1 /* 2 * kmp_runtime.cpp -- KPTS runtime support library 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_atomic.h" 16 #include "kmp_environment.h" 17 #include "kmp_error.h" 18 #include "kmp_i18n.h" 19 #include "kmp_io.h" 20 #include "kmp_itt.h" 21 #include "kmp_settings.h" 22 #include "kmp_stats.h" 23 #include "kmp_str.h" 24 #include "kmp_wait_release.h" 25 #include "kmp_wrapper_getpid.h" 26 #include "kmp_dispatch.h" 27 #if KMP_USE_HIER_SCHED 28 #include "kmp_dispatch_hier.h" 29 #endif 30 31 #if OMPT_SUPPORT 32 #include "ompt-specific.h" 33 #endif 34 35 /* these are temporary issues to be dealt with */ 36 #define KMP_USE_PRCTL 0 37 38 #if KMP_OS_WINDOWS 39 #include <process.h> 40 #endif 41 42 #include "tsan_annotations.h" 43 44 #if defined(KMP_GOMP_COMPAT) 45 char const __kmp_version_alt_comp[] = 46 KMP_VERSION_PREFIX "alternative compiler support: yes"; 47 #endif /* defined(KMP_GOMP_COMPAT) */ 48 49 char const __kmp_version_omp_api[] = KMP_VERSION_PREFIX "API version: " 50 #if OMP_50_ENABLED 51 "5.0 (201611)"; 52 #elif OMP_45_ENABLED 53 "4.5 (201511)"; 54 #elif OMP_40_ENABLED 55 "4.0 (201307)"; 56 #else 57 "3.1 (201107)"; 58 #endif 59 60 #ifdef KMP_DEBUG 61 char const __kmp_version_lock[] = 62 KMP_VERSION_PREFIX "lock type: run time selectable"; 63 #endif /* KMP_DEBUG */ 64 65 #define KMP_MIN(x, y) ((x) < (y) ? (x) : (y)) 66 67 /* ------------------------------------------------------------------------ */ 68 69 #if KMP_USE_MONITOR 70 kmp_info_t __kmp_monitor; 71 #endif 72 73 /* Forward declarations */ 74 75 void __kmp_cleanup(void); 76 77 static void __kmp_initialize_info(kmp_info_t *, kmp_team_t *, int tid, 78 int gtid); 79 static void __kmp_initialize_team(kmp_team_t *team, int new_nproc, 80 kmp_internal_control_t *new_icvs, 81 ident_t *loc); 82 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 83 static void __kmp_partition_places(kmp_team_t *team, 84 int update_master_only = 0); 85 #endif 86 static void __kmp_do_serial_initialize(void); 87 void __kmp_fork_barrier(int gtid, int tid); 88 void __kmp_join_barrier(int gtid); 89 void __kmp_setup_icv_copy(kmp_team_t *team, int new_nproc, 90 kmp_internal_control_t *new_icvs, ident_t *loc); 91 92 #ifdef USE_LOAD_BALANCE 93 static int __kmp_load_balance_nproc(kmp_root_t *root, int set_nproc); 94 #endif 95 96 static int __kmp_expand_threads(int nNeed); 97 #if KMP_OS_WINDOWS 98 static int __kmp_unregister_root_other_thread(int gtid); 99 #endif 100 static void __kmp_unregister_library(void); // called by __kmp_internal_end() 101 static void __kmp_reap_thread(kmp_info_t *thread, int is_root); 102 kmp_info_t *__kmp_thread_pool_insert_pt = NULL; 103 104 /* Calculate the identifier of the current thread */ 105 /* fast (and somewhat portable) way to get unique identifier of executing 106 thread. Returns KMP_GTID_DNE if we haven't been assigned a gtid. */ 107 int __kmp_get_global_thread_id() { 108 int i; 109 kmp_info_t **other_threads; 110 size_t stack_data; 111 char *stack_addr; 112 size_t stack_size; 113 char *stack_base; 114 115 KA_TRACE( 116 1000, 117 ("*** __kmp_get_global_thread_id: entering, nproc=%d all_nproc=%d\n", 118 __kmp_nth, __kmp_all_nth)); 119 120 /* JPH - to handle the case where __kmpc_end(0) is called immediately prior to 121 a parallel region, made it return KMP_GTID_DNE to force serial_initialize 122 by caller. Had to handle KMP_GTID_DNE at all call-sites, or else guarantee 123 __kmp_init_gtid for this to work. */ 124 125 if (!TCR_4(__kmp_init_gtid)) 126 return KMP_GTID_DNE; 127 128 #ifdef KMP_TDATA_GTID 129 if (TCR_4(__kmp_gtid_mode) >= 3) { 130 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using TDATA\n")); 131 return __kmp_gtid; 132 } 133 #endif 134 if (TCR_4(__kmp_gtid_mode) >= 2) { 135 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using keyed TLS\n")); 136 return __kmp_gtid_get_specific(); 137 } 138 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using internal alg.\n")); 139 140 stack_addr = (char *)&stack_data; 141 other_threads = __kmp_threads; 142 143 /* ATT: The code below is a source of potential bugs due to unsynchronized 144 access to __kmp_threads array. For example: 145 1. Current thread loads other_threads[i] to thr and checks it, it is 146 non-NULL. 147 2. Current thread is suspended by OS. 148 3. Another thread unregisters and finishes (debug versions of free() 149 may fill memory with something like 0xEF). 150 4. Current thread is resumed. 151 5. Current thread reads junk from *thr. 152 TODO: Fix it. --ln */ 153 154 for (i = 0; i < __kmp_threads_capacity; i++) { 155 156 kmp_info_t *thr = (kmp_info_t *)TCR_SYNC_PTR(other_threads[i]); 157 if (!thr) 158 continue; 159 160 stack_size = (size_t)TCR_PTR(thr->th.th_info.ds.ds_stacksize); 161 stack_base = (char *)TCR_PTR(thr->th.th_info.ds.ds_stackbase); 162 163 /* stack grows down -- search through all of the active threads */ 164 165 if (stack_addr <= stack_base) { 166 size_t stack_diff = stack_base - stack_addr; 167 168 if (stack_diff <= stack_size) { 169 /* The only way we can be closer than the allocated */ 170 /* stack size is if we are running on this thread. */ 171 KMP_DEBUG_ASSERT(__kmp_gtid_get_specific() == i); 172 return i; 173 } 174 } 175 } 176 177 /* get specific to try and determine our gtid */ 178 KA_TRACE(1000, 179 ("*** __kmp_get_global_thread_id: internal alg. failed to find " 180 "thread, using TLS\n")); 181 i = __kmp_gtid_get_specific(); 182 183 /*fprintf( stderr, "=== %d\n", i ); */ /* GROO */ 184 185 /* if we havn't been assigned a gtid, then return code */ 186 if (i < 0) 187 return i; 188 189 /* dynamically updated stack window for uber threads to avoid get_specific 190 call */ 191 if (!TCR_4(other_threads[i]->th.th_info.ds.ds_stackgrow)) { 192 KMP_FATAL(StackOverflow, i); 193 } 194 195 stack_base = (char *)other_threads[i]->th.th_info.ds.ds_stackbase; 196 if (stack_addr > stack_base) { 197 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stackbase, stack_addr); 198 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stacksize, 199 other_threads[i]->th.th_info.ds.ds_stacksize + stack_addr - 200 stack_base); 201 } else { 202 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stacksize, 203 stack_base - stack_addr); 204 } 205 206 /* Reprint stack bounds for ubermaster since they have been refined */ 207 if (__kmp_storage_map) { 208 char *stack_end = (char *)other_threads[i]->th.th_info.ds.ds_stackbase; 209 char *stack_beg = stack_end - other_threads[i]->th.th_info.ds.ds_stacksize; 210 __kmp_print_storage_map_gtid(i, stack_beg, stack_end, 211 other_threads[i]->th.th_info.ds.ds_stacksize, 212 "th_%d stack (refinement)", i); 213 } 214 return i; 215 } 216 217 int __kmp_get_global_thread_id_reg() { 218 int gtid; 219 220 if (!__kmp_init_serial) { 221 gtid = KMP_GTID_DNE; 222 } else 223 #ifdef KMP_TDATA_GTID 224 if (TCR_4(__kmp_gtid_mode) >= 3) { 225 KA_TRACE(1000, ("*** __kmp_get_global_thread_id_reg: using TDATA\n")); 226 gtid = __kmp_gtid; 227 } else 228 #endif 229 if (TCR_4(__kmp_gtid_mode) >= 2) { 230 KA_TRACE(1000, ("*** __kmp_get_global_thread_id_reg: using keyed TLS\n")); 231 gtid = __kmp_gtid_get_specific(); 232 } else { 233 KA_TRACE(1000, 234 ("*** __kmp_get_global_thread_id_reg: using internal alg.\n")); 235 gtid = __kmp_get_global_thread_id(); 236 } 237 238 /* we must be a new uber master sibling thread */ 239 if (gtid == KMP_GTID_DNE) { 240 KA_TRACE(10, 241 ("__kmp_get_global_thread_id_reg: Encountered new root thread. " 242 "Registering a new gtid.\n")); 243 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 244 if (!__kmp_init_serial) { 245 __kmp_do_serial_initialize(); 246 gtid = __kmp_gtid_get_specific(); 247 } else { 248 gtid = __kmp_register_root(FALSE); 249 } 250 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 251 /*__kmp_printf( "+++ %d\n", gtid ); */ /* GROO */ 252 } 253 254 KMP_DEBUG_ASSERT(gtid >= 0); 255 256 return gtid; 257 } 258 259 /* caller must hold forkjoin_lock */ 260 void __kmp_check_stack_overlap(kmp_info_t *th) { 261 int f; 262 char *stack_beg = NULL; 263 char *stack_end = NULL; 264 int gtid; 265 266 KA_TRACE(10, ("__kmp_check_stack_overlap: called\n")); 267 if (__kmp_storage_map) { 268 stack_end = (char *)th->th.th_info.ds.ds_stackbase; 269 stack_beg = stack_end - th->th.th_info.ds.ds_stacksize; 270 271 gtid = __kmp_gtid_from_thread(th); 272 273 if (gtid == KMP_GTID_MONITOR) { 274 __kmp_print_storage_map_gtid( 275 gtid, stack_beg, stack_end, th->th.th_info.ds.ds_stacksize, 276 "th_%s stack (%s)", "mon", 277 (th->th.th_info.ds.ds_stackgrow) ? "initial" : "actual"); 278 } else { 279 __kmp_print_storage_map_gtid( 280 gtid, stack_beg, stack_end, th->th.th_info.ds.ds_stacksize, 281 "th_%d stack (%s)", gtid, 282 (th->th.th_info.ds.ds_stackgrow) ? "initial" : "actual"); 283 } 284 } 285 286 /* No point in checking ubermaster threads since they use refinement and 287 * cannot overlap */ 288 gtid = __kmp_gtid_from_thread(th); 289 if (__kmp_env_checks == TRUE && !KMP_UBER_GTID(gtid)) { 290 KA_TRACE(10, 291 ("__kmp_check_stack_overlap: performing extensive checking\n")); 292 if (stack_beg == NULL) { 293 stack_end = (char *)th->th.th_info.ds.ds_stackbase; 294 stack_beg = stack_end - th->th.th_info.ds.ds_stacksize; 295 } 296 297 for (f = 0; f < __kmp_threads_capacity; f++) { 298 kmp_info_t *f_th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[f]); 299 300 if (f_th && f_th != th) { 301 char *other_stack_end = 302 (char *)TCR_PTR(f_th->th.th_info.ds.ds_stackbase); 303 char *other_stack_beg = 304 other_stack_end - (size_t)TCR_PTR(f_th->th.th_info.ds.ds_stacksize); 305 if ((stack_beg > other_stack_beg && stack_beg < other_stack_end) || 306 (stack_end > other_stack_beg && stack_end < other_stack_end)) { 307 308 /* Print the other stack values before the abort */ 309 if (__kmp_storage_map) 310 __kmp_print_storage_map_gtid( 311 -1, other_stack_beg, other_stack_end, 312 (size_t)TCR_PTR(f_th->th.th_info.ds.ds_stacksize), 313 "th_%d stack (overlapped)", __kmp_gtid_from_thread(f_th)); 314 315 __kmp_fatal(KMP_MSG(StackOverlap), KMP_HNT(ChangeStackLimit), 316 __kmp_msg_null); 317 } 318 } 319 } 320 } 321 KA_TRACE(10, ("__kmp_check_stack_overlap: returning\n")); 322 } 323 324 /* ------------------------------------------------------------------------ */ 325 326 void __kmp_infinite_loop(void) { 327 static int done = FALSE; 328 329 while (!done) { 330 KMP_YIELD(TRUE); 331 } 332 } 333 334 #define MAX_MESSAGE 512 335 336 void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2, size_t size, 337 char const *format, ...) { 338 char buffer[MAX_MESSAGE]; 339 va_list ap; 340 341 va_start(ap, format); 342 KMP_SNPRINTF(buffer, sizeof(buffer), "OMP storage map: %p %p%8lu %s\n", p1, 343 p2, (unsigned long)size, format); 344 __kmp_acquire_bootstrap_lock(&__kmp_stdio_lock); 345 __kmp_vprintf(kmp_err, buffer, ap); 346 #if KMP_PRINT_DATA_PLACEMENT 347 int node; 348 if (gtid >= 0) { 349 if (p1 <= p2 && (char *)p2 - (char *)p1 == size) { 350 if (__kmp_storage_map_verbose) { 351 node = __kmp_get_host_node(p1); 352 if (node < 0) /* doesn't work, so don't try this next time */ 353 __kmp_storage_map_verbose = FALSE; 354 else { 355 char *last; 356 int lastNode; 357 int localProc = __kmp_get_cpu_from_gtid(gtid); 358 359 const int page_size = KMP_GET_PAGE_SIZE(); 360 361 p1 = (void *)((size_t)p1 & ~((size_t)page_size - 1)); 362 p2 = (void *)(((size_t)p2 - 1) & ~((size_t)page_size - 1)); 363 if (localProc >= 0) 364 __kmp_printf_no_lock(" GTID %d localNode %d\n", gtid, 365 localProc >> 1); 366 else 367 __kmp_printf_no_lock(" GTID %d\n", gtid); 368 #if KMP_USE_PRCTL 369 /* The more elaborate format is disabled for now because of the prctl 370 * hanging bug. */ 371 do { 372 last = p1; 373 lastNode = node; 374 /* This loop collates adjacent pages with the same host node. */ 375 do { 376 (char *)p1 += page_size; 377 } while (p1 <= p2 && (node = __kmp_get_host_node(p1)) == lastNode); 378 __kmp_printf_no_lock(" %p-%p memNode %d\n", last, (char *)p1 - 1, 379 lastNode); 380 } while (p1 <= p2); 381 #else 382 __kmp_printf_no_lock(" %p-%p memNode %d\n", p1, 383 (char *)p1 + (page_size - 1), 384 __kmp_get_host_node(p1)); 385 if (p1 < p2) { 386 __kmp_printf_no_lock(" %p-%p memNode %d\n", p2, 387 (char *)p2 + (page_size - 1), 388 __kmp_get_host_node(p2)); 389 } 390 #endif 391 } 392 } 393 } else 394 __kmp_printf_no_lock(" %s\n", KMP_I18N_STR(StorageMapWarning)); 395 } 396 #endif /* KMP_PRINT_DATA_PLACEMENT */ 397 __kmp_release_bootstrap_lock(&__kmp_stdio_lock); 398 } 399 400 void __kmp_warn(char const *format, ...) { 401 char buffer[MAX_MESSAGE]; 402 va_list ap; 403 404 if (__kmp_generate_warnings == kmp_warnings_off) { 405 return; 406 } 407 408 va_start(ap, format); 409 410 KMP_SNPRINTF(buffer, sizeof(buffer), "OMP warning: %s\n", format); 411 __kmp_acquire_bootstrap_lock(&__kmp_stdio_lock); 412 __kmp_vprintf(kmp_err, buffer, ap); 413 __kmp_release_bootstrap_lock(&__kmp_stdio_lock); 414 415 va_end(ap); 416 } 417 418 void __kmp_abort_process() { 419 // Later threads may stall here, but that's ok because abort() will kill them. 420 __kmp_acquire_bootstrap_lock(&__kmp_exit_lock); 421 422 if (__kmp_debug_buf) { 423 __kmp_dump_debug_buffer(); 424 } 425 426 if (KMP_OS_WINDOWS) { 427 // Let other threads know of abnormal termination and prevent deadlock 428 // if abort happened during library initialization or shutdown 429 __kmp_global.g.g_abort = SIGABRT; 430 431 /* On Windows* OS by default abort() causes pop-up error box, which stalls 432 nightly testing. Unfortunately, we cannot reliably suppress pop-up error 433 boxes. _set_abort_behavior() works well, but this function is not 434 available in VS7 (this is not problem for DLL, but it is a problem for 435 static OpenMP RTL). SetErrorMode (and so, timelimit utility) does not 436 help, at least in some versions of MS C RTL. 437 438 It seems following sequence is the only way to simulate abort() and 439 avoid pop-up error box. */ 440 raise(SIGABRT); 441 _exit(3); // Just in case, if signal ignored, exit anyway. 442 } else { 443 abort(); 444 } 445 446 __kmp_infinite_loop(); 447 __kmp_release_bootstrap_lock(&__kmp_exit_lock); 448 449 } // __kmp_abort_process 450 451 void __kmp_abort_thread(void) { 452 // TODO: Eliminate g_abort global variable and this function. 453 // In case of abort just call abort(), it will kill all the threads. 454 __kmp_infinite_loop(); 455 } // __kmp_abort_thread 456 457 /* Print out the storage map for the major kmp_info_t thread data structures 458 that are allocated together. */ 459 460 static void __kmp_print_thread_storage_map(kmp_info_t *thr, int gtid) { 461 __kmp_print_storage_map_gtid(gtid, thr, thr + 1, sizeof(kmp_info_t), "th_%d", 462 gtid); 463 464 __kmp_print_storage_map_gtid(gtid, &thr->th.th_info, &thr->th.th_team, 465 sizeof(kmp_desc_t), "th_%d.th_info", gtid); 466 467 __kmp_print_storage_map_gtid(gtid, &thr->th.th_local, &thr->th.th_pri_head, 468 sizeof(kmp_local_t), "th_%d.th_local", gtid); 469 470 __kmp_print_storage_map_gtid( 471 gtid, &thr->th.th_bar[0], &thr->th.th_bar[bs_last_barrier], 472 sizeof(kmp_balign_t) * bs_last_barrier, "th_%d.th_bar", gtid); 473 474 __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_plain_barrier], 475 &thr->th.th_bar[bs_plain_barrier + 1], 476 sizeof(kmp_balign_t), "th_%d.th_bar[plain]", 477 gtid); 478 479 __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_forkjoin_barrier], 480 &thr->th.th_bar[bs_forkjoin_barrier + 1], 481 sizeof(kmp_balign_t), "th_%d.th_bar[forkjoin]", 482 gtid); 483 484 #if KMP_FAST_REDUCTION_BARRIER 485 __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_reduction_barrier], 486 &thr->th.th_bar[bs_reduction_barrier + 1], 487 sizeof(kmp_balign_t), "th_%d.th_bar[reduction]", 488 gtid); 489 #endif // KMP_FAST_REDUCTION_BARRIER 490 } 491 492 /* Print out the storage map for the major kmp_team_t team data structures 493 that are allocated together. */ 494 495 static void __kmp_print_team_storage_map(const char *header, kmp_team_t *team, 496 int team_id, int num_thr) { 497 int num_disp_buff = team->t.t_max_nproc > 1 ? __kmp_dispatch_num_buffers : 2; 498 __kmp_print_storage_map_gtid(-1, team, team + 1, sizeof(kmp_team_t), "%s_%d", 499 header, team_id); 500 501 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[0], 502 &team->t.t_bar[bs_last_barrier], 503 sizeof(kmp_balign_team_t) * bs_last_barrier, 504 "%s_%d.t_bar", header, team_id); 505 506 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_plain_barrier], 507 &team->t.t_bar[bs_plain_barrier + 1], 508 sizeof(kmp_balign_team_t), "%s_%d.t_bar[plain]", 509 header, team_id); 510 511 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_forkjoin_barrier], 512 &team->t.t_bar[bs_forkjoin_barrier + 1], 513 sizeof(kmp_balign_team_t), 514 "%s_%d.t_bar[forkjoin]", header, team_id); 515 516 #if KMP_FAST_REDUCTION_BARRIER 517 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_reduction_barrier], 518 &team->t.t_bar[bs_reduction_barrier + 1], 519 sizeof(kmp_balign_team_t), 520 "%s_%d.t_bar[reduction]", header, team_id); 521 #endif // KMP_FAST_REDUCTION_BARRIER 522 523 __kmp_print_storage_map_gtid( 524 -1, &team->t.t_dispatch[0], &team->t.t_dispatch[num_thr], 525 sizeof(kmp_disp_t) * num_thr, "%s_%d.t_dispatch", header, team_id); 526 527 __kmp_print_storage_map_gtid( 528 -1, &team->t.t_threads[0], &team->t.t_threads[num_thr], 529 sizeof(kmp_info_t *) * num_thr, "%s_%d.t_threads", header, team_id); 530 531 __kmp_print_storage_map_gtid(-1, &team->t.t_disp_buffer[0], 532 &team->t.t_disp_buffer[num_disp_buff], 533 sizeof(dispatch_shared_info_t) * num_disp_buff, 534 "%s_%d.t_disp_buffer", header, team_id); 535 } 536 537 static void __kmp_init_allocator() { 538 #if OMP_50_ENABLED 539 __kmp_init_memkind(); 540 #endif 541 } 542 static void __kmp_fini_allocator() { 543 #if OMP_50_ENABLED 544 __kmp_fini_memkind(); 545 #endif 546 } 547 548 /* ------------------------------------------------------------------------ */ 549 550 #if KMP_DYNAMIC_LIB 551 #if KMP_OS_WINDOWS 552 553 static void __kmp_reset_lock(kmp_bootstrap_lock_t *lck) { 554 // TODO: Change to __kmp_break_bootstrap_lock(). 555 __kmp_init_bootstrap_lock(lck); // make the lock released 556 } 557 558 static void __kmp_reset_locks_on_process_detach(int gtid_req) { 559 int i; 560 int thread_count; 561 562 // PROCESS_DETACH is expected to be called by a thread that executes 563 // ProcessExit() or FreeLibrary(). OS terminates other threads (except the one 564 // calling ProcessExit or FreeLibrary). So, it might be safe to access the 565 // __kmp_threads[] without taking the forkjoin_lock. However, in fact, some 566 // threads can be still alive here, although being about to be terminated. The 567 // threads in the array with ds_thread==0 are most suspicious. Actually, it 568 // can be not safe to access the __kmp_threads[]. 569 570 // TODO: does it make sense to check __kmp_roots[] ? 571 572 // Let's check that there are no other alive threads registered with the OMP 573 // lib. 574 while (1) { 575 thread_count = 0; 576 for (i = 0; i < __kmp_threads_capacity; ++i) { 577 if (!__kmp_threads) 578 continue; 579 kmp_info_t *th = __kmp_threads[i]; 580 if (th == NULL) 581 continue; 582 int gtid = th->th.th_info.ds.ds_gtid; 583 if (gtid == gtid_req) 584 continue; 585 if (gtid < 0) 586 continue; 587 DWORD exit_val; 588 int alive = __kmp_is_thread_alive(th, &exit_val); 589 if (alive) { 590 ++thread_count; 591 } 592 } 593 if (thread_count == 0) 594 break; // success 595 } 596 597 // Assume that I'm alone. Now it might be safe to check and reset locks. 598 // __kmp_forkjoin_lock and __kmp_stdio_lock are expected to be reset. 599 __kmp_reset_lock(&__kmp_forkjoin_lock); 600 #ifdef KMP_DEBUG 601 __kmp_reset_lock(&__kmp_stdio_lock); 602 #endif // KMP_DEBUG 603 } 604 605 BOOL WINAPI DllMain(HINSTANCE hInstDLL, DWORD fdwReason, LPVOID lpReserved) { 606 //__kmp_acquire_bootstrap_lock( &__kmp_initz_lock ); 607 608 switch (fdwReason) { 609 610 case DLL_PROCESS_ATTACH: 611 KA_TRACE(10, ("DllMain: PROCESS_ATTACH\n")); 612 613 return TRUE; 614 615 case DLL_PROCESS_DETACH: 616 KA_TRACE(10, ("DllMain: PROCESS_DETACH T#%d\n", __kmp_gtid_get_specific())); 617 618 if (lpReserved != NULL) { 619 // lpReserved is used for telling the difference: 620 // lpReserved == NULL when FreeLibrary() was called, 621 // lpReserved != NULL when the process terminates. 622 // When FreeLibrary() is called, worker threads remain alive. So they will 623 // release the forkjoin lock by themselves. When the process terminates, 624 // worker threads disappear triggering the problem of unreleased forkjoin 625 // lock as described below. 626 627 // A worker thread can take the forkjoin lock. The problem comes up if 628 // that worker thread becomes dead before it releases the forkjoin lock. 629 // The forkjoin lock remains taken, while the thread executing 630 // DllMain()->PROCESS_DETACH->__kmp_internal_end_library() below will try 631 // to take the forkjoin lock and will always fail, so that the application 632 // will never finish [normally]. This scenario is possible if 633 // __kmpc_end() has not been executed. It looks like it's not a corner 634 // case, but common cases: 635 // - the main function was compiled by an alternative compiler; 636 // - the main function was compiled by icl but without /Qopenmp 637 // (application with plugins); 638 // - application terminates by calling C exit(), Fortran CALL EXIT() or 639 // Fortran STOP. 640 // - alive foreign thread prevented __kmpc_end from doing cleanup. 641 // 642 // This is a hack to work around the problem. 643 // TODO: !!! figure out something better. 644 __kmp_reset_locks_on_process_detach(__kmp_gtid_get_specific()); 645 } 646 647 __kmp_internal_end_library(__kmp_gtid_get_specific()); 648 649 return TRUE; 650 651 case DLL_THREAD_ATTACH: 652 KA_TRACE(10, ("DllMain: THREAD_ATTACH\n")); 653 654 /* if we want to register new siblings all the time here call 655 * __kmp_get_gtid(); */ 656 return TRUE; 657 658 case DLL_THREAD_DETACH: 659 KA_TRACE(10, ("DllMain: THREAD_DETACH T#%d\n", __kmp_gtid_get_specific())); 660 661 __kmp_internal_end_thread(__kmp_gtid_get_specific()); 662 return TRUE; 663 } 664 665 return TRUE; 666 } 667 668 #endif /* KMP_OS_WINDOWS */ 669 #endif /* KMP_DYNAMIC_LIB */ 670 671 /* __kmp_parallel_deo -- Wait until it's our turn. */ 672 void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) { 673 int gtid = *gtid_ref; 674 #ifdef BUILD_PARALLEL_ORDERED 675 kmp_team_t *team = __kmp_team_from_gtid(gtid); 676 #endif /* BUILD_PARALLEL_ORDERED */ 677 678 if (__kmp_env_consistency_check) { 679 if (__kmp_threads[gtid]->th.th_root->r.r_active) 680 #if KMP_USE_DYNAMIC_LOCK 681 __kmp_push_sync(gtid, ct_ordered_in_parallel, loc_ref, NULL, 0); 682 #else 683 __kmp_push_sync(gtid, ct_ordered_in_parallel, loc_ref, NULL); 684 #endif 685 } 686 #ifdef BUILD_PARALLEL_ORDERED 687 if (!team->t.t_serialized) { 688 KMP_MB(); 689 KMP_WAIT(&team->t.t_ordered.dt.t_value, __kmp_tid_from_gtid(gtid), KMP_EQ, 690 NULL); 691 KMP_MB(); 692 } 693 #endif /* BUILD_PARALLEL_ORDERED */ 694 } 695 696 /* __kmp_parallel_dxo -- Signal the next task. */ 697 void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) { 698 int gtid = *gtid_ref; 699 #ifdef BUILD_PARALLEL_ORDERED 700 int tid = __kmp_tid_from_gtid(gtid); 701 kmp_team_t *team = __kmp_team_from_gtid(gtid); 702 #endif /* BUILD_PARALLEL_ORDERED */ 703 704 if (__kmp_env_consistency_check) { 705 if (__kmp_threads[gtid]->th.th_root->r.r_active) 706 __kmp_pop_sync(gtid, ct_ordered_in_parallel, loc_ref); 707 } 708 #ifdef BUILD_PARALLEL_ORDERED 709 if (!team->t.t_serialized) { 710 KMP_MB(); /* Flush all pending memory write invalidates. */ 711 712 /* use the tid of the next thread in this team */ 713 /* TODO replace with general release procedure */ 714 team->t.t_ordered.dt.t_value = ((tid + 1) % team->t.t_nproc); 715 716 KMP_MB(); /* Flush all pending memory write invalidates. */ 717 } 718 #endif /* BUILD_PARALLEL_ORDERED */ 719 } 720 721 /* ------------------------------------------------------------------------ */ 722 /* The BARRIER for a SINGLE process section is always explicit */ 723 724 int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws) { 725 int status; 726 kmp_info_t *th; 727 kmp_team_t *team; 728 729 if (!TCR_4(__kmp_init_parallel)) 730 __kmp_parallel_initialize(); 731 732 #if OMP_50_ENABLED 733 __kmp_resume_if_soft_paused(); 734 #endif 735 736 th = __kmp_threads[gtid]; 737 team = th->th.th_team; 738 status = 0; 739 740 th->th.th_ident = id_ref; 741 742 if (team->t.t_serialized) { 743 status = 1; 744 } else { 745 kmp_int32 old_this = th->th.th_local.this_construct; 746 747 ++th->th.th_local.this_construct; 748 /* try to set team count to thread count--success means thread got the 749 single block */ 750 /* TODO: Should this be acquire or release? */ 751 if (team->t.t_construct == old_this) { 752 status = __kmp_atomic_compare_store_acq(&team->t.t_construct, old_this, 753 th->th.th_local.this_construct); 754 } 755 #if USE_ITT_BUILD 756 if (__itt_metadata_add_ptr && __kmp_forkjoin_frames_mode == 3 && 757 KMP_MASTER_GTID(gtid) && 758 #if OMP_40_ENABLED 759 th->th.th_teams_microtask == NULL && 760 #endif 761 team->t.t_active_level == 762 1) { // Only report metadata by master of active team at level 1 763 __kmp_itt_metadata_single(id_ref); 764 } 765 #endif /* USE_ITT_BUILD */ 766 } 767 768 if (__kmp_env_consistency_check) { 769 if (status && push_ws) { 770 __kmp_push_workshare(gtid, ct_psingle, id_ref); 771 } else { 772 __kmp_check_workshare(gtid, ct_psingle, id_ref); 773 } 774 } 775 #if USE_ITT_BUILD 776 if (status) { 777 __kmp_itt_single_start(gtid); 778 } 779 #endif /* USE_ITT_BUILD */ 780 return status; 781 } 782 783 void __kmp_exit_single(int gtid) { 784 #if USE_ITT_BUILD 785 __kmp_itt_single_end(gtid); 786 #endif /* USE_ITT_BUILD */ 787 if (__kmp_env_consistency_check) 788 __kmp_pop_workshare(gtid, ct_psingle, NULL); 789 } 790 791 /* determine if we can go parallel or must use a serialized parallel region and 792 * how many threads we can use 793 * set_nproc is the number of threads requested for the team 794 * returns 0 if we should serialize or only use one thread, 795 * otherwise the number of threads to use 796 * The forkjoin lock is held by the caller. */ 797 static int __kmp_reserve_threads(kmp_root_t *root, kmp_team_t *parent_team, 798 int master_tid, int set_nthreads 799 #if OMP_40_ENABLED 800 , 801 int enter_teams 802 #endif /* OMP_40_ENABLED */ 803 ) { 804 int capacity; 805 int new_nthreads; 806 KMP_DEBUG_ASSERT(__kmp_init_serial); 807 KMP_DEBUG_ASSERT(root && parent_team); 808 kmp_info_t *this_thr = parent_team->t.t_threads[master_tid]; 809 810 // If dyn-var is set, dynamically adjust the number of desired threads, 811 // according to the method specified by dynamic_mode. 812 new_nthreads = set_nthreads; 813 if (!get__dynamic_2(parent_team, master_tid)) { 814 ; 815 } 816 #ifdef USE_LOAD_BALANCE 817 else if (__kmp_global.g.g_dynamic_mode == dynamic_load_balance) { 818 new_nthreads = __kmp_load_balance_nproc(root, set_nthreads); 819 if (new_nthreads == 1) { 820 KC_TRACE(10, ("__kmp_reserve_threads: T#%d load balance reduced " 821 "reservation to 1 thread\n", 822 master_tid)); 823 return 1; 824 } 825 if (new_nthreads < set_nthreads) { 826 KC_TRACE(10, ("__kmp_reserve_threads: T#%d load balance reduced " 827 "reservation to %d threads\n", 828 master_tid, new_nthreads)); 829 } 830 } 831 #endif /* USE_LOAD_BALANCE */ 832 else if (__kmp_global.g.g_dynamic_mode == dynamic_thread_limit) { 833 new_nthreads = __kmp_avail_proc - __kmp_nth + 834 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 835 if (new_nthreads <= 1) { 836 KC_TRACE(10, ("__kmp_reserve_threads: T#%d thread limit reduced " 837 "reservation to 1 thread\n", 838 master_tid)); 839 return 1; 840 } 841 if (new_nthreads < set_nthreads) { 842 KC_TRACE(10, ("__kmp_reserve_threads: T#%d thread limit reduced " 843 "reservation to %d threads\n", 844 master_tid, new_nthreads)); 845 } else { 846 new_nthreads = set_nthreads; 847 } 848 } else if (__kmp_global.g.g_dynamic_mode == dynamic_random) { 849 if (set_nthreads > 2) { 850 new_nthreads = __kmp_get_random(parent_team->t.t_threads[master_tid]); 851 new_nthreads = (new_nthreads % set_nthreads) + 1; 852 if (new_nthreads == 1) { 853 KC_TRACE(10, ("__kmp_reserve_threads: T#%d dynamic random reduced " 854 "reservation to 1 thread\n", 855 master_tid)); 856 return 1; 857 } 858 if (new_nthreads < set_nthreads) { 859 KC_TRACE(10, ("__kmp_reserve_threads: T#%d dynamic random reduced " 860 "reservation to %d threads\n", 861 master_tid, new_nthreads)); 862 } 863 } 864 } else { 865 KMP_ASSERT(0); 866 } 867 868 // Respect KMP_ALL_THREADS/KMP_DEVICE_THREAD_LIMIT. 869 if (__kmp_nth + new_nthreads - 870 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) > 871 __kmp_max_nth) { 872 int tl_nthreads = __kmp_max_nth - __kmp_nth + 873 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 874 if (tl_nthreads <= 0) { 875 tl_nthreads = 1; 876 } 877 878 // If dyn-var is false, emit a 1-time warning. 879 if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) { 880 __kmp_reserve_warn = 1; 881 __kmp_msg(kmp_ms_warning, 882 KMP_MSG(CantFormThrTeam, set_nthreads, tl_nthreads), 883 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 884 } 885 if (tl_nthreads == 1) { 886 KC_TRACE(10, ("__kmp_reserve_threads: T#%d KMP_DEVICE_THREAD_LIMIT " 887 "reduced reservation to 1 thread\n", 888 master_tid)); 889 return 1; 890 } 891 KC_TRACE(10, ("__kmp_reserve_threads: T#%d KMP_DEVICE_THREAD_LIMIT reduced " 892 "reservation to %d threads\n", 893 master_tid, tl_nthreads)); 894 new_nthreads = tl_nthreads; 895 } 896 897 // Respect OMP_THREAD_LIMIT 898 int cg_nthreads = this_thr->th.th_cg_roots->cg_nthreads; 899 int max_cg_threads = this_thr->th.th_cg_roots->cg_thread_limit; 900 if (cg_nthreads + new_nthreads - 901 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) > 902 max_cg_threads) { 903 int tl_nthreads = max_cg_threads - cg_nthreads + 904 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 905 if (tl_nthreads <= 0) { 906 tl_nthreads = 1; 907 } 908 909 // If dyn-var is false, emit a 1-time warning. 910 if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) { 911 __kmp_reserve_warn = 1; 912 __kmp_msg(kmp_ms_warning, 913 KMP_MSG(CantFormThrTeam, set_nthreads, tl_nthreads), 914 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 915 } 916 if (tl_nthreads == 1) { 917 KC_TRACE(10, ("__kmp_reserve_threads: T#%d OMP_THREAD_LIMIT " 918 "reduced reservation to 1 thread\n", 919 master_tid)); 920 return 1; 921 } 922 KC_TRACE(10, ("__kmp_reserve_threads: T#%d OMP_THREAD_LIMIT reduced " 923 "reservation to %d threads\n", 924 master_tid, tl_nthreads)); 925 new_nthreads = tl_nthreads; 926 } 927 928 // Check if the threads array is large enough, or needs expanding. 929 // See comment in __kmp_register_root() about the adjustment if 930 // __kmp_threads[0] == NULL. 931 capacity = __kmp_threads_capacity; 932 if (TCR_PTR(__kmp_threads[0]) == NULL) { 933 --capacity; 934 } 935 if (__kmp_nth + new_nthreads - 936 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) > 937 capacity) { 938 // Expand the threads array. 939 int slotsRequired = __kmp_nth + new_nthreads - 940 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) - 941 capacity; 942 int slotsAdded = __kmp_expand_threads(slotsRequired); 943 if (slotsAdded < slotsRequired) { 944 // The threads array was not expanded enough. 945 new_nthreads -= (slotsRequired - slotsAdded); 946 KMP_ASSERT(new_nthreads >= 1); 947 948 // If dyn-var is false, emit a 1-time warning. 949 if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) { 950 __kmp_reserve_warn = 1; 951 if (__kmp_tp_cached) { 952 __kmp_msg(kmp_ms_warning, 953 KMP_MSG(CantFormThrTeam, set_nthreads, new_nthreads), 954 KMP_HNT(Set_ALL_THREADPRIVATE, __kmp_tp_capacity), 955 KMP_HNT(PossibleSystemLimitOnThreads), __kmp_msg_null); 956 } else { 957 __kmp_msg(kmp_ms_warning, 958 KMP_MSG(CantFormThrTeam, set_nthreads, new_nthreads), 959 KMP_HNT(SystemLimitOnThreads), __kmp_msg_null); 960 } 961 } 962 } 963 } 964 965 #ifdef KMP_DEBUG 966 if (new_nthreads == 1) { 967 KC_TRACE(10, 968 ("__kmp_reserve_threads: T#%d serializing team after reclaiming " 969 "dead roots and rechecking; requested %d threads\n", 970 __kmp_get_gtid(), set_nthreads)); 971 } else { 972 KC_TRACE(10, ("__kmp_reserve_threads: T#%d allocating %d threads; requested" 973 " %d threads\n", 974 __kmp_get_gtid(), new_nthreads, set_nthreads)); 975 } 976 #endif // KMP_DEBUG 977 return new_nthreads; 978 } 979 980 /* Allocate threads from the thread pool and assign them to the new team. We are 981 assured that there are enough threads available, because we checked on that 982 earlier within critical section forkjoin */ 983 static void __kmp_fork_team_threads(kmp_root_t *root, kmp_team_t *team, 984 kmp_info_t *master_th, int master_gtid) { 985 int i; 986 int use_hot_team; 987 988 KA_TRACE(10, ("__kmp_fork_team_threads: new_nprocs = %d\n", team->t.t_nproc)); 989 KMP_DEBUG_ASSERT(master_gtid == __kmp_get_gtid()); 990 KMP_MB(); 991 992 /* first, let's setup the master thread */ 993 master_th->th.th_info.ds.ds_tid = 0; 994 master_th->th.th_team = team; 995 master_th->th.th_team_nproc = team->t.t_nproc; 996 master_th->th.th_team_master = master_th; 997 master_th->th.th_team_serialized = FALSE; 998 master_th->th.th_dispatch = &team->t.t_dispatch[0]; 999 1000 /* make sure we are not the optimized hot team */ 1001 #if KMP_NESTED_HOT_TEAMS 1002 use_hot_team = 0; 1003 kmp_hot_team_ptr_t *hot_teams = master_th->th.th_hot_teams; 1004 if (hot_teams) { // hot teams array is not allocated if 1005 // KMP_HOT_TEAMS_MAX_LEVEL=0 1006 int level = team->t.t_active_level - 1; // index in array of hot teams 1007 if (master_th->th.th_teams_microtask) { // are we inside the teams? 1008 if (master_th->th.th_teams_size.nteams > 1) { 1009 ++level; // level was not increased in teams construct for 1010 // team_of_masters 1011 } 1012 if (team->t.t_pkfn != (microtask_t)__kmp_teams_master && 1013 master_th->th.th_teams_level == team->t.t_level) { 1014 ++level; // level was not increased in teams construct for 1015 // team_of_workers before the parallel 1016 } // team->t.t_level will be increased inside parallel 1017 } 1018 if (level < __kmp_hot_teams_max_level) { 1019 if (hot_teams[level].hot_team) { 1020 // hot team has already been allocated for given level 1021 KMP_DEBUG_ASSERT(hot_teams[level].hot_team == team); 1022 use_hot_team = 1; // the team is ready to use 1023 } else { 1024 use_hot_team = 0; // AC: threads are not allocated yet 1025 hot_teams[level].hot_team = team; // remember new hot team 1026 hot_teams[level].hot_team_nth = team->t.t_nproc; 1027 } 1028 } else { 1029 use_hot_team = 0; 1030 } 1031 } 1032 #else 1033 use_hot_team = team == root->r.r_hot_team; 1034 #endif 1035 if (!use_hot_team) { 1036 1037 /* install the master thread */ 1038 team->t.t_threads[0] = master_th; 1039 __kmp_initialize_info(master_th, team, 0, master_gtid); 1040 1041 /* now, install the worker threads */ 1042 for (i = 1; i < team->t.t_nproc; i++) { 1043 1044 /* fork or reallocate a new thread and install it in team */ 1045 kmp_info_t *thr = __kmp_allocate_thread(root, team, i); 1046 team->t.t_threads[i] = thr; 1047 KMP_DEBUG_ASSERT(thr); 1048 KMP_DEBUG_ASSERT(thr->th.th_team == team); 1049 /* align team and thread arrived states */ 1050 KA_TRACE(20, ("__kmp_fork_team_threads: T#%d(%d:%d) init arrived " 1051 "T#%d(%d:%d) join =%llu, plain=%llu\n", 1052 __kmp_gtid_from_tid(0, team), team->t.t_id, 0, 1053 __kmp_gtid_from_tid(i, team), team->t.t_id, i, 1054 team->t.t_bar[bs_forkjoin_barrier].b_arrived, 1055 team->t.t_bar[bs_plain_barrier].b_arrived)); 1056 #if OMP_40_ENABLED 1057 thr->th.th_teams_microtask = master_th->th.th_teams_microtask; 1058 thr->th.th_teams_level = master_th->th.th_teams_level; 1059 thr->th.th_teams_size = master_th->th.th_teams_size; 1060 #endif 1061 { // Initialize threads' barrier data. 1062 int b; 1063 kmp_balign_t *balign = team->t.t_threads[i]->th.th_bar; 1064 for (b = 0; b < bs_last_barrier; ++b) { 1065 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 1066 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 1067 #if USE_DEBUGGER 1068 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 1069 #endif 1070 } 1071 } 1072 } 1073 1074 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 1075 __kmp_partition_places(team); 1076 #endif 1077 } 1078 1079 #if OMP_50_ENABLED 1080 if (__kmp_display_affinity && team->t.t_display_affinity != 1) { 1081 for (i = 0; i < team->t.t_nproc; i++) { 1082 kmp_info_t *thr = team->t.t_threads[i]; 1083 if (thr->th.th_prev_num_threads != team->t.t_nproc || 1084 thr->th.th_prev_level != team->t.t_level) { 1085 team->t.t_display_affinity = 1; 1086 break; 1087 } 1088 } 1089 } 1090 #endif 1091 1092 KMP_MB(); 1093 } 1094 1095 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1096 // Propagate any changes to the floating point control registers out to the team 1097 // We try to avoid unnecessary writes to the relevant cache line in the team 1098 // structure, so we don't make changes unless they are needed. 