1 /* 2 * kmp_runtime.cpp -- KPTS runtime support library 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_atomic.h" 16 #include "kmp_environment.h" 17 #include "kmp_error.h" 18 #include "kmp_i18n.h" 19 #include "kmp_io.h" 20 #include "kmp_itt.h" 21 #include "kmp_settings.h" 22 #include "kmp_stats.h" 23 #include "kmp_str.h" 24 #include "kmp_wait_release.h" 25 #include "kmp_wrapper_getpid.h" 26 #include "kmp_dispatch.h" 27 #if KMP_USE_HIER_SCHED 28 #include "kmp_dispatch_hier.h" 29 #endif 30 31 #if OMPT_SUPPORT 32 #include "ompt-specific.h" 33 #endif 34 35 #if OMPTARGET_PROFILING_SUPPORT 36 #include "llvm/Support/TimeProfiler.h" 37 static char *ProfileTraceFile = nullptr; 38 #endif 39 40 /* these are temporary issues to be dealt with */ 41 #define KMP_USE_PRCTL 0 42 43 #if KMP_OS_WINDOWS 44 #include <process.h> 45 #endif 46 47 #include "tsan_annotations.h" 48 49 #if KMP_OS_WINDOWS 50 // windows does not need include files as it doesn't use shared memory 51 #else 52 #include <sys/mman.h> 53 #include <sys/stat.h> 54 #include <fcntl.h> 55 #define SHM_SIZE 1024 56 #endif 57 58 #if defined(KMP_GOMP_COMPAT) 59 char const __kmp_version_alt_comp[] = 60 KMP_VERSION_PREFIX "alternative compiler support: yes"; 61 #endif /* defined(KMP_GOMP_COMPAT) */ 62 63 char const __kmp_version_omp_api[] = 64 KMP_VERSION_PREFIX "API version: 5.0 (201611)"; 65 66 #ifdef KMP_DEBUG 67 char const __kmp_version_lock[] = 68 KMP_VERSION_PREFIX "lock type: run time selectable"; 69 #endif /* KMP_DEBUG */ 70 71 #define KMP_MIN(x, y) ((x) < (y) ? (x) : (y)) 72 73 /* ------------------------------------------------------------------------ */ 74 75 #if KMP_USE_MONITOR 76 kmp_info_t __kmp_monitor; 77 #endif 78 79 /* Forward declarations */ 80 81 void __kmp_cleanup(void); 82 83 static void __kmp_initialize_info(kmp_info_t *, kmp_team_t *, int tid, 84 int gtid); 85 static void __kmp_initialize_team(kmp_team_t *team, int new_nproc, 86 kmp_internal_control_t *new_icvs, 87 ident_t *loc); 88 #if KMP_AFFINITY_SUPPORTED 89 static void __kmp_partition_places(kmp_team_t *team, 90 int update_master_only = 0); 91 #endif 92 static void __kmp_do_serial_initialize(void); 93 void __kmp_fork_barrier(int gtid, int tid); 94 void __kmp_join_barrier(int gtid); 95 void __kmp_setup_icv_copy(kmp_team_t *team, int new_nproc, 96 kmp_internal_control_t *new_icvs, ident_t *loc); 97 98 #ifdef USE_LOAD_BALANCE 99 static int __kmp_load_balance_nproc(kmp_root_t *root, int set_nproc); 100 #endif 101 102 static int __kmp_expand_threads(int nNeed); 103 #if KMP_OS_WINDOWS 104 static int __kmp_unregister_root_other_thread(int gtid); 105 #endif 106 static void __kmp_reap_thread(kmp_info_t *thread, int is_root); 107 kmp_info_t *__kmp_thread_pool_insert_pt = NULL; 108 109 /* Calculate the identifier of the current thread */ 110 /* fast (and somewhat portable) way to get unique identifier of executing 111 thread. Returns KMP_GTID_DNE if we haven't been assigned a gtid. */ 112 int __kmp_get_global_thread_id() { 113 int i; 114 kmp_info_t **other_threads; 115 size_t stack_data; 116 char *stack_addr; 117 size_t stack_size; 118 char *stack_base; 119 120 KA_TRACE( 121 1000, 122 ("*** __kmp_get_global_thread_id: entering, nproc=%d all_nproc=%d\n", 123 __kmp_nth, __kmp_all_nth)); 124 125 /* JPH - to handle the case where __kmpc_end(0) is called immediately prior to 126 a parallel region, made it return KMP_GTID_DNE to force serial_initialize 127 by caller. Had to handle KMP_GTID_DNE at all call-sites, or else guarantee 128 __kmp_init_gtid for this to work. */ 129 130 if (!TCR_4(__kmp_init_gtid)) 131 return KMP_GTID_DNE; 132 133 #ifdef KMP_TDATA_GTID 134 if (TCR_4(__kmp_gtid_mode) >= 3) { 135 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using TDATA\n")); 136 return __kmp_gtid; 137 } 138 #endif 139 if (TCR_4(__kmp_gtid_mode) >= 2) { 140 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using keyed TLS\n")); 141 return __kmp_gtid_get_specific(); 142 } 143 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using internal alg.\n")); 144 145 stack_addr = (char *)&stack_data; 146 other_threads = __kmp_threads; 147 148 /* ATT: The code below is a source of potential bugs due to unsynchronized 149 access to __kmp_threads array. For example: 150 1. Current thread loads other_threads[i] to thr and checks it, it is 151 non-NULL. 152 2. Current thread is suspended by OS. 153 3. Another thread unregisters and finishes (debug versions of free() 154 may fill memory with something like 0xEF). 155 4. Current thread is resumed. 156 5. Current thread reads junk from *thr. 157 TODO: Fix it. --ln */ 158 159 for (i = 0; i < __kmp_threads_capacity; i++) { 160 161 kmp_info_t *thr = (kmp_info_t *)TCR_SYNC_PTR(other_threads[i]); 162 if (!thr) 163 continue; 164 165 stack_size = (size_t)TCR_PTR(thr->th.th_info.ds.ds_stacksize); 166 stack_base = (char *)TCR_PTR(thr->th.th_info.ds.ds_stackbase); 167 168 /* stack grows down -- search through all of the active threads */ 169 170 if (stack_addr <= stack_base) { 171 size_t stack_diff = stack_base - stack_addr; 172 173 if (stack_diff <= stack_size) { 174 /* The only way we can be closer than the allocated */ 175 /* stack size is if we are running on this thread. */ 176 KMP_DEBUG_ASSERT(__kmp_gtid_get_specific() == i); 177 return i; 178 } 179 } 180 } 181 182 /* get specific to try and determine our gtid */ 183 KA_TRACE(1000, 184 ("*** __kmp_get_global_thread_id: internal alg. failed to find " 185 "thread, using TLS\n")); 186 i = __kmp_gtid_get_specific(); 187 188 /*fprintf( stderr, "=== %d\n", i ); */ /* GROO */ 189 190 /* if we havn't been assigned a gtid, then return code */ 191 if (i < 0) 192 return i; 193 194 /* dynamically updated stack window for uber threads to avoid get_specific 195 call */ 196 if (!TCR_4(other_threads[i]->th.th_info.ds.ds_stackgrow)) { 197 KMP_FATAL(StackOverflow, i); 198 } 199 200 stack_base = (char *)other_threads[i]->th.th_info.ds.ds_stackbase; 201 if (stack_addr > stack_base) { 202 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stackbase, stack_addr); 203 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stacksize, 204 other_threads[i]->th.th_info.ds.ds_stacksize + stack_addr - 205 stack_base); 206 } else { 207 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stacksize, 208 stack_base - stack_addr); 209 } 210 211 /* Reprint stack bounds for ubermaster since they have been refined */ 212 if (__kmp_storage_map) { 213 char *stack_end = (char *)other_threads[i]->th.th_info.ds.ds_stackbase; 214 char *stack_beg = stack_end - other_threads[i]->th.th_info.ds.ds_stacksize; 215 __kmp_print_storage_map_gtid(i, stack_beg, stack_end, 216 other_threads[i]->th.th_info.ds.ds_stacksize, 217 "th_%d stack (refinement)", i); 218 } 219 return i; 220 } 221 222 int __kmp_get_global_thread_id_reg() { 223 int gtid; 224 225 if (!__kmp_init_serial) { 226 gtid = KMP_GTID_DNE; 227 } else 228 #ifdef KMP_TDATA_GTID 229 if (TCR_4(__kmp_gtid_mode) >= 3) { 230 KA_TRACE(1000, ("*** __kmp_get_global_thread_id_reg: using TDATA\n")); 231 gtid = __kmp_gtid; 232 } else 233 #endif 234 if (TCR_4(__kmp_gtid_mode) >= 2) { 235 KA_TRACE(1000, ("*** __kmp_get_global_thread_id_reg: using keyed TLS\n")); 236 gtid = __kmp_gtid_get_specific(); 237 } else { 238 KA_TRACE(1000, 239 ("*** __kmp_get_global_thread_id_reg: using internal alg.\n")); 240 gtid = __kmp_get_global_thread_id(); 241 } 242 243 /* we must be a new uber master sibling thread */ 244 if (gtid == KMP_GTID_DNE) { 245 KA_TRACE(10, 246 ("__kmp_get_global_thread_id_reg: Encountered new root thread. " 247 "Registering a new gtid.\n")); 248 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 249 if (!__kmp_init_serial) { 250 __kmp_do_serial_initialize(); 251 gtid = __kmp_gtid_get_specific(); 252 } else { 253 gtid = __kmp_register_root(FALSE); 254 } 255 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 256 /*__kmp_printf( "+++ %d\n", gtid ); */ /* GROO */ 257 } 258 259 KMP_DEBUG_ASSERT(gtid >= 0); 260 261 return gtid; 262 } 263 264 /* caller must hold forkjoin_lock */ 265 void __kmp_check_stack_overlap(kmp_info_t *th) { 266 int f; 267 char *stack_beg = NULL; 268 char *stack_end = NULL; 269 int gtid; 270 271 KA_TRACE(10, ("__kmp_check_stack_overlap: called\n")); 272 if (__kmp_storage_map) { 273 stack_end = (char *)th->th.th_info.ds.ds_stackbase; 274 stack_beg = stack_end - th->th.th_info.ds.ds_stacksize; 275 276 gtid = __kmp_gtid_from_thread(th); 277 278 if (gtid == KMP_GTID_MONITOR) { 279 __kmp_print_storage_map_gtid( 280 gtid, stack_beg, stack_end, th->th.th_info.ds.ds_stacksize, 281 "th_%s stack (%s)", "mon", 282 (th->th.th_info.ds.ds_stackgrow) ? "initial" : "actual"); 283 } else { 284 __kmp_print_storage_map_gtid( 285 gtid, stack_beg, stack_end, th->th.th_info.ds.ds_stacksize, 286 "th_%d stack (%s)", gtid, 287 (th->th.th_info.ds.ds_stackgrow) ? "initial" : "actual"); 288 } 289 } 290 291 /* No point in checking ubermaster threads since they use refinement and 292 * cannot overlap */ 293 gtid = __kmp_gtid_from_thread(th); 294 if (__kmp_env_checks == TRUE && !KMP_UBER_GTID(gtid)) { 295 KA_TRACE(10, 296 ("__kmp_check_stack_overlap: performing extensive checking\n")); 297 if (stack_beg == NULL) { 298 stack_end = (char *)th->th.th_info.ds.ds_stackbase; 299 stack_beg = stack_end - th->th.th_info.ds.ds_stacksize; 300 } 301 302 for (f = 0; f < __kmp_threads_capacity; f++) { 303 kmp_info_t *f_th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[f]); 304 305 if (f_th && f_th != th) { 306 char *other_stack_end = 307 (char *)TCR_PTR(f_th->th.th_info.ds.ds_stackbase); 308 char *other_stack_beg = 309 other_stack_end - (size_t)TCR_PTR(f_th->th.th_info.ds.ds_stacksize); 310 if ((stack_beg > other_stack_beg && stack_beg < other_stack_end) || 311 (stack_end > other_stack_beg && stack_end < other_stack_end)) { 312 313 /* Print the other stack values before the abort */ 314 if (__kmp_storage_map) 315 __kmp_print_storage_map_gtid( 316 -1, other_stack_beg, other_stack_end, 317 (size_t)TCR_PTR(f_th->th.th_info.ds.ds_stacksize), 318 "th_%d stack (overlapped)", __kmp_gtid_from_thread(f_th)); 319 320 __kmp_fatal(KMP_MSG(StackOverlap), KMP_HNT(ChangeStackLimit), 321 __kmp_msg_null); 322 } 323 } 324 } 325 } 326 KA_TRACE(10, ("__kmp_check_stack_overlap: returning\n")); 327 } 328 329 /* ------------------------------------------------------------------------ */ 330 331 void __kmp_infinite_loop(void) { 332 static int done = FALSE; 333 334 while (!done) { 335 KMP_YIELD(TRUE); 336 } 337 } 338 339 #define MAX_MESSAGE 512 340 341 void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2, size_t size, 342 char const *format, ...) { 343 char buffer[MAX_MESSAGE]; 344 va_list ap; 345 346 va_start(ap, format); 347 KMP_SNPRINTF(buffer, sizeof(buffer), "OMP storage map: %p %p%8lu %s\n", p1, 348 p2, (unsigned long)size, format); 349 __kmp_acquire_bootstrap_lock(&__kmp_stdio_lock); 350 __kmp_vprintf(kmp_err, buffer, ap); 351 #if KMP_PRINT_DATA_PLACEMENT 352 int node; 353 if (gtid >= 0) { 354 if (p1 <= p2 && (char *)p2 - (char *)p1 == size) { 355 if (__kmp_storage_map_verbose) { 356 node = __kmp_get_host_node(p1); 357 if (node < 0) /* doesn't work, so don't try this next time */ 358 __kmp_storage_map_verbose = FALSE; 359 else { 360 char *last; 361 int lastNode; 362 int localProc = __kmp_get_cpu_from_gtid(gtid); 363 364 const int page_size = KMP_GET_PAGE_SIZE(); 365 366 p1 = (void *)((size_t)p1 & ~((size_t)page_size - 1)); 367 p2 = (void *)(((size_t)p2 - 1) & ~((size_t)page_size - 1)); 368 if (localProc >= 0) 369 __kmp_printf_no_lock(" GTID %d localNode %d\n", gtid, 370 localProc >> 1); 371 else 372 __kmp_printf_no_lock(" GTID %d\n", gtid); 373 #if KMP_USE_PRCTL 374 /* The more elaborate format is disabled for now because of the prctl 375 * hanging bug. */ 376 do { 377 last = p1; 378 lastNode = node; 379 /* This loop collates adjacent pages with the same host node. */ 380 do { 381 (char *)p1 += page_size; 382 } while (p1 <= p2 && (node = __kmp_get_host_node(p1)) == lastNode); 383 __kmp_printf_no_lock(" %p-%p memNode %d\n", last, (char *)p1 - 1, 384 lastNode); 385 } while (p1 <= p2); 386 #else 387 __kmp_printf_no_lock(" %p-%p memNode %d\n", p1, 388 (char *)p1 + (page_size - 1), 389 __kmp_get_host_node(p1)); 390 if (p1 < p2) { 391 __kmp_printf_no_lock(" %p-%p memNode %d\n", p2, 392 (char *)p2 + (page_size - 1), 393 __kmp_get_host_node(p2)); 394 } 395 #endif 396 } 397 } 398 } else 399 __kmp_printf_no_lock(" %s\n", KMP_I18N_STR(StorageMapWarning)); 400 } 401 #endif /* KMP_PRINT_DATA_PLACEMENT */ 402 __kmp_release_bootstrap_lock(&__kmp_stdio_lock); 403 } 404 405 void __kmp_warn(char const *format, ...) { 406 char buffer[MAX_MESSAGE]; 407 va_list ap; 408 409 if (__kmp_generate_warnings == kmp_warnings_off) { 410 return; 411 } 412 413 va_start(ap, format); 414 415 KMP_SNPRINTF(buffer, sizeof(buffer), "OMP warning: %s\n", format); 416 __kmp_acquire_bootstrap_lock(&__kmp_stdio_lock); 417 __kmp_vprintf(kmp_err, buffer, ap); 418 __kmp_release_bootstrap_lock(&__kmp_stdio_lock); 419 420 va_end(ap); 421 } 422 423 void __kmp_abort_process() { 424 // Later threads may stall here, but that's ok because abort() will kill them. 425 __kmp_acquire_bootstrap_lock(&__kmp_exit_lock); 426 427 if (__kmp_debug_buf) { 428 __kmp_dump_debug_buffer(); 429 } 430 431 if (KMP_OS_WINDOWS) { 432 // Let other threads know of abnormal termination and prevent deadlock 433 // if abort happened during library initialization or shutdown 434 __kmp_global.g.g_abort = SIGABRT; 435 436 /* On Windows* OS by default abort() causes pop-up error box, which stalls 437 nightly testing. Unfortunately, we cannot reliably suppress pop-up error 438 boxes. _set_abort_behavior() works well, but this function is not 439 available in VS7 (this is not problem for DLL, but it is a problem for 440 static OpenMP RTL). SetErrorMode (and so, timelimit utility) does not 441 help, at least in some versions of MS C RTL. 442 443 It seems following sequence is the only way to simulate abort() and 444 avoid pop-up error box. */ 445 raise(SIGABRT); 446 _exit(3); // Just in case, if signal ignored, exit anyway. 447 } else { 448 __kmp_unregister_library(); 449 abort(); 450 } 451 452 __kmp_infinite_loop(); 453 __kmp_release_bootstrap_lock(&__kmp_exit_lock); 454 455 } // __kmp_abort_process 456 457 void __kmp_abort_thread(void) { 458 // TODO: Eliminate g_abort global variable and this function. 459 // In case of abort just call abort(), it will kill all the threads. 460 __kmp_infinite_loop(); 461 } // __kmp_abort_thread 462 463 /* Print out the storage map for the major kmp_info_t thread data structures 464 that are allocated together. */ 465 466 static void __kmp_print_thread_storage_map(kmp_info_t *thr, int gtid) { 467 __kmp_print_storage_map_gtid(gtid, thr, thr + 1, sizeof(kmp_info_t), "th_%d", 468 gtid); 469 470 __kmp_print_storage_map_gtid(gtid, &thr->th.th_info, &thr->th.th_team, 471 sizeof(kmp_desc_t), "th_%d.th_info", gtid); 472 473 __kmp_print_storage_map_gtid(gtid, &thr->th.th_local, &thr->th.th_pri_head, 474 sizeof(kmp_local_t), "th_%d.th_local", gtid); 475 476 __kmp_print_storage_map_gtid( 477 gtid, &thr->th.th_bar[0], &thr->th.th_bar[bs_last_barrier], 478 sizeof(kmp_balign_t) * bs_last_barrier, "th_%d.th_bar", gtid); 479 480 __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_plain_barrier], 481 &thr->th.th_bar[bs_plain_barrier + 1], 482 sizeof(kmp_balign_t), "th_%d.th_bar[plain]", 483 gtid); 484 485 __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_forkjoin_barrier], 486 &thr->th.th_bar[bs_forkjoin_barrier + 1], 487 sizeof(kmp_balign_t), "th_%d.th_bar[forkjoin]", 488 gtid); 489 490 #if KMP_FAST_REDUCTION_BARRIER 491 __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_reduction_barrier], 492 &thr->th.th_bar[bs_reduction_barrier + 1], 493 sizeof(kmp_balign_t), "th_%d.th_bar[reduction]", 494 gtid); 495 #endif // KMP_FAST_REDUCTION_BARRIER 496 } 497 498 /* Print out the storage map for the major kmp_team_t team data structures 499 that are allocated together. */ 500 501 static void __kmp_print_team_storage_map(const char *header, kmp_team_t *team, 502 int team_id, int num_thr) { 503 int num_disp_buff = team->t.t_max_nproc > 1 ? __kmp_dispatch_num_buffers : 2; 504 __kmp_print_storage_map_gtid(-1, team, team + 1, sizeof(kmp_team_t), "%s_%d", 505 header, team_id); 506 507 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[0], 508 &team->t.t_bar[bs_last_barrier], 509 sizeof(kmp_balign_team_t) * bs_last_barrier, 510 "%s_%d.t_bar", header, team_id); 511 512 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_plain_barrier], 513 &team->t.t_bar[bs_plain_barrier + 1], 514 sizeof(kmp_balign_team_t), "%s_%d.t_bar[plain]", 515 header, team_id); 516 517 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_forkjoin_barrier], 518 &team->t.t_bar[bs_forkjoin_barrier + 1], 519 sizeof(kmp_balign_team_t), 520 "%s_%d.t_bar[forkjoin]", header, team_id); 521 522 #if KMP_FAST_REDUCTION_BARRIER 523 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_reduction_barrier], 524 &team->t.t_bar[bs_reduction_barrier + 1], 525 sizeof(kmp_balign_team_t), 526 "%s_%d.t_bar[reduction]", header, team_id); 527 #endif // KMP_FAST_REDUCTION_BARRIER 528 529 __kmp_print_storage_map_gtid( 530 -1, &team->t.t_dispatch[0], &team->t.t_dispatch[num_thr], 531 sizeof(kmp_disp_t) * num_thr, "%s_%d.t_dispatch", header, team_id); 532 533 __kmp_print_storage_map_gtid( 534 -1, &team->t.t_threads[0], &team->t.t_threads[num_thr], 535 sizeof(kmp_info_t *) * num_thr, "%s_%d.t_threads", header, team_id); 536 537 __kmp_print_storage_map_gtid(-1, &team->t.t_disp_buffer[0], 538 &team->t.t_disp_buffer[num_disp_buff], 539 sizeof(dispatch_shared_info_t) * num_disp_buff, 540 "%s_%d.t_disp_buffer", header, team_id); 541 } 542 543 static void __kmp_init_allocator() { __kmp_init_memkind(); } 544 static void __kmp_fini_allocator() { __kmp_fini_memkind(); } 545 546 /* ------------------------------------------------------------------------ */ 547 548 #if KMP_DYNAMIC_LIB 549 #if KMP_OS_WINDOWS 550 551 static void __kmp_reset_lock(kmp_bootstrap_lock_t *lck) { 552 // TODO: Change to __kmp_break_bootstrap_lock(). 553 __kmp_init_bootstrap_lock(lck); // make the lock released 554 } 555 556 static void __kmp_reset_locks_on_process_detach(int gtid_req) { 557 int i; 558 int thread_count; 559 560 // PROCESS_DETACH is expected to be called by a thread that executes 561 // ProcessExit() or FreeLibrary(). OS terminates other threads (except the one 562 // calling ProcessExit or FreeLibrary). So, it might be safe to access the 563 // __kmp_threads[] without taking the forkjoin_lock. However, in fact, some 564 // threads can be still alive here, although being about to be terminated. The 565 // threads in the array with ds_thread==0 are most suspicious. Actually, it 566 // can be not safe to access the __kmp_threads[]. 567 568 // TODO: does it make sense to check __kmp_roots[] ? 569 570 // Let's check that there are no other alive threads registered with the OMP 571 // lib. 572 while (1) { 573 thread_count = 0; 574 for (i = 0; i < __kmp_threads_capacity; ++i) { 575 if (!__kmp_threads) 576 continue; 577 kmp_info_t *th = __kmp_threads[i]; 578 if (th == NULL) 579 continue; 580 int gtid = th->th.th_info.ds.ds_gtid; 581 if (gtid == gtid_req) 582 continue; 583 if (gtid < 0) 584 continue; 585 DWORD exit_val; 586 int alive = __kmp_is_thread_alive(th, &exit_val); 587 if (alive) { 588 ++thread_count; 589 } 590 } 591 if (thread_count == 0) 592 break; // success 593 } 594 595 // Assume that I'm alone. Now it might be safe to check and reset locks. 596 // __kmp_forkjoin_lock and __kmp_stdio_lock are expected to be reset. 597 __kmp_reset_lock(&__kmp_forkjoin_lock); 598 #ifdef KMP_DEBUG 599 __kmp_reset_lock(&__kmp_stdio_lock); 600 #endif // KMP_DEBUG 601 } 602 603 BOOL WINAPI DllMain(HINSTANCE hInstDLL, DWORD fdwReason, LPVOID lpReserved) { 604 //__kmp_acquire_bootstrap_lock( &__kmp_initz_lock ); 605 606 switch (fdwReason) { 607 608 case DLL_PROCESS_ATTACH: 609 KA_TRACE(10, ("DllMain: PROCESS_ATTACH\n")); 610 611 return TRUE; 612 613 case DLL_PROCESS_DETACH: 614 KA_TRACE(10, ("DllMain: PROCESS_DETACH T#%d\n", __kmp_gtid_get_specific())); 615 616 if (lpReserved != NULL) { 617 // lpReserved is used for telling the difference: 618 // lpReserved == NULL when FreeLibrary() was called, 619 // lpReserved != NULL when the process terminates. 620 // When FreeLibrary() is called, worker threads remain alive. So they will 621 // release the forkjoin lock by themselves. When the process terminates, 622 // worker threads disappear triggering the problem of unreleased forkjoin 623 // lock as described below. 624 625 // A worker thread can take the forkjoin lock. The problem comes up if 626 // that worker thread becomes dead before it releases the forkjoin lock. 627 // The forkjoin lock remains taken, while the thread executing 628 // DllMain()->PROCESS_DETACH->__kmp_internal_end_library() below will try 629 // to take the forkjoin lock and will always fail, so that the application 630 // will never finish [normally]. This scenario is possible if 631 // __kmpc_end() has not been executed. It looks like it's not a corner 632 // case, but common cases: 633 // - the main function was compiled by an alternative compiler; 634 // - the main function was compiled by icl but without /Qopenmp 635 // (application with plugins); 636 // - application terminates by calling C exit(), Fortran CALL EXIT() or 637 // Fortran STOP. 638 // - alive foreign thread prevented __kmpc_end from doing cleanup. 639 // 640 // This is a hack to work around the problem. 641 // TODO: !!! figure out something better. 642 __kmp_reset_locks_on_process_detach(__kmp_gtid_get_specific()); 643 } 644 645 __kmp_internal_end_library(__kmp_gtid_get_specific()); 646 647 return TRUE; 648 649 case DLL_THREAD_ATTACH: 650 KA_TRACE(10, ("DllMain: THREAD_ATTACH\n")); 651 652 /* if we want to register new siblings all the time here call 653 * __kmp_get_gtid(); */ 654 return TRUE; 655 656 case DLL_THREAD_DETACH: 657 KA_TRACE(10, ("DllMain: THREAD_DETACH T#%d\n", __kmp_gtid_get_specific())); 658 659 __kmp_internal_end_thread(__kmp_gtid_get_specific()); 660 return TRUE; 661 } 662 663 return TRUE; 664 } 665 666 #endif /* KMP_OS_WINDOWS */ 667 #endif /* KMP_DYNAMIC_LIB */ 668 669 /* __kmp_parallel_deo -- Wait until it's our turn. */ 670 void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) { 671 int gtid = *gtid_ref; 672 #ifdef BUILD_PARALLEL_ORDERED 673 kmp_team_t *team = __kmp_team_from_gtid(gtid); 674 #endif /* BUILD_PARALLEL_ORDERED */ 675 676 if (__kmp_env_consistency_check) { 677 if (__kmp_threads[gtid]->th.th_root->r.r_active) 678 #if KMP_USE_DYNAMIC_LOCK 679 __kmp_push_sync(gtid, ct_ordered_in_parallel, loc_ref, NULL, 0); 680 #else 681 __kmp_push_sync(gtid, ct_ordered_in_parallel, loc_ref, NULL); 682 #endif 683 } 684 #ifdef BUILD_PARALLEL_ORDERED 685 if (!team->t.t_serialized) { 686 KMP_MB(); 687 KMP_WAIT(&team->t.t_ordered.dt.t_value, __kmp_tid_from_gtid(gtid), KMP_EQ, 688 NULL); 689 KMP_MB(); 690 } 691 #endif /* BUILD_PARALLEL_ORDERED */ 692 } 693 694 /* __kmp_parallel_dxo -- Signal the next task. */ 695 void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) { 696 int gtid = *gtid_ref; 697 #ifdef BUILD_PARALLEL_ORDERED 698 int tid = __kmp_tid_from_gtid(gtid); 699 kmp_team_t *team = __kmp_team_from_gtid(gtid); 700 #endif /* BUILD_PARALLEL_ORDERED */ 701 702 if (__kmp_env_consistency_check) { 703 if (__kmp_threads[gtid]->th.th_root->r.r_active) 704 __kmp_pop_sync(gtid, ct_ordered_in_parallel, loc_ref); 705 } 706 #ifdef BUILD_PARALLEL_ORDERED 707 if (!team->t.t_serialized) { 708 KMP_MB(); /* Flush all pending memory write invalidates. */ 709 710 /* use the tid of the next thread in this team */ 711 /* TODO replace with general release procedure */ 712 team->t.t_ordered.dt.t_value = ((tid + 1) % team->t.t_nproc); 713 714 KMP_MB(); /* Flush all pending memory write invalidates. */ 715 } 716 #endif /* BUILD_PARALLEL_ORDERED */ 717 } 718 719 /* ------------------------------------------------------------------------ */ 720 /* The BARRIER for a SINGLE process section is always explicit */ 721 722 int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws) { 723 int status; 724 kmp_info_t *th; 725 kmp_team_t *team; 726 727 if (!TCR_4(__kmp_init_parallel)) 728 __kmp_parallel_initialize(); 729 __kmp_resume_if_soft_paused(); 730 731 th = __kmp_threads[gtid]; 732 team = th->th.th_team; 733 status = 0; 734 735 th->th.th_ident = id_ref; 736 737 if (team->t.t_serialized) { 738 status = 1; 739 } else { 740 kmp_int32 old_this = th->th.th_local.this_construct; 741 742 ++th->th.th_local.this_construct; 743 /* try to set team count to thread count--success means thread got the 744 single block */ 745 /* TODO: Should this be acquire or release? */ 746 if (team->t.t_construct == old_this) { 747 status = __kmp_atomic_compare_store_acq(&team->t.t_construct, old_this, 748 th->th.th_local.this_construct); 749 } 750 #if USE_ITT_BUILD 751 if (__itt_metadata_add_ptr && __kmp_forkjoin_frames_mode == 3 && 752 KMP_MASTER_GTID(gtid) && th->th.th_teams_microtask == NULL && 753 team->t.t_active_level == 754 1) { // Only report metadata by master of active team at level 1 755 __kmp_itt_metadata_single(id_ref); 756 } 757 #endif /* USE_ITT_BUILD */ 758 } 759 760 if (__kmp_env_consistency_check) { 761 if (status && push_ws) { 762 __kmp_push_workshare(gtid, ct_psingle, id_ref); 763 } else { 764 __kmp_check_workshare(gtid, ct_psingle, id_ref); 765 } 766 } 767 #if USE_ITT_BUILD 768 if (status) { 769 __kmp_itt_single_start(gtid); 770 } 771 #endif /* USE_ITT_BUILD */ 772 return status; 773 } 774 775 void __kmp_exit_single(int gtid) { 776 #if USE_ITT_BUILD 777 __kmp_itt_single_end(gtid); 778 #endif /* USE_ITT_BUILD */ 779 if (__kmp_env_consistency_check) 780 __kmp_pop_workshare(gtid, ct_psingle, NULL); 781 } 782 783 /* determine if we can go parallel or must use a serialized parallel region and 784 * how many threads we can use 785 * set_nproc is the number of threads requested for the team 786 * returns 0 if we should serialize or only use one thread, 787 * otherwise the number of threads to use 788 * The forkjoin lock is held by the caller. */ 789 static int __kmp_reserve_threads(kmp_root_t *root, kmp_team_t *parent_team, 790 int master_tid, int set_nthreads, 791 int enter_teams) { 792 int capacity; 793 int new_nthreads; 794 KMP_DEBUG_ASSERT(__kmp_init_serial); 795 KMP_DEBUG_ASSERT(root && parent_team); 796 kmp_info_t *this_thr = parent_team->t.t_threads[master_tid]; 797 798 // If dyn-var is set, dynamically adjust the number of desired threads, 799 // according to the method specified by dynamic_mode. 800 new_nthreads = set_nthreads; 801 if (!get__dynamic_2(parent_team, master_tid)) { 802 ; 803 } 804 #ifdef USE_LOAD_BALANCE 805 else if (__kmp_global.g.g_dynamic_mode == dynamic_load_balance) { 806 new_nthreads = __kmp_load_balance_nproc(root, set_nthreads); 807 if (new_nthreads == 1) { 808 KC_TRACE(10, ("__kmp_reserve_threads: T#%d load balance reduced " 809 "reservation to 1 thread\n", 810 master_tid)); 811 return 1; 812 } 813 if (new_nthreads < set_nthreads) { 814 KC_TRACE(10, ("__kmp_reserve_threads: T#%d load balance reduced " 815 "reservation to %d threads\n", 816 master_tid, new_nthreads)); 817 } 818 } 819 #endif /* USE_LOAD_BALANCE */ 820 else if (__kmp_global.g.g_dynamic_mode == dynamic_thread_limit) { 821 new_nthreads = __kmp_avail_proc - __kmp_nth + 822 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 823 if (new_nthreads <= 1) { 824 KC_TRACE(10, ("__kmp_reserve_threads: T#%d thread limit reduced " 825 "reservation to 1 thread\n", 826 master_tid)); 827 return 1; 828 } 829 if (new_nthreads < set_nthreads) { 830 KC_TRACE(10, ("__kmp_reserve_threads: T#%d thread limit reduced " 831 "reservation to %d threads\n", 832 master_tid, new_nthreads)); 833 } else { 834 new_nthreads = set_nthreads; 835 } 836 } else if (__kmp_global.g.g_dynamic_mode == dynamic_random) { 837 if (set_nthreads > 2) { 838 new_nthreads = __kmp_get_random(parent_team->t.t_threads[master_tid]); 839 new_nthreads = (new_nthreads % set_nthreads) + 1; 840 if (new_nthreads == 1) { 841 KC_TRACE(10, ("__kmp_reserve_threads: T#%d dynamic random reduced " 842 "reservation to 1 thread\n", 843 master_tid)); 844 return 1; 845 } 846 if (new_nthreads < set_nthreads) { 847 KC_TRACE(10, ("__kmp_reserve_threads: T#%d dynamic random reduced " 848 "reservation to %d threads\n", 849 master_tid, new_nthreads)); 850 } 851 } 852 } else { 853 KMP_ASSERT(0); 854 } 855 856 // Respect KMP_ALL_THREADS/KMP_DEVICE_THREAD_LIMIT. 857 if (__kmp_nth + new_nthreads - 858 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) > 859 __kmp_max_nth) { 860 int tl_nthreads = __kmp_max_nth - __kmp_nth + 861 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 862 if (tl_nthreads <= 0) { 863 tl_nthreads = 1; 864 } 865 866 // If dyn-var is false, emit a 1-time warning. 867 if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) { 868 __kmp_reserve_warn = 1; 869 __kmp_msg(kmp_ms_warning, 870 KMP_MSG(CantFormThrTeam, set_nthreads, tl_nthreads), 871 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 872 } 873 if (tl_nthreads == 1) { 874 KC_TRACE(10, ("__kmp_reserve_threads: T#%d KMP_DEVICE_THREAD_LIMIT " 875 "reduced reservation to 1 thread\n", 876 master_tid)); 877 return 1; 878 } 879 KC_TRACE(10, ("__kmp_reserve_threads: T#%d KMP_DEVICE_THREAD_LIMIT reduced " 880 "reservation to %d threads\n", 881 master_tid, tl_nthreads)); 882 new_nthreads = tl_nthreads; 883 } 884 885 // Respect OMP_THREAD_LIMIT 886 int cg_nthreads = this_thr->th.th_cg_roots->cg_nthreads; 887 int max_cg_threads = this_thr->th.th_cg_roots->cg_thread_limit; 888 if (cg_nthreads + new_nthreads - 889 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) > 890 max_cg_threads) { 891 int tl_nthreads = max_cg_threads - cg_nthreads + 892 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 893 if (tl_nthreads <= 0) { 894 tl_nthreads = 1; 895 } 896 897 // If dyn-var is false, emit a 1-time warning. 898 if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) { 899 __kmp_reserve_warn = 1; 900 __kmp_msg(kmp_ms_warning, 901 KMP_MSG(CantFormThrTeam, set_nthreads, tl_nthreads), 902 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 903 } 904 if (tl_nthreads == 1) { 905 KC_TRACE(10, ("__kmp_reserve_threads: T#%d OMP_THREAD_LIMIT " 906 "reduced reservation to 1 thread\n", 907 master_tid)); 908 return 1; 909 } 910 KC_TRACE(10, ("__kmp_reserve_threads: T#%d OMP_THREAD_LIMIT reduced " 911 "reservation to %d threads\n", 912 master_tid, tl_nthreads)); 913 new_nthreads = tl_nthreads; 914 } 915 916 // Check if the threads array is large enough, or needs expanding. 917 // See comment in __kmp_register_root() about the adjustment if 918 // __kmp_threads[0] == NULL. 919 capacity = __kmp_threads_capacity; 920 if (TCR_PTR(__kmp_threads[0]) == NULL) { 921 --capacity; 922 } 923 if (__kmp_nth + new_nthreads - 924 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) > 925 capacity) { 926 // Expand the threads array. 927 int slotsRequired = __kmp_nth + new_nthreads - 928 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) - 929 capacity; 930 int slotsAdded = __kmp_expand_threads(slotsRequired); 931 if (slotsAdded < slotsRequired) { 932 // The threads array was not expanded enough. 933 new_nthreads -= (slotsRequired - slotsAdded); 934 KMP_ASSERT(new_nthreads >= 1); 935 936 // If dyn-var is false, emit a 1-time warning. 937 if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) { 938 __kmp_reserve_warn = 1; 939 if (__kmp_tp_cached) { 940 __kmp_msg(kmp_ms_warning, 941 KMP_MSG(CantFormThrTeam, set_nthreads, new_nthreads), 942 KMP_HNT(Set_ALL_THREADPRIVATE, __kmp_tp_capacity), 943 KMP_HNT(PossibleSystemLimitOnThreads), __kmp_msg_null); 944 } else { 945 __kmp_msg(kmp_ms_warning, 946 KMP_MSG(CantFormThrTeam, set_nthreads, new_nthreads), 947 KMP_HNT(SystemLimitOnThreads), __kmp_msg_null); 948 } 949 } 950 } 951 } 952 953 #ifdef KMP_DEBUG 954 if (new_nthreads == 1) { 955 KC_TRACE(10, 956 ("__kmp_reserve_threads: T#%d serializing team after reclaiming " 957 "dead roots and rechecking; requested %d threads\n", 958 __kmp_get_gtid(), set_nthreads)); 959 } else { 960 KC_TRACE(10, ("__kmp_reserve_threads: T#%d allocating %d threads; requested" 961 " %d threads\n", 962 __kmp_get_gtid(), new_nthreads, set_nthreads)); 963 } 964 #endif // KMP_DEBUG 965 return new_nthreads; 966 } 967 968 /* Allocate threads from the thread pool and assign them to the new team. We are 969 assured that there are enough threads available, because we checked on that 970 earlier within critical section forkjoin */ 971 static void __kmp_fork_team_threads(kmp_root_t *root, kmp_team_t *team, 972 kmp_info_t *master_th, int master_gtid) { 973 int i; 974 int use_hot_team; 975 976 KA_TRACE(10, ("__kmp_fork_team_threads: new_nprocs = %d\n", team->t.t_nproc)); 977 KMP_DEBUG_ASSERT(master_gtid == __kmp_get_gtid()); 978 KMP_MB(); 979 980 /* first, let's setup the master thread */ 981 master_th->th.th_info.ds.ds_tid = 0; 982 master_th->th.th_team = team; 983 master_th->th.th_team_nproc = team->t.t_nproc; 984 master_th->th.th_team_master = master_th; 985 master_th->th.th_team_serialized = FALSE; 986 master_th->th.th_dispatch = &team->t.t_dispatch[0]; 987 988 /* make sure we are not the optimized hot team */ 989 #if KMP_NESTED_HOT_TEAMS 990 use_hot_team = 0; 991 kmp_hot_team_ptr_t *hot_teams = master_th->th.th_hot_teams; 992 if (hot_teams) { // hot teams array is not allocated if 993 // KMP_HOT_TEAMS_MAX_LEVEL=0 994 int level = team->t.t_active_level - 1; // index in array of hot teams 995 if (master_th->th.th_teams_microtask) { // are we inside the teams? 996 if (master_th->th.th_teams_size.nteams > 1) { 997 ++level; // level was not increased in teams construct for 998 // team_of_masters 999 } 1000 if (team->t.t_pkfn != (microtask_t)__kmp_teams_master && 1001 master_th->th.th_teams_level == team->t.t_level) { 1002 ++level; // level was not increased in teams construct for 1003 // team_of_workers before the parallel 1004 } // team->t.t_level will be increased inside parallel 1005 } 1006 if (level < __kmp_hot_teams_max_level) { 1007 if (hot_teams[level].hot_team) { 1008 // hot team has already been allocated for given level 1009 KMP_DEBUG_ASSERT(hot_teams[level].hot_team == team); 1010 use_hot_team = 1; // the team is ready to use 1011 } else { 1012 use_hot_team = 0; // AC: threads are not allocated yet 1013 hot_teams[level].hot_team = team; // remember new hot team 1014 hot_teams[level].hot_team_nth = team->t.t_nproc; 1015 } 1016 } else { 1017 use_hot_team = 0; 1018 } 1019 } 1020 #else 1021 use_hot_team = team == root->r.r_hot_team; 1022 #endif 1023 if (!use_hot_team) { 1024 1025 /* install the master thread */ 1026 team->t.t_threads[0] = master_th; 1027 __kmp_initialize_info(master_th, team, 0, master_gtid); 1028 1029 /* now, install the worker threads */ 1030 for (i = 1; i < team->t.t_nproc; i++) { 1031 1032 /* fork or reallocate a new thread and install it in team */ 1033 kmp_info_t *thr = __kmp_allocate_thread(root, team, i); 1034 team->t.t_threads[i] = thr; 1035 KMP_DEBUG_ASSERT(thr); 1036 KMP_DEBUG_ASSERT(thr->th.th_team == team); 1037 /* align team and thread arrived states */ 1038 KA_TRACE(20, ("__kmp_fork_team_threads: T#%d(%d:%d) init arrived " 1039 "T#%d(%d:%d) join =%llu, plain=%llu\n", 1040 __kmp_gtid_from_tid(0, team), team->t.t_id, 0, 1041 __kmp_gtid_from_tid(i, team), team->t.t_id, i, 1042 team->t.t_bar[bs_forkjoin_barrier].b_arrived, 1043 team->t.t_bar[bs_plain_barrier].b_arrived)); 1044 thr->th.th_teams_microtask = master_th->th.th_teams_microtask; 1045 thr->th.th_teams_level = master_th->th.th_teams_level; 1046 thr->th.th_teams_size = master_th->th.th_teams_size; 1047 { // Initialize threads' barrier data. 1048 int b; 1049 kmp_balign_t *balign = team->t.t_threads[i]->th.th_bar; 1050 for (b = 0; b < bs_last_barrier; ++b) { 1051 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 1052 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 1053 #if USE_DEBUGGER 1054 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 1055 #endif 1056 } 1057 } 1058 } 1059 1060 #if KMP_AFFINITY_SUPPORTED 1061 __kmp_partition_places(team); 1062 #endif 1063 } 1064 1065 if (__kmp_display_affinity && team->t.t_display_affinity != 1) { 1066 for (i = 0; i < team->t.t_nproc; i++) { 1067 kmp_info_t *thr = team->t.t_threads[i]; 1068 if (thr->th.th_prev_num_threads != team->t.t_nproc || 1069 thr->th.th_prev_level != team->t.t_level) { 1070 team->t.t_display_affinity = 1; 1071 break; 1072 } 1073 } 1074 } 1075 1076 KMP_MB(); 1077 } 1078 1079 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1080 // Propagate any changes to the floating point control registers out to the team 1081 // We try to avoid unnecessary writes to the relevant cache line in the team 1082 // structure, so we don't make changes unless they are needed. 1083 inline static void propagateFPControl(kmp_team_t *team) { 1084 if (__kmp_inherit_fp_control) { 1085 kmp_int16 x87_fpu_control_word; 1086 kmp_uint32 mxcsr; 1087 1088 // Get master values of FPU control flags (both X87 and vector) 1089 __kmp_store_x87_fpu_control_word(&x87_fpu_control_word); 1090 __kmp_store_mxcsr(&mxcsr); 1091 mxcsr &= KMP_X86_MXCSR_MASK; 1092 1093 // There is no point looking at t_fp_control_saved here. 1094 // If it is TRUE, we still have to update the values if they are different 1095 // from those we now have. If it is FALSE we didn't save anything yet, but 1096 // our objective is the same. We have to ensure that the values in the team 1097 // are the same as those we have. 1098 // So, this code achieves what we need whether or not t_fp_control_saved is 1099 // true. By checking whether the value needs updating we avoid unnecessary 1100 // writes that would put the cache-line into a written state, causing all 1101 // threads in the team to have to read it again. 1102 KMP_CHECK_UPDATE(team->t.t_x87_fpu_control_word, x87_fpu_control_word); 1103 KMP_CHECK_UPDATE(team->t.t_mxcsr, mxcsr); 1104 // Although we don't use this value, other code in the runtime wants to know 1105 // whether it should restore them. So we must ensure it is correct. 