1 /* 2 * kmp_lock.cpp -- lock-related functions 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <stddef.h> 14 #include <atomic> 15 16 #include "kmp.h" 17 #include "kmp_i18n.h" 18 #include "kmp_io.h" 19 #include "kmp_itt.h" 20 #include "kmp_lock.h" 21 #include "kmp_wait_release.h" 22 #include "kmp_wrapper_getpid.h" 23 24 #include "tsan_annotations.h" 25 26 #if KMP_USE_FUTEX 27 #include <sys/syscall.h> 28 #include <unistd.h> 29 // We should really include <futex.h>, but that causes compatibility problems on 30 // different Linux* OS distributions that either require that you include (or 31 // break when you try to include) <pci/types.h>. Since all we need is the two 32 // macros below (which are part of the kernel ABI, so can't change) we just 33 // define the constants here and don't include <futex.h> 34 #ifndef FUTEX_WAIT 35 #define FUTEX_WAIT 0 36 #endif 37 #ifndef FUTEX_WAKE 38 #define FUTEX_WAKE 1 39 #endif 40 #endif 41 42 /* Implement spin locks for internal library use. */ 43 /* The algorithm implemented is Lamport's bakery lock [1974]. */ 44 45 void __kmp_validate_locks(void) { 46 int i; 47 kmp_uint32 x, y; 48 49 /* Check to make sure unsigned arithmetic does wraps properly */ 50 x = ~((kmp_uint32)0) - 2; 51 y = x - 2; 52 53 for (i = 0; i < 8; ++i, ++x, ++y) { 54 kmp_uint32 z = (x - y); 55 KMP_ASSERT(z == 2); 56 } 57 58 KMP_ASSERT(offsetof(kmp_base_queuing_lock, tail_id) % 8 == 0); 59 } 60 61 /* ------------------------------------------------------------------------ */ 62 /* test and set locks */ 63 64 // For the non-nested locks, we can only assume that the first 4 bytes were 65 // allocated, since gcc only allocates 4 bytes for omp_lock_t, and the Intel 66 // compiler only allocates a 4 byte pointer on IA-32 architecture. On 67 // Windows* OS on Intel(R) 64, we can assume that all 8 bytes were allocated. 68 // 69 // gcc reserves >= 8 bytes for nested locks, so we can assume that the 70 // entire 8 bytes were allocated for nested locks on all 64-bit platforms. 71 72 static kmp_int32 __kmp_get_tas_lock_owner(kmp_tas_lock_t *lck) { 73 return KMP_LOCK_STRIP(KMP_ATOMIC_LD_RLX(&lck->lk.poll)) - 1; 74 } 75 76 static inline bool __kmp_is_tas_lock_nestable(kmp_tas_lock_t *lck) { 77 return lck->lk.depth_locked != -1; 78 } 79 80 __forceinline static int 81 __kmp_acquire_tas_lock_timed_template(kmp_tas_lock_t *lck, kmp_int32 gtid) { 82 KMP_MB(); 83 84 #ifdef USE_LOCK_PROFILE 85 kmp_uint32 curr = KMP_LOCK_STRIP(lck->lk.poll); 86 if ((curr != 0) && (curr != gtid + 1)) 87 __kmp_printf("LOCK CONTENTION: %p\n", lck); 88 /* else __kmp_printf( "." );*/ 89 #endif /* USE_LOCK_PROFILE */ 90 91 kmp_int32 tas_free = KMP_LOCK_FREE(tas); 92 kmp_int32 tas_busy = KMP_LOCK_BUSY(gtid + 1, tas); 93 94 if (KMP_ATOMIC_LD_RLX(&lck->lk.poll) == tas_free && 95 __kmp_atomic_compare_store_acq(&lck->lk.poll, tas_free, tas_busy)) { 96 KMP_FSYNC_ACQUIRED(lck); 97 return KMP_LOCK_ACQUIRED_FIRST; 98 } 99 100 kmp_uint32 spins; 101 KMP_FSYNC_PREPARE(lck); 102 KMP_INIT_YIELD(spins); 103 kmp_backoff_t backoff = __kmp_spin_backoff_params; 104 do { 105 __kmp_spin_backoff(&backoff); 106 KMP_YIELD_OVERSUB_ELSE_SPIN(spins); 107 } while (KMP_ATOMIC_LD_RLX(&lck->lk.poll) != tas_free || 108 !__kmp_atomic_compare_store_acq(&lck->lk.poll, tas_free, tas_busy)); 109 KMP_FSYNC_ACQUIRED(lck); 110 return KMP_LOCK_ACQUIRED_FIRST; 111 } 112 113 int __kmp_acquire_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) { 114 int retval = __kmp_acquire_tas_lock_timed_template(lck, gtid); 115 ANNOTATE_TAS_ACQUIRED(lck); 116 return retval; 117 } 118 119 static int __kmp_acquire_tas_lock_with_checks(kmp_tas_lock_t *lck, 120 kmp_int32 gtid) { 121 char const *const func = "omp_set_lock"; 122 if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) && 123 __kmp_is_tas_lock_nestable(lck)) { 124 KMP_FATAL(LockNestableUsedAsSimple, func); 125 } 126 if ((gtid >= 0) && (__kmp_get_tas_lock_owner(lck) == gtid)) { 127 KMP_FATAL(LockIsAlreadyOwned, func); 128 } 129 return __kmp_acquire_tas_lock(lck, gtid); 130 } 131 132 int __kmp_test_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) { 133 kmp_int32 tas_free = KMP_LOCK_FREE(tas); 134 kmp_int32 tas_busy = KMP_LOCK_BUSY(gtid + 1, tas); 135 if (KMP_ATOMIC_LD_RLX(&lck->lk.poll) == tas_free && 136 __kmp_atomic_compare_store_acq(&lck->lk.poll, tas_free, tas_busy)) { 137 KMP_FSYNC_ACQUIRED(lck); 138 return TRUE; 139 } 140 return FALSE; 141 } 142 143 static int __kmp_test_tas_lock_with_checks(kmp_tas_lock_t *lck, 144 kmp_int32 gtid) { 145 char const *const func = "omp_test_lock"; 146 if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) && 147 __kmp_is_tas_lock_nestable(lck)) { 148 KMP_FATAL(LockNestableUsedAsSimple, func); 149 } 150 return __kmp_test_tas_lock(lck, gtid); 151 } 152 153 int __kmp_release_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) { 154 KMP_MB(); /* Flush all pending memory write invalidates. */ 155 156 KMP_FSYNC_RELEASING(lck); 157 ANNOTATE_TAS_RELEASED(lck); 158 KMP_ATOMIC_ST_REL(&lck->lk.poll, KMP_LOCK_FREE(tas)); 159 KMP_MB(); /* Flush all pending memory write invalidates. */ 160 161 KMP_YIELD_OVERSUB(); 162 return KMP_LOCK_RELEASED; 163 } 164 165 static int __kmp_release_tas_lock_with_checks(kmp_tas_lock_t *lck, 166 kmp_int32 gtid) { 167 char const *const func = "omp_unset_lock"; 168 KMP_MB(); /* in case another processor initialized lock */ 169 if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) && 170 __kmp_is_tas_lock_nestable(lck)) { 171 KMP_FATAL(LockNestableUsedAsSimple, func); 172 } 173 if (__kmp_get_tas_lock_owner(lck) == -1) { 174 KMP_FATAL(LockUnsettingFree, func); 175 } 176 if ((gtid >= 0) && (__kmp_get_tas_lock_owner(lck) >= 0) && 177 (__kmp_get_tas_lock_owner(lck) != gtid)) { 178 KMP_FATAL(LockUnsettingSetByAnother, func); 179 } 180 return __kmp_release_tas_lock(lck, gtid); 181 } 182 183 void __kmp_init_tas_lock(kmp_tas_lock_t *lck) { 184 lck->lk.poll = KMP_LOCK_FREE(tas); 185 } 186 187 void __kmp_destroy_tas_lock(kmp_tas_lock_t *lck) { lck->lk.poll = 0; } 188 189 static void __kmp_destroy_tas_lock_with_checks(kmp_tas_lock_t *lck) { 190 char const *const func = "omp_destroy_lock"; 191 if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) && 192 __kmp_is_tas_lock_nestable(lck)) { 193 KMP_FATAL(LockNestableUsedAsSimple, func); 194 } 195 if (__kmp_get_tas_lock_owner(lck) != -1) { 196 KMP_FATAL(LockStillOwned, func); 197 } 198 __kmp_destroy_tas_lock(lck); 199 } 200 201 // nested test and set locks 202 203 int __kmp_acquire_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) { 204 KMP_DEBUG_ASSERT(gtid >= 0); 205 206 if (__kmp_get_tas_lock_owner(lck) == gtid) { 207 lck->lk.depth_locked += 1; 208 return KMP_LOCK_ACQUIRED_NEXT; 209 } else { 210 __kmp_acquire_tas_lock_timed_template(lck, gtid); 211 ANNOTATE_TAS_ACQUIRED(lck); 212 lck->lk.depth_locked = 1; 213 return KMP_LOCK_ACQUIRED_FIRST; 214 } 215 } 216 217 static int __kmp_acquire_nested_tas_lock_with_checks(kmp_tas_lock_t *lck, 218 kmp_int32 gtid) { 219 char const *const func = "omp_set_nest_lock"; 220 if (!__kmp_is_tas_lock_nestable(lck)) { 221 KMP_FATAL(LockSimpleUsedAsNestable, func); 222 } 223 return __kmp_acquire_nested_tas_lock(lck, gtid); 224 } 225 226 int __kmp_test_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) { 227 int retval; 228 229 KMP_DEBUG_ASSERT(gtid >= 0); 230 231 if (__kmp_get_tas_lock_owner(lck) == gtid) { 232 retval = ++lck->lk.depth_locked; 233 } else if (!__kmp_test_tas_lock(lck, gtid)) { 234 retval = 0; 235 } else { 236 KMP_MB(); 237 retval = lck->lk.depth_locked = 1; 238 } 239 return retval; 240 } 241 242 static int __kmp_test_nested_tas_lock_with_checks(kmp_tas_lock_t *lck, 243 kmp_int32 gtid) { 244 char const *const func = "omp_test_nest_lock"; 245 if (!__kmp_is_tas_lock_nestable(lck)) { 246 KMP_FATAL(LockSimpleUsedAsNestable, func); 247 } 248 return __kmp_test_nested_tas_lock(lck, gtid); 249 } 250 251 int __kmp_release_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) { 252 KMP_DEBUG_ASSERT(gtid >= 0); 253 254 KMP_MB(); 255 if (--(lck->lk.depth_locked) == 0) { 256 __kmp_release_tas_lock(lck, gtid); 257 return KMP_LOCK_RELEASED; 258 } 259 return KMP_LOCK_STILL_HELD; 260 } 261 262 static int __kmp_release_nested_tas_lock_with_checks(kmp_tas_lock_t *lck, 263 kmp_int32 gtid) { 264 char const *const func = "omp_unset_nest_lock"; 265 KMP_MB(); /* in case another processor initialized lock */ 266 if (!__kmp_is_tas_lock_nestable(lck)) { 267 KMP_FATAL(LockSimpleUsedAsNestable, func); 268 } 269 if (__kmp_get_tas_lock_owner(lck) == -1) { 270 KMP_FATAL(LockUnsettingFree, func); 271 } 272 if (__kmp_get_tas_lock_owner(lck) != gtid) { 273 KMP_FATAL(LockUnsettingSetByAnother, func); 274 } 275 return __kmp_release_nested_tas_lock(lck, gtid); 276 } 277 278 void __kmp_init_nested_tas_lock(kmp_tas_lock_t *lck) { 279 __kmp_init_tas_lock(lck); 280 lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks 281 } 282 283 void __kmp_destroy_nested_tas_lock(kmp_tas_lock_t *lck) { 284 __kmp_destroy_tas_lock(lck); 285 lck->lk.depth_locked = 0; 286 } 287 288 static void __kmp_destroy_nested_tas_lock_with_checks(kmp_tas_lock_t *lck) { 289 char const *const func = "omp_destroy_nest_lock"; 290 if (!__kmp_is_tas_lock_nestable(lck)) { 291 KMP_FATAL(LockSimpleUsedAsNestable, func); 292 } 293 if (__kmp_get_tas_lock_owner(lck) != -1) { 294 KMP_FATAL(LockStillOwned, func); 295 } 296 __kmp_destroy_nested_tas_lock(lck); 297 } 298 299 #if KMP_USE_FUTEX 300 301 /* ------------------------------------------------------------------------ */ 302 /* futex locks */ 303 304 // futex locks are really just test and set locks, with a different method 305 // of handling contention. They take the same amount of space as test and 306 // set locks, and are allocated the same way (i.e. use the area allocated by 307 // the compiler for non-nested locks / allocate nested locks on the heap). 308 309 static kmp_int32 __kmp_get_futex_lock_owner(kmp_futex_lock_t *lck) { 310 return KMP_LOCK_STRIP((TCR_4(lck->lk.poll) >> 1)) - 1; 311 } 312 313 static inline bool __kmp_is_futex_lock_nestable(kmp_futex_lock_t *lck) { 314 return lck->lk.depth_locked != -1; 315 } 316 317 __forceinline static int 318 __kmp_acquire_futex_lock_timed_template(kmp_futex_lock_t *lck, kmp_int32 gtid) { 319 kmp_int32 gtid_code = (gtid + 1) << 1; 320 321 KMP_MB(); 322 323 #ifdef USE_LOCK_PROFILE 324 kmp_uint32 curr = KMP_LOCK_STRIP(TCR_4(lck->lk.poll)); 325 if ((curr != 0) && (curr != gtid_code)) 326 __kmp_printf("LOCK CONTENTION: %p\n", lck); 327 /* else __kmp_printf( "." );*/ 328 #endif /* USE_LOCK_PROFILE */ 329 330 KMP_FSYNC_PREPARE(lck); 331 KA_TRACE(1000, ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d entering\n", 332 lck, lck->lk.poll, gtid)); 333 334 kmp_int32 poll_val; 335 336 while ((poll_val = KMP_COMPARE_AND_STORE_RET32( 337 &(lck->lk.poll), KMP_LOCK_FREE(futex), 338 KMP_LOCK_BUSY(gtid_code, futex))) != KMP_LOCK_FREE(futex)) { 339 340 kmp_int32 cond = KMP_LOCK_STRIP(poll_val) & 1; 341 KA_TRACE( 342 1000, 343 ("__kmp_acquire_futex_lock: lck:%p, T#%d poll_val = 0x%x cond = 0x%x\n", 344 lck, gtid, poll_val, cond)); 345 346 // NOTE: if you try to use the following condition for this branch 347 // 348 // if ( poll_val & 1 == 0 ) 349 // 350 // Then the 12.0 compiler has a bug where the following block will 351 // always be skipped, regardless of the value of the LSB of poll_val. 352 if (!cond) { 353 // Try to set the lsb in the poll to indicate to the owner 354 // thread that they need to wake this thread up. 355 if (!KMP_COMPARE_AND_STORE_REL32(&(lck->lk.poll), poll_val, 356 poll_val | KMP_LOCK_BUSY(1, futex))) { 357 KA_TRACE( 358 1000, 359 ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d can't set bit 0\n", 360 lck, lck->lk.poll, gtid)); 361 continue; 362 } 363 poll_val |= KMP_LOCK_BUSY(1, futex); 364 365 KA_TRACE(1000, 366 ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d bit 0 set\n", lck, 367 lck->lk.poll, gtid)); 368 } 369 370 KA_TRACE( 371 1000, 372 ("__kmp_acquire_futex_lock: lck:%p, T#%d before futex_wait(0x%x)\n", 373 lck, gtid, poll_val)); 374 375 kmp_int32 rc; 376 if ((rc = syscall(__NR_futex, &(lck->lk.poll), FUTEX_WAIT, poll_val, NULL, 377 NULL, 0)) != 0) { 378 KA_TRACE(1000, ("__kmp_acquire_futex_lock: lck:%p, T#%d futex_wait(0x%x) " 379 "failed (rc=%d errno=%d)\n", 380 lck, gtid, poll_val, rc, errno)); 381 continue; 382 } 383 384 KA_TRACE(1000, 385 ("__kmp_acquire_futex_lock: lck:%p, T#%d after futex_wait(0x%x)\n", 386 lck, gtid, poll_val)); 387 // This thread has now done a successful futex wait call and was entered on 388 // the OS futex queue. We must now perform a futex wake call when releasing 389 // the lock, as we have no idea how many other threads are in the queue. 