1 /* 2 * kmp_runtime.cpp -- KPTS runtime support library 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_atomic.h" 16 #include "kmp_environment.h" 17 #include "kmp_error.h" 18 #include "kmp_i18n.h" 19 #include "kmp_io.h" 20 #include "kmp_itt.h" 21 #include "kmp_settings.h" 22 #include "kmp_stats.h" 23 #include "kmp_str.h" 24 #include "kmp_wait_release.h" 25 #include "kmp_wrapper_getpid.h" 26 #include "kmp_dispatch.h" 27 #if KMP_USE_HIER_SCHED 28 #include "kmp_dispatch_hier.h" 29 #endif 30 31 #if OMPT_SUPPORT 32 #include "ompt-specific.h" 33 #endif 34 35 #if OMP_PROFILING_SUPPORT 36 #include "llvm/Support/TimeProfiler.h" 37 static char *ProfileTraceFile = nullptr; 38 #endif 39 40 /* these are temporary issues to be dealt with */ 41 #define KMP_USE_PRCTL 0 42 43 #if KMP_OS_WINDOWS 44 #include <process.h> 45 #endif 46 47 #include "tsan_annotations.h" 48 49 #if KMP_OS_WINDOWS 50 // windows does not need include files as it doesn't use shared memory 51 #else 52 #include <sys/mman.h> 53 #include <sys/stat.h> 54 #include <fcntl.h> 55 #define SHM_SIZE 1024 56 #endif 57 58 #if defined(KMP_GOMP_COMPAT) 59 char const __kmp_version_alt_comp[] = 60 KMP_VERSION_PREFIX "alternative compiler support: yes"; 61 #endif /* defined(KMP_GOMP_COMPAT) */ 62 63 char const __kmp_version_omp_api[] = 64 KMP_VERSION_PREFIX "API version: 5.0 (201611)"; 65 66 #ifdef KMP_DEBUG 67 char const __kmp_version_lock[] = 68 KMP_VERSION_PREFIX "lock type: run time selectable"; 69 #endif /* KMP_DEBUG */ 70 71 #define KMP_MIN(x, y) ((x) < (y) ? (x) : (y)) 72 73 /* ------------------------------------------------------------------------ */ 74 75 #if KMP_USE_MONITOR 76 kmp_info_t __kmp_monitor; 77 #endif 78 79 /* Forward declarations */ 80 81 void __kmp_cleanup(void); 82 83 static void __kmp_initialize_info(kmp_info_t *, kmp_team_t *, int tid, 84 int gtid); 85 static void __kmp_initialize_team(kmp_team_t *team, int new_nproc, 86 kmp_internal_control_t *new_icvs, 87 ident_t *loc); 88 #if KMP_AFFINITY_SUPPORTED 89 static void __kmp_partition_places(kmp_team_t *team, 90 int update_master_only = 0); 91 #endif 92 static void __kmp_do_serial_initialize(void); 93 void __kmp_fork_barrier(int gtid, int tid); 94 void __kmp_join_barrier(int gtid); 95 void __kmp_setup_icv_copy(kmp_team_t *team, int new_nproc, 96 kmp_internal_control_t *new_icvs, ident_t *loc); 97 98 #ifdef USE_LOAD_BALANCE 99 static int __kmp_load_balance_nproc(kmp_root_t *root, int set_nproc); 100 #endif 101 102 static int __kmp_expand_threads(int nNeed); 103 #if KMP_OS_WINDOWS 104 static int __kmp_unregister_root_other_thread(int gtid); 105 #endif 106 static void __kmp_reap_thread(kmp_info_t *thread, int is_root); 107 kmp_info_t *__kmp_thread_pool_insert_pt = NULL; 108 109 /* Calculate the identifier of the current thread */ 110 /* fast (and somewhat portable) way to get unique identifier of executing 111 thread. Returns KMP_GTID_DNE if we haven't been assigned a gtid. */ 112 int __kmp_get_global_thread_id() { 113 int i; 114 kmp_info_t **other_threads; 115 size_t stack_data; 116 char *stack_addr; 117 size_t stack_size; 118 char *stack_base; 119 120 KA_TRACE( 121 1000, 122 ("*** __kmp_get_global_thread_id: entering, nproc=%d all_nproc=%d\n", 123 __kmp_nth, __kmp_all_nth)); 124 125 /* JPH - to handle the case where __kmpc_end(0) is called immediately prior to 126 a parallel region, made it return KMP_GTID_DNE to force serial_initialize 127 by caller. Had to handle KMP_GTID_DNE at all call-sites, or else guarantee 128 __kmp_init_gtid for this to work. */ 129 130 if (!TCR_4(__kmp_init_gtid)) 131 return KMP_GTID_DNE; 132 133 #ifdef KMP_TDATA_GTID 134 if (TCR_4(__kmp_gtid_mode) >= 3) { 135 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using TDATA\n")); 136 return __kmp_gtid; 137 } 138 #endif 139 if (TCR_4(__kmp_gtid_mode) >= 2) { 140 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using keyed TLS\n")); 141 return __kmp_gtid_get_specific(); 142 } 143 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using internal alg.\n")); 144 145 stack_addr = (char *)&stack_data; 146 other_threads = __kmp_threads; 147 148 /* ATT: The code below is a source of potential bugs due to unsynchronized 149 access to __kmp_threads array. For example: 150 1. Current thread loads other_threads[i] to thr and checks it, it is 151 non-NULL. 152 2. Current thread is suspended by OS. 153 3. Another thread unregisters and finishes (debug versions of free() 154 may fill memory with something like 0xEF). 155 4. Current thread is resumed. 156 5. Current thread reads junk from *thr. 157 TODO: Fix it. --ln */ 158 159 for (i = 0; i < __kmp_threads_capacity; i++) { 160 161 kmp_info_t *thr = (kmp_info_t *)TCR_SYNC_PTR(other_threads[i]); 162 if (!thr) 163 continue; 164 165 stack_size = (size_t)TCR_PTR(thr->th.th_info.ds.ds_stacksize); 166 stack_base = (char *)TCR_PTR(thr->th.th_info.ds.ds_stackbase); 167 168 /* stack grows down -- search through all of the active threads */ 169 170 if (stack_addr <= stack_base) { 171 size_t stack_diff = stack_base - stack_addr; 172 173 if (stack_diff <= stack_size) { 174 /* The only way we can be closer than the allocated */ 175 /* stack size is if we are running on this thread. */ 176 KMP_DEBUG_ASSERT(__kmp_gtid_get_specific() == i); 177 return i; 178 } 179 } 180 } 181 182 /* get specific to try and determine our gtid */ 183 KA_TRACE(1000, 184 ("*** __kmp_get_global_thread_id: internal alg. failed to find " 185 "thread, using TLS\n")); 186 i = __kmp_gtid_get_specific(); 187 188 /*fprintf( stderr, "=== %d\n", i ); */ /* GROO */ 189 190 /* if we havn't been assigned a gtid, then return code */ 191 if (i < 0) 192 return i; 193 194 /* dynamically updated stack window for uber threads to avoid get_specific 195 call */ 196 if (!TCR_4(other_threads[i]->th.th_info.ds.ds_stackgrow)) { 197 KMP_FATAL(StackOverflow, i); 198 } 199 200 stack_base = (char *)other_threads[i]->th.th_info.ds.ds_stackbase; 201 if (stack_addr > stack_base) { 202 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stackbase, stack_addr); 203 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stacksize, 204 other_threads[i]->th.th_info.ds.ds_stacksize + stack_addr - 205 stack_base); 206 } else { 207 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stacksize, 208 stack_base - stack_addr); 209 } 210 211 /* Reprint stack bounds for ubermaster since they have been refined */ 212 if (__kmp_storage_map) { 213 char *stack_end = (char *)other_threads[i]->th.th_info.ds.ds_stackbase; 214 char *stack_beg = stack_end - other_threads[i]->th.th_info.ds.ds_stacksize; 215 __kmp_print_storage_map_gtid(i, stack_beg, stack_end, 216 other_threads[i]->th.th_info.ds.ds_stacksize, 217 "th_%d stack (refinement)", i); 218 } 219 return i; 220 } 221 222 int __kmp_get_global_thread_id_reg() { 223 int gtid; 224 225 if (!__kmp_init_serial) { 226 gtid = KMP_GTID_DNE; 227 } else 228 #ifdef KMP_TDATA_GTID 229 if (TCR_4(__kmp_gtid_mode) >= 3) { 230 KA_TRACE(1000, ("*** __kmp_get_global_thread_id_reg: using TDATA\n")); 231 gtid = __kmp_gtid; 232 } else 233 #endif 234 if (TCR_4(__kmp_gtid_mode) >= 2) { 235 KA_TRACE(1000, ("*** __kmp_get_global_thread_id_reg: using keyed TLS\n")); 236 gtid = __kmp_gtid_get_specific(); 237 } else { 238 KA_TRACE(1000, 239 ("*** __kmp_get_global_thread_id_reg: using internal alg.\n")); 240 gtid = __kmp_get_global_thread_id(); 241 } 242 243 /* we must be a new uber master sibling thread */ 244 if (gtid == KMP_GTID_DNE) { 245 KA_TRACE(10, 246 ("__kmp_get_global_thread_id_reg: Encountered new root thread. " 247 "Registering a new gtid.\n")); 248 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 249 if (!__kmp_init_serial) { 250 __kmp_do_serial_initialize(); 251 gtid = __kmp_gtid_get_specific(); 252 } else { 253 gtid = __kmp_register_root(FALSE); 254 } 255 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 256 /*__kmp_printf( "+++ %d\n", gtid ); */ /* GROO */ 257 } 258 259 KMP_DEBUG_ASSERT(gtid >= 0); 260 261 return gtid; 262 } 263 264 /* caller must hold forkjoin_lock */ 265 void __kmp_check_stack_overlap(kmp_info_t *th) { 266 int f; 267 char *stack_beg = NULL; 268 char *stack_end = NULL; 269 int gtid; 270 271 KA_TRACE(10, ("__kmp_check_stack_overlap: called\n")); 272 if (__kmp_storage_map) { 273 stack_end = (char *)th->th.th_info.ds.ds_stackbase; 274 stack_beg = stack_end - th->th.th_info.ds.ds_stacksize; 275 276 gtid = __kmp_gtid_from_thread(th); 277 278 if (gtid == KMP_GTID_MONITOR) { 279 __kmp_print_storage_map_gtid( 280 gtid, stack_beg, stack_end, th->th.th_info.ds.ds_stacksize, 281 "th_%s stack (%s)", "mon", 282 (th->th.th_info.ds.ds_stackgrow) ? "initial" : "actual"); 283 } else { 284 __kmp_print_storage_map_gtid( 285 gtid, stack_beg, stack_end, th->th.th_info.ds.ds_stacksize, 286 "th_%d stack (%s)", gtid, 287 (th->th.th_info.ds.ds_stackgrow) ? "initial" : "actual"); 288 } 289 } 290 291 /* No point in checking ubermaster threads since they use refinement and 292 * cannot overlap */ 293 gtid = __kmp_gtid_from_thread(th); 294 if (__kmp_env_checks == TRUE && !KMP_UBER_GTID(gtid)) { 295 KA_TRACE(10, 296 ("__kmp_check_stack_overlap: performing extensive checking\n")); 297 if (stack_beg == NULL) { 298 stack_end = (char *)th->th.th_info.ds.ds_stackbase; 299 stack_beg = stack_end - th->th.th_info.ds.ds_stacksize; 300 } 301 302 for (f = 0; f < __kmp_threads_capacity; f++) { 303 kmp_info_t *f_th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[f]); 304 305 if (f_th && f_th != th) { 306 char *other_stack_end = 307 (char *)TCR_PTR(f_th->th.th_info.ds.ds_stackbase); 308 char *other_stack_beg = 309 other_stack_end - (size_t)TCR_PTR(f_th->th.th_info.ds.ds_stacksize); 310 if ((stack_beg > other_stack_beg && stack_beg < other_stack_end) || 311 (stack_end > other_stack_beg && stack_end < other_stack_end)) { 312 313 /* Print the other stack values before the abort */ 314 if (__kmp_storage_map) 315 __kmp_print_storage_map_gtid( 316 -1, other_stack_beg, other_stack_end, 317 (size_t)TCR_PTR(f_th->th.th_info.ds.ds_stacksize), 318 "th_%d stack (overlapped)", __kmp_gtid_from_thread(f_th)); 319 320 __kmp_fatal(KMP_MSG(StackOverlap), KMP_HNT(ChangeStackLimit), 321 __kmp_msg_null); 322 } 323 } 324 } 325 } 326 KA_TRACE(10, ("__kmp_check_stack_overlap: returning\n")); 327 } 328 329 /* ------------------------------------------------------------------------ */ 330 331 void __kmp_infinite_loop(void) { 332 static int done = FALSE; 333 334 while (!done) { 335 KMP_YIELD(TRUE); 336 } 337 } 338 339 #define MAX_MESSAGE 512 340 341 void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2, size_t size, 342 char const *format, ...) { 343 char buffer[MAX_MESSAGE]; 344 va_list ap; 345 346 va_start(ap, format); 347 KMP_SNPRINTF(buffer, sizeof(buffer), "OMP storage map: %p %p%8lu %s\n", p1, 348 p2, (unsigned long)size, format); 349 __kmp_acquire_bootstrap_lock(&__kmp_stdio_lock); 350 __kmp_vprintf(kmp_err, buffer, ap); 351 #if KMP_PRINT_DATA_PLACEMENT 352 int node; 353 if (gtid >= 0) { 354 if (p1 <= p2 && (char *)p2 - (char *)p1 == size) { 355 if (__kmp_storage_map_verbose) { 356 node = __kmp_get_host_node(p1); 357 if (node < 0) /* doesn't work, so don't try this next time */ 358 __kmp_storage_map_verbose = FALSE; 359 else { 360 char *last; 361 int lastNode; 362 int localProc = __kmp_get_cpu_from_gtid(gtid); 363 364 const int page_size = KMP_GET_PAGE_SIZE(); 365 366 p1 = (void *)((size_t)p1 & ~((size_t)page_size - 1)); 367 p2 = (void *)(((size_t)p2 - 1) & ~((size_t)page_size - 1)); 368 if (localProc >= 0) 369 __kmp_printf_no_lock(" GTID %d localNode %d\n", gtid, 370 localProc >> 1); 371 else 372 __kmp_printf_no_lock(" GTID %d\n", gtid); 373 #if KMP_USE_PRCTL 374 /* The more elaborate format is disabled for now because of the prctl 375 * hanging bug. */ 376 do { 377 last = p1; 378 lastNode = node; 379 /* This loop collates adjacent pages with the same host node. */ 380 do { 381 (char *)p1 += page_size; 382 } while (p1 <= p2 && (node = __kmp_get_host_node(p1)) == lastNode); 383 __kmp_printf_no_lock(" %p-%p memNode %d\n", last, (char *)p1 - 1, 384 lastNode); 385 } while (p1 <= p2); 386 #else 387 __kmp_printf_no_lock(" %p-%p memNode %d\n", p1, 388 (char *)p1 + (page_size - 1), 389 __kmp_get_host_node(p1)); 390 if (p1 < p2) { 391 __kmp_printf_no_lock(" %p-%p memNode %d\n", p2, 392 (char *)p2 + (page_size - 1), 393 __kmp_get_host_node(p2)); 394 } 395 #endif 396 } 397 } 398 } else 399 __kmp_printf_no_lock(" %s\n", KMP_I18N_STR(StorageMapWarning)); 400 } 401 #endif /* KMP_PRINT_DATA_PLACEMENT */ 402 __kmp_release_bootstrap_lock(&__kmp_stdio_lock); 403 } 404 405 void __kmp_warn(char const *format, ...) { 406 char buffer[MAX_MESSAGE]; 407 va_list ap; 408 409 if (__kmp_generate_warnings == kmp_warnings_off) { 410 return; 411 } 412 413 va_start(ap, format); 414 415 KMP_SNPRINTF(buffer, sizeof(buffer), "OMP warning: %s\n", format); 416 __kmp_acquire_bootstrap_lock(&__kmp_stdio_lock); 417 __kmp_vprintf(kmp_err, buffer, ap); 418 __kmp_release_bootstrap_lock(&__kmp_stdio_lock); 419 420 va_end(ap); 421 } 422 423 void __kmp_abort_process() { 424 // Later threads may stall here, but that's ok because abort() will kill them. 425 __kmp_acquire_bootstrap_lock(&__kmp_exit_lock); 426 427 if (__kmp_debug_buf) { 428 __kmp_dump_debug_buffer(); 429 } 430 431 if (KMP_OS_WINDOWS) { 432 // Let other threads know of abnormal termination and prevent deadlock 433 // if abort happened during library initialization or shutdown 434 __kmp_global.g.g_abort = SIGABRT; 435 436 /* On Windows* OS by default abort() causes pop-up error box, which stalls 437 nightly testing. Unfortunately, we cannot reliably suppress pop-up error 438 boxes. _set_abort_behavior() works well, but this function is not 439 available in VS7 (this is not problem for DLL, but it is a problem for 440 static OpenMP RTL). SetErrorMode (and so, timelimit utility) does not 441 help, at least in some versions of MS C RTL. 442 443 It seems following sequence is the only way to simulate abort() and 444 avoid pop-up error box. */ 445 raise(SIGABRT); 446 _exit(3); // Just in case, if signal ignored, exit anyway. 447 } else { 448 __kmp_unregister_library(); 449 abort(); 450 } 451 452 __kmp_infinite_loop(); 453 __kmp_release_bootstrap_lock(&__kmp_exit_lock); 454 455 } // __kmp_abort_process 456 457 void __kmp_abort_thread(void) { 458 // TODO: Eliminate g_abort global variable and this function. 459 // In case of abort just call abort(), it will kill all the threads. 460 __kmp_infinite_loop(); 461 } // __kmp_abort_thread 462 463 /* Print out the storage map for the major kmp_info_t thread data structures 464 that are allocated together. */ 465 466 static void __kmp_print_thread_storage_map(kmp_info_t *thr, int gtid) { 467 __kmp_print_storage_map_gtid(gtid, thr, thr + 1, sizeof(kmp_info_t), "th_%d", 468 gtid); 469 470 __kmp_print_storage_map_gtid(gtid, &thr->th.th_info, &thr->th.th_team, 471 sizeof(kmp_desc_t), "th_%d.th_info", gtid); 472 473 __kmp_print_storage_map_gtid(gtid, &thr->th.th_local, &thr->th.th_pri_head, 474 sizeof(kmp_local_t), "th_%d.th_local", gtid); 475 476 __kmp_print_storage_map_gtid( 477 gtid, &thr->th.th_bar[0], &thr->th.th_bar[bs_last_barrier], 478 sizeof(kmp_balign_t) * bs_last_barrier, "th_%d.th_bar", gtid); 479 480 __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_plain_barrier], 481 &thr->th.th_bar[bs_plain_barrier + 1], 482 sizeof(kmp_balign_t), "th_%d.th_bar[plain]", 483 gtid); 484 485 __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_forkjoin_barrier], 486 &thr->th.th_bar[bs_forkjoin_barrier + 1], 487 sizeof(kmp_balign_t), "th_%d.th_bar[forkjoin]", 488 gtid); 489 490 #if KMP_FAST_REDUCTION_BARRIER 491 __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_reduction_barrier], 492 &thr->th.th_bar[bs_reduction_barrier + 1], 493 sizeof(kmp_balign_t), "th_%d.th_bar[reduction]", 494 gtid); 495 #endif // KMP_FAST_REDUCTION_BARRIER 496 } 497 498 /* Print out the storage map for the major kmp_team_t team data structures 499 that are allocated together. */ 500 501 static void __kmp_print_team_storage_map(const char *header, kmp_team_t *team, 502 int team_id, int num_thr) { 503 int num_disp_buff = team->t.t_max_nproc > 1 ? __kmp_dispatch_num_buffers : 2; 504 __kmp_print_storage_map_gtid(-1, team, team + 1, sizeof(kmp_team_t), "%s_%d", 505 header, team_id); 506 507 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[0], 508 &team->t.t_bar[bs_last_barrier], 509 sizeof(kmp_balign_team_t) * bs_last_barrier, 510 "%s_%d.t_bar", header, team_id); 511 512 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_plain_barrier], 513 &team->t.t_bar[bs_plain_barrier + 1], 514 sizeof(kmp_balign_team_t), "%s_%d.t_bar[plain]", 515 header, team_id); 516 517 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_forkjoin_barrier], 518 &team->t.t_bar[bs_forkjoin_barrier + 1], 519 sizeof(kmp_balign_team_t), 520 "%s_%d.t_bar[forkjoin]", header, team_id); 521 522 #if KMP_FAST_REDUCTION_BARRIER 523 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_reduction_barrier], 524 &team->t.t_bar[bs_reduction_barrier + 1], 525 sizeof(kmp_balign_team_t), 526 "%s_%d.t_bar[reduction]", header, team_id); 527 #endif // KMP_FAST_REDUCTION_BARRIER 528 529 __kmp_print_storage_map_gtid( 530 -1, &team->t.t_dispatch[0], &team->t.t_dispatch[num_thr], 531 sizeof(kmp_disp_t) * num_thr, "%s_%d.t_dispatch", header, team_id); 532 533 __kmp_print_storage_map_gtid( 534 -1, &team->t.t_threads[0], &team->t.t_threads[num_thr], 535 sizeof(kmp_info_t *) * num_thr, "%s_%d.t_threads", header, team_id); 536 537 __kmp_print_storage_map_gtid(-1, &team->t.t_disp_buffer[0], 538 &team->t.t_disp_buffer[num_disp_buff], 539 sizeof(dispatch_shared_info_t) * num_disp_buff, 540 "%s_%d.t_disp_buffer", header, team_id); 541 } 542 543 static void __kmp_init_allocator() { 544 __kmp_init_memkind(); 545 __kmp_init_target_mem(); 546 } 547 static void __kmp_fini_allocator() { __kmp_fini_memkind(); } 548 549 /* ------------------------------------------------------------------------ */ 550 551 #if KMP_DYNAMIC_LIB 552 #if KMP_OS_WINDOWS 553 554 BOOL WINAPI DllMain(HINSTANCE hInstDLL, DWORD fdwReason, LPVOID lpReserved) { 555 //__kmp_acquire_bootstrap_lock( &__kmp_initz_lock ); 556 557 switch (fdwReason) { 558 559 case DLL_PROCESS_ATTACH: 560 KA_TRACE(10, ("DllMain: PROCESS_ATTACH\n")); 561 562 return TRUE; 563 564 case DLL_PROCESS_DETACH: 565 KA_TRACE(10, ("DllMain: PROCESS_DETACH T#%d\n", __kmp_gtid_get_specific())); 566 567 // According to Windows* documentation for DllMain entry point: 568 // for DLL_PROCESS_DETACH, lpReserved is used for telling the difference: 569 // lpReserved == NULL when FreeLibrary() is called, 570 // lpReserved != NULL when the process is terminated. 571 // When FreeLibrary() is called, worker threads remain alive. So the 572 // runtime's state is consistent and executing proper shutdown is OK. 573 // When the process is terminated, worker threads have exited or been 574 // forcefully terminated by the OS and only the shutdown thread remains. 575 // This can leave the runtime in an inconsistent state. 576 // Hence, only attempt proper cleanup when FreeLibrary() is called. 577 // Otherwise, rely on OS to reclaim resources. 578 if (lpReserved == NULL) 579 __kmp_internal_end_library(__kmp_gtid_get_specific()); 580 581 return TRUE; 582 583 case DLL_THREAD_ATTACH: 584 KA_TRACE(10, ("DllMain: THREAD_ATTACH\n")); 585 586 /* if we want to register new siblings all the time here call 587 * __kmp_get_gtid(); */ 588 return TRUE; 589 590 case DLL_THREAD_DETACH: 591 KA_TRACE(10, ("DllMain: THREAD_DETACH T#%d\n", __kmp_gtid_get_specific())); 592 593 __kmp_internal_end_thread(__kmp_gtid_get_specific()); 594 return TRUE; 595 } 596 597 return TRUE; 598 } 599 600 #endif /* KMP_OS_WINDOWS */ 601 #endif /* KMP_DYNAMIC_LIB */ 602 603 /* __kmp_parallel_deo -- Wait until it's our turn. */ 604 void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) { 605 int gtid = *gtid_ref; 606 #ifdef BUILD_PARALLEL_ORDERED 607 kmp_team_t *team = __kmp_team_from_gtid(gtid); 608 #endif /* BUILD_PARALLEL_ORDERED */ 609 610 if (__kmp_env_consistency_check) { 611 if (__kmp_threads[gtid]->th.th_root->r.r_active) 612 #if KMP_USE_DYNAMIC_LOCK 613 __kmp_push_sync(gtid, ct_ordered_in_parallel, loc_ref, NULL, 0); 614 #else 615 __kmp_push_sync(gtid, ct_ordered_in_parallel, loc_ref, NULL); 616 #endif 617 } 618 #ifdef BUILD_PARALLEL_ORDERED 619 if (!team->t.t_serialized) { 620 KMP_MB(); 621 KMP_WAIT(&team->t.t_ordered.dt.t_value, __kmp_tid_from_gtid(gtid), KMP_EQ, 622 NULL); 623 KMP_MB(); 624 } 625 #endif /* BUILD_PARALLEL_ORDERED */ 626 } 627 628 /* __kmp_parallel_dxo -- Signal the next task. */ 629 void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) { 630 int gtid = *gtid_ref; 631 #ifdef BUILD_PARALLEL_ORDERED 632 int tid = __kmp_tid_from_gtid(gtid); 633 kmp_team_t *team = __kmp_team_from_gtid(gtid); 634 #endif /* BUILD_PARALLEL_ORDERED */ 635 636 if (__kmp_env_consistency_check) { 637 if (__kmp_threads[gtid]->th.th_root->r.r_active) 638 __kmp_pop_sync(gtid, ct_ordered_in_parallel, loc_ref); 639 } 640 #ifdef BUILD_PARALLEL_ORDERED 641 if (!team->t.t_serialized) { 642 KMP_MB(); /* Flush all pending memory write invalidates. */ 643 644 /* use the tid of the next thread in this team */ 645 /* TODO replace with general release procedure */ 646 team->t.t_ordered.dt.t_value = ((tid + 1) % team->t.t_nproc); 647 648 KMP_MB(); /* Flush all pending memory write invalidates. */ 649 } 650 #endif /* BUILD_PARALLEL_ORDERED */ 651 } 652 653 /* ------------------------------------------------------------------------ */ 654 /* The BARRIER for a SINGLE process section is always explicit */ 655 656 int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws) { 657 int status; 658 kmp_info_t *th; 659 kmp_team_t *team; 660 661 if (!TCR_4(__kmp_init_parallel)) 662 __kmp_parallel_initialize(); 663 __kmp_resume_if_soft_paused(); 664 665 th = __kmp_threads[gtid]; 666 team = th->th.th_team; 667 status = 0; 668 669 th->th.th_ident = id_ref; 670 671 if (team->t.t_serialized) { 672 status = 1; 673 } else { 674 kmp_int32 old_this = th->th.th_local.this_construct; 675 676 ++th->th.th_local.this_construct; 677 /* try to set team count to thread count--success means thread got the 678 single block */ 679 /* TODO: Should this be acquire or release? */ 680 if (team->t.t_construct == old_this) { 681 status = __kmp_atomic_compare_store_acq(&team->t.t_construct, old_this, 682 th->th.th_local.this_construct); 683 } 684 #if USE_ITT_BUILD 685 if (__itt_metadata_add_ptr && __kmp_forkjoin_frames_mode == 3 && 686 KMP_MASTER_GTID(gtid) && th->th.th_teams_microtask == NULL && 687 team->t.t_active_level == 1) { 688 // Only report metadata by primary thread of active team at level 1 689 __kmp_itt_metadata_single(id_ref); 690 } 691 #endif /* USE_ITT_BUILD */ 692 } 693 694 if (__kmp_env_consistency_check) { 695 if (status && push_ws) { 696 __kmp_push_workshare(gtid, ct_psingle, id_ref); 697 } else { 698 __kmp_check_workshare(gtid, ct_psingle, id_ref); 699 } 700 } 701 #if USE_ITT_BUILD 702 if (status) { 703 __kmp_itt_single_start(gtid); 704 } 705 #endif /* USE_ITT_BUILD */ 706 return status; 707 } 708 709 void __kmp_exit_single(int gtid) { 710 #if USE_ITT_BUILD 711 __kmp_itt_single_end(gtid); 712 #endif /* USE_ITT_BUILD */ 713 if (__kmp_env_consistency_check) 714 __kmp_pop_workshare(gtid, ct_psingle, NULL); 715 } 716 717 /* determine if we can go parallel or must use a serialized parallel region and 718 * how many threads we can use 719 * set_nproc is the number of threads requested for the team 720 * returns 0 if we should serialize or only use one thread, 721 * otherwise the number of threads to use 722 * The forkjoin lock is held by the caller. */ 723 static int __kmp_reserve_threads(kmp_root_t *root, kmp_team_t *parent_team, 724 int master_tid, int set_nthreads, 725 int enter_teams) { 726 int capacity; 727 int new_nthreads; 728 KMP_DEBUG_ASSERT(__kmp_init_serial); 729 KMP_DEBUG_ASSERT(root && parent_team); 730 kmp_info_t *this_thr = parent_team->t.t_threads[master_tid]; 731 732 // If dyn-var is set, dynamically adjust the number of desired threads, 733 // according to the method specified by dynamic_mode. 734 new_nthreads = set_nthreads; 735 if (!get__dynamic_2(parent_team, master_tid)) { 736 ; 737 } 738 #ifdef USE_LOAD_BALANCE 739 else if (__kmp_global.g.g_dynamic_mode == dynamic_load_balance) { 740 new_nthreads = __kmp_load_balance_nproc(root, set_nthreads); 741 if (new_nthreads == 1) { 742 KC_TRACE(10, ("__kmp_reserve_threads: T#%d load balance reduced " 743 "reservation to 1 thread\n", 744 master_tid)); 745 return 1; 746 } 747 if (new_nthreads < set_nthreads) { 748 KC_TRACE(10, ("__kmp_reserve_threads: T#%d load balance reduced " 749 "reservation to %d threads\n", 750 master_tid, new_nthreads)); 751 } 752 } 753 #endif /* USE_LOAD_BALANCE */ 754 else if (__kmp_global.g.g_dynamic_mode == dynamic_thread_limit) { 755 new_nthreads = __kmp_avail_proc - __kmp_nth + 756 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 757 if (new_nthreads <= 1) { 758 KC_TRACE(10, ("__kmp_reserve_threads: T#%d thread limit reduced " 759 "reservation to 1 thread\n", 760 master_tid)); 761 return 1; 762 } 763 if (new_nthreads < set_nthreads) { 764 KC_TRACE(10, ("__kmp_reserve_threads: T#%d thread limit reduced " 765 "reservation to %d threads\n", 766 master_tid, new_nthreads)); 767 } else { 768 new_nthreads = set_nthreads; 769 } 770 } else if (__kmp_global.g.g_dynamic_mode == dynamic_random) { 771 if (set_nthreads > 2) { 772 new_nthreads = __kmp_get_random(parent_team->t.t_threads[master_tid]); 773 new_nthreads = (new_nthreads % set_nthreads) + 1; 774 if (new_nthreads == 1) { 775 KC_TRACE(10, ("__kmp_reserve_threads: T#%d dynamic random reduced " 776 "reservation to 1 thread\n", 777 master_tid)); 778 return 1; 779 } 780 if (new_nthreads < set_nthreads) { 781 KC_TRACE(10, ("__kmp_reserve_threads: T#%d dynamic random reduced " 782 "reservation to %d threads\n", 783 master_tid, new_nthreads)); 784 } 785 } 786 } else { 787 KMP_ASSERT(0); 788 } 789 790 // Respect KMP_ALL_THREADS/KMP_DEVICE_THREAD_LIMIT. 791 if (__kmp_nth + new_nthreads - 792 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) > 793 __kmp_max_nth) { 794 int tl_nthreads = __kmp_max_nth - __kmp_nth + 795 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 796 if (tl_nthreads <= 0) { 797 tl_nthreads = 1; 798 } 799 800 // If dyn-var is false, emit a 1-time warning. 801 if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) { 802 __kmp_reserve_warn = 1; 803 __kmp_msg(kmp_ms_warning, 804 KMP_MSG(CantFormThrTeam, set_nthreads, tl_nthreads), 805 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 806 } 807 if (tl_nthreads == 1) { 808 KC_TRACE(10, ("__kmp_reserve_threads: T#%d KMP_DEVICE_THREAD_LIMIT " 809 "reduced reservation to 1 thread\n", 810 master_tid)); 811 return 1; 812 } 813 KC_TRACE(10, ("__kmp_reserve_threads: T#%d KMP_DEVICE_THREAD_LIMIT reduced " 814 "reservation to %d threads\n", 815 master_tid, tl_nthreads)); 816 new_nthreads = tl_nthreads; 817 } 818 819 // Respect OMP_THREAD_LIMIT 820 int cg_nthreads = this_thr->th.th_cg_roots->cg_nthreads; 821 int max_cg_threads = this_thr->th.th_cg_roots->cg_thread_limit; 822 if (cg_nthreads + new_nthreads - 823 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) > 824 max_cg_threads) { 825 int tl_nthreads = max_cg_threads - cg_nthreads + 826 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 827 if (tl_nthreads <= 0) { 828 tl_nthreads = 1; 829 } 830 831 // If dyn-var is false, emit a 1-time warning. 832 if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) { 833 __kmp_reserve_warn = 1; 834 __kmp_msg(kmp_ms_warning, 835 KMP_MSG(CantFormThrTeam, set_nthreads, tl_nthreads), 836 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 837 } 838 if (tl_nthreads == 1) { 839 KC_TRACE(10, ("__kmp_reserve_threads: T#%d OMP_THREAD_LIMIT " 840 "reduced reservation to 1 thread\n", 841 master_tid)); 842 return 1; 843 } 844 KC_TRACE(10, ("__kmp_reserve_threads: T#%d OMP_THREAD_LIMIT reduced " 845 "reservation to %d threads\n", 846 master_tid, tl_nthreads)); 847 new_nthreads = tl_nthreads; 848 } 849 850 // Check if the threads array is large enough, or needs expanding. 851 // See comment in __kmp_register_root() about the adjustment if 852 // __kmp_threads[0] == NULL. 853 capacity = __kmp_threads_capacity; 854 if (TCR_PTR(__kmp_threads[0]) == NULL) { 855 --capacity; 856 } 857 // If it is not for initializing the hidden helper team, we need to take 858 // __kmp_hidden_helper_threads_num out of the capacity because it is included 859 // in __kmp_threads_capacity. 860 if (__kmp_enable_hidden_helper && !TCR_4(__kmp_init_hidden_helper_threads)) { 861 capacity -= __kmp_hidden_helper_threads_num; 862 } 863 if (__kmp_nth + new_nthreads - 864 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) > 865 capacity) { 866 // Expand the threads array. 867 int slotsRequired = __kmp_nth + new_nthreads - 868 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) - 869 capacity; 870 int slotsAdded = __kmp_expand_threads(slotsRequired); 871 if (slotsAdded < slotsRequired) { 872 // The threads array was not expanded enough. 873 new_nthreads -= (slotsRequired - slotsAdded); 874 KMP_ASSERT(new_nthreads >= 1); 875 876 // If dyn-var is false, emit a 1-time warning. 877 if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) { 878 __kmp_reserve_warn = 1; 879 if (__kmp_tp_cached) { 880 __kmp_msg(kmp_ms_warning, 881 KMP_MSG(CantFormThrTeam, set_nthreads, new_nthreads), 882 KMP_HNT(Set_ALL_THREADPRIVATE, __kmp_tp_capacity), 883 KMP_HNT(PossibleSystemLimitOnThreads), __kmp_msg_null); 884 } else { 885 __kmp_msg(kmp_ms_warning, 886 KMP_MSG(CantFormThrTeam, set_nthreads, new_nthreads), 887 KMP_HNT(SystemLimitOnThreads), __kmp_msg_null); 888 } 889 } 890 } 891 } 892 893 #ifdef KMP_DEBUG 894 if (new_nthreads == 1) { 895 KC_TRACE(10, 896 ("__kmp_reserve_threads: T#%d serializing team after reclaiming " 897 "dead roots and rechecking; requested %d threads\n", 898 __kmp_get_gtid(), set_nthreads)); 899 } else { 900 KC_TRACE(10, ("__kmp_reserve_threads: T#%d allocating %d threads; requested" 901 " %d threads\n", 902 __kmp_get_gtid(), new_nthreads, set_nthreads)); 903 } 904 #endif // KMP_DEBUG 905 return new_nthreads; 906 } 907 908 /* Allocate threads from the thread pool and assign them to the new team. We are 909 assured that there are enough threads available, because we checked on that 910 earlier within critical section forkjoin */ 911 static void __kmp_fork_team_threads(kmp_root_t *root, kmp_team_t *team, 912 kmp_info_t *master_th, int master_gtid) { 913 int i; 914 int use_hot_team; 915 916 KA_TRACE(10, ("__kmp_fork_team_threads: new_nprocs = %d\n", team->t.t_nproc)); 917 KMP_DEBUG_ASSERT(master_gtid == __kmp_get_gtid()); 918 KMP_MB(); 919 920 /* first, let's setup the primary thread */ 921 master_th->th.th_info.ds.ds_tid = 0; 922 master_th->th.th_team = team; 923 master_th->th.th_team_nproc = team->t.t_nproc; 924 master_th->th.th_team_master = master_th; 925 master_th->th.th_team_serialized = FALSE; 926 master_th->th.th_dispatch = &team->t.t_dispatch[0]; 927 928 /* make sure we are not the optimized hot team */ 929 #if KMP_NESTED_HOT_TEAMS 930 use_hot_team = 0; 931 kmp_hot_team_ptr_t *hot_teams = master_th->th.th_hot_teams; 932 if (hot_teams) { // hot teams array is not allocated if 933 // KMP_HOT_TEAMS_MAX_LEVEL=0 934 int level = team->t.t_active_level - 1; // index in array of hot teams 935 if (master_th->th.th_teams_microtask) { // are we inside the teams? 936 if (master_th->th.th_teams_size.nteams > 1) { 937 ++level; // level was not increased in teams construct for 938 // team_of_masters 939 } 940 if (team->t.t_pkfn != (microtask_t)__kmp_teams_master && 941 master_th->th.th_teams_level == team->t.t_level) { 942 ++level; // level was not increased in teams construct for 943 // team_of_workers before the parallel 944 } // team->t.t_level will be increased inside parallel 945 } 946 if (level < __kmp_hot_teams_max_level) { 947 if (hot_teams[level].hot_team) { 948 // hot team has already been allocated for given level 949 KMP_DEBUG_ASSERT(hot_teams[level].hot_team == team); 950 use_hot_team = 1; // the team is ready to use 951 } else { 952 use_hot_team = 0; // AC: threads are not allocated yet 953 hot_teams[level].hot_team = team; // remember new hot team 954 hot_teams[level].hot_team_nth = team->t.t_nproc; 955 } 956 } else { 957 use_hot_team = 0; 958 } 959 } 960 #else 961 use_hot_team = team == root->r.r_hot_team; 962 #endif 963 if (!use_hot_team) { 964 965 /* install the primary thread */ 966 team->t.t_threads[0] = master_th; 967 __kmp_initialize_info(master_th, team, 0, master_gtid); 968 969 /* now, install the worker threads */ 970 for (i = 1; i < team->t.t_nproc; i++) { 971 972 /* fork or reallocate a new thread and install it in team */ 973 kmp_info_t *thr = __kmp_allocate_thread(root, team, i); 974 team->t.t_threads[i] = thr; 975 KMP_DEBUG_ASSERT(thr); 976 KMP_DEBUG_ASSERT(thr->th.th_team == team); 977 /* align team and thread arrived states */ 978 KA_TRACE(20, ("__kmp_fork_team_threads: T#%d(%d:%d) init arrived " 979 "T#%d(%d:%d) join =%llu, plain=%llu\n", 980 __kmp_gtid_from_tid(0, team), team->t.t_id, 0, 981 __kmp_gtid_from_tid(i, team), team->t.t_id, i, 982 team->t.t_bar[bs_forkjoin_barrier].b_arrived, 983 team->t.t_bar[bs_plain_barrier].b_arrived)); 984 thr->th.th_teams_microtask = master_th->th.th_teams_microtask; 985 thr->th.th_teams_level = master_th->th.th_teams_level; 986 thr->th.th_teams_size = master_th->th.th_teams_size; 987 { // Initialize threads' barrier data. 988 int b; 989 kmp_balign_t *balign = team->t.t_threads[i]->th.th_bar; 990 for (b = 0; b < bs_last_barrier; ++b) { 991 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 992 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 993 #if USE_DEBUGGER 994 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 995 #endif 996 } 997 } 998 } 999 1000 #if KMP_AFFINITY_SUPPORTED 1001 __kmp_partition_places(team); 1002 #endif 1003 } 1004 1005 if (__kmp_display_affinity && team->t.t_display_affinity != 1) { 1006 for (i = 0; i < team->t.t_nproc; i++) { 1007 kmp_info_t *thr = team->t.t_threads[i]; 1008 if (thr->th.th_prev_num_threads != team->t.t_nproc || 1009 thr->th.th_prev_level != team->t.t_level) { 1010 team->t.t_display_affinity = 1; 1011 break; 1012 } 1013 } 1014 } 1015 1016 KMP_MB(); 1017 } 1018 1019 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1020 // Propagate any changes to the floating point control registers out to the team 1021 // We try to avoid unnecessary writes to the relevant cache line in the team 1022 // structure, so we don't make changes unless they are needed. 1023 inline static void propagateFPControl(kmp_team_t *team) { 1024 if (__kmp_inherit_fp_control) { 1025 kmp_int16 x87_fpu_control_word; 1026 kmp_uint32 mxcsr; 1027 1028 // Get primary thread's values of FPU control flags (both X87 and vector) 1029 __kmp_store_x87_fpu_control_word(&x87_fpu_control_word); 1030 __kmp_store_mxcsr(&mxcsr); 1031 mxcsr &= KMP_X86_MXCSR_MASK; 1032 1033 // There is no point looking at t_fp_control_saved here. 1034 // If it is TRUE, we still have to update the values if they are different 1035 // from those we now have. If it is FALSE we didn't save anything yet, but 1036 // our objective is the same. We have to ensure that the values in the team 1037 // are the same as those we have. 1038 // So, this code achieves what we need whether or not t_fp_control_saved is 1039 // true. By checking whether the value needs updating we avoid unnecessary 1040 // writes that would put the cache-line into a written state, causing all 1041 // threads in the team to have to read it again. 1042 KMP_CHECK_UPDATE(team->t.t_x87_fpu_control_word, x87_fpu_control_word); 1043 KMP_CHECK_UPDATE(team->t.t_mxcsr, mxcsr); 1044 // Although we don't use this value, other code in the runtime wants to know 1045 // whether it should restore them. So we must ensure it is correct. 1046 KMP_CHECK_UPDATE(team->t.t_fp_control_saved, TRUE); 1047 } else { 1048 // Similarly here. Don't write to this cache-line in the team structure 1049 // unless we have to. 1050 KMP_CHECK_UPDATE(team->t.t_fp_control_saved, FALSE); 1051 } 1052 } 1053 1054 // Do the opposite, setting the hardware registers to the updated values from 1055 // the team. 1056 inline static void updateHWFPControl(kmp_team_t *team) { 1057 if (__kmp_inherit_fp_control && team->t.t_fp_control_saved) { 1058 // Only reset the fp control regs if they have been changed in the team. 1059 // the parallel region that we are exiting. 1060 kmp_int16 x87_fpu_control_word; 1061 kmp_uint32 mxcsr; 1062 __kmp_store_x87_fpu_control_word(&x87_fpu_control_word); 1063 __kmp_store_mxcsr(&mxcsr); 1064 mxcsr &= KMP_X86_MXCSR_MASK; 1065 1066 if (team->t.t_x87_fpu_control_word != x87_fpu_control_word) { 1067 __kmp_clear_x87_fpu_status_word(); 1068 __kmp_load_x87_fpu_control_word(&team->t.t_x87_fpu_control_word); 1069 } 1070 1071 if (team->t.t_mxcsr != mxcsr) { 1072 __kmp_load_mxcsr(&team->t.t_mxcsr); 1073 } 1074 } 1075 } 1076 #else 1077 #define propagateFPControl(x) ((void)0) 1078 #define updateHWFPControl(x) ((void)0) 1079 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 1080 1081 static void __kmp_alloc_argv_entries(int argc, kmp_team_t *team, 1082 int realloc); // forward declaration 1083 1084 /* Run a parallel region that has been serialized, so runs only in a team of the 1085 single primary thread. */ 1086 void __kmp_serialized_parallel(ident_t *loc, kmp_int32 global_tid) { 1087 kmp_info_t *this_thr; 1088 kmp_team_t *serial_team; 1089 1090 KC_TRACE(10, ("__kmpc_serialized_parallel: called by T#%d\n", global_tid)); 1091 1092 /* Skip all this code for autopar serialized loops since it results in 1093 unacceptable overhead */ 1094 if (loc != NULL && (loc->flags & KMP_IDENT_AUTOPAR)) 1095 return; 1096 1097 if (!TCR_4(__kmp_init_parallel)) 1098 __kmp_parallel_initialize(); 1099 __kmp_resume_if_soft_paused(); 1100 1101 this_thr = __kmp_threads[global_tid]; 1102 serial_team = this_thr->th.th_serial_team; 1103 1104 /* utilize the serialized team held by this thread */ 1105 KMP_DEBUG_ASSERT(serial_team); 1106 KMP_MB(); 1107 1108 if (__kmp_tasking_mode != tskm_immediate_exec) { 1109 KMP_DEBUG_ASSERT( 1110 this_thr->th.th_task_team == 1111 this_thr->th.th_team->t.t_task_team[this_thr->th.th_task_state]); 1112 KMP_DEBUG_ASSERT(serial_team->t.t_task_team[this_thr->th.th_task_state] == 1113 NULL); 1114 KA_TRACE(20, ("__kmpc_serialized_parallel: T#%d pushing task_team %p / " 1115 "team %p, new task_team = NULL\n", 1116 global_tid, this_thr->th.th_task_team, this_thr->th.th_team)); 1117 this_thr->th.th_task_team = NULL; 1118 } 1119 1120 kmp_proc_bind_t proc_bind = this_thr->th.th_set_proc_bind; 1121 if (this_thr->th.th_current_task->td_icvs.proc_bind == proc_bind_false) { 1122 proc_bind = proc_bind_false; 1123 } else if (proc_bind == proc_bind_default) { 1124 // No proc_bind clause was specified, so use the current value 1125 // of proc-bind-var for this parallel region. 