1106 KMP_CHECK_UPDATE(team->t.t_fp_control_saved, TRUE); 1107 } else { 1108 // Similarly here. Don't write to this cache-line in the team structure 1109 // unless we have to. 1110 KMP_CHECK_UPDATE(team->t.t_fp_control_saved, FALSE); 1111 } 1112 } 1113 1114 // Do the opposite, setting the hardware registers to the updated values from 1115 // the team. 1116 inline static void updateHWFPControl(kmp_team_t *team) { 1117 if (__kmp_inherit_fp_control && team->t.t_fp_control_saved) { 1118 // Only reset the fp control regs if they have been changed in the team. 1119 // the parallel region that we are exiting. 1120 kmp_int16 x87_fpu_control_word; 1121 kmp_uint32 mxcsr; 1122 __kmp_store_x87_fpu_control_word(&x87_fpu_control_word); 1123 __kmp_store_mxcsr(&mxcsr); 1124 mxcsr &= KMP_X86_MXCSR_MASK; 1125 1126 if (team->t.t_x87_fpu_control_word != x87_fpu_control_word) { 1127 __kmp_clear_x87_fpu_status_word(); 1128 __kmp_load_x87_fpu_control_word(&team->t.t_x87_fpu_control_word); 1129 } 1130 1131 if (team->t.t_mxcsr != mxcsr) { 1132 __kmp_load_mxcsr(&team->t.t_mxcsr); 1133 } 1134 } 1135 } 1136 #else 1137 #define propagateFPControl(x) ((void)0) 1138 #define updateHWFPControl(x) ((void)0) 1139 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 1140 1141 static void __kmp_alloc_argv_entries(int argc, kmp_team_t *team, 1142 int realloc); // forward declaration 1143 1144 /* Run a parallel region that has been serialized, so runs only in a team of the 1145 single master thread. */ 1146 void __kmp_serialized_parallel(ident_t *loc, kmp_int32 global_tid) { 1147 kmp_info_t *this_thr; 1148 kmp_team_t *serial_team; 1149 1150 KC_TRACE(10, ("__kmpc_serialized_parallel: called by T#%d\n", global_tid)); 1151 1152 /* Skip all this code for autopar serialized loops since it results in 1153 unacceptable overhead */ 1154 if (loc != NULL && (loc->flags & KMP_IDENT_AUTOPAR)) 1155 return; 1156 1157 if (!TCR_4(__kmp_init_parallel)) 1158 __kmp_parallel_initialize(); 1159 __kmp_resume_if_soft_paused(); 1160 1161 this_thr = __kmp_threads[global_tid]; 1162 serial_team = this_thr->th.th_serial_team; 1163 1164 /* utilize the serialized team held by this thread */ 1165 KMP_DEBUG_ASSERT(serial_team); 1166 KMP_MB(); 1167 1168 if (__kmp_tasking_mode != tskm_immediate_exec) { 1169 KMP_DEBUG_ASSERT( 1170 this_thr->th.th_task_team == 1171 this_thr->th.th_team->t.t_task_team[this_thr->th.th_task_state]); 1172 KMP_DEBUG_ASSERT(serial_team->t.t_task_team[this_thr->th.th_task_state] == 1173 NULL); 1174 KA_TRACE(20, ("__kmpc_serialized_parallel: T#%d pushing task_team %p / " 1175 "team %p, new task_team = NULL\n", 1176 global_tid, this_thr->th.th_task_team, this_thr->th.th_team)); 1177 this_thr->th.th_task_team = NULL; 1178 } 1179 1180 kmp_proc_bind_t proc_bind = this_thr->th.th_set_proc_bind; 1181 if (this_thr->th.th_current_task->td_icvs.proc_bind == proc_bind_false) { 1182 proc_bind = proc_bind_false; 1183 } else if (proc_bind == proc_bind_default) { 1184 // No proc_bind clause was specified, so use the current value 1185 // of proc-bind-var for this parallel region. 1186 proc_bind = this_thr->th.th_current_task->td_icvs.proc_bind; 1187 } 1188 // Reset for next parallel region 1189 this_thr->th.th_set_proc_bind = proc_bind_default; 1190 1191 #if OMPT_SUPPORT 1192 ompt_data_t ompt_parallel_data = ompt_data_none; 1193 ompt_data_t *implicit_task_data; 1194 void *codeptr = OMPT_LOAD_RETURN_ADDRESS(global_tid); 1195 if (ompt_enabled.enabled && 1196 this_thr->th.ompt_thread_info.state != ompt_state_overhead) { 1197 1198 ompt_task_info_t *parent_task_info; 1199 parent_task_info = OMPT_CUR_TASK_INFO(this_thr); 1200 1201 parent_task_info->frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 1202 if (ompt_enabled.ompt_callback_parallel_begin) { 1203 int team_size = 1; 1204 1205 ompt_callbacks.ompt_callback(ompt_callback_parallel_begin)( 1206 &(parent_task_info->task_data), &(parent_task_info->frame), 1207 &ompt_parallel_data, team_size, 1208 ompt_parallel_invoker_program | ompt_parallel_team, codeptr); 1209 } 1210 } 1211 #endif // OMPT_SUPPORT 1212 1213 if (this_thr->th.th_team != serial_team) { 1214 // Nested level will be an index in the nested nthreads array 1215 int level = this_thr->th.th_team->t.t_level; 1216 1217 if (serial_team->t.t_serialized) { 1218 /* this serial team was already used 1219 TODO increase performance by making this locks more specific */ 1220 kmp_team_t *new_team; 1221 1222 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 1223 1224 new_team = 1225 __kmp_allocate_team(this_thr->th.th_root, 1, 1, 1226 #if OMPT_SUPPORT 1227 ompt_parallel_data, 1228 #endif 1229 proc_bind, &this_thr->th.th_current_task->td_icvs, 1230 0 USE_NESTED_HOT_ARG(NULL)); 1231 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1232 KMP_ASSERT(new_team); 1233 1234 /* setup new serialized team and install it */ 1235 new_team->t.t_threads[0] = this_thr; 1236 new_team->t.t_parent = this_thr->th.th_team; 1237 serial_team = new_team; 1238 this_thr->th.th_serial_team = serial_team; 1239 1240 KF_TRACE( 1241 10, 1242 ("__kmpc_serialized_parallel: T#%d allocated new serial team %p\n", 1243 global_tid, serial_team)); 1244 1245 /* TODO the above breaks the requirement that if we run out of resources, 1246 then we can still guarantee that serialized teams are ok, since we may 1247 need to allocate a new one */ 1248 } else { 1249 KF_TRACE( 1250 10, 1251 ("__kmpc_serialized_parallel: T#%d reusing cached serial team %p\n", 1252 global_tid, serial_team)); 1253 } 1254 1255 /* we have to initialize this serial team */ 1256 KMP_DEBUG_ASSERT(serial_team->t.t_threads); 1257 KMP_DEBUG_ASSERT(serial_team->t.t_threads[0] == this_thr); 1258 KMP_DEBUG_ASSERT(this_thr->th.th_team != serial_team); 1259 serial_team->t.t_ident = loc; 1260 serial_team->t.t_serialized = 1; 1261 serial_team->t.t_nproc = 1; 1262 serial_team->t.t_parent = this_thr->th.th_team; 1263 serial_team->t.t_sched.sched = this_thr->th.th_team->t.t_sched.sched; 1264 this_thr->th.th_team = serial_team; 1265 serial_team->t.t_master_tid = this_thr->th.th_info.ds.ds_tid; 1266 1267 KF_TRACE(10, ("__kmpc_serialized_parallel: T#d curtask=%p\n", global_tid, 1268 this_thr->th.th_current_task)); 1269 KMP_ASSERT(this_thr->th.th_current_task->td_flags.executing == 1); 1270 this_thr->th.th_current_task->td_flags.executing = 0; 1271 1272 __kmp_push_current_task_to_thread(this_thr, serial_team, 0); 1273 1274 /* TODO: GEH: do ICVs work for nested serialized teams? Don't we need an 1275 implicit task for each serialized task represented by 1276 team->t.t_serialized? */ 1277 copy_icvs(&this_thr->th.th_current_task->td_icvs, 1278 &this_thr->th.th_current_task->td_parent->td_icvs); 1279 1280 // Thread value exists in the nested nthreads array for the next nested 1281 // level 1282 if (__kmp_nested_nth.used && (level + 1 < __kmp_nested_nth.used)) { 1283 this_thr->th.th_current_task->td_icvs.nproc = 1284 __kmp_nested_nth.nth[level + 1]; 1285 } 1286 1287 if (__kmp_nested_proc_bind.used && 1288 (level + 1 < __kmp_nested_proc_bind.used)) { 1289 this_thr->th.th_current_task->td_icvs.proc_bind = 1290 __kmp_nested_proc_bind.bind_types[level + 1]; 1291 } 1292 1293 #if USE_DEBUGGER 1294 serial_team->t.t_pkfn = (microtask_t)(~0); // For the debugger. 1295 #endif 1296 this_thr->th.th_info.ds.ds_tid = 0; 1297 1298 /* set thread cache values */ 1299 this_thr->th.th_team_nproc = 1; 1300 this_thr->th.th_team_master = this_thr; 1301 this_thr->th.th_team_serialized = 1; 1302 1303 serial_team->t.t_level = serial_team->t.t_parent->t.t_level + 1; 1304 serial_team->t.t_active_level = serial_team->t.t_parent->t.t_active_level; 1305 serial_team->t.t_def_allocator = this_thr->th.th_def_allocator; // save 1306 1307 propagateFPControl(serial_team); 1308 1309 /* check if we need to allocate dispatch buffers stack */ 1310 KMP_DEBUG_ASSERT(serial_team->t.t_dispatch); 1311 if (!serial_team->t.t_dispatch->th_disp_buffer) { 1312 serial_team->t.t_dispatch->th_disp_buffer = 1313 (dispatch_private_info_t *)__kmp_allocate( 1314 sizeof(dispatch_private_info_t)); 1315 } 1316 this_thr->th.th_dispatch = serial_team->t.t_dispatch; 1317 1318 KMP_MB(); 1319 1320 } else { 1321 /* this serialized team is already being used, 1322 * that's fine, just add another nested level */ 1323 KMP_DEBUG_ASSERT(this_thr->th.th_team == serial_team); 1324 KMP_DEBUG_ASSERT(serial_team->t.t_threads); 1325 KMP_DEBUG_ASSERT(serial_team->t.t_threads[0] == this_thr); 1326 ++serial_team->t.t_serialized; 1327 this_thr->th.th_team_serialized = serial_team->t.t_serialized; 1328 1329 // Nested level will be an index in the nested nthreads array 1330 int level = this_thr->th.th_team->t.t_level; 1331 // Thread value exists in the nested nthreads array for the next nested 1332 // level 1333 if (__kmp_nested_nth.used && (level + 1 < __kmp_nested_nth.used)) { 1334 this_thr->th.th_current_task->td_icvs.nproc = 1335 __kmp_nested_nth.nth[level + 1]; 1336 } 1337 serial_team->t.t_level++; 1338 KF_TRACE(10, ("__kmpc_serialized_parallel: T#%d increasing nesting level " 1339 "of serial team %p to %d\n", 1340 global_tid, serial_team, serial_team->t.t_level)); 1341 1342 /* allocate/push dispatch buffers stack */ 1343 KMP_DEBUG_ASSERT(serial_team->t.t_dispatch); 1344 { 1345 dispatch_private_info_t *disp_buffer = 1346 (dispatch_private_info_t *)__kmp_allocate( 1347 sizeof(dispatch_private_info_t)); 1348 disp_buffer->next = serial_team->t.t_dispatch->th_disp_buffer; 1349 serial_team->t.t_dispatch->th_disp_buffer = disp_buffer; 1350 } 1351 this_thr->th.th_dispatch = serial_team->t.t_dispatch; 1352 1353 KMP_MB(); 1354 } 1355 KMP_CHECK_UPDATE(serial_team->t.t_cancel_request, cancel_noreq); 1356 1357 // Perform the display affinity functionality for 1358 // serialized parallel regions 1359 if (__kmp_display_affinity) { 1360 if (this_thr->th.th_prev_level != serial_team->t.t_level || 1361 this_thr->th.th_prev_num_threads != 1) { 1362 // NULL means use the affinity-format-var ICV 1363 __kmp_aux_display_affinity(global_tid, NULL); 1364 this_thr->th.th_prev_level = serial_team->t.t_level; 1365 this_thr->th.th_prev_num_threads = 1; 1366 } 1367 } 1368 1369 if (__kmp_env_consistency_check) 1370 __kmp_push_parallel(global_tid, NULL); 1371 #if OMPT_SUPPORT 1372 serial_team->t.ompt_team_info.master_return_address = codeptr; 1373 if (ompt_enabled.enabled && 1374 this_thr->th.ompt_thread_info.state != ompt_state_overhead) { 1375 OMPT_CUR_TASK_INFO(this_thr)->frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 1376 1377 ompt_lw_taskteam_t lw_taskteam; 1378 __ompt_lw_taskteam_init(&lw_taskteam, this_thr, global_tid, 1379 &ompt_parallel_data, codeptr); 1380 1381 __ompt_lw_taskteam_link(&lw_taskteam, this_thr, 1); 1382 // don't use lw_taskteam after linking. content was swaped 1383 1384 /* OMPT implicit task begin */ 1385 implicit_task_data = OMPT_CUR_TASK_DATA(this_thr); 1386 if (ompt_enabled.ompt_callback_implicit_task) { 1387 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1388 ompt_scope_begin, OMPT_CUR_TEAM_DATA(this_thr), 1389 OMPT_CUR_TASK_DATA(this_thr), 1, __kmp_tid_from_gtid(global_tid), ompt_task_implicit); // TODO: Can this be ompt_task_initial? 1390 OMPT_CUR_TASK_INFO(this_thr) 1391 ->thread_num = __kmp_tid_from_gtid(global_tid); 1392 } 1393 1394 /* OMPT state */ 1395 this_thr->th.ompt_thread_info.state = ompt_state_work_parallel; 1396 OMPT_CUR_TASK_INFO(this_thr)->frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 1397 } 1398 #endif 1399 } 1400 1401 /* most of the work for a fork */ 1402 /* return true if we really went parallel, false if serialized */ 1403 int __kmp_fork_call(ident_t *loc, int gtid, 1404 enum fork_context_e call_context, // Intel, GNU, ... 1405 kmp_int32 argc, microtask_t microtask, launch_t invoker, 1406 kmp_va_list ap) { 1407 void **argv; 1408 int i; 1409 int master_tid; 1410 int master_this_cons; 1411 kmp_team_t *team; 1412 kmp_team_t *parent_team; 1413 kmp_info_t *master_th; 1414 kmp_root_t *root; 1415 int nthreads; 1416 int master_active; 1417 int master_set_numthreads; 1418 int level; 1419 int active_level; 1420 int teams_level; 1421 #if KMP_NESTED_HOT_TEAMS 1422 kmp_hot_team_ptr_t **p_hot_teams; 1423 #endif 1424 { // KMP_TIME_BLOCK 1425 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_fork_call); 1426 KMP_COUNT_VALUE(OMP_PARALLEL_args, argc); 1427 1428 KA_TRACE(20, ("__kmp_fork_call: enter T#%d\n", gtid)); 1429 if (__kmp_stkpadding > 0 && __kmp_root[gtid] != NULL) { 1430 /* Some systems prefer the stack for the root thread(s) to start with */ 1431 /* some gap from the parent stack to prevent false sharing. */ 1432 void *dummy = KMP_ALLOCA(__kmp_stkpadding); 1433 /* These 2 lines below are so this does not get optimized out */ 1434 if (__kmp_stkpadding > KMP_MAX_STKPADDING) 1435 __kmp_stkpadding += (short)((kmp_int64)dummy); 1436 } 1437 1438 /* initialize if needed */ 1439 KMP_DEBUG_ASSERT( 1440 __kmp_init_serial); // AC: potentially unsafe, not in sync with shutdown 1441 if (!TCR_4(__kmp_init_parallel)) 1442 __kmp_parallel_initialize(); 1443 __kmp_resume_if_soft_paused(); 1444 1445 /* setup current data */ 1446 master_th = __kmp_threads[gtid]; // AC: potentially unsafe, not in sync with 1447 // shutdown 1448 parent_team = master_th->th.th_team; 1449 master_tid = master_th->th.th_info.ds.ds_tid; 1450 master_this_cons = master_th->th.th_local.this_construct; 1451 root = master_th->th.th_root; 1452 master_active = root->r.r_active; 1453 master_set_numthreads = master_th->th.th_set_nproc; 1454 1455 #if OMPT_SUPPORT 1456 ompt_data_t ompt_parallel_data = ompt_data_none; 1457 ompt_data_t *parent_task_data; 1458 ompt_frame_t *ompt_frame; 1459 ompt_data_t *implicit_task_data; 1460 void *return_address = NULL; 1461 1462 if (ompt_enabled.enabled) { 1463 __ompt_get_task_info_internal(0, NULL, &parent_task_data, &ompt_frame, 1464 NULL, NULL); 1465 return_address = OMPT_LOAD_RETURN_ADDRESS(gtid); 1466 } 1467 #endif 1468 1469 // Nested level will be an index in the nested nthreads array 1470 level = parent_team->t.t_level; 1471 // used to launch non-serial teams even if nested is not allowed 1472 active_level = parent_team->t.t_active_level; 1473 // needed to check nesting inside the teams 1474 teams_level = master_th->th.th_teams_level; 1475 #if KMP_NESTED_HOT_TEAMS 1476 p_hot_teams = &master_th->th.th_hot_teams; 1477 if (*p_hot_teams == NULL && __kmp_hot_teams_max_level > 0) { 1478 *p_hot_teams = (kmp_hot_team_ptr_t *)__kmp_allocate( 1479 sizeof(kmp_hot_team_ptr_t) * __kmp_hot_teams_max_level); 1480 (*p_hot_teams)[0].hot_team = root->r.r_hot_team; 1481 // it is either actual or not needed (when active_level > 0) 1482 (*p_hot_teams)[0].hot_team_nth = 1; 1483 } 1484 #endif 1485 1486 #if OMPT_SUPPORT 1487 if (ompt_enabled.enabled) { 1488 if (ompt_enabled.ompt_callback_parallel_begin) { 1489 int team_size = master_set_numthreads 1490 ? master_set_numthreads 1491 : get__nproc_2(parent_team, master_tid); 1492 int flags = OMPT_INVOKER(call_context) | 1493 ((microtask == (microtask_t)__kmp_teams_master) 1494 ? ompt_parallel_league 1495 : ompt_parallel_team); 1496 ompt_callbacks.ompt_callback(ompt_callback_parallel_begin)( 1497 parent_task_data, ompt_frame, &ompt_parallel_data, team_size, flags, 1498 return_address); 1499 } 1500 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1501 } 1502 #endif 1503 1504 master_th->th.th_ident = loc; 1505 1506 if (master_th->th.th_teams_microtask && ap && 1507 microtask != (microtask_t)__kmp_teams_master && level == teams_level) { 1508 // AC: This is start of parallel that is nested inside teams construct. 1509 // The team is actual (hot), all workers are ready at the fork barrier. 1510 // No lock needed to initialize the team a bit, then free workers. 1511 parent_team->t.t_ident = loc; 1512 __kmp_alloc_argv_entries(argc, parent_team, TRUE); 1513 parent_team->t.t_argc = argc; 1514 argv = (void **)parent_team->t.t_argv; 1515 for (i = argc - 1; i >= 0; --i) 1516 *argv++ = va_arg(kmp_va_deref(ap), void *); 1517 // Increment our nested depth levels, but not increase the serialization 1518 if (parent_team == master_th->th.th_serial_team) { 1519 // AC: we are in serialized parallel 1520 __kmpc_serialized_parallel(loc, gtid); 1521 KMP_DEBUG_ASSERT(parent_team->t.t_serialized > 1); 1522 1523 if (call_context == fork_context_gnu) { 1524 // AC: need to decrement t_serialized for enquiry functions to work 1525 // correctly, will restore at join time 1526 parent_team->t.t_serialized--; 1527 return TRUE; 1528 } 1529 1530 #if OMPT_SUPPORT 1531 void *dummy; 1532 void **exit_frame_p; 1533 1534 ompt_lw_taskteam_t lw_taskteam; 1535 1536 if (ompt_enabled.enabled) { 1537 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1538 &ompt_parallel_data, return_address); 1539 exit_frame_p = &(lw_taskteam.ompt_task_info.frame.exit_frame.ptr); 1540 1541 __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0); 1542 // don't use lw_taskteam after linking. content was swaped 1543 1544 /* OMPT implicit task begin */ 1545 implicit_task_data = OMPT_CUR_TASK_DATA(master_th); 1546 if (ompt_enabled.ompt_callback_implicit_task) { 1547 OMPT_CUR_TASK_INFO(master_th) 1548 ->thread_num = __kmp_tid_from_gtid(gtid); 1549 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1550 ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th), 1551 implicit_task_data, 1, 1552 OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit); 1553 } 1554 1555 /* OMPT state */ 1556 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 1557 } else { 1558 exit_frame_p = &dummy; 1559 } 1560 #endif 1561 // AC: need to decrement t_serialized for enquiry functions to work 1562 // correctly, will restore at join time 1563 parent_team->t.t_serialized--; 1564 1565 { 1566 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1567 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1568 __kmp_invoke_microtask(microtask, gtid, 0, argc, parent_team->t.t_argv 1569 #if OMPT_SUPPORT 1570 , 1571 exit_frame_p 1572 #endif 1573 ); 1574 } 1575 1576 #if OMPT_SUPPORT 1577 if (ompt_enabled.enabled) { 1578 *exit_frame_p = NULL; 1579 OMPT_CUR_TASK_INFO(master_th)->frame.exit_frame = ompt_data_none; 1580 if (ompt_enabled.ompt_callback_implicit_task) { 1581 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1582 ompt_scope_end, NULL, implicit_task_data, 1, 1583 OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit); 1584 } 1585 ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th); 1586 __ompt_lw_taskteam_unlink(master_th); 1587 if (ompt_enabled.ompt_callback_parallel_end) { 1588 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 1589 &ompt_parallel_data, OMPT_CUR_TASK_DATA(master_th), 1590 OMPT_INVOKER(call_context) | ompt_parallel_team, 1591 return_address); 1592 } 1593 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1594 } 1595 #endif 1596 return TRUE; 1597 } 1598 1599 parent_team->t.t_pkfn = microtask; 1600 parent_team->t.t_invoke = invoker; 1601 KMP_ATOMIC_INC(&root->r.r_in_parallel); 1602 parent_team->t.t_active_level++; 1603 parent_team->t.t_level++; 1604 parent_team->t.t_def_allocator = master_th->th.th_def_allocator; // save 1605 1606 #if OMPT_SUPPORT 1607 if (ompt_enabled.enabled) { 1608 ompt_lw_taskteam_t lw_taskteam; 1609 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1610 &ompt_parallel_data, return_address); 1611 __ompt_lw_taskteam_link(&lw_taskteam, master_th, 1, true); 1612 } 1613 #endif 1614 1615 /* Change number of threads in the team if requested */ 1616 if (master_set_numthreads) { // The parallel has num_threads clause 1617 if (master_set_numthreads < master_th->th.th_teams_size.nth) { 1618 // AC: only can reduce number of threads dynamically, can't increase 1619 kmp_info_t **other_threads = parent_team->t.t_threads; 1620 parent_team->t.t_nproc = master_set_numthreads; 1621 for (i = 0; i < master_set_numthreads; ++i) { 1622 other_threads[i]->th.th_team_nproc = master_set_numthreads; 1623 } 1624 // Keep extra threads hot in the team for possible next parallels 1625 } 1626 master_th->th.th_set_nproc = 0; 1627 } 1628 1629 #if USE_DEBUGGER 1630 if (__kmp_debugging) { // Let debugger override number of threads. 1631 int nth = __kmp_omp_num_threads(loc); 1632 if (nth > 0) { // 0 means debugger doesn't want to change num threads 1633 master_set_numthreads = nth; 1634 } 1635 } 1636 #endif 1637 1638 #if USE_ITT_BUILD && USE_ITT_NOTIFY 1639 if (((__itt_frame_submit_v3_ptr && __itt_get_timestamp_ptr) || 1640 KMP_ITT_DEBUG) && 1641 __kmp_forkjoin_frames_mode == 3 && 1642 parent_team->t.t_active_level == 1 // only report frames at level 1 1643 && master_th->th.th_teams_size.nteams == 1) { 1644 kmp_uint64 tmp_time = __itt_get_timestamp(); 1645 master_th->th.th_frame_time = tmp_time; 1646 parent_team->t.t_region_time = tmp_time; 1647 } 1648 if (__itt_stack_caller_create_ptr) { 1649 // create new stack stitching id before entering fork barrier 1650 parent_team->t.t_stack_id = __kmp_itt_stack_caller_create(); 1651 } 1652 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */ 1653 1654 KF_TRACE(10, ("__kmp_fork_call: before internal fork: root=%p, team=%p, " 1655 "master_th=%p, gtid=%d\n", 1656 root, parent_team, master_th, gtid)); 1657 __kmp_internal_fork(loc, gtid, parent_team); 1658 KF_TRACE(10, ("__kmp_fork_call: after internal fork: root=%p, team=%p, " 1659 "master_th=%p, gtid=%d\n", 1660 root, parent_team, master_th, gtid)); 1661 1662 if (call_context == fork_context_gnu) 1663 return TRUE; 1664 1665 /* Invoke microtask for MASTER thread */ 1666 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) invoke microtask = %p\n", gtid, 1667 parent_team->t.t_id, parent_team->t.t_pkfn)); 1668 1669 if (!parent_team->t.t_invoke(gtid)) { 1670 KMP_ASSERT2(0, "cannot invoke microtask for MASTER thread"); 1671 } 1672 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) done microtask = %p\n", gtid, 1673 parent_team->t.t_id, parent_team->t.t_pkfn)); 1674 KMP_MB(); /* Flush all pending memory write invalidates. */ 1675 1676 KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid)); 1677 1678 return TRUE; 1679 } // Parallel closely nested in teams construct 1680 1681 #if KMP_DEBUG 1682 if (__kmp_tasking_mode != tskm_immediate_exec) { 1683 KMP_DEBUG_ASSERT(master_th->th.th_task_team == 1684 parent_team->t.t_task_team[master_th->th.th_task_state]); 1685 } 1686 #endif 1687 1688 if (parent_team->t.t_active_level >= 1689 master_th->th.th_current_task->td_icvs.max_active_levels) { 1690 nthreads = 1; 1691 } else { 1692 int enter_teams = ((ap == NULL && active_level == 0) || 1693 (ap && teams_level > 0 && teams_level == level)); 1694 nthreads = 1695 master_set_numthreads 1696 ? master_set_numthreads 1697 : get__nproc_2( 1698 parent_team, 1699 master_tid); // TODO: get nproc directly from current task 1700 1701 // Check if we need to take forkjoin lock? (no need for serialized 1702 // parallel out of teams construct). This code moved here from 1703 // __kmp_reserve_threads() to speedup nested serialized parallels. 1704 if (nthreads > 1) { 1705 if ((get__max_active_levels(master_th) == 1 && 1706 (root->r.r_in_parallel && !enter_teams)) || 1707 (__kmp_library == library_serial)) { 1708 KC_TRACE(10, ("__kmp_fork_call: T#%d serializing team; requested %d" 1709 " threads\n", 1710 gtid, nthreads)); 1711 nthreads = 1; 1712 } 1713 } 1714 if (nthreads > 1) { 1715 /* determine how many new threads we can use */ 1716 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 1717 /* AC: If we execute teams from parallel region (on host), then teams 1718 should be created but each can only have 1 thread if nesting is 1719 disabled. If teams called from serial region, then teams and their 1720 threads should be created regardless of the nesting setting. */ 1721 nthreads = __kmp_reserve_threads(root, parent_team, master_tid, 1722 nthreads, enter_teams); 1723 if (nthreads == 1) { 1724 // Free lock for single thread execution here; for multi-thread 1725 // execution it will be freed later after team of threads created 1726 // and initialized 1727 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1728 } 1729 } 1730 } 1731 KMP_DEBUG_ASSERT(nthreads > 0); 1732 1733 // If we temporarily changed the set number of threads then restore it now 1734 master_th->th.th_set_nproc = 0; 1735 1736 /* create a serialized parallel region? */ 1737 if (nthreads == 1) { 1738 /* josh todo: hypothetical question: what do we do for OS X*? */ 1739 #if KMP_OS_LINUX && \ 1740 (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) 1741 void *args[argc]; 1742 #else 1743 void **args = (void **)KMP_ALLOCA(argc * sizeof(void *)); 1744 #endif /* KMP_OS_LINUX && ( KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || \ 1745 KMP_ARCH_AARCH64) */ 1746 1747 KA_TRACE(20, 1748 ("__kmp_fork_call: T#%d serializing parallel region\n", gtid)); 1749 1750 __kmpc_serialized_parallel(loc, gtid); 1751 1752 if (call_context == fork_context_intel) { 1753 /* TODO this sucks, use the compiler itself to pass args! :) */ 1754 master_th->th.th_serial_team->t.t_ident = loc; 1755 if (!ap) { 1756 // revert change made in __kmpc_serialized_parallel() 1757 master_th->th.th_serial_team->t.t_level--; 1758 // Get args from parent team for teams construct 1759 1760 #if OMPT_SUPPORT 1761 void *dummy; 1762 void **exit_frame_p; 1763 ompt_task_info_t *task_info; 1764 1765 ompt_lw_taskteam_t lw_taskteam; 1766 1767 if (ompt_enabled.enabled) { 1768 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1769 &ompt_parallel_data, return_address); 1770 1771 __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0); 1772 // don't use lw_taskteam after linking. content was swaped 1773 1774 task_info = OMPT_CUR_TASK_INFO(master_th); 1775 exit_frame_p = &(task_info->frame.exit_frame.ptr); 1776 if (ompt_enabled.ompt_callback_implicit_task) { 1777 OMPT_CUR_TASK_INFO(master_th) 1778 ->thread_num = __kmp_tid_from_gtid(gtid); 1779 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1780 ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th), 1781 &(task_info->task_data), 1, 1782 OMPT_CUR_TASK_INFO(master_th)->thread_num, 1783 ompt_task_implicit); 1784 } 1785 1786 /* OMPT state */ 1787 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 1788 } else { 1789 exit_frame_p = &dummy; 1790 } 1791 #endif 1792 1793 { 1794 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1795 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1796 __kmp_invoke_microtask(microtask, gtid, 0, argc, 1797 parent_team->t.t_argv 1798 #if OMPT_SUPPORT 1799 , 1800 exit_frame_p 1801 #endif 1802 ); 1803 } 1804 1805 #if OMPT_SUPPORT 1806 if (ompt_enabled.enabled) { 1807 *exit_frame_p = NULL; 1808 if (ompt_enabled.ompt_callback_implicit_task) { 1809 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1810 ompt_scope_end, NULL, &(task_info->task_data), 1, 1811 OMPT_CUR_TASK_INFO(master_th)->thread_num, 1812 ompt_task_implicit); 1813 } 1814 ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th); 1815 __ompt_lw_taskteam_unlink(master_th); 1816 if (ompt_enabled.ompt_callback_parallel_end) { 1817 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 1818 &ompt_parallel_data, parent_task_data, 1819 OMPT_INVOKER(call_context) | ompt_parallel_team, 1820 return_address); 1821 } 1822 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1823 } 1824 #endif 1825 } else if (microtask == (microtask_t)__kmp_teams_master) { 1826 KMP_DEBUG_ASSERT(master_th->th.th_team == 1827 master_th->th.th_serial_team); 1828 team = master_th->th.th_team; 1829 // team->t.t_pkfn = microtask; 1830 team->t.t_invoke = invoker; 1831 __kmp_alloc_argv_entries(argc, team, TRUE); 1832 team->t.t_argc = argc; 1833 argv = (void **)team->t.t_argv; 1834 if (ap) { 1835 for (i = argc - 1; i >= 0; --i) 1836 *argv++ = va_arg(kmp_va_deref(ap), void *); 1837 } else { 1838 for (i = 0; i < argc; ++i) 1839 // Get args from parent team for teams construct 1840 argv[i] = parent_team->t.t_argv[i]; 1841 } 1842 // AC: revert change made in __kmpc_serialized_parallel() 1843 // because initial code in teams should have level=0 1844 team->t.t_level--; 1845 // AC: call special invoker for outer "parallel" of teams construct 1846 invoker(gtid); 1847 #if OMPT_SUPPORT 1848 if (ompt_enabled.enabled) { 1849 ompt_task_info_t *task_info = OMPT_CUR_TASK_INFO(master_th); 1850 if (ompt_enabled.ompt_callback_implicit_task) { 1851 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1852 ompt_scope_end, NULL, &(task_info->task_data), 0, 1853 OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_initial); 1854 } 1855 if (ompt_enabled.ompt_callback_parallel_end) { 1856 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 1857 &ompt_parallel_data, parent_task_data, 1858 OMPT_INVOKER(call_context) | ompt_parallel_league, 1859 return_address); 1860 } 1861 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1862 } 1863 #endif 1864 } else { 1865 argv = args; 1866 for (i = argc - 1; i >= 0; --i) 1867 *argv++ = va_arg(kmp_va_deref(ap), void *); 1868 KMP_MB(); 1869 1870 #if OMPT_SUPPORT 1871 void *dummy; 1872 void **exit_frame_p; 1873 ompt_task_info_t *task_info; 1874 1875 ompt_lw_taskteam_t lw_taskteam; 1876 1877 if (ompt_enabled.enabled) { 1878 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1879 &ompt_parallel_data, return_address); 1880 __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0); 1881 // don't use lw_taskteam after linking. content was swaped 1882 task_info = OMPT_CUR_TASK_INFO(master_th); 1883 exit_frame_p = &(task_info->frame.exit_frame.ptr); 1884 1885 /* OMPT implicit task begin */ 1886 implicit_task_data = OMPT_CUR_TASK_DATA(master_th); 1887 if (ompt_enabled.ompt_callback_implicit_task) { 1888 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1889 ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th), 1890 implicit_task_data, 1, __kmp_tid_from_gtid(gtid), 1891 ompt_task_implicit); 1892 OMPT_CUR_TASK_INFO(master_th) 1893 ->thread_num = __kmp_tid_from_gtid(gtid); 1894 } 1895 1896 /* OMPT state */ 1897 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 1898 } else { 1899 exit_frame_p = &dummy; 1900 } 1901 #endif 1902 1903 { 1904 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1905 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1906 __kmp_invoke_microtask(microtask, gtid, 0, argc, args 1907 #if OMPT_SUPPORT 1908 , 1909 exit_frame_p 1910 #endif 1911 ); 1912 } 1913 1914 #if OMPT_SUPPORT 1915 if (ompt_enabled.enabled) { 1916 *exit_frame_p = NULL; 1917 if (ompt_enabled.ompt_callback_implicit_task) { 1918 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1919 ompt_scope_end, NULL, &(task_info->task_data), 1, 1920 OMPT_CUR_TASK_INFO(master_th)->thread_num, 1921 ompt_task_implicit); 1922 } 1923 1924 ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th); 1925 __ompt_lw_taskteam_unlink(master_th); 1926 if (ompt_enabled.ompt_callback_parallel_end) { 1927 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 1928 &ompt_parallel_data, parent_task_data, 1929 OMPT_INVOKER(call_context) | ompt_parallel_team, 1930 return_address); 1931 } 1932 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1933 } 1934 #endif 1935 } 1936 } else if (call_context == fork_context_gnu) { 1937 #if OMPT_SUPPORT 1938 ompt_lw_taskteam_t lwt; 1939 __ompt_lw_taskteam_init(&lwt, master_th, gtid, &ompt_parallel_data, 1940 return_address); 1941 1942 lwt.ompt_task_info.frame.exit_frame = ompt_data_none; 1943 __ompt_lw_taskteam_link(&lwt, master_th, 1); 1944 // don't use lw_taskteam after linking. content was swaped 1945 #endif 1946 1947 // we were called from GNU native code 1948 KA_TRACE(20, ("__kmp_fork_call: T#%d serial exit\n", gtid)); 1949 return FALSE; 1950 } else { 1951 KMP_ASSERT2(call_context < fork_context_last, 1952 "__kmp_fork_call: unknown fork_context parameter"); 1953 } 1954 1955 KA_TRACE(20, ("__kmp_fork_call: T#%d serial exit\n", gtid)); 1956 KMP_MB(); 1957 return FALSE; 1958 } // if (nthreads == 1) 1959 1960 // GEH: only modify the executing flag in the case when not serialized 1961 // serialized case is handled in kmpc_serialized_parallel 1962 KF_TRACE(10, ("__kmp_fork_call: parent_team_aclevel=%d, master_th=%p, " 1963 "curtask=%p, curtask_max_aclevel=%d\n", 1964 parent_team->t.t_active_level, master_th, 1965 master_th->th.th_current_task, 1966 master_th->th.th_current_task->td_icvs.max_active_levels)); 1967 // TODO: GEH - cannot do this assertion because root thread not set up as 1968 // executing 1969 // KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 1 ); 1970 master_th->th.th_current_task->td_flags.executing = 0; 1971 1972 if (!master_th->th.th_teams_microtask || level > teams_level) { 1973 /* Increment our nested depth level */ 1974 KMP_ATOMIC_INC(&root->r.r_in_parallel); 1975 } 1976 1977 // See if we need to make a copy of the ICVs. 1978 int nthreads_icv = master_th->th.th_current_task->td_icvs.nproc; 1979 if ((level + 1 < __kmp_nested_nth.used) && 1980 (__kmp_nested_nth.nth[level + 1] != nthreads_icv)) { 1981 nthreads_icv = __kmp_nested_nth.nth[level + 1]; 1982 } else { 1983 nthreads_icv = 0; // don't update 1984 } 1985 1986 // Figure out the proc_bind_policy for the new team. 1987 kmp_proc_bind_t proc_bind = master_th->th.th_set_proc_bind; 1988 kmp_proc_bind_t proc_bind_icv = 1989 proc_bind_default; // proc_bind_default means don't update 1990 if (master_th->th.th_current_task->td_icvs.proc_bind == proc_bind_false) { 1991 proc_bind = proc_bind_false; 1992 } else { 1993 if (proc_bind == proc_bind_default) { 1994 // No proc_bind clause specified; use current proc-bind-var for this 1995 // parallel region 1996 proc_bind = master_th->th.th_current_task->td_icvs.proc_bind; 1997 } 1998 /* else: The proc_bind policy was specified explicitly on parallel clause. 1999 This overrides proc-bind-var for this parallel region, but does not 2000 change proc-bind-var. */ 2001 // Figure the value of proc-bind-var for the child threads. 2002 if ((level + 1 < __kmp_nested_proc_bind.used) && 2003 (__kmp_nested_proc_bind.bind_types[level + 1] != 2004 master_th->th.th_current_task->td_icvs.proc_bind)) { 2005 proc_bind_icv = __kmp_nested_proc_bind.bind_types[level + 1]; 2006 } 2007 } 2008 2009 // Reset for next parallel region 2010 master_th->th.th_set_proc_bind = proc_bind_default; 2011 2012 if ((nthreads_icv > 0) || (proc_bind_icv != proc_bind_default)) { 2013 kmp_internal_control_t new_icvs; 2014 copy_icvs(&new_icvs, &master_th->th.th_current_task->td_icvs); 2015 new_icvs.next = NULL; 2016 if (nthreads_icv > 0) { 2017 new_icvs.nproc = nthreads_icv; 2018 } 2019 if (proc_bind_icv != proc_bind_default) { 2020 new_icvs.proc_bind = proc_bind_icv; 2021 } 2022 2023 /* allocate a new parallel team */ 2024 KF_TRACE(10, ("__kmp_fork_call: before __kmp_allocate_team\n")); 2025 team = __kmp_allocate_team(root, nthreads, nthreads, 2026 #if OMPT_SUPPORT 2027 ompt_parallel_data, 2028 #endif 2029 proc_bind, &new_icvs, 2030 argc USE_NESTED_HOT_ARG(master_th)); 2031 } else { 2032 /* allocate a new parallel team */ 2033 KF_TRACE(10, ("__kmp_fork_call: before __kmp_allocate_team\n")); 2034 team = __kmp_allocate_team(root, nthreads, nthreads, 2035 #if OMPT_SUPPORT 2036 ompt_parallel_data, 2037 #endif 2038 proc_bind, 2039 &master_th->th.th_current_task->td_icvs, 2040 argc USE_NESTED_HOT_ARG(master_th)); 2041 } 2042 KF_TRACE( 2043 10, ("__kmp_fork_call: after __kmp_allocate_team - team = %p\n", team)); 2044 2045 /* setup the new team */ 2046 KMP_CHECK_UPDATE(team->t.t_master_tid, master_tid); 2047 KMP_CHECK_UPDATE(team->t.t_master_this_cons, master_this_cons); 2048 KMP_CHECK_UPDATE(team->t.t_ident, loc); 2049 KMP_CHECK_UPDATE(team->t.t_parent, parent_team); 2050 KMP_CHECK_UPDATE_SYNC(team->t.t_pkfn, microtask); 2051 #if OMPT_SUPPORT 2052 KMP_CHECK_UPDATE_SYNC(team->t.ompt_team_info.master_return_address, 2053 return_address); 2054 #endif 2055 KMP_CHECK_UPDATE(team->t.t_invoke, invoker); // TODO move to root, maybe 2056 // TODO: parent_team->t.t_level == INT_MAX ??? 2057 if (!master_th->th.th_teams_microtask || level > teams_level) { 2058 int new_level = parent_team->t.t_level + 1; 2059 KMP_CHECK_UPDATE(team->t.t_level, new_level); 2060 new_level = parent_team->t.t_active_level + 1; 2061 KMP_CHECK_UPDATE(team->t.t_active_level, new_level); 2062 } else { 2063 // AC: Do not increase parallel level at start of the teams construct 2064 int new_level = parent_team->t.t_level; 2065 KMP_CHECK_UPDATE(team->t.t_level, new_level); 2066 new_level = parent_team->t.t_active_level; 2067 KMP_CHECK_UPDATE(team->t.t_active_level, new_level); 2068 } 2069 kmp_r_sched_t new_sched = get__sched_2(parent_team, master_tid); 2070 // set master's schedule as new run-time schedule 2071 KMP_CHECK_UPDATE(team->t.t_sched.sched, new_sched.sched); 2072 2073 KMP_CHECK_UPDATE(team->t.t_cancel_request, cancel_noreq); 2074 KMP_CHECK_UPDATE(team->t.t_def_allocator, master_th->th.th_def_allocator); 2075 2076 // Update the floating point rounding in the team if required. 