390 gtid_code |= 1; 391 } 392 393 KMP_FSYNC_ACQUIRED(lck); 394 KA_TRACE(1000, ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d exiting\n", lck, 395 lck->lk.poll, gtid)); 396 return KMP_LOCK_ACQUIRED_FIRST; 397 } 398 399 int __kmp_acquire_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) { 400 int retval = __kmp_acquire_futex_lock_timed_template(lck, gtid); 401 ANNOTATE_FUTEX_ACQUIRED(lck); 402 return retval; 403 } 404 405 static int __kmp_acquire_futex_lock_with_checks(kmp_futex_lock_t *lck, 406 kmp_int32 gtid) { 407 char const *const func = "omp_set_lock"; 408 if ((sizeof(kmp_futex_lock_t) <= OMP_LOCK_T_SIZE) && 409 __kmp_is_futex_lock_nestable(lck)) { 410 KMP_FATAL(LockNestableUsedAsSimple, func); 411 } 412 if ((gtid >= 0) && (__kmp_get_futex_lock_owner(lck) == gtid)) { 413 KMP_FATAL(LockIsAlreadyOwned, func); 414 } 415 return __kmp_acquire_futex_lock(lck, gtid); 416 } 417 418 int __kmp_test_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) { 419 if (KMP_COMPARE_AND_STORE_ACQ32(&(lck->lk.poll), KMP_LOCK_FREE(futex), 420 KMP_LOCK_BUSY((gtid + 1) << 1, futex))) { 421 KMP_FSYNC_ACQUIRED(lck); 422 return TRUE; 423 } 424 return FALSE; 425 } 426 427 static int __kmp_test_futex_lock_with_checks(kmp_futex_lock_t *lck, 428 kmp_int32 gtid) { 429 char const *const func = "omp_test_lock"; 430 if ((sizeof(kmp_futex_lock_t) <= OMP_LOCK_T_SIZE) && 431 __kmp_is_futex_lock_nestable(lck)) { 432 KMP_FATAL(LockNestableUsedAsSimple, func); 433 } 434 return __kmp_test_futex_lock(lck, gtid); 435 } 436 437 int __kmp_release_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) { 438 KMP_MB(); /* Flush all pending memory write invalidates. */ 439 440 KA_TRACE(1000, ("__kmp_release_futex_lock: lck:%p(0x%x), T#%d entering\n", 441 lck, lck->lk.poll, gtid)); 442 443 KMP_FSYNC_RELEASING(lck); 444 ANNOTATE_FUTEX_RELEASED(lck); 445 446 kmp_int32 poll_val = KMP_XCHG_FIXED32(&(lck->lk.poll), KMP_LOCK_FREE(futex)); 447 448 KA_TRACE(1000, 449 ("__kmp_release_futex_lock: lck:%p, T#%d released poll_val = 0x%x\n", 450 lck, gtid, poll_val)); 451 452 if (KMP_LOCK_STRIP(poll_val) & 1) { 453 KA_TRACE(1000, 454 ("__kmp_release_futex_lock: lck:%p, T#%d futex_wake 1 thread\n", 455 lck, gtid)); 456 syscall(__NR_futex, &(lck->lk.poll), FUTEX_WAKE, KMP_LOCK_BUSY(1, futex), 457 NULL, NULL, 0); 458 } 459 460 KMP_MB(); /* Flush all pending memory write invalidates. */ 461 462 KA_TRACE(1000, ("__kmp_release_futex_lock: lck:%p(0x%x), T#%d exiting\n", lck, 463 lck->lk.poll, gtid)); 464 465 KMP_YIELD_OVERSUB(); 466 return KMP_LOCK_RELEASED; 467 } 468 469 static int __kmp_release_futex_lock_with_checks(kmp_futex_lock_t *lck, 470 kmp_int32 gtid) { 471 char const *const func = "omp_unset_lock"; 472 KMP_MB(); /* in case another processor initialized lock */ 473 if ((sizeof(kmp_futex_lock_t) <= OMP_LOCK_T_SIZE) && 474 __kmp_is_futex_lock_nestable(lck)) { 475 KMP_FATAL(LockNestableUsedAsSimple, func); 476 } 477 if (__kmp_get_futex_lock_owner(lck) == -1) { 478 KMP_FATAL(LockUnsettingFree, func); 479 } 480 if ((gtid >= 0) && (__kmp_get_futex_lock_owner(lck) >= 0) && 481 (__kmp_get_futex_lock_owner(lck) != gtid)) { 482 KMP_FATAL(LockUnsettingSetByAnother, func); 483 } 484 return __kmp_release_futex_lock(lck, gtid); 485 } 486 487 void __kmp_init_futex_lock(kmp_futex_lock_t *lck) { 488 TCW_4(lck->lk.poll, KMP_LOCK_FREE(futex)); 489 } 490 491 void __kmp_destroy_futex_lock(kmp_futex_lock_t *lck) { lck->lk.poll = 0; } 492 493 static void __kmp_destroy_futex_lock_with_checks(kmp_futex_lock_t *lck) { 494 char const *const func = "omp_destroy_lock"; 495 if ((sizeof(kmp_futex_lock_t) <= OMP_LOCK_T_SIZE) && 496 __kmp_is_futex_lock_nestable(lck)) { 497 KMP_FATAL(LockNestableUsedAsSimple, func); 498 } 499 if (__kmp_get_futex_lock_owner(lck) != -1) { 500 KMP_FATAL(LockStillOwned, func); 501 } 502 __kmp_destroy_futex_lock(lck); 503 } 504 505 // nested futex locks 506 507 int __kmp_acquire_nested_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) { 508 KMP_DEBUG_ASSERT(gtid >= 0); 509 510 if (__kmp_get_futex_lock_owner(lck) == gtid) { 511 lck->lk.depth_locked += 1; 512 return KMP_LOCK_ACQUIRED_NEXT; 513 } else { 514 __kmp_acquire_futex_lock_timed_template(lck, gtid); 515 ANNOTATE_FUTEX_ACQUIRED(lck); 516 lck->lk.depth_locked = 1; 517 return KMP_LOCK_ACQUIRED_FIRST; 518 } 519 } 520 521 static int __kmp_acquire_nested_futex_lock_with_checks(kmp_futex_lock_t *lck, 522 kmp_int32 gtid) { 523 char const *const func = "omp_set_nest_lock"; 524 if (!__kmp_is_futex_lock_nestable(lck)) { 525 KMP_FATAL(LockSimpleUsedAsNestable, func); 526 } 527 return __kmp_acquire_nested_futex_lock(lck, gtid); 528 } 529 530 int __kmp_test_nested_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) { 531 int retval; 532 533 KMP_DEBUG_ASSERT(gtid >= 0); 534 535 if (__kmp_get_futex_lock_owner(lck) == gtid) { 536 retval = ++lck->lk.depth_locked; 537 } else if (!__kmp_test_futex_lock(lck, gtid)) { 538 retval = 0; 539 } else { 540 KMP_MB(); 541 retval = lck->lk.depth_locked = 1; 542 } 543 return retval; 544 } 545 546 static int __kmp_test_nested_futex_lock_with_checks(kmp_futex_lock_t *lck, 547 kmp_int32 gtid) { 548 char const *const func = "omp_test_nest_lock"; 549 if (!__kmp_is_futex_lock_nestable(lck)) { 550 KMP_FATAL(LockSimpleUsedAsNestable, func); 551 } 552 return __kmp_test_nested_futex_lock(lck, gtid); 553 } 554 555 int __kmp_release_nested_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) { 556 KMP_DEBUG_ASSERT(gtid >= 0); 557 558 KMP_MB(); 559 if (--(lck->lk.depth_locked) == 0) { 560 __kmp_release_futex_lock(lck, gtid); 561 return KMP_LOCK_RELEASED; 562 } 563 return KMP_LOCK_STILL_HELD; 564 } 565 566 static int __kmp_release_nested_futex_lock_with_checks(kmp_futex_lock_t *lck, 567 kmp_int32 gtid) { 568 char const *const func = "omp_unset_nest_lock"; 569 KMP_MB(); /* in case another processor initialized lock */ 570 if (!__kmp_is_futex_lock_nestable(lck)) { 571 KMP_FATAL(LockSimpleUsedAsNestable, func); 572 } 573 if (__kmp_get_futex_lock_owner(lck) == -1) { 574 KMP_FATAL(LockUnsettingFree, func); 575 } 576 if (__kmp_get_futex_lock_owner(lck) != gtid) { 577 KMP_FATAL(LockUnsettingSetByAnother, func); 578 } 579 return __kmp_release_nested_futex_lock(lck, gtid); 580 } 581 582 void __kmp_init_nested_futex_lock(kmp_futex_lock_t *lck) { 583 __kmp_init_futex_lock(lck); 584 lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks 585 } 586 587 void __kmp_destroy_nested_futex_lock(kmp_futex_lock_t *lck) { 588 __kmp_destroy_futex_lock(lck); 589 lck->lk.depth_locked = 0; 590 } 591 592 static void __kmp_destroy_nested_futex_lock_with_checks(kmp_futex_lock_t *lck) { 593 char const *const func = "omp_destroy_nest_lock"; 594 if (!__kmp_is_futex_lock_nestable(lck)) { 595 KMP_FATAL(LockSimpleUsedAsNestable, func); 596 } 597 if (__kmp_get_futex_lock_owner(lck) != -1) { 598 KMP_FATAL(LockStillOwned, func); 599 } 600 __kmp_destroy_nested_futex_lock(lck); 601 } 602 603 #endif // KMP_USE_FUTEX 604 605 /* ------------------------------------------------------------------------ */ 606 /* ticket (bakery) locks */ 607 608 static kmp_int32 __kmp_get_ticket_lock_owner(kmp_ticket_lock_t *lck) { 609 return std::atomic_load_explicit(&lck->lk.owner_id, 610 std::memory_order_relaxed) - 611 1; 612 } 613 614 static inline bool __kmp_is_ticket_lock_nestable(kmp_ticket_lock_t *lck) { 615 return std::atomic_load_explicit(&lck->lk.depth_locked, 616 std::memory_order_relaxed) != -1; 617 } 618 619 static kmp_uint32 __kmp_bakery_check(void *now_serving, kmp_uint32 my_ticket) { 620 return std::atomic_load_explicit((std::atomic<unsigned> *)now_serving, 621 std::memory_order_acquire) == my_ticket; 622 } 623 624 __forceinline static int 625 __kmp_acquire_ticket_lock_timed_template(kmp_ticket_lock_t *lck, 626 kmp_int32 gtid) { 627 kmp_uint32 my_ticket = std::atomic_fetch_add_explicit( 628 &lck->lk.next_ticket, 1U, std::memory_order_relaxed); 629 630 #ifdef USE_LOCK_PROFILE 631 if (std::atomic_load_explicit(&lck->lk.now_serving, 632 std::memory_order_relaxed) != my_ticket) 633 __kmp_printf("LOCK CONTENTION: %p\n", lck); 634 /* else __kmp_printf( "." );*/ 635 #endif /* USE_LOCK_PROFILE */ 636 637 if (std::atomic_load_explicit(&lck->lk.now_serving, 638 std::memory_order_acquire) == my_ticket) { 639 return KMP_LOCK_ACQUIRED_FIRST; 640 } 641 KMP_WAIT_PTR(&lck->lk.now_serving, my_ticket, __kmp_bakery_check, lck); 642 return KMP_LOCK_ACQUIRED_FIRST; 643 } 644 645 int __kmp_acquire_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) { 646 int retval = __kmp_acquire_ticket_lock_timed_template(lck, gtid); 647 ANNOTATE_TICKET_ACQUIRED(lck); 648 return retval; 649 } 650 651 static int __kmp_acquire_ticket_lock_with_checks(kmp_ticket_lock_t *lck, 652 kmp_int32 gtid) { 653 char const *const func = "omp_set_lock"; 654 655 if (!std::atomic_load_explicit(&lck->lk.initialized, 656 std::memory_order_relaxed)) { 657 KMP_FATAL(LockIsUninitialized, func); 658 } 659 if (lck->lk.self != lck) { 660 KMP_FATAL(LockIsUninitialized, func); 661 } 662 if (__kmp_is_ticket_lock_nestable(lck)) { 663 KMP_FATAL(LockNestableUsedAsSimple, func); 664 } 665 if ((gtid >= 0) && (__kmp_get_ticket_lock_owner(lck) == gtid)) { 666 KMP_FATAL(LockIsAlreadyOwned, func); 667 } 668 669 __kmp_acquire_ticket_lock(lck, gtid); 670 671 std::atomic_store_explicit(&lck->lk.owner_id, gtid + 1, 672 std::memory_order_relaxed); 673 return KMP_LOCK_ACQUIRED_FIRST; 674 } 675 676 int __kmp_test_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) { 677 kmp_uint32 my_ticket = std::atomic_load_explicit(&lck->lk.next_ticket, 678 std::memory_order_relaxed); 679 680 if (std::atomic_load_explicit(&lck->lk.now_serving, 681 std::memory_order_relaxed) == my_ticket) { 682 kmp_uint32 next_ticket = my_ticket + 1; 683 if (std::atomic_compare_exchange_strong_explicit( 684 &lck->lk.next_ticket, &my_ticket, next_ticket, 685 std::memory_order_acquire, std::memory_order_acquire)) { 686 return TRUE; 687 } 688 } 689 return FALSE; 690 } 691 692 static int __kmp_test_ticket_lock_with_checks(kmp_ticket_lock_t *lck, 693 kmp_int32 gtid) { 694 char const *const func = "omp_test_lock"; 695 696 if (!std::atomic_load_explicit(&lck->lk.initialized, 697 std::memory_order_relaxed)) { 698 KMP_FATAL(LockIsUninitialized, func); 699 } 700 if (lck->lk.self != lck) { 701 KMP_FATAL(LockIsUninitialized, func); 702 } 703 if (__kmp_is_ticket_lock_nestable(lck)) { 704 KMP_FATAL(LockNestableUsedAsSimple, func); 705 } 706 707 int retval = __kmp_test_ticket_lock(lck, gtid); 708 709 if (retval) { 710 std::atomic_store_explicit(&lck->lk.owner_id, gtid + 1, 711 std::memory_order_relaxed); 712 } 713 return retval; 714 } 715 716 int __kmp_release_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) { 717 kmp_uint32 distance = std::atomic_load_explicit(&lck->lk.next_ticket, 718 std::memory_order_relaxed) - 719 std::atomic_load_explicit(&lck->lk.now_serving, 720 std::memory_order_relaxed); 721 722 ANNOTATE_TICKET_RELEASED(lck); 723 std::atomic_fetch_add_explicit(&lck->lk.now_serving, 1U, 724 std::memory_order_release); 725 726 KMP_YIELD(distance > 727 (kmp_uint32)(__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc)); 728 return KMP_LOCK_RELEASED; 729 } 730 731 static int __kmp_release_ticket_lock_with_checks(kmp_ticket_lock_t *lck, 732 kmp_int32 gtid) { 733 char const *const func = "omp_unset_lock"; 734 735 if (!std::atomic_load_explicit(&lck->lk.initialized, 736 std::memory_order_relaxed)) { 737 KMP_FATAL(LockIsUninitialized, func); 738 } 739 if (lck->lk.self != lck) { 740 KMP_FATAL(LockIsUninitialized, func); 741 } 742 if (__kmp_is_ticket_lock_nestable(lck)) { 743 KMP_FATAL(LockNestableUsedAsSimple, func); 744 } 745 if (__kmp_get_ticket_lock_owner(lck) == -1) { 746 KMP_FATAL(LockUnsettingFree, func); 747 } 748 if ((gtid >= 0) && (__kmp_get_ticket_lock_owner(lck) >= 