1 /*
2  * kmp_runtime.cpp -- KPTS runtime support library
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_atomic.h"
16 #include "kmp_environment.h"
17 #include "kmp_error.h"
18 #include "kmp_i18n.h"
19 #include "kmp_io.h"
20 #include "kmp_itt.h"
21 #include "kmp_settings.h"
22 #include "kmp_stats.h"
23 #include "kmp_str.h"
24 #include "kmp_wait_release.h"
25 #include "kmp_wrapper_getpid.h"
26 #include "kmp_dispatch.h"
27 #if KMP_USE_HIER_SCHED
28 #include "kmp_dispatch_hier.h"
29 #endif
30 
31 #if OMPT_SUPPORT
32 #include "ompt-specific.h"
33 #endif
34 
35 /* these are temporary issues to be dealt with */
36 #define KMP_USE_PRCTL 0
37 
38 #if KMP_OS_WINDOWS
39 #include <process.h>
40 #endif
41 
42 #include "tsan_annotations.h"
43 
44 #if defined(KMP_GOMP_COMPAT)
45 char const __kmp_version_alt_comp[] =
46     KMP_VERSION_PREFIX "alternative compiler support: yes";
47 #endif /* defined(KMP_GOMP_COMPAT) */
48 
49 char const __kmp_version_omp_api[] = KMP_VERSION_PREFIX "API version: "
50 #if OMP_50_ENABLED
51                                                         "5.0 (201611)";
52 #elif OMP_45_ENABLED
53                                                         "4.5 (201511)";
54 #elif OMP_40_ENABLED
55                                                         "4.0 (201307)";
56 #else
57                                                         "3.1 (201107)";
58 #endif
59 
60 #ifdef KMP_DEBUG
61 char const __kmp_version_lock[] =
62     KMP_VERSION_PREFIX "lock type: run time selectable";
63 #endif /* KMP_DEBUG */
64 
65 #define KMP_MIN(x, y) ((x) < (y) ? (x) : (y))
66 
67 /* ------------------------------------------------------------------------ */
68 
69 #if KMP_USE_MONITOR
70 kmp_info_t __kmp_monitor;
71 #endif
72 
73 /* Forward declarations */
74 
75 void __kmp_cleanup(void);
76 
77 static void __kmp_initialize_info(kmp_info_t *, kmp_team_t *, int tid,
78                                   int gtid);
79 static void __kmp_initialize_team(kmp_team_t *team, int new_nproc,
80                                   kmp_internal_control_t *new_icvs,
81                                   ident_t *loc);
82 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED
83 static void __kmp_partition_places(kmp_team_t *team,
84                                    int update_master_only = 0);
85 #endif
86 static void __kmp_do_serial_initialize(void);
87 void __kmp_fork_barrier(int gtid, int tid);
88 void __kmp_join_barrier(int gtid);
89 void __kmp_setup_icv_copy(kmp_team_t *team, int new_nproc,
90                           kmp_internal_control_t *new_icvs, ident_t *loc);
91 
92 #ifdef USE_LOAD_BALANCE
93 static int __kmp_load_balance_nproc(kmp_root_t *root, int set_nproc);
94 #endif
95 
96 static int __kmp_expand_threads(int nNeed);
97 #if KMP_OS_WINDOWS
98 static int __kmp_unregister_root_other_thread(int gtid);
99 #endif
100 static void __kmp_unregister_library(void); // called by __kmp_internal_end()
101 static void __kmp_reap_thread(kmp_info_t *thread, int is_root);
102 kmp_info_t *__kmp_thread_pool_insert_pt = NULL;
103 
104 /* Calculate the identifier of the current thread */
105 /* fast (and somewhat portable) way to get unique identifier of executing
106    thread. Returns KMP_GTID_DNE if we haven't been assigned a gtid. */
107 int __kmp_get_global_thread_id() {
108   int i;
109   kmp_info_t **other_threads;
110   size_t stack_data;
111   char *stack_addr;
112   size_t stack_size;
113   char *stack_base;
114 
115   KA_TRACE(
116       1000,
117       ("*** __kmp_get_global_thread_id: entering, nproc=%d  all_nproc=%d\n",
118        __kmp_nth, __kmp_all_nth));
119 
120   /* JPH - to handle the case where __kmpc_end(0) is called immediately prior to
121      a parallel region, made it return KMP_GTID_DNE to force serial_initialize
122      by caller. Had to handle KMP_GTID_DNE at all call-sites, or else guarantee
123      __kmp_init_gtid for this to work. */
124 
125   if (!TCR_4(__kmp_init_gtid))
126     return KMP_GTID_DNE;
127 
128 #ifdef KMP_TDATA_GTID
129   if (TCR_4(__kmp_gtid_mode) >= 3) {
130     KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using TDATA\n"));
131     return __kmp_gtid;
132   }
133 #endif
134   if (TCR_4(__kmp_gtid_mode) >= 2) {
135     KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using keyed TLS\n"));
136     return __kmp_gtid_get_specific();
137   }
138   KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using internal alg.\n"));
139 
140   stack_addr = (char *)&stack_data;
141   other_threads = __kmp_threads;
142 
143   /* ATT: The code below is a source of potential bugs due to unsynchronized
144      access to __kmp_threads array. For example:
145      1. Current thread loads other_threads[i] to thr and checks it, it is
146         non-NULL.
147      2. Current thread is suspended by OS.
148      3. Another thread unregisters and finishes (debug versions of free()
149         may fill memory with something like 0xEF).
150      4. Current thread is resumed.
151      5. Current thread reads junk from *thr.
152      TODO: Fix it.  --ln  */
153 
154   for (i = 0; i < __kmp_threads_capacity; i++) {
155 
156     kmp_info_t *thr = (kmp_info_t *)TCR_SYNC_PTR(other_threads[i]);
157     if (!thr)
158       continue;
159 
160     stack_size = (size_t)TCR_PTR(thr->th.th_info.ds.ds_stacksize);
161     stack_base = (char *)TCR_PTR(thr->th.th_info.ds.ds_stackbase);
162 
163     /* stack grows down -- search through all of the active threads */
164 
165     if (stack_addr <= stack_base) {
166       size_t stack_diff = stack_base - stack_addr;
167 
168       if (stack_diff <= stack_size) {
169         /* The only way we can be closer than the allocated */
170         /* stack size is if we are running on this thread. */
171         KMP_DEBUG_ASSERT(__kmp_gtid_get_specific() == i);
172         return i;
173       }
174     }
175   }
176 
177   /* get specific to try and determine our gtid */
178   KA_TRACE(1000,
179            ("*** __kmp_get_global_thread_id: internal alg. failed to find "
180             "thread, using TLS\n"));
181   i = __kmp_gtid_get_specific();
182 
183   /*fprintf( stderr, "=== %d\n", i );  */ /* GROO */
184 
185   /* if we havn't been assigned a gtid, then return code */
186   if (i < 0)
187     return i;
188 
189   /* dynamically updated stack window for uber threads to avoid get_specific
190      call */
191   if (!TCR_4(other_threads[i]->th.th_info.ds.ds_stackgrow)) {
192     KMP_FATAL(StackOverflow, i);
193   }
194 
195   stack_base = (char *)other_threads[i]->th.th_info.ds.ds_stackbase;
196   if (stack_addr > stack_base) {
197     TCW_PTR(other_threads[i]->th.th_info.ds.ds_stackbase, stack_addr);
198     TCW_PTR(other_threads[i]->th.th_info.ds.ds_stacksize,
199             other_threads[i]->th.th_info.ds.ds_stacksize + stack_addr -
200                 stack_base);
201   } else {
202     TCW_PTR(other_threads[i]->th.th_info.ds.ds_stacksize,
203             stack_base - stack_addr);
204   }
205 
206   /* Reprint stack bounds for ubermaster since they have been refined */
207   if (__kmp_storage_map) {
208     char *stack_end = (char *)other_threads[i]->th.th_info.ds.ds_stackbase;
209     char *stack_beg = stack_end - other_threads[i]->th.th_info.ds.ds_stacksize;
210     __kmp_print_storage_map_gtid(i, stack_beg, stack_end,
211                                  other_threads[i]->th.th_info.ds.ds_stacksize,
212                                  "th_%d stack (refinement)", i);
213   }
214   return i;
215 }
216 
217 int __kmp_get_global_thread_id_reg() {
218   int gtid;
219 
220   if (!__kmp_init_serial) {
221     gtid = KMP_GTID_DNE;
222   } else
223 #ifdef KMP_TDATA_GTID
224       if (TCR_4(__kmp_gtid_mode) >= 3) {
225     KA_TRACE(1000, ("*** __kmp_get_global_thread_id_reg: using TDATA\n"));
226     gtid = __kmp_gtid;
227   } else
228 #endif
229       if (TCR_4(__kmp_gtid_mode) >= 2) {
230     KA_TRACE(1000, ("*** __kmp_get_global_thread_id_reg: using keyed TLS\n"));
231     gtid = __kmp_gtid_get_specific();
232   } else {
233     KA_TRACE(1000,
234              ("*** __kmp_get_global_thread_id_reg: using internal alg.\n"));
235     gtid = __kmp_get_global_thread_id();
236   }
237 
238   /* we must be a new uber master sibling thread */
239   if (gtid == KMP_GTID_DNE) {
240     KA_TRACE(10,
241              ("__kmp_get_global_thread_id_reg: Encountered new root thread. "
242               "Registering a new gtid.\n"));
243     __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
244     if (!__kmp_init_serial) {
245       __kmp_do_serial_initialize();
246       gtid = __kmp_gtid_get_specific();
247     } else {
248       gtid = __kmp_register_root(FALSE);
249     }
250     __kmp_release_bootstrap_lock(&__kmp_initz_lock);
251     /*__kmp_printf( "+++ %d\n", gtid ); */ /* GROO */
252   }
253 
254   KMP_DEBUG_ASSERT(gtid >= 0);
255 
256   return gtid;
257 }
258 
259 /* caller must hold forkjoin_lock */
260 void __kmp_check_stack_overlap(kmp_info_t *th) {
261   int f;
262   char *stack_beg = NULL;
263   char *stack_end = NULL;
264   int gtid;
265 
266   KA_TRACE(10, ("__kmp_check_stack_overlap: called\n"));
267   if (__kmp_storage_map) {
268     stack_end = (char *)th->th.th_info.ds.ds_stackbase;
269     stack_beg = stack_end - th->th.th_info.ds.ds_stacksize;
270 
271     gtid = __kmp_gtid_from_thread(th);
272 
273     if (gtid == KMP_GTID_MONITOR) {
274       __kmp_print_storage_map_gtid(
275           gtid, stack_beg, stack_end, th->th.th_info.ds.ds_stacksize,
276           "th_%s stack (%s)", "mon",
277           (th->th.th_info.ds.ds_stackgrow) ? "initial" : "actual");
278     } else {
279       __kmp_print_storage_map_gtid(
280           gtid, stack_beg, stack_end, th->th.th_info.ds.ds_stacksize,
281           "th_%d stack (%s)", gtid,
282           (th->th.th_info.ds.ds_stackgrow) ? "initial" : "actual");
283     }
284   }
285 
286   /* No point in checking ubermaster threads since they use refinement and
287    * cannot overlap */
288   gtid = __kmp_gtid_from_thread(th);
289   if (__kmp_env_checks == TRUE && !KMP_UBER_GTID(gtid)) {
290     KA_TRACE(10,
291              ("__kmp_check_stack_overlap: performing extensive checking\n"));
292     if (stack_beg == NULL) {
293       stack_end = (char *)th->th.th_info.ds.ds_stackbase;
294       stack_beg = stack_end - th->th.th_info.ds.ds_stacksize;
295     }
296 
297     for (f = 0; f < __kmp_threads_capacity; f++) {
298       kmp_info_t *f_th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[f]);
299 
300       if (f_th && f_th != th) {
301         char *other_stack_end =
302             (char *)TCR_PTR(f_th->th.th_info.ds.ds_stackbase);
303         char *other_stack_beg =
304             other_stack_end - (size_t)TCR_PTR(f_th->th.th_info.ds.ds_stacksize);
305         if ((stack_beg > other_stack_beg && stack_beg < other_stack_end) ||
306             (stack_end > other_stack_beg && stack_end < other_stack_end)) {
307 
308           /* Print the other stack values before the abort */
309           if (__kmp_storage_map)
310             __kmp_print_storage_map_gtid(
311                 -1, other_stack_beg, other_stack_end,
312                 (size_t)TCR_PTR(f_th->th.th_info.ds.ds_stacksize),
313                 "th_%d stack (overlapped)", __kmp_gtid_from_thread(f_th));
314 
315           __kmp_fatal(KMP_MSG(StackOverlap), KMP_HNT(ChangeStackLimit),
316                       __kmp_msg_null);
317         }
318       }
319     }
320   }
321   KA_TRACE(10, ("__kmp_check_stack_overlap: returning\n"));
322 }
323 
324 /* ------------------------------------------------------------------------ */
325 
326 void __kmp_infinite_loop(void) {
327   static int done = FALSE;
328 
329   while (!done) {
330     KMP_YIELD(TRUE);
331   }
332 }
333 
334 #define MAX_MESSAGE 512
335 
336 void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2, size_t size,
337                                   char const *format, ...) {
338   char buffer[MAX_MESSAGE];
339   va_list ap;
340 
341   va_start(ap, format);
342   KMP_SNPRINTF(buffer, sizeof(buffer), "OMP storage map: %p %p%8lu %s\n", p1,
343                p2, (unsigned long)size, format);
344   __kmp_acquire_bootstrap_lock(&__kmp_stdio_lock);
345   __kmp_vprintf(kmp_err, buffer, ap);
346 #if KMP_PRINT_DATA_PLACEMENT
347   int node;
348   if (gtid >= 0) {
349     if (p1 <= p2 && (char *)p2 - (char *)p1 == size) {
350       if (__kmp_storage_map_verbose) {
351         node = __kmp_get_host_node(p1);
352         if (node < 0) /* doesn't work, so don't try this next time */
353           __kmp_storage_map_verbose = FALSE;
354         else {
355           char *last;
356           int lastNode;
357           int localProc = __kmp_get_cpu_from_gtid(gtid);
358 
359           const int page_size = KMP_GET_PAGE_SIZE();
360 
361           p1 = (void *)((size_t)p1 & ~((size_t)page_size - 1));
362           p2 = (void *)(((size_t)p2 - 1) & ~((size_t)page_size - 1));
363           if (localProc >= 0)
364             __kmp_printf_no_lock("  GTID %d localNode %d\n", gtid,
365                                  localProc >> 1);
366           else
367             __kmp_printf_no_lock("  GTID %d\n", gtid);
368 #if KMP_USE_PRCTL
369           /* The more elaborate format is disabled for now because of the prctl
370            * hanging bug. */
371           do {
372             last = p1;
373             lastNode = node;
374             /* This loop collates adjacent pages with the same host node. */
375             do {
376               (char *)p1 += page_size;
377             } while (p1 <= p2 && (node = __kmp_get_host_node(p1)) == lastNode);
378             __kmp_printf_no_lock("    %p-%p memNode %d\n", last, (char *)p1 - 1,
379                                  lastNode);
380           } while (p1 <= p2);
381 #else
382           __kmp_printf_no_lock("    %p-%p memNode %d\n", p1,
383                                (char *)p1 + (page_size - 1),
384                                __kmp_get_host_node(p1));
385           if (p1 < p2) {
386             __kmp_printf_no_lock("    %p-%p memNode %d\n", p2,
387                                  (char *)p2 + (page_size - 1),
388                                  __kmp_get_host_node(p2));
389           }
390 #endif
391         }
392       }
393     } else
394       __kmp_printf_no_lock("  %s\n", KMP_I18N_STR(StorageMapWarning));
395   }
396 #endif /* KMP_PRINT_DATA_PLACEMENT */
397   __kmp_release_bootstrap_lock(&__kmp_stdio_lock);
398 }
399 
400 void __kmp_warn(char const *format, ...) {
401   char buffer[MAX_MESSAGE];
402   va_list ap;
403 
404   if (__kmp_generate_warnings == kmp_warnings_off) {
405     return;
406   }
407 
408   va_start(ap, format);
409 
410   KMP_SNPRINTF(buffer, sizeof(buffer), "OMP warning: %s\n", format);
411   __kmp_acquire_bootstrap_lock(&__kmp_stdio_lock);
412   __kmp_vprintf(kmp_err, buffer, ap);
413   __kmp_release_bootstrap_lock(&__kmp_stdio_lock);
414 
415   va_end(ap);
416 }
417 
418 void __kmp_abort_process() {
419   // Later threads may stall here, but that's ok because abort() will kill them.
420   __kmp_acquire_bootstrap_lock(&__kmp_exit_lock);
421 
422   if (__kmp_debug_buf) {
423     __kmp_dump_debug_buffer();
424   }
425 
426   if (KMP_OS_WINDOWS) {
427     // Let other threads know of abnormal termination and prevent deadlock
428     // if abort happened during library initialization or shutdown
429     __kmp_global.g.g_abort = SIGABRT;
430 
431     /* On Windows* OS by default abort() causes pop-up error box, which stalls
432        nightly testing. Unfortunately, we cannot reliably suppress pop-up error
433        boxes. _set_abort_behavior() works well, but this function is not
434        available in VS7 (this is not problem for DLL, but it is a problem for
435        static OpenMP RTL). SetErrorMode (and so, timelimit utility) does not
436        help, at least in some versions of MS C RTL.
437 
438        It seems following sequence is the only way to simulate abort() and
439        avoid pop-up error box. */
440     raise(SIGABRT);
441     _exit(3); // Just in case, if signal ignored, exit anyway.
442   } else {
443     abort();
444   }
445 
446   __kmp_infinite_loop();
447   __kmp_release_bootstrap_lock(&__kmp_exit_lock);
448 
449 } // __kmp_abort_process
450 
451 void __kmp_abort_thread(void) {
452   // TODO: Eliminate g_abort global variable and this function.
453   // In case of abort just call abort(), it will kill all the threads.
454   __kmp_infinite_loop();
455 } // __kmp_abort_thread
456 
457 /* Print out the storage map for the major kmp_info_t thread data structures
458    that are allocated together. */
459 
460 static void __kmp_print_thread_storage_map(kmp_info_t *thr, int gtid) {
461   __kmp_print_storage_map_gtid(gtid, thr, thr + 1, sizeof(kmp_info_t), "th_%d",
462                                gtid);
463 
464   __kmp_print_storage_map_gtid(gtid, &thr->th.th_info, &thr->th.th_team,
465                                sizeof(kmp_desc_t), "th_%d.th_info", gtid);
466 
467   __kmp_print_storage_map_gtid(gtid, &thr->th.th_local, &thr->th.th_pri_head,
468                                sizeof(kmp_local_t), "th_%d.th_local", gtid);
469 
470   __kmp_print_storage_map_gtid(
471       gtid, &thr->th.th_bar[0], &thr->th.th_bar[bs_last_barrier],
472       sizeof(kmp_balign_t) * bs_last_barrier, "th_%d.th_bar", gtid);
473 
474   __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_plain_barrier],
475                                &thr->th.th_bar[bs_plain_barrier + 1],
476                                sizeof(kmp_balign_t), "th_%d.th_bar[plain]",
477                                gtid);
478 
479   __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_forkjoin_barrier],
480                                &thr->th.th_bar[bs_forkjoin_barrier + 1],
481                                sizeof(kmp_balign_t), "th_%d.th_bar[forkjoin]",
482                                gtid);
483 
484 #if KMP_FAST_REDUCTION_BARRIER
485   __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_reduction_barrier],
486                                &thr->th.th_bar[bs_reduction_barrier + 1],
487                                sizeof(kmp_balign_t), "th_%d.th_bar[reduction]",
488                                gtid);
489 #endif // KMP_FAST_REDUCTION_BARRIER
490 }
491 
492 /* Print out the storage map for the major kmp_team_t team data structures
493    that are allocated together. */
494 
495 static void __kmp_print_team_storage_map(const char *header, kmp_team_t *team,
496                                          int team_id, int num_thr) {
497   int num_disp_buff = team->t.t_max_nproc > 1 ? __kmp_dispatch_num_buffers : 2;
498   __kmp_print_storage_map_gtid(-1, team, team + 1, sizeof(kmp_team_t), "%s_%d",
499                                header, team_id);
500 
501   __kmp_print_storage_map_gtid(-1, &team->t.t_bar[0],
502                                &team->t.t_bar[bs_last_barrier],
503                                sizeof(kmp_balign_team_t) * bs_last_barrier,
504                                "%s_%d.t_bar", header, team_id);
505 
506   __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_plain_barrier],
507                                &team->t.t_bar[bs_plain_barrier + 1],
508                                sizeof(kmp_balign_team_t), "%s_%d.t_bar[plain]",
509                                header, team_id);
510 
511   __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_forkjoin_barrier],
512                                &team->t.t_bar[bs_forkjoin_barrier + 1],
513                                sizeof(kmp_balign_team_t),
514                                "%s_%d.t_bar[forkjoin]", header, team_id);
515 
516 #if KMP_FAST_REDUCTION_BARRIER
517   __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_reduction_barrier],
518                                &team->t.t_bar[bs_reduction_barrier + 1],
519                                sizeof(kmp_balign_team_t),
520                                "%s_%d.t_bar[reduction]", header, team_id);
521 #endif // KMP_FAST_REDUCTION_BARRIER
522 
523   __kmp_print_storage_map_gtid(
524       -1, &team->t.t_dispatch[0], &team->t.t_dispatch[num_thr],
525       sizeof(kmp_disp_t) * num_thr, "%s_%d.t_dispatch", header, team_id);
526 
527   __kmp_print_storage_map_gtid(
528       -1, &team->t.t_threads[0], &team->t.t_threads[num_thr],
529       sizeof(kmp_info_t *) * num_thr, "%s_%d.t_threads", header, team_id);
530 
531   __kmp_print_storage_map_gtid(-1, &team->t.t_disp_buffer[0],
532                                &team->t.t_disp_buffer[num_disp_buff],
533                                sizeof(dispatch_shared_info_t) * num_disp_buff,
534                                "%s_%d.t_disp_buffer", header, team_id);
535 }
536 
537 static void __kmp_init_allocator() {
538 #if OMP_50_ENABLED
539   __kmp_init_memkind();
540 #endif
541 }
542 static void __kmp_fini_allocator() {
543 #if OMP_50_ENABLED
544   __kmp_fini_memkind();
545 #endif
546 }
547 
548 /* ------------------------------------------------------------------------ */
549 
550 #if KMP_DYNAMIC_LIB
551 #if KMP_OS_WINDOWS
552 
553 static void __kmp_reset_lock(kmp_bootstrap_lock_t *lck) {
554   // TODO: Change to __kmp_break_bootstrap_lock().
555   __kmp_init_bootstrap_lock(lck); // make the lock released
556 }
557 
558 static void __kmp_reset_locks_on_process_detach(int gtid_req) {
559   int i;
560   int thread_count;
561 
562   // PROCESS_DETACH is expected to be called by a thread that executes
563   // ProcessExit() or FreeLibrary(). OS terminates other threads (except the one
564   // calling ProcessExit or FreeLibrary). So, it might be safe to access the
565   // __kmp_threads[] without taking the forkjoin_lock. However, in fact, some
566   // threads can be still alive here, although being about to be terminated. The
567   // threads in the array with ds_thread==0 are most suspicious. Actually, it
568   // can be not safe to access the __kmp_threads[].
569 
570   // TODO: does it make sense to check __kmp_roots[] ?
571 
572   // Let's check that there are no other alive threads registered with the OMP
573   // lib.
574   while (1) {
575     thread_count = 0;
576     for (i = 0; i < __kmp_threads_capacity; ++i) {
577       if (!__kmp_threads)
578         continue;
579       kmp_info_t *th = __kmp_threads[i];
580       if (th == NULL)
581         continue;
582       int gtid = th->th.th_info.ds.ds_gtid;
583       if (gtid == gtid_req)
584         continue;
585       if (gtid < 0)
586         continue;
587       DWORD exit_val;
588       int alive = __kmp_is_thread_alive(th, &exit_val);
589       if (alive) {
590         ++thread_count;
591       }
592     }
593     if (thread_count == 0)
594       break; // success
595   }
596 
597   // Assume that I'm alone. Now it might be safe to check and reset locks.
598   // __kmp_forkjoin_lock and __kmp_stdio_lock are expected to be reset.
599   __kmp_reset_lock(&__kmp_forkjoin_lock);
600 #ifdef KMP_DEBUG
601   __kmp_reset_lock(&__kmp_stdio_lock);
602 #endif // KMP_DEBUG
603 }
604 
605 BOOL WINAPI DllMain(HINSTANCE hInstDLL, DWORD fdwReason, LPVOID lpReserved) {
606   //__kmp_acquire_bootstrap_lock( &__kmp_initz_lock );
607 
608   switch (fdwReason) {
609 
610   case DLL_PROCESS_ATTACH:
611     KA_TRACE(10, ("DllMain: PROCESS_ATTACH\n"));
612 
613     return TRUE;
614 
615   case DLL_PROCESS_DETACH:
616     KA_TRACE(10, ("DllMain: PROCESS_DETACH T#%d\n", __kmp_gtid_get_specific()));
617 
618     if (lpReserved != NULL) {
619       // lpReserved is used for telling the difference:
620       //   lpReserved == NULL when FreeLibrary() was called,
621       //   lpReserved != NULL when the process terminates.
622       // When FreeLibrary() is called, worker threads remain alive. So they will
623       // release the forkjoin lock by themselves. When the process terminates,
624       // worker threads disappear triggering the problem of unreleased forkjoin
625       // lock as described below.
626 
627       // A worker thread can take the forkjoin lock. The problem comes up if
628       // that worker thread becomes dead before it releases the forkjoin lock.
629       // The forkjoin lock remains taken, while the thread executing
630       // DllMain()->PROCESS_DETACH->__kmp_internal_end_library() below will try
631       // to take the forkjoin lock and will always fail, so that the application
632       // will never finish [normally]. This scenario is possible if
633       // __kmpc_end() has not been executed. It looks like it's not a corner
634       // case, but common cases:
635       // - the main function was compiled by an alternative compiler;
636       // - the main function was compiled by icl but without /Qopenmp
637       //   (application with plugins);
638       // - application terminates by calling C exit(), Fortran CALL EXIT() or
639       //   Fortran STOP.
640       // - alive foreign thread prevented __kmpc_end from doing cleanup.
641       //
642       // This is a hack to work around the problem.
643       // TODO: !!! figure out something better.
644       __kmp_reset_locks_on_process_detach(__kmp_gtid_get_specific());
645     }
646 
647     __kmp_internal_end_library(__kmp_gtid_get_specific());
648 
649     return TRUE;
650 
651   case DLL_THREAD_ATTACH:
652     KA_TRACE(10, ("DllMain: THREAD_ATTACH\n"));
653 
654     /* if we want to register new siblings all the time here call
655      * __kmp_get_gtid(); */
656     return TRUE;
657 
658   case DLL_THREAD_DETACH:
659     KA_TRACE(10, ("DllMain: THREAD_DETACH T#%d\n", __kmp_gtid_get_specific()));
660 
661     __kmp_internal_end_thread(__kmp_gtid_get_specific());
662     return TRUE;
663   }
664 
665   return TRUE;
666 }
667 
668 #endif /* KMP_OS_WINDOWS */
669 #endif /* KMP_DYNAMIC_LIB */
670 
671 /* __kmp_parallel_deo -- Wait until it's our turn. */
672 void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) {
673   int gtid = *gtid_ref;
674 #ifdef BUILD_PARALLEL_ORDERED
675   kmp_team_t *team = __kmp_team_from_gtid(gtid);
676 #endif /* BUILD_PARALLEL_ORDERED */
677 
678   if (__kmp_env_consistency_check) {
679     if (__kmp_threads[gtid]->th.th_root->r.r_active)
680 #if KMP_USE_DYNAMIC_LOCK
681       __kmp_push_sync(gtid, ct_ordered_in_parallel, loc_ref, NULL, 0);
682 #else
683       __kmp_push_sync(gtid, ct_ordered_in_parallel, loc_ref, NULL);
684 #endif
685   }
686 #ifdef BUILD_PARALLEL_ORDERED
687   if (!team->t.t_serialized) {
688     KMP_MB();
689     KMP_WAIT(&team->t.t_ordered.dt.t_value, __kmp_tid_from_gtid(gtid), KMP_EQ,
690              NULL);
691     KMP_MB();
692   }
693 #endif /* BUILD_PARALLEL_ORDERED */
694 }
695 
696 /* __kmp_parallel_dxo -- Signal the next task. */
697 void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) {
698   int gtid = *gtid_ref;
699 #ifdef BUILD_PARALLEL_ORDERED
700   int tid = __kmp_tid_from_gtid(gtid);
701   kmp_team_t *team = __kmp_team_from_gtid(gtid);
702 #endif /* BUILD_PARALLEL_ORDERED */
703 
704   if (__kmp_env_consistency_check) {
705     if (__kmp_threads[gtid]->th.th_root->r.r_active)
706       __kmp_pop_sync(gtid, ct_ordered_in_parallel, loc_ref);
707   }
708 #ifdef BUILD_PARALLEL_ORDERED
709   if (!team->t.t_serialized) {
710     KMP_MB(); /* Flush all pending memory write invalidates.  */
711 
712     /* use the tid of the next thread in this team */
713     /* TODO replace with general release procedure */
714     team->t.t_ordered.dt.t_value = ((tid + 1) % team->t.t_nproc);
715 
716     KMP_MB(); /* Flush all pending memory write invalidates.  */
717   }
718 #endif /* BUILD_PARALLEL_ORDERED */
719 }
720 
721 /* ------------------------------------------------------------------------ */
722 /* The BARRIER for a SINGLE process section is always explicit   */
723 
724 int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws) {
725   int status;
726   kmp_info_t *th;
727   kmp_team_t *team;
728 
729   if (!TCR_4(__kmp_init_parallel))
730     __kmp_parallel_initialize();
731 
732 #if OMP_50_ENABLED
733   __kmp_resume_if_soft_paused();
734 #endif
735 
736   th = __kmp_threads[gtid];
737   team = th->th.th_team;
738   status = 0;
739 
740   th->th.th_ident = id_ref;
741 
742   if (team->t.t_serialized) {
743     status = 1;
744   } else {
745     kmp_int32 old_this = th->th.th_local.this_construct;
746 
747     ++th->th.th_local.this_construct;
748     /* try to set team count to thread count--success means thread got the
749        single block */
750     /* TODO: Should this be acquire or release? */
751     if (team->t.t_construct == old_this) {
752       status = __kmp_atomic_compare_store_acq(&team->t.t_construct, old_this,
753                                               th->th.th_local.this_construct);
754     }
755 #if USE_ITT_BUILD
756     if (__itt_metadata_add_ptr && __kmp_forkjoin_frames_mode == 3 &&
757         KMP_MASTER_GTID(gtid) &&
758 #if OMP_40_ENABLED
759         th->th.th_teams_microtask == NULL &&
760 #endif
761         team->t.t_active_level ==
762             1) { // Only report metadata by master of active team at level 1
763       __kmp_itt_metadata_single(id_ref);
764     }
765 #endif /* USE_ITT_BUILD */
766   }
767 
768   if (__kmp_env_consistency_check) {
769     if (status && push_ws) {
770       __kmp_push_workshare(gtid, ct_psingle, id_ref);
771     } else {
772       __kmp_check_workshare(gtid, ct_psingle, id_ref);
773     }
774   }
775 #if USE_ITT_BUILD
776   if (status) {
777     __kmp_itt_single_start(gtid);
778   }
779 #endif /* USE_ITT_BUILD */
780   return status;
781 }
782 
783 void __kmp_exit_single(int gtid) {
784 #if USE_ITT_BUILD
785   __kmp_itt_single_end(gtid);
786 #endif /* USE_ITT_BUILD */
787   if (__kmp_env_consistency_check)
788     __kmp_pop_workshare(gtid, ct_psingle, NULL);
789 }
790 
791 /* determine if we can go parallel or must use a serialized parallel region and
792  * how many threads we can use
793  * set_nproc is the number of threads requested for the team
794  * returns 0 if we should serialize or only use one thread,
795  * otherwise the number of threads to use
796  * The forkjoin lock is held by the caller. */
797 static int __kmp_reserve_threads(kmp_root_t *root, kmp_team_t *parent_team,
798                                  int master_tid, int set_nthreads
799 #if OMP_40_ENABLED
800                                  ,
801                                  int enter_teams
802 #endif /* OMP_40_ENABLED */
803                                  ) {
804   int capacity;
805   int new_nthreads;
806   KMP_DEBUG_ASSERT(__kmp_init_serial);
807   KMP_DEBUG_ASSERT(root && parent_team);
808   kmp_info_t *this_thr = parent_team->t.t_threads[master_tid];
809 
810   // If dyn-var is set, dynamically adjust the number of desired threads,
811   // according to the method specified by dynamic_mode.
812   new_nthreads = set_nthreads;
813   if (!get__dynamic_2(parent_team, master_tid)) {
814     ;
815   }
816 #ifdef USE_LOAD_BALANCE
817   else if (__kmp_global.g.g_dynamic_mode == dynamic_load_balance) {
818     new_nthreads = __kmp_load_balance_nproc(root, set_nthreads);
819     if (new_nthreads == 1) {
820       KC_TRACE(10, ("__kmp_reserve_threads: T#%d load balance reduced "
821                     "reservation to 1 thread\n",
822                     master_tid));
823       return 1;
824     }
825     if (new_nthreads < set_nthreads) {
826       KC_TRACE(10, ("__kmp_reserve_threads: T#%d load balance reduced "
827                     "reservation to %d threads\n",
828                     master_tid, new_nthreads));
829     }
830   }
831 #endif /* USE_LOAD_BALANCE */
832   else if (__kmp_global.g.g_dynamic_mode == dynamic_thread_limit) {
833     new_nthreads = __kmp_avail_proc - __kmp_nth +
834                    (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc);
835     if (new_nthreads <= 1) {
836       KC_TRACE(10, ("__kmp_reserve_threads: T#%d thread limit reduced "
837                     "reservation to 1 thread\n",
838                     master_tid));
839       return 1;
840     }
841     if (new_nthreads < set_nthreads) {
842       KC_TRACE(10, ("__kmp_reserve_threads: T#%d thread limit reduced "
843                     "reservation to %d threads\n",
844                     master_tid, new_nthreads));
845     } else {
846       new_nthreads = set_nthreads;
847     }
848   } else if (__kmp_global.g.g_dynamic_mode == dynamic_random) {
849     if (set_nthreads > 2) {
850       new_nthreads = __kmp_get_random(parent_team->t.t_threads[master_tid]);
851       new_nthreads = (new_nthreads % set_nthreads) + 1;
852       if (new_nthreads == 1) {
853         KC_TRACE(10, ("__kmp_reserve_threads: T#%d dynamic random reduced "
854                       "reservation to 1 thread\n",
855                       master_tid));
856         return 1;
857       }
858       if (new_nthreads < set_nthreads) {
859         KC_TRACE(10, ("__kmp_reserve_threads: T#%d dynamic random reduced "
860                       "reservation to %d threads\n",
861                       master_tid, new_nthreads));
862       }
863     }
864   } else {
865     KMP_ASSERT(0);
866   }
867 
868   // Respect KMP_ALL_THREADS/KMP_DEVICE_THREAD_LIMIT.
869   if (__kmp_nth + new_nthreads -
870           (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) >
871       __kmp_max_nth) {
872     int tl_nthreads = __kmp_max_nth - __kmp_nth +
873                       (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc);
874     if (tl_nthreads <= 0) {
875       tl_nthreads = 1;
876     }
877 
878     // If dyn-var is false, emit a 1-time warning.
879     if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) {
880       __kmp_reserve_warn = 1;
881       __kmp_msg(kmp_ms_warning,
882                 KMP_MSG(CantFormThrTeam, set_nthreads, tl_nthreads),
883                 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null);
884     }
885     if (tl_nthreads == 1) {
886       KC_TRACE(10, ("__kmp_reserve_threads: T#%d KMP_DEVICE_THREAD_LIMIT "
887                     "reduced reservation to 1 thread\n",
888                     master_tid));
889       return 1;
890     }
891     KC_TRACE(10, ("__kmp_reserve_threads: T#%d KMP_DEVICE_THREAD_LIMIT reduced "
892                   "reservation to %d threads\n",
893                   master_tid, tl_nthreads));
894     new_nthreads = tl_nthreads;
895   }
896 
897   // Respect OMP_THREAD_LIMIT
898   int cg_nthreads = this_thr->th.th_cg_roots->cg_nthreads;
899   int max_cg_threads = this_thr->th.th_cg_roots->cg_thread_limit;
900   if (cg_nthreads + new_nthreads -
901           (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) >
902       max_cg_threads) {
903     int tl_nthreads = max_cg_threads - cg_nthreads +
904                       (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc);
905     if (tl_nthreads <= 0) {
906       tl_nthreads = 1;
907     }
908 
909     // If dyn-var is false, emit a 1-time warning.
910     if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) {
911       __kmp_reserve_warn = 1;
912       __kmp_msg(kmp_ms_warning,
913                 KMP_MSG(CantFormThrTeam, set_nthreads, tl_nthreads),
914                 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null);
915     }
916     if (tl_nthreads == 1) {
917       KC_TRACE(10, ("__kmp_reserve_threads: T#%d OMP_THREAD_LIMIT "
918                     "reduced reservation to 1 thread\n",
919                     master_tid));
920       return 1;
921     }
922     KC_TRACE(10, ("__kmp_reserve_threads: T#%d OMP_THREAD_LIMIT reduced "
923                   "reservation to %d threads\n",
924                   master_tid, tl_nthreads));
925     new_nthreads = tl_nthreads;
926   }
927 
928   // Check if the threads array is large enough, or needs expanding.
929   // See comment in __kmp_register_root() about the adjustment if
930   // __kmp_threads[0] == NULL.
931   capacity = __kmp_threads_capacity;
932   if (TCR_PTR(__kmp_threads[0]) == NULL) {
933     --capacity;
934   }
935   if (__kmp_nth + new_nthreads -
936           (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) >
937       capacity) {
938     // Expand the threads array.
939     int slotsRequired = __kmp_nth + new_nthreads -
940                         (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) -
941                         capacity;
942     int slotsAdded = __kmp_expand_threads(slotsRequired);
943     if (slotsAdded < slotsRequired) {
944       // The threads array was not expanded enough.
945       new_nthreads -= (slotsRequired - slotsAdded);
946       KMP_ASSERT(new_nthreads >= 1);
947 
948       // If dyn-var is false, emit a 1-time warning.
949       if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) {
950         __kmp_reserve_warn = 1;
951         if (__kmp_tp_cached) {
952           __kmp_msg(kmp_ms_warning,
953                     KMP_MSG(CantFormThrTeam, set_nthreads, new_nthreads),
954                     KMP_HNT(Set_ALL_THREADPRIVATE, __kmp_tp_capacity),
955                     KMP_HNT(PossibleSystemLimitOnThreads), __kmp_msg_null);
956         } else {
957           __kmp_msg(kmp_ms_warning,
958                     KMP_MSG(CantFormThrTeam, set_nthreads, new_nthreads),
959                     KMP_HNT(SystemLimitOnThreads), __kmp_msg_null);
960         }
961       }
962     }
963   }
964 
965 #ifdef KMP_DEBUG
966   if (new_nthreads == 1) {
967     KC_TRACE(10,
968              ("__kmp_reserve_threads: T#%d serializing team after reclaiming "
969               "dead roots and rechecking; requested %d threads\n",
970               __kmp_get_gtid(), set_nthreads));
971   } else {
972     KC_TRACE(10, ("__kmp_reserve_threads: T#%d allocating %d threads; requested"
973                   " %d threads\n",
974                   __kmp_get_gtid(), new_nthreads, set_nthreads));
975   }
976 #endif // KMP_DEBUG
977   return new_nthreads;
978 }
979 
980 /* Allocate threads from the thread pool and assign them to the new team. We are
981    assured that there are enough threads available, because we checked on that
982    earlier within critical section forkjoin */
983 static void __kmp_fork_team_threads(kmp_root_t *root, kmp_team_t *team,
984                                     kmp_info_t *master_th, int master_gtid) {
985   int i;
986   int use_hot_team;
987 
988   KA_TRACE(10, ("__kmp_fork_team_threads: new_nprocs = %d\n", team->t.t_nproc));
989   KMP_DEBUG_ASSERT(master_gtid == __kmp_get_gtid());
990   KMP_MB();
991 
992   /* first, let's setup the master thread */
993   master_th->th.th_info.ds.ds_tid = 0;
994   master_th->th.th_team = team;
995   master_th->th.th_team_nproc = team->t.t_nproc;
996   master_th->th.th_team_master = master_th;
997   master_th->th.th_team_serialized = FALSE;
998   master_th->th.th_dispatch = &team->t.t_dispatch[0];
999 
1000 /* make sure we are not the optimized hot team */
1001 #if KMP_NESTED_HOT_TEAMS
1002   use_hot_team = 0;
1003   kmp_hot_team_ptr_t *hot_teams = master_th->th.th_hot_teams;
1004   if (hot_teams) { // hot teams array is not allocated if
1005     // KMP_HOT_TEAMS_MAX_LEVEL=0
1006     int level = team->t.t_active_level - 1; // index in array of hot teams
1007     if (master_th->th.th_teams_microtask) { // are we inside the teams?
1008       if (master_th->th.th_teams_size.nteams > 1) {
1009         ++level; // level was not increased in teams construct for
1010         // team_of_masters
1011       }
1012       if (team->t.t_pkfn != (microtask_t)__kmp_teams_master &&
1013           master_th->th.th_teams_level == team->t.t_level) {
1014         ++level; // level was not increased in teams construct for
1015         // team_of_workers before the parallel
1016       } // team->t.t_level will be increased inside parallel
1017     }
1018     if (level < __kmp_hot_teams_max_level) {
1019       if (hot_teams[level].hot_team) {
1020         // hot team has already been allocated for given level
1021         KMP_DEBUG_ASSERT(hot_teams[level].hot_team == team);
1022         use_hot_team = 1; // the team is ready to use
1023       } else {
1024         use_hot_team = 0; // AC: threads are not allocated yet
1025         hot_teams[level].hot_team = team; // remember new hot team
1026         hot_teams[level].hot_team_nth = team->t.t_nproc;
1027       }
1028     } else {
1029       use_hot_team = 0;
1030     }
1031   }
1032 #else
1033   use_hot_team = team == root->r.r_hot_team;
1034 #endif
1035   if (!use_hot_team) {
1036 
1037     /* install the master thread */
1038     team->t.t_threads[0] = master_th;
1039     __kmp_initialize_info(master_th, team, 0, master_gtid);
1040 
1041     /* now, install the worker threads */
1042     for (i = 1; i < team->t.t_nproc; i++) {
1043 
1044       /* fork or reallocate a new thread and install it in team */
1045       kmp_info_t *thr = __kmp_allocate_thread(root, team, i);
1046       team->t.t_threads[i] = thr;
1047       KMP_DEBUG_ASSERT(thr);
1048       KMP_DEBUG_ASSERT(thr->th.th_team == team);
1049       /* align team and thread arrived states */
1050       KA_TRACE(20, ("__kmp_fork_team_threads: T#%d(%d:%d) init arrived "
1051                     "T#%d(%d:%d) join =%llu, plain=%llu\n",
1052                     __kmp_gtid_from_tid(0, team), team->t.t_id, 0,
1053                     __kmp_gtid_from_tid(i, team), team->t.t_id, i,
1054                     team->t.t_bar[bs_forkjoin_barrier].b_arrived,
1055                     team->t.t_bar[bs_plain_barrier].b_arrived));
1056 #if OMP_40_ENABLED
1057       thr->th.th_teams_microtask = master_th->th.th_teams_microtask;
1058       thr->th.th_teams_level = master_th->th.th_teams_level;
1059       thr->th.th_teams_size = master_th->th.th_teams_size;
1060 #endif
1061       { // Initialize threads' barrier data.
1062         int b;
1063         kmp_balign_t *balign = team->t.t_threads[i]->th.th_bar;
1064         for (b = 0; b < bs_last_barrier; ++b) {
1065           balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived;
1066           KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG);
1067 #if USE_DEBUGGER
1068           balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived;
1069 #endif
1070         }
1071       }
1072     }
1073 
1074 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED
1075     __kmp_partition_places(team);
1076 #endif
1077   }
1078 
1079 #if OMP_50_ENABLED
1080   if (__kmp_display_affinity && team->t.t_display_affinity != 1) {
1081     for (i = 0; i < team->t.t_nproc; i++) {
1082       kmp_info_t *thr = team->t.t_threads[i];
1083       if (thr->th.th_prev_num_threads != team->t.t_nproc ||
1084           thr->th.th_prev_level != team->t.t_level) {
1085         team->t.t_display_affinity = 1;
1086         break;
1087       }
1088     }
1089   }
1090 #endif
1091 
1092   KMP_MB();
1093 }
1094 
1095 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1096 // Propagate any changes to the floating point control registers out to the team
1097 // We try to avoid unnecessary writes to the relevant cache line in the team
1098 // structure, so we don't make changes unless they are needed.
1099 inline static void propagateFPControl(kmp_team_t *team) {
1100   if (__kmp_inherit_fp_control) {
1101     kmp_int16 x87_fpu_control_word;
1102     kmp_uint32 mxcsr;
1103 
1104     // Get master values of FPU control flags (both X87 and vector)
1105     __kmp_store_x87_fpu_control_word(&x87_fpu_control_word);
1106     __kmp_store_mxcsr(&mxcsr);
1107     mxcsr &= KMP_X86_MXCSR_MASK;
1108 
1109     // There is no point looking at t_fp_control_saved here.
1110     // If it is TRUE, we still have to update the values if they are different
1111     // from those we now have. If it is FALSE we didn't save anything yet, but
1112     // our objective is the same. We have to ensure that the values in the team
1113     // are the same as those we have.
