state = 2552 master_th->th 2553 .th_task_state_memo_stack[master_th->th.th_task_state_top]; 2554 } 2555 // Copy the task team from the parent team to the master thread 2556 master_th->th.th_task_team = 2557 parent_team->t.t_task_team[master_th->th.th_task_state]; 2558 KA_TRACE(20, 2559 ("__kmp_join_call: Master T#%d restoring task_team %p / team %p\n", 2560 __kmp_gtid_from_thread(master_th), master_th->th.th_task_team, 2561 parent_team)); 2562 } 2563 2564 // TODO: GEH - cannot do this assertion because root thread not set up as 2565 // executing 2566 // KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 0 ); 2567 master_th->th.th_current_task->td_flags.executing = 1; 2568 2569 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 2570 2571 #if OMPT_SUPPORT 2572 if (ompt_enabled.enabled) { 2573 __kmp_join_ompt(gtid, master_th, parent_team, parallel_data, fork_context, 2574 codeptr); 2575 } 2576 #endif 2577 2578 KMP_MB(); 2579 KA_TRACE(20, ("__kmp_join_call: exit T#%d\n", gtid)); 2580 } 2581 2582 /* Check whether we should push an internal control record onto the 2583 serial team stack. If so, do it. */ 2584 void __kmp_save_internal_controls(kmp_info_t *thread) { 2585 2586 if (thread->th.th_team != thread->th.th_serial_team) { 2587 return; 2588 } 2589 if (thread->th.th_team->t.t_serialized > 1) { 2590 int push = 0; 2591 2592 if (thread->th.th_team->t.t_control_stack_top == NULL) { 2593 push = 1; 2594 } else { 2595 if (thread->th.th_team->t.t_control_stack_top->serial_nesting_level != 2596 thread->th.th_team->t.t_serialized) { 2597 push = 1; 2598 } 2599 } 2600 if (push) { /* push a record on the serial team's stack */ 2601 kmp_internal_control_t *control = 2602 (kmp_internal_control_t *)__kmp_allocate( 2603 sizeof(kmp_internal_control_t)); 2604 2605 copy_icvs(control, &thread->th.th_current_task->td_icvs); 2606 2607 control->serial_nesting_level = thread->th.th_team->t.t_serialized; 2608 2609 control->next = thread->th.th_team->t.t_control_stack_top; 2610 thread->th.th_team->t.t_control_stack_top = control; 2611 } 2612 } 2613 } 2614 2615 /* Changes set_nproc */ 2616 void __kmp_set_num_threads(int new_nth, int gtid) { 2617 kmp_info_t *thread; 2618 kmp_root_t *root; 2619 2620 KF_TRACE(10, ("__kmp_set_num_threads: new __kmp_nth = %d\n", new_nth)); 2621 KMP_DEBUG_ASSERT(__kmp_init_serial); 2622 2623 if (new_nth < 1) 2624 new_nth = 1; 2625 else if (new_nth > __kmp_max_nth) 2626 new_nth = __kmp_max_nth; 2627 2628 KMP_COUNT_VALUE(OMP_set_numthreads, new_nth); 2629 thread = __kmp_threads[gtid]; 2630 2631 __kmp_save_internal_controls(thread); 2632 2633 set__nproc(thread, new_nth); 2634 2635 // If this omp_set_num_threads() call will cause the hot team size to be 2636 // reduced (in the absence of a num_threads clause), then reduce it now, 2637 // rather than waiting for the next parallel region. 2638 root = thread->th.th_root; 2639 if (__kmp_init_parallel && (!root->r.r_active) && 2640 (root->r.r_hot_team->t.t_nproc > new_nth) 2641 #if KMP_NESTED_HOT_TEAMS 2642 && __kmp_hot_teams_max_level && !__kmp_hot_teams_mode 2643 #endif 2644 ) { 2645 kmp_team_t *hot_team = root->r.r_hot_team; 2646 int f; 2647 2648 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 2649 2650 // Release the extra threads we don't need any more. 2651 for (f = new_nth; f < hot_team->t.t_nproc; f++) { 2652 KMP_DEBUG_ASSERT(hot_team->t.t_threads[f] != NULL); 2653 if (__kmp_tasking_mode != tskm_immediate_exec) { 2654 // When decreasing team size, threads no longer in the team should unref 2655 // task team. 2656 hot_team->t.t_threads[f]->th.th_task_team = NULL; 2657 } 2658 __kmp_free_thread(hot_team->t.t_threads[f]); 2659 hot_team->t.t_threads[f] = NULL; 2660 } 2661 hot_team->t.t_nproc = new_nth; 2662 #if KMP_NESTED_HOT_TEAMS 2663 if (thread->th.th_hot_teams) { 2664 KMP_DEBUG_ASSERT(hot_team == thread->th.th_hot_teams[0].hot_team); 2665 thread->th.th_hot_teams[0].hot_team_nth = new_nth; 2666 } 2667 #endif 2668 2669 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 2670 2671 // Update the t_nproc field in the threads that are still active. 2672 for (f = 0; f < new_nth; f++) { 2673 KMP_DEBUG_ASSERT(hot_team->t.t_threads[f] != NULL); 2674 hot_team->t.t_threads[f]->th.th_team_nproc = new_nth; 2675 } 2676 // Special flag in case omp_set_num_threads() call 2677 hot_team->t.t_size_changed = -1; 2678 } 2679 } 2680 2681 /* Changes max_active_levels */ 2682 void __kmp_set_max_active_levels(int gtid, int max_active_levels) { 2683 kmp_info_t *thread; 2684 2685 KF_TRACE(10, ("__kmp_set_max_active_levels: new max_active_levels for thread " 2686 "%d = (%d)\n", 2687 gtid, max_active_levels)); 2688 KMP_DEBUG_ASSERT(__kmp_init_serial); 2689 2690 // validate max_active_levels 2691 if (max_active_levels < 0) { 2692 KMP_WARNING(ActiveLevelsNegative, max_active_levels); 2693 // We ignore this call if the user has specified a negative value. 2694 // The current setting won't be changed. The last valid setting will be 2695 // used. A warning will be issued (if warnings are allowed as controlled by 2696 // the KMP_WARNINGS env var). 2697 KF_TRACE(10, ("__kmp_set_max_active_levels: the call is ignored: new " 2698 "max_active_levels for thread %d = (%d)\n", 2699 gtid, max_active_levels)); 2700 return; 2701 } 2702 if (max_active_levels <= KMP_MAX_ACTIVE_LEVELS_LIMIT) { 2703 // it's OK, the max_active_levels is within the valid range: [ 0; 2704 // KMP_MAX_ACTIVE_LEVELS_LIMIT ] 2705 // We allow a zero value. (implementation defined behavior) 2706 } else { 2707 KMP_WARNING(ActiveLevelsExceedLimit, max_active_levels, 2708 KMP_MAX_ACTIVE_LEVELS_LIMIT); 2709 max_active_levels = KMP_MAX_ACTIVE_LEVELS_LIMIT; 2710 // Current upper limit is MAX_INT. (implementation defined behavior) 2711 // If the input exceeds the upper limit, we correct the input to be the 2712 // upper limit. (implementation defined behavior) 2713 // Actually, the flow should never get here until we use MAX_INT limit. 2714 } 2715 KF_TRACE(10, ("__kmp_set_max_active_levels: after validation: new " 2716 "max_active_levels for thread %d = (%d)\n", 2717 gtid, max_active_levels)); 2718 2719 thread = __kmp_threads[gtid]; 2720 2721 __kmp_save_internal_controls(thread); 2722 2723 set__max_active_levels(thread, max_active_levels); 2724 } 2725 2726 /* Gets max_active_levels */ 2727 int __kmp_get_max_active_levels(int gtid) { 2728 kmp_info_t *thread; 2729 2730 KF_TRACE(10, ("__kmp_get_max_active_levels: thread %d\n", gtid)); 2731 KMP_DEBUG_ASSERT(__kmp_init_serial); 2732 2733 thread = __kmp_threads[gtid]; 2734 KMP_DEBUG_ASSERT(thread->th.th_current_task); 2735 KF_TRACE(10, ("__kmp_get_max_active_levels: thread %d, curtask=%p, " 2736 "curtask_maxaclevel=%d\n", 2737 gtid, thread->th.th_current_task, 2738 thread->th.th_current_task->td_icvs.max_active_levels)); 2739 return thread->th.th_current_task->td_icvs.max_active_levels; 2740 } 2741 2742 /* Changes def_sched_var ICV values (run-time schedule kind and chunk) */ 2743 void __kmp_set_schedule(int gtid, kmp_sched_t kind, int chunk) { 2744 kmp_info_t *thread; 2745 // kmp_team_t *team; 2746 2747 KF_TRACE(10, ("__kmp_set_schedule: new schedule for thread %d = (%d, %d)\n", 2748 gtid, (int)kind, chunk)); 2749 KMP_DEBUG_ASSERT(__kmp_init_serial); 2750 2751 // Check if the kind parameter is valid, correct if needed. 2752 // Valid parameters should fit in one of two intervals - standard or extended: 2753 // <lower>, <valid>, <upper_std>, <lower_ext>, <valid>, <upper> 2754 // 2008-01-25: 0, 1 - 4, 5, 100, 101 - 102, 103 2755 if (kind <= kmp_sched_lower || kind >= kmp_sched_upper || 2756 (kind <= kmp_sched_lower_ext && kind >= kmp_sched_upper_std)) { 2757 // TODO: Hint needs attention in case we change the default schedule. 2758 __kmp_msg(kmp_ms_warning, KMP_MSG(ScheduleKindOutOfRange, kind), 2759 KMP_HNT(DefaultScheduleKindUsed, "static, no chunk"), 2760 __kmp_msg_null); 2761 kind = kmp_sched_default; 2762 chunk = 0; // ignore chunk value in case of bad kind 2763 } 2764 2765 thread = __kmp_threads[gtid]; 2766 2767 __kmp_save_internal_controls(thread); 2768 2769 if (kind < kmp_sched_upper_std) { 2770 if (kind == kmp_sched_static && chunk < KMP_DEFAULT_CHUNK) { 2771 // differ static chunked vs. unchunked: chunk should be invalid to 2772 // indicate unchunked schedule (which is the default) 2773 thread->th.th_current_task->td_icvs.sched.r_sched_type = kmp_sch_static; 2774 } else { 2775 thread->th.th_current_task->td_icvs.sched.r_sched_type = 2776 __kmp_sch_map[kind - kmp_sched_lower - 1]; 2777 } 2778 } else { 2779 // __kmp_sch_map[ kind - kmp_sched_lower_ext + kmp_sched_upper_std - 2780 // kmp_sched_lower - 2 ]; 2781 thread->th.th_current_task->td_icvs.sched.r_sched_type = 2782 __kmp_sch_map[kind - kmp_sched_lower_ext + kmp_sched_upper_std - 2783 kmp_sched_lower - 2]; 2784 } 2785 if (kind == kmp_sched_auto || chunk < 1) { 2786 // ignore parameter chunk for schedule auto 2787 thread->th.th_current_task->td_icvs.sched.chunk = KMP_DEFAULT_CHUNK; 2788 } else { 2789 thread->th.th_current_task->td_icvs.sched.chunk = chunk; 2790 } 2791 } 2792 2793 /* Gets def_sched_var ICV values */ 2794 void __kmp_get_schedule(int gtid, kmp_sched_t *kind, int *chunk) { 2795 kmp_info_t *thread; 2796 enum sched_type th_type; 2797 2798 KF_TRACE(10, ("__kmp_get_schedule: thread %d\n", gtid)); 2799 KMP_DEBUG_ASSERT(__kmp_init_serial); 2800 2801 thread = __kmp_threads[gtid]; 2802 2803 th_type = thread->th.th_current_task->td_icvs.sched.r_sched_type; 2804 2805 switch (th_type) { 2806 case kmp_sch_static: 2807 case kmp_sch_static_greedy: 2808 case kmp_sch_static_balanced: 2809 *kind = kmp_sched_static; 2810 *chunk = 0; // chunk was not set, try to show this fact via zero value 2811 return; 2812 case kmp_sch_static_chunked: 2813 *kind = kmp_sched_static; 2814 break; 2815 case kmp_sch_dynamic_chunked: 2816 *kind = kmp_sched_dynamic; 2817 break; 2818 case kmp_sch_guided_chunked: 2819 case kmp_sch_guided_iterative_chunked: 2820 case kmp_sch_guided_analytical_chunked: 2821 *kind = kmp_sched_guided; 2822 break; 2823 case kmp_sch_auto: 2824 *kind = kmp_sched_auto; 2825 break; 2826 case kmp_sch_trapezoidal: 2827 *kind = kmp_sched_trapezoidal; 2828 break; 2829 #if KMP_STATIC_STEAL_ENABLED 2830 case kmp_sch_static_steal: 2831 *kind = kmp_sched_static_steal; 2832 break; 2833 #endif 2834 default: 2835 KMP_FATAL(UnknownSchedulingType, th_type); 2836 } 2837 2838 *chunk = thread->th.th_current_task->td_icvs.sched.chunk; 2839 } 2840 2841 int __kmp_get_ancestor_thread_num(int gtid, int level) { 2842 2843 int ii, dd; 2844 kmp_team_t *team; 2845 kmp_info_t *thr; 2846 2847 KF_TRACE(10, ("__kmp_get_ancestor_thread_num: thread %d %d\n", gtid, level)); 2848 KMP_DEBUG_ASSERT(__kmp_init_serial); 2849 2850 // validate level 2851 if (level == 0) 2852 return 0; 2853 if (level < 0) 2854 return -1; 2855 thr = __kmp_threads[gtid]; 2856 team = thr->th.th_team; 2857 ii = team->t.t_level; 2858 if (level > ii) 2859 return -1; 2860 2861 #if OMP_40_ENABLED 2862 if (thr->th.th_teams_microtask) { 2863 // AC: we are in teams region where multiple nested teams have same level 2864 int tlevel = thr->th.th_teams_level; // the level of the teams construct 2865 if (level <= 2866 tlevel) { // otherwise usual algorithm works (will not touch the teams) 2867 KMP_DEBUG_ASSERT(ii >= tlevel); 2868 // AC: As we need to pass by the teams league, we need to artificially 2869 // increase ii 2870 if (ii == tlevel) { 2871 ii += 2; // three teams have same level 2872 } else { 2873 ii++; // two teams have same level 2874 } 2875 } 2876 } 2877 #endif 2878 2879 if (ii == level) 2880 return __kmp_tid_from_gtid(gtid); 2881 2882 dd = team->t.t_serialized; 2883 level++; 2884 while (ii > level) { 2885 for (dd = team->t.t_serialized; (dd > 0) && (ii > level); dd--, ii--) { 2886 } 2887 if ((team->t.t_serialized) && (!dd)) { 2888 team = team->t.t_parent; 2889 continue; 2890 } 2891 if (ii > level) { 2892 team = team->t.t_parent; 2893 dd = team->t.t_serialized; 2894 ii--; 2895 } 2896 } 2897 2898 return (dd > 1) ? (0) : (team->t.t_master_tid); 2899 } 2900 2901 int __kmp_get_team_size(int gtid, int level) { 2902 2903 int ii, dd; 2904 kmp_team_t *team; 2905 kmp_info_t *thr; 2906 2907 KF_TRACE(10, ("__kmp_get_team_size: thread %d %d\n", gtid, level)); 2908 KMP_DEBUG_ASSERT(__kmp_init_serial); 2909 2910 // validate level 2911 if (level == 0) 2912 return 1; 2913 if (level < 0) 2914 return -1; 2915 thr = __kmp_threads[gtid]; 2916 team = thr->th.th_team; 2917 ii = team->t.t_level; 2918 if (level > ii) 2919 return -1; 2920 2921 #if OMP_40_ENABLED 2922 if (thr->th.th_teams_microtask) { 2923 // AC: we are in teams region where multiple nested teams have same level 2924 int tlevel = thr->th.th_teams_level; // the level of the teams construct 2925 if (level <= 2926 tlevel) { // otherwise usual algorithm works (will not touch the teams) 2927 KMP_DEBUG_ASSERT(ii >= tlevel); 2928 // AC: As we need to pass by the teams league, we need to artificially 2929 // increase ii 2930 if (ii == tlevel) { 2931 ii += 2; // three teams have same level 2932 } else { 2933 ii++; // two teams have same level 2934 } 2935 } 2936 } 2937 #endif 2938 2939 while (ii > level) { 2940 for (dd = team->t.t_serialized; (dd > 0) && (ii > level); dd--, ii--) { 2941 } 2942 if (team->t.t_serialized && (!dd)) { 2943 team = team->t.t_parent; 2944 continue; 2945 } 2946 if (ii > level) { 2947 team = team->t.t_parent; 2948 ii--; 2949 } 2950 } 2951 2952 return team->t.t_nproc; 2953 } 2954 2955 kmp_r_sched_t __kmp_get_schedule_global() { 2956 // This routine created because pairs (__kmp_sched, __kmp_chunk) and 2957 // (__kmp_static, __kmp_guided) may be changed by kmp_set_defaults 2958 // independently. So one can get the updated schedule here. 2959 2960 kmp_r_sched_t r_sched; 2961 2962 // create schedule from 4 globals: __kmp_sched, __kmp_chunk, __kmp_static, 2963 // __kmp_guided. __kmp_sched should keep original value, so that user can set 2964 // KMP_SCHEDULE multiple times, and thus have different run-time schedules in 2965 // different roots (even in OMP 2.5) 2966 if (__kmp_sched == kmp_sch_static) { 2967 // replace STATIC with more detailed schedule (balanced or greedy) 2968 r_sched.r_sched_type = __kmp_static; 2969 } else if (__kmp_sched == kmp_sch_guided_chunked) { 2970 // replace GUIDED with more detailed schedule (iterative or analytical) 2971 r_sched.r_sched_type = __kmp_guided; 2972 } else { // (STATIC_CHUNKED), or (DYNAMIC_CHUNKED), or other 2973 r_sched.r_sched_type = __kmp_sched; 2974 } 2975 2976 if (__kmp_chunk < KMP_DEFAULT_CHUNK) { 2977 // __kmp_chunk may be wrong here (if it was not ever set) 2978 r_sched.chunk = KMP_DEFAULT_CHUNK; 2979 } else { 2980 r_sched.chunk = __kmp_chunk; 2981 } 2982 2983 return r_sched; 2984 } 2985 2986 /* Allocate (realloc == FALSE) * or reallocate (realloc == TRUE) 2987 at least argc number of *t_argv entries for the requested team. */ 2988 static void __kmp_alloc_argv_entries(int argc, kmp_team_t *team, int realloc) { 2989 2990 KMP_DEBUG_ASSERT(team); 2991 if (!realloc || argc > team->t.t_max_argc) { 2992 2993 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: needed entries=%d, " 2994 "current entries=%d\n", 2995 team->t.t_id, argc, (realloc) ? team->t.t_max_argc : 0)); 2996 /* if previously allocated heap space for args, free them */ 2997 if (realloc && team->t.t_argv != &team->t.t_inline_argv[0]) 2998 __kmp_free((void *)team->t.t_argv); 2999 3000 if (argc <= KMP_INLINE_ARGV_ENTRIES) { 3001 /* use unused space in the cache line for arguments */ 3002 team->t.t_max_argc = KMP_INLINE_ARGV_ENTRIES; 3003 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: inline allocate %d " 3004 "argv entries\n", 3005 team->t.t_id, team->t.t_max_argc)); 3006 team->t.t_argv = &team->t.t_inline_argv[0]; 3007 if (__kmp_storage_map) { 3008 __kmp_print_storage_map_gtid( 3009 -1, &team->t.t_inline_argv[0], 3010 &team->t.t_inline_argv[KMP_INLINE_ARGV_ENTRIES], 3011 (sizeof(void *) * KMP_INLINE_ARGV_ENTRIES), "team_%d.t_inline_argv", 3012 team->t.t_id); 3013 } 3014 } else { 3015 /* allocate space for arguments in the heap */ 3016 team->t.t_max_argc = (argc <= (KMP_MIN_MALLOC_ARGV_ENTRIES >> 1)) 3017 ? KMP_MIN_MALLOC_ARGV_ENTRIES 3018 : 2 * argc; 3019 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: dynamic allocate %d " 3020 "argv entries\n", 3021 team->t.t_id, team->t.t_max_argc)); 3022 team->t.t_argv = 3023 (void **)__kmp_page_allocate(sizeof(void *) * team->t.t_max_argc); 3024 if (__kmp_storage_map) { 3025 __kmp_print_storage_map_gtid(-1, &team->t.t_argv[0], 3026 &team->t.t_argv[team->t.t_max_argc], 3027 sizeof(void *) * team->t.t_max_argc, 3028 "team_%d.t_argv", team->t.t_id); 3029 } 3030 } 3031 } 3032 } 3033 3034 static void __kmp_allocate_team_arrays(kmp_team_t *team, int max_nth) { 3035 int i; 3036 int num_disp_buff = max_nth > 1 ? __kmp_dispatch_num_buffers : 2; 3037 team->t.t_threads = 3038 (kmp_info_t **)__kmp_allocate(sizeof(kmp_info_t *) * max_nth); 3039 team->t.t_disp_buffer = (dispatch_shared_info_t *)__kmp_allocate( 3040 sizeof(dispatch_shared_info_t) * num_disp_buff); 3041 team->t.t_dispatch = 3042 (kmp_disp_t *)__kmp_allocate(sizeof(kmp_disp_t) * max_nth); 3043 team->t.t_implicit_task_taskdata = 3044 (kmp_taskdata_t *)__kmp_allocate(sizeof(kmp_taskdata_t) * max_nth); 3045 team->t.t_max_nproc = max_nth; 3046 3047 /* setup dispatch buffers */ 3048 for (i = 0; i < num_disp_buff; ++i) { 3049 team->t.t_disp_buffer[i].buffer_index = i; 3050 #if OMP_45_ENABLED 3051 team->t.t_disp_buffer[i].doacross_buf_idx = i; 3052 #endif 3053 } 3054 } 3055 3056 static void __kmp_free_team_arrays(kmp_team_t *team) { 3057 /* Note: this does not free the threads in t_threads (__kmp_free_threads) */ 3058 int i; 3059 for (i = 0; i < team->t.t_max_nproc; ++i) { 3060 if (team->t.t_dispatch[i].th_disp_buffer != NULL) { 3061 __kmp_free(team->t.t_dispatch[i].th_disp_buffer); 3062 team->t.t_dispatch[i].th_disp_buffer = NULL; 3063 } 3064 } 3065 __kmp_free(team->t.t_threads); 3066 __kmp_free(team->t.t_disp_buffer); 3067 __kmp_free(team->t.t_dispatch); 3068 __kmp_free(team->t.t_implicit_task_taskdata); 3069 team->t.t_threads = NULL; 3070 team->t.t_disp_buffer = NULL; 3071 team->t.t_dispatch = NULL; 3072 team->t.t_implicit_task_taskdata = 0; 3073 } 3074 3075 static void __kmp_reallocate_team_arrays(kmp_team_t *team, int max_nth) { 3076 kmp_info_t **oldThreads = team->t.t_threads; 3077 3078 __kmp_free(team->t.t_disp_buffer); 3079 __kmp_free(team->t.t_dispatch); 3080 __kmp_free(team->t.t_implicit_task_taskdata); 3081 __kmp_allocate_team_arrays(team, max_nth); 3082 3083 KMP_MEMCPY(team->t.t_threads, oldThreads, 3084 team->t.t_nproc * sizeof(kmp_info_t *)); 3085 3086 __kmp_free(oldThreads); 3087 } 3088 3089 static kmp_internal_control_t __kmp_get_global_icvs(void) { 3090 3091 kmp_r_sched_t r_sched = 3092 __kmp_get_schedule_global(); // get current state of scheduling globals 3093 3094 #if OMP_40_ENABLED 3095 KMP_DEBUG_ASSERT(__kmp_nested_proc_bind.used > 0); 3096 #endif /* OMP_40_ENABLED */ 3097 3098 kmp_internal_control_t g_icvs = { 3099 0, // int serial_nesting_level; //corresponds to value of th_team_serialized 3100 (kmp_int8)__kmp_dflt_nested, // int nested; //internal control 3101 // for nested parallelism (per thread) 3102 (kmp_int8)__kmp_global.g.g_dynamic, // internal control for dynamic 3103 // adjustment of threads (per thread) 3104 (kmp_int8)__kmp_env_blocktime, // int bt_set; //internal control for 3105 // whether blocktime is explicitly set 3106 __kmp_dflt_blocktime, // int blocktime; //internal control for blocktime 3107 #if KMP_USE_MONITOR 3108 __kmp_bt_intervals, // int bt_intervals; //internal control for blocktime 3109 // intervals 3110 #endif 3111 __kmp_dflt_team_nth, // int nproc; //internal control for # of threads for 3112 // next parallel region (per thread) 3113 // (use a max ub on value if __kmp_parallel_initialize not called yet) 3114 __kmp_dflt_max_active_levels, // int max_active_levels; //internal control 3115 // for max_active_levels 3116 r_sched, // kmp_r_sched_t sched; //internal control for runtime schedule 3117 // {sched,chunk} pair 3118 #if OMP_40_ENABLED 3119 __kmp_nested_proc_bind.bind_types[0], 3120 __kmp_default_device, 3121 #endif /* OMP_40_ENABLED */ 3122 NULL // struct kmp_internal_control *next; 3123 }; 3124 3125 return g_icvs; 3126 } 3127 3128 static kmp_internal_control_t __kmp_get_x_global_icvs(const kmp_team_t *team) { 3129 3130 kmp_internal_control_t gx_icvs; 3131 gx_icvs.serial_nesting_level = 3132 0; // probably =team->t.t_serial like in save_inter_controls 3133 copy_icvs(&gx_icvs, &team->t.t_threads[0]->th.th_current_task->td_icvs); 3134 gx_icvs.next = NULL; 3135 3136 return gx_icvs; 3137 } 3138 3139 static void __kmp_initialize_root(kmp_root_t *root) { 3140 int f; 3141 kmp_team_t *root_team; 3142 kmp_team_t *hot_team; 3143 int hot_team_max_nth; 3144 kmp_r_sched_t r_sched = 3145 __kmp_get_schedule_global(); // get current state of scheduling globals 3146 kmp_internal_control_t r_icvs = __kmp_get_global_icvs(); 3147 KMP_DEBUG_ASSERT(root); 3148 KMP_ASSERT(!root->r.r_begin); 3149 3150 /* setup the root state structure */ 3151 __kmp_init_lock(&root->r.r_begin_lock); 3152 root->r.r_begin = FALSE; 3153 root->r.r_active = FALSE; 3154 root->r.r_in_parallel = 0; 3155 root->r.r_blocktime = __kmp_dflt_blocktime; 3156 root->r.r_nested = __kmp_dflt_nested; 3157 root->r.r_cg_nthreads = 1; 3158 3159 /* setup the root team for this task */ 3160 /* allocate the root team structure */ 3161 KF_TRACE(10, ("__kmp_initialize_root: before root_team\n")); 3162 3163 root_team = 3164 __kmp_allocate_team(root, 3165 1, // new_nproc 3166 1, // max_nproc 3167 #if OMPT_SUPPORT 3168 ompt_data_none, // root parallel id 3169 #endif 3170 #if OMP_40_ENABLED 3171 __kmp_nested_proc_bind.bind_types[0], 3172 #endif 3173 &r_icvs, 3174 0 // argc 3175 USE_NESTED_HOT_ARG(NULL) // master thread is unknown 3176 ); 3177 #if USE_DEBUGGER 3178 // Non-NULL value should be assigned to make the debugger display the root 3179 // team. 3180 TCW_SYNC_PTR(root_team->t.t_pkfn, (microtask_t)(~0)); 3181 #endif 3182 3183 KF_TRACE(10, ("__kmp_initialize_root: after root_team = %p\n", root_team)); 3184 3185 root->r.r_root_team = root_team; 3186 root_team->t.t_control_stack_top = NULL; 3187 3188 /* initialize root team */ 3189 root_team->t.t_threads[0] = NULL; 3190 root_team->t.t_nproc = 1; 3191 root_team->t.t_serialized = 1; 3192 // TODO???: root_team->t.t_max_active_levels = __kmp_dflt_max_active_levels; 3193 root_team->t.t_sched.sched = r_sched.sched; 3194 KA_TRACE( 3195 20, 3196 ("__kmp_initialize_root: init root team %d arrived: join=%u, plain=%u\n", 3197 root_team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 3198 3199 /* setup the hot team for this task */ 3200 /* allocate the hot team structure */ 3201 KF_TRACE(10, ("__kmp_initialize_root: before hot_team\n")); 3202 3203 hot_team = 3204 __kmp_allocate_team(root, 3205 1, // new_nproc 3206 __kmp_dflt_team_nth_ub * 2, // max_nproc 3207 #if OMPT_SUPPORT 3208 ompt_data_none, // root parallel id 3209 #endif 3210 #if OMP_40_ENABLED 3211 __kmp_nested_proc_bind.bind_types[0], 3212 #endif 3213 &r_icvs, 3214 0 // argc 3215 USE_NESTED_HOT_ARG(NULL) // master thread is unknown 3216 ); 3217 KF_TRACE(10, ("__kmp_initialize_root: after hot_team = %p\n", hot_team)); 3218 3219 root->r.r_hot_team = hot_team; 3220 root_team->t.t_control_stack_top = NULL; 3221 3222 /* first-time initialization */ 3223 hot_team->t.t_parent = root_team; 3224 3225 /* initialize hot team */ 3226 hot_team_max_nth = hot_team->t.t_max_nproc; 3227 for (f = 0; f < hot_team_max_nth; ++f) { 3228 hot_team->t.t_threads[f] = NULL; 3229 } 3230 hot_team->t.t_nproc = 1; 3231 // TODO???: hot_team->t.t_max_active_levels = __kmp_dflt_max_active_levels; 3232 hot_team->t.t_sched.sched = r_sched.sched; 3233 hot_team->t.t_size_changed = 0; 3234 } 3235 3236 #ifdef KMP_DEBUG 3237 3238 typedef struct kmp_team_list_item { 3239 kmp_team_p const *entry; 3240 struct kmp_team_list_item *next; 3241 } kmp_team_list_item_t; 3242 typedef kmp_team_list_item_t *kmp_team_list_t; 3243 3244 static void __kmp_print_structure_team_accum( // Add team to list of teams. 