0) && 749 (__kmp_get_ticket_lock_owner(lck) != gtid)) { 750 KMP_FATAL(LockUnsettingSetByAnother, func); 751 } 752 std::atomic_store_explicit(&lck->lk.owner_id, 0, std::memory_order_relaxed); 753 return __kmp_release_ticket_lock(lck, gtid); 754 } 755 756 void __kmp_init_ticket_lock(kmp_ticket_lock_t *lck) { 757 lck->lk.location = NULL; 758 lck->lk.self = lck; 759 std::atomic_store_explicit(&lck->lk.next_ticket, 0U, 760 std::memory_order_relaxed); 761 std::atomic_store_explicit(&lck->lk.now_serving, 0U, 762 std::memory_order_relaxed); 763 std::atomic_store_explicit( 764 &lck->lk.owner_id, 0, 765 std::memory_order_relaxed); // no thread owns the lock. 766 std::atomic_store_explicit( 767 &lck->lk.depth_locked, -1, 768 std::memory_order_relaxed); // -1 => not a nested lock. 769 std::atomic_store_explicit(&lck->lk.initialized, true, 770 std::memory_order_release); 771 } 772 773 void __kmp_destroy_ticket_lock(kmp_ticket_lock_t *lck) { 774 std::atomic_store_explicit(&lck->lk.initialized, false, 775 std::memory_order_release); 776 lck->lk.self = NULL; 777 lck->lk.location = NULL; 778 std::atomic_store_explicit(&lck->lk.next_ticket, 0U, 779 std::memory_order_relaxed); 780 std::atomic_store_explicit(&lck->lk.now_serving, 0U, 781 std::memory_order_relaxed); 782 std::atomic_store_explicit(&lck->lk.owner_id, 0, std::memory_order_relaxed); 783 std::atomic_store_explicit(&lck->lk.depth_locked, -1, 784 std::memory_order_relaxed); 785 } 786 787 static void __kmp_destroy_ticket_lock_with_checks(kmp_ticket_lock_t *lck) { 788 char const *const func = "omp_destroy_lock"; 789 790 if (!std::atomic_load_explicit(&lck->lk.initialized, 791 std::memory_order_relaxed)) { 792 KMP_FATAL(LockIsUninitialized, func); 793 } 794 if (lck->lk.self != lck) { 795 KMP_FATAL(LockIsUninitialized, func); 796 } 797 if (__kmp_is_ticket_lock_nestable(lck)) { 798 KMP_FATAL(LockNestableUsedAsSimple, func); 799 } 800 if (__kmp_get_ticket_lock_owner(lck) != -1) { 801 KMP_FATAL(LockStillOwned, func); 802 } 803 __kmp_destroy_ticket_lock(lck); 804 } 805 806 // nested ticket locks 807 808 int __kmp_acquire_nested_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) { 809 KMP_DEBUG_ASSERT(gtid >= 0); 810 811 if (__kmp_get_ticket_lock_owner(lck) == gtid) { 812 std::atomic_fetch_add_explicit(&lck->lk.depth_locked, 1, 813 std::memory_order_relaxed); 814 return KMP_LOCK_ACQUIRED_NEXT; 815 } else { 816 __kmp_acquire_ticket_lock_timed_template(lck, gtid); 817 ANNOTATE_TICKET_ACQUIRED(lck); 818 std::atomic_store_explicit(&lck->lk.depth_locked, 1, 819 std::memory_order_relaxed); 820 std::atomic_store_explicit(&lck->lk.owner_id, gtid + 1, 821 std::memory_order_relaxed); 822 return KMP_LOCK_ACQUIRED_FIRST; 823 } 824 } 825 826 static int __kmp_acquire_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck, 827 kmp_int32 gtid) { 828 char const *const func = "omp_set_nest_lock"; 829 830 if (!std::atomic_load_explicit(&lck->lk.initialized, 831 std::memory_order_relaxed)) { 832 KMP_FATAL(LockIsUninitialized, func); 833 } 834 if (lck->lk.self != lck) { 835 KMP_FATAL(LockIsUninitialized, func); 836 } 837 if (!__kmp_is_ticket_lock_nestable(lck)) { 838 KMP_FATAL(LockSimpleUsedAsNestable, func); 839 } 840 return __kmp_acquire_nested_ticket_lock(lck, gtid); 841 } 842 843 int __kmp_test_nested_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) { 844 int retval; 845 846 KMP_DEBUG_ASSERT(gtid >= 0); 847 848 if (__kmp_get_ticket_lock_owner(lck) == gtid) { 849 retval = std::atomic_fetch_add_explicit(&lck->lk.depth_locked, 1, 850 std::memory_order_relaxed) + 851 1; 852 } else if (!__kmp_test_ticket_lock(lck, gtid)) { 853 retval = 0; 854 } else { 855 std::atomic_store_explicit(&lck->lk.depth_locked, 1, 856 std::memory_order_relaxed); 857 std::atomic_store_explicit(&lck->lk.owner_id, gtid + 1, 858 std::memory_order_relaxed); 859 retval = 1; 860 } 861 return retval; 862 } 863 864 static int __kmp_test_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck, 865 kmp_int32 gtid) { 866 char const *const func = "omp_test_nest_lock"; 867 868 if (!std::atomic_load_explicit(&lck->lk.initialized, 869 std::memory_order_relaxed)) { 870 KMP_FATAL(LockIsUninitialized, func); 871 } 872 if (lck->lk.self != lck) { 873 KMP_FATAL(LockIsUninitialized, func); 874 } 875 if (!__kmp_is_ticket_lock_nestable(lck)) { 876 KMP_FATAL(LockSimpleUsedAsNestable, func); 877 } 878 return __kmp_test_nested_ticket_lock(lck, gtid); 879 } 880 881 int __kmp_release_nested_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) { 882 KMP_DEBUG_ASSERT(gtid >= 0); 883 884 if ((std::atomic_fetch_add_explicit(&lck->lk.depth_locked, -1, 885 std::memory_order_relaxed) - 886 1) == 0) { 887 std::atomic_store_explicit(&lck->lk.owner_id, 0, std::memory_order_relaxed); 888 __kmp_release_ticket_lock(lck, gtid); 889 return KMP_LOCK_RELEASED; 890 } 891 return KMP_LOCK_STILL_HELD; 892 } 893 894 static int __kmp_release_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck, 895 kmp_int32 gtid) { 896 char const *const func = "omp_unset_nest_lock"; 897 898 if (!std::atomic_load_explicit(&lck->lk.initialized, 899 std::memory_order_relaxed)) { 900 KMP_FATAL(LockIsUninitialized, func); 901 } 902 if (lck->lk.self != lck) { 903 KMP_FATAL(LockIsUninitialized, func); 904 } 905 if (!__kmp_is_ticket_lock_nestable(lck)) { 906 KMP_FATAL(LockSimpleUsedAsNestable, func); 907 } 908 if (__kmp_get_ticket_lock_owner(lck) == -1) { 909 KMP_FATAL(LockUnsettingFree, func); 910 } 911 if (__kmp_get_ticket_lock_owner(lck) != gtid) { 912 KMP_FATAL(LockUnsettingSetByAnother, func); 913 } 914 return __kmp_release_nested_ticket_lock(lck, gtid); 915 } 916 917 void __kmp_init_nested_ticket_lock(kmp_ticket_lock_t *lck) { 918 __kmp_init_ticket_lock(lck); 919 std::atomic_store_explicit(&lck->lk.depth_locked, 0, 920 std::memory_order_relaxed); 921 // >= 0 for nestable locks, -1 for simple locks 922 } 923 924 void __kmp_destroy_nested_ticket_lock(kmp_ticket_lock_t *lck) { 925 __kmp_destroy_ticket_lock(lck); 926 std::atomic_store_explicit(&lck->lk.depth_locked, 0, 927 std::memory_order_relaxed); 928 } 929 930 static void 931 __kmp_destroy_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck) { 932 char const *const func = "omp_destroy_nest_lock"; 933 934 if (!std::atomic_load_explicit(&lck->lk.initialized, 935 std::memory_order_relaxed)) { 936 KMP_FATAL(LockIsUninitialized, func); 937 } 938 if (lck->lk.self != lck) { 939 KMP_FATAL(LockIsUninitialized, func); 940 } 941 if (!__kmp_is_ticket_lock_nestable(lck)) { 942 KMP_FATAL(LockSimpleUsedAsNestable, func); 943 } 944 if (__kmp_get_ticket_lock_owner(lck) != -1) { 945 KMP_FATAL(LockStillOwned, func); 946 } 947 __kmp_destroy_nested_ticket_lock(lck); 948 } 949 950 // access functions to fields which don't exist for all lock kinds. 951 952 static const ident_t *__kmp_get_ticket_lock_location(kmp_ticket_lock_t *lck) { 953 return lck->lk.location; 954 } 955 956 static void __kmp_set_ticket_lock_location(kmp_ticket_lock_t *lck, 957 const ident_t *loc) { 958 lck->lk.location = loc; 959 } 960 961 static kmp_lock_flags_t __kmp_get_ticket_lock_flags(kmp_ticket_lock_t *lck) { 962 return lck->lk.flags; 963 } 964 965 static void __kmp_set_ticket_lock_flags(kmp_ticket_lock_t *lck, 966 kmp_lock_flags_t flags) { 967 lck->lk.flags = flags; 968 } 969 970 /* ------------------------------------------------------------------------ */ 971 /* queuing locks */ 972 973 /* First the states 974 (head,tail) = 0, 0 means lock is unheld, nobody on queue 975 UINT_MAX or -1, 0 means lock is held, nobody on queue 976 h, h means lock held or about to transition, 977 1 element on queue 978 h, t h <> t, means lock is held or about to 979 transition, >1 elements on queue 980 981 Now the transitions 982 Acquire(0,0) = -1 ,0 983 Release(0,0) = Error 984 Acquire(-1,0) = h ,h h > 0 985 Release(-1,0) = 0 ,0 986 Acquire(h,h) = h ,t h > 0, t > 0, h <> t 987 Release(h,h) = -1 ,0 h > 0 988 Acquire(h,t) = h ,t' h > 0, t > 0, t' > 0, h <> t, h <> t', t <> t' 989 Release(h,t) = h',t h > 0, t > 0, h <> t, h <> h', h' maybe = t 990 991 And pictorially 992 993 +-----+ 994 | 0, 0|------- release -------> Error 995 +-----+ 996 | ^ 997 acquire| |release 998 | | 999 | | 1000 v | 1001 +-----+ 1002 |-1, 0| 1003 +-----+ 1004 | ^ 1005 acquire| |release 1006 | | 1007 | | 1008 v | 1009 +-----+ 1010 | h, h| 1011 +-----+ 1012 | ^ 1013 acquire| |release 1014 | | 1015 | | 1016 v | 1017 +-----+ 1018 | h, t|----- acquire, release loopback ---+ 1019 +-----+ | 1020 ^ | 1021 | | 1022 +------------------------------------+ 1023 */ 1024 1025 #ifdef DEBUG_QUEUING_LOCKS 1026 1027 /* Stuff for circular trace buffer */ 1028 #define TRACE_BUF_ELE 1024 1029 static char traces[TRACE_BUF_ELE][128] = {0}; 1030 static int tc = 0; 1031 #define TRACE_LOCK(X, Y) \ 1032 KMP_SNPRINTF(traces[tc++ % TRACE_BUF_ELE], 128, "t%d at %s\n", X, Y); 1033 #define TRACE_LOCK_T(X, Y, Z) \ 1034 KMP_SNPRINTF(traces[tc++ % TRACE_BUF_ELE], 128, "t%d at %s%d\n", X, Y, Z); 1035 #define TRACE_LOCK_HT(X, Y, Z, Q) \ 1036 KMP_SNPRINTF(traces[tc++ % TRACE_BUF_ELE], 128, "t%d at %s %d,%d\n", X, Y, \ 1037 Z, Q); 1038 1039 static void __kmp_dump_queuing_lock(kmp_info_t *this_thr, kmp_int32 gtid, 1040 kmp_queuing_lock_t *lck, kmp_int32 head_id, 1041 kmp_int32 tail_id) { 1042 kmp_int32 t, i; 1043 1044 __kmp_printf_no_lock("\n__kmp_dump_queuing_lock: TRACE BEGINS HERE! \n"); 1045 1046 i = tc % TRACE_BUF_ELE; 1047 __kmp_printf_no_lock("%s\n", traces[i]); 1048 i = (i + 1) % TRACE_BUF_ELE; 1049 while (i != (tc % TRACE_BUF_ELE)) { 1050 __kmp_printf_no_lock("%s", traces[i]); 1051 i = (i + 1) % TRACE_BUF_ELE; 1052 } 1053 __kmp_printf_no_lock("\n"); 1054 1055 __kmp_printf_no_lock("\n__kmp_dump_queuing_lock: gtid+1:%d, spin_here:%d, " 1056 "next_wait:%d, head_id:%d, tail_id:%d\n", 1057 gtid + 1, this_thr->th.th_spin_here, 1058 this_thr->th.th_next_waiting, head_id, tail_id); 1059 1060 __kmp_printf_no_lock("\t\thead: %d ", lck->lk.head_id); 1061 1062 if (lck->lk.head_id >= 1) { 1063 t = __kmp_threads[lck->lk.head_id - 1]->th.th_next_waiting; 1064 while (t > 0) { 1065 __kmp_printf_no_lock("-> %d ", t); 1066 t = __kmp_threads[t - 1]->th.th_next_waiting; 1067 } 1068 } 1069 __kmp_printf_no_lock("; tail: %d ", lck->lk.tail_id); 1070 __kmp_printf_no_lock("\n\n"); 1071 } 1072 1073 #endif /* DEBUG_QUEUING_LOCKS */ 1074 1075 static kmp_int32 __kmp_get_queuing_lock_owner(kmp_queuing_lock_t *lck) { 1076 return TCR_4(lck->lk.owner_id) - 1; 1077 } 1078 1079 static inline bool __kmp_is_queuing_lock_nestable(kmp_queuing_lock_t *lck) { 1080 return lck->lk.depth_locked != -1; 1081 } 1082 1083 /* Acquire a lock using a the queuing lock implementation */ 1084 template <bool takeTime> 1085 /* [TLW] The unused template above is left behind because of what BEB believes 1086 is a potential compiler problem with __forceinline. */ 1087 __forceinline static int 1088 __kmp_acquire_queuing_lock_timed_template(kmp_queuing_lock_t *lck, 1089 kmp_int32 gtid) { 1090 kmp_info_t *this_thr = __kmp_thread_from_gtid(gtid); 1091 volatile kmp_int32 *head_id_p = &lck->lk.head_id; 1092 volatile kmp_int32 *tail_id_p = &lck->lk.tail_id; 1093 volatile kmp_uint32 *spin_here_p; 1094 kmp_int32 need_mf = 1; 1095 1096 #if OMPT_SUPPORT 1097 ompt_state_t prev_state = ompt_state_undefined; 1098 #endif 1099 1100 KA_TRACE(1000, 1101 ("__kmp_acquire_queuing_lock: lck:%p, T#%d entering\n", lck, gtid)); 1102 1103 KMP_FSYNC_PREPARE(lck); 1104 KMP_DEBUG_ASSERT(this_thr != NULL); 1105 spin_here_p = &this_thr->th.th_spin_here; 1106 1107 #ifdef DEBUG_QUEUING_LOCKS 1108 TRACE_LOCK(gtid + 1, "acq ent"); 1109 if (*spin_here_p) 1110 __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p); 1111 if (this_thr->th.th_next_waiting != 0) 1112 __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p); 1113 #endif 1114 KMP_DEBUG_ASSERT(!