1 /* 2 * kmp_runtime.cpp -- KPTS runtime support library 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_atomic.h" 16 #include "kmp_environment.h" 17 #include "kmp_error.h" 18 #include "kmp_i18n.h" 19 #include "kmp_io.h" 20 #include "kmp_itt.h" 21 #include "kmp_settings.h" 22 #include "kmp_stats.h" 23 #include "kmp_str.h" 24 #include "kmp_wait_release.h" 25 #include "kmp_wrapper_getpid.h" 26 #include "kmp_dispatch.h" 27 #if KMP_USE_HIER_SCHED 28 #include "kmp_dispatch_hier.h" 29 #endif 30 31 #if OMPT_SUPPORT 32 #include "ompt-specific.h" 33 #endif 34 35 /* these are temporary issues to be dealt with */ 36 #define KMP_USE_PRCTL 0 37 38 #if KMP_OS_WINDOWS 39 #include <process.h> 40 #endif 41 42 #include "tsan_annotations.h" 43 44 #if defined(KMP_GOMP_COMPAT) 45 char const __kmp_version_alt_comp[] = 46 KMP_VERSION_PREFIX "alternative compiler support: yes"; 47 #endif /* defined(KMP_GOMP_COMPAT) */ 48 49 char const __kmp_version_omp_api[] = KMP_VERSION_PREFIX "API version: " 50 #if OMP_50_ENABLED 51 "5.0 (201611)"; 52 #elif OMP_45_ENABLED 53 "4.5 (201511)"; 54 #elif OMP_40_ENABLED 55 "4.0 (201307)"; 56 #else 57 "3.1 (201107)"; 58 #endif 59 60 #ifdef KMP_DEBUG 61 char const __kmp_version_lock[] = 62 KMP_VERSION_PREFIX "lock type: run time selectable"; 63 #endif /* KMP_DEBUG */ 64 65 #define KMP_MIN(x, y) ((x) < (y) ? (x) : (y)) 66 67 /* ------------------------------------------------------------------------ */ 68 69 #if KMP_USE_MONITOR 70 kmp_info_t __kmp_monitor; 71 #endif 72 73 /* Forward declarations */ 74 75 void __kmp_cleanup(void); 76 77 static void __kmp_initialize_info(kmp_info_t *, kmp_team_t *, int tid, 78 int gtid); 79 static void __kmp_initialize_team(kmp_team_t *team, int new_nproc, 80 kmp_internal_control_t *new_icvs, 81 ident_t *loc); 82 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 83 static void __kmp_partition_places(kmp_team_t *team, 84 int update_master_only = 0); 85 #endif 86 static void __kmp_do_serial_initialize(void); 87 void __kmp_fork_barrier(int gtid, int tid); 88 void __kmp_join_barrier(int gtid); 89 void __kmp_setup_icv_copy(kmp_team_t *team, int new_nproc, 90 kmp_internal_control_t *new_icvs, ident_t *loc); 91 92 #ifdef USE_LOAD_BALANCE 93 static int __kmp_load_balance_nproc(kmp_root_t *root, int set_nproc); 94 #endif 95 96 static int __kmp_expand_threads(int nNeed); 97 #if KMP_OS_WINDOWS 98 static int __kmp_unregister_root_other_thread(int gtid); 99 #endif 100 static void __kmp_unregister_library(void); // called by __kmp_internal_end() 101 static void __kmp_reap_thread(kmp_info_t *thread, int is_root); 102 kmp_info_t *__kmp_thread_pool_insert_pt = NULL; 103 104 /* Calculate the identifier of the current thread */ 105 /* fast (and somewhat portable) way to get unique identifier of executing 106 thread. Returns KMP_GTID_DNE if we haven't been assigned a gtid. */ 107 int __kmp_get_global_thread_id() { 108 int i; 109 kmp_info_t **other_threads; 110 size_t stack_data; 111 char *stack_addr; 112 size_t stack_size; 113 char *stack_base; 114 115 KA_TRACE( 116 1000, 117 ("*** __kmp_get_global_thread_id: entering, nproc=%d all_nproc=%d\n", 118 __kmp_nth, __kmp_all_nth)); 119 120 /* JPH - to handle the case where __kmpc_end(0) is called immediately prior to 121 a parallel region, made it return KMP_GTID_DNE to force serial_initialize 122 by caller. Had to handle KMP_GTID_DNE at all call-sites, or else guarantee 123 __kmp_init_gtid for this to work. */ 124 125 if (!TCR_4(__kmp_init_gtid)) 126 return KMP_GTID_DNE; 127 128 #ifdef KMP_TDATA_GTID 129 if (TCR_4(__kmp_gtid_mode) >= 3) { 130 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using TDATA\n")); 131 return __kmp_gtid; 132 } 133 #endif 134 if (TCR_4(__kmp_gtid_mode) >= 2) { 135 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using keyed TLS\n")); 136 return __kmp_gtid_get_specific(); 137 } 138 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using internal alg.\n")); 139 140 stack_addr = (char *)&stack_data; 141 other_threads = __kmp_threads; 142 143 /* ATT: The code below is a source of potential bugs due to unsynchronized 144 access to __kmp_threads array. For example: 145 1. Current thread loads other_threads[i] to thr and checks it, it is 146 non-NULL. 147 2. Current thread is suspended by OS. 148 3. Another thread unregisters and finishes (debug versions of free() 149 may fill memory with something like 0xEF). 150 4. Current thread is resumed. 151 5. Current thread reads junk from *thr. 152 TODO: Fix it. --ln */ 153 154 for (i = 0; i < __kmp_threads_capacity; i++) { 155 156 kmp_info_t *thr = (kmp_info_t *)TCR_SYNC_PTR(other_threads[i]); 157 if (!thr) 158 continue; 159 160 stack_size = (size_t)TCR_PTR(thr->th.th_info.ds.ds_stacksize); 161 stack_base = (char *)TCR_PTR(thr->th.th_info.ds.ds_stackbase); 162 163 /* stack grows down -- search through all of the active threads */ 164 165 if (stack_addr <= stack_base) { 166 size_t stack_diff = stack_base - stack_addr; 167 168 if (stack_diff <= stack_size) { 169 /* The only way we can be closer than the allocated */ 170 /* stack size is if we are running on this thread. */ 171 KMP_DEBUG_ASSERT(__kmp_gtid_get_specific() == i); 172 return i; 173 } 174 } 175 } 176 177 /* get specific to try and determine our gtid */ 178 KA_TRACE(1000, 179 ("*** __kmp_get_global_thread_id: internal alg. failed to find " 180 "thread, using TLS\n")); 181 i = __kmp_gtid_get_specific(); 182 183 /*fprintf( stderr, "=== %d\n", i ); */ /* GROO */ 184 185 /* if we havn't been assigned a gtid, then return code */ 186 if (i < 0) 187 return i; 188 189 /* dynamically updated stack window for uber threads to avoid get_specific 190 call */ 191 if (!TCR_4(other_threads[i]->th.th_info.ds.ds_stackgrow)) { 192 KMP_FATAL(StackOverflow, i); 193 } 194 195 stack_base = (char *)other_threads[i]->th.th_info.ds.ds_stackbase; 196 if (stack_addr > stack_base) { 197 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stackbase, stack_addr); 198 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stacksize, 199 other_threads[i]->th.th_info.ds.ds_stacksize + stack_addr - 200 stack_base); 201 } else { 202 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stacksize, 203 stack_base - stack_addr); 204 } 205 206 /* Reprint stack bounds for ubermaster since they have been refined */ 207 if (__kmp_storage_map) { 208 char *stack_end = (char *)other_threads[i]->th.th_info.ds.ds_stackbase; 209 char *stack_beg = stack_end - other_threads[i]->th.th_info.ds.ds_stacksize; 210 __kmp_print_storage_map_gtid(i, stack_beg, stack_end, 211 other_threads[i]->th.th_info.ds.ds_stacksize, 212 "th_%d stack (refinement)", i); 213 } 214 return i; 215 } 216 217 int __kmp_get_global_thread_id_reg() { 218 int gtid; 219 220 if (!__kmp_init_serial) { 221 gtid = KMP_GTID_DNE; 222 } else 223 #ifdef KMP_TDATA_GTID 224 if (TCR_4(__kmp_gtid_mode) >= 3) { 225 KA_TRACE(1000, ("*** __kmp_get_global_thread_id_reg: using TDATA\n")); 226 gtid = __kmp_gtid; 227 } else 228 #endif 229 if (TCR_4(__kmp_gtid_mode) >= 2) { 230 KA_TRACE(1000, ("*** __kmp_get_global_thread_id_reg: using keyed TLS\n")); 231 gtid = __kmp_gtid_get_specific(); 232 } else { 233 KA_TRACE(1000, 234 ("*** __kmp_get_global_thread_id_reg: using internal alg.\n")); 235 gtid = __kmp_get_global_thread_id(); 236 } 237 238 /* we must be a new uber master sibling thread */ 239 if (gtid == KMP_GTID_DNE) { 240 KA_TRACE(10, 241 ("__kmp_get_global_thread_id_reg: Encountered new root thread. " 242 "Registering a new gtid.\n")); 243 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 244 if (!__kmp_init_serial) { 245 __kmp_do_serial_initialize(); 246 gtid = __kmp_gtid_get_specific(); 247 } else { 248 gtid = __kmp_register_root(FALSE); 249 } 250 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 251 /*__kmp_printf( "+++ %d\n", gtid ); */ /* GROO */ 252 } 253 254 KMP_DEBUG_ASSERT(gtid >= 0); 255 256 return gtid; 257 } 258 259 /* caller must hold forkjoin_lock */ 260 void __kmp_check_stack_overlap(kmp_info_t *th) { 261 int f; 262 char *stack_beg = NULL; 263 char *stack_end = NULL; 264 int gtid; 265 266 KA_TRACE(10, ("__kmp_check_stack_overlap: called\n")); 267 if (__kmp_storage_map) { 268 stack_end = (char *)th->th.th_info.ds.ds_stackbase; 269 stack_beg = stack_end - th->th.th_info.ds.ds_stacksize; 270 271 gtid = __kmp_gtid_from_thread(th); 272 273 if (gtid == KMP_GTID_MONITOR) { 274 __kmp_print_storage_map_gtid( 275 gtid, stack_beg, stack_end, th->th.th_info.ds.ds_stacksize, 276 "th_%s stack (%s)", "mon", 277 (th->th.th_info.ds.ds_stackgrow) ? "initial" : "actual"); 278 } else { 279 __kmp_print_storage_map_gtid( 280 gtid, stack_beg, stack_end, th->th.th_info.ds.ds_stacksize, 281 "th_%d stack (%s)", gtid, 282 (th->th.th_info.ds.ds_stackgrow) ? "initial" : "actual"); 283 } 284 } 285 286 /* No point in checking ubermaster threads since they use refinement and 287 * cannot overlap */ 288 gtid = __kmp_gtid_from_thread(th); 289 if (__kmp_env_checks == TRUE && !KMP_UBER_GTID(gtid)) { 290 KA_TRACE(10, 291 ("__kmp_check_stack_overlap: performing extensive checking\n")); 292 if (stack_beg == NULL) { 293 stack_end = (char *)th->th.th_info.ds.ds_stackbase; 294 stack_beg = stack_end - th->th.th_info.ds.ds_stacksize; 295 } 296 297 for (f = 0; f < __kmp_threads_capacity; f++) { 298 kmp_info_t *f_th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[f]); 299 300 if (f_th && f_th != th) { 301 char *other_stack_end = 302 (char *)TCR_PTR(f_th->th.th_info.ds.ds_stackbase); 303 char *other_stack_beg = 304 other_stack_end - (size_t)TCR_PTR(f_th->th.th_info.ds.ds_stacksize); 305 if ((stack_beg > other_stack_beg && stack_beg < other_stack_end) || 306 (stack_end > other_stack_beg && stack_end < other_stack_end)) { 307 308 /* Print the other stack values before the abort */ 309 if (__kmp_storage_map) 310 __kmp_print_storage_map_gtid( 311 -1, other_stack_beg, other_stack_end, 312 (size_t)TCR_PTR(f_th->th.th_info.ds.ds_stacksize), 313 "th_%d stack (overlapped)", __kmp_gtid_from_thread(f_th)); 314 315 __kmp_fatal(KMP_MSG(StackOverlap), KMP_HNT(ChangeStackLimit), 316 __kmp_msg_null); 317 } 318 } 319 } 320 } 321 KA_TRACE(10, ("__kmp_check_stack_overlap: returning\n")); 322 } 323 324 /* ------------------------------------------------------------------------ */ 325 326 void __kmp_infinite_loop(void) { 327 static int done = FALSE; 328 329 while (!done) { 330 KMP_YIELD(TRUE); 331 } 332 } 333 334 #define MAX_MESSAGE 512 335 336 void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2, size_t size, 337 char const *format, ...) { 338 char buffer[MAX_MESSAGE]; 339 va_list ap; 340 341 va_start(ap, format); 342 KMP_SNPRINTF(buffer, sizeof(buffer), "OMP storage map: %p %p%8lu %s\n", p1, 343 p2, (unsigned long)size, format); 344 __kmp_acquire_bootstrap_lock(&__kmp_stdio_lock); 345 __kmp_vprintf(kmp_err, buffer, ap); 346 #if KMP_PRINT_DATA_PLACEMENT 347 int node; 348 if (gtid >= 0) { 349 if (p1 <= p2 && (char *)p2 - (char *)p1 == size) { 350 if (__kmp_storage_map_verbose) { 351 node = __kmp_get_host_node(p1); 352 if (node < 0) /* doesn't work, so don't try this next time */ 353 __kmp_storage_map_verbose = FALSE; 354 else { 355 char *last; 356 int lastNode; 357 int localProc = __kmp_get_cpu_from_gtid(gtid); 358 359 const int page_size = KMP_GET_PAGE_SIZE(); 360 361 p1 = (void *)((size_t)p1 & ~((size_t)page_size - 1)); 362 p2 = (void *)(((size_t)p2 - 1) & ~((size_t)page_size - 1)); 363 if (localProc >= 0) 364 __kmp_printf_no_lock(" GTID %d localNode %d\n", gtid, 365 localProc >> 1); 366 else 367 __kmp_printf_no_lock(" GTID %d\n", gtid); 368 #if KMP_USE_PRCTL 369 /* The more elaborate format is disabled for now because of the prctl 370 * hanging bug. */ 371 do { 372 last = p1; 373 lastNode = node; 374 /* This loop collates adjacent pages with the same host node. */ 375 do { 376 (char *)p1 += page_size; 377 } while (p1 <= p2 && (node = __kmp_get_host_node(p1)) == lastNode); 378 __kmp_printf_no_lock(" %p-%p memNode %d\n", last, (char *)p1 - 1, 379 lastNode); 380 } while (p1 <= p2); 381 #else 382 __kmp_printf_no_lock(" %p-%p memNode %d\n", p1, 383 (char *)p1 + (page_size - 1), 384 __kmp_get_host_node(p1)); 385 if (p1 < p2) { 386 __kmp_printf_no_lock(" %p-%p memNode %d\n", p2, 387 (char *)p2 + (page_size - 1), 388 __kmp_get_host_node(p2)); 389 } 390 #endif 391 } 392 } 393 } else 394 __kmp_printf_no_lock(" %s\n", KMP_I18N_STR(StorageMapWarning)); 395 } 396 #endif /* KMP_PRINT_DATA_PLACEMENT */ 397 __kmp_release_bootstrap_lock(&__kmp_stdio_lock); 398 } 399 400 void __kmp_warn(char const *format, ...) { 401 char buffer[MAX_MESSAGE]; 402 va_list ap; 403 404 if (__kmp_generate_warnings == kmp_warnings_off) { 405 return; 406 } 407 408 va_start(ap, format); 409 410 KMP_SNPRINTF(buffer, sizeof(buffer), "OMP warning: %s\n", format); 411 __kmp_acquire_bootstrap_lock(&__kmp_stdio_lock); 412 __kmp_vprintf(kmp_err, buffer, ap); 413 __kmp_release_bootstrap_lock(&__kmp_stdio_lock); 414 415 va_end(ap); 416 } 417 418 void __kmp_abort_process() { 419 // Later threads may stall here, but that's ok because abort() will kill them. 420 __kmp_acquire_bootstrap_lock(&__kmp_exit_lock); 421 422 if (__kmp_debug_buf) { 423 __kmp_dump_debug_buffer(); 424 } 425 426 if (KMP_OS_WINDOWS) { 427 // Let other threads know of abnormal termination and prevent deadlock 428 // if abort happened during library initialization or shutdown 429 __kmp_global.g.g_abort = SIGABRT; 430 431 /* On Windows* OS by default abort() causes pop-up error box, which stalls 432 nightly testing. Unfortunately, we cannot reliably suppress pop-up error 433 boxes. _set_abort_behavior() works well, but this function is not 434 available in VS7 (this is not problem for DLL, but it is a problem for 435 static OpenMP RTL). SetErrorMode (and so, timelimit utility) does not 436 help, at least in some versions of MS C RTL. 437 438 It seems following sequence is the only way to simulate abort() and 439 avoid pop-up error box. */ 440 raise(SIGABRT); 441 _exit(3); // Just in case, if signal ignored, exit anyway. 442 } else { 443 abort(); 444 } 445 446 __kmp_infinite_loop(); 447 __kmp_release_bootstrap_lock(&__kmp_exit_lock); 448 449 } // __kmp_abort_process 450 451 void __kmp_abort_thread(void) { 452 // TODO: Eliminate g_abort global variable and this function. 453 // In case of abort just call abort(), it will kill all the threads. 454 __kmp_infinite_loop(); 455 } // __kmp_abort_thread 456 457 /* Print out the storage map for the major kmp_info_t thread data structures 458 that are allocated together. */ 459 460 static void __kmp_print_thread_storage_map(kmp_info_t *thr, int gtid) { 461 __kmp_print_storage_map_gtid(gtid, thr, thr + 1, sizeof(kmp_info_t), "th_%d", 462 gtid); 463 464 __kmp_print_storage_map_gtid(gtid, &thr->th.th_info, &thr->th.th_team, 465 sizeof(kmp_desc_t), "th_%d.th_info", gtid); 466 467 __kmp_print_storage_map_gtid(gtid, &thr->th.th_local, &thr->th.th_pri_head, 468 sizeof(kmp_local_t), "th_%d.th_local", gtid); 469 470 __kmp_print_storage_map_gtid( 471 gtid, &thr->th.th_bar[0], &thr->th.th_bar[bs_last_barrier], 472 sizeof(kmp_balign_t) * bs_last_barrier, "th_%d.th_bar", gtid); 473 474 __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_plain_barrier], 475 &thr->th.th_bar[bs_plain_barrier + 1], 476 sizeof(kmp_balign_t), "th_%d.th_bar[plain]", 477 gtid); 478 479 __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_forkjoin_barrier], 480 &thr->th.th_bar[bs_forkjoin_barrier + 1], 481 sizeof(kmp_balign_t), "th_%d.th_bar[forkjoin]", 482 gtid); 483 484 #if KMP_FAST_REDUCTION_BARRIER 485 __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_reduction_barrier], 486 &thr->th.th_bar[bs_reduction_barrier + 1], 487 sizeof(kmp_balign_t), "th_%d.th_bar[reduction]", 488 gtid); 489 #endif // KMP_FAST_REDUCTION_BARRIER 490 } 491 492 /* Print out the storage map for the major kmp_team_t team data structures 493 that are allocated together. */ 494 495 static void __kmp_print_team_storage_map(const char *header, kmp_team_t *team, 496 int team_id, int num_thr) { 497 int num_disp_buff = team->t.t_max_nproc > 1 ? __kmp_dispatch_num_buffers : 2; 498 __kmp_print_storage_map_gtid(-1, team, team + 1, sizeof(kmp_team_t), "%s_%d", 499 header, team_id); 500 501 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[0], 502 &team->t.t_bar[bs_last_barrier], 503 sizeof(kmp_balign_team_t) * bs_last_barrier, 504 "%s_%d.t_bar", header, team_id); 505 506 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_plain_barrier], 507 &team->t.t_bar[bs_plain_barrier + 1], 508 sizeof(kmp_balign_team_t), "%s_%d.t_bar[plain]", 509 header, team_id); 510 511 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_forkjoin_barrier], 512 &team->t.t_bar[bs_forkjoin_barrier + 1], 513 sizeof(kmp_balign_team_t), 514 "%s_%d.t_bar[forkjoin]", header, team_id); 515 516 #if KMP_FAST_REDUCTION_BARRIER 517 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_reduction_barrier], 518 &team->t.t_bar[bs_reduction_barrier + 1], 519 sizeof(kmp_balign_team_t), 520 "%s_%d.t_bar[reduction]", header, team_id); 521 #endif // KMP_FAST_REDUCTION_BARRIER 522 523 __kmp_print_storage_map_gtid( 524 -1, &team->t.t_dispatch[0], &team->t.t_dispatch[num_thr], 525 sizeof(kmp_disp_t) * num_thr, "%s_%d.t_dispatch", header, team_id); 526 527 __kmp_print_storage_map_gtid( 528 -1, &team->t.t_threads[0], &team->t.t_threads[num_thr], 529 sizeof(kmp_info_t *) * num_thr, "%s_%d.t_threads", header, team_id); 530 531 __kmp_print_storage_map_gtid(-1, &team->t.t_disp_buffer[0], 532 &team->t.t_disp_buffer[num_disp_buff], 533 sizeof(dispatch_shared_info_t) * num_disp_buff, 534 "%s_%d.t_disp_buffer", header, team_id); 535 } 536 537 static void __kmp_init_allocator() { 538 #if OMP_50_ENABLED 539 __kmp_init_memkind(); 540 #endif 541 } 542 static void __kmp_fini_allocator() { 543 #if OMP_50_ENABLED 544 __kmp_fini_memkind(); 545 #endif 546 } 547 548 /* ------------------------------------------------------------------------ */ 549 550 #if KMP_DYNAMIC_LIB 551 #if KMP_OS_WINDOWS 552 553 static void __kmp_reset_lock(kmp_bootstrap_lock_t *lck) { 554 // TODO: Change to __kmp_break_bootstrap_lock(). 555 __kmp_init_bootstrap_lock(lck); // make the lock released 556 } 557 558 static void __kmp_reset_locks_on_process_detach(int gtid_req) { 559 int i; 560 int thread_count; 561 562 // PROCESS_DETACH is expected to be called by a thread that executes 563 // ProcessExit() or FreeLibrary(). OS terminates other threads (except the one 564 // calling ProcessExit or FreeLibrary). So, it might be safe to access the 565 // __kmp_threads[] without taking the forkjoin_lock. However, in fact, some 566 // threads can be still alive here, although being about to be terminated. The 567 // threads in the array with ds_thread==0 are most suspicious. Actually, it 568 // can be not safe to access the __kmp_threads[]. 569 570 // TODO: does it make sense to check __kmp_roots[] ? 571 572 // Let's check that there are no other alive threads registered with the OMP 573 // lib. 574 while (1) { 575 thread_count = 0; 576 for (i = 0; i < __kmp_threads_capacity; ++i) { 577 if (!__kmp_threads) 578 continue; 579 kmp_info_t *th = __kmp_threads[i]; 580 if (th == NULL) 581 continue; 582 int gtid = th->th.th_info.ds.ds_gtid; 583 if (gtid == gtid_req) 584 continue; 585 if (gtid < 0) 586 continue; 587 DWORD exit_val; 588 int alive = __kmp_is_thread_alive(th, &exit_val); 589 if (alive) { 590 ++thread_count; 591 } 592 } 593 if (thread_count == 0) 594 break; // success 595 } 596 597 // Assume that I'm alone. Now it might be safe to check and reset locks. 598 // __kmp_forkjoin_lock and __kmp_stdio_lock are expected to be reset. 599 __kmp_reset_lock(&__kmp_forkjoin_lock); 600 #ifdef KMP_DEBUG 601 __kmp_reset_lock(&__kmp_stdio_lock); 602 #endif // KMP_DEBUG 603 } 604 605 BOOL WINAPI DllMain(HINSTANCE hInstDLL, DWORD fdwReason, LPVOID lpReserved) { 606 //__kmp_acquire_bootstrap_lock( &__kmp_initz_lock ); 607 608 switch (fdwReason) { 609 610 case DLL_PROCESS_ATTACH: 611 KA_TRACE(10, ("DllMain: PROCESS_ATTACH\n")); 612 613 return TRUE; 614 615 case DLL_PROCESS_DETACH: 616 KA_TRACE(10, ("DllMain: PROCESS_DETACH T#%d\n", __kmp_gtid_get_specific())); 617 618 if (lpReserved != NULL) { 619 // lpReserved is used for telling the difference: 620 // lpReserved == NULL when FreeLibrary() was called, 621 // lpReserved != NULL when the process terminates. 622 // When FreeLibrary() is called, worker threads remain alive. So they will 623 // release the forkjoin lock by themselves. When the process terminates, 624 // worker threads disappear triggering the problem of unreleased forkjoin 625 // lock as described below. 626 627 // A worker thread can take the forkjoin lock. The problem comes up if 628 // that worker thread becomes dead before it releases the forkjoin lock. 629 // The forkjoin lock remains taken, while the thread executing 630 // DllMain()->PROCESS_DETACH->__kmp_internal_end_library() below will try 631 // to take the forkjoin lock and will always fail, so that the application 632 // will never finish [normally]. This scenario is possible if 633 // __kmpc_end() has not been executed. It looks like it's not a corner 634 // case, but common cases: 635 // - the main function was compiled by an alternative compiler; 636 // - the main function was compiled by icl but without /Qopenmp 637 // (application with plugins); 638 // - application terminates by calling C exit(), Fortran CALL EXIT() or 639 // Fortran STOP. 640 // - alive foreign thread prevented __kmpc_end from doing cleanup. 641 // 642 // This is a hack to work around the problem. 643 // TODO: !!! figure out something better. 644 __kmp_reset_locks_on_process_detach(__kmp_gtid_get_specific()); 645 } 646 647 __kmp_internal_end_library(__kmp_gtid_get_specific()); 648 649 return TRUE; 650 651 case DLL_THREAD_ATTACH: 652 KA_TRACE(10, ("DllMain: THREAD_ATTACH\n")); 653 654 /* if we want to register new siblings all the time here call 655 * __kmp_get_gtid(); */ 656 return TRUE; 657 658 case DLL_THREAD_DETACH: 659 KA_TRACE(10, ("DllMain: THREAD_DETACH T#%d\n", __kmp_gtid_get_specific())); 660 661 __kmp_internal_end_thread(__kmp_gtid_get_specific()); 662 return TRUE; 663 } 664 665 return TRUE; 666 } 667 668 #endif /* KMP_OS_WINDOWS */ 669 #endif /* KMP_DYNAMIC_LIB */ 670 671 /* __kmp_parallel_deo -- Wait until it's our turn. */ 672 void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) { 673 int gtid = *gtid_ref; 674 #ifdef BUILD_PARALLEL_ORDERED 675 kmp_team_t *team = __kmp_team_from_gtid(gtid); 676 #endif /* BUILD_PARALLEL_ORDERED */ 677 678 if (__kmp_env_consistency_check) { 679 if (__kmp_threads[gtid]->th.th_root->r.r_active) 680 #if KMP_USE_DYNAMIC_LOCK 681 __kmp_push_sync(gtid, ct_ordered_in_parallel, loc_ref, NULL, 0); 682 #else 683 __kmp_push_sync(gtid, ct_ordered_in_parallel, loc_ref, NULL); 684 #endif 685 } 686 #ifdef BUILD_PARALLEL_ORDERED 687 if (!team->t.t_serialized) { 688 KMP_MB(); 689 KMP_WAIT(&team->t.t_ordered.dt.t_value, __kmp_tid_from_gtid(gtid), KMP_EQ, 690 NULL); 691 KMP_MB(); 692 } 693 #endif /* BUILD_PARALLEL_ORDERED */ 694 } 695 696 /* __kmp_parallel_dxo -- Signal the next task. */ 697 void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) { 698 int gtid = *gtid_ref; 699 #ifdef BUILD_PARALLEL_ORDERED 700 int tid = __kmp_tid_from_gtid(gtid); 701 kmp_team_t *team = __kmp_team_from_gtid(gtid); 702 #endif /* BUILD_PARALLEL_ORDERED */ 703 704 if (__kmp_env_consistency_check) { 705 if (__kmp_threads[gtid]->th.th_root->r.r_active) 706 __kmp_pop_sync(gtid, ct_ordered_in_parallel, loc_ref); 707 } 708 #ifdef BUILD_PARALLEL_ORDERED 709 if (!team->t.t_serialized) { 710 KMP_MB(); /* Flush all pending memory write invalidates. */ 711 712 /* use the tid of the next thread in this team */ 713 /* TODO replace with general release procedure */ 714 team->t.t_ordered.dt.t_value = ((tid + 1) % team->t.t_nproc); 715 716 KMP_MB(); /* Flush all pending memory write invalidates. */ 717 } 718 #endif /* BUILD_PARALLEL_ORDERED */ 719 } 720 721 /* ------------------------------------------------------------------------ */ 722 /* The BARRIER for a SINGLE process section is always explicit */ 723 724 int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws) { 725 int status; 726 kmp_info_t *th; 727 kmp_team_t *team; 728 729 if (!TCR_4(__kmp_init_parallel)) 730 __kmp_parallel_initialize(); 731 732 #if OMP_50_ENABLED 733 __kmp_resume_if_soft_paused(); 734 #endif 735 736 th = __kmp_threads[gtid]; 737 team = th->th.th_team; 738 status = 0; 739 740 th->th.th_ident = id_ref; 741 742 if (team->t.t_serialized) { 743 status = 1; 744 } else { 745 kmp_int32 old_this = th->th.th_local.this_construct; 746 747 ++th->th.th_local.this_construct; 748 /* try to set team count to thread count--success means thread got the 749 single block */ 750 /* TODO: Should this be acquire or release? */ 751 if (team->t.t_construct == old_this) { 752 status = __kmp_atomic_compare_store_acq(&team->t.t_construct, old_this, 753 th->th.th_local.this_construct); 754 } 755 #if USE_ITT_BUILD 756 if (__itt_metadata_add_ptr && __kmp_forkjoin_frames_mode == 3 && 757 KMP_MASTER_GTID(gtid) && 758 #if OMP_40_ENABLED 759 th->th.th_teams_microtask == NULL && 760 #endif 761 team->t.t_active_level == 762 1) { // Only report metadata by master of active team at level 1 763 __kmp_itt_metadata_single(id_ref); 764 } 765 #endif /* USE_ITT_BUILD */ 766 } 767 768 if (__kmp_env_consistency_check) { 769 if (status && push_ws) { 770 __kmp_push_workshare(gtid, ct_psingle, id_ref); 771 } else { 772 __kmp_check_workshare(gtid, ct_psingle, id_ref); 773 } 774 } 775 #if USE_ITT_BUILD 776 if (status) { 777 __kmp_itt_single_start(gtid); 778 } 779 #endif /* USE_ITT_BUILD */ 780 return status; 781 } 782 783 void __kmp_exit_single(int gtid) { 784 #if USE_ITT_BUILD 785 __kmp_itt_single_end(gtid); 786 #endif /* USE_ITT_BUILD */ 787 if (__kmp_env_consistency_check) 788 __kmp_pop_workshare(gtid, ct_psingle, NULL); 789 } 790 791 /* determine if we can go parallel or must use a serialized parallel region and 792 * how many threads we can use 793 * set_nproc is the number of threads requested for the team 794 * returns 0 if we should serialize or only use one thread, 795 * otherwise the number of threads to use 796 * The forkjoin lock is held by the caller. */ 797 static int __kmp_reserve_threads(kmp_root_t *root, kmp_team_t *parent_team, 798 int master_tid, int set_nthreads 799 #if OMP_40_ENABLED 800 , 801 int enter_teams 802 #endif /* OMP_40_ENABLED */ 803 ) { 804 int capacity; 805 int new_nthreads; 806 KMP_DEBUG_ASSERT(__kmp_init_serial); 807 KMP_DEBUG_ASSERT(root && parent_team); 808 kmp_info_t *this_thr = parent_team->t.t_threads[master_tid]; 809 810 // If dyn-var is set, dynamically adjust the number of desired threads, 811 // according to the method specified by dynamic_mode. 812 new_nthreads = set_nthreads; 813 if (!get__dynamic_2(parent_team, master_tid)) { 814 ; 815 } 816 #ifdef USE_LOAD_BALANCE 817 else if (__kmp_global.g.g_dynamic_mode == dynamic_load_balance) { 818 new_nthreads = __kmp_load_balance_nproc(root, set_nthreads); 819 if (new_nthreads == 1) { 820 KC_TRACE(10, ("__kmp_reserve_threads: T#%d load balance reduced " 821 "reservation to 1 thread\n", 822 master_tid)); 823 return 1; 824 } 825 if (new_nthreads < set_nthreads) { 826 KC_TRACE(10, ("__kmp_reserve_threads: T#%d load balance reduced " 827 "reservation to %d threads\n", 828 master_tid, new_nthreads)); 829 } 830 } 831 #endif /* USE_LOAD_BALANCE */ 832 else if (__kmp_global.g.g_dynamic_mode == dynamic_thread_limit) { 833 new_nthreads = __kmp_avail_proc - __kmp_nth + 834 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 835 if (new_nthreads <= 1) { 836 KC_TRACE(10, ("__kmp_reserve_threads: T#%d thread limit reduced " 837 "reservation to 1 thread\n", 838 master_tid)); 839 return 1; 840 } 841 if (new_nthreads < set_nthreads) { 842 KC_TRACE(10, ("__kmp_reserve_threads: T#%d thread limit reduced " 843 "reservation to %d threads\n", 844 master_tid, new_nthreads)); 845 } else { 846 new_nthreads = set_nthreads; 847 } 848 } else if (__kmp_global.g.g_dynamic_mode == dynamic_random) { 849 if (set_nthreads > 2) { 850 new_nthreads = __kmp_get_random(parent_team->t.t_threads[master_tid]); 851 new_nthreads = (new_nthreads % set_nthreads) + 1; 852 if (new_nthreads == 1) { 853 KC_TRACE(10, ("__kmp_reserve_threads: T#%d dynamic random reduced " 854 "reservation to 1 thread\n", 855 master_tid)); 856 return 1; 857 } 858 if (new_nthreads < set_nthreads) { 859 KC_TRACE(10, ("__kmp_reserve_threads: T#%d dynamic random reduced " 860 "reservation to %d threads\n", 861 master_tid, new_nthreads)); 862 } 863 } 864 } else { 865 KMP_ASSERT(0); 866 } 867 868 // Respect KMP_ALL_THREADS/KMP_DEVICE_THREAD_LIMIT. 869 if (__kmp_nth + new_nthreads - 870 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) > 871 __kmp_max_nth) { 872 int tl_nthreads = __kmp_max_nth - __kmp_nth + 873 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 874 if (tl_nthreads <= 0) { 875 tl_nthreads = 1; 876 } 877 878 // If dyn-var is false, emit a 1-time warning. 879 if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) { 880 __kmp_reserve_warn = 1; 881 __kmp_msg(kmp_ms_warning, 882 KMP_MSG(CantFormThrTeam, set_nthreads, tl_nthreads), 883 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 884 } 885 if (tl_nthreads == 1) { 886 KC_TRACE(10, ("__kmp_reserve_threads: T#%d KMP_DEVICE_THREAD_LIMIT " 887 "reduced reservation to 1 thread\n", 888 master_tid)); 889 return 1; 890 } 891 KC_TRACE(10, ("__kmp_reserve_threads: T#%d KMP_DEVICE_THREAD_LIMIT reduced " 892 "reservation to %d threads\n", 893 master_tid, tl_nthreads)); 894 new_nthreads = tl_nthreads; 895 } 896 897 // Respect OMP_THREAD_LIMIT 898 int cg_nthreads = this_thr->th.th_cg_roots->cg_nthreads; 899 int max_cg_threads = this_thr->th.th_cg_roots->cg_thread_limit; 900 if (cg_nthreads + new_nthreads - 901 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) > 902 max_cg_threads) { 903 int tl_nthreads = max_cg_threads - cg_nthreads + 904 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 905 if (tl_nthreads <= 0) { 906 tl_nthreads = 1; 907 } 908 909 // If dyn-var is false, emit a 1-time warning. 910 if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) { 911 __kmp_reserve_warn = 1; 912 __kmp_msg(kmp_ms_warning, 913 KMP_MSG(CantFormThrTeam, set_nthreads, tl_nthreads), 914 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 915 } 916 if (tl_nthreads == 1) { 917 KC_TRACE(10, ("__kmp_reserve_threads: T#%d OMP_THREAD_LIMIT " 918 "reduced reservation to 1 thread\n", 919 master_tid)); 920 return 1; 921 } 922 KC_TRACE(10, ("__kmp_reserve_threads: T#%d OMP_THREAD_LIMIT reduced " 923 "reservation to %d threads\n", 924 master_tid, tl_nthreads)); 925 new_nthreads = tl_nthreads; 926 } 927 928 // Check if the threads array is large enough, or needs expanding. 929 // See comment in __kmp_register_root() about the adjustment if 930 // __kmp_threads[0] == NULL. 931 capacity = __kmp_threads_capacity; 932 if (TCR_PTR(__kmp_threads[0]) == NULL) { 933 --capacity; 934 } 935 if (__kmp_nth + new_nthreads - 936 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) > 937 capacity) { 938 // Expand the threads array. 939 int slotsRequired = __kmp_nth + new_nthreads - 940 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) - 941 capacity; 942 int slotsAdded = __kmp_expand_threads(slotsRequired); 943 if (slotsAdded < slotsRequired) { 944 // The threads array was not expanded enough. 945 new_nthreads -= (slotsRequired - slotsAdded); 946 KMP_ASSERT(new_nthreads >= 1); 947 948 // If dyn-var is false, emit a 1-time warning. 949 if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) { 950 __kmp_reserve_warn = 1; 951 if (__kmp_tp_cached) { 952 __kmp_msg(kmp_ms_warning, 953 KMP_MSG(CantFormThrTeam, set_nthreads, new_nthreads), 954 KMP_HNT(Set_ALL_THREADPRIVATE, __kmp_tp_capacity), 955 KMP_HNT(PossibleSystemLimitOnThreads), __kmp_msg_null); 956 } else { 957 __kmp_msg(kmp_ms_warning, 958 KMP_MSG(CantFormThrTeam, set_nthreads, new_nthreads), 959 KMP_HNT(SystemLimitOnThreads), __kmp_msg_null); 960 } 961 } 962 } 963 } 964 965 #ifdef KMP_DEBUG 966 if (new_nthreads == 1) { 967 KC_TRACE(10, 968 ("__kmp_reserve_threads: T#%d serializing team after reclaiming " 969 "dead roots and rechecking; requested %d threads\n", 970 __kmp_get_gtid(), set_nthreads)); 971 } else { 972 KC_TRACE(10, ("__kmp_reserve_threads: T#%d allocating %d threads; requested" 973 " %d threads\n", 974 __kmp_get_gtid(), new_nthreads, set_nthreads)); 975 } 976 #endif // KMP_DEBUG 977 return new_nthreads; 978 } 979 980 /* Allocate threads from the thread pool and assign them to the new team. We are 981 assured that there are enough threads available, because we checked on that 982 earlier within critical section forkjoin */ 983 static void __kmp_fork_team_threads(kmp_root_t *root, kmp_team_t *team, 984 kmp_info_t *master_th, int master_gtid) { 985 int i; 986 int use_hot_team; 987 988 KA_TRACE(10, ("__kmp_fork_team_threads: new_nprocs = %d\n", team->t.t_nproc)); 989 KMP_DEBUG_ASSERT(master_gtid == __kmp_get_gtid()); 990 KMP_MB(); 991 992 /* first, let's setup the master thread */ 993 master_th->th.th_info.ds.ds_tid = 0; 994 master_th->th.th_team = team; 995 master_th->th.th_team_nproc = team->t.t_nproc; 996 master_th->th.th_team_master = master_th; 997 master_th->th.th_team_serialized = FALSE; 998 master_th->th.th_dispatch = &team->t.t_dispatch[0]; 999 1000 /* make sure we are not the optimized hot team */ 1001 #if KMP_NESTED_HOT_TEAMS 1002 use_hot_team = 0; 1003 kmp_hot_team_ptr_t *hot_teams = master_th->th.th_hot_teams; 1004 if (hot_teams) { // hot teams array is not allocated if 1005 // KMP_HOT_TEAMS_MAX_LEVEL=0 1006 int level = team->t.t_active_level - 1; // index in array of hot teams 1007 if (master_th->th.th_teams_microtask) { // are we inside the teams? 1008 if (master_th->th.th_teams_size.nteams > 1) { 1009 ++level; // level was not increased in teams construct for 1010 // team_of_masters 1011 } 1012 if (team->t.t_pkfn != (microtask_t)__kmp_teams_master && 1013 master_th->th.th_teams_level == team->t.t_level) { 1014 ++level; // level was not increased in teams construct for 1015 // team_of_workers before the parallel 1016 } // team->t.t_level will be increased inside parallel 1017 } 1018 if (level < __kmp_hot_teams_max_level) { 1019 if (hot_teams[level].hot_team) { 1020 // hot team has already been allocated for given level 1021 KMP_DEBUG_ASSERT(hot_teams[level].hot_team == team); 1022 use_hot_team = 1; // the team is ready to use 1023 } else { 1024 use_hot_team = 0; // AC: threads are not allocated yet 1025 hot_teams[level].hot_team = team; // remember new hot team 1026 hot_teams[level].hot_team_nth = team->t.t_nproc; 1027 } 1028 } else { 1029 use_hot_team = 0; 1030 } 1031 } 1032 #else 1033 use_hot_team = team == root->r.r_hot_team; 1034 #endif 1035 if (!use_hot_team) { 1036 1037 /* install the master thread */ 1038 team->t.t_threads[0] = master_th; 1039 __kmp_initialize_info(master_th, team, 0, master_gtid); 1040 1041 /* now, install the worker threads */ 1042 for (i = 1; i < team->t.t_nproc; i++) { 1043 1044 /* fork or reallocate a new thread and install it in team */ 1045 kmp_info_t *thr = __kmp_allocate_thread(root, team, i); 1046 team->t.t_threads[i] = thr; 1047 KMP_DEBUG_ASSERT(thr); 1048 KMP_DEBUG_ASSERT(thr->th.th_team == team); 1049 /* align team and thread arrived states */ 1050 KA_TRACE(20, ("__kmp_fork_team_threads: T#%d(%d:%d) init arrived " 1051 "T#%d(%d:%d) join =%llu, plain=%llu\n", 1052 __kmp_gtid_from_tid(0, team), team->t.t_id, 0, 1053 __kmp_gtid_from_tid(i, team), team->t.t_id, i, 1054 team->t.t_bar[bs_forkjoin_barrier].b_arrived, 1055 team->t.t_bar[bs_plain_barrier].b_arrived)); 1056 #if OMP_40_ENABLED 1057 thr->th.th_teams_microtask = master_th->th.th_teams_microtask; 1058 thr->th.th_teams_level = master_th->th.th_teams_level; 1059 thr->th.th_teams_size = master_th->th.th_teams_size; 1060 #endif 1061 { // Initialize threads' barrier data. 1062 int b; 1063 kmp_balign_t *balign = team->t.t_threads[i]->th.th_bar; 1064 for (b = 0; b < bs_last_barrier; ++b) { 1065 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 1066 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 1067 #if USE_DEBUGGER 1068 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 1069 #endif 1070 } 1071 } 1072 } 1073 1074 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 1075 __kmp_partition_places(team); 1076 #endif 1077 } 1078 1079 #if OMP_50_ENABLED 1080 if (__kmp_display_affinity && team->t.t_display_affinity != 1) { 1081 for (i = 0; i < team->t.t_nproc; i++) { 1082 kmp_info_t *thr = team->t.t_threads[i]; 1083 if (thr->th.th_prev_num_threads != team->t.t_nproc || 1084 thr->th.th_prev_level != team->t.t_level) { 1085 team->t.t_display_affinity = 1; 1086 break; 1087 } 1088 } 1089 } 1090 #endif 1091 1092 KMP_MB(); 1093 } 1094 1095 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1096 // Propagate any changes to the floating point control registers out to the team 1097 // We try to avoid unnecessary writes to the relevant cache line in the team 1098 // structure, so we don't make changes unless they are needed. 