1099 inline static void propagateFPControl(kmp_team_t *team) { 1100 if (__kmp_inherit_fp_control) { 1101 kmp_int16 x87_fpu_control_word; 1102 kmp_uint32 mxcsr; 1103 1104 // Get master values of FPU control flags (both X87 and vector) 1105 __kmp_store_x87_fpu_control_word(&x87_fpu_control_word); 1106 __kmp_store_mxcsr(&mxcsr); 1107 mxcsr &= KMP_X86_MXCSR_MASK; 1108 1109 // There is no point looking at t_fp_control_saved here. 1110 // If it is TRUE, we still have to update the values if they are different 1111 // from those we now have. If it is FALSE we didn't save anything yet, but 1112 // our objective is the same. We have to ensure that the values in the team 1113 // are the same as those we have. 1114 // So, this code achieves what we need whether or not t_fp_control_saved is 1115 // true. By checking whether the value needs updating we avoid unnecessary 1116 // writes that would put the cache-line into a written state, causing all 1117 // threads in the team to have to read it again. 1118 KMP_CHECK_UPDATE(team->t.t_x87_fpu_control_word, x87_fpu_control_word); 1119 KMP_CHECK_UPDATE(team->t.t_mxcsr, mxcsr); 1120 // Although we don't use this value, other code in the runtime wants to know 1121 // whether it should restore them. So we must ensure it is correct. 1122 KMP_CHECK_UPDATE(team->t.t_fp_control_saved, TRUE); 1123 } else { 1124 // Similarly here. Don't write to this cache-line in the team structure 1125 // unless we have to. 1126 KMP_CHECK_UPDATE(team->t.t_fp_control_saved, FALSE); 1127 } 1128 } 1129 1130 // Do the opposite, setting the hardware registers to the updated values from 1131 // the team. 1132 inline static void updateHWFPControl(kmp_team_t *team) { 1133 if (__kmp_inherit_fp_control && team->t.t_fp_control_saved) { 1134 // Only reset the fp control regs if they have been changed in the team. 1135 // the parallel region that we are exiting. 1136 kmp_int16 x87_fpu_control_word; 1137 kmp_uint32 mxcsr; 1138 __kmp_store_x87_fpu_control_word(&x87_fpu_control_word); 1139 __kmp_store_mxcsr(&mxcsr); 1140 mxcsr &= KMP_X86_MXCSR_MASK; 1141 1142 if (team->t.t_x87_fpu_control_word != x87_fpu_control_word) { 1143 __kmp_clear_x87_fpu_status_word(); 1144 __kmp_load_x87_fpu_control_word(&team->t.t_x87_fpu_control_word); 1145 } 1146 1147 if (team->t.t_mxcsr != mxcsr) { 1148 __kmp_load_mxcsr(&team->t.t_mxcsr); 1149 } 1150 } 1151 } 1152 #else 1153 #define propagateFPControl(x) ((void)0) 1154 #define updateHWFPControl(x) ((void)0) 1155 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 1156 1157 static void __kmp_alloc_argv_entries(int argc, kmp_team_t *team, 1158 int realloc); // forward declaration 1159 1160 /* Run a parallel region that has been serialized, so runs only in a team of the 1161 single master thread. */ 1162 void __kmp_serialized_parallel(ident_t *loc, kmp_int32 global_tid) { 1163 kmp_info_t *this_thr; 1164 kmp_team_t *serial_team; 1165 1166 KC_TRACE(10, ("__kmpc_serialized_parallel: called by T#%d\n", global_tid)); 1167 1168 /* Skip all this code for autopar serialized loops since it results in 1169 unacceptable overhead */ 1170 if (loc != NULL && (loc->flags & KMP_IDENT_AUTOPAR)) 1171 return; 1172 1173 if (!TCR_4(__kmp_init_parallel)) 1174 __kmp_parallel_initialize(); 1175 1176 #if OMP_50_ENABLED 1177 __kmp_resume_if_soft_paused(); 1178 #endif 1179 1180 this_thr = __kmp_threads[global_tid]; 1181 serial_team = this_thr->th.th_serial_team; 1182 1183 /* utilize the serialized team held by this thread */ 1184 KMP_DEBUG_ASSERT(serial_team); 1185 KMP_MB(); 1186 1187 if (__kmp_tasking_mode != tskm_immediate_exec) { 1188 KMP_DEBUG_ASSERT( 1189 this_thr->th.th_task_team == 1190 this_thr->th.th_team->t.t_task_team[this_thr->th.th_task_state]); 1191 KMP_DEBUG_ASSERT(serial_team->t.t_task_team[this_thr->th.th_task_state] == 1192 NULL); 1193 KA_TRACE(20, ("__kmpc_serialized_parallel: T#%d pushing task_team %p / " 1194 "team %p, new task_team = NULL\n", 1195 global_tid, this_thr->th.th_task_team, this_thr->th.th_team)); 1196 this_thr->th.th_task_team = NULL; 1197 } 1198 1199 #if OMP_40_ENABLED 1200 kmp_proc_bind_t proc_bind = this_thr->th.th_set_proc_bind; 1201 if (this_thr->th.th_current_task->td_icvs.proc_bind == proc_bind_false) { 1202 proc_bind = proc_bind_false; 1203 } else if (proc_bind == proc_bind_default) { 1204 // No proc_bind clause was specified, so use the current value 1205 // of proc-bind-var for this parallel region. 1206 proc_bind = this_thr->th.th_current_task->td_icvs.proc_bind; 1207 } 1208 // Reset for next parallel region 1209 this_thr->th.th_set_proc_bind = proc_bind_default; 1210 #endif /* OMP_40_ENABLED */ 1211 1212 #if OMPT_SUPPORT 1213 ompt_data_t ompt_parallel_data = ompt_data_none; 1214 ompt_data_t *implicit_task_data; 1215 void *codeptr = OMPT_LOAD_RETURN_ADDRESS(global_tid); 1216 if (ompt_enabled.enabled && 1217 this_thr->th.ompt_thread_info.state != ompt_state_overhead) { 1218 1219 ompt_task_info_t *parent_task_info; 1220 parent_task_info = OMPT_CUR_TASK_INFO(this_thr); 1221 1222 parent_task_info->frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 1223 if (ompt_enabled.ompt_callback_parallel_begin) { 1224 int team_size = 1; 1225 1226 ompt_callbacks.ompt_callback(ompt_callback_parallel_begin)( 1227 &(parent_task_info->task_data), &(parent_task_info->frame), 1228 &ompt_parallel_data, team_size, ompt_parallel_invoker_program, 1229 codeptr); 1230 } 1231 } 1232 #endif // OMPT_SUPPORT 1233 1234 if (this_thr->th.th_team != serial_team) { 1235 // Nested level will be an index in the nested nthreads array 1236 int level = this_thr->th.th_team->t.t_level; 1237 1238 if (serial_team->t.t_serialized) { 1239 /* this serial team was already used 1240 TODO increase performance by making this locks more specific */ 1241 kmp_team_t *new_team; 1242 1243 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 1244 1245 new_team = __kmp_allocate_team(this_thr->th.th_root, 1, 1, 1246 #if OMPT_SUPPORT 1247 ompt_parallel_data, 1248 #endif 1249 #if OMP_40_ENABLED 1250 proc_bind, 1251 #endif 1252 &this_thr->th.th_current_task->td_icvs, 1253 0 USE_NESTED_HOT_ARG(NULL)); 1254 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1255 KMP_ASSERT(new_team); 1256 1257 /* setup new serialized team and install it */ 1258 new_team->t.t_threads[0] = this_thr; 1259 new_team->t.t_parent = this_thr->th.th_team; 1260 serial_team = new_team; 1261 this_thr->th.th_serial_team = serial_team; 1262 1263 KF_TRACE( 1264 10, 1265 ("__kmpc_serialized_parallel: T#%d allocated new serial team %p\n", 1266 global_tid, serial_team)); 1267 1268 /* TODO the above breaks the requirement that if we run out of resources, 1269 then we can still guarantee that serialized teams are ok, since we may 1270 need to allocate a new one */ 1271 } else { 1272 KF_TRACE( 1273 10, 1274 ("__kmpc_serialized_parallel: T#%d reusing cached serial team %p\n", 1275 global_tid, serial_team)); 1276 } 1277 1278 /* we have to initialize this serial team */ 1279 KMP_DEBUG_ASSERT(serial_team->t.t_threads); 1280 KMP_DEBUG_ASSERT(serial_team->t.t_threads[0] == this_thr); 1281 KMP_DEBUG_ASSERT(this_thr->th.th_team != serial_team); 1282 serial_team->t.t_ident = loc; 1283 serial_team->t.t_serialized = 1; 1284 serial_team->t.t_nproc = 1; 1285 serial_team->t.t_parent = this_thr->th.th_team; 1286 serial_team->t.t_sched.sched = this_thr->th.th_team->t.t_sched.sched; 1287 this_thr->th.th_team = serial_team; 1288 serial_team->t.t_master_tid = this_thr->th.th_info.ds.ds_tid; 1289 1290 KF_TRACE(10, ("__kmpc_serialized_parallel: T#d curtask=%p\n", global_tid, 1291 this_thr->th.th_current_task)); 1292 KMP_ASSERT(this_thr->th.th_current_task->td_flags.executing == 1); 1293 this_thr->th.th_current_task->td_flags.executing = 0; 1294 1295 __kmp_push_current_task_to_thread(this_thr, serial_team, 0); 1296 1297 /* TODO: GEH: do ICVs work for nested serialized teams? Don't we need an 1298 implicit task for each serialized task represented by 1299 team->t.t_serialized? */ 1300 copy_icvs(&this_thr->th.th_current_task->td_icvs, 1301 &this_thr->th.th_current_task->td_parent->td_icvs); 1302 1303 // Thread value exists in the nested nthreads array for the next nested 1304 // level 1305 if (__kmp_nested_nth.used && (level + 1 < __kmp_nested_nth.used)) { 1306 this_thr->th.th_current_task->td_icvs.nproc = 1307 __kmp_nested_nth.nth[level + 1]; 1308 } 1309 1310 #if OMP_40_ENABLED 1311 if (__kmp_nested_proc_bind.used && 1312 (level + 1 < __kmp_nested_proc_bind.used)) { 1313 this_thr->th.th_current_task->td_icvs.proc_bind = 1314 __kmp_nested_proc_bind.bind_types[level + 1]; 1315 } 1316 #endif /* OMP_40_ENABLED */ 1317 1318 #if USE_DEBUGGER 1319 serial_team->t.t_pkfn = (microtask_t)(~0); // For the debugger. 1320 #endif 1321 this_thr->th.th_info.ds.ds_tid = 0; 1322 1323 /* set thread cache values */ 1324 this_thr->th.th_team_nproc = 1; 1325 this_thr->th.th_team_master = this_thr; 1326 this_thr->th.th_team_serialized = 1; 1327 1328 serial_team->t.t_level = serial_team->t.t_parent->t.t_level + 1; 1329 serial_team->t.t_active_level = serial_team->t.t_parent->t.t_active_level; 1330 #if OMP_50_ENABLED 1331 serial_team->t.t_def_allocator = this_thr->th.th_def_allocator; // save 1332 #endif 1333 1334 propagateFPControl(serial_team); 1335 1336 /* check if we need to allocate dispatch buffers stack */ 1337 KMP_DEBUG_ASSERT(serial_team->t.t_dispatch); 1338 if (!serial_team->t.t_dispatch->th_disp_buffer) { 1339 serial_team->t.t_dispatch->th_disp_buffer = 1340 (dispatch_private_info_t *)__kmp_allocate( 1341 sizeof(dispatch_private_info_t)); 1342 } 1343 this_thr->th.th_dispatch = serial_team->t.t_dispatch; 1344 1345 KMP_MB(); 1346 1347 } else { 1348 /* this serialized team is already being used, 1349 * that's fine, just add another nested level */ 1350 KMP_DEBUG_ASSERT(this_thr->th.th_team == serial_team); 1351 KMP_DEBUG_ASSERT(serial_team->t.t_threads); 1352 KMP_DEBUG_ASSERT(serial_team->t.t_threads[0] == this_thr); 1353 ++serial_team->t.t_serialized; 1354 this_thr->th.th_team_serialized = serial_team->t.t_serialized; 1355 1356 // Nested level will be an index in the nested nthreads array 1357 int level = this_thr->th.th_team->t.t_level; 1358 // Thread value exists in the nested nthreads array for the next nested 1359 // level 1360 if (__kmp_nested_nth.used && (level + 1 < __kmp_nested_nth.used)) { 1361 this_thr->th.th_current_task->td_icvs.nproc = 1362 __kmp_nested_nth.nth[level + 1]; 1363 } 1364 serial_team->t.t_level++; 1365 KF_TRACE(10, ("__kmpc_serialized_parallel: T#%d increasing nesting level " 1366 "of serial team %p to %d\n", 1367 global_tid, serial_team, serial_team->t.t_level)); 1368 1369 /* allocate/push dispatch buffers stack */ 1370 KMP_DEBUG_ASSERT(serial_team->t.t_dispatch); 1371 { 1372 dispatch_private_info_t *disp_buffer = 1373 (dispatch_private_info_t *)__kmp_allocate( 1374 sizeof(dispatch_private_info_t)); 1375 disp_buffer->next = serial_team->t.t_dispatch->th_disp_buffer; 1376 serial_team->t.t_dispatch->th_disp_buffer = disp_buffer; 1377 } 1378 this_thr->th.th_dispatch = serial_team->t.t_dispatch; 1379 1380 KMP_MB(); 1381 } 1382 #if OMP_40_ENABLED 1383 KMP_CHECK_UPDATE(serial_team->t.t_cancel_request, cancel_noreq); 1384 #endif 1385 1386 #if OMP_50_ENABLED 1387 // Perform the display affinity functionality for 1388 // serialized parallel regions 1389 if (__kmp_display_affinity) { 1390 if (this_thr->th.th_prev_level != serial_team->t.t_level || 1391 this_thr->th.th_prev_num_threads != 1) { 1392 // NULL means use the affinity-format-var ICV 1393 __kmp_aux_display_affinity(global_tid, NULL); 1394 this_thr->th.th_prev_level = serial_team->t.t_level; 1395 this_thr->th.th_prev_num_threads = 1; 1396 } 1397 } 1398 #endif 1399 1400 if (__kmp_env_consistency_check) 1401 __kmp_push_parallel(global_tid, NULL); 1402 #if OMPT_SUPPORT 1403 serial_team->t.ompt_team_info.master_return_address = codeptr; 1404 if (ompt_enabled.enabled && 1405 this_thr->th.ompt_thread_info.state != ompt_state_overhead) { 1406 OMPT_CUR_TASK_INFO(this_thr)->frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 1407 1408 ompt_lw_taskteam_t lw_taskteam; 1409 __ompt_lw_taskteam_init(&lw_taskteam, this_thr, global_tid, 1410 &ompt_parallel_data, codeptr); 1411 1412 __ompt_lw_taskteam_link(&lw_taskteam, this_thr, 1); 1413 // don't use lw_taskteam after linking. content was swaped 1414 1415 /* OMPT implicit task begin */ 1416 implicit_task_data = OMPT_CUR_TASK_DATA(this_thr); 1417 if (ompt_enabled.ompt_callback_implicit_task) { 1418 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1419 ompt_scope_begin, OMPT_CUR_TEAM_DATA(this_thr), 1420 OMPT_CUR_TASK_DATA(this_thr), 1, __kmp_tid_from_gtid(global_tid), ompt_task_implicit); // TODO: Can this be ompt_task_initial? 1421 OMPT_CUR_TASK_INFO(this_thr) 1422 ->thread_num = __kmp_tid_from_gtid(global_tid); 1423 } 1424 1425 /* OMPT state */ 1426 this_thr->th.ompt_thread_info.state = ompt_state_work_parallel; 1427 OMPT_CUR_TASK_INFO(this_thr)->frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 1428 } 1429 #endif 1430 } 1431 1432 /* most of the work for a fork */ 1433 /* return true if we really went parallel, false if serialized */ 1434 int __kmp_fork_call(ident_t *loc, int gtid, 1435 enum fork_context_e call_context, // Intel, GNU, ... 1436 kmp_int32 argc, microtask_t microtask, launch_t invoker, 1437 /* TODO: revert workaround for Intel(R) 64 tracker #96 */ 1438 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 1439 va_list *ap 1440 #else 1441 va_list ap 1442 #endif 1443 ) { 1444 void **argv; 1445 int i; 1446 int master_tid; 1447 int master_this_cons; 1448 kmp_team_t *team; 1449 kmp_team_t *parent_team; 1450 kmp_info_t *master_th; 1451 kmp_root_t *root; 1452 int nthreads; 1453 int master_active; 1454 int master_set_numthreads; 1455 int level; 1456 #if OMP_40_ENABLED 1457 int active_level; 1458 int teams_level; 1459 #endif 1460 #if KMP_NESTED_HOT_TEAMS 1461 kmp_hot_team_ptr_t **p_hot_teams; 1462 #endif 1463 { // KMP_TIME_BLOCK 1464 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_fork_call); 1465 KMP_COUNT_VALUE(OMP_PARALLEL_args, argc); 1466 1467 KA_TRACE(20, ("__kmp_fork_call: enter T#%d\n", gtid)); 1468 if (__kmp_stkpadding > 0 && __kmp_root[gtid] != NULL) { 1469 /* Some systems prefer the stack for the root thread(s) to start with */ 1470 /* some gap from the parent stack to prevent false sharing. */ 1471 void *dummy = KMP_ALLOCA(__kmp_stkpadding); 1472 /* These 2 lines below are so this does not get optimized out */ 1473 if (__kmp_stkpadding > KMP_MAX_STKPADDING) 1474 __kmp_stkpadding += (short)((kmp_int64)dummy); 1475 } 1476 1477 /* initialize if needed */ 1478 KMP_DEBUG_ASSERT( 1479 __kmp_init_serial); // AC: potentially unsafe, not in sync with shutdown 1480 if (!TCR_4(__kmp_init_parallel)) 1481 __kmp_parallel_initialize(); 1482 1483 #if OMP_50_ENABLED 1484 __kmp_resume_if_soft_paused(); 1485 #endif 1486 1487 /* setup current data */ 1488 master_th = __kmp_threads[gtid]; // AC: potentially unsafe, not in sync with 1489 // shutdown 1490 parent_team = master_th->th.th_team; 1491 master_tid = master_th->th.th_info.ds.ds_tid; 1492 master_this_cons = master_th->th.th_local.this_construct; 1493 root = master_th->th.th_root; 1494 master_active = root->r.r_active; 1495 master_set_numthreads = master_th->th.th_set_nproc; 1496 1497 #if OMPT_SUPPORT 1498 ompt_data_t ompt_parallel_data = ompt_data_none; 1499 ompt_data_t *parent_task_data; 1500 ompt_frame_t *ompt_frame; 1501 ompt_data_t *implicit_task_data; 1502 void *return_address = NULL; 1503 1504 if (ompt_enabled.enabled) { 1505 __ompt_get_task_info_internal(0, NULL, &parent_task_data, &ompt_frame, 1506 NULL, NULL); 1507 return_address = OMPT_LOAD_RETURN_ADDRESS(gtid); 1508 } 1509 #endif 1510 1511 // Nested level will be an index in the nested nthreads array 1512 level = parent_team->t.t_level; 1513 // used to launch non-serial teams even if nested is not allowed 1514 active_level = parent_team->t.t_active_level; 1515 #if OMP_40_ENABLED 1516 // needed to check nesting inside the teams 1517 teams_level = master_th->th.th_teams_level; 1518 #endif 1519 #if KMP_NESTED_HOT_TEAMS 1520 p_hot_teams = &master_th->th.th_hot_teams; 1521 if (*p_hot_teams == NULL && __kmp_hot_teams_max_level > 0) { 1522 *p_hot_teams = (kmp_hot_team_ptr_t *)__kmp_allocate( 1523 sizeof(kmp_hot_team_ptr_t) * __kmp_hot_teams_max_level); 1524 (*p_hot_teams)[0].hot_team = root->r.r_hot_team; 1525 // it is either actual or not needed (when active_level > 0) 1526 (*p_hot_teams)[0].hot_team_nth = 1; 1527 } 1528 #endif 1529 1530 #if OMPT_SUPPORT 1531 if (ompt_enabled.enabled) { 1532 if (ompt_enabled.ompt_callback_parallel_begin) { 1533 int team_size = master_set_numthreads 1534 ? master_set_numthreads 1535 : get__nproc_2(parent_team, master_tid); 1536 ompt_callbacks.ompt_callback(ompt_callback_parallel_begin)( 1537 parent_task_data, ompt_frame, &ompt_parallel_data, team_size, 1538 OMPT_INVOKER(call_context), return_address); 1539 } 1540 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1541 } 1542 #endif 1543 1544 master_th->th.th_ident = loc; 1545 1546 #if OMP_40_ENABLED 1547 if (master_th->th.th_teams_microtask && ap && 1548 microtask != (microtask_t)__kmp_teams_master && level == teams_level) { 1549 // AC: This is start of parallel that is nested inside teams construct. 1550 // The team is actual (hot), all workers are ready at the fork barrier. 1551 // No lock needed to initialize the team a bit, then free workers. 1552 parent_team->t.t_ident = loc; 1553 __kmp_alloc_argv_entries(argc, parent_team, TRUE); 1554 parent_team->t.t_argc = argc; 1555 argv = (void **)parent_team->t.t_argv; 1556 for (i = argc - 1; i >= 0; --i) 1557 /* TODO: revert workaround for Intel(R) 64 tracker #96 */ 1558 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 1559 *argv++ = va_arg(*ap, void *); 1560 #else 1561 *argv++ = va_arg(ap, void *); 1562 #endif 1563 // Increment our nested depth levels, but not increase the serialization 1564 if (parent_team == master_th->th.th_serial_team) { 1565 // AC: we are in serialized parallel 1566 __kmpc_serialized_parallel(loc, gtid); 1567 KMP_DEBUG_ASSERT(parent_team->t.t_serialized > 1); 1568 // AC: need this in order enquiry functions work 1569 // correctly, will restore at join time 1570 parent_team->t.t_serialized--; 1571 #if OMPT_SUPPORT 1572 void *dummy; 1573 void **exit_runtime_p; 1574 1575 ompt_lw_taskteam_t lw_taskteam; 1576 1577 if (ompt_enabled.enabled) { 1578 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1579 &ompt_parallel_data, return_address); 1580 exit_runtime_p = &(lw_taskteam.ompt_task_info.frame.exit_frame.ptr); 1581 1582 __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0); 1583 // don't use lw_taskteam after linking. content was swaped 1584 1585 /* OMPT implicit task begin */ 1586 implicit_task_data = OMPT_CUR_TASK_DATA(master_th); 1587 if (ompt_enabled.ompt_callback_implicit_task) { 1588 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1589 ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th), 1590 implicit_task_data, 1, __kmp_tid_from_gtid(gtid), ompt_task_implicit); // TODO: Can this be ompt_task_initial? 1591 OMPT_CUR_TASK_INFO(master_th) 1592 ->thread_num = __kmp_tid_from_gtid(gtid); 1593 } 1594 1595 /* OMPT state */ 1596 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 1597 } else { 1598 exit_runtime_p = &dummy; 1599 } 1600 #endif 1601 1602 { 1603 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1604 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1605 __kmp_invoke_microtask(microtask, gtid, 0, argc, parent_team->t.t_argv 1606 #if OMPT_SUPPORT 1607 , 1608 exit_runtime_p 1609 #endif 1610 ); 1611 } 1612 1613 #if OMPT_SUPPORT 1614 *exit_runtime_p = NULL; 1615 if (ompt_enabled.enabled) { 1616 OMPT_CUR_TASK_INFO(master_th)->frame.exit_frame = ompt_data_none; 1617 if (ompt_enabled.ompt_callback_implicit_task) { 1618 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1619 ompt_scope_end, NULL, implicit_task_data, 1, 1620 OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit); // TODO: Can this be ompt_task_initial? 1621 } 1622 __ompt_lw_taskteam_unlink(master_th); 1623 1624 if (ompt_enabled.ompt_callback_parallel_end) { 1625 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 1626 OMPT_CUR_TEAM_DATA(master_th), OMPT_CUR_TASK_DATA(master_th), 1627 OMPT_INVOKER(call_context), return_address); 1628 } 1629 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1630 } 1631 #endif 1632 return TRUE; 1633 } 1634 1635 parent_team->t.t_pkfn = microtask; 1636 parent_team->t.t_invoke = invoker; 1637 KMP_ATOMIC_INC(&root->r.r_in_parallel); 1638 parent_team->t.t_active_level++; 1639 parent_team->t.t_level++; 1640 #if OMP_50_ENABLED 1641 parent_team->t.t_def_allocator = master_th->th.th_def_allocator; // save 1642 #endif 1643 1644 /* Change number of threads in the team if requested */ 1645 if (master_set_numthreads) { // The parallel has num_threads clause 1646 if (master_set_numthreads < master_th->th.th_teams_size.nth) { 1647 // AC: only can reduce number of threads dynamically, can't increase 1648 kmp_info_t **other_threads = parent_team->t.t_threads; 1649 parent_team->t.t_nproc = master_set_numthreads; 1650 for (i = 0; i < master_set_numthreads; ++i) { 1651 other_threads[i]->th.th_team_nproc = master_set_numthreads; 1652 } 1653 // Keep extra threads hot in the team for possible next parallels 1654 } 1655 master_th->th.th_set_nproc = 0; 1656 } 1657 1658 #if USE_DEBUGGER 1659 if (__kmp_debugging) { // Let debugger override number of threads. 1660 int nth = __kmp_omp_num_threads(loc); 1661 if (nth > 0) { // 0 means debugger doesn't want to change num threads 1662 master_set_numthreads = nth; 1663 } 1664 } 1665 #endif 1666 1667 KF_TRACE(10, ("__kmp_fork_call: before internal fork: root=%p, team=%p, " 1668 "master_th=%p, gtid=%d\n", 1669 root, parent_team, master_th, gtid)); 1670 __kmp_internal_fork(loc, gtid, parent_team); 1671 KF_TRACE(10, ("__kmp_fork_call: after internal fork: root=%p, team=%p, " 1672 "master_th=%p, gtid=%d\n", 1673 root, parent_team, master_th, gtid)); 1674 1675 /* Invoke microtask for MASTER thread */ 1676 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) invoke microtask = %p\n", gtid, 1677 parent_team->t.t_id, parent_team->t.t_pkfn)); 1678 1679 if (!parent_team->t.t_invoke(gtid)) { 1680 KMP_ASSERT2(0, "cannot invoke microtask for MASTER thread"); 1681 } 1682 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) done microtask = %p\n", gtid, 1683 parent_team->t.t_id, parent_team->t.t_pkfn)); 1684 KMP_MB(); /* Flush all pending memory write invalidates. */ 1685 1686 KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid)); 1687 1688 return TRUE; 1689 } // Parallel closely nested in teams construct 1690 #endif /* OMP_40_ENABLED */ 1691 1692 #if KMP_DEBUG 1693 if (__kmp_tasking_mode != tskm_immediate_exec) { 1694 KMP_DEBUG_ASSERT(master_th->th.th_task_team == 1695 parent_team->t.t_task_team[master_th->th.th_task_state]); 1696 } 1697 #endif 1698 1699 if (parent_team->t.t_active_level >= 1700 master_th->th.th_current_task->td_icvs.max_active_levels) { 1701 nthreads = 1; 1702 } else { 1703 #if OMP_40_ENABLED 1704 int enter_teams = ((ap == NULL && active_level == 0) || 1705 (ap && teams_level > 0 && teams_level == level)); 1706 #endif 1707 nthreads = 1708 master_set_numthreads 1709 ? master_set_numthreads 1710 : get__nproc_2( 1711 parent_team, 1712 master_tid); // TODO: get nproc directly from current task 1713 1714 // Check if we need to take forkjoin lock? (no need for serialized 1715 // parallel out of teams construct). This code moved here from 1716 // __kmp_reserve_threads() to speedup nested serialized parallels. 1717 if (nthreads > 1) { 1718 if ((get__max_active_levels(master_th) == 1 && (root->r.r_in_parallel 1719 #if OMP_40_ENABLED 1720 && !enter_teams 1721 #endif /* OMP_40_ENABLED */ 1722 )) || 1723 (__kmp_library == library_serial)) { 1724 KC_TRACE(10, ("__kmp_fork_call: T#%d serializing team; requested %d" 1725 " threads\n", 1726 gtid, nthreads)); 1727 nthreads = 1; 1728 } 1729 } 1730 if (nthreads > 1) { 1731 /* determine how many new threads we can use */ 1732 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 1733 nthreads = __kmp_reserve_threads( 1734 root, parent_team, master_tid, nthreads 1735 #if OMP_40_ENABLED 1736 /* AC: If we execute teams from parallel region (on host), then 1737 teams should be created but each can only have 1 thread if 1738 nesting is disabled. If teams called from serial region, then 1739 teams and their threads should be created regardless of the 1740 nesting setting. */ 1741 , 1742 enter_teams 1743 #endif /* OMP_40_ENABLED */ 1744 ); 1745 if (nthreads == 1) { 1746 // Free lock for single thread execution here; for multi-thread 1747 // execution it will be freed later after team of threads created 1748 // and initialized 1749 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1750 } 1751 } 1752 } 1753 KMP_DEBUG_ASSERT(nthreads > 0); 1754 1755 // If we temporarily changed the set number of threads then restore it now 1756 master_th->th.th_set_nproc = 0; 1757 1758 /* create a serialized parallel region? */ 1759 if (nthreads == 1) { 1760 /* josh todo: hypothetical question: what do we do for OS X*? */ 1761 #if KMP_OS_LINUX && \ 1762 (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) 1763 void *args[argc]; 1764 #else 1765 void **args = (void **)KMP_ALLOCA(argc * sizeof(void *)); 1766 #endif /* KMP_OS_LINUX && ( KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || \ 1767 KMP_ARCH_AARCH64) */ 1768 1769 KA_TRACE(20, 1770 ("__kmp_fork_call: T#%d serializing parallel region\n", gtid)); 1771 1772 __kmpc_serialized_parallel(loc, gtid); 1773 1774 if (call_context == fork_context_intel) { 1775 /* TODO this sucks, use the compiler itself to pass args! :) */ 1776 master_th->th.th_serial_team->t.t_ident = loc; 1777 #if OMP_40_ENABLED 1778 if (!ap) { 1779 // revert change made in __kmpc_serialized_parallel() 1780 master_th->th.th_serial_team->t.t_level--; 1781 // Get args from parent team for teams construct 1782 1783 #if OMPT_SUPPORT 1784 void *dummy; 1785 void **exit_runtime_p; 1786 ompt_task_info_t *task_info; 1787 1788 ompt_lw_taskteam_t lw_taskteam; 1789 1790 if (ompt_enabled.enabled) { 1791 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1792 &ompt_parallel_data, return_address); 1793 1794 __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0); 1795 // don't use lw_taskteam after linking. content was swaped 1796 1797 task_info = OMPT_CUR_TASK_INFO(master_th); 1798 exit_runtime_p = &(task_info->frame.exit_frame.ptr); 1799 if (ompt_enabled.ompt_callback_implicit_task) { 1800 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1801 ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th), 1802 &(task_info->task_data), 1, __kmp_tid_from_gtid(gtid), ompt_task_implicit); // TODO: Can this be ompt_task_initial? 1803 OMPT_CUR_TASK_INFO(master_th) 1804 ->thread_num = __kmp_tid_from_gtid(gtid); 1805 } 1806 1807 /* OMPT state */ 1808 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 1809 } else { 1810 exit_runtime_p = &dummy; 1811 } 1812 #endif 1813 1814 { 1815 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1816 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1817 __kmp_invoke_microtask(microtask, gtid, 0, argc, 1818 parent_team->t.t_argv 1819 #if OMPT_SUPPORT 1820 , 1821 exit_runtime_p 1822 #endif 1823 ); 1824 } 1825 1826 #if OMPT_SUPPORT 1827 if (ompt_enabled.enabled) { 1828 exit_runtime_p = NULL; 1829 if (ompt_enabled.ompt_callback_implicit_task) { 1830 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1831 ompt_scope_end, NULL, &(task_info->task_data), 1, 1832 OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit); // TODO: Can this be ompt_task_initial? 1833 } 1834 1835 __ompt_lw_taskteam_unlink(master_th); 1836 if (ompt_enabled.ompt_callback_parallel_end) { 1837 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 1838 OMPT_CUR_TEAM_DATA(master_th), parent_task_data, 1839 OMPT_INVOKER(call_context), return_address); 1840 } 1841 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1842 } 1843 #endif 1844 } else if (microtask == (microtask_t)__kmp_teams_master) { 1845 KMP_DEBUG_ASSERT(master_th->th.th_team == 1846 master_th->th.th_serial_team); 1847 team = master_th->th.th_team; 1848 // team->t.t_pkfn = microtask; 1849 team->t.t_invoke = invoker; 1850 __kmp_alloc_argv_entries(argc, team, TRUE); 1851 team->t.t_argc = argc; 1852 argv = (void **)team->t.t_argv; 1853 if (ap) { 1854 for (i = argc - 1; i >= 0; --i) 1855 // TODO: revert workaround for Intel(R) 64 tracker #96 1856 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 1857 *argv++ = va_arg(*ap, void *); 1858 #else 1859 *argv++ = va_arg(ap, void *); 1860 #endif 1861 } else { 1862 for (i = 0; i < argc; ++i) 1863 // Get args from parent team for teams construct 1864 argv[i] = parent_team->t.t_argv[i]; 1865 } 1866 // AC: revert change made in __kmpc_serialized_parallel() 1867 // because initial code in teams should have level=0 1868 team->t.t_level--; 1869 // AC: call special invoker for outer "parallel" of teams construct 1870 invoker(gtid); 1871 } else { 1872 #endif /* OMP_40_ENABLED */ 1873 argv = args; 1874 for (i = argc - 1; i >= 0; --i) 1875 // TODO: revert workaround for Intel(R) 64 tracker #96 1876 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 1877 *argv++ = va_arg(*ap, void *); 1878 #else 1879 *argv++ = va_arg(ap, void *); 1880 #endif 1881 KMP_MB(); 1882 1883 #if OMPT_SUPPORT 1884 void *dummy; 1885 void **exit_runtime_p; 1886 ompt_task_info_t *task_info; 1887 1888 ompt_lw_taskteam_t lw_taskteam; 1889 1890 if (ompt_enabled.enabled) { 1891 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1892 &ompt_parallel_data, return_address); 1893 __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0); 1894 // don't use lw_taskteam after linking. content was swaped 1895 task_info = OMPT_CUR_TASK_INFO(master_th); 1896 exit_runtime_p = &(task_info->frame.exit_frame.ptr); 1897 1898 /* OMPT implicit task begin */ 1899 implicit_task_data = OMPT_CUR_TASK_DATA(master_th); 1900 if (ompt_enabled.ompt_callback_implicit_task) { 1901 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1902 ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th), 1903 implicit_task_data, 1, __kmp_tid_from_gtid(gtid), ompt_task_implicit); // TODO: Can this be ompt_task_initial? 1904 OMPT_CUR_TASK_INFO(master_th) 1905 ->thread_num = __kmp_tid_from_gtid(gtid); 1906 } 1907 1908 /* OMPT state */ 1909 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 1910 } else { 1911 exit_runtime_p = &dummy; 1912 } 1913 #endif 1914 1915 { 1916 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1917 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1918 __kmp_invoke_microtask(microtask, gtid, 0, argc, args 1919 #if OMPT_SUPPORT 1920 , 1921 exit_runtime_p 1922 #endif 1923 ); 1924 } 1925 1926 #if OMPT_SUPPORT 1927 if (ompt_enabled.enabled) { 1928 *exit_runtime_p = NULL; 1929 if (ompt_enabled.ompt_callback_implicit_task) { 1930 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1931 ompt_scope_end, NULL, &(task_info->task_data), 1, 1932 OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit); // TODO: Can this be ompt_task_initial? 1933 } 1934 1935 ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th); 1936 __ompt_lw_taskteam_unlink(master_th); 1937 if (ompt_enabled.ompt_callback_parallel_end) { 1938 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 1939 &ompt_parallel_data, parent_task_data, 1940 OMPT_INVOKER(call_context), return_address); 1941 } 1942 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1943 } 1944 #endif 1945 #if OMP_40_ENABLED 1946 } 1947 #endif /* OMP_40_ENABLED */ 1948 } else if (call_context == fork_context_gnu) { 1949 #if OMPT_SUPPORT 1950 ompt_lw_taskteam_t lwt; 1951 __ompt_lw_taskteam_init(&lwt, master_th, gtid, &ompt_parallel_data, 1952 return_address); 1953 1954 lwt.ompt_task_info.frame.exit_frame = ompt_data_none; 1955 __ompt_lw_taskteam_link(&lwt, master_th, 1); 1956 // don't use lw_taskteam after linking. content was swaped 1957 #endif 1958 1959 // we were called from GNU native code 1960 KA_TRACE(20, ("__kmp_fork_call: T#%d serial exit\n", gtid)); 1961 return FALSE; 1962 } else { 1963 KMP_ASSERT2(call_context < fork_context_last, 1964 "__kmp_fork_call: unknown fork_context parameter"); 1965 } 1966 1967 KA_TRACE(20, ("__kmp_fork_call: T#%d serial exit\n", gtid)); 1968 KMP_MB(); 1969 return FALSE; 1970 } // if (nthreads == 1) 1971 1972 // GEH: only modify the executing flag in the case when not serialized 1973 // serialized case is handled in kmpc_serialized_parallel 1974 KF_TRACE(10, ("__kmp_fork_call: parent_team_aclevel=%d, master_th=%p, " 1975 "curtask=%p, curtask_max_aclevel=%d\n", 1976 parent_team->t.t_active_level, master_th, 1977 master_th->th.th_current_task, 1978 master_th->th.th_current_task->td_icvs.max_active_levels)); 1979 // TODO: GEH - cannot do this assertion because root thread not set up as 1980 // executing 1981 // KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 1 ); 1982 master_th->th.th_current_task->td_flags.executing = 0; 1983 1984 #if OMP_40_ENABLED 1985 if (!master_th->th.th_teams_microtask || level > teams_level) 1986 #endif /* OMP_40_ENABLED */ 1987 { 1988 /* Increment our nested depth level */ 1989 KMP_ATOMIC_INC(&root->r.r_in_parallel); 1990 } 1991 1992 // See if we need to make a copy of the ICVs. 1993 int nthreads_icv = master_th->th.th_current_task->td_icvs.nproc; 1994 if ((level + 1 < __kmp_nested_nth.used) && 1995 (__kmp_nested_nth.nth[level + 1] != nthreads_icv)) { 1996 nthreads_icv = __kmp_nested_nth.nth[level + 1]; 1997 } else { 1998 nthreads_icv = 0; // don't update 1999 } 2000 2001 #if OMP_40_ENABLED 2002 // Figure out the proc_bind_policy for the new team. 2003 kmp_proc_bind_t proc_bind = master_th->th.th_set_proc_bind; 2004 kmp_proc_bind_t proc_bind_icv = 2005 proc_bind_default; // proc_bind_default means don't update 2006 if (master_th->th.th_current_task->td_icvs.proc_bind == proc_bind_false) { 2007 proc_bind = proc_bind_false; 2008 } else { 2009 if (proc_bind == proc_bind_default) { 2010 // No proc_bind clause specified; use current proc-bind-var for this 2011 // parallel region 2012 proc_bind = master_th->th.th_current_task->td_icvs.proc_bind; 2013 } 2014 /* else: The proc_bind policy was specified explicitly on parallel clause. 2015 This overrides proc-bind-var for this parallel region, but does not 2016 change proc-bind-var. */ 2017 // Figure the value of proc-bind-var for the child threads. 2018 if ((level + 1 < __kmp_nested_proc_bind.used) && 2019 (__kmp_nested_proc_bind.bind_types[level + 1] != 2020 master_th->th.th_current_task->td_icvs.proc_bind)) { 2021 proc_bind_icv = __kmp_nested_proc_bind.bind_types[level + 1]; 2022 } 2023 } 2024 2025 // Reset for next parallel region 2026 master_th->th.th_set_proc_bind = proc_bind_default; 2027 #endif /* OMP_40_ENABLED */ 2028 2029 if ((nthreads_icv > 0) 2030 #if OMP_40_ENABLED 2031 || (proc_bind_icv != proc_bind_default) 2032 #endif /* OMP_40_ENABLED */ 2033 ) { 2034 kmp_internal_control_t new_icvs; 2035 copy_icvs(&new_icvs, &master_th->th.th_current_task->td_icvs); 2036 new_icvs.next = NULL; 2037 if (nthreads_icv > 0) { 2038 new_icvs.nproc = nthreads_icv; 2039 } 2040 2041 #if OMP_40_ENABLED 2042 if (proc_bind_icv != proc_bind_default) { 2043 new_icvs.proc_bind = proc_bind_icv; 2044 } 2045 #endif /* OMP_40_ENABLED */ 2046 2047 /* allocate a new parallel team */ 2048 KF_TRACE(10, ("__kmp_fork_call: before __kmp_allocate_team\n")); 2049 team = __kmp_allocate_team(root, nthreads, nthreads, 2050 #if OMPT_SUPPORT 2051 ompt_parallel_data, 2052 #endif 2053 #if OMP_40_ENABLED 2054 proc_bind, 2055 #endif 2056 &new_icvs, argc USE_NESTED_HOT_ARG(master_th)); 2057 } else { 2058 /* allocate a new parallel team */ 2059 KF_TRACE(10, ("__kmp_fork_call: before __kmp_allocate_team\n")); 2060 team = __kmp_allocate_team(root, nthreads, nthreads, 2061 #if OMPT_SUPPORT 2062 ompt_parallel_data, 2063 #endif 2064 #if OMP_40_ENABLED 2065 proc_bind, 2066 #endif 2067 &master_th->th.th_current_task->td_icvs, 2068 argc USE_NESTED_HOT_ARG(master_th)); 2069 } 2070 KF_TRACE( 2071 10, ("__kmp_fork_call: after __kmp_allocate_team - team = %p\n", team)); 2072 2073 /* setup the new team */ 2074 KMP_CHECK_UPDATE(team->t.t_master_tid, master_tid); 2075 KMP_CHECK_UPDATE(team->t.t_master_this_cons, master_this_cons); 2076 KMP_CHECK_UPDATE(team->t.t_ident, loc); 2077 KMP_CHECK_UPDATE(team->t.t_parent, parent_team); 2078 KMP_CHECK_UPDATE_SYNC(team->t.t_pkfn, microtask); 2079 #if OMPT_SUPPORT 2080 KMP_CHECK_UPDATE_SYNC(team->t.ompt_team_info.master_return_address, 2081 return_address); 2082 #endif 2083 KMP_CHECK_UPDATE(team->t.t_invoke, invoker); // TODO move to root, maybe 2084 // TODO: parent_team->t.t_level == INT_MAX ??? 2085 #if OMP_40_ENABLED 2086 if (!master_th->th.th_teams_microtask || level > teams_level) { 2087 #endif /* OMP_40_ENABLED */ 2088 int new_level = parent_team->t.t_level + 1; 2089 KMP_CHECK_UPDATE(team->t.t_level, new_level); 2090 new_level = parent_team->t.t_active_level + 1; 2091 KMP_CHECK_UPDATE(team->t.t_active_level, new_level); 2092 #if OMP_40_ENABLED 2093 } else { 2094 // AC: Do not increase parallel level at start of the teams construct 2095 int new_level = parent_team->t.t_level; 2096 KMP_CHECK_UPDATE(team->t.t_level, new_level); 2097 new_level = parent_team->t.t_active_level; 2098 KMP_CHECK_UPDATE(team->t.t_active_level, new_level); 2099 } 2100 #endif /* OMP_40_ENABLED */ 2101 kmp_r_sched_t new_sched = get__sched_2(parent_team, master_tid); 2102 // set master's schedule as new run-time schedule 2103 KMP_CHECK_UPDATE(team->t.t_sched.sched, new_sched.sched); 2104 2105 #if OMP_40_ENABLED 2106 KMP_CHECK_UPDATE(team->t.t_cancel_request, cancel_noreq); 2107 #endif 2108 #if OMP_50_ENABLED 2109 KMP_CHECK_UPDATE(team->t.t_def_allocator, master_th->th.th_def_allocator); 2110 #endif 2111 2112 // Update the floating point rounding in the team if required. 