2077 propagateFPControl(team); 2078 2079 if (__kmp_tasking_mode != tskm_immediate_exec) { 2080 // Set master's task team to team's task team. Unless this is hot team, it 2081 // should be NULL. 2082 KMP_DEBUG_ASSERT(master_th->th.th_task_team == 2083 parent_team->t.t_task_team[master_th->th.th_task_state]); 2084 KA_TRACE(20, ("__kmp_fork_call: Master T#%d pushing task_team %p / team " 2085 "%p, new task_team %p / team %p\n", 2086 __kmp_gtid_from_thread(master_th), 2087 master_th->th.th_task_team, parent_team, 2088 team->t.t_task_team[master_th->th.th_task_state], team)); 2089 2090 if (active_level || master_th->th.th_task_team) { 2091 // Take a memo of master's task_state 2092 KMP_DEBUG_ASSERT(master_th->th.th_task_state_memo_stack); 2093 if (master_th->th.th_task_state_top >= 2094 master_th->th.th_task_state_stack_sz) { // increase size 2095 kmp_uint32 new_size = 2 * master_th->th.th_task_state_stack_sz; 2096 kmp_uint8 *old_stack, *new_stack; 2097 kmp_uint32 i; 2098 new_stack = (kmp_uint8 *)__kmp_allocate(new_size); 2099 for (i = 0; i < master_th->th.th_task_state_stack_sz; ++i) { 2100 new_stack[i] = master_th->th.th_task_state_memo_stack[i]; 2101 } 2102 for (i = master_th->th.th_task_state_stack_sz; i < new_size; 2103 ++i) { // zero-init rest of stack 2104 new_stack[i] = 0; 2105 } 2106 old_stack = master_th->th.th_task_state_memo_stack; 2107 master_th->th.th_task_state_memo_stack = new_stack; 2108 master_th->th.th_task_state_stack_sz = new_size; 2109 __kmp_free(old_stack); 2110 } 2111 // Store master's task_state on stack 2112 master_th->th 2113 .th_task_state_memo_stack[master_th->th.th_task_state_top] = 2114 master_th->th.th_task_state; 2115 master_th->th.th_task_state_top++; 2116 #if KMP_NESTED_HOT_TEAMS 2117 if (master_th->th.th_hot_teams && 2118 active_level < __kmp_hot_teams_max_level && 2119 team == master_th->th.th_hot_teams[active_level].hot_team) { 2120 // Restore master's nested state if nested hot team 2121 master_th->th.th_task_state = 2122 master_th->th 2123 .th_task_state_memo_stack[master_th->th.th_task_state_top]; 2124 } else { 2125 #endif 2126 master_th->th.th_task_state = 0; 2127 #if KMP_NESTED_HOT_TEAMS 2128 } 2129 #endif 2130 } 2131 #if !KMP_NESTED_HOT_TEAMS 2132 KMP_DEBUG_ASSERT((master_th->th.th_task_team == NULL) || 2133 (team == root->r.r_hot_team)); 2134 #endif 2135 } 2136 2137 KA_TRACE( 2138 20, 2139 ("__kmp_fork_call: T#%d(%d:%d)->(%d:0) created a team of %d threads\n", 2140 gtid, parent_team->t.t_id, team->t.t_master_tid, team->t.t_id, 2141 team->t.t_nproc)); 2142 KMP_DEBUG_ASSERT(team != root->r.r_hot_team || 2143 (team->t.t_master_tid == 0 && 2144 (team->t.t_parent == root->r.r_root_team || 2145 team->t.t_parent->t.t_serialized))); 2146 KMP_MB(); 2147 2148 /* now, setup the arguments */ 2149 argv = (void **)team->t.t_argv; 2150 if (ap) { 2151 for (i = argc - 1; i >= 0; --i) { 2152 void *new_argv = va_arg(kmp_va_deref(ap), void *); 2153 KMP_CHECK_UPDATE(*argv, new_argv); 2154 argv++; 2155 } 2156 } else { 2157 for (i = 0; i < argc; ++i) { 2158 // Get args from parent team for teams construct 2159 KMP_CHECK_UPDATE(argv[i], team->t.t_parent->t.t_argv[i]); 2160 } 2161 } 2162 2163 /* now actually fork the threads */ 2164 KMP_CHECK_UPDATE(team->t.t_master_active, master_active); 2165 if (!root->r.r_active) // Only do assignment if it prevents cache ping-pong 2166 root->r.r_active = TRUE; 2167 2168 __kmp_fork_team_threads(root, team, master_th, gtid); 2169 __kmp_setup_icv_copy(team, nthreads, 2170 &master_th->th.th_current_task->td_icvs, loc); 2171 2172 #if OMPT_SUPPORT 2173 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 2174 #endif 2175 2176 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 2177 2178 #if USE_ITT_BUILD 2179 if (team->t.t_active_level == 1 // only report frames at level 1 2180 && !master_th->th.th_teams_microtask) { // not in teams construct 2181 #if USE_ITT_NOTIFY 2182 if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) && 2183 (__kmp_forkjoin_frames_mode == 3 || 2184 __kmp_forkjoin_frames_mode == 1)) { 2185 kmp_uint64 tmp_time = 0; 2186 if (__itt_get_timestamp_ptr) 2187 tmp_time = __itt_get_timestamp(); 2188 // Internal fork - report frame begin 2189 master_th->th.th_frame_time = tmp_time; 2190 if (__kmp_forkjoin_frames_mode == 3) 2191 team->t.t_region_time = tmp_time; 2192 } else 2193 // only one notification scheme (either "submit" or "forking/joined", not both) 2194 #endif /* USE_ITT_NOTIFY */ 2195 if ((__itt_frame_begin_v3_ptr || KMP_ITT_DEBUG) && 2196 __kmp_forkjoin_frames && !__kmp_forkjoin_frames_mode) { 2197 // Mark start of "parallel" region for Intel(R) VTune(TM) analyzer. 2198 __kmp_itt_region_forking(gtid, team->t.t_nproc, 0); 2199 } 2200 } 2201 #endif /* USE_ITT_BUILD */ 2202 2203 /* now go on and do the work */ 2204 KMP_DEBUG_ASSERT(team == __kmp_threads[gtid]->th.th_team); 2205 KMP_MB(); 2206 KF_TRACE(10, 2207 ("__kmp_internal_fork : root=%p, team=%p, master_th=%p, gtid=%d\n", 2208 root, team, master_th, gtid)); 2209 2210 #if USE_ITT_BUILD 2211 if (__itt_stack_caller_create_ptr) { 2212 team->t.t_stack_id = 2213 __kmp_itt_stack_caller_create(); // create new stack stitching id 2214 // before entering fork barrier 2215 } 2216 #endif /* USE_ITT_BUILD */ 2217 2218 // AC: skip __kmp_internal_fork at teams construct, let only master 2219 // threads execute 2220 if (ap) { 2221 __kmp_internal_fork(loc, gtid, team); 2222 KF_TRACE(10, ("__kmp_internal_fork : after : root=%p, team=%p, " 2223 "master_th=%p, gtid=%d\n", 2224 root, team, master_th, gtid)); 2225 } 2226 2227 if (call_context == fork_context_gnu) { 2228 KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid)); 2229 return TRUE; 2230 } 2231 2232 /* Invoke microtask for MASTER thread */ 2233 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) invoke microtask = %p\n", gtid, 2234 team->t.t_id, team->t.t_pkfn)); 2235 } // END of timer KMP_fork_call block 2236 2237 #if KMP_STATS_ENABLED 2238 // If beginning a teams construct, then change thread state 2239 stats_state_e previous_state = KMP_GET_THREAD_STATE(); 2240 if (!ap) { 2241 KMP_SET_THREAD_STATE(stats_state_e::TEAMS_REGION); 2242 } 2243 #endif 2244 2245 if (!team->t.t_invoke(gtid)) { 2246 KMP_ASSERT2(0, "cannot invoke microtask for MASTER thread"); 2247 } 2248 2249 #if KMP_STATS_ENABLED 2250 // If was beginning of a teams construct, then reset thread state 2251 if (!ap) { 2252 KMP_SET_THREAD_STATE(previous_state); 2253 } 2254 #endif 2255 2256 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) done microtask = %p\n", gtid, 2257 team->t.t_id, team->t.t_pkfn)); 2258 KMP_MB(); /* Flush all pending memory write invalidates. */ 2259 2260 KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid)); 2261 2262 #if OMPT_SUPPORT 2263 if (ompt_enabled.enabled) { 2264 master_th->th.ompt_thread_info.state = ompt_state_overhead; 2265 } 2266 #endif 2267 2268 return TRUE; 2269 } 2270 2271 #if OMPT_SUPPORT 2272 static inline void __kmp_join_restore_state(kmp_info_t *thread, 2273 kmp_team_t *team) { 2274 // restore state outside the region 2275 thread->th.ompt_thread_info.state = 2276 ((team->t.t_serialized) ? ompt_state_work_serial 2277 : ompt_state_work_parallel); 2278 } 2279 2280 static inline void __kmp_join_ompt(int gtid, kmp_info_t *thread, 2281 kmp_team_t *team, ompt_data_t *parallel_data, 2282 int flags, void *codeptr) { 2283 ompt_task_info_t *task_info = __ompt_get_task_info_object(0); 2284 if (ompt_enabled.ompt_callback_parallel_end) { 2285 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 2286 parallel_data, &(task_info->task_data), flags, codeptr); 2287 } 2288 2289 task_info->frame.enter_frame = ompt_data_none; 2290 __kmp_join_restore_state(thread, team); 2291 } 2292 #endif 2293 2294 void __kmp_join_call(ident_t *loc, int gtid 2295 #if OMPT_SUPPORT 2296 , 2297 enum fork_context_e fork_context 2298 #endif 2299 , 2300 int exit_teams) { 2301 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_join_call); 2302 kmp_team_t *team; 2303 kmp_team_t *parent_team; 2304 kmp_info_t *master_th; 2305 kmp_root_t *root; 2306 int master_active; 2307 2308 KA_TRACE(20, ("__kmp_join_call: enter T#%d\n", gtid)); 2309 2310 /* setup current data */ 2311 master_th = __kmp_threads[gtid]; 2312 root = master_th->th.th_root; 2313 team = master_th->th.th_team; 2314 parent_team = team->t.t_parent; 2315 2316 master_th->th.th_ident = loc; 2317 2318 #if OMPT_SUPPORT 2319 void *team_microtask = (void *)team->t.t_pkfn; 2320 // For GOMP interface with serialized parallel, need the 2321 // __kmpc_end_serialized_parallel to call hooks for OMPT end-implicit-task 2322 // and end-parallel events. 2323 if (ompt_enabled.enabled && 2324 !(team->t.t_serialized && fork_context == fork_context_gnu)) { 2325 master_th->th.ompt_thread_info.state = ompt_state_overhead; 2326 } 2327 #endif 2328 2329 #if KMP_DEBUG 2330 if (__kmp_tasking_mode != tskm_immediate_exec && !exit_teams) { 2331 KA_TRACE(20, ("__kmp_join_call: T#%d, old team = %p old task_team = %p, " 2332 "th_task_team = %p\n", 2333 __kmp_gtid_from_thread(master_th), team, 2334 team->t.t_task_team[master_th->th.th_task_state], 2335 master_th->th.th_task_team)); 2336 KMP_DEBUG_ASSERT(master_th->th.th_task_team == 2337 team->t.t_task_team[master_th->th.th_task_state]); 2338 } 2339 #endif 2340 2341 if (team->t.t_serialized) { 2342 if (master_th->th.th_teams_microtask) { 2343 // We are in teams construct 2344 int level = team->t.t_level; 2345 int tlevel = master_th->th.th_teams_level; 2346 if (level == tlevel) { 2347 // AC: we haven't incremented it earlier at start of teams construct, 2348 // so do it here - at the end of teams construct 2349 team->t.t_level++; 2350 } else if (level == tlevel + 1) { 2351 // AC: we are exiting parallel inside teams, need to increment 2352 // serialization in order to restore it in the next call to 2353 // __kmpc_end_serialized_parallel 2354 team->t.t_serialized++; 2355 } 2356 } 2357 __kmpc_end_serialized_parallel(loc, gtid); 2358 2359 #if OMPT_SUPPORT 2360 if (ompt_enabled.enabled) { 2361 __kmp_join_restore_state(master_th, parent_team); 2362 } 2363 #endif 2364 2365 return; 2366 } 2367 2368 master_active = team->t.t_master_active; 2369 2370 if (!exit_teams) { 2371 // AC: No barrier for internal teams at exit from teams construct. 2372 // But there is barrier for external team (league). 2373 __kmp_internal_join(loc, gtid, team); 2374 } else { 2375 master_th->th.th_task_state = 2376 0; // AC: no tasking in teams (out of any parallel) 2377 } 2378 2379 KMP_MB(); 2380 2381 #if OMPT_SUPPORT 2382 ompt_data_t *parallel_data = &(team->t.ompt_team_info.parallel_data); 2383 void *codeptr = team->t.ompt_team_info.master_return_address; 2384 #endif 2385 2386 #if USE_ITT_BUILD 2387 if (__itt_stack_caller_create_ptr) { 2388 // destroy the stack stitching id after join barrier 2389 __kmp_itt_stack_caller_destroy((__itt_caller)team->t.t_stack_id); 2390 } 2391 // Mark end of "parallel" region for Intel(R) VTune(TM) analyzer. 2392 if (team->t.t_active_level == 1 && 2393 (!master_th->th.th_teams_microtask || /* not in teams construct */ 2394 master_th->th.th_teams_size.nteams == 1)) { 2395 master_th->th.th_ident = loc; 2396 // only one notification scheme (either "submit" or "forking/joined", not 2397 // both) 2398 if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) && 2399 __kmp_forkjoin_frames_mode == 3) 2400 __kmp_itt_frame_submit(gtid, team->t.t_region_time, 2401 master_th->th.th_frame_time, 0, loc, 2402 master_th->th.th_team_nproc, 1); 2403 else if ((__itt_frame_end_v3_ptr || KMP_ITT_DEBUG) && 2404 !__kmp_forkjoin_frames_mode && __kmp_forkjoin_frames) 2405 __kmp_itt_region_joined(gtid); 2406 } // active_level == 1 2407 #endif /* USE_ITT_BUILD */ 2408 2409 if (master_th->th.th_teams_microtask && !exit_teams && 2410 team->t.t_pkfn != (microtask_t)__kmp_teams_master && 2411 team->t.t_level == master_th->th.th_teams_level + 1) { 2412 // AC: We need to leave the team structure intact at the end of parallel 2413 // inside the teams construct, so that at the next parallel same (hot) team 2414 // works, only adjust nesting levels 2415 #if OMPT_SUPPORT 2416 ompt_data_t ompt_parallel_data = ompt_data_none; 2417 if (ompt_enabled.enabled) { 2418 ompt_task_info_t *task_info = __ompt_get_task_info_object(0); 2419 if (ompt_enabled.ompt_callback_implicit_task) { 2420 int ompt_team_size = team->t.t_nproc; 2421 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 2422 ompt_scope_end, NULL, &(task_info->task_data), ompt_team_size, 2423 OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit); 2424 } 2425 task_info->frame.exit_frame = ompt_data_none; 2426 task_info->task_data = ompt_data_none; 2427 ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th); 2428 __ompt_lw_taskteam_unlink(master_th); 2429 } 2430 #endif 2431 /* Decrement our nested depth level */ 2432 team->t.t_level--; 2433 team->t.t_active_level--; 2434 KMP_ATOMIC_DEC(&root->r.r_in_parallel); 2435 2436 // Restore number of threads in the team if needed. This code relies on 2437 // the proper adjustment of th_teams_size.nth after the fork in 2438 // __kmp_teams_master on each teams master in the case that 2439 // __kmp_reserve_threads reduced it. 2440 if (master_th->th.th_team_nproc < master_th->th.th_teams_size.nth) { 2441 int old_num = master_th->th.th_team_nproc; 2442 int new_num = master_th->th.th_teams_size.nth; 2443 kmp_info_t **other_threads = team->t.t_threads; 2444 team->t.t_nproc = new_num; 2445 for (int i = 0; i < old_num; ++i) { 2446 other_threads[i]->th.th_team_nproc = new_num; 2447 } 2448 // Adjust states of non-used threads of the team 2449 for (int i = old_num; i < new_num; ++i) { 2450 // Re-initialize thread's barrier data. 2451 KMP_DEBUG_ASSERT(other_threads[i]); 2452 kmp_balign_t *balign = other_threads[i]->th.th_bar; 2453 for (int b = 0; b < bs_last_barrier; ++b) { 2454 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 2455 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 2456 #if USE_DEBUGGER 2457 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 2458 #endif 2459 } 2460 if (__kmp_tasking_mode != tskm_immediate_exec) { 2461 // Synchronize thread's task state 2462 other_threads[i]->th.th_task_state = master_th->th.th_task_state; 2463 } 2464 } 2465 } 2466 2467 #if OMPT_SUPPORT 2468 if (ompt_enabled.enabled) { 2469 __kmp_join_ompt(gtid, master_th, parent_team, &ompt_parallel_data, 2470 OMPT_INVOKER(fork_context) | ompt_parallel_team, codeptr); 2471 } 2472 #endif 2473 2474 return; 2475 } 2476 2477 /* do cleanup and restore the parent team */ 2478 master_th->th.th_info.ds.ds_tid = team->t.t_master_tid; 2479 master_th->th.th_local.this_construct = team->t.t_master_this_cons; 2480 2481 master_th->th.th_dispatch = &parent_team->t.t_dispatch[team->t.t_master_tid]; 2482 2483 /* jc: The following lock has instructions with REL and ACQ semantics, 2484 separating the parallel user code called in this parallel region 2485 from the serial user code called after this function returns. */ 2486 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 2487 2488 if (!master_th->th.th_teams_microtask || 2489 team->t.t_level > master_th->th.th_teams_level) { 2490 /* Decrement our nested depth level */ 2491 KMP_ATOMIC_DEC(&root->r.r_in_parallel); 2492 } 2493 KMP_DEBUG_ASSERT(root->r.r_in_parallel >= 0); 2494 2495 #if OMPT_SUPPORT 2496 if (ompt_enabled.enabled) { 2497 ompt_task_info_t *task_info = __ompt_get_task_info_object(0); 2498 if (ompt_enabled.ompt_callback_implicit_task) { 2499 int flags = (team_microtask == (void *)__kmp_teams_master) 2500 ? ompt_task_initial 2501 : ompt_task_implicit; 2502 int ompt_team_size = (flags == ompt_task_initial) ? 0 : team->t.t_nproc; 2503 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 2504 ompt_scope_end, NULL, &(task_info->task_data), ompt_team_size, 2505 OMPT_CUR_TASK_INFO(master_th)->thread_num, flags); 2506 } 2507 task_info->frame.exit_frame = ompt_data_none; 2508 task_info->task_data = ompt_data_none; 2509 } 2510 #endif 2511 2512 KF_TRACE(10, ("__kmp_join_call1: T#%d, this_thread=%p team=%p\n", 0, 2513 master_th, team)); 2514 __kmp_pop_current_task_from_thread(master_th); 2515 2516 #if KMP_AFFINITY_SUPPORTED 2517 // Restore master thread's partition. 2518 master_th->th.th_first_place = team->t.t_first_place; 2519 master_th->th.th_last_place = team->t.t_last_place; 2520 #endif // KMP_AFFINITY_SUPPORTED 2521 master_th->th.th_def_allocator = team->t.t_def_allocator; 2522 2523 updateHWFPControl(team); 2524 2525 if (root->r.r_active != master_active) 2526 root->r.r_active = master_active; 2527 2528 __kmp_free_team(root, team USE_NESTED_HOT_ARG( 2529 master_th)); // this will free worker threads 2530 2531 /* this race was fun to find. make sure the following is in the critical 2532 region otherwise assertions may fail occasionally since the old team may be 2533 reallocated and the hierarchy appears inconsistent. it is actually safe to 2534 run and won't cause any bugs, but will cause those assertion failures. it's 2535 only one deref&assign so might as well put this in the critical region */ 2536 master_th->th.th_team = parent_team; 2537 master_th->th.th_team_nproc = parent_team->t.t_nproc; 2538 master_th->th.th_team_master = parent_team->t.t_threads[0]; 2539 master_th->th.th_team_serialized = parent_team->t.t_serialized; 2540 2541 /* restore serialized team, if need be */ 2542 if (parent_team->t.t_serialized && 2543 parent_team != master_th->th.th_serial_team && 2544 parent_team != root->r.r_root_team) { 2545 __kmp_free_team(root, 2546 master_th->th.th_serial_team USE_NESTED_HOT_ARG(NULL)); 2547 master_th->th.th_serial_team = parent_team; 2548 } 2549 2550 if (__kmp_tasking_mode != tskm_immediate_exec) { 2551 if (master_th->th.th_task_state_top > 2552 0) { // Restore task state from memo stack 2553 KMP_DEBUG_ASSERT(master_th->th.th_task_state_memo_stack); 2554 // Remember master's state if we re-use this nested hot team 2555 master_th->th.th_task_state_memo_stack[master_th->th.th_task_state_top] = 2556 master_th->th.th_task_state; 2557 --master_th->th.th_task_state_top; // pop 2558 // Now restore state at this level 2559 master_th->th.th_task_state = 2560 master_th->th 2561 .th_task_state_memo_stack[master_th->th.th_task_state_top]; 2562 } 2563 // Copy the task team from the parent team to the master thread 2564 master_th->th.th_task_team = 2565 parent_team->t.t_task_team[master_th->th.th_task_state]; 2566 KA_TRACE(20, 2567 ("__kmp_join_call: Master T#%d restoring task_team %p / team %p\n", 2568 __kmp_gtid_from_thread(master_th), master_th->th.th_task_team, 2569 parent_team)); 2570 } 2571 2572 // TODO: GEH - cannot do this assertion because root thread not set up as 2573 // executing 2574 // KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 0 ); 2575 master_th->th.th_current_task->td_flags.executing = 1; 2576 2577 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 2578 2579 #if OMPT_SUPPORT 2580 int flags = 2581 OMPT_INVOKER(fork_context) | 2582 ((team_microtask == (void *)__kmp_teams_master) ? ompt_parallel_league 2583 : ompt_parallel_team); 2584 if (ompt_enabled.enabled) { 2585 __kmp_join_ompt(gtid, master_th, parent_team, parallel_data, flags, 2586 codeptr); 2587 } 2588 #endif 2589 2590 KMP_MB(); 2591 KA_TRACE(20, ("__kmp_join_call: exit T#%d\n", gtid)); 2592 } 2593 2594 /* Check whether we should push an internal control record onto the 2595 serial team stack. If so, do it. */ 2596 void __kmp_save_internal_controls(kmp_info_t *thread) { 2597 2598 if (thread->th.th_team != thread->th.th_serial_team) { 2599 return; 2600 } 2601 if (thread->th.th_team->t.t_serialized > 1) { 2602 int push = 0; 2603 2604 if (thread->th.th_team->t.t_control_stack_top == NULL) { 2605 push = 1; 2606 } else { 2607 if (thread->th.th_team->t.t_control_stack_top->serial_nesting_level != 2608 thread->th.th_team->t.t_serialized) { 2609 push = 1; 2610 } 2611 } 2612 if (push) { /* push a record on the serial team's stack */ 2613 kmp_internal_control_t *control = 2614 (kmp_internal_control_t *)__kmp_allocate( 2615 sizeof(kmp_internal_control_t)); 2616 2617 copy_icvs(control, &thread->th.th_current_task->td_icvs); 2618 2619 control->serial_nesting_level = thread->th.th_team->t.t_serialized; 2620 2621 control->next = thread->th.th_team->t.t_control_stack_top; 2622 thread->th.th_team->t.t_control_stack_top = control; 2623 } 2624 } 2625 } 2626 2627 /* Changes set_nproc */ 2628 void __kmp_set_num_threads(int new_nth, int gtid) { 2629 kmp_info_t *thread; 2630 kmp_root_t *root; 2631 2632 KF_TRACE(10, ("__kmp_set_num_threads: new __kmp_nth = %d\n", new_nth)); 2633 KMP_DEBUG_ASSERT(__kmp_init_serial); 2634 2635 if (new_nth < 1) 2636 new_nth = 1; 2637 else if (new_nth > __kmp_max_nth) 2638 new_nth = __kmp_max_nth; 2639 2640 KMP_COUNT_VALUE(OMP_set_numthreads, new_nth); 2641 thread = __kmp_threads[gtid]; 2642 if (thread->th.th_current_task->td_icvs.nproc == new_nth) 2643 return; // nothing to do 2644 2645 __kmp_save_internal_controls(thread); 2646 2647 set__nproc(thread, new_nth); 2648 2649 // If this omp_set_num_threads() call will cause the hot team size to be 2650 // reduced (in the absence of a num_threads clause), then reduce it now, 2651 // rather than waiting for the next parallel region. 2652 root = thread->th.th_root; 2653 if (__kmp_init_parallel && (!root->r.r_active) && 2654 (root->r.r_hot_team->t.t_nproc > new_nth) 2655 #if KMP_NESTED_HOT_TEAMS 2656 && __kmp_hot_teams_max_level && !__kmp_hot_teams_mode 2657 #endif 2658 ) { 2659 kmp_team_t *hot_team = root->r.r_hot_team; 2660 int f; 2661 2662 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 2663 2664 // Release the extra threads we don't need any more. 2665 for (f = new_nth; f < hot_team->t.t_nproc; f++) { 2666 KMP_DEBUG_ASSERT(hot_team->t.t_threads[f] != NULL); 2667 if (__kmp_tasking_mode != tskm_immediate_exec) { 2668 // When decreasing team size, threads no longer in the team should unref 2669 // task team. 2670 hot_team->t.t_threads[f]->th.th_task_team = NULL; 2671 } 2672 __kmp_free_thread(hot_team->t.t_threads[f]); 2673 hot_team->t.t_threads[f] = NULL; 2674 } 2675 hot_team->t.t_nproc = new_nth; 2676 #if KMP_NESTED_HOT_TEAMS 2677 if (thread->th.th_hot_teams) { 2678 KMP_DEBUG_ASSERT(hot_team == thread->th.th_hot_teams[0].hot_team); 2679 thread->th.th_hot_teams[0].hot_team_nth = new_nth; 2680 } 2681 #endif 2682 2683 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 2684 2685 // Update the t_nproc field in the threads that are still active. 2686 for (f = 0; f < new_nth; f++) { 2687 KMP_DEBUG_ASSERT(hot_team->t.t_threads[f] != NULL); 2688 hot_team->t.t_threads[f]->th.th_team_nproc = new_nth; 2689 } 2690 // Special flag in case omp_set_num_threads() call 2691 hot_team->t.t_size_changed = -1; 2692 } 2693 } 2694 2695 /* Changes max_active_levels */ 2696 void __kmp_set_max_active_levels(int gtid, int max_active_levels) { 2697 kmp_info_t *thread; 2698 2699 KF_TRACE(10, ("__kmp_set_max_active_levels: new max_active_levels for thread " 2700 "%d = (%d)\n", 2701 gtid, max_active_levels)); 2702 KMP_DEBUG_ASSERT(__kmp_init_serial); 2703 2704 // validate max_active_levels 2705 if (max_active_levels < 0) { 2706 KMP_WARNING(ActiveLevelsNegative, max_active_levels); 2707 // We ignore this call if the user has specified a negative value. 2708 // The current setting won't be changed. The last valid setting will be 2709 // used. A warning will be issued (if warnings are allowed as controlled by 2710 // the KMP_WARNINGS env var). 2711 KF_TRACE(10, ("__kmp_set_max_active_levels: the call is ignored: new " 2712 "max_active_levels for thread %d = (%d)\n", 2713 gtid, max_active_levels)); 2714 return; 2715 } 2716 if (max_active_levels <= KMP_MAX_ACTIVE_LEVELS_LIMIT) { 2717 // it's OK, the max_active_levels is within the valid range: [ 0; 2718 // KMP_MAX_ACTIVE_LEVELS_LIMIT ] 2719 // We allow a zero value. (implementation defined behavior) 2720 } else { 2721 KMP_WARNING(ActiveLevelsExceedLimit, max_active_levels, 2722 KMP_MAX_ACTIVE_LEVELS_LIMIT); 2723 max_active_levels = KMP_MAX_ACTIVE_LEVELS_LIMIT; 2724 // Current upper limit is MAX_INT. (implementation defined behavior) 2725 // If the input exceeds the upper limit, we correct the input to be the 2726 // upper limit. (implementation defined behavior) 2727 // Actually, the flow should never get here until we use MAX_INT limit. 2728 } 2729 KF_TRACE(10, ("__kmp_set_max_active_levels: after validation: new " 2730 "max_active_levels for thread %d = (%d)\n", 2731 gtid, max_active_levels)); 2732 2733 thread = __kmp_threads[gtid]; 2734 2735 __kmp_save_internal_controls(thread); 2736 2737 set__max_active_levels(thread, max_active_levels); 2738 } 2739 2740 /* Gets max_active_levels */ 2741 int __kmp_get_max_active_levels(int gtid) { 2742 kmp_info_t *thread; 2743 2744 KF_TRACE(10, ("__kmp_get_max_active_levels: thread %d\n", gtid)); 2745 KMP_DEBUG_ASSERT(__kmp_init_serial); 2746 2747 thread = __kmp_threads[gtid]; 2748 KMP_DEBUG_ASSERT(thread->th.th_current_task); 2749 KF_TRACE(10, ("__kmp_get_max_active_levels: thread %d, curtask=%p, " 2750 "curtask_maxaclevel=%d\n", 2751 gtid, thread->th.th_current_task, 2752 thread->th.th_current_task->td_icvs.max_active_levels)); 2753 return thread->th.th_current_task->td_icvs.max_active_levels; 2754 } 2755 2756 KMP_BUILD_ASSERT(sizeof(kmp_sched_t) == sizeof(int)); 2757 KMP_BUILD_ASSERT(sizeof(enum sched_type) == sizeof(int)); 2758 2759 /* Changes def_sched_var ICV values (run-time schedule kind and chunk) */ 2760 void __kmp_set_schedule(int gtid, kmp_sched_t kind, int chunk) { 2761 kmp_info_t *thread; 2762 kmp_sched_t orig_kind; 2763 // kmp_team_t *team; 2764 2765 KF_TRACE(10, ("__kmp_set_schedule: new schedule for thread %d = (%d, %d)\n", 2766 gtid, (int)kind, chunk)); 2767 KMP_DEBUG_ASSERT(__kmp_init_serial); 2768 2769 // Check if the kind parameter is valid, correct if needed. 2770 // Valid parameters should fit in one of two intervals - standard or extended: 2771 // <lower>, <valid>, <upper_std>, <lower_ext>, <valid>, <upper> 2772 // 2008-01-25: 0, 1 - 4, 5, 100, 101 - 102, 103 2773 orig_kind = kind; 2774 kind = __kmp_sched_without_mods(kind); 2775 2776 if (kind <= kmp_sched_lower || kind >= kmp_sched_upper || 2777 (kind <= kmp_sched_lower_ext && kind >= kmp_sched_upper_std)) { 2778 // TODO: Hint needs attention in case we change the default schedule. 2779 __kmp_msg(kmp_ms_warning, KMP_MSG(ScheduleKindOutOfRange, kind), 2780 KMP_HNT(DefaultScheduleKindUsed, "static, no chunk"), 2781 __kmp_msg_null); 2782 kind = kmp_sched_default; 2783 chunk = 0; // ignore chunk value in case of bad kind 2784 } 2785 2786 thread = __kmp_threads[gtid]; 2787 2788 __kmp_save_internal_controls(thread); 2789 2790 if (kind < kmp_sched_upper_std) { 2791 if (kind == kmp_sched_static && chunk < KMP_DEFAULT_CHUNK) { 2792 // differ static chunked vs. unchunked: chunk should be invalid to 2793 // indicate unchunked schedule (which is the default) 2794 thread->th.th_current_task->td_icvs.sched.r_sched_type = kmp_sch_static; 2795 } else { 2796 thread->th.th_current_task->td_icvs.sched.r_sched_type = 2797 __kmp_sch_map[kind - kmp_sched_lower - 1]; 2798 } 2799 } else { 2800 // __kmp_sch_map[ kind - kmp_sched_lower_ext + kmp_sched_upper_std - 2801 // kmp_sched_lower - 2 ]; 2802 thread->th.th_current_task->td_icvs.sched.r_sched_type = 2803 __kmp_sch_map[kind - kmp_sched_lower_ext + kmp_sched_upper_std - 2804 kmp_sched_lower - 2]; 2805 } 2806 __kmp_sched_apply_mods_intkind( 2807 orig_kind, &(thread->th.th_current_task->td_icvs.sched.r_sched_type)); 2808 if (kind == kmp_sched_auto || chunk < 1) { 2809 // ignore parameter chunk for schedule auto 2810 thread->th.th_current_task->td_icvs.sched.chunk = KMP_DEFAULT_CHUNK; 2811 } else { 2812 thread->th.th_current_task->td_icvs.sched.chunk = chunk; 2813 } 2814 } 2815 2816 /* Gets def_sched_var ICV values */ 2817 void __kmp_get_schedule(int gtid, kmp_sched_t *kind, int *chunk) { 2818 kmp_info_t *thread; 2819 enum sched_type th_type; 2820 2821 KF_TRACE(10, ("__kmp_get_schedule: thread %d\n", gtid)); 2822 KMP_DEBUG_ASSERT(__kmp_init_serial); 2823 2824 thread = __kmp_threads[gtid]; 2825 2826 th_type = thread->th.th_current_task->td_icvs.sched.r_sched_type; 2827 switch (SCHEDULE_WITHOUT_MODIFIERS(th_type)) { 2828 case kmp_sch_static: 2829 case kmp_sch_static_greedy: 2830 case kmp_sch_static_balanced: 2831 *kind = kmp_sched_static; 2832 __kmp_sched_apply_mods_stdkind(kind, th_type); 2833 *chunk = 0; // chunk was not set, try to show this fact via zero value 2834 return; 2835 case kmp_sch_static_chunked: 2836 *kind = kmp_sched_static; 2837 break; 2838 case kmp_sch_dynamic_chunked: 2839 *kind = kmp_sched_dynamic; 2840 break; 2841 case kmp_sch_guided_chunked: 2842 case kmp_sch_guided_iterative_chunked: 2843 case kmp_sch_guided_analytical_chunked: 2844 *kind = kmp_sched_guided; 2845 break; 2846 case kmp_sch_auto: 2847 *kind = kmp_sched_auto; 2848 break; 2849 case kmp_sch_trapezoidal: 2850 *kind = kmp_sched_trapezoidal; 2851 break; 2852 #if KMP_STATIC_STEAL_ENABLED 2853 case kmp_sch_static_steal: 2854 *kind = kmp_sched_static_steal; 2855 break; 2856 #endif 2857 default: 2858 KMP_FATAL(UnknownSchedulingType, th_type); 2859 } 2860 2861 __kmp_sched_apply_mods_stdkind(kind, th_type); 2862 *chunk = thread->th.th_current_task->td_icvs.sched.chunk; 2863 } 2864 2865 int __kmp_get_ancestor_thread_num(int gtid, int level) { 2866 2867 int ii, dd; 2868 kmp_team_t *team; 2869 kmp_info_t *thr; 2870 2871 KF_TRACE(10, ("__kmp_get_ancestor_thread_num: thread %d %d\n", gtid, level)); 2872 KMP_DEBUG_ASSERT(__kmp_init_serial); 2873 2874 // validate level 2875 if (level == 0) 2876 return 0; 2877 if (level < 0) 2878 return -1; 2879 thr = __kmp_threads[gtid]; 2880 team = thr->th.th_team; 2881 ii = team->t.t_level; 2882 if (level > ii) 2883 return -1; 2884 2885 if (thr->th.th_teams_microtask) { 2886 // AC: we are in teams region where multiple nested teams have same level 2887 int tlevel = thr->th.th_teams_level; // the level of the teams construct 2888 if (level <= 2889 tlevel) { // otherwise usual algorithm works (will not touch the teams) 2890 KMP_DEBUG_ASSERT(ii >= tlevel); 2891 // AC: As we need to pass by the teams league, we need to artificially 2892 // increase ii 2893 if (ii == tlevel) { 2894 ii += 2; // three teams have same level 2895 } else { 2896 ii++; // two teams have same level 2897 } 2898 } 2899 } 2900 2901 if (ii == level) 2902 return __kmp_tid_from_gtid(gtid); 2903 2904 dd = team->t.t_serialized; 2905 level++; 2906 while (ii > level) { 2907 for (dd = team->t.t_serialized; (dd > 0) && (ii > level); dd--, ii--) { 2908 } 2909 if ((team->t.t_serialized) && (!dd)) { 2910 team = team->t.t_parent; 2911 continue; 2912 } 2913 if (ii > level) { 2914 team = team->t.t_parent; 2915 dd = team->t.t_serialized; 2916 ii--; 2917 } 2918 } 2919 2920 return (dd > 1) ? (0) : (team->t.t_master_tid); 2921 } 2922 2923 int __kmp_get_team_size(int gtid, int level) { 2924 2925 int ii, dd; 2926 kmp_team_t *team; 2927 kmp_info_t *thr; 2928 2929 KF_TRACE(10, ("__kmp_get_team_size: thread %d %d\n", gtid, level)); 2930 KMP_DEBUG_ASSERT(__kmp_init_serial); 2931 2932 // validate level 2933 if (level == 0) 2934 return 1; 2935 if (level < 0) 2936 return -1; 2937 thr = __kmp_threads[gtid]; 2938 team = thr->th.th_team; 2939 ii = team->t.t_level; 2940 if (level > ii) 2941 return -1; 2942 2943 if (thr->th.th_teams_microtask) { 2944 // AC: we are in teams region where multiple nested teams have same level 2945 int tlevel = thr->th.th_teams_level; // the level of the teams construct 2946 if (level <= 2947 tlevel) { // otherwise usual algorithm works (will not touch the teams) 2948 KMP_DEBUG_ASSERT(ii >= tlevel); 2949 // AC: As we need to pass by the teams league, we need to artificially 2950 // increase ii 2951 if (ii == tlevel) { 2952 ii += 2; // three teams have same level 2953 } else { 2954 ii++; // two teams have same level 2955 } 2956 } 2957 } 2958 2959 while (ii > level) { 2960 for (dd = team->t.t_serialized; (dd > 0) && (ii > level); dd--, ii--) { 2961 } 2962 if (team->t.t_serialized && (!dd)) { 2963 team = team->t.t_parent; 2964 continue; 2965 } 2966 if (ii > level) { 2967 team = team->t.t_parent; 2968 ii--; 2969 } 2970 } 2971 2972 return team->t.t_nproc; 2973 } 2974 2975 kmp_r_sched_t __kmp_get_schedule_global() { 2976 // This routine created because pairs (__kmp_sched, __kmp_chunk) and 2977 // (__kmp_static, __kmp_guided) may be changed by kmp_set_defaults 2978 // independently. So one can get the updated schedule here. 2979 2980 kmp_r_sched_t r_sched; 2981 2982 // create schedule from 4 globals: __kmp_sched, __kmp_chunk, __kmp_static, 2983 // __kmp_guided. __kmp_sched should keep original value, so that user can set 2984 // KMP_SCHEDULE multiple times, and thus have different run-time schedules in 2985 // different roots (even in OMP 2.5) 2986 enum sched_type s = SCHEDULE_WITHOUT_MODIFIERS(__kmp_sched); 2987 enum sched_type sched_modifiers = SCHEDULE_GET_MODIFIERS(__kmp_sched); 2988 if (s == kmp_sch_static) { 2989 // replace STATIC with more detailed schedule (balanced or greedy) 2990 r_sched.r_sched_type = __kmp_static; 2991 } else if (s == kmp_sch_guided_chunked) { 2992 // replace GUIDED with more detailed schedule (iterative or analytical) 2993 r_sched.r_sched_type = __kmp_guided; 2994 } else { // (STATIC_CHUNKED), or (DYNAMIC_CHUNKED), or other 2995 r_sched.r_sched_type = __kmp_sched; 2996 } 2997 SCHEDULE_SET_MODIFIERS(r_sched.r_sched_type, sched_modifiers); 2998 2999 if (__kmp_chunk < KMP_DEFAULT_CHUNK) { 3000 // __kmp_chunk may be wrong here (if it was not ever set) 3001 r_sched.chunk = KMP_DEFAULT_CHUNK; 3002 } else { 3003 r_sched.chunk = __kmp_chunk; 3004 } 3005 3006 return r_sched; 3007 } 3008 3009 /* Allocate (realloc == FALSE) * or reallocate (realloc == TRUE) 3010 at least argc number of *t_argv entries for the requested team. */ 3011 static void __kmp_alloc_argv_entries(int argc, kmp_team_t *team, int realloc) { 3012 3013 KMP_DEBUG_ASSERT(team); 3014 if (!realloc || argc > team->t.t_max_argc) { 3015 3016 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: needed entries=%d, " 3017 "current entries=%d\n", 3018 team->t.t_id, argc, (realloc) ? team->t.t_max_argc : 0)); 3019 /* if previously allocated heap space for args, free them */ 3020 if (realloc && team->t.t_argv != &team->t.t_inline_argv[0]) 3021 __kmp_free((void *)team->t.t_argv); 3022 3023 if (argc <= KMP_INLINE_ARGV_ENTRIES) { 3024 /* use unused space in the cache line for arguments */ 3025 team->t.t_max_argc = KMP_INLINE_ARGV_ENTRIES; 3026 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: inline allocate %d " 3027 "argv entries\n", 3028 team->t.t_id, team->t.t_max_argc)); 3029 team->t.t_argv = &team->t.t_inline_argv[0]; 3030 if (__kmp_storage_map) { 3031 __kmp_print_storage_map_gtid( 3032 -1, &team->t.t_inline_argv[0], 3033 &team->t.t_inline_argv[KMP_INLINE_ARGV_ENTRIES], 3034 (sizeof(void *) * KMP_INLINE_ARGV_ENTRIES), "team_%d.t_inline_argv", 3035 team->t.t_id); 3036 } 3037 } else { 3038 /* allocate space for arguments in the heap */ 3039 team->t.t_max_argc = (argc <= (KMP_MIN_MALLOC_ARGV_ENTRIES >> 1)) 3040 ? KMP_MIN_MALLOC_ARGV_ENTRIES 3041 : 2 * argc; 3042 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: dynamic allocate %d " 3043 "argv entries\n", 3044 team->t.t_id, team->t.t_max_argc)); 3045 team->t.t_argv = 3046 (void **)__kmp_page_allocate(sizeof(void *) * team->t.t_max_argc); 3047 if (__kmp_storage_map) { 3048 __kmp_print_storage_map_gtid(-1, &team->t.t_argv[0], 3049 &team->t.t_argv[team->t.t_max_argc], 3050 sizeof(void *) * team->t.t_max_argc, 3051 "team_%d.t_argv", team->t.t_id); 3052 } 3053 } 3054 } 3055 } 3056 3057 static void __kmp_allocate_team_arrays(kmp_team_t *team, int max_nth) { 3058 int i; 3059 int num_disp_buff = max_nth > 1 ? __kmp_dispatch_num_buffers : 2; 3060 team->t.t_threads = 3061 (kmp_info_t **)__kmp_allocate(sizeof(kmp_info_t *) * max_nth); 3062 team->t.t_disp_buffer = (dispatch_shared_info_t *)__kmp_allocate( 3063 sizeof(dispatch_shared_info_t) * num_disp_buff); 3064 team->t.t_dispatch = 3065 (kmp_disp_t *)__kmp_allocate(sizeof(kmp_disp_t) * max_nth); 3066 team->t.t_implicit_task_taskdata = 3067 (kmp_taskdata_t *)__kmp_allocate(sizeof(kmp_taskdata_t) * max_nth); 3068 team->t.t_max_nproc = max_nth; 3069 3070 /* setup dispatch buffers */ 3071 for (i = 0; i < num_disp_buff; ++i) { 3072 team->t.t_disp_buffer[i].buffer_index = i; 3073 team->t.t_disp_buffer[i].doacross_buf_idx = i; 3074 } 3075 } 3076 3077 static void __kmp_free_team_arrays(kmp_team_t *team) { 3078 /* Note: this does not free the threads in t_threads (__kmp_free_threads) */ 3079 int i; 3080 for (i = 0; i < team->t.t_max_nproc; ++i) { 3081 if (team->t.t_dispatch[i].th_disp_buffer != NULL) { 3082 __kmp_free(team->t.t_dispatch[i].th_disp_buffer); 3083 team->t.t_dispatch[i].th_disp_buffer = NULL; 3084 } 3085 } 3086 #if KMP_USE_HIER_SCHED 3087 __kmp_dispatch_free_hierarchies(team); 3088 #endif 3089 __kmp_free(team->t.t_threads); 3090 __kmp_free(team->t.t_disp_buffer); 3091 __kmp_free(team->t.t_dispatch); 3092 __kmp_free(team->t.t_implicit_task_taskdata); 3093 team->t.t_threads = NULL; 3094 team->t.t_disp_buffer = NULL; 3095 team->t.t_dispatch = NULL; 3096 team->t.t_implicit_task_taskdata = 0; 3097 } 3098 3099 static void __kmp_reallocate_team_arrays(kmp_team_t *team, int max_nth) { 3100 kmp_info_t **oldThreads = team->t.t_threads; 3101 3102 __kmp_free(team->t.t_disp_buffer); 3103 __kmp_free(team->t.t_dispatch); 3104 __kmp_free(team->t.t_implicit_task_taskdata); 3105 __kmp_allocate_team_arrays(team, max_nth); 3106 3107 KMP_MEMCPY(team->t.t_threads, oldThreads, 3108 team->t.t_nproc * sizeof(kmp_info_t *)); 3109 3110 __kmp_free(oldThreads); 3111 } 3112 3113 static kmp_internal_control_t __kmp_get_global_icvs(void) { 3114 3115 kmp_r_sched_t r_sched = 3116 __kmp_get_schedule_global(); // get current state of scheduling globals 3117 3118 KMP_DEBUG_ASSERT(__kmp_nested_proc_bind.used > 0); 3119 3120 kmp_internal_control_t g_icvs = { 3121 0, // int serial_nesting_level; //corresponds to value of th_team_serialized 3122 (kmp_int8)__kmp_global.g.g_dynamic, // internal control for dynamic 3123 // adjustment of threads (per thread) 3124 (kmp_int8)__kmp_env_blocktime, // int bt_set; //internal control for 3125 // whether blocktime is explicitly set 3126 __kmp_dflt_blocktime, // int blocktime; //internal control for blocktime 3127 #if KMP_USE_MONITOR 3128 __kmp_bt_intervals, // int bt_intervals; //internal control for blocktime 3129 // intervals 3130 #endif 3131 __kmp_dflt_team_nth, // int nproc; //internal control for # of threads for 3132 // next parallel region (per thread) 3133 // (use a max ub on value if __kmp_parallel_initialize not called yet) 3134 __kmp_cg_max_nth, // int thread_limit; 3135 __kmp_dflt_max_active_levels, // int max_active_levels; //internal control 3136 // for max_active_levels 3137 r_sched, // kmp_r_sched_t sched; //internal control for runtime schedule 3138 // {sched,chunk} pair 3139 __kmp_nested_proc_bind.bind_types[0], 3140 __kmp_default_device, 3141 NULL // struct kmp_internal_control *next; 3142 }; 3143 3144 return g_icvs; 3145 } 3146 3147 static kmp_internal_control_t __kmp_get_x_global_icvs(const kmp_team_t *team) { 3148 3149 kmp_internal_control_t gx_icvs; 3150 gx_icvs.serial_nesting_level = 3151 0; // probably =team->t.t_serial like in save_inter_controls 3152 copy_icvs(&gx_icvs, &team->t.t_threads[0]->th.th_current_task->td_icvs); 3153 gx_icvs.next = NULL; 3154 3155 return gx_icvs; 3156 } 3157 3158 static void __kmp_initialize_root(kmp_root_t *root) { 3159 int f; 3160 kmp_team_t *root_team; 3161 kmp_team_t *hot_team; 3162 int hot_team_max_nth; 3163 kmp_r_sched_t r_sched = 3164 __kmp_get_schedule_global(); // get current state of scheduling globals 3165 kmp_internal_control_t r_icvs = __kmp_get_global_icvs(); 3166 KMP_DEBUG_ASSERT(root); 3167 KMP_ASSERT(!root->r.r_begin); 3168 3169 /* setup the root state structure */ 3170 __kmp_init_lock(&root->r.r_begin_lock); 3171 root->r.r_begin = FALSE; 3172 root->r.r_active = FALSE; 3173 root->r.r_in_parallel = 0; 3174 root->r.r_blocktime = __kmp_dflt_blocktime; 3175 3176 /* setup the root team for this task */ 3177 /* allocate the root team structure */ 3178 KF_TRACE(10, ("__kmp_initialize_root: before root_team\n")); 3179 3180 root_team = 3181 __kmp_allocate_team(root, 3182 1, // new_nproc 3183 1, // max_nproc 3184 #if OMPT_SUPPORT 3185 ompt_data_none, // root parallel id 3186 #endif 3187 __kmp_nested_proc_bind.bind_types[0], &r_icvs, 3188 0 // argc 3189 USE_NESTED_HOT_ARG(NULL) // master thread is unknown 3190 ); 3191 #if USE_DEBUGGER 3192 // Non-NULL value should be assigned to make the debugger display the root 3193 // team. 3194 TCW_SYNC_PTR(root_team->t.t_pkfn, (microtask_t)(~0)); 3195 #endif 3196 3197 KF_TRACE(10, ("__kmp_initialize_root: after root_team = %p\n", root_team)); 3198 3199 root->r.r_root_team = root_team; 3200 root_team->t.t_control_stack_top = NULL; 3201 3202 /* initialize root team */ 3203 root_team->t.t_threads[0] = NULL; 3204 root_team->t.t_nproc = 1; 3205 root_team->t.t_serialized = 1; 3206 // TODO???: root_team->t.t_max_active_levels = __kmp_dflt_max_active_levels; 3207 root_team->t.t_sched.sched = r_sched.sched; 3208 KA_TRACE( 3209 20, 3210 ("__kmp_initialize_root: init root team %d arrived: join=%u, plain=%u\n", 3211 root_team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 3212 3213 /* setup the hot team for this task */ 3214 /* allocate the hot team structure */ 3215 KF_TRACE(10, ("__kmp_initialize_root: before hot_team\n")); 3216 3217 hot_team = 3218 __kmp_allocate_team(root, 3219 1, // new_nproc 3220 __kmp_dflt_team_nth_ub * 2, // max_nproc 3221 #if OMPT_SUPPORT 3222 ompt_data_none, // root parallel id 3223 #endif 3224 __kmp_nested_proc_bind.bind_types[0], &r_icvs, 3225 0 // argc 3226 USE_NESTED_HOT_ARG(NULL) // master thread is unknown 3227 ); 3228 KF_TRACE(10, ("__kmp_initialize_root: after hot_team = %p\n", hot_team)); 3229 3230 root->r.r_hot_team = hot_team; 3231 root_team->t.t_control_stack_top = NULL; 3232 3233 /* first-time initialization */ 3234 hot_team->t.t_parent = root_team; 3235 3236 /* initialize hot team */ 3237 hot_team_max_nth = hot_team->t.t_max_nproc; 3238 for (f = 0; f < hot_team_max_nth; ++f) { 3239 hot_team->t.t_threads[f] = NULL; 3240 } 3241 hot_team->t.t_nproc = 1; 3242 // TODO???: hot_team->t.t_max_active_levels = __kmp_dflt_max_active_levels; 3243 hot_team->t.t_sched.sched = r_sched.sched; 3244 hot_team->t.t_size_changed = 0; 3245 } 3246 3247 #ifdef KMP_DEBUG 3248 3249 typedef struct kmp_team_list_item { 3250 kmp_team_p const *entry; 3251 struct kmp_team_list_item *next; 3252 } kmp_team_list_item_t; 3253 typedef kmp_team_list_item_t *kmp_team_list_t; 3254 3255 static void __kmp_print_structure_team_accum( // Add team to list of teams. 