1126 proc_bind = this_thr->th.th_current_task->td_icvs.proc_bind; 1127 } 1128 // Reset for next parallel region 1129 this_thr->th.th_set_proc_bind = proc_bind_default; 1130 1131 #if OMPT_SUPPORT 1132 ompt_data_t ompt_parallel_data = ompt_data_none; 1133 ompt_data_t *implicit_task_data; 1134 void *codeptr = OMPT_LOAD_RETURN_ADDRESS(global_tid); 1135 if (ompt_enabled.enabled && 1136 this_thr->th.ompt_thread_info.state != ompt_state_overhead) { 1137 1138 ompt_task_info_t *parent_task_info; 1139 parent_task_info = OMPT_CUR_TASK_INFO(this_thr); 1140 1141 parent_task_info->frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 1142 if (ompt_enabled.ompt_callback_parallel_begin) { 1143 int team_size = 1; 1144 1145 ompt_callbacks.ompt_callback(ompt_callback_parallel_begin)( 1146 &(parent_task_info->task_data), &(parent_task_info->frame), 1147 &ompt_parallel_data, team_size, 1148 ompt_parallel_invoker_program | ompt_parallel_team, codeptr); 1149 } 1150 } 1151 #endif // OMPT_SUPPORT 1152 1153 if (this_thr->th.th_team != serial_team) { 1154 // Nested level will be an index in the nested nthreads array 1155 int level = this_thr->th.th_team->t.t_level; 1156 1157 if (serial_team->t.t_serialized) { 1158 /* this serial team was already used 1159 TODO increase performance by making this locks more specific */ 1160 kmp_team_t *new_team; 1161 1162 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 1163 1164 new_team = 1165 __kmp_allocate_team(this_thr->th.th_root, 1, 1, 1166 #if OMPT_SUPPORT 1167 ompt_parallel_data, 1168 #endif 1169 proc_bind, &this_thr->th.th_current_task->td_icvs, 1170 0 USE_NESTED_HOT_ARG(NULL)); 1171 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1172 KMP_ASSERT(new_team); 1173 1174 /* setup new serialized team and install it */ 1175 new_team->t.t_threads[0] = this_thr; 1176 new_team->t.t_parent = this_thr->th.th_team; 1177 serial_team = new_team; 1178 this_thr->th.th_serial_team = serial_team; 1179 1180 KF_TRACE( 1181 10, 1182 ("__kmpc_serialized_parallel: T#%d allocated new serial team %p\n", 1183 global_tid, serial_team)); 1184 1185 /* TODO the above breaks the requirement that if we run out of resources, 1186 then we can still guarantee that serialized teams are ok, since we may 1187 need to allocate a new one */ 1188 } else { 1189 KF_TRACE( 1190 10, 1191 ("__kmpc_serialized_parallel: T#%d reusing cached serial team %p\n", 1192 global_tid, serial_team)); 1193 } 1194 1195 /* we have to initialize this serial team */ 1196 KMP_DEBUG_ASSERT(serial_team->t.t_threads); 1197 KMP_DEBUG_ASSERT(serial_team->t.t_threads[0] == this_thr); 1198 KMP_DEBUG_ASSERT(this_thr->th.th_team != serial_team); 1199 serial_team->t.t_ident = loc; 1200 serial_team->t.t_serialized = 1; 1201 serial_team->t.t_nproc = 1; 1202 serial_team->t.t_parent = this_thr->th.th_team; 1203 serial_team->t.t_sched.sched = this_thr->th.th_team->t.t_sched.sched; 1204 this_thr->th.th_team = serial_team; 1205 serial_team->t.t_master_tid = this_thr->th.th_info.ds.ds_tid; 1206 1207 KF_TRACE(10, ("__kmpc_serialized_parallel: T#d curtask=%p\n", global_tid, 1208 this_thr->th.th_current_task)); 1209 KMP_ASSERT(this_thr->th.th_current_task->td_flags.executing == 1); 1210 this_thr->th.th_current_task->td_flags.executing = 0; 1211 1212 __kmp_push_current_task_to_thread(this_thr, serial_team, 0); 1213 1214 /* TODO: GEH: do ICVs work for nested serialized teams? Don't we need an 1215 implicit task for each serialized task represented by 1216 team->t.t_serialized? */ 1217 copy_icvs(&this_thr->th.th_current_task->td_icvs, 1218 &this_thr->th.th_current_task->td_parent->td_icvs); 1219 1220 // Thread value exists in the nested nthreads array for the next nested 1221 // level 1222 if (__kmp_nested_nth.used && (level + 1 < __kmp_nested_nth.used)) { 1223 this_thr->th.th_current_task->td_icvs.nproc = 1224 __kmp_nested_nth.nth[level + 1]; 1225 } 1226 1227 if (__kmp_nested_proc_bind.used && 1228 (level + 1 < __kmp_nested_proc_bind.used)) { 1229 this_thr->th.th_current_task->td_icvs.proc_bind = 1230 __kmp_nested_proc_bind.bind_types[level + 1]; 1231 } 1232 1233 #if USE_DEBUGGER 1234 serial_team->t.t_pkfn = (microtask_t)(~0); // For the debugger. 1235 #endif 1236 this_thr->th.th_info.ds.ds_tid = 0; 1237 1238 /* set thread cache values */ 1239 this_thr->th.th_team_nproc = 1; 1240 this_thr->th.th_team_master = this_thr; 1241 this_thr->th.th_team_serialized = 1; 1242 1243 serial_team->t.t_level = serial_team->t.t_parent->t.t_level + 1; 1244 serial_team->t.t_active_level = serial_team->t.t_parent->t.t_active_level; 1245 serial_team->t.t_def_allocator = this_thr->th.th_def_allocator; // save 1246 1247 propagateFPControl(serial_team); 1248 1249 /* check if we need to allocate dispatch buffers stack */ 1250 KMP_DEBUG_ASSERT(serial_team->t.t_dispatch); 1251 if (!serial_team->t.t_dispatch->th_disp_buffer) { 1252 serial_team->t.t_dispatch->th_disp_buffer = 1253 (dispatch_private_info_t *)__kmp_allocate( 1254 sizeof(dispatch_private_info_t)); 1255 } 1256 this_thr->th.th_dispatch = serial_team->t.t_dispatch; 1257 1258 KMP_MB(); 1259 1260 } else { 1261 /* this serialized team is already being used, 1262 * that's fine, just add another nested level */ 1263 KMP_DEBUG_ASSERT(this_thr->th.th_team == serial_team); 1264 KMP_DEBUG_ASSERT(serial_team->t.t_threads); 1265 KMP_DEBUG_ASSERT(serial_team->t.t_threads[0] == this_thr); 1266 ++serial_team->t.t_serialized; 1267 this_thr->th.th_team_serialized = serial_team->t.t_serialized; 1268 1269 // Nested level will be an index in the nested nthreads array 1270 int level = this_thr->th.th_team->t.t_level; 1271 // Thread value exists in the nested nthreads array for the next nested 1272 // level 1273 if (__kmp_nested_nth.used && (level + 1 < __kmp_nested_nth.used)) { 1274 this_thr->th.th_current_task->td_icvs.nproc = 1275 __kmp_nested_nth.nth[level + 1]; 1276 } 1277 serial_team->t.t_level++; 1278 KF_TRACE(10, ("__kmpc_serialized_parallel: T#%d increasing nesting level " 1279 "of serial team %p to %d\n", 1280 global_tid, serial_team, serial_team->t.t_level)); 1281 1282 /* allocate/push dispatch buffers stack */ 1283 KMP_DEBUG_ASSERT(serial_team->t.t_dispatch); 1284 { 1285 dispatch_private_info_t *disp_buffer = 1286 (dispatch_private_info_t *)__kmp_allocate( 1287 sizeof(dispatch_private_info_t)); 1288 disp_buffer->next = serial_team->t.t_dispatch->th_disp_buffer; 1289 serial_team->t.t_dispatch->th_disp_buffer = disp_buffer; 1290 } 1291 this_thr->th.th_dispatch = serial_team->t.t_dispatch; 1292 1293 KMP_MB(); 1294 } 1295 KMP_CHECK_UPDATE(serial_team->t.t_cancel_request, cancel_noreq); 1296 1297 // Perform the display affinity functionality for 1298 // serialized parallel regions 1299 if (__kmp_display_affinity) { 1300 if (this_thr->th.th_prev_level != serial_team->t.t_level || 1301 this_thr->th.th_prev_num_threads != 1) { 1302 // NULL means use the affinity-format-var ICV 1303 __kmp_aux_display_affinity(global_tid, NULL); 1304 this_thr->th.th_prev_level = serial_team->t.t_level; 1305 this_thr->th.th_prev_num_threads = 1; 1306 } 1307 } 1308 1309 if (__kmp_env_consistency_check) 1310 __kmp_push_parallel(global_tid, NULL); 1311 #if OMPT_SUPPORT 1312 serial_team->t.ompt_team_info.master_return_address = codeptr; 1313 if (ompt_enabled.enabled && 1314 this_thr->th.ompt_thread_info.state != ompt_state_overhead) { 1315 OMPT_CUR_TASK_INFO(this_thr)->frame.exit_frame.ptr = 1316 OMPT_GET_FRAME_ADDRESS(0); 1317 1318 ompt_lw_taskteam_t lw_taskteam; 1319 __ompt_lw_taskteam_init(&lw_taskteam, this_thr, global_tid, 1320 &ompt_parallel_data, codeptr); 1321 1322 __ompt_lw_taskteam_link(&lw_taskteam, this_thr, 1); 1323 // don't use lw_taskteam after linking. content was swaped 1324 1325 /* OMPT implicit task begin */ 1326 implicit_task_data = OMPT_CUR_TASK_DATA(this_thr); 1327 if (ompt_enabled.ompt_callback_implicit_task) { 1328 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1329 ompt_scope_begin, OMPT_CUR_TEAM_DATA(this_thr), 1330 OMPT_CUR_TASK_DATA(this_thr), 1, __kmp_tid_from_gtid(global_tid), 1331 ompt_task_implicit); // TODO: Can this be ompt_task_initial? 1332 OMPT_CUR_TASK_INFO(this_thr)->thread_num = 1333 __kmp_tid_from_gtid(global_tid); 1334 } 1335 1336 /* OMPT state */ 1337 this_thr->th.ompt_thread_info.state = ompt_state_work_parallel; 1338 OMPT_CUR_TASK_INFO(this_thr)->frame.exit_frame.ptr = 1339 OMPT_GET_FRAME_ADDRESS(0); 1340 } 1341 #endif 1342 } 1343 1344 /* most of the work for a fork */ 1345 /* return true if we really went parallel, false if serialized */ 1346 int __kmp_fork_call(ident_t *loc, int gtid, 1347 enum fork_context_e call_context, // Intel, GNU, ... 1348 kmp_int32 argc, microtask_t microtask, launch_t invoker, 1349 kmp_va_list ap) { 1350 void **argv; 1351 int i; 1352 int master_tid; 1353 int master_this_cons; 1354 kmp_team_t *team; 1355 kmp_team_t *parent_team; 1356 kmp_info_t *master_th; 1357 kmp_root_t *root; 1358 int nthreads; 1359 int master_active; 1360 int master_set_numthreads; 1361 int level; 1362 int active_level; 1363 int teams_level; 1364 #if KMP_NESTED_HOT_TEAMS 1365 kmp_hot_team_ptr_t **p_hot_teams; 1366 #endif 1367 { // KMP_TIME_BLOCK 1368 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_fork_call); 1369 KMP_COUNT_VALUE(OMP_PARALLEL_args, argc); 1370 1371 KA_TRACE(20, ("__kmp_fork_call: enter T#%d\n", gtid)); 1372 if (__kmp_stkpadding > 0 && __kmp_root[gtid] != NULL) { 1373 /* Some systems prefer the stack for the root thread(s) to start with */ 1374 /* some gap from the parent stack to prevent false sharing. */ 1375 void *dummy = KMP_ALLOCA(__kmp_stkpadding); 1376 /* These 2 lines below are so this does not get optimized out */ 1377 if (__kmp_stkpadding > KMP_MAX_STKPADDING) 1378 __kmp_stkpadding += (short)((kmp_int64)dummy); 1379 } 1380 1381 /* initialize if needed */ 1382 KMP_DEBUG_ASSERT( 1383 __kmp_init_serial); // AC: potentially unsafe, not in sync with shutdown 1384 if (!TCR_4(__kmp_init_parallel)) 1385 __kmp_parallel_initialize(); 1386 __kmp_resume_if_soft_paused(); 1387 1388 /* setup current data */ 1389 master_th = __kmp_threads[gtid]; // AC: potentially unsafe, not in sync with 1390 // shutdown 1391 parent_team = master_th->th.th_team; 1392 master_tid = master_th->th.th_info.ds.ds_tid; 1393 master_this_cons = master_th->th.th_local.this_construct; 1394 root = master_th->th.th_root; 1395 master_active = root->r.r_active; 1396 master_set_numthreads = master_th->th.th_set_nproc; 1397 1398 #if OMPT_SUPPORT 1399 ompt_data_t ompt_parallel_data = ompt_data_none; 1400 ompt_data_t *parent_task_data; 1401 ompt_frame_t *ompt_frame; 1402 ompt_data_t *implicit_task_data; 1403 void *return_address = NULL; 1404 1405 if (ompt_enabled.enabled) { 1406 __ompt_get_task_info_internal(0, NULL, &parent_task_data, &ompt_frame, 1407 NULL, NULL); 1408 return_address = OMPT_LOAD_RETURN_ADDRESS(gtid); 1409 } 1410 #endif 1411 1412 // Nested level will be an index in the nested nthreads array 1413 level = parent_team->t.t_level; 1414 // used to launch non-serial teams even if nested is not allowed 1415 active_level = parent_team->t.t_active_level; 1416 // needed to check nesting inside the teams 1417 teams_level = master_th->th.th_teams_level; 1418 #if KMP_NESTED_HOT_TEAMS 1419 p_hot_teams = &master_th->th.th_hot_teams; 1420 if (*p_hot_teams == NULL && __kmp_hot_teams_max_level > 0) { 1421 *p_hot_teams = (kmp_hot_team_ptr_t *)__kmp_allocate( 1422 sizeof(kmp_hot_team_ptr_t) * __kmp_hot_teams_max_level); 1423 (*p_hot_teams)[0].hot_team = root->r.r_hot_team; 1424 // it is either actual or not needed (when active_level > 0) 1425 (*p_hot_teams)[0].hot_team_nth = 1; 1426 } 1427 #endif 1428 1429 #if OMPT_SUPPORT 1430 if (ompt_enabled.enabled) { 1431 if (ompt_enabled.ompt_callback_parallel_begin) { 1432 int team_size = master_set_numthreads 1433 ? master_set_numthreads 1434 : get__nproc_2(parent_team, master_tid); 1435 int flags = OMPT_INVOKER(call_context) | 1436 ((microtask == (microtask_t)__kmp_teams_master) 1437 ? ompt_parallel_league 1438 : ompt_parallel_team); 1439 ompt_callbacks.ompt_callback(ompt_callback_parallel_begin)( 1440 parent_task_data, ompt_frame, &ompt_parallel_data, team_size, flags, 1441 return_address); 1442 } 1443 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1444 } 1445 #endif 1446 1447 master_th->th.th_ident = loc; 1448 1449 if (master_th->th.th_teams_microtask && ap && 1450 microtask != (microtask_t)__kmp_teams_master && level == teams_level) { 1451 // AC: This is start of parallel that is nested inside teams construct. 1452 // The team is actual (hot), all workers are ready at the fork barrier. 1453 // No lock needed to initialize the team a bit, then free workers. 1454 parent_team->t.t_ident = loc; 1455 __kmp_alloc_argv_entries(argc, parent_team, TRUE); 1456 parent_team->t.t_argc = argc; 1457 argv = (void **)parent_team->t.t_argv; 1458 for (i = argc - 1; i >= 0; --i) 1459 *argv++ = va_arg(kmp_va_deref(ap), void *); 1460 // Increment our nested depth levels, but not increase the serialization 1461 if (parent_team == master_th->th.th_serial_team) { 1462 // AC: we are in serialized parallel 1463 __kmpc_serialized_parallel(loc, gtid); 1464 KMP_DEBUG_ASSERT(parent_team->t.t_serialized > 1); 1465 1466 if (call_context == fork_context_gnu) { 1467 // AC: need to decrement t_serialized for enquiry functions to work 1468 // correctly, will restore at join time 1469 parent_team->t.t_serialized--; 1470 return TRUE; 1471 } 1472 1473 #if OMPT_SUPPORT 1474 void *dummy; 1475 void **exit_frame_p; 1476 1477 ompt_lw_taskteam_t lw_taskteam; 1478 1479 if (ompt_enabled.enabled) { 1480 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1481 &ompt_parallel_data, return_address); 1482 exit_frame_p = &(lw_taskteam.ompt_task_info.frame.exit_frame.ptr); 1483 1484 __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0); 1485 // don't use lw_taskteam after linking. content was swaped 1486 1487 /* OMPT implicit task begin */ 1488 implicit_task_data = OMPT_CUR_TASK_DATA(master_th); 1489 if (ompt_enabled.ompt_callback_implicit_task) { 1490 OMPT_CUR_TASK_INFO(master_th)->thread_num = 1491 __kmp_tid_from_gtid(gtid); 1492 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1493 ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th), 1494 implicit_task_data, 1, 1495 OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit); 1496 } 1497 1498 /* OMPT state */ 1499 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 1500 } else { 1501 exit_frame_p = &dummy; 1502 } 1503 #endif 1504 // AC: need to decrement t_serialized for enquiry functions to work 1505 // correctly, will restore at join time 1506 parent_team->t.t_serialized--; 1507 1508 { 1509 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1510 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1511 __kmp_invoke_microtask(microtask, gtid, 0, argc, parent_team->t.t_argv 1512 #if OMPT_SUPPORT 1513 , 1514 exit_frame_p 1515 #endif 1516 ); 1517 } 1518 1519 #if OMPT_SUPPORT 1520 if (ompt_enabled.enabled) { 1521 *exit_frame_p = NULL; 1522 OMPT_CUR_TASK_INFO(master_th)->frame.exit_frame = ompt_data_none; 1523 if (ompt_enabled.ompt_callback_implicit_task) { 1524 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1525 ompt_scope_end, NULL, implicit_task_data, 1, 1526 OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit); 1527 } 1528 ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th); 1529 __ompt_lw_taskteam_unlink(master_th); 1530 if (ompt_enabled.ompt_callback_parallel_end) { 1531 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 1532 &ompt_parallel_data, OMPT_CUR_TASK_DATA(master_th), 1533 OMPT_INVOKER(call_context) | ompt_parallel_team, 1534 return_address); 1535 } 1536 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1537 } 1538 #endif 1539 return TRUE; 1540 } 1541 1542 parent_team->t.t_pkfn = microtask; 1543 parent_team->t.t_invoke = invoker; 1544 KMP_ATOMIC_INC(&root->r.r_in_parallel); 1545 parent_team->t.t_active_level++; 1546 parent_team->t.t_level++; 1547 parent_team->t.t_def_allocator = master_th->th.th_def_allocator; // save 1548 1549 #if OMPT_SUPPORT 1550 if (ompt_enabled.enabled) { 1551 ompt_lw_taskteam_t lw_taskteam; 1552 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1553 &ompt_parallel_data, return_address); 1554 __ompt_lw_taskteam_link(&lw_taskteam, master_th, 1, true); 1555 } 1556 #endif 1557 1558 /* Change number of threads in the team if requested */ 1559 if (master_set_numthreads) { // The parallel has num_threads clause 1560 if (master_set_numthreads < master_th->th.th_teams_size.nth) { 1561 // AC: only can reduce number of threads dynamically, can't increase 1562 kmp_info_t **other_threads = parent_team->t.t_threads; 1563 parent_team->t.t_nproc = master_set_numthreads; 1564 for (i = 0; i < master_set_numthreads; ++i) { 1565 other_threads[i]->th.th_team_nproc = master_set_numthreads; 1566 } 1567 // Keep extra threads hot in the team for possible next parallels 1568 } 1569 master_th->th.th_set_nproc = 0; 1570 } 1571 1572 #if USE_DEBUGGER 1573 if (__kmp_debugging) { // Let debugger override number of threads. 1574 int nth = __kmp_omp_num_threads(loc); 1575 if (nth > 0) { // 0 means debugger doesn't want to change num threads 1576 master_set_numthreads = nth; 1577 } 1578 } 1579 #endif 1580 1581 #if USE_ITT_BUILD && USE_ITT_NOTIFY 1582 if (((__itt_frame_submit_v3_ptr && __itt_get_timestamp_ptr) || 1583 KMP_ITT_DEBUG) && 1584 __kmp_forkjoin_frames_mode == 3 && 1585 parent_team->t.t_active_level == 1 // only report frames at level 1 1586 && master_th->th.th_teams_size.nteams == 1) { 1587 kmp_uint64 tmp_time = __itt_get_timestamp(); 1588 master_th->th.th_frame_time = tmp_time; 1589 parent_team->t.t_region_time = tmp_time; 1590 } 1591 if (__itt_stack_caller_create_ptr) { 1592 KMP_DEBUG_ASSERT(parent_team->t.t_stack_id == NULL); 1593 // create new stack stitching id before entering fork barrier 1594 parent_team->t.t_stack_id = __kmp_itt_stack_caller_create(); 1595 } 1596 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */ 1597 1598 KF_TRACE(10, ("__kmp_fork_call: before internal fork: root=%p, team=%p, " 1599 "master_th=%p, gtid=%d\n", 1600 root, parent_team, master_th, gtid)); 1601 __kmp_internal_fork(loc, gtid, parent_team); 1602 KF_TRACE(10, ("__kmp_fork_call: after internal fork: root=%p, team=%p, " 1603 "master_th=%p, gtid=%d\n", 1604 root, parent_team, master_th, gtid)); 1605 1606 if (call_context == fork_context_gnu) 1607 return TRUE; 1608 1609 /* Invoke microtask for PRIMARY thread */ 1610 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) invoke microtask = %p\n", gtid, 1611 parent_team->t.t_id, parent_team->t.t_pkfn)); 1612 1613 if (!parent_team->t.t_invoke(gtid)) { 1614 KMP_ASSERT2(0, "cannot invoke microtask for PRIMARY thread"); 1615 } 1616 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) done microtask = %p\n", gtid, 1617 parent_team->t.t_id, parent_team->t.t_pkfn)); 1618 KMP_MB(); /* Flush all pending memory write invalidates. */ 1619 1620 KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid)); 1621 1622 return TRUE; 1623 } // Parallel closely nested in teams construct 1624 1625 #if KMP_DEBUG 1626 if (__kmp_tasking_mode != tskm_immediate_exec) { 1627 KMP_DEBUG_ASSERT(master_th->th.th_task_team == 1628 parent_team->t.t_task_team[master_th->th.th_task_state]); 1629 } 1630 #endif 1631 1632 int enter_teams = 0; 1633 if (parent_team->t.t_active_level >= 1634 master_th->th.th_current_task->td_icvs.max_active_levels) { 1635 nthreads = 1; 1636 } else { 1637 enter_teams = ((ap == NULL && active_level == 0) || 1638 (ap && teams_level > 0 && teams_level == level)); 1639 nthreads = 1640 master_set_numthreads 1641 ? master_set_numthreads 1642 : get__nproc_2( 1643 parent_team, 1644 master_tid); // TODO: get nproc directly from current task 1645 1646 // Check if we need to take forkjoin lock? (no need for serialized 1647 // parallel out of teams construct). This code moved here from 1648 // __kmp_reserve_threads() to speedup nested serialized parallels. 1649 if (nthreads > 1) { 1650 if ((get__max_active_levels(master_th) == 1 && 1651 (root->r.r_in_parallel && !enter_teams)) || 1652 (__kmp_library == library_serial)) { 1653 KC_TRACE(10, ("__kmp_fork_call: T#%d serializing team; requested %d" 1654 " threads\n", 1655 gtid, nthreads)); 1656 nthreads = 1; 1657 } 1658 } 1659 if (nthreads > 1) { 1660 /* determine how many new threads we can use */ 1661 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 1662 /* AC: If we execute teams from parallel region (on host), then teams 1663 should be created but each can only have 1 thread if nesting is 1664 disabled. If teams called from serial region, then teams and their 1665 threads should be created regardless of the nesting setting. */ 1666 nthreads = __kmp_reserve_threads(root, parent_team, master_tid, 1667 nthreads, enter_teams); 1668 if (nthreads == 1) { 1669 // Free lock for single thread execution here; for multi-thread 1670 // execution it will be freed later after team of threads created 1671 // and initialized 1672 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1673 } 1674 } 1675 } 1676 KMP_DEBUG_ASSERT(nthreads > 0); 1677 1678 // If we temporarily changed the set number of threads then restore it now 1679 master_th->th.th_set_nproc = 0; 1680 1681 /* create a serialized parallel region? */ 1682 if (nthreads == 1) { 1683 /* josh todo: hypothetical question: what do we do for OS X*? */ 1684 #if KMP_OS_LINUX && \ 1685 (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) 1686 void *args[argc]; 1687 #else 1688 void **args = (void **)KMP_ALLOCA(argc * sizeof(void *)); 1689 #endif /* KMP_OS_LINUX && ( KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || \ 1690 KMP_ARCH_AARCH64) */ 1691 1692 KA_TRACE(20, 1693 ("__kmp_fork_call: T#%d serializing parallel region\n", gtid)); 1694 1695 __kmpc_serialized_parallel(loc, gtid); 1696 1697 if (call_context == fork_context_intel) { 1698 /* TODO this sucks, use the compiler itself to pass args! :) */ 1699 master_th->th.th_serial_team->t.t_ident = loc; 1700 if (!ap) { 1701 // revert change made in __kmpc_serialized_parallel() 1702 master_th->th.th_serial_team->t.t_level--; 1703 // Get args from parent team for teams construct 1704 1705 #if OMPT_SUPPORT 1706 void *dummy; 1707 void **exit_frame_p; 1708 ompt_task_info_t *task_info; 1709 1710 ompt_lw_taskteam_t lw_taskteam; 1711 1712 if (ompt_enabled.enabled) { 1713 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1714 &ompt_parallel_data, return_address); 1715 1716 __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0); 1717 // don't use lw_taskteam after linking. content was swaped 1718 1719 task_info = OMPT_CUR_TASK_INFO(master_th); 1720 exit_frame_p = &(task_info->frame.exit_frame.ptr); 1721 if (ompt_enabled.ompt_callback_implicit_task) { 1722 OMPT_CUR_TASK_INFO(master_th)->thread_num = 1723 __kmp_tid_from_gtid(gtid); 1724 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1725 ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th), 1726 &(task_info->task_data), 1, 1727 OMPT_CUR_TASK_INFO(master_th)->thread_num, 1728 ompt_task_implicit); 1729 } 1730 1731 /* OMPT state */ 1732 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 1733 } else { 1734 exit_frame_p = &dummy; 1735 } 1736 #endif 1737 1738 { 1739 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1740 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1741 __kmp_invoke_microtask(microtask, gtid, 0, argc, 1742 parent_team->t.t_argv 1743 #if OMPT_SUPPORT 1744 , 1745 exit_frame_p 1746 #endif 1747 ); 1748 } 1749 1750 #if OMPT_SUPPORT 1751 if (ompt_enabled.enabled) { 1752 *exit_frame_p = NULL; 1753 if (ompt_enabled.ompt_callback_implicit_task) { 1754 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1755 ompt_scope_end, NULL, &(task_info->task_data), 1, 1756 OMPT_CUR_TASK_INFO(master_th)->thread_num, 1757 ompt_task_implicit); 1758 } 1759 ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th); 1760 __ompt_lw_taskteam_unlink(master_th); 1761 if (ompt_enabled.ompt_callback_parallel_end) { 1762 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 1763 &ompt_parallel_data, parent_task_data, 1764 OMPT_INVOKER(call_context) | ompt_parallel_team, 1765 return_address); 1766 } 1767 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1768 } 1769 #endif 1770 } else if (microtask == (microtask_t)__kmp_teams_master) { 1771 KMP_DEBUG_ASSERT(master_th->th.th_team == 1772 master_th->th.th_serial_team); 1773 team = master_th->th.th_team; 1774 // team->t.t_pkfn = microtask; 1775 team->t.t_invoke = invoker; 1776 __kmp_alloc_argv_entries(argc, team, TRUE); 1777 team->t.t_argc = argc; 1778 argv = (void **)team->t.t_argv; 1779 if (ap) { 1780 for (i = argc - 1; i >= 0; --i) 1781 *argv++ = va_arg(kmp_va_deref(ap), void *); 1782 } else { 1783 for (i = 0; i < argc; ++i) 1784 // Get args from parent team for teams construct 1785 argv[i] = parent_team->t.t_argv[i]; 1786 } 1787 // AC: revert change made in __kmpc_serialized_parallel() 1788 // because initial code in teams should have level=0 1789 team->t.t_level--; 1790 // AC: call special invoker for outer "parallel" of teams construct 1791 invoker(gtid); 1792 #if OMPT_SUPPORT 1793 if (ompt_enabled.enabled) { 1794 ompt_task_info_t *task_info = OMPT_CUR_TASK_INFO(master_th); 1795 if (ompt_enabled.ompt_callback_implicit_task) { 1796 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1797 ompt_scope_end, NULL, &(task_info->task_data), 0, 1798 OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_initial); 1799 } 1800 if (ompt_enabled.ompt_callback_parallel_end) { 1801 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 1802 &ompt_parallel_data, parent_task_data, 1803 OMPT_INVOKER(call_context) | ompt_parallel_league, 1804 return_address); 1805 } 1806 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1807 } 1808 #endif 1809 } else { 1810 argv = args; 1811 for (i = argc - 1; i >= 0; --i) 1812 *argv++ = va_arg(kmp_va_deref(ap), void *); 1813 KMP_MB(); 1814 1815 #if OMPT_SUPPORT 1816 void *dummy; 1817 void **exit_frame_p; 1818 ompt_task_info_t *task_info; 1819 1820 ompt_lw_taskteam_t lw_taskteam; 1821 1822 if (ompt_enabled.enabled) { 1823 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1824 &ompt_parallel_data, return_address); 1825 __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0); 1826 // don't use lw_taskteam after linking. content was swaped 1827 task_info = OMPT_CUR_TASK_INFO(master_th); 1828 exit_frame_p = &(task_info->frame.exit_frame.ptr); 1829 1830 /* OMPT implicit task begin */ 1831 implicit_task_data = OMPT_CUR_TASK_DATA(master_th); 1832 if (ompt_enabled.ompt_callback_implicit_task) { 1833 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1834 ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th), 1835 implicit_task_data, 1, __kmp_tid_from_gtid(gtid), 1836 ompt_task_implicit); 1837 OMPT_CUR_TASK_INFO(master_th)->thread_num = 1838 __kmp_tid_from_gtid(gtid); 1839 } 1840 1841 /* OMPT state */ 1842 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 1843 } else { 1844 exit_frame_p = &dummy; 1845 } 1846 #endif 1847 1848 { 1849 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1850 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1851 __kmp_invoke_microtask(microtask, gtid, 0, argc, args 1852 #if OMPT_SUPPORT 1853 , 1854 exit_frame_p 1855 #endif 1856 ); 1857 } 1858 1859 #if OMPT_SUPPORT 1860 if (ompt_enabled.enabled) { 1861 *exit_frame_p = NULL; 1862 if (ompt_enabled.ompt_callback_implicit_task) { 1863 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1864 ompt_scope_end, NULL, &(task_info->task_data), 1, 1865 OMPT_CUR_TASK_INFO(master_th)->thread_num, 1866 ompt_task_implicit); 1867 } 1868 1869 ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th); 1870 __ompt_lw_taskteam_unlink(master_th); 1871 if (ompt_enabled.ompt_callback_parallel_end) { 1872 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 1873 &ompt_parallel_data, parent_task_data, 1874 OMPT_INVOKER(call_context) | ompt_parallel_team, 1875 return_address); 1876 } 1877 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1878 } 1879 #endif 1880 } 1881 } else if (call_context == fork_context_gnu) { 1882 #if OMPT_SUPPORT 1883 ompt_lw_taskteam_t lwt; 1884 __ompt_lw_taskteam_init(&lwt, master_th, gtid, &ompt_parallel_data, 1885 return_address); 1886 1887 lwt.ompt_task_info.frame.exit_frame = ompt_data_none; 1888 __ompt_lw_taskteam_link(&lwt, master_th, 1); 1889 // don't use lw_taskteam after linking. content was swaped 1890 #endif 1891 1892 // we were called from GNU native code 1893 KA_TRACE(20, ("__kmp_fork_call: T#%d serial exit\n", gtid)); 1894 return FALSE; 1895 } else { 1896 KMP_ASSERT2(call_context < fork_context_last, 1897 "__kmp_fork_call: unknown fork_context parameter"); 1898 } 1899 1900 KA_TRACE(20, ("__kmp_fork_call: T#%d serial exit\n", gtid)); 1901 KMP_MB(); 1902 return FALSE; 1903 } // if (nthreads == 1) 1904 1905 // GEH: only modify the executing flag in the case when not serialized 1906 // serialized case is handled in kmpc_serialized_parallel 1907 KF_TRACE(10, ("__kmp_fork_call: parent_team_aclevel=%d, master_th=%p, " 1908 "curtask=%p, curtask_max_aclevel=%d\n", 1909 parent_team->t.t_active_level, master_th, 1910 master_th->th.th_current_task, 1911 master_th->th.th_current_task->td_icvs.max_active_levels)); 1912 // TODO: GEH - cannot do this assertion because root thread not set up as 1913 // executing 1914 // KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 1 ); 1915 master_th->th.th_current_task->td_flags.executing = 0; 1916 1917 if (!master_th->th.th_teams_microtask || level > teams_level) { 1918 /* Increment our nested depth level */ 1919 KMP_ATOMIC_INC(&root->r.r_in_parallel); 1920 } 1921 1922 // See if we need to make a copy of the ICVs. 1923 int nthreads_icv = master_th->th.th_current_task->td_icvs.nproc; 1924 if ((level + 1 < __kmp_nested_nth.used) && 1925 (__kmp_nested_nth.nth[level + 1] != nthreads_icv)) { 1926 nthreads_icv = __kmp_nested_nth.nth[level + 1]; 1927 } else { 1928 nthreads_icv = 0; // don't update 1929 } 1930 1931 // Figure out the proc_bind_policy for the new team. 1932 kmp_proc_bind_t proc_bind = master_th->th.th_set_proc_bind; 1933 kmp_proc_bind_t proc_bind_icv = 1934 proc_bind_default; // proc_bind_default means don't update 1935 if (master_th->th.th_current_task->td_icvs.proc_bind == proc_bind_false) { 1936 proc_bind = proc_bind_false; 1937 } else { 1938 if (proc_bind == proc_bind_default) { 1939 // No proc_bind clause specified; use current proc-bind-var for this 1940 // parallel region 1941 proc_bind = master_th->th.th_current_task->td_icvs.proc_bind; 1942 } 1943 /* else: The proc_bind policy was specified explicitly on parallel clause. 1944 This overrides proc-bind-var for this parallel region, but does not 1945 change proc-bind-var. */ 1946 // Figure the value of proc-bind-var for the child threads. 1947 if ((level + 1 < __kmp_nested_proc_bind.used) && 1948 (__kmp_nested_proc_bind.bind_types[level + 1] != 1949 master_th->th.th_current_task->td_icvs.proc_bind)) { 1950 proc_bind_icv = __kmp_nested_proc_bind.bind_types[level + 1]; 1951 } 1952 } 1953 1954 // Reset for next parallel region 1955 master_th->th.th_set_proc_bind = proc_bind_default; 1956 1957 if ((nthreads_icv > 0) || (proc_bind_icv != proc_bind_default)) { 1958 kmp_internal_control_t new_icvs; 1959 copy_icvs(&new_icvs, &master_th->th.th_current_task->td_icvs); 1960 new_icvs.next = NULL; 1961 if (nthreads_icv > 0) { 1962 new_icvs.nproc = nthreads_icv; 1963 } 1964 if (proc_bind_icv != proc_bind_default) { 1965 new_icvs.proc_bind = proc_bind_icv; 1966 } 1967 1968 /* allocate a new parallel team */ 1969 KF_TRACE(10, ("__kmp_fork_call: before __kmp_allocate_team\n")); 1970 team = __kmp_allocate_team(root, nthreads, nthreads, 1971 #if OMPT_SUPPORT 1972 ompt_parallel_data, 1973 #endif 1974 proc_bind, &new_icvs, 1975 argc USE_NESTED_HOT_ARG(master_th)); 1976 } else { 1977 /* allocate a new parallel team */ 1978 KF_TRACE(10, ("__kmp_fork_call: before __kmp_allocate_team\n")); 1979 team = __kmp_allocate_team(root, nthreads, nthreads, 1980 #if OMPT_SUPPORT 1981 ompt_parallel_data, 1982 #endif 1983 proc_bind, 1984 &master_th->th.th_current_task->td_icvs, 1985 argc USE_NESTED_HOT_ARG(master_th)); 1986 } 1987 KF_TRACE( 1988 10, ("__kmp_fork_call: after __kmp_allocate_team - team = %p\n", team)); 1989 1990 /* setup the new team */ 1991 KMP_CHECK_UPDATE(team->t.t_master_tid, master_tid); 1992 KMP_CHECK_UPDATE(team->t.t_master_this_cons, master_this_cons); 1993 KMP_CHECK_UPDATE(team->t.t_ident, loc); 1994 KMP_CHECK_UPDATE(team->t.t_parent, parent_team); 1995 KMP_CHECK_UPDATE_SYNC(team->t.t_pkfn, microtask); 1996 #if OMPT_SUPPORT 1997 KMP_CHECK_UPDATE_SYNC(team->t.ompt_team_info.master_return_address, 1998 return_address); 1999 #endif 2000 KMP_CHECK_UPDATE(team->t.t_invoke, invoker); // TODO move to root, maybe 2001 // TODO: parent_team->t.t_level == INT_MAX ??? 2002 if (!master_th->th.th_teams_microtask || level > teams_level) { 2003 int new_level = parent_team->t.t_level + 1; 2004 KMP_CHECK_UPDATE(team->t.t_level, new_level); 2005 new_level = parent_team->t.t_active_level + 1; 2006 KMP_CHECK_UPDATE(team->t.t_active_level, new_level); 2007 } else { 2008 // AC: Do not increase parallel level at start of the teams construct 2009 int new_level = parent_team->t.t_level; 2010 KMP_CHECK_UPDATE(team->t.t_level, new_level); 2011 new_level = parent_team->t.t_active_level; 2012 KMP_CHECK_UPDATE(team->t.t_active_level, new_level); 2013 } 2014 kmp_r_sched_t new_sched = get__sched_2(parent_team, master_tid); 2015 // set primary thread's schedule as new run-time schedule 2016 KMP_CHECK_UPDATE(team->t.t_sched.sched, new_sched.sched); 2017 2018 KMP_CHECK_UPDATE(team->t.t_cancel_request, cancel_noreq); 2019 KMP_CHECK_UPDATE(team->t.t_def_allocator, master_th->th.th_def_allocator); 2020 2021 // Update the floating point rounding in the team if required. 2022 propagateFPControl(team); 2023 2024 if (__kmp_tasking_mode != tskm_immediate_exec) { 2025 // Set primary thread's task team to team's task team. Unless this is hot 2026 // team, it should be NULL. 2027 KMP_DEBUG_ASSERT(master_th->th.th_task_team == 2028 parent_team->t.t_task_team[master_th->th.th_task_state]); 2029 KA_TRACE(20, ("__kmp_fork_call: Primary T#%d pushing task_team %p / team " 2030 "%p, new task_team %p / team %p\n", 2031 __kmp_gtid_from_thread(master_th), 2032 master_th->th.th_task_team, parent_team, 2033 team->t.t_task_team[master_th->th.th_task_state], team)); 2034 2035 if (active_level || master_th->th.th_task_team) { 2036 // Take a memo of primary thread's task_state 2037 KMP_DEBUG_ASSERT(master_th->th.th_task_state_memo_stack); 2038 if (master_th->th.th_task_state_top >= 2039 master_th->th.th_task_state_stack_sz) { // increase size 2040 kmp_uint32 new_size = 2 * master_th->th.th_task_state_stack_sz; 2041 kmp_uint8 *old_stack, *new_stack; 2042 kmp_uint32 i; 2043 new_stack = (kmp_uint8 *)__kmp_allocate(new_size); 2044 for (i = 0; i < master_th->th.th_task_state_stack_sz; ++i) { 2045 new_stack[i] = master_th->th.th_task_state_memo_stack[i]; 2046 } 2047 for (i = master_th->th.th_task_state_stack_sz; i < new_size; 2048 ++i) { // zero-init rest of stack 2049 new_stack[i] = 0; 2050 } 2051 old_stack = master_th->th.th_task_state_memo_stack; 2052 master_th->th.th_task_state_memo_stack = new_stack; 2053 master_th->th.th_task_state_stack_sz = new_size; 2054 __kmp_free(old_stack); 2055 } 2056 // Store primary thread's task_state on stack 2057 master_th->th 2058 .th_task_state_memo_stack[master_th->th.th_task_state_top] = 2059 master_th->th.th_task_state; 2060 master_th->th.th_task_state_top++; 2061 #if KMP_NESTED_HOT_TEAMS 2062 if (master_th->th.th_hot_teams && 2063 active_level < __kmp_hot_teams_max_level && 2064 team == master_th->th.th_hot_teams[active_level].hot_team) { 2065 // Restore primary thread's nested state if nested hot team 2066 master_th->th.th_task_state = 2067 master_th->th 2068 .th_task_state_memo_stack[master_th->th.th_task_state_top]; 2069 } else { 2070 #endif 2071 master_th->th.th_task_state = 0; 2072 #if KMP_NESTED_HOT_TEAMS 2073 } 2074 #endif 2075 } 2076 #if !KMP_NESTED_HOT_TEAMS 2077 KMP_DEBUG_ASSERT((master_th->th.th_task_team == NULL) || 2078 (team == root->r.r_hot_team)); 2079 #endif 2080 } 2081 2082 KA_TRACE( 2083 20, 2084 ("__kmp_fork_call: T#%d(%d:%d)->(%d:0) created a team of %d threads\n", 2085 gtid, parent_team->t.t_id, team->t.t_master_tid, team->t.t_id, 2086 team->t.t_nproc)); 2087 KMP_DEBUG_ASSERT(team != root->r.r_hot_team || 2088 (team->t.t_master_tid == 0 && 2089 (team->t.t_parent == root->r.r_root_team || 2090 team->t.t_parent->t.t_serialized))); 2091 KMP_MB(); 2092 2093 /* now, setup the arguments */ 2094 argv = (void **)team->t.t_argv; 2095 if (ap) { 2096 for (i = argc - 1; i >= 0; --i) { 2097 void *new_argv = va_arg(kmp_va_deref(ap), void *); 2098 KMP_CHECK_UPDATE(*argv, new_argv); 2099 argv++; 2100 } 2101 } else { 2102 for (i = 0; i < argc; ++i) { 2103 // Get args from parent team for teams construct 2104 KMP_CHECK_UPDATE(argv[i], team->t.t_parent->t.t_argv[i]); 2105 } 2106 } 2107 2108 /* now actually fork the threads */ 2109 KMP_CHECK_UPDATE(team->t.t_master_active, master_active); 2110 if (!root->r.r_active) // Only do assignment if it prevents cache ping-pong 2111 root->r.r_active = TRUE; 2112 2113 __kmp_fork_team_threads(root, team, master_th, gtid); 2114 __kmp_setup_icv_copy(team, nthreads, 2115 &master_th->th.th_current_task->td_icvs, loc); 2116 2117 #if OMPT_SUPPORT 2118 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 2119 #endif 2120 2121 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 2122 2123 #if USE_ITT_BUILD 2124 if (team->t.t_active_level == 1 // only report frames at level 1 2125 && !master_th->th.th_teams_microtask) { // not in teams construct 2126 #if USE_ITT_NOTIFY 2127 if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) && 2128 (__kmp_forkjoin_frames_mode == 3 || 2129 __kmp_forkjoin_frames_mode == 1)) { 2130 kmp_uint64 tmp_time = 0; 2131 if (__itt_get_timestamp_ptr) 2132 tmp_time = __itt_get_timestamp(); 2133 // Internal fork - report frame begin 2134 master_th->th.th_frame_time = tmp_time; 2135 if (__kmp_forkjoin_frames_mode == 3) 2136 team->t.t_region_time = tmp_time; 2137 } else 2138 // only one notification scheme (either "submit" or "forking/joined", not both) 2139 #endif /* USE_ITT_NOTIFY */ 2140 if ((__itt_frame_begin_v3_ptr || KMP_ITT_DEBUG) && 2141 __kmp_forkjoin_frames && !__kmp_forkjoin_frames_mode) { 2142 // Mark start of "parallel" region for Intel(R) VTune(TM) analyzer. 