*spin_here_p); 1115 KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0); 1116 1117 /* The following st.rel to spin_here_p needs to precede the cmpxchg.acq to 1118 head_id_p that may follow, not just in execution order, but also in 1119 visibility order. This way, when a releasing thread observes the changes to 1120 the queue by this thread, it can rightly assume that spin_here_p has 1121 already been set to TRUE, so that when it sets spin_here_p to FALSE, it is 1122 not premature. If the releasing thread sets spin_here_p to FALSE before 1123 this thread sets it to TRUE, this thread will hang. */ 1124 *spin_here_p = TRUE; /* before enqueuing to prevent race */ 1125 1126 while (1) { 1127 kmp_int32 enqueued; 1128 kmp_int32 head; 1129 kmp_int32 tail; 1130 1131 head = *head_id_p; 1132 1133 switch (head) { 1134 1135 case -1: { 1136 #ifdef DEBUG_QUEUING_LOCKS 1137 tail = *tail_id_p; 1138 TRACE_LOCK_HT(gtid + 1, "acq read: ", head, tail); 1139 #endif 1140 tail = 0; /* to make sure next link asynchronously read is not set 1141 accidentally; this assignment prevents us from entering the 1142 if ( t > 0 ) condition in the enqueued case below, which is not 1143 necessary for this state transition */ 1144 1145 need_mf = 0; 1146 /* try (-1,0)->(tid,tid) */ 1147 enqueued = KMP_COMPARE_AND_STORE_ACQ64((volatile kmp_int64 *)tail_id_p, 1148 KMP_PACK_64(-1, 0), 1149 KMP_PACK_64(gtid + 1, gtid + 1)); 1150 #ifdef DEBUG_QUEUING_LOCKS 1151 if (enqueued) 1152 TRACE_LOCK(gtid + 1, "acq enq: (-1,0)->(tid,tid)"); 1153 #endif 1154 } break; 1155 1156 default: { 1157 tail = *tail_id_p; 1158 KMP_DEBUG_ASSERT(tail != gtid + 1); 1159 1160 #ifdef DEBUG_QUEUING_LOCKS 1161 TRACE_LOCK_HT(gtid + 1, "acq read: ", head, tail); 1162 #endif 1163 1164 if (tail == 0) { 1165 enqueued = FALSE; 1166 } else { 1167 need_mf = 0; 1168 /* try (h,t) or (h,h)->(h,tid) */ 1169 enqueued = KMP_COMPARE_AND_STORE_ACQ32(tail_id_p, tail, gtid + 1); 1170 1171 #ifdef DEBUG_QUEUING_LOCKS 1172 if (enqueued) 1173 TRACE_LOCK(gtid + 1, "acq enq: (h,t)->(h,tid)"); 1174 #endif 1175 } 1176 } break; 1177 1178 case 0: /* empty queue */ 1179 { 1180 kmp_int32 grabbed_lock; 1181 1182 #ifdef DEBUG_QUEUING_LOCKS 1183 tail = *tail_id_p; 1184 TRACE_LOCK_HT(gtid + 1, "acq read: ", head, tail); 1185 #endif 1186 /* try (0,0)->(-1,0) */ 1187 1188 /* only legal transition out of head = 0 is head = -1 with no change to 1189 * tail */ 1190 grabbed_lock = KMP_COMPARE_AND_STORE_ACQ32(head_id_p, 0, -1); 1191 1192 if (grabbed_lock) { 1193 1194 *spin_here_p = FALSE; 1195 1196 KA_TRACE( 1197 1000, 1198 ("__kmp_acquire_queuing_lock: lck:%p, T#%d exiting: no queuing\n", 1199 lck, gtid)); 1200 #ifdef DEBUG_QUEUING_LOCKS 1201 TRACE_LOCK_HT(gtid + 1, "acq exit: ", head, 0); 1202 #endif 1203 1204 #if OMPT_SUPPORT 1205 if (ompt_enabled.enabled && prev_state != ompt_state_undefined) { 1206 /* change the state before clearing wait_id */ 1207 this_thr->th.ompt_thread_info.state = prev_state; 1208 this_thr->th.ompt_thread_info.wait_id = 0; 1209 } 1210 #endif 1211 1212 KMP_FSYNC_ACQUIRED(lck); 1213 return KMP_LOCK_ACQUIRED_FIRST; /* lock holder cannot be on queue */ 1214 } 1215 enqueued = FALSE; 1216 } break; 1217 } 1218 1219 #if OMPT_SUPPORT 1220 if (ompt_enabled.enabled && prev_state == ompt_state_undefined) { 1221 /* this thread will spin; set wait_id before entering wait state */ 1222 prev_state = this_thr->th.ompt_thread_info.state; 1223 this_thr->th.ompt_thread_info.wait_id = (uint64_t)lck; 1224 this_thr->th.ompt_thread_info.state = ompt_state_wait_lock; 1225 } 1226 #endif 1227 1228 if (enqueued) { 1229 if (tail > 0) { 1230 kmp_info_t *tail_thr = __kmp_thread_from_gtid(tail - 1); 1231 KMP_ASSERT(tail_thr != NULL); 1232 tail_thr->th.th_next_waiting = gtid + 1; 1233 /* corresponding wait for this write in release code */ 1234 } 1235 KA_TRACE(1000, 1236 ("__kmp_acquire_queuing_lock: lck:%p, T#%d waiting for lock\n", 1237 lck, gtid)); 1238 1239 KMP_MB(); 1240 // ToDo: Use __kmp_wait_sleep or similar when blocktime != inf 1241 KMP_WAIT(spin_here_p, FALSE, KMP_EQ, lck); 1242 // Synchronize writes to both runtime thread structures 1243 // and writes in user code. 1244 KMP_MB(); 1245 1246 #ifdef DEBUG_QUEUING_LOCKS 1247 TRACE_LOCK(gtid + 1, "acq spin"); 1248 1249 if (this_thr->th.th_next_waiting != 0) 1250 __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p); 1251 #endif 1252 KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0); 1253 KA_TRACE(1000, ("__kmp_acquire_queuing_lock: lck:%p, T#%d exiting: after " 1254 "waiting on queue\n", 1255 lck, gtid)); 1256 1257 #ifdef DEBUG_QUEUING_LOCKS 1258 TRACE_LOCK(gtid + 1, "acq exit 2"); 1259 #endif 1260 1261 #if OMPT_SUPPORT 1262 /* change the state before clearing wait_id */ 1263 this_thr->th.ompt_thread_info.state = prev_state; 1264 this_thr->th.ompt_thread_info.wait_id = 0; 1265 #endif 1266 1267 /* got lock, we were dequeued by the thread that released lock */ 1268 return KMP_LOCK_ACQUIRED_FIRST; 1269 } 1270 1271 /* Yield if number of threads > number of logical processors */ 1272 /* ToDo: Not sure why this should only be in oversubscription case, 1273 maybe should be traditional YIELD_INIT/YIELD_WHEN loop */ 1274 KMP_YIELD_OVERSUB(); 1275 1276 #ifdef DEBUG_QUEUING_LOCKS 1277 TRACE_LOCK(gtid + 1, "acq retry"); 1278 #endif 1279 } 1280 KMP_ASSERT2(0, "should not get here"); 1281 return KMP_LOCK_ACQUIRED_FIRST; 1282 } 1283 1284 int __kmp_acquire_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) { 1285 KMP_DEBUG_ASSERT(gtid >= 0); 1286 1287 int retval = __kmp_acquire_queuing_lock_timed_template<false>(lck, gtid); 1288 ANNOTATE_QUEUING_ACQUIRED(lck); 1289 return retval; 1290 } 1291 1292 static int __kmp_acquire_queuing_lock_with_checks(kmp_queuing_lock_t *lck, 1293 kmp_int32 gtid) { 1294 char const *const func = "omp_set_lock"; 1295 if (lck->lk.initialized != lck) { 1296 KMP_FATAL(LockIsUninitialized, func); 1297 } 1298 if (__kmp_is_queuing_lock_nestable(lck)) { 1299 KMP_FATAL(LockNestableUsedAsSimple, func); 1300 } 1301 if (__kmp_get_queuing_lock_owner(lck) == gtid) { 1302 KMP_FATAL(LockIsAlreadyOwned, func); 1303 } 1304 1305 __kmp_acquire_queuing_lock(lck, gtid); 1306 1307 lck->lk.owner_id = gtid + 1; 1308 return KMP_LOCK_ACQUIRED_FIRST; 1309 } 1310 1311 int __kmp_test_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) { 1312 volatile kmp_int32 *head_id_p = &lck->lk.head_id; 1313 kmp_int32 head; 1314 #ifdef KMP_DEBUG 1315 kmp_info_t *this_thr; 1316 #endif 1317 1318 KA_TRACE(1000, ("__kmp_test_queuing_lock: T#%d entering\n", gtid)); 1319 KMP_DEBUG_ASSERT(gtid >= 0); 1320 #ifdef KMP_DEBUG 1321 this_thr = __kmp_thread_from_gtid(gtid); 1322 KMP_DEBUG_ASSERT(this_thr != NULL); 1323 KMP_DEBUG_ASSERT(!this_thr->th.th_spin_here); 1324 #endif 1325 1326 head = *head_id_p; 1327 1328 if (head == 0) { /* nobody on queue, nobody holding */ 1329 /* try (0,0)->(-1,0) */ 1330 if (KMP_COMPARE_AND_STORE_ACQ32(head_id_p, 0, -1)) { 1331 KA_TRACE(1000, 1332 ("__kmp_test_queuing_lock: T#%d exiting: holding lock\n", gtid)); 1333 KMP_FSYNC_ACQUIRED(lck); 1334 ANNOTATE_QUEUING_ACQUIRED(lck); 1335 return TRUE; 1336 } 1337 } 1338 1339 KA_TRACE(1000, 1340 ("__kmp_test_queuing_lock: T#%d exiting: without lock\n", gtid)); 1341 return FALSE; 1342 } 1343 1344 static int __kmp_test_queuing_lock_with_checks(kmp_queuing_lock_t *lck, 1345 kmp_int32 gtid) { 1346 char const *const func = "omp_test_lock"; 1347 if (lck->lk.initialized != lck) { 1348 KMP_FATAL(LockIsUninitialized, func); 1349 } 1350 if (__kmp_is_queuing_lock_nestable(lck)) { 1351 KMP_FATAL(LockNestableUsedAsSimple, func); 1352 } 1353 1354 int retval = __kmp_test_queuing_lock(lck, gtid); 1355 1356 if (retval) { 1357 lck->lk.owner_id = gtid + 1; 1358 } 1359 return retval; 1360 } 1361 1362 int __kmp_release_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) { 1363 kmp_info_t *this_thr; 1364 volatile kmp_int32 *head_id_p = &lck->lk.head_id; 1365 volatile kmp_int32 *tail_id_p = &lck->lk.tail_id; 1366 1367 KA_TRACE(1000, 1368 ("__kmp_release_queuing_lock: lck:%p, T#%d entering\n", lck, gtid)); 1369 KMP_DEBUG_ASSERT(gtid >= 0); 1370 this_thr = __kmp_thread_from_gtid(gtid); 1371 KMP_DEBUG_ASSERT(this_thr != NULL); 1372 #ifdef DEBUG_QUEUING_LOCKS 1373 TRACE_LOCK(gtid + 1, "rel ent"); 1374 1375 if (this_thr->th.th_spin_here) 1376 __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p); 1377 if (this_thr->th.th_next_waiting != 0) 1378 __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p); 1379 #endif 1380 KMP_DEBUG_ASSERT(!this_thr->th.th_spin_here); 1381 KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0); 1382 1383 KMP_FSYNC_RELEASING(lck); 1384 ANNOTATE_QUEUING_RELEASED(lck); 1385 1386 while (1) { 1387 kmp_int32 dequeued; 1388 kmp_int32 head; 1389 kmp_int32 tail; 1390 1391 head = *head_id_p; 1392 1393 #ifdef DEBUG_QUEUING_LOCKS 1394 tail = *tail_id_p; 1395 TRACE_LOCK_HT(gtid + 1, "rel read: ", head, tail); 1396 if (head == 0) 1397 __kmp_dump_queuing_lock(this_thr, gtid, lck, head, tail); 1398 #endif 1399 KMP_DEBUG_ASSERT(head != 1400 0); /* holding the lock, head must be -1 or queue head */ 1401 1402 if (head == -1) { /* nobody on queue */ 1403 /* try (-1,0)->(0,0) */ 1404 if (KMP_COMPARE_AND_STORE_REL32(head_id_p, -1, 0)) { 1405 KA_TRACE( 1406 1000, 1407 ("__kmp_release_queuing_lock: lck:%p, T#%d exiting: queue empty\n", 1408 lck, gtid)); 1409 #ifdef DEBUG_QUEUING_LOCKS 1410 TRACE_LOCK_HT(gtid + 1, "rel exit: ", 0, 0); 1411 #endif 1412 1413 #if OMPT_SUPPORT 1414 /* nothing to do - no other thread is trying to shift blame */ 1415 #endif 1416 return KMP_LOCK_RELEASED; 1417 } 1418 dequeued = FALSE; 1419 } else { 1420 KMP_MB(); 1421 tail = *tail_id_p; 1422 if (head == tail) { /* only one thread on the queue */ 1423 #ifdef DEBUG_QUEUING_LOCKS 1424 if (head <= 0) 1425 __kmp_dump_queuing_lock(this_thr, gtid, lck, head, tail); 1426 #endif 1427 KMP_DEBUG_ASSERT(head > 0); 1428 1429 /* try (h,h)->(-1,0) */ 1430 dequeued = KMP_COMPARE_AND_STORE_REL64( 1431 RCAST(volatile kmp_int64 *, tail_id_p), KMP_PACK_64(head, head), 1432 KMP_PACK_64(-1, 0)); 1433 #ifdef DEBUG_QUEUING_LOCKS 1434 TRACE_LOCK(gtid + 1, "rel deq: (h,h)->(-1,0)"); 1435 #endif 1436 1437 } else { 1438 volatile kmp_int32 *waiting_id_p; 1439 kmp_info_t *head_thr = __kmp_thread_from_gtid(head - 1); 1440 KMP_DEBUG_ASSERT(head_thr != NULL); 1441 waiting_id_p = &head_thr->th.th_next_waiting; 1442 1443 /* Does this require synchronous reads? */ 1444 #ifdef DEBUG_QUEUING_LOCKS 1445 if (head <= 0 || tail <= 0) 1446 __kmp_dump_queuing_lock(this_thr, gtid, lck, head, tail); 1447 #endif 1448 KMP_DEBUG_ASSERT(head > 0 && tail > 0); 1449 1450 /* try (h,t)->(h',t) or (t,t) */ 1451 KMP_MB(); 1452 /* make sure enqueuing thread has time to update next waiting thread 1453 * field */ 1454 *head_id_p = 1455 KMP_WAIT((volatile kmp_uint32 *)waiting_id_p, 0, KMP_NEQ, NULL); 1456 #ifdef DEBUG_QUEUING_LOCKS 1457 TRACE_LOCK(gtid + 1, "rel deq: (h,t)->(h',t)"); 1458 #endif 1459 dequeued = TRUE; 1460 } 1461 } 1462 1463 if (dequeued) { 1464 kmp_info_t *head_thr = __kmp_thread_from_gtid(head - 1); 1465 KMP_DEBUG_ASSERT(head_thr != NULL); 1466 1467 /* Does this require synchronous reads? */ 1468 #ifdef DEBUG_QUEUING_LOCKS 1469 if (head <= 0 || tail <= 0) 1470 __kmp_dump_queuing_lock(this_thr, gtid, lck, head, tail); 1471 #endif 1472 KMP_DEBUG_ASSERT(head > 0 && tail > 0); 1473 1474 /* For clean code only. Thread not released until next statement prevents 1475 race with acquire code. */ 1476 head_thr->th.th_next_waiting = 0; 1477 #ifdef DEBUG_QUEUING_LOCKS 1478 TRACE_LOCK_T(gtid + 1, "rel nw=0 for t=", head); 1479 #endif 1480 1481 KMP_MB(); 1482 /* reset spin value */ 1483 head_thr->th.th_spin_here = FALSE; 1484 1485 KA_TRACE(1000, ("__kmp_release_queuing_lock: lck:%p, T#%d exiting: after " 1486 "dequeuing\n", 1487 lck, gtid)); 1488 #ifdef DEBUG_QUEUING_LOCKS 1489 TRACE_LOCK(gtid + 1, "rel exit 2"); 1490 #endif 1491 return KMP_LOCK_RELEASED; 1492 } 1493 /* KMP_CPU_PAUSE(); don't want to make releasing thread hold up acquiring 1494 threads */ 1495 1496 #ifdef DEBUG_QUEUING_LOCKS 1497 TRACE_LOCK(gtid + 1, "rel retry"); 1498 #endif 1499 1500 } /* while */ 1501 KMP_ASSERT2(0, "should not get here"); 1502 return KMP_LOCK_RELEASED; 1503 } 1504 1505 static int __kmp_release_queuing_lock_with_checks(kmp_queuing_lock_t *lck, 1506 kmp_int32 gtid) { 1507 char const *const func = "omp_unset_lock"; 1508 KMP_MB(); /* in case another processor initialized lock */ 1509 if (lck->lk.initialized != lck) { 1510 KMP_FATAL(LockIsUninitialized, func); 1511 } 1512 if (__kmp_is_queuing_lock_nestable(lck)) { 1513 KMP_FATAL(LockNestableUsedAsSimple, func); 1514 } 1515 if (__kmp_get_queuing_lock_owner(lck) == -1) { 1516 KMP_FATAL(LockUnsettingFree, func); 1517 } 1518 if (__kmp_get_queuing_lock_owner(lck) != gtid) { 1519 KMP_FATAL(LockUnsettingSetByAnother, func); 1520 } 1521 lck->lk.owner_id = 0; 1522 return __kmp_release_queuing_lock(lck, gtid); 1523 } 1524 1525 void __kmp_init_queuing_lock(kmp_queuing_lock_t *lck) { 1526 lck->lk.location = NULL; 1527 lck->lk.head_id = 0; 1528 lck->lk.tail_id = 0; 1529 lck->lk.next_ticket = 0; 1530 lck->lk.now_serving = 0; 1531 lck->lk.owner_id = 0; // no thread owns the lock. 1532 lck->lk.depth_locked = -1; // >= 0 for nestable locks, -1 for simple locks. 