3256 kmp_team_list_t list, // List of teams. 3257 kmp_team_p const *team // Team to add. 3258 ) { 3259 3260 // List must terminate with item where both entry and next are NULL. 3261 // Team is added to the list only once. 3262 // List is sorted in ascending order by team id. 3263 // Team id is *not* a key. 3264 3265 kmp_team_list_t l; 3266 3267 KMP_DEBUG_ASSERT(list != NULL); 3268 if (team == NULL) { 3269 return; 3270 } 3271 3272 __kmp_print_structure_team_accum(list, team->t.t_parent); 3273 __kmp_print_structure_team_accum(list, team->t.t_next_pool); 3274 3275 // Search list for the team. 3276 l = list; 3277 while (l->next != NULL && l->entry != team) { 3278 l = l->next; 3279 } 3280 if (l->next != NULL) { 3281 return; // Team has been added before, exit. 3282 } 3283 3284 // Team is not found. Search list again for insertion point. 3285 l = list; 3286 while (l->next != NULL && l->entry->t.t_id <= team->t.t_id) { 3287 l = l->next; 3288 } 3289 3290 // Insert team. 3291 { 3292 kmp_team_list_item_t *item = (kmp_team_list_item_t *)KMP_INTERNAL_MALLOC( 3293 sizeof(kmp_team_list_item_t)); 3294 *item = *l; 3295 l->entry = team; 3296 l->next = item; 3297 } 3298 } 3299 3300 static void __kmp_print_structure_team(char const *title, kmp_team_p const *team 3301 3302 ) { 3303 __kmp_printf("%s", title); 3304 if (team != NULL) { 3305 __kmp_printf("%2x %p\n", team->t.t_id, team); 3306 } else { 3307 __kmp_printf(" - (nil)\n"); 3308 } 3309 } 3310 3311 static void __kmp_print_structure_thread(char const *title, 3312 kmp_info_p const *thread) { 3313 __kmp_printf("%s", title); 3314 if (thread != NULL) { 3315 __kmp_printf("%2d %p\n", thread->th.th_info.ds.ds_gtid, thread); 3316 } else { 3317 __kmp_printf(" - (nil)\n"); 3318 } 3319 } 3320 3321 void __kmp_print_structure(void) { 3322 3323 kmp_team_list_t list; 3324 3325 // Initialize list of teams. 3326 list = 3327 (kmp_team_list_item_t *)KMP_INTERNAL_MALLOC(sizeof(kmp_team_list_item_t)); 3328 list->entry = NULL; 3329 list->next = NULL; 3330 3331 __kmp_printf("\n------------------------------\nGlobal Thread " 3332 "Table\n------------------------------\n"); 3333 { 3334 int gtid; 3335 for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) { 3336 __kmp_printf("%2d", gtid); 3337 if (__kmp_threads != NULL) { 3338 __kmp_printf(" %p", __kmp_threads[gtid]); 3339 } 3340 if (__kmp_root != NULL) { 3341 __kmp_printf(" %p", __kmp_root[gtid]); 3342 } 3343 __kmp_printf("\n"); 3344 } 3345 } 3346 3347 // Print out __kmp_threads array. 3348 __kmp_printf("\n------------------------------\nThreads\n--------------------" 3349 "----------\n"); 3350 if (__kmp_threads != NULL) { 3351 int gtid; 3352 for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) { 3353 kmp_info_t const *thread = __kmp_threads[gtid]; 3354 if (thread != NULL) { 3355 __kmp_printf("GTID %2d %p:\n", gtid, thread); 3356 __kmp_printf(" Our Root: %p\n", thread->th.th_root); 3357 __kmp_print_structure_team(" Our Team: ", thread->th.th_team); 3358 __kmp_print_structure_team(" Serial Team: ", 3359 thread->th.th_serial_team); 3360 __kmp_printf(" Threads: %2d\n", thread->th.th_team_nproc); 3361 __kmp_print_structure_thread(" Master: ", 3362 thread->th.th_team_master); 3363 __kmp_printf(" Serialized?: %2d\n", thread->th.th_team_serialized); 3364 __kmp_printf(" Set NProc: %2d\n", thread->th.th_set_nproc); 3365 __kmp_printf(" Set Proc Bind: %2d\n", thread->th.th_set_proc_bind); 3366 __kmp_print_structure_thread(" Next in pool: ", 3367 thread->th.th_next_pool); 3368 __kmp_printf("\n"); 3369 __kmp_print_structure_team_accum(list, thread->th.th_team); 3370 __kmp_print_structure_team_accum(list, thread->th.th_serial_team); 3371 } 3372 } 3373 } else { 3374 __kmp_printf("Threads array is not allocated.\n"); 3375 } 3376 3377 // Print out __kmp_root array. 3378 __kmp_printf("\n------------------------------\nUbers\n----------------------" 3379 "--------\n"); 3380 if (__kmp_root != NULL) { 3381 int gtid; 3382 for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) { 3383 kmp_root_t const *root = __kmp_root[gtid]; 3384 if (root != NULL) { 3385 __kmp_printf("GTID %2d %p:\n", gtid, root); 3386 __kmp_print_structure_team(" Root Team: ", root->r.r_root_team); 3387 __kmp_print_structure_team(" Hot Team: ", root->r.r_hot_team); 3388 __kmp_print_structure_thread(" Uber Thread: ", 3389 root->r.r_uber_thread); 3390 __kmp_printf(" Active?: %2d\n", root->r.r_active); 3391 __kmp_printf(" In Parallel: %2d\n", 3392 KMP_ATOMIC_LD_RLX(&root->r.r_in_parallel)); 3393 __kmp_printf("\n"); 3394 __kmp_print_structure_team_accum(list, root->r.r_root_team); 3395 __kmp_print_structure_team_accum(list, root->r.r_hot_team); 3396 } 3397 } 3398 } else { 3399 __kmp_printf("Ubers array is not allocated.\n"); 3400 } 3401 3402 __kmp_printf("\n------------------------------\nTeams\n----------------------" 3403 "--------\n"); 3404 while (list->next != NULL) { 3405 kmp_team_p const *team = list->entry; 3406 int i; 3407 __kmp_printf("Team %2x %p:\n", team->t.t_id, team); 3408 __kmp_print_structure_team(" Parent Team: ", team->t.t_parent); 3409 __kmp_printf(" Master TID: %2d\n", team->t.t_master_tid); 3410 __kmp_printf(" Max threads: %2d\n", team->t.t_max_nproc); 3411 __kmp_printf(" Levels of serial: %2d\n", team->t.t_serialized); 3412 __kmp_printf(" Number threads: %2d\n", team->t.t_nproc); 3413 for (i = 0; i < team->t.t_nproc; ++i) { 3414 __kmp_printf(" Thread %2d: ", i); 3415 __kmp_print_structure_thread("", team->t.t_threads[i]); 3416 } 3417 __kmp_print_structure_team(" Next in pool: ", team->t.t_next_pool); 3418 __kmp_printf("\n"); 3419 list = list->next; 3420 } 3421 3422 // Print out __kmp_thread_pool and __kmp_team_pool. 3423 __kmp_printf("\n------------------------------\nPools\n----------------------" 3424 "--------\n"); 3425 __kmp_print_structure_thread("Thread pool: ", 3426 CCAST(kmp_info_t *, __kmp_thread_pool)); 3427 __kmp_print_structure_team("Team pool: ", 3428 CCAST(kmp_team_t *, __kmp_team_pool)); 3429 __kmp_printf("\n"); 3430 3431 // Free team list. 3432 while (list != NULL) { 3433 kmp_team_list_item_t *item = list; 3434 list = list->next; 3435 KMP_INTERNAL_FREE(item); 3436 } 3437 } 3438 3439 #endif 3440 3441 //--------------------------------------------------------------------------- 3442 // Stuff for per-thread fast random number generator 3443 // Table of primes 3444 static const unsigned __kmp_primes[] = { 3445 0x9e3779b1, 0xffe6cc59, 0x2109f6dd, 0x43977ab5, 0xba5703f5, 0xb495a877, 3446 0xe1626741, 0x79695e6b, 0xbc98c09f, 0xd5bee2b3, 0x287488f9, 0x3af18231, 3447 0x9677cd4d, 0xbe3a6929, 0xadc6a877, 0xdcf0674b, 0xbe4d6fe9, 0x5f15e201, 3448 0x99afc3fd, 0xf3f16801, 0xe222cfff, 0x24ba5fdb, 0x0620452d, 0x79f149e3, 3449 0xc8b93f49, 0x972702cd, 0xb07dd827, 0x6c97d5ed, 0x085a3d61, 0x46eb5ea7, 3450 0x3d9910ed, 0x2e687b5b, 0x29609227, 0x6eb081f1, 0x0954c4e1, 0x9d114db9, 3451 0x542acfa9, 0xb3e6bd7b, 0x0742d917, 0xe9f3ffa7, 0x54581edb, 0xf2480f45, 3452 0x0bb9288f, 0xef1affc7, 0x85fa0ca7, 0x3ccc14db, 0xe6baf34b, 0x343377f7, 3453 0x5ca19031, 0xe6d9293b, 0xf0a9f391, 0x5d2e980b, 0xfc411073, 0xc3749363, 3454 0xb892d829, 0x3549366b, 0x629750ad, 0xb98294e5, 0x892d9483, 0xc235baf3, 3455 0x3d2402a3, 0x6bdef3c9, 0xbec333cd, 0x40c9520f}; 3456 3457 //--------------------------------------------------------------------------- 3458 // __kmp_get_random: Get a random number using a linear congruential method. 3459 unsigned short __kmp_get_random(kmp_info_t *thread) { 3460 unsigned x = thread->th.th_x; 3461 unsigned short r = (unsigned short)(x >> 16); 3462 3463 thread->th.th_x = x * thread->th.th_a + 1; 3464 3465 KA_TRACE(30, ("__kmp_get_random: THREAD: %d, RETURN: %u\n", 3466 thread->th.th_info.ds.ds_tid, r)); 3467 3468 return r; 3469 } 3470 //-------------------------------------------------------- 3471 // __kmp_init_random: Initialize a random number generator 3472 void __kmp_init_random(kmp_info_t *thread) { 3473 unsigned seed = thread->th.th_info.ds.ds_tid; 3474 3475 thread->th.th_a = 3476 __kmp_primes[seed % (sizeof(__kmp_primes) / sizeof(__kmp_primes[0]))]; 3477 thread->th.th_x = (seed + 1) * thread->th.th_a + 1; 3478 KA_TRACE(30, 3479 ("__kmp_init_random: THREAD: %u; A: %u\n", seed, thread->th.th_a)); 3480 } 3481 3482 #if KMP_OS_WINDOWS 3483 /* reclaim array entries for root threads that are already dead, returns number 3484 * reclaimed */ 3485 static int __kmp_reclaim_dead_roots(void) { 3486 int i, r = 0; 3487 3488 for (i = 0; i < __kmp_threads_capacity; ++i) { 3489 if (KMP_UBER_GTID(i) && 3490 !__kmp_still_running((kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[i])) && 3491 !__kmp_root[i] 3492 ->r.r_active) { // AC: reclaim only roots died in non-active state 3493 r += __kmp_unregister_root_other_thread(i); 3494 } 3495 } 3496 return r; 3497 } 3498 #endif 3499 3500 /* This function attempts to create free entries in __kmp_threads and 3501 __kmp_root, and returns the number of free entries generated. 3502 3503 For Windows* OS static library, the first mechanism used is to reclaim array 3504 entries for root threads that are already dead. 3505 3506 On all platforms, expansion is attempted on the arrays __kmp_threads_ and 3507 __kmp_root, with appropriate update to __kmp_threads_capacity. Array 3508 capacity is increased by doubling with clipping to __kmp_tp_capacity, if 3509 threadprivate cache array has been created. Synchronization with 3510 __kmpc_threadprivate_cached is done using __kmp_tp_cached_lock. 3511 3512 After any dead root reclamation, if the clipping value allows array expansion 3513 to result in the generation of a total of nNeed free slots, the function does 3514 that expansion. If not, nothing is done beyond the possible initial root 3515 thread reclamation. 3516 3517 If any argument is negative, the behavior is undefined. */ 3518 static int __kmp_expand_threads(int nNeed) { 3519 int added = 0; 3520 int minimumRequiredCapacity; 3521 int newCapacity; 3522 kmp_info_t **newThreads; 3523 kmp_root_t **newRoot; 3524 3525 // All calls to __kmp_expand_threads should be under __kmp_forkjoin_lock, so 3526 // resizing __kmp_threads does not need additional protection if foreign 3527 // threads are present 3528 3529 #if KMP_OS_WINDOWS && !KMP_DYNAMIC_LIB 3530 /* only for Windows static library */ 3531 /* reclaim array entries for root threads that are already dead */ 3532 added = __kmp_reclaim_dead_roots(); 3533 3534 if (nNeed) { 3535 nNeed -= added; 3536 if (nNeed < 0) 3537 nNeed = 0; 3538 } 3539 #endif 3540 if (nNeed <= 0) 3541 return added; 3542 3543 // Note that __kmp_threads_capacity is not bounded by __kmp_max_nth. If 3544 // __kmp_max_nth is set to some value less than __kmp_sys_max_nth by the 3545 // user via KMP_DEVICE_THREAD_LIMIT, then __kmp_threads_capacity may become 3546 // > __kmp_max_nth in one of two ways: 3547 // 3548 // 1) The initialization thread (gtid = 0) exits. __kmp_threads[0] 3549 // may not be reused by another thread, so we may need to increase 3550 // __kmp_threads_capacity to __kmp_max_nth + 1. 3551 // 3552 // 2) New foreign root(s) are encountered. We always register new foreign 3553 // roots. This may cause a smaller # of threads to be allocated at 3554 // subsequent parallel regions, but the worker threads hang around (and 3555 // eventually go to sleep) and need slots in the __kmp_threads[] array. 3556 // 3557 // Anyway, that is the reason for moving the check to see if 3558 // __kmp_max_nth was exceeded into __kmp_reserve_threads() 3559 // instead of having it performed here. -BB 3560 3561 KMP_DEBUG_ASSERT(__kmp_sys_max_nth >= __kmp_threads_capacity); 3562 3563 /* compute expansion headroom to check if we can expand */ 3564 if (__kmp_sys_max_nth - __kmp_threads_capacity < nNeed) { 3565 /* possible expansion too small -- give up */ 3566 return added; 3567 } 3568 minimumRequiredCapacity = __kmp_threads_capacity + nNeed; 3569 3570 newCapacity = __kmp_threads_capacity; 3571 do { 3572 newCapacity = newCapacity <= (__kmp_sys_max_nth >> 1) ? (newCapacity << 1) 3573 : __kmp_sys_max_nth; 3574 } while (newCapacity < minimumRequiredCapacity); 3575 newThreads = (kmp_info_t **)__kmp_allocate( 3576 (sizeof(kmp_info_t *) + sizeof(kmp_root_t *)) * newCapacity + CACHE_LINE); 3577 newRoot = 3578 (kmp_root_t **)((char *)newThreads + sizeof(kmp_info_t *) * newCapacity); 3579 KMP_MEMCPY(newThreads, __kmp_threads, 3580 __kmp_threads_capacity * sizeof(kmp_info_t *)); 3581 KMP_MEMCPY(newRoot, __kmp_root, 3582 __kmp_threads_capacity * sizeof(kmp_root_t *)); 3583 3584 kmp_info_t **temp_threads = __kmp_threads; 3585 *(kmp_info_t * *volatile *)&__kmp_threads = newThreads; 3586 *(kmp_root_t * *volatile *)&__kmp_root = newRoot; 3587 __kmp_free(temp_threads); 3588 added += newCapacity - __kmp_threads_capacity; 3589 *(volatile int *)&__kmp_threads_capacity = newCapacity; 3590 3591 if (newCapacity > __kmp_tp_capacity) { 3592 __kmp_acquire_bootstrap_lock(&__kmp_tp_cached_lock); 3593 if (__kmp_tp_cached && newCapacity > __kmp_tp_capacity) { 3594 __kmp_threadprivate_resize_cache(newCapacity); 3595 } else { // increase __kmp_tp_capacity to correspond with kmp_threads size 3596 *(volatile int *)&__kmp_tp_capacity = newCapacity; 3597 } 3598 __kmp_release_bootstrap_lock(&__kmp_tp_cached_lock); 3599 } 3600 3601 return added; 3602 } 3603 3604 /* Register the current thread as a root thread and obtain our gtid. We must 3605 have the __kmp_initz_lock held at this point. Argument TRUE only if are the 3606 thread that calls from __kmp_do_serial_initialize() */ 3607 int __kmp_register_root(int initial_thread) { 3608 kmp_info_t *root_thread; 3609 kmp_root_t *root; 3610 int gtid; 3611 int capacity; 3612 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 3613 KA_TRACE(20, ("__kmp_register_root: entered\n")); 3614 KMP_MB(); 3615 3616 /* 2007-03-02: 3617 If initial thread did not invoke OpenMP RTL yet, and this thread is not an 3618 initial one, "__kmp_all_nth >= __kmp_threads_capacity" condition does not 3619 work as expected -- it may return false (that means there is at least one 3620 empty slot in __kmp_threads array), but it is possible the only free slot 3621 is #0, which is reserved for initial thread and so cannot be used for this 3622 one. Following code workarounds this bug. 3623 3624 However, right solution seems to be not reserving slot #0 for initial 3625 thread because: 3626 (1) there is no magic in slot #0, 3627 (2) we cannot detect initial thread reliably (the first thread which does 3628 serial initialization may be not a real initial thread). 3629 */ 3630 capacity = __kmp_threads_capacity; 3631 if (!initial_thread && TCR_PTR(__kmp_threads[0]) == NULL) { 3632 --capacity; 3633 } 3634 3635 /* see if there are too many threads */ 3636 if (__kmp_all_nth >= capacity && !__kmp_expand_threads(1)) { 3637 if (__kmp_tp_cached) { 3638 __kmp_fatal(KMP_MSG(CantRegisterNewThread), 3639 KMP_HNT(Set_ALL_THREADPRIVATE, __kmp_tp_capacity), 3640 KMP_HNT(PossibleSystemLimitOnThreads), __kmp_msg_null); 3641 } else { 3642 __kmp_fatal(KMP_MSG(CantRegisterNewThread), KMP_HNT(SystemLimitOnThreads), 3643 __kmp_msg_null); 3644 } 3645 } 3646 3647 /* find an available thread slot */ 3648 /* Don't reassign the zero slot since we need that to only be used by initial 3649 thread */ 3650 for (gtid = (initial_thread ? 0 : 1); TCR_PTR(__kmp_threads[gtid]) != NULL; 3651 gtid++) 3652 ; 3653 KA_TRACE(1, 3654 ("__kmp_register_root: found slot in threads array: T#%d\n", gtid)); 3655 KMP_ASSERT(gtid < __kmp_threads_capacity); 3656 3657 /* update global accounting */ 3658 __kmp_all_nth++; 3659 TCW_4(__kmp_nth, __kmp_nth + 1); 3660 3661 // if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) for low 3662 // numbers of procs, and method #2 (keyed API call) for higher numbers. 3663 if (__kmp_adjust_gtid_mode) { 3664 if (__kmp_all_nth >= __kmp_tls_gtid_min) { 3665 if (TCR_4(__kmp_gtid_mode) != 2) { 3666 TCW_4(__kmp_gtid_mode, 2); 3667 } 3668 } else { 3669 if (TCR_4(__kmp_gtid_mode) != 1) { 3670 TCW_4(__kmp_gtid_mode, 1); 3671 } 3672 } 3673 } 3674 3675 #ifdef KMP_ADJUST_BLOCKTIME 3676 /* Adjust blocktime to zero if necessary */ 3677 /* Middle initialization might not have occurred yet */ 3678 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 3679 if (__kmp_nth > __kmp_avail_proc) { 3680 __kmp_zero_bt = TRUE; 3681 } 3682 } 3683 #endif /* KMP_ADJUST_BLOCKTIME */ 3684 3685 /* setup this new hierarchy */ 3686 if (!(root = __kmp_root[gtid])) { 3687 root = __kmp_root[gtid] = (kmp_root_t *)__kmp_allocate(sizeof(kmp_root_t)); 3688 KMP_DEBUG_ASSERT(!root->r.r_root_team); 3689 } 3690 3691 #if KMP_STATS_ENABLED 3692 // Initialize stats as soon as possible (right after gtid assignment). 3693 __kmp_stats_thread_ptr = __kmp_stats_list->push_back(gtid); 3694 __kmp_stats_thread_ptr->startLife(); 3695 KMP_SET_THREAD_STATE(SERIAL_REGION); 3696 KMP_INIT_PARTITIONED_TIMERS(OMP_serial); 3697 #endif 3698 __kmp_initialize_root(root); 3699 3700 /* setup new root thread structure */ 3701 if (root->r.r_uber_thread) { 3702 root_thread = root->r.r_uber_thread; 3703 } else { 3704 root_thread = (kmp_info_t *)__kmp_allocate(sizeof(kmp_info_t)); 3705 if (__kmp_storage_map) { 3706 __kmp_print_thread_storage_map(root_thread, gtid); 3707 } 3708 root_thread->th.th_info.ds.ds_gtid = gtid; 3709 #if OMPT_SUPPORT 3710 root_thread->th.ompt_thread_info.thread_data = ompt_data_none; 3711 #endif 3712 root_thread->th.th_root = root; 3713 if (__kmp_env_consistency_check) { 3714 root_thread->th.th_cons = __kmp_allocate_cons_stack(gtid); 3715 } 3716 #if USE_FAST_MEMORY 3717 __kmp_initialize_fast_memory(root_thread); 3718 #endif /* USE_FAST_MEMORY */ 3719 3720 #if KMP_USE_BGET 3721 KMP_DEBUG_ASSERT(root_thread->th.th_local.bget_data == NULL); 3722 __kmp_initialize_bget(root_thread); 3723 #endif 3724 __kmp_init_random(root_thread); // Initialize random number generator 3725 } 3726 3727 /* setup the serial team held in reserve by the root thread */ 3728 if (!root_thread->th.th_serial_team) { 3729 kmp_internal_control_t r_icvs = __kmp_get_global_icvs(); 3730 KF_TRACE(10, ("__kmp_register_root: before serial_team\n")); 3731 root_thread->th.th_serial_team = __kmp_allocate_team( 3732 root, 1, 1, 3733 #if OMPT_SUPPORT 3734 ompt_data_none, // root parallel id 3735 #endif 3736 proc_bind_default, &r_icvs, 0 USE_NESTED_HOT_ARG(NULL)); 3737 } 3738 KMP_ASSERT(root_thread->th.th_serial_team); 3739 KF_TRACE(10, ("__kmp_register_root: after serial_team = %p\n", 3740 root_thread->th.th_serial_team)); 3741 3742 /* drop root_thread into place */ 3743 TCW_SYNC_PTR(__kmp_threads[gtid], root_thread); 3744 3745 root->r.r_root_team->t.t_threads[0] = root_thread; 3746 root->r.r_hot_team->t.t_threads[0] = root_thread; 3747 root_thread->th.th_serial_team->t.t_threads[0] = root_thread; 3748 // AC: the team created in reserve, not for execution (it is unused for now). 3749 root_thread->th.th_serial_team->t.t_serialized = 0; 3750 root->r.r_uber_thread = root_thread; 3751 3752 /* initialize the thread, get it ready to go */ 3753 __kmp_initialize_info(root_thread, root->r.r_root_team, 0, gtid); 3754 TCW_4(__kmp_init_gtid, TRUE); 3755 3756 /* prepare the master thread for get_gtid() */ 3757 __kmp_gtid_set_specific(gtid); 3758 3759 #if USE_ITT_BUILD 3760 __kmp_itt_thread_name(gtid); 3761 #endif /* USE_ITT_BUILD */ 3762 3763 #ifdef KMP_TDATA_GTID 3764 __kmp_gtid = gtid; 3765 #endif 3766 __kmp_create_worker(gtid, root_thread, __kmp_stksize); 3767 KMP_DEBUG_ASSERT(__kmp_gtid_get_specific() == gtid); 3768 3769 KA_TRACE(20, ("__kmp_register_root: T#%d init T#%d(%d:%d) arrived: join=%u, " 3770 "plain=%u\n", 3771 gtid, __kmp_gtid_from_tid(0, root->r.r_hot_team), 3772 root->r.r_hot_team->t.t_id, 0, KMP_INIT_BARRIER_STATE, 3773 KMP_INIT_BARRIER_STATE)); 3774 { // Initialize barrier data. 3775 int b; 3776 for (b = 0; b < bs_last_barrier; ++b) { 3777 root_thread->th.th_bar[b].bb.b_arrived = KMP_INIT_BARRIER_STATE; 3778 #if USE_DEBUGGER 3779 root_thread->th.th_bar[b].bb.b_worker_arrived = 0; 3780 #endif 3781 } 3782 } 3783 KMP_DEBUG_ASSERT(root->r.r_hot_team->t.t_bar[bs_forkjoin_barrier].b_arrived == 3784 KMP_INIT_BARRIER_STATE); 3785 3786 #if KMP_AFFINITY_SUPPORTED 3787 root_thread->th.th_current_place = KMP_PLACE_UNDEFINED; 3788 root_thread->th.th_new_place = KMP_PLACE_UNDEFINED; 3789 root_thread->th.th_first_place = KMP_PLACE_UNDEFINED; 3790 root_thread->th.th_last_place = KMP_PLACE_UNDEFINED; 3791 if (TCR_4(__kmp_init_middle)) { 3792 __kmp_affinity_set_init_mask(gtid, TRUE); 3793 } 3794 #endif /* KMP_AFFINITY_SUPPORTED */ 3795 root_thread->th.th_def_allocator = __kmp_def_allocator; 3796 root_thread->th.th_prev_level = 0; 3797 root_thread->th.th_prev_num_threads = 1; 3798 3799 kmp_cg_root_t *tmp = (kmp_cg_root_t *)__kmp_allocate(sizeof(kmp_cg_root_t)); 3800 tmp->cg_root = root_thread; 3801 tmp->cg_thread_limit = __kmp_cg_max_nth; 3802 tmp->cg_nthreads = 1; 3803 KA_TRACE(100, ("__kmp_register_root: Thread %p created node %p with" 3804 " cg_nthreads init to 1\n", 3805 root_thread, tmp)); 3806 tmp->up = NULL; 3807 root_thread->th.th_cg_roots = tmp; 3808 3809 __kmp_root_counter++; 3810 3811 #if OMPT_SUPPORT 3812 if (!initial_thread && ompt_enabled.enabled) { 3813 3814 kmp_info_t *root_thread = ompt_get_thread(); 3815 3816 ompt_set_thread_state(root_thread, ompt_state_overhead); 3817 3818 if (ompt_enabled.ompt_callback_thread_begin) { 3819 ompt_callbacks.ompt_callback(ompt_callback_thread_begin)( 3820 ompt_thread_initial, __ompt_get_thread_data_internal()); 3821 } 3822 ompt_data_t *task_data; 3823 ompt_data_t *parallel_data; 3824 __ompt_get_task_info_internal(0, NULL, &task_data, NULL, ¶llel_data, NULL); 3825 if (ompt_enabled.ompt_callback_implicit_task) { 3826 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 3827 ompt_scope_begin, parallel_data, task_data, 1, 1, ompt_task_initial); 3828 } 3829 3830 ompt_set_thread_state(root_thread, ompt_state_work_serial); 3831 } 3832 #endif 3833 3834 KMP_MB(); 3835 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 3836 3837 return gtid; 3838 } 3839 3840 #if KMP_NESTED_HOT_TEAMS 3841 static int __kmp_free_hot_teams(kmp_root_t *root, kmp_info_t *thr, int level, 3842 const int max_level) { 3843 int i, n, nth; 3844 kmp_hot_team_ptr_t *hot_teams = thr->th.th_hot_teams; 3845 if (!hot_teams || !hot_teams[level].hot_team) { 3846 return 0; 3847 } 3848 KMP_DEBUG_ASSERT(level < max_level); 3849 kmp_team_t *team = hot_teams[level].hot_team; 3850 nth = hot_teams[level].hot_team_nth; 3851 n = nth - 1; // master is not freed 3852 if (level < max_level - 1) { 3853 for (i = 0; i < nth; ++i) { 3854 kmp_info_t *th = team->t.t_threads[i]; 3855 n += __kmp_free_hot_teams(root, th, level + 1, max_level); 3856 if (i > 0 && th->th.th_hot_teams) { 3857 __kmp_free(th->th.th_hot_teams); 3858 th->th.th_hot_teams = NULL; 3859 } 3860 } 3861 } 3862 __kmp_free_team(root, team, NULL); 3863 return n; 3864 } 3865 #endif 3866 3867 // Resets a root thread and clear its root and hot teams. 3868 // Returns the number of __kmp_threads entries directly and indirectly freed. 3869 static int __kmp_reset_root(int gtid, kmp_root_t *root) { 3870 kmp_team_t *root_team = root->r.r_root_team; 3871 kmp_team_t *hot_team = root->r.r_hot_team; 3872 int n = hot_team->t.t_nproc; 3873 int i; 3874 3875 KMP_DEBUG_ASSERT(!root->r.r_active); 3876 3877 root->r.r_root_team = NULL; 3878 root->r.r_hot_team = NULL; 3879 // __kmp_free_team() does not free hot teams, so we have to clear r_hot_team 3880 // before call to __kmp_free_team(). 3881 __kmp_free_team(root, root_team USE_NESTED_HOT_ARG(NULL)); 3882 #if KMP_NESTED_HOT_TEAMS 3883 if (__kmp_hot_teams_max_level > 3884 0) { // need to free nested hot teams and their threads if any 3885 for (i = 0; i < hot_team->t.t_nproc; ++i) { 3886 kmp_info_t *th = hot_team->t.t_threads[i]; 3887 if (__kmp_hot_teams_max_level > 1) { 3888 n += __kmp_free_hot_teams(root, th, 1, __kmp_hot_teams_max_level); 3889 } 3890 if (th->th.th_hot_teams) { 3891 __kmp_free(th->th.th_hot_teams); 3892 th->th.th_hot_teams = NULL; 3893 } 3894 } 3895 } 3896 #endif 3897 __kmp_free_team(root, hot_team USE_NESTED_HOT_ARG(NULL)); 3898 3899 // Before we can reap the thread, we need to make certain that all other 3900 // threads in the teams that had this root as ancestor have stopped trying to 3901 // steal tasks. 3902 if (__kmp_tasking_mode != tskm_immediate_exec) { 3903 __kmp_wait_to_unref_task_teams(); 3904 } 3905 3906 #if KMP_OS_WINDOWS 3907 /* Close Handle of root duplicated in __kmp_create_worker (tr #62919) */ 3908 KA_TRACE( 3909 10, ("__kmp_reset_root: free handle, th = %p, handle = %" KMP_UINTPTR_SPEC 3910 "\n", 3911 (LPVOID) & (root->r.r_uber_thread->th), 3912 root->r.r_uber_thread->th.th_info.ds.ds_thread)); 3913 __kmp_free_handle(root->r.r_uber_thread->th.th_info.ds.ds_thread); 3914 #endif /* KMP_OS_WINDOWS */ 3915 3916 #if OMPT_SUPPORT 3917 ompt_data_t *task_data; 3918 ompt_data_t *parallel_data; 3919 __ompt_get_task_info_internal(0, NULL, &task_data, NULL, ¶llel_data, NULL); 3920 if (ompt_enabled.ompt_callback_implicit_task) { 3921 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 3922 ompt_scope_end, parallel_data, task_data, 0, 1, ompt_task_initial); 3923 } 3924 if (ompt_enabled.ompt_callback_thread_end) { 3925 ompt_callbacks.ompt_callback(ompt_callback_thread_end)( 3926 &(root->r.r_uber_thread->th.ompt_thread_info.thread_data)); 3927 } 3928 #endif 3929 3930 TCW_4(__kmp_nth, 3931 __kmp_nth - 1); // __kmp_reap_thread will decrement __kmp_all_nth. 3932 i = root->r.r_uber_thread->th.th_cg_roots->cg_nthreads--; 3933 KA_TRACE(100, ("__kmp_reset_root: Thread %p decrement cg_nthreads on node %p" 3934 " to %d\n", 3935 root->r.r_uber_thread, root->r.r_uber_thread->th.th_cg_roots, 3936 root->r.r_uber_thread->th.th_cg_roots->cg_nthreads)); 3937 if (i == 1) { 3938 // need to free contention group structure 3939 KMP_DEBUG_ASSERT(root->r.r_uber_thread == 3940 root->r.r_uber_thread->th.th_cg_roots->cg_root); 3941 KMP_DEBUG_ASSERT(root->r.r_uber_thread->th.th_cg_roots->up == NULL); 3942 __kmp_free(root->r.r_uber_thread->th.th_cg_roots); 3943 root->r.r_uber_thread->th.th_cg_roots = NULL; 3944 } 3945 __kmp_reap_thread(root->r.r_uber_thread, 1); 3946 3947 // We canot put root thread to __kmp_thread_pool, so we have to reap it 3948 // instead of freeing. 3949 root->r.r_uber_thread = NULL; 3950 /* mark root as no longer in use */ 3951 root->r.r_begin = FALSE; 3952 3953 return n; 3954 } 3955 3956 void __kmp_unregister_root_current_thread(int gtid) { 3957 KA_TRACE(1, ("__kmp_unregister_root_current_thread: enter T#%d\n", gtid)); 3958 /* this lock should be ok, since unregister_root_current_thread is never 3959 called during an abort, only during a normal close. furthermore, if you 3960 have the forkjoin lock, you should never try to get the initz lock */ 3961 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 3962 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 3963 KC_TRACE(10, ("__kmp_unregister_root_current_thread: already finished, " 3964 "exiting T#%d\n", 3965 gtid)); 3966 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 3967 return; 3968 } 3969 kmp_root_t *root = __kmp_root[gtid]; 3970 3971 KMP_DEBUG_ASSERT(__kmp_threads && __kmp_threads[gtid]); 3972 KMP_ASSERT(KMP_UBER_GTID(gtid)); 3973 KMP_ASSERT(root == __kmp_threads[gtid]->th.th_root); 3974 KMP_ASSERT(root->r.r_active == FALSE); 3975 3976 KMP_MB(); 3977 3978 kmp_info_t *thread = __kmp_threads[gtid]; 3979 kmp_team_t *team = thread->th.th_team; 3980 kmp_task_team_t *task_team = thread->th.th_task_team; 3981 3982 // we need to wait for the proxy tasks before finishing the thread 3983 if (task_team != NULL && task_team->tt.tt_found_proxy_tasks) { 3984 #if OMPT_SUPPORT 3985 // the runtime is shutting down so we won't report any events 3986 thread->th.ompt_thread_info.state = ompt_state_undefined; 3987 #endif 3988 __kmp_task_team_wait(thread, team USE_ITT_BUILD_ARG(NULL)); 3989 } 3990 3991 __kmp_reset_root(gtid, root); 3992 3993 KMP_MB(); 3994 KC_TRACE(10, 3995 ("__kmp_unregister_root_current_thread: T#%d unregistered\n", gtid)); 3996 3997 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 3998 } 3999 4000 #if KMP_OS_WINDOWS 4001 /* __kmp_forkjoin_lock must be already held 4002 Unregisters a root thread that is not the current thread. Returns the number 4003 of __kmp_threads entries freed as a result. */ 4004 static int __kmp_unregister_root_other_thread(int gtid) { 4005 kmp_root_t *root = __kmp_root[gtid]; 4006 int r; 4007 4008 KA_TRACE(1, ("__kmp_unregister_root_other_thread: enter T#%d\n", gtid)); 4009 KMP_DEBUG_ASSERT(__kmp_threads && __kmp_threads[gtid]); 4010 KMP_ASSERT(KMP_UBER_GTID(gtid)); 4011 KMP_ASSERT(root == __kmp_threads[gtid]->th.th_root); 4012 KMP_ASSERT(root->r.r_active == FALSE); 4013 4014 r = __kmp_reset_root(gtid, root); 4015 KC_TRACE(10, 4016 ("__kmp_unregister_root_other_thread: T#%d unregistered\n", gtid)); 4017 return r; 4018 } 4019 #endif 4020 4021 #if KMP_DEBUG 4022 void __kmp_task_info() { 4023 4024 kmp_int32 gtid = __kmp_entry_gtid(); 4025 kmp_int32 tid = __kmp_tid_from_gtid(gtid); 4026 kmp_info_t *this_thr = __kmp_threads[gtid]; 4027 kmp_team_t *steam = this_thr->th.th_serial_team; 4028 kmp_team_t *team = this_thr->th.th_team; 4029 4030 __kmp_printf( 4031 "__kmp_task_info: gtid=%d tid=%d t_thread=%p team=%p steam=%p curtask=%p " 4032 "ptask=%p\n", 4033 gtid, tid, this_thr, team, steam, this_thr->th.th_current_task, 4034 team->t.t_implicit_task_taskdata[tid].td_parent); 4035 } 4036 #endif // KMP_DEBUG 4037 4038 /* TODO optimize with one big memclr, take out what isn't needed, split 4039 responsibility to workers as much as possible, and delay initialization of 4040 features as much as possible */ 4041 static void __kmp_initialize_info(kmp_info_t *this_thr, kmp_team_t *team, 4042 int tid, int gtid) { 4043 /* this_thr->th.th_info.ds.ds_gtid is setup in 4044 kmp_allocate_thread/create_worker. 4045 this_thr->th.th_serial_team is setup in __kmp_allocate_thread */ 4046 kmp_info_t *master = team->t.t_threads[0]; 4047 KMP_DEBUG_ASSERT(this_thr != NULL); 4048 KMP_DEBUG_ASSERT(this_thr->th.th_serial_team); 4049 KMP_DEBUG_ASSERT(team); 4050 KMP_DEBUG_ASSERT(team->t.t_threads); 4051 KMP_DEBUG_ASSERT(team->t.t_dispatch); 4052 KMP_DEBUG_ASSERT(master); 4053 KMP_DEBUG_ASSERT(master->th.th_root); 4054 4055 KMP_MB(); 4056 4057 TCW_SYNC_PTR(this_thr->th.th_team, team); 4058 4059 this_thr->th.th_info.ds.ds_tid = tid; 4060 this_thr->th.th_set_nproc = 0; 4061 if (__kmp_tasking_mode != tskm_immediate_exec) 4062 // When tasking is possible, threads are not safe to reap until they are 4063 // done tasking; this will be set when tasking code is exited in wait 4064 this_thr->th.th_reap_state = KMP_NOT_SAFE_TO_REAP; 4065 else // no tasking --> always safe to reap 4066 this_thr->th.th_reap_state = KMP_SAFE_TO_REAP; 4067 this_thr->th.th_set_proc_bind = proc_bind_default; 4068 #if KMP_AFFINITY_SUPPORTED 4069 this_thr->th.th_new_place = this_thr->th.th_current_place; 4070 #endif 4071 this_thr->th.th_root = master->th.th_root; 4072 4073 /* setup the thread's cache of the team structure */ 4074 this_thr->th.th_team_nproc = team->t.t_nproc; 4075 this_thr->th.th_team_master = master; 4076 this_thr->th.th_team_serialized = team->t.t_serialized; 4077 TCW_PTR(this_thr->th.th_sleep_loc, NULL); 4078 4079 KMP_DEBUG_ASSERT(team->t.t_implicit_task_taskdata); 4080 4081 KF_TRACE(10, ("__kmp_initialize_info1: T#%d:%d this_thread=%p curtask=%p\n", 4082 tid, gtid, this_thr, this_thr->th.th_current_task)); 4083 4084 __kmp_init_implicit_task(this_thr->th.th_team_master->th.th_ident, this_thr, 4085 team, tid, TRUE); 4086 4087 KF_TRACE(10, ("__kmp_initialize_info2: T#%d:%d this_thread=%p curtask=%p\n", 4088 tid, gtid, this_thr, this_thr->th.th_current_task)); 4089 // TODO: Initialize ICVs from parent; GEH - isn't that already done in 4090 // __kmp_initialize_team()? 4091 4092 /* TODO no worksharing in speculative threads */ 4093 this_thr->th.th_dispatch = &team->t.t_dispatch[tid]; 4094 4095 this_thr->th.th_local.this_construct = 0; 4096 4097 if (!this_thr->th.th_pri_common) { 4098 this_thr->th.th_pri_common = 4099 (struct common_table *)__kmp_allocate(sizeof(struct common_table)); 4100 if (__kmp_storage_map) { 4101 __kmp_print_storage_map_gtid( 4102 gtid, this_thr->th.th_pri_common, this_thr->th.th_pri_common + 1, 4103 sizeof(struct common_table), "th_%d.th_pri_common\n", gtid); 4104 } 4105 this_thr->th.th_pri_head = NULL; 4106 } 4107 4108 if (this_thr != master && // Master's CG root is initialized elsewhere 4109 this_thr->th.th_cg_roots != master->th.th_cg_roots) { // CG root not set 4110 // Make new thread's CG root same as master's 4111 KMP_DEBUG_ASSERT(master->th.th_cg_roots); 4112 kmp_cg_root_t *tmp = this_thr->th.th_cg_roots; 4113 if (tmp) { 4114 // worker changes CG, need to check if old CG should be freed 4115 int i = tmp->cg_nthreads--; 4116 KA_TRACE(100, ("__kmp_initialize_info: Thread %p decrement cg_nthreads" 4117 " on node %p of thread %p to %d\n", 4118 this_thr, tmp, tmp->cg_root, tmp->cg_nthreads)); 4119 if (i == 1) { 4120 __kmp_free(tmp); // last thread left CG --> free it 4121 } 4122 } 4123 this_thr->th.th_cg_roots = master->th.th_cg_roots; 4124 // Increment new thread's CG root's counter to add the new thread 4125 this_thr->th.th_cg_roots->cg_nthreads++; 4126 KA_TRACE(100, ("__kmp_initialize_info: Thread %p increment cg_nthreads on" 4127 " node %p of thread %p to %d\n", 4128 this_thr, this_thr->th.th_cg_roots, 4129 this_thr->th.th_cg_roots->cg_root, 4130 this_thr->th.th_cg_roots->cg_nthreads)); 4131 this_thr->th.th_current_task->td_icvs.thread_limit = 4132 this_thr->th.th_cg_roots->cg_thread_limit; 4133 } 4134 4135 /* Initialize dynamic dispatch */ 4136 { 4137 volatile kmp_disp_t *dispatch = this_thr->th.th_dispatch; 4138 // Use team max_nproc since this will never change for the team. 4139 size_t disp_size = 4140 sizeof(dispatch_private_info_t) * 4141 (team->t.t_max_nproc == 1 ? 1 : __kmp_dispatch_num_buffers); 4142 KD_TRACE(10, ("__kmp_initialize_info: T#%d max_nproc: %d\n", gtid, 4143 team->t.t_max_nproc)); 4144 KMP_ASSERT(dispatch); 4145 KMP_DEBUG_ASSERT(team->t.t_dispatch); 4146 KMP_DEBUG_ASSERT(dispatch == &team->t.t_dispatch[tid]); 4147 4148 dispatch->th_disp_index = 0; 4149 dispatch->th_doacross_buf_idx = 0; 4150 if (!dispatch->th_disp_buffer) { 4151 dispatch->th_disp_buffer = 4152 (dispatch_private_info_t *)__kmp_allocate(disp_size); 4153 4154 if (__kmp_storage_map) { 4155 __kmp_print_storage_map_gtid( 4156 gtid, &dispatch->th_disp_buffer[0], 4157 &dispatch->th_disp_buffer[team->t.t_max_nproc == 1 4158 ? 