2143 __kmp_itt_region_forking(gtid, team->t.t_nproc, 0); 2144 } 2145 } 2146 #endif /* USE_ITT_BUILD */ 2147 2148 /* now go on and do the work */ 2149 KMP_DEBUG_ASSERT(team == __kmp_threads[gtid]->th.th_team); 2150 KMP_MB(); 2151 KF_TRACE(10, 2152 ("__kmp_internal_fork : root=%p, team=%p, master_th=%p, gtid=%d\n", 2153 root, team, master_th, gtid)); 2154 2155 #if USE_ITT_BUILD 2156 if (__itt_stack_caller_create_ptr) { 2157 // create new stack stitching id before entering fork barrier 2158 if (!enter_teams) { 2159 KMP_DEBUG_ASSERT(team->t.t_stack_id == NULL); 2160 team->t.t_stack_id = __kmp_itt_stack_caller_create(); 2161 } else if (parent_team->t.t_serialized) { 2162 // keep stack stitching id in the serialized parent_team; 2163 // current team will be used for parallel inside the teams; 2164 // if parent_team is active, then it already keeps stack stitching id 2165 // for the league of teams 2166 KMP_DEBUG_ASSERT(parent_team->t.t_stack_id == NULL); 2167 parent_team->t.t_stack_id = __kmp_itt_stack_caller_create(); 2168 } 2169 } 2170 #endif /* USE_ITT_BUILD */ 2171 2172 // AC: skip __kmp_internal_fork at teams construct, let only primary 2173 // threads execute 2174 if (ap) { 2175 __kmp_internal_fork(loc, gtid, team); 2176 KF_TRACE(10, ("__kmp_internal_fork : after : root=%p, team=%p, " 2177 "master_th=%p, gtid=%d\n", 2178 root, team, master_th, gtid)); 2179 } 2180 2181 if (call_context == fork_context_gnu) { 2182 KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid)); 2183 return TRUE; 2184 } 2185 2186 /* Invoke microtask for PRIMARY thread */ 2187 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) invoke microtask = %p\n", gtid, 2188 team->t.t_id, team->t.t_pkfn)); 2189 } // END of timer KMP_fork_call block 2190 2191 #if KMP_STATS_ENABLED 2192 // If beginning a teams construct, then change thread state 2193 stats_state_e previous_state = KMP_GET_THREAD_STATE(); 2194 if (!ap) { 2195 KMP_SET_THREAD_STATE(stats_state_e::TEAMS_REGION); 2196 } 2197 #endif 2198 2199 if (!team->t.t_invoke(gtid)) { 2200 KMP_ASSERT2(0, "cannot invoke microtask for PRIMARY thread"); 2201 } 2202 2203 #if KMP_STATS_ENABLED 2204 // If was beginning of a teams construct, then reset thread state 2205 if (!ap) { 2206 KMP_SET_THREAD_STATE(previous_state); 2207 } 2208 #endif 2209 2210 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) done microtask = %p\n", gtid, 2211 team->t.t_id, team->t.t_pkfn)); 2212 KMP_MB(); /* Flush all pending memory write invalidates. */ 2213 2214 KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid)); 2215 2216 #if OMPT_SUPPORT 2217 if (ompt_enabled.enabled) { 2218 master_th->th.ompt_thread_info.state = ompt_state_overhead; 2219 } 2220 #endif 2221 2222 return TRUE; 2223 } 2224 2225 #if OMPT_SUPPORT 2226 static inline void __kmp_join_restore_state(kmp_info_t *thread, 2227 kmp_team_t *team) { 2228 // restore state outside the region 2229 thread->th.ompt_thread_info.state = 2230 ((team->t.t_serialized) ? ompt_state_work_serial 2231 : ompt_state_work_parallel); 2232 } 2233 2234 static inline void __kmp_join_ompt(int gtid, kmp_info_t *thread, 2235 kmp_team_t *team, ompt_data_t *parallel_data, 2236 int flags, void *codeptr) { 2237 ompt_task_info_t *task_info = __ompt_get_task_info_object(0); 2238 if (ompt_enabled.ompt_callback_parallel_end) { 2239 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 2240 parallel_data, &(task_info->task_data), flags, codeptr); 2241 } 2242 2243 task_info->frame.enter_frame = ompt_data_none; 2244 __kmp_join_restore_state(thread, team); 2245 } 2246 #endif 2247 2248 void __kmp_join_call(ident_t *loc, int gtid 2249 #if OMPT_SUPPORT 2250 , 2251 enum fork_context_e fork_context 2252 #endif 2253 , 2254 int exit_teams) { 2255 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_join_call); 2256 kmp_team_t *team; 2257 kmp_team_t *parent_team; 2258 kmp_info_t *master_th; 2259 kmp_root_t *root; 2260 int master_active; 2261 2262 KA_TRACE(20, ("__kmp_join_call: enter T#%d\n", gtid)); 2263 2264 /* setup current data */ 2265 master_th = __kmp_threads[gtid]; 2266 root = master_th->th.th_root; 2267 team = master_th->th.th_team; 2268 parent_team = team->t.t_parent; 2269 2270 master_th->th.th_ident = loc; 2271 2272 #if OMPT_SUPPORT 2273 void *team_microtask = (void *)team->t.t_pkfn; 2274 // For GOMP interface with serialized parallel, need the 2275 // __kmpc_end_serialized_parallel to call hooks for OMPT end-implicit-task 2276 // and end-parallel events. 2277 if (ompt_enabled.enabled && 2278 !(team->t.t_serialized && fork_context == fork_context_gnu)) { 2279 master_th->th.ompt_thread_info.state = ompt_state_overhead; 2280 } 2281 #endif 2282 2283 #if KMP_DEBUG 2284 if (__kmp_tasking_mode != tskm_immediate_exec && !exit_teams) { 2285 KA_TRACE(20, ("__kmp_join_call: T#%d, old team = %p old task_team = %p, " 2286 "th_task_team = %p\n", 2287 __kmp_gtid_from_thread(master_th), team, 2288 team->t.t_task_team[master_th->th.th_task_state], 2289 master_th->th.th_task_team)); 2290 KMP_DEBUG_ASSERT(master_th->th.th_task_team == 2291 team->t.t_task_team[master_th->th.th_task_state]); 2292 } 2293 #endif 2294 2295 if (team->t.t_serialized) { 2296 if (master_th->th.th_teams_microtask) { 2297 // We are in teams construct 2298 int level = team->t.t_level; 2299 int tlevel = master_th->th.th_teams_level; 2300 if (level == tlevel) { 2301 // AC: we haven't incremented it earlier at start of teams construct, 2302 // so do it here - at the end of teams construct 2303 team->t.t_level++; 2304 } else if (level == tlevel + 1) { 2305 // AC: we are exiting parallel inside teams, need to increment 2306 // serialization in order to restore it in the next call to 2307 // __kmpc_end_serialized_parallel 2308 team->t.t_serialized++; 2309 } 2310 } 2311 __kmpc_end_serialized_parallel(loc, gtid); 2312 2313 #if OMPT_SUPPORT 2314 if (ompt_enabled.enabled) { 2315 __kmp_join_restore_state(master_th, parent_team); 2316 } 2317 #endif 2318 2319 return; 2320 } 2321 2322 master_active = team->t.t_master_active; 2323 2324 if (!exit_teams) { 2325 // AC: No barrier for internal teams at exit from teams construct. 2326 // But there is barrier for external team (league). 2327 __kmp_internal_join(loc, gtid, team); 2328 #if USE_ITT_BUILD 2329 if (__itt_stack_caller_create_ptr) { 2330 KMP_DEBUG_ASSERT(team->t.t_stack_id != NULL); 2331 // destroy the stack stitching id after join barrier 2332 __kmp_itt_stack_caller_destroy((__itt_caller)team->t.t_stack_id); 2333 team->t.t_stack_id = NULL; 2334 } 2335 #endif 2336 } else { 2337 master_th->th.th_task_state = 2338 0; // AC: no tasking in teams (out of any parallel) 2339 #if USE_ITT_BUILD 2340 if (__itt_stack_caller_create_ptr && parent_team->t.t_serialized) { 2341 KMP_DEBUG_ASSERT(parent_team->t.t_stack_id != NULL); 2342 // destroy the stack stitching id on exit from the teams construct 2343 // if parent_team is active, then the id will be destroyed later on 2344 // by master of the league of teams 2345 __kmp_itt_stack_caller_destroy((__itt_caller)parent_team->t.t_stack_id); 2346 parent_team->t.t_stack_id = NULL; 2347 } 2348 #endif 2349 } 2350 2351 KMP_MB(); 2352 2353 #if OMPT_SUPPORT 2354 ompt_data_t *parallel_data = &(team->t.ompt_team_info.parallel_data); 2355 void *codeptr = team->t.ompt_team_info.master_return_address; 2356 #endif 2357 2358 #if USE_ITT_BUILD 2359 // Mark end of "parallel" region for Intel(R) VTune(TM) analyzer. 2360 if (team->t.t_active_level == 1 && 2361 (!master_th->th.th_teams_microtask || /* not in teams construct */ 2362 master_th->th.th_teams_size.nteams == 1)) { 2363 master_th->th.th_ident = loc; 2364 // only one notification scheme (either "submit" or "forking/joined", not 2365 // both) 2366 if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) && 2367 __kmp_forkjoin_frames_mode == 3) 2368 __kmp_itt_frame_submit(gtid, team->t.t_region_time, 2369 master_th->th.th_frame_time, 0, loc, 2370 master_th->th.th_team_nproc, 1); 2371 else if ((__itt_frame_end_v3_ptr || KMP_ITT_DEBUG) && 2372 !__kmp_forkjoin_frames_mode && __kmp_forkjoin_frames) 2373 __kmp_itt_region_joined(gtid); 2374 } // active_level == 1 2375 #endif /* USE_ITT_BUILD */ 2376 2377 if (master_th->th.th_teams_microtask && !exit_teams && 2378 team->t.t_pkfn != (microtask_t)__kmp_teams_master && 2379 team->t.t_level == master_th->th.th_teams_level + 1) { 2380 // AC: We need to leave the team structure intact at the end of parallel 2381 // inside the teams construct, so that at the next parallel same (hot) team 2382 // works, only adjust nesting levels 2383 #if OMPT_SUPPORT 2384 ompt_data_t ompt_parallel_data = ompt_data_none; 2385 if (ompt_enabled.enabled) { 2386 ompt_task_info_t *task_info = __ompt_get_task_info_object(0); 2387 if (ompt_enabled.ompt_callback_implicit_task) { 2388 int ompt_team_size = team->t.t_nproc; 2389 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 2390 ompt_scope_end, NULL, &(task_info->task_data), ompt_team_size, 2391 OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit); 2392 } 2393 task_info->frame.exit_frame = ompt_data_none; 2394 task_info->task_data = ompt_data_none; 2395 ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th); 2396 __ompt_lw_taskteam_unlink(master_th); 2397 } 2398 #endif 2399 /* Decrement our nested depth level */ 2400 team->t.t_level--; 2401 team->t.t_active_level--; 2402 KMP_ATOMIC_DEC(&root->r.r_in_parallel); 2403 2404 // Restore number of threads in the team if needed. This code relies on 2405 // the proper adjustment of th_teams_size.nth after the fork in 2406 // __kmp_teams_master on each teams primary thread in the case that 2407 // __kmp_reserve_threads reduced it. 2408 if (master_th->th.th_team_nproc < master_th->th.th_teams_size.nth) { 2409 int old_num = master_th->th.th_team_nproc; 2410 int new_num = master_th->th.th_teams_size.nth; 2411 kmp_info_t **other_threads = team->t.t_threads; 2412 team->t.t_nproc = new_num; 2413 for (int i = 0; i < old_num; ++i) { 2414 other_threads[i]->th.th_team_nproc = new_num; 2415 } 2416 // Adjust states of non-used threads of the team 2417 for (int i = old_num; i < new_num; ++i) { 2418 // Re-initialize thread's barrier data. 2419 KMP_DEBUG_ASSERT(other_threads[i]); 2420 kmp_balign_t *balign = other_threads[i]->th.th_bar; 2421 for (int b = 0; b < bs_last_barrier; ++b) { 2422 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 2423 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 2424 #if USE_DEBUGGER 2425 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 2426 #endif 2427 } 2428 if (__kmp_tasking_mode != tskm_immediate_exec) { 2429 // Synchronize thread's task state 2430 other_threads[i]->th.th_task_state = master_th->th.th_task_state; 2431 } 2432 } 2433 } 2434 2435 #if OMPT_SUPPORT 2436 if (ompt_enabled.enabled) { 2437 __kmp_join_ompt(gtid, master_th, parent_team, &ompt_parallel_data, 2438 OMPT_INVOKER(fork_context) | ompt_parallel_team, codeptr); 2439 } 2440 #endif 2441 2442 return; 2443 } 2444 2445 /* do cleanup and restore the parent team */ 2446 master_th->th.th_info.ds.ds_tid = team->t.t_master_tid; 2447 master_th->th.th_local.this_construct = team->t.t_master_this_cons; 2448 2449 master_th->th.th_dispatch = &parent_team->t.t_dispatch[team->t.t_master_tid]; 2450 2451 /* jc: The following lock has instructions with REL and ACQ semantics, 2452 separating the parallel user code called in this parallel region 2453 from the serial user code called after this function returns. */ 2454 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 2455 2456 if (!master_th->th.th_teams_microtask || 2457 team->t.t_level > master_th->th.th_teams_level) { 2458 /* Decrement our nested depth level */ 2459 KMP_ATOMIC_DEC(&root->r.r_in_parallel); 2460 } 2461 KMP_DEBUG_ASSERT(root->r.r_in_parallel >= 0); 2462 2463 #if OMPT_SUPPORT 2464 if (ompt_enabled.enabled) { 2465 ompt_task_info_t *task_info = __ompt_get_task_info_object(0); 2466 if (ompt_enabled.ompt_callback_implicit_task) { 2467 int flags = (team_microtask == (void *)__kmp_teams_master) 2468 ? ompt_task_initial 2469 : ompt_task_implicit; 2470 int ompt_team_size = (flags == ompt_task_initial) ? 0 : team->t.t_nproc; 2471 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 2472 ompt_scope_end, NULL, &(task_info->task_data), ompt_team_size, 2473 OMPT_CUR_TASK_INFO(master_th)->thread_num, flags); 2474 } 2475 task_info->frame.exit_frame = ompt_data_none; 2476 task_info->task_data = ompt_data_none; 2477 } 2478 #endif 2479 2480 KF_TRACE(10, ("__kmp_join_call1: T#%d, this_thread=%p team=%p\n", 0, 2481 master_th, team)); 2482 __kmp_pop_current_task_from_thread(master_th); 2483 2484 #if KMP_AFFINITY_SUPPORTED 2485 // Restore master thread's partition. 2486 master_th->th.th_first_place = team->t.t_first_place; 2487 master_th->th.th_last_place = team->t.t_last_place; 2488 #endif // KMP_AFFINITY_SUPPORTED 2489 master_th->th.th_def_allocator = team->t.t_def_allocator; 2490 2491 updateHWFPControl(team); 2492 2493 if (root->r.r_active != master_active) 2494 root->r.r_active = master_active; 2495 2496 __kmp_free_team(root, team USE_NESTED_HOT_ARG( 2497 master_th)); // this will free worker threads 2498 2499 /* this race was fun to find. make sure the following is in the critical 2500 region otherwise assertions may fail occasionally since the old team may be 2501 reallocated and the hierarchy appears inconsistent. it is actually safe to 2502 run and won't cause any bugs, but will cause those assertion failures. it's 2503 only one deref&assign so might as well put this in the critical region */ 2504 master_th->th.th_team = parent_team; 2505 master_th->th.th_team_nproc = parent_team->t.t_nproc; 2506 master_th->th.th_team_master = parent_team->t.t_threads[0]; 2507 master_th->th.th_team_serialized = parent_team->t.t_serialized; 2508 2509 /* restore serialized team, if need be */ 2510 if (parent_team->t.t_serialized && 2511 parent_team != master_th->th.th_serial_team && 2512 parent_team != root->r.r_root_team) { 2513 __kmp_free_team(root, 2514 master_th->th.th_serial_team USE_NESTED_HOT_ARG(NULL)); 2515 master_th->th.th_serial_team = parent_team; 2516 } 2517 2518 if (__kmp_tasking_mode != tskm_immediate_exec) { 2519 if (master_th->th.th_task_state_top > 2520 0) { // Restore task state from memo stack 2521 KMP_DEBUG_ASSERT(master_th->th.th_task_state_memo_stack); 2522 // Remember primary thread's state if we re-use this nested hot team 2523 master_th->th.th_task_state_memo_stack[master_th->th.th_task_state_top] = 2524 master_th->th.th_task_state; 2525 --master_th->th.th_task_state_top; // pop 2526 // Now restore state at this level 2527 master_th->th.th_task_state = 2528 master_th->th 2529 .th_task_state_memo_stack[master_th->th.th_task_state_top]; 2530 } 2531 // Copy the task team from the parent team to the primary thread 2532 master_th->th.th_task_team = 2533 parent_team->t.t_task_team[master_th->th.th_task_state]; 2534 KA_TRACE(20, 2535 ("__kmp_join_call: Primary T#%d restoring task_team %p, team %p\n", 2536 __kmp_gtid_from_thread(master_th), master_th->th.th_task_team, 2537 parent_team)); 2538 } 2539 2540 // TODO: GEH - cannot do this assertion because root thread not set up as 2541 // executing 2542 // KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 0 ); 2543 master_th->th.th_current_task->td_flags.executing = 1; 2544 2545 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 2546 2547 #if OMPT_SUPPORT 2548 int flags = 2549 OMPT_INVOKER(fork_context) | 2550 ((team_microtask == (void *)__kmp_teams_master) ? ompt_parallel_league 2551 : ompt_parallel_team); 2552 if (ompt_enabled.enabled) { 2553 __kmp_join_ompt(gtid, master_th, parent_team, parallel_data, flags, 2554 codeptr); 2555 } 2556 #endif 2557 2558 KMP_MB(); 2559 KA_TRACE(20, ("__kmp_join_call: exit T#%d\n", gtid)); 2560 } 2561 2562 /* Check whether we should push an internal control record onto the 2563 serial team stack. If so, do it. */ 2564 void __kmp_save_internal_controls(kmp_info_t *thread) { 2565 2566 if (thread->th.th_team != thread->th.th_serial_team) { 2567 return; 2568 } 2569 if (thread->th.th_team->t.t_serialized > 1) { 2570 int push = 0; 2571 2572 if (thread->th.th_team->t.t_control_stack_top == NULL) { 2573 push = 1; 2574 } else { 2575 if (thread->th.th_team->t.t_control_stack_top->serial_nesting_level != 2576 thread->th.th_team->t.t_serialized) { 2577 push = 1; 2578 } 2579 } 2580 if (push) { /* push a record on the serial team's stack */ 2581 kmp_internal_control_t *control = 2582 (kmp_internal_control_t *)__kmp_allocate( 2583 sizeof(kmp_internal_control_t)); 2584 2585 copy_icvs(control, &thread->th.th_current_task->td_icvs); 2586 2587 control->serial_nesting_level = thread->th.th_team->t.t_serialized; 2588 2589 control->next = thread->th.th_team->t.t_control_stack_top; 2590 thread->th.th_team->t.t_control_stack_top = control; 2591 } 2592 } 2593 } 2594 2595 /* Changes set_nproc */ 2596 void __kmp_set_num_threads(int new_nth, int gtid) { 2597 kmp_info_t *thread; 2598 kmp_root_t *root; 2599 2600 KF_TRACE(10, ("__kmp_set_num_threads: new __kmp_nth = %d\n", new_nth)); 2601 KMP_DEBUG_ASSERT(__kmp_init_serial); 2602 2603 if (new_nth < 1) 2604 new_nth = 1; 2605 else if (new_nth > __kmp_max_nth) 2606 new_nth = __kmp_max_nth; 2607 2608 KMP_COUNT_VALUE(OMP_set_numthreads, new_nth); 2609 thread = __kmp_threads[gtid]; 2610 if (thread->th.th_current_task->td_icvs.nproc == new_nth) 2611 return; // nothing to do 2612 2613 __kmp_save_internal_controls(thread); 2614 2615 set__nproc(thread, new_nth); 2616 2617 // If this omp_set_num_threads() call will cause the hot team size to be 2618 // reduced (in the absence of a num_threads clause), then reduce it now, 2619 // rather than waiting for the next parallel region. 2620 root = thread->th.th_root; 2621 if (__kmp_init_parallel && (!root->r.r_active) && 2622 (root->r.r_hot_team->t.t_nproc > new_nth) 2623 #if KMP_NESTED_HOT_TEAMS 2624 && __kmp_hot_teams_max_level && !__kmp_hot_teams_mode 2625 #endif 2626 ) { 2627 kmp_team_t *hot_team = root->r.r_hot_team; 2628 int f; 2629 2630 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 2631 2632 // Release the extra threads we don't need any more. 2633 for (f = new_nth; f < hot_team->t.t_nproc; f++) { 2634 KMP_DEBUG_ASSERT(hot_team->t.t_threads[f] != NULL); 2635 if (__kmp_tasking_mode != tskm_immediate_exec) { 2636 // When decreasing team size, threads no longer in the team should unref 2637 // task team. 2638 hot_team->t.t_threads[f]->th.th_task_team = NULL; 2639 } 2640 __kmp_free_thread(hot_team->t.t_threads[f]); 2641 hot_team->t.t_threads[f] = NULL; 2642 } 2643 hot_team->t.t_nproc = new_nth; 2644 #if KMP_NESTED_HOT_TEAMS 2645 if (thread->th.th_hot_teams) { 2646 KMP_DEBUG_ASSERT(hot_team == thread->th.th_hot_teams[0].hot_team); 2647 thread->th.th_hot_teams[0].hot_team_nth = new_nth; 2648 } 2649 #endif 2650 2651 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 2652 2653 // Update the t_nproc field in the threads that are still active. 2654 for (f = 0; f < new_nth; f++) { 2655 KMP_DEBUG_ASSERT(hot_team->t.t_threads[f] != NULL); 2656 hot_team->t.t_threads[f]->th.th_team_nproc = new_nth; 2657 } 2658 // Special flag in case omp_set_num_threads() call 2659 hot_team->t.t_size_changed = -1; 2660 } 2661 } 2662 2663 /* Changes max_active_levels */ 2664 void __kmp_set_max_active_levels(int gtid, int max_active_levels) { 2665 kmp_info_t *thread; 2666 2667 KF_TRACE(10, ("__kmp_set_max_active_levels: new max_active_levels for thread " 2668 "%d = (%d)\n", 2669 gtid, max_active_levels)); 2670 KMP_DEBUG_ASSERT(__kmp_init_serial); 2671 2672 // validate max_active_levels 2673 if (max_active_levels < 0) { 2674 KMP_WARNING(ActiveLevelsNegative, max_active_levels); 2675 // We ignore this call if the user has specified a negative value. 2676 // The current setting won't be changed. The last valid setting will be 2677 // used. A warning will be issued (if warnings are allowed as controlled by 2678 // the KMP_WARNINGS env var). 2679 KF_TRACE(10, ("__kmp_set_max_active_levels: the call is ignored: new " 2680 "max_active_levels for thread %d = (%d)\n", 2681 gtid, max_active_levels)); 2682 return; 2683 } 2684 if (max_active_levels <= KMP_MAX_ACTIVE_LEVELS_LIMIT) { 2685 // it's OK, the max_active_levels is within the valid range: [ 0; 2686 // KMP_MAX_ACTIVE_LEVELS_LIMIT ] 2687 // We allow a zero value. (implementation defined behavior) 2688 } else { 2689 KMP_WARNING(ActiveLevelsExceedLimit, max_active_levels, 2690 KMP_MAX_ACTIVE_LEVELS_LIMIT); 2691 max_active_levels = KMP_MAX_ACTIVE_LEVELS_LIMIT; 2692 // Current upper limit is MAX_INT. (implementation defined behavior) 2693 // If the input exceeds the upper limit, we correct the input to be the 2694 // upper limit. (implementation defined behavior) 2695 // Actually, the flow should never get here until we use MAX_INT limit. 2696 } 2697 KF_TRACE(10, ("__kmp_set_max_active_levels: after validation: new " 2698 "max_active_levels for thread %d = (%d)\n", 2699 gtid, max_active_levels)); 2700 2701 thread = __kmp_threads[gtid]; 2702 2703 __kmp_save_internal_controls(thread); 2704 2705 set__max_active_levels(thread, max_active_levels); 2706 } 2707 2708 /* Gets max_active_levels */ 2709 int __kmp_get_max_active_levels(int gtid) { 2710 kmp_info_t *thread; 2711 2712 KF_TRACE(10, ("__kmp_get_max_active_levels: thread %d\n", gtid)); 2713 KMP_DEBUG_ASSERT(__kmp_init_serial); 2714 2715 thread = __kmp_threads[gtid]; 2716 KMP_DEBUG_ASSERT(thread->th.th_current_task); 2717 KF_TRACE(10, ("__kmp_get_max_active_levels: thread %d, curtask=%p, " 2718 "curtask_maxaclevel=%d\n", 2719 gtid, thread->th.th_current_task, 2720 thread->th.th_current_task->td_icvs.max_active_levels)); 2721 return thread->th.th_current_task->td_icvs.max_active_levels; 2722 } 2723 2724 // nteams-var per-device ICV 2725 void __kmp_set_num_teams(int num_teams) { 2726 if (num_teams > 0) 2727 __kmp_nteams = num_teams; 2728 } 2729 int __kmp_get_max_teams(void) { return __kmp_nteams; } 2730 // teams-thread-limit-var per-device ICV 2731 void __kmp_set_teams_thread_limit(int limit) { 2732 if (limit > 0) 2733 __kmp_teams_thread_limit = limit; 2734 } 2735 int __kmp_get_teams_thread_limit(void) { return __kmp_teams_thread_limit; } 2736 2737 KMP_BUILD_ASSERT(sizeof(kmp_sched_t) == sizeof(int)); 2738 KMP_BUILD_ASSERT(sizeof(enum sched_type) == sizeof(int)); 2739 2740 /* Changes def_sched_var ICV values (run-time schedule kind and chunk) */ 2741 void __kmp_set_schedule(int gtid, kmp_sched_t kind, int chunk) { 2742 kmp_info_t *thread; 2743 kmp_sched_t orig_kind; 2744 // kmp_team_t *team; 2745 2746 KF_TRACE(10, ("__kmp_set_schedule: new schedule for thread %d = (%d, %d)\n", 2747 gtid, (int)kind, chunk)); 2748 KMP_DEBUG_ASSERT(__kmp_init_serial); 2749 2750 // Check if the kind parameter is valid, correct if needed. 2751 // Valid parameters should fit in one of two intervals - standard or extended: 2752 // <lower>, <valid>, <upper_std>, <lower_ext>, <valid>, <upper> 2753 // 2008-01-25: 0, 1 - 4, 5, 100, 101 - 102, 103 2754 orig_kind = kind; 2755 kind = __kmp_sched_without_mods(kind); 2756 2757 if (kind <= kmp_sched_lower || kind >= kmp_sched_upper || 2758 (kind <= kmp_sched_lower_ext && kind >= kmp_sched_upper_std)) { 2759 // TODO: Hint needs attention in case we change the default schedule. 2760 __kmp_msg(kmp_ms_warning, KMP_MSG(ScheduleKindOutOfRange, kind), 2761 KMP_HNT(DefaultScheduleKindUsed, "static, no chunk"), 2762 __kmp_msg_null); 2763 kind = kmp_sched_default; 2764 chunk = 0; // ignore chunk value in case of bad kind 2765 } 2766 2767 thread = __kmp_threads[gtid]; 2768 2769 __kmp_save_internal_controls(thread); 2770 2771 if (kind < kmp_sched_upper_std) { 2772 if (kind == kmp_sched_static && chunk < KMP_DEFAULT_CHUNK) { 2773 // differ static chunked vs. unchunked: chunk should be invalid to 2774 // indicate unchunked schedule (which is the default) 2775 thread->th.th_current_task->td_icvs.sched.r_sched_type = kmp_sch_static; 2776 } else { 2777 thread->th.th_current_task->td_icvs.sched.r_sched_type = 2778 __kmp_sch_map[kind - kmp_sched_lower - 1]; 2779 } 2780 } else { 2781 // __kmp_sch_map[ kind - kmp_sched_lower_ext + kmp_sched_upper_std - 2782 // kmp_sched_lower - 2 ]; 2783 thread->th.th_current_task->td_icvs.sched.r_sched_type = 2784 __kmp_sch_map[kind - kmp_sched_lower_ext + kmp_sched_upper_std - 2785 kmp_sched_lower - 2]; 2786 } 2787 __kmp_sched_apply_mods_intkind( 2788 orig_kind, &(thread->th.th_current_task->td_icvs.sched.r_sched_type)); 2789 if (kind == kmp_sched_auto || chunk < 1) { 2790 // ignore parameter chunk for schedule auto 2791 thread->th.th_current_task->td_icvs.sched.chunk = KMP_DEFAULT_CHUNK; 2792 } else { 2793 thread->th.th_current_task->td_icvs.sched.chunk = chunk; 2794 } 2795 } 2796 2797 /* Gets def_sched_var ICV values */ 2798 void __kmp_get_schedule(int gtid, kmp_sched_t *kind, int *chunk) { 2799 kmp_info_t *thread; 2800 enum sched_type th_type; 2801 2802 KF_TRACE(10, ("__kmp_get_schedule: thread %d\n", gtid)); 2803 KMP_DEBUG_ASSERT(__kmp_init_serial); 2804 2805 thread = __kmp_threads[gtid]; 2806 2807 th_type = thread->th.th_current_task->td_icvs.sched.r_sched_type; 2808 switch (SCHEDULE_WITHOUT_MODIFIERS(th_type)) { 2809 case kmp_sch_static: 2810 case kmp_sch_static_greedy: 2811 case kmp_sch_static_balanced: 2812 *kind = kmp_sched_static; 2813 __kmp_sched_apply_mods_stdkind(kind, th_type); 2814 *chunk = 0; // chunk was not set, try to show this fact via zero value 2815 return; 2816 case kmp_sch_static_chunked: 2817 *kind = kmp_sched_static; 2818 break; 2819 case kmp_sch_dynamic_chunked: 2820 *kind = kmp_sched_dynamic; 2821 break; 2822 case kmp_sch_guided_chunked: 2823 case kmp_sch_guided_iterative_chunked: 2824 case kmp_sch_guided_analytical_chunked: 2825 *kind = kmp_sched_guided; 2826 break; 2827 case kmp_sch_auto: 2828 *kind = kmp_sched_auto; 2829 break; 2830 case kmp_sch_trapezoidal: 2831 *kind = kmp_sched_trapezoidal; 2832 break; 2833 #if KMP_STATIC_STEAL_ENABLED 2834 case kmp_sch_static_steal: 2835 *kind = kmp_sched_static_steal; 2836 break; 2837 #endif 2838 default: 2839 KMP_FATAL(UnknownSchedulingType, th_type); 2840 } 2841 2842 __kmp_sched_apply_mods_stdkind(kind, th_type); 2843 *chunk = thread->th.th_current_task->td_icvs.sched.chunk; 2844 } 2845 2846 int __kmp_get_ancestor_thread_num(int gtid, int level) { 2847 2848 int ii, dd; 2849 kmp_team_t *team; 2850 kmp_info_t *thr; 2851 2852 KF_TRACE(10, ("__kmp_get_ancestor_thread_num: thread %d %d\n", gtid, level)); 2853 KMP_DEBUG_ASSERT(__kmp_init_serial); 2854 2855 // validate level 2856 if (level == 0) 2857 return 0; 2858 if (level < 0) 2859 return -1; 2860 thr = __kmp_threads[gtid]; 2861 team = thr->th.th_team; 2862 ii = team->t.t_level; 2863 if (level > ii) 2864 return -1; 2865 2866 if (thr->th.th_teams_microtask) { 2867 // AC: we are in teams region where multiple nested teams have same level 2868 int tlevel = thr->th.th_teams_level; // the level of the teams construct 2869 if (level <= 2870 tlevel) { // otherwise usual algorithm works (will not touch the teams) 2871 KMP_DEBUG_ASSERT(ii >= tlevel); 2872 // AC: As we need to pass by the teams league, we need to artificially 2873 // increase ii 2874 if (ii == tlevel) { 2875 ii += 2; // three teams have same level 2876 } else { 2877 ii++; // two teams have same level 2878 } 2879 } 2880 } 2881 2882 if (ii == level) 2883 return __kmp_tid_from_gtid(gtid); 2884 2885 dd = team->t.t_serialized; 2886 level++; 2887 while (ii > level) { 2888 for (dd = team->t.t_serialized; (dd > 0) && (ii > level); dd--, ii--) { 2889 } 2890 if ((team->t.t_serialized) && (!dd)) { 2891 team = team->t.t_parent; 2892 continue; 2893 } 2894 if (ii > level) { 2895 team = team->t.t_parent; 2896 dd = team->t.t_serialized; 2897 ii--; 2898 } 2899 } 2900 2901 return (dd > 1) ? (0) : (team->t.t_master_tid); 2902 } 2903 2904 int __kmp_get_team_size(int gtid, int level) { 2905 2906 int ii, dd; 2907 kmp_team_t *team; 2908 kmp_info_t *thr; 2909 2910 KF_TRACE(10, ("__kmp_get_team_size: thread %d %d\n", gtid, level)); 2911 KMP_DEBUG_ASSERT(__kmp_init_serial); 2912 2913 // validate level 2914 if (level == 0) 2915 return 1; 2916 if (level < 0) 2917 return -1; 2918 thr = __kmp_threads[gtid]; 2919 team = thr->th.th_team; 2920 ii = team->t.t_level; 2921 if (level > ii) 2922 return -1; 2923 2924 if (thr->th.th_teams_microtask) { 2925 // AC: we are in teams region where multiple nested teams have same level 2926 int tlevel = thr->th.th_teams_level; // the level of the teams construct 2927 if (level <= 2928 tlevel) { // otherwise usual algorithm works (will not touch the teams) 2929 KMP_DEBUG_ASSERT(ii >= tlevel); 2930 // AC: As we need to pass by the teams league, we need to artificially 2931 // increase ii 2932 if (ii == tlevel) { 2933 ii += 2; // three teams have same level 2934 } else { 2935 ii++; // two teams have same level 2936 } 2937 } 2938 } 2939 2940 while (ii > level) { 2941 for (dd = team->t.t_serialized; (dd > 0) && (ii > level); dd--, ii--) { 2942 } 2943 if (team->t.t_serialized && (!dd)) { 2944 team = team->t.t_parent; 2945 continue; 2946 } 2947 if (ii > level) { 2948 team = team->t.t_parent; 2949 ii--; 2950 } 2951 } 2952 2953 return team->t.t_nproc; 2954 } 2955 2956 kmp_r_sched_t __kmp_get_schedule_global() { 2957 // This routine created because pairs (__kmp_sched, __kmp_chunk) and 2958 // (__kmp_static, __kmp_guided) may be changed by kmp_set_defaults 2959 // independently. So one can get the updated schedule here. 2960 2961 kmp_r_sched_t r_sched; 2962 2963 // create schedule from 4 globals: __kmp_sched, __kmp_chunk, __kmp_static, 2964 // __kmp_guided. __kmp_sched should keep original value, so that user can set 2965 // KMP_SCHEDULE multiple times, and thus have different run-time schedules in 2966 // different roots (even in OMP 2.5) 2967 enum sched_type s = SCHEDULE_WITHOUT_MODIFIERS(__kmp_sched); 2968 enum sched_type sched_modifiers = SCHEDULE_GET_MODIFIERS(__kmp_sched); 2969 if (s == kmp_sch_static) { 2970 // replace STATIC with more detailed schedule (balanced or greedy) 2971 r_sched.r_sched_type = __kmp_static; 2972 } else if (s == kmp_sch_guided_chunked) { 2973 // replace GUIDED with more detailed schedule (iterative or analytical) 2974 r_sched.r_sched_type = __kmp_guided; 2975 } else { // (STATIC_CHUNKED), or (DYNAMIC_CHUNKED), or other 2976 r_sched.r_sched_type = __kmp_sched; 2977 } 2978 SCHEDULE_SET_MODIFIERS(r_sched.r_sched_type, sched_modifiers); 2979 2980 if (__kmp_chunk < KMP_DEFAULT_CHUNK) { 2981 // __kmp_chunk may be wrong here (if it was not ever set) 2982 r_sched.chunk = KMP_DEFAULT_CHUNK; 2983 } else { 2984 r_sched.chunk = __kmp_chunk; 2985 } 2986 2987 return r_sched; 2988 } 2989 2990 /* Allocate (realloc == FALSE) * or reallocate (realloc == TRUE) 2991 at least argc number of *t_argv entries for the requested team. */ 2992 static void __kmp_alloc_argv_entries(int argc, kmp_team_t *team, int realloc) { 2993 2994 KMP_DEBUG_ASSERT(team); 2995 if (!realloc || argc > team->t.t_max_argc) { 2996 2997 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: needed entries=%d, " 2998 "current entries=%d\n", 2999 team->t.t_id, argc, (realloc) ? team->t.t_max_argc : 0)); 3000 /* if previously allocated heap space for args, free them */ 3001 if (realloc && team->t.t_argv != &team->t.t_inline_argv[0]) 3002 __kmp_free((void *)team->t.t_argv); 3003 3004 if (argc <= KMP_INLINE_ARGV_ENTRIES) { 3005 /* use unused space in the cache line for arguments */ 3006 team->t.t_max_argc = KMP_INLINE_ARGV_ENTRIES; 3007 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: inline allocate %d " 3008 "argv entries\n", 3009 team->t.t_id, team->t.t_max_argc)); 3010 team->t.t_argv = &team->t.t_inline_argv[0]; 3011 if (__kmp_storage_map) { 3012 __kmp_print_storage_map_gtid( 3013 -1, &team->t.t_inline_argv[0], 3014 &team->t.t_inline_argv[KMP_INLINE_ARGV_ENTRIES], 3015 (sizeof(void *) * KMP_INLINE_ARGV_ENTRIES), "team_%d.t_inline_argv", 3016 team->t.t_id); 3017 } 3018 } else { 3019 /* allocate space for arguments in the heap */ 3020 team->t.t_max_argc = (argc <= (KMP_MIN_MALLOC_ARGV_ENTRIES >> 1)) 3021 ? KMP_MIN_MALLOC_ARGV_ENTRIES 3022 : 2 * argc; 3023 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: dynamic allocate %d " 3024 "argv entries\n", 3025 team->t.t_id, team->t.t_max_argc)); 3026 team->t.t_argv = 3027 (void **)__kmp_page_allocate(sizeof(void *) * team->t.t_max_argc); 3028 if (__kmp_storage_map) { 3029 __kmp_print_storage_map_gtid(-1, &team->t.t_argv[0], 3030 &team->t.t_argv[team->t.t_max_argc], 3031 sizeof(void *) * team->t.t_max_argc, 3032 "team_%d.t_argv", team->t.t_id); 3033 } 3034 } 3035 } 3036 } 3037 3038 static void __kmp_allocate_team_arrays(kmp_team_t *team, int max_nth) { 3039 int i; 3040 int num_disp_buff = max_nth > 1 ? __kmp_dispatch_num_buffers : 2; 3041 team->t.t_threads = 3042 (kmp_info_t **)__kmp_allocate(sizeof(kmp_info_t *) * max_nth); 3043 team->t.t_disp_buffer = (dispatch_shared_info_t *)__kmp_allocate( 3044 sizeof(dispatch_shared_info_t) * num_disp_buff); 3045 team->t.t_dispatch = 3046 (kmp_disp_t *)__kmp_allocate(sizeof(kmp_disp_t) * max_nth); 3047 team->t.t_implicit_task_taskdata = 3048 (kmp_taskdata_t *)__kmp_allocate(sizeof(kmp_taskdata_t) * max_nth); 3049 team->t.t_max_nproc = max_nth; 3050 3051 /* setup dispatch buffers */ 3052 for (i = 0; i < num_disp_buff; ++i) { 3053 team->t.t_disp_buffer[i].buffer_index = i; 3054 team->t.t_disp_buffer[i].doacross_buf_idx = i; 3055 } 3056 } 3057 3058 static void __kmp_free_team_arrays(kmp_team_t *team) { 3059 /* Note: this does not free the threads in t_threads (__kmp_free_threads) */ 3060 int i; 3061 for (i = 0; i < team->t.t_max_nproc; ++i) { 3062 if (team->t.t_dispatch[i].th_disp_buffer != NULL) { 3063 __kmp_free(team->t.t_dispatch[i].th_disp_buffer); 3064 team->t.t_dispatch[i].th_disp_buffer = NULL; 3065 } 3066 } 3067 #if KMP_USE_HIER_SCHED 3068 __kmp_dispatch_free_hierarchies(team); 3069 #endif 3070 __kmp_free(team->t.t_threads); 3071 __kmp_free(team->t.t_disp_buffer); 3072 __kmp_free(team->t.t_dispatch); 3073 __kmp_free(team->t.t_implicit_task_taskdata); 3074 team->t.t_threads = NULL; 3075 team->t.t_disp_buffer = NULL; 3076 team->t.t_dispatch = NULL; 3077 team->t.t_implicit_task_taskdata = 0; 3078 } 3079 3080 static void __kmp_reallocate_team_arrays(kmp_team_t *team, int max_nth) { 3081 kmp_info_t **oldThreads = team->t.t_threads; 3082 3083 __kmp_free(team->t.t_disp_buffer); 3084 __kmp_free(team->t.t_dispatch); 3085 __kmp_free(team->t.t_implicit_task_taskdata); 3086 __kmp_allocate_team_arrays(team, max_nth); 3087 3088 KMP_MEMCPY(team->t.t_threads, oldThreads, 3089 team->t.t_nproc * sizeof(kmp_info_t *)); 3090 3091 __kmp_free(oldThreads); 3092 } 3093 3094 static kmp_internal_control_t __kmp_get_global_icvs(void) { 3095 3096 kmp_r_sched_t r_sched = 3097 __kmp_get_schedule_global(); // get current state of scheduling globals 3098 3099 KMP_DEBUG_ASSERT(__kmp_nested_proc_bind.used > 0); 3100 3101 kmp_internal_control_t g_icvs = { 3102 0, // int serial_nesting_level; //corresponds to value of th_team_serialized 3103 (kmp_int8)__kmp_global.g.g_dynamic, // internal control for dynamic 3104 // adjustment of threads (per thread) 3105 (kmp_int8)__kmp_env_blocktime, // int bt_set; //internal control for 3106 // whether blocktime is explicitly set 3107 __kmp_dflt_blocktime, // int blocktime; //internal control for blocktime 3108 #if KMP_USE_MONITOR 3109 __kmp_bt_intervals, // int bt_intervals; //internal control for blocktime 3110 // intervals 3111 #endif 3112 __kmp_dflt_team_nth, // int nproc; //internal control for # of threads for 3113 // next parallel region (per thread) 3114 // (use a max ub on value if __kmp_parallel_initialize not called yet) 3115 __kmp_cg_max_nth, // int thread_limit; 3116 __kmp_dflt_max_active_levels, // int max_active_levels; //internal control 3117 // for max_active_levels 3118 r_sched, // kmp_r_sched_t sched; //internal control for runtime schedule 3119 // {sched,chunk} pair 3120 __kmp_nested_proc_bind.bind_types[0], 3121 __kmp_default_device, 3122 NULL // struct kmp_internal_control *next; 3123 }; 3124 3125 return g_icvs; 3126 } 3127 3128 static kmp_internal_control_t __kmp_get_x_global_icvs(const kmp_team_t *team) { 3129 3130 kmp_internal_control_t gx_icvs; 3131 gx_icvs.serial_nesting_level = 3132 0; // probably =team->t.t_serial like in save_inter_controls 3133 copy_icvs(&gx_icvs, &team->t.t_threads[0]->th.th_current_task->td_icvs); 3134 gx_icvs.next = NULL; 3135 3136 return gx_icvs; 3137 } 3138 3139 static void __kmp_initialize_root(kmp_root_t *root) { 3140 int f; 3141 kmp_team_t *root_team; 3142 kmp_team_t *hot_team; 3143 int hot_team_max_nth; 3144 kmp_r_sched_t r_sched = 3145 __kmp_get_schedule_global(); // get current state of scheduling globals 3146 kmp_internal_control_t r_icvs = __kmp_get_global_icvs(); 3147 KMP_DEBUG_ASSERT(root); 3148 KMP_ASSERT(!root->r.r_begin); 3149 3150 /* setup the root state structure */ 3151 __kmp_init_lock(&root->r.r_begin_lock); 3152 root->r.r_begin = FALSE; 3153 root->r.r_active = FALSE; 3154 root->r.r_in_parallel = 0; 3155 root->r.r_blocktime = __kmp_dflt_blocktime; 3156 3157 /* setup the root team for this task */ 3158 /* allocate the root team structure */ 3159 KF_TRACE(10, ("__kmp_initialize_root: before root_team\n")); 3160 3161 root_team = 3162 __kmp_allocate_team(root, 3163 1, // new_nproc 3164 1, // max_nproc 3165 #if OMPT_SUPPORT 3166 ompt_data_none, // root parallel id 3167 #endif 3168 __kmp_nested_proc_bind.bind_types[0], &r_icvs, 3169 0 // argc 3170 USE_NESTED_HOT_ARG(NULL) // primary thread is unknown 3171 ); 3172 #if USE_DEBUGGER 3173 // Non-NULL value should be assigned to make the debugger display the root 3174 // team. 3175 TCW_SYNC_PTR(root_team->t.t_pkfn, (microtask_t)(~0)); 3176 #endif 3177 3178 KF_TRACE(10, ("__kmp_initialize_root: after root_team = %p\n", root_team)); 3179 3180 root->r.r_root_team = root_team; 3181 root_team->t.t_control_stack_top = NULL; 3182 3183 /* initialize root team */ 3184 root_team->t.t_threads[0] = NULL; 3185 root_team->t.t_nproc = 1; 3186 root_team->t.t_serialized = 1; 3187 // TODO???: root_team->t.t_max_active_levels = __kmp_dflt_max_active_levels; 3188 root_team->t.t_sched.sched = r_sched.sched; 3189 KA_TRACE( 3190 20, 3191 ("__kmp_initialize_root: init root team %d arrived: join=%u, plain=%u\n", 3192 root_team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 3193 3194 /* setup the hot team for this task */ 3195 /* allocate the hot team structure */ 3196 KF_TRACE(10, ("__kmp_initialize_root: before hot_team\n")); 3197 3198 hot_team = 3199 __kmp_allocate_team(root, 3200 1, // new_nproc 3201 __kmp_dflt_team_nth_ub * 2, // max_nproc 3202 #if OMPT_SUPPORT 3203 ompt_data_none, // root parallel id 3204 #endif 3205 __kmp_nested_proc_bind.bind_types[0], &r_icvs, 3206 0 // argc 3207 USE_NESTED_HOT_ARG(NULL) // primary thread is unknown 3208 ); 3209 KF_TRACE(10, ("__kmp_initialize_root: after hot_team = %p\n", hot_team)); 3210 3211 root->r.r_hot_team = hot_team; 3212 root_team->t.t_control_stack_top = NULL; 3213 3214 /* first-time initialization */ 3215 hot_team->t.t_parent = root_team; 3216 3217 /* initialize hot team */ 3218 hot_team_max_nth = hot_team->t.t_max_nproc; 3219 for (f = 0; f < hot_team_max_nth; ++f) { 3220 hot_team->t.t_threads[f] = NULL; 3221 } 3222 hot_team->t.t_nproc = 1; 3223 // TODO???: hot_team->t.t_max_active_levels = __kmp_dflt_max_active_levels; 3224 hot_team->t.t_sched.sched = r_sched.sched; 3225 hot_team->t.t_size_changed = 0; 3226 } 3227 3228 #ifdef KMP_DEBUG 3229 3230 typedef struct kmp_team_list_item { 3231 kmp_team_p const *entry; 3232 struct kmp_team_list_item *next; 3233 } kmp_team_list_item_t; 3234 typedef kmp_team_list_item_t *kmp_team_list_t; 3235 3236 static void __kmp_print_structure_team_accum( // Add team to list of teams. 3237 kmp_team_list_t list, // List of teams. 