1114     // So, this code achieves what we need whether or not t_fp_control_saved is
1115     // true. By checking whether the value needs updating we avoid unnecessary
1116     // writes that would put the cache-line into a written state, causing all
1117     // threads in the team to have to read it again.
1118     KMP_CHECK_UPDATE(team->t.t_x87_fpu_control_word, x87_fpu_control_word);
1119     KMP_CHECK_UPDATE(team->t.t_mxcsr, mxcsr);
1120     // Although we don't use this value, other code in the runtime wants to know
1121     // whether it should restore them. So we must ensure it is correct.
1122     KMP_CHECK_UPDATE(team->t.t_fp_control_saved, TRUE);
1123   } else {
1124     // Similarly here. Don't write to this cache-line in the team structure
1125     // unless we have to.
1126     KMP_CHECK_UPDATE(team->t.t_fp_control_saved, FALSE);
1127   }
1128 }
1129 
1130 // Do the opposite, setting the hardware registers to the updated values from
1131 // the team.
1132 inline static void updateHWFPControl(kmp_team_t *team) {
1133   if (__kmp_inherit_fp_control && team->t.t_fp_control_saved) {
1134     // Only reset the fp control regs if they have been changed in the team.
1135     // the parallel region that we are exiting.
1136     kmp_int16 x87_fpu_control_word;
1137     kmp_uint32 mxcsr;
1138     __kmp_store_x87_fpu_control_word(&x87_fpu_control_word);
1139     __kmp_store_mxcsr(&mxcsr);
1140     mxcsr &= KMP_X86_MXCSR_MASK;
1141 
1142     if (team->t.t_x87_fpu_control_word != x87_fpu_control_word) {
1143       __kmp_clear_x87_fpu_status_word();
1144       __kmp_load_x87_fpu_control_word(&team->t.t_x87_fpu_control_word);
1145     }
1146 
1147     if (team->t.t_mxcsr != mxcsr) {
1148       __kmp_load_mxcsr(&team->t.t_mxcsr);
1149     }
1150   }
1151 }
1152 #else
1153 #define propagateFPControl(x) ((void)0)
1154 #define updateHWFPControl(x) ((void)0)
1155 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1156 
1157 static void __kmp_alloc_argv_entries(int argc, kmp_team_t *team,
1158                                      int realloc); // forward declaration
1159 
1160 /* Run a parallel region that has been serialized, so runs only in a team of the
1161    single master thread. */
1162 void __kmp_serialized_parallel(ident_t *loc, kmp_int32 global_tid) {
1163   kmp_info_t *this_thr;
1164   kmp_team_t *serial_team;
1165 
1166   KC_TRACE(10, ("__kmpc_serialized_parallel: called by T#%d\n", global_tid));
1167 
1168   /* Skip all this code for autopar serialized loops since it results in
1169      unacceptable overhead */
1170   if (loc != NULL && (loc->flags & KMP_IDENT_AUTOPAR))
1171     return;
1172 
1173   if (!TCR_4(__kmp_init_parallel))
1174     __kmp_parallel_initialize();
1175 
1176 #if OMP_50_ENABLED
1177   __kmp_resume_if_soft_paused();
1178 #endif
1179 
1180   this_thr = __kmp_threads[global_tid];
1181   serial_team = this_thr->th.th_serial_team;
1182 
1183   /* utilize the serialized team held by this thread */
1184   KMP_DEBUG_ASSERT(serial_team);
1185   KMP_MB();
1186 
1187   if (__kmp_tasking_mode != tskm_immediate_exec) {
1188     KMP_DEBUG_ASSERT(
1189         this_thr->th.th_task_team ==
1190         this_thr->th.th_team->t.t_task_team[this_thr->th.th_task_state]);
1191     KMP_DEBUG_ASSERT(serial_team->t.t_task_team[this_thr->th.th_task_state] ==
1192                      NULL);
1193     KA_TRACE(20, ("__kmpc_serialized_parallel: T#%d pushing task_team %p / "
1194                   "team %p, new task_team = NULL\n",
1195                   global_tid, this_thr->th.th_task_team, this_thr->th.th_team));
1196     this_thr->th.th_task_team = NULL;
1197   }
1198 
1199 #if OMP_40_ENABLED
1200   kmp_proc_bind_t proc_bind = this_thr->th.th_set_proc_bind;
1201   if (this_thr->th.th_current_task->td_icvs.proc_bind == proc_bind_false) {
1202     proc_bind = proc_bind_false;
1203   } else if (proc_bind == proc_bind_default) {
1204     // No proc_bind clause was specified, so use the current value
1205     // of proc-bind-var for this parallel region.
1206     proc_bind = this_thr->th.th_current_task->td_icvs.proc_bind;
1207   }
1208   // Reset for next parallel region
1209   this_thr->th.th_set_proc_bind = proc_bind_default;
1210 #endif /* OMP_40_ENABLED */
1211 
1212 #if OMPT_SUPPORT
1213   ompt_data_t ompt_parallel_data = ompt_data_none;
1214   ompt_data_t *implicit_task_data;
1215   void *codeptr = OMPT_LOAD_RETURN_ADDRESS(global_tid);
1216   if (ompt_enabled.enabled &&
1217       this_thr->th.ompt_thread_info.state != ompt_state_overhead) {
1218 
1219     ompt_task_info_t *parent_task_info;
1220     parent_task_info = OMPT_CUR_TASK_INFO(this_thr);
1221 
1222     parent_task_info->frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
1223     if (ompt_enabled.ompt_callback_parallel_begin) {
1224       int team_size = 1;
1225 
1226       ompt_callbacks.ompt_callback(ompt_callback_parallel_begin)(
1227           &(parent_task_info->task_data), &(parent_task_info->frame),
1228           &ompt_parallel_data, team_size, ompt_parallel_invoker_program,
1229           codeptr);
1230     }
1231   }
1232 #endif // OMPT_SUPPORT
1233 
1234   if (this_thr->th.th_team != serial_team) {
1235     // Nested level will be an index in the nested nthreads array
1236     int level = this_thr->th.th_team->t.t_level;
1237 
1238     if (serial_team->t.t_serialized) {
1239       /* this serial team was already used
1240          TODO increase performance by making this locks more specific */
1241       kmp_team_t *new_team;
1242 
1243       __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
1244 
1245       new_team = __kmp_allocate_team(this_thr->th.th_root, 1, 1,
1246 #if OMPT_SUPPORT
1247                                      ompt_parallel_data,
1248 #endif
1249 #if OMP_40_ENABLED
1250                                      proc_bind,
1251 #endif
1252                                      &this_thr->th.th_current_task->td_icvs,
1253                                      0 USE_NESTED_HOT_ARG(NULL));
1254       __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1255       KMP_ASSERT(new_team);
1256 
1257       /* setup new serialized team and install it */
1258       new_team->t.t_threads[0] = this_thr;
1259       new_team->t.t_parent = this_thr->th.th_team;
1260       serial_team = new_team;
1261       this_thr->th.th_serial_team = serial_team;
1262 
1263       KF_TRACE(
1264           10,
1265           ("__kmpc_serialized_parallel: T#%d allocated new serial team %p\n",
1266            global_tid, serial_team));
1267 
1268       /* TODO the above breaks the requirement that if we run out of resources,
1269          then we can still guarantee that serialized teams are ok, since we may
1270          need to allocate a new one */
1271     } else {
1272       KF_TRACE(
1273           10,
1274           ("__kmpc_serialized_parallel: T#%d reusing cached serial team %p\n",
1275            global_tid, serial_team));
1276     }
1277 
1278     /* we have to initialize this serial team */
1279     KMP_DEBUG_ASSERT(serial_team->t.t_threads);
1280     KMP_DEBUG_ASSERT(serial_team->t.t_threads[0] == this_thr);
1281     KMP_DEBUG_ASSERT(this_thr->th.th_team != serial_team);
1282     serial_team->t.t_ident = loc;
1283     serial_team->t.t_serialized = 1;
1284     serial_team->t.t_nproc = 1;
1285     serial_team->t.t_parent = this_thr->th.th_team;
1286     serial_team->t.t_sched.sched = this_thr->th.th_team->t.t_sched.sched;
1287     this_thr->th.th_team = serial_team;
1288     serial_team->t.t_master_tid = this_thr->th.th_info.ds.ds_tid;
1289 
1290     KF_TRACE(10, ("__kmpc_serialized_parallel: T#d curtask=%p\n", global_tid,
1291                   this_thr->th.th_current_task));
1292     KMP_ASSERT(this_thr->th.th_current_task->td_flags.executing == 1);
1293     this_thr->th.th_current_task->td_flags.executing = 0;
1294 
1295     __kmp_push_current_task_to_thread(this_thr, serial_team, 0);
1296 
1297     /* TODO: GEH: do ICVs work for nested serialized teams? Don't we need an
1298        implicit task for each serialized task represented by
1299        team->t.t_serialized? */
1300     copy_icvs(&this_thr->th.th_current_task->td_icvs,
1301               &this_thr->th.th_current_task->td_parent->td_icvs);
1302 
1303     // Thread value exists in the nested nthreads array for the next nested
1304     // level
1305     if (__kmp_nested_nth.used && (level + 1 < __kmp_nested_nth.used)) {
1306       this_thr->th.th_current_task->td_icvs.nproc =
1307           __kmp_nested_nth.nth[level + 1];
1308     }
1309 
1310 #if OMP_40_ENABLED
1311     if (__kmp_nested_proc_bind.used &&
1312         (level + 1 < __kmp_nested_proc_bind.used)) {
1313       this_thr->th.th_current_task->td_icvs.proc_bind =
1314           __kmp_nested_proc_bind.bind_types[level + 1];
1315     }
1316 #endif /* OMP_40_ENABLED */
1317 
1318 #if USE_DEBUGGER
1319     serial_team->t.t_pkfn = (microtask_t)(~0); // For the debugger.
1320 #endif
1321     this_thr->th.th_info.ds.ds_tid = 0;
1322 
1323     /* set thread cache values */
1324     this_thr->th.th_team_nproc = 1;
1325     this_thr->th.th_team_master = this_thr;
1326     this_thr->th.th_team_serialized = 1;
1327 
1328     serial_team->t.t_level = serial_team->t.t_parent->t.t_level + 1;
1329     serial_team->t.t_active_level = serial_team->t.t_parent->t.t_active_level;
1330 #if OMP_50_ENABLED
1331     serial_team->t.t_def_allocator = this_thr->th.th_def_allocator; // save
1332 #endif
1333 
1334     propagateFPControl(serial_team);
1335 
1336     /* check if we need to allocate dispatch buffers stack */
1337     KMP_DEBUG_ASSERT(serial_team->t.t_dispatch);
1338     if (!serial_team->t.t_dispatch->th_disp_buffer) {
1339       serial_team->t.t_dispatch->th_disp_buffer =
1340           (dispatch_private_info_t *)__kmp_allocate(
1341               sizeof(dispatch_private_info_t));
1342     }
1343     this_thr->th.th_dispatch = serial_team->t.t_dispatch;
1344 
1345     KMP_MB();
1346 
1347   } else {
1348     /* this serialized team is already being used,
1349      * that's fine, just add another nested level */
1350     KMP_DEBUG_ASSERT(this_thr->th.th_team == serial_team);
1351     KMP_DEBUG_ASSERT(serial_team->t.t_threads);
1352     KMP_DEBUG_ASSERT(serial_team->t.t_threads[0] == this_thr);
1353     ++serial_team->t.t_serialized;
1354     this_thr->th.th_team_serialized = serial_team->t.t_serialized;
1355 
1356     // Nested level will be an index in the nested nthreads array
1357     int level = this_thr->th.th_team->t.t_level;
1358     // Thread value exists in the nested nthreads array for the next nested
1359     // level
1360     if (__kmp_nested_nth.used && (level + 1 < __kmp_nested_nth.used)) {
1361       this_thr->th.th_current_task->td_icvs.nproc =
1362           __kmp_nested_nth.nth[level + 1];
1363     }
1364     serial_team->t.t_level++;
1365     KF_TRACE(10, ("__kmpc_serialized_parallel: T#%d increasing nesting level "
1366                   "of serial team %p to %d\n",
1367                   global_tid, serial_team, serial_team->t.t_level));
1368 
1369     /* allocate/push dispatch buffers stack */
1370     KMP_DEBUG_ASSERT(serial_team->t.t_dispatch);
1371     {
1372       dispatch_private_info_t *disp_buffer =
1373           (dispatch_private_info_t *)__kmp_allocate(
1374               sizeof(dispatch_private_info_t));
1375       disp_buffer->next = serial_team->t.t_dispatch->th_disp_buffer;
1376       serial_team->t.t_dispatch->th_disp_buffer = disp_buffer;
1377     }
1378     this_thr->th.th_dispatch = serial_team->t.t_dispatch;
1379 
1380     KMP_MB();
1381   }
1382 #if OMP_40_ENABLED
1383   KMP_CHECK_UPDATE(serial_team->t.t_cancel_request, cancel_noreq);
1384 #endif
1385 
1386 #if OMP_50_ENABLED
1387   // Perform the display affinity functionality for
1388   // serialized parallel regions
1389   if (__kmp_display_affinity) {
1390     if (this_thr->th.th_prev_level != serial_team->t.t_level ||
1391         this_thr->th.th_prev_num_threads != 1) {
1392       // NULL means use the affinity-format-var ICV
1393       __kmp_aux_display_affinity(global_tid, NULL);
1394       this_thr->th.th_prev_level = serial_team->t.t_level;
1395       this_thr->th.th_prev_num_threads = 1;
1396     }
1397   }
1398 #endif
1399 
1400   if (__kmp_env_consistency_check)
1401     __kmp_push_parallel(global_tid, NULL);
1402 #if OMPT_SUPPORT
1403   serial_team->t.ompt_team_info.master_return_address = codeptr;
1404   if (ompt_enabled.enabled &&
1405       this_thr->th.ompt_thread_info.state != ompt_state_overhead) {
1406     OMPT_CUR_TASK_INFO(this_thr)->frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
1407 
1408     ompt_lw_taskteam_t lw_taskteam;
1409     __ompt_lw_taskteam_init(&lw_taskteam, this_thr, global_tid,
1410                             &ompt_parallel_data, codeptr);
1411 
1412     __ompt_lw_taskteam_link(&lw_taskteam, this_thr, 1);
1413     // don't use lw_taskteam after linking. content was swaped
1414 
1415     /* OMPT implicit task begin */
1416     implicit_task_data = OMPT_CUR_TASK_DATA(this_thr);
1417     if (ompt_enabled.ompt_callback_implicit_task) {
1418       ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
1419           ompt_scope_begin, OMPT_CUR_TEAM_DATA(this_thr),
1420           OMPT_CUR_TASK_DATA(this_thr), 1, __kmp_tid_from_gtid(global_tid), ompt_task_implicit); // TODO: Can this be ompt_task_initial?
1421       OMPT_CUR_TASK_INFO(this_thr)
1422           ->thread_num = __kmp_tid_from_gtid(global_tid);
1423     }
1424 
1425     /* OMPT state */
1426     this_thr->th.ompt_thread_info.state = ompt_state_work_parallel;
1427     OMPT_CUR_TASK_INFO(this_thr)->frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
1428   }
1429 #endif
1430 }
1431 
1432 /* most of the work for a fork */
1433 /* return true if we really went parallel, false if serialized */
1434 int __kmp_fork_call(ident_t *loc, int gtid,
1435                     enum fork_context_e call_context, // Intel, GNU, ...
1436                     kmp_int32 argc, microtask_t microtask, launch_t invoker,
1437 /* TODO: revert workaround for Intel(R) 64 tracker #96 */
1438 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX
1439                     va_list *ap
1440 #else
1441                     va_list ap
1442 #endif
1443                     ) {
1444   void **argv;
1445   int i;
1446   int master_tid;
1447   int master_this_cons;
1448   kmp_team_t *team;
1449   kmp_team_t *parent_team;
1450   kmp_info_t *master_th;
1451   kmp_root_t *root;
1452   int nthreads;
1453   int master_active;
1454   int master_set_numthreads;
1455   int level;
1456 #if OMP_40_ENABLED
1457   int active_level;
1458   int teams_level;
1459 #endif
1460 #if KMP_NESTED_HOT_TEAMS
1461   kmp_hot_team_ptr_t **p_hot_teams;
1462 #endif
1463   { // KMP_TIME_BLOCK
1464     KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_fork_call);
1465     KMP_COUNT_VALUE(OMP_PARALLEL_args, argc);
1466 
1467     KA_TRACE(20, ("__kmp_fork_call: enter T#%d\n", gtid));
1468     if (__kmp_stkpadding > 0 && __kmp_root[gtid] != NULL) {
1469       /* Some systems prefer the stack for the root thread(s) to start with */
1470       /* some gap from the parent stack to prevent false sharing. */
1471       void *dummy = KMP_ALLOCA(__kmp_stkpadding);
1472       /* These 2 lines below are so this does not get optimized out */
1473       if (__kmp_stkpadding > KMP_MAX_STKPADDING)
1474         __kmp_stkpadding += (short)((kmp_int64)dummy);
1475     }
1476 
1477     /* initialize if needed */
1478     KMP_DEBUG_ASSERT(
1479         __kmp_init_serial); // AC: potentially unsafe, not in sync with shutdown
1480     if (!TCR_4(__kmp_init_parallel))
1481       __kmp_parallel_initialize();
1482 
1483 #if OMP_50_ENABLED
1484     __kmp_resume_if_soft_paused();
1485 #endif
1486 
1487     /* setup current data */
1488     master_th = __kmp_threads[gtid]; // AC: potentially unsafe, not in sync with
1489     // shutdown
1490     parent_team = master_th->th.th_team;
1491     master_tid = master_th->th.th_info.ds.ds_tid;
1492     master_this_cons = master_th->th.th_local.this_construct;
1493     root = master_th->th.th_root;
1494     master_active = root->r.r_active;
1495     master_set_numthreads = master_th->th.th_set_nproc;
1496 
1497 #if OMPT_SUPPORT
1498     ompt_data_t ompt_parallel_data = ompt_data_none;
1499     ompt_data_t *parent_task_data;
1500     ompt_frame_t *ompt_frame;
1501     ompt_data_t *implicit_task_data;
1502     void *return_address = NULL;
1503 
1504     if (ompt_enabled.enabled) {
1505       __ompt_get_task_info_internal(0, NULL, &parent_task_data, &ompt_frame,
1506                                     NULL, NULL);
1507       return_address = OMPT_LOAD_RETURN_ADDRESS(gtid);
1508     }
1509 #endif
1510 
1511     // Nested level will be an index in the nested nthreads array
1512     level = parent_team->t.t_level;
1513     // used to launch non-serial teams even if nested is not allowed
1514     active_level = parent_team->t.t_active_level;
1515 #if OMP_40_ENABLED
1516     // needed to check nesting inside the teams
1517     teams_level = master_th->th.th_teams_level;
1518 #endif
1519 #if KMP_NESTED_HOT_TEAMS
1520     p_hot_teams = &master_th->th.th_hot_teams;
1521     if (*p_hot_teams == NULL && __kmp_hot_teams_max_level > 0) {
1522       *p_hot_teams = (kmp_hot_team_ptr_t *)__kmp_allocate(
1523           sizeof(kmp_hot_team_ptr_t) * __kmp_hot_teams_max_level);
1524       (*p_hot_teams)[0].hot_team = root->r.r_hot_team;
1525       // it is either actual or not needed (when active_level > 0)
1526       (*p_hot_teams)[0].hot_team_nth = 1;
1527     }
1528 #endif
1529 
1530 #if OMPT_SUPPORT
1531     if (ompt_enabled.enabled) {
1532       if (ompt_enabled.ompt_callback_parallel_begin) {
1533         int team_size = master_set_numthreads
1534                             ? master_set_numthreads
1535                             : get__nproc_2(parent_team, master_tid);
1536         ompt_callbacks.ompt_callback(ompt_callback_parallel_begin)(
1537             parent_task_data, ompt_frame, &ompt_parallel_data, team_size,
1538             OMPT_INVOKER(call_context), return_address);
1539       }
1540       master_th->th.ompt_thread_info.state = ompt_state_overhead;
1541     }
1542 #endif
1543 
1544     master_th->th.th_ident = loc;
1545 
1546 #if OMP_40_ENABLED
1547     if (master_th->th.th_teams_microtask && ap &&
1548         microtask != (microtask_t)__kmp_teams_master && level == teams_level) {
1549       // AC: This is start of parallel that is nested inside teams construct.
1550       // The team is actual (hot), all workers are ready at the fork barrier.
1551       // No lock needed to initialize the team a bit, then free workers.
1552       parent_team->t.t_ident = loc;
1553       __kmp_alloc_argv_entries(argc, parent_team, TRUE);
1554       parent_team->t.t_argc = argc;
1555       argv = (void **)parent_team->t.t_argv;
1556       for (i = argc - 1; i >= 0; --i)
1557 /* TODO: revert workaround for Intel(R) 64 tracker #96 */
1558 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX
1559         *argv++ = va_arg(*ap, void *);
1560 #else
1561         *argv++ = va_arg(ap, void *);
1562 #endif
1563       // Increment our nested depth levels, but not increase the serialization
1564       if (parent_team == master_th->th.th_serial_team) {
1565         // AC: we are in serialized parallel
1566         __kmpc_serialized_parallel(loc, gtid);
1567         KMP_DEBUG_ASSERT(parent_team->t.t_serialized > 1);
1568         // AC: need this in order enquiry functions work
1569         // correctly, will restore at join time
1570         parent_team->t.t_serialized--;
1571 #if OMPT_SUPPORT
1572         void *dummy;
1573         void **exit_runtime_p;
1574 
1575         ompt_lw_taskteam_t lw_taskteam;
1576 
1577         if (ompt_enabled.enabled) {
1578           __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid,
1579                                   &ompt_parallel_data, return_address);
1580           exit_runtime_p = &(lw_taskteam.ompt_task_info.frame.exit_frame.ptr);
1581 
1582           __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0);
1583           // don't use lw_taskteam after linking. content was swaped
1584 
1585           /* OMPT implicit task begin */
1586           implicit_task_data = OMPT_CUR_TASK_DATA(master_th);
1587           if (ompt_enabled.ompt_callback_implicit_task) {
1588             ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
1589                 ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th),
1590                 implicit_task_data, 1, __kmp_tid_from_gtid(gtid), ompt_task_implicit); // TODO: Can this be ompt_task_initial?
1591             OMPT_CUR_TASK_INFO(master_th)
1592                 ->thread_num = __kmp_tid_from_gtid(gtid);
1593           }
1594 
1595           /* OMPT state */
1596           master_th->th.ompt_thread_info.state = ompt_state_work_parallel;
1597         } else {
1598           exit_runtime_p = &dummy;
1599         }
1600 #endif
1601 
1602         {
1603           KMP_TIME_PARTITIONED_BLOCK(OMP_parallel);
1604           KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK);
1605           __kmp_invoke_microtask(microtask, gtid, 0, argc, parent_team->t.t_argv
1606 #if OMPT_SUPPORT
1607                                  ,
1608                                  exit_runtime_p
1609 #endif
1610                                  );
1611         }
1612 
1613 #if OMPT_SUPPORT
1614         *exit_runtime_p = NULL;
1615         if (ompt_enabled.enabled) {
1616           OMPT_CUR_TASK_INFO(master_th)->frame.exit_frame = ompt_data_none;
1617           if (ompt_enabled.ompt_callback_implicit_task) {
1618             ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
1619                 ompt_scope_end, NULL, implicit_task_data, 1,
1620                 OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit); // TODO: Can this be ompt_task_initial?
1621           }
1622           __ompt_lw_taskteam_unlink(master_th);
1623 
1624           if (ompt_enabled.ompt_callback_parallel_end) {
1625             ompt_callbacks.ompt_callback(ompt_callback_parallel_end)(
1626                 OMPT_CUR_TEAM_DATA(master_th), OMPT_CUR_TASK_DATA(master_th),
1627                 OMPT_INVOKER(call_context), return_address);
1628           }
1629           master_th->th.ompt_thread_info.state = ompt_state_overhead;
1630         }
1631 #endif
1632         return TRUE;
1633       }
1634 
1635       parent_team->t.t_pkfn = microtask;
1636       parent_team->t.t_invoke = invoker;
1637       KMP_ATOMIC_INC(&root->r.r_in_parallel);
1638       parent_team->t.t_active_level++;
1639       parent_team->t.t_level++;
1640 #if OMP_50_ENABLED
1641       parent_team->t.t_def_allocator = master_th->th.th_def_allocator; // save
1642 #endif
1643 
1644       /* Change number of threads in the team if requested */
1645       if (master_set_numthreads) { // The parallel has num_threads clause
1646         if (master_set_numthreads < master_th->th.th_teams_size.nth) {
1647           // AC: only can reduce number of threads dynamically, can't increase
1648           kmp_info_t **other_threads = parent_team->t.t_threads;
1649           parent_team->t.t_nproc = master_set_numthreads;
1650           for (i = 0; i < master_set_numthreads; ++i) {
1651             other_threads[i]->th.th_team_nproc = master_set_numthreads;
1652           }
1653           // Keep extra threads hot in the team for possible next parallels
1654         }
1655         master_th->th.th_set_nproc = 0;
1656       }
1657 
1658 #if USE_DEBUGGER
1659       if (__kmp_debugging) { // Let debugger override number of threads.
1660         int nth = __kmp_omp_num_threads(loc);
1661         if (nth > 0) { // 0 means debugger doesn't want to change num threads
1662           master_set_numthreads = nth;
1663         }
1664       }
1665 #endif
1666 
1667       KF_TRACE(10, ("__kmp_fork_call: before internal fork: root=%p, team=%p, "
1668                     "master_th=%p, gtid=%d\n",
1669                     root, parent_team, master_th, gtid));
1670       __kmp_internal_fork(loc, gtid, parent_team);
1671       KF_TRACE(10, ("__kmp_fork_call: after internal fork: root=%p, team=%p, "
1672                     "master_th=%p, gtid=%d\n",
1673                     root, parent_team, master_th, gtid));
1674 
1675       /* Invoke microtask for MASTER thread */
1676       KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) invoke microtask = %p\n", gtid,
1677                     parent_team->t.t_id, parent_team->t.t_pkfn));
1678 
1679       if (!parent_team->t.t_invoke(gtid)) {
1680         KMP_ASSERT2(0, "cannot invoke microtask for MASTER thread");
1681       }
1682       KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) done microtask = %p\n", gtid,
1683                     parent_team->t.t_id, parent_team->t.t_pkfn));
1684       KMP_MB(); /* Flush all pending memory write invalidates.  */
1685 
1686       KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid));
1687 
1688       return TRUE;
1689     } // Parallel closely nested in teams construct
1690 #endif /* OMP_40_ENABLED */
1691 
1692 #if KMP_DEBUG
1693     if (__kmp_tasking_mode != tskm_immediate_exec) {
1694       KMP_DEBUG_ASSERT(master_th->th.th_task_team ==
1695                        parent_team->t.t_task_team[master_th->th.th_task_state]);
1696     }
1697 #endif
1698 
1699     if (parent_team->t.t_active_level >=
1700         master_th->th.th_current_task->td_icvs.max_active_levels) {
1701       nthreads = 1;
1702     } else {
1703 #if OMP_40_ENABLED
1704       int enter_teams = ((ap == NULL && active_level == 0) ||
1705                          (ap && teams_level > 0 && teams_level == level));
1706 #endif
1707       nthreads =
1708           master_set_numthreads
1709               ? master_set_numthreads
1710               : get__nproc_2(
1711                     parent_team,
1712                     master_tid); // TODO: get nproc directly from current task
1713 
1714       // Check if we need to take forkjoin lock? (no need for serialized
1715       // parallel out of teams construct). This code moved here from
1716       // __kmp_reserve_threads() to speedup nested serialized parallels.
1717       if (nthreads > 1) {
1718         if ((get__max_active_levels(master_th) == 1 && (root->r.r_in_parallel
1719 #if OMP_40_ENABLED
1720                                                         && !enter_teams
1721 #endif /* OMP_40_ENABLED */
1722                                                         )) ||
1723             (__kmp_library == library_serial)) {
1724           KC_TRACE(10, ("__kmp_fork_call: T#%d serializing team; requested %d"
1725                         " threads\n",
1726                         gtid, nthreads));
1727           nthreads = 1;
1728         }
1729       }
1730       if (nthreads > 1) {
1731         /* determine how many new threads we can use */
1732         __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
1733         nthreads = __kmp_reserve_threads(
1734             root, parent_team, master_tid, nthreads
1735 #if OMP_40_ENABLED
1736             /* AC: If we execute teams from parallel region (on host), then
1737                teams should be created but each can only have 1 thread if
1738                nesting is disabled. If teams called from serial region, then
1739                teams and their threads should be created regardless of the
1740                nesting setting. */
1741             ,
1742             enter_teams
1743 #endif /* OMP_40_ENABLED */
1744             );
1745         if (nthreads == 1) {
1746           // Free lock for single thread execution here; for multi-thread
1747           // execution it will be freed later after team of threads created
1748           // and initialized
1749           __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1750         }
1751       }
1752     }
1753     KMP_DEBUG_ASSERT(nthreads > 0);
1754 
1755     // If we temporarily changed the set number of threads then restore it now
1756     master_th->th.th_set_nproc = 0;
1757 
1758     /* create a serialized parallel region? */
1759     if (nthreads == 1) {
1760 /* josh todo: hypothetical question: what do we do for OS X*? */
1761 #if KMP_OS_LINUX &&                                                            \
1762     (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64)
1763       void *args[argc];
1764 #else
1765       void **args = (void **)KMP_ALLOCA(argc * sizeof(void *));
1766 #endif /* KMP_OS_LINUX && ( KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || \
1767           KMP_ARCH_AARCH64) */
1768 
1769       KA_TRACE(20,
1770                ("__kmp_fork_call: T#%d serializing parallel region\n", gtid));
1771 
1772       __kmpc_serialized_parallel(loc, gtid);
1773 
1774       if (call_context == fork_context_intel) {
1775         /* TODO this sucks, use the compiler itself to pass args! :) */
1776         master_th->th.th_serial_team->t.t_ident = loc;
1777 #if OMP_40_ENABLED
1778         if (!ap) {
1779           // revert change made in __kmpc_serialized_parallel()
1780           master_th->th.th_serial_team->t.t_level--;
1781 // Get args from parent team for teams construct
1782 
1783 #if OMPT_SUPPORT
1784           void *dummy;
1785           void **exit_runtime_p;
1786           ompt_task_info_t *task_info;
1787 
1788           ompt_lw_taskteam_t lw_taskteam;
1789 
1790           if (ompt_enabled.enabled) {
1791             __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid,
1792                                     &ompt_parallel_data, return_address);
1793 
1794             __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0);
1795             // don't use lw_taskteam after linking. content was swaped
1796 
1797             task_info = OMPT_CUR_TASK_INFO(master_th);
1798             exit_runtime_p = &(task_info->frame.exit_frame.ptr);
1799             if (ompt_enabled.ompt_callback_implicit_task) {
1800               ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
1801                   ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th),
1802                   &(task_info->task_data), 1, __kmp_tid_from_gtid(gtid), ompt_task_implicit); // TODO: Can this be ompt_task_initial?
1803               OMPT_CUR_TASK_INFO(master_th)
1804                   ->thread_num = __kmp_tid_from_gtid(gtid);
1805             }
1806 
1807             /* OMPT state */
1808             master_th->th.ompt_thread_info.state = ompt_state_work_parallel;
1809           } else {
1810             exit_runtime_p = &dummy;
1811           }
1812 #endif
1813 
1814           {
1815             KMP_TIME_PARTITIONED_BLOCK(OMP_parallel);
1816             KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK);
1817             __kmp_invoke_microtask(microtask, gtid, 0, argc,
1818                                    parent_team->t.t_argv
1819 #if OMPT_SUPPORT
1820                                    ,
1821                                    exit_runtime_p
1822 #endif
1823                                    );
1824           }
1825 
1826 #if OMPT_SUPPORT
1827           if (ompt_enabled.enabled) {
1828             exit_runtime_p = NULL;
1829             if (ompt_enabled.ompt_callback_implicit_task) {
1830               ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
1831                   ompt_scope_end, NULL, &(task_info->task_data), 1,
1832                   OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit); // TODO: Can this be ompt_task_initial?
1833             }
1834 
1835             __ompt_lw_taskteam_unlink(master_th);
1836             if (ompt_enabled.ompt_callback_parallel_end) {
1837               ompt_callbacks.ompt_callback(ompt_callback_parallel_end)(
1838                   OMPT_CUR_TEAM_DATA(master_th), parent_task_data,
1839                   OMPT_INVOKER(call_context), return_address);
1840             }
1841             master_th->th.ompt_thread_info.state = ompt_state_overhead;
1842           }
1843 #endif
1844         } else if (microtask == (microtask_t)__kmp_teams_master) {
1845           KMP_DEBUG_ASSERT(master_th->th.th_team ==
1846                            master_th->th.th_serial_team);
1847           team = master_th->th.th_team;
1848           // team->t.t_pkfn = microtask;
1849           team->t.t_invoke = invoker;
1850           __kmp_alloc_argv_entries(argc, team, TRUE);
1851           team->t.t_argc = argc;
1852           argv = (void **)team->t.t_argv;
1853           if (ap) {
1854             for (i = argc - 1; i >= 0; --i)
1855 // TODO: revert workaround for Intel(R) 64 tracker #96
1856 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX
1857               *argv++ = va_arg(*ap, void *);
1858 #else
1859               *argv++ = va_arg(ap, void *);
1860 #endif
1861           } else {
1862             for (i = 0; i < argc; ++i)
1863               // Get args from parent team for teams construct
1864               argv[i] = parent_team->t.t_argv[i];
1865           }
1866           // AC: revert change made in __kmpc_serialized_parallel()
1867           //     because initial code in teams should have level=0
1868           team->t.t_level--;
1869           // AC: call special invoker for outer "parallel" of teams construct
1870           invoker(gtid);
1871         } else {
1872 #endif /* OMP_40_ENABLED */
1873           argv = args;
1874           for (i = argc - 1; i >= 0; --i)
1875 // TODO: revert workaround for Intel(R) 64 tracker #96
1876 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX
1877             *argv++ = va_arg(*ap, void *);
1878 #else
1879           *argv++ = va_arg(ap, void *);
1880 #endif
1881           KMP_MB();
1882 
1883 #if OMPT_SUPPORT
1884           void *dummy;
1885           void **exit_runtime_p;
1886           ompt_task_info_t *task_info;
1887 
1888           ompt_lw_taskteam_t lw_taskteam;
1889 
1890           if (ompt_enabled.enabled) {
1891             __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid,
1892                                     &ompt_parallel_data, return_address);
1893             __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0);
1894             // don't use lw_taskteam after linking. content was swaped
1895             task_info = OMPT_CUR_TASK_INFO(master_th);
1896             exit_runtime_p = &(task_info->frame.exit_frame.ptr);
1897 
1898             /* OMPT implicit task begin */
1899             implicit_task_data = OMPT_CUR_TASK_DATA(master_th);
1900             if (ompt_enabled.ompt_callback_implicit_task) {
1901               ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
1902                   ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th),
1903                   implicit_task_data, 1, __kmp_tid_from_gtid(gtid), ompt_task_implicit); // TODO: Can this be ompt_task_initial?
1904               OMPT_CUR_TASK_INFO(master_th)
1905                   ->thread_num = __kmp_tid_from_gtid(gtid);
1906             }
1907 
1908             /* OMPT state */
1909             master_th->th.ompt_thread_info.state = ompt_state_work_parallel;
1910           } else {
1911             exit_runtime_p = &dummy;
1912           }
1913 #endif
1914 
1915           {
1916             KMP_TIME_PARTITIONED_BLOCK(OMP_parallel);
1917             KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK);
1918             __kmp_invoke_microtask(microtask, gtid, 0, argc, args
1919 #if OMPT_SUPPORT
1920                                    ,
1921                                    exit_runtime_p
1922 #endif
1923                                    );
1924           }
1925 
1926 #if OMPT_SUPPORT
1927           if (ompt_enabled.enabled) {
1928             *exit_runtime_p = NULL;
1929             if (ompt_enabled.ompt_callback_implicit_task) {
1930               ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
1931                   ompt_scope_end, NULL, &(task_info->task_data), 1,
1932                   OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit); // TODO: Can this be ompt_task_initial?
1933             }
1934 
1935             ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th);
1936             __ompt_lw_taskteam_unlink(master_th);
1937             if (ompt_enabled.ompt_callback_parallel_end) {
1938               ompt_callbacks.ompt_callback(ompt_callback_parallel_end)(
1939                   &ompt_parallel_data, parent_task_data,
1940                   OMPT_INVOKER(call_context), return_address);
1941             }
1942             master_th->th.ompt_thread_info.state = ompt_state_overhead;
1943           }
1944 #endif
1945 #if OMP_40_ENABLED
1946         }
1947 #endif /* OMP_40_ENABLED */
1948       } else if (call_context == fork_context_gnu) {
1949 #if OMPT_SUPPORT
1950         ompt_lw_taskteam_t lwt;
1951         __ompt_lw_taskteam_init(&lwt, master_th, gtid, &ompt_parallel_data,
1952                                 return_address);
1953 
1954         lwt.ompt_task_info.frame.exit_frame = ompt_data_none;
1955         __ompt_lw_taskteam_link(&lwt, master_th, 1);
1956 // don't use lw_taskteam after linking. content was swaped
1957 #endif
1958 
1959         // we were called from GNU native code
1960         KA_TRACE(20, ("__kmp_fork_call: T#%d serial exit\n", gtid));
1961         return FALSE;
1962       } else {
1963         KMP_ASSERT2(call_context < fork_context_last,
1964                     "__kmp_fork_call: unknown fork_context parameter");
1965       }
1966 
1967       KA_TRACE(20, ("__kmp_fork_call: T#%d serial exit\n", gtid));
1968       KMP_MB();
1969       return FALSE;
1970     } // if (nthreads == 1)
1971 
1972     // GEH: only modify the executing flag in the case when not serialized
1973     //      serialized case is handled in kmpc_serialized_parallel
1974     KF_TRACE(10, ("__kmp_fork_call: parent_team_aclevel=%d, master_th=%p, "
1975                   "curtask=%p, curtask_max_aclevel=%d\n",
1976                   parent_team->t.t_active_level, master_th,
1977                   master_th->th.th_current_task,
1978                   master_th->th.th_current_task->td_icvs.max_active_levels));
1979     // TODO: GEH - cannot do this assertion because root thread not set up as
1980     // executing
1981     // KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 1 );
1982     master_th->th.th_current_task->td_flags.executing = 0;
1983 
1984 #if OMP_40_ENABLED
1985     if (!master_th->th.th_teams_microtask || level > teams_level)
1986 #endif /* OMP_40_ENABLED */
1987     {
1988       /* Increment our nested depth level */
1989       KMP_ATOMIC_INC(&root->r.r_in_parallel);
1990     }
1991 
1992     // See if we need to make a copy of the ICVs.
1993     int nthreads_icv = master_th->th.th_current_task->td_icvs.nproc;
1994     if ((level + 1 < __kmp_nested_nth.used) &&
1995         (__kmp_nested_nth.nth[level + 1] != nthreads_icv)) {
1996       nthreads_icv = __kmp_nested_nth.nth[level + 1];
1997     } else {
1998       nthreads_icv = 0; // don't update
1999     }
2000 
2001 #if OMP_40_ENABLED
2002     // Figure out the proc_bind_policy for the new team.
2003     kmp_proc_bind_t proc_bind = master_th->th.th_set_proc_bind;
2004     kmp_proc_bind_t proc_bind_icv =
2005         proc_bind_default; // proc_bind_default means don't update
2006     if (master_th->th.th_current_task->td_icvs.proc_bind == proc_bind_false) {
2007       proc_bind = proc_bind_false;
2008     } else {
2009       if (proc_bind == proc_bind_default) {
2010         // No proc_bind clause specified; use current proc-bind-var for this
2011         // parallel region
2012         proc_bind = master_th->th.th_current_task->td_icvs.proc_bind;
2013       }
2014       /* else: The proc_bind policy was specified explicitly on parallel clause.
2015          This overrides proc-bind-var for this parallel region, but does not
2016          change proc-bind-var. */
2017       // Figure the value of proc-bind-var for the child threads.
2018       if ((level + 1 < __kmp_nested_proc_bind.used) &&
2019           (__kmp_nested_proc_bind.bind_types[level + 1] !=
2020            master_th->th.th_current_task->td_icvs.proc_bind)) {
2021         proc_bind_icv = __kmp_nested_proc_bind.bind_types[level + 1];
2022       }
2023     }
2024 
2025     // Reset for next parallel region
2026     master_th->th.th_set_proc_bind = proc_bind_default;
2027 #endif /* OMP_40_ENABLED */
2028 
2029     if ((nthreads_icv > 0)
2030 #if OMP_40_ENABLED
2031         || (proc_bind_icv != proc_bind_default)
2032 #endif /* OMP_40_ENABLED */
2033             ) {
2034       kmp_internal_control_t new_icvs;
2035       copy_icvs(&new_icvs, &master_th->th.th_current_task->td_icvs);
2036       new_icvs.next = NULL;
2037       if (nthreads_icv > 0) {
2038         new_icvs.nproc = nthreads_icv;
2039       }
2040 
2041 #if OMP_40_ENABLED
2042       if (proc_bind_icv != proc_bind_default) {
2043         new_icvs.proc_bind = proc_bind_icv;
2044       }
2045 #endif /* OMP_40_ENABLED */
2046 
2047       /* allocate a new parallel team */
2048       KF_TRACE(10, ("__kmp_fork_call: before __kmp_allocate_team\n"));
2049       team = __kmp_allocate_team(root, nthreads, nthreads,
2050 #if OMPT_SUPPORT
2051                                  ompt_parallel_data,
2052 #endif
2053 #if OMP_40_ENABLED
2054                                  proc_bind,
2055 #endif
2056                                  &new_icvs, argc USE_NESTED_HOT_ARG(master_th));
2057     } else {
2058       /* allocate a new parallel team */
2059       KF_TRACE(10, ("__kmp_fork_call: before __kmp_allocate_team\n"));
2060       team = __kmp_allocate_team(root, nthreads, nthreads,
2061 #if OMPT_SUPPORT
2062                                  ompt_parallel_data,
2063 #endif
2064 #if OMP_40_ENABLED
2065                                  proc_bind,
2066 #endif
2067                                  &master_th->th.th_current_task->td_icvs,
2068                                  argc USE_NESTED_HOT_ARG(master_th));
2069     }
2070     KF_TRACE(
2071         10, ("__kmp_fork_call: after __kmp_allocate_team - team = %p\n", team));
2072 
2073     /* setup the new team */
2074     KMP_CHECK_UPDATE(team->t.t_master_tid, master_tid);
2075     KMP_CHECK_UPDATE(team->t.t_master_this_cons, master_this_cons);
2076     KMP_CHECK_UPDATE(team->t.t_ident, loc);
2077     KMP_CHECK_UPDATE(team->t.t_parent, parent_team);
2078     KMP_CHECK_UPDATE_SYNC(team->t.t_pkfn, microtask);
2079 #if OMPT_SUPPORT
2080     KMP_CHECK_UPDATE_SYNC(team->t.ompt_team_info.master_return_address,
2081                           return_address);
2082 #endif
2083     KMP_CHECK_UPDATE(team->t.t_invoke, invoker); // TODO move to root, maybe
2084 // TODO: parent_team->t.t_level == INT_MAX ???
2085 #if OMP_40_ENABLED
2086     if (!master_th->th.th_teams_microtask || level > teams_level) {
2087 #endif /* OMP_40_ENABLED */
2088       int new_level = parent_team->t.t_level + 1;
2089       KMP_CHECK_UPDATE(team->t.t_level, new_level);
2090       new_level = parent_team->t.t_active_level + 1;
2091       KMP_CHECK_UPDATE(team->t.t_active_level, new_level);
2092 #if OMP_40_ENABLED
2093     } else {
2094       // AC: Do not increase parallel level at start of the teams construct
2095       int new_level = parent_team->t.t_level;
2096       KMP_CHECK_UPDATE(team->t.t_level, new_level);
2097       new_level = parent_team->t.t_active_level;
2098       KMP_CHECK_UPDATE(team->t.t_active_level, new_level);
2099     }
2100 #endif /* OMP_40_ENABLED */
2101     kmp_r_sched_t new_sched = get__sched_2(parent_team, master_tid);
2102     // set master's schedule as new run-time schedule
2103     KMP_CHECK_UPDATE(team->t.t_sched.sched, new_sched.sched);
2104 
2105 #if OMP_40_ENABLED
2106     KMP_CHECK_UPDATE(team->t.t_cancel_request, cancel_noreq);
2107 #endif
2108 #if OMP_50_ENABLED
2109     KMP_CHECK_UPDATE(team->t.t_def_allocator, master_th->th.th_def_allocator);
2110 #endif
2111 
2112     // Update the floating point rounding in the team if required.
2113     propagateFPControl(team);
2114 
2115     if (__kmp_tasking_mode != tskm_immediate_exec) {
2116       // Set master's task team to team's task team. Unless this is hot team, it
2117       // should be NULL.