1099 inline static void propagateFPControl(kmp_team_t *team) { 1100 if (__kmp_inherit_fp_control) { 1101 kmp_int16 x87_fpu_control_word; 1102 kmp_uint32 mxcsr; 1103 1104 // Get master values of FPU control flags (both X87 and vector) 1105 __kmp_store_x87_fpu_control_word(&x87_fpu_control_word); 1106 __kmp_store_mxcsr(&mxcsr); 1107 mxcsr &= KMP_X86_MXCSR_MASK; 1108 1109 // There is no point looking at t_fp_control_saved here. 1110 // If it is TRUE, we still have to update the values if they are different 1111 // from those we now have. If it is FALSE we didn't save anything yet, but 1112 // our objective is the same. We have to ensure that the values in the team 1113 // are the same as those we have. 1114 // So, this code achieves what we need whether or not t_fp_control_saved is 1115 // true. By checking whether the value needs updating we avoid unnecessary 1116 // writes that would put the cache-line into a written state, causing all 1117 // threads in the team to have to read it again. 1118 KMP_CHECK_UPDATE(team->t.t_x87_fpu_control_word, x87_fpu_control_word); 1119 KMP_CHECK_UPDATE(team->t.t_mxcsr, mxcsr); 1120 // Although we don't use this value, other code in the runtime wants to know 1121 // whether it should restore them. So we must ensure it is correct. 1122 KMP_CHECK_UPDATE(team->t.t_fp_control_saved, TRUE); 1123 } else { 1124 // Similarly here. Don't write to this cache-line in the team structure 1125 // unless we have to. 1126 KMP_CHECK_UPDATE(team->t.t_fp_control_saved, FALSE); 1127 } 1128 } 1129 1130 // Do the opposite, setting the hardware registers to the updated values from 1131 // the team. 1132 inline static void updateHWFPControl(kmp_team_t *team) { 1133 if (__kmp_inherit_fp_control && team->t.t_fp_control_saved) { 1134 // Only reset the fp control regs if they have been changed in the team. 1135 // the parallel region that we are exiting. 1136 kmp_int16 x87_fpu_control_word; 1137 kmp_uint32 mxcsr; 1138 __kmp_store_x87_fpu_control_word(&x87_fpu_control_word); 1139 __kmp_store_mxcsr(&mxcsr); 1140 mxcsr &= KMP_X86_MXCSR_MASK; 1141 1142 if (team->t.t_x87_fpu_control_word != x87_fpu_control_word) { 1143 __kmp_clear_x87_fpu_status_word(); 1144 __kmp_load_x87_fpu_control_word(&team->t.t_x87_fpu_control_word); 1145 } 1146 1147 if (team->t.t_mxcsr != mxcsr) { 1148 __kmp_load_mxcsr(&team->t.t_mxcsr); 1149 } 1150 } 1151 } 1152 #else 1153 #define propagateFPControl(x) ((void)0) 1154 #define updateHWFPControl(x) ((void)0) 1155 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 1156 1157 static void __kmp_alloc_argv_entries(int argc, kmp_team_t *team, 1158 int realloc); // forward declaration 1159 1160 /* Run a parallel region that has been serialized, so runs only in a team of the 1161 single master thread. */ 1162 void __kmp_serialized_parallel(ident_t *loc, kmp_int32 global_tid) { 1163 kmp_info_t *this_thr; 1164 kmp_team_t *serial_team; 1165 1166 KC_TRACE(10, ("__kmpc_serialized_parallel: called by T#%d\n", global_tid)); 1167 1168 /* Skip all this code for autopar serialized loops since it results in 1169 unacceptable overhead */ 1170 if (loc != NULL && (loc->flags & KMP_IDENT_AUTOPAR)) 1171 return; 1172 1173 if (!TCR_4(__kmp_init_parallel)) 1174 __kmp_parallel_initialize(); 1175 1176 #if OMP_50_ENABLED 1177 __kmp_resume_if_soft_paused(); 1178 #endif 1179 1180 this_thr = __kmp_threads[global_tid]; 1181 serial_team = this_thr->th.th_serial_team; 1182 1183 /* utilize the serialized team held by this thread */ 1184 KMP_DEBUG_ASSERT(serial_team); 1185 KMP_MB(); 1186 1187 if (__kmp_tasking_mode != tskm_immediate_exec) { 1188 KMP_DEBUG_ASSERT( 1189 this_thr->th.th_task_team == 1190 this_thr->th.th_team->t.t_task_team[this_thr->th.th_task_state]); 1191 KMP_DEBUG_ASSERT(serial_team->t.t_task_team[this_thr->th.th_task_state] == 1192 NULL); 1193 KA_TRACE(20, ("__kmpc_serialized_parallel: T#%d pushing task_team %p / " 1194 "team %p, new task_team = NULL\n", 1195 global_tid, this_thr->th.th_task_team, this_thr->th.th_team)); 1196 this_thr->th.th_task_team = NULL; 1197 } 1198 1199 #if OMP_40_ENABLED 1200 kmp_proc_bind_t proc_bind = this_thr->th.th_set_proc_bind; 1201 if (this_thr->th.th_current_task->td_icvs.proc_bind == proc_bind_false) { 1202 proc_bind = proc_bind_false; 1203 } else if (proc_bind == proc_bind_default) { 1204 // No proc_bind clause was specified, so use the current value 1205 // of proc-bind-var for this parallel region. 1206 proc_bind = this_thr->th.th_current_task->td_icvs.proc_bind; 1207 } 1208 // Reset for next parallel region 1209 this_thr->th.th_set_proc_bind = proc_bind_default; 1210 #endif /* OMP_40_ENABLED */ 1211 1212 #if OMPT_SUPPORT 1213 ompt_data_t ompt_parallel_data = ompt_data_none; 1214 ompt_data_t *implicit_task_data; 1215 void *codeptr = OMPT_LOAD_RETURN_ADDRESS(global_tid); 1216 if (ompt_enabled.enabled && 1217 this_thr->th.ompt_thread_info.state != ompt_state_overhead) { 1218 1219 ompt_task_info_t *parent_task_info; 1220 parent_task_info = OMPT_CUR_TASK_INFO(this_thr); 1221 1222 parent_task_info->frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 1223 if (ompt_enabled.ompt_callback_parallel_begin) { 1224 int team_size = 1; 1225 1226 ompt_callbacks.ompt_callback(ompt_callback_parallel_begin)( 1227 &(parent_task_info->task_data), &(parent_task_info->frame), 1228 &ompt_parallel_data, team_size, ompt_parallel_invoker_program, 1229 codeptr); 1230 } 1231 } 1232 #endif // OMPT_SUPPORT 1233 1234 if (this_thr->th.th_team != serial_team) { 1235 // Nested level will be an index in the nested nthreads array 1236 int level = this_thr->th.th_team->t.t_level; 1237 1238 if (serial_team->t.t_serialized) { 1239 /* this serial team was already used 1240 TODO increase performance by making this locks more specific */ 1241 kmp_team_t *new_team; 1242 1243 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 1244 1245 new_team = __kmp_allocate_team(this_thr->th.th_root, 1, 1, 1246 #if OMPT_SUPPORT 1247 ompt_parallel_data, 1248 #endif 1249 #if OMP_40_ENABLED 1250 proc_bind, 1251 #endif 1252 &this_thr->th.th_current_task->td_icvs, 1253 0 USE_NESTED_HOT_ARG(NULL)); 1254 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1255 KMP_ASSERT(new_team); 1256 1257 /* setup new serialized team and install it */ 1258 new_team->t.t_threads[0] = this_thr; 1259 new_team->t.t_parent = this_thr->th.th_team; 1260 serial_team = new_team; 1261 this_thr->th.th_serial_team = serial_team; 1262 1263 KF_TRACE( 1264 10, 1265 ("__kmpc_serialized_parallel: T#%d allocated new serial team %p\n", 1266 global_tid, serial_team)); 1267 1268 /* TODO the above breaks the requirement that if we run out of resources, 1269 then we can still guarantee that serialized teams are ok, since we may 1270 need to allocate a new one */ 1271 } else { 1272 KF_TRACE( 1273 10, 1274 ("__kmpc_serialized_parallel: T#%d reusing cached serial team %p\n", 1275 global_tid, serial_team)); 1276 } 1277 1278 /* we have to initialize this serial team */ 1279 KMP_DEBUG_ASSERT(serial_team->t.t_threads); 1280 KMP_DEBUG_ASSERT(serial_team->t.t_threads[0] == this_thr); 1281 KMP_DEBUG_ASSERT(this_thr->th.th_team != serial_team); 1282 serial_team->t.t_ident = loc; 1283 serial_team->t.t_serialized = 1; 1284 serial_team->t.t_nproc = 1; 1285 serial_team->t.t_parent = this_thr->th.th_team; 1286 serial_team->t.t_sched.sched = this_thr->th.th_team->t.t_sched.sched; 1287 this_thr->th.th_team = serial_team; 1288 serial_team->t.t_master_tid = this_thr->th.th_info.ds.ds_tid; 1289 1290 KF_TRACE(10, ("__kmpc_serialized_parallel: T#d curtask=%p\n", global_tid, 1291 this_thr->th.th_current_task)); 1292 KMP_ASSERT(this_thr->th.th_current_task->td_flags.executing == 1); 1293 this_thr->th.th_current_task->td_flags.executing = 0; 1294 1295 __kmp_push_current_task_to_thread(this_thr, serial_team, 0); 1296 1297 /* TODO: GEH: do ICVs work for nested serialized teams? Don't we need an 1298 implicit task for each serialized task represented by 1299 team->t.t_serialized? */ 1300 copy_icvs(&this_thr->th.th_current_task->td_icvs, 1301 &this_thr->th.th_current_task->td_parent->td_icvs); 1302 1303 // Thread value exists in the nested nthreads array for the next nested 1304 // level 1305 if (__kmp_nested_nth.used && (level + 1 < __kmp_nested_nth.used)) { 1306 this_thr->th.th_current_task->td_icvs.nproc = 1307 __kmp_nested_nth.nth[level + 1]; 1308 } 1309 1310 #if OMP_40_ENABLED 1311 if (__kmp_nested_proc_bind.used && 1312 (level + 1 < __kmp_nested_proc_bind.used)) { 1313 this_thr->th.th_current_task->td_icvs.proc_bind = 1314 __kmp_nested_proc_bind.bind_types[level + 1]; 1315 } 1316 #endif /* OMP_40_ENABLED */ 1317 1318 #if USE_DEBUGGER 1319 serial_team->t.t_pkfn = (microtask_t)(~0); // For the debugger. 1320 #endif 1321 this_thr->th.th_info.ds.ds_tid = 0; 1322 1323 /* set thread cache values */ 1324 this_thr->th.th_team_nproc = 1; 1325 this_thr->th.th_team_master = this_thr; 1326 this_thr->th.th_team_serialized = 1; 1327 1328 serial_team->t.t_level = serial_team->t.t_parent->t.t_level + 1; 1329 serial_team->t.t_active_level = serial_team->t.t_parent->t.t_active_level; 1330 #if OMP_50_ENABLED 1331 serial_team->t.t_def_allocator = this_thr->th.th_def_allocator; // save 1332 #endif 1333 1334 propagateFPControl(serial_team); 1335 1336 /* check if we need to allocate dispatch buffers stack */ 1337 KMP_DEBUG_ASSERT(serial_team->t.t_dispatch); 1338 if (!serial_team->t.t_dispatch->th_disp_buffer) { 1339 serial_team->t.t_dispatch->th_disp_buffer = 1340 (dispatch_private_info_t *)__kmp_allocate( 1341 sizeof(dispatch_private_info_t)); 1342 } 1343 this_thr->th.th_dispatch = serial_team->t.t_dispatch; 1344 1345 KMP_MB(); 1346 1347 } else { 1348 /* this serialized team is already being used, 1349 * that's fine, just add another nested level */ 1350 KMP_DEBUG_ASSERT(this_thr->th.th_team == serial_team); 1351 KMP_DEBUG_ASSERT(serial_team->t.t_threads); 1352 KMP_DEBUG_ASSERT(serial_team->t.t_threads[0] == this_thr); 1353 ++serial_team->t.t_serialized; 1354 this_thr->th.th_team_serialized = serial_team->t.t_serialized; 1355 1356 // Nested level will be an index in the nested nthreads array 1357 int level = this_thr->th.th_team->t.t_level; 1358 // Thread value exists in the nested nthreads array for the next nested 1359 // level 1360 if (__kmp_nested_nth.used && (level + 1 < __kmp_nested_nth.used)) { 1361 this_thr->th.th_current_task->td_icvs.nproc = 1362 __kmp_nested_nth.nth[level + 1]; 1363 } 1364 serial_team->t.t_level++; 1365 KF_TRACE(10, ("__kmpc_serialized_parallel: T#%d increasing nesting level " 1366 "of serial team %p to %d\n", 1367 global_tid, serial_team, serial_team->t.t_level)); 1368 1369 /* allocate/push dispatch buffers stack */ 1370 KMP_DEBUG_ASSERT(serial_team->t.t_dispatch); 1371 { 1372 dispatch_private_info_t *disp_buffer = 1373 (dispatch_private_info_t *)__kmp_allocate( 1374 sizeof(dispatch_private_info_t)); 1375 disp_buffer->next = serial_team->t.t_dispatch->th_disp_buffer; 1376 serial_team->t.t_dispatch->th_disp_buffer = disp_buffer; 1377 } 1378 this_thr->th.th_dispatch = serial_team->t.t_dispatch; 1379 1380 KMP_MB(); 1381 } 1382 #if OMP_40_ENABLED 1383 KMP_CHECK_UPDATE(serial_team->t.t_cancel_request, cancel_noreq); 1384 #endif 1385 1386 #if OMP_50_ENABLED 1387 // Perform the display affinity functionality for 1388 // serialized parallel regions 1389 if (__kmp_display_affinity) { 1390 if (this_thr->th.th_prev_level != serial_team->t.t_level || 1391 this_thr->th.th_prev_num_threads != 1) { 1392 // NULL means use the affinity-format-var ICV 1393 __kmp_aux_display_affinity(global_tid, NULL); 1394 this_thr->th.th_prev_level = serial_team->t.t_level; 1395 this_thr->th.th_prev_num_threads = 1; 1396 } 1397 } 1398 #endif 1399 1400 if (__kmp_env_consistency_check) 1401 __kmp_push_parallel(global_tid, NULL); 1402 #if OMPT_SUPPORT 1403 serial_team->t.ompt_team_info.master_return_address = codeptr; 1404 if (ompt_enabled.enabled && 1405 this_thr->th.ompt_thread_info.state != ompt_state_overhead) { 1406 OMPT_CUR_TASK_INFO(this_thr)->frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 1407 1408 ompt_lw_taskteam_t lw_taskteam; 1409 __ompt_lw_taskteam_init(&lw_taskteam, this_thr, global_tid, 1410 &ompt_parallel_data, codeptr); 1411 1412 __ompt_lw_taskteam_link(&lw_taskteam, this_thr, 1); 1413 // don't use lw_taskteam after linking. content was swaped 1414 1415 /* OMPT implicit task begin */ 1416 implicit_task_data = OMPT_CUR_TASK_DATA(this_thr); 1417 if (ompt_enabled.ompt_callback_implicit_task) { 1418 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1419 ompt_scope_begin, OMPT_CUR_TEAM_DATA(this_thr), 1420 OMPT_CUR_TASK_DATA(this_thr), 1, __kmp_tid_from_gtid(global_tid), ompt_task_implicit); // TODO: Can this be ompt_task_initial? 1421 OMPT_CUR_TASK_INFO(this_thr) 1422 ->thread_num = __kmp_tid_from_gtid(global_tid); 1423 } 1424 1425 /* OMPT state */ 1426 this_thr->th.ompt_thread_info.state = ompt_state_work_parallel; 1427 OMPT_CUR_TASK_INFO(this_thr)->frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 1428 } 1429 #endif 1430 } 1431 1432 /* most of the work for a fork */ 1433 /* return true if we really went parallel, false if serialized */ 1434 int __kmp_fork_call(ident_t *loc, int gtid, 1435 enum fork_context_e call_context, // Intel, GNU, ... 1436 kmp_int32 argc, microtask_t microtask, launch_t invoker, 1437 /* TODO: revert workaround for Intel(R) 64 tracker #96 */ 1438 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 1439 va_list *ap 1440 #else 1441 va_list ap 1442 #endif 1443 ) { 1444 void **argv; 1445 int i; 1446 int master_tid; 1447 int master_this_cons; 1448 kmp_team_t *team; 1449 kmp_team_t *parent_team; 1450 kmp_info_t *master_th; 1451 kmp_root_t *root; 1452 int nthreads; 1453 int master_active; 1454 int master_set_numthreads; 1455 int level; 1456 #if OMP_40_ENABLED 1457 int active_level; 1458 int teams_level; 1459 #endif 1460 #if KMP_NESTED_HOT_TEAMS 1461 kmp_hot_team_ptr_t **p_hot_teams; 1462 #endif 1463 { // KMP_TIME_BLOCK 1464 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_fork_call); 1465 KMP_COUNT_VALUE(OMP_PARALLEL_args, argc); 1466 1467 KA_TRACE(20, ("__kmp_fork_call: enter T#%d\n", gtid)); 1468 if (__kmp_stkpadding > 0 && __kmp_root[gtid] != NULL) { 1469 /* Some systems prefer the stack for the root thread(s) to start with */ 1470 /* some gap from the parent stack to prevent false sharing. */ 1471 void *dummy = KMP_ALLOCA(__kmp_stkpadding); 1472 /* These 2 lines below are so this does not get optimized out */ 1473 if (__kmp_stkpadding > KMP_MAX_STKPADDING) 1474 __kmp_stkpadding += (short)((kmp_int64)dummy); 1475 } 1476 1477 /* initialize if needed */ 1478 KMP_DEBUG_ASSERT( 1479 __kmp_init_serial); // AC: potentially unsafe, not in sync with shutdown 1480 if (!TCR_4(__kmp_init_parallel)) 1481 __kmp_parallel_initialize(); 1482 1483 #if OMP_50_ENABLED 1484 __kmp_resume_if_soft_paused(); 1485 #endif 1486 1487 /* setup current data */ 1488 master_th = __kmp_threads[gtid]; // AC: potentially unsafe, not in sync with 1489 // shutdown 1490 parent_team = master_th->th.th_team; 1491 master_tid = master_th->th.th_info.ds.ds_tid; 1492 master_this_cons = master_th->th.th_local.this_construct; 1493 root = master_th->th.th_root; 1494 master_active = root->r.r_active; 1495 master_set_numthreads = master_th->th.th_set_nproc; 1496 1497 #if OMPT_SUPPORT 1498 ompt_data_t ompt_parallel_data = ompt_data_none; 1499 ompt_data_t *parent_task_data; 1500 ompt_frame_t *ompt_frame; 1501 ompt_data_t *implicit_task_data; 1502 void *return_address = NULL; 1503 1504 if (ompt_enabled.enabled) { 1505 __ompt_get_task_info_internal(0, NULL, &parent_task_data, &ompt_frame, 1506 NULL, NULL); 1507 return_address = OMPT_LOAD_RETURN_ADDRESS(gtid); 1508 } 1509 #endif 1510 1511 // Nested level will be an index in the nested nthreads array 1512 level = parent_team->t.t_level; 1513 // used to launch non-serial teams even if nested is not allowed 1514 active_level = parent_team->t.t_active_level; 1515 #if OMP_40_ENABLED 1516 // needed to check nesting inside the teams 1517 teams_level = master_th->th.th_teams_level; 1518 #endif 1519 #if KMP_NESTED_HOT_TEAMS 1520 p_hot_teams = &master_th->th.th_hot_teams; 1521 if (*p_hot_teams == NULL && __kmp_hot_teams_max_level > 0) { 1522 *p_hot_teams = (kmp_hot_team_ptr_t *)__kmp_allocate( 1523 sizeof(kmp_hot_team_ptr_t) * __kmp_hot_teams_max_level); 1524 (*p_hot_teams)[0].hot_team = root->r.r_hot_team; 1525 // it is either actual or not needed (when active_level > 0) 1526 (*p_hot_teams)[0].hot_team_nth = 1; 1527 } 1528 #endif 1529 1530 #if OMPT_SUPPORT 1531 if (ompt_enabled.enabled) { 1532 if (ompt_enabled.ompt_callback_parallel_begin) { 1533 int team_size = master_set_numthreads 1534 ? master_set_numthreads 1535 : get__nproc_2(parent_team, master_tid); 1536 ompt_callbacks.ompt_callback(ompt_callback_parallel_begin)( 1537 parent_task_data, ompt_frame, &ompt_parallel_data, team_size, 1538 OMPT_INVOKER(call_context), return_address); 1539 } 1540 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1541 } 1542 #endif 1543 1544 master_th->th.th_ident = loc; 1545 1546 #if OMP_40_ENABLED 1547 if (master_th->th.th_teams_microtask && ap && 1548 microtask != (microtask_t)__kmp_teams_master && level == teams_level) { 1549 // AC: This is start of parallel that is nested inside teams construct. 1550 // The team is actual (hot), all workers are ready at the fork barrier. 1551 // No lock needed to initialize the team a bit, then free workers. 1552 parent_team->t.t_ident = loc; 1553 __kmp_alloc_argv_entries(argc, parent_team, TRUE); 1554 parent_team->t.t_argc = argc; 1555 argv = (void **)parent_team->t.t_argv; 1556 for (i = argc - 1; i >= 0; --i) 1557 /* TODO: revert workaround for Intel(R) 64 tracker #96 */ 1558 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 1559 *argv++ = va_arg(*ap, void *); 1560 #else 1561 *argv++ = va_arg(ap, void *); 1562 #endif 1563 // Increment our nested depth levels, but not increase the serialization 1564 if (parent_team == master_th->th.th_serial_team) { 1565 // AC: we are in serialized parallel 1566 __kmpc_serialized_parallel(loc, gtid); 1567 KMP_DEBUG_ASSERT(parent_team->t.t_serialized > 1); 1568 // AC: need this in order enquiry functions work 1569 // correctly, will restore at join time 1570 parent_team->t.t_serialized--; 1571 #if OMPT_SUPPORT 1572 void *dummy; 1573 void **exit_runtime_p; 1574 1575 ompt_lw_taskteam_t lw_taskteam; 1576 1577 if (ompt_enabled.enabled) { 1578 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1579 &ompt_parallel_data, return_address); 1580 exit_runtime_p = &(lw_taskteam.ompt_task_info.frame.exit_frame.ptr); 1581 1582 __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0); 1583 // don't use lw_taskteam after linking. content was swaped 1584 1585 /* OMPT implicit task begin */ 1586 implicit_task_data = OMPT_CUR_TASK_DATA(master_th); 1587 if (ompt_enabled.ompt_callback_implicit_task) { 1588 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1589 ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th), 1590 implicit_task_data, 1, __kmp_tid_from_gtid(gtid), ompt_task_implicit); // TODO: Can this be ompt_task_initial? 1591 OMPT_CUR_TASK_INFO(master_th) 1592 ->thread_num = __kmp_tid_from_gtid(gtid); 1593 } 1594 1595 /* OMPT state */ 1596 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 1597 } else { 1598 exit_runtime_p = &dummy; 1599 } 1600 #endif 1601 1602 { 1603 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1604 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1605 __kmp_invoke_microtask(microtask, gtid, 0, argc, parent_team->t.t_argv 1606 #if OMPT_SUPPORT 1607 , 1608 exit_runtime_p 1609 #endif 1610 ); 1611 } 1612 1613 #if OMPT_SUPPORT 1614 *exit_runtime_p = NULL; 1615 if (ompt_enabled.enabled) { 1616 OMPT_CUR_TASK_INFO(master_th)->frame.exit_frame = ompt_data_none; 1617 if (ompt_enabled.ompt_callback_implicit_task) { 1618 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1619 ompt_scope_end, NULL, implicit_task_data, 1, 1620 OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit); // TODO: Can this be ompt_task_initial? 1621 } 1622 __ompt_lw_taskteam_unlink(master_th); 1623 1624 if (ompt_enabled.ompt_callback_parallel_end) { 1625 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 1626 OMPT_CUR_TEAM_DATA(master_th), OMPT_CUR_TASK_DATA(master_th), 1627 OMPT_INVOKER(call_context), return_address); 1628 } 1629 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1630 } 1631 #endif 1632 return TRUE; 1633 } 1634 1635 parent_team->t.t_pkfn = microtask; 1636 parent_team->t.t_invoke = invoker; 1637 KMP_ATOMIC_INC(&root->r.r_in_parallel); 1638 parent_team->t.t_active_level++; 1639 parent_team->t.t_level++; 1640 #if OMP_50_ENABLED 1641 parent_team->t.t_def_allocator = master_th->th.th_def_allocator; // save 1642 #endif 1643 1644 /* Change number of threads in the team if requested */ 1645 if (master_set_numthreads) { // The parallel has num_threads clause 1646 if (master_set_numthreads < master_th->th.th_teams_size.nth) { 1647 // AC: only can reduce number of threads dynamically, can't increase 1648 kmp_info_t **other_threads = parent_team->t.t_threads; 1649 parent_team->t.t_nproc = master_set_numthreads; 1650 for (i = 0; i < master_set_numthreads; ++i) { 1651 other_threads[i]->th.th_team_nproc = master_set_numthreads; 1652 } 1653 // Keep extra threads hot in the team for possible next parallels 1654 } 1655 master_th->th.th_set_nproc = 0; 1656 } 1657 1658 #if USE_DEBUGGER 1659 if (__kmp_debugging) { // Let debugger override number of threads. 1660 int nth = __kmp_omp_num_threads(loc); 1661 if (nth > 0) { // 0 means debugger doesn't want to change num threads 1662 master_set_numthreads = nth; 1663 } 1664 } 1665 #endif 1666 1667 KF_TRACE(10, ("__kmp_fork_call: before internal fork: root=%p, team=%p, " 1668 "master_th=%p, gtid=%d\n", 1669 root, parent_team, master_th, gtid)); 1670 __kmp_internal_fork(loc, gtid, parent_team); 1671 KF_TRACE(10, ("__kmp_fork_call: after internal fork: root=%p, team=%p, " 1672 "master_th=%p, gtid=%d\n", 1673 root, parent_team, master_th, gtid)); 1674 1675 /* Invoke microtask for MASTER thread */ 1676 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) invoke microtask = %p\n", gtid, 1677 parent_team->t.t_id, parent_team->t.t_pkfn)); 1678 1679 if (!parent_team->t.t_invoke(gtid)) { 1680 KMP_ASSERT2(0, "cannot invoke microtask for MASTER thread"); 1681 } 1682 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) done microtask = %p\n", gtid, 1683 parent_team->t.t_id, parent_team->t.t_pkfn)); 1684 KMP_MB(); /* Flush all pending memory write invalidates. */ 1685 1686 KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid)); 1687 1688 return TRUE; 1689 } // Parallel closely nested in teams construct 1690 #endif /* OMP_40_ENABLED */ 1691 1692 #if KMP_DEBUG 1693 if (__kmp_tasking_mode != tskm_immediate_exec) { 1694 KMP_DEBUG_ASSERT(master_th->th.th_task_team == 1695 parent_team->t.t_task_team[master_th->th.th_task_state]); 1696 } 1697 #endif 1698 1699 if (parent_team->t.t_active_level >= 1700 master_th->th.th_current_task->td_icvs.max_active_levels) { 1701 nthreads = 1; 1702 } else { 1703 #if OMP_40_ENABLED 1704 int enter_teams = ((ap == NULL && active_level == 0) || 1705 (ap && teams_level > 0 && teams_level == level)); 1706 #endif 1707 nthreads = 1708 master_set_numthreads 1709 ? master_set_numthreads 1710 : get__nproc_2( 1711 parent_team, 1712 master_tid); // TODO: get nproc directly from current task 1713 1714 // Check if we need to take forkjoin lock? (no need for serialized 1715 // parallel out of teams construct). This code moved here from 1716 // __kmp_reserve_threads() to speedup nested serialized parallels. 1717 if (nthreads > 1) { 1718 if ((get__max_active_levels(master_th) == 1 && (root->r.r_in_parallel 1719 #if OMP_40_ENABLED 1720 && !enter_teams 1721 #endif /* OMP_40_ENABLED */ 1722 )) || 1723 (__kmp_library == library_serial)) { 1724 KC_TRACE(10, ("__kmp_fork_call: T#%d serializing team; requested %d" 1725 " threads\n", 1726 gtid, nthreads)); 1727 nthreads = 1; 1728 } 1729 } 1730 if (nthreads > 1) { 1731 /* determine how many new threads we can use */ 1732 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 1733 nthreads = __kmp_reserve_threads( 1734 root, parent_team, master_tid, nthreads 1735 #if OMP_40_ENABLED 1736 /* AC: If we execute teams from parallel region (on host), then 1737 teams should be created but each can only have 1 thread if 1738 nesting is disabled. If teams called from serial region, then 1739 teams and their threads should be created regardless of the 1740 nesting setting. */ 1741 , 1742 enter_teams 1743 #endif /* OMP_40_ENABLED */ 1744 ); 1745 if (nthreads == 1) { 1746 // Free lock for single thread execution here; for multi-thread 1747 // execution it will be freed later after team of threads created 1748 // and initialized 1749 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1750 } 1751 } 1752 } 1753 KMP_DEBUG_ASSERT(nthreads > 0); 1754 1755 // If we temporarily changed the set number of threads then restore it now 1756 master_th->th.th_set_nproc = 0; 1757 1758 /* create a serialized parallel region? */ 1759 if (nthreads == 1) { 1760 /* josh todo: hypothetical question: what do we do for OS X*? */ 1761 #if KMP_OS_LINUX && \ 1762 (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) 1763 void *args[argc]; 1764 #else 1765 void **args = (void **)KMP_ALLOCA(argc * sizeof(void *)); 1766 #endif /* KMP_OS_LINUX && ( KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || \ 1767 KMP_ARCH_AARCH64) */ 1768 1769 KA_TRACE(20, 1770 ("__kmp_fork_call: T#%d serializing parallel region\n", gtid)); 1771 1772 __kmpc_serialized_parallel(loc, gtid); 1773 1774 if (call_context == fork_context_intel) { 1775 /* TODO this sucks, use the compiler itself to pass args! :) */ 1776 master_th->th.th_serial_team->t.t_ident = loc; 1777 #if OMP_40_ENABLED 1778 if (!ap) { 1779 // revert change made in __kmpc_serialized_parallel() 1780 master_th->th.th_serial_team->t.t_level--; 1781 // Get args from parent team for teams construct 1782 1783 #if OMPT_SUPPORT 1784 void *dummy; 1785 void **exit_runtime_p; 1786 ompt_task_info_t *task_info; 1787 1788 ompt_lw_taskteam_t lw_taskteam; 1789 1790 if (ompt_enabled.enabled) { 1791 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1792 &ompt_parallel_data, return_address); 1793 1794 __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0); 1795 // don't use lw_taskteam after linking. content was swaped 1796 1797 task_info = OMPT_CUR_TASK_INFO(master_th); 1798 exit_runtime_p = &(task_info->frame.exit_frame.ptr); 1799 if (ompt_enabled.ompt_callback_implicit_task) { 1800 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1801 ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th), 1802 &(task_info->task_data), 1, __kmp_tid_from_gtid(gtid), ompt_task_implicit); // TODO: Can this be ompt_task_initial? 1803 OMPT_CUR_TASK_INFO(master_th) 1804 ->thread_num = __kmp_tid_from_gtid(gtid); 1805 } 1806 1807 /* OMPT state */ 1808 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 1809 } else { 1810 exit_runtime_p = &dummy; 1811 } 1812 #endif 1813 1814 { 1815 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1816 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1817 __kmp_invoke_microtask(microtask, gtid, 0, argc, 1818 parent_team->t.t_argv 1819 #if OMPT_SUPPORT 1820 , 1821 exit_runtime_p 1822 #endif 1823 ); 1824 } 1825 1826 #if OMPT_SUPPORT 1827 if (ompt_enabled.enabled) { 1828 exit_runtime_p = NULL; 1829 if (ompt_enabled.ompt_callback_implicit_task) { 1830 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1831 ompt_scope_end, NULL, &(task_info->task_data), 1, 1832 OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit); // TODO: Can this be ompt_task_initial? 1833 } 1834 1835 __ompt_lw_taskteam_unlink(master_th); 1836 if (ompt_enabled.ompt_callback_parallel_end) { 1837 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 1838 OMPT_CUR_TEAM_DATA(master_th), parent_task_data, 1839 OMPT_INVOKER(call_context), return_address); 1840 } 1841 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1842 } 1843 #endif 1844 } else if (microtask == (microtask_t)__kmp_teams_master) { 1845 KMP_DEBUG_ASSERT(master_th->th.th_team == 1846 master_th->th.th_serial_team); 1847 team = master_th->th.th_team; 1848 // team->t.t_pkfn = microtask; 1849 team->t.t_invoke = invoker; 1850 __kmp_alloc_argv_entries(argc, team, TRUE); 1851 team->t.t_argc = argc; 1852 argv = (void **)team->t.t_argv; 1853 if (ap) { 1854 for (i = argc - 1; i >= 0; --i) 1855 // TODO: revert workaround for Intel(R) 64 tracker #96 1856 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 1857 *argv++ = va_arg(*ap, void *); 1858 #else 1859 *argv++ = va_arg(ap, void *); 1860 #endif 1861 } else { 1862 for (i = 0; i < argc; ++i) 1863 // Get args from parent team for teams construct 1864 argv[i] = parent_team->t.t_argv[i]; 1865 } 1866 // AC: revert change made in __kmpc_serialized_parallel() 1867 // because initial code in teams should have level=0 1868 team->t.t_level--; 1869 // AC: call special invoker for outer "parallel" of teams construct 1870 invoker(gtid); 1871 } else { 1872 #endif /* OMP_40_ENABLED */ 1873 argv = args; 1874 for (i = argc - 1; i >= 0; --i) 1875 // TODO: revert workaround for Intel(R) 64 tracker #96 1876 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 1877 *argv++ = va_arg(*ap, void *); 1878 #else 1879 *argv++ = va_arg(ap, void *); 1880 #endif 1881 KMP_MB(); 1882 1883 #if OMPT_SUPPORT 1884 void *dummy; 1885 void **exit_runtime_p; 1886 ompt_task_info_t *task_info; 1887 1888 ompt_lw_taskteam_t lw_taskteam; 1889 1890 if (ompt_enabled.enabled) { 1891 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1892 &ompt_parallel_data, return_address); 1893 __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0); 1894 // don't use lw_taskteam after linking. content was swaped 1895 task_info = OMPT_CUR_TASK_INFO(master_th); 1896 exit_runtime_p = &(task_info->frame.exit_frame.ptr); 1897 1898 /* OMPT implicit task begin */ 1899 implicit_task_data = OMPT_CUR_TASK_DATA(master_th); 1900 if (ompt_enabled.ompt_callback_implicit_task) { 1901 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1902 ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th), 1903 implicit_task_data, 1, __kmp_tid_from_gtid(gtid), ompt_task_implicit); // TODO: Can this be ompt_task_initial? 1904 OMPT_CUR_TASK_INFO(master_th) 1905 ->thread_num = __kmp_tid_from_gtid(gtid); 1906 } 1907 1908 /* OMPT state */ 1909 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 1910 } else { 1911 exit_runtime_p = &dummy; 1912 } 1913 #endif 1914 1915 { 1916 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1917 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1918 __kmp_invoke_microtask(microtask, gtid, 0, argc, args 1919 #if OMPT_SUPPORT 1920 , 1921 exit_runtime_p 1922 #endif 1923 ); 1924 } 1925 1926 #if OMPT_SUPPORT 1927 if (ompt_enabled.enabled) { 1928 *exit_runtime_p = NULL; 1929 if (ompt_enabled.ompt_callback_implicit_task) { 1930 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1931 ompt_scope_end, NULL, &(task_info->task_data), 1, 1932 OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit); // TODO: Can this be ompt_task_initial? 1933 } 1934 1935 ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th); 1936 __ompt_lw_taskteam_unlink(master_th); 1937 if (ompt_enabled.ompt_callback_parallel_end) { 1938 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 1939 &ompt_parallel_data, parent_task_data, 1940 OMPT_INVOKER(call_context), return_address); 1941 } 1942 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1943 } 1944 #endif 1945 #if OMP_40_ENABLED 1946 } 1947 #endif /* OMP_40_ENABLED */ 1948 } else if (call_context == fork_context_gnu) { 1949 #if OMPT_SUPPORT 1950 ompt_lw_taskteam_t lwt; 1951 __ompt_lw_taskteam_init(&lwt, master_th, gtid, &ompt_parallel_data, 1952 return_address); 1953 1954 lwt.ompt_task_info.frame.exit_frame = ompt_data_none; 1955 __ompt_lw_taskteam_link(&lwt, master_th, 1); 1956 // don't use lw_taskteam after linking. content was swaped 1957 #endif 1958 1959 // we were called from GNU native code 1960 KA_TRACE(20, ("__kmp_fork_call: T#%d serial exit\n", gtid)); 1961 return FALSE; 1962 } else { 1963 KMP_ASSERT2(call_context < fork_context_last, 1964 "__kmp_fork_call: unknown fork_context parameter"); 1965 } 1966 1967 KA_TRACE(20, ("__kmp_fork_call: T#%d serial exit\n", gtid)); 1968 KMP_MB(); 1969 return FALSE; 1970 } // if (nthreads == 1) 1971 1972 // GEH: only modify the executing flag in the case when not serialized 1973 // serialized case is handled in kmpc_serialized_parallel 1974 KF_TRACE(10, ("__kmp_fork_call: parent_team_aclevel=%d, master_th=%p, " 1975 "curtask=%p, curtask_max_aclevel=%d\n", 1976 parent_team->t.t_active_level, master_th, 1977 master_th->th.th_current_task, 1978 master_th->th.th_current_task->td_icvs.max_active_levels)); 1979 // TODO: GEH - cannot do this assertion because root thread not set up as 1980 // executing 1981 // KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 1 ); 1982 master_th->th.th_current_task->td_flags.executing = 0; 1983 1984 #if OMP_40_ENABLED 1985 if (!master_th->th.th_teams_microtask || level > teams_level) 1986 #endif /* OMP_40_ENABLED */ 1987 { 1988 /* Increment our nested depth level */ 1989 KMP_ATOMIC_INC(&root->r.r_in_parallel); 1990 } 1991 1992 // See if we need to make a copy of the ICVs. 1993 int nthreads_icv = master_th->th.th_current_task->td_icvs.nproc; 1994 if ((level + 1 < __kmp_nested_nth.used) && 1995 (__kmp_nested_nth.nth[level + 1] != nthreads_icv)) { 1996 nthreads_icv = __kmp_nested_nth.nth[level + 1]; 1997 } else { 1998 nthreads_icv = 0; // don't update 1999 } 2000 2001 #if OMP_40_ENABLED 2002 // Figure out the proc_bind_policy for the new team. 2003 kmp_proc_bind_t proc_bind = master_th->th.th_set_proc_bind; 2004 kmp_proc_bind_t proc_bind_icv = 2005 proc_bind_default; // proc_bind_default means don't update 2006 if (master_th->th.th_current_task->td_icvs.proc_bind == proc_bind_false) { 2007 proc_bind = proc_bind_false; 2008 } else { 2009 if (proc_bind == proc_bind_default) { 2010 // No proc_bind clause specified; use current proc-bind-var for this 2011 // parallel region 2012 proc_bind = master_th->th.th_current_task->td_icvs.proc_bind; 2013 } 2014 /* else: The proc_bind policy was specified explicitly on parallel clause. 2015 This overrides proc-bind-var for this parallel region, but does not 2016 change proc-bind-var. */ 2017 // Figure the value of proc-bind-var for the child threads. 2018 if ((level + 1 < __kmp_nested_proc_bind.used) && 2019 (__kmp_nested_proc_bind.bind_types[level + 1] != 2020 master_th->th.th_current_task->td_icvs.proc_bind)) { 2021 proc_bind_icv = __kmp_nested_proc_bind.bind_types[level + 1]; 2022 } 2023 } 2024 2025 // Reset for next parallel region 2026 master_th->th.th_set_proc_bind = proc_bind_default; 2027 #endif /* OMP_40_ENABLED */ 2028 2029 if ((nthreads_icv > 0) 2030 #if OMP_40_ENABLED 2031 || (proc_bind_icv != proc_bind_default) 2032 #endif /* OMP_40_ENABLED */ 2033 ) { 2034 kmp_internal_control_t new_icvs; 2035 copy_icvs(&new_icvs, &master_th->th.th_current_task->td_icvs); 2036 new_icvs.next = NULL; 2037 if (nthreads_icv > 0) { 2038 new_icvs.nproc = nthreads_icv; 2039 } 2040 2041 #if OMP_40_ENABLED 2042 if (proc_bind_icv != proc_bind_default) { 2043 new_icvs.proc_bind = proc_bind_icv; 2044 } 2045 #endif /* OMP_40_ENABLED */ 2046 2047 /* allocate a new parallel team */ 2048 KF_TRACE(10, ("__kmp_fork_call: before __kmp_allocate_team\n")); 2049 team = __kmp_allocate_team(root, nthreads, nthreads, 2050 #if OMPT_SUPPORT 2051 ompt_parallel_data, 2052 #endif 2053 #if OMP_40_ENABLED 2054 proc_bind, 2055 #endif 2056 &new_icvs, argc USE_NESTED_HOT_ARG(master_th)); 2057 } else { 2058 /* allocate a new parallel team */ 2059 KF_TRACE(10, ("__kmp_fork_call: before __kmp_allocate_team\n")); 2060 team = __kmp_allocate_team(root, nthreads, nthreads, 2061 #if OMPT_SUPPORT 2062 ompt_parallel_data, 2063 #endif 2064 #if OMP_40_ENABLED 2065 proc_bind, 2066 #endif 2067 &master_th->th.th_current_task->td_icvs, 2068 argc USE_NESTED_HOT_ARG(master_th)); 2069 } 2070 KF_TRACE( 2071 10, ("__kmp_fork_call: after __kmp_allocate_team - team = %p\n", team)); 2072 2073 /* setup the new team */ 2074 KMP_CHECK_UPDATE(team->t.t_master_tid, master_tid); 2075 KMP_CHECK_UPDATE(team->t.t_master_this_cons, master_this_cons); 2076 KMP_CHECK_UPDATE(team->t.t_ident, loc); 2077 KMP_CHECK_UPDATE(team->t.t_parent, parent_team); 2078 KMP_CHECK_UPDATE_SYNC(team->t.t_pkfn, microtask); 2079 #if OMPT_SUPPORT 2080 KMP_CHECK_UPDATE_SYNC(team->t.ompt_team_info.master_return_address, 2081 return_address); 2082 #endif 2083 KMP_CHECK_UPDATE(team->t.t_invoke, invoker); // TODO move to root, maybe 2084 // TODO: parent_team->t.t_level == INT_MAX ??? 