1533 lck->lk.initialized = lck; 1534 1535 KA_TRACE(1000, ("__kmp_init_queuing_lock: lock %p initialized\n", lck)); 1536 } 1537 1538 void __kmp_destroy_queuing_lock(kmp_queuing_lock_t *lck) { 1539 lck->lk.initialized = NULL; 1540 lck->lk.location = NULL; 1541 lck->lk.head_id = 0; 1542 lck->lk.tail_id = 0; 1543 lck->lk.next_ticket = 0; 1544 lck->lk.now_serving = 0; 1545 lck->lk.owner_id = 0; 1546 lck->lk.depth_locked = -1; 1547 } 1548 1549 static void __kmp_destroy_queuing_lock_with_checks(kmp_queuing_lock_t *lck) { 1550 char const *const func = "omp_destroy_lock"; 1551 if (lck->lk.initialized != lck) { 1552 KMP_FATAL(LockIsUninitialized, func); 1553 } 1554 if (__kmp_is_queuing_lock_nestable(lck)) { 1555 KMP_FATAL(LockNestableUsedAsSimple, func); 1556 } 1557 if (__kmp_get_queuing_lock_owner(lck) != -1) { 1558 KMP_FATAL(LockStillOwned, func); 1559 } 1560 __kmp_destroy_queuing_lock(lck); 1561 } 1562 1563 // nested queuing locks 1564 1565 int __kmp_acquire_nested_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) { 1566 KMP_DEBUG_ASSERT(gtid >= 0); 1567 1568 if (__kmp_get_queuing_lock_owner(lck) == gtid) { 1569 lck->lk.depth_locked += 1; 1570 return KMP_LOCK_ACQUIRED_NEXT; 1571 } else { 1572 __kmp_acquire_queuing_lock_timed_template<false>(lck, gtid); 1573 ANNOTATE_QUEUING_ACQUIRED(lck); 1574 KMP_MB(); 1575 lck->lk.depth_locked = 1; 1576 KMP_MB(); 1577 lck->lk.owner_id = gtid + 1; 1578 return KMP_LOCK_ACQUIRED_FIRST; 1579 } 1580 } 1581 1582 static int 1583 __kmp_acquire_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck, 1584 kmp_int32 gtid) { 1585 char const *const func = "omp_set_nest_lock"; 1586 if (lck->lk.initialized != lck) { 1587 KMP_FATAL(LockIsUninitialized, func); 1588 } 1589 if (!__kmp_is_queuing_lock_nestable(lck)) { 1590 KMP_FATAL(LockSimpleUsedAsNestable, func); 1591 } 1592 return __kmp_acquire_nested_queuing_lock(lck, gtid); 1593 } 1594 1595 int __kmp_test_nested_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) { 1596 int retval; 1597 1598 KMP_DEBUG_ASSERT(gtid >= 0); 1599 1600 if (__kmp_get_queuing_lock_owner(lck) == gtid) { 1601 retval = ++lck->lk.depth_locked; 1602 } else if (!__kmp_test_queuing_lock(lck, gtid)) { 1603 retval = 0; 1604 } else { 1605 KMP_MB(); 1606 retval = lck->lk.depth_locked = 1; 1607 KMP_MB(); 1608 lck->lk.owner_id = gtid + 1; 1609 } 1610 return retval; 1611 } 1612 1613 static int __kmp_test_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck, 1614 kmp_int32 gtid) { 1615 char const *const func = "omp_test_nest_lock"; 1616 if (lck->lk.initialized != lck) { 1617 KMP_FATAL(LockIsUninitialized, func); 1618 } 1619 if (!__kmp_is_queuing_lock_nestable(lck)) { 1620 KMP_FATAL(LockSimpleUsedAsNestable, func); 1621 } 1622 return __kmp_test_nested_queuing_lock(lck, gtid); 1623 } 1624 1625 int __kmp_release_nested_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) { 1626 KMP_DEBUG_ASSERT(gtid >= 0); 1627 1628 KMP_MB(); 1629 if (--(lck->lk.depth_locked) == 0) { 1630 KMP_MB(); 1631 lck->lk.owner_id = 0; 1632 __kmp_release_queuing_lock(lck, gtid); 1633 return KMP_LOCK_RELEASED; 1634 } 1635 return KMP_LOCK_STILL_HELD; 1636 } 1637 1638 static int 1639 __kmp_release_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck, 1640 kmp_int32 gtid) { 1641 char const *const func = "omp_unset_nest_lock"; 1642 KMP_MB(); /* in case another processor initialized lock */ 1643 if (lck->lk.initialized != lck) { 1644 KMP_FATAL(LockIsUninitialized, func); 1645 } 1646 if (!__kmp_is_queuing_lock_nestable(lck)) { 1647 KMP_FATAL(LockSimpleUsedAsNestable, func); 1648 } 1649 if (__kmp_get_queuing_lock_owner(lck) == -1) { 1650 KMP_FATAL(LockUnsettingFree, func); 1651 } 1652 if (__kmp_get_queuing_lock_owner(lck) != gtid) { 1653 KMP_FATAL(LockUnsettingSetByAnother, func); 1654 } 1655 return __kmp_release_nested_queuing_lock(lck, gtid); 1656 } 1657 1658 void __kmp_init_nested_queuing_lock(kmp_queuing_lock_t *lck) { 1659 __kmp_init_queuing_lock(lck); 1660 lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks 1661 } 1662 1663 void __kmp_destroy_nested_queuing_lock(kmp_queuing_lock_t *lck) { 1664 __kmp_destroy_queuing_lock(lck); 1665 lck->lk.depth_locked = 0; 1666 } 1667 1668 static void 1669 __kmp_destroy_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck) { 1670 char const *const func = "omp_destroy_nest_lock"; 1671 if (lck->lk.initialized != lck) { 1672 KMP_FATAL(LockIsUninitialized, func); 1673 } 1674 if (!__kmp_is_queuing_lock_nestable(lck)) { 1675 KMP_FATAL(LockSimpleUsedAsNestable, func); 1676 } 1677 if (__kmp_get_queuing_lock_owner(lck) != -1) { 1678 KMP_FATAL(LockStillOwned, func); 1679 } 1680 __kmp_destroy_nested_queuing_lock(lck); 1681 } 1682 1683 // access functions to fields which don't exist for all lock kinds. 1684 1685 static const ident_t *__kmp_get_queuing_lock_location(kmp_queuing_lock_t *lck) { 1686 return lck->lk.location; 1687 } 1688 1689 static void __kmp_set_queuing_lock_location(kmp_queuing_lock_t *lck, 1690 const ident_t *loc) { 1691 lck->lk.location = loc; 1692 } 1693 1694 static kmp_lock_flags_t __kmp_get_queuing_lock_flags(kmp_queuing_lock_t *lck) { 1695 return lck->lk.flags; 1696 } 1697 1698 static void __kmp_set_queuing_lock_flags(kmp_queuing_lock_t *lck, 1699 kmp_lock_flags_t flags) { 1700 lck->lk.flags = flags; 1701 } 1702 1703 #if KMP_USE_ADAPTIVE_LOCKS 1704 1705 /* RTM Adaptive locks */ 1706 1707 #if KMP_HAVE_RTM_INTRINSICS 1708 #include <immintrin.h> 1709 #define SOFT_ABORT_MASK (_XABORT_RETRY | _XABORT_CONFLICT | _XABORT_EXPLICIT) 1710 1711 #else 1712 1713 // Values from the status register after failed speculation. 1714 #define _XBEGIN_STARTED (~0u) 1715 #define _XABORT_EXPLICIT (1 << 0) 1716 #define _XABORT_RETRY (1 << 1) 1717 #define _XABORT_CONFLICT (1 << 2) 1718 #define _XABORT_CAPACITY (1 << 3) 1719 #define _XABORT_DEBUG (1 << 4) 1720 #define _XABORT_NESTED (1 << 5) 1721 #define _XABORT_CODE(x) ((unsigned char)(((x) >> 24) & 0xFF)) 1722 1723 // Aborts for which it's worth trying again immediately 1724 #define SOFT_ABORT_MASK (_XABORT_RETRY | _XABORT_CONFLICT | _XABORT_EXPLICIT) 1725 1726 #define STRINGIZE_INTERNAL(arg) #arg 1727 #define STRINGIZE(arg) STRINGIZE_INTERNAL(arg) 1728 1729 // Access to RTM instructions 1730 /*A version of XBegin which returns -1 on speculation, and the value of EAX on 1731 an abort. This is the same definition as the compiler intrinsic that will be 1732 supported at some point. */ 1733 static __inline int _xbegin() { 1734 int res = -1; 1735 1736 #if KMP_OS_WINDOWS 1737 #if KMP_ARCH_X86_64 1738 _asm { 1739 _emit 0xC7 1740 _emit 0xF8 1741 _emit 2 1742 _emit 0 1743 _emit 0 1744 _emit 0 1745 jmp L2 1746 mov res, eax 1747 L2: 1748 } 1749 #else /* IA32 */ 1750 _asm { 1751 _emit 0xC7 1752 _emit 0xF8 1753 _emit 2 1754 _emit 0 1755 _emit 0 1756 _emit 0 1757 jmp L2 1758 mov res, eax 1759 L2: 1760 } 1761 #endif // KMP_ARCH_X86_64 1762 #else 1763 /* Note that %eax must be noted as killed (clobbered), because the XSR is 1764 returned in %eax(%rax) on abort. Other register values are restored, so 1765 don't need to be killed. 1766 1767 We must also mark 'res' as an input and an output, since otherwise 1768 'res=-1' may be dropped as being dead, whereas we do need the assignment on 1769 the successful (i.e., non-abort) path. */ 1770 __asm__ volatile("1: .byte 0xC7; .byte 0xF8;\n" 1771 " .long 1f-1b-6\n" 1772 " jmp 2f\n" 1773 "1: movl %%eax,%0\n" 1774 "2:" 1775 : "+r"(res)::"memory", "%eax"); 1776 #endif // KMP_OS_WINDOWS 1777 return res; 1778 } 1779 1780 /* Transaction end */ 1781 static __inline void _xend() { 1782 #if KMP_OS_WINDOWS 1783 __asm { 1784 _emit 0x0f 1785 _emit 0x01 1786 _emit 0xd5 1787 } 1788 #else 1789 __asm__ volatile(".byte 0x0f; .byte 0x01; .byte 0xd5" ::: "memory"); 1790 #endif 1791 } 1792 1793 /* This is a macro, the argument must be a single byte constant which can be 1794 evaluated by the inline assembler, since it is emitted as a byte into the 1795 assembly code. */ 1796 // clang-format off 1797 #if KMP_OS_WINDOWS 1798 #define _xabort(ARG) _asm _emit 0xc6 _asm _emit 0xf8 _asm _emit ARG 1799 #else 1800 #define _xabort(ARG) \ 1801 __asm__ volatile(".byte 0xC6; .byte 0xF8; .byte " STRINGIZE(ARG):::"memory"); 1802 #endif 1803 // clang-format on 1804 #endif // KMP_COMPILER_ICC && __INTEL_COMPILER >= 1300 1805 1806 // Statistics is collected for testing purpose 1807 #if KMP_DEBUG_ADAPTIVE_LOCKS 1808 1809 // We accumulate speculative lock statistics when the lock is destroyed. We 1810 // keep locks that haven't been destroyed in the liveLocks list so that we can 1811 // grab their statistics too. 1812 static kmp_adaptive_lock_statistics_t destroyedStats; 1813 1814 // To hold the list of live locks. 1815 static kmp_adaptive_lock_info_t liveLocks; 1816 1817 // A lock so we can safely update the list of locks. 1818 static kmp_bootstrap_lock_t chain_lock = 1819 KMP_BOOTSTRAP_LOCK_INITIALIZER(chain_lock); 1820 1821 // Initialize the list of stats. 1822 void __kmp_init_speculative_stats() { 1823 kmp_adaptive_lock_info_t *lck = &liveLocks; 1824 1825 memset(CCAST(kmp_adaptive_lock_statistics_t *, &(lck->stats)), 0, 1826 sizeof(lck->stats)); 1827 lck->stats.next = lck; 1828 lck->stats.prev = lck; 1829 1830 KMP_ASSERT(lck->stats.next->stats.prev == lck); 1831 KMP_ASSERT(lck->stats.prev->stats.next == lck); 1832 1833 __kmp_init_bootstrap_lock(&chain_lock); 1834 } 1835 1836 // Insert the lock into the circular list 1837 static void __kmp_remember_lock(kmp_adaptive_lock_info_t *lck) { 1838 __kmp_acquire_bootstrap_lock(&chain_lock); 1839 1840 lck->stats.next = liveLocks.stats.next; 1841 lck->stats.prev = &liveLocks; 1842 1843 liveLocks.stats.next = lck; 1844 lck->stats.next->stats.prev = lck; 1845 1846 KMP_ASSERT(lck->stats.next->stats.prev == lck); 1847 KMP_ASSERT(lck->stats.prev->stats.next == lck); 1848 1849 __kmp_release_bootstrap_lock(&chain_lock); 1850 } 1851 1852 static void __kmp_forget_lock(kmp_adaptive_lock_info_t *lck) { 1853 KMP_ASSERT(lck->stats.next->stats.prev == lck); 1854 KMP_ASSERT(lck->stats.prev->stats.next == lck); 1855 1856 kmp_adaptive_lock_info_t *n = lck->stats.next; 1857 kmp_adaptive_lock_info_t *p = lck->stats.prev; 1858 1859 n->stats.prev = p; 1860 p->stats.next = n; 1861 } 1862 1863 static void __kmp_zero_speculative_stats(kmp_adaptive_lock_info_t *lck) { 1864 memset(CCAST(kmp_adaptive_lock_statistics_t *, &lck->stats), 0, 1865 sizeof(lck->stats)); 1866 __kmp_remember_lock(lck); 1867 } 1868 1869 static void __kmp_add_stats(kmp_adaptive_lock_statistics_t *t, 1870 kmp_adaptive_lock_info_t *lck) { 1871 kmp_adaptive_lock_statistics_t volatile *s = &lck->stats; 1872 1873 t->nonSpeculativeAcquireAttempts += lck->acquire_attempts; 1874 t->successfulSpeculations += s->successfulSpeculations; 1875 t->hardFailedSpeculations += s->hardFailedSpeculations; 1876 t->softFailedSpeculations += s->softFailedSpeculations; 1877 t->nonSpeculativeAcquires += s->nonSpeculativeAcquires; 1878 t->lemmingYields += s->lemmingYields; 1879 } 1880 1881 static void __kmp_accumulate_speculative_stats(kmp_adaptive_lock_info_t *lck) { 1882 __kmp_acquire_bootstrap_lock(&chain_lock); 1883 1884 __kmp_add_stats(&destroyedStats, lck); 1885 __kmp_forget_lock(lck); 1886 1887 __kmp_release_bootstrap_lock(&chain_lock); 1888 } 1889 1890 static float percent(kmp_uint32 count, kmp_uint32 total) { 1891 return (total == 0) ? 