1 /* 2 * kmp_runtime.c -- KPTS runtime support library 3 */ 4 5 6 //===----------------------------------------------------------------------===// 7 // 8 // The LLVM Compiler Infrastructure 9 // 10 // This file is dual licensed under the MIT and the University of Illinois Open 11 // Source Licenses. See LICENSE.txt for details. 12 // 13 //===----------------------------------------------------------------------===// 14 15 16 #include "kmp.h" 17 #include "kmp_atomic.h" 18 #include "kmp_wrapper_getpid.h" 19 #include "kmp_environment.h" 20 #include "kmp_itt.h" 21 #include "kmp_str.h" 22 #include "kmp_settings.h" 23 #include "kmp_i18n.h" 24 #include "kmp_io.h" 25 #include "kmp_error.h" 26 #include "kmp_stats.h" 27 #include "kmp_wait_release.h" 28 #include "kmp_affinity.h" 29 30 #if OMPT_SUPPORT 31 #include "ompt-specific.h" 32 #endif 33 34 /* these are temporary issues to be dealt with */ 35 #define KMP_USE_PRCTL 0 36 37 #if KMP_OS_WINDOWS 38 #include <process.h> 39 #endif 40 41 #include "tsan_annotations.h" 42 43 #if defined(KMP_GOMP_COMPAT) 44 char const __kmp_version_alt_comp[] = KMP_VERSION_PREFIX "alternative compiler support: yes"; 45 #endif /* defined(KMP_GOMP_COMPAT) */ 46 47 char const __kmp_version_omp_api[] = KMP_VERSION_PREFIX "API version: " 48 #if OMP_45_ENABLED 49 "4.5 (201511)"; 50 #elif OMP_40_ENABLED 51 "4.0 (201307)"; 52 #else 53 "3.1 (201107)"; 54 #endif 55 56 #ifdef KMP_DEBUG 57 char const __kmp_version_lock[] = KMP_VERSION_PREFIX "lock type: run time selectable"; 58 #endif /* KMP_DEBUG */ 59 60 #define KMP_MIN( x, y ) ( (x) < (y) ? (x) : (y) ) 61 62 /* ------------------------------------------------------------------------ */ 63 /* ------------------------------------------------------------------------ */ 64 65 kmp_info_t __kmp_monitor; 66 67 /* ------------------------------------------------------------------------ */ 68 /* ------------------------------------------------------------------------ */ 69 70 /* Forward declarations */ 71 72 void __kmp_cleanup( void ); 73 74 static void __kmp_initialize_info( kmp_info_t *, kmp_team_t *, int tid, int gtid ); 75 static void __kmp_initialize_team( kmp_team_t * team, int new_nproc, kmp_internal_control_t * new_icvs, ident_t * loc ); 76 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 77 static void __kmp_partition_places( kmp_team_t *team, int update_master_only=0 ); 78 #endif 79 static void __kmp_do_serial_initialize( void ); 80 void __kmp_fork_barrier( int gtid, int tid ); 81 void __kmp_join_barrier( int gtid ); 82 void __kmp_setup_icv_copy( kmp_team_t *team, int new_nproc, kmp_internal_control_t * new_icvs, ident_t *loc ); 83 84 #ifdef USE_LOAD_BALANCE 85 static int __kmp_load_balance_nproc( kmp_root_t * root, int set_nproc ); 86 #endif 87 88 static int __kmp_expand_threads(int nWish, int nNeed); 89 #if KMP_OS_WINDOWS 90 static int __kmp_unregister_root_other_thread( int gtid ); 91 #endif 92 static void __kmp_unregister_library( void ); // called by __kmp_internal_end() 93 static void __kmp_reap_thread( kmp_info_t * thread, int is_root ); 94 static kmp_info_t *__kmp_thread_pool_insert_pt = NULL; 95 96 /* ------------------------------------------------------------------------ */ 97 /* ------------------------------------------------------------------------ */ 98 99 /* Calculate the identifier of the current thread */ 100 /* fast (and somewhat portable) way to get unique */ 101 /* identifier of executing thread. */ 102 /* returns KMP_GTID_DNE if we haven't been assigned a gtid */ 103 104 int 105 __kmp_get_global_thread_id( ) 106 { 107 int i; 108 kmp_info_t **other_threads; 109 size_t stack_data; 110 char *stack_addr; 111 size_t stack_size; 112 char *stack_base; 113 114 KA_TRACE( 1000, ( "*** __kmp_get_global_thread_id: entering, nproc=%d all_nproc=%d\n", 115 __kmp_nth, __kmp_all_nth )); 116 117 /* JPH - to handle the case where __kmpc_end(0) is called immediately prior to a 118 parallel region, made it return KMP_GTID_DNE to force serial_initialize by 119 caller. Had to handle KMP_GTID_DNE at all call-sites, or else guarantee 120 __kmp_init_gtid for this to work. */ 121 122 if ( !TCR_4(__kmp_init_gtid) ) return KMP_GTID_DNE; 123 124 #ifdef KMP_TDATA_GTID 125 if ( TCR_4(__kmp_gtid_mode) >= 3) { 126 KA_TRACE( 1000, ( "*** __kmp_get_global_thread_id: using TDATA\n" )); 127 return __kmp_gtid; 128 } 129 #endif 130 if ( TCR_4(__kmp_gtid_mode) >= 2) { 131 KA_TRACE( 1000, ( "*** __kmp_get_global_thread_id: using keyed TLS\n" )); 132 return __kmp_gtid_get_specific(); 133 } 134 KA_TRACE( 1000, ( "*** __kmp_get_global_thread_id: using internal alg.\n" )); 135 136 stack_addr = (char*) & stack_data; 137 other_threads = __kmp_threads; 138 139 /* 140 ATT: The code below is a source of potential bugs due to unsynchronized access to 141 __kmp_threads array. For example: 142 1. Current thread loads other_threads[i] to thr and checks it, it is non-NULL. 143 2. Current thread is suspended by OS. 144 3. Another thread unregisters and finishes (debug versions of free() may fill memory 145 with something like 0xEF). 146 4. Current thread is resumed. 147 5. Current thread reads junk from *thr. 148 TODO: Fix it. 149 --ln 150 */ 151 152 for( i = 0 ; i < __kmp_threads_capacity ; i++ ) { 153 154 kmp_info_t *thr = (kmp_info_t *)TCR_SYNC_PTR(other_threads[i]); 155 if( !thr ) continue; 156 157 stack_size = (size_t)TCR_PTR(thr->th.th_info.ds.ds_stacksize); 158 stack_base = (char *)TCR_PTR(thr->th.th_info.ds.ds_stackbase); 159 160 /* stack grows down -- search through all of the active threads */ 161 162 if( stack_addr <= stack_base ) { 163 size_t stack_diff = stack_base - stack_addr; 164 165 if( stack_diff <= stack_size ) { 166 /* The only way we can be closer than the allocated */ 167 /* stack size is if we are running on this thread. */ 168 KMP_DEBUG_ASSERT( __kmp_gtid_get_specific() == i ); 169 return i; 170 } 171 } 172 } 173 174 /* get specific to try and determine our gtid */ 175 KA_TRACE( 1000, ( "*** __kmp_get_global_thread_id: internal alg. failed to find " 176 "thread, using TLS\n" )); 177 i = __kmp_gtid_get_specific(); 178 179 /*fprintf( stderr, "=== %d\n", i ); */ /* GROO */ 180 181 /* if we havn't been assigned a gtid, then return code */ 182 if( i<0 ) return i; 183 184 /* dynamically updated stack window for uber threads to avoid get_specific call */ 185 if( ! TCR_4(other_threads[i]->th.th_info.ds.ds_stackgrow) ) { 186 KMP_FATAL( StackOverflow, i ); 187 } 188 189 stack_base = (char *) other_threads[i]->th.th_info.ds.ds_stackbase; 190 if( stack_addr > stack_base ) { 191 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stackbase, stack_addr); 192 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stacksize, 193 other_threads[i]->th.th_info.ds.ds_stacksize + stack_addr - stack_base); 194 } else { 195 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stacksize, stack_base - stack_addr); 196 } 197 198 /* Reprint stack bounds for ubermaster since they have been refined */ 199 if ( __kmp_storage_map ) { 200 char *stack_end = (char *) other_threads[i]->th.th_info.ds.ds_stackbase; 201 char *stack_beg = stack_end - other_threads[i]->th.th_info.ds.ds_stacksize; 202 __kmp_print_storage_map_gtid( i, stack_beg, stack_end, 203 other_threads[i]->th.th_info.ds.ds_stacksize, 204 "th_%d stack (refinement)", i ); 205 } 206 return i; 207 } 208 209 int 210 __kmp_get_global_thread_id_reg( ) 211 { 212 int gtid; 213 214 if ( !__kmp_init_serial ) { 215 gtid = KMP_GTID_DNE; 216 } else 217 #ifdef KMP_TDATA_GTID 218 if ( TCR_4(__kmp_gtid_mode) >= 3 ) { 219 KA_TRACE( 1000, ( "*** __kmp_get_global_thread_id_reg: using TDATA\n" )); 220 gtid = __kmp_gtid; 221 } else 222 #endif 223 if ( TCR_4(__kmp_gtid_mode) >= 2 ) { 224 KA_TRACE( 1000, ( "*** __kmp_get_global_thread_id_reg: using keyed TLS\n" )); 225 gtid = __kmp_gtid_get_specific(); 226 } else { 227 KA_TRACE( 1000, ( "*** __kmp_get_global_thread_id_reg: using internal alg.\n" )); 228 gtid = __kmp_get_global_thread_id(); 229 } 230 231 /* we must be a new uber master sibling thread */ 232 if( gtid == KMP_GTID_DNE ) { 233 KA_TRACE( 10, ( "__kmp_get_global_thread_id_reg: Encountered new root thread. " 234 "Registering a new gtid.\n" )); 235 __kmp_acquire_bootstrap_lock( &__kmp_initz_lock ); 236 if( !__kmp_init_serial ) { 237 __kmp_do_serial_initialize(); 238 gtid = __kmp_gtid_get_specific(); 239 } else { 240 gtid = __kmp_register_root(FALSE); 241 } 242 __kmp_release_bootstrap_lock( &__kmp_initz_lock ); 243 /*__kmp_printf( "+++ %d\n", gtid ); */ /* GROO */ 244 } 245 246 KMP_DEBUG_ASSERT( gtid >=0 ); 247 248 return gtid; 249 } 250 251 /* caller must hold forkjoin_lock */ 252 void 253 __kmp_check_stack_overlap( kmp_info_t *th ) 254 { 255 int f; 256 char *stack_beg = NULL; 257 char *stack_end = NULL; 258 int gtid; 259 260 KA_TRACE(10,("__kmp_check_stack_overlap: called\n")); 261 if ( __kmp_storage_map ) { 262 stack_end = (char *) th->th.th_info.ds.ds_stackbase; 263 stack_beg = stack_end - th->th.th_info.ds.ds_stacksize; 264 265 gtid = __kmp_gtid_from_thread( th ); 266 267 if (gtid == KMP_GTID_MONITOR) { 268 __kmp_print_storage_map_gtid( gtid, stack_beg, stack_end, th->th.th_info.ds.ds_stacksize, 269 "th_%s stack (%s)", "mon", 270 ( th->th.th_info.ds.ds_stackgrow ) ? "initial" : "actual" ); 271 } else { 272 __kmp_print_storage_map_gtid( gtid, stack_beg, stack_end, th->th.th_info.ds.ds_stacksize, 273 "th_%d stack (%s)", gtid, 274 ( th->th.th_info.ds.ds_stackgrow ) ? "initial" : "actual" ); 275 } 276 } 277 278 /* No point in checking ubermaster threads since they use refinement and cannot overlap */ 279 gtid = __kmp_gtid_from_thread( th ); 280 if ( __kmp_env_checks == TRUE && !KMP_UBER_GTID(gtid)) 281 { 282 KA_TRACE(10,("__kmp_check_stack_overlap: performing extensive checking\n")); 283 if ( stack_beg == NULL ) { 284 stack_end = (char *) th->th.th_info.ds.ds_stackbase; 285 stack_beg = stack_end - th->th.th_info.ds.ds_stacksize; 286 } 287 288 for( f=0 ; f < __kmp_threads_capacity ; f++ ) { 289 kmp_info_t *f_th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[f]); 290 291 if( f_th && f_th != th ) { 292 char *other_stack_end = (char *)TCR_PTR(f_th->th.th_info.ds.ds_stackbase); 293 char *other_stack_beg = other_stack_end - 294 (size_t)TCR_PTR(f_th->th.th_info.ds.ds_stacksize); 295 if((stack_beg > other_stack_beg && stack_beg < other_stack_end) || 296 (stack_end > other_stack_beg && stack_end < other_stack_end)) { 297 298 /* Print the other stack values before the abort */ 299 if ( __kmp_storage_map ) 300 __kmp_print_storage_map_gtid( -1, other_stack_beg, other_stack_end, 301 (size_t)TCR_PTR(f_th->th.th_info.ds.ds_stacksize), 302 "th_%d stack (overlapped)", 303 __kmp_gtid_from_thread( f_th ) ); 304 305 __kmp_msg( kmp_ms_fatal, KMP_MSG( StackOverlap ), KMP_HNT( ChangeStackLimit ), __kmp_msg_null ); 306 } 307 } 308 } 309 } 310 KA_TRACE(10,("__kmp_check_stack_overlap: returning\n")); 311 } 312 313 314 /* ------------------------------------------------------------------------ */ 315 316 /* ------------------------------------------------------------------------ */ 317 318 void 319 __kmp_infinite_loop( void ) 320 { 321 static int done = FALSE; 322 323 while (! done) { 324 KMP_YIELD( 1 ); 325 } 326 } 327 328 #define MAX_MESSAGE 512 329 330 void 331 __kmp_print_storage_map_gtid( int gtid, void *p1, void *p2, size_t size, char const *format, ...) { 332 char buffer[MAX_MESSAGE]; 333 va_list ap; 334 335 va_start( ap, format); 336 KMP_SNPRINTF( buffer, sizeof(buffer), "OMP storage map: %p %p%8lu %s\n", p1, p2, (unsigned long) size, format ); 337 __kmp_acquire_bootstrap_lock( & __kmp_stdio_lock ); 338 __kmp_vprintf( kmp_err, buffer, ap ); 339 #if KMP_PRINT_DATA_PLACEMENT 340 int node; 341 if(gtid >= 0) { 342 if(p1 <= p2 && (char*)p2 - (char*)p1 == size) { 343 if( __kmp_storage_map_verbose ) { 344 node = __kmp_get_host_node(p1); 345 if(node < 0) /* doesn't work, so don't try this next time */ 346 __kmp_storage_map_verbose = FALSE; 347 else { 348 char *last; 349 int lastNode; 350 int localProc = __kmp_get_cpu_from_gtid(gtid); 351 352 const int page_size = KMP_GET_PAGE_SIZE(); 353 354 p1 = (void *)( (size_t)p1 & ~((size_t)page_size - 1) ); 355 p2 = (void *)( ((size_t) p2 - 1) & ~((size_t)page_size - 1) ); 356 if(localProc >= 0) 357 __kmp_printf_no_lock(" GTID %d localNode %d\n", gtid, localProc>>1); 358 else 359 __kmp_printf_no_lock(" GTID %d\n", gtid); 360 # if KMP_USE_PRCTL 361 /* The more elaborate format is disabled for now because of the prctl hanging bug. */ 362 do { 363 last = p1; 364 lastNode = node; 365 /* This loop collates adjacent pages with the same host node. */ 366 do { 367 (char*)p1 += page_size; 368 } while(p1 <= p2 && (node = __kmp_get_host_node(p1)) == lastNode); 369 __kmp_printf_no_lock(" %p-%p memNode %d\n", last, 370 (char*)p1 - 1, lastNode); 371 } while(p1 <= p2); 372 # else 373 __kmp_printf_no_lock(" %p-%p memNode %d\n", p1, 374 (char*)p1 + (page_size - 1), __kmp_get_host_node(p1)); 375 if(p1 < p2) { 376 __kmp_printf_no_lock(" %p-%p memNode %d\n", p2, 377 (char*)p2 + (page_size - 1), __kmp_get_host_node(p2)); 378 } 379 # endif 380 } 381 } 382 } else 383 __kmp_printf_no_lock(" %s\n", KMP_I18N_STR( StorageMapWarning ) ); 384 } 385 #endif /* KMP_PRINT_DATA_PLACEMENT */ 386 __kmp_release_bootstrap_lock( & __kmp_stdio_lock ); 387 } 388 389 void 390 __kmp_warn( char const * format, ... ) 391 { 392 char buffer[MAX_MESSAGE]; 393 va_list ap; 394 395 if ( __kmp_generate_warnings == kmp_warnings_off ) { 396 return; 397 } 398 399 va_start( ap, format ); 400 401 KMP_SNPRINTF( buffer, sizeof(buffer) , "OMP warning: %s\n", format ); 402 __kmp_acquire_bootstrap_lock( & __kmp_stdio_lock ); 403 __kmp_vprintf( kmp_err, buffer, ap ); 404 __kmp_release_bootstrap_lock( & __kmp_stdio_lock ); 405 406 va_end( ap ); 407 } 408 409 void 410 __kmp_abort_process() 411 { 412 413 // Later threads may stall here, but that's ok because abort() will kill them. 414 __kmp_acquire_bootstrap_lock( & __kmp_exit_lock ); 415 416 if ( __kmp_debug_buf ) { 417 __kmp_dump_debug_buffer(); 418 }; // if 419 420 if ( KMP_OS_WINDOWS ) { 421 // Let other threads know of abnormal termination and prevent deadlock 422 // if abort happened during library initialization or shutdown 423 __kmp_global.g.g_abort = SIGABRT; 424 425 /* 426 On Windows* OS by default abort() causes pop-up error box, which stalls nightly testing. 427 Unfortunately, we cannot reliably suppress pop-up error boxes. _set_abort_behavior() 428 works well, but this function is not available in VS7 (this is not problem for DLL, but 429 it is a problem for static OpenMP RTL). SetErrorMode (and so, timelimit utility) does 430 not help, at least in some versions of MS C RTL. 431 432 It seems following sequence is the only way to simulate abort() and avoid pop-up error 433 box. 434 */ 435 raise( SIGABRT ); 436 _exit( 3 ); // Just in case, if signal ignored, exit anyway. 437 } else { 438 abort(); 439 }; // if 440 441 __kmp_infinite_loop(); 442 __kmp_release_bootstrap_lock( & __kmp_exit_lock ); 443 444 } // __kmp_abort_process 445 446 void 447 __kmp_abort_thread( void ) 448 { 449 // TODO: Eliminate g_abort global variable and this function. 450 // In case of abort just call abort(), it will kill all the threads. 451 __kmp_infinite_loop(); 452 } // __kmp_abort_thread 453 454 /* ------------------------------------------------------------------------ */ 455 456 /* 457 * Print out the storage map for the major kmp_info_t thread data structures 458 * that are allocated together. 459 */ 460 461 static void 462 __kmp_print_thread_storage_map( kmp_info_t *thr, int gtid ) 463 { 464 __kmp_print_storage_map_gtid( gtid, thr, thr + 1, sizeof(kmp_info_t), "th_%d", gtid ); 465 466 __kmp_print_storage_map_gtid( gtid, &thr->th.th_info, &thr->th.th_team, sizeof(kmp_desc_t), 467 "th_%d.th_info", gtid ); 468 469 __kmp_print_storage_map_gtid( gtid, &thr->th.th_local, &thr->th.th_pri_head, sizeof(kmp_local_t), 470 "th_%d.th_local", gtid ); 471 472 __kmp_print_storage_map_gtid( gtid, &thr->th.th_bar[0], &thr->th.th_bar[bs_last_barrier], 473 sizeof(kmp_balign_t) * bs_last_barrier, "th_%d.th_bar", gtid ); 474 475 __kmp_print_storage_map_gtid( gtid, &thr->th.th_bar[bs_plain_barrier], 476 &thr->th.th_bar[bs_plain_barrier+1], 477 sizeof(kmp_balign_t), "th_%d.th_bar[plain]", gtid); 478 479 __kmp_print_storage_map_gtid( gtid, &thr->th.th_bar[bs_forkjoin_barrier], 480 &thr->th.th_bar[bs_forkjoin_barrier+1], 481 sizeof(kmp_balign_t), "th_%d.th_bar[forkjoin]", gtid); 482 483 #if KMP_FAST_REDUCTION_BARRIER 484 __kmp_print_storage_map_gtid( gtid, &thr->th.th_bar[bs_reduction_barrier], 485 &thr->th.th_bar[bs_reduction_barrier+1], 486 sizeof(kmp_balign_t), "th_%d.th_bar[reduction]", gtid); 487 #endif // KMP_FAST_REDUCTION_BARRIER 488 } 489 490 /* 491 * Print out the storage map for the major kmp_team_t team data structures 492 * that are allocated together. 493 */ 494 495 static void 496 __kmp_print_team_storage_map( const char *header, kmp_team_t *team, int team_id, int num_thr ) 497 { 498 int num_disp_buff = team->t.t_max_nproc > 1 ? __kmp_dispatch_num_buffers : 2; 499 __kmp_print_storage_map_gtid( -1, team, team + 1, sizeof(kmp_team_t), "%s_%d", 500 header, team_id ); 501 502 __kmp_print_storage_map_gtid( -1, &team->t.t_bar[0], &team->t.t_bar[bs_last_barrier], 503 sizeof(kmp_balign_team_t) * bs_last_barrier, "%s_%d.t_bar", header, team_id ); 504 505 506 __kmp_print_storage_map_gtid( -1, &team->t.t_bar[bs_plain_barrier], &team->t.t_bar[bs_plain_barrier+1], 507 sizeof(kmp_balign_team_t), "%s_%d.t_bar[plain]", header, team_id ); 508 509 __kmp_print_storage_map_gtid( -1, &team->t.t_bar[bs_forkjoin_barrier], &team->t.t_bar[bs_forkjoin_barrier+1], 510 sizeof(kmp_balign_team_t), "%s_%d.t_bar[forkjoin]", header, team_id ); 511 512 #if KMP_FAST_REDUCTION_BARRIER 513 __kmp_print_storage_map_gtid( -1, &team->t.t_bar[bs_reduction_barrier], &team->t.t_bar[bs_reduction_barrier+1], 514 sizeof(kmp_balign_team_t), "%s_%d.t_bar[reduction]", header, team_id ); 515 #endif // KMP_FAST_REDUCTION_BARRIER 516 517 __kmp_print_storage_map_gtid( -1, &team->t.t_dispatch[0], &team->t.t_dispatch[num_thr], 518 sizeof(kmp_disp_t) * num_thr, "%s_%d.t_dispatch", header, team_id ); 519 520 __kmp_print_storage_map_gtid( -1, &team->t.t_threads[0], &team->t.t_threads[num_thr], 521 sizeof(kmp_info_t *) * num_thr, "%s_%d.t_threads", header, team_id ); 522 523 __kmp_print_storage_map_gtid( -1, &team->t.t_disp_buffer[0], &team->t.t_disp_buffer[num_disp_buff], 524 sizeof(dispatch_shared_info_t) * num_disp_buff, "%s_%d.t_disp_buffer", 525 header, team_id ); 526 527 528 __kmp_print_storage_map_gtid( -1, &team->t.t_taskq, &team->t.t_copypriv_data, 529 sizeof(kmp_taskq_t), "%s_%d.t_taskq", header, team_id ); 530 } 531 532 static void __kmp_init_allocator() {} 533 static void __kmp_fini_allocator() {} 534 535 /* ------------------------------------------------------------------------ */ 536 537 #ifdef KMP_DYNAMIC_LIB 538 # if KMP_OS_WINDOWS 539 540 static void 541 __kmp_reset_lock( kmp_bootstrap_lock_t* lck ) { 542 // TODO: Change to __kmp_break_bootstrap_lock(). 543 __kmp_init_bootstrap_lock( lck ); // make the lock released 544 } 545 546 static void 547 __kmp_reset_locks_on_process_detach( int gtid_req ) { 548 int i; 549 int thread_count; 550 551 // PROCESS_DETACH is expected to be called by a thread 552 // that executes ProcessExit() or FreeLibrary(). 553 // OS terminates other threads (except the one calling ProcessExit or FreeLibrary). 554 // So, it might be safe to access the __kmp_threads[] without taking the forkjoin_lock. 555 // However, in fact, some threads can be still alive here, although being about to be terminated. 556 // The threads in the array with ds_thread==0 are most suspicious. 557 // Actually, it can be not safe to access the __kmp_threads[]. 558 559 // TODO: does it make sense to check __kmp_roots[] ? 560 561 // Let's check that there are no other alive threads registered with the OMP lib. 562 while( 1 ) { 563 thread_count = 0; 564 for( i = 0; i < __kmp_threads_capacity; ++i ) { 565 if( !__kmp_threads ) continue; 566 kmp_info_t* th = __kmp_threads[ i ]; 567 if( th == NULL ) continue; 568 int gtid = th->th.th_info.ds.ds_gtid; 569 if( gtid == gtid_req ) continue; 570 if( gtid < 0 ) continue; 571 DWORD exit_val; 572 int alive = __kmp_is_thread_alive( th, &exit_val ); 573 if( alive ) { 574 ++thread_count; 575 } 576 } 577 if( thread_count == 0 ) break; // success 578 } 579 580 // Assume that I'm alone. 581 582 // Now it might be probably safe to check and reset locks. 583 // __kmp_forkjoin_lock and __kmp_stdio_lock are expected to be reset. 584 __kmp_reset_lock( &__kmp_forkjoin_lock ); 585 #ifdef KMP_DEBUG 586 __kmp_reset_lock( &__kmp_stdio_lock ); 587 #endif // KMP_DEBUG 588 } 589 590 BOOL WINAPI 591 DllMain( HINSTANCE hInstDLL, DWORD fdwReason, LPVOID lpReserved ) { 592 //__kmp_acquire_bootstrap_lock( &__kmp_initz_lock ); 593 594 switch( fdwReason ) { 595 596 case DLL_PROCESS_ATTACH: 597 KA_TRACE( 10, ("DllMain: PROCESS_ATTACH\n" )); 598 599 return TRUE; 600 601 case DLL_PROCESS_DETACH: 602 KA_TRACE( 10, ("DllMain: PROCESS_DETACH T#%d\n", 603 __kmp_gtid_get_specific() )); 604 605 if( lpReserved != NULL ) 606 { 607 // lpReserved is used for telling the difference: 608 // lpReserved == NULL when FreeLibrary() was called, 609 // lpReserved != NULL when the process terminates. 610 // When FreeLibrary() is called, worker threads remain alive. 611 // So they will release the forkjoin lock by themselves. 612 // When the process terminates, worker threads disappear triggering 613 // the problem of unreleased forkjoin lock as described below. 614 615 // A worker thread can take the forkjoin lock. 616 // The problem comes up if that worker thread becomes dead 617 // before it releases the forkjoin lock. 618 // The forkjoin lock remains taken, while the thread 619 // executing DllMain()->PROCESS_DETACH->__kmp_internal_end_library() below 620 // will try to take the forkjoin lock and will always fail, 621 // so that the application will never finish [normally]. 622 // This scenario is possible if __kmpc_end() has not been executed. 623 // It looks like it's not a corner case, but common cases: 624 // - the main function was compiled by an alternative compiler; 625 // - the main function was compiled by icl but without /Qopenmp (application with plugins); 626 // - application terminates by calling C exit(), Fortran CALL EXIT() or Fortran STOP. 627 // - alive foreign thread prevented __kmpc_end from doing cleanup. 628 629 // This is a hack to work around the problem. 630 // TODO: !!! to figure out something better. 631 __kmp_reset_locks_on_process_detach( __kmp_gtid_get_specific() ); 632 } 633 634 __kmp_internal_end_library( __kmp_gtid_get_specific() ); 635 636 return TRUE; 637 638 case DLL_THREAD_ATTACH: 639 KA_TRACE( 10, ("DllMain: THREAD_ATTACH\n" )); 640 641 /* if we wanted to register new siblings all the time here call 642 * __kmp_get_gtid(); */ 643 return TRUE; 644 645 case DLL_THREAD_DETACH: 646 KA_TRACE( 10, ("DllMain: THREAD_DETACH T#%d\n", 647 __kmp_gtid_get_specific() )); 648 649 __kmp_internal_end_thread( __kmp_gtid_get_specific() ); 650 return TRUE; 651 } 652 653 return TRUE; 654 } 655 656 # endif /* KMP_OS_WINDOWS */ 657 #endif /* KMP_DYNAMIC_LIB */ 658 659 660 /* ------------------------------------------------------------------------ */ 661 662 /* Change the library type to "status" and return the old type */ 663 /* called from within initialization routines where __kmp_initz_lock is held */ 664 int 665 __kmp_change_library( int status ) 666 { 667 int old_status; 668 669 old_status = __kmp_yield_init & 1; // check whether KMP_LIBRARY=throughput (even init count) 670 671 if (status) { 672 __kmp_yield_init |= 1; // throughput => turnaround (odd init count) 673 } 674 else { 675 __kmp_yield_init &= ~1; // turnaround => throughput (even init count) 676 } 677 678 return old_status; // return previous setting of whether KMP_LIBRARY=throughput 679 } 680 681 /* ------------------------------------------------------------------------ */ 682 /* ------------------------------------------------------------------------ */ 683 684 /* __kmp_parallel_deo -- 685 * Wait until it's our turn. 686 */ 687 void 688 __kmp_parallel_deo( int *gtid_ref, int *cid_ref, ident_t *loc_ref ) 689 { 690 int gtid = *gtid_ref; 691 #ifdef BUILD_PARALLEL_ORDERED 692 kmp_team_t *team = __kmp_team_from_gtid( gtid ); 693 #endif /* BUILD_PARALLEL_ORDERED */ 694 695 if( __kmp_env_consistency_check ) { 696 if( __kmp_threads[gtid]->th.th_root->r.r_active ) 697 #if KMP_USE_DYNAMIC_LOCK 698 __kmp_push_sync( gtid, ct_ordered_in_parallel, loc_ref, NULL, 0 ); 699 #else 700 __kmp_push_sync( gtid, ct_ordered_in_parallel, loc_ref, NULL ); 701 #endif 702 } 703 #ifdef BUILD_PARALLEL_ORDERED 704 if( !team->t.t_serialized ) { 705 KMP_MB(); 706 KMP_WAIT_YIELD(&team->t.t_ordered.dt.t_value, __kmp_tid_from_gtid( gtid ), KMP_EQ, NULL); 707 KMP_MB(); 708 } 709 #endif /* BUILD_PARALLEL_ORDERED */ 710 } 711 712 /* __kmp_parallel_dxo -- 713 * Signal the next task. 714 */ 715 716 void 717 __kmp_parallel_dxo( int *gtid_ref, int *cid_ref, ident_t *loc_ref ) 718 { 719 int gtid = *gtid_ref; 720 #ifdef BUILD_PARALLEL_ORDERED 721 int tid = __kmp_tid_from_gtid( gtid ); 722 kmp_team_t *team = __kmp_team_from_gtid( gtid ); 723 #endif /* BUILD_PARALLEL_ORDERED */ 724 725 if( __kmp_env_consistency_check ) { 726 if( __kmp_threads[gtid]->th.th_root->r.r_active ) 727 __kmp_pop_sync( gtid, ct_ordered_in_parallel, loc_ref ); 728 } 729 #ifdef BUILD_PARALLEL_ORDERED 730 if ( ! team->t.t_serialized ) { 731 KMP_MB(); /* Flush all pending memory write invalidates. */ 732 733 /* use the tid of the next thread in this team */ 734 /* TODO repleace with general release procedure */ 735 team->t.t_ordered.dt.t_value = ((tid + 1) % team->t.t_nproc ); 736 737 #if OMPT_SUPPORT && OMPT_BLAME 738 if (ompt_enabled && 739 ompt_callbacks.ompt_callback(ompt_event_release_ordered)) { 740 /* accept blame for "ordered" waiting */ 741 kmp_info_t *this_thread = __kmp_threads[gtid]; 742 ompt_callbacks.ompt_callback(ompt_event_release_ordered)( 743 this_thread->th.ompt_thread_info.wait_id); 744 } 745 #endif 746 747 KMP_MB(); /* Flush all pending memory write invalidates. */ 748 } 749 #endif /* BUILD_PARALLEL_ORDERED */ 750 } 751 752 /* ------------------------------------------------------------------------ */ 753 /* ------------------------------------------------------------------------ */ 754 755 /* ------------------------------------------------------------------------ */ 756 /* ------------------------------------------------------------------------ */ 757 758 /* The BARRIER for a SINGLE process section is always explicit */ 759 760 int 761 __kmp_enter_single( int gtid, ident_t *id_ref, int push_ws ) 762 { 763 int status; 764 kmp_info_t *th; 765 kmp_team_t *team; 766 767 if( ! TCR_4(__kmp_init_parallel) ) 768 __kmp_parallel_initialize(); 769 770 th = __kmp_threads[ gtid ]; 771 team = th->th.th_team; 772 status = 0; 773 774 th->th.th_ident = id_ref; 775 776 if ( team->t.t_serialized ) { 777 status = 1; 778 } else { 779 kmp_int32 old_this = th->th.th_local.this_construct; 780 781 ++th->th.th_local.this_construct; 782 /* try to set team count to thread count--success means thread got the 783 single block 784 */ 785 /* TODO: Should this be acquire or release? */ 786 if (team->t.t_construct == old_this) { 787 status = KMP_COMPARE_AND_STORE_ACQ32(&team->t.t_construct, old_this, 788 th->th.th_local.this_construct); 789 } 790 #if USE_ITT_BUILD 791 if ( __itt_metadata_add_ptr && __kmp_forkjoin_frames_mode == 3 && KMP_MASTER_GTID(gtid) && 792 #if OMP_40_ENABLED 793 th->th.th_teams_microtask == NULL && 794 #endif 795 team->t.t_active_level == 1 ) 796 { // Only report metadata by master of active team at level 1 797 __kmp_itt_metadata_single( id_ref ); 798 } 799 #endif /* USE_ITT_BUILD */ 800 } 801 802 if( __kmp_env_consistency_check ) { 803 if (status && push_ws) { 804 __kmp_push_workshare( gtid, ct_psingle, id_ref ); 805 } else { 806 __kmp_check_workshare( gtid, ct_psingle, id_ref ); 807 } 808 } 809 #if USE_ITT_BUILD 810 if ( status ) { 811 __kmp_itt_single_start( gtid ); 812 } 813 #endif /* USE_ITT_BUILD */ 814 return status; 815 } 816 817 void 818 __kmp_exit_single( int gtid ) 819 { 820 #if USE_ITT_BUILD 821 __kmp_itt_single_end( gtid ); 822 #endif /* USE_ITT_BUILD */ 823 if( __kmp_env_consistency_check ) 824 __kmp_pop_workshare( gtid, ct_psingle, NULL ); 825 } 826 827 828 /* 829 * determine if we can go parallel or must use a serialized parallel region and 830 * how many threads we can use 831 * set_nproc is the number of threads requested for the team 832 * returns 0 if we should serialize or only use one thread, 833 * otherwise the number of threads to use 834 * The forkjoin lock is held by the caller. 835 */ 836 static int 837 __kmp_reserve_threads( kmp_root_t *root, kmp_team_t *parent_team, 838 int master_tid, int set_nthreads 839 #if OMP_40_ENABLED 840 , int enter_teams 841 #endif /* OMP_40_ENABLED */ 842 ) 843 { 844 int capacity; 845 int new_nthreads; 846 KMP_DEBUG_ASSERT( __kmp_init_serial ); 847 KMP_DEBUG_ASSERT( root && parent_team ); 848 849 // 850 // If dyn-var is set, dynamically adjust the number of desired threads, 851 // according to the method specified by dynamic_mode. 852 // 853 new_nthreads = set_nthreads; 854 if ( ! get__dynamic_2( parent_team, master_tid ) ) { 855 ; 856 } 857 #ifdef USE_LOAD_BALANCE 858 else if ( __kmp_global.g.g_dynamic_mode == dynamic_load_balance ) { 859 new_nthreads = __kmp_load_balance_nproc( root, set_nthreads ); 860 if ( new_nthreads == 1 ) { 861 KC_TRACE( 10, ( "__kmp_reserve_threads: T#%d load balance reduced reservation to 1 thread\n", 862 master_tid )); 863 return 1; 864 } 865 if ( new_nthreads < set_nthreads ) { 866 KC_TRACE( 10, ( "__kmp_reserve_threads: T#%d load balance reduced reservation to %d threads\n", 867 master_tid, new_nthreads )); 868 } 869 } 870 #endif /* USE_LOAD_BALANCE */ 871 else if ( __kmp_global.g.g_dynamic_mode == dynamic_thread_limit ) { 872 new_nthreads = __kmp_avail_proc - __kmp_nth + (root->r.r_active ? 1 873 : root->r.r_hot_team->t.t_nproc); 874 if ( new_nthreads <= 1 ) { 875 KC_TRACE( 10, ( "__kmp_reserve_threads: T#%d thread limit reduced reservation to 1 thread\n", 876 master_tid )); 877 return 1; 878 } 879 if ( new_nthreads < set_nthreads ) { 880 KC_TRACE( 10, ( "__kmp_reserve_threads: T#%d thread limit reduced reservation to %d threads\n", 881 master_tid, new_nthreads )); 882 } 883 else { 884 new_nthreads = set_nthreads; 885 } 886 } 887 else if ( __kmp_global.g.g_dynamic_mode == dynamic_random ) { 888 if ( set_nthreads > 2 ) { 889 new_nthreads = __kmp_get_random( parent_team->t.t_threads[master_tid] ); 890 new_nthreads = ( new_nthreads % set_nthreads ) + 1; 891 if ( new_nthreads == 1 ) { 892 KC_TRACE( 10, ( "__kmp_reserve_threads: T#%d dynamic random reduced reservation to 1 thread\n", 893 master_tid )); 894 return 1; 895 } 896 if ( new_nthreads < set_nthreads ) { 897 KC_TRACE( 10, ( "__kmp_reserve_threads: T#%d dynamic random reduced reservation to %d threads\n", 898 master_tid, new_nthreads )); 899 } 900 } 901 } 902 else { 903 KMP_ASSERT( 0 ); 904 } 905 906 // 907 // Respect KMP_ALL_THREADS, KMP_MAX_THREADS, OMP_THREAD_LIMIT. 908 // 909 if ( __kmp_nth + new_nthreads - ( root->r.r_active ? 1 : 910 root->r.r_hot_team->t.t_nproc ) > __kmp_max_nth ) { 911 int tl_nthreads = __kmp_max_nth - __kmp_nth + ( root->r.r_active ? 1 : 912 root->r.r_hot_team->t.t_nproc ); 913 if ( tl_nthreads <= 0 ) { 914 tl_nthreads = 1; 915 } 916 917 // 918 // If dyn-var is false, emit a 1-time warning. 919 // 920 if ( ! get__dynamic_2( parent_team, master_tid ) 921 && ( ! __kmp_reserve_warn ) ) { 922 __kmp_reserve_warn = 1; 923 __kmp_msg( 924 kmp_ms_warning, 925 KMP_MSG( CantFormThrTeam, set_nthreads, tl_nthreads ), 926 KMP_HNT( Unset_ALL_THREADS ), 927 __kmp_msg_null 928 ); 929 } 930 if ( tl_nthreads == 1 ) { 931 KC_TRACE( 10, ( "__kmp_reserve_threads: T#%d KMP_ALL_THREADS reduced reservation to 1 thread\n", 932 master_tid )); 933 return 1; 934 } 935 KC_TRACE( 10, ( "__kmp_reserve_threads: T#%d KMP_ALL_THREADS reduced reservation to %d threads\n", 936 master_tid, tl_nthreads )); 937 new_nthreads = tl_nthreads; 938 } 939 940 // 941 // Check if the threads array is large enough, or needs expanding. 942 // 943 // See comment in __kmp_register_root() about the adjustment if 944 // __kmp_threads[0] == NULL. 945 // 946 capacity = __kmp_threads_capacity; 947 if ( TCR_PTR(__kmp_threads[0]) == NULL ) { 948 --capacity; 949 } 950 if ( __kmp_nth + new_nthreads - ( root->r.r_active ? 1 : 951 root->r.r_hot_team->t.t_nproc ) > capacity ) { 952 // 953 // Expand the threads array. 954 // 955 int slotsRequired = __kmp_nth + new_nthreads - ( root->r.r_active ? 1 : 956 root->r.r_hot_team->t.t_nproc ) - capacity; 957 int slotsAdded = __kmp_expand_threads(slotsRequired, slotsRequired); 958 if ( slotsAdded < slotsRequired ) { 959 // 960 // The threads array was not expanded enough. 961 // 962 new_nthreads -= ( slotsRequired - slotsAdded ); 963 KMP_ASSERT( new_nthreads >= 1 ); 964 965 // 966 // If dyn-var is false, emit a 1-time warning. 