3238 kmp_team_p const *team // Team to add. 3239 ) { 3240 3241 // List must terminate with item where both entry and next are NULL. 3242 // Team is added to the list only once. 3243 // List is sorted in ascending order by team id. 3244 // Team id is *not* a key. 3245 3246 kmp_team_list_t l; 3247 3248 KMP_DEBUG_ASSERT(list != NULL); 3249 if (team == NULL) { 3250 return; 3251 } 3252 3253 __kmp_print_structure_team_accum(list, team->t.t_parent); 3254 __kmp_print_structure_team_accum(list, team->t.t_next_pool); 3255 3256 // Search list for the team. 3257 l = list; 3258 while (l->next != NULL && l->entry != team) { 3259 l = l->next; 3260 } 3261 if (l->next != NULL) { 3262 return; // Team has been added before, exit. 3263 } 3264 3265 // Team is not found. Search list again for insertion point. 3266 l = list; 3267 while (l->next != NULL && l->entry->t.t_id <= team->t.t_id) { 3268 l = l->next; 3269 } 3270 3271 // Insert team. 3272 { 3273 kmp_team_list_item_t *item = (kmp_team_list_item_t *)KMP_INTERNAL_MALLOC( 3274 sizeof(kmp_team_list_item_t)); 3275 *item = *l; 3276 l->entry = team; 3277 l->next = item; 3278 } 3279 } 3280 3281 static void __kmp_print_structure_team(char const *title, kmp_team_p const *team 3282 3283 ) { 3284 __kmp_printf("%s", title); 3285 if (team != NULL) { 3286 __kmp_printf("%2x %p\n", team->t.t_id, team); 3287 } else { 3288 __kmp_printf(" - (nil)\n"); 3289 } 3290 } 3291 3292 static void __kmp_print_structure_thread(char const *title, 3293 kmp_info_p const *thread) { 3294 __kmp_printf("%s", title); 3295 if (thread != NULL) { 3296 __kmp_printf("%2d %p\n", thread->th.th_info.ds.ds_gtid, thread); 3297 } else { 3298 __kmp_printf(" - (nil)\n"); 3299 } 3300 } 3301 3302 void __kmp_print_structure(void) { 3303 3304 kmp_team_list_t list; 3305 3306 // Initialize list of teams. 3307 list = 3308 (kmp_team_list_item_t *)KMP_INTERNAL_MALLOC(sizeof(kmp_team_list_item_t)); 3309 list->entry = NULL; 3310 list->next = NULL; 3311 3312 __kmp_printf("\n------------------------------\nGlobal Thread " 3313 "Table\n------------------------------\n"); 3314 { 3315 int gtid; 3316 for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) { 3317 __kmp_printf("%2d", gtid); 3318 if (__kmp_threads != NULL) { 3319 __kmp_printf(" %p", __kmp_threads[gtid]); 3320 } 3321 if (__kmp_root != NULL) { 3322 __kmp_printf(" %p", __kmp_root[gtid]); 3323 } 3324 __kmp_printf("\n"); 3325 } 3326 } 3327 3328 // Print out __kmp_threads array. 3329 __kmp_printf("\n------------------------------\nThreads\n--------------------" 3330 "----------\n"); 3331 if (__kmp_threads != NULL) { 3332 int gtid; 3333 for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) { 3334 kmp_info_t const *thread = __kmp_threads[gtid]; 3335 if (thread != NULL) { 3336 __kmp_printf("GTID %2d %p:\n", gtid, thread); 3337 __kmp_printf(" Our Root: %p\n", thread->th.th_root); 3338 __kmp_print_structure_team(" Our Team: ", thread->th.th_team); 3339 __kmp_print_structure_team(" Serial Team: ", 3340 thread->th.th_serial_team); 3341 __kmp_printf(" Threads: %2d\n", thread->th.th_team_nproc); 3342 __kmp_print_structure_thread(" Primary: ", 3343 thread->th.th_team_master); 3344 __kmp_printf(" Serialized?: %2d\n", thread->th.th_team_serialized); 3345 __kmp_printf(" Set NProc: %2d\n", thread->th.th_set_nproc); 3346 __kmp_printf(" Set Proc Bind: %2d\n", thread->th.th_set_proc_bind); 3347 __kmp_print_structure_thread(" Next in pool: ", 3348 thread->th.th_next_pool); 3349 __kmp_printf("\n"); 3350 __kmp_print_structure_team_accum(list, thread->th.th_team); 3351 __kmp_print_structure_team_accum(list, thread->th.th_serial_team); 3352 } 3353 } 3354 } else { 3355 __kmp_printf("Threads array is not allocated.\n"); 3356 } 3357 3358 // Print out __kmp_root array. 3359 __kmp_printf("\n------------------------------\nUbers\n----------------------" 3360 "--------\n"); 3361 if (__kmp_root != NULL) { 3362 int gtid; 3363 for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) { 3364 kmp_root_t const *root = __kmp_root[gtid]; 3365 if (root != NULL) { 3366 __kmp_printf("GTID %2d %p:\n", gtid, root); 3367 __kmp_print_structure_team(" Root Team: ", root->r.r_root_team); 3368 __kmp_print_structure_team(" Hot Team: ", root->r.r_hot_team); 3369 __kmp_print_structure_thread(" Uber Thread: ", 3370 root->r.r_uber_thread); 3371 __kmp_printf(" Active?: %2d\n", root->r.r_active); 3372 __kmp_printf(" In Parallel: %2d\n", 3373 KMP_ATOMIC_LD_RLX(&root->r.r_in_parallel)); 3374 __kmp_printf("\n"); 3375 __kmp_print_structure_team_accum(list, root->r.r_root_team); 3376 __kmp_print_structure_team_accum(list, root->r.r_hot_team); 3377 } 3378 } 3379 } else { 3380 __kmp_printf("Ubers array is not allocated.\n"); 3381 } 3382 3383 __kmp_printf("\n------------------------------\nTeams\n----------------------" 3384 "--------\n"); 3385 while (list->next != NULL) { 3386 kmp_team_p const *team = list->entry; 3387 int i; 3388 __kmp_printf("Team %2x %p:\n", team->t.t_id, team); 3389 __kmp_print_structure_team(" Parent Team: ", team->t.t_parent); 3390 __kmp_printf(" Primary TID: %2d\n", team->t.t_master_tid); 3391 __kmp_printf(" Max threads: %2d\n", team->t.t_max_nproc); 3392 __kmp_printf(" Levels of serial: %2d\n", team->t.t_serialized); 3393 __kmp_printf(" Number threads: %2d\n", team->t.t_nproc); 3394 for (i = 0; i < team->t.t_nproc; ++i) { 3395 __kmp_printf(" Thread %2d: ", i); 3396 __kmp_print_structure_thread("", team->t.t_threads[i]); 3397 } 3398 __kmp_print_structure_team(" Next in pool: ", team->t.t_next_pool); 3399 __kmp_printf("\n"); 3400 list = list->next; 3401 } 3402 3403 // Print out __kmp_thread_pool and __kmp_team_pool. 3404 __kmp_printf("\n------------------------------\nPools\n----------------------" 3405 "--------\n"); 3406 __kmp_print_structure_thread("Thread pool: ", 3407 CCAST(kmp_info_t *, __kmp_thread_pool)); 3408 __kmp_print_structure_team("Team pool: ", 3409 CCAST(kmp_team_t *, __kmp_team_pool)); 3410 __kmp_printf("\n"); 3411 3412 // Free team list. 3413 while (list != NULL) { 3414 kmp_team_list_item_t *item = list; 3415 list = list->next; 3416 KMP_INTERNAL_FREE(item); 3417 } 3418 } 3419 3420 #endif 3421 3422 //--------------------------------------------------------------------------- 3423 // Stuff for per-thread fast random number generator 3424 // Table of primes 3425 static const unsigned __kmp_primes[] = { 3426 0x9e3779b1, 0xffe6cc59, 0x2109f6dd, 0x43977ab5, 0xba5703f5, 0xb495a877, 3427 0xe1626741, 0x79695e6b, 0xbc98c09f, 0xd5bee2b3, 0x287488f9, 0x3af18231, 3428 0x9677cd4d, 0xbe3a6929, 0xadc6a877, 0xdcf0674b, 0xbe4d6fe9, 0x5f15e201, 3429 0x99afc3fd, 0xf3f16801, 0xe222cfff, 0x24ba5fdb, 0x0620452d, 0x79f149e3, 3430 0xc8b93f49, 0x972702cd, 0xb07dd827, 0x6c97d5ed, 0x085a3d61, 0x46eb5ea7, 3431 0x3d9910ed, 0x2e687b5b, 0x29609227, 0x6eb081f1, 0x0954c4e1, 0x9d114db9, 3432 0x542acfa9, 0xb3e6bd7b, 0x0742d917, 0xe9f3ffa7, 0x54581edb, 0xf2480f45, 3433 0x0bb9288f, 0xef1affc7, 0x85fa0ca7, 0x3ccc14db, 0xe6baf34b, 0x343377f7, 3434 0x5ca19031, 0xe6d9293b, 0xf0a9f391, 0x5d2e980b, 0xfc411073, 0xc3749363, 3435 0xb892d829, 0x3549366b, 0x629750ad, 0xb98294e5, 0x892d9483, 0xc235baf3, 3436 0x3d2402a3, 0x6bdef3c9, 0xbec333cd, 0x40c9520f}; 3437 3438 //--------------------------------------------------------------------------- 3439 // __kmp_get_random: Get a random number using a linear congruential method. 3440 unsigned short __kmp_get_random(kmp_info_t *thread) { 3441 unsigned x = thread->th.th_x; 3442 unsigned short r = (unsigned short)(x >> 16); 3443 3444 thread->th.th_x = x * thread->th.th_a + 1; 3445 3446 KA_TRACE(30, ("__kmp_get_random: THREAD: %d, RETURN: %u\n", 3447 thread->th.th_info.ds.ds_tid, r)); 3448 3449 return r; 3450 } 3451 //-------------------------------------------------------- 3452 // __kmp_init_random: Initialize a random number generator 3453 void __kmp_init_random(kmp_info_t *thread) { 3454 unsigned seed = thread->th.th_info.ds.ds_tid; 3455 3456 thread->th.th_a = 3457 __kmp_primes[seed % (sizeof(__kmp_primes) / sizeof(__kmp_primes[0]))]; 3458 thread->th.th_x = (seed + 1) * thread->th.th_a + 1; 3459 KA_TRACE(30, 3460 ("__kmp_init_random: THREAD: %u; A: %u\n", seed, thread->th.th_a)); 3461 } 3462 3463 #if KMP_OS_WINDOWS 3464 /* reclaim array entries for root threads that are already dead, returns number 3465 * reclaimed */ 3466 static int __kmp_reclaim_dead_roots(void) { 3467 int i, r = 0; 3468 3469 for (i = 0; i < __kmp_threads_capacity; ++i) { 3470 if (KMP_UBER_GTID(i) && 3471 !__kmp_still_running((kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[i])) && 3472 !__kmp_root[i] 3473 ->r.r_active) { // AC: reclaim only roots died in non-active state 3474 r += __kmp_unregister_root_other_thread(i); 3475 } 3476 } 3477 return r; 3478 } 3479 #endif 3480 3481 /* This function attempts to create free entries in __kmp_threads and 3482 __kmp_root, and returns the number of free entries generated. 3483 3484 For Windows* OS static library, the first mechanism used is to reclaim array 3485 entries for root threads that are already dead. 3486 3487 On all platforms, expansion is attempted on the arrays __kmp_threads_ and 3488 __kmp_root, with appropriate update to __kmp_threads_capacity. Array 3489 capacity is increased by doubling with clipping to __kmp_tp_capacity, if 3490 threadprivate cache array has been created. Synchronization with 3491 __kmpc_threadprivate_cached is done using __kmp_tp_cached_lock. 3492 3493 After any dead root reclamation, if the clipping value allows array expansion 3494 to result in the generation of a total of nNeed free slots, the function does 3495 that expansion. If not, nothing is done beyond the possible initial root 3496 thread reclamation. 3497 3498 If any argument is negative, the behavior is undefined. */ 3499 static int __kmp_expand_threads(int nNeed) { 3500 int added = 0; 3501 int minimumRequiredCapacity; 3502 int newCapacity; 3503 kmp_info_t **newThreads; 3504 kmp_root_t **newRoot; 3505 3506 // All calls to __kmp_expand_threads should be under __kmp_forkjoin_lock, so 3507 // resizing __kmp_threads does not need additional protection if foreign 3508 // threads are present 3509 3510 #if KMP_OS_WINDOWS && !KMP_DYNAMIC_LIB 3511 /* only for Windows static library */ 3512 /* reclaim array entries for root threads that are already dead */ 3513 added = __kmp_reclaim_dead_roots(); 3514 3515 if (nNeed) { 3516 nNeed -= added; 3517 if (nNeed < 0) 3518 nNeed = 0; 3519 } 3520 #endif 3521 if (nNeed <= 0) 3522 return added; 3523 3524 // Note that __kmp_threads_capacity is not bounded by __kmp_max_nth. If 3525 // __kmp_max_nth is set to some value less than __kmp_sys_max_nth by the 3526 // user via KMP_DEVICE_THREAD_LIMIT, then __kmp_threads_capacity may become 3527 // > __kmp_max_nth in one of two ways: 3528 // 3529 // 1) The initialization thread (gtid = 0) exits. __kmp_threads[0] 3530 // may not be reused by another thread, so we may need to increase 3531 // __kmp_threads_capacity to __kmp_max_nth + 1. 3532 // 3533 // 2) New foreign root(s) are encountered. We always register new foreign 3534 // roots. This may cause a smaller # of threads to be allocated at 3535 // subsequent parallel regions, but the worker threads hang around (and 3536 // eventually go to sleep) and need slots in the __kmp_threads[] array. 3537 // 3538 // Anyway, that is the reason for moving the check to see if 3539 // __kmp_max_nth was exceeded into __kmp_reserve_threads() 3540 // instead of having it performed here. -BB 3541 3542 KMP_DEBUG_ASSERT(__kmp_sys_max_nth >= __kmp_threads_capacity); 3543 3544 /* compute expansion headroom to check if we can expand */ 3545 if (__kmp_sys_max_nth - __kmp_threads_capacity < nNeed) { 3546 /* possible expansion too small -- give up */ 3547 return added; 3548 } 3549 minimumRequiredCapacity = __kmp_threads_capacity + nNeed; 3550 3551 newCapacity = __kmp_threads_capacity; 3552 do { 3553 newCapacity = newCapacity <= (__kmp_sys_max_nth >> 1) ? (newCapacity << 1) 3554 : __kmp_sys_max_nth; 3555 } while (newCapacity < minimumRequiredCapacity); 3556 newThreads = (kmp_info_t **)__kmp_allocate( 3557 (sizeof(kmp_info_t *) + sizeof(kmp_root_t *)) * newCapacity + CACHE_LINE); 3558 newRoot = 3559 (kmp_root_t **)((char *)newThreads + sizeof(kmp_info_t *) * newCapacity); 3560 KMP_MEMCPY(newThreads, __kmp_threads, 3561 __kmp_threads_capacity * sizeof(kmp_info_t *)); 3562 KMP_MEMCPY(newRoot, __kmp_root, 3563 __kmp_threads_capacity * sizeof(kmp_root_t *)); 3564 3565 kmp_info_t **temp_threads = __kmp_threads; 3566 *(kmp_info_t * *volatile *)&__kmp_threads = newThreads; 3567 *(kmp_root_t * *volatile *)&__kmp_root = newRoot; 3568 __kmp_free(temp_threads); 3569 added += newCapacity - __kmp_threads_capacity; 3570 *(volatile int *)&__kmp_threads_capacity = newCapacity; 3571 3572 if (newCapacity > __kmp_tp_capacity) { 3573 __kmp_acquire_bootstrap_lock(&__kmp_tp_cached_lock); 3574 if (__kmp_tp_cached && newCapacity > __kmp_tp_capacity) { 3575 __kmp_threadprivate_resize_cache(newCapacity); 3576 } else { // increase __kmp_tp_capacity to correspond with kmp_threads size 3577 *(volatile int *)&__kmp_tp_capacity = newCapacity; 3578 } 3579 __kmp_release_bootstrap_lock(&__kmp_tp_cached_lock); 3580 } 3581 3582 return added; 3583 } 3584 3585 /* Register the current thread as a root thread and obtain our gtid. We must 3586 have the __kmp_initz_lock held at this point. Argument TRUE only if are the 3587 thread that calls from __kmp_do_serial_initialize() */ 3588 int __kmp_register_root(int initial_thread) { 3589 kmp_info_t *root_thread; 3590 kmp_root_t *root; 3591 int gtid; 3592 int capacity; 3593 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 3594 KA_TRACE(20, ("__kmp_register_root: entered\n")); 3595 KMP_MB(); 3596 3597 /* 2007-03-02: 3598 If initial thread did not invoke OpenMP RTL yet, and this thread is not an 3599 initial one, "__kmp_all_nth >= __kmp_threads_capacity" condition does not 3600 work as expected -- it may return false (that means there is at least one 3601 empty slot in __kmp_threads array), but it is possible the only free slot 3602 is #0, which is reserved for initial thread and so cannot be used for this 3603 one. Following code workarounds this bug. 3604 3605 However, right solution seems to be not reserving slot #0 for initial 3606 thread because: 3607 (1) there is no magic in slot #0, 3608 (2) we cannot detect initial thread reliably (the first thread which does 3609 serial initialization may be not a real initial thread). 3610 */ 3611 capacity = __kmp_threads_capacity; 3612 if (!initial_thread && TCR_PTR(__kmp_threads[0]) == NULL) { 3613 --capacity; 3614 } 3615 3616 // If it is not for initializing the hidden helper team, we need to take 3617 // __kmp_hidden_helper_threads_num out of the capacity because it is included 3618 // in __kmp_threads_capacity. 3619 if (__kmp_enable_hidden_helper && !TCR_4(__kmp_init_hidden_helper_threads)) { 3620 capacity -= __kmp_hidden_helper_threads_num; 3621 } 3622 3623 /* see if there are too many threads */ 3624 if (__kmp_all_nth >= capacity && !__kmp_expand_threads(1)) { 3625 if (__kmp_tp_cached) { 3626 __kmp_fatal(KMP_MSG(CantRegisterNewThread), 3627 KMP_HNT(Set_ALL_THREADPRIVATE, __kmp_tp_capacity), 3628 KMP_HNT(PossibleSystemLimitOnThreads), __kmp_msg_null); 3629 } else { 3630 __kmp_fatal(KMP_MSG(CantRegisterNewThread), KMP_HNT(SystemLimitOnThreads), 3631 __kmp_msg_null); 3632 } 3633 } 3634 3635 // When hidden helper task is enabled, __kmp_threads is organized as follows: 3636 // 0: initial thread, also a regular OpenMP thread. 3637 // [1, __kmp_hidden_helper_threads_num]: slots for hidden helper threads. 3638 // [__kmp_hidden_helper_threads_num + 1, __kmp_threads_capacity): slots for 3639 // regular OpenMP threads. 3640 if (TCR_4(__kmp_init_hidden_helper_threads)) { 3641 // Find an available thread slot for hidden helper thread. Slots for hidden 3642 // helper threads start from 1 to __kmp_hidden_helper_threads_num. 3643 for (gtid = 1; TCR_PTR(__kmp_threads[gtid]) != NULL && 3644 gtid <= __kmp_hidden_helper_threads_num; 3645 gtid++) 3646 ; 3647 KMP_ASSERT(gtid <= __kmp_hidden_helper_threads_num); 3648 KA_TRACE(1, ("__kmp_register_root: found slot in threads array for " 3649 "hidden helper thread: T#%d\n", 3650 gtid)); 3651 } else { 3652 /* find an available thread slot */ 3653 // Don't reassign the zero slot since we need that to only be used by 3654 // initial thread. Slots for hidden helper threads should also be skipped. 3655 if (initial_thread && TCR_PTR(__kmp_threads[0]) == NULL) { 3656 gtid = 0; 3657 } else { 3658 for (gtid = __kmp_hidden_helper_threads_num + 1; 3659 TCR_PTR(__kmp_threads[gtid]) != NULL; gtid++) 3660 ; 3661 } 3662 KA_TRACE( 3663 1, ("__kmp_register_root: found slot in threads array: T#%d\n", gtid)); 3664 KMP_ASSERT(gtid < __kmp_threads_capacity); 3665 } 3666 3667 /* update global accounting */ 3668 __kmp_all_nth++; 3669 TCW_4(__kmp_nth, __kmp_nth + 1); 3670 3671 // if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) for low 3672 // numbers of procs, and method #2 (keyed API call) for higher numbers. 3673 if (__kmp_adjust_gtid_mode) { 3674 if (__kmp_all_nth >= __kmp_tls_gtid_min) { 3675 if (TCR_4(__kmp_gtid_mode) != 2) { 3676 TCW_4(__kmp_gtid_mode, 2); 3677 } 3678 } else { 3679 if (TCR_4(__kmp_gtid_mode) != 1) { 3680 TCW_4(__kmp_gtid_mode, 1); 3681 } 3682 } 3683 } 3684 3685 #ifdef KMP_ADJUST_BLOCKTIME 3686 /* Adjust blocktime to zero if necessary */ 3687 /* Middle initialization might not have occurred yet */ 3688 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 3689 if (__kmp_nth > __kmp_avail_proc) { 3690 __kmp_zero_bt = TRUE; 3691 } 3692 } 3693 #endif /* KMP_ADJUST_BLOCKTIME */ 3694 3695 /* setup this new hierarchy */ 3696 if (!(root = __kmp_root[gtid])) { 3697 root = __kmp_root[gtid] = (kmp_root_t *)__kmp_allocate(sizeof(kmp_root_t)); 3698 KMP_DEBUG_ASSERT(!root->r.r_root_team); 3699 } 3700 3701 #if KMP_STATS_ENABLED 3702 // Initialize stats as soon as possible (right after gtid assignment). 3703 __kmp_stats_thread_ptr = __kmp_stats_list->push_back(gtid); 3704 __kmp_stats_thread_ptr->startLife(); 3705 KMP_SET_THREAD_STATE(SERIAL_REGION); 3706 KMP_INIT_PARTITIONED_TIMERS(OMP_serial); 3707 #endif 3708 __kmp_initialize_root(root); 3709 3710 /* setup new root thread structure */ 3711 if (root->r.r_uber_thread) { 3712 root_thread = root->r.r_uber_thread; 3713 } else { 3714 root_thread = (kmp_info_t *)__kmp_allocate(sizeof(kmp_info_t)); 3715 if (__kmp_storage_map) { 3716 __kmp_print_thread_storage_map(root_thread, gtid); 3717 } 3718 root_thread->th.th_info.ds.ds_gtid = gtid; 3719 #if OMPT_SUPPORT 3720 root_thread->th.ompt_thread_info.thread_data = ompt_data_none; 3721 #endif 3722 root_thread->th.th_root = root; 3723 if (__kmp_env_consistency_check) { 3724 root_thread->th.th_cons = __kmp_allocate_cons_stack(gtid); 3725 } 3726 #if USE_FAST_MEMORY 3727 __kmp_initialize_fast_memory(root_thread); 3728 #endif /* USE_FAST_MEMORY */ 3729 3730 #if KMP_USE_BGET 3731 KMP_DEBUG_ASSERT(root_thread->th.th_local.bget_data == NULL); 3732 __kmp_initialize_bget(root_thread); 3733 #endif 3734 __kmp_init_random(root_thread); // Initialize random number generator 3735 } 3736 3737 /* setup the serial team held in reserve by the root thread */ 3738 if (!root_thread->th.th_serial_team) { 3739 kmp_internal_control_t r_icvs = __kmp_get_global_icvs(); 3740 KF_TRACE(10, ("__kmp_register_root: before serial_team\n")); 3741 root_thread->th.th_serial_team = __kmp_allocate_team( 3742 root, 1, 1, 3743 #if OMPT_SUPPORT 3744 ompt_data_none, // root parallel id 3745 #endif 3746 proc_bind_default, &r_icvs, 0 USE_NESTED_HOT_ARG(NULL)); 3747 } 3748 KMP_ASSERT(root_thread->th.th_serial_team); 3749 KF_TRACE(10, ("__kmp_register_root: after serial_team = %p\n", 3750 root_thread->th.th_serial_team)); 3751 3752 /* drop root_thread into place */ 3753 TCW_SYNC_PTR(__kmp_threads[gtid], root_thread); 3754 3755 root->r.r_root_team->t.t_threads[0] = root_thread; 3756 root->r.r_hot_team->t.t_threads[0] = root_thread; 3757 root_thread->th.th_serial_team->t.t_threads[0] = root_thread; 3758 // AC: the team created in reserve, not for execution (it is unused for now). 3759 root_thread->th.th_serial_team->t.t_serialized = 0; 3760 root->r.r_uber_thread = root_thread; 3761 3762 /* initialize the thread, get it ready to go */ 3763 __kmp_initialize_info(root_thread, root->r.r_root_team, 0, gtid); 3764 TCW_4(__kmp_init_gtid, TRUE); 3765 3766 /* prepare the primary thread for get_gtid() */ 3767 __kmp_gtid_set_specific(gtid); 3768 3769 #if USE_ITT_BUILD 3770 __kmp_itt_thread_name(gtid); 3771 #endif /* USE_ITT_BUILD */ 3772 3773 #ifdef KMP_TDATA_GTID 3774 __kmp_gtid = gtid; 3775 #endif 3776 __kmp_create_worker(gtid, root_thread, __kmp_stksize); 3777 KMP_DEBUG_ASSERT(__kmp_gtid_get_specific() == gtid); 3778 3779 KA_TRACE(20, ("__kmp_register_root: T#%d init T#%d(%d:%d) arrived: join=%u, " 3780 "plain=%u\n", 3781 gtid, __kmp_gtid_from_tid(0, root->r.r_hot_team), 3782 root->r.r_hot_team->t.t_id, 0, KMP_INIT_BARRIER_STATE, 3783 KMP_INIT_BARRIER_STATE)); 3784 { // Initialize barrier data. 3785 int b; 3786 for (b = 0; b < bs_last_barrier; ++b) { 3787 root_thread->th.th_bar[b].bb.b_arrived = KMP_INIT_BARRIER_STATE; 3788 #if USE_DEBUGGER 3789 root_thread->th.th_bar[b].bb.b_worker_arrived = 0; 3790 #endif 3791 } 3792 } 3793 KMP_DEBUG_ASSERT(root->r.r_hot_team->t.t_bar[bs_forkjoin_barrier].b_arrived == 3794 KMP_INIT_BARRIER_STATE); 3795 3796 #if KMP_AFFINITY_SUPPORTED 3797 root_thread->th.th_current_place = KMP_PLACE_UNDEFINED; 3798 root_thread->th.th_new_place = KMP_PLACE_UNDEFINED; 3799 root_thread->th.th_first_place = KMP_PLACE_UNDEFINED; 3800 root_thread->th.th_last_place = KMP_PLACE_UNDEFINED; 3801 if (TCR_4(__kmp_init_middle)) { 3802 __kmp_affinity_set_init_mask(gtid, TRUE); 3803 } 3804 #endif /* KMP_AFFINITY_SUPPORTED */ 3805 root_thread->th.th_def_allocator = __kmp_def_allocator; 3806 root_thread->th.th_prev_level = 0; 3807 root_thread->th.th_prev_num_threads = 1; 3808 3809 kmp_cg_root_t *tmp = (kmp_cg_root_t *)__kmp_allocate(sizeof(kmp_cg_root_t)); 3810 tmp->cg_root = root_thread; 3811 tmp->cg_thread_limit = __kmp_cg_max_nth; 3812 tmp->cg_nthreads = 1; 3813 KA_TRACE(100, ("__kmp_register_root: Thread %p created node %p with" 3814 " cg_nthreads init to 1\n", 3815 root_thread, tmp)); 3816 tmp->up = NULL; 3817 root_thread->th.th_cg_roots = tmp; 3818 3819 __kmp_root_counter++; 3820 3821 #if OMPT_SUPPORT 3822 if (!initial_thread && ompt_enabled.enabled) { 3823 3824 kmp_info_t *root_thread = ompt_get_thread(); 3825 3826 ompt_set_thread_state(root_thread, ompt_state_overhead); 3827 3828 if (ompt_enabled.ompt_callback_thread_begin) { 3829 ompt_callbacks.ompt_callback(ompt_callback_thread_begin)( 3830 ompt_thread_initial, __ompt_get_thread_data_internal()); 3831 } 3832 ompt_data_t *task_data; 3833 ompt_data_t *parallel_data; 3834 __ompt_get_task_info_internal(0, NULL, &task_data, NULL, ¶llel_data, 3835 NULL); 3836 if (ompt_enabled.ompt_callback_implicit_task) { 3837 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 3838 ompt_scope_begin, parallel_data, task_data, 1, 1, ompt_task_initial); 3839 } 3840 3841 ompt_set_thread_state(root_thread, ompt_state_work_serial); 3842 } 3843 #endif 3844 3845 KMP_MB(); 3846 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 3847 3848 return gtid; 3849 } 3850 3851 #if KMP_NESTED_HOT_TEAMS 3852 static int __kmp_free_hot_teams(kmp_root_t *root, kmp_info_t *thr, int level, 3853 const int max_level) { 3854 int i, n, nth; 3855 kmp_hot_team_ptr_t *hot_teams = thr->th.th_hot_teams; 3856 if (!hot_teams || !hot_teams[level].hot_team) { 3857 return 0; 3858 } 3859 KMP_DEBUG_ASSERT(level < max_level); 3860 kmp_team_t *team = hot_teams[level].hot_team; 3861 nth = hot_teams[level].hot_team_nth; 3862 n = nth - 1; // primary thread is not freed 3863 if (level < max_level - 1) { 3864 for (i = 0; i < nth; ++i) { 3865 kmp_info_t *th = team->t.t_threads[i]; 3866 n += __kmp_free_hot_teams(root, th, level + 1, max_level); 3867 if (i > 0 && th->th.th_hot_teams) { 3868 __kmp_free(th->th.th_hot_teams); 3869 th->th.th_hot_teams = NULL; 3870 } 3871 } 3872 } 3873 __kmp_free_team(root, team, NULL); 3874 return n; 3875 } 3876 #endif 3877 3878 // Resets a root thread and clear its root and hot teams. 3879 // Returns the number of __kmp_threads entries directly and indirectly freed. 3880 static int __kmp_reset_root(int gtid, kmp_root_t *root) { 3881 kmp_team_t *root_team = root->r.r_root_team; 3882 kmp_team_t *hot_team = root->r.r_hot_team; 3883 int n = hot_team->t.t_nproc; 3884 int i; 3885 3886 KMP_DEBUG_ASSERT(!root->r.r_active); 3887 3888 root->r.r_root_team = NULL; 3889 root->r.r_hot_team = NULL; 3890 // __kmp_free_team() does not free hot teams, so we have to clear r_hot_team 3891 // before call to __kmp_free_team(). 3892 __kmp_free_team(root, root_team USE_NESTED_HOT_ARG(NULL)); 3893 #if KMP_NESTED_HOT_TEAMS 3894 if (__kmp_hot_teams_max_level > 3895 0) { // need to free nested hot teams and their threads if any 3896 for (i = 0; i < hot_team->t.t_nproc; ++i) { 3897 kmp_info_t *th = hot_team->t.t_threads[i]; 3898 if (__kmp_hot_teams_max_level > 1) { 3899 n += __kmp_free_hot_teams(root, th, 1, __kmp_hot_teams_max_level); 3900 } 3901 if (th->th.th_hot_teams) { 3902 __kmp_free(th->th.th_hot_teams); 3903 th->th.th_hot_teams = NULL; 3904 } 3905 } 3906 } 3907 #endif 3908 __kmp_free_team(root, hot_team USE_NESTED_HOT_ARG(NULL)); 3909 3910 // Before we can reap the thread, we need to make certain that all other 3911 // threads in the teams that had this root as ancestor have stopped trying to 3912 // steal tasks. 3913 if (__kmp_tasking_mode != tskm_immediate_exec) { 3914 __kmp_wait_to_unref_task_teams(); 3915 } 3916 3917 #if KMP_OS_WINDOWS 3918 /* Close Handle of root duplicated in __kmp_create_worker (tr #62919) */ 3919 KA_TRACE( 3920 10, ("__kmp_reset_root: free handle, th = %p, handle = %" KMP_UINTPTR_SPEC 3921 "\n", 3922 (LPVOID) & (root->r.r_uber_thread->th), 3923 root->r.r_uber_thread->th.th_info.ds.ds_thread)); 3924 __kmp_free_handle(root->r.r_uber_thread->th.th_info.ds.ds_thread); 3925 #endif /* KMP_OS_WINDOWS */ 3926 3927 #if OMPT_SUPPORT 3928 ompt_data_t *task_data; 3929 ompt_data_t *parallel_data; 3930 __ompt_get_task_info_internal(0, NULL, &task_data, NULL, ¶llel_data, 3931 NULL); 3932 if (ompt_enabled.ompt_callback_implicit_task) { 3933 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 3934 ompt_scope_end, parallel_data, task_data, 0, 1, ompt_task_initial); 3935 } 3936 if (ompt_enabled.ompt_callback_thread_end) { 3937 ompt_callbacks.ompt_callback(ompt_callback_thread_end)( 3938 &(root->r.r_uber_thread->th.ompt_thread_info.thread_data)); 3939 } 3940 #endif 3941 3942 TCW_4(__kmp_nth, 3943 __kmp_nth - 1); // __kmp_reap_thread will decrement __kmp_all_nth. 3944 i = root->r.r_uber_thread->th.th_cg_roots->cg_nthreads--; 3945 KA_TRACE(100, ("__kmp_reset_root: Thread %p decrement cg_nthreads on node %p" 3946 " to %d\n", 3947 root->r.r_uber_thread, root->r.r_uber_thread->th.th_cg_roots, 3948 root->r.r_uber_thread->th.th_cg_roots->cg_nthreads)); 3949 if (i == 1) { 3950 // need to free contention group structure 3951 KMP_DEBUG_ASSERT(root->r.r_uber_thread == 3952 root->r.r_uber_thread->th.th_cg_roots->cg_root); 3953 KMP_DEBUG_ASSERT(root->r.r_uber_thread->th.th_cg_roots->up == NULL); 3954 __kmp_free(root->r.r_uber_thread->th.th_cg_roots); 3955 root->r.r_uber_thread->th.th_cg_roots = NULL; 3956 } 3957 __kmp_reap_thread(root->r.r_uber_thread, 1); 3958 3959 // We canot put root thread to __kmp_thread_pool, so we have to reap it 3960 // instead of freeing. 3961 root->r.r_uber_thread = NULL; 3962 /* mark root as no longer in use */ 3963 root->r.r_begin = FALSE; 3964 3965 return n; 3966 } 3967 3968 void __kmp_unregister_root_current_thread(int gtid) { 3969 KA_TRACE(1, ("__kmp_unregister_root_current_thread: enter T#%d\n", gtid)); 3970 /* this lock should be ok, since unregister_root_current_thread is never 3971 called during an abort, only during a normal close. furthermore, if you 3972 have the forkjoin lock, you should never try to get the initz lock */ 3973 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 3974 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 3975 KC_TRACE(10, ("__kmp_unregister_root_current_thread: already finished, " 3976 "exiting T#%d\n", 3977 gtid)); 3978 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 3979 return; 3980 } 3981 kmp_root_t *root = __kmp_root[gtid]; 3982 3983 KMP_DEBUG_ASSERT(__kmp_threads && __kmp_threads[gtid]); 3984 KMP_ASSERT(KMP_UBER_GTID(gtid)); 3985 KMP_ASSERT(root == __kmp_threads[gtid]->th.th_root); 3986 KMP_ASSERT(root->r.r_active == FALSE); 3987 3988 KMP_MB(); 3989 3990 kmp_info_t *thread = __kmp_threads[gtid]; 3991 kmp_team_t *team = thread->th.th_team; 3992 kmp_task_team_t *task_team = thread->th.th_task_team; 3993 3994 // we need to wait for the proxy tasks before finishing the thread 3995 if (task_team != NULL && task_team->tt.tt_found_proxy_tasks) { 3996 #if OMPT_SUPPORT 3997 // the runtime is shutting down so we won't report any events 3998 thread->th.ompt_thread_info.state = ompt_state_undefined; 3999 #endif 4000 __kmp_task_team_wait(thread, team USE_ITT_BUILD_ARG(NULL)); 4001 } 4002 4003 __kmp_reset_root(gtid, root); 4004 4005 KMP_MB(); 4006 KC_TRACE(10, 4007 ("__kmp_unregister_root_current_thread: T#%d unregistered\n", gtid)); 4008 4009 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 4010 } 4011 4012 #if KMP_OS_WINDOWS 4013 /* __kmp_forkjoin_lock must be already held 4014 Unregisters a root thread that is not the current thread. Returns the number 4015 of __kmp_threads entries freed as a result. */ 4016 static int __kmp_unregister_root_other_thread(int gtid) { 4017 kmp_root_t *root = __kmp_root[gtid]; 4018 int r; 4019 4020 KA_TRACE(1, ("__kmp_unregister_root_other_thread: enter T#%d\n", gtid)); 4021 KMP_DEBUG_ASSERT(__kmp_threads && __kmp_threads[gtid]); 4022 KMP_ASSERT(KMP_UBER_GTID(gtid)); 4023 KMP_ASSERT(root == __kmp_threads[gtid]->th.th_root); 4024 KMP_ASSERT(root->r.r_active == FALSE); 4025 4026 r = __kmp_reset_root(gtid, root); 4027 KC_TRACE(10, 4028 ("__kmp_unregister_root_other_thread: T#%d unregistered\n", gtid)); 4029 return r; 4030 } 4031 #endif 4032 4033 #if KMP_DEBUG 4034 void __kmp_task_info() { 4035 4036 kmp_int32 gtid = __kmp_entry_gtid(); 4037 kmp_int32 tid = __kmp_tid_from_gtid(gtid); 4038 kmp_info_t *this_thr = __kmp_threads[gtid]; 4039 kmp_team_t *steam = this_thr->th.th_serial_team; 4040 kmp_team_t *team = this_thr->th.th_team; 4041 4042 __kmp_printf( 4043 "__kmp_task_info: gtid=%d tid=%d t_thread=%p team=%p steam=%p curtask=%p " 4044 "ptask=%p\n", 4045 gtid, tid, this_thr, team, steam, this_thr->th.th_current_task, 4046 team->t.t_implicit_task_taskdata[tid].td_parent); 4047 } 4048 #endif // KMP_DEBUG 4049 4050 /* TODO optimize with one big memclr, take out what isn't needed, split 4051 responsibility to workers as much as possible, and delay initialization of 4052 features as much as possible */ 4053 static void __kmp_initialize_info(kmp_info_t *this_thr, kmp_team_t *team, 4054 int tid, int gtid) { 4055 /* this_thr->th.th_info.ds.ds_gtid is setup in 4056 kmp_allocate_thread/create_worker. 4057 this_thr->th.th_serial_team is setup in __kmp_allocate_thread */ 4058 KMP_DEBUG_ASSERT(this_thr != NULL); 4059 KMP_DEBUG_ASSERT(this_thr->th.th_serial_team); 4060 KMP_DEBUG_ASSERT(team); 4061 KMP_DEBUG_ASSERT(team->t.t_threads); 4062 KMP_DEBUG_ASSERT(team->t.t_dispatch); 4063 kmp_info_t *master = team->t.t_threads[0]; 4064 KMP_DEBUG_ASSERT(master); 4065 KMP_DEBUG_ASSERT(master->th.th_root); 4066 4067 KMP_MB(); 4068 4069 TCW_SYNC_PTR(this_thr->th.th_team, team); 4070 4071 this_thr->th.th_info.ds.ds_tid = tid; 4072 this_thr->th.th_set_nproc = 0; 4073 if (__kmp_tasking_mode != tskm_immediate_exec) 4074 // When tasking is possible, threads are not safe to reap until they are 4075 // done tasking; this will be set when tasking code is exited in wait 4076 this_thr->th.th_reap_state = KMP_NOT_SAFE_TO_REAP; 4077 else // no tasking --> always safe to reap 4078 this_thr->th.th_reap_state = KMP_SAFE_TO_REAP; 4079 this_thr->th.th_set_proc_bind = proc_bind_default; 4080 #if KMP_AFFINITY_SUPPORTED 4081 this_thr->th.th_new_place = this_thr->th.th_current_place; 4082 #endif 4083 this_thr->th.th_root = master->th.th_root; 4084 4085 /* setup the thread's cache of the team structure */ 4086 this_thr->th.th_team_nproc = team->t.t_nproc; 4087 this_thr->th.th_team_master = master; 4088 this_thr->th.th_team_serialized = team->t.t_serialized; 4089 TCW_PTR(this_thr->th.th_sleep_loc, NULL); 4090 4091 KMP_DEBUG_ASSERT(team->t.t_implicit_task_taskdata); 4092 4093 KF_TRACE(10, ("__kmp_initialize_info1: T#%d:%d this_thread=%p curtask=%p\n", 4094 tid, gtid, this_thr, this_thr->th.th_current_task)); 4095 4096 __kmp_init_implicit_task(this_thr->th.th_team_master->th.th_ident, this_thr, 4097 team, tid, TRUE); 4098 4099 KF_TRACE(10, ("__kmp_initialize_info2: T#%d:%d this_thread=%p curtask=%p\n", 4100 tid, gtid, this_thr, this_thr->th.th_current_task)); 4101 // TODO: Initialize ICVs from parent; GEH - isn't that already done in 4102 // __kmp_initialize_team()? 4103 4104 /* TODO no worksharing in speculative threads */ 4105 this_thr->th.th_dispatch = &team->t.t_dispatch[tid]; 4106 4107 this_thr->th.th_local.this_construct = 0; 4108 4109 if (!this_thr->th.th_pri_common) { 4110 this_thr->th.th_pri_common = 4111 (struct common_table *)__kmp_allocate(sizeof(struct common_table)); 4112 if (__kmp_storage_map) { 4113 __kmp_print_storage_map_gtid( 4114 gtid, this_thr->th.th_pri_common, this_thr->th.th_pri_common + 1, 4115 sizeof(struct common_table), "th_%d.th_pri_common\n", gtid); 4116 } 4117 this_thr->th.th_pri_head = NULL; 4118 } 4119 4120 if (this_thr != master && // Primary thread's CG root is initialized elsewhere 4121 this_thr->th.th_cg_roots != master->th.th_cg_roots) { // CG root not set 4122 // Make new thread's CG root same as primary thread's 4123 KMP_DEBUG_ASSERT(master->th.th_cg_roots); 4124 kmp_cg_root_t *tmp = this_thr->th.th_cg_roots; 4125 if (tmp) { 4126 // worker changes CG, need to check if old CG should be freed 4127 int i = tmp->cg_nthreads--; 4128 KA_TRACE(100, ("__kmp_initialize_info: Thread %p decrement cg_nthreads" 4129 " on node %p of thread %p to %d\n", 4130 this_thr, tmp, tmp->cg_root, tmp->cg_nthreads)); 4131 if (i == 1) { 4132 __kmp_free(tmp); // last thread left CG --> free it 4133 } 4134 } 4135 this_thr->th.th_cg_roots = master->th.th_cg_roots; 4136 // Increment new thread's CG root's counter to add the new thread 4137 this_thr->th.th_cg_roots->cg_nthreads++; 4138 KA_TRACE(100, ("__kmp_initialize_info: Thread %p increment cg_nthreads on" 4139 " node %p of thread %p to %d\n", 4140 this_thr, this_thr->th.th_cg_roots, 4141 this_thr->th.th_cg_roots->cg_root, 4142 this_thr->th.th_cg_roots->cg_nthreads)); 4143 this_thr->th.th_current_task->td_icvs.thread_limit = 4144 this_thr->th.th_cg_roots->cg_thread_limit; 4145 } 4146 4147 /* Initialize dynamic dispatch */ 4148 { 4149 volatile kmp_disp_t *dispatch = this_thr->th.th_dispatch; 4150 // Use team max_nproc since this will never change for the team. 4151 size_t disp_size = 4152 sizeof(dispatch_private_info_t) * 4153 (team->t.t_max_nproc == 1 ? 1 : __kmp_dispatch_num_buffers); 4154 KD_TRACE(10, ("__kmp_initialize_info: T#%d max_nproc: %d\n", gtid, 4155 team->t.t_max_nproc)); 4156 KMP_ASSERT(dispatch); 4157 KMP_DEBUG_ASSERT(team->t.t_dispatch); 4158 KMP_DEBUG_ASSERT(dispatch == &team->t.t_dispatch[tid]); 4159 4160 dispatch->th_disp_index = 0; 4161 dispatch->th_doacross_buf_idx = 0; 4162 if (!dispatch->th_disp_buffer) { 4163 dispatch->th_disp_buffer = 4164 (dispatch_private_info_t *)__kmp_allocate(disp_size); 4165 4166 if (__kmp_storage_map) { 4167 __kmp_print_storage_map_gtid( 4168 gtid, &dispatch->th_disp_buffer[0], 4169 &dispatch->th_disp_buffer[team->t.t_max_nproc == 1 4170 ? 1 4171 : __kmp_dispatch_num_buffers], 4172 disp_size, 4173 "th_%d.th_dispatch.th_disp_buffer " 4174 "(team_%d.t_dispatch[%d].th_disp_buffer)", 4175 gtid, team->t.t_id, gtid); 4176 } 4177 } else { 4178 memset(&dispatch->th_disp_buffer[0], '\0', disp_size); 4179 } 4180 4181 dispatch->th_dispatch_pr_current = 0; 4182 dispatch->th_dispatch_sh_current = 0; 4183 4184 dispatch->th_deo_fcn = 0; /* ORDERED */ 4185 dispatch->th_dxo_fcn = 0; /* END ORDERED */ 4186 } 4187 4188 this_thr->th.th_next_pool = NULL; 4189 4190 if (!this_thr->th.th_task_state_memo_stack) { 4191 size_t i; 4192 this_thr->th.th_task_state_memo_stack = 4193 (kmp_uint8 *)__kmp_allocate(4 * sizeof(kmp_uint8)); 4194 this_thr->th.th_task_state_top = 0; 4195 this_thr->th.th_task_state_stack_sz = 4; 4196 for (i = 0; i < this_thr->th.th_task_state_stack_sz; 4197 ++i) // zero init the stack 4198 this_thr->th.th_task_state_memo_stack[i] = 0; 4199 } 4200 4201 KMP_DEBUG_ASSERT(!this_thr->th.th_spin_here); 4202 KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0); 4203 4204 KMP_MB(); 4205 } 4206 4207 /* allocate a new thread for the requesting team. this is only called from 4208 within a forkjoin critical section. we will first try to get an available 4209 thread from the thread pool. if none is available, we will fork a new one 4210 assuming we are able to create a new one. this should be assured, as the 4211 caller should check on this first. */ 4212 kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team, 4213 int new_tid) { 4214 kmp_team_t *serial_team; 4215 kmp_info_t *new_thr; 4216 int new_gtid; 4217 4218 KA_TRACE(20, ("__kmp_allocate_thread: T#%d\n", __kmp_get_gtid())); 4219 KMP_DEBUG_ASSERT(root && team); 4220 #if !KMP_NESTED_HOT_TEAMS 4221 KMP_DEBUG_ASSERT(KMP_MASTER_GTID(__kmp_get_gtid())); 4222 #endif 4223 KMP_MB(); 4224 4225 /* first, try to get one from the thread pool */ 4226 if (__kmp_thread_pool) { 4227 new_thr = CCAST(kmp_info_t *, __kmp_thread_pool); 4228 __kmp_thread_pool = (volatile kmp_info_t *)new_thr->th.th_next_pool; 4229 if (new_thr == __kmp_thread_pool_insert_pt) { 4230 __kmp_thread_pool_insert_pt = NULL; 4231 } 4232 TCW_4(new_thr->th.th_in_pool, FALSE); 4233 __kmp_suspend_initialize_thread(new_thr); 4234 __kmp_lock_suspend_mx(new_thr); 4235 if (new_thr->th.th_active_in_pool == TRUE) { 4236 KMP_DEBUG_ASSERT(new_thr->th.th_active == TRUE); 4237 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 4238 new_thr->th.th_active_in_pool = FALSE; 4239 } 4240 __kmp_unlock_suspend_mx(new_thr); 4241 4242 KA_TRACE(20, ("__kmp_allocate_thread: T#%d using thread T#%d\n", 4243 __kmp_get_gtid(), new_thr->th.th_info.ds.ds_gtid)); 4244 KMP_ASSERT(!new_thr->th.th_team); 4245 KMP_DEBUG_ASSERT(__kmp_nth < __kmp_threads_capacity); 4246 4247 /* setup the thread structure */ 4248 __kmp_initialize_info(new_thr, team, new_tid, 4249 new_thr->th.th_info.ds.ds_gtid); 4250 KMP_DEBUG_ASSERT(new_thr->th.th_serial_team); 4251 4252 TCW_4(__kmp_nth, __kmp_nth + 1); 4253 4254 new_thr->th.th_task_state = 0; 4255 new_thr->th.th_task_state_top = 0; 4256 new_thr->th.th_task_state_stack_sz = 4; 4257 4258 #ifdef KMP_ADJUST_BLOCKTIME 4259 /* Adjust blocktime back to zero if necessary */ 4260 /* Middle initialization might not have occurred yet */ 4261 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 4262 if (__kmp_nth > __kmp_avail_proc) { 4263 __kmp_zero_bt = TRUE; 4264 } 4265 } 4266 #endif /* KMP_ADJUST_BLOCKTIME */ 4267 4268 #if KMP_DEBUG 4269 // If thread entered pool via __kmp_free_thread, wait_flag should != 4270 // KMP_BARRIER_PARENT_FLAG. 4271 int b; 4272 kmp_balign_t *balign = new_thr->th.th_bar; 4273 for (b = 0; b < bs_last_barrier; ++b) 4274 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 4275 #endif 4276 4277 KF_TRACE(10, ("__kmp_allocate_thread: T#%d using thread %p T#%d\n", 4278 __kmp_get_gtid(), new_thr, new_thr->th.th_info.ds.ds_gtid)); 4279 4280 KMP_MB(); 4281 return new_thr; 4282 } 4283 4284 /* no, well fork a new one */ 4285 KMP_ASSERT(__kmp_nth == __kmp_all_nth); 4286 KMP_ASSERT(__kmp_all_nth < __kmp_threads_capacity); 4287 4288 #if KMP_USE_MONITOR 4289 // If this is the first worker thread the RTL is creating, then also 4290 // launch the monitor thread. We try to do this as early as possible. 