2113 propagateFPControl(team); 2114 2115 if (__kmp_tasking_mode != tskm_immediate_exec) { 2116 // Set master's task team to team's task team. Unless this is hot team, it 2117 // should be NULL. 2118 KMP_DEBUG_ASSERT(master_th->th.th_task_team == 2119 parent_team->t.t_task_team[master_th->th.th_task_state]); 2120 KA_TRACE(20, ("__kmp_fork_call: Master T#%d pushing task_team %p / team " 2121 "%p, new task_team %p / team %p\n", 2122 __kmp_gtid_from_thread(master_th), 2123 master_th->th.th_task_team, parent_team, 2124 team->t.t_task_team[master_th->th.th_task_state], team)); 2125 2126 if (active_level || master_th->th.th_task_team) { 2127 // Take a memo of master's task_state 2128 KMP_DEBUG_ASSERT(master_th->th.th_task_state_memo_stack); 2129 if (master_th->th.th_task_state_top >= 2130 master_th->th.th_task_state_stack_sz) { // increase size 2131 kmp_uint32 new_size = 2 * master_th->th.th_task_state_stack_sz; 2132 kmp_uint8 *old_stack, *new_stack; 2133 kmp_uint32 i; 2134 new_stack = (kmp_uint8 *)__kmp_allocate(new_size); 2135 for (i = 0; i < master_th->th.th_task_state_stack_sz; ++i) { 2136 new_stack[i] = master_th->th.th_task_state_memo_stack[i]; 2137 } 2138 for (i = master_th->th.th_task_state_stack_sz; i < new_size; 2139 ++i) { // zero-init rest of stack 2140 new_stack[i] = 0; 2141 } 2142 old_stack = master_th->th.th_task_state_memo_stack; 2143 master_th->th.th_task_state_memo_stack = new_stack; 2144 master_th->th.th_task_state_stack_sz = new_size; 2145 __kmp_free(old_stack); 2146 } 2147 // Store master's task_state on stack 2148 master_th->th 2149 .th_task_state_memo_stack[master_th->th.th_task_state_top] = 2150 master_th->th.th_task_state; 2151 master_th->th.th_task_state_top++; 2152 #if KMP_NESTED_HOT_TEAMS 2153 if (master_th->th.th_hot_teams && 2154 active_level < __kmp_hot_teams_max_level && 2155 team == master_th->th.th_hot_teams[active_level].hot_team) { 2156 // Restore master's nested state if nested hot team 2157 master_th->th.th_task_state = 2158 master_th->th 2159 .th_task_state_memo_stack[master_th->th.th_task_state_top]; 2160 } else { 2161 #endif 2162 master_th->th.th_task_state = 0; 2163 #if KMP_NESTED_HOT_TEAMS 2164 } 2165 #endif 2166 } 2167 #if !KMP_NESTED_HOT_TEAMS 2168 KMP_DEBUG_ASSERT((master_th->th.th_task_team == NULL) || 2169 (team == root->r.r_hot_team)); 2170 #endif 2171 } 2172 2173 KA_TRACE( 2174 20, 2175 ("__kmp_fork_call: T#%d(%d:%d)->(%d:0) created a team of %d threads\n", 2176 gtid, parent_team->t.t_id, team->t.t_master_tid, team->t.t_id, 2177 team->t.t_nproc)); 2178 KMP_DEBUG_ASSERT(team != root->r.r_hot_team || 2179 (team->t.t_master_tid == 0 && 2180 (team->t.t_parent == root->r.r_root_team || 2181 team->t.t_parent->t.t_serialized))); 2182 KMP_MB(); 2183 2184 /* now, setup the arguments */ 2185 argv = (void **)team->t.t_argv; 2186 #if OMP_40_ENABLED 2187 if (ap) { 2188 #endif /* OMP_40_ENABLED */ 2189 for (i = argc - 1; i >= 0; --i) { 2190 // TODO: revert workaround for Intel(R) 64 tracker #96 2191 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 2192 void *new_argv = va_arg(*ap, void *); 2193 #else 2194 void *new_argv = va_arg(ap, void *); 2195 #endif 2196 KMP_CHECK_UPDATE(*argv, new_argv); 2197 argv++; 2198 } 2199 #if OMP_40_ENABLED 2200 } else { 2201 for (i = 0; i < argc; ++i) { 2202 // Get args from parent team for teams construct 2203 KMP_CHECK_UPDATE(argv[i], team->t.t_parent->t.t_argv[i]); 2204 } 2205 } 2206 #endif /* OMP_40_ENABLED */ 2207 2208 /* now actually fork the threads */ 2209 KMP_CHECK_UPDATE(team->t.t_master_active, master_active); 2210 if (!root->r.r_active) // Only do assignment if it prevents cache ping-pong 2211 root->r.r_active = TRUE; 2212 2213 __kmp_fork_team_threads(root, team, master_th, gtid); 2214 __kmp_setup_icv_copy(team, nthreads, 2215 &master_th->th.th_current_task->td_icvs, loc); 2216 2217 #if OMPT_SUPPORT 2218 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 2219 #endif 2220 2221 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 2222 2223 #if USE_ITT_BUILD 2224 if (team->t.t_active_level == 1 // only report frames at level 1 2225 #if OMP_40_ENABLED 2226 && !master_th->th.th_teams_microtask // not in teams construct 2227 #endif /* OMP_40_ENABLED */ 2228 ) { 2229 #if USE_ITT_NOTIFY 2230 if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) && 2231 (__kmp_forkjoin_frames_mode == 3 || 2232 __kmp_forkjoin_frames_mode == 1)) { 2233 kmp_uint64 tmp_time = 0; 2234 if (__itt_get_timestamp_ptr) 2235 tmp_time = __itt_get_timestamp(); 2236 // Internal fork - report frame begin 2237 master_th->th.th_frame_time = tmp_time; 2238 if (__kmp_forkjoin_frames_mode == 3) 2239 team->t.t_region_time = tmp_time; 2240 } else 2241 // only one notification scheme (either "submit" or "forking/joined", not both) 2242 #endif /* USE_ITT_NOTIFY */ 2243 if ((__itt_frame_begin_v3_ptr || KMP_ITT_DEBUG) && 2244 __kmp_forkjoin_frames && !__kmp_forkjoin_frames_mode) { 2245 // Mark start of "parallel" region for Intel(R) VTune(TM) analyzer. 2246 __kmp_itt_region_forking(gtid, team->t.t_nproc, 0); 2247 } 2248 } 2249 #endif /* USE_ITT_BUILD */ 2250 2251 /* now go on and do the work */ 2252 KMP_DEBUG_ASSERT(team == __kmp_threads[gtid]->th.th_team); 2253 KMP_MB(); 2254 KF_TRACE(10, 2255 ("__kmp_internal_fork : root=%p, team=%p, master_th=%p, gtid=%d\n", 2256 root, team, master_th, gtid)); 2257 2258 #if USE_ITT_BUILD 2259 if (__itt_stack_caller_create_ptr) { 2260 team->t.t_stack_id = 2261 __kmp_itt_stack_caller_create(); // create new stack stitching id 2262 // before entering fork barrier 2263 } 2264 #endif /* USE_ITT_BUILD */ 2265 2266 #if OMP_40_ENABLED 2267 // AC: skip __kmp_internal_fork at teams construct, let only master 2268 // threads execute 2269 if (ap) 2270 #endif /* OMP_40_ENABLED */ 2271 { 2272 __kmp_internal_fork(loc, gtid, team); 2273 KF_TRACE(10, ("__kmp_internal_fork : after : root=%p, team=%p, " 2274 "master_th=%p, gtid=%d\n", 2275 root, team, master_th, gtid)); 2276 } 2277 2278 if (call_context == fork_context_gnu) { 2279 KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid)); 2280 return TRUE; 2281 } 2282 2283 /* Invoke microtask for MASTER thread */ 2284 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) invoke microtask = %p\n", gtid, 2285 team->t.t_id, team->t.t_pkfn)); 2286 } // END of timer KMP_fork_call block 2287 2288 #if KMP_STATS_ENABLED && OMP_40_ENABLED 2289 // If beginning a teams construct, then change thread state 2290 stats_state_e previous_state = KMP_GET_THREAD_STATE(); 2291 if (!ap) { 2292 KMP_SET_THREAD_STATE(stats_state_e::TEAMS_REGION); 2293 } 2294 #endif 2295 2296 if (!team->t.t_invoke(gtid)) { 2297 KMP_ASSERT2(0, "cannot invoke microtask for MASTER thread"); 2298 } 2299 2300 #if KMP_STATS_ENABLED && OMP_40_ENABLED 2301 // If was beginning of a teams construct, then reset thread state 2302 if (!ap) { 2303 KMP_SET_THREAD_STATE(previous_state); 2304 } 2305 #endif 2306 2307 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) done microtask = %p\n", gtid, 2308 team->t.t_id, team->t.t_pkfn)); 2309 KMP_MB(); /* Flush all pending memory write invalidates. */ 2310 2311 KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid)); 2312 2313 #if OMPT_SUPPORT 2314 if (ompt_enabled.enabled) { 2315 master_th->th.ompt_thread_info.state = ompt_state_overhead; 2316 } 2317 #endif 2318 2319 return TRUE; 2320 } 2321 2322 #if OMPT_SUPPORT 2323 static inline void __kmp_join_restore_state(kmp_info_t *thread, 2324 kmp_team_t *team) { 2325 // restore state outside the region 2326 thread->th.ompt_thread_info.state = 2327 ((team->t.t_serialized) ? ompt_state_work_serial 2328 : ompt_state_work_parallel); 2329 } 2330 2331 static inline void __kmp_join_ompt(int gtid, kmp_info_t *thread, 2332 kmp_team_t *team, ompt_data_t *parallel_data, 2333 fork_context_e fork_context, void *codeptr) { 2334 ompt_task_info_t *task_info = __ompt_get_task_info_object(0); 2335 if (ompt_enabled.ompt_callback_parallel_end) { 2336 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 2337 parallel_data, &(task_info->task_data), OMPT_INVOKER(fork_context), 2338 codeptr); 2339 } 2340 2341 task_info->frame.enter_frame = ompt_data_none; 2342 __kmp_join_restore_state(thread, team); 2343 } 2344 #endif 2345 2346 void __kmp_join_call(ident_t *loc, int gtid 2347 #if OMPT_SUPPORT 2348 , 2349 enum fork_context_e fork_context 2350 #endif 2351 #if OMP_40_ENABLED 2352 , 2353 int exit_teams 2354 #endif /* OMP_40_ENABLED */ 2355 ) { 2356 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_join_call); 2357 kmp_team_t *team; 2358 kmp_team_t *parent_team; 2359 kmp_info_t *master_th; 2360 kmp_root_t *root; 2361 int master_active; 2362 2363 KA_TRACE(20, ("__kmp_join_call: enter T#%d\n", gtid)); 2364 2365 /* setup current data */ 2366 master_th = __kmp_threads[gtid]; 2367 root = master_th->th.th_root; 2368 team = master_th->th.th_team; 2369 parent_team = team->t.t_parent; 2370 2371 master_th->th.th_ident = loc; 2372 2373 #if OMPT_SUPPORT 2374 if (ompt_enabled.enabled) { 2375 master_th->th.ompt_thread_info.state = ompt_state_overhead; 2376 } 2377 #endif 2378 2379 #if KMP_DEBUG 2380 if (__kmp_tasking_mode != tskm_immediate_exec && !exit_teams) { 2381 KA_TRACE(20, ("__kmp_join_call: T#%d, old team = %p old task_team = %p, " 2382 "th_task_team = %p\n", 2383 __kmp_gtid_from_thread(master_th), team, 2384 team->t.t_task_team[master_th->th.th_task_state], 2385 master_th->th.th_task_team)); 2386 KMP_DEBUG_ASSERT(master_th->th.th_task_team == 2387 team->t.t_task_team[master_th->th.th_task_state]); 2388 } 2389 #endif 2390 2391 if (team->t.t_serialized) { 2392 #if OMP_40_ENABLED 2393 if (master_th->th.th_teams_microtask) { 2394 // We are in teams construct 2395 int level = team->t.t_level; 2396 int tlevel = master_th->th.th_teams_level; 2397 if (level == tlevel) { 2398 // AC: we haven't incremented it earlier at start of teams construct, 2399 // so do it here - at the end of teams construct 2400 team->t.t_level++; 2401 } else if (level == tlevel + 1) { 2402 // AC: we are exiting parallel inside teams, need to increment 2403 // serialization in order to restore it in the next call to 2404 // __kmpc_end_serialized_parallel 2405 team->t.t_serialized++; 2406 } 2407 } 2408 #endif /* OMP_40_ENABLED */ 2409 __kmpc_end_serialized_parallel(loc, gtid); 2410 2411 #if OMPT_SUPPORT 2412 if (ompt_enabled.enabled) { 2413 __kmp_join_restore_state(master_th, parent_team); 2414 } 2415 #endif 2416 2417 return; 2418 } 2419 2420 master_active = team->t.t_master_active; 2421 2422 #if OMP_40_ENABLED 2423 if (!exit_teams) 2424 #endif /* OMP_40_ENABLED */ 2425 { 2426 // AC: No barrier for internal teams at exit from teams construct. 2427 // But there is barrier for external team (league). 2428 __kmp_internal_join(loc, gtid, team); 2429 } 2430 #if OMP_40_ENABLED 2431 else { 2432 master_th->th.th_task_state = 2433 0; // AC: no tasking in teams (out of any parallel) 2434 } 2435 #endif /* OMP_40_ENABLED */ 2436 2437 KMP_MB(); 2438 2439 #if OMPT_SUPPORT 2440 ompt_data_t *parallel_data = &(team->t.ompt_team_info.parallel_data); 2441 void *codeptr = team->t.ompt_team_info.master_return_address; 2442 #endif 2443 2444 #if USE_ITT_BUILD 2445 if (__itt_stack_caller_create_ptr) { 2446 __kmp_itt_stack_caller_destroy( 2447 (__itt_caller)team->t 2448 .t_stack_id); // destroy the stack stitching id after join barrier 2449 } 2450 2451 // Mark end of "parallel" region for Intel(R) VTune(TM) analyzer. 2452 if (team->t.t_active_level == 1 2453 #if OMP_40_ENABLED 2454 && !master_th->th.th_teams_microtask /* not in teams construct */ 2455 #endif /* OMP_40_ENABLED */ 2456 ) { 2457 master_th->th.th_ident = loc; 2458 // only one notification scheme (either "submit" or "forking/joined", not 2459 // both) 2460 if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) && 2461 __kmp_forkjoin_frames_mode == 3) 2462 __kmp_itt_frame_submit(gtid, team->t.t_region_time, 2463 master_th->th.th_frame_time, 0, loc, 2464 master_th->th.th_team_nproc, 1); 2465 else if ((__itt_frame_end_v3_ptr || KMP_ITT_DEBUG) && 2466 !__kmp_forkjoin_frames_mode && __kmp_forkjoin_frames) 2467 __kmp_itt_region_joined(gtid); 2468 } // active_level == 1 2469 #endif /* USE_ITT_BUILD */ 2470 2471 #if OMP_40_ENABLED 2472 if (master_th->th.th_teams_microtask && !exit_teams && 2473 team->t.t_pkfn != (microtask_t)__kmp_teams_master && 2474 team->t.t_level == master_th->th.th_teams_level + 1) { 2475 // AC: We need to leave the team structure intact at the end of parallel 2476 // inside the teams construct, so that at the next parallel same (hot) team 2477 // works, only adjust nesting levels 2478 2479 /* Decrement our nested depth level */ 2480 team->t.t_level--; 2481 team->t.t_active_level--; 2482 KMP_ATOMIC_DEC(&root->r.r_in_parallel); 2483 2484 // Restore number of threads in the team if needed. This code relies on 2485 // the proper adjustment of th_teams_size.nth after the fork in 2486 // __kmp_teams_master on each teams master in the case that 2487 // __kmp_reserve_threads reduced it. 2488 if (master_th->th.th_team_nproc < master_th->th.th_teams_size.nth) { 2489 int old_num = master_th->th.th_team_nproc; 2490 int new_num = master_th->th.th_teams_size.nth; 2491 kmp_info_t **other_threads = team->t.t_threads; 2492 team->t.t_nproc = new_num; 2493 for (int i = 0; i < old_num; ++i) { 2494 other_threads[i]->th.th_team_nproc = new_num; 2495 } 2496 // Adjust states of non-used threads of the team 2497 for (int i = old_num; i < new_num; ++i) { 2498 // Re-initialize thread's barrier data. 2499 KMP_DEBUG_ASSERT(other_threads[i]); 2500 kmp_balign_t *balign = other_threads[i]->th.th_bar; 2501 for (int b = 0; b < bs_last_barrier; ++b) { 2502 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 2503 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 2504 #if USE_DEBUGGER 2505 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 2506 #endif 2507 } 2508 if (__kmp_tasking_mode != tskm_immediate_exec) { 2509 // Synchronize thread's task state 2510 other_threads[i]->th.th_task_state = master_th->th.th_task_state; 2511 } 2512 } 2513 } 2514 2515 #if OMPT_SUPPORT 2516 if (ompt_enabled.enabled) { 2517 __kmp_join_ompt(gtid, master_th, parent_team, parallel_data, fork_context, 2518 codeptr); 2519 } 2520 #endif 2521 2522 return; 2523 } 2524 #endif /* OMP_40_ENABLED */ 2525 2526 /* do cleanup and restore the parent team */ 2527 master_th->th.th_info.ds.ds_tid = team->t.t_master_tid; 2528 master_th->th.th_local.this_construct = team->t.t_master_this_cons; 2529 2530 master_th->th.th_dispatch = &parent_team->t.t_dispatch[team->t.t_master_tid]; 2531 2532 /* jc: The following lock has instructions with REL and ACQ semantics, 2533 separating the parallel user code called in this parallel region 2534 from the serial user code called after this function returns. */ 2535 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 2536 2537 #if OMP_40_ENABLED 2538 if (!master_th->th.th_teams_microtask || 2539 team->t.t_level > master_th->th.th_teams_level) 2540 #endif /* OMP_40_ENABLED */ 2541 { 2542 /* Decrement our nested depth level */ 2543 KMP_ATOMIC_DEC(&root->r.r_in_parallel); 2544 } 2545 KMP_DEBUG_ASSERT(root->r.r_in_parallel >= 0); 2546 2547 #if OMPT_SUPPORT 2548 if (ompt_enabled.enabled) { 2549 ompt_task_info_t *task_info = __ompt_get_task_info_object(0); 2550 if (ompt_enabled.ompt_callback_implicit_task) { 2551 int ompt_team_size = team->t.t_nproc; 2552 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 2553 ompt_scope_end, NULL, &(task_info->task_data), ompt_team_size, 2554 OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit); // TODO: Can this be ompt_task_initial? 2555 } 2556 2557 task_info->frame.exit_frame = ompt_data_none; 2558 task_info->task_data = ompt_data_none; 2559 } 2560 #endif 2561 2562 KF_TRACE(10, ("__kmp_join_call1: T#%d, this_thread=%p team=%p\n", 0, 2563 master_th, team)); 2564 __kmp_pop_current_task_from_thread(master_th); 2565 2566 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 2567 // Restore master thread's partition. 2568 master_th->th.th_first_place = team->t.t_first_place; 2569 master_th->th.th_last_place = team->t.t_last_place; 2570 #endif /* OMP_40_ENABLED */ 2571 #if OMP_50_ENABLED 2572 master_th->th.th_def_allocator = team->t.t_def_allocator; 2573 #endif 2574 2575 updateHWFPControl(team); 2576 2577 if (root->r.r_active != master_active) 2578 root->r.r_active = master_active; 2579 2580 __kmp_free_team(root, team USE_NESTED_HOT_ARG( 2581 master_th)); // this will free worker threads 2582 2583 /* this race was fun to find. make sure the following is in the critical 2584 region otherwise assertions may fail occasionally since the old team may be 2585 reallocated and the hierarchy appears inconsistent. it is actually safe to 2586 run and won't cause any bugs, but will cause those assertion failures. it's 2587 only one deref&assign so might as well put this in the critical region */ 2588 master_th->th.th_team = parent_team; 2589 master_th->th.th_team_nproc = parent_team->t.t_nproc; 2590 master_th->th.th_team_master = parent_team->t.t_threads[0]; 2591 master_th->th.th_team_serialized = parent_team->t.t_serialized; 2592 2593 /* restore serialized team, if need be */ 2594 if (parent_team->t.t_serialized && 2595 parent_team != master_th->th.th_serial_team && 2596 parent_team != root->r.r_root_team) { 2597 __kmp_free_team(root, 2598 master_th->th.th_serial_team USE_NESTED_HOT_ARG(NULL)); 2599 master_th->th.th_serial_team = parent_team; 2600 } 2601 2602 if (__kmp_tasking_mode != tskm_immediate_exec) { 2603 if (master_th->th.th_task_state_top > 2604 0) { // Restore task state from memo stack 2605 KMP_DEBUG_ASSERT(master_th->th.th_task_state_memo_stack); 2606 // Remember master's state if we re-use this nested hot team 2607 master_th->th.th_task_state_memo_stack[master_th->th.th_task_state_top] = 2608 master_th->th.th_task_state; 2609 --master_th->th.th_task_state_top; // pop 2610 // Now restore state at this level 2611 master_th->th.th_task_state = 2612 master_th->th 2613 .th_task_state_memo_stack[master_th->th.th_task_state_top]; 2614 } 2615 // Copy the task team from the parent team to the master thread 2616 master_th->th.th_task_team = 2617 parent_team->t.t_task_team[master_th->th.th_task_state]; 2618 KA_TRACE(20, 2619 ("__kmp_join_call: Master T#%d restoring task_team %p / team %p\n", 2620 __kmp_gtid_from_thread(master_th), master_th->th.th_task_team, 2621 parent_team)); 2622 } 2623 2624 // TODO: GEH - cannot do this assertion because root thread not set up as 2625 // executing 2626 // KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 0 ); 2627 master_th->th.th_current_task->td_flags.executing = 1; 2628 2629 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 2630 2631 #if OMPT_SUPPORT 2632 if (ompt_enabled.enabled) { 2633 __kmp_join_ompt(gtid, master_th, parent_team, parallel_data, fork_context, 2634 codeptr); 2635 } 2636 #endif 2637 2638 KMP_MB(); 2639 KA_TRACE(20, ("__kmp_join_call: exit T#%d\n", gtid)); 2640 } 2641 2642 /* Check whether we should push an internal control record onto the 2643 serial team stack. If so, do it. */ 2644 void __kmp_save_internal_controls(kmp_info_t *thread) { 2645 2646 if (thread->th.th_team != thread->th.th_serial_team) { 2647 return; 2648 } 2649 if (thread->th.th_team->t.t_serialized > 1) { 2650 int push = 0; 2651 2652 if (thread->th.th_team->t.t_control_stack_top == NULL) { 2653 push = 1; 2654 } else { 2655 if (thread->th.th_team->t.t_control_stack_top->serial_nesting_level != 2656 thread->th.th_team->t.t_serialized) { 2657 push = 1; 2658 } 2659 } 2660 if (push) { /* push a record on the serial team's stack */ 2661 kmp_internal_control_t *control = 2662 (kmp_internal_control_t *)__kmp_allocate( 2663 sizeof(kmp_internal_control_t)); 2664 2665 copy_icvs(control, &thread->th.th_current_task->td_icvs); 2666 2667 control->serial_nesting_level = thread->th.th_team->t.t_serialized; 2668 2669 control->next = thread->th.th_team->t.t_control_stack_top; 2670 thread->th.th_team->t.t_control_stack_top = control; 2671 } 2672 } 2673 } 2674 2675 /* Changes set_nproc */ 2676 void __kmp_set_num_threads(int new_nth, int gtid) { 2677 kmp_info_t *thread; 2678 kmp_root_t *root; 2679 2680 KF_TRACE(10, ("__kmp_set_num_threads: new __kmp_nth = %d\n", new_nth)); 2681 KMP_DEBUG_ASSERT(__kmp_init_serial); 2682 2683 if (new_nth < 1) 2684 new_nth = 1; 2685 else if (new_nth > __kmp_max_nth) 2686 new_nth = __kmp_max_nth; 2687 2688 KMP_COUNT_VALUE(OMP_set_numthreads, new_nth); 2689 thread = __kmp_threads[gtid]; 2690 if (thread->th.th_current_task->td_icvs.nproc == new_nth) 2691 return; // nothing to do 2692 2693 __kmp_save_internal_controls(thread); 2694 2695 set__nproc(thread, new_nth); 2696 2697 // If this omp_set_num_threads() call will cause the hot team size to be 2698 // reduced (in the absence of a num_threads clause), then reduce it now, 2699 // rather than waiting for the next parallel region. 2700 root = thread->th.th_root; 2701 if (__kmp_init_parallel && (!root->r.r_active) && 2702 (root->r.r_hot_team->t.t_nproc > new_nth) 2703 #if KMP_NESTED_HOT_TEAMS 2704 && __kmp_hot_teams_max_level && !__kmp_hot_teams_mode 2705 #endif 2706 ) { 2707 kmp_team_t *hot_team = root->r.r_hot_team; 2708 int f; 2709 2710 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 2711 2712 // Release the extra threads we don't need any more. 2713 for (f = new_nth; f < hot_team->t.t_nproc; f++) { 2714 KMP_DEBUG_ASSERT(hot_team->t.t_threads[f] != NULL); 2715 if (__kmp_tasking_mode != tskm_immediate_exec) { 2716 // When decreasing team size, threads no longer in the team should unref 2717 // task team. 2718 hot_team->t.t_threads[f]->th.th_task_team = NULL; 2719 } 2720 __kmp_free_thread(hot_team->t.t_threads[f]); 2721 hot_team->t.t_threads[f] = NULL; 2722 } 2723 hot_team->t.t_nproc = new_nth; 2724 #if KMP_NESTED_HOT_TEAMS 2725 if (thread->th.th_hot_teams) { 2726 KMP_DEBUG_ASSERT(hot_team == thread->th.th_hot_teams[0].hot_team); 2727 thread->th.th_hot_teams[0].hot_team_nth = new_nth; 2728 } 2729 #endif 2730 2731 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 2732 2733 // Update the t_nproc field in the threads that are still active. 2734 for (f = 0; f < new_nth; f++) { 2735 KMP_DEBUG_ASSERT(hot_team->t.t_threads[f] != NULL); 2736 hot_team->t.t_threads[f]->th.th_team_nproc = new_nth; 2737 } 2738 // Special flag in case omp_set_num_threads() call 2739 hot_team->t.t_size_changed = -1; 2740 } 2741 } 2742 2743 /* Changes max_active_levels */ 2744 void __kmp_set_max_active_levels(int gtid, int max_active_levels) { 2745 kmp_info_t *thread; 2746 2747 KF_TRACE(10, ("__kmp_set_max_active_levels: new max_active_levels for thread " 2748 "%d = (%d)\n", 2749 gtid, max_active_levels)); 2750 KMP_DEBUG_ASSERT(__kmp_init_serial); 2751 2752 // validate max_active_levels 2753 if (max_active_levels < 0) { 2754 KMP_WARNING(ActiveLevelsNegative, max_active_levels); 2755 // We ignore this call if the user has specified a negative value. 2756 // The current setting won't be changed. The last valid setting will be 2757 // used. A warning will be issued (if warnings are allowed as controlled by 2758 // the KMP_WARNINGS env var). 2759 KF_TRACE(10, ("__kmp_set_max_active_levels: the call is ignored: new " 2760 "max_active_levels for thread %d = (%d)\n", 2761 gtid, max_active_levels)); 2762 return; 2763 } 2764 if (max_active_levels <= KMP_MAX_ACTIVE_LEVELS_LIMIT) { 2765 // it's OK, the max_active_levels is within the valid range: [ 0; 2766 // KMP_MAX_ACTIVE_LEVELS_LIMIT ] 2767 // We allow a zero value. (implementation defined behavior) 2768 } else { 2769 KMP_WARNING(ActiveLevelsExceedLimit, max_active_levels, 2770 KMP_MAX_ACTIVE_LEVELS_LIMIT); 2771 max_active_levels = KMP_MAX_ACTIVE_LEVELS_LIMIT; 2772 // Current upper limit is MAX_INT. (implementation defined behavior) 2773 // If the input exceeds the upper limit, we correct the input to be the 2774 // upper limit. (implementation defined behavior) 2775 // Actually, the flow should never get here until we use MAX_INT limit. 2776 } 2777 KF_TRACE(10, ("__kmp_set_max_active_levels: after validation: new " 2778 "max_active_levels for thread %d = (%d)\n", 2779 gtid, max_active_levels)); 2780 2781 thread = __kmp_threads[gtid]; 2782 2783 __kmp_save_internal_controls(thread); 2784 2785 set__max_active_levels(thread, max_active_levels); 2786 } 2787 2788 /* Gets max_active_levels */ 2789 int __kmp_get_max_active_levels(int gtid) { 2790 kmp_info_t *thread; 2791 2792 KF_TRACE(10, ("__kmp_get_max_active_levels: thread %d\n", gtid)); 2793 KMP_DEBUG_ASSERT(__kmp_init_serial); 2794 2795 thread = __kmp_threads[gtid]; 2796 KMP_DEBUG_ASSERT(thread->th.th_current_task); 2797 KF_TRACE(10, ("__kmp_get_max_active_levels: thread %d, curtask=%p, " 2798 "curtask_maxaclevel=%d\n", 2799 gtid, thread->th.th_current_task, 2800 thread->th.th_current_task->td_icvs.max_active_levels)); 2801 return thread->th.th_current_task->td_icvs.max_active_levels; 2802 } 2803 2804 KMP_BUILD_ASSERT(sizeof(kmp_sched_t) == sizeof(int)); 2805 KMP_BUILD_ASSERT(sizeof(enum sched_type) == sizeof(int)); 2806 2807 /* Changes def_sched_var ICV values (run-time schedule kind and chunk) */ 2808 void __kmp_set_schedule(int gtid, kmp_sched_t kind, int chunk) { 2809 kmp_info_t *thread; 2810 kmp_sched_t orig_kind; 2811 // kmp_team_t *team; 2812 2813 KF_TRACE(10, ("__kmp_set_schedule: new schedule for thread %d = (%d, %d)\n", 2814 gtid, (int)kind, chunk)); 2815 KMP_DEBUG_ASSERT(__kmp_init_serial); 2816 2817 // Check if the kind parameter is valid, correct if needed. 2818 // Valid parameters should fit in one of two intervals - standard or extended: 2819 // <lower>, <valid>, <upper_std>, <lower_ext>, <valid>, <upper> 2820 // 2008-01-25: 0, 1 - 4, 5, 100, 101 - 102, 103 2821 orig_kind = kind; 2822 kind = __kmp_sched_without_mods(kind); 2823 2824 if (kind <= kmp_sched_lower || kind >= kmp_sched_upper || 2825 (kind <= kmp_sched_lower_ext && kind >= kmp_sched_upper_std)) { 2826 // TODO: Hint needs attention in case we change the default schedule. 2827 __kmp_msg(kmp_ms_warning, KMP_MSG(ScheduleKindOutOfRange, kind), 2828 KMP_HNT(DefaultScheduleKindUsed, "static, no chunk"), 2829 __kmp_msg_null); 2830 kind = kmp_sched_default; 2831 chunk = 0; // ignore chunk value in case of bad kind 2832 } 2833 2834 thread = __kmp_threads[gtid]; 2835 2836 __kmp_save_internal_controls(thread); 2837 2838 if (kind < kmp_sched_upper_std) { 2839 if (kind == kmp_sched_static && chunk < KMP_DEFAULT_CHUNK) { 2840 // differ static chunked vs. unchunked: chunk should be invalid to 2841 // indicate unchunked schedule (which is the default) 2842 thread->th.th_current_task->td_icvs.sched.r_sched_type = kmp_sch_static; 2843 } else { 2844 thread->th.th_current_task->td_icvs.sched.r_sched_type = 2845 __kmp_sch_map[kind - kmp_sched_lower - 1]; 2846 } 2847 } else { 2848 // __kmp_sch_map[ kind - kmp_sched_lower_ext + kmp_sched_upper_std - 2849 // kmp_sched_lower - 2 ]; 2850 thread->th.th_current_task->td_icvs.sched.r_sched_type = 2851 __kmp_sch_map[kind - kmp_sched_lower_ext + kmp_sched_upper_std - 2852 kmp_sched_lower - 2]; 2853 } 2854 __kmp_sched_apply_mods_intkind( 2855 orig_kind, &(thread->th.th_current_task->td_icvs.sched.r_sched_type)); 2856 if (kind == kmp_sched_auto || chunk < 1) { 2857 // ignore parameter chunk for schedule auto 2858 thread->th.th_current_task->td_icvs.sched.chunk = KMP_DEFAULT_CHUNK; 2859 } else { 2860 thread->th.th_current_task->td_icvs.sched.chunk = chunk; 2861 } 2862 } 2863 2864 /* Gets def_sched_var ICV values */ 2865 void __kmp_get_schedule(int gtid, kmp_sched_t *kind, int *chunk) { 2866 kmp_info_t *thread; 2867 enum sched_type th_type; 2868 2869 KF_TRACE(10, ("__kmp_get_schedule: thread %d\n", gtid)); 2870 KMP_DEBUG_ASSERT(__kmp_init_serial); 2871 2872 thread = __kmp_threads[gtid]; 2873 2874 th_type = thread->th.th_current_task->td_icvs.sched.r_sched_type; 2875 switch (SCHEDULE_WITHOUT_MODIFIERS(th_type)) { 2876 case kmp_sch_static: 2877 case kmp_sch_static_greedy: 2878 case kmp_sch_static_balanced: 2879 *kind = kmp_sched_static; 2880 __kmp_sched_apply_mods_stdkind(kind, th_type); 2881 *chunk = 0; // chunk was not set, try to show this fact via zero value 2882 return; 2883 case kmp_sch_static_chunked: 2884 *kind = kmp_sched_static; 2885 break; 2886 case kmp_sch_dynamic_chunked: 2887 *kind = kmp_sched_dynamic; 2888 break; 2889 case kmp_sch_guided_chunked: 2890 case kmp_sch_guided_iterative_chunked: 2891 case kmp_sch_guided_analytical_chunked: 2892 *kind = kmp_sched_guided; 2893 break; 2894 case kmp_sch_auto: 2895 *kind = kmp_sched_auto; 2896 break; 2897 case kmp_sch_trapezoidal: 2898 *kind = kmp_sched_trapezoidal; 2899 break; 2900 #if KMP_STATIC_STEAL_ENABLED 2901 case kmp_sch_static_steal: 2902 *kind = kmp_sched_static_steal; 2903 break; 2904 #endif 2905 default: 2906 KMP_FATAL(UnknownSchedulingType, th_type); 2907 } 2908 2909 __kmp_sched_apply_mods_stdkind(kind, th_type); 2910 *chunk = thread->th.th_current_task->td_icvs.sched.chunk; 2911 } 2912 2913 int __kmp_get_ancestor_thread_num(int gtid, int level) { 2914 2915 int ii, dd; 2916 kmp_team_t *team; 2917 kmp_info_t *thr; 2918 2919 KF_TRACE(10, ("__kmp_get_ancestor_thread_num: thread %d %d\n", gtid, level)); 2920 KMP_DEBUG_ASSERT(__kmp_init_serial); 2921 2922 // validate level 2923 if (level == 0) 2924 return 0; 2925 if (level < 0) 2926 return -1; 2927 thr = __kmp_threads[gtid]; 2928 team = thr->th.th_team; 2929 ii = team->t.t_level; 2930 if (level > ii) 2931 return -1; 2932 2933 #if OMP_40_ENABLED 2934 if (thr->th.th_teams_microtask) { 2935 // AC: we are in teams region where multiple nested teams have same level 2936 int tlevel = thr->th.th_teams_level; // the level of the teams construct 2937 if (level <= 2938 tlevel) { // otherwise usual algorithm works (will not touch the teams) 2939 KMP_DEBUG_ASSERT(ii >= tlevel); 2940 // AC: As we need to pass by the teams league, we need to artificially 2941 // increase ii 2942 if (ii == tlevel) { 2943 ii += 2; // three teams have same level 2944 } else { 2945 ii++; // two teams have same level 2946 } 2947 } 2948 } 2949 #endif 2950 2951 if (ii == level) 2952 return __kmp_tid_from_gtid(gtid); 2953 2954 dd = team->t.t_serialized; 2955 level++; 2956 while (ii > level) { 2957 for (dd = team->t.t_serialized; (dd > 0) && (ii > level); dd--, ii--) { 2958 } 2959 if ((team->t.t_serialized) && (!dd)) { 2960 team = team->t.t_parent; 2961 continue; 2962 } 2963 if (ii > level) { 2964 team = team->t.t_parent; 2965 dd = team->t.t_serialized; 2966 ii--; 2967 } 2968 } 2969 2970 return (dd > 1) ? (0) : (team->t.t_master_tid); 2971 } 2972 2973 int __kmp_get_team_size(int gtid, int level) { 2974 2975 int ii, dd; 2976 kmp_team_t *team; 2977 kmp_info_t *thr; 2978 2979 KF_TRACE(10, ("__kmp_get_team_size: thread %d %d\n", gtid, level)); 2980 KMP_DEBUG_ASSERT(__kmp_init_serial); 2981 2982 // validate level 2983 if (level == 0) 2984 return 1; 2985 if (level < 0) 2986 return -1; 2987 thr = __kmp_threads[gtid]; 2988 team = thr->th.th_team; 2989 ii = team->t.t_level; 2990 if (level > ii) 2991 return -1; 2992 2993 #if OMP_40_ENABLED 2994 if (thr->th.th_teams_microtask) { 2995 // AC: we are in teams region where multiple nested teams have same level 2996 int tlevel = thr->th.th_teams_level; // the level of the teams construct 2997 if (level <= 2998 tlevel) { // otherwise usual algorithm works (will not touch the teams) 2999 KMP_DEBUG_ASSERT(ii >= tlevel); 3000 // AC: As we need to pass by the teams league, we need to artificially 3001 // increase ii 3002 if (ii == tlevel) { 3003 ii += 2; // three teams have same level 3004 } else { 3005 ii++; // two teams have same level 3006 } 3007 } 3008 } 3009 #endif 3010 3011 while (ii > level) { 3012 for (dd = team->t.t_serialized; (dd > 0) && (ii > level); dd--, ii--) { 3013 } 3014 if (team->t.t_serialized && (!dd)) { 3015 team = team->t.t_parent; 3016 continue; 3017 } 3018 if (ii > level) { 3019 team = team->t.t_parent; 3020 ii--; 3021 } 3022 } 3023 3024 return team->t.t_nproc; 3025 } 3026 3027 kmp_r_sched_t __kmp_get_schedule_global() { 3028 // This routine created because pairs (__kmp_sched, __kmp_chunk) and 3029 // (__kmp_static, __kmp_guided) may be changed by kmp_set_defaults 3030 // independently. So one can get the updated schedule here. 3031 3032 kmp_r_sched_t r_sched; 3033 3034 // create schedule from 4 globals: __kmp_sched, __kmp_chunk, __kmp_static, 3035 // __kmp_guided. __kmp_sched should keep original value, so that user can set 3036 // KMP_SCHEDULE multiple times, and thus have different run-time schedules in 3037 // different roots (even in OMP 2.5) 3038 enum sched_type s = SCHEDULE_WITHOUT_MODIFIERS(__kmp_sched); 3039 #if OMP_45_ENABLED 3040 enum sched_type sched_modifiers = SCHEDULE_GET_MODIFIERS(__kmp_sched); 3041 #endif 3042 if (s == kmp_sch_static) { 3043 // replace STATIC with more detailed schedule (balanced or greedy) 3044 r_sched.r_sched_type = __kmp_static; 3045 } else if (s == kmp_sch_guided_chunked) { 3046 // replace GUIDED with more detailed schedule (iterative or analytical) 3047 r_sched.r_sched_type = __kmp_guided; 3048 } else { // (STATIC_CHUNKED), or (DYNAMIC_CHUNKED), or other 3049 r_sched.r_sched_type = __kmp_sched; 3050 } 3051 #if OMP_45_ENABLED 3052 SCHEDULE_SET_MODIFIERS(r_sched.r_sched_type, sched_modifiers); 3053 #endif 3054 3055 if (__kmp_chunk < KMP_DEFAULT_CHUNK) { 3056 // __kmp_chunk may be wrong here (if it was not ever set) 3057 r_sched.chunk = KMP_DEFAULT_CHUNK; 3058 } else { 3059 r_sched.chunk = __kmp_chunk; 3060 } 3061 3062 return r_sched; 3063 } 3064 3065 /* Allocate (realloc == FALSE) * or reallocate (realloc == TRUE) 3066 at least argc number of *t_argv entries for the requested team. */ 3067 static void __kmp_alloc_argv_entries(int argc, kmp_team_t *team, int realloc) { 3068 3069 KMP_DEBUG_ASSERT(team); 3070 if (!realloc || argc > team->t.t_max_argc) { 3071 3072 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: needed entries=%d, " 3073 "current entries=%d\n", 3074 team->t.t_id, argc, (realloc) ? team->t.t_max_argc : 0)); 3075 /* if previously allocated heap space for args, free them */ 3076 if (realloc && team->t.t_argv != &team->t.t_inline_argv[0]) 3077 __kmp_free((void *)team->t.t_argv); 3078 3079 if (argc <= KMP_INLINE_ARGV_ENTRIES) { 3080 /* use unused space in the cache line for arguments */ 3081 team->t.t_max_argc = KMP_INLINE_ARGV_ENTRIES; 3082 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: inline allocate %d " 3083 "argv entries\n", 3084 team->t.t_id, team->t.t_max_argc)); 3085 team->t.t_argv = &team->t.t_inline_argv[0]; 3086 if (__kmp_storage_map) { 3087 __kmp_print_storage_map_gtid( 3088 -1, &team->t.t_inline_argv[0], 3089 &team->t.t_inline_argv[KMP_INLINE_ARGV_ENTRIES], 3090 (sizeof(void *) * KMP_INLINE_ARGV_ENTRIES), "team_%d.t_inline_argv", 3091 team->t.t_id); 3092 } 3093 } else { 3094 /* allocate space for arguments in the heap */ 3095 team->t.t_max_argc = (argc <= (KMP_MIN_MALLOC_ARGV_ENTRIES >> 1)) 3096 ? KMP_MIN_MALLOC_ARGV_ENTRIES 3097 : 2 * argc; 3098 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: dynamic allocate %d " 3099 "argv entries\n", 3100 team->t.t_id, team->t.t_max_argc)); 3101 team->t.t_argv = 3102 (void **)__kmp_page_allocate(sizeof(void *) * team->t.t_max_argc); 3103 if (__kmp_storage_map) { 3104 __kmp_print_storage_map_gtid(-1, &team->t.t_argv[0], 3105 &team->t.t_argv[team->t.t_max_argc], 3106 sizeof(void *) * team->t.t_max_argc, 3107 "team_%d.t_argv", team->t.t_id); 3108 } 3109 } 3110 } 3111 } 3112 3113 static void __kmp_allocate_team_arrays(kmp_team_t *team, int max_nth) { 3114 int i; 3115 int num_disp_buff = max_nth > 1 ? __kmp_dispatch_num_buffers : 2; 3116 team->t.t_threads = 3117 (kmp_info_t **)__kmp_allocate(sizeof(kmp_info_t *) * max_nth); 3118 team->t.t_disp_buffer = (dispatch_shared_info_t *)__kmp_allocate( 3119 sizeof(dispatch_shared_info_t) * num_disp_buff); 3120 team->t.t_dispatch = 3121 (kmp_disp_t *)__kmp_allocate(sizeof(kmp_disp_t) * max_nth); 3122 team->t.t_implicit_task_taskdata = 3123 (kmp_taskdata_t *)__kmp_allocate(sizeof(kmp_taskdata_t) * max_nth); 3124 team->t.t_max_nproc = max_nth; 3125 3126 /* setup dispatch buffers */ 3127 for (i = 0; i < num_disp_buff; ++i) { 3128 team->t.t_disp_buffer[i].buffer_index = i; 3129 #if OMP_45_ENABLED 3130 team->t.t_disp_buffer[i].doacross_buf_idx = i; 3131 #endif 3132 } 3133 } 3134 3135 static void __kmp_free_team_arrays(kmp_team_t *team) { 3136 /* Note: this does not free the threads in t_threads (__kmp_free_threads) */ 3137 int i; 3138 for (i = 0; i < team->t.t_max_nproc; ++i) { 3139 if (team->t.t_dispatch[i].th_disp_buffer != NULL) { 3140 __kmp_free(team->t.t_dispatch[i].th_disp_buffer); 3141 team->t.t_dispatch[i].th_disp_buffer = NULL; 3142 } 3143 } 3144 #if KMP_USE_HIER_SCHED 3145 __kmp_dispatch_free_hierarchies(team); 3146 #endif 3147 __kmp_free(team->t.t_threads); 