2118       KMP_DEBUG_ASSERT(master_th->th.th_task_team ==
2119                        parent_team->t.t_task_team[master_th->th.th_task_state]);
2120       KA_TRACE(20, ("__kmp_fork_call: Master T#%d pushing task_team %p / team "
2121                     "%p, new task_team %p / team %p\n",
2122                     __kmp_gtid_from_thread(master_th),
2123                     master_th->th.th_task_team, parent_team,
2124                     team->t.t_task_team[master_th->th.th_task_state], team));
2125 
2126       if (active_level || master_th->th.th_task_team) {
2127         // Take a memo of master's task_state
2128         KMP_DEBUG_ASSERT(master_th->th.th_task_state_memo_stack);
2129         if (master_th->th.th_task_state_top >=
2130             master_th->th.th_task_state_stack_sz) { // increase size
2131           kmp_uint32 new_size = 2 * master_th->th.th_task_state_stack_sz;
2132           kmp_uint8 *old_stack, *new_stack;
2133           kmp_uint32 i;
2134           new_stack = (kmp_uint8 *)__kmp_allocate(new_size);
2135           for (i = 0; i < master_th->th.th_task_state_stack_sz; ++i) {
2136             new_stack[i] = master_th->th.th_task_state_memo_stack[i];
2137           }
2138           for (i = master_th->th.th_task_state_stack_sz; i < new_size;
2139                ++i) { // zero-init rest of stack
2140             new_stack[i] = 0;
2141           }
2142           old_stack = master_th->th.th_task_state_memo_stack;
2143           master_th->th.th_task_state_memo_stack = new_stack;
2144           master_th->th.th_task_state_stack_sz = new_size;
2145           __kmp_free(old_stack);
2146         }
2147         // Store master's task_state on stack
2148         master_th->th
2149             .th_task_state_memo_stack[master_th->th.th_task_state_top] =
2150             master_th->th.th_task_state;
2151         master_th->th.th_task_state_top++;
2152 #if KMP_NESTED_HOT_TEAMS
2153         if (master_th->th.th_hot_teams &&
2154             active_level < __kmp_hot_teams_max_level &&
2155             team == master_th->th.th_hot_teams[active_level].hot_team) {
2156           // Restore master's nested state if nested hot team
2157           master_th->th.th_task_state =
2158               master_th->th
2159                   .th_task_state_memo_stack[master_th->th.th_task_state_top];
2160         } else {
2161 #endif
2162           master_th->th.th_task_state = 0;
2163 #if KMP_NESTED_HOT_TEAMS
2164         }
2165 #endif
2166       }
2167 #if !KMP_NESTED_HOT_TEAMS
2168       KMP_DEBUG_ASSERT((master_th->th.th_task_team == NULL) ||
2169                        (team == root->r.r_hot_team));
2170 #endif
2171     }
2172 
2173     KA_TRACE(
2174         20,
2175         ("__kmp_fork_call: T#%d(%d:%d)->(%d:0) created a team of %d threads\n",
2176          gtid, parent_team->t.t_id, team->t.t_master_tid, team->t.t_id,
2177          team->t.t_nproc));
2178     KMP_DEBUG_ASSERT(team != root->r.r_hot_team ||
2179                      (team->t.t_master_tid == 0 &&
2180                       (team->t.t_parent == root->r.r_root_team ||
2181                        team->t.t_parent->t.t_serialized)));
2182     KMP_MB();
2183 
2184     /* now, setup the arguments */
2185     argv = (void **)team->t.t_argv;
2186 #if OMP_40_ENABLED
2187     if (ap) {
2188 #endif /* OMP_40_ENABLED */
2189       for (i = argc - 1; i >= 0; --i) {
2190 // TODO: revert workaround for Intel(R) 64 tracker #96
2191 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX
2192         void *new_argv = va_arg(*ap, void *);
2193 #else
2194       void *new_argv = va_arg(ap, void *);
2195 #endif
2196         KMP_CHECK_UPDATE(*argv, new_argv);
2197         argv++;
2198       }
2199 #if OMP_40_ENABLED
2200     } else {
2201       for (i = 0; i < argc; ++i) {
2202         // Get args from parent team for teams construct
2203         KMP_CHECK_UPDATE(argv[i], team->t.t_parent->t.t_argv[i]);
2204       }
2205     }
2206 #endif /* OMP_40_ENABLED */
2207 
2208     /* now actually fork the threads */
2209     KMP_CHECK_UPDATE(team->t.t_master_active, master_active);
2210     if (!root->r.r_active) // Only do assignment if it prevents cache ping-pong
2211       root->r.r_active = TRUE;
2212 
2213     __kmp_fork_team_threads(root, team, master_th, gtid);
2214     __kmp_setup_icv_copy(team, nthreads,
2215                          &master_th->th.th_current_task->td_icvs, loc);
2216 
2217 #if OMPT_SUPPORT
2218     master_th->th.ompt_thread_info.state = ompt_state_work_parallel;
2219 #endif
2220 
2221     __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
2222 
2223 #if USE_ITT_BUILD
2224     if (team->t.t_active_level == 1 // only report frames at level 1
2225 #if OMP_40_ENABLED
2226         && !master_th->th.th_teams_microtask // not in teams construct
2227 #endif /* OMP_40_ENABLED */
2228         ) {
2229 #if USE_ITT_NOTIFY
2230       if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) &&
2231           (__kmp_forkjoin_frames_mode == 3 ||
2232            __kmp_forkjoin_frames_mode == 1)) {
2233         kmp_uint64 tmp_time = 0;
2234         if (__itt_get_timestamp_ptr)
2235           tmp_time = __itt_get_timestamp();
2236         // Internal fork - report frame begin
2237         master_th->th.th_frame_time = tmp_time;
2238         if (__kmp_forkjoin_frames_mode == 3)
2239           team->t.t_region_time = tmp_time;
2240       } else
2241 // only one notification scheme (either "submit" or "forking/joined", not both)
2242 #endif /* USE_ITT_NOTIFY */
2243           if ((__itt_frame_begin_v3_ptr || KMP_ITT_DEBUG) &&
2244               __kmp_forkjoin_frames && !__kmp_forkjoin_frames_mode) {
2245         // Mark start of "parallel" region for Intel(R) VTune(TM) analyzer.
2246         __kmp_itt_region_forking(gtid, team->t.t_nproc, 0);
2247       }
2248     }
2249 #endif /* USE_ITT_BUILD */
2250 
2251     /* now go on and do the work */
2252     KMP_DEBUG_ASSERT(team == __kmp_threads[gtid]->th.th_team);
2253     KMP_MB();
2254     KF_TRACE(10,
2255              ("__kmp_internal_fork : root=%p, team=%p, master_th=%p, gtid=%d\n",
2256               root, team, master_th, gtid));
2257 
2258 #if USE_ITT_BUILD
2259     if (__itt_stack_caller_create_ptr) {
2260       team->t.t_stack_id =
2261           __kmp_itt_stack_caller_create(); // create new stack stitching id
2262       // before entering fork barrier
2263     }
2264 #endif /* USE_ITT_BUILD */
2265 
2266 #if OMP_40_ENABLED
2267     // AC: skip __kmp_internal_fork at teams construct, let only master
2268     // threads execute
2269     if (ap)
2270 #endif /* OMP_40_ENABLED */
2271     {
2272       __kmp_internal_fork(loc, gtid, team);
2273       KF_TRACE(10, ("__kmp_internal_fork : after : root=%p, team=%p, "
2274                     "master_th=%p, gtid=%d\n",
2275                     root, team, master_th, gtid));
2276     }
2277 
2278     if (call_context == fork_context_gnu) {
2279       KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid));
2280       return TRUE;
2281     }
2282 
2283     /* Invoke microtask for MASTER thread */
2284     KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) invoke microtask = %p\n", gtid,
2285                   team->t.t_id, team->t.t_pkfn));
2286   } // END of timer KMP_fork_call block
2287 
2288 #if KMP_STATS_ENABLED && OMP_40_ENABLED
2289   // If beginning a teams construct, then change thread state
2290   stats_state_e previous_state = KMP_GET_THREAD_STATE();
2291   if (!ap) {
2292     KMP_SET_THREAD_STATE(stats_state_e::TEAMS_REGION);
2293   }
2294 #endif
2295 
2296   if (!team->t.t_invoke(gtid)) {
2297     KMP_ASSERT2(0, "cannot invoke microtask for MASTER thread");
2298   }
2299 
2300 #if KMP_STATS_ENABLED && OMP_40_ENABLED
2301   // If was beginning of a teams construct, then reset thread state
2302   if (!ap) {
2303     KMP_SET_THREAD_STATE(previous_state);
2304   }
2305 #endif
2306 
2307   KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) done microtask = %p\n", gtid,
2308                 team->t.t_id, team->t.t_pkfn));
2309   KMP_MB(); /* Flush all pending memory write invalidates.  */
2310 
2311   KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid));
2312 
2313 #if OMPT_SUPPORT
2314   if (ompt_enabled.enabled) {
2315     master_th->th.ompt_thread_info.state = ompt_state_overhead;
2316   }
2317 #endif
2318 
2319   return TRUE;
2320 }
2321 
2322 #if OMPT_SUPPORT
2323 static inline void __kmp_join_restore_state(kmp_info_t *thread,
2324                                             kmp_team_t *team) {
2325   // restore state outside the region
2326   thread->th.ompt_thread_info.state =
2327       ((team->t.t_serialized) ? ompt_state_work_serial
2328                               : ompt_state_work_parallel);
2329 }
2330 
2331 static inline void __kmp_join_ompt(int gtid, kmp_info_t *thread,
2332                                    kmp_team_t *team, ompt_data_t *parallel_data,
2333                                    fork_context_e fork_context, void *codeptr) {
2334   ompt_task_info_t *task_info = __ompt_get_task_info_object(0);
2335   if (ompt_enabled.ompt_callback_parallel_end) {
2336     ompt_callbacks.ompt_callback(ompt_callback_parallel_end)(
2337         parallel_data, &(task_info->task_data), OMPT_INVOKER(fork_context),
2338         codeptr);
2339   }
2340 
2341   task_info->frame.enter_frame = ompt_data_none;
2342   __kmp_join_restore_state(thread, team);
2343 }
2344 #endif
2345 
2346 void __kmp_join_call(ident_t *loc, int gtid
2347 #if OMPT_SUPPORT
2348                      ,
2349                      enum fork_context_e fork_context
2350 #endif
2351 #if OMP_40_ENABLED
2352                      ,
2353                      int exit_teams
2354 #endif /* OMP_40_ENABLED */
2355                      ) {
2356   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_join_call);
2357   kmp_team_t *team;
2358   kmp_team_t *parent_team;
2359   kmp_info_t *master_th;
2360   kmp_root_t *root;
2361   int master_active;
2362 
2363   KA_TRACE(20, ("__kmp_join_call: enter T#%d\n", gtid));
2364 
2365   /* setup current data */
2366   master_th = __kmp_threads[gtid];
2367   root = master_th->th.th_root;
2368   team = master_th->th.th_team;
2369   parent_team = team->t.t_parent;
2370 
2371   master_th->th.th_ident = loc;
2372 
2373 #if OMPT_SUPPORT
2374   if (ompt_enabled.enabled) {
2375     master_th->th.ompt_thread_info.state = ompt_state_overhead;
2376   }
2377 #endif
2378 
2379 #if KMP_DEBUG
2380   if (__kmp_tasking_mode != tskm_immediate_exec && !exit_teams) {
2381     KA_TRACE(20, ("__kmp_join_call: T#%d, old team = %p old task_team = %p, "
2382                   "th_task_team = %p\n",
2383                   __kmp_gtid_from_thread(master_th), team,
2384                   team->t.t_task_team[master_th->th.th_task_state],
2385                   master_th->th.th_task_team));
2386     KMP_DEBUG_ASSERT(master_th->th.th_task_team ==
2387                      team->t.t_task_team[master_th->th.th_task_state]);
2388   }
2389 #endif
2390 
2391   if (team->t.t_serialized) {
2392 #if OMP_40_ENABLED
2393     if (master_th->th.th_teams_microtask) {
2394       // We are in teams construct
2395       int level = team->t.t_level;
2396       int tlevel = master_th->th.th_teams_level;
2397       if (level == tlevel) {
2398         // AC: we haven't incremented it earlier at start of teams construct,
2399         //     so do it here - at the end of teams construct
2400         team->t.t_level++;
2401       } else if (level == tlevel + 1) {
2402         // AC: we are exiting parallel inside teams, need to increment
2403         // serialization in order to restore it in the next call to
2404         // __kmpc_end_serialized_parallel
2405         team->t.t_serialized++;
2406       }
2407     }
2408 #endif /* OMP_40_ENABLED */
2409     __kmpc_end_serialized_parallel(loc, gtid);
2410 
2411 #if OMPT_SUPPORT
2412     if (ompt_enabled.enabled) {
2413       __kmp_join_restore_state(master_th, parent_team);
2414     }
2415 #endif
2416 
2417     return;
2418   }
2419 
2420   master_active = team->t.t_master_active;
2421 
2422 #if OMP_40_ENABLED
2423   if (!exit_teams)
2424 #endif /* OMP_40_ENABLED */
2425   {
2426     // AC: No barrier for internal teams at exit from teams construct.
2427     //     But there is barrier for external team (league).
2428     __kmp_internal_join(loc, gtid, team);
2429   }
2430 #if OMP_40_ENABLED
2431   else {
2432     master_th->th.th_task_state =
2433         0; // AC: no tasking in teams (out of any parallel)
2434   }
2435 #endif /* OMP_40_ENABLED */
2436 
2437   KMP_MB();
2438 
2439 #if OMPT_SUPPORT
2440   ompt_data_t *parallel_data = &(team->t.ompt_team_info.parallel_data);
2441   void *codeptr = team->t.ompt_team_info.master_return_address;
2442 #endif
2443 
2444 #if USE_ITT_BUILD
2445   if (__itt_stack_caller_create_ptr) {
2446     __kmp_itt_stack_caller_destroy(
2447         (__itt_caller)team->t
2448             .t_stack_id); // destroy the stack stitching id after join barrier
2449   }
2450 
2451   // Mark end of "parallel" region for Intel(R) VTune(TM) analyzer.
2452   if (team->t.t_active_level == 1
2453 #if OMP_40_ENABLED
2454       && !master_th->th.th_teams_microtask /* not in teams construct */
2455 #endif /* OMP_40_ENABLED */
2456       ) {
2457     master_th->th.th_ident = loc;
2458     // only one notification scheme (either "submit" or "forking/joined", not
2459     // both)
2460     if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) &&
2461         __kmp_forkjoin_frames_mode == 3)
2462       __kmp_itt_frame_submit(gtid, team->t.t_region_time,
2463                              master_th->th.th_frame_time, 0, loc,
2464                              master_th->th.th_team_nproc, 1);
2465     else if ((__itt_frame_end_v3_ptr || KMP_ITT_DEBUG) &&
2466              !__kmp_forkjoin_frames_mode && __kmp_forkjoin_frames)
2467       __kmp_itt_region_joined(gtid);
2468   } // active_level == 1
2469 #endif /* USE_ITT_BUILD */
2470 
2471 #if OMP_40_ENABLED
2472   if (master_th->th.th_teams_microtask && !exit_teams &&
2473       team->t.t_pkfn != (microtask_t)__kmp_teams_master &&
2474       team->t.t_level == master_th->th.th_teams_level + 1) {
2475     // AC: We need to leave the team structure intact at the end of parallel
2476     // inside the teams construct, so that at the next parallel same (hot) team
2477     // works, only adjust nesting levels
2478 
2479     /* Decrement our nested depth level */
2480     team->t.t_level--;
2481     team->t.t_active_level--;
2482     KMP_ATOMIC_DEC(&root->r.r_in_parallel);
2483 
2484     // Restore number of threads in the team if needed. This code relies on
2485     // the proper adjustment of th_teams_size.nth after the fork in
2486     // __kmp_teams_master on each teams master in the case that
2487     // __kmp_reserve_threads reduced it.
2488     if (master_th->th.th_team_nproc < master_th->th.th_teams_size.nth) {
2489       int old_num = master_th->th.th_team_nproc;
2490       int new_num = master_th->th.th_teams_size.nth;
2491       kmp_info_t **other_threads = team->t.t_threads;
2492       team->t.t_nproc = new_num;
2493       for (int i = 0; i < old_num; ++i) {
2494         other_threads[i]->th.th_team_nproc = new_num;
2495       }
2496       // Adjust states of non-used threads of the team
2497       for (int i = old_num; i < new_num; ++i) {
2498         // Re-initialize thread's barrier data.
2499         KMP_DEBUG_ASSERT(other_threads[i]);
2500         kmp_balign_t *balign = other_threads[i]->th.th_bar;
2501         for (int b = 0; b < bs_last_barrier; ++b) {
2502           balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived;
2503           KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG);
2504 #if USE_DEBUGGER
2505           balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived;
2506 #endif
2507         }
2508         if (__kmp_tasking_mode != tskm_immediate_exec) {
2509           // Synchronize thread's task state
2510           other_threads[i]->th.th_task_state = master_th->th.th_task_state;
2511         }
2512       }
2513     }
2514 
2515 #if OMPT_SUPPORT
2516     if (ompt_enabled.enabled) {
2517       __kmp_join_ompt(gtid, master_th, parent_team, parallel_data, fork_context,
2518                       codeptr);
2519     }
2520 #endif
2521 
2522     return;
2523   }
2524 #endif /* OMP_40_ENABLED */
2525 
2526   /* do cleanup and restore the parent team */
2527   master_th->th.th_info.ds.ds_tid = team->t.t_master_tid;
2528   master_th->th.th_local.this_construct = team->t.t_master_this_cons;
2529 
2530   master_th->th.th_dispatch = &parent_team->t.t_dispatch[team->t.t_master_tid];
2531 
2532   /* jc: The following lock has instructions with REL and ACQ semantics,
2533      separating the parallel user code called in this parallel region
2534      from the serial user code called after this function returns. */
2535   __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
2536 
2537 #if OMP_40_ENABLED
2538   if (!master_th->th.th_teams_microtask ||
2539       team->t.t_level > master_th->th.th_teams_level)
2540 #endif /* OMP_40_ENABLED */
2541   {
2542     /* Decrement our nested depth level */
2543     KMP_ATOMIC_DEC(&root->r.r_in_parallel);
2544   }
2545   KMP_DEBUG_ASSERT(root->r.r_in_parallel >= 0);
2546 
2547 #if OMPT_SUPPORT
2548   if (ompt_enabled.enabled) {
2549     ompt_task_info_t *task_info = __ompt_get_task_info_object(0);
2550     if (ompt_enabled.ompt_callback_implicit_task) {
2551       int ompt_team_size = team->t.t_nproc;
2552       ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
2553           ompt_scope_end, NULL, &(task_info->task_data), ompt_team_size,
2554           OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit); // TODO: Can this be ompt_task_initial?
2555     }
2556 
2557     task_info->frame.exit_frame = ompt_data_none;
2558     task_info->task_data = ompt_data_none;
2559   }
2560 #endif
2561 
2562   KF_TRACE(10, ("__kmp_join_call1: T#%d, this_thread=%p team=%p\n", 0,
2563                 master_th, team));
2564   __kmp_pop_current_task_from_thread(master_th);
2565 
2566 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED
2567   // Restore master thread's partition.
2568   master_th->th.th_first_place = team->t.t_first_place;
2569   master_th->th.th_last_place = team->t.t_last_place;
2570 #endif /* OMP_40_ENABLED */
2571 #if OMP_50_ENABLED
2572   master_th->th.th_def_allocator = team->t.t_def_allocator;
2573 #endif
2574 
2575   updateHWFPControl(team);
2576 
2577   if (root->r.r_active != master_active)
2578     root->r.r_active = master_active;
2579 
2580   __kmp_free_team(root, team USE_NESTED_HOT_ARG(
2581                             master_th)); // this will free worker threads
2582 
2583   /* this race was fun to find. make sure the following is in the critical
2584      region otherwise assertions may fail occasionally since the old team may be
2585      reallocated and the hierarchy appears inconsistent. it is actually safe to
2586      run and won't cause any bugs, but will cause those assertion failures. it's
2587      only one deref&assign so might as well put this in the critical region */
2588   master_th->th.th_team = parent_team;
2589   master_th->th.th_team_nproc = parent_team->t.t_nproc;
2590   master_th->th.th_team_master = parent_team->t.t_threads[0];
2591   master_th->th.th_team_serialized = parent_team->t.t_serialized;
2592 
2593   /* restore serialized team, if need be */
2594   if (parent_team->t.t_serialized &&
2595       parent_team != master_th->th.th_serial_team &&
2596       parent_team != root->r.r_root_team) {
2597     __kmp_free_team(root,
2598                     master_th->th.th_serial_team USE_NESTED_HOT_ARG(NULL));
2599     master_th->th.th_serial_team = parent_team;
2600   }
2601 
2602   if (__kmp_tasking_mode != tskm_immediate_exec) {
2603     if (master_th->th.th_task_state_top >
2604         0) { // Restore task state from memo stack
2605       KMP_DEBUG_ASSERT(master_th->th.th_task_state_memo_stack);
2606       // Remember master's state if we re-use this nested hot team
2607       master_th->th.th_task_state_memo_stack[master_th->th.th_task_state_top] =
2608           master_th->th.th_task_state;
2609       --master_th->th.th_task_state_top; // pop
2610       // Now restore state at this level
2611       master_th->th.th_task_state =
2612           master_th->th
2613               .th_task_state_memo_stack[master_th->th.th_task_state_top];
2614     }
2615     // Copy the task team from the parent team to the master thread
2616     master_th->th.th_task_team =
2617         parent_team->t.t_task_team[master_th->th.th_task_state];
2618     KA_TRACE(20,
2619              ("__kmp_join_call: Master T#%d restoring task_team %p / team %p\n",
2620               __kmp_gtid_from_thread(master_th), master_th->th.th_task_team,
2621               parent_team));
2622   }
2623 
2624   // TODO: GEH - cannot do this assertion because root thread not set up as
2625   // executing
2626   // KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 0 );
2627   master_th->th.th_current_task->td_flags.executing = 1;
2628 
2629   __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
2630 
2631 #if OMPT_SUPPORT
2632   if (ompt_enabled.enabled) {
2633     __kmp_join_ompt(gtid, master_th, parent_team, parallel_data, fork_context,
2634                     codeptr);
2635   }
2636 #endif
2637 
2638   KMP_MB();
2639   KA_TRACE(20, ("__kmp_join_call: exit T#%d\n", gtid));
2640 }
2641 
2642 /* Check whether we should push an internal control record onto the
2643    serial team stack.  If so, do it.  */
2644 void __kmp_save_internal_controls(kmp_info_t *thread) {
2645 
2646   if (thread->th.th_team != thread->th.th_serial_team) {
2647     return;
2648   }
2649   if (thread->th.th_team->t.t_serialized > 1) {
2650     int push = 0;
2651 
2652     if (thread->th.th_team->t.t_control_stack_top == NULL) {
2653       push = 1;
2654     } else {
2655       if (thread->th.th_team->t.t_control_stack_top->serial_nesting_level !=
2656           thread->th.th_team->t.t_serialized) {
2657         push = 1;
2658       }
2659     }
2660     if (push) { /* push a record on the serial team's stack */
2661       kmp_internal_control_t *control =
2662           (kmp_internal_control_t *)__kmp_allocate(
2663               sizeof(kmp_internal_control_t));
2664 
2665       copy_icvs(control, &thread->th.th_current_task->td_icvs);
2666 
2667       control->serial_nesting_level = thread->th.th_team->t.t_serialized;
2668 
2669       control->next = thread->th.th_team->t.t_control_stack_top;
2670       thread->th.th_team->t.t_control_stack_top = control;
2671     }
2672   }
2673 }
2674 
2675 /* Changes set_nproc */
2676 void __kmp_set_num_threads(int new_nth, int gtid) {
2677   kmp_info_t *thread;
2678   kmp_root_t *root;
2679 
2680   KF_TRACE(10, ("__kmp_set_num_threads: new __kmp_nth = %d\n", new_nth));
2681   KMP_DEBUG_ASSERT(__kmp_init_serial);
2682 
2683   if (new_nth < 1)
2684     new_nth = 1;
2685   else if (new_nth > __kmp_max_nth)
2686     new_nth = __kmp_max_nth;
2687 
2688   KMP_COUNT_VALUE(OMP_set_numthreads, new_nth);
2689   thread = __kmp_threads[gtid];
2690   if (thread->th.th_current_task->td_icvs.nproc == new_nth)
2691     return; // nothing to do
2692 
2693   __kmp_save_internal_controls(thread);
2694 
2695   set__nproc(thread, new_nth);
2696 
2697   // If this omp_set_num_threads() call will cause the hot team size to be
2698   // reduced (in the absence of a num_threads clause), then reduce it now,
2699   // rather than waiting for the next parallel region.
2700   root = thread->th.th_root;
2701   if (__kmp_init_parallel && (!root->r.r_active) &&
2702       (root->r.r_hot_team->t.t_nproc > new_nth)
2703 #if KMP_NESTED_HOT_TEAMS
2704       && __kmp_hot_teams_max_level && !__kmp_hot_teams_mode
2705 #endif
2706       ) {
2707     kmp_team_t *hot_team = root->r.r_hot_team;
2708     int f;
2709 
2710     __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
2711 
2712     // Release the extra threads we don't need any more.
2713     for (f = new_nth; f < hot_team->t.t_nproc; f++) {
2714       KMP_DEBUG_ASSERT(hot_team->t.t_threads[f] != NULL);
2715       if (__kmp_tasking_mode != tskm_immediate_exec) {
2716         // When decreasing team size, threads no longer in the team should unref
2717         // task team.
2718         hot_team->t.t_threads[f]->th.th_task_team = NULL;
2719       }
2720       __kmp_free_thread(hot_team->t.t_threads[f]);
2721       hot_team->t.t_threads[f] = NULL;
2722     }
2723     hot_team->t.t_nproc = new_nth;
2724 #if KMP_NESTED_HOT_TEAMS
2725     if (thread->th.th_hot_teams) {
2726       KMP_DEBUG_ASSERT(hot_team == thread->th.th_hot_teams[0].hot_team);
2727       thread->th.th_hot_teams[0].hot_team_nth = new_nth;
2728     }
2729 #endif
2730 
2731     __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
2732 
2733     // Update the t_nproc field in the threads that are still active.
2734     for (f = 0; f < new_nth; f++) {
2735       KMP_DEBUG_ASSERT(hot_team->t.t_threads[f] != NULL);
2736       hot_team->t.t_threads[f]->th.th_team_nproc = new_nth;
2737     }
2738     // Special flag in case omp_set_num_threads() call
2739     hot_team->t.t_size_changed = -1;
2740   }
2741 }
2742 
2743 /* Changes max_active_levels */
2744 void __kmp_set_max_active_levels(int gtid, int max_active_levels) {
2745   kmp_info_t *thread;
2746 
2747   KF_TRACE(10, ("__kmp_set_max_active_levels: new max_active_levels for thread "
2748                 "%d = (%d)\n",
2749                 gtid, max_active_levels));
2750   KMP_DEBUG_ASSERT(__kmp_init_serial);
2751 
2752   // validate max_active_levels
2753   if (max_active_levels < 0) {
2754     KMP_WARNING(ActiveLevelsNegative, max_active_levels);
2755     // We ignore this call if the user has specified a negative value.
2756     // The current setting won't be changed. The last valid setting will be
2757     // used. A warning will be issued (if warnings are allowed as controlled by
2758     // the KMP_WARNINGS env var).
2759     KF_TRACE(10, ("__kmp_set_max_active_levels: the call is ignored: new "
2760                   "max_active_levels for thread %d = (%d)\n",
2761                   gtid, max_active_levels));
2762     return;
2763   }
2764   if (max_active_levels <= KMP_MAX_ACTIVE_LEVELS_LIMIT) {
2765     // it's OK, the max_active_levels is within the valid range: [ 0;
2766     // KMP_MAX_ACTIVE_LEVELS_LIMIT ]
2767     // We allow a zero value. (implementation defined behavior)
2768   } else {
2769     KMP_WARNING(ActiveLevelsExceedLimit, max_active_levels,
2770                 KMP_MAX_ACTIVE_LEVELS_LIMIT);
2771     max_active_levels = KMP_MAX_ACTIVE_LEVELS_LIMIT;
2772     // Current upper limit is MAX_INT. (implementation defined behavior)
2773     // If the input exceeds the upper limit, we correct the input to be the
2774     // upper limit. (implementation defined behavior)
2775     // Actually, the flow should never get here until we use MAX_INT limit.
2776   }
2777   KF_TRACE(10, ("__kmp_set_max_active_levels: after validation: new "
2778                 "max_active_levels for thread %d = (%d)\n",
2779                 gtid, max_active_levels));
2780 
2781   thread = __kmp_threads[gtid];
2782 
2783   __kmp_save_internal_controls(thread);
2784 
2785   set__max_active_levels(thread, max_active_levels);
2786 }
2787 
2788 /* Gets max_active_levels */
2789 int __kmp_get_max_active_levels(int gtid) {
2790   kmp_info_t *thread;
2791 
2792   KF_TRACE(10, ("__kmp_get_max_active_levels: thread %d\n", gtid));
2793   KMP_DEBUG_ASSERT(__kmp_init_serial);
2794 
2795   thread = __kmp_threads[gtid];
2796   KMP_DEBUG_ASSERT(thread->th.th_current_task);
2797   KF_TRACE(10, ("__kmp_get_max_active_levels: thread %d, curtask=%p, "
2798                 "curtask_maxaclevel=%d\n",
2799                 gtid, thread->th.th_current_task,
2800                 thread->th.th_current_task->td_icvs.max_active_levels));
2801   return thread->th.th_current_task->td_icvs.max_active_levels;
2802 }
2803 
2804 /* Changes def_sched_var ICV values (run-time schedule kind and chunk) */
2805 void __kmp_set_schedule(int gtid, kmp_sched_t kind, int chunk) {
2806   kmp_info_t *thread;
2807   //    kmp_team_t *team;
2808 
2809   KF_TRACE(10, ("__kmp_set_schedule: new schedule for thread %d = (%d, %d)\n",
2810                 gtid, (int)kind, chunk));
2811   KMP_DEBUG_ASSERT(__kmp_init_serial);
2812 
2813   // Check if the kind parameter is valid, correct if needed.
2814   // Valid parameters should fit in one of two intervals - standard or extended:
2815   //       <lower>, <valid>, <upper_std>, <lower_ext>, <valid>, <upper>
2816   // 2008-01-25: 0,  1 - 4,       5,         100,     101 - 102, 103
2817   if (kind <= kmp_sched_lower || kind >= kmp_sched_upper ||
2818       (kind <= kmp_sched_lower_ext && kind >= kmp_sched_upper_std)) {
2819     // TODO: Hint needs attention in case we change the default schedule.
2820     __kmp_msg(kmp_ms_warning, KMP_MSG(ScheduleKindOutOfRange, kind),
2821               KMP_HNT(DefaultScheduleKindUsed, "static, no chunk"),
2822               __kmp_msg_null);
2823     kind = kmp_sched_default;
2824     chunk = 0; // ignore chunk value in case of bad kind
2825   }
2826 
2827   thread = __kmp_threads[gtid];
2828 
2829   __kmp_save_internal_controls(thread);
2830 
2831   if (kind < kmp_sched_upper_std) {
2832     if (kind == kmp_sched_static && chunk < KMP_DEFAULT_CHUNK) {
2833       // differ static chunked vs. unchunked:  chunk should be invalid to
2834       // indicate unchunked schedule (which is the default)
2835       thread->th.th_current_task->td_icvs.sched.r_sched_type = kmp_sch_static;
2836     } else {
2837       thread->th.th_current_task->td_icvs.sched.r_sched_type =
2838           __kmp_sch_map[kind - kmp_sched_lower - 1];
2839     }
2840   } else {
2841     //    __kmp_sch_map[ kind - kmp_sched_lower_ext + kmp_sched_upper_std -
2842     //    kmp_sched_lower - 2 ];
2843     thread->th.th_current_task->td_icvs.sched.r_sched_type =
2844         __kmp_sch_map[kind - kmp_sched_lower_ext + kmp_sched_upper_std -
2845                       kmp_sched_lower - 2];
2846   }
2847   if (kind == kmp_sched_auto || chunk < 1) {
2848     // ignore parameter chunk for schedule auto
2849     thread->th.th_current_task->td_icvs.sched.chunk = KMP_DEFAULT_CHUNK;
2850   } else {
2851     thread->th.th_current_task->td_icvs.sched.chunk = chunk;
2852   }
2853 }
2854 
2855 /* Gets def_sched_var ICV values */
2856 void __kmp_get_schedule(int gtid, kmp_sched_t *kind, int *chunk) {
2857   kmp_info_t *thread;
2858   enum sched_type th_type;
2859 
2860   KF_TRACE(10, ("__kmp_get_schedule: thread %d\n", gtid));
2861   KMP_DEBUG_ASSERT(__kmp_init_serial);
2862 
2863   thread = __kmp_threads[gtid];
2864 
2865   th_type = thread->th.th_current_task->td_icvs.sched.r_sched_type;
2866 
2867   switch (th_type) {
2868   case kmp_sch_static:
2869   case kmp_sch_static_greedy:
2870   case kmp_sch_static_balanced:
2871     *kind = kmp_sched_static;
2872     *chunk = 0; // chunk was not set, try to show this fact via zero value
2873     return;
2874   case kmp_sch_static_chunked:
2875     *kind = kmp_sched_static;
2876     break;
2877   case kmp_sch_dynamic_chunked:
2878     *kind = kmp_sched_dynamic;
2879     break;
2880   case kmp_sch_guided_chunked:
2881   case kmp_sch_guided_iterative_chunked:
2882   case kmp_sch_guided_analytical_chunked:
2883     *kind = kmp_sched_guided;
2884     break;
2885   case kmp_sch_auto:
2886     *kind = kmp_sched_auto;
2887     break;
2888   case kmp_sch_trapezoidal:
2889     *kind = kmp_sched_trapezoidal;
2890     break;
2891 #if KMP_STATIC_STEAL_ENABLED
2892   case kmp_sch_static_steal:
2893     *kind = kmp_sched_static_steal;
2894     break;
2895 #endif
2896   default:
2897     KMP_FATAL(UnknownSchedulingType, th_type);
2898   }
2899 
2900   *chunk = thread->th.th_current_task->td_icvs.sched.chunk;
2901 }
2902 
2903 int __kmp_get_ancestor_thread_num(int gtid, int level) {
2904 
2905   int ii, dd;
2906   kmp_team_t *team;
2907   kmp_info_t *thr;
2908 
2909   KF_TRACE(10, ("__kmp_get_ancestor_thread_num: thread %d %d\n", gtid, level));
2910   KMP_DEBUG_ASSERT(__kmp_init_serial);
2911 
2912   // validate level
2913   if (level == 0)
2914     return 0;
2915   if (level < 0)
2916     return -1;
2917   thr = __kmp_threads[gtid];
2918   team = thr->th.th_team;
2919   ii = team->t.t_level;
2920   if (level > ii)
2921     return -1;
2922 
2923 #if OMP_40_ENABLED
2924   if (thr->th.th_teams_microtask) {
2925     // AC: we are in teams region where multiple nested teams have same level
2926     int tlevel = thr->th.th_teams_level; // the level of the teams construct
2927     if (level <=
2928         tlevel) { // otherwise usual algorithm works (will not touch the teams)
2929       KMP_DEBUG_ASSERT(ii >= tlevel);
2930       // AC: As we need to pass by the teams league, we need to artificially
2931       // increase ii
2932       if (ii == tlevel) {
2933         ii += 2; // three teams have same level
2934       } else {
2935         ii++; // two teams have same level
2936       }
2937     }
2938   }
2939 #endif
2940 
2941   if (ii == level)
2942     return __kmp_tid_from_gtid(gtid);
2943 
2944   dd = team->t.t_serialized;
2945   level++;
2946   while (ii > level) {
2947     for (dd = team->t.t_serialized; (dd > 0) && (ii > level); dd--, ii--) {
2948     }
2949     if ((team->t.t_serialized) && (!dd)) {
2950       team = team->t.t_parent;
2951       continue;
2952     }
2953     if (ii > level) {
2954       team = team->t.t_parent;
2955       dd = team->t.t_serialized;
2956       ii--;
2957     }
2958   }
2959 
2960   return (dd > 1) ? (0) : (team->t.t_master_tid);
2961 }
2962 
2963 int __kmp_get_team_size(int gtid, int level) {
2964 
2965   int ii, dd;
2966   kmp_team_t *team;
2967   kmp_info_t *thr;
2968 
2969   KF_TRACE(10, ("__kmp_get_team_size: thread %d %d\n", gtid, level));
2970   KMP_DEBUG_ASSERT(__kmp_init_serial);
2971 
2972   // validate level
2973   if (level == 0)
2974     return 1;
2975   if (level < 0)
2976     return -1;
2977   thr = __kmp_threads[gtid];
2978   team = thr->th.th_team;
2979   ii = team->t.t_level;
2980   if (level > ii)
2981     return -1;
2982 
2983 #if OMP_40_ENABLED
2984   if (thr->th.th_teams_microtask) {
2985     // AC: we are in teams region where multiple nested teams have same level
2986     int tlevel = thr->th.th_teams_level; // the level of the teams construct
2987     if (level <=
2988         tlevel) { // otherwise usual algorithm works (will not touch the teams)
2989       KMP_DEBUG_ASSERT(ii >= tlevel);
2990       // AC: As we need to pass by the teams league, we need to artificially
2991       // increase ii
2992       if (ii == tlevel) {
2993         ii += 2; // three teams have same level
2994       } else {
2995         ii++; // two teams have same level
2996       }
2997     }
2998   }
2999 #endif
3000 
3001   while (ii > level) {
3002     for (dd = team->t.t_serialized; (dd > 0) && (ii > level); dd--, ii--) {
3003     }
3004     if (team->t.t_serialized && (!dd)) {
3005       team = team->t.t_parent;
3006       continue;
3007     }
3008     if (ii > level) {
3009       team = team->t.t_parent;
3010       ii--;
3011     }
3012   }
3013 
3014   return team->t.t_nproc;
3015 }
3016 
3017 kmp_r_sched_t __kmp_get_schedule_global() {
3018   // This routine created because pairs (__kmp_sched, __kmp_chunk) and
3019   // (__kmp_static, __kmp_guided) may be changed by kmp_set_defaults
3020   // independently. So one can get the updated schedule here.
3021 
3022   kmp_r_sched_t r_sched;
3023 
3024   // create schedule from 4 globals: __kmp_sched, __kmp_chunk, __kmp_static,
3025   // __kmp_guided. __kmp_sched should keep original value, so that user can set
3026   // KMP_SCHEDULE multiple times, and thus have different run-time schedules in
3027   // different roots (even in OMP 2.5)
3028   if (__kmp_sched == kmp_sch_static) {
3029     // replace STATIC with more detailed schedule (balanced or greedy)
3030     r_sched.r_sched_type = __kmp_static;
3031   } else if (__kmp_sched == kmp_sch_guided_chunked) {
3032     // replace GUIDED with more detailed schedule (iterative or analytical)
3033     r_sched.r_sched_type = __kmp_guided;
3034   } else { // (STATIC_CHUNKED), or (DYNAMIC_CHUNKED), or other
3035     r_sched.r_sched_type = __kmp_sched;
3036   }
3037 
3038   if (__kmp_chunk < KMP_DEFAULT_CHUNK) {
3039     // __kmp_chunk may be wrong here (if it was not ever set)
3040     r_sched.chunk = KMP_DEFAULT_CHUNK;
3041   } else {
3042     r_sched.chunk = __kmp_chunk;
3043   }
3044 
3045   return r_sched;
3046 }
3047 
3048 /* Allocate (realloc == FALSE) * or reallocate (realloc == TRUE)
3049    at least argc number of *t_argv entries for the requested team. */
3050 static void __kmp_alloc_argv_entries(int argc, kmp_team_t *team, int realloc) {
3051 
3052   KMP_DEBUG_ASSERT(team);
3053   if (!realloc || argc > team->t.t_max_argc) {
3054 
3055     KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: needed entries=%d, "
3056                    "current entries=%d\n",
3057                    team->t.t_id, argc, (realloc) ? team->t.t_max_argc : 0));
3058     /* if previously allocated heap space for args, free them */
3059     if (realloc && team->t.t_argv != &team->t.t_inline_argv[0])
3060       __kmp_free((void *)team->t.t_argv);
3061 
3062     if (argc <= KMP_INLINE_ARGV_ENTRIES) {
3063       /* use unused space in the cache line for arguments */
3064       team->t.t_max_argc = KMP_INLINE_ARGV_ENTRIES;
3065       KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: inline allocate %d "
3066                      "argv entries\n",
3067                      team->t.t_id, team->t.t_max_argc));
3068       team->t.t_argv = &team->t.t_inline_argv[0];
3069       if (__kmp_storage_map) {
3070         __kmp_print_storage_map_gtid(
3071             -1, &team->t.t_inline_argv[0],
3072             &team->t.t_inline_argv[KMP_INLINE_ARGV_ENTRIES],
3073             (sizeof(void *) * KMP_INLINE_ARGV_ENTRIES), "team_%d.t_inline_argv",
3074             team->t.t_id);
3075       }
3076     } else {
3077       /* allocate space for arguments in the heap */
3078       team->t.t_max_argc = (argc <= (KMP_MIN_MALLOC_ARGV_ENTRIES >> 1))
3079                                ? KMP_MIN_MALLOC_ARGV_ENTRIES
3080                                : 2 * argc;
3081       KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: dynamic allocate %d "
3082                      "argv entries\n",
3083                      team->t.t_id, team->t.t_max_argc));
3084       team->t.t_argv =
3085           (void **)__kmp_page_allocate(sizeof(void *) * team->t.t_max_argc);
3086       if (__kmp_storage_map) {
3087         __kmp_print_storage_map_gtid(-1, &team->t.t_argv[0],
3088                                      &team->t.t_argv[team->t.t_max_argc],
3089                                      sizeof(void *) * team->t.t_max_argc,
3090                                      "team_%d.t_argv", team->t.t_id);
3091       }
3092     }
3093   }
3094 }
3095 
3096 static void __kmp_allocate_team_arrays(kmp_team_t *team, int max_nth) {
3097   int i;
3098   int num_disp_buff = max_nth > 1 ? __kmp_dispatch_num_buffers : 2;
3099   team->t.t_threads =
3100       (kmp_info_t **)__kmp_allocate(sizeof(kmp_info_t *) * max_nth);
3101   team->t.t_disp_buffer = (dispatch_shared_info_t *)__kmp_allocate(
3102       sizeof(dispatch_shared_info_t) * num_disp_buff);
3103   team->t.t_dispatch =
3104       (kmp_disp_t *)__kmp_allocate(sizeof(kmp_disp_t) * max_nth);
3105   team->t.t_implicit_task_taskdata =
3106       (kmp_taskdata_t *)__kmp_allocate(sizeof(kmp_taskdata_t) * max_nth);
3107   team->t.t_max_nproc = max_nth;
3108 
3109   /* setup dispatch buffers */
3110   for (i = 0; i < num_disp_buff; ++i) {
3111     team->t.t_disp_buffer[i].buffer_index = i;
3112 #if OMP_45_ENABLED
3113     team->t.t_disp_buffer[i].doacross_buf_idx = i;
3114 #endif
3115   }
3116 }
3117 
3118 static void __kmp_free_team_arrays(kmp_team_t *team) {
3119   /* Note: this does not free the threads in t_threads (__kmp_free_threads) */
3120   int i;
3121   for (i = 0; i < team->t.t_max_nproc; ++i) {
3122     if (team->t.t_dispatch[i].th_disp_buffer != NULL) {
3123       __kmp_free(team->t.t_dispatch[i].th_disp_buffer);
3124       team->t.t_dispatch[i].th_disp_buffer = NULL;
3125     }
3126   }
3127 #if KMP_USE_HIER_SCHED
3128   __kmp_dispatch_free_hierarchies(team);
3129 #endif
3130   __kmp_free(team->t.t_threads);
3131   __kmp_free(team->t.t_disp_buffer);
3132   __kmp_free(team->t.t_dispatch);
3133   __kmp_free(team->t.t_implicit_task_taskdata);
3134   team->t.t_threads = NULL;
3135   team->t.t_disp_buffer = NULL;
3136   team->t.t_dispatch = NULL;
3137   team->t.t_implicit_task_taskdata = 0;
3138 }
3139 
3140 static void __kmp_reallocate_team_arrays(kmp_team_t *team, int max_nth) {
3141   kmp_info_t **oldThreads = team->t.t_threads;
3142 
3143   __kmp_free(team->t.t_disp_buffer);
3144   __kmp_free(team->t.t_dispatch);
3145   __kmp_free(team->t.t_implicit_task_taskdata);
3146   __kmp_allocate_team_arrays(team, max_nth);
3147 
3148   KMP_MEMCPY(team->t.t_threads, oldThreads,
3149              team->t.t_nproc * sizeof(kmp_info_t *));
3150 
3151   __kmp_free(oldThreads);
3152 }
3153 
3154 static kmp_internal_control_t __kmp_get_global_icvs(void) {
3155 
3156   kmp_r_sched_t r_sched =
3157       __kmp_get_schedule_global(); // get current state of scheduling globals
3158 
3159 #if OMP_40_ENABLED
3160   KMP_DEBUG_ASSERT(__kmp_nested_proc_bind.used > 0);
3161 #endif /* OMP_40_ENABLED */
3162 
3163   kmp_internal_control_t g_icvs = {
3164     0, // int serial_nesting_level; //corresponds to value of th_team_serialized
3165     (kmp_int8)__kmp_global.g.g_dynamic, // internal control for dynamic
3166     // adjustment of threads (per thread)
3167     (kmp_int8)__kmp_env_blocktime, // int bt_set; //internal control for
3168     // whether blocktime is explicitly set
3169     __kmp_dflt_blocktime, // int blocktime; //internal control for blocktime
3170 #if KMP_USE_MONITOR
3171     __kmp_bt_intervals, // int bt_intervals; //internal control for blocktime
3172 // intervals
3173 #endif
3174     __kmp_dflt_team_nth, // int nproc; //internal control for # of threads for
3175     // next parallel region (per thread)
3176     // (use a max ub on value if __kmp_parallel_initialize not called yet)
3177     __kmp_cg_max_nth, // int thread_limit;
3178     __kmp_dflt_max_active_levels, // int max_active_levels; //internal control
3179     // for max_active_levels
3180     r_sched, // kmp_r_sched_t sched; //internal control for runtime schedule
3181 // {sched,chunk} pair
3182 #if OMP_40_ENABLED
3183     __kmp_nested_proc_bind.bind_types[0],
3184     __kmp_default_device,
3185 #endif /* OMP_40_ENABLED */
3186     NULL // struct kmp_internal_control *next;
3187   };
3188 
3189   return g_icvs;
3190 }
3191 
3192 static kmp_internal_control_t __kmp_get_x_global_icvs(const kmp_team_t *team) {
3193 
3194   kmp_internal_control_t gx_icvs;
3195   gx_icvs.serial_nesting_level =
3196       0; // probably =team->t.t_serial like in save_inter_controls
3197   copy_icvs(&gx_icvs, &team->t.t_threads[0]->th.th_current_task->td_icvs);
3198   gx_icvs.next = NULL;
3199 
3200   return gx_icvs;
3201 }
3202 
3203 static void __kmp_initialize_root(kmp_root_t *root) {
3204   int f;
3205   kmp_team_t *root_team;
3206   kmp_team_t *hot_team;
3207   int hot_team_max_nth;
3208   kmp_r_sched_t r_sched =
3209       __kmp_get_schedule_global(); // get current state of scheduling globals
3210   kmp_internal_control_t r_icvs = __kmp_get_global_icvs();
3211   KMP_DEBUG_ASSERT(root);
3212   KMP_ASSERT(!root->r.r_begin);
3213 
3214   /* setup the root state structure */
3215   __kmp_init_lock(&root->r.r_begin_lock);
3216   root->r.r_begin = FALSE;
3217   root->r.r_active = FALSE;
3218   root->r.r_in_parallel = 0;
3219   root->r.r_blocktime = __kmp_dflt_blocktime;
3220 
3221   /* setup the root team for this task */
3222   /* allocate the root team structure */
3223   KF_TRACE(10, ("__kmp_initialize_root: before root_team\n"));
3224 
3225   root_team =
3226       __kmp_allocate_team(root,
3227                           1, // new_nproc
3228                           1, // max_nproc
3229 #if OMPT_SUPPORT
3230                           ompt_data_none, // root parallel id
3231 #endif
3232 #if OMP_40_ENABLED
3233                           __kmp_nested_proc_bind.bind_types[0],
3234 #endif
3235                           &r_icvs,
3236                           0 // argc
3237                           USE_NESTED_HOT_ARG(NULL) // master thread is unknown
3238                           );
3239 #if USE_DEBUGGER
3240   // Non-NULL value should be assigned to make the debugger display the root
3241   // team.