967 // 968 if ( ! get__dynamic_2( parent_team, master_tid ) 969 && ( ! __kmp_reserve_warn ) ) { 970 __kmp_reserve_warn = 1; 971 if ( __kmp_tp_cached ) { 972 __kmp_msg( 973 kmp_ms_warning, 974 KMP_MSG( CantFormThrTeam, set_nthreads, new_nthreads ), 975 KMP_HNT( Set_ALL_THREADPRIVATE, __kmp_tp_capacity ), 976 KMP_HNT( PossibleSystemLimitOnThreads ), 977 __kmp_msg_null 978 ); 979 } 980 else { 981 __kmp_msg( 982 kmp_ms_warning, 983 KMP_MSG( CantFormThrTeam, set_nthreads, new_nthreads ), 984 KMP_HNT( SystemLimitOnThreads ), 985 __kmp_msg_null 986 ); 987 } 988 } 989 } 990 } 991 992 if ( new_nthreads == 1 ) { 993 KC_TRACE( 10, ( "__kmp_reserve_threads: T#%d serializing team after reclaiming dead roots and rechecking; requested %d threads\n", 994 __kmp_get_gtid(), set_nthreads ) ); 995 return 1; 996 } 997 998 KC_TRACE( 10, ( "__kmp_reserve_threads: T#%d allocating %d threads; requested %d threads\n", 999 __kmp_get_gtid(), new_nthreads, set_nthreads )); 1000 return new_nthreads; 1001 } 1002 1003 /* ------------------------------------------------------------------------ */ 1004 /* ------------------------------------------------------------------------ */ 1005 1006 /* allocate threads from the thread pool and assign them to the new team */ 1007 /* we are assured that there are enough threads available, because we 1008 * checked on that earlier within critical section forkjoin */ 1009 1010 static void 1011 __kmp_fork_team_threads( kmp_root_t *root, kmp_team_t *team, 1012 kmp_info_t *master_th, int master_gtid ) 1013 { 1014 int i; 1015 int use_hot_team; 1016 1017 KA_TRACE( 10, ("__kmp_fork_team_threads: new_nprocs = %d\n", team->t.t_nproc ) ); 1018 KMP_DEBUG_ASSERT( master_gtid == __kmp_get_gtid() ); 1019 KMP_MB(); 1020 1021 /* first, let's setup the master thread */ 1022 master_th->th.th_info.ds.ds_tid = 0; 1023 master_th->th.th_team = team; 1024 master_th->th.th_team_nproc = team->t.t_nproc; 1025 master_th->th.th_team_master = master_th; 1026 master_th->th.th_team_serialized = FALSE; 1027 master_th->th.th_dispatch = & team->t.t_dispatch[ 0 ]; 1028 1029 /* make sure we are not the optimized hot team */ 1030 #if KMP_NESTED_HOT_TEAMS 1031 use_hot_team = 0; 1032 kmp_hot_team_ptr_t *hot_teams = master_th->th.th_hot_teams; 1033 if( hot_teams ) { // hot teams array is not allocated if KMP_HOT_TEAMS_MAX_LEVEL=0 1034 int level = team->t.t_active_level - 1; // index in array of hot teams 1035 if( master_th->th.th_teams_microtask ) { // are we inside the teams? 1036 if( master_th->th.th_teams_size.nteams > 1 ) { 1037 ++level; // level was not increased in teams construct for team_of_masters 1038 } 1039 if( team->t.t_pkfn != (microtask_t)__kmp_teams_master && 1040 master_th->th.th_teams_level == team->t.t_level ) { 1041 ++level; // level was not increased in teams construct for team_of_workers before the parallel 1042 } // team->t.t_level will be increased inside parallel 1043 } 1044 if( level < __kmp_hot_teams_max_level ) { 1045 if( hot_teams[level].hot_team ) { 1046 // hot team has already been allocated for given level 1047 KMP_DEBUG_ASSERT(hot_teams[level].hot_team == team); 1048 use_hot_team = 1; // the team is ready to use 1049 } else { 1050 use_hot_team = 0; // AC: threads are not allocated yet 1051 hot_teams[level].hot_team = team; // remember new hot team 1052 hot_teams[level].hot_team_nth = team->t.t_nproc; 1053 } 1054 } else { 1055 use_hot_team = 0; 1056 } 1057 } 1058 #else 1059 use_hot_team = team == root->r.r_hot_team; 1060 #endif 1061 if ( !use_hot_team ) { 1062 1063 /* install the master thread */ 1064 team->t.t_threads[ 0 ] = master_th; 1065 __kmp_initialize_info( master_th, team, 0, master_gtid ); 1066 1067 /* now, install the worker threads */ 1068 for ( i=1 ; i < team->t.t_nproc ; i++ ) { 1069 1070 /* fork or reallocate a new thread and install it in team */ 1071 kmp_info_t *thr = __kmp_allocate_thread( root, team, i ); 1072 team->t.t_threads[ i ] = thr; 1073 KMP_DEBUG_ASSERT( thr ); 1074 KMP_DEBUG_ASSERT( thr->th.th_team == team ); 1075 /* align team and thread arrived states */ 1076 KA_TRACE( 20, ("__kmp_fork_team_threads: T#%d(%d:%d) init arrived T#%d(%d:%d) join =%llu, plain=%llu\n", 1077 __kmp_gtid_from_tid( 0, team ), team->t.t_id, 0, 1078 __kmp_gtid_from_tid( i, team ), team->t.t_id, i, 1079 team->t.t_bar[ bs_forkjoin_barrier ].b_arrived, 1080 team->t.t_bar[ bs_plain_barrier ].b_arrived ) ); 1081 #if OMP_40_ENABLED 1082 thr->th.th_teams_microtask = master_th->th.th_teams_microtask; 1083 thr->th.th_teams_level = master_th->th.th_teams_level; 1084 thr->th.th_teams_size = master_th->th.th_teams_size; 1085 #endif 1086 { // Initialize threads' barrier data. 1087 int b; 1088 kmp_balign_t * balign = team->t.t_threads[ i ]->th.th_bar; 1089 for ( b = 0; b < bs_last_barrier; ++ b ) { 1090 balign[ b ].bb.b_arrived = team->t.t_bar[ b ].b_arrived; 1091 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 1092 #if USE_DEBUGGER 1093 balign[ b ].bb.b_worker_arrived = team->t.t_bar[ b ].b_team_arrived; 1094 #endif 1095 }; // for b 1096 } 1097 } 1098 1099 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 1100 __kmp_partition_places( team ); 1101 #endif 1102 1103 } 1104 1105 KMP_MB(); 1106 } 1107 1108 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1109 // 1110 // Propagate any changes to the floating point control registers out to the team 1111 // We try to avoid unnecessary writes to the relevant cache line in the team structure, 1112 // so we don't make changes unless they are needed. 1113 // 1114 inline static void 1115 propagateFPControl(kmp_team_t * team) 1116 { 1117 if ( __kmp_inherit_fp_control ) { 1118 kmp_int16 x87_fpu_control_word; 1119 kmp_uint32 mxcsr; 1120 1121 // Get master values of FPU control flags (both X87 and vector) 1122 __kmp_store_x87_fpu_control_word( &x87_fpu_control_word ); 1123 __kmp_store_mxcsr( &mxcsr ); 1124 mxcsr &= KMP_X86_MXCSR_MASK; 1125 1126 // There is no point looking at t_fp_control_saved here. 1127 // If it is TRUE, we still have to update the values if they are different from those we now have. 1128 // If it is FALSE we didn't save anything yet, but our objective is the same. We have to ensure 1129 // that the values in the team are the same as those we have. 1130 // So, this code achieves what we need whether or not t_fp_control_saved is true. 1131 // By checking whether the value needs updating we avoid unnecessary writes that would put the 1132 // cache-line into a written state, causing all threads in the team to have to read it again. 1133 KMP_CHECK_UPDATE(team->t.t_x87_fpu_control_word, x87_fpu_control_word); 1134 KMP_CHECK_UPDATE(team->t.t_mxcsr, mxcsr); 1135 // Although we don't use this value, other code in the runtime wants to know whether it should restore them. 1136 // So we must ensure it is correct. 1137 KMP_CHECK_UPDATE(team->t.t_fp_control_saved, TRUE); 1138 } 1139 else { 1140 // Similarly here. Don't write to this cache-line in the team structure unless we have to. 1141 KMP_CHECK_UPDATE(team->t.t_fp_control_saved, FALSE); 1142 } 1143 } 1144 1145 // Do the opposite, setting the hardware registers to the updated values from the team. 1146 inline static void 1147 updateHWFPControl(kmp_team_t * team) 1148 { 1149 if ( __kmp_inherit_fp_control && team->t.t_fp_control_saved ) { 1150 // 1151 // Only reset the fp control regs if they have been changed in the team. 1152 // the parallel region that we are exiting. 1153 // 1154 kmp_int16 x87_fpu_control_word; 1155 kmp_uint32 mxcsr; 1156 __kmp_store_x87_fpu_control_word( &x87_fpu_control_word ); 1157 __kmp_store_mxcsr( &mxcsr ); 1158 mxcsr &= KMP_X86_MXCSR_MASK; 1159 1160 if ( team->t.t_x87_fpu_control_word != x87_fpu_control_word ) { 1161 __kmp_clear_x87_fpu_status_word(); 1162 __kmp_load_x87_fpu_control_word( &team->t.t_x87_fpu_control_word ); 1163 } 1164 1165 if ( team->t.t_mxcsr != mxcsr ) { 1166 __kmp_load_mxcsr( &team->t.t_mxcsr ); 1167 } 1168 } 1169 } 1170 #else 1171 # define propagateFPControl(x) ((void)0) 1172 # define updateHWFPControl(x) ((void)0) 1173 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 1174 1175 static void 1176 __kmp_alloc_argv_entries( int argc, kmp_team_t *team, int realloc ); // forward declaration 1177 1178 /* 1179 * Run a parallel region that has been serialized, so runs only in a team of the single master thread. 1180 */ 1181 void 1182 __kmp_serialized_parallel(ident_t *loc, kmp_int32 global_tid) 1183 { 1184 kmp_info_t *this_thr; 1185 kmp_team_t *serial_team; 1186 1187 KC_TRACE( 10, ("__kmpc_serialized_parallel: called by T#%d\n", global_tid ) ); 1188 1189 /* Skip all this code for autopar serialized loops since it results in 1190 unacceptable overhead */ 1191 if( loc != NULL && (loc->flags & KMP_IDENT_AUTOPAR ) ) 1192 return; 1193 1194 if( ! TCR_4( __kmp_init_parallel ) ) 1195 __kmp_parallel_initialize(); 1196 1197 this_thr = __kmp_threads[ global_tid ]; 1198 serial_team = this_thr->th.th_serial_team; 1199 1200 /* utilize the serialized team held by this thread */ 1201 KMP_DEBUG_ASSERT( serial_team ); 1202 KMP_MB(); 1203 1204 if ( __kmp_tasking_mode != tskm_immediate_exec ) { 1205 KMP_DEBUG_ASSERT(this_thr->th.th_task_team == this_thr->th.th_team->t.t_task_team[this_thr->th.th_task_state]); 1206 KMP_DEBUG_ASSERT( serial_team->t.t_task_team[this_thr->th.th_task_state] == NULL ); 1207 KA_TRACE( 20, ( "__kmpc_serialized_parallel: T#%d pushing task_team %p / team %p, new task_team = NULL\n", 1208 global_tid, this_thr->th.th_task_team, this_thr->th.th_team ) ); 1209 this_thr->th.th_task_team = NULL; 1210 } 1211 1212 #if OMP_40_ENABLED 1213 kmp_proc_bind_t proc_bind = this_thr->th.th_set_proc_bind; 1214 if ( this_thr->th.th_current_task->td_icvs.proc_bind == proc_bind_false ) { 1215 proc_bind = proc_bind_false; 1216 } 1217 else if ( proc_bind == proc_bind_default ) { 1218 // 1219 // No proc_bind clause was specified, so use the current value 1220 // of proc-bind-var for this parallel region. 1221 // 1222 proc_bind = this_thr->th.th_current_task->td_icvs.proc_bind; 1223 } 1224 // 1225 // Reset for next parallel region 1226 // 1227 this_thr->th.th_set_proc_bind = proc_bind_default; 1228 #endif /* OMP_40_ENABLED */ 1229 1230 if( this_thr->th.th_team != serial_team ) { 1231 // Nested level will be an index in the nested nthreads array 1232 int level = this_thr->th.th_team->t.t_level; 1233 1234 if( serial_team->t.t_serialized ) { 1235 /* this serial team was already used 1236 * TODO increase performance by making this locks more specific */ 1237 kmp_team_t *new_team; 1238 1239 __kmp_acquire_bootstrap_lock( &__kmp_forkjoin_lock ); 1240 1241 #if OMPT_SUPPORT 1242 ompt_parallel_id_t ompt_parallel_id = __ompt_parallel_id_new(global_tid); 1243 #endif 1244 1245 new_team = __kmp_allocate_team(this_thr->th.th_root, 1, 1, 1246 #if OMPT_SUPPORT 1247 ompt_parallel_id, 1248 #endif 1249 #if OMP_40_ENABLED 1250 proc_bind, 1251 #endif 1252 & this_thr->th.th_current_task->td_icvs, 1253 0 USE_NESTED_HOT_ARG(NULL) ); 1254 __kmp_release_bootstrap_lock( &__kmp_forkjoin_lock ); 1255 KMP_ASSERT( new_team ); 1256 1257 /* setup new serialized team and install it */ 1258 new_team->t.t_threads[0] = this_thr; 1259 new_team->t.t_parent = this_thr->th.th_team; 1260 serial_team = new_team; 1261 this_thr->th.th_serial_team = serial_team; 1262 1263 KF_TRACE( 10, ( "__kmpc_serialized_parallel: T#%d allocated new serial team %p\n", 1264 global_tid, serial_team ) ); 1265 1266 1267 /* TODO the above breaks the requirement that if we run out of 1268 * resources, then we can still guarantee that serialized teams 1269 * are ok, since we may need to allocate a new one */ 1270 } else { 1271 KF_TRACE( 10, ( "__kmpc_serialized_parallel: T#%d reusing cached serial team %p\n", 1272 global_tid, serial_team ) ); 1273 } 1274 1275 /* we have to initialize this serial team */ 1276 KMP_DEBUG_ASSERT( serial_team->t.t_threads ); 1277 KMP_DEBUG_ASSERT( serial_team->t.t_threads[0] == this_thr ); 1278 KMP_DEBUG_ASSERT( this_thr->th.th_team != serial_team ); 1279 serial_team->t.t_ident = loc; 1280 serial_team->t.t_serialized = 1; 1281 serial_team->t.t_nproc = 1; 1282 serial_team->t.t_parent = this_thr->th.th_team; 1283 serial_team->t.t_sched = this_thr->th.th_team->t.t_sched; 1284 this_thr->th.th_team = serial_team; 1285 serial_team->t.t_master_tid = this_thr->th.th_info.ds.ds_tid; 1286 1287 KF_TRACE( 10, ( "__kmpc_serialized_parallel: T#d curtask=%p\n", 1288 global_tid, this_thr->th.th_current_task ) ); 1289 KMP_ASSERT( this_thr->th.th_current_task->td_flags.executing == 1 ); 1290 this_thr->th.th_current_task->td_flags.executing = 0; 1291 1292 __kmp_push_current_task_to_thread( this_thr, serial_team, 0 ); 1293 1294 /* TODO: GEH: do the ICVs work for nested serialized teams? Don't we need an implicit task for 1295 each serialized task represented by team->t.t_serialized? */ 1296 copy_icvs( 1297 & this_thr->th.th_current_task->td_icvs, 1298 & this_thr->th.th_current_task->td_parent->td_icvs ); 1299 1300 // Thread value exists in the nested nthreads array for the next nested level 1301 if ( __kmp_nested_nth.used && ( level + 1 < __kmp_nested_nth.used ) ) { 1302 this_thr->th.th_current_task->td_icvs.nproc = __kmp_nested_nth.nth[ level + 1 ]; 1303 } 1304 1305 #if OMP_40_ENABLED 1306 if ( __kmp_nested_proc_bind.used && ( level + 1 < __kmp_nested_proc_bind.used ) ) { 1307 this_thr->th.th_current_task->td_icvs.proc_bind 1308 = __kmp_nested_proc_bind.bind_types[ level + 1 ]; 1309 } 1310 #endif /* OMP_40_ENABLED */ 1311 1312 #if USE_DEBUGGER 1313 serial_team->t.t_pkfn = (microtask_t)( ~0 ); // For the debugger. 1314 #endif 1315 this_thr->th.th_info.ds.ds_tid = 0; 1316 1317 /* set thread cache values */ 1318 this_thr->th.th_team_nproc = 1; 1319 this_thr->th.th_team_master = this_thr; 1320 this_thr->th.th_team_serialized = 1; 1321 1322 serial_team->t.t_level = serial_team->t.t_parent->t.t_level + 1; 1323 serial_team->t.t_active_level = serial_team->t.t_parent->t.t_active_level; 1324 1325 propagateFPControl (serial_team); 1326 1327 /* check if we need to allocate dispatch buffers stack */ 1328 KMP_DEBUG_ASSERT(serial_team->t.t_dispatch); 1329 if ( !serial_team->t.t_dispatch->th_disp_buffer ) { 1330 serial_team->t.t_dispatch->th_disp_buffer = (dispatch_private_info_t *) 1331 __kmp_allocate( sizeof( dispatch_private_info_t ) ); 1332 } 1333 this_thr->th.th_dispatch = serial_team->t.t_dispatch; 1334 1335 #if OMPT_SUPPORT 1336 ompt_parallel_id_t ompt_parallel_id = __ompt_parallel_id_new(global_tid); 1337 __ompt_team_assign_id(serial_team, ompt_parallel_id); 1338 #endif 1339 1340 KMP_MB(); 1341 1342 } else { 1343 /* this serialized team is already being used, 1344 * that's fine, just add another nested level */ 1345 KMP_DEBUG_ASSERT( this_thr->th.th_team == serial_team ); 1346 KMP_DEBUG_ASSERT( serial_team->t.t_threads ); 1347 KMP_DEBUG_ASSERT( serial_team->t.t_threads[0] == this_thr ); 1348 ++ serial_team->t.t_serialized; 1349 this_thr->th.th_team_serialized = serial_team->t.t_serialized; 1350 1351 // Nested level will be an index in the nested nthreads array 1352 int level = this_thr->th.th_team->t.t_level; 1353 // Thread value exists in the nested nthreads array for the next nested level 1354 if ( __kmp_nested_nth.used && ( level + 1 < __kmp_nested_nth.used ) ) { 1355 this_thr->th.th_current_task->td_icvs.nproc = __kmp_nested_nth.nth[ level + 1 ]; 1356 } 1357 serial_team->t.t_level++; 1358 KF_TRACE( 10, ( "__kmpc_serialized_parallel: T#%d increasing nesting level of serial team %p to %d\n", 1359 global_tid, serial_team, serial_team->t.t_level ) ); 1360 1361 /* allocate/push dispatch buffers stack */ 1362 KMP_DEBUG_ASSERT(serial_team->t.t_dispatch); 1363 { 1364 dispatch_private_info_t * disp_buffer = (dispatch_private_info_t *) 1365 __kmp_allocate( sizeof( dispatch_private_info_t ) ); 1366 disp_buffer->next = serial_team->t.t_dispatch->th_disp_buffer; 1367 serial_team->t.t_dispatch->th_disp_buffer = disp_buffer; 1368 } 1369 this_thr->th.th_dispatch = serial_team->t.t_dispatch; 1370 1371 KMP_MB(); 1372 } 1373 1374 if ( __kmp_env_consistency_check ) 1375 __kmp_push_parallel( global_tid, NULL ); 1376 1377 } 1378 1379 /* most of the work for a fork */ 1380 /* return true if we really went parallel, false if serialized */ 1381 int 1382 __kmp_fork_call( 1383 ident_t * loc, 1384 int gtid, 1385 enum fork_context_e call_context, // Intel, GNU, ... 1386 kmp_int32 argc, 1387 #if OMPT_SUPPORT 1388 void *unwrapped_task, 1389 #endif 1390 microtask_t microtask, 1391 launch_t invoker, 1392 /* TODO: revert workaround for Intel(R) 64 tracker #96 */ 1393 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 1394 va_list * ap 1395 #else 1396 va_list ap 1397 #endif 1398 ) 1399 { 1400 void **argv; 1401 int i; 1402 int master_tid; 1403 int master_this_cons; 1404 kmp_team_t *team; 1405 kmp_team_t *parent_team; 1406 kmp_info_t *master_th; 1407 kmp_root_t *root; 1408 int nthreads; 1409 int master_active; 1410 int master_set_numthreads; 1411 int level; 1412 #if OMP_40_ENABLED 1413 int active_level; 1414 int teams_level; 1415 #endif 1416 #if KMP_NESTED_HOT_TEAMS 1417 kmp_hot_team_ptr_t **p_hot_teams; 1418 #endif 1419 { // KMP_TIME_BLOCK 1420 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_fork_call); 1421 KMP_COUNT_VALUE(OMP_PARALLEL_args, argc); 1422 1423 KA_TRACE( 20, ("__kmp_fork_call: enter T#%d\n", gtid )); 1424 if ( __kmp_stkpadding > 0 && __kmp_root[gtid] != NULL ) { 1425 /* Some systems prefer the stack for the root thread(s) to start with */ 1426 /* some gap from the parent stack to prevent false sharing. */ 1427 void *dummy = KMP_ALLOCA(__kmp_stkpadding); 1428 /* These 2 lines below are so this does not get optimized out */ 1429 if ( __kmp_stkpadding > KMP_MAX_STKPADDING ) 1430 __kmp_stkpadding += (short)((kmp_int64)dummy); 1431 } 1432 1433 /* initialize if needed */ 1434 KMP_DEBUG_ASSERT( __kmp_init_serial ); // AC: potentially unsafe, not in sync with shutdown 1435 if( ! TCR_4(__kmp_init_parallel) ) 1436 __kmp_parallel_initialize(); 1437 1438 /* setup current data */ 1439 master_th = __kmp_threads[ gtid ]; // AC: potentially unsafe, not in sync with shutdown 1440 parent_team = master_th->th.th_team; 1441 master_tid = master_th->th.th_info.ds.ds_tid; 1442 master_this_cons = master_th->th.th_local.this_construct; 1443 root = master_th->th.th_root; 1444 master_active = root->r.r_active; 1445 master_set_numthreads = master_th->th.th_set_nproc; 1446 1447 #if OMPT_SUPPORT 1448 ompt_parallel_id_t ompt_parallel_id; 1449 ompt_task_id_t ompt_task_id; 1450 ompt_frame_t *ompt_frame; 1451 ompt_task_id_t my_task_id; 1452 ompt_parallel_id_t my_parallel_id; 1453 1454 if (ompt_enabled) { 1455 ompt_parallel_id = __ompt_parallel_id_new(gtid); 1456 ompt_task_id = __ompt_get_task_id_internal(0); 1457 ompt_frame = __ompt_get_task_frame_internal(0); 1458 } 1459 #endif 1460 1461 // Nested level will be an index in the nested nthreads array 1462 level = parent_team->t.t_level; 1463 active_level = parent_team->t.t_active_level; // is used to launch non-serial teams even if nested is not allowed 1464 #if OMP_40_ENABLED 1465 teams_level = master_th->th.th_teams_level; // needed to check nesting inside the teams 1466 #endif 1467 #if KMP_NESTED_HOT_TEAMS 1468 p_hot_teams = &master_th->th.th_hot_teams; 1469 if( *p_hot_teams == NULL && __kmp_hot_teams_max_level > 0 ) { 1470 *p_hot_teams = (kmp_hot_team_ptr_t*)__kmp_allocate( 1471 sizeof(kmp_hot_team_ptr_t) * __kmp_hot_teams_max_level); 1472 (*p_hot_teams)[0].hot_team = root->r.r_hot_team; 1473 (*p_hot_teams)[0].hot_team_nth = 1; // it is either actual or not needed (when active_level > 0) 1474 } 1475 #endif 1476 1477 #if OMPT_SUPPORT 1478 if (ompt_enabled && 1479 ompt_callbacks.ompt_callback(ompt_event_parallel_begin)) { 1480 int team_size = master_set_numthreads; 1481 1482 ompt_callbacks.ompt_callback(ompt_event_parallel_begin)( 1483 ompt_task_id, ompt_frame, ompt_parallel_id, 1484 team_size, unwrapped_task, OMPT_INVOKER(call_context)); 1485 } 1486 #endif 1487 1488 master_th->th.th_ident = loc; 1489 1490 #if OMP_40_ENABLED 1491 if ( master_th->th.th_teams_microtask && 1492 ap && microtask != (microtask_t)__kmp_teams_master && level == teams_level ) { 1493 // AC: This is start of parallel that is nested inside teams construct. 1494 // The team is actual (hot), all workers are ready at the fork barrier. 1495 // No lock needed to initialize the team a bit, then free workers. 1496 parent_team->t.t_ident = loc; 1497 __kmp_alloc_argv_entries( argc, parent_team, TRUE ); 1498 parent_team->t.t_argc = argc; 1499 argv = (void**)parent_team->t.t_argv; 1500 for( i=argc-1; i >= 0; --i ) 1501 /* TODO: revert workaround for Intel(R) 64 tracker #96 */ 1502 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 1503 *argv++ = va_arg( *ap, void * ); 1504 #else 1505 *argv++ = va_arg( ap, void * ); 1506 #endif 1507 /* Increment our nested depth levels, but not increase the serialization */ 1508 if ( parent_team == master_th->th.th_serial_team ) { 1509 // AC: we are in serialized parallel 1510 __kmpc_serialized_parallel(loc, gtid); 1511 KMP_DEBUG_ASSERT( parent_team->t.t_serialized > 1 ); 1512 parent_team->t.t_serialized--; // AC: need this in order enquiry functions 1513 // work correctly, will restore at join time 1514 1515 #if OMPT_SUPPORT 1516 void *dummy; 1517 void **exit_runtime_p; 1518 1519 ompt_lw_taskteam_t lw_taskteam; 1520 1521 if (ompt_enabled) { 1522 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1523 unwrapped_task, ompt_parallel_id); 1524 lw_taskteam.ompt_task_info.task_id = __ompt_task_id_new(gtid); 1525 exit_runtime_p = &(lw_taskteam.ompt_task_info.frame.exit_runtime_frame); 1526 1527 __ompt_lw_taskteam_link(&lw_taskteam, master_th); 1528 1529 #if OMPT_TRACE 1530 /* OMPT implicit task begin */ 1531 my_task_id = lw_taskteam.ompt_task_info.task_id; 1532 my_parallel_id = parent_team->t.ompt_team_info.parallel_id; 1533 if (ompt_callbacks.ompt_callback(ompt_event_implicit_task_begin)) { 1534 ompt_callbacks.ompt_callback(ompt_event_implicit_task_begin)( 1535 my_parallel_id, my_task_id); 1536 } 1537 #endif 1538 1539 /* OMPT state */ 1540 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 1541 } else { 1542 exit_runtime_p = &dummy; 1543 } 1544 #endif 1545 1546 { 1547 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1548 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1549 __kmp_invoke_microtask( microtask, gtid, 0, argc, parent_team->t.t_argv 1550 #if OMPT_SUPPORT 1551 , exit_runtime_p 1552 #endif 1553 ); 1554 } 1555 1556 #if OMPT_SUPPORT 1557 *exit_runtime_p = NULL; 1558 if (ompt_enabled) { 1559 #if OMPT_TRACE 1560 lw_taskteam.ompt_task_info.frame.exit_runtime_frame = NULL; 1561 1562 if (ompt_callbacks.ompt_callback(ompt_event_implicit_task_end)) { 1563 ompt_callbacks.ompt_callback(ompt_event_implicit_task_end)( 1564 ompt_parallel_id, ompt_task_id); 1565 } 1566 1567 __ompt_lw_taskteam_unlink(master_th); 1568 // reset clear the task id only after unlinking the task 1569 lw_taskteam.ompt_task_info.task_id = ompt_task_id_none; 1570 #endif 1571 1572 if (ompt_callbacks.ompt_callback(ompt_event_parallel_end)) { 1573 ompt_callbacks.ompt_callback(ompt_event_parallel_end)( 1574 ompt_parallel_id, ompt_task_id, 1575 OMPT_INVOKER(call_context)); 1576 } 1577 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1578 } 1579 #endif 1580 return TRUE; 1581 } 1582 1583 parent_team->t.t_pkfn = microtask; 1584 #if OMPT_SUPPORT 1585 parent_team->t.ompt_team_info.microtask = unwrapped_task; 1586 #endif 1587 parent_team->t.t_invoke = invoker; 1588 KMP_TEST_THEN_INC32( (kmp_int32*) &root->r.r_in_parallel ); 1589 parent_team->t.t_active_level ++; 1590 parent_team->t.t_level ++; 1591 1592 /* Change number of threads in the team if requested */ 1593 if ( master_set_numthreads ) { // The parallel has num_threads clause 1594 if ( master_set_numthreads < master_th->th.th_teams_size.nth ) { 1595 // AC: only can reduce the number of threads dynamically, cannot increase 1596 kmp_info_t **other_threads = parent_team->t.t_threads; 1597 parent_team->t.t_nproc = master_set_numthreads; 1598 for ( i = 0; i < master_set_numthreads; ++i ) { 1599 other_threads[i]->th.th_team_nproc = master_set_numthreads; 1600 } 1601 // Keep extra threads hot in the team for possible next parallels 1602 } 1603 master_th->th.th_set_nproc = 0; 1604 } 1605 1606 #if USE_DEBUGGER 1607 if ( __kmp_debugging ) { // Let debugger override number of threads. 1608 int nth = __kmp_omp_num_threads( loc ); 1609 if ( nth > 0 ) { // 0 means debugger does not want to change number of threads. 1610 master_set_numthreads = nth; 1611 }; // if 1612 }; // if 1613 #endif 1614 1615 KF_TRACE( 10, ( "__kmp_fork_call: before internal fork: root=%p, team=%p, master_th=%p, gtid=%d\n", root, parent_team, master_th, gtid ) ); 1616 __kmp_internal_fork( loc, gtid, parent_team ); 1617 KF_TRACE( 10, ( "__kmp_fork_call: after internal fork: root=%p, team=%p, master_th=%p, gtid=%d\n", root, parent_team, master_th, gtid ) ); 1618 1619 /* Invoke microtask for MASTER thread */ 1620 KA_TRACE( 20, ("__kmp_fork_call: T#%d(%d:0) invoke microtask = %p\n", 1621 gtid, parent_team->t.t_id, parent_team->t.t_pkfn ) ); 1622 1623 { 1624 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1625 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1626 if (! parent_team->t.t_invoke( gtid )) { 1627 KMP_ASSERT2( 0, "cannot invoke microtask for MASTER thread" ); 1628 } 1629 } 1630 KA_TRACE( 20, ("__kmp_fork_call: T#%d(%d:0) done microtask = %p\n", 1631 gtid, parent_team->t.t_id, parent_team->t.t_pkfn ) ); 1632 KMP_MB(); /* Flush all pending memory write invalidates. */ 1633 1634 KA_TRACE( 20, ("__kmp_fork_call: parallel exit T#%d\n", gtid )); 1635 1636 return TRUE; 1637 } // Parallel closely nested in teams construct 1638 #endif /* OMP_40_ENABLED */ 1639 1640 #if KMP_DEBUG 1641 if ( __kmp_tasking_mode != tskm_immediate_exec ) { 1642 KMP_DEBUG_ASSERT(master_th->th.th_task_team == parent_team->t.t_task_team[master_th->th.th_task_state]); 1643 } 1644 #endif 1645 1646 if ( parent_team->t.t_active_level >= master_th->th.th_current_task->td_icvs.max_active_levels ) { 1647 nthreads = 1; 1648 } else { 1649 #if OMP_40_ENABLED 1650 int enter_teams = ((ap==NULL && active_level==0)||(ap && teams_level>0 && teams_level==level)); 1651 #endif 1652 nthreads = master_set_numthreads ? 1653 master_set_numthreads : get__nproc_2( parent_team, master_tid ); // TODO: get nproc directly from current task 1654 1655 // Check if we need to take forkjoin lock? (no need for serialized parallel out of teams construct). 1656 // This code moved here from __kmp_reserve_threads() to speedup nested serialized parallels. 1657 if (nthreads > 1) { 1658 if ( ( !get__nested(master_th) && (root->r.r_in_parallel 1659 #if OMP_40_ENABLED 1660 && !enter_teams 1661 #endif /* OMP_40_ENABLED */ 1662 ) ) || ( __kmp_library == library_serial ) ) { 1663 KC_TRACE( 10, ( "__kmp_fork_call: T#%d serializing team; requested %d threads\n", 1664 gtid, nthreads )); 1665 nthreads = 1; 1666 } 1667 } 1668 if ( nthreads > 1 ) { 1669 /* determine how many new threads we can use */ 1670 __kmp_acquire_bootstrap_lock( &__kmp_forkjoin_lock ); 1671 1672 nthreads = __kmp_reserve_threads(root, parent_team, master_tid, nthreads 1673 #if OMP_40_ENABLED 1674 /* AC: If we execute teams from parallel region (on host), then teams should be created 1675 but each can only have 1 thread if nesting is disabled. If teams called from serial region, 1676 then teams and their threads should be created regardless of the nesting setting. */ 1677 , enter_teams 1678 #endif /* OMP_40_ENABLED */ 1679 ); 1680 if ( nthreads == 1 ) { 1681 // Free lock for single thread execution here; 1682 // for multi-thread execution it will be freed later 1683 // after team of threads created and initialized 1684 __kmp_release_bootstrap_lock( &__kmp_forkjoin_lock ); 1685 } 1686 } 1687 } 1688 KMP_DEBUG_ASSERT( nthreads > 0 ); 1689 1690 /* If we temporarily changed the set number of threads then restore it now */ 1691 master_th->th.th_set_nproc = 0; 1692 1693 /* create a serialized parallel region? */ 1694 if ( nthreads == 1 ) { 1695 /* josh todo: hypothetical question: what do we do for OS X*? */ 1696 #if KMP_OS_LINUX && ( KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) 1697 void * args[ argc ]; 1698 #else 1699 void * * args = (void**) KMP_ALLOCA( argc * sizeof( void * ) ); 1700 #endif /* KMP_OS_LINUX && ( KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) */ 1701 1702 KA_TRACE( 20, ("__kmp_fork_call: T#%d serializing parallel region\n", gtid )); 1703 1704 __kmpc_serialized_parallel(loc, gtid); 1705 1706 if ( call_context == fork_context_intel ) { 1707 /* TODO this sucks, use the compiler itself to pass args! :) */ 1708 master_th->th.th_serial_team->t.t_ident = loc; 1709 #if OMP_40_ENABLED 1710 if ( !ap ) { 1711 // revert change made in __kmpc_serialized_parallel() 1712 master_th->th.th_serial_team->t.t_level--; 1713 // Get args from parent team for teams construct 1714 1715 #if OMPT_SUPPORT 1716 void *dummy; 1717 void **exit_runtime_p; 1718 1719 ompt_lw_taskteam_t lw_taskteam; 1720 1721 if (ompt_enabled) { 1722 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1723 unwrapped_task, ompt_parallel_id); 1724 lw_taskteam.ompt_task_info.task_id = __ompt_task_id_new(gtid); 1725 exit_runtime_p = &(lw_taskteam.ompt_task_info.frame.exit_runtime_frame); 1726 1727 __ompt_lw_taskteam_link(&lw_taskteam, master_th); 1728 1729 #if OMPT_TRACE 1730 my_task_id = lw_taskteam.ompt_task_info.task_id; 1731 if (ompt_callbacks.ompt_callback(ompt_event_implicit_task_begin)) { 1732 ompt_callbacks.ompt_callback(ompt_event_implicit_task_begin)( 1733 ompt_parallel_id, my_task_id); 1734 } 1735 #endif 1736 1737 /* OMPT state */ 1738 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 1739 } else { 1740 exit_runtime_p = &dummy; 1741 } 1742 #endif 1743 1744 { 1745 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1746 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1747 __kmp_invoke_microtask( microtask, gtid, 0, argc, parent_team->t.t_argv 1748 #if OMPT_SUPPORT 1749 , exit_runtime_p 1750 #endif 1751 ); 1752 } 1753 1754 #if OMPT_SUPPORT 1755 *exit_runtime_p = NULL; 1756 if (ompt_enabled) { 1757 lw_taskteam.ompt_task_info.frame.exit_runtime_frame = NULL; 1758 1759 #if OMPT_TRACE 1760 if (ompt_callbacks.ompt_callback(ompt_event_implicit_task_end)) { 1761 ompt_callbacks.ompt_callback(ompt_event_implicit_task_end)( 1762 ompt_parallel_id, ompt_task_id); 1763 } 1764 #endif 1765 1766 __ompt_lw_taskteam_unlink(master_th); 1767 // reset clear the task id only after unlinking the task 1768 lw_taskteam.ompt_task_info.task_id = ompt_task_id_none; 1769 1770 if (ompt_callbacks.ompt_callback(ompt_event_parallel_end)) { 1771 ompt_callbacks.ompt_callback(ompt_event_parallel_end)( 1772 ompt_parallel_id, ompt_task_id, 1773 OMPT_INVOKER(call_context)); 1774 } 1775 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1776 } 1777 #endif 1778 } else if ( microtask == (microtask_t)__kmp_teams_master ) { 1779 KMP_DEBUG_ASSERT( master_th->th.th_team == master_th->th.th_serial_team ); 1780 team = master_th->th.th_team; 1781 //team->t.t_pkfn = microtask; 1782 team->t.t_invoke = invoker; 1783 __kmp_alloc_argv_entries( argc, team, TRUE ); 1784 team->t.t_argc = argc; 1785 argv = (void**) team->t.t_argv; 1786 if ( ap ) { 1787 for( i=argc-1; i >= 0; --i ) 1788 // TODO: revert workaround for Intel(R) 64 tracker #96 1789 # if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 1790 *argv++ = va_arg( *ap, void * ); 1791 # else 1792 *argv++ = va_arg( ap, void * ); 1793 # endif 1794 } else { 1795 for( i=0; i < argc; ++i ) 1796 // Get args from parent team for teams construct 1797 argv[i] = parent_team->t.t_argv[i]; 1798 } 1799 // AC: revert change made in __kmpc_serialized_parallel() 1800 // because initial code in teams should have level=0 1801 team->t.t_level--; 1802 // AC: call special invoker for outer "parallel" of the teams construct 1803 { 1804 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1805 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1806 invoker(gtid); 1807 } 1808 } else { 1809 #endif /* OMP_40_ENABLED */ 1810 argv = args; 1811 for( i=argc-1; i >= 0; --i ) 1812 // TODO: revert workaround for Intel(R) 64 tracker #96 1813 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 1814 *argv++ = va_arg( *ap, void * ); 1815 #else 1816 *argv++ = va_arg( ap, void * ); 1817 #endif 1818 KMP_MB(); 1819 1820 #if OMPT_SUPPORT 1821 void *dummy; 1822 void **exit_runtime_p; 1823 1824 ompt_lw_taskteam_t lw_taskteam; 1825 1826 if (ompt_enabled) { 1827 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1828 unwrapped_task, ompt_parallel_id); 1829 lw_taskteam.ompt_task_info.task_id = __ompt_task_id_new(gtid); 1830 exit_runtime_p = &(lw_taskteam.ompt_task_info.frame.exit_runtime_frame); 1831 1832 __ompt_lw_taskteam_link(&lw_taskteam, master_th); 1833 1834 #if OMPT_TRACE 1835 /* OMPT implicit task begin */ 1836 my_task_id = lw_taskteam.ompt_task_info.task_id; 1837 my_parallel_id = ompt_parallel_id; 1838 if (ompt_callbacks.ompt_callback(ompt_event_implicit_task_begin)) { 1839 ompt_callbacks.ompt_callback(ompt_event_implicit_task_begin)( 1840 my_parallel_id, my_task_id); 1841 } 1842 #endif 1843 1844 /* OMPT state */ 1845 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 1846 } else { 1847 exit_runtime_p = &dummy; 1848 } 1849 #endif 1850 1851 { 1852 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1853 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1854 __kmp_invoke_microtask( microtask, gtid, 0, argc, args 1855 #if OMPT_SUPPORT 1856 , exit_runtime_p 1857 #endif 1858 ); 1859 } 1860 1861 #if OMPT_SUPPORT 1862 *exit_runtime_p = NULL; 1863 if (ompt_enabled) { 1864 #if OMPT_TRACE 1865 lw_taskteam.ompt_task_info.frame.exit_runtime_frame = NULL; 1866 1867 if (ompt_callbacks.ompt_callback(ompt_event_implicit_task_end)) { 1868 ompt_callbacks.ompt_callback(ompt_event_implicit_task_end)( 1869 my_parallel_id, my_task_id); 1870 } 1871 #endif 1872 1873 __ompt_lw_taskteam_unlink(master_th); 1874 // reset clear the task id only after unlinking the task 1875 lw_taskteam.ompt_task_info.task_id = ompt_task_id_none; 1876 1877 if (ompt_callbacks.ompt_callback(ompt_event_parallel_end)) { 1878 ompt_callbacks.ompt_callback(ompt_event_parallel_end)( 1879 ompt_parallel_id, ompt_task_id, 1880 OMPT_INVOKER(call_context)); 1881 } 1882 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1883 } 1884 #endif 1885 #if OMP_40_ENABLED 1886 } 1887 #endif /* OMP_40_ENABLED */ 1888 } 1889 else if ( call_context == fork_context_gnu ) { 1890 #if OMPT_SUPPORT 1891 ompt_lw_taskteam_t *lwt = (ompt_lw_taskteam_t *) 1892 __kmp_allocate(sizeof(ompt_lw_taskteam_t)); 1893 __ompt_lw_taskteam_init(lwt, master_th, gtid, 1894 unwrapped_task, ompt_parallel_id); 1895 1896 lwt->ompt_task_info.task_id = __ompt_task_id_new(gtid); 1897 lwt->ompt_task_info.frame.exit_runtime_frame = NULL; 1898 __ompt_lw_taskteam_link(lwt, master_th); 1899 #endif 1900 1901 // we were called from GNU native code 1902 KA_TRACE( 20, ("__kmp_fork_call: T#%d serial exit\n", gtid )); 1903 return FALSE; 1904 } 1905 else { 1906 KMP_ASSERT2( call_context < fork_context_last, "__kmp_fork_call: unknown fork_context parameter" ); 1907 } 1908 1909 1910 KA_TRACE( 20, ("__kmp_fork_call: T#%d serial exit\n", gtid )); 1911 KMP_MB(); 1912 return FALSE; 1913 } 1914 1915 // GEH: only modify the executing flag in the case when not serialized 1916 // serialized case is handled in kmpc_serialized_parallel 1917 KF_TRACE( 10, ( "__kmp_fork_call: parent_team_aclevel=%d, master_th=%p, curtask=%p, curtask_max_aclevel=%d\n", 1918 parent_team->t.t_active_level, master_th, master_th->th.th_current_task, 1919 master_th->th.th_current_task->td_icvs.max_active_levels ) ); 1920 // TODO: GEH - cannot do this assertion because root thread not set up as executing 1921 // KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 1 ); 1922 master_th->th.th_current_task->td_flags.executing = 0; 1923 1924 #if OMP_40_ENABLED 1925 if ( !master_th->th.th_teams_microtask || level > teams_level ) 1926 #endif /* OMP_40_ENABLED */ 1927 { 1928 /* Increment our nested depth level */ 1929 KMP_TEST_THEN_INC32( (kmp_int32*) &root->r.r_in_parallel ); 1930 } 1931 1932 // See if we need to make a copy of the ICVs. 1933 int nthreads_icv = master_th->th.th_current_task->td_icvs.nproc; 1934 if ((level+1 < __kmp_nested_nth.used) && (__kmp_nested_nth.nth[level+1] != nthreads_icv)) { 1935 nthreads_icv = __kmp_nested_nth.nth[level+1]; 1936 } 1937 else { 1938 nthreads_icv = 0; // don't update 1939 } 1940 1941 #if OMP_40_ENABLED 1942 // Figure out the proc_bind_policy for the new team. 1943 kmp_proc_bind_t proc_bind = master_th->th.th_set_proc_bind; 1944 kmp_proc_bind_t proc_bind_icv = proc_bind_default; // proc_bind_default means don't update 1945 if ( master_th->th.th_current_task->td_icvs.proc_bind == proc_bind_false ) { 1946 proc_bind = proc_bind_false; 1947 } 1948 else { 1949 if (proc_bind == proc_bind_default) { 1950 // No proc_bind clause specified; use current proc-bind-var for this parallel region 1951 proc_bind = master_th->th.th_current_task->td_icvs.proc_bind; 1952 } 1953 /* else: The proc_bind policy was specified explicitly on parallel clause. This 1954 overrides proc-bind-var for this parallel region, but does not change proc-bind-var. */ 1955 // Figure the value of proc-bind-var for the child threads. 