4291 if (!TCR_4(__kmp_init_monitor)) { 4292 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock); 4293 if (!TCR_4(__kmp_init_monitor)) { 4294 KF_TRACE(10, ("before __kmp_create_monitor\n")); 4295 TCW_4(__kmp_init_monitor, 1); 4296 __kmp_create_monitor(&__kmp_monitor); 4297 KF_TRACE(10, ("after __kmp_create_monitor\n")); 4298 #if KMP_OS_WINDOWS 4299 // AC: wait until monitor has started. This is a fix for CQ232808. 4300 // The reason is that if the library is loaded/unloaded in a loop with 4301 // small (parallel) work in between, then there is high probability that 4302 // monitor thread started after the library shutdown. At shutdown it is 4303 // too late to cope with the problem, because when the primary thread is 4304 // in DllMain (process detach) the monitor has no chances to start (it is 4305 // blocked), and primary thread has no means to inform the monitor that 4306 // the library has gone, because all the memory which the monitor can 4307 // access is going to be released/reset. 4308 while (TCR_4(__kmp_init_monitor) < 2) { 4309 KMP_YIELD(TRUE); 4310 } 4311 KF_TRACE(10, ("after monitor thread has started\n")); 4312 #endif 4313 } 4314 __kmp_release_bootstrap_lock(&__kmp_monitor_lock); 4315 } 4316 #endif 4317 4318 KMP_MB(); 4319 4320 { 4321 int new_start_gtid = TCR_4(__kmp_init_hidden_helper_threads) 4322 ? 1 4323 : __kmp_hidden_helper_threads_num + 1; 4324 4325 for (new_gtid = new_start_gtid; TCR_PTR(__kmp_threads[new_gtid]) != NULL; 4326 ++new_gtid) { 4327 KMP_DEBUG_ASSERT(new_gtid < __kmp_threads_capacity); 4328 } 4329 4330 if (TCR_4(__kmp_init_hidden_helper_threads)) { 4331 KMP_DEBUG_ASSERT(new_gtid <= __kmp_hidden_helper_threads_num); 4332 } 4333 } 4334 4335 /* allocate space for it. */ 4336 new_thr = (kmp_info_t *)__kmp_allocate(sizeof(kmp_info_t)); 4337 4338 TCW_SYNC_PTR(__kmp_threads[new_gtid], new_thr); 4339 4340 #if USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG 4341 // suppress race conditions detection on synchronization flags in debug mode 4342 // this helps to analyze library internals eliminating false positives 4343 __itt_suppress_mark_range( 4344 __itt_suppress_range, __itt_suppress_threading_errors, 4345 &new_thr->th.th_sleep_loc, sizeof(new_thr->th.th_sleep_loc)); 4346 __itt_suppress_mark_range( 4347 __itt_suppress_range, __itt_suppress_threading_errors, 4348 &new_thr->th.th_reap_state, sizeof(new_thr->th.th_reap_state)); 4349 #if KMP_OS_WINDOWS 4350 __itt_suppress_mark_range( 4351 __itt_suppress_range, __itt_suppress_threading_errors, 4352 &new_thr->th.th_suspend_init, sizeof(new_thr->th.th_suspend_init)); 4353 #else 4354 __itt_suppress_mark_range(__itt_suppress_range, 4355 __itt_suppress_threading_errors, 4356 &new_thr->th.th_suspend_init_count, 4357 sizeof(new_thr->th.th_suspend_init_count)); 4358 #endif 4359 // TODO: check if we need to also suppress b_arrived flags 4360 __itt_suppress_mark_range(__itt_suppress_range, 4361 __itt_suppress_threading_errors, 4362 CCAST(kmp_uint64 *, &new_thr->th.th_bar[0].bb.b_go), 4363 sizeof(new_thr->th.th_bar[0].bb.b_go)); 4364 __itt_suppress_mark_range(__itt_suppress_range, 4365 __itt_suppress_threading_errors, 4366 CCAST(kmp_uint64 *, &new_thr->th.th_bar[1].bb.b_go), 4367 sizeof(new_thr->th.th_bar[1].bb.b_go)); 4368 __itt_suppress_mark_range(__itt_suppress_range, 4369 __itt_suppress_threading_errors, 4370 CCAST(kmp_uint64 *, &new_thr->th.th_bar[2].bb.b_go), 4371 sizeof(new_thr->th.th_bar[2].bb.b_go)); 4372 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG */ 4373 if (__kmp_storage_map) { 4374 __kmp_print_thread_storage_map(new_thr, new_gtid); 4375 } 4376 4377 // add the reserve serialized team, initialized from the team's primary thread 4378 { 4379 kmp_internal_control_t r_icvs = __kmp_get_x_global_icvs(team); 4380 KF_TRACE(10, ("__kmp_allocate_thread: before th_serial/serial_team\n")); 4381 new_thr->th.th_serial_team = serial_team = 4382 (kmp_team_t *)__kmp_allocate_team(root, 1, 1, 4383 #if OMPT_SUPPORT 4384 ompt_data_none, // root parallel id 4385 #endif 4386 proc_bind_default, &r_icvs, 4387 0 USE_NESTED_HOT_ARG(NULL)); 4388 } 4389 KMP_ASSERT(serial_team); 4390 serial_team->t.t_serialized = 0; // AC: the team created in reserve, not for 4391 // execution (it is unused for now). 4392 serial_team->t.t_threads[0] = new_thr; 4393 KF_TRACE(10, 4394 ("__kmp_allocate_thread: after th_serial/serial_team : new_thr=%p\n", 4395 new_thr)); 4396 4397 /* setup the thread structures */ 4398 __kmp_initialize_info(new_thr, team, new_tid, new_gtid); 4399 4400 #if USE_FAST_MEMORY 4401 __kmp_initialize_fast_memory(new_thr); 4402 #endif /* USE_FAST_MEMORY */ 4403 4404 #if KMP_USE_BGET 4405 KMP_DEBUG_ASSERT(new_thr->th.th_local.bget_data == NULL); 4406 __kmp_initialize_bget(new_thr); 4407 #endif 4408 4409 __kmp_init_random(new_thr); // Initialize random number generator 4410 4411 /* Initialize these only once when thread is grabbed for a team allocation */ 4412 KA_TRACE(20, 4413 ("__kmp_allocate_thread: T#%d init go fork=%u, plain=%u\n", 4414 __kmp_get_gtid(), KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 4415 4416 int b; 4417 kmp_balign_t *balign = new_thr->th.th_bar; 4418 for (b = 0; b < bs_last_barrier; ++b) { 4419 balign[b].bb.b_go = KMP_INIT_BARRIER_STATE; 4420 balign[b].bb.team = NULL; 4421 balign[b].bb.wait_flag = KMP_BARRIER_NOT_WAITING; 4422 balign[b].bb.use_oncore_barrier = 0; 4423 } 4424 4425 new_thr->th.th_spin_here = FALSE; 4426 new_thr->th.th_next_waiting = 0; 4427 #if KMP_OS_UNIX 4428 new_thr->th.th_blocking = false; 4429 #endif 4430 4431 #if KMP_AFFINITY_SUPPORTED 4432 new_thr->th.th_current_place = KMP_PLACE_UNDEFINED; 4433 new_thr->th.th_new_place = KMP_PLACE_UNDEFINED; 4434 new_thr->th.th_first_place = KMP_PLACE_UNDEFINED; 4435 new_thr->th.th_last_place = KMP_PLACE_UNDEFINED; 4436 #endif 4437 new_thr->th.th_def_allocator = __kmp_def_allocator; 4438 new_thr->th.th_prev_level = 0; 4439 new_thr->th.th_prev_num_threads = 1; 4440 4441 TCW_4(new_thr->th.th_in_pool, FALSE); 4442 new_thr->th.th_active_in_pool = FALSE; 4443 TCW_4(new_thr->th.th_active, TRUE); 4444 4445 /* adjust the global counters */ 4446 __kmp_all_nth++; 4447 __kmp_nth++; 4448 4449 // if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) for low 4450 // numbers of procs, and method #2 (keyed API call) for higher numbers. 4451 if (__kmp_adjust_gtid_mode) { 4452 if (__kmp_all_nth >= __kmp_tls_gtid_min) { 4453 if (TCR_4(__kmp_gtid_mode) != 2) { 4454 TCW_4(__kmp_gtid_mode, 2); 4455 } 4456 } else { 4457 if (TCR_4(__kmp_gtid_mode) != 1) { 4458 TCW_4(__kmp_gtid_mode, 1); 4459 } 4460 } 4461 } 4462 4463 #ifdef KMP_ADJUST_BLOCKTIME 4464 /* Adjust blocktime back to zero if necessary */ 4465 /* Middle initialization might not have occurred yet */ 4466 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 4467 if (__kmp_nth > __kmp_avail_proc) { 4468 __kmp_zero_bt = TRUE; 4469 } 4470 } 4471 #endif /* KMP_ADJUST_BLOCKTIME */ 4472 4473 /* actually fork it and create the new worker thread */ 4474 KF_TRACE( 4475 10, ("__kmp_allocate_thread: before __kmp_create_worker: %p\n", new_thr)); 4476 __kmp_create_worker(new_gtid, new_thr, __kmp_stksize); 4477 KF_TRACE(10, 4478 ("__kmp_allocate_thread: after __kmp_create_worker: %p\n", new_thr)); 4479 4480 KA_TRACE(20, ("__kmp_allocate_thread: T#%d forked T#%d\n", __kmp_get_gtid(), 4481 new_gtid)); 4482 KMP_MB(); 4483 return new_thr; 4484 } 4485 4486 /* Reinitialize team for reuse. 4487 The hot team code calls this case at every fork barrier, so EPCC barrier 4488 test are extremely sensitive to changes in it, esp. writes to the team 4489 struct, which cause a cache invalidation in all threads. 4490 IF YOU TOUCH THIS ROUTINE, RUN EPCC C SYNCBENCH ON A BIG-IRON MACHINE!!! */ 4491 static void __kmp_reinitialize_team(kmp_team_t *team, 4492 kmp_internal_control_t *new_icvs, 4493 ident_t *loc) { 4494 KF_TRACE(10, ("__kmp_reinitialize_team: enter this_thread=%p team=%p\n", 4495 team->t.t_threads[0], team)); 4496 KMP_DEBUG_ASSERT(team && new_icvs); 4497 KMP_DEBUG_ASSERT((!TCR_4(__kmp_init_parallel)) || new_icvs->nproc); 4498 KMP_CHECK_UPDATE(team->t.t_ident, loc); 4499 4500 KMP_CHECK_UPDATE(team->t.t_id, KMP_GEN_TEAM_ID()); 4501 // Copy ICVs to the primary thread's implicit taskdata 4502 __kmp_init_implicit_task(loc, team->t.t_threads[0], team, 0, FALSE); 4503 copy_icvs(&team->t.t_implicit_task_taskdata[0].td_icvs, new_icvs); 4504 4505 KF_TRACE(10, ("__kmp_reinitialize_team: exit this_thread=%p team=%p\n", 4506 team->t.t_threads[0], team)); 4507 } 4508 4509 /* Initialize the team data structure. 4510 This assumes the t_threads and t_max_nproc are already set. 4511 Also, we don't touch the arguments */ 4512 static void __kmp_initialize_team(kmp_team_t *team, int new_nproc, 4513 kmp_internal_control_t *new_icvs, 4514 ident_t *loc) { 4515 KF_TRACE(10, ("__kmp_initialize_team: enter: team=%p\n", team)); 4516 4517 /* verify */ 4518 KMP_DEBUG_ASSERT(team); 4519 KMP_DEBUG_ASSERT(new_nproc <= team->t.t_max_nproc); 4520 KMP_DEBUG_ASSERT(team->t.t_threads); 4521 KMP_MB(); 4522 4523 team->t.t_master_tid = 0; /* not needed */ 4524 /* team->t.t_master_bar; not needed */ 4525 team->t.t_serialized = new_nproc > 1 ? 0 : 1; 4526 team->t.t_nproc = new_nproc; 4527 4528 /* team->t.t_parent = NULL; TODO not needed & would mess up hot team */ 4529 team->t.t_next_pool = NULL; 4530 /* memset( team->t.t_threads, 0, sizeof(kmp_info_t*)*new_nproc ); would mess 4531 * up hot team */ 4532 4533 TCW_SYNC_PTR(team->t.t_pkfn, NULL); /* not needed */ 4534 team->t.t_invoke = NULL; /* not needed */ 4535 4536 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 4537 team->t.t_sched.sched = new_icvs->sched.sched; 4538 4539 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4540 team->t.t_fp_control_saved = FALSE; /* not needed */ 4541 team->t.t_x87_fpu_control_word = 0; /* not needed */ 4542 team->t.t_mxcsr = 0; /* not needed */ 4543 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4544 4545 team->t.t_construct = 0; 4546 4547 team->t.t_ordered.dt.t_value = 0; 4548 team->t.t_master_active = FALSE; 4549 4550 #ifdef KMP_DEBUG 4551 team->t.t_copypriv_data = NULL; /* not necessary, but nice for debugging */ 4552 #endif 4553 #if KMP_OS_WINDOWS 4554 team->t.t_copyin_counter = 0; /* for barrier-free copyin implementation */ 4555 #endif 4556 4557 team->t.t_control_stack_top = NULL; 4558 4559 __kmp_reinitialize_team(team, new_icvs, loc); 4560 4561 KMP_MB(); 4562 KF_TRACE(10, ("__kmp_initialize_team: exit: team=%p\n", team)); 4563 } 4564 4565 #if (KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED 4566 /* Sets full mask for thread and returns old mask, no changes to structures. */ 4567 static void 4568 __kmp_set_thread_affinity_mask_full_tmp(kmp_affin_mask_t *old_mask) { 4569 if (KMP_AFFINITY_CAPABLE()) { 4570 int status; 4571 if (old_mask != NULL) { 4572 status = __kmp_get_system_affinity(old_mask, TRUE); 4573 int error = errno; 4574 if (status != 0) { 4575 __kmp_fatal(KMP_MSG(ChangeThreadAffMaskError), KMP_ERR(error), 4576 __kmp_msg_null); 4577 } 4578 } 4579 __kmp_set_system_affinity(__kmp_affin_fullMask, TRUE); 4580 } 4581 } 4582 #endif 4583 4584 #if KMP_AFFINITY_SUPPORTED 4585 4586 // __kmp_partition_places() is the heart of the OpenMP 4.0 affinity mechanism. 4587 // It calculates the worker + primary thread's partition based upon the parent 4588 // thread's partition, and binds each worker to a thread in their partition. 4589 // The primary thread's partition should already include its current binding. 4590 static void __kmp_partition_places(kmp_team_t *team, int update_master_only) { 4591 // Copy the primary thread's place partition to the team struct 4592 kmp_info_t *master_th = team->t.t_threads[0]; 4593 KMP_DEBUG_ASSERT(master_th != NULL); 4594 kmp_proc_bind_t proc_bind = team->t.t_proc_bind; 4595 int first_place = master_th->th.th_first_place; 4596 int last_place = master_th->th.th_last_place; 4597 int masters_place = master_th->th.th_current_place; 4598 team->t.t_first_place = first_place; 4599 team->t.t_last_place = last_place; 4600 4601 KA_TRACE(20, ("__kmp_partition_places: enter: proc_bind = %d T#%d(%d:0) " 4602 "bound to place %d partition = [%d,%d]\n", 4603 proc_bind, __kmp_gtid_from_thread(team->t.t_threads[0]), 4604 team->t.t_id, masters_place, first_place, last_place)); 4605 4606 switch (proc_bind) { 4607 4608 case proc_bind_default: 4609 // Serial teams might have the proc_bind policy set to proc_bind_default. 4610 // Not an issue -- we don't rebind primary thread for any proc_bind policy. 4611 KMP_DEBUG_ASSERT(team->t.t_nproc == 1); 4612 break; 4613 4614 case proc_bind_primary: { 4615 int f; 4616 int n_th = team->t.t_nproc; 4617 for (f = 1; f < n_th; f++) { 4618 kmp_info_t *th = team->t.t_threads[f]; 4619 KMP_DEBUG_ASSERT(th != NULL); 4620 th->th.th_first_place = first_place; 4621 th->th.th_last_place = last_place; 4622 th->th.th_new_place = masters_place; 4623 if (__kmp_display_affinity && masters_place != th->th.th_current_place && 4624 team->t.t_display_affinity != 1) { 4625 team->t.t_display_affinity = 1; 4626 } 4627 4628 KA_TRACE(100, ("__kmp_partition_places: primary: T#%d(%d:%d) place %d " 4629 "partition = [%d,%d]\n", 4630 __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, 4631 f, masters_place, first_place, last_place)); 4632 } 4633 } break; 4634 4635 case proc_bind_close: { 4636 int f; 4637 int n_th = team->t.t_nproc; 4638 int n_places; 4639 if (first_place <= last_place) { 4640 n_places = last_place - first_place + 1; 4641 } else { 4642 n_places = __kmp_affinity_num_masks - first_place + last_place + 1; 4643 } 4644 if (n_th <= n_places) { 4645 int place = masters_place; 4646 for (f = 1; f < n_th; f++) { 4647 kmp_info_t *th = team->t.t_threads[f]; 4648 KMP_DEBUG_ASSERT(th != NULL); 4649 4650 if (place == last_place) { 4651 place = first_place; 4652 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4653 place = 0; 4654 } else { 4655 place++; 4656 } 4657 th->th.th_first_place = first_place; 4658 th->th.th_last_place = last_place; 4659 th->th.th_new_place = place; 4660 if (__kmp_display_affinity && place != th->th.th_current_place && 4661 team->t.t_display_affinity != 1) { 4662 team->t.t_display_affinity = 1; 4663 } 4664 4665 KA_TRACE(100, ("__kmp_partition_places: close: T#%d(%d:%d) place %d " 4666 "partition = [%d,%d]\n", 4667 __kmp_gtid_from_thread(team->t.t_threads[f]), 4668 team->t.t_id, f, place, first_place, last_place)); 4669 } 4670 } else { 4671 int S, rem, gap, s_count; 4672 S = n_th / n_places; 4673 s_count = 0; 4674 rem = n_th - (S * n_places); 4675 gap = rem > 0 ? n_places / rem : n_places; 4676 int place = masters_place; 4677 int gap_ct = gap; 4678 for (f = 0; f < n_th; f++) { 4679 kmp_info_t *th = team->t.t_threads[f]; 4680 KMP_DEBUG_ASSERT(th != NULL); 4681 4682 th->th.th_first_place = first_place; 4683 th->th.th_last_place = last_place; 4684 th->th.th_new_place = place; 4685 if (__kmp_display_affinity && place != th->th.th_current_place && 4686 team->t.t_display_affinity != 1) { 4687 team->t.t_display_affinity = 1; 4688 } 4689 s_count++; 4690 4691 if ((s_count == S) && rem && (gap_ct == gap)) { 4692 // do nothing, add an extra thread to place on next iteration 4693 } else if ((s_count == S + 1) && rem && (gap_ct == gap)) { 4694 // we added an extra thread to this place; move to next place 4695 if (place == last_place) { 4696 place = first_place; 4697 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4698 place = 0; 4699 } else { 4700 place++; 4701 } 4702 s_count = 0; 4703 gap_ct = 1; 4704 rem--; 4705 } else if (s_count == S) { // place full; don't add extra 4706 if (place == last_place) { 4707 place = first_place; 4708 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4709 place = 0; 4710 } else { 4711 place++; 4712 } 4713 gap_ct++; 4714 s_count = 0; 4715 } 4716 4717 KA_TRACE(100, 4718 ("__kmp_partition_places: close: T#%d(%d:%d) place %d " 4719 "partition = [%d,%d]\n", 4720 __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, f, 4721 th->th.th_new_place, first_place, last_place)); 4722 } 4723 KMP_DEBUG_ASSERT(place == masters_place); 4724 } 4725 } break; 4726 4727 case proc_bind_spread: { 4728 int f; 4729 int n_th = team->t.t_nproc; 4730 int n_places; 4731 int thidx; 4732 if (first_place <= last_place) { 4733 n_places = last_place - first_place + 1; 4734 } else { 4735 n_places = __kmp_affinity_num_masks - first_place + last_place + 1; 4736 } 4737 if (n_th <= n_places) { 4738 int place = -1; 4739 4740 if (n_places != static_cast<int>(__kmp_affinity_num_masks)) { 4741 int S = n_places / n_th; 4742 int s_count, rem, gap, gap_ct; 4743 4744 place = masters_place; 4745 rem = n_places - n_th * S; 4746 gap = rem ? n_th / rem : 1; 4747 gap_ct = gap; 4748 thidx = n_th; 4749 if (update_master_only == 1) 4750 thidx = 1; 4751 for (f = 0; f < thidx; f++) { 4752 kmp_info_t *th = team->t.t_threads[f]; 4753 KMP_DEBUG_ASSERT(th != NULL); 4754 4755 th->th.th_first_place = place; 4756 th->th.th_new_place = place; 4757 if (__kmp_display_affinity && place != th->th.th_current_place && 4758 team->t.t_display_affinity != 1) { 4759 team->t.t_display_affinity = 1; 4760 } 4761 s_count = 1; 4762 while (s_count < S) { 4763 if (place == last_place) { 4764 place = first_place; 4765 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4766 place = 0; 4767 } else { 4768 place++; 4769 } 4770 s_count++; 4771 } 4772 if (rem && (gap_ct == gap)) { 4773 if (place == last_place) { 4774 place = first_place; 4775 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4776 place = 0; 4777 } else { 4778 place++; 4779 } 4780 rem--; 4781 gap_ct = 0; 4782 } 4783 th->th.th_last_place = place; 4784 gap_ct++; 4785 4786 if (place == last_place) { 4787 place = first_place; 4788 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4789 place = 0; 4790 } else { 4791 place++; 4792 } 4793 4794 KA_TRACE(100, 4795 ("__kmp_partition_places: spread: T#%d(%d:%d) place %d " 4796 "partition = [%d,%d], __kmp_affinity_num_masks: %u\n", 4797 __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, 4798 f, th->th.th_new_place, th->th.th_first_place, 4799 th->th.th_last_place, __kmp_affinity_num_masks)); 4800 } 4801 } else { 4802 /* Having uniform space of available computation places I can create 4803 T partitions of round(P/T) size and put threads into the first 4804 place of each partition. */ 4805 double current = static_cast<double>(masters_place); 4806 double spacing = 4807 (static_cast<double>(n_places + 1) / static_cast<double>(n_th)); 4808 int first, last; 4809 kmp_info_t *th; 4810 4811 thidx = n_th + 1; 4812 if (update_master_only == 1) 4813 thidx = 1; 4814 for (f = 0; f < thidx; f++) { 4815 first = static_cast<int>(current); 4816 last = static_cast<int>(current + spacing) - 1; 4817 KMP_DEBUG_ASSERT(last >= first); 4818 if (first >= n_places) { 4819 if (masters_place) { 4820 first -= n_places; 4821 last -= n_places; 4822 if (first == (masters_place + 1)) { 4823 KMP_DEBUG_ASSERT(f == n_th); 4824 first--; 4825 } 4826 if (last == masters_place) { 4827 KMP_DEBUG_ASSERT(f == (n_th - 1)); 4828 last--; 4829 } 4830 } else { 4831 KMP_DEBUG_ASSERT(f == n_th); 4832 first = 0; 4833 last = 0; 4834 } 4835 } 4836 if (last >= n_places) { 4837 last = (n_places - 1); 4838 } 4839 place = first; 4840 current += spacing; 4841 if (f < n_th) { 4842 KMP_DEBUG_ASSERT(0 <= first); 4843 KMP_DEBUG_ASSERT(n_places > first); 4844 KMP_DEBUG_ASSERT(0 <= last); 4845 KMP_DEBUG_ASSERT(n_places > last); 4846 KMP_DEBUG_ASSERT(last_place >= first_place); 4847 th = team->t.t_threads[f]; 4848 KMP_DEBUG_ASSERT(th); 4849 th->th.th_first_place = first; 4850 th->th.th_new_place = place; 4851 th->th.th_last_place = last; 4852 if (__kmp_display_affinity && place != th->th.th_current_place && 4853 team->t.t_display_affinity != 1) { 4854 team->t.t_display_affinity = 1; 4855 } 4856 KA_TRACE(100, 4857 ("__kmp_partition_places: spread: T#%d(%d:%d) place %d " 4858 "partition = [%d,%d], spacing = %.4f\n", 4859 __kmp_gtid_from_thread(team->t.t_threads[f]), 4860 team->t.t_id, f, th->th.th_new_place, 4861 th->th.th_first_place, th->th.th_last_place, spacing)); 4862 } 4863 } 4864 } 4865 KMP_DEBUG_ASSERT(update_master_only || place == masters_place); 4866 } else { 4867 int S, rem, gap, s_count; 4868 S = n_th / n_places; 4869 s_count = 0; 4870 rem = n_th - (S * n_places); 4871 gap = rem > 0 ? n_places / rem : n_places; 4872 int place = masters_place; 4873 int gap_ct = gap; 4874 thidx = n_th; 4875 if (update_master_only == 1) 4876 thidx = 1; 4877 for (f = 0; f < thidx; f++) { 4878 kmp_info_t *th = team->t.t_threads[f]; 4879 KMP_DEBUG_ASSERT(th != NULL); 4880 4881 th->th.th_first_place = place; 4882 th->th.th_last_place = place; 4883 th->th.th_new_place = place; 4884 if (__kmp_display_affinity && place != th->th.th_current_place && 4885 team->t.t_display_affinity != 1) { 4886 team->t.t_display_affinity = 1; 4887 } 4888 s_count++; 4889 4890 if ((s_count == S) && rem && (gap_ct == gap)) { 4891 // do nothing, add an extra thread to place on next iteration 4892 } else if ((s_count == S + 1) && rem && (gap_ct == gap)) { 4893 // we added an extra thread to this place; move on to next place 4894 if (place == last_place) { 4895 place = first_place; 4896 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4897 place = 0; 4898 } else { 4899 place++; 4900 } 4901 s_count = 0; 4902 gap_ct = 1; 4903 rem--; 4904 } else if (s_count == S) { // place is full; don't add extra thread 4905 if (place == last_place) { 4906 place = first_place; 4907 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4908 place = 0; 4909 } else { 4910 place++; 4911 } 4912 gap_ct++; 4913 s_count = 0; 4914 } 4915 4916 KA_TRACE(100, ("__kmp_partition_places: spread: T#%d(%d:%d) place %d " 4917 "partition = [%d,%d]\n", 4918 __kmp_gtid_from_thread(team->t.t_threads[f]), 4919 team->t.t_id, f, th->th.th_new_place, 4920 th->th.th_first_place, th->th.th_last_place)); 4921 } 4922 KMP_DEBUG_ASSERT(update_master_only || place == masters_place); 4923 } 4924 } break; 4925 4926 default: 4927 break; 4928 } 4929 4930 KA_TRACE(20, ("__kmp_partition_places: exit T#%d\n", team->t.t_id)); 4931 } 4932 4933 #endif // KMP_AFFINITY_SUPPORTED 4934 4935 /* allocate a new team data structure to use. take one off of the free pool if 4936 available */ 4937 kmp_team_t * 4938 __kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc, 4939 #if OMPT_SUPPORT 4940 ompt_data_t ompt_parallel_data, 4941 #endif 4942 kmp_proc_bind_t new_proc_bind, 4943 kmp_internal_control_t *new_icvs, 4944 int argc USE_NESTED_HOT_ARG(kmp_info_t *master)) { 4945 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_allocate_team); 4946 int f; 4947 kmp_team_t *team; 4948 int use_hot_team = !root->r.r_active; 4949 int level = 0; 4950 4951 KA_TRACE(20, ("__kmp_allocate_team: called\n")); 4952 KMP_DEBUG_ASSERT(new_nproc >= 1 && argc >= 0); 4953 KMP_DEBUG_ASSERT(max_nproc >= new_nproc); 4954 KMP_MB(); 4955 4956 #if KMP_NESTED_HOT_TEAMS 4957 kmp_hot_team_ptr_t *hot_teams; 4958 if (master) { 4959 team = master->th.th_team; 4960 level = team->t.t_active_level; 4961 if (master->th.th_teams_microtask) { // in teams construct? 4962 if (master->th.th_teams_size.nteams > 1 && 4963 ( // #teams > 1 4964 team->t.t_pkfn == 4965 (microtask_t)__kmp_teams_master || // inner fork of the teams 4966 master->th.th_teams_level < 4967 team->t.t_level)) { // or nested parallel inside the teams 4968 ++level; // not increment if #teams==1, or for outer fork of the teams; 4969 // increment otherwise 4970 } 4971 } 4972 hot_teams = master->th.th_hot_teams; 4973 if (level < __kmp_hot_teams_max_level && hot_teams && 4974 hot_teams[level].hot_team) { 4975 // hot team has already been allocated for given level 4976 use_hot_team = 1; 4977 } else { 4978 use_hot_team = 0; 4979 } 4980 } else { 4981 // check we won't access uninitialized hot_teams, just in case 4982 KMP_DEBUG_ASSERT(new_nproc == 1); 4983 } 4984 #endif 4985 // Optimization to use a "hot" team 4986 if (use_hot_team && new_nproc > 1) { 4987 KMP_DEBUG_ASSERT(new_nproc <= max_nproc); 4988 #if KMP_NESTED_HOT_TEAMS 4989 team = hot_teams[level].hot_team; 4990 #else 4991 team = root->r.r_hot_team; 4992 #endif 4993 #if KMP_DEBUG 4994 if (__kmp_tasking_mode != tskm_immediate_exec) { 4995 KA_TRACE(20, ("__kmp_allocate_team: hot team task_team[0] = %p " 4996 "task_team[1] = %p before reinit\n", 4997 team->t.t_task_team[0], team->t.t_task_team[1])); 4998 } 4999 #endif 5000 5001 // Has the number of threads changed? 5002 /* Let's assume the most common case is that the number of threads is 5003 unchanged, and put that case first. */ 5004 if (team->t.t_nproc == new_nproc) { // Check changes in number of threads 5005 KA_TRACE(20, ("__kmp_allocate_team: reusing hot team\n")); 5006 // This case can mean that omp_set_num_threads() was called and the hot 5007 // team size was already reduced, so we check the special flag 5008 if (team->t.t_size_changed == -1) { 5009 team->t.t_size_changed = 1; 5010 } else { 5011 KMP_CHECK_UPDATE(team->t.t_size_changed, 0); 5012 } 5013 5014 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 5015 kmp_r_sched_t new_sched = new_icvs->sched; 5016 // set primary thread's schedule as new run-time schedule 5017 KMP_CHECK_UPDATE(team->t.t_sched.sched, new_sched.sched); 5018 5019 __kmp_reinitialize_team(team, new_icvs, 5020 root->r.r_uber_thread->th.th_ident); 5021 5022 KF_TRACE(10, ("__kmp_allocate_team2: T#%d, this_thread=%p team=%p\n", 0, 5023 team->t.t_threads[0], team)); 5024 __kmp_push_current_task_to_thread(team->t.t_threads[0], team, 0); 5025 5026 #if KMP_AFFINITY_SUPPORTED 5027 if ((team->t.t_size_changed == 0) && 5028 (team->t.t_proc_bind == new_proc_bind)) { 5029 if (new_proc_bind == proc_bind_spread) { 5030 __kmp_partition_places( 5031 team, 1); // add flag to update only master for spread 5032 } 5033 KA_TRACE(200, ("__kmp_allocate_team: reusing hot team #%d bindings: " 5034 "proc_bind = %d, partition = [%d,%d]\n", 5035 team->t.t_id, new_proc_bind, team->t.t_first_place, 5036 team->t.t_last_place)); 5037 } else { 5038 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5039 __kmp_partition_places(team); 5040 } 5041 #else 5042 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5043 #endif /* KMP_AFFINITY_SUPPORTED */ 5044 } else if (team->t.t_nproc > new_nproc) { 5045 KA_TRACE(20, 5046 ("__kmp_allocate_team: decreasing hot team thread count to %d\n", 5047 new_nproc)); 5048 5049 team->t.t_size_changed = 1; 5050 #if KMP_NESTED_HOT_TEAMS 5051 if (__kmp_hot_teams_mode == 0) { 5052 // AC: saved number of threads should correspond to team's value in this 5053 // mode, can be bigger in mode 1, when hot team has threads in reserve 5054 KMP_DEBUG_ASSERT(hot_teams[level].hot_team_nth == team->t.t_nproc); 5055 hot_teams[level].hot_team_nth = new_nproc; 5056 #endif // KMP_NESTED_HOT_TEAMS 5057 /* release the extra threads we don't need any more */ 5058 for (f = new_nproc; f < team->t.t_nproc; f++) { 5059 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5060 if (__kmp_tasking_mode != tskm_immediate_exec) { 5061 // When decreasing team size, threads no longer in the team should 5062 // unref task team. 5063 team->t.t_threads[f]->th.th_task_team = NULL; 5064 } 5065 __kmp_free_thread(team->t.t_threads[f]); 5066 team->t.t_threads[f] = NULL; 5067 } 5068 #if KMP_NESTED_HOT_TEAMS 5069 } // (__kmp_hot_teams_mode == 0) 5070 else { 5071 // When keeping extra threads in team, switch threads to wait on own 5072 // b_go flag 5073 for (f = new_nproc; f < team->t.t_nproc; ++f) { 5074 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5075 kmp_balign_t *balign = team->t.t_threads[f]->th.th_bar; 5076 for (int b = 0; b < bs_last_barrier; ++b) { 5077 if (balign[b].bb.wait_flag == KMP_BARRIER_PARENT_FLAG) { 5078 balign[b].bb.wait_flag = KMP_BARRIER_SWITCH_TO_OWN_FLAG; 5079 } 5080 KMP_CHECK_UPDATE(balign[b].bb.leaf_kids, 0); 5081 } 5082 } 5083 } 5084 #endif // KMP_NESTED_HOT_TEAMS 5085 team->t.t_nproc = new_nproc; 5086 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 5087 KMP_CHECK_UPDATE(team->t.t_sched.sched, new_icvs->sched.sched); 5088 __kmp_reinitialize_team(team, new_icvs, 5089 root->r.r_uber_thread->th.th_ident); 5090 5091 // Update remaining threads 5092 for (f = 0; f < new_nproc; ++f) { 5093 team->t.t_threads[f]->th.th_team_nproc = new_nproc; 5094 } 5095 5096 // restore the current task state of the primary thread: should be the 5097 // implicit task 5098 KF_TRACE(10, ("__kmp_allocate_team: T#%d, this_thread=%p team=%p\n", 0, 5099 team->t.t_threads[0], team)); 5100 5101 __kmp_push_current_task_to_thread(team->t.t_threads[0], team, 0); 5102 5103 #ifdef KMP_DEBUG 5104 for (f = 0; f < team->t.t_nproc; f++) { 5105 KMP_DEBUG_ASSERT(team->t.t_threads[f] && 5106 team->t.t_threads[f]->th.th_team_nproc == 5107 team->t.t_nproc); 5108 } 5109 #endif 5110 5111 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5112 #if KMP_AFFINITY_SUPPORTED 5113 __kmp_partition_places(team); 5114 #endif 5115 } else { // team->t.t_nproc < new_nproc 5116 #if (KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED 5117 kmp_affin_mask_t *old_mask; 5118 if (KMP_AFFINITY_CAPABLE()) { 5119 KMP_CPU_ALLOC(old_mask); 5120 } 5121 #endif 5122 5123 KA_TRACE(20, 5124 ("__kmp_allocate_team: increasing hot team thread count to %d\n", 5125 new_nproc)); 5126 5127 team->t.t_size_changed = 1; 5128 5129 #if KMP_NESTED_HOT_TEAMS 5130 int avail_threads = hot_teams[level].hot_team_nth; 5131 if (new_nproc < avail_threads) 5132 avail_threads = new_nproc; 5133 kmp_info_t **other_threads = team->t.t_threads; 5134 for (f = team->t.t_nproc; f < avail_threads; ++f) { 5135 // Adjust barrier data of reserved threads (if any) of the team 5136 // Other data will be set in __kmp_initialize_info() below. 5137 int b; 5138 kmp_balign_t *balign = other_threads[f]->th.th_bar; 5139 for (b = 0; b < bs_last_barrier; ++b) { 5140 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 5141 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 5142 #if USE_DEBUGGER 5143 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 5144 #endif 5145 } 5146 } 5147 if (hot_teams[level].hot_team_nth >= new_nproc) { 5148 // we have all needed threads in reserve, no need to allocate any 5149 // this only possible in mode 1, cannot have reserved threads in mode 0 5150 KMP_DEBUG_ASSERT(__kmp_hot_teams_mode == 1); 5151 team->t.t_nproc = new_nproc; // just get reserved threads involved 5152 } else { 5153 // we may have some threads in reserve, but not enough 5154 team->t.t_nproc = 5155 hot_teams[level] 5156 .hot_team_nth; // get reserved threads involved if any 5157 hot_teams[level].hot_team_nth = new_nproc; // adjust hot team max size 5158 #endif // KMP_NESTED_HOT_TEAMS 5159 if (team->t.t_max_nproc < new_nproc) { 5160 /* reallocate larger arrays */ 5161 __kmp_reallocate_team_arrays(team, new_nproc); 5162 __kmp_reinitialize_team(team, new_icvs, NULL); 5163 } 5164 5165 #if (KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED 5166 /* Temporarily set full mask for primary thread before creation of 5167 workers. The reason is that workers inherit the affinity from the 5168 primary thread, so if a lot of workers are created on the single 5169 core quickly, they don't get a chance to set their own affinity for 5170 a long time. */ 5171 __kmp_set_thread_affinity_mask_full_tmp(old_mask); 5172 #endif 5173 5174 /* allocate new threads for the hot team */ 5175 for (f = team->t.t_nproc; f < new_nproc; f++) { 5176 kmp_info_t *new_worker = __kmp_allocate_thread(root, team, f); 5177 KMP_DEBUG_ASSERT(new_worker); 5178 team->t.t_threads[f] = new_worker; 5179 5180 KA_TRACE(20, 5181 ("__kmp_allocate_team: team %d init T#%d arrived: " 5182 "join=%llu, plain=%llu\n", 5183 team->t.t_id, __kmp_gtid_from_tid(f, team), team->t.t_id, f, 5184 team->t.t_bar[bs_forkjoin_barrier].b_arrived, 5185 team->t.t_bar[bs_plain_barrier].b_arrived)); 5186 5187 { // Initialize barrier data for new threads. 5188 int b; 5189 kmp_balign_t *balign = new_worker->th.th_bar; 5190 for (b = 0; b < bs_last_barrier; ++b) { 5191 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 5192 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != 5193 KMP_BARRIER_PARENT_FLAG); 5194 #if USE_DEBUGGER 5195 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 5196 #endif 5197 } 5198 } 5199 } 5200 5201 #if (KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED 5202 if (KMP_AFFINITY_CAPABLE()) { 5203 /* Restore initial primary thread's affinity mask */ 5204 __kmp_set_system_affinity(old_mask, TRUE); 5205 KMP_CPU_FREE(old_mask); 5206 } 5207 #endif 5208 #if KMP_NESTED_HOT_TEAMS 5209 } // end of check of t_nproc vs. new_nproc vs. hot_team_nth 5210 #endif // KMP_NESTED_HOT_TEAMS 5211 /* make sure everyone is syncronized */ 5212 int old_nproc = team->t.t_nproc; // save old value and use to update only 5213 // new threads below 5214 __kmp_initialize_team(team, new_nproc, new_icvs, 5215 root->r.r_uber_thread->th.th_ident); 5216 5217 /* reinitialize the threads */ 5218 KMP_DEBUG_ASSERT(team->t.t_nproc == new_nproc); 5219 for (f = 0; f < team->t.t_nproc; ++f) 5220 __kmp_initialize_info(team->t.t_threads[f], team, f, 5221 __kmp_gtid_from_tid(f, team)); 5222 5223 if (level) { // set th_task_state for new threads in nested hot team 5224 // __kmp_initialize_info() no longer zeroes th_task_state, so we should 5225 // only need to set the th_task_state for the new threads. th_task_state 5226 // for primary thread will not be accurate until after this in 5227 // __kmp_fork_call(), so we look to the primary thread's memo_stack to 5228 // get the correct value. 5229 for (f = old_nproc; f < team->t.t_nproc; ++f) 5230 team->t.t_threads[f]->th.th_task_state = 5231 team->t.t_threads[0]->th.th_task_state_memo_stack[level]; 5232 } else { // set th_task_state for new threads in non-nested hot team 5233 // copy primary thread's state 5234 kmp_uint8 old_state = team->t.t_threads[0]->th.th_task_state; 5235 for (f = old_nproc; f < team->t.t_nproc; ++f) 5236 team->t.t_threads[f]->th.th_task_state = old_state; 5237 } 5238 5239 #ifdef KMP_DEBUG 5240 for (f = 0; f < team->t.t_nproc; ++f) { 5241 KMP_DEBUG_ASSERT(team->t.t_threads[f] && 5242 team->t.t_threads[f]->th.th_team_nproc == 5243 team->t.t_nproc); 5244 } 5245 #endif 5246 5247 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5248 #if KMP_AFFINITY_SUPPORTED 5249 __kmp_partition_places(team); 5250 #endif 5251 } // Check changes in number of threads 5252 5253 kmp_info_t *master = team->t.t_threads[0]; 5254 if (master->th.th_teams_microtask) { 5255 for (f = 1; f < new_nproc; ++f) { 5256 // propagate teams construct specific info to workers 5257 kmp_info_t *thr = team->t.t_threads[f]; 5258 thr->th.th_teams_microtask = master->th.th_teams_microtask; 5259 thr->th.th_teams_level = master->th.th_teams_level; 5260 thr->th.th_teams_size = master->th.th_teams_size; 5261 } 5262 } 5263 #if KMP_NESTED_HOT_TEAMS 5264 if (level) { 5265 // Sync barrier state for nested hot teams, not needed for outermost hot 5266 // team. 5267 for (f = 1; f < new_nproc; ++f) { 5268 kmp_info_t *thr = team->t.t_threads[f]; 5269 int b; 5270 kmp_balign_t *balign = thr->th.th_bar; 5271 for (b = 0; b < bs_last_barrier; ++b) { 5272 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 5273 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 5274 #if USE_DEBUGGER 5275 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 5276 #endif 5277 } 5278 } 5279 } 5280 #endif // KMP_NESTED_HOT_TEAMS 5281 5282 /* reallocate space for arguments if necessary */ 5283 __kmp_alloc_argv_entries(argc, team, TRUE); 5284 KMP_CHECK_UPDATE(team->t.t_argc, argc); 5285 // The hot team re-uses the previous task team, 5286 // if untouched during the previous release->gather phase. 5287 5288 KF_TRACE(10, (" hot_team = %p\n", team)); 5289 5290 #if KMP_DEBUG 5291 if (__kmp_tasking_mode != tskm_immediate_exec) { 5292 KA_TRACE(20, ("__kmp_allocate_team: hot team task_team[0] = %p " 5293 "task_team[1] = %p after reinit\n", 5294 team->t.t_task_team[0], team->t.t_task_team[1])); 5295 } 5296 #endif 5297 5298 #if OMPT_SUPPORT 5299 __ompt_team_assign_id(team, ompt_parallel_data); 5300 #endif 5301 5302 KMP_MB(); 5303 5304 return team; 5305 } 5306 5307 /* next, let's try to take one from the team pool */ 5308 KMP_MB(); 5309 for (team = CCAST(kmp_team_t *, __kmp_team_pool); (team);) { 5310 /* TODO: consider resizing undersized teams instead of reaping them, now 5311 that we have a resizing mechanism */ 5312 if (team->t.t_max_nproc >= max_nproc) { 5313 /* take this team from the team pool */ 5314 __kmp_team_pool = team->t.t_next_pool; 5315 5316 /* setup the team for fresh use */ 5317 __kmp_initialize_team(team, new_nproc, new_icvs, NULL); 5318 5319 KA_TRACE(20, ("__kmp_allocate_team: setting task_team[0] %p and " 5320 "task_team[1] %p to NULL\n", 5321 &team->t.t_task_team[0], &team->t.t_task_team[1])); 5322 team->t.t_task_team[0] = NULL; 5323 team->t.t_task_team[1] = NULL; 5324 5325 /* reallocate space for arguments if necessary */ 5326 __kmp_alloc_argv_entries(argc, team, TRUE); 5327 KMP_CHECK_UPDATE(team->t.t_argc, argc); 5328 5329 KA_TRACE( 5330 20, ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n", 5331 team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 5332 { // Initialize barrier data. 5333 int b; 5334 for (b = 0; b < bs_last_barrier; ++b) { 5335 team->t.t_bar[b].b_arrived = KMP_INIT_BARRIER_STATE; 5336 #if USE_DEBUGGER 5337 team->t.t_bar[b].b_master_arrived = 0; 5338 team->t.t_bar[b].b_team_arrived = 0; 5339 #endif 5340 } 5341 } 5342 5343 team->t.t_proc_bind = new_proc_bind; 5344 5345 KA_TRACE(20, ("__kmp_allocate_team: using team from pool %d.\n", 5346 team->t.t_id)); 5347 5348 #if OMPT_SUPPORT 5349 __ompt_team_assign_id(team, ompt_parallel_data); 5350 #endif 5351 5352 KMP_MB(); 5353 5354 return team; 5355 } 5356 5357 /* reap team if it is too small, then loop back and check the next one */ 5358 // not sure if this is wise, but, will be redone during the hot-teams 5359 // rewrite. 