1 4159 : __kmp_dispatch_num_buffers], 4160 disp_size, "th_%d.th_dispatch.th_disp_buffer " 4161 "(team_%d.t_dispatch[%d].th_disp_buffer)", 4162 gtid, team->t.t_id, gtid); 4163 } 4164 } else { 4165 memset(&dispatch->th_disp_buffer[0], '\0', disp_size); 4166 } 4167 4168 dispatch->th_dispatch_pr_current = 0; 4169 dispatch->th_dispatch_sh_current = 0; 4170 4171 dispatch->th_deo_fcn = 0; /* ORDERED */ 4172 dispatch->th_dxo_fcn = 0; /* END ORDERED */ 4173 } 4174 4175 this_thr->th.th_next_pool = NULL; 4176 4177 if (!this_thr->th.th_task_state_memo_stack) { 4178 size_t i; 4179 this_thr->th.th_task_state_memo_stack = 4180 (kmp_uint8 *)__kmp_allocate(4 * sizeof(kmp_uint8)); 4181 this_thr->th.th_task_state_top = 0; 4182 this_thr->th.th_task_state_stack_sz = 4; 4183 for (i = 0; i < this_thr->th.th_task_state_stack_sz; 4184 ++i) // zero init the stack 4185 this_thr->th.th_task_state_memo_stack[i] = 0; 4186 } 4187 4188 KMP_DEBUG_ASSERT(!this_thr->th.th_spin_here); 4189 KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0); 4190 4191 KMP_MB(); 4192 } 4193 4194 /* allocate a new thread for the requesting team. this is only called from 4195 within a forkjoin critical section. we will first try to get an available 4196 thread from the thread pool. if none is available, we will fork a new one 4197 assuming we are able to create a new one. this should be assured, as the 4198 caller should check on this first. */ 4199 kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team, 4200 int new_tid) { 4201 kmp_team_t *serial_team; 4202 kmp_info_t *new_thr; 4203 int new_gtid; 4204 4205 KA_TRACE(20, ("__kmp_allocate_thread: T#%d\n", __kmp_get_gtid())); 4206 KMP_DEBUG_ASSERT(root && team); 4207 #if !KMP_NESTED_HOT_TEAMS 4208 KMP_DEBUG_ASSERT(KMP_MASTER_GTID(__kmp_get_gtid())); 4209 #endif 4210 KMP_MB(); 4211 4212 /* first, try to get one from the thread pool */ 4213 if (__kmp_thread_pool) { 4214 new_thr = CCAST(kmp_info_t *, __kmp_thread_pool); 4215 __kmp_thread_pool = (volatile kmp_info_t *)new_thr->th.th_next_pool; 4216 if (new_thr == __kmp_thread_pool_insert_pt) { 4217 __kmp_thread_pool_insert_pt = NULL; 4218 } 4219 TCW_4(new_thr->th.th_in_pool, FALSE); 4220 __kmp_suspend_initialize_thread(new_thr); 4221 __kmp_lock_suspend_mx(new_thr); 4222 if (new_thr->th.th_active_in_pool == TRUE) { 4223 KMP_DEBUG_ASSERT(new_thr->th.th_active == TRUE); 4224 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 4225 new_thr->th.th_active_in_pool = FALSE; 4226 } 4227 __kmp_unlock_suspend_mx(new_thr); 4228 4229 KA_TRACE(20, ("__kmp_allocate_thread: T#%d using thread T#%d\n", 4230 __kmp_get_gtid(), new_thr->th.th_info.ds.ds_gtid)); 4231 KMP_ASSERT(!new_thr->th.th_team); 4232 KMP_DEBUG_ASSERT(__kmp_nth < __kmp_threads_capacity); 4233 4234 /* setup the thread structure */ 4235 __kmp_initialize_info(new_thr, team, new_tid, 4236 new_thr->th.th_info.ds.ds_gtid); 4237 KMP_DEBUG_ASSERT(new_thr->th.th_serial_team); 4238 4239 TCW_4(__kmp_nth, __kmp_nth + 1); 4240 4241 new_thr->th.th_task_state = 0; 4242 new_thr->th.th_task_state_top = 0; 4243 new_thr->th.th_task_state_stack_sz = 4; 4244 4245 #ifdef KMP_ADJUST_BLOCKTIME 4246 /* Adjust blocktime back to zero if necessary */ 4247 /* Middle initialization might not have occurred yet */ 4248 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 4249 if (__kmp_nth > __kmp_avail_proc) { 4250 __kmp_zero_bt = TRUE; 4251 } 4252 } 4253 #endif /* KMP_ADJUST_BLOCKTIME */ 4254 4255 #if KMP_DEBUG 4256 // If thread entered pool via __kmp_free_thread, wait_flag should != 4257 // KMP_BARRIER_PARENT_FLAG. 4258 int b; 4259 kmp_balign_t *balign = new_thr->th.th_bar; 4260 for (b = 0; b < bs_last_barrier; ++b) 4261 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 4262 #endif 4263 4264 KF_TRACE(10, ("__kmp_allocate_thread: T#%d using thread %p T#%d\n", 4265 __kmp_get_gtid(), new_thr, new_thr->th.th_info.ds.ds_gtid)); 4266 4267 KMP_MB(); 4268 return new_thr; 4269 } 4270 4271 /* no, well fork a new one */ 4272 KMP_ASSERT(__kmp_nth == __kmp_all_nth); 4273 KMP_ASSERT(__kmp_all_nth < __kmp_threads_capacity); 4274 4275 #if KMP_USE_MONITOR 4276 // If this is the first worker thread the RTL is creating, then also 4277 // launch the monitor thread. We try to do this as early as possible. 4278 if (!TCR_4(__kmp_init_monitor)) { 4279 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock); 4280 if (!TCR_4(__kmp_init_monitor)) { 4281 KF_TRACE(10, ("before __kmp_create_monitor\n")); 4282 TCW_4(__kmp_init_monitor, 1); 4283 __kmp_create_monitor(&__kmp_monitor); 4284 KF_TRACE(10, ("after __kmp_create_monitor\n")); 4285 #if KMP_OS_WINDOWS 4286 // AC: wait until monitor has started. This is a fix for CQ232808. 4287 // The reason is that if the library is loaded/unloaded in a loop with 4288 // small (parallel) work in between, then there is high probability that 4289 // monitor thread started after the library shutdown. At shutdown it is 4290 // too late to cope with the problem, because when the master is in 4291 // DllMain (process detach) the monitor has no chances to start (it is 4292 // blocked), and master has no means to inform the monitor that the 4293 // library has gone, because all the memory which the monitor can access 4294 // is going to be released/reset. 4295 while (TCR_4(__kmp_init_monitor) < 2) { 4296 KMP_YIELD(TRUE); 4297 } 4298 KF_TRACE(10, ("after monitor thread has started\n")); 4299 #endif 4300 } 4301 __kmp_release_bootstrap_lock(&__kmp_monitor_lock); 4302 } 4303 #endif 4304 4305 KMP_MB(); 4306 for (new_gtid = 1; TCR_PTR(__kmp_threads[new_gtid]) != NULL; ++new_gtid) { 4307 KMP_DEBUG_ASSERT(new_gtid < __kmp_threads_capacity); 4308 } 4309 4310 /* allocate space for it. */ 4311 new_thr = (kmp_info_t *)__kmp_allocate(sizeof(kmp_info_t)); 4312 4313 TCW_SYNC_PTR(__kmp_threads[new_gtid], new_thr); 4314 4315 #if USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG 4316 // suppress race conditions detection on synchronization flags in debug mode 4317 // this helps to analyze library internals eliminating false positives 4318 __itt_suppress_mark_range( 4319 __itt_suppress_range, __itt_suppress_threading_errors, 4320 &new_thr->th.th_sleep_loc, sizeof(new_thr->th.th_sleep_loc)); 4321 __itt_suppress_mark_range( 4322 __itt_suppress_range, __itt_suppress_threading_errors, 4323 &new_thr->th.th_reap_state, sizeof(new_thr->th.th_reap_state)); 4324 #if KMP_OS_WINDOWS 4325 __itt_suppress_mark_range( 4326 __itt_suppress_range, __itt_suppress_threading_errors, 4327 &new_thr->th.th_suspend_init, sizeof(new_thr->th.th_suspend_init)); 4328 #else 4329 __itt_suppress_mark_range(__itt_suppress_range, 4330 __itt_suppress_threading_errors, 4331 &new_thr->th.th_suspend_init_count, 4332 sizeof(new_thr->th.th_suspend_init_count)); 4333 #endif 4334 // TODO: check if we need to also suppress b_arrived flags 4335 __itt_suppress_mark_range(__itt_suppress_range, 4336 __itt_suppress_threading_errors, 4337 CCAST(kmp_uint64 *, &new_thr->th.th_bar[0].bb.b_go), 4338 sizeof(new_thr->th.th_bar[0].bb.b_go)); 4339 __itt_suppress_mark_range(__itt_suppress_range, 4340 __itt_suppress_threading_errors, 4341 CCAST(kmp_uint64 *, &new_thr->th.th_bar[1].bb.b_go), 4342 sizeof(new_thr->th.th_bar[1].bb.b_go)); 4343 __itt_suppress_mark_range(__itt_suppress_range, 4344 __itt_suppress_threading_errors, 4345 CCAST(kmp_uint64 *, &new_thr->th.th_bar[2].bb.b_go), 4346 sizeof(new_thr->th.th_bar[2].bb.b_go)); 4347 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG */ 4348 if (__kmp_storage_map) { 4349 __kmp_print_thread_storage_map(new_thr, new_gtid); 4350 } 4351 4352 // add the reserve serialized team, initialized from the team's master thread 4353 { 4354 kmp_internal_control_t r_icvs = __kmp_get_x_global_icvs(team); 4355 KF_TRACE(10, ("__kmp_allocate_thread: before th_serial/serial_team\n")); 4356 new_thr->th.th_serial_team = serial_team = 4357 (kmp_team_t *)__kmp_allocate_team(root, 1, 1, 4358 #if OMPT_SUPPORT 4359 ompt_data_none, // root parallel id 4360 #endif 4361 proc_bind_default, &r_icvs, 4362 0 USE_NESTED_HOT_ARG(NULL)); 4363 } 4364 KMP_ASSERT(serial_team); 4365 serial_team->t.t_serialized = 0; // AC: the team created in reserve, not for 4366 // execution (it is unused for now). 4367 serial_team->t.t_threads[0] = new_thr; 4368 KF_TRACE(10, 4369 ("__kmp_allocate_thread: after th_serial/serial_team : new_thr=%p\n", 4370 new_thr)); 4371 4372 /* setup the thread structures */ 4373 __kmp_initialize_info(new_thr, team, new_tid, new_gtid); 4374 4375 #if USE_FAST_MEMORY 4376 __kmp_initialize_fast_memory(new_thr); 4377 #endif /* USE_FAST_MEMORY */ 4378 4379 #if KMP_USE_BGET 4380 KMP_DEBUG_ASSERT(new_thr->th.th_local.bget_data == NULL); 4381 __kmp_initialize_bget(new_thr); 4382 #endif 4383 4384 __kmp_init_random(new_thr); // Initialize random number generator 4385 4386 /* Initialize these only once when thread is grabbed for a team allocation */ 4387 KA_TRACE(20, 4388 ("__kmp_allocate_thread: T#%d init go fork=%u, plain=%u\n", 4389 __kmp_get_gtid(), KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 4390 4391 int b; 4392 kmp_balign_t *balign = new_thr->th.th_bar; 4393 for (b = 0; b < bs_last_barrier; ++b) { 4394 balign[b].bb.b_go = KMP_INIT_BARRIER_STATE; 4395 balign[b].bb.team = NULL; 4396 balign[b].bb.wait_flag = KMP_BARRIER_NOT_WAITING; 4397 balign[b].bb.use_oncore_barrier = 0; 4398 } 4399 4400 new_thr->th.th_spin_here = FALSE; 4401 new_thr->th.th_next_waiting = 0; 4402 #if KMP_OS_UNIX 4403 new_thr->th.th_blocking = false; 4404 #endif 4405 4406 #if KMP_AFFINITY_SUPPORTED 4407 new_thr->th.th_current_place = KMP_PLACE_UNDEFINED; 4408 new_thr->th.th_new_place = KMP_PLACE_UNDEFINED; 4409 new_thr->th.th_first_place = KMP_PLACE_UNDEFINED; 4410 new_thr->th.th_last_place = KMP_PLACE_UNDEFINED; 4411 #endif 4412 new_thr->th.th_def_allocator = __kmp_def_allocator; 4413 new_thr->th.th_prev_level = 0; 4414 new_thr->th.th_prev_num_threads = 1; 4415 4416 TCW_4(new_thr->th.th_in_pool, FALSE); 4417 new_thr->th.th_active_in_pool = FALSE; 4418 TCW_4(new_thr->th.th_active, TRUE); 4419 4420 /* adjust the global counters */ 4421 __kmp_all_nth++; 4422 __kmp_nth++; 4423 4424 // if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) for low 4425 // numbers of procs, and method #2 (keyed API call) for higher numbers. 4426 if (__kmp_adjust_gtid_mode) { 4427 if (__kmp_all_nth >= __kmp_tls_gtid_min) { 4428 if (TCR_4(__kmp_gtid_mode) != 2) { 4429 TCW_4(__kmp_gtid_mode, 2); 4430 } 4431 } else { 4432 if (TCR_4(__kmp_gtid_mode) != 1) { 4433 TCW_4(__kmp_gtid_mode, 1); 4434 } 4435 } 4436 } 4437 4438 #ifdef KMP_ADJUST_BLOCKTIME 4439 /* Adjust blocktime back to zero if necessary */ 4440 /* Middle initialization might not have occurred yet */ 4441 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 4442 if (__kmp_nth > __kmp_avail_proc) { 4443 __kmp_zero_bt = TRUE; 4444 } 4445 } 4446 #endif /* KMP_ADJUST_BLOCKTIME */ 4447 4448 /* actually fork it and create the new worker thread */ 4449 KF_TRACE( 4450 10, ("__kmp_allocate_thread: before __kmp_create_worker: %p\n", new_thr)); 4451 __kmp_create_worker(new_gtid, new_thr, __kmp_stksize); 4452 KF_TRACE(10, 4453 ("__kmp_allocate_thread: after __kmp_create_worker: %p\n", new_thr)); 4454 4455 KA_TRACE(20, ("__kmp_allocate_thread: T#%d forked T#%d\n", __kmp_get_gtid(), 4456 new_gtid)); 4457 KMP_MB(); 4458 return new_thr; 4459 } 4460 4461 /* Reinitialize team for reuse. 4462 The hot team code calls this case at every fork barrier, so EPCC barrier 4463 test are extremely sensitive to changes in it, esp. writes to the team 4464 struct, which cause a cache invalidation in all threads. 4465 IF YOU TOUCH THIS ROUTINE, RUN EPCC C SYNCBENCH ON A BIG-IRON MACHINE!!! */ 4466 static void __kmp_reinitialize_team(kmp_team_t *team, 4467 kmp_internal_control_t *new_icvs, 4468 ident_t *loc) { 4469 KF_TRACE(10, ("__kmp_reinitialize_team: enter this_thread=%p team=%p\n", 4470 team->t.t_threads[0], team)); 4471 KMP_DEBUG_ASSERT(team && new_icvs); 4472 KMP_DEBUG_ASSERT((!TCR_4(__kmp_init_parallel)) || new_icvs->nproc); 4473 KMP_CHECK_UPDATE(team->t.t_ident, loc); 4474 4475 KMP_CHECK_UPDATE(team->t.t_id, KMP_GEN_TEAM_ID()); 4476 // Copy ICVs to the master thread's implicit taskdata 4477 __kmp_init_implicit_task(loc, team->t.t_threads[0], team, 0, FALSE); 4478 copy_icvs(&team->t.t_implicit_task_taskdata[0].td_icvs, new_icvs); 4479 4480 KF_TRACE(10, ("__kmp_reinitialize_team: exit this_thread=%p team=%p\n", 4481 team->t.t_threads[0], team)); 4482 } 4483 4484 /* Initialize the team data structure. 4485 This assumes the t_threads and t_max_nproc are already set. 4486 Also, we don't touch the arguments */ 4487 static void __kmp_initialize_team(kmp_team_t *team, int new_nproc, 4488 kmp_internal_control_t *new_icvs, 4489 ident_t *loc) { 4490 KF_TRACE(10, ("__kmp_initialize_team: enter: team=%p\n", team)); 4491 4492 /* verify */ 4493 KMP_DEBUG_ASSERT(team); 4494 KMP_DEBUG_ASSERT(new_nproc <= team->t.t_max_nproc); 4495 KMP_DEBUG_ASSERT(team->t.t_threads); 4496 KMP_MB(); 4497 4498 team->t.t_master_tid = 0; /* not needed */ 4499 /* team->t.t_master_bar; not needed */ 4500 team->t.t_serialized = new_nproc > 1 ? 0 : 1; 4501 team->t.t_nproc = new_nproc; 4502 4503 /* team->t.t_parent = NULL; TODO not needed & would mess up hot team */ 4504 team->t.t_next_pool = NULL; 4505 /* memset( team->t.t_threads, 0, sizeof(kmp_info_t*)*new_nproc ); would mess 4506 * up hot team */ 4507 4508 TCW_SYNC_PTR(team->t.t_pkfn, NULL); /* not needed */ 4509 team->t.t_invoke = NULL; /* not needed */ 4510 4511 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 4512 team->t.t_sched.sched = new_icvs->sched.sched; 4513 4514 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4515 team->t.t_fp_control_saved = FALSE; /* not needed */ 4516 team->t.t_x87_fpu_control_word = 0; /* not needed */ 4517 team->t.t_mxcsr = 0; /* not needed */ 4518 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4519 4520 team->t.t_construct = 0; 4521 4522 team->t.t_ordered.dt.t_value = 0; 4523 team->t.t_master_active = FALSE; 4524 4525 #ifdef KMP_DEBUG 4526 team->t.t_copypriv_data = NULL; /* not necessary, but nice for debugging */ 4527 #endif 4528 #if KMP_OS_WINDOWS 4529 team->t.t_copyin_counter = 0; /* for barrier-free copyin implementation */ 4530 #endif 4531 4532 team->t.t_control_stack_top = NULL; 4533 4534 __kmp_reinitialize_team(team, new_icvs, loc); 4535 4536 KMP_MB(); 4537 KF_TRACE(10, ("__kmp_initialize_team: exit: team=%p\n", team)); 4538 } 4539 4540 #if (KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED 4541 /* Sets full mask for thread and returns old mask, no changes to structures. */ 4542 static void 4543 __kmp_set_thread_affinity_mask_full_tmp(kmp_affin_mask_t *old_mask) { 4544 if (KMP_AFFINITY_CAPABLE()) { 4545 int status; 4546 if (old_mask != NULL) { 4547 status = __kmp_get_system_affinity(old_mask, TRUE); 4548 int error = errno; 4549 if (status != 0) { 4550 __kmp_fatal(KMP_MSG(ChangeThreadAffMaskError), KMP_ERR(error), 4551 __kmp_msg_null); 4552 } 4553 } 4554 __kmp_set_system_affinity(__kmp_affin_fullMask, TRUE); 4555 } 4556 } 4557 #endif 4558 4559 #if KMP_AFFINITY_SUPPORTED 4560 4561 // __kmp_partition_places() is the heart of the OpenMP 4.0 affinity mechanism. 4562 // It calculates the worker + master thread's partition based upon the parent 4563 // thread's partition, and binds each worker to a thread in their partition. 4564 // The master thread's partition should already include its current binding. 4565 static void __kmp_partition_places(kmp_team_t *team, int update_master_only) { 4566 // Copy the master thread's place partition to the team struct 4567 kmp_info_t *master_th = team->t.t_threads[0]; 4568 KMP_DEBUG_ASSERT(master_th != NULL); 4569 kmp_proc_bind_t proc_bind = team->t.t_proc_bind; 4570 int first_place = master_th->th.th_first_place; 4571 int last_place = master_th->th.th_last_place; 4572 int masters_place = master_th->th.th_current_place; 4573 team->t.t_first_place = first_place; 4574 team->t.t_last_place = last_place; 4575 4576 KA_TRACE(20, ("__kmp_partition_places: enter: proc_bind = %d T#%d(%d:0) " 4577 "bound to place %d partition = [%d,%d]\n", 4578 proc_bind, __kmp_gtid_from_thread(team->t.t_threads[0]), 4579 team->t.t_id, masters_place, first_place, last_place)); 4580 4581 switch (proc_bind) { 4582 4583 case proc_bind_default: 4584 // serial teams might have the proc_bind policy set to proc_bind_default. It 4585 // doesn't matter, as we don't rebind master thread for any proc_bind policy 4586 KMP_DEBUG_ASSERT(team->t.t_nproc == 1); 4587 break; 4588 4589 case proc_bind_master: { 4590 int f; 4591 int n_th = team->t.t_nproc; 4592 for (f = 1; f < n_th; f++) { 4593 kmp_info_t *th = team->t.t_threads[f]; 4594 KMP_DEBUG_ASSERT(th != NULL); 4595 th->th.th_first_place = first_place; 4596 th->th.th_last_place = last_place; 4597 th->th.th_new_place = masters_place; 4598 if (__kmp_display_affinity && masters_place != th->th.th_current_place && 4599 team->t.t_display_affinity != 1) { 4600 team->t.t_display_affinity = 1; 4601 } 4602 4603 KA_TRACE(100, ("__kmp_partition_places: master: T#%d(%d:%d) place %d " 4604 "partition = [%d,%d]\n", 4605 __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, 4606 f, masters_place, first_place, last_place)); 4607 } 4608 } break; 4609 4610 case proc_bind_close: { 4611 int f; 4612 int n_th = team->t.t_nproc; 4613 int n_places; 4614 if (first_place <= last_place) { 4615 n_places = last_place - first_place + 1; 4616 } else { 4617 n_places = __kmp_affinity_num_masks - first_place + last_place + 1; 4618 } 4619 if (n_th <= n_places) { 4620 int place = masters_place; 4621 for (f = 1; f < n_th; f++) { 4622 kmp_info_t *th = team->t.t_threads[f]; 4623 KMP_DEBUG_ASSERT(th != NULL); 4624 4625 if (place == last_place) { 4626 place = first_place; 4627 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4628 place = 0; 4629 } else { 4630 place++; 4631 } 4632 th->th.th_first_place = first_place; 4633 th->th.th_last_place = last_place; 4634 th->th.th_new_place = place; 4635 if (__kmp_display_affinity && place != th->th.th_current_place && 4636 team->t.t_display_affinity != 1) { 4637 team->t.t_display_affinity = 1; 4638 } 4639 4640 KA_TRACE(100, ("__kmp_partition_places: close: T#%d(%d:%d) place %d " 4641 "partition = [%d,%d]\n", 4642 __kmp_gtid_from_thread(team->t.t_threads[f]), 4643 team->t.t_id, f, place, first_place, last_place)); 4644 } 4645 } else { 4646 int S, rem, gap, s_count; 4647 S = n_th / n_places; 4648 s_count = 0; 4649 rem = n_th - (S * n_places); 4650 gap = rem > 0 ? n_places / rem : n_places; 4651 int place = masters_place; 4652 int gap_ct = gap; 4653 for (f = 0; f < n_th; f++) { 4654 kmp_info_t *th = team->t.t_threads[f]; 4655 KMP_DEBUG_ASSERT(th != NULL); 4656 4657 th->th.th_first_place = first_place; 4658 th->th.th_last_place = last_place; 4659 th->th.th_new_place = place; 4660 if (__kmp_display_affinity && place != th->th.th_current_place && 4661 team->t.t_display_affinity != 1) { 4662 team->t.t_display_affinity = 1; 4663 } 4664 s_count++; 4665 4666 if ((s_count == S) && rem && (gap_ct == gap)) { 4667 // do nothing, add an extra thread to place on next iteration 4668 } else if ((s_count == S + 1) && rem && (gap_ct == gap)) { 4669 // we added an extra thread to this place; move to next place 4670 if (place == last_place) { 4671 place = first_place; 4672 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4673 place = 0; 4674 } else { 4675 place++; 4676 } 4677 s_count = 0; 4678 gap_ct = 1; 4679 rem--; 4680 } else if (s_count == S) { // place full; don't add extra 4681 if (place == last_place) { 4682 place = first_place; 4683 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4684 place = 0; 4685 } else { 4686 place++; 4687 } 4688 gap_ct++; 4689 s_count = 0; 4690 } 4691 4692 KA_TRACE(100, 4693 ("__kmp_partition_places: close: T#%d(%d:%d) place %d " 4694 "partition = [%d,%d]\n", 4695 __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, f, 4696 th->th.th_new_place, first_place, last_place)); 4697 } 4698 KMP_DEBUG_ASSERT(place == masters_place); 4699 } 4700 } break; 4701 4702 case proc_bind_spread: { 4703 int f; 4704 int n_th = team->t.t_nproc; 4705 int n_places; 4706 int thidx; 4707 if (first_place <= last_place) { 4708 n_places = last_place - first_place + 1; 4709 } else { 4710 n_places = __kmp_affinity_num_masks - first_place + last_place + 1; 4711 } 4712 if (n_th <= n_places) { 4713 int place = -1; 4714 4715 if (n_places != static_cast<int>(__kmp_affinity_num_masks)) { 4716 int S = n_places / n_th; 4717 int s_count, rem, gap, gap_ct; 4718 4719 place = masters_place; 4720 rem = n_places - n_th * S; 4721 gap = rem ? n_th / rem : 1; 4722 gap_ct = gap; 4723 thidx = n_th; 4724 if (update_master_only == 1) 4725 thidx = 1; 4726 for (f = 0; f < thidx; f++) { 4727 kmp_info_t *th = team->t.t_threads[f]; 4728 KMP_DEBUG_ASSERT(th != NULL); 4729 4730 th->th.th_first_place = place; 4731 th->th.th_new_place = place; 4732 if (__kmp_display_affinity && place != th->th.th_current_place && 4733 team->t.t_display_affinity != 1) { 4734 team->t.t_display_affinity = 1; 4735 } 4736 s_count = 1; 4737 while (s_count < S) { 4738 if (place == last_place) { 4739 place = first_place; 4740 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4741 place = 0; 4742 } else { 4743 place++; 4744 } 4745 s_count++; 4746 } 4747 if (rem && (gap_ct == gap)) { 4748 if (place == last_place) { 4749 place = first_place; 4750 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4751 place = 0; 4752 } else { 4753 place++; 4754 } 4755 rem--; 4756 gap_ct = 0; 4757 } 4758 th->th.th_last_place = place; 4759 gap_ct++; 4760 4761 if (place == last_place) { 4762 place = first_place; 4763 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4764 place = 0; 4765 } else { 4766 place++; 4767 } 4768 4769 KA_TRACE(100, 4770 ("__kmp_partition_places: spread: T#%d(%d:%d) place %d " 4771 "partition = [%d,%d], __kmp_affinity_num_masks: %u\n", 4772 __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, 4773 f, th->th.th_new_place, th->th.th_first_place, 4774 th->th.th_last_place, __kmp_affinity_num_masks)); 4775 } 4776 } else { 4777 /* Having uniform space of available computation places I can create 4778 T partitions of round(P/T) size and put threads into the first 4779 place of each partition. */ 4780 double current = static_cast<double>(masters_place); 4781 double spacing = 4782 (static_cast<double>(n_places + 1) / static_cast<double>(n_th)); 4783 int first, last; 4784 kmp_info_t *th; 4785 4786 thidx = n_th + 1; 4787 if (update_master_only == 1) 4788 thidx = 1; 4789 for (f = 0; f < thidx; f++) { 4790 first = static_cast<int>(current); 4791 last = static_cast<int>(current + spacing) - 1; 4792 KMP_DEBUG_ASSERT(last >= first); 4793 if (first >= n_places) { 4794 if (masters_place) { 4795 first -= n_places; 4796 last -= n_places; 4797 if (first == (masters_place + 1)) { 4798 KMP_DEBUG_ASSERT(f == n_th); 4799 first--; 4800 } 4801 if (last == masters_place) { 4802 KMP_DEBUG_ASSERT(f == (n_th - 1)); 4803 last--; 4804 } 4805 } else { 4806 KMP_DEBUG_ASSERT(f == n_th); 4807 first = 0; 4808 last = 0; 4809 } 4810 } 4811 if (last >= n_places) { 4812 last = (n_places - 1); 4813 } 4814 place = first; 4815 current += spacing; 4816 if (f < n_th) { 4817 KMP_DEBUG_ASSERT(0 <= first); 4818 KMP_DEBUG_ASSERT(n_places > first); 4819 KMP_DEBUG_ASSERT(0 <= last); 4820 KMP_DEBUG_ASSERT(n_places > last); 4821 KMP_DEBUG_ASSERT(last_place >= first_place); 4822 th = team->t.t_threads[f]; 4823 KMP_DEBUG_ASSERT(th); 4824 th->th.th_first_place = first; 4825 th->th.th_new_place = place; 4826 th->th.th_last_place = last; 4827 if (__kmp_display_affinity && place != th->th.th_current_place && 4828 team->t.t_display_affinity != 1) { 4829 team->t.t_display_affinity = 1; 4830 } 4831 KA_TRACE(100, 4832 ("__kmp_partition_places: spread: T#%d(%d:%d) place %d " 4833 "partition = [%d,%d], spacing = %.4f\n", 4834 __kmp_gtid_from_thread(team->t.t_threads[f]), 4835 team->t.t_id, f, th->th.th_new_place, 4836 th->th.th_first_place, th->th.th_last_place, spacing)); 4837 } 4838 } 4839 } 4840 KMP_DEBUG_ASSERT(update_master_only || place == masters_place); 4841 } else { 4842 int S, rem, gap, s_count; 4843 S = n_th / n_places; 4844 s_count = 0; 4845 rem = n_th - (S * n_places); 4846 gap = rem > 0 ? n_places / rem : n_places; 4847 int place = masters_place; 4848 int gap_ct = gap; 4849 thidx = n_th; 4850 if (update_master_only == 1) 4851 thidx = 1; 4852 for (f = 0; f < thidx; f++) { 4853 kmp_info_t *th = team->t.t_threads[f]; 4854 KMP_DEBUG_ASSERT(th != NULL); 4855 4856 th->th.th_first_place = place; 4857 th->th.th_last_place = place; 4858 th->th.th_new_place = place; 4859 if (__kmp_display_affinity && place != th->th.th_current_place && 4860 team->t.t_display_affinity != 1) { 4861 team->t.t_display_affinity = 1; 4862 } 4863 s_count++; 4864 4865 if ((s_count == S) && rem && (gap_ct == gap)) { 4866 // do nothing, add an extra thread to place on next iteration 4867 } else if ((s_count == S + 1) && rem && (gap_ct == gap)) { 4868 // we added an extra thread to this place; move on to next place 4869 if (place == last_place) { 4870 place = first_place; 4871 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4872 place = 0; 4873 } else { 4874 place++; 4875 } 4876 s_count = 0; 4877 gap_ct = 1; 4878 rem--; 4879 } else if (s_count == S) { // place is full; don't add extra thread 4880 if (place == last_place) { 4881 place = first_place; 4882 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4883 place = 0; 4884 } else { 4885 place++; 4886 } 4887 gap_ct++; 4888 s_count = 0; 4889 } 4890 4891 KA_TRACE(100, ("__kmp_partition_places: spread: T#%d(%d:%d) place %d " 4892 "partition = [%d,%d]\n", 4893 __kmp_gtid_from_thread(team->t.t_threads[f]), 4894 team->t.t_id, f, th->th.th_new_place, 4895 th->th.th_first_place, th->th.th_last_place)); 4896 } 4897 KMP_DEBUG_ASSERT(update_master_only || place == masters_place); 4898 } 4899 } break; 4900 4901 default: 4902 break; 4903 } 4904 4905 KA_TRACE(20, ("__kmp_partition_places: exit T#%d\n", team->t.t_id)); 4906 } 4907 4908 #endif // KMP_AFFINITY_SUPPORTED 4909 4910 /* allocate a new team data structure to use. take one off of the free pool if 4911 available */ 4912 kmp_team_t * 4913 __kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc, 4914 #if OMPT_SUPPORT 4915 ompt_data_t ompt_parallel_data, 4916 #endif 4917 kmp_proc_bind_t new_proc_bind, 4918 kmp_internal_control_t *new_icvs, 4919 int argc USE_NESTED_HOT_ARG(kmp_info_t *master)) { 4920 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_allocate_team); 4921 int f; 4922 kmp_team_t *team; 4923 int use_hot_team = !root->r.r_active; 4924 int level = 0; 4925 4926 KA_TRACE(20, ("__kmp_allocate_team: called\n")); 4927 KMP_DEBUG_ASSERT(new_nproc >= 1 && argc >= 0); 4928 KMP_DEBUG_ASSERT(max_nproc >= new_nproc); 4929 KMP_MB(); 4930 4931 #if KMP_NESTED_HOT_TEAMS 4932 kmp_hot_team_ptr_t *hot_teams; 4933 if (master) { 4934 team = master->th.th_team; 4935 level = team->t.t_active_level; 4936 if (master->th.th_teams_microtask) { // in teams construct? 4937 if (master->th.th_teams_size.nteams > 1 && 4938 ( // #teams > 1 4939 team->t.t_pkfn == 4940 (microtask_t)__kmp_teams_master || // inner fork of the teams 4941 master->th.th_teams_level < 4942 team->t.t_level)) { // or nested parallel inside the teams 4943 ++level; // not increment if #teams==1, or for outer fork of the teams; 4944 // increment otherwise 4945 } 4946 } 4947 hot_teams = master->th.th_hot_teams; 4948 if (level < __kmp_hot_teams_max_level && hot_teams && 4949 hot_teams[level].hot_team) { 4950 // hot team has already been allocated for given level 4951 use_hot_team = 1; 4952 } else { 4953 use_hot_team = 0; 4954 } 4955 } else { 4956 // check we won't access uninitialized hot_teams, just in case 4957 KMP_DEBUG_ASSERT(new_nproc == 1); 4958 } 4959 #endif 4960 // Optimization to use a "hot" team 4961 if (use_hot_team && new_nproc > 1) { 4962 KMP_DEBUG_ASSERT(new_nproc <= max_nproc); 4963 #if KMP_NESTED_HOT_TEAMS 4964 team = hot_teams[level].hot_team; 4965 #else 4966 team = root->r.r_hot_team; 4967 #endif 4968 #if KMP_DEBUG 4969 if (__kmp_tasking_mode != tskm_immediate_exec) { 4970 KA_TRACE(20, ("__kmp_allocate_team: hot team task_team[0] = %p " 4971 "task_team[1] = %p before reinit\n", 4972 team->t.t_task_team[0], team->t.t_task_team[1])); 4973 } 4974 #endif 4975 4976 // Has the number of threads changed? 4977 /* Let's assume the most common case is that the number of threads is 4978 unchanged, and put that case first. */ 4979 if (team->t.t_nproc == new_nproc) { // Check changes in number of threads 4980 KA_TRACE(20, ("__kmp_allocate_team: reusing hot team\n")); 4981 // This case can mean that omp_set_num_threads() was called and the hot 4982 // team size was already reduced, so we check the special flag 4983 if (team->t.t_size_changed == -1) { 4984 team->t.t_size_changed = 1; 4985 } else { 4986 KMP_CHECK_UPDATE(team->t.t_size_changed, 0); 4987 } 4988 4989 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 4990 kmp_r_sched_t new_sched = new_icvs->sched; 4991 // set master's schedule as new run-time schedule 4992 KMP_CHECK_UPDATE(team->t.t_sched.sched, new_sched.sched); 4993 4994 __kmp_reinitialize_team(team, new_icvs, 4995 root->r.r_uber_thread->th.th_ident); 4996 4997 KF_TRACE(10, ("__kmp_allocate_team2: T#%d, this_thread=%p team=%p\n", 0, 4998 team->t.t_threads[0], team)); 4999 __kmp_push_current_task_to_thread(team->t.t_threads[0], team, 0); 5000 5001 #if KMP_AFFINITY_SUPPORTED 5002 if ((team->t.t_size_changed == 0) && 5003 (team->t.t_proc_bind == new_proc_bind)) { 5004 if (new_proc_bind == proc_bind_spread) { 5005 __kmp_partition_places( 5006 team, 1); // add flag to update only master for spread 5007 } 5008 KA_TRACE(200, ("__kmp_allocate_team: reusing hot team #%d bindings: " 5009 "proc_bind = %d, partition = [%d,%d]\n", 5010 team->t.t_id, new_proc_bind, team->t.t_first_place, 5011 team->t.t_last_place)); 5012 } else { 5013 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5014 __kmp_partition_places(team); 5015 } 5016 #else 5017 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5018 #endif /* KMP_AFFINITY_SUPPORTED */ 5019 } else if (team->t.t_nproc > new_nproc) { 5020 KA_TRACE(20, 5021 ("__kmp_allocate_team: decreasing hot team thread count to %d\n", 5022 new_nproc)); 5023 5024 team->t.t_size_changed = 1; 5025 #if KMP_NESTED_HOT_TEAMS 5026 if (__kmp_hot_teams_mode == 0) { 5027 // AC: saved number of threads should correspond to team's value in this 5028 // mode, can be bigger in mode 1, when hot team has threads in reserve 5029 KMP_DEBUG_ASSERT(hot_teams[level].hot_team_nth == team->t.t_nproc); 5030 hot_teams[level].hot_team_nth = new_nproc; 5031 #endif // KMP_NESTED_HOT_TEAMS 5032 /* release the extra threads we don't need any more */ 5033 for (f = new_nproc; f < team->t.t_nproc; f++) { 5034 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5035 if (__kmp_tasking_mode != tskm_immediate_exec) { 5036 // When decreasing team size, threads no longer in the team should 5037 // unref task team. 5038 team->t.t_threads[f]->th.th_task_team = NULL; 5039 } 5040 __kmp_free_thread(team->t.t_threads[f]); 5041 team->t.t_threads[f] = NULL; 5042 } 5043 #if KMP_NESTED_HOT_TEAMS 5044 } // (__kmp_hot_teams_mode == 0) 5045 else { 5046 // When keeping extra threads in team, switch threads to wait on own 5047 // b_go flag 5048 for (f = new_nproc; f < team->t.t_nproc; ++f) { 5049 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5050 kmp_balign_t *balign = team->t.t_threads[f]->th.th_bar; 5051 for (int b = 0; b < bs_last_barrier; ++b) { 5052 if (balign[b].bb.wait_flag == KMP_BARRIER_PARENT_FLAG) { 5053 balign[b].bb.wait_flag = KMP_BARRIER_SWITCH_TO_OWN_FLAG; 5054 } 5055 KMP_CHECK_UPDATE(balign[b].bb.leaf_kids, 0); 5056 } 5057 } 5058 } 5059 #endif // KMP_NESTED_HOT_TEAMS 5060 team->t.t_nproc = new_nproc; 5061 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 5062 KMP_CHECK_UPDATE(team->t.t_sched.sched, new_icvs->sched.sched); 5063 __kmp_reinitialize_team(team, new_icvs, 5064 root->r.r_uber_thread->th.th_ident); 5065 5066 // Update remaining threads 5067 for (f = 0; f < new_nproc; ++f) { 5068 team->t.t_threads[f]->th.th_team_nproc = new_nproc; 5069 } 5070 5071 // restore the current task state of the master thread: should be the 5072 // implicit task 5073 KF_TRACE(10, ("__kmp_allocate_team: T#%d, this_thread=%p team=%p\n", 0, 5074 team->t.t_threads[0], team)); 5075 5076 __kmp_push_current_task_to_thread(team->t.t_threads[0], team, 0); 5077 5078 #ifdef KMP_DEBUG 5079 for (f = 0; f < team->t.t_nproc; f++) { 5080 KMP_DEBUG_ASSERT(team->t.t_threads[f] && 5081 team->t.t_threads[f]->th.th_team_nproc == 5082 team->t.t_nproc); 5083 } 5084 #endif 5085 5086 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5087 #if KMP_AFFINITY_SUPPORTED 5088 __kmp_partition_places(team); 5089 #endif 5090 } else { // team->t.t_nproc < new_nproc 5091 #if (KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED 5092 kmp_affin_mask_t *old_mask; 5093 if (KMP_AFFINITY_CAPABLE()) { 5094 KMP_CPU_ALLOC(old_mask); 5095 } 5096 #endif 5097 5098 KA_TRACE(20, 5099 ("__kmp_allocate_team: increasing hot team thread count to %d\n", 5100 new_nproc)); 5101 5102 team->t.t_size_changed = 1; 5103 5104 #if KMP_NESTED_HOT_TEAMS 5105 int avail_threads = hot_teams[level].hot_team_nth; 5106 if (new_nproc < avail_threads) 5107 avail_threads = new_nproc; 5108 kmp_info_t **other_threads = team->t.t_threads; 5109 for (f = team->t.t_nproc; f < avail_threads; ++f) { 5110 // Adjust barrier data of reserved threads (if any) of the team 5111 // Other data will be set in __kmp_initialize_info() below. 5112 int b; 5113 kmp_balign_t *balign = other_threads[f]->th.th_bar; 5114 for (b = 0; b < bs_last_barrier; ++b) { 5115 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 5116 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 5117 #if USE_DEBUGGER 5118 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 5119 #endif 5120 } 5121 } 5122 if (hot_teams[level].hot_team_nth >= new_nproc) { 5123 // we have all needed threads in reserve, no need to allocate any 5124 // this only possible in mode 1, cannot have reserved threads in mode 0 5125 KMP_DEBUG_ASSERT(__kmp_hot_teams_mode == 1); 5126 team->t.t_nproc = new_nproc; // just get reserved threads involved 5127 } else { 5128 // we may have some threads in reserve, but not enough 5129 team->t.t_nproc = 5130 hot_teams[level] 5131 .hot_team_nth; // get reserved threads involved if any 5132 hot_teams[level].hot_team_nth = new_nproc; // adjust hot team max size 5133 #endif // KMP_NESTED_HOT_TEAMS 5134 if (team->t.t_max_nproc < new_nproc) { 5135 /* reallocate larger arrays */ 5136 __kmp_reallocate_team_arrays(team, new_nproc); 5137 __kmp_reinitialize_team(team, new_icvs, NULL); 5138 } 5139 5140 #if (KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED 5141 /* Temporarily set full mask for master thread before creation of 5142 workers. The reason is that workers inherit the affinity from master, 5143 so if a lot of workers are created on the single core quickly, they 5144 don't get a chance to set their own affinity for a long time. */ 5145 __kmp_set_thread_affinity_mask_full_tmp(old_mask); 5146 #endif 5147 5148 /* allocate new threads for the hot team */ 5149 for (f = team->t.t_nproc; f < new_nproc; f++) { 5150 kmp_info_t *new_worker = __kmp_allocate_thread(root, team, f); 5151 KMP_DEBUG_ASSERT(new_worker); 5152 team->t.t_threads[f] = new_worker; 5153 5154 KA_TRACE(20, 5155 ("__kmp_allocate_team: team %d init T#%d arrived: " 5156 "join=%llu, plain=%llu\n", 5157 team->t.t_id, __kmp_gtid_from_tid(f, team), team->t.t_id, f, 5158 team->t.t_bar[bs_forkjoin_barrier].b_arrived, 5159 team->t.t_bar[bs_plain_barrier].b_arrived)); 5160 5161 { // Initialize barrier data for new threads. 5162 int b; 5163 kmp_balign_t *balign = new_worker->th.th_bar; 5164 for (b = 0; b < bs_last_barrier; ++b) { 5165 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 5166 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != 5167 KMP_BARRIER_PARENT_FLAG); 5168 #if USE_DEBUGGER 5169 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 5170 #endif 5171 } 5172 } 5173 } 5174 5175 #if (KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED 5176 if (KMP_AFFINITY_CAPABLE()) { 5177 /* Restore initial master thread's affinity mask */ 5178 __kmp_set_system_affinity(old_mask, TRUE); 5179 KMP_CPU_FREE(old_mask); 5180 } 5181 #endif 5182 #if KMP_NESTED_HOT_TEAMS 5183 } // end of check of t_nproc vs. new_nproc vs. hot_team_nth 5184 #endif // KMP_NESTED_HOT_TEAMS 5185 /* make sure everyone is syncronized */ 5186 int old_nproc = team->t.t_nproc; // save old value and use to update only 5187 // new threads below 5188 __kmp_initialize_team(team, new_nproc, new_icvs, 5189 root->r.r_uber_thread->th.th_ident); 5190 5191 /* reinitialize the threads */ 5192 KMP_DEBUG_ASSERT(team->t.t_nproc == new_nproc); 5193 for (f = 0; f < team->t.t_nproc; ++f) 5194 __kmp_initialize_info(team->t.t_threads[f], team, f, 5195 __kmp_gtid_from_tid(f, team)); 5196 5197 if (level) { // set th_task_state for new threads in nested hot team 5198 // __kmp_initialize_info() no longer zeroes th_task_state, so we should 5199 // only need to set the th_task_state for the new threads. th_task_state 5200 // for master thread will not be accurate until after this in 5201 // __kmp_fork_call(), so we look to the master's memo_stack to get the 5202 // correct value. 5203 for (f = old_nproc; f < team->t.t_nproc; ++f) 5204 team->t.t_threads[f]->th.th_task_state = 5205 team->t.t_threads[0]->th.th_task_state_memo_stack[level]; 5206 } else { // set th_task_state for new threads in non-nested hot team 5207 kmp_uint8 old_state = 5208 team->t.t_threads[0]->th.th_task_state; // copy master's state 5209 for (f = old_nproc; f < team->t.t_nproc; ++f) 5210 team->t.t_threads[f]->th.th_task_state = old_state; 5211 } 5212 5213 #ifdef KMP_DEBUG 5214 for (f = 0; f < team->t.t_nproc; ++f) { 5215 KMP_DEBUG_ASSERT(team->t.t_threads[f] && 5216 team->t.t_threads[f]->th.th_team_nproc == 5217 team->t.t_nproc); 5218 } 5219 #endif 5220 5221 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5222 #if KMP_AFFINITY_SUPPORTED 5223 __kmp_partition_places(team); 5224 #endif 5225 } // Check changes in number of threads 5226 5227 kmp_info_t *master = team->t.t_threads[0]; 5228 if (master->th.th_teams_microtask) { 5229 for (f = 1; f < new_nproc; ++f) { 5230 // propagate teams construct specific info to workers 5231 kmp_info_t *thr = team->t.t_threads[f]; 5232 thr->th.th_teams_microtask = master->th.th_teams_microtask; 5233 thr->th.th_teams_level = master->th.th_teams_level; 5234 thr->th.th_teams_size = master->th.th_teams_size; 5235 } 5236 } 5237 #if KMP_NESTED_HOT_TEAMS 5238 if (level) { 5239 // Sync barrier state for nested hot teams, not needed for outermost hot 5240 // team. 5241 for (f = 1; f < new_nproc; ++f) { 5242 kmp_info_t *thr = team->t.t_threads[f]; 5243 int b; 5244 kmp_balign_t *balign = thr->th.th_bar; 5245 for (b = 0; b < bs_last_barrier; ++b) { 5246 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 5247 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 5248 #if USE_DEBUGGER 5249 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 5250 #endif 5251 } 5252 } 5253 } 5254 #endif // KMP_NESTED_HOT_TEAMS 5255 5256 /* reallocate space for arguments if necessary */ 5257 __kmp_alloc_argv_entries(argc, team, TRUE); 5258 KMP_CHECK_UPDATE(team->t.t_argc, argc); 5259 // The hot team re-uses the previous task team, 5260 // if untouched during the previous release->gather phase. 