0.0 : (100.0 * count) / total; 1892 } 1893 1894 static FILE *__kmp_open_stats_file() { 1895 if (strcmp(__kmp_speculative_statsfile, "-") == 0) 1896 return stdout; 1897 1898 size_t buffLen = KMP_STRLEN(__kmp_speculative_statsfile) + 20; 1899 char buffer[buffLen]; 1900 KMP_SNPRINTF(&buffer[0], buffLen, __kmp_speculative_statsfile, 1901 (kmp_int32)getpid()); 1902 FILE *result = fopen(&buffer[0], "w"); 1903 1904 // Maybe we should issue a warning here... 1905 return result ? result : stdout; 1906 } 1907 1908 void __kmp_print_speculative_stats() { 1909 kmp_adaptive_lock_statistics_t total = destroyedStats; 1910 kmp_adaptive_lock_info_t *lck; 1911 1912 for (lck = liveLocks.stats.next; lck != &liveLocks; lck = lck->stats.next) { 1913 __kmp_add_stats(&total, lck); 1914 } 1915 kmp_adaptive_lock_statistics_t *t = &total; 1916 kmp_uint32 totalSections = 1917 t->nonSpeculativeAcquires + t->successfulSpeculations; 1918 kmp_uint32 totalSpeculations = t->successfulSpeculations + 1919 t->hardFailedSpeculations + 1920 t->softFailedSpeculations; 1921 if (totalSections <= 0) 1922 return; 1923 1924 FILE *statsFile = __kmp_open_stats_file(); 1925 1926 fprintf(statsFile, "Speculative lock statistics (all approximate!)\n"); 1927 fprintf(statsFile, " Lock parameters: \n" 1928 " max_soft_retries : %10d\n" 1929 " max_badness : %10d\n", 1930 __kmp_adaptive_backoff_params.max_soft_retries, 1931 __kmp_adaptive_backoff_params.max_badness); 1932 fprintf(statsFile, " Non-speculative acquire attempts : %10d\n", 1933 t->nonSpeculativeAcquireAttempts); 1934 fprintf(statsFile, " Total critical sections : %10d\n", 1935 totalSections); 1936 fprintf(statsFile, " Successful speculations : %10d (%5.1f%%)\n", 1937 t->successfulSpeculations, 1938 percent(t->successfulSpeculations, totalSections)); 1939 fprintf(statsFile, " Non-speculative acquires : %10d (%5.1f%%)\n", 1940 t->nonSpeculativeAcquires, 1941 percent(t->nonSpeculativeAcquires, totalSections)); 1942 fprintf(statsFile, " Lemming yields : %10d\n\n", 1943 t->lemmingYields); 1944 1945 fprintf(statsFile, " Speculative acquire attempts : %10d\n", 1946 totalSpeculations); 1947 fprintf(statsFile, " Successes : %10d (%5.1f%%)\n", 1948 t->successfulSpeculations, 1949 percent(t->successfulSpeculations, totalSpeculations)); 1950 fprintf(statsFile, " Soft failures : %10d (%5.1f%%)\n", 1951 t->softFailedSpeculations, 1952 percent(t->softFailedSpeculations, totalSpeculations)); 1953 fprintf(statsFile, " Hard failures : %10d (%5.1f%%)\n", 1954 t->hardFailedSpeculations, 1955 percent(t->hardFailedSpeculations, totalSpeculations)); 1956 1957 if (statsFile != stdout) 1958 fclose(statsFile); 1959 } 1960 1961 #define KMP_INC_STAT(lck, stat) (lck->lk.adaptive.stats.stat++) 1962 #else 1963 #define KMP_INC_STAT(lck, stat) 1964 1965 #endif // KMP_DEBUG_ADAPTIVE_LOCKS 1966 1967 static inline bool __kmp_is_unlocked_queuing_lock(kmp_queuing_lock_t *lck) { 1968 // It is enough to check that the head_id is zero. 1969 // We don't also need to check the tail. 1970 bool res = lck->lk.head_id == 0; 1971 1972 // We need a fence here, since we must ensure that no memory operations 1973 // from later in this thread float above that read. 1974 #if KMP_COMPILER_ICC 1975 _mm_mfence(); 1976 #else 1977 __sync_synchronize(); 1978 #endif 1979 1980 return res; 1981 } 1982 1983 // Functions for manipulating the badness 1984 static __inline void 1985 __kmp_update_badness_after_success(kmp_adaptive_lock_t *lck) { 1986 // Reset the badness to zero so we eagerly try to speculate again 1987 lck->lk.adaptive.badness = 0; 1988 KMP_INC_STAT(lck, successfulSpeculations); 1989 } 1990 1991 // Create a bit mask with one more set bit. 1992 static __inline void __kmp_step_badness(kmp_adaptive_lock_t *lck) { 1993 kmp_uint32 newBadness = (lck->lk.adaptive.badness << 1) | 1; 1994 if (newBadness > lck->lk.adaptive.max_badness) { 1995 return; 1996 } else { 1997 lck->lk.adaptive.badness = newBadness; 1998 } 1999 } 2000 2001 // Check whether speculation should be attempted. 2002 KMP_ATTRIBUTE_TARGET_RTM 2003 static __inline int __kmp_should_speculate(kmp_adaptive_lock_t *lck, 2004 kmp_int32 gtid) { 2005 kmp_uint32 badness = lck->lk.adaptive.badness; 2006 kmp_uint32 attempts = lck->lk.adaptive.acquire_attempts; 2007 int res = (attempts & badness) == 0; 2008 return res; 2009 } 2010 2011 // Attempt to acquire only the speculative lock. 2012 // Does not back off to the non-speculative lock. 2013 KMP_ATTRIBUTE_TARGET_RTM 2014 static int __kmp_test_adaptive_lock_only(kmp_adaptive_lock_t *lck, 2015 kmp_int32 gtid) { 2016 int retries = lck->lk.adaptive.max_soft_retries; 2017 2018 // We don't explicitly count the start of speculation, rather we record the 2019 // results (success, hard fail, soft fail). The sum of all of those is the 2020 // total number of times we started speculation since all speculations must 2021 // end one of those ways. 2022 do { 2023 kmp_uint32 status = _xbegin(); 2024 // Switch this in to disable actual speculation but exercise at least some 2025 // of the rest of the code. Useful for debugging... 2026 // kmp_uint32 status = _XABORT_NESTED; 2027 2028 if (status == _XBEGIN_STARTED) { 2029 /* We have successfully started speculation. Check that no-one acquired 2030 the lock for real between when we last looked and now. This also gets 2031 the lock cache line into our read-set, which we need so that we'll 2032 abort if anyone later claims it for real. */ 2033 if (!__kmp_is_unlocked_queuing_lock(GET_QLK_PTR(lck))) { 2034 // Lock is now visibly acquired, so someone beat us to it. Abort the 2035 // transaction so we'll restart from _xbegin with the failure status. 2036 _xabort(0x01); 2037 KMP_ASSERT2(0, "should not get here"); 2038 } 2039 return 1; // Lock has been acquired (speculatively) 2040 } else { 2041 // We have aborted, update the statistics 2042 if (status & SOFT_ABORT_MASK) { 2043 KMP_INC_STAT(lck, softFailedSpeculations); 2044 // and loop round to retry. 2045 } else { 2046 KMP_INC_STAT(lck, hardFailedSpeculations); 2047 // Give up if we had a hard failure. 2048 break; 2049 } 2050 } 2051 } while (retries--); // Loop while we have retries, and didn't fail hard. 2052 2053 // Either we had a hard failure or we didn't succeed softly after 2054 // the full set of attempts, so back off the badness. 2055 __kmp_step_badness(lck); 2056 return 0; 2057 } 2058 2059 // Attempt to acquire the speculative lock, or back off to the non-speculative 2060 // one if the speculative lock cannot be acquired. 2061 // We can succeed speculatively, non-speculatively, or fail. 2062 static int __kmp_test_adaptive_lock(kmp_adaptive_lock_t *lck, kmp_int32 gtid) { 2063 // First try to acquire the lock speculatively 2064 if (__kmp_should_speculate(lck, gtid) && 2065 __kmp_test_adaptive_lock_only(lck, gtid)) 2066 return 1; 2067 2068 // Speculative acquisition failed, so try to acquire it non-speculatively. 2069 // Count the non-speculative acquire attempt 2070 lck->lk.adaptive.acquire_attempts++; 2071 2072 // Use base, non-speculative lock. 2073 if (__kmp_test_queuing_lock(GET_QLK_PTR(lck), gtid)) { 2074 KMP_INC_STAT(lck, nonSpeculativeAcquires); 2075 return 1; // Lock is acquired (non-speculatively) 2076 } else { 2077 return 0; // Failed to acquire the lock, it's already visibly locked. 2078 } 2079 } 2080 2081 static int __kmp_test_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck, 2082 kmp_int32 gtid) { 2083 char const *const func = "omp_test_lock"; 2084 if (lck->lk.qlk.initialized != GET_QLK_PTR(lck)) { 2085 KMP_FATAL(LockIsUninitialized, func); 2086 } 2087 2088 int retval = __kmp_test_adaptive_lock(lck, gtid); 2089 2090 if (retval) { 2091 lck->lk.qlk.owner_id = gtid + 1; 2092 } 2093 return retval; 2094 } 2095 2096 // Block until we can acquire a speculative, adaptive lock. We check whether we 2097 // should be trying to speculate. If we should be, we check the real lock to see 2098 // if it is free, and, if not, pause without attempting to acquire it until it 2099 // is. Then we try the speculative acquire. This means that although we suffer 2100 // from lemmings a little (because all we can't acquire the lock speculatively 2101 // until the queue of threads waiting has cleared), we don't get into a state 2102 // where we can never acquire the lock speculatively (because we force the queue 2103 // to clear by preventing new arrivals from entering the queue). This does mean 2104 // that when we're trying to break lemmings, the lock is no longer fair. However 2105 // OpenMP makes no guarantee that its locks are fair, so this isn't a real 2106 // problem. 2107 static void __kmp_acquire_adaptive_lock(kmp_adaptive_lock_t *lck, 2108 kmp_int32 gtid) { 2109 if (__kmp_should_speculate(lck, gtid)) { 2110 if (__kmp_is_unlocked_queuing_lock(GET_QLK_PTR(lck))) { 2111 if (__kmp_test_adaptive_lock_only(lck, gtid)) 2112 return; 2113 // We tried speculation and failed, so give up. 2114 } else { 2115 // We can't try speculation until the lock is free, so we pause here 2116 // (without suspending on the queueing lock, to allow it to drain, then 2117 // try again. All other threads will also see the same result for 2118 // shouldSpeculate, so will be doing the same if they try to claim the 2119 // lock from now on. 2120 while (!__kmp_is_unlocked_queuing_lock(GET_QLK_PTR(lck))) { 2121 KMP_INC_STAT(lck, lemmingYields); 2122 KMP_YIELD(TRUE); 2123 } 2124 2125 if (__kmp_test_adaptive_lock_only(lck, gtid)) 2126 return; 2127 } 2128 } 2129 2130 // Speculative acquisition failed, so acquire it non-speculatively. 2131 // Count the non-speculative acquire attempt 2132 lck->lk.adaptive.acquire_attempts++; 2133 2134 __kmp_acquire_queuing_lock_timed_template<FALSE>(GET_QLK_PTR(lck), gtid); 2135 // We have acquired the base lock, so count that. 2136 KMP_INC_STAT(lck, nonSpeculativeAcquires); 2137 ANNOTATE_QUEUING_ACQUIRED(lck); 2138 } 2139 2140 static void __kmp_acquire_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck, 2141 kmp_int32 gtid) { 2142 char const *const func = "omp_set_lock"; 2143 if (lck->lk.qlk.initialized != GET_QLK_PTR(lck)) { 2144 KMP_FATAL(LockIsUninitialized, func); 2145 } 2146 if (__kmp_get_queuing_lock_owner(GET_QLK_PTR(lck)) == gtid) { 2147 KMP_FATAL(LockIsAlreadyOwned, func); 2148 } 2149 2150 __kmp_acquire_adaptive_lock(lck, gtid); 2151 2152 lck->lk.qlk.owner_id = gtid + 1; 2153 } 2154 2155 KMP_ATTRIBUTE_TARGET_RTM 2156 static int __kmp_release_adaptive_lock(kmp_adaptive_lock_t *lck, 2157 kmp_int32 gtid) { 2158 if (__kmp_is_unlocked_queuing_lock(GET_QLK_PTR( 2159 lck))) { // If the lock doesn't look claimed we must be speculating. 2160 // (Or the user's code is buggy and they're releasing without locking; 2161 // if we had XTEST we'd be able to check that case...) 2162 _xend(); // Exit speculation 2163 __kmp_update_badness_after_success(lck); 2164 } else { // Since the lock *is* visibly locked we're not speculating, 2165 // so should use the underlying lock's release scheme. 2166 __kmp_release_queuing_lock(GET_QLK_PTR(lck), gtid); 2167 } 2168 return KMP_LOCK_RELEASED; 2169 } 2170 2171 static int __kmp_release_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck, 2172 kmp_int32 gtid) { 2173 char const *const func = "omp_unset_lock"; 2174 KMP_MB(); /* in case another processor initialized lock */ 2175 if (lck->lk.qlk.initialized != GET_QLK_PTR(lck)) { 2176 KMP_FATAL(LockIsUninitialized, func); 2177 } 2178 if (__kmp_get_queuing_lock_owner(GET_QLK_PTR(lck)) == -1) { 2179 KMP_FATAL(LockUnsettingFree, func); 2180 } 2181 if (__kmp_get_queuing_lock_owner(GET_QLK_PTR(lck)) != gtid) { 2182 KMP_FATAL(LockUnsettingSetByAnother, func); 2183 } 2184 lck->lk.qlk.owner_id = 0; 2185 __kmp_release_adaptive_lock(lck, gtid); 2186 return KMP_LOCK_RELEASED; 2187 } 2188 2189 static void __kmp_init_adaptive_lock(kmp_adaptive_lock_t *lck) { 2190 __kmp_init_queuing_lock(GET_QLK_PTR(lck)); 2191 lck->lk.adaptive.badness = 0; 2192 lck->lk.adaptive.acquire_attempts = 0; // nonSpeculativeAcquireAttempts = 0; 2193 lck->lk.adaptive.max_soft_retries = 2194 __kmp_adaptive_backoff_params.max_soft_retries; 2195 lck->lk.adaptive.max_badness = __kmp_adaptive_backoff_params.max_badness; 2196 #if KMP_DEBUG_ADAPTIVE_LOCKS 2197 __kmp_zero_speculative_stats(&lck->lk.adaptive); 2198 #endif 2199 KA_TRACE(1000, ("__kmp_init_adaptive_lock: lock %p initialized\n", lck)); 2200 } 2201 2202 static void __kmp_destroy_adaptive_lock(kmp_adaptive_lock_t *lck) { 2203 #if KMP_DEBUG_ADAPTIVE_LOCKS 2204 __kmp_accumulate_speculative_stats(&lck->lk.adaptive); 2205 #endif 2206 __kmp_destroy_queuing_lock(GET_QLK_PTR(lck)); 2207 // Nothing needed for the speculative part. 2208 } 2209 2210 static void __kmp_destroy_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck) { 2211 char const *const func = "omp_destroy_lock"; 2212 if (lck->lk.qlk.initialized != GET_QLK_PTR(lck)) { 2213 KMP_FATAL(LockIsUninitialized, func); 2214 } 2215 if (__kmp_get_queuing_lock_owner(GET_QLK_PTR(lck)) != -1) { 2216 KMP_FATAL(LockStillOwned, func); 2217 } 2218 __kmp_destroy_adaptive_lock(lck); 2219 } 2220 2221 #endif // KMP_USE_ADAPTIVE_LOCKS 2222 2223 /* ------------------------------------------------------------------------ */ 2224 /* DRDPA ticket locks */ 2225 /* "DRDPA" means Dynamically Reconfigurable Distributed Polling Area */ 2226 2227 static kmp_int32 __kmp_get_drdpa_lock_owner(kmp_drdpa_lock_t *lck) { 2228 return lck->lk.owner_id - 1; 2229 } 2230 2231 static inline bool __kmp_is_drdpa_lock_nestable(kmp_drdpa_lock_t *lck) { 2232 return lck->lk.depth_locked != -1; 2233 } 2234 2235 __forceinline static int 2236 __kmp_acquire_drdpa_lock_timed_template(kmp_drdpa_lock_t *lck, kmp_int32 gtid) { 2237 kmp_uint64 ticket = KMP_ATOMIC_INC(&lck->lk.next_ticket); 2238 kmp_uint64 mask = lck->lk.mask; // atomic load 2239 std::atomic<kmp_uint64> *polls = lck->lk.polls; 2240 2241 #ifdef USE_LOCK_PROFILE 2242 if (polls[ticket & mask] != ticket) 2243 __kmp_printf("LOCK CONTENTION: %p\n", lck); 2244 /* else __kmp_printf( "." );*/ 2245 #endif /* USE_LOCK_PROFILE */ 2246 2247 // Now spin-wait, but reload the polls pointer and mask, in case the 2248 // polling area has been reconfigured. Unless it is reconfigured, the 2249 // reloads stay in L1 cache and are cheap. 