5360 /* TODO: Use technique to find the right size hot-team, don't reap them */ 5361 team = __kmp_reap_team(team); 5362 __kmp_team_pool = team; 5363 } 5364 5365 /* nothing available in the pool, no matter, make a new team! */ 5366 KMP_MB(); 5367 team = (kmp_team_t *)__kmp_allocate(sizeof(kmp_team_t)); 5368 5369 /* and set it up */ 5370 team->t.t_max_nproc = max_nproc; 5371 /* NOTE well, for some reason allocating one big buffer and dividing it up 5372 seems to really hurt performance a lot on the P4, so, let's not use this */ 5373 __kmp_allocate_team_arrays(team, max_nproc); 5374 5375 KA_TRACE(20, ("__kmp_allocate_team: making a new team\n")); 5376 __kmp_initialize_team(team, new_nproc, new_icvs, NULL); 5377 5378 KA_TRACE(20, ("__kmp_allocate_team: setting task_team[0] %p and task_team[1] " 5379 "%p to NULL\n", 5380 &team->t.t_task_team[0], &team->t.t_task_team[1])); 5381 team->t.t_task_team[0] = NULL; // to be removed, as __kmp_allocate zeroes 5382 // memory, no need to duplicate 5383 team->t.t_task_team[1] = NULL; // to be removed, as __kmp_allocate zeroes 5384 // memory, no need to duplicate 5385 5386 if (__kmp_storage_map) { 5387 __kmp_print_team_storage_map("team", team, team->t.t_id, new_nproc); 5388 } 5389 5390 /* allocate space for arguments */ 5391 __kmp_alloc_argv_entries(argc, team, FALSE); 5392 team->t.t_argc = argc; 5393 5394 KA_TRACE(20, 5395 ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n", 5396 team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 5397 { // Initialize barrier data. 5398 int b; 5399 for (b = 0; b < bs_last_barrier; ++b) { 5400 team->t.t_bar[b].b_arrived = KMP_INIT_BARRIER_STATE; 5401 #if USE_DEBUGGER 5402 team->t.t_bar[b].b_master_arrived = 0; 5403 team->t.t_bar[b].b_team_arrived = 0; 5404 #endif 5405 } 5406 } 5407 5408 team->t.t_proc_bind = new_proc_bind; 5409 5410 #if OMPT_SUPPORT 5411 __ompt_team_assign_id(team, ompt_parallel_data); 5412 team->t.ompt_serialized_team_info = NULL; 5413 #endif 5414 5415 KMP_MB(); 5416 5417 KA_TRACE(20, ("__kmp_allocate_team: done creating a new team %d.\n", 5418 team->t.t_id)); 5419 5420 return team; 5421 } 5422 5423 /* TODO implement hot-teams at all levels */ 5424 /* TODO implement lazy thread release on demand (disband request) */ 5425 5426 /* free the team. return it to the team pool. release all the threads 5427 * associated with it */ 5428 void __kmp_free_team(kmp_root_t *root, 5429 kmp_team_t *team USE_NESTED_HOT_ARG(kmp_info_t *master)) { 5430 int f; 5431 KA_TRACE(20, ("__kmp_free_team: T#%d freeing team %d\n", __kmp_get_gtid(), 5432 team->t.t_id)); 5433 5434 /* verify state */ 5435 KMP_DEBUG_ASSERT(root); 5436 KMP_DEBUG_ASSERT(team); 5437 KMP_DEBUG_ASSERT(team->t.t_nproc <= team->t.t_max_nproc); 5438 KMP_DEBUG_ASSERT(team->t.t_threads); 5439 5440 int use_hot_team = team == root->r.r_hot_team; 5441 #if KMP_NESTED_HOT_TEAMS 5442 int level; 5443 kmp_hot_team_ptr_t *hot_teams; 5444 if (master) { 5445 level = team->t.t_active_level - 1; 5446 if (master->th.th_teams_microtask) { // in teams construct? 5447 if (master->th.th_teams_size.nteams > 1) { 5448 ++level; // level was not increased in teams construct for 5449 // team_of_masters 5450 } 5451 if (team->t.t_pkfn != (microtask_t)__kmp_teams_master && 5452 master->th.th_teams_level == team->t.t_level) { 5453 ++level; // level was not increased in teams construct for 5454 // team_of_workers before the parallel 5455 } // team->t.t_level will be increased inside parallel 5456 } 5457 hot_teams = master->th.th_hot_teams; 5458 if (level < __kmp_hot_teams_max_level) { 5459 KMP_DEBUG_ASSERT(team == hot_teams[level].hot_team); 5460 use_hot_team = 1; 5461 } 5462 } 5463 #endif // KMP_NESTED_HOT_TEAMS 5464 5465 /* team is done working */ 5466 TCW_SYNC_PTR(team->t.t_pkfn, 5467 NULL); // Important for Debugging Support Library. 5468 #if KMP_OS_WINDOWS 5469 team->t.t_copyin_counter = 0; // init counter for possible reuse 5470 #endif 5471 // Do not reset pointer to parent team to NULL for hot teams. 5472 5473 /* if we are non-hot team, release our threads */ 5474 if (!use_hot_team) { 5475 if (__kmp_tasking_mode != tskm_immediate_exec) { 5476 // Wait for threads to reach reapable state 5477 for (f = 1; f < team->t.t_nproc; ++f) { 5478 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5479 kmp_info_t *th = team->t.t_threads[f]; 5480 volatile kmp_uint32 *state = &th->th.th_reap_state; 5481 while (*state != KMP_SAFE_TO_REAP) { 5482 #if KMP_OS_WINDOWS 5483 // On Windows a thread can be killed at any time, check this 5484 DWORD ecode; 5485 if (!__kmp_is_thread_alive(th, &ecode)) { 5486 *state = KMP_SAFE_TO_REAP; // reset the flag for dead thread 5487 break; 5488 } 5489 #endif 5490 // first check if thread is sleeping 5491 kmp_flag_64<> fl(&th->th.th_bar[bs_forkjoin_barrier].bb.b_go, th); 5492 if (fl.is_sleeping()) 5493 fl.resume(__kmp_gtid_from_thread(th)); 5494 KMP_CPU_PAUSE(); 5495 } 5496 } 5497 5498 // Delete task teams 5499 int tt_idx; 5500 for (tt_idx = 0; tt_idx < 2; ++tt_idx) { 5501 kmp_task_team_t *task_team = team->t.t_task_team[tt_idx]; 5502 if (task_team != NULL) { 5503 for (f = 0; f < team->t.t_nproc; ++f) { // threads unref task teams 5504 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5505 team->t.t_threads[f]->th.th_task_team = NULL; 5506 } 5507 KA_TRACE( 5508 20, 5509 ("__kmp_free_team: T#%d deactivating task_team %p on team %d\n", 5510 __kmp_get_gtid(), task_team, team->t.t_id)); 5511 #if KMP_NESTED_HOT_TEAMS 5512 __kmp_free_task_team(master, task_team); 5513 #endif 5514 team->t.t_task_team[tt_idx] = NULL; 5515 } 5516 } 5517 } 5518 5519 // Reset pointer to parent team only for non-hot teams. 5520 team->t.t_parent = NULL; 5521 team->t.t_level = 0; 5522 team->t.t_active_level = 0; 5523 5524 /* free the worker threads */ 5525 for (f = 1; f < team->t.t_nproc; ++f) { 5526 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5527 __kmp_free_thread(team->t.t_threads[f]); 5528 team->t.t_threads[f] = NULL; 5529 } 5530 5531 /* put the team back in the team pool */ 5532 /* TODO limit size of team pool, call reap_team if pool too large */ 5533 team->t.t_next_pool = CCAST(kmp_team_t *, __kmp_team_pool); 5534 __kmp_team_pool = (volatile kmp_team_t *)team; 5535 } else { // Check if team was created for primary threads in teams construct 5536 // See if first worker is a CG root 5537 KMP_DEBUG_ASSERT(team->t.t_threads[1] && 5538 team->t.t_threads[1]->th.th_cg_roots); 5539 if (team->t.t_threads[1]->th.th_cg_roots->cg_root == team->t.t_threads[1]) { 5540 // Clean up the CG root nodes on workers so that this team can be re-used 5541 for (f = 1; f < team->t.t_nproc; ++f) { 5542 kmp_info_t *thr = team->t.t_threads[f]; 5543 KMP_DEBUG_ASSERT(thr && thr->th.th_cg_roots && 5544 thr->th.th_cg_roots->cg_root == thr); 5545 // Pop current CG root off list 5546 kmp_cg_root_t *tmp = thr->th.th_cg_roots; 5547 thr->th.th_cg_roots = tmp->up; 5548 KA_TRACE(100, ("__kmp_free_team: Thread %p popping node %p and moving" 5549 " up to node %p. cg_nthreads was %d\n", 5550 thr, tmp, thr->th.th_cg_roots, tmp->cg_nthreads)); 5551 int i = tmp->cg_nthreads--; 5552 if (i == 1) { 5553 __kmp_free(tmp); // free CG if we are the last thread in it 5554 } 5555 // Restore current task's thread_limit from CG root 5556 if (thr->th.th_cg_roots) 5557 thr->th.th_current_task->td_icvs.thread_limit = 5558 thr->th.th_cg_roots->cg_thread_limit; 5559 } 5560 } 5561 } 5562 5563 KMP_MB(); 5564 } 5565 5566 /* reap the team. destroy it, reclaim all its resources and free its memory */ 5567 kmp_team_t *__kmp_reap_team(kmp_team_t *team) { 5568 kmp_team_t *next_pool = team->t.t_next_pool; 5569 5570 KMP_DEBUG_ASSERT(team); 5571 KMP_DEBUG_ASSERT(team->t.t_dispatch); 5572 KMP_DEBUG_ASSERT(team->t.t_disp_buffer); 5573 KMP_DEBUG_ASSERT(team->t.t_threads); 5574 KMP_DEBUG_ASSERT(team->t.t_argv); 5575 5576 /* TODO clean the threads that are a part of this? */ 5577 5578 /* free stuff */ 5579 __kmp_free_team_arrays(team); 5580 if (team->t.t_argv != &team->t.t_inline_argv[0]) 5581 __kmp_free((void *)team->t.t_argv); 5582 __kmp_free(team); 5583 5584 KMP_MB(); 5585 return next_pool; 5586 } 5587 5588 // Free the thread. Don't reap it, just place it on the pool of available 5589 // threads. 5590 // 5591 // Changes for Quad issue 527845: We need a predictable OMP tid <-> gtid 5592 // binding for the affinity mechanism to be useful. 5593 // 5594 // Now, we always keep the free list (__kmp_thread_pool) sorted by gtid. 5595 // However, we want to avoid a potential performance problem by always 5596 // scanning through the list to find the correct point at which to insert 5597 // the thread (potential N**2 behavior). To do this we keep track of the 5598 // last place a thread struct was inserted (__kmp_thread_pool_insert_pt). 5599 // With single-level parallelism, threads will always be added to the tail 5600 // of the list, kept track of by __kmp_thread_pool_insert_pt. With nested 5601 // parallelism, all bets are off and we may need to scan through the entire 5602 // free list. 5603 // 5604 // This change also has a potentially large performance benefit, for some 5605 // applications. Previously, as threads were freed from the hot team, they 5606 // would be placed back on the free list in inverse order. If the hot team 5607 // grew back to it's original size, then the freed thread would be placed 5608 // back on the hot team in reverse order. This could cause bad cache 5609 // locality problems on programs where the size of the hot team regularly 5610 // grew and shrunk. 5611 // 5612 // Now, for single-level parallelism, the OMP tid is always == gtid. 5613 void __kmp_free_thread(kmp_info_t *this_th) { 5614 int gtid; 5615 kmp_info_t **scan; 5616 5617 KA_TRACE(20, ("__kmp_free_thread: T#%d putting T#%d back on free pool.\n", 5618 __kmp_get_gtid(), this_th->th.th_info.ds.ds_gtid)); 5619 5620 KMP_DEBUG_ASSERT(this_th); 5621 5622 // When moving thread to pool, switch thread to wait on own b_go flag, and 5623 // uninitialized (NULL team). 5624 int b; 5625 kmp_balign_t *balign = this_th->th.th_bar; 5626 for (b = 0; b < bs_last_barrier; ++b) { 5627 if (balign[b].bb.wait_flag == KMP_BARRIER_PARENT_FLAG) 5628 balign[b].bb.wait_flag = KMP_BARRIER_SWITCH_TO_OWN_FLAG; 5629 balign[b].bb.team = NULL; 5630 balign[b].bb.leaf_kids = 0; 5631 } 5632 this_th->th.th_task_state = 0; 5633 this_th->th.th_reap_state = KMP_SAFE_TO_REAP; 5634 5635 /* put thread back on the free pool */ 5636 TCW_PTR(this_th->th.th_team, NULL); 5637 TCW_PTR(this_th->th.th_root, NULL); 5638 TCW_PTR(this_th->th.th_dispatch, NULL); /* NOT NEEDED */ 5639 5640 while (this_th->th.th_cg_roots) { 5641 this_th->th.th_cg_roots->cg_nthreads--; 5642 KA_TRACE(100, ("__kmp_free_thread: Thread %p decrement cg_nthreads on node" 5643 " %p of thread %p to %d\n", 5644 this_th, this_th->th.th_cg_roots, 5645 this_th->th.th_cg_roots->cg_root, 5646 this_th->th.th_cg_roots->cg_nthreads)); 5647 kmp_cg_root_t *tmp = this_th->th.th_cg_roots; 5648 if (tmp->cg_root == this_th) { // Thread is a cg_root 5649 KMP_DEBUG_ASSERT(tmp->cg_nthreads == 0); 5650 KA_TRACE( 5651 5, ("__kmp_free_thread: Thread %p freeing node %p\n", this_th, tmp)); 5652 this_th->th.th_cg_roots = tmp->up; 5653 __kmp_free(tmp); 5654 } else { // Worker thread 5655 if (tmp->cg_nthreads == 0) { // last thread leaves contention group 5656 __kmp_free(tmp); 5657 } 5658 this_th->th.th_cg_roots = NULL; 5659 break; 5660 } 5661 } 5662 5663 /* If the implicit task assigned to this thread can be used by other threads 5664 * -> multiple threads can share the data and try to free the task at 5665 * __kmp_reap_thread at exit. This duplicate use of the task data can happen 5666 * with higher probability when hot team is disabled but can occurs even when 5667 * the hot team is enabled */ 5668 __kmp_free_implicit_task(this_th); 5669 this_th->th.th_current_task = NULL; 5670 5671 // If the __kmp_thread_pool_insert_pt is already past the new insert 5672 // point, then we need to re-scan the entire list. 5673 gtid = this_th->th.th_info.ds.ds_gtid; 5674 if (__kmp_thread_pool_insert_pt != NULL) { 5675 KMP_DEBUG_ASSERT(__kmp_thread_pool != NULL); 5676 if (__kmp_thread_pool_insert_pt->th.th_info.ds.ds_gtid > gtid) { 5677 __kmp_thread_pool_insert_pt = NULL; 5678 } 5679 } 5680 5681 // Scan down the list to find the place to insert the thread. 5682 // scan is the address of a link in the list, possibly the address of 5683 // __kmp_thread_pool itself. 5684 // 5685 // In the absence of nested parallelism, the for loop will have 0 iterations. 5686 if (__kmp_thread_pool_insert_pt != NULL) { 5687 scan = &(__kmp_thread_pool_insert_pt->th.th_next_pool); 5688 } else { 5689 scan = CCAST(kmp_info_t **, &__kmp_thread_pool); 5690 } 5691 for (; (*scan != NULL) && ((*scan)->th.th_info.ds.ds_gtid < gtid); 5692 scan = &((*scan)->th.th_next_pool)) 5693 ; 5694 5695 // Insert the new element on the list, and set __kmp_thread_pool_insert_pt 5696 // to its address. 5697 TCW_PTR(this_th->th.th_next_pool, *scan); 5698 __kmp_thread_pool_insert_pt = *scan = this_th; 5699 KMP_DEBUG_ASSERT((this_th->th.th_next_pool == NULL) || 5700 (this_th->th.th_info.ds.ds_gtid < 5701 this_th->th.th_next_pool->th.th_info.ds.ds_gtid)); 5702 TCW_4(this_th->th.th_in_pool, TRUE); 5703 __kmp_suspend_initialize_thread(this_th); 5704 __kmp_lock_suspend_mx(this_th); 5705 if (this_th->th.th_active == TRUE) { 5706 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth); 5707 this_th->th.th_active_in_pool = TRUE; 5708 } 5709 #if KMP_DEBUG 5710 else { 5711 KMP_DEBUG_ASSERT(this_th->th.th_active_in_pool == FALSE); 5712 } 5713 #endif 5714 __kmp_unlock_suspend_mx(this_th); 5715 5716 TCW_4(__kmp_nth, __kmp_nth - 1); 5717 5718 #ifdef KMP_ADJUST_BLOCKTIME 5719 /* Adjust blocktime back to user setting or default if necessary */ 5720 /* Middle initialization might never have occurred */ 5721 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 5722 KMP_DEBUG_ASSERT(__kmp_avail_proc > 0); 5723 if (__kmp_nth <= __kmp_avail_proc) { 5724 __kmp_zero_bt = FALSE; 5725 } 5726 } 5727 #endif /* KMP_ADJUST_BLOCKTIME */ 5728 5729 KMP_MB(); 5730 } 5731 5732 /* ------------------------------------------------------------------------ */ 5733 5734 void *__kmp_launch_thread(kmp_info_t *this_thr) { 5735 #if OMP_PROFILING_SUPPORT 5736 ProfileTraceFile = getenv("LIBOMPTARGET_PROFILE"); 5737 // TODO: add a configuration option for time granularity 5738 if (ProfileTraceFile) 5739 llvm::timeTraceProfilerInitialize(500 /* us */, "libomptarget"); 5740 #endif 5741 5742 int gtid = this_thr->th.th_info.ds.ds_gtid; 5743 /* void *stack_data;*/ 5744 kmp_team_t **volatile pteam; 5745 5746 KMP_MB(); 5747 KA_TRACE(10, ("__kmp_launch_thread: T#%d start\n", gtid)); 5748 5749 if (__kmp_env_consistency_check) { 5750 this_thr->th.th_cons = __kmp_allocate_cons_stack(gtid); // ATT: Memory leak? 5751 } 5752 5753 #if OMPT_SUPPORT 5754 ompt_data_t *thread_data = nullptr; 5755 if (ompt_enabled.enabled) { 5756 thread_data = &(this_thr->th.ompt_thread_info.thread_data); 5757 *thread_data = ompt_data_none; 5758 5759 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 5760 this_thr->th.ompt_thread_info.wait_id = 0; 5761 this_thr->th.ompt_thread_info.idle_frame = OMPT_GET_FRAME_ADDRESS(0); 5762 this_thr->th.ompt_thread_info.parallel_flags = 0; 5763 if (ompt_enabled.ompt_callback_thread_begin) { 5764 ompt_callbacks.ompt_callback(ompt_callback_thread_begin)( 5765 ompt_thread_worker, thread_data); 5766 } 5767 this_thr->th.ompt_thread_info.state = ompt_state_idle; 5768 } 5769 #endif 5770 5771 /* This is the place where threads wait for work */ 5772 while (!TCR_4(__kmp_global.g.g_done)) { 5773 KMP_DEBUG_ASSERT(this_thr == __kmp_threads[gtid]); 5774 KMP_MB(); 5775 5776 /* wait for work to do */ 5777 KA_TRACE(20, ("__kmp_launch_thread: T#%d waiting for work\n", gtid)); 5778 5779 /* No tid yet since not part of a team */ 5780 __kmp_fork_barrier(gtid, KMP_GTID_DNE); 5781 5782 #if OMPT_SUPPORT 5783 if (ompt_enabled.enabled) { 5784 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 5785 } 5786 #endif 5787 5788 pteam = &this_thr->th.th_team; 5789 5790 /* have we been allocated? */ 5791 if (TCR_SYNC_PTR(*pteam) && !TCR_4(__kmp_global.g.g_done)) { 5792 /* we were just woken up, so run our new task */ 5793 if (TCR_SYNC_PTR((*pteam)->t.t_pkfn) != NULL) { 5794 int rc; 5795 KA_TRACE(20, 5796 ("__kmp_launch_thread: T#%d(%d:%d) invoke microtask = %p\n", 5797 gtid, (*pteam)->t.t_id, __kmp_tid_from_gtid(gtid), 5798 (*pteam)->t.t_pkfn)); 5799 5800 updateHWFPControl(*pteam); 5801 5802 #if OMPT_SUPPORT 5803 if (ompt_enabled.enabled) { 5804 this_thr->th.ompt_thread_info.state = ompt_state_work_parallel; 5805 } 5806 #endif 5807 5808 rc = (*pteam)->t.t_invoke(gtid); 5809 KMP_ASSERT(rc); 5810 5811 KMP_MB(); 5812 KA_TRACE(20, ("__kmp_launch_thread: T#%d(%d:%d) done microtask = %p\n", 5813 gtid, (*pteam)->t.t_id, __kmp_tid_from_gtid(gtid), 5814 (*pteam)->t.t_pkfn)); 5815 } 5816 #if OMPT_SUPPORT 5817 if (ompt_enabled.enabled) { 5818 /* no frame set while outside task */ 5819 __ompt_get_task_info_object(0)->frame.exit_frame = ompt_data_none; 5820 5821 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 5822 } 5823 #endif 5824 /* join barrier after parallel region */ 5825 __kmp_join_barrier(gtid); 5826 } 5827 } 5828 TCR_SYNC_PTR((intptr_t)__kmp_global.g.g_done); 5829 5830 #if OMPT_SUPPORT 5831 if (ompt_enabled.ompt_callback_thread_end) { 5832 ompt_callbacks.ompt_callback(ompt_callback_thread_end)(thread_data); 5833 } 5834 #endif 5835 5836 this_thr->th.th_task_team = NULL; 5837 /* run the destructors for the threadprivate data for this thread */ 5838 __kmp_common_destroy_gtid(gtid); 5839 5840 KA_TRACE(10, ("__kmp_launch_thread: T#%d done\n", gtid)); 5841 KMP_MB(); 5842 5843 #if OMP_PROFILING_SUPPORT 5844 llvm::timeTraceProfilerFinishThread(); 5845 #endif 5846 return this_thr; 5847 } 5848 5849 /* ------------------------------------------------------------------------ */ 5850 5851 void __kmp_internal_end_dest(void *specific_gtid) { 5852 // Make sure no significant bits are lost 5853 int gtid; 5854 __kmp_type_convert((kmp_intptr_t)specific_gtid - 1, >id); 5855 5856 KA_TRACE(30, ("__kmp_internal_end_dest: T#%d\n", gtid)); 5857 /* NOTE: the gtid is stored as gitd+1 in the thread-local-storage 5858 * this is because 0 is reserved for the nothing-stored case */ 5859 5860 __kmp_internal_end_thread(gtid); 5861 } 5862 5863 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB 5864 5865 __attribute__((destructor)) void __kmp_internal_end_dtor(void) { 5866 __kmp_internal_end_atexit(); 5867 } 5868 5869 #endif 5870 5871 /* [Windows] josh: when the atexit handler is called, there may still be more 5872 than one thread alive */ 5873 void __kmp_internal_end_atexit(void) { 5874 KA_TRACE(30, ("__kmp_internal_end_atexit\n")); 5875 /* [Windows] 5876 josh: ideally, we want to completely shutdown the library in this atexit 5877 handler, but stat code that depends on thread specific data for gtid fails 5878 because that data becomes unavailable at some point during the shutdown, so 5879 we call __kmp_internal_end_thread instead. We should eventually remove the 5880 dependency on __kmp_get_specific_gtid in the stat code and use 5881 __kmp_internal_end_library to cleanly shutdown the library. 5882 5883 // TODO: Can some of this comment about GVS be removed? 5884 I suspect that the offending stat code is executed when the calling thread 5885 tries to clean up a dead root thread's data structures, resulting in GVS 5886 code trying to close the GVS structures for that thread, but since the stat 5887 code uses __kmp_get_specific_gtid to get the gtid with the assumption that 5888 the calling thread is cleaning up itself instead of another thread, it get 5889 confused. This happens because allowing a thread to unregister and cleanup 5890 another thread is a recent modification for addressing an issue. 5891 Based on the current design (20050722), a thread may end up 5892 trying to unregister another thread only if thread death does not trigger 5893 the calling of __kmp_internal_end_thread. For Linux* OS, there is the 5894 thread specific data destructor function to detect thread death. For 5895 Windows dynamic, there is DllMain(THREAD_DETACH). For Windows static, there 5896 is nothing. Thus, the workaround is applicable only for Windows static 5897 stat library. */ 5898 __kmp_internal_end_library(-1); 5899 #if KMP_OS_WINDOWS 5900 __kmp_close_console(); 5901 #endif 5902 } 5903 5904 static void __kmp_reap_thread(kmp_info_t *thread, int is_root) { 5905 // It is assumed __kmp_forkjoin_lock is acquired. 5906 5907 int gtid; 5908 5909 KMP_DEBUG_ASSERT(thread != NULL); 5910 5911 gtid = thread->th.th_info.ds.ds_gtid; 5912 5913 if (!is_root) { 5914 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { 5915 /* Assume the threads are at the fork barrier here */ 5916 KA_TRACE( 5917 20, ("__kmp_reap_thread: releasing T#%d from fork barrier for reap\n", 5918 gtid)); 5919 /* Need release fence here to prevent seg faults for tree forkjoin barrier 5920 * (GEH) */ 5921 ANNOTATE_HAPPENS_BEFORE(thread); 5922 kmp_flag_64<> flag(&thread->th.th_bar[bs_forkjoin_barrier].bb.b_go, 5923 thread); 5924 __kmp_release_64(&flag); 5925 } 5926 5927 // Terminate OS thread. 5928 __kmp_reap_worker(thread); 5929 5930 // The thread was killed asynchronously. If it was actively 5931 // spinning in the thread pool, decrement the global count. 5932 // 5933 // There is a small timing hole here - if the worker thread was just waking 5934 // up after sleeping in the pool, had reset it's th_active_in_pool flag but 5935 // not decremented the global counter __kmp_thread_pool_active_nth yet, then 5936 // the global counter might not get updated. 5937 // 5938 // Currently, this can only happen as the library is unloaded, 5939 // so there are no harmful side effects. 5940 if (thread->th.th_active_in_pool) { 5941 thread->th.th_active_in_pool = FALSE; 5942 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 5943 KMP_DEBUG_ASSERT(__kmp_thread_pool_active_nth >= 0); 5944 } 5945 } 5946 5947 __kmp_free_implicit_task(thread); 5948 5949 // Free the fast memory for tasking 5950 #if USE_FAST_MEMORY 5951 __kmp_free_fast_memory(thread); 5952 #endif /* USE_FAST_MEMORY */ 5953 5954 __kmp_suspend_uninitialize_thread(thread); 5955 5956 KMP_DEBUG_ASSERT(__kmp_threads[gtid] == thread); 5957 TCW_SYNC_PTR(__kmp_threads[gtid], NULL); 5958 5959 --__kmp_all_nth; 5960 // __kmp_nth was decremented when thread is added to the pool. 5961 5962 #ifdef KMP_ADJUST_BLOCKTIME 5963 /* Adjust blocktime back to user setting or default if necessary */ 5964 /* Middle initialization might never have occurred */ 5965 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 5966 KMP_DEBUG_ASSERT(__kmp_avail_proc > 0); 5967 if (__kmp_nth <= __kmp_avail_proc) { 5968 __kmp_zero_bt = FALSE; 5969 } 5970 } 5971 #endif /* KMP_ADJUST_BLOCKTIME */ 5972 5973 /* free the memory being used */ 5974 if (__kmp_env_consistency_check) { 5975 if (thread->th.th_cons) { 5976 __kmp_free_cons_stack(thread->th.th_cons); 5977 thread->th.th_cons = NULL; 5978 } 5979 } 5980 5981 if (thread->th.th_pri_common != NULL) { 5982 __kmp_free(thread->th.th_pri_common); 5983 thread->th.th_pri_common = NULL; 5984 } 5985 5986 if (thread->th.th_task_state_memo_stack != NULL) { 5987 __kmp_free(thread->th.th_task_state_memo_stack); 5988 thread->th.th_task_state_memo_stack = NULL; 5989 } 5990 5991 #if KMP_USE_BGET 5992 if (thread->th.th_local.bget_data != NULL) { 5993 __kmp_finalize_bget(thread); 5994 } 5995 #endif 5996 5997 #if KMP_AFFINITY_SUPPORTED 5998 if (thread->th.th_affin_mask != NULL) { 5999 KMP_CPU_FREE(thread->th.th_affin_mask); 6000 thread->th.th_affin_mask = NULL; 6001 } 6002 #endif /* KMP_AFFINITY_SUPPORTED */ 6003 6004 #if KMP_USE_HIER_SCHED 6005 if (thread->th.th_hier_bar_data != NULL) { 6006 __kmp_free(thread->th.th_hier_bar_data); 6007 thread->th.th_hier_bar_data = NULL; 6008 } 6009 #endif 6010 6011 __kmp_reap_team(thread->th.th_serial_team); 6012 thread->th.th_serial_team = NULL; 6013 __kmp_free(thread); 6014 6015 KMP_MB(); 6016 6017 } // __kmp_reap_thread 6018 6019 static void __kmp_internal_end(void) { 6020 int i; 6021 6022 /* First, unregister the library */ 6023 __kmp_unregister_library(); 6024 6025 #if KMP_OS_WINDOWS 6026 /* In Win static library, we can't tell when a root actually dies, so we 6027 reclaim the data structures for any root threads that have died but not 6028 unregistered themselves, in order to shut down cleanly. 6029 In Win dynamic library we also can't tell when a thread dies. */ 6030 __kmp_reclaim_dead_roots(); // AC: moved here to always clean resources of 6031 // dead roots 6032 #endif 6033 6034 for (i = 0; i < __kmp_threads_capacity; i++) 6035 if (__kmp_root[i]) 6036 if (__kmp_root[i]->r.r_active) 6037 break; 6038 KMP_MB(); /* Flush all pending memory write invalidates. */ 6039 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 6040 6041 if (i < __kmp_threads_capacity) { 6042 #if KMP_USE_MONITOR 6043 // 2009-09-08 (lev): Other alive roots found. Why do we kill the monitor?? 6044 KMP_MB(); /* Flush all pending memory write invalidates. */ 6045 6046 // Need to check that monitor was initialized before reaping it. If we are 6047 // called form __kmp_atfork_child (which sets __kmp_init_parallel = 0), then 6048 // __kmp_monitor will appear to contain valid data, but it is only valid in 6049 // the parent process, not the child. 6050 // New behavior (201008): instead of keying off of the flag 6051 // __kmp_init_parallel, the monitor thread creation is keyed off 6052 // of the new flag __kmp_init_monitor. 6053 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock); 6054 if (TCR_4(__kmp_init_monitor)) { 6055 __kmp_reap_monitor(&__kmp_monitor); 6056 TCW_4(__kmp_init_monitor, 0); 6057 } 6058 __kmp_release_bootstrap_lock(&__kmp_monitor_lock); 6059 KA_TRACE(10, ("__kmp_internal_end: monitor reaped\n")); 6060 #endif // KMP_USE_MONITOR 6061 } else { 6062 /* TODO move this to cleanup code */ 6063 #ifdef KMP_DEBUG 6064 /* make sure that everything has properly ended */ 6065 for (i = 0; i < __kmp_threads_capacity; i++) { 6066 if (__kmp_root[i]) { 6067 // KMP_ASSERT( ! KMP_UBER_GTID( i ) ); // AC: 6068 // there can be uber threads alive here 6069 KMP_ASSERT(!__kmp_root[i]->r.r_active); // TODO: can they be active? 6070 } 6071 } 6072 #endif 6073 6074 KMP_MB(); 6075 6076 // Reap the worker threads. 6077 // This is valid for now, but be careful if threads are reaped sooner. 6078 while (__kmp_thread_pool != NULL) { // Loop thru all the thread in the pool. 6079 // Get the next thread from the pool. 6080 kmp_info_t *thread = CCAST(kmp_info_t *, __kmp_thread_pool); 6081 __kmp_thread_pool = thread->th.th_next_pool; 6082 // Reap it. 6083 KMP_DEBUG_ASSERT(thread->th.th_reap_state == KMP_SAFE_TO_REAP); 6084 thread->th.th_next_pool = NULL; 6085 thread->th.th_in_pool = FALSE; 6086 __kmp_reap_thread(thread, 0); 6087 } 6088 __kmp_thread_pool_insert_pt = NULL; 6089 6090 // Reap teams. 6091 while (__kmp_team_pool != NULL) { // Loop thru all the teams in the pool. 6092 // Get the next team from the pool. 6093 kmp_team_t *team = CCAST(kmp_team_t *, __kmp_team_pool); 6094 __kmp_team_pool = team->t.t_next_pool; 6095 // Reap it. 6096 team->t.t_next_pool = NULL; 6097 __kmp_reap_team(team); 6098 } 6099 6100 __kmp_reap_task_teams(); 6101 6102 #if KMP_OS_UNIX 6103 // Threads that are not reaped should not access any resources since they 6104 // are going to be deallocated soon, so the shutdown sequence should wait 6105 // until all threads either exit the final spin-waiting loop or begin 6106 // sleeping after the given blocktime. 6107 for (i = 0; i < __kmp_threads_capacity; i++) { 6108 kmp_info_t *thr = __kmp_threads[i]; 6109 while (thr && KMP_ATOMIC_LD_ACQ(&thr->th.th_blocking)) 6110 KMP_CPU_PAUSE(); 6111 } 6112 #endif 6113 6114 for (i = 0; i < __kmp_threads_capacity; ++i) { 6115 // TBD: Add some checking... 6116 // Something like KMP_DEBUG_ASSERT( __kmp_thread[ i ] == NULL ); 6117 } 6118 6119 /* Make sure all threadprivate destructors get run by joining with all 6120 worker threads before resetting this flag */ 6121 TCW_SYNC_4(__kmp_init_common, FALSE); 6122 6123 KA_TRACE(10, ("__kmp_internal_end: all workers reaped\n")); 6124 KMP_MB(); 6125 6126 #if KMP_USE_MONITOR 6127 // See note above: One of the possible fixes for CQ138434 / CQ140126 6128 // 6129 // FIXME: push both code fragments down and CSE them? 6130 // push them into __kmp_cleanup() ? 6131 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock); 6132 if (TCR_4(__kmp_init_monitor)) { 6133 __kmp_reap_monitor(&__kmp_monitor); 6134 TCW_4(__kmp_init_monitor, 0); 6135 } 6136 __kmp_release_bootstrap_lock(&__kmp_monitor_lock); 6137 KA_TRACE(10, ("__kmp_internal_end: monitor reaped\n")); 6138 #endif 6139 } /* else !__kmp_global.t_active */ 6140 TCW_4(__kmp_init_gtid, FALSE); 6141 KMP_MB(); /* Flush all pending memory write invalidates. */ 6142 6143 __kmp_cleanup(); 6144 #if OMPT_SUPPORT 6145 ompt_fini(); 6146 #endif 6147 } 6148 6149 void __kmp_internal_end_library(int gtid_req) { 6150 /* if we have already cleaned up, don't try again, it wouldn't be pretty */ 6151 /* this shouldn't be a race condition because __kmp_internal_end() is the 6152 only place to clear __kmp_serial_init */ 6153 /* we'll check this later too, after we get the lock */ 6154 // 2009-09-06: We do not set g_abort without setting g_done. This check looks 6155 // redundant, because the next check will work in any case. 6156 if (__kmp_global.g.g_abort) { 6157 KA_TRACE(11, ("__kmp_internal_end_library: abort, exiting\n")); 6158 /* TODO abort? */ 6159 return; 6160 } 6161 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6162 KA_TRACE(10, ("__kmp_internal_end_library: already finished\n")); 6163 return; 6164 } 6165 6166 KMP_MB(); /* Flush all pending memory write invalidates. */ 6167 /* find out who we are and what we should do */ 6168 { 6169 int gtid = (gtid_req >= 0) ? gtid_req : __kmp_gtid_get_specific(); 6170 KA_TRACE( 6171 10, ("__kmp_internal_end_library: enter T#%d (%d)\n", gtid, gtid_req)); 6172 if (gtid == KMP_GTID_SHUTDOWN) { 6173 KA_TRACE(10, ("__kmp_internal_end_library: !__kmp_init_runtime, system " 6174 "already shutdown\n")); 6175 return; 6176 } else if (gtid == KMP_GTID_MONITOR) { 6177 KA_TRACE(10, ("__kmp_internal_end_library: monitor thread, gtid not " 6178 "registered, or system shutdown\n")); 6179 return; 6180 } else if (gtid == KMP_GTID_DNE) { 6181 KA_TRACE(10, ("__kmp_internal_end_library: gtid not registered or system " 6182 "shutdown\n")); 6183 /* we don't know who we are, but we may still shutdown the library */ 6184 } else if (KMP_UBER_GTID(gtid)) { 6185 /* unregister ourselves as an uber thread. gtid is no longer valid */ 6186 if (__kmp_root[gtid]->r.r_active) { 6187 __kmp_global.g.g_abort = -1; 6188 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 6189 __kmp_unregister_library(); 6190 KA_TRACE(10, 6191 ("__kmp_internal_end_library: root still active, abort T#%d\n", 6192 gtid)); 6193 return; 6194 } else { 6195 KA_TRACE( 6196 10, 6197 ("__kmp_internal_end_library: unregistering sibling T#%d\n", gtid)); 6198 __kmp_unregister_root_current_thread(gtid); 6199 } 6200 } else { 6201 /* worker threads may call this function through the atexit handler, if they 6202 * call exit() */ 6203 /* For now, skip the usual subsequent processing and just dump the debug buffer. 6204 TODO: do a thorough shutdown instead */ 6205 #ifdef DUMP_DEBUG_ON_EXIT 6206 if (__kmp_debug_buf) 6207 __kmp_dump_debug_buffer(); 6208 #endif 6209 // added unregister library call here when we switch to shm linux 6210 // if we don't, it will leave lots of files in /dev/shm 6211 // cleanup shared memory file before exiting. 6212 __kmp_unregister_library(); 6213 return; 6214 } 6215 } 6216 /* synchronize the termination process */ 6217 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6218 6219 /* have we already finished */ 6220 if (__kmp_global.g.g_abort) { 6221 KA_TRACE(10, ("__kmp_internal_end_library: abort, exiting\n")); 6222 /* TODO abort? */ 6223 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6224 return; 6225 } 6226 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6227 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6228 return; 6229 } 6230 6231 /* We need this lock to enforce mutex between this reading of 6232 __kmp_threads_capacity and the writing by __kmp_register_root. 6233 Alternatively, we can use a counter of roots that is atomically updated by 6234 __kmp_get_global_thread_id_reg, __kmp_do_serial_initialize and 6235 __kmp_internal_end_*. */ 6236 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 6237 6238 /* now we can safely conduct the actual termination */ 6239 __kmp_internal_end(); 6240 6241 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 6242 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6243 6244 KA_TRACE(10, ("__kmp_internal_end_library: exit\n")); 6245 6246 #ifdef DUMP_DEBUG_ON_EXIT 6247 if (__kmp_debug_buf) 6248 __kmp_dump_debug_buffer(); 6249 #endif 6250 6251 #if KMP_OS_WINDOWS 6252 __kmp_close_console(); 6253 #endif 6254 6255 __kmp_fini_allocator(); 6256 6257 } // __kmp_internal_end_library 6258 6259 void __kmp_internal_end_thread(int gtid_req) { 6260 int i; 6261 6262 /* if we have already cleaned up, don't try again, it wouldn't be pretty */ 6263 /* this shouldn't be a race condition because __kmp_internal_end() is the 6264 * only place to clear __kmp_serial_init */ 6265 /* we'll check this later too, after we get the lock */ 6266 // 2009-09-06: We do not set g_abort without setting g_done. This check looks 6267 // redundant, because the next check will work in any case. 6268 if (__kmp_global.g.g_abort) { 6269 KA_TRACE(11, ("__kmp_internal_end_thread: abort, exiting\n")); 6270 /* TODO abort? */ 6271 return; 6272 } 6273 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6274 KA_TRACE(10, ("__kmp_internal_end_thread: already finished\n")); 6275 return; 6276 } 6277 6278 // If hidden helper team has been initialized, we need to deinit it 6279 if (TCR_4(__kmp_init_hidden_helper)) { 6280 TCW_SYNC_4(__kmp_hidden_helper_team_done, TRUE); 6281 // First release the main thread to let it continue its work 6282 __kmp_hidden_helper_main_thread_release(); 6283 // Wait until the hidden helper team has been destroyed 6284 __kmp_hidden_helper_threads_deinitz_wait(); 6285 } 6286 6287 KMP_MB(); /* Flush all pending memory write invalidates. */ 6288 6289 /* find out who we are and what we should do */ 6290 { 6291 int gtid = (gtid_req >= 0) ? gtid_req : __kmp_gtid_get_specific(); 6292 KA_TRACE(10, 6293 ("__kmp_internal_end_thread: enter T#%d (%d)\n", gtid, gtid_req)); 6294 if (gtid == KMP_GTID_SHUTDOWN) { 6295 KA_TRACE(10, ("__kmp_internal_end_thread: !__kmp_init_runtime, system " 6296 "already shutdown\n")); 6297 return; 6298 } else if (gtid == KMP_GTID_MONITOR) { 6299 KA_TRACE(10, ("__kmp_internal_end_thread: monitor thread, gtid not " 6300 "registered, or system shutdown\n")); 6301 return; 6302 } else if (gtid == KMP_GTID_DNE) { 6303 KA_TRACE(10, ("__kmp_internal_end_thread: gtid not registered or system " 6304 "shutdown\n")); 6305 return; 6306 /* we don't know who we are */ 6307 } else if (KMP_UBER_GTID(gtid)) { 6308 /* unregister ourselves as an uber thread. gtid is no longer valid */ 6309 if (__kmp_root[gtid]->r.r_active) { 6310 __kmp_global.g.g_abort = -1; 6311 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 6312 KA_TRACE(10, 6313 ("__kmp_internal_end_thread: root still active, abort T#%d\n", 6314 gtid)); 6315 return; 6316 } else { 6317 KA_TRACE(10, ("__kmp_internal_end_thread: unregistering sibling T#%d\n", 6318 gtid)); 6319 __kmp_unregister_root_current_thread(gtid); 6320 } 6321 } else { 6322 /* just a worker thread, let's leave */ 6323 KA_TRACE(10, ("__kmp_internal_end_thread: worker thread T#%d\n", gtid)); 6324 6325 if (gtid >= 0) { 6326 __kmp_threads[gtid]->th.th_task_team = NULL; 6327 } 6328 6329 KA_TRACE(10, 6330 ("__kmp_internal_end_thread: worker thread done, exiting T#%d\n", 6331 gtid)); 6332 return; 6333 } 6334 } 6335 #if KMP_DYNAMIC_LIB 6336 if (__kmp_pause_status != kmp_hard_paused) 6337 // AC: lets not shutdown the dynamic library at the exit of uber thread, 6338 // because we will better shutdown later in the library destructor. 6339 { 6340 KA_TRACE(10, ("__kmp_internal_end_thread: exiting T#%d\n", gtid_req)); 6341 return; 6342 } 6343 #endif 6344 /* synchronize the termination process */ 6345 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6346 6347 /* have we already finished */ 6348 if (__kmp_global.g.g_abort) { 6349 KA_TRACE(10, ("__kmp_internal_end_thread: abort, exiting\n")); 6350 /* TODO abort? */ 6351 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6352 return; 6353 } 6354 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6355 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6356 return; 6357 } 6358 6359 /* We need this lock to enforce mutex between this reading of 6360 __kmp_threads_capacity and the writing by __kmp_register_root. 6361 Alternatively, we can use a counter of roots that is atomically updated by 6362 __kmp_get_global_thread_id_reg, __kmp_do_serial_initialize and 6363 __kmp_internal_end_*. */ 6364 6365 /* should we finish the run-time? are all siblings done? */ 6366 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 6367 6368 for (i = 0; i < __kmp_threads_capacity; ++i) { 6369 if (KMP_UBER_GTID(i)) { 6370 KA_TRACE( 6371 10, 6372 ("__kmp_internal_end_thread: remaining sibling task: gtid==%d\n", i)); 6373 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 6374 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6375 return; 6376 } 6377 } 6378 6379 /* now we can safely conduct the actual termination */ 6380 6381 __kmp_internal_end(); 6382 6383 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 6384 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6385 6386 KA_TRACE(10, ("__kmp_internal_end_thread: exit T#%d\n", gtid_req)); 6387 6388 #ifdef DUMP_DEBUG_ON_EXIT 6389 if (__kmp_debug_buf) 6390 __kmp_dump_debug_buffer(); 6391 #endif 6392 } // __kmp_internal_end_thread 6393 6394 // ----------------------------------------------------------------------------- 6395 // Library registration stuff. 6396 6397 static long __kmp_registration_flag = 0; 6398 // Random value used to indicate library initialization. 6399 static char *__kmp_registration_str = NULL; 6400 // Value to be saved in env var __KMP_REGISTERED_LIB_<pid>. 6401 6402 static inline char *__kmp_reg_status_name() { 6403 /* On RHEL 3u5 if linked statically, getpid() returns different values in 6404 each thread. If registration and unregistration go in different threads 6405 (omp_misc_other_root_exit.cpp test case), the name of registered_lib_env 6406 env var can not be found, because the name will contain different pid. */ 6407 // macOS* complains about name being too long with additional getuid() 6408 #if KMP_OS_UNIX && !KMP_OS_DARWIN && KMP_DYNAMIC_LIB 6409 return __kmp_str_format("__KMP_REGISTERED_LIB_%d_%d", (int)getpid(), 6410 (int)getuid()); 6411 #else 6412 return __kmp_str_format("__KMP_REGISTERED_LIB_%d", (int)getpid()); 6413 #endif 6414 } // __kmp_reg_status_get 6415 6416 void __kmp_register_library_startup(void) { 6417 6418 char *name = __kmp_reg_status_name(); // Name of the environment variable. 6419 int done = 0; 6420 union { 6421 double dtime; 6422 long ltime; 6423 } time; 6424 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 6425 __kmp_initialize_system_tick(); 6426 #endif 6427 __kmp_read_system_time(&time.dtime); 6428 __kmp_registration_flag = 0xCAFE0000L | (time.ltime & 0x0000FFFFL); 6429 __kmp_registration_str = 6430 __kmp_str_format("%p-%lx-%s", &__kmp_registration_flag, 6431 __kmp_registration_flag, KMP_LIBRARY_FILE); 6432 6433 KA_TRACE(50, ("__kmp_register_library_startup: %s=\"%s\"\n", name, 6434 __kmp_registration_str)); 6435 6436 while (!done) { 6437 6438 char *value = NULL; // Actual value of the environment variable. 