1956 if ((level+1 < __kmp_nested_proc_bind.used) 1957 && (__kmp_nested_proc_bind.bind_types[level+1] != master_th->th.th_current_task->td_icvs.proc_bind)) { 1958 proc_bind_icv = __kmp_nested_proc_bind.bind_types[level+1]; 1959 } 1960 } 1961 1962 // Reset for next parallel region 1963 master_th->th.th_set_proc_bind = proc_bind_default; 1964 #endif /* OMP_40_ENABLED */ 1965 1966 if ((nthreads_icv > 0) 1967 #if OMP_40_ENABLED 1968 || (proc_bind_icv != proc_bind_default) 1969 #endif /* OMP_40_ENABLED */ 1970 ) { 1971 kmp_internal_control_t new_icvs; 1972 copy_icvs(&new_icvs, &master_th->th.th_current_task->td_icvs); 1973 new_icvs.next = NULL; 1974 if (nthreads_icv > 0) { 1975 new_icvs.nproc = nthreads_icv; 1976 } 1977 1978 #if OMP_40_ENABLED 1979 if (proc_bind_icv != proc_bind_default) { 1980 new_icvs.proc_bind = proc_bind_icv; 1981 } 1982 #endif /* OMP_40_ENABLED */ 1983 1984 /* allocate a new parallel team */ 1985 KF_TRACE( 10, ( "__kmp_fork_call: before __kmp_allocate_team\n" ) ); 1986 team = __kmp_allocate_team(root, nthreads, nthreads, 1987 #if OMPT_SUPPORT 1988 ompt_parallel_id, 1989 #endif 1990 #if OMP_40_ENABLED 1991 proc_bind, 1992 #endif 1993 &new_icvs, argc USE_NESTED_HOT_ARG(master_th) ); 1994 } else { 1995 /* allocate a new parallel team */ 1996 KF_TRACE( 10, ( "__kmp_fork_call: before __kmp_allocate_team\n" ) ); 1997 team = __kmp_allocate_team(root, nthreads, nthreads, 1998 #if OMPT_SUPPORT 1999 ompt_parallel_id, 2000 #endif 2001 #if OMP_40_ENABLED 2002 proc_bind, 2003 #endif 2004 &master_th->th.th_current_task->td_icvs, argc 2005 USE_NESTED_HOT_ARG(master_th) ); 2006 } 2007 KF_TRACE( 10, ( "__kmp_fork_call: after __kmp_allocate_team - team = %p\n", team ) ); 2008 2009 /* setup the new team */ 2010 KMP_CHECK_UPDATE(team->t.t_master_tid, master_tid); 2011 KMP_CHECK_UPDATE(team->t.t_master_this_cons, master_this_cons); 2012 KMP_CHECK_UPDATE(team->t.t_ident, loc); 2013 KMP_CHECK_UPDATE(team->t.t_parent, parent_team); 2014 KMP_CHECK_UPDATE_SYNC(team->t.t_pkfn, microtask); 2015 #if OMPT_SUPPORT 2016 KMP_CHECK_UPDATE_SYNC(team->t.ompt_team_info.microtask, unwrapped_task); 2017 #endif 2018 KMP_CHECK_UPDATE(team->t.t_invoke, invoker); /* TODO move this to root, maybe */ 2019 // TODO: parent_team->t.t_level == INT_MAX ??? 2020 #if OMP_40_ENABLED 2021 if ( !master_th->th.th_teams_microtask || level > teams_level ) { 2022 #endif /* OMP_40_ENABLED */ 2023 int new_level = parent_team->t.t_level + 1; 2024 KMP_CHECK_UPDATE(team->t.t_level, new_level); 2025 new_level = parent_team->t.t_active_level + 1; 2026 KMP_CHECK_UPDATE(team->t.t_active_level, new_level); 2027 #if OMP_40_ENABLED 2028 } else { 2029 // AC: Do not increase parallel level at start of the teams construct 2030 int new_level = parent_team->t.t_level; 2031 KMP_CHECK_UPDATE(team->t.t_level, new_level); 2032 new_level = parent_team->t.t_active_level; 2033 KMP_CHECK_UPDATE(team->t.t_active_level, new_level); 2034 } 2035 #endif /* OMP_40_ENABLED */ 2036 kmp_r_sched_t new_sched = get__sched_2(parent_team, master_tid); 2037 if (team->t.t_sched.r_sched_type != new_sched.r_sched_type || team->t.t_sched.chunk != new_sched.chunk) 2038 team->t.t_sched = new_sched; // set master's schedule as new run-time schedule 2039 2040 #if OMP_40_ENABLED 2041 KMP_CHECK_UPDATE(team->t.t_cancel_request, cancel_noreq); 2042 #endif 2043 2044 // Update the floating point rounding in the team if required. 2045 propagateFPControl(team); 2046 2047 if ( __kmp_tasking_mode != tskm_immediate_exec ) { 2048 // Set master's task team to team's task team. Unless this is hot team, it should be NULL. 2049 #if 0 2050 // Patch out an assertion that trips while the runtime seems to operate correctly. 2051 // Avoiding the preconditions that cause the assertion to trip has been promised as a forthcoming patch. 2052 KMP_DEBUG_ASSERT(master_th->th.th_task_team == parent_team->t.t_task_team[master_th->th.th_task_state]); 2053 #endif 2054 KA_TRACE( 20, ( "__kmp_fork_call: Master T#%d pushing task_team %p / team %p, new task_team %p / team %p\n", 2055 __kmp_gtid_from_thread( master_th ), master_th->th.th_task_team, 2056 parent_team, team->t.t_task_team[master_th->th.th_task_state], team ) ); 2057 2058 if ( active_level || master_th->th.th_task_team ) { 2059 // Take a memo of master's task_state 2060 KMP_DEBUG_ASSERT(master_th->th.th_task_state_memo_stack); 2061 if (master_th->th.th_task_state_top >= master_th->th.th_task_state_stack_sz) { // increase size 2062 kmp_uint32 new_size = 2*master_th->th.th_task_state_stack_sz; 2063 kmp_uint8 *old_stack, *new_stack; 2064 kmp_uint32 i; 2065 new_stack = (kmp_uint8 *)__kmp_allocate(new_size); 2066 for (i=0; i<master_th->th.th_task_state_stack_sz; ++i) { 2067 new_stack[i] = master_th->th.th_task_state_memo_stack[i]; 2068 } 2069 for (i=master_th->th.th_task_state_stack_sz; i<new_size; ++i) { // zero-init rest of stack 2070 new_stack[i] = 0; 2071 } 2072 old_stack = master_th->th.th_task_state_memo_stack; 2073 master_th->th.th_task_state_memo_stack = new_stack; 2074 master_th->th.th_task_state_stack_sz = new_size; 2075 __kmp_free(old_stack); 2076 } 2077 // Store master's task_state on stack 2078 master_th->th.th_task_state_memo_stack[master_th->th.th_task_state_top] = master_th->th.th_task_state; 2079 master_th->th.th_task_state_top++; 2080 #if KMP_NESTED_HOT_TEAMS 2081 if (team == master_th->th.th_hot_teams[active_level].hot_team) { // Restore master's nested state if nested hot team 2082 master_th->th.th_task_state = master_th->th.th_task_state_memo_stack[master_th->th.th_task_state_top]; 2083 } 2084 else { 2085 #endif 2086 master_th->th.th_task_state = 0; 2087 #if KMP_NESTED_HOT_TEAMS 2088 } 2089 #endif 2090 } 2091 #if !KMP_NESTED_HOT_TEAMS 2092 KMP_DEBUG_ASSERT((master_th->th.th_task_team == NULL) || (team == root->r.r_hot_team)); 2093 #endif 2094 } 2095 2096 KA_TRACE( 20, ("__kmp_fork_call: T#%d(%d:%d)->(%d:0) created a team of %d threads\n", 2097 gtid, parent_team->t.t_id, team->t.t_master_tid, team->t.t_id, team->t.t_nproc )); 2098 KMP_DEBUG_ASSERT( team != root->r.r_hot_team || 2099 ( team->t.t_master_tid == 0 && 2100 ( team->t.t_parent == root->r.r_root_team || team->t.t_parent->t.t_serialized ) )); 2101 KMP_MB(); 2102 2103 /* now, setup the arguments */ 2104 argv = (void**)team->t.t_argv; 2105 #if OMP_40_ENABLED 2106 if ( ap ) { 2107 #endif /* OMP_40_ENABLED */ 2108 for ( i=argc-1; i >= 0; --i ) { 2109 // TODO: revert workaround for Intel(R) 64 tracker #96 2110 #if (KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) && KMP_OS_LINUX 2111 void *new_argv = va_arg(*ap, void *); 2112 #else 2113 void *new_argv = va_arg(ap, void *); 2114 #endif 2115 KMP_CHECK_UPDATE(*argv, new_argv); 2116 argv++; 2117 } 2118 #if OMP_40_ENABLED 2119 } else { 2120 for ( i=0; i < argc; ++i ) { 2121 // Get args from parent team for teams construct 2122 KMP_CHECK_UPDATE(argv[i], team->t.t_parent->t.t_argv[i]); 2123 } 2124 } 2125 #endif /* OMP_40_ENABLED */ 2126 2127 /* now actually fork the threads */ 2128 KMP_CHECK_UPDATE(team->t.t_master_active, master_active); 2129 if (!root->r.r_active) // Only do assignment if it prevents cache ping-pong 2130 root->r.r_active = TRUE; 2131 2132 __kmp_fork_team_threads( root, team, master_th, gtid ); 2133 __kmp_setup_icv_copy( team, nthreads, &master_th->th.th_current_task->td_icvs, loc ); 2134 2135 #if OMPT_SUPPORT 2136 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 2137 #endif 2138 2139 __kmp_release_bootstrap_lock( &__kmp_forkjoin_lock ); 2140 2141 #if USE_ITT_BUILD 2142 if ( team->t.t_active_level == 1 // only report frames at level 1 2143 # if OMP_40_ENABLED 2144 && !master_th->th.th_teams_microtask // not in teams construct 2145 # endif /* OMP_40_ENABLED */ 2146 ) { 2147 #if USE_ITT_NOTIFY 2148 if ( ( __itt_frame_submit_v3_ptr || KMP_ITT_DEBUG ) && 2149 ( __kmp_forkjoin_frames_mode == 3 || __kmp_forkjoin_frames_mode == 1 ) ) 2150 { 2151 kmp_uint64 tmp_time = 0; 2152 if ( __itt_get_timestamp_ptr ) 2153 tmp_time = __itt_get_timestamp(); 2154 // Internal fork - report frame begin 2155 master_th->th.th_frame_time = tmp_time; 2156 if ( __kmp_forkjoin_frames_mode == 3 ) 2157 team->t.t_region_time = tmp_time; 2158 } else // only one notification scheme (either "submit" or "forking/joined", not both) 2159 #endif /* USE_ITT_NOTIFY */ 2160 if ( ( __itt_frame_begin_v3_ptr || KMP_ITT_DEBUG ) && 2161 __kmp_forkjoin_frames && !__kmp_forkjoin_frames_mode ) 2162 { // Mark start of "parallel" region for VTune. 2163 __kmp_itt_region_forking(gtid, team->t.t_nproc, 0); 2164 } 2165 } 2166 #endif /* USE_ITT_BUILD */ 2167 2168 /* now go on and do the work */ 2169 KMP_DEBUG_ASSERT( team == __kmp_threads[gtid]->th.th_team ); 2170 KMP_MB(); 2171 KF_TRACE(10, ("__kmp_internal_fork : root=%p, team=%p, master_th=%p, gtid=%d\n", 2172 root, team, master_th, gtid)); 2173 2174 #if USE_ITT_BUILD 2175 if ( __itt_stack_caller_create_ptr ) { 2176 team->t.t_stack_id = __kmp_itt_stack_caller_create(); // create new stack stitching id before entering fork barrier 2177 } 2178 #endif /* USE_ITT_BUILD */ 2179 2180 #if OMP_40_ENABLED 2181 if ( ap ) // AC: skip __kmp_internal_fork at teams construct, let only master threads execute 2182 #endif /* OMP_40_ENABLED */ 2183 { 2184 __kmp_internal_fork( loc, gtid, team ); 2185 KF_TRACE(10, ("__kmp_internal_fork : after : root=%p, team=%p, master_th=%p, gtid=%d\n", 2186 root, team, master_th, gtid)); 2187 } 2188 2189 if (call_context == fork_context_gnu) { 2190 KA_TRACE( 20, ("__kmp_fork_call: parallel exit T#%d\n", gtid )); 2191 return TRUE; 2192 } 2193 2194 /* Invoke microtask for MASTER thread */ 2195 KA_TRACE( 20, ("__kmp_fork_call: T#%d(%d:0) invoke microtask = %p\n", 2196 gtid, team->t.t_id, team->t.t_pkfn ) ); 2197 } // END of timer KMP_fork_call block 2198 2199 { 2200 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 2201 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 2202 if (! team->t.t_invoke( gtid )) { 2203 KMP_ASSERT2( 0, "cannot invoke microtask for MASTER thread" ); 2204 } 2205 } 2206 KA_TRACE( 20, ("__kmp_fork_call: T#%d(%d:0) done microtask = %p\n", 2207 gtid, team->t.t_id, team->t.t_pkfn ) ); 2208 KMP_MB(); /* Flush all pending memory write invalidates. */ 2209 2210 KA_TRACE( 20, ("__kmp_fork_call: parallel exit T#%d\n", gtid )); 2211 2212 #if OMPT_SUPPORT 2213 if (ompt_enabled) { 2214 master_th->th.ompt_thread_info.state = ompt_state_overhead; 2215 } 2216 #endif 2217 2218 return TRUE; 2219 } 2220 2221 #if OMPT_SUPPORT 2222 static inline void 2223 __kmp_join_restore_state( 2224 kmp_info_t *thread, 2225 kmp_team_t *team) 2226 { 2227 // restore state outside the region 2228 thread->th.ompt_thread_info.state = ((team->t.t_serialized) ? 2229 ompt_state_work_serial : ompt_state_work_parallel); 2230 } 2231 2232 static inline void 2233 __kmp_join_ompt( 2234 kmp_info_t *thread, 2235 kmp_team_t *team, 2236 ompt_parallel_id_t parallel_id, 2237 fork_context_e fork_context) 2238 { 2239 ompt_task_info_t *task_info = __ompt_get_taskinfo(0); 2240 if (ompt_callbacks.ompt_callback(ompt_event_parallel_end)) { 2241 ompt_callbacks.ompt_callback(ompt_event_parallel_end)( 2242 parallel_id, task_info->task_id, OMPT_INVOKER(fork_context)); 2243 } 2244 2245 task_info->frame.reenter_runtime_frame = NULL; 2246 __kmp_join_restore_state(thread,team); 2247 } 2248 #endif 2249 2250 void 2251 __kmp_join_call(ident_t *loc, int gtid 2252 #if OMPT_SUPPORT 2253 , enum fork_context_e fork_context 2254 #endif 2255 #if OMP_40_ENABLED 2256 , int exit_teams 2257 #endif /* OMP_40_ENABLED */ 2258 ) 2259 { 2260 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_join_call); 2261 kmp_team_t *team; 2262 kmp_team_t *parent_team; 2263 kmp_info_t *master_th; 2264 kmp_root_t *root; 2265 int master_active; 2266 int i; 2267 2268 KA_TRACE( 20, ("__kmp_join_call: enter T#%d\n", gtid )); 2269 2270 /* setup current data */ 2271 master_th = __kmp_threads[ gtid ]; 2272 root = master_th->th.th_root; 2273 team = master_th->th.th_team; 2274 parent_team = team->t.t_parent; 2275 2276 master_th->th.th_ident = loc; 2277 2278 #if OMPT_SUPPORT 2279 if (ompt_enabled) { 2280 master_th->th.ompt_thread_info.state = ompt_state_overhead; 2281 } 2282 #endif 2283 2284 #if KMP_DEBUG 2285 if ( __kmp_tasking_mode != tskm_immediate_exec ) { 2286 KA_TRACE( 20, ( "__kmp_join_call: T#%d, old team = %p old task_team = %p, th_task_team = %p\n", 2287 __kmp_gtid_from_thread( master_th ), team, 2288 team->t.t_task_team[master_th->th.th_task_state], master_th->th.th_task_team) ); 2289 KMP_DEBUG_ASSERT( master_th->th.th_task_team == team->t.t_task_team[master_th->th.th_task_state] ); 2290 } 2291 #endif 2292 2293 if( team->t.t_serialized ) { 2294 #if OMP_40_ENABLED 2295 if ( master_th->th.th_teams_microtask ) { 2296 // We are in teams construct 2297 int level = team->t.t_level; 2298 int tlevel = master_th->th.th_teams_level; 2299 if ( level == tlevel ) { 2300 // AC: we haven't incremented it earlier at start of teams construct, 2301 // so do it here - at the end of teams construct 2302 team->t.t_level++; 2303 } else if ( level == tlevel + 1 ) { 2304 // AC: we are exiting parallel inside teams, need to increment serialization 2305 // in order to restore it in the next call to __kmpc_end_serialized_parallel 2306 team->t.t_serialized++; 2307 } 2308 } 2309 #endif /* OMP_40_ENABLED */ 2310 __kmpc_end_serialized_parallel( loc, gtid ); 2311 2312 #if OMPT_SUPPORT 2313 if (ompt_enabled) { 2314 __kmp_join_restore_state(master_th, parent_team); 2315 } 2316 #endif 2317 2318 return; 2319 } 2320 2321 master_active = team->t.t_master_active; 2322 2323 #if OMP_40_ENABLED 2324 if (!exit_teams) 2325 #endif /* OMP_40_ENABLED */ 2326 { 2327 // AC: No barrier for internal teams at exit from teams construct. 2328 // But there is barrier for external team (league). 2329 __kmp_internal_join( loc, gtid, team ); 2330 } 2331 #if OMP_40_ENABLED 2332 else { 2333 master_th->th.th_task_state = 0; // AC: no tasking in teams (out of any parallel) 2334 } 2335 #endif /* OMP_40_ENABLED */ 2336 2337 KMP_MB(); 2338 2339 #if OMPT_SUPPORT 2340 ompt_parallel_id_t parallel_id = team->t.ompt_team_info.parallel_id; 2341 #endif 2342 2343 #if USE_ITT_BUILD 2344 if ( __itt_stack_caller_create_ptr ) { 2345 __kmp_itt_stack_caller_destroy( (__itt_caller)team->t.t_stack_id ); // destroy the stack stitching id after join barrier 2346 } 2347 2348 // Mark end of "parallel" region for VTune. 2349 if ( team->t.t_active_level == 1 2350 # if OMP_40_ENABLED 2351 && !master_th->th.th_teams_microtask /* not in teams construct */ 2352 # endif /* OMP_40_ENABLED */ 2353 ) { 2354 master_th->th.th_ident = loc; 2355 // only one notification scheme (either "submit" or "forking/joined", not both) 2356 if ( ( __itt_frame_submit_v3_ptr || KMP_ITT_DEBUG ) && __kmp_forkjoin_frames_mode == 3 ) 2357 __kmp_itt_frame_submit( gtid, team->t.t_region_time, master_th->th.th_frame_time, 2358 0, loc, master_th->th.th_team_nproc, 1 ); 2359 else if ( ( __itt_frame_end_v3_ptr || KMP_ITT_DEBUG ) && 2360 ! __kmp_forkjoin_frames_mode && __kmp_forkjoin_frames ) 2361 __kmp_itt_region_joined( gtid ); 2362 } // active_level == 1 2363 #endif /* USE_ITT_BUILD */ 2364 2365 #if OMP_40_ENABLED 2366 if ( master_th->th.th_teams_microtask && 2367 !exit_teams && 2368 team->t.t_pkfn != (microtask_t)__kmp_teams_master && 2369 team->t.t_level == master_th->th.th_teams_level + 1 ) { 2370 // AC: We need to leave the team structure intact at the end 2371 // of parallel inside the teams construct, so that at the next 2372 // parallel same (hot) team works, only adjust nesting levels 2373 2374 /* Decrement our nested depth level */ 2375 team->t.t_level --; 2376 team->t.t_active_level --; 2377 KMP_TEST_THEN_DEC32( (kmp_int32*) &root->r.r_in_parallel ); 2378 2379 /* Restore number of threads in the team if needed */ 2380 if ( master_th->th.th_team_nproc < master_th->th.th_teams_size.nth ) { 2381 int old_num = master_th->th.th_team_nproc; 2382 int new_num = master_th->th.th_teams_size.nth; 2383 kmp_info_t **other_threads = team->t.t_threads; 2384 team->t.t_nproc = new_num; 2385 for ( i = 0; i < old_num; ++i ) { 2386 other_threads[i]->th.th_team_nproc = new_num; 2387 } 2388 // Adjust states of non-used threads of the team 2389 for ( i = old_num; i < new_num; ++i ) { 2390 // Re-initialize thread's barrier data. 2391 int b; 2392 kmp_balign_t * balign = other_threads[i]->th.th_bar; 2393 for ( b = 0; b < bs_last_barrier; ++ b ) { 2394 balign[ b ].bb.b_arrived = team->t.t_bar[ b ].b_arrived; 2395 KMP_DEBUG_ASSERT(balign[ b ].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 2396 #if USE_DEBUGGER 2397 balign[ b ].bb.b_worker_arrived = team->t.t_bar[ b ].b_team_arrived; 2398 #endif 2399 } 2400 if ( __kmp_tasking_mode != tskm_immediate_exec ) { 2401 // Synchronize thread's task state 2402 other_threads[i]->th.th_task_state = master_th->th.th_task_state; 2403 } 2404 } 2405 } 2406 2407 #if OMPT_SUPPORT 2408 if (ompt_enabled) { 2409 __kmp_join_ompt(master_th, parent_team, parallel_id, fork_context); 2410 } 2411 #endif 2412 2413 return; 2414 } 2415 #endif /* OMP_40_ENABLED */ 2416 2417 /* do cleanup and restore the parent team */ 2418 master_th->th.th_info .ds.ds_tid = team->t.t_master_tid; 2419 master_th->th.th_local.this_construct = team->t.t_master_this_cons; 2420 2421 master_th->th.th_dispatch = 2422 & parent_team->t.t_dispatch[ team->t.t_master_tid ]; 2423 2424 /* jc: The following lock has instructions with REL and ACQ semantics, 2425 separating the parallel user code called in this parallel region 2426 from the serial user code called after this function returns. 2427 */ 2428 __kmp_acquire_bootstrap_lock( &__kmp_forkjoin_lock ); 2429 2430 #if OMP_40_ENABLED 2431 if ( !master_th->th.th_teams_microtask || team->t.t_level > master_th->th.th_teams_level ) 2432 #endif /* OMP_40_ENABLED */ 2433 { 2434 /* Decrement our nested depth level */ 2435 KMP_TEST_THEN_DEC32( (kmp_int32*) &root->r.r_in_parallel ); 2436 } 2437 KMP_DEBUG_ASSERT( root->r.r_in_parallel >= 0 ); 2438 2439 #if OMPT_SUPPORT && OMPT_TRACE 2440 if(ompt_enabled){ 2441 ompt_task_info_t *task_info = __ompt_get_taskinfo(0); 2442 if (ompt_callbacks.ompt_callback(ompt_event_implicit_task_end)) { 2443 ompt_callbacks.ompt_callback(ompt_event_implicit_task_end)( 2444 parallel_id, task_info->task_id); 2445 } 2446 task_info->frame.exit_runtime_frame = NULL; 2447 task_info->task_id = 0; 2448 } 2449 #endif 2450 2451 KF_TRACE( 10, ("__kmp_join_call1: T#%d, this_thread=%p team=%p\n", 2452 0, master_th, team ) ); 2453 __kmp_pop_current_task_from_thread( master_th ); 2454 2455 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 2456 // 2457 // Restore master thread's partition. 2458 // 2459 master_th->th.th_first_place = team->t.t_first_place; 2460 master_th->th.th_last_place = team->t.t_last_place; 2461 #endif /* OMP_40_ENABLED */ 2462 2463 updateHWFPControl (team); 2464 2465 if ( root->r.r_active != master_active ) 2466 root->r.r_active = master_active; 2467 2468 __kmp_free_team( root, team USE_NESTED_HOT_ARG(master_th) ); // this will free worker threads 2469 2470 /* this race was fun to find. make sure the following is in the critical 2471 * region otherwise assertions may fail occasionally since the old team 2472 * may be reallocated and the hierarchy appears inconsistent. it is 2473 * actually safe to run and won't cause any bugs, but will cause those 2474 * assertion failures. it's only one deref&assign so might as well put this 2475 * in the critical region */ 2476 master_th->th.th_team = parent_team; 2477 master_th->th.th_team_nproc = parent_team->t.t_nproc; 2478 master_th->th.th_team_master = parent_team->t.t_threads[0]; 2479 master_th->th.th_team_serialized = parent_team->t.t_serialized; 2480 2481 /* restore serialized team, if need be */ 2482 if( parent_team->t.t_serialized && 2483 parent_team != master_th->th.th_serial_team && 2484 parent_team != root->r.r_root_team ) { 2485 __kmp_free_team( root, master_th->th.th_serial_team USE_NESTED_HOT_ARG(NULL) ); 2486 master_th->th.th_serial_team = parent_team; 2487 } 2488 2489 if ( __kmp_tasking_mode != tskm_immediate_exec ) { 2490 if (master_th->th.th_task_state_top > 0) { // Restore task state from memo stack 2491 KMP_DEBUG_ASSERT(master_th->th.th_task_state_memo_stack); 2492 // Remember master's state if we re-use this nested hot team 2493 master_th->th.th_task_state_memo_stack[master_th->th.th_task_state_top] = master_th->th.th_task_state; 2494 --master_th->th.th_task_state_top; // pop 2495 // Now restore state at this level 2496 master_th->th.th_task_state = master_th->th.th_task_state_memo_stack[master_th->th.th_task_state_top]; 2497 } 2498 // Copy the task team from the parent team to the master thread 2499 master_th->th.th_task_team = parent_team->t.t_task_team[master_th->th.th_task_state]; 2500 KA_TRACE( 20, ( "__kmp_join_call: Master T#%d restoring task_team %p / team %p\n", 2501 __kmp_gtid_from_thread( master_th ), master_th->th.th_task_team, parent_team ) ); 2502 } 2503 2504 // TODO: GEH - cannot do this assertion because root thread not set up as executing 2505 // KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 0 ); 2506 master_th->th.th_current_task->td_flags.executing = 1; 2507 2508 __kmp_release_bootstrap_lock( &__kmp_forkjoin_lock ); 2509 2510 #if OMPT_SUPPORT 2511 if (ompt_enabled) { 2512 __kmp_join_ompt(master_th, parent_team, parallel_id, fork_context); 2513 } 2514 #endif 2515 2516 KMP_MB(); 2517 KA_TRACE( 20, ("__kmp_join_call: exit T#%d\n", gtid )); 2518 } 2519 2520 /* ------------------------------------------------------------------------ */ 2521 /* ------------------------------------------------------------------------ */ 2522 2523 /* Check whether we should push an internal control record onto the 2524 serial team stack. If so, do it. */ 2525 void 2526 __kmp_save_internal_controls ( kmp_info_t * thread ) 2527 { 2528 2529 if ( thread->th.th_team != thread->th.th_serial_team ) { 2530 return; 2531 } 2532 if (thread->th.th_team->t.t_serialized > 1) { 2533 int push = 0; 2534 2535 if (thread->th.th_team->t.t_control_stack_top == NULL) { 2536 push = 1; 2537 } else { 2538 if ( thread->th.th_team->t.t_control_stack_top->serial_nesting_level != 2539 thread->th.th_team->t.t_serialized ) { 2540 push = 1; 2541 } 2542 } 2543 if (push) { /* push a record on the serial team's stack */ 2544 kmp_internal_control_t * control = (kmp_internal_control_t *) __kmp_allocate(sizeof(kmp_internal_control_t)); 2545 2546 copy_icvs( control, & thread->th.th_current_task->td_icvs ); 2547 2548 control->serial_nesting_level = thread->th.th_team->t.t_serialized; 2549 2550 control->next = thread->th.th_team->t.t_control_stack_top; 2551 thread->th.th_team->t.t_control_stack_top = control; 2552 } 2553 } 2554 } 2555 2556 /* Changes set_nproc */ 2557 void 2558 __kmp_set_num_threads( int new_nth, int gtid ) 2559 { 2560 kmp_info_t *thread; 2561 kmp_root_t *root; 2562 2563 KF_TRACE( 10, ("__kmp_set_num_threads: new __kmp_nth = %d\n", new_nth )); 2564 KMP_DEBUG_ASSERT( __kmp_init_serial ); 2565 2566 if (new_nth < 1) 2567 new_nth = 1; 2568 else if (new_nth > __kmp_max_nth) 2569 new_nth = __kmp_max_nth; 2570 2571 KMP_COUNT_VALUE(OMP_set_numthreads, new_nth); 2572 thread = __kmp_threads[gtid]; 2573 2574 __kmp_save_internal_controls( thread ); 2575 2576 set__nproc( thread, new_nth ); 2577 2578 // 2579 // If this omp_set_num_threads() call will cause the hot team size to be 2580 // reduced (in the absence of a num_threads clause), then reduce it now, 2581 // rather than waiting for the next parallel region. 2582 // 2583 root = thread->th.th_root; 2584 if ( __kmp_init_parallel && ( ! root->r.r_active ) 2585 && ( root->r.r_hot_team->t.t_nproc > new_nth ) 2586 #if KMP_NESTED_HOT_TEAMS 2587 && __kmp_hot_teams_max_level && !__kmp_hot_teams_mode 2588 #endif 2589 ) { 2590 kmp_team_t *hot_team = root->r.r_hot_team; 2591 int f; 2592 2593 __kmp_acquire_bootstrap_lock( &__kmp_forkjoin_lock ); 2594 2595 // Release the extra threads we don't need any more. 2596 for ( f = new_nth; f < hot_team->t.t_nproc; f++ ) { 2597 KMP_DEBUG_ASSERT( hot_team->t.t_threads[f] != NULL ); 2598 if ( __kmp_tasking_mode != tskm_immediate_exec) { 2599 // When decreasing team size, threads no longer in the team should unref task team. 2600 hot_team->t.t_threads[f]->th.th_task_team = NULL; 2601 } 2602 __kmp_free_thread( hot_team->t.t_threads[f] ); 2603 hot_team->t.t_threads[f] = NULL; 2604 } 2605 hot_team->t.t_nproc = new_nth; 2606 #if KMP_NESTED_HOT_TEAMS 2607 if( thread->th.th_hot_teams ) { 2608 KMP_DEBUG_ASSERT( hot_team == thread->th.th_hot_teams[0].hot_team ); 2609 thread->th.th_hot_teams[0].hot_team_nth = new_nth; 2610 } 2611 #endif 2612 2613 __kmp_release_bootstrap_lock( &__kmp_forkjoin_lock ); 2614 2615 // 2616 // Update the t_nproc field in the threads that are still active. 2617 // 2618 for( f=0 ; f < new_nth; f++ ) { 2619 KMP_DEBUG_ASSERT( hot_team->t.t_threads[f] != NULL ); 2620 hot_team->t.t_threads[f]->th.th_team_nproc = new_nth; 2621 } 2622 // Special flag in case omp_set_num_threads() call 2623 hot_team->t.t_size_changed = -1; 2624 } 2625 } 2626 2627 /* Changes max_active_levels */ 2628 void 2629 __kmp_set_max_active_levels( int gtid, int max_active_levels ) 2630 { 2631 kmp_info_t *thread; 2632 2633 KF_TRACE( 10, ( "__kmp_set_max_active_levels: new max_active_levels for thread %d = (%d)\n", gtid, max_active_levels ) ); 2634 KMP_DEBUG_ASSERT( __kmp_init_serial ); 2635 2636 // validate max_active_levels 2637 if( max_active_levels < 0 ) { 2638 KMP_WARNING( ActiveLevelsNegative, max_active_levels ); 2639 // We ignore this call if the user has specified a negative value. 2640 // The current setting won't be changed. The last valid setting will be used. 2641 // A warning will be issued (if warnings are allowed as controlled by the KMP_WARNINGS env var). 2642 KF_TRACE( 10, ( "__kmp_set_max_active_levels: the call is ignored: new max_active_levels for thread %d = (%d)\n", gtid, max_active_levels ) ); 2643 return; 2644 } 2645 if( max_active_levels <= KMP_MAX_ACTIVE_LEVELS_LIMIT ) { 2646 // it's OK, the max_active_levels is within the valid range: [ 0; KMP_MAX_ACTIVE_LEVELS_LIMIT ] 2647 // We allow a zero value. (implementation defined behavior) 2648 } else { 2649 KMP_WARNING( ActiveLevelsExceedLimit, max_active_levels, KMP_MAX_ACTIVE_LEVELS_LIMIT ); 2650 max_active_levels = KMP_MAX_ACTIVE_LEVELS_LIMIT; 2651 // Current upper limit is MAX_INT. (implementation defined behavior) 2652 // If the input exceeds the upper limit, we correct the input to be the upper limit. (implementation defined behavior) 2653 // Actually, the flow should never get here until we use MAX_INT limit. 2654 } 2655 KF_TRACE( 10, ( "__kmp_set_max_active_levels: after validation: new max_active_levels for thread %d = (%d)\n", gtid, max_active_levels ) ); 2656 2657 thread = __kmp_threads[ gtid ]; 2658 2659 __kmp_save_internal_controls( thread ); 2660 2661 set__max_active_levels( thread, max_active_levels ); 2662 2663 } 2664 2665 /* Gets max_active_levels */ 2666 int 2667 __kmp_get_max_active_levels( int gtid ) 2668 { 2669 kmp_info_t *thread; 2670 2671 KF_TRACE( 10, ( "__kmp_get_max_active_levels: thread %d\n", gtid ) ); 2672 KMP_DEBUG_ASSERT( __kmp_init_serial ); 2673 2674 thread = __kmp_threads[ gtid ]; 2675 KMP_DEBUG_ASSERT( thread->th.th_current_task ); 2676 KF_TRACE( 10, ( "__kmp_get_max_active_levels: thread %d, curtask=%p, curtask_maxaclevel=%d\n", 2677 gtid, thread->th.th_current_task, thread->th.th_current_task->td_icvs.max_active_levels ) ); 2678 return thread->th.th_current_task->td_icvs.max_active_levels; 2679 } 2680 2681 /* Changes def_sched_var ICV values (run-time schedule kind and chunk) */ 2682 void 2683 __kmp_set_schedule( int gtid, kmp_sched_t kind, int chunk ) 2684 { 2685 kmp_info_t *thread; 2686 // kmp_team_t *team; 2687 2688 KF_TRACE( 10, ("__kmp_set_schedule: new schedule for thread %d = (%d, %d)\n", gtid, (int)kind, chunk )); 2689 KMP_DEBUG_ASSERT( __kmp_init_serial ); 2690 2691 // Check if the kind parameter is valid, correct if needed. 2692 // Valid parameters should fit in one of two intervals - standard or extended: 2693 // <lower>, <valid>, <upper_std>, <lower_ext>, <valid>, <upper> 2694 // 2008-01-25: 0, 1 - 4, 5, 100, 101 - 102, 103 2695 if ( kind <= kmp_sched_lower || kind >= kmp_sched_upper || 2696 ( kind <= kmp_sched_lower_ext && kind >= kmp_sched_upper_std ) ) 2697 { 2698 // TODO: Hint needs attention in case we change the default schedule. 