3148 __kmp_free(team->t.t_disp_buffer); 3149 __kmp_free(team->t.t_dispatch); 3150 __kmp_free(team->t.t_implicit_task_taskdata); 3151 team->t.t_threads = NULL; 3152 team->t.t_disp_buffer = NULL; 3153 team->t.t_dispatch = NULL; 3154 team->t.t_implicit_task_taskdata = 0; 3155 } 3156 3157 static void __kmp_reallocate_team_arrays(kmp_team_t *team, int max_nth) { 3158 kmp_info_t **oldThreads = team->t.t_threads; 3159 3160 __kmp_free(team->t.t_disp_buffer); 3161 __kmp_free(team->t.t_dispatch); 3162 __kmp_free(team->t.t_implicit_task_taskdata); 3163 __kmp_allocate_team_arrays(team, max_nth); 3164 3165 KMP_MEMCPY(team->t.t_threads, oldThreads, 3166 team->t.t_nproc * sizeof(kmp_info_t *)); 3167 3168 __kmp_free(oldThreads); 3169 } 3170 3171 static kmp_internal_control_t __kmp_get_global_icvs(void) { 3172 3173 kmp_r_sched_t r_sched = 3174 __kmp_get_schedule_global(); // get current state of scheduling globals 3175 3176 #if OMP_40_ENABLED 3177 KMP_DEBUG_ASSERT(__kmp_nested_proc_bind.used > 0); 3178 #endif /* OMP_40_ENABLED */ 3179 3180 kmp_internal_control_t g_icvs = { 3181 0, // int serial_nesting_level; //corresponds to value of th_team_serialized 3182 (kmp_int8)__kmp_global.g.g_dynamic, // internal control for dynamic 3183 // adjustment of threads (per thread) 3184 (kmp_int8)__kmp_env_blocktime, // int bt_set; //internal control for 3185 // whether blocktime is explicitly set 3186 __kmp_dflt_blocktime, // int blocktime; //internal control for blocktime 3187 #if KMP_USE_MONITOR 3188 __kmp_bt_intervals, // int bt_intervals; //internal control for blocktime 3189 // intervals 3190 #endif 3191 __kmp_dflt_team_nth, // int nproc; //internal control for # of threads for 3192 // next parallel region (per thread) 3193 // (use a max ub on value if __kmp_parallel_initialize not called yet) 3194 __kmp_cg_max_nth, // int thread_limit; 3195 __kmp_dflt_max_active_levels, // int max_active_levels; //internal control 3196 // for max_active_levels 3197 r_sched, // kmp_r_sched_t sched; //internal control for runtime schedule 3198 // {sched,chunk} pair 3199 #if OMP_40_ENABLED 3200 __kmp_nested_proc_bind.bind_types[0], 3201 __kmp_default_device, 3202 #endif /* OMP_40_ENABLED */ 3203 NULL // struct kmp_internal_control *next; 3204 }; 3205 3206 return g_icvs; 3207 } 3208 3209 static kmp_internal_control_t __kmp_get_x_global_icvs(const kmp_team_t *team) { 3210 3211 kmp_internal_control_t gx_icvs; 3212 gx_icvs.serial_nesting_level = 3213 0; // probably =team->t.t_serial like in save_inter_controls 3214 copy_icvs(&gx_icvs, &team->t.t_threads[0]->th.th_current_task->td_icvs); 3215 gx_icvs.next = NULL; 3216 3217 return gx_icvs; 3218 } 3219 3220 static void __kmp_initialize_root(kmp_root_t *root) { 3221 int f; 3222 kmp_team_t *root_team; 3223 kmp_team_t *hot_team; 3224 int hot_team_max_nth; 3225 kmp_r_sched_t r_sched = 3226 __kmp_get_schedule_global(); // get current state of scheduling globals 3227 kmp_internal_control_t r_icvs = __kmp_get_global_icvs(); 3228 KMP_DEBUG_ASSERT(root); 3229 KMP_ASSERT(!root->r.r_begin); 3230 3231 /* setup the root state structure */ 3232 __kmp_init_lock(&root->r.r_begin_lock); 3233 root->r.r_begin = FALSE; 3234 root->r.r_active = FALSE; 3235 root->r.r_in_parallel = 0; 3236 root->r.r_blocktime = __kmp_dflt_blocktime; 3237 3238 /* setup the root team for this task */ 3239 /* allocate the root team structure */ 3240 KF_TRACE(10, ("__kmp_initialize_root: before root_team\n")); 3241 3242 root_team = 3243 __kmp_allocate_team(root, 3244 1, // new_nproc 3245 1, // max_nproc 3246 #if OMPT_SUPPORT 3247 ompt_data_none, // root parallel id 3248 #endif 3249 #if OMP_40_ENABLED 3250 __kmp_nested_proc_bind.bind_types[0], 3251 #endif 3252 &r_icvs, 3253 0 // argc 3254 USE_NESTED_HOT_ARG(NULL) // master thread is unknown 3255 ); 3256 #if USE_DEBUGGER 3257 // Non-NULL value should be assigned to make the debugger display the root 3258 // team. 3259 TCW_SYNC_PTR(root_team->t.t_pkfn, (microtask_t)(~0)); 3260 #endif 3261 3262 KF_TRACE(10, ("__kmp_initialize_root: after root_team = %p\n", root_team)); 3263 3264 root->r.r_root_team = root_team; 3265 root_team->t.t_control_stack_top = NULL; 3266 3267 /* initialize root team */ 3268 root_team->t.t_threads[0] = NULL; 3269 root_team->t.t_nproc = 1; 3270 root_team->t.t_serialized = 1; 3271 // TODO???: root_team->t.t_max_active_levels = __kmp_dflt_max_active_levels; 3272 root_team->t.t_sched.sched = r_sched.sched; 3273 KA_TRACE( 3274 20, 3275 ("__kmp_initialize_root: init root team %d arrived: join=%u, plain=%u\n", 3276 root_team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 3277 3278 /* setup the hot team for this task */ 3279 /* allocate the hot team structure */ 3280 KF_TRACE(10, ("__kmp_initialize_root: before hot_team\n")); 3281 3282 hot_team = 3283 __kmp_allocate_team(root, 3284 1, // new_nproc 3285 __kmp_dflt_team_nth_ub * 2, // max_nproc 3286 #if OMPT_SUPPORT 3287 ompt_data_none, // root parallel id 3288 #endif 3289 #if OMP_40_ENABLED 3290 __kmp_nested_proc_bind.bind_types[0], 3291 #endif 3292 &r_icvs, 3293 0 // argc 3294 USE_NESTED_HOT_ARG(NULL) // master thread is unknown 3295 ); 3296 KF_TRACE(10, ("__kmp_initialize_root: after hot_team = %p\n", hot_team)); 3297 3298 root->r.r_hot_team = hot_team; 3299 root_team->t.t_control_stack_top = NULL; 3300 3301 /* first-time initialization */ 3302 hot_team->t.t_parent = root_team; 3303 3304 /* initialize hot team */ 3305 hot_team_max_nth = hot_team->t.t_max_nproc; 3306 for (f = 0; f < hot_team_max_nth; ++f) { 3307 hot_team->t.t_threads[f] = NULL; 3308 } 3309 hot_team->t.t_nproc = 1; 3310 // TODO???: hot_team->t.t_max_active_levels = __kmp_dflt_max_active_levels; 3311 hot_team->t.t_sched.sched = r_sched.sched; 3312 hot_team->t.t_size_changed = 0; 3313 } 3314 3315 #ifdef KMP_DEBUG 3316 3317 typedef struct kmp_team_list_item { 3318 kmp_team_p const *entry; 3319 struct kmp_team_list_item *next; 3320 } kmp_team_list_item_t; 3321 typedef kmp_team_list_item_t *kmp_team_list_t; 3322 3323 static void __kmp_print_structure_team_accum( // Add team to list of teams. 3324 kmp_team_list_t list, // List of teams. 3325 kmp_team_p const *team // Team to add. 3326 ) { 3327 3328 // List must terminate with item where both entry and next are NULL. 3329 // Team is added to the list only once. 3330 // List is sorted in ascending order by team id. 3331 // Team id is *not* a key. 3332 3333 kmp_team_list_t l; 3334 3335 KMP_DEBUG_ASSERT(list != NULL); 3336 if (team == NULL) { 3337 return; 3338 } 3339 3340 __kmp_print_structure_team_accum(list, team->t.t_parent); 3341 __kmp_print_structure_team_accum(list, team->t.t_next_pool); 3342 3343 // Search list for the team. 3344 l = list; 3345 while (l->next != NULL && l->entry != team) { 3346 l = l->next; 3347 } 3348 if (l->next != NULL) { 3349 return; // Team has been added before, exit. 3350 } 3351 3352 // Team is not found. Search list again for insertion point. 3353 l = list; 3354 while (l->next != NULL && l->entry->t.t_id <= team->t.t_id) { 3355 l = l->next; 3356 } 3357 3358 // Insert team. 3359 { 3360 kmp_team_list_item_t *item = (kmp_team_list_item_t *)KMP_INTERNAL_MALLOC( 3361 sizeof(kmp_team_list_item_t)); 3362 *item = *l; 3363 l->entry = team; 3364 l->next = item; 3365 } 3366 } 3367 3368 static void __kmp_print_structure_team(char const *title, kmp_team_p const *team 3369 3370 ) { 3371 __kmp_printf("%s", title); 3372 if (team != NULL) { 3373 __kmp_printf("%2x %p\n", team->t.t_id, team); 3374 } else { 3375 __kmp_printf(" - (nil)\n"); 3376 } 3377 } 3378 3379 static void __kmp_print_structure_thread(char const *title, 3380 kmp_info_p const *thread) { 3381 __kmp_printf("%s", title); 3382 if (thread != NULL) { 3383 __kmp_printf("%2d %p\n", thread->th.th_info.ds.ds_gtid, thread); 3384 } else { 3385 __kmp_printf(" - (nil)\n"); 3386 } 3387 } 3388 3389 void __kmp_print_structure(void) { 3390 3391 kmp_team_list_t list; 3392 3393 // Initialize list of teams. 3394 list = 3395 (kmp_team_list_item_t *)KMP_INTERNAL_MALLOC(sizeof(kmp_team_list_item_t)); 3396 list->entry = NULL; 3397 list->next = NULL; 3398 3399 __kmp_printf("\n------------------------------\nGlobal Thread " 3400 "Table\n------------------------------\n"); 3401 { 3402 int gtid; 3403 for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) { 3404 __kmp_printf("%2d", gtid); 3405 if (__kmp_threads != NULL) { 3406 __kmp_printf(" %p", __kmp_threads[gtid]); 3407 } 3408 if (__kmp_root != NULL) { 3409 __kmp_printf(" %p", __kmp_root[gtid]); 3410 } 3411 __kmp_printf("\n"); 3412 } 3413 } 3414 3415 // Print out __kmp_threads array. 3416 __kmp_printf("\n------------------------------\nThreads\n--------------------" 3417 "----------\n"); 3418 if (__kmp_threads != NULL) { 3419 int gtid; 3420 for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) { 3421 kmp_info_t const *thread = __kmp_threads[gtid]; 3422 if (thread != NULL) { 3423 __kmp_printf("GTID %2d %p:\n", gtid, thread); 3424 __kmp_printf(" Our Root: %p\n", thread->th.th_root); 3425 __kmp_print_structure_team(" Our Team: ", thread->th.th_team); 3426 __kmp_print_structure_team(" Serial Team: ", 3427 thread->th.th_serial_team); 3428 __kmp_printf(" Threads: %2d\n", thread->th.th_team_nproc); 3429 __kmp_print_structure_thread(" Master: ", 3430 thread->th.th_team_master); 3431 __kmp_printf(" Serialized?: %2d\n", thread->th.th_team_serialized); 3432 __kmp_printf(" Set NProc: %2d\n", thread->th.th_set_nproc); 3433 #if OMP_40_ENABLED 3434 __kmp_printf(" Set Proc Bind: %2d\n", thread->th.th_set_proc_bind); 3435 #endif 3436 __kmp_print_structure_thread(" Next in pool: ", 3437 thread->th.th_next_pool); 3438 __kmp_printf("\n"); 3439 __kmp_print_structure_team_accum(list, thread->th.th_team); 3440 __kmp_print_structure_team_accum(list, thread->th.th_serial_team); 3441 } 3442 } 3443 } else { 3444 __kmp_printf("Threads array is not allocated.\n"); 3445 } 3446 3447 // Print out __kmp_root array. 3448 __kmp_printf("\n------------------------------\nUbers\n----------------------" 3449 "--------\n"); 3450 if (__kmp_root != NULL) { 3451 int gtid; 3452 for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) { 3453 kmp_root_t const *root = __kmp_root[gtid]; 3454 if (root != NULL) { 3455 __kmp_printf("GTID %2d %p:\n", gtid, root); 3456 __kmp_print_structure_team(" Root Team: ", root->r.r_root_team); 3457 __kmp_print_structure_team(" Hot Team: ", root->r.r_hot_team); 3458 __kmp_print_structure_thread(" Uber Thread: ", 3459 root->r.r_uber_thread); 3460 __kmp_printf(" Active?: %2d\n", root->r.r_active); 3461 __kmp_printf(" In Parallel: %2d\n", 3462 KMP_ATOMIC_LD_RLX(&root->r.r_in_parallel)); 3463 __kmp_printf("\n"); 3464 __kmp_print_structure_team_accum(list, root->r.r_root_team); 3465 __kmp_print_structure_team_accum(list, root->r.r_hot_team); 3466 } 3467 } 3468 } else { 3469 __kmp_printf("Ubers array is not allocated.\n"); 3470 } 3471 3472 __kmp_printf("\n------------------------------\nTeams\n----------------------" 3473 "--------\n"); 3474 while (list->next != NULL) { 3475 kmp_team_p const *team = list->entry; 3476 int i; 3477 __kmp_printf("Team %2x %p:\n", team->t.t_id, team); 3478 __kmp_print_structure_team(" Parent Team: ", team->t.t_parent); 3479 __kmp_printf(" Master TID: %2d\n", team->t.t_master_tid); 3480 __kmp_printf(" Max threads: %2d\n", team->t.t_max_nproc); 3481 __kmp_printf(" Levels of serial: %2d\n", team->t.t_serialized); 3482 __kmp_printf(" Number threads: %2d\n", team->t.t_nproc); 3483 for (i = 0; i < team->t.t_nproc; ++i) { 3484 __kmp_printf(" Thread %2d: ", i); 3485 __kmp_print_structure_thread("", team->t.t_threads[i]); 3486 } 3487 __kmp_print_structure_team(" Next in pool: ", team->t.t_next_pool); 3488 __kmp_printf("\n"); 3489 list = list->next; 3490 } 3491 3492 // Print out __kmp_thread_pool and __kmp_team_pool. 3493 __kmp_printf("\n------------------------------\nPools\n----------------------" 3494 "--------\n"); 3495 __kmp_print_structure_thread("Thread pool: ", 3496 CCAST(kmp_info_t *, __kmp_thread_pool)); 3497 __kmp_print_structure_team("Team pool: ", 3498 CCAST(kmp_team_t *, __kmp_team_pool)); 3499 __kmp_printf("\n"); 3500 3501 // Free team list. 3502 while (list != NULL) { 3503 kmp_team_list_item_t *item = list; 3504 list = list->next; 3505 KMP_INTERNAL_FREE(item); 3506 } 3507 } 3508 3509 #endif 3510 3511 //--------------------------------------------------------------------------- 3512 // Stuff for per-thread fast random number generator 3513 // Table of primes 3514 static const unsigned __kmp_primes[] = { 3515 0x9e3779b1, 0xffe6cc59, 0x2109f6dd, 0x43977ab5, 0xba5703f5, 0xb495a877, 3516 0xe1626741, 0x79695e6b, 0xbc98c09f, 0xd5bee2b3, 0x287488f9, 0x3af18231, 3517 0x9677cd4d, 0xbe3a6929, 0xadc6a877, 0xdcf0674b, 0xbe4d6fe9, 0x5f15e201, 3518 0x99afc3fd, 0xf3f16801, 0xe222cfff, 0x24ba5fdb, 0x0620452d, 0x79f149e3, 3519 0xc8b93f49, 0x972702cd, 0xb07dd827, 0x6c97d5ed, 0x085a3d61, 0x46eb5ea7, 3520 0x3d9910ed, 0x2e687b5b, 0x29609227, 0x6eb081f1, 0x0954c4e1, 0x9d114db9, 3521 0x542acfa9, 0xb3e6bd7b, 0x0742d917, 0xe9f3ffa7, 0x54581edb, 0xf2480f45, 3522 0x0bb9288f, 0xef1affc7, 0x85fa0ca7, 0x3ccc14db, 0xe6baf34b, 0x343377f7, 3523 0x5ca19031, 0xe6d9293b, 0xf0a9f391, 0x5d2e980b, 0xfc411073, 0xc3749363, 3524 0xb892d829, 0x3549366b, 0x629750ad, 0xb98294e5, 0x892d9483, 0xc235baf3, 3525 0x3d2402a3, 0x6bdef3c9, 0xbec333cd, 0x40c9520f}; 3526 3527 //--------------------------------------------------------------------------- 3528 // __kmp_get_random: Get a random number using a linear congruential method. 3529 unsigned short __kmp_get_random(kmp_info_t *thread) { 3530 unsigned x = thread->th.th_x; 3531 unsigned short r = x >> 16; 3532 3533 thread->th.th_x = x * thread->th.th_a + 1; 3534 3535 KA_TRACE(30, ("__kmp_get_random: THREAD: %d, RETURN: %u\n", 3536 thread->th.th_info.ds.ds_tid, r)); 3537 3538 return r; 3539 } 3540 //-------------------------------------------------------- 3541 // __kmp_init_random: Initialize a random number generator 3542 void __kmp_init_random(kmp_info_t *thread) { 3543 unsigned seed = thread->th.th_info.ds.ds_tid; 3544 3545 thread->th.th_a = 3546 __kmp_primes[seed % (sizeof(__kmp_primes) / sizeof(__kmp_primes[0]))]; 3547 thread->th.th_x = (seed + 1) * thread->th.th_a + 1; 3548 KA_TRACE(30, 3549 ("__kmp_init_random: THREAD: %u; A: %u\n", seed, thread->th.th_a)); 3550 } 3551 3552 #if KMP_OS_WINDOWS 3553 /* reclaim array entries for root threads that are already dead, returns number 3554 * reclaimed */ 3555 static int __kmp_reclaim_dead_roots(void) { 3556 int i, r = 0; 3557 3558 for (i = 0; i < __kmp_threads_capacity; ++i) { 3559 if (KMP_UBER_GTID(i) && 3560 !__kmp_still_running((kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[i])) && 3561 !__kmp_root[i] 3562 ->r.r_active) { // AC: reclaim only roots died in non-active state 3563 r += __kmp_unregister_root_other_thread(i); 3564 } 3565 } 3566 return r; 3567 } 3568 #endif 3569 3570 /* This function attempts to create free entries in __kmp_threads and 3571 __kmp_root, and returns the number of free entries generated. 3572 3573 For Windows* OS static library, the first mechanism used is to reclaim array 3574 entries for root threads that are already dead. 3575 3576 On all platforms, expansion is attempted on the arrays __kmp_threads_ and 3577 __kmp_root, with appropriate update to __kmp_threads_capacity. Array 3578 capacity is increased by doubling with clipping to __kmp_tp_capacity, if 3579 threadprivate cache array has been created. Synchronization with 3580 __kmpc_threadprivate_cached is done using __kmp_tp_cached_lock. 3581 3582 After any dead root reclamation, if the clipping value allows array expansion 3583 to result in the generation of a total of nNeed free slots, the function does 3584 that expansion. If not, nothing is done beyond the possible initial root 3585 thread reclamation. 3586 3587 If any argument is negative, the behavior is undefined. */ 3588 static int __kmp_expand_threads(int nNeed) { 3589 int added = 0; 3590 int minimumRequiredCapacity; 3591 int newCapacity; 3592 kmp_info_t **newThreads; 3593 kmp_root_t **newRoot; 3594 3595 // All calls to __kmp_expand_threads should be under __kmp_forkjoin_lock, so 3596 // resizing __kmp_threads does not need additional protection if foreign 3597 // threads are present 3598 3599 #if KMP_OS_WINDOWS && !KMP_DYNAMIC_LIB 3600 /* only for Windows static library */ 3601 /* reclaim array entries for root threads that are already dead */ 3602 added = __kmp_reclaim_dead_roots(); 3603 3604 if (nNeed) { 3605 nNeed -= added; 3606 if (nNeed < 0) 3607 nNeed = 0; 3608 } 3609 #endif 3610 if (nNeed <= 0) 3611 return added; 3612 3613 // Note that __kmp_threads_capacity is not bounded by __kmp_max_nth. If 3614 // __kmp_max_nth is set to some value less than __kmp_sys_max_nth by the 3615 // user via KMP_DEVICE_THREAD_LIMIT, then __kmp_threads_capacity may become 3616 // > __kmp_max_nth in one of two ways: 3617 // 3618 // 1) The initialization thread (gtid = 0) exits. __kmp_threads[0] 3619 // may not be resused by another thread, so we may need to increase 3620 // __kmp_threads_capacity to __kmp_max_nth + 1. 3621 // 3622 // 2) New foreign root(s) are encountered. We always register new foreign 3623 // roots. This may cause a smaller # of threads to be allocated at 3624 // subsequent parallel regions, but the worker threads hang around (and 3625 // eventually go to sleep) and need slots in the __kmp_threads[] array. 3626 // 3627 // Anyway, that is the reason for moving the check to see if 3628 // __kmp_max_nth was exceeded into __kmp_reserve_threads() 3629 // instead of having it performed here. -BB 3630 3631 KMP_DEBUG_ASSERT(__kmp_sys_max_nth >= __kmp_threads_capacity); 3632 3633 /* compute expansion headroom to check if we can expand */ 3634 if (__kmp_sys_max_nth - __kmp_threads_capacity < nNeed) { 3635 /* possible expansion too small -- give up */ 3636 return added; 3637 } 3638 minimumRequiredCapacity = __kmp_threads_capacity + nNeed; 3639 3640 newCapacity = __kmp_threads_capacity; 3641 do { 3642 newCapacity = newCapacity <= (__kmp_sys_max_nth >> 1) ? (newCapacity << 1) 3643 : __kmp_sys_max_nth; 3644 } while (newCapacity < minimumRequiredCapacity); 3645 newThreads = (kmp_info_t **)__kmp_allocate( 3646 (sizeof(kmp_info_t *) + sizeof(kmp_root_t *)) * newCapacity + CACHE_LINE); 3647 newRoot = 3648 (kmp_root_t **)((char *)newThreads + sizeof(kmp_info_t *) * newCapacity); 3649 KMP_MEMCPY(newThreads, __kmp_threads, 3650 __kmp_threads_capacity * sizeof(kmp_info_t *)); 3651 KMP_MEMCPY(newRoot, __kmp_root, 3652 __kmp_threads_capacity * sizeof(kmp_root_t *)); 3653 3654 kmp_info_t **temp_threads = __kmp_threads; 3655 *(kmp_info_t * *volatile *)&__kmp_threads = newThreads; 3656 *(kmp_root_t * *volatile *)&__kmp_root = newRoot; 3657 __kmp_free(temp_threads); 3658 added += newCapacity - __kmp_threads_capacity; 3659 *(volatile int *)&__kmp_threads_capacity = newCapacity; 3660 3661 if (newCapacity > __kmp_tp_capacity) { 3662 __kmp_acquire_bootstrap_lock(&__kmp_tp_cached_lock); 3663 if (__kmp_tp_cached && newCapacity > __kmp_tp_capacity) { 3664 __kmp_threadprivate_resize_cache(newCapacity); 3665 } else { // increase __kmp_tp_capacity to correspond with kmp_threads size 3666 *(volatile int *)&__kmp_tp_capacity = newCapacity; 3667 } 3668 __kmp_release_bootstrap_lock(&__kmp_tp_cached_lock); 3669 } 3670 3671 return added; 3672 } 3673 3674 /* Register the current thread as a root thread and obtain our gtid. We must 3675 have the __kmp_initz_lock held at this point. Argument TRUE only if are the 3676 thread that calls from __kmp_do_serial_initialize() */ 3677 int __kmp_register_root(int initial_thread) { 3678 kmp_info_t *root_thread; 3679 kmp_root_t *root; 3680 int gtid; 3681 int capacity; 3682 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 3683 KA_TRACE(20, ("__kmp_register_root: entered\n")); 3684 KMP_MB(); 3685 3686 /* 2007-03-02: 3687 If initial thread did not invoke OpenMP RTL yet, and this thread is not an 3688 initial one, "__kmp_all_nth >= __kmp_threads_capacity" condition does not 3689 work as expected -- it may return false (that means there is at least one 3690 empty slot in __kmp_threads array), but it is possible the only free slot 3691 is #0, which is reserved for initial thread and so cannot be used for this 3692 one. Following code workarounds this bug. 3693 3694 However, right solution seems to be not reserving slot #0 for initial 3695 thread because: 3696 (1) there is no magic in slot #0, 3697 (2) we cannot detect initial thread reliably (the first thread which does 3698 serial initialization may be not a real initial thread). 3699 */ 3700 capacity = __kmp_threads_capacity; 3701 if (!initial_thread && TCR_PTR(__kmp_threads[0]) == NULL) { 3702 --capacity; 3703 } 3704 3705 /* see if there are too many threads */ 3706 if (__kmp_all_nth >= capacity && !__kmp_expand_threads(1)) { 3707 if (__kmp_tp_cached) { 3708 __kmp_fatal(KMP_MSG(CantRegisterNewThread), 3709 KMP_HNT(Set_ALL_THREADPRIVATE, __kmp_tp_capacity), 3710 KMP_HNT(PossibleSystemLimitOnThreads), __kmp_msg_null); 3711 } else { 3712 __kmp_fatal(KMP_MSG(CantRegisterNewThread), KMP_HNT(SystemLimitOnThreads), 3713 __kmp_msg_null); 3714 } 3715 } 3716 3717 /* find an available thread slot */ 3718 /* Don't reassign the zero slot since we need that to only be used by initial 3719 thread */ 3720 for (gtid = (initial_thread ? 0 : 1); TCR_PTR(__kmp_threads[gtid]) != NULL; 3721 gtid++) 3722 ; 3723 KA_TRACE(1, 3724 ("__kmp_register_root: found slot in threads array: T#%d\n", gtid)); 3725 KMP_ASSERT(gtid < __kmp_threads_capacity); 3726 3727 /* update global accounting */ 3728 __kmp_all_nth++; 3729 TCW_4(__kmp_nth, __kmp_nth + 1); 3730 3731 // if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) for low 3732 // numbers of procs, and method #2 (keyed API call) for higher numbers. 3733 if (__kmp_adjust_gtid_mode) { 3734 if (__kmp_all_nth >= __kmp_tls_gtid_min) { 3735 if (TCR_4(__kmp_gtid_mode) != 2) { 3736 TCW_4(__kmp_gtid_mode, 2); 3737 } 3738 } else { 3739 if (TCR_4(__kmp_gtid_mode) != 1) { 3740 TCW_4(__kmp_gtid_mode, 1); 3741 } 3742 } 3743 } 3744 3745 #ifdef KMP_ADJUST_BLOCKTIME 3746 /* Adjust blocktime to zero if necessary */ 3747 /* Middle initialization might not have occurred yet */ 3748 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 3749 if (__kmp_nth > __kmp_avail_proc) { 3750 __kmp_zero_bt = TRUE; 3751 } 3752 } 3753 #endif /* KMP_ADJUST_BLOCKTIME */ 3754 3755 /* setup this new hierarchy */ 3756 if (!(root = __kmp_root[gtid])) { 3757 root = __kmp_root[gtid] = (kmp_root_t *)__kmp_allocate(sizeof(kmp_root_t)); 3758 KMP_DEBUG_ASSERT(!root->r.r_root_team); 3759 } 3760 3761 #if KMP_STATS_ENABLED 3762 // Initialize stats as soon as possible (right after gtid assignment). 3763 __kmp_stats_thread_ptr = __kmp_stats_list->push_back(gtid); 3764 __kmp_stats_thread_ptr->startLife(); 3765 KMP_SET_THREAD_STATE(SERIAL_REGION); 3766 KMP_INIT_PARTITIONED_TIMERS(OMP_serial); 3767 #endif 3768 __kmp_initialize_root(root); 3769 3770 /* setup new root thread structure */ 3771 if (root->r.r_uber_thread) { 3772 root_thread = root->r.r_uber_thread; 3773 } else { 3774 root_thread = (kmp_info_t *)__kmp_allocate(sizeof(kmp_info_t)); 3775 if (__kmp_storage_map) { 3776 __kmp_print_thread_storage_map(root_thread, gtid); 3777 } 3778 root_thread->th.th_info.ds.ds_gtid = gtid; 3779 #if OMPT_SUPPORT 3780 root_thread->th.ompt_thread_info.thread_data = ompt_data_none; 3781 #endif 3782 root_thread->th.th_root = root; 3783 if (__kmp_env_consistency_check) { 3784 root_thread->th.th_cons = __kmp_allocate_cons_stack(gtid); 3785 } 3786 #if USE_FAST_MEMORY 3787 __kmp_initialize_fast_memory(root_thread); 3788 #endif /* USE_FAST_MEMORY */ 3789 3790 #if KMP_USE_BGET 3791 KMP_DEBUG_ASSERT(root_thread->th.th_local.bget_data == NULL); 3792 __kmp_initialize_bget(root_thread); 3793 #endif 3794 __kmp_init_random(root_thread); // Initialize random number generator 3795 } 3796 3797 /* setup the serial team held in reserve by the root thread */ 3798 if (!root_thread->th.th_serial_team) { 3799 kmp_internal_control_t r_icvs = __kmp_get_global_icvs(); 3800 KF_TRACE(10, ("__kmp_register_root: before serial_team\n")); 3801 root_thread->th.th_serial_team = 3802 __kmp_allocate_team(root, 1, 1, 3803 #if OMPT_SUPPORT 3804 ompt_data_none, // root parallel id 3805 #endif 3806 #if OMP_40_ENABLED 3807 proc_bind_default, 3808 #endif 3809 &r_icvs, 0 USE_NESTED_HOT_ARG(NULL)); 3810 } 3811 KMP_ASSERT(root_thread->th.th_serial_team); 3812 KF_TRACE(10, ("__kmp_register_root: after serial_team = %p\n", 3813 root_thread->th.th_serial_team)); 3814 3815 /* drop root_thread into place */ 3816 TCW_SYNC_PTR(__kmp_threads[gtid], root_thread); 3817 3818 root->r.r_root_team->t.t_threads[0] = root_thread; 3819 root->r.r_hot_team->t.t_threads[0] = root_thread; 3820 root_thread->th.th_serial_team->t.t_threads[0] = root_thread; 3821 // AC: the team created in reserve, not for execution (it is unused for now). 3822 root_thread->th.th_serial_team->t.t_serialized = 0; 3823 root->r.r_uber_thread = root_thread; 3824 3825 /* initialize the thread, get it ready to go */ 3826 __kmp_initialize_info(root_thread, root->r.r_root_team, 0, gtid); 3827 TCW_4(__kmp_init_gtid, TRUE); 3828 3829 /* prepare the master thread for get_gtid() */ 3830 __kmp_gtid_set_specific(gtid); 3831 3832 #if USE_ITT_BUILD 3833 __kmp_itt_thread_name(gtid); 3834 #endif /* USE_ITT_BUILD */ 3835 3836 #ifdef KMP_TDATA_GTID 3837 __kmp_gtid = gtid; 3838 #endif 3839 __kmp_create_worker(gtid, root_thread, __kmp_stksize); 3840 KMP_DEBUG_ASSERT(__kmp_gtid_get_specific() == gtid); 3841 3842 KA_TRACE(20, ("__kmp_register_root: T#%d init T#%d(%d:%d) arrived: join=%u, " 3843 "plain=%u\n", 3844 gtid, __kmp_gtid_from_tid(0, root->r.r_hot_team), 3845 root->r.r_hot_team->t.t_id, 0, KMP_INIT_BARRIER_STATE, 3846 KMP_INIT_BARRIER_STATE)); 3847 { // Initialize barrier data. 3848 int b; 3849 for (b = 0; b < bs_last_barrier; ++b) { 3850 root_thread->th.th_bar[b].bb.b_arrived = KMP_INIT_BARRIER_STATE; 3851 #if USE_DEBUGGER 3852 root_thread->th.th_bar[b].bb.b_worker_arrived = 0; 3853 #endif 3854 } 3855 } 3856 KMP_DEBUG_ASSERT(root->r.r_hot_team->t.t_bar[bs_forkjoin_barrier].b_arrived == 3857 KMP_INIT_BARRIER_STATE); 3858 3859 #if KMP_AFFINITY_SUPPORTED 3860 #if OMP_40_ENABLED 3861 root_thread->th.th_current_place = KMP_PLACE_UNDEFINED; 3862 root_thread->th.th_new_place = KMP_PLACE_UNDEFINED; 3863 root_thread->th.th_first_place = KMP_PLACE_UNDEFINED; 3864 root_thread->th.th_last_place = KMP_PLACE_UNDEFINED; 3865 #endif 3866 if (TCR_4(__kmp_init_middle)) { 3867 __kmp_affinity_set_init_mask(gtid, TRUE); 3868 } 3869 #endif /* KMP_AFFINITY_SUPPORTED */ 3870 #if OMP_50_ENABLED 3871 root_thread->th.th_def_allocator = __kmp_def_allocator; 3872 root_thread->th.th_prev_level = 0; 3873 root_thread->th.th_prev_num_threads = 1; 3874 #endif 3875 3876 kmp_cg_root_t *tmp = (kmp_cg_root_t *)__kmp_allocate(sizeof(kmp_cg_root_t)); 3877 tmp->cg_root = root_thread; 3878 tmp->cg_thread_limit = __kmp_cg_max_nth; 3879 tmp->cg_nthreads = 1; 3880 KA_TRACE(100, ("__kmp_register_root: Thread %p created node %p with" 3881 " cg_nthreads init to 1\n", 3882 root_thread, tmp)); 3883 tmp->up = NULL; 3884 root_thread->th.th_cg_roots = tmp; 3885 3886 __kmp_root_counter++; 3887 3888 #if OMPT_SUPPORT 3889 if (!initial_thread && ompt_enabled.enabled) { 3890 3891 kmp_info_t *root_thread = ompt_get_thread(); 3892 3893 ompt_set_thread_state(root_thread, ompt_state_overhead); 3894 3895 if (ompt_enabled.ompt_callback_thread_begin) { 3896 ompt_callbacks.ompt_callback(ompt_callback_thread_begin)( 3897 ompt_thread_initial, __ompt_get_thread_data_internal()); 3898 } 3899 ompt_data_t *task_data; 3900 __ompt_get_task_info_internal(0, NULL, &task_data, NULL, NULL, NULL); 3901 if (ompt_enabled.ompt_callback_task_create) { 3902 ompt_callbacks.ompt_callback(ompt_callback_task_create)( 3903 NULL, NULL, task_data, ompt_task_initial, 0, NULL); 3904 // initial task has nothing to return to 3905 } 3906 3907 ompt_set_thread_state(root_thread, ompt_state_work_serial); 3908 } 3909 #endif 3910 3911 KMP_MB(); 3912 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 3913 3914 return gtid; 3915 } 3916 3917 #if KMP_NESTED_HOT_TEAMS 3918 static int __kmp_free_hot_teams(kmp_root_t *root, kmp_info_t *thr, int level, 3919 const int max_level) { 3920 int i, n, nth; 3921 kmp_hot_team_ptr_t *hot_teams = thr->th.th_hot_teams; 3922 if (!hot_teams || !hot_teams[level].hot_team) { 3923 return 0; 3924 } 3925 KMP_DEBUG_ASSERT(level < max_level); 3926 kmp_team_t *team = hot_teams[level].hot_team; 3927 nth = hot_teams[level].hot_team_nth; 3928 n = nth - 1; // master is not freed 3929 if (level < max_level - 1) { 3930 for (i = 0; i < nth; ++i) { 3931 kmp_info_t *th = team->t.t_threads[i]; 3932 n += __kmp_free_hot_teams(root, th, level + 1, max_level); 3933 if (i > 0 && th->th.th_hot_teams) { 3934 __kmp_free(th->th.th_hot_teams); 3935 th->th.th_hot_teams = NULL; 3936 } 3937 } 3938 } 3939 __kmp_free_team(root, team, NULL); 3940 return n; 3941 } 3942 #endif 3943 3944 // Resets a root thread and clear its root and hot teams. 3945 // Returns the number of __kmp_threads entries directly and indirectly freed. 3946 static int __kmp_reset_root(int gtid, kmp_root_t *root) { 3947 kmp_team_t *root_team = root->r.r_root_team; 3948 kmp_team_t *hot_team = root->r.r_hot_team; 3949 int n = hot_team->t.t_nproc; 3950 int i; 3951 3952 KMP_DEBUG_ASSERT(!root->r.r_active); 3953 3954 root->r.r_root_team = NULL; 3955 root->r.r_hot_team = NULL; 3956 // __kmp_free_team() does not free hot teams, so we have to clear r_hot_team 3957 // before call to __kmp_free_team(). 3958 __kmp_free_team(root, root_team USE_NESTED_HOT_ARG(NULL)); 3959 #if KMP_NESTED_HOT_TEAMS 3960 if (__kmp_hot_teams_max_level > 3961 0) { // need to free nested hot teams and their threads if any 3962 for (i = 0; i < hot_team->t.t_nproc; ++i) { 3963 kmp_info_t *th = hot_team->t.t_threads[i]; 3964 if (__kmp_hot_teams_max_level > 1) { 3965 n += __kmp_free_hot_teams(root, th, 1, __kmp_hot_teams_max_level); 3966 } 3967 if (th->th.th_hot_teams) { 3968 __kmp_free(th->th.th_hot_teams); 3969 th->th.th_hot_teams = NULL; 3970 } 3971 } 3972 } 3973 #endif 3974 __kmp_free_team(root, hot_team USE_NESTED_HOT_ARG(NULL)); 3975 3976 // Before we can reap the thread, we need to make certain that all other 3977 // threads in the teams that had this root as ancestor have stopped trying to 3978 // steal tasks. 3979 if (__kmp_tasking_mode != tskm_immediate_exec) { 3980 __kmp_wait_to_unref_task_teams(); 3981 } 3982 3983 #if KMP_OS_WINDOWS 3984 /* Close Handle of root duplicated in __kmp_create_worker (tr #62919) */ 3985 KA_TRACE( 3986 10, ("__kmp_reset_root: free handle, th = %p, handle = %" KMP_UINTPTR_SPEC 3987 "\n", 3988 (LPVOID) & (root->r.r_uber_thread->th), 3989 root->r.r_uber_thread->th.th_info.ds.ds_thread)); 3990 __kmp_free_handle(root->r.r_uber_thread->th.th_info.ds.ds_thread); 3991 #endif /* KMP_OS_WINDOWS */ 3992 3993 #if OMPT_SUPPORT 3994 if (ompt_enabled.ompt_callback_thread_end) { 3995 ompt_callbacks.ompt_callback(ompt_callback_thread_end)( 3996 &(root->r.r_uber_thread->th.ompt_thread_info.thread_data)); 3997 } 3998 #endif 3999 4000 TCW_4(__kmp_nth, 4001 __kmp_nth - 1); // __kmp_reap_thread will decrement __kmp_all_nth. 4002 i = root->r.r_uber_thread->th.th_cg_roots->cg_nthreads--; 4003 KA_TRACE(100, ("__kmp_reset_root: Thread %p decrement cg_nthreads on node %p" 4004 " to %d\n", 4005 root->r.r_uber_thread, root->r.r_uber_thread->th.th_cg_roots, 4006 root->r.r_uber_thread->th.th_cg_roots->cg_nthreads)); 4007 if (i == 1) { 4008 // need to free contention group structure 4009 KMP_DEBUG_ASSERT(root->r.r_uber_thread == 4010 root->r.r_uber_thread->th.th_cg_roots->cg_root); 4011 KMP_DEBUG_ASSERT(root->r.r_uber_thread->th.th_cg_roots->up == NULL); 4012 __kmp_free(root->r.r_uber_thread->th.th_cg_roots); 4013 root->r.r_uber_thread->th.th_cg_roots = NULL; 4014 } 4015 __kmp_reap_thread(root->r.r_uber_thread, 1); 4016 4017 // We canot put root thread to __kmp_thread_pool, so we have to reap it istead 4018 // of freeing. 4019 root->r.r_uber_thread = NULL; 4020 /* mark root as no longer in use */ 4021 root->r.r_begin = FALSE; 4022 4023 return n; 4024 } 4025 4026 void __kmp_unregister_root_current_thread(int gtid) { 4027 KA_TRACE(1, ("__kmp_unregister_root_current_thread: enter T#%d\n", gtid)); 4028 /* this lock should be ok, since unregister_root_current_thread is never 4029 called during an abort, only during a normal close. furthermore, if you 4030 have the forkjoin lock, you should never try to get the initz lock */ 4031 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 4032 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 4033 KC_TRACE(10, ("__kmp_unregister_root_current_thread: already finished, " 4034 "exiting T#%d\n", 4035 gtid)); 4036 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 4037 return; 4038 } 4039 kmp_root_t *root = __kmp_root[gtid]; 4040 4041 KMP_DEBUG_ASSERT(__kmp_threads && __kmp_threads[gtid]); 4042 KMP_ASSERT(KMP_UBER_GTID(gtid)); 4043 KMP_ASSERT(root == __kmp_threads[gtid]->th.th_root); 4044 KMP_ASSERT(root->r.r_active == FALSE); 4045 4046 KMP_MB(); 4047 4048 #if OMP_45_ENABLED 4049 kmp_info_t *thread = __kmp_threads[gtid]; 4050 kmp_team_t *team = thread->th.th_team; 4051 kmp_task_team_t *task_team = thread->th.th_task_team; 4052 4053 // we need to wait for the proxy tasks before finishing the thread 4054 if (task_team != NULL && task_team->tt.tt_found_proxy_tasks) { 4055 #if OMPT_SUPPORT 4056 // the runtime is shutting down so we won't report any events 4057 thread->th.ompt_thread_info.state = ompt_state_undefined; 4058 #endif 4059 __kmp_task_team_wait(thread, team USE_ITT_BUILD_ARG(NULL)); 4060 } 4061 #endif 4062 4063 __kmp_reset_root(gtid, root); 4064 4065 /* free up this thread slot */ 4066 __kmp_gtid_set_specific(KMP_GTID_DNE); 4067 #ifdef KMP_TDATA_GTID 4068 __kmp_gtid = KMP_GTID_DNE; 4069 #endif 4070 4071 KMP_MB(); 4072 KC_TRACE(10, 4073 ("__kmp_unregister_root_current_thread: T#%d unregistered\n", gtid)); 4074 4075 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 4076 } 4077 4078 #if KMP_OS_WINDOWS 4079 /* __kmp_forkjoin_lock must be already held 4080 Unregisters a root thread that is not the current thread. Returns the number 4081 of __kmp_threads entries freed as a result. */ 4082 static int __kmp_unregister_root_other_thread(int gtid) { 4083 kmp_root_t *root = __kmp_root[gtid]; 4084 int r; 4085 4086 KA_TRACE(1, ("__kmp_unregister_root_other_thread: enter T#%d\n", gtid)); 4087 KMP_DEBUG_ASSERT(__kmp_threads && __kmp_threads[gtid]); 4088 KMP_ASSERT(KMP_UBER_GTID(gtid)); 4089 KMP_ASSERT(root == __kmp_threads[gtid]->th.th_root); 4090 KMP_ASSERT(root->r.r_active == FALSE); 4091 4092 r = __kmp_reset_root(gtid, root); 4093 KC_TRACE(10, 4094 ("__kmp_unregister_root_other_thread: T#%d unregistered\n", gtid)); 4095 return r; 4096 } 4097 #endif 4098 4099 #if KMP_DEBUG 4100 void __kmp_task_info() { 4101 4102 kmp_int32 gtid = __kmp_entry_gtid(); 4103 kmp_int32 tid = __kmp_tid_from_gtid(gtid); 4104 kmp_info_t *this_thr = __kmp_threads[gtid]; 4105 kmp_team_t *steam = this_thr->th.th_serial_team; 4106 kmp_team_t *team = this_thr->th.th_team; 4107 4108 __kmp_printf( 4109 "__kmp_task_info: gtid=%d tid=%d t_thread=%p team=%p steam=%p curtask=%p " 4110 "ptask=%p\n", 4111 gtid, tid, this_thr, team, steam, this_thr->th.th_current_task, 4112 team->t.t_implicit_task_taskdata[tid].td_parent); 4113 } 4114 #endif // KMP_DEBUG 4115 4116 /* TODO optimize with one big memclr, take out what isn't needed, split 4117 responsibility to workers as much as possible, and delay initialization of 4118 features as much as possible */ 4119 static void __kmp_initialize_info(kmp_info_t *this_thr, kmp_team_t *team, 4120 int tid, int gtid) { 4121 /* this_thr->th.th_info.ds.ds_gtid is setup in 4122 kmp_allocate_thread/create_worker. 4123 this_thr->th.th_serial_team is setup in __kmp_allocate_thread */ 4124 kmp_info_t *master = team->t.t_threads[0]; 4125 KMP_DEBUG_ASSERT(this_thr != NULL); 4126 KMP_DEBUG_ASSERT(this_thr->th.th_serial_team); 4127 KMP_DEBUG_ASSERT(team); 4128 KMP_DEBUG_ASSERT(team->t.t_threads); 4129 KMP_DEBUG_ASSERT(team->t.t_dispatch); 4130 KMP_DEBUG_ASSERT(master); 4131 KMP_DEBUG_ASSERT(master->th.th_root); 4132 4133 KMP_MB(); 4134 4135 TCW_SYNC_PTR(this_thr->th.th_team, team); 4136 4137 this_thr->th.th_info.ds.ds_tid = tid; 4138 this_thr->th.th_set_nproc = 0; 4139 if (__kmp_tasking_mode != tskm_immediate_exec) 4140 // When tasking is possible, threads are not safe to reap until they are 4141 // done tasking; this will be set when tasking code is exited in wait 4142 this_thr->th.th_reap_state = KMP_NOT_SAFE_TO_REAP; 4143 else // no tasking --> always safe to reap 4144 this_thr->th.th_reap_state = KMP_SAFE_TO_REAP; 4145 #if OMP_40_ENABLED 4146 this_thr->th.th_set_proc_bind = proc_bind_default; 4147 #if KMP_AFFINITY_SUPPORTED 4148 this_thr->th.th_new_place = this_thr->th.th_current_place; 4149 #endif 4150 #endif 4151 this_thr->th.th_root = master->th.th_root; 4152 4153 /* setup the thread's cache of the team structure */ 4154 this_thr->th.th_team_nproc = team->t.t_nproc; 4155 this_thr->th.th_team_master = master; 4156 this_thr->th.th_team_serialized = team->t.t_serialized; 4157 TCW_PTR(this_thr->th.th_sleep_loc, NULL); 4158 4159 KMP_DEBUG_ASSERT(team->t.t_implicit_task_taskdata); 4160 4161 KF_TRACE(10, ("__kmp_initialize_info1: T#%d:%d this_thread=%p curtask=%p\n", 4162 tid, gtid, this_thr, this_thr->th.th_current_task)); 4163 4164 __kmp_init_implicit_task(this_thr->th.th_team_master->th.th_ident, this_thr, 4165 team, tid, TRUE); 4166 4167 KF_TRACE(10, ("__kmp_initialize_info2: T#%d:%d this_thread=%p curtask=%p\n", 4168 tid, gtid, this_thr, this_thr->th.th_current_task)); 4169 // TODO: Initialize ICVs from parent; GEH - isn't that already done in 4170 // __kmp_initialize_team()? 