5261 5262 KF_TRACE(10, (" hot_team = %p\n", team)); 5263 5264 #if KMP_DEBUG 5265 if (__kmp_tasking_mode != tskm_immediate_exec) { 5266 KA_TRACE(20, ("__kmp_allocate_team: hot team task_team[0] = %p " 5267 "task_team[1] = %p after reinit\n", 5268 team->t.t_task_team[0], team->t.t_task_team[1])); 5269 } 5270 #endif 5271 5272 #if OMPT_SUPPORT 5273 __ompt_team_assign_id(team, ompt_parallel_data); 5274 #endif 5275 5276 KMP_MB(); 5277 5278 return team; 5279 } 5280 5281 /* next, let's try to take one from the team pool */ 5282 KMP_MB(); 5283 for (team = CCAST(kmp_team_t *, __kmp_team_pool); (team);) { 5284 /* TODO: consider resizing undersized teams instead of reaping them, now 5285 that we have a resizing mechanism */ 5286 if (team->t.t_max_nproc >= max_nproc) { 5287 /* take this team from the team pool */ 5288 __kmp_team_pool = team->t.t_next_pool; 5289 5290 /* setup the team for fresh use */ 5291 __kmp_initialize_team(team, new_nproc, new_icvs, NULL); 5292 5293 KA_TRACE(20, ("__kmp_allocate_team: setting task_team[0] %p and " 5294 "task_team[1] %p to NULL\n", 5295 &team->t.t_task_team[0], &team->t.t_task_team[1])); 5296 team->t.t_task_team[0] = NULL; 5297 team->t.t_task_team[1] = NULL; 5298 5299 /* reallocate space for arguments if necessary */ 5300 __kmp_alloc_argv_entries(argc, team, TRUE); 5301 KMP_CHECK_UPDATE(team->t.t_argc, argc); 5302 5303 KA_TRACE( 5304 20, ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n", 5305 team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 5306 { // Initialize barrier data. 5307 int b; 5308 for (b = 0; b < bs_last_barrier; ++b) { 5309 team->t.t_bar[b].b_arrived = KMP_INIT_BARRIER_STATE; 5310 #if USE_DEBUGGER 5311 team->t.t_bar[b].b_master_arrived = 0; 5312 team->t.t_bar[b].b_team_arrived = 0; 5313 #endif 5314 } 5315 } 5316 5317 team->t.t_proc_bind = new_proc_bind; 5318 5319 KA_TRACE(20, ("__kmp_allocate_team: using team from pool %d.\n", 5320 team->t.t_id)); 5321 5322 #if OMPT_SUPPORT 5323 __ompt_team_assign_id(team, ompt_parallel_data); 5324 #endif 5325 5326 KMP_MB(); 5327 5328 return team; 5329 } 5330 5331 /* reap team if it is too small, then loop back and check the next one */ 5332 // not sure if this is wise, but, will be redone during the hot-teams 5333 // rewrite. 5334 /* TODO: Use technique to find the right size hot-team, don't reap them */ 5335 team = __kmp_reap_team(team); 5336 __kmp_team_pool = team; 5337 } 5338 5339 /* nothing available in the pool, no matter, make a new team! */ 5340 KMP_MB(); 5341 team = (kmp_team_t *)__kmp_allocate(sizeof(kmp_team_t)); 5342 5343 /* and set it up */ 5344 team->t.t_max_nproc = max_nproc; 5345 /* NOTE well, for some reason allocating one big buffer and dividing it up 5346 seems to really hurt performance a lot on the P4, so, let's not use this */ 5347 __kmp_allocate_team_arrays(team, max_nproc); 5348 5349 KA_TRACE(20, ("__kmp_allocate_team: making a new team\n")); 5350 __kmp_initialize_team(team, new_nproc, new_icvs, NULL); 5351 5352 KA_TRACE(20, ("__kmp_allocate_team: setting task_team[0] %p and task_team[1] " 5353 "%p to NULL\n", 5354 &team->t.t_task_team[0], &team->t.t_task_team[1])); 5355 team->t.t_task_team[0] = NULL; // to be removed, as __kmp_allocate zeroes 5356 // memory, no need to duplicate 5357 team->t.t_task_team[1] = NULL; // to be removed, as __kmp_allocate zeroes 5358 // memory, no need to duplicate 5359 5360 if (__kmp_storage_map) { 5361 __kmp_print_team_storage_map("team", team, team->t.t_id, new_nproc); 5362 } 5363 5364 /* allocate space for arguments */ 5365 __kmp_alloc_argv_entries(argc, team, FALSE); 5366 team->t.t_argc = argc; 5367 5368 KA_TRACE(20, 5369 ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n", 5370 team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 5371 { // Initialize barrier data. 5372 int b; 5373 for (b = 0; b < bs_last_barrier; ++b) { 5374 team->t.t_bar[b].b_arrived = KMP_INIT_BARRIER_STATE; 5375 #if USE_DEBUGGER 5376 team->t.t_bar[b].b_master_arrived = 0; 5377 team->t.t_bar[b].b_team_arrived = 0; 5378 #endif 5379 } 5380 } 5381 5382 team->t.t_proc_bind = new_proc_bind; 5383 5384 #if OMPT_SUPPORT 5385 __ompt_team_assign_id(team, ompt_parallel_data); 5386 team->t.ompt_serialized_team_info = NULL; 5387 #endif 5388 5389 KMP_MB(); 5390 5391 KA_TRACE(20, ("__kmp_allocate_team: done creating a new team %d.\n", 5392 team->t.t_id)); 5393 5394 return team; 5395 } 5396 5397 /* TODO implement hot-teams at all levels */ 5398 /* TODO implement lazy thread release on demand (disband request) */ 5399 5400 /* free the team. return it to the team pool. release all the threads 5401 * associated with it */ 5402 void __kmp_free_team(kmp_root_t *root, 5403 kmp_team_t *team USE_NESTED_HOT_ARG(kmp_info_t *master)) { 5404 int f; 5405 KA_TRACE(20, ("__kmp_free_team: T#%d freeing team %d\n", __kmp_get_gtid(), 5406 team->t.t_id)); 5407 5408 /* verify state */ 5409 KMP_DEBUG_ASSERT(root); 5410 KMP_DEBUG_ASSERT(team); 5411 KMP_DEBUG_ASSERT(team->t.t_nproc <= team->t.t_max_nproc); 5412 KMP_DEBUG_ASSERT(team->t.t_threads); 5413 5414 int use_hot_team = team == root->r.r_hot_team; 5415 #if KMP_NESTED_HOT_TEAMS 5416 int level; 5417 kmp_hot_team_ptr_t *hot_teams; 5418 if (master) { 5419 level = team->t.t_active_level - 1; 5420 if (master->th.th_teams_microtask) { // in teams construct? 5421 if (master->th.th_teams_size.nteams > 1) { 5422 ++level; // level was not increased in teams construct for 5423 // team_of_masters 5424 } 5425 if (team->t.t_pkfn != (microtask_t)__kmp_teams_master && 5426 master->th.th_teams_level == team->t.t_level) { 5427 ++level; // level was not increased in teams construct for 5428 // team_of_workers before the parallel 5429 } // team->t.t_level will be increased inside parallel 5430 } 5431 hot_teams = master->th.th_hot_teams; 5432 if (level < __kmp_hot_teams_max_level) { 5433 KMP_DEBUG_ASSERT(team == hot_teams[level].hot_team); 5434 use_hot_team = 1; 5435 } 5436 } 5437 #endif // KMP_NESTED_HOT_TEAMS 5438 5439 /* team is done working */ 5440 TCW_SYNC_PTR(team->t.t_pkfn, 5441 NULL); // Important for Debugging Support Library. 5442 #if KMP_OS_WINDOWS 5443 team->t.t_copyin_counter = 0; // init counter for possible reuse 5444 #endif 5445 // Do not reset pointer to parent team to NULL for hot teams. 5446 5447 /* if we are non-hot team, release our threads */ 5448 if (!use_hot_team) { 5449 if (__kmp_tasking_mode != tskm_immediate_exec) { 5450 // Wait for threads to reach reapable state 5451 for (f = 1; f < team->t.t_nproc; ++f) { 5452 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5453 kmp_info_t *th = team->t.t_threads[f]; 5454 volatile kmp_uint32 *state = &th->th.th_reap_state; 5455 while (*state != KMP_SAFE_TO_REAP) { 5456 #if KMP_OS_WINDOWS 5457 // On Windows a thread can be killed at any time, check this 5458 DWORD ecode; 5459 if (!__kmp_is_thread_alive(th, &ecode)) { 5460 *state = KMP_SAFE_TO_REAP; // reset the flag for dead thread 5461 break; 5462 } 5463 #endif 5464 // first check if thread is sleeping 5465 kmp_flag_64<> fl(&th->th.th_bar[bs_forkjoin_barrier].bb.b_go, th); 5466 if (fl.is_sleeping()) 5467 fl.resume(__kmp_gtid_from_thread(th)); 5468 KMP_CPU_PAUSE(); 5469 } 5470 } 5471 5472 // Delete task teams 5473 int tt_idx; 5474 for (tt_idx = 0; tt_idx < 2; ++tt_idx) { 5475 kmp_task_team_t *task_team = team->t.t_task_team[tt_idx]; 5476 if (task_team != NULL) { 5477 for (f = 0; f < team->t.t_nproc; ++f) { // threads unref task teams 5478 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5479 team->t.t_threads[f]->th.th_task_team = NULL; 5480 } 5481 KA_TRACE( 5482 20, 5483 ("__kmp_free_team: T#%d deactivating task_team %p on team %d\n", 5484 __kmp_get_gtid(), task_team, team->t.t_id)); 5485 #if KMP_NESTED_HOT_TEAMS 5486 __kmp_free_task_team(master, task_team); 5487 #endif 5488 team->t.t_task_team[tt_idx] = NULL; 5489 } 5490 } 5491 } 5492 5493 // Reset pointer to parent team only for non-hot teams. 5494 team->t.t_parent = NULL; 5495 team->t.t_level = 0; 5496 team->t.t_active_level = 0; 5497 5498 /* free the worker threads */ 5499 for (f = 1; f < team->t.t_nproc; ++f) { 5500 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5501 __kmp_free_thread(team->t.t_threads[f]); 5502 team->t.t_threads[f] = NULL; 5503 } 5504 5505 /* put the team back in the team pool */ 5506 /* TODO limit size of team pool, call reap_team if pool too large */ 5507 team->t.t_next_pool = CCAST(kmp_team_t *, __kmp_team_pool); 5508 __kmp_team_pool = (volatile kmp_team_t *)team; 5509 } else { // Check if team was created for the masters in a teams construct 5510 // See if first worker is a CG root 5511 KMP_DEBUG_ASSERT(team->t.t_threads[1] && 5512 team->t.t_threads[1]->th.th_cg_roots); 5513 if (team->t.t_threads[1]->th.th_cg_roots->cg_root == team->t.t_threads[1]) { 5514 // Clean up the CG root nodes on workers so that this team can be re-used 5515 for (f = 1; f < team->t.t_nproc; ++f) { 5516 kmp_info_t *thr = team->t.t_threads[f]; 5517 KMP_DEBUG_ASSERT(thr && thr->th.th_cg_roots && 5518 thr->th.th_cg_roots->cg_root == thr); 5519 // Pop current CG root off list 5520 kmp_cg_root_t *tmp = thr->th.th_cg_roots; 5521 thr->th.th_cg_roots = tmp->up; 5522 KA_TRACE(100, ("__kmp_free_team: Thread %p popping node %p and moving" 5523 " up to node %p. cg_nthreads was %d\n", 5524 thr, tmp, thr->th.th_cg_roots, tmp->cg_nthreads)); 5525 int i = tmp->cg_nthreads--; 5526 if (i == 1) { 5527 __kmp_free(tmp); // free CG if we are the last thread in it 5528 } 5529 // Restore current task's thread_limit from CG root 5530 if (thr->th.th_cg_roots) 5531 thr->th.th_current_task->td_icvs.thread_limit = 5532 thr->th.th_cg_roots->cg_thread_limit; 5533 } 5534 } 5535 } 5536 5537 KMP_MB(); 5538 } 5539 5540 /* reap the team. destroy it, reclaim all its resources and free its memory */ 5541 kmp_team_t *__kmp_reap_team(kmp_team_t *team) { 5542 kmp_team_t *next_pool = team->t.t_next_pool; 5543 5544 KMP_DEBUG_ASSERT(team); 5545 KMP_DEBUG_ASSERT(team->t.t_dispatch); 5546 KMP_DEBUG_ASSERT(team->t.t_disp_buffer); 5547 KMP_DEBUG_ASSERT(team->t.t_threads); 5548 KMP_DEBUG_ASSERT(team->t.t_argv); 5549 5550 /* TODO clean the threads that are a part of this? */ 5551 5552 /* free stuff */ 5553 __kmp_free_team_arrays(team); 5554 if (team->t.t_argv != &team->t.t_inline_argv[0]) 5555 __kmp_free((void *)team->t.t_argv); 5556 __kmp_free(team); 5557 5558 KMP_MB(); 5559 return next_pool; 5560 } 5561 5562 // Free the thread. Don't reap it, just place it on the pool of available 5563 // threads. 5564 // 5565 // Changes for Quad issue 527845: We need a predictable OMP tid <-> gtid 5566 // binding for the affinity mechanism to be useful. 5567 // 5568 // Now, we always keep the free list (__kmp_thread_pool) sorted by gtid. 5569 // However, we want to avoid a potential performance problem by always 5570 // scanning through the list to find the correct point at which to insert 5571 // the thread (potential N**2 behavior). To do this we keep track of the 5572 // last place a thread struct was inserted (__kmp_thread_pool_insert_pt). 5573 // With single-level parallelism, threads will always be added to the tail 5574 // of the list, kept track of by __kmp_thread_pool_insert_pt. With nested 5575 // parallelism, all bets are off and we may need to scan through the entire 5576 // free list. 5577 // 5578 // This change also has a potentially large performance benefit, for some 5579 // applications. Previously, as threads were freed from the hot team, they 5580 // would be placed back on the free list in inverse order. If the hot team 5581 // grew back to it's original size, then the freed thread would be placed 5582 // back on the hot team in reverse order. This could cause bad cache 5583 // locality problems on programs where the size of the hot team regularly 5584 // grew and shrunk. 5585 // 5586 // Now, for single-level parallelism, the OMP tid is always == gtid. 5587 void __kmp_free_thread(kmp_info_t *this_th) { 5588 int gtid; 5589 kmp_info_t **scan; 5590 5591 KA_TRACE(20, ("__kmp_free_thread: T#%d putting T#%d back on free pool.\n", 5592 __kmp_get_gtid(), this_th->th.th_info.ds.ds_gtid)); 5593 5594 KMP_DEBUG_ASSERT(this_th); 5595 5596 // When moving thread to pool, switch thread to wait on own b_go flag, and 5597 // uninitialized (NULL team). 5598 int b; 5599 kmp_balign_t *balign = this_th->th.th_bar; 5600 for (b = 0; b < bs_last_barrier; ++b) { 5601 if (balign[b].bb.wait_flag == KMP_BARRIER_PARENT_FLAG) 5602 balign[b].bb.wait_flag = KMP_BARRIER_SWITCH_TO_OWN_FLAG; 5603 balign[b].bb.team = NULL; 5604 balign[b].bb.leaf_kids = 0; 5605 } 5606 this_th->th.th_task_state = 0; 5607 this_th->th.th_reap_state = KMP_SAFE_TO_REAP; 5608 5609 /* put thread back on the free pool */ 5610 TCW_PTR(this_th->th.th_team, NULL); 5611 TCW_PTR(this_th->th.th_root, NULL); 5612 TCW_PTR(this_th->th.th_dispatch, NULL); /* NOT NEEDED */ 5613 5614 while (this_th->th.th_cg_roots) { 5615 this_th->th.th_cg_roots->cg_nthreads--; 5616 KA_TRACE(100, ("__kmp_free_thread: Thread %p decrement cg_nthreads on node" 5617 " %p of thread %p to %d\n", 5618 this_th, this_th->th.th_cg_roots, 5619 this_th->th.th_cg_roots->cg_root, 5620 this_th->th.th_cg_roots->cg_nthreads)); 5621 kmp_cg_root_t *tmp = this_th->th.th_cg_roots; 5622 if (tmp->cg_root == this_th) { // Thread is a cg_root 5623 KMP_DEBUG_ASSERT(tmp->cg_nthreads == 0); 5624 KA_TRACE( 5625 5, ("__kmp_free_thread: Thread %p freeing node %p\n", this_th, tmp)); 5626 this_th->th.th_cg_roots = tmp->up; 5627 __kmp_free(tmp); 5628 } else { // Worker thread 5629 if (tmp->cg_nthreads == 0) { // last thread leaves contention group 5630 __kmp_free(tmp); 5631 } 5632 this_th->th.th_cg_roots = NULL; 5633 break; 5634 } 5635 } 5636 5637 /* If the implicit task assigned to this thread can be used by other threads 5638 * -> multiple threads can share the data and try to free the task at 5639 * __kmp_reap_thread at exit. This duplicate use of the task data can happen 5640 * with higher probability when hot team is disabled but can occurs even when 5641 * the hot team is enabled */ 5642 __kmp_free_implicit_task(this_th); 5643 this_th->th.th_current_task = NULL; 5644 5645 // If the __kmp_thread_pool_insert_pt is already past the new insert 5646 // point, then we need to re-scan the entire list. 5647 gtid = this_th->th.th_info.ds.ds_gtid; 5648 if (__kmp_thread_pool_insert_pt != NULL) { 5649 KMP_DEBUG_ASSERT(__kmp_thread_pool != NULL); 5650 if (__kmp_thread_pool_insert_pt->th.th_info.ds.ds_gtid > gtid) { 5651 __kmp_thread_pool_insert_pt = NULL; 5652 } 5653 } 5654 5655 // Scan down the list to find the place to insert the thread. 5656 // scan is the address of a link in the list, possibly the address of 5657 // __kmp_thread_pool itself. 5658 // 5659 // In the absence of nested parallelism, the for loop will have 0 iterations. 5660 if (__kmp_thread_pool_insert_pt != NULL) { 5661 scan = &(__kmp_thread_pool_insert_pt->th.th_next_pool); 5662 } else { 5663 scan = CCAST(kmp_info_t **, &__kmp_thread_pool); 5664 } 5665 for (; (*scan != NULL) && ((*scan)->th.th_info.ds.ds_gtid < gtid); 5666 scan = &((*scan)->th.th_next_pool)) 5667 ; 5668 5669 // Insert the new element on the list, and set __kmp_thread_pool_insert_pt 5670 // to its address. 5671 TCW_PTR(this_th->th.th_next_pool, *scan); 5672 __kmp_thread_pool_insert_pt = *scan = this_th; 5673 KMP_DEBUG_ASSERT((this_th->th.th_next_pool == NULL) || 5674 (this_th->th.th_info.ds.ds_gtid < 5675 this_th->th.th_next_pool->th.th_info.ds.ds_gtid)); 5676 TCW_4(this_th->th.th_in_pool, TRUE); 5677 __kmp_suspend_initialize_thread(this_th); 5678 __kmp_lock_suspend_mx(this_th); 5679 if (this_th->th.th_active == TRUE) { 5680 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth); 5681 this_th->th.th_active_in_pool = TRUE; 5682 } 5683 #if KMP_DEBUG 5684 else { 5685 KMP_DEBUG_ASSERT(this_th->th.th_active_in_pool == FALSE); 5686 } 5687 #endif 5688 __kmp_unlock_suspend_mx(this_th); 5689 5690 TCW_4(__kmp_nth, __kmp_nth - 1); 5691 5692 #ifdef KMP_ADJUST_BLOCKTIME 5693 /* Adjust blocktime back to user setting or default if necessary */ 5694 /* Middle initialization might never have occurred */ 5695 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 5696 KMP_DEBUG_ASSERT(__kmp_avail_proc > 0); 5697 if (__kmp_nth <= __kmp_avail_proc) { 5698 __kmp_zero_bt = FALSE; 5699 } 5700 } 5701 #endif /* KMP_ADJUST_BLOCKTIME */ 5702 5703 KMP_MB(); 5704 } 5705 5706 /* ------------------------------------------------------------------------ */ 5707 5708 void *__kmp_launch_thread(kmp_info_t *this_thr) { 5709 #if OMPTARGET_PROFILING_SUPPORT 5710 ProfileTraceFile = getenv("LIBOMPTARGET_PROFILE"); 5711 // TODO: add a configuration option for time granularity 5712 if (ProfileTraceFile) 5713 llvm::timeTraceProfilerInitialize(500 /* us */, "libomptarget"); 5714 #endif 5715 5716 int gtid = this_thr->th.th_info.ds.ds_gtid; 5717 /* void *stack_data;*/ 5718 kmp_team_t **volatile pteam; 5719 5720 KMP_MB(); 5721 KA_TRACE(10, ("__kmp_launch_thread: T#%d start\n", gtid)); 5722 5723 if (__kmp_env_consistency_check) { 5724 this_thr->th.th_cons = __kmp_allocate_cons_stack(gtid); // ATT: Memory leak? 5725 } 5726 5727 #if OMPT_SUPPORT 5728 ompt_data_t *thread_data; 5729 if (ompt_enabled.enabled) { 5730 thread_data = &(this_thr->th.ompt_thread_info.thread_data); 5731 *thread_data = ompt_data_none; 5732 5733 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 5734 this_thr->th.ompt_thread_info.wait_id = 0; 5735 this_thr->th.ompt_thread_info.idle_frame = OMPT_GET_FRAME_ADDRESS(0); 5736 this_thr->th.ompt_thread_info.parallel_flags = 0; 5737 if (ompt_enabled.ompt_callback_thread_begin) { 5738 ompt_callbacks.ompt_callback(ompt_callback_thread_begin)( 5739 ompt_thread_worker, thread_data); 5740 } 5741 this_thr->th.ompt_thread_info.state = ompt_state_idle; 5742 } 5743 #endif 5744 5745 /* This is the place where threads wait for work */ 5746 while (!TCR_4(__kmp_global.g.g_done)) { 5747 KMP_DEBUG_ASSERT(this_thr == __kmp_threads[gtid]); 5748 KMP_MB(); 5749 5750 /* wait for work to do */ 5751 KA_TRACE(20, ("__kmp_launch_thread: T#%d waiting for work\n", gtid)); 5752 5753 /* No tid yet since not part of a team */ 5754 __kmp_fork_barrier(gtid, KMP_GTID_DNE); 5755 5756 #if OMPT_SUPPORT 5757 if (ompt_enabled.enabled) { 5758 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 5759 } 5760 #endif 5761 5762 pteam = &this_thr->th.th_team; 5763 5764 /* have we been allocated? */ 5765 if (TCR_SYNC_PTR(*pteam) && !TCR_4(__kmp_global.g.g_done)) { 5766 /* we were just woken up, so run our new task */ 5767 if (TCR_SYNC_PTR((*pteam)->t.t_pkfn) != NULL) { 5768 int rc; 5769 KA_TRACE(20, 5770 ("__kmp_launch_thread: T#%d(%d:%d) invoke microtask = %p\n", 5771 gtid, (*pteam)->t.t_id, __kmp_tid_from_gtid(gtid), 5772 (*pteam)->t.t_pkfn)); 5773 5774 updateHWFPControl(*pteam); 5775 5776 #if OMPT_SUPPORT 5777 if (ompt_enabled.enabled) { 5778 this_thr->th.ompt_thread_info.state = ompt_state_work_parallel; 5779 } 5780 #endif 5781 5782 rc = (*pteam)->t.t_invoke(gtid); 5783 KMP_ASSERT(rc); 5784 5785 KMP_MB(); 5786 KA_TRACE(20, ("__kmp_launch_thread: T#%d(%d:%d) done microtask = %p\n", 5787 gtid, (*pteam)->t.t_id, __kmp_tid_from_gtid(gtid), 5788 (*pteam)->t.t_pkfn)); 5789 } 5790 #if OMPT_SUPPORT 5791 if (ompt_enabled.enabled) { 5792 /* no frame set while outside task */ 5793 __ompt_get_task_info_object(0)->frame.exit_frame = ompt_data_none; 5794 5795 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 5796 } 5797 #endif 5798 /* join barrier after parallel region */ 5799 __kmp_join_barrier(gtid); 5800 } 5801 } 5802 TCR_SYNC_PTR((intptr_t)__kmp_global.g.g_done); 5803 5804 #if OMPT_SUPPORT 5805 if (ompt_enabled.ompt_callback_thread_end) { 5806 ompt_callbacks.ompt_callback(ompt_callback_thread_end)(thread_data); 5807 } 5808 #endif 5809 5810 this_thr->th.th_task_team = NULL; 5811 /* run the destructors for the threadprivate data for this thread */ 5812 __kmp_common_destroy_gtid(gtid); 5813 5814 KA_TRACE(10, ("__kmp_launch_thread: T#%d done\n", gtid)); 5815 KMP_MB(); 5816 5817 #if OMPTARGET_PROFILING_SUPPORT 5818 llvm::timeTraceProfilerFinishThread(); 5819 #endif 5820 return this_thr; 5821 } 5822 5823 /* ------------------------------------------------------------------------ */ 5824 5825 void __kmp_internal_end_dest(void *specific_gtid) { 5826 // Make sure no significant bits are lost 5827 int gtid; 5828 __kmp_type_convert((kmp_intptr_t)specific_gtid - 1, >id); 5829 5830 KA_TRACE(30, ("__kmp_internal_end_dest: T#%d\n", gtid)); 5831 /* NOTE: the gtid is stored as gitd+1 in the thread-local-storage 5832 * this is because 0 is reserved for the nothing-stored case */ 5833 5834 __kmp_internal_end_thread(gtid); 5835 } 5836 5837 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB 5838 5839 __attribute__((destructor)) void __kmp_internal_end_dtor(void) { 5840 __kmp_internal_end_atexit(); 5841 } 5842 5843 #endif 5844 5845 /* [Windows] josh: when the atexit handler is called, there may still be more 5846 than one thread alive */ 5847 void __kmp_internal_end_atexit(void) { 5848 KA_TRACE(30, ("__kmp_internal_end_atexit\n")); 5849 /* [Windows] 5850 josh: ideally, we want to completely shutdown the library in this atexit 5851 handler, but stat code that depends on thread specific data for gtid fails 5852 because that data becomes unavailable at some point during the shutdown, so 5853 we call __kmp_internal_end_thread instead. We should eventually remove the 5854 dependency on __kmp_get_specific_gtid in the stat code and use 5855 __kmp_internal_end_library to cleanly shutdown the library. 5856 5857 // TODO: Can some of this comment about GVS be removed? 5858 I suspect that the offending stat code is executed when the calling thread 5859 tries to clean up a dead root thread's data structures, resulting in GVS 5860 code trying to close the GVS structures for that thread, but since the stat 5861 code uses __kmp_get_specific_gtid to get the gtid with the assumption that 5862 the calling thread is cleaning up itself instead of another thread, it get 5863 confused. This happens because allowing a thread to unregister and cleanup 5864 another thread is a recent modification for addressing an issue. 5865 Based on the current design (20050722), a thread may end up 5866 trying to unregister another thread only if thread death does not trigger 5867 the calling of __kmp_internal_end_thread. For Linux* OS, there is the 5868 thread specific data destructor function to detect thread death. For 5869 Windows dynamic, there is DllMain(THREAD_DETACH). For Windows static, there 5870 is nothing. Thus, the workaround is applicable only for Windows static 5871 stat library. */ 5872 __kmp_internal_end_library(-1); 5873 #if KMP_OS_WINDOWS 5874 __kmp_close_console(); 5875 #endif 5876 } 5877 5878 static void __kmp_reap_thread(kmp_info_t *thread, int is_root) { 5879 // It is assumed __kmp_forkjoin_lock is acquired. 5880 5881 int gtid; 5882 5883 KMP_DEBUG_ASSERT(thread != NULL); 5884 5885 gtid = thread->th.th_info.ds.ds_gtid; 5886 5887 if (!is_root) { 5888 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { 5889 /* Assume the threads are at the fork barrier here */ 5890 KA_TRACE( 5891 20, ("__kmp_reap_thread: releasing T#%d from fork barrier for reap\n", 5892 gtid)); 5893 /* Need release fence here to prevent seg faults for tree forkjoin barrier 5894 * (GEH) */ 5895 ANNOTATE_HAPPENS_BEFORE(thread); 5896 kmp_flag_64<> flag(&thread->th.th_bar[bs_forkjoin_barrier].bb.b_go, 5897 thread); 5898 __kmp_release_64(&flag); 5899 } 5900 5901 // Terminate OS thread. 5902 __kmp_reap_worker(thread); 5903 5904 // The thread was killed asynchronously. If it was actively 5905 // spinning in the thread pool, decrement the global count. 5906 // 5907 // There is a small timing hole here - if the worker thread was just waking 5908 // up after sleeping in the pool, had reset it's th_active_in_pool flag but 5909 // not decremented the global counter __kmp_thread_pool_active_nth yet, then 5910 // the global counter might not get updated. 5911 // 5912 // Currently, this can only happen as the library is unloaded, 5913 // so there are no harmful side effects. 5914 if (thread->th.th_active_in_pool) { 5915 thread->th.th_active_in_pool = FALSE; 5916 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 5917 KMP_DEBUG_ASSERT(__kmp_thread_pool_active_nth >= 0); 5918 } 5919 } 5920 5921 __kmp_free_implicit_task(thread); 5922 5923 // Free the fast memory for tasking 5924 #if USE_FAST_MEMORY 5925 __kmp_free_fast_memory(thread); 5926 #endif /* USE_FAST_MEMORY */ 5927 5928 __kmp_suspend_uninitialize_thread(thread); 5929 5930 KMP_DEBUG_ASSERT(__kmp_threads[gtid] == thread); 5931 TCW_SYNC_PTR(__kmp_threads[gtid], NULL); 5932 5933 --__kmp_all_nth; 5934 // __kmp_nth was decremented when thread is added to the pool. 5935 5936 #ifdef KMP_ADJUST_BLOCKTIME 5937 /* Adjust blocktime back to user setting or default if necessary */ 5938 /* Middle initialization might never have occurred */ 5939 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 5940 KMP_DEBUG_ASSERT(__kmp_avail_proc > 0); 5941 if (__kmp_nth <= __kmp_avail_proc) { 5942 __kmp_zero_bt = FALSE; 5943 } 5944 } 5945 #endif /* KMP_ADJUST_BLOCKTIME */ 5946 5947 /* free the memory being used */ 5948 if (__kmp_env_consistency_check) { 5949 if (thread->th.th_cons) { 5950 __kmp_free_cons_stack(thread->th.th_cons); 5951 thread->th.th_cons = NULL; 5952 } 5953 } 5954 5955 if (thread->th.th_pri_common != NULL) { 5956 __kmp_free(thread->th.th_pri_common); 5957 thread->th.th_pri_common = NULL; 5958 } 5959 5960 if (thread->th.th_task_state_memo_stack != NULL) { 5961 __kmp_free(thread->th.th_task_state_memo_stack); 5962 thread->th.th_task_state_memo_stack = NULL; 5963 } 5964 5965 #if KMP_USE_BGET 5966 if (thread->th.th_local.bget_data != NULL) { 5967 __kmp_finalize_bget(thread); 5968 } 5969 #endif 5970 5971 #if KMP_AFFINITY_SUPPORTED 5972 if (thread->th.th_affin_mask != NULL) { 5973 KMP_CPU_FREE(thread->th.th_affin_mask); 5974 thread->th.th_affin_mask = NULL; 5975 } 5976 #endif /* KMP_AFFINITY_SUPPORTED */ 5977 5978 #if KMP_USE_HIER_SCHED 5979 if (thread->th.th_hier_bar_data != NULL) { 5980 __kmp_free(thread->th.th_hier_bar_data); 5981 thread->th.th_hier_bar_data = NULL; 5982 } 5983 #endif 5984 5985 __kmp_reap_team(thread->th.th_serial_team); 5986 thread->th.th_serial_team = NULL; 5987 __kmp_free(thread); 5988 5989 KMP_MB(); 5990 5991 } // __kmp_reap_thread 5992 5993 static void __kmp_internal_end(void) { 5994 int i; 5995 5996 /* First, unregister the library */ 5997 __kmp_unregister_library(); 5998 5999 #if KMP_OS_WINDOWS 6000 /* In Win static library, we can't tell when a root actually dies, so we 6001 reclaim the data structures for any root threads that have died but not 6002 unregistered themselves, in order to shut down cleanly. 6003 In Win dynamic library we also can't tell when a thread dies. */ 6004 __kmp_reclaim_dead_roots(); // AC: moved here to always clean resources of 6005 // dead roots 6006 #endif 6007 6008 for (i = 0; i < __kmp_threads_capacity; i++) 6009 if (__kmp_root[i]) 6010 if (__kmp_root[i]->r.r_active) 6011 break; 6012 KMP_MB(); /* Flush all pending memory write invalidates. */ 6013 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 6014 6015 if (i < __kmp_threads_capacity) { 6016 #if KMP_USE_MONITOR 6017 // 2009-09-08 (lev): Other alive roots found. Why do we kill the monitor?? 6018 KMP_MB(); /* Flush all pending memory write invalidates. */ 6019 6020 // Need to check that monitor was initialized before reaping it. If we are 6021 // called form __kmp_atfork_child (which sets __kmp_init_parallel = 0), then 6022 // __kmp_monitor will appear to contain valid data, but it is only valid in 6023 // the parent process, not the child. 6024 // New behavior (201008): instead of keying off of the flag 6025 // __kmp_init_parallel, the monitor thread creation is keyed off 6026 // of the new flag __kmp_init_monitor. 6027 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock); 6028 if (TCR_4(__kmp_init_monitor)) { 6029 __kmp_reap_monitor(&__kmp_monitor); 6030 TCW_4(__kmp_init_monitor, 0); 6031 } 6032 __kmp_release_bootstrap_lock(&__kmp_monitor_lock); 6033 KA_TRACE(10, ("__kmp_internal_end: monitor reaped\n")); 6034 #endif // KMP_USE_MONITOR 6035 } else { 6036 /* TODO move this to cleanup code */ 6037 #ifdef KMP_DEBUG 6038 /* make sure that everything has properly ended */ 6039 for (i = 0; i < __kmp_threads_capacity; i++) { 6040 if (__kmp_root[i]) { 6041 // KMP_ASSERT( ! KMP_UBER_GTID( i ) ); // AC: 6042 // there can be uber threads alive here 6043 KMP_ASSERT(!__kmp_root[i]->r.r_active); // TODO: can they be active? 6044 } 6045 } 6046 #endif 6047 6048 KMP_MB(); 6049 6050 // Reap the worker threads. 6051 // This is valid for now, but be careful if threads are reaped sooner. 6052 while (__kmp_thread_pool != NULL) { // Loop thru all the thread in the pool. 6053 // Get the next thread from the pool. 6054 kmp_info_t *thread = CCAST(kmp_info_t *, __kmp_thread_pool); 6055 __kmp_thread_pool = thread->th.th_next_pool; 6056 // Reap it. 6057 KMP_DEBUG_ASSERT(thread->th.th_reap_state == KMP_SAFE_TO_REAP); 6058 thread->th.th_next_pool = NULL; 6059 thread->th.th_in_pool = FALSE; 6060 __kmp_reap_thread(thread, 0); 6061 } 6062 __kmp_thread_pool_insert_pt = NULL; 6063 6064 // Reap teams. 6065 while (__kmp_team_pool != NULL) { // Loop thru all the teams in the pool. 6066 // Get the next team from the pool. 6067 kmp_team_t *team = CCAST(kmp_team_t *, __kmp_team_pool); 6068 __kmp_team_pool = team->t.t_next_pool; 6069 // Reap it. 6070 team->t.t_next_pool = NULL; 6071 __kmp_reap_team(team); 6072 } 6073 6074 __kmp_reap_task_teams(); 6075 6076 #if KMP_OS_UNIX 6077 // Threads that are not reaped should not access any resources since they 6078 // are going to be deallocated soon, so the shutdown sequence should wait 6079 // until all threads either exit the final spin-waiting loop or begin 6080 // sleeping after the given blocktime. 6081 for (i = 0; i < __kmp_threads_capacity; i++) { 6082 kmp_info_t *thr = __kmp_threads[i]; 6083 while (thr && KMP_ATOMIC_LD_ACQ(&thr->th.th_blocking)) 6084 KMP_CPU_PAUSE(); 6085 } 6086 #endif 6087 6088 for (i = 0; i < __kmp_threads_capacity; ++i) { 6089 // TBD: Add some checking... 6090 // Something like KMP_DEBUG_ASSERT( __kmp_thread[ i ] == NULL ); 6091 } 6092 6093 /* Make sure all threadprivate destructors get run by joining with all 6094 worker threads before resetting this flag */ 6095 TCW_SYNC_4(__kmp_init_common, FALSE); 6096 6097 KA_TRACE(10, ("__kmp_internal_end: all workers reaped\n")); 6098 KMP_MB(); 6099 6100 #if KMP_USE_MONITOR 6101 // See note above: One of the possible fixes for CQ138434 / CQ140126 6102 // 6103 // FIXME: push both code fragments down and CSE them? 6104 // push them into __kmp_cleanup() ? 6105 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock); 6106 if (TCR_4(__kmp_init_monitor)) { 6107 __kmp_reap_monitor(&__kmp_monitor); 6108 TCW_4(__kmp_init_monitor, 0); 6109 } 6110 __kmp_release_bootstrap_lock(&__kmp_monitor_lock); 6111 KA_TRACE(10, ("__kmp_internal_end: monitor reaped\n")); 6112 #endif 6113 } /* else !__kmp_global.t_active */ 6114 TCW_4(__kmp_init_gtid, FALSE); 6115 KMP_MB(); /* Flush all pending memory write invalidates. */ 6116 6117 __kmp_cleanup(); 6118 #if OMPT_SUPPORT 6119 ompt_fini(); 6120 #endif 6121 } 6122 6123 void __kmp_internal_end_library(int gtid_req) { 6124 /* if we have already cleaned up, don't try again, it wouldn't be pretty */ 6125 /* this shouldn't be a race condition because __kmp_internal_end() is the 6126 only place to clear __kmp_serial_init */ 6127 /* we'll check this later too, after we get the lock */ 6128 // 2009-09-06: We do not set g_abort without setting g_done. This check looks 6129 // redundant, because the next check will work in any case. 6130 if (__kmp_global.g.g_abort) { 6131 KA_TRACE(11, ("__kmp_internal_end_library: abort, exiting\n")); 6132 /* TODO abort? */ 6133 return; 6134 } 6135 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6136 KA_TRACE(10, ("__kmp_internal_end_library: already finished\n")); 6137 return; 6138 } 6139 6140 KMP_MB(); /* Flush all pending memory write invalidates. */ 6141 /* find out who we are and what we should do */ 6142 { 6143 int gtid = (gtid_req >= 0) ? gtid_req : __kmp_gtid_get_specific(); 6144 KA_TRACE( 6145 10, ("__kmp_internal_end_library: enter T#%d (%d)\n", gtid, gtid_req)); 6146 if (gtid == KMP_GTID_SHUTDOWN) { 6147 KA_TRACE(10, ("__kmp_internal_end_library: !__kmp_init_runtime, system " 6148 "already shutdown\n")); 6149 return; 6150 } else if (gtid == KMP_GTID_MONITOR) { 6151 KA_TRACE(10, ("__kmp_internal_end_library: monitor thread, gtid not " 6152 "registered, or system shutdown\n")); 6153 return; 6154 } else if (gtid == KMP_GTID_DNE) { 6155 KA_TRACE(10, ("__kmp_internal_end_library: gtid not registered or system " 6156 "shutdown\n")); 6157 /* we don't know who we are, but we may still shutdown the library */ 6158 } else if (KMP_UBER_GTID(gtid)) { 6159 /* unregister ourselves as an uber thread. gtid is no longer valid */ 6160 if (__kmp_root[gtid]->r.r_active) { 6161 __kmp_global.g.g_abort = -1; 6162 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 6163 __kmp_unregister_library(); 6164 KA_TRACE(10, 6165 ("__kmp_internal_end_library: root still active, abort T#%d\n", 6166 gtid)); 6167 return; 6168 } else { 6169 KA_TRACE( 6170 10, 6171 ("__kmp_internal_end_library: unregistering sibling T#%d\n", gtid)); 6172 __kmp_unregister_root_current_thread(gtid); 6173 } 6174 } else { 6175 /* worker threads may call this function through the atexit handler, if they 6176 * call exit() */ 6177 /* For now, skip the usual subsequent processing and just dump the debug buffer. 6178 TODO: do a thorough shutdown instead */ 6179 #ifdef DUMP_DEBUG_ON_EXIT 6180 if (__kmp_debug_buf) 6181 __kmp_dump_debug_buffer(); 6182 #endif 6183 // added unregister library call here when we switch to shm linux 6184 // if we don't, it will leave lots of files in /dev/shm 6185 // cleanup shared memory file before exiting. 6186 __kmp_unregister_library(); 6187 return; 6188 } 6189 } 6190 /* synchronize the termination process */ 6191 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6192 6193 /* have we already finished */ 6194 if (__kmp_global.g.g_abort) { 6195 KA_TRACE(10, ("__kmp_internal_end_library: abort, exiting\n")); 6196 /* TODO abort? */ 6197 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6198 return; 6199 } 6200 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6201 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6202 return; 6203 } 6204 6205 /* We need this lock to enforce mutex between this reading of 6206 __kmp_threads_capacity and the writing by __kmp_register_root. 6207 Alternatively, we can use a counter of roots that is atomically updated by 6208 __kmp_get_global_thread_id_reg, __kmp_do_serial_initialize and 6209 __kmp_internal_end_*. */ 6210 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 6211 6212 /* now we can safely conduct the actual termination */ 6213 __kmp_internal_end(); 6214 6215 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 6216 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6217 6218 KA_TRACE(10, ("__kmp_internal_end_library: exit\n")); 6219 6220 #ifdef DUMP_DEBUG_ON_EXIT 6221 if (__kmp_debug_buf) 6222 __kmp_dump_debug_buffer(); 6223 #endif 6224 6225 #if KMP_OS_WINDOWS 6226 __kmp_close_console(); 6227 #endif 6228 6229 __kmp_fini_allocator(); 6230 6231 } // __kmp_internal_end_library 6232 6233 void __kmp_internal_end_thread(int gtid_req) { 6234 int i; 6235 6236 /* if we have already cleaned up, don't try again, it wouldn't be pretty */ 6237 /* this shouldn't be a race condition because __kmp_internal_end() is the 6238 * only place to clear __kmp_serial_init */ 6239 /* we'll check this later too, after we get the lock */ 6240 // 2009-09-06: We do not set g_abort without setting g_done. This check looks 6241 // redundant, because the next check will work in any case. 6242 if (__kmp_global.g.g_abort) { 6243 KA_TRACE(11, ("__kmp_internal_end_thread: abort, exiting\n")); 6244 /* TODO abort? */ 6245 return; 6246 } 6247 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6248 KA_TRACE(10, ("__kmp_internal_end_thread: already finished\n")); 6249 return; 6250 } 6251 6252 KMP_MB(); /* Flush all pending memory write invalidates. */ 6253 6254 /* find out who we are and what we should do */ 6255 { 6256 int gtid = (gtid_req >= 0) ? gtid_req : __kmp_gtid_get_specific(); 6257 KA_TRACE(10, 6258 ("__kmp_internal_end_thread: enter T#%d (%d)\n", gtid, gtid_req)); 6259 if (gtid == KMP_GTID_SHUTDOWN) { 6260 KA_TRACE(10, ("__kmp_internal_end_thread: !