3245 kmp_team_list_t list, // List of teams. 3246 kmp_team_p const *team // Team to add. 3247 ) { 3248 3249 // List must terminate with item where both entry and next are NULL. 3250 // Team is added to the list only once. 3251 // List is sorted in ascending order by team id. 3252 // Team id is *not* a key. 3253 3254 kmp_team_list_t l; 3255 3256 KMP_DEBUG_ASSERT(list != NULL); 3257 if (team == NULL) { 3258 return; 3259 } 3260 3261 __kmp_print_structure_team_accum(list, team->t.t_parent); 3262 __kmp_print_structure_team_accum(list, team->t.t_next_pool); 3263 3264 // Search list for the team. 3265 l = list; 3266 while (l->next != NULL && l->entry != team) { 3267 l = l->next; 3268 } 3269 if (l->next != NULL) { 3270 return; // Team has been added before, exit. 3271 } 3272 3273 // Team is not found. Search list again for insertion point. 3274 l = list; 3275 while (l->next != NULL && l->entry->t.t_id <= team->t.t_id) { 3276 l = l->next; 3277 } 3278 3279 // Insert team. 3280 { 3281 kmp_team_list_item_t *item = (kmp_team_list_item_t *)KMP_INTERNAL_MALLOC( 3282 sizeof(kmp_team_list_item_t)); 3283 *item = *l; 3284 l->entry = team; 3285 l->next = item; 3286 } 3287 } 3288 3289 static void __kmp_print_structure_team(char const *title, kmp_team_p const *team 3290 3291 ) { 3292 __kmp_printf("%s", title); 3293 if (team != NULL) { 3294 __kmp_printf("%2x %p\n", team->t.t_id, team); 3295 } else { 3296 __kmp_printf(" - (nil)\n"); 3297 } 3298 } 3299 3300 static void __kmp_print_structure_thread(char const *title, 3301 kmp_info_p const *thread) { 3302 __kmp_printf("%s", title); 3303 if (thread != NULL) { 3304 __kmp_printf("%2d %p\n", thread->th.th_info.ds.ds_gtid, thread); 3305 } else { 3306 __kmp_printf(" - (nil)\n"); 3307 } 3308 } 3309 3310 void __kmp_print_structure(void) { 3311 3312 kmp_team_list_t list; 3313 3314 // Initialize list of teams. 3315 list = 3316 (kmp_team_list_item_t *)KMP_INTERNAL_MALLOC(sizeof(kmp_team_list_item_t)); 3317 list->entry = NULL; 3318 list->next = NULL; 3319 3320 __kmp_printf("\n------------------------------\nGlobal Thread " 3321 "Table\n------------------------------\n"); 3322 { 3323 int gtid; 3324 for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) { 3325 __kmp_printf("%2d", gtid); 3326 if (__kmp_threads != NULL) { 3327 __kmp_printf(" %p", __kmp_threads[gtid]); 3328 } 3329 if (__kmp_root != NULL) { 3330 __kmp_printf(" %p", __kmp_root[gtid]); 3331 } 3332 __kmp_printf("\n"); 3333 } 3334 } 3335 3336 // Print out __kmp_threads array. 3337 __kmp_printf("\n------------------------------\nThreads\n--------------------" 3338 "----------\n"); 3339 if (__kmp_threads != NULL) { 3340 int gtid; 3341 for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) { 3342 kmp_info_t const *thread = __kmp_threads[gtid]; 3343 if (thread != NULL) { 3344 __kmp_printf("GTID %2d %p:\n", gtid, thread); 3345 __kmp_printf(" Our Root: %p\n", thread->th.th_root); 3346 __kmp_print_structure_team(" Our Team: ", thread->th.th_team); 3347 __kmp_print_structure_team(" Serial Team: ", 3348 thread->th.th_serial_team); 3349 __kmp_printf(" Threads: %2d\n", thread->th.th_team_nproc); 3350 __kmp_print_structure_thread(" Master: ", 3351 thread->th.th_team_master); 3352 __kmp_printf(" Serialized?: %2d\n", thread->th.th_team_serialized); 3353 __kmp_printf(" Set NProc: %2d\n", thread->th.th_set_nproc); 3354 #if OMP_40_ENABLED 3355 __kmp_printf(" Set Proc Bind: %2d\n", thread->th.th_set_proc_bind); 3356 #endif 3357 __kmp_print_structure_thread(" Next in pool: ", 3358 thread->th.th_next_pool); 3359 __kmp_printf("\n"); 3360 __kmp_print_structure_team_accum(list, thread->th.th_team); 3361 __kmp_print_structure_team_accum(list, thread->th.th_serial_team); 3362 } 3363 } 3364 } else { 3365 __kmp_printf("Threads array is not allocated.\n"); 3366 } 3367 3368 // Print out __kmp_root array. 3369 __kmp_printf("\n------------------------------\nUbers\n----------------------" 3370 "--------\n"); 3371 if (__kmp_root != NULL) { 3372 int gtid; 3373 for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) { 3374 kmp_root_t const *root = __kmp_root[gtid]; 3375 if (root != NULL) { 3376 __kmp_printf("GTID %2d %p:\n", gtid, root); 3377 __kmp_print_structure_team(" Root Team: ", root->r.r_root_team); 3378 __kmp_print_structure_team(" Hot Team: ", root->r.r_hot_team); 3379 __kmp_print_structure_thread(" Uber Thread: ", 3380 root->r.r_uber_thread); 3381 __kmp_printf(" Active?: %2d\n", root->r.r_active); 3382 __kmp_printf(" Nested?: %2d\n", root->r.r_nested); 3383 __kmp_printf(" In Parallel: %2d\n", root->r.r_in_parallel); 3384 __kmp_printf("\n"); 3385 __kmp_print_structure_team_accum(list, root->r.r_root_team); 3386 __kmp_print_structure_team_accum(list, root->r.r_hot_team); 3387 } 3388 } 3389 } else { 3390 __kmp_printf("Ubers array is not allocated.\n"); 3391 } 3392 3393 __kmp_printf("\n------------------------------\nTeams\n----------------------" 3394 "--------\n"); 3395 while (list->next != NULL) { 3396 kmp_team_p const *team = list->entry; 3397 int i; 3398 __kmp_printf("Team %2x %p:\n", team->t.t_id, team); 3399 __kmp_print_structure_team(" Parent Team: ", team->t.t_parent); 3400 __kmp_printf(" Master TID: %2d\n", team->t.t_master_tid); 3401 __kmp_printf(" Max threads: %2d\n", team->t.t_max_nproc); 3402 __kmp_printf(" Levels of serial: %2d\n", team->t.t_serialized); 3403 __kmp_printf(" Number threads: %2d\n", team->t.t_nproc); 3404 for (i = 0; i < team->t.t_nproc; ++i) { 3405 __kmp_printf(" Thread %2d: ", i); 3406 __kmp_print_structure_thread("", team->t.t_threads[i]); 3407 } 3408 __kmp_print_structure_team(" Next in pool: ", team->t.t_next_pool); 3409 __kmp_printf("\n"); 3410 list = list->next; 3411 } 3412 3413 // Print out __kmp_thread_pool and __kmp_team_pool. 3414 __kmp_printf("\n------------------------------\nPools\n----------------------" 3415 "--------\n"); 3416 __kmp_print_structure_thread("Thread pool: ", 3417 CCAST(kmp_info_t *, __kmp_thread_pool)); 3418 __kmp_print_structure_team("Team pool: ", 3419 CCAST(kmp_team_t *, __kmp_team_pool)); 3420 __kmp_printf("\n"); 3421 3422 // Free team list. 3423 while (list != NULL) { 3424 kmp_team_list_item_t *item = list; 3425 list = list->next; 3426 KMP_INTERNAL_FREE(item); 3427 } 3428 } 3429 3430 #endif 3431 3432 //--------------------------------------------------------------------------- 3433 // Stuff for per-thread fast random number generator 3434 // Table of primes 3435 static const unsigned __kmp_primes[] = { 3436 0x9e3779b1, 0xffe6cc59, 0x2109f6dd, 0x43977ab5, 0xba5703f5, 0xb495a877, 3437 0xe1626741, 0x79695e6b, 0xbc98c09f, 0xd5bee2b3, 0x287488f9, 0x3af18231, 3438 0x9677cd4d, 0xbe3a6929, 0xadc6a877, 0xdcf0674b, 0xbe4d6fe9, 0x5f15e201, 3439 0x99afc3fd, 0xf3f16801, 0xe222cfff, 0x24ba5fdb, 0x0620452d, 0x79f149e3, 3440 0xc8b93f49, 0x972702cd, 0xb07dd827, 0x6c97d5ed, 0x085a3d61, 0x46eb5ea7, 3441 0x3d9910ed, 0x2e687b5b, 0x29609227, 0x6eb081f1, 0x0954c4e1, 0x9d114db9, 3442 0x542acfa9, 0xb3e6bd7b, 0x0742d917, 0xe9f3ffa7, 0x54581edb, 0xf2480f45, 3443 0x0bb9288f, 0xef1affc7, 0x85fa0ca7, 0x3ccc14db, 0xe6baf34b, 0x343377f7, 3444 0x5ca19031, 0xe6d9293b, 0xf0a9f391, 0x5d2e980b, 0xfc411073, 0xc3749363, 3445 0xb892d829, 0x3549366b, 0x629750ad, 0xb98294e5, 0x892d9483, 0xc235baf3, 3446 0x3d2402a3, 0x6bdef3c9, 0xbec333cd, 0x40c9520f}; 3447 3448 //--------------------------------------------------------------------------- 3449 // __kmp_get_random: Get a random number using a linear congruential method. 3450 unsigned short __kmp_get_random(kmp_info_t *thread) { 3451 unsigned x = thread->th.th_x; 3452 unsigned short r = x >> 16; 3453 3454 thread->th.th_x = x * thread->th.th_a + 1; 3455 3456 KA_TRACE(30, ("__kmp_get_random: THREAD: %d, RETURN: %u\n", 3457 thread->th.th_info.ds.ds_tid, r)); 3458 3459 return r; 3460 } 3461 //-------------------------------------------------------- 3462 // __kmp_init_random: Initialize a random number generator 3463 void __kmp_init_random(kmp_info_t *thread) { 3464 unsigned seed = thread->th.th_info.ds.ds_tid; 3465 3466 thread->th.th_a = 3467 __kmp_primes[seed % (sizeof(__kmp_primes) / sizeof(__kmp_primes[0]))]; 3468 thread->th.th_x = (seed + 1) * thread->th.th_a + 1; 3469 KA_TRACE(30, 3470 ("__kmp_init_random: THREAD: %u; A: %u\n", seed, thread->th.th_a)); 3471 } 3472 3473 #if KMP_OS_WINDOWS 3474 /* reclaim array entries for root threads that are already dead, returns number 3475 * reclaimed */ 3476 static int __kmp_reclaim_dead_roots(void) { 3477 int i, r = 0; 3478 3479 for (i = 0; i < __kmp_threads_capacity; ++i) { 3480 if (KMP_UBER_GTID(i) && 3481 !__kmp_still_running((kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[i])) && 3482 !__kmp_root[i] 3483 ->r.r_active) { // AC: reclaim only roots died in non-active state 3484 r += __kmp_unregister_root_other_thread(i); 3485 } 3486 } 3487 return r; 3488 } 3489 #endif 3490 3491 /* This function attempts to create free entries in __kmp_threads and 3492 __kmp_root, and returns the number of free entries generated. 3493 3494 For Windows* OS static library, the first mechanism used is to reclaim array 3495 entries for root threads that are already dead. 3496 3497 On all platforms, expansion is attempted on the arrays __kmp_threads_ and 3498 __kmp_root, with appropriate update to __kmp_threads_capacity. Array 3499 capacity is increased by doubling with clipping to __kmp_tp_capacity, if 3500 threadprivate cache array has been created. Synchronization with 3501 __kmpc_threadprivate_cached is done using __kmp_tp_cached_lock. 3502 3503 After any dead root reclamation, if the clipping value allows array expansion 3504 to result in the generation of a total of nNeed free slots, the function does 3505 that expansion. If not, nothing is done beyond the possible initial root 3506 thread reclamation. 3507 3508 If any argument is negative, the behavior is undefined. */ 3509 static int __kmp_expand_threads(int nNeed) { 3510 int added = 0; 3511 int minimumRequiredCapacity; 3512 int newCapacity; 3513 kmp_info_t **newThreads; 3514 kmp_root_t **newRoot; 3515 3516 // All calls to __kmp_expand_threads should be under __kmp_forkjoin_lock, so 3517 // resizing __kmp_threads does not need additional protection if foreign 3518 // threads are present 3519 3520 #if KMP_OS_WINDOWS && !defined KMP_DYNAMIC_LIB 3521 /* only for Windows static library */ 3522 /* reclaim array entries for root threads that are already dead */ 3523 added = __kmp_reclaim_dead_roots(); 3524 3525 if (nNeed) { 3526 nNeed -= added; 3527 if (nNeed < 0) 3528 nNeed = 0; 3529 } 3530 #endif 3531 if (nNeed <= 0) 3532 return added; 3533 3534 // Note that __kmp_threads_capacity is not bounded by __kmp_max_nth. If 3535 // __kmp_max_nth is set to some value less than __kmp_sys_max_nth by the 3536 // user via KMP_DEVICE_THREAD_LIMIT, then __kmp_threads_capacity may become 3537 // > __kmp_max_nth in one of two ways: 3538 // 3539 // 1) The initialization thread (gtid = 0) exits. __kmp_threads[0] 3540 // may not be resused by another thread, so we may need to increase 3541 // __kmp_threads_capacity to __kmp_max_nth + 1. 3542 // 3543 // 2) New foreign root(s) are encountered. We always register new foreign 3544 // roots. This may cause a smaller # of threads to be allocated at 3545 // subsequent parallel regions, but the worker threads hang around (and 3546 // eventually go to sleep) and need slots in the __kmp_threads[] array. 3547 // 3548 // Anyway, that is the reason for moving the check to see if 3549 // __kmp_max_nth was exceeded into __kmp_reserve_threads() 3550 // instead of having it performed here. -BB 3551 3552 KMP_DEBUG_ASSERT(__kmp_sys_max_nth >= __kmp_threads_capacity); 3553 3554 /* compute expansion headroom to check if we can expand */ 3555 if (__kmp_sys_max_nth - __kmp_threads_capacity < nNeed) { 3556 /* possible expansion too small -- give up */ 3557 return added; 3558 } 3559 minimumRequiredCapacity = __kmp_threads_capacity + nNeed; 3560 3561 newCapacity = __kmp_threads_capacity; 3562 do { 3563 newCapacity = newCapacity <= (__kmp_sys_max_nth >> 1) ? (newCapacity << 1) 3564 : __kmp_sys_max_nth; 3565 } while (newCapacity < minimumRequiredCapacity); 3566 newThreads = (kmp_info_t **)__kmp_allocate( 3567 (sizeof(kmp_info_t *) + sizeof(kmp_root_t *)) * newCapacity + CACHE_LINE); 3568 newRoot = 3569 (kmp_root_t **)((char *)newThreads + sizeof(kmp_info_t *) * newCapacity); 3570 KMP_MEMCPY(newThreads, __kmp_threads, 3571 __kmp_threads_capacity * sizeof(kmp_info_t *)); 3572 KMP_MEMCPY(newRoot, __kmp_root, 3573 __kmp_threads_capacity * sizeof(kmp_root_t *)); 3574 3575 kmp_info_t **temp_threads = __kmp_threads; 3576 *(kmp_info_t * *volatile *)&__kmp_threads = newThreads; 3577 *(kmp_root_t * *volatile *)&__kmp_root = newRoot; 3578 __kmp_free(temp_threads); 3579 added += newCapacity - __kmp_threads_capacity; 3580 *(volatile int *)&__kmp_threads_capacity = newCapacity; 3581 3582 if (newCapacity > __kmp_tp_capacity) { 3583 __kmp_acquire_bootstrap_lock(&__kmp_tp_cached_lock); 3584 if (__kmp_tp_cached && newCapacity > __kmp_tp_capacity) { 3585 __kmp_threadprivate_resize_cache(newCapacity); 3586 } else { // increase __kmp_tp_capacity to correspond with kmp_threads size 3587 *(volatile int *)&__kmp_tp_capacity = newCapacity; 3588 } 3589 __kmp_release_bootstrap_lock(&__kmp_tp_cached_lock); 3590 } 3591 3592 return added; 3593 } 3594 3595 /* Register the current thread as a root thread and obtain our gtid. We must 3596 have the __kmp_initz_lock held at this point. Argument TRUE only if are the 3597 thread that calls from __kmp_do_serial_initialize() */ 3598 int __kmp_register_root(int initial_thread) { 3599 kmp_info_t *root_thread; 3600 kmp_root_t *root; 3601 int gtid; 3602 int capacity; 3603 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 3604 KA_TRACE(20, ("__kmp_register_root: entered\n")); 3605 KMP_MB(); 3606 3607 /* 2007-03-02: 3608 If initial thread did not invoke OpenMP RTL yet, and this thread is not an 3609 initial one, "__kmp_all_nth >= __kmp_threads_capacity" condition does not 3610 work as expected -- it may return false (that means there is at least one 3611 empty slot in __kmp_threads array), but it is possible the only free slot 3612 is #0, which is reserved for initial thread and so cannot be used for this 3613 one. Following code workarounds this bug. 3614 3615 However, right solution seems to be not reserving slot #0 for initial 3616 thread because: 3617 (1) there is no magic in slot #0, 3618 (2) we cannot detect initial thread reliably (the first thread which does 3619 serial initialization may be not a real initial thread). 3620 */ 3621 capacity = __kmp_threads_capacity; 3622 if (!initial_thread && TCR_PTR(__kmp_threads[0]) == NULL) { 3623 --capacity; 3624 } 3625 3626 /* see if there are too many threads */ 3627 if (__kmp_all_nth >= capacity && !__kmp_expand_threads(1)) { 3628 if (__kmp_tp_cached) { 3629 __kmp_fatal(KMP_MSG(CantRegisterNewThread), 3630 KMP_HNT(Set_ALL_THREADPRIVATE, __kmp_tp_capacity), 3631 KMP_HNT(PossibleSystemLimitOnThreads), __kmp_msg_null); 3632 } else { 3633 __kmp_fatal(KMP_MSG(CantRegisterNewThread), KMP_HNT(SystemLimitOnThreads), 3634 __kmp_msg_null); 3635 } 3636 } 3637 3638 /* find an available thread slot */ 3639 /* Don't reassign the zero slot since we need that to only be used by initial 3640 thread */ 3641 for (gtid = (initial_thread ? 0 : 1); TCR_PTR(__kmp_threads[gtid]) != NULL; 3642 gtid++) 3643 ; 3644 KA_TRACE(1, 3645 ("__kmp_register_root: found slot in threads array: T#%d\n", gtid)); 3646 KMP_ASSERT(gtid < __kmp_threads_capacity); 3647 3648 /* update global accounting */ 3649 __kmp_all_nth++; 3650 TCW_4(__kmp_nth, __kmp_nth + 1); 3651 3652 // if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) for low 3653 // numbers of procs, and method #2 (keyed API call) for higher numbers. 3654 if (__kmp_adjust_gtid_mode) { 3655 if (__kmp_all_nth >= __kmp_tls_gtid_min) { 3656 if (TCR_4(__kmp_gtid_mode) != 2) { 3657 TCW_4(__kmp_gtid_mode, 2); 3658 } 3659 } else { 3660 if (TCR_4(__kmp_gtid_mode) != 1) { 3661 TCW_4(__kmp_gtid_mode, 1); 3662 } 3663 } 3664 } 3665 3666 #ifdef KMP_ADJUST_BLOCKTIME 3667 /* Adjust blocktime to zero if necessary */ 3668 /* Middle initialization might not have occurred yet */ 3669 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 3670 if (__kmp_nth > __kmp_avail_proc) { 3671 __kmp_zero_bt = TRUE; 3672 } 3673 } 3674 #endif /* KMP_ADJUST_BLOCKTIME */ 3675 3676 /* setup this new hierarchy */ 3677 if (!(root = __kmp_root[gtid])) { 3678 root = __kmp_root[gtid] = (kmp_root_t *)__kmp_allocate(sizeof(kmp_root_t)); 3679 KMP_DEBUG_ASSERT(!root->r.r_root_team); 3680 } 3681 3682 #if KMP_STATS_ENABLED 3683 // Initialize stats as soon as possible (right after gtid assignment). 3684 __kmp_stats_thread_ptr = __kmp_stats_list->push_back(gtid); 3685 KMP_START_EXPLICIT_TIMER(OMP_worker_thread_life); 3686 KMP_SET_THREAD_STATE(SERIAL_REGION); 3687 KMP_INIT_PARTITIONED_TIMERS(OMP_serial); 3688 #endif 3689 __kmp_initialize_root(root); 3690 3691 /* setup new root thread structure */ 3692 if (root->r.r_uber_thread) { 3693 root_thread = root->r.r_uber_thread; 3694 } else { 3695 root_thread = (kmp_info_t *)__kmp_allocate(sizeof(kmp_info_t)); 3696 if (__kmp_storage_map) { 3697 __kmp_print_thread_storage_map(root_thread, gtid); 3698 } 3699 root_thread->th.th_info.ds.ds_gtid = gtid; 3700 #if OMPT_SUPPORT 3701 root_thread->th.ompt_thread_info.thread_data.ptr = NULL; 3702 #endif 3703 root_thread->th.th_root = root; 3704 if (__kmp_env_consistency_check) { 3705 root_thread->th.th_cons = __kmp_allocate_cons_stack(gtid); 3706 } 3707 #if USE_FAST_MEMORY 3708 __kmp_initialize_fast_memory(root_thread); 3709 #endif /* USE_FAST_MEMORY */ 3710 3711 #if KMP_USE_BGET 3712 KMP_DEBUG_ASSERT(root_thread->th.th_local.bget_data == NULL); 3713 __kmp_initialize_bget(root_thread); 3714 #endif 3715 __kmp_init_random(root_thread); // Initialize random number generator 3716 } 3717 3718 /* setup the serial team held in reserve by the root thread */ 3719 if (!root_thread->th.th_serial_team) { 3720 kmp_internal_control_t r_icvs = __kmp_get_global_icvs(); 3721 KF_TRACE(10, ("__kmp_register_root: before serial_team\n")); 3722 root_thread->th.th_serial_team = 3723 __kmp_allocate_team(root, 1, 1, 3724 #if OMPT_SUPPORT 3725 ompt_data_none, // root parallel id 3726 #endif 3727 #if OMP_40_ENABLED 3728 proc_bind_default, 3729 #endif 3730 &r_icvs, 0 USE_NESTED_HOT_ARG(NULL)); 3731 } 3732 KMP_ASSERT(root_thread->th.th_serial_team); 3733 KF_TRACE(10, ("__kmp_register_root: after serial_team = %p\n", 3734 root_thread->th.th_serial_team)); 3735 3736 /* drop root_thread into place */ 3737 TCW_SYNC_PTR(__kmp_threads[gtid], root_thread); 3738 3739 root->r.r_root_team->t.t_threads[0] = root_thread; 3740 root->r.r_hot_team->t.t_threads[0] = root_thread; 3741 root_thread->th.th_serial_team->t.t_threads[0] = root_thread; 3742 // AC: the team created in reserve, not for execution (it is unused for now). 3743 root_thread->th.th_serial_team->t.t_serialized = 0; 3744 root->r.r_uber_thread = root_thread; 3745 3746 /* initialize the thread, get it ready to go */ 3747 __kmp_initialize_info(root_thread, root->r.r_root_team, 0, gtid); 3748 TCW_4(__kmp_init_gtid, TRUE); 3749 3750 /* prepare the master thread for get_gtid() */ 3751 __kmp_gtid_set_specific(gtid); 3752 3753 #if USE_ITT_BUILD 3754 __kmp_itt_thread_name(gtid); 3755 #endif /* USE_ITT_BUILD */ 3756 3757 #ifdef KMP_TDATA_GTID 3758 __kmp_gtid = gtid; 3759 #endif 3760 __kmp_create_worker(gtid, root_thread, __kmp_stksize); 3761 KMP_DEBUG_ASSERT(__kmp_gtid_get_specific() == gtid); 3762 3763 KA_TRACE(20, ("__kmp_register_root: T#%d init T#%d(%d:%d) arrived: join=%u, " 3764 "plain=%u\n", 3765 gtid, __kmp_gtid_from_tid(0, root->r.r_hot_team), 3766 root->r.r_hot_team->t.t_id, 0, KMP_INIT_BARRIER_STATE, 3767 KMP_INIT_BARRIER_STATE)); 3768 { // Initialize barrier data. 3769 int b; 3770 for (b = 0; b < bs_last_barrier; ++b) { 3771 root_thread->th.th_bar[b].bb.b_arrived = KMP_INIT_BARRIER_STATE; 3772 #if USE_DEBUGGER 3773 root_thread->th.th_bar[b].bb.b_worker_arrived = 0; 3774 #endif 3775 } 3776 } 3777 KMP_DEBUG_ASSERT(root->r.r_hot_team->t.t_bar[bs_forkjoin_barrier].b_arrived == 3778 KMP_INIT_BARRIER_STATE); 3779 3780 #if KMP_AFFINITY_SUPPORTED 3781 #if OMP_40_ENABLED 3782 root_thread->th.th_current_place = KMP_PLACE_UNDEFINED; 3783 root_thread->th.th_new_place = KMP_PLACE_UNDEFINED; 3784 root_thread->th.th_first_place = KMP_PLACE_UNDEFINED; 3785 root_thread->th.th_last_place = KMP_PLACE_UNDEFINED; 3786 #endif 3787 3788 if (TCR_4(__kmp_init_middle)) { 3789 __kmp_affinity_set_init_mask(gtid, TRUE); 3790 } 3791 #endif /* KMP_AFFINITY_SUPPORTED */ 3792 3793 __kmp_root_counter++; 3794 3795 #if OMPT_SUPPORT 3796 if (!initial_thread && ompt_enabled.enabled) { 3797 3798 ompt_thread_t *root_thread = ompt_get_thread(); 3799 3800 ompt_set_thread_state(root_thread, omp_state_overhead); 3801 3802 if (ompt_enabled.ompt_callback_thread_begin) { 3803 ompt_callbacks.ompt_callback(ompt_callback_thread_begin)( 3804 ompt_thread_initial, __ompt_get_thread_data_internal()); 3805 } 3806 ompt_data_t *task_data; 3807 __ompt_get_task_info_internal(0, NULL, &task_data, NULL, NULL, NULL); 3808 if (ompt_enabled.ompt_callback_task_create) { 3809 ompt_callbacks.ompt_callback(ompt_callback_task_create)( 3810 NULL, NULL, task_data, ompt_task_initial, 0, NULL); 3811 // initial task has nothing to return to 3812 } 3813 3814 ompt_set_thread_state(root_thread, omp_state_work_serial); 3815 } 3816 #endif 3817 3818 KMP_MB(); 3819 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 3820 3821 return gtid; 3822 } 3823 3824 #if KMP_NESTED_HOT_TEAMS 3825 static int __kmp_free_hot_teams(kmp_root_t *root, kmp_info_t *thr, int level, 3826 const int max_level) { 3827 int i, n, nth; 3828 kmp_hot_team_ptr_t *hot_teams = thr->th.th_hot_teams; 3829 if (!hot_teams || !hot_teams[level].hot_team) { 3830 return 0; 3831 } 3832 KMP_DEBUG_ASSERT(level < max_level); 3833 kmp_team_t *team = hot_teams[level].hot_team; 3834 nth = hot_teams[level].hot_team_nth; 3835 n = nth - 1; // master is not freed 3836 if (level < max_level - 1) { 3837 for (i = 0; i < nth; ++i) { 3838 kmp_info_t *th = team->t.t_threads[i]; 3839 n += __kmp_free_hot_teams(root, th, level + 1, max_level); 3840 if (i > 0 && th->th.th_hot_teams) { 3841 __kmp_free(th->th.th_hot_teams); 3842 th->th.th_hot_teams = NULL; 3843 } 3844 } 3845 } 3846 __kmp_free_team(root, team, NULL); 3847 return n; 3848 } 3849 #endif 3850 3851 // Resets a root thread and clear its root and hot teams. 