4171 4172 /* TODO no worksharing in speculative threads */ 4173 this_thr->th.th_dispatch = &team->t.t_dispatch[tid]; 4174 4175 this_thr->th.th_local.this_construct = 0; 4176 4177 if (!this_thr->th.th_pri_common) { 4178 this_thr->th.th_pri_common = 4179 (struct common_table *)__kmp_allocate(sizeof(struct common_table)); 4180 if (__kmp_storage_map) { 4181 __kmp_print_storage_map_gtid( 4182 gtid, this_thr->th.th_pri_common, this_thr->th.th_pri_common + 1, 4183 sizeof(struct common_table), "th_%d.th_pri_common\n", gtid); 4184 } 4185 this_thr->th.th_pri_head = NULL; 4186 } 4187 4188 if (this_thr != master && // Master's CG root is initialized elsewhere 4189 this_thr->th.th_cg_roots != master->th.th_cg_roots) { // CG root not set 4190 // Make new thread's CG root same as master's 4191 KMP_DEBUG_ASSERT(master->th.th_cg_roots); 4192 this_thr->th.th_cg_roots = master->th.th_cg_roots; 4193 // Increment new thread's CG root's counter to add the new thread 4194 this_thr->th.th_cg_roots->cg_nthreads++; 4195 KA_TRACE(100, ("__kmp_initialize_info: Thread %p increment cg_nthreads on" 4196 " node %p of thread %p to %d\n", 4197 this_thr, this_thr->th.th_cg_roots, 4198 this_thr->th.th_cg_roots->cg_root, 4199 this_thr->th.th_cg_roots->cg_nthreads)); 4200 this_thr->th.th_current_task->td_icvs.thread_limit = 4201 this_thr->th.th_cg_roots->cg_thread_limit; 4202 } 4203 4204 /* Initialize dynamic dispatch */ 4205 { 4206 volatile kmp_disp_t *dispatch = this_thr->th.th_dispatch; 4207 // Use team max_nproc since this will never change for the team. 4208 size_t disp_size = 4209 sizeof(dispatch_private_info_t) * 4210 (team->t.t_max_nproc == 1 ? 1 : __kmp_dispatch_num_buffers); 4211 KD_TRACE(10, ("__kmp_initialize_info: T#%d max_nproc: %d\n", gtid, 4212 team->t.t_max_nproc)); 4213 KMP_ASSERT(dispatch); 4214 KMP_DEBUG_ASSERT(team->t.t_dispatch); 4215 KMP_DEBUG_ASSERT(dispatch == &team->t.t_dispatch[tid]); 4216 4217 dispatch->th_disp_index = 0; 4218 #if OMP_45_ENABLED 4219 dispatch->th_doacross_buf_idx = 0; 4220 #endif 4221 if (!dispatch->th_disp_buffer) { 4222 dispatch->th_disp_buffer = 4223 (dispatch_private_info_t *)__kmp_allocate(disp_size); 4224 4225 if (__kmp_storage_map) { 4226 __kmp_print_storage_map_gtid( 4227 gtid, &dispatch->th_disp_buffer[0], 4228 &dispatch->th_disp_buffer[team->t.t_max_nproc == 1 4229 ? 1 4230 : __kmp_dispatch_num_buffers], 4231 disp_size, "th_%d.th_dispatch.th_disp_buffer " 4232 "(team_%d.t_dispatch[%d].th_disp_buffer)", 4233 gtid, team->t.t_id, gtid); 4234 } 4235 } else { 4236 memset(&dispatch->th_disp_buffer[0], '\0', disp_size); 4237 } 4238 4239 dispatch->th_dispatch_pr_current = 0; 4240 dispatch->th_dispatch_sh_current = 0; 4241 4242 dispatch->th_deo_fcn = 0; /* ORDERED */ 4243 dispatch->th_dxo_fcn = 0; /* END ORDERED */ 4244 } 4245 4246 this_thr->th.th_next_pool = NULL; 4247 4248 if (!this_thr->th.th_task_state_memo_stack) { 4249 size_t i; 4250 this_thr->th.th_task_state_memo_stack = 4251 (kmp_uint8 *)__kmp_allocate(4 * sizeof(kmp_uint8)); 4252 this_thr->th.th_task_state_top = 0; 4253 this_thr->th.th_task_state_stack_sz = 4; 4254 for (i = 0; i < this_thr->th.th_task_state_stack_sz; 4255 ++i) // zero init the stack 4256 this_thr->th.th_task_state_memo_stack[i] = 0; 4257 } 4258 4259 KMP_DEBUG_ASSERT(!this_thr->th.th_spin_here); 4260 KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0); 4261 4262 KMP_MB(); 4263 } 4264 4265 /* allocate a new thread for the requesting team. this is only called from 4266 within a forkjoin critical section. we will first try to get an available 4267 thread from the thread pool. if none is available, we will fork a new one 4268 assuming we are able to create a new one. this should be assured, as the 4269 caller should check on this first. */ 4270 kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team, 4271 int new_tid) { 4272 kmp_team_t *serial_team; 4273 kmp_info_t *new_thr; 4274 int new_gtid; 4275 4276 KA_TRACE(20, ("__kmp_allocate_thread: T#%d\n", __kmp_get_gtid())); 4277 KMP_DEBUG_ASSERT(root && team); 4278 #if !KMP_NESTED_HOT_TEAMS 4279 KMP_DEBUG_ASSERT(KMP_MASTER_GTID(__kmp_get_gtid())); 4280 #endif 4281 KMP_MB(); 4282 4283 /* first, try to get one from the thread pool */ 4284 if (__kmp_thread_pool) { 4285 new_thr = CCAST(kmp_info_t *, __kmp_thread_pool); 4286 __kmp_thread_pool = (volatile kmp_info_t *)new_thr->th.th_next_pool; 4287 if (new_thr == __kmp_thread_pool_insert_pt) { 4288 __kmp_thread_pool_insert_pt = NULL; 4289 } 4290 TCW_4(new_thr->th.th_in_pool, FALSE); 4291 __kmp_suspend_initialize_thread(new_thr); 4292 __kmp_lock_suspend_mx(new_thr); 4293 if (new_thr->th.th_active_in_pool == TRUE) { 4294 KMP_DEBUG_ASSERT(new_thr->th.th_active == TRUE); 4295 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 4296 new_thr->th.th_active_in_pool = FALSE; 4297 } 4298 #if KMP_DEBUG 4299 else { 4300 KMP_DEBUG_ASSERT(new_thr->th.th_active == FALSE); 4301 } 4302 #endif 4303 __kmp_unlock_suspend_mx(new_thr); 4304 4305 KA_TRACE(20, ("__kmp_allocate_thread: T#%d using thread T#%d\n", 4306 __kmp_get_gtid(), new_thr->th.th_info.ds.ds_gtid)); 4307 KMP_ASSERT(!new_thr->th.th_team); 4308 KMP_DEBUG_ASSERT(__kmp_nth < __kmp_threads_capacity); 4309 4310 /* setup the thread structure */ 4311 __kmp_initialize_info(new_thr, team, new_tid, 4312 new_thr->th.th_info.ds.ds_gtid); 4313 KMP_DEBUG_ASSERT(new_thr->th.th_serial_team); 4314 4315 TCW_4(__kmp_nth, __kmp_nth + 1); 4316 4317 new_thr->th.th_task_state = 0; 4318 new_thr->th.th_task_state_top = 0; 4319 new_thr->th.th_task_state_stack_sz = 4; 4320 4321 #ifdef KMP_ADJUST_BLOCKTIME 4322 /* Adjust blocktime back to zero if necessary */ 4323 /* Middle initialization might not have occurred yet */ 4324 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 4325 if (__kmp_nth > __kmp_avail_proc) { 4326 __kmp_zero_bt = TRUE; 4327 } 4328 } 4329 #endif /* KMP_ADJUST_BLOCKTIME */ 4330 4331 #if KMP_DEBUG 4332 // If thread entered pool via __kmp_free_thread, wait_flag should != 4333 // KMP_BARRIER_PARENT_FLAG. 4334 int b; 4335 kmp_balign_t *balign = new_thr->th.th_bar; 4336 for (b = 0; b < bs_last_barrier; ++b) 4337 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 4338 #endif 4339 4340 KF_TRACE(10, ("__kmp_allocate_thread: T#%d using thread %p T#%d\n", 4341 __kmp_get_gtid(), new_thr, new_thr->th.th_info.ds.ds_gtid)); 4342 4343 KMP_MB(); 4344 return new_thr; 4345 } 4346 4347 /* no, well fork a new one */ 4348 KMP_ASSERT(__kmp_nth == __kmp_all_nth); 4349 KMP_ASSERT(__kmp_all_nth < __kmp_threads_capacity); 4350 4351 #if KMP_USE_MONITOR 4352 // If this is the first worker thread the RTL is creating, then also 4353 // launch the monitor thread. We try to do this as early as possible. 4354 if (!TCR_4(__kmp_init_monitor)) { 4355 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock); 4356 if (!TCR_4(__kmp_init_monitor)) { 4357 KF_TRACE(10, ("before __kmp_create_monitor\n")); 4358 TCW_4(__kmp_init_monitor, 1); 4359 __kmp_create_monitor(&__kmp_monitor); 4360 KF_TRACE(10, ("after __kmp_create_monitor\n")); 4361 #if KMP_OS_WINDOWS 4362 // AC: wait until monitor has started. This is a fix for CQ232808. 4363 // The reason is that if the library is loaded/unloaded in a loop with 4364 // small (parallel) work in between, then there is high probability that 4365 // monitor thread started after the library shutdown. At shutdown it is 4366 // too late to cope with the problem, because when the master is in 4367 // DllMain (process detach) the monitor has no chances to start (it is 4368 // blocked), and master has no means to inform the monitor that the 4369 // library has gone, because all the memory which the monitor can access 4370 // is going to be released/reset. 4371 while (TCR_4(__kmp_init_monitor) < 2) { 4372 KMP_YIELD(TRUE); 4373 } 4374 KF_TRACE(10, ("after monitor thread has started\n")); 4375 #endif 4376 } 4377 __kmp_release_bootstrap_lock(&__kmp_monitor_lock); 4378 } 4379 #endif 4380 4381 KMP_MB(); 4382 for (new_gtid = 1; TCR_PTR(__kmp_threads[new_gtid]) != NULL; ++new_gtid) { 4383 KMP_DEBUG_ASSERT(new_gtid < __kmp_threads_capacity); 4384 } 4385 4386 /* allocate space for it. */ 4387 new_thr = (kmp_info_t *)__kmp_allocate(sizeof(kmp_info_t)); 4388 4389 TCW_SYNC_PTR(__kmp_threads[new_gtid], new_thr); 4390 4391 if (__kmp_storage_map) { 4392 __kmp_print_thread_storage_map(new_thr, new_gtid); 4393 } 4394 4395 // add the reserve serialized team, initialized from the team's master thread 4396 { 4397 kmp_internal_control_t r_icvs = __kmp_get_x_global_icvs(team); 4398 KF_TRACE(10, ("__kmp_allocate_thread: before th_serial/serial_team\n")); 4399 new_thr->th.th_serial_team = serial_team = 4400 (kmp_team_t *)__kmp_allocate_team(root, 1, 1, 4401 #if OMPT_SUPPORT 4402 ompt_data_none, // root parallel id 4403 #endif 4404 #if OMP_40_ENABLED 4405 proc_bind_default, 4406 #endif 4407 &r_icvs, 0 USE_NESTED_HOT_ARG(NULL)); 4408 } 4409 KMP_ASSERT(serial_team); 4410 serial_team->t.t_serialized = 0; // AC: the team created in reserve, not for 4411 // execution (it is unused for now). 4412 serial_team->t.t_threads[0] = new_thr; 4413 KF_TRACE(10, 4414 ("__kmp_allocate_thread: after th_serial/serial_team : new_thr=%p\n", 4415 new_thr)); 4416 4417 /* setup the thread structures */ 4418 __kmp_initialize_info(new_thr, team, new_tid, new_gtid); 4419 4420 #if USE_FAST_MEMORY 4421 __kmp_initialize_fast_memory(new_thr); 4422 #endif /* USE_FAST_MEMORY */ 4423 4424 #if KMP_USE_BGET 4425 KMP_DEBUG_ASSERT(new_thr->th.th_local.bget_data == NULL); 4426 __kmp_initialize_bget(new_thr); 4427 #endif 4428 4429 __kmp_init_random(new_thr); // Initialize random number generator 4430 4431 /* Initialize these only once when thread is grabbed for a team allocation */ 4432 KA_TRACE(20, 4433 ("__kmp_allocate_thread: T#%d init go fork=%u, plain=%u\n", 4434 __kmp_get_gtid(), KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 4435 4436 int b; 4437 kmp_balign_t *balign = new_thr->th.th_bar; 4438 for (b = 0; b < bs_last_barrier; ++b) { 4439 balign[b].bb.b_go = KMP_INIT_BARRIER_STATE; 4440 balign[b].bb.team = NULL; 4441 balign[b].bb.wait_flag = KMP_BARRIER_NOT_WAITING; 4442 balign[b].bb.use_oncore_barrier = 0; 4443 } 4444 4445 new_thr->th.th_spin_here = FALSE; 4446 new_thr->th.th_next_waiting = 0; 4447 #if KMP_OS_UNIX 4448 new_thr->th.th_blocking = false; 4449 #endif 4450 4451 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 4452 new_thr->th.th_current_place = KMP_PLACE_UNDEFINED; 4453 new_thr->th.th_new_place = KMP_PLACE_UNDEFINED; 4454 new_thr->th.th_first_place = KMP_PLACE_UNDEFINED; 4455 new_thr->th.th_last_place = KMP_PLACE_UNDEFINED; 4456 #endif 4457 #if OMP_50_ENABLED 4458 new_thr->th.th_def_allocator = __kmp_def_allocator; 4459 new_thr->th.th_prev_level = 0; 4460 new_thr->th.th_prev_num_threads = 1; 4461 #endif 4462 4463 TCW_4(new_thr->th.th_in_pool, FALSE); 4464 new_thr->th.th_active_in_pool = FALSE; 4465 TCW_4(new_thr->th.th_active, TRUE); 4466 4467 /* adjust the global counters */ 4468 __kmp_all_nth++; 4469 __kmp_nth++; 4470 4471 // if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) for low 4472 // numbers of procs, and method #2 (keyed API call) for higher numbers. 4473 if (__kmp_adjust_gtid_mode) { 4474 if (__kmp_all_nth >= __kmp_tls_gtid_min) { 4475 if (TCR_4(__kmp_gtid_mode) != 2) { 4476 TCW_4(__kmp_gtid_mode, 2); 4477 } 4478 } else { 4479 if (TCR_4(__kmp_gtid_mode) != 1) { 4480 TCW_4(__kmp_gtid_mode, 1); 4481 } 4482 } 4483 } 4484 4485 #ifdef KMP_ADJUST_BLOCKTIME 4486 /* Adjust blocktime back to zero if necessary */ 4487 /* Middle initialization might not have occurred yet */ 4488 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 4489 if (__kmp_nth > __kmp_avail_proc) { 4490 __kmp_zero_bt = TRUE; 4491 } 4492 } 4493 #endif /* KMP_ADJUST_BLOCKTIME */ 4494 4495 /* actually fork it and create the new worker thread */ 4496 KF_TRACE( 4497 10, ("__kmp_allocate_thread: before __kmp_create_worker: %p\n", new_thr)); 4498 __kmp_create_worker(new_gtid, new_thr, __kmp_stksize); 4499 KF_TRACE(10, 4500 ("__kmp_allocate_thread: after __kmp_create_worker: %p\n", new_thr)); 4501 4502 KA_TRACE(20, ("__kmp_allocate_thread: T#%d forked T#%d\n", __kmp_get_gtid(), 4503 new_gtid)); 4504 KMP_MB(); 4505 return new_thr; 4506 } 4507 4508 /* Reinitialize team for reuse. 4509 The hot team code calls this case at every fork barrier, so EPCC barrier 4510 test are extremely sensitive to changes in it, esp. writes to the team 4511 struct, which cause a cache invalidation in all threads. 4512 IF YOU TOUCH THIS ROUTINE, RUN EPCC C SYNCBENCH ON A BIG-IRON MACHINE!!! */ 4513 static void __kmp_reinitialize_team(kmp_team_t *team, 4514 kmp_internal_control_t *new_icvs, 4515 ident_t *loc) { 4516 KF_TRACE(10, ("__kmp_reinitialize_team: enter this_thread=%p team=%p\n", 4517 team->t.t_threads[0], team)); 4518 KMP_DEBUG_ASSERT(team && new_icvs); 4519 KMP_DEBUG_ASSERT((!TCR_4(__kmp_init_parallel)) || new_icvs->nproc); 4520 KMP_CHECK_UPDATE(team->t.t_ident, loc); 4521 4522 KMP_CHECK_UPDATE(team->t.t_id, KMP_GEN_TEAM_ID()); 4523 // Copy ICVs to the master thread's implicit taskdata 4524 __kmp_init_implicit_task(loc, team->t.t_threads[0], team, 0, FALSE); 4525 copy_icvs(&team->t.t_implicit_task_taskdata[0].td_icvs, new_icvs); 4526 4527 KF_TRACE(10, ("__kmp_reinitialize_team: exit this_thread=%p team=%p\n", 4528 team->t.t_threads[0], team)); 4529 } 4530 4531 /* Initialize the team data structure. 4532 This assumes the t_threads and t_max_nproc are already set. 4533 Also, we don't touch the arguments */ 4534 static void __kmp_initialize_team(kmp_team_t *team, int new_nproc, 4535 kmp_internal_control_t *new_icvs, 4536 ident_t *loc) { 4537 KF_TRACE(10, ("__kmp_initialize_team: enter: team=%p\n", team)); 4538 4539 /* verify */ 4540 KMP_DEBUG_ASSERT(team); 4541 KMP_DEBUG_ASSERT(new_nproc <= team->t.t_max_nproc); 4542 KMP_DEBUG_ASSERT(team->t.t_threads); 4543 KMP_MB(); 4544 4545 team->t.t_master_tid = 0; /* not needed */ 4546 /* team->t.t_master_bar; not needed */ 4547 team->t.t_serialized = new_nproc > 1 ? 0 : 1; 4548 team->t.t_nproc = new_nproc; 4549 4550 /* team->t.t_parent = NULL; TODO not needed & would mess up hot team */ 4551 team->t.t_next_pool = NULL; 4552 /* memset( team->t.t_threads, 0, sizeof(kmp_info_t*)*new_nproc ); would mess 4553 * up hot team */ 4554 4555 TCW_SYNC_PTR(team->t.t_pkfn, NULL); /* not needed */ 4556 team->t.t_invoke = NULL; /* not needed */ 4557 4558 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 4559 team->t.t_sched.sched = new_icvs->sched.sched; 4560 4561 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4562 team->t.t_fp_control_saved = FALSE; /* not needed */ 4563 team->t.t_x87_fpu_control_word = 0; /* not needed */ 4564 team->t.t_mxcsr = 0; /* not needed */ 4565 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4566 4567 team->t.t_construct = 0; 4568 4569 team->t.t_ordered.dt.t_value = 0; 4570 team->t.t_master_active = FALSE; 4571 4572 #ifdef KMP_DEBUG 4573 team->t.t_copypriv_data = NULL; /* not necessary, but nice for debugging */ 4574 #endif 4575 #if KMP_OS_WINDOWS 4576 team->t.t_copyin_counter = 0; /* for barrier-free copyin implementation */ 4577 #endif 4578 4579 team->t.t_control_stack_top = NULL; 4580 4581 __kmp_reinitialize_team(team, new_icvs, loc); 4582 4583 KMP_MB(); 4584 KF_TRACE(10, ("__kmp_initialize_team: exit: team=%p\n", team)); 4585 } 4586 4587 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 4588 /* Sets full mask for thread and returns old mask, no changes to structures. */ 4589 static void 4590 __kmp_set_thread_affinity_mask_full_tmp(kmp_affin_mask_t *old_mask) { 4591 if (KMP_AFFINITY_CAPABLE()) { 4592 int status; 4593 if (old_mask != NULL) { 4594 status = __kmp_get_system_affinity(old_mask, TRUE); 4595 int error = errno; 4596 if (status != 0) { 4597 __kmp_fatal(KMP_MSG(ChangeThreadAffMaskError), KMP_ERR(error), 4598 __kmp_msg_null); 4599 } 4600 } 4601 __kmp_set_system_affinity(__kmp_affin_fullMask, TRUE); 4602 } 4603 } 4604 #endif 4605 4606 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 4607 4608 // __kmp_partition_places() is the heart of the OpenMP 4.0 affinity mechanism. 4609 // It calculats the worker + master thread's partition based upon the parent 4610 // thread's partition, and binds each worker to a thread in their partition. 4611 // The master thread's partition should already include its current binding. 4612 static void __kmp_partition_places(kmp_team_t *team, int update_master_only) { 4613 // Copy the master thread's place partion to the team struct 4614 kmp_info_t *master_th = team->t.t_threads[0]; 4615 KMP_DEBUG_ASSERT(master_th != NULL); 4616 kmp_proc_bind_t proc_bind = team->t.t_proc_bind; 4617 int first_place = master_th->th.th_first_place; 4618 int last_place = master_th->th.th_last_place; 4619 int masters_place = master_th->th.th_current_place; 4620 team->t.t_first_place = first_place; 4621 team->t.t_last_place = last_place; 4622 4623 KA_TRACE(20, ("__kmp_partition_places: enter: proc_bind = %d T#%d(%d:0) " 4624 "bound to place %d partition = [%d,%d]\n", 4625 proc_bind, __kmp_gtid_from_thread(team->t.t_threads[0]), 4626 team->t.t_id, masters_place, first_place, last_place)); 4627 4628 switch (proc_bind) { 4629 4630 case proc_bind_default: 4631 // serial teams might have the proc_bind policy set to proc_bind_default. It 4632 // doesn't matter, as we don't rebind master thread for any proc_bind policy 4633 KMP_DEBUG_ASSERT(team->t.t_nproc == 1); 4634 break; 4635 4636 case proc_bind_master: { 4637 int f; 4638 int n_th = team->t.t_nproc; 4639 for (f = 1; f < n_th; f++) { 4640 kmp_info_t *th = team->t.t_threads[f]; 4641 KMP_DEBUG_ASSERT(th != NULL); 4642 th->th.th_first_place = first_place; 4643 th->th.th_last_place = last_place; 4644 th->th.th_new_place = masters_place; 4645 #if OMP_50_ENABLED 4646 if (__kmp_display_affinity && masters_place != th->th.th_current_place && 4647 team->t.t_display_affinity != 1) { 4648 team->t.t_display_affinity = 1; 4649 } 4650 #endif 4651 4652 KA_TRACE(100, ("__kmp_partition_places: master: T#%d(%d:%d) place %d " 4653 "partition = [%d,%d]\n", 4654 __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, 4655 f, masters_place, first_place, last_place)); 4656 } 4657 } break; 4658 4659 case proc_bind_close: { 4660 int f; 4661 int n_th = team->t.t_nproc; 4662 int n_places; 4663 if (first_place <= last_place) { 4664 n_places = last_place - first_place + 1; 4665 } else { 4666 n_places = __kmp_affinity_num_masks - first_place + last_place + 1; 4667 } 4668 if (n_th <= n_places) { 4669 int place = masters_place; 4670 for (f = 1; f < n_th; f++) { 4671 kmp_info_t *th = team->t.t_threads[f]; 4672 KMP_DEBUG_ASSERT(th != NULL); 4673 4674 if (place == last_place) { 4675 place = first_place; 4676 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4677 place = 0; 4678 } else { 4679 place++; 4680 } 4681 th->th.th_first_place = first_place; 4682 th->th.th_last_place = last_place; 4683 th->th.th_new_place = place; 4684 #if OMP_50_ENABLED 4685 if (__kmp_display_affinity && place != th->th.th_current_place && 4686 team->t.t_display_affinity != 1) { 4687 team->t.t_display_affinity = 1; 4688 } 4689 #endif 4690 4691 KA_TRACE(100, ("__kmp_partition_places: close: T#%d(%d:%d) place %d " 4692 "partition = [%d,%d]\n", 4693 __kmp_gtid_from_thread(team->t.t_threads[f]), 4694 team->t.t_id, f, place, first_place, last_place)); 4695 } 4696 } else { 4697 int S, rem, gap, s_count; 4698 S = n_th / n_places; 4699 s_count = 0; 4700 rem = n_th - (S * n_places); 4701 gap = rem > 0 ? n_places / rem : n_places; 4702 int place = masters_place; 4703 int gap_ct = gap; 4704 for (f = 0; f < n_th; f++) { 4705 kmp_info_t *th = team->t.t_threads[f]; 4706 KMP_DEBUG_ASSERT(th != NULL); 4707 4708 th->th.th_first_place = first_place; 4709 th->th.th_last_place = last_place; 4710 th->th.th_new_place = place; 4711 #if OMP_50_ENABLED 4712 if (__kmp_display_affinity && place != th->th.th_current_place && 4713 team->t.t_display_affinity != 1) { 4714 team->t.t_display_affinity = 1; 4715 } 4716 #endif 4717 s_count++; 4718 4719 if ((s_count == S) && rem && (gap_ct == gap)) { 4720 // do nothing, add an extra thread to place on next iteration 4721 } else if ((s_count == S + 1) && rem && (gap_ct == gap)) { 4722 // we added an extra thread to this place; move to next place 4723 if (place == last_place) { 4724 place = first_place; 4725 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4726 place = 0; 4727 } else { 4728 place++; 4729 } 4730 s_count = 0; 4731 gap_ct = 1; 4732 rem--; 4733 } else if (s_count == S) { // place full; don't add extra 4734 if (place == last_place) { 4735 place = first_place; 4736 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4737 place = 0; 4738 } else { 4739 place++; 4740 } 4741 gap_ct++; 4742 s_count = 0; 4743 } 4744 4745 KA_TRACE(100, 4746 ("__kmp_partition_places: close: T#%d(%d:%d) place %d " 4747 "partition = [%d,%d]\n", 4748 __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, f, 4749 th->th.th_new_place, first_place, last_place)); 4750 } 4751 KMP_DEBUG_ASSERT(place == masters_place); 4752 } 4753 } break; 4754 4755 case proc_bind_spread: { 4756 int f; 4757 int n_th = team->t.t_nproc; 4758 int n_places; 4759 int thidx; 4760 if (first_place <= last_place) { 4761 n_places = last_place - first_place + 1; 4762 } else { 4763 n_places = __kmp_affinity_num_masks - first_place + last_place + 1; 4764 } 4765 if (n_th <= n_places) { 4766 int place = -1; 4767 4768 if (n_places != static_cast<int>(__kmp_affinity_num_masks)) { 4769 int S = n_places / n_th; 4770 int s_count, rem, gap, gap_ct; 4771 4772 place = masters_place; 4773 rem = n_places - n_th * S; 4774 gap = rem ? n_th / rem : 1; 4775 gap_ct = gap; 4776 thidx = n_th; 4777 if (update_master_only == 1) 4778 thidx = 1; 4779 for (f = 0; f < thidx; f++) { 4780 kmp_info_t *th = team->t.t_threads[f]; 4781 KMP_DEBUG_ASSERT(th != NULL); 4782 4783 th->th.th_first_place = place; 4784 th->th.th_new_place = place; 4785 #if OMP_50_ENABLED 4786 if (__kmp_display_affinity && place != th->th.th_current_place && 4787 team->t.t_display_affinity != 1) { 4788 team->t.t_display_affinity = 1; 4789 } 4790 #endif 4791 s_count = 1; 4792 while (s_count < S) { 4793 if (place == last_place) { 4794 place = first_place; 4795 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4796 place = 0; 4797 } else { 4798 place++; 4799 } 4800 s_count++; 4801 } 4802 if (rem && (gap_ct == gap)) { 4803 if (place == last_place) { 4804 place = first_place; 4805 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4806 place = 0; 4807 } else { 4808 place++; 4809 } 4810 rem--; 4811 gap_ct = 0; 4812 } 4813 th->th.th_last_place = place; 4814 gap_ct++; 4815 4816 if (place == last_place) { 4817 place = first_place; 4818 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4819 place = 0; 4820 } else { 4821 place++; 4822 } 4823 4824 KA_TRACE(100, 4825 ("__kmp_partition_places: spread: T#%d(%d:%d) place %d " 4826 "partition = [%d,%d], __kmp_affinity_num_masks: %u\n", 4827 __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, 4828 f, th->th.th_new_place, th->th.th_first_place, 4829 th->th.th_last_place, __kmp_affinity_num_masks)); 4830 } 4831 } else { 4832 /* Having uniform space of available computation places I can create 4833 T partitions of round(P/T) size and put threads into the first 4834 place of each partition. */ 4835 double current = static_cast<double>(masters_place); 4836 double spacing = 4837 (static_cast<double>(n_places + 1) / static_cast<double>(n_th)); 4838 int first, last; 4839 kmp_info_t *th; 4840 4841 thidx = n_th + 1; 4842 if (update_master_only == 1) 4843 thidx = 1; 4844 for (f = 0; f < thidx; f++) { 4845 first = static_cast<int>(current); 4846 last = static_cast<int>(current + spacing) - 1; 4847 KMP_DEBUG_ASSERT(last >= first); 4848 if (first >= n_places) { 4849 if (masters_place) { 4850 first -= n_places; 4851 last -= n_places; 4852 if (first == (masters_place + 1)) { 4853 KMP_DEBUG_ASSERT(f == n_th); 4854 first--; 4855 } 4856 if (last == masters_place) { 4857 KMP_DEBUG_ASSERT(f == (n_th - 1)); 4858 last--; 4859 } 4860 } else { 4861 KMP_DEBUG_ASSERT(f == n_th); 4862 first = 0; 4863 last = 0; 4864 } 4865 } 4866 if (last >= n_places) { 4867 last = (n_places - 1); 4868 } 4869 place = first; 4870 current += spacing; 4871 if (f < n_th) { 4872 KMP_DEBUG_ASSERT(0 <= first); 4873 KMP_DEBUG_ASSERT(n_places > first); 4874 KMP_DEBUG_ASSERT(0 <= last); 4875 KMP_DEBUG_ASSERT(n_places > last); 4876 KMP_DEBUG_ASSERT(last_place >= first_place); 4877 th = team->t.t_threads[f]; 4878 KMP_DEBUG_ASSERT(th); 4879 th->th.th_first_place = first; 4880 th->th.th_new_place = place; 4881 th->th.th_last_place = last; 4882 #if OMP_50_ENABLED 4883 if (__kmp_display_affinity && place != th->th.th_current_place && 4884 team->t.t_display_affinity != 1) { 4885 team->t.t_display_affinity = 1; 4886 } 4887 #endif 4888 KA_TRACE(100, 4889 ("__kmp_partition_places: spread: T#%d(%d:%d) place %d " 4890 "partition = [%d,%d], spacing = %.4f\n", 4891 __kmp_gtid_from_thread(team->t.t_threads[f]), 4892 team->t.t_id, f, th->th.th_new_place, 4893 th->th.th_first_place, th->th.th_last_place, spacing)); 4894 } 4895 } 4896 } 4897 KMP_DEBUG_ASSERT(update_master_only || place == masters_place); 4898 } else { 4899 int S, rem, gap, s_count; 4900 S = n_th / n_places; 4901 s_count = 0; 4902 rem = n_th - (S * n_places); 4903 gap = rem > 0 ? n_places / rem : n_places; 4904 int place = masters_place; 4905 int gap_ct = gap; 4906 thidx = n_th; 4907 if (update_master_only == 1) 4908 thidx = 1; 4909 for (f = 0; f < thidx; f++) { 4910 kmp_info_t *th = team->t.t_threads[f]; 4911 KMP_DEBUG_ASSERT(th != NULL); 4912 4913 th->th.th_first_place = place; 4914 th->th.th_last_place = place; 4915 th->th.th_new_place = place; 4916 #if OMP_50_ENABLED 4917 if (__kmp_display_affinity && place != th->th.th_current_place && 4918 team->t.t_display_affinity != 1) { 4919 team->t.t_display_affinity = 1; 4920 } 4921 #endif 4922 s_count++; 4923 4924 if ((s_count == S) && rem && (gap_ct == gap)) { 4925 // do nothing, add an extra thread to place on next iteration 4926 } else if ((s_count == S + 1) && rem && (gap_ct == gap)) { 4927 // we added an extra thread to this place; move on to next place 4928 if (place == last_place) { 4929 place = first_place; 4930 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4931 place = 0; 4932 } else { 4933 place++; 4934 } 4935 s_count = 0; 4936 gap_ct = 1; 4937 rem--; 4938 } else if (s_count == S) { // place is full; don't add extra thread 4939 if (place == last_place) { 4940 place = first_place; 4941 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4942 place = 0; 4943 } else { 4944 place++; 4945 } 4946 gap_ct++; 4947 s_count = 0; 4948 } 4949 4950 KA_TRACE(100, ("__kmp_partition_places: spread: T#%d(%d:%d) place %d " 4951 "partition = [%d,%d]\n", 4952 __kmp_gtid_from_thread(team->t.t_threads[f]), 4953 team->t.t_id, f, th->th.th_new_place, 4954 th->th.th_first_place, th->th.th_last_place)); 4955 } 4956 KMP_DEBUG_ASSERT(update_master_only || place == masters_place); 4957 } 4958 } break; 4959 4960 default: 4961 break; 4962 } 4963 4964 KA_TRACE(20, ("__kmp_partition_places: exit T#%d\n", team->t.t_id)); 4965 } 4966 4967 #endif /* OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED */ 4968 4969 /* allocate a new team data structure to use. take one off of the free pool if 4970 available */ 4971 kmp_team_t * 4972 __kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc, 4973 #if OMPT_SUPPORT 4974 ompt_data_t ompt_parallel_data, 4975 #endif 4976 #if OMP_40_ENABLED 4977 kmp_proc_bind_t new_proc_bind, 4978 #endif 4979 kmp_internal_control_t *new_icvs, 4980 int argc USE_NESTED_HOT_ARG(kmp_info_t *master)) { 4981 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_allocate_team); 4982 int f; 4983 kmp_team_t *team; 4984 int use_hot_team = !root->r.r_active; 4985 int level = 0; 4986 4987 KA_TRACE(20, ("__kmp_allocate_team: called\n")); 4988 KMP_DEBUG_ASSERT(new_nproc >= 1 && argc >= 0); 4989 KMP_DEBUG_ASSERT(max_nproc >= new_nproc); 4990 KMP_MB(); 4991 4992 #if KMP_NESTED_HOT_TEAMS 4993 kmp_hot_team_ptr_t *hot_teams; 4994 if (master) { 4995 team = master->th.th_team; 4996 level = team->t.t_active_level; 4997 if (master->th.th_teams_microtask) { // in teams construct? 4998 if (master->th.th_teams_size.nteams > 1 && 4999 ( // #teams > 1 5000 team->t.t_pkfn == 5001 (microtask_t)__kmp_teams_master || // inner fork of the teams 5002 master->th.th_teams_level < 5003 team->t.t_level)) { // or nested parallel inside the teams 5004 ++level; // not increment if #teams==1, or for outer fork of the teams; 5005 // increment otherwise 5006 } 5007 } 5008 hot_teams = master->th.th_hot_teams; 5009 if (level < __kmp_hot_teams_max_level && hot_teams && 5010 hot_teams[level] 5011 .hot_team) { // hot team has already been allocated for given level 5012 use_hot_team = 1; 5013 } else { 5014 use_hot_team = 0; 5015 } 5016 } 5017 #endif 5018 // Optimization to use a "hot" team 5019 if (use_hot_team && new_nproc > 1) { 5020 KMP_DEBUG_ASSERT(new_nproc <= max_nproc); 5021 #if KMP_NESTED_HOT_TEAMS 5022 team = hot_teams[level].hot_team; 5023 #else 5024 team = root->r.r_hot_team; 5025 #endif 5026 #if KMP_DEBUG 5027 if (__kmp_tasking_mode != tskm_immediate_exec) { 5028 KA_TRACE(20, ("__kmp_allocate_team: hot team task_team[0] = %p " 5029 "task_team[1] = %p before reinit\n", 5030 team->t.t_task_team[0], team->t.t_task_team[1])); 5031 } 5032 #endif 5033 5034 // Has the number of threads changed? 5035 /* Let's assume the most common case is that the number of threads is 5036 unchanged, and put that case first. */ 5037 if (team->t.t_nproc == new_nproc) { // Check changes in number of threads 5038 KA_TRACE(20, ("__kmp_allocate_team: reusing hot team\n")); 5039 // This case can mean that omp_set_num_threads() was called and the hot 5040 // team size was already reduced, so we check the special flag 5041 if (team->t.t_size_changed == -1) { 5042 team->t.t_size_changed = 1; 5043 } else { 5044 KMP_CHECK_UPDATE(team->t.t_size_changed, 0); 5045 } 5046 5047 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 5048 kmp_r_sched_t new_sched = new_icvs->sched; 5049 // set master's schedule as new run-time schedule 5050 KMP_CHECK_UPDATE(team->t.t_sched.sched, new_sched.sched); 5051 5052 __kmp_reinitialize_team(team, new_icvs, 5053 root->r.r_uber_thread->th.th_ident); 5054 5055 KF_TRACE(10, ("__kmp_allocate_team2: T#%d, this_thread=%p team=%p\n", 0, 5056 team->t.t_threads[0], team)); 5057 __kmp_push_current_task_to_thread(team->t.t_threads[0], team, 0); 5058 5059 #if OMP_40_ENABLED 5060 #if KMP_AFFINITY_SUPPORTED 5061 if ((team->t.t_size_changed == 0) && 5062 (team->t.t_proc_bind == new_proc_bind)) { 5063 if (new_proc_bind == proc_bind_spread) { 5064 __kmp_partition_places( 5065 team, 1); // add flag to update only master for spread 5066 } 5067 KA_TRACE(200, ("__kmp_allocate_team: reusing hot team #%d bindings: " 5068 "proc_bind = %d, partition = [%d,%d]\n", 5069 team->t.t_id, new_proc_bind, team->t.t_first_place, 5070 team->t.t_last_place)); 5071 } else { 5072 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5073 __kmp_partition_places(team); 5074 } 5075 #else 5076 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5077 #endif /* KMP_AFFINITY_SUPPORTED */ 5078 #endif /* OMP_40_ENABLED */ 5079 } else if (team->t.t_nproc > new_nproc) { 5080 KA_TRACE(20, 5081 ("__kmp_allocate_team: decreasing hot team thread count to %d\n", 5082 new_nproc)); 5083 5084 team->t.t_size_changed = 1; 5085 #if KMP_NESTED_HOT_TEAMS 5086 if (__kmp_hot_teams_mode == 0) { 5087 // AC: saved number of threads should correspond to team's value in this 5088 // mode, can be bigger in mode 1, when hot team has threads in reserve 5089 KMP_DEBUG_ASSERT(hot_teams[level].hot_team_nth == team->t.t_nproc); 5090 hot_teams[level].hot_team_nth = new_nproc; 5091 #endif // KMP_NESTED_HOT_TEAMS 5092 /* release the extra threads we don't need any more */ 5093 for (f = new_nproc; f < team->t.t_nproc; f++) { 5094 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5095 if (__kmp_tasking_mode != tskm_immediate_exec) { 5096 // When decreasing team size, threads no longer in the team should 5097 // unref task team. 5098 team->t.t_threads[f]->th.th_task_team = NULL; 5099 } 5100 __kmp_free_thread(team->t.t_threads[f]); 5101 team->t.t_threads[f] = NULL; 5102 } 5103 #if KMP_NESTED_HOT_TEAMS 5104 } // (__kmp_hot_teams_mode == 0) 5105 else { 5106 // When keeping extra threads in team, switch threads to wait on own 5107 // b_go flag 5108 for (f = new_nproc; f < team->t.t_nproc; ++f) { 5109 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5110 kmp_balign_t *balign = team->t.t_threads[f]->th.th_bar; 5111 for (int b = 0; b < bs_last_barrier; ++b) { 5112 if (balign[b].bb.wait_flag == KMP_BARRIER_PARENT_FLAG) { 5113 balign[b].bb.wait_flag = KMP_BARRIER_SWITCH_TO_OWN_FLAG; 5114 } 5115 KMP_CHECK_UPDATE(balign[b].bb.leaf_kids, 0); 5116 } 5117 } 5118 } 5119 #endif // KMP_NESTED_HOT_TEAMS 5120 team->t.t_nproc = new_nproc; 5121 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 5122 KMP_CHECK_UPDATE(team->t.t_sched.sched, new_icvs->sched.sched); 5123 __kmp_reinitialize_team(team, new_icvs, 5124 root->r.r_uber_thread->th.th_ident); 5125 5126 // Update remaining threads 5127 for (f = 0; f < new_nproc; ++f) { 5128 team->t.t_threads[f]->th.th_team_nproc = new_nproc; 5129 } 5130 5131 // restore the current task state of the master thread: should be the 5132 // implicit task 5133 KF_TRACE(10, ("__kmp_allocate_team: T#%d, this_thread=%p team=%p\n", 0, 5134 team->t.t_threads[0], team)); 5135 5136 __kmp_push_current_task_to_thread(team->t.t_threads[0], team, 0); 5137 5138 #ifdef KMP_DEBUG 5139 for (f = 0; f < team->t.t_nproc; f++) { 5140 KMP_DEBUG_ASSERT(team->t.t_threads[f] && 5141 team->t.t_threads[f]->th.th_team_nproc == 5142 team->t.t_nproc); 5143 } 5144 #endif 5145 5146 #if OMP_40_ENABLED 5147 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5148 #if KMP_AFFINITY_SUPPORTED 5149 __kmp_partition_places(team); 5150 #endif 5151 #endif 5152 } else { // team->t.t_nproc < new_nproc 5153 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 5154 kmp_affin_mask_t *old_mask; 5155 if (KMP_AFFINITY_CAPABLE()) { 5156 KMP_CPU_ALLOC(old_mask); 5157 } 5158 #endif 5159 5160 KA_TRACE(20, 5161 ("__kmp_allocate_team: increasing hot team thread count to %d\n", 5162 new_nproc)); 5163 5164 team->t.t_size_changed = 1; 5165 5166 #if KMP_NESTED_HOT_TEAMS 5167 int avail_threads = hot_teams[level].hot_team_nth; 5168 if (new_nproc < avail_threads) 5169 avail_threads = new_nproc; 5170 kmp_info_t **other_threads = team->t.t_threads; 5171 for (f = team->t.t_nproc; f < avail_threads; ++f) { 5172 // Adjust barrier data of reserved threads (if any) of the team 5173 // Other data will be set in __kmp_initialize_info() below. 5174 int b; 5175 kmp_balign_t *balign = other_threads[f]->th.th_bar; 5176 for (b = 0; b < bs_last_barrier; ++b) { 5177 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 5178 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 5179 #if USE_DEBUGGER 5180 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 5181 #endif 5182 } 5183 } 5184 if (hot_teams[level].hot_team_nth >= new_nproc) { 5185 // we have all needed threads in reserve, no need to allocate any 5186 // this only possible in mode 1, cannot have reserved threads in mode 0 5187 KMP_DEBUG_ASSERT(__kmp_hot_teams_mode == 1); 5188 team->t.t_nproc = new_nproc; // just get reserved threads involved 5189 } else { 5190 // we may have some threads in reserve, but not enough 5191 team->t.t_nproc = 5192 hot_teams[level] 5193 .hot_team_nth; // get reserved threads involved if any 5194 hot_teams[level].hot_team_nth = new_nproc; // adjust hot team max size 5195 #endif // KMP_NESTED_HOT_TEAMS 5196 if (team->t.t_max_nproc < new_nproc) { 5197 /* reallocate larger arrays */ 5198 __kmp_reallocate_team_arrays(team, new_nproc); 5199 __kmp_reinitialize_team(team, new_icvs, NULL); 5200 } 5201 5202 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 5203 /* Temporarily set full mask for master thread before creation of 5204 workers. The reason is that workers inherit the affinity from master, 5205 so if a lot of workers are created on the single core quickly, they 5206 don't get a chance to set their own affinity for a long time. */ 5207 __kmp_set_thread_affinity_mask_full_tmp(old_mask); 5208 #endif 5209 5210 /* allocate new threads for the hot team */ 5211 for (f = team->t.t_nproc; f < new_nproc; f++) { 5212 kmp_info_t *new_worker = __kmp_allocate_thread(root, team, f); 5213 KMP_DEBUG_ASSERT(new_worker); 5214 team->t.t_threads[f] = new_worker; 5215 5216 KA_TRACE(20, 5217 ("__kmp_allocate_team: team %d init T#%d arrived: " 5218 "join=%llu, plain=%llu\n", 5219 team->t.t_id, __kmp_gtid_from_tid(f, team), team->t.t_id, f, 5220 team->t.t_bar[bs_forkjoin_barrier].b_arrived, 5221 team->t.t_bar[bs_plain_barrier].b_arrived)); 5222 5223 { // Initialize barrier data for new threads. 