2699 __kmp_msg( 2700 kmp_ms_warning, 2701 KMP_MSG( ScheduleKindOutOfRange, kind ), 2702 KMP_HNT( DefaultScheduleKindUsed, "static, no chunk" ), 2703 __kmp_msg_null 2704 ); 2705 kind = kmp_sched_default; 2706 chunk = 0; // ignore chunk value in case of bad kind 2707 } 2708 2709 thread = __kmp_threads[ gtid ]; 2710 2711 __kmp_save_internal_controls( thread ); 2712 2713 if ( kind < kmp_sched_upper_std ) { 2714 if ( kind == kmp_sched_static && chunk < KMP_DEFAULT_CHUNK ) { 2715 // differ static chunked vs. unchunked: 2716 // chunk should be invalid to indicate unchunked schedule (which is the default) 2717 thread->th.th_current_task->td_icvs.sched.r_sched_type = kmp_sch_static; 2718 } else { 2719 thread->th.th_current_task->td_icvs.sched.r_sched_type = __kmp_sch_map[ kind - kmp_sched_lower - 1 ]; 2720 } 2721 } else { 2722 // __kmp_sch_map[ kind - kmp_sched_lower_ext + kmp_sched_upper_std - kmp_sched_lower - 2 ]; 2723 thread->th.th_current_task->td_icvs.sched.r_sched_type = 2724 __kmp_sch_map[ kind - kmp_sched_lower_ext + kmp_sched_upper_std - kmp_sched_lower - 2 ]; 2725 } 2726 if ( kind == kmp_sched_auto ) { 2727 // ignore parameter chunk for schedule auto 2728 thread->th.th_current_task->td_icvs.sched.chunk = KMP_DEFAULT_CHUNK; 2729 } else { 2730 thread->th.th_current_task->td_icvs.sched.chunk = chunk; 2731 } 2732 } 2733 2734 /* Gets def_sched_var ICV values */ 2735 void 2736 __kmp_get_schedule( int gtid, kmp_sched_t * kind, int * chunk ) 2737 { 2738 kmp_info_t *thread; 2739 enum sched_type th_type; 2740 2741 KF_TRACE( 10, ("__kmp_get_schedule: thread %d\n", gtid )); 2742 KMP_DEBUG_ASSERT( __kmp_init_serial ); 2743 2744 thread = __kmp_threads[ gtid ]; 2745 2746 th_type = thread->th.th_current_task->td_icvs.sched.r_sched_type; 2747 2748 switch ( th_type ) { 2749 case kmp_sch_static: 2750 case kmp_sch_static_greedy: 2751 case kmp_sch_static_balanced: 2752 *kind = kmp_sched_static; 2753 *chunk = 0; // chunk was not set, try to show this fact via zero value 2754 return; 2755 case kmp_sch_static_chunked: 2756 *kind = kmp_sched_static; 2757 break; 2758 case kmp_sch_dynamic_chunked: 2759 *kind = kmp_sched_dynamic; 2760 break; 2761 case kmp_sch_guided_chunked: 2762 case kmp_sch_guided_iterative_chunked: 2763 case kmp_sch_guided_analytical_chunked: 2764 *kind = kmp_sched_guided; 2765 break; 2766 case kmp_sch_auto: 2767 *kind = kmp_sched_auto; 2768 break; 2769 case kmp_sch_trapezoidal: 2770 *kind = kmp_sched_trapezoidal; 2771 break; 2772 #if KMP_STATIC_STEAL_ENABLED 2773 case kmp_sch_static_steal: 2774 *kind = kmp_sched_static_steal; 2775 break; 2776 #endif 2777 default: 2778 KMP_FATAL( UnknownSchedulingType, th_type ); 2779 } 2780 2781 *chunk = thread->th.th_current_task->td_icvs.sched.chunk; 2782 } 2783 2784 int 2785 __kmp_get_ancestor_thread_num( int gtid, int level ) { 2786 2787 int ii, dd; 2788 kmp_team_t *team; 2789 kmp_info_t *thr; 2790 2791 KF_TRACE( 10, ("__kmp_get_ancestor_thread_num: thread %d %d\n", gtid, level )); 2792 KMP_DEBUG_ASSERT( __kmp_init_serial ); 2793 2794 // validate level 2795 if( level == 0 ) return 0; 2796 if( level < 0 ) return -1; 2797 thr = __kmp_threads[ gtid ]; 2798 team = thr->th.th_team; 2799 ii = team->t.t_level; 2800 if( level > ii ) return -1; 2801 2802 #if OMP_40_ENABLED 2803 if( thr->th.th_teams_microtask ) { 2804 // AC: we are in teams region where multiple nested teams have same level 2805 int tlevel = thr->th.th_teams_level; // the level of the teams construct 2806 if( level <= tlevel ) { // otherwise usual algorithm works (will not touch the teams) 2807 KMP_DEBUG_ASSERT( ii >= tlevel ); 2808 // AC: As we need to pass by the teams league, we need to artificially increase ii 2809 if ( ii == tlevel ) { 2810 ii += 2; // three teams have same level 2811 } else { 2812 ii ++; // two teams have same level 2813 } 2814 } 2815 } 2816 #endif 2817 2818 if( ii == level ) return __kmp_tid_from_gtid( gtid ); 2819 2820 dd = team->t.t_serialized; 2821 level++; 2822 while( ii > level ) 2823 { 2824 for( dd = team->t.t_serialized; ( dd > 0 ) && ( ii > level ); dd--, ii-- ) 2825 { 2826 } 2827 if( ( team->t.t_serialized ) && ( !dd ) ) { 2828 team = team->t.t_parent; 2829 continue; 2830 } 2831 if( ii > level ) { 2832 team = team->t.t_parent; 2833 dd = team->t.t_serialized; 2834 ii--; 2835 } 2836 } 2837 2838 return ( dd > 1 ) ? ( 0 ) : ( team->t.t_master_tid ); 2839 } 2840 2841 int 2842 __kmp_get_team_size( int gtid, int level ) { 2843 2844 int ii, dd; 2845 kmp_team_t *team; 2846 kmp_info_t *thr; 2847 2848 KF_TRACE( 10, ("__kmp_get_team_size: thread %d %d\n", gtid, level )); 2849 KMP_DEBUG_ASSERT( __kmp_init_serial ); 2850 2851 // validate level 2852 if( level == 0 ) return 1; 2853 if( level < 0 ) return -1; 2854 thr = __kmp_threads[ gtid ]; 2855 team = thr->th.th_team; 2856 ii = team->t.t_level; 2857 if( level > ii ) return -1; 2858 2859 #if OMP_40_ENABLED 2860 if( thr->th.th_teams_microtask ) { 2861 // AC: we are in teams region where multiple nested teams have same level 2862 int tlevel = thr->th.th_teams_level; // the level of the teams construct 2863 if( level <= tlevel ) { // otherwise usual algorithm works (will not touch the teams) 2864 KMP_DEBUG_ASSERT( ii >= tlevel ); 2865 // AC: As we need to pass by the teams league, we need to artificially increase ii 2866 if ( ii == tlevel ) { 2867 ii += 2; // three teams have same level 2868 } else { 2869 ii ++; // two teams have same level 2870 } 2871 } 2872 } 2873 #endif 2874 2875 while( ii > level ) 2876 { 2877 for( dd = team->t.t_serialized; ( dd > 0 ) && ( ii > level ); dd--, ii-- ) 2878 { 2879 } 2880 if( team->t.t_serialized && ( !dd ) ) { 2881 team = team->t.t_parent; 2882 continue; 2883 } 2884 if( ii > level ) { 2885 team = team->t.t_parent; 2886 ii--; 2887 } 2888 } 2889 2890 return team->t.t_nproc; 2891 } 2892 2893 kmp_r_sched_t 2894 __kmp_get_schedule_global() { 2895 // This routine created because pairs (__kmp_sched, __kmp_chunk) and (__kmp_static, __kmp_guided) 2896 // may be changed by kmp_set_defaults independently. So one can get the updated schedule here. 2897 2898 kmp_r_sched_t r_sched; 2899 2900 // create schedule from 4 globals: __kmp_sched, __kmp_chunk, __kmp_static, __kmp_guided 2901 // __kmp_sched should keep original value, so that user can set KMP_SCHEDULE multiple times, 2902 // and thus have different run-time schedules in different roots (even in OMP 2.5) 2903 if ( __kmp_sched == kmp_sch_static ) { 2904 r_sched.r_sched_type = __kmp_static; // replace STATIC with more detailed schedule (balanced or greedy) 2905 } else if ( __kmp_sched == kmp_sch_guided_chunked ) { 2906 r_sched.r_sched_type = __kmp_guided; // replace GUIDED with more detailed schedule (iterative or analytical) 2907 } else { 2908 r_sched.r_sched_type = __kmp_sched; // (STATIC_CHUNKED), or (DYNAMIC_CHUNKED), or other 2909 } 2910 2911 if ( __kmp_chunk < KMP_DEFAULT_CHUNK ) { // __kmp_chunk may be wrong here (if it was not ever set) 2912 r_sched.chunk = KMP_DEFAULT_CHUNK; 2913 } else { 2914 r_sched.chunk = __kmp_chunk; 2915 } 2916 2917 return r_sched; 2918 } 2919 2920 /* ------------------------------------------------------------------------ */ 2921 /* ------------------------------------------------------------------------ */ 2922 2923 2924 /* 2925 * Allocate (realloc == FALSE) * or reallocate (realloc == TRUE) 2926 * at least argc number of *t_argv entries for the requested team. 2927 */ 2928 static void 2929 __kmp_alloc_argv_entries( int argc, kmp_team_t *team, int realloc ) 2930 { 2931 2932 KMP_DEBUG_ASSERT( team ); 2933 if( !realloc || argc > team->t.t_max_argc ) { 2934 2935 KA_TRACE( 100, ( "__kmp_alloc_argv_entries: team %d: needed entries=%d, current entries=%d\n", 2936 team->t.t_id, argc, ( realloc ) ? team->t.t_max_argc : 0 )); 2937 /* if previously allocated heap space for args, free them */ 2938 if ( realloc && team->t.t_argv != &team->t.t_inline_argv[0] ) 2939 __kmp_free( (void *) team->t.t_argv ); 2940 2941 if ( argc <= KMP_INLINE_ARGV_ENTRIES ) { 2942 /* use unused space in the cache line for arguments */ 2943 team->t.t_max_argc = KMP_INLINE_ARGV_ENTRIES; 2944 KA_TRACE( 100, ( "__kmp_alloc_argv_entries: team %d: inline allocate %d argv entries\n", 2945 team->t.t_id, team->t.t_max_argc )); 2946 team->t.t_argv = &team->t.t_inline_argv[0]; 2947 if ( __kmp_storage_map ) { 2948 __kmp_print_storage_map_gtid( -1, &team->t.t_inline_argv[0], 2949 &team->t.t_inline_argv[KMP_INLINE_ARGV_ENTRIES], 2950 (sizeof(void *) * KMP_INLINE_ARGV_ENTRIES), 2951 "team_%d.t_inline_argv", 2952 team->t.t_id ); 2953 } 2954 } else { 2955 /* allocate space for arguments in the heap */ 2956 team->t.t_max_argc = ( argc <= (KMP_MIN_MALLOC_ARGV_ENTRIES >> 1 )) ? 2957 KMP_MIN_MALLOC_ARGV_ENTRIES : 2 * argc; 2958 KA_TRACE( 100, ( "__kmp_alloc_argv_entries: team %d: dynamic allocate %d argv entries\n", 2959 team->t.t_id, team->t.t_max_argc )); 2960 team->t.t_argv = (void**) __kmp_page_allocate( sizeof(void*) * team->t.t_max_argc ); 2961 if ( __kmp_storage_map ) { 2962 __kmp_print_storage_map_gtid( -1, &team->t.t_argv[0], &team->t.t_argv[team->t.t_max_argc], 2963 sizeof(void *) * team->t.t_max_argc, "team_%d.t_argv", 2964 team->t.t_id ); 2965 } 2966 } 2967 } 2968 } 2969 2970 static void 2971 __kmp_allocate_team_arrays(kmp_team_t *team, int max_nth) 2972 { 2973 int i; 2974 int num_disp_buff = max_nth > 1 ? __kmp_dispatch_num_buffers : 2; 2975 team->t.t_threads = (kmp_info_t**) __kmp_allocate( sizeof(kmp_info_t*) * max_nth ); 2976 team->t.t_disp_buffer = (dispatch_shared_info_t*) 2977 __kmp_allocate( sizeof(dispatch_shared_info_t) * num_disp_buff ); 2978 team->t.t_dispatch = (kmp_disp_t*) __kmp_allocate( sizeof(kmp_disp_t) * max_nth ); 2979 team->t.t_implicit_task_taskdata = (kmp_taskdata_t*) __kmp_allocate( sizeof(kmp_taskdata_t) * max_nth ); 2980 team->t.t_max_nproc = max_nth; 2981 2982 /* setup dispatch buffers */ 2983 for(i = 0 ; i < num_disp_buff; ++i) { 2984 team->t.t_disp_buffer[i].buffer_index = i; 2985 #if OMP_45_ENABLED 2986 team->t.t_disp_buffer[i].doacross_buf_idx = i; 2987 #endif 2988 } 2989 } 2990 2991 static void 2992 __kmp_free_team_arrays(kmp_team_t *team) { 2993 /* Note: this does not free the threads in t_threads (__kmp_free_threads) */ 2994 int i; 2995 for ( i = 0; i < team->t.t_max_nproc; ++ i ) { 2996 if ( team->t.t_dispatch[ i ].th_disp_buffer != NULL ) { 2997 __kmp_free( team->t.t_dispatch[ i ].th_disp_buffer ); 2998 team->t.t_dispatch[ i ].th_disp_buffer = NULL; 2999 }; // if 3000 }; // for 3001 __kmp_free(team->t.t_threads); 3002 __kmp_free(team->t.t_disp_buffer); 3003 __kmp_free(team->t.t_dispatch); 3004 __kmp_free(team->t.t_implicit_task_taskdata); 3005 team->t.t_threads = NULL; 3006 team->t.t_disp_buffer = NULL; 3007 team->t.t_dispatch = NULL; 3008 team->t.t_implicit_task_taskdata = 0; 3009 } 3010 3011 static void 3012 __kmp_reallocate_team_arrays(kmp_team_t *team, int max_nth) { 3013 kmp_info_t **oldThreads = team->t.t_threads; 3014 3015 __kmp_free(team->t.t_disp_buffer); 3016 __kmp_free(team->t.t_dispatch); 3017 __kmp_free(team->t.t_implicit_task_taskdata); 3018 __kmp_allocate_team_arrays(team, max_nth); 3019 3020 KMP_MEMCPY(team->t.t_threads, oldThreads, team->t.t_nproc * sizeof (kmp_info_t*)); 3021 3022 __kmp_free(oldThreads); 3023 } 3024 3025 static kmp_internal_control_t 3026 __kmp_get_global_icvs( void ) { 3027 3028 kmp_r_sched_t r_sched = __kmp_get_schedule_global(); // get current state of scheduling globals 3029 3030 #if OMP_40_ENABLED 3031 KMP_DEBUG_ASSERT( __kmp_nested_proc_bind.used > 0 ); 3032 #endif /* OMP_40_ENABLED */ 3033 3034 kmp_internal_control_t g_icvs = { 3035 0, //int serial_nesting_level; //corresponds to the value of the th_team_serialized field 3036 (kmp_int8)__kmp_dflt_nested, //int nested; //internal control for nested parallelism (per thread) 3037 (kmp_int8)__kmp_global.g.g_dynamic, //internal control for dynamic adjustment of threads (per thread) 3038 (kmp_int8)__kmp_env_blocktime, //int bt_set; //internal control for whether blocktime is explicitly set 3039 __kmp_dflt_blocktime, //int blocktime; //internal control for blocktime 3040 #if KMP_USE_MONITOR 3041 __kmp_bt_intervals, //int bt_intervals; //internal control for blocktime intervals 3042 #endif 3043 __kmp_dflt_team_nth, //int nproc; //internal control for # of threads for next parallel region (per thread) 3044 // (use a max ub on value if __kmp_parallel_initialize not called yet) 3045 __kmp_dflt_max_active_levels, //int max_active_levels; //internal control for max_active_levels 3046 r_sched, //kmp_r_sched_t sched; //internal control for runtime schedule {sched,chunk} pair 3047 #if OMP_40_ENABLED 3048 __kmp_nested_proc_bind.bind_types[0], 3049 __kmp_default_device, 3050 #endif /* OMP_40_ENABLED */ 3051 NULL //struct kmp_internal_control *next; 3052 }; 3053 3054 return g_icvs; 3055 } 3056 3057 static kmp_internal_control_t 3058 __kmp_get_x_global_icvs( const kmp_team_t *team ) { 3059 3060 kmp_internal_control_t gx_icvs; 3061 gx_icvs.serial_nesting_level = 0; // probably =team->t.t_serial like in save_inter_controls 3062 copy_icvs( & gx_icvs, & team->t.t_threads[0]->th.th_current_task->td_icvs ); 3063 gx_icvs.next = NULL; 3064 3065 return gx_icvs; 3066 } 3067 3068 static void 3069 __kmp_initialize_root( kmp_root_t *root ) 3070 { 3071 int f; 3072 kmp_team_t *root_team; 3073 kmp_team_t *hot_team; 3074 int hot_team_max_nth; 3075 kmp_r_sched_t r_sched = __kmp_get_schedule_global(); // get current state of scheduling globals 3076 kmp_internal_control_t r_icvs = __kmp_get_global_icvs(); 3077 KMP_DEBUG_ASSERT( root ); 3078 KMP_ASSERT( ! root->r.r_begin ); 3079 3080 /* setup the root state structure */ 3081 __kmp_init_lock( &root->r.r_begin_lock ); 3082 root->r.r_begin = FALSE; 3083 root->r.r_active = FALSE; 3084 root->r.r_in_parallel = 0; 3085 root->r.r_blocktime = __kmp_dflt_blocktime; 3086 root->r.r_nested = __kmp_dflt_nested; 3087 3088 /* setup the root team for this task */ 3089 /* allocate the root team structure */ 3090 KF_TRACE( 10, ( "__kmp_initialize_root: before root_team\n" ) ); 3091 3092 root_team = 3093 __kmp_allocate_team( 3094 root, 3095 1, // new_nproc 3096 1, // max_nproc 3097 #if OMPT_SUPPORT 3098 0, // root parallel id 3099 #endif 3100 #if OMP_40_ENABLED 3101 __kmp_nested_proc_bind.bind_types[0], 3102 #endif 3103 &r_icvs, 3104 0 // argc 3105 USE_NESTED_HOT_ARG(NULL) // master thread is unknown 3106 ); 3107 #if USE_DEBUGGER 3108 // Non-NULL value should be assigned to make the debugger display the root team. 3109 TCW_SYNC_PTR(root_team->t.t_pkfn, (microtask_t)( ~ 0 )); 3110 #endif 3111 3112 KF_TRACE( 10, ( "__kmp_initialize_root: after root_team = %p\n", root_team ) ); 3113 3114 root->r.r_root_team = root_team; 3115 root_team->t.t_control_stack_top = NULL; 3116 3117 /* initialize root team */ 3118 root_team->t.t_threads[0] = NULL; 3119 root_team->t.t_nproc = 1; 3120 root_team->t.t_serialized = 1; 3121 // TODO???: root_team->t.t_max_active_levels = __kmp_dflt_max_active_levels; 3122 root_team->t.t_sched.r_sched_type = r_sched.r_sched_type; 3123 root_team->t.t_sched.chunk = r_sched.chunk; 3124 KA_TRACE( 20, ("__kmp_initialize_root: init root team %d arrived: join=%u, plain=%u\n", 3125 root_team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE )); 3126 3127 /* setup the hot team for this task */ 3128 /* allocate the hot team structure */ 3129 KF_TRACE( 10, ( "__kmp_initialize_root: before hot_team\n" ) ); 3130 3131 hot_team = 3132 __kmp_allocate_team( 3133 root, 3134 1, // new_nproc 3135 __kmp_dflt_team_nth_ub * 2, // max_nproc 3136 #if OMPT_SUPPORT 3137 0, // root parallel id 3138 #endif 3139 #if OMP_40_ENABLED 3140 __kmp_nested_proc_bind.bind_types[0], 3141 #endif 3142 &r_icvs, 3143 0 // argc 3144 USE_NESTED_HOT_ARG(NULL) // master thread is unknown 3145 ); 3146 KF_TRACE( 10, ( "__kmp_initialize_root: after hot_team = %p\n", hot_team ) ); 3147 3148 root->r.r_hot_team = hot_team; 3149 root_team->t.t_control_stack_top = NULL; 3150 3151 /* first-time initialization */ 3152 hot_team->t.t_parent = root_team; 3153 3154 /* initialize hot team */ 3155 hot_team_max_nth = hot_team->t.t_max_nproc; 3156 for ( f = 0; f < hot_team_max_nth; ++ f ) { 3157 hot_team->t.t_threads[ f ] = NULL; 3158 }; // for 3159 hot_team->t.t_nproc = 1; 3160 // TODO???: hot_team->t.t_max_active_levels = __kmp_dflt_max_active_levels; 3161 hot_team->t.t_sched.r_sched_type = r_sched.r_sched_type; 3162 hot_team->t.t_sched.chunk = r_sched.chunk; 3163 hot_team->t.t_size_changed = 0; 3164 } 3165 3166 #ifdef KMP_DEBUG 3167 3168 3169 typedef struct kmp_team_list_item { 3170 kmp_team_p const * entry; 3171 struct kmp_team_list_item * next; 3172 } kmp_team_list_item_t; 3173 typedef kmp_team_list_item_t * kmp_team_list_t; 3174 3175 3176 static void 3177 __kmp_print_structure_team_accum( // Add team to list of teams. 3178 kmp_team_list_t list, // List of teams. 3179 kmp_team_p const * team // Team to add. 3180 ) { 3181 3182 // List must terminate with item where both entry and next are NULL. 3183 // Team is added to the list only once. 3184 // List is sorted in ascending order by team id. 3185 // Team id is *not* a key. 3186 3187 kmp_team_list_t l; 3188 3189 KMP_DEBUG_ASSERT( list != NULL ); 3190 if ( team == NULL ) { 3191 return; 3192 }; // if 3193 3194 __kmp_print_structure_team_accum( list, team->t.t_parent ); 3195 __kmp_print_structure_team_accum( list, team->t.t_next_pool ); 3196 3197 // Search list for the team. 3198 l = list; 3199 while ( l->next != NULL && l->entry != team ) { 3200 l = l->next; 3201 }; // while 3202 if ( l->next != NULL ) { 3203 return; // Team has been added before, exit. 3204 }; // if 3205 3206 // Team is not found. Search list again for insertion point. 3207 l = list; 3208 while ( l->next != NULL && l->entry->t.t_id <= team->t.t_id ) { 3209 l = l->next; 3210 }; // while 3211 3212 // Insert team. 3213 { 3214 kmp_team_list_item_t * item = 3215 (kmp_team_list_item_t *)KMP_INTERNAL_MALLOC( sizeof( kmp_team_list_item_t ) ); 3216 * item = * l; 3217 l->entry = team; 3218 l->next = item; 3219 } 3220 3221 } 3222 3223 static void 3224 __kmp_print_structure_team( 3225 char const * title, 3226 kmp_team_p const * team 3227 3228 ) { 3229 __kmp_printf( "%s", title ); 3230 if ( team != NULL ) { 3231 __kmp_printf( "%2x %p\n", team->t.t_id, team ); 3232 } else { 3233 __kmp_printf( " - (nil)\n" ); 3234 }; // if 3235 } 3236 3237 static void 3238 __kmp_print_structure_thread( 3239 char const * title, 3240 kmp_info_p const * thread 3241 3242 ) { 3243 __kmp_printf( "%s", title ); 3244 if ( thread != NULL ) { 3245 __kmp_printf( "%2d %p\n", thread->th.th_info.ds.ds_gtid, thread ); 3246 } else { 3247 __kmp_printf( " - (nil)\n" ); 3248 }; // if 3249 } 3250 3251 void 3252 __kmp_print_structure( 3253 void 3254 ) { 3255 3256 kmp_team_list_t list; 3257 3258 // Initialize list of teams. 3259 list = (kmp_team_list_item_t *)KMP_INTERNAL_MALLOC( sizeof( kmp_team_list_item_t ) ); 3260 list->entry = NULL; 3261 list->next = NULL; 3262 3263 __kmp_printf( "\n------------------------------\nGlobal Thread Table\n------------------------------\n" ); 3264 { 3265 int gtid; 3266 for ( gtid = 0; gtid < __kmp_threads_capacity; ++ gtid ) { 3267 __kmp_printf( "%2d", gtid ); 3268 if ( __kmp_threads != NULL ) { 3269 __kmp_printf( " %p", __kmp_threads[ gtid ] ); 3270 }; // if 3271 if ( __kmp_root != NULL ) { 3272 __kmp_printf( " %p", __kmp_root[ gtid ] ); 3273 }; // if 3274 __kmp_printf( "\n" ); 3275 }; // for gtid 3276 } 3277 3278 // Print out __kmp_threads array. 3279 __kmp_printf( "\n------------------------------\nThreads\n------------------------------\n" ); 3280 if ( __kmp_threads != NULL ) { 3281 int gtid; 3282 for ( gtid = 0; gtid < __kmp_threads_capacity; ++ gtid ) { 3283 kmp_info_t const * thread = __kmp_threads[ gtid ]; 3284 if ( thread != NULL ) { 3285 __kmp_printf( "GTID %2d %p:\n", gtid, thread ); 3286 __kmp_printf( " Our Root: %p\n", thread->th.th_root ); 3287 __kmp_print_structure_team( " Our Team: ", thread->th.th_team ); 3288 __kmp_print_structure_team( " Serial Team: ", thread->th.th_serial_team ); 3289 __kmp_printf( " Threads: %2d\n", thread->th.th_team_nproc ); 3290 __kmp_print_structure_thread( " Master: ", thread->th.th_team_master ); 3291 __kmp_printf( " Serialized?: %2d\n", thread->th.th_team_serialized ); 3292 __kmp_printf( " Set NProc: %2d\n", thread->th.th_set_nproc ); 3293 #if OMP_40_ENABLED 3294 __kmp_printf( " Set Proc Bind: %2d\n", thread->th.th_set_proc_bind ); 3295 #endif 3296 __kmp_print_structure_thread( " Next in pool: ", thread->th.th_next_pool ); 3297 __kmp_printf( "\n" ); 3298 __kmp_print_structure_team_accum( list, thread->th.th_team ); 3299 __kmp_print_structure_team_accum( list, thread->th.th_serial_team ); 3300 }; // if 3301 }; // for gtid 3302 } else { 3303 __kmp_printf( "Threads array is not allocated.\n" ); 3304 }; // if 3305 3306 // Print out __kmp_root array. 3307 __kmp_printf( "\n------------------------------\nUbers\n------------------------------\n" ); 3308 if ( __kmp_root != NULL ) { 3309 int gtid; 3310 for ( gtid = 0; gtid < __kmp_threads_capacity; ++ gtid ) { 3311 kmp_root_t const * root = __kmp_root[ gtid ]; 3312 if ( root != NULL ) { 3313 __kmp_printf( "GTID %2d %p:\n", gtid, root ); 3314 __kmp_print_structure_team( " Root Team: ", root->r.r_root_team ); 3315 __kmp_print_structure_team( " Hot Team: ", root->r.r_hot_team ); 3316 __kmp_print_structure_thread( " Uber Thread: ", root->r.r_uber_thread ); 3317 __kmp_printf( " Active?: %2d\n", root->r.r_active ); 3318 __kmp_printf( " Nested?: %2d\n", root->r.r_nested ); 3319 __kmp_printf( " In Parallel: %2d\n", root->r.r_in_parallel ); 3320 __kmp_printf( "\n" ); 3321 __kmp_print_structure_team_accum( list, root->r.r_root_team ); 3322 __kmp_print_structure_team_accum( list, root->r.r_hot_team ); 3323 }; // if 3324 }; // for gtid 3325 } else { 3326 __kmp_printf( "Ubers array is not allocated.\n" ); 3327 }; // if 3328 3329 __kmp_printf( "\n------------------------------\nTeams\n------------------------------\n" ); 3330 while ( list->next != NULL ) { 3331 kmp_team_p const * team = list->entry; 3332 int i; 3333 __kmp_printf( "Team %2x %p:\n", team->t.t_id, team ); 3334 __kmp_print_structure_team( " Parent Team: ", team->t.t_parent ); 3335 __kmp_printf( " Master TID: %2d\n", team->t.t_master_tid ); 3336 __kmp_printf( " Max threads: %2d\n", team->t.t_max_nproc ); 3337 __kmp_printf( " Levels of serial: %2d\n", team->t.t_serialized ); 3338 __kmp_printf( " Number threads: %2d\n", team->t.t_nproc ); 3339 for ( i = 0; i < team->t.t_nproc; ++ i ) { 3340 __kmp_printf( " Thread %2d: ", i ); 3341 __kmp_print_structure_thread( "", team->t.t_threads[ i ] ); 3342 }; // for i 3343 __kmp_print_structure_team( " Next in pool: ", team->t.t_next_pool ); 3344 __kmp_printf( "\n" ); 3345 list = list->next; 3346 }; // while 3347 3348 // Print out __kmp_thread_pool and __kmp_team_pool. 3349 __kmp_printf( "\n------------------------------\nPools\n------------------------------\n" ); 3350 __kmp_print_structure_thread( "Thread pool: ", (kmp_info_t *)__kmp_thread_pool ); 3351 __kmp_print_structure_team( "Team pool: ", (kmp_team_t *)__kmp_team_pool ); 3352 __kmp_printf( "\n" ); 3353 3354 // Free team list. 3355 while ( list != NULL ) { 3356 kmp_team_list_item_t * item = list; 3357 list = list->next; 3358 KMP_INTERNAL_FREE( item ); 3359 }; // while 3360 3361 } 3362 3363 #endif 3364 3365 3366 //--------------------------------------------------------------------------- 3367 // Stuff for per-thread fast random number generator 3368 // Table of primes 3369 3370 static const unsigned __kmp_primes[] = { 3371 0x9e3779b1, 0xffe6cc59, 0x2109f6dd, 0x43977ab5, 3372 0xba5703f5, 0xb495a877, 0xe1626741, 0x79695e6b, 3373 0xbc98c09f, 0xd5bee2b3, 0x287488f9, 0x3af18231, 3374 0x9677cd4d, 0xbe3a6929, 0xadc6a877, 0xdcf0674b, 3375 0xbe4d6fe9, 0x5f15e201, 0x99afc3fd, 0xf3f16801, 3376 0xe222cfff, 0x24ba5fdb, 0x0620452d, 0x79f149e3, 3377 0xc8b93f49, 0x972702cd, 0xb07dd827, 0x6c97d5ed, 3378 0x085a3d61, 0x46eb5ea7, 0x3d9910ed, 0x2e687b5b, 3379 0x29609227, 0x6eb081f1, 0x0954c4e1, 0x9d114db9, 3380 0x542acfa9, 0xb3e6bd7b, 0x0742d917, 0xe9f3ffa7, 3381 0x54581edb, 0xf2480f45, 0x0bb9288f, 0xef1affc7, 3382 0x85fa0ca7, 0x3ccc14db, 0xe6baf34b, 0x343377f7, 3383 0x5ca19031, 0xe6d9293b, 0xf0a9f391, 0x5d2e980b, 3384 0xfc411073, 0xc3749363, 0xb892d829, 0x3549366b, 3385 0x629750ad, 0xb98294e5, 0x892d9483, 0xc235baf3, 3386 0x3d2402a3, 0x6bdef3c9, 0xbec333cd, 0x40c9520f 3387 }; 3388 3389 //--------------------------------------------------------------------------- 3390 // __kmp_get_random: Get a random number using a linear congruential method. 3391 3392 unsigned short 3393 __kmp_get_random( kmp_info_t * thread ) 3394 { 3395 unsigned x = thread->th.th_x; 3396 unsigned short r = x>>16; 3397 3398 thread->th.th_x = x*thread->th.th_a+1; 3399 3400 KA_TRACE(30, ("__kmp_get_random: THREAD: %d, RETURN: %u\n", 3401 thread->th.th_info.ds.ds_tid, r) ); 3402 3403 return r; 3404 } 3405 //-------------------------------------------------------- 3406 // __kmp_init_random: Initialize a random number generator 3407 3408 void 3409 __kmp_init_random( kmp_info_t * thread ) 3410 { 3411 unsigned seed = thread->th.th_info.ds.ds_tid; 3412 3413 thread->th.th_a = __kmp_primes[seed%(sizeof(__kmp_primes)/sizeof(__kmp_primes[0]))]; 3414 thread->th.th_x = (seed+1)*thread->th.th_a+1; 3415 KA_TRACE(30, ("__kmp_init_random: THREAD: %u; A: %u\n", seed, thread->th.th_a) ); 3416 } 3417 3418 3419 #if KMP_OS_WINDOWS 3420 /* reclaim array entries for root threads that are already dead, returns number reclaimed */ 3421 static int 3422 __kmp_reclaim_dead_roots(void) { 3423 int i, r = 0; 3424 3425 for(i = 0; i < __kmp_threads_capacity; ++i) { 3426 if( KMP_UBER_GTID( i ) && 3427 !__kmp_still_running((kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[i])) && 3428 !__kmp_root[i]->r.r_active ) { // AC: reclaim only roots died in non-active state 3429 r += __kmp_unregister_root_other_thread(i); 3430 } 3431 } 3432 return r; 3433 } 3434 #endif 3435 3436 /* 3437 This function attempts to create free entries in __kmp_threads and __kmp_root, and returns the number of 3438 free entries generated. 3439 3440 For Windows* OS static library, the first mechanism used is to reclaim array entries for root threads that are 3441 already dead. 3442 3443 On all platforms, expansion is attempted on the arrays __kmp_threads_ and __kmp_root, with appropriate 3444 update to __kmp_threads_capacity. Array capacity is increased by doubling with clipping to 3445 __kmp_tp_capacity, if threadprivate cache array has been created. 3446 Synchronization with __kmpc_threadprivate_cached is done using __kmp_tp_cached_lock. 3447 3448 After any dead root reclamation, if the clipping value allows array expansion to result in the generation 3449 of a total of nWish free slots, the function does that expansion. If not, but the clipping value allows 3450 array expansion to result in the generation of a total of nNeed free slots, the function does that expansion. 3451 Otherwise, nothing is done beyond the possible initial root thread reclamation. However, if nNeed is zero, 3452 a best-effort attempt is made to fulfil nWish as far as possible, i.e. the function will attempt to create 3453 as many free slots as possible up to nWish. 3454 3455 If any argument is negative, the behavior is undefined. 3456 */ 3457 static int 3458 __kmp_expand_threads(int nWish, int nNeed) { 3459 int added = 0; 3460 int old_tp_cached; 3461 int __kmp_actual_max_nth; 3462 3463 if(nNeed > nWish) /* normalize the arguments */ 3464 nWish = nNeed; 3465 #if KMP_OS_WINDOWS && !defined KMP_DYNAMIC_LIB 3466 /* only for Windows static library */ 3467 /* reclaim array entries for root threads that are already dead */ 3468 added = __kmp_reclaim_dead_roots(); 3469 3470 if(nNeed) { 3471 nNeed -= added; 3472 if(nNeed < 0) 3473 nNeed = 0; 3474 } 3475 if(nWish) { 3476 nWish -= added; 3477 if(nWish < 0) 3478 nWish = 0; 3479 } 3480 #endif 3481 if(nWish <= 0) 3482 return added; 3483 3484 while(1) { 3485 int nTarget; 3486 int minimumRequiredCapacity; 3487 int newCapacity; 3488 kmp_info_t **newThreads; 3489 kmp_root_t **newRoot; 3490 3491 // 3492 // Note that __kmp_threads_capacity is not bounded by __kmp_max_nth. 3493 // If __kmp_max_nth is set to some value less than __kmp_sys_max_nth 3494 // by the user via OMP_THREAD_LIMIT, then __kmp_threads_capacity may 3495 // become > __kmp_max_nth in one of two ways: 3496 // 3497 // 1) The initialization thread (gtid = 0) exits. __kmp_threads[0] 3498 // may not be resused by another thread, so we may need to increase 3499 // __kmp_threads_capacity to __kmp_max_threads + 1. 3500 // 3501 // 2) New foreign root(s) are encountered. We always register new 3502 // foreign roots. This may cause a smaller # of threads to be 3503 // allocated at subsequent parallel regions, but the worker threads 3504 // hang around (and eventually go to sleep) and need slots in the 3505 // __kmp_threads[] array. 3506 // 3507 // Anyway, that is the reason for moving the check to see if 3508 // __kmp_max_threads was exceeded into __kmp_reseerve_threads() 3509 // instead of having it performed here. -BB 3510 // 3511 old_tp_cached = __kmp_tp_cached; 3512 __kmp_actual_max_nth = old_tp_cached ? __kmp_tp_capacity : __kmp_sys_max_nth; 3513 KMP_DEBUG_ASSERT(__kmp_actual_max_nth >= __kmp_threads_capacity); 3514 3515 /* compute expansion headroom to check if we can expand and whether to aim for nWish or nNeed */ 3516 nTarget = nWish; 3517 if(__kmp_actual_max_nth - __kmp_threads_capacity < nTarget) { 3518 /* can't fulfil nWish, so try nNeed */ 3519 if(nNeed) { 3520 nTarget = nNeed; 3521 if(__kmp_actual_max_nth - __kmp_threads_capacity < nTarget) { 3522 /* possible expansion too small -- give up */ 3523 break; 3524 } 3525 } else { 3526 /* best-effort */ 3527 nTarget = __kmp_actual_max_nth - __kmp_threads_capacity; 3528 if(!nTarget) { 3529 /* can expand at all -- give up */ 3530 break; 3531 } 3532 } 3533 } 3534 minimumRequiredCapacity = __kmp_threads_capacity + nTarget; 3535 3536 newCapacity = __kmp_threads_capacity; 3537 do{ 3538 newCapacity = 3539 newCapacity <= (__kmp_actual_max_nth >> 1) ? 3540 (newCapacity << 1) : 3541 __kmp_actual_max_nth; 3542 } while(newCapacity < minimumRequiredCapacity); 3543 newThreads = (kmp_info_t**) __kmp_allocate((sizeof(kmp_info_t*) + sizeof(kmp_root_t*)) * newCapacity + CACHE_LINE); 3544 newRoot = (kmp_root_t**) ((char*)newThreads + sizeof(kmp_info_t*) * newCapacity ); 3545 KMP_MEMCPY(newThreads, __kmp_threads, __kmp_threads_capacity * sizeof(kmp_info_t*)); 3546 KMP_MEMCPY(newRoot, __kmp_root, __kmp_threads_capacity * sizeof(kmp_root_t*)); 3547 memset(newThreads + __kmp_threads_capacity, 0, 3548 (newCapacity - __kmp_threads_capacity) * sizeof(kmp_info_t*)); 3549 memset(newRoot + __kmp_threads_capacity, 0, 3550 (newCapacity - __kmp_threads_capacity) * sizeof(kmp_root_t*)); 3551 3552 if(!old_tp_cached && __kmp_tp_cached && newCapacity > __kmp_tp_capacity) { 3553 /* __kmp_tp_cached has changed, i.e. __kmpc_threadprivate_cached has allocated a threadprivate cache 3554 while we were allocating the expanded array, and our new capacity is larger than the threadprivate 3555 cache capacity, so we should deallocate the expanded arrays and try again. This is the first check 3556 of a double-check pair. 3557 */ 3558 __kmp_free(newThreads); 3559 continue; /* start over and try again */ 3560 } 3561 __kmp_acquire_bootstrap_lock(&__kmp_tp_cached_lock); 3562 if(!old_tp_cached && __kmp_tp_cached && newCapacity > __kmp_tp_capacity) { 3563 /* Same check as above, but this time with the lock so we can be sure if we can succeed. */ 3564 __kmp_release_bootstrap_lock(&__kmp_tp_cached_lock); 3565 __kmp_free(newThreads); 3566 continue; /* start over and try again */ 3567 } else { 3568 /* success */ 3569 // __kmp_free( __kmp_threads ); // ATT: It leads to crash. Need to be investigated. 3570 // 3571 *(kmp_info_t**volatile*)&__kmp_threads = newThreads; 3572 *(kmp_root_t**volatile*)&__kmp_root = newRoot; 3573 added += newCapacity - __kmp_threads_capacity; 3574 *(volatile int*)&__kmp_threads_capacity = newCapacity; 3575 __kmp_release_bootstrap_lock(&__kmp_tp_cached_lock); 3576 break; /* succeeded, so we can exit the loop */ 3577 } 3578 } 3579 return added; 3580 } 3581 3582 /* register the current thread as a root thread and obtain our gtid */ 3583 /* we must have the __kmp_initz_lock held at this point */ 3584 /* Argument TRUE only if are the thread that calls from __kmp_do_serial_initialize() */ 3585 int 3586 __kmp_register_root( int initial_thread ) 3587 { 3588 kmp_info_t *root_thread; 3589 kmp_root_t *root; 3590 int gtid; 3591 int capacity; 3592 __kmp_acquire_bootstrap_lock( &__kmp_forkjoin_lock ); 3593 KA_TRACE( 20, ("__kmp_register_root: entered\n")); 3594 KMP_MB(); 3595 3596 3597 /* 3598 2007-03-02: 3599 3600 If initial thread did not invoke OpenMP RTL yet, and this thread is not an initial one, 3601 "__kmp_all_nth >= __kmp_threads_capacity" condition does not work as expected -- it may 3602 return false (that means there is at least one empty slot in __kmp_threads array), but it 3603 is possible the only free slot is #0, which is reserved for initial thread and so cannot be 3604 used for this one. Following code workarounds this bug. 3605 3606 However, right solution seems to be not reserving slot #0 for initial thread because: 3607 (1) there is no magic in slot #0, 3608 (2) we cannot detect initial thread reliably (the first thread which does serial 3609 initialization may be not a real initial thread). 3610 */ 3611 capacity = __kmp_threads_capacity; 3612 if ( ! initial_thread && TCR_PTR(__kmp_threads[0]) == NULL ) { 3613 -- capacity; 3614 }; // if 3615 3616 /* see if there are too many threads */ 3617 if ( __kmp_all_nth >= capacity && !__kmp_expand_threads( 1, 1 ) ) { 3618 if ( __kmp_tp_cached ) { 3619 __kmp_msg( 3620 kmp_ms_fatal, 3621 KMP_MSG( CantRegisterNewThread ), 3622 KMP_HNT( Set_ALL_THREADPRIVATE, __kmp_tp_capacity ), 3623 KMP_HNT( PossibleSystemLimitOnThreads ), 3624 __kmp_msg_null 3625 ); 3626 } 3627 else { 3628 __kmp_msg( 3629 kmp_ms_fatal, 3630 KMP_MSG( CantRegisterNewThread ), 3631 KMP_HNT( SystemLimitOnThreads ), 3632 __kmp_msg_null 3633 ); 3634 } 3635 }; // if 3636 3637 /* find an available thread slot */ 3638 /* Don't reassign the zero slot since we need that to only be used by initial 3639 thread */ 3640 for( gtid=(initial_thread ? 0 : 1) ; TCR_PTR(__kmp_threads[gtid]) != NULL ; gtid++ ) 3641 ; 3642 KA_TRACE( 1, ("__kmp_register_root: found slot in threads array: T#%d\n", gtid )); 3643 KMP_ASSERT( gtid < __kmp_threads_capacity ); 3644 3645 /* update global accounting */ 3646 __kmp_all_nth ++; 3647 TCW_4(__kmp_nth, __kmp_nth + 1); 3648 3649 // 3650 // if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) 3651 // for low numbers of procs, and method #2 (keyed API call) for higher 3652 // numbers of procs. 3653 // 3654 if ( __kmp_adjust_gtid_mode ) { 3655 if ( __kmp_all_nth >= __kmp_tls_gtid_min ) { 3656 if ( TCR_4(__kmp_gtid_mode) != 2) { 3657 TCW_4(__kmp_gtid_mode, 2); 3658 } 3659 } 3660 else { 3661 if (TCR_4(__kmp_gtid_mode) != 1 ) { 3662 TCW_4(__kmp_gtid_mode, 1); 3663 } 3664 } 3665 } 3666 3667 #ifdef KMP_ADJUST_BLOCKTIME 3668 /* Adjust blocktime to zero if necessary */ 3669 /* Middle initialization might not have occurred yet */ 3670 if ( !__kmp_env_blocktime && ( __kmp_avail_proc > 0 ) ) { 3671 if ( __kmp_nth > __kmp_avail_proc ) { 3672 __kmp_zero_bt = TRUE; 3673 } 3674 } 3675 #endif /* KMP_ADJUST_BLOCKTIME */ 3676 3677 /* setup this new hierarchy */ 3678 if( ! ( root = __kmp_root[gtid] )) { 3679 root = __kmp_root[gtid] = (kmp_root_t*) __kmp_allocate( sizeof(kmp_root_t) ); 3680 KMP_DEBUG_ASSERT( ! root->r.r_root_team ); 3681 } 3682 3683 #if KMP_STATS_ENABLED 3684 // Initialize stats as soon as possible (right after gtid assignment). 3685 __kmp_stats_thread_ptr = __kmp_stats_list->push_back(gtid); 3686 KMP_START_EXPLICIT_TIMER(OMP_worker_thread_life); 3687 KMP_SET_THREAD_STATE(SERIAL_REGION); 3688 KMP_INIT_PARTITIONED_TIMERS(OMP_serial); 3689 #endif 3690 __kmp_initialize_root( root ); 3691 3692 /* setup new root thread structure */ 3693 if( root->r.r_uber_thread ) { 3694 root_thread = root->r.r_uber_thread; 3695 } else { 3696 root_thread = (kmp_info_t*) __kmp_allocate( sizeof(kmp_info_t) ); 3697 if ( __kmp_storage_map ) { 3698 __kmp_print_thread_storage_map( root_thread, gtid ); 3699 } 3700 root_thread->th.th_info .ds.ds_gtid = gtid; 3701 root_thread->th.th_root = root; 3702 if( __kmp_env_consistency_check ) { 3703 root_thread->th.th_cons = __kmp_allocate_cons_stack( gtid ); 3704 } 3705 #if USE_FAST_MEMORY 3706 __kmp_initialize_fast_memory( root_thread ); 3707 #endif /* USE_FAST_MEMORY */ 3708 3709 #if KMP_USE_BGET 3710 KMP_DEBUG_ASSERT( root_thread->th.th_local.bget_data == NULL ); 3711 __kmp_initialize_bget( root_thread ); 3712 #endif 3713 __kmp_init_random( root_thread ); // Initialize random number generator 3714 } 3715 3716 /* setup the serial team held in reserve by the root thread */ 3717 if( ! root_thread->th.th_serial_team ) { 3718 kmp_internal_control_t r_icvs = __kmp_get_global_icvs(); 3719 KF_TRACE( 10, ( "__kmp_register_root: before serial_team\n" ) ); 3720 3721 root_thread->th.th_serial_team = __kmp_allocate_team( root, 1, 1, 3722 #if OMPT_SUPPORT 3723 0, // root parallel id 3724 #endif 3725 #if OMP_40_ENABLED 3726 proc_bind_default, 3727 #endif 3728 &r_icvs, 3729 0 USE_NESTED_HOT_ARG(NULL) ); 3730 } 3731 KMP_ASSERT( root_thread->th.th_serial_team ); 3732 KF_TRACE( 10, ( "__kmp_register_root: after serial_team = %p\n", 3733 root_thread->th.th_serial_team ) ); 3734 3735 /* drop root_thread into place */ 3736 TCW_SYNC_PTR(__kmp_threads[gtid], root_thread); 3737 3738 root->r.r_root_team->t.t_threads[0] = root_thread; 3739 root->r.r_hot_team ->t.t_threads[0] = root_thread; 3740 root_thread->th.th_serial_team->t.t_threads[0] = root_thread; 3741 root_thread->th.th_serial_team->t.t_serialized = 0; // AC: the team created in reserve, not for execution (it is unused for now). 