3852 // Returns the number of __kmp_threads entries directly and indirectly freed. 3853 static int __kmp_reset_root(int gtid, kmp_root_t *root) { 3854 kmp_team_t *root_team = root->r.r_root_team; 3855 kmp_team_t *hot_team = root->r.r_hot_team; 3856 int n = hot_team->t.t_nproc; 3857 int i; 3858 3859 KMP_DEBUG_ASSERT(!root->r.r_active); 3860 3861 root->r.r_root_team = NULL; 3862 root->r.r_hot_team = NULL; 3863 // __kmp_free_team() does not free hot teams, so we have to clear r_hot_team 3864 // before call to __kmp_free_team(). 3865 __kmp_free_team(root, root_team USE_NESTED_HOT_ARG(NULL)); 3866 #if KMP_NESTED_HOT_TEAMS 3867 if (__kmp_hot_teams_max_level > 3868 0) { // need to free nested hot teams and their threads if any 3869 for (i = 0; i < hot_team->t.t_nproc; ++i) { 3870 kmp_info_t *th = hot_team->t.t_threads[i]; 3871 if (__kmp_hot_teams_max_level > 1) { 3872 n += __kmp_free_hot_teams(root, th, 1, __kmp_hot_teams_max_level); 3873 } 3874 if (th->th.th_hot_teams) { 3875 __kmp_free(th->th.th_hot_teams); 3876 th->th.th_hot_teams = NULL; 3877 } 3878 } 3879 } 3880 #endif 3881 __kmp_free_team(root, hot_team USE_NESTED_HOT_ARG(NULL)); 3882 3883 // Before we can reap the thread, we need to make certain that all other 3884 // threads in the teams that had this root as ancestor have stopped trying to 3885 // steal tasks. 3886 if (__kmp_tasking_mode != tskm_immediate_exec) { 3887 __kmp_wait_to_unref_task_teams(); 3888 } 3889 3890 #if KMP_OS_WINDOWS 3891 /* Close Handle of root duplicated in __kmp_create_worker (tr #62919) */ 3892 KA_TRACE( 3893 10, ("__kmp_reset_root: free handle, th = %p, handle = %" KMP_UINTPTR_SPEC 3894 "\n", 3895 (LPVOID) & (root->r.r_uber_thread->th), 3896 root->r.r_uber_thread->th.th_info.ds.ds_thread)); 3897 __kmp_free_handle(root->r.r_uber_thread->th.th_info.ds.ds_thread); 3898 #endif /* KMP_OS_WINDOWS */ 3899 3900 #if OMPT_SUPPORT 3901 if (ompt_enabled.ompt_callback_thread_end) { 3902 ompt_callbacks.ompt_callback(ompt_callback_thread_end)( 3903 &(root->r.r_uber_thread->th.ompt_thread_info.thread_data)); 3904 } 3905 #endif 3906 3907 TCW_4(__kmp_nth, 3908 __kmp_nth - 1); // __kmp_reap_thread will decrement __kmp_all_nth. 3909 root->r.r_cg_nthreads--; 3910 3911 __kmp_reap_thread(root->r.r_uber_thread, 1); 3912 3913 // We canot put root thread to __kmp_thread_pool, so we have to reap it istead 3914 // of freeing. 3915 root->r.r_uber_thread = NULL; 3916 /* mark root as no longer in use */ 3917 root->r.r_begin = FALSE; 3918 3919 return n; 3920 } 3921 3922 void __kmp_unregister_root_current_thread(int gtid) { 3923 KA_TRACE(1, ("__kmp_unregister_root_current_thread: enter T#%d\n", gtid)); 3924 /* this lock should be ok, since unregister_root_current_thread is never 3925 called during an abort, only during a normal close. furthermore, if you 3926 have the forkjoin lock, you should never try to get the initz lock */ 3927 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 3928 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 3929 KC_TRACE(10, ("__kmp_unregister_root_current_thread: already finished, " 3930 "exiting T#%d\n", 3931 gtid)); 3932 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 3933 return; 3934 } 3935 kmp_root_t *root = __kmp_root[gtid]; 3936 3937 KMP_DEBUG_ASSERT(__kmp_threads && __kmp_threads[gtid]); 3938 KMP_ASSERT(KMP_UBER_GTID(gtid)); 3939 KMP_ASSERT(root == __kmp_threads[gtid]->th.th_root); 3940 KMP_ASSERT(root->r.r_active == FALSE); 3941 3942 KMP_MB(); 3943 3944 #if OMP_45_ENABLED 3945 kmp_info_t *thread = __kmp_threads[gtid]; 3946 kmp_team_t *team = thread->th.th_team; 3947 kmp_task_team_t *task_team = thread->th.th_task_team; 3948 3949 // we need to wait for the proxy tasks before finishing the thread 3950 if (task_team != NULL && task_team->tt.tt_found_proxy_tasks) { 3951 #if OMPT_SUPPORT 3952 // the runtime is shutting down so we won't report any events 3953 thread->th.ompt_thread_info.state = omp_state_undefined; 3954 #endif 3955 __kmp_task_team_wait(thread, team USE_ITT_BUILD_ARG(NULL)); 3956 } 3957 #endif 3958 3959 __kmp_reset_root(gtid, root); 3960 3961 /* free up this thread slot */ 3962 __kmp_gtid_set_specific(KMP_GTID_DNE); 3963 #ifdef KMP_TDATA_GTID 3964 __kmp_gtid = KMP_GTID_DNE; 3965 #endif 3966 3967 KMP_MB(); 3968 KC_TRACE(10, 3969 ("__kmp_unregister_root_current_thread: T#%d unregistered\n", gtid)); 3970 3971 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 3972 } 3973 3974 #if KMP_OS_WINDOWS 3975 /* __kmp_forkjoin_lock must be already held 3976 Unregisters a root thread that is not the current thread. Returns the number 3977 of __kmp_threads entries freed as a result. */ 3978 static int __kmp_unregister_root_other_thread(int gtid) { 3979 kmp_root_t *root = __kmp_root[gtid]; 3980 int r; 3981 3982 KA_TRACE(1, ("__kmp_unregister_root_other_thread: enter T#%d\n", gtid)); 3983 KMP_DEBUG_ASSERT(__kmp_threads && __kmp_threads[gtid]); 3984 KMP_ASSERT(KMP_UBER_GTID(gtid)); 3985 KMP_ASSERT(root == __kmp_threads[gtid]->th.th_root); 3986 KMP_ASSERT(root->r.r_active == FALSE); 3987 3988 r = __kmp_reset_root(gtid, root); 3989 KC_TRACE(10, 3990 ("__kmp_unregister_root_other_thread: T#%d unregistered\n", gtid)); 3991 return r; 3992 } 3993 #endif 3994 3995 #if KMP_DEBUG 3996 void __kmp_task_info() { 3997 3998 kmp_int32 gtid = __kmp_entry_gtid(); 3999 kmp_int32 tid = __kmp_tid_from_gtid(gtid); 4000 kmp_info_t *this_thr = __kmp_threads[gtid]; 4001 kmp_team_t *steam = this_thr->th.th_serial_team; 4002 kmp_team_t *team = this_thr->th.th_team; 4003 4004 __kmp_printf("__kmp_task_info: gtid=%d tid=%d t_thread=%p team=%p curtask=%p " 4005 "ptask=%p\n", 4006 gtid, tid, this_thr, team, this_thr->th.th_current_task, 4007 team->t.t_implicit_task_taskdata[tid].td_parent); 4008 } 4009 #endif // KMP_DEBUG 4010 4011 /* TODO optimize with one big memclr, take out what isn't needed, split 4012 responsibility to workers as much as possible, and delay initialization of 4013 features as much as possible */ 4014 static void __kmp_initialize_info(kmp_info_t *this_thr, kmp_team_t *team, 4015 int tid, int gtid) { 4016 /* this_thr->th.th_info.ds.ds_gtid is setup in 4017 kmp_allocate_thread/create_worker. 4018 this_thr->th.th_serial_team is setup in __kmp_allocate_thread */ 4019 kmp_info_t *master = team->t.t_threads[0]; 4020 KMP_DEBUG_ASSERT(this_thr != NULL); 4021 KMP_DEBUG_ASSERT(this_thr->th.th_serial_team); 4022 KMP_DEBUG_ASSERT(team); 4023 KMP_DEBUG_ASSERT(team->t.t_threads); 4024 KMP_DEBUG_ASSERT(team->t.t_dispatch); 4025 KMP_DEBUG_ASSERT(master); 4026 KMP_DEBUG_ASSERT(master->th.th_root); 4027 4028 KMP_MB(); 4029 4030 TCW_SYNC_PTR(this_thr->th.th_team, team); 4031 4032 this_thr->th.th_info.ds.ds_tid = tid; 4033 this_thr->th.th_set_nproc = 0; 4034 if (__kmp_tasking_mode != tskm_immediate_exec) 4035 // When tasking is possible, threads are not safe to reap until they are 4036 // done tasking; this will be set when tasking code is exited in wait 4037 this_thr->th.th_reap_state = KMP_NOT_SAFE_TO_REAP; 4038 else // no tasking --> always safe to reap 4039 this_thr->th.th_reap_state = KMP_SAFE_TO_REAP; 4040 #if OMP_40_ENABLED 4041 this_thr->th.th_set_proc_bind = proc_bind_default; 4042 #if KMP_AFFINITY_SUPPORTED 4043 this_thr->th.th_new_place = this_thr->th.th_current_place; 4044 #endif 4045 #endif 4046 this_thr->th.th_root = master->th.th_root; 4047 4048 /* setup the thread's cache of the team structure */ 4049 this_thr->th.th_team_nproc = team->t.t_nproc; 4050 this_thr->th.th_team_master = master; 4051 this_thr->th.th_team_serialized = team->t.t_serialized; 4052 TCW_PTR(this_thr->th.th_sleep_loc, NULL); 4053 4054 KMP_DEBUG_ASSERT(team->t.t_implicit_task_taskdata); 4055 4056 KF_TRACE(10, ("__kmp_initialize_info1: T#%d:%d this_thread=%p curtask=%p\n", 4057 tid, gtid, this_thr, this_thr->th.th_current_task)); 4058 4059 __kmp_init_implicit_task(this_thr->th.th_team_master->th.th_ident, this_thr, 4060 team, tid, TRUE); 4061 4062 KF_TRACE(10, ("__kmp_initialize_info2: T#%d:%d this_thread=%p curtask=%p\n", 4063 tid, gtid, this_thr, this_thr->th.th_current_task)); 4064 // TODO: Initialize ICVs from parent; GEH - isn't that already done in 4065 // __kmp_initialize_team()? 4066 4067 /* TODO no worksharing in speculative threads */ 4068 this_thr->th.th_dispatch = &team->t.t_dispatch[tid]; 4069 4070 this_thr->th.th_local.this_construct = 0; 4071 4072 if (!this_thr->th.th_pri_common) { 4073 this_thr->th.th_pri_common = 4074 (struct common_table *)__kmp_allocate(sizeof(struct common_table)); 4075 if (__kmp_storage_map) { 4076 __kmp_print_storage_map_gtid( 4077 gtid, this_thr->th.th_pri_common, this_thr->th.th_pri_common + 1, 4078 sizeof(struct common_table), "th_%d.th_pri_common\n", gtid); 4079 } 4080 this_thr->th.th_pri_head = NULL; 4081 } 4082 4083 /* Initialize dynamic dispatch */ 4084 { 4085 volatile kmp_disp_t *dispatch = this_thr->th.th_dispatch; 4086 // Use team max_nproc since this will never change for the team. 4087 size_t disp_size = 4088 sizeof(dispatch_private_info_t) * 4089 (team->t.t_max_nproc == 1 ? 1 : __kmp_dispatch_num_buffers); 4090 KD_TRACE(10, ("__kmp_initialize_info: T#%d max_nproc: %d\n", gtid, 4091 team->t.t_max_nproc)); 4092 KMP_ASSERT(dispatch); 4093 KMP_DEBUG_ASSERT(team->t.t_dispatch); 4094 KMP_DEBUG_ASSERT(dispatch == &team->t.t_dispatch[tid]); 4095 4096 dispatch->th_disp_index = 0; 4097 #if OMP_45_ENABLED 4098 dispatch->th_doacross_buf_idx = 0; 4099 #endif 4100 if (!dispatch->th_disp_buffer) { 4101 dispatch->th_disp_buffer = 4102 (dispatch_private_info_t *)__kmp_allocate(disp_size); 4103 4104 if (__kmp_storage_map) { 4105 __kmp_print_storage_map_gtid( 4106 gtid, &dispatch->th_disp_buffer[0], 4107 &dispatch->th_disp_buffer[team->t.t_max_nproc == 1 4108 ? 1 4109 : __kmp_dispatch_num_buffers], 4110 disp_size, "th_%d.th_dispatch.th_disp_buffer " 4111 "(team_%d.t_dispatch[%d].th_disp_buffer)", 4112 gtid, team->t.t_id, gtid); 4113 } 4114 } else { 4115 memset(&dispatch->th_disp_buffer[0], '\0', disp_size); 4116 } 4117 4118 dispatch->th_dispatch_pr_current = 0; 4119 dispatch->th_dispatch_sh_current = 0; 4120 4121 dispatch->th_deo_fcn = 0; /* ORDERED */ 4122 dispatch->th_dxo_fcn = 0; /* END ORDERED */ 4123 } 4124 4125 this_thr->th.th_next_pool = NULL; 4126 4127 if (!this_thr->th.th_task_state_memo_stack) { 4128 size_t i; 4129 this_thr->th.th_task_state_memo_stack = 4130 (kmp_uint8 *)__kmp_allocate(4 * sizeof(kmp_uint8)); 4131 this_thr->th.th_task_state_top = 0; 4132 this_thr->th.th_task_state_stack_sz = 4; 4133 for (i = 0; i < this_thr->th.th_task_state_stack_sz; 4134 ++i) // zero init the stack 4135 this_thr->th.th_task_state_memo_stack[i] = 0; 4136 } 4137 4138 KMP_DEBUG_ASSERT(!this_thr->th.th_spin_here); 4139 KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0); 4140 4141 KMP_MB(); 4142 } 4143 4144 /* allocate a new thread for the requesting team. this is only called from 4145 within a forkjoin critical section. we will first try to get an available 4146 thread from the thread pool. if none is available, we will fork a new one 4147 assuming we are able to create a new one. this should be assured, as the 4148 caller should check on this first. */ 4149 kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team, 4150 int new_tid) { 4151 kmp_team_t *serial_team; 4152 kmp_info_t *new_thr; 4153 int new_gtid; 4154 4155 KA_TRACE(20, ("__kmp_allocate_thread: T#%d\n", __kmp_get_gtid())); 4156 KMP_DEBUG_ASSERT(root && team); 4157 #if !KMP_NESTED_HOT_TEAMS 4158 KMP_DEBUG_ASSERT(KMP_MASTER_GTID(__kmp_get_gtid())); 4159 #endif 4160 KMP_MB(); 4161 4162 /* first, try to get one from the thread pool */ 4163 if (__kmp_thread_pool) { 4164 4165 new_thr = CCAST(kmp_info_t *, __kmp_thread_pool); 4166 __kmp_thread_pool = (volatile kmp_info_t *)new_thr->th.th_next_pool; 4167 if (new_thr == __kmp_thread_pool_insert_pt) { 4168 __kmp_thread_pool_insert_pt = NULL; 4169 } 4170 TCW_4(new_thr->th.th_in_pool, FALSE); 4171 // Don't touch th_active_in_pool or th_active. 4172 // The worker thread adjusts those flags as it sleeps/awakens. 4173 __kmp_thread_pool_nth--; 4174 4175 KA_TRACE(20, ("__kmp_allocate_thread: T#%d using thread T#%d\n", 4176 __kmp_get_gtid(), new_thr->th.th_info.ds.ds_gtid)); 4177 KMP_ASSERT(!new_thr->th.th_team); 4178 KMP_DEBUG_ASSERT(__kmp_nth < __kmp_threads_capacity); 4179 KMP_DEBUG_ASSERT(__kmp_thread_pool_nth >= 0); 4180 4181 /* setup the thread structure */ 4182 __kmp_initialize_info(new_thr, team, new_tid, 4183 new_thr->th.th_info.ds.ds_gtid); 4184 KMP_DEBUG_ASSERT(new_thr->th.th_serial_team); 4185 4186 TCW_4(__kmp_nth, __kmp_nth + 1); 4187 root->r.r_cg_nthreads++; 4188 4189 new_thr->th.th_task_state = 0; 4190 new_thr->th.th_task_state_top = 0; 4191 new_thr->th.th_task_state_stack_sz = 4; 4192 4193 #ifdef KMP_ADJUST_BLOCKTIME 4194 /* Adjust blocktime back to zero if necessary */ 4195 /* Middle initialization might not have occurred yet */ 4196 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 4197 if (__kmp_nth > __kmp_avail_proc) { 4198 __kmp_zero_bt = TRUE; 4199 } 4200 } 4201 #endif /* KMP_ADJUST_BLOCKTIME */ 4202 4203 #if KMP_DEBUG 4204 // If thread entered pool via __kmp_free_thread, wait_flag should != 4205 // KMP_BARRIER_PARENT_FLAG. 4206 int b; 4207 kmp_balign_t *balign = new_thr->th.th_bar; 4208 for (b = 0; b < bs_last_barrier; ++b) 4209 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 4210 #endif 4211 4212 KF_TRACE(10, ("__kmp_allocate_thread: T#%d using thread %p T#%d\n", 4213 __kmp_get_gtid(), new_thr, new_thr->th.th_info.ds.ds_gtid)); 4214 4215 KMP_MB(); 4216 return new_thr; 4217 } 4218 4219 /* no, well fork a new one */ 4220 KMP_ASSERT(__kmp_nth == __kmp_all_nth); 4221 KMP_ASSERT(__kmp_all_nth < __kmp_threads_capacity); 4222 4223 #if KMP_USE_MONITOR 4224 // If this is the first worker thread the RTL is creating, then also 4225 // launch the monitor thread. We try to do this as early as possible. 4226 if (!TCR_4(__kmp_init_monitor)) { 4227 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock); 4228 if (!TCR_4(__kmp_init_monitor)) { 4229 KF_TRACE(10, ("before __kmp_create_monitor\n")); 4230 TCW_4(__kmp_init_monitor, 1); 4231 __kmp_create_monitor(&__kmp_monitor); 4232 KF_TRACE(10, ("after __kmp_create_monitor\n")); 4233 #if KMP_OS_WINDOWS 4234 // AC: wait until monitor has started. This is a fix for CQ232808. 4235 // The reason is that if the library is loaded/unloaded in a loop with 4236 // small (parallel) work in between, then there is high probability that 4237 // monitor thread started after the library shutdown. At shutdown it is 4238 // too late to cope with the problem, because when the master is in 4239 // DllMain (process detach) the monitor has no chances to start (it is 4240 // blocked), and master has no means to inform the monitor that the 4241 // library has gone, because all the memory which the monitor can access 4242 // is going to be released/reset. 4243 while (TCR_4(__kmp_init_monitor) < 2) { 4244 KMP_YIELD(TRUE); 4245 } 4246 KF_TRACE(10, ("after monitor thread has started\n")); 4247 #endif 4248 } 4249 __kmp_release_bootstrap_lock(&__kmp_monitor_lock); 4250 } 4251 #endif 4252 4253 KMP_MB(); 4254 for (new_gtid = 1; TCR_PTR(__kmp_threads[new_gtid]) != NULL; ++new_gtid) { 4255 KMP_DEBUG_ASSERT(new_gtid < __kmp_threads_capacity); 4256 } 4257 4258 /* allocate space for it. */ 4259 new_thr = (kmp_info_t *)__kmp_allocate(sizeof(kmp_info_t)); 4260 4261 TCW_SYNC_PTR(__kmp_threads[new_gtid], new_thr); 4262 4263 if (__kmp_storage_map) { 4264 __kmp_print_thread_storage_map(new_thr, new_gtid); 4265 } 4266 4267 // add the reserve serialized team, initialized from the team's master thread 4268 { 4269 kmp_internal_control_t r_icvs = __kmp_get_x_global_icvs(team); 4270 KF_TRACE(10, ("__kmp_allocate_thread: before th_serial/serial_team\n")); 4271 new_thr->th.th_serial_team = serial_team = 4272 (kmp_team_t *)__kmp_allocate_team(root, 1, 1, 4273 #if OMPT_SUPPORT 4274 ompt_data_none, // root parallel id 4275 #endif 4276 #if OMP_40_ENABLED 4277 proc_bind_default, 4278 #endif 4279 &r_icvs, 0 USE_NESTED_HOT_ARG(NULL)); 4280 } 4281 KMP_ASSERT(serial_team); 4282 serial_team->t.t_serialized = 0; // AC: the team created in reserve, not for 4283 // execution (it is unused for now). 4284 serial_team->t.t_threads[0] = new_thr; 4285 KF_TRACE(10, 4286 ("__kmp_allocate_thread: after th_serial/serial_team : new_thr=%p\n", 4287 new_thr)); 4288 4289 /* setup the thread structures */ 4290 __kmp_initialize_info(new_thr, team, new_tid, new_gtid); 4291 4292 #if USE_FAST_MEMORY 4293 __kmp_initialize_fast_memory(new_thr); 4294 #endif /* USE_FAST_MEMORY */ 4295 4296 #if KMP_USE_BGET 4297 KMP_DEBUG_ASSERT(new_thr->th.th_local.bget_data == NULL); 4298 __kmp_initialize_bget(new_thr); 4299 #endif 4300 4301 __kmp_init_random(new_thr); // Initialize random number generator 4302 4303 /* Initialize these only once when thread is grabbed for a team allocation */ 4304 KA_TRACE(20, 4305 ("__kmp_allocate_thread: T#%d init go fork=%u, plain=%u\n", 4306 __kmp_get_gtid(), KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 4307 4308 int b; 4309 kmp_balign_t *balign = new_thr->th.th_bar; 4310 for (b = 0; b < bs_last_barrier; ++b) { 4311 balign[b].bb.b_go = KMP_INIT_BARRIER_STATE; 4312 balign[b].bb.team = NULL; 4313 balign[b].bb.wait_flag = KMP_BARRIER_NOT_WAITING; 4314 balign[b].bb.use_oncore_barrier = 0; 4315 } 4316 4317 new_thr->th.th_spin_here = FALSE; 4318 new_thr->th.th_next_waiting = 0; 4319 4320 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 4321 new_thr->th.th_current_place = KMP_PLACE_UNDEFINED; 4322 new_thr->th.th_new_place = KMP_PLACE_UNDEFINED; 4323 new_thr->th.th_first_place = KMP_PLACE_UNDEFINED; 4324 new_thr->th.th_last_place = KMP_PLACE_UNDEFINED; 4325 #endif 4326 4327 TCW_4(new_thr->th.th_in_pool, FALSE); 4328 new_thr->th.th_active_in_pool = FALSE; 4329 TCW_4(new_thr->th.th_active, TRUE); 4330 4331 /* adjust the global counters */ 4332 __kmp_all_nth++; 4333 __kmp_nth++; 4334 4335 root->r.r_cg_nthreads++; 4336 4337 // if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) for low 4338 // numbers of procs, and method #2 (keyed API call) for higher numbers. 4339 if (__kmp_adjust_gtid_mode) { 4340 if (__kmp_all_nth >= __kmp_tls_gtid_min) { 4341 if (TCR_4(__kmp_gtid_mode) != 2) { 4342 TCW_4(__kmp_gtid_mode, 2); 4343 } 4344 } else { 4345 if (TCR_4(__kmp_gtid_mode) != 1) { 4346 TCW_4(__kmp_gtid_mode, 1); 4347 } 4348 } 4349 } 4350 4351 #ifdef KMP_ADJUST_BLOCKTIME 4352 /* Adjust blocktime back to zero if necessary */ 4353 /* Middle initialization might not have occurred yet */ 4354 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 4355 if (__kmp_nth > __kmp_avail_proc) { 4356 __kmp_zero_bt = TRUE; 4357 } 4358 } 4359 #endif /* KMP_ADJUST_BLOCKTIME */ 4360 4361 /* actually fork it and create the new worker thread */ 4362 KF_TRACE( 4363 10, ("__kmp_allocate_thread: before __kmp_create_worker: %p\n", new_thr)); 4364 __kmp_create_worker(new_gtid, new_thr, __kmp_stksize); 4365 KF_TRACE(10, 4366 ("__kmp_allocate_thread: after __kmp_create_worker: %p\n", new_thr)); 4367 4368 KA_TRACE(20, ("__kmp_allocate_thread: T#%d forked T#%d\n", __kmp_get_gtid(), 4369 new_gtid)); 4370 KMP_MB(); 4371 return new_thr; 4372 } 4373 4374 /* Reinitialize team for reuse. 4375 The hot team code calls this case at every fork barrier, so EPCC barrier 4376 test are extremely sensitive to changes in it, esp. writes to the team 4377 struct, which cause a cache invalidation in all threads. 4378 IF YOU TOUCH THIS ROUTINE, RUN EPCC C SYNCBENCH ON A BIG-IRON MACHINE!!! */ 4379 static void __kmp_reinitialize_team(kmp_team_t *team, 4380 kmp_internal_control_t *new_icvs, 4381 ident_t *loc) { 4382 KF_TRACE(10, ("__kmp_reinitialize_team: enter this_thread=%p team=%p\n", 4383 team->t.t_threads[0], team)); 4384 KMP_DEBUG_ASSERT(team && new_icvs); 4385 KMP_DEBUG_ASSERT((!TCR_4(__kmp_init_parallel)) || new_icvs->nproc); 4386 KMP_CHECK_UPDATE(team->t.t_ident, loc); 4387 4388 KMP_CHECK_UPDATE(team->t.t_id, KMP_GEN_TEAM_ID()); 4389 // Copy ICVs to the master thread's implicit taskdata 4390 __kmp_init_implicit_task(loc, team->t.t_threads[0], team, 0, FALSE); 4391 copy_icvs(&team->t.t_implicit_task_taskdata[0].td_icvs, new_icvs); 4392 4393 KF_TRACE(10, ("__kmp_reinitialize_team: exit this_thread=%p team=%p\n", 4394 team->t.t_threads[0], team)); 4395 } 4396 4397 /* Initialize the team data structure. 4398 This assumes the t_threads and t_max_nproc are already set. 4399 Also, we don't touch the arguments */ 4400 static void __kmp_initialize_team(kmp_team_t *team, int new_nproc, 4401 kmp_internal_control_t *new_icvs, 4402 ident_t *loc) { 4403 KF_TRACE(10, ("__kmp_initialize_team: enter: team=%p\n", team)); 4404 4405 /* verify */ 4406 KMP_DEBUG_ASSERT(team); 4407 KMP_DEBUG_ASSERT(new_nproc <= team->t.t_max_nproc); 4408 KMP_DEBUG_ASSERT(team->t.t_threads); 4409 KMP_MB(); 4410 4411 team->t.t_master_tid = 0; /* not needed */ 4412 /* team->t.t_master_bar; not needed */ 4413 team->t.t_serialized = new_nproc > 1 ? 0 : 1; 4414 team->t.t_nproc = new_nproc; 4415 4416 /* team->t.t_parent = NULL; TODO not needed & would mess up hot team */ 4417 team->t.t_next_pool = NULL; 4418 /* memset( team->t.t_threads, 0, sizeof(kmp_info_t*)*new_nproc ); would mess 4419 * up hot team */ 4420 4421 TCW_SYNC_PTR(team->t.t_pkfn, NULL); /* not needed */ 4422 team->t.t_invoke = NULL; /* not needed */ 4423 4424 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 4425 team->t.t_sched.sched = new_icvs->sched.sched; 4426 4427 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4428 team->t.t_fp_control_saved = FALSE; /* not needed */ 4429 team->t.t_x87_fpu_control_word = 0; /* not needed */ 4430 team->t.t_mxcsr = 0; /* not needed */ 4431 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4432 4433 team->t.t_construct = 0; 4434 4435 team->t.t_ordered.dt.t_value = 0; 4436 team->t.t_master_active = FALSE; 4437 4438 memset(&team->t.t_taskq, '\0', sizeof(kmp_taskq_t)); 4439 4440 #ifdef KMP_DEBUG 4441 team->t.t_copypriv_data = NULL; /* not necessary, but nice for debugging */ 4442 #endif 4443 team->t.t_copyin_counter = 0; /* for barrier-free copyin implementation */ 4444 4445 team->t.t_control_stack_top = NULL; 4446 4447 __kmp_reinitialize_team(team, new_icvs, loc); 4448 4449 KMP_MB(); 4450 KF_TRACE(10, ("__kmp_initialize_team: exit: team=%p\n", team)); 4451 } 4452 4453 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 4454 /* Sets full mask for thread and returns old mask, no changes to structures. */ 4455 static void 4456 __kmp_set_thread_affinity_mask_full_tmp(kmp_affin_mask_t *old_mask) { 4457 if (KMP_AFFINITY_CAPABLE()) { 4458 int status; 4459 if (old_mask != NULL) { 4460 status = __kmp_get_system_affinity(old_mask, TRUE); 4461 int error = errno; 4462 if (status != 0) { 4463 __kmp_fatal(KMP_MSG(ChangeThreadAffMaskError), KMP_ERR(error), 4464 __kmp_msg_null); 4465 } 4466 } 4467 __kmp_set_system_affinity(__kmp_affin_fullMask, TRUE); 4468 } 4469 } 4470 #endif 4471 4472 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 4473 4474 // __kmp_partition_places() is the heart of the OpenMP 4.0 affinity mechanism. 