5224 int b; 5225 kmp_balign_t *balign = new_worker->th.th_bar; 5226 for (b = 0; b < bs_last_barrier; ++b) { 5227 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 5228 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != 5229 KMP_BARRIER_PARENT_FLAG); 5230 #if USE_DEBUGGER 5231 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 5232 #endif 5233 } 5234 } 5235 } 5236 5237 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 5238 if (KMP_AFFINITY_CAPABLE()) { 5239 /* Restore initial master thread's affinity mask */ 5240 __kmp_set_system_affinity(old_mask, TRUE); 5241 KMP_CPU_FREE(old_mask); 5242 } 5243 #endif 5244 #if KMP_NESTED_HOT_TEAMS 5245 } // end of check of t_nproc vs. new_nproc vs. hot_team_nth 5246 #endif // KMP_NESTED_HOT_TEAMS 5247 /* make sure everyone is syncronized */ 5248 int old_nproc = team->t.t_nproc; // save old value and use to update only 5249 // new threads below 5250 __kmp_initialize_team(team, new_nproc, new_icvs, 5251 root->r.r_uber_thread->th.th_ident); 5252 5253 /* reinitialize the threads */ 5254 KMP_DEBUG_ASSERT(team->t.t_nproc == new_nproc); 5255 for (f = 0; f < team->t.t_nproc; ++f) 5256 __kmp_initialize_info(team->t.t_threads[f], team, f, 5257 __kmp_gtid_from_tid(f, team)); 5258 5259 if (level) { // set th_task_state for new threads in nested hot team 5260 // __kmp_initialize_info() no longer zeroes th_task_state, so we should 5261 // only need to set the th_task_state for the new threads. th_task_state 5262 // for master thread will not be accurate until after this in 5263 // __kmp_fork_call(), so we look to the master's memo_stack to get the 5264 // correct value. 5265 for (f = old_nproc; f < team->t.t_nproc; ++f) 5266 team->t.t_threads[f]->th.th_task_state = 5267 team->t.t_threads[0]->th.th_task_state_memo_stack[level]; 5268 } else { // set th_task_state for new threads in non-nested hot team 5269 int old_state = 5270 team->t.t_threads[0]->th.th_task_state; // copy master's state 5271 for (f = old_nproc; f < team->t.t_nproc; ++f) 5272 team->t.t_threads[f]->th.th_task_state = old_state; 5273 } 5274 5275 #ifdef KMP_DEBUG 5276 for (f = 0; f < team->t.t_nproc; ++f) { 5277 KMP_DEBUG_ASSERT(team->t.t_threads[f] && 5278 team->t.t_threads[f]->th.th_team_nproc == 5279 team->t.t_nproc); 5280 } 5281 #endif 5282 5283 #if OMP_40_ENABLED 5284 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5285 #if KMP_AFFINITY_SUPPORTED 5286 __kmp_partition_places(team); 5287 #endif 5288 #endif 5289 } // Check changes in number of threads 5290 5291 #if OMP_40_ENABLED 5292 kmp_info_t *master = team->t.t_threads[0]; 5293 if (master->th.th_teams_microtask) { 5294 for (f = 1; f < new_nproc; ++f) { 5295 // propagate teams construct specific info to workers 5296 kmp_info_t *thr = team->t.t_threads[f]; 5297 thr->th.th_teams_microtask = master->th.th_teams_microtask; 5298 thr->th.th_teams_level = master->th.th_teams_level; 5299 thr->th.th_teams_size = master->th.th_teams_size; 5300 } 5301 } 5302 #endif /* OMP_40_ENABLED */ 5303 #if KMP_NESTED_HOT_TEAMS 5304 if (level) { 5305 // Sync barrier state for nested hot teams, not needed for outermost hot 5306 // team. 5307 for (f = 1; f < new_nproc; ++f) { 5308 kmp_info_t *thr = team->t.t_threads[f]; 5309 int b; 5310 kmp_balign_t *balign = thr->th.th_bar; 5311 for (b = 0; b < bs_last_barrier; ++b) { 5312 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 5313 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 5314 #if USE_DEBUGGER 5315 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 5316 #endif 5317 } 5318 } 5319 } 5320 #endif // KMP_NESTED_HOT_TEAMS 5321 5322 /* reallocate space for arguments if necessary */ 5323 __kmp_alloc_argv_entries(argc, team, TRUE); 5324 KMP_CHECK_UPDATE(team->t.t_argc, argc); 5325 // The hot team re-uses the previous task team, 5326 // if untouched during the previous release->gather phase. 5327 5328 KF_TRACE(10, (" hot_team = %p\n", team)); 5329 5330 #if KMP_DEBUG 5331 if (__kmp_tasking_mode != tskm_immediate_exec) { 5332 KA_TRACE(20, ("__kmp_allocate_team: hot team task_team[0] = %p " 5333 "task_team[1] = %p after reinit\n", 5334 team->t.t_task_team[0], team->t.t_task_team[1])); 5335 } 5336 #endif 5337 5338 #if OMPT_SUPPORT 5339 __ompt_team_assign_id(team, ompt_parallel_data); 5340 #endif 5341 5342 KMP_MB(); 5343 5344 return team; 5345 } 5346 5347 /* next, let's try to take one from the team pool */ 5348 KMP_MB(); 5349 for (team = CCAST(kmp_team_t *, __kmp_team_pool); (team);) { 5350 /* TODO: consider resizing undersized teams instead of reaping them, now 5351 that we have a resizing mechanism */ 5352 if (team->t.t_max_nproc >= max_nproc) { 5353 /* take this team from the team pool */ 5354 __kmp_team_pool = team->t.t_next_pool; 5355 5356 /* setup the team for fresh use */ 5357 __kmp_initialize_team(team, new_nproc, new_icvs, NULL); 5358 5359 KA_TRACE(20, ("__kmp_allocate_team: setting task_team[0] %p and " 5360 "task_team[1] %p to NULL\n", 5361 &team->t.t_task_team[0], &team->t.t_task_team[1])); 5362 team->t.t_task_team[0] = NULL; 5363 team->t.t_task_team[1] = NULL; 5364 5365 /* reallocate space for arguments if necessary */ 5366 __kmp_alloc_argv_entries(argc, team, TRUE); 5367 KMP_CHECK_UPDATE(team->t.t_argc, argc); 5368 5369 KA_TRACE( 5370 20, ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n", 5371 team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 5372 { // Initialize barrier data. 5373 int b; 5374 for (b = 0; b < bs_last_barrier; ++b) { 5375 team->t.t_bar[b].b_arrived = KMP_INIT_BARRIER_STATE; 5376 #if USE_DEBUGGER 5377 team->t.t_bar[b].b_master_arrived = 0; 5378 team->t.t_bar[b].b_team_arrived = 0; 5379 #endif 5380 } 5381 } 5382 5383 #if OMP_40_ENABLED 5384 team->t.t_proc_bind = new_proc_bind; 5385 #endif 5386 5387 KA_TRACE(20, ("__kmp_allocate_team: using team from pool %d.\n", 5388 team->t.t_id)); 5389 5390 #if OMPT_SUPPORT 5391 __ompt_team_assign_id(team, ompt_parallel_data); 5392 #endif 5393 5394 KMP_MB(); 5395 5396 return team; 5397 } 5398 5399 /* reap team if it is too small, then loop back and check the next one */ 5400 // not sure if this is wise, but, will be redone during the hot-teams 5401 // rewrite. 5402 /* TODO: Use technique to find the right size hot-team, don't reap them */ 5403 team = __kmp_reap_team(team); 5404 __kmp_team_pool = team; 5405 } 5406 5407 /* nothing available in the pool, no matter, make a new team! */ 5408 KMP_MB(); 5409 team = (kmp_team_t *)__kmp_allocate(sizeof(kmp_team_t)); 5410 5411 /* and set it up */ 5412 team->t.t_max_nproc = max_nproc; 5413 /* NOTE well, for some reason allocating one big buffer and dividing it up 5414 seems to really hurt performance a lot on the P4, so, let's not use this */ 5415 __kmp_allocate_team_arrays(team, max_nproc); 5416 5417 KA_TRACE(20, ("__kmp_allocate_team: making a new team\n")); 5418 __kmp_initialize_team(team, new_nproc, new_icvs, NULL); 5419 5420 KA_TRACE(20, ("__kmp_allocate_team: setting task_team[0] %p and task_team[1] " 5421 "%p to NULL\n", 5422 &team->t.t_task_team[0], &team->t.t_task_team[1])); 5423 team->t.t_task_team[0] = NULL; // to be removed, as __kmp_allocate zeroes 5424 // memory, no need to duplicate 5425 team->t.t_task_team[1] = NULL; // to be removed, as __kmp_allocate zeroes 5426 // memory, no need to duplicate 5427 5428 if (__kmp_storage_map) { 5429 __kmp_print_team_storage_map("team", team, team->t.t_id, new_nproc); 5430 } 5431 5432 /* allocate space for arguments */ 5433 __kmp_alloc_argv_entries(argc, team, FALSE); 5434 team->t.t_argc = argc; 5435 5436 KA_TRACE(20, 5437 ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n", 5438 team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 5439 { // Initialize barrier data. 5440 int b; 5441 for (b = 0; b < bs_last_barrier; ++b) { 5442 team->t.t_bar[b].b_arrived = KMP_INIT_BARRIER_STATE; 5443 #if USE_DEBUGGER 5444 team->t.t_bar[b].b_master_arrived = 0; 5445 team->t.t_bar[b].b_team_arrived = 0; 5446 #endif 5447 } 5448 } 5449 5450 #if OMP_40_ENABLED 5451 team->t.t_proc_bind = new_proc_bind; 5452 #endif 5453 5454 #if OMPT_SUPPORT 5455 __ompt_team_assign_id(team, ompt_parallel_data); 5456 team->t.ompt_serialized_team_info = NULL; 5457 #endif 5458 5459 KMP_MB(); 5460 5461 KA_TRACE(20, ("__kmp_allocate_team: done creating a new team %d.\n", 5462 team->t.t_id)); 5463 5464 return team; 5465 } 5466 5467 /* TODO implement hot-teams at all levels */ 5468 /* TODO implement lazy thread release on demand (disband request) */ 5469 5470 /* free the team. return it to the team pool. release all the threads 5471 * associated with it */ 5472 void __kmp_free_team(kmp_root_t *root, 5473 kmp_team_t *team USE_NESTED_HOT_ARG(kmp_info_t *master)) { 5474 int f; 5475 KA_TRACE(20, ("__kmp_free_team: T#%d freeing team %d\n", __kmp_get_gtid(), 5476 team->t.t_id)); 5477 5478 /* verify state */ 5479 KMP_DEBUG_ASSERT(root); 5480 KMP_DEBUG_ASSERT(team); 5481 KMP_DEBUG_ASSERT(team->t.t_nproc <= team->t.t_max_nproc); 5482 KMP_DEBUG_ASSERT(team->t.t_threads); 5483 5484 int use_hot_team = team == root->r.r_hot_team; 5485 #if KMP_NESTED_HOT_TEAMS 5486 int level; 5487 kmp_hot_team_ptr_t *hot_teams; 5488 if (master) { 5489 level = team->t.t_active_level - 1; 5490 if (master->th.th_teams_microtask) { // in teams construct? 5491 if (master->th.th_teams_size.nteams > 1) { 5492 ++level; // level was not increased in teams construct for 5493 // team_of_masters 5494 } 5495 if (team->t.t_pkfn != (microtask_t)__kmp_teams_master && 5496 master->th.th_teams_level == team->t.t_level) { 5497 ++level; // level was not increased in teams construct for 5498 // team_of_workers before the parallel 5499 } // team->t.t_level will be increased inside parallel 5500 } 5501 hot_teams = master->th.th_hot_teams; 5502 if (level < __kmp_hot_teams_max_level) { 5503 KMP_DEBUG_ASSERT(team == hot_teams[level].hot_team); 5504 use_hot_team = 1; 5505 } 5506 } 5507 #endif // KMP_NESTED_HOT_TEAMS 5508 5509 /* team is done working */ 5510 TCW_SYNC_PTR(team->t.t_pkfn, 5511 NULL); // Important for Debugging Support Library. 5512 #if KMP_OS_WINDOWS 5513 team->t.t_copyin_counter = 0; // init counter for possible reuse 5514 #endif 5515 // Do not reset pointer to parent team to NULL for hot teams. 5516 5517 /* if we are non-hot team, release our threads */ 5518 if (!use_hot_team) { 5519 if (__kmp_tasking_mode != tskm_immediate_exec) { 5520 // Wait for threads to reach reapable state 5521 for (f = 1; f < team->t.t_nproc; ++f) { 5522 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5523 kmp_info_t *th = team->t.t_threads[f]; 5524 volatile kmp_uint32 *state = &th->th.th_reap_state; 5525 while (*state != KMP_SAFE_TO_REAP) { 5526 #if KMP_OS_WINDOWS 5527 // On Windows a thread can be killed at any time, check this 5528 DWORD ecode; 5529 if (!__kmp_is_thread_alive(th, &ecode)) { 5530 *state = KMP_SAFE_TO_REAP; // reset the flag for dead thread 5531 break; 5532 } 5533 #endif 5534 // first check if thread is sleeping 5535 kmp_flag_64 fl(&th->th.th_bar[bs_forkjoin_barrier].bb.b_go, th); 5536 if (fl.is_sleeping()) 5537 fl.resume(__kmp_gtid_from_thread(th)); 5538 KMP_CPU_PAUSE(); 5539 } 5540 } 5541 5542 // Delete task teams 5543 int tt_idx; 5544 for (tt_idx = 0; tt_idx < 2; ++tt_idx) { 5545 kmp_task_team_t *task_team = team->t.t_task_team[tt_idx]; 5546 if (task_team != NULL) { 5547 for (f = 0; f < team->t.t_nproc; ++f) { // threads unref task teams 5548 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5549 team->t.t_threads[f]->th.th_task_team = NULL; 5550 } 5551 KA_TRACE( 5552 20, 5553 ("__kmp_free_team: T#%d deactivating task_team %p on team %d\n", 5554 __kmp_get_gtid(), task_team, team->t.t_id)); 5555 #if KMP_NESTED_HOT_TEAMS 5556 __kmp_free_task_team(master, task_team); 5557 #endif 5558 team->t.t_task_team[tt_idx] = NULL; 5559 } 5560 } 5561 } 5562 5563 // Reset pointer to parent team only for non-hot teams. 5564 team->t.t_parent = NULL; 5565 team->t.t_level = 0; 5566 team->t.t_active_level = 0; 5567 5568 /* free the worker threads */ 5569 for (f = 1; f < team->t.t_nproc; ++f) { 5570 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5571 __kmp_free_thread(team->t.t_threads[f]); 5572 team->t.t_threads[f] = NULL; 5573 } 5574 5575 /* put the team back in the team pool */ 5576 /* TODO limit size of team pool, call reap_team if pool too large */ 5577 team->t.t_next_pool = CCAST(kmp_team_t *, __kmp_team_pool); 5578 __kmp_team_pool = (volatile kmp_team_t *)team; 5579 } else { // Check if team was created for the masters in a teams construct 5580 // See if first worker is a CG root 5581 KMP_DEBUG_ASSERT(team->t.t_threads[1] && 5582 team->t.t_threads[1]->th.th_cg_roots); 5583 if (team->t.t_threads[1]->th.th_cg_roots->cg_root == team->t.t_threads[1]) { 5584 // Clean up the CG root nodes on workers so that this team can be re-used 5585 for (f = 1; f < team->t.t_nproc; ++f) { 5586 kmp_info_t *thr = team->t.t_threads[f]; 5587 KMP_DEBUG_ASSERT(thr && thr->th.th_cg_roots && 5588 thr->th.th_cg_roots->cg_root == thr); 5589 // Pop current CG root off list 5590 kmp_cg_root_t *tmp = thr->th.th_cg_roots; 5591 thr->th.th_cg_roots = tmp->up; 5592 KA_TRACE(100, ("__kmp_free_team: Thread %p popping node %p and moving" 5593 " up to node %p. cg_nthreads was %d\n", 5594 thr, tmp, thr->th.th_cg_roots, tmp->cg_nthreads)); 5595 __kmp_free(tmp); 5596 // Restore current task's thread_limit from CG root 5597 if (thr->th.th_cg_roots) 5598 thr->th.th_current_task->td_icvs.thread_limit = 5599 thr->th.th_cg_roots->cg_thread_limit; 5600 } 5601 } 5602 } 5603 5604 KMP_MB(); 5605 } 5606 5607 /* reap the team. destroy it, reclaim all its resources and free its memory */ 5608 kmp_team_t *__kmp_reap_team(kmp_team_t *team) { 5609 kmp_team_t *next_pool = team->t.t_next_pool; 5610 5611 KMP_DEBUG_ASSERT(team); 5612 KMP_DEBUG_ASSERT(team->t.t_dispatch); 5613 KMP_DEBUG_ASSERT(team->t.t_disp_buffer); 5614 KMP_DEBUG_ASSERT(team->t.t_threads); 5615 KMP_DEBUG_ASSERT(team->t.t_argv); 5616 5617 /* TODO clean the threads that are a part of this? */ 5618 5619 /* free stuff */ 5620 __kmp_free_team_arrays(team); 5621 if (team->t.t_argv != &team->t.t_inline_argv[0]) 5622 __kmp_free((void *)team->t.t_argv); 5623 __kmp_free(team); 5624 5625 KMP_MB(); 5626 return next_pool; 5627 } 5628 5629 // Free the thread. Don't reap it, just place it on the pool of available 5630 // threads. 5631 // 5632 // Changes for Quad issue 527845: We need a predictable OMP tid <-> gtid 5633 // binding for the affinity mechanism to be useful. 5634 // 5635 // Now, we always keep the free list (__kmp_thread_pool) sorted by gtid. 5636 // However, we want to avoid a potential performance problem by always 5637 // scanning through the list to find the correct point at which to insert 5638 // the thread (potential N**2 behavior). To do this we keep track of the 5639 // last place a thread struct was inserted (__kmp_thread_pool_insert_pt). 5640 // With single-level parallelism, threads will always be added to the tail 5641 // of the list, kept track of by __kmp_thread_pool_insert_pt. With nested 5642 // parallelism, all bets are off and we may need to scan through the entire 5643 // free list. 5644 // 5645 // This change also has a potentially large performance benefit, for some 5646 // applications. Previously, as threads were freed from the hot team, they 5647 // would be placed back on the free list in inverse order. If the hot team 5648 // grew back to it's original size, then the freed thread would be placed 5649 // back on the hot team in reverse order. This could cause bad cache 5650 // locality problems on programs where the size of the hot team regularly 5651 // grew and shrunk. 5652 // 5653 // Now, for single-level parallelism, the OMP tid is alway == gtid. 5654 void __kmp_free_thread(kmp_info_t *this_th) { 5655 int gtid; 5656 kmp_info_t **scan; 5657 5658 KA_TRACE(20, ("__kmp_free_thread: T#%d putting T#%d back on free pool.\n", 5659 __kmp_get_gtid(), this_th->th.th_info.ds.ds_gtid)); 5660 5661 KMP_DEBUG_ASSERT(this_th); 5662 5663 // When moving thread to pool, switch thread to wait on own b_go flag, and 5664 // uninitialized (NULL team). 5665 int b; 5666 kmp_balign_t *balign = this_th->th.th_bar; 5667 for (b = 0; b < bs_last_barrier; ++b) { 5668 if (balign[b].bb.wait_flag == KMP_BARRIER_PARENT_FLAG) 5669 balign[b].bb.wait_flag = KMP_BARRIER_SWITCH_TO_OWN_FLAG; 5670 balign[b].bb.team = NULL; 5671 balign[b].bb.leaf_kids = 0; 5672 } 5673 this_th->th.th_task_state = 0; 5674 this_th->th.th_reap_state = KMP_SAFE_TO_REAP; 5675 5676 /* put thread back on the free pool */ 5677 TCW_PTR(this_th->th.th_team, NULL); 5678 TCW_PTR(this_th->th.th_root, NULL); 5679 TCW_PTR(this_th->th.th_dispatch, NULL); /* NOT NEEDED */ 5680 5681 while (this_th->th.th_cg_roots) { 5682 this_th->th.th_cg_roots->cg_nthreads--; 5683 KA_TRACE(100, ("__kmp_free_thread: Thread %p decrement cg_nthreads on node" 5684 " %p of thread %p to %d\n", 5685 this_th, this_th->th.th_cg_roots, 5686 this_th->th.th_cg_roots->cg_root, 5687 this_th->th.th_cg_roots->cg_nthreads)); 5688 kmp_cg_root_t *tmp = this_th->th.th_cg_roots; 5689 if (tmp->cg_root == this_th) { // Thread is a cg_root 5690 KMP_DEBUG_ASSERT(tmp->cg_nthreads == 0); 5691 KA_TRACE( 5692 5, ("__kmp_free_thread: Thread %p freeing node %p\n", this_th, tmp)); 5693 this_th->th.th_cg_roots = tmp->up; 5694 __kmp_free(tmp); 5695 } else { // Worker thread 5696 this_th->th.th_cg_roots = NULL; 5697 break; 5698 } 5699 } 5700 5701 /* If the implicit task assigned to this thread can be used by other threads 5702 * -> multiple threads can share the data and try to free the task at 5703 * __kmp_reap_thread at exit. This duplicate use of the task data can happen 5704 * with higher probability when hot team is disabled but can occurs even when 5705 * the hot team is enabled */ 5706 __kmp_free_implicit_task(this_th); 5707 this_th->th.th_current_task = NULL; 5708 5709 // If the __kmp_thread_pool_insert_pt is already past the new insert 5710 // point, then we need to re-scan the entire list. 5711 gtid = this_th->th.th_info.ds.ds_gtid; 5712 if (__kmp_thread_pool_insert_pt != NULL) { 5713 KMP_DEBUG_ASSERT(__kmp_thread_pool != NULL); 5714 if (__kmp_thread_pool_insert_pt->th.th_info.ds.ds_gtid > gtid) { 5715 __kmp_thread_pool_insert_pt = NULL; 5716 } 5717 } 5718 5719 // Scan down the list to find the place to insert the thread. 5720 // scan is the address of a link in the list, possibly the address of 5721 // __kmp_thread_pool itself. 5722 // 5723 // In the absence of nested parallism, the for loop will have 0 iterations. 5724 if (__kmp_thread_pool_insert_pt != NULL) { 5725 scan = &(__kmp_thread_pool_insert_pt->th.th_next_pool); 5726 } else { 5727 scan = CCAST(kmp_info_t **, &__kmp_thread_pool); 5728 } 5729 for (; (*scan != NULL) && ((*scan)->th.th_info.ds.ds_gtid < gtid); 5730 scan = &((*scan)->th.th_next_pool)) 5731 ; 5732 5733 // Insert the new element on the list, and set __kmp_thread_pool_insert_pt 5734 // to its address. 5735 TCW_PTR(this_th->th.th_next_pool, *scan); 5736 __kmp_thread_pool_insert_pt = *scan = this_th; 5737 KMP_DEBUG_ASSERT((this_th->th.th_next_pool == NULL) || 5738 (this_th->th.th_info.ds.ds_gtid < 5739 this_th->th.th_next_pool->th.th_info.ds.ds_gtid)); 5740 TCW_4(this_th->th.th_in_pool, TRUE); 5741 __kmp_suspend_initialize_thread(this_th); 5742 __kmp_lock_suspend_mx(this_th); 5743 if (this_th->th.th_active == TRUE) { 5744 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth); 5745 this_th->th.th_active_in_pool = TRUE; 5746 } 5747 #if KMP_DEBUG 5748 else { 5749 KMP_DEBUG_ASSERT(this_th->th.th_active_in_pool == FALSE); 5750 } 5751 #endif 5752 __kmp_unlock_suspend_mx(this_th); 5753 5754 TCW_4(__kmp_nth, __kmp_nth - 1); 5755 5756 #ifdef KMP_ADJUST_BLOCKTIME 5757 /* Adjust blocktime back to user setting or default if necessary */ 5758 /* Middle initialization might never have occurred */ 5759 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 5760 KMP_DEBUG_ASSERT(__kmp_avail_proc > 0); 5761 if (__kmp_nth <= __kmp_avail_proc) { 5762 __kmp_zero_bt = FALSE; 5763 } 5764 } 5765 #endif /* KMP_ADJUST_BLOCKTIME */ 5766 5767 KMP_MB(); 5768 } 5769 5770 /* ------------------------------------------------------------------------ */ 5771 5772 void *__kmp_launch_thread(kmp_info_t *this_thr) { 5773 int gtid = this_thr->th.th_info.ds.ds_gtid; 5774 /* void *stack_data;*/ 5775 kmp_team_t *(*volatile pteam); 5776 5777 KMP_MB(); 5778 KA_TRACE(10, ("__kmp_launch_thread: T#%d start\n", gtid)); 5779 5780 if (__kmp_env_consistency_check) { 5781 this_thr->th.th_cons = __kmp_allocate_cons_stack(gtid); // ATT: Memory leak? 5782 } 5783 5784 #if OMPT_SUPPORT 5785 ompt_data_t *thread_data; 5786 if (ompt_enabled.enabled) { 5787 thread_data = &(this_thr->th.ompt_thread_info.thread_data); 5788 *thread_data = ompt_data_none; 5789 5790 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 5791 this_thr->th.ompt_thread_info.wait_id = 0; 5792 this_thr->th.ompt_thread_info.idle_frame = OMPT_GET_FRAME_ADDRESS(0); 5793 if (ompt_enabled.ompt_callback_thread_begin) { 5794 ompt_callbacks.ompt_callback(ompt_callback_thread_begin)( 5795 ompt_thread_worker, thread_data); 5796 } 5797 } 5798 #endif 5799 5800 #if OMPT_SUPPORT 5801 if (ompt_enabled.enabled) { 5802 this_thr->th.ompt_thread_info.state = ompt_state_idle; 5803 } 5804 #endif 5805 /* This is the place where threads wait for work */ 5806 while (!TCR_4(__kmp_global.g.g_done)) { 5807 KMP_DEBUG_ASSERT(this_thr == __kmp_threads[gtid]); 5808 KMP_MB(); 5809 5810 /* wait for work to do */ 5811 KA_TRACE(20, ("__kmp_launch_thread: T#%d waiting for work\n", gtid)); 5812 5813 /* No tid yet since not part of a team */ 5814 __kmp_fork_barrier(gtid, KMP_GTID_DNE); 5815 5816 #if OMPT_SUPPORT 5817 if (ompt_enabled.enabled) { 5818 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 5819 } 5820 #endif 5821 5822 pteam = (kmp_team_t * (*))(&this_thr->th.th_team); 5823 5824 /* have we been allocated? */ 5825 if (TCR_SYNC_PTR(*pteam) && !TCR_4(__kmp_global.g.g_done)) { 5826 /* we were just woken up, so run our new task */ 5827 if (TCR_SYNC_PTR((*pteam)->t.t_pkfn) != NULL) { 5828 int rc; 5829 KA_TRACE(20, 5830 ("__kmp_launch_thread: T#%d(%d:%d) invoke microtask = %p\n", 5831 gtid, (*pteam)->t.t_id, __kmp_tid_from_gtid(gtid), 5832 (*pteam)->t.t_pkfn)); 5833 5834 updateHWFPControl(*pteam); 5835 5836 #if OMPT_SUPPORT 5837 if (ompt_enabled.enabled) { 5838 this_thr->th.ompt_thread_info.state = ompt_state_work_parallel; 5839 } 5840 #endif 5841 5842 rc = (*pteam)->t.t_invoke(gtid); 5843 KMP_ASSERT(rc); 5844 5845 KMP_MB(); 5846 KA_TRACE(20, ("__kmp_launch_thread: T#%d(%d:%d) done microtask = %p\n", 5847 gtid, (*pteam)->t.t_id, __kmp_tid_from_gtid(gtid), 5848 (*pteam)->t.t_pkfn)); 5849 } 5850 #if OMPT_SUPPORT 5851 if (ompt_enabled.enabled) { 5852 /* no frame set while outside task */ 5853 __ompt_get_task_info_object(0)->frame.exit_frame = ompt_data_none; 5854 5855 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 5856 } 5857 #endif 5858 /* join barrier after parallel region */ 5859 __kmp_join_barrier(gtid); 5860 } 5861 } 5862 TCR_SYNC_PTR((intptr_t)__kmp_global.g.g_done); 5863 5864 #if OMPT_SUPPORT 5865 if (ompt_enabled.ompt_callback_thread_end) { 5866 ompt_callbacks.ompt_callback(ompt_callback_thread_end)(thread_data); 5867 } 5868 #endif 5869 5870 this_thr->th.th_task_team = NULL; 5871 /* run the destructors for the threadprivate data for this thread */ 5872 __kmp_common_destroy_gtid(gtid); 5873 5874 KA_TRACE(10, ("__kmp_launch_thread: T#%d done\n", gtid)); 5875 KMP_MB(); 5876 return this_thr; 5877 } 5878 5879 /* ------------------------------------------------------------------------ */ 5880 5881 void __kmp_internal_end_dest(void *specific_gtid) { 5882 #if KMP_COMPILER_ICC 5883 #pragma warning(push) 5884 #pragma warning(disable : 810) // conversion from "void *" to "int" may lose 5885 // significant bits 5886 #endif 5887 // Make sure no significant bits are lost 5888 int gtid = (kmp_intptr_t)specific_gtid - 1; 5889 #if KMP_COMPILER_ICC 5890 #pragma warning(pop) 5891 #endif 5892 5893 KA_TRACE(30, ("__kmp_internal_end_dest: T#%d\n", gtid)); 5894 /* NOTE: the gtid is stored as gitd+1 in the thread-local-storage 5895 * this is because 0 is reserved for the nothing-stored case */ 5896 5897 /* josh: One reason for setting the gtid specific data even when it is being 5898 destroyed by pthread is to allow gtid lookup through thread specific data 5899 (__kmp_gtid_get_specific). Some of the code, especially stat code, 5900 that gets executed in the call to __kmp_internal_end_thread, actually 5901 gets the gtid through the thread specific data. Setting it here seems 5902 rather inelegant and perhaps wrong, but allows __kmp_internal_end_thread 5903 to run smoothly. 5904 todo: get rid of this after we remove the dependence on 5905 __kmp_gtid_get_specific */ 5906 if (gtid >= 0 && KMP_UBER_GTID(gtid)) 5907 __kmp_gtid_set_specific(gtid); 5908 #ifdef KMP_TDATA_GTID 5909 __kmp_gtid = gtid; 5910 #endif 5911 __kmp_internal_end_thread(gtid); 5912 } 5913 5914 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB 5915 5916 // 2009-09-08 (lev): It looks the destructor does not work. In simple test cases 5917 // destructors work perfectly, but in real libomp.so I have no evidence it is 5918 // ever called. However, -fini linker option in makefile.mk works fine. 5919 5920 __attribute__((destructor)) void __kmp_internal_end_dtor(void) { 5921 __kmp_internal_end_atexit(); 5922 } 5923 5924 void __kmp_internal_end_fini(void) { __kmp_internal_end_atexit(); } 5925 5926 #endif 5927 5928 /* [Windows] josh: when the atexit handler is called, there may still be more 5929 than one thread alive */ 5930 void __kmp_internal_end_atexit(void) { 5931 KA_TRACE(30, ("__kmp_internal_end_atexit\n")); 5932 /* [Windows] 5933 josh: ideally, we want to completely shutdown the library in this atexit 5934 handler, but stat code that depends on thread specific data for gtid fails 5935 because that data becomes unavailable at some point during the shutdown, so 5936 we call __kmp_internal_end_thread instead. We should eventually remove the 5937 dependency on __kmp_get_specific_gtid in the stat code and use 5938 __kmp_internal_end_library to cleanly shutdown the library. 5939 5940 // TODO: Can some of this comment about GVS be removed? 5941 I suspect that the offending stat code is executed when the calling thread 5942 tries to clean up a dead root thread's data structures, resulting in GVS 5943 code trying to close the GVS structures for that thread, but since the stat 5944 code uses __kmp_get_specific_gtid to get the gtid with the assumption that 5945 the calling thread is cleaning up itself instead of another thread, it get 5946 confused. This happens because allowing a thread to unregister and cleanup 5947 another thread is a recent modification for addressing an issue. 5948 Based on the current design (20050722), a thread may end up 5949 trying to unregister another thread only if thread death does not trigger 5950 the calling of __kmp_internal_end_thread. For Linux* OS, there is the 5951 thread specific data destructor function to detect thread death. For 5952 Windows dynamic, there is DllMain(THREAD_DETACH). For Windows static, there 5953 is nothing. Thus, the workaround is applicable only for Windows static 5954 stat library. */ 5955 __kmp_internal_end_library(-1); 5956 #if KMP_OS_WINDOWS 5957 __kmp_close_console(); 5958 #endif 5959 } 5960 5961 static void __kmp_reap_thread(kmp_info_t *thread, int is_root) { 5962 // It is assumed __kmp_forkjoin_lock is acquired. 5963 5964 int gtid; 5965 5966 KMP_DEBUG_ASSERT(thread != NULL); 5967 5968 gtid = thread->th.th_info.ds.ds_gtid; 5969 5970 if (!is_root) { 5971 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { 5972 /* Assume the threads are at the fork barrier here */ 5973 KA_TRACE( 5974 20, ("__kmp_reap_thread: releasing T#%d from fork barrier for reap\n", 5975 gtid)); 5976 /* Need release fence here to prevent seg faults for tree forkjoin barrier 5977 * (GEH) */ 5978 ANNOTATE_HAPPENS_BEFORE(thread); 5979 kmp_flag_64 flag(&thread->th.th_bar[bs_forkjoin_barrier].bb.b_go, thread); 5980 __kmp_release_64(&flag); 5981 } 5982 5983 // Terminate OS thread. 5984 __kmp_reap_worker(thread); 5985 5986 // The thread was killed asynchronously. If it was actively 5987 // spinning in the thread pool, decrement the global count. 5988 // 5989 // There is a small timing hole here - if the worker thread was just waking 5990 // up after sleeping in the pool, had reset it's th_active_in_pool flag but 5991 // not decremented the global counter __kmp_thread_pool_active_nth yet, then 5992 // the global counter might not get updated. 5993 // 5994 // Currently, this can only happen as the library is unloaded, 5995 // so there are no harmful side effects. 5996 if (thread->th.th_active_in_pool) { 5997 thread->th.th_active_in_pool = FALSE; 5998 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 5999 KMP_DEBUG_ASSERT(__kmp_thread_pool_active_nth >= 0); 6000 } 6001 } 6002 6003 __kmp_free_implicit_task(thread); 6004 6005 // Free the fast memory for tasking 6006 #if USE_FAST_MEMORY 6007 __kmp_free_fast_memory(thread); 6008 #endif /* USE_FAST_MEMORY */ 6009 6010 __kmp_suspend_uninitialize_thread(thread); 6011 6012 KMP_DEBUG_ASSERT(__kmp_threads[gtid] == thread); 6013 TCW_SYNC_PTR(__kmp_threads[gtid], NULL); 6014 6015 --__kmp_all_nth; 6016 // __kmp_nth was decremented when thread is added to the pool. 6017 6018 #ifdef KMP_ADJUST_BLOCKTIME 6019 /* Adjust blocktime back to user setting or default if necessary */ 6020 /* Middle initialization might never have occurred */ 6021 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 6022 KMP_DEBUG_ASSERT(__kmp_avail_proc > 0); 6023 if (__kmp_nth <= __kmp_avail_proc) { 6024 __kmp_zero_bt = FALSE; 6025 } 6026 } 6027 #endif /* KMP_ADJUST_BLOCKTIME */ 6028 6029 /* free the memory being used */ 6030 if (__kmp_env_consistency_check) { 6031 if (thread->th.th_cons) { 6032 __kmp_free_cons_stack(thread->th.th_cons); 6033 thread->th.th_cons = NULL; 6034 } 6035 } 6036 6037 if (thread->th.th_pri_common != NULL) { 6038 __kmp_free(thread->th.th_pri_common); 6039 thread->th.th_pri_common = NULL; 6040 } 6041 6042 if (thread->th.th_task_state_memo_stack != NULL) { 6043 __kmp_free(thread->th.th_task_state_memo_stack); 6044 thread->th.th_task_state_memo_stack = NULL; 6045 } 6046 6047 #if KMP_USE_BGET 6048 if (thread->th.th_local.bget_data != NULL) { 6049 __kmp_finalize_bget(thread); 6050 } 6051 #endif 6052 6053 #if KMP_AFFINITY_SUPPORTED 6054 if (thread->th.th_affin_mask != NULL) { 6055 KMP_CPU_FREE(thread->th.th_affin_mask); 6056 thread->th.th_affin_mask = NULL; 6057 } 6058 #endif /* KMP_AFFINITY_SUPPORTED */ 6059 6060 #if KMP_USE_HIER_SCHED 6061 if (thread->th.th_hier_bar_data != NULL) { 6062 __kmp_free(thread->th.th_hier_bar_data); 6063 thread->th.th_hier_bar_data = NULL; 6064 } 6065 #endif 6066 6067 __kmp_reap_team(thread->th.th_serial_team); 6068 thread->th.th_serial_team = NULL; 6069 __kmp_free(thread); 6070 6071 KMP_MB(); 6072 6073 } // __kmp_reap_thread 6074 6075 static void __kmp_internal_end(void) { 6076 int i; 6077 6078 /* First, unregister the library */ 6079 __kmp_unregister_library(); 6080 6081 #if KMP_OS_WINDOWS 6082 /* In Win static library, we can't tell when a root actually dies, so we 6083 reclaim the data structures for any root threads that have died but not 6084 unregistered themselves, in order to shut down cleanly. 6085 In Win dynamic library we also can't tell when a thread dies. */ 6086 __kmp_reclaim_dead_roots(); // AC: moved here to always clean resources of 6087 // dead roots 6088 #endif 6089 6090 for (i = 0; i < __kmp_threads_capacity; i++) 6091 if (__kmp_root[i]) 6092 if (__kmp_root[i]->r.r_active) 6093 break; 6094 KMP_MB(); /* Flush all pending memory write invalidates. */ 6095 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 6096 6097 if (i < __kmp_threads_capacity) { 6098 #if KMP_USE_MONITOR 6099 // 2009-09-08 (lev): Other alive roots found. Why do we kill the monitor?? 6100 KMP_MB(); /* Flush all pending memory write invalidates. */ 6101 6102 // Need to check that monitor was initialized before reaping it. If we are 6103 // called form __kmp_atfork_child (which sets __kmp_init_parallel = 0), then 6104 // __kmp_monitor will appear to contain valid data, but it is only valid in 6105 // the parent process, not the child. 6106 // New behavior (201008): instead of keying off of the flag 6107 // __kmp_init_parallel, the monitor thread creation is keyed off 6108 // of the new flag __kmp_init_monitor. 6109 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock); 6110 if (TCR_4(__kmp_init_monitor)) { 6111 __kmp_reap_monitor(&__kmp_monitor); 6112 TCW_4(__kmp_init_monitor, 0); 6113 } 6114 __kmp_release_bootstrap_lock(&__kmp_monitor_lock); 6115 KA_TRACE(10, ("__kmp_internal_end: monitor reaped\n")); 6116 #endif // KMP_USE_MONITOR 6117 } else { 6118 /* TODO move this to cleanup code */ 6119 #ifdef KMP_DEBUG 6120 /* make sure that everything has properly ended */ 6121 for (i = 0; i < __kmp_threads_capacity; i++) { 6122 if (__kmp_root[i]) { 6123 // KMP_ASSERT( ! KMP_UBER_GTID( i ) ); // AC: 6124 // there can be uber threads alive here 6125 KMP_ASSERT(!__kmp_root[i]->r.r_active); // TODO: can they be active? 6126 } 6127 } 6128 #endif 6129 6130 KMP_MB(); 6131 6132 // Reap the worker threads. 6133 // This is valid for now, but be careful if threads are reaped sooner. 6134 while (__kmp_thread_pool != NULL) { // Loop thru all the thread in the pool. 6135 // Get the next thread from the pool. 6136 kmp_info_t *thread = CCAST(kmp_info_t *, __kmp_thread_pool); 6137 __kmp_thread_pool = thread->th.th_next_pool; 6138 // Reap it. 6139 KMP_DEBUG_ASSERT(thread->th.th_reap_state == KMP_SAFE_TO_REAP); 6140 thread->th.th_next_pool = NULL; 6141 thread->th.th_in_pool = FALSE; 6142 __kmp_reap_thread(thread, 0); 6143 } 6144 __kmp_thread_pool_insert_pt = NULL; 6145 6146 // Reap teams. 6147 while (__kmp_team_pool != NULL) { // Loop thru all the teams in the pool. 6148 // Get the next team from the pool. 6149 kmp_team_t *team = CCAST(kmp_team_t *, __kmp_team_pool); 6150 __kmp_team_pool = team->t.t_next_pool; 6151 // Reap it. 6152 team->t.t_next_pool = NULL; 6153 __kmp_reap_team(team); 6154 } 6155 6156 __kmp_reap_task_teams(); 6157 6158 #if KMP_OS_UNIX 6159 // Threads that are not reaped should not access any resources since they 6160 // are going to be deallocated soon, so the shutdown sequence should wait 6161 // until all threads either exit the final spin-waiting loop or begin 6162 // sleeping after the given blocktime. 6163 for (i = 0; i < __kmp_threads_capacity; i++) { 6164 kmp_info_t *thr = __kmp_threads[i]; 6165 while (thr && KMP_ATOMIC_LD_ACQ(&thr->th.th_blocking)) 6166 KMP_CPU_PAUSE(); 6167 } 6168 #endif 6169 6170 for (i = 0; i < __kmp_threads_capacity; ++i) { 6171 // TBD: Add some checking... 6172 // Something like KMP_DEBUG_ASSERT( __kmp_thread[ i ] == NULL ); 6173 } 6174 6175 /* Make sure all threadprivate destructors get run by joining with all 6176 worker threads before resetting this flag */ 6177 TCW_SYNC_4(__kmp_init_common, FALSE); 6178 6179 KA_TRACE(10, ("__kmp_internal_end: all workers reaped\n")); 6180 KMP_MB(); 6181 6182 #if KMP_USE_MONITOR 6183 // See note above: One of the possible fixes for CQ138434 / CQ140126 6184 // 6185 // FIXME: push both code fragments down and CSE them? 6186 // push them into __kmp_cleanup() ? 6187 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock); 6188 if (TCR_4(__kmp_init_monitor)) { 6189 __kmp_reap_monitor(&__kmp_monitor); 6190 TCW_4(__kmp_init_monitor, 0); 6191 } 6192 __kmp_release_bootstrap_lock(&__kmp_monitor_lock); 6193 KA_TRACE(10, ("__kmp_internal_end: monitor reaped\n")); 6194 #endif 6195 } /* else !__kmp_global.t_active */ 6196 TCW_4(__kmp_init_gtid, FALSE); 6197 KMP_MB(); /* Flush all pending memory write invalidates. */ 6198 6199 __kmp_cleanup(); 6200 #if OMPT_SUPPORT 6201 ompt_fini(); 6202 #endif 6203 } 6204 6205 void __kmp_internal_end_library(int gtid_req) { 6206 /* if we have already cleaned up, don't try again, it wouldn't be pretty */ 6207 /* this shouldn't be a race condition because __kmp_internal_end() is the 6208 only place to clear __kmp_serial_init */ 6209 /* we'll check this later too, after we get the lock */ 6210 // 2009-09-06: We do not set g_abort without setting g_done. This check looks 6211 // redundaant, because the next check will work in any case. 6212 if (__kmp_global.g.g_abort) { 6213 KA_TRACE(11, ("__kmp_internal_end_library: abort, exiting\n")); 6214 /* TODO abort? */ 6215 return; 6216 } 6217 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6218 KA_TRACE(10, ("__kmp_internal_end_library: already finished\n")); 6219 return; 6220 } 6221 6222 KMP_MB(); /* Flush all pending memory write invalidates. */ 6223 6224 /* find out who we are and what we should do */ 6225 { 6226 int gtid = (gtid_req >= 0) ? gtid_req : __kmp_gtid_get_specific(); 6227 KA_TRACE( 6228 10, ("__kmp_internal_end_library: enter T#%d (%d)\n", gtid, gtid_req)); 6229 if (gtid == KMP_GTID_SHUTDOWN) { 6230 KA_TRACE(10, ("__kmp_internal_end_library: !