__kmp_init_runtime, system " 6261 "already shutdown\n")); 6262 return; 6263 } else if (gtid == KMP_GTID_MONITOR) { 6264 KA_TRACE(10, ("__kmp_internal_end_thread: monitor thread, gtid not " 6265 "registered, or system shutdown\n")); 6266 return; 6267 } else if (gtid == KMP_GTID_DNE) { 6268 KA_TRACE(10, ("__kmp_internal_end_thread: gtid not registered or system " 6269 "shutdown\n")); 6270 return; 6271 /* we don't know who we are */ 6272 } else if (KMP_UBER_GTID(gtid)) { 6273 /* unregister ourselves as an uber thread. gtid is no longer valid */ 6274 if (__kmp_root[gtid]->r.r_active) { 6275 __kmp_global.g.g_abort = -1; 6276 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 6277 KA_TRACE(10, 6278 ("__kmp_internal_end_thread: root still active, abort T#%d\n", 6279 gtid)); 6280 return; 6281 } else { 6282 KA_TRACE(10, ("__kmp_internal_end_thread: unregistering sibling T#%d\n", 6283 gtid)); 6284 __kmp_unregister_root_current_thread(gtid); 6285 } 6286 } else { 6287 /* just a worker thread, let's leave */ 6288 KA_TRACE(10, ("__kmp_internal_end_thread: worker thread T#%d\n", gtid)); 6289 6290 if (gtid >= 0) { 6291 __kmp_threads[gtid]->th.th_task_team = NULL; 6292 } 6293 6294 KA_TRACE(10, 6295 ("__kmp_internal_end_thread: worker thread done, exiting T#%d\n", 6296 gtid)); 6297 return; 6298 } 6299 } 6300 #if KMP_DYNAMIC_LIB 6301 if (__kmp_pause_status != kmp_hard_paused) 6302 // AC: lets not shutdown the dynamic library at the exit of uber thread, 6303 // because we will better shutdown later in the library destructor. 6304 { 6305 KA_TRACE(10, ("__kmp_internal_end_thread: exiting T#%d\n", gtid_req)); 6306 return; 6307 } 6308 #endif 6309 /* synchronize the termination process */ 6310 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6311 6312 /* have we already finished */ 6313 if (__kmp_global.g.g_abort) { 6314 KA_TRACE(10, ("__kmp_internal_end_thread: abort, exiting\n")); 6315 /* TODO abort? */ 6316 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6317 return; 6318 } 6319 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6320 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6321 return; 6322 } 6323 6324 /* We need this lock to enforce mutex between this reading of 6325 __kmp_threads_capacity and the writing by __kmp_register_root. 6326 Alternatively, we can use a counter of roots that is atomically updated by 6327 __kmp_get_global_thread_id_reg, __kmp_do_serial_initialize and 6328 __kmp_internal_end_*. */ 6329 6330 /* should we finish the run-time? are all siblings done? */ 6331 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 6332 6333 for (i = 0; i < __kmp_threads_capacity; ++i) { 6334 if (KMP_UBER_GTID(i)) { 6335 KA_TRACE( 6336 10, 6337 ("__kmp_internal_end_thread: remaining sibling task: gtid==%d\n", i)); 6338 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 6339 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6340 return; 6341 } 6342 } 6343 6344 /* now we can safely conduct the actual termination */ 6345 6346 __kmp_internal_end(); 6347 6348 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 6349 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6350 6351 KA_TRACE(10, ("__kmp_internal_end_thread: exit T#%d\n", gtid_req)); 6352 6353 #ifdef DUMP_DEBUG_ON_EXIT 6354 if (__kmp_debug_buf) 6355 __kmp_dump_debug_buffer(); 6356 #endif 6357 } // __kmp_internal_end_thread 6358 6359 // ----------------------------------------------------------------------------- 6360 // Library registration stuff. 6361 6362 static long __kmp_registration_flag = 0; 6363 // Random value used to indicate library initialization. 6364 static char *__kmp_registration_str = NULL; 6365 // Value to be saved in env var __KMP_REGISTERED_LIB_<pid>. 6366 6367 static inline char *__kmp_reg_status_name() { 6368 /* On RHEL 3u5 if linked statically, getpid() returns different values in 6369 each thread. If registration and unregistration go in different threads 6370 (omp_misc_other_root_exit.cpp test case), the name of registered_lib_env 6371 env var can not be found, because the name will contain different pid. */ 6372 // macOS* complains about name being too long with additional getuid() 6373 #if KMP_OS_UNIX && !KMP_OS_DARWIN && KMP_DYNAMIC_LIB 6374 return __kmp_str_format("__KMP_REGISTERED_LIB_%d_%d", (int)getpid(), 6375 (int)getuid()); 6376 #else 6377 return __kmp_str_format("__KMP_REGISTERED_LIB_%d", (int)getpid()); 6378 #endif 6379 } // __kmp_reg_status_get 6380 6381 void __kmp_register_library_startup(void) { 6382 6383 char *name = __kmp_reg_status_name(); // Name of the environment variable. 6384 int done = 0; 6385 union { 6386 double dtime; 6387 long ltime; 6388 } time; 6389 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 6390 __kmp_initialize_system_tick(); 6391 #endif 6392 __kmp_read_system_time(&time.dtime); 6393 __kmp_registration_flag = 0xCAFE0000L | (time.ltime & 0x0000FFFFL); 6394 __kmp_registration_str = 6395 __kmp_str_format("%p-%lx-%s", &__kmp_registration_flag, 6396 __kmp_registration_flag, KMP_LIBRARY_FILE); 6397 6398 KA_TRACE(50, ("__kmp_register_library_startup: %s=\"%s\"\n", name, 6399 __kmp_registration_str)); 6400 6401 while (!done) { 6402 6403 char *value = NULL; // Actual value of the environment variable. 6404 6405 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB // shared memory is with dynamic library 6406 char *shm_name = __kmp_str_format("/%s", name); 6407 int shm_preexist = 0; 6408 char *data1; 6409 int fd1 = shm_open(shm_name, O_CREAT | O_EXCL | O_RDWR, 0666); 6410 if ((fd1 == -1) && (errno == EEXIST)) { 6411 // file didn't open because it already exists. 6412 // try opening existing file 6413 fd1 = shm_open(shm_name, O_RDWR, 0666); 6414 if (fd1 == -1) { // file didn't open 6415 // error out here 6416 __kmp_fatal(KMP_MSG(FunctionError, "Can't open SHM"), KMP_ERR(0), 6417 __kmp_msg_null); 6418 } else { 6419 // able to open existing file 6420 shm_preexist = 1; 6421 } 6422 } else if (fd1 == -1) { // SHM didn't open; it was due to error other than 6423 // already exists. 6424 // error out here. 6425 __kmp_fatal(KMP_MSG(FunctionError, "Can't open SHM2"), KMP_ERR(errno), 6426 __kmp_msg_null); 6427 } 6428 if (shm_preexist == 0) { 6429 // we created SHM now set size 6430 if (ftruncate(fd1, SHM_SIZE) == -1) { 6431 // error occured setting size; 6432 __kmp_fatal(KMP_MSG(FunctionError, "Can't set size of SHM"), 6433 KMP_ERR(errno), __kmp_msg_null); 6434 } 6435 } 6436 data1 = 6437 (char *)mmap(0, SHM_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd1, 0); 6438 if (data1 == MAP_FAILED) { 6439 // failed to map shared memory 6440 __kmp_fatal(KMP_MSG(FunctionError, "Can't map SHM"), KMP_ERR(errno), 6441 __kmp_msg_null); 6442 } 6443 if (shm_preexist == 0) { // set data to SHM, set value 6444 KMP_STRCPY_S(data1, SHM_SIZE, __kmp_registration_str); 6445 } 6446 // Read value from either what we just wrote or existing file. 6447 value = __kmp_str_format("%s", data1); // read value from SHM 6448 munmap(data1, SHM_SIZE); 6449 close(fd1); 6450 #else // Windows and unix with static library 6451 // Set environment variable, but do not overwrite if it is exist. 6452 __kmp_env_set(name, __kmp_registration_str, 0); 6453 // read value to see if it got set 6454 value = __kmp_env_get(name); 6455 #endif 6456 6457 if (value != NULL && strcmp(value, __kmp_registration_str) == 0) { 6458 done = 1; // Ok, environment variable set successfully, exit the loop. 6459 } else { 6460 // Oops. Write failed. Another copy of OpenMP RTL is in memory. 6461 // Check whether it alive or dead. 6462 int neighbor = 0; // 0 -- unknown status, 1 -- alive, 2 -- dead. 6463 char *tail = value; 6464 char *flag_addr_str = NULL; 6465 char *flag_val_str = NULL; 6466 char const *file_name = NULL; 6467 __kmp_str_split(tail, '-', &flag_addr_str, &tail); 6468 __kmp_str_split(tail, '-', &flag_val_str, &tail); 6469 file_name = tail; 6470 if (tail != NULL) { 6471 long *flag_addr = 0; 6472 long flag_val = 0; 6473 KMP_SSCANF(flag_addr_str, "%p", RCAST(void**, &flag_addr)); 6474 KMP_SSCANF(flag_val_str, "%lx", &flag_val); 6475 if (flag_addr != 0 && flag_val != 0 && strcmp(file_name, "") != 0) { 6476 // First, check whether environment-encoded address is mapped into 6477 // addr space. 6478 // If so, dereference it to see if it still has the right value. 6479 if (__kmp_is_address_mapped(flag_addr) && *flag_addr == flag_val) { 6480 neighbor = 1; 6481 } else { 6482 // If not, then we know the other copy of the library is no longer 6483 // running. 6484 neighbor = 2; 6485 } 6486 } 6487 } 6488 switch (neighbor) { 6489 case 0: // Cannot parse environment variable -- neighbor status unknown. 6490 // Assume it is the incompatible format of future version of the 6491 // library. Assume the other library is alive. 6492 // WARN( ... ); // TODO: Issue a warning. 6493 file_name = "unknown library"; 6494 KMP_FALLTHROUGH(); 6495 // Attention! Falling to the next case. That's intentional. 6496 case 1: { // Neighbor is alive. 6497 // Check it is allowed. 6498 char *duplicate_ok = __kmp_env_get("KMP_DUPLICATE_LIB_OK"); 6499 if (!__kmp_str_match_true(duplicate_ok)) { 6500 // That's not allowed. Issue fatal error. 6501 __kmp_fatal(KMP_MSG(DuplicateLibrary, KMP_LIBRARY_FILE, file_name), 6502 KMP_HNT(DuplicateLibrary), __kmp_msg_null); 6503 } 6504 KMP_INTERNAL_FREE(duplicate_ok); 6505 __kmp_duplicate_library_ok = 1; 6506 done = 1; // Exit the loop. 6507 } break; 6508 case 2: { // Neighbor is dead. 6509 6510 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB // shared memory is with dynamic library 6511 // close shared memory. 6512 shm_unlink(shm_name); // this removes file in /dev/shm 6513 #else 6514 // Clear the variable and try to register library again. 6515 __kmp_env_unset(name); 6516 #endif 6517 } break; 6518 default: { KMP_DEBUG_ASSERT(0); } break; 6519 } 6520 } 6521 KMP_INTERNAL_FREE((void *)value); 6522 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB // shared memory is with dynamic library 6523 KMP_INTERNAL_FREE((void *)shm_name); 6524 #endif 6525 } // while 6526 KMP_INTERNAL_FREE((void *)name); 6527 6528 } // func __kmp_register_library_startup 6529 6530 void __kmp_unregister_library(void) { 6531 6532 char *name = __kmp_reg_status_name(); 6533 char *value = NULL; 6534 6535 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB // shared memory is with dynamic library 6536 char *shm_name = __kmp_str_format("/%s", name); 6537 int fd1 = shm_open(shm_name, O_RDONLY, 0666); 6538 if (fd1 == -1) { 6539 // file did not open. return. 6540 return; 6541 } 6542 char *data1 = (char *)mmap(0, SHM_SIZE, PROT_READ, MAP_SHARED, fd1, 0); 6543 if (data1 != MAP_FAILED) { 6544 value = __kmp_str_format("%s", data1); // read value from SHM 6545 munmap(data1, SHM_SIZE); 6546 } 6547 close(fd1); 6548 #else 6549 value = __kmp_env_get(name); 6550 #endif 6551 6552 KMP_DEBUG_ASSERT(__kmp_registration_flag != 0); 6553 KMP_DEBUG_ASSERT(__kmp_registration_str != NULL); 6554 if (value != NULL && strcmp(value, __kmp_registration_str) == 0) { 6555 // Ok, this is our variable. Delete it. 6556 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB // shared memory is with dynamic library 6557 shm_unlink(shm_name); // this removes file in /dev/shm 6558 #else 6559 __kmp_env_unset(name); 6560 #endif 6561 } 6562 6563 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB // shared memory is with dynamic library 6564 KMP_INTERNAL_FREE(shm_name); 6565 #endif 6566 6567 KMP_INTERNAL_FREE(__kmp_registration_str); 6568 KMP_INTERNAL_FREE(value); 6569 KMP_INTERNAL_FREE(name); 6570 6571 __kmp_registration_flag = 0; 6572 __kmp_registration_str = NULL; 6573 6574 } // __kmp_unregister_library 6575 6576 // End of Library registration stuff. 6577 // ----------------------------------------------------------------------------- 6578 6579 #if KMP_MIC_SUPPORTED 6580 6581 static void __kmp_check_mic_type() { 6582 kmp_cpuid_t cpuid_state = {0}; 6583 kmp_cpuid_t *cs_p = &cpuid_state; 6584 __kmp_x86_cpuid(1, 0, cs_p); 6585 // We don't support mic1 at the moment 6586 if ((cs_p->eax & 0xff0) == 0xB10) { 6587 __kmp_mic_type = mic2; 6588 } else if ((cs_p->eax & 0xf0ff0) == 0x50670) { 6589 __kmp_mic_type = mic3; 6590 } else { 6591 __kmp_mic_type = non_mic; 6592 } 6593 } 6594 6595 #endif /* KMP_MIC_SUPPORTED */ 6596 6597 #if KMP_HAVE_UMWAIT 6598 static void __kmp_user_level_mwait_init() { 6599 struct kmp_cpuid buf; 6600 __kmp_x86_cpuid(7, 0, &buf); 6601 __kmp_umwait_enabled = ((buf.ecx >> 5) & 1) && __kmp_user_level_mwait; 6602 KF_TRACE(30, ("__kmp_user_level_mwait_init: __kmp_umwait_enabled = %d\n", 6603 __kmp_umwait_enabled)); 6604 } 6605 #elif KMP_HAVE_MWAIT 6606 #ifndef AT_INTELPHIUSERMWAIT 6607 // Spurious, non-existent value that should always fail to return anything. 6608 // Will be replaced with the correct value when we know that. 6609 #define AT_INTELPHIUSERMWAIT 10000 6610 #endif 6611 // getauxval() function is available in RHEL7 and SLES12. If a system with an 6612 // earlier OS is used to build the RTL, we'll use the following internal 6613 // function when the entry is not found. 6614 unsigned long getauxval(unsigned long) KMP_WEAK_ATTRIBUTE_EXTERNAL; 6615 unsigned long getauxval(unsigned long) { return 0; } 6616 6617 static void __kmp_user_level_mwait_init() { 6618 // When getauxval() and correct value of AT_INTELPHIUSERMWAIT are available 6619 // use them to find if the user-level mwait is enabled. Otherwise, forcibly 6620 // set __kmp_mwait_enabled=TRUE on Intel MIC if the environment variable 6621 // KMP_USER_LEVEL_MWAIT was set to TRUE. 6622 if (__kmp_mic_type == mic3) { 6623 unsigned long res = getauxval(AT_INTELPHIUSERMWAIT); 6624 if ((res & 0x1) || __kmp_user_level_mwait) { 6625 __kmp_mwait_enabled = TRUE; 6626 if (__kmp_user_level_mwait) { 6627 KMP_INFORM(EnvMwaitWarn); 6628 } 6629 } else { 6630 __kmp_mwait_enabled = FALSE; 6631 } 6632 } 6633 KF_TRACE(30, ("__kmp_user_level_mwait_init: __kmp_mic_type = %d, " 6634 "__kmp_mwait_enabled = %d\n", 6635 __kmp_mic_type, __kmp_mwait_enabled)); 6636 } 6637 #endif /* KMP_HAVE_UMWAIT */ 6638 6639 static void __kmp_do_serial_initialize(void) { 6640 int i, gtid; 6641 size_t size; 6642 6643 KA_TRACE(10, ("__kmp_do_serial_initialize: enter\n")); 6644 6645 KMP_DEBUG_ASSERT(sizeof(kmp_int32) == 4); 6646 KMP_DEBUG_ASSERT(sizeof(kmp_uint32) == 4); 6647 KMP_DEBUG_ASSERT(sizeof(kmp_int64) == 8); 6648 KMP_DEBUG_ASSERT(sizeof(kmp_uint64) == 8); 6649 KMP_DEBUG_ASSERT(sizeof(kmp_intptr_t) == sizeof(void *)); 6650 6651 #if OMPT_SUPPORT 6652 ompt_pre_init(); 6653 #endif 6654 6655 __kmp_validate_locks(); 6656 6657 /* Initialize internal memory allocator */ 6658 __kmp_init_allocator(); 6659 6660 /* Register the library startup via an environment variable and check to see 6661 whether another copy of the library is already registered. */ 6662 6663 __kmp_register_library_startup(); 6664 6665 /* TODO reinitialization of library */ 6666 if (TCR_4(__kmp_global.g.g_done)) { 6667 KA_TRACE(10, ("__kmp_do_serial_initialize: reinitialization of library\n")); 6668 } 6669 6670 __kmp_global.g.g_abort = 0; 6671 TCW_SYNC_4(__kmp_global.g.g_done, FALSE); 6672 6673 /* initialize the locks */ 6674 #if KMP_USE_ADAPTIVE_LOCKS 6675 #if KMP_DEBUG_ADAPTIVE_LOCKS 6676 __kmp_init_speculative_stats(); 6677 #endif 6678 #endif 6679 #if KMP_STATS_ENABLED 6680 __kmp_stats_init(); 6681 #endif 6682 __kmp_init_lock(&__kmp_global_lock); 6683 __kmp_init_queuing_lock(&__kmp_dispatch_lock); 6684 __kmp_init_lock(&__kmp_debug_lock); 6685 __kmp_init_atomic_lock(&__kmp_atomic_lock); 6686 __kmp_init_atomic_lock(&__kmp_atomic_lock_1i); 6687 __kmp_init_atomic_lock(&__kmp_atomic_lock_2i); 6688 __kmp_init_atomic_lock(&__kmp_atomic_lock_4i); 6689 __kmp_init_atomic_lock(&__kmp_atomic_lock_4r); 6690 __kmp_init_atomic_lock(&__kmp_atomic_lock_8i); 6691 __kmp_init_atomic_lock(&__kmp_atomic_lock_8r); 6692 __kmp_init_atomic_lock(&__kmp_atomic_lock_8c); 6693 __kmp_init_atomic_lock(&__kmp_atomic_lock_10r); 6694 __kmp_init_atomic_lock(&__kmp_atomic_lock_16r); 6695 __kmp_init_atomic_lock(&__kmp_atomic_lock_16c); 6696 __kmp_init_atomic_lock(&__kmp_atomic_lock_20c); 6697 __kmp_init_atomic_lock(&__kmp_atomic_lock_32c); 6698 __kmp_init_bootstrap_lock(&__kmp_forkjoin_lock); 6699 __kmp_init_bootstrap_lock(&__kmp_exit_lock); 6700 #if KMP_USE_MONITOR 6701 __kmp_init_bootstrap_lock(&__kmp_monitor_lock); 6702 #endif 6703 __kmp_init_bootstrap_lock(&__kmp_tp_cached_lock); 6704 6705 /* conduct initialization and initial setup of configuration */ 6706 6707 __kmp_runtime_initialize(); 6708 6709 #if KMP_MIC_SUPPORTED 6710 __kmp_check_mic_type(); 6711 #endif 6712 6713 // Some global variable initialization moved here from kmp_env_initialize() 6714 #ifdef KMP_DEBUG 6715 kmp_diag = 0; 6716 #endif 6717 __kmp_abort_delay = 0; 6718 6719 // From __kmp_init_dflt_team_nth() 6720 /* assume the entire machine will be used */ 6721 __kmp_dflt_team_nth_ub = __kmp_xproc; 6722 if (__kmp_dflt_team_nth_ub < KMP_MIN_NTH) { 6723 __kmp_dflt_team_nth_ub = KMP_MIN_NTH; 6724 } 6725 if (__kmp_dflt_team_nth_ub > __kmp_sys_max_nth) { 6726 __kmp_dflt_team_nth_ub = __kmp_sys_max_nth; 6727 } 6728 __kmp_max_nth = __kmp_sys_max_nth; 6729 __kmp_cg_max_nth = __kmp_sys_max_nth; 6730 __kmp_teams_max_nth = __kmp_xproc; // set a "reasonable" default 6731 if (__kmp_teams_max_nth > __kmp_sys_max_nth) { 6732 __kmp_teams_max_nth = __kmp_sys_max_nth; 6733 } 6734 6735 // Three vars below moved here from __kmp_env_initialize() "KMP_BLOCKTIME" 6736 // part 6737 __kmp_dflt_blocktime = KMP_DEFAULT_BLOCKTIME; 6738 #if KMP_USE_MONITOR 6739 __kmp_monitor_wakeups = 6740 KMP_WAKEUPS_FROM_BLOCKTIME(__kmp_dflt_blocktime, __kmp_monitor_wakeups); 6741 __kmp_bt_intervals = 6742 KMP_INTERVALS_FROM_BLOCKTIME(__kmp_dflt_blocktime, __kmp_monitor_wakeups); 6743 #endif 6744 // From "KMP_LIBRARY" part of __kmp_env_initialize() 6745 __kmp_library = library_throughput; 6746 // From KMP_SCHEDULE initialization 6747 __kmp_static = kmp_sch_static_balanced; 6748 // AC: do not use analytical here, because it is non-monotonous 6749 //__kmp_guided = kmp_sch_guided_iterative_chunked; 6750 //__kmp_auto = kmp_sch_guided_analytical_chunked; // AC: it is the default, no 6751 // need to repeat assignment 6752 // Barrier initialization. Moved here from __kmp_env_initialize() Barrier branch 6753 // bit control and barrier method control parts 6754 #if KMP_FAST_REDUCTION_BARRIER 6755 #define kmp_reduction_barrier_gather_bb ((int)1) 6756 #define kmp_reduction_barrier_release_bb ((int)1) 6757 #define kmp_reduction_barrier_gather_pat bp_hyper_bar 6758 #define kmp_reduction_barrier_release_pat bp_hyper_bar 6759 #endif // KMP_FAST_REDUCTION_BARRIER 6760 for (i = bs_plain_barrier; i < bs_last_barrier; i++) { 6761 __kmp_barrier_gather_branch_bits[i] = __kmp_barrier_gather_bb_dflt; 6762 __kmp_barrier_release_branch_bits[i] = __kmp_barrier_release_bb_dflt; 6763 __kmp_barrier_gather_pattern[i] = __kmp_barrier_gather_pat_dflt; 6764 __kmp_barrier_release_pattern[i] = __kmp_barrier_release_pat_dflt; 6765 #if KMP_FAST_REDUCTION_BARRIER 6766 if (i == bs_reduction_barrier) { // tested and confirmed on ALTIX only ( 6767 // lin_64 ): hyper,1 6768 __kmp_barrier_gather_branch_bits[i] = kmp_reduction_barrier_gather_bb; 6769 __kmp_barrier_release_branch_bits[i] = kmp_reduction_barrier_release_bb; 6770 __kmp_barrier_gather_pattern[i] = kmp_reduction_barrier_gather_pat; 6771 __kmp_barrier_release_pattern[i] = kmp_reduction_barrier_release_pat; 6772 } 6773 #endif // KMP_FAST_REDUCTION_BARRIER 6774 } 6775 #if KMP_FAST_REDUCTION_BARRIER 6776 #undef kmp_reduction_barrier_release_pat 6777 #undef kmp_reduction_barrier_gather_pat 6778 #undef kmp_reduction_barrier_release_bb 6779 #undef kmp_reduction_barrier_gather_bb 6780 #endif // KMP_FAST_REDUCTION_BARRIER 6781 #if KMP_MIC_SUPPORTED 6782 if (__kmp_mic_type == mic2) { // KNC 6783 // AC: plane=3,2, forkjoin=2,1 are optimal for 240 threads on KNC 6784 __kmp_barrier_gather_branch_bits[bs_plain_barrier] = 3; // plain gather 6785 __kmp_barrier_release_branch_bits[bs_forkjoin_barrier] = 6786 1; // forkjoin release 6787 __kmp_barrier_gather_pattern[bs_forkjoin_barrier] = bp_hierarchical_bar; 6788 __kmp_barrier_release_pattern[bs_forkjoin_barrier] = bp_hierarchical_bar; 6789 } 6790 #if KMP_FAST_REDUCTION_BARRIER 6791 if (__kmp_mic_type == mic2) { // KNC 6792 __kmp_barrier_gather_pattern[bs_reduction_barrier] = bp_hierarchical_bar; 6793 __kmp_barrier_release_pattern[bs_reduction_barrier] = bp_hierarchical_bar; 6794 } 6795 #endif // KMP_FAST_REDUCTION_BARRIER 6796 #endif // KMP_MIC_SUPPORTED 6797 6798 // From KMP_CHECKS initialization 6799 #ifdef KMP_DEBUG 6800 __kmp_env_checks = TRUE; /* development versions have the extra checks */ 6801 #else 6802 __kmp_env_checks = FALSE; /* port versions do not have the extra checks */ 6803 #endif 6804 6805 // From "KMP_FOREIGN_THREADS_THREADPRIVATE" initialization 6806 __kmp_foreign_tp = TRUE; 6807 6808 __kmp_global.g.g_dynamic = FALSE; 6809 __kmp_global.g.g_dynamic_mode = dynamic_default; 6810 6811 __kmp_env_initialize(NULL); 6812 6813 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT 6814 __kmp_user_level_mwait_init(); 6815 #endif 6816 // Print all messages in message catalog for testing purposes. 6817 #ifdef KMP_DEBUG 6818 char const *val = __kmp_env_get("KMP_DUMP_CATALOG"); 6819 if (__kmp_str_match_true(val)) { 6820 kmp_str_buf_t buffer; 6821 __kmp_str_buf_init(&buffer); 6822 __kmp_i18n_dump_catalog(&buffer); 6823 __kmp_printf("%s", buffer.str); 6824 __kmp_str_buf_free(&buffer); 6825 } 6826 __kmp_env_free(&val); 6827 #endif 6828 6829 __kmp_threads_capacity = 6830 __kmp_initial_threads_capacity(__kmp_dflt_team_nth_ub); 6831 // Moved here from __kmp_env_initialize() "KMP_ALL_THREADPRIVATE" part 6832 __kmp_tp_capacity = __kmp_default_tp_capacity( 6833 __kmp_dflt_team_nth_ub, __kmp_max_nth, __kmp_allThreadsSpecified); 6834 6835 // If the library is shut down properly, both pools must be NULL. Just in 6836 // case, set them to NULL -- some memory may leak, but subsequent code will 6837 // work even if pools are not freed. 6838 KMP_DEBUG_ASSERT(__kmp_thread_pool == NULL); 6839 KMP_DEBUG_ASSERT(__kmp_thread_pool_insert_pt == NULL); 6840 KMP_DEBUG_ASSERT(__kmp_team_pool == NULL); 6841 __kmp_thread_pool = NULL; 6842 __kmp_thread_pool_insert_pt = NULL; 6843 __kmp_team_pool = NULL; 6844 6845 /* Allocate all of the variable sized records */ 6846 /* NOTE: __kmp_threads_capacity entries are allocated, but the arrays are 6847 * expandable */ 6848 /* Since allocation is cache-aligned, just add extra padding at the end */ 6849 size = 6850 (sizeof(kmp_info_t *) + sizeof(kmp_root_t *)) * __kmp_threads_capacity + 6851 CACHE_LINE; 6852 __kmp_threads = (kmp_info_t **)__kmp_allocate(size); 6853 __kmp_root = (kmp_root_t **)((char *)__kmp_threads + 6854 sizeof(kmp_info_t *) * __kmp_threads_capacity); 6855 6856 /* init thread counts */ 6857 KMP_DEBUG_ASSERT(__kmp_all_nth == 6858 0); // Asserts fail if the library is reinitializing and 6859 KMP_DEBUG_ASSERT(__kmp_nth == 0); // something was wrong in termination. 6860 __kmp_all_nth = 0; 6861 __kmp_nth = 0; 6862 6863 /* setup the uber master thread and hierarchy */ 6864 gtid = __kmp_register_root(TRUE); 6865 KA_TRACE(10, ("__kmp_do_serial_initialize T#%d\n", gtid)); 6866 KMP_ASSERT(KMP_UBER_GTID(gtid)); 6867 KMP_ASSERT(KMP_INITIAL_GTID(gtid)); 6868 6869 KMP_MB(); /* Flush all pending memory write invalidates. */ 6870 6871 __kmp_common_initialize(); 6872 6873 #if KMP_OS_UNIX 6874 /* invoke the child fork handler */ 6875 __kmp_register_atfork(); 6876 #endif 6877 6878 #if !KMP_DYNAMIC_LIB 6879 { 6880 /* Invoke the exit handler when the program finishes, only for static 6881 library. For dynamic library, we already have _fini and DllMain. */ 6882 int rc = atexit(__kmp_internal_end_atexit); 6883 if (rc != 0) { 6884 __kmp_fatal(KMP_MSG(FunctionError, "atexit()"), KMP_ERR(rc), 6885 __kmp_msg_null); 6886 } 6887 } 6888 #endif 6889 6890 #if KMP_HANDLE_SIGNALS 6891 #if KMP_OS_UNIX 6892 /* NOTE: make sure that this is called before the user installs their own 6893 signal handlers so that the user handlers are called first. this way they 6894 can return false, not call our handler, avoid terminating the library, and 6895 continue execution where they left off. */ 6896 __kmp_install_signals(FALSE); 6897 #endif /* KMP_OS_UNIX */ 6898 #if KMP_OS_WINDOWS 6899 __kmp_install_signals(TRUE); 6900 #endif /* KMP_OS_WINDOWS */ 6901 #endif 6902 6903 /* we have finished the serial initialization */ 6904 __kmp_init_counter++; 6905 6906 __kmp_init_serial = TRUE; 6907 6908 if (__kmp_settings) { 6909 __kmp_env_print(); 6910 } 6911 6912 if (__kmp_display_env || __kmp_display_env_verbose) { 6913 __kmp_env_print_2(); 6914 } 6915 6916 #if OMPT_SUPPORT 6917 ompt_post_init(); 6918 #endif 6919 6920 KMP_MB(); 6921 6922 KA_TRACE(10, ("__kmp_do_serial_initialize: exit\n")); 6923 } 6924 6925 void __kmp_serial_initialize(void) { 6926 if (__kmp_init_serial) { 6927 return; 6928 } 6929 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6930 if (__kmp_init_serial) { 6931 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6932 return; 6933 } 6934 __kmp_do_serial_initialize(); 6935 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6936 } 6937 6938 static void __kmp_do_middle_initialize(void) { 6939 int i, j; 6940 int prev_dflt_team_nth; 6941 6942 if (!__kmp_init_serial) { 6943 __kmp_do_serial_initialize(); 6944 } 6945 6946 KA_TRACE(10, ("__kmp_middle_initialize: enter\n")); 6947 6948 // Save the previous value for the __kmp_dflt_team_nth so that 6949 // we can avoid some reinitialization if it hasn't changed. 6950 prev_dflt_team_nth = __kmp_dflt_team_nth; 6951 6952 #if KMP_AFFINITY_SUPPORTED 6953 // __kmp_affinity_initialize() will try to set __kmp_ncores to the 6954 // number of cores on the machine. 6955 __kmp_affinity_initialize(); 6956 6957 // Run through the __kmp_threads array and set the affinity mask 6958 // for each root thread that is currently registered with the RTL. 6959 for (i = 0; i < __kmp_threads_capacity; i++) { 6960 if (TCR_PTR(__kmp_threads[i]) != NULL) { 6961 __kmp_affinity_set_init_mask(i, TRUE); 6962 } 6963 } 6964 #endif /* KMP_AFFINITY_SUPPORTED */ 6965 6966 KMP_ASSERT(__kmp_xproc > 0); 6967 if (__kmp_avail_proc == 0) { 6968 __kmp_avail_proc = __kmp_xproc; 6969 } 6970 6971 // If there were empty places in num_threads list (OMP_NUM_THREADS=,,2,3), 6972 // correct them now 6973 j = 0; 6974 while ((j < __kmp_nested_nth.used) && !__kmp_nested_nth.nth[j]) { 6975 __kmp_nested_nth.nth[j] = __kmp_dflt_team_nth = __kmp_dflt_team_nth_ub = 6976 __kmp_avail_proc; 6977 j++; 6978 } 6979 6980 if (__kmp_dflt_team_nth == 0) { 6981 #ifdef KMP_DFLT_NTH_CORES 6982 // Default #threads = #cores 6983 __kmp_dflt_team_nth = __kmp_ncores; 6984 KA_TRACE(20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = " 6985 "__kmp_ncores (%d)\n", 6986 __kmp_dflt_team_nth)); 6987 #else 6988 // Default #threads = #available OS procs 6989 __kmp_dflt_team_nth = __kmp_avail_proc; 6990 KA_TRACE(20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = " 6991 "__kmp_avail_proc(%d)\n", 6992 __kmp_dflt_team_nth)); 6993 #endif /* KMP_DFLT_NTH_CORES */ 6994 } 6995 6996 if (__kmp_dflt_team_nth < KMP_MIN_NTH) { 6997 __kmp_dflt_team_nth = KMP_MIN_NTH; 6998 } 6999 if (__kmp_dflt_team_nth > __kmp_sys_max_nth) { 7000 __kmp_dflt_team_nth = __kmp_sys_max_nth; 7001 } 7002 7003 // There's no harm in continuing if the following check fails, 7004 // but it indicates an error in the previous logic. 7005 KMP_DEBUG_ASSERT(__kmp_dflt_team_nth <= __kmp_dflt_team_nth_ub); 7006 7007 if (__kmp_dflt_team_nth != prev_dflt_team_nth) { 7008 // Run through the __kmp_threads array and set the num threads icv for each 7009 // root thread that is currently registered with the RTL (which has not 7010 // already explicitly set its nthreads-var with a call to 7011 // omp_set_num_threads()). 7012 for (i = 0; i < __kmp_threads_capacity; i++) { 7013 kmp_info_t *thread = __kmp_threads[i]; 7014 if (thread == NULL) 7015 continue; 7016 if (thread->th.th_current_task->td_icvs.nproc != 0) 7017 continue; 7018 7019 set__nproc(__kmp_threads[i], __kmp_dflt_team_nth); 7020 } 7021 } 7022 KA_TRACE( 7023 20, 7024 ("__kmp_middle_initialize: final value for __kmp_dflt_team_nth = %d\n", 7025 __kmp_dflt_team_nth)); 7026 7027 #ifdef KMP_ADJUST_BLOCKTIME 7028 /* Adjust blocktime to zero if necessary now that __kmp_avail_proc is set */ 7029 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 7030 KMP_DEBUG_ASSERT(__kmp_avail_proc > 0); 7031 if (__kmp_nth > __kmp_avail_proc) { 7032 __kmp_zero_bt = TRUE; 7033 } 7034 } 7035 #endif /* KMP_ADJUST_BLOCKTIME */ 7036 7037 /* we have finished middle initialization */ 7038 TCW_SYNC_4(__kmp_init_middle, TRUE); 7039 7040 KA_TRACE(10, ("__kmp_do_middle_initialize: exit\n")); 7041 } 7042 7043 void __kmp_middle_initialize(void) { 7044 if (__kmp_init_middle) { 7045 return; 7046 } 7047 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 7048 if (__kmp_init_middle) { 7049 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7050 return; 7051 } 7052 __kmp_do_middle_initialize(); 7053 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7054 } 7055 7056 void __kmp_parallel_initialize(void) { 7057 int gtid = __kmp_entry_gtid(); // this might be a new root 7058 7059 /* synchronize parallel initialization (for sibling) */ 7060 if (TCR_4(__kmp_init_parallel)) 7061 return; 7062 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 7063 if (TCR_4(__kmp_init_parallel)) { 7064 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7065 return; 7066 } 7067 7068 /* TODO reinitialization after we have already shut down */ 7069 if (TCR_4(__kmp_global.g.g_done)) { 7070 KA_TRACE( 7071 10, 7072 ("__kmp_parallel_initialize: attempt to init while shutting down\n")); 7073 __kmp_infinite_loop(); 7074 } 7075 7076 /* jc: The lock __kmp_initz_lock is already held, so calling 7077 __kmp_serial_initialize would cause a deadlock. So we call 7078 __kmp_do_serial_initialize directly. */ 7079 if (!__kmp_init_middle) { 7080 __kmp_do_middle_initialize(); 7081 } 7082 __kmp_resume_if_hard_paused(); 7083 7084 /* begin initialization */ 7085 KA_TRACE(10, ("__kmp_parallel_initialize: enter\n")); 7086 KMP_ASSERT(KMP_UBER_GTID(gtid)); 7087 7088 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 7089 // Save the FP control regs. 7090 // Worker threads will set theirs to these values at thread startup. 7091 __kmp_store_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word); 7092 __kmp_store_mxcsr(&__kmp_init_mxcsr); 7093 __kmp_init_mxcsr &= KMP_X86_MXCSR_MASK; 7094 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 7095 7096 #if KMP_OS_UNIX 7097 #if KMP_HANDLE_SIGNALS 7098 /* must be after __kmp_serial_initialize */ 7099 __kmp_install_signals(TRUE); 7100 #endif 7101 #endif 7102 7103 __kmp_suspend_initialize(); 7104 7105 #if defined(USE_LOAD_BALANCE) 7106 if (__kmp_global.g.g_dynamic_mode == dynamic_default) { 7107 __kmp_global.g.g_dynamic_mode = dynamic_load_balance; 7108 } 7109 #else 7110 if (__kmp_global.g.g_dynamic_mode == dynamic_default) { 7111 __kmp_global.g.g_dynamic_mode = dynamic_thread_limit; 7112 } 7113 #endif 7114 7115 if (__kmp_version) { 7116 __kmp_print_version_2(); 7117 } 7118 7119 /* we have finished parallel initialization */ 7120 TCW_SYNC_4(__kmp_init_parallel, TRUE); 7121 7122 KMP_MB(); 7123 KA_TRACE(10, ("__kmp_parallel_initialize: exit\n")); 7124 7125 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7126 } 7127 7128 /* ------------------------------------------------------------------------ */ 7129 7130 void __kmp_run_before_invoked_task(int gtid, int tid, kmp_info_t *this_thr, 7131 kmp_team_t *team) { 7132 kmp_disp_t *dispatch; 7133 7134 KMP_MB(); 7135 7136 /* none of the threads have encountered any constructs, yet. */ 7137 this_thr->th.th_local.this_construct = 0; 7138 #if KMP_CACHE_MANAGE 7139 KMP_CACHE_PREFETCH(&this_thr->th.th_bar[bs_forkjoin_barrier].bb.b_arrived); 7140 #endif /* KMP_CACHE_MANAGE */ 7141 dispatch = (kmp_disp_t *)TCR_PTR(this_thr->th.th_dispatch); 7142 KMP_DEBUG_ASSERT(dispatch); 7143 KMP_DEBUG_ASSERT(team->t.t_dispatch); 7144 // KMP_DEBUG_ASSERT( this_thr->th.th_dispatch == &team->t.t_dispatch[ 7145 // this_thr->th.th_info.ds.ds_tid ] ); 7146 7147 dispatch->th_disp_index = 0; /* reset the dispatch buffer counter */ 7148 dispatch->th_doacross_buf_idx = 0; // reset doacross dispatch buffer counter 7149 if (__kmp_env_consistency_check) 7150 __kmp_push_parallel(gtid, team->t.t_ident); 7151 7152 KMP_MB(); /* Flush all pending memory write invalidates. */ 7153 } 7154 7155 void __kmp_run_after_invoked_task(int gtid, int tid, kmp_info_t *this_thr, 7156 kmp_team_t *team) { 7157 if (__kmp_env_consistency_check) 7158 __kmp_pop_parallel(gtid, team->t.t_ident); 7159 7160 __kmp_finish_implicit_task(this_thr); 7161 } 7162 7163 int __kmp_invoke_task_func(int gtid) { 7164 int rc; 7165 int tid = __kmp_tid_from_gtid(gtid); 7166 kmp_info_t *this_thr = __kmp_threads[gtid]; 7167 kmp_team_t *team = this_thr->th.th_team; 7168 7169 __kmp_run_before_invoked_task(gtid, tid, this_thr, team); 7170 #if USE_ITT_BUILD 7171 if (__itt_stack_caller_create_ptr) { 7172 __kmp_itt_stack_callee_enter( 7173 (__itt_caller) 7174 team->t.t_stack_id); // inform ittnotify about entering user's code 7175 } 7176 #endif /* USE_ITT_BUILD */ 7177 #if INCLUDE_SSC_MARKS 7178 SSC_MARK_INVOKING(); 7179 #endif 7180 7181 #if OMPT_SUPPORT 7182 void *dummy; 7183 void **exit_frame_p; 7184 ompt_data_t *my_task_data; 7185 ompt_data_t *my_parallel_data; 7186 int ompt_team_size; 7187 7188 if (ompt_enabled.enabled) { 7189 exit_frame_p = &( 7190 team->t.t_implicit_task_taskdata[tid].ompt_task_info.frame.exit_frame.ptr); 7191 } else { 7192 exit_frame_p = &dummy; 7193 } 7194 7195 my_task_data = 7196 &(team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data); 7197 my_parallel_data = &(team->t.ompt_team_info.parallel_data); 7198 if (ompt_enabled.ompt_callback_implicit_task) { 7199 ompt_team_size = team->t.t_nproc; 7200 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 7201 ompt_scope_begin, my_parallel_data, my_task_data, ompt_team_size, 7202 __kmp_tid_from_gtid(gtid), ompt_task_implicit); 7203 OMPT_CUR_TASK_INFO(this_thr)->thread_num = __kmp_tid_from_gtid(gtid); 7204 } 7205 #endif 7206 7207 #if KMP_STATS_ENABLED 7208 stats_state_e previous_state = KMP_GET_THREAD_STATE(); 7209 if (previous_state == stats_state_e::TEAMS_REGION) { 7210 KMP_PUSH_PARTITIONED_TIMER(OMP_teams); 7211 } else { 7212 KMP_PUSH_PARTITIONED_TIMER(OMP_parallel); 7213 } 7214 KMP_SET_THREAD_STATE(IMPLICIT_TASK); 7215 #endif 7216 7217 rc = __kmp_invoke_microtask((microtask_t)TCR_SYNC_PTR(team->t.t_pkfn), gtid, 7218 tid, (int)team->t.t_argc, (void **)team->t.t_argv 7219 #if OMPT_SUPPORT 7220 , 7221 exit_frame_p 7222 #endif 7223 ); 7224 #if OMPT_SUPPORT 7225 *exit_frame_p = NULL; 7226 this_thr->th.ompt_thread_info.parallel_flags |= ompt_parallel_team; 7227 #endif 7228 7229 #if KMP_STATS_ENABLED 7230 if (previous_state == stats_state_e::TEAMS_REGION) { 7231 KMP_SET_THREAD_STATE(previous_state); 7232 } 7233 KMP_POP_PARTITIONED_TIMER(); 7234 #endif 7235 7236 #if USE_ITT_BUILD 7237 if (__itt_stack_caller_create_ptr) { 7238 __kmp_itt_stack_callee_leave( 7239 (__itt_caller) 7240 team->t.t_stack_id); // inform ittnotify about leaving user's code 7241 } 7242 #endif /* USE_ITT_BUILD */ 7243 __kmp_run_after_invoked_task(gtid, tid, this_thr, team); 7244 7245 return rc; 7246 } 7247 7248 void __kmp_teams_master(int gtid) { 7249 // This routine is called by all master threads in teams construct 7250 kmp_info_t *thr = __kmp_threads[gtid]; 7251 kmp_team_t *team = thr->th.th_team; 7252 ident_t *loc = team->t.t_ident; 7253 thr->th.th_set_nproc = thr->th.th_teams_size.nth; 7254 KMP_DEBUG_ASSERT(thr->th.th_teams_microtask); 7255 KMP_DEBUG_ASSERT(thr->th.th_set_nproc); 7256 KA_TRACE(20, ("__kmp_teams_master: T#%d, Tid %d, microtask %p\n", gtid, 7257 __kmp_tid_from_gtid(gtid), thr->th.th_teams_microtask)); 7258 7259 // This thread is a new CG root. Set up the proper variables. 7260 kmp_cg_root_t *tmp = (kmp_cg_root_t *)__kmp_allocate(sizeof(kmp_cg_root_t)); 7261 tmp->cg_root = thr; // Make thr the CG root 7262 // Init to thread limit that was stored when league masters were forked 7263 tmp->cg_thread_limit = thr->th.th_current_task->td_icvs.thread_limit; 7264 tmp->cg_nthreads = 1; // Init counter to one active thread, this one 7265 KA_TRACE(100, ("__kmp_teams_master: Thread %p created node %p and init" 7266 " cg_nthreads to 1\n", 7267 thr, tmp)); 7268 tmp->up = thr->th.th_cg_roots; 7269 thr->th.th_cg_roots = tmp; 7270 7271 // Launch league of teams now, but not let workers execute 7272 // (they hang on fork barrier until next parallel) 7273 #if INCLUDE_SSC_MARKS 7274 SSC_MARK_FORKING(); 7275 #endif 7276 __kmp_fork_call(loc, gtid, fork_context_intel, team->t.t_argc, 7277 (microtask_t)thr->th.th_teams_microtask, // "wrapped" task 7278 VOLATILE_CAST(launch_t) __kmp_invoke_task_func, NULL); 7279 #if INCLUDE_SSC_MARKS 7280 SSC_MARK_JOINING(); 7281 #endif 7282 // If the team size was reduced from the limit, set it to the new size 7283 if (thr->th.th_team_nproc < thr->th.th_teams_size.nth) 7284 thr->th.th_teams_size.nth = thr->th.th_team_nproc; 7285 // AC: last parameter "1" eliminates join barrier which won't work because 7286 // worker threads are in a fork barrier waiting for more parallel regions 7287 __kmp_join_call(loc, gtid 7288 #if OMPT_SUPPORT 7289 , 7290 fork_context_intel 7291 #endif 7292 , 7293 1); 7294 } 7295 7296 int __kmp_invoke_teams_master(int gtid) { 7297 kmp_info_t *this_thr = __kmp_threads[gtid]; 7298 kmp_team_t *team = this_thr->th.th_team; 7299 #if KMP_DEBUG 7300 if (!__kmp_threads[gtid]->th.th_team->t.t_serialized) 7301 KMP_DEBUG_ASSERT((void *)__kmp_threads[gtid]->th.th_team->t.t_pkfn == 7302 (void *)__kmp_teams_master); 7303 #endif 7304 __kmp_run_before_invoked_task(gtid, 0, this_thr, team); 7305 #if OMPT_SUPPORT 7306 int tid = __kmp_tid_from_gtid(gtid); 7307 ompt_data_t *task_data = 7308 &team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data; 7309 ompt_data_t *parallel_data = &team->t.ompt_team_info.parallel_data; 7310 if (ompt_enabled.ompt_callback_implicit_task) { 7311 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 7312 ompt_scope_begin, parallel_data, task_data, team->t.t_nproc, tid, 7313 ompt_task_initial); 7314 OMPT_CUR_TASK_INFO(this_thr)->thread_num = tid; 7315 } 7316 #endif 7317 __kmp_teams_master(gtid); 7318 #if OMPT_SUPPORT 7319 this_thr->th.ompt_thread_info.parallel_flags |= ompt_parallel_league; 7320 #endif 7321 __kmp_run_after_invoked_task(gtid, 0, this_thr, team); 7322 return 1; 7323 } 7324 7325 /* this sets the requested number of threads for the next parallel region 7326 encountered by this team. since this should be enclosed in the forkjoin 7327 critical section it should avoid race conditions with asymmetrical nested 7328 parallelism */ 7329 7330 void __kmp_push_num_threads(ident_t *id, int gtid, int num_threads) { 7331 kmp_info_t *thr = __kmp_threads[gtid]; 7332 7333 if (num_threads > 0) 7334 thr->th.th_set_nproc = num_threads; 7335 } 7336 7337 /* this sets the requested number of teams for the teams region and/or 7338 the number of threads for the next parallel region encountered */ 7339 void __kmp_push_num_teams(ident_t *id, int gtid, int num_teams, 7340 int num_threads) { 7341 kmp_info_t *thr = __kmp_threads[gtid]; 7342 KMP_DEBUG_ASSERT(num_teams >= 0); 7343 KMP_DEBUG_ASSERT(num_threads >= 0); 7344 7345 if (num_teams == 0) 7346 num_teams = 1; // default number of teams is 1. 