2250 // 2251 // Keep this code in sync with KMP_WAIT, in kmp_dispatch.cpp !!! 2252 // The current implementation of KMP_WAIT doesn't allow for mask 2253 // and poll to be re-read every spin iteration. 2254 kmp_uint32 spins; 2255 KMP_FSYNC_PREPARE(lck); 2256 KMP_INIT_YIELD(spins); 2257 while (polls[ticket & mask] < ticket) { // atomic load 2258 KMP_YIELD_OVERSUB_ELSE_SPIN(spins); 2259 // Re-read the mask and the poll pointer from the lock structure. 2260 // 2261 // Make certain that "mask" is read before "polls" !!! 2262 // 2263 // If another thread picks reconfigures the polling area and updates their 2264 // values, and we get the new value of mask and the old polls pointer, we 2265 // could access memory beyond the end of the old polling area. 2266 mask = lck->lk.mask; // atomic load 2267 polls = lck->lk.polls; // atomic load 2268 } 2269 2270 // Critical section starts here 2271 KMP_FSYNC_ACQUIRED(lck); 2272 KA_TRACE(1000, ("__kmp_acquire_drdpa_lock: ticket #%lld acquired lock %p\n", 2273 ticket, lck)); 2274 lck->lk.now_serving = ticket; // non-volatile store 2275 2276 // Deallocate a garbage polling area if we know that we are the last 2277 // thread that could possibly access it. 2278 // 2279 // The >= check is in case __kmp_test_drdpa_lock() allocated the cleanup 2280 // ticket. 2281 if ((lck->lk.old_polls != NULL) && (ticket >= lck->lk.cleanup_ticket)) { 2282 __kmp_free(lck->lk.old_polls); 2283 lck->lk.old_polls = NULL; 2284 lck->lk.cleanup_ticket = 0; 2285 } 2286 2287 // Check to see if we should reconfigure the polling area. 2288 // If there is still a garbage polling area to be deallocated from a 2289 // previous reconfiguration, let a later thread reconfigure it. 2290 if (lck->lk.old_polls == NULL) { 2291 bool reconfigure = false; 2292 std::atomic<kmp_uint64> *old_polls = polls; 2293 kmp_uint32 num_polls = TCR_4(lck->lk.num_polls); 2294 2295 if (TCR_4(__kmp_nth) > 2296 (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc)) { 2297 // We are in oversubscription mode. Contract the polling area 2298 // down to a single location, if that hasn't been done already. 2299 if (num_polls > 1) { 2300 reconfigure = true; 2301 num_polls = TCR_4(lck->lk.num_polls); 2302 mask = 0; 2303 num_polls = 1; 2304 polls = (std::atomic<kmp_uint64> *)__kmp_allocate(num_polls * 2305 sizeof(*polls)); 2306 polls[0] = ticket; 2307 } 2308 } else { 2309 // We are in under/fully subscribed mode. Check the number of 2310 // threads waiting on the lock. The size of the polling area 2311 // should be at least the number of threads waiting. 2312 kmp_uint64 num_waiting = TCR_8(lck->lk.next_ticket) - ticket - 1; 2313 if (num_waiting > num_polls) { 2314 kmp_uint32 old_num_polls = num_polls; 2315 reconfigure = true; 2316 do { 2317 mask = (mask << 1) | 1; 2318 num_polls *= 2; 2319 } while (num_polls <= num_waiting); 2320 2321 // Allocate the new polling area, and copy the relevant portion 2322 // of the old polling area to the new area. __kmp_allocate() 2323 // zeroes the memory it allocates, and most of the old area is 2324 // just zero padding, so we only copy the release counters. 2325 polls = (std::atomic<kmp_uint64> *)__kmp_allocate(num_polls * 2326 sizeof(*polls)); 2327 kmp_uint32 i; 2328 for (i = 0; i < old_num_polls; i++) { 2329 polls[i].store(old_polls[i]); 2330 } 2331 } 2332 } 2333 2334 if (reconfigure) { 2335 // Now write the updated fields back to the lock structure. 2336 // 2337 // Make certain that "polls" is written before "mask" !!! 2338 // 2339 // If another thread picks up the new value of mask and the old polls 2340 // pointer , it could access memory beyond the end of the old polling 2341 // area. 2342 // 2343 // On x86, we need memory fences. 2344 KA_TRACE(1000, ("__kmp_acquire_drdpa_lock: ticket #%lld reconfiguring " 2345 "lock %p to %d polls\n", 2346 ticket, lck, num_polls)); 2347 2348 lck->lk.old_polls = old_polls; 2349 lck->lk.polls = polls; // atomic store 2350 2351 KMP_MB(); 2352 2353 lck->lk.num_polls = num_polls; 2354 lck->lk.mask = mask; // atomic store 2355 2356 KMP_MB(); 2357 2358 // Only after the new polling area and mask have been flushed 2359 // to main memory can we update the cleanup ticket field. 2360 // 2361 // volatile load / non-volatile store 2362 lck->lk.cleanup_ticket = lck->lk.next_ticket; 2363 } 2364 } 2365 return KMP_LOCK_ACQUIRED_FIRST; 2366 } 2367 2368 int __kmp_acquire_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) { 2369 int retval = __kmp_acquire_drdpa_lock_timed_template(lck, gtid); 2370 ANNOTATE_DRDPA_ACQUIRED(lck); 2371 return retval; 2372 } 2373 2374 static int __kmp_acquire_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck, 2375 kmp_int32 gtid) { 2376 char const *const func = "omp_set_lock"; 2377 if (lck->lk.initialized != lck) { 2378 KMP_FATAL(LockIsUninitialized, func); 2379 } 2380 if (__kmp_is_drdpa_lock_nestable(lck)) { 2381 KMP_FATAL(LockNestableUsedAsSimple, func); 2382 } 2383 if ((gtid >= 0) && (__kmp_get_drdpa_lock_owner(lck) == gtid)) { 2384 KMP_FATAL(LockIsAlreadyOwned, func); 2385 } 2386 2387 __kmp_acquire_drdpa_lock(lck, gtid); 2388 2389 lck->lk.owner_id = gtid + 1; 2390 return KMP_LOCK_ACQUIRED_FIRST; 2391 } 2392 2393 int __kmp_test_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) { 2394 // First get a ticket, then read the polls pointer and the mask. 2395 // The polls pointer must be read before the mask!!! (See above) 2396 kmp_uint64 ticket = lck->lk.next_ticket; // atomic load 2397 std::atomic<kmp_uint64> *polls = lck->lk.polls; 2398 kmp_uint64 mask = lck->lk.mask; // atomic load 2399 if (polls[ticket & mask] == ticket) { 2400 kmp_uint64 next_ticket = ticket + 1; 2401 if (__kmp_atomic_compare_store_acq(&lck->lk.next_ticket, ticket, 2402 next_ticket)) { 2403 KMP_FSYNC_ACQUIRED(lck); 2404 KA_TRACE(1000, ("__kmp_test_drdpa_lock: ticket #%lld acquired lock %p\n", 2405 ticket, lck)); 2406 lck->lk.now_serving = ticket; // non-volatile store 2407 2408 // Since no threads are waiting, there is no possibility that we would 2409 // want to reconfigure the polling area. We might have the cleanup ticket 2410 // value (which says that it is now safe to deallocate old_polls), but 2411 // we'll let a later thread which calls __kmp_acquire_lock do that - this 2412 // routine isn't supposed to block, and we would risk blocks if we called 2413 // __kmp_free() to do the deallocation. 2414 return TRUE; 2415 } 2416 } 2417 return FALSE; 2418 } 2419 2420 static int __kmp_test_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck, 2421 kmp_int32 gtid) { 2422 char const *const func = "omp_test_lock"; 2423 if (lck->lk.initialized != lck) { 2424 KMP_FATAL(LockIsUninitialized, func); 2425 } 2426 if (__kmp_is_drdpa_lock_nestable(lck)) { 2427 KMP_FATAL(LockNestableUsedAsSimple, func); 2428 } 2429 2430 int retval = __kmp_test_drdpa_lock(lck, gtid); 2431 2432 if (retval) { 2433 lck->lk.owner_id = gtid + 1; 2434 } 2435 return retval; 2436 } 2437 2438 int __kmp_release_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) { 2439 // Read the ticket value from the lock data struct, then the polls pointer and 2440 // the mask. The polls pointer must be read before the mask!!! (See above) 2441 kmp_uint64 ticket = lck->lk.now_serving + 1; // non-atomic load 2442 std::atomic<kmp_uint64> *polls = lck->lk.polls; // atomic load 2443 kmp_uint64 mask = lck->lk.mask; // atomic load 2444 KA_TRACE(1000, ("__kmp_release_drdpa_lock: ticket #%lld released lock %p\n", 2445 ticket - 1, lck)); 2446 KMP_FSYNC_RELEASING(lck); 2447 ANNOTATE_DRDPA_RELEASED(lck); 2448 polls[ticket & mask] = ticket; // atomic store 2449 return KMP_LOCK_RELEASED; 2450 } 2451 2452 static int __kmp_release_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck, 2453 kmp_int32 gtid) { 2454 char const *const func = "omp_unset_lock"; 2455 KMP_MB(); /* in case another processor initialized lock */ 2456 if (lck->lk.initialized != lck) { 2457 KMP_FATAL(LockIsUninitialized, func); 2458 } 2459 if (__kmp_is_drdpa_lock_nestable(lck)) { 2460 KMP_FATAL(LockNestableUsedAsSimple, func); 2461 } 2462 if (__kmp_get_drdpa_lock_owner(lck) == -1) { 2463 KMP_FATAL(LockUnsettingFree, func); 2464 } 2465 if ((gtid >= 0) && (__kmp_get_drdpa_lock_owner(lck) >= 0) && 2466 (__kmp_get_drdpa_lock_owner(lck) != gtid)) { 2467 KMP_FATAL(LockUnsettingSetByAnother, func); 2468 } 2469 lck->lk.owner_id = 0; 2470 return __kmp_release_drdpa_lock(lck, gtid); 2471 } 2472 2473 void __kmp_init_drdpa_lock(kmp_drdpa_lock_t *lck) { 2474 lck->lk.location = NULL; 2475 lck->lk.mask = 0; 2476 lck->lk.num_polls = 1; 2477 lck->lk.polls = (std::atomic<kmp_uint64> *)__kmp_allocate( 2478 lck->lk.num_polls * sizeof(*(lck->lk.polls))); 2479 lck->lk.cleanup_ticket = 0; 2480 lck->lk.old_polls = NULL; 2481 lck->lk.next_ticket = 0; 2482 lck->lk.now_serving = 0; 2483 lck->lk.owner_id = 0; // no thread owns the lock. 2484 lck->lk.depth_locked = -1; // >= 0 for nestable locks, -1 for simple locks. 2485 lck->lk.initialized = lck; 2486 2487 KA_TRACE(1000, ("__kmp_init_drdpa_lock: lock %p initialized\n", lck)); 2488 } 2489 2490 void __kmp_destroy_drdpa_lock(kmp_drdpa_lock_t *lck) { 2491 lck->lk.initialized = NULL; 2492 lck->lk.location = NULL; 2493 if (lck->lk.polls.load() != NULL) { 2494 __kmp_free(lck->lk.polls.load()); 2495 lck->lk.polls = NULL; 2496 } 2497 if (lck->lk.old_polls != NULL) { 2498 __kmp_free(lck->lk.old_polls); 2499 lck->lk.old_polls = NULL; 2500 } 2501 lck->lk.mask = 0; 2502 lck->lk.num_polls = 0; 2503 lck->lk.cleanup_ticket = 0; 2504 lck->lk.next_ticket = 0; 2505 lck->lk.now_serving = 0; 2506 lck->lk.owner_id = 0; 2507 lck->lk.depth_locked = -1; 2508 } 2509 2510 static void __kmp_destroy_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck) { 2511 char const *const func = "omp_destroy_lock"; 2512 if (lck->lk.initialized != lck) { 2513 KMP_FATAL(LockIsUninitialized, func); 2514 } 2515 if (__kmp_is_drdpa_lock_nestable(lck)) { 2516 KMP_FATAL(LockNestableUsedAsSimple, func); 2517 } 2518 if (__kmp_get_drdpa_lock_owner(lck) != -1) { 2519 KMP_FATAL(LockStillOwned, func); 2520 } 2521 __kmp_destroy_drdpa_lock(lck); 2522 } 2523 2524 // nested drdpa ticket locks 2525 2526 int __kmp_acquire_nested_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) { 2527 KMP_DEBUG_ASSERT(gtid >= 0); 2528 2529 if (__kmp_get_drdpa_lock_owner(lck) == gtid) { 2530 lck->lk.depth_locked += 1; 2531 return KMP_LOCK_ACQUIRED_NEXT; 2532 } else { 2533 __kmp_acquire_drdpa_lock_timed_template(lck, gtid); 2534 ANNOTATE_DRDPA_ACQUIRED(lck); 2535 KMP_MB(); 2536 lck->lk.depth_locked = 1; 2537 KMP_MB(); 2538 lck->lk.owner_id = gtid + 1; 2539 return KMP_LOCK_ACQUIRED_FIRST; 2540 } 2541 } 2542 2543 static void __kmp_acquire_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck, 2544 kmp_int32 gtid) { 2545 char const *const func = "omp_set_nest_lock"; 2546 if (lck->lk.initialized != lck) { 2547 KMP_FATAL(LockIsUninitialized, func); 2548 } 2549 if (!