__kmp_init_runtime, system " 6231 "already shutdown\n")); 6232 return; 6233 } else if (gtid == KMP_GTID_MONITOR) { 6234 KA_TRACE(10, ("__kmp_internal_end_library: monitor thread, gtid not " 6235 "registered, or system shutdown\n")); 6236 return; 6237 } else if (gtid == KMP_GTID_DNE) { 6238 KA_TRACE(10, ("__kmp_internal_end_library: gtid not registered or system " 6239 "shutdown\n")); 6240 /* we don't know who we are, but we may still shutdown the library */ 6241 } else if (KMP_UBER_GTID(gtid)) { 6242 /* unregister ourselves as an uber thread. gtid is no longer valid */ 6243 if (__kmp_root[gtid]->r.r_active) { 6244 __kmp_global.g.g_abort = -1; 6245 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 6246 KA_TRACE(10, 6247 ("__kmp_internal_end_library: root still active, abort T#%d\n", 6248 gtid)); 6249 return; 6250 } else { 6251 KA_TRACE( 6252 10, 6253 ("__kmp_internal_end_library: unregistering sibling T#%d\n", gtid)); 6254 __kmp_unregister_root_current_thread(gtid); 6255 } 6256 } else { 6257 /* worker threads may call this function through the atexit handler, if they 6258 * call exit() */ 6259 /* For now, skip the usual subsequent processing and just dump the debug buffer. 6260 TODO: do a thorough shutdown instead */ 6261 #ifdef DUMP_DEBUG_ON_EXIT 6262 if (__kmp_debug_buf) 6263 __kmp_dump_debug_buffer(); 6264 #endif 6265 return; 6266 } 6267 } 6268 /* synchronize the termination process */ 6269 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6270 6271 /* have we already finished */ 6272 if (__kmp_global.g.g_abort) { 6273 KA_TRACE(10, ("__kmp_internal_end_library: abort, exiting\n")); 6274 /* TODO abort? */ 6275 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6276 return; 6277 } 6278 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6279 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6280 return; 6281 } 6282 6283 /* We need this lock to enforce mutex between this reading of 6284 __kmp_threads_capacity and the writing by __kmp_register_root. 6285 Alternatively, we can use a counter of roots that is atomically updated by 6286 __kmp_get_global_thread_id_reg, __kmp_do_serial_initialize and 6287 __kmp_internal_end_*. */ 6288 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 6289 6290 /* now we can safely conduct the actual termination */ 6291 __kmp_internal_end(); 6292 6293 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 6294 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6295 6296 KA_TRACE(10, ("__kmp_internal_end_library: exit\n")); 6297 6298 #ifdef DUMP_DEBUG_ON_EXIT 6299 if (__kmp_debug_buf) 6300 __kmp_dump_debug_buffer(); 6301 #endif 6302 6303 #if KMP_OS_WINDOWS 6304 __kmp_close_console(); 6305 #endif 6306 6307 __kmp_fini_allocator(); 6308 6309 } // __kmp_internal_end_library 6310 6311 void __kmp_internal_end_thread(int gtid_req) { 6312 int i; 6313 6314 /* if we have already cleaned up, don't try again, it wouldn't be pretty */ 6315 /* this shouldn't be a race condition because __kmp_internal_end() is the 6316 * only place to clear __kmp_serial_init */ 6317 /* we'll check this later too, after we get the lock */ 6318 // 2009-09-06: We do not set g_abort without setting g_done. This check looks 6319 // redundant, because the next check will work in any case. 6320 if (__kmp_global.g.g_abort) { 6321 KA_TRACE(11, ("__kmp_internal_end_thread: abort, exiting\n")); 6322 /* TODO abort? */ 6323 return; 6324 } 6325 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6326 KA_TRACE(10, ("__kmp_internal_end_thread: already finished\n")); 6327 return; 6328 } 6329 6330 KMP_MB(); /* Flush all pending memory write invalidates. */ 6331 6332 /* find out who we are and what we should do */ 6333 { 6334 int gtid = (gtid_req >= 0) ? gtid_req : __kmp_gtid_get_specific(); 6335 KA_TRACE(10, 6336 ("__kmp_internal_end_thread: enter T#%d (%d)\n", gtid, gtid_req)); 6337 if (gtid == KMP_GTID_SHUTDOWN) { 6338 KA_TRACE(10, ("__kmp_internal_end_thread: !__kmp_init_runtime, system " 6339 "already shutdown\n")); 6340 return; 6341 } else if (gtid == KMP_GTID_MONITOR) { 6342 KA_TRACE(10, ("__kmp_internal_end_thread: monitor thread, gtid not " 6343 "registered, or system shutdown\n")); 6344 return; 6345 } else if (gtid == KMP_GTID_DNE) { 6346 KA_TRACE(10, ("__kmp_internal_end_thread: gtid not registered or system " 6347 "shutdown\n")); 6348 return; 6349 /* we don't know who we are */ 6350 } else if (KMP_UBER_GTID(gtid)) { 6351 /* unregister ourselves as an uber thread. gtid is no longer valid */ 6352 if (__kmp_root[gtid]->r.r_active) { 6353 __kmp_global.g.g_abort = -1; 6354 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 6355 KA_TRACE(10, 6356 ("__kmp_internal_end_thread: root still active, abort T#%d\n", 6357 gtid)); 6358 return; 6359 } else { 6360 KA_TRACE(10, ("__kmp_internal_end_thread: unregistering sibling T#%d\n", 6361 gtid)); 6362 __kmp_unregister_root_current_thread(gtid); 6363 } 6364 } else { 6365 /* just a worker thread, let's leave */ 6366 KA_TRACE(10, ("__kmp_internal_end_thread: worker thread T#%d\n", gtid)); 6367 6368 if (gtid >= 0) { 6369 __kmp_threads[gtid]->th.th_task_team = NULL; 6370 } 6371 6372 KA_TRACE(10, 6373 ("__kmp_internal_end_thread: worker thread done, exiting T#%d\n", 6374 gtid)); 6375 return; 6376 } 6377 } 6378 #if KMP_DYNAMIC_LIB 6379 #if OMP_50_ENABLED 6380 if (__kmp_pause_status != kmp_hard_paused) 6381 #endif 6382 // AC: lets not shutdown the dynamic library at the exit of uber thread, 6383 // because we will better shutdown later in the library destructor. 6384 { 6385 KA_TRACE(10, ("__kmp_internal_end_thread: exiting T#%d\n", gtid_req)); 6386 return; 6387 } 6388 #endif 6389 /* synchronize the termination process */ 6390 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6391 6392 /* have we already finished */ 6393 if (__kmp_global.g.g_abort) { 6394 KA_TRACE(10, ("__kmp_internal_end_thread: abort, exiting\n")); 6395 /* TODO abort? */ 6396 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6397 return; 6398 } 6399 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6400 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6401 return; 6402 } 6403 6404 /* We need this lock to enforce mutex between this reading of 6405 __kmp_threads_capacity and the writing by __kmp_register_root. 6406 Alternatively, we can use a counter of roots that is atomically updated by 6407 __kmp_get_global_thread_id_reg, __kmp_do_serial_initialize and 6408 __kmp_internal_end_*. */ 6409 6410 /* should we finish the run-time? are all siblings done? */ 6411 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 6412 6413 for (i = 0; i < __kmp_threads_capacity; ++i) { 6414 if (KMP_UBER_GTID(i)) { 6415 KA_TRACE( 6416 10, 6417 ("__kmp_internal_end_thread: remaining sibling task: gtid==%d\n", i)); 6418 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 6419 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6420 return; 6421 } 6422 } 6423 6424 /* now we can safely conduct the actual termination */ 6425 6426 __kmp_internal_end(); 6427 6428 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 6429 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6430 6431 KA_TRACE(10, ("__kmp_internal_end_thread: exit T#%d\n", gtid_req)); 6432 6433 #ifdef DUMP_DEBUG_ON_EXIT 6434 if (__kmp_debug_buf) 6435 __kmp_dump_debug_buffer(); 6436 #endif 6437 } // __kmp_internal_end_thread 6438 6439 // ----------------------------------------------------------------------------- 6440 // Library registration stuff. 6441 6442 static long __kmp_registration_flag = 0; 6443 // Random value used to indicate library initialization. 6444 static char *__kmp_registration_str = NULL; 6445 // Value to be saved in env var __KMP_REGISTERED_LIB_<pid>. 6446 6447 static inline char *__kmp_reg_status_name() { 6448 /* On RHEL 3u5 if linked statically, getpid() returns different values in 6449 each thread. If registration and unregistration go in different threads 6450 (omp_misc_other_root_exit.cpp test case), the name of registered_lib_env 6451 env var can not be found, because the name will contain different pid. */ 6452 return __kmp_str_format("__KMP_REGISTERED_LIB_%d", (int)getpid()); 6453 } // __kmp_reg_status_get 6454 6455 void __kmp_register_library_startup(void) { 6456 6457 char *name = __kmp_reg_status_name(); // Name of the environment variable. 6458 int done = 0; 6459 union { 6460 double dtime; 6461 long ltime; 6462 } time; 6463 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 6464 __kmp_initialize_system_tick(); 6465 #endif 6466 __kmp_read_system_time(&time.dtime); 6467 __kmp_registration_flag = 0xCAFE0000L | (time.ltime & 0x0000FFFFL); 6468 __kmp_registration_str = 6469 __kmp_str_format("%p-%lx-%s", &__kmp_registration_flag, 6470 __kmp_registration_flag, KMP_LIBRARY_FILE); 6471 6472 KA_TRACE(50, ("__kmp_register_library_startup: %s=\"%s\"\n", name, 6473 __kmp_registration_str)); 6474 6475 while (!done) { 6476 6477 char *value = NULL; // Actual value of the environment variable. 6478 6479 // Set environment variable, but do not overwrite if it is exist. 6480 __kmp_env_set(name, __kmp_registration_str, 0); 6481 // Check the variable is written. 6482 value = __kmp_env_get(name); 6483 if (value != NULL && strcmp(value, __kmp_registration_str) == 0) { 6484 6485 done = 1; // Ok, environment variable set successfully, exit the loop. 6486 6487 } else { 6488 6489 // Oops. Write failed. Another copy of OpenMP RTL is in memory. 6490 // Check whether it alive or dead. 6491 int neighbor = 0; // 0 -- unknown status, 1 -- alive, 2 -- dead. 6492 char *tail = value; 6493 char *flag_addr_str = NULL; 6494 char *flag_val_str = NULL; 6495 char const *file_name = NULL; 6496 __kmp_str_split(tail, '-', &flag_addr_str, &tail); 6497 __kmp_str_split(tail, '-', &flag_val_str, &tail); 6498 file_name = tail; 6499 if (tail != NULL) { 6500 long *flag_addr = 0; 6501 long flag_val = 0; 6502 KMP_SSCANF(flag_addr_str, "%p", RCAST(void**, &flag_addr)); 6503 KMP_SSCANF(flag_val_str, "%lx", &flag_val); 6504 if (flag_addr != 0 && flag_val != 0 && strcmp(file_name, "") != 0) { 6505 // First, check whether environment-encoded address is mapped into 6506 // addr space. 6507 // If so, dereference it to see if it still has the right value. 6508 if (__kmp_is_address_mapped(flag_addr) && *flag_addr == flag_val) { 6509 neighbor = 1; 6510 } else { 6511 // If not, then we know the other copy of the library is no longer 6512 // running. 6513 neighbor = 2; 6514 } 6515 } 6516 } 6517 switch (neighbor) { 6518 case 0: // Cannot parse environment variable -- neighbor status unknown. 6519 // Assume it is the incompatible format of future version of the 6520 // library. Assume the other library is alive. 6521 // WARN( ... ); // TODO: Issue a warning. 6522 file_name = "unknown library"; 6523 KMP_FALLTHROUGH(); 6524 // Attention! Falling to the next case. That's intentional. 6525 case 1: { // Neighbor is alive. 6526 // Check it is allowed. 6527 char *duplicate_ok = __kmp_env_get("KMP_DUPLICATE_LIB_OK"); 6528 if (!__kmp_str_match_true(duplicate_ok)) { 6529 // That's not allowed. Issue fatal error. 6530 __kmp_fatal(KMP_MSG(DuplicateLibrary, KMP_LIBRARY_FILE, file_name), 6531 KMP_HNT(DuplicateLibrary), __kmp_msg_null); 6532 } 6533 KMP_INTERNAL_FREE(duplicate_ok); 6534 __kmp_duplicate_library_ok = 1; 6535 done = 1; // Exit the loop. 6536 } break; 6537 case 2: { // Neighbor is dead. 6538 // Clear the variable and try to register library again. 6539 __kmp_env_unset(name); 6540 } break; 6541 default: { KMP_DEBUG_ASSERT(0); } break; 6542 } 6543 } 6544 KMP_INTERNAL_FREE((void *)value); 6545 } 6546 KMP_INTERNAL_FREE((void *)name); 6547 6548 } // func __kmp_register_library_startup 6549 6550 void __kmp_unregister_library(void) { 6551 6552 char *name = __kmp_reg_status_name(); 6553 char *value = __kmp_env_get(name); 6554 6555 KMP_DEBUG_ASSERT(__kmp_registration_flag != 0); 6556 KMP_DEBUG_ASSERT(__kmp_registration_str != NULL); 6557 if (value != NULL && strcmp(value, __kmp_registration_str) == 0) { 6558 // Ok, this is our variable. Delete it. 6559 __kmp_env_unset(name); 6560 } 6561 6562 KMP_INTERNAL_FREE(__kmp_registration_str); 6563 KMP_INTERNAL_FREE(value); 6564 KMP_INTERNAL_FREE(name); 6565 6566 __kmp_registration_flag = 0; 6567 __kmp_registration_str = NULL; 6568 6569 } // __kmp_unregister_library 6570 6571 // End of Library registration stuff. 6572 // ----------------------------------------------------------------------------- 6573 6574 #if KMP_MIC_SUPPORTED 6575 6576 static void __kmp_check_mic_type() { 6577 kmp_cpuid_t cpuid_state = {0}; 6578 kmp_cpuid_t *cs_p = &cpuid_state; 6579 __kmp_x86_cpuid(1, 0, cs_p); 6580 // We don't support mic1 at the moment 6581 if ((cs_p->eax & 0xff0) == 0xB10) { 6582 __kmp_mic_type = mic2; 6583 } else if ((cs_p->eax & 0xf0ff0) == 0x50670) { 6584 __kmp_mic_type = mic3; 6585 } else { 6586 __kmp_mic_type = non_mic; 6587 } 6588 } 6589 6590 #endif /* KMP_MIC_SUPPORTED */ 6591 6592 static void __kmp_do_serial_initialize(void) { 6593 int i, gtid; 6594 int size; 6595 6596 KA_TRACE(10, ("__kmp_do_serial_initialize: enter\n")); 6597 6598 KMP_DEBUG_ASSERT(sizeof(kmp_int32) == 4); 6599 KMP_DEBUG_ASSERT(sizeof(kmp_uint32) == 4); 6600 KMP_DEBUG_ASSERT(sizeof(kmp_int64) == 8); 6601 KMP_DEBUG_ASSERT(sizeof(kmp_uint64) == 8); 6602 KMP_DEBUG_ASSERT(sizeof(kmp_intptr_t) == sizeof(void *)); 6603 6604 #if OMPT_SUPPORT 6605 ompt_pre_init(); 6606 #endif 6607 6608 __kmp_validate_locks(); 6609 6610 /* Initialize internal memory allocator */ 6611 __kmp_init_allocator(); 6612 6613 /* Register the library startup via an environment variable and check to see 6614 whether another copy of the library is already registered. */ 6615 6616 __kmp_register_library_startup(); 6617 6618 /* TODO reinitialization of library */ 6619 if (TCR_4(__kmp_global.g.g_done)) { 6620 KA_TRACE(10, ("__kmp_do_serial_initialize: reinitialization of library\n")); 6621 } 6622 6623 __kmp_global.g.g_abort = 0; 6624 TCW_SYNC_4(__kmp_global.g.g_done, FALSE); 6625 6626 /* initialize the locks */ 6627 #if KMP_USE_ADAPTIVE_LOCKS 6628 #if KMP_DEBUG_ADAPTIVE_LOCKS 6629 __kmp_init_speculative_stats(); 6630 #endif 6631 #endif 6632 #if KMP_STATS_ENABLED 6633 __kmp_stats_init(); 6634 #endif 6635 __kmp_init_lock(&__kmp_global_lock); 6636 __kmp_init_queuing_lock(&__kmp_dispatch_lock); 6637 __kmp_init_lock(&__kmp_debug_lock); 6638 __kmp_init_atomic_lock(&__kmp_atomic_lock); 6639 __kmp_init_atomic_lock(&__kmp_atomic_lock_1i); 6640 __kmp_init_atomic_lock(&__kmp_atomic_lock_2i); 6641 __kmp_init_atomic_lock(&__kmp_atomic_lock_4i); 6642 __kmp_init_atomic_lock(&__kmp_atomic_lock_4r); 6643 __kmp_init_atomic_lock(&__kmp_atomic_lock_8i); 6644 __kmp_init_atomic_lock(&__kmp_atomic_lock_8r); 6645 __kmp_init_atomic_lock(&__kmp_atomic_lock_8c); 6646 __kmp_init_atomic_lock(&__kmp_atomic_lock_10r); 6647 __kmp_init_atomic_lock(&__kmp_atomic_lock_16r); 6648 __kmp_init_atomic_lock(&__kmp_atomic_lock_16c); 6649 __kmp_init_atomic_lock(&__kmp_atomic_lock_20c); 6650 __kmp_init_atomic_lock(&__kmp_atomic_lock_32c); 6651 __kmp_init_bootstrap_lock(&__kmp_forkjoin_lock); 6652 __kmp_init_bootstrap_lock(&__kmp_exit_lock); 6653 #if KMP_USE_MONITOR 6654 __kmp_init_bootstrap_lock(&__kmp_monitor_lock); 6655 #endif 6656 __kmp_init_bootstrap_lock(&__kmp_tp_cached_lock); 6657 6658 /* conduct initialization and initial setup of configuration */ 6659 6660 __kmp_runtime_initialize(); 6661 6662 #if KMP_MIC_SUPPORTED 6663 __kmp_check_mic_type(); 6664 #endif 6665 6666 // Some global variable initialization moved here from kmp_env_initialize() 6667 #ifdef KMP_DEBUG 6668 kmp_diag = 0; 6669 #endif 6670 __kmp_abort_delay = 0; 6671 6672 // From __kmp_init_dflt_team_nth() 6673 /* assume the entire machine will be used */ 6674 __kmp_dflt_team_nth_ub = __kmp_xproc; 6675 if (__kmp_dflt_team_nth_ub < KMP_MIN_NTH) { 6676 __kmp_dflt_team_nth_ub = KMP_MIN_NTH; 6677 } 6678 if (__kmp_dflt_team_nth_ub > __kmp_sys_max_nth) { 6679 __kmp_dflt_team_nth_ub = __kmp_sys_max_nth; 6680 } 6681 __kmp_max_nth = __kmp_sys_max_nth; 6682 __kmp_cg_max_nth = __kmp_sys_max_nth; 6683 __kmp_teams_max_nth = __kmp_xproc; // set a "reasonable" default 6684 if (__kmp_teams_max_nth > __kmp_sys_max_nth) { 6685 __kmp_teams_max_nth = __kmp_sys_max_nth; 6686 } 6687 6688 // Three vars below moved here from __kmp_env_initialize() "KMP_BLOCKTIME" 6689 // part 6690 __kmp_dflt_blocktime = KMP_DEFAULT_BLOCKTIME; 6691 #if KMP_USE_MONITOR 6692 __kmp_monitor_wakeups = 6693 KMP_WAKEUPS_FROM_BLOCKTIME(__kmp_dflt_blocktime, __kmp_monitor_wakeups); 6694 __kmp_bt_intervals = 6695 KMP_INTERVALS_FROM_BLOCKTIME(__kmp_dflt_blocktime, __kmp_monitor_wakeups); 6696 #endif 6697 // From "KMP_LIBRARY" part of __kmp_env_initialize() 6698 __kmp_library = library_throughput; 6699 // From KMP_SCHEDULE initialization 6700 __kmp_static = kmp_sch_static_balanced; 6701 // AC: do not use analytical here, because it is non-monotonous 6702 //__kmp_guided = kmp_sch_guided_iterative_chunked; 6703 //__kmp_auto = kmp_sch_guided_analytical_chunked; // AC: it is the default, no 6704 // need to repeat assignment 6705 // Barrier initialization. Moved here from __kmp_env_initialize() Barrier branch 6706 // bit control and barrier method control parts 6707 #if KMP_FAST_REDUCTION_BARRIER 6708 #define kmp_reduction_barrier_gather_bb ((int)1) 6709 #define kmp_reduction_barrier_release_bb ((int)1) 6710 #define kmp_reduction_barrier_gather_pat bp_hyper_bar 6711 #define kmp_reduction_barrier_release_pat bp_hyper_bar 6712 #endif // KMP_FAST_REDUCTION_BARRIER 6713 for (i = bs_plain_barrier; i < bs_last_barrier; i++) { 6714 __kmp_barrier_gather_branch_bits[i] = __kmp_barrier_gather_bb_dflt; 6715 __kmp_barrier_release_branch_bits[i] = __kmp_barrier_release_bb_dflt; 6716 __kmp_barrier_gather_pattern[i] = __kmp_barrier_gather_pat_dflt; 6717 __kmp_barrier_release_pattern[i] = __kmp_barrier_release_pat_dflt; 6718 #if KMP_FAST_REDUCTION_BARRIER 6719 if (i == bs_reduction_barrier) { // tested and confirmed on ALTIX only ( 6720 // lin_64 ): hyper,1 6721 __kmp_barrier_gather_branch_bits[i] = kmp_reduction_barrier_gather_bb; 6722 __kmp_barrier_release_branch_bits[i] = kmp_reduction_barrier_release_bb; 6723 __kmp_barrier_gather_pattern[i] = kmp_reduction_barrier_gather_pat; 6724 __kmp_barrier_release_pattern[i] = kmp_reduction_barrier_release_pat; 6725 } 6726 #endif // KMP_FAST_REDUCTION_BARRIER 6727 } 6728 #if KMP_FAST_REDUCTION_BARRIER 6729 #undef kmp_reduction_barrier_release_pat 6730 #undef kmp_reduction_barrier_gather_pat 6731 #undef kmp_reduction_barrier_release_bb 6732 #undef kmp_reduction_barrier_gather_bb 6733 #endif // KMP_FAST_REDUCTION_BARRIER 6734 #if KMP_MIC_SUPPORTED 6735 if (__kmp_mic_type == mic2) { // KNC 6736 // AC: plane=3,2, forkjoin=2,1 are optimal for 240 threads on KNC 6737 __kmp_barrier_gather_branch_bits[bs_plain_barrier] = 3; // plain gather 6738 __kmp_barrier_release_branch_bits[bs_forkjoin_barrier] = 6739 1; // forkjoin release 6740 __kmp_barrier_gather_pattern[bs_forkjoin_barrier] = bp_hierarchical_bar; 6741 __kmp_barrier_release_pattern[bs_forkjoin_barrier] = bp_hierarchical_bar; 6742 } 6743 #if KMP_FAST_REDUCTION_BARRIER 6744 if (__kmp_mic_type == mic2) { // KNC 6745 __kmp_barrier_gather_pattern[bs_reduction_barrier] = bp_hierarchical_bar; 6746 __kmp_barrier_release_pattern[bs_reduction_barrier] = bp_hierarchical_bar; 6747 } 6748 #endif // KMP_FAST_REDUCTION_BARRIER 6749 #endif // KMP_MIC_SUPPORTED 6750 6751 // From KMP_CHECKS initialization 6752 #ifdef KMP_DEBUG 6753 __kmp_env_checks = TRUE; /* development versions have the extra checks */ 6754 #else 6755 __kmp_env_checks = FALSE; /* port versions do not have the extra checks */ 6756 #endif 6757 6758 // From "KMP_FOREIGN_THREADS_THREADPRIVATE" initialization 6759 __kmp_foreign_tp = TRUE; 6760 6761 __kmp_global.g.g_dynamic = FALSE; 6762 __kmp_global.g.g_dynamic_mode = dynamic_default; 6763 6764 __kmp_env_initialize(NULL); 6765 6766 // Print all messages in message catalog for testing purposes. 6767 #ifdef KMP_DEBUG 6768 char const *val = __kmp_env_get("KMP_DUMP_CATALOG"); 6769 if (__kmp_str_match_true(val)) { 6770 kmp_str_buf_t buffer; 6771 __kmp_str_buf_init(&buffer); 6772 __kmp_i18n_dump_catalog(&buffer); 6773 __kmp_printf("%s", buffer.str); 6774 __kmp_str_buf_free(&buffer); 6775 } 6776 __kmp_env_free(&val); 6777 #endif 6778 6779 __kmp_threads_capacity = 6780 __kmp_initial_threads_capacity(__kmp_dflt_team_nth_ub); 6781 // Moved here from __kmp_env_initialize() "KMP_ALL_THREADPRIVATE" part 6782 __kmp_tp_capacity = __kmp_default_tp_capacity( 6783 __kmp_dflt_team_nth_ub, __kmp_max_nth, __kmp_allThreadsSpecified); 6784 6785 // If the library is shut down properly, both pools must be NULL. Just in 6786 // case, set them to NULL -- some memory may leak, but subsequent code will 6787 // work even if pools are not freed. 6788 KMP_DEBUG_ASSERT(__kmp_thread_pool == NULL); 6789 KMP_DEBUG_ASSERT(__kmp_thread_pool_insert_pt == NULL); 6790 KMP_DEBUG_ASSERT(__kmp_team_pool == NULL); 6791 __kmp_thread_pool = NULL; 6792 __kmp_thread_pool_insert_pt = NULL; 6793 __kmp_team_pool = NULL; 6794 6795 /* Allocate all of the variable sized records */ 6796 /* NOTE: __kmp_threads_capacity entries are allocated, but the arrays are 6797 * expandable */ 6798 /* Since allocation is cache-aligned, just add extra padding at the end */ 6799 size = 6800 (sizeof(kmp_info_t *) + sizeof(kmp_root_t *)) * __kmp_threads_capacity + 6801 CACHE_LINE; 6802 __kmp_threads = (kmp_info_t **)__kmp_allocate(size); 6803 __kmp_root = (kmp_root_t **)((char *)__kmp_threads + 6804 sizeof(kmp_info_t *) * __kmp_threads_capacity); 6805 6806 /* init thread counts */ 6807 KMP_DEBUG_ASSERT(__kmp_all_nth == 6808 0); // Asserts fail if the library is reinitializing and 6809 KMP_DEBUG_ASSERT(__kmp_nth == 0); // something was wrong in termination. 6810 __kmp_all_nth = 0; 6811 __kmp_nth = 0; 6812 6813 /* setup the uber master thread and hierarchy */ 6814 gtid = __kmp_register_root(TRUE); 6815 KA_TRACE(10, ("__kmp_do_serial_initialize T#%d\n", gtid)); 6816 KMP_ASSERT(KMP_UBER_GTID(gtid)); 6817 KMP_ASSERT(KMP_INITIAL_GTID(gtid)); 6818 6819 KMP_MB(); /* Flush all pending memory write invalidates. */ 6820 6821 __kmp_common_initialize(); 6822 6823 #if KMP_OS_UNIX 6824 /* invoke the child fork handler */ 6825 __kmp_register_atfork(); 6826 #endif 6827 6828 #if !KMP_DYNAMIC_LIB 6829 { 6830 /* Invoke the exit handler when the program finishes, only for static 6831 library. For dynamic library, we already have _fini and DllMain. */ 6832 int rc = atexit(__kmp_internal_end_atexit); 6833 if (rc != 0) { 6834 __kmp_fatal(KMP_MSG(FunctionError, "atexit()"), KMP_ERR(rc), 6835 __kmp_msg_null); 6836 } 6837 } 6838 #endif 6839 6840 #if KMP_HANDLE_SIGNALS 6841 #if KMP_OS_UNIX 6842 /* NOTE: make sure that this is called before the user installs their own 6843 signal handlers so that the user handlers are called first. this way they 6844 can return false, not call our handler, avoid terminating the library, and 6845 continue execution where they left off. */ 6846 __kmp_install_signals(FALSE); 6847 #endif /* KMP_OS_UNIX */ 6848 #if KMP_OS_WINDOWS 6849 __kmp_install_signals(TRUE); 6850 #endif /* KMP_OS_WINDOWS */ 6851 #endif 6852 6853 /* we have finished the serial initialization */ 6854 __kmp_init_counter++; 6855 6856 __kmp_init_serial = TRUE; 6857 6858 if (__kmp_settings) { 6859 __kmp_env_print(); 6860 } 6861 6862 #if OMP_40_ENABLED 6863 if (__kmp_display_env || __kmp_display_env_verbose) { 6864 __kmp_env_print_2(); 6865 } 6866 #endif // OMP_40_ENABLED 6867 6868 #if OMPT_SUPPORT 6869 ompt_post_init(); 6870 #endif 6871 6872 KMP_MB(); 6873 6874 KA_TRACE(10, ("__kmp_do_serial_initialize: exit\n")); 6875 } 6876 6877 void __kmp_serial_initialize(void) { 6878 if (__kmp_init_serial) { 6879 return; 6880 } 6881 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6882 if (__kmp_init_serial) { 6883 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6884 return; 6885 } 6886 __kmp_do_serial_initialize(); 6887 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6888 } 6889 6890 static void __kmp_do_middle_initialize(void) { 6891 int i, j; 6892 int prev_dflt_team_nth; 6893 6894 if (!__kmp_init_serial) { 6895 __kmp_do_serial_initialize(); 6896 } 6897 6898 KA_TRACE(10, ("__kmp_middle_initialize: enter\n")); 6899 6900 // Save the previous value for the __kmp_dflt_team_nth so that 6901 // we can avoid some reinitialization if it hasn't changed. 6902 prev_dflt_team_nth = __kmp_dflt_team_nth; 6903 6904 #if KMP_AFFINITY_SUPPORTED 6905 // __kmp_affinity_initialize() will try to set __kmp_ncores to the 6906 // number of cores on the machine. 6907 __kmp_affinity_initialize(); 6908 6909 // Run through the __kmp_threads array and set the affinity mask 6910 // for each root thread that is currently registered with the RTL. 6911 for (i = 0; i < __kmp_threads_capacity; i++) { 6912 if (TCR_PTR(__kmp_threads[i]) != NULL) { 6913 __kmp_affinity_set_init_mask(i, TRUE); 6914 } 6915 } 6916 #endif /* KMP_AFFINITY_SUPPORTED */ 6917 6918 KMP_ASSERT(__kmp_xproc > 0); 6919 if (__kmp_avail_proc == 0) { 6920 __kmp_avail_proc = __kmp_xproc; 6921 } 6922 6923 // If there were empty places in num_threads list (OMP_NUM_THREADS=,,2,3), 6924 // correct them now 6925 j = 0; 6926 while ((j < __kmp_nested_nth.used) && !__kmp_nested_nth.nth[j]) { 6927 __kmp_nested_nth.nth[j] = __kmp_dflt_team_nth = __kmp_dflt_team_nth_ub = 6928 __kmp_avail_proc; 6929 j++; 6930 } 6931 6932 if (__kmp_dflt_team_nth == 0) { 6933 #ifdef KMP_DFLT_NTH_CORES 6934 // Default #threads = #cores 6935 __kmp_dflt_team_nth = __kmp_ncores; 6936 KA_TRACE(20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = " 6937 "__kmp_ncores (%d)\n", 6938 __kmp_dflt_team_nth)); 6939 #else 6940 // Default #threads = #available OS procs 6941 __kmp_dflt_team_nth = __kmp_avail_proc; 6942 KA_TRACE(20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = " 6943 "__kmp_avail_proc(%d)\n", 6944 __kmp_dflt_team_nth)); 6945 #endif /* KMP_DFLT_NTH_CORES */ 6946 } 6947 6948 if (__kmp_dflt_team_nth < KMP_MIN_NTH) { 6949 __kmp_dflt_team_nth = KMP_MIN_NTH; 6950 } 6951 if (__kmp_dflt_team_nth > __kmp_sys_max_nth) { 6952 __kmp_dflt_team_nth = __kmp_sys_max_nth; 6953 } 6954 6955 // There's no harm in continuing if the following check fails, 6956 // but it indicates an error in the previous logic. 6957 KMP_DEBUG_ASSERT(__kmp_dflt_team_nth <= __kmp_dflt_team_nth_ub); 6958 6959 if (__kmp_dflt_team_nth != prev_dflt_team_nth) { 6960 // Run through the __kmp_threads array and set the num threads icv for each 6961 // root thread that is currently registered with the RTL (which has not 6962 // already explicitly set its nthreads-var with a call to 6963 // omp_set_num_threads()). 6964 for (i = 0; i < __kmp_threads_capacity; i++) { 6965 kmp_info_t *thread = __kmp_threads[i]; 6966 if (thread == NULL) 6967 continue; 6968 if (thread->th.th_current_task->td_icvs.nproc != 0) 6969 continue; 6970 6971 set__nproc(__kmp_threads[i], __kmp_dflt_team_nth); 6972 } 6973 } 6974 KA_TRACE( 6975 20, 6976 ("__kmp_middle_initialize: final value for __kmp_dflt_team_nth = %d\n", 6977 __kmp_dflt_team_nth)); 6978 6979 #ifdef KMP_ADJUST_BLOCKTIME 6980 /* Adjust blocktime to zero if necessary now that __kmp_avail_proc is set */ 6981 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 6982 KMP_DEBUG_ASSERT(__kmp_avail_proc > 0); 6983 if (__kmp_nth > __kmp_avail_proc) { 6984 __kmp_zero_bt = TRUE; 6985 } 6986 } 6987 #endif /* KMP_ADJUST_BLOCKTIME */ 6988 6989 /* we have finished middle initialization */ 6990 TCW_SYNC_4(__kmp_init_middle, TRUE); 6991 6992 KA_TRACE(10, ("__kmp_do_middle_initialize: exit\n")); 6993 } 6994 6995 void __kmp_middle_initialize(void) { 6996 if (__kmp_init_middle) { 6997 return; 6998 } 6999 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 7000 if (__kmp_init_middle) { 7001 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7002 return; 7003 } 7004 __kmp_do_middle_initialize(); 7005 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7006 } 7007 7008 void __kmp_parallel_initialize(void) { 7009 int gtid = __kmp_entry_gtid(); // this might be a new root 7010 7011 /* synchronize parallel initialization (for sibling) */ 7012 if (TCR_4(__kmp_init_parallel)) 7013 return; 7014 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 7015 if (TCR_4(__kmp_init_parallel)) { 7016 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7017 return; 7018 } 7019 7020 /* TODO reinitialization after we have already shut down */ 7021 if (TCR_4(__kmp_global.g.g_done)) { 7022 KA_TRACE( 7023 10, 7024 ("__kmp_parallel_initialize: attempt to init while shutting down\n")); 7025 __kmp_infinite_loop(); 7026 } 7027 7028 /* jc: The lock __kmp_initz_lock is already held, so calling 7029 __kmp_serial_initialize would cause a deadlock. So we call 7030 __kmp_do_serial_initialize directly. */ 7031 if (!__kmp_init_middle) { 7032 __kmp_do_middle_initialize(); 7033 } 7034 7035 #if OMP_50_ENABLED 7036 __kmp_resume_if_hard_paused(); 7037 #endif 7038 7039 /* begin initialization */ 7040 KA_TRACE(10, ("__kmp_parallel_initialize: enter\n")); 7041 KMP_ASSERT(KMP_UBER_GTID(gtid)); 7042 7043 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 7044 // Save the FP control regs. 7045 // Worker threads will set theirs to these values at thread startup. 7046 __kmp_store_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word); 7047 __kmp_store_mxcsr(&__kmp_init_mxcsr); 7048 __kmp_init_mxcsr &= KMP_X86_MXCSR_MASK; 7049 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 7050 7051 #if KMP_OS_UNIX 7052 #if KMP_HANDLE_SIGNALS 7053 /* must be after __kmp_serial_initialize */ 7054 __kmp_install_signals(TRUE); 7055 #endif 7056 #endif 7057 7058 __kmp_suspend_initialize(); 7059 7060 #if defined(USE_LOAD_BALANCE) 7061 if (__kmp_global.g.g_dynamic_mode == dynamic_default) { 7062 __kmp_global.g.g_dynamic_mode = dynamic_load_balance; 7063 } 7064 #else 7065 if (__kmp_global.g.g_dynamic_mode == dynamic_default) { 7066 __kmp_global.g.g_dynamic_mode = dynamic_thread_limit; 7067 } 7068 #endif 7069 7070 if (__kmp_version) { 7071 __kmp_print_version_2(); 7072 } 7073 7074 /* we have finished parallel initialization */ 7075 TCW_SYNC_4(__kmp_init_parallel, TRUE); 7076 7077 KMP_MB(); 7078 KA_TRACE(10, ("__kmp_parallel_initialize: exit\n")); 7079 7080 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7081 } 7082 7083 /* ------------------------------------------------------------------------ */ 7084 7085 void __kmp_run_before_invoked_task(int gtid, int tid, kmp_info_t *this_thr, 7086 kmp_team_t *team) { 7087 kmp_disp_t *dispatch; 7088 7089 KMP_MB(); 7090 7091 /* none of the threads have encountered any constructs, yet. */ 7092 this_thr->th.th_local.this_construct = 0; 7093 #if KMP_CACHE_MANAGE 7094 KMP_CACHE_PREFETCH(&this_thr->th.th_bar[bs_forkjoin_barrier].bb.b_arrived); 7095 #endif /* KMP_CACHE_MANAGE */ 7096 dispatch = (kmp_disp_t *)TCR_PTR(this_thr->th.th_dispatch); 7097 KMP_DEBUG_ASSERT(dispatch); 7098 KMP_DEBUG_ASSERT(team->t.t_dispatch); 7099 // KMP_DEBUG_ASSERT( this_thr->th.th_dispatch == &team->t.t_dispatch[ 7100 // this_thr->th.th_info.ds.ds_tid ] ); 7101 7102 dispatch->th_disp_index = 0; /* reset the dispatch buffer counter */ 7103 #if OMP_45_ENABLED 7104 dispatch->th_doacross_buf_idx = 7105 0; /* reset the doacross dispatch buffer counter */ 7106 #endif 7107 if (__kmp_env_consistency_check) 7108 __kmp_push_parallel(gtid, team->t.t_ident); 7109 7110 KMP_MB(); /* Flush all pending memory write invalidates. */ 7111 } 7112 7113 void __kmp_run_after_invoked_task(int gtid, int tid, kmp_info_t *this_thr, 7114 kmp_team_t *team) { 7115 if (__kmp_env_consistency_check) 7116 __kmp_pop_parallel(gtid, team->t.t_ident); 7117 7118 __kmp_finish_implicit_task(this_thr); 7119 } 7120 7121 int __kmp_invoke_task_func(int gtid) { 7122 int rc; 7123 int tid = __kmp_tid_from_gtid(gtid); 7124 kmp_info_t *this_thr = __kmp_threads[gtid]; 7125 kmp_team_t *team = this_thr->th.th_team; 7126 7127 __kmp_run_before_invoked_task(gtid, tid, this_thr, team); 7128 #if USE_ITT_BUILD 7129 if (__itt_stack_caller_create_ptr) { 7130 __kmp_itt_stack_callee_enter( 7131 (__itt_caller) 7132 team->t.t_stack_id); // inform ittnotify about entering user's code 7133 } 7134 #endif /* USE_ITT_BUILD */ 7135 #if INCLUDE_SSC_MARKS 7136 SSC_MARK_INVOKING(); 7137 #endif 7138 7139 #if OMPT_SUPPORT 7140 void *dummy; 7141 void **exit_runtime_p; 7142 ompt_data_t *my_task_data; 7143 ompt_data_t *my_parallel_data; 7144 int ompt_team_size; 7145 7146 if (ompt_enabled.enabled) { 7147 exit_runtime_p = &( 7148 team->t.t_implicit_task_taskdata[tid].ompt_task_info.frame.exit_frame.ptr); 7149 } else { 7150 exit_runtime_p = &dummy; 7151 } 7152 7153 my_task_data = 7154 &(team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data); 7155 my_parallel_data = &(team->t.ompt_team_info.parallel_data); 7156 if (ompt_enabled.ompt_callback_implicit_task) { 7157 ompt_team_size = team->t.t_nproc; 7158 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 7159 ompt_scope_begin, my_parallel_data, my_task_data, ompt_team_size, 7160 __kmp_tid_from_gtid(gtid), ompt_task_implicit); // TODO: Can this be ompt_task_initial? 7161 OMPT_CUR_TASK_INFO(this_thr)->thread_num = __kmp_tid_from_gtid(gtid); 7162 } 7163 #endif 7164 7165 #if KMP_STATS_ENABLED 7166 stats_state_e previous_state = KMP_GET_THREAD_STATE(); 7167 if (previous_state == stats_state_e::TEAMS_REGION) { 7168 KMP_PUSH_PARTITIONED_TIMER(OMP_teams); 7169 } else { 7170 KMP_PUSH_PARTITIONED_TIMER(OMP_parallel); 7171 } 7172 KMP_SET_THREAD_STATE(IMPLICIT_TASK); 7173 #endif 7174 7175 rc = __kmp_invoke_microtask((microtask_t)TCR_SYNC_PTR(team->t.t_pkfn), gtid, 7176 tid, (int)team->t.t_argc, (void **)team->t.t_argv 7177 #if OMPT_SUPPORT 7178 , 7179 exit_runtime_p 7180 #endif 7181 ); 7182 #if OMPT_SUPPORT 7183 *exit_runtime_p = NULL; 7184 #endif 7185 7186 #if KMP_STATS_ENABLED 7187 if (previous_state == stats_state_e::TEAMS_REGION) { 7188 KMP_SET_THREAD_STATE(previous_state); 7189 } 7190 KMP_POP_PARTITIONED_TIMER(); 7191 #endif 7192 7193 #if USE_ITT_BUILD 7194 if (__itt_stack_caller_create_ptr) { 7195 __kmp_itt_stack_callee_leave( 7196 (__itt_caller) 7197 team->t.t_stack_id); // inform ittnotify about leaving user's code 7198 } 7199 #endif /* USE_ITT_BUILD */ 7200 __kmp_run_after_invoked_task(gtid, tid, this_thr, team); 7201 7202 return rc; 7203 } 7204 7205 #if OMP_40_ENABLED 7206 void __kmp_teams_master(int gtid) { 7207 // This routine is called by all master threads in teams construct 7208 kmp_info_t *thr = __kmp_threads[gtid]; 7209 kmp_team_t *team = thr->th.th_team; 7210 ident_t *loc = team->t.t_ident; 7211 thr->th.th_set_nproc = thr->th.th_teams_size.nth; 7212 KMP_DEBUG_ASSERT(thr->th.th_teams_microtask); 7213 KMP_DEBUG_ASSERT(thr->th.th_set_nproc); 7214 KA_TRACE(20, ("__kmp_teams_master: T#%d, Tid %d, microtask %p\n", gtid, 7215 __kmp_tid_from_gtid(gtid), thr->th.th_teams_microtask)); 7216 7217 // This thread is a new CG root. Set up the proper variables. 7218 kmp_cg_root_t *tmp = (kmp_cg_root_t *)__kmp_allocate(sizeof(kmp_cg_root_t)); 7219 tmp->cg_root = thr; // Make thr the CG root 7220 // Init to thread limit that was stored when league masters were forked 7221 tmp->cg_thread_limit = thr->th.th_current_task->td_icvs.thread_limit; 7222 tmp->cg_nthreads = 1; // Init counter to one active thread, this one 7223 KA_TRACE(100, ("__kmp_teams_master: Thread %p created node %p and init" 7224 " cg_threads to 1\n", 7225 thr, tmp)); 7226 tmp->up = thr->th.th_cg_roots; 7227 thr->th.th_cg_roots = tmp; 7228 7229 // Launch league of teams now, but not let workers execute 7230 // (they hang on fork barrier until next parallel) 7231 #if INCLUDE_SSC_MARKS 7232 SSC_MARK_FORKING(); 7233 #endif 7234 __kmp_fork_call(loc, gtid, fork_context_intel, team->t.t_argc, 7235 (microtask_t)thr->th.th_teams_microtask, // "wrapped" task 7236 VOLATILE_CAST(launch_t) __kmp_invoke_task_func, NULL); 7237 #if INCLUDE_SSC_MARKS 7238 SSC_MARK_JOINING(); 7239 #endif 7240 // If the team size was reduced from the limit, set it to the new size 7241 if (thr->th.th_team_nproc < thr->th.th_teams_size.nth) 7242 thr->th.th_teams_size.nth = thr->th.th_team_nproc; 7243 // AC: last parameter "1" eliminates join barrier which won't work because 7244 // worker threads are in a fork barrier waiting for more parallel regions 7245 __kmp_join_call(loc, gtid 7246 #if OMPT_SUPPORT 7247 , 7248 fork_context_intel 7249 #endif 7250 , 7251 1); 7252 } 7253 7254 int __kmp_invoke_teams_master(int gtid) { 7255 kmp_info_t *this_thr = __kmp_threads[gtid]; 7256 kmp_team_t *team = this_thr->th.th_team; 7257 #if KMP_DEBUG 7258 if (!__kmp_threads[gtid]->th.th_team->t.t_serialized) 7259 KMP_DEBUG_ASSERT((void *)__kmp_threads[gtid]->th.th_team->t.t_pkfn == 7260 (void *)__kmp_teams_master); 7261 #endif 7262 __kmp_run_before_invoked_task(gtid, 0, this_thr, team); 7263 __kmp_teams_master(gtid); 7264 __kmp_run_after_invoked_task(gtid, 0, this_thr, team); 7265 return 1; 7266 } 7267 #endif /* OMP_40_ENABLED */ 7268 7269 /* this sets the requested number of threads for the next parallel region 7270 encountered by this team. since this should be enclosed in the forkjoin 7271 critical section it should avoid race conditions with assymmetrical nested 7272 parallelism */ 7273 7274 void __kmp_push_num_threads(ident_t *id, int gtid, int num_threads) { 7275 kmp_info_t *thr = __kmp_threads[gtid]; 7276 7277 if (num_threads > 0) 7278 thr->th.th_set_nproc = num_threads; 7279 } 7280 7281 #if OMP_40_ENABLED 7282 7283 /* this sets the requested number of teams for the teams region and/or 7284 the number of threads for the next parallel region encountered */ 7285 void __kmp_push_num_teams(ident_t *id, int gtid, int num_teams, 7286 int num_threads) { 7287 kmp_info_t *thr = __kmp_threads[gtid]; 7288 KMP_DEBUG_ASSERT(num_teams >= 0); 7289 KMP_DEBUG_ASSERT(num_threads >= 0); 7290 7291 if (num_teams == 0) 7292 num_teams = 1; // default number of teams is 1. 