6439 6440 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB // shared memory is with dynamic library 6441 char *shm_name = __kmp_str_format("/%s", name); 6442 int shm_preexist = 0; 6443 char *data1; 6444 int fd1 = shm_open(shm_name, O_CREAT | O_EXCL | O_RDWR, 0666); 6445 if ((fd1 == -1) && (errno == EEXIST)) { 6446 // file didn't open because it already exists. 6447 // try opening existing file 6448 fd1 = shm_open(shm_name, O_RDWR, 0666); 6449 if (fd1 == -1) { // file didn't open 6450 // error out here 6451 __kmp_fatal(KMP_MSG(FunctionError, "Can't open SHM"), KMP_ERR(0), 6452 __kmp_msg_null); 6453 } else { 6454 // able to open existing file 6455 shm_preexist = 1; 6456 } 6457 } else if (fd1 == -1) { // SHM didn't open; it was due to error other than 6458 // already exists. 6459 // error out here. 6460 __kmp_fatal(KMP_MSG(FunctionError, "Can't open SHM2"), KMP_ERR(errno), 6461 __kmp_msg_null); 6462 } 6463 if (shm_preexist == 0) { 6464 // we created SHM now set size 6465 if (ftruncate(fd1, SHM_SIZE) == -1) { 6466 // error occured setting size; 6467 __kmp_fatal(KMP_MSG(FunctionError, "Can't set size of SHM"), 6468 KMP_ERR(errno), __kmp_msg_null); 6469 } 6470 } 6471 data1 = 6472 (char *)mmap(0, SHM_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd1, 0); 6473 if (data1 == MAP_FAILED) { 6474 // failed to map shared memory 6475 __kmp_fatal(KMP_MSG(FunctionError, "Can't map SHM"), KMP_ERR(errno), 6476 __kmp_msg_null); 6477 } 6478 if (shm_preexist == 0) { // set data to SHM, set value 6479 KMP_STRCPY_S(data1, SHM_SIZE, __kmp_registration_str); 6480 } 6481 // Read value from either what we just wrote or existing file. 6482 value = __kmp_str_format("%s", data1); // read value from SHM 6483 munmap(data1, SHM_SIZE); 6484 close(fd1); 6485 #else // Windows and unix with static library 6486 // Set environment variable, but do not overwrite if it is exist. 6487 __kmp_env_set(name, __kmp_registration_str, 0); 6488 // read value to see if it got set 6489 value = __kmp_env_get(name); 6490 #endif 6491 6492 if (value != NULL && strcmp(value, __kmp_registration_str) == 0) { 6493 done = 1; // Ok, environment variable set successfully, exit the loop. 6494 } else { 6495 // Oops. Write failed. Another copy of OpenMP RTL is in memory. 6496 // Check whether it alive or dead. 6497 int neighbor = 0; // 0 -- unknown status, 1 -- alive, 2 -- dead. 6498 char *tail = value; 6499 char *flag_addr_str = NULL; 6500 char *flag_val_str = NULL; 6501 char const *file_name = NULL; 6502 __kmp_str_split(tail, '-', &flag_addr_str, &tail); 6503 __kmp_str_split(tail, '-', &flag_val_str, &tail); 6504 file_name = tail; 6505 if (tail != NULL) { 6506 long *flag_addr = 0; 6507 unsigned long flag_val = 0; 6508 KMP_SSCANF(flag_addr_str, "%p", RCAST(void **, &flag_addr)); 6509 KMP_SSCANF(flag_val_str, "%lx", &flag_val); 6510 if (flag_addr != 0 && flag_val != 0 && strcmp(file_name, "") != 0) { 6511 // First, check whether environment-encoded address is mapped into 6512 // addr space. 6513 // If so, dereference it to see if it still has the right value. 6514 if (__kmp_is_address_mapped(flag_addr) && *flag_addr == flag_val) { 6515 neighbor = 1; 6516 } else { 6517 // If not, then we know the other copy of the library is no longer 6518 // running. 6519 neighbor = 2; 6520 } 6521 } 6522 } 6523 switch (neighbor) { 6524 case 0: // Cannot parse environment variable -- neighbor status unknown. 6525 // Assume it is the incompatible format of future version of the 6526 // library. Assume the other library is alive. 6527 // WARN( ... ); // TODO: Issue a warning. 6528 file_name = "unknown library"; 6529 KMP_FALLTHROUGH(); 6530 // Attention! Falling to the next case. That's intentional. 6531 case 1: { // Neighbor is alive. 6532 // Check it is allowed. 6533 char *duplicate_ok = __kmp_env_get("KMP_DUPLICATE_LIB_OK"); 6534 if (!__kmp_str_match_true(duplicate_ok)) { 6535 // That's not allowed. Issue fatal error. 6536 __kmp_fatal(KMP_MSG(DuplicateLibrary, KMP_LIBRARY_FILE, file_name), 6537 KMP_HNT(DuplicateLibrary), __kmp_msg_null); 6538 } 6539 KMP_INTERNAL_FREE(duplicate_ok); 6540 __kmp_duplicate_library_ok = 1; 6541 done = 1; // Exit the loop. 6542 } break; 6543 case 2: { // Neighbor is dead. 6544 6545 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB // shared memory is with dynamic library 6546 // close shared memory. 6547 shm_unlink(shm_name); // this removes file in /dev/shm 6548 #else 6549 // Clear the variable and try to register library again. 6550 __kmp_env_unset(name); 6551 #endif 6552 } break; 6553 default: { 6554 KMP_DEBUG_ASSERT(0); 6555 } break; 6556 } 6557 } 6558 KMP_INTERNAL_FREE((void *)value); 6559 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB // shared memory is with dynamic library 6560 KMP_INTERNAL_FREE((void *)shm_name); 6561 #endif 6562 } // while 6563 KMP_INTERNAL_FREE((void *)name); 6564 6565 } // func __kmp_register_library_startup 6566 6567 void __kmp_unregister_library(void) { 6568 6569 char *name = __kmp_reg_status_name(); 6570 char *value = NULL; 6571 6572 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB // shared memory is with dynamic library 6573 char *shm_name = __kmp_str_format("/%s", name); 6574 int fd1 = shm_open(shm_name, O_RDONLY, 0666); 6575 if (fd1 == -1) { 6576 // file did not open. return. 6577 return; 6578 } 6579 char *data1 = (char *)mmap(0, SHM_SIZE, PROT_READ, MAP_SHARED, fd1, 0); 6580 if (data1 != MAP_FAILED) { 6581 value = __kmp_str_format("%s", data1); // read value from SHM 6582 munmap(data1, SHM_SIZE); 6583 } 6584 close(fd1); 6585 #else 6586 value = __kmp_env_get(name); 6587 #endif 6588 6589 KMP_DEBUG_ASSERT(__kmp_registration_flag != 0); 6590 KMP_DEBUG_ASSERT(__kmp_registration_str != NULL); 6591 if (value != NULL && strcmp(value, __kmp_registration_str) == 0) { 6592 // Ok, this is our variable. Delete it. 6593 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB // shared memory is with dynamic library 6594 shm_unlink(shm_name); // this removes file in /dev/shm 6595 #else 6596 __kmp_env_unset(name); 6597 #endif 6598 } 6599 6600 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB // shared memory is with dynamic library 6601 KMP_INTERNAL_FREE(shm_name); 6602 #endif 6603 6604 KMP_INTERNAL_FREE(__kmp_registration_str); 6605 KMP_INTERNAL_FREE(value); 6606 KMP_INTERNAL_FREE(name); 6607 6608 __kmp_registration_flag = 0; 6609 __kmp_registration_str = NULL; 6610 6611 } // __kmp_unregister_library 6612 6613 // End of Library registration stuff. 6614 // ----------------------------------------------------------------------------- 6615 6616 #if KMP_MIC_SUPPORTED 6617 6618 static void __kmp_check_mic_type() { 6619 kmp_cpuid_t cpuid_state = {0}; 6620 kmp_cpuid_t *cs_p = &cpuid_state; 6621 __kmp_x86_cpuid(1, 0, cs_p); 6622 // We don't support mic1 at the moment 6623 if ((cs_p->eax & 0xff0) == 0xB10) { 6624 __kmp_mic_type = mic2; 6625 } else if ((cs_p->eax & 0xf0ff0) == 0x50670) { 6626 __kmp_mic_type = mic3; 6627 } else { 6628 __kmp_mic_type = non_mic; 6629 } 6630 } 6631 6632 #endif /* KMP_MIC_SUPPORTED */ 6633 6634 #if KMP_HAVE_UMWAIT 6635 static void __kmp_user_level_mwait_init() { 6636 struct kmp_cpuid buf; 6637 __kmp_x86_cpuid(7, 0, &buf); 6638 __kmp_umwait_enabled = ((buf.ecx >> 5) & 1) && __kmp_user_level_mwait; 6639 KF_TRACE(30, ("__kmp_user_level_mwait_init: __kmp_umwait_enabled = %d\n", 6640 __kmp_umwait_enabled)); 6641 } 6642 #elif KMP_HAVE_MWAIT 6643 #ifndef AT_INTELPHIUSERMWAIT 6644 // Spurious, non-existent value that should always fail to return anything. 6645 // Will be replaced with the correct value when we know that. 6646 #define AT_INTELPHIUSERMWAIT 10000 6647 #endif 6648 // getauxval() function is available in RHEL7 and SLES12. If a system with an 6649 // earlier OS is used to build the RTL, we'll use the following internal 6650 // function when the entry is not found. 6651 unsigned long getauxval(unsigned long) KMP_WEAK_ATTRIBUTE_EXTERNAL; 6652 unsigned long getauxval(unsigned long) { return 0; } 6653 6654 static void __kmp_user_level_mwait_init() { 6655 // When getauxval() and correct value of AT_INTELPHIUSERMWAIT are available 6656 // use them to find if the user-level mwait is enabled. Otherwise, forcibly 6657 // set __kmp_mwait_enabled=TRUE on Intel MIC if the environment variable 6658 // KMP_USER_LEVEL_MWAIT was set to TRUE. 6659 if (__kmp_mic_type == mic3) { 6660 unsigned long res = getauxval(AT_INTELPHIUSERMWAIT); 6661 if ((res & 0x1) || __kmp_user_level_mwait) { 6662 __kmp_mwait_enabled = TRUE; 6663 if (__kmp_user_level_mwait) { 6664 KMP_INFORM(EnvMwaitWarn); 6665 } 6666 } else { 6667 __kmp_mwait_enabled = FALSE; 6668 } 6669 } 6670 KF_TRACE(30, ("__kmp_user_level_mwait_init: __kmp_mic_type = %d, " 6671 "__kmp_mwait_enabled = %d\n", 6672 __kmp_mic_type, __kmp_mwait_enabled)); 6673 } 6674 #endif /* KMP_HAVE_UMWAIT */ 6675 6676 static void __kmp_do_serial_initialize(void) { 6677 int i, gtid; 6678 size_t size; 6679 6680 KA_TRACE(10, ("__kmp_do_serial_initialize: enter\n")); 6681 6682 KMP_DEBUG_ASSERT(sizeof(kmp_int32) == 4); 6683 KMP_DEBUG_ASSERT(sizeof(kmp_uint32) == 4); 6684 KMP_DEBUG_ASSERT(sizeof(kmp_int64) == 8); 6685 KMP_DEBUG_ASSERT(sizeof(kmp_uint64) == 8); 6686 KMP_DEBUG_ASSERT(sizeof(kmp_intptr_t) == sizeof(void *)); 6687 6688 #if OMPT_SUPPORT 6689 ompt_pre_init(); 6690 #endif 6691 6692 __kmp_validate_locks(); 6693 6694 /* Initialize internal memory allocator */ 6695 __kmp_init_allocator(); 6696 6697 /* Register the library startup via an environment variable and check to see 6698 whether another copy of the library is already registered. */ 6699 6700 __kmp_register_library_startup(); 6701 6702 /* TODO reinitialization of library */ 6703 if (TCR_4(__kmp_global.g.g_done)) { 6704 KA_TRACE(10, ("__kmp_do_serial_initialize: reinitialization of library\n")); 6705 } 6706 6707 __kmp_global.g.g_abort = 0; 6708 TCW_SYNC_4(__kmp_global.g.g_done, FALSE); 6709 6710 /* initialize the locks */ 6711 #if KMP_USE_ADAPTIVE_LOCKS 6712 #if KMP_DEBUG_ADAPTIVE_LOCKS 6713 __kmp_init_speculative_stats(); 6714 #endif 6715 #endif 6716 #if KMP_STATS_ENABLED 6717 __kmp_stats_init(); 6718 #endif 6719 __kmp_init_lock(&__kmp_global_lock); 6720 __kmp_init_queuing_lock(&__kmp_dispatch_lock); 6721 __kmp_init_lock(&__kmp_debug_lock); 6722 __kmp_init_atomic_lock(&__kmp_atomic_lock); 6723 __kmp_init_atomic_lock(&__kmp_atomic_lock_1i); 6724 __kmp_init_atomic_lock(&__kmp_atomic_lock_2i); 6725 __kmp_init_atomic_lock(&__kmp_atomic_lock_4i); 6726 __kmp_init_atomic_lock(&__kmp_atomic_lock_4r); 6727 __kmp_init_atomic_lock(&__kmp_atomic_lock_8i); 6728 __kmp_init_atomic_lock(&__kmp_atomic_lock_8r); 6729 __kmp_init_atomic_lock(&__kmp_atomic_lock_8c); 6730 __kmp_init_atomic_lock(&__kmp_atomic_lock_10r); 6731 __kmp_init_atomic_lock(&__kmp_atomic_lock_16r); 6732 __kmp_init_atomic_lock(&__kmp_atomic_lock_16c); 6733 __kmp_init_atomic_lock(&__kmp_atomic_lock_20c); 6734 __kmp_init_atomic_lock(&__kmp_atomic_lock_32c); 6735 __kmp_init_bootstrap_lock(&__kmp_forkjoin_lock); 6736 __kmp_init_bootstrap_lock(&__kmp_exit_lock); 6737 #if KMP_USE_MONITOR 6738 __kmp_init_bootstrap_lock(&__kmp_monitor_lock); 6739 #endif 6740 __kmp_init_bootstrap_lock(&__kmp_tp_cached_lock); 6741 6742 /* conduct initialization and initial setup of configuration */ 6743 6744 __kmp_runtime_initialize(); 6745 6746 #if KMP_MIC_SUPPORTED 6747 __kmp_check_mic_type(); 6748 #endif 6749 6750 // Some global variable initialization moved here from kmp_env_initialize() 6751 #ifdef KMP_DEBUG 6752 kmp_diag = 0; 6753 #endif 6754 __kmp_abort_delay = 0; 6755 6756 // From __kmp_init_dflt_team_nth() 6757 /* assume the entire machine will be used */ 6758 __kmp_dflt_team_nth_ub = __kmp_xproc; 6759 if (__kmp_dflt_team_nth_ub < KMP_MIN_NTH) { 6760 __kmp_dflt_team_nth_ub = KMP_MIN_NTH; 6761 } 6762 if (__kmp_dflt_team_nth_ub > __kmp_sys_max_nth) { 6763 __kmp_dflt_team_nth_ub = __kmp_sys_max_nth; 6764 } 6765 __kmp_max_nth = __kmp_sys_max_nth; 6766 __kmp_cg_max_nth = __kmp_sys_max_nth; 6767 __kmp_teams_max_nth = __kmp_xproc; // set a "reasonable" default 6768 if (__kmp_teams_max_nth > __kmp_sys_max_nth) { 6769 __kmp_teams_max_nth = __kmp_sys_max_nth; 6770 } 6771 6772 // Three vars below moved here from __kmp_env_initialize() "KMP_BLOCKTIME" 6773 // part 6774 __kmp_dflt_blocktime = KMP_DEFAULT_BLOCKTIME; 6775 #if KMP_USE_MONITOR 6776 __kmp_monitor_wakeups = 6777 KMP_WAKEUPS_FROM_BLOCKTIME(__kmp_dflt_blocktime, __kmp_monitor_wakeups); 6778 __kmp_bt_intervals = 6779 KMP_INTERVALS_FROM_BLOCKTIME(__kmp_dflt_blocktime, __kmp_monitor_wakeups); 6780 #endif 6781 // From "KMP_LIBRARY" part of __kmp_env_initialize() 6782 __kmp_library = library_throughput; 6783 // From KMP_SCHEDULE initialization 6784 __kmp_static = kmp_sch_static_balanced; 6785 // AC: do not use analytical here, because it is non-monotonous 6786 //__kmp_guided = kmp_sch_guided_iterative_chunked; 6787 //__kmp_auto = kmp_sch_guided_analytical_chunked; // AC: it is the default, no 6788 // need to repeat assignment 6789 // Barrier initialization. Moved here from __kmp_env_initialize() Barrier branch 6790 // bit control and barrier method control parts 6791 #if KMP_FAST_REDUCTION_BARRIER 6792 #define kmp_reduction_barrier_gather_bb ((int)1) 6793 #define kmp_reduction_barrier_release_bb ((int)1) 6794 #define kmp_reduction_barrier_gather_pat bp_hyper_bar 6795 #define kmp_reduction_barrier_release_pat bp_hyper_bar 6796 #endif // KMP_FAST_REDUCTION_BARRIER 6797 for (i = bs_plain_barrier; i < bs_last_barrier; i++) { 6798 __kmp_barrier_gather_branch_bits[i] = __kmp_barrier_gather_bb_dflt; 6799 __kmp_barrier_release_branch_bits[i] = __kmp_barrier_release_bb_dflt; 6800 __kmp_barrier_gather_pattern[i] = __kmp_barrier_gather_pat_dflt; 6801 __kmp_barrier_release_pattern[i] = __kmp_barrier_release_pat_dflt; 6802 #if KMP_FAST_REDUCTION_BARRIER 6803 if (i == bs_reduction_barrier) { // tested and confirmed on ALTIX only ( 6804 // lin_64 ): hyper,1 6805 __kmp_barrier_gather_branch_bits[i] = kmp_reduction_barrier_gather_bb; 6806 __kmp_barrier_release_branch_bits[i] = kmp_reduction_barrier_release_bb; 6807 __kmp_barrier_gather_pattern[i] = kmp_reduction_barrier_gather_pat; 6808 __kmp_barrier_release_pattern[i] = kmp_reduction_barrier_release_pat; 6809 } 6810 #endif // KMP_FAST_REDUCTION_BARRIER 6811 } 6812 #if KMP_FAST_REDUCTION_BARRIER 6813 #undef kmp_reduction_barrier_release_pat 6814 #undef kmp_reduction_barrier_gather_pat 6815 #undef kmp_reduction_barrier_release_bb 6816 #undef kmp_reduction_barrier_gather_bb 6817 #endif // KMP_FAST_REDUCTION_BARRIER 6818 #if KMP_MIC_SUPPORTED 6819 if (__kmp_mic_type == mic2) { // KNC 6820 // AC: plane=3,2, forkjoin=2,1 are optimal for 240 threads on KNC 6821 __kmp_barrier_gather_branch_bits[bs_plain_barrier] = 3; // plain gather 6822 __kmp_barrier_release_branch_bits[bs_forkjoin_barrier] = 6823 1; // forkjoin release 6824 __kmp_barrier_gather_pattern[bs_forkjoin_barrier] = bp_hierarchical_bar; 6825 __kmp_barrier_release_pattern[bs_forkjoin_barrier] = bp_hierarchical_bar; 6826 } 6827 #if KMP_FAST_REDUCTION_BARRIER 6828 if (__kmp_mic_type == mic2) { // KNC 6829 __kmp_barrier_gather_pattern[bs_reduction_barrier] = bp_hierarchical_bar; 6830 __kmp_barrier_release_pattern[bs_reduction_barrier] = bp_hierarchical_bar; 6831 } 6832 #endif // KMP_FAST_REDUCTION_BARRIER 6833 #endif // KMP_MIC_SUPPORTED 6834 6835 // From KMP_CHECKS initialization 6836 #ifdef KMP_DEBUG 6837 __kmp_env_checks = TRUE; /* development versions have the extra checks */ 6838 #else 6839 __kmp_env_checks = FALSE; /* port versions do not have the extra checks */ 6840 #endif 6841 6842 // From "KMP_FOREIGN_THREADS_THREADPRIVATE" initialization 6843 __kmp_foreign_tp = TRUE; 6844 6845 __kmp_global.g.g_dynamic = FALSE; 6846 __kmp_global.g.g_dynamic_mode = dynamic_default; 6847 6848 __kmp_env_initialize(NULL); 6849 6850 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT 6851 __kmp_user_level_mwait_init(); 6852 #endif 6853 // Print all messages in message catalog for testing purposes. 6854 #ifdef KMP_DEBUG 6855 char const *val = __kmp_env_get("KMP_DUMP_CATALOG"); 6856 if (__kmp_str_match_true(val)) { 6857 kmp_str_buf_t buffer; 6858 __kmp_str_buf_init(&buffer); 6859 __kmp_i18n_dump_catalog(&buffer); 6860 __kmp_printf("%s", buffer.str); 6861 __kmp_str_buf_free(&buffer); 6862 } 6863 __kmp_env_free(&val); 6864 #endif 6865 6866 __kmp_threads_capacity = 6867 __kmp_initial_threads_capacity(__kmp_dflt_team_nth_ub); 6868 // Moved here from __kmp_env_initialize() "KMP_ALL_THREADPRIVATE" part 6869 __kmp_tp_capacity = __kmp_default_tp_capacity( 6870 __kmp_dflt_team_nth_ub, __kmp_max_nth, __kmp_allThreadsSpecified); 6871 6872 // If the library is shut down properly, both pools must be NULL. Just in 6873 // case, set them to NULL -- some memory may leak, but subsequent code will 6874 // work even if pools are not freed. 6875 KMP_DEBUG_ASSERT(__kmp_thread_pool == NULL); 6876 KMP_DEBUG_ASSERT(__kmp_thread_pool_insert_pt == NULL); 6877 KMP_DEBUG_ASSERT(__kmp_team_pool == NULL); 6878 __kmp_thread_pool = NULL; 6879 __kmp_thread_pool_insert_pt = NULL; 6880 __kmp_team_pool = NULL; 6881 6882 /* Allocate all of the variable sized records */ 6883 /* NOTE: __kmp_threads_capacity entries are allocated, but the arrays are 6884 * expandable */ 6885 /* Since allocation is cache-aligned, just add extra padding at the end */ 6886 size = 6887 (sizeof(kmp_info_t *) + sizeof(kmp_root_t *)) * __kmp_threads_capacity + 6888 CACHE_LINE; 6889 __kmp_threads = (kmp_info_t **)__kmp_allocate(size); 6890 __kmp_root = (kmp_root_t **)((char *)__kmp_threads + 6891 sizeof(kmp_info_t *) * __kmp_threads_capacity); 6892 6893 /* init thread counts */ 6894 KMP_DEBUG_ASSERT(__kmp_all_nth == 6895 0); // Asserts fail if the library is reinitializing and 6896 KMP_DEBUG_ASSERT(__kmp_nth == 0); // something was wrong in termination. 6897 __kmp_all_nth = 0; 6898 __kmp_nth = 0; 6899 6900 /* setup the uber master thread and hierarchy */ 6901 gtid = __kmp_register_root(TRUE); 6902 KA_TRACE(10, ("__kmp_do_serial_initialize T#%d\n", gtid)); 6903 KMP_ASSERT(KMP_UBER_GTID(gtid)); 6904 KMP_ASSERT(KMP_INITIAL_GTID(gtid)); 6905 6906 KMP_MB(); /* Flush all pending memory write invalidates. */ 6907 6908 __kmp_common_initialize(); 6909 6910 #if KMP_OS_UNIX 6911 /* invoke the child fork handler */ 6912 __kmp_register_atfork(); 6913 #endif 6914 6915 #if !KMP_DYNAMIC_LIB 6916 { 6917 /* Invoke the exit handler when the program finishes, only for static 6918 library. For dynamic library, we already have _fini and DllMain. */ 6919 int rc = atexit(__kmp_internal_end_atexit); 6920 if (rc != 0) { 6921 __kmp_fatal(KMP_MSG(FunctionError, "atexit()"), KMP_ERR(rc), 6922 __kmp_msg_null); 6923 } 6924 } 6925 #endif 6926 6927 #if KMP_HANDLE_SIGNALS 6928 #if KMP_OS_UNIX 6929 /* NOTE: make sure that this is called before the user installs their own 6930 signal handlers so that the user handlers are called first. this way they 6931 can return false, not call our handler, avoid terminating the library, and 6932 continue execution where they left off. */ 6933 __kmp_install_signals(FALSE); 6934 #endif /* KMP_OS_UNIX */ 6935 #if KMP_OS_WINDOWS 6936 __kmp_install_signals(TRUE); 6937 #endif /* KMP_OS_WINDOWS */ 6938 #endif 6939 6940 /* we have finished the serial initialization */ 6941 __kmp_init_counter++; 6942 6943 __kmp_init_serial = TRUE; 6944 6945 if (__kmp_settings) { 6946 __kmp_env_print(); 6947 } 6948 6949 if (__kmp_display_env || __kmp_display_env_verbose) { 6950 __kmp_env_print_2(); 6951 } 6952 6953 #if OMPT_SUPPORT 6954 ompt_post_init(); 6955 #endif 6956 6957 KMP_MB(); 6958 6959 KA_TRACE(10, ("__kmp_do_serial_initialize: exit\n")); 6960 } 6961 6962 void __kmp_serial_initialize(void) { 6963 if (__kmp_init_serial) { 6964 return; 6965 } 6966 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6967 if (__kmp_init_serial) { 6968 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6969 return; 6970 } 6971 __kmp_do_serial_initialize(); 6972 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6973 } 6974 6975 static void __kmp_do_middle_initialize(void) { 6976 int i, j; 6977 int prev_dflt_team_nth; 6978 6979 if (!__kmp_init_serial) { 6980 __kmp_do_serial_initialize(); 6981 } 6982 6983 KA_TRACE(10, ("__kmp_middle_initialize: enter\n")); 6984 6985 // Save the previous value for the __kmp_dflt_team_nth so that 6986 // we can avoid some reinitialization if it hasn't changed. 6987 prev_dflt_team_nth = __kmp_dflt_team_nth; 6988 6989 #if KMP_AFFINITY_SUPPORTED 6990 // __kmp_affinity_initialize() will try to set __kmp_ncores to the 6991 // number of cores on the machine. 6992 __kmp_affinity_initialize(); 6993 6994 // Run through the __kmp_threads array and set the affinity mask 6995 // for each root thread that is currently registered with the RTL. 6996 for (i = 0; i < __kmp_threads_capacity; i++) { 6997 if (TCR_PTR(__kmp_threads[i]) != NULL) { 6998 __kmp_affinity_set_init_mask(i, TRUE); 6999 } 7000 } 7001 #endif /* KMP_AFFINITY_SUPPORTED */ 7002 7003 KMP_ASSERT(__kmp_xproc > 0); 7004 if (__kmp_avail_proc == 0) { 7005 __kmp_avail_proc = __kmp_xproc; 7006 } 7007 7008 // If there were empty places in num_threads list (OMP_NUM_THREADS=,,2,3), 7009 // correct them now 7010 j = 0; 7011 while ((j < __kmp_nested_nth.used) && !__kmp_nested_nth.nth[j]) { 7012 __kmp_nested_nth.nth[j] = __kmp_dflt_team_nth = __kmp_dflt_team_nth_ub = 7013 __kmp_avail_proc; 7014 j++; 7015 } 7016 7017 if (__kmp_dflt_team_nth == 0) { 7018 #ifdef KMP_DFLT_NTH_CORES 7019 // Default #threads = #cores 7020 __kmp_dflt_team_nth = __kmp_ncores; 7021 KA_TRACE(20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = " 7022 "__kmp_ncores (%d)\n", 7023 __kmp_dflt_team_nth)); 7024 #else 7025 // Default #threads = #available OS procs 7026 __kmp_dflt_team_nth = __kmp_avail_proc; 7027 KA_TRACE(20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = " 7028 "__kmp_avail_proc(%d)\n", 7029 __kmp_dflt_team_nth)); 7030 #endif /* KMP_DFLT_NTH_CORES */ 7031 } 7032 7033 if (__kmp_dflt_team_nth < KMP_MIN_NTH) { 7034 __kmp_dflt_team_nth = KMP_MIN_NTH; 7035 } 7036 if (__kmp_dflt_team_nth > __kmp_sys_max_nth) { 7037 __kmp_dflt_team_nth = __kmp_sys_max_nth; 7038 } 7039 7040 // There's no harm in continuing if the following check fails, 7041 // but it indicates an error in the previous logic. 7042 KMP_DEBUG_ASSERT(__kmp_dflt_team_nth <= __kmp_dflt_team_nth_ub); 7043 7044 if (__kmp_dflt_team_nth != prev_dflt_team_nth) { 7045 // Run through the __kmp_threads array and set the num threads icv for each 7046 // root thread that is currently registered with the RTL (which has not 7047 // already explicitly set its nthreads-var with a call to 7048 // omp_set_num_threads()). 7049 for (i = 0; i < __kmp_threads_capacity; i++) { 7050 kmp_info_t *thread = __kmp_threads[i]; 7051 if (thread == NULL) 7052 continue; 7053 if (thread->th.th_current_task->td_icvs.nproc != 0) 7054 continue; 7055 7056 set__nproc(__kmp_threads[i], __kmp_dflt_team_nth); 7057 } 7058 } 7059 KA_TRACE( 7060 20, 7061 ("__kmp_middle_initialize: final value for __kmp_dflt_team_nth = %d\n", 7062 __kmp_dflt_team_nth)); 7063 7064 #ifdef KMP_ADJUST_BLOCKTIME 7065 /* Adjust blocktime to zero if necessary now that __kmp_avail_proc is set */ 7066 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 7067 KMP_DEBUG_ASSERT(__kmp_avail_proc > 0); 7068 if (__kmp_nth > __kmp_avail_proc) { 7069 __kmp_zero_bt = TRUE; 7070 } 7071 } 7072 #endif /* KMP_ADJUST_BLOCKTIME */ 7073 7074 /* we have finished middle initialization */ 7075 TCW_SYNC_4(__kmp_init_middle, TRUE); 7076 7077 KA_TRACE(10, ("__kmp_do_middle_initialize: exit\n")); 7078 } 7079 7080 void __kmp_middle_initialize(void) { 7081 if (__kmp_init_middle) { 7082 return; 7083 } 7084 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 7085 if (__kmp_init_middle) { 7086 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7087 return; 7088 } 7089 __kmp_do_middle_initialize(); 7090 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7091 } 7092 7093 void __kmp_parallel_initialize(void) { 7094 int gtid = __kmp_entry_gtid(); // this might be a new root 7095 7096 /* synchronize parallel initialization (for sibling) */ 7097 if (TCR_4(__kmp_init_parallel)) 7098 return; 7099 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 7100 if (TCR_4(__kmp_init_parallel)) { 7101 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7102 return; 7103 } 7104 7105 /* TODO reinitialization after we have already shut down */ 7106 if (TCR_4(__kmp_global.g.g_done)) { 7107 KA_TRACE( 7108 10, 7109 ("__kmp_parallel_initialize: attempt to init while shutting down\n")); 7110 __kmp_infinite_loop(); 7111 } 7112 7113 /* jc: The lock __kmp_initz_lock is already held, so calling 7114 __kmp_serial_initialize would cause a deadlock. So we call 7115 __kmp_do_serial_initialize directly. */ 7116 if (!__kmp_init_middle) { 7117 __kmp_do_middle_initialize(); 7118 } 7119 __kmp_resume_if_hard_paused(); 7120 7121 /* begin initialization */ 7122 KA_TRACE(10, ("__kmp_parallel_initialize: enter\n")); 7123 KMP_ASSERT(KMP_UBER_GTID(gtid)); 7124 7125 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 7126 // Save the FP control regs. 7127 // Worker threads will set theirs to these values at thread startup. 7128 __kmp_store_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word); 7129 __kmp_store_mxcsr(&__kmp_init_mxcsr); 7130 __kmp_init_mxcsr &= KMP_X86_MXCSR_MASK; 7131 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 7132 7133 #if KMP_OS_UNIX 7134 #if KMP_HANDLE_SIGNALS 7135 /* must be after __kmp_serial_initialize */ 7136 __kmp_install_signals(TRUE); 7137 #endif 7138 #endif 7139 7140 __kmp_suspend_initialize(); 7141 7142 #if defined(USE_LOAD_BALANCE) 7143 if (__kmp_global.g.g_dynamic_mode == dynamic_default) { 7144 __kmp_global.g.g_dynamic_mode = dynamic_load_balance; 7145 } 7146 #else 7147 if (__kmp_global.g.g_dynamic_mode == dynamic_default) { 7148 __kmp_global.g.g_dynamic_mode = dynamic_thread_limit; 7149 } 7150 #endif 7151 7152 if (__kmp_version) { 7153 __kmp_print_version_2(); 7154 } 7155 7156 /* we have finished parallel initialization */ 7157 TCW_SYNC_4(__kmp_init_parallel, TRUE); 7158 7159 KMP_MB(); 7160 KA_TRACE(10, ("__kmp_parallel_initialize: exit\n")); 7161 7162 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7163 } 7164 7165 void __kmp_hidden_helper_initialize() { 7166 if (TCR_4(__kmp_init_hidden_helper)) 7167 return; 7168 7169 // __kmp_parallel_initialize is required before we initialize hidden helper 7170 if (!TCR_4(__kmp_init_parallel)) 7171 __kmp_parallel_initialize(); 7172 7173 // Double check. Note that this double check should not be placed before 7174 // __kmp_parallel_initialize as it will cause dead lock. 7175 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 7176 if (TCR_4(__kmp_init_hidden_helper)) { 7177 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7178 return; 7179 } 7180 7181 // Set the count of hidden helper tasks to be executed to zero 7182 KMP_ATOMIC_ST_REL(&__kmp_unexecuted_hidden_helper_tasks, 0); 7183 7184 // Set the global variable indicating that we're initializing hidden helper 7185 // team/threads 7186 TCW_SYNC_4(__kmp_init_hidden_helper_threads, TRUE); 7187 7188 // Platform independent initialization 7189 __kmp_do_initialize_hidden_helper_threads(); 7190 7191 // Wait here for the finish of initialization of hidden helper teams 7192 __kmp_hidden_helper_threads_initz_wait(); 7193 7194 // We have finished hidden helper initialization 7195 TCW_SYNC_4(__kmp_init_hidden_helper, TRUE); 7196 7197 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7198 } 7199 7200 /* ------------------------------------------------------------------------ */ 7201 7202 void __kmp_run_before_invoked_task(int gtid, int tid, kmp_info_t *this_thr, 7203 kmp_team_t *team) { 7204 kmp_disp_t *dispatch; 7205 7206 KMP_MB(); 7207 7208 /* none of the threads have encountered any constructs, yet. */ 7209 this_thr->th.th_local.this_construct = 0; 7210 #if KMP_CACHE_MANAGE 7211 KMP_CACHE_PREFETCH(&this_thr->th.th_bar[bs_forkjoin_barrier].bb.b_arrived); 7212 #endif /* KMP_CACHE_MANAGE */ 7213 dispatch = (kmp_disp_t *)TCR_PTR(this_thr->th.th_dispatch); 7214 KMP_DEBUG_ASSERT(dispatch); 7215 KMP_DEBUG_ASSERT(team->t.t_dispatch); 7216 // KMP_DEBUG_ASSERT( this_thr->th.th_dispatch == &team->t.t_dispatch[ 7217 // this_thr->th.th_info.ds.ds_tid ] ); 7218 7219 dispatch->th_disp_index = 0; /* reset the dispatch buffer counter */ 7220 dispatch->th_doacross_buf_idx = 0; // reset doacross dispatch buffer counter 7221 if (__kmp_env_consistency_check) 7222 __kmp_push_parallel(gtid, team->t.t_ident); 7223 7224 KMP_MB(); /* Flush all pending memory write invalidates. */ 7225 } 7226 7227 void __kmp_run_after_invoked_task(int gtid, int tid, kmp_info_t *this_thr, 7228 kmp_team_t *team) { 7229 if (__kmp_env_consistency_check) 7230 __kmp_pop_parallel(gtid, team->t.t_ident); 7231 7232 __kmp_finish_implicit_task(this_thr); 7233 } 7234 7235 int __kmp_invoke_task_func(int gtid) { 7236 int rc; 7237 int tid = __kmp_tid_from_gtid(gtid); 7238 kmp_info_t *this_thr = __kmp_threads[gtid]; 7239 kmp_team_t *team = this_thr->th.th_team; 7240 7241 __kmp_run_before_invoked_task(gtid, tid, this_thr, team); 7242 #if USE_ITT_BUILD 7243 if (__itt_stack_caller_create_ptr) { 7244 // inform ittnotify about entering user's code 7245 if (team->t.t_stack_id != NULL) { 7246 __kmp_itt_stack_callee_enter((__itt_caller)team->t.t_stack_id); 7247 } else { 7248 KMP_DEBUG_ASSERT(team->t.t_parent->t.t_stack_id != NULL); 7249 __kmp_itt_stack_callee_enter( 7250 (__itt_caller)team->t.t_parent->t.t_stack_id); 7251 } 7252 } 7253 #endif /* USE_ITT_BUILD */ 7254 #if INCLUDE_SSC_MARKS 7255 SSC_MARK_INVOKING(); 7256 #endif 7257 7258 #if OMPT_SUPPORT 7259 void *dummy; 7260 void **exit_frame_p; 7261 ompt_data_t *my_task_data; 7262 ompt_data_t *my_parallel_data; 7263 int ompt_team_size; 7264 7265 if (ompt_enabled.enabled) { 7266 exit_frame_p = &(team->t.t_implicit_task_taskdata[tid] 7267 .ompt_task_info.frame.exit_frame.ptr); 7268 } else { 7269 exit_frame_p = &dummy; 7270 } 7271 7272 my_task_data = 7273 &(team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data); 7274 my_parallel_data = &(team->t.ompt_team_info.parallel_data); 7275 if (ompt_enabled.ompt_callback_implicit_task) { 7276 ompt_team_size = team->t.t_nproc; 7277 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 7278 ompt_scope_begin, my_parallel_data, my_task_data, ompt_team_size, 7279 __kmp_tid_from_gtid(gtid), ompt_task_implicit); 7280 OMPT_CUR_TASK_INFO(this_thr)->thread_num = __kmp_tid_from_gtid(gtid); 7281 } 7282 #endif 7283 7284 #if KMP_STATS_ENABLED 7285 stats_state_e previous_state = KMP_GET_THREAD_STATE(); 7286 if (previous_state == stats_state_e::TEAMS_REGION) { 7287 KMP_PUSH_PARTITIONED_TIMER(OMP_teams); 7288 } else { 7289 KMP_PUSH_PARTITIONED_TIMER(OMP_parallel); 7290 } 7291 KMP_SET_THREAD_STATE(IMPLICIT_TASK); 7292 #endif 7293 7294 rc = __kmp_invoke_microtask((microtask_t)TCR_SYNC_PTR(team->t.t_pkfn), gtid, 7295 tid, (int)team->t.t_argc, (void **)team->t.t_argv 7296 #if OMPT_SUPPORT 7297 , 7298 exit_frame_p 7299 #endif 7300 ); 7301 #if OMPT_SUPPORT 7302 *exit_frame_p = NULL; 7303 this_thr->th.ompt_thread_info.parallel_flags |= ompt_parallel_team; 7304 #endif 7305 7306 #if KMP_STATS_ENABLED 7307 if (previous_state == stats_state_e::TEAMS_REGION) { 7308 KMP_SET_THREAD_STATE(previous_state); 7309 } 7310 KMP_POP_PARTITIONED_TIMER(); 7311 #endif 7312 7313 #if USE_ITT_BUILD 7314 if (__itt_stack_caller_create_ptr) { 7315 // inform ittnotify about leaving user's code 7316 if (team->t.t_stack_id != NULL) { 7317 __kmp_itt_stack_callee_leave((__itt_caller)team->t.t_stack_id); 7318 } else { 7319 KMP_DEBUG_ASSERT(team->t.t_parent->t.t_stack_id != NULL); 7320 __kmp_itt_stack_callee_leave( 7321 (__itt_caller)team->t.t_parent->t.t_stack_id); 7322 } 7323 } 7324 #endif /* USE_ITT_BUILD */ 7325 __kmp_run_after_invoked_task(gtid, tid, this_thr, team); 7326 7327 return rc; 7328 } 7329 7330 void __kmp_teams_master(int gtid) { 7331 // This routine is called by all primary threads in teams construct 7332 kmp_info_t *thr = __kmp_threads[gtid]; 7333 kmp_team_t *team = thr->th.th_team; 7334 ident_t *loc = team->t.t_ident; 7335 thr->th.th_set_nproc = thr->th.th_teams_size.nth; 7336 KMP_DEBUG_ASSERT(thr->th.th_teams_microtask); 7337 KMP_DEBUG_ASSERT(thr->th.th_set_nproc); 7338 KA_TRACE(20, ("__kmp_teams_master: T#%d, Tid %d, microtask %p\n", gtid, 7339 __kmp_tid_from_gtid(gtid), thr->th.th_teams_microtask)); 7340 7341 // This thread is a new CG root. Set up the proper variables. 7342 kmp_cg_root_t *tmp = (kmp_cg_root_t *)__kmp_allocate(sizeof(kmp_cg_root_t)); 7343 tmp->cg_root = thr; // Make thr the CG root 7344 // Init to thread limit stored when league primary threads were forked 7345 tmp->cg_thread_limit = thr->th.th_current_task->td_icvs.thread_limit; 7346 tmp->cg_nthreads = 1; // Init counter to one active thread, this one 7347 KA_TRACE(100, ("__kmp_teams_master: Thread %p created node %p and init" 7348 " cg_nthreads to 1\n", 7349 thr, tmp)); 7350 tmp->up = thr->th.th_cg_roots; 7351 thr->th.th_cg_roots = tmp; 7352 7353 // Launch league of teams now, but not let workers execute 7354 // (they hang on fork barrier until next parallel) 7355 #if INCLUDE_SSC_MARKS 7356 SSC_MARK_FORKING(); 7357 #endif 7358 __kmp_fork_call(loc, gtid, fork_context_intel, team->t.t_argc, 7359 (microtask_t)thr->th.th_teams_microtask, // "wrapped" task 7360 VOLATILE_CAST(launch_t) __kmp_invoke_task_func, NULL); 7361 #if INCLUDE_SSC_MARKS 7362 SSC_MARK_JOINING(); 7363 #endif 7364 // If the team size was reduced from the limit, set it to the new size 7365 if (thr->th.th_team_nproc < thr->th.th_teams_size.nth) 7366 thr->th.th_teams_size.nth = thr->th.th_team_nproc; 7367 // AC: last parameter "1" eliminates join barrier which won't work because 7368 // worker threads are in a fork barrier waiting for more parallel regions 7369 __kmp_join_call(loc, gtid 7370 #if OMPT_SUPPORT 7371 , 7372 fork_context_intel 7373 #endif 7374 , 7375 1); 7376 } 7377 7378 int __kmp_invoke_teams_master(int gtid) { 7379 kmp_info_t *this_thr = __kmp_threads[gtid]; 7380 kmp_team_t *team = this_thr->th.th_team; 7381 #if KMP_DEBUG 7382 if (!__kmp_threads[gtid]->th.th_team->t.t_serialized) 7383 KMP_DEBUG_ASSERT((void *)__kmp_threads[gtid]->th.th_team->t.t_pkfn == 7384 (void *)__kmp_teams_master); 7385 #endif 7386 __kmp_run_before_invoked_task(gtid, 0, this_thr, team); 7387 #if OMPT_SUPPORT 7388 int tid = __kmp_tid_from_gtid(gtid); 7389 ompt_data_t *task_data = 7390 &team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data; 7391 ompt_data_t *parallel_data = &team->t.ompt_team_info.parallel_data; 7392 if (ompt_enabled.ompt_callback_implicit_task) { 7393 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 7394 ompt_scope_begin, parallel_data, task_data, team->t.t_nproc, tid, 7395 ompt_task_initial); 7396 OMPT_CUR_TASK_INFO(this_thr)->thread_num = tid; 7397 } 7398 #endif 7399 __kmp_teams_master(gtid); 7400 #if OMPT_SUPPORT 7401 this_thr->th.ompt_thread_info.parallel_flags |= ompt_parallel_league; 7402 #endif 7403 __kmp_run_after_invoked_task(gtid, 0, this_thr, team); 7404 return 1; 7405 } 7406 7407 /* this sets the requested number of threads for the next parallel region 7408 encountered by this team. since this should be enclosed in the forkjoin 7409 critical section it should avoid race conditions with asymmetrical nested 7410 parallelism */ 7411 7412 void __kmp_push_num_threads(ident_t *id, int gtid, int num_threads) { 7413 kmp_info_t *thr = __kmp_threads[gtid]; 7414 7415 if (num_threads > 0) 7416 thr->th.th_set_nproc = num_threads; 7417 } 7418 7419 static void __kmp_push_thread_limit(kmp_info_t *thr, int num_teams, 7420 int num_threads) { 7421 KMP_DEBUG_ASSERT(thr); 7422 // Remember the number of threads for inner parallel regions 7423 if (!TCR_4(__kmp_init_middle)) 7424 __kmp_middle_initialize(); // get internal globals calculated 7425 KMP_DEBUG_ASSERT(__kmp_avail_proc); 7426 KMP_DEBUG_ASSERT(__kmp_dflt_team_nth); 7427 7428 if (num_threads == 0) { 7429 if (__kmp_teams_thread_limit > 0) { 7430 num_threads = __kmp_teams_thread_limit; 7431 } else { 7432 num_threads = __kmp_avail_proc / num_teams; 7433 } 7434 // adjust num_threads w/o warning as it is not user setting 7435 // num_threads = min(num_threads, nthreads-var, thread-limit-var) 7436 // no thread_limit clause specified - do not change thread-limit-var ICV 7437 if (num_threads > __kmp_dflt_team_nth) { 7438 num_threads = __kmp_dflt_team_nth; // honor nthreads-var ICV 7439 } 7440 if (num_threads > thr->th.th_current_task->td_icvs.thread_limit) { 7441 num_threads = thr->th.th_current_task->td_icvs.thread_limit; 7442 } // prevent team size to exceed thread-limit-var 7443 if (num_teams * num_threads > __kmp_teams_max_nth) { 7444 num_threads = __kmp_teams_max_nth / num_teams; 7445 } 7446 if (num_threads == 0) { 7447 num_threads = 1; 7448 } 7449 } else { 7450 // This thread will be the primary thread of the league primary threads 7451 // Store new thread limit; old limit is saved in th_cg_roots list 7452 thr->th.th_current_task->td_icvs.thread_limit = num_threads; 7453 // num_threads = min(num_threads, nthreads-var) 7454 if (num_threads > __kmp_dflt_team_nth) { 7455 num_threads = __kmp_dflt_team_nth; // honor nthreads-var ICV 7456 } 7457 if (num_teams * num_threads > __kmp_teams_max_nth) { 7458 int new_threads = __kmp_teams_max_nth / num_teams; 7459 if (new_threads == 0) { 7460 new_threads = 1; 7461 } 7462 if (new_threads != num_threads) { 7463 if (!__kmp_reserve_warn) { // user asked for too many threads 7464 __kmp_reserve_warn = 1; // conflicts with KMP_TEAMS_THREAD_LIMIT 7465 __kmp_msg(kmp_ms_warning, 7466 KMP_MSG(CantFormThrTeam, num_threads, new_threads), 7467 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 7468 } 7469 } 7470 num_threads = new_threads; 7471 } 7472 } 7473 thr->th.th_teams_size.nth = num_threads; 7474 } 7475 7476 /* this sets the requested number of teams for the teams region and/or 7477 the number of threads for the next parallel region encountered */ 7478 void __kmp_push_num_teams(ident_t *id, int gtid, int num_teams, 7479 int num_threads) { 7480 kmp_info_t *thr = __kmp_threads[gtid]; 7481 KMP_DEBUG_ASSERT(num_teams >= 0); 7482 KMP_DEBUG_ASSERT(num_threads >= 0); 7483 7484 if (num_teams == 0) { 7485 if (__kmp_nteams > 0) { 7486 num_teams = __kmp_nteams; 7487 } else { 7488 num_teams = 1; // default number of teams is 1. 7489 } 7490 } 7491 if (num_teams > __kmp_teams_max_nth) { // if too many teams requested? 7492 if (!__kmp_reserve_warn) { 7493 __kmp_reserve_warn = 1; 7494 __kmp_msg(kmp_ms_warning, 7495 KMP_MSG(CantFormThrTeam, num_teams, __kmp_teams_max_nth), 7496 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 7497 } 7498 num_teams = __kmp_teams_max_nth; 7499 } 7500 // Set number of teams (number of threads in the outer "parallel" of the 7501 // teams) 7502 thr->th.th_set_nproc = thr->th.th_teams_size.nteams = num_teams; 7503 7504 __kmp_push_thread_limit(thr, num_teams, num_threads); 7505 } 7506 7507 /* This sets the requested number of teams for the teams region and/or 7508 the number of threads for the next parallel region encountered */ 7509 void __kmp_push_num_teams_51(ident_t *id, int gtid, int num_teams_lb, 7510 int num_teams_ub, int num_threads) { 7511 kmp_info_t *thr = __kmp_threads[gtid]; 7512 KMP_DEBUG_ASSERT(num_teams_lb >= 0 && num_teams_ub >= 0); 7513 KMP_DEBUG_ASSERT(num_teams_ub >= num_teams_lb); 7514 KMP_DEBUG_ASSERT(num_threads >= 0); 7515 7516 if (num_teams_lb > num_teams_ub) { 7517 __kmp_fatal(KMP_MSG(FailedToCreateTeam, num_teams_lb, num_teams_ub), 7518 KMP_HNT(SetNewBound, __kmp_teams_max_nth), __kmp_msg_null); 7519 } 7520 7521 int num_teams = 1; // defalt number of teams is 1. 