3742 root->r.r_uber_thread = root_thread; 3743 3744 /* initialize the thread, get it ready to go */ 3745 __kmp_initialize_info( root_thread, root->r.r_root_team, 0, gtid ); 3746 TCW_4(__kmp_init_gtid, TRUE); 3747 3748 /* prepare the master thread for get_gtid() */ 3749 __kmp_gtid_set_specific( gtid ); 3750 3751 #if USE_ITT_BUILD 3752 __kmp_itt_thread_name( gtid ); 3753 #endif /* USE_ITT_BUILD */ 3754 3755 #ifdef KMP_TDATA_GTID 3756 __kmp_gtid = gtid; 3757 #endif 3758 __kmp_create_worker( gtid, root_thread, __kmp_stksize ); 3759 KMP_DEBUG_ASSERT( __kmp_gtid_get_specific() == gtid ); 3760 3761 KA_TRACE( 20, ("__kmp_register_root: T#%d init T#%d(%d:%d) arrived: join=%u, plain=%u\n", 3762 gtid, __kmp_gtid_from_tid( 0, root->r.r_hot_team ), 3763 root->r.r_hot_team->t.t_id, 0, KMP_INIT_BARRIER_STATE, 3764 KMP_INIT_BARRIER_STATE ) ); 3765 { // Initialize barrier data. 3766 int b; 3767 for ( b = 0; b < bs_last_barrier; ++ b ) { 3768 root_thread->th.th_bar[ b ].bb.b_arrived = KMP_INIT_BARRIER_STATE; 3769 #if USE_DEBUGGER 3770 root_thread->th.th_bar[ b ].bb.b_worker_arrived = 0; 3771 #endif 3772 }; // for 3773 } 3774 KMP_DEBUG_ASSERT( root->r.r_hot_team->t.t_bar[ bs_forkjoin_barrier ].b_arrived == KMP_INIT_BARRIER_STATE ); 3775 3776 #if KMP_AFFINITY_SUPPORTED 3777 # if OMP_40_ENABLED 3778 root_thread->th.th_current_place = KMP_PLACE_UNDEFINED; 3779 root_thread->th.th_new_place = KMP_PLACE_UNDEFINED; 3780 root_thread->th.th_first_place = KMP_PLACE_UNDEFINED; 3781 root_thread->th.th_last_place = KMP_PLACE_UNDEFINED; 3782 # endif 3783 3784 if ( TCR_4(__kmp_init_middle) ) { 3785 __kmp_affinity_set_init_mask( gtid, TRUE ); 3786 } 3787 #endif /* KMP_AFFINITY_SUPPORTED */ 3788 3789 __kmp_root_counter ++; 3790 3791 KMP_MB(); 3792 __kmp_release_bootstrap_lock( &__kmp_forkjoin_lock ); 3793 3794 return gtid; 3795 } 3796 3797 #if KMP_NESTED_HOT_TEAMS 3798 static int 3799 __kmp_free_hot_teams( kmp_root_t *root, kmp_info_t *thr, int level, const int max_level ) 3800 { 3801 int i, n, nth; 3802 kmp_hot_team_ptr_t *hot_teams = thr->th.th_hot_teams; 3803 if( !hot_teams || !hot_teams[level].hot_team ) { 3804 return 0; 3805 } 3806 KMP_DEBUG_ASSERT( level < max_level ); 3807 kmp_team_t *team = hot_teams[level].hot_team; 3808 nth = hot_teams[level].hot_team_nth; 3809 n = nth - 1; // master is not freed 3810 if( level < max_level - 1 ) { 3811 for( i = 0; i < nth; ++i ) { 3812 kmp_info_t *th = team->t.t_threads[i]; 3813 n += __kmp_free_hot_teams( root, th, level + 1, max_level ); 3814 if( i > 0 && th->th.th_hot_teams ) { 3815 __kmp_free( th->th.th_hot_teams ); 3816 th->th.th_hot_teams = NULL; 3817 } 3818 } 3819 } 3820 __kmp_free_team( root, team, NULL ); 3821 return n; 3822 } 3823 #endif 3824 3825 /* Resets a root thread and clear its root and hot teams. 3826 Returns the number of __kmp_threads entries directly and indirectly freed. 3827 */ 3828 static int 3829 __kmp_reset_root(int gtid, kmp_root_t *root) 3830 { 3831 kmp_team_t * root_team = root->r.r_root_team; 3832 kmp_team_t * hot_team = root->r.r_hot_team; 3833 int n = hot_team->t.t_nproc; 3834 int i; 3835 3836 KMP_DEBUG_ASSERT( ! root->r.r_active ); 3837 3838 root->r.r_root_team = NULL; 3839 root->r.r_hot_team = NULL; 3840 // __kmp_free_team() does not free hot teams, so we have to clear r_hot_team before call 3841 // to __kmp_free_team(). 3842 __kmp_free_team( root, root_team USE_NESTED_HOT_ARG(NULL) ); 3843 #if KMP_NESTED_HOT_TEAMS 3844 if( __kmp_hot_teams_max_level > 0 ) { // need to free nested hot teams and their threads if any 3845 for( i = 0; i < hot_team->t.t_nproc; ++i ) { 3846 kmp_info_t *th = hot_team->t.t_threads[i]; 3847 if( __kmp_hot_teams_max_level > 1 ) { 3848 n += __kmp_free_hot_teams( root, th, 1, __kmp_hot_teams_max_level ); 3849 } 3850 if( th->th.th_hot_teams ) { 3851 __kmp_free( th->th.th_hot_teams ); 3852 th->th.th_hot_teams = NULL; 3853 } 3854 } 3855 } 3856 #endif 3857 __kmp_free_team( root, hot_team USE_NESTED_HOT_ARG(NULL) ); 3858 3859 // 3860 // Before we can reap the thread, we need to make certain that all 3861 // other threads in the teams that had this root as ancestor have stopped trying to steal tasks. 3862 // 3863 if ( __kmp_tasking_mode != tskm_immediate_exec ) { 3864 __kmp_wait_to_unref_task_teams(); 3865 } 3866 3867 #if KMP_OS_WINDOWS 3868 /* Close Handle of root duplicated in __kmp_create_worker (tr #62919) */ 3869 KA_TRACE( 10, ("__kmp_reset_root: free handle, th = %p, handle = %" KMP_UINTPTR_SPEC "\n", 3870 (LPVOID)&(root->r.r_uber_thread->th), 3871 root->r.r_uber_thread->th.th_info.ds.ds_thread ) ); 3872 __kmp_free_handle( root->r.r_uber_thread->th.th_info.ds.ds_thread ); 3873 #endif /* KMP_OS_WINDOWS */ 3874 3875 #if OMPT_SUPPORT 3876 if (ompt_enabled && 3877 ompt_callbacks.ompt_callback(ompt_event_thread_end)) { 3878 int gtid = __kmp_get_gtid(); 3879 __ompt_thread_end(ompt_thread_initial, gtid); 3880 } 3881 #endif 3882 3883 TCW_4(__kmp_nth, __kmp_nth - 1); // __kmp_reap_thread will decrement __kmp_all_nth. 3884 __kmp_reap_thread( root->r.r_uber_thread, 1 ); 3885 3886 // We canot put root thread to __kmp_thread_pool, so we have to reap it istead of freeing. 3887 root->r.r_uber_thread = NULL; 3888 /* mark root as no longer in use */ 3889 root->r.r_begin = FALSE; 3890 3891 return n; 3892 } 3893 3894 void 3895 __kmp_unregister_root_current_thread( int gtid ) 3896 { 3897 KA_TRACE( 1, ("__kmp_unregister_root_current_thread: enter T#%d\n", gtid )); 3898 /* this lock should be ok, since unregister_root_current_thread is never called during 3899 * and abort, only during a normal close. furthermore, if you have the 3900 * forkjoin lock, you should never try to get the initz lock */ 3901 3902 __kmp_acquire_bootstrap_lock( &__kmp_forkjoin_lock ); 3903 if( TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial ) { 3904 KC_TRACE( 10, ("__kmp_unregister_root_current_thread: already finished, exiting T#%d\n", gtid )); 3905 __kmp_release_bootstrap_lock( &__kmp_forkjoin_lock ); 3906 return; 3907 } 3908 kmp_root_t *root = __kmp_root[gtid]; 3909 3910 KMP_DEBUG_ASSERT( __kmp_threads && __kmp_threads[gtid] ); 3911 KMP_ASSERT( KMP_UBER_GTID( gtid )); 3912 KMP_ASSERT( root == __kmp_threads[gtid]->th.th_root ); 3913 KMP_ASSERT( root->r.r_active == FALSE ); 3914 3915 3916 KMP_MB(); 3917 3918 #if OMP_45_ENABLED 3919 kmp_info_t * thread = __kmp_threads[gtid]; 3920 kmp_team_t * team = thread->th.th_team; 3921 kmp_task_team_t * task_team = thread->th.th_task_team; 3922 3923 // we need to wait for the proxy tasks before finishing the thread 3924 if ( task_team != NULL && task_team->tt.tt_found_proxy_tasks ) { 3925 #if OMPT_SUPPORT 3926 // the runtime is shutting down so we won't report any events 3927 thread->th.ompt_thread_info.state = ompt_state_undefined; 3928 #endif 3929 __kmp_task_team_wait(thread, team USE_ITT_BUILD_ARG(NULL)); 3930 } 3931 #endif 3932 3933 __kmp_reset_root(gtid, root); 3934 3935 /* free up this thread slot */ 3936 __kmp_gtid_set_specific( KMP_GTID_DNE ); 3937 #ifdef KMP_TDATA_GTID 3938 __kmp_gtid = KMP_GTID_DNE; 3939 #endif 3940 3941 KMP_MB(); 3942 KC_TRACE( 10, ("__kmp_unregister_root_current_thread: T#%d unregistered\n", gtid )); 3943 3944 __kmp_release_bootstrap_lock( &__kmp_forkjoin_lock ); 3945 } 3946 3947 #if KMP_OS_WINDOWS 3948 /* __kmp_forkjoin_lock must be already held 3949 Unregisters a root thread that is not the current thread. Returns the number of 3950 __kmp_threads entries freed as a result. 3951 */ 3952 static int 3953 __kmp_unregister_root_other_thread( int gtid ) 3954 { 3955 kmp_root_t *root = __kmp_root[gtid]; 3956 int r; 3957 3958 KA_TRACE( 1, ("__kmp_unregister_root_other_thread: enter T#%d\n", gtid )); 3959 KMP_DEBUG_ASSERT( __kmp_threads && __kmp_threads[gtid] ); 3960 KMP_ASSERT( KMP_UBER_GTID( gtid )); 3961 KMP_ASSERT( root == __kmp_threads[gtid]->th.th_root ); 3962 KMP_ASSERT( root->r.r_active == FALSE ); 3963 3964 r = __kmp_reset_root(gtid, root); 3965 KC_TRACE( 10, ("__kmp_unregister_root_other_thread: T#%d unregistered\n", gtid )); 3966 return r; 3967 } 3968 #endif 3969 3970 #if KMP_DEBUG 3971 void __kmp_task_info() { 3972 3973 kmp_int32 gtid = __kmp_entry_gtid(); 3974 kmp_int32 tid = __kmp_tid_from_gtid( gtid ); 3975 kmp_info_t *this_thr = __kmp_threads[ gtid ]; 3976 kmp_team_t *steam = this_thr->th.th_serial_team; 3977 kmp_team_t *team = this_thr->th.th_team; 3978 3979 __kmp_printf( "__kmp_task_info: gtid=%d tid=%d t_thread=%p team=%p curtask=%p ptask=%p\n", 3980 gtid, tid, this_thr, team, this_thr->th.th_current_task, team->t.t_implicit_task_taskdata[tid].td_parent ); 3981 } 3982 #endif // KMP_DEBUG 3983 3984 /* TODO optimize with one big memclr, take out what isn't needed, 3985 * split responsibility to workers as much as possible, and delay 3986 * initialization of features as much as possible */ 3987 static void 3988 __kmp_initialize_info( kmp_info_t *this_thr, kmp_team_t *team, int tid, int gtid ) 3989 { 3990 /* this_thr->th.th_info.ds.ds_gtid is setup in kmp_allocate_thread/create_worker 3991 * this_thr->th.th_serial_team is setup in __kmp_allocate_thread */ 3992 kmp_info_t *master = team->t.t_threads[0]; 3993 KMP_DEBUG_ASSERT( this_thr != NULL ); 3994 KMP_DEBUG_ASSERT( this_thr->th.th_serial_team ); 3995 KMP_DEBUG_ASSERT( team ); 3996 KMP_DEBUG_ASSERT( team->t.t_threads ); 3997 KMP_DEBUG_ASSERT( team->t.t_dispatch ); 3998 KMP_DEBUG_ASSERT( master ); 3999 KMP_DEBUG_ASSERT( master->th.th_root ); 4000 4001 KMP_MB(); 4002 4003 TCW_SYNC_PTR(this_thr->th.th_team, team); 4004 4005 this_thr->th.th_info.ds.ds_tid = tid; 4006 this_thr->th.th_set_nproc = 0; 4007 #if OMP_40_ENABLED 4008 this_thr->th.th_set_proc_bind = proc_bind_default; 4009 # if KMP_AFFINITY_SUPPORTED 4010 this_thr->th.th_new_place = this_thr->th.th_current_place; 4011 # endif 4012 #endif 4013 this_thr->th.th_root = master->th.th_root; 4014 4015 /* setup the thread's cache of the team structure */ 4016 this_thr->th.th_team_nproc = team->t.t_nproc; 4017 this_thr->th.th_team_master = master; 4018 this_thr->th.th_team_serialized = team->t.t_serialized; 4019 TCW_PTR(this_thr->th.th_sleep_loc, NULL); 4020 4021 KMP_DEBUG_ASSERT( team->t.t_implicit_task_taskdata ); 4022 4023 KF_TRACE( 10, ( "__kmp_initialize_info1: T#%d:%d this_thread=%p curtask=%p\n", 4024 tid, gtid, this_thr, this_thr->th.th_current_task ) ); 4025 4026 __kmp_init_implicit_task( this_thr->th.th_team_master->th.th_ident, this_thr, team, tid, TRUE ); 4027 4028 KF_TRACE( 10, ( "__kmp_initialize_info2: T#%d:%d this_thread=%p curtask=%p\n", 4029 tid, gtid, this_thr, this_thr->th.th_current_task ) ); 4030 // TODO: Initialize ICVs from parent; GEH - isn't that already done in __kmp_initialize_team()? 4031 4032 /* TODO no worksharing in speculative threads */ 4033 this_thr->th.th_dispatch = &team->t.t_dispatch[ tid ]; 4034 4035 this_thr->th.th_local.this_construct = 0; 4036 4037 #ifdef BUILD_TV 4038 this_thr->th.th_local.tv_data = 0; 4039 #endif 4040 4041 if ( ! this_thr->th.th_pri_common ) { 4042 this_thr->th.th_pri_common = (struct common_table *) __kmp_allocate( sizeof(struct common_table) ); 4043 if ( __kmp_storage_map ) { 4044 __kmp_print_storage_map_gtid( 4045 gtid, this_thr->th.th_pri_common, this_thr->th.th_pri_common + 1, 4046 sizeof( struct common_table ), "th_%d.th_pri_common\n", gtid 4047 ); 4048 }; // if 4049 this_thr->th.th_pri_head = NULL; 4050 }; // if 4051 4052 /* Initialize dynamic dispatch */ 4053 { 4054 volatile kmp_disp_t *dispatch = this_thr->th.th_dispatch; 4055 /* 4056 * Use team max_nproc since this will never change for the team. 4057 */ 4058 size_t disp_size = sizeof( dispatch_private_info_t ) * 4059 ( team->t.t_max_nproc == 1 ? 1 : __kmp_dispatch_num_buffers ); 4060 KD_TRACE( 10, ("__kmp_initialize_info: T#%d max_nproc: %d\n", gtid, team->t.t_max_nproc ) ); 4061 KMP_ASSERT( dispatch ); 4062 KMP_DEBUG_ASSERT( team->t.t_dispatch ); 4063 KMP_DEBUG_ASSERT( dispatch == &team->t.t_dispatch[ tid ] ); 4064 4065 dispatch->th_disp_index = 0; 4066 #if OMP_45_ENABLED 4067 dispatch->th_doacross_buf_idx = 0; 4068 #endif 4069 if( ! dispatch->th_disp_buffer ) { 4070 dispatch->th_disp_buffer = (dispatch_private_info_t *) __kmp_allocate( disp_size ); 4071 4072 if ( __kmp_storage_map ) { 4073 __kmp_print_storage_map_gtid( gtid, &dispatch->th_disp_buffer[ 0 ], 4074 &dispatch->th_disp_buffer[ team->t.t_max_nproc == 1 ? 1 : __kmp_dispatch_num_buffers ], 4075 disp_size, "th_%d.th_dispatch.th_disp_buffer " 4076 "(team_%d.t_dispatch[%d].th_disp_buffer)", 4077 gtid, team->t.t_id, gtid ); 4078 } 4079 } else { 4080 memset( & dispatch->th_disp_buffer[0], '\0', disp_size ); 4081 } 4082 4083 dispatch->th_dispatch_pr_current = 0; 4084 dispatch->th_dispatch_sh_current = 0; 4085 4086 dispatch->th_deo_fcn = 0; /* ORDERED */ 4087 dispatch->th_dxo_fcn = 0; /* END ORDERED */ 4088 } 4089 4090 this_thr->th.th_next_pool = NULL; 4091 4092 if (!this_thr->th.th_task_state_memo_stack) { 4093 size_t i; 4094 this_thr->th.th_task_state_memo_stack = (kmp_uint8 *) __kmp_allocate( 4*sizeof(kmp_uint8) ); 4095 this_thr->th.th_task_state_top = 0; 4096 this_thr->th.th_task_state_stack_sz = 4; 4097 for (i=0; i<this_thr->th.th_task_state_stack_sz; ++i) // zero init the stack 4098 this_thr->th.th_task_state_memo_stack[i] = 0; 4099 } 4100 4101 KMP_DEBUG_ASSERT( !this_thr->th.th_spin_here ); 4102 KMP_DEBUG_ASSERT( this_thr->th.th_next_waiting == 0 ); 4103 4104 KMP_MB(); 4105 } 4106 4107 4108 /* allocate a new thread for the requesting team. this is only called from within a 4109 * forkjoin critical section. we will first try to get an available thread from the 4110 * thread pool. if none is available, we will fork a new one assuming we are able 4111 * to create a new one. this should be assured, as the caller should check on this 4112 * first. 4113 */ 4114 kmp_info_t * 4115 __kmp_allocate_thread( kmp_root_t *root, kmp_team_t *team, int new_tid ) 4116 { 4117 kmp_team_t *serial_team; 4118 kmp_info_t *new_thr; 4119 int new_gtid; 4120 4121 KA_TRACE( 20, ("__kmp_allocate_thread: T#%d\n", __kmp_get_gtid() )); 4122 KMP_DEBUG_ASSERT( root && team ); 4123 #if !KMP_NESTED_HOT_TEAMS 4124 KMP_DEBUG_ASSERT( KMP_MASTER_GTID( __kmp_get_gtid() )); 4125 #endif 4126 KMP_MB(); 4127 4128 /* first, try to get one from the thread pool */ 4129 if ( __kmp_thread_pool ) { 4130 4131 new_thr = (kmp_info_t*)__kmp_thread_pool; 4132 __kmp_thread_pool = (volatile kmp_info_t *) new_thr->th.th_next_pool; 4133 if ( new_thr == __kmp_thread_pool_insert_pt ) { 4134 __kmp_thread_pool_insert_pt = NULL; 4135 } 4136 TCW_4(new_thr->th.th_in_pool, FALSE); 4137 // 4138 // Don't touch th_active_in_pool or th_active. 4139 // The worker thread adjusts those flags as it sleeps/awakens. 4140 // 4141 __kmp_thread_pool_nth--; 4142 4143 KA_TRACE( 20, ("__kmp_allocate_thread: T#%d using thread T#%d\n", 4144 __kmp_get_gtid(), new_thr->th.th_info.ds.ds_gtid )); 4145 KMP_ASSERT( ! new_thr->th.th_team ); 4146 KMP_DEBUG_ASSERT( __kmp_nth < __kmp_threads_capacity ); 4147 KMP_DEBUG_ASSERT( __kmp_thread_pool_nth >= 0 ); 4148 4149 /* setup the thread structure */ 4150 __kmp_initialize_info( new_thr, team, new_tid, new_thr->th.th_info.ds.ds_gtid ); 4151 KMP_DEBUG_ASSERT( new_thr->th.th_serial_team ); 4152 4153 TCW_4(__kmp_nth, __kmp_nth + 1); 4154 4155 new_thr->th.th_task_state = 0; 4156 new_thr->th.th_task_state_top = 0; 4157 new_thr->th.th_task_state_stack_sz = 4; 4158 4159 #ifdef KMP_ADJUST_BLOCKTIME 4160 /* Adjust blocktime back to zero if necessar y */ 4161 /* Middle initialization might not have occurred yet */ 4162 if ( !__kmp_env_blocktime && ( __kmp_avail_proc > 0 ) ) { 4163 if ( __kmp_nth > __kmp_avail_proc ) { 4164 __kmp_zero_bt = TRUE; 4165 } 4166 } 4167 #endif /* KMP_ADJUST_BLOCKTIME */ 4168 4169 #if KMP_DEBUG 4170 // If thread entered pool via __kmp_free_thread, wait_flag should != KMP_BARRIER_PARENT_FLAG. 4171 int b; 4172 kmp_balign_t * balign = new_thr->th.th_bar; 4173 for( b = 0; b < bs_last_barrier; ++ b ) 4174 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 4175 #endif 4176 4177 KF_TRACE( 10, ("__kmp_allocate_thread: T#%d using thread %p T#%d\n", 4178 __kmp_get_gtid(), new_thr, new_thr->th.th_info.ds.ds_gtid )); 4179 4180 KMP_MB(); 4181 return new_thr; 4182 } 4183 4184 4185 /* no, well fork a new one */ 4186 KMP_ASSERT( __kmp_nth == __kmp_all_nth ); 4187 KMP_ASSERT( __kmp_all_nth < __kmp_threads_capacity ); 4188 4189 #if KMP_USE_MONITOR 4190 // 4191 // If this is the first worker thread the RTL is creating, then also 4192 // launch the monitor thread. We try to do this as early as possible. 4193 // 4194 if ( ! TCR_4( __kmp_init_monitor ) ) { 4195 __kmp_acquire_bootstrap_lock( & __kmp_monitor_lock ); 4196 if ( ! TCR_4( __kmp_init_monitor ) ) { 4197 KF_TRACE( 10, ( "before __kmp_create_monitor\n" ) ); 4198 TCW_4( __kmp_init_monitor, 1 ); 4199 __kmp_create_monitor( & __kmp_monitor ); 4200 KF_TRACE( 10, ( "after __kmp_create_monitor\n" ) ); 4201 #if KMP_OS_WINDOWS 4202 // AC: wait until monitor has started. This is a fix for CQ232808. 4203 // The reason is that if the library is loaded/unloaded in a loop with small (parallel) 4204 // work in between, then there is high probability that monitor thread started after 4205 // the library shutdown. At shutdown it is too late to cope with the problem, because 4206 // when the master is in DllMain (process detach) the monitor has no chances to start 4207 // (it is blocked), and master has no means to inform the monitor that the library has gone, 4208 // because all the memory which the monitor can access is going to be released/reset. 4209 while ( TCR_4(__kmp_init_monitor) < 2 ) { 4210 KMP_YIELD( TRUE ); 4211 } 4212 KF_TRACE( 10, ( "after monitor thread has started\n" ) ); 4213 #endif 4214 } 4215 __kmp_release_bootstrap_lock( & __kmp_monitor_lock ); 4216 } 4217 #endif 4218 4219 KMP_MB(); 4220 for( new_gtid=1 ; TCR_PTR(__kmp_threads[new_gtid]) != NULL; ++new_gtid ) { 4221 KMP_DEBUG_ASSERT( new_gtid < __kmp_threads_capacity ); 4222 } 4223 4224 /* allocate space for it. */ 4225 new_thr = (kmp_info_t*) __kmp_allocate( sizeof(kmp_info_t) ); 4226 4227 TCW_SYNC_PTR(__kmp_threads[new_gtid], new_thr); 4228 4229 if ( __kmp_storage_map ) { 4230 __kmp_print_thread_storage_map( new_thr, new_gtid ); 4231 } 4232 4233 /* add the reserve serialized team, initialized from the team's master thread */ 4234 { 4235 kmp_internal_control_t r_icvs = __kmp_get_x_global_icvs( team ); 4236 KF_TRACE( 10, ( "__kmp_allocate_thread: before th_serial/serial_team\n" ) ); 4237 4238 new_thr->th.th_serial_team = serial_team = 4239 (kmp_team_t*) __kmp_allocate_team( root, 1, 1, 4240 #if OMPT_SUPPORT 4241 0, // root parallel id 4242 #endif 4243 #if OMP_40_ENABLED 4244 proc_bind_default, 4245 #endif 4246 &r_icvs, 4247 0 USE_NESTED_HOT_ARG(NULL) ); 4248 } 4249 KMP_ASSERT ( serial_team ); 4250 serial_team->t.t_serialized = 0; // AC: the team created in reserve, not for execution (it is unused for now). 4251 serial_team->t.t_threads[0] = new_thr; 4252 KF_TRACE( 10, ( "__kmp_allocate_thread: after th_serial/serial_team : new_thr=%p\n", 4253 new_thr ) ); 4254 4255 /* setup the thread structures */ 4256 __kmp_initialize_info( new_thr, team, new_tid, new_gtid ); 4257 4258 #if USE_FAST_MEMORY 4259 __kmp_initialize_fast_memory( new_thr ); 4260 #endif /* USE_FAST_MEMORY */ 4261 4262 #if KMP_USE_BGET 4263 KMP_DEBUG_ASSERT( new_thr->th.th_local.bget_data == NULL ); 4264 __kmp_initialize_bget( new_thr ); 4265 #endif 4266 4267 __kmp_init_random( new_thr ); // Initialize random number generator 4268 4269 /* Initialize these only once when thread is grabbed for a team allocation */ 4270 KA_TRACE( 20, ("__kmp_allocate_thread: T#%d init go fork=%u, plain=%u\n", 4271 __kmp_get_gtid(), KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE )); 4272 4273 int b; 4274 kmp_balign_t * balign = new_thr->th.th_bar; 4275 for(b=0; b<bs_last_barrier; ++b) { 4276 balign[b].bb.b_go = KMP_INIT_BARRIER_STATE; 4277 balign[b].bb.team = NULL; 4278 balign[b].bb.wait_flag = KMP_BARRIER_NOT_WAITING; 4279 balign[b].bb.use_oncore_barrier = 0; 4280 } 4281 4282 new_thr->th.th_spin_here = FALSE; 4283 new_thr->th.th_next_waiting = 0; 4284 4285 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 4286 new_thr->th.th_current_place = KMP_PLACE_UNDEFINED; 4287 new_thr->th.th_new_place = KMP_PLACE_UNDEFINED; 4288 new_thr->th.th_first_place = KMP_PLACE_UNDEFINED; 4289 new_thr->th.th_last_place = KMP_PLACE_UNDEFINED; 4290 #endif 4291 4292 TCW_4(new_thr->th.th_in_pool, FALSE); 4293 new_thr->th.th_active_in_pool = FALSE; 4294 TCW_4(new_thr->th.th_active, TRUE); 4295 4296 /* adjust the global counters */ 4297 __kmp_all_nth ++; 4298 __kmp_nth ++; 4299 4300 // 4301 // if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) 4302 // for low numbers of procs, and method #2 (keyed API call) for higher 4303 // numbers of procs. 4304 // 4305 if ( __kmp_adjust_gtid_mode ) { 4306 if ( __kmp_all_nth >= __kmp_tls_gtid_min ) { 4307 if ( TCR_4(__kmp_gtid_mode) != 2) { 4308 TCW_4(__kmp_gtid_mode, 2); 4309 } 4310 } 4311 else { 4312 if (TCR_4(__kmp_gtid_mode) != 1 ) { 4313 TCW_4(__kmp_gtid_mode, 1); 4314 } 4315 } 4316 } 4317 4318 #ifdef KMP_ADJUST_BLOCKTIME 4319 /* Adjust blocktime back to zero if necessary */ 4320 /* Middle initialization might not have occurred yet */ 4321 if ( !__kmp_env_blocktime && ( __kmp_avail_proc > 0 ) ) { 4322 if ( __kmp_nth > __kmp_avail_proc ) { 4323 __kmp_zero_bt = TRUE; 4324 } 4325 } 4326 #endif /* KMP_ADJUST_BLOCKTIME */ 4327 4328 /* actually fork it and create the new worker thread */ 4329 KF_TRACE( 10, ("__kmp_allocate_thread: before __kmp_create_worker: %p\n", new_thr )); 4330 __kmp_create_worker( new_gtid, new_thr, __kmp_stksize ); 4331 KF_TRACE( 10, ("__kmp_allocate_thread: after __kmp_create_worker: %p\n", new_thr )); 4332 4333 KA_TRACE( 20, ("__kmp_allocate_thread: T#%d forked T#%d\n", __kmp_get_gtid(), new_gtid )); 4334 KMP_MB(); 4335 return new_thr; 4336 } 4337 4338 /* 4339 * reinitialize team for reuse. 4340 * 4341 * The hot team code calls this case at every fork barrier, so EPCC barrier 4342 * test are extremely sensitive to changes in it, esp. writes to the team 4343 * struct, which cause a cache invalidation in all threads. 4344 * 4345 * IF YOU TOUCH THIS ROUTINE, RUN EPCC C SYNCBENCH ON A BIG-IRON MACHINE!!! 4346 */ 4347 static void 4348 __kmp_reinitialize_team( kmp_team_t *team, kmp_internal_control_t *new_icvs, ident_t *loc ) { 4349 KF_TRACE( 10, ( "__kmp_reinitialize_team: enter this_thread=%p team=%p\n", 4350 team->t.t_threads[0], team ) ); 4351 KMP_DEBUG_ASSERT( team && new_icvs); 4352 KMP_DEBUG_ASSERT( ( ! TCR_4(__kmp_init_parallel) ) || new_icvs->nproc ); 4353 KMP_CHECK_UPDATE(team->t.t_ident, loc); 4354 4355 KMP_CHECK_UPDATE(team->t.t_id, KMP_GEN_TEAM_ID()); 4356 4357 // Copy ICVs to the master thread's implicit taskdata 4358 __kmp_init_implicit_task( loc, team->t.t_threads[0], team, 0, FALSE ); 4359 copy_icvs(&team->t.t_implicit_task_taskdata[0].td_icvs, new_icvs); 4360 4361 KF_TRACE( 10, ( "__kmp_reinitialize_team: exit this_thread=%p team=%p\n", 4362 team->t.t_threads[0], team ) ); 4363 } 4364 4365 4366 /* initialize the team data structure 4367 * this assumes the t_threads and t_max_nproc are already set 4368 * also, we don't touch the arguments */ 4369 static void 4370 __kmp_initialize_team( 4371 kmp_team_t * team, 4372 int new_nproc, 4373 kmp_internal_control_t * new_icvs, 4374 ident_t * loc 4375 ) { 4376 KF_TRACE( 10, ( "__kmp_initialize_team: enter: team=%p\n", team ) ); 4377 4378 /* verify */ 4379 KMP_DEBUG_ASSERT( team ); 4380 KMP_DEBUG_ASSERT( new_nproc <= team->t.t_max_nproc ); 4381 KMP_DEBUG_ASSERT( team->t.t_threads ); 4382 KMP_MB(); 4383 4384 team->t.t_master_tid = 0; /* not needed */ 4385 /* team->t.t_master_bar; not needed */ 4386 team->t.t_serialized = new_nproc > 1 ? 0 : 1; 4387 team->t.t_nproc = new_nproc; 4388 4389 /* team->t.t_parent = NULL; TODO not needed & would mess up hot team */ 4390 team->t.t_next_pool = NULL; 4391 /* memset( team->t.t_threads, 0, sizeof(kmp_info_t*)*new_nproc ); would mess up hot team */ 4392 4393 TCW_SYNC_PTR(team->t.t_pkfn, NULL); /* not needed */ 4394 team->t.t_invoke = NULL; /* not needed */ 4395 4396 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 4397 team->t.t_sched = new_icvs->sched; 4398 4399 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4400 team->t.t_fp_control_saved = FALSE; /* not needed */ 4401 team->t.t_x87_fpu_control_word = 0; /* not needed */ 4402 team->t.t_mxcsr = 0; /* not needed */ 4403 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4404 4405 team->t.t_construct = 0; 4406 __kmp_init_lock( & team->t.t_single_lock ); 4407 4408 team->t.t_ordered .dt.t_value = 0; 4409 team->t.t_master_active = FALSE; 4410 4411 memset( & team->t.t_taskq, '\0', sizeof( kmp_taskq_t )); 4412 4413 #ifdef KMP_DEBUG 4414 team->t.t_copypriv_data = NULL; /* not necessary, but nice for debugging */ 4415 #endif 4416 team->t.t_copyin_counter = 0; /* for barrier-free copyin implementation */ 4417 4418 team->t.t_control_stack_top = NULL; 4419 4420 __kmp_reinitialize_team( team, new_icvs, loc ); 4421 4422 KMP_MB(); 4423 KF_TRACE( 10, ( "__kmp_initialize_team: exit: team=%p\n", team ) ); 4424 } 4425 4426 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 4427 /* Sets full mask for thread and returns old mask, no changes to structures. */ 4428 static void 4429 __kmp_set_thread_affinity_mask_full_tmp( kmp_affin_mask_t *old_mask ) 4430 { 4431 if ( KMP_AFFINITY_CAPABLE() ) { 4432 int status; 4433 if ( old_mask != NULL ) { 4434 status = __kmp_get_system_affinity( old_mask, TRUE ); 4435 int error = errno; 4436 if ( status != 0 ) { 4437 __kmp_msg( 4438 kmp_ms_fatal, 4439 KMP_MSG( ChangeThreadAffMaskError ), 4440 KMP_ERR( error ), 4441 __kmp_msg_null 4442 ); 4443 } 4444 } 4445 __kmp_set_system_affinity( __kmp_affin_fullMask, TRUE ); 4446 } 4447 } 4448 #endif 4449 4450 #if OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED 4451 4452 // 4453 // __kmp_partition_places() is the heart of the OpenMP 4.0 affinity mechanism. 4454 // It calculats the worker + master thread's partition based upon the parent 4455 // thread's partition, and binds each worker to a thread in their partition. 4456 // The master thread's partition should already include its current binding. 4457 // 4458 static void 4459 __kmp_partition_places( kmp_team_t *team, int update_master_only ) 4460 { 4461 // 4462 // Copy the master thread's place partion to the team struct 4463 // 4464 kmp_info_t *master_th = team->t.t_threads[0]; 4465 KMP_DEBUG_ASSERT( master_th != NULL ); 4466 kmp_proc_bind_t proc_bind = team->t.t_proc_bind; 4467 int first_place = master_th->th.th_first_place; 4468 int last_place = master_th->th.th_last_place; 4469 int masters_place = master_th->th.th_current_place; 4470 team->t.t_first_place = first_place; 4471 team->t.t_last_place = last_place; 4472 4473 KA_TRACE( 20, ("__kmp_partition_places: enter: proc_bind = %d T#%d(%d:0) bound to place %d partition = [%d,%d]\n", 4474 proc_bind, __kmp_gtid_from_thread( team->t.t_threads[0] ), team->t.t_id, 4475 masters_place, first_place, last_place ) ); 4476 4477 switch ( proc_bind ) { 4478 4479 case proc_bind_default: 4480 // 4481 // serial teams might have the proc_bind policy set to 4482 // proc_bind_default. It doesn't matter, as we don't 4483 // rebind the master thread for any proc_bind policy. 4484 // 4485 KMP_DEBUG_ASSERT( team->t.t_nproc == 1 ); 4486 break; 4487 4488 case proc_bind_master: 4489 { 4490 int f; 4491 int n_th = team->t.t_nproc; 4492 for ( f = 1; f < n_th; f++ ) { 4493 kmp_info_t *th = team->t.t_threads[f]; 4494 KMP_DEBUG_ASSERT( th != NULL ); 4495 th->th.th_first_place = first_place; 4496 th->th.th_last_place = last_place; 4497 th->th.th_new_place = masters_place; 4498 4499 KA_TRACE( 100, ("__kmp_partition_places: master: T#%d(%d:%d) place %d partition = [%d,%d]\n", 4500 __kmp_gtid_from_thread( team->t.t_threads[f] ), 4501 team->t.t_id, f, masters_place, first_place, last_place ) ); 4502 } 4503 } 4504 break; 4505 4506 case proc_bind_close: 4507 { 4508 int f; 4509 int n_th = team->t.t_nproc; 4510 int n_places; 4511 if ( first_place <= last_place ) { 4512 n_places = last_place - first_place + 1; 4513 } 4514 else { 4515 n_places = __kmp_affinity_num_masks - first_place + last_place + 1; 4516 } 4517 if ( n_th <= n_places ) { 4518 int place = masters_place; 4519 for ( f = 1; f < n_th; f++ ) { 4520 kmp_info_t *th = team->t.t_threads[f]; 4521 KMP_DEBUG_ASSERT( th != NULL ); 4522 4523 if ( place == last_place ) { 4524 place = first_place; 4525 } 4526 else if ( place == (int)(__kmp_affinity_num_masks - 1) ) { 4527 place = 0; 4528 } 4529 else { 4530 place++; 4531 } 4532 th->th.th_first_place = first_place; 4533 th->th.th_last_place = last_place; 4534 th->th.th_new_place = place; 4535 4536 KA_TRACE( 100, ("__kmp_partition_places: close: T#%d(%d:%d) place %d partition = [%d,%d]\n", 4537 __kmp_gtid_from_thread( team->t.t_threads[f] ), 4538 team->t.t_id, f, place, first_place, last_place ) ); 4539 } 4540 } 4541 else { 4542 int S, rem, gap, s_count; 4543 S = n_th / n_places; 4544 s_count = 0; 4545 rem = n_th - ( S * n_places ); 4546 gap = rem > 0 ? n_places/rem : n_places; 4547 int place = masters_place; 4548 int gap_ct = gap; 4549 for ( f = 0; f < n_th; f++ ) { 4550 kmp_info_t *th = team->t.t_threads[f]; 4551 KMP_DEBUG_ASSERT( th != NULL ); 4552 4553 th->th.th_first_place = first_place; 4554 th->th.th_last_place = last_place; 4555 th->th.th_new_place = place; 4556 s_count++; 4557 4558 if ( (s_count == S) && rem && (gap_ct == gap) ) { 4559 // do nothing, add an extra thread to place on next iteration 4560 } 4561 else if ( (s_count == S+1) && rem && (gap_ct == gap) ) { 4562 // we added an extra thread to this place; move to next place 4563 if ( place == last_place ) { 4564 place = first_place; 4565 } 4566 else if ( place == (int)(__kmp_affinity_num_masks - 1) ) { 4567 place = 0; 4568 } 4569 else { 4570 place++; 4571 } 4572 s_count = 0; 4573 gap_ct = 1; 4574 rem--; 4575 } 4576 else if (s_count == S) { // place full; don't add extra 4577 if ( place == last_place ) { 4578 place = first_place; 4579 } 4580 else if ( place == (int)(__kmp_affinity_num_masks - 1) ) { 4581 place = 0; 4582 } 4583 else { 4584 place++; 4585 } 4586 gap_ct++; 4587 s_count = 0; 4588 } 4589 4590 KA_TRACE( 100, ("__kmp_partition_places: close: T#%d(%d:%d) place %d partition = [%d,%d]\n", 4591 __kmp_gtid_from_thread( team->t.t_threads[f] ), 4592 team->t.t_id, f, th->th.th_new_place, first_place, 4593 last_place ) ); 4594 } 4595 KMP_DEBUG_ASSERT( place == masters_place ); 4596 } 4597 } 4598 break; 4599 4600 case proc_bind_spread: 4601 { 4602 int f; 4603 int n_th = team->t.t_nproc; 4604 int n_places; 4605 int thidx; 4606 if ( first_place <= last_place ) { 4607 n_places = last_place - first_place + 1; 4608 } 4609 else { 4610 n_places = __kmp_affinity_num_masks - first_place + last_place + 1; 4611 } 4612 if ( n_th <= n_places ) { 4613 int place = masters_place; 4614 int S = n_places/n_th; 4615 int s_count, rem, gap, gap_ct; 4616 rem = n_places - n_th*S; 4617 gap = rem ? n_th/rem : 1; 4618 gap_ct = gap; 4619 thidx = n_th; 4620 if (update_master_only == 1) 4621 thidx = 1; 4622 for ( f = 0; f < thidx; f++ ) { 4623 kmp_info_t *th = team->t.t_threads[f]; 4624 KMP_DEBUG_ASSERT( th != NULL ); 4625 4626 th->th.th_first_place = place; 4627 th->th.th_new_place = place; 4628 s_count = 1; 4629 while (s_count < S) { 4630 if ( place == last_place ) { 4631 place = first_place; 4632 } 4633 else if ( place == (int)(__kmp_affinity_num_masks - 1) ) { 4634 place = 0; 4635 } 4636 else { 4637 place++; 4638 } 4639 s_count++; 4640 } 4641 if (rem && (gap_ct == gap)) { 4642 if ( place == last_place ) { 4643 place = first_place; 4644 } 4645 else if ( place == (int)(__kmp_affinity_num_masks - 1) ) { 4646 place = 0; 4647 } 4648 else { 4649 place++; 4650 } 4651 rem--; 4652 gap_ct = 0; 4653 } 4654 th->th.th_last_place = place; 4655 gap_ct++; 4656 4657 if ( place == last_place ) { 4658 place = first_place; 4659 } 4660 else if ( place == (int)(__kmp_affinity_num_masks - 1) ) { 4661 place = 0; 4662 } 4663 else { 4664 place++; 4665 } 4666 4667 KA_TRACE( 100, ("__kmp_partition_places: spread: T#%d(%d:%d) place %d partition = [%d,%d]\n", 4668 __kmp_gtid_from_thread( team->t.t_threads[f] ), 4669 team->t.t_id, f, th->th.th_new_place, 4670 th->th.th_first_place, th->th.th_last_place ) ); 4671 } 4672 KMP_DEBUG_ASSERT( update_master_only || place == masters_place ); 4673 } 4674 else { 4675 int S, rem, gap, s_count; 4676 S = n_th / n_places; 4677 s_count = 0; 4678 rem = n_th - ( S * n_places ); 4679 gap = rem > 0 ? n_places/rem : n_places; 4680 int place = masters_place; 4681 int gap_ct = gap; 4682 thidx = n_th; 4683 if (update_master_only == 1) 4684 thidx = 1; 4685 for ( f = 0; f < thidx; f++ ) { 4686 kmp_info_t *th = team->t.t_threads[f]; 4687 KMP_DEBUG_ASSERT( th != NULL ); 4688 4689 th->th.th_first_place = place; 4690 th->th.th_last_place = place; 4691 th->th.th_new_place = place; 4692 s_count++; 4693 4694 if ( (s_count == S) && rem && (gap_ct == gap) ) { 4695 // do nothing, add an extra thread to place on next iteration 4696 } 4697 else if ( (s_count == S+1) && rem && (gap_ct == gap) ) { 4698 // we added an extra thread to this place; move on to next place 4699 if ( place == last_place ) { 4700 place = first_place; 4701 } 4702 else if ( place == (int)(__kmp_affinity_num_masks - 1) ) { 4703 place = 0; 4704 } 4705 else { 4706 place++; 4707 } 4708 s_count = 0; 4709 gap_ct = 1; 4710 rem--; 4711 } 4712 else if (s_count == S) { // place is full; don't add extra thread 4713 if ( place == last_place ) { 4714 place = first_place; 4715 } 4716 else if ( place == (int)(__kmp_affinity_num_masks - 1) ) { 4717 place = 0; 4718 } 4719 else { 4720 place++; 4721 } 4722 gap_ct++; 4723 s_count = 0; 4724 } 4725 4726 KA_TRACE( 100, ("__kmp_partition_places: spread: T#%d(%d:%d) place %d partition = [%d,%d]\n", 4727 __kmp_gtid_from_thread( team->t.t_threads[f] ), 4728 team->t.t_id, f, th->th.th_new_place, 4729 th->th.th_first_place, th->th.th_last_place) ); 4730 } 4731 KMP_DEBUG_ASSERT( update_master_only || place == masters_place ); 4732 } 4733 } 4734 break; 4735 4736 default: 4737 break; 4738 } 4739 4740 KA_TRACE( 20, ("__kmp_partition_places: exit T#%d\n", team->t.t_id ) ); 4741 } 4742 4743 #endif /* OMP_40_ENABLED && KMP_AFFINITY_SUPPORTED */ 4744 4745 /* allocate a new team data structure to use. take one off of the free pool if available */ 4746 kmp_team_t * 4747 __kmp_allocate_team( kmp_root_t *root, int new_nproc, int max_nproc, 4748 #if OMPT_SUPPORT 4749 ompt_parallel_id_t ompt_parallel_id, 4750 #endif 4751 #if OMP_40_ENABLED 4752 kmp_proc_bind_t new_proc_bind, 4753 #endif 4754 kmp_internal_control_t *new_icvs, 4755 int argc USE_NESTED_HOT_ARG(kmp_info_t *master) ) 4756 { 4757 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_allocate_team); 4758 int f; 4759 kmp_team_t *team; 4760 int use_hot_team = ! root->r.r_active; 4761 int level = 0; 4762 4763 KA_TRACE( 20, ("__kmp_allocate_team: called\n")); 4764 KMP_DEBUG_ASSERT( new_nproc >=1 && argc >=0 ); 4765 KMP_DEBUG_ASSERT( max_nproc >= new_nproc ); 4766 KMP_MB(); 4767 4768 #if KMP_NESTED_HOT_TEAMS 4769 kmp_hot_team_ptr_t *hot_teams; 4770 if( master ) { 4771 team = master->th.th_team; 4772 level = team->t.t_active_level; 4773 if( master->th.th_teams_microtask ) { // in teams construct? 