2085 #if OMP_40_ENABLED 2086 if (!master_th->th.th_teams_microtask || level > teams_level) { 2087 #endif /* OMP_40_ENABLED */ 2088 int new_level = parent_team->t.t_level + 1; 2089 KMP_CHECK_UPDATE(team->t.t_level, new_level); 2090 new_level = parent_team->t.t_active_level + 1; 2091 KMP_CHECK_UPDATE(team->t.t_active_level, new_level); 2092 #if OMP_40_ENABLED 2093 } else { 2094 // AC: Do not increase parallel level at start of the teams construct 2095 int new_level = parent_team->t.t_level; 2096 KMP_CHECK_UPDATE(team->t.t_level, new_level); 2097 new_level = parent_team->t.t_active_level; 2098 KMP_CHECK_UPDATE(team->t.t_active_level, new_level); 2099 } 2100 #endif /* OMP_40_ENABLED */ 2101 kmp_r_sched_t new_sched = get__sched_2(parent_team, master_tid); 2102 // set master's schedule as new run-time schedule 2103 KMP_CHECK_UPDATE(team->t.t_sched.sched, new_sched.sched); 2104 2105 #if OMP_40_ENABLED 2106 KMP_CHECK_UPDATE(team->t.t_cancel_request, cancel_noreq); 2107 #endif 2108 #if OMP_50_ENABLED 2109 KMP_CHECK_UPDATE(team->t.t_def_allocator, master_th->th.th_def_allocator); 2110 #endif 2111 2112 // Update the floating point rounding in the team if required. 2113 propagateFPControl(team); 2114 2115 if (__kmp_tasking_mode != tskm_immediate_exec) { 2116 // Set master's task team to team's task team. Unless this is hot team, it 2117 // should be NULL. 2118 KMP_DEBUG_ASSERT(master_th->th.th_task_team == 2119 parent_team->t.t_task_team[master_th->th.th_task_state]); 2120 KA_TRACE(20, ("__kmp_fork_call: Master T#%d pushing task_team %p / team " 2121 "%p, new task_team %p / team %p\n", 2122 __kmp_gtid_from_thread(master_th), 2123 master_th->th.th_task_team, parent_team, 2124 team->t.t_task_team[master_th->th.th_task_state], team)); 2125 2126 if (active_level || master_th->th.th_task_team) { 2127 // Take a memo of master's task_state 2128 KMP_DEBUG_ASSERT(master_th->th.th_task_state_memo_stack); 2129 if (master_th->th.th_task_state_top >= 2130 master_th->th.th_task_state_stack_sz) { // increase size 2131 kmp_uint32 new_size = 2 * master_th->th.th_task_state_stack_sz; 2132 kmp_uint8 *old_stack, *new_stack; 2133 kmp_uint32 i; 2134 new_stack = (kmp_uint8 *)__kmp_allocate(new_size); 2135 for (i = 0; i < master_th->th.th_task_state_stack_sz; ++i) { 2136 new_stack[i] = master_th->th.th_task_state_memo_stack[i]; 2137 } 2138 for (i = master_th->th.th_task_state_stack_sz; i < new_size; 2139 ++i) { // zero-init rest of stack 2140 new_stack[i] = 0; 2141 } 2142 old_stack = master_th->th.th_task_state_memo_stack; 2143 master_th->th.th_task_state_memo_stack = new_stack; 2144 master_th->th.th_task_state_stack_sz = new_size; 2145 __kmp_free(old_stack); 2146 } 2147 // Store master's task_state on stack 2148 master_th->th 2149 .th_task_state_memo_stack[master_th->th.th_task_state_top] = 2150 master_th->th.th_task_state; 2151 master_th->th.th_task_state_top++; 2152 #if KMP_NESTED_HOT_TEAMS 2153 if (master_th->th.th_hot_teams && 2154 active_level < __kmp_hot_teams_max_level && 2155 team == master_th->th.th_hot_teams[active_level].hot_team) { 2156 // Restore master's nested state if nested hot team 2157 master_th->th.th_task_state = 2158 master_th->th 2159 .th_task_state_memo_stack[master_th->th.th_task_state_top]; 2160 } else { 2161 #endif 2162 master_th->th.th_task_state = 0; 2163 #if KMP_NESTED_HOT_TEAMS 2164 } 2165 #endif 2166 } 2167 #if !KMP_NESTED_HOT_TEAMS 2168 KMP_DEBUG_ASSERT((master_th->th.th_task_team == NULL) || 2169 (team == root->r.r_hot_team)); 2170 #endif 2171 } 2172 2173 KA_TRACE( 2174 20, 2175 ("__kmp_fork_call: T#%d(%d:%d)->(%d:0) created a team of %d threads\n", 2176 gtid, parent_team->t.t_id, team->t.t_master_tid, team->t.t_id, 2177 team->t.t_nproc)); 2178 KMP_DEBUG_ASSERT(team != root->r.r_hot_team || 2179 (team->t.t_master_tid == 0 && 2180 (team->t.t_parent == root->r.r_root_team || 2181 team->t.t_parent->t.t_serialized))); 2182 KMP_MB(); 2183 2184 /* now, setup the arguments */ 2185 argv = (void **)team->t.t_argv; 2186 #if OMP_40_ENABLED 2187 if (ap) { 2188 #endif /* OMP_40_ENABLED */ 2189 for (i = argc - 1; i >= 0; --i) { 2190 // TODO: revert workaround for Intel(R) 64 tracker #96 2191 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 2192 void *new_argv = va_arg(*ap, void *); 2193 #else 2194 void *new_argv = va_arg(ap, void *); 2195 #endif 2196 KMP_CHECK_UPDATE(*argv, new_argv); 2197 argv++; 2198 } 2199 #if OMP_40_ENABLED 2200 } else { 2201 for (i = 0; i < argc; ++i) { 2202 // Get args from parent team for teams construct 2203 KMP_CHECK_UPDATE(argv[i], team->t.t_parent->t.t_argv[i]); 2204 } 2205 } 2206 #endif /* OMP_40_ENABLED */ 2207 2208 /* now actually fork the threads */ 2209 KMP_CHECK_UPDATE(team->t.t_master_active, master_active); 2210 if (!root->r.r_active) // Only do assignment if it prevents cache ping-pong 2211 root->r.r_active = TRUE; 2212 2213 __kmp_fork_team_threads(root, team, master_th, gtid); 2214 __kmp_setup_icv_copy(team, nthreads, 2215 &master_th->th.th_current_task->td_icvs, loc); 2216 2217 #if OMPT_SUPPORT 2218 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 2219 #endif 2220 2221 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 2222 2223 #if USE_ITT_BUILD 2224 if (team->t.t_active_level == 1 // only report frames at level 1 2225 #if OMP_40_ENABLED 2226 && !master_th->th.th_teams_microtask // not in teams construct 2227 #endif /* OMP_40_ENABLED */ 2228 ) { 2229 #if USE_ITT_NOTIFY 2230 if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) && 2231 (__kmp_forkjoin_frames_mode == 3 || 2232 __kmp_forkjoin_frames_mode == 1)) { 2233 kmp_uint64 tmp_time = 0; 2234 if (__itt_get_timestamp_ptr) 2235 tmp_time = __itt_get_timestamp(); 2236 // Internal fork - report frame begin 2237 master_th->th.th_frame_time = tmp_time; 2238 if (__kmp_forkjoin_frames_mode == 3) 2239 team->t.t_region_time = tmp_time; 2240 } else 2241 // only one notification scheme (either "submit" or "forking/joined", not both) 2242 #endif /* USE_ITT_NOTIFY */ 2243 if ((__itt_frame_begin_v3_ptr || KMP_ITT_DEBUG) && 2244 __kmp_forkjoin_frames && !__kmp_forkjoin_frames_mode) { 2245 // Mark start of "parallel" region for Intel(R) VTune(TM) analyzer. 2246 __kmp_itt_region_forking(gtid, team->t.t_nproc, 0); 2247 } 2248 } 2249 #endif /* USE_ITT_BUILD */ 2250 2251 /* now go on and do the work */ 2252 KMP_DEBUG_ASSERT(team == __kmp_threads[gtid]->th.th_team); 2253 KMP_MB(); 2254 KF_TRACE(10, 2255 ("__kmp_internal_fork : root=%p, team=%p, master_th=%p, gtid=%d\n", 2256 root, team, master_th, gtid)); 2257 2258 #if USE_ITT_BUILD 2259 if (__itt_stack_caller_create_ptr) { 2260 team->t.t_stack_id = 2261 __kmp_itt_stack_caller_create(); // create new stack stitching id 2262 // before entering fork barrier 2263 } 2264 #endif /* USE_ITT_BUILD */ 2265 2266 #if OMP_40_ENABLED 2267 // AC: skip __kmp_internal_fork at teams construct, let only master 2268 // threads execute 2269 if (ap) 2270 #endif /* OMP_40_ENABLED */ 2271 { 2272 __kmp_internal_fork(loc, gtid, team); 2273 KF_TRACE(10, ("__kmp_internal_fork : after : root=%p, team=%p, " 2274 "master_th=%p, gtid=%d\n", 2275 root, team, master_th, gtid)); 2276 } 2277 2278 if (call_context == fork_context_gnu) { 2279 KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid)); 2280 return TRUE; 2281 } 2282 2283 /* Invoke microtask for MASTER thread */ 2284 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) invoke microtask = %p\n", gtid, 2285 team->t.t_id, team->t.t_pkfn)); 2286 } // END of timer KMP_fork_call block 2287 2288 #if KMP_STATS_ENABLED && OMP_40_ENABLED 2289 // If beginning a teams construct, then change thread state 2290 stats_state_e previous_state = KMP_GET_THREAD_STATE(); 2291 if (!ap) { 2292 KMP_SET_THREAD_STATE(stats_state_e::TEAMS_REGION); 2293 } 2294 #endif 2295 2296 if (!team->t.t_invoke(gtid)) { 2297 KMP_ASSERT2(0, "cannot invoke microtask for MASTER thread"); 2298 } 2299 2300 #if KMP_STATS_ENABLED && OMP_40_ENABLED 2301 // If was beginning of a teams construct, then reset thread state 2302 if (!ap) { 2303 KMP_SET_THREAD_STATE(previous_state); 2304 } 2305 #endif 2306 2307 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) done microtask = %p\n", gtid, 2308 team->t.t_id, team->t.t_pkfn)); 2309 KMP_MB(); /* Flush all pending memory write invalidates. */ 2310 2311 KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid)); 2312 2313 #if OMPT_SUPPORT 2314 if (ompt_enabled.enabled) { 2315 master_th->th.ompt_thread_info.state = ompt_state_overhead; 2316 } 2317 #endif 2318 2319 return TRUE; 2320 } 2321 2322 #if OMPT_SUPPORT 2323 static inline void __kmp_join_restore_state(kmp_info_t *thread, 2324 kmp_team_t *team) { 2325 // restore state outside the region 2326 thread->th.ompt_thread_info.state = 2327 ((team->t.t_serialized) ? ompt_state_work_serial 2328 : ompt_state_work_parallel); 2329 } 2330 2331 static inline void __kmp_join_ompt(int gtid, kmp_info_t *thread, 2332 kmp_team_t *team, ompt_data_t *parallel_data, 2333 fork_context_e fork_context, void *codeptr) { 2334 ompt_task_info_t *task_info = __ompt_get_task_info_object(0); 2335 if (ompt_enabled.ompt_callback_parallel_end) { 2336 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 2337 parallel_data, &(task_info->task_data), OMPT_INVOKER(fork_context), 2338 codeptr); 2339 } 2340 2341 task_info->frame.enter_frame = ompt_data_none; 2342 __kmp_join_restore_state(thread, team); 2343 } 2344 #endif 2345 2346 void __kmp_join_call(ident_t *loc, int gtid 2347 #if OMPT_SUPPORT 2348 , 2349 enum fork_context_e fork_context 2350 #endif 2351 #if OMP_40_ENABLED 2352 , 2353 int exit_teams 2354 #endif /* OMP_40_ENABLED */ 2355 ) { 2356 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_join_call); 2357 kmp_team_t *team; 2358 kmp_team_t *parent_team; 2359 kmp_info_t *master_th; 2360 kmp_root_t *root; 2361 int master_active; 2362 2363 KA_TRACE(20, ("__kmp_join_call: enter T#%d\n", gtid)); 2364 2365 /* setup current data */ 2366 master_th = __kmp_threads[gtid]; 2367 root = master_th->th.th_root; 2368 team = master_th->th.th_team; 2369 parent_team = team->t.t_parent; 2370 2371 master_th->th.th_ident = loc; 2372 2373 #if OMPT_SUPPORT 2374 if (ompt_enabled.enabled) { 2375 master_th->th.ompt_thread_info.state = ompt_state_overhead; 2376 } 2377 #endif 2378 2379 #if KMP_DEBUG 2380 if (__kmp_tasking_mode != tskm_immediate_exec && !exit_teams) { 2381 KA_TRACE(20, ("__kmp_join_call: T#%d, old team = %p old task_team = %p, " 2382 "th_task_team = %p\n", 2383 __kmp_gtid_from_thread(master_th), team, 2384 team->t.t_task_team[master_th->th.th_task_state], 2385 master_th->th.th_task_team)); 2386 KMP_DEBUG_ASSERT(master_th->th.th_task_team == 2387 team->t.t_task_team[master_th->th.th_task_state]); 2388 } 2389 #endif 2390 2391 if (team->t.t_serialized) { 2392 #if OMP_40_ENABLED 2393 if (master_th->th.th_teams_microtask) { 2394 // We are in teams construct 2395 int level = team->t.t_level; 2396 int tlevel = master_th->th.th_teams_level; 2397 if (level == tlevel) { 2398 // AC: we haven't incremented it earlier at start of teams construct, 2399 // so do it here - at the end of teams construct 2400 team->t.t_level++; 2401 } else if (level == tlevel + 1) { 2402 // AC: we are exiting parallel inside teams, need to increment 2403 // serialization in order to restore it in the next call to 2404 // __kmpc_end_serialized_parallel 2405 team->t.t_serialized++; 2406 } 2407 } 2408 #endif /* OMP_40_ENABLED */ 2409 __kmpc_end_serialized_parallel(loc, gtid); 2410 2411 #if OMPT_SUPPORT 2412 if (ompt_enabled.enabled) { 2413 __kmp_join_restore_state(master_th, parent_team); 2414 } 2415 #endif 2416 2417 return; 2418 } 2419 2420 master_active = team->t.t_master_active; 2421 2422 #if OMP_40_ENABLED 2423 if (!exit_teams) 2424 #endif /* OMP_40_ENABLED */ 2425 { 2426 // AC: No barrier for internal teams at exit from teams construct. 2427 // But there is barrier for external team (league). 2428 __kmp_internal_join(loc, gtid, team); 2429 } 2430 #if OMP_40_ENABLED 2431 else { 2432 master_th->th.th_task_state = 2433 0; // AC: no tasking in teams (out of any parallel) 2434 } 2435 #endif /* OMP_40_ENABLED */ 2436 2437 KMP_MB(); 2438 2439 #if OMPT_SUPPORT 2440 ompt_data_t *parallel_data = &(team->t.ompt_team_info.parallel_data); 2441 void *codeptr = team->t.ompt_team_info.master_return_address; 2442 #endif 2443 2444 #if USE_ITT_BUILD 2445 if (__itt_stack_caller_create_ptr) { 2446 __kmp_itt_stack_caller_destroy( 2447 (__itt_caller)team->t 2448 .t_stack_id); // destroy the stack stitching id after join barrier 2449 } 2450 2451 // Mark end of "parallel" region for Intel(R) VTune(TM) analyzer. 2452 if (team->t.t_active_level == 1 2453 #if OMP_40_ENABLED 2454 && !master_th->th.th_teams_microtask /* not in teams construct */ 2455 #endif /* OMP_40_ENABLED */ 2456 ) { 2457 master_th->th.th_ident = loc; 2458 // only one notification scheme (either "submit" or "forking/joined", not 2459 // both) 2460 if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) && 2461 __kmp_forkjoin_frames_mode == 3) 2462 __kmp_itt_frame_submit(gtid, team->t.t_region_time, 2463 master_th->th.th_frame_time, 0, loc, 2464 master_th->th.th_team_nproc, 1); 2465 else if ((__itt_frame_end_v3_ptr || KMP_ITT_DEBUG) && 2466 !__kmp_forkjoin_frames_mode && __kmp_forkjoin_frames) 2467 __kmp_itt_region_joined(gtid); 2468 } // active_level == 1 2469 #endif /* USE_ITT_BUILD */ 2470 2471 #if OMP_40_ENABLED 2472 if (master_th->th.th_teams_microtask && !exit_teams && 2473 team->t.t_pkfn != (microtask_t)__kmp_teams_master && 2474 team->t.t_level == master_th->th.th_teams_level + 1) { 2475 // AC: We need to leave the team structure intact at the end of parallel 2476 // inside the teams construct, so that at the next parallel same (hot) team 2477 // works, only adjust nesting levels 2478 2479 /* Decrement our nested depth level */ 2480 team->t.t_level--; 2481 team->t.t_active_level--; 2482 KMP_ATOMIC_DEC(&root->r.r_in_parallel); 2483 2484 // Restore number of threads in the team if needed. This code relies on 2485 // the proper adjustment of th_teams_size.nth after the fork in 2486 // __kmp_teams_master on each teams master in the case that 2487 // __kmp_reserve_threads reduced it. 2488 if (master_th->th.th_team_nproc < master_th->th.th_teams_size.nth) { 2489 int old_num = master_th->th.th_team_nproc; 2490 int new_num = master_th->th.th_teams_size.nth; 2491 kmp_info_t **other_threads = team->t.t_threads; 2492 team->t.t_nproc = new_num; 2493 for (int i = 0; i < old_num; ++i) { 2494 other_threads[i]->th.th_team_nproc = new_num; 2495 } 2496 // Adjust states of non-used threads of the team 2497 for (int i = old_num; i < new_num; ++i) { 2498 // Re-initialize thread's barrier data. 2499 KMP_DEBUG_ASSERT(other_threads[i]); 2500 kmp_balign_t *balign = other_threads[i]->th.th_bar; 2501 for (int b = 0; b < bs_last_barrier; ++b) { 2502 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 2503 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 2504 #if USE_DEBUGGER 2505 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 2506 #endif 2507 } 2508 if (__kmp_tasking_mode != tskm_immediate_exec) { 2509 // Synchronize thread's task state 2510 other_threads[i]->th.th_task_state = master_th->th.th_task_state; 2511 } 2512 } 2513 } 2514 2515 #if OMPT_SUPPORT 2516 if (ompt_enabled.enabled) { 2517 __kmp_join_ompt(gtid, master_th, parent_team, parallel_data, fork_context, 2518 codeptr); 2519 } 2520 #endif 2521 2522 return; 2523 } 2524 #endif /* OMP_40_ENABLED */ 2525 2526 /* do cleanup and restore the parent team */ 2527 master_th->th.th_info.ds.ds_tid = team->t.t_master_tid; 2528 master_th->th.th_local.this_construct = team->t.t_master_this_cons; 2529 2530 master_th->th.th_dispatch = &parent_team->t.t_dispatch[team->t.t_master_tid]; 2531 2532 /* jc: The following lock has instructions with REL and ACQ semantics, 2533 separating the parallel user code called in this parallel region 2534 from the serial user code called after this function returns. */ 2535 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 2536 2537 #if OMP_40_ENABLED 2538 if (!master_th->th.th_teams_microtask || 2539 team->t.t_level > master_th->th.th_teams_level) 2540 #endif /* OMP_40_ENABLED */ 2541 { 2542 /* Decrement our nested depth level */ 2543 KMP_ATOMIC_DEC(&root->r.r_in_parallel); 2544 } 2545 KMP_DEBUG_ASSERT(root->r.r_in_parallel >= 0); 2546 2547 #if OMPT_SUPPORT 2548 if (ompt_enabled.enabled) { 2549 ompt_task_info_t *task_info = __ompt_get_task_info_object(0); 2550 if (ompt_enabled.ompt_callback_implicit_task) { 2551 int ompt_team_size = team->t.t_nproc; 2552 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 2553 ompt_scope_end, NULL, &(task_info->task_data), ompt_team_size, 2554 OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit); // TODO: Can this be ompt_task_initial? 2555 } 2556 2557 task_info->frame.exit_frame = ompt_data_none; 2558 task_info->task_data = ompt_data_none; 2559 } 2560 #endif 2561 2562 KF_TRACE(10, ("__kmp_join_call1: T#%d, this_thread=%p team=%p\n", 0, 2563 master_th, team)); 2564 __kmp_pop_current_task_from_thread(master_th); 2565 2566 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 2567 // Restore master thread's partition. 2568 master_th->th.th_first_place = team->t.t_first_place; 2569 master_th->th.th_last_place = team->t.t_last_place; 2570 #endif /* OMP_40_ENABLED */ 2571 #if OMP_50_ENABLED 2572 master_th->th.th_def_allocator = team->t.t_def_allocator; 2573 #endif 2574 2575 updateHWFPControl(team); 2576 2577 if (root->r.r_active != master_active) 2578 root->r.r_active = master_active; 2579 2580 __kmp_free_team(root, team USE_NESTED_HOT_ARG( 2581 master_th)); // this will free worker threads 2582 2583 /* this race was fun to find. make sure the following is in the critical 2584 region otherwise assertions may fail occasionally since the old team may be 2585 reallocated and the hierarchy appears inconsistent. it is actually safe to 2586 run and won't cause any bugs, but will cause those assertion failures. it's 2587 only one deref&assign so might as well put this in the critical region */ 2588 master_th->th.th_team = parent_team; 2589 master_th->th.th_team_nproc = parent_team->t.t_nproc; 2590 master_th->th.th_team_master = parent_team->t.t_threads[0]; 2591 master_th->th.th_team_serialized = parent_team->t.t_serialized; 2592 2593 /* restore serialized team, if need be */ 2594 if (parent_team->t.t_serialized && 2595 parent_team != master_th->th.th_serial_team && 2596 parent_team != root->r.r_root_team) { 2597 __kmp_free_team(root, 2598 master_th->th.th_serial_team USE_NESTED_HOT_ARG(NULL)); 2599 master_th->th.th_serial_team = parent_team; 2600 } 2601 2602 if (__kmp_tasking_mode != tskm_immediate_exec) { 2603 if (master_th->th.th_task_state_top > 2604 0) { // Restore task state from memo stack 2605 KMP_DEBUG_ASSERT(master_th->th.th_task_state_memo_stack); 2606 // Remember master's state if we re-use this nested hot team 2607 master_th->th.th_task_state_memo_stack[master_th->th.th_task_state_top] = 2608 master_th->th.th_task_state; 2609 --master_th->th.th_task_state_top; // pop 2610 // Now restore state at this level 2611 master_th->th.th_task_state = 2612 master_th->th 2613 .th_task_state_memo_stack[master_th->th.th_task_state_top]; 2614 } 2615 // Copy the task team from the parent team to the master thread 2616 master_th->th.th_task_team = 2617 parent_team->t.t_task_team[master_th->th.th_task_state]; 2618 KA_TRACE(20, 2619 ("__kmp_join_call: Master T#%d restoring task_team %p / team %p\n", 2620 __kmp_gtid_from_thread(master_th), master_th->th.th_task_team, 2621 parent_team)); 2622 } 2623 2624 // TODO: GEH - cannot do this assertion because root thread not set up as 2625 // executing 2626 // KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 0 ); 2627 master_th->th.th_current_task->td_flags.executing = 1; 2628 2629 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 2630 2631 #if OMPT_SUPPORT 2632 if (ompt_enabled.enabled) { 2633 __kmp_join_ompt(gtid, master_th, parent_team, parallel_data, fork_context, 2634 codeptr); 2635 } 2636 #endif 2637 2638 KMP_MB(); 2639 KA_TRACE(20, ("__kmp_join_call: exit T#%d\n", gtid)); 2640 } 2641 2642 /* Check whether we should push an internal control record onto the 2643 serial team stack. If so, do it. */ 2644 void __kmp_save_internal_controls(kmp_info_t *thread) { 2645 2646 if (thread->th.th_team != thread->th.th_serial_team) { 2647 return; 2648 } 2649 if (thread->th.th_team->t.t_serialized > 1) { 2650 int push = 0; 2651 2652 if (thread->th.th_team->t.t_control_stack_top == NULL) { 2653 push = 1; 2654 } else { 2655 if (thread->th.th_team->t.t_control_stack_top->serial_nesting_level != 2656 thread->th.th_team->t.t_serialized) { 2657 push = 1; 2658 } 2659 } 2660 if (push) { /* push a record on the serial team's stack */ 2661 kmp_internal_control_t *control = 2662 (kmp_internal_control_t *)__kmp_allocate( 2663 sizeof(kmp_internal_control_t)); 2664 2665 copy_icvs(control, &thread->th.th_current_task->td_icvs); 2666 2667 control->serial_nesting_level = thread->th.th_team->t.t_serialized; 2668 2669 control->next = thread->th.th_team->t.t_control_stack_top; 2670 thread->th.th_team->t.t_control_stack_top = control; 2671 } 2672 } 2673 } 2674 2675 /* Changes set_nproc */ 2676 void __kmp_set_num_threads(int new_nth, int gtid) { 2677 kmp_info_t *thread; 2678 kmp_root_t *root; 2679 2680 KF_TRACE(10, ("__kmp_set_num_threads: new __kmp_nth = %d\n", new_nth)); 2681 KMP_DEBUG_ASSERT(__kmp_init_serial); 2682 2683 if (new_nth < 1) 2684 new_nth = 1; 2685 else if (new_nth > __kmp_max_nth) 2686 new_nth = __kmp_max_nth; 2687 2688 KMP_COUNT_VALUE(OMP_set_numthreads, new_nth); 2689 thread = __kmp_threads[gtid]; 2690 if (thread->th.th_current_task->td_icvs.nproc == new_nth) 2691 return; // nothing to do 2692 2693 __kmp_save_internal_controls(thread); 2694 2695 set__nproc(thread, new_nth); 2696 2697 // If this omp_set_num_threads() call will cause the hot team size to be 2698 // reduced (in the absence of a num_threads clause), then reduce it now, 2699 // rather than waiting for the next parallel region. 2700 root = thread->th.th_root; 2701 if (__kmp_init_parallel && (!root->r.r_active) && 2702 (root->r.r_hot_team->t.t_nproc > new_nth) 2703 #if KMP_NESTED_HOT_TEAMS 2704 && __kmp_hot_teams_max_level && !__kmp_hot_teams_mode 2705 #endif 2706 ) { 2707 kmp_team_t *hot_team = root->r.r_hot_team; 2708 int f; 2709 2710 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 2711 2712 // Release the extra threads we don't need any more. 2713 for (f = new_nth; f < hot_team->t.t_nproc; f++) { 2714 KMP_DEBUG_ASSERT(hot_team->t.t_threads[f] != NULL); 2715 if (__kmp_tasking_mode != tskm_immediate_exec) { 2716 // When decreasing team size, threads no longer in the team should unref 2717 // task team. 2718 hot_team->t.t_threads[f]->th.th_task_team = NULL; 2719 } 2720 __kmp_free_thread(hot_team->t.t_threads[f]); 2721 hot_team->t.t_threads[f] = NULL; 2722 } 2723 hot_team->t.t_nproc = new_nth; 2724 #if KMP_NESTED_HOT_TEAMS 2725 if (thread->th.th_hot_teams) { 2726 KMP_DEBUG_ASSERT(hot_team == thread->th.th_hot_teams[0].hot_team); 2727 thread->th.th_hot_teams[0].hot_team_nth = new_nth; 2728 } 2729 #endif 2730 2731 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 2732 2733 // Update the t_nproc field in the threads that are still active. 2734 for (f = 0; f < new_nth; f++) { 2735 KMP_DEBUG_ASSERT(hot_team->t.t_threads[f] != NULL); 2736 hot_team->t.t_threads[f]->th.th_team_nproc = new_nth; 2737 } 2738 // Special flag in case omp_set_num_threads() call 2739 hot_team->t.t_size_changed = -1; 2740 } 2741 } 2742 2743 /* Changes max_active_levels */ 2744 void __kmp_set_max_active_levels(int gtid, int max_active_levels) { 2745 kmp_info_t *thread; 2746 2747 KF_TRACE(10, ("__kmp_set_max_active_levels: new max_active_levels for thread " 2748 "%d = (%d)\n", 2749 gtid, max_active_levels)); 2750 KMP_DEBUG_ASSERT(__kmp_init_serial); 2751 2752 // validate max_active_levels 2753 if (max_active_levels < 0) { 2754 KMP_WARNING(ActiveLevelsNegative, max_active_levels); 2755 // We ignore this call if the user has specified a negative value. 2756 // The current setting won't be changed. The last valid setting will be 2757 // used. A warning will be issued (if warnings are allowed as controlled by 2758 // the KMP_WARNINGS env var). 2759 KF_TRACE(10, ("__kmp_set_max_active_levels: the call is ignored: new " 2760 "max_active_levels for thread %d = (%d)\n", 2761 gtid, max_active_levels)); 2762 return; 2763 } 2764 if (max_active_levels <= KMP_MAX_ACTIVE_LEVELS_LIMIT) { 2765 // it's OK, the max_active_levels is within the valid range: [ 0; 2766 // KMP_MAX_ACTIVE_LEVELS_LIMIT ] 2767 // We allow a zero value. (implementation defined behavior) 2768 } else { 2769 KMP_WARNING(ActiveLevelsExceedLimit, max_active_levels, 2770 KMP_MAX_ACTIVE_LEVELS_LIMIT); 2771 max_active_levels = KMP_MAX_ACTIVE_LEVELS_LIMIT; 2772 // Current upper limit is MAX_INT. (implementation defined behavior) 2773 // If the input exceeds the upper limit, we correct the input to be the 2774 // upper limit. (implementation defined behavior) 2775 // Actually, the flow should never get here until we use MAX_INT limit. 2776 } 2777 KF_TRACE(10, ("__kmp_set_max_active_levels: after validation: new " 2778 "max_active_levels for thread %d = (%d)\n", 2779 gtid, max_active_levels)); 2780 2781 thread = __kmp_threads[gtid]; 2782 2783 __kmp_save_internal_controls(thread); 2784 2785 set__max_active_levels(thread, max_active_levels); 2786 } 2787 2788 /* Gets max_active_levels */ 2789 int __kmp_get_max_active_levels(int gtid) { 2790 kmp_info_t *thread; 2791 2792 KF_TRACE(10, ("__kmp_get_max_active_levels: thread %d\n", gtid)); 2793 KMP_DEBUG_ASSERT(__kmp_init_serial); 2794 2795 thread = __kmp_threads[gtid]; 2796 KMP_DEBUG_ASSERT(thread->th.th_current_task); 2797 KF_TRACE(10, ("__kmp_get_max_active_levels: thread %d, curtask=%p, " 2798 "curtask_maxaclevel=%d\n", 2799 gtid, thread->th.th_current_task, 2800 thread->th.th_current_task->td_icvs.max_active_levels)); 2801 return thread->th.th_current_task->td_icvs.max_active_levels; 2802 } 2803 2804 /* Changes def_sched_var ICV values (run-time schedule kind and chunk) */ 2805 void __kmp_set_schedule(int gtid, kmp_sched_t kind, int chunk) { 2806 kmp_info_t *thread; 2807 // kmp_team_t *team; 2808 2809 KF_TRACE(10, ("__kmp_set_schedule: new schedule for thread %d = (%d, %d)\n", 2810 gtid, (int)kind, chunk)); 2811 KMP_DEBUG_ASSERT(__kmp_init_serial); 2812 2813 // Check if the kind parameter is valid, correct if needed. 2814 // Valid parameters should fit in one of two intervals - standard or extended: 2815 // <lower>, <valid>, <upper_std>, <lower_ext>, <valid>, <upper> 2816 // 2008-01-25: 0, 1 - 4, 5, 100, 101 - 102, 103 2817 if (kind <= kmp_sched_lower || kind >= kmp_sched_upper || 2818 (kind <= kmp_sched_lower_ext && kind >= kmp_sched_upper_std)) { 2819 // TODO: Hint needs attention in case we change the default schedule. 2820 __kmp_msg(kmp_ms_warning, KMP_MSG(ScheduleKindOutOfRange, kind), 2821 KMP_HNT(DefaultScheduleKindUsed, "static, no chunk"), 2822 __kmp_msg_null); 2823 kind = kmp_sched_default; 2824 chunk = 0; // ignore chunk value in case of bad kind 2825 } 2826 2827 thread = __kmp_threads[gtid]; 2828 2829 __kmp_save_internal_controls(thread); 2830 2831 if (kind < kmp_sched_upper_std) { 2832 if (kind == kmp_sched_static && chunk < KMP_DEFAULT_CHUNK) { 2833 // differ static chunked vs. unchunked: chunk should be invalid to 2834 // indicate unchunked schedule (which is the default) 2835 thread->th.th_current_task->td_icvs.sched.r_sched_type = kmp_sch_static; 2836 } else { 2837 thread->th.th_current_task->td_icvs.sched.r_sched_type = 2838 __kmp_sch_map[kind - kmp_sched_lower - 1]; 2839 } 2840 } else { 2841 // __kmp_sch_map[ kind - kmp_sched_lower_ext + kmp_sched_upper_std - 2842 // kmp_sched_lower - 2 ]; 2843 thread->th.th_current_task->td_icvs.sched.r_sched_type = 2844 __kmp_sch_map[kind - kmp_sched_lower_ext + kmp_sched_upper_std - 2845 kmp_sched_lower - 2]; 2846 } 2847 if (kind == kmp_sched_auto || chunk < 1) { 2848 // ignore parameter chunk for schedule auto 2849 thread->th.th_current_task->td_icvs.sched.chunk = KMP_DEFAULT_CHUNK; 2850 } else { 2851 thread->th.th_current_task->td_icvs.sched.chunk = chunk; 2852 } 2853 } 2854 2855 /* Gets def_sched_var ICV values */ 2856 void __kmp_get_schedule(int gtid, kmp_sched_t *kind, int *chunk) { 2857 kmp_info_t *thread; 2858 enum sched_type th_type; 2859 2860 KF_TRACE(10, ("__kmp_get_schedule: thread %d\n", gtid)); 2861 KMP_DEBUG_ASSERT(__kmp_init_serial); 2862 2863 thread = __kmp_threads[gtid]; 2864 2865 th_type = thread->th.th_current_task->td_icvs.sched.r_sched_type; 2866 2867 switch (th_type) { 2868 case kmp_sch_static: 2869 case kmp_sch_static_greedy: 2870 case kmp_sch_static_balanced: 2871 *kind = kmp_sched_static; 2872 *chunk = 0; // chunk was not set, try to show this fact via zero value 2873 return; 2874 case kmp_sch_static_chunked: 2875 *kind = kmp_sched_static; 2876 break; 2877 case kmp_sch_dynamic_chunked: 2878 *kind = kmp_sched_dynamic; 2879 break; 2880 case kmp_sch_guided_chunked: 2881 case kmp_sch_guided_iterative_chunked: 2882 case kmp_sch_guided_analytical_chunked: 2883 *kind = kmp_sched_guided; 2884 break; 2885 case kmp_sch_auto: 2886 *kind = kmp_sched_auto; 2887 break; 2888 case kmp_sch_trapezoidal: 2889 *kind = kmp_sched_trapezoidal; 2890 break; 2891 #if KMP_STATIC_STEAL_ENABLED 2892 case kmp_sch_static_steal: 2893 *kind = kmp_sched_static_steal; 2894 break; 2895 #endif 2896 default: 2897 KMP_FATAL(UnknownSchedulingType, th_type); 2898 } 2899 2900 *chunk = thread->th.th_current_task->td_icvs.sched.chunk; 2901 } 2902 2903 int __kmp_get_ancestor_thread_num(int gtid, int level) { 2904 2905 int ii, dd; 2906 kmp_team_t *team; 2907 kmp_info_t *thr; 2908 2909 KF_TRACE(10, ("__kmp_get_ancestor_thread_num: thread %d %d\n", gtid, level)); 2910 KMP_DEBUG_ASSERT(__kmp_init_serial); 2911 2912 // validate level 2913 if (level == 0) 2914 return 0; 2915 if (level < 0) 2916 return -1; 2917 thr = __kmp_threads[gtid]; 2918 team = thr->th.th_team; 2919 ii = team->t.t_level; 2920 if (level > ii) 2921 return -1; 2922 2923 #if OMP_40_ENABLED 2924 if (thr->th.th_teams_microtask) { 2925 // AC: we are in teams region where multiple nested teams have same level 2926 int tlevel = thr->th.th_teams_level; // the level of the teams construct 2927 if (level <= 2928 tlevel) { // otherwise usual algorithm works (will not touch the teams) 2929 KMP_DEBUG_ASSERT(ii >= tlevel); 2930 // AC: As we need to pass by the teams league, we need to artificially 2931 // increase ii 2932 if (ii == tlevel) { 2933 ii += 2; // three teams have same level 2934 } else { 2935 ii++; // two teams have same level 2936 } 2937 } 2938 } 2939 #endif 2940 2941 if (ii == level) 2942 return __kmp_tid_from_gtid(gtid); 2943 2944 dd = team->t.t_serialized; 2945 level++; 2946 while (ii > level) { 2947 for (dd = team->t.t_serialized; (dd > 0) && (ii > level); dd--, ii--) { 2948 } 2949 if ((team->t.t_serialized) && (!dd)) { 2950 team = team->t.t_parent; 2951 continue; 2952 } 2953 if (ii > level) { 2954 team = team->t.t_parent; 2955 dd = team->t.t_serialized; 2956 ii--; 2957 } 2958 } 2959 2960 return (dd > 1) ? (0) : (team->t.t_master_tid); 2961 } 2962 2963 int __kmp_get_team_size(int gtid, int level) { 2964 2965 int ii, dd; 2966 kmp_team_t *team; 2967 kmp_info_t *thr; 2968 2969 KF_TRACE(10, ("__kmp_get_team_size: thread %d %d\n", gtid, level)); 2970 KMP_DEBUG_ASSERT(__kmp_init_serial); 2971 2972 // validate level 2973 if (level == 0) 2974 return 1; 2975 if (level < 0) 2976 return -1; 2977 thr = __kmp_threads[gtid]; 2978 team = thr->th.th_team; 2979 ii = team->t.t_level; 2980 if (level > ii) 2981 return -1; 2982 2983 #if OMP_40_ENABLED 2984 if (thr->th.th_teams_microtask) { 2985 // AC: we are in teams region where multiple nested teams have same level 2986 int tlevel = thr->th.th_teams_level; // the level of the teams construct 2987 if (level <= 2988 tlevel) { // otherwise usual algorithm works (will not touch the teams) 2989 KMP_DEBUG_ASSERT(ii >= tlevel); 2990 // AC: As we need to pass by the teams league, we need to artificially 2991 // increase ii 2992 if (ii == tlevel) { 2993 ii += 2; // three teams have same level 2994 } else { 2995 ii++; // two teams have same level 2996 } 2997 } 2998 } 2999 #endif 3000 3001 while (ii > level) { 3002 for (dd = team->t.t_serialized; (dd > 0) && (ii > level); dd--, ii--) { 3003 } 3004 if (team->t.t_serialized && (!dd)) { 3005 team = team->t.t_parent; 3006 continue; 3007 } 3008 if (ii > level) { 3009 team = team->t.t_parent; 3010 ii--; 3011 } 3012 } 3013 3014 return team->t.t_nproc; 3015 } 3016 3017 kmp_r_sched_t __kmp_get_schedule_global() { 3018 // This routine created because pairs (__kmp_sched, __kmp_chunk) and 3019 // (__kmp_static, __kmp_guided) may be changed by kmp_set_defaults 3020 // independently. So one can get the updated schedule here. 3021 3022 kmp_r_sched_t r_sched; 3023 3024 // create schedule from 4 globals: __kmp_sched, __kmp_chunk, __kmp_static, 3025 // __kmp_guided. __kmp_sched should keep original value, so that user can set 3026 // KMP_SCHEDULE multiple times, and thus have different run-time schedules in 3027 // different roots (even in OMP 2.5) 3028 if (__kmp_sched == kmp_sch_static) { 3029 // replace STATIC with more detailed schedule (balanced or greedy) 3030 r_sched.r_sched_type = __kmp_static; 3031 } else if (__kmp_sched == kmp_sch_guided_chunked) { 3032 // replace GUIDED with more detailed schedule (iterative or analytical) 3033 r_sched.r_sched_type = __kmp_guided; 3034 } else { // (STATIC_CHUNKED), or (DYNAMIC_CHUNKED), or other 3035 r_sched.r_sched_type = __kmp_sched; 3036 } 3037 3038 if (__kmp_chunk < KMP_DEFAULT_CHUNK) { 3039 // __kmp_chunk may be wrong here (if it was not ever set) 3040 r_sched.chunk = KMP_DEFAULT_CHUNK; 3041 } else { 3042 r_sched.chunk = __kmp_chunk; 3043 } 3044 3045 return r_sched; 3046 } 3047 3048 /* Allocate (realloc == FALSE) * or reallocate (realloc == TRUE) 3049 at least argc number of *t_argv entries for the requested team. */ 3050 static void __kmp_alloc_argv_entries(int argc, kmp_team_t *team, int realloc) { 3051 3052 KMP_DEBUG_ASSERT(team); 3053 if (!realloc || argc > team->t.t_max_argc) { 3054 3055 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: needed entries=%d, " 3056 "current entries=%d\n", 3057 team->t.t_id, argc, (realloc) ? team->t.t_max_argc : 0)); 3058 /* if previously allocated heap space for args, free them */ 3059 if (realloc && team->t.t_argv != &team->t.t_inline_argv[0]) 3060 __kmp_free((void *)team->t.t_argv); 3061 3062 if (argc <= KMP_INLINE_ARGV_ENTRIES) { 3063 /* use unused space in the cache line for arguments */ 3064 team->t.t_max_argc = KMP_INLINE_ARGV_ENTRIES; 3065 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: inline allocate %d " 3066 "argv entries\n", 3067 team->t.t_id, team->t.t_max_argc)); 3068 team->t.t_argv = &team->t.t_inline_argv[0]; 3069 if (__kmp_storage_map) { 3070 __kmp_print_storage_map_gtid( 3071 -1, &team->t.t_inline_argv[0], 3072 &team->t.t_inline_argv[KMP_INLINE_ARGV_ENTRIES], 3073 (sizeof(void *) * KMP_INLINE_ARGV_ENTRIES), "team_%d.t_inline_argv", 3074 team->t.t_id); 3075 } 3076 } else { 3077 /* allocate space for arguments in the heap */ 3078 team->t.t_max_argc = (argc <= (KMP_MIN_MALLOC_ARGV_ENTRIES >> 1)) 3079 ? KMP_MIN_MALLOC_ARGV_ENTRIES 3080 : 2 * argc; 3081 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: dynamic allocate %d " 3082 "argv entries\n", 3083 team->t.t_id, team->t.t_max_argc)); 3084 team->t.t_argv = 3085 (void **)__kmp_page_allocate(sizeof(void *) * team->t.t_max_argc); 3086 if (__kmp_storage_map) { 3087 __kmp_print_storage_map_gtid(-1, &team->t.t_argv[0], 3088 &team->t.t_argv[team->t.t_max_argc], 3089 sizeof(void *) * team->t.t_max_argc, 3090 "team_%d.t_argv", team->t.t_id); 3091 } 3092 } 3093 } 3094 } 3095 3096 static void __kmp_allocate_team_arrays(kmp_team_t *team, int max_nth) { 3097 int i; 3098 int num_disp_buff = max_nth > 1 ? __kmp_dispatch_num_buffers : 2; 3099 team->t.t_threads = 3100 (kmp_info_t **)__kmp_allocate(sizeof(kmp_info_t *) * max_nth); 3101 team->t.t_disp_buffer = (dispatch_shared_info_t *)__kmp_allocate( 3102 sizeof(dispatch_shared_info_t) * num_disp_buff); 3103 team->t.t_dispatch = 3104 (kmp_disp_t *)__kmp_allocate(sizeof(kmp_disp_t) * max_nth); 3105 team->t.t_implicit_task_taskdata = 3106 (kmp_taskdata_t *)__kmp_allocate(sizeof(kmp_taskdata_t) * max_nth); 3107 team->t.t_max_nproc = max_nth; 3108 3109 /* setup dispatch buffers */ 3110 for (i = 0; i < num_disp_buff; ++i) { 3111 team->t.t_disp_buffer[i].buffer_index = i; 3112 #if OMP_45_ENABLED 3113 team->t.t_disp_buffer[i].doacross_buf_idx = i; 3114 #endif 3115 } 3116 } 3117 3118 static void __kmp_free_team_arrays(kmp_team_t *team) { 3119 /* Note: this does not free the threads in t_threads (__kmp_free_threads) */ 3120 int i; 3121 for (i = 0; i < team->t.t_max_nproc; ++i) { 3122 if (team->t.t_dispatch[i].th_disp_buffer != NULL) { 3123 __kmp_free(team->t.t_dispatch[i].th_disp_buffer); 3124 team->t.t_dispatch[i].th_disp_buffer = NULL; 3125 } 3126 } 3127 #if KMP_USE_HIER_SCHED 3128 __kmp_dispatch_free_hierarchies(team); 3129 #endif 3130 __kmp_free(team->t.t_threads); 3131 __kmp_free(team->t.t_disp_buffer); 3132 __kmp_free(team->t.t_dispatch); 3133 __kmp_free(team->t.t_implicit_task_taskdata); 3134 team->t.t_threads = NULL; 3135 team->t.t_disp_buffer = NULL; 3136 team->t.t_dispatch = NULL; 3137 team->t.t_implicit_task_taskdata = 0; 3138 } 3139 3140 static void __kmp_reallocate_team_arrays(kmp_team_t *team, int max_nth) { 3141 kmp_info_t **oldThreads = team->t.t_threads; 3142 3143 __kmp_free(team->t.t_disp_buffer); 3144 __kmp_free(team->t.t_dispatch); 3145 __kmp_free(team->t.t_implicit_task_taskdata); 3146 __kmp_allocate_team_arrays(team, max_nth); 3147 3148 KMP_MEMCPY(team->t.t_threads, oldThreads, 3149 team->t.t_nproc * sizeof(kmp_info_t *)); 3150 3151 __kmp_free(oldThreads); 3152 } 3153 3154 static kmp_internal_control_t __kmp_get_global_icvs(void) { 3155 3156 kmp_r_sched_t r_sched = 3157 __kmp_get_schedule_global(); // get current state of scheduling globals 3158 3159 #if OMP_40_ENABLED 3160 KMP_DEBUG_ASSERT(__kmp_nested_proc_bind.used > 0); 3161 #endif /* OMP_40_ENABLED */ 3162 3163 kmp_internal_control_t g_icvs = { 3164 0, // int serial_nesting_level; //corresponds to value of th_team_serialized 3165 (kmp_int8)__kmp_global.g.g_dynamic, // internal control for dynamic 3166 // adjustment of threads (per thread) 3167 (kmp_int8)__kmp_env_blocktime, // int bt_set; //internal control for 3168 // whether blocktime is explicitly set 3169 __kmp_dflt_blocktime, // int blocktime; //internal control for blocktime 3170 #if KMP_USE_MONITOR 3171 __kmp_bt_intervals, // int bt_intervals; //internal control for blocktime 3172 // intervals 3173 #endif 3174 __kmp_dflt_team_nth, // int nproc; //internal control for # of threads for 3175 // next parallel region (per thread) 3176 // (use a max ub on value if __kmp_parallel_initialize not called yet) 3177 __kmp_cg_max_nth, // int thread_limit; 3178 __kmp_dflt_max_active_levels, // int max_active_levels; //internal control 3179 // for max_active_levels 3180 r_sched, // kmp_r_sched_t sched; //internal control for runtime schedule 3181 // {sched,chunk} pair 3182 #if OMP_40_ENABLED 3183 __kmp_nested_proc_bind.bind_types[0], 3184 __kmp_default_device, 3185 #endif /* OMP_40_ENABLED */ 3186 NULL // struct kmp_internal_control *next; 3187 }; 3188 3189 return g_icvs; 3190 } 3191 3192 static kmp_internal_control_t __kmp_get_x_global_icvs(const kmp_team_t *team) { 3193 3194 kmp_internal_control_t gx_icvs; 3195 gx_icvs.serial_nesting_level = 3196 0; // probably =team->t.t_serial like in save_inter_controls 3197 copy_icvs(&gx_icvs, &team->t.t_threads[0]->th.th_current_task->td_icvs); 3198 gx_icvs.next = NULL; 3199 3200 return gx_icvs; 3201 } 3202 3203 static void __kmp_initialize_root(kmp_root_t *root) { 3204 int f; 3205 kmp_team_t *root_team; 3206 kmp_team_t *hot_team; 3207 int hot_team_max_nth; 3208 kmp_r_sched_t r_sched = 3209 __kmp_get_schedule_global(); // get current state of scheduling globals 3210 kmp_internal_control_t r_icvs = __kmp_get_global_icvs(); 3211 KMP_DEBUG_ASSERT(root); 3212 KMP_ASSERT(!root->r.r_begin); 3213 3214 /* setup the root state structure */ 3215 __kmp_init_lock(&root->r.r_begin_lock); 3216 root->r.r_begin = FALSE; 3217 root->r.r_active = FALSE; 3218 root->r.r_in_parallel = 0; 3219 root->r.r_blocktime = __kmp_dflt_blocktime; 3220 3221 /* setup the root team for this task */ 3222 /* allocate the root team structure */ 3223 KF_TRACE(10, ("__kmp_initialize_root: before root_team\n")); 3224 3225 root_team = 3226 __kmp_allocate_team(root, 3227 1, // new_nproc 3228 1, // max_nproc 3229 #if OMPT_SUPPORT 3230 ompt_data_none, // root parallel id 3231 #endif 3232 #if OMP_40_ENABLED 3233 __kmp_nested_proc_bind.bind_types[0], 3234 #endif 3235 &r_icvs, 3236 0 // argc 3237 USE_NESTED_HOT_ARG(NULL) // master thread is unknown 3238 ); 3239 #if USE_DEBUGGER 3240 // Non-NULL value should be assigned to make the debugger display the root 3241 // team. 3242 TCW_SYNC_PTR(root_team->t.t_pkfn, (microtask_t)(~0)); 3243 #endif 3244 3245 KF_TRACE(10, ("__kmp_initialize_root: after root_team = %p\n", root_team)); 3246 3247 root->r.r_root_team = root_team; 3248 root_team->t.t_control_stack_top = NULL; 3249 3250 /* initialize root team */ 3251 root_team->t.t_threads[0] = NULL; 3252 root_team->t.t_nproc = 1; 3253 root_team->t.t_serialized = 1; 3254 // TODO???: root_team->t.t_max_active_levels = __kmp_dflt_max_active_levels; 3255 root_team->t.t_sched.sched = r_sched.sched; 3256 KA_TRACE( 3257 20, 3258 ("__kmp_initialize_root: init root team %d arrived: join=%u, plain=%u\n", 3259 root_team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 3260 3261 /* setup the hot team for this task */ 3262 /* allocate the hot team structure */ 3263 KF_TRACE(10, ("__kmp_initialize_root: before hot_team\n")); 3264 3265 hot_team = 3266 __kmp_allocate_team(root, 3267 1, // new_nproc 3268 __kmp_dflt_team_nth_ub * 2, // max_nproc 3269 #if OMPT_SUPPORT 3270 ompt_data_none, // root parallel id 3271 #endif 3272 #if OMP_40_ENABLED 3273 __kmp_nested_proc_bind.bind_types[0], 3274 #endif 3275 &r_icvs, 3276 0 // argc 3277 USE_NESTED_HOT_ARG(NULL) // master thread is unknown 3278 ); 3279 KF_TRACE(10, ("__kmp_initialize_root: after hot_team = %p\n", hot_team)); 3280 3281 root->r.r_hot_team = hot_team; 3282 root_team->t.t_control_stack_top = NULL; 3283 3284 /* first-time initialization */ 3285 hot_team->t.t_parent = root_team; 3286 3287 /* initialize hot team */ 3288 hot_team_max_nth = hot_team->t.t_max_nproc; 3289 for (f = 0; f < hot_team_max_nth; ++f) { 3290 hot_team->t.t_threads[f] = NULL; 3291 } 3292 hot_team->t.t_nproc = 1; 3293 // TODO???: hot_team->t.t_max_active_levels = __kmp_dflt_max_active_levels; 3294 hot_team->t.t_sched.sched = r_sched.sched; 3295 hot_team->t.t_size_changed = 0; 3296 } 3297 3298 #ifdef KMP_DEBUG 3299 3300 typedef struct kmp_team_list_item { 3301 kmp_team_p const *entry; 3302 struct kmp_team_list_item *next; 3303 } kmp_team_list_item_t; 3304 typedef kmp_team_list_item_t *kmp_team_list_t; 3305 3306 static void __kmp_print_structure_team_accum( // Add team to list of teams. 3307 kmp_team_list_t list, // List of teams. 3308 kmp_team_p const *team // Team to add. 3309 ) { 3310 3311 // List must terminate with item where both entry and next are NULL. 3312 // Team is added to the list only once. 3313 // List is sorted in ascending order by team id. 3314 // Team id is *not* a key. 3315 3316 kmp_team_list_t l; 3317 3318 KMP_DEBUG_ASSERT(list != NULL); 3319 if (team == NULL) { 3320 return; 3321 } 3322 3323 __kmp_print_structure_team_accum(list, team->t.t_parent); 3324 __kmp_print_structure_team_accum(list, team->t.t_next_pool); 3325 3326 // Search list for the team. 3327 l = list; 3328 while (l->next != NULL && l->entry != team) { 3329 l = l->next; 3330 } 3331 if (l->next != NULL) { 3332 return; // Team has been added before, exit. 3333 } 3334 3335 // Team is not found. Search list again for insertion point. 3336 l = list; 3337 while (l->next != NULL && l->entry->t.t_id <= team->t.t_id) { 3338 l = l->next; 3339 } 3340 3341 // Insert team. 3342 { 3343 kmp_team_list_item_t *item = (kmp_team_list_item_t *)KMP_INTERNAL_MALLOC( 3344 sizeof(kmp_team_list_item_t)); 3345 *item = *l; 3346 l->entry = team; 3347 l->next = item; 3348 } 3349 } 3350 3351 static void __kmp_print_structure_team(char const *title, kmp_team_p const *team 3352 3353 ) { 3354 __kmp_printf("%s", title); 3355 if (team != NULL) { 3356 __kmp_printf("%2x %p\n", team->t.t_id, team); 3357 } else { 3358 __kmp_printf(" - (nil)\n"); 3359 } 3360 } 3361 3362 static void __kmp_print_structure_thread(char const *title, 3363 kmp_info_p const *thread) { 3364 __kmp_printf("%s", title); 3365 if (thread != NULL) { 3366 __kmp_printf("%2d %p\n", thread->th.th_info.ds.ds_gtid, thread); 3367 } else { 3368 __kmp_printf(" - (nil)\n"); 3369 } 3370 } 3371 3372 void __kmp_print_structure(void) { 3373 3374 kmp_team_list_t list; 3375 3376 // Initialize list of teams. 3377 list = 3378 (kmp_team_list_item_t *)KMP_INTERNAL_MALLOC(sizeof(kmp_team_list_item_t)); 3379 list->entry = NULL; 3380 list->next = NULL; 3381 3382 __kmp_printf("\n------------------------------\nGlobal Thread " 3383 "Table\n------------------------------\n"); 3384 { 3385 int gtid; 3386 for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) { 3387 __kmp_printf("%2d", gtid); 3388 if (__kmp_threads != NULL) { 3389 __kmp_printf(" %p", __kmp_threads[gtid]); 3390 } 3391 if (__kmp_root != NULL) { 3392 __kmp_printf(" %p", __kmp_root[gtid]); 3393 } 3394 __kmp_printf("\n"); 3395 } 3396 } 3397 3398 // Print out __kmp_threads array. 3399 __kmp_printf("\n------------------------------\nThreads\n--------------------" 3400 "----------\n"); 3401 if (__kmp_threads != NULL) { 3402 int gtid; 3403 for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) { 3404 kmp_info_t const *thread = __kmp_threads[gtid]; 3405 if (thread != NULL) { 3406 __kmp_printf("GTID %2d %p:\n", gtid, thread); 3407 __kmp_printf(" Our Root: %p\n", thread->th.th_root); 3408 __kmp_print_structure_team(" Our Team: ", thread->th.th_team); 3409 __kmp_print_structure_team(" Serial Team: ", 3410 thread->th.th_serial_team); 3411 __kmp_printf(" Threads: %2d\n", thread->th.th_team_nproc); 3412 __kmp_print_structure_thread(" Master: ", 3413 thread->th.th_team_master); 3414 __kmp_printf(" Serialized?: %2d\n", thread->th.th_team_serialized); 3415 __kmp_printf(" Set NProc: %2d\n", thread->th.th_set_nproc); 3416 #if OMP_40_ENABLED 3417 __kmp_printf(" Set Proc Bind: %2d\n", thread->th.th_set_proc_bind); 3418 #endif 3419 __kmp_print_structure_thread(" Next in pool: ", 3420 thread->th.th_next_pool); 3421 __kmp_printf("\n"); 3422 __kmp_print_structure_team_accum(list, thread->th.th_team); 3423 __kmp_print_structure_team_accum(list, thread->th.th_serial_team); 3424 } 3425 } 3426 } else { 3427 __kmp_printf("Threads array is not allocated.\n"); 3428 } 3429 3430 // Print out __kmp_root array. 3431 __kmp_printf("\n------------------------------\nUbers\n----------------------" 3432 "--------\n"); 3433 if (__kmp_root != NULL) { 3434 int gtid; 3435 for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) { 3436 kmp_root_t const *root = __kmp_root[gtid]; 3437 if (root != NULL) { 3438 __kmp_printf("GTID %2d %p:\n", gtid, root); 3439 __kmp_print_structure_team(" Root Team: ", root->r.r_root_team); 3440 __kmp_print_structure_team(" Hot Team: ", root->r.r_hot_team); 3441 __kmp_print_structure_thread(" Uber Thread: ", 3442 root->r.r_uber_thread); 3443 __kmp_printf(" Active?: %2d\n", root->r.r_active); 3444 __kmp_printf(" In Parallel: %2d\n", 3445 KMP_ATOMIC_LD_RLX(&root->r.r_in_parallel)); 3446 __kmp_printf("\n"); 3447 __kmp_print_structure_team_accum(list, root->r.r_root_team); 3448 __kmp_print_structure_team_accum(list, root->r.r_hot_team); 3449 } 3450 } 3451 } else { 3452 __kmp_printf("Ubers array is not allocated.\n"); 3453 } 3454 3455 __kmp_printf("\n------------------------------\nTeams\n----------------------" 3456 "--------\n"); 3457 while (list->next != NULL) { 3458 kmp_team_p const *team = list->entry; 3459 int i; 3460 __kmp_printf("Team %2x %p:\n", team->t.t_id, team); 3461 __kmp_print_structure_team(" Parent Team: ", team->t.t_parent); 3462 __kmp_printf(" Master TID: %2d\n", team->t.t_master_tid); 3463 __kmp_printf(" Max threads: %2d\n", team->t.t_max_nproc); 3464 __kmp_printf(" Levels of serial: %2d\n", team->t.t_serialized); 3465 __kmp_printf(" Number threads: %2d\n", team->t.t_nproc); 3466 for (i = 0; i < team->t.t_nproc; ++i) { 3467 __kmp_printf(" Thread %2d: ", i); 3468 __kmp_print_structure_thread("", team->t.t_threads[i]); 3469 } 3470 __kmp_print_structure_team(" Next in pool: ", team->t.t_next_pool); 3471 __kmp_printf("\n"); 3472 list = list->next; 3473 } 3474 3475 // Print out __kmp_thread_pool and __kmp_team_pool. 3476 __kmp_printf("\n------------------------------\nPools\n----------------------" 3477 "--------\n"); 3478 __kmp_print_structure_thread("Thread pool: ", 3479 CCAST(kmp_info_t *, __kmp_thread_pool)); 3480 __kmp_print_structure_team("Team pool: ", 3481 CCAST(kmp_team_t *, __kmp_team_pool)); 3482 __kmp_printf("\n"); 3483 3484 // Free team list. 3485 while (list != NULL) { 3486 kmp_team_list_item_t *item = list; 3487 list = list->next; 3488 KMP_INTERNAL_FREE(item); 3489 } 3490 } 3491 3492 #endif 3493 3494 //--------------------------------------------------------------------------- 3495 // Stuff for per-thread fast random number generator 3496 // Table of primes 3497 static const unsigned __kmp_primes[] = { 3498 0x9e3779b1, 0xffe6cc59, 0x2109f6dd, 0x43977ab5, 0xba5703f5, 0xb495a877, 3499 0xe1626741, 0x79695e6b, 0xbc98c09f, 0xd5bee2b3, 0x287488f9, 0x3af18231, 3500 0x9677cd4d, 0xbe3a6929, 0xadc6a877, 0xdcf0674b, 0xbe4d6fe9, 0x5f15e201, 3501 0x99afc3fd, 0xf3f16801, 0xe222cfff, 0x24ba5fdb, 0x0620452d, 0x79f149e3, 3502 0xc8b93f49, 0x972702cd, 0xb07dd827, 0x6c97d5ed, 0x085a3d61, 0x46eb5ea7, 3503 0x3d9910ed, 0x2e687b5b, 0x29609227, 0x6eb081f1, 0x0954c4e1, 0x9d114db9, 3504 0x542acfa9, 0xb3e6bd7b, 0x0742d917, 0xe9f3ffa7, 0x54581edb, 0xf2480f45, 3505 0x0bb9288f, 0xef1affc7, 0x85fa0ca7, 0x3ccc14db, 0xe6baf34b, 0x343377f7, 3506 0x5ca19031, 0xe6d9293b, 0xf0a9f391, 0x5d2e980b, 0xfc411073, 0xc3749363, 3507 0xb892d829, 0x3549366b, 0x629750ad, 0xb98294e5, 0x892d9483, 0xc235baf3, 3508 0x3d2402a3, 0x6bdef3c9, 0xbec333cd, 0x40c9520f}; 3509 3510 //--------------------------------------------------------------------------- 3511 // __kmp_get_random: Get a random number using a linear congruential method. 3512 unsigned short __kmp_get_random(kmp_info_t *thread) { 3513 unsigned x = thread->th.th_x; 3514 unsigned short r = x >> 16; 3515 3516 thread->th.th_x = x * thread->th.th_a + 1; 3517 3518 KA_TRACE(30, ("__kmp_get_random: THREAD: %d, RETURN: %u\n", 3519 thread->th.th_info.ds.ds_tid, r)); 3520 3521 return r; 3522 } 3523 //-------------------------------------------------------- 3524 // __kmp_init_random: Initialize a random number generator 3525 void __kmp_init_random(kmp_info_t *thread) { 3526 unsigned seed = thread->th.th_info.ds.ds_tid; 3527 3528 thread->th.th_a = 3529 __kmp_primes[seed % (sizeof(__kmp_primes) / sizeof(__kmp_primes[0]))]; 3530 thread->th.th_x = (seed + 1) * thread->th.th_a + 1; 3531 KA_TRACE(30, 3532 ("__kmp_init_random: THREAD: %u; A: %u\n", seed, thread->th.th_a)); 3533 } 3534 3535 #if KMP_OS_WINDOWS 3536 /* reclaim array entries for root threads that are already dead, returns number 3537 * reclaimed */ 3538 static int __kmp_reclaim_dead_roots(void) { 3539 int i, r = 0; 3540 3541 for (i = 0; i < __kmp_threads_capacity; ++i) { 3542 if (KMP_UBER_GTID(i) && 3543 !__kmp_still_running((kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[i])) && 3544 !__kmp_root[i] 3545 ->r.r_active) { // AC: reclaim only roots died in non-active state 3546 r += __kmp_unregister_root_other_thread(i); 3547 } 3548 } 3549 return r; 3550 } 3551 #endif 3552 3553 /* This function attempts to create free entries in __kmp_threads and 3554 __kmp_root, and returns the number of free entries generated. 3555 3556 For Windows* OS static library, the first mechanism used is to reclaim array 3557 entries for root threads that are already dead. 3558 3559 On all platforms, expansion is attempted on the arrays __kmp_threads_ and 3560 __kmp_root, with appropriate update to __kmp_threads_capacity. Array 3561 capacity is increased by doubling with clipping to __kmp_tp_capacity, if 3562 threadprivate cache array has been created. Synchronization with 3563 __kmpc_threadprivate_cached is done using __kmp_tp_cached_lock. 3564 3565 After any dead root reclamation, if the clipping value allows array expansion 3566 to result in the generation of a total of nNeed free slots, the function does 3567 that expansion. If not, nothing is done beyond the possible initial root 3568 thread reclamation. 3569 3570 If any argument is negative, the behavior is undefined. */ 3571 static int __kmp_expand_threads(int nNeed) { 3572 int added = 0; 3573 int minimumRequiredCapacity; 3574 int newCapacity; 3575 kmp_info_t **newThreads; 3576 kmp_root_t **newRoot; 3577 3578 // All calls to __kmp_expand_threads should be under __kmp_forkjoin_lock, so 3579 // resizing __kmp_threads does not need additional protection if foreign 3580 // threads are present 3581 3582 #if KMP_OS_WINDOWS && !KMP_DYNAMIC_LIB 3583 /* only for Windows static library */ 3584 /* reclaim array entries for root threads that are already dead */ 3585 added = __kmp_reclaim_dead_roots(); 3586 3587 if (nNeed) { 3588 nNeed -= added; 3589 if (nNeed < 0) 3590 nNeed = 0; 3591 } 3592 #endif 3593 if (nNeed <= 0) 3594 return added; 3595 3596 // Note that __kmp_threads_capacity is not bounded by __kmp_max_nth. If 3597 // __kmp_max_nth is set to some value less than __kmp_sys_max_nth by the 3598 // user via KMP_DEVICE_THREAD_LIMIT, then __kmp_threads_capacity may become 3599 // > __kmp_max_nth in one of two ways: 3600 // 3601 // 1) The initialization thread (gtid = 0) exits. __kmp_threads[0] 3602 // may not be resused by another thread, so we may need to increase 3603 // __kmp_threads_capacity to __kmp_max_nth + 1. 3604 // 3605 // 2) New foreign root(s) are encountered. We always register new foreign 3606 // roots. This may cause a smaller # of threads to be allocated at 3607 // subsequent parallel regions, but the worker threads hang around (and 3608 // eventually go to sleep) and need slots in the __kmp_threads[] array. 3609 // 3610 // Anyway, that is the reason for moving the check to see if 3611 // __kmp_max_nth was exceeded into __kmp_reserve_threads() 3612 // instead of having it performed here. -BB 3613 3614 KMP_DEBUG_ASSERT(__kmp_sys_max_nth >= __kmp_threads_capacity); 3615 3616 /* compute expansion headroom to check if we can expand */ 3617 if (__kmp_sys_max_nth - __kmp_threads_capacity < nNeed) { 3618 /* possible expansion too small -- give up */ 3619 return added; 3620 } 3621 minimumRequiredCapacity = __kmp_threads_capacity + nNeed; 3622 3623 newCapacity = __kmp_threads_capacity; 3624 do { 3625 newCapacity = newCapacity <= (__kmp_sys_max_nth >> 1) ? (newCapacity << 1) 3626 : __kmp_sys_max_nth; 3627 } while (newCapacity < minimumRequiredCapacity); 3628 newThreads = (kmp_info_t **)__kmp_allocate( 3629 (sizeof(kmp_info_t *) + sizeof(kmp_root_t *)) * newCapacity + CACHE_LINE); 3630 newRoot = 3631 (kmp_root_t **)((char *)newThreads + sizeof(kmp_info_t *) * newCapacity); 3632 KMP_MEMCPY(newThreads, __kmp_threads, 3633 __kmp_threads_capacity * sizeof(kmp_info_t *)); 3634 KMP_MEMCPY(newRoot, __kmp_root, 3635 __kmp_threads_capacity * sizeof(kmp_root_t *)); 3636 3637 kmp_info_t **temp_threads = __kmp_threads; 3638 *(kmp_info_t * *volatile *)&__kmp_threads = newThreads; 3639 *(kmp_root_t * *volatile *)&__kmp_root = newRoot; 3640 __kmp_free(temp_threads); 3641 added += newCapacity - __kmp_threads_capacity; 3642 *(volatile int *)&__kmp_threads_capacity = newCapacity; 3643 3644 if (newCapacity > __kmp_tp_capacity) { 3645 __kmp_acquire_bootstrap_lock(&__kmp_tp_cached_lock); 3646 if (__kmp_tp_cached && newCapacity > __kmp_tp_capacity) { 3647 __kmp_threadprivate_resize_cache(newCapacity); 3648 } else { // increase __kmp_tp_capacity to correspond with kmp_threads size 3649 *(volatile int *)&__kmp_tp_capacity = newCapacity; 3650 } 3651 __kmp_release_bootstrap_lock(&__kmp_tp_cached_lock); 3652 } 3653 3654 return added; 3655 } 3656 3657 /* Register the current thread as a root thread and obtain our gtid. We must 3658 have the __kmp_initz_lock held at this point. Argument TRUE only if are the 3659 thread that calls from __kmp_do_serial_initialize() */ 3660 int __kmp_register_root(int initial_thread) { 3661 kmp_info_t *root_thread; 3662 kmp_root_t *root; 3663 int gtid; 3664 int capacity; 3665 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 3666 KA_TRACE(20, ("__kmp_register_root: entered\n")); 3667 KMP_MB(); 3668 3669 /* 2007-03-02: 3670 If initial thread did not invoke OpenMP RTL yet, and this thread is not an 3671 initial one, "__kmp_all_nth >= __kmp_threads_capacity" condition does not 3672 work as expected -- it may return false (that means there is at least one 3673 empty slot in __kmp_threads array), but it is possible the only free slot 3674 is #0, which is reserved for initial thread and so cannot be used for this 3675 one. Following code workarounds this bug. 3676 3677 However, right solution seems to be not reserving slot #0 for initial 3678 thread because: 3679 (1) there is no magic in slot #0, 3680 (2) we cannot detect initial thread reliably (the first thread which does 3681 serial initialization may be not a real initial thread). 3682 */ 3683 capacity = __kmp_threads_capacity; 3684 if (!initial_thread && TCR_PTR(__kmp_threads[0]) == NULL) { 3685 --capacity; 3686 } 3687 3688 /* see if there are too many threads */ 3689 if (__kmp_all_nth >= capacity && !__kmp_expand_threads(1)) { 3690 if (__kmp_tp_cached) { 3691 __kmp_fatal(KMP_MSG(CantRegisterNewThread), 3692 KMP_HNT(Set_ALL_THREADPRIVATE, __kmp_tp_capacity), 3693 KMP_HNT(PossibleSystemLimitOnThreads), __kmp_msg_null); 3694 } else { 3695 __kmp_fatal(KMP_MSG(CantRegisterNewThread), KMP_HNT(SystemLimitOnThreads), 3696 __kmp_msg_null); 3697 } 3698 } 3699 3700 /* find an available thread slot */ 3701 /* Don't reassign the zero slot since we need that to only be used by initial 3702 thread */ 3703 for (gtid = (initial_thread ? 0 : 1); TCR_PTR(__kmp_threads[gtid]) != NULL; 3704 gtid++) 3705 ; 3706 KA_TRACE(1, 3707 ("__kmp_register_root: found slot in threads array: T#%d\n", gtid)); 3708 KMP_ASSERT(gtid < __kmp_threads_capacity); 3709 3710 /* update global accounting */ 3711 __kmp_all_nth++; 3712 TCW_4(__kmp_nth, __kmp_nth + 1); 3713 3714 // if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) for low 3715 // numbers of procs, and method #2 (keyed API call) for higher numbers. 3716 if (__kmp_adjust_gtid_mode) { 3717 if (__kmp_all_nth >= __kmp_tls_gtid_min) { 3718 if (TCR_4(__kmp_gtid_mode) != 2) { 3719 TCW_4(__kmp_gtid_mode, 2); 3720 } 3721 } else { 3722 if (TCR_4(__kmp_gtid_mode) != 1) { 3723 TCW_4(__kmp_gtid_mode, 1); 3724 } 3725 } 3726 } 3727 3728 #ifdef KMP_ADJUST_BLOCKTIME 3729 /* Adjust blocktime to zero if necessary */ 3730 /* Middle initialization might not have occurred yet */ 3731 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 3732 if (__kmp_nth > __kmp_avail_proc) { 3733 __kmp_zero_bt = TRUE; 3734 } 3735 } 3736 #endif /* KMP_ADJUST_BLOCKTIME */ 3737 3738 /* setup this new hierarchy */ 3739 if (!(root = __kmp_root[gtid])) { 3740 root = __kmp_root[gtid] = (kmp_root_t *)__kmp_allocate(sizeof(kmp_root_t)); 3741 KMP_DEBUG_ASSERT(!root->r.r_root_team); 3742 } 3743 3744 #if KMP_STATS_ENABLED 3745 // Initialize stats as soon as possible (right after gtid assignment). 3746 __kmp_stats_thread_ptr = __kmp_stats_list->push_back(gtid); 3747 __kmp_stats_thread_ptr->startLife(); 3748 KMP_SET_THREAD_STATE(SERIAL_REGION); 3749 KMP_INIT_PARTITIONED_TIMERS(OMP_serial); 3750 #endif 3751 __kmp_initialize_root(root); 3752 3753 /* setup new root thread structure */ 3754 if (root->r.r_uber_thread) { 3755 root_thread = root->r.r_uber_thread; 3756 } else { 3757 root_thread = (kmp_info_t *)__kmp_allocate(sizeof(kmp_info_t)); 3758 if (__kmp_storage_map) { 3759 __kmp_print_thread_storage_map(root_thread, gtid); 3760 } 3761 root_thread->th.th_info.ds.ds_gtid = gtid; 3762 #if OMPT_SUPPORT 3763 root_thread->th.ompt_thread_info.thread_data = ompt_data_none; 3764 #endif 3765 root_thread->th.th_root = root; 3766 if (__kmp_env_consistency_check) { 3767 root_thread->th.th_cons = __kmp_allocate_cons_stack(gtid); 3768 } 3769 #if USE_FAST_MEMORY 3770 __kmp_initialize_fast_memory(root_thread); 3771 #endif /* USE_FAST_MEMORY */ 3772 3773 #if KMP_USE_BGET 3774 KMP_DEBUG_ASSERT(root_thread->th.th_local.bget_data == NULL); 3775 __kmp_initialize_bget(root_thread); 3776 #endif 3777 __kmp_init_random(root_thread); // Initialize random number generator 3778 } 3779 3780 /* setup the serial team held in reserve by the root thread */ 3781 if (!root_thread->th.th_serial_team) { 3782 kmp_internal_control_t r_icvs = __kmp_get_global_icvs(); 3783 KF_TRACE(10, ("__kmp_register_root: before serial_team\n")); 3784 root_thread->th.th_serial_team = 3785 __kmp_allocate_team(root, 1, 1, 3786 #if OMPT_SUPPORT 3787 ompt_data_none, // root parallel id 3788 #endif 3789 #if OMP_40_ENABLED 3790 proc_bind_default, 3791 #endif 3792 &r_icvs, 0 USE_NESTED_HOT_ARG(NULL)); 3793 } 3794 KMP_ASSERT(root_thread->th.th_serial_team); 3795 KF_TRACE(10, ("__kmp_register_root: after serial_team = %p\n", 3796 root_thread->th.th_serial_team)); 3797 3798 /* drop root_thread into place */ 3799 TCW_SYNC_PTR(__kmp_threads[gtid], root_thread); 3800 3801 root->r.r_root_team->t.t_threads[0] = root_thread; 3802 root->r.r_hot_team->t.t_threads[0] = root_thread; 3803 root_thread->th.th_serial_team->t.t_threads[0] = root_thread; 3804 // AC: the team created in reserve, not for execution (it is unused for now). 3805 root_thread->th.th_serial_team->t.t_serialized = 0; 3806 root->r.r_uber_thread = root_thread; 3807 3808 /* initialize the thread, get it ready to go */ 3809 __kmp_initialize_info(root_thread, root->r.r_root_team, 0, gtid); 3810 TCW_4(__kmp_init_gtid, TRUE); 3811 3812 /* prepare the master thread for get_gtid() */ 3813 __kmp_gtid_set_specific(gtid); 3814 3815 #if USE_ITT_BUILD 3816 __kmp_itt_thread_name(gtid); 3817 #endif /* USE_ITT_BUILD */ 3818 3819 #ifdef KMP_TDATA_GTID 3820 __kmp_gtid = gtid; 3821 #endif 3822 __kmp_create_worker(gtid, root_thread, __kmp_stksize); 3823 KMP_DEBUG_ASSERT(__kmp_gtid_get_specific() == gtid); 3824 3825 KA_TRACE(20, ("__kmp_register_root: T#%d init T#%d(%d:%d) arrived: join=%u, " 3826 "plain=%u\n", 3827 gtid, __kmp_gtid_from_tid(0, root->r.r_hot_team), 3828 root->r.r_hot_team->t.t_id, 0, KMP_INIT_BARRIER_STATE, 3829 KMP_INIT_BARRIER_STATE)); 3830 { // Initialize barrier data. 3831 int b; 3832 for (b = 0; b < bs_last_barrier; ++b) { 3833 root_thread->th.th_bar[b].bb.b_arrived = KMP_INIT_BARRIER_STATE; 3834 #if USE_DEBUGGER 3835 root_thread->th.th_bar[b].bb.b_worker_arrived = 0; 3836 #endif 3837 } 3838 } 3839 KMP_DEBUG_ASSERT(root->r.r_hot_team->t.t_bar[bs_forkjoin_barrier].b_arrived == 3840 KMP_INIT_BARRIER_STATE); 3841 3842 #if KMP_AFFINITY_SUPPORTED 3843 #if OMP_40_ENABLED 3844 root_thread->th.th_current_place = KMP_PLACE_UNDEFINED; 3845 root_thread->th.th_new_place = KMP_PLACE_UNDEFINED; 3846 root_thread->th.th_first_place = KMP_PLACE_UNDEFINED; 3847 root_thread->th.th_last_place = KMP_PLACE_UNDEFINED; 3848 #endif 3849 if (TCR_4(__kmp_init_middle)) { 3850 __kmp_affinity_set_init_mask(gtid, TRUE); 3851 } 3852 #endif /* KMP_AFFINITY_SUPPORTED */ 3853 #if OMP_50_ENABLED 3854 root_thread->th.th_def_allocator = __kmp_def_allocator; 3855 root_thread->th.th_prev_level = 0; 3856 root_thread->th.th_prev_num_threads = 1; 3857 #endif 3858 3859 kmp_cg_root_t *tmp = (kmp_cg_root_t *)__kmp_allocate(sizeof(kmp_cg_root_t)); 3860 tmp->cg_root = root_thread; 3861 tmp->cg_thread_limit = __kmp_cg_max_nth; 3862 tmp->cg_nthreads = 1; 3863 KA_TRACE(100, ("__kmp_register_root: Thread %p created node %p with" 3864 " cg_nthreads init to 1\n", 3865 root_thread, tmp)); 3866 tmp->up = NULL; 3867 root_thread->th.th_cg_roots = tmp; 3868 3869 __kmp_root_counter++; 3870 3871 #if OMPT_SUPPORT 3872 if (!initial_thread && ompt_enabled.enabled) { 3873 3874 kmp_info_t *root_thread = ompt_get_thread(); 3875 3876 ompt_set_thread_state(root_thread, ompt_state_overhead); 3877 3878 if (ompt_enabled.ompt_callback_thread_begin) { 3879 ompt_callbacks.ompt_callback(ompt_callback_thread_begin)( 3880 ompt_thread_initial, __ompt_get_thread_data_internal()); 3881 } 3882 ompt_data_t *task_data; 3883 __ompt_get_task_info_internal(0, NULL, &task_data, NULL, NULL, NULL); 3884 if (ompt_enabled.ompt_callback_task_create) { 3885 ompt_callbacks.ompt_callback(ompt_callback_task_create)( 3886 NULL, NULL, task_data, ompt_task_initial, 0, NULL); 3887 // initial task has nothing to return to 3888 } 3889 3890 ompt_set_thread_state(root_thread, ompt_state_work_serial); 3891 } 3892 #endif 3893 3894 KMP_MB(); 3895 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 3896 3897 return gtid; 3898 } 3899 3900 #if KMP_NESTED_HOT_TEAMS 3901 static int __kmp_free_hot_teams(kmp_root_t *root, kmp_info_t *thr, int level, 3902 const int max_level) { 3903 int i, n, nth; 3904 kmp_hot_team_ptr_t *hot_teams = thr->th.th_hot_teams; 3905 if (!hot_teams || !hot_teams[level].hot_team) { 3906 return 0; 3907 } 3908 KMP_DEBUG_ASSERT(level < max_level); 3909 kmp_team_t *team = hot_teams[level].hot_team; 3910 nth = hot_teams[level].hot_team_nth; 3911 n = nth - 1; // master is not freed 3912 if (level < max_level - 1) { 3913 for (i = 0; i < nth; ++i) { 3914 kmp_info_t *th = team->t.t_threads[i]; 3915 n += __kmp_free_hot_teams(root, th, level + 1, max_level); 3916 if (i > 0 && th->th.th_hot_teams) { 3917 __kmp_free(th->th.th_hot_teams); 3918 th->th.th_hot_teams = NULL; 3919 } 3920 } 3921 } 3922 __kmp_free_team(root, team, NULL); 3923 return n; 3924 } 3925 #endif 3926 3927 // Resets a root thread and clear its root and hot teams. 3928 // Returns the number of __kmp_threads entries directly and indirectly freed. 3929 static int __kmp_reset_root(int gtid, kmp_root_t *root) { 3930 kmp_team_t *root_team = root->r.r_root_team; 3931 kmp_team_t *hot_team = root->r.r_hot_team; 3932 int n = hot_team->t.t_nproc; 3933 int i; 3934 3935 KMP_DEBUG_ASSERT(!root->r.r_active); 3936 3937 root->r.r_root_team = NULL; 3938 root->r.r_hot_team = NULL; 3939 // __kmp_free_team() does not free hot teams, so we have to clear r_hot_team 3940 // before call to __kmp_free_team(). 3941 __kmp_free_team(root, root_team USE_NESTED_HOT_ARG(NULL)); 3942 #if KMP_NESTED_HOT_TEAMS 3943 if (__kmp_hot_teams_max_level > 3944 0) { // need to free nested hot teams and their threads if any 3945 for (i = 0; i < hot_team->t.t_nproc; ++i) { 3946 kmp_info_t *th = hot_team->t.t_threads[i]; 3947 if (__kmp_hot_teams_max_level > 1) { 3948 n += __kmp_free_hot_teams(root, th, 1, __kmp_hot_teams_max_level); 3949 } 3950 if (th->th.th_hot_teams) { 3951 __kmp_free(th->th.th_hot_teams); 3952 th->th.th_hot_teams = NULL; 3953 } 3954 } 3955 } 3956 #endif 3957 __kmp_free_team(root, hot_team USE_NESTED_HOT_ARG(NULL)); 3958 3959 // Before we can reap the thread, we need to make certain that all other 3960 // threads in the teams that had this root as ancestor have stopped trying to 3961 // steal tasks. 3962 if (__kmp_tasking_mode != tskm_immediate_exec) { 3963 __kmp_wait_to_unref_task_teams(); 3964 } 3965 3966 #if KMP_OS_WINDOWS 3967 /* Close Handle of root duplicated in __kmp_create_worker (tr #62919) */ 3968 KA_TRACE( 3969 10, ("__kmp_reset_root: free handle, th = %p, handle = %" KMP_UINTPTR_SPEC 3970 "\n", 3971 (LPVOID) & (root->r.r_uber_thread->th), 3972 root->r.r_uber_thread->th.th_info.ds.ds_thread)); 3973 __kmp_free_handle(root->r.r_uber_thread->th.th_info.ds.ds_thread); 3974 #endif /* KMP_OS_WINDOWS */ 3975 3976 #if OMPT_SUPPORT 3977 if (ompt_enabled.ompt_callback_thread_end) { 3978 ompt_callbacks.ompt_callback(ompt_callback_thread_end)( 3979 &(root->r.r_uber_thread->th.ompt_thread_info.thread_data)); 3980 } 3981 #endif 3982 3983 TCW_4(__kmp_nth, 3984 __kmp_nth - 1); // __kmp_reap_thread will decrement __kmp_all_nth. 3985 root->r.r_uber_thread->th.th_cg_roots->cg_nthreads--; 3986 KA_TRACE(100, ("__kmp_reset_root: Thread %p decrement cg_nthreads on node %p" 3987 " to %d\n", 3988 root->r.r_uber_thread, root->r.r_uber_thread->th.th_cg_roots, 3989 root->r.r_uber_thread->th.th_cg_roots->cg_nthreads)); 3990 3991 __kmp_reap_thread(root->r.r_uber_thread, 1); 3992 3993 // We canot put root thread to __kmp_thread_pool, so we have to reap it istead 3994 // of freeing. 3995 root->r.r_uber_thread = NULL; 3996 /* mark root as no longer in use */ 3997 root->r.r_begin = FALSE; 3998 3999 return n; 4000 } 4001 4002 void __kmp_unregister_root_current_thread(int gtid) { 4003 KA_TRACE(1, ("__kmp_unregister_root_current_thread: enter T#%d\n", gtid)); 4004 /* this lock should be ok, since unregister_root_current_thread is never 4005 called during an abort, only during a normal close. furthermore, if you 4006 have the forkjoin lock, you should never try to get the initz lock */ 4007 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 4008 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 4009 KC_TRACE(10, ("__kmp_unregister_root_current_thread: already finished, " 4010 "exiting T#%d\n", 4011 gtid)); 4012 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 4013 return; 4014 } 4015 kmp_root_t *root = __kmp_root[gtid]; 4016 4017 KMP_DEBUG_ASSERT(__kmp_threads && __kmp_threads[gtid]); 4018 KMP_ASSERT(KMP_UBER_GTID(gtid)); 4019 KMP_ASSERT(root == __kmp_threads[gtid]->th.th_root); 4020 KMP_ASSERT(root->r.r_active == FALSE); 4021 4022 KMP_MB(); 4023 4024 #if OMP_45_ENABLED 4025 kmp_info_t *thread = __kmp_threads[gtid]; 4026 kmp_team_t *team = thread->th.th_team; 4027 kmp_task_team_t *task_team = thread->th.th_task_team; 4028 4029 // we need to wait for the proxy tasks before finishing the thread 4030 if (task_team != NULL && task_team->tt.tt_found_proxy_tasks) { 4031 #if OMPT_SUPPORT 4032 // the runtime is shutting down so we won't report any events 4033 thread->th.ompt_thread_info.state = ompt_state_undefined; 4034 #endif 4035 __kmp_task_team_wait(thread, team USE_ITT_BUILD_ARG(NULL)); 4036 } 4037 #endif 4038 4039 __kmp_reset_root(gtid, root); 4040 4041 /* free up this thread slot */ 4042 __kmp_gtid_set_specific(KMP_GTID_DNE); 4043 #ifdef KMP_TDATA_GTID 4044 __kmp_gtid = KMP_GTID_DNE; 4045 #endif 4046 4047 KMP_MB(); 4048 KC_TRACE(10, 4049 ("__kmp_unregister_root_current_thread: T#%d unregistered\n", gtid)); 4050 4051 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 4052 } 4053 4054 #if KMP_OS_WINDOWS 4055 /* __kmp_forkjoin_lock must be already held 4056 Unregisters a root thread that is not the current thread. Returns the number 4057 of __kmp_threads entries freed as a result. */ 4058 static int __kmp_unregister_root_other_thread(int gtid) { 4059 kmp_root_t *root = __kmp_root[gtid]; 4060 int r; 4061 4062 KA_TRACE(1, ("__kmp_unregister_root_other_thread: enter T#%d\n", gtid)); 4063 KMP_DEBUG_ASSERT(__kmp_threads && __kmp_threads[gtid]); 4064 KMP_ASSERT(KMP_UBER_GTID(gtid)); 4065 KMP_ASSERT(root == __kmp_threads[gtid]->th.th_root); 4066 KMP_ASSERT(root->r.r_active == FALSE); 4067 4068 r = __kmp_reset_root(gtid, root); 4069 KC_TRACE(10, 4070 ("__kmp_unregister_root_other_thread: T#%d unregistered\n", gtid)); 4071 return r; 4072 } 4073 #endif 4074 4075 #if KMP_DEBUG 4076 void __kmp_task_info() { 4077 4078 kmp_int32 gtid = __kmp_entry_gtid(); 4079 kmp_int32 tid = __kmp_tid_from_gtid(gtid); 4080 kmp_info_t *this_thr = __kmp_threads[gtid]; 4081 kmp_team_t *steam = this_thr->th.th_serial_team; 4082 kmp_team_t *team = this_thr->th.th_team; 4083 4084 __kmp_printf( 4085 "__kmp_task_info: gtid=%d tid=%d t_thread=%p team=%p steam=%p curtask=%p " 4086 "ptask=%p\n", 4087 gtid, tid, this_thr, team, steam, this_thr->th.th_current_task, 4088 team->t.t_implicit_task_taskdata[tid].td_parent); 4089 } 4090 #endif // KMP_DEBUG 4091 4092 /* TODO optimize with one big memclr, take out what isn't needed, split 4093 responsibility to workers as much as possible, and delay initialization of 4094 features as much as possible */ 4095 static void __kmp_initialize_info(kmp_info_t *this_thr, kmp_team_t *team, 4096 int tid, int gtid) { 4097 /* this_thr->th.th_info.ds.ds_gtid is setup in 4098 kmp_allocate_thread/create_worker. 4099 this_thr->th.th_serial_team is setup in __kmp_allocate_thread */ 4100 kmp_info_t *master = team->t.t_threads[0]; 4101 KMP_DEBUG_ASSERT(this_thr != NULL); 4102 KMP_DEBUG_ASSERT(this_thr->th.th_serial_team); 4103 KMP_DEBUG_ASSERT(team); 4104 KMP_DEBUG_ASSERT(team->t.t_threads); 4105 KMP_DEBUG_ASSERT(team->t.t_dispatch); 4106 KMP_DEBUG_ASSERT(master); 4107 KMP_DEBUG_ASSERT(master->th.th_root); 4108 4109 KMP_MB(); 4110 4111 TCW_SYNC_PTR(this_thr->th.th_team, team); 4112 4113 this_thr->th.th_info.ds.ds_tid = tid; 4114 this_thr->th.th_set_nproc = 0; 4115 if (__kmp_tasking_mode != tskm_immediate_exec) 4116 // When tasking is possible, threads are not safe to reap until they are 4117 // done tasking; this will be set when tasking code is exited in wait 4118 this_thr->th.th_reap_state = KMP_NOT_SAFE_TO_REAP; 4119 else // no tasking --> always safe to reap 4120 this_thr->th.th_reap_state = KMP_SAFE_TO_REAP; 4121 #if OMP_40_ENABLED 4122 this_thr->th.th_set_proc_bind = proc_bind_default; 4123 #if KMP_AFFINITY_SUPPORTED 4124 this_thr->th.th_new_place = this_thr->th.th_current_place; 4125 #endif 4126 #endif 4127 this_thr->th.th_root = master->th.th_root; 4128 4129 /* setup the thread's cache of the team structure */ 4130 this_thr->th.th_team_nproc = team->t.t_nproc; 4131 this_thr->th.th_team_master = master; 4132 this_thr->th.th_team_serialized = team->t.t_serialized; 4133 TCW_PTR(this_thr->th.th_sleep_loc, NULL); 4134 4135 KMP_DEBUG_ASSERT(team->t.t_implicit_task_taskdata); 4136 4137 KF_TRACE(10, ("__kmp_initialize_info1: T#%d:%d this_thread=%p curtask=%p\n", 4138 tid, gtid, this_thr, this_thr->th.th_current_task)); 4139 4140 __kmp_init_implicit_task(this_thr->th.th_team_master->th.th_ident, this_thr, 4141 team, tid, TRUE); 4142 4143 KF_TRACE(10, ("__kmp_initialize_info2: T#%d:%d this_thread=%p curtask=%p\n", 4144 tid, gtid, this_thr, this_thr->th.th_current_task)); 4145 // TODO: Initialize ICVs from parent; GEH - isn't that already done in 4146 // __kmp_initialize_team()? 