3242   TCW_SYNC_PTR(root_team->t.t_pkfn, (microtask_t)(~0));
3243 #endif
3244 
3245   KF_TRACE(10, ("__kmp_initialize_root: after root_team = %p\n", root_team));
3246 
3247   root->r.r_root_team = root_team;
3248   root_team->t.t_control_stack_top = NULL;
3249 
3250   /* initialize root team */
3251   root_team->t.t_threads[0] = NULL;
3252   root_team->t.t_nproc = 1;
3253   root_team->t.t_serialized = 1;
3254   // TODO???: root_team->t.t_max_active_levels = __kmp_dflt_max_active_levels;
3255   root_team->t.t_sched.sched = r_sched.sched;
3256   KA_TRACE(
3257       20,
3258       ("__kmp_initialize_root: init root team %d arrived: join=%u, plain=%u\n",
3259        root_team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE));
3260 
3261   /* setup the  hot team for this task */
3262   /* allocate the hot team structure */
3263   KF_TRACE(10, ("__kmp_initialize_root: before hot_team\n"));
3264 
3265   hot_team =
3266       __kmp_allocate_team(root,
3267                           1, // new_nproc
3268                           __kmp_dflt_team_nth_ub * 2, // max_nproc
3269 #if OMPT_SUPPORT
3270                           ompt_data_none, // root parallel id
3271 #endif
3272 #if OMP_40_ENABLED
3273                           __kmp_nested_proc_bind.bind_types[0],
3274 #endif
3275                           &r_icvs,
3276                           0 // argc
3277                           USE_NESTED_HOT_ARG(NULL) // master thread is unknown
3278                           );
3279   KF_TRACE(10, ("__kmp_initialize_root: after hot_team = %p\n", hot_team));
3280 
3281   root->r.r_hot_team = hot_team;
3282   root_team->t.t_control_stack_top = NULL;
3283 
3284   /* first-time initialization */
3285   hot_team->t.t_parent = root_team;
3286 
3287   /* initialize hot team */
3288   hot_team_max_nth = hot_team->t.t_max_nproc;
3289   for (f = 0; f < hot_team_max_nth; ++f) {
3290     hot_team->t.t_threads[f] = NULL;
3291   }
3292   hot_team->t.t_nproc = 1;
3293   // TODO???: hot_team->t.t_max_active_levels = __kmp_dflt_max_active_levels;
3294   hot_team->t.t_sched.sched = r_sched.sched;
3295   hot_team->t.t_size_changed = 0;
3296 }
3297 
3298 #ifdef KMP_DEBUG
3299 
3300 typedef struct kmp_team_list_item {
3301   kmp_team_p const *entry;
3302   struct kmp_team_list_item *next;
3303 } kmp_team_list_item_t;
3304 typedef kmp_team_list_item_t *kmp_team_list_t;
3305 
3306 static void __kmp_print_structure_team_accum( // Add team to list of teams.
3307     kmp_team_list_t list, // List of teams.
3308     kmp_team_p const *team // Team to add.
3309     ) {
3310 
3311   // List must terminate with item where both entry and next are NULL.
3312   // Team is added to the list only once.
3313   // List is sorted in ascending order by team id.
3314   // Team id is *not* a key.
3315 
3316   kmp_team_list_t l;
3317 
3318   KMP_DEBUG_ASSERT(list != NULL);
3319   if (team == NULL) {
3320     return;
3321   }
3322 
3323   __kmp_print_structure_team_accum(list, team->t.t_parent);
3324   __kmp_print_structure_team_accum(list, team->t.t_next_pool);
3325 
3326   // Search list for the team.
3327   l = list;
3328   while (l->next != NULL && l->entry != team) {
3329     l = l->next;
3330   }
3331   if (l->next != NULL) {
3332     return; // Team has been added before, exit.
3333   }
3334 
3335   // Team is not found. Search list again for insertion point.
3336   l = list;
3337   while (l->next != NULL && l->entry->t.t_id <= team->t.t_id) {
3338     l = l->next;
3339   }
3340 
3341   // Insert team.
3342   {
3343     kmp_team_list_item_t *item = (kmp_team_list_item_t *)KMP_INTERNAL_MALLOC(
3344         sizeof(kmp_team_list_item_t));
3345     *item = *l;
3346     l->entry = team;
3347     l->next = item;
3348   }
3349 }
3350 
3351 static void __kmp_print_structure_team(char const *title, kmp_team_p const *team
3352 
3353                                        ) {
3354   __kmp_printf("%s", title);
3355   if (team != NULL) {
3356     __kmp_printf("%2x %p\n", team->t.t_id, team);
3357   } else {
3358     __kmp_printf(" - (nil)\n");
3359   }
3360 }
3361 
3362 static void __kmp_print_structure_thread(char const *title,
3363                                          kmp_info_p const *thread) {
3364   __kmp_printf("%s", title);
3365   if (thread != NULL) {
3366     __kmp_printf("%2d %p\n", thread->th.th_info.ds.ds_gtid, thread);
3367   } else {
3368     __kmp_printf(" - (nil)\n");
3369   }
3370 }
3371 
3372 void __kmp_print_structure(void) {
3373 
3374   kmp_team_list_t list;
3375 
3376   // Initialize list of teams.
3377   list =
3378       (kmp_team_list_item_t *)KMP_INTERNAL_MALLOC(sizeof(kmp_team_list_item_t));
3379   list->entry = NULL;
3380   list->next = NULL;
3381 
3382   __kmp_printf("\n------------------------------\nGlobal Thread "
3383                "Table\n------------------------------\n");
3384   {
3385     int gtid;
3386     for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) {
3387       __kmp_printf("%2d", gtid);
3388       if (__kmp_threads != NULL) {
3389         __kmp_printf(" %p", __kmp_threads[gtid]);
3390       }
3391       if (__kmp_root != NULL) {
3392         __kmp_printf(" %p", __kmp_root[gtid]);
3393       }
3394       __kmp_printf("\n");
3395     }
3396   }
3397 
3398   // Print out __kmp_threads array.
3399   __kmp_printf("\n------------------------------\nThreads\n--------------------"
3400                "----------\n");
3401   if (__kmp_threads != NULL) {
3402     int gtid;
3403     for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) {
3404       kmp_info_t const *thread = __kmp_threads[gtid];
3405       if (thread != NULL) {
3406         __kmp_printf("GTID %2d %p:\n", gtid, thread);
3407         __kmp_printf("    Our Root:        %p\n", thread->th.th_root);
3408         __kmp_print_structure_team("    Our Team:     ", thread->th.th_team);
3409         __kmp_print_structure_team("    Serial Team:  ",
3410                                    thread->th.th_serial_team);
3411         __kmp_printf("    Threads:      %2d\n", thread->th.th_team_nproc);
3412         __kmp_print_structure_thread("    Master:       ",
3413                                      thread->th.th_team_master);
3414         __kmp_printf("    Serialized?:  %2d\n", thread->th.th_team_serialized);
3415         __kmp_printf("    Set NProc:    %2d\n", thread->th.th_set_nproc);
3416 #if OMP_40_ENABLED
3417         __kmp_printf("    Set Proc Bind: %2d\n", thread->th.th_set_proc_bind);
3418 #endif
3419         __kmp_print_structure_thread("    Next in pool: ",
3420                                      thread->th.th_next_pool);
3421         __kmp_printf("\n");
3422         __kmp_print_structure_team_accum(list, thread->th.th_team);
3423         __kmp_print_structure_team_accum(list, thread->th.th_serial_team);
3424       }
3425     }
3426   } else {
3427     __kmp_printf("Threads array is not allocated.\n");
3428   }
3429 
3430   // Print out __kmp_root array.
3431   __kmp_printf("\n------------------------------\nUbers\n----------------------"
3432                "--------\n");
3433   if (__kmp_root != NULL) {
3434     int gtid;
3435     for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) {
3436       kmp_root_t const *root = __kmp_root[gtid];
3437       if (root != NULL) {
3438         __kmp_printf("GTID %2d %p:\n", gtid, root);
3439         __kmp_print_structure_team("    Root Team:    ", root->r.r_root_team);
3440         __kmp_print_structure_team("    Hot Team:     ", root->r.r_hot_team);
3441         __kmp_print_structure_thread("    Uber Thread:  ",
3442                                      root->r.r_uber_thread);
3443         __kmp_printf("    Active?:      %2d\n", root->r.r_active);
3444         __kmp_printf("    In Parallel:  %2d\n",
3445                      KMP_ATOMIC_LD_RLX(&root->r.r_in_parallel));
3446         __kmp_printf("\n");
3447         __kmp_print_structure_team_accum(list, root->r.r_root_team);
3448         __kmp_print_structure_team_accum(list, root->r.r_hot_team);
3449       }
3450     }
3451   } else {
3452     __kmp_printf("Ubers array is not allocated.\n");
3453   }
3454 
3455   __kmp_printf("\n------------------------------\nTeams\n----------------------"
3456                "--------\n");
3457   while (list->next != NULL) {
3458     kmp_team_p const *team = list->entry;
3459     int i;
3460     __kmp_printf("Team %2x %p:\n", team->t.t_id, team);
3461     __kmp_print_structure_team("    Parent Team:      ", team->t.t_parent);
3462     __kmp_printf("    Master TID:       %2d\n", team->t.t_master_tid);
3463     __kmp_printf("    Max threads:      %2d\n", team->t.t_max_nproc);
3464     __kmp_printf("    Levels of serial: %2d\n", team->t.t_serialized);
3465     __kmp_printf("    Number threads:   %2d\n", team->t.t_nproc);
3466     for (i = 0; i < team->t.t_nproc; ++i) {
3467       __kmp_printf("    Thread %2d:      ", i);
3468       __kmp_print_structure_thread("", team->t.t_threads[i]);
3469     }
3470     __kmp_print_structure_team("    Next in pool:     ", team->t.t_next_pool);
3471     __kmp_printf("\n");
3472     list = list->next;
3473   }
3474 
3475   // Print out __kmp_thread_pool and __kmp_team_pool.
3476   __kmp_printf("\n------------------------------\nPools\n----------------------"
3477                "--------\n");
3478   __kmp_print_structure_thread("Thread pool:          ",
3479                                CCAST(kmp_info_t *, __kmp_thread_pool));
3480   __kmp_print_structure_team("Team pool:            ",
3481                              CCAST(kmp_team_t *, __kmp_team_pool));
3482   __kmp_printf("\n");
3483 
3484   // Free team list.
3485   while (list != NULL) {
3486     kmp_team_list_item_t *item = list;
3487     list = list->next;
3488     KMP_INTERNAL_FREE(item);
3489   }
3490 }
3491 
3492 #endif
3493 
3494 //---------------------------------------------------------------------------
3495 //  Stuff for per-thread fast random number generator
3496 //  Table of primes
3497 static const unsigned __kmp_primes[] = {
3498     0x9e3779b1, 0xffe6cc59, 0x2109f6dd, 0x43977ab5, 0xba5703f5, 0xb495a877,
3499     0xe1626741, 0x79695e6b, 0xbc98c09f, 0xd5bee2b3, 0x287488f9, 0x3af18231,
3500     0x9677cd4d, 0xbe3a6929, 0xadc6a877, 0xdcf0674b, 0xbe4d6fe9, 0x5f15e201,
3501     0x99afc3fd, 0xf3f16801, 0xe222cfff, 0x24ba5fdb, 0x0620452d, 0x79f149e3,
3502     0xc8b93f49, 0x972702cd, 0xb07dd827, 0x6c97d5ed, 0x085a3d61, 0x46eb5ea7,
3503     0x3d9910ed, 0x2e687b5b, 0x29609227, 0x6eb081f1, 0x0954c4e1, 0x9d114db9,
3504     0x542acfa9, 0xb3e6bd7b, 0x0742d917, 0xe9f3ffa7, 0x54581edb, 0xf2480f45,
3505     0x0bb9288f, 0xef1affc7, 0x85fa0ca7, 0x3ccc14db, 0xe6baf34b, 0x343377f7,
3506     0x5ca19031, 0xe6d9293b, 0xf0a9f391, 0x5d2e980b, 0xfc411073, 0xc3749363,
3507     0xb892d829, 0x3549366b, 0x629750ad, 0xb98294e5, 0x892d9483, 0xc235baf3,
3508     0x3d2402a3, 0x6bdef3c9, 0xbec333cd, 0x40c9520f};
3509 
3510 //---------------------------------------------------------------------------
3511 //  __kmp_get_random: Get a random number using a linear congruential method.
3512 unsigned short __kmp_get_random(kmp_info_t *thread) {
3513   unsigned x = thread->th.th_x;
3514   unsigned short r = x >> 16;
3515 
3516   thread->th.th_x = x * thread->th.th_a + 1;
3517 
3518   KA_TRACE(30, ("__kmp_get_random: THREAD: %d, RETURN: %u\n",
3519                 thread->th.th_info.ds.ds_tid, r));
3520 
3521   return r;
3522 }
3523 //--------------------------------------------------------
3524 // __kmp_init_random: Initialize a random number generator
3525 void __kmp_init_random(kmp_info_t *thread) {
3526   unsigned seed = thread->th.th_info.ds.ds_tid;
3527 
3528   thread->th.th_a =
3529       __kmp_primes[seed % (sizeof(__kmp_primes) / sizeof(__kmp_primes[0]))];
3530   thread->th.th_x = (seed + 1) * thread->th.th_a + 1;
3531   KA_TRACE(30,
3532            ("__kmp_init_random: THREAD: %u; A: %u\n", seed, thread->th.th_a));
3533 }
3534 
3535 #if KMP_OS_WINDOWS
3536 /* reclaim array entries for root threads that are already dead, returns number
3537  * reclaimed */
3538 static int __kmp_reclaim_dead_roots(void) {
3539   int i, r = 0;
3540 
3541   for (i = 0; i < __kmp_threads_capacity; ++i) {
3542     if (KMP_UBER_GTID(i) &&
3543         !__kmp_still_running((kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[i])) &&
3544         !__kmp_root[i]
3545              ->r.r_active) { // AC: reclaim only roots died in non-active state
3546       r += __kmp_unregister_root_other_thread(i);
3547     }
3548   }
3549   return r;
3550 }
3551 #endif
3552 
3553 /* This function attempts to create free entries in __kmp_threads and
3554    __kmp_root, and returns the number of free entries generated.
3555 
3556    For Windows* OS static library, the first mechanism used is to reclaim array
3557    entries for root threads that are already dead.
3558 
3559    On all platforms, expansion is attempted on the arrays __kmp_threads_ and
3560    __kmp_root, with appropriate update to __kmp_threads_capacity. Array
3561    capacity is increased by doubling with clipping to __kmp_tp_capacity, if
3562    threadprivate cache array has been created. Synchronization with
3563    __kmpc_threadprivate_cached is done using __kmp_tp_cached_lock.
3564 
3565    After any dead root reclamation, if the clipping value allows array expansion
3566    to result in the generation of a total of nNeed free slots, the function does
3567    that expansion. If not, nothing is done beyond the possible initial root
3568    thread reclamation.
3569 
3570    If any argument is negative, the behavior is undefined. */
3571 static int __kmp_expand_threads(int nNeed) {
3572   int added = 0;
3573   int minimumRequiredCapacity;
3574   int newCapacity;
3575   kmp_info_t **newThreads;
3576   kmp_root_t **newRoot;
3577 
3578 // All calls to __kmp_expand_threads should be under __kmp_forkjoin_lock, so
3579 // resizing __kmp_threads does not need additional protection if foreign
3580 // threads are present
3581 
3582 #if KMP_OS_WINDOWS && !KMP_DYNAMIC_LIB
3583   /* only for Windows static library */
3584   /* reclaim array entries for root threads that are already dead */
3585   added = __kmp_reclaim_dead_roots();
3586 
3587   if (nNeed) {
3588     nNeed -= added;
3589     if (nNeed < 0)
3590       nNeed = 0;
3591   }
3592 #endif
3593   if (nNeed <= 0)
3594     return added;
3595 
3596   // Note that __kmp_threads_capacity is not bounded by __kmp_max_nth. If
3597   // __kmp_max_nth is set to some value less than __kmp_sys_max_nth by the
3598   // user via KMP_DEVICE_THREAD_LIMIT, then __kmp_threads_capacity may become
3599   // > __kmp_max_nth in one of two ways:
3600   //
3601   // 1) The initialization thread (gtid = 0) exits.  __kmp_threads[0]
3602   //    may not be resused by another thread, so we may need to increase
3603   //    __kmp_threads_capacity to __kmp_max_nth + 1.
3604   //
3605   // 2) New foreign root(s) are encountered.  We always register new foreign
3606   //    roots. This may cause a smaller # of threads to be allocated at
3607   //    subsequent parallel regions, but the worker threads hang around (and
3608   //    eventually go to sleep) and need slots in the __kmp_threads[] array.
3609   //
3610   // Anyway, that is the reason for moving the check to see if
3611   // __kmp_max_nth was exceeded into __kmp_reserve_threads()
3612   // instead of having it performed here. -BB
3613 
3614   KMP_DEBUG_ASSERT(__kmp_sys_max_nth >= __kmp_threads_capacity);
3615 
3616   /* compute expansion headroom to check if we can expand */
3617   if (__kmp_sys_max_nth - __kmp_threads_capacity < nNeed) {
3618     /* possible expansion too small -- give up */
3619     return added;
3620   }
3621   minimumRequiredCapacity = __kmp_threads_capacity + nNeed;
3622 
3623   newCapacity = __kmp_threads_capacity;
3624   do {
3625     newCapacity = newCapacity <= (__kmp_sys_max_nth >> 1) ? (newCapacity << 1)
3626                                                           : __kmp_sys_max_nth;
3627   } while (newCapacity < minimumRequiredCapacity);
3628   newThreads = (kmp_info_t **)__kmp_allocate(
3629       (sizeof(kmp_info_t *) + sizeof(kmp_root_t *)) * newCapacity + CACHE_LINE);
3630   newRoot =
3631       (kmp_root_t **)((char *)newThreads + sizeof(kmp_info_t *) * newCapacity);
3632   KMP_MEMCPY(newThreads, __kmp_threads,
3633              __kmp_threads_capacity * sizeof(kmp_info_t *));
3634   KMP_MEMCPY(newRoot, __kmp_root,
3635              __kmp_threads_capacity * sizeof(kmp_root_t *));
3636 
3637   kmp_info_t **temp_threads = __kmp_threads;
3638   *(kmp_info_t * *volatile *)&__kmp_threads = newThreads;
3639   *(kmp_root_t * *volatile *)&__kmp_root = newRoot;
3640   __kmp_free(temp_threads);
3641   added += newCapacity - __kmp_threads_capacity;
3642   *(volatile int *)&__kmp_threads_capacity = newCapacity;
3643 
3644   if (newCapacity > __kmp_tp_capacity) {
3645     __kmp_acquire_bootstrap_lock(&__kmp_tp_cached_lock);
3646     if (__kmp_tp_cached && newCapacity > __kmp_tp_capacity) {
3647       __kmp_threadprivate_resize_cache(newCapacity);
3648     } else { // increase __kmp_tp_capacity to correspond with kmp_threads size
3649       *(volatile int *)&__kmp_tp_capacity = newCapacity;
3650     }
3651     __kmp_release_bootstrap_lock(&__kmp_tp_cached_lock);
3652   }
3653 
3654   return added;
3655 }
3656 
3657 /* Register the current thread as a root thread and obtain our gtid. We must
3658    have the __kmp_initz_lock held at this point. Argument TRUE only if are the
3659    thread that calls from __kmp_do_serial_initialize() */
3660 int __kmp_register_root(int initial_thread) {
3661   kmp_info_t *root_thread;
3662   kmp_root_t *root;
3663   int gtid;
3664   int capacity;
3665   __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
3666   KA_TRACE(20, ("__kmp_register_root: entered\n"));
3667   KMP_MB();
3668 
3669   /* 2007-03-02:
3670      If initial thread did not invoke OpenMP RTL yet, and this thread is not an
3671      initial one, "__kmp_all_nth >= __kmp_threads_capacity" condition does not
3672      work as expected -- it may return false (that means there is at least one
3673      empty slot in __kmp_threads array), but it is possible the only free slot
3674      is #0, which is reserved for initial thread and so cannot be used for this
3675      one. Following code workarounds this bug.
3676 
3677      However, right solution seems to be not reserving slot #0 for initial
3678      thread because:
3679      (1) there is no magic in slot #0,
3680      (2) we cannot detect initial thread reliably (the first thread which does
3681         serial initialization may be not a real initial thread).
3682   */
3683   capacity = __kmp_threads_capacity;
3684   if (!initial_thread && TCR_PTR(__kmp_threads[0]) == NULL) {
3685     --capacity;
3686   }
3687 
3688   /* see if there are too many threads */
3689   if (__kmp_all_nth >= capacity && !__kmp_expand_threads(1)) {
3690     if (__kmp_tp_cached) {
3691       __kmp_fatal(KMP_MSG(CantRegisterNewThread),
3692                   KMP_HNT(Set_ALL_THREADPRIVATE, __kmp_tp_capacity),
3693                   KMP_HNT(PossibleSystemLimitOnThreads), __kmp_msg_null);
3694     } else {
3695       __kmp_fatal(KMP_MSG(CantRegisterNewThread), KMP_HNT(SystemLimitOnThreads),
3696                   __kmp_msg_null);
3697     }
3698   }
3699 
3700   /* find an available thread slot */
3701   /* Don't reassign the zero slot since we need that to only be used by initial
3702      thread */
3703   for (gtid = (initial_thread ? 0 : 1); TCR_PTR(__kmp_threads[gtid]) != NULL;
3704        gtid++)
3705     ;
3706   KA_TRACE(1,
3707            ("__kmp_register_root: found slot in threads array: T#%d\n", gtid));
3708   KMP_ASSERT(gtid < __kmp_threads_capacity);
3709 
3710   /* update global accounting */
3711   __kmp_all_nth++;
3712   TCW_4(__kmp_nth, __kmp_nth + 1);
3713 
3714   // if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) for low
3715   // numbers of procs, and method #2 (keyed API call) for higher numbers.
3716   if (__kmp_adjust_gtid_mode) {
3717     if (__kmp_all_nth >= __kmp_tls_gtid_min) {
3718       if (TCR_4(__kmp_gtid_mode) != 2) {
3719         TCW_4(__kmp_gtid_mode, 2);
3720       }
3721     } else {
3722       if (TCR_4(__kmp_gtid_mode) != 1) {
3723         TCW_4(__kmp_gtid_mode, 1);
3724       }
3725     }
3726   }
3727 
3728 #ifdef KMP_ADJUST_BLOCKTIME
3729   /* Adjust blocktime to zero if necessary            */
3730   /* Middle initialization might not have occurred yet */
3731   if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) {
3732     if (__kmp_nth > __kmp_avail_proc) {
3733       __kmp_zero_bt = TRUE;
3734     }
3735   }
3736 #endif /* KMP_ADJUST_BLOCKTIME */
3737 
3738   /* setup this new hierarchy */
3739   if (!(root = __kmp_root[gtid])) {
3740     root = __kmp_root[gtid] = (kmp_root_t *)__kmp_allocate(sizeof(kmp_root_t));
3741     KMP_DEBUG_ASSERT(!root->r.r_root_team);
3742   }
3743 
3744 #if KMP_STATS_ENABLED
3745   // Initialize stats as soon as possible (right after gtid assignment).
3746   __kmp_stats_thread_ptr = __kmp_stats_list->push_back(gtid);
3747   __kmp_stats_thread_ptr->startLife();
3748   KMP_SET_THREAD_STATE(SERIAL_REGION);
3749   KMP_INIT_PARTITIONED_TIMERS(OMP_serial);
3750 #endif
3751   __kmp_initialize_root(root);
3752 
3753   /* setup new root thread structure */
3754   if (root->r.r_uber_thread) {
3755     root_thread = root->r.r_uber_thread;
3756   } else {
3757     root_thread = (kmp_info_t *)__kmp_allocate(sizeof(kmp_info_t));
3758     if (__kmp_storage_map) {
3759       __kmp_print_thread_storage_map(root_thread, gtid);
3760     }
3761     root_thread->th.th_info.ds.ds_gtid = gtid;
3762 #if OMPT_SUPPORT
3763     root_thread->th.ompt_thread_info.thread_data = ompt_data_none;
3764 #endif
3765     root_thread->th.th_root = root;
3766     if (__kmp_env_consistency_check) {
3767       root_thread->th.th_cons = __kmp_allocate_cons_stack(gtid);
3768     }
3769 #if USE_FAST_MEMORY
3770     __kmp_initialize_fast_memory(root_thread);
3771 #endif /* USE_FAST_MEMORY */
3772 
3773 #if KMP_USE_BGET
3774     KMP_DEBUG_ASSERT(root_thread->th.th_local.bget_data == NULL);
3775     __kmp_initialize_bget(root_thread);
3776 #endif
3777     __kmp_init_random(root_thread); // Initialize random number generator
3778   }
3779 
3780   /* setup the serial team held in reserve by the root thread */
3781   if (!root_thread->th.th_serial_team) {
3782     kmp_internal_control_t r_icvs = __kmp_get_global_icvs();
3783     KF_TRACE(10, ("__kmp_register_root: before serial_team\n"));
3784     root_thread->th.th_serial_team =
3785         __kmp_allocate_team(root, 1, 1,
3786 #if OMPT_SUPPORT
3787                             ompt_data_none, // root parallel id
3788 #endif
3789 #if OMP_40_ENABLED
3790                             proc_bind_default,
3791 #endif
3792                             &r_icvs, 0 USE_NESTED_HOT_ARG(NULL));
3793   }
3794   KMP_ASSERT(root_thread->th.th_serial_team);
3795   KF_TRACE(10, ("__kmp_register_root: after serial_team = %p\n",
3796                 root_thread->th.th_serial_team));
3797 
3798   /* drop root_thread into place */
3799   TCW_SYNC_PTR(__kmp_threads[gtid], root_thread);
3800 
3801   root->r.r_root_team->t.t_threads[0] = root_thread;
3802   root->r.r_hot_team->t.t_threads[0] = root_thread;
3803   root_thread->th.th_serial_team->t.t_threads[0] = root_thread;
3804   // AC: the team created in reserve, not for execution (it is unused for now).
3805   root_thread->th.th_serial_team->t.t_serialized = 0;
3806   root->r.r_uber_thread = root_thread;
3807 
3808   /* initialize the thread, get it ready to go */
3809   __kmp_initialize_info(root_thread, root->r.r_root_team, 0, gtid);
3810   TCW_4(__kmp_init_gtid, TRUE);
3811 
3812   /* prepare the master thread for get_gtid() */
3813   __kmp_gtid_set_specific(gtid);
3814 
3815 #if USE_ITT_BUILD
3816   __kmp_itt_thread_name(gtid);
3817 #endif /* USE_ITT_BUILD */
3818 
3819 #ifdef KMP_TDATA_GTID
3820   __kmp_gtid = gtid;
3821 #endif
3822   __kmp_create_worker(gtid, root_thread, __kmp_stksize);
3823   KMP_DEBUG_ASSERT(__kmp_gtid_get_specific() == gtid);
3824 
3825   KA_TRACE(20, ("__kmp_register_root: T#%d init T#%d(%d:%d) arrived: join=%u, "
3826                 "plain=%u\n",
3827                 gtid, __kmp_gtid_from_tid(0, root->r.r_hot_team),
3828                 root->r.r_hot_team->t.t_id, 0, KMP_INIT_BARRIER_STATE,
3829                 KMP_INIT_BARRIER_STATE));
3830   { // Initialize barrier data.
3831     int b;
3832     for (b = 0; b < bs_last_barrier; ++b) {
3833       root_thread->th.th_bar[b].bb.b_arrived = KMP_INIT_BARRIER_STATE;
3834 #if USE_DEBUGGER
3835       root_thread->th.th_bar[b].bb.b_worker_arrived = 0;
3836 #endif
3837     }
3838   }
3839   KMP_DEBUG_ASSERT(root->r.r_hot_team->t.t_bar[bs_forkjoin_barrier].b_arrived ==
3840                    KMP_INIT_BARRIER_STATE);
3841 
3842 #if KMP_AFFINITY_SUPPORTED
3843 #if OMP_40_ENABLED
3844   root_thread->th.th_current_place = KMP_PLACE_UNDEFINED;
3845   root_thread->th.th_new_place = KMP_PLACE_UNDEFINED;
3846   root_thread->th.th_first_place = KMP_PLACE_UNDEFINED;
3847   root_thread->th.th_last_place = KMP_PLACE_UNDEFINED;
3848 #endif
3849   if (TCR_4(__kmp_init_middle)) {
3850     __kmp_affinity_set_init_mask(gtid, TRUE);
3851   }
3852 #endif /* KMP_AFFINITY_SUPPORTED */
3853 #if OMP_50_ENABLED
3854   root_thread->th.th_def_allocator = __kmp_def_allocator;
3855   root_thread->th.th_prev_level = 0;
3856   root_thread->th.th_prev_num_threads = 1;
3857 #endif
3858 
3859   kmp_cg_root_t *tmp = (kmp_cg_root_t *)__kmp_allocate(sizeof(kmp_cg_root_t));
3860   tmp->cg_root = root_thread;
3861   tmp->cg_thread_limit = __kmp_cg_max_nth;
3862   tmp->cg_nthreads = 1;
3863   KA_TRACE(100, ("__kmp_register_root: Thread %p created node %p with"
3864                  " cg_nthreads init to 1\n",
3865                  root_thread, tmp));
3866   tmp->up = NULL;
3867   root_thread->th.th_cg_roots = tmp;
3868 
3869   __kmp_root_counter++;
3870 
3871 #if OMPT_SUPPORT
3872   if (!initial_thread && ompt_enabled.enabled) {
3873 
3874     kmp_info_t *root_thread = ompt_get_thread();
3875 
3876     ompt_set_thread_state(root_thread, ompt_state_overhead);
3877 
3878     if (ompt_enabled.ompt_callback_thread_begin) {
3879       ompt_callbacks.ompt_callback(ompt_callback_thread_begin)(
3880           ompt_thread_initial, __ompt_get_thread_data_internal());
3881     }
3882     ompt_data_t *task_data;
3883     __ompt_get_task_info_internal(0, NULL, &task_data, NULL, NULL, NULL);
3884     if (ompt_enabled.ompt_callback_task_create) {
3885       ompt_callbacks.ompt_callback(ompt_callback_task_create)(
3886           NULL, NULL, task_data, ompt_task_initial, 0, NULL);
3887       // initial task has nothing to return to
3888     }
3889 
3890     ompt_set_thread_state(root_thread, ompt_state_work_serial);
3891   }
3892 #endif
3893 
3894   KMP_MB();
3895   __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
3896 
3897   return gtid;
3898 }
3899 
3900 #if KMP_NESTED_HOT_TEAMS
3901 static int __kmp_free_hot_teams(kmp_root_t *root, kmp_info_t *thr, int level,
3902                                 const int max_level) {
3903   int i, n, nth;
3904   kmp_hot_team_ptr_t *hot_teams = thr->th.th_hot_teams;
3905   if (!hot_teams || !hot_teams[level].hot_team) {
3906     return 0;
3907   }
3908   KMP_DEBUG_ASSERT(level < max_level);
3909   kmp_team_t *team = hot_teams[level].hot_team;
3910   nth = hot_teams[level].hot_team_nth;
3911   n = nth - 1; // master is not freed
3912   if (level < max_level - 1) {
3913     for (i = 0; i < nth; ++i) {
3914       kmp_info_t *th = team->t.t_threads[i];
3915       n += __kmp_free_hot_teams(root, th, level + 1, max_level);
3916       if (i > 0 && th->th.th_hot_teams) {
3917         __kmp_free(th->th.th_hot_teams);
3918         th->th.th_hot_teams = NULL;
3919       }
3920     }
3921   }
3922   __kmp_free_team(root, team, NULL);
3923   return n;
3924 }
3925 #endif
3926 
3927 // Resets a root thread and clear its root and hot teams.
3928 // Returns the number of __kmp_threads entries directly and indirectly freed.
3929 static int __kmp_reset_root(int gtid, kmp_root_t *root) {
3930   kmp_team_t *root_team = root->r.r_root_team;
3931   kmp_team_t *hot_team = root->r.r_hot_team;
3932   int n = hot_team->t.t_nproc;
3933   int i;
3934 
3935   KMP_DEBUG_ASSERT(!root->r.r_active);
3936 
3937   root->r.r_root_team = NULL;
3938   root->r.r_hot_team = NULL;
3939   // __kmp_free_team() does not free hot teams, so we have to clear r_hot_team
3940   // before call to __kmp_free_team().
3941   __kmp_free_team(root, root_team USE_NESTED_HOT_ARG(NULL));
3942 #if KMP_NESTED_HOT_TEAMS
3943   if (__kmp_hot_teams_max_level >
3944       0) { // need to free nested hot teams and their threads if any
3945     for (i = 0; i < hot_team->t.t_nproc; ++i) {
3946       kmp_info_t *th = hot_team->t.t_threads[i];
3947       if (__kmp_hot_teams_max_level > 1) {
3948         n += __kmp_free_hot_teams(root, th, 1, __kmp_hot_teams_max_level);
3949       }
3950       if (th->th.th_hot_teams) {
3951         __kmp_free(th->th.th_hot_teams);
3952         th->th.th_hot_teams = NULL;
3953       }
3954     }
3955   }
3956 #endif
3957   __kmp_free_team(root, hot_team USE_NESTED_HOT_ARG(NULL));
3958 
3959   // Before we can reap the thread, we need to make certain that all other
3960   // threads in the teams that had this root as ancestor have stopped trying to
3961   // steal tasks.
3962   if (__kmp_tasking_mode != tskm_immediate_exec) {
3963     __kmp_wait_to_unref_task_teams();
3964   }
3965 
3966 #if KMP_OS_WINDOWS
3967   /* Close Handle of root duplicated in __kmp_create_worker (tr #62919) */
3968   KA_TRACE(
3969       10, ("__kmp_reset_root: free handle, th = %p, handle = %" KMP_UINTPTR_SPEC
3970            "\n",
3971            (LPVOID) & (root->r.r_uber_thread->th),
3972            root->r.r_uber_thread->th.th_info.ds.ds_thread));
3973   __kmp_free_handle(root->r.r_uber_thread->th.th_info.ds.ds_thread);
3974 #endif /* KMP_OS_WINDOWS */
3975 
3976 #if OMPT_SUPPORT
3977   if (ompt_enabled.ompt_callback_thread_end) {
3978     ompt_callbacks.ompt_callback(ompt_callback_thread_end)(
3979         &(root->r.r_uber_thread->th.ompt_thread_info.thread_data));
3980   }
3981 #endif
3982 
3983   TCW_4(__kmp_nth,
3984         __kmp_nth - 1); // __kmp_reap_thread will decrement __kmp_all_nth.
3985   root->r.r_uber_thread->th.th_cg_roots->cg_nthreads--;
3986   KA_TRACE(100, ("__kmp_reset_root: Thread %p decrement cg_nthreads on node %p"
3987                  " to %d\n",
3988                  root->r.r_uber_thread, root->r.r_uber_thread->th.th_cg_roots,
3989                  root->r.r_uber_thread->th.th_cg_roots->cg_nthreads));
3990 
3991   __kmp_reap_thread(root->r.r_uber_thread, 1);
3992 
3993   // We canot put root thread to __kmp_thread_pool, so we have to reap it istead
3994   // of freeing.
3995   root->r.r_uber_thread = NULL;
3996   /* mark root as no longer in use */
3997   root->r.r_begin = FALSE;
3998 
3999   return n;
4000 }
4001 
4002 void __kmp_unregister_root_current_thread(int gtid) {
4003   KA_TRACE(1, ("__kmp_unregister_root_current_thread: enter T#%d\n", gtid));
4004   /* this lock should be ok, since unregister_root_current_thread is never
4005      called during an abort, only during a normal close. furthermore, if you
4006      have the forkjoin lock, you should never try to get the initz lock */
4007   __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
4008   if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) {
4009     KC_TRACE(10, ("__kmp_unregister_root_current_thread: already finished, "
4010                   "exiting T#%d\n",
4011                   gtid));
4012     __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
4013     return;
4014   }
4015   kmp_root_t *root = __kmp_root[gtid];
4016 
4017   KMP_DEBUG_ASSERT(__kmp_threads && __kmp_threads[gtid]);
4018   KMP_ASSERT(KMP_UBER_GTID(gtid));
4019   KMP_ASSERT(root == __kmp_threads[gtid]->th.th_root);
4020   KMP_ASSERT(root->r.r_active == FALSE);
4021 
4022   KMP_MB();
4023 
4024 #if OMP_45_ENABLED
4025   kmp_info_t *thread = __kmp_threads[gtid];
4026   kmp_team_t *team = thread->th.th_team;
4027   kmp_task_team_t *task_team = thread->th.th_task_team;
4028 
4029   // we need to wait for the proxy tasks before finishing the thread
4030   if (task_team != NULL && task_team->tt.tt_found_proxy_tasks) {
4031 #if OMPT_SUPPORT
4032     // the runtime is shutting down so we won't report any events
4033     thread->th.ompt_thread_info.state = ompt_state_undefined;
4034 #endif
4035     __kmp_task_team_wait(thread, team USE_ITT_BUILD_ARG(NULL));
4036   }
4037 #endif
4038 
4039   __kmp_reset_root(gtid, root);
4040 
4041   /* free up this thread slot */
4042   __kmp_gtid_set_specific(KMP_GTID_DNE);
4043 #ifdef KMP_TDATA_GTID
4044   __kmp_gtid = KMP_GTID_DNE;
4045 #endif
4046 
4047   KMP_MB();
4048   KC_TRACE(10,
4049            ("__kmp_unregister_root_current_thread: T#%d unregistered\n", gtid));
4050 
4051   __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
4052 }
4053 
4054 #if KMP_OS_WINDOWS
4055 /* __kmp_forkjoin_lock must be already held
4056    Unregisters a root thread that is not the current thread.  Returns the number
4057    of __kmp_threads entries freed as a result. */
4058 static int __kmp_unregister_root_other_thread(int gtid) {
4059   kmp_root_t *root = __kmp_root[gtid];
4060   int r;
4061 
4062   KA_TRACE(1, ("__kmp_unregister_root_other_thread: enter T#%d\n", gtid));
4063   KMP_DEBUG_ASSERT(__kmp_threads && __kmp_threads[gtid]);
4064   KMP_ASSERT(KMP_UBER_GTID(gtid));
4065   KMP_ASSERT(root == __kmp_threads[gtid]->th.th_root);
4066   KMP_ASSERT(root->r.r_active == FALSE);
4067 
4068   r = __kmp_reset_root(gtid, root);
4069   KC_TRACE(10,
4070            ("__kmp_unregister_root_other_thread: T#%d unregistered\n", gtid));
4071   return r;
4072 }
4073 #endif
4074 
4075 #if KMP_DEBUG
4076 void __kmp_task_info() {
4077 
4078   kmp_int32 gtid = __kmp_entry_gtid();
4079   kmp_int32 tid = __kmp_tid_from_gtid(gtid);
4080   kmp_info_t *this_thr = __kmp_threads[gtid];
4081   kmp_team_t *steam = this_thr->th.th_serial_team;
4082   kmp_team_t *team = this_thr->th.th_team;
4083 
4084   __kmp_printf(
4085       "__kmp_task_info: gtid=%d tid=%d t_thread=%p team=%p steam=%p curtask=%p "
4086       "ptask=%p\n",
4087       gtid, tid, this_thr, team, steam, this_thr->th.th_current_task,
4088       team->t.t_implicit_task_taskdata[tid].td_parent);
4089 }
4090 #endif // KMP_DEBUG
4091 
4092 /* TODO optimize with one big memclr, take out what isn't needed, split
4093    responsibility to workers as much as possible, and delay initialization of
4094    features as much as possible  */
4095 static void __kmp_initialize_info(kmp_info_t *this_thr, kmp_team_t *team,
4096                                   int tid, int gtid) {
4097   /* this_thr->th.th_info.ds.ds_gtid is setup in
4098      kmp_allocate_thread/create_worker.
4099      this_thr->th.th_serial_team is setup in __kmp_allocate_thread */
4100   kmp_info_t *master = team->t.t_threads[0];
4101   KMP_DEBUG_ASSERT(this_thr != NULL);
4102   KMP_DEBUG_ASSERT(this_thr->th.th_serial_team);
4103   KMP_DEBUG_ASSERT(team);
4104   KMP_DEBUG_ASSERT(team->t.t_threads);
4105   KMP_DEBUG_ASSERT(team->t.t_dispatch);
4106   KMP_DEBUG_ASSERT(master);
4107   KMP_DEBUG_ASSERT(master->th.th_root);
4108 
4109   KMP_MB();
4110 
4111   TCW_SYNC_PTR(this_thr->th.th_team, team);
4112 
4113   this_thr->th.th_info.ds.ds_tid = tid;
4114   this_thr->th.th_set_nproc = 0;
4115   if (__kmp_tasking_mode != tskm_immediate_exec)
4116     // When tasking is possible, threads are not safe to reap until they are
4117     // done tasking; this will be set when tasking code is exited in wait
4118     this_thr->th.th_reap_state = KMP_NOT_SAFE_TO_REAP;
4119   else // no tasking --> always safe to reap
4120     this_thr->th.th_reap_state = KMP_SAFE_TO_REAP;
4121 #if OMP_40_ENABLED
4122   this_thr->th.th_set_proc_bind = proc_bind_default;
4123 #if KMP_AFFINITY_SUPPORTED
4124   this_thr->th.th_new_place = this_thr->th.th_current_place;
4125 #endif
4126 #endif
4127   this_thr->th.th_root = master->th.th_root;
4128 
4129   /* setup the thread's cache of the team structure */
4130   this_thr->th.th_team_nproc = team->t.t_nproc;
4131   this_thr->th.th_team_master = master;
4132   this_thr->th.th_team_serialized = team->t.t_serialized;
4133   TCW_PTR(this_thr->th.th_sleep_loc, NULL);
4134 
4135   KMP_DEBUG_ASSERT(team->t.t_implicit_task_taskdata);
4136 
4137   KF_TRACE(10, ("__kmp_initialize_info1: T#%d:%d this_thread=%p curtask=%p\n",
4138                 tid, gtid, this_thr, this_thr->th.th_current_task));
4139 
4140   __kmp_init_implicit_task(this_thr->th.th_team_master->th.th_ident, this_thr,
4141                            team, tid, TRUE);
4142 
4143   KF_TRACE(10, ("__kmp_initialize_info2: T#%d:%d this_thread=%p curtask=%p\n",
4144                 tid, gtid, this_thr, this_thr->th.th_current_task));
4145   // TODO: Initialize ICVs from parent; GEH - isn't that already done in
4146   // __kmp_initialize_team()?