4774 if( master->th.th_teams_size.nteams > 1 && ( // #teams > 1 4775 team->t.t_pkfn == (microtask_t)__kmp_teams_master || // inner fork of the teams 4776 master->th.th_teams_level < team->t.t_level ) ) { // or nested parallel inside the teams 4777 ++level; // not increment if #teams==1, or for outer fork of the teams; increment otherwise 4778 } 4779 } 4780 hot_teams = master->th.th_hot_teams; 4781 if( level < __kmp_hot_teams_max_level && hot_teams && hot_teams[level].hot_team ) 4782 { // hot team has already been allocated for given level 4783 use_hot_team = 1; 4784 } else { 4785 use_hot_team = 0; 4786 } 4787 } 4788 #endif 4789 // Optimization to use a "hot" team 4790 if( use_hot_team && new_nproc > 1 ) { 4791 KMP_DEBUG_ASSERT( new_nproc == max_nproc ); 4792 #if KMP_NESTED_HOT_TEAMS 4793 team = hot_teams[level].hot_team; 4794 #else 4795 team = root->r.r_hot_team; 4796 #endif 4797 #if KMP_DEBUG 4798 if ( __kmp_tasking_mode != tskm_immediate_exec ) { 4799 KA_TRACE( 20, ("__kmp_allocate_team: hot team task_team[0] = %p task_team[1] = %p before reinit\n", 4800 team->t.t_task_team[0], team->t.t_task_team[1] )); 4801 } 4802 #endif 4803 4804 // Has the number of threads changed? 4805 /* Let's assume the most common case is that the number of threads is unchanged, and 4806 put that case first. */ 4807 if (team->t.t_nproc == new_nproc) { // Check changes in number of threads 4808 KA_TRACE( 20, ("__kmp_allocate_team: reusing hot team\n" )); 4809 // This case can mean that omp_set_num_threads() was called and the hot team size 4810 // was already reduced, so we check the special flag 4811 if ( team->t.t_size_changed == -1 ) { 4812 team->t.t_size_changed = 1; 4813 } else { 4814 KMP_CHECK_UPDATE(team->t.t_size_changed, 0); 4815 } 4816 4817 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 4818 kmp_r_sched_t new_sched = new_icvs->sched; 4819 if (team->t.t_sched.r_sched_type != new_sched.r_sched_type || 4820 team->t.t_sched.chunk != new_sched.chunk) 4821 team->t.t_sched = new_sched; // set master's schedule as new run-time schedule 4822 4823 __kmp_reinitialize_team( team, new_icvs, root->r.r_uber_thread->th.th_ident ); 4824 4825 KF_TRACE( 10, ("__kmp_allocate_team2: T#%d, this_thread=%p team=%p\n", 4826 0, team->t.t_threads[0], team ) ); 4827 __kmp_push_current_task_to_thread( team->t.t_threads[ 0 ], team, 0 ); 4828 4829 #if OMP_40_ENABLED 4830 # if KMP_AFFINITY_SUPPORTED 4831 if ( ( team->t.t_size_changed == 0 ) 4832 && ( team->t.t_proc_bind == new_proc_bind ) ) { 4833 if (new_proc_bind == proc_bind_spread) { 4834 __kmp_partition_places(team, 1); // add flag to update only master for spread 4835 } 4836 KA_TRACE( 200, ("__kmp_allocate_team: reusing hot team #%d bindings: proc_bind = %d, partition = [%d,%d]\n", 4837 team->t.t_id, new_proc_bind, team->t.t_first_place, 4838 team->t.t_last_place ) ); 4839 } 4840 else { 4841 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 4842 __kmp_partition_places( team ); 4843 } 4844 # else 4845 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 4846 # endif /* KMP_AFFINITY_SUPPORTED */ 4847 #endif /* OMP_40_ENABLED */ 4848 } 4849 else if( team->t.t_nproc > new_nproc ) { 4850 KA_TRACE( 20, ("__kmp_allocate_team: decreasing hot team thread count to %d\n", new_nproc )); 4851 4852 team->t.t_size_changed = 1; 4853 #if KMP_NESTED_HOT_TEAMS 4854 if( __kmp_hot_teams_mode == 0 ) { 4855 // AC: saved number of threads should correspond to team's value in this mode, 4856 // can be bigger in mode 1, when hot team has some threads in reserve 4857 KMP_DEBUG_ASSERT(hot_teams[level].hot_team_nth == team->t.t_nproc); 4858 hot_teams[level].hot_team_nth = new_nproc; 4859 #endif // KMP_NESTED_HOT_TEAMS 4860 /* release the extra threads we don't need any more */ 4861 for( f = new_nproc ; f < team->t.t_nproc ; f++ ) { 4862 KMP_DEBUG_ASSERT( team->t.t_threads[ f ] ); 4863 if ( __kmp_tasking_mode != tskm_immediate_exec) { 4864 // When decreasing team size, threads no longer in the team should unref task team. 4865 team->t.t_threads[f]->th.th_task_team = NULL; 4866 } 4867 __kmp_free_thread( team->t.t_threads[ f ] ); 4868 team->t.t_threads[ f ] = NULL; 4869 } 4870 #if KMP_NESTED_HOT_TEAMS 4871 } // (__kmp_hot_teams_mode == 0) 4872 else { 4873 // When keeping extra threads in team, switch threads to wait on own b_go flag 4874 for (f=new_nproc; f<team->t.t_nproc; ++f) { 4875 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 4876 kmp_balign_t *balign = team->t.t_threads[f]->th.th_bar; 4877 for (int b=0; b<bs_last_barrier; ++b) { 4878 if (balign[b].bb.wait_flag == KMP_BARRIER_PARENT_FLAG) { 4879 balign[b].bb.wait_flag = KMP_BARRIER_SWITCH_TO_OWN_FLAG; 4880 } 4881 KMP_CHECK_UPDATE(balign[b].bb.leaf_kids, 0); 4882 } 4883 } 4884 } 4885 #endif // KMP_NESTED_HOT_TEAMS 4886 team->t.t_nproc = new_nproc; 4887 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 4888 if (team->t.t_sched.r_sched_type != new_icvs->sched.r_sched_type || 4889 team->t.t_sched.chunk != new_icvs->sched.chunk) 4890 team->t.t_sched = new_icvs->sched; 4891 __kmp_reinitialize_team( team, new_icvs, root->r.r_uber_thread->th.th_ident ); 4892 4893 /* update the remaining threads */ 4894 for(f = 0; f < new_nproc; ++f) { 4895 team->t.t_threads[f]->th.th_team_nproc = new_nproc; 4896 } 4897 // restore the current task state of the master thread: should be the implicit task 4898 KF_TRACE( 10, ("__kmp_allocate_team: T#%d, this_thread=%p team=%p\n", 4899 0, team->t.t_threads[0], team ) ); 4900 4901 __kmp_push_current_task_to_thread( team->t.t_threads[ 0 ], team, 0 ); 4902 4903 #ifdef KMP_DEBUG 4904 for ( f = 0; f < team->t.t_nproc; f++ ) { 4905 KMP_DEBUG_ASSERT( team->t.t_threads[f] && 4906 team->t.t_threads[f]->th.th_team_nproc == team->t.t_nproc ); 4907 } 4908 #endif 4909 4910 #if OMP_40_ENABLED 4911 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 4912 # if KMP_AFFINITY_SUPPORTED 4913 __kmp_partition_places( team ); 4914 # endif 4915 #endif 4916 } 4917 else { // team->t.t_nproc < new_nproc 4918 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 4919 kmp_affin_mask_t *old_mask; 4920 if ( KMP_AFFINITY_CAPABLE() ) { 4921 KMP_CPU_ALLOC(old_mask); 4922 } 4923 #endif 4924 4925 KA_TRACE( 20, ("__kmp_allocate_team: increasing hot team thread count to %d\n", new_nproc )); 4926 4927 team->t.t_size_changed = 1; 4928 4929 #if KMP_NESTED_HOT_TEAMS 4930 int avail_threads = hot_teams[level].hot_team_nth; 4931 if( new_nproc < avail_threads ) 4932 avail_threads = new_nproc; 4933 kmp_info_t **other_threads = team->t.t_threads; 4934 for ( f = team->t.t_nproc; f < avail_threads; ++f ) { 4935 // Adjust barrier data of reserved threads (if any) of the team 4936 // Other data will be set in __kmp_initialize_info() below. 4937 int b; 4938 kmp_balign_t * balign = other_threads[f]->th.th_bar; 4939 for ( b = 0; b < bs_last_barrier; ++ b ) { 4940 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 4941 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 4942 #if USE_DEBUGGER 4943 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 4944 #endif 4945 } 4946 } 4947 if( hot_teams[level].hot_team_nth >= new_nproc ) { 4948 // we have all needed threads in reserve, no need to allocate any 4949 // this only possible in mode 1, cannot have reserved threads in mode 0 4950 KMP_DEBUG_ASSERT(__kmp_hot_teams_mode == 1); 4951 team->t.t_nproc = new_nproc; // just get reserved threads involved 4952 } else { 4953 // we may have some threads in reserve, but not enough 4954 team->t.t_nproc = hot_teams[level].hot_team_nth; // get reserved threads involved if any 4955 hot_teams[level].hot_team_nth = new_nproc; // adjust hot team max size 4956 #endif // KMP_NESTED_HOT_TEAMS 4957 if(team->t.t_max_nproc < new_nproc) { 4958 /* reallocate larger arrays */ 4959 __kmp_reallocate_team_arrays(team, new_nproc); 4960 __kmp_reinitialize_team( team, new_icvs, NULL ); 4961 } 4962 4963 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 4964 /* Temporarily set full mask for master thread before 4965 creation of workers. The reason is that workers inherit 4966 the affinity from master, so if a lot of workers are 4967 created on the single core quickly, they don't get 4968 a chance to set their own affinity for a long time. 4969 */ 4970 __kmp_set_thread_affinity_mask_full_tmp( old_mask ); 4971 #endif 4972 4973 /* allocate new threads for the hot team */ 4974 for( f = team->t.t_nproc ; f < new_nproc ; f++ ) { 4975 kmp_info_t * new_worker = __kmp_allocate_thread( root, team, f ); 4976 KMP_DEBUG_ASSERT( new_worker ); 4977 team->t.t_threads[ f ] = new_worker; 4978 4979 KA_TRACE( 20, ("__kmp_allocate_team: team %d init T#%d arrived: join=%llu, plain=%llu\n", 4980 team->t.t_id, __kmp_gtid_from_tid( f, team ), team->t.t_id, f, 4981 team->t.t_bar[bs_forkjoin_barrier].b_arrived, 4982 team->t.t_bar[bs_plain_barrier].b_arrived ) ); 4983 4984 { // Initialize barrier data for new threads. 4985 int b; 4986 kmp_balign_t * balign = new_worker->th.th_bar; 4987 for( b = 0; b < bs_last_barrier; ++ b ) { 4988 balign[ b ].bb.b_arrived = team->t.t_bar[ b ].b_arrived; 4989 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 4990 #if USE_DEBUGGER 4991 balign[ b ].bb.b_worker_arrived = team->t.t_bar[ b ].b_team_arrived; 4992 #endif 4993 } 4994 } 4995 } 4996 4997 #if KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 4998 if ( KMP_AFFINITY_CAPABLE() ) { 4999 /* Restore initial master thread's affinity mask */ 5000 __kmp_set_system_affinity( old_mask, TRUE ); 5001 KMP_CPU_FREE(old_mask); 5002 } 5003 #endif 5004 #if KMP_NESTED_HOT_TEAMS 5005 } // end of check of t_nproc vs. new_nproc vs. hot_team_nth 5006 #endif // KMP_NESTED_HOT_TEAMS 5007 /* make sure everyone is syncronized */ 5008 int old_nproc = team->t.t_nproc; // save old value and use to update only new threads below 5009 __kmp_initialize_team( team, new_nproc, new_icvs, root->r.r_uber_thread->th.th_ident ); 5010 5011 /* reinitialize the threads */ 5012 KMP_DEBUG_ASSERT(team->t.t_nproc == new_nproc); 5013 for (f=0; f < team->t.t_nproc; ++f) 5014 __kmp_initialize_info( team->t.t_threads[ f ], team, f, __kmp_gtid_from_tid( f, team ) ); 5015 if (level) { // set th_task_state for new threads in nested hot team 5016 // __kmp_initialize_info() no longer zeroes th_task_state, so we should only need to set the 5017 // th_task_state for the new threads. th_task_state for master thread will not be accurate until 5018 // after this in __kmp_fork_call(), so we look to the master's memo_stack to get the correct value. 5019 for (f=old_nproc; f < team->t.t_nproc; ++f) 5020 team->t.t_threads[f]->th.th_task_state = team->t.t_threads[0]->th.th_task_state_memo_stack[level]; 5021 } 5022 else { // set th_task_state for new threads in non-nested hot team 5023 int old_state = team->t.t_threads[0]->th.th_task_state; // copy master's state 5024 for (f=old_nproc; f < team->t.t_nproc; ++f) 5025 team->t.t_threads[f]->th.th_task_state = old_state; 5026 } 5027 5028 #ifdef KMP_DEBUG 5029 for ( f = 0; f < team->t.t_nproc; ++ f ) { 5030 KMP_DEBUG_ASSERT( team->t.t_threads[f] && 5031 team->t.t_threads[f]->th.th_team_nproc == team->t.t_nproc ); 5032 } 5033 #endif 5034 5035 #if OMP_40_ENABLED 5036 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5037 # if KMP_AFFINITY_SUPPORTED 5038 __kmp_partition_places( team ); 5039 # endif 5040 #endif 5041 } // Check changes in number of threads 5042 5043 #if OMP_40_ENABLED 5044 kmp_info_t *master = team->t.t_threads[0]; 5045 if( master->th.th_teams_microtask ) { 5046 for( f = 1; f < new_nproc; ++f ) { 5047 // propagate teams construct specific info to workers 5048 kmp_info_t *thr = team->t.t_threads[f]; 5049 thr->th.th_teams_microtask = master->th.th_teams_microtask; 5050 thr->th.th_teams_level = master->th.th_teams_level; 5051 thr->th.th_teams_size = master->th.th_teams_size; 5052 } 5053 } 5054 #endif /* OMP_40_ENABLED */ 5055 #if KMP_NESTED_HOT_TEAMS 5056 if( level ) { 5057 // Sync barrier state for nested hot teams, not needed for outermost hot team. 5058 for( f = 1; f < new_nproc; ++f ) { 5059 kmp_info_t *thr = team->t.t_threads[f]; 5060 int b; 5061 kmp_balign_t * balign = thr->th.th_bar; 5062 for( b = 0; b < bs_last_barrier; ++ b ) { 5063 balign[ b ].bb.b_arrived = team->t.t_bar[ b ].b_arrived; 5064 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 5065 #if USE_DEBUGGER 5066 balign[ b ].bb.b_worker_arrived = team->t.t_bar[ b ].b_team_arrived; 5067 #endif 5068 } 5069 } 5070 } 5071 #endif // KMP_NESTED_HOT_TEAMS 5072 5073 /* reallocate space for arguments if necessary */ 5074 __kmp_alloc_argv_entries( argc, team, TRUE ); 5075 KMP_CHECK_UPDATE(team->t.t_argc, argc); 5076 // 5077 // The hot team re-uses the previous task team, 5078 // if untouched during the previous release->gather phase. 5079 // 5080 5081 KF_TRACE( 10, ( " hot_team = %p\n", team ) ); 5082 5083 #if KMP_DEBUG 5084 if ( __kmp_tasking_mode != tskm_immediate_exec ) { 5085 KA_TRACE( 20, ("__kmp_allocate_team: hot team task_team[0] = %p task_team[1] = %p after reinit\n", 5086 team->t.t_task_team[0], team->t.t_task_team[1] )); 5087 } 5088 #endif 5089 5090 #if OMPT_SUPPORT 5091 __ompt_team_assign_id(team, ompt_parallel_id); 5092 #endif 5093 5094 KMP_MB(); 5095 5096 return team; 5097 } 5098 5099 /* next, let's try to take one from the team pool */ 5100 KMP_MB(); 5101 for( team = (kmp_team_t*) __kmp_team_pool ; (team) ; ) 5102 { 5103 /* TODO: consider resizing undersized teams instead of reaping them, now that we have a resizing mechanism */ 5104 if ( team->t.t_max_nproc >= max_nproc ) { 5105 /* take this team from the team pool */ 5106 __kmp_team_pool = team->t.t_next_pool; 5107 5108 /* setup the team for fresh use */ 5109 __kmp_initialize_team( team, new_nproc, new_icvs, NULL ); 5110 5111 KA_TRACE( 20, ( "__kmp_allocate_team: setting task_team[0] %p and task_team[1] %p to NULL\n", 5112 &team->t.t_task_team[0], &team->t.t_task_team[1]) ); 5113 team->t.t_task_team[0] = NULL; 5114 team->t.t_task_team[1] = NULL; 5115 5116 /* reallocate space for arguments if necessary */ 5117 __kmp_alloc_argv_entries( argc, team, TRUE ); 5118 KMP_CHECK_UPDATE(team->t.t_argc, argc); 5119 5120 KA_TRACE( 20, ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n", 5121 team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE )); 5122 { // Initialize barrier data. 5123 int b; 5124 for ( b = 0; b < bs_last_barrier; ++ b) { 5125 team->t.t_bar[ b ].b_arrived = KMP_INIT_BARRIER_STATE; 5126 #if USE_DEBUGGER 5127 team->t.t_bar[ b ].b_master_arrived = 0; 5128 team->t.t_bar[ b ].b_team_arrived = 0; 5129 #endif 5130 } 5131 } 5132 5133 #if OMP_40_ENABLED 5134 team->t.t_proc_bind = new_proc_bind; 5135 #endif 5136 5137 KA_TRACE( 20, ("__kmp_allocate_team: using team from pool %d.\n", team->t.t_id )); 5138 5139 #if OMPT_SUPPORT 5140 __ompt_team_assign_id(team, ompt_parallel_id); 5141 #endif 5142 5143 KMP_MB(); 5144 5145 return team; 5146 } 5147 5148 /* reap team if it is too small, then loop back and check the next one */ 5149 /* not sure if this is wise, but, will be redone during the hot-teams rewrite. */ 5150 /* TODO: Use technique to find the right size hot-team, don't reap them */ 5151 team = __kmp_reap_team( team ); 5152 __kmp_team_pool = team; 5153 } 5154 5155 /* nothing available in the pool, no matter, make a new team! */ 5156 KMP_MB(); 5157 team = (kmp_team_t*) __kmp_allocate( sizeof( kmp_team_t ) ); 5158 5159 /* and set it up */ 5160 team->t.t_max_nproc = max_nproc; 5161 /* NOTE well, for some reason allocating one big buffer and dividing it 5162 * up seems to really hurt performance a lot on the P4, so, let's not use 5163 * this... */ 5164 __kmp_allocate_team_arrays( team, max_nproc ); 5165 5166 KA_TRACE( 20, ( "__kmp_allocate_team: making a new team\n" ) ); 5167 __kmp_initialize_team( team, new_nproc, new_icvs, NULL ); 5168 5169 KA_TRACE( 20, ( "__kmp_allocate_team: setting task_team[0] %p and task_team[1] %p to NULL\n", 5170 &team->t.t_task_team[0], &team->t.t_task_team[1] ) ); 5171 team->t.t_task_team[0] = NULL; // to be removed, as __kmp_allocate zeroes memory, no need to duplicate 5172 team->t.t_task_team[1] = NULL; // to be removed, as __kmp_allocate zeroes memory, no need to duplicate 5173 5174 if ( __kmp_storage_map ) { 5175 __kmp_print_team_storage_map( "team", team, team->t.t_id, new_nproc ); 5176 } 5177 5178 /* allocate space for arguments */ 5179 __kmp_alloc_argv_entries( argc, team, FALSE ); 5180 team->t.t_argc = argc; 5181 5182 KA_TRACE( 20, ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n", 5183 team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE )); 5184 { // Initialize barrier data. 5185 int b; 5186 for ( b = 0; b < bs_last_barrier; ++ b ) { 5187 team->t.t_bar[ b ].b_arrived = KMP_INIT_BARRIER_STATE; 5188 #if USE_DEBUGGER 5189 team->t.t_bar[ b ].b_master_arrived = 0; 5190 team->t.t_bar[ b ].b_team_arrived = 0; 5191 #endif 5192 } 5193 } 5194 5195 #if OMP_40_ENABLED 5196 team->t.t_proc_bind = new_proc_bind; 5197 #endif 5198 5199 #if OMPT_SUPPORT 5200 __ompt_team_assign_id(team, ompt_parallel_id); 5201 team->t.ompt_serialized_team_info = NULL; 5202 #endif 5203 5204 KMP_MB(); 5205 5206 KA_TRACE( 20, ("__kmp_allocate_team: done creating a new team %d.\n", team->t.t_id )); 5207 5208 return team; 5209 } 5210 5211 /* TODO implement hot-teams at all levels */ 5212 /* TODO implement lazy thread release on demand (disband request) */ 5213 5214 /* free the team. return it to the team pool. release all the threads 5215 * associated with it */ 5216 void 5217 __kmp_free_team( kmp_root_t *root, kmp_team_t *team USE_NESTED_HOT_ARG(kmp_info_t *master) ) 5218 { 5219 int f; 5220 KA_TRACE( 20, ("__kmp_free_team: T#%d freeing team %d\n", __kmp_get_gtid(), team->t.t_id )); 5221 5222 /* verify state */ 5223 KMP_DEBUG_ASSERT( root ); 5224 KMP_DEBUG_ASSERT( team ); 5225 KMP_DEBUG_ASSERT( team->t.t_nproc <= team->t.t_max_nproc ); 5226 KMP_DEBUG_ASSERT( team->t.t_threads ); 5227 5228 int use_hot_team = team == root->r.r_hot_team; 5229 #if KMP_NESTED_HOT_TEAMS 5230 int level; 5231 kmp_hot_team_ptr_t *hot_teams; 5232 if( master ) { 5233 level = team->t.t_active_level - 1; 5234 if( master->th.th_teams_microtask ) { // in teams construct? 5235 if( master->th.th_teams_size.nteams > 1 ) { 5236 ++level; // level was not increased in teams construct for team_of_masters 5237 } 5238 if( team->t.t_pkfn != (microtask_t)__kmp_teams_master && 5239 master->th.th_teams_level == team->t.t_level ) { 5240 ++level; // level was not increased in teams construct for team_of_workers before the parallel 5241 } // team->t.t_level will be increased inside parallel 5242 } 5243 hot_teams = master->th.th_hot_teams; 5244 if( level < __kmp_hot_teams_max_level ) { 5245 KMP_DEBUG_ASSERT( team == hot_teams[level].hot_team ); 5246 use_hot_team = 1; 5247 } 5248 } 5249 #endif // KMP_NESTED_HOT_TEAMS 5250 5251 /* team is done working */ 5252 TCW_SYNC_PTR(team->t.t_pkfn, NULL); // Important for Debugging Support Library. 5253 team->t.t_copyin_counter = 0; // init counter for possible reuse 5254 // Do not reset pointer to parent team to NULL for hot teams. 5255 5256 /* if we are non-hot team, release our threads */ 5257 if( ! use_hot_team ) { 5258 if ( __kmp_tasking_mode != tskm_immediate_exec ) { 5259 // Delete task teams 5260 int tt_idx; 5261 for (tt_idx=0; tt_idx<2; ++tt_idx) { 5262 kmp_task_team_t *task_team = team->t.t_task_team[tt_idx]; 5263 if ( task_team != NULL ) { 5264 for (f=0; f<team->t.t_nproc; ++f) { // Have all threads unref task teams 5265 team->t.t_threads[f]->th.th_task_team = NULL; 5266 } 5267 KA_TRACE( 20, ( "__kmp_free_team: T#%d deactivating task_team %p on team %d\n", __kmp_get_gtid(), task_team, team->t.t_id ) ); 5268 #if KMP_NESTED_HOT_TEAMS 5269 __kmp_free_task_team( master, task_team ); 5270 #endif 5271 team->t.t_task_team[tt_idx] = NULL; 5272 } 5273 } 5274 } 5275 5276 // Reset pointer to parent team only for non-hot teams. 5277 team->t.t_parent = NULL; 5278 team->t.t_level = 0; 5279 team->t.t_active_level = 0; 5280 5281 /* free the worker threads */ 5282 for ( f = 1; f < team->t.t_nproc; ++ f ) { 5283 KMP_DEBUG_ASSERT( team->t.t_threads[ f ] ); 5284 __kmp_free_thread( team->t.t_threads[ f ] ); 5285 team->t.t_threads[ f ] = NULL; 5286 } 5287 5288 /* put the team back in the team pool */ 5289 /* TODO limit size of team pool, call reap_team if pool too large */ 5290 team->t.t_next_pool = (kmp_team_t*) __kmp_team_pool; 5291 __kmp_team_pool = (volatile kmp_team_t*) team; 5292 } 5293 5294 KMP_MB(); 5295 } 5296 5297 5298 /* reap the team. destroy it, reclaim all its resources and free its memory */ 5299 kmp_team_t * 5300 __kmp_reap_team( kmp_team_t *team ) 5301 { 5302 kmp_team_t *next_pool = team->t.t_next_pool; 5303 5304 KMP_DEBUG_ASSERT( team ); 5305 KMP_DEBUG_ASSERT( team->t.t_dispatch ); 5306 KMP_DEBUG_ASSERT( team->t.t_disp_buffer ); 5307 KMP_DEBUG_ASSERT( team->t.t_threads ); 5308 KMP_DEBUG_ASSERT( team->t.t_argv ); 5309 5310 /* TODO clean the threads that are a part of this? */ 5311 5312 /* free stuff */ 5313 5314 __kmp_free_team_arrays( team ); 5315 if ( team->t.t_argv != &team->t.t_inline_argv[0] ) 5316 __kmp_free( (void*) team->t.t_argv ); 5317 __kmp_free( team ); 5318 5319 KMP_MB(); 5320 return next_pool; 5321 } 5322 5323 // 5324 // Free the thread. Don't reap it, just place it on the pool of available 5325 // threads. 5326 // 5327 // Changes for Quad issue 527845: We need a predictable OMP tid <-> gtid 5328 // binding for the affinity mechanism to be useful. 5329 // 5330 // Now, we always keep the free list (__kmp_thread_pool) sorted by gtid. 5331 // However, we want to avoid a potential performance problem by always 5332 // scanning through the list to find the correct point at which to insert 5333 // the thread (potential N**2 behavior). To do this we keep track of the 5334 // last place a thread struct was inserted (__kmp_thread_pool_insert_pt). 5335 // With single-level parallelism, threads will always be added to the tail 5336 // of the list, kept track of by __kmp_thread_pool_insert_pt. With nested 5337 // parallelism, all bets are off and we may need to scan through the entire 5338 // free list. 5339 // 5340 // This change also has a potentially large performance benefit, for some 5341 // applications. Previously, as threads were freed from the hot team, they 5342 // would be placed back on the free list in inverse order. If the hot team 5343 // grew back to it's original size, then the freed thread would be placed 5344 // back on the hot team in reverse order. This could cause bad cache 5345 // locality problems on programs where the size of the hot team regularly 5346 // grew and shrunk. 5347 // 5348 // Now, for single-level parallelism, the OMP tid is alway == gtid. 5349 // 5350 void 5351 __kmp_free_thread( kmp_info_t *this_th ) 5352 { 5353 int gtid; 5354 kmp_info_t **scan; 5355 5356 KA_TRACE( 20, ("__kmp_free_thread: T#%d putting T#%d back on free pool.\n", 5357 __kmp_get_gtid(), this_th->th.th_info.ds.ds_gtid )); 5358 5359 KMP_DEBUG_ASSERT( this_th ); 5360 5361 // When moving thread to pool, switch thread to wait on own b_go flag, and uninitialized (NULL team). 5362 int b; 5363 kmp_balign_t *balign = this_th->th.th_bar; 5364 for (b=0; b<bs_last_barrier; ++b) { 5365 if (balign[b].bb.wait_flag == KMP_BARRIER_PARENT_FLAG) 5366 balign[b].bb.wait_flag = KMP_BARRIER_SWITCH_TO_OWN_FLAG; 5367 balign[b].bb.team = NULL; 5368 balign[b].bb.leaf_kids = 0; 5369 } 5370 this_th->th.th_task_state = 0; 5371 5372 /* put thread back on the free pool */ 5373 TCW_PTR(this_th->th.th_team, NULL); 5374 TCW_PTR(this_th->th.th_root, NULL); 5375 TCW_PTR(this_th->th.th_dispatch, NULL); /* NOT NEEDED */ 5376 5377 // 5378 // If the __kmp_thread_pool_insert_pt is already past the new insert 5379 // point, then we need to re-scan the entire list. 5380 // 5381 gtid = this_th->th.th_info.ds.ds_gtid; 5382 if ( __kmp_thread_pool_insert_pt != NULL ) { 5383 KMP_DEBUG_ASSERT( __kmp_thread_pool != NULL ); 5384 if ( __kmp_thread_pool_insert_pt->th.th_info.ds.ds_gtid > gtid ) { 5385 __kmp_thread_pool_insert_pt = NULL; 5386 } 5387 } 5388 5389 // 5390 // Scan down the list to find the place to insert the thread. 5391 // scan is the address of a link in the list, possibly the address of 5392 // __kmp_thread_pool itself. 5393 // 5394 // In the absence of nested parallism, the for loop will have 0 iterations. 5395 // 5396 if ( __kmp_thread_pool_insert_pt != NULL ) { 5397 scan = &( __kmp_thread_pool_insert_pt->th.th_next_pool ); 5398 } 5399 else { 5400 scan = (kmp_info_t **)&__kmp_thread_pool; 5401 } 5402 for (; ( *scan != NULL ) && ( (*scan)->th.th_info.ds.ds_gtid < gtid ); 5403 scan = &( (*scan)->th.th_next_pool ) ); 5404 5405 // 5406 // Insert the new element on the list, and set __kmp_thread_pool_insert_pt 5407 // to its address. 5408 // 5409 TCW_PTR(this_th->th.th_next_pool, *scan); 5410 __kmp_thread_pool_insert_pt = *scan = this_th; 5411 KMP_DEBUG_ASSERT( ( this_th->th.th_next_pool == NULL ) 5412 || ( this_th->th.th_info.ds.ds_gtid 5413 < this_th->th.th_next_pool->th.th_info.ds.ds_gtid ) ); 5414 TCW_4(this_th->th.th_in_pool, TRUE); 5415 __kmp_thread_pool_nth++; 5416 5417 TCW_4(__kmp_nth, __kmp_nth - 1); 5418 5419 #ifdef KMP_ADJUST_BLOCKTIME 5420 /* Adjust blocktime back to user setting or default if necessary */ 5421 /* Middle initialization might never have occurred */ 5422 if ( !__kmp_env_blocktime && ( __kmp_avail_proc > 0 ) ) { 5423 KMP_DEBUG_ASSERT( __kmp_avail_proc > 0 ); 5424 if ( __kmp_nth <= __kmp_avail_proc ) { 5425 __kmp_zero_bt = FALSE; 5426 } 5427 } 5428 #endif /* KMP_ADJUST_BLOCKTIME */ 5429 5430 KMP_MB(); 5431 } 5432 5433 5434 /* ------------------------------------------------------------------------ */ 5435 5436 void * 5437 __kmp_launch_thread( kmp_info_t *this_thr ) 5438 { 5439 int gtid = this_thr->th.th_info.ds.ds_gtid; 5440 /* void *stack_data;*/ 5441 kmp_team_t *(*volatile pteam); 5442 5443 KMP_MB(); 5444 KA_TRACE( 10, ("__kmp_launch_thread: T#%d start\n", gtid ) ); 5445 5446 if( __kmp_env_consistency_check ) { 5447 this_thr->th.th_cons = __kmp_allocate_cons_stack( gtid ); // ATT: Memory leak? 5448 } 5449 5450 #if OMPT_SUPPORT 5451 if (ompt_enabled) { 5452 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 5453 this_thr->th.ompt_thread_info.wait_id = 0; 5454 this_thr->th.ompt_thread_info.idle_frame = __builtin_frame_address(0); 5455 if (ompt_callbacks.ompt_callback(ompt_event_thread_begin)) { 5456 __ompt_thread_begin(ompt_thread_worker, gtid); 5457 } 5458 } 5459 #endif 5460 5461 /* This is the place where threads wait for work */ 5462 while( ! TCR_4(__kmp_global.g.g_done) ) { 5463 KMP_DEBUG_ASSERT( this_thr == __kmp_threads[ gtid ] ); 5464 KMP_MB(); 5465 5466 /* wait for work to do */ 5467 KA_TRACE( 20, ("__kmp_launch_thread: T#%d waiting for work\n", gtid )); 5468 5469 #if OMPT_SUPPORT 5470 if (ompt_enabled) { 5471 this_thr->th.ompt_thread_info.state = ompt_state_idle; 5472 } 5473 #endif 5474 5475 /* No tid yet since not part of a team */ 5476 __kmp_fork_barrier( gtid, KMP_GTID_DNE ); 5477 5478 #if OMPT_SUPPORT 5479 if (ompt_enabled) { 5480 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 5481 } 5482 #endif 5483 5484 pteam = (kmp_team_t *(*))(& this_thr->th.th_team); 5485 5486 /* have we been allocated? */ 5487 if ( TCR_SYNC_PTR(*pteam) && !TCR_4(__kmp_global.g.g_done) ) { 5488 #if OMPT_SUPPORT 5489 ompt_task_info_t *task_info; 5490 ompt_parallel_id_t my_parallel_id; 5491 if (ompt_enabled) { 5492 task_info = __ompt_get_taskinfo(0); 5493 my_parallel_id = (*pteam)->t.ompt_team_info.parallel_id; 5494 } 5495 #endif 5496 /* we were just woken up, so run our new task */ 5497 if ( TCR_SYNC_PTR((*pteam)->t.t_pkfn) != NULL ) { 5498 int rc; 5499 KA_TRACE(20, ("__kmp_launch_thread: T#%d(%d:%d) invoke microtask = %p\n", 5500 gtid, (*pteam)->t.t_id, __kmp_tid_from_gtid(gtid), (*pteam)->t.t_pkfn)); 5501 5502 updateHWFPControl (*pteam); 5503 5504 #if OMPT_SUPPORT 5505 if (ompt_enabled) { 5506 this_thr->th.ompt_thread_info.state = ompt_state_work_parallel; 5507 // Initialize OMPT task id for implicit task. 5508 int tid = __kmp_tid_from_gtid(gtid); 5509 task_info->task_id = __ompt_task_id_new(tid); 5510 } 5511 #endif 5512 5513 { 5514 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 5515 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 5516 rc = (*pteam)->t.t_invoke( gtid ); 5517 } 5518 KMP_ASSERT( rc ); 5519 5520 #if OMPT_SUPPORT 5521 if (ompt_enabled) { 5522 /* no frame set while outside task */ 5523 task_info->frame.exit_runtime_frame = NULL; 5524 5525 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 5526 } 5527 #endif 5528 KMP_MB(); 5529 KA_TRACE(20, ("__kmp_launch_thread: T#%d(%d:%d) done microtask = %p\n", 5530 gtid, (*pteam)->t.t_id, __kmp_tid_from_gtid(gtid), (*pteam)->t.t_pkfn)); 5531 } 5532 /* join barrier after parallel region */ 5533 __kmp_join_barrier( gtid ); 5534 #if OMPT_SUPPORT && OMPT_TRACE 5535 if (ompt_enabled) { 5536 if (ompt_callbacks.ompt_callback(ompt_event_implicit_task_end)) { 5537 // don't access *pteam here: it may have already been freed 5538 // by the master thread behind the barrier (possible race) 5539 ompt_callbacks.ompt_callback(ompt_event_implicit_task_end)( 5540 my_parallel_id, task_info->task_id); 5541 } 5542 task_info->frame.exit_runtime_frame = NULL; 5543 task_info->task_id = 0; 5544 } 5545 #endif 5546 } 5547 } 5548 TCR_SYNC_PTR((intptr_t)__kmp_global.g.g_done); 5549 5550 #if OMPT_SUPPORT 5551 if (ompt_enabled && 5552 ompt_callbacks.ompt_callback(ompt_event_thread_end)) { 5553 __ompt_thread_end(ompt_thread_worker, gtid); 5554 } 5555 #endif 5556 5557 this_thr->th.th_task_team = NULL; 5558 /* run the destructors for the threadprivate data for this thread */ 5559 __kmp_common_destroy_gtid( gtid ); 5560 5561 KA_TRACE( 10, ("__kmp_launch_thread: T#%d done\n", gtid ) ); 5562 KMP_MB(); 5563 return this_thr; 5564 } 5565 5566 /* ------------------------------------------------------------------------ */ 5567 /* ------------------------------------------------------------------------ */ 5568 5569 void 5570 __kmp_internal_end_dest( void *specific_gtid ) 5571 { 5572 #if KMP_COMPILER_ICC 5573 #pragma warning( push ) 5574 #pragma warning( disable: 810 ) // conversion from "void *" to "int" may lose significant bits 5575 #endif 5576 // Make sure no significant bits are lost 5577 int gtid = (kmp_intptr_t)specific_gtid - 1; 5578 #if KMP_COMPILER_ICC 5579 #pragma warning( pop ) 5580 #endif 5581 5582 KA_TRACE( 30, ("__kmp_internal_end_dest: T#%d\n", gtid)); 5583 /* NOTE: the gtid is stored as gitd+1 in the thread-local-storage 5584 * this is because 0 is reserved for the nothing-stored case */ 5585 5586 /* josh: One reason for setting the gtid specific data even when it is being 5587 destroyed by pthread is to allow gtid lookup through thread specific data 5588 (__kmp_gtid_get_specific). Some of the code, especially stat code, 5589 that gets executed in the call to __kmp_internal_end_thread, actually 5590 gets the gtid through the thread specific data. Setting it here seems 5591 rather inelegant and perhaps wrong, but allows __kmp_internal_end_thread 5592 to run smoothly. 5593 todo: get rid of this after we remove the dependence on 5594 __kmp_gtid_get_specific 5595 */ 5596 if(gtid >= 0 && KMP_UBER_GTID(gtid)) 5597 __kmp_gtid_set_specific( gtid ); 5598 #ifdef KMP_TDATA_GTID 5599 __kmp_gtid = gtid; 5600 #endif 5601 __kmp_internal_end_thread( gtid ); 5602 } 5603 5604 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB 5605 5606 // 2009-09-08 (lev): It looks the destructor does not work. In simple test cases destructors work 5607 // perfectly, but in real libomp.so I have no evidence it is ever called. However, -fini linker 5608 // option in makefile.mk works fine. 5609 5610 __attribute__(( destructor )) 5611 void 5612 __kmp_internal_end_dtor( void ) 5613 { 5614 __kmp_internal_end_atexit(); 5615 } 5616 5617 void 5618 __kmp_internal_end_fini( void ) 5619 { 5620 __kmp_internal_end_atexit(); 5621 } 5622 5623 #endif 5624 5625 /* [Windows] josh: when the atexit handler is called, there may still be more than one thread alive */ 5626 void 5627 __kmp_internal_end_atexit( void ) 5628 { 5629 KA_TRACE( 30, ( "__kmp_internal_end_atexit\n" ) ); 5630 /* [Windows] 5631 josh: ideally, we want to completely shutdown the library in this atexit handler, but 5632 stat code that depends on thread specific data for gtid fails because that data becomes 5633 unavailable at some point during the shutdown, so we call __kmp_internal_end_thread 5634 instead. We should eventually remove the dependency on __kmp_get_specific_gtid in the 5635 stat code and use __kmp_internal_end_library to cleanly shutdown the library. 5636 5637 // TODO: Can some of this comment about GVS be removed? 5638 I suspect that the offending stat code is executed when the calling thread tries to 5639 clean up a dead root thread's data structures, resulting in GVS code trying to close 5640 the GVS structures for that thread, but since the stat code uses 5641 __kmp_get_specific_gtid to get the gtid with the assumption that the calling thread is 5642 cleaning up itself instead of another thread, it gets confused. This happens because 5643 allowing a thread to unregister and cleanup another thread is a recent modification for 5644 addressing an issue with Maxon Cinema4D. Based on the current design (20050722), a 5645 thread may end up trying to unregister another thread only if thread death does not 5646 trigger the calling of __kmp_internal_end_thread. For Linux* OS, there is the thread 5647 specific data destructor function to detect thread death. For Windows dynamic, there 5648 is DllMain(THREAD_DETACH). For Windows static, there is nothing. Thus, the 5649 workaround is applicable only for Windows static stat library. 5650 */ 5651 __kmp_internal_end_library( -1 ); 5652 #if KMP_OS_WINDOWS 5653 __kmp_close_console(); 5654 #endif 5655 } 5656 5657 static void 5658 __kmp_reap_thread( 5659 kmp_info_t * thread, 5660 int is_root 5661 ) { 5662 5663 // It is assumed __kmp_forkjoin_lock is acquired. 