4147 4148 /* TODO no worksharing in speculative threads */ 4149 this_thr->th.th_dispatch = &team->t.t_dispatch[tid]; 4150 4151 this_thr->th.th_local.this_construct = 0; 4152 4153 if (!this_thr->th.th_pri_common) { 4154 this_thr->th.th_pri_common = 4155 (struct common_table *)__kmp_allocate(sizeof(struct common_table)); 4156 if (__kmp_storage_map) { 4157 __kmp_print_storage_map_gtid( 4158 gtid, this_thr->th.th_pri_common, this_thr->th.th_pri_common + 1, 4159 sizeof(struct common_table), "th_%d.th_pri_common\n", gtid); 4160 } 4161 this_thr->th.th_pri_head = NULL; 4162 } 4163 4164 if (this_thr != master && // Master's CG root is initialized elsewhere 4165 this_thr->th.th_cg_roots != master->th.th_cg_roots) { // CG root not set 4166 // Make new thread's CG root same as master's 4167 KMP_DEBUG_ASSERT(master->th.th_cg_roots); 4168 this_thr->th.th_cg_roots = master->th.th_cg_roots; 4169 // Increment new thread's CG root's counter to add the new thread 4170 this_thr->th.th_cg_roots->cg_nthreads++; 4171 KA_TRACE(100, ("__kmp_initialize_info: Thread %p increment cg_nthreads on" 4172 " node %p of thread %p to %d\n", 4173 this_thr, this_thr->th.th_cg_roots, 4174 this_thr->th.th_cg_roots->cg_root, 4175 this_thr->th.th_cg_roots->cg_nthreads)); 4176 this_thr->th.th_current_task->td_icvs.thread_limit = 4177 this_thr->th.th_cg_roots->cg_thread_limit; 4178 } 4179 4180 /* Initialize dynamic dispatch */ 4181 { 4182 volatile kmp_disp_t *dispatch = this_thr->th.th_dispatch; 4183 // Use team max_nproc since this will never change for the team. 4184 size_t disp_size = 4185 sizeof(dispatch_private_info_t) * 4186 (team->t.t_max_nproc == 1 ? 1 : __kmp_dispatch_num_buffers); 4187 KD_TRACE(10, ("__kmp_initialize_info: T#%d max_nproc: %d\n", gtid, 4188 team->t.t_max_nproc)); 4189 KMP_ASSERT(dispatch); 4190 KMP_DEBUG_ASSERT(team->t.t_dispatch); 4191 KMP_DEBUG_ASSERT(dispatch == &team->t.t_dispatch[tid]); 4192 4193 dispatch->th_disp_index = 0; 4194 #if OMP_45_ENABLED 4195 dispatch->th_doacross_buf_idx = 0; 4196 #endif 4197 if (!dispatch->th_disp_buffer) { 4198 dispatch->th_disp_buffer = 4199 (dispatch_private_info_t *)__kmp_allocate(disp_size); 4200 4201 if (__kmp_storage_map) { 4202 __kmp_print_storage_map_gtid( 4203 gtid, &dispatch->th_disp_buffer[0], 4204 &dispatch->th_disp_buffer[team->t.t_max_nproc == 1 4205 ? 1 4206 : __kmp_dispatch_num_buffers], 4207 disp_size, "th_%d.th_dispatch.th_disp_buffer " 4208 "(team_%d.t_dispatch[%d].th_disp_buffer)", 4209 gtid, team->t.t_id, gtid); 4210 } 4211 } else { 4212 memset(&dispatch->th_disp_buffer[0], '\0', disp_size); 4213 } 4214 4215 dispatch->th_dispatch_pr_current = 0; 4216 dispatch->th_dispatch_sh_current = 0; 4217 4218 dispatch->th_deo_fcn = 0; /* ORDERED */ 4219 dispatch->th_dxo_fcn = 0; /* END ORDERED */ 4220 } 4221 4222 this_thr->th.th_next_pool = NULL; 4223 4224 if (!this_thr->th.th_task_state_memo_stack) { 4225 size_t i; 4226 this_thr->th.th_task_state_memo_stack = 4227 (kmp_uint8 *)__kmp_allocate(4 * sizeof(kmp_uint8)); 4228 this_thr->th.th_task_state_top = 0; 4229 this_thr->th.th_task_state_stack_sz = 4; 4230 for (i = 0; i < this_thr->th.th_task_state_stack_sz; 4231 ++i) // zero init the stack 4232 this_thr->th.th_task_state_memo_stack[i] = 0; 4233 } 4234 4235 KMP_DEBUG_ASSERT(!this_thr->th.th_spin_here); 4236 KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0); 4237 4238 KMP_MB(); 4239 } 4240 4241 /* allocate a new thread for the requesting team. this is only called from 4242 within a forkjoin critical section. we will first try to get an available 4243 thread from the thread pool. if none is available, we will fork a new one 4244 assuming we are able to create a new one. this should be assured, as the 4245 caller should check on this first. */ 4246 kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team, 4247 int new_tid) { 4248 kmp_team_t *serial_team; 4249 kmp_info_t *new_thr; 4250 int new_gtid; 4251 4252 KA_TRACE(20, ("__kmp_allocate_thread: T#%d\n", __kmp_get_gtid())); 4253 KMP_DEBUG_ASSERT(root && team); 4254 #if !KMP_NESTED_HOT_TEAMS 4255 KMP_DEBUG_ASSERT(KMP_MASTER_GTID(__kmp_get_gtid())); 4256 #endif 4257 KMP_MB(); 4258 4259 /* first, try to get one from the thread pool */ 4260 if (__kmp_thread_pool) { 4261 new_thr = CCAST(kmp_info_t *, __kmp_thread_pool); 4262 __kmp_thread_pool = (volatile kmp_info_t *)new_thr->th.th_next_pool; 4263 if (new_thr == __kmp_thread_pool_insert_pt) { 4264 __kmp_thread_pool_insert_pt = NULL; 4265 } 4266 TCW_4(new_thr->th.th_in_pool, FALSE); 4267 __kmp_suspend_initialize_thread(new_thr); 4268 __kmp_lock_suspend_mx(new_thr); 4269 if (new_thr->th.th_active_in_pool == TRUE) { 4270 KMP_DEBUG_ASSERT(new_thr->th.th_active == TRUE); 4271 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 4272 new_thr->th.th_active_in_pool = FALSE; 4273 } 4274 #if KMP_DEBUG 4275 else { 4276 KMP_DEBUG_ASSERT(new_thr->th.th_active == FALSE); 4277 } 4278 #endif 4279 __kmp_unlock_suspend_mx(new_thr); 4280 4281 KA_TRACE(20, ("__kmp_allocate_thread: T#%d using thread T#%d\n", 4282 __kmp_get_gtid(), new_thr->th.th_info.ds.ds_gtid)); 4283 KMP_ASSERT(!new_thr->th.th_team); 4284 KMP_DEBUG_ASSERT(__kmp_nth < __kmp_threads_capacity); 4285 4286 /* setup the thread structure */ 4287 __kmp_initialize_info(new_thr, team, new_tid, 4288 new_thr->th.th_info.ds.ds_gtid); 4289 KMP_DEBUG_ASSERT(new_thr->th.th_serial_team); 4290 4291 TCW_4(__kmp_nth, __kmp_nth + 1); 4292 4293 new_thr->th.th_task_state = 0; 4294 new_thr->th.th_task_state_top = 0; 4295 new_thr->th.th_task_state_stack_sz = 4; 4296 4297 #ifdef KMP_ADJUST_BLOCKTIME 4298 /* Adjust blocktime back to zero if necessary */ 4299 /* Middle initialization might not have occurred yet */ 4300 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 4301 if (__kmp_nth > __kmp_avail_proc) { 4302 __kmp_zero_bt = TRUE; 4303 } 4304 } 4305 #endif /* KMP_ADJUST_BLOCKTIME */ 4306 4307 #if KMP_DEBUG 4308 // If thread entered pool via __kmp_free_thread, wait_flag should != 4309 // KMP_BARRIER_PARENT_FLAG. 4310 int b; 4311 kmp_balign_t *balign = new_thr->th.th_bar; 4312 for (b = 0; b < bs_last_barrier; ++b) 4313 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 4314 #endif 4315 4316 KF_TRACE(10, ("__kmp_allocate_thread: T#%d using thread %p T#%d\n", 4317 __kmp_get_gtid(), new_thr, new_thr->th.th_info.ds.ds_gtid)); 4318 4319 KMP_MB(); 4320 return new_thr; 4321 } 4322 4323 /* no, well fork a new one */ 4324 KMP_ASSERT(__kmp_nth == __kmp_all_nth); 4325 KMP_ASSERT(__kmp_all_nth < __kmp_threads_capacity); 4326 4327 #if KMP_USE_MONITOR 4328 // If this is the first worker thread the RTL is creating, then also 4329 // launch the monitor thread. We try to do this as early as possible. 4330 if (!TCR_4(__kmp_init_monitor)) { 4331 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock); 4332 if (!TCR_4(__kmp_init_monitor)) { 4333 KF_TRACE(10, ("before __kmp_create_monitor\n")); 4334 TCW_4(__kmp_init_monitor, 1); 4335 __kmp_create_monitor(&__kmp_monitor); 4336 KF_TRACE(10, ("after __kmp_create_monitor\n")); 4337 #if KMP_OS_WINDOWS 4338 // AC: wait until monitor has started. This is a fix for CQ232808. 4339 // The reason is that if the library is loaded/unloaded in a loop with 4340 // small (parallel) work in between, then there is high probability that 4341 // monitor thread started after the library shutdown. At shutdown it is 4342 // too late to cope with the problem, because when the master is in 4343 // DllMain (process detach) the monitor has no chances to start (it is 4344 // blocked), and master has no means to inform the monitor that the 4345 // library has gone, because all the memory which the monitor can access 4346 // is going to be released/reset. 4347 while (TCR_4(__kmp_init_monitor) < 2) { 4348 KMP_YIELD(TRUE); 4349 } 4350 KF_TRACE(10, ("after monitor thread has started\n")); 4351 #endif 4352 } 4353 __kmp_release_bootstrap_lock(&__kmp_monitor_lock); 4354 } 4355 #endif 4356 4357 KMP_MB(); 4358 for (new_gtid = 1; TCR_PTR(__kmp_threads[new_gtid]) != NULL; ++new_gtid) { 4359 KMP_DEBUG_ASSERT(new_gtid < __kmp_threads_capacity); 4360 } 4361 4362 /* allocate space for it. */ 4363 new_thr = (kmp_info_t *)__kmp_allocate(sizeof(kmp_info_t)); 4364 4365 TCW_SYNC_PTR(__kmp_threads[new_gtid], new_thr); 4366 4367 if (__kmp_storage_map) { 4368 __kmp_print_thread_storage_map(new_thr, new_gtid); 4369 } 4370 4371 // add the reserve serialized team, initialized from the team's master thread 4372 { 4373 kmp_internal_control_t r_icvs = __kmp_get_x_global_icvs(team); 4374 KF_TRACE(10, ("__kmp_allocate_thread: before th_serial/serial_team\n")); 4375 new_thr->th.th_serial_team = serial_team = 4376 (kmp_team_t *)__kmp_allocate_team(root, 1, 1, 4377 #if OMPT_SUPPORT 4378 ompt_data_none, // root parallel id 4379 #endif 4380 #if OMP_40_ENABLED 4381 proc_bind_default, 4382 #endif 4383 &r_icvs, 0 USE_NESTED_HOT_ARG(NULL)); 4384 } 4385 KMP_ASSERT(serial_team); 4386 serial_team->t.t_serialized = 0; // AC: the team created in reserve, not for 4387 // execution (it is unused for now). 4388 serial_team->t.t_threads[0] = new_thr; 4389 KF_TRACE(10, 4390 ("__kmp_allocate_thread: after th_serial/serial_team : new_thr=%p\n", 4391 new_thr)); 4392 4393 /* setup the thread structures */ 4394 __kmp_initialize_info(new_thr, team, new_tid, new_gtid); 4395 4396 #if USE_FAST_MEMORY 4397 __kmp_initialize_fast_memory(new_thr); 4398 #endif /* USE_FAST_MEMORY */ 4399 4400 #if KMP_USE_BGET 4401 KMP_DEBUG_ASSERT(new_thr->th.th_local.bget_data == NULL); 4402 __kmp_initialize_bget(new_thr); 4403 #endif 4404 4405 __kmp_init_random(new_thr); // Initialize random number generator 4406 4407 /* Initialize these only once when thread is grabbed for a team allocation */ 4408 KA_TRACE(20, 4409 ("__kmp_allocate_thread: T#%d init go fork=%u, plain=%u\n", 4410 __kmp_get_gtid(), KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 4411 4412 int b; 4413 kmp_balign_t *balign = new_thr->th.th_bar; 4414 for (b = 0; b < bs_last_barrier; ++b) { 4415 balign[b].bb.b_go = KMP_INIT_BARRIER_STATE; 4416 balign[b].bb.team = NULL; 4417 balign[b].bb.wait_flag = KMP_BARRIER_NOT_WAITING; 4418 balign[b].bb.use_oncore_barrier = 0; 4419 } 4420 4421 new_thr->th.th_spin_here = FALSE; 4422 new_thr->th.th_next_waiting = 0; 4423 #if KMP_OS_UNIX 4424 new_thr->th.th_blocking = false; 4425 #endif 4426 4427 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 4428 new_thr->th.th_current_place = KMP_PLACE_UNDEFINED; 4429 new_thr->th.th_new_place = KMP_PLACE_UNDEFINED; 4430 new_thr->th.th_first_place = KMP_PLACE_UNDEFINED; 4431 new_thr->th.th_last_place = KMP_PLACE_UNDEFINED; 4432 #endif 4433 #if OMP_50_ENABLED 4434 new_thr->th.th_def_allocator = __kmp_def_allocator; 4435 new_thr->th.th_prev_level = 0; 4436 new_thr->th.th_prev_num_threads = 1; 4437 #endif 4438 4439 TCW_4(new_thr->th.th_in_pool, FALSE); 4440 new_thr->th.th_active_in_pool = FALSE; 4441 TCW_4(new_thr->th.th_active, TRUE); 4442 4443 /* adjust the global counters */ 4444 __kmp_all_nth++; 4445 __kmp_nth++; 4446 4447 // if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) for low 4448 // numbers of procs, and method #2 (keyed API call) for higher numbers. 4449 if (__kmp_adjust_gtid_mode) { 4450 if (__kmp_all_nth >= __kmp_tls_gtid_min) { 4451 if (TCR_4(__kmp_gtid_mode) != 2) { 4452 TCW_4(__kmp_gtid_mode, 2); 4453 } 4454 } else { 4455 if (TCR_4(__kmp_gtid_mode) != 1) { 4456 TCW_4(__kmp_gtid_mode, 1); 4457 } 4458 } 4459 } 4460 4461 #ifdef KMP_ADJUST_BLOCKTIME 4462 /* Adjust blocktime back to zero if necessary */ 4463 /* Middle initialization might not have occurred yet */ 4464 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 4465 if (__kmp_nth > __kmp_avail_proc) { 4466 __kmp_zero_bt = TRUE; 4467 } 4468 } 4469 #endif /* KMP_ADJUST_BLOCKTIME */ 4470 4471 /* actually fork it and create the new worker thread */ 4472 KF_TRACE( 4473 10, ("__kmp_allocate_thread: before __kmp_create_worker: %p\n", new_thr)); 4474 __kmp_create_worker(new_gtid, new_thr, __kmp_stksize); 4475 KF_TRACE(10, 4476 ("__kmp_allocate_thread: after __kmp_create_worker: %p\n", new_thr)); 4477 4478 KA_TRACE(20, ("__kmp_allocate_thread: T#%d forked T#%d\n", __kmp_get_gtid(), 4479 new_gtid)); 4480 KMP_MB(); 4481 return new_thr; 4482 } 4483 4484 /* Reinitialize team for reuse. 4485 The hot team code calls this case at every fork barrier, so EPCC barrier 4486 test are extremely sensitive to changes in it, esp. writes to the team 4487 struct, which cause a cache invalidation in all threads. 4488 IF YOU TOUCH THIS ROUTINE, RUN EPCC C SYNCBENCH ON A BIG-IRON MACHINE!!! */ 4489 static void __kmp_reinitialize_team(kmp_team_t *team, 4490 kmp_internal_control_t *new_icvs, 4491 ident_t *loc) { 4492 KF_TRACE(10, ("__kmp_reinitialize_team: enter this_thread=%p team=%p\n", 4493 team->t.t_threads[0], team)); 4494 KMP_DEBUG_ASSERT(team && new_icvs); 4495 KMP_DEBUG_ASSERT((!TCR_4(__kmp_init_parallel)) || new_icvs->nproc); 4496 KMP_CHECK_UPDATE(team->t.t_ident, loc); 4497 4498 KMP_CHECK_UPDATE(team->t.t_id, KMP_GEN_TEAM_ID()); 4499 // Copy ICVs to the master thread's implicit taskdata 4500 __kmp_init_implicit_task(loc, team->t.t_threads[0], team, 0, FALSE); 4501 copy_icvs(&team->t.t_implicit_task_taskdata[0].td_icvs, new_icvs); 4502 4503 KF_TRACE(10, ("__kmp_reinitialize_team: exit this_thread=%p team=%p\n", 4504 team->t.t_threads[0], team)); 4505 } 4506 4507 /* Initialize the team data structure. 4508 This assumes the t_threads and t_max_nproc are already set. 4509 Also, we don't touch the arguments */ 4510 static void __kmp_initialize_team(kmp_team_t *team, int new_nproc, 4511 kmp_internal_control_t *new_icvs, 4512 ident_t *loc) { 4513 KF_TRACE(10, ("__kmp_initialize_team: enter: team=%p\n", team)); 4514 4515 /* verify */ 4516 KMP_DEBUG_ASSERT(team); 4517 KMP_DEBUG_ASSERT(new_nproc <= team->t.t_max_nproc); 4518 KMP_DEBUG_ASSERT(team->t.t_threads); 4519 KMP_MB(); 4520 4521 team->t.t_master_tid = 0; /* not needed */ 4522 /* team->t.t_master_bar; not needed */ 4523 team->t.t_serialized = new_nproc > 1 ? 0 : 1; 4524 team->t.t_nproc = new_nproc; 4525 4526 /* team->t.t_parent = NULL; TODO not needed & would mess up hot team */ 4527 team->t.t_next_pool = NULL; 4528 /* memset( team->t.t_threads, 0, sizeof(kmp_info_t*)*new_nproc ); would mess 4529 * up hot team */ 4530 4531 TCW_SYNC_PTR(team->t.t_pkfn, NULL); /* not needed */ 4532 team->t.t_invoke = NULL; /* not needed */ 4533 4534 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 4535 team->t.t_sched.sched = new_icvs->sched.sched; 4536 4537 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4538 team->t.t_fp_control_saved = FALSE; /* not needed */ 4539 team->t.t_x87_fpu_control_word = 0; /* not needed */ 4540 team->t.t_mxcsr = 0; /* not needed */ 4541 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4542 4543 team->t.t_construct = 0; 4544 4545 team->t.t_ordered.dt.t_value = 0; 4546 team->t.t_master_active = FALSE; 4547 4548 #ifdef KMP_DEBUG 4549 team->t.t_copypriv_data = NULL; /* not necessary, but nice for debugging */ 4550 #endif 4551 #if KMP_OS_WINDOWS 4552 team->t.t_copyin_counter = 0; /* for barrier-free copyin implementation */ 4553 #endif 4554 4555 team->t.t_control_stack_top = NULL; 4556 4557 __kmp_reinitialize_team(team, new_icvs, loc); 4558 4559 KMP_MB(); 4560 KF_TRACE(10, ("__kmp_initialize_team: exit: team=%p\n", team)); 4561 } 4562 4563 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 4564 /* Sets full mask for thread and returns old mask, no changes to structures. */ 4565 static void 4566 __kmp_set_thread_affinity_mask_full_tmp(kmp_affin_mask_t *old_mask) { 4567 if (KMP_AFFINITY_CAPABLE()) { 4568 int status; 4569 if (old_mask != NULL) { 4570 status = __kmp_get_system_affinity(old_mask, TRUE); 4571 int error = errno; 4572 if (status != 0) { 4573 __kmp_fatal(KMP_MSG(ChangeThreadAffMaskError), KMP_ERR(error), 4574 __kmp_msg_null); 4575 } 4576 } 4577 __kmp_set_system_affinity(__kmp_affin_fullMask, TRUE); 4578 } 4579 } 4580 #endif 4581 4582 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 4583 4584 // __kmp_partition_places() is the heart of the OpenMP 4.0 affinity mechanism. 4585 // It calculats the worker + master thread's partition based upon the parent 4586 // thread's partition, and binds each worker to a thread in their partition. 4587 // The master thread's partition should already include its current binding. 4588 static void __kmp_partition_places(kmp_team_t *team, int update_master_only) { 4589 // Copy the master thread's place partion to the team struct 4590 kmp_info_t *master_th = team->t.t_threads[0]; 4591 KMP_DEBUG_ASSERT(master_th != NULL); 4592 kmp_proc_bind_t proc_bind = team->t.t_proc_bind; 4593 int first_place = master_th->th.th_first_place; 4594 int last_place = master_th->th.th_last_place; 4595 int masters_place = master_th->th.th_current_place; 4596 team->t.t_first_place = first_place; 4597 team->t.t_last_place = last_place; 4598 4599 KA_TRACE(20, ("__kmp_partition_places: enter: proc_bind = %d T#%d(%d:0) " 4600 "bound to place %d partition = [%d,%d]\n", 4601 proc_bind, __kmp_gtid_from_thread(team->t.t_threads[0]), 4602 team->t.t_id, masters_place, first_place, last_place)); 4603 4604 switch (proc_bind) { 4605 4606 case proc_bind_default: 4607 // serial teams might have the proc_bind policy set to proc_bind_default. It 4608 // doesn't matter, as we don't rebind master thread for any proc_bind policy 4609 KMP_DEBUG_ASSERT(team->t.t_nproc == 1); 4610 break; 4611 4612 case proc_bind_master: { 4613 int f; 4614 int n_th = team->t.t_nproc; 4615 for (f = 1; f < n_th; f++) { 4616 kmp_info_t *th = team->t.t_threads[f]; 4617 KMP_DEBUG_ASSERT(th != NULL); 4618 th->th.th_first_place = first_place; 4619 th->th.th_last_place = last_place; 4620 th->th.th_new_place = masters_place; 4621 #if OMP_50_ENABLED 4622 if (__kmp_display_affinity && masters_place != th->th.th_current_place && 4623 team->t.t_display_affinity != 1) { 4624 team->t.t_display_affinity = 1; 4625 } 4626 #endif 4627 4628 KA_TRACE(100, ("__kmp_partition_places: master: T#%d(%d:%d) place %d " 4629 "partition = [%d,%d]\n", 4630 __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, 4631 f, masters_place, first_place, last_place)); 4632 } 4633 } break; 4634 4635 case proc_bind_close: { 4636 int f; 4637 int n_th = team->t.t_nproc; 4638 int n_places; 4639 if (first_place <= last_place) { 4640 n_places = last_place - first_place + 1; 4641 } else { 4642 n_places = __kmp_affinity_num_masks - first_place + last_place + 1; 4643 } 4644 if (n_th <= n_places) { 4645 int place = masters_place; 4646 for (f = 1; f < n_th; f++) { 4647 kmp_info_t *th = team->t.t_threads[f]; 4648 KMP_DEBUG_ASSERT(th != NULL); 4649 4650 if (place == last_place) { 4651 place = first_place; 4652 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4653 place = 0; 4654 } else { 4655 place++; 4656 } 4657 th->th.th_first_place = first_place; 4658 th->th.th_last_place = last_place; 4659 th->th.th_new_place = place; 4660 #if OMP_50_ENABLED 4661 if (__kmp_display_affinity && place != th->th.th_current_place && 4662 team->t.t_display_affinity != 1) { 4663 team->t.t_display_affinity = 1; 4664 } 4665 #endif 4666 4667 KA_TRACE(100, ("__kmp_partition_places: close: T#%d(%d:%d) place %d " 4668 "partition = [%d,%d]\n", 4669 __kmp_gtid_from_thread(team->t.t_threads[f]), 4670 team->t.t_id, f, place, first_place, last_place)); 4671 } 4672 } else { 4673 int S, rem, gap, s_count; 4674 S = n_th / n_places; 4675 s_count = 0; 4676 rem = n_th - (S * n_places); 4677 gap = rem > 0 ? n_places / rem : n_places; 4678 int place = masters_place; 4679 int gap_ct = gap; 4680 for (f = 0; f < n_th; f++) { 4681 kmp_info_t *th = team->t.t_threads[f]; 4682 KMP_DEBUG_ASSERT(th != NULL); 4683 4684 th->th.th_first_place = first_place; 4685 th->th.th_last_place = last_place; 4686 th->th.th_new_place = place; 4687 #if OMP_50_ENABLED 4688 if (__kmp_display_affinity && place != th->th.th_current_place && 4689 team->t.t_display_affinity != 1) { 4690 team->t.t_display_affinity = 1; 4691 } 4692 #endif 4693 s_count++; 4694 4695 if ((s_count == S) && rem && (gap_ct == gap)) { 4696 // do nothing, add an extra thread to place on next iteration 4697 } else if ((s_count == S + 1) && rem && (gap_ct == gap)) { 4698 // we added an extra thread to this place; move to next place 4699 if (place == last_place) { 4700 place = first_place; 4701 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4702 place = 0; 4703 } else { 4704 place++; 4705 } 4706 s_count = 0; 4707 gap_ct = 1; 4708 rem--; 4709 } else if (s_count == S) { // place full; don't add extra 4710 if (place == last_place) { 4711 place = first_place; 4712 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4713 place = 0; 4714 } else { 4715 place++; 4716 } 4717 gap_ct++; 4718 s_count = 0; 4719 } 4720 4721 KA_TRACE(100, 4722 ("__kmp_partition_places: close: T#%d(%d:%d) place %d " 4723 "partition = [%d,%d]\n", 4724 __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, f, 4725 th->th.th_new_place, first_place, last_place)); 4726 } 4727 KMP_DEBUG_ASSERT(place == masters_place); 4728 } 4729 } break; 4730 4731 case proc_bind_spread: { 4732 int f; 4733 int n_th = team->t.t_nproc; 4734 int n_places; 4735 int thidx; 4736 if (first_place <= last_place) { 4737 n_places = last_place - first_place + 1; 4738 } else { 4739 n_places = __kmp_affinity_num_masks - first_place + last_place + 1; 4740 } 4741 if (n_th <= n_places) { 4742 int place = -1; 4743 4744 if (n_places != static_cast<int>(__kmp_affinity_num_masks)) { 4745 int S = n_places / n_th; 4746 int s_count, rem, gap, gap_ct; 4747 4748 place = masters_place; 4749 rem = n_places - n_th * S; 4750 gap = rem ? n_th / rem : 1; 4751 gap_ct = gap; 4752 thidx = n_th; 4753 if (update_master_only == 1) 4754 thidx = 1; 4755 for (f = 0; f < thidx; f++) { 4756 kmp_info_t *th = team->t.t_threads[f]; 4757 KMP_DEBUG_ASSERT(th != NULL); 4758 4759 th->th.th_first_place = place; 4760 th->th.th_new_place = place; 4761 #if OMP_50_ENABLED 4762 if (__kmp_display_affinity && place != th->th.th_current_place && 4763 team->t.t_display_affinity != 1) { 4764 team->t.t_display_affinity = 1; 4765 } 4766 #endif 4767 s_count = 1; 4768 while (s_count < S) { 4769 if (place == last_place) { 4770 place = first_place; 4771 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4772 place = 0; 4773 } else { 4774 place++; 4775 } 4776 s_count++; 4777 } 4778 if (rem && (gap_ct == gap)) { 4779 if (place == last_place) { 4780 place = first_place; 4781 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4782 place = 0; 4783 } else { 4784 place++; 4785 } 4786 rem--; 4787 gap_ct = 0; 4788 } 4789 th->th.th_last_place = place; 4790 gap_ct++; 4791 4792 if (place == last_place) { 4793 place = first_place; 4794 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4795 place = 0; 4796 } else { 4797 place++; 4798 } 4799 4800 KA_TRACE(100, 4801 ("__kmp_partition_places: spread: T#%d(%d:%d) place %d " 4802 "partition = [%d,%d], __kmp_affinity_num_masks: %u\n", 4803 __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, 4804 f, th->th.th_new_place, th->th.th_first_place, 4805 th->th.th_last_place, __kmp_affinity_num_masks)); 4806 } 4807 } else { 4808 /* Having uniform space of available computation places I can create 4809 T partitions of round(P/T) size and put threads into the first 4810 place of each partition. */ 4811 double current = static_cast<double>(masters_place); 4812 double spacing = 4813 (static_cast<double>(n_places + 1) / static_cast<double>(n_th)); 4814 int first, last; 4815 kmp_info_t *th; 4816 4817 thidx = n_th + 1; 4818 if (update_master_only == 1) 4819 thidx = 1; 4820 for (f = 0; f < thidx; f++) { 4821 first = static_cast<int>(current); 4822 last = static_cast<int>(current + spacing) - 1; 4823 KMP_DEBUG_ASSERT(last >= first); 4824 if (first >= n_places) { 4825 if (masters_place) { 4826 first -= n_places; 4827 last -= n_places; 4828 if (first == (masters_place + 1)) { 4829 KMP_DEBUG_ASSERT(f == n_th); 4830 first--; 4831 } 4832 if (last == masters_place) { 4833 KMP_DEBUG_ASSERT(f == (n_th - 1)); 4834 last--; 4835 } 4836 } else { 4837 KMP_DEBUG_ASSERT(f == n_th); 4838 first = 0; 4839 last = 0; 4840 } 4841 } 4842 if (last >= n_places) { 4843 last = (n_places - 1); 4844 } 4845 place = first; 4846 current += spacing; 4847 if (f < n_th) { 4848 KMP_DEBUG_ASSERT(0 <= first); 4849 KMP_DEBUG_ASSERT(n_places > first); 4850 KMP_DEBUG_ASSERT(0 <= last); 4851 KMP_DEBUG_ASSERT(n_places > last); 4852 KMP_DEBUG_ASSERT(last_place >= first_place); 4853 th = team->t.t_threads[f]; 4854 KMP_DEBUG_ASSERT(th); 4855 th->th.th_first_place = first; 4856 th->th.th_new_place = place; 4857 th->th.th_last_place = last; 4858 #if OMP_50_ENABLED 4859 if (__kmp_display_affinity && place != th->th.th_current_place && 4860 team->t.t_display_affinity != 1) { 4861 team->t.t_display_affinity = 1; 4862 } 4863 #endif 4864 KA_TRACE(100, 4865 ("__kmp_partition_places: spread: T#%d(%d:%d) place %d " 4866 "partition = [%d,%d], spacing = %.4f\n", 4867 __kmp_gtid_from_thread(team->t.t_threads[f]), 4868 team->t.t_id, f, th->th.th_new_place, 4869 th->th.th_first_place, th->th.th_last_place, spacing)); 4870 } 4871 } 4872 } 4873 KMP_DEBUG_ASSERT(update_master_only || place == masters_place); 4874 } else { 4875 int S, rem, gap, s_count; 4876 S = n_th / n_places; 4877 s_count = 0; 4878 rem = n_th - (S * n_places); 4879 gap = rem > 0 ? n_places / rem : n_places; 4880 int place = masters_place; 4881 int gap_ct = gap; 4882 thidx = n_th; 4883 if (update_master_only == 1) 4884 thidx = 1; 4885 for (f = 0; f < thidx; f++) { 4886 kmp_info_t *th = team->t.t_threads[f]; 4887 KMP_DEBUG_ASSERT(th != NULL); 4888 4889 th->th.th_first_place = place; 4890 th->th.th_last_place = place; 4891 th->th.th_new_place = place; 4892 #if OMP_50_ENABLED 4893 if (__kmp_display_affinity && place != th->th.th_current_place && 4894 team->t.t_display_affinity != 1) { 4895 team->t.t_display_affinity = 1; 4896 } 4897 #endif 4898 s_count++; 4899 4900 if ((s_count == S) && rem && (gap_ct == gap)) { 4901 // do nothing, add an extra thread to place on next iteration 4902 } else if ((s_count == S + 1) && rem && (gap_ct == gap)) { 4903 // we added an extra thread to this place; move on to next place 4904 if (place == last_place) { 4905 place = first_place; 4906 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4907 place = 0; 4908 } else { 4909 place++; 4910 } 4911 s_count = 0; 4912 gap_ct = 1; 4913 rem--; 4914 } else if (s_count == S) { // place is full; don't add extra thread 4915 if (place == last_place) { 4916 place = first_place; 4917 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4918 place = 0; 4919 } else { 4920 place++; 4921 } 4922 gap_ct++; 4923 s_count = 0; 4924 } 4925 4926 KA_TRACE(100, ("__kmp_partition_places: spread: T#%d(%d:%d) place %d " 4927 "partition = [%d,%d]\n", 4928 __kmp_gtid_from_thread(team->t.t_threads[f]), 4929 team->t.t_id, f, th->th.th_new_place, 4930 th->th.th_first_place, th->th.th_last_place)); 4931 } 4932 KMP_DEBUG_ASSERT(update_master_only || place == masters_place); 4933 } 4934 } break; 4935 4936 default: 4937 break; 4938 } 4939 4940 KA_TRACE(20, ("__kmp_partition_places: exit T#%d\n", team->t.t_id)); 4941 } 4942 4943 #endif /* OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED */ 4944 4945 /* allocate a new team data structure to use. take one off of the free pool if 4946 available */ 4947 kmp_team_t * 4948 __kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc, 4949 #if OMPT_SUPPORT 4950 ompt_data_t ompt_parallel_data, 4951 #endif 4952 #if OMP_40_ENABLED 4953 kmp_proc_bind_t new_proc_bind, 4954 #endif 4955 kmp_internal_control_t *new_icvs, 4956 int argc USE_NESTED_HOT_ARG(kmp_info_t *master)) { 4957 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_allocate_team); 4958 int f; 4959 kmp_team_t *team; 4960 int use_hot_team = !root->r.r_active; 4961 int level = 0; 4962 4963 KA_TRACE(20, ("__kmp_allocate_team: called\n")); 4964 KMP_DEBUG_ASSERT(new_nproc >= 1 && argc >= 0); 4965 KMP_DEBUG_ASSERT(max_nproc >= new_nproc); 4966 KMP_MB(); 4967 4968 #if KMP_NESTED_HOT_TEAMS 4969 kmp_hot_team_ptr_t *hot_teams; 4970 if (master) { 4971 team = master->th.th_team; 4972 level = team->t.t_active_level; 4973 if (master->th.th_teams_microtask) { // in teams construct? 4974 if (master->th.th_teams_size.nteams > 1 && 4975 ( // #teams > 1 4976 team->t.t_pkfn == 4977 (microtask_t)__kmp_teams_master || // inner fork of the teams 4978 master->th.th_teams_level < 4979 team->t.t_level)) { // or nested parallel inside the teams 4980 ++level; // not increment if #teams==1, or for outer fork of the teams; 4981 // increment otherwise 4982 } 4983 } 4984 hot_teams = master->th.th_hot_teams; 4985 if (level < __kmp_hot_teams_max_level && hot_teams && 4986 hot_teams[level] 4987 .hot_team) { // hot team has already been allocated for given level 4988 use_hot_team = 1; 4989 } else { 4990 use_hot_team = 0; 4991 } 4992 } 4993 #endif 4994 // Optimization to use a "hot" team 4995 if (use_hot_team && new_nproc > 1) { 4996 KMP_DEBUG_ASSERT(new_nproc <= max_nproc); 4997 #if KMP_NESTED_HOT_TEAMS 4998 team = hot_teams[level].hot_team; 4999 #else 5000 team = root->r.r_hot_team; 5001 #endif 5002 #if KMP_DEBUG 5003 if (__kmp_tasking_mode != tskm_immediate_exec) { 5004 KA_TRACE(20, ("__kmp_allocate_team: hot team task_team[0] = %p " 5005 "task_team[1] = %p before reinit\n", 5006 team->t.t_task_team[0], team->t.t_task_team[1])); 5007 } 5008 #endif 5009 5010 // Has the number of threads changed? 5011 /* Let's assume the most common case is that the number of threads is 5012 unchanged, and put that case first. */ 5013 if (team->t.t_nproc == new_nproc) { // Check changes in number of threads 5014 KA_TRACE(20, ("__kmp_allocate_team: reusing hot team\n")); 5015 // This case can mean that omp_set_num_threads() was called and the hot 5016 // team size was already reduced, so we check the special flag 5017 if (team->t.t_size_changed == -1) { 5018 team->t.t_size_changed = 1; 5019 } else { 5020 KMP_CHECK_UPDATE(team->t.t_size_changed, 0); 5021 } 5022 5023 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 5024 kmp_r_sched_t new_sched = new_icvs->sched; 5025 // set master's schedule as new run-time schedule 5026 KMP_CHECK_UPDATE(team->t.t_sched.sched, new_sched.sched); 5027 5028 __kmp_reinitialize_team(team, new_icvs, 5029 root->r.r_uber_thread->th.th_ident); 5030 5031 KF_TRACE(10, ("__kmp_allocate_team2: T#%d, this_thread=%p team=%p\n", 0, 5032 team->t.t_threads[0], team)); 5033 __kmp_push_current_task_to_thread(team->t.t_threads[0], team, 0); 5034 5035 #if OMP_40_ENABLED 5036 #if KMP_AFFINITY_SUPPORTED 5037 if ((team->t.t_size_changed == 0) && 5038 (team->t.t_proc_bind == new_proc_bind)) { 5039 if (new_proc_bind == proc_bind_spread) { 5040 __kmp_partition_places( 5041 team, 1); // add flag to update only master for spread 5042 } 5043 KA_TRACE(200, ("__kmp_allocate_team: reusing hot team #%d bindings: " 5044 "proc_bind = %d, partition = [%d,%d]\n", 5045 team->t.t_id, new_proc_bind, team->t.t_first_place, 5046 team->t.t_last_place)); 5047 } else { 5048 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5049 __kmp_partition_places(team); 5050 } 5051 #else 5052 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5053 #endif /* KMP_AFFINITY_SUPPORTED */ 5054 #endif /* OMP_40_ENABLED */ 5055 } else if (team->t.t_nproc > new_nproc) { 5056 KA_TRACE(20, 5057 ("__kmp_allocate_team: decreasing hot team thread count to %d\n", 5058 new_nproc)); 5059 5060 team->t.t_size_changed = 1; 5061 #if KMP_NESTED_HOT_TEAMS 5062 if (__kmp_hot_teams_mode == 0) { 5063 // AC: saved number of threads should correspond to team's value in this 5064 // mode, can be bigger in mode 1, when hot team has threads in reserve 5065 KMP_DEBUG_ASSERT(hot_teams[level].hot_team_nth == team->t.t_nproc); 5066 hot_teams[level].hot_team_nth = new_nproc; 5067 #endif // KMP_NESTED_HOT_TEAMS 5068 /* release the extra threads we don't need any more */ 5069 for (f = new_nproc; f < team->t.t_nproc; f++) { 5070 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5071 if (__kmp_tasking_mode != tskm_immediate_exec) { 5072 // When decreasing team size, threads no longer in the team should 5073 // unref task team. 5074 team->t.t_threads[f]->th.th_task_team = NULL; 5075 } 5076 __kmp_free_thread(team->t.t_threads[f]); 5077 team->t.t_threads[f] = NULL; 5078 } 5079 #if KMP_NESTED_HOT_TEAMS 5080 } // (__kmp_hot_teams_mode == 0) 5081 else { 5082 // When keeping extra threads in team, switch threads to wait on own 5083 // b_go flag 5084 for (f = new_nproc; f < team->t.t_nproc; ++f) { 5085 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5086 kmp_balign_t *balign = team->t.t_threads[f]->th.th_bar; 5087 for (int b = 0; b < bs_last_barrier; ++b) { 5088 if (balign[b].bb.wait_flag == KMP_BARRIER_PARENT_FLAG) { 5089 balign[b].bb.wait_flag = KMP_BARRIER_SWITCH_TO_OWN_FLAG; 5090 } 5091 KMP_CHECK_UPDATE(balign[b].bb.leaf_kids, 0); 5092 } 5093 } 5094 } 5095 #endif // KMP_NESTED_HOT_TEAMS 5096 team->t.t_nproc = new_nproc; 5097 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 5098 KMP_CHECK_UPDATE(team->t.t_sched.sched, new_icvs->sched.sched); 5099 __kmp_reinitialize_team(team, new_icvs, 5100 root->r.r_uber_thread->th.th_ident); 5101 5102 // Update remaining threads 5103 for (f = 0; f < new_nproc; ++f) { 5104 team->t.t_threads[f]->th.th_team_nproc = new_nproc; 5105 } 5106 5107 // restore the current task state of the master thread: should be the 5108 // implicit task 5109 KF_TRACE(10, ("__kmp_allocate_team: T#%d, this_thread=%p team=%p\n", 0, 5110 team->t.t_threads[0], team)); 5111 5112 __kmp_push_current_task_to_thread(team->t.t_threads[0], team, 0); 5113 5114 #ifdef KMP_DEBUG 5115 for (f = 0; f < team->t.t_nproc; f++) { 5116 KMP_DEBUG_ASSERT(team->t.t_threads[f] && 5117 team->t.t_threads[f]->th.th_team_nproc == 5118 team->t.t_nproc); 5119 } 5120 #endif 5121 5122 #if OMP_40_ENABLED 5123 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5124 #if KMP_AFFINITY_SUPPORTED 5125 __kmp_partition_places(team); 5126 #endif 5127 #endif 5128 } else { // team->t.t_nproc < new_nproc 5129 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 5130 kmp_affin_mask_t *old_mask; 5131 if (KMP_AFFINITY_CAPABLE()) { 5132 KMP_CPU_ALLOC(old_mask); 5133 } 5134 #endif 5135 5136 KA_TRACE(20, 5137 ("__kmp_allocate_team: increasing hot team thread count to %d\n", 5138 new_nproc)); 5139 5140 team->t.t_size_changed = 1; 5141 5142 #if KMP_NESTED_HOT_TEAMS 5143 int avail_threads = hot_teams[level].hot_team_nth; 5144 if (new_nproc < avail_threads) 5145 avail_threads = new_nproc; 5146 kmp_info_t **other_threads = team->t.t_threads; 5147 for (f = team->t.t_nproc; f < avail_threads; ++f) { 5148 // Adjust barrier data of reserved threads (if any) of the team 5149 // Other data will be set in __kmp_initialize_info() below. 5150 int b; 5151 kmp_balign_t *balign = other_threads[f]->th.th_bar; 5152 for (b = 0; b < bs_last_barrier; ++b) { 5153 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 5154 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 5155 #if USE_DEBUGGER 5156 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 5157 #endif 5158 } 5159 } 5160 if (hot_teams[level].hot_team_nth >= new_nproc) { 5161 // we have all needed threads in reserve, no need to allocate any 5162 // this only possible in mode 1, cannot have reserved threads in mode 0 5163 KMP_DEBUG_ASSERT(__kmp_hot_teams_mode == 1); 5164 team->t.t_nproc = new_nproc; // just get reserved threads involved 5165 } else { 5166 // we may have some threads in reserve, but not enough 5167 team->t.t_nproc = 5168 hot_teams[level] 5169 .hot_team_nth; // get reserved threads involved if any 5170 hot_teams[level].hot_team_nth = new_nproc; // adjust hot team max size 5171 #endif // KMP_NESTED_HOT_TEAMS 5172 if (team->t.t_max_nproc < new_nproc) { 5173 /* reallocate larger arrays */ 5174 __kmp_reallocate_team_arrays(team, new_nproc); 5175 __kmp_reinitialize_team(team, new_icvs, NULL); 5176 } 5177 5178 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 5179 /* Temporarily set full mask for master thread before creation of 5180 workers. The reason is that workers inherit the affinity from master, 5181 so if a lot of workers are created on the single core quickly, they 5182 don't get a chance to set their own affinity for a long time. */ 5183 __kmp_set_thread_affinity_mask_full_tmp(old_mask); 5184 #endif 5185 5186 /* allocate new threads for the hot team */ 5187 for (f = team->t.t_nproc; f < new_nproc; f++) { 5188 kmp_info_t *new_worker = __kmp_allocate_thread(root, team, f); 5189 KMP_DEBUG_ASSERT(new_worker); 5190 team->t.t_threads[f] = new_worker; 5191 5192 KA_TRACE(20, 5193 ("__kmp_allocate_team: team %d init T#%d arrived: " 5194 "join=%llu, plain=%llu\n", 5195 team->t.t_id, __kmp_gtid_from_tid(f, team), team->t.t_id, f, 5196 team->t.t_bar[bs_forkjoin_barrier].b_arrived, 5197 team->t.t_bar[bs_plain_barrier].b_arrived)); 5198 5199 { // Initialize barrier data for new threads. 5200 int b; 5201 kmp_balign_t *balign = new_worker->th.th_bar; 5202 for (b = 0; b < bs_last_barrier; ++b) { 5203 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 5204 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != 5205 KMP_BARRIER_PARENT_FLAG); 5206 #if USE_DEBUGGER 5207 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 5208 #endif 5209 } 5210 } 5211 } 5212 5213 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 5214 if (KMP_AFFINITY_CAPABLE()) { 5215 /* Restore initial master thread's affinity mask */ 5216 __kmp_set_system_affinity(old_mask, TRUE); 5217 KMP_CPU_FREE(old_mask); 5218 } 5219 #endif 5220 #if KMP_NESTED_HOT_TEAMS 5221 } // end of check of t_nproc vs. new_nproc vs. hot_team_nth 5222 #endif // KMP_NESTED_HOT_TEAMS 5223 /* make sure everyone is syncronized */ 5224 int old_nproc = team->t.t_nproc; // save old value and use to update only 5225 // new threads below 5226 __kmp_initialize_team(team, new_nproc, new_icvs, 5227 root->r.r_uber_thread->th.th_ident); 5228 5229 /* reinitialize the threads */ 5230 KMP_DEBUG_ASSERT(team->t.t_nproc == new_nproc); 5231 for (f = 0; f < team->t.t_nproc; ++f) 5232 __kmp_initialize_info(team->t.t_threads[f], team, f, 5233 __kmp_gtid_from_tid(f, team)); 5234 5235 if (level) { // set th_task_state for new threads in nested hot team 5236 // __kmp_initialize_info() no longer zeroes th_task_state, so we should 5237 // only need to set the th_task_state for the new threads. th_task_state 5238 // for master thread will not be accurate until after this in 5239 // __kmp_fork_call(), so we look to the master's memo_stack to get the 5240 // correct value. 5241 for (f = old_nproc; f < team->t.t_nproc; ++f) 5242 team->t.t_threads[f]->th.th_task_state = 5243 team->t.t_threads[0]->th.th_task_state_memo_stack[level]; 5244 } else { // set th_task_state for new threads in non-nested hot team 5245 int old_state = 5246 team->t.t_threads[0]->th.th_task_state; // copy master's state 5247 for (f = old_nproc; f < team->t.t_nproc; ++f) 5248 team->t.t_threads[f]->th.th_task_state = old_state; 5249 } 5250 5251 #ifdef KMP_DEBUG 5252 for (f = 0; f < team->t.t_nproc; ++f) { 5253 KMP_DEBUG_ASSERT(team->t.t_threads[f] && 5254 team->t.t_threads[f]->th.th_team_nproc == 5255 team->t.t_nproc); 5256 } 5257 #endif 5258 5259 #if OMP_40_ENABLED 5260 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5261 #if KMP_AFFINITY_SUPPORTED 5262 __kmp_partition_places(team); 5263 #endif 5264 #endif 5265 } // Check changes in number of threads 5266 5267 #if OMP_40_ENABLED 5268 kmp_info_t *master = team->t.t_threads[0]; 5269 if (master->th.th_teams_microtask) { 5270 for (f = 1; f < new_nproc; ++f) { 5271 // propagate teams construct specific info to workers 5272 kmp_info_t *thr = team->t.t_threads[f]; 5273 thr->th.th_teams_microtask = master->th.th_teams_microtask; 5274 thr->th.th_teams_level = master->th.th_teams_level; 5275 thr->th.th_teams_size = master->th.th_teams_size; 5276 } 5277 } 5278 #endif /* OMP_40_ENABLED */ 5279 #if KMP_NESTED_HOT_TEAMS 5280 if (level) { 5281 // Sync barrier state for nested hot teams, not needed for outermost hot 5282 // team. 5283 for (f = 1; f < new_nproc; ++f) { 5284 kmp_info_t *thr = team->t.t_threads[f]; 5285 int b; 5286 kmp_balign_t *balign = thr->th.th_bar; 5287 for (b = 0; b < bs_last_barrier; ++b) { 5288 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 5289 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 5290 #if USE_DEBUGGER 5291 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 5292 #endif 5293 } 5294 } 5295 } 5296 #endif // KMP_NESTED_HOT_TEAMS 5297 5298 /* reallocate space for arguments if necessary */ 5299 __kmp_alloc_argv_entries(argc, team, TRUE); 5300 KMP_CHECK_UPDATE(team->t.t_argc, argc); 5301 // The hot team re-uses the previous task team, 5302 // if untouched during the previous release->gather phase. 5303 5304 KF_TRACE(10, (" hot_team = %p\n", team)); 5305 5306 #if KMP_DEBUG 5307 if (__kmp_tasking_mode != tskm_immediate_exec) { 5308 KA_TRACE(20, ("__kmp_allocate_team: hot team task_team[0] = %p " 5309 "task_team[1] = %p after reinit\n", 5310 team->t.t_task_team[0], team->t.t_task_team[1])); 5311 } 5312 #endif 5313 5314 #if OMPT_SUPPORT 5315 __ompt_team_assign_id(team, ompt_parallel_data); 5316 #endif 5317 5318 KMP_MB(); 5319 5320 return team; 5321 } 5322 5323 /* next, let's try to take one from the team pool */ 5324 KMP_MB(); 5325 for (team = CCAST(kmp_team_t *, __kmp_team_pool); (team);) { 5326 /* TODO: consider resizing undersized teams instead of reaping them, now 5327 that we have a resizing mechanism */ 5328 if (team->t.t_max_nproc >= max_nproc) { 5329 /* take this team from the team pool */ 5330 __kmp_team_pool = team->t.t_next_pool; 5331 5332 /* setup the team for fresh use */ 5333 __kmp_initialize_team(team, new_nproc, new_icvs, NULL); 5334 5335 KA_TRACE(20, ("__kmp_allocate_team: setting task_team[0] %p and " 5336 "task_team[1] %p to NULL\n", 5337 &team->t.t_task_team[0], &team->t.t_task_team[1])); 5338 team->t.t_task_team[0] = NULL; 5339 team->t.t_task_team[1] = NULL; 5340 5341 /* reallocate space for arguments if necessary */ 5342 __kmp_alloc_argv_entries(argc, team, TRUE); 5343 KMP_CHECK_UPDATE(team->t.t_argc, argc); 5344 5345 KA_TRACE( 5346 20, ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n", 5347 team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 5348 { // Initialize barrier data. 5349 int b; 5350 for (b = 0; b < bs_last_barrier; ++b) { 5351 team->t.t_bar[b].b_arrived = KMP_INIT_BARRIER_STATE; 5352 #if USE_DEBUGGER 5353 team->t.t_bar[b].b_master_arrived = 0; 5354 team->t.t_bar[b].b_team_arrived = 0; 5355 #endif 5356 } 5357 } 5358 5359 #if OMP_40_ENABLED 5360 team->t.t_proc_bind = new_proc_bind; 5361 #endif 5362 5363 KA_TRACE(20, ("__kmp_allocate_team: using team from pool %d.\n", 5364 team->t.t_id)); 5365 5366 #if OMPT_SUPPORT 5367 __ompt_team_assign_id(team, ompt_parallel_data); 5368 #endif 5369 5370 KMP_MB(); 5371 5372 return team; 5373 } 5374 5375 /* reap team if it is too small, then loop back and check the next one */ 5376 // not sure if this is wise, but, will be redone during the hot-teams 5377 // rewrite. 5378 /* TODO: Use technique to find the right size hot-team, don't reap them */ 5379 team = __kmp_reap_team(team); 5380 __kmp_team_pool = team; 5381 } 5382 5383 /* nothing available in the pool, no matter, make a new team! */ 5384 KMP_MB(); 5385 team = (kmp_team_t *)__kmp_allocate(sizeof(kmp_team_t)); 5386 5387 /* and set it up */ 5388 team->t.t_max_nproc = max_nproc; 5389 /* NOTE well, for some reason allocating one big buffer and dividing it up 5390 seems to really hurt performance a lot on the P4, so, let's not use this */ 5391 __kmp_allocate_team_arrays(team, max_nproc); 5392 5393 KA_TRACE(20, ("__kmp_allocate_team: making a new team\n")); 5394 __kmp_initialize_team(team, new_nproc, new_icvs, NULL); 5395 5396 KA_TRACE(20, ("__kmp_allocate_team: setting task_team[0] %p and task_team[1] " 5397 "%p to NULL\n", 5398 &team->t.t_task_team[0], &team->t.t_task_team[1])); 5399 team->t.t_task_team[0] = NULL; // to be removed, as __kmp_allocate zeroes 5400 // memory, no need to duplicate 5401 team->t.t_task_team[1] = NULL; // to be removed, as __kmp_allocate zeroes 5402 // memory, no need to duplicate 5403 5404 if (__kmp_storage_map) { 5405 __kmp_print_team_storage_map("team", team, team->t.t_id, new_nproc); 5406 } 5407 5408 /* allocate space for arguments */ 5409 __kmp_alloc_argv_entries(argc, team, FALSE); 5410 team->t.t_argc = argc; 5411 5412 KA_TRACE(20, 5413 ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n", 5414 team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 5415 { // Initialize barrier data. 5416 int b; 5417 for (b = 0; b < bs_last_barrier; ++b) { 5418 team->t.t_bar[b].b_arrived = KMP_INIT_BARRIER_STATE; 5419 #if USE_DEBUGGER 5420 team->t.t_bar[b].b_master_arrived = 0; 5421 team->t.t_bar[b].b_team_arrived = 0; 5422 #endif 5423 } 5424 } 5425 5426 #if OMP_40_ENABLED 5427 team->t.t_proc_bind = new_proc_bind; 5428 #endif 5429 5430 #if OMPT_SUPPORT 5431 __ompt_team_assign_id(team, ompt_parallel_data); 5432 team->t.ompt_serialized_team_info = NULL; 5433 #endif 5434 5435 KMP_MB(); 5436 5437 KA_TRACE(20, ("__kmp_allocate_team: done creating a new team %d.\n", 5438 team->t.t_id)); 5439 5440 return team; 5441 } 5442 5443 /* TODO implement hot-teams at all levels */ 5444 /* TODO implement lazy thread release on demand (disband request) */ 5445 5446 /* free the team. return it to the team pool. release all the threads 5447 * associated with it */ 5448 void __kmp_free_team(kmp_root_t *root, 5449 kmp_team_t *team USE_NESTED_HOT_ARG(kmp_info_t *master)) { 5450 int f; 5451 KA_TRACE(20, ("__kmp_free_team: T#%d freeing team %d\n", __kmp_get_gtid(), 5452 team->t.t_id)); 5453 5454 /* verify state */ 5455 KMP_DEBUG_ASSERT(root); 5456 KMP_DEBUG_ASSERT(team); 5457 KMP_DEBUG_ASSERT(team->t.t_nproc <= team->t.t_max_nproc); 5458 KMP_DEBUG_ASSERT(team->t.t_threads); 5459 5460 int use_hot_team = team == root->r.r_hot_team; 5461 #if KMP_NESTED_HOT_TEAMS 5462 int level; 5463 kmp_hot_team_ptr_t *hot_teams; 5464 if (master) { 5465 level = team->t.t_active_level - 1; 5466 if (master->th.th_teams_microtask) { // in teams construct? 5467 if (master->th.th_teams_size.nteams > 1) { 5468 ++level; // level was not increased in teams construct for 5469 // team_of_masters 5470 } 5471 if (team->t.t_pkfn != (microtask_t)__kmp_teams_master && 5472 master->th.th_teams_level == team->t.t_level) { 5473 ++level; // level was not increased in teams construct for 5474 // team_of_workers before the parallel 5475 } // team->t.t_level will be increased inside parallel 5476 } 5477 hot_teams = master->th.th_hot_teams; 5478 if (level < __kmp_hot_teams_max_level) { 5479 KMP_DEBUG_ASSERT(team == hot_teams[level].hot_team); 5480 use_hot_team = 1; 5481 } 5482 } 5483 #endif // KMP_NESTED_HOT_TEAMS 5484 5485 /* team is done working */ 5486 TCW_SYNC_PTR(team->t.t_pkfn, 5487 NULL); // Important for Debugging Support Library. 5488 #if KMP_OS_WINDOWS 5489 team->t.t_copyin_counter = 0; // init counter for possible reuse 5490 #endif 5491 // Do not reset pointer to parent team to NULL for hot teams. 5492 5493 /* if we are non-hot team, release our threads */ 5494 if (!use_hot_team) { 5495 if (__kmp_tasking_mode != tskm_immediate_exec) { 5496 // Wait for threads to reach reapable state 5497 for (f = 1; f < team->t.t_nproc; ++f) { 5498 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5499 kmp_info_t *th = team->t.t_threads[f]; 5500 volatile kmp_uint32 *state = &th->th.th_reap_state; 5501 while (*state != KMP_SAFE_TO_REAP) { 5502 #if KMP_OS_WINDOWS 5503 // On Windows a thread can be killed at any time, check this 5504 DWORD ecode; 5505 if (!__kmp_is_thread_alive(th, &ecode)) { 5506 *state = KMP_SAFE_TO_REAP; // reset the flag for dead thread 5507 break; 5508 } 5509 #endif 5510 // first check if thread is sleeping 5511 kmp_flag_64 fl(&th->th.th_bar[bs_forkjoin_barrier].bb.b_go, th); 5512 if (fl.is_sleeping()) 5513 fl.resume(__kmp_gtid_from_thread(th)); 5514 KMP_CPU_PAUSE(); 5515 } 5516 } 5517 5518 // Delete task teams 5519 int tt_idx; 5520 for (tt_idx = 0; tt_idx < 2; ++tt_idx) { 5521 kmp_task_team_t *task_team = team->t.t_task_team[tt_idx]; 5522 if (task_team != NULL) { 5523 for (f = 0; f < team->t.t_nproc; ++f) { // threads unref task teams 5524 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5525 team->t.t_threads[f]->th.th_task_team = NULL; 5526 } 5527 KA_TRACE( 5528 20, 5529 ("__kmp_free_team: T#%d deactivating task_team %p on team %d\n", 5530 __kmp_get_gtid(), task_team, team->t.t_id)); 5531 #if KMP_NESTED_HOT_TEAMS 5532 __kmp_free_task_team(master, task_team); 5533 #endif 5534 team->t.t_task_team[tt_idx] = NULL; 5535 } 5536 } 5537 } 5538 5539 // Reset pointer to parent team only for non-hot teams. 5540 team->t.t_parent = NULL; 5541 team->t.t_level = 0; 5542 team->t.t_active_level = 0; 5543 5544 /* free the worker threads */ 5545 for (f = 1; f < team->t.t_nproc; ++f) { 5546 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5547 __kmp_free_thread(team->t.t_threads[f]); 5548 team->t.t_threads[f] = NULL; 5549 } 5550 5551 /* put the team back in the team pool */ 5552 /* TODO limit size of team pool, call reap_team if pool too large */ 5553 team->t.t_next_pool = CCAST(kmp_team_t *, __kmp_team_pool); 5554 __kmp_team_pool = (volatile kmp_team_t *)team; 5555 } else { // Check if team was created for the masters in a teams construct 5556 // See if first worker is a CG root 5557 KMP_DEBUG_ASSERT(team->t.t_threads[1] && 5558 team->t.t_threads[1]->th.th_cg_roots); 5559 if (team->t.t_threads[1]->th.th_cg_roots->cg_root == team->t.t_threads[1]) { 5560 // Clean up the CG root nodes on workers so that this team can be re-used 5561 for (f = 1; f < team->t.t_nproc; ++f) { 5562 kmp_info_t *thr = team->t.t_threads[f]; 5563 KMP_DEBUG_ASSERT(thr && thr->th.th_cg_roots && 5564 thr->th.th_cg_roots->cg_root == thr); 5565 // Pop current CG root off list 5566 kmp_cg_root_t *tmp = thr->th.th_cg_roots; 5567 thr->th.th_cg_roots = tmp->up; 5568 KA_TRACE(100, ("__kmp_free_team: Thread %p popping node %p and moving" 5569 " up to node %p. cg_nthreads was %d\n", 5570 thr, tmp, thr->th.th_cg_roots, tmp->cg_nthreads)); 5571 __kmp_free(tmp); 5572 // Restore current task's thread_limit from CG root 5573 if (thr->th.th_cg_roots) 5574 thr->th.th_current_task->td_icvs.thread_limit = 5575 thr->th.th_cg_roots->cg_thread_limit; 5576 } 5577 } 5578 } 5579 5580 KMP_MB(); 5581 } 5582 5583 /* reap the team. destroy it, reclaim all its resources and free its memory */ 5584 kmp_team_t *__kmp_reap_team(kmp_team_t *team) { 5585 kmp_team_t *next_pool = team->t.t_next_pool; 5586 5587 KMP_DEBUG_ASSERT(team); 5588 KMP_DEBUG_ASSERT(team->t.t_dispatch); 5589 KMP_DEBUG_ASSERT(team->t.t_disp_buffer); 5590 KMP_DEBUG_ASSERT(team->t.t_threads); 5591 KMP_DEBUG_ASSERT(team->t.t_argv); 5592 5593 /* TODO clean the threads that are a part of this? */ 5594 5595 /* free stuff */ 5596 __kmp_free_team_arrays(team); 5597 if (team->t.t_argv != &team->t.t_inline_argv[0]) 5598 __kmp_free((void *)team->t.t_argv); 5599 __kmp_free(team); 5600 5601 KMP_MB(); 5602 return next_pool; 5603 } 5604 5605 // Free the thread. Don't reap it, just place it on the pool of available 5606 // threads. 5607 // 5608 // Changes for Quad issue 527845: We need a predictable OMP tid <-> gtid 5609 // binding for the affinity mechanism to be useful. 5610 // 5611 // Now, we always keep the free list (__kmp_thread_pool) sorted by gtid. 5612 // However, we want to avoid a potential performance problem by always 5613 // scanning through the list to find the correct point at which to insert 5614 // the thread (potential N**2 behavior). To do this we keep track of the 5615 // last place a thread struct was inserted (__kmp_thread_pool_insert_pt). 5616 // With single-level parallelism, threads will always be added to the tail 5617 // of the list, kept track of by __kmp_thread_pool_insert_pt. With nested 5618 // parallelism, all bets are off and we may need to scan through the entire 5619 // free list. 5620 // 5621 // This change also has a potentially large performance benefit, for some 5622 // applications. Previously, as threads were freed from the hot team, they 5623 // would be placed back on the free list in inverse order. If the hot team 5624 // grew back to it's original size, then the freed thread would be placed 5625 // back on the hot team in reverse order. This could cause bad cache 5626 // locality problems on programs where the size of the hot team regularly 5627 // grew and shrunk. 5628 // 5629 // Now, for single-level parallelism, the OMP tid is alway == gtid. 5630 void __kmp_free_thread(kmp_info_t *this_th) { 5631 int gtid; 5632 kmp_info_t **scan; 5633 5634 KA_TRACE(20, ("__kmp_free_thread: T#%d putting T#%d back on free pool.\n", 5635 __kmp_get_gtid(), this_th->th.th_info.ds.ds_gtid)); 5636 5637 KMP_DEBUG_ASSERT(this_th); 5638 5639 // When moving thread to pool, switch thread to wait on own b_go flag, and 5640 // uninitialized (NULL team). 5641 int b; 5642 kmp_balign_t *balign = this_th->th.th_bar; 5643 for (b = 0; b < bs_last_barrier; ++b) { 5644 if (balign[b].bb.wait_flag == KMP_BARRIER_PARENT_FLAG) 5645 balign[b].bb.wait_flag = KMP_BARRIER_SWITCH_TO_OWN_FLAG; 5646 balign[b].bb.team = NULL; 5647 balign[b].bb.leaf_kids = 0; 5648 } 5649 this_th->th.th_task_state = 0; 5650 this_th->th.th_reap_state = KMP_SAFE_TO_REAP; 5651 5652 /* put thread back on the free pool */ 5653 TCW_PTR(this_th->th.th_team, NULL); 5654 TCW_PTR(this_th->th.th_root, NULL); 5655 TCW_PTR(this_th->th.th_dispatch, NULL); /* NOT NEEDED */ 5656 5657 while (this_th->th.th_cg_roots) { 5658 this_th->th.th_cg_roots->cg_nthreads--; 5659 KA_TRACE(100, ("__kmp_free_thread: Thread %p decrement cg_nthreads on node" 5660 " %p of thread %p to %d\n", 5661 this_th, this_th->th.th_cg_roots, 5662 this_th->th.th_cg_roots->cg_root, 5663 this_th->th.th_cg_roots->cg_nthreads)); 5664 kmp_cg_root_t *tmp = this_th->th.th_cg_roots; 5665 if (tmp->cg_root == this_th) { // Thread is a cg_root 5666 KMP_DEBUG_ASSERT(tmp->cg_nthreads == 0); 5667 KA_TRACE( 5668 5, ("__kmp_free_thread: Thread %p freeing node %p\n", this_th, tmp)); 5669 this_th->th.th_cg_roots = tmp->up; 5670 __kmp_free(tmp); 5671 } else { // Worker thread 5672 this_th->th.th_cg_roots = NULL; 5673 break; 5674 } 5675 } 5676 5677 /* If the implicit task assigned to this thread can be used by other threads 5678 * -> multiple threads can share the data and try to free the task at 5679 * __kmp_reap_thread at exit. This duplicate use of the task data can happen 5680 * with higher probability when hot team is disabled but can occurs even when 5681 * the hot team is enabled */ 5682 __kmp_free_implicit_task(this_th); 5683 this_th->th.th_current_task = NULL; 5684 5685 // If the __kmp_thread_pool_insert_pt is already past the new insert 5686 // point, then we need to re-scan the entire list. 5687 gtid = this_th->th.th_info.ds.ds_gtid; 5688 if (__kmp_thread_pool_insert_pt != NULL) { 5689 KMP_DEBUG_ASSERT(__kmp_thread_pool != NULL); 5690 if (__kmp_thread_pool_insert_pt->th.th_info.ds.ds_gtid > gtid) { 5691 __kmp_thread_pool_insert_pt = NULL; 5692 } 5693 } 5694 5695 // Scan down the list to find the place to insert the thread. 5696 // scan is the address of a link in the list, possibly the address of 5697 // __kmp_thread_pool itself. 5698 // 5699 // In the absence of nested parallism, the for loop will have 0 iterations. 5700 if (__kmp_thread_pool_insert_pt != NULL) { 5701 scan = &(__kmp_thread_pool_insert_pt->th.th_next_pool); 5702 } else { 5703 scan = CCAST(kmp_info_t **, &__kmp_thread_pool); 5704 } 5705 for (; (*scan != NULL) && ((*scan)->th.th_info.ds.ds_gtid < gtid); 5706 scan = &((*scan)->th.th_next_pool)) 5707 ; 5708 5709 // Insert the new element on the list, and set __kmp_thread_pool_insert_pt 5710 // to its address. 5711 TCW_PTR(this_th->th.th_next_pool, *scan); 5712 __kmp_thread_pool_insert_pt = *scan = this_th; 5713 KMP_DEBUG_ASSERT((this_th->th.th_next_pool == NULL) || 5714 (this_th->th.th_info.ds.ds_gtid < 5715 this_th->th.th_next_pool->th.th_info.ds.ds_gtid)); 5716 TCW_4(this_th->th.th_in_pool, TRUE); 5717 __kmp_suspend_initialize_thread(this_th); 5718 __kmp_lock_suspend_mx(this_th); 5719 if (this_th->th.th_active == TRUE) { 5720 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth); 5721 this_th->th.th_active_in_pool = TRUE; 5722 } 5723 #if KMP_DEBUG 5724 else { 5725 KMP_DEBUG_ASSERT(this_th->th.th_active_in_pool == FALSE); 5726 } 5727 #endif 5728 __kmp_unlock_suspend_mx(this_th); 5729 5730 TCW_4(__kmp_nth, __kmp_nth - 1); 5731 5732 #ifdef KMP_ADJUST_BLOCKTIME 5733 /* Adjust blocktime back to user setting or default if necessary */ 5734 /* Middle initialization might never have occurred */ 5735 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 5736 KMP_DEBUG_ASSERT(__kmp_avail_proc > 0); 5737 if (__kmp_nth <= __kmp_avail_proc) { 5738 __kmp_zero_bt = FALSE; 5739 } 5740 } 5741 #endif /* KMP_ADJUST_BLOCKTIME */ 5742 5743 KMP_MB(); 5744 } 5745 5746 /* ------------------------------------------------------------------------ */ 5747 5748 void *__kmp_launch_thread(kmp_info_t *this_thr) { 5749 int gtid = this_thr->th.th_info.ds.ds_gtid; 5750 /* void *stack_data;*/ 5751 kmp_team_t *(*volatile pteam); 5752 5753 KMP_MB(); 5754 KA_TRACE(10, ("__kmp_launch_thread: T#%d start\n", gtid)); 5755 5756 if (__kmp_env_consistency_check) { 5757 this_thr->th.th_cons = __kmp_allocate_cons_stack(gtid); // ATT: Memory leak? 5758 } 5759 5760 #if OMPT_SUPPORT 5761 ompt_data_t *thread_data; 5762 if (ompt_enabled.enabled) { 5763 thread_data = &(this_thr->th.ompt_thread_info.thread_data); 5764 *thread_data = ompt_data_none; 5765 5766 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 5767 this_thr->th.ompt_thread_info.wait_id = 0; 5768 this_thr->th.ompt_thread_info.idle_frame = OMPT_GET_FRAME_ADDRESS(0); 5769 if (ompt_enabled.ompt_callback_thread_begin) { 5770 ompt_callbacks.ompt_callback(ompt_callback_thread_begin)( 5771 ompt_thread_worker, thread_data); 5772 } 5773 } 5774 #endif 5775 5776 #if OMPT_SUPPORT 5777 if (ompt_enabled.enabled) { 5778 this_thr->th.ompt_thread_info.state = ompt_state_idle; 5779 } 5780 #endif 5781 /* This is the place where threads wait for work */ 5782 while (!TCR_4(__kmp_global.g.g_done)) { 5783 KMP_DEBUG_ASSERT(this_thr == __kmp_threads[gtid]); 5784 KMP_MB(); 5785 5786 /* wait for work to do */ 5787 KA_TRACE(20, ("__kmp_launch_thread: T#%d waiting for work\n", gtid)); 5788 5789 /* No tid yet since not part of a team */ 5790 __kmp_fork_barrier(gtid, KMP_GTID_DNE); 5791 5792 #if OMPT_SUPPORT 5793 if (ompt_enabled.enabled) { 5794 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 5795 } 5796 #endif 5797 5798 pteam = (kmp_team_t * (*))(&this_thr->th.th_team); 5799 5800 /* have we been allocated? */ 5801 if (TCR_SYNC_PTR(*pteam) && !TCR_4(__kmp_global.g.g_done)) { 5802 /* we were just woken up, so run our new task */ 5803 if (TCR_SYNC_PTR((*pteam)->t.t_pkfn) != NULL) { 5804 int rc; 5805 KA_TRACE(20, 5806 ("__kmp_launch_thread: T#%d(%d:%d) invoke microtask = %p\n", 5807 gtid, (*pteam)->t.t_id, __kmp_tid_from_gtid(gtid), 5808 (*pteam)->t.t_pkfn)); 5809 5810 updateHWFPControl(*pteam); 5811 5812 #if OMPT_SUPPORT 5813 if (ompt_enabled.enabled) { 5814 this_thr->th.ompt_thread_info.state = ompt_state_work_parallel; 5815 } 5816 #endif 5817 5818 rc = (*pteam)->t.t_invoke(gtid); 5819 KMP_ASSERT(rc); 5820 5821 KMP_MB(); 5822 KA_TRACE(20, ("__kmp_launch_thread: T#%d(%d:%d) done microtask = %p\n", 5823 gtid, (*pteam)->t.t_id, __kmp_tid_from_gtid(gtid), 5824 (*pteam)->t.t_pkfn)); 5825 } 5826 #if OMPT_SUPPORT 5827 if (ompt_enabled.enabled) { 5828 /* no frame set while outside task */ 5829 __ompt_get_task_info_object(0)->frame.exit_frame = ompt_data_none; 5830 5831 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 5832 } 5833 #endif 5834 /* join barrier after parallel region */ 5835 __kmp_join_barrier(gtid); 5836 } 5837 } 5838 TCR_SYNC_PTR((intptr_t)__kmp_global.g.g_done); 5839 5840 #if OMPT_SUPPORT 5841 if (ompt_enabled.ompt_callback_thread_end) { 5842 ompt_callbacks.ompt_callback(ompt_callback_thread_end)(thread_data); 5843 } 5844 #endif 5845 5846 this_thr->th.th_task_team = NULL; 5847 /* run the destructors for the threadprivate data for this thread */ 5848 __kmp_common_destroy_gtid(gtid); 5849 5850 KA_TRACE(10, ("__kmp_launch_thread: T#%d done\n", gtid)); 5851 KMP_MB(); 5852 return this_thr; 5853 } 5854 5855 /* ------------------------------------------------------------------------ */ 5856 5857 void __kmp_internal_end_dest(void *specific_gtid) { 5858 #if KMP_COMPILER_ICC 5859 #pragma warning(push) 5860 #pragma warning(disable : 810) // conversion from "void *" to "int" may lose 5861 // significant bits 5862 #endif 5863 // Make sure no significant bits are lost 5864 int gtid = (kmp_intptr_t)specific_gtid - 1; 5865 #if KMP_COMPILER_ICC 5866 #pragma warning(pop) 5867 #endif 5868 5869 KA_TRACE(30, ("__kmp_internal_end_dest: T#%d\n", gtid)); 5870 /* NOTE: the gtid is stored as gitd+1 in the thread-local-storage 5871 * this is because 0 is reserved for the nothing-stored case */ 5872 5873 /* josh: One reason for setting the gtid specific data even when it is being 5874 destroyed by pthread is to allow gtid lookup through thread specific data 5875 (__kmp_gtid_get_specific). Some of the code, especially stat code, 5876 that gets executed in the call to __kmp_internal_end_thread, actually 5877 gets the gtid through the thread specific data. Setting it here seems 5878 rather inelegant and perhaps wrong, but allows __kmp_internal_end_thread 5879 to run smoothly. 5880 todo: get rid of this after we remove the dependence on 5881 __kmp_gtid_get_specific */ 5882 if (gtid >= 0 && KMP_UBER_GTID(gtid)) 5883 __kmp_gtid_set_specific(gtid); 5884 #ifdef KMP_TDATA_GTID 5885 __kmp_gtid = gtid; 5886 #endif 5887 __kmp_internal_end_thread(gtid); 5888 } 5889 5890 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB 5891 5892 // 2009-09-08 (lev): It looks the destructor does not work. In simple test cases 5893 // destructors work perfectly, but in real libomp.so I have no evidence it is 5894 // ever called. However, -fini linker option in makefile.mk works fine. 5895 5896 __attribute__((destructor)) void __kmp_internal_end_dtor(void) { 5897 __kmp_internal_end_atexit(); 5898 } 5899 5900 void __kmp_internal_end_fini(void) { __kmp_internal_end_atexit(); } 5901 5902 #endif 5903 5904 /* [Windows] josh: when the atexit handler is called, there may still be more 5905 than one thread alive */ 5906 void __kmp_internal_end_atexit(void) { 5907 KA_TRACE(30, ("__kmp_internal_end_atexit\n")); 5908 /* [Windows] 5909 josh: ideally, we want to completely shutdown the library in this atexit 5910 handler, but stat code that depends on thread specific data for gtid fails 5911 because that data becomes unavailable at some point during the shutdown, so 5912 we call __kmp_internal_end_thread instead. We should eventually remove the 5913 dependency on __kmp_get_specific_gtid in the stat code and use 5914 __kmp_internal_end_library to cleanly shutdown the library. 5915 5916 // TODO: Can some of this comment about GVS be removed? 5917 I suspect that the offending stat code is executed when the calling thread 5918 tries to clean up a dead root thread's data structures, resulting in GVS 5919 code trying to close the GVS structures for that thread, but since the stat 5920 code uses __kmp_get_specific_gtid to get the gtid with the assumption that 5921 the calling thread is cleaning up itself instead of another thread, it get 5922 confused. This happens because allowing a thread to unregister and cleanup 5923 another thread is a recent modification for addressing an issue. 5924 Based on the current design (20050722), a thread may end up 5925 trying to unregister another thread only if thread death does not trigger 5926 the calling of __kmp_internal_end_thread. For Linux* OS, there is the 5927 thread specific data destructor function to detect thread death. For 5928 Windows dynamic, there is DllMain(THREAD_DETACH). For Windows static, there 5929 is nothing. Thus, the workaround is applicable only for Windows static 5930 stat library. */ 5931 __kmp_internal_end_library(-1); 5932 #if KMP_OS_WINDOWS 5933 __kmp_close_console(); 5934 #endif 5935 } 5936 5937 static void __kmp_reap_thread(kmp_info_t *thread, int is_root) { 5938 // It is assumed __kmp_forkjoin_lock is acquired. 5939 5940 int gtid; 5941 5942 KMP_DEBUG_ASSERT(thread != NULL); 5943 5944 gtid = thread->th.th_info.ds.ds_gtid; 5945 5946 if (!is_root) { 5947 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { 5948 /* Assume the threads are at the fork barrier here */ 5949 KA_TRACE( 5950 20, ("__kmp_reap_thread: releasing T#%d from fork barrier for reap\n", 5951 gtid)); 5952 /* Need release fence here to prevent seg faults for tree forkjoin barrier 5953 * (GEH) */ 5954 ANNOTATE_HAPPENS_BEFORE(thread); 5955 kmp_flag_64 flag(&thread->th.th_bar[bs_forkjoin_barrier].bb.b_go, thread); 5956 __kmp_release_64(&flag); 5957 } 5958 5959 // Terminate OS thread. 5960 __kmp_reap_worker(thread); 5961 5962 // The thread was killed asynchronously. If it was actively 5963 // spinning in the thread pool, decrement the global count. 5964 // 5965 // There is a small timing hole here - if the worker thread was just waking 5966 // up after sleeping in the pool, had reset it's th_active_in_pool flag but 5967 // not decremented the global counter __kmp_thread_pool_active_nth yet, then 5968 // the global counter might not get updated. 5969 // 5970 // Currently, this can only happen as the library is unloaded, 5971 // so there are no harmful side effects. 5972 if (thread->th.th_active_in_pool) { 5973 thread->th.th_active_in_pool = FALSE; 5974 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 5975 KMP_DEBUG_ASSERT(__kmp_thread_pool_active_nth >= 0); 5976 } 5977 } 5978 5979 __kmp_free_implicit_task(thread); 5980 5981 // Free the fast memory for tasking 5982 #if USE_FAST_MEMORY 5983 __kmp_free_fast_memory(thread); 5984 #endif /* USE_FAST_MEMORY */ 5985 5986 __kmp_suspend_uninitialize_thread(thread); 5987 5988 KMP_DEBUG_ASSERT(__kmp_threads[gtid] == thread); 5989 TCW_SYNC_PTR(__kmp_threads[gtid], NULL); 5990 5991 --__kmp_all_nth; 5992 // __kmp_nth was decremented when thread is added to the pool. 5993 5994 #ifdef KMP_ADJUST_BLOCKTIME 5995 /* Adjust blocktime back to user setting or default if necessary */ 5996 /* Middle initialization might never have occurred */ 5997 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 5998 KMP_DEBUG_ASSERT(__kmp_avail_proc > 0); 5999 if (__kmp_nth <= __kmp_avail_proc) { 6000 __kmp_zero_bt = FALSE; 6001 } 6002 } 6003 #endif /* KMP_ADJUST_BLOCKTIME */ 6004 6005 /* free the memory being used */ 6006 if (__kmp_env_consistency_check) { 6007 if (thread->th.th_cons) { 6008 __kmp_free_cons_stack(thread->th.th_cons); 6009 thread->th.th_cons = NULL; 6010 } 6011 } 6012 6013 if (thread->th.th_pri_common != NULL) { 6014 __kmp_free(thread->th.th_pri_common); 6015 thread->th.th_pri_common = NULL; 6016 } 6017 6018 if (thread->th.th_task_state_memo_stack != NULL) { 6019 __kmp_free(thread->th.th_task_state_memo_stack); 6020 thread->th.th_task_state_memo_stack = NULL; 6021 } 6022 6023 #if KMP_USE_BGET 6024 if (thread->th.th_local.bget_data != NULL) { 6025 __kmp_finalize_bget(thread); 6026 } 6027 #endif 6028 6029 #if KMP_AFFINITY_SUPPORTED 6030 if (thread->th.th_affin_mask != NULL) { 6031 KMP_CPU_FREE(thread->th.th_affin_mask); 6032 thread->th.th_affin_mask = NULL; 6033 } 6034 #endif /* KMP_AFFINITY_SUPPORTED */ 6035 6036 #if KMP_USE_HIER_SCHED 6037 if (thread->th.th_hier_bar_data != NULL) { 6038 __kmp_free(thread->th.th_hier_bar_data); 6039 thread->th.th_hier_bar_data = NULL; 6040 } 6041 #endif 6042 6043 __kmp_reap_team(thread->th.th_serial_team); 6044 thread->th.th_serial_team = NULL; 6045 __kmp_free(thread); 6046 6047 KMP_MB(); 6048 6049 } // __kmp_reap_thread 6050 6051 static void __kmp_internal_end(void) { 6052 int i; 6053 6054 /* First, unregister the library */ 6055 __kmp_unregister_library(); 6056 6057 #if KMP_OS_WINDOWS 6058 /* In Win static library, we can't tell when a root actually dies, so we 6059 reclaim the data structures for any root threads that have died but not 6060 unregistered themselves, in order to shut down cleanly. 6061 In Win dynamic library we also can't tell when a thread dies. */ 6062 __kmp_reclaim_dead_roots(); // AC: moved here to always clean resources of 6063 // dead roots 6064 #endif 6065 6066 for (i = 0; i < __kmp_threads_capacity; i++) 6067 if (__kmp_root[i]) 6068 if (__kmp_root[i]->r.r_active) 6069 break; 6070 KMP_MB(); /* Flush all pending memory write invalidates. */ 6071 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 6072 6073 if (i < __kmp_threads_capacity) { 6074 #if KMP_USE_MONITOR 6075 // 2009-09-08 (lev): Other alive roots found. Why do we kill the monitor?? 6076 KMP_MB(); /* Flush all pending memory write invalidates. */ 6077 6078 // Need to check that monitor was initialized before reaping it. If we are 6079 // called form __kmp_atfork_child (which sets __kmp_init_parallel = 0), then 6080 // __kmp_monitor will appear to contain valid data, but it is only valid in 6081 // the parent process, not the child. 6082 // New behavior (201008): instead of keying off of the flag 6083 // __kmp_init_parallel, the monitor thread creation is keyed off 6084 // of the new flag __kmp_init_monitor. 6085 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock); 6086 if (TCR_4(__kmp_init_monitor)) { 6087 __kmp_reap_monitor(&__kmp_monitor); 6088 TCW_4(__kmp_init_monitor, 0); 6089 } 6090 __kmp_release_bootstrap_lock(&__kmp_monitor_lock); 6091 KA_TRACE(10, ("__kmp_internal_end: monitor reaped\n")); 6092 #endif // KMP_USE_MONITOR 6093 } else { 6094 /* TODO move this to cleanup code */ 6095 #ifdef KMP_DEBUG 6096 /* make sure that everything has properly ended */ 6097 for (i = 0; i < __kmp_threads_capacity; i++) { 6098 if (__kmp_root[i]) { 6099 // KMP_ASSERT( ! KMP_UBER_GTID( i ) ); // AC: 6100 // there can be uber threads alive here 6101 KMP_ASSERT(!__kmp_root[i]->r.r_active); // TODO: can they be active? 6102 } 6103 } 6104 #endif 6105 6106 KMP_MB(); 6107 6108 // Reap the worker threads. 6109 // This is valid for now, but be careful if threads are reaped sooner. 6110 while (__kmp_thread_pool != NULL) { // Loop thru all the thread in the pool. 6111 // Get the next thread from the pool. 6112 kmp_info_t *thread = CCAST(kmp_info_t *, __kmp_thread_pool); 6113 __kmp_thread_pool = thread->th.th_next_pool; 6114 // Reap it. 6115 KMP_DEBUG_ASSERT(thread->th.th_reap_state == KMP_SAFE_TO_REAP); 6116 thread->th.th_next_pool = NULL; 6117 thread->th.th_in_pool = FALSE; 6118 thread->th.th_active_in_pool = FALSE; 6119 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 6120 __kmp_reap_thread(thread, 0); 6121 } 6122 __kmp_thread_pool_insert_pt = NULL; 6123 6124 // Reap teams. 6125 while (__kmp_team_pool != NULL) { // Loop thru all the teams in the pool. 6126 // Get the next team from the pool. 6127 kmp_team_t *team = CCAST(kmp_team_t *, __kmp_team_pool); 6128 __kmp_team_pool = team->t.t_next_pool; 6129 // Reap it. 6130 team->t.t_next_pool = NULL; 6131 __kmp_reap_team(team); 6132 } 6133 6134 __kmp_reap_task_teams(); 6135 6136 #if KMP_OS_UNIX 6137 // Threads that are not reaped should not access any resources since they 6138 // are going to be deallocated soon, so the shutdown sequence should wait 6139 // until all threads either exit the final spin-waiting loop or begin 6140 // sleeping after the given blocktime. 6141 for (i = 0; i < __kmp_threads_capacity; i++) { 6142 kmp_info_t *thr = __kmp_threads[i]; 6143 while (thr && KMP_ATOMIC_LD_ACQ(&thr->th.th_blocking)) 6144 KMP_CPU_PAUSE(); 6145 } 6146 #endif 6147 6148 for (i = 0; i < __kmp_threads_capacity; ++i) { 6149 // TBD: Add some checking... 6150 // Something like KMP_DEBUG_ASSERT( __kmp_thread[ i ] == NULL ); 6151 } 6152 6153 /* Make sure all threadprivate destructors get run by joining with all 6154 worker threads before resetting this flag */ 6155 TCW_SYNC_4(__kmp_init_common, FALSE); 6156 6157 KA_TRACE(10, ("__kmp_internal_end: all workers reaped\n")); 6158 KMP_MB(); 6159 6160 #if KMP_USE_MONITOR 6161 // See note above: One of the possible fixes for CQ138434 / CQ140126 6162 // 6163 // FIXME: push both code fragments down and CSE them? 6164 // push them into __kmp_cleanup() ? 6165 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock); 6166 if (TCR_4(__kmp_init_monitor)) { 6167 __kmp_reap_monitor(&__kmp_monitor); 6168 TCW_4(__kmp_init_monitor, 0); 6169 } 6170 __kmp_release_bootstrap_lock(&__kmp_monitor_lock); 6171 KA_TRACE(10, ("__kmp_internal_end: monitor reaped\n")); 6172 #endif 6173 } /* else !__kmp_global.t_active */ 6174 TCW_4(__kmp_init_gtid, FALSE); 6175 KMP_MB(); /* Flush all pending memory write invalidates. */ 6176 6177 __kmp_cleanup(); 6178 #if OMPT_SUPPORT 6179 ompt_fini(); 6180 #endif 6181 } 6182 6183 void __kmp_internal_end_library(int gtid_req) { 6184 /* if we have already cleaned up, don't try again, it wouldn't be pretty */ 6185 /* this shouldn't be a race condition because __kmp_internal_end() is the 6186 only place to clear __kmp_serial_init */ 6187 /* we'll check this later too, after we get the lock */ 6188 // 2009-09-06: We do not set g_abort without setting g_done. This check looks 6189 // redundaant, because the next check will work in any case. 6190 if (__kmp_global.g.g_abort) { 6191 KA_TRACE(11, ("__kmp_internal_end_library: abort, exiting\n")); 6192 /* TODO abort? */ 6193 return; 6194 } 6195 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6196 KA_TRACE(10, ("__kmp_internal_end_library: already finished\n")); 6197 return; 6198 } 6199 6200 KMP_MB(); /* Flush all pending memory write invalidates. */ 6201 6202 /* find out who we are and what we should do */ 6203 { 6204 int gtid = (gtid_req >= 0) ? gtid_req : __kmp_gtid_get_specific(); 6205 KA_TRACE( 6206 10, ("__kmp_internal_end_library: enter T#%d (%d)\n", gtid, gtid_req)); 6207 if (gtid == KMP_GTID_SHUTDOWN) { 6208 KA_TRACE(10, ("__kmp_internal_end_library: !