__kmp_is_drdpa_lock_nestable(lck)) { 2550 KMP_FATAL(LockSimpleUsedAsNestable, func); 2551 } 2552 __kmp_acquire_nested_drdpa_lock(lck, gtid); 2553 } 2554 2555 int __kmp_test_nested_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) { 2556 int retval; 2557 2558 KMP_DEBUG_ASSERT(gtid >= 0); 2559 2560 if (__kmp_get_drdpa_lock_owner(lck) == gtid) { 2561 retval = ++lck->lk.depth_locked; 2562 } else if (!__kmp_test_drdpa_lock(lck, gtid)) { 2563 retval = 0; 2564 } else { 2565 KMP_MB(); 2566 retval = lck->lk.depth_locked = 1; 2567 KMP_MB(); 2568 lck->lk.owner_id = gtid + 1; 2569 } 2570 return retval; 2571 } 2572 2573 static int __kmp_test_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck, 2574 kmp_int32 gtid) { 2575 char const *const func = "omp_test_nest_lock"; 2576 if (lck->lk.initialized != lck) { 2577 KMP_FATAL(LockIsUninitialized, func); 2578 } 2579 if (!__kmp_is_drdpa_lock_nestable(lck)) { 2580 KMP_FATAL(LockSimpleUsedAsNestable, func); 2581 } 2582 return __kmp_test_nested_drdpa_lock(lck, gtid); 2583 } 2584 2585 int __kmp_release_nested_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) { 2586 KMP_DEBUG_ASSERT(gtid >= 0); 2587 2588 KMP_MB(); 2589 if (--(lck->lk.depth_locked) == 0) { 2590 KMP_MB(); 2591 lck->lk.owner_id = 0; 2592 __kmp_release_drdpa_lock(lck, gtid); 2593 return KMP_LOCK_RELEASED; 2594 } 2595 return KMP_LOCK_STILL_HELD; 2596 } 2597 2598 static int __kmp_release_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck, 2599 kmp_int32 gtid) { 2600 char const *const func = "omp_unset_nest_lock"; 2601 KMP_MB(); /* in case another processor initialized lock */ 2602 if (lck->lk.initialized != lck) { 2603 KMP_FATAL(LockIsUninitialized, func); 2604 } 2605 if (!__kmp_is_drdpa_lock_nestable(lck)) { 2606 KMP_FATAL(LockSimpleUsedAsNestable, func); 2607 } 2608 if (__kmp_get_drdpa_lock_owner(lck) == -1) { 2609 KMP_FATAL(LockUnsettingFree, func); 2610 } 2611 if (__kmp_get_drdpa_lock_owner(lck) != gtid) { 2612 KMP_FATAL(LockUnsettingSetByAnother, func); 2613 } 2614 return __kmp_release_nested_drdpa_lock(lck, gtid); 2615 } 2616 2617 void __kmp_init_nested_drdpa_lock(kmp_drdpa_lock_t *lck) { 2618 __kmp_init_drdpa_lock(lck); 2619 lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks 2620 } 2621 2622 void __kmp_destroy_nested_drdpa_lock(kmp_drdpa_lock_t *lck) { 2623 __kmp_destroy_drdpa_lock(lck); 2624 lck->lk.depth_locked = 0; 2625 } 2626 2627 static void __kmp_destroy_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck) { 2628 char const *const func = "omp_destroy_nest_lock"; 2629 if (lck->lk.initialized != lck) { 2630 KMP_FATAL(LockIsUninitialized, func); 2631 } 2632 if (!__kmp_is_drdpa_lock_nestable(lck)) { 2633 KMP_FATAL(LockSimpleUsedAsNestable, func); 2634 } 2635 if (__kmp_get_drdpa_lock_owner(lck) != -1) { 2636 KMP_FATAL(LockStillOwned, func); 2637 } 2638 __kmp_destroy_nested_drdpa_lock(lck); 2639 } 2640 2641 // access functions to fields which don't exist for all lock kinds. 2642 2643 static const ident_t *__kmp_get_drdpa_lock_location(kmp_drdpa_lock_t *lck) { 2644 return lck->lk.location; 2645 } 2646 2647 static void __kmp_set_drdpa_lock_location(kmp_drdpa_lock_t *lck, 2648 const ident_t *loc) { 2649 lck->lk.location = loc; 2650 } 2651 2652 static kmp_lock_flags_t __kmp_get_drdpa_lock_flags(kmp_drdpa_lock_t *lck) { 2653 return lck->lk.flags; 2654 } 2655 2656 static void __kmp_set_drdpa_lock_flags(kmp_drdpa_lock_t *lck, 2657 kmp_lock_flags_t flags) { 2658 lck->lk.flags = flags; 2659 } 2660 2661 // Time stamp counter 2662 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 2663 #define __kmp_tsc() __kmp_hardware_timestamp() 2664 // Runtime's default backoff parameters 2665 kmp_backoff_t __kmp_spin_backoff_params = {1, 4096, 100}; 2666 #else 2667 // Use nanoseconds for other platforms 2668 extern kmp_uint64 __kmp_now_nsec(); 2669 kmp_backoff_t __kmp_spin_backoff_params = {1, 256, 100}; 2670 #define __kmp_tsc() __kmp_now_nsec() 2671 #endif 2672 2673 // A useful predicate for dealing with timestamps that may wrap. 2674 // Is a before b? Since the timestamps may wrap, this is asking whether it's 2675 // shorter to go clockwise from a to b around the clock-face, or anti-clockwise. 2676 // Times where going clockwise is less distance than going anti-clockwise 2677 // are in the future, others are in the past. e.g. a = MAX-1, b = MAX+1 (=0), 2678 // then a > b (true) does not mean a reached b; whereas signed(a) = -2, 2679 // signed(b) = 0 captures the actual difference 2680 static inline bool before(kmp_uint64 a, kmp_uint64 b) { 2681 return ((kmp_int64)b - (kmp_int64)a) > 0; 2682 } 2683 2684 // Truncated binary exponential backoff function 2685 void __kmp_spin_backoff(kmp_backoff_t *boff) { 2686 // We could flatten this loop, but making it a nested loop gives better result 2687 kmp_uint32 i; 2688 for (i = boff->step; i > 0; i--) { 2689 kmp_uint64 goal = __kmp_tsc() + boff->min_tick; 2690 do { 2691 KMP_CPU_PAUSE(); 2692 } while (before(__kmp_tsc(), goal)); 2693 } 2694 boff->step = (boff->step << 1 | 1) & (boff->max_backoff - 1); 2695 } 2696 2697 #if KMP_USE_DYNAMIC_LOCK 2698 2699 // Direct lock initializers. It simply writes a tag to the low 8 bits of the 2700 // lock word. 2701 static void __kmp_init_direct_lock(kmp_dyna_lock_t *lck, 2702 kmp_dyna_lockseq_t seq) { 2703 TCW_4(*lck, KMP_GET_D_TAG(seq)); 2704 KA_TRACE( 2705 20, 2706 ("__kmp_init_direct_lock: initialized direct lock with type#%d\n", seq)); 2707 } 2708 2709 #if KMP_USE_TSX 2710 2711 // HLE lock functions - imported from the testbed runtime. 2712 #define HLE_ACQUIRE ".byte 0xf2;" 2713 #define HLE_RELEASE ".byte 0xf3;" 2714 2715 static inline kmp_uint32 swap4(kmp_uint32 volatile *p, kmp_uint32 v) { 2716 __asm__ volatile(HLE_ACQUIRE "xchg %1,%0" : "+r"(v), "+m"(*p) : : "memory"); 2717 return v; 2718 } 2719 2720 static void __kmp_destroy_hle_lock(kmp_dyna_lock_t *lck) { TCW_4(*lck, 0); } 2721 2722 static void __kmp_destroy_hle_lock_with_checks(kmp_dyna_lock_t *lck) { 2723 TCW_4(*lck, 0); 2724 } 2725 2726 static void __kmp_acquire_hle_lock(kmp_dyna_lock_t *lck, kmp_int32 gtid) { 2727 // Use gtid for KMP_LOCK_BUSY if necessary 2728 if (swap4(lck, KMP_LOCK_BUSY(1, hle)) != KMP_LOCK_FREE(hle)) { 2729 int delay = 1; 2730 do { 2731 while (*(kmp_uint32 volatile *)lck != KMP_LOCK_FREE(hle)) { 2732 for (int i = delay; i != 0; --i) 2733 KMP_CPU_PAUSE(); 2734 delay = ((delay << 1) | 1) & 7; 2735 } 2736 } while (swap4(lck, KMP_LOCK_BUSY(1, hle)) != KMP_LOCK_FREE(hle)); 2737 } 2738 } 2739 2740 static void __kmp_acquire_hle_lock_with_checks(kmp_dyna_lock_t *lck, 2741 kmp_int32 gtid) { 2742 __kmp_acquire_hle_lock(lck, gtid); // TODO: add checks 2743 } 2744 2745 static int __kmp_release_hle_lock(kmp_dyna_lock_t *lck, kmp_int32 gtid) { 2746 __asm__ volatile(HLE_RELEASE "movl %1,%0" 2747 : "=m"(*lck) 2748 : "r"(KMP_LOCK_FREE(hle)) 2749 : "memory"); 2750 return KMP_LOCK_RELEASED; 2751 } 2752 2753 static int __kmp_release_hle_lock_with_checks(kmp_dyna_lock_t *lck, 2754 kmp_int32 gtid) { 2755 return __kmp_release_hle_lock(lck, gtid); // TODO: add checks 2756 } 2757 2758 static int __kmp_test_hle_lock(kmp_dyna_lock_t *lck, kmp_int32 gtid) { 2759 return swap4(lck, KMP_LOCK_BUSY(1, hle)) == KMP_LOCK_FREE(hle); 2760 } 2761 2762 static int __kmp_test_hle_lock_with_checks(kmp_dyna_lock_t *lck, 2763 kmp_int32 gtid) { 2764 return __kmp_test_hle_lock(lck, gtid); // TODO: add checks 2765 } 2766 2767 static void __kmp_init_rtm_lock(kmp_queuing_lock_t *lck) { 2768 __kmp_init_queuing_lock(lck); 2769 } 2770 2771 static void __kmp_destroy_rtm_lock(kmp_queuing_lock_t *lck) { 2772 __kmp_destroy_queuing_lock(lck); 2773 } 2774 2775 static void __kmp_destroy_rtm_lock_with_checks(kmp_queuing_lock_t *lck) { 2776 __kmp_destroy_queuing_lock_with_checks(lck); 2777 } 2778 2779 KMP_ATTRIBUTE_TARGET_RTM 2780 static void __kmp_acquire_rtm_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) { 2781 unsigned retries = 3, status; 2782 do { 2783 status = _xbegin(); 2784 if (status == _XBEGIN_STARTED) { 2785 if (__kmp_is_unlocked_queuing_lock(lck)) 2786 return; 2787 _xabort(0xff); 2788 } 2789 if ((status & _XABORT_EXPLICIT) && _XABORT_CODE(status) == 0xff) { 2790 // Wait until lock becomes free 2791 while (!__kmp_is_unlocked_queuing_lock(lck)) { 2792 KMP_YIELD(TRUE); 2793 } 2794 } else if (!(status & _XABORT_RETRY)) 2795 break; 2796 } while (retries--); 2797 2798 // Fall-back non-speculative lock (xchg) 2799 __kmp_acquire_queuing_lock(lck, gtid); 2800 } 2801 2802 static void __kmp_acquire_rtm_lock_with_checks(kmp_queuing_lock_t *lck, 2803 kmp_int32 gtid) { 2804 __kmp_acquire_rtm_lock(lck, gtid); 2805 } 2806 2807 KMP_ATTRIBUTE_TARGET_RTM 2808 static int __kmp_release_rtm_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) { 2809 if (__kmp_is_unlocked_queuing_lock(lck)) { 2810 // Releasing from speculation 2811 _xend(); 2812 } else { 2813 // Releasing from a real lock 2814 __kmp_release_queuing_lock(lck, gtid); 2815 } 2816 return KMP_LOCK_RELEASED; 2817 } 2818 2819 static int __kmp_release_rtm_lock_with_checks(kmp_queuing_lock_t *lck, 2820 kmp_int32 gtid) { 2821 return __kmp_release_rtm_lock(lck, gtid); 2822 } 2823 2824 KMP_ATTRIBUTE_TARGET_RTM 2825 static int __kmp_test_rtm_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) { 2826 unsigned retries = 3, status; 2827 do { 2828 status = _xbegin(); 2829 if (status == _XBEGIN_STARTED && __kmp_is_unlocked_queuing_lock(lck)) { 2830 return 1; 2831 } 2832 if (!(status & _XABORT_RETRY)) 2833 break; 2834 } while (retries--); 2835 2836 return (__kmp_is_unlocked_queuing_lock(lck)) ? 1 : 0; 2837 } 2838 2839 static int __kmp_test_rtm_lock_with_checks(kmp_queuing_lock_t *lck, 2840 kmp_int32 gtid) { 2841 return __kmp_test_rtm_lock(lck, gtid); 2842 } 2843 2844 #endif // KMP_USE_TSX 2845 2846 // Entry functions for indirect locks (first element of direct lock jump tables) 2847 static void __kmp_init_indirect_lock(kmp_dyna_lock_t *l, 2848 kmp_dyna_lockseq_t tag); 2849 static void __kmp_destroy_indirect_lock(kmp_dyna_lock_t *lock); 2850 static int __kmp_set_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32); 2851 static int __kmp_unset_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32); 2852 static int __kmp_test_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32); 2853 static int __kmp_set_indirect_lock_with_checks(kmp_dyna_lock_t *lock, 2854 kmp_int32); 2855 static int __kmp_unset_indirect_lock_with_checks(kmp_dyna_lock_t *lock, 2856 kmp_int32); 2857 static int __kmp_test_indirect_lock_with_checks(kmp_dyna_lock_t *lock, 2858 kmp_int32); 2859 2860 // Lock function definitions for the union parameter type 2861 #define KMP_FOREACH_LOCK_KIND(m, a) m(ticket, a) m(queuing, a) m(drdpa, a) 2862 2863 #define expand1(lk, op) \ 2864 static void __kmp_##op##_##lk##_##lock(kmp_user_lock_p lock) { \ 2865 __kmp_##op##_##lk##_##lock(&lock->lk); \ 2866 } 2867 #define expand2(lk, op) \ 2868 static int __kmp_##op##_##lk##_##lock(kmp_user_lock_p lock, \ 2869 kmp_int32 gtid) { \ 2870 return __kmp_##op##_##lk##_##lock(&lock->lk, gtid); \ 2871 } 2872 #define expand3(lk, op) \ 2873 static void __kmp_set_##lk##_##lock_flags(kmp_user_lock_p lock, \ 2874 kmp_lock_flags_t flags) { \ 2875 __kmp_set_##lk##_lock_flags(&lock->lk, flags); \ 2876 } 2877 #define expand4(lk, op) \ 2878 static void __kmp_set_##lk##_##lock_location(kmp_user_lock_p lock, \ 2879 const ident_t *loc) { \ 2880 __kmp_set_##lk##_lock_location(&lock->lk, loc); \ 2881 } 2882 2883 KMP_FOREACH_LOCK_KIND(expand1, init) 2884 KMP_FOREACH_LOCK_KIND(expand1, init_nested) 2885 KMP_FOREACH_LOCK_KIND(expand1, destroy) 2886 KMP_FOREACH_LOCK_KIND(expand1, destroy_nested) 2887 KMP_FOREACH_LOCK_KIND(expand2, acquire) 2888 KMP_FOREACH_LOCK_KIND(expand2, acquire_nested) 2889 KMP_FOREACH_LOCK_KIND(expand2, release) 2890 KMP_FOREACH_LOCK_KIND(expand2, release_nested) 2891 KMP_FOREACH_LOCK_KIND(expand2, test) 2892 KMP_FOREACH_LOCK_KIND(expand2, test_nested) 2893 KMP_FOREACH_LOCK_KIND(expand3, ) 2894 KMP_FOREACH_LOCK_KIND(expand4, ) 2895 2896 #undef expand1 2897 #undef expand2