5664 5665 int gtid; 5666 5667 KMP_DEBUG_ASSERT( thread != NULL ); 5668 5669 gtid = thread->th.th_info.ds.ds_gtid; 5670 5671 if ( ! is_root ) { 5672 5673 if ( __kmp_dflt_blocktime != KMP_MAX_BLOCKTIME ) { 5674 /* Assume the threads are at the fork barrier here */ 5675 KA_TRACE( 20, ("__kmp_reap_thread: releasing T#%d from fork barrier for reap\n", gtid ) ); 5676 /* Need release fence here to prevent seg faults for tree forkjoin barrier (GEH) */ 5677 ANNOTATE_HAPPENS_BEFORE(thread); 5678 kmp_flag_64 flag(&thread->th.th_bar[ bs_forkjoin_barrier ].bb.b_go, thread); 5679 __kmp_release_64(&flag); 5680 }; // if 5681 5682 // Terminate OS thread. 5683 __kmp_reap_worker( thread ); 5684 5685 // 5686 // The thread was killed asynchronously. If it was actively 5687 // spinning in the thread pool, decrement the global count. 5688 // 5689 // There is a small timing hole here - if the worker thread was 5690 // just waking up after sleeping in the pool, had reset it's 5691 // th_active_in_pool flag but not decremented the global counter 5692 // __kmp_thread_pool_active_nth yet, then the global counter 5693 // might not get updated. 5694 // 5695 // Currently, this can only happen as the library is unloaded, 5696 // so there are no harmful side effects. 5697 // 5698 if ( thread->th.th_active_in_pool ) { 5699 thread->th.th_active_in_pool = FALSE; 5700 KMP_TEST_THEN_DEC32( 5701 (kmp_int32 *) &__kmp_thread_pool_active_nth ); 5702 KMP_DEBUG_ASSERT( TCR_4(__kmp_thread_pool_active_nth) >= 0 ); 5703 } 5704 5705 // Decrement # of [worker] threads in the pool. 5706 KMP_DEBUG_ASSERT( __kmp_thread_pool_nth > 0 ); 5707 --__kmp_thread_pool_nth; 5708 }; // if 5709 5710 __kmp_free_implicit_task(thread); 5711 5712 // Free the fast memory for tasking 5713 #if USE_FAST_MEMORY 5714 __kmp_free_fast_memory( thread ); 5715 #endif /* USE_FAST_MEMORY */ 5716 5717 __kmp_suspend_uninitialize_thread( thread ); 5718 5719 KMP_DEBUG_ASSERT( __kmp_threads[ gtid ] == thread ); 5720 TCW_SYNC_PTR(__kmp_threads[gtid], NULL); 5721 5722 -- __kmp_all_nth; 5723 // __kmp_nth was decremented when thread is added to the pool. 5724 5725 #ifdef KMP_ADJUST_BLOCKTIME 5726 /* Adjust blocktime back to user setting or default if necessary */ 5727 /* Middle initialization might never have occurred */ 5728 if ( !__kmp_env_blocktime && ( __kmp_avail_proc > 0 ) ) { 5729 KMP_DEBUG_ASSERT( __kmp_avail_proc > 0 ); 5730 if ( __kmp_nth <= __kmp_avail_proc ) { 5731 __kmp_zero_bt = FALSE; 5732 } 5733 } 5734 #endif /* KMP_ADJUST_BLOCKTIME */ 5735 5736 /* free the memory being used */ 5737 if( __kmp_env_consistency_check ) { 5738 if ( thread->th.th_cons ) { 5739 __kmp_free_cons_stack( thread->th.th_cons ); 5740 thread->th.th_cons = NULL; 5741 }; // if 5742 } 5743 5744 if ( thread->th.th_pri_common != NULL ) { 5745 __kmp_free( thread->th.th_pri_common ); 5746 thread->th.th_pri_common = NULL; 5747 }; // if 5748 5749 if (thread->th.th_task_state_memo_stack != NULL) { 5750 __kmp_free(thread->th.th_task_state_memo_stack); 5751 thread->th.th_task_state_memo_stack = NULL; 5752 } 5753 5754 #if KMP_USE_BGET 5755 if ( thread->th.th_local.bget_data != NULL ) { 5756 __kmp_finalize_bget( thread ); 5757 }; // if 5758 #endif 5759 5760 #if KMP_AFFINITY_SUPPORTED 5761 if ( thread->th.th_affin_mask != NULL ) { 5762 KMP_CPU_FREE( thread->th.th_affin_mask ); 5763 thread->th.th_affin_mask = NULL; 5764 }; // if 5765 #endif /* KMP_AFFINITY_SUPPORTED */ 5766 5767 __kmp_reap_team( thread->th.th_serial_team ); 5768 thread->th.th_serial_team = NULL; 5769 __kmp_free( thread ); 5770 5771 KMP_MB(); 5772 5773 } // __kmp_reap_thread 5774 5775 static void 5776 __kmp_internal_end(void) 5777 { 5778 int i; 5779 5780 /* First, unregister the library */ 5781 __kmp_unregister_library(); 5782 5783 #if KMP_OS_WINDOWS 5784 /* In Win static library, we can't tell when a root actually dies, so we 5785 reclaim the data structures for any root threads that have died but not 5786 unregistered themselves, in order to shut down cleanly. 5787 In Win dynamic library we also can't tell when a thread dies. 5788 */ 5789 __kmp_reclaim_dead_roots(); // AC: moved here to always clean resources of dead roots 5790 #endif 5791 5792 for( i=0 ; i<__kmp_threads_capacity ; i++ ) 5793 if( __kmp_root[i] ) 5794 if( __kmp_root[i]->r.r_active ) 5795 break; 5796 KMP_MB(); /* Flush all pending memory write invalidates. */ 5797 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 5798 5799 if ( i < __kmp_threads_capacity ) { 5800 #if KMP_USE_MONITOR 5801 // 2009-09-08 (lev): Other alive roots found. Why do we kill the monitor?? 5802 KMP_MB(); /* Flush all pending memory write invalidates. */ 5803 5804 // 5805 // Need to check that monitor was initialized before reaping it. 5806 // If we are called form __kmp_atfork_child (which sets 5807 // __kmp_init_parallel = 0), then __kmp_monitor will appear to 5808 // contain valid data, but it is only valid in the parent process, 5809 // not the child. 5810 // 5811 // New behavior (201008): instead of keying off of the flag 5812 // __kmp_init_parallel, the monitor thread creation is keyed off 5813 // of the new flag __kmp_init_monitor. 5814 // 5815 __kmp_acquire_bootstrap_lock( & __kmp_monitor_lock ); 5816 if ( TCR_4( __kmp_init_monitor ) ) { 5817 __kmp_reap_monitor( & __kmp_monitor ); 5818 TCW_4( __kmp_init_monitor, 0 ); 5819 } 5820 __kmp_release_bootstrap_lock( & __kmp_monitor_lock ); 5821 KA_TRACE( 10, ("__kmp_internal_end: monitor reaped\n" ) ); 5822 #endif // KMP_USE_MONITOR 5823 } else { 5824 /* TODO move this to cleanup code */ 5825 #ifdef KMP_DEBUG 5826 /* make sure that everything has properly ended */ 5827 for ( i = 0; i < __kmp_threads_capacity; i++ ) { 5828 if( __kmp_root[i] ) { 5829 // KMP_ASSERT( ! KMP_UBER_GTID( i ) ); // AC: there can be uber threads alive here 5830 KMP_ASSERT( ! __kmp_root[i]->r.r_active ); // TODO: can they be active? 5831 } 5832 } 5833 #endif 5834 5835 KMP_MB(); 5836 5837 // Reap the worker threads. 5838 // This is valid for now, but be careful if threads are reaped sooner. 5839 while ( __kmp_thread_pool != NULL ) { // Loop thru all the thread in the pool. 5840 // Get the next thread from the pool. 5841 kmp_info_t * thread = (kmp_info_t *) __kmp_thread_pool; 5842 __kmp_thread_pool = thread->th.th_next_pool; 5843 // Reap it. 5844 thread->th.th_next_pool = NULL; 5845 thread->th.th_in_pool = FALSE; 5846 __kmp_reap_thread( thread, 0 ); 5847 }; // while 5848 __kmp_thread_pool_insert_pt = NULL; 5849 5850 // Reap teams. 5851 while ( __kmp_team_pool != NULL ) { // Loop thru all the teams in the pool. 5852 // Get the next team from the pool. 5853 kmp_team_t * team = (kmp_team_t *) __kmp_team_pool; 5854 __kmp_team_pool = team->t.t_next_pool; 5855 // Reap it. 5856 team->t.t_next_pool = NULL; 5857 __kmp_reap_team( team ); 5858 }; // while 5859 5860 __kmp_reap_task_teams( ); 5861 5862 for ( i = 0; i < __kmp_threads_capacity; ++ i ) { 5863 // TBD: Add some checking... 5864 // Something like KMP_DEBUG_ASSERT( __kmp_thread[ i ] == NULL ); 5865 } 5866 5867 /* Make sure all threadprivate destructors get run by joining with all worker 5868 threads before resetting this flag */ 5869 TCW_SYNC_4(__kmp_init_common, FALSE); 5870 5871 KA_TRACE( 10, ("__kmp_internal_end: all workers reaped\n" ) ); 5872 KMP_MB(); 5873 5874 #if KMP_USE_MONITOR 5875 // 5876 // See note above: One of the possible fixes for CQ138434 / CQ140126 5877 // 5878 // FIXME: push both code fragments down and CSE them? 5879 // push them into __kmp_cleanup() ? 5880 // 5881 __kmp_acquire_bootstrap_lock( & __kmp_monitor_lock ); 5882 if ( TCR_4( __kmp_init_monitor ) ) { 5883 __kmp_reap_monitor( & __kmp_monitor ); 5884 TCW_4( __kmp_init_monitor, 0 ); 5885 } 5886 __kmp_release_bootstrap_lock( & __kmp_monitor_lock ); 5887 KA_TRACE( 10, ("__kmp_internal_end: monitor reaped\n" ) ); 5888 #endif 5889 } /* else !__kmp_global.t_active */ 5890 TCW_4(__kmp_init_gtid, FALSE); 5891 KMP_MB(); /* Flush all pending memory write invalidates. */ 5892 5893 __kmp_cleanup(); 5894 #if OMPT_SUPPORT 5895 ompt_fini(); 5896 #endif 5897 } 5898 5899 void 5900 __kmp_internal_end_library( int gtid_req ) 5901 { 5902 /* if we have already cleaned up, don't try again, it wouldn't be pretty */ 5903 /* this shouldn't be a race condition because __kmp_internal_end() is the 5904 * only place to clear __kmp_serial_init */ 5905 /* we'll check this later too, after we get the lock */ 5906 // 2009-09-06: We do not set g_abort without setting g_done. This check looks redundaant, 5907 // because the next check will work in any case. 5908 if( __kmp_global.g.g_abort ) { 5909 KA_TRACE( 11, ("__kmp_internal_end_library: abort, exiting\n" )); 5910 /* TODO abort? */ 5911 return; 5912 } 5913 if( TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial ) { 5914 KA_TRACE( 10, ("__kmp_internal_end_library: already finished\n" )); 5915 return; 5916 } 5917 5918 5919 KMP_MB(); /* Flush all pending memory write invalidates. */ 5920 5921 /* find out who we are and what we should do */ 5922 { 5923 int gtid = (gtid_req>=0) ? gtid_req : __kmp_gtid_get_specific(); 5924 KA_TRACE( 10, ("__kmp_internal_end_library: enter T#%d (%d)\n", gtid, gtid_req )); 5925 if( gtid == KMP_GTID_SHUTDOWN ) { 5926 KA_TRACE( 10, ("__kmp_internal_end_library: !__kmp_init_runtime, system already shutdown\n" )); 5927 return; 5928 } else if( gtid == KMP_GTID_MONITOR ) { 5929 KA_TRACE( 10, ("__kmp_internal_end_library: monitor thread, gtid not registered, or system shutdown\n" )); 5930 return; 5931 } else if( gtid == KMP_GTID_DNE ) { 5932 KA_TRACE( 10, ("__kmp_internal_end_library: gtid not registered or system shutdown\n" )); 5933 /* we don't know who we are, but we may still shutdown the library */ 5934 } else if( KMP_UBER_GTID( gtid )) { 5935 /* unregister ourselves as an uber thread. gtid is no longer valid */ 5936 if( __kmp_root[gtid]->r.r_active ) { 5937 __kmp_global.g.g_abort = -1; 5938 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 5939 KA_TRACE( 10, ("__kmp_internal_end_library: root still active, abort T#%d\n", gtid )); 5940 return; 5941 } else { 5942 KA_TRACE( 10, ("__kmp_internal_end_library: unregistering sibling T#%d\n", gtid )); 5943 __kmp_unregister_root_current_thread( gtid ); 5944 } 5945 } else { 5946 /* worker threads may call this function through the atexit handler, if they call exit() */ 5947 /* For now, skip the usual subsequent processing and just dump the debug buffer. 5948 TODO: do a thorough shutdown instead 5949 */ 5950 #ifdef DUMP_DEBUG_ON_EXIT 5951 if ( __kmp_debug_buf ) 5952 __kmp_dump_debug_buffer( ); 5953 #endif 5954 return; 5955 } 5956 } 5957 /* synchronize the termination process */ 5958 __kmp_acquire_bootstrap_lock( &__kmp_initz_lock ); 5959 5960 /* have we already finished */ 5961 if( __kmp_global.g.g_abort ) { 5962 KA_TRACE( 10, ("__kmp_internal_end_library: abort, exiting\n" )); 5963 /* TODO abort? */ 5964 __kmp_release_bootstrap_lock( &__kmp_initz_lock ); 5965 return; 5966 } 5967 if( TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial ) { 5968 __kmp_release_bootstrap_lock( &__kmp_initz_lock ); 5969 return; 5970 } 5971 5972 /* We need this lock to enforce mutex between this reading of 5973 __kmp_threads_capacity and the writing by __kmp_register_root. 5974 Alternatively, we can use a counter of roots that is 5975 atomically updated by __kmp_get_global_thread_id_reg, 5976 __kmp_do_serial_initialize and __kmp_internal_end_*. 5977 */ 5978 __kmp_acquire_bootstrap_lock( &__kmp_forkjoin_lock ); 5979 5980 /* now we can safely conduct the actual termination */ 5981 __kmp_internal_end(); 5982 5983 __kmp_release_bootstrap_lock( &__kmp_forkjoin_lock ); 5984 __kmp_release_bootstrap_lock( &__kmp_initz_lock ); 5985 5986 KA_TRACE( 10, ("__kmp_internal_end_library: exit\n" ) ); 5987 5988 #ifdef DUMP_DEBUG_ON_EXIT 5989 if ( __kmp_debug_buf ) 5990 __kmp_dump_debug_buffer(); 5991 #endif 5992 5993 #if KMP_OS_WINDOWS 5994 __kmp_close_console(); 5995 #endif 5996 5997 __kmp_fini_allocator(); 5998 5999 } // __kmp_internal_end_library 6000 6001 void 6002 __kmp_internal_end_thread( int gtid_req ) 6003 { 6004 int i; 6005 6006 /* if we have already cleaned up, don't try again, it wouldn't be pretty */ 6007 /* this shouldn't be a race condition because __kmp_internal_end() is the 6008 * only place to clear __kmp_serial_init */ 6009 /* we'll check this later too, after we get the lock */ 6010 // 2009-09-06: We do not set g_abort without setting g_done. This check looks redundant, 6011 // because the next check will work in any case. 6012 if( __kmp_global.g.g_abort ) { 6013 KA_TRACE( 11, ("__kmp_internal_end_thread: abort, exiting\n" )); 6014 /* TODO abort? */ 6015 return; 6016 } 6017 if( TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial ) { 6018 KA_TRACE( 10, ("__kmp_internal_end_thread: already finished\n" )); 6019 return; 6020 } 6021 6022 KMP_MB(); /* Flush all pending memory write invalidates. */ 6023 6024 /* find out who we are and what we should do */ 6025 { 6026 int gtid = (gtid_req>=0) ? gtid_req : __kmp_gtid_get_specific(); 6027 KA_TRACE( 10, ("__kmp_internal_end_thread: enter T#%d (%d)\n", gtid, gtid_req )); 6028 if( gtid == KMP_GTID_SHUTDOWN ) { 6029 KA_TRACE( 10, ("__kmp_internal_end_thread: !__kmp_init_runtime, system already shutdown\n" )); 6030 return; 6031 } else if( gtid == KMP_GTID_MONITOR ) { 6032 KA_TRACE( 10, ("__kmp_internal_end_thread: monitor thread, gtid not registered, or system shutdown\n" )); 6033 return; 6034 } else if( gtid == KMP_GTID_DNE ) { 6035 KA_TRACE( 10, ("__kmp_internal_end_thread: gtid not registered or system shutdown\n" )); 6036 return; 6037 /* we don't know who we are */ 6038 } else if( KMP_UBER_GTID( gtid )) { 6039 /* unregister ourselves as an uber thread. gtid is no longer valid */ 6040 if( __kmp_root[gtid]->r.r_active ) { 6041 __kmp_global.g.g_abort = -1; 6042 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 6043 KA_TRACE( 10, ("__kmp_internal_end_thread: root still active, abort T#%d\n", gtid )); 6044 return; 6045 } else { 6046 KA_TRACE( 10, ("__kmp_internal_end_thread: unregistering sibling T#%d\n", gtid )); 6047 __kmp_unregister_root_current_thread( gtid ); 6048 } 6049 } else { 6050 /* just a worker thread, let's leave */ 6051 KA_TRACE( 10, ("__kmp_internal_end_thread: worker thread T#%d\n", gtid )); 6052 6053 if ( gtid >= 0 ) { 6054 __kmp_threads[gtid]->th.th_task_team = NULL; 6055 } 6056 6057 KA_TRACE( 10, ("__kmp_internal_end_thread: worker thread done, exiting T#%d\n", gtid )); 6058 return; 6059 } 6060 } 6061 #if defined KMP_DYNAMIC_LIB 6062 // AC: lets not shutdown the Linux* OS dynamic library at the exit of uber thread, 6063 // because we will better shutdown later in the library destructor. 6064 // The reason of this change is performance problem when non-openmp thread 6065 // in a loop forks and joins many openmp threads. We can save a lot of time 6066 // keeping worker threads alive until the program shutdown. 6067 // OM: Removed Linux* OS restriction to fix the crash on OS X* (DPD200239966) and 6068 // Windows(DPD200287443) that occurs when using critical sections from foreign threads. 6069 KA_TRACE( 10, ("__kmp_internal_end_thread: exiting T#%d\n", gtid_req) ); 6070 return; 6071 #endif 6072 /* synchronize the termination process */ 6073 __kmp_acquire_bootstrap_lock( &__kmp_initz_lock ); 6074 6075 /* have we already finished */ 6076 if( __kmp_global.g.g_abort ) { 6077 KA_TRACE( 10, ("__kmp_internal_end_thread: abort, exiting\n" )); 6078 /* TODO abort? */ 6079 __kmp_release_bootstrap_lock( &__kmp_initz_lock ); 6080 return; 6081 } 6082 if( TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial ) { 6083 __kmp_release_bootstrap_lock( &__kmp_initz_lock ); 6084 return; 6085 } 6086 6087 /* We need this lock to enforce mutex between this reading of 6088 __kmp_threads_capacity and the writing by __kmp_register_root. 6089 Alternatively, we can use a counter of roots that is 6090 atomically updated by __kmp_get_global_thread_id_reg, 6091 __kmp_do_serial_initialize and __kmp_internal_end_*. 6092 */ 6093 6094 /* should we finish the run-time? are all siblings done? */ 6095 __kmp_acquire_bootstrap_lock( &__kmp_forkjoin_lock ); 6096 6097 for ( i = 0; i < __kmp_threads_capacity; ++ i ) { 6098 if ( KMP_UBER_GTID( i ) ) { 6099 KA_TRACE( 10, ("__kmp_internal_end_thread: remaining sibling task: gtid==%d\n", i )); 6100 __kmp_release_bootstrap_lock( &__kmp_forkjoin_lock ); 6101 __kmp_release_bootstrap_lock( &__kmp_initz_lock ); 6102 return; 6103 }; 6104 } 6105 6106 /* now we can safely conduct the actual termination */ 6107 6108 __kmp_internal_end(); 6109 6110 __kmp_release_bootstrap_lock( &__kmp_forkjoin_lock ); 6111 __kmp_release_bootstrap_lock( &__kmp_initz_lock ); 6112 6113 KA_TRACE( 10, ("__kmp_internal_end_thread: exit T#%d\n", gtid_req ) ); 6114 6115 #ifdef DUMP_DEBUG_ON_EXIT 6116 if ( __kmp_debug_buf ) 6117 __kmp_dump_debug_buffer(); 6118 #endif 6119 } // __kmp_internal_end_thread 6120 6121 // ------------------------------------------------------------------------------------------------- 6122 // Library registration stuff. 6123 6124 static long __kmp_registration_flag = 0; 6125 // Random value used to indicate library initialization. 6126 static char * __kmp_registration_str = NULL; 6127 // Value to be saved in env var __KMP_REGISTERED_LIB_<pid>. 6128 6129 6130 static inline 6131 char * 6132 __kmp_reg_status_name() { 6133 /* 6134 On RHEL 3u5 if linked statically, getpid() returns different values in each thread. 6135 If registration and unregistration go in different threads (omp_misc_other_root_exit.cpp test case), 6136 the name of registered_lib_env env var can not be found, because the name will contain different pid. 6137 */ 6138 return __kmp_str_format( "__KMP_REGISTERED_LIB_%d", (int) getpid() ); 6139 } // __kmp_reg_status_get 6140 6141 6142 void 6143 __kmp_register_library_startup( 6144 void 6145 ) { 6146 6147 char * name = __kmp_reg_status_name(); // Name of the environment variable. 6148 int done = 0; 6149 union { 6150 double dtime; 6151 long ltime; 6152 } time; 6153 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 6154 __kmp_initialize_system_tick(); 6155 #endif 6156 __kmp_read_system_time( & time.dtime ); 6157 __kmp_registration_flag = 0xCAFE0000L | ( time.ltime & 0x0000FFFFL ); 6158 __kmp_registration_str = 6159 __kmp_str_format( 6160 "%p-%lx-%s", 6161 & __kmp_registration_flag, 6162 __kmp_registration_flag, 6163 KMP_LIBRARY_FILE 6164 ); 6165 6166 KA_TRACE( 50, ( "__kmp_register_library_startup: %s=\"%s\"\n", name, __kmp_registration_str ) ); 6167 6168 while ( ! done ) { 6169 6170 char * value = NULL; // Actual value of the environment variable. 6171 6172 // Set environment variable, but do not overwrite if it is exist. 6173 __kmp_env_set( name, __kmp_registration_str, 0 ); 6174 // Check the variable is written. 6175 value = __kmp_env_get( name ); 6176 if ( value != NULL && strcmp( value, __kmp_registration_str ) == 0 ) { 6177 6178 done = 1; // Ok, environment variable set successfully, exit the loop. 6179 6180 } else { 6181 6182 // Oops. Write failed. Another copy of OpenMP RTL is in memory. 6183 // Check whether it alive or dead. 6184 int neighbor = 0; // 0 -- unknown status, 1 -- alive, 2 -- dead. 6185 char * tail = value; 6186 char * flag_addr_str = NULL; 6187 char * flag_val_str = NULL; 6188 char const * file_name = NULL; 6189 __kmp_str_split( tail, '-', & flag_addr_str, & tail ); 6190 __kmp_str_split( tail, '-', & flag_val_str, & tail ); 6191 file_name = tail; 6192 if ( tail != NULL ) { 6193 long * flag_addr = 0; 6194 long flag_val = 0; 6195 KMP_SSCANF( flag_addr_str, "%p", & flag_addr ); 6196 KMP_SSCANF( flag_val_str, "%lx", & flag_val ); 6197 if ( flag_addr != 0 && flag_val != 0 && strcmp( file_name, "" ) != 0 ) { 6198 // First, check whether environment-encoded address is mapped into addr space. 6199 // If so, dereference it to see if it still has the right value. 6200 6201 if ( __kmp_is_address_mapped( flag_addr ) && * flag_addr == flag_val ) { 6202 neighbor = 1; 6203 } else { 6204 // If not, then we know the other copy of the library is no longer running. 6205 neighbor = 2; 6206 }; // if 6207 }; // if 6208 }; // if 6209 switch ( neighbor ) { 6210 case 0 : // Cannot parse environment variable -- neighbor status unknown. 6211 // Assume it is the incompatible format of future version of the library. 6212 // Assume the other library is alive. 6213 // WARN( ... ); // TODO: Issue a warning. 6214 file_name = "unknown library"; 6215 // Attention! Falling to the next case. That's intentional. 6216 case 1 : { // Neighbor is alive. 6217 // Check it is allowed. 6218 char * duplicate_ok = __kmp_env_get( "KMP_DUPLICATE_LIB_OK" ); 6219 if ( ! __kmp_str_match_true( duplicate_ok ) ) { 6220 // That's not allowed. Issue fatal error. 6221 __kmp_msg( 6222 kmp_ms_fatal, 6223 KMP_MSG( DuplicateLibrary, KMP_LIBRARY_FILE, file_name ), 6224 KMP_HNT( DuplicateLibrary ), 6225 __kmp_msg_null 6226 ); 6227 }; // if 6228 KMP_INTERNAL_FREE( duplicate_ok ); 6229 __kmp_duplicate_library_ok = 1; 6230 done = 1; // Exit the loop. 6231 } break; 6232 case 2 : { // Neighbor is dead. 6233 // Clear the variable and try to register library again. 6234 __kmp_env_unset( name ); 6235 } break; 6236 default : { 6237 KMP_DEBUG_ASSERT( 0 ); 6238 } break; 6239 }; // switch 6240 6241 }; // if 6242 KMP_INTERNAL_FREE( (void *) value ); 6243 6244 }; // while 6245 KMP_INTERNAL_FREE( (void *) name ); 6246 6247 } // func __kmp_register_library_startup 6248 6249 6250 void 6251 __kmp_unregister_library( void ) { 6252 6253 char * name = __kmp_reg_status_name(); 6254 char * value = __kmp_env_get( name ); 6255 6256 KMP_DEBUG_ASSERT( __kmp_registration_flag != 0 ); 6257 KMP_DEBUG_ASSERT( __kmp_registration_str != NULL ); 6258 if ( value != NULL && strcmp( value, __kmp_registration_str ) == 0 ) { 6259 // Ok, this is our variable. Delete it. 6260 __kmp_env_unset( name ); 6261 }; // if 6262 6263 KMP_INTERNAL_FREE( __kmp_registration_str ); 6264 KMP_INTERNAL_FREE( value ); 6265 KMP_INTERNAL_FREE( name ); 6266 6267 __kmp_registration_flag = 0; 6268 __kmp_registration_str = NULL; 6269 6270 } // __kmp_unregister_library 6271 6272 6273 // End of Library registration stuff. 6274 // ------------------------------------------------------------------------------------------------- 6275 6276 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 6277 6278 static void __kmp_check_mic_type() 6279 { 6280 kmp_cpuid_t cpuid_state = {0}; 6281 kmp_cpuid_t * cs_p = &cpuid_state; 6282 __kmp_x86_cpuid(1, 0, cs_p); 6283 // We don't support mic1 at the moment 6284 if( (cs_p->eax & 0xff0) == 0xB10 ) { 6285 __kmp_mic_type = mic2; 6286 } else if( (cs_p->eax & 0xf0ff0) == 0x50670 ) { 6287 __kmp_mic_type = mic3; 6288 } else { 6289 __kmp_mic_type = non_mic; 6290 } 6291 } 6292 6293 #endif /* KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) */ 6294 6295 static void 6296 __kmp_do_serial_initialize( void ) 6297 { 6298 int i, gtid; 6299 int size; 6300 6301 KA_TRACE( 10, ("__kmp_do_serial_initialize: enter\n" ) ); 6302 6303 KMP_DEBUG_ASSERT( sizeof( kmp_int32 ) == 4 ); 6304 KMP_DEBUG_ASSERT( sizeof( kmp_uint32 ) == 4 ); 6305 KMP_DEBUG_ASSERT( sizeof( kmp_int64 ) == 8 ); 6306 KMP_DEBUG_ASSERT( sizeof( kmp_uint64 ) == 8 ); 6307 KMP_DEBUG_ASSERT( sizeof( kmp_intptr_t ) == sizeof( void * ) ); 6308 6309 #if OMPT_SUPPORT 6310 ompt_pre_init(); 6311 #endif 6312 6313 __kmp_validate_locks(); 6314 6315 /* Initialize internal memory allocator */ 6316 __kmp_init_allocator(); 6317 6318 /* Register the library startup via an environment variable 6319 and check to see whether another copy of the library is already 6320 registered. */ 6321 6322 __kmp_register_library_startup( ); 6323 6324 /* TODO reinitialization of library */ 6325 if( TCR_4(__kmp_global.g.g_done) ) { 6326 KA_TRACE( 10, ("__kmp_do_serial_initialize: reinitialization of library\n" ) ); 6327 } 6328 6329 __kmp_global.g.g_abort = 0; 6330 TCW_SYNC_4(__kmp_global.g.g_done, FALSE); 6331 6332 /* initialize the locks */ 6333 #if KMP_USE_ADAPTIVE_LOCKS 6334 #if KMP_DEBUG_ADAPTIVE_LOCKS 6335 __kmp_init_speculative_stats(); 6336 #endif 6337 #endif 6338 #if KMP_STATS_ENABLED 6339 __kmp_stats_init(); 6340 #endif 6341 __kmp_init_lock( & __kmp_global_lock ); 6342 __kmp_init_queuing_lock( & __kmp_dispatch_lock ); 6343 __kmp_init_lock( & __kmp_debug_lock ); 6344 __kmp_init_atomic_lock( & __kmp_atomic_lock ); 6345 __kmp_init_atomic_lock( & __kmp_atomic_lock_1i ); 6346 __kmp_init_atomic_lock( & __kmp_atomic_lock_2i ); 6347 __kmp_init_atomic_lock( & __kmp_atomic_lock_4i ); 6348 __kmp_init_atomic_lock( & __kmp_atomic_lock_4r ); 6349 __kmp_init_atomic_lock( & __kmp_atomic_lock_8i ); 6350 __kmp_init_atomic_lock( & __kmp_atomic_lock_8r ); 6351 __kmp_init_atomic_lock( & __kmp_atomic_lock_8c ); 6352 __kmp_init_atomic_lock( & __kmp_atomic_lock_10r ); 6353 __kmp_init_atomic_lock( & __kmp_atomic_lock_16r ); 6354 __kmp_init_atomic_lock( & __kmp_atomic_lock_16c ); 6355 __kmp_init_atomic_lock( & __kmp_atomic_lock_20c ); 6356 __kmp_init_atomic_lock( & __kmp_atomic_lock_32c ); 6357 __kmp_init_bootstrap_lock( & __kmp_forkjoin_lock ); 6358 __kmp_init_bootstrap_lock( & __kmp_exit_lock ); 6359 #if KMP_USE_MONITOR 6360 __kmp_init_bootstrap_lock( & __kmp_monitor_lock ); 6361 #endif 6362 __kmp_init_bootstrap_lock( & __kmp_tp_cached_lock ); 6363 6364 /* conduct initialization and initial setup of configuration */ 6365 6366 __kmp_runtime_initialize(); 6367 6368 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 6369 __kmp_check_mic_type(); 6370 #endif 6371 6372 // Some global variable initialization moved here from kmp_env_initialize() 6373 #ifdef KMP_DEBUG 6374 kmp_diag = 0; 6375 #endif 6376 __kmp_abort_delay = 0; 6377 6378 // From __kmp_init_dflt_team_nth() 6379 /* assume the entire machine will be used */ 6380 __kmp_dflt_team_nth_ub = __kmp_xproc; 6381 if( __kmp_dflt_team_nth_ub < KMP_MIN_NTH ) { 6382 __kmp_dflt_team_nth_ub = KMP_MIN_NTH; 6383 } 6384 if( __kmp_dflt_team_nth_ub > __kmp_sys_max_nth ) { 6385 __kmp_dflt_team_nth_ub = __kmp_sys_max_nth; 6386 } 6387 __kmp_max_nth = __kmp_sys_max_nth; 6388 6389 // Three vars below moved here from __kmp_env_initialize() "KMP_BLOCKTIME" part 6390 __kmp_dflt_blocktime = KMP_DEFAULT_BLOCKTIME; 6391 #if KMP_USE_MONITOR 6392 __kmp_monitor_wakeups = KMP_WAKEUPS_FROM_BLOCKTIME( __kmp_dflt_blocktime, __kmp_monitor_wakeups ); 6393 __kmp_bt_intervals = KMP_INTERVALS_FROM_BLOCKTIME( __kmp_dflt_blocktime, __kmp_monitor_wakeups ); 6394 #endif 6395 // From "KMP_LIBRARY" part of __kmp_env_initialize() 6396 __kmp_library = library_throughput; 6397 // From KMP_SCHEDULE initialization 6398 __kmp_static = kmp_sch_static_balanced; 6399 // AC: do not use analytical here, because it is non-monotonous 6400 //__kmp_guided = kmp_sch_guided_iterative_chunked; 6401 //__kmp_auto = kmp_sch_guided_analytical_chunked; // AC: it is the default, no need to repeate assignment 6402 // Barrier initialization. Moved here from __kmp_env_initialize() Barrier branch bit control and barrier method 6403 // control parts 6404 #if KMP_FAST_REDUCTION_BARRIER 6405 #define kmp_reduction_barrier_gather_bb ((int)1) 6406 #define kmp_reduction_barrier_release_bb ((int)1) 6407 #define kmp_reduction_barrier_gather_pat bp_hyper_bar 6408 #define kmp_reduction_barrier_release_pat bp_hyper_bar 6409 #endif // KMP_FAST_REDUCTION_BARRIER 6410 for ( i=bs_plain_barrier; i<bs_last_barrier; i++ ) { 6411 __kmp_barrier_gather_branch_bits [ i ] = __kmp_barrier_gather_bb_dflt; 6412 __kmp_barrier_release_branch_bits[ i ] = __kmp_barrier_release_bb_dflt; 6413 __kmp_barrier_gather_pattern [ i ] = __kmp_barrier_gather_pat_dflt; 6414 __kmp_barrier_release_pattern[ i ] = __kmp_barrier_release_pat_dflt; 6415 #if KMP_FAST_REDUCTION_BARRIER 6416 if( i == bs_reduction_barrier ) { // tested and confirmed on ALTIX only ( lin_64 ): hyper,1 6417 __kmp_barrier_gather_branch_bits [ i ] = kmp_reduction_barrier_gather_bb; 6418 __kmp_barrier_release_branch_bits[ i ] = kmp_reduction_barrier_release_bb; 6419 __kmp_barrier_gather_pattern [ i ] = kmp_reduction_barrier_gather_pat; 6420 __kmp_barrier_release_pattern[ i ] = kmp_reduction_barrier_release_pat; 6421 } 6422 #endif // KMP_FAST_REDUCTION_BARRIER 6423 } 6424 #if KMP_FAST_REDUCTION_BARRIER 6425 #undef kmp_reduction_barrier_release_pat 6426 #undef kmp_reduction_barrier_gather_pat 6427 #undef kmp_reduction_barrier_release_bb 6428 #undef kmp_reduction_barrier_gather_bb 6429 #endif // KMP_FAST_REDUCTION_BARRIER 6430 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 6431 if (__kmp_mic_type == mic2) { // KNC 6432 // AC: plane=3,2, forkjoin=2,1 are optimal for 240 threads on KNC 6433 __kmp_barrier_gather_branch_bits [ bs_plain_barrier ] = 3; // plain gather 6434 __kmp_barrier_release_branch_bits[ bs_forkjoin_barrier ] = 1; // forkjoin release 6435 __kmp_barrier_gather_pattern [ bs_forkjoin_barrier ] = bp_hierarchical_bar; 6436 __kmp_barrier_release_pattern[ bs_forkjoin_barrier ] = bp_hierarchical_bar; 6437 } 6438 #if KMP_FAST_REDUCTION_BARRIER 6439 if (__kmp_mic_type == mic2) { // KNC 6440 __kmp_barrier_gather_pattern [ bs_reduction_barrier ] = bp_hierarchical_bar; 6441 __kmp_barrier_release_pattern[ bs_reduction_barrier ] = bp_hierarchical_bar; 6442 } 6443 #endif 6444 #endif 6445 6446 // From KMP_CHECKS initialization 6447 #ifdef KMP_DEBUG 6448 __kmp_env_checks = TRUE; /* development versions have the extra checks */ 6449 #else 6450 __kmp_env_checks = FALSE; /* port versions do not have the extra checks */ 6451 #endif 6452 6453 // From "KMP_FOREIGN_THREADS_THREADPRIVATE" initialization 6454 __kmp_foreign_tp = TRUE; 6455 6456 __kmp_global.g.g_dynamic = FALSE; 6457 __kmp_global.g.g_dynamic_mode = dynamic_default; 6458 6459 __kmp_env_initialize( NULL ); 6460 6461 // Print all messages in message catalog for testing purposes. 6462 #ifdef KMP_DEBUG 6463 char const * val = __kmp_env_get( "KMP_DUMP_CATALOG" ); 6464 if ( __kmp_str_match_true( val ) ) { 6465 kmp_str_buf_t buffer; 6466 __kmp_str_buf_init( & buffer ); 6467 __kmp_i18n_dump_catalog( & buffer ); 6468 __kmp_printf( "%s", buffer.str ); 6469 __kmp_str_buf_free( & buffer ); 6470 }; // if 6471 __kmp_env_free( & val ); 6472 #endif 6473 6474 __kmp_threads_capacity = __kmp_initial_threads_capacity( __kmp_dflt_team_nth_ub ); 6475 // Moved here from __kmp_env_initialize() "KMP_ALL_THREADPRIVATE" part 6476 __kmp_tp_capacity = __kmp_default_tp_capacity(__kmp_dflt_team_nth_ub, __kmp_max_nth, __kmp_allThreadsSpecified); 6477 6478 // If the library is shut down properly, both pools must be NULL. Just in case, set them 6479 // to NULL -- some memory may leak, but subsequent code will work even if pools are not freed. 6480 KMP_DEBUG_ASSERT( __kmp_thread_pool == NULL ); 6481 KMP_DEBUG_ASSERT( __kmp_thread_pool_insert_pt == NULL ); 6482 KMP_DEBUG_ASSERT( __kmp_team_pool == NULL ); 6483 __kmp_thread_pool = NULL; 6484 __kmp_thread_pool_insert_pt = NULL; 6485 __kmp_team_pool = NULL; 6486 6487 /* Allocate all of the variable sized records */ 6488 /* NOTE: __kmp_threads_capacity entries are allocated, but the arrays are expandable */ 6489 /* Since allocation is cache-aligned, just add extra padding at the end */ 6490 size = (sizeof(kmp_info_t*) + sizeof(kmp_root_t*))*__kmp_threads_capacity + CACHE_LINE; 6491 __kmp_threads = (kmp_info_t**) __kmp_allocate( size ); 6492 __kmp_root = (kmp_root_t**) ((char*)__kmp_threads + sizeof(kmp_info_t*) * __kmp_threads_capacity ); 6493 6494 /* init thread counts */ 6495 KMP_DEBUG_ASSERT( __kmp_all_nth == 0 ); // Asserts fail if the library is reinitializing and 6496 KMP_DEBUG_ASSERT( __kmp_nth == 0 ); // something was wrong in termination. 6497 __kmp_all_nth = 0; 6498 __kmp_nth = 0; 6499 6500 /* setup the uber master thread and hierarchy */ 6501 gtid = __kmp_register_root( TRUE ); 6502 KA_TRACE( 10, ("__kmp_do_serial_initialize T#%d\n", gtid )); 6503 KMP_ASSERT( KMP_UBER_GTID( gtid ) ); 6504 KMP_ASSERT( KMP_INITIAL_GTID( gtid ) ); 6505 6506 KMP_MB(); /* Flush all pending memory write invalidates. */ 6507 6508 __kmp_common_initialize(); 6509 6510 #if KMP_OS_UNIX 6511 /* invoke the child fork handler */ 6512 __kmp_register_atfork(); 6513 #endif 6514 6515 #if ! defined KMP_DYNAMIC_LIB 6516 { 6517 /* Invoke the exit handler when the program finishes, only for static library. 6518 For dynamic library, we already have _fini and DllMain. 6519 */ 6520 int rc = atexit( __kmp_internal_end_atexit ); 6521 if ( rc != 0 ) { 6522 __kmp_msg( kmp_ms_fatal, KMP_MSG( FunctionError, "atexit()" ), KMP_ERR( rc ), __kmp_msg_null ); 6523 }; // if 6524 } 6525 #endif 6526 6527 #if KMP_HANDLE_SIGNALS 6528 #if KMP_OS_UNIX 6529 /* NOTE: make sure that this is called before the user installs 6530 * their own signal handlers so that the user handlers 6531 * are called first. this way they can return false, 6532 * not call our handler, avoid terminating the library, 6533 * and continue execution where they left off. */ 6534 __kmp_install_signals( FALSE ); 6535 #endif /* KMP_OS_UNIX */ 6536 #if KMP_OS_WINDOWS 6537 __kmp_install_signals( TRUE ); 6538 #endif /* KMP_OS_WINDOWS */ 6539 #endif 6540 6541 /* we have finished the serial initialization */ 6542 __kmp_init_counter ++; 6543 6544 __kmp_init_serial = TRUE; 6545 6546 if (__kmp_settings) { 6547 __kmp_env_print(); 6548 } 6549 6550 #if OMP_40_ENABLED 6551 if (__kmp_display_env || __kmp_display_env_verbose) { 6552 __kmp_env_print_2(); 6553 } 6554 #endif // OMP_40_ENABLED 6555 6556 #if OMPT_SUPPORT 6557 ompt_post_init(); 6558 #endif 6559 6560 KMP_MB(); 6561 6562 KA_TRACE( 10, ("__kmp_do_serial_initialize: exit\n" ) ); 6563 } 6564 6565 void 6566 __kmp_serial_initialize( void ) 6567 { 6568 if ( __kmp_init_serial ) { 6569 return; 6570 } 6571 __kmp_acquire_bootstrap_lock( &__kmp_initz_lock ); 6572 if ( __kmp_init_serial ) { 6573 __kmp_release_bootstrap_lock( &__kmp_initz_lock ); 6574 return; 6575 } 6576 __kmp_do_serial_initialize(); 6577 __kmp_release_bootstrap_lock( &__kmp_initz_lock ); 6578 } 6579 6580 static void 6581 __kmp_do_middle_initialize( void ) 6582 { 6583 int i, j; 6584 int prev_dflt_team_nth; 6585 6586 if( !__kmp_init_serial ) { 6587 __kmp_do_serial_initialize(); 6588 } 6589 6590 KA_TRACE( 10, ("__kmp_middle_initialize: enter\n" ) ); 6591 6592 // 6593 // Save the previous value for the __kmp_dflt_team_nth so that 6594 // we can avoid some reinitialization if it hasn't changed. 6595 // 6596 prev_dflt_team_nth = __kmp_dflt_team_nth; 6597 6598 #if KMP_AFFINITY_SUPPORTED 6599 // 6600 // __kmp_affinity_initialize() will try to set __kmp_ncores to the 6601 // number of cores on the machine. 