__kmp_init_runtime, system " 6209 "already shutdown\n")); 6210 return; 6211 } else if (gtid == KMP_GTID_MONITOR) { 6212 KA_TRACE(10, ("__kmp_internal_end_library: monitor thread, gtid not " 6213 "registered, or system shutdown\n")); 6214 return; 6215 } else if (gtid == KMP_GTID_DNE) { 6216 KA_TRACE(10, ("__kmp_internal_end_library: gtid not registered or system " 6217 "shutdown\n")); 6218 /* we don't know who we are, but we may still shutdown the library */ 6219 } else if (KMP_UBER_GTID(gtid)) { 6220 /* unregister ourselves as an uber thread. gtid is no longer valid */ 6221 if (__kmp_root[gtid]->r.r_active) { 6222 __kmp_global.g.g_abort = -1; 6223 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 6224 KA_TRACE(10, 6225 ("__kmp_internal_end_library: root still active, abort T#%d\n", 6226 gtid)); 6227 return; 6228 } else { 6229 KA_TRACE( 6230 10, 6231 ("__kmp_internal_end_library: unregistering sibling T#%d\n", gtid)); 6232 __kmp_unregister_root_current_thread(gtid); 6233 } 6234 } else { 6235 /* worker threads may call this function through the atexit handler, if they 6236 * call exit() */ 6237 /* For now, skip the usual subsequent processing and just dump the debug buffer. 6238 TODO: do a thorough shutdown instead */ 6239 #ifdef DUMP_DEBUG_ON_EXIT 6240 if (__kmp_debug_buf) 6241 __kmp_dump_debug_buffer(); 6242 #endif 6243 return; 6244 } 6245 } 6246 /* synchronize the termination process */ 6247 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6248 6249 /* have we already finished */ 6250 if (__kmp_global.g.g_abort) { 6251 KA_TRACE(10, ("__kmp_internal_end_library: abort, exiting\n")); 6252 /* TODO abort? */ 6253 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6254 return; 6255 } 6256 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6257 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6258 return; 6259 } 6260 6261 /* We need this lock to enforce mutex between this reading of 6262 __kmp_threads_capacity and the writing by __kmp_register_root. 6263 Alternatively, we can use a counter of roots that is atomically updated by 6264 __kmp_get_global_thread_id_reg, __kmp_do_serial_initialize and 6265 __kmp_internal_end_*. */ 6266 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 6267 6268 /* now we can safely conduct the actual termination */ 6269 __kmp_internal_end(); 6270 6271 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 6272 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6273 6274 KA_TRACE(10, ("__kmp_internal_end_library: exit\n")); 6275 6276 #ifdef DUMP_DEBUG_ON_EXIT 6277 if (__kmp_debug_buf) 6278 __kmp_dump_debug_buffer(); 6279 #endif 6280 6281 #if KMP_OS_WINDOWS 6282 __kmp_close_console(); 6283 #endif 6284 6285 __kmp_fini_allocator(); 6286 6287 } // __kmp_internal_end_library 6288 6289 void __kmp_internal_end_thread(int gtid_req) { 6290 int i; 6291 6292 /* if we have already cleaned up, don't try again, it wouldn't be pretty */ 6293 /* this shouldn't be a race condition because __kmp_internal_end() is the 6294 * only place to clear __kmp_serial_init */ 6295 /* we'll check this later too, after we get the lock */ 6296 // 2009-09-06: We do not set g_abort without setting g_done. This check looks 6297 // redundant, because the next check will work in any case. 6298 if (__kmp_global.g.g_abort) { 6299 KA_TRACE(11, ("__kmp_internal_end_thread: abort, exiting\n")); 6300 /* TODO abort? */ 6301 return; 6302 } 6303 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6304 KA_TRACE(10, ("__kmp_internal_end_thread: already finished\n")); 6305 return; 6306 } 6307 6308 KMP_MB(); /* Flush all pending memory write invalidates. */ 6309 6310 /* find out who we are and what we should do */ 6311 { 6312 int gtid = (gtid_req >= 0) ? gtid_req : __kmp_gtid_get_specific(); 6313 KA_TRACE(10, 6314 ("__kmp_internal_end_thread: enter T#%d (%d)\n", gtid, gtid_req)); 6315 if (gtid == KMP_GTID_SHUTDOWN) { 6316 KA_TRACE(10, ("__kmp_internal_end_thread: !__kmp_init_runtime, system " 6317 "already shutdown\n")); 6318 return; 6319 } else if (gtid == KMP_GTID_MONITOR) { 6320 KA_TRACE(10, ("__kmp_internal_end_thread: monitor thread, gtid not " 6321 "registered, or system shutdown\n")); 6322 return; 6323 } else if (gtid == KMP_GTID_DNE) { 6324 KA_TRACE(10, ("__kmp_internal_end_thread: gtid not registered or system " 6325 "shutdown\n")); 6326 return; 6327 /* we don't know who we are */ 6328 } else if (KMP_UBER_GTID(gtid)) { 6329 /* unregister ourselves as an uber thread. gtid is no longer valid */ 6330 if (__kmp_root[gtid]->r.r_active) { 6331 __kmp_global.g.g_abort = -1; 6332 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 6333 KA_TRACE(10, 6334 ("__kmp_internal_end_thread: root still active, abort T#%d\n", 6335 gtid)); 6336 return; 6337 } else { 6338 KA_TRACE(10, ("__kmp_internal_end_thread: unregistering sibling T#%d\n", 6339 gtid)); 6340 __kmp_unregister_root_current_thread(gtid); 6341 } 6342 } else { 6343 /* just a worker thread, let's leave */ 6344 KA_TRACE(10, ("__kmp_internal_end_thread: worker thread T#%d\n", gtid)); 6345 6346 if (gtid >= 0) { 6347 __kmp_threads[gtid]->th.th_task_team = NULL; 6348 } 6349 6350 KA_TRACE(10, 6351 ("__kmp_internal_end_thread: worker thread done, exiting T#%d\n", 6352 gtid)); 6353 return; 6354 } 6355 } 6356 #if KMP_DYNAMIC_LIB 6357 #if OMP_50_ENABLED 6358 if (__kmp_pause_status != kmp_hard_paused) 6359 #endif 6360 // AC: lets not shutdown the dynamic library at the exit of uber thread, 6361 // because we will better shutdown later in the library destructor. 6362 { 6363 KA_TRACE(10, ("__kmp_internal_end_thread: exiting T#%d\n", gtid_req)); 6364 return; 6365 } 6366 #endif 6367 /* synchronize the termination process */ 6368 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6369 6370 /* have we already finished */ 6371 if (__kmp_global.g.g_abort) { 6372 KA_TRACE(10, ("__kmp_internal_end_thread: abort, exiting\n")); 6373 /* TODO abort? */ 6374 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6375 return; 6376 } 6377 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6378 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6379 return; 6380 } 6381 6382 /* We need this lock to enforce mutex between this reading of 6383 __kmp_threads_capacity and the writing by __kmp_register_root. 6384 Alternatively, we can use a counter of roots that is atomically updated by 6385 __kmp_get_global_thread_id_reg, __kmp_do_serial_initialize and 6386 __kmp_internal_end_*. */ 6387 6388 /* should we finish the run-time? are all siblings done? */ 6389 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 6390 6391 for (i = 0; i < __kmp_threads_capacity; ++i) { 6392 if (KMP_UBER_GTID(i)) { 6393 KA_TRACE( 6394 10, 6395 ("__kmp_internal_end_thread: remaining sibling task: gtid==%d\n", i)); 6396 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 6397 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6398 return; 6399 } 6400 } 6401 6402 /* now we can safely conduct the actual termination */ 6403 6404 __kmp_internal_end(); 6405 6406 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 6407 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6408 6409 KA_TRACE(10, ("__kmp_internal_end_thread: exit T#%d\n", gtid_req)); 6410 6411 #ifdef DUMP_DEBUG_ON_EXIT 6412 if (__kmp_debug_buf) 6413 __kmp_dump_debug_buffer(); 6414 #endif 6415 } // __kmp_internal_end_thread 6416 6417 // ----------------------------------------------------------------------------- 6418 // Library registration stuff. 6419 6420 static long __kmp_registration_flag = 0; 6421 // Random value used to indicate library initialization. 6422 static char *__kmp_registration_str = NULL; 6423 // Value to be saved in env var __KMP_REGISTERED_LIB_<pid>. 6424 6425 static inline char *__kmp_reg_status_name() { 6426 /* On RHEL 3u5 if linked statically, getpid() returns different values in 6427 each thread. If registration and unregistration go in different threads 6428 (omp_misc_other_root_exit.cpp test case), the name of registered_lib_env 6429 env var can not be found, because the name will contain different pid. */ 6430 return __kmp_str_format("__KMP_REGISTERED_LIB_%d", (int)getpid()); 6431 } // __kmp_reg_status_get 6432 6433 void __kmp_register_library_startup(void) { 6434 6435 char *name = __kmp_reg_status_name(); // Name of the environment variable. 6436 int done = 0; 6437 union { 6438 double dtime; 6439 long ltime; 6440 } time; 6441 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 6442 __kmp_initialize_system_tick(); 6443 #endif 6444 __kmp_read_system_time(&time.dtime); 6445 __kmp_registration_flag = 0xCAFE0000L | (time.ltime & 0x0000FFFFL); 6446 __kmp_registration_str = 6447 __kmp_str_format("%p-%lx-%s", &__kmp_registration_flag, 6448 __kmp_registration_flag, KMP_LIBRARY_FILE); 6449 6450 KA_TRACE(50, ("__kmp_register_library_startup: %s=\"%s\"\n", name, 6451 __kmp_registration_str)); 6452 6453 while (!done) { 6454 6455 char *value = NULL; // Actual value of the environment variable. 6456 6457 // Set environment variable, but do not overwrite if it is exist. 6458 __kmp_env_set(name, __kmp_registration_str, 0); 6459 // Check the variable is written. 6460 value = __kmp_env_get(name); 6461 if (value != NULL && strcmp(value, __kmp_registration_str) == 0) { 6462 6463 done = 1; // Ok, environment variable set successfully, exit the loop. 6464 6465 } else { 6466 6467 // Oops. Write failed. Another copy of OpenMP RTL is in memory. 6468 // Check whether it alive or dead. 6469 int neighbor = 0; // 0 -- unknown status, 1 -- alive, 2 -- dead. 6470 char *tail = value; 6471 char *flag_addr_str = NULL; 6472 char *flag_val_str = NULL; 6473 char const *file_name = NULL; 6474 __kmp_str_split(tail, '-', &flag_addr_str, &tail); 6475 __kmp_str_split(tail, '-', &flag_val_str, &tail); 6476 file_name = tail; 6477 if (tail != NULL) { 6478 long *flag_addr = 0; 6479 long flag_val = 0; 6480 KMP_SSCANF(flag_addr_str, "%p", RCAST(void**, &flag_addr)); 6481 KMP_SSCANF(flag_val_str, "%lx", &flag_val); 6482 if (flag_addr != 0 && flag_val != 0 && strcmp(file_name, "") != 0) { 6483 // First, check whether environment-encoded address is mapped into 6484 // addr space. 6485 // If so, dereference it to see if it still has the right value. 6486 if (__kmp_is_address_mapped(flag_addr) && *flag_addr == flag_val) { 6487 neighbor = 1; 6488 } else { 6489 // If not, then we know the other copy of the library is no longer 6490 // running. 6491 neighbor = 2; 6492 } 6493 } 6494 } 6495 switch (neighbor) { 6496 case 0: // Cannot parse environment variable -- neighbor status unknown. 6497 // Assume it is the incompatible format of future version of the 6498 // library. Assume the other library is alive. 6499 // WARN( ... ); // TODO: Issue a warning. 6500 file_name = "unknown library"; 6501 KMP_FALLTHROUGH(); 6502 // Attention! Falling to the next case. That's intentional. 6503 case 1: { // Neighbor is alive. 6504 // Check it is allowed. 6505 char *duplicate_ok = __kmp_env_get("KMP_DUPLICATE_LIB_OK"); 6506 if (!__kmp_str_match_true(duplicate_ok)) { 6507 // That's not allowed. Issue fatal error. 6508 __kmp_fatal(KMP_MSG(DuplicateLibrary, KMP_LIBRARY_FILE, file_name), 6509 KMP_HNT(DuplicateLibrary), __kmp_msg_null); 6510 } 6511 KMP_INTERNAL_FREE(duplicate_ok); 6512 __kmp_duplicate_library_ok = 1; 6513 done = 1; // Exit the loop. 6514 } break; 6515 case 2: { // Neighbor is dead. 6516 // Clear the variable and try to register library again. 6517 __kmp_env_unset(name); 6518 } break; 6519 default: { KMP_DEBUG_ASSERT(0); } break; 6520 } 6521 } 6522 KMP_INTERNAL_FREE((void *)value); 6523 } 6524 KMP_INTERNAL_FREE((void *)name); 6525 6526 } // func __kmp_register_library_startup 6527 6528 void __kmp_unregister_library(void) { 6529 6530 char *name = __kmp_reg_status_name(); 6531 char *value = __kmp_env_get(name); 6532 6533 KMP_DEBUG_ASSERT(__kmp_registration_flag != 0); 6534 KMP_DEBUG_ASSERT(__kmp_registration_str != NULL); 6535 if (value != NULL && strcmp(value, __kmp_registration_str) == 0) { 6536 // Ok, this is our variable. Delete it. 6537 __kmp_env_unset(name); 6538 } 6539 6540 KMP_INTERNAL_FREE(__kmp_registration_str); 6541 KMP_INTERNAL_FREE(value); 6542 KMP_INTERNAL_FREE(name); 6543 6544 __kmp_registration_flag = 0; 6545 __kmp_registration_str = NULL; 6546 6547 } // __kmp_unregister_library 6548 6549 // End of Library registration stuff. 6550 // ----------------------------------------------------------------------------- 6551 6552 #if KMP_MIC_SUPPORTED 6553 6554 static void __kmp_check_mic_type() { 6555 kmp_cpuid_t cpuid_state = {0}; 6556 kmp_cpuid_t *cs_p = &cpuid_state; 6557 __kmp_x86_cpuid(1, 0, cs_p); 6558 // We don't support mic1 at the moment 6559 if ((cs_p->eax & 0xff0) == 0xB10) { 6560 __kmp_mic_type = mic2; 6561 } else if ((cs_p->eax & 0xf0ff0) == 0x50670) { 6562 __kmp_mic_type = mic3; 6563 } else { 6564 __kmp_mic_type = non_mic; 6565 } 6566 } 6567 6568 #endif /* KMP_MIC_SUPPORTED */ 6569 6570 static void __kmp_do_serial_initialize(void) { 6571 int i, gtid; 6572 int size; 6573 6574 KA_TRACE(10, ("__kmp_do_serial_initialize: enter\n")); 6575 6576 KMP_DEBUG_ASSERT(sizeof(kmp_int32) == 4); 6577 KMP_DEBUG_ASSERT(sizeof(kmp_uint32) == 4); 6578 KMP_DEBUG_ASSERT(sizeof(kmp_int64) == 8); 6579 KMP_DEBUG_ASSERT(sizeof(kmp_uint64) == 8); 6580 KMP_DEBUG_ASSERT(sizeof(kmp_intptr_t) == sizeof(void *)); 6581 6582 #if OMPT_SUPPORT 6583 ompt_pre_init(); 6584 #endif 6585 6586 __kmp_validate_locks(); 6587 6588 /* Initialize internal memory allocator */ 6589 __kmp_init_allocator(); 6590 6591 /* Register the library startup via an environment variable and check to see 6592 whether another copy of the library is already registered. */ 6593 6594 __kmp_register_library_startup(); 6595 6596 /* TODO reinitialization of library */ 6597 if (TCR_4(__kmp_global.g.g_done)) { 6598 KA_TRACE(10, ("__kmp_do_serial_initialize: reinitialization of library\n")); 6599 } 6600 6601 __kmp_global.g.g_abort = 0; 6602 TCW_SYNC_4(__kmp_global.g.g_done, FALSE); 6603 6604 /* initialize the locks */ 6605 #if KMP_USE_ADAPTIVE_LOCKS 6606 #if KMP_DEBUG_ADAPTIVE_LOCKS 6607 __kmp_init_speculative_stats(); 6608 #endif 6609 #endif 6610 #if KMP_STATS_ENABLED 6611 __kmp_stats_init(); 6612 #endif 6613 __kmp_init_lock(&__kmp_global_lock); 6614 __kmp_init_queuing_lock(&__kmp_dispatch_lock); 6615 __kmp_init_lock(&__kmp_debug_lock); 6616 __kmp_init_atomic_lock(&__kmp_atomic_lock); 6617 __kmp_init_atomic_lock(&__kmp_atomic_lock_1i); 6618 __kmp_init_atomic_lock(&__kmp_atomic_lock_2i); 6619 __kmp_init_atomic_lock(&__kmp_atomic_lock_4i); 6620 __kmp_init_atomic_lock(&__kmp_atomic_lock_4r); 6621 __kmp_init_atomic_lock(&__kmp_atomic_lock_8i); 6622 __kmp_init_atomic_lock(&__kmp_atomic_lock_8r); 6623 __kmp_init_atomic_lock(&__kmp_atomic_lock_8c); 6624 __kmp_init_atomic_lock(&__kmp_atomic_lock_10r); 6625 __kmp_init_atomic_lock(&__kmp_atomic_lock_16r); 6626 __kmp_init_atomic_lock(&__kmp_atomic_lock_16c); 6627 __kmp_init_atomic_lock(&__kmp_atomic_lock_20c); 6628 __kmp_init_atomic_lock(&__kmp_atomic_lock_32c); 6629 __kmp_init_bootstrap_lock(&__kmp_forkjoin_lock); 6630 __kmp_init_bootstrap_lock(&__kmp_exit_lock); 6631 #if KMP_USE_MONITOR 6632 __kmp_init_bootstrap_lock(&__kmp_monitor_lock); 6633 #endif 6634 __kmp_init_bootstrap_lock(&__kmp_tp_cached_lock); 6635 6636 /* conduct initialization and initial setup of configuration */ 6637 6638 __kmp_runtime_initialize(); 6639 6640 #if KMP_MIC_SUPPORTED 6641 __kmp_check_mic_type(); 6642 #endif 6643 6644 // Some global variable initialization moved here from kmp_env_initialize() 6645 #ifdef KMP_DEBUG 6646 kmp_diag = 0; 6647 #endif 6648 __kmp_abort_delay = 0; 6649 6650 // From __kmp_init_dflt_team_nth() 6651 /* assume the entire machine will be used */ 6652 __kmp_dflt_team_nth_ub = __kmp_xproc; 6653 if (__kmp_dflt_team_nth_ub < KMP_MIN_NTH) { 6654 __kmp_dflt_team_nth_ub = KMP_MIN_NTH; 6655 } 6656 if (__kmp_dflt_team_nth_ub > __kmp_sys_max_nth) { 6657 __kmp_dflt_team_nth_ub = __kmp_sys_max_nth; 6658 } 6659 __kmp_max_nth = __kmp_sys_max_nth; 6660 __kmp_cg_max_nth = __kmp_sys_max_nth; 6661 __kmp_teams_max_nth = __kmp_xproc; // set a "reasonable" default 6662 if (__kmp_teams_max_nth > __kmp_sys_max_nth) { 6663 __kmp_teams_max_nth = __kmp_sys_max_nth; 6664 } 6665 6666 // Three vars below moved here from __kmp_env_initialize() "KMP_BLOCKTIME" 6667 // part 6668 __kmp_dflt_blocktime = KMP_DEFAULT_BLOCKTIME; 6669 #if KMP_USE_MONITOR 6670 __kmp_monitor_wakeups = 6671 KMP_WAKEUPS_FROM_BLOCKTIME(__kmp_dflt_blocktime, __kmp_monitor_wakeups); 6672 __kmp_bt_intervals = 6673 KMP_INTERVALS_FROM_BLOCKTIME(__kmp_dflt_blocktime, __kmp_monitor_wakeups); 6674 #endif 6675 // From "KMP_LIBRARY" part of __kmp_env_initialize() 6676 __kmp_library = library_throughput; 6677 // From KMP_SCHEDULE initialization 6678 __kmp_static = kmp_sch_static_balanced; 6679 // AC: do not use analytical here, because it is non-monotonous 6680 //__kmp_guided = kmp_sch_guided_iterative_chunked; 6681 //__kmp_auto = kmp_sch_guided_analytical_chunked; // AC: it is the default, no 6682 // need to repeat assignment 6683 // Barrier initialization. Moved here from __kmp_env_initialize() Barrier branch 6684 // bit control and barrier method control parts 6685 #if KMP_FAST_REDUCTION_BARRIER 6686 #define kmp_reduction_barrier_gather_bb ((int)1) 6687 #define kmp_reduction_barrier_release_bb ((int)1) 6688 #define kmp_reduction_barrier_gather_pat bp_hyper_bar 6689 #define kmp_reduction_barrier_release_pat bp_hyper_bar 6690 #endif // KMP_FAST_REDUCTION_BARRIER 6691 for (i = bs_plain_barrier; i < bs_last_barrier; i++) { 6692 __kmp_barrier_gather_branch_bits[i] = __kmp_barrier_gather_bb_dflt; 6693 __kmp_barrier_release_branch_bits[i] = __kmp_barrier_release_bb_dflt; 6694 __kmp_barrier_gather_pattern[i] = __kmp_barrier_gather_pat_dflt; 6695 __kmp_barrier_release_pattern[i] = __kmp_barrier_release_pat_dflt; 6696 #if KMP_FAST_REDUCTION_BARRIER 6697 if (i == bs_reduction_barrier) { // tested and confirmed on ALTIX only ( 6698 // lin_64 ): hyper,1 6699 __kmp_barrier_gather_branch_bits[i] = kmp_reduction_barrier_gather_bb; 6700 __kmp_barrier_release_branch_bits[i] = kmp_reduction_barrier_release_bb; 6701 __kmp_barrier_gather_pattern[i] = kmp_reduction_barrier_gather_pat; 6702 __kmp_barrier_release_pattern[i] = kmp_reduction_barrier_release_pat; 6703 } 6704 #endif // KMP_FAST_REDUCTION_BARRIER 6705 } 6706 #if KMP_FAST_REDUCTION_BARRIER 6707 #undef kmp_reduction_barrier_release_pat 6708 #undef kmp_reduction_barrier_gather_pat 6709 #undef kmp_reduction_barrier_release_bb 6710 #undef kmp_reduction_barrier_gather_bb 6711 #endif // KMP_FAST_REDUCTION_BARRIER 6712 #if KMP_MIC_SUPPORTED 6713 if (__kmp_mic_type == mic2) { // KNC 6714 // AC: plane=3,2, forkjoin=2,1 are optimal for 240 threads on KNC 6715 __kmp_barrier_gather_branch_bits[bs_plain_barrier] = 3; // plain gather 6716 __kmp_barrier_release_branch_bits[bs_forkjoin_barrier] = 6717 1; // forkjoin release 6718 __kmp_barrier_gather_pattern[bs_forkjoin_barrier] = bp_hierarchical_bar; 6719 __kmp_barrier_release_pattern[bs_forkjoin_barrier] = bp_hierarchical_bar; 6720 } 6721 #if KMP_FAST_REDUCTION_BARRIER 6722 if (__kmp_mic_type == mic2) { // KNC 6723 __kmp_barrier_gather_pattern[bs_reduction_barrier] = bp_hierarchical_bar; 6724 __kmp_barrier_release_pattern[bs_reduction_barrier] = bp_hierarchical_bar; 6725 } 6726 #endif // KMP_FAST_REDUCTION_BARRIER 6727 #endif // KMP_MIC_SUPPORTED 6728 6729 // From KMP_CHECKS initialization 6730 #ifdef KMP_DEBUG 6731 __kmp_env_checks = TRUE; /* development versions have the extra checks */ 6732 #else 6733 __kmp_env_checks = FALSE; /* port versions do not have the extra checks */ 6734 #endif 6735 6736 // From "KMP_FOREIGN_THREADS_THREADPRIVATE" initialization 6737 __kmp_foreign_tp = TRUE; 6738 6739 __kmp_global.g.g_dynamic = FALSE; 6740 __kmp_global.g.g_dynamic_mode = dynamic_default; 6741 6742 __kmp_env_initialize(NULL); 6743 6744 // Print all messages in message catalog for testing purposes. 6745 #ifdef KMP_DEBUG 6746 char const *val = __kmp_env_get("KMP_DUMP_CATALOG"); 6747 if (__kmp_str_match_true(val)) { 6748 kmp_str_buf_t buffer; 6749 __kmp_str_buf_init(&buffer); 6750 __kmp_i18n_dump_catalog(&buffer); 6751 __kmp_printf("%s", buffer.str); 6752 __kmp_str_buf_free(&buffer); 6753 } 6754 __kmp_env_free(&val); 6755 #endif 6756 6757 __kmp_threads_capacity = 6758 __kmp_initial_threads_capacity(__kmp_dflt_team_nth_ub); 6759 // Moved here from __kmp_env_initialize() "KMP_ALL_THREADPRIVATE" part 6760 __kmp_tp_capacity = __kmp_default_tp_capacity( 6761 __kmp_dflt_team_nth_ub, __kmp_max_nth, __kmp_allThreadsSpecified); 6762 6763 // If the library is shut down properly, both pools must be NULL. Just in 6764 // case, set them to NULL -- some memory may leak, but subsequent code will 6765 // work even if pools are not freed. 6766 KMP_DEBUG_ASSERT(__kmp_thread_pool == NULL); 6767 KMP_DEBUG_ASSERT(__kmp_thread_pool_insert_pt == NULL); 6768 KMP_DEBUG_ASSERT(__kmp_team_pool == NULL); 6769 __kmp_thread_pool = NULL; 6770 __kmp_thread_pool_insert_pt = NULL; 6771 __kmp_team_pool = NULL; 6772 6773 /* Allocate all of the variable sized records */ 6774 /* NOTE: __kmp_threads_capacity entries are allocated, but the arrays are 6775 * expandable */ 6776 /* Since allocation is cache-aligned, just add extra padding at the end */ 6777 size = 6778 (sizeof(kmp_info_t *) + sizeof(kmp_root_t *)) * __kmp_threads_capacity + 6779 CACHE_LINE; 6780 __kmp_threads = (kmp_info_t **)__kmp_allocate(size); 6781 __kmp_root = (kmp_root_t **)((char *)__kmp_threads + 6782 sizeof(kmp_info_t *) * __kmp_threads_capacity); 6783 6784 /* init thread counts */ 6785 KMP_DEBUG_ASSERT(__kmp_all_nth == 6786 0); // Asserts fail if the library is reinitializing and 6787 KMP_DEBUG_ASSERT(__kmp_nth == 0); // something was wrong in termination. 6788 __kmp_all_nth = 0; 6789 __kmp_nth = 0; 6790 6791 /* setup the uber master thread and hierarchy */ 6792 gtid = __kmp_register_root(TRUE); 6793 KA_TRACE(10, ("__kmp_do_serial_initialize T#%d\n", gtid)); 6794 KMP_ASSERT(KMP_UBER_GTID(gtid)); 6795 KMP_ASSERT(KMP_INITIAL_GTID(gtid)); 6796 6797 KMP_MB(); /* Flush all pending memory write invalidates. */ 6798 6799 __kmp_common_initialize(); 6800 6801 #if KMP_OS_UNIX 6802 /* invoke the child fork handler */ 6803 __kmp_register_atfork(); 6804 #endif 6805 6806 #if !KMP_DYNAMIC_LIB 6807 { 6808 /* Invoke the exit handler when the program finishes, only for static 6809 library. For dynamic library, we already have _fini and DllMain. */ 6810 int rc = atexit(__kmp_internal_end_atexit); 6811 if (rc != 0) { 6812 __kmp_fatal(KMP_MSG(FunctionError, "atexit()"), KMP_ERR(rc), 6813 __kmp_msg_null); 6814 } 6815 } 6816 #endif 6817 6818 #if KMP_HANDLE_SIGNALS 6819 #if KMP_OS_UNIX 6820 /* NOTE: make sure that this is called before the user installs their own 6821 signal handlers so that the user handlers are called first. this way they 6822 can return false, not call our handler, avoid terminating the library, and 6823 continue execution where they left off. */ 6824 __kmp_install_signals(FALSE); 6825 #endif /* KMP_OS_UNIX */ 6826 #if KMP_OS_WINDOWS 6827 __kmp_install_signals(TRUE); 6828 #endif /* KMP_OS_WINDOWS */ 6829 #endif 6830 6831 /* we have finished the serial initialization */ 6832 __kmp_init_counter++; 6833 6834 __kmp_init_serial = TRUE; 6835 6836 if (__kmp_settings) { 6837 __kmp_env_print(); 6838 } 6839 6840 #if OMP_40_ENABLED 6841 if (__kmp_display_env || __kmp_display_env_verbose) { 6842 __kmp_env_print_2(); 6843 } 6844 #endif // OMP_40_ENABLED 6845 6846 #if OMPT_SUPPORT 6847 ompt_post_init(); 6848 #endif 6849 6850 KMP_MB(); 6851 6852 KA_TRACE(10, ("__kmp_do_serial_initialize: exit\n")); 6853 } 6854 6855 void __kmp_serial_initialize(void) { 6856 if (__kmp_init_serial) { 6857 return; 6858 } 6859 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6860 if (__kmp_init_serial) { 6861 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6862 return; 6863 } 6864 __kmp_do_serial_initialize(); 6865 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6866 } 6867 6868 static void __kmp_do_middle_initialize(void) { 6869 int i, j; 6870 int prev_dflt_team_nth; 6871 6872 if (!__kmp_init_serial) { 6873 __kmp_do_serial_initialize(); 6874 } 6875 6876 KA_TRACE(10, ("__kmp_middle_initialize: enter\n")); 6877 6878 // Save the previous value for the __kmp_dflt_team_nth so that 6879 // we can avoid some reinitialization if it hasn't changed. 6880 prev_dflt_team_nth = __kmp_dflt_team_nth; 6881 6882 #if KMP_AFFINITY_SUPPORTED 6883 // __kmp_affinity_initialize() will try to set __kmp_ncores to the 6884 // number of cores on the machine. 6885 __kmp_affinity_initialize(); 6886 6887 // Run through the __kmp_threads array and set the affinity mask 6888 // for each root thread that is currently registered with the RTL. 6889 for (i = 0; i < __kmp_threads_capacity; i++) { 6890 if (TCR_PTR(__kmp_threads[i]) != NULL) { 6891 __kmp_affinity_set_init_mask(i, TRUE); 6892 } 6893 } 6894 #endif /* KMP_AFFINITY_SUPPORTED */ 6895 6896 KMP_ASSERT(__kmp_xproc > 0); 6897 if (__kmp_avail_proc == 0) { 6898 __kmp_avail_proc = __kmp_xproc; 6899 } 6900 6901 // If there were empty places in num_threads list (OMP_NUM_THREADS=,,2,3), 6902 // correct them now 6903 j = 0; 6904 while ((j < __kmp_nested_nth.used) && !__kmp_nested_nth.nth[j]) { 6905 __kmp_nested_nth.nth[j] = __kmp_dflt_team_nth = __kmp_dflt_team_nth_ub = 6906 __kmp_avail_proc; 6907 j++; 6908 } 6909 6910 if (__kmp_dflt_team_nth == 0) { 6911 #ifdef KMP_DFLT_NTH_CORES 6912 // Default #threads = #cores 6913 __kmp_dflt_team_nth = __kmp_ncores; 6914 KA_TRACE(20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = " 6915 "__kmp_ncores (%d)\n", 6916 __kmp_dflt_team_nth)); 6917 #else 6918 // Default #threads = #available OS procs 6919 __kmp_dflt_team_nth = __kmp_avail_proc; 6920 KA_TRACE(20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = " 6921 "__kmp_avail_proc(%d)\n", 6922 __kmp_dflt_team_nth)); 6923 #endif /* KMP_DFLT_NTH_CORES */ 6924 } 6925 6926 if (__kmp_dflt_team_nth < KMP_MIN_NTH) { 6927 __kmp_dflt_team_nth = KMP_MIN_NTH; 6928 } 6929 if (__kmp_dflt_team_nth > __kmp_sys_max_nth) { 6930 __kmp_dflt_team_nth = __kmp_sys_max_nth; 6931 } 6932 6933 // There's no harm in continuing if the following check fails, 6934 // but it indicates an error in the previous logic. 6935 KMP_DEBUG_ASSERT(__kmp_dflt_team_nth <= __kmp_dflt_team_nth_ub); 6936 6937 if (__kmp_dflt_team_nth != prev_dflt_team_nth) { 6938 // Run through the __kmp_threads array and set the num threads icv for each 6939 // root thread that is currently registered with the RTL (which has not 6940 // already explicitly set its nthreads-var with a call to 6941 // omp_set_num_threads()). 6942 for (i = 0; i < __kmp_threads_capacity; i++) { 6943 kmp_info_t *thread = __kmp_threads[i]; 6944 if (thread == NULL) 6945 continue; 6946 if (thread->th.th_current_task->td_icvs.nproc != 0) 6947 continue; 6948 6949 set__nproc(__kmp_threads[i], __kmp_dflt_team_nth); 6950 } 6951 } 6952 KA_TRACE( 6953 20, 6954 ("__kmp_middle_initialize: final value for __kmp_dflt_team_nth = %d\n", 6955 __kmp_dflt_team_nth)); 6956 6957 #ifdef KMP_ADJUST_BLOCKTIME 6958 /* Adjust blocktime to zero if necessary now that __kmp_avail_proc is set */ 6959 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 6960 KMP_DEBUG_ASSERT(__kmp_avail_proc > 0); 6961 if (__kmp_nth > __kmp_avail_proc) { 6962 __kmp_zero_bt = TRUE; 6963 } 6964 } 6965 #endif /* KMP_ADJUST_BLOCKTIME */ 6966 6967 /* we have finished middle initialization */ 6968 TCW_SYNC_4(__kmp_init_middle, TRUE); 6969 6970 KA_TRACE(10, ("__kmp_do_middle_initialize: exit\n")); 6971 } 6972 6973 void __kmp_middle_initialize(void) { 6974 if (__kmp_init_middle) { 6975 return; 6976 } 6977 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6978 if (__kmp_init_middle) { 6979 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6980 return; 6981 } 6982 __kmp_do_middle_initialize(); 6983 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6984 } 6985 6986 void __kmp_parallel_initialize(void) { 6987 int gtid = __kmp_entry_gtid(); // this might be a new root 6988 6989 /* synchronize parallel initialization (for sibling) */ 6990 if (TCR_4(__kmp_init_parallel)) 6991 return; 6992 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6993 if (TCR_4(__kmp_init_parallel)) { 6994 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6995 return; 6996 } 6997 6998 /* TODO reinitialization after we have already shut down */ 6999 if (TCR_4(__kmp_global.g.g_done)) { 7000 KA_TRACE( 7001 10, 7002 ("__kmp_parallel_initialize: attempt to init while shutting down\n")); 7003 __kmp_infinite_loop(); 7004 } 7005 7006 /* jc: The lock __kmp_initz_lock is already held, so calling 7007 __kmp_serial_initialize would cause a deadlock. So we call 7008 __kmp_do_serial_initialize directly. */ 7009 if (!__kmp_init_middle) { 7010 __kmp_do_middle_initialize(); 7011 } 7012 7013 #if OMP_50_ENABLED 7014 __kmp_resume_if_hard_paused(); 7015 #endif 7016 7017 /* begin initialization */ 7018 KA_TRACE(10, ("__kmp_parallel_initialize: enter\n")); 7019 KMP_ASSERT(KMP_UBER_GTID(gtid)); 7020 7021 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 7022 // Save the FP control regs. 7023 // Worker threads will set theirs to these values at thread startup. 7024 __kmp_store_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word); 7025 __kmp_store_mxcsr(&__kmp_init_mxcsr); 7026 __kmp_init_mxcsr &= KMP_X86_MXCSR_MASK; 7027 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 7028 7029 #if KMP_OS_UNIX 7030 #if KMP_HANDLE_SIGNALS 7031 /* must be after __kmp_serial_initialize */ 7032 __kmp_install_signals(TRUE); 7033 #endif 7034 #endif 7035 7036 __kmp_suspend_initialize(); 7037 7038 #if defined(USE_LOAD_BALANCE) 7039 if (__kmp_global.g.g_dynamic_mode == dynamic_default) { 7040 __kmp_global.g.g_dynamic_mode = dynamic_load_balance; 7041 } 7042 #else 7043 if (__kmp_global.g.g_dynamic_mode == dynamic_default) { 7044 __kmp_global.g.g_dynamic_mode = dynamic_thread_limit; 7045 } 7046 #endif 7047 7048 if (__kmp_version) { 7049 __kmp_print_version_2(); 7050 } 7051 7052 /* we have finished parallel initialization */ 7053 TCW_SYNC_4(__kmp_init_parallel, TRUE); 7054 7055 KMP_MB(); 7056 KA_TRACE(10, ("__kmp_parallel_initialize: exit\n")); 7057 7058 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7059 } 7060 7061 /* ------------------------------------------------------------------------ */ 7062 7063 void __kmp_run_before_invoked_task(int gtid, int tid, kmp_info_t *this_thr, 7064 kmp_team_t *team) { 7065 kmp_disp_t *dispatch; 7066 7067 KMP_MB(); 7068 7069 /* none of the threads have encountered any constructs, yet. */ 7070 this_thr->th.th_local.this_construct = 0; 7071 #if KMP_CACHE_MANAGE 7072 KMP_CACHE_PREFETCH(&this_thr->th.th_bar[bs_forkjoin_barrier].bb.b_arrived); 7073 #endif /* KMP_CACHE_MANAGE */ 7074 dispatch = (kmp_disp_t *)TCR_PTR(this_thr->th.th_dispatch); 7075 KMP_DEBUG_ASSERT(dispatch); 7076 KMP_DEBUG_ASSERT(team->t.t_dispatch); 7077 // KMP_DEBUG_ASSERT( this_thr->th.th_dispatch == &team->t.t_dispatch[ 7078 // this_thr->th.th_info.ds.ds_tid ] ); 7079 7080 dispatch->th_disp_index = 0; /* reset the dispatch buffer counter */ 7081 #if OMP_45_ENABLED 7082 dispatch->th_doacross_buf_idx = 7083 0; /* reset the doacross dispatch buffer counter */ 7084 #endif 7085 if (__kmp_env_consistency_check) 7086 __kmp_push_parallel(gtid, team->t.t_ident); 7087 7088 KMP_MB(); /* Flush all pending memory write invalidates. */ 7089 } 7090 7091 void __kmp_run_after_invoked_task(int gtid, int tid, kmp_info_t *this_thr, 7092 kmp_team_t *team) { 7093 if (__kmp_env_consistency_check) 7094 __kmp_pop_parallel(gtid, team->t.t_ident); 7095 7096 __kmp_finish_implicit_task(this_thr); 7097 } 7098 7099 int __kmp_invoke_task_func(int gtid) { 7100 int rc; 7101 int tid = __kmp_tid_from_gtid(gtid); 7102 kmp_info_t *this_thr = __kmp_threads[gtid]; 7103 kmp_team_t *team = this_thr->th.th_team; 7104 7105 __kmp_run_before_invoked_task(gtid, tid, this_thr, team); 7106 #if USE_ITT_BUILD 7107 if (__itt_stack_caller_create_ptr) { 7108 __kmp_itt_stack_callee_enter( 7109 (__itt_caller) 7110 team->t.t_stack_id); // inform ittnotify about entering user's code 7111 } 7112 #endif /* USE_ITT_BUILD */ 7113 #if INCLUDE_SSC_MARKS 7114 SSC_MARK_INVOKING(); 7115 #endif 7116 7117 #if OMPT_SUPPORT 7118 void *dummy; 7119 void **exit_runtime_p; 7120 ompt_data_t *my_task_data; 7121 ompt_data_t *my_parallel_data; 7122 int ompt_team_size; 7123 7124 if (ompt_enabled.enabled) { 7125 exit_runtime_p = &( 7126 team->t.t_implicit_task_taskdata[tid].ompt_task_info.frame.exit_frame.ptr); 7127 } else { 7128 exit_runtime_p = &dummy; 7129 } 7130 7131 my_task_data = 7132 &(team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data); 7133 my_parallel_data = &(team->t.ompt_team_info.parallel_data); 7134 if (ompt_enabled.ompt_callback_implicit_task) { 7135 ompt_team_size = team->t.t_nproc; 7136 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 7137 ompt_scope_begin, my_parallel_data, my_task_data, ompt_team_size, 7138 __kmp_tid_from_gtid(gtid), ompt_task_implicit); // TODO: Can this be ompt_task_initial? 7139 OMPT_CUR_TASK_INFO(this_thr)->thread_num = __kmp_tid_from_gtid(gtid); 7140 } 7141 #endif 7142 7143 #if KMP_STATS_ENABLED 7144 stats_state_e previous_state = KMP_GET_THREAD_STATE(); 7145 if (previous_state == stats_state_e::TEAMS_REGION) { 7146 KMP_PUSH_PARTITIONED_TIMER(OMP_teams); 7147 } else { 7148 KMP_PUSH_PARTITIONED_TIMER(OMP_parallel); 7149 } 7150 KMP_SET_THREAD_STATE(IMPLICIT_TASK); 7151 #endif 7152 7153 rc = __kmp_invoke_microtask((microtask_t)TCR_SYNC_PTR(team->t.t_pkfn), gtid, 7154 tid, (int)team->t.t_argc, (void **)team->t.t_argv 7155 #if OMPT_SUPPORT 7156 , 7157 exit_runtime_p 7158 #endif 7159 ); 7160 #if OMPT_SUPPORT 7161 *exit_runtime_p = NULL; 7162 #endif 7163 7164 #if KMP_STATS_ENABLED 7165 if (previous_state == stats_state_e::TEAMS_REGION) { 7166 KMP_SET_THREAD_STATE(previous_state); 7167 } 7168 KMP_POP_PARTITIONED_TIMER(); 7169 #endif 7170 7171 #if USE_ITT_BUILD 7172 if (__itt_stack_caller_create_ptr) { 7173 __kmp_itt_stack_callee_leave( 7174 (__itt_caller) 7175 team->t.t_stack_id); // inform ittnotify about leaving user's code 7176 } 7177 #endif /* USE_ITT_BUILD */ 7178 __kmp_run_after_invoked_task(gtid, tid, this_thr, team); 7179 7180 return rc; 7181 } 7182 7183 #if OMP_40_ENABLED 7184 void __kmp_teams_master(int gtid) { 7185 // This routine is called by all master threads in teams construct 7186 kmp_info_t *thr = __kmp_threads[gtid]; 7187 kmp_team_t *team = thr->th.th_team; 7188 ident_t *loc = team->t.t_ident; 7189 thr->th.th_set_nproc = thr->th.th_teams_size.nth; 7190 KMP_DEBUG_ASSERT(thr->th.th_teams_microtask); 7191 KMP_DEBUG_ASSERT(thr->th.th_set_nproc); 7192 KA_TRACE(20, ("__kmp_teams_master: T#%d, Tid %d, microtask %p\n", gtid, 7193 __kmp_tid_from_gtid(gtid), thr->th.th_teams_microtask)); 7194 7195 // This thread is a new CG root. Set up the proper variables. 7196 kmp_cg_root_t *tmp = (kmp_cg_root_t *)__kmp_allocate(sizeof(kmp_cg_root_t)); 7197 tmp->cg_root = thr; // Make thr the CG root 7198 // Init to thread limit that was stored when league masters were forked 7199 tmp->cg_thread_limit = thr->th.th_current_task->td_icvs.thread_limit; 7200 tmp->cg_nthreads = 1; // Init counter to one active thread, this one 7201 KA_TRACE(100, ("__kmp_teams_master: Thread %p created node %p and init" 7202 " cg_threads to 1\n", 7203 thr, tmp)); 7204 tmp->up = thr->th.th_cg_roots; 7205 thr->th.th_cg_roots = tmp; 7206 7207 // Launch league of teams now, but not let workers execute 7208 // (they hang on fork barrier until next parallel) 7209 #if INCLUDE_SSC_MARKS 7210 SSC_MARK_FORKING(); 7211 #endif 7212 __kmp_fork_call(loc, gtid, fork_context_intel, team->t.t_argc, 7213 (microtask_t)thr->th.th_teams_microtask, // "wrapped" task 7214 VOLATILE_CAST(launch_t) __kmp_invoke_task_func, NULL); 7215 #if INCLUDE_SSC_MARKS 7216 SSC_MARK_JOINING(); 7217 #endif 7218 // If the team size was reduced from the limit, set it to the new size 7219 if (thr->th.th_team_nproc < thr->th.th_teams_size.nth) 7220 thr->th.th_teams_size.nth = thr->th.th_team_nproc; 7221 // AC: last parameter "1" eliminates join barrier which won't work because 7222 // worker threads are in a fork barrier waiting for more parallel regions 7223 __kmp_join_call(loc, gtid 7224 #if OMPT_SUPPORT 7225 , 7226 fork_context_intel 7227 #endif 7228 , 7229 1); 7230 } 7231 7232 int __kmp_invoke_teams_master(int gtid) { 7233 kmp_info_t *this_thr = __kmp_threads[gtid]; 7234 kmp_team_t *team = this_thr->th.th_team; 7235 #if KMP_DEBUG 7236 if (!__kmp_threads[gtid]->th.th_team->t.t_serialized) 7237 KMP_DEBUG_ASSERT((void *)__kmp_threads[gtid]->th.th_team->t.t_pkfn == 7238 (void *)__kmp_teams_master); 7239 #endif 7240 __kmp_run_before_invoked_task(gtid, 0, this_thr, team); 7241 __kmp_teams_master(gtid); 7242 __kmp_run_after_invoked_task(gtid, 0, this_thr, team); 7243 return 1; 7244 } 7245 #endif /* OMP_40_ENABLED */ 7246 7247 /* this sets the requested number of threads for the next parallel region 7248 encountered by this team. since this should be enclosed in the forkjoin 7249 critical section it should avoid race conditions with assymmetrical nested 7250 parallelism */ 7251 7252 void __kmp_push_num_threads(ident_t *id, int gtid, int num_threads) { 7253 kmp_info_t *thr = __kmp_threads[gtid]; 7254 7255 if (num_threads > 0) 7256 thr->th.th_set_nproc = num_threads; 7257 } 7258 7259 #if OMP_40_ENABLED 7260 7261 /* this sets the requested number of teams for the teams region and/or 7262 the number of threads for the next parallel region encountered */ 7263 void __kmp_push_num_teams(ident_t *id, int gtid, int num_teams, 7264 int num_threads) { 7265 kmp_info_t *thr = __kmp_threads[gtid]; 7266 KMP_DEBUG_ASSERT(num_teams >= 0); 7267 KMP_DEBUG_ASSERT(num_threads >= 0); 7268 7269 if (num_teams == 0) 7270 num_teams = 1; // default number of teams is 1. 