4147 
4148   /* TODO no worksharing in speculative threads */
4149   this_thr->th.th_dispatch = &team->t.t_dispatch[tid];
4150 
4151   this_thr->th.th_local.this_construct = 0;
4152 
4153   if (!this_thr->th.th_pri_common) {
4154     this_thr->th.th_pri_common =
4155         (struct common_table *)__kmp_allocate(sizeof(struct common_table));
4156     if (__kmp_storage_map) {
4157       __kmp_print_storage_map_gtid(
4158           gtid, this_thr->th.th_pri_common, this_thr->th.th_pri_common + 1,
4159           sizeof(struct common_table), "th_%d.th_pri_common\n", gtid);
4160     }
4161     this_thr->th.th_pri_head = NULL;
4162   }
4163 
4164   if (this_thr != master && // Master's CG root is initialized elsewhere
4165       this_thr->th.th_cg_roots != master->th.th_cg_roots) { // CG root not set
4166     // Make new thread's CG root same as master's
4167     KMP_DEBUG_ASSERT(master->th.th_cg_roots);
4168     this_thr->th.th_cg_roots = master->th.th_cg_roots;
4169     // Increment new thread's CG root's counter to add the new thread
4170     this_thr->th.th_cg_roots->cg_nthreads++;
4171     KA_TRACE(100, ("__kmp_initialize_info: Thread %p increment cg_nthreads on"
4172                    " node %p of thread %p to %d\n",
4173                    this_thr, this_thr->th.th_cg_roots,
4174                    this_thr->th.th_cg_roots->cg_root,
4175                    this_thr->th.th_cg_roots->cg_nthreads));
4176     this_thr->th.th_current_task->td_icvs.thread_limit =
4177         this_thr->th.th_cg_roots->cg_thread_limit;
4178   }
4179 
4180   /* Initialize dynamic dispatch */
4181   {
4182     volatile kmp_disp_t *dispatch = this_thr->th.th_dispatch;
4183     // Use team max_nproc since this will never change for the team.
4184     size_t disp_size =
4185         sizeof(dispatch_private_info_t) *
4186         (team->t.t_max_nproc == 1 ? 1 : __kmp_dispatch_num_buffers);
4187     KD_TRACE(10, ("__kmp_initialize_info: T#%d max_nproc: %d\n", gtid,
4188                   team->t.t_max_nproc));
4189     KMP_ASSERT(dispatch);
4190     KMP_DEBUG_ASSERT(team->t.t_dispatch);
4191     KMP_DEBUG_ASSERT(dispatch == &team->t.t_dispatch[tid]);
4192 
4193     dispatch->th_disp_index = 0;
4194 #if OMP_45_ENABLED
4195     dispatch->th_doacross_buf_idx = 0;
4196 #endif
4197     if (!dispatch->th_disp_buffer) {
4198       dispatch->th_disp_buffer =
4199           (dispatch_private_info_t *)__kmp_allocate(disp_size);
4200 
4201       if (__kmp_storage_map) {
4202         __kmp_print_storage_map_gtid(
4203             gtid, &dispatch->th_disp_buffer[0],
4204             &dispatch->th_disp_buffer[team->t.t_max_nproc == 1
4205                                           ? 1
4206                                           : __kmp_dispatch_num_buffers],
4207             disp_size, "th_%d.th_dispatch.th_disp_buffer "
4208                        "(team_%d.t_dispatch[%d].th_disp_buffer)",
4209             gtid, team->t.t_id, gtid);
4210       }
4211     } else {
4212       memset(&dispatch->th_disp_buffer[0], '\0', disp_size);
4213     }
4214 
4215     dispatch->th_dispatch_pr_current = 0;
4216     dispatch->th_dispatch_sh_current = 0;
4217 
4218     dispatch->th_deo_fcn = 0; /* ORDERED     */
4219     dispatch->th_dxo_fcn = 0; /* END ORDERED */
4220   }
4221 
4222   this_thr->th.th_next_pool = NULL;
4223 
4224   if (!this_thr->th.th_task_state_memo_stack) {
4225     size_t i;
4226     this_thr->th.th_task_state_memo_stack =
4227         (kmp_uint8 *)__kmp_allocate(4 * sizeof(kmp_uint8));
4228     this_thr->th.th_task_state_top = 0;
4229     this_thr->th.th_task_state_stack_sz = 4;
4230     for (i = 0; i < this_thr->th.th_task_state_stack_sz;
4231          ++i) // zero init the stack
4232       this_thr->th.th_task_state_memo_stack[i] = 0;
4233   }
4234 
4235   KMP_DEBUG_ASSERT(!this_thr->th.th_spin_here);
4236   KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0);
4237 
4238   KMP_MB();
4239 }
4240 
4241 /* allocate a new thread for the requesting team. this is only called from
4242    within a forkjoin critical section. we will first try to get an available
4243    thread from the thread pool. if none is available, we will fork a new one
4244    assuming we are able to create a new one. this should be assured, as the
4245    caller should check on this first. */
4246 kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team,
4247                                   int new_tid) {
4248   kmp_team_t *serial_team;
4249   kmp_info_t *new_thr;
4250   int new_gtid;
4251 
4252   KA_TRACE(20, ("__kmp_allocate_thread: T#%d\n", __kmp_get_gtid()));
4253   KMP_DEBUG_ASSERT(root && team);
4254 #if !KMP_NESTED_HOT_TEAMS
4255   KMP_DEBUG_ASSERT(KMP_MASTER_GTID(__kmp_get_gtid()));
4256 #endif
4257   KMP_MB();
4258 
4259   /* first, try to get one from the thread pool */
4260   if (__kmp_thread_pool) {
4261     new_thr = CCAST(kmp_info_t *, __kmp_thread_pool);
4262     __kmp_thread_pool = (volatile kmp_info_t *)new_thr->th.th_next_pool;
4263     if (new_thr == __kmp_thread_pool_insert_pt) {
4264       __kmp_thread_pool_insert_pt = NULL;
4265     }
4266     TCW_4(new_thr->th.th_in_pool, FALSE);
4267     __kmp_suspend_initialize_thread(new_thr);
4268     __kmp_lock_suspend_mx(new_thr);
4269     if (new_thr->th.th_active_in_pool == TRUE) {
4270       KMP_DEBUG_ASSERT(new_thr->th.th_active == TRUE);
4271       KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
4272       new_thr->th.th_active_in_pool = FALSE;
4273     }
4274 #if KMP_DEBUG
4275     else {
4276       KMP_DEBUG_ASSERT(new_thr->th.th_active == FALSE);
4277     }
4278 #endif
4279     __kmp_unlock_suspend_mx(new_thr);
4280 
4281     KA_TRACE(20, ("__kmp_allocate_thread: T#%d using thread T#%d\n",
4282                   __kmp_get_gtid(), new_thr->th.th_info.ds.ds_gtid));
4283     KMP_ASSERT(!new_thr->th.th_team);
4284     KMP_DEBUG_ASSERT(__kmp_nth < __kmp_threads_capacity);
4285 
4286     /* setup the thread structure */
4287     __kmp_initialize_info(new_thr, team, new_tid,
4288                           new_thr->th.th_info.ds.ds_gtid);
4289     KMP_DEBUG_ASSERT(new_thr->th.th_serial_team);
4290 
4291     TCW_4(__kmp_nth, __kmp_nth + 1);
4292 
4293     new_thr->th.th_task_state = 0;
4294     new_thr->th.th_task_state_top = 0;
4295     new_thr->th.th_task_state_stack_sz = 4;
4296 
4297 #ifdef KMP_ADJUST_BLOCKTIME
4298     /* Adjust blocktime back to zero if necessary */
4299     /* Middle initialization might not have occurred yet */
4300     if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) {
4301       if (__kmp_nth > __kmp_avail_proc) {
4302         __kmp_zero_bt = TRUE;
4303       }
4304     }
4305 #endif /* KMP_ADJUST_BLOCKTIME */
4306 
4307 #if KMP_DEBUG
4308     // If thread entered pool via __kmp_free_thread, wait_flag should !=
4309     // KMP_BARRIER_PARENT_FLAG.
4310     int b;
4311     kmp_balign_t *balign = new_thr->th.th_bar;
4312     for (b = 0; b < bs_last_barrier; ++b)
4313       KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG);
4314 #endif
4315 
4316     KF_TRACE(10, ("__kmp_allocate_thread: T#%d using thread %p T#%d\n",
4317                   __kmp_get_gtid(), new_thr, new_thr->th.th_info.ds.ds_gtid));
4318 
4319     KMP_MB();
4320     return new_thr;
4321   }
4322 
4323   /* no, well fork a new one */
4324   KMP_ASSERT(__kmp_nth == __kmp_all_nth);
4325   KMP_ASSERT(__kmp_all_nth < __kmp_threads_capacity);
4326 
4327 #if KMP_USE_MONITOR
4328   // If this is the first worker thread the RTL is creating, then also
4329   // launch the monitor thread.  We try to do this as early as possible.
4330   if (!TCR_4(__kmp_init_monitor)) {
4331     __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock);
4332     if (!TCR_4(__kmp_init_monitor)) {
4333       KF_TRACE(10, ("before __kmp_create_monitor\n"));
4334       TCW_4(__kmp_init_monitor, 1);
4335       __kmp_create_monitor(&__kmp_monitor);
4336       KF_TRACE(10, ("after __kmp_create_monitor\n"));
4337 #if KMP_OS_WINDOWS
4338       // AC: wait until monitor has started. This is a fix for CQ232808.
4339       // The reason is that if the library is loaded/unloaded in a loop with
4340       // small (parallel) work in between, then there is high probability that
4341       // monitor thread started after the library shutdown. At shutdown it is
4342       // too late to cope with the problem, because when the master is in
4343       // DllMain (process detach) the monitor has no chances to start (it is
4344       // blocked), and master has no means to inform the monitor that the
4345       // library has gone, because all the memory which the monitor can access
4346       // is going to be released/reset.
4347       while (TCR_4(__kmp_init_monitor) < 2) {
4348         KMP_YIELD(TRUE);
4349       }
4350       KF_TRACE(10, ("after monitor thread has started\n"));
4351 #endif
4352     }
4353     __kmp_release_bootstrap_lock(&__kmp_monitor_lock);
4354   }
4355 #endif
4356 
4357   KMP_MB();
4358   for (new_gtid = 1; TCR_PTR(__kmp_threads[new_gtid]) != NULL; ++new_gtid) {
4359     KMP_DEBUG_ASSERT(new_gtid < __kmp_threads_capacity);
4360   }
4361 
4362   /* allocate space for it. */
4363   new_thr = (kmp_info_t *)__kmp_allocate(sizeof(kmp_info_t));
4364 
4365   TCW_SYNC_PTR(__kmp_threads[new_gtid], new_thr);
4366 
4367   if (__kmp_storage_map) {
4368     __kmp_print_thread_storage_map(new_thr, new_gtid);
4369   }
4370 
4371   // add the reserve serialized team, initialized from the team's master thread
4372   {
4373     kmp_internal_control_t r_icvs = __kmp_get_x_global_icvs(team);
4374     KF_TRACE(10, ("__kmp_allocate_thread: before th_serial/serial_team\n"));
4375     new_thr->th.th_serial_team = serial_team =
4376         (kmp_team_t *)__kmp_allocate_team(root, 1, 1,
4377 #if OMPT_SUPPORT
4378                                           ompt_data_none, // root parallel id
4379 #endif
4380 #if OMP_40_ENABLED
4381                                           proc_bind_default,
4382 #endif
4383                                           &r_icvs, 0 USE_NESTED_HOT_ARG(NULL));
4384   }
4385   KMP_ASSERT(serial_team);
4386   serial_team->t.t_serialized = 0; // AC: the team created in reserve, not for
4387   // execution (it is unused for now).
4388   serial_team->t.t_threads[0] = new_thr;
4389   KF_TRACE(10,
4390            ("__kmp_allocate_thread: after th_serial/serial_team : new_thr=%p\n",
4391             new_thr));
4392 
4393   /* setup the thread structures */
4394   __kmp_initialize_info(new_thr, team, new_tid, new_gtid);
4395 
4396 #if USE_FAST_MEMORY
4397   __kmp_initialize_fast_memory(new_thr);
4398 #endif /* USE_FAST_MEMORY */
4399 
4400 #if KMP_USE_BGET
4401   KMP_DEBUG_ASSERT(new_thr->th.th_local.bget_data == NULL);
4402   __kmp_initialize_bget(new_thr);
4403 #endif
4404 
4405   __kmp_init_random(new_thr); // Initialize random number generator
4406 
4407   /* Initialize these only once when thread is grabbed for a team allocation */
4408   KA_TRACE(20,
4409            ("__kmp_allocate_thread: T#%d init go fork=%u, plain=%u\n",
4410             __kmp_get_gtid(), KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE));
4411 
4412   int b;
4413   kmp_balign_t *balign = new_thr->th.th_bar;
4414   for (b = 0; b < bs_last_barrier; ++b) {
4415     balign[b].bb.b_go = KMP_INIT_BARRIER_STATE;
4416     balign[b].bb.team = NULL;
4417     balign[b].bb.wait_flag = KMP_BARRIER_NOT_WAITING;
4418     balign[b].bb.use_oncore_barrier = 0;
4419   }
4420 
4421   new_thr->th.th_spin_here = FALSE;
4422   new_thr->th.th_next_waiting = 0;
4423 #if KMP_OS_UNIX
4424   new_thr->th.th_blocking = false;
4425 #endif
4426 
4427 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED
4428   new_thr->th.th_current_place = KMP_PLACE_UNDEFINED;
4429   new_thr->th.th_new_place = KMP_PLACE_UNDEFINED;
4430   new_thr->th.th_first_place = KMP_PLACE_UNDEFINED;
4431   new_thr->th.th_last_place = KMP_PLACE_UNDEFINED;
4432 #endif
4433 #if OMP_50_ENABLED
4434   new_thr->th.th_def_allocator = __kmp_def_allocator;
4435   new_thr->th.th_prev_level = 0;
4436   new_thr->th.th_prev_num_threads = 1;
4437 #endif
4438 
4439   TCW_4(new_thr->th.th_in_pool, FALSE);
4440   new_thr->th.th_active_in_pool = FALSE;
4441   TCW_4(new_thr->th.th_active, TRUE);
4442 
4443   /* adjust the global counters */
4444   __kmp_all_nth++;
4445   __kmp_nth++;
4446 
4447   // if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) for low
4448   // numbers of procs, and method #2 (keyed API call) for higher numbers.
4449   if (__kmp_adjust_gtid_mode) {
4450     if (__kmp_all_nth >= __kmp_tls_gtid_min) {
4451       if (TCR_4(__kmp_gtid_mode) != 2) {
4452         TCW_4(__kmp_gtid_mode, 2);
4453       }
4454     } else {
4455       if (TCR_4(__kmp_gtid_mode) != 1) {
4456         TCW_4(__kmp_gtid_mode, 1);
4457       }
4458     }
4459   }
4460 
4461 #ifdef KMP_ADJUST_BLOCKTIME
4462   /* Adjust blocktime back to zero if necessary       */
4463   /* Middle initialization might not have occurred yet */
4464   if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) {
4465     if (__kmp_nth > __kmp_avail_proc) {
4466       __kmp_zero_bt = TRUE;
4467     }
4468   }
4469 #endif /* KMP_ADJUST_BLOCKTIME */
4470 
4471   /* actually fork it and create the new worker thread */
4472   KF_TRACE(
4473       10, ("__kmp_allocate_thread: before __kmp_create_worker: %p\n", new_thr));
4474   __kmp_create_worker(new_gtid, new_thr, __kmp_stksize);
4475   KF_TRACE(10,
4476            ("__kmp_allocate_thread: after __kmp_create_worker: %p\n", new_thr));
4477 
4478   KA_TRACE(20, ("__kmp_allocate_thread: T#%d forked T#%d\n", __kmp_get_gtid(),
4479                 new_gtid));
4480   KMP_MB();
4481   return new_thr;
4482 }
4483 
4484 /* Reinitialize team for reuse.
4485    The hot team code calls this case at every fork barrier, so EPCC barrier
4486    test are extremely sensitive to changes in it, esp. writes to the team
4487    struct, which cause a cache invalidation in all threads.
4488    IF YOU TOUCH THIS ROUTINE, RUN EPCC C SYNCBENCH ON A BIG-IRON MACHINE!!! */
4489 static void __kmp_reinitialize_team(kmp_team_t *team,
4490                                     kmp_internal_control_t *new_icvs,
4491                                     ident_t *loc) {
4492   KF_TRACE(10, ("__kmp_reinitialize_team: enter this_thread=%p team=%p\n",
4493                 team->t.t_threads[0], team));
4494   KMP_DEBUG_ASSERT(team && new_icvs);
4495   KMP_DEBUG_ASSERT((!TCR_4(__kmp_init_parallel)) || new_icvs->nproc);
4496   KMP_CHECK_UPDATE(team->t.t_ident, loc);
4497 
4498   KMP_CHECK_UPDATE(team->t.t_id, KMP_GEN_TEAM_ID());
4499   // Copy ICVs to the master thread's implicit taskdata
4500   __kmp_init_implicit_task(loc, team->t.t_threads[0], team, 0, FALSE);
4501   copy_icvs(&team->t.t_implicit_task_taskdata[0].td_icvs, new_icvs);
4502 
4503   KF_TRACE(10, ("__kmp_reinitialize_team: exit this_thread=%p team=%p\n",
4504                 team->t.t_threads[0], team));
4505 }
4506 
4507 /* Initialize the team data structure.
4508    This assumes the t_threads and t_max_nproc are already set.
4509    Also, we don't touch the arguments */
4510 static void __kmp_initialize_team(kmp_team_t *team, int new_nproc,
4511                                   kmp_internal_control_t *new_icvs,
4512                                   ident_t *loc) {
4513   KF_TRACE(10, ("__kmp_initialize_team: enter: team=%p\n", team));
4514 
4515   /* verify */
4516   KMP_DEBUG_ASSERT(team);
4517   KMP_DEBUG_ASSERT(new_nproc <= team->t.t_max_nproc);
4518   KMP_DEBUG_ASSERT(team->t.t_threads);
4519   KMP_MB();
4520 
4521   team->t.t_master_tid = 0; /* not needed */
4522   /* team->t.t_master_bar;        not needed */
4523   team->t.t_serialized = new_nproc > 1 ? 0 : 1;
4524   team->t.t_nproc = new_nproc;
4525 
4526   /* team->t.t_parent     = NULL; TODO not needed & would mess up hot team */
4527   team->t.t_next_pool = NULL;
4528   /* memset( team->t.t_threads, 0, sizeof(kmp_info_t*)*new_nproc ); would mess
4529    * up hot team */
4530 
4531   TCW_SYNC_PTR(team->t.t_pkfn, NULL); /* not needed */
4532   team->t.t_invoke = NULL; /* not needed */
4533 
4534   // TODO???: team->t.t_max_active_levels       = new_max_active_levels;
4535   team->t.t_sched.sched = new_icvs->sched.sched;
4536 
4537 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
4538   team->t.t_fp_control_saved = FALSE; /* not needed */
4539   team->t.t_x87_fpu_control_word = 0; /* not needed */
4540   team->t.t_mxcsr = 0; /* not needed */
4541 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
4542 
4543   team->t.t_construct = 0;
4544 
4545   team->t.t_ordered.dt.t_value = 0;
4546   team->t.t_master_active = FALSE;
4547 
4548 #ifdef KMP_DEBUG
4549   team->t.t_copypriv_data = NULL; /* not necessary, but nice for debugging */
4550 #endif
4551 #if KMP_OS_WINDOWS
4552   team->t.t_copyin_counter = 0; /* for barrier-free copyin implementation */
4553 #endif
4554 
4555   team->t.t_control_stack_top = NULL;
4556 
4557   __kmp_reinitialize_team(team, new_icvs, loc);
4558 
4559   KMP_MB();
4560   KF_TRACE(10, ("__kmp_initialize_team: exit: team=%p\n", team));
4561 }
4562 
4563 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED
4564 /* Sets full mask for thread and returns old mask, no changes to structures. */
4565 static void
4566 __kmp_set_thread_affinity_mask_full_tmp(kmp_affin_mask_t *old_mask) {
4567   if (KMP_AFFINITY_CAPABLE()) {
4568     int status;
4569     if (old_mask != NULL) {
4570       status = __kmp_get_system_affinity(old_mask, TRUE);
4571       int error = errno;
4572       if (status != 0) {
4573         __kmp_fatal(KMP_MSG(ChangeThreadAffMaskError), KMP_ERR(error),
4574                     __kmp_msg_null);
4575       }
4576     }
4577     __kmp_set_system_affinity(__kmp_affin_fullMask, TRUE);
4578   }
4579 }
4580 #endif
4581 
4582 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED
4583 
4584 // __kmp_partition_places() is the heart of the OpenMP 4.0 affinity mechanism.
4585 // It calculats the worker + master thread's partition based upon the parent
4586 // thread's partition, and binds each worker to a thread in their partition.
4587 // The master thread's partition should already include its current binding.
4588 static void __kmp_partition_places(kmp_team_t *team, int update_master_only) {
4589   // Copy the master thread's place partion to the team struct
4590   kmp_info_t *master_th = team->t.t_threads[0];
4591   KMP_DEBUG_ASSERT(master_th != NULL);
4592   kmp_proc_bind_t proc_bind = team->t.t_proc_bind;
4593   int first_place = master_th->th.th_first_place;
4594   int last_place = master_th->th.th_last_place;
4595   int masters_place = master_th->th.th_current_place;
4596   team->t.t_first_place = first_place;
4597   team->t.t_last_place = last_place;
4598 
4599   KA_TRACE(20, ("__kmp_partition_places: enter: proc_bind = %d T#%d(%d:0) "
4600                 "bound to place %d partition = [%d,%d]\n",
4601                 proc_bind, __kmp_gtid_from_thread(team->t.t_threads[0]),
4602                 team->t.t_id, masters_place, first_place, last_place));
4603 
4604   switch (proc_bind) {
4605 
4606   case proc_bind_default:
4607     // serial teams might have the proc_bind policy set to proc_bind_default. It
4608     // doesn't matter, as we don't rebind master thread for any proc_bind policy
4609     KMP_DEBUG_ASSERT(team->t.t_nproc == 1);
4610     break;
4611 
4612   case proc_bind_master: {
4613     int f;
4614     int n_th = team->t.t_nproc;
4615     for (f = 1; f < n_th; f++) {
4616       kmp_info_t *th = team->t.t_threads[f];
4617       KMP_DEBUG_ASSERT(th != NULL);
4618       th->th.th_first_place = first_place;
4619       th->th.th_last_place = last_place;
4620       th->th.th_new_place = masters_place;
4621 #if OMP_50_ENABLED
4622       if (__kmp_display_affinity && masters_place != th->th.th_current_place &&
4623           team->t.t_display_affinity != 1) {
4624         team->t.t_display_affinity = 1;
4625       }
4626 #endif
4627 
4628       KA_TRACE(100, ("__kmp_partition_places: master: T#%d(%d:%d) place %d "
4629                      "partition = [%d,%d]\n",
4630                      __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id,
4631                      f, masters_place, first_place, last_place));
4632     }
4633   } break;
4634 
4635   case proc_bind_close: {
4636     int f;
4637     int n_th = team->t.t_nproc;
4638     int n_places;
4639     if (first_place <= last_place) {
4640       n_places = last_place - first_place + 1;
4641     } else {
4642       n_places = __kmp_affinity_num_masks - first_place + last_place + 1;
4643     }
4644     if (n_th <= n_places) {
4645       int place = masters_place;
4646       for (f = 1; f < n_th; f++) {
4647         kmp_info_t *th = team->t.t_threads[f];
4648         KMP_DEBUG_ASSERT(th != NULL);
4649 
4650         if (place == last_place) {
4651           place = first_place;
4652         } else if (place == (int)(__kmp_affinity_num_masks - 1)) {
4653           place = 0;
4654         } else {
4655           place++;
4656         }
4657         th->th.th_first_place = first_place;
4658         th->th.th_last_place = last_place;
4659         th->th.th_new_place = place;
4660 #if OMP_50_ENABLED
4661         if (__kmp_display_affinity && place != th->th.th_current_place &&
4662             team->t.t_display_affinity != 1) {
4663           team->t.t_display_affinity = 1;
4664         }
4665 #endif
4666 
4667         KA_TRACE(100, ("__kmp_partition_places: close: T#%d(%d:%d) place %d "
4668                        "partition = [%d,%d]\n",
4669                        __kmp_gtid_from_thread(team->t.t_threads[f]),
4670                        team->t.t_id, f, place, first_place, last_place));
4671       }
4672     } else {
4673       int S, rem, gap, s_count;
4674       S = n_th / n_places;
4675       s_count = 0;
4676       rem = n_th - (S * n_places);
4677       gap = rem > 0 ? n_places / rem : n_places;
4678       int place = masters_place;
4679       int gap_ct = gap;
4680       for (f = 0; f < n_th; f++) {
4681         kmp_info_t *th = team->t.t_threads[f];
4682         KMP_DEBUG_ASSERT(th != NULL);
4683 
4684         th->th.th_first_place = first_place;
4685         th->th.th_last_place = last_place;
4686         th->th.th_new_place = place;
4687 #if OMP_50_ENABLED
4688         if (__kmp_display_affinity && place != th->th.th_current_place &&
4689             team->t.t_display_affinity != 1) {
4690           team->t.t_display_affinity = 1;
4691         }
4692 #endif
4693         s_count++;
4694 
4695         if ((s_count == S) && rem && (gap_ct == gap)) {
4696           // do nothing, add an extra thread to place on next iteration
4697         } else if ((s_count == S + 1) && rem && (gap_ct == gap)) {
4698           // we added an extra thread to this place; move to next place
4699           if (place == last_place) {
4700             place = first_place;
4701           } else if (place == (int)(__kmp_affinity_num_masks - 1)) {
4702             place = 0;
4703           } else {
4704             place++;
4705           }
4706           s_count = 0;
4707           gap_ct = 1;
4708           rem--;
4709         } else if (s_count == S) { // place full; don't add extra
4710           if (place == last_place) {
4711             place = first_place;
4712           } else if (place == (int)(__kmp_affinity_num_masks - 1)) {
4713             place = 0;
4714           } else {
4715             place++;
4716           }
4717           gap_ct++;
4718           s_count = 0;
4719         }
4720 
4721         KA_TRACE(100,
4722                  ("__kmp_partition_places: close: T#%d(%d:%d) place %d "
4723                   "partition = [%d,%d]\n",
4724                   __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, f,
4725                   th->th.th_new_place, first_place, last_place));
4726       }
4727       KMP_DEBUG_ASSERT(place == masters_place);
4728     }
4729   } break;
4730 
4731   case proc_bind_spread: {
4732     int f;
4733     int n_th = team->t.t_nproc;
4734     int n_places;
4735     int thidx;
4736     if (first_place <= last_place) {
4737       n_places = last_place - first_place + 1;
4738     } else {
4739       n_places = __kmp_affinity_num_masks - first_place + last_place + 1;
4740     }
4741     if (n_th <= n_places) {
4742       int place = -1;
4743 
4744       if (n_places != static_cast<int>(__kmp_affinity_num_masks)) {
4745         int S = n_places / n_th;
4746         int s_count, rem, gap, gap_ct;
4747 
4748         place = masters_place;
4749         rem = n_places - n_th * S;
4750         gap = rem ? n_th / rem : 1;
4751         gap_ct = gap;
4752         thidx = n_th;
4753         if (update_master_only == 1)
4754           thidx = 1;
4755         for (f = 0; f < thidx; f++) {
4756           kmp_info_t *th = team->t.t_threads[f];
4757           KMP_DEBUG_ASSERT(th != NULL);
4758 
4759           th->th.th_first_place = place;
4760           th->th.th_new_place = place;
4761 #if OMP_50_ENABLED
4762           if (__kmp_display_affinity && place != th->th.th_current_place &&
4763               team->t.t_display_affinity != 1) {
4764             team->t.t_display_affinity = 1;
4765           }
4766 #endif
4767           s_count = 1;
4768           while (s_count < S) {
4769             if (place == last_place) {
4770               place = first_place;
4771             } else if (place == (int)(__kmp_affinity_num_masks - 1)) {
4772               place = 0;
4773             } else {
4774               place++;
4775             }
4776             s_count++;
4777           }
4778           if (rem && (gap_ct == gap)) {
4779             if (place == last_place) {
4780               place = first_place;
4781             } else if (place == (int)(__kmp_affinity_num_masks - 1)) {
4782               place = 0;
4783             } else {
4784               place++;
4785             }
4786             rem--;
4787             gap_ct = 0;
4788           }
4789           th->th.th_last_place = place;
4790           gap_ct++;
4791 
4792           if (place == last_place) {
4793             place = first_place;
4794           } else if (place == (int)(__kmp_affinity_num_masks - 1)) {
4795             place = 0;
4796           } else {
4797             place++;
4798           }
4799 
4800           KA_TRACE(100,
4801                    ("__kmp_partition_places: spread: T#%d(%d:%d) place %d "
4802                     "partition = [%d,%d], __kmp_affinity_num_masks: %u\n",
4803                     __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id,
4804                     f, th->th.th_new_place, th->th.th_first_place,
4805                     th->th.th_last_place, __kmp_affinity_num_masks));
4806         }
4807       } else {
4808         /* Having uniform space of available computation places I can create
4809            T partitions of round(P/T) size and put threads into the first
4810            place of each partition. */
4811         double current = static_cast<double>(masters_place);
4812         double spacing =
4813             (static_cast<double>(n_places + 1) / static_cast<double>(n_th));
4814         int first, last;
4815         kmp_info_t *th;
4816 
4817         thidx = n_th + 1;
4818         if (update_master_only == 1)
4819           thidx = 1;
4820         for (f = 0; f < thidx; f++) {
4821           first = static_cast<int>(current);
4822           last = static_cast<int>(current + spacing) - 1;
4823           KMP_DEBUG_ASSERT(last >= first);
4824           if (first >= n_places) {
4825             if (masters_place) {
4826               first -= n_places;
4827               last -= n_places;
4828               if (first == (masters_place + 1)) {
4829                 KMP_DEBUG_ASSERT(f == n_th);
4830                 first--;
4831               }
4832               if (last == masters_place) {
4833                 KMP_DEBUG_ASSERT(f == (n_th - 1));
4834                 last--;
4835               }
4836             } else {
4837               KMP_DEBUG_ASSERT(f == n_th);
4838               first = 0;
4839               last = 0;
4840             }
4841           }
4842           if (last >= n_places) {
4843             last = (n_places - 1);
4844           }
4845           place = first;
4846           current += spacing;
4847           if (f < n_th) {
4848             KMP_DEBUG_ASSERT(0 <= first);
4849             KMP_DEBUG_ASSERT(n_places > first);
4850             KMP_DEBUG_ASSERT(0 <= last);
4851             KMP_DEBUG_ASSERT(n_places > last);
4852             KMP_DEBUG_ASSERT(last_place >= first_place);
4853             th = team->t.t_threads[f];
4854             KMP_DEBUG_ASSERT(th);
4855             th->th.th_first_place = first;
4856             th->th.th_new_place = place;
4857             th->th.th_last_place = last;
4858 #if OMP_50_ENABLED
4859             if (__kmp_display_affinity && place != th->th.th_current_place &&
4860                 team->t.t_display_affinity != 1) {
4861               team->t.t_display_affinity = 1;
4862             }
4863 #endif
4864             KA_TRACE(100,
4865                      ("__kmp_partition_places: spread: T#%d(%d:%d) place %d "
4866                       "partition = [%d,%d], spacing = %.4f\n",
4867                       __kmp_gtid_from_thread(team->t.t_threads[f]),
4868                       team->t.t_id, f, th->th.th_new_place,
4869                       th->th.th_first_place, th->th.th_last_place, spacing));
4870           }
4871         }
4872       }
4873       KMP_DEBUG_ASSERT(update_master_only || place == masters_place);
4874     } else {
4875       int S, rem, gap, s_count;
4876       S = n_th / n_places;
4877       s_count = 0;
4878       rem = n_th - (S * n_places);
4879       gap = rem > 0 ? n_places / rem : n_places;
4880       int place = masters_place;
4881       int gap_ct = gap;
4882       thidx = n_th;
4883       if (update_master_only == 1)
4884         thidx = 1;
4885       for (f = 0; f < thidx; f++) {
4886         kmp_info_t *th = team->t.t_threads[f];
4887         KMP_DEBUG_ASSERT(th != NULL);
4888 
4889         th->th.th_first_place = place;
4890         th->th.th_last_place = place;
4891         th->th.th_new_place = place;
4892 #if OMP_50_ENABLED
4893         if (__kmp_display_affinity && place != th->th.th_current_place &&
4894             team->t.t_display_affinity != 1) {
4895           team->t.t_display_affinity = 1;
4896         }
4897 #endif
4898         s_count++;
4899 
4900         if ((s_count == S) && rem && (gap_ct == gap)) {
4901           // do nothing, add an extra thread to place on next iteration
4902         } else if ((s_count == S + 1) && rem && (gap_ct == gap)) {
4903           // we added an extra thread to this place; move on to next place
4904           if (place == last_place) {
4905             place = first_place;
4906           } else if (place == (int)(__kmp_affinity_num_masks - 1)) {
4907             place = 0;
4908           } else {
4909             place++;
4910           }
4911           s_count = 0;
4912           gap_ct = 1;
4913           rem--;
4914         } else if (s_count == S) { // place is full; don't add extra thread
4915           if (place == last_place) {
4916             place = first_place;
4917           } else if (place == (int)(__kmp_affinity_num_masks - 1)) {
4918             place = 0;
4919           } else {
4920             place++;
4921           }
4922           gap_ct++;
4923           s_count = 0;
4924         }
4925 
4926         KA_TRACE(100, ("__kmp_partition_places: spread: T#%d(%d:%d) place %d "
4927                        "partition = [%d,%d]\n",
4928                        __kmp_gtid_from_thread(team->t.t_threads[f]),
4929                        team->t.t_id, f, th->th.th_new_place,
4930                        th->th.th_first_place, th->th.th_last_place));
4931       }
4932       KMP_DEBUG_ASSERT(update_master_only || place == masters_place);
4933     }
4934   } break;
4935 
4936   default:
4937     break;
4938   }
4939 
4940   KA_TRACE(20, ("__kmp_partition_places: exit T#%d\n", team->t.t_id));
4941 }
4942 
4943 #endif /* OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED */
4944 
4945 /* allocate a new team data structure to use.  take one off of the free pool if
4946    available */
4947 kmp_team_t *
4948 __kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc,
4949 #if OMPT_SUPPORT
4950                     ompt_data_t ompt_parallel_data,
4951 #endif
4952 #if OMP_40_ENABLED
4953                     kmp_proc_bind_t new_proc_bind,
4954 #endif
4955                     kmp_internal_control_t *new_icvs,
4956                     int argc USE_NESTED_HOT_ARG(kmp_info_t *master)) {
4957   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_allocate_team);
4958   int f;
4959   kmp_team_t *team;
4960   int use_hot_team = !root->r.r_active;
4961   int level = 0;
4962 
4963   KA_TRACE(20, ("__kmp_allocate_team: called\n"));
4964   KMP_DEBUG_ASSERT(new_nproc >= 1 && argc >= 0);
4965   KMP_DEBUG_ASSERT(max_nproc >= new_nproc);
4966   KMP_MB();
4967 
4968 #if KMP_NESTED_HOT_TEAMS
4969   kmp_hot_team_ptr_t *hot_teams;
4970   if (master) {
4971     team = master->th.th_team;
4972     level = team->t.t_active_level;
4973     if (master->th.th_teams_microtask) { // in teams construct?
4974       if (master->th.th_teams_size.nteams > 1 &&
4975           ( // #teams > 1
4976               team->t.t_pkfn ==
4977                   (microtask_t)__kmp_teams_master || // inner fork of the teams
4978               master->th.th_teams_level <
4979                   team->t.t_level)) { // or nested parallel inside the teams
4980         ++level; // not increment if #teams==1, or for outer fork of the teams;
4981         // increment otherwise
4982       }
4983     }
4984     hot_teams = master->th.th_hot_teams;
4985     if (level < __kmp_hot_teams_max_level && hot_teams &&
4986         hot_teams[level]
4987             .hot_team) { // hot team has already been allocated for given level
4988       use_hot_team = 1;
4989     } else {
4990       use_hot_team = 0;
4991     }
4992   }
4993 #endif
4994   // Optimization to use a "hot" team
4995   if (use_hot_team && new_nproc > 1) {
4996     KMP_DEBUG_ASSERT(new_nproc <= max_nproc);
4997 #if KMP_NESTED_HOT_TEAMS
4998     team = hot_teams[level].hot_team;
4999 #else
5000     team = root->r.r_hot_team;
5001 #endif
5002 #if KMP_DEBUG
5003     if (__kmp_tasking_mode != tskm_immediate_exec) {
5004       KA_TRACE(20, ("__kmp_allocate_team: hot team task_team[0] = %p "
5005                     "task_team[1] = %p before reinit\n",
5006                     team->t.t_task_team[0], team->t.t_task_team[1]));
5007     }
5008 #endif
5009 
5010     // Has the number of threads changed?
5011     /* Let's assume the most common case is that the number of threads is
5012        unchanged, and put that case first. */
5013     if (team->t.t_nproc == new_nproc) { // Check changes in number of threads
5014       KA_TRACE(20, ("__kmp_allocate_team: reusing hot team\n"));
5015       // This case can mean that omp_set_num_threads() was called and the hot
5016       // team size was already reduced, so we check the special flag
5017       if (team->t.t_size_changed == -1) {
5018         team->t.t_size_changed = 1;
5019       } else {
5020         KMP_CHECK_UPDATE(team->t.t_size_changed, 0);
5021       }
5022 
5023       // TODO???: team->t.t_max_active_levels = new_max_active_levels;
5024       kmp_r_sched_t new_sched = new_icvs->sched;
5025       // set master's schedule as new run-time schedule
5026       KMP_CHECK_UPDATE(team->t.t_sched.sched, new_sched.sched);
5027 
5028       __kmp_reinitialize_team(team, new_icvs,
5029                               root->r.r_uber_thread->th.th_ident);
5030 
5031       KF_TRACE(10, ("__kmp_allocate_team2: T#%d, this_thread=%p team=%p\n", 0,
5032                     team->t.t_threads[0], team));
5033       __kmp_push_current_task_to_thread(team->t.t_threads[0], team, 0);
5034 
5035 #if OMP_40_ENABLED
5036 #if KMP_AFFINITY_SUPPORTED
5037       if ((team->t.t_size_changed == 0) &&
5038           (team->t.t_proc_bind == new_proc_bind)) {
5039         if (new_proc_bind == proc_bind_spread) {
5040           __kmp_partition_places(
5041               team, 1); // add flag to update only master for spread
5042         }
5043         KA_TRACE(200, ("__kmp_allocate_team: reusing hot team #%d bindings: "
5044                        "proc_bind = %d, partition = [%d,%d]\n",
5045                        team->t.t_id, new_proc_bind, team->t.t_first_place,
5046                        team->t.t_last_place));
5047       } else {
5048         KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind);
5049         __kmp_partition_places(team);
5050       }
5051 #else
5052       KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind);
5053 #endif /* KMP_AFFINITY_SUPPORTED */
5054 #endif /* OMP_40_ENABLED */
5055     } else if (team->t.t_nproc > new_nproc) {
5056       KA_TRACE(20,
5057                ("__kmp_allocate_team: decreasing hot team thread count to %d\n",
5058                 new_nproc));
5059 
5060       team->t.t_size_changed = 1;
5061 #if KMP_NESTED_HOT_TEAMS
5062       if (__kmp_hot_teams_mode == 0) {
5063         // AC: saved number of threads should correspond to team's value in this
5064         // mode, can be bigger in mode 1, when hot team has threads in reserve
5065         KMP_DEBUG_ASSERT(hot_teams[level].hot_team_nth == team->t.t_nproc);
5066         hot_teams[level].hot_team_nth = new_nproc;
5067 #endif // KMP_NESTED_HOT_TEAMS
5068         /* release the extra threads we don't need any more */
5069         for (f = new_nproc; f < team->t.t_nproc; f++) {
5070           KMP_DEBUG_ASSERT(team->t.t_threads[f]);
5071           if (__kmp_tasking_mode != tskm_immediate_exec) {
5072             // When decreasing team size, threads no longer in the team should
5073             // unref task team.
5074             team->t.t_threads[f]->th.th_task_team = NULL;
5075           }
5076           __kmp_free_thread(team->t.t_threads[f]);
5077           team->t.t_threads[f] = NULL;
5078         }
5079 #if KMP_NESTED_HOT_TEAMS
5080       } // (__kmp_hot_teams_mode == 0)
5081       else {
5082         // When keeping extra threads in team, switch threads to wait on own
5083         // b_go flag
5084         for (f = new_nproc; f < team->t.t_nproc; ++f) {
5085           KMP_DEBUG_ASSERT(team->t.t_threads[f]);
5086           kmp_balign_t *balign = team->t.t_threads[f]->th.th_bar;
5087           for (int b = 0; b < bs_last_barrier; ++b) {
5088             if (balign[b].bb.wait_flag == KMP_BARRIER_PARENT_FLAG) {
5089               balign[b].bb.wait_flag = KMP_BARRIER_SWITCH_TO_OWN_FLAG;
5090             }
5091             KMP_CHECK_UPDATE(balign[b].bb.leaf_kids, 0);
5092           }
5093         }
5094       }
5095 #endif // KMP_NESTED_HOT_TEAMS
5096       team->t.t_nproc = new_nproc;
5097       // TODO???: team->t.t_max_active_levels = new_max_active_levels;
5098       KMP_CHECK_UPDATE(team->t.t_sched.sched, new_icvs->sched.sched);
5099       __kmp_reinitialize_team(team, new_icvs,
5100                               root->r.r_uber_thread->th.th_ident);
5101 
5102       // Update remaining threads
5103       for (f = 0; f < new_nproc; ++f) {
5104         team->t.t_threads[f]->th.th_team_nproc = new_nproc;
5105       }
5106 
5107       // restore the current task state of the master thread: should be the
5108       // implicit task
5109       KF_TRACE(10, ("__kmp_allocate_team: T#%d, this_thread=%p team=%p\n", 0,
5110                     team->t.t_threads[0], team));
5111 
5112       __kmp_push_current_task_to_thread(team->t.t_threads[0], team, 0);
5113 
5114 #ifdef KMP_DEBUG
5115       for (f = 0; f < team->t.t_nproc; f++) {
5116         KMP_DEBUG_ASSERT(team->t.t_threads[f] &&
5117                          team->t.t_threads[f]->th.th_team_nproc ==
5118                              team->t.t_nproc);
5119       }
5120 #endif
5121 
5122 #if OMP_40_ENABLED
5123       KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind);
5124 #if KMP_AFFINITY_SUPPORTED
5125       __kmp_partition_places(team);
5126 #endif
5127 #endif
5128     } else { // team->t.t_nproc < new_nproc
5129 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED
5130       kmp_affin_mask_t *old_mask;
5131       if (KMP_AFFINITY_CAPABLE()) {
5132         KMP_CPU_ALLOC(old_mask);
5133       }
5134 #endif
5135 
5136       KA_TRACE(20,
5137                ("__kmp_allocate_team: increasing hot team thread count to %d\n",
5138                 new_nproc));
5139 
5140       team->t.t_size_changed = 1;
5141 
5142 #if KMP_NESTED_HOT_TEAMS
5143       int avail_threads = hot_teams[level].hot_team_nth;
5144       if (new_nproc < avail_threads)
5145         avail_threads = new_nproc;
5146       kmp_info_t **other_threads = team->t.t_threads;
5147       for (f = team->t.t_nproc; f < avail_threads; ++f) {
5148         // Adjust barrier data of reserved threads (if any) of the team
5149         // Other data will be set in __kmp_initialize_info() below.
5150         int b;
5151         kmp_balign_t *balign = other_threads[f]->th.th_bar;
5152         for (b = 0; b < bs_last_barrier; ++b) {
5153           balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived;
5154           KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG);
5155 #if USE_DEBUGGER
5156           balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived;
5157 #endif
5158         }
5159       }
5160       if (hot_teams[level].hot_team_nth >= new_nproc) {
5161         // we have all needed threads in reserve, no need to allocate any
5162         // this only possible in mode 1, cannot have reserved threads in mode 0
5163         KMP_DEBUG_ASSERT(__kmp_hot_teams_mode == 1);
5164         team->t.t_nproc = new_nproc; // just get reserved threads involved
5165       } else {
5166         // we may have some threads in reserve, but not enough
5167         team->t.t_nproc =
5168             hot_teams[level]
5169                 .hot_team_nth; // get reserved threads involved if any
5170         hot_teams[level].hot_team_nth = new_nproc; // adjust hot team max size
5171 #endif // KMP_NESTED_HOT_TEAMS
5172         if (team->t.t_max_nproc < new_nproc) {
5173           /* reallocate larger arrays */
5174           __kmp_reallocate_team_arrays(team, new_nproc);
5175           __kmp_reinitialize_team(team, new_icvs, NULL);
5176         }
5177 
5178 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED
5179         /* Temporarily set full mask for master thread before creation of
5180            workers. The reason is that workers inherit the affinity from master,
5181            so if a lot of workers are created on the single core quickly, they
5182            don't get a chance to set their own affinity for a long time. */
5183         __kmp_set_thread_affinity_mask_full_tmp(old_mask);
5184 #endif
5185 
5186         /* allocate new threads for the hot team */
5187         for (f = team->t.t_nproc; f < new_nproc; f++) {
5188           kmp_info_t *new_worker = __kmp_allocate_thread(root, team, f);
5189           KMP_DEBUG_ASSERT(new_worker);
5190           team->t.t_threads[f] = new_worker;
5191 
5192           KA_TRACE(20,
5193                    ("__kmp_allocate_team: team %d init T#%d arrived: "
5194                     "join=%llu, plain=%llu\n",
5195                     team->t.t_id, __kmp_gtid_from_tid(f, team), team->t.t_id, f,
5196                     team->t.t_bar[bs_forkjoin_barrier].b_arrived,
5197                     team->t.t_bar[bs_plain_barrier].b_arrived));
5198 
5199           { // Initialize barrier data for new threads.