4475 // It calculats the worker + master thread's partition based upon the parent 4476 // thread's partition, and binds each worker to a thread in their partition. 4477 // The master thread's partition should already include its current binding. 4478 static void __kmp_partition_places(kmp_team_t *team, int update_master_only) { 4479 // Copy the master thread's place partion to the team struct 4480 kmp_info_t *master_th = team->t.t_threads[0]; 4481 KMP_DEBUG_ASSERT(master_th != NULL); 4482 kmp_proc_bind_t proc_bind = team->t.t_proc_bind; 4483 int first_place = master_th->th.th_first_place; 4484 int last_place = master_th->th.th_last_place; 4485 int masters_place = master_th->th.th_current_place; 4486 team->t.t_first_place = first_place; 4487 team->t.t_last_place = last_place; 4488 4489 KA_TRACE(20, ("__kmp_partition_places: enter: proc_bind = %d T#%d(%d:0) " 4490 "bound to place %d partition = [%d,%d]\n", 4491 proc_bind, __kmp_gtid_from_thread(team->t.t_threads[0]), 4492 team->t.t_id, masters_place, first_place, last_place)); 4493 4494 switch (proc_bind) { 4495 4496 case proc_bind_default: 4497 // serial teams might have the proc_bind policy set to proc_bind_default. It 4498 // doesn't matter, as we don't rebind master thread for any proc_bind policy 4499 KMP_DEBUG_ASSERT(team->t.t_nproc == 1); 4500 break; 4501 4502 case proc_bind_master: { 4503 int f; 4504 int n_th = team->t.t_nproc; 4505 for (f = 1; f < n_th; f++) { 4506 kmp_info_t *th = team->t.t_threads[f]; 4507 KMP_DEBUG_ASSERT(th != NULL); 4508 th->th.th_first_place = first_place; 4509 th->th.th_last_place = last_place; 4510 th->th.th_new_place = masters_place; 4511 4512 KA_TRACE(100, ("__kmp_partition_places: master: T#%d(%d:%d) place %d " 4513 "partition = [%d,%d]\n", 4514 __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, 4515 f, masters_place, first_place, last_place)); 4516 } 4517 } break; 4518 4519 case proc_bind_close: { 4520 int f; 4521 int n_th = team->t.t_nproc; 4522 int n_places; 4523 if (first_place <= last_place) { 4524 n_places = last_place - first_place + 1; 4525 } else { 4526 n_places = __kmp_affinity_num_masks - first_place + last_place + 1; 4527 } 4528 if (n_th <= n_places) { 4529 int place = masters_place; 4530 for (f = 1; f < n_th; f++) { 4531 kmp_info_t *th = team->t.t_threads[f]; 4532 KMP_DEBUG_ASSERT(th != NULL); 4533 4534 if (place == last_place) { 4535 place = first_place; 4536 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4537 place = 0; 4538 } else { 4539 place++; 4540 } 4541 th->th.th_first_place = first_place; 4542 th->th.th_last_place = last_place; 4543 th->th.th_new_place = place; 4544 4545 KA_TRACE(100, ("__kmp_partition_places: close: T#%d(%d:%d) place %d " 4546 "partition = [%d,%d]\n", 4547 __kmp_gtid_from_thread(team->t.t_threads[f]), 4548 team->t.t_id, f, place, first_place, last_place)); 4549 } 4550 } else { 4551 int S, rem, gap, s_count; 4552 S = n_th / n_places; 4553 s_count = 0; 4554 rem = n_th - (S * n_places); 4555 gap = rem > 0 ? n_places / rem : n_places; 4556 int place = masters_place; 4557 int gap_ct = gap; 4558 for (f = 0; f < n_th; f++) { 4559 kmp_info_t *th = team->t.t_threads[f]; 4560 KMP_DEBUG_ASSERT(th != NULL); 4561 4562 th->th.th_first_place = first_place; 4563 th->th.th_last_place = last_place; 4564 th->th.th_new_place = place; 4565 s_count++; 4566 4567 if ((s_count == S) && rem && (gap_ct == gap)) { 4568 // do nothing, add an extra thread to place on next iteration 4569 } else if ((s_count == S + 1) && rem && (gap_ct == gap)) { 4570 // we added an extra thread to this place; move to next place 4571 if (place == last_place) { 4572 place = first_place; 4573 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4574 place = 0; 4575 } else { 4576 place++; 4577 } 4578 s_count = 0; 4579 gap_ct = 1; 4580 rem--; 4581 } else if (s_count == S) { // place full; don't add extra 4582 if (place == last_place) { 4583 place = first_place; 4584 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4585 place = 0; 4586 } else { 4587 place++; 4588 } 4589 gap_ct++; 4590 s_count = 0; 4591 } 4592 4593 KA_TRACE(100, 4594 ("__kmp_partition_places: close: T#%d(%d:%d) place %d " 4595 "partition = [%d,%d]\n", 4596 __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, f, 4597 th->th.th_new_place, first_place, last_place)); 4598 } 4599 KMP_DEBUG_ASSERT(place == masters_place); 4600 } 4601 } break; 4602 4603 case proc_bind_spread: { 4604 int f; 4605 int n_th = team->t.t_nproc; 4606 int n_places; 4607 int thidx; 4608 if (first_place <= last_place) { 4609 n_places = last_place - first_place + 1; 4610 } else { 4611 n_places = __kmp_affinity_num_masks - first_place + last_place + 1; 4612 } 4613 if (n_th <= n_places) { 4614 int place = -1; 4615 4616 if (n_places != static_cast<int>(__kmp_affinity_num_masks)) { 4617 int S = n_places / n_th; 4618 int s_count, rem, gap, gap_ct; 4619 4620 place = masters_place; 4621 rem = n_places - n_th * S; 4622 gap = rem ? n_th / rem : 1; 4623 gap_ct = gap; 4624 thidx = n_th; 4625 if (update_master_only == 1) 4626 thidx = 1; 4627 for (f = 0; f < thidx; f++) { 4628 kmp_info_t *th = team->t.t_threads[f]; 4629 KMP_DEBUG_ASSERT(th != NULL); 4630 4631 th->th.th_first_place = place; 4632 th->th.th_new_place = place; 4633 s_count = 1; 4634 while (s_count < S) { 4635 if (place == last_place) { 4636 place = first_place; 4637 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4638 place = 0; 4639 } else { 4640 place++; 4641 } 4642 s_count++; 4643 } 4644 if (rem && (gap_ct == gap)) { 4645 if (place == last_place) { 4646 place = first_place; 4647 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4648 place = 0; 4649 } else { 4650 place++; 4651 } 4652 rem--; 4653 gap_ct = 0; 4654 } 4655 th->th.th_last_place = place; 4656 gap_ct++; 4657 4658 if (place == last_place) { 4659 place = first_place; 4660 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4661 place = 0; 4662 } else { 4663 place++; 4664 } 4665 4666 KA_TRACE(100, 4667 ("__kmp_partition_places: spread: T#%d(%d:%d) place %d " 4668 "partition = [%d,%d], __kmp_affinity_num_masks: %u\n", 4669 __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, 4670 f, th->th.th_new_place, th->th.th_first_place, 4671 th->th.th_last_place, __kmp_affinity_num_masks)); 4672 } 4673 } else { 4674 /* Having uniform space of available computation places I can create 4675 T partitions of round(P/T) size and put threads into the first 4676 place of each partition. */ 4677 double current = static_cast<double>(masters_place); 4678 double spacing = 4679 (static_cast<double>(n_places + 1) / static_cast<double>(n_th)); 4680 int first, last; 4681 kmp_info_t *th; 4682 4683 thidx = n_th + 1; 4684 if (update_master_only == 1) 4685 thidx = 1; 4686 for (f = 0; f < thidx; f++) { 4687 first = static_cast<int>(current); 4688 last = static_cast<int>(current + spacing) - 1; 4689 KMP_DEBUG_ASSERT(last >= first); 4690 if (first >= n_places) { 4691 if (masters_place) { 4692 first -= n_places; 4693 last -= n_places; 4694 if (first == (masters_place + 1)) { 4695 KMP_DEBUG_ASSERT(f == n_th); 4696 first--; 4697 } 4698 if (last == masters_place) { 4699 KMP_DEBUG_ASSERT(f == (n_th - 1)); 4700 last--; 4701 } 4702 } else { 4703 KMP_DEBUG_ASSERT(f == n_th); 4704 first = 0; 4705 last = 0; 4706 } 4707 } 4708 if (last >= n_places) { 4709 last = (n_places - 1); 4710 } 4711 place = first; 4712 current += spacing; 4713 if (f < n_th) { 4714 KMP_DEBUG_ASSERT(0 <= first); 4715 KMP_DEBUG_ASSERT(n_places > first); 4716 KMP_DEBUG_ASSERT(0 <= last); 4717 KMP_DEBUG_ASSERT(n_places > last); 4718 KMP_DEBUG_ASSERT(last_place >= first_place); 4719 th = team->t.t_threads[f]; 4720 KMP_DEBUG_ASSERT(th); 4721 th->th.th_first_place = first; 4722 th->th.th_new_place = place; 4723 th->th.th_last_place = last; 4724 4725 KA_TRACE(100, 4726 ("__kmp_partition_places: spread: T#%d(%d:%d) place %d " 4727 "partition = [%d,%d], spacing = %.4f\n", 4728 __kmp_gtid_from_thread(team->t.t_threads[f]), 4729 team->t.t_id, f, th->th.th_new_place, 4730 th->th.th_first_place, th->th.th_last_place, spacing)); 4731 } 4732 } 4733 } 4734 KMP_DEBUG_ASSERT(update_master_only || place == masters_place); 4735 } else { 4736 int S, rem, gap, s_count; 4737 S = n_th / n_places; 4738 s_count = 0; 4739 rem = n_th - (S * n_places); 4740 gap = rem > 0 ? n_places / rem : n_places; 4741 int place = masters_place; 4742 int gap_ct = gap; 4743 thidx = n_th; 4744 if (update_master_only == 1) 4745 thidx = 1; 4746 for (f = 0; f < thidx; f++) { 4747 kmp_info_t *th = team->t.t_threads[f]; 4748 KMP_DEBUG_ASSERT(th != NULL); 4749 4750 th->th.th_first_place = place; 4751 th->th.th_last_place = place; 4752 th->th.th_new_place = place; 4753 s_count++; 4754 4755 if ((s_count == S) && rem && (gap_ct == gap)) { 4756 // do nothing, add an extra thread to place on next iteration 4757 } else if ((s_count == S + 1) && rem && (gap_ct == gap)) { 4758 // we added an extra thread to this place; move on to next place 4759 if (place == last_place) { 4760 place = first_place; 4761 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4762 place = 0; 4763 } else { 4764 place++; 4765 } 4766 s_count = 0; 4767 gap_ct = 1; 4768 rem--; 4769 } else if (s_count == S) { // place is full; don't add extra thread 4770 if (place == last_place) { 4771 place = first_place; 4772 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4773 place = 0; 4774 } else { 4775 place++; 4776 } 4777 gap_ct++; 4778 s_count = 0; 4779 } 4780 4781 KA_TRACE(100, ("__kmp_partition_places: spread: T#%d(%d:%d) place %d " 4782 "partition = [%d,%d]\n", 4783 __kmp_gtid_from_thread(team->t.t_threads[f]), 4784 team->t.t_id, f, th->th.th_new_place, 4785 th->th.th_first_place, th->th.th_last_place)); 4786 } 4787 KMP_DEBUG_ASSERT(update_master_only || place == masters_place); 4788 } 4789 } break; 4790 4791 default: 4792 break; 4793 } 4794 4795 KA_TRACE(20, ("__kmp_partition_places: exit T#%d\n", team->t.t_id)); 4796 } 4797 4798 #endif /* OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED */ 4799 4800 /* allocate a new team data structure to use. take one off of the free pool if 4801 available */ 4802 kmp_team_t * 4803 __kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc, 4804 #if OMPT_SUPPORT 4805 ompt_data_t ompt_parallel_data, 4806 #endif 4807 #if OMP_40_ENABLED 4808 kmp_proc_bind_t new_proc_bind, 4809 #endif 4810 kmp_internal_control_t *new_icvs, 4811 int argc USE_NESTED_HOT_ARG(kmp_info_t *master)) { 4812 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_allocate_team); 4813 int f; 4814 kmp_team_t *team; 4815 int use_hot_team = !root->r.r_active; 4816 int level = 0; 4817 4818 KA_TRACE(20, ("__kmp_allocate_team: called\n")); 4819 KMP_DEBUG_ASSERT(new_nproc >= 1 && argc >= 0); 4820 KMP_DEBUG_ASSERT(max_nproc >= new_nproc); 4821 KMP_MB(); 4822 4823 #if KMP_NESTED_HOT_TEAMS 4824 kmp_hot_team_ptr_t *hot_teams; 4825 if (master) { 4826 team = master->th.th_team; 4827 level = team->t.t_active_level; 4828 if (master->th.th_teams_microtask) { // in teams construct? 4829 if (master->th.th_teams_size.nteams > 1 && 4830 ( // #teams > 1 4831 team->t.t_pkfn == 4832 (microtask_t)__kmp_teams_master || // inner fork of the teams 4833 master->th.th_teams_level < 4834 team->t.t_level)) { // or nested parallel inside the teams 4835 ++level; // not increment if #teams==1, or for outer fork of the teams; 4836 // increment otherwise 4837 } 4838 } 4839 hot_teams = master->th.th_hot_teams; 4840 if (level < __kmp_hot_teams_max_level && hot_teams && 4841 hot_teams[level] 4842 .hot_team) { // hot team has already been allocated for given level 4843 use_hot_team = 1; 4844 } else { 4845 use_hot_team = 0; 4846 } 4847 } 4848 #endif 4849 // Optimization to use a "hot" team 4850 if (use_hot_team && new_nproc > 1) { 4851 KMP_DEBUG_ASSERT(new_nproc == max_nproc); 4852 #if KMP_NESTED_HOT_TEAMS 4853 team = hot_teams[level].hot_team; 4854 #else 4855 team = root->r.r_hot_team; 4856 #endif 4857 #if KMP_DEBUG 4858 if (__kmp_tasking_mode != tskm_immediate_exec) { 4859 KA_TRACE(20, ("__kmp_allocate_team: hot team task_team[0] = %p " 4860 "task_team[1] = %p before reinit\n", 4861 team->t.t_task_team[0], team->t.t_task_team[1])); 4862 } 4863 #endif 4864 4865 // Has the number of threads changed? 4866 /* Let's assume the most common case is that the number of threads is 4867 unchanged, and put that case first. */ 4868 if (team->t.t_nproc == new_nproc) { // Check changes in number of threads 4869 KA_TRACE(20, ("__kmp_allocate_team: reusing hot team\n")); 4870 // This case can mean that omp_set_num_threads() was called and the hot 4871 // team size was already reduced, so we check the special flag 4872 if (team->t.t_size_changed == -1) { 4873 team->t.t_size_changed = 1; 4874 } else { 4875 KMP_CHECK_UPDATE(team->t.t_size_changed, 0); 4876 } 4877 4878 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 4879 kmp_r_sched_t new_sched = new_icvs->sched; 4880 // set master's schedule as new run-time schedule 4881 KMP_CHECK_UPDATE(team->t.t_sched.sched, new_sched.sched); 4882 4883 __kmp_reinitialize_team(team, new_icvs, 4884 root->r.r_uber_thread->th.th_ident); 4885 4886 KF_TRACE(10, ("__kmp_allocate_team2: T#%d, this_thread=%p team=%p\n", 0, 4887 team->t.t_threads[0], team)); 4888 __kmp_push_current_task_to_thread(team->t.t_threads[0], team, 0); 4889 4890 #if OMP_40_ENABLED 4891 #if KMP_AFFINITY_SUPPORTED 4892 if ((team->t.t_size_changed == 0) && 4893 (team->t.t_proc_bind == new_proc_bind)) { 4894 if (new_proc_bind == proc_bind_spread) { 4895 __kmp_partition_places( 4896 team, 1); // add flag to update only master for spread 4897 } 4898 KA_TRACE(200, ("__kmp_allocate_team: reusing hot team #%d bindings: " 4899 "proc_bind = %d, partition = [%d,%d]\n", 4900 team->t.t_id, new_proc_bind, team->t.t_first_place, 4901 team->t.t_last_place)); 4902 } else { 4903 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 4904 __kmp_partition_places(team); 4905 } 4906 #else 4907 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 4908 #endif /* KMP_AFFINITY_SUPPORTED */ 4909 #endif /* OMP_40_ENABLED */ 4910 } else if (team->t.t_nproc > new_nproc) { 4911 KA_TRACE(20, 4912 ("__kmp_allocate_team: decreasing hot team thread count to %d\n", 4913 new_nproc)); 4914 4915 team->t.t_size_changed = 1; 4916 #if KMP_NESTED_HOT_TEAMS 4917 if (__kmp_hot_teams_mode == 0) { 4918 // AC: saved number of threads should correspond to team's value in this 4919 // mode, can be bigger in mode 1, when hot team has threads in reserve 4920 KMP_DEBUG_ASSERT(hot_teams[level].hot_team_nth == team->t.t_nproc); 4921 hot_teams[level].hot_team_nth = new_nproc; 4922 #endif // KMP_NESTED_HOT_TEAMS 4923 /* release the extra threads we don't need any more */ 4924 for (f = new_nproc; f < team->t.t_nproc; f++) { 4925 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 4926 if (__kmp_tasking_mode != tskm_immediate_exec) { 4927 // When decreasing team size, threads no longer in the team should 4928 // unref task team. 4929 team->t.t_threads[f]->th.th_task_team = NULL; 4930 } 4931 __kmp_free_thread(team->t.t_threads[f]); 4932 team->t.t_threads[f] = NULL; 4933 } 4934 #if KMP_NESTED_HOT_TEAMS 4935 } // (__kmp_hot_teams_mode == 0) 4936 else { 4937 // When keeping extra threads in team, switch threads to wait on own 4938 // b_go flag 4939 for (f = new_nproc; f < team->t.t_nproc; ++f) { 4940 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 4941 kmp_balign_t *balign = team->t.t_threads[f]->th.th_bar; 4942 for (int b = 0; b < bs_last_barrier; ++b) { 4943 if (balign[b].bb.wait_flag == KMP_BARRIER_PARENT_FLAG) { 4944 balign[b].bb.wait_flag = KMP_BARRIER_SWITCH_TO_OWN_FLAG; 4945 } 4946 KMP_CHECK_UPDATE(balign[b].bb.leaf_kids, 0); 4947 } 4948 } 4949 } 4950 #endif // KMP_NESTED_HOT_TEAMS 4951 team->t.t_nproc = new_nproc; 4952 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 4953 KMP_CHECK_UPDATE(team->t.t_sched.sched, new_icvs->sched.sched); 4954 __kmp_reinitialize_team(team, new_icvs, 4955 root->r.r_uber_thread->th.th_ident); 4956 4957 /* update the remaining threads */ 4958 for (f = 0; f < new_nproc; ++f) { 4959 team->t.t_threads[f]->th.th_team_nproc = new_nproc; 4960 } 4961 // restore the current task state of the master thread: should be the 4962 // implicit task 4963 KF_TRACE(10, ("__kmp_allocate_team: T#%d, this_thread=%p team=%p\n", 0, 4964 team->t.t_threads[0], team)); 4965 4966 __kmp_push_current_task_to_thread(team->t.t_threads[0], team, 0); 4967 4968 #ifdef KMP_DEBUG 4969 for (f = 0; f < team->t.t_nproc; f++) { 4970 KMP_DEBUG_ASSERT(team->t.t_threads[f] && 4971 team->t.t_threads[f]->th.th_team_nproc == 4972 team->t.t_nproc); 4973 } 4974 #endif 4975 4976 #if OMP_40_ENABLED 4977 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 4978 #if KMP_AFFINITY_SUPPORTED 4979 __kmp_partition_places(team); 4980 #endif 4981 #endif 4982 } else { // team->t.t_nproc < new_nproc 4983 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 4984 kmp_affin_mask_t *old_mask; 4985 if (KMP_AFFINITY_CAPABLE()) { 4986 KMP_CPU_ALLOC(old_mask); 4987 } 4988 #endif 4989 4990 KA_TRACE(20, 4991 ("__kmp_allocate_team: increasing hot team thread count to %d\n", 4992 new_nproc)); 4993 4994 team->t.t_size_changed = 1; 4995 4996 #if KMP_NESTED_HOT_TEAMS 4997 int avail_threads = hot_teams[level].hot_team_nth; 4998 if (new_nproc < avail_threads) 4999 avail_threads = new_nproc; 5000 kmp_info_t **other_threads = team->t.t_threads; 5001 for (f = team->t.t_nproc; f < avail_threads; ++f) { 5002 // Adjust barrier data of reserved threads (if any) of the team 5003 // Other data will be set in __kmp_initialize_info() below. 5004 int b; 5005 kmp_balign_t *balign = other_threads[f]->th.th_bar; 5006 for (b = 0; b < bs_last_barrier; ++b) { 5007 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 5008 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 5009 #if USE_DEBUGGER 5010 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 5011 #endif 5012 } 5013 } 5014 if (hot_teams[level].hot_team_nth >= new_nproc) { 5015 // we have all needed threads in reserve, no need to allocate any 5016 // this only possible in mode 1, cannot have reserved threads in mode 0 5017 KMP_DEBUG_ASSERT(__kmp_hot_teams_mode == 1); 5018 team->t.t_nproc = new_nproc; // just get reserved threads involved 5019 } else { 5020 // we may have some threads in reserve, but not enough 5021 team->t.t_nproc = 5022 hot_teams[level] 5023 .hot_team_nth; // get reserved threads involved if any 5024 hot_teams[level].hot_team_nth = new_nproc; // adjust hot team max size 5025 #endif // KMP_NESTED_HOT_TEAMS 5026 if (team->t.t_max_nproc < new_nproc) { 5027 /* reallocate larger arrays */ 5028 __kmp_reallocate_team_arrays(team, new_nproc); 5029 __kmp_reinitialize_team(team, new_icvs, NULL); 5030 } 5031 5032 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 5033 /* Temporarily set full mask for master thread before creation of 5034 workers. The reason is that workers inherit the affinity from master, 5035 so if a lot of workers are created on the single core quickly, they 5036 don't get a chance to set their own affinity for a long time. */ 5037 __kmp_set_thread_affinity_mask_full_tmp(old_mask); 5038 #endif 5039 5040 /* allocate new threads for the hot team */ 5041 for (f = team->t.t_nproc; f < new_nproc; f++) { 5042 kmp_info_t *new_worker = __kmp_allocate_thread(root, team, f); 5043 KMP_DEBUG_ASSERT(new_worker); 5044 team->t.t_threads[f] = new_worker; 5045 5046 KA_TRACE(20, 5047 ("__kmp_allocate_team: team %d init T#%d arrived: " 5048 "join=%llu, plain=%llu\n", 5049 team->t.t_id, __kmp_gtid_from_tid(f, team), team->t.t_id, f, 5050 team->t.t_bar[bs_forkjoin_barrier].b_arrived, 5051 team->t.t_bar[bs_plain_barrier].b_arrived)); 5052 5053 { // Initialize barrier data for new threads. 5054 int b; 5055 kmp_balign_t *balign = new_worker->th.th_bar; 5056 for (b = 0; b < bs_last_barrier; ++b) { 5057 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 5058 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != 5059 KMP_BARRIER_PARENT_FLAG); 5060 #if USE_DEBUGGER 5061 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 5062 #endif 5063 } 5064 } 5065 } 5066 5067 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 5068 if (KMP_AFFINITY_CAPABLE()) { 5069 /* Restore initial master thread's affinity mask */ 5070 __kmp_set_system_affinity(old_mask, TRUE); 5071 KMP_CPU_FREE(old_mask); 5072 } 5073 #endif 5074 #if KMP_NESTED_HOT_TEAMS 5075 } // end of check of t_nproc vs. new_nproc vs. hot_team_nth 5076 #endif // KMP_NESTED_HOT_TEAMS 5077 /* make sure everyone is syncronized */ 5078 int old_nproc = team->t.t_nproc; // save old value and use to update only 5079 // new threads below 5080 __kmp_initialize_team(team, new_nproc, new_icvs, 5081 root->r.r_uber_thread->th.th_ident); 5082 5083 /* reinitialize the threads */ 5084 KMP_DEBUG_ASSERT(team->t.t_nproc == new_nproc); 5085 for (f = 0; f < team->t.t_nproc; ++f) 5086 __kmp_initialize_info(team->t.t_threads[f], team, f, 5087 __kmp_gtid_from_tid(f, team)); 5088 if (level) { // set th_task_state for new threads in nested hot team 5089 // __kmp_initialize_info() no longer zeroes th_task_state, so we should 5090 // only need to set the th_task_state for the new threads. th_task_state 5091 // for master thread will not be accurate until after this in 5092 // __kmp_fork_call(), so we look to the master's memo_stack to get the 5093 // correct value. 