7271 if (num_teams > __kmp_teams_max_nth) { // if too many teams requested? 7272 if (!__kmp_reserve_warn) { 7273 __kmp_reserve_warn = 1; 7274 __kmp_msg(kmp_ms_warning, 7275 KMP_MSG(CantFormThrTeam, num_teams, __kmp_teams_max_nth), 7276 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 7277 } 7278 num_teams = __kmp_teams_max_nth; 7279 } 7280 // Set number of teams (number of threads in the outer "parallel" of the 7281 // teams) 7282 thr->th.th_set_nproc = thr->th.th_teams_size.nteams = num_teams; 7283 7284 // Remember the number of threads for inner parallel regions 7285 if (num_threads == 0) { 7286 if (!TCR_4(__kmp_init_middle)) 7287 __kmp_middle_initialize(); // get __kmp_avail_proc calculated 7288 num_threads = __kmp_avail_proc / num_teams; 7289 if (num_teams * num_threads > __kmp_teams_max_nth) { 7290 // adjust num_threads w/o warning as it is not user setting 7291 num_threads = __kmp_teams_max_nth / num_teams; 7292 } 7293 } else { 7294 // This thread will be the master of the league masters 7295 // Store new thread limit; old limit is saved in th_cg_roots list 7296 thr->th.th_current_task->td_icvs.thread_limit = num_threads; 7297 7298 if (num_teams * num_threads > __kmp_teams_max_nth) { 7299 int new_threads = __kmp_teams_max_nth / num_teams; 7300 if (!__kmp_reserve_warn) { // user asked for too many threads 7301 __kmp_reserve_warn = 1; // conflicts with KMP_TEAMS_THREAD_LIMIT 7302 __kmp_msg(kmp_ms_warning, 7303 KMP_MSG(CantFormThrTeam, num_threads, new_threads), 7304 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 7305 } 7306 num_threads = new_threads; 7307 } 7308 } 7309 thr->th.th_teams_size.nth = num_threads; 7310 } 7311 7312 // Set the proc_bind var to use in the following parallel region. 7313 void __kmp_push_proc_bind(ident_t *id, int gtid, kmp_proc_bind_t proc_bind) { 7314 kmp_info_t *thr = __kmp_threads[gtid]; 7315 thr->th.th_set_proc_bind = proc_bind; 7316 } 7317 7318 #endif /* OMP_40_ENABLED */ 7319 7320 /* Launch the worker threads into the microtask. */ 7321 7322 void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team) { 7323 kmp_info_t *this_thr = __kmp_threads[gtid]; 7324 7325 #ifdef KMP_DEBUG 7326 int f; 7327 #endif /* KMP_DEBUG */ 7328 7329 KMP_DEBUG_ASSERT(team); 7330 KMP_DEBUG_ASSERT(this_thr->th.th_team == team); 7331 KMP_ASSERT(KMP_MASTER_GTID(gtid)); 7332 KMP_MB(); /* Flush all pending memory write invalidates. */ 7333 7334 team->t.t_construct = 0; /* no single directives seen yet */ 7335 team->t.t_ordered.dt.t_value = 7336 0; /* thread 0 enters the ordered section first */ 7337 7338 /* Reset the identifiers on the dispatch buffer */ 7339 KMP_DEBUG_ASSERT(team->t.t_disp_buffer); 7340 if (team->t.t_max_nproc > 1) { 7341 int i; 7342 for (i = 0; i < __kmp_dispatch_num_buffers; ++i) { 7343 team->t.t_disp_buffer[i].buffer_index = i; 7344 #if OMP_45_ENABLED 7345 team->t.t_disp_buffer[i].doacross_buf_idx = i; 7346 #endif 7347 } 7348 } else { 7349 team->t.t_disp_buffer[0].buffer_index = 0; 7350 #if OMP_45_ENABLED 7351 team->t.t_disp_buffer[0].doacross_buf_idx = 0; 7352 #endif 7353 } 7354 7355 KMP_MB(); /* Flush all pending memory write invalidates. */ 7356 KMP_ASSERT(this_thr->th.th_team == team); 7357 7358 #ifdef KMP_DEBUG 7359 for (f = 0; f < team->t.t_nproc; f++) { 7360 KMP_DEBUG_ASSERT(team->t.t_threads[f] && 7361 team->t.t_threads[f]->th.th_team_nproc == team->t.t_nproc); 7362 } 7363 #endif /* KMP_DEBUG */ 7364 7365 /* release the worker threads so they may begin working */ 7366 __kmp_fork_barrier(gtid, 0); 7367 } 7368 7369 void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team) { 7370 kmp_info_t *this_thr = __kmp_threads[gtid]; 7371 7372 KMP_DEBUG_ASSERT(team); 7373 KMP_DEBUG_ASSERT(this_thr->th.th_team == team); 7374 KMP_ASSERT(KMP_MASTER_GTID(gtid)); 7375 KMP_MB(); /* Flush all pending memory write invalidates. */ 7376 7377 /* Join barrier after fork */ 7378 7379 #ifdef KMP_DEBUG 7380 if (__kmp_threads[gtid] && 7381 __kmp_threads[gtid]->th.th_team_nproc != team->t.t_nproc) { 7382 __kmp_printf("GTID: %d, __kmp_threads[%d]=%p\n", gtid, gtid, 7383 __kmp_threads[gtid]); 7384 __kmp_printf("__kmp_threads[%d]->th.th_team_nproc=%d, TEAM: %p, " 7385 "team->t.t_nproc=%d\n", 7386 gtid, __kmp_threads[gtid]->th.th_team_nproc, team, 7387 team->t.t_nproc); 7388 __kmp_print_structure(); 7389 } 7390 KMP_DEBUG_ASSERT(__kmp_threads[gtid] && 7391 __kmp_threads[gtid]->th.th_team_nproc == team->t.t_nproc); 7392 #endif /* KMP_DEBUG */ 7393 7394 __kmp_join_barrier(gtid); /* wait for everyone */ 7395 #if OMPT_SUPPORT 7396 if (ompt_enabled.enabled && 7397 this_thr->th.ompt_thread_info.state == ompt_state_wait_barrier_implicit) { 7398 int ds_tid = this_thr->th.th_info.ds.ds_tid; 7399 ompt_data_t *task_data = OMPT_CUR_TASK_DATA(this_thr); 7400 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 7401 #if OMPT_OPTIONAL 7402 void *codeptr = NULL; 7403 if (KMP_MASTER_TID(ds_tid) && 7404 (ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait) || 7405 ompt_callbacks.ompt_callback(ompt_callback_sync_region))) 7406 codeptr = OMPT_CUR_TEAM_INFO(this_thr)->master_return_address; 7407 7408 if (ompt_enabled.ompt_callback_sync_region_wait) { 7409 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 7410 ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, task_data, 7411 codeptr); 7412 } 7413 if (ompt_enabled.ompt_callback_sync_region) { 7414 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 7415 ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, task_data, 7416 codeptr); 7417 } 7418 #endif 7419 if (!KMP_MASTER_TID(ds_tid) && ompt_enabled.ompt_callback_implicit_task) { 7420 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 7421 ompt_scope_end, NULL, task_data, 0, ds_tid, ompt_task_implicit); // TODO: Can this be ompt_task_initial? 7422 } 7423 } 7424 #endif 7425 7426 KMP_MB(); /* Flush all pending memory write invalidates. */ 7427 KMP_ASSERT(this_thr->th.th_team == team); 7428 } 7429 7430 /* ------------------------------------------------------------------------ */ 7431 7432 #ifdef USE_LOAD_BALANCE 7433 7434 // Return the worker threads actively spinning in the hot team, if we 7435 // are at the outermost level of parallelism. Otherwise, return 0. 7436 static int __kmp_active_hot_team_nproc(kmp_root_t *root) { 7437 int i; 7438 int retval; 7439 kmp_team_t *hot_team; 7440 7441 if (root->r.r_active) { 7442 return 0; 7443 } 7444 hot_team = root->r.r_hot_team; 7445 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { 7446 return hot_team->t.t_nproc - 1; // Don't count master thread 7447 } 7448 7449 // Skip the master thread - it is accounted for elsewhere. 7450 retval = 0; 7451 for (i = 1; i < hot_team->t.t_nproc; i++) { 7452 if (hot_team->t.t_threads[i]->th.th_active) { 7453 retval++; 7454 } 7455 } 7456 return retval; 7457 } 7458 7459 // Perform an automatic adjustment to the number of 7460 // threads used by the next parallel region. 7461 static int __kmp_load_balance_nproc(kmp_root_t *root, int set_nproc) { 7462 int retval; 7463 int pool_active; 7464 int hot_team_active; 7465 int team_curr_active; 7466 int system_active; 7467 7468 KB_TRACE(20, ("__kmp_load_balance_nproc: called root:%p set_nproc:%d\n", root, 7469 set_nproc)); 7470 KMP_DEBUG_ASSERT(root); 7471 KMP_DEBUG_ASSERT(root->r.r_root_team->t.t_threads[0] 7472 ->th.th_current_task->td_icvs.dynamic == TRUE); 7473 KMP_DEBUG_ASSERT(set_nproc > 1); 7474 7475 if (set_nproc == 1) { 7476 KB_TRACE(20, ("__kmp_load_balance_nproc: serial execution.\n")); 7477 return 1; 7478 } 7479 7480 // Threads that are active in the thread pool, active in the hot team for this 7481 // particular root (if we are at the outer par level), and the currently 7482 // executing thread (to become the master) are available to add to the new 7483 // team, but are currently contributing to the system load, and must be 7484 // accounted for. 7485 pool_active = __kmp_thread_pool_active_nth; 7486 hot_team_active = __kmp_active_hot_team_nproc(root); 7487 team_curr_active = pool_active + hot_team_active + 1; 7488 7489 // Check the system load. 7490 system_active = __kmp_get_load_balance(__kmp_avail_proc + team_curr_active); 7491 KB_TRACE(30, ("__kmp_load_balance_nproc: system active = %d pool active = %d " 7492 "hot team active = %d\n", 7493 system_active, pool_active, hot_team_active)); 7494 7495 if (system_active < 0) { 7496 // There was an error reading the necessary info from /proc, so use the 7497 // thread limit algorithm instead. Once we set __kmp_global.g.g_dynamic_mode 7498 // = dynamic_thread_limit, we shouldn't wind up getting back here. 7499 __kmp_global.g.g_dynamic_mode = dynamic_thread_limit; 7500 KMP_WARNING(CantLoadBalUsing, "KMP_DYNAMIC_MODE=thread limit"); 7501 7502 // Make this call behave like the thread limit algorithm. 7503 retval = __kmp_avail_proc - __kmp_nth + 7504 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 7505 if (retval > set_nproc) { 7506 retval = set_nproc; 7507 } 7508 if (retval < KMP_MIN_NTH) { 7509 retval = KMP_MIN_NTH; 7510 } 7511 7512 KB_TRACE(20, ("__kmp_load_balance_nproc: thread limit exit. retval:%d\n", 7513 retval)); 7514 return retval; 7515 } 7516 7517 // There is a slight delay in the load balance algorithm in detecting new 7518 // running procs. The real system load at this instant should be at least as 7519 // large as the #active omp thread that are available to add to the team. 7520 if (system_active < team_curr_active) { 7521 system_active = team_curr_active; 7522 } 7523 retval = __kmp_avail_proc - system_active + team_curr_active; 7524 if (retval > set_nproc) { 7525 retval = set_nproc; 7526 } 7527 if (retval < KMP_MIN_NTH) { 7528 retval = KMP_MIN_NTH; 7529 } 7530 7531 KB_TRACE(20, ("__kmp_load_balance_nproc: exit. retval:%d\n", retval)); 7532 return retval; 7533 } // __kmp_load_balance_nproc() 7534 7535 #endif /* USE_LOAD_BALANCE */ 7536 7537 /* ------------------------------------------------------------------------ */ 7538 7539 /* NOTE: this is called with the __kmp_init_lock held */ 7540 void __kmp_cleanup(void) { 7541 int f; 7542 7543 KA_TRACE(10, ("__kmp_cleanup: enter\n")); 7544 7545 if (TCR_4(__kmp_init_parallel)) { 7546 #if KMP_HANDLE_SIGNALS 7547 __kmp_remove_signals(); 7548 #endif 7549 TCW_4(__kmp_init_parallel, FALSE); 7550 } 7551 7552 if (TCR_4(__kmp_init_middle)) { 7553 #if KMP_AFFINITY_SUPPORTED 7554 __kmp_affinity_uninitialize(); 7555 #endif /* KMP_AFFINITY_SUPPORTED */ 7556 __kmp_cleanup_hierarchy(); 7557 TCW_4(__kmp_init_middle, FALSE); 7558 } 7559 7560 KA_TRACE(10, ("__kmp_cleanup: go serial cleanup\n")); 7561 7562 if (__kmp_init_serial) { 7563 __kmp_runtime_destroy(); 7564 __kmp_init_serial = FALSE; 7565 } 7566 7567 __kmp_cleanup_threadprivate_caches(); 7568 7569 for (f = 0; f < __kmp_threads_capacity; f++) { 7570 if (__kmp_root[f] != NULL) { 7571 __kmp_free(__kmp_root[f]); 7572 __kmp_root[f] = NULL; 7573 } 7574 } 7575 __kmp_free(__kmp_threads); 7576 // __kmp_threads and __kmp_root were allocated at once, as single block, so 7577 // there is no need in freeing __kmp_root. 7578 __kmp_threads = NULL; 7579 __kmp_root = NULL; 7580 __kmp_threads_capacity = 0; 7581 7582 #if KMP_USE_DYNAMIC_LOCK 7583 __kmp_cleanup_indirect_user_locks(); 7584 #else 7585 __kmp_cleanup_user_locks(); 7586 #endif 7587 7588 #if KMP_AFFINITY_SUPPORTED 7589 KMP_INTERNAL_FREE(CCAST(char *, __kmp_cpuinfo_file)); 7590 __kmp_cpuinfo_file = NULL; 7591 #endif /* KMP_AFFINITY_SUPPORTED */ 7592 7593 #if KMP_USE_ADAPTIVE_LOCKS 7594 #if KMP_DEBUG_ADAPTIVE_LOCKS 7595 __kmp_print_speculative_stats(); 7596 #endif 7597 #endif 7598 KMP_INTERNAL_FREE(__kmp_nested_nth.nth); 7599 __kmp_nested_nth.nth = NULL; 7600 __kmp_nested_nth.size = 0; 7601 __kmp_nested_nth.used = 0; 7602 KMP_INTERNAL_FREE(__kmp_nested_proc_bind.bind_types); 7603 __kmp_nested_proc_bind.bind_types = NULL; 7604 __kmp_nested_proc_bind.size = 0; 7605 __kmp_nested_proc_bind.used = 0; 7606 #if OMP_50_ENABLED 7607 if (__kmp_affinity_format) { 7608 KMP_INTERNAL_FREE(__kmp_affinity_format); 7609 __kmp_affinity_format = NULL; 7610 } 7611 #endif 7612 7613 __kmp_i18n_catclose(); 7614 7615 #if KMP_USE_HIER_SCHED 7616 __kmp_hier_scheds.deallocate(); 7617 #endif 7618 7619 #if KMP_STATS_ENABLED 7620 __kmp_stats_fini(); 7621 #endif 7622 7623 KA_TRACE(10, ("__kmp_cleanup: exit\n")); 7624 } 7625 7626 /* ------------------------------------------------------------------------ */ 7627 7628 int __kmp_ignore_mppbeg(void) { 7629 char *env; 7630 7631 if ((env = getenv("KMP_IGNORE_MPPBEG")) != NULL) { 7632 if (__kmp_str_match_false(env)) 7633 return FALSE; 7634 } 7635 // By default __kmpc_begin() is no-op. 7636 return TRUE; 7637 } 7638 7639 int __kmp_ignore_mppend(void) { 7640 char *env; 7641 7642 if ((env = getenv("KMP_IGNORE_MPPEND")) != NULL) { 7643 if (__kmp_str_match_false(env)) 7644 return FALSE; 7645 } 7646 // By default __kmpc_end() is no-op. 7647 return TRUE; 7648 } 7649 7650 void __kmp_internal_begin(void) { 7651 int gtid; 7652 kmp_root_t *root; 7653 7654 /* this is a very important step as it will register new sibling threads 7655 and assign these new uber threads a new gtid */ 7656 gtid = __kmp_entry_gtid(); 7657 root = __kmp_threads[gtid]->th.th_root; 7658 KMP_ASSERT(KMP_UBER_GTID(gtid)); 7659 7660 if (root->r.r_begin) 7661 return; 7662 __kmp_acquire_lock(&root->r.r_begin_lock, gtid); 7663 if (root->r.r_begin) { 7664 __kmp_release_lock(&root->r.r_begin_lock, gtid); 7665 return; 7666 } 7667 7668 root->r.r_begin = TRUE; 7669 7670 __kmp_release_lock(&root->r.r_begin_lock, gtid); 7671 } 7672 7673 /* ------------------------------------------------------------------------ */ 7674 7675 void __kmp_user_set_library(enum library_type arg) { 7676 int gtid; 7677 kmp_root_t *root; 7678 kmp_info_t *thread; 7679 7680 /* first, make sure we are initialized so we can get our gtid */ 7681 7682 gtid = __kmp_entry_gtid(); 7683 thread = __kmp_threads[gtid]; 7684 7685 root = thread->th.th_root; 7686 7687 KA_TRACE(20, ("__kmp_user_set_library: enter T#%d, arg: %d, %d\n", gtid, arg, 7688 library_serial)); 7689 if (root->r.r_in_parallel) { /* Must be called in serial section of top-level 7690 thread */ 7691 KMP_WARNING(SetLibraryIncorrectCall); 7692 return; 7693 } 7694 7695 switch (arg) { 7696 case library_serial: 7697 thread->th.th_set_nproc = 0; 7698 set__nproc(thread, 1); 7699 break; 7700 case library_turnaround: 7701 thread->th.th_set_nproc = 0; 7702 set__nproc(thread, __kmp_dflt_team_nth ? __kmp_dflt_team_nth 7703 : __kmp_dflt_team_nth_ub); 7704 break; 7705 case library_throughput: 7706 thread->th.th_set_nproc = 0; 7707 set__nproc(thread, __kmp_dflt_team_nth ? __kmp_dflt_team_nth 7708 : __kmp_dflt_team_nth_ub); 7709 break; 7710 default: 7711 KMP_FATAL(UnknownLibraryType, arg); 7712 } 7713 7714 __kmp_aux_set_library(arg); 7715 } 7716 7717 void __kmp_aux_set_stacksize(size_t arg) { 7718 if (!__kmp_init_serial) 7719 __kmp_serial_initialize(); 7720 7721 #if KMP_OS_DARWIN 7722 if (arg & (0x1000 - 1)) { 7723 arg &= ~(0x1000 - 1); 7724 if (arg + 0x1000) /* check for overflow if we round up */ 7725 arg += 0x1000; 7726 } 7727 #endif 7728 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 7729 7730 /* only change the default stacksize before the first parallel region */ 7731 if (!TCR_4(__kmp_init_parallel)) { 7732 size_t value = arg; /* argument is in bytes */ 7733 7734 if (value < __kmp_sys_min_stksize) 7735 value = __kmp_sys_min_stksize; 7736 else if (value > KMP_MAX_STKSIZE) 7737 value = KMP_MAX_STKSIZE; 7738 7739 __kmp_stksize = value; 7740 7741 __kmp_env_stksize = TRUE; /* was KMP_STACKSIZE specified? */ 7742 } 7743 7744 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7745 } 7746 7747 /* set the behaviour of the runtime library */ 7748 /* TODO this can cause some odd behaviour with sibling parallelism... */ 7749 void __kmp_aux_set_library(enum library_type arg) { 7750 __kmp_library = arg; 7751 7752 switch (__kmp_library) { 7753 case library_serial: { 7754 KMP_INFORM(LibraryIsSerial); 7755 } break; 7756 case library_turnaround: 7757 if (__kmp_use_yield == 1 && !__kmp_use_yield_exp_set) 7758 __kmp_use_yield = 2; // only yield when oversubscribed 7759 break; 7760 case library_throughput: 7761 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) 7762 __kmp_dflt_blocktime = 200; 7763 break; 7764 default: 7765 KMP_FATAL(UnknownLibraryType, arg); 7766 } 7767 } 7768 7769 /* Getting team information common for all team API */ 7770 // Returns NULL if not in teams construct 7771 static kmp_team_t *__kmp_aux_get_team_info(int &teams_serialized) { 7772 kmp_info_t *thr = __kmp_entry_thread(); 7773 teams_serialized = 0; 7774 if (thr->th.th_teams_microtask) { 7775 kmp_team_t *team = thr->th.th_team; 7776 int tlevel = thr->th.th_teams_level; // the level of the teams construct 7777 int ii = team->t.t_level; 7778 teams_serialized = team->t.t_serialized; 7779 int level = tlevel + 1; 7780 KMP_DEBUG_ASSERT(ii >= tlevel); 7781 while (ii > level) { 7782 for (teams_serialized = team->t.t_serialized; 7783 (teams_serialized > 0) && (ii > level); teams_serialized--, ii--) { 7784 } 7785 if (team->t.t_serialized && (!teams_serialized)) { 7786 team = team->t.t_parent; 7787 continue; 7788 } 7789 if (ii > level) { 7790 team = team->t.t_parent; 7791 ii--; 7792 } 7793 } 7794 return team; 7795 } 7796 return NULL; 7797 } 7798 7799 int __kmp_aux_get_team_num() { 7800 int serialized; 7801 kmp_team_t *team = __kmp_aux_get_team_info(serialized); 7802 if (team) { 7803 if (serialized > 1) { 7804 return 0; // teams region is serialized ( 1 team of 1 thread ). 7805 } else { 7806 return team->t.t_master_tid; 7807 } 7808 } 7809 return 0; 7810 } 7811 7812 int __kmp_aux_get_num_teams() { 7813 int serialized; 7814 kmp_team_t *team = __kmp_aux_get_team_info(serialized); 7815 if (team) { 7816 if (serialized > 1) { 7817 return 1; 7818 } else { 7819 return team->t.t_parent->t.t_nproc; 7820 } 7821 } 7822 return 1; 7823 } 7824 7825 /* ------------------------------------------------------------------------ */ 7826 7827 #if OMP_50_ENABLED 7828 /* 7829 * Affinity Format Parser 7830 * 7831 * Field is in form of: %[[[0].]size]type 7832 * % and type are required (%% means print a literal '%') 7833 * type is either single char or long name surrounded by {}, 7834 * e.g., N or {num_threads} 7835 * 0 => leading zeros 7836 * . => right justified when size is specified 7837 * by default output is left justified 7838 * size is the *minimum* field length 7839 * All other characters are printed as is 7840 * 7841 * Available field types: 7842 * L {thread_level} - omp_get_level() 7843 * n {thread_num} - omp_get_thread_num() 7844 * h {host} - name of host machine 7845 * P {process_id} - process id (integer) 7846 * T {thread_identifier} - native thread identifier (integer) 7847 * N {num_threads} - omp_get_num_threads() 7848 * A {ancestor_tnum} - omp_get_ancestor_thread_num(omp_get_level()-1) 7849 * a {thread_affinity} - comma separated list of integers or integer ranges 7850 * (values of affinity mask) 7851 * 7852 * Implementation-specific field types can be added 7853 * If a type is unknown, print "undefined" 7854 */ 7855 7856 // Structure holding the short name, long name, and corresponding data type 7857 // for snprintf. A table of these will represent the entire valid keyword 7858 // field types. 7859 typedef struct kmp_affinity_format_field_t { 7860 char short_name; // from spec e.g., L -> thread level 7861 const char *long_name; // from spec thread_level -> thread level 7862 char field_format; // data type for snprintf (typically 'd' or 's' 7863 // for integer or string) 7864 } kmp_affinity_format_field_t; 7865 7866 static const kmp_affinity_format_field_t __kmp_affinity_format_table[] = { 7867 #if KMP_AFFINITY_SUPPORTED 7868 {'A', "thread_affinity", 's'}, 7869 #endif 7870 {'t', "team_num", 'd'}, 7871 {'T', "num_teams", 'd'}, 7872 {'L', "nesting_level", 'd'}, 7873 {'n', "thread_num", 'd'}, 7874 {'N', "num_threads", 'd'}, 7875 {'a', "ancestor_tnum", 'd'}, 7876 {'H', "host", 's'}, 7877 {'P', "process_id", 'd'}, 7878 {'i', "native_thread_id", 'd'}}; 7879 7880 // Return the number of characters it takes to hold field 7881 static int __kmp_aux_capture_affinity_field(int gtid, const kmp_info_t *th, 7882 const char **ptr, 7883 kmp_str_buf_t *field_buffer) { 7884 int rc, format_index, field_value; 7885 const char *width_left, *width_right; 7886 bool pad_zeros, right_justify, parse_long_name, found_valid_name; 7887 static const int FORMAT_SIZE = 20; 7888 char format[FORMAT_SIZE] = {0}; 7889 char absolute_short_name = 0; 7890 7891 KMP_DEBUG_ASSERT(gtid >= 0); 7892 KMP_DEBUG_ASSERT(th); 7893 KMP_DEBUG_ASSERT(**ptr == '%'); 7894 KMP_DEBUG_ASSERT(field_buffer); 7895 7896 __kmp_str_buf_clear(field_buffer); 7897 7898 // Skip the initial % 7899 (*ptr)++; 7900 7901 // Check for %% first 7902 if (**ptr == '%') { 7903 __kmp_str_buf_cat(field_buffer, "%", 1); 7904 (*ptr)++; // skip over the second % 7905 return 1; 7906 } 7907 7908 // Parse field modifiers if they are present 7909 pad_zeros = false; 7910 if (**ptr == '0') { 7911 pad_zeros = true; 7912 (*ptr)++; // skip over 0 7913 } 7914 right_justify = false; 7915 if (**ptr == '.') { 7916 right_justify = true; 7917 (*ptr)++; // skip over . 7918 } 7919 // Parse width of field: [width_left, width_right) 7920 width_left = width_right = NULL; 7921 if (**ptr >= '0' && **ptr <= '9') { 7922 width_left = *ptr; 7923 SKIP_DIGITS(*ptr); 7924 width_right = *ptr; 7925 } 7926 7927 // Create the format for KMP_SNPRINTF based on flags parsed above 7928 format_index = 0; 7929 format[format_index++] = '%'; 7930 if (!right_justify) 7931 format[format_index++] = '-'; 7932 if (pad_zeros) 7933 format[format_index++] = '0'; 7934 if (width_left && width_right) { 7935 int i = 0; 7936 // Only allow 8 digit number widths. 7937 // This also prevents overflowing format variable 7938 while (i < 8 && width_left < width_right) { 7939 format[format_index++] = *width_left; 7940 width_left++; 7941 i++; 7942 } 7943 } 7944 7945 // Parse a name (long or short) 7946 // Canonicalize the name into absolute_short_name 7947 found_valid_name = false; 7948 parse_long_name = (**ptr == '{'); 7949 if (parse_long_name) 7950 (*ptr)++; // skip initial left brace 7951 for (size_t i = 0; i < sizeof(__kmp_affinity_format_table) / 7952 sizeof(__kmp_affinity_format_table[0]); 7953 ++i) { 7954 char short_name = __kmp_affinity_format_table[i].short_name; 7955 const char *long_name = __kmp_affinity_format_table[i].long_name; 7956 char field_format = __kmp_affinity_format_table[i].field_format; 7957 if (parse_long_name) { 7958 int length = KMP_STRLEN(long_name); 7959 if (strncmp(*ptr, long_name, length) == 0) { 7960 found_valid_name = true; 7961 (*ptr) += length; // skip the long name 7962 } 7963 } else if (**ptr == short_name) { 7964 found_valid_name = true; 7965 (*ptr)++; // skip the short name 7966 } 7967 if (found_valid_name) { 7968 format[format_index++] = field_format; 7969 format[format_index++] = '\0'; 7970 absolute_short_name = short_name; 7971 break; 7972 } 7973 } 7974 if (parse_long_name) { 7975 if (**ptr != '}') { 7976 absolute_short_name = 0; 7977 } else { 7978 (*ptr)++; // skip over the right brace 7979 } 7980 } 7981 7982 // Attempt to fill the buffer with the requested 7983 // value using snprintf within __kmp_str_buf_print() 7984 switch (absolute_short_name) { 7985 case 't': 7986 rc = __kmp_str_buf_print(field_buffer, format, __kmp_aux_get_team_num()); 7987 break; 7988 case 'T': 7989 rc = __kmp_str_buf_print(field_buffer, format, __kmp_aux_get_num_teams()); 7990 break; 7991 case 'L': 7992 rc = __kmp_str_buf_print(field_buffer, format, th->th.th_team->t.t_level); 7993 break; 7994 case 'n': 7995 rc = __kmp_str_buf_print(field_buffer, format, __kmp_tid_from_gtid(gtid)); 7996 break; 7997 case 'H': { 7998 static const int BUFFER_SIZE = 256; 7999 char buf[BUFFER_SIZE]; 8000 __kmp_expand_host_name(buf, BUFFER_SIZE); 8001 rc = __kmp_str_buf_print(field_buffer, format, buf); 8002 } break; 8003 case 'P': 8004 rc = __kmp_str_buf_print(field_buffer, format, getpid()); 8005 break; 8006 case 'i': 8007 rc = __kmp_str_buf_print(field_buffer, format, __kmp_gettid()); 8008 break; 8009 case 'N': 8010 rc = __kmp_str_buf_print(field_buffer, format, th->th.th_team->t.t_nproc); 8011 break; 8012 case 'a': 8013 field_value = 8014 __kmp_get_ancestor_thread_num(gtid, th->th.th_team->t.t_level - 1); 8015 rc = __kmp_str_buf_print(field_buffer, format, field_value); 8016 break; 8017 #if KMP_AFFINITY_SUPPORTED 8018 case 'A': { 8019 kmp_str_buf_t buf; 8020 __kmp_str_buf_init(&buf); 8021 __kmp_affinity_str_buf_mask(&buf, th->th.th_affin_mask); 8022 rc = __kmp_str_buf_print(field_buffer, format, buf.str); 8023 __kmp_str_buf_free(&buf); 8024 } break; 8025 #endif 8026 default: 8027 // According to spec, If an implementation does not have info for field 8028 // type, then "undefined" is printed 8029 rc = __kmp_str_buf_print(field_buffer, "%s", "undefined"); 8030 // Skip the field 8031 if (parse_long_name) { 8032 SKIP_TOKEN(*ptr); 8033 if (**ptr == '}') 8034 (*ptr)++; 8035 } else { 8036 (*ptr)++; 8037 } 8038 } 8039 8040 KMP_ASSERT(format_index <= FORMAT_SIZE); 8041 return rc; 8042 } 8043 8044 /* 8045 * Return number of characters needed to hold the affinity string 8046 * (not including null byte character) 8047 * The resultant string is printed to buffer, which the caller can then 8048 * handle afterwards 8049 */ 8050 size_t __kmp_aux_capture_affinity(int gtid, const char *format, 8051 kmp_str_buf_t *buffer) { 8052 const char *parse_ptr; 8053 size_t retval; 8054 const kmp_info_t *th; 8055 kmp_str_buf_t field; 8056 8057 KMP_DEBUG_ASSERT(buffer); 8058 KMP_DEBUG_ASSERT(gtid >= 0); 8059 8060 __kmp_str_buf_init(&field); 8061 __kmp_str_buf_clear(buffer); 8062 8063 th = __kmp_threads[gtid]; 8064 retval = 0; 8065 8066 // If format is NULL or zero-length string, then we use 8067 // affinity-format-var ICV 8068 parse_ptr = format; 8069 if (parse_ptr == NULL || *parse_ptr == '\0') { 8070 parse_ptr = __kmp_affinity_format; 8071 } 8072 KMP_DEBUG_ASSERT(parse_ptr); 8073 8074 while (*parse_ptr != '\0') { 8075 // Parse a field 8076 if (*parse_ptr == '%') { 8077 // Put field in the buffer 8078 int rc = __kmp_aux_capture_affinity_field(gtid, th, &parse_ptr, &field); 8079 __kmp_str_buf_catbuf(buffer, &field); 8080 retval += rc; 8081 } else { 8082 // Put literal character in buffer 8083 __kmp_str_buf_cat(buffer, parse_ptr, 1); 8084 retval++; 8085 parse_ptr++; 8086 } 8087 } 8088 __kmp_str_buf_free(&field); 8089 return retval; 8090 } 8091 8092 // Displays the affinity string to stdout 8093 void __kmp_aux_display_affinity(int gtid, const char *format) { 8094 kmp_str_buf_t buf; 8095 __kmp_str_buf_init(&buf); 8096 __kmp_aux_capture_affinity(gtid, format, &buf); 8097 __kmp_fprintf(kmp_out, "%s" KMP_END_OF_LINE, buf.str); 8098 __kmp_str_buf_free(&buf); 8099 } 8100 #endif // OMP_50_ENABLED 8101 8102 /* ------------------------------------------------------------------------ */ 8103 8104 void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid) { 8105 int blocktime = arg; /* argument is in milliseconds */ 8106 #if KMP_USE_MONITOR 8107 int bt_intervals; 8108 #endif 8109 int bt_set; 8110 8111 __kmp_save_internal_controls(thread); 8112 8113 /* Normalize and set blocktime for the teams */ 8114 if (blocktime < KMP_MIN_BLOCKTIME) 8115 blocktime = KMP_MIN_BLOCKTIME; 8116 else if (blocktime > KMP_MAX_BLOCKTIME) 8117 blocktime = KMP_MAX_BLOCKTIME; 8118 8119 set__blocktime_team(thread->th.th_team, tid, blocktime); 8120 set__blocktime_team(thread->th.th_serial_team, 0, blocktime); 8121 8122 #if KMP_USE_MONITOR 8123 /* Calculate and set blocktime intervals for the teams */ 8124 bt_intervals = KMP_INTERVALS_FROM_BLOCKTIME(blocktime, __kmp_monitor_wakeups); 8125 8126 set__bt_intervals_team(thread->th.th_team, tid, bt_intervals); 8127 set__bt_intervals_team(thread->th.th_serial_team, 0, bt_intervals); 8128 #endif 8129 8130 /* Set whether blocktime has been set to "TRUE" */ 8131 bt_set = TRUE; 8132 8133 set__bt_set_team(thread->th.th_team, tid, bt_set); 8134 set__bt_set_team(thread->th.th_serial_team, 0, bt_set); 8135 #if KMP_USE_MONITOR 8136 KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d, " 8137 "bt_intervals=%d, monitor_updates=%d\n", 8138 __kmp_gtid_from_tid(tid, thread->th.th_team), 8139 thread->th.th_team->t.t_id, tid, blocktime, bt_intervals, 8140 __kmp_monitor_wakeups)); 8141 #else 8142 KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d\n", 8143 __kmp_gtid_from_tid(tid, thread->th.th_team), 8144 thread->th.th_team->t.t_id, tid, blocktime)); 8145 #endif 8146 } 8147 8148 void __kmp_aux_set_defaults(char const *str, int len) { 8149 if (!__kmp_init_serial) { 8150 __kmp_serial_initialize(); 8151 } 8152 __kmp_env_initialize(str); 8153 8154 if (__kmp_settings 8155 #if OMP_40_ENABLED 8156 || __kmp_display_env || __kmp_display_env_verbose 8157 #endif // OMP_40_ENABLED 8158 ) { 8159 __kmp_env_print(); 8160 } 8161 } // __kmp_aux_set_defaults 8162 8163 /* ------------------------------------------------------------------------ */ 8164 /* internal fast reduction routines */ 8165 8166 PACKED_REDUCTION_METHOD_T 8167 __kmp_determine_reduction_method( 8168 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, 8169 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data), 8170 kmp_critical_name *lck) { 8171 8172 // Default reduction method: critical construct ( lck != NULL, like in current 8173 // PAROPT ) 8174 // If ( reduce_data!=NULL && reduce_func!=NULL ): the tree-reduction method 8175 // can be selected by RTL 8176 // If loc->flags contains KMP_IDENT_ATOMIC_REDUCE, the atomic reduce method 8177 // can be selected by RTL 8178 // Finally, it's up to OpenMP RTL to make a decision on which method to select 8179 // among generated by PAROPT. 8180 8181 PACKED_REDUCTION_METHOD_T retval; 8182 8183 int team_size; 8184 8185 KMP_DEBUG_ASSERT(loc); // it would be nice to test ( loc != 0 ) 8186 KMP_DEBUG_ASSERT(lck); // it would be nice to test ( lck != 0 ) 8187 8188 #define FAST_REDUCTION_ATOMIC_METHOD_GENERATED \ 8189 ((loc->flags & (KMP_IDENT_ATOMIC_REDUCE)) == (KMP_IDENT_ATOMIC_REDUCE)) 8190 #define FAST_REDUCTION_TREE_METHOD_GENERATED ((reduce_data) && (reduce_func)) 8191 8192 retval = critical_reduce_block; 8193 8194 // another choice of getting a team size (with 1 dynamic deference) is slower 8195 team_size = __kmp_get_team_num_threads(global_tid); 8196 if (team_size == 1) { 8197 8198 retval = empty_reduce_block; 8199 8200 } else { 8201 8202 int atomic_available = FAST_REDUCTION_ATOMIC_METHOD_GENERATED; 8203 8204 #if KMP_ARCH_X86_64 || KMP_ARCH_PPC64 || KMP_ARCH_AARCH64 || KMP_ARCH_MIPS64 8205 8206 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 8207 KMP_OS_OPENBSD || KMP_OS_WINDOWS || KMP_OS_DARWIN || KMP_OS_HURD 8208 8209 int teamsize_cutoff = 4; 8210 8211 #if KMP_MIC_SUPPORTED 8212 if (__kmp_mic_type != non_mic) { 8213 teamsize_cutoff = 8; 8214 } 8215 #endif 8216 int tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED; 8217 if (tree_available) { 8218 if (team_size <= teamsize_cutoff) { 8219 if (atomic_available) { 8220 retval = atomic_reduce_block; 8221 } 8222 } else { 8223 retval = TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER; 8224 } 8225 } else if (atomic_available) { 8226 retval = atomic_reduce_block; 8227 } 8228 #else 8229 #error "Unknown or unsupported OS" 8230 #endif // KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || 8231 // KMP_OS_OPENBSD || KMP_OS_WINDOWS || KMP_OS_DARWIN || KMP_OS_HURD 8232 8233 #elif KMP_ARCH_X86 || KMP_ARCH_ARM || KMP_ARCH_AARCH || KMP_ARCH_MIPS 8234 8235 #if KMP_OS_LINUX || KMP_OS_WINDOWS || KMP_OS_HURD 8236 8237 // basic tuning 8238 8239 if (atomic_available) { 8240 if (num_vars <= 2) { // && ( team_size <= 8 ) due to false-sharing ??? 8241 retval = atomic_reduce_block; 8242 } 8243 } // otherwise: use critical section 8244 8245 #elif KMP_OS_DARWIN 8246 8247 int tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED; 8248 if (atomic_available && (num_vars <= 3)) { 8249 retval = atomic_reduce_block; 8250 } else if (tree_available) { 8251 if ((reduce_size > (9 * sizeof(kmp_real64))) && 8252 (reduce_size < (2000 * sizeof(kmp_real64)))) { 8253 retval = TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER; 8254 } 8255 } // otherwise: use critical section 8256 8257 #else 8258 #error "Unknown or unsupported OS" 8259 #endif 8260 8261 #else 8262 #error "Unknown or unsupported architecture" 8263 #endif 8264 } 8265 8266 // KMP_FORCE_REDUCTION 8267 8268 // If the team is serialized (team_size == 1), ignore the forced reduction 8269 // method and stay with the unsynchronized method (empty_reduce_block) 8270 if (__kmp_force_reduction_method != reduction_method_not_defined && 8271 team_size != 1) { 8272 8273 PACKED_REDUCTION_METHOD_T forced_retval = critical_reduce_block; 8274 8275 int atomic_available, tree_available; 8276 8277 switch ((forced_retval = __kmp_force_reduction_method)) { 8278 case critical_reduce_block: 8279 KMP_ASSERT(lck); // lck should be != 0 8280 break; 8281 8282 case atomic_reduce_block: 8283 atomic_available = FAST_REDUCTION_ATOMIC_METHOD_GENERATED; 8284 if (!atomic_available) { 8285 KMP_WARNING(RedMethodNotSupported, "atomic"); 8286 forced_retval = critical_reduce_block; 8287 } 8288 break; 8289 8290 case tree_reduce_block: 8291 tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED; 8292 if (!tree_available) { 8293 KMP_WARNING(RedMethodNotSupported, "tree"); 8294 forced_retval = critical_reduce_block; 8295 } else { 8296 #if KMP_FAST_REDUCTION_BARRIER 8297 forced_retval = TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER; 8298 #endif 8299 } 8300 break; 8301 8302 default: 8303 KMP_ASSERT(0); // "unsupported method specified" 8304 } 8305 8306 retval = forced_retval; 8307 } 8308 8309 KA_TRACE(10, ("reduction method selected=%08x\n", retval)); 8310 8311 #undef FAST_REDUCTION_TREE_METHOD_GENERATED 8312 #undef FAST_REDUCTION_ATOMIC_METHOD_GENERATED 8313 8314 return (retval); 8315 } 8316 8317 // this function is for testing set/get/determine reduce method 8318 kmp_int32 __kmp_get_reduce_method(void) { 8319 return ((__kmp_entry_thread()->th.th_local.packed_reduction_method) >> 8); 8320 } 8321 8322 #if OMP_50_ENABLED 8323 8324 // Soft pause sets up threads to ignore blocktime and just go to sleep. 8325 // Spin-wait code checks __kmp_pause_status and reacts accordingly. 8326 void __kmp_soft_pause() { __kmp_pause_status = kmp_soft_paused; } 8327 8328 // Hard pause shuts down the runtime completely. Resume happens naturally when 8329 // OpenMP is used subsequently. 8330 void __kmp_hard_pause() { 8331 __kmp_pause_status = kmp_hard_paused; 8332 __kmp_internal_end_thread(-1); 8333 } 8334 8335 // Soft resume sets __kmp_pause_status, and wakes up all threads. 8336 void __kmp_resume_if_soft_paused() { 8337 if (__kmp_pause_status == kmp_soft_paused) { 8338 __kmp_pause_status = kmp_not_paused; 8339 8340 for (int gtid = 1; gtid < __kmp_threads_capacity; ++gtid) { 8341 kmp_info_t *thread = __kmp_threads[gtid]; 8342 if (thread) { // Wake it if sleeping 8343 kmp_flag_64 fl(&thread->th.th_bar[bs_forkjoin_barrier].bb.b_go, thread); 8344 if (fl.is_sleeping()) 8345 fl.resume(gtid); 8346 else if (__kmp_try_suspend_mx(thread)) { // got suspend lock 8347 __kmp_unlock_suspend_mx(thread); // unlock it; it won't sleep 8348 } else { // thread holds the lock and may sleep soon 8349 do { // until either the thread sleeps, or we can get the lock 8350 if (fl.is_sleeping()) { 8351 fl.resume(gtid); 8352 break; 8353 } else if (__kmp_try_suspend_mx(thread)) { 8354 __kmp_unlock_suspend_mx(thread); 8355 break; 8356 } 8357 } while (1); 8358 } 8359 } 8360 } 8361 } 8362 } 8363 8364 // This function is called via __kmpc_pause_resource. Returns 0 if successful. 8365 // TODO: add warning messages 8366 int __kmp_pause_resource(kmp_pause_status_t level) { 8367 if (level == kmp_not_paused) { // requesting resume 8368 if (__kmp_pause_status == kmp_not_paused) { 8369 // error message about runtime not being paused, so can't resume 8370 return 1; 8371 } else { 8372 KMP_DEBUG_ASSERT(__kmp_pause_status == kmp_soft_paused || 8373 __kmp_pause_status == kmp_hard_paused); 8374 __kmp_pause_status = kmp_not_paused; 8375 return 0; 8376 } 8377 } else if (level == kmp_soft_paused) { // requesting soft pause 8378 if (__kmp_pause_status != kmp_not_paused) { 8379 // error message about already being paused 8380 return 1; 8381 } else { 8382 __kmp_soft_pause(); 8383 return 0; 8384 } 8385 } else if (level == kmp_hard_paused) { // requesting hard pause 8386 if (__kmp_pause_status != kmp_not_paused) { 8387 // error message about already being paused 8388 return 1; 8389 } else { 8390 __kmp_hard_pause(); 8391 return 0; 8392 } 8393 } else { 8394 // error message about invalid level 8395 return 1; 8396 } 8397 } 8398 8399 #endif // OMP_50_ENABLED 8400