5200             int b;
5201             kmp_balign_t *balign = new_worker->th.th_bar;
5202             for (b = 0; b < bs_last_barrier; ++b) {
5203               balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived;
5204               KMP_DEBUG_ASSERT(balign[b].bb.wait_flag !=
5205                                KMP_BARRIER_PARENT_FLAG);
5206 #if USE_DEBUGGER
5207               balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived;
5208 #endif
5209             }
5210           }
5211         }
5212 
5213 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED
5214         if (KMP_AFFINITY_CAPABLE()) {
5215           /* Restore initial master thread's affinity mask */
5216           __kmp_set_system_affinity(old_mask, TRUE);
5217           KMP_CPU_FREE(old_mask);
5218         }
5219 #endif
5220 #if KMP_NESTED_HOT_TEAMS
5221       } // end of check of t_nproc vs. new_nproc vs. hot_team_nth
5222 #endif // KMP_NESTED_HOT_TEAMS
5223       /* make sure everyone is syncronized */
5224       int old_nproc = team->t.t_nproc; // save old value and use to update only
5225       // new threads below
5226       __kmp_initialize_team(team, new_nproc, new_icvs,
5227                             root->r.r_uber_thread->th.th_ident);
5228 
5229       /* reinitialize the threads */
5230       KMP_DEBUG_ASSERT(team->t.t_nproc == new_nproc);
5231       for (f = 0; f < team->t.t_nproc; ++f)
5232         __kmp_initialize_info(team->t.t_threads[f], team, f,
5233                               __kmp_gtid_from_tid(f, team));
5234 
5235       if (level) { // set th_task_state for new threads in nested hot team
5236         // __kmp_initialize_info() no longer zeroes th_task_state, so we should
5237         // only need to set the th_task_state for the new threads. th_task_state
5238         // for master thread will not be accurate until after this in
5239         // __kmp_fork_call(), so we look to the master's memo_stack to get the
5240         // correct value.
5241         for (f = old_nproc; f < team->t.t_nproc; ++f)
5242           team->t.t_threads[f]->th.th_task_state =
5243               team->t.t_threads[0]->th.th_task_state_memo_stack[level];
5244       } else { // set th_task_state for new threads in non-nested hot team
5245         int old_state =
5246             team->t.t_threads[0]->th.th_task_state; // copy master's state
5247         for (f = old_nproc; f < team->t.t_nproc; ++f)
5248           team->t.t_threads[f]->th.th_task_state = old_state;
5249       }
5250 
5251 #ifdef KMP_DEBUG
5252       for (f = 0; f < team->t.t_nproc; ++f) {
5253         KMP_DEBUG_ASSERT(team->t.t_threads[f] &&
5254                          team->t.t_threads[f]->th.th_team_nproc ==
5255                              team->t.t_nproc);
5256       }
5257 #endif
5258 
5259 #if OMP_40_ENABLED
5260       KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind);
5261 #if KMP_AFFINITY_SUPPORTED
5262       __kmp_partition_places(team);
5263 #endif
5264 #endif
5265     } // Check changes in number of threads
5266 
5267 #if OMP_40_ENABLED
5268     kmp_info_t *master = team->t.t_threads[0];
5269     if (master->th.th_teams_microtask) {
5270       for (f = 1; f < new_nproc; ++f) {
5271         // propagate teams construct specific info to workers
5272         kmp_info_t *thr = team->t.t_threads[f];
5273         thr->th.th_teams_microtask = master->th.th_teams_microtask;
5274         thr->th.th_teams_level = master->th.th_teams_level;
5275         thr->th.th_teams_size = master->th.th_teams_size;
5276       }
5277     }
5278 #endif /* OMP_40_ENABLED */
5279 #if KMP_NESTED_HOT_TEAMS
5280     if (level) {
5281       // Sync barrier state for nested hot teams, not needed for outermost hot
5282       // team.
5283       for (f = 1; f < new_nproc; ++f) {
5284         kmp_info_t *thr = team->t.t_threads[f];
5285         int b;
5286         kmp_balign_t *balign = thr->th.th_bar;
5287         for (b = 0; b < bs_last_barrier; ++b) {
5288           balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived;
5289           KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG);
5290 #if USE_DEBUGGER
5291           balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived;
5292 #endif
5293         }
5294       }
5295     }
5296 #endif // KMP_NESTED_HOT_TEAMS
5297 
5298     /* reallocate space for arguments if necessary */
5299     __kmp_alloc_argv_entries(argc, team, TRUE);
5300     KMP_CHECK_UPDATE(team->t.t_argc, argc);
5301     // The hot team re-uses the previous task team,
5302     // if untouched during the previous release->gather phase.
5303 
5304     KF_TRACE(10, (" hot_team = %p\n", team));
5305 
5306 #if KMP_DEBUG
5307     if (__kmp_tasking_mode != tskm_immediate_exec) {
5308       KA_TRACE(20, ("__kmp_allocate_team: hot team task_team[0] = %p "
5309                     "task_team[1] = %p after reinit\n",
5310                     team->t.t_task_team[0], team->t.t_task_team[1]));
5311     }
5312 #endif
5313 
5314 #if OMPT_SUPPORT
5315     __ompt_team_assign_id(team, ompt_parallel_data);
5316 #endif
5317 
5318     KMP_MB();
5319 
5320     return team;
5321   }
5322 
5323   /* next, let's try to take one from the team pool */
5324   KMP_MB();
5325   for (team = CCAST(kmp_team_t *, __kmp_team_pool); (team);) {
5326     /* TODO: consider resizing undersized teams instead of reaping them, now
5327        that we have a resizing mechanism */
5328     if (team->t.t_max_nproc >= max_nproc) {
5329       /* take this team from the team pool */
5330       __kmp_team_pool = team->t.t_next_pool;
5331 
5332       /* setup the team for fresh use */
5333       __kmp_initialize_team(team, new_nproc, new_icvs, NULL);
5334 
5335       KA_TRACE(20, ("__kmp_allocate_team: setting task_team[0] %p and "
5336                     "task_team[1] %p to NULL\n",
5337                     &team->t.t_task_team[0], &team->t.t_task_team[1]));
5338       team->t.t_task_team[0] = NULL;
5339       team->t.t_task_team[1] = NULL;
5340 
5341       /* reallocate space for arguments if necessary */
5342       __kmp_alloc_argv_entries(argc, team, TRUE);
5343       KMP_CHECK_UPDATE(team->t.t_argc, argc);
5344 
5345       KA_TRACE(
5346           20, ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n",
5347                team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE));
5348       { // Initialize barrier data.
5349         int b;
5350         for (b = 0; b < bs_last_barrier; ++b) {
5351           team->t.t_bar[b].b_arrived = KMP_INIT_BARRIER_STATE;
5352 #if USE_DEBUGGER
5353           team->t.t_bar[b].b_master_arrived = 0;
5354           team->t.t_bar[b].b_team_arrived = 0;
5355 #endif
5356         }
5357       }
5358 
5359 #if OMP_40_ENABLED
5360       team->t.t_proc_bind = new_proc_bind;
5361 #endif
5362 
5363       KA_TRACE(20, ("__kmp_allocate_team: using team from pool %d.\n",
5364                     team->t.t_id));
5365 
5366 #if OMPT_SUPPORT
5367       __ompt_team_assign_id(team, ompt_parallel_data);
5368 #endif
5369 
5370       KMP_MB();
5371 
5372       return team;
5373     }
5374 
5375     /* reap team if it is too small, then loop back and check the next one */
5376     // not sure if this is wise, but, will be redone during the hot-teams
5377     // rewrite.
5378     /* TODO: Use technique to find the right size hot-team, don't reap them */
5379     team = __kmp_reap_team(team);
5380     __kmp_team_pool = team;
5381   }
5382 
5383   /* nothing available in the pool, no matter, make a new team! */
5384   KMP_MB();
5385   team = (kmp_team_t *)__kmp_allocate(sizeof(kmp_team_t));
5386 
5387   /* and set it up */
5388   team->t.t_max_nproc = max_nproc;
5389   /* NOTE well, for some reason allocating one big buffer and dividing it up
5390      seems to really hurt performance a lot on the P4, so, let's not use this */
5391   __kmp_allocate_team_arrays(team, max_nproc);
5392 
5393   KA_TRACE(20, ("__kmp_allocate_team: making a new team\n"));
5394   __kmp_initialize_team(team, new_nproc, new_icvs, NULL);
5395 
5396   KA_TRACE(20, ("__kmp_allocate_team: setting task_team[0] %p and task_team[1] "
5397                 "%p to NULL\n",
5398                 &team->t.t_task_team[0], &team->t.t_task_team[1]));
5399   team->t.t_task_team[0] = NULL; // to be removed, as __kmp_allocate zeroes
5400   // memory, no need to duplicate
5401   team->t.t_task_team[1] = NULL; // to be removed, as __kmp_allocate zeroes
5402   // memory, no need to duplicate
5403 
5404   if (__kmp_storage_map) {
5405     __kmp_print_team_storage_map("team", team, team->t.t_id, new_nproc);
5406   }
5407 
5408   /* allocate space for arguments */
5409   __kmp_alloc_argv_entries(argc, team, FALSE);
5410   team->t.t_argc = argc;
5411 
5412   KA_TRACE(20,
5413            ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n",
5414             team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE));
5415   { // Initialize barrier data.
5416     int b;
5417     for (b = 0; b < bs_last_barrier; ++b) {
5418       team->t.t_bar[b].b_arrived = KMP_INIT_BARRIER_STATE;
5419 #if USE_DEBUGGER
5420       team->t.t_bar[b].b_master_arrived = 0;
5421       team->t.t_bar[b].b_team_arrived = 0;
5422 #endif
5423     }
5424   }
5425 
5426 #if OMP_40_ENABLED
5427   team->t.t_proc_bind = new_proc_bind;
5428 #endif
5429 
5430 #if OMPT_SUPPORT
5431   __ompt_team_assign_id(team, ompt_parallel_data);
5432   team->t.ompt_serialized_team_info = NULL;
5433 #endif
5434 
5435   KMP_MB();
5436 
5437   KA_TRACE(20, ("__kmp_allocate_team: done creating a new team %d.\n",
5438                 team->t.t_id));
5439 
5440   return team;
5441 }
5442 
5443 /* TODO implement hot-teams at all levels */
5444 /* TODO implement lazy thread release on demand (disband request) */
5445 
5446 /* free the team.  return it to the team pool.  release all the threads
5447  * associated with it */
5448 void __kmp_free_team(kmp_root_t *root,
5449                      kmp_team_t *team USE_NESTED_HOT_ARG(kmp_info_t *master)) {
5450   int f;
5451   KA_TRACE(20, ("__kmp_free_team: T#%d freeing team %d\n", __kmp_get_gtid(),
5452                 team->t.t_id));
5453 
5454   /* verify state */
5455   KMP_DEBUG_ASSERT(root);
5456   KMP_DEBUG_ASSERT(team);
5457   KMP_DEBUG_ASSERT(team->t.t_nproc <= team->t.t_max_nproc);
5458   KMP_DEBUG_ASSERT(team->t.t_threads);
5459 
5460   int use_hot_team = team == root->r.r_hot_team;
5461 #if KMP_NESTED_HOT_TEAMS
5462   int level;
5463   kmp_hot_team_ptr_t *hot_teams;
5464   if (master) {
5465     level = team->t.t_active_level - 1;
5466     if (master->th.th_teams_microtask) { // in teams construct?
5467       if (master->th.th_teams_size.nteams > 1) {
5468         ++level; // level was not increased in teams construct for
5469         // team_of_masters
5470       }
5471       if (team->t.t_pkfn != (microtask_t)__kmp_teams_master &&
5472           master->th.th_teams_level == team->t.t_level) {
5473         ++level; // level was not increased in teams construct for
5474         // team_of_workers before the parallel
5475       } // team->t.t_level will be increased inside parallel
5476     }
5477     hot_teams = master->th.th_hot_teams;
5478     if (level < __kmp_hot_teams_max_level) {
5479       KMP_DEBUG_ASSERT(team == hot_teams[level].hot_team);
5480       use_hot_team = 1;
5481     }
5482   }
5483 #endif // KMP_NESTED_HOT_TEAMS
5484 
5485   /* team is done working */
5486   TCW_SYNC_PTR(team->t.t_pkfn,
5487                NULL); // Important for Debugging Support Library.
5488 #if KMP_OS_WINDOWS
5489   team->t.t_copyin_counter = 0; // init counter for possible reuse
5490 #endif
5491   // Do not reset pointer to parent team to NULL for hot teams.
5492 
5493   /* if we are non-hot team, release our threads */
5494   if (!use_hot_team) {
5495     if (__kmp_tasking_mode != tskm_immediate_exec) {
5496       // Wait for threads to reach reapable state
5497       for (f = 1; f < team->t.t_nproc; ++f) {
5498         KMP_DEBUG_ASSERT(team->t.t_threads[f]);
5499         kmp_info_t *th = team->t.t_threads[f];
5500         volatile kmp_uint32 *state = &th->th.th_reap_state;
5501         while (*state != KMP_SAFE_TO_REAP) {
5502 #if KMP_OS_WINDOWS
5503           // On Windows a thread can be killed at any time, check this
5504           DWORD ecode;
5505           if (!__kmp_is_thread_alive(th, &ecode)) {
5506             *state = KMP_SAFE_TO_REAP; // reset the flag for dead thread
5507             break;
5508           }
5509 #endif
5510           // first check if thread is sleeping
5511           kmp_flag_64 fl(&th->th.th_bar[bs_forkjoin_barrier].bb.b_go, th);
5512           if (fl.is_sleeping())
5513             fl.resume(__kmp_gtid_from_thread(th));
5514           KMP_CPU_PAUSE();
5515         }
5516       }
5517 
5518       // Delete task teams
5519       int tt_idx;
5520       for (tt_idx = 0; tt_idx < 2; ++tt_idx) {
5521         kmp_task_team_t *task_team = team->t.t_task_team[tt_idx];
5522         if (task_team != NULL) {
5523           for (f = 0; f < team->t.t_nproc; ++f) { // threads unref task teams
5524             KMP_DEBUG_ASSERT(team->t.t_threads[f]);
5525             team->t.t_threads[f]->th.th_task_team = NULL;
5526           }
5527           KA_TRACE(
5528               20,
5529               ("__kmp_free_team: T#%d deactivating task_team %p on team %d\n",
5530                __kmp_get_gtid(), task_team, team->t.t_id));
5531 #if KMP_NESTED_HOT_TEAMS
5532           __kmp_free_task_team(master, task_team);
5533 #endif
5534           team->t.t_task_team[tt_idx] = NULL;
5535         }
5536       }
5537     }
5538 
5539     // Reset pointer to parent team only for non-hot teams.
5540     team->t.t_parent = NULL;
5541     team->t.t_level = 0;
5542     team->t.t_active_level = 0;
5543 
5544     /* free the worker threads */
5545     for (f = 1; f < team->t.t_nproc; ++f) {
5546       KMP_DEBUG_ASSERT(team->t.t_threads[f]);
5547       __kmp_free_thread(team->t.t_threads[f]);
5548       team->t.t_threads[f] = NULL;
5549     }
5550 
5551     /* put the team back in the team pool */
5552     /* TODO limit size of team pool, call reap_team if pool too large */
5553     team->t.t_next_pool = CCAST(kmp_team_t *, __kmp_team_pool);
5554     __kmp_team_pool = (volatile kmp_team_t *)team;
5555   } else { // Check if team was created for the masters in a teams construct
5556     // See if first worker is a CG root
5557     KMP_DEBUG_ASSERT(team->t.t_threads[1] &&
5558                      team->t.t_threads[1]->th.th_cg_roots);
5559     if (team->t.t_threads[1]->th.th_cg_roots->cg_root == team->t.t_threads[1]) {
5560       // Clean up the CG root nodes on workers so that this team can be re-used
5561       for (f = 1; f < team->t.t_nproc; ++f) {
5562         kmp_info_t *thr = team->t.t_threads[f];
5563         KMP_DEBUG_ASSERT(thr && thr->th.th_cg_roots &&
5564                          thr->th.th_cg_roots->cg_root == thr);
5565         // Pop current CG root off list
5566         kmp_cg_root_t *tmp = thr->th.th_cg_roots;
5567         thr->th.th_cg_roots = tmp->up;
5568         KA_TRACE(100, ("__kmp_free_team: Thread %p popping node %p and moving"
5569                        " up to node %p. cg_nthreads was %d\n",
5570                        thr, tmp, thr->th.th_cg_roots, tmp->cg_nthreads));
5571         __kmp_free(tmp);
5572         // Restore current task's thread_limit from CG root
5573         if (thr->th.th_cg_roots)
5574           thr->th.th_current_task->td_icvs.thread_limit =
5575               thr->th.th_cg_roots->cg_thread_limit;
5576       }
5577     }
5578   }
5579 
5580   KMP_MB();
5581 }
5582 
5583 /* reap the team.  destroy it, reclaim all its resources and free its memory */
5584 kmp_team_t *__kmp_reap_team(kmp_team_t *team) {
5585   kmp_team_t *next_pool = team->t.t_next_pool;
5586 
5587   KMP_DEBUG_ASSERT(team);
5588   KMP_DEBUG_ASSERT(team->t.t_dispatch);
5589   KMP_DEBUG_ASSERT(team->t.t_disp_buffer);
5590   KMP_DEBUG_ASSERT(team->t.t_threads);
5591   KMP_DEBUG_ASSERT(team->t.t_argv);
5592 
5593   /* TODO clean the threads that are a part of this? */
5594 
5595   /* free stuff */
5596   __kmp_free_team_arrays(team);
5597   if (team->t.t_argv != &team->t.t_inline_argv[0])
5598     __kmp_free((void *)team->t.t_argv);
5599   __kmp_free(team);
5600 
5601   KMP_MB();
5602   return next_pool;
5603 }
5604 
5605 // Free the thread.  Don't reap it, just place it on the pool of available
5606 // threads.
5607 //
5608 // Changes for Quad issue 527845: We need a predictable OMP tid <-> gtid
5609 // binding for the affinity mechanism to be useful.
5610 //
5611 // Now, we always keep the free list (__kmp_thread_pool) sorted by gtid.
5612 // However, we want to avoid a potential performance problem by always
5613 // scanning through the list to find the correct point at which to insert
5614 // the thread (potential N**2 behavior).  To do this we keep track of the
5615 // last place a thread struct was inserted (__kmp_thread_pool_insert_pt).
5616 // With single-level parallelism, threads will always be added to the tail
5617 // of the list, kept track of by __kmp_thread_pool_insert_pt.  With nested
5618 // parallelism, all bets are off and we may need to scan through the entire
5619 // free list.
5620 //
5621 // This change also has a potentially large performance benefit, for some
5622 // applications.  Previously, as threads were freed from the hot team, they
5623 // would be placed back on the free list in inverse order.  If the hot team
5624 // grew back to it's original size, then the freed thread would be placed
5625 // back on the hot team in reverse order.  This could cause bad cache
5626 // locality problems on programs where the size of the hot team regularly
5627 // grew and shrunk.
5628 //
5629 // Now, for single-level parallelism, the OMP tid is alway == gtid.
5630 void __kmp_free_thread(kmp_info_t *this_th) {
5631   int gtid;
5632   kmp_info_t **scan;
5633 
5634   KA_TRACE(20, ("__kmp_free_thread: T#%d putting T#%d back on free pool.\n",
5635                 __kmp_get_gtid(), this_th->th.th_info.ds.ds_gtid));
5636 
5637   KMP_DEBUG_ASSERT(this_th);
5638 
5639   // When moving thread to pool, switch thread to wait on own b_go flag, and
5640   // uninitialized (NULL team).
5641   int b;
5642   kmp_balign_t *balign = this_th->th.th_bar;
5643   for (b = 0; b < bs_last_barrier; ++b) {
5644     if (balign[b].bb.wait_flag == KMP_BARRIER_PARENT_FLAG)
5645       balign[b].bb.wait_flag = KMP_BARRIER_SWITCH_TO_OWN_FLAG;
5646     balign[b].bb.team = NULL;
5647     balign[b].bb.leaf_kids = 0;
5648   }
5649   this_th->th.th_task_state = 0;
5650   this_th->th.th_reap_state = KMP_SAFE_TO_REAP;
5651 
5652   /* put thread back on the free pool */
5653   TCW_PTR(this_th->th.th_team, NULL);
5654   TCW_PTR(this_th->th.th_root, NULL);
5655   TCW_PTR(this_th->th.th_dispatch, NULL); /* NOT NEEDED */
5656 
5657   while (this_th->th.th_cg_roots) {
5658     this_th->th.th_cg_roots->cg_nthreads--;
5659     KA_TRACE(100, ("__kmp_free_thread: Thread %p decrement cg_nthreads on node"
5660                    " %p of thread  %p to %d\n",
5661                    this_th, this_th->th.th_cg_roots,
5662                    this_th->th.th_cg_roots->cg_root,
5663                    this_th->th.th_cg_roots->cg_nthreads));
5664     kmp_cg_root_t *tmp = this_th->th.th_cg_roots;
5665     if (tmp->cg_root == this_th) { // Thread is a cg_root
5666       KMP_DEBUG_ASSERT(tmp->cg_nthreads == 0);
5667       KA_TRACE(
5668           5, ("__kmp_free_thread: Thread %p freeing node %p\n", this_th, tmp));
5669       this_th->th.th_cg_roots = tmp->up;
5670       __kmp_free(tmp);
5671     } else { // Worker thread
5672       this_th->th.th_cg_roots = NULL;
5673       break;
5674     }
5675   }
5676 
5677   /* If the implicit task assigned to this thread can be used by other threads
5678    * -> multiple threads can share the data and try to free the task at
5679    * __kmp_reap_thread at exit. This duplicate use of the task data can happen
5680    * with higher probability when hot team is disabled but can occurs even when
5681    * the hot team is enabled */
5682   __kmp_free_implicit_task(this_th);
5683   this_th->th.th_current_task = NULL;
5684 
5685   // If the __kmp_thread_pool_insert_pt is already past the new insert
5686   // point, then we need to re-scan the entire list.
5687   gtid = this_th->th.th_info.ds.ds_gtid;
5688   if (__kmp_thread_pool_insert_pt != NULL) {
5689     KMP_DEBUG_ASSERT(__kmp_thread_pool != NULL);
5690     if (__kmp_thread_pool_insert_pt->th.th_info.ds.ds_gtid > gtid) {
5691       __kmp_thread_pool_insert_pt = NULL;
5692     }
5693   }
5694 
5695   // Scan down the list to find the place to insert the thread.
5696   // scan is the address of a link in the list, possibly the address of
5697   // __kmp_thread_pool itself.
5698   //
5699   // In the absence of nested parallism, the for loop will have 0 iterations.
5700   if (__kmp_thread_pool_insert_pt != NULL) {
5701     scan = &(__kmp_thread_pool_insert_pt->th.th_next_pool);
5702   } else {
5703     scan = CCAST(kmp_info_t **, &__kmp_thread_pool);
5704   }
5705   for (; (*scan != NULL) && ((*scan)->th.th_info.ds.ds_gtid < gtid);
5706        scan = &((*scan)->th.th_next_pool))
5707     ;
5708 
5709   // Insert the new element on the list, and set __kmp_thread_pool_insert_pt
5710   // to its address.
5711   TCW_PTR(this_th->th.th_next_pool, *scan);
5712   __kmp_thread_pool_insert_pt = *scan = this_th;
5713   KMP_DEBUG_ASSERT((this_th->th.th_next_pool == NULL) ||
5714                    (this_th->th.th_info.ds.ds_gtid <
5715                     this_th->th.th_next_pool->th.th_info.ds.ds_gtid));
5716   TCW_4(this_th->th.th_in_pool, TRUE);
5717   __kmp_suspend_initialize_thread(this_th);
5718   __kmp_lock_suspend_mx(this_th);
5719   if (this_th->th.th_active == TRUE) {
5720     KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
5721     this_th->th.th_active_in_pool = TRUE;
5722   }
5723 #if KMP_DEBUG
5724   else {
5725     KMP_DEBUG_ASSERT(this_th->th.th_active_in_pool == FALSE);
5726   }
5727 #endif
5728   __kmp_unlock_suspend_mx(this_th);
5729 
5730   TCW_4(__kmp_nth, __kmp_nth - 1);
5731 
5732 #ifdef KMP_ADJUST_BLOCKTIME
5733   /* Adjust blocktime back to user setting or default if necessary */
5734   /* Middle initialization might never have occurred                */
5735   if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) {
5736     KMP_DEBUG_ASSERT(__kmp_avail_proc > 0);
5737     if (__kmp_nth <= __kmp_avail_proc) {
5738       __kmp_zero_bt = FALSE;
5739     }
5740   }
5741 #endif /* KMP_ADJUST_BLOCKTIME */
5742 
5743   KMP_MB();
5744 }
5745 
5746 /* ------------------------------------------------------------------------ */
5747 
5748 void *__kmp_launch_thread(kmp_info_t *this_thr) {
5749   int gtid = this_thr->th.th_info.ds.ds_gtid;
5750   /*    void                 *stack_data;*/
5751   kmp_team_t *(*volatile pteam);
5752 
5753   KMP_MB();
5754   KA_TRACE(10, ("__kmp_launch_thread: T#%d start\n", gtid));
5755 
5756   if (__kmp_env_consistency_check) {
5757     this_thr->th.th_cons = __kmp_allocate_cons_stack(gtid); // ATT: Memory leak?
5758   }
5759 
5760 #if OMPT_SUPPORT
5761   ompt_data_t *thread_data;
5762   if (ompt_enabled.enabled) {
5763     thread_data = &(this_thr->th.ompt_thread_info.thread_data);
5764     *thread_data = ompt_data_none;
5765 
5766     this_thr->th.ompt_thread_info.state = ompt_state_overhead;
5767     this_thr->th.ompt_thread_info.wait_id = 0;
5768     this_thr->th.ompt_thread_info.idle_frame = OMPT_GET_FRAME_ADDRESS(0);
5769     if (ompt_enabled.ompt_callback_thread_begin) {
5770       ompt_callbacks.ompt_callback(ompt_callback_thread_begin)(
5771           ompt_thread_worker, thread_data);
5772     }
5773   }
5774 #endif
5775 
5776 #if OMPT_SUPPORT
5777   if (ompt_enabled.enabled) {
5778     this_thr->th.ompt_thread_info.state = ompt_state_idle;
5779   }
5780 #endif
5781   /* This is the place where threads wait for work */
5782   while (!TCR_4(__kmp_global.g.g_done)) {
5783     KMP_DEBUG_ASSERT(this_thr == __kmp_threads[gtid]);
5784     KMP_MB();
5785 
5786     /* wait for work to do */
5787     KA_TRACE(20, ("__kmp_launch_thread: T#%d waiting for work\n", gtid));
5788 
5789     /* No tid yet since not part of a team */
5790     __kmp_fork_barrier(gtid, KMP_GTID_DNE);
5791 
5792 #if OMPT_SUPPORT
5793     if (ompt_enabled.enabled) {
5794       this_thr->th.ompt_thread_info.state = ompt_state_overhead;
5795     }
5796 #endif
5797 
5798     pteam = (kmp_team_t * (*))(&this_thr->th.th_team);
5799 
5800     /* have we been allocated? */
5801     if (TCR_SYNC_PTR(*pteam) && !TCR_4(__kmp_global.g.g_done)) {
5802       /* we were just woken up, so run our new task */
5803       if (TCR_SYNC_PTR((*pteam)->t.t_pkfn) != NULL) {
5804         int rc;
5805         KA_TRACE(20,
5806                  ("__kmp_launch_thread: T#%d(%d:%d) invoke microtask = %p\n",
5807                   gtid, (*pteam)->t.t_id, __kmp_tid_from_gtid(gtid),
5808                   (*pteam)->t.t_pkfn));
5809 
5810         updateHWFPControl(*pteam);
5811 
5812 #if OMPT_SUPPORT
5813         if (ompt_enabled.enabled) {
5814           this_thr->th.ompt_thread_info.state = ompt_state_work_parallel;
5815         }
5816 #endif
5817 
5818         rc = (*pteam)->t.t_invoke(gtid);
5819         KMP_ASSERT(rc);
5820 
5821         KMP_MB();
5822         KA_TRACE(20, ("__kmp_launch_thread: T#%d(%d:%d) done microtask = %p\n",
5823                       gtid, (*pteam)->t.t_id, __kmp_tid_from_gtid(gtid),
5824                       (*pteam)->t.t_pkfn));
5825       }
5826 #if OMPT_SUPPORT
5827       if (ompt_enabled.enabled) {
5828         /* no frame set while outside task */
5829         __ompt_get_task_info_object(0)->frame.exit_frame = ompt_data_none;
5830 
5831         this_thr->th.ompt_thread_info.state = ompt_state_overhead;
5832       }
5833 #endif
5834       /* join barrier after parallel region */
5835       __kmp_join_barrier(gtid);
5836     }
5837   }
5838   TCR_SYNC_PTR((intptr_t)__kmp_global.g.g_done);
5839 
5840 #if OMPT_SUPPORT
5841   if (ompt_enabled.ompt_callback_thread_end) {
5842     ompt_callbacks.ompt_callback(ompt_callback_thread_end)(thread_data);
5843   }
5844 #endif
5845 
5846   this_thr->th.th_task_team = NULL;
5847   /* run the destructors for the threadprivate data for this thread */
5848   __kmp_common_destroy_gtid(gtid);
5849 
5850   KA_TRACE(10, ("__kmp_launch_thread: T#%d done\n", gtid));
5851   KMP_MB();
5852   return this_thr;
5853 }
5854 
5855 /* ------------------------------------------------------------------------ */
5856 
5857 void __kmp_internal_end_dest(void *specific_gtid) {
5858 #if KMP_COMPILER_ICC
5859 #pragma warning(push)
5860 #pragma warning(disable : 810) // conversion from "void *" to "int" may lose
5861 // significant bits
5862 #endif
5863   // Make sure no significant bits are lost
5864   int gtid = (kmp_intptr_t)specific_gtid - 1;
5865 #if KMP_COMPILER_ICC
5866 #pragma warning(pop)
5867 #endif
5868 
5869   KA_TRACE(30, ("__kmp_internal_end_dest: T#%d\n", gtid));
5870   /* NOTE: the gtid is stored as gitd+1 in the thread-local-storage
5871    * this is because 0 is reserved for the nothing-stored case */
5872 
5873   /* josh: One reason for setting the gtid specific data even when it is being
5874      destroyed by pthread is to allow gtid lookup through thread specific data
5875      (__kmp_gtid_get_specific).  Some of the code, especially stat code,
5876      that gets executed in the call to __kmp_internal_end_thread, actually
5877      gets the gtid through the thread specific data.  Setting it here seems
5878      rather inelegant and perhaps wrong, but allows __kmp_internal_end_thread
5879      to run smoothly.
5880      todo: get rid of this after we remove the dependence on
5881      __kmp_gtid_get_specific  */
5882   if (gtid >= 0 && KMP_UBER_GTID(gtid))
5883     __kmp_gtid_set_specific(gtid);
5884 #ifdef KMP_TDATA_GTID
5885   __kmp_gtid = gtid;
5886 #endif
5887   __kmp_internal_end_thread(gtid);
5888 }
5889 
5890 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB
5891 
5892 // 2009-09-08 (lev): It looks the destructor does not work. In simple test cases
5893 // destructors work perfectly, but in real libomp.so I have no evidence it is
5894 // ever called. However, -fini linker option in makefile.mk works fine.
5895 
5896 __attribute__((destructor)) void __kmp_internal_end_dtor(void) {
5897   __kmp_internal_end_atexit();
5898 }
5899 
5900 void __kmp_internal_end_fini(void) { __kmp_internal_end_atexit(); }
5901 
5902 #endif
5903 
5904 /* [Windows] josh: when the atexit handler is called, there may still be more
5905    than one thread alive */
5906 void __kmp_internal_end_atexit(void) {
5907   KA_TRACE(30, ("__kmp_internal_end_atexit\n"));
5908   /* [Windows]
5909      josh: ideally, we want to completely shutdown the library in this atexit
5910      handler, but stat code that depends on thread specific data for gtid fails
5911      because that data becomes unavailable at some point during the shutdown, so
5912      we call __kmp_internal_end_thread instead. We should eventually remove the
5913      dependency on __kmp_get_specific_gtid in the stat code and use
5914      __kmp_internal_end_library to cleanly shutdown the library.
5915 
5916      // TODO: Can some of this comment about GVS be removed?
5917      I suspect that the offending stat code is executed when the calling thread
5918      tries to clean up a dead root thread's data structures, resulting in GVS
5919      code trying to close the GVS structures for that thread, but since the stat
5920      code uses __kmp_get_specific_gtid to get the gtid with the assumption that
5921      the calling thread is cleaning up itself instead of another thread, it get
5922      confused. This happens because allowing a thread to unregister and cleanup
5923      another thread is a recent modification for addressing an issue.
5924      Based on the current design (20050722), a thread may end up
5925      trying to unregister another thread only if thread death does not trigger
5926      the calling of __kmp_internal_end_thread.  For Linux* OS, there is the
5927      thread specific data destructor function to detect thread death. For
5928      Windows dynamic, there is DllMain(THREAD_DETACH). For Windows static, there
5929      is nothing.  Thus, the workaround is applicable only for Windows static
5930      stat library. */
5931   __kmp_internal_end_library(-1);
5932 #if KMP_OS_WINDOWS
5933   __kmp_close_console();
5934 #endif
5935 }
5936 
5937 static void __kmp_reap_thread(kmp_info_t *thread, int is_root) {
5938   // It is assumed __kmp_forkjoin_lock is acquired.
5939 
5940   int gtid;
5941 
5942   KMP_DEBUG_ASSERT(thread != NULL);
5943 
5944   gtid = thread->th.th_info.ds.ds_gtid;
5945 
5946   if (!is_root) {
5947     if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) {
5948       /* Assume the threads are at the fork barrier here */
5949       KA_TRACE(
5950           20, ("__kmp_reap_thread: releasing T#%d from fork barrier for reap\n",
5951                gtid));
5952       /* Need release fence here to prevent seg faults for tree forkjoin barrier
5953        * (GEH) */
5954       ANNOTATE_HAPPENS_BEFORE(thread);
5955       kmp_flag_64 flag(&thread->th.th_bar[bs_forkjoin_barrier].bb.b_go, thread);
5956       __kmp_release_64(&flag);
5957     }
5958 
5959     // Terminate OS thread.
5960     __kmp_reap_worker(thread);
5961 
5962     // The thread was killed asynchronously.  If it was actively
5963     // spinning in the thread pool, decrement the global count.
5964     //
5965     // There is a small timing hole here - if the worker thread was just waking
5966     // up after sleeping in the pool, had reset it's th_active_in_pool flag but
5967     // not decremented the global counter __kmp_thread_pool_active_nth yet, then
5968     // the global counter might not get updated.
5969     //
5970     // Currently, this can only happen as the library is unloaded,
5971     // so there are no harmful side effects.
5972     if (thread->th.th_active_in_pool) {
5973       thread->th.th_active_in_pool = FALSE;
5974       KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
5975       KMP_DEBUG_ASSERT(__kmp_thread_pool_active_nth >= 0);
5976     }
5977   }
5978 
5979   __kmp_free_implicit_task(thread);
5980 
5981 // Free the fast memory for tasking
5982 #if USE_FAST_MEMORY
5983   __kmp_free_fast_memory(thread);
5984 #endif /* USE_FAST_MEMORY */
5985 
5986   __kmp_suspend_uninitialize_thread(thread);
5987 
5988   KMP_DEBUG_ASSERT(__kmp_threads[gtid] == thread);
5989   TCW_SYNC_PTR(__kmp_threads[gtid], NULL);
5990 
5991   --__kmp_all_nth;
5992 // __kmp_nth was decremented when thread is added to the pool.
5993 
5994 #ifdef KMP_ADJUST_BLOCKTIME
5995   /* Adjust blocktime back to user setting or default if necessary */
5996   /* Middle initialization might never have occurred                */
5997   if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) {
5998     KMP_DEBUG_ASSERT(__kmp_avail_proc > 0);
5999     if (__kmp_nth <= __kmp_avail_proc) {
6000       __kmp_zero_bt = FALSE;
6001     }
6002   }
6003 #endif /* KMP_ADJUST_BLOCKTIME */
6004 
6005   /* free the memory being used */
6006   if (__kmp_env_consistency_check) {
6007     if (thread->th.th_cons) {
6008       __kmp_free_cons_stack(thread->th.th_cons);
6009       thread->th.th_cons = NULL;
6010     }
6011   }
6012 
6013   if (thread->th.th_pri_common != NULL) {
6014     __kmp_free(thread->th.th_pri_common);
6015     thread->th.th_pri_common = NULL;
6016   }
6017 
6018   if (thread->th.th_task_state_memo_stack != NULL) {
6019     __kmp_free(thread->th.th_task_state_memo_stack);
6020     thread->th.th_task_state_memo_stack = NULL;
6021   }
6022 
6023 #if KMP_USE_BGET
6024   if (thread->th.th_local.bget_data != NULL) {
6025     __kmp_finalize_bget(thread);
6026   }
6027 #endif
6028 
6029 #if KMP_AFFINITY_SUPPORTED
6030   if (thread->th.th_affin_mask != NULL) {
6031     KMP_CPU_FREE(thread->th.th_affin_mask);
6032     thread->th.th_affin_mask = NULL;
6033   }
6034 #endif /* KMP_AFFINITY_SUPPORTED */
6035 
6036 #if KMP_USE_HIER_SCHED
6037   if (thread->th.th_hier_bar_data != NULL) {
6038     __kmp_free(thread->th.th_hier_bar_data);
6039     thread->th.th_hier_bar_data = NULL;
6040   }
6041 #endif
6042 
6043   __kmp_reap_team(thread->th.th_serial_team);
6044   thread->th.th_serial_team = NULL;
6045   __kmp_free(thread);
6046 
6047   KMP_MB();
6048 
6049 } // __kmp_reap_thread
6050 
6051 static void __kmp_internal_end(void) {
6052   int i;
6053 
6054   /* First, unregister the library */
6055   __kmp_unregister_library();
6056 
6057 #if KMP_OS_WINDOWS
6058   /* In Win static library, we can't tell when a root actually dies, so we
6059      reclaim the data structures for any root threads that have died but not
6060      unregistered themselves, in order to shut down cleanly.
6061      In Win dynamic library we also can't tell when a thread dies.  */
6062   __kmp_reclaim_dead_roots(); // AC: moved here to always clean resources of
6063 // dead roots
6064 #endif
6065 
6066   for (i = 0; i < __kmp_threads_capacity; i++)
6067     if (__kmp_root[i])
6068       if (__kmp_root[i]->r.r_active)
6069         break;
6070   KMP_MB(); /* Flush all pending memory write invalidates.  */
6071   TCW_SYNC_4(__kmp_global.g.g_done, TRUE);
6072 
6073   if (i < __kmp_threads_capacity) {
6074 #if KMP_USE_MONITOR
6075     // 2009-09-08 (lev): Other alive roots found. Why do we kill the monitor??
6076     KMP_MB(); /* Flush all pending memory write invalidates.  */
6077 
6078     // Need to check that monitor was initialized before reaping it. If we are
6079     // called form __kmp_atfork_child (which sets __kmp_init_parallel = 0), then
6080     // __kmp_monitor will appear to contain valid data, but it is only valid in
6081     // the parent process, not the child.
6082     // New behavior (201008): instead of keying off of the flag
6083     // __kmp_init_parallel, the monitor thread creation is keyed off
6084     // of the new flag __kmp_init_monitor.
6085     __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock);
6086     if (TCR_4(__kmp_init_monitor)) {
6087       __kmp_reap_monitor(&__kmp_monitor);
6088       TCW_4(__kmp_init_monitor, 0);
6089     }
6090     __kmp_release_bootstrap_lock(&__kmp_monitor_lock);
6091     KA_TRACE(10, ("__kmp_internal_end: monitor reaped\n"));
6092 #endif // KMP_USE_MONITOR
6093   } else {
6094 /* TODO move this to cleanup code */
6095 #ifdef KMP_DEBUG
6096     /* make sure that everything has properly ended */
6097     for (i = 0; i < __kmp_threads_capacity; i++) {
6098       if (__kmp_root[i]) {
6099         //                    KMP_ASSERT( ! KMP_UBER_GTID( i ) );         // AC:
6100         //                    there can be uber threads alive here
6101         KMP_ASSERT(!__kmp_root[i]->r.r_active); // TODO: can they be active?
6102       }
6103     }
6104 #endif
6105 
6106     KMP_MB();
6107 
6108     // Reap the worker threads.
6109     // This is valid for now, but be careful if threads are reaped sooner.
6110     while (__kmp_thread_pool != NULL) { // Loop thru all the thread in the pool.
6111       // Get the next thread from the pool.
6112       kmp_info_t *thread = CCAST(kmp_info_t *, __kmp_thread_pool);
6113       __kmp_thread_pool = thread->th.th_next_pool;
6114       // Reap it.
6115       KMP_DEBUG_ASSERT(thread->th.th_reap_state == KMP_SAFE_TO_REAP);
6116       thread->th.th_next_pool = NULL;
6117       thread->th.th_in_pool = FALSE;
6118       thread->th.th_active_in_pool = FALSE;
6119       KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
6120       __kmp_reap_thread(thread, 0);
6121     }
6122     __kmp_thread_pool_insert_pt = NULL;
6123 
6124     // Reap teams.
6125     while (__kmp_team_pool != NULL) { // Loop thru all the teams in the pool.
6126       // Get the next team from the pool.
6127       kmp_team_t *team = CCAST(kmp_team_t *, __kmp_team_pool);
6128       __kmp_team_pool = team->t.t_next_pool;
6129       // Reap it.
6130       team->t.t_next_pool = NULL;
6131       __kmp_reap_team(team);
6132     }
6133 
6134     __kmp_reap_task_teams();
6135 
6136 #if KMP_OS_UNIX
6137     // Threads that are not reaped should not access any resources since they
6138     // are going to be deallocated soon, so the shutdown sequence should wait
6139     // until all threads either exit the final spin-waiting loop or begin
6140     // sleeping after the given blocktime.
6141     for (i = 0; i < __kmp_threads_capacity; i++) {
6142       kmp_info_t *thr = __kmp_threads[i];
6143       while (thr && KMP_ATOMIC_LD_ACQ(&thr->th.th_blocking))
6144         KMP_CPU_PAUSE();
6145     }
6146 #endif
6147 
6148     for (i = 0; i < __kmp_threads_capacity; ++i) {
6149       // TBD: Add some checking...
6150       // Something like KMP_DEBUG_ASSERT( __kmp_thread[ i ] == NULL );
6151     }
6152 
6153     /* Make sure all threadprivate destructors get run by joining with all
6154        worker threads before resetting this flag */
6155     TCW_SYNC_4(__kmp_init_common, FALSE);
6156 
6157     KA_TRACE(10, ("__kmp_internal_end: all workers reaped\n"));
6158     KMP_MB();
6159 
6160 #if KMP_USE_MONITOR
6161     // See note above: One of the possible fixes for CQ138434 / CQ140126
6162     //
6163     // FIXME: push both code fragments down and CSE them?
6164     // push them into __kmp_cleanup() ?
6165     __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock);
6166     if (TCR_4(__kmp_init_monitor)) {
6167       __kmp_reap_monitor(&__kmp_monitor);
6168       TCW_4(__kmp_init_monitor, 0);
6169     }
6170     __kmp_release_bootstrap_lock(&__kmp_monitor_lock);
6171     KA_TRACE(10, ("__kmp_internal_end: monitor reaped\n"));
6172 #endif
6173   } /* else !__kmp_global.t_active */
6174   TCW_4(__kmp_init_gtid, FALSE);
6175   KMP_MB(); /* Flush all pending memory write invalidates.  */
6176 
6177   __kmp_cleanup();
6178 #if OMPT_SUPPORT
6179   ompt_fini();
6180 #endif
6181 }
6182 
6183 void __kmp_internal_end_library(int gtid_req) {
6184   /* if we have already cleaned up, don't try again, it wouldn't be pretty */
6185   /* this shouldn't be a race condition because __kmp_internal_end() is the
6186      only place to clear __kmp_serial_init */
6187   /* we'll check this later too, after we get the lock */
6188   // 2009-09-06: We do not set g_abort without setting g_done. This check looks
6189   // redundaant, because the next check will work in any case.
6190   if (__kmp_global.g.g_abort) {
6191     KA_TRACE(11, ("__kmp_internal_end_library: abort, exiting\n"));
6192     /* TODO abort? */
6193     return;
6194   }
6195   if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) {
6196     KA_TRACE(10, ("__kmp_internal_end_library: already finished\n"));
6197     return;
6198   }
6199 
6200   KMP_MB(); /* Flush all pending memory write invalidates.  */
6201 
6202   /* find out who we are and what we should do */
6203   {
6204     int gtid = (gtid_req >= 0) ? gtid_req : __kmp_gtid_get_specific();
6205     KA_TRACE(
6206         10, ("__kmp_internal_end_library: enter T#%d  (%d)\n", gtid, gtid_req));
6207     if (gtid == KMP_GTID_SHUTDOWN) {
6208       KA_TRACE(10, ("__kmp_internal_end_library: !__kmp_init_runtime, system "
6209                     "already shutdown\n"));
6210       return;
6211     } else if (gtid == KMP_GTID_MONITOR) {
6212       KA_TRACE(10, ("__kmp_internal_end_library: monitor thread, gtid not "
6213                     "registered, or system shutdown\n"));
6214       return;
6215     } else if (gtid == KMP_GTID_DNE) {
6216       KA_TRACE(10, ("__kmp_internal_end_library: gtid not registered or system "
6217                     "shutdown\n"));
6218       /* we don't know who we are, but we may still shutdown the library */
6219     } else if (KMP_UBER_GTID(gtid)) {
6220       /* unregister ourselves as an uber thread.  gtid is no longer valid */
6221       if (__kmp_root[gtid]->r.r_active) {
6222         __kmp_global.g.g_abort = -1;
6223         TCW_SYNC_4(__kmp_global.g.g_done, TRUE);
6224         KA_TRACE(10,
6225                  ("__kmp_internal_end_library: root still active, abort T#%d\n",
6226                   gtid));
6227         return;
6228       } else {
6229         KA_TRACE(
6230             10,
6231             ("__kmp_internal_end_library: unregistering sibling T#%d\n", gtid));
6232         __kmp_unregister_root_current_thread(gtid);
6233       }
6234     } else {
6235 /* worker threads may call this function through the atexit handler, if they
6236  * call exit() */
6237 /* For now, skip the usual subsequent processing and just dump the debug buffer.