7347 if (num_teams > __kmp_teams_max_nth) { // if too many teams requested? 7348 if (!__kmp_reserve_warn) { 7349 __kmp_reserve_warn = 1; 7350 __kmp_msg(kmp_ms_warning, 7351 KMP_MSG(CantFormThrTeam, num_teams, __kmp_teams_max_nth), 7352 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 7353 } 7354 num_teams = __kmp_teams_max_nth; 7355 } 7356 // Set number of teams (number of threads in the outer "parallel" of the 7357 // teams) 7358 thr->th.th_set_nproc = thr->th.th_teams_size.nteams = num_teams; 7359 7360 // Remember the number of threads for inner parallel regions 7361 if (!TCR_4(__kmp_init_middle)) 7362 __kmp_middle_initialize(); // get internal globals calculated 7363 KMP_DEBUG_ASSERT(__kmp_avail_proc); 7364 KMP_DEBUG_ASSERT(__kmp_dflt_team_nth); 7365 if (num_threads == 0) { 7366 num_threads = __kmp_avail_proc / num_teams; 7367 // adjust num_threads w/o warning as it is not user setting 7368 // num_threads = min(num_threads, nthreads-var, thread-limit-var) 7369 // no thread_limit clause specified - do not change thread-limit-var ICV 7370 if (num_threads > __kmp_dflt_team_nth) { 7371 num_threads = __kmp_dflt_team_nth; // honor nthreads-var ICV 7372 } 7373 if (num_threads > thr->th.th_current_task->td_icvs.thread_limit) { 7374 num_threads = thr->th.th_current_task->td_icvs.thread_limit; 7375 } // prevent team size to exceed thread-limit-var 7376 if (num_teams * num_threads > __kmp_teams_max_nth) { 7377 num_threads = __kmp_teams_max_nth / num_teams; 7378 } 7379 } else { 7380 // This thread will be the master of the league masters 7381 // Store new thread limit; old limit is saved in th_cg_roots list 7382 thr->th.th_current_task->td_icvs.thread_limit = num_threads; 7383 // num_threads = min(num_threads, nthreads-var) 7384 if (num_threads > __kmp_dflt_team_nth) { 7385 num_threads = __kmp_dflt_team_nth; // honor nthreads-var ICV 7386 } 7387 if (num_teams * num_threads > __kmp_teams_max_nth) { 7388 int new_threads = __kmp_teams_max_nth / num_teams; 7389 if (!__kmp_reserve_warn) { // user asked for too many threads 7390 __kmp_reserve_warn = 1; // conflicts with KMP_TEAMS_THREAD_LIMIT 7391 __kmp_msg(kmp_ms_warning, 7392 KMP_MSG(CantFormThrTeam, num_threads, new_threads), 7393 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 7394 } 7395 num_threads = new_threads; 7396 } 7397 } 7398 thr->th.th_teams_size.nth = num_threads; 7399 } 7400 7401 // Set the proc_bind var to use in the following parallel region. 7402 void __kmp_push_proc_bind(ident_t *id, int gtid, kmp_proc_bind_t proc_bind) { 7403 kmp_info_t *thr = __kmp_threads[gtid]; 7404 thr->th.th_set_proc_bind = proc_bind; 7405 } 7406 7407 /* Launch the worker threads into the microtask. */ 7408 7409 void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team) { 7410 kmp_info_t *this_thr = __kmp_threads[gtid]; 7411 7412 #ifdef KMP_DEBUG 7413 int f; 7414 #endif /* KMP_DEBUG */ 7415 7416 KMP_DEBUG_ASSERT(team); 7417 KMP_DEBUG_ASSERT(this_thr->th.th_team == team); 7418 KMP_ASSERT(KMP_MASTER_GTID(gtid)); 7419 KMP_MB(); /* Flush all pending memory write invalidates. */ 7420 7421 team->t.t_construct = 0; /* no single directives seen yet */ 7422 team->t.t_ordered.dt.t_value = 7423 0; /* thread 0 enters the ordered section first */ 7424 7425 /* Reset the identifiers on the dispatch buffer */ 7426 KMP_DEBUG_ASSERT(team->t.t_disp_buffer); 7427 if (team->t.t_max_nproc > 1) { 7428 int i; 7429 for (i = 0; i < __kmp_dispatch_num_buffers; ++i) { 7430 team->t.t_disp_buffer[i].buffer_index = i; 7431 team->t.t_disp_buffer[i].doacross_buf_idx = i; 7432 } 7433 } else { 7434 team->t.t_disp_buffer[0].buffer_index = 0; 7435 team->t.t_disp_buffer[0].doacross_buf_idx = 0; 7436 } 7437 7438 KMP_MB(); /* Flush all pending memory write invalidates. */ 7439 KMP_ASSERT(this_thr->th.th_team == team); 7440 7441 #ifdef KMP_DEBUG 7442 for (f = 0; f < team->t.t_nproc; f++) { 7443 KMP_DEBUG_ASSERT(team->t.t_threads[f] && 7444 team->t.t_threads[f]->th.th_team_nproc == team->t.t_nproc); 7445 } 7446 #endif /* KMP_DEBUG */ 7447 7448 /* release the worker threads so they may begin working */ 7449 __kmp_fork_barrier(gtid, 0); 7450 } 7451 7452 void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team) { 7453 kmp_info_t *this_thr = __kmp_threads[gtid]; 7454 7455 KMP_DEBUG_ASSERT(team); 7456 KMP_DEBUG_ASSERT(this_thr->th.th_team == team); 7457 KMP_ASSERT(KMP_MASTER_GTID(gtid)); 7458 KMP_MB(); /* Flush all pending memory write invalidates. */ 7459 7460 /* Join barrier after fork */ 7461 7462 #ifdef KMP_DEBUG 7463 if (__kmp_threads[gtid] && 7464 __kmp_threads[gtid]->th.th_team_nproc != team->t.t_nproc) { 7465 __kmp_printf("GTID: %d, __kmp_threads[%d]=%p\n", gtid, gtid, 7466 __kmp_threads[gtid]); 7467 __kmp_printf("__kmp_threads[%d]->th.th_team_nproc=%d, TEAM: %p, " 7468 "team->t.t_nproc=%d\n", 7469 gtid, __kmp_threads[gtid]->th.th_team_nproc, team, 7470 team->t.t_nproc); 7471 __kmp_print_structure(); 7472 } 7473 KMP_DEBUG_ASSERT(__kmp_threads[gtid] && 7474 __kmp_threads[gtid]->th.th_team_nproc == team->t.t_nproc); 7475 #endif /* KMP_DEBUG */ 7476 7477 __kmp_join_barrier(gtid); /* wait for everyone */ 7478 #if OMPT_SUPPORT 7479 if (ompt_enabled.enabled && 7480 this_thr->th.ompt_thread_info.state == ompt_state_wait_barrier_implicit) { 7481 int ds_tid = this_thr->th.th_info.ds.ds_tid; 7482 ompt_data_t *task_data = OMPT_CUR_TASK_DATA(this_thr); 7483 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 7484 #if OMPT_OPTIONAL 7485 void *codeptr = NULL; 7486 if (KMP_MASTER_TID(ds_tid) && 7487 (ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait) || 7488 ompt_callbacks.ompt_callback(ompt_callback_sync_region))) 7489 codeptr = OMPT_CUR_TEAM_INFO(this_thr)->master_return_address; 7490 7491 if (ompt_enabled.ompt_callback_sync_region_wait) { 7492 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 7493 ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, task_data, 7494 codeptr); 7495 } 7496 if (ompt_enabled.ompt_callback_sync_region) { 7497 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 7498 ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, task_data, 7499 codeptr); 7500 } 7501 #endif 7502 if (!KMP_MASTER_TID(ds_tid) && ompt_enabled.ompt_callback_implicit_task) { 7503 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 7504 ompt_scope_end, NULL, task_data, 0, ds_tid, ompt_task_implicit); // TODO: Can this be ompt_task_initial? 7505 } 7506 } 7507 #endif 7508 7509 KMP_MB(); /* Flush all pending memory write invalidates. */ 7510 KMP_ASSERT(this_thr->th.th_team == team); 7511 } 7512 7513 /* ------------------------------------------------------------------------ */ 7514 7515 #ifdef USE_LOAD_BALANCE 7516 7517 // Return the worker threads actively spinning in the hot team, if we 7518 // are at the outermost level of parallelism. Otherwise, return 0. 7519 static int __kmp_active_hot_team_nproc(kmp_root_t *root) { 7520 int i; 7521 int retval; 7522 kmp_team_t *hot_team; 7523 7524 if (root->r.r_active) { 7525 return 0; 7526 } 7527 hot_team = root->r.r_hot_team; 7528 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { 7529 return hot_team->t.t_nproc - 1; // Don't count master thread 7530 } 7531 7532 // Skip the master thread - it is accounted for elsewhere. 7533 retval = 0; 7534 for (i = 1; i < hot_team->t.t_nproc; i++) { 7535 if (hot_team->t.t_threads[i]->th.th_active) { 7536 retval++; 7537 } 7538 } 7539 return retval; 7540 } 7541 7542 // Perform an automatic adjustment to the number of 7543 // threads used by the next parallel region. 7544 static int __kmp_load_balance_nproc(kmp_root_t *root, int set_nproc) { 7545 int retval; 7546 int pool_active; 7547 int hot_team_active; 7548 int team_curr_active; 7549 int system_active; 7550 7551 KB_TRACE(20, ("__kmp_load_balance_nproc: called root:%p set_nproc:%d\n", root, 7552 set_nproc)); 7553 KMP_DEBUG_ASSERT(root); 7554 KMP_DEBUG_ASSERT(root->r.r_root_team->t.t_threads[0] 7555 ->th.th_current_task->td_icvs.dynamic == TRUE); 7556 KMP_DEBUG_ASSERT(set_nproc > 1); 7557 7558 if (set_nproc == 1) { 7559 KB_TRACE(20, ("__kmp_load_balance_nproc: serial execution.\n")); 7560 return 1; 7561 } 7562 7563 // Threads that are active in the thread pool, active in the hot team for this 7564 // particular root (if we are at the outer par level), and the currently 7565 // executing thread (to become the master) are available to add to the new 7566 // team, but are currently contributing to the system load, and must be 7567 // accounted for. 7568 pool_active = __kmp_thread_pool_active_nth; 7569 hot_team_active = __kmp_active_hot_team_nproc(root); 7570 team_curr_active = pool_active + hot_team_active + 1; 7571 7572 // Check the system load. 7573 system_active = __kmp_get_load_balance(__kmp_avail_proc + team_curr_active); 7574 KB_TRACE(30, ("__kmp_load_balance_nproc: system active = %d pool active = %d " 7575 "hot team active = %d\n", 7576 system_active, pool_active, hot_team_active)); 7577 7578 if (system_active < 0) { 7579 // There was an error reading the necessary info from /proc, so use the 7580 // thread limit algorithm instead. Once we set __kmp_global.g.g_dynamic_mode 7581 // = dynamic_thread_limit, we shouldn't wind up getting back here. 7582 __kmp_global.g.g_dynamic_mode = dynamic_thread_limit; 7583 KMP_WARNING(CantLoadBalUsing, "KMP_DYNAMIC_MODE=thread limit"); 7584 7585 // Make this call behave like the thread limit algorithm. 7586 retval = __kmp_avail_proc - __kmp_nth + 7587 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 7588 if (retval > set_nproc) { 7589 retval = set_nproc; 7590 } 7591 if (retval < KMP_MIN_NTH) { 7592 retval = KMP_MIN_NTH; 7593 } 7594 7595 KB_TRACE(20, ("__kmp_load_balance_nproc: thread limit exit. retval:%d\n", 7596 retval)); 7597 return retval; 7598 } 7599 7600 // There is a slight delay in the load balance algorithm in detecting new 7601 // running procs. The real system load at this instant should be at least as 7602 // large as the #active omp thread that are available to add to the team. 7603 if (system_active < team_curr_active) { 7604 system_active = team_curr_active; 7605 } 7606 retval = __kmp_avail_proc - system_active + team_curr_active; 7607 if (retval > set_nproc) { 7608 retval = set_nproc; 7609 } 7610 if (retval < KMP_MIN_NTH) { 7611 retval = KMP_MIN_NTH; 7612 } 7613 7614 KB_TRACE(20, ("__kmp_load_balance_nproc: exit. retval:%d\n", retval)); 7615 return retval; 7616 } // __kmp_load_balance_nproc() 7617 7618 #endif /* USE_LOAD_BALANCE */ 7619 7620 /* ------------------------------------------------------------------------ */ 7621 7622 /* NOTE: this is called with the __kmp_init_lock held */ 7623 void __kmp_cleanup(void) { 7624 int f; 7625 7626 KA_TRACE(10, ("__kmp_cleanup: enter\n")); 7627 7628 if (TCR_4(__kmp_init_parallel)) { 7629 #if KMP_HANDLE_SIGNALS 7630 __kmp_remove_signals(); 7631 #endif 7632 TCW_4(__kmp_init_parallel, FALSE); 7633 } 7634 7635 if (TCR_4(__kmp_init_middle)) { 7636 #if KMP_AFFINITY_SUPPORTED 7637 __kmp_affinity_uninitialize(); 7638 #endif /* KMP_AFFINITY_SUPPORTED */ 7639 __kmp_cleanup_hierarchy(); 7640 TCW_4(__kmp_init_middle, FALSE); 7641 } 7642 7643 KA_TRACE(10, ("__kmp_cleanup: go serial cleanup\n")); 7644 7645 if (__kmp_init_serial) { 7646 __kmp_runtime_destroy(); 7647 __kmp_init_serial = FALSE; 7648 } 7649 7650 __kmp_cleanup_threadprivate_caches(); 7651 7652 for (f = 0; f < __kmp_threads_capacity; f++) { 7653 if (__kmp_root[f] != NULL) { 7654 __kmp_free(__kmp_root[f]); 7655 __kmp_root[f] = NULL; 7656 } 7657 } 7658 __kmp_free(__kmp_threads); 7659 // __kmp_threads and __kmp_root were allocated at once, as single block, so 7660 // there is no need in freeing __kmp_root. 7661 __kmp_threads = NULL; 7662 __kmp_root = NULL; 7663 __kmp_threads_capacity = 0; 7664 7665 #if KMP_USE_DYNAMIC_LOCK 7666 __kmp_cleanup_indirect_user_locks(); 7667 #else 7668 __kmp_cleanup_user_locks(); 7669 #endif 7670 7671 #if KMP_AFFINITY_SUPPORTED 7672 KMP_INTERNAL_FREE(CCAST(char *, __kmp_cpuinfo_file)); 7673 __kmp_cpuinfo_file = NULL; 7674 #endif /* KMP_AFFINITY_SUPPORTED */ 7675 7676 #if KMP_USE_ADAPTIVE_LOCKS 7677 #if KMP_DEBUG_ADAPTIVE_LOCKS 7678 __kmp_print_speculative_stats(); 7679 #endif 7680 #endif 7681 KMP_INTERNAL_FREE(__kmp_nested_nth.nth); 7682 __kmp_nested_nth.nth = NULL; 7683 __kmp_nested_nth.size = 0; 7684 __kmp_nested_nth.used = 0; 7685 KMP_INTERNAL_FREE(__kmp_nested_proc_bind.bind_types); 7686 __kmp_nested_proc_bind.bind_types = NULL; 7687 __kmp_nested_proc_bind.size = 0; 7688 __kmp_nested_proc_bind.used = 0; 7689 if (__kmp_affinity_format) { 7690 KMP_INTERNAL_FREE(__kmp_affinity_format); 7691 __kmp_affinity_format = NULL; 7692 } 7693 7694 __kmp_i18n_catclose(); 7695 7696 #if KMP_USE_HIER_SCHED 7697 __kmp_hier_scheds.deallocate(); 7698 #endif 7699 7700 #if KMP_STATS_ENABLED 7701 __kmp_stats_fini(); 7702 #endif 7703 7704 KA_TRACE(10, ("__kmp_cleanup: exit\n")); 7705 } 7706 7707 /* ------------------------------------------------------------------------ */ 7708 7709 int __kmp_ignore_mppbeg(void) { 7710 char *env; 7711 7712 if ((env = getenv("KMP_IGNORE_MPPBEG")) != NULL) { 7713 if (__kmp_str_match_false(env)) 7714 return FALSE; 7715 } 7716 // By default __kmpc_begin() is no-op. 7717 return TRUE; 7718 } 7719 7720 int __kmp_ignore_mppend(void) { 7721 char *env; 7722 7723 if ((env = getenv("KMP_IGNORE_MPPEND")) != NULL) { 7724 if (__kmp_str_match_false(env)) 7725 return FALSE; 7726 } 7727 // By default __kmpc_end() is no-op. 7728 return TRUE; 7729 } 7730 7731 void __kmp_internal_begin(void) { 7732 int gtid; 7733 kmp_root_t *root; 7734 7735 /* this is a very important step as it will register new sibling threads 7736 and assign these new uber threads a new gtid */ 7737 gtid = __kmp_entry_gtid(); 7738 root = __kmp_threads[gtid]->th.th_root; 7739 KMP_ASSERT(KMP_UBER_GTID(gtid)); 7740 7741 if (root->r.r_begin) 7742 return; 7743 __kmp_acquire_lock(&root->r.r_begin_lock, gtid); 7744 if (root->r.r_begin) { 7745 __kmp_release_lock(&root->r.r_begin_lock, gtid); 7746 return; 7747 } 7748 7749 root->r.r_begin = TRUE; 7750 7751 __kmp_release_lock(&root->r.r_begin_lock, gtid); 7752 } 7753 7754 /* ------------------------------------------------------------------------ */ 7755 7756 void __kmp_user_set_library(enum library_type arg) { 7757 int gtid; 7758 kmp_root_t *root; 7759 kmp_info_t *thread; 7760 7761 /* first, make sure we are initialized so we can get our gtid */ 7762 7763 gtid = __kmp_entry_gtid(); 7764 thread = __kmp_threads[gtid]; 7765 7766 root = thread->th.th_root; 7767 7768 KA_TRACE(20, ("__kmp_user_set_library: enter T#%d, arg: %d, %d\n", gtid, arg, 7769 library_serial)); 7770 if (root->r.r_in_parallel) { /* Must be called in serial section of top-level 7771 thread */ 7772 KMP_WARNING(SetLibraryIncorrectCall); 7773 return; 7774 } 7775 7776 switch (arg) { 7777 case library_serial: 7778 thread->th.th_set_nproc = 0; 7779 set__nproc(thread, 1); 7780 break; 7781 case library_turnaround: 7782 thread->th.th_set_nproc = 0; 7783 set__nproc(thread, __kmp_dflt_team_nth ? __kmp_dflt_team_nth 7784 : __kmp_dflt_team_nth_ub); 7785 break; 7786 case library_throughput: 7787 thread->th.th_set_nproc = 0; 7788 set__nproc(thread, __kmp_dflt_team_nth ? __kmp_dflt_team_nth 7789 : __kmp_dflt_team_nth_ub); 7790 break; 7791 default: 7792 KMP_FATAL(UnknownLibraryType, arg); 7793 } 7794 7795 __kmp_aux_set_library(arg); 7796 } 7797 7798 void __kmp_aux_set_stacksize(size_t arg) { 7799 if (!__kmp_init_serial) 7800 __kmp_serial_initialize(); 7801 7802 #if KMP_OS_DARWIN 7803 if (arg & (0x1000 - 1)) { 7804 arg &= ~(0x1000 - 1); 7805 if (arg + 0x1000) /* check for overflow if we round up */ 7806 arg += 0x1000; 7807 } 7808 #endif 7809 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 7810 7811 /* only change the default stacksize before the first parallel region */ 7812 if (!TCR_4(__kmp_init_parallel)) { 7813 size_t value = arg; /* argument is in bytes */ 7814 7815 if (value < __kmp_sys_min_stksize) 7816 value = __kmp_sys_min_stksize; 7817 else if (value > KMP_MAX_STKSIZE) 7818 value = KMP_MAX_STKSIZE; 7819 7820 __kmp_stksize = value; 7821 7822 __kmp_env_stksize = TRUE; /* was KMP_STACKSIZE specified? */ 7823 } 7824 7825 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7826 } 7827 7828 /* set the behaviour of the runtime library */ 7829 /* TODO this can cause some odd behaviour with sibling parallelism... */ 7830 void __kmp_aux_set_library(enum library_type arg) { 7831 __kmp_library = arg; 7832 7833 switch (__kmp_library) { 7834 case library_serial: { 7835 KMP_INFORM(LibraryIsSerial); 7836 } break; 7837 case library_turnaround: 7838 if (__kmp_use_yield == 1 && !__kmp_use_yield_exp_set) 7839 __kmp_use_yield = 2; // only yield when oversubscribed 7840 break; 7841 case library_throughput: 7842 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) 7843 __kmp_dflt_blocktime = 200; 7844 break; 7845 default: 7846 KMP_FATAL(UnknownLibraryType, arg); 7847 } 7848 } 7849 7850 /* Getting team information common for all team API */ 7851 // Returns NULL if not in teams construct 7852 static kmp_team_t *__kmp_aux_get_team_info(int &teams_serialized) { 7853 kmp_info_t *thr = __kmp_entry_thread(); 7854 teams_serialized = 0; 7855 if (thr->th.th_teams_microtask) { 7856 kmp_team_t *team = thr->th.th_team; 7857 int tlevel = thr->th.th_teams_level; // the level of the teams construct 7858 int ii = team->t.t_level; 7859 teams_serialized = team->t.t_serialized; 7860 int level = tlevel + 1; 7861 KMP_DEBUG_ASSERT(ii >= tlevel); 7862 while (ii > level) { 7863 for (teams_serialized = team->t.t_serialized; 7864 (teams_serialized > 0) && (ii > level); teams_serialized--, ii--) { 7865 } 7866 if (team->t.t_serialized && (!teams_serialized)) { 7867 team = team->t.t_parent; 7868 continue; 7869 } 7870 if (ii > level) { 7871 team = team->t.t_parent; 7872 ii--; 7873 } 7874 } 7875 return team; 7876 } 7877 return NULL; 7878 } 7879 7880 int __kmp_aux_get_team_num() { 7881 int serialized; 7882 kmp_team_t *team = __kmp_aux_get_team_info(serialized); 7883 if (team) { 7884 if (serialized > 1) { 7885 return 0; // teams region is serialized ( 1 team of 1 thread ). 7886 } else { 7887 return team->t.t_master_tid; 7888 } 7889 } 7890 return 0; 7891 } 7892 7893 int __kmp_aux_get_num_teams() { 7894 int serialized; 7895 kmp_team_t *team = __kmp_aux_get_team_info(serialized); 7896 if (team) { 7897 if (serialized > 1) { 7898 return 1; 7899 } else { 7900 return team->t.t_parent->t.t_nproc; 7901 } 7902 } 7903 return 1; 7904 } 7905 7906 /* ------------------------------------------------------------------------ */ 7907 7908 /* 7909 * Affinity Format Parser 7910 * 7911 * Field is in form of: %[[[0].]size]type 7912 * % and type are required (%% means print a literal '%') 7913 * type is either single char or long name surrounded by {}, 7914 * e.g., N or {num_threads} 7915 * 0 => leading zeros 7916 * . => right justified when size is specified 7917 * by default output is left justified 7918 * size is the *minimum* field length 7919 * All other characters are printed as is 7920 * 7921 * Available field types: 7922 * L {thread_level} - omp_get_level() 7923 * n {thread_num} - omp_get_thread_num() 7924 * h {host} - name of host machine 7925 * P {process_id} - process id (integer) 7926 * T {thread_identifier} - native thread identifier (integer) 7927 * N {num_threads} - omp_get_num_threads() 7928 * A {ancestor_tnum} - omp_get_ancestor_thread_num(omp_get_level()-1) 7929 * a {thread_affinity} - comma separated list of integers or integer ranges 7930 * (values of affinity mask) 7931 * 7932 * Implementation-specific field types can be added 7933 * If a type is unknown, print "undefined" 7934 */ 7935 7936 // Structure holding the short name, long name, and corresponding data type 7937 // for snprintf. A table of these will represent the entire valid keyword 7938 // field types. 7939 typedef struct kmp_affinity_format_field_t { 7940 char short_name; // from spec e.g., L -> thread level 7941 const char *long_name; // from spec thread_level -> thread level 7942 char field_format; // data type for snprintf (typically 'd' or 's' 7943 // for integer or string) 7944 } kmp_affinity_format_field_t; 7945 7946 static const kmp_affinity_format_field_t __kmp_affinity_format_table[] = { 7947 #if KMP_AFFINITY_SUPPORTED 7948 {'A', "thread_affinity", 's'}, 7949 #endif 7950 {'t', "team_num", 'd'}, 7951 {'T', "num_teams", 'd'}, 7952 {'L', "nesting_level", 'd'}, 7953 {'n', "thread_num", 'd'}, 7954 {'N', "num_threads", 'd'}, 7955 {'a', "ancestor_tnum", 'd'}, 7956 {'H', "host", 's'}, 7957 {'P', "process_id", 'd'}, 7958 {'i', "native_thread_id", 'd'}}; 7959 7960 // Return the number of characters it takes to hold field 7961 static int __kmp_aux_capture_affinity_field(int gtid, const kmp_info_t *th, 7962 const char **ptr, 7963 kmp_str_buf_t *field_buffer) { 7964 int rc, format_index, field_value; 7965 const char *width_left, *width_right; 7966 bool pad_zeros, right_justify, parse_long_name, found_valid_name; 7967 static const int FORMAT_SIZE = 20; 7968 char format[FORMAT_SIZE] = {0}; 7969 char absolute_short_name = 0; 7970 7971 KMP_DEBUG_ASSERT(gtid >= 0); 7972 KMP_DEBUG_ASSERT(th); 7973 KMP_DEBUG_ASSERT(**ptr == '%'); 7974 KMP_DEBUG_ASSERT(field_buffer); 7975 7976 __kmp_str_buf_clear(field_buffer); 7977 7978 // Skip the initial % 7979 (*ptr)++; 7980 7981 // Check for %% first 7982 if (**ptr == '%') { 7983 __kmp_str_buf_cat(field_buffer, "%", 1); 7984 (*ptr)++; // skip over the second % 7985 return 1; 7986 } 7987 7988 // Parse field modifiers if they are present 7989 pad_zeros = false; 7990 if (**ptr == '0') { 7991 pad_zeros = true; 7992 (*ptr)++; // skip over 0 7993 } 7994 right_justify = false; 7995 if (**ptr == '.') { 7996 right_justify = true; 7997 (*ptr)++; // skip over . 7998 } 7999 // Parse width of field: [width_left, width_right) 8000 width_left = width_right = NULL; 8001 if (**ptr >= '0' && **ptr <= '9') { 8002 width_left = *ptr; 8003 SKIP_DIGITS(*ptr); 8004 width_right = *ptr; 8005 } 8006 8007 // Create the format for KMP_SNPRINTF based on flags parsed above 8008 format_index = 0; 8009 format[format_index++] = '%'; 8010 if (!right_justify) 8011 format[format_index++] = '-'; 8012 if (pad_zeros) 8013 format[format_index++] = '0'; 8014 if (width_left && width_right) { 8015 int i = 0; 8016 // Only allow 8 digit number widths. 8017 // This also prevents overflowing format variable 8018 while (i < 8 && width_left < width_right) { 8019 format[format_index++] = *width_left; 8020 width_left++; 8021 i++; 8022 } 8023 } 8024 8025 // Parse a name (long or short) 8026 // Canonicalize the name into absolute_short_name 8027 found_valid_name = false; 8028 parse_long_name = (**ptr == '{'); 8029 if (parse_long_name) 8030 (*ptr)++; // skip initial left brace 8031 for (size_t i = 0; i < sizeof(__kmp_affinity_format_table) / 8032 sizeof(__kmp_affinity_format_table[0]); 8033 ++i) { 8034 char short_name = __kmp_affinity_format_table[i].short_name; 8035 const char *long_name = __kmp_affinity_format_table[i].long_name; 8036 char field_format = __kmp_affinity_format_table[i].field_format; 8037 if (parse_long_name) { 8038 size_t length = KMP_STRLEN(long_name); 8039 if (strncmp(*ptr, long_name, length) == 0) { 8040 found_valid_name = true; 8041 (*ptr) += length; // skip the long name 8042 } 8043 } else if (**ptr == short_name) { 8044 found_valid_name = true; 8045 (*ptr)++; // skip the short name 8046 } 8047 if (found_valid_name) { 8048 format[format_index++] = field_format; 8049 format[format_index++] = '\0'; 8050 absolute_short_name = short_name; 8051 break; 8052 } 8053 } 8054 if (parse_long_name) { 8055 if (**ptr != '}') { 8056 absolute_short_name = 0; 8057 } else { 8058 (*ptr)++; // skip over the right brace 8059 } 8060 } 8061 8062 // Attempt to fill the buffer with the requested 8063 // value using snprintf within __kmp_str_buf_print() 8064 switch (absolute_short_name) { 8065 case 't': 8066 rc = __kmp_str_buf_print(field_buffer, format, __kmp_aux_get_team_num()); 8067 break; 8068 case 'T': 8069 rc = __kmp_str_buf_print(field_buffer, format, __kmp_aux_get_num_teams()); 8070 break; 8071 case 'L': 8072 rc = __kmp_str_buf_print(field_buffer, format, th->th.th_team->t.t_level); 8073 break; 8074 case 'n': 8075 rc = __kmp_str_buf_print(field_buffer, format, __kmp_tid_from_gtid(gtid)); 8076 break; 8077 case 'H': { 8078 static const int BUFFER_SIZE = 256; 8079 char buf[BUFFER_SIZE]; 8080 __kmp_expand_host_name(buf, BUFFER_SIZE); 8081 rc = __kmp_str_buf_print(field_buffer, format, buf); 8082 } break; 8083 case 'P': 8084 rc = __kmp_str_buf_print(field_buffer, format, getpid()); 8085 break; 8086 case 'i': 8087 rc = __kmp_str_buf_print(field_buffer, format, __kmp_gettid()); 8088 break; 8089 case 'N': 8090 rc = __kmp_str_buf_print(field_buffer, format, th->th.th_team->t.t_nproc); 8091 break; 8092 case 'a': 8093 field_value = 8094 __kmp_get_ancestor_thread_num(gtid, th->th.th_team->t.t_level - 1); 8095 rc = __kmp_str_buf_print(field_buffer, format, field_value); 8096 break; 8097 #if KMP_AFFINITY_SUPPORTED 8098 case 'A': { 8099 kmp_str_buf_t buf; 8100 __kmp_str_buf_init(&buf); 8101 __kmp_affinity_str_buf_mask(&buf, th->th.th_affin_mask); 8102 rc = __kmp_str_buf_print(field_buffer, format, buf.str); 8103 __kmp_str_buf_free(&buf); 8104 } break; 8105 #endif 8106 default: 8107 // According to spec, If an implementation does not have info for field 8108 // type, then "undefined" is printed 8109 rc = __kmp_str_buf_print(field_buffer, "%s", "undefined"); 8110 // Skip the field 8111 if (parse_long_name) { 8112 SKIP_TOKEN(*ptr); 8113 if (**ptr == '}') 8114 (*ptr)++; 8115 } else { 8116 (*ptr)++; 8117 } 8118 } 8119 8120 KMP_ASSERT(format_index <= FORMAT_SIZE); 8121 return rc; 8122 } 8123 8124 /* 8125 * Return number of characters needed to hold the affinity string 8126 * (not including null byte character) 8127 * The resultant string is printed to buffer, which the caller can then 8128 * handle afterwards 8129 */ 8130 size_t __kmp_aux_capture_affinity(int gtid, const char *format, 8131 kmp_str_buf_t *buffer) { 8132 const char *parse_ptr; 8133 size_t retval; 8134 const kmp_info_t *th; 8135 kmp_str_buf_t field; 8136 8137 KMP_DEBUG_ASSERT(buffer); 8138 KMP_DEBUG_ASSERT(gtid >= 0); 8139 8140 __kmp_str_buf_init(&field); 8141 __kmp_str_buf_clear(buffer); 8142 8143 th = __kmp_threads[gtid]; 8144 retval = 0; 8145 8146 // If format is NULL or zero-length string, then we use 8147 // affinity-format-var ICV 8148 parse_ptr = format; 8149 if (parse_ptr == NULL || *parse_ptr == '\0') { 8150 parse_ptr = __kmp_affinity_format; 8151 } 8152 KMP_DEBUG_ASSERT(parse_ptr); 8153 8154 while (*parse_ptr != '\0') { 8155 // Parse a field 8156 if (*parse_ptr == '%') { 8157 // Put field in the buffer 8158 int rc = __kmp_aux_capture_affinity_field(gtid, th, &parse_ptr, &field); 8159 __kmp_str_buf_catbuf(buffer, &field); 8160 retval += rc; 8161 } else { 8162 // Put literal character in buffer 8163 __kmp_str_buf_cat(buffer, parse_ptr, 1); 8164 retval++; 8165 parse_ptr++; 8166 } 8167 } 8168 __kmp_str_buf_free(&field); 8169 return retval; 8170 } 8171 8172 // Displays the affinity string to stdout 8173 void __kmp_aux_display_affinity(int gtid, const char *format) { 8174 kmp_str_buf_t buf; 8175 __kmp_str_buf_init(&buf); 8176 __kmp_aux_capture_affinity(gtid, format, &buf); 8177 __kmp_fprintf(kmp_out, "%s" KMP_END_OF_LINE, buf.str); 8178 __kmp_str_buf_free(&buf); 8179 } 8180 8181 /* ------------------------------------------------------------------------ */ 8182 8183 void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid) { 8184 int blocktime = arg; /* argument is in milliseconds */ 8185 #if KMP_USE_MONITOR 8186 int bt_intervals; 8187 #endif 8188 kmp_int8 bt_set; 8189 8190 __kmp_save_internal_controls(thread); 8191 8192 /* Normalize and set blocktime for the teams */ 8193 if (blocktime < KMP_MIN_BLOCKTIME) 8194 blocktime = KMP_MIN_BLOCKTIME; 8195 else if (blocktime > KMP_MAX_BLOCKTIME) 8196 blocktime = KMP_MAX_BLOCKTIME; 8197 8198 set__blocktime_team(thread->th.th_team, tid, blocktime); 8199 set__blocktime_team(thread->th.th_serial_team, 0, blocktime); 8200 8201 #if KMP_USE_MONITOR 8202 /* Calculate and set blocktime intervals for the teams */ 8203 bt_intervals = KMP_INTERVALS_FROM_BLOCKTIME(blocktime, __kmp_monitor_wakeups); 8204 8205 set__bt_intervals_team(thread->th.th_team, tid, bt_intervals); 8206 set__bt_intervals_team(thread->th.th_serial_team, 0, bt_intervals); 8207 #endif 8208 8209 /* Set whether blocktime has been set to "TRUE" */ 8210 bt_set = TRUE; 8211 8212 set__bt_set_team(thread->th.th_team, tid, bt_set); 8213 set__bt_set_team(thread->th.th_serial_team, 0, bt_set); 8214 #if KMP_USE_MONITOR 8215 KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d, " 8216 "bt_intervals=%d, monitor_updates=%d\n", 8217 __kmp_gtid_from_tid(tid, thread->th.th_team), 8218 thread->th.th_team->t.t_id, tid, blocktime, bt_intervals, 8219 __kmp_monitor_wakeups)); 8220 #else 8221 KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d\n", 8222 __kmp_gtid_from_tid(tid, thread->th.th_team), 8223 thread->th.th_team->t.t_id, tid, blocktime)); 8224 #endif 8225 } 8226 8227 void __kmp_aux_set_defaults(char const *str, size_t len) { 8228 if (!__kmp_init_serial) { 8229 __kmp_serial_initialize(); 8230 } 8231 __kmp_env_initialize(str); 8232 8233 if (__kmp_settings || __kmp_display_env || __kmp_display_env_verbose) { 8234 __kmp_env_print(); 8235 } 8236 } // __kmp_aux_set_defaults 8237 8238 /* ------------------------------------------------------------------------ */ 8239 /* internal fast reduction routines */ 8240 8241 PACKED_REDUCTION_METHOD_T 8242 __kmp_determine_reduction_method( 8243 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, 8244 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data), 8245 kmp_critical_name *lck) { 8246 8247 // Default reduction method: critical construct ( lck != NULL, like in current 8248 // PAROPT ) 8249 // If ( reduce_data!=NULL && reduce_func!=NULL ): the tree-reduction method 8250 // can be selected by RTL 8251 // If loc->flags contains KMP_IDENT_ATOMIC_REDUCE, the atomic reduce method 8252 // can be selected by RTL 8253 // Finally, it's up to OpenMP RTL to make a decision on which method to select 8254 // among generated by PAROPT. 8255 8256 PACKED_REDUCTION_METHOD_T retval; 8257 8258 int team_size; 8259 8260 KMP_DEBUG_ASSERT(loc); // it would be nice to test ( loc != 0 ) 8261 KMP_DEBUG_ASSERT(lck); // it would be nice to test ( lck != 0 ) 8262 8263 #define FAST_REDUCTION_ATOMIC_METHOD_GENERATED \ 8264 ((loc->flags & (KMP_IDENT_ATOMIC_REDUCE)) == (KMP_IDENT_ATOMIC_REDUCE)) 8265 #define FAST_REDUCTION_TREE_METHOD_GENERATED ((reduce_data) && (reduce_func)) 8266 8267 retval = critical_reduce_block; 8268 8269 // another choice of getting a team size (with 1 dynamic deference) is slower 8270 team_size = __kmp_get_team_num_threads(global_tid); 8271 if (team_size == 1) { 8272 8273 retval = empty_reduce_block; 8274 8275 } else { 8276 8277 int atomic_available = FAST_REDUCTION_ATOMIC_METHOD_GENERATED; 8278 8279 #if KMP_ARCH_X86_64 || KMP_ARCH_PPC64 || KMP_ARCH_AARCH64 || \ 8280 KMP_ARCH_MIPS64 || KMP_ARCH_RISCV64 8281 8282 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 8283 KMP_OS_OPENBSD || KMP_OS_WINDOWS || KMP_OS_DARWIN || KMP_OS_HURD 8284 8285 int teamsize_cutoff = 4; 8286 8287 #if KMP_MIC_SUPPORTED 8288 if (__kmp_mic_type != non_mic) { 8289 teamsize_cutoff = 8; 8290 } 8291 #endif 8292 int tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED; 8293 if (tree_available) { 8294 if (team_size <= teamsize_cutoff) { 8295 if (atomic_available) { 8296 retval = atomic_reduce_block; 8297 } 8298 } else { 8299 retval = TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER; 8300 } 8301 } else if (atomic_available) { 8302 retval = atomic_reduce_block; 8303 } 8304 #else 8305 #error "Unknown or unsupported OS" 8306 #endif // KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || 8307 // KMP_OS_OPENBSD || KMP_OS_WINDOWS || KMP_OS_DARWIN || KMP_OS_HURD 8308 8309 #elif KMP_ARCH_X86 || KMP_ARCH_ARM || KMP_ARCH_AARCH || KMP_ARCH_MIPS 8310 8311 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS || KMP_OS_HURD 8312 8313 // basic tuning 8314 8315 if (atomic_available) { 8316 if (num_vars <= 2) { // && ( team_size <= 8 ) due to false-sharing ??? 8317 retval = atomic_reduce_block; 8318 } 8319 } // otherwise: use critical section 8320 8321 #elif KMP_OS_DARWIN 8322 8323 int tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED; 8324 if (atomic_available && (num_vars <= 3)) { 8325 retval = atomic_reduce_block; 8326 } else if (tree_available) { 8327 if ((reduce_size > (9 * sizeof(kmp_real64))) && 8328 (reduce_size < (2000 * sizeof(kmp_real64)))) { 8329 retval = TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER; 8330 } 8331 } // otherwise: use critical section 8332 8333 #else 8334 #error "Unknown or unsupported OS" 8335 #endif 8336 8337 #else 8338 #error "Unknown or unsupported architecture" 8339 #endif 8340 } 8341 8342 // KMP_FORCE_REDUCTION 8343 8344 // If the team is serialized (team_size == 1), ignore the forced reduction 8345 // method and stay with the unsynchronized method (empty_reduce_block) 8346 if (__kmp_force_reduction_method != reduction_method_not_defined && 8347 team_size != 1) { 8348 8349 PACKED_REDUCTION_METHOD_T forced_retval = critical_reduce_block; 8350 8351 int atomic_available, tree_available; 8352 8353 switch ((forced_retval = __kmp_force_reduction_method)) { 8354 case critical_reduce_block: 8355 KMP_ASSERT(lck); // lck should be != 0 8356 break; 8357 8358 case atomic_reduce_block: 8359 atomic_available = FAST_REDUCTION_ATOMIC_METHOD_GENERATED; 8360 if (!atomic_available) { 8361 KMP_WARNING(RedMethodNotSupported, "atomic"); 8362 forced_retval = critical_reduce_block; 8363 } 8364 break; 8365 8366 case tree_reduce_block: 8367 tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED; 8368 if (!tree_available) { 8369 KMP_WARNING(RedMethodNotSupported, "tree"); 8370 forced_retval = critical_reduce_block; 8371 } else { 8372 #if KMP_FAST_REDUCTION_BARRIER 8373 forced_retval = TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER; 8374 #endif 8375 } 8376 break; 8377 8378 default: 8379 KMP_ASSERT(0); // "unsupported method specified" 8380 } 8381 8382 retval = forced_retval; 8383 } 8384 8385 KA_TRACE(10, ("reduction method selected=%08x\n", retval)); 8386 8387 #undef FAST_REDUCTION_TREE_METHOD_GENERATED 8388 #undef FAST_REDUCTION_ATOMIC_METHOD_GENERATED 8389 8390 return (retval); 8391 } 8392 // this function is for testing set/get/determine reduce method 8393 kmp_int32 __kmp_get_reduce_method(void) { 8394 return ((__kmp_entry_thread()->th.th_local.packed_reduction_method) >> 8); 8395 } 8396 8397 // Soft pause sets up threads to ignore blocktime and just go to sleep. 8398 // Spin-wait code checks __kmp_pause_status and reacts accordingly. 8399 void __kmp_soft_pause() { __kmp_pause_status = kmp_soft_paused; } 8400 8401 // Hard pause shuts down the runtime completely. Resume happens naturally when 8402 // OpenMP is used subsequently. 8403 void __kmp_hard_pause() { 8404 __kmp_pause_status = kmp_hard_paused; 8405 __kmp_internal_end_thread(-1); 8406 } 8407 8408 // Soft resume sets __kmp_pause_status, and wakes up all threads. 8409 void __kmp_resume_if_soft_paused() { 8410 if (__kmp_pause_status == kmp_soft_paused) { 8411 __kmp_pause_status = kmp_not_paused; 8412 8413 for (int gtid = 1; gtid < __kmp_threads_capacity; ++gtid) { 8414 kmp_info_t *thread = __kmp_threads[gtid]; 8415 if (thread) { // Wake it if sleeping 8416 kmp_flag_64<> fl(&thread->th.th_bar[bs_forkjoin_barrier].bb.b_go, 8417 thread); 8418 if (fl.is_sleeping()) 8419 fl.resume(gtid); 8420 else if (__kmp_try_suspend_mx(thread)) { // got suspend lock 8421 __kmp_unlock_suspend_mx(thread); // unlock it; it won't sleep 8422 } else { // thread holds the lock and may sleep soon 8423 do { // until either the thread sleeps, or we can get the lock 8424 if (fl.is_sleeping()) { 8425 fl.resume(gtid); 8426 break; 8427 } else if (__kmp_try_suspend_mx(thread)) { 8428 __kmp_unlock_suspend_mx(thread); 8429 break; 8430 } 8431 } while (1); 8432 } 8433 } 8434 } 8435 } 8436 } 8437 8438 // This function is called via __kmpc_pause_resource. Returns 0 if successful. 8439 // TODO: add warning messages 8440 int __kmp_pause_resource(kmp_pause_status_t level) { 8441 if (level == kmp_not_paused) { // requesting resume 8442 if (__kmp_pause_status == kmp_not_paused) { 8443 // error message about runtime not being paused, so can't resume 8444 return 1; 8445 } else { 8446 KMP_DEBUG_ASSERT(__kmp_pause_status == kmp_soft_paused || 8447 __kmp_pause_status == kmp_hard_paused); 8448 __kmp_pause_status = kmp_not_paused; 8449 return 0; 8450 } 8451 } else if (level == kmp_soft_paused) { // requesting soft pause 8452 if (__kmp_pause_status != kmp_not_paused) { 8453 // error message about already being paused 8454 return 1; 8455 } else { 8456 __kmp_soft_pause(); 8457 return 0; 8458 } 8459 } else if (level == kmp_hard_paused) { // requesting hard pause 8460 if (__kmp_pause_status != kmp_not_paused) { 8461 // error message about already being paused 8462 return 1; 8463 } else { 8464 __kmp_hard_pause(); 8465 return 0; 8466 } 8467 } else { 8468 // error message about invalid level 8469 return 1; 8470 } 8471 } 8472 8473 8474 void __kmp_omp_display_env(int verbose) { 8475 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 8476 if (__kmp_init_serial == 0) 8477 __kmp_do_serial_initialize(); 8478 __kmp_display_env_impl(!verbose, verbose); 8479 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 8480 } 8481