5094 for (f = old_nproc; f < team->t.t_nproc; ++f) 5095 team->t.t_threads[f]->th.th_task_state = 5096 team->t.t_threads[0]->th.th_task_state_memo_stack[level]; 5097 } else { // set th_task_state for new threads in non-nested hot team 5098 int old_state = 5099 team->t.t_threads[0]->th.th_task_state; // copy master's state 5100 for (f = old_nproc; f < team->t.t_nproc; ++f) 5101 team->t.t_threads[f]->th.th_task_state = old_state; 5102 } 5103 5104 #ifdef KMP_DEBUG 5105 for (f = 0; f < team->t.t_nproc; ++f) { 5106 KMP_DEBUG_ASSERT(team->t.t_threads[f] && 5107 team->t.t_threads[f]->th.th_team_nproc == 5108 team->t.t_nproc); 5109 } 5110 #endif 5111 5112 #if OMP_40_ENABLED 5113 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5114 #if KMP_AFFINITY_SUPPORTED 5115 __kmp_partition_places(team); 5116 #endif 5117 #endif 5118 } // Check changes in number of threads 5119 5120 #if OMP_40_ENABLED 5121 kmp_info_t *master = team->t.t_threads[0]; 5122 if (master->th.th_teams_microtask) { 5123 for (f = 1; f < new_nproc; ++f) { 5124 // propagate teams construct specific info to workers 5125 kmp_info_t *thr = team->t.t_threads[f]; 5126 thr->th.th_teams_microtask = master->th.th_teams_microtask; 5127 thr->th.th_teams_level = master->th.th_teams_level; 5128 thr->th.th_teams_size = master->th.th_teams_size; 5129 } 5130 } 5131 #endif /* OMP_40_ENABLED */ 5132 #if KMP_NESTED_HOT_TEAMS 5133 if (level) { 5134 // Sync barrier state for nested hot teams, not needed for outermost hot 5135 // team. 5136 for (f = 1; f < new_nproc; ++f) { 5137 kmp_info_t *thr = team->t.t_threads[f]; 5138 int b; 5139 kmp_balign_t *balign = thr->th.th_bar; 5140 for (b = 0; b < bs_last_barrier; ++b) { 5141 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 5142 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 5143 #if USE_DEBUGGER 5144 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 5145 #endif 5146 } 5147 } 5148 } 5149 #endif // KMP_NESTED_HOT_TEAMS 5150 5151 /* reallocate space for arguments if necessary */ 5152 __kmp_alloc_argv_entries(argc, team, TRUE); 5153 KMP_CHECK_UPDATE(team->t.t_argc, argc); 5154 // The hot team re-uses the previous task team, 5155 // if untouched during the previous release->gather phase. 5156 5157 KF_TRACE(10, (" hot_team = %p\n", team)); 5158 5159 #if KMP_DEBUG 5160 if (__kmp_tasking_mode != tskm_immediate_exec) { 5161 KA_TRACE(20, ("__kmp_allocate_team: hot team task_team[0] = %p " 5162 "task_team[1] = %p after reinit\n", 5163 team->t.t_task_team[0], team->t.t_task_team[1])); 5164 } 5165 #endif 5166 5167 #if OMPT_SUPPORT 5168 __ompt_team_assign_id(team, ompt_parallel_data); 5169 #endif 5170 5171 KMP_MB(); 5172 5173 return team; 5174 } 5175 5176 /* next, let's try to take one from the team pool */ 5177 KMP_MB(); 5178 for (team = CCAST(kmp_team_t *, __kmp_team_pool); (team);) { 5179 /* TODO: consider resizing undersized teams instead of reaping them, now 5180 that we have a resizing mechanism */ 5181 if (team->t.t_max_nproc >= max_nproc) { 5182 /* take this team from the team pool */ 5183 __kmp_team_pool = team->t.t_next_pool; 5184 5185 /* setup the team for fresh use */ 5186 __kmp_initialize_team(team, new_nproc, new_icvs, NULL); 5187 5188 KA_TRACE(20, ("__kmp_allocate_team: setting task_team[0] %p and " 5189 "task_team[1] %p to NULL\n", 5190 &team->t.t_task_team[0], &team->t.t_task_team[1])); 5191 team->t.t_task_team[0] = NULL; 5192 team->t.t_task_team[1] = NULL; 5193 5194 /* reallocate space for arguments if necessary */ 5195 __kmp_alloc_argv_entries(argc, team, TRUE); 5196 KMP_CHECK_UPDATE(team->t.t_argc, argc); 5197 5198 KA_TRACE( 5199 20, ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n", 5200 team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 5201 { // Initialize barrier data. 5202 int b; 5203 for (b = 0; b < bs_last_barrier; ++b) { 5204 team->t.t_bar[b].b_arrived = KMP_INIT_BARRIER_STATE; 5205 #if USE_DEBUGGER 5206 team->t.t_bar[b].b_master_arrived = 0; 5207 team->t.t_bar[b].b_team_arrived = 0; 5208 #endif 5209 } 5210 } 5211 5212 #if OMP_40_ENABLED 5213 team->t.t_proc_bind = new_proc_bind; 5214 #endif 5215 5216 KA_TRACE(20, ("__kmp_allocate_team: using team from pool %d.\n", 5217 team->t.t_id)); 5218 5219 #if OMPT_SUPPORT 5220 __ompt_team_assign_id(team, ompt_parallel_data); 5221 #endif 5222 5223 KMP_MB(); 5224 5225 return team; 5226 } 5227 5228 /* reap team if it is too small, then loop back and check the next one */ 5229 // not sure if this is wise, but, will be redone during the hot-teams 5230 // rewrite. 5231 /* TODO: Use technique to find the right size hot-team, don't reap them */ 5232 team = __kmp_reap_team(team); 5233 __kmp_team_pool = team; 5234 } 5235 5236 /* nothing available in the pool, no matter, make a new team! */ 5237 KMP_MB(); 5238 team = (kmp_team_t *)__kmp_allocate(sizeof(kmp_team_t)); 5239 5240 /* and set it up */ 5241 team->t.t_max_nproc = max_nproc; 5242 /* NOTE well, for some reason allocating one big buffer and dividing it up 5243 seems to really hurt performance a lot on the P4, so, let's not use this */ 5244 __kmp_allocate_team_arrays(team, max_nproc); 5245 5246 KA_TRACE(20, ("__kmp_allocate_team: making a new team\n")); 5247 __kmp_initialize_team(team, new_nproc, new_icvs, NULL); 5248 5249 KA_TRACE(20, ("__kmp_allocate_team: setting task_team[0] %p and task_team[1] " 5250 "%p to NULL\n", 5251 &team->t.t_task_team[0], &team->t.t_task_team[1])); 5252 team->t.t_task_team[0] = NULL; // to be removed, as __kmp_allocate zeroes 5253 // memory, no need to duplicate 5254 team->t.t_task_team[1] = NULL; // to be removed, as __kmp_allocate zeroes 5255 // memory, no need to duplicate 5256 5257 if (__kmp_storage_map) { 5258 __kmp_print_team_storage_map("team", team, team->t.t_id, new_nproc); 5259 } 5260 5261 /* allocate space for arguments */ 5262 __kmp_alloc_argv_entries(argc, team, FALSE); 5263 team->t.t_argc = argc; 5264 5265 KA_TRACE(20, 5266 ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n", 5267 team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 5268 { // Initialize barrier data. 5269 int b; 5270 for (b = 0; b < bs_last_barrier; ++b) { 5271 team->t.t_bar[b].b_arrived = KMP_INIT_BARRIER_STATE; 5272 #if USE_DEBUGGER 5273 team->t.t_bar[b].b_master_arrived = 0; 5274 team->t.t_bar[b].b_team_arrived = 0; 5275 #endif 5276 } 5277 } 5278 5279 #if OMP_40_ENABLED 5280 team->t.t_proc_bind = new_proc_bind; 5281 #endif 5282 5283 #if OMPT_SUPPORT 5284 __ompt_team_assign_id(team, ompt_parallel_data); 5285 team->t.ompt_serialized_team_info = NULL; 5286 #endif 5287 5288 KMP_MB(); 5289 5290 KA_TRACE(20, ("__kmp_allocate_team: done creating a new team %d.\n", 5291 team->t.t_id)); 5292 5293 return team; 5294 } 5295 5296 /* TODO implement hot-teams at all levels */ 5297 /* TODO implement lazy thread release on demand (disband request) */ 5298 5299 /* free the team. return it to the team pool. release all the threads 5300 * associated with it */ 5301 void __kmp_free_team(kmp_root_t *root, 5302 kmp_team_t *team USE_NESTED_HOT_ARG(kmp_info_t *master)) { 5303 int f; 5304 KA_TRACE(20, ("__kmp_free_team: T#%d freeing team %d\n", __kmp_get_gtid(), 5305 team->t.t_id)); 5306 5307 /* verify state */ 5308 KMP_DEBUG_ASSERT(root); 5309 KMP_DEBUG_ASSERT(team); 5310 KMP_DEBUG_ASSERT(team->t.t_nproc <= team->t.t_max_nproc); 5311 KMP_DEBUG_ASSERT(team->t.t_threads); 5312 5313 int use_hot_team = team == root->r.r_hot_team; 5314 #if KMP_NESTED_HOT_TEAMS 5315 int level; 5316 kmp_hot_team_ptr_t *hot_teams; 5317 if (master) { 5318 level = team->t.t_active_level - 1; 5319 if (master->th.th_teams_microtask) { // in teams construct? 5320 if (master->th.th_teams_size.nteams > 1) { 5321 ++level; // level was not increased in teams construct for 5322 // team_of_masters 5323 } 5324 if (team->t.t_pkfn != (microtask_t)__kmp_teams_master && 5325 master->th.th_teams_level == team->t.t_level) { 5326 ++level; // level was not increased in teams construct for 5327 // team_of_workers before the parallel 5328 } // team->t.t_level will be increased inside parallel 5329 } 5330 hot_teams = master->th.th_hot_teams; 5331 if (level < __kmp_hot_teams_max_level) { 5332 KMP_DEBUG_ASSERT(team == hot_teams[level].hot_team); 5333 use_hot_team = 1; 5334 } 5335 } 5336 #endif // KMP_NESTED_HOT_TEAMS 5337 5338 /* team is done working */ 5339 TCW_SYNC_PTR(team->t.t_pkfn, 5340 NULL); // Important for Debugging Support Library. 5341 team->t.t_copyin_counter = 0; // init counter for possible reuse 5342 // Do not reset pointer to parent team to NULL for hot teams. 5343 5344 /* if we are non-hot team, release our threads */ 5345 if (!use_hot_team) { 5346 if (__kmp_tasking_mode != tskm_immediate_exec) { 5347 // Wait for threads to reach reapable state 5348 for (f = 1; f < team->t.t_nproc; ++f) { 5349 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5350 kmp_info_t *th = team->t.t_threads[f]; 5351 volatile kmp_uint32 *state = &th->th.th_reap_state; 5352 while (*state != KMP_SAFE_TO_REAP) { 5353 #if KMP_OS_WINDOWS 5354 // On Windows a thread can be killed at any time, check this 5355 DWORD ecode; 5356 if (!__kmp_is_thread_alive(th, &ecode)) { 5357 *state = KMP_SAFE_TO_REAP; // reset the flag for dead thread 5358 break; 5359 } 5360 #endif 5361 // first check if thread is sleeping 5362 kmp_flag_64 fl(&th->th.th_bar[bs_forkjoin_barrier].bb.b_go, th); 5363 if (fl.is_sleeping()) 5364 fl.resume(__kmp_gtid_from_thread(th)); 5365 KMP_CPU_PAUSE(); 5366 } 5367 } 5368 5369 // Delete task teams 5370 int tt_idx; 5371 for (tt_idx = 0; tt_idx < 2; ++tt_idx) { 5372 kmp_task_team_t *task_team = team->t.t_task_team[tt_idx]; 5373 if (task_team != NULL) { 5374 for (f = 0; f < team->t.t_nproc; 5375 ++f) { // Have all threads unref task teams 5376 team->t.t_threads[f]->th.th_task_team = NULL; 5377 } 5378 KA_TRACE( 5379 20, 5380 ("__kmp_free_team: T#%d deactivating task_team %p on team %d\n", 5381 __kmp_get_gtid(), task_team, team->t.t_id)); 5382 #if KMP_NESTED_HOT_TEAMS 5383 __kmp_free_task_team(master, task_team); 5384 #endif 5385 team->t.t_task_team[tt_idx] = NULL; 5386 } 5387 } 5388 } 5389 5390 // Reset pointer to parent team only for non-hot teams. 5391 team->t.t_parent = NULL; 5392 team->t.t_level = 0; 5393 team->t.t_active_level = 0; 5394 5395 /* free the worker threads */ 5396 for (f = 1; f < team->t.t_nproc; ++f) { 5397 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5398 __kmp_free_thread(team->t.t_threads[f]); 5399 team->t.t_threads[f] = NULL; 5400 } 5401 5402 /* put the team back in the team pool */ 5403 /* TODO limit size of team pool, call reap_team if pool too large */ 5404 team->t.t_next_pool = CCAST(kmp_team_t *, __kmp_team_pool); 5405 __kmp_team_pool = (volatile kmp_team_t *)team; 5406 } 5407 5408 KMP_MB(); 5409 } 5410 5411 /* reap the team. destroy it, reclaim all its resources and free its memory */ 5412 kmp_team_t *__kmp_reap_team(kmp_team_t *team) { 5413 kmp_team_t *next_pool = team->t.t_next_pool; 5414 5415 KMP_DEBUG_ASSERT(team); 5416 KMP_DEBUG_ASSERT(team->t.t_dispatch); 5417 KMP_DEBUG_ASSERT(team->t.t_disp_buffer); 5418 KMP_DEBUG_ASSERT(team->t.t_threads); 5419 KMP_DEBUG_ASSERT(team->t.t_argv); 5420 5421 /* TODO clean the threads that are a part of this? */ 5422 5423 /* free stuff */ 5424 __kmp_free_team_arrays(team); 5425 if (team->t.t_argv != &team->t.t_inline_argv[0]) 5426 __kmp_free((void *)team->t.t_argv); 5427 __kmp_free(team); 5428 5429 KMP_MB(); 5430 return next_pool; 5431 } 5432 5433 // Free the thread. Don't reap it, just place it on the pool of available 5434 // threads. 5435 // 5436 // Changes for Quad issue 527845: We need a predictable OMP tid <-> gtid 5437 // binding for the affinity mechanism to be useful. 5438 // 5439 // Now, we always keep the free list (__kmp_thread_pool) sorted by gtid. 5440 // However, we want to avoid a potential performance problem by always 5441 // scanning through the list to find the correct point at which to insert 5442 // the thread (potential N**2 behavior). To do this we keep track of the 5443 // last place a thread struct was inserted (__kmp_thread_pool_insert_pt). 5444 // With single-level parallelism, threads will always be added to the tail 5445 // of the list, kept track of by __kmp_thread_pool_insert_pt. With nested 5446 // parallelism, all bets are off and we may need to scan through the entire 5447 // free list. 5448 // 5449 // This change also has a potentially large performance benefit, for some 5450 // applications. Previously, as threads were freed from the hot team, they 5451 // would be placed back on the free list in inverse order. If the hot team 5452 // grew back to it's original size, then the freed thread would be placed 5453 // back on the hot team in reverse order. This could cause bad cache 5454 // locality problems on programs where the size of the hot team regularly 5455 // grew and shrunk. 5456 // 5457 // Now, for single-level parallelism, the OMP tid is alway == gtid. 5458 void __kmp_free_thread(kmp_info_t *this_th) { 5459 int gtid; 5460 kmp_info_t **scan; 5461 kmp_root_t *root = this_th->th.th_root; 5462 5463 KA_TRACE(20, ("__kmp_free_thread: T#%d putting T#%d back on free pool.\n", 5464 __kmp_get_gtid(), this_th->th.th_info.ds.ds_gtid)); 5465 5466 KMP_DEBUG_ASSERT(this_th); 5467 5468 // When moving thread to pool, switch thread to wait on own b_go flag, and 5469 // uninitialized (NULL team). 5470 int b; 5471 kmp_balign_t *balign = this_th->th.th_bar; 5472 for (b = 0; b < bs_last_barrier; ++b) { 5473 if (balign[b].bb.wait_flag == KMP_BARRIER_PARENT_FLAG) 5474 balign[b].bb.wait_flag = KMP_BARRIER_SWITCH_TO_OWN_FLAG; 5475 balign[b].bb.team = NULL; 5476 balign[b].bb.leaf_kids = 0; 5477 } 5478 this_th->th.th_task_state = 0; 5479 5480 /* put thread back on the free pool */ 5481 TCW_PTR(this_th->th.th_team, NULL); 5482 TCW_PTR(this_th->th.th_root, NULL); 5483 TCW_PTR(this_th->th.th_dispatch, NULL); /* NOT NEEDED */ 5484 5485 /* If the implicit task assigned to this thread can be used by other threads 5486 * -> multiple threads can share the data and try to free the task at 5487 * __kmp_reap_thread at exit. This duplicate use of the task data can happen 5488 * with higher probability when hot team is disabled but can occurs even when 5489 * the hot team is enabled */ 5490 __kmp_free_implicit_task(this_th); 5491 this_th->th.th_current_task = NULL; 5492 5493 // If the __kmp_thread_pool_insert_pt is already past the new insert 5494 // point, then we need to re-scan the entire list. 5495 gtid = this_th->th.th_info.ds.ds_gtid; 5496 if (__kmp_thread_pool_insert_pt != NULL) { 5497 KMP_DEBUG_ASSERT(__kmp_thread_pool != NULL); 5498 if (__kmp_thread_pool_insert_pt->th.th_info.ds.ds_gtid > gtid) { 5499 __kmp_thread_pool_insert_pt = NULL; 5500 } 5501 } 5502 5503 // Scan down the list to find the place to insert the thread. 5504 // scan is the address of a link in the list, possibly the address of 5505 // __kmp_thread_pool itself. 5506 // 5507 // In the absence of nested parallism, the for loop will have 0 iterations. 5508 if (__kmp_thread_pool_insert_pt != NULL) { 5509 scan = &(__kmp_thread_pool_insert_pt->th.th_next_pool); 5510 } else { 5511 scan = CCAST(kmp_info_t **, &__kmp_thread_pool); 5512 } 5513 for (; (*scan != NULL) && ((*scan)->th.th_info.ds.ds_gtid < gtid); 5514 scan = &((*scan)->th.th_next_pool)) 5515 ; 5516 5517 // Insert the new element on the list, and set __kmp_thread_pool_insert_pt 5518 // to its address. 5519 TCW_PTR(this_th->th.th_next_pool, *scan); 5520 __kmp_thread_pool_insert_pt = *scan = this_th; 5521 KMP_DEBUG_ASSERT((this_th->th.th_next_pool == NULL) || 5522 (this_th->th.th_info.ds.ds_gtid < 5523 this_th->th.th_next_pool->th.th_info.ds.ds_gtid)); 5524 TCW_4(this_th->th.th_in_pool, TRUE); 5525 __kmp_thread_pool_nth++; 5526 5527 TCW_4(__kmp_nth, __kmp_nth - 1); 5528 root->r.r_cg_nthreads--; 5529 5530 #ifdef KMP_ADJUST_BLOCKTIME 5531 /* Adjust blocktime back to user setting or default if necessary */ 5532 /* Middle initialization might never have occurred */ 5533 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 5534 KMP_DEBUG_ASSERT(__kmp_avail_proc > 0); 5535 if (__kmp_nth <= __kmp_avail_proc) { 5536 __kmp_zero_bt = FALSE; 5537 } 5538 } 5539 #endif /* KMP_ADJUST_BLOCKTIME */ 5540 5541 KMP_MB(); 5542 } 5543 5544 /* ------------------------------------------------------------------------ */ 5545 5546 void *__kmp_launch_thread(kmp_info_t *this_thr) { 5547 int gtid = this_thr->th.th_info.ds.ds_gtid; 5548 /* void *stack_data;*/ 5549 kmp_team_t *(*volatile pteam); 5550 5551 KMP_MB(); 5552 KA_TRACE(10, ("__kmp_launch_thread: T#%d start\n", gtid)); 5553 5554 if (__kmp_env_consistency_check) { 5555 this_thr->th.th_cons = __kmp_allocate_cons_stack(gtid); // ATT: Memory leak? 5556 } 5557 5558 #if OMPT_SUPPORT 5559 ompt_data_t *thread_data; 5560 if (ompt_enabled.enabled) { 5561 thread_data = &(this_thr->th.ompt_thread_info.thread_data); 5562 thread_data->ptr = NULL; 5563 5564 this_thr->th.ompt_thread_info.state = omp_state_overhead; 5565 this_thr->th.ompt_thread_info.wait_id = 0; 5566 this_thr->th.ompt_thread_info.idle_frame = OMPT_GET_FRAME_ADDRESS(0); 5567 if (ompt_enabled.ompt_callback_thread_begin) { 5568 ompt_callbacks.ompt_callback(ompt_callback_thread_begin)( 5569 ompt_thread_worker, thread_data); 5570 } 5571 } 5572 #endif 5573 5574 #if OMPT_SUPPORT 5575 if (ompt_enabled.enabled) { 5576 this_thr->th.ompt_thread_info.state = omp_state_idle; 5577 } 5578 #endif 5579 /* This is the place where threads wait for work */ 5580 while (!TCR_4(__kmp_global.g.g_done)) { 5581 KMP_DEBUG_ASSERT(this_thr == __kmp_threads[gtid]); 5582 KMP_MB(); 5583 5584 /* wait for work to do */ 5585 KA_TRACE(20, ("__kmp_launch_thread: T#%d waiting for work\n", gtid)); 5586 5587 /* No tid yet since not part of a team */ 5588 __kmp_fork_barrier(gtid, KMP_GTID_DNE); 5589 5590 #if OMPT_SUPPORT 5591 if (ompt_enabled.enabled) { 5592 this_thr->th.ompt_thread_info.state = omp_state_overhead; 5593 } 5594 #endif 5595 5596 pteam = (kmp_team_t * (*))(&this_thr->th.th_team); 5597 5598 /* have we been allocated? */ 5599 if (TCR_SYNC_PTR(*pteam) && !TCR_4(__kmp_global.g.g_done)) { 5600 /* we were just woken up, so run our new task */ 5601 if (TCR_SYNC_PTR((*pteam)->t.t_pkfn) != NULL) { 5602 int rc; 5603 KA_TRACE(20, 5604 ("__kmp_launch_thread: T#%d(%d:%d) invoke microtask = %p\n", 5605 gtid, (*pteam)->t.t_id, __kmp_tid_from_gtid(gtid), 5606 (*pteam)->t.t_pkfn)); 5607 5608 updateHWFPControl(*pteam); 5609 5610 #if OMPT_SUPPORT 5611 if (ompt_enabled.enabled) { 5612 this_thr->th.ompt_thread_info.state = omp_state_work_parallel; 5613 } 5614 #endif 5615 5616 { 5617 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 5618 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 5619 rc = (*pteam)->t.t_invoke(gtid); 5620 } 5621 KMP_ASSERT(rc); 5622 5623 KMP_MB(); 5624 KA_TRACE(20, ("__kmp_launch_thread: T#%d(%d:%d) done microtask = %p\n", 5625 gtid, (*pteam)->t.t_id, __kmp_tid_from_gtid(gtid), 5626 (*pteam)->t.t_pkfn)); 5627 } 5628 #if OMPT_SUPPORT 5629 if (ompt_enabled.enabled) { 5630 /* no frame set while outside task */ 5631 __ompt_get_task_info_object(0)->frame.exit_frame = NULL; 5632 5633 this_thr->th.ompt_thread_info.state = omp_state_overhead; 5634 } 5635 #endif 5636 /* join barrier after parallel region */ 5637 __kmp_join_barrier(gtid); 5638 } 5639 } 5640 TCR_SYNC_PTR((intptr_t)__kmp_global.g.g_done); 5641 5642 #if OMPT_SUPPORT 5643 if (ompt_enabled.ompt_callback_thread_end) { 5644 ompt_callbacks.ompt_callback(ompt_callback_thread_end)(thread_data); 5645 } 5646 #endif 5647 5648 this_thr->th.th_task_team = NULL; 5649 /* run the destructors for the threadprivate data for this thread */ 5650 __kmp_common_destroy_gtid(gtid); 5651 5652 KA_TRACE(10, ("__kmp_launch_thread: T#%d done\n", gtid)); 5653 KMP_MB(); 5654 return this_thr; 5655 } 5656 5657 /* ------------------------------------------------------------------------ */ 5658 5659 void __kmp_internal_end_dest(void *specific_gtid) { 5660 #if KMP_COMPILER_ICC 5661 #pragma warning(push) 5662 #pragma warning(disable : 810) // conversion from "void *" to "int" may lose 5663 // significant bits 5664 #endif 5665 // Make sure no significant bits are lost 5666 int gtid = (kmp_intptr_t)specific_gtid - 1; 5667 #if KMP_COMPILER_ICC 5668 #pragma warning(pop) 5669 #endif 5670 5671 KA_TRACE(30, ("__kmp_internal_end_dest: T#%d\n", gtid)); 5672 /* NOTE: the gtid is stored as gitd+1 in the thread-local-storage 5673 * this is because 0 is reserved for the nothing-stored case */ 5674 5675 /* josh: One reason for setting the gtid specific data even when it is being 5676 destroyed by pthread is to allow gtid lookup through thread specific data 5677 (__kmp_gtid_get_specific). Some of the code, especially stat code, 5678 that gets executed in the call to __kmp_internal_end_thread, actually 5679 gets the gtid through the thread specific data. Setting it here seems 5680 rather inelegant and perhaps wrong, but allows __kmp_internal_end_thread 5681 to run smoothly. 5682 todo: get rid of this after we remove the dependence on 5683 __kmp_gtid_get_specific */ 5684 if (gtid >= 0 && KMP_UBER_GTID(gtid)) 5685 __kmp_gtid_set_specific(gtid); 5686 #ifdef KMP_TDATA_GTID 5687 __kmp_gtid = gtid; 5688 #endif 5689 __kmp_internal_end_thread(gtid); 5690 } 5691 5692 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB 5693 5694 // 2009-09-08 (lev): It looks the destructor does not work. In simple test cases 5695 // destructors work perfectly, but in real libomp.so I have no evidence it is 5696 // ever called. However, -fini linker option in makefile.mk works fine. 5697 5698 __attribute__((destructor)) void __kmp_internal_end_dtor(void) { 5699 __kmp_internal_end_atexit(); 5700 } 5701 5702 void __kmp_internal_end_fini(void) { __kmp_internal_end_atexit(); } 5703 5704 #endif 5705 5706 /* [Windows] josh: when the atexit handler is called, there may still be more 5707 than one thread alive */ 5708 void __kmp_internal_end_atexit(void) { 5709 KA_TRACE(30, ("__kmp_internal_end_atexit\n")); 5710 /* [Windows] 5711 josh: ideally, we want to completely shutdown the library in this atexit 5712 handler, but stat code that depends on thread specific data for gtid fails 5713 because that data becomes unavailable at some point during the shutdown, so 5714 we call __kmp_internal_end_thread instead. We should eventually remove the 5715 dependency on __kmp_get_specific_gtid in the stat code and use 5716 __kmp_internal_end_library to cleanly shutdown the library. 5717 5718 // TODO: Can some of this comment about GVS be removed? 5719 I suspect that the offending stat code is executed when the calling thread 5720 tries to clean up a dead root thread's data structures, resulting in GVS 5721 code trying to close the GVS structures for that thread, but since the stat 5722 code uses __kmp_get_specific_gtid to get the gtid with the assumption that 5723 the calling thread is cleaning up itself instead of another thread, it get 5724 confused. This happens because allowing a thread to unregister and cleanup 5725 another thread is a recent modification for addressing an issue. 5726 Based on the current design (20050722), a thread may end up 5727 trying to unregister another thread only if thread death does not trigger 5728 the calling of __kmp_internal_end_thread. For Linux* OS, there is the 5729 thread specific data destructor function to detect thread death. For 5730 Windows dynamic, there is DllMain(THREAD_DETACH). For Windows static, there 5731 is nothing. Thus, the workaround is applicable only for Windows static 5732 stat library. */ 5733 __kmp_internal_end_library(-1); 5734 #if KMP_OS_WINDOWS 5735 __kmp_close_console(); 5736 #endif 5737 } 5738 5739 static void __kmp_reap_thread(kmp_info_t *thread, int is_root) { 5740 // It is assumed __kmp_forkjoin_lock is acquired. 