7293 if (num_teams > __kmp_teams_max_nth) { // if too many teams requested? 7294 if (!__kmp_reserve_warn) { 7295 __kmp_reserve_warn = 1; 7296 __kmp_msg(kmp_ms_warning, 7297 KMP_MSG(CantFormThrTeam, num_teams, __kmp_teams_max_nth), 7298 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 7299 } 7300 num_teams = __kmp_teams_max_nth; 7301 } 7302 // Set number of teams (number of threads in the outer "parallel" of the 7303 // teams) 7304 thr->th.th_set_nproc = thr->th.th_teams_size.nteams = num_teams; 7305 7306 // Remember the number of threads for inner parallel regions 7307 if (num_threads == 0) { 7308 if (!TCR_4(__kmp_init_middle)) 7309 __kmp_middle_initialize(); // get __kmp_avail_proc calculated 7310 num_threads = __kmp_avail_proc / num_teams; 7311 if (num_teams * num_threads > __kmp_teams_max_nth) { 7312 // adjust num_threads w/o warning as it is not user setting 7313 num_threads = __kmp_teams_max_nth / num_teams; 7314 } 7315 } else { 7316 // This thread will be the master of the league masters 7317 // Store new thread limit; old limit is saved in th_cg_roots list 7318 thr->th.th_current_task->td_icvs.thread_limit = num_threads; 7319 7320 if (num_teams * num_threads > __kmp_teams_max_nth) { 7321 int new_threads = __kmp_teams_max_nth / num_teams; 7322 if (!__kmp_reserve_warn) { // user asked for too many threads 7323 __kmp_reserve_warn = 1; // conflicts with KMP_TEAMS_THREAD_LIMIT 7324 __kmp_msg(kmp_ms_warning, 7325 KMP_MSG(CantFormThrTeam, num_threads, new_threads), 7326 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 7327 } 7328 num_threads = new_threads; 7329 } 7330 } 7331 thr->th.th_teams_size.nth = num_threads; 7332 } 7333 7334 // Set the proc_bind var to use in the following parallel region. 7335 void __kmp_push_proc_bind(ident_t *id, int gtid, kmp_proc_bind_t proc_bind) { 7336 kmp_info_t *thr = __kmp_threads[gtid]; 7337 thr->th.th_set_proc_bind = proc_bind; 7338 } 7339 7340 #endif /* OMP_40_ENABLED */ 7341 7342 /* Launch the worker threads into the microtask. */ 7343 7344 void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team) { 7345 kmp_info_t *this_thr = __kmp_threads[gtid]; 7346 7347 #ifdef KMP_DEBUG 7348 int f; 7349 #endif /* KMP_DEBUG */ 7350 7351 KMP_DEBUG_ASSERT(team); 7352 KMP_DEBUG_ASSERT(this_thr->th.th_team == team); 7353 KMP_ASSERT(KMP_MASTER_GTID(gtid)); 7354 KMP_MB(); /* Flush all pending memory write invalidates. */ 7355 7356 team->t.t_construct = 0; /* no single directives seen yet */ 7357 team->t.t_ordered.dt.t_value = 7358 0; /* thread 0 enters the ordered section first */ 7359 7360 /* Reset the identifiers on the dispatch buffer */ 7361 KMP_DEBUG_ASSERT(team->t.t_disp_buffer); 7362 if (team->t.t_max_nproc > 1) { 7363 int i; 7364 for (i = 0; i < __kmp_dispatch_num_buffers; ++i) { 7365 team->t.t_disp_buffer[i].buffer_index = i; 7366 #if OMP_45_ENABLED 7367 team->t.t_disp_buffer[i].doacross_buf_idx = i; 7368 #endif 7369 } 7370 } else { 7371 team->t.t_disp_buffer[0].buffer_index = 0; 7372 #if OMP_45_ENABLED 7373 team->t.t_disp_buffer[0].doacross_buf_idx = 0; 7374 #endif 7375 } 7376 7377 KMP_MB(); /* Flush all pending memory write invalidates. */ 7378 KMP_ASSERT(this_thr->th.th_team == team); 7379 7380 #ifdef KMP_DEBUG 7381 for (f = 0; f < team->t.t_nproc; f++) { 7382 KMP_DEBUG_ASSERT(team->t.t_threads[f] && 7383 team->t.t_threads[f]->th.th_team_nproc == team->t.t_nproc); 7384 } 7385 #endif /* KMP_DEBUG */ 7386 7387 /* release the worker threads so they may begin working */ 7388 __kmp_fork_barrier(gtid, 0); 7389 } 7390 7391 void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team) { 7392 kmp_info_t *this_thr = __kmp_threads[gtid]; 7393 7394 KMP_DEBUG_ASSERT(team); 7395 KMP_DEBUG_ASSERT(this_thr->th.th_team == team); 7396 KMP_ASSERT(KMP_MASTER_GTID(gtid)); 7397 KMP_MB(); /* Flush all pending memory write invalidates. */ 7398 7399 /* Join barrier after fork */ 7400 7401 #ifdef KMP_DEBUG 7402 if (__kmp_threads[gtid] && 7403 __kmp_threads[gtid]->th.th_team_nproc != team->t.t_nproc) { 7404 __kmp_printf("GTID: %d, __kmp_threads[%d]=%p\n", gtid, gtid, 7405 __kmp_threads[gtid]); 7406 __kmp_printf("__kmp_threads[%d]->th.th_team_nproc=%d, TEAM: %p, " 7407 "team->t.t_nproc=%d\n", 7408 gtid, __kmp_threads[gtid]->th.th_team_nproc, team, 7409 team->t.t_nproc); 7410 __kmp_print_structure(); 7411 } 7412 KMP_DEBUG_ASSERT(__kmp_threads[gtid] && 7413 __kmp_threads[gtid]->th.th_team_nproc == team->t.t_nproc); 7414 #endif /* KMP_DEBUG */ 7415 7416 __kmp_join_barrier(gtid); /* wait for everyone */ 7417 #if OMPT_SUPPORT 7418 if (ompt_enabled.enabled && 7419 this_thr->th.ompt_thread_info.state == ompt_state_wait_barrier_implicit) { 7420 int ds_tid = this_thr->th.th_info.ds.ds_tid; 7421 ompt_data_t *task_data = OMPT_CUR_TASK_DATA(this_thr); 7422 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 7423 #if OMPT_OPTIONAL 7424 void *codeptr = NULL; 7425 if (KMP_MASTER_TID(ds_tid) && 7426 (ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait) || 7427 ompt_callbacks.ompt_callback(ompt_callback_sync_region))) 7428 codeptr = OMPT_CUR_TEAM_INFO(this_thr)->master_return_address; 7429 7430 if (ompt_enabled.ompt_callback_sync_region_wait) { 7431 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 7432 ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, task_data, 7433 codeptr); 7434 } 7435 if (ompt_enabled.ompt_callback_sync_region) { 7436 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 7437 ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, task_data, 7438 codeptr); 7439 } 7440 #endif 7441 if (!KMP_MASTER_TID(ds_tid) && ompt_enabled.ompt_callback_implicit_task) { 7442 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 7443 ompt_scope_end, NULL, task_data, 0, ds_tid, ompt_task_implicit); // TODO: Can this be ompt_task_initial? 7444 } 7445 } 7446 #endif 7447 7448 KMP_MB(); /* Flush all pending memory write invalidates. */ 7449 KMP_ASSERT(this_thr->th.th_team == team); 7450 } 7451 7452 /* ------------------------------------------------------------------------ */ 7453 7454 #ifdef USE_LOAD_BALANCE 7455 7456 // Return the worker threads actively spinning in the hot team, if we 7457 // are at the outermost level of parallelism. Otherwise, return 0. 7458 static int __kmp_active_hot_team_nproc(kmp_root_t *root) { 7459 int i; 7460 int retval; 7461 kmp_team_t *hot_team; 7462 7463 if (root->r.r_active) { 7464 return 0; 7465 } 7466 hot_team = root->r.r_hot_team; 7467 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { 7468 return hot_team->t.t_nproc - 1; // Don't count master thread 7469 } 7470 7471 // Skip the master thread - it is accounted for elsewhere. 7472 retval = 0; 7473 for (i = 1; i < hot_team->t.t_nproc; i++) { 7474 if (hot_team->t.t_threads[i]->th.th_active) { 7475 retval++; 7476 } 7477 } 7478 return retval; 7479 } 7480 7481 // Perform an automatic adjustment to the number of 7482 // threads used by the next parallel region. 7483 static int __kmp_load_balance_nproc(kmp_root_t *root, int set_nproc) { 7484 int retval; 7485 int pool_active; 7486 int hot_team_active; 7487 int team_curr_active; 7488 int system_active; 7489 7490 KB_TRACE(20, ("__kmp_load_balance_nproc: called root:%p set_nproc:%d\n", root, 7491 set_nproc)); 7492 KMP_DEBUG_ASSERT(root); 7493 KMP_DEBUG_ASSERT(root->r.r_root_team->t.t_threads[0] 7494 ->th.th_current_task->td_icvs.dynamic == TRUE); 7495 KMP_DEBUG_ASSERT(set_nproc > 1); 7496 7497 if (set_nproc == 1) { 7498 KB_TRACE(20, ("__kmp_load_balance_nproc: serial execution.\n")); 7499 return 1; 7500 } 7501 7502 // Threads that are active in the thread pool, active in the hot team for this 7503 // particular root (if we are at the outer par level), and the currently 7504 // executing thread (to become the master) are available to add to the new 7505 // team, but are currently contributing to the system load, and must be 7506 // accounted for. 7507 pool_active = __kmp_thread_pool_active_nth; 7508 hot_team_active = __kmp_active_hot_team_nproc(root); 7509 team_curr_active = pool_active + hot_team_active + 1; 7510 7511 // Check the system load. 7512 system_active = __kmp_get_load_balance(__kmp_avail_proc + team_curr_active); 7513 KB_TRACE(30, ("__kmp_load_balance_nproc: system active = %d pool active = %d " 7514 "hot team active = %d\n", 7515 system_active, pool_active, hot_team_active)); 7516 7517 if (system_active < 0) { 7518 // There was an error reading the necessary info from /proc, so use the 7519 // thread limit algorithm instead. Once we set __kmp_global.g.g_dynamic_mode 7520 // = dynamic_thread_limit, we shouldn't wind up getting back here. 7521 __kmp_global.g.g_dynamic_mode = dynamic_thread_limit; 7522 KMP_WARNING(CantLoadBalUsing, "KMP_DYNAMIC_MODE=thread limit"); 7523 7524 // Make this call behave like the thread limit algorithm. 7525 retval = __kmp_avail_proc - __kmp_nth + 7526 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 7527 if (retval > set_nproc) { 7528 retval = set_nproc; 7529 } 7530 if (retval < KMP_MIN_NTH) { 7531 retval = KMP_MIN_NTH; 7532 } 7533 7534 KB_TRACE(20, ("__kmp_load_balance_nproc: thread limit exit. retval:%d\n", 7535 retval)); 7536 return retval; 7537 } 7538 7539 // There is a slight delay in the load balance algorithm in detecting new 7540 // running procs. The real system load at this instant should be at least as 7541 // large as the #active omp thread that are available to add to the team. 7542 if (system_active < team_curr_active) { 7543 system_active = team_curr_active; 7544 } 7545 retval = __kmp_avail_proc - system_active + team_curr_active; 7546 if (retval > set_nproc) { 7547 retval = set_nproc; 7548 } 7549 if (retval < KMP_MIN_NTH) { 7550 retval = KMP_MIN_NTH; 7551 } 7552 7553 KB_TRACE(20, ("__kmp_load_balance_nproc: exit. retval:%d\n", retval)); 7554 return retval; 7555 } // __kmp_load_balance_nproc() 7556 7557 #endif /* USE_LOAD_BALANCE */ 7558 7559 /* ------------------------------------------------------------------------ */ 7560 7561 /* NOTE: this is called with the __kmp_init_lock held */ 7562 void __kmp_cleanup(void) { 7563 int f; 7564 7565 KA_TRACE(10, ("__kmp_cleanup: enter\n")); 7566 7567 if (TCR_4(__kmp_init_parallel)) { 7568 #if KMP_HANDLE_SIGNALS 7569 __kmp_remove_signals(); 7570 #endif 7571 TCW_4(__kmp_init_parallel, FALSE); 7572 } 7573 7574 if (TCR_4(__kmp_init_middle)) { 7575 #if KMP_AFFINITY_SUPPORTED 7576 __kmp_affinity_uninitialize(); 7577 #endif /* KMP_AFFINITY_SUPPORTED */ 7578 __kmp_cleanup_hierarchy(); 7579 TCW_4(__kmp_init_middle, FALSE); 7580 } 7581 7582 KA_TRACE(10, ("__kmp_cleanup: go serial cleanup\n")); 7583 7584 if (__kmp_init_serial) { 7585 __kmp_runtime_destroy(); 7586 __kmp_init_serial = FALSE; 7587 } 7588 7589 __kmp_cleanup_threadprivate_caches(); 7590 7591 for (f = 0; f < __kmp_threads_capacity; f++) { 7592 if (__kmp_root[f] != NULL) { 7593 __kmp_free(__kmp_root[f]); 7594 __kmp_root[f] = NULL; 7595 } 7596 } 7597 __kmp_free(__kmp_threads); 7598 // __kmp_threads and __kmp_root were allocated at once, as single block, so 7599 // there is no need in freeing __kmp_root. 7600 __kmp_threads = NULL; 7601 __kmp_root = NULL; 7602 __kmp_threads_capacity = 0; 7603 7604 #if KMP_USE_DYNAMIC_LOCK 7605 __kmp_cleanup_indirect_user_locks(); 7606 #else 7607 __kmp_cleanup_user_locks(); 7608 #endif 7609 7610 #if KMP_AFFINITY_SUPPORTED 7611 KMP_INTERNAL_FREE(CCAST(char *, __kmp_cpuinfo_file)); 7612 __kmp_cpuinfo_file = NULL; 7613 #endif /* KMP_AFFINITY_SUPPORTED */ 7614 7615 #if KMP_USE_ADAPTIVE_LOCKS 7616 #if KMP_DEBUG_ADAPTIVE_LOCKS 7617 __kmp_print_speculative_stats(); 7618 #endif 7619 #endif 7620 KMP_INTERNAL_FREE(__kmp_nested_nth.nth); 7621 __kmp_nested_nth.nth = NULL; 7622 __kmp_nested_nth.size = 0; 7623 __kmp_nested_nth.used = 0; 7624 KMP_INTERNAL_FREE(__kmp_nested_proc_bind.bind_types); 7625 __kmp_nested_proc_bind.bind_types = NULL; 7626 __kmp_nested_proc_bind.size = 0; 7627 __kmp_nested_proc_bind.used = 0; 7628 #if OMP_50_ENABLED 7629 if (__kmp_affinity_format) { 7630 KMP_INTERNAL_FREE(__kmp_affinity_format); 7631 __kmp_affinity_format = NULL; 7632 } 7633 #endif 7634 7635 __kmp_i18n_catclose(); 7636 7637 #if KMP_USE_HIER_SCHED 7638 __kmp_hier_scheds.deallocate(); 7639 #endif 7640 7641 #if KMP_STATS_ENABLED 7642 __kmp_stats_fini(); 7643 #endif 7644 7645 KA_TRACE(10, ("__kmp_cleanup: exit\n")); 7646 } 7647 7648 /* ------------------------------------------------------------------------ */ 7649 7650 int __kmp_ignore_mppbeg(void) { 7651 char *env; 7652 7653 if ((env = getenv("KMP_IGNORE_MPPBEG")) != NULL) { 7654 if (__kmp_str_match_false(env)) 7655 return FALSE; 7656 } 7657 // By default __kmpc_begin() is no-op. 7658 return TRUE; 7659 } 7660 7661 int __kmp_ignore_mppend(void) { 7662 char *env; 7663 7664 if ((env = getenv("KMP_IGNORE_MPPEND")) != NULL) { 7665 if (__kmp_str_match_false(env)) 7666 return FALSE; 7667 } 7668 // By default __kmpc_end() is no-op. 7669 return TRUE; 7670 } 7671 7672 void __kmp_internal_begin(void) { 7673 int gtid; 7674 kmp_root_t *root; 7675 7676 /* this is a very important step as it will register new sibling threads 7677 and assign these new uber threads a new gtid */ 7678 gtid = __kmp_entry_gtid(); 7679 root = __kmp_threads[gtid]->th.th_root; 7680 KMP_ASSERT(KMP_UBER_GTID(gtid)); 7681 7682 if (root->r.r_begin) 7683 return; 7684 __kmp_acquire_lock(&root->r.r_begin_lock, gtid); 7685 if (root->r.r_begin) { 7686 __kmp_release_lock(&root->r.r_begin_lock, gtid); 7687 return; 7688 } 7689 7690 root->r.r_begin = TRUE; 7691 7692 __kmp_release_lock(&root->r.r_begin_lock, gtid); 7693 } 7694 7695 /* ------------------------------------------------------------------------ */ 7696 7697 void __kmp_user_set_library(enum library_type arg) { 7698 int gtid; 7699 kmp_root_t *root; 7700 kmp_info_t *thread; 7701 7702 /* first, make sure we are initialized so we can get our gtid */ 7703 7704 gtid = __kmp_entry_gtid(); 7705 thread = __kmp_threads[gtid]; 7706 7707 root = thread->th.th_root; 7708 7709 KA_TRACE(20, ("__kmp_user_set_library: enter T#%d, arg: %d, %d\n", gtid, arg, 7710 library_serial)); 7711 if (root->r.r_in_parallel) { /* Must be called in serial section of top-level 7712 thread */ 7713 KMP_WARNING(SetLibraryIncorrectCall); 7714 return; 7715 } 7716 7717 switch (arg) { 7718 case library_serial: 7719 thread->th.th_set_nproc = 0; 7720 set__nproc(thread, 1); 7721 break; 7722 case library_turnaround: 7723 thread->th.th_set_nproc = 0; 7724 set__nproc(thread, __kmp_dflt_team_nth ? __kmp_dflt_team_nth 7725 : __kmp_dflt_team_nth_ub); 7726 break; 7727 case library_throughput: 7728 thread->th.th_set_nproc = 0; 7729 set__nproc(thread, __kmp_dflt_team_nth ? __kmp_dflt_team_nth 7730 : __kmp_dflt_team_nth_ub); 7731 break; 7732 default: 7733 KMP_FATAL(UnknownLibraryType, arg); 7734 } 7735 7736 __kmp_aux_set_library(arg); 7737 } 7738 7739 void __kmp_aux_set_stacksize(size_t arg) { 7740 if (!__kmp_init_serial) 7741 __kmp_serial_initialize(); 7742 7743 #if KMP_OS_DARWIN 7744 if (arg & (0x1000 - 1)) { 7745 arg &= ~(0x1000 - 1); 7746 if (arg + 0x1000) /* check for overflow if we round up */ 7747 arg += 0x1000; 7748 } 7749 #endif 7750 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 7751 7752 /* only change the default stacksize before the first parallel region */ 7753 if (!TCR_4(__kmp_init_parallel)) { 7754 size_t value = arg; /* argument is in bytes */ 7755 7756 if (value < __kmp_sys_min_stksize) 7757 value = __kmp_sys_min_stksize; 7758 else if (value > KMP_MAX_STKSIZE) 7759 value = KMP_MAX_STKSIZE; 7760 7761 __kmp_stksize = value; 7762 7763 __kmp_env_stksize = TRUE; /* was KMP_STACKSIZE specified? */ 7764 } 7765 7766 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7767 } 7768 7769 /* set the behaviour of the runtime library */ 7770 /* TODO this can cause some odd behaviour with sibling parallelism... */ 7771 void __kmp_aux_set_library(enum library_type arg) { 7772 __kmp_library = arg; 7773 7774 switch (__kmp_library) { 7775 case library_serial: { 7776 KMP_INFORM(LibraryIsSerial); 7777 } break; 7778 case library_turnaround: 7779 if (__kmp_use_yield == 1 && !__kmp_use_yield_exp_set) 7780 __kmp_use_yield = 2; // only yield when oversubscribed 7781 break; 7782 case library_throughput: 7783 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) 7784 __kmp_dflt_blocktime = 200; 7785 break; 7786 default: 7787 KMP_FATAL(UnknownLibraryType, arg); 7788 } 7789 } 7790 7791 /* Getting team information common for all team API */ 7792 // Returns NULL if not in teams construct 7793 static kmp_team_t *__kmp_aux_get_team_info(int &teams_serialized) { 7794 kmp_info_t *thr = __kmp_entry_thread(); 7795 teams_serialized = 0; 7796 if (thr->th.th_teams_microtask) { 7797 kmp_team_t *team = thr->th.th_team; 7798 int tlevel = thr->th.th_teams_level; // the level of the teams construct 7799 int ii = team->t.t_level; 7800 teams_serialized = team->t.t_serialized; 7801 int level = tlevel + 1; 7802 KMP_DEBUG_ASSERT(ii >= tlevel); 7803 while (ii > level) { 7804 for (teams_serialized = team->t.t_serialized; 7805 (teams_serialized > 0) && (ii > level); teams_serialized--, ii--) { 7806 } 7807 if (team->t.t_serialized && (!teams_serialized)) { 7808 team = team->t.t_parent; 7809 continue; 7810 } 7811 if (ii > level) { 7812 team = team->t.t_parent; 7813 ii--; 7814 } 7815 } 7816 return team; 7817 } 7818 return NULL; 7819 } 7820 7821 int __kmp_aux_get_team_num() { 7822 int serialized; 7823 kmp_team_t *team = __kmp_aux_get_team_info(serialized); 7824 if (team) { 7825 if (serialized > 1) { 7826 return 0; // teams region is serialized ( 1 team of 1 thread ). 7827 } else { 7828 return team->t.t_master_tid; 7829 } 7830 } 7831 return 0; 7832 } 7833 7834 int __kmp_aux_get_num_teams() { 7835 int serialized; 7836 kmp_team_t *team = __kmp_aux_get_team_info(serialized); 7837 if (team) { 7838 if (serialized > 1) { 7839 return 1; 7840 } else { 7841 return team->t.t_parent->t.t_nproc; 7842 } 7843 } 7844 return 1; 7845 } 7846 7847 /* ------------------------------------------------------------------------ */ 7848 7849 #if OMP_50_ENABLED 7850 /* 7851 * Affinity Format Parser 7852 * 7853 * Field is in form of: %[[[0].]size]type 7854 * % and type are required (%% means print a literal '%') 7855 * type is either single char or long name surrounded by {}, 7856 * e.g., N or {num_threads} 7857 * 0 => leading zeros 7858 * . => right justified when size is specified 7859 * by default output is left justified 7860 * size is the *minimum* field length 7861 * All other characters are printed as is 7862 * 7863 * Available field types: 7864 * L {thread_level} - omp_get_level() 7865 * n {thread_num} - omp_get_thread_num() 7866 * h {host} - name of host machine 7867 * P {process_id} - process id (integer) 7868 * T {thread_identifier} - native thread identifier (integer) 7869 * N {num_threads} - omp_get_num_threads() 7870 * A {ancestor_tnum} - omp_get_ancestor_thread_num(omp_get_level()-1) 7871 * a {thread_affinity} - comma separated list of integers or integer ranges 7872 * (values of affinity mask) 7873 * 7874 * Implementation-specific field types can be added 7875 * If a type is unknown, print "undefined" 7876 */ 7877 7878 // Structure holding the short name, long name, and corresponding data type 7879 // for snprintf. A table of these will represent the entire valid keyword 7880 // field types. 7881 typedef struct kmp_affinity_format_field_t { 7882 char short_name; // from spec e.g., L -> thread level 7883 const char *long_name; // from spec thread_level -> thread level 7884 char field_format; // data type for snprintf (typically 'd' or 's' 7885 // for integer or string) 7886 } kmp_affinity_format_field_t; 7887 7888 static const kmp_affinity_format_field_t __kmp_affinity_format_table[] = { 7889 #if KMP_AFFINITY_SUPPORTED 7890 {'A', "thread_affinity", 's'}, 7891 #endif 7892 {'t', "team_num", 'd'}, 7893 {'T', "num_teams", 'd'}, 7894 {'L', "nesting_level", 'd'}, 7895 {'n', "thread_num", 'd'}, 7896 {'N', "num_threads", 'd'}, 7897 {'a', "ancestor_tnum", 'd'}, 7898 {'H', "host", 's'}, 7899 {'P', "process_id", 'd'}, 7900 {'i', "native_thread_id", 'd'}}; 7901 7902 // Return the number of characters it takes to hold field 7903 static int __kmp_aux_capture_affinity_field(int gtid, const kmp_info_t *th, 7904 const char **ptr, 7905 kmp_str_buf_t *field_buffer) { 7906 int rc, format_index, field_value; 7907 const char *width_left, *width_right; 7908 bool pad_zeros, right_justify, parse_long_name, found_valid_name; 7909 static const int FORMAT_SIZE = 20; 7910 char format[FORMAT_SIZE] = {0}; 7911 char absolute_short_name = 0; 7912 7913 KMP_DEBUG_ASSERT(gtid >= 0); 7914 KMP_DEBUG_ASSERT(th); 7915 KMP_DEBUG_ASSERT(**ptr == '%'); 7916 KMP_DEBUG_ASSERT(field_buffer); 7917 7918 __kmp_str_buf_clear(field_buffer); 7919 7920 // Skip the initial % 7921 (*ptr)++; 7922 7923 // Check for %% first 7924 if (**ptr == '%') { 7925 __kmp_str_buf_cat(field_buffer, "%", 1); 7926 (*ptr)++; // skip over the second % 7927 return 1; 7928 } 7929 7930 // Parse field modifiers if they are present 7931 pad_zeros = false; 7932 if (**ptr == '0') { 7933 pad_zeros = true; 7934 (*ptr)++; // skip over 0 7935 } 7936 right_justify = false; 7937 if (**ptr == '.') { 7938 right_justify = true; 7939 (*ptr)++; // skip over . 7940 } 7941 // Parse width of field: [width_left, width_right) 7942 width_left = width_right = NULL; 7943 if (**ptr >= '0' && **ptr <= '9') { 7944 width_left = *ptr; 7945 SKIP_DIGITS(*ptr); 7946 width_right = *ptr; 7947 } 7948 7949 // Create the format for KMP_SNPRINTF based on flags parsed above 7950 format_index = 0; 7951 format[format_index++] = '%'; 7952 if (!right_justify) 7953 format[format_index++] = '-'; 7954 if (pad_zeros) 7955 format[format_index++] = '0'; 7956 if (width_left && width_right) { 7957 int i = 0; 7958 // Only allow 8 digit number widths. 7959 // This also prevents overflowing format variable 7960 while (i < 8 && width_left < width_right) { 7961 format[format_index++] = *width_left; 7962 width_left++; 7963 i++; 7964 } 7965 } 7966 7967 // Parse a name (long or short) 7968 // Canonicalize the name into absolute_short_name 7969 found_valid_name = false; 7970 parse_long_name = (**ptr == '{'); 7971 if (parse_long_name) 7972 (*ptr)++; // skip initial left brace 7973 for (size_t i = 0; i < sizeof(__kmp_affinity_format_table) / 7974 sizeof(__kmp_affinity_format_table[0]); 7975 ++i) { 7976 char short_name = __kmp_affinity_format_table[i].short_name; 7977 const char *long_name = __kmp_affinity_format_table[i].long_name; 7978 char field_format = __kmp_affinity_format_table[i].field_format; 7979 if (parse_long_name) { 7980 int length = KMP_STRLEN(long_name); 7981 if (strncmp(*ptr, long_name, length) == 0) { 7982 found_valid_name = true; 7983 (*ptr) += length; // skip the long name 7984 } 7985 } else if (**ptr == short_name) { 7986 found_valid_name = true; 7987 (*ptr)++; // skip the short name 7988 } 7989 if (found_valid_name) { 7990 format[format_index++] = field_format; 7991 format[format_index++] = '\0'; 7992 absolute_short_name = short_name; 7993 break; 7994 } 7995 } 7996 if (parse_long_name) { 7997 if (**ptr != '}') { 7998 absolute_short_name = 0; 7999 } else { 8000 (*ptr)++; // skip over the right brace 8001 } 8002 } 8003 8004 // Attempt to fill the buffer with the requested 8005 // value using snprintf within __kmp_str_buf_print() 8006 switch (absolute_short_name) { 8007 case 't': 8008 rc = __kmp_str_buf_print(field_buffer, format, __kmp_aux_get_team_num()); 8009 break; 8010 case 'T': 8011 rc = __kmp_str_buf_print(field_buffer, format, __kmp_aux_get_num_teams()); 8012 break; 8013 case 'L': 8014 rc = __kmp_str_buf_print(field_buffer, format, th->th.th_team->t.t_level); 8015 break; 8016 case 'n': 8017 rc = __kmp_str_buf_print(field_buffer, format, __kmp_tid_from_gtid(gtid)); 8018 break; 8019 case 'H': { 8020 static const int BUFFER_SIZE = 256; 8021 char buf[BUFFER_SIZE]; 8022 __kmp_expand_host_name(buf, BUFFER_SIZE); 8023 rc = __kmp_str_buf_print(field_buffer, format, buf); 8024 } break; 8025 case 'P': 8026 rc = __kmp_str_buf_print(field_buffer, format, getpid()); 8027 break; 8028 case 'i': 8029 rc = __kmp_str_buf_print(field_buffer, format, __kmp_gettid()); 8030 break; 8031 case 'N': 8032 rc = __kmp_str_buf_print(field_buffer, format, th->th.th_team->t.t_nproc); 8033 break; 8034 case 'a': 8035 field_value = 8036 __kmp_get_ancestor_thread_num(gtid, th->th.th_team->t.t_level - 1); 8037 rc = __kmp_str_buf_print(field_buffer, format, field_value); 8038 break; 8039 #if KMP_AFFINITY_SUPPORTED 8040 case 'A': { 8041 kmp_str_buf_t buf; 8042 __kmp_str_buf_init(&buf); 8043 __kmp_affinity_str_buf_mask(&buf, th->th.th_affin_mask); 8044 rc = __kmp_str_buf_print(field_buffer, format, buf.str); 8045 __kmp_str_buf_free(&buf); 8046 } break; 8047 #endif 8048 default: 8049 // According to spec, If an implementation does not have info for field 8050 // type, then "undefined" is printed 8051 rc = __kmp_str_buf_print(field_buffer, "%s", "undefined"); 8052 // Skip the field 8053 if (parse_long_name) { 8054 SKIP_TOKEN(*ptr); 8055 if (**ptr == '}') 8056 (*ptr)++; 8057 } else { 8058 (*ptr)++; 8059 } 8060 } 8061 8062 KMP_ASSERT(format_index <= FORMAT_SIZE); 8063 return rc; 8064 } 8065 8066 /* 8067 * Return number of characters needed to hold the affinity string 8068 * (not including null byte character) 8069 * The resultant string is printed to buffer, which the caller can then 8070 * handle afterwards 8071 */ 8072 size_t __kmp_aux_capture_affinity(int gtid, const char *format, 8073 kmp_str_buf_t *buffer) { 8074 const char *parse_ptr; 8075 size_t retval; 8076 const kmp_info_t *th; 8077 kmp_str_buf_t field; 8078 8079 KMP_DEBUG_ASSERT(buffer); 8080 KMP_DEBUG_ASSERT(gtid >= 0); 8081 8082 __kmp_str_buf_init(&field); 8083 __kmp_str_buf_clear(buffer); 8084 8085 th = __kmp_threads[gtid]; 8086 retval = 0; 8087 8088 // If format is NULL or zero-length string, then we use 8089 // affinity-format-var ICV 8090 parse_ptr = format; 8091 if (parse_ptr == NULL || *parse_ptr == '\0') { 8092 parse_ptr = __kmp_affinity_format; 8093 } 8094 KMP_DEBUG_ASSERT(parse_ptr); 8095 8096 while (*parse_ptr != '\0') { 8097 // Parse a field 8098 if (*parse_ptr == '%') { 8099 // Put field in the buffer 8100 int rc = __kmp_aux_capture_affinity_field(gtid, th, &parse_ptr, &field); 8101 __kmp_str_buf_catbuf(buffer, &field); 8102 retval += rc; 8103 } else { 8104 // Put literal character in buffer 8105 __kmp_str_buf_cat(buffer, parse_ptr, 1); 8106 retval++; 8107 parse_ptr++; 8108 } 8109 } 8110 __kmp_str_buf_free(&field); 8111 return retval; 8112 } 8113 8114 // Displays the affinity string to stdout 8115 void __kmp_aux_display_affinity(int gtid, const char *format) { 8116 kmp_str_buf_t buf; 8117 __kmp_str_buf_init(&buf); 8118 __kmp_aux_capture_affinity(gtid, format, &buf); 8119 __kmp_fprintf(kmp_out, "%s" KMP_END_OF_LINE, buf.str); 8120 __kmp_str_buf_free(&buf); 8121 } 8122 #endif // OMP_50_ENABLED 8123 8124 /* ------------------------------------------------------------------------ */ 8125 8126 void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid) { 8127 int blocktime = arg; /* argument is in milliseconds */ 8128 #if KMP_USE_MONITOR 8129 int bt_intervals; 8130 #endif 8131 int bt_set; 8132 8133 __kmp_save_internal_controls(thread); 8134 8135 /* Normalize and set blocktime for the teams */ 8136 if (blocktime < KMP_MIN_BLOCKTIME) 8137 blocktime = KMP_MIN_BLOCKTIME; 8138 else if (blocktime > KMP_MAX_BLOCKTIME) 8139 blocktime = KMP_MAX_BLOCKTIME; 8140 8141 set__blocktime_team(thread->th.th_team, tid, blocktime); 8142 set__blocktime_team(thread->th.th_serial_team, 0, blocktime); 8143 8144 #if KMP_USE_MONITOR 8145 /* Calculate and set blocktime intervals for the teams */ 8146 bt_intervals = KMP_INTERVALS_FROM_BLOCKTIME(blocktime, __kmp_monitor_wakeups); 8147 8148 set__bt_intervals_team(thread->th.th_team, tid, bt_intervals); 8149 set__bt_intervals_team(thread->th.th_serial_team, 0, bt_intervals); 8150 #endif 8151 8152 /* Set whether blocktime has been set to "TRUE" */ 8153 bt_set = TRUE; 8154 8155 set__bt_set_team(thread->th.th_team, tid, bt_set); 8156 set__bt_set_team(thread->th.th_serial_team, 0, bt_set); 8157 #if KMP_USE_MONITOR 8158 KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d, " 8159 "bt_intervals=%d, monitor_updates=%d\n", 8160 __kmp_gtid_from_tid(tid, thread->th.th_team), 8161 thread->th.th_team->t.t_id, tid, blocktime, bt_intervals, 8162 __kmp_monitor_wakeups)); 8163 #else 8164 KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d\n", 8165 __kmp_gtid_from_tid(tid, thread->th.th_team), 8166 thread->th.th_team->t.t_id, tid, blocktime)); 8167 #endif 8168 } 8169 8170 void __kmp_aux_set_defaults(char const *str, int len) { 8171 if (!__kmp_init_serial) { 8172 __kmp_serial_initialize(); 8173 } 8174 __kmp_env_initialize(str); 8175 8176 if (__kmp_settings 8177 #if OMP_40_ENABLED 8178 || __kmp_display_env || __kmp_display_env_verbose 8179 #endif // OMP_40_ENABLED 8180 ) { 8181 __kmp_env_print(); 8182 } 8183 } // __kmp_aux_set_defaults 8184 8185 /* ------------------------------------------------------------------------ */ 8186 /* internal fast reduction routines */ 8187 8188 PACKED_REDUCTION_METHOD_T 8189 __kmp_determine_reduction_method( 8190 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, 8191 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data), 8192 kmp_critical_name *lck) { 8193 8194 // Default reduction method: critical construct ( lck != NULL, like in current 8195 // PAROPT ) 8196 // If ( reduce_data!=NULL && reduce_func!=NULL ): the tree-reduction method 8197 // can be selected by RTL 8198 // If loc->flags contains KMP_IDENT_ATOMIC_REDUCE, the atomic reduce method 8199 // can be selected by RTL 8200 // Finally, it's up to OpenMP RTL to make a decision on which method to select 8201 // among generated by PAROPT. 8202 8203 PACKED_REDUCTION_METHOD_T retval; 8204 8205 int team_size; 8206 8207 KMP_DEBUG_ASSERT(loc); // it would be nice to test ( loc != 0 ) 8208 KMP_DEBUG_ASSERT(lck); // it would be nice to test ( lck != 0 ) 8209 8210 #define FAST_REDUCTION_ATOMIC_METHOD_GENERATED \ 8211 ((loc->flags & (KMP_IDENT_ATOMIC_REDUCE)) == (KMP_IDENT_ATOMIC_REDUCE)) 8212 #define FAST_REDUCTION_TREE_METHOD_GENERATED ((reduce_data) && (reduce_func)) 8213 8214 retval = critical_reduce_block; 8215 8216 // another choice of getting a team size (with 1 dynamic deference) is slower 8217 team_size = __kmp_get_team_num_threads(global_tid); 8218 if (team_size == 1) { 8219 8220 retval = empty_reduce_block; 8221 8222 } else { 8223 8224 int atomic_available = FAST_REDUCTION_ATOMIC_METHOD_GENERATED; 8225 8226 #if KMP_ARCH_X86_64 || KMP_ARCH_PPC64 || KMP_ARCH_AARCH64 || KMP_ARCH_MIPS64 8227 8228 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 8229 KMP_OS_OPENBSD || KMP_OS_WINDOWS || KMP_OS_DARWIN || KMP_OS_HURD 8230 8231 int teamsize_cutoff = 4; 8232 8233 #if KMP_MIC_SUPPORTED 8234 if (__kmp_mic_type != non_mic) { 8235 teamsize_cutoff = 8; 8236 } 8237 #endif 8238 int tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED; 8239 if (tree_available) { 8240 if (team_size <= teamsize_cutoff) { 8241 if (atomic_available) { 8242 retval = atomic_reduce_block; 8243 } 8244 } else { 8245 retval = TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER; 8246 } 8247 } else if (atomic_available) { 8248 retval = atomic_reduce_block; 8249 } 8250 #else 8251 #error "Unknown or unsupported OS" 8252 #endif // KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || 8253 // KMP_OS_OPENBSD || KMP_OS_WINDOWS || KMP_OS_DARWIN || KMP_OS_HURD 8254 8255 #elif KMP_ARCH_X86 || KMP_ARCH_ARM || KMP_ARCH_AARCH || KMP_ARCH_MIPS 8256 8257 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS || KMP_OS_HURD 8258 8259 // basic tuning 8260 8261 if (atomic_available) { 8262 if (num_vars <= 2) { // && ( team_size <= 8 ) due to false-sharing ??? 8263 retval = atomic_reduce_block; 8264 } 8265 } // otherwise: use critical section 8266 8267 #elif KMP_OS_DARWIN 8268 8269 int tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED; 8270 if (atomic_available && (num_vars <= 3)) { 8271 retval = atomic_reduce_block; 8272 } else if (tree_available) { 8273 if ((reduce_size > (9 * sizeof(kmp_real64))) && 8274 (reduce_size < (2000 * sizeof(kmp_real64)))) { 8275 retval = TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER; 8276 } 8277 } // otherwise: use critical section 8278 8279 #else 8280 #error "Unknown or unsupported OS" 8281 #endif 8282 8283 #else 8284 #error "Unknown or unsupported architecture" 8285 #endif 8286 } 8287 8288 // KMP_FORCE_REDUCTION 8289 8290 // If the team is serialized (team_size == 1), ignore the forced reduction 8291 // method and stay with the unsynchronized method (empty_reduce_block) 8292 if (__kmp_force_reduction_method != reduction_method_not_defined && 8293 team_size != 1) { 8294 8295 PACKED_REDUCTION_METHOD_T forced_retval = critical_reduce_block; 8296 8297 int atomic_available, tree_available; 8298 8299 switch ((forced_retval = __kmp_force_reduction_method)) { 8300 case critical_reduce_block: 8301 KMP_ASSERT(lck); // lck should be != 0 8302 break; 8303 8304 case atomic_reduce_block: 8305 atomic_available = FAST_REDUCTION_ATOMIC_METHOD_GENERATED; 8306 if (!atomic_available) { 8307 KMP_WARNING(RedMethodNotSupported, "atomic"); 8308 forced_retval = critical_reduce_block; 8309 } 8310 break; 8311 8312 case tree_reduce_block: 8313 tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED; 8314 if (!tree_available) { 8315 KMP_WARNING(RedMethodNotSupported, "tree"); 8316 forced_retval = critical_reduce_block; 8317 } else { 8318 #if KMP_FAST_REDUCTION_BARRIER 8319 forced_retval = TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER; 8320 #endif 8321 } 8322 break; 8323 8324 default: 8325 KMP_ASSERT(0); // "unsupported method specified" 8326 } 8327 8328 retval = forced_retval; 8329 } 8330 8331 KA_TRACE(10, ("reduction method selected=%08x\n", retval)); 8332 8333 #undef FAST_REDUCTION_TREE_METHOD_GENERATED 8334 #undef FAST_REDUCTION_ATOMIC_METHOD_GENERATED 8335 8336 return (retval); 8337 } 8338 8339 // this function is for testing set/get/determine reduce method 8340 kmp_int32 __kmp_get_reduce_method(void) { 8341 return ((__kmp_entry_thread()->th.th_local.packed_reduction_method) >> 8); 8342 } 8343 8344 #if OMP_50_ENABLED 8345 8346 // Soft pause sets up threads to ignore blocktime and just go to sleep. 8347 // Spin-wait code checks __kmp_pause_status and reacts accordingly. 8348 void __kmp_soft_pause() { __kmp_pause_status = kmp_soft_paused; } 8349 8350 // Hard pause shuts down the runtime completely. Resume happens naturally when 8351 // OpenMP is used subsequently. 8352 void __kmp_hard_pause() { 8353 __kmp_pause_status = kmp_hard_paused; 8354 __kmp_internal_end_thread(-1); 8355 } 8356 8357 // Soft resume sets __kmp_pause_status, and wakes up all threads. 8358 void __kmp_resume_if_soft_paused() { 8359 if (__kmp_pause_status == kmp_soft_paused) { 8360 __kmp_pause_status = kmp_not_paused; 8361 8362 for (int gtid = 1; gtid < __kmp_threads_capacity; ++gtid) { 8363 kmp_info_t *thread = __kmp_threads[gtid]; 8364 if (thread) { // Wake it if sleeping 8365 kmp_flag_64 fl(&thread->th.th_bar[bs_forkjoin_barrier].bb.b_go, thread); 8366 if (fl.is_sleeping()) 8367 fl.resume(gtid); 8368 else if (__kmp_try_suspend_mx(thread)) { // got suspend lock 8369 __kmp_unlock_suspend_mx(thread); // unlock it; it won't sleep 8370 } else { // thread holds the lock and may sleep soon 8371 do { // until either the thread sleeps, or we can get the lock 8372 if (fl.is_sleeping()) { 8373 fl.resume(gtid); 8374 break; 8375 } else if (__kmp_try_suspend_mx(thread)) { 8376 __kmp_unlock_suspend_mx(thread); 8377 break; 8378 } 8379 } while (1); 8380 } 8381 } 8382 } 8383 } 8384 } 8385 8386 // This function is called via __kmpc_pause_resource. Returns 0 if successful. 8387 // TODO: add warning messages 8388 int __kmp_pause_resource(kmp_pause_status_t level) { 8389 if (level == kmp_not_paused) { // requesting resume 8390 if (__kmp_pause_status == kmp_not_paused) { 8391 // error message about runtime not being paused, so can't resume 8392 return 1; 8393 } else { 8394 KMP_DEBUG_ASSERT(__kmp_pause_status == kmp_soft_paused || 8395 __kmp_pause_status == kmp_hard_paused); 8396 __kmp_pause_status = kmp_not_paused; 8397 return 0; 8398 } 8399 } else if (level == kmp_soft_paused) { // requesting soft pause 8400 if (__kmp_pause_status != kmp_not_paused) { 8401 // error message about already being paused 8402 return 1; 8403 } else { 8404 __kmp_soft_pause(); 8405 return 0; 8406 } 8407 } else if (level == kmp_hard_paused) { // requesting hard pause 8408 if (__kmp_pause_status != kmp_not_paused) { 8409 // error message about already being paused 8410 return 1; 8411 } else { 8412 __kmp_hard_pause(); 8413 return 0; 8414 } 8415 } else { 8416 // error message about invalid level 8417 return 1; 8418 } 8419 } 8420 8421 #endif // OMP_50_ENABLED 8422