6238    TODO: do a thorough shutdown instead */
6239 #ifdef DUMP_DEBUG_ON_EXIT
6240       if (__kmp_debug_buf)
6241         __kmp_dump_debug_buffer();
6242 #endif
6243       return;
6244     }
6245   }
6246   /* synchronize the termination process */
6247   __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
6248 
6249   /* have we already finished */
6250   if (__kmp_global.g.g_abort) {
6251     KA_TRACE(10, ("__kmp_internal_end_library: abort, exiting\n"));
6252     /* TODO abort? */
6253     __kmp_release_bootstrap_lock(&__kmp_initz_lock);
6254     return;
6255   }
6256   if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) {
6257     __kmp_release_bootstrap_lock(&__kmp_initz_lock);
6258     return;
6259   }
6260 
6261   /* We need this lock to enforce mutex between this reading of
6262      __kmp_threads_capacity and the writing by __kmp_register_root.
6263      Alternatively, we can use a counter of roots that is atomically updated by
6264      __kmp_get_global_thread_id_reg, __kmp_do_serial_initialize and
6265      __kmp_internal_end_*.  */
6266   __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
6267 
6268   /* now we can safely conduct the actual termination */
6269   __kmp_internal_end();
6270 
6271   __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
6272   __kmp_release_bootstrap_lock(&__kmp_initz_lock);
6273 
6274   KA_TRACE(10, ("__kmp_internal_end_library: exit\n"));
6275 
6276 #ifdef DUMP_DEBUG_ON_EXIT
6277   if (__kmp_debug_buf)
6278     __kmp_dump_debug_buffer();
6279 #endif
6280 
6281 #if KMP_OS_WINDOWS
6282   __kmp_close_console();
6283 #endif
6284 
6285   __kmp_fini_allocator();
6286 
6287 } // __kmp_internal_end_library
6288 
6289 void __kmp_internal_end_thread(int gtid_req) {
6290   int i;
6291 
6292   /* if we have already cleaned up, don't try again, it wouldn't be pretty */
6293   /* this shouldn't be a race condition because __kmp_internal_end() is the
6294    * only place to clear __kmp_serial_init */
6295   /* we'll check this later too, after we get the lock */
6296   // 2009-09-06: We do not set g_abort without setting g_done. This check looks
6297   // redundant, because the next check will work in any case.
6298   if (__kmp_global.g.g_abort) {
6299     KA_TRACE(11, ("__kmp_internal_end_thread: abort, exiting\n"));
6300     /* TODO abort? */
6301     return;
6302   }
6303   if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) {
6304     KA_TRACE(10, ("__kmp_internal_end_thread: already finished\n"));
6305     return;
6306   }
6307 
6308   KMP_MB(); /* Flush all pending memory write invalidates.  */
6309 
6310   /* find out who we are and what we should do */
6311   {
6312     int gtid = (gtid_req >= 0) ? gtid_req : __kmp_gtid_get_specific();
6313     KA_TRACE(10,
6314              ("__kmp_internal_end_thread: enter T#%d  (%d)\n", gtid, gtid_req));
6315     if (gtid == KMP_GTID_SHUTDOWN) {
6316       KA_TRACE(10, ("__kmp_internal_end_thread: !__kmp_init_runtime, system "
6317                     "already shutdown\n"));
6318       return;
6319     } else if (gtid == KMP_GTID_MONITOR) {
6320       KA_TRACE(10, ("__kmp_internal_end_thread: monitor thread, gtid not "
6321                     "registered, or system shutdown\n"));
6322       return;
6323     } else if (gtid == KMP_GTID_DNE) {
6324       KA_TRACE(10, ("__kmp_internal_end_thread: gtid not registered or system "
6325                     "shutdown\n"));
6326       return;
6327       /* we don't know who we are */
6328     } else if (KMP_UBER_GTID(gtid)) {
6329       /* unregister ourselves as an uber thread.  gtid is no longer valid */
6330       if (__kmp_root[gtid]->r.r_active) {
6331         __kmp_global.g.g_abort = -1;
6332         TCW_SYNC_4(__kmp_global.g.g_done, TRUE);
6333         KA_TRACE(10,
6334                  ("__kmp_internal_end_thread: root still active, abort T#%d\n",
6335                   gtid));
6336         return;
6337       } else {
6338         KA_TRACE(10, ("__kmp_internal_end_thread: unregistering sibling T#%d\n",
6339                       gtid));
6340         __kmp_unregister_root_current_thread(gtid);
6341       }
6342     } else {
6343       /* just a worker thread, let's leave */
6344       KA_TRACE(10, ("__kmp_internal_end_thread: worker thread T#%d\n", gtid));
6345 
6346       if (gtid >= 0) {
6347         __kmp_threads[gtid]->th.th_task_team = NULL;
6348       }
6349 
6350       KA_TRACE(10,
6351                ("__kmp_internal_end_thread: worker thread done, exiting T#%d\n",
6352                 gtid));
6353       return;
6354     }
6355   }
6356 #if KMP_DYNAMIC_LIB
6357 #if OMP_50_ENABLED
6358   if (__kmp_pause_status != kmp_hard_paused)
6359 #endif
6360   // AC: lets not shutdown the dynamic library at the exit of uber thread,
6361   // because we will better shutdown later in the library destructor.
6362   {
6363     KA_TRACE(10, ("__kmp_internal_end_thread: exiting T#%d\n", gtid_req));
6364     return;
6365   }
6366 #endif
6367   /* synchronize the termination process */
6368   __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
6369 
6370   /* have we already finished */
6371   if (__kmp_global.g.g_abort) {
6372     KA_TRACE(10, ("__kmp_internal_end_thread: abort, exiting\n"));
6373     /* TODO abort? */
6374     __kmp_release_bootstrap_lock(&__kmp_initz_lock);
6375     return;
6376   }
6377   if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) {
6378     __kmp_release_bootstrap_lock(&__kmp_initz_lock);
6379     return;
6380   }
6381 
6382   /* We need this lock to enforce mutex between this reading of
6383      __kmp_threads_capacity and the writing by __kmp_register_root.
6384      Alternatively, we can use a counter of roots that is atomically updated by
6385      __kmp_get_global_thread_id_reg, __kmp_do_serial_initialize and
6386      __kmp_internal_end_*.  */
6387 
6388   /* should we finish the run-time?  are all siblings done? */
6389   __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
6390 
6391   for (i = 0; i < __kmp_threads_capacity; ++i) {
6392     if (KMP_UBER_GTID(i)) {
6393       KA_TRACE(
6394           10,
6395           ("__kmp_internal_end_thread: remaining sibling task: gtid==%d\n", i));
6396       __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
6397       __kmp_release_bootstrap_lock(&__kmp_initz_lock);
6398       return;
6399     }
6400   }
6401 
6402   /* now we can safely conduct the actual termination */
6403 
6404   __kmp_internal_end();
6405 
6406   __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
6407   __kmp_release_bootstrap_lock(&__kmp_initz_lock);
6408 
6409   KA_TRACE(10, ("__kmp_internal_end_thread: exit T#%d\n", gtid_req));
6410 
6411 #ifdef DUMP_DEBUG_ON_EXIT
6412   if (__kmp_debug_buf)
6413     __kmp_dump_debug_buffer();
6414 #endif
6415 } // __kmp_internal_end_thread
6416 
6417 // -----------------------------------------------------------------------------
6418 // Library registration stuff.
6419 
6420 static long __kmp_registration_flag = 0;
6421 // Random value used to indicate library initialization.
6422 static char *__kmp_registration_str = NULL;
6423 // Value to be saved in env var __KMP_REGISTERED_LIB_<pid>.
6424 
6425 static inline char *__kmp_reg_status_name() {
6426   /* On RHEL 3u5 if linked statically, getpid() returns different values in
6427      each thread. If registration and unregistration go in different threads
6428      (omp_misc_other_root_exit.cpp test case), the name of registered_lib_env
6429      env var can not be found, because the name will contain different pid. */
6430   return __kmp_str_format("__KMP_REGISTERED_LIB_%d", (int)getpid());
6431 } // __kmp_reg_status_get
6432 
6433 void __kmp_register_library_startup(void) {
6434 
6435   char *name = __kmp_reg_status_name(); // Name of the environment variable.
6436   int done = 0;
6437   union {
6438     double dtime;
6439     long ltime;
6440   } time;
6441 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
6442   __kmp_initialize_system_tick();
6443 #endif
6444   __kmp_read_system_time(&time.dtime);
6445   __kmp_registration_flag = 0xCAFE0000L | (time.ltime & 0x0000FFFFL);
6446   __kmp_registration_str =
6447       __kmp_str_format("%p-%lx-%s", &__kmp_registration_flag,
6448                        __kmp_registration_flag, KMP_LIBRARY_FILE);
6449 
6450   KA_TRACE(50, ("__kmp_register_library_startup: %s=\"%s\"\n", name,
6451                 __kmp_registration_str));
6452 
6453   while (!done) {
6454 
6455     char *value = NULL; // Actual value of the environment variable.
6456 
6457     // Set environment variable, but do not overwrite if it is exist.
6458     __kmp_env_set(name, __kmp_registration_str, 0);
6459     // Check the variable is written.
6460     value = __kmp_env_get(name);
6461     if (value != NULL && strcmp(value, __kmp_registration_str) == 0) {
6462 
6463       done = 1; // Ok, environment variable set successfully, exit the loop.
6464 
6465     } else {
6466 
6467       // Oops. Write failed. Another copy of OpenMP RTL is in memory.
6468       // Check whether it alive or dead.
6469       int neighbor = 0; // 0 -- unknown status, 1 -- alive, 2 -- dead.
6470       char *tail = value;
6471       char *flag_addr_str = NULL;
6472       char *flag_val_str = NULL;
6473       char const *file_name = NULL;
6474       __kmp_str_split(tail, '-', &flag_addr_str, &tail);
6475       __kmp_str_split(tail, '-', &flag_val_str, &tail);
6476       file_name = tail;
6477       if (tail != NULL) {
6478         long *flag_addr = 0;
6479         long flag_val = 0;
6480         KMP_SSCANF(flag_addr_str, "%p", RCAST(void**, &flag_addr));
6481         KMP_SSCANF(flag_val_str, "%lx", &flag_val);
6482         if (flag_addr != 0 && flag_val != 0 && strcmp(file_name, "") != 0) {
6483           // First, check whether environment-encoded address is mapped into
6484           // addr space.
6485           // If so, dereference it to see if it still has the right value.
6486           if (__kmp_is_address_mapped(flag_addr) && *flag_addr == flag_val) {
6487             neighbor = 1;
6488           } else {
6489             // If not, then we know the other copy of the library is no longer
6490             // running.
6491             neighbor = 2;
6492           }
6493         }
6494       }
6495       switch (neighbor) {
6496       case 0: // Cannot parse environment variable -- neighbor status unknown.
6497         // Assume it is the incompatible format of future version of the
6498         // library. Assume the other library is alive.
6499         // WARN( ... ); // TODO: Issue a warning.
6500         file_name = "unknown library";
6501         KMP_FALLTHROUGH();
6502       // Attention! Falling to the next case. That's intentional.
6503       case 1: { // Neighbor is alive.
6504         // Check it is allowed.
6505         char *duplicate_ok = __kmp_env_get("KMP_DUPLICATE_LIB_OK");
6506         if (!__kmp_str_match_true(duplicate_ok)) {
6507           // That's not allowed. Issue fatal error.
6508           __kmp_fatal(KMP_MSG(DuplicateLibrary, KMP_LIBRARY_FILE, file_name),
6509                       KMP_HNT(DuplicateLibrary), __kmp_msg_null);
6510         }
6511         KMP_INTERNAL_FREE(duplicate_ok);
6512         __kmp_duplicate_library_ok = 1;
6513         done = 1; // Exit the loop.
6514       } break;
6515       case 2: { // Neighbor is dead.
6516         // Clear the variable and try to register library again.
6517         __kmp_env_unset(name);
6518       } break;
6519       default: { KMP_DEBUG_ASSERT(0); } break;
6520       }
6521     }
6522     KMP_INTERNAL_FREE((void *)value);
6523   }
6524   KMP_INTERNAL_FREE((void *)name);
6525 
6526 } // func __kmp_register_library_startup
6527 
6528 void __kmp_unregister_library(void) {
6529 
6530   char *name = __kmp_reg_status_name();
6531   char *value = __kmp_env_get(name);
6532 
6533   KMP_DEBUG_ASSERT(__kmp_registration_flag != 0);
6534   KMP_DEBUG_ASSERT(__kmp_registration_str != NULL);
6535   if (value != NULL && strcmp(value, __kmp_registration_str) == 0) {
6536     // Ok, this is our variable. Delete it.
6537     __kmp_env_unset(name);
6538   }
6539 
6540   KMP_INTERNAL_FREE(__kmp_registration_str);
6541   KMP_INTERNAL_FREE(value);
6542   KMP_INTERNAL_FREE(name);
6543 
6544   __kmp_registration_flag = 0;
6545   __kmp_registration_str = NULL;
6546 
6547 } // __kmp_unregister_library
6548 
6549 // End of Library registration stuff.
6550 // -----------------------------------------------------------------------------
6551 
6552 #if KMP_MIC_SUPPORTED
6553 
6554 static void __kmp_check_mic_type() {
6555   kmp_cpuid_t cpuid_state = {0};
6556   kmp_cpuid_t *cs_p = &cpuid_state;
6557   __kmp_x86_cpuid(1, 0, cs_p);
6558   // We don't support mic1 at the moment
6559   if ((cs_p->eax & 0xff0) == 0xB10) {
6560     __kmp_mic_type = mic2;
6561   } else if ((cs_p->eax & 0xf0ff0) == 0x50670) {
6562     __kmp_mic_type = mic3;
6563   } else {
6564     __kmp_mic_type = non_mic;
6565   }
6566 }
6567 
6568 #endif /* KMP_MIC_SUPPORTED */
6569 
6570 static void __kmp_do_serial_initialize(void) {
6571   int i, gtid;
6572   int size;
6573 
6574   KA_TRACE(10, ("__kmp_do_serial_initialize: enter\n"));
6575 
6576   KMP_DEBUG_ASSERT(sizeof(kmp_int32) == 4);
6577   KMP_DEBUG_ASSERT(sizeof(kmp_uint32) == 4);
6578   KMP_DEBUG_ASSERT(sizeof(kmp_int64) == 8);
6579   KMP_DEBUG_ASSERT(sizeof(kmp_uint64) == 8);
6580   KMP_DEBUG_ASSERT(sizeof(kmp_intptr_t) == sizeof(void *));
6581 
6582 #if OMPT_SUPPORT
6583   ompt_pre_init();
6584 #endif
6585 
6586   __kmp_validate_locks();
6587 
6588   /* Initialize internal memory allocator */
6589   __kmp_init_allocator();
6590 
6591   /* Register the library startup via an environment variable and check to see
6592      whether another copy of the library is already registered. */
6593 
6594   __kmp_register_library_startup();
6595 
6596   /* TODO reinitialization of library */
6597   if (TCR_4(__kmp_global.g.g_done)) {
6598     KA_TRACE(10, ("__kmp_do_serial_initialize: reinitialization of library\n"));
6599   }
6600 
6601   __kmp_global.g.g_abort = 0;
6602   TCW_SYNC_4(__kmp_global.g.g_done, FALSE);
6603 
6604 /* initialize the locks */
6605 #if KMP_USE_ADAPTIVE_LOCKS
6606 #if KMP_DEBUG_ADAPTIVE_LOCKS
6607   __kmp_init_speculative_stats();
6608 #endif
6609 #endif
6610 #if KMP_STATS_ENABLED
6611   __kmp_stats_init();
6612 #endif
6613   __kmp_init_lock(&__kmp_global_lock);
6614   __kmp_init_queuing_lock(&__kmp_dispatch_lock);
6615   __kmp_init_lock(&__kmp_debug_lock);
6616   __kmp_init_atomic_lock(&__kmp_atomic_lock);
6617   __kmp_init_atomic_lock(&__kmp_atomic_lock_1i);
6618   __kmp_init_atomic_lock(&__kmp_atomic_lock_2i);
6619   __kmp_init_atomic_lock(&__kmp_atomic_lock_4i);
6620   __kmp_init_atomic_lock(&__kmp_atomic_lock_4r);
6621   __kmp_init_atomic_lock(&__kmp_atomic_lock_8i);
6622   __kmp_init_atomic_lock(&__kmp_atomic_lock_8r);
6623   __kmp_init_atomic_lock(&__kmp_atomic_lock_8c);
6624   __kmp_init_atomic_lock(&__kmp_atomic_lock_10r);
6625   __kmp_init_atomic_lock(&__kmp_atomic_lock_16r);
6626   __kmp_init_atomic_lock(&__kmp_atomic_lock_16c);
6627   __kmp_init_atomic_lock(&__kmp_atomic_lock_20c);
6628   __kmp_init_atomic_lock(&__kmp_atomic_lock_32c);
6629   __kmp_init_bootstrap_lock(&__kmp_forkjoin_lock);
6630   __kmp_init_bootstrap_lock(&__kmp_exit_lock);
6631 #if KMP_USE_MONITOR
6632   __kmp_init_bootstrap_lock(&__kmp_monitor_lock);
6633 #endif
6634   __kmp_init_bootstrap_lock(&__kmp_tp_cached_lock);
6635 
6636   /* conduct initialization and initial setup of configuration */
6637 
6638   __kmp_runtime_initialize();
6639 
6640 #if KMP_MIC_SUPPORTED
6641   __kmp_check_mic_type();
6642 #endif
6643 
6644 // Some global variable initialization moved here from kmp_env_initialize()
6645 #ifdef KMP_DEBUG
6646   kmp_diag = 0;
6647 #endif
6648   __kmp_abort_delay = 0;
6649 
6650   // From __kmp_init_dflt_team_nth()
6651   /* assume the entire machine will be used */
6652   __kmp_dflt_team_nth_ub = __kmp_xproc;
6653   if (__kmp_dflt_team_nth_ub < KMP_MIN_NTH) {
6654     __kmp_dflt_team_nth_ub = KMP_MIN_NTH;
6655   }
6656   if (__kmp_dflt_team_nth_ub > __kmp_sys_max_nth) {
6657     __kmp_dflt_team_nth_ub = __kmp_sys_max_nth;
6658   }
6659   __kmp_max_nth = __kmp_sys_max_nth;
6660   __kmp_cg_max_nth = __kmp_sys_max_nth;
6661   __kmp_teams_max_nth = __kmp_xproc; // set a "reasonable" default
6662   if (__kmp_teams_max_nth > __kmp_sys_max_nth) {
6663     __kmp_teams_max_nth = __kmp_sys_max_nth;
6664   }
6665 
6666   // Three vars below moved here from __kmp_env_initialize() "KMP_BLOCKTIME"
6667   // part
6668   __kmp_dflt_blocktime = KMP_DEFAULT_BLOCKTIME;
6669 #if KMP_USE_MONITOR
6670   __kmp_monitor_wakeups =
6671       KMP_WAKEUPS_FROM_BLOCKTIME(__kmp_dflt_blocktime, __kmp_monitor_wakeups);
6672   __kmp_bt_intervals =
6673       KMP_INTERVALS_FROM_BLOCKTIME(__kmp_dflt_blocktime, __kmp_monitor_wakeups);
6674 #endif
6675   // From "KMP_LIBRARY" part of __kmp_env_initialize()
6676   __kmp_library = library_throughput;
6677   // From KMP_SCHEDULE initialization
6678   __kmp_static = kmp_sch_static_balanced;
6679 // AC: do not use analytical here, because it is non-monotonous
6680 //__kmp_guided = kmp_sch_guided_iterative_chunked;
6681 //__kmp_auto = kmp_sch_guided_analytical_chunked; // AC: it is the default, no
6682 // need to repeat assignment
6683 // Barrier initialization. Moved here from __kmp_env_initialize() Barrier branch
6684 // bit control and barrier method control parts
6685 #if KMP_FAST_REDUCTION_BARRIER
6686 #define kmp_reduction_barrier_gather_bb ((int)1)
6687 #define kmp_reduction_barrier_release_bb ((int)1)
6688 #define kmp_reduction_barrier_gather_pat bp_hyper_bar
6689 #define kmp_reduction_barrier_release_pat bp_hyper_bar
6690 #endif // KMP_FAST_REDUCTION_BARRIER
6691   for (i = bs_plain_barrier; i < bs_last_barrier; i++) {
6692     __kmp_barrier_gather_branch_bits[i] = __kmp_barrier_gather_bb_dflt;
6693     __kmp_barrier_release_branch_bits[i] = __kmp_barrier_release_bb_dflt;
6694     __kmp_barrier_gather_pattern[i] = __kmp_barrier_gather_pat_dflt;
6695     __kmp_barrier_release_pattern[i] = __kmp_barrier_release_pat_dflt;
6696 #if KMP_FAST_REDUCTION_BARRIER
6697     if (i == bs_reduction_barrier) { // tested and confirmed on ALTIX only (
6698       // lin_64 ): hyper,1
6699       __kmp_barrier_gather_branch_bits[i] = kmp_reduction_barrier_gather_bb;
6700       __kmp_barrier_release_branch_bits[i] = kmp_reduction_barrier_release_bb;
6701       __kmp_barrier_gather_pattern[i] = kmp_reduction_barrier_gather_pat;
6702       __kmp_barrier_release_pattern[i] = kmp_reduction_barrier_release_pat;
6703     }
6704 #endif // KMP_FAST_REDUCTION_BARRIER
6705   }
6706 #if KMP_FAST_REDUCTION_BARRIER
6707 #undef kmp_reduction_barrier_release_pat
6708 #undef kmp_reduction_barrier_gather_pat
6709 #undef kmp_reduction_barrier_release_bb
6710 #undef kmp_reduction_barrier_gather_bb
6711 #endif // KMP_FAST_REDUCTION_BARRIER
6712 #if KMP_MIC_SUPPORTED
6713   if (__kmp_mic_type == mic2) { // KNC
6714     // AC: plane=3,2, forkjoin=2,1 are optimal for 240 threads on KNC
6715     __kmp_barrier_gather_branch_bits[bs_plain_barrier] = 3; // plain gather
6716     __kmp_barrier_release_branch_bits[bs_forkjoin_barrier] =
6717         1; // forkjoin release
6718     __kmp_barrier_gather_pattern[bs_forkjoin_barrier] = bp_hierarchical_bar;
6719     __kmp_barrier_release_pattern[bs_forkjoin_barrier] = bp_hierarchical_bar;
6720   }
6721 #if KMP_FAST_REDUCTION_BARRIER
6722   if (__kmp_mic_type == mic2) { // KNC
6723     __kmp_barrier_gather_pattern[bs_reduction_barrier] = bp_hierarchical_bar;
6724     __kmp_barrier_release_pattern[bs_reduction_barrier] = bp_hierarchical_bar;
6725   }
6726 #endif // KMP_FAST_REDUCTION_BARRIER
6727 #endif // KMP_MIC_SUPPORTED
6728 
6729 // From KMP_CHECKS initialization
6730 #ifdef KMP_DEBUG
6731   __kmp_env_checks = TRUE; /* development versions have the extra checks */
6732 #else
6733   __kmp_env_checks = FALSE; /* port versions do not have the extra checks */
6734 #endif
6735 
6736   // From "KMP_FOREIGN_THREADS_THREADPRIVATE" initialization
6737   __kmp_foreign_tp = TRUE;
6738 
6739   __kmp_global.g.g_dynamic = FALSE;
6740   __kmp_global.g.g_dynamic_mode = dynamic_default;
6741 
6742   __kmp_env_initialize(NULL);
6743 
6744 // Print all messages in message catalog for testing purposes.
6745 #ifdef KMP_DEBUG
6746   char const *val = __kmp_env_get("KMP_DUMP_CATALOG");
6747   if (__kmp_str_match_true(val)) {
6748     kmp_str_buf_t buffer;
6749     __kmp_str_buf_init(&buffer);
6750     __kmp_i18n_dump_catalog(&buffer);
6751     __kmp_printf("%s", buffer.str);
6752     __kmp_str_buf_free(&buffer);
6753   }
6754   __kmp_env_free(&val);
6755 #endif
6756 
6757   __kmp_threads_capacity =
6758       __kmp_initial_threads_capacity(__kmp_dflt_team_nth_ub);
6759   // Moved here from __kmp_env_initialize() "KMP_ALL_THREADPRIVATE" part
6760   __kmp_tp_capacity = __kmp_default_tp_capacity(
6761       __kmp_dflt_team_nth_ub, __kmp_max_nth, __kmp_allThreadsSpecified);
6762 
6763   // If the library is shut down properly, both pools must be NULL. Just in
6764   // case, set them to NULL -- some memory may leak, but subsequent code will
6765   // work even if pools are not freed.
6766   KMP_DEBUG_ASSERT(__kmp_thread_pool == NULL);
6767   KMP_DEBUG_ASSERT(__kmp_thread_pool_insert_pt == NULL);
6768   KMP_DEBUG_ASSERT(__kmp_team_pool == NULL);
6769   __kmp_thread_pool = NULL;
6770   __kmp_thread_pool_insert_pt = NULL;
6771   __kmp_team_pool = NULL;
6772 
6773   /* Allocate all of the variable sized records */
6774   /* NOTE: __kmp_threads_capacity entries are allocated, but the arrays are
6775    * expandable */
6776   /* Since allocation is cache-aligned, just add extra padding at the end */
6777   size =
6778       (sizeof(kmp_info_t *) + sizeof(kmp_root_t *)) * __kmp_threads_capacity +
6779       CACHE_LINE;
6780   __kmp_threads = (kmp_info_t **)__kmp_allocate(size);
6781   __kmp_root = (kmp_root_t **)((char *)__kmp_threads +
6782                                sizeof(kmp_info_t *) * __kmp_threads_capacity);
6783 
6784   /* init thread counts */
6785   KMP_DEBUG_ASSERT(__kmp_all_nth ==
6786                    0); // Asserts fail if the library is reinitializing and
6787   KMP_DEBUG_ASSERT(__kmp_nth == 0); // something was wrong in termination.
6788   __kmp_all_nth = 0;
6789   __kmp_nth = 0;
6790 
6791   /* setup the uber master thread and hierarchy */
6792   gtid = __kmp_register_root(TRUE);
6793   KA_TRACE(10, ("__kmp_do_serial_initialize  T#%d\n", gtid));
6794   KMP_ASSERT(KMP_UBER_GTID(gtid));
6795   KMP_ASSERT(KMP_INITIAL_GTID(gtid));
6796 
6797   KMP_MB(); /* Flush all pending memory write invalidates.  */
6798 
6799   __kmp_common_initialize();
6800 
6801 #if KMP_OS_UNIX
6802   /* invoke the child fork handler */
6803   __kmp_register_atfork();
6804 #endif
6805 
6806 #if !KMP_DYNAMIC_LIB
6807   {
6808     /* Invoke the exit handler when the program finishes, only for static
6809        library. For dynamic library, we already have _fini and DllMain. */
6810     int rc = atexit(__kmp_internal_end_atexit);
6811     if (rc != 0) {
6812       __kmp_fatal(KMP_MSG(FunctionError, "atexit()"), KMP_ERR(rc),
6813                   __kmp_msg_null);
6814     }
6815   }
6816 #endif
6817 
6818 #if KMP_HANDLE_SIGNALS
6819 #if KMP_OS_UNIX
6820   /* NOTE: make sure that this is called before the user installs their own
6821      signal handlers so that the user handlers are called first. this way they
6822      can return false, not call our handler, avoid terminating the library, and
6823      continue execution where they left off. */
6824   __kmp_install_signals(FALSE);
6825 #endif /* KMP_OS_UNIX */
6826 #if KMP_OS_WINDOWS
6827   __kmp_install_signals(TRUE);
6828 #endif /* KMP_OS_WINDOWS */
6829 #endif
6830 
6831   /* we have finished the serial initialization */
6832   __kmp_init_counter++;
6833 
6834   __kmp_init_serial = TRUE;
6835 
6836   if (__kmp_settings) {
6837     __kmp_env_print();
6838   }
6839 
6840 #if OMP_40_ENABLED
6841   if (__kmp_display_env || __kmp_display_env_verbose) {
6842     __kmp_env_print_2();
6843   }
6844 #endif // OMP_40_ENABLED
6845 
6846 #if OMPT_SUPPORT
6847   ompt_post_init();
6848 #endif
6849 
6850   KMP_MB();
6851 
6852   KA_TRACE(10, ("__kmp_do_serial_initialize: exit\n"));
6853 }
6854 
6855 void __kmp_serial_initialize(void) {
6856   if (__kmp_init_serial) {
6857     return;
6858   }
6859   __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
6860   if (__kmp_init_serial) {
6861     __kmp_release_bootstrap_lock(&__kmp_initz_lock);
6862     return;
6863   }
6864   __kmp_do_serial_initialize();
6865   __kmp_release_bootstrap_lock(&__kmp_initz_lock);
6866 }
6867 
6868 static void __kmp_do_middle_initialize(void) {
6869   int i, j;
6870   int prev_dflt_team_nth;
6871 
6872   if (!__kmp_init_serial) {
6873     __kmp_do_serial_initialize();
6874   }
6875 
6876   KA_TRACE(10, ("__kmp_middle_initialize: enter\n"));
6877 
6878   // Save the previous value for the __kmp_dflt_team_nth so that
6879   // we can avoid some reinitialization if it hasn't changed.
6880   prev_dflt_team_nth = __kmp_dflt_team_nth;
6881 
6882 #if KMP_AFFINITY_SUPPORTED
6883   // __kmp_affinity_initialize() will try to set __kmp_ncores to the
6884   // number of cores on the machine.
6885   __kmp_affinity_initialize();
6886 
6887   // Run through the __kmp_threads array and set the affinity mask
6888   // for each root thread that is currently registered with the RTL.
6889   for (i = 0; i < __kmp_threads_capacity; i++) {
6890     if (TCR_PTR(__kmp_threads[i]) != NULL) {
6891       __kmp_affinity_set_init_mask(i, TRUE);
6892     }
6893   }
6894 #endif /* KMP_AFFINITY_SUPPORTED */
6895 
6896   KMP_ASSERT(__kmp_xproc > 0);
6897   if (__kmp_avail_proc == 0) {
6898     __kmp_avail_proc = __kmp_xproc;
6899   }
6900 
6901   // If there were empty places in num_threads list (OMP_NUM_THREADS=,,2,3),
6902   // correct them now
6903   j = 0;
6904   while ((j < __kmp_nested_nth.used) && !__kmp_nested_nth.nth[j]) {
6905     __kmp_nested_nth.nth[j] = __kmp_dflt_team_nth = __kmp_dflt_team_nth_ub =
6906         __kmp_avail_proc;
6907     j++;
6908   }
6909 
6910   if (__kmp_dflt_team_nth == 0) {
6911 #ifdef KMP_DFLT_NTH_CORES
6912     // Default #threads = #cores
6913     __kmp_dflt_team_nth = __kmp_ncores;
6914     KA_TRACE(20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = "
6915                   "__kmp_ncores (%d)\n",
6916                   __kmp_dflt_team_nth));
6917 #else
6918     // Default #threads = #available OS procs
6919     __kmp_dflt_team_nth = __kmp_avail_proc;
6920     KA_TRACE(20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = "
6921                   "__kmp_avail_proc(%d)\n",
6922                   __kmp_dflt_team_nth));
6923 #endif /* KMP_DFLT_NTH_CORES */
6924   }
6925 
6926   if (__kmp_dflt_team_nth < KMP_MIN_NTH) {
6927     __kmp_dflt_team_nth = KMP_MIN_NTH;
6928   }
6929   if (__kmp_dflt_team_nth > __kmp_sys_max_nth) {
6930     __kmp_dflt_team_nth = __kmp_sys_max_nth;
6931   }
6932 
6933   // There's no harm in continuing if the following check fails,
6934   // but it indicates an error in the previous logic.
6935   KMP_DEBUG_ASSERT(__kmp_dflt_team_nth <= __kmp_dflt_team_nth_ub);
6936 
6937   if (__kmp_dflt_team_nth != prev_dflt_team_nth) {
6938     // Run through the __kmp_threads array and set the num threads icv for each
6939     // root thread that is currently registered with the RTL (which has not
6940     // already explicitly set its nthreads-var with a call to
6941     // omp_set_num_threads()).
6942     for (i = 0; i < __kmp_threads_capacity; i++) {
6943       kmp_info_t *thread = __kmp_threads[i];
6944       if (thread == NULL)
6945         continue;
6946       if (thread->th.th_current_task->td_icvs.nproc != 0)
6947         continue;
6948 
6949       set__nproc(__kmp_threads[i], __kmp_dflt_team_nth);
6950     }
6951   }
6952   KA_TRACE(
6953       20,
6954       ("__kmp_middle_initialize: final value for __kmp_dflt_team_nth = %d\n",
6955        __kmp_dflt_team_nth));
6956 
6957 #ifdef KMP_ADJUST_BLOCKTIME
6958   /* Adjust blocktime to zero if necessary  now that __kmp_avail_proc is set */
6959   if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) {
6960     KMP_DEBUG_ASSERT(__kmp_avail_proc > 0);
6961     if (__kmp_nth > __kmp_avail_proc) {
6962       __kmp_zero_bt = TRUE;
6963     }
6964   }
6965 #endif /* KMP_ADJUST_BLOCKTIME */
6966 
6967   /* we have finished middle initialization */
6968   TCW_SYNC_4(__kmp_init_middle, TRUE);
6969 
6970   KA_TRACE(10, ("__kmp_do_middle_initialize: exit\n"));
6971 }
6972 
6973 void __kmp_middle_initialize(void) {
6974   if (__kmp_init_middle) {
6975     return;
6976   }
6977   __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
6978   if (__kmp_init_middle) {
6979     __kmp_release_bootstrap_lock(&__kmp_initz_lock);
6980     return;
6981   }
6982   __kmp_do_middle_initialize();
6983   __kmp_release_bootstrap_lock(&__kmp_initz_lock);
6984 }
6985 
6986 void __kmp_parallel_initialize(void) {
6987   int gtid = __kmp_entry_gtid(); // this might be a new root
6988 
6989   /* synchronize parallel initialization (for sibling) */
6990   if (TCR_4(__kmp_init_parallel))
6991     return;
6992   __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
6993   if (TCR_4(__kmp_init_parallel)) {
6994     __kmp_release_bootstrap_lock(&__kmp_initz_lock);
6995     return;
6996   }
6997 
6998   /* TODO reinitialization after we have already shut down */
6999   if (TCR_4(__kmp_global.g.g_done)) {
7000     KA_TRACE(
7001         10,
7002         ("__kmp_parallel_initialize: attempt to init while shutting down\n"));
7003     __kmp_infinite_loop();
7004   }
7005 
7006   /* jc: The lock __kmp_initz_lock is already held, so calling
7007      __kmp_serial_initialize would cause a deadlock.  So we call
7008      __kmp_do_serial_initialize directly. */
7009   if (!__kmp_init_middle) {
7010     __kmp_do_middle_initialize();
7011   }
7012 
7013 #if OMP_50_ENABLED
7014   __kmp_resume_if_hard_paused();
7015 #endif
7016 
7017   /* begin initialization */
7018   KA_TRACE(10, ("__kmp_parallel_initialize: enter\n"));
7019   KMP_ASSERT(KMP_UBER_GTID(gtid));
7020 
7021 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
7022   // Save the FP control regs.
7023   // Worker threads will set theirs to these values at thread startup.
7024   __kmp_store_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
7025   __kmp_store_mxcsr(&__kmp_init_mxcsr);
7026   __kmp_init_mxcsr &= KMP_X86_MXCSR_MASK;
7027 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
7028 
7029 #if KMP_OS_UNIX
7030 #if KMP_HANDLE_SIGNALS
7031   /*  must be after __kmp_serial_initialize  */
7032   __kmp_install_signals(TRUE);
7033 #endif
7034 #endif
7035 
7036   __kmp_suspend_initialize();
7037 
7038 #if defined(USE_LOAD_BALANCE)
7039   if (__kmp_global.g.g_dynamic_mode == dynamic_default) {
7040     __kmp_global.g.g_dynamic_mode = dynamic_load_balance;
7041   }
7042 #else
7043   if (__kmp_global.g.g_dynamic_mode == dynamic_default) {
7044     __kmp_global.g.g_dynamic_mode = dynamic_thread_limit;
7045   }
7046 #endif
7047 
7048   if (__kmp_version) {
7049     __kmp_print_version_2();
7050   }
7051 
7052   /* we have finished parallel initialization */
7053   TCW_SYNC_4(__kmp_init_parallel, TRUE);
7054 
7055   KMP_MB();
7056   KA_TRACE(10, ("__kmp_parallel_initialize: exit\n"));
7057 
7058   __kmp_release_bootstrap_lock(&__kmp_initz_lock);
7059 }
7060 
7061 /* ------------------------------------------------------------------------ */
7062 
7063 void __kmp_run_before_invoked_task(int gtid, int tid, kmp_info_t *this_thr,
7064                                    kmp_team_t *team) {
7065   kmp_disp_t *dispatch;
7066 
7067   KMP_MB();
7068 
7069   /* none of the threads have encountered any constructs, yet. */
7070   this_thr->th.th_local.this_construct = 0;
7071 #if KMP_CACHE_MANAGE
7072   KMP_CACHE_PREFETCH(&this_thr->th.th_bar[bs_forkjoin_barrier].bb.b_arrived);
7073 #endif /* KMP_CACHE_MANAGE */
7074   dispatch = (kmp_disp_t *)TCR_PTR(this_thr->th.th_dispatch);
7075   KMP_DEBUG_ASSERT(dispatch);
7076   KMP_DEBUG_ASSERT(team->t.t_dispatch);
7077   // KMP_DEBUG_ASSERT( this_thr->th.th_dispatch == &team->t.t_dispatch[
7078   // this_thr->th.th_info.ds.ds_tid ] );
7079 
7080   dispatch->th_disp_index = 0; /* reset the dispatch buffer counter */
7081 #if OMP_45_ENABLED
7082   dispatch->th_doacross_buf_idx =
7083       0; /* reset the doacross dispatch buffer counter */
7084 #endif
7085   if (__kmp_env_consistency_check)
7086     __kmp_push_parallel(gtid, team->t.t_ident);
7087 
7088   KMP_MB(); /* Flush all pending memory write invalidates.  */
7089 }
7090 
7091 void __kmp_run_after_invoked_task(int gtid, int tid, kmp_info_t *this_thr,
7092                                   kmp_team_t *team) {
7093   if (__kmp_env_consistency_check)
7094     __kmp_pop_parallel(gtid, team->t.t_ident);
7095 
7096   __kmp_finish_implicit_task(this_thr);
7097 }
7098 
7099 int __kmp_invoke_task_func(int gtid) {
7100   int rc;
7101   int tid = __kmp_tid_from_gtid(gtid);
7102   kmp_info_t *this_thr = __kmp_threads[gtid];
7103   kmp_team_t *team = this_thr->th.th_team;
7104 
7105   __kmp_run_before_invoked_task(gtid, tid, this_thr, team);
7106 #if USE_ITT_BUILD
7107   if (__itt_stack_caller_create_ptr) {
7108     __kmp_itt_stack_callee_enter(
7109         (__itt_caller)
7110             team->t.t_stack_id); // inform ittnotify about entering user's code
7111   }
7112 #endif /* USE_ITT_BUILD */
7113 #if INCLUDE_SSC_MARKS
7114   SSC_MARK_INVOKING();
7115 #endif
7116 
7117 #if OMPT_SUPPORT
7118   void *dummy;
7119   void **exit_runtime_p;
7120   ompt_data_t *my_task_data;
7121   ompt_data_t *my_parallel_data;
7122   int ompt_team_size;
7123 
7124   if (ompt_enabled.enabled) {
7125     exit_runtime_p = &(
7126         team->t.t_implicit_task_taskdata[tid].ompt_task_info.frame.exit_frame.ptr);
7127   } else {
7128     exit_runtime_p = &dummy;
7129   }
7130 
7131   my_task_data =
7132       &(team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data);
7133   my_parallel_data = &(team->t.ompt_team_info.parallel_data);
7134   if (ompt_enabled.ompt_callback_implicit_task) {
7135     ompt_team_size = team->t.t_nproc;
7136     ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
7137         ompt_scope_begin, my_parallel_data, my_task_data, ompt_team_size,
7138         __kmp_tid_from_gtid(gtid), ompt_task_implicit); // TODO: Can this be ompt_task_initial?
7139     OMPT_CUR_TASK_INFO(this_thr)->thread_num = __kmp_tid_from_gtid(gtid);
7140   }
7141 #endif
7142 
7143 #if KMP_STATS_ENABLED
7144   stats_state_e previous_state = KMP_GET_THREAD_STATE();
7145   if (previous_state == stats_state_e::TEAMS_REGION) {
7146     KMP_PUSH_PARTITIONED_TIMER(OMP_teams);
7147   } else {
7148     KMP_PUSH_PARTITIONED_TIMER(OMP_parallel);
7149   }
7150   KMP_SET_THREAD_STATE(IMPLICIT_TASK);
7151 #endif
7152 
7153   rc = __kmp_invoke_microtask((microtask_t)TCR_SYNC_PTR(team->t.t_pkfn), gtid,
7154                               tid, (int)team->t.t_argc, (void **)team->t.t_argv
7155 #if OMPT_SUPPORT
7156                               ,
7157                               exit_runtime_p
7158 #endif
7159                               );
7160 #if OMPT_SUPPORT
7161   *exit_runtime_p = NULL;
7162 #endif
7163 
7164 #if KMP_STATS_ENABLED
7165   if (previous_state == stats_state_e::TEAMS_REGION) {
7166     KMP_SET_THREAD_STATE(previous_state);
7167   }
7168   KMP_POP_PARTITIONED_TIMER();
7169 #endif
7170 
7171 #if USE_ITT_BUILD
7172   if (__itt_stack_caller_create_ptr) {
7173     __kmp_itt_stack_callee_leave(
7174         (__itt_caller)
7175             team->t.t_stack_id); // inform ittnotify about leaving user's code
7176   }
7177 #endif /* USE_ITT_BUILD */
7178   __kmp_run_after_invoked_task(gtid, tid, this_thr, team);
7179 
7180   return rc;
7181 }
7182 
7183 #if OMP_40_ENABLED
7184 void __kmp_teams_master(int gtid) {
7185   // This routine is called by all master threads in teams construct
7186   kmp_info_t *thr = __kmp_threads[gtid];
7187   kmp_team_t *team = thr->th.th_team;
7188   ident_t *loc = team->t.t_ident;
7189   thr->th.th_set_nproc = thr->th.th_teams_size.nth;
7190   KMP_DEBUG_ASSERT(thr->th.th_teams_microtask);
7191   KMP_DEBUG_ASSERT(thr->th.th_set_nproc);
7192   KA_TRACE(20, ("__kmp_teams_master: T#%d, Tid %d, microtask %p\n", gtid,
7193                 __kmp_tid_from_gtid(gtid), thr->th.th_teams_microtask));
7194 
7195   // This thread is a new CG root.  Set up the proper variables.
7196   kmp_cg_root_t *tmp = (kmp_cg_root_t *)__kmp_allocate(sizeof(kmp_cg_root_t));
7197   tmp->cg_root = thr; // Make thr the CG root
7198   // Init to thread limit that was stored when league masters were forked
7199   tmp->cg_thread_limit = thr->th.th_current_task->td_icvs.thread_limit;
7200   tmp->cg_nthreads = 1; // Init counter to one active thread, this one
7201   KA_TRACE(100, ("__kmp_teams_master: Thread %p created node %p and init"
7202                  " cg_threads to 1\n",
7203                  thr, tmp));
7204   tmp->up = thr->th.th_cg_roots;
7205   thr->th.th_cg_roots = tmp;
7206 
7207 // Launch league of teams now, but not let workers execute
7208 // (they hang on fork barrier until next parallel)
7209 #if INCLUDE_SSC_MARKS
7210   SSC_MARK_FORKING();
7211 #endif
7212   __kmp_fork_call(loc, gtid, fork_context_intel, team->t.t_argc,
7213                   (microtask_t)thr->th.th_teams_microtask, // "wrapped" task
7214                   VOLATILE_CAST(launch_t) __kmp_invoke_task_func, NULL);
7215 #if INCLUDE_SSC_MARKS
7216   SSC_MARK_JOINING();
7217 #endif
7218   // If the team size was reduced from the limit, set it to the new size
7219   if (thr->th.th_team_nproc < thr->th.th_teams_size.nth)
7220     thr->th.th_teams_size.nth = thr->th.th_team_nproc;
7221   // AC: last parameter "1" eliminates join barrier which won't work because
7222   // worker threads are in a fork barrier waiting for more parallel regions
7223   __kmp_join_call(loc, gtid
7224 #if OMPT_SUPPORT
7225                   ,
7226                   fork_context_intel
7227 #endif
7228                   ,
7229                   1);
7230 }
7231 
7232 int __kmp_invoke_teams_master(int gtid) {
7233   kmp_info_t *this_thr = __kmp_threads[gtid];
7234   kmp_team_t *team = this_thr->th.th_team;
7235 #if KMP_DEBUG
7236   if (!__kmp_threads[gtid]->th.th_team->t.t_serialized)
7237     KMP_DEBUG_ASSERT((void *)__kmp_threads[gtid]->th.th_team->t.t_pkfn ==
7238                      (void *)__kmp_teams_master);
7239 #endif
7240   __kmp_run_before_invoked_task(gtid, 0, this_thr, team);
7241   __kmp_teams_master(gtid);
7242   __kmp_run_after_invoked_task(gtid, 0, this_thr, team);
7243   return 1;
7244 }
7245 #endif /* OMP_40_ENABLED */
7246 
7247 /* this sets the requested number of threads for the next parallel region
7248    encountered by this team. since this should be enclosed in the forkjoin
7249    critical section it should avoid race conditions with assymmetrical nested
7250    parallelism */
7251 
7252 void __kmp_push_num_threads(ident_t *id, int gtid, int num_threads) {
7253   kmp_info_t *thr = __kmp_threads[gtid];
7254 
7255   if (num_threads > 0)
7256     thr->th.th_set_nproc = num_threads;
7257 }
7258 
7259 #if OMP_40_ENABLED
7260 
7261 /* this sets the requested number of teams for the teams region and/or
7262    the number of threads for the next parallel region encountered  */
7263 void __kmp_push_num_teams(ident_t *id, int gtid, int num_teams,
7264                           int num_threads) {
7265   kmp_info_t *thr = __kmp_threads[gtid];
7266   KMP_DEBUG_ASSERT(num_teams >= 0);
7267   KMP_DEBUG_ASSERT(num_threads >= 0);
7268 
7269   if (num_teams == 0)
7270     num_teams = 1; // default number of teams is 1.