7522 7523 if (num_teams_lb == 0 && num_teams_ub > 0) 7524 num_teams_lb = num_teams_ub; 7525 7526 if (num_teams_lb == 0 && num_teams_ub == 0) { // no num_teams clause 7527 num_teams = (__kmp_nteams > 0) ? __kmp_nteams : num_teams; 7528 if (num_teams > __kmp_teams_max_nth) { 7529 if (!__kmp_reserve_warn) { 7530 __kmp_reserve_warn = 1; 7531 __kmp_msg(kmp_ms_warning, 7532 KMP_MSG(CantFormThrTeam, num_teams, __kmp_teams_max_nth), 7533 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 7534 } 7535 num_teams = __kmp_teams_max_nth; 7536 } 7537 } else if (num_teams_lb == num_teams_ub) { // requires exact number of teams 7538 num_teams = num_teams_ub; 7539 } else { // num_teams_lb <= num_teams <= num_teams_ub 7540 if (num_threads == 0) { 7541 if (num_teams_ub > __kmp_teams_max_nth) { 7542 num_teams = num_teams_lb; 7543 } else { 7544 num_teams = num_teams_ub; 7545 } 7546 } else { 7547 num_teams = (num_threads > __kmp_teams_max_nth) 7548 ? num_teams 7549 : __kmp_teams_max_nth / num_threads; 7550 if (num_teams < num_teams_lb) { 7551 num_teams = num_teams_lb; 7552 } else if (num_teams > num_teams_ub) { 7553 num_teams = num_teams_ub; 7554 } 7555 } 7556 } 7557 // Set number of teams (number of threads in the outer "parallel" of the 7558 // teams) 7559 thr->th.th_set_nproc = thr->th.th_teams_size.nteams = num_teams; 7560 7561 __kmp_push_thread_limit(thr, num_teams, num_threads); 7562 } 7563 7564 // Set the proc_bind var to use in the following parallel region. 7565 void __kmp_push_proc_bind(ident_t *id, int gtid, kmp_proc_bind_t proc_bind) { 7566 kmp_info_t *thr = __kmp_threads[gtid]; 7567 thr->th.th_set_proc_bind = proc_bind; 7568 } 7569 7570 /* Launch the worker threads into the microtask. */ 7571 7572 void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team) { 7573 kmp_info_t *this_thr = __kmp_threads[gtid]; 7574 7575 #ifdef KMP_DEBUG 7576 int f; 7577 #endif /* KMP_DEBUG */ 7578 7579 KMP_DEBUG_ASSERT(team); 7580 KMP_DEBUG_ASSERT(this_thr->th.th_team == team); 7581 KMP_ASSERT(KMP_MASTER_GTID(gtid)); 7582 KMP_MB(); /* Flush all pending memory write invalidates. */ 7583 7584 team->t.t_construct = 0; /* no single directives seen yet */ 7585 team->t.t_ordered.dt.t_value = 7586 0; /* thread 0 enters the ordered section first */ 7587 7588 /* Reset the identifiers on the dispatch buffer */ 7589 KMP_DEBUG_ASSERT(team->t.t_disp_buffer); 7590 if (team->t.t_max_nproc > 1) { 7591 int i; 7592 for (i = 0; i < __kmp_dispatch_num_buffers; ++i) { 7593 team->t.t_disp_buffer[i].buffer_index = i; 7594 team->t.t_disp_buffer[i].doacross_buf_idx = i; 7595 } 7596 } else { 7597 team->t.t_disp_buffer[0].buffer_index = 0; 7598 team->t.t_disp_buffer[0].doacross_buf_idx = 0; 7599 } 7600 7601 KMP_MB(); /* Flush all pending memory write invalidates. */ 7602 KMP_ASSERT(this_thr->th.th_team == team); 7603 7604 #ifdef KMP_DEBUG 7605 for (f = 0; f < team->t.t_nproc; f++) { 7606 KMP_DEBUG_ASSERT(team->t.t_threads[f] && 7607 team->t.t_threads[f]->th.th_team_nproc == team->t.t_nproc); 7608 } 7609 #endif /* KMP_DEBUG */ 7610 7611 /* release the worker threads so they may begin working */ 7612 __kmp_fork_barrier(gtid, 0); 7613 } 7614 7615 void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team) { 7616 kmp_info_t *this_thr = __kmp_threads[gtid]; 7617 7618 KMP_DEBUG_ASSERT(team); 7619 KMP_DEBUG_ASSERT(this_thr->th.th_team == team); 7620 KMP_ASSERT(KMP_MASTER_GTID(gtid)); 7621 KMP_MB(); /* Flush all pending memory write invalidates. */ 7622 7623 /* Join barrier after fork */ 7624 7625 #ifdef KMP_DEBUG 7626 if (__kmp_threads[gtid] && 7627 __kmp_threads[gtid]->th.th_team_nproc != team->t.t_nproc) { 7628 __kmp_printf("GTID: %d, __kmp_threads[%d]=%p\n", gtid, gtid, 7629 __kmp_threads[gtid]); 7630 __kmp_printf("__kmp_threads[%d]->th.th_team_nproc=%d, TEAM: %p, " 7631 "team->t.t_nproc=%d\n", 7632 gtid, __kmp_threads[gtid]->th.th_team_nproc, team, 7633 team->t.t_nproc); 7634 __kmp_print_structure(); 7635 } 7636 KMP_DEBUG_ASSERT(__kmp_threads[gtid] && 7637 __kmp_threads[gtid]->th.th_team_nproc == team->t.t_nproc); 7638 #endif /* KMP_DEBUG */ 7639 7640 __kmp_join_barrier(gtid); /* wait for everyone */ 7641 #if OMPT_SUPPORT 7642 if (ompt_enabled.enabled && 7643 this_thr->th.ompt_thread_info.state == ompt_state_wait_barrier_implicit) { 7644 int ds_tid = this_thr->th.th_info.ds.ds_tid; 7645 ompt_data_t *task_data = OMPT_CUR_TASK_DATA(this_thr); 7646 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 7647 #if OMPT_OPTIONAL 7648 void *codeptr = NULL; 7649 if (KMP_MASTER_TID(ds_tid) && 7650 (ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait) || 7651 ompt_callbacks.ompt_callback(ompt_callback_sync_region))) 7652 codeptr = OMPT_CUR_TEAM_INFO(this_thr)->master_return_address; 7653 7654 if (ompt_enabled.ompt_callback_sync_region_wait) { 7655 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 7656 ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, task_data, 7657 codeptr); 7658 } 7659 if (ompt_enabled.ompt_callback_sync_region) { 7660 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 7661 ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, task_data, 7662 codeptr); 7663 } 7664 #endif 7665 if (!KMP_MASTER_TID(ds_tid) && ompt_enabled.ompt_callback_implicit_task) { 7666 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 7667 ompt_scope_end, NULL, task_data, 0, ds_tid, 7668 ompt_task_implicit); // TODO: Can this be ompt_task_initial? 7669 } 7670 } 7671 #endif 7672 7673 KMP_MB(); /* Flush all pending memory write invalidates. */ 7674 KMP_ASSERT(this_thr->th.th_team == team); 7675 } 7676 7677 /* ------------------------------------------------------------------------ */ 7678 7679 #ifdef USE_LOAD_BALANCE 7680 7681 // Return the worker threads actively spinning in the hot team, if we 7682 // are at the outermost level of parallelism. Otherwise, return 0. 7683 static int __kmp_active_hot_team_nproc(kmp_root_t *root) { 7684 int i; 7685 int retval; 7686 kmp_team_t *hot_team; 7687 7688 if (root->r.r_active) { 7689 return 0; 7690 } 7691 hot_team = root->r.r_hot_team; 7692 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { 7693 return hot_team->t.t_nproc - 1; // Don't count primary thread 7694 } 7695 7696 // Skip the primary thread - it is accounted for elsewhere. 7697 retval = 0; 7698 for (i = 1; i < hot_team->t.t_nproc; i++) { 7699 if (hot_team->t.t_threads[i]->th.th_active) { 7700 retval++; 7701 } 7702 } 7703 return retval; 7704 } 7705 7706 // Perform an automatic adjustment to the number of 7707 // threads used by the next parallel region. 7708 static int __kmp_load_balance_nproc(kmp_root_t *root, int set_nproc) { 7709 int retval; 7710 int pool_active; 7711 int hot_team_active; 7712 int team_curr_active; 7713 int system_active; 7714 7715 KB_TRACE(20, ("__kmp_load_balance_nproc: called root:%p set_nproc:%d\n", root, 7716 set_nproc)); 7717 KMP_DEBUG_ASSERT(root); 7718 KMP_DEBUG_ASSERT(root->r.r_root_team->t.t_threads[0] 7719 ->th.th_current_task->td_icvs.dynamic == TRUE); 7720 KMP_DEBUG_ASSERT(set_nproc > 1); 7721 7722 if (set_nproc == 1) { 7723 KB_TRACE(20, ("__kmp_load_balance_nproc: serial execution.\n")); 7724 return 1; 7725 } 7726 7727 // Threads that are active in the thread pool, active in the hot team for this 7728 // particular root (if we are at the outer par level), and the currently 7729 // executing thread (to become the primary thread) are available to add to the 7730 // new team, but are currently contributing to the system load, and must be 7731 // accounted for. 7732 pool_active = __kmp_thread_pool_active_nth; 7733 hot_team_active = __kmp_active_hot_team_nproc(root); 7734 team_curr_active = pool_active + hot_team_active + 1; 7735 7736 // Check the system load. 7737 system_active = __kmp_get_load_balance(__kmp_avail_proc + team_curr_active); 7738 KB_TRACE(30, ("__kmp_load_balance_nproc: system active = %d pool active = %d " 7739 "hot team active = %d\n", 7740 system_active, pool_active, hot_team_active)); 7741 7742 if (system_active < 0) { 7743 // There was an error reading the necessary info from /proc, so use the 7744 // thread limit algorithm instead. Once we set __kmp_global.g.g_dynamic_mode 7745 // = dynamic_thread_limit, we shouldn't wind up getting back here. 7746 __kmp_global.g.g_dynamic_mode = dynamic_thread_limit; 7747 KMP_WARNING(CantLoadBalUsing, "KMP_DYNAMIC_MODE=thread limit"); 7748 7749 // Make this call behave like the thread limit algorithm. 7750 retval = __kmp_avail_proc - __kmp_nth + 7751 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 7752 if (retval > set_nproc) { 7753 retval = set_nproc; 7754 } 7755 if (retval < KMP_MIN_NTH) { 7756 retval = KMP_MIN_NTH; 7757 } 7758 7759 KB_TRACE(20, ("__kmp_load_balance_nproc: thread limit exit. retval:%d\n", 7760 retval)); 7761 return retval; 7762 } 7763 7764 // There is a slight delay in the load balance algorithm in detecting new 7765 // running procs. The real system load at this instant should be at least as 7766 // large as the #active omp thread that are available to add to the team. 7767 if (system_active < team_curr_active) { 7768 system_active = team_curr_active; 7769 } 7770 retval = __kmp_avail_proc - system_active + team_curr_active; 7771 if (retval > set_nproc) { 7772 retval = set_nproc; 7773 } 7774 if (retval < KMP_MIN_NTH) { 7775 retval = KMP_MIN_NTH; 7776 } 7777 7778 KB_TRACE(20, ("__kmp_load_balance_nproc: exit. retval:%d\n", retval)); 7779 return retval; 7780 } // __kmp_load_balance_nproc() 7781 7782 #endif /* USE_LOAD_BALANCE */ 7783 7784 /* ------------------------------------------------------------------------ */ 7785 7786 /* NOTE: this is called with the __kmp_init_lock held */ 7787 void __kmp_cleanup(void) { 7788 int f; 7789 7790 KA_TRACE(10, ("__kmp_cleanup: enter\n")); 7791 7792 if (TCR_4(__kmp_init_parallel)) { 7793 #if KMP_HANDLE_SIGNALS 7794 __kmp_remove_signals(); 7795 #endif 7796 TCW_4(__kmp_init_parallel, FALSE); 7797 } 7798 7799 if (TCR_4(__kmp_init_middle)) { 7800 #if KMP_AFFINITY_SUPPORTED 7801 __kmp_affinity_uninitialize(); 7802 #endif /* KMP_AFFINITY_SUPPORTED */ 7803 __kmp_cleanup_hierarchy(); 7804 TCW_4(__kmp_init_middle, FALSE); 7805 } 7806 7807 KA_TRACE(10, ("__kmp_cleanup: go serial cleanup\n")); 7808 7809 if (__kmp_init_serial) { 7810 __kmp_runtime_destroy(); 7811 __kmp_init_serial = FALSE; 7812 } 7813 7814 __kmp_cleanup_threadprivate_caches(); 7815 7816 for (f = 0; f < __kmp_threads_capacity; f++) { 7817 if (__kmp_root[f] != NULL) { 7818 __kmp_free(__kmp_root[f]); 7819 __kmp_root[f] = NULL; 7820 } 7821 } 7822 __kmp_free(__kmp_threads); 7823 // __kmp_threads and __kmp_root were allocated at once, as single block, so 7824 // there is no need in freeing __kmp_root. 7825 __kmp_threads = NULL; 7826 __kmp_root = NULL; 7827 __kmp_threads_capacity = 0; 7828 7829 #if KMP_USE_DYNAMIC_LOCK 7830 __kmp_cleanup_indirect_user_locks(); 7831 #else 7832 __kmp_cleanup_user_locks(); 7833 #endif 7834 7835 #if KMP_AFFINITY_SUPPORTED 7836 KMP_INTERNAL_FREE(CCAST(char *, __kmp_cpuinfo_file)); 7837 __kmp_cpuinfo_file = NULL; 7838 #endif /* KMP_AFFINITY_SUPPORTED */ 7839 7840 #if KMP_USE_ADAPTIVE_LOCKS 7841 #if KMP_DEBUG_ADAPTIVE_LOCKS 7842 __kmp_print_speculative_stats(); 7843 #endif 7844 #endif 7845 KMP_INTERNAL_FREE(__kmp_nested_nth.nth); 7846 __kmp_nested_nth.nth = NULL; 7847 __kmp_nested_nth.size = 0; 7848 __kmp_nested_nth.used = 0; 7849 KMP_INTERNAL_FREE(__kmp_nested_proc_bind.bind_types); 7850 __kmp_nested_proc_bind.bind_types = NULL; 7851 __kmp_nested_proc_bind.size = 0; 7852 __kmp_nested_proc_bind.used = 0; 7853 if (__kmp_affinity_format) { 7854 KMP_INTERNAL_FREE(__kmp_affinity_format); 7855 __kmp_affinity_format = NULL; 7856 } 7857 7858 __kmp_i18n_catclose(); 7859 7860 #if KMP_USE_HIER_SCHED 7861 __kmp_hier_scheds.deallocate(); 7862 #endif 7863 7864 #if KMP_STATS_ENABLED 7865 __kmp_stats_fini(); 7866 #endif 7867 7868 KA_TRACE(10, ("__kmp_cleanup: exit\n")); 7869 } 7870 7871 /* ------------------------------------------------------------------------ */ 7872 7873 int __kmp_ignore_mppbeg(void) { 7874 char *env; 7875 7876 if ((env = getenv("KMP_IGNORE_MPPBEG")) != NULL) { 7877 if (__kmp_str_match_false(env)) 7878 return FALSE; 7879 } 7880 // By default __kmpc_begin() is no-op. 7881 return TRUE; 7882 } 7883 7884 int __kmp_ignore_mppend(void) { 7885 char *env; 7886 7887 if ((env = getenv("KMP_IGNORE_MPPEND")) != NULL) { 7888 if (__kmp_str_match_false(env)) 7889 return FALSE; 7890 } 7891 // By default __kmpc_end() is no-op. 7892 return TRUE; 7893 } 7894 7895 void __kmp_internal_begin(void) { 7896 int gtid; 7897 kmp_root_t *root; 7898 7899 /* this is a very important step as it will register new sibling threads 7900 and assign these new uber threads a new gtid */ 7901 gtid = __kmp_entry_gtid(); 7902 root = __kmp_threads[gtid]->th.th_root; 7903 KMP_ASSERT(KMP_UBER_GTID(gtid)); 7904 7905 if (root->r.r_begin) 7906 return; 7907 __kmp_acquire_lock(&root->r.r_begin_lock, gtid); 7908 if (root->r.r_begin) { 7909 __kmp_release_lock(&root->r.r_begin_lock, gtid); 7910 return; 7911 } 7912 7913 root->r.r_begin = TRUE; 7914 7915 __kmp_release_lock(&root->r.r_begin_lock, gtid); 7916 } 7917 7918 /* ------------------------------------------------------------------------ */ 7919 7920 void __kmp_user_set_library(enum library_type arg) { 7921 int gtid; 7922 kmp_root_t *root; 7923 kmp_info_t *thread; 7924 7925 /* first, make sure we are initialized so we can get our gtid */ 7926 7927 gtid = __kmp_entry_gtid(); 7928 thread = __kmp_threads[gtid]; 7929 7930 root = thread->th.th_root; 7931 7932 KA_TRACE(20, ("__kmp_user_set_library: enter T#%d, arg: %d, %d\n", gtid, arg, 7933 library_serial)); 7934 if (root->r.r_in_parallel) { /* Must be called in serial section of top-level 7935 thread */ 7936 KMP_WARNING(SetLibraryIncorrectCall); 7937 return; 7938 } 7939 7940 switch (arg) { 7941 case library_serial: 7942 thread->th.th_set_nproc = 0; 7943 set__nproc(thread, 1); 7944 break; 7945 case library_turnaround: 7946 thread->th.th_set_nproc = 0; 7947 set__nproc(thread, __kmp_dflt_team_nth ? __kmp_dflt_team_nth 7948 : __kmp_dflt_team_nth_ub); 7949 break; 7950 case library_throughput: 7951 thread->th.th_set_nproc = 0; 7952 set__nproc(thread, __kmp_dflt_team_nth ? __kmp_dflt_team_nth 7953 : __kmp_dflt_team_nth_ub); 7954 break; 7955 default: 7956 KMP_FATAL(UnknownLibraryType, arg); 7957 } 7958 7959 __kmp_aux_set_library(arg); 7960 } 7961 7962 void __kmp_aux_set_stacksize(size_t arg) { 7963 if (!__kmp_init_serial) 7964 __kmp_serial_initialize(); 7965 7966 #if KMP_OS_DARWIN 7967 if (arg & (0x1000 - 1)) { 7968 arg &= ~(0x1000 - 1); 7969 if (arg + 0x1000) /* check for overflow if we round up */ 7970 arg += 0x1000; 7971 } 7972 #endif 7973 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 7974 7975 /* only change the default stacksize before the first parallel region */ 7976 if (!TCR_4(__kmp_init_parallel)) { 7977 size_t value = arg; /* argument is in bytes */ 7978 7979 if (value < __kmp_sys_min_stksize) 7980 value = __kmp_sys_min_stksize; 7981 else if (value > KMP_MAX_STKSIZE) 7982 value = KMP_MAX_STKSIZE; 7983 7984 __kmp_stksize = value; 7985 7986 __kmp_env_stksize = TRUE; /* was KMP_STACKSIZE specified? */ 7987 } 7988 7989 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7990 } 7991 7992 /* set the behaviour of the runtime library */ 7993 /* TODO this can cause some odd behaviour with sibling parallelism... */ 7994 void __kmp_aux_set_library(enum library_type arg) { 7995 __kmp_library = arg; 7996 7997 switch (__kmp_library) { 7998 case library_serial: { 7999 KMP_INFORM(LibraryIsSerial); 8000 } break; 8001 case library_turnaround: 8002 if (__kmp_use_yield == 1 && !__kmp_use_yield_exp_set) 8003 __kmp_use_yield = 2; // only yield when oversubscribed 8004 break; 8005 case library_throughput: 8006 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) 8007 __kmp_dflt_blocktime = 200; 8008 break; 8009 default: 8010 KMP_FATAL(UnknownLibraryType, arg); 8011 } 8012 } 8013 8014 /* Getting team information common for all team API */ 8015 // Returns NULL if not in teams construct 8016 static kmp_team_t *__kmp_aux_get_team_info(int &teams_serialized) { 8017 kmp_info_t *thr = __kmp_entry_thread(); 8018 teams_serialized = 0; 8019 if (thr->th.th_teams_microtask) { 8020 kmp_team_t *team = thr->th.th_team; 8021 int tlevel = thr->th.th_teams_level; // the level of the teams construct 8022 int ii = team->t.t_level; 8023 teams_serialized = team->t.t_serialized; 8024 int level = tlevel + 1; 8025 KMP_DEBUG_ASSERT(ii >= tlevel); 8026 while (ii > level) { 8027 for (teams_serialized = team->t.t_serialized; 8028 (teams_serialized > 0) && (ii > level); teams_serialized--, ii--) { 8029 } 8030 if (team->t.t_serialized && (!teams_serialized)) { 8031 team = team->t.t_parent; 8032 continue; 8033 } 8034 if (ii > level) { 8035 team = team->t.t_parent; 8036 ii--; 8037 } 8038 } 8039 return team; 8040 } 8041 return NULL; 8042 } 8043 8044 int __kmp_aux_get_team_num() { 8045 int serialized; 8046 kmp_team_t *team = __kmp_aux_get_team_info(serialized); 8047 if (team) { 8048 if (serialized > 1) { 8049 return 0; // teams region is serialized ( 1 team of 1 thread ). 8050 } else { 8051 return team->t.t_master_tid; 8052 } 8053 } 8054 return 0; 8055 } 8056 8057 int __kmp_aux_get_num_teams() { 8058 int serialized; 8059 kmp_team_t *team = __kmp_aux_get_team_info(serialized); 8060 if (team) { 8061 if (serialized > 1) { 8062 return 1; 8063 } else { 8064 return team->t.t_parent->t.t_nproc; 8065 } 8066 } 8067 return 1; 8068 } 8069 8070 /* ------------------------------------------------------------------------ */ 8071 8072 /* 8073 * Affinity Format Parser 8074 * 8075 * Field is in form of: %[[[0].]size]type 8076 * % and type are required (%% means print a literal '%') 8077 * type is either single char or long name surrounded by {}, 8078 * e.g., N or {num_threads} 8079 * 0 => leading zeros 8080 * . => right justified when size is specified 8081 * by default output is left justified 8082 * size is the *minimum* field length 8083 * All other characters are printed as is 8084 * 8085 * Available field types: 8086 * L {thread_level} - omp_get_level() 8087 * n {thread_num} - omp_get_thread_num() 8088 * h {host} - name of host machine 8089 * P {process_id} - process id (integer) 8090 * T {thread_identifier} - native thread identifier (integer) 8091 * N {num_threads} - omp_get_num_threads() 8092 * A {ancestor_tnum} - omp_get_ancestor_thread_num(omp_get_level()-1) 8093 * a {thread_affinity} - comma separated list of integers or integer ranges 8094 * (values of affinity mask) 8095 * 8096 * Implementation-specific field types can be added 8097 * If a type is unknown, print "undefined" 8098 */ 8099 8100 // Structure holding the short name, long name, and corresponding data type 8101 // for snprintf. A table of these will represent the entire valid keyword 8102 // field types. 8103 typedef struct kmp_affinity_format_field_t { 8104 char short_name; // from spec e.g., L -> thread level 8105 const char *long_name; // from spec thread_level -> thread level 8106 char field_format; // data type for snprintf (typically 'd' or 's' 8107 // for integer or string) 8108 } kmp_affinity_format_field_t; 8109 8110 static const kmp_affinity_format_field_t __kmp_affinity_format_table[] = { 8111 #if KMP_AFFINITY_SUPPORTED 8112 {'A', "thread_affinity", 's'}, 8113 #endif 8114 {'t', "team_num", 'd'}, 8115 {'T', "num_teams", 'd'}, 8116 {'L', "nesting_level", 'd'}, 8117 {'n', "thread_num", 'd'}, 8118 {'N', "num_threads", 'd'}, 8119 {'a', "ancestor_tnum", 'd'}, 8120 {'H', "host", 's'}, 8121 {'P', "process_id", 'd'}, 8122 {'i', "native_thread_id", 'd'}}; 8123 8124 // Return the number of characters it takes to hold field 8125 static int __kmp_aux_capture_affinity_field(int gtid, const kmp_info_t *th, 8126 const char **ptr, 8127 kmp_str_buf_t *field_buffer) { 8128 int rc, format_index, field_value; 8129 const char *width_left, *width_right; 8130 bool pad_zeros, right_justify, parse_long_name, found_valid_name; 8131 static const int FORMAT_SIZE = 20; 8132 char format[FORMAT_SIZE] = {0}; 8133 char absolute_short_name = 0; 8134 8135 KMP_DEBUG_ASSERT(gtid >= 0); 8136 KMP_DEBUG_ASSERT(th); 8137 KMP_DEBUG_ASSERT(**ptr == '%'); 8138 KMP_DEBUG_ASSERT(field_buffer); 8139 8140 __kmp_str_buf_clear(field_buffer); 8141 8142 // Skip the initial % 8143 (*ptr)++; 8144 8145 // Check for %% first 8146 if (**ptr == '%') { 8147 __kmp_str_buf_cat(field_buffer, "%", 1); 8148 (*ptr)++; // skip over the second % 8149 return 1; 8150 } 8151 8152 // Parse field modifiers if they are present 8153 pad_zeros = false; 8154 if (**ptr == '0') { 8155 pad_zeros = true; 8156 (*ptr)++; // skip over 0 8157 } 8158 right_justify = false; 8159 if (**ptr == '.') { 8160 right_justify = true; 8161 (*ptr)++; // skip over . 8162 } 8163 // Parse width of field: [width_left, width_right) 8164 width_left = width_right = NULL; 8165 if (**ptr >= '0' && **ptr <= '9') { 8166 width_left = *ptr; 8167 SKIP_DIGITS(*ptr); 8168 width_right = *ptr; 8169 } 8170 8171 // Create the format for KMP_SNPRINTF based on flags parsed above 8172 format_index = 0; 8173 format[format_index++] = '%'; 8174 if (!right_justify) 8175 format[format_index++] = '-'; 8176 if (pad_zeros) 8177 format[format_index++] = '0'; 8178 if (width_left && width_right) { 8179 int i = 0; 8180 // Only allow 8 digit number widths. 8181 // This also prevents overflowing format variable 8182 while (i < 8 && width_left < width_right) { 8183 format[format_index++] = *width_left; 8184 width_left++; 8185 i++; 8186 } 8187 } 8188 8189 // Parse a name (long or short) 8190 // Canonicalize the name into absolute_short_name 8191 found_valid_name = false; 8192 parse_long_name = (**ptr == '{'); 8193 if (parse_long_name) 8194 (*ptr)++; // skip initial left brace 8195 for (size_t i = 0; i < sizeof(__kmp_affinity_format_table) / 8196 sizeof(__kmp_affinity_format_table[0]); 8197 ++i) { 8198 char short_name = __kmp_affinity_format_table[i].short_name; 8199 const char *long_name = __kmp_affinity_format_table[i].long_name; 8200 char field_format = __kmp_affinity_format_table[i].field_format; 8201 if (parse_long_name) { 8202 size_t length = KMP_STRLEN(long_name); 8203 if (strncmp(*ptr, long_name, length) == 0) { 8204 found_valid_name = true; 8205 (*ptr) += length; // skip the long name 8206 } 8207 } else if (**ptr == short_name) { 8208 found_valid_name = true; 8209 (*ptr)++; // skip the short name 8210 } 8211 if (found_valid_name) { 8212 format[format_index++] = field_format; 8213 format[format_index++] = '\0'; 8214 absolute_short_name = short_name; 8215 break; 8216 } 8217 } 8218 if (parse_long_name) { 8219 if (**ptr != '}') { 8220 absolute_short_name = 0; 8221 } else { 8222 (*ptr)++; // skip over the right brace 8223 } 8224 } 8225 8226 // Attempt to fill the buffer with the requested 8227 // value using snprintf within __kmp_str_buf_print() 8228 switch (absolute_short_name) { 8229 case 't': 8230 rc = __kmp_str_buf_print(field_buffer, format, __kmp_aux_get_team_num()); 8231 break; 8232 case 'T': 8233 rc = __kmp_str_buf_print(field_buffer, format, __kmp_aux_get_num_teams()); 8234 break; 8235 case 'L': 8236 rc = __kmp_str_buf_print(field_buffer, format, th->th.th_team->t.t_level); 8237 break; 8238 case 'n': 8239 rc = __kmp_str_buf_print(field_buffer, format, __kmp_tid_from_gtid(gtid)); 8240 break; 8241 case 'H': { 8242 static const int BUFFER_SIZE = 256; 8243 char buf[BUFFER_SIZE]; 8244 __kmp_expand_host_name(buf, BUFFER_SIZE); 8245 rc = __kmp_str_buf_print(field_buffer, format, buf); 8246 } break; 8247 case 'P': 8248 rc = __kmp_str_buf_print(field_buffer, format, getpid()); 8249 break; 8250 case 'i': 8251 rc = __kmp_str_buf_print(field_buffer, format, __kmp_gettid()); 8252 break; 8253 case 'N': 8254 rc = __kmp_str_buf_print(field_buffer, format, th->th.th_team->t.t_nproc); 8255 break; 8256 case 'a': 8257 field_value = 8258 __kmp_get_ancestor_thread_num(gtid, th->th.th_team->t.t_level - 1); 8259 rc = __kmp_str_buf_print(field_buffer, format, field_value); 8260 break; 8261 #if KMP_AFFINITY_SUPPORTED 8262 case 'A': { 8263 kmp_str_buf_t buf; 8264 __kmp_str_buf_init(&buf); 8265 __kmp_affinity_str_buf_mask(&buf, th->th.th_affin_mask); 8266 rc = __kmp_str_buf_print(field_buffer, format, buf.str); 8267 __kmp_str_buf_free(&buf); 8268 } break; 8269 #endif 8270 default: 8271 // According to spec, If an implementation does not have info for field 8272 // type, then "undefined" is printed 8273 rc = __kmp_str_buf_print(field_buffer, "%s", "undefined"); 8274 // Skip the field 8275 if (parse_long_name) { 8276 SKIP_TOKEN(*ptr); 8277 if (**ptr == '}') 8278 (*ptr)++; 8279 } else { 8280 (*ptr)++; 8281 } 8282 } 8283 8284 KMP_ASSERT(format_index <= FORMAT_SIZE); 8285 return rc; 8286 } 8287 8288 /* 8289 * Return number of characters needed to hold the affinity string 8290 * (not including null byte character) 8291 * The resultant string is printed to buffer, which the caller can then 8292 * handle afterwards 8293 */ 8294 size_t __kmp_aux_capture_affinity(int gtid, const char *format, 8295 kmp_str_buf_t *buffer) { 8296 const char *parse_ptr; 8297 size_t retval; 8298 const kmp_info_t *th; 8299 kmp_str_buf_t field; 8300 8301 KMP_DEBUG_ASSERT(buffer); 8302 KMP_DEBUG_ASSERT(gtid >= 0); 8303 8304 __kmp_str_buf_init(&field); 8305 __kmp_str_buf_clear(buffer); 8306 8307 th = __kmp_threads[gtid]; 8308 retval = 0; 8309 8310 // If format is NULL or zero-length string, then we use 8311 // affinity-format-var ICV 8312 parse_ptr = format; 8313 if (parse_ptr == NULL || *parse_ptr == '\0') { 8314 parse_ptr = __kmp_affinity_format; 8315 } 8316 KMP_DEBUG_ASSERT(parse_ptr); 8317 8318 while (*parse_ptr != '\0') { 8319 // Parse a field 8320 if (*parse_ptr == '%') { 8321 // Put field in the buffer 8322 int rc = __kmp_aux_capture_affinity_field(gtid, th, &parse_ptr, &field); 8323 __kmp_str_buf_catbuf(buffer, &field); 8324 retval += rc; 8325 } else { 8326 // Put literal character in buffer 8327 __kmp_str_buf_cat(buffer, parse_ptr, 1); 8328 retval++; 8329 parse_ptr++; 8330 } 8331 } 8332 __kmp_str_buf_free(&field); 8333 return retval; 8334 } 8335 8336 // Displays the affinity string to stdout 8337 void __kmp_aux_display_affinity(int gtid, const char *format) { 8338 kmp_str_buf_t buf; 8339 __kmp_str_buf_init(&buf); 8340 __kmp_aux_capture_affinity(gtid, format, &buf); 8341 __kmp_fprintf(kmp_out, "%s" KMP_END_OF_LINE, buf.str); 8342 __kmp_str_buf_free(&buf); 8343 } 8344 8345 /* ------------------------------------------------------------------------ */ 8346 8347 void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid) { 8348 int blocktime = arg; /* argument is in milliseconds */ 8349 #if KMP_USE_MONITOR 8350 int bt_intervals; 8351 #endif 8352 kmp_int8 bt_set; 8353 8354 __kmp_save_internal_controls(thread); 8355 8356 /* Normalize and set blocktime for the teams */ 8357 if (blocktime < KMP_MIN_BLOCKTIME) 8358 blocktime = KMP_MIN_BLOCKTIME; 8359 else if (blocktime > KMP_MAX_BLOCKTIME) 8360 blocktime = KMP_MAX_BLOCKTIME; 8361 8362 set__blocktime_team(thread->th.th_team, tid, blocktime); 8363 set__blocktime_team(thread->th.th_serial_team, 0, blocktime); 8364 8365 #if KMP_USE_MONITOR 8366 /* Calculate and set blocktime intervals for the teams */ 8367 bt_intervals = KMP_INTERVALS_FROM_BLOCKTIME(blocktime, __kmp_monitor_wakeups); 8368 8369 set__bt_intervals_team(thread->th.th_team, tid, bt_intervals); 8370 set__bt_intervals_team(thread->th.th_serial_team, 0, bt_intervals); 8371 #endif 8372 8373 /* Set whether blocktime has been set to "TRUE" */ 8374 bt_set = TRUE; 8375 8376 set__bt_set_team(thread->th.th_team, tid, bt_set); 8377 set__bt_set_team(thread->th.th_serial_team, 0, bt_set); 8378 #if KMP_USE_MONITOR 8379 KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d, " 8380 "bt_intervals=%d, monitor_updates=%d\n", 8381 __kmp_gtid_from_tid(tid, thread->th.th_team), 8382 thread->th.th_team->t.t_id, tid, blocktime, bt_intervals, 8383 __kmp_monitor_wakeups)); 8384 #else 8385 KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d\n", 8386 __kmp_gtid_from_tid(tid, thread->th.th_team), 8387 thread->th.th_team->t.t_id, tid, blocktime)); 8388 #endif 8389 } 8390 8391 void __kmp_aux_set_defaults(char const *str, size_t len) { 8392 if (!__kmp_init_serial) { 8393 __kmp_serial_initialize(); 8394 } 8395 __kmp_env_initialize(str); 8396 8397 if (__kmp_settings || __kmp_display_env || __kmp_display_env_verbose) { 8398 __kmp_env_print(); 8399 } 8400 } // __kmp_aux_set_defaults 8401 8402 /* ------------------------------------------------------------------------ */ 8403 /* internal fast reduction routines */ 8404 8405 PACKED_REDUCTION_METHOD_T 8406 __kmp_determine_reduction_method( 8407 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, 8408 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data), 8409 kmp_critical_name *lck) { 8410 8411 // Default reduction method: critical construct ( lck != NULL, like in current 8412 // PAROPT ) 8413 // If ( reduce_data!=NULL && reduce_func!=NULL ): the tree-reduction method 8414 // can be selected by RTL 8415 // If loc->flags contains KMP_IDENT_ATOMIC_REDUCE, the atomic reduce method 8416 // can be selected by RTL 8417 // Finally, it's up to OpenMP RTL to make a decision on which method to select 8418 // among generated by PAROPT. 8419 8420 PACKED_REDUCTION_METHOD_T retval; 8421 8422 int team_size; 8423 8424 KMP_DEBUG_ASSERT(loc); // it would be nice to test ( loc != 0 ) 8425 KMP_DEBUG_ASSERT(lck); // it would be nice to test ( lck != 0 ) 8426 8427 #define FAST_REDUCTION_ATOMIC_METHOD_GENERATED \ 8428 ((loc->flags & (KMP_IDENT_ATOMIC_REDUCE)) == (KMP_IDENT_ATOMIC_REDUCE)) 8429 #define FAST_REDUCTION_TREE_METHOD_GENERATED ((reduce_data) && (reduce_func)) 8430 8431 retval = critical_reduce_block; 8432 8433 // another choice of getting a team size (with 1 dynamic deference) is slower 8434 team_size = __kmp_get_team_num_threads(global_tid); 8435 if (team_size == 1) { 8436 8437 retval = empty_reduce_block; 8438 8439 } else { 8440 8441 int atomic_available = FAST_REDUCTION_ATOMIC_METHOD_GENERATED; 8442 8443 #if KMP_ARCH_X86_64 || KMP_ARCH_PPC64 || KMP_ARCH_AARCH64 || \ 8444 KMP_ARCH_MIPS64 || KMP_ARCH_RISCV64 8445 8446 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 8447 KMP_OS_OPENBSD || KMP_OS_WINDOWS || KMP_OS_DARWIN || KMP_OS_HURD 8448 8449 int teamsize_cutoff = 4; 8450 8451 #if KMP_MIC_SUPPORTED 8452 if (__kmp_mic_type != non_mic) { 8453 teamsize_cutoff = 8; 8454 } 8455 #endif 8456 int tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED; 8457 if (tree_available) { 8458 if (team_size <= teamsize_cutoff) { 8459 if (atomic_available) { 8460 retval = atomic_reduce_block; 8461 } 8462 } else { 8463 retval = TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER; 8464 } 8465 } else if (atomic_available) { 8466 retval = atomic_reduce_block; 8467 } 8468 #else 8469 #error "Unknown or unsupported OS" 8470 #endif // KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || 8471 // KMP_OS_OPENBSD || KMP_OS_WINDOWS || KMP_OS_DARWIN || KMP_OS_HURD 8472 8473 #elif KMP_ARCH_X86 || KMP_ARCH_ARM || KMP_ARCH_AARCH || KMP_ARCH_MIPS 8474 8475 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS || KMP_OS_HURD 8476 8477 // basic tuning 8478 8479 if (atomic_available) { 8480 if (num_vars <= 2) { // && ( team_size <= 8 ) due to false-sharing ??? 8481 retval = atomic_reduce_block; 8482 } 8483 } // otherwise: use critical section 8484 8485 #elif KMP_OS_DARWIN 8486 8487 int tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED; 8488 if (atomic_available && (num_vars <= 3)) { 8489 retval = atomic_reduce_block; 8490 } else if (tree_available) { 8491 if ((reduce_size > (9 * sizeof(kmp_real64))) && 8492 (reduce_size < (2000 * sizeof(kmp_real64)))) { 8493 retval = TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER; 8494 } 8495 } // otherwise: use critical section 8496 8497 #else 8498 #error "Unknown or unsupported OS" 8499 #endif 8500 8501 #else 8502 #error "Unknown or unsupported architecture" 8503 #endif 8504 } 8505 8506 // KMP_FORCE_REDUCTION 8507 8508 // If the team is serialized (team_size == 1), ignore the forced reduction 8509 // method and stay with the unsynchronized method (empty_reduce_block) 8510 if (__kmp_force_reduction_method != reduction_method_not_defined && 8511 team_size != 1) { 8512 8513 PACKED_REDUCTION_METHOD_T forced_retval = critical_reduce_block; 8514 8515 int atomic_available, tree_available; 8516 8517 switch ((forced_retval = __kmp_force_reduction_method)) { 8518 case critical_reduce_block: 8519 KMP_ASSERT(lck); // lck should be != 0 8520 break; 8521 8522 case atomic_reduce_block: 8523 atomic_available = FAST_REDUCTION_ATOMIC_METHOD_GENERATED; 8524 if (!atomic_available) { 8525 KMP_WARNING(RedMethodNotSupported, "atomic"); 8526 forced_retval = critical_reduce_block; 8527 } 8528 break; 8529 8530 case tree_reduce_block: 8531 tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED; 8532 if (!tree_available) { 8533 KMP_WARNING(RedMethodNotSupported, "tree"); 8534 forced_retval = critical_reduce_block; 8535 } else { 8536 #if KMP_FAST_REDUCTION_BARRIER 8537 forced_retval = TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER; 8538 #endif 8539 } 8540 break; 8541 8542 default: 8543 KMP_ASSERT(0); // "unsupported method specified" 8544 } 8545 8546 retval = forced_retval; 8547 } 8548 8549 KA_TRACE(10, ("reduction method selected=%08x\n", retval)); 8550 8551 #undef FAST_REDUCTION_TREE_METHOD_GENERATED 8552 #undef FAST_REDUCTION_ATOMIC_METHOD_GENERATED 8553 8554 return (retval); 8555 } 8556 // this function is for testing set/get/determine reduce method 8557 kmp_int32 __kmp_get_reduce_method(void) { 8558 return ((__kmp_entry_thread()->th.th_local.packed_reduction_method) >> 8); 8559 } 8560 8561 // Soft pause sets up threads to ignore blocktime and just go to sleep. 8562 // Spin-wait code checks __kmp_pause_status and reacts accordingly. 8563 void __kmp_soft_pause() { __kmp_pause_status = kmp_soft_paused; } 8564 8565 // Hard pause shuts down the runtime completely. Resume happens naturally when 8566 // OpenMP is used subsequently. 8567 void __kmp_hard_pause() { 8568 __kmp_pause_status = kmp_hard_paused; 8569 __kmp_internal_end_thread(-1); 8570 } 8571 8572 // Soft resume sets __kmp_pause_status, and wakes up all threads. 8573 void __kmp_resume_if_soft_paused() { 8574 if (__kmp_pause_status == kmp_soft_paused) { 8575 __kmp_pause_status = kmp_not_paused; 8576 8577 for (int gtid = 1; gtid < __kmp_threads_capacity; ++gtid) { 8578 kmp_info_t *thread = __kmp_threads[gtid]; 8579 if (thread) { // Wake it if sleeping 8580 kmp_flag_64<> fl(&thread->th.th_bar[bs_forkjoin_barrier].bb.b_go, 8581 thread); 8582 if (fl.is_sleeping()) 8583 fl.resume(gtid); 8584 else if (__kmp_try_suspend_mx(thread)) { // got suspend lock 8585 __kmp_unlock_suspend_mx(thread); // unlock it; it won't sleep 8586 } else { // thread holds the lock and may sleep soon 8587 do { // until either the thread sleeps, or we can get the lock 8588 if (fl.is_sleeping()) { 8589 fl.resume(gtid); 8590 break; 8591 } else if (__kmp_try_suspend_mx(thread)) { 8592 __kmp_unlock_suspend_mx(thread); 8593 break; 8594 } 8595 } while (1); 8596 } 8597 } 8598 } 8599 } 8600 } 8601 8602 // This function is called via __kmpc_pause_resource. Returns 0 if successful. 8603 // TODO: add warning messages 8604 int __kmp_pause_resource(kmp_pause_status_t level) { 8605 if (level == kmp_not_paused) { // requesting resume 8606 if (__kmp_pause_status == kmp_not_paused) { 8607 // error message about runtime not being paused, so can't resume 8608 return 1; 8609 } else { 8610 KMP_DEBUG_ASSERT(__kmp_pause_status == kmp_soft_paused || 8611 __kmp_pause_status == kmp_hard_paused); 8612 __kmp_pause_status = kmp_not_paused; 8613 return 0; 8614 } 8615 } else if (level == kmp_soft_paused) { // requesting soft pause 8616 if (__kmp_pause_status != kmp_not_paused) { 8617 // error message about already being paused 8618 return 1; 8619 } else { 8620 __kmp_soft_pause(); 8621 return 0; 8622 } 8623 } else if (level == kmp_hard_paused) { // requesting hard pause 8624 if (__kmp_pause_status != kmp_not_paused) { 8625 // error message about already being paused 8626 return 1; 8627 } else { 8628 __kmp_hard_pause(); 8629 return 0; 8630 } 8631 } else { 8632 // error message about invalid level 8633 return 1; 8634 } 8635 } 8636 8637 void __kmp_omp_display_env(int verbose) { 8638 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 8639 if (__kmp_init_serial == 0) 8640 __kmp_do_serial_initialize(); 8641 __kmp_display_env_impl(!verbose, verbose); 8642 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 8643 } 8644 8645 // Globals and functions for hidden helper task 8646 kmp_info_t **__kmp_hidden_helper_threads; 8647 kmp_info_t *__kmp_hidden_helper_main_thread; 8648 kmp_int32 __kmp_hidden_helper_threads_num = 8; 8649 std::atomic<kmp_int32> __kmp_unexecuted_hidden_helper_tasks; 8650 #if KMP_OS_LINUX 8651 kmp_int32 __kmp_enable_hidden_helper = TRUE; 8652 #else 8653 kmp_int32 __kmp_enable_hidden_helper = FALSE; 8654 #endif 8655 8656 namespace { 8657 std::atomic<kmp_int32> __kmp_hit_hidden_helper_threads_num; 8658 8659 void __kmp_hidden_helper_wrapper_fn(int *gtid, int *, ...) { 8660 // This is an explicit synchronization on all hidden helper threads in case 8661 // that when a regular thread pushes a hidden helper task to one hidden 8662 // helper thread, the thread has not been awaken once since they're released 8663 // by the main thread after creating the team. 8664 KMP_ATOMIC_INC(&__kmp_hit_hidden_helper_threads_num); 8665 while (KMP_ATOMIC_LD_ACQ(&__kmp_hit_hidden_helper_threads_num) != 8666 __kmp_hidden_helper_threads_num) 8667 ; 8668 8669 // If main thread, then wait for signal 8670 if (__kmpc_master(nullptr, *gtid)) { 8671 // First, unset the initial state and release the initial thread 8672 TCW_4(__kmp_init_hidden_helper_threads, FALSE); 8673 __kmp_hidden_helper_initz_release(); 8674 __kmp_hidden_helper_main_thread_wait(); 8675 // Now wake up all worker threads 8676 for (int i = 1; i < __kmp_hit_hidden_helper_threads_num; ++i) { 8677 __kmp_hidden_helper_worker_thread_signal(); 8678 } 8679 } 8680 } 8681 } // namespace 8682 8683 void __kmp_hidden_helper_threads_initz_routine() { 8684 // Create a new root for hidden helper team/threads 8685 const int gtid = __kmp_register_root(TRUE); 8686 __kmp_hidden_helper_main_thread = __kmp_threads[gtid]; 8687 __kmp_hidden_helper_threads = &__kmp_threads[gtid]; 8688 __kmp_hidden_helper_main_thread->th.th_set_nproc = 8689 __kmp_hidden_helper_threads_num; 8690 8691 KMP_ATOMIC_ST_REL(&__kmp_hit_hidden_helper_threads_num, 0); 8692 8693 __kmpc_fork_call(nullptr, 0, __kmp_hidden_helper_wrapper_fn); 8694 8695 // Set the initialization flag to FALSE 8696 TCW_SYNC_4(__kmp_init_hidden_helper, FALSE); 8697 8698 __kmp_hidden_helper_threads_deinitz_release(); 8699 } 8700