6602 // 6603 __kmp_affinity_initialize(); 6604 6605 // 6606 // Run through the __kmp_threads array and set the affinity mask 6607 // for each root thread that is currently registered with the RTL. 6608 // 6609 for ( i = 0; i < __kmp_threads_capacity; i++ ) { 6610 if ( TCR_PTR( __kmp_threads[ i ] ) != NULL ) { 6611 __kmp_affinity_set_init_mask( i, TRUE ); 6612 } 6613 } 6614 #endif /* KMP_AFFINITY_SUPPORTED */ 6615 6616 KMP_ASSERT( __kmp_xproc > 0 ); 6617 if ( __kmp_avail_proc == 0 ) { 6618 __kmp_avail_proc = __kmp_xproc; 6619 } 6620 6621 // If there were empty places in num_threads list (OMP_NUM_THREADS=,,2,3), correct them now 6622 j = 0; 6623 while ( ( j < __kmp_nested_nth.used ) && ! __kmp_nested_nth.nth[ j ] ) { 6624 __kmp_nested_nth.nth[ j ] = __kmp_dflt_team_nth = __kmp_dflt_team_nth_ub = __kmp_avail_proc; 6625 j++; 6626 } 6627 6628 if ( __kmp_dflt_team_nth == 0 ) { 6629 #ifdef KMP_DFLT_NTH_CORES 6630 // 6631 // Default #threads = #cores 6632 // 6633 __kmp_dflt_team_nth = __kmp_ncores; 6634 KA_TRACE( 20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = __kmp_ncores (%d)\n", 6635 __kmp_dflt_team_nth ) ); 6636 #else 6637 // 6638 // Default #threads = #available OS procs 6639 // 6640 __kmp_dflt_team_nth = __kmp_avail_proc; 6641 KA_TRACE( 20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = __kmp_avail_proc(%d)\n", 6642 __kmp_dflt_team_nth ) ); 6643 #endif /* KMP_DFLT_NTH_CORES */ 6644 } 6645 6646 if ( __kmp_dflt_team_nth < KMP_MIN_NTH ) { 6647 __kmp_dflt_team_nth = KMP_MIN_NTH; 6648 } 6649 if( __kmp_dflt_team_nth > __kmp_sys_max_nth ) { 6650 __kmp_dflt_team_nth = __kmp_sys_max_nth; 6651 } 6652 6653 // 6654 // There's no harm in continuing if the following check fails, 6655 // but it indicates an error in the previous logic. 6656 // 6657 KMP_DEBUG_ASSERT( __kmp_dflt_team_nth <= __kmp_dflt_team_nth_ub ); 6658 6659 if ( __kmp_dflt_team_nth != prev_dflt_team_nth ) { 6660 // 6661 // Run through the __kmp_threads array and set the num threads icv 6662 // for each root thread that is currently registered with the RTL 6663 // (which has not already explicitly set its nthreads-var with a 6664 // call to omp_set_num_threads()). 6665 // 6666 for ( i = 0; i < __kmp_threads_capacity; i++ ) { 6667 kmp_info_t *thread = __kmp_threads[ i ]; 6668 if ( thread == NULL ) continue; 6669 if ( thread->th.th_current_task->td_icvs.nproc != 0 ) continue; 6670 6671 set__nproc( __kmp_threads[ i ], __kmp_dflt_team_nth ); 6672 } 6673 } 6674 KA_TRACE( 20, ("__kmp_middle_initialize: final value for __kmp_dflt_team_nth = %d\n", 6675 __kmp_dflt_team_nth) ); 6676 6677 #ifdef KMP_ADJUST_BLOCKTIME 6678 /* Adjust blocktime to zero if necessary */ 6679 /* now that __kmp_avail_proc is set */ 6680 if ( !__kmp_env_blocktime && ( __kmp_avail_proc > 0 ) ) { 6681 KMP_DEBUG_ASSERT( __kmp_avail_proc > 0 ); 6682 if ( __kmp_nth > __kmp_avail_proc ) { 6683 __kmp_zero_bt = TRUE; 6684 } 6685 } 6686 #endif /* KMP_ADJUST_BLOCKTIME */ 6687 6688 /* we have finished middle initialization */ 6689 TCW_SYNC_4(__kmp_init_middle, TRUE); 6690 6691 KA_TRACE( 10, ("__kmp_do_middle_initialize: exit\n" ) ); 6692 } 6693 6694 void 6695 __kmp_middle_initialize( void ) 6696 { 6697 if ( __kmp_init_middle ) { 6698 return; 6699 } 6700 __kmp_acquire_bootstrap_lock( &__kmp_initz_lock ); 6701 if ( __kmp_init_middle ) { 6702 __kmp_release_bootstrap_lock( &__kmp_initz_lock ); 6703 return; 6704 } 6705 __kmp_do_middle_initialize(); 6706 __kmp_release_bootstrap_lock( &__kmp_initz_lock ); 6707 } 6708 6709 void 6710 __kmp_parallel_initialize( void ) 6711 { 6712 int gtid = __kmp_entry_gtid(); // this might be a new root 6713 6714 /* synchronize parallel initialization (for sibling) */ 6715 if( TCR_4(__kmp_init_parallel) ) return; 6716 __kmp_acquire_bootstrap_lock( &__kmp_initz_lock ); 6717 if( TCR_4(__kmp_init_parallel) ) { __kmp_release_bootstrap_lock( &__kmp_initz_lock ); return; } 6718 6719 /* TODO reinitialization after we have already shut down */ 6720 if( TCR_4(__kmp_global.g.g_done) ) { 6721 KA_TRACE( 10, ("__kmp_parallel_initialize: attempt to init while shutting down\n" ) ); 6722 __kmp_infinite_loop(); 6723 } 6724 6725 /* jc: The lock __kmp_initz_lock is already held, so calling __kmp_serial_initialize 6726 would cause a deadlock. So we call __kmp_do_serial_initialize directly. 6727 */ 6728 if( !__kmp_init_middle ) { 6729 __kmp_do_middle_initialize(); 6730 } 6731 6732 /* begin initialization */ 6733 KA_TRACE( 10, ("__kmp_parallel_initialize: enter\n" ) ); 6734 KMP_ASSERT( KMP_UBER_GTID( gtid ) ); 6735 6736 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 6737 // 6738 // Save the FP control regs. 6739 // Worker threads will set theirs to these values at thread startup. 6740 // 6741 __kmp_store_x87_fpu_control_word( &__kmp_init_x87_fpu_control_word ); 6742 __kmp_store_mxcsr( &__kmp_init_mxcsr ); 6743 __kmp_init_mxcsr &= KMP_X86_MXCSR_MASK; 6744 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 6745 6746 #if KMP_OS_UNIX 6747 # if KMP_HANDLE_SIGNALS 6748 /* must be after __kmp_serial_initialize */ 6749 __kmp_install_signals( TRUE ); 6750 # endif 6751 #endif 6752 6753 __kmp_suspend_initialize(); 6754 6755 #if defined(USE_LOAD_BALANCE) 6756 if ( __kmp_global.g.g_dynamic_mode == dynamic_default ) { 6757 __kmp_global.g.g_dynamic_mode = dynamic_load_balance; 6758 } 6759 #else 6760 if ( __kmp_global.g.g_dynamic_mode == dynamic_default ) { 6761 __kmp_global.g.g_dynamic_mode = dynamic_thread_limit; 6762 } 6763 #endif 6764 6765 if ( __kmp_version ) { 6766 __kmp_print_version_2(); 6767 } 6768 6769 /* we have finished parallel initialization */ 6770 TCW_SYNC_4(__kmp_init_parallel, TRUE); 6771 6772 KMP_MB(); 6773 KA_TRACE( 10, ("__kmp_parallel_initialize: exit\n" ) ); 6774 6775 __kmp_release_bootstrap_lock( &__kmp_initz_lock ); 6776 } 6777 6778 6779 /* ------------------------------------------------------------------------ */ 6780 6781 void 6782 __kmp_run_before_invoked_task( int gtid, int tid, kmp_info_t *this_thr, 6783 kmp_team_t *team ) 6784 { 6785 kmp_disp_t *dispatch; 6786 6787 KMP_MB(); 6788 6789 /* none of the threads have encountered any constructs, yet. */ 6790 this_thr->th.th_local.this_construct = 0; 6791 #if KMP_CACHE_MANAGE 6792 KMP_CACHE_PREFETCH( &this_thr->th.th_bar[ bs_forkjoin_barrier ].bb.b_arrived ); 6793 #endif /* KMP_CACHE_MANAGE */ 6794 dispatch = (kmp_disp_t *)TCR_PTR(this_thr->th.th_dispatch); 6795 KMP_DEBUG_ASSERT( dispatch ); 6796 KMP_DEBUG_ASSERT( team->t.t_dispatch ); 6797 //KMP_DEBUG_ASSERT( this_thr->th.th_dispatch == &team->t.t_dispatch[ this_thr->th.th_info.ds.ds_tid ] ); 6798 6799 dispatch->th_disp_index = 0; /* reset the dispatch buffer counter */ 6800 #if OMP_45_ENABLED 6801 dispatch->th_doacross_buf_idx = 0; /* reset the doacross dispatch buffer counter */ 6802 #endif 6803 if( __kmp_env_consistency_check ) 6804 __kmp_push_parallel( gtid, team->t.t_ident ); 6805 6806 KMP_MB(); /* Flush all pending memory write invalidates. */ 6807 } 6808 6809 void 6810 __kmp_run_after_invoked_task( int gtid, int tid, kmp_info_t *this_thr, 6811 kmp_team_t *team ) 6812 { 6813 if( __kmp_env_consistency_check ) 6814 __kmp_pop_parallel( gtid, team->t.t_ident ); 6815 6816 __kmp_finish_implicit_task(this_thr); 6817 } 6818 6819 int 6820 __kmp_invoke_task_func( int gtid ) 6821 { 6822 int rc; 6823 int tid = __kmp_tid_from_gtid( gtid ); 6824 kmp_info_t *this_thr = __kmp_threads[ gtid ]; 6825 kmp_team_t *team = this_thr->th.th_team; 6826 6827 __kmp_run_before_invoked_task( gtid, tid, this_thr, team ); 6828 #if USE_ITT_BUILD 6829 if ( __itt_stack_caller_create_ptr ) { 6830 __kmp_itt_stack_callee_enter( (__itt_caller)team->t.t_stack_id ); // inform ittnotify about entering user's code 6831 } 6832 #endif /* USE_ITT_BUILD */ 6833 #if INCLUDE_SSC_MARKS 6834 SSC_MARK_INVOKING(); 6835 #endif 6836 6837 #if OMPT_SUPPORT 6838 void *dummy; 6839 void **exit_runtime_p; 6840 ompt_task_id_t my_task_id; 6841 ompt_parallel_id_t my_parallel_id; 6842 6843 if (ompt_enabled) { 6844 exit_runtime_p = &(team->t.t_implicit_task_taskdata[tid]. 6845 ompt_task_info.frame.exit_runtime_frame); 6846 } else { 6847 exit_runtime_p = &dummy; 6848 } 6849 6850 #if OMPT_TRACE 6851 my_task_id = team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_id; 6852 my_parallel_id = team->t.ompt_team_info.parallel_id; 6853 if (ompt_enabled && 6854 ompt_callbacks.ompt_callback(ompt_event_implicit_task_begin)) { 6855 ompt_callbacks.ompt_callback(ompt_event_implicit_task_begin)( 6856 my_parallel_id, my_task_id); 6857 } 6858 #endif 6859 #endif 6860 6861 { 6862 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 6863 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 6864 rc = __kmp_invoke_microtask( (microtask_t) TCR_SYNC_PTR(team->t.t_pkfn), 6865 gtid, tid, (int) team->t.t_argc, (void **) team->t.t_argv 6866 #if OMPT_SUPPORT 6867 , exit_runtime_p 6868 #endif 6869 ); 6870 #if OMPT_SUPPORT 6871 *exit_runtime_p = NULL; 6872 #endif 6873 } 6874 6875 #if USE_ITT_BUILD 6876 if ( __itt_stack_caller_create_ptr ) { 6877 __kmp_itt_stack_callee_leave( (__itt_caller)team->t.t_stack_id ); // inform ittnotify about leaving user's code 6878 } 6879 #endif /* USE_ITT_BUILD */ 6880 __kmp_run_after_invoked_task( gtid, tid, this_thr, team ); 6881 6882 return rc; 6883 } 6884 6885 #if OMP_40_ENABLED 6886 void 6887 __kmp_teams_master( int gtid ) 6888 { 6889 // This routine is called by all master threads in teams construct 6890 kmp_info_t *thr = __kmp_threads[ gtid ]; 6891 kmp_team_t *team = thr->th.th_team; 6892 ident_t *loc = team->t.t_ident; 6893 thr->th.th_set_nproc = thr->th.th_teams_size.nth; 6894 KMP_DEBUG_ASSERT( thr->th.th_teams_microtask ); 6895 KMP_DEBUG_ASSERT( thr->th.th_set_nproc ); 6896 KA_TRACE( 20, ("__kmp_teams_master: T#%d, Tid %d, microtask %p\n", 6897 gtid, __kmp_tid_from_gtid( gtid ), thr->th.th_teams_microtask ) ); 6898 // Launch league of teams now, but not let workers execute 6899 // (they hang on fork barrier until next parallel) 6900 #if INCLUDE_SSC_MARKS 6901 SSC_MARK_FORKING(); 6902 #endif 6903 __kmp_fork_call( loc, gtid, fork_context_intel, 6904 team->t.t_argc, 6905 #if OMPT_SUPPORT 6906 (void *)thr->th.th_teams_microtask, // "unwrapped" task 6907 #endif 6908 (microtask_t)thr->th.th_teams_microtask, // "wrapped" task 6909 VOLATILE_CAST(launch_t) __kmp_invoke_task_func, 6910 NULL ); 6911 #if INCLUDE_SSC_MARKS 6912 SSC_MARK_JOINING(); 6913 #endif 6914 6915 // AC: last parameter "1" eliminates join barrier which won't work because 6916 // worker threads are in a fork barrier waiting for more parallel regions 6917 __kmp_join_call( loc, gtid 6918 #if OMPT_SUPPORT 6919 , fork_context_intel 6920 #endif 6921 , 1 ); 6922 } 6923 6924 int 6925 __kmp_invoke_teams_master( int gtid ) 6926 { 6927 kmp_info_t *this_thr = __kmp_threads[ gtid ]; 6928 kmp_team_t *team = this_thr->th.th_team; 6929 #if KMP_DEBUG 6930 if ( !__kmp_threads[gtid]-> th.th_team->t.t_serialized ) 6931 KMP_DEBUG_ASSERT( (void*)__kmp_threads[gtid]-> th.th_team->t.t_pkfn == (void*)__kmp_teams_master ); 6932 #endif 6933 __kmp_run_before_invoked_task( gtid, 0, this_thr, team ); 6934 __kmp_teams_master( gtid ); 6935 __kmp_run_after_invoked_task( gtid, 0, this_thr, team ); 6936 return 1; 6937 } 6938 #endif /* OMP_40_ENABLED */ 6939 6940 /* this sets the requested number of threads for the next parallel region 6941 * encountered by this team */ 6942 /* since this should be enclosed in the forkjoin critical section it 6943 * should avoid race conditions with assymmetrical nested parallelism */ 6944 6945 void 6946 __kmp_push_num_threads( ident_t *id, int gtid, int num_threads ) 6947 { 6948 kmp_info_t *thr = __kmp_threads[gtid]; 6949 6950 if( num_threads > 0 ) 6951 thr->th.th_set_nproc = num_threads; 6952 } 6953 6954 #if OMP_40_ENABLED 6955 6956 /* this sets the requested number of teams for the teams region and/or 6957 * the number of threads for the next parallel region encountered */ 6958 void 6959 __kmp_push_num_teams( ident_t *id, int gtid, int num_teams, int num_threads ) 6960 { 6961 kmp_info_t *thr = __kmp_threads[gtid]; 6962 KMP_DEBUG_ASSERT(num_teams >= 0); 6963 KMP_DEBUG_ASSERT(num_threads >= 0); 6964 6965 if( num_teams == 0 ) 6966 num_teams = 1; // default number of teams is 1. 6967 if( num_teams > __kmp_max_nth ) { // if too many teams requested? 6968 if ( !__kmp_reserve_warn ) { 6969 __kmp_reserve_warn = 1; 6970 __kmp_msg( 6971 kmp_ms_warning, 6972 KMP_MSG( CantFormThrTeam, num_teams, __kmp_max_nth ), 6973 KMP_HNT( Unset_ALL_THREADS ), 6974 __kmp_msg_null 6975 ); 6976 } 6977 num_teams = __kmp_max_nth; 6978 } 6979 // Set number of teams (number of threads in the outer "parallel" of the teams) 6980 thr->th.th_set_nproc = thr->th.th_teams_size.nteams = num_teams; 6981 6982 // Remember the number of threads for inner parallel regions 6983 if( num_threads == 0 ) { 6984 if( !TCR_4(__kmp_init_middle) ) 6985 __kmp_middle_initialize(); // get __kmp_avail_proc calculated 6986 num_threads = __kmp_avail_proc / num_teams; 6987 if( num_teams * num_threads > __kmp_max_nth ) { 6988 // adjust num_threads w/o warning as it is not user setting 6989 num_threads = __kmp_max_nth / num_teams; 6990 } 6991 } else { 6992 if( num_teams * num_threads > __kmp_max_nth ) { 6993 int new_threads = __kmp_max_nth / num_teams; 6994 if ( !__kmp_reserve_warn ) { // user asked for too many threads 6995 __kmp_reserve_warn = 1; // that conflicts with OMP_THREAD_LIMIT 6996 __kmp_msg( 6997 kmp_ms_warning, 6998 KMP_MSG( CantFormThrTeam, num_threads, new_threads ), 6999 KMP_HNT( Unset_ALL_THREADS ), 7000 __kmp_msg_null 7001 ); 7002 } 7003 num_threads = new_threads; 7004 } 7005 } 7006 thr->th.th_teams_size.nth = num_threads; 7007 } 7008 7009 7010 // 7011 // Set the proc_bind var to use in the following parallel region. 7012 // 7013 void 7014 __kmp_push_proc_bind( ident_t *id, int gtid, kmp_proc_bind_t proc_bind ) 7015 { 7016 kmp_info_t *thr = __kmp_threads[gtid]; 7017 thr->th.th_set_proc_bind = proc_bind; 7018 } 7019 7020 #endif /* OMP_40_ENABLED */ 7021 7022 /* Launch the worker threads into the microtask. */ 7023 7024 void 7025 __kmp_internal_fork( ident_t *id, int gtid, kmp_team_t *team ) 7026 { 7027 kmp_info_t *this_thr = __kmp_threads[gtid]; 7028 7029 #ifdef KMP_DEBUG 7030 int f; 7031 #endif /* KMP_DEBUG */ 7032 7033 KMP_DEBUG_ASSERT( team ); 7034 KMP_DEBUG_ASSERT( this_thr->th.th_team == team ); 7035 KMP_ASSERT( KMP_MASTER_GTID(gtid) ); 7036 KMP_MB(); /* Flush all pending memory write invalidates. */ 7037 7038 team->t.t_construct = 0; /* no single directives seen yet */ 7039 team->t.t_ordered.dt.t_value = 0; /* thread 0 enters the ordered section first */ 7040 7041 /* Reset the identifiers on the dispatch buffer */ 7042 KMP_DEBUG_ASSERT( team->t.t_disp_buffer ); 7043 if ( team->t.t_max_nproc > 1 ) { 7044 int i; 7045 for (i = 0; i < __kmp_dispatch_num_buffers; ++i) { 7046 team->t.t_disp_buffer[ i ].buffer_index = i; 7047 #if OMP_45_ENABLED 7048 team->t.t_disp_buffer[i].doacross_buf_idx = i; 7049 #endif 7050 } 7051 } else { 7052 team->t.t_disp_buffer[ 0 ].buffer_index = 0; 7053 #if OMP_45_ENABLED 7054 team->t.t_disp_buffer[0].doacross_buf_idx = 0; 7055 #endif 7056 } 7057 7058 KMP_MB(); /* Flush all pending memory write invalidates. */ 7059 KMP_ASSERT( this_thr->th.th_team == team ); 7060 7061 #ifdef KMP_DEBUG 7062 for( f=0 ; f<team->t.t_nproc ; f++ ) { 7063 KMP_DEBUG_ASSERT( team->t.t_threads[f] && 7064 team->t.t_threads[f]->th.th_team_nproc == team->t.t_nproc ); 7065 } 7066 #endif /* KMP_DEBUG */ 7067 7068 /* release the worker threads so they may begin working */ 7069 __kmp_fork_barrier( gtid, 0 ); 7070 } 7071 7072 7073 void 7074 __kmp_internal_join( ident_t *id, int gtid, kmp_team_t *team ) 7075 { 7076 kmp_info_t *this_thr = __kmp_threads[gtid]; 7077 7078 KMP_DEBUG_ASSERT( team ); 7079 KMP_DEBUG_ASSERT( this_thr->th.th_team == team ); 7080 KMP_ASSERT( KMP_MASTER_GTID(gtid) ); 7081 KMP_MB(); /* Flush all pending memory write invalidates. */ 7082 7083 /* Join barrier after fork */ 7084 7085 #ifdef KMP_DEBUG 7086 if (__kmp_threads[gtid] && __kmp_threads[gtid]->th.th_team_nproc != team->t.t_nproc ) { 7087 __kmp_printf("GTID: %d, __kmp_threads[%d]=%p\n",gtid, gtid, __kmp_threads[gtid]); 7088 __kmp_printf("__kmp_threads[%d]->th.th_team_nproc=%d, TEAM: %p, team->t.t_nproc=%d\n", 7089 gtid, __kmp_threads[gtid]->th.th_team_nproc, team, team->t.t_nproc); 7090 __kmp_print_structure(); 7091 } 7092 KMP_DEBUG_ASSERT( __kmp_threads[gtid] && 7093 __kmp_threads[gtid]->th.th_team_nproc == team->t.t_nproc ); 7094 #endif /* KMP_DEBUG */ 7095 7096 __kmp_join_barrier( gtid ); /* wait for everyone */ 7097 7098 KMP_MB(); /* Flush all pending memory write invalidates. */ 7099 KMP_ASSERT( this_thr->th.th_team == team ); 7100 } 7101 7102 7103 /* ------------------------------------------------------------------------ */ 7104 /* ------------------------------------------------------------------------ */ 7105 7106 #ifdef USE_LOAD_BALANCE 7107 7108 // 7109 // Return the worker threads actively spinning in the hot team, if we 7110 // are at the outermost level of parallelism. Otherwise, return 0. 7111 // 7112 static int 7113 __kmp_active_hot_team_nproc( kmp_root_t *root ) 7114 { 7115 int i; 7116 int retval; 7117 kmp_team_t *hot_team; 7118 7119 if ( root->r.r_active ) { 7120 return 0; 7121 } 7122 hot_team = root->r.r_hot_team; 7123 if ( __kmp_dflt_blocktime == KMP_MAX_BLOCKTIME ) { 7124 return hot_team->t.t_nproc - 1; // Don't count master thread 7125 } 7126 7127 // 7128 // Skip the master thread - it is accounted for elsewhere. 7129 // 7130 retval = 0; 7131 for ( i = 1; i < hot_team->t.t_nproc; i++ ) { 7132 if ( hot_team->t.t_threads[i]->th.th_active ) { 7133 retval++; 7134 } 7135 } 7136 return retval; 7137 } 7138 7139 // 7140 // Perform an automatic adjustment to the number of 7141 // threads used by the next parallel region. 7142 // 7143 static int 7144 __kmp_load_balance_nproc( kmp_root_t *root, int set_nproc ) 7145 { 7146 int retval; 7147 int pool_active; 7148 int hot_team_active; 7149 int team_curr_active; 7150 int system_active; 7151 7152 KB_TRACE( 20, ("__kmp_load_balance_nproc: called root:%p set_nproc:%d\n", 7153 root, set_nproc ) ); 7154 KMP_DEBUG_ASSERT( root ); 7155 KMP_DEBUG_ASSERT( root->r.r_root_team->t.t_threads[0]->th.th_current_task->td_icvs.dynamic == TRUE ); 7156 KMP_DEBUG_ASSERT( set_nproc > 1 ); 7157 7158 if ( set_nproc == 1) { 7159 KB_TRACE( 20, ("__kmp_load_balance_nproc: serial execution.\n" ) ); 7160 return 1; 7161 } 7162 7163 // 7164 // Threads that are active in the thread pool, active in the hot team 7165 // for this particular root (if we are at the outer par level), and 7166 // the currently executing thread (to become the master) are available 7167 // to add to the new team, but are currently contributing to the system 7168 // load, and must be accounted for. 7169 // 7170 pool_active = TCR_4(__kmp_thread_pool_active_nth); 7171 hot_team_active = __kmp_active_hot_team_nproc( root ); 7172 team_curr_active = pool_active + hot_team_active + 1; 7173 7174 // 7175 // Check the system load. 7176 // 7177 system_active = __kmp_get_load_balance( __kmp_avail_proc + team_curr_active ); 7178 KB_TRACE( 30, ("__kmp_load_balance_nproc: system active = %d pool active = %d hot team active = %d\n", 7179 system_active, pool_active, hot_team_active ) ); 7180 7181 if ( system_active < 0 ) { 7182 // 7183 // There was an error reading the necessary info from /proc, 7184 // so use the thread limit algorithm instead. Once we set 7185 // __kmp_global.g.g_dynamic_mode = dynamic_thread_limit, 7186 // we shouldn't wind up getting back here. 7187 // 7188 __kmp_global.g.g_dynamic_mode = dynamic_thread_limit; 7189 KMP_WARNING( CantLoadBalUsing, "KMP_DYNAMIC_MODE=thread limit" ); 7190 7191 // 7192 // Make this call behave like the thread limit algorithm. 7193 // 7194 retval = __kmp_avail_proc - __kmp_nth + (root->r.r_active ? 1 7195 : root->r.r_hot_team->t.t_nproc); 7196 if ( retval > set_nproc ) { 7197 retval = set_nproc; 7198 } 7199 if ( retval < KMP_MIN_NTH ) { 7200 retval = KMP_MIN_NTH; 7201 } 7202 7203 KB_TRACE( 20, ("__kmp_load_balance_nproc: thread limit exit. retval:%d\n", retval ) ); 7204 return retval; 7205 } 7206 7207 // 7208 // There is a slight delay in the load balance algorithm in detecting 7209 // new running procs. The real system load at this instant should be 7210 // at least as large as the #active omp thread that are available to 7211 // add to the team. 7212 // 7213 if ( system_active < team_curr_active ) { 7214 system_active = team_curr_active; 7215 } 7216 retval = __kmp_avail_proc - system_active + team_curr_active; 7217 if ( retval > set_nproc ) { 7218 retval = set_nproc; 7219 } 7220 if ( retval < KMP_MIN_NTH ) { 7221 retval = KMP_MIN_NTH; 7222 } 7223 7224 KB_TRACE( 20, ("__kmp_load_balance_nproc: exit. retval:%d\n", retval ) ); 7225 return retval; 7226 } // __kmp_load_balance_nproc() 7227 7228 #endif /* USE_LOAD_BALANCE */ 7229 7230 /* ------------------------------------------------------------------------ */ 7231 /* ------------------------------------------------------------------------ */ 7232 7233 /* NOTE: this is called with the __kmp_init_lock held */ 7234 void 7235 __kmp_cleanup( void ) 7236 { 7237 int f; 7238 7239 KA_TRACE( 10, ("__kmp_cleanup: enter\n" ) ); 7240 7241 if (TCR_4(__kmp_init_parallel)) { 7242 #if KMP_HANDLE_SIGNALS 7243 __kmp_remove_signals(); 7244 #endif 7245 TCW_4(__kmp_init_parallel, FALSE); 7246 } 7247 7248 if (TCR_4(__kmp_init_middle)) { 7249 #if KMP_AFFINITY_SUPPORTED 7250 __kmp_affinity_uninitialize(); 7251 #endif /* KMP_AFFINITY_SUPPORTED */ 7252 __kmp_cleanup_hierarchy(); 7253 TCW_4(__kmp_init_middle, FALSE); 7254 } 7255 7256 KA_TRACE( 10, ("__kmp_cleanup: go serial cleanup\n" ) ); 7257 7258 if (__kmp_init_serial) { 7259 __kmp_runtime_destroy(); 7260 __kmp_init_serial = FALSE; 7261 } 7262 7263 for ( f = 0; f < __kmp_threads_capacity; f++ ) { 7264 if ( __kmp_root[ f ] != NULL ) { 7265 __kmp_free( __kmp_root[ f ] ); 7266 __kmp_root[ f ] = NULL; 7267 } 7268 } 7269 __kmp_free( __kmp_threads ); 7270 // __kmp_threads and __kmp_root were allocated at once, as single block, so there is no need in 7271 // freeing __kmp_root. 7272 __kmp_threads = NULL; 7273 __kmp_root = NULL; 7274 __kmp_threads_capacity = 0; 7275 7276 #if KMP_USE_DYNAMIC_LOCK 7277 __kmp_cleanup_indirect_user_locks(); 7278 #else 7279 __kmp_cleanup_user_locks(); 7280 #endif 7281 7282 #if KMP_AFFINITY_SUPPORTED 7283 KMP_INTERNAL_FREE( (void *) __kmp_cpuinfo_file ); 7284 __kmp_cpuinfo_file = NULL; 7285 #endif /* KMP_AFFINITY_SUPPORTED */ 7286 7287 #if KMP_USE_ADAPTIVE_LOCKS 7288 #if KMP_DEBUG_ADAPTIVE_LOCKS 7289 __kmp_print_speculative_stats(); 7290 #endif 7291 #endif 7292 KMP_INTERNAL_FREE( __kmp_nested_nth.nth ); 7293 __kmp_nested_nth.nth = NULL; 7294 __kmp_nested_nth.size = 0; 7295 __kmp_nested_nth.used = 0; 7296 7297 __kmp_i18n_catclose(); 7298 7299 #if KMP_STATS_ENABLED 7300 __kmp_stats_fini(); 7301 #endif 7302 7303 KA_TRACE( 10, ("__kmp_cleanup: exit\n" ) ); 7304 } 7305 7306 /* ------------------------------------------------------------------------ */ 7307 /* ------------------------------------------------------------------------ */ 7308 7309 int 7310 __kmp_ignore_mppbeg( void ) 7311 { 7312 char *env; 7313 7314 if ((env = getenv( "KMP_IGNORE_MPPBEG" )) != NULL) { 7315 if (__kmp_str_match_false( env )) 7316 return FALSE; 7317 } 7318 // By default __kmpc_begin() is no-op. 7319 return TRUE; 7320 } 7321 7322 int 7323 __kmp_ignore_mppend( void ) 7324 { 7325 char *env; 7326 7327 if ((env = getenv( "KMP_IGNORE_MPPEND" )) != NULL) { 7328 if (__kmp_str_match_false( env )) 7329 return FALSE; 7330 } 7331 // By default __kmpc_end() is no-op. 7332 return TRUE; 7333 } 7334 7335 void 7336 __kmp_internal_begin( void ) 7337 { 7338 int gtid; 7339 kmp_root_t *root; 7340 7341 /* this is a very important step as it will register new sibling threads 7342 * and assign these new uber threads a new gtid */ 7343 gtid = __kmp_entry_gtid(); 7344 root = __kmp_threads[ gtid ]->th.th_root; 7345 KMP_ASSERT( KMP_UBER_GTID( gtid )); 7346 7347 if( root->r.r_begin ) return; 7348 __kmp_acquire_lock( &root->r.r_begin_lock, gtid ); 7349 if( root->r.r_begin ) { 7350 __kmp_release_lock( & root->r.r_begin_lock, gtid ); 7351 return; 7352 } 7353 7354 root->r.r_begin = TRUE; 7355 7356 __kmp_release_lock( & root->r.r_begin_lock, gtid ); 7357 } 7358 7359 7360 /* ------------------------------------------------------------------------ */ 7361 /* ------------------------------------------------------------------------ */ 7362 7363 void 7364 __kmp_user_set_library (enum library_type arg) 7365 { 7366 int gtid; 7367 kmp_root_t *root; 7368 kmp_info_t *thread; 7369 7370 /* first, make sure we are initialized so we can get our gtid */ 7371 7372 gtid = __kmp_entry_gtid(); 7373 thread = __kmp_threads[ gtid ]; 7374 7375 root = thread->th.th_root; 7376 7377 KA_TRACE( 20, ("__kmp_user_set_library: enter T#%d, arg: %d, %d\n", gtid, arg, library_serial )); 7378 if (root->r.r_in_parallel) { /* Must be called in serial section of top-level thread */ 7379 KMP_WARNING( SetLibraryIncorrectCall ); 7380 return; 7381 } 7382 7383 switch ( arg ) { 7384 case library_serial : 7385 thread->th.th_set_nproc = 0; 7386 set__nproc( thread, 1 ); 7387 break; 7388 case library_turnaround : 7389 thread->th.th_set_nproc = 0; 7390 set__nproc( thread, __kmp_dflt_team_nth ? __kmp_dflt_team_nth : __kmp_dflt_team_nth_ub ); 7391 break; 7392 case library_throughput : 7393 thread->th.th_set_nproc = 0; 7394 set__nproc( thread, __kmp_dflt_team_nth ? __kmp_dflt_team_nth : __kmp_dflt_team_nth_ub ); 7395 break; 7396 default: 7397 KMP_FATAL( UnknownLibraryType, arg ); 7398 } 7399 7400 __kmp_aux_set_library ( arg ); 7401 } 7402 7403 void 7404 __kmp_aux_set_stacksize( size_t arg ) 7405 { 7406 if (! __kmp_init_serial) 7407 __kmp_serial_initialize(); 7408 7409 #if KMP_OS_DARWIN 7410 if (arg & (0x1000 - 1)) { 7411 arg &= ~(0x1000 - 1); 7412 if(arg + 0x1000) /* check for overflow if we round up */ 7413 arg += 0x1000; 7414 } 7415 #endif 7416 __kmp_acquire_bootstrap_lock( &__kmp_initz_lock ); 7417 7418 /* only change the default stacksize before the first parallel region */ 7419 if (! TCR_4(__kmp_init_parallel)) { 7420 size_t value = arg; /* argument is in bytes */ 7421 7422 if (value < __kmp_sys_min_stksize ) 7423 value = __kmp_sys_min_stksize ; 7424 else if (value > KMP_MAX_STKSIZE) 7425 value = KMP_MAX_STKSIZE; 7426 7427 __kmp_stksize = value; 7428 7429 __kmp_env_stksize = TRUE; /* was KMP_STACKSIZE specified? */ 7430 } 7431 7432 __kmp_release_bootstrap_lock( &__kmp_initz_lock ); 7433 } 7434 7435 /* set the behaviour of the runtime library */ 7436 /* TODO this can cause some odd behaviour with sibling parallelism... */ 7437 void 7438 __kmp_aux_set_library (enum library_type arg) 7439 { 7440 __kmp_library = arg; 7441 7442 switch ( __kmp_library ) { 7443 case library_serial : 7444 { 7445 KMP_INFORM( LibraryIsSerial ); 7446 (void) __kmp_change_library( TRUE ); 7447 } 7448 break; 7449 case library_turnaround : 7450 (void) __kmp_change_library( TRUE ); 7451 break; 7452 case library_throughput : 7453 (void) __kmp_change_library( FALSE ); 7454 break; 7455 default: 7456 KMP_FATAL( UnknownLibraryType, arg ); 7457 } 7458 } 7459 7460 /* ------------------------------------------------------------------------ */ 7461 /* ------------------------------------------------------------------------ */ 7462 7463 void 7464 __kmp_aux_set_blocktime (int arg, kmp_info_t *thread, int tid) 7465 { 7466 int blocktime = arg; /* argument is in milliseconds */ 7467 #if KMP_USE_MONITOR 7468 int bt_intervals; 7469 #endif 7470 int bt_set; 7471 7472 __kmp_save_internal_controls( thread ); 7473 7474 /* Normalize and set blocktime for the teams */ 7475 if (blocktime < KMP_MIN_BLOCKTIME) 7476 blocktime = KMP_MIN_BLOCKTIME; 7477 else if (blocktime > KMP_MAX_BLOCKTIME) 7478 blocktime = KMP_MAX_BLOCKTIME; 7479 7480 set__blocktime_team( thread->th.th_team, tid, blocktime ); 7481 set__blocktime_team( thread->th.th_serial_team, 0, blocktime ); 7482 7483 #if KMP_USE_MONITOR 7484 /* Calculate and set blocktime intervals for the teams */ 7485 bt_intervals = KMP_INTERVALS_FROM_BLOCKTIME(blocktime, __kmp_monitor_wakeups); 7486 7487 set__bt_intervals_team( thread->th.th_team, tid, bt_intervals ); 7488 set__bt_intervals_team( thread->th.th_serial_team, 0, bt_intervals ); 7489 #endif 7490 7491 /* Set whether blocktime has been set to "TRUE" */ 7492 bt_set = TRUE; 7493 7494 set__bt_set_team( thread->th.th_team, tid, bt_set ); 7495 set__bt_set_team( thread->th.th_serial_team, 0, bt_set ); 7496 #if KMP_USE_MONITOR 7497 KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d, " 7498 "bt_intervals=%d, monitor_updates=%d\n", 7499 __kmp_gtid_from_tid(tid, thread->th.th_team), 7500 thread->th.th_team->t.t_id, tid, blocktime, bt_intervals, 7501 __kmp_monitor_wakeups)); 7502 #else 7503 KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d\n", 7504 __kmp_gtid_from_tid(tid, thread->th.th_team), 7505 thread->th.th_team->t.t_id, tid, blocktime)); 7506 #endif 7507 } 7508 7509 void 7510 __kmp_aux_set_defaults( 7511 char const * str, 7512 int len 7513 ) { 7514 if ( ! __kmp_init_serial ) { 7515 __kmp_serial_initialize(); 7516 }; 7517 __kmp_env_initialize( str ); 7518 7519 if (__kmp_settings 7520 #if OMP_40_ENABLED 7521 || __kmp_display_env || __kmp_display_env_verbose 7522 #endif // OMP_40_ENABLED 7523 ) { 7524 __kmp_env_print(); 7525 } 7526 } // __kmp_aux_set_defaults 7527 7528 /* ------------------------------------------------------------------------ */ 7529 7530 /* 7531 * internal fast reduction routines 7532 */ 7533 7534 PACKED_REDUCTION_METHOD_T 7535 __kmp_determine_reduction_method( ident_t *loc, kmp_int32 global_tid, 7536 kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data), 7537 kmp_critical_name *lck ) 7538 { 7539 7540 // Default reduction method: critical construct ( lck != NULL, like in current PAROPT ) 7541 // If ( reduce_data!=NULL && reduce_func!=NULL ): the tree-reduction method can be selected by RTL 7542 // If loc->flags contains KMP_IDENT_ATOMIC_REDUCE, the atomic reduce method can be selected by RTL 7543 // Finally, it's up to OpenMP RTL to make a decision on which method to select among generated by PAROPT. 7544 7545 PACKED_REDUCTION_METHOD_T retval; 7546 7547 int team_size; 7548 7549 KMP_DEBUG_ASSERT( loc ); // it would be nice to test ( loc != 0 ) 7550 KMP_DEBUG_ASSERT( lck ); // it would be nice to test ( lck != 0 ) 7551 7552 #define FAST_REDUCTION_ATOMIC_METHOD_GENERATED ( ( loc->flags & ( KMP_IDENT_ATOMIC_REDUCE ) ) == ( KMP_IDENT_ATOMIC_REDUCE ) ) 7553 #define FAST_REDUCTION_TREE_METHOD_GENERATED ( ( reduce_data ) && ( reduce_func ) ) 7554 7555 retval = critical_reduce_block; 7556 7557 team_size = __kmp_get_team_num_threads( global_tid ); // another choice of getting a team size ( with 1 dynamic deference ) is slower 7558 7559 if( team_size == 1 ) { 7560 7561 retval = empty_reduce_block; 7562 7563 } else { 7564 7565 int atomic_available = FAST_REDUCTION_ATOMIC_METHOD_GENERATED; 7566 int tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED; 7567 7568 #if KMP_ARCH_X86_64 || KMP_ARCH_PPC64 || KMP_ARCH_AARCH64 || KMP_ARCH_MIPS64 7569 7570 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_WINDOWS || KMP_OS_DARWIN 7571 7572 int teamsize_cutoff = 4; 7573 7574 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 7575 if( __kmp_mic_type != non_mic ) { 7576 teamsize_cutoff = 8; 7577 } 7578 #endif 7579 if( tree_available ) { 7580 if( team_size <= teamsize_cutoff ) { 7581 if ( atomic_available ) { 7582 retval = atomic_reduce_block; 7583 } 7584 } else { 7585 retval = TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER; 7586 } 7587 } else if ( atomic_available ) { 7588 retval = atomic_reduce_block; 7589 } 7590 #else 7591 #error "Unknown or unsupported OS" 7592 #endif // KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_WINDOWS || KMP_OS_DARWIN 7593 7594 #elif KMP_ARCH_X86 || KMP_ARCH_ARM || KMP_ARCH_AARCH || KMP_ARCH_MIPS 7595 7596 #if KMP_OS_LINUX || KMP_OS_WINDOWS 7597 7598 // basic tuning 7599 7600 if( atomic_available ) { 7601 if( num_vars <= 2 ) { // && ( team_size <= 8 ) due to false-sharing ??? 7602 retval = atomic_reduce_block; 7603 } 7604 } // otherwise: use critical section 7605 7606 #elif KMP_OS_DARWIN 7607 7608 if( atomic_available && ( num_vars <= 3 ) ) { 7609 retval = atomic_reduce_block; 7610 } else if( tree_available ) { 7611 if( ( reduce_size > ( 9 * sizeof( kmp_real64 ) ) ) && ( reduce_size < ( 2000 * sizeof( kmp_real64 ) ) ) ) { 7612 retval = TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER; 7613 } 7614 } // otherwise: use critical section 7615 7616 #else 7617 #error "Unknown or unsupported OS" 7618 #endif 7619 7620 #else 7621 #error "Unknown or unsupported architecture" 7622 #endif 7623 7624 } 7625 7626 // KMP_FORCE_REDUCTION 7627 7628 // If the team is serialized (team_size == 1), ignore the forced reduction 7629 // method and stay with the unsynchronized method (empty_reduce_block) 7630 if( __kmp_force_reduction_method != reduction_method_not_defined && team_size != 1) { 7631 7632 PACKED_REDUCTION_METHOD_T forced_retval = critical_reduce_block; 7633 7634 int atomic_available, tree_available; 7635 7636 switch( ( forced_retval = __kmp_force_reduction_method ) ) 7637 { 7638 case critical_reduce_block: 7639 KMP_ASSERT( lck ); // lck should be != 0 7640 break; 7641 7642 case atomic_reduce_block: 7643 atomic_available = FAST_REDUCTION_ATOMIC_METHOD_GENERATED; 7644 if( ! atomic_available ) { 7645 KMP_WARNING(RedMethodNotSupported, "atomic"); 7646 forced_retval = critical_reduce_block; 7647 } 7648 break; 7649 7650 case tree_reduce_block: 7651 tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED; 7652 if( ! tree_available ) { 7653 KMP_WARNING(RedMethodNotSupported, "tree"); 7654 forced_retval = critical_reduce_block; 7655 } else { 7656 #if KMP_FAST_REDUCTION_BARRIER 7657 forced_retval = TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER; 7658 #endif 7659 } 7660 break; 7661 7662 default: 7663 KMP_ASSERT( 0 ); // "unsupported method specified" 7664 } 7665 7666 retval = forced_retval; 7667 } 7668 7669 KA_TRACE(10, ( "reduction method selected=%08x\n", retval ) ); 7670 7671 #undef FAST_REDUCTION_TREE_METHOD_GENERATED 7672 #undef FAST_REDUCTION_ATOMIC_METHOD_GENERATED 7673 7674 return ( retval ); 7675 } 7676 7677 // this function is for testing set/get/determine reduce method 7678 kmp_int32 7679 __kmp_get_reduce_method( void ) { 7680 return ( ( __kmp_entry_thread()->th.th_local.packed_reduction_method ) >> 8 ); 7681 } 7682 7683 /* ------------------------------------------------------------------------ */ 7684