7271   if (num_teams > __kmp_teams_max_nth) { // if too many teams requested?
7272     if (!__kmp_reserve_warn) {
7273       __kmp_reserve_warn = 1;
7274       __kmp_msg(kmp_ms_warning,
7275                 KMP_MSG(CantFormThrTeam, num_teams, __kmp_teams_max_nth),
7276                 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null);
7277     }
7278     num_teams = __kmp_teams_max_nth;
7279   }
7280   // Set number of teams (number of threads in the outer "parallel" of the
7281   // teams)
7282   thr->th.th_set_nproc = thr->th.th_teams_size.nteams = num_teams;
7283 
7284   // Remember the number of threads for inner parallel regions
7285   if (num_threads == 0) {
7286     if (!TCR_4(__kmp_init_middle))
7287       __kmp_middle_initialize(); // get __kmp_avail_proc calculated
7288     num_threads = __kmp_avail_proc / num_teams;
7289     if (num_teams * num_threads > __kmp_teams_max_nth) {
7290       // adjust num_threads w/o warning as it is not user setting
7291       num_threads = __kmp_teams_max_nth / num_teams;
7292     }
7293   } else {
7294     // This thread will be the master of the league masters
7295     // Store new thread limit; old limit is saved in th_cg_roots list
7296     thr->th.th_current_task->td_icvs.thread_limit = num_threads;
7297 
7298     if (num_teams * num_threads > __kmp_teams_max_nth) {
7299       int new_threads = __kmp_teams_max_nth / num_teams;
7300       if (!__kmp_reserve_warn) { // user asked for too many threads
7301         __kmp_reserve_warn = 1; // conflicts with KMP_TEAMS_THREAD_LIMIT
7302         __kmp_msg(kmp_ms_warning,
7303                   KMP_MSG(CantFormThrTeam, num_threads, new_threads),
7304                   KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null);
7305       }
7306       num_threads = new_threads;
7307     }
7308   }
7309   thr->th.th_teams_size.nth = num_threads;
7310 }
7311 
7312 // Set the proc_bind var to use in the following parallel region.
7313 void __kmp_push_proc_bind(ident_t *id, int gtid, kmp_proc_bind_t proc_bind) {
7314   kmp_info_t *thr = __kmp_threads[gtid];
7315   thr->th.th_set_proc_bind = proc_bind;
7316 }
7317 
7318 #endif /* OMP_40_ENABLED */
7319 
7320 /* Launch the worker threads into the microtask. */
7321 
7322 void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team) {
7323   kmp_info_t *this_thr = __kmp_threads[gtid];
7324 
7325 #ifdef KMP_DEBUG
7326   int f;
7327 #endif /* KMP_DEBUG */
7328 
7329   KMP_DEBUG_ASSERT(team);
7330   KMP_DEBUG_ASSERT(this_thr->th.th_team == team);
7331   KMP_ASSERT(KMP_MASTER_GTID(gtid));
7332   KMP_MB(); /* Flush all pending memory write invalidates.  */
7333 
7334   team->t.t_construct = 0; /* no single directives seen yet */
7335   team->t.t_ordered.dt.t_value =
7336       0; /* thread 0 enters the ordered section first */
7337 
7338   /* Reset the identifiers on the dispatch buffer */
7339   KMP_DEBUG_ASSERT(team->t.t_disp_buffer);
7340   if (team->t.t_max_nproc > 1) {
7341     int i;
7342     for (i = 0; i < __kmp_dispatch_num_buffers; ++i) {
7343       team->t.t_disp_buffer[i].buffer_index = i;
7344 #if OMP_45_ENABLED
7345       team->t.t_disp_buffer[i].doacross_buf_idx = i;
7346 #endif
7347     }
7348   } else {
7349     team->t.t_disp_buffer[0].buffer_index = 0;
7350 #if OMP_45_ENABLED
7351     team->t.t_disp_buffer[0].doacross_buf_idx = 0;
7352 #endif
7353   }
7354 
7355   KMP_MB(); /* Flush all pending memory write invalidates.  */
7356   KMP_ASSERT(this_thr->th.th_team == team);
7357 
7358 #ifdef KMP_DEBUG
7359   for (f = 0; f < team->t.t_nproc; f++) {
7360     KMP_DEBUG_ASSERT(team->t.t_threads[f] &&
7361                      team->t.t_threads[f]->th.th_team_nproc == team->t.t_nproc);
7362   }
7363 #endif /* KMP_DEBUG */
7364 
7365   /* release the worker threads so they may begin working */
7366   __kmp_fork_barrier(gtid, 0);
7367 }
7368 
7369 void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team) {
7370   kmp_info_t *this_thr = __kmp_threads[gtid];
7371 
7372   KMP_DEBUG_ASSERT(team);
7373   KMP_DEBUG_ASSERT(this_thr->th.th_team == team);
7374   KMP_ASSERT(KMP_MASTER_GTID(gtid));
7375   KMP_MB(); /* Flush all pending memory write invalidates.  */
7376 
7377 /* Join barrier after fork */
7378 
7379 #ifdef KMP_DEBUG
7380   if (__kmp_threads[gtid] &&
7381       __kmp_threads[gtid]->th.th_team_nproc != team->t.t_nproc) {
7382     __kmp_printf("GTID: %d, __kmp_threads[%d]=%p\n", gtid, gtid,
7383                  __kmp_threads[gtid]);
7384     __kmp_printf("__kmp_threads[%d]->th.th_team_nproc=%d, TEAM: %p, "
7385                  "team->t.t_nproc=%d\n",
7386                  gtid, __kmp_threads[gtid]->th.th_team_nproc, team,
7387                  team->t.t_nproc);
7388     __kmp_print_structure();
7389   }
7390   KMP_DEBUG_ASSERT(__kmp_threads[gtid] &&
7391                    __kmp_threads[gtid]->th.th_team_nproc == team->t.t_nproc);
7392 #endif /* KMP_DEBUG */
7393 
7394   __kmp_join_barrier(gtid); /* wait for everyone */
7395 #if OMPT_SUPPORT
7396   if (ompt_enabled.enabled &&
7397       this_thr->th.ompt_thread_info.state == ompt_state_wait_barrier_implicit) {
7398     int ds_tid = this_thr->th.th_info.ds.ds_tid;
7399     ompt_data_t *task_data = OMPT_CUR_TASK_DATA(this_thr);
7400     this_thr->th.ompt_thread_info.state = ompt_state_overhead;
7401 #if OMPT_OPTIONAL
7402     void *codeptr = NULL;
7403     if (KMP_MASTER_TID(ds_tid) &&
7404         (ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait) ||
7405          ompt_callbacks.ompt_callback(ompt_callback_sync_region)))
7406       codeptr = OMPT_CUR_TEAM_INFO(this_thr)->master_return_address;
7407 
7408     if (ompt_enabled.ompt_callback_sync_region_wait) {
7409       ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
7410           ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, task_data,
7411           codeptr);
7412     }
7413     if (ompt_enabled.ompt_callback_sync_region) {
7414       ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
7415           ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, task_data,
7416           codeptr);
7417     }
7418 #endif
7419     if (!KMP_MASTER_TID(ds_tid) && ompt_enabled.ompt_callback_implicit_task) {
7420       ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
7421           ompt_scope_end, NULL, task_data, 0, ds_tid, ompt_task_implicit); // TODO: Can this be ompt_task_initial?
7422     }
7423   }
7424 #endif
7425 
7426   KMP_MB(); /* Flush all pending memory write invalidates.  */
7427   KMP_ASSERT(this_thr->th.th_team == team);
7428 }
7429 
7430 /* ------------------------------------------------------------------------ */
7431 
7432 #ifdef USE_LOAD_BALANCE
7433 
7434 // Return the worker threads actively spinning in the hot team, if we
7435 // are at the outermost level of parallelism.  Otherwise, return 0.
7436 static int __kmp_active_hot_team_nproc(kmp_root_t *root) {
7437   int i;
7438   int retval;
7439   kmp_team_t *hot_team;
7440 
7441   if (root->r.r_active) {
7442     return 0;
7443   }
7444   hot_team = root->r.r_hot_team;
7445   if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
7446     return hot_team->t.t_nproc - 1; // Don't count master thread
7447   }
7448 
7449   // Skip the master thread - it is accounted for elsewhere.
7450   retval = 0;
7451   for (i = 1; i < hot_team->t.t_nproc; i++) {
7452     if (hot_team->t.t_threads[i]->th.th_active) {
7453       retval++;
7454     }
7455   }
7456   return retval;
7457 }
7458 
7459 // Perform an automatic adjustment to the number of
7460 // threads used by the next parallel region.
7461 static int __kmp_load_balance_nproc(kmp_root_t *root, int set_nproc) {
7462   int retval;
7463   int pool_active;
7464   int hot_team_active;
7465   int team_curr_active;
7466   int system_active;
7467 
7468   KB_TRACE(20, ("__kmp_load_balance_nproc: called root:%p set_nproc:%d\n", root,
7469                 set_nproc));
7470   KMP_DEBUG_ASSERT(root);
7471   KMP_DEBUG_ASSERT(root->r.r_root_team->t.t_threads[0]
7472                        ->th.th_current_task->td_icvs.dynamic == TRUE);
7473   KMP_DEBUG_ASSERT(set_nproc > 1);
7474 
7475   if (set_nproc == 1) {
7476     KB_TRACE(20, ("__kmp_load_balance_nproc: serial execution.\n"));
7477     return 1;
7478   }
7479 
7480   // Threads that are active in the thread pool, active in the hot team for this
7481   // particular root (if we are at the outer par level), and the currently
7482   // executing thread (to become the master) are available to add to the new
7483   // team, but are currently contributing to the system load, and must be
7484   // accounted for.
7485   pool_active = __kmp_thread_pool_active_nth;
7486   hot_team_active = __kmp_active_hot_team_nproc(root);
7487   team_curr_active = pool_active + hot_team_active + 1;
7488 
7489   // Check the system load.
7490   system_active = __kmp_get_load_balance(__kmp_avail_proc + team_curr_active);
7491   KB_TRACE(30, ("__kmp_load_balance_nproc: system active = %d pool active = %d "
7492                 "hot team active = %d\n",
7493                 system_active, pool_active, hot_team_active));
7494 
7495   if (system_active < 0) {
7496     // There was an error reading the necessary info from /proc, so use the
7497     // thread limit algorithm instead. Once we set __kmp_global.g.g_dynamic_mode
7498     // = dynamic_thread_limit, we shouldn't wind up getting back here.
7499     __kmp_global.g.g_dynamic_mode = dynamic_thread_limit;
7500     KMP_WARNING(CantLoadBalUsing, "KMP_DYNAMIC_MODE=thread limit");
7501 
7502     // Make this call behave like the thread limit algorithm.
7503     retval = __kmp_avail_proc - __kmp_nth +
7504              (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc);
7505     if (retval > set_nproc) {
7506       retval = set_nproc;
7507     }
7508     if (retval < KMP_MIN_NTH) {
7509       retval = KMP_MIN_NTH;
7510     }
7511 
7512     KB_TRACE(20, ("__kmp_load_balance_nproc: thread limit exit. retval:%d\n",
7513                   retval));
7514     return retval;
7515   }
7516 
7517   // There is a slight delay in the load balance algorithm in detecting new
7518   // running procs. The real system load at this instant should be at least as
7519   // large as the #active omp thread that are available to add to the team.
7520   if (system_active < team_curr_active) {
7521     system_active = team_curr_active;
7522   }
7523   retval = __kmp_avail_proc - system_active + team_curr_active;
7524   if (retval > set_nproc) {
7525     retval = set_nproc;
7526   }
7527   if (retval < KMP_MIN_NTH) {
7528     retval = KMP_MIN_NTH;
7529   }
7530 
7531   KB_TRACE(20, ("__kmp_load_balance_nproc: exit. retval:%d\n", retval));
7532   return retval;
7533 } // __kmp_load_balance_nproc()
7534 
7535 #endif /* USE_LOAD_BALANCE */
7536 
7537 /* ------------------------------------------------------------------------ */
7538 
7539 /* NOTE: this is called with the __kmp_init_lock held */
7540 void __kmp_cleanup(void) {
7541   int f;
7542 
7543   KA_TRACE(10, ("__kmp_cleanup: enter\n"));
7544 
7545   if (TCR_4(__kmp_init_parallel)) {
7546 #if KMP_HANDLE_SIGNALS
7547     __kmp_remove_signals();
7548 #endif
7549     TCW_4(__kmp_init_parallel, FALSE);
7550   }
7551 
7552   if (TCR_4(__kmp_init_middle)) {
7553 #if KMP_AFFINITY_SUPPORTED
7554     __kmp_affinity_uninitialize();
7555 #endif /* KMP_AFFINITY_SUPPORTED */
7556     __kmp_cleanup_hierarchy();
7557     TCW_4(__kmp_init_middle, FALSE);
7558   }
7559 
7560   KA_TRACE(10, ("__kmp_cleanup: go serial cleanup\n"));
7561 
7562   if (__kmp_init_serial) {
7563     __kmp_runtime_destroy();
7564     __kmp_init_serial = FALSE;
7565   }
7566 
7567   __kmp_cleanup_threadprivate_caches();
7568 
7569   for (f = 0; f < __kmp_threads_capacity; f++) {
7570     if (__kmp_root[f] != NULL) {
7571       __kmp_free(__kmp_root[f]);
7572       __kmp_root[f] = NULL;
7573     }
7574   }
7575   __kmp_free(__kmp_threads);
7576   // __kmp_threads and __kmp_root were allocated at once, as single block, so
7577   // there is no need in freeing __kmp_root.
7578   __kmp_threads = NULL;
7579   __kmp_root = NULL;
7580   __kmp_threads_capacity = 0;
7581 
7582 #if KMP_USE_DYNAMIC_LOCK
7583   __kmp_cleanup_indirect_user_locks();
7584 #else
7585   __kmp_cleanup_user_locks();
7586 #endif
7587 
7588 #if KMP_AFFINITY_SUPPORTED
7589   KMP_INTERNAL_FREE(CCAST(char *, __kmp_cpuinfo_file));
7590   __kmp_cpuinfo_file = NULL;
7591 #endif /* KMP_AFFINITY_SUPPORTED */
7592 
7593 #if KMP_USE_ADAPTIVE_LOCKS
7594 #if KMP_DEBUG_ADAPTIVE_LOCKS
7595   __kmp_print_speculative_stats();
7596 #endif
7597 #endif
7598   KMP_INTERNAL_FREE(__kmp_nested_nth.nth);
7599   __kmp_nested_nth.nth = NULL;
7600   __kmp_nested_nth.size = 0;
7601   __kmp_nested_nth.used = 0;
7602   KMP_INTERNAL_FREE(__kmp_nested_proc_bind.bind_types);
7603   __kmp_nested_proc_bind.bind_types = NULL;
7604   __kmp_nested_proc_bind.size = 0;
7605   __kmp_nested_proc_bind.used = 0;
7606 #if OMP_50_ENABLED
7607   if (__kmp_affinity_format) {
7608     KMP_INTERNAL_FREE(__kmp_affinity_format);
7609     __kmp_affinity_format = NULL;
7610   }
7611 #endif
7612 
7613   __kmp_i18n_catclose();
7614 
7615 #if KMP_USE_HIER_SCHED
7616   __kmp_hier_scheds.deallocate();
7617 #endif
7618 
7619 #if KMP_STATS_ENABLED
7620   __kmp_stats_fini();
7621 #endif
7622 
7623   KA_TRACE(10, ("__kmp_cleanup: exit\n"));
7624 }
7625 
7626 /* ------------------------------------------------------------------------ */
7627 
7628 int __kmp_ignore_mppbeg(void) {
7629   char *env;
7630 
7631   if ((env = getenv("KMP_IGNORE_MPPBEG")) != NULL) {
7632     if (__kmp_str_match_false(env))
7633       return FALSE;
7634   }
7635   // By default __kmpc_begin() is no-op.
7636   return TRUE;
7637 }
7638 
7639 int __kmp_ignore_mppend(void) {
7640   char *env;
7641 
7642   if ((env = getenv("KMP_IGNORE_MPPEND")) != NULL) {
7643     if (__kmp_str_match_false(env))
7644       return FALSE;
7645   }
7646   // By default __kmpc_end() is no-op.
7647   return TRUE;
7648 }
7649 
7650 void __kmp_internal_begin(void) {
7651   int gtid;
7652   kmp_root_t *root;
7653 
7654   /* this is a very important step as it will register new sibling threads
7655      and assign these new uber threads a new gtid */
7656   gtid = __kmp_entry_gtid();
7657   root = __kmp_threads[gtid]->th.th_root;
7658   KMP_ASSERT(KMP_UBER_GTID(gtid));
7659 
7660   if (root->r.r_begin)
7661     return;
7662   __kmp_acquire_lock(&root->r.r_begin_lock, gtid);
7663   if (root->r.r_begin) {
7664     __kmp_release_lock(&root->r.r_begin_lock, gtid);
7665     return;
7666   }
7667 
7668   root->r.r_begin = TRUE;
7669 
7670   __kmp_release_lock(&root->r.r_begin_lock, gtid);
7671 }
7672 
7673 /* ------------------------------------------------------------------------ */
7674 
7675 void __kmp_user_set_library(enum library_type arg) {
7676   int gtid;
7677   kmp_root_t *root;
7678   kmp_info_t *thread;
7679 
7680   /* first, make sure we are initialized so we can get our gtid */
7681 
7682   gtid = __kmp_entry_gtid();
7683   thread = __kmp_threads[gtid];
7684 
7685   root = thread->th.th_root;
7686 
7687   KA_TRACE(20, ("__kmp_user_set_library: enter T#%d, arg: %d, %d\n", gtid, arg,
7688                 library_serial));
7689   if (root->r.r_in_parallel) { /* Must be called in serial section of top-level
7690                                   thread */
7691     KMP_WARNING(SetLibraryIncorrectCall);
7692     return;
7693   }
7694 
7695   switch (arg) {
7696   case library_serial:
7697     thread->th.th_set_nproc = 0;
7698     set__nproc(thread, 1);
7699     break;
7700   case library_turnaround:
7701     thread->th.th_set_nproc = 0;
7702     set__nproc(thread, __kmp_dflt_team_nth ? __kmp_dflt_team_nth
7703                                            : __kmp_dflt_team_nth_ub);
7704     break;
7705   case library_throughput:
7706     thread->th.th_set_nproc = 0;
7707     set__nproc(thread, __kmp_dflt_team_nth ? __kmp_dflt_team_nth
7708                                            : __kmp_dflt_team_nth_ub);
7709     break;
7710   default:
7711     KMP_FATAL(UnknownLibraryType, arg);
7712   }
7713 
7714   __kmp_aux_set_library(arg);
7715 }
7716 
7717 void __kmp_aux_set_stacksize(size_t arg) {
7718   if (!__kmp_init_serial)
7719     __kmp_serial_initialize();
7720 
7721 #if KMP_OS_DARWIN
7722   if (arg & (0x1000 - 1)) {
7723     arg &= ~(0x1000 - 1);
7724     if (arg + 0x1000) /* check for overflow if we round up */
7725       arg += 0x1000;
7726   }
7727 #endif
7728   __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
7729 
7730   /* only change the default stacksize before the first parallel region */
7731   if (!TCR_4(__kmp_init_parallel)) {
7732     size_t value = arg; /* argument is in bytes */
7733 
7734     if (value < __kmp_sys_min_stksize)
7735       value = __kmp_sys_min_stksize;
7736     else if (value > KMP_MAX_STKSIZE)
7737       value = KMP_MAX_STKSIZE;
7738 
7739     __kmp_stksize = value;
7740 
7741     __kmp_env_stksize = TRUE; /* was KMP_STACKSIZE specified? */
7742   }
7743 
7744   __kmp_release_bootstrap_lock(&__kmp_initz_lock);
7745 }
7746 
7747 /* set the behaviour of the runtime library */
7748 /* TODO this can cause some odd behaviour with sibling parallelism... */
7749 void __kmp_aux_set_library(enum library_type arg) {
7750   __kmp_library = arg;
7751 
7752   switch (__kmp_library) {
7753   case library_serial: {
7754     KMP_INFORM(LibraryIsSerial);
7755   } break;
7756   case library_turnaround:
7757     if (__kmp_use_yield == 1 && !__kmp_use_yield_exp_set)
7758       __kmp_use_yield = 2; // only yield when oversubscribed
7759     break;
7760   case library_throughput:
7761     if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME)
7762       __kmp_dflt_blocktime = 200;
7763     break;
7764   default:
7765     KMP_FATAL(UnknownLibraryType, arg);
7766   }
7767 }
7768 
7769 /* Getting team information common for all team API */
7770 // Returns NULL if not in teams construct
7771 static kmp_team_t *__kmp_aux_get_team_info(int &teams_serialized) {
7772   kmp_info_t *thr = __kmp_entry_thread();
7773   teams_serialized = 0;
7774   if (thr->th.th_teams_microtask) {
7775     kmp_team_t *team = thr->th.th_team;
7776     int tlevel = thr->th.th_teams_level; // the level of the teams construct
7777     int ii = team->t.t_level;
7778     teams_serialized = team->t.t_serialized;
7779     int level = tlevel + 1;
7780     KMP_DEBUG_ASSERT(ii >= tlevel);
7781     while (ii > level) {
7782       for (teams_serialized = team->t.t_serialized;
7783            (teams_serialized > 0) && (ii > level); teams_serialized--, ii--) {
7784       }
7785       if (team->t.t_serialized && (!teams_serialized)) {
7786         team = team->t.t_parent;
7787         continue;
7788       }
7789       if (ii > level) {
7790         team = team->t.t_parent;
7791         ii--;
7792       }
7793     }
7794     return team;
7795   }
7796   return NULL;
7797 }
7798 
7799 int __kmp_aux_get_team_num() {
7800   int serialized;
7801   kmp_team_t *team = __kmp_aux_get_team_info(serialized);
7802   if (team) {
7803     if (serialized > 1) {
7804       return 0; // teams region is serialized ( 1 team of 1 thread ).
7805     } else {
7806       return team->t.t_master_tid;
7807     }
7808   }
7809   return 0;
7810 }
7811 
7812 int __kmp_aux_get_num_teams() {
7813   int serialized;
7814   kmp_team_t *team = __kmp_aux_get_team_info(serialized);
7815   if (team) {
7816     if (serialized > 1) {
7817       return 1;
7818     } else {
7819       return team->t.t_parent->t.t_nproc;
7820     }
7821   }
7822   return 1;
7823 }
7824 
7825 /* ------------------------------------------------------------------------ */
7826 
7827 #if OMP_50_ENABLED
7828 /*
7829  * Affinity Format Parser
7830  *
7831  * Field is in form of: %[[[0].]size]type
7832  * % and type are required (%% means print a literal '%')
7833  * type is either single char or long name surrounded by {},
7834  * e.g., N or {num_threads}
7835  * 0 => leading zeros
7836  * . => right justified when size is specified
7837  * by default output is left justified
7838  * size is the *minimum* field length
7839  * All other characters are printed as is
7840  *
7841  * Available field types:
7842  * L {thread_level}      - omp_get_level()
7843  * n {thread_num}        - omp_get_thread_num()
7844  * h {host}              - name of host machine
7845  * P {process_id}        - process id (integer)
7846  * T {thread_identifier} - native thread identifier (integer)
7847  * N {num_threads}       - omp_get_num_threads()
7848  * A {ancestor_tnum}     - omp_get_ancestor_thread_num(omp_get_level()-1)
7849  * a {thread_affinity}   - comma separated list of integers or integer ranges
7850  *                         (values of affinity mask)
7851  *
7852  * Implementation-specific field types can be added
7853  * If a type is unknown, print "undefined"
7854 */
7855 
7856 // Structure holding the short name, long name, and corresponding data type
7857 // for snprintf.  A table of these will represent the entire valid keyword
7858 // field types.
7859 typedef struct kmp_affinity_format_field_t {
7860   char short_name; // from spec e.g., L -> thread level
7861   const char *long_name; // from spec thread_level -> thread level
7862   char field_format; // data type for snprintf (typically 'd' or 's'
7863   // for integer or string)
7864 } kmp_affinity_format_field_t;
7865 
7866 static const kmp_affinity_format_field_t __kmp_affinity_format_table[] = {
7867 #if KMP_AFFINITY_SUPPORTED
7868     {'A', "thread_affinity", 's'},
7869 #endif
7870     {'t', "team_num", 'd'},
7871     {'T', "num_teams", 'd'},
7872     {'L', "nesting_level", 'd'},
7873     {'n', "thread_num", 'd'},
7874     {'N', "num_threads", 'd'},
7875     {'a', "ancestor_tnum", 'd'},
7876     {'H', "host", 's'},
7877     {'P', "process_id", 'd'},
7878     {'i', "native_thread_id", 'd'}};
7879 
7880 // Return the number of characters it takes to hold field
7881 static int __kmp_aux_capture_affinity_field(int gtid, const kmp_info_t *th,
7882                                             const char **ptr,
7883                                             kmp_str_buf_t *field_buffer) {
7884   int rc, format_index, field_value;
7885   const char *width_left, *width_right;
7886   bool pad_zeros, right_justify, parse_long_name, found_valid_name;
7887   static const int FORMAT_SIZE = 20;
7888   char format[FORMAT_SIZE] = {0};
7889   char absolute_short_name = 0;
7890 
7891   KMP_DEBUG_ASSERT(gtid >= 0);
7892   KMP_DEBUG_ASSERT(th);
7893   KMP_DEBUG_ASSERT(**ptr == '%');
7894   KMP_DEBUG_ASSERT(field_buffer);
7895 
7896   __kmp_str_buf_clear(field_buffer);
7897 
7898   // Skip the initial %
7899   (*ptr)++;
7900 
7901   // Check for %% first
7902   if (**ptr == '%') {
7903     __kmp_str_buf_cat(field_buffer, "%", 1);
7904     (*ptr)++; // skip over the second %
7905     return 1;
7906   }
7907 
7908   // Parse field modifiers if they are present
7909   pad_zeros = false;
7910   if (**ptr == '0') {
7911     pad_zeros = true;
7912     (*ptr)++; // skip over 0
7913   }
7914   right_justify = false;
7915   if (**ptr == '.') {
7916     right_justify = true;
7917     (*ptr)++; // skip over .
7918   }
7919   // Parse width of field: [width_left, width_right)
7920   width_left = width_right = NULL;
7921   if (**ptr >= '0' && **ptr <= '9') {
7922     width_left = *ptr;
7923     SKIP_DIGITS(*ptr);
7924     width_right = *ptr;
7925   }
7926 
7927   // Create the format for KMP_SNPRINTF based on flags parsed above
7928   format_index = 0;
7929   format[format_index++] = '%';
7930   if (!right_justify)
7931     format[format_index++] = '-';
7932   if (pad_zeros)
7933     format[format_index++] = '0';
7934   if (width_left && width_right) {
7935     int i = 0;
7936     // Only allow 8 digit number widths.
7937     // This also prevents overflowing format variable
7938     while (i < 8 && width_left < width_right) {
7939       format[format_index++] = *width_left;
7940       width_left++;
7941       i++;
7942     }
7943   }
7944 
7945   // Parse a name (long or short)
7946   // Canonicalize the name into absolute_short_name
7947   found_valid_name = false;
7948   parse_long_name = (**ptr == '{');
7949   if (parse_long_name)
7950     (*ptr)++; // skip initial left brace
7951   for (size_t i = 0; i < sizeof(__kmp_affinity_format_table) /
7952                              sizeof(__kmp_affinity_format_table[0]);
7953        ++i) {
7954     char short_name = __kmp_affinity_format_table[i].short_name;
7955     const char *long_name = __kmp_affinity_format_table[i].long_name;
7956     char field_format = __kmp_affinity_format_table[i].field_format;
7957     if (parse_long_name) {
7958       int length = KMP_STRLEN(long_name);
7959       if (strncmp(*ptr, long_name, length) == 0) {
7960         found_valid_name = true;
7961         (*ptr) += length; // skip the long name
7962       }
7963     } else if (**ptr == short_name) {
7964       found_valid_name = true;
7965       (*ptr)++; // skip the short name
7966     }
7967     if (found_valid_name) {
7968       format[format_index++] = field_format;
7969       format[format_index++] = '\0';
7970       absolute_short_name = short_name;
7971       break;
7972     }
7973   }
7974   if (parse_long_name) {
7975     if (**ptr != '}') {
7976       absolute_short_name = 0;
7977     } else {
7978       (*ptr)++; // skip over the right brace
7979     }
7980   }
7981 
7982   // Attempt to fill the buffer with the requested
7983   // value using snprintf within __kmp_str_buf_print()
7984   switch (absolute_short_name) {
7985   case 't':
7986     rc = __kmp_str_buf_print(field_buffer, format, __kmp_aux_get_team_num());
7987     break;
7988   case 'T':
7989     rc = __kmp_str_buf_print(field_buffer, format, __kmp_aux_get_num_teams());
7990     break;
7991   case 'L':
7992     rc = __kmp_str_buf_print(field_buffer, format, th->th.th_team->t.t_level);
7993     break;
7994   case 'n':
7995     rc = __kmp_str_buf_print(field_buffer, format, __kmp_tid_from_gtid(gtid));
7996     break;
7997   case 'H': {
7998     static const int BUFFER_SIZE = 256;
7999     char buf[BUFFER_SIZE];
8000     __kmp_expand_host_name(buf, BUFFER_SIZE);
8001     rc = __kmp_str_buf_print(field_buffer, format, buf);
8002   } break;
8003   case 'P':
8004     rc = __kmp_str_buf_print(field_buffer, format, getpid());
8005     break;
8006   case 'i':
8007     rc = __kmp_str_buf_print(field_buffer, format, __kmp_gettid());
8008     break;
8009   case 'N':
8010     rc = __kmp_str_buf_print(field_buffer, format, th->th.th_team->t.t_nproc);
8011     break;
8012   case 'a':
8013     field_value =
8014         __kmp_get_ancestor_thread_num(gtid, th->th.th_team->t.t_level - 1);
8015     rc = __kmp_str_buf_print(field_buffer, format, field_value);
8016     break;
8017 #if KMP_AFFINITY_SUPPORTED
8018   case 'A': {
8019     kmp_str_buf_t buf;
8020     __kmp_str_buf_init(&buf);
8021     __kmp_affinity_str_buf_mask(&buf, th->th.th_affin_mask);
8022     rc = __kmp_str_buf_print(field_buffer, format, buf.str);
8023     __kmp_str_buf_free(&buf);
8024   } break;
8025 #endif
8026   default:
8027     // According to spec, If an implementation does not have info for field
8028     // type, then "undefined" is printed
8029     rc = __kmp_str_buf_print(field_buffer, "%s", "undefined");
8030     // Skip the field
8031     if (parse_long_name) {
8032       SKIP_TOKEN(*ptr);
8033       if (**ptr == '}')
8034         (*ptr)++;
8035     } else {
8036       (*ptr)++;
8037     }
8038   }
8039 
8040   KMP_ASSERT(format_index <= FORMAT_SIZE);
8041   return rc;
8042 }
8043 
8044 /*
8045  * Return number of characters needed to hold the affinity string
8046  * (not including null byte character)
8047  * The resultant string is printed to buffer, which the caller can then
8048  * handle afterwards
8049 */
8050 size_t __kmp_aux_capture_affinity(int gtid, const char *format,
8051                                   kmp_str_buf_t *buffer) {
8052   const char *parse_ptr;
8053   size_t retval;
8054   const kmp_info_t *th;
8055   kmp_str_buf_t field;
8056 
8057   KMP_DEBUG_ASSERT(buffer);
8058   KMP_DEBUG_ASSERT(gtid >= 0);
8059 
8060   __kmp_str_buf_init(&field);
8061   __kmp_str_buf_clear(buffer);
8062 
8063   th = __kmp_threads[gtid];
8064   retval = 0;
8065 
8066   // If format is NULL or zero-length string, then we use
8067   // affinity-format-var ICV
8068   parse_ptr = format;
8069   if (parse_ptr == NULL || *parse_ptr == '\0') {
8070     parse_ptr = __kmp_affinity_format;
8071   }
8072   KMP_DEBUG_ASSERT(parse_ptr);
8073 
8074   while (*parse_ptr != '\0') {
8075     // Parse a field
8076     if (*parse_ptr == '%') {
8077       // Put field in the buffer
8078       int rc = __kmp_aux_capture_affinity_field(gtid, th, &parse_ptr, &field);
8079       __kmp_str_buf_catbuf(buffer, &field);
8080       retval += rc;
8081     } else {
8082       // Put literal character in buffer
8083       __kmp_str_buf_cat(buffer, parse_ptr, 1);
8084       retval++;
8085       parse_ptr++;
8086     }
8087   }
8088   __kmp_str_buf_free(&field);
8089   return retval;
8090 }
8091 
8092 // Displays the affinity string to stdout
8093 void __kmp_aux_display_affinity(int gtid, const char *format) {
8094   kmp_str_buf_t buf;
8095   __kmp_str_buf_init(&buf);
8096   __kmp_aux_capture_affinity(gtid, format, &buf);
8097   __kmp_fprintf(kmp_out, "%s" KMP_END_OF_LINE, buf.str);
8098   __kmp_str_buf_free(&buf);
8099 }
8100 #endif // OMP_50_ENABLED
8101 
8102 /* ------------------------------------------------------------------------ */
8103 
8104 void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid) {
8105   int blocktime = arg; /* argument is in milliseconds */
8106 #if KMP_USE_MONITOR
8107   int bt_intervals;
8108 #endif
8109   int bt_set;
8110 
8111   __kmp_save_internal_controls(thread);
8112 
8113   /* Normalize and set blocktime for the teams */
8114   if (blocktime < KMP_MIN_BLOCKTIME)
8115     blocktime = KMP_MIN_BLOCKTIME;
8116   else if (blocktime > KMP_MAX_BLOCKTIME)
8117     blocktime = KMP_MAX_BLOCKTIME;
8118 
8119   set__blocktime_team(thread->th.th_team, tid, blocktime);
8120   set__blocktime_team(thread->th.th_serial_team, 0, blocktime);
8121 
8122 #if KMP_USE_MONITOR
8123   /* Calculate and set blocktime intervals for the teams */
8124   bt_intervals = KMP_INTERVALS_FROM_BLOCKTIME(blocktime, __kmp_monitor_wakeups);
8125 
8126   set__bt_intervals_team(thread->th.th_team, tid, bt_intervals);
8127   set__bt_intervals_team(thread->th.th_serial_team, 0, bt_intervals);
8128 #endif
8129 
8130   /* Set whether blocktime has been set to "TRUE" */
8131   bt_set = TRUE;
8132 
8133   set__bt_set_team(thread->th.th_team, tid, bt_set);
8134   set__bt_set_team(thread->th.th_serial_team, 0, bt_set);
8135 #if KMP_USE_MONITOR
8136   KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d, "
8137                 "bt_intervals=%d, monitor_updates=%d\n",
8138                 __kmp_gtid_from_tid(tid, thread->th.th_team),
8139                 thread->th.th_team->t.t_id, tid, blocktime, bt_intervals,
8140                 __kmp_monitor_wakeups));
8141 #else
8142   KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d\n",
8143                 __kmp_gtid_from_tid(tid, thread->th.th_team),
8144                 thread->th.th_team->t.t_id, tid, blocktime));
8145 #endif
8146 }
8147 
8148 void __kmp_aux_set_defaults(char const *str, int len) {
8149   if (!__kmp_init_serial) {
8150     __kmp_serial_initialize();
8151   }
8152   __kmp_env_initialize(str);
8153 
8154   if (__kmp_settings
8155 #if OMP_40_ENABLED
8156       || __kmp_display_env || __kmp_display_env_verbose
8157 #endif // OMP_40_ENABLED
8158       ) {
8159     __kmp_env_print();
8160   }
8161 } // __kmp_aux_set_defaults
8162 
8163 /* ------------------------------------------------------------------------ */
8164 /* internal fast reduction routines */
8165 
8166 PACKED_REDUCTION_METHOD_T
8167 __kmp_determine_reduction_method(
8168     ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
8169     void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
8170     kmp_critical_name *lck) {
8171 
8172   // Default reduction method: critical construct ( lck != NULL, like in current
8173   // PAROPT )
8174   // If ( reduce_data!=NULL && reduce_func!=NULL ): the tree-reduction method
8175   // can be selected by RTL
8176   // If loc->flags contains KMP_IDENT_ATOMIC_REDUCE, the atomic reduce method
8177   // can be selected by RTL
8178   // Finally, it's up to OpenMP RTL to make a decision on which method to select
8179   // among generated by PAROPT.
8180 
8181   PACKED_REDUCTION_METHOD_T retval;
8182 
8183   int team_size;
8184 
8185   KMP_DEBUG_ASSERT(loc); // it would be nice to test ( loc != 0 )
8186   KMP_DEBUG_ASSERT(lck); // it would be nice to test ( lck != 0 )
8187 
8188 #define FAST_REDUCTION_ATOMIC_METHOD_GENERATED                                 \
8189   ((loc->flags & (KMP_IDENT_ATOMIC_REDUCE)) == (KMP_IDENT_ATOMIC_REDUCE))
8190 #define FAST_REDUCTION_TREE_METHOD_GENERATED ((reduce_data) && (reduce_func))
8191 
8192   retval = critical_reduce_block;
8193 
8194   // another choice of getting a team size (with 1 dynamic deference) is slower
8195   team_size = __kmp_get_team_num_threads(global_tid);
8196   if (team_size == 1) {
8197 
8198     retval = empty_reduce_block;
8199 
8200   } else {
8201 
8202     int atomic_available = FAST_REDUCTION_ATOMIC_METHOD_GENERATED;
8203 
8204 #if KMP_ARCH_X86_64 || KMP_ARCH_PPC64 || KMP_ARCH_AARCH64 || KMP_ARCH_MIPS64
8205 
8206 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
8207     KMP_OS_OPENBSD || KMP_OS_WINDOWS || KMP_OS_DARWIN || KMP_OS_HURD
8208 
8209     int teamsize_cutoff = 4;
8210 
8211 #if KMP_MIC_SUPPORTED
8212     if (__kmp_mic_type != non_mic) {
8213       teamsize_cutoff = 8;
8214     }
8215 #endif
8216     int tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED;
8217     if (tree_available) {
8218       if (team_size <= teamsize_cutoff) {
8219         if (atomic_available) {
8220           retval = atomic_reduce_block;
8221         }
8222       } else {
8223         retval = TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER;
8224       }
8225     } else if (atomic_available) {
8226       retval = atomic_reduce_block;
8227     }
8228 #else
8229 #error "Unknown or unsupported OS"
8230 #endif // KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||
8231        // KMP_OS_OPENBSD || KMP_OS_WINDOWS || KMP_OS_DARWIN || KMP_OS_HURD
8232 
8233 #elif KMP_ARCH_X86 || KMP_ARCH_ARM || KMP_ARCH_AARCH || KMP_ARCH_MIPS
8234 
8235 #if KMP_OS_LINUX || KMP_OS_WINDOWS || KMP_OS_HURD
8236 
8237     // basic tuning
8238 
8239     if (atomic_available) {
8240       if (num_vars <= 2) { // && ( team_size <= 8 ) due to false-sharing ???
8241         retval = atomic_reduce_block;
8242       }
8243     } // otherwise: use critical section
8244 
8245 #elif KMP_OS_DARWIN
8246 
8247     int tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED;
8248     if (atomic_available && (num_vars <= 3)) {
8249       retval = atomic_reduce_block;
8250     } else if (tree_available) {
8251       if ((reduce_size > (9 * sizeof(kmp_real64))) &&
8252           (reduce_size < (2000 * sizeof(kmp_real64)))) {
8253         retval = TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER;
8254       }
8255     } // otherwise: use critical section
8256 
8257 #else
8258 #error "Unknown or unsupported OS"
8259 #endif
8260 
8261 #else
8262 #error "Unknown or unsupported architecture"
8263 #endif
8264   }
8265 
8266   // KMP_FORCE_REDUCTION
8267 
8268   // If the team is serialized (team_size == 1), ignore the forced reduction
8269   // method and stay with the unsynchronized method (empty_reduce_block)
8270   if (__kmp_force_reduction_method != reduction_method_not_defined &&
8271       team_size != 1) {
8272 
8273     PACKED_REDUCTION_METHOD_T forced_retval = critical_reduce_block;
8274 
8275     int atomic_available, tree_available;
8276 
8277     switch ((forced_retval = __kmp_force_reduction_method)) {
8278     case critical_reduce_block:
8279       KMP_ASSERT(lck); // lck should be != 0
8280       break;
8281 
8282     case atomic_reduce_block:
8283       atomic_available = FAST_REDUCTION_ATOMIC_METHOD_GENERATED;
8284       if (!atomic_available) {
8285         KMP_WARNING(RedMethodNotSupported, "atomic");
8286         forced_retval = critical_reduce_block;
8287       }
8288       break;
8289 
8290     case tree_reduce_block:
8291       tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED;
8292       if (!tree_available) {
8293         KMP_WARNING(RedMethodNotSupported, "tree");
8294         forced_retval = critical_reduce_block;
8295       } else {
8296 #if KMP_FAST_REDUCTION_BARRIER
8297         forced_retval = TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER;
8298 #endif
8299       }
8300       break;
8301 
8302     default:
8303       KMP_ASSERT(0); // "unsupported method specified"
8304     }
8305 
8306     retval = forced_retval;
8307   }
8308 
8309   KA_TRACE(10, ("reduction method selected=%08x\n", retval));
8310 
8311 #undef FAST_REDUCTION_TREE_METHOD_GENERATED
8312 #undef FAST_REDUCTION_ATOMIC_METHOD_GENERATED
8313 
8314   return (retval);
8315 }
8316 
8317 // this function is for testing set/get/determine reduce method
8318 kmp_int32 __kmp_get_reduce_method(void) {
8319   return ((__kmp_entry_thread()->th.th_local.packed_reduction_method) >> 8);
8320 }
8321 
8322 #if OMP_50_ENABLED
8323 
8324 // Soft pause sets up threads to ignore blocktime and just go to sleep.
8325 // Spin-wait code checks __kmp_pause_status and reacts accordingly.
8326 void __kmp_soft_pause() { __kmp_pause_status = kmp_soft_paused; }
8327 
8328 // Hard pause shuts down the runtime completely.  Resume happens naturally when
8329 // OpenMP is used subsequently.
8330 void __kmp_hard_pause() {
8331   __kmp_pause_status = kmp_hard_paused;
8332   __kmp_internal_end_thread(-1);
8333 }
8334 
8335 // Soft resume sets __kmp_pause_status, and wakes up all threads.
8336 void __kmp_resume_if_soft_paused() {
8337   if (__kmp_pause_status == kmp_soft_paused) {
8338     __kmp_pause_status = kmp_not_paused;
8339 
8340     for (int gtid = 1; gtid < __kmp_threads_capacity; ++gtid) {
8341       kmp_info_t *thread = __kmp_threads[gtid];
8342       if (thread) { // Wake it if sleeping
8343         kmp_flag_64 fl(&thread->th.th_bar[bs_forkjoin_barrier].bb.b_go, thread);
8344         if (fl.is_sleeping())
8345           fl.resume(gtid);
8346         else if (__kmp_try_suspend_mx(thread)) { // got suspend lock
8347           __kmp_unlock_suspend_mx(thread); // unlock it; it won't sleep
8348         } else { // thread holds the lock and may sleep soon
8349           do { // until either the thread sleeps, or we can get the lock
8350             if (fl.is_sleeping()) {
8351               fl.resume(gtid);
8352               break;
8353             } else if (__kmp_try_suspend_mx(thread)) {
8354               __kmp_unlock_suspend_mx(thread);
8355               break;
8356             }
8357           } while (1);
8358         }
8359       }
8360     }
8361   }
8362 }
8363 
8364 // This function is called via __kmpc_pause_resource. Returns 0 if successful.
8365 // TODO: add warning messages
8366 int __kmp_pause_resource(kmp_pause_status_t level) {
8367   if (level == kmp_not_paused) { // requesting resume
8368     if (__kmp_pause_status == kmp_not_paused) {
8369       // error message about runtime not being paused, so can't resume
8370       return 1;
8371     } else {
8372       KMP_DEBUG_ASSERT(__kmp_pause_status == kmp_soft_paused ||
8373                        __kmp_pause_status == kmp_hard_paused);
8374       __kmp_pause_status = kmp_not_paused;
8375       return 0;
8376     }
8377   } else if (level == kmp_soft_paused) { // requesting soft pause
8378     if (__kmp_pause_status != kmp_not_paused) {
8379       // error message about already being paused
8380       return 1;
8381     } else {
8382       __kmp_soft_pause();
8383       return 0;
8384     }
8385   } else if (level == kmp_hard_paused) { // requesting hard pause
8386     if (__kmp_pause_status != kmp_not_paused) {
8387       // error message about already being paused
8388       return 1;
8389     } else {
8390       __kmp_hard_pause();
8391       return 0;
8392     }
8393   } else {
8394     // error message about invalid level
8395     return 1;
8396   }
8397 }
8398 
8399 #endif // OMP_50_ENABLED
8400