5741 5742 int gtid; 5743 5744 KMP_DEBUG_ASSERT(thread != NULL); 5745 5746 gtid = thread->th.th_info.ds.ds_gtid; 5747 5748 if (!is_root) { 5749 5750 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { 5751 /* Assume the threads are at the fork barrier here */ 5752 KA_TRACE( 5753 20, ("__kmp_reap_thread: releasing T#%d from fork barrier for reap\n", 5754 gtid)); 5755 /* Need release fence here to prevent seg faults for tree forkjoin barrier 5756 * (GEH) */ 5757 ANNOTATE_HAPPENS_BEFORE(thread); 5758 kmp_flag_64 flag(&thread->th.th_bar[bs_forkjoin_barrier].bb.b_go, thread); 5759 __kmp_release_64(&flag); 5760 } 5761 5762 // Terminate OS thread. 5763 __kmp_reap_worker(thread); 5764 5765 // The thread was killed asynchronously. If it was actively 5766 // spinning in the thread pool, decrement the global count. 5767 // 5768 // There is a small timing hole here - if the worker thread was just waking 5769 // up after sleeping in the pool, had reset it's th_active_in_pool flag but 5770 // not decremented the global counter __kmp_thread_pool_active_nth yet, then 5771 // the global counter might not get updated. 5772 // 5773 // Currently, this can only happen as the library is unloaded, 5774 // so there are no harmful side effects. 5775 if (thread->th.th_active_in_pool) { 5776 thread->th.th_active_in_pool = FALSE; 5777 KMP_TEST_THEN_DEC32(&__kmp_thread_pool_active_nth); 5778 KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0); 5779 } 5780 5781 // Decrement # of [worker] threads in the pool. 5782 KMP_DEBUG_ASSERT(__kmp_thread_pool_nth > 0); 5783 --__kmp_thread_pool_nth; 5784 } 5785 5786 __kmp_free_implicit_task(thread); 5787 5788 // Free the fast memory for tasking 5789 #if USE_FAST_MEMORY 5790 __kmp_free_fast_memory(thread); 5791 #endif /* USE_FAST_MEMORY */ 5792 5793 __kmp_suspend_uninitialize_thread(thread); 5794 5795 KMP_DEBUG_ASSERT(__kmp_threads[gtid] == thread); 5796 TCW_SYNC_PTR(__kmp_threads[gtid], NULL); 5797 5798 --__kmp_all_nth; 5799 // __kmp_nth was decremented when thread is added to the pool. 5800 5801 #ifdef KMP_ADJUST_BLOCKTIME 5802 /* Adjust blocktime back to user setting or default if necessary */ 5803 /* Middle initialization might never have occurred */ 5804 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 5805 KMP_DEBUG_ASSERT(__kmp_avail_proc > 0); 5806 if (__kmp_nth <= __kmp_avail_proc) { 5807 __kmp_zero_bt = FALSE; 5808 } 5809 } 5810 #endif /* KMP_ADJUST_BLOCKTIME */ 5811 5812 /* free the memory being used */ 5813 if (__kmp_env_consistency_check) { 5814 if (thread->th.th_cons) { 5815 __kmp_free_cons_stack(thread->th.th_cons); 5816 thread->th.th_cons = NULL; 5817 } 5818 } 5819 5820 if (thread->th.th_pri_common != NULL) { 5821 __kmp_free(thread->th.th_pri_common); 5822 thread->th.th_pri_common = NULL; 5823 } 5824 5825 if (thread->th.th_task_state_memo_stack != NULL) { 5826 __kmp_free(thread->th.th_task_state_memo_stack); 5827 thread->th.th_task_state_memo_stack = NULL; 5828 } 5829 5830 #if KMP_USE_BGET 5831 if (thread->th.th_local.bget_data != NULL) { 5832 __kmp_finalize_bget(thread); 5833 } 5834 #endif 5835 5836 #if KMP_AFFINITY_SUPPORTED 5837 if (thread->th.th_affin_mask != NULL) { 5838 KMP_CPU_FREE(thread->th.th_affin_mask); 5839 thread->th.th_affin_mask = NULL; 5840 } 5841 #endif /* KMP_AFFINITY_SUPPORTED */ 5842 5843 __kmp_reap_team(thread->th.th_serial_team); 5844 thread->th.th_serial_team = NULL; 5845 __kmp_free(thread); 5846 5847 KMP_MB(); 5848 5849 } // __kmp_reap_thread 5850 5851 static void __kmp_internal_end(void) { 5852 int i; 5853 5854 /* First, unregister the library */ 5855 __kmp_unregister_library(); 5856 5857 #if KMP_OS_WINDOWS 5858 /* In Win static library, we can't tell when a root actually dies, so we 5859 reclaim the data structures for any root threads that have died but not 5860 unregistered themselves, in order to shut down cleanly. 5861 In Win dynamic library we also can't tell when a thread dies. */ 5862 __kmp_reclaim_dead_roots(); // AC: moved here to always clean resources of 5863 // dead roots 5864 #endif 5865 5866 for (i = 0; i < __kmp_threads_capacity; i++) 5867 if (__kmp_root[i]) 5868 if (__kmp_root[i]->r.r_active) 5869 break; 5870 KMP_MB(); /* Flush all pending memory write invalidates. */ 5871 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 5872 5873 if (i < __kmp_threads_capacity) { 5874 #if KMP_USE_MONITOR 5875 // 2009-09-08 (lev): Other alive roots found. Why do we kill the monitor?? 5876 KMP_MB(); /* Flush all pending memory write invalidates. */ 5877 5878 // Need to check that monitor was initialized before reaping it. If we are 5879 // called form __kmp_atfork_child (which sets __kmp_init_parallel = 0), then 5880 // __kmp_monitor will appear to contain valid data, but it is only valid in 5881 // the parent process, not the child. 5882 // New behavior (201008): instead of keying off of the flag 5883 // __kmp_init_parallel, the monitor thread creation is keyed off 5884 // of the new flag __kmp_init_monitor. 5885 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock); 5886 if (TCR_4(__kmp_init_monitor)) { 5887 __kmp_reap_monitor(&__kmp_monitor); 5888 TCW_4(__kmp_init_monitor, 0); 5889 } 5890 __kmp_release_bootstrap_lock(&__kmp_monitor_lock); 5891 KA_TRACE(10, ("__kmp_internal_end: monitor reaped\n")); 5892 #endif // KMP_USE_MONITOR 5893 } else { 5894 /* TODO move this to cleanup code */ 5895 #ifdef KMP_DEBUG 5896 /* make sure that everything has properly ended */ 5897 for (i = 0; i < __kmp_threads_capacity; i++) { 5898 if (__kmp_root[i]) { 5899 // KMP_ASSERT( ! KMP_UBER_GTID( i ) ); // AC: 5900 // there can be uber threads alive here 5901 KMP_ASSERT(!__kmp_root[i]->r.r_active); // TODO: can they be active? 5902 } 5903 } 5904 #endif 5905 5906 KMP_MB(); 5907 5908 // Reap the worker threads. 5909 // This is valid for now, but be careful if threads are reaped sooner. 5910 while (__kmp_thread_pool != NULL) { // Loop thru all the thread in the pool. 5911 // Get the next thread from the pool. 5912 kmp_info_t *thread = CCAST(kmp_info_t *, __kmp_thread_pool); 5913 __kmp_thread_pool = thread->th.th_next_pool; 5914 // Reap it. 5915 KMP_DEBUG_ASSERT(thread->th.th_reap_state == KMP_SAFE_TO_REAP); 5916 thread->th.th_next_pool = NULL; 5917 thread->th.th_in_pool = FALSE; 5918 __kmp_reap_thread(thread, 0); 5919 } 5920 __kmp_thread_pool_insert_pt = NULL; 5921 5922 // Reap teams. 5923 while (__kmp_team_pool != NULL) { // Loop thru all the teams in the pool. 5924 // Get the next team from the pool. 5925 kmp_team_t *team = CCAST(kmp_team_t *, __kmp_team_pool); 5926 __kmp_team_pool = team->t.t_next_pool; 5927 // Reap it. 5928 team->t.t_next_pool = NULL; 5929 __kmp_reap_team(team); 5930 } 5931 5932 __kmp_reap_task_teams(); 5933 5934 for (i = 0; i < __kmp_threads_capacity; ++i) { 5935 // TBD: Add some checking... 5936 // Something like KMP_DEBUG_ASSERT( __kmp_thread[ i ] == NULL ); 5937 } 5938 5939 /* Make sure all threadprivate destructors get run by joining with all 5940 worker threads before resetting this flag */ 5941 TCW_SYNC_4(__kmp_init_common, FALSE); 5942 5943 KA_TRACE(10, ("__kmp_internal_end: all workers reaped\n")); 5944 KMP_MB(); 5945 5946 #if KMP_USE_MONITOR 5947 // See note above: One of the possible fixes for CQ138434 / CQ140126 5948 // 5949 // FIXME: push both code fragments down and CSE them? 5950 // push them into __kmp_cleanup() ? 5951 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock); 5952 if (TCR_4(__kmp_init_monitor)) { 5953 __kmp_reap_monitor(&__kmp_monitor); 5954 TCW_4(__kmp_init_monitor, 0); 5955 } 5956 __kmp_release_bootstrap_lock(&__kmp_monitor_lock); 5957 KA_TRACE(10, ("__kmp_internal_end: monitor reaped\n")); 5958 #endif 5959 } /* else !__kmp_global.t_active */ 5960 TCW_4(__kmp_init_gtid, FALSE); 5961 KMP_MB(); /* Flush all pending memory write invalidates. */ 5962 5963 __kmp_cleanup(); 5964 #if OMPT_SUPPORT 5965 ompt_fini(); 5966 #endif 5967 } 5968 5969 void __kmp_internal_end_library(int gtid_req) { 5970 /* if we have already cleaned up, don't try again, it wouldn't be pretty */ 5971 /* this shouldn't be a race condition because __kmp_internal_end() is the 5972 only place to clear __kmp_serial_init */ 5973 /* we'll check this later too, after we get the lock */ 5974 // 2009-09-06: We do not set g_abort without setting g_done. This check looks 5975 // redundaant, because the next check will work in any case. 5976 if (__kmp_global.g.g_abort) { 5977 KA_TRACE(11, ("__kmp_internal_end_library: abort, exiting\n")); 5978 /* TODO abort? */ 5979 return; 5980 } 5981 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 5982 KA_TRACE(10, ("__kmp_internal_end_library: already finished\n")); 5983 return; 5984 } 5985 5986 KMP_MB(); /* Flush all pending memory write invalidates. */ 5987 5988 /* find out who we are and what we should do */ 5989 { 5990 int gtid = (gtid_req >= 0) ? gtid_req : __kmp_gtid_get_specific(); 5991 KA_TRACE( 5992 10, ("__kmp_internal_end_library: enter T#%d (%d)\n", gtid, gtid_req)); 5993 if (gtid == KMP_GTID_SHUTDOWN) { 5994 KA_TRACE(10, ("__kmp_internal_end_library: !__kmp_init_runtime, system " 5995 "already shutdown\n")); 5996 return; 5997 } else if (gtid == KMP_GTID_MONITOR) { 5998 KA_TRACE(10, ("__kmp_internal_end_library: monitor thread, gtid not " 5999 "registered, or system shutdown\n")); 6000 return; 6001 } else if (gtid == KMP_GTID_DNE) { 6002 KA_TRACE(10, ("__kmp_internal_end_library: gtid not registered or system " 6003 "shutdown\n")); 6004 /* we don't know who we are, but we may still shutdown the library */ 6005 } else if (KMP_UBER_GTID(gtid)) { 6006 /* unregister ourselves as an uber thread. gtid is no longer valid */ 6007 if (__kmp_root[gtid]->r.r_active) { 6008 __kmp_global.g.g_abort = -1; 6009 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 6010 KA_TRACE(10, 6011 ("__kmp_internal_end_library: root still active, abort T#%d\n", 6012 gtid)); 6013 return; 6014 } else { 6015 KA_TRACE( 6016 10, 6017 ("__kmp_internal_end_library: unregistering sibling T#%d\n", gtid)); 6018 __kmp_unregister_root_current_thread(gtid); 6019 } 6020 } else { 6021 /* worker threads may call this function through the atexit handler, if they 6022 * call exit() */ 6023 /* For now, skip the usual subsequent processing and just dump the debug buffer. 6024 TODO: do a thorough shutdown instead */ 6025 #ifdef DUMP_DEBUG_ON_EXIT 6026 if (__kmp_debug_buf) 6027 __kmp_dump_debug_buffer(); 6028 #endif 6029 return; 6030 } 6031 } 6032 /* synchronize the termination process */ 6033 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6034 6035 /* have we already finished */ 6036 if (__kmp_global.g.g_abort) { 6037 KA_TRACE(10, ("__kmp_internal_end_library: abort, exiting\n")); 6038 /* TODO abort? */ 6039 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6040 return; 6041 } 6042 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6043 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6044 return; 6045 } 6046 6047 /* We need this lock to enforce mutex between this reading of 6048 __kmp_threads_capacity and the writing by __kmp_register_root. 6049 Alternatively, we can use a counter of roots that is atomically updated by 6050 __kmp_get_global_thread_id_reg, __kmp_do_serial_initialize and 6051 __kmp_internal_end_*. */ 6052 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 6053 6054 /* now we can safely conduct the actual termination */ 6055 __kmp_internal_end(); 6056 6057 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 6058 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6059 6060 KA_TRACE(10, ("__kmp_internal_end_library: exit\n")); 6061 6062 #ifdef DUMP_DEBUG_ON_EXIT 6063 if (__kmp_debug_buf) 6064 __kmp_dump_debug_buffer(); 6065 #endif 6066 6067 #if KMP_OS_WINDOWS 6068 __kmp_close_console(); 6069 #endif 6070 6071 __kmp_fini_allocator(); 6072 6073 } // __kmp_internal_end_library 6074 6075 void __kmp_internal_end_thread(int gtid_req) { 6076 int i; 6077 6078 /* if we have already cleaned up, don't try again, it wouldn't be pretty */ 6079 /* this shouldn't be a race condition because __kmp_internal_end() is the 6080 * only place to clear __kmp_serial_init */ 6081 /* we'll check this later too, after we get the lock */ 6082 // 2009-09-06: We do not set g_abort without setting g_done. This check looks 6083 // redundant, because the next check will work in any case. 6084 if (__kmp_global.g.g_abort) { 6085 KA_TRACE(11, ("__kmp_internal_end_thread: abort, exiting\n")); 6086 /* TODO abort? */ 6087 return; 6088 } 6089 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6090 KA_TRACE(10, ("__kmp_internal_end_thread: already finished\n")); 6091 return; 6092 } 6093 6094 KMP_MB(); /* Flush all pending memory write invalidates. */ 6095 6096 /* find out who we are and what we should do */ 6097 { 6098 int gtid = (gtid_req >= 0) ? gtid_req : __kmp_gtid_get_specific(); 6099 KA_TRACE(10, 6100 ("__kmp_internal_end_thread: enter T#%d (%d)\n", gtid, gtid_req)); 6101 if (gtid == KMP_GTID_SHUTDOWN) { 6102 KA_TRACE(10, ("__kmp_internal_end_thread: !__kmp_init_runtime, system " 6103 "already shutdown\n")); 6104 return; 6105 } else if (gtid == KMP_GTID_MONITOR) { 6106 KA_TRACE(10, ("__kmp_internal_end_thread: monitor thread, gtid not " 6107 "registered, or system shutdown\n")); 6108 return; 6109 } else if (gtid == KMP_GTID_DNE) { 6110 KA_TRACE(10, ("__kmp_internal_end_thread: gtid not registered or system " 6111 "shutdown\n")); 6112 return; 6113 /* we don't know who we are */ 6114 } else if (KMP_UBER_GTID(gtid)) { 6115 /* unregister ourselves as an uber thread. gtid is no longer valid */ 6116 if (__kmp_root[gtid]->r.r_active) { 6117 __kmp_global.g.g_abort = -1; 6118 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 6119 KA_TRACE(10, 6120 ("__kmp_internal_end_thread: root still active, abort T#%d\n", 6121 gtid)); 6122 return; 6123 } else { 6124 KA_TRACE(10, ("__kmp_internal_end_thread: unregistering sibling T#%d\n", 6125 gtid)); 6126 __kmp_unregister_root_current_thread(gtid); 6127 } 6128 } else { 6129 /* just a worker thread, let's leave */ 6130 KA_TRACE(10, ("__kmp_internal_end_thread: worker thread T#%d\n", gtid)); 6131 6132 if (gtid >= 0) { 6133 __kmp_threads[gtid]->th.th_task_team = NULL; 6134 } 6135 6136 KA_TRACE(10, 6137 ("__kmp_internal_end_thread: worker thread done, exiting T#%d\n", 6138 gtid)); 6139 return; 6140 } 6141 } 6142 #if defined KMP_DYNAMIC_LIB 6143 // AC: lets not shutdown the Linux* OS dynamic library at the exit of uber 6144 // thread, because we will better shutdown later in the library destructor. 6145 // The reason of this change is performance problem when non-openmp thread in 6146 // a loop forks and joins many openmp threads. We can save a lot of time 6147 // keeping worker threads alive until the program shutdown. 6148 // OM: Removed Linux* OS restriction to fix the crash on OS X* (DPD200239966) 6149 // and Windows(DPD200287443) that occurs when using critical sections from 6150 // foreign threads. 6151 KA_TRACE(10, ("__kmp_internal_end_thread: exiting T#%d\n", gtid_req)); 6152 return; 6153 #endif 6154 /* synchronize the termination process */ 6155 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6156 6157 /* have we already finished */ 6158 if (__kmp_global.g.g_abort) { 6159 KA_TRACE(10, ("__kmp_internal_end_thread: abort, exiting\n")); 6160 /* TODO abort? */ 6161 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6162 return; 6163 } 6164 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6165 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6166 return; 6167 } 6168 6169 /* We need this lock to enforce mutex between this reading of 6170 __kmp_threads_capacity and the writing by __kmp_register_root. 6171 Alternatively, we can use a counter of roots that is atomically updated by 6172 __kmp_get_global_thread_id_reg, __kmp_do_serial_initialize and 6173 __kmp_internal_end_*. */ 6174 6175 /* should we finish the run-time? are all siblings done? */ 6176 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 6177 6178 for (i = 0; i < __kmp_threads_capacity; ++i) { 6179 if (KMP_UBER_GTID(i)) { 6180 KA_TRACE( 6181 10, 6182 ("__kmp_internal_end_thread: remaining sibling task: gtid==%d\n", i)); 6183 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 6184 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6185 return; 6186 } 6187 } 6188 6189 /* now we can safely conduct the actual termination */ 6190 6191 __kmp_internal_end(); 6192 6193 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 6194 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6195 6196 KA_TRACE(10, ("__kmp_internal_end_thread: exit T#%d\n", gtid_req)); 6197 6198 #ifdef DUMP_DEBUG_ON_EXIT 6199 if (__kmp_debug_buf) 6200 __kmp_dump_debug_buffer(); 6201 #endif 6202 } // __kmp_internal_end_thread 6203 6204 // ----------------------------------------------------------------------------- 6205 // Library registration stuff. 6206 6207 static long __kmp_registration_flag = 0; 6208 // Random value used to indicate library initialization. 6209 static char *__kmp_registration_str = NULL; 6210 // Value to be saved in env var __KMP_REGISTERED_LIB_<pid>. 6211 6212 static inline char *__kmp_reg_status_name() { 6213 /* On RHEL 3u5 if linked statically, getpid() returns different values in 6214 each thread. If registration and unregistration go in different threads 6215 (omp_misc_other_root_exit.cpp test case), the name of registered_lib_env 6216 env var can not be found, because the name will contain different pid. */ 6217 return __kmp_str_format("__KMP_REGISTERED_LIB_%d", (int)getpid()); 6218 } // __kmp_reg_status_get 6219 6220 void __kmp_register_library_startup(void) { 6221 6222 char *name = __kmp_reg_status_name(); // Name of the environment variable. 6223 int done = 0; 6224 union { 6225 double dtime; 6226 long ltime; 6227 } time; 6228 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 6229 __kmp_initialize_system_tick(); 6230 #endif 6231 __kmp_read_system_time(&time.dtime); 6232 __kmp_registration_flag = 0xCAFE0000L | (time.ltime & 0x0000FFFFL); 6233 __kmp_registration_str = 6234 __kmp_str_format("%p-%lx-%s", &__kmp_registration_flag, 6235 __kmp_registration_flag, KMP_LIBRARY_FILE); 6236 6237 KA_TRACE(50, ("__kmp_register_library_startup: %s=\"%s\"\n", name, 6238 __kmp_registration_str)); 6239 6240 while (!done) { 6241 6242 char *value = NULL; // Actual value of the environment variable. 6243 6244 // Set environment variable, but do not overwrite if it is exist. 6245 __kmp_env_set(name, __kmp_registration_str, 0); 6246 // Check the variable is written. 6247 value = __kmp_env_get(name); 6248 if (value != NULL && strcmp(value, __kmp_registration_str) == 0) { 6249 6250 done = 1; // Ok, environment variable set successfully, exit the loop. 6251 6252 } else { 6253 6254 // Oops. Write failed. Another copy of OpenMP RTL is in memory. 6255 // Check whether it alive or dead. 6256 int neighbor = 0; // 0 -- unknown status, 1 -- alive, 2 -- dead. 6257 char *tail = value; 6258 char *flag_addr_str = NULL; 6259 char *flag_val_str = NULL; 6260 char const *file_name = NULL; 6261 __kmp_str_split(tail, '-', &flag_addr_str, &tail); 6262 __kmp_str_split(tail, '-', &flag_val_str, &tail); 6263 file_name = tail; 6264 if (tail != NULL) { 6265 long *flag_addr = 0; 6266 long flag_val = 0; 6267 KMP_SSCANF(flag_addr_str, "%p", &flag_addr); 6268 KMP_SSCANF(flag_val_str, "%lx", &flag_val); 6269 if (flag_addr != 0 && flag_val != 0 && strcmp(file_name, "") != 0) { 6270 // First, check whether environment-encoded address is mapped into 6271 // addr space. 6272 // If so, dereference it to see if it still has the right value. 6273 if (__kmp_is_address_mapped(flag_addr) && *flag_addr == flag_val) { 6274 neighbor = 1; 6275 } else { 6276 // If not, then we know the other copy of the library is no longer 6277 // running. 6278 neighbor = 2; 6279 } 6280 } 6281 } 6282 switch (neighbor) { 6283 case 0: // Cannot parse environment variable -- neighbor status unknown. 6284 // Assume it is the incompatible format of future version of the 6285 // library. Assume the other library is alive. 6286 // WARN( ... ); // TODO: Issue a warning. 6287 file_name = "unknown library"; 6288 // Attention! Falling to the next case. That's intentional. 6289 case 1: { // Neighbor is alive. 6290 // Check it is allowed. 6291 char *duplicate_ok = __kmp_env_get("KMP_DUPLICATE_LIB_OK"); 6292 if (!__kmp_str_match_true(duplicate_ok)) { 6293 // That's not allowed. Issue fatal error. 6294 __kmp_fatal(KMP_MSG(DuplicateLibrary, KMP_LIBRARY_FILE, file_name), 6295 KMP_HNT(DuplicateLibrary), __kmp_msg_null); 6296 } 6297 KMP_INTERNAL_FREE(duplicate_ok); 6298 __kmp_duplicate_library_ok = 1; 6299 done = 1; // Exit the loop. 6300 } break; 6301 case 2: { // Neighbor is dead. 6302 // Clear the variable and try to register library again. 6303 __kmp_env_unset(name); 6304 } break; 6305 default: { KMP_DEBUG_ASSERT(0); } break; 6306 } 6307 } 6308 KMP_INTERNAL_FREE((void *)value); 6309 } 6310 KMP_INTERNAL_FREE((void *)name); 6311 6312 } // func __kmp_register_library_startup 6313 6314 void __kmp_unregister_library(void) { 6315 6316 char *name = __kmp_reg_status_name(); 6317 char *value = __kmp_env_get(name); 6318 6319 KMP_DEBUG_ASSERT(__kmp_registration_flag != 0); 6320 KMP_DEBUG_ASSERT(__kmp_registration_str != NULL); 6321 if (value != NULL && strcmp(value, __kmp_registration_str) == 0) { 6322 // Ok, this is our variable. Delete it. 6323 __kmp_env_unset(name); 6324 } 6325 6326 KMP_INTERNAL_FREE(__kmp_registration_str); 6327 KMP_INTERNAL_FREE(value); 6328 KMP_INTERNAL_FREE(name); 6329 6330 __kmp_registration_flag = 0; 6331 __kmp_registration_str = NULL; 6332 6333 } // __kmp_unregister_library 6334 6335 // End of Library registration stuff. 6336 // ----------------------------------------------------------------------------- 6337 6338 #if KMP_MIC_SUPPORTED 6339 6340 static void __kmp_check_mic_type() { 6341 kmp_cpuid_t cpuid_state = {0}; 6342 kmp_cpuid_t *cs_p = &cpuid_state; 6343 __kmp_x86_cpuid(1, 0, cs_p); 6344 // We don't support mic1 at the moment 6345 if ((cs_p->eax & 0xff0) == 0xB10) { 6346 __kmp_mic_type = mic2; 6347 } else if ((cs_p->eax & 0xf0ff0) == 0x50670) { 6348 __kmp_mic_type = mic3; 6349 } else { 6350 __kmp_mic_type = non_mic; 6351 } 6352 } 6353 6354 #endif /* KMP_MIC_SUPPORTED */ 6355 6356 static void __kmp_do_serial_initialize(void) { 6357 int i, gtid; 6358 int size; 6359 6360 KA_TRACE(10, ("__kmp_do_serial_initialize: enter\n")); 6361 6362 KMP_DEBUG_ASSERT(sizeof(kmp_int32) == 4); 6363 KMP_DEBUG_ASSERT(sizeof(kmp_uint32) == 4); 6364 KMP_DEBUG_ASSERT(sizeof(kmp_int64) == 8); 6365 KMP_DEBUG_ASSERT(sizeof(kmp_uint64) == 8); 6366 KMP_DEBUG_ASSERT(sizeof(kmp_intptr_t) == sizeof(void *)); 6367 6368 #if OMPT_SUPPORT 6369 ompt_pre_init(); 6370 #endif 6371 6372 __kmp_validate_locks(); 6373 6374 /* Initialize internal memory allocator */ 6375 __kmp_init_allocator(); 6376 6377 /* Register the library startup via an environment variable and check to see 6378 whether another copy of the library is already registered. */ 6379 6380 __kmp_register_library_startup(); 6381 6382 /* TODO reinitialization of library */ 6383 if (TCR_4(__kmp_global.g.g_done)) { 6384 KA_TRACE(10, ("__kmp_do_serial_initialize: reinitialization of library\n")); 6385 } 6386 6387 __kmp_global.g.g_abort = 0; 6388 TCW_SYNC_4(__kmp_global.g.g_done, FALSE); 6389 6390 /* initialize the locks */ 6391 #if KMP_USE_ADAPTIVE_LOCKS 6392 #if KMP_DEBUG_ADAPTIVE_LOCKS 6393 __kmp_init_speculative_stats(); 6394 #endif 6395 #endif 6396 #if KMP_STATS_ENABLED 6397 __kmp_stats_init(); 6398 #endif 6399 __kmp_init_lock(&__kmp_global_lock); 6400 __kmp_init_queuing_lock(&__kmp_dispatch_lock); 6401 __kmp_init_lock(&__kmp_debug_lock); 6402 __kmp_init_atomic_lock(&__kmp_atomic_lock); 6403 __kmp_init_atomic_lock(&__kmp_atomic_lock_1i); 6404 __kmp_init_atomic_lock(&__kmp_atomic_lock_2i); 6405 __kmp_init_atomic_lock(&__kmp_atomic_lock_4i); 6406 __kmp_init_atomic_lock(&__kmp_atomic_lock_4r); 6407 __kmp_init_atomic_lock(&__kmp_atomic_lock_8i); 6408 __kmp_init_atomic_lock(&__kmp_atomic_lock_8r); 6409 __kmp_init_atomic_lock(&__kmp_atomic_lock_8c); 6410 __kmp_init_atomic_lock(&__kmp_atomic_lock_10r); 6411 __kmp_init_atomic_lock(&__kmp_atomic_lock_16r); 6412 __kmp_init_atomic_lock(&__kmp_atomic_lock_16c); 6413 __kmp_init_atomic_lock(&__kmp_atomic_lock_20c); 6414 __kmp_init_atomic_lock(&__kmp_atomic_lock_32c); 6415 __kmp_init_bootstrap_lock(&__kmp_forkjoin_lock); 6416 __kmp_init_bootstrap_lock(&__kmp_exit_lock); 6417 #if KMP_USE_MONITOR 6418 __kmp_init_bootstrap_lock(&__kmp_monitor_lock); 6419 #endif 6420 __kmp_init_bootstrap_lock(&__kmp_tp_cached_lock); 6421 6422 /* conduct initialization and initial setup of configuration */ 6423 6424 __kmp_runtime_initialize(); 6425 6426 #if KMP_MIC_SUPPORTED 6427 __kmp_check_mic_type(); 6428 #endif 6429 6430 // Some global variable initialization moved here from kmp_env_initialize() 6431 #ifdef KMP_DEBUG 6432 kmp_diag = 0; 6433 #endif 6434 __kmp_abort_delay = 0; 6435 6436 // From __kmp_init_dflt_team_nth() 6437 /* assume the entire machine will be used */ 6438 __kmp_dflt_team_nth_ub = __kmp_xproc; 6439 if (__kmp_dflt_team_nth_ub < KMP_MIN_NTH) { 6440 __kmp_dflt_team_nth_ub = KMP_MIN_NTH; 6441 } 6442 if (__kmp_dflt_team_nth_ub > __kmp_sys_max_nth) { 6443 __kmp_dflt_team_nth_ub = __kmp_sys_max_nth; 6444 } 6445 __kmp_max_nth = __kmp_sys_max_nth; 6446 __kmp_cg_max_nth = __kmp_sys_max_nth; 6447 __kmp_teams_max_nth = __kmp_xproc; // set a "reasonable" default 6448 if (__kmp_teams_max_nth > __kmp_sys_max_nth) { 6449 __kmp_teams_max_nth = __kmp_sys_max_nth; 6450 } 6451 6452 // Three vars below moved here from __kmp_env_initialize() "KMP_BLOCKTIME" 6453 // part 6454 __kmp_dflt_blocktime = KMP_DEFAULT_BLOCKTIME; 6455 #if KMP_USE_MONITOR 6456 __kmp_monitor_wakeups = 6457 KMP_WAKEUPS_FROM_BLOCKTIME(__kmp_dflt_blocktime, __kmp_monitor_wakeups); 6458 __kmp_bt_intervals = 6459 KMP_INTERVALS_FROM_BLOCKTIME(__kmp_dflt_blocktime, __kmp_monitor_wakeups); 6460 #endif 6461 // From "KMP_LIBRARY" part of __kmp_env_initialize() 6462 __kmp_library = library_throughput; 6463 // From KMP_SCHEDULE initialization 6464 __kmp_static = kmp_sch_static_balanced; 6465 // AC: do not use analytical here, because it is non-monotonous 6466 //__kmp_guided = kmp_sch_guided_iterative_chunked; 6467 //__kmp_auto = kmp_sch_guided_analytical_chunked; // AC: it is the default, no 6468 // need to repeat assignment 6469 // Barrier initialization. Moved here from __kmp_env_initialize() Barrier branch 6470 // bit control and barrier method control parts 6471 #if KMP_FAST_REDUCTION_BARRIER 6472 #define kmp_reduction_barrier_gather_bb ((int)1) 6473 #define kmp_reduction_barrier_release_bb ((int)1) 6474 #define kmp_reduction_barrier_gather_pat bp_hyper_bar 6475 #define kmp_reduction_barrier_release_pat bp_hyper_bar 6476 #endif // KMP_FAST_REDUCTION_BARRIER 6477 for (i = bs_plain_barrier; i < bs_last_barrier; i++) { 6478 __kmp_barrier_gather_branch_bits[i] = __kmp_barrier_gather_bb_dflt; 6479 __kmp_barrier_release_branch_bits[i] = __kmp_barrier_release_bb_dflt; 6480 __kmp_barrier_gather_pattern[i] = __kmp_barrier_gather_pat_dflt; 6481 __kmp_barrier_release_pattern[i] = __kmp_barrier_release_pat_dflt; 6482 #if KMP_FAST_REDUCTION_BARRIER 6483 if (i == bs_reduction_barrier) { // tested and confirmed on ALTIX only ( 6484 // lin_64 ): hyper,1 6485 __kmp_barrier_gather_branch_bits[i] = kmp_reduction_barrier_gather_bb; 6486 __kmp_barrier_release_branch_bits[i] = kmp_reduction_barrier_release_bb; 6487 __kmp_barrier_gather_pattern[i] = kmp_reduction_barrier_gather_pat; 6488 __kmp_barrier_release_pattern[i] = kmp_reduction_barrier_release_pat; 6489 } 6490 #endif // KMP_FAST_REDUCTION_BARRIER 6491 } 6492 #if KMP_FAST_REDUCTION_BARRIER 6493 #undef kmp_reduction_barrier_release_pat 6494 #undef kmp_reduction_barrier_gather_pat 6495 #undef kmp_reduction_barrier_release_bb 6496 #undef kmp_reduction_barrier_gather_bb 6497 #endif // KMP_FAST_REDUCTION_BARRIER 6498 #if KMP_MIC_SUPPORTED 6499 if (__kmp_mic_type == mic2) { // KNC 6500 // AC: plane=3,2, forkjoin=2,1 are optimal for 240 threads on KNC 6501 __kmp_barrier_gather_branch_bits[bs_plain_barrier] = 3; // plain gather 6502 __kmp_barrier_release_branch_bits[bs_forkjoin_barrier] = 6503 1; // forkjoin release 6504 __kmp_barrier_gather_pattern[bs_forkjoin_barrier] = bp_hierarchical_bar; 6505 __kmp_barrier_release_pattern[bs_forkjoin_barrier] = bp_hierarchical_bar; 6506 } 6507 #if KMP_FAST_REDUCTION_BARRIER 6508 if (__kmp_mic_type == mic2) { // KNC 6509 __kmp_barrier_gather_pattern[bs_reduction_barrier] = bp_hierarchical_bar; 6510 __kmp_barrier_release_pattern[bs_reduction_barrier] = bp_hierarchical_bar; 6511 } 6512 #endif // KMP_FAST_REDUCTION_BARRIER 6513 #endif // KMP_MIC_SUPPORTED 6514 6515 // From KMP_CHECKS initialization 6516 #ifdef KMP_DEBUG 6517 __kmp_env_checks = TRUE; /* development versions have the extra checks */ 6518 #else 6519 __kmp_env_checks = FALSE; /* port versions do not have the extra checks */ 6520 #endif 6521 6522 // From "KMP_FOREIGN_THREADS_THREADPRIVATE" initialization 6523 __kmp_foreign_tp = TRUE; 6524 6525 __kmp_global.g.g_dynamic = FALSE; 6526 __kmp_global.g.g_dynamic_mode = dynamic_default; 6527 6528 __kmp_env_initialize(NULL); 6529 6530 // Print all messages in message catalog for testing purposes. 6531 #ifdef KMP_DEBUG 6532 char const *val = __kmp_env_get("KMP_DUMP_CATALOG"); 6533 if (__kmp_str_match_true(val)) { 6534 kmp_str_buf_t buffer; 6535 __kmp_str_buf_init(&buffer); 6536 __kmp_i18n_dump_catalog(&buffer); 6537 __kmp_printf("%s", buffer.str); 6538 __kmp_str_buf_free(&buffer); 6539 } 6540 __kmp_env_free(&val); 6541 #endif 6542 6543 __kmp_threads_capacity = 6544 __kmp_initial_threads_capacity(__kmp_dflt_team_nth_ub); 6545 // Moved here from __kmp_env_initialize() "KMP_ALL_THREADPRIVATE" part 6546 __kmp_tp_capacity = __kmp_default_tp_capacity( 6547 __kmp_dflt_team_nth_ub, __kmp_max_nth, __kmp_allThreadsSpecified); 6548 6549 // If the library is shut down properly, both pools must be NULL. Just in 6550 // case, set them to NULL -- some memory may leak, but subsequent code will 6551 // work even if pools are not freed. 6552 KMP_DEBUG_ASSERT(__kmp_thread_pool == NULL); 6553 KMP_DEBUG_ASSERT(__kmp_thread_pool_insert_pt == NULL); 6554 KMP_DEBUG_ASSERT(__kmp_team_pool == NULL); 6555 __kmp_thread_pool = NULL; 6556 __kmp_thread_pool_insert_pt = NULL; 6557 __kmp_team_pool = NULL; 6558 6559 /* Allocate all of the variable sized records */ 6560 /* NOTE: __kmp_threads_capacity entries are allocated, but the arrays are 6561 * expandable */ 6562 /* Since allocation is cache-aligned, just add extra padding at the end */ 6563 size = 6564 (sizeof(kmp_info_t *) + sizeof(kmp_root_t *)) * __kmp_threads_capacity + 6565 CACHE_LINE; 6566 __kmp_threads = (kmp_info_t **)__kmp_allocate(size); 6567 __kmp_root = (kmp_root_t **)((char *)__kmp_threads + 6568 sizeof(kmp_info_t *) * __kmp_threads_capacity); 6569 6570 /* init thread counts */ 6571 KMP_DEBUG_ASSERT(__kmp_all_nth == 6572 0); // Asserts fail if the library is reinitializing and 6573 KMP_DEBUG_ASSERT(__kmp_nth == 0); // something was wrong in termination. 6574 __kmp_all_nth = 0; 6575 __kmp_nth = 0; 6576 6577 /* setup the uber master thread and hierarchy */ 6578 gtid = __kmp_register_root(TRUE); 6579 KA_TRACE(10, ("__kmp_do_serial_initialize T#%d\n", gtid)); 6580 KMP_ASSERT(KMP_UBER_GTID(gtid)); 6581 KMP_ASSERT(KMP_INITIAL_GTID(gtid)); 6582 6583 KMP_MB(); /* Flush all pending memory write invalidates. */ 6584 6585 __kmp_common_initialize(); 6586 6587 #if KMP_OS_UNIX 6588 /* invoke the child fork handler */ 6589 __kmp_register_atfork(); 6590 #endif 6591 6592 #if !defined KMP_DYNAMIC_LIB 6593 { 6594 /* Invoke the exit handler when the program finishes, only for static 6595 library. For dynamic library, we already have _fini and DllMain. */ 6596 int rc = atexit(__kmp_internal_end_atexit); 6597 if (rc != 0) { 6598 __kmp_fatal(KMP_MSG(FunctionError, "atexit()"), KMP_ERR(rc), 6599 __kmp_msg_null); 6600 } 6601 } 6602 #endif 6603 6604 #if KMP_HANDLE_SIGNALS 6605 #if KMP_OS_UNIX 6606 /* NOTE: make sure that this is called before the user installs their own 6607 signal handlers so that the user handlers are called first. this way they 6608 can return false, not call our handler, avoid terminating the library, and 6609 continue execution where they left off. */ 6610 __kmp_install_signals(FALSE); 6611 #endif /* KMP_OS_UNIX */ 6612 #if KMP_OS_WINDOWS 6613 __kmp_install_signals(TRUE); 6614 #endif /* KMP_OS_WINDOWS */ 6615 #endif 6616 6617 /* we have finished the serial initialization */ 6618 __kmp_init_counter++; 6619 6620 __kmp_init_serial = TRUE; 6621 6622 if (__kmp_settings) { 6623 __kmp_env_print(); 6624 } 6625 6626 #if OMP_40_ENABLED 6627 if (__kmp_display_env || __kmp_display_env_verbose) { 6628 __kmp_env_print_2(); 6629 } 6630 #endif // OMP_40_ENABLED 6631 6632 #if OMPT_SUPPORT 6633 ompt_post_init(); 6634 #endif 6635 6636 KMP_MB(); 6637 6638 KA_TRACE(10, ("__kmp_do_serial_initialize: exit\n")); 6639 } 6640 6641 void __kmp_serial_initialize(void) { 6642 if (__kmp_init_serial) { 6643 return; 6644 } 6645 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6646 if (__kmp_init_serial) { 6647 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6648 return; 6649 } 6650 __kmp_do_serial_initialize(); 6651 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6652 } 6653 6654 static void __kmp_do_middle_initialize(void) { 6655 int i, j; 6656 int prev_dflt_team_nth; 6657 6658 if (!__kmp_init_serial) { 6659 __kmp_do_serial_initialize(); 6660 } 6661 6662 KA_TRACE(10, ("__kmp_middle_initialize: enter\n")); 6663 6664 // Save the previous value for the __kmp_dflt_team_nth so that 6665 // we can avoid some reinitialization if it hasn't changed. 6666 prev_dflt_team_nth = __kmp_dflt_team_nth; 6667 6668 #if KMP_AFFINITY_SUPPORTED 6669 // __kmp_affinity_initialize() will try to set __kmp_ncores to the 6670 // number of cores on the machine. 6671 __kmp_affinity_initialize(); 6672 6673 // Run through the __kmp_threads array and set the affinity mask 6674 // for each root thread that is currently registered with the RTL. 6675 for (i = 0; i < __kmp_threads_capacity; i++) { 6676 if (TCR_PTR(__kmp_threads[i]) != NULL) { 6677 __kmp_affinity_set_init_mask(i, TRUE); 6678 } 6679 } 6680 #endif /* KMP_AFFINITY_SUPPORTED */ 6681 6682 KMP_ASSERT(__kmp_xproc > 0); 6683 if (__kmp_avail_proc == 0) { 6684 __kmp_avail_proc = __kmp_xproc; 6685 } 6686 6687 // If there were empty places in num_threads list (OMP_NUM_THREADS=,,2,3), 6688 // correct them now 6689 j = 0; 6690 while ((j < __kmp_nested_nth.used) && !__kmp_nested_nth.nth[j]) { 6691 __kmp_nested_nth.nth[j] = __kmp_dflt_team_nth = __kmp_dflt_team_nth_ub = 6692 __kmp_avail_proc; 6693 j++; 6694 } 6695 6696 if (__kmp_dflt_team_nth == 0) { 6697 #ifdef KMP_DFLT_NTH_CORES 6698 // Default #threads = #cores 6699 __kmp_dflt_team_nth = __kmp_ncores; 6700 KA_TRACE(20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = " 6701 "__kmp_ncores (%d)\n", 6702 __kmp_dflt_team_nth)); 6703 #else 6704 // Default #threads = #available OS procs 6705 __kmp_dflt_team_nth = __kmp_avail_proc; 6706 KA_TRACE(20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = " 6707 "__kmp_avail_proc(%d)\n", 6708 __kmp_dflt_team_nth)); 6709 #endif /* KMP_DFLT_NTH_CORES */ 6710 } 6711 6712 if (__kmp_dflt_team_nth < KMP_MIN_NTH) { 6713 __kmp_dflt_team_nth = KMP_MIN_NTH; 6714 } 6715 if (__kmp_dflt_team_nth > __kmp_sys_max_nth) { 6716 __kmp_dflt_team_nth = __kmp_sys_max_nth; 6717 } 6718 6719 // There's no harm in continuing if the following check fails, 6720 // but it indicates an error in the previous logic. 6721 KMP_DEBUG_ASSERT(__kmp_dflt_team_nth <= __kmp_dflt_team_nth_ub); 6722 6723 if (__kmp_dflt_team_nth != prev_dflt_team_nth) { 6724 // Run through the __kmp_threads array and set the num threads icv for each 6725 // root thread that is currently registered with the RTL (which has not 6726 // already explicitly set its nthreads-var with a call to 6727 // omp_set_num_threads()). 6728 for (i = 0; i < __kmp_threads_capacity; i++) { 6729 kmp_info_t *thread = __kmp_threads[i]; 6730 if (thread == NULL) 6731 continue; 6732 if (thread->th.th_current_task->td_icvs.nproc != 0) 6733 continue; 6734 6735 set__nproc(__kmp_threads[i], __kmp_dflt_team_nth); 6736 } 6737 } 6738 KA_TRACE( 6739 20, 6740 ("__kmp_middle_initialize: final value for __kmp_dflt_team_nth = %d\n", 6741 __kmp_dflt_team_nth)); 6742 6743 #ifdef KMP_ADJUST_BLOCKTIME 6744 /* Adjust blocktime to zero if necessary now that __kmp_avail_proc is set */ 6745 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 6746 KMP_DEBUG_ASSERT(__kmp_avail_proc > 0); 6747 if (__kmp_nth > __kmp_avail_proc) { 6748 __kmp_zero_bt = TRUE; 6749 } 6750 } 6751 #endif /* KMP_ADJUST_BLOCKTIME */ 6752 6753 /* we have finished middle initialization */ 6754 TCW_SYNC_4(__kmp_init_middle, TRUE); 6755 6756 KA_TRACE(10, ("__kmp_do_middle_initialize: exit\n")); 6757 } 6758 6759 void __kmp_middle_initialize(void) { 6760 if (__kmp_init_middle) { 6761 return; 6762 } 6763 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6764 if (__kmp_init_middle) { 6765 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6766 return; 6767 } 6768 __kmp_do_middle_initialize(); 6769 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6770 } 6771 6772 void __kmp_parallel_initialize(void) { 6773 int gtid = __kmp_entry_gtid(); // this might be a new root 6774 6775 /* synchronize parallel initialization (for sibling) */ 6776 if (TCR_4(__kmp_init_parallel)) 6777 return; 6778 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6779 if (TCR_4(__kmp_init_parallel)) { 6780 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6781 return; 6782 } 6783 6784 /* TODO reinitialization after we have already shut down */ 6785 if (TCR_4(__kmp_global.g.g_done)) { 6786 KA_TRACE( 6787 10, 6788 ("__kmp_parallel_initialize: attempt to init while shutting down\n")); 6789 __kmp_infinite_loop(); 6790 } 6791 6792 /* jc: The lock __kmp_initz_lock is already held, so calling 6793 __kmp_serial_initialize would cause a deadlock. So we call 6794 __kmp_do_serial_initialize directly. */ 6795 if (!__kmp_init_middle) { 6796 __kmp_do_middle_initialize(); 6797 } 6798 6799 /* begin initialization */ 6800 KA_TRACE(10, ("__kmp_parallel_initialize: enter\n")); 6801 KMP_ASSERT(KMP_UBER_GTID(gtid)); 6802 6803 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 6804 // Save the FP control regs. 6805 // Worker threads will set theirs to these values at thread startup. 6806 __kmp_store_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word); 6807 __kmp_store_mxcsr(&__kmp_init_mxcsr); 6808 __kmp_init_mxcsr &= KMP_X86_MXCSR_MASK; 6809 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 6810 6811 #if KMP_OS_UNIX 6812 #if KMP_HANDLE_SIGNALS 6813 /* must be after __kmp_serial_initialize */ 6814 __kmp_install_signals(TRUE); 6815 #endif 6816 #endif 6817 6818 __kmp_suspend_initialize(); 6819 6820 #if defined(USE_LOAD_BALANCE) 6821 if (__kmp_global.g.g_dynamic_mode == dynamic_default) { 6822 __kmp_global.g.g_dynamic_mode = dynamic_load_balance; 6823 } 6824 #else 6825 if (__kmp_global.g.g_dynamic_mode == dynamic_default) { 6826 __kmp_global.g.g_dynamic_mode = dynamic_thread_limit; 6827 } 6828 #endif 6829 6830 if (__kmp_version) { 6831 __kmp_print_version_2(); 6832 } 6833 6834 /* we have finished parallel initialization */ 6835 TCW_SYNC_4(__kmp_init_parallel, TRUE); 6836 6837 KMP_MB(); 6838 KA_TRACE(10, ("__kmp_parallel_initialize: exit\n")); 6839 6840 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6841 } 6842 6843 /* ------------------------------------------------------------------------ */ 6844 6845 void __kmp_run_before_invoked_task(int gtid, int tid, kmp_info_t *this_thr, 6846 kmp_team_t *team) { 6847 kmp_disp_t *dispatch; 6848 6849 KMP_MB(); 6850 6851 /* none of the threads have encountered any constructs, yet. */ 6852 this_thr->th.th_local.this_construct = 0; 6853 #if KMP_CACHE_MANAGE 6854 KMP_CACHE_PREFETCH(&this_thr->th.th_bar[bs_forkjoin_barrier].bb.b_arrived); 6855 #endif /* KMP_CACHE_MANAGE */ 6856 dispatch = (kmp_disp_t *)TCR_PTR(this_thr->th.th_dispatch); 6857 KMP_DEBUG_ASSERT(dispatch); 6858 KMP_DEBUG_ASSERT(team->t.t_dispatch); 6859 // KMP_DEBUG_ASSERT( this_thr->th.th_dispatch == &team->t.t_dispatch[ 6860 // this_thr->th.th_info.ds.ds_tid ] ); 6861 6862 dispatch->th_disp_index = 0; /* reset the dispatch buffer counter */ 6863 #if OMP_45_ENABLED 6864 dispatch->th_doacross_buf_idx = 6865 0; /* reset the doacross dispatch buffer counter */ 6866 #endif 6867 if (__kmp_env_consistency_check) 6868 __kmp_push_parallel(gtid, team->t.t_ident); 6869 6870 KMP_MB(); /* Flush all pending memory write invalidates. */ 6871 } 6872 6873 void __kmp_run_after_invoked_task(int gtid, int tid, kmp_info_t *this_thr, 6874 kmp_team_t *team) { 6875 if (__kmp_env_consistency_check) 6876 __kmp_pop_parallel(gtid, team->t.t_ident); 6877 6878 __kmp_finish_implicit_task(this_thr); 6879 } 6880 6881 int __kmp_invoke_task_func(int gtid) { 6882 int rc; 6883 int tid = __kmp_tid_from_gtid(gtid); 6884 kmp_info_t *this_thr = __kmp_threads[gtid]; 6885 kmp_team_t *team = this_thr->th.th_team; 6886 6887 __kmp_run_before_invoked_task(gtid, tid, this_thr, team); 6888 #if USE_ITT_BUILD 6889 if (__itt_stack_caller_create_ptr) { 6890 __kmp_itt_stack_callee_enter( 6891 (__itt_caller) 6892 team->t.t_stack_id); // inform ittnotify about entering user's code 6893 } 6894 #endif /* USE_ITT_BUILD */ 6895 #if INCLUDE_SSC_MARKS 6896 SSC_MARK_INVOKING(); 6897 #endif 6898 6899 #if OMPT_SUPPORT 6900 void *dummy; 6901 void **exit_runtime_p; 6902 ompt_data_t *my_task_data; 6903 ompt_data_t *my_parallel_data; 6904 int ompt_team_size; 6905 6906 if (ompt_enabled.enabled) { 6907 exit_runtime_p = &( 6908 team->t.t_implicit_task_taskdata[tid].ompt_task_info.frame.exit_frame); 6909 } else { 6910 exit_runtime_p = &dummy; 6911 } 6912 6913 my_task_data = 6914 &(team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data); 6915 my_parallel_data = &(team->t.ompt_team_info.parallel_data); 6916 if (ompt_enabled.ompt_callback_implicit_task) { 6917 ompt_team_size = team->t.t_nproc; 6918 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 6919 ompt_scope_begin, my_parallel_data, my_task_data, ompt_team_size, 6920 __kmp_tid_from_gtid(gtid)); 6921 } 6922 #endif 6923 6924 { 6925 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 6926 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 6927 rc = 6928 __kmp_invoke_microtask((microtask_t)TCR_SYNC_PTR(team->t.t_pkfn), gtid, 6929 tid, (int)team->t.t_argc, (void **)team->t.t_argv 6930 #if OMPT_SUPPORT 6931 , 6932 exit_runtime_p 6933 #endif 6934 ); 6935 #if OMPT_SUPPORT 6936 *exit_runtime_p = NULL; 6937 #endif 6938 } 6939 6940 #if USE_ITT_BUILD 6941 if (__itt_stack_caller_create_ptr) { 6942 __kmp_itt_stack_callee_leave( 6943 (__itt_caller) 6944 team->t.t_stack_id); // inform ittnotify about leaving user's code 6945 } 6946 #endif /* USE_ITT_BUILD */ 6947 __kmp_run_after_invoked_task(gtid, tid, this_thr, team); 6948 6949 return rc; 6950 } 6951 6952 #if OMP_40_ENABLED 6953 void __kmp_teams_master(int gtid) { 6954 // This routine is called by all master threads in teams construct 6955 kmp_info_t *thr = __kmp_threads[gtid]; 6956 kmp_team_t *team = thr->th.th_team; 6957 ident_t *loc = team->t.t_ident; 6958 thr->th.th_set_nproc = thr->th.th_teams_size.nth; 6959 KMP_DEBUG_ASSERT(thr->th.th_teams_microtask); 6960 KMP_DEBUG_ASSERT(thr->th.th_set_nproc); 6961 KA_TRACE(20, ("__kmp_teams_master: T#%d, Tid %d, microtask %p\n", gtid, 6962 __kmp_tid_from_gtid(gtid), thr->th.th_teams_microtask)); 6963 // Launch league of teams now, but not let workers execute 6964 // (they hang on fork barrier until next parallel) 6965 #if INCLUDE_SSC_MARKS 6966 SSC_MARK_FORKING(); 6967 #endif 6968 __kmp_fork_call(loc, gtid, fork_context_intel, team->t.t_argc, 6969 (microtask_t)thr->th.th_teams_microtask, // "wrapped" task 6970 VOLATILE_CAST(launch_t) __kmp_invoke_task_func, NULL); 6971 #if INCLUDE_SSC_MARKS 6972 SSC_MARK_JOINING(); 6973 #endif 6974 6975 // AC: last parameter "1" eliminates join barrier which won't work because 6976 // worker threads are in a fork barrier waiting for more parallel regions 6977 __kmp_join_call(loc, gtid 6978 #if OMPT_SUPPORT 6979 , 6980 fork_context_intel 6981 #endif 6982 , 6983 1); 6984 } 6985 6986 int __kmp_invoke_teams_master(int gtid) { 6987 kmp_info_t *this_thr = __kmp_threads[gtid]; 6988 kmp_team_t *team = this_thr->th.th_team; 6989 #if KMP_DEBUG 6990 if (!__kmp_threads[gtid]->th.th_team->t.t_serialized) 6991 KMP_DEBUG_ASSERT((void *)__kmp_threads[gtid]->th.th_team->t.t_pkfn == 6992 (void *)__kmp_teams_master); 6993 #endif 6994 __kmp_run_before_invoked_task(gtid, 0, this_thr, team); 6995 __kmp_teams_master(gtid); 6996 __kmp_run_after_invoked_task(gtid, 0, this_thr, team); 6997 return 1; 6998 } 6999 #endif /* OMP_40_ENABLED */ 7000 7001 /* this sets the requested number of threads for the next parallel region 7002 encountered by this team. since this should be enclosed in the forkjoin 7003 critical section it should avoid race conditions with assymmetrical nested 7004 parallelism */ 7005 7006 void __kmp_push_num_threads(ident_t *id, int gtid, int num_threads) { 7007 kmp_info_t *thr = __kmp_threads[gtid]; 7008 7009 if (num_threads > 0) 7010 thr->th.th_set_nproc = num_threads; 7011 } 7012 7013 #if OMP_40_ENABLED 7014 7015 /* this sets the requested number of teams for the teams region and/or 7016 the number of threads for the next parallel region encountered */ 7017 void __kmp_push_num_teams(ident_t *id, int gtid, int num_teams, 7018 int num_threads) { 7019 kmp_info_t *thr = __kmp_threads[gtid]; 7020 KMP_DEBUG_ASSERT(num_teams >= 0); 7021 KMP_DEBUG_ASSERT(num_threads >= 0); 7022 7023 if (num_teams == 0) 7024 num_teams = 1; // default number of teams is 1. 7025 if (num_teams > __kmp_teams_max_nth) { // if too many teams requested? 7026 if (!__kmp_reserve_warn) { 7027 __kmp_reserve_warn = 1; 7028 __kmp_msg(kmp_ms_warning, 7029 KMP_MSG(CantFormThrTeam, num_teams, __kmp_teams_max_nth), 7030 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 7031 } 7032 num_teams = __kmp_teams_max_nth; 7033 } 7034 // Set number of teams (number of threads in the outer "parallel" of the 7035 // teams) 7036 thr->th.th_set_nproc = thr->th.th_teams_size.nteams = num_teams; 7037 7038 // Remember the number of threads for inner parallel regions 7039 if (num_threads == 0) { 7040 if (!TCR_4(__kmp_init_middle)) 7041 __kmp_middle_initialize(); // get __kmp_avail_proc calculated 7042 num_threads = __kmp_avail_proc / num_teams; 7043 if (num_teams * num_threads > __kmp_teams_max_nth) { 7044 // adjust num_threads w/o warning as it is not user setting 7045 num_threads = __kmp_teams_max_nth / num_teams; 7046 } 7047 } else { 7048 if (num_teams * num_threads > __kmp_teams_max_nth) { 7049 int new_threads = __kmp_teams_max_nth / num_teams; 7050 if (!__kmp_reserve_warn) { // user asked for too many threads 7051 __kmp_reserve_warn = 1; // that conflicts with KMP_TEAMS_THREAD_LIMIT 7052 __kmp_msg(kmp_ms_warning, 7053 KMP_MSG(CantFormThrTeam, num_threads, new_threads), 7054 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 7055 } 7056 num_threads = new_threads; 7057 } 7058 } 7059 thr->th.th_teams_size.nth = num_threads; 7060 } 7061 7062 // Set the proc_bind var to use in the following parallel region. 7063 void __kmp_push_proc_bind(ident_t *id, int gtid, kmp_proc_bind_t proc_bind) { 7064 kmp_info_t *thr = __kmp_threads[gtid]; 7065 thr->th.th_set_proc_bind = proc_bind; 7066 } 7067 7068 #endif /* OMP_40_ENABLED */ 7069 7070 /* Launch the worker threads into the microtask. */ 7071 7072 void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team) { 7073 kmp_info_t *this_thr = __kmp_threads[gtid]; 7074 7075 #ifdef KMP_DEBUG 7076 int f; 7077 #endif /* KMP_DEBUG */ 7078 7079 KMP_DEBUG_ASSERT(team); 7080 KMP_DEBUG_ASSERT(this_thr->th.th_team == team); 7081 KMP_ASSERT(KMP_MASTER_GTID(gtid)); 7082 KMP_MB(); /* Flush all pending memory write invalidates. */ 7083 7084 team->t.t_construct = 0; /* no single directives seen yet */ 7085 team->t.t_ordered.dt.t_value = 7086 0; /* thread 0 enters the ordered section first */ 7087 7088 /* Reset the identifiers on the dispatch buffer */ 7089 KMP_DEBUG_ASSERT(team->t.t_disp_buffer); 7090 if (team->t.t_max_nproc > 1) { 7091 int i; 7092 for (i = 0; i < __kmp_dispatch_num_buffers; ++i) { 7093 team->t.t_disp_buffer[i].buffer_index = i; 7094 #if OMP_45_ENABLED 7095 team->t.t_disp_buffer[i].doacross_buf_idx = i; 7096 #endif 7097 } 7098 } else { 7099 team->t.t_disp_buffer[0].buffer_index = 0; 7100 #if OMP_45_ENABLED 7101 team->t.t_disp_buffer[0].doacross_buf_idx = 0; 7102 #endif 7103 } 7104 7105 KMP_MB(); /* Flush all pending memory write invalidates. */ 7106 KMP_ASSERT(this_thr->th.th_team == team); 7107 7108 #ifdef KMP_DEBUG 7109 for (f = 0; f < team->t.t_nproc; f++) { 7110 KMP_DEBUG_ASSERT(team->t.t_threads[f] && 7111 team->t.t_threads[f]->th.th_team_nproc == team->t.t_nproc); 7112 } 7113 #endif /* KMP_DEBUG */ 7114 7115 /* release the worker threads so they may begin working */ 7116 __kmp_fork_barrier(gtid, 0); 7117 } 7118 7119 void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team) { 7120 kmp_info_t *this_thr = __kmp_threads[gtid]; 7121 7122 KMP_DEBUG_ASSERT(team); 7123 KMP_DEBUG_ASSERT(this_thr->th.th_team == team); 7124 KMP_ASSERT(KMP_MASTER_GTID(gtid)); 7125 KMP_MB(); /* Flush all pending memory write invalidates. */ 7126 7127 /* Join barrier after fork */ 7128 7129 #ifdef KMP_DEBUG 7130 if (__kmp_threads[gtid] && 7131 __kmp_threads[gtid]->th.th_team_nproc != team->t.t_nproc) { 7132 __kmp_printf("GTID: %d, __kmp_threads[%d]=%p\n", gtid, gtid, 7133 __kmp_threads[gtid]); 7134 __kmp_printf("__kmp_threads[%d]->th.th_team_nproc=%d, TEAM: %p, " 7135 "team->t.t_nproc=%d\n", 7136 gtid, __kmp_threads[gtid]->th.th_team_nproc, team, 7137 team->t.t_nproc); 7138 __kmp_print_structure(); 7139 } 7140 KMP_DEBUG_ASSERT(__kmp_threads[gtid] && 7141 __kmp_threads[gtid]->th.th_team_nproc == team->t.t_nproc); 7142 #endif /* KMP_DEBUG */ 7143 7144 __kmp_join_barrier(gtid); /* wait for everyone */ 7145 #if OMPT_SUPPORT 7146 if (ompt_enabled.enabled && 7147 this_thr->th.ompt_thread_info.state == omp_state_wait_barrier_implicit) { 7148 int ds_tid = this_thr->th.th_info.ds.ds_tid; 7149 ompt_data_t *task_data = OMPT_CUR_TASK_DATA(this_thr); 7150 this_thr->th.ompt_thread_info.state = omp_state_overhead; 7151 #if OMPT_OPTIONAL 7152 void *codeptr = NULL; 7153 if (KMP_MASTER_TID(ds_tid) && 7154 (ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait) || 7155 ompt_callbacks.ompt_callback(ompt_callback_sync_region))) 7156 codeptr = OMPT_CUR_TEAM_INFO(this_thr)->master_return_address; 7157 7158 if (ompt_enabled.ompt_callback_sync_region_wait) { 7159 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 7160 ompt_sync_region_barrier, ompt_scope_end, NULL, task_data, codeptr); 7161 } 7162 if (ompt_enabled.ompt_callback_sync_region) { 7163 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 7164 ompt_sync_region_barrier, ompt_scope_end, NULL, task_data, codeptr); 7165 } 7166 #endif 7167 if (!KMP_MASTER_TID(ds_tid) && ompt_enabled.ompt_callback_implicit_task) { 7168 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 7169 ompt_scope_end, NULL, task_data, 0, ds_tid); 7170 } 7171 } 7172 #endif 7173 7174 KMP_MB(); /* Flush all pending memory write invalidates. */ 7175 KMP_ASSERT(this_thr->th.th_team == team); 7176 } 7177 7178 /* ------------------------------------------------------------------------ */ 7179 7180 #ifdef USE_LOAD_BALANCE 7181 7182 // Return the worker threads actively spinning in the hot team, if we 7183 // are at the outermost level of parallelism. Otherwise, return 0. 7184 static int __kmp_active_hot_team_nproc(kmp_root_t *root) { 7185 int i; 7186 int retval; 7187 kmp_team_t *hot_team; 7188 7189 if (root->r.r_active) { 7190 return 0; 7191 } 7192 hot_team = root->r.r_hot_team; 7193 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { 7194 return hot_team->t.t_nproc - 1; // Don't count master thread 7195 } 7196 7197 // Skip the master thread - it is accounted for elsewhere. 7198 retval = 0; 7199 for (i = 1; i < hot_team->t.t_nproc; i++) { 7200 if (hot_team->t.t_threads[i]->th.th_active) { 7201 retval++; 7202 } 7203 } 7204 return retval; 7205 } 7206 7207 // Perform an automatic adjustment to the number of 7208 // threads used by the next parallel region. 7209 static int __kmp_load_balance_nproc(kmp_root_t *root, int set_nproc) { 7210 int retval; 7211 int pool_active; 7212 int hot_team_active; 7213 int team_curr_active; 7214 int system_active; 7215 7216 KB_TRACE(20, ("__kmp_load_balance_nproc: called root:%p set_nproc:%d\n", root, 7217 set_nproc)); 7218 KMP_DEBUG_ASSERT(root); 7219 KMP_DEBUG_ASSERT(root->r.r_root_team->t.t_threads[0] 7220 ->th.th_current_task->td_icvs.dynamic == TRUE); 7221 KMP_DEBUG_ASSERT(set_nproc > 1); 7222 7223 if (set_nproc == 1) { 7224 KB_TRACE(20, ("__kmp_load_balance_nproc: serial execution.\n")); 7225 return 1; 7226 } 7227 7228 // Threads that are active in the thread pool, active in the hot team for this 7229 // particular root (if we are at the outer par level), and the currently 7230 // executing thread (to become the master) are available to add to the new 7231 // team, but are currently contributing to the system load, and must be 7232 // accounted for. 7233 pool_active = TCR_4(__kmp_thread_pool_active_nth); 7234 hot_team_active = __kmp_active_hot_team_nproc(root); 7235 team_curr_active = pool_active + hot_team_active + 1; 7236 7237 // Check the system load. 7238 system_active = __kmp_get_load_balance(__kmp_avail_proc + team_curr_active); 7239 KB_TRACE(30, ("__kmp_load_balance_nproc: system active = %d pool active = %d " 7240 "hot team active = %d\n", 7241 system_active, pool_active, hot_team_active)); 7242 7243 if (system_active < 0) { 7244 // There was an error reading the necessary info from /proc, so use the 7245 // thread limit algorithm instead. Once we set __kmp_global.g.g_dynamic_mode 7246 // = dynamic_thread_limit, we shouldn't wind up getting back here. 7247 __kmp_global.g.g_dynamic_mode = dynamic_thread_limit; 7248 KMP_WARNING(CantLoadBalUsing, "KMP_DYNAMIC_MODE=thread limit"); 7249 7250 // Make this call behave like the thread limit algorithm. 7251 retval = __kmp_avail_proc - __kmp_nth + 7252 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 7253 if (retval > set_nproc) { 7254 retval = set_nproc; 7255 } 7256 if (retval < KMP_MIN_NTH) { 7257 retval = KMP_MIN_NTH; 7258 } 7259 7260 KB_TRACE(20, ("__kmp_load_balance_nproc: thread limit exit. retval:%d\n", 7261 retval)); 7262 return retval; 7263 } 7264 7265 // There is a slight delay in the load balance algorithm in detecting new 7266 // running procs. The real system load at this instant should be at least as 7267 // large as the #active omp thread that are available to add to the team. 7268 if (system_active < team_curr_active) { 7269 system_active = team_curr_active; 7270 } 7271 retval = __kmp_avail_proc - system_active + team_curr_active; 7272 if (retval > set_nproc) { 7273 retval = set_nproc; 7274 } 7275 if (retval < KMP_MIN_NTH) { 7276 retval = KMP_MIN_NTH; 7277 } 7278 7279 KB_TRACE(20, ("__kmp_load_balance_nproc: exit. retval:%d\n", retval)); 7280 return retval; 7281 } // __kmp_load_balance_nproc() 7282 7283 #endif /* USE_LOAD_BALANCE */ 7284 7285 /* ------------------------------------------------------------------------ */ 7286 7287 /* NOTE: this is called with the __kmp_init_lock held */ 7288 void __kmp_cleanup(void) { 7289 int f; 7290 7291 KA_TRACE(10, ("__kmp_cleanup: enter\n")); 7292 7293 if (TCR_4(__kmp_init_parallel)) { 7294 #if KMP_HANDLE_SIGNALS 7295 __kmp_remove_signals(); 7296 #endif 7297 TCW_4(__kmp_init_parallel, FALSE); 7298 } 7299 7300 if (TCR_4(__kmp_init_middle)) { 7301 #if KMP_AFFINITY_SUPPORTED 7302 __kmp_affinity_uninitialize(); 7303 #endif /* KMP_AFFINITY_SUPPORTED */ 7304 __kmp_cleanup_hierarchy(); 7305 TCW_4(__kmp_init_middle, FALSE); 7306 } 7307 7308 KA_TRACE(10, ("__kmp_cleanup: go serial cleanup\n")); 7309 7310 if (__kmp_init_serial) { 7311 __kmp_runtime_destroy(); 7312 __kmp_init_serial = FALSE; 7313 } 7314 7315 __kmp_cleanup_threadprivate_caches(); 7316 7317 for (f = 0; f < __kmp_threads_capacity; f++) { 7318 if (__kmp_root[f] != NULL) { 7319 __kmp_free(__kmp_root[f]); 7320 __kmp_root[f] = NULL; 7321 } 7322 } 7323 __kmp_free(__kmp_threads); 7324 // __kmp_threads and __kmp_root were allocated at once, as single block, so 7325 // there is no need in freeing __kmp_root. 7326 __kmp_threads = NULL; 7327 __kmp_root = NULL; 7328 __kmp_threads_capacity = 0; 7329 7330 #if KMP_USE_DYNAMIC_LOCK 7331 __kmp_cleanup_indirect_user_locks(); 7332 #else 7333 __kmp_cleanup_user_locks(); 7334 #endif 7335 7336 #if KMP_AFFINITY_SUPPORTED 7337 KMP_INTERNAL_FREE(CCAST(char *, __kmp_cpuinfo_file)); 7338 __kmp_cpuinfo_file = NULL; 7339 #endif /* KMP_AFFINITY_SUPPORTED */ 7340 7341 #if KMP_USE_ADAPTIVE_LOCKS 7342 #if KMP_DEBUG_ADAPTIVE_LOCKS 7343 __kmp_print_speculative_stats(); 7344 #endif 7345 #endif 7346 KMP_INTERNAL_FREE(__kmp_nested_nth.nth); 7347 __kmp_nested_nth.nth = NULL; 7348 __kmp_nested_nth.size = 0; 7349 __kmp_nested_nth.used = 0; 7350 KMP_INTERNAL_FREE(__kmp_nested_proc_bind.bind_types); 7351 __kmp_nested_proc_bind.bind_types = NULL; 7352 __kmp_nested_proc_bind.size = 0; 7353 __kmp_nested_proc_bind.used = 0; 7354 7355 __kmp_i18n_catclose(); 7356 7357 #if KMP_STATS_ENABLED 7358 __kmp_stats_fini(); 7359 #endif 7360 7361 KA_TRACE(10, ("__kmp_cleanup: exit\n")); 7362 } 7363 7364 /* ------------------------------------------------------------------------ */ 7365 7366 int __kmp_ignore_mppbeg(void) { 7367 char *env; 7368 7369 if ((env = getenv("KMP_IGNORE_MPPBEG")) != NULL) { 7370 if (__kmp_str_match_false(env)) 7371 return FALSE; 7372 } 7373 // By default __kmpc_begin() is no-op. 7374 return TRUE; 7375 } 7376 7377 int __kmp_ignore_mppend(void) { 7378 char *env; 7379 7380 if ((env = getenv("KMP_IGNORE_MPPEND")) != NULL) { 7381 if (__kmp_str_match_false(env)) 7382 return FALSE; 7383 } 7384 // By default __kmpc_end() is no-op. 7385 return TRUE; 7386 } 7387 7388 void __kmp_internal_begin(void) { 7389 int gtid; 7390 kmp_root_t *root; 7391 7392 /* this is a very important step as it will register new sibling threads 7393 and assign these new uber threads a new gtid */ 7394 gtid = __kmp_entry_gtid(); 7395 root = __kmp_threads[gtid]->th.th_root; 7396 KMP_ASSERT(KMP_UBER_GTID(gtid)); 7397 7398 if (root->r.r_begin) 7399 return; 7400 __kmp_acquire_lock(&root->r.r_begin_lock, gtid); 7401 if (root->r.r_begin) { 7402 __kmp_release_lock(&root->r.r_begin_lock, gtid); 7403 return; 7404 } 7405 7406 root->r.r_begin = TRUE; 7407 7408 __kmp_release_lock(&root->r.r_begin_lock, gtid); 7409 } 7410 7411 /* ------------------------------------------------------------------------ */ 7412 7413 void __kmp_user_set_library(enum library_type arg) { 7414 int gtid; 7415 kmp_root_t *root; 7416 kmp_info_t *thread; 7417 7418 /* first, make sure we are initialized so we can get our gtid */ 7419 7420 gtid = __kmp_entry_gtid(); 7421 thread = __kmp_threads[gtid]; 7422 7423 root = thread->th.th_root; 7424 7425 KA_TRACE(20, ("__kmp_user_set_library: enter T#%d, arg: %d, %d\n", gtid, arg, 7426 library_serial)); 7427 if (root->r.r_in_parallel) { /* Must be called in serial section of top-level 7428 thread */ 7429 KMP_WARNING(SetLibraryIncorrectCall); 7430 return; 7431 } 7432 7433 switch (arg) { 7434 case library_serial: 7435 thread->th.th_set_nproc = 0; 7436 set__nproc(thread, 1); 7437 break; 7438 case library_turnaround: 7439 thread->th.th_set_nproc = 0; 7440 set__nproc(thread, __kmp_dflt_team_nth ? __kmp_dflt_team_nth 7441 : __kmp_dflt_team_nth_ub); 7442 break; 7443 case library_throughput: 7444 thread->th.th_set_nproc = 0; 7445 set__nproc(thread, __kmp_dflt_team_nth ? __kmp_dflt_team_nth 7446 : __kmp_dflt_team_nth_ub); 7447 break; 7448 default: 7449 KMP_FATAL(UnknownLibraryType, arg); 7450 } 7451 7452 __kmp_aux_set_library(arg); 7453 } 7454 7455 void __kmp_aux_set_stacksize(size_t arg) { 7456 if (!__kmp_init_serial) 7457 __kmp_serial_initialize(); 7458 7459 #if KMP_OS_DARWIN 7460 if (arg & (0x1000 - 1)) { 7461 arg &= ~(0x1000 - 1); 7462 if (arg + 0x1000) /* check for overflow if we round up */ 7463 arg += 0x1000; 7464 } 7465 #endif 7466 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 7467 7468 /* only change the default stacksize before the first parallel region */ 7469 if (!TCR_4(__kmp_init_parallel)) { 7470 size_t value = arg; /* argument is in bytes */ 7471 7472 if (value < __kmp_sys_min_stksize) 7473 value = __kmp_sys_min_stksize; 7474 else if (value > KMP_MAX_STKSIZE) 7475 value = KMP_MAX_STKSIZE; 7476 7477 __kmp_stksize = value; 7478 7479 __kmp_env_stksize = TRUE; /* was KMP_STACKSIZE specified? */ 7480 } 7481 7482 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7483 } 7484 7485 /* set the behaviour of the runtime library */ 7486 /* TODO this can cause some odd behaviour with sibling parallelism... */ 7487 void __kmp_aux_set_library(enum library_type arg) { 7488 __kmp_library = arg; 7489 7490 switch (__kmp_library) { 7491 case library_serial: { 7492 KMP_INFORM(LibraryIsSerial); 7493 (void)__kmp_change_library(TRUE); 7494 } break; 7495 case library_turnaround: 7496 (void)__kmp_change_library(TRUE); 7497 break; 7498 case library_throughput: 7499 (void)__kmp_change_library(FALSE); 7500 break; 7501 default: 7502 KMP_FATAL(UnknownLibraryType, arg); 7503 } 7504 } 7505 7506 /* ------------------------------------------------------------------------ */ 7507 7508 void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid) { 7509 int blocktime = arg; /* argument is in milliseconds */ 7510 #if KMP_USE_MONITOR 7511 int bt_intervals; 7512 #endif 7513 int bt_set; 7514 7515 __kmp_save_internal_controls(thread); 7516 7517 /* Normalize and set blocktime for the teams */ 7518 if (blocktime < KMP_MIN_BLOCKTIME) 7519 blocktime = KMP_MIN_BLOCKTIME; 7520 else if (blocktime > KMP_MAX_BLOCKTIME) 7521 blocktime = KMP_MAX_BLOCKTIME; 7522 7523 set__blocktime_team(thread->th.th_team, tid, blocktime); 7524 set__blocktime_team(thread->th.th_serial_team, 0, blocktime); 7525 7526 #if KMP_USE_MONITOR 7527 /* Calculate and set blocktime intervals for the teams */ 7528 bt_intervals = KMP_INTERVALS_FROM_BLOCKTIME(blocktime, __kmp_monitor_wakeups); 7529 7530 set__bt_intervals_team(thread->th.th_team, tid, bt_intervals); 7531 set__bt_intervals_team(thread->th.th_serial_team, 0, bt_intervals); 7532 #endif 7533 7534 /* Set whether blocktime has been set to "TRUE" */ 7535 bt_set = TRUE; 7536 7537 set__bt_set_team(thread->th.th_team, tid, bt_set); 7538 set__bt_set_team(thread->th.th_serial_team, 0, bt_set); 7539 #if KMP_USE_MONITOR 7540 KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d, " 7541 "bt_intervals=%d, monitor_updates=%d\n", 7542 __kmp_gtid_from_tid(tid, thread->th.th_team), 7543 thread->th.th_team->t.t_id, tid, blocktime, bt_intervals, 7544 __kmp_monitor_wakeups)); 7545 #else 7546 KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d\n", 7547 __kmp_gtid_from_tid(tid, thread->th.th_team), 7548 thread->th.th_team->t.t_id, tid, blocktime)); 7549 #endif 7550 } 7551 7552 void __kmp_aux_set_defaults(char const *str, int len) { 7553 if (!__kmp_init_serial) { 7554 __kmp_serial_initialize(); 7555 } 7556 __kmp_env_initialize(str); 7557 7558 if (__kmp_settings 7559 #if OMP_40_ENABLED 7560 || __kmp_display_env || __kmp_display_env_verbose 7561 #endif // OMP_40_ENABLED 7562 ) { 7563 __kmp_env_print(); 7564 } 7565 } // __kmp_aux_set_defaults 7566 7567 /* ------------------------------------------------------------------------ */ 7568 /* internal fast reduction routines */ 7569 7570 PACKED_REDUCTION_METHOD_T 7571 __kmp_determine_reduction_method( 7572 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, 7573 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data), 7574 kmp_critical_name *lck) { 7575 7576 // Default reduction method: critical construct ( lck != NULL, like in current 7577 // PAROPT ) 7578 // If ( reduce_data!=NULL && reduce_func!=NULL ): the tree-reduction method 7579 // can be selected by RTL 7580 // If loc->flags contains KMP_IDENT_ATOMIC_REDUCE, the atomic reduce method 7581 // can be selected by RTL 7582 // Finally, it's up to OpenMP RTL to make a decision on which method to select 7583 // among generated by PAROPT. 7584 7585 PACKED_REDUCTION_METHOD_T retval; 7586 7587 int team_size; 7588 7589 KMP_DEBUG_ASSERT(loc); // it would be nice to test ( loc != 0 ) 7590 KMP_DEBUG_ASSERT(lck); // it would be nice to test ( lck != 0 ) 7591 7592 #define FAST_REDUCTION_ATOMIC_METHOD_GENERATED \ 7593 ((loc->flags & (KMP_IDENT_ATOMIC_REDUCE)) == (KMP_IDENT_ATOMIC_REDUCE)) 7594 #define FAST_REDUCTION_TREE_METHOD_GENERATED ((reduce_data) && (reduce_func)) 7595 7596 retval = critical_reduce_block; 7597 7598 // another choice of getting a team size (with 1 dynamic deference) is slower 7599 team_size = __kmp_get_team_num_threads(global_tid); 7600 if (team_size == 1) { 7601 7602 retval = empty_reduce_block; 7603 7604 } else { 7605 7606 int atomic_available = FAST_REDUCTION_ATOMIC_METHOD_GENERATED; 7607 int tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED; 7608 7609 #if KMP_ARCH_X86_64 || KMP_ARCH_PPC64 || KMP_ARCH_AARCH64 || KMP_ARCH_MIPS64 7610 7611 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_WINDOWS || \ 7612 KMP_OS_DARWIN 7613 7614 int teamsize_cutoff = 4; 7615 7616 #if KMP_MIC_SUPPORTED 7617 if (__kmp_mic_type != non_mic) { 7618 teamsize_cutoff = 8; 7619 } 7620 #endif 7621 if (tree_available) { 7622 if (team_size <= teamsize_cutoff) { 7623 if (atomic_available) { 7624 retval = atomic_reduce_block; 7625 } 7626 } else { 7627 retval = TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER; 7628 } 7629 } else if (atomic_available) { 7630 retval = atomic_reduce_block; 7631 } 7632 #else 7633 #error "Unknown or unsupported OS" 7634 #endif // KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_WINDOWS || 7635 // KMP_OS_DARWIN 7636 7637 #elif KMP_ARCH_X86 || KMP_ARCH_ARM || KMP_ARCH_AARCH || KMP_ARCH_MIPS 7638 7639 #if KMP_OS_LINUX || KMP_OS_WINDOWS 7640 7641 // basic tuning 7642 7643 if (atomic_available) { 7644 if (num_vars <= 2) { // && ( team_size <= 8 ) due to false-sharing ??? 7645 retval = atomic_reduce_block; 7646 } 7647 } // otherwise: use critical section 7648 7649 #elif KMP_OS_DARWIN 7650 7651 if (atomic_available && (num_vars <= 3)) { 7652 retval = atomic_reduce_block; 7653 } else if (tree_available) { 7654 if ((reduce_size > (9 * sizeof(kmp_real64))) && 7655 (reduce_size < (2000 * sizeof(kmp_real64)))) { 7656 retval = TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER; 7657 } 7658 } // otherwise: use critical section 7659 7660 #else 7661 #error "Unknown or unsupported OS" 7662 #endif 7663 7664 #else 7665 #error "Unknown or unsupported architecture" 7666 #endif 7667 } 7668 7669 // KMP_FORCE_REDUCTION 7670 7671 // If the team is serialized (team_size == 1), ignore the forced reduction 7672 // method and stay with the unsynchronized method (empty_reduce_block) 7673 if (__kmp_force_reduction_method != reduction_method_not_defined && 7674 team_size != 1) { 7675 7676 PACKED_REDUCTION_METHOD_T forced_retval = critical_reduce_block; 7677 7678 int atomic_available, tree_available; 7679 7680 switch ((forced_retval = __kmp_force_reduction_method)) { 7681 case critical_reduce_block: 7682 KMP_ASSERT(lck); // lck should be != 0 7683 break; 7684 7685 case atomic_reduce_block: 7686 atomic_available = FAST_REDUCTION_ATOMIC_METHOD_GENERATED; 7687 if (!atomic_available) { 7688 KMP_WARNING(RedMethodNotSupported, "atomic"); 7689 forced_retval = critical_reduce_block; 7690 } 7691 break; 7692 7693 case tree_reduce_block: 7694 tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED; 7695 if (!tree_available) { 7696 KMP_WARNING(RedMethodNotSupported, "tree"); 7697 forced_retval = critical_reduce_block; 7698 } else { 7699 #if KMP_FAST_REDUCTION_BARRIER 7700 forced_retval = TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER; 7701 #endif 7702 } 7703 break; 7704 7705 default: 7706 KMP_ASSERT(0); // "unsupported method specified" 7707 } 7708 7709 retval = forced_retval; 7710 } 7711 7712 KA_TRACE(10, ("reduction method selected=%08x\n", retval)); 7713 7714 #undef FAST_REDUCTION_TREE_METHOD_GENERATED 7715 #undef FAST_REDUCTION_ATOMIC_METHOD_GENERATED 7716 7717 return (retval); 7718 } 7719 7720 // this function is for testing set/get/determine reduce method 7721 kmp_int32 __kmp_get_reduce_method(void) { 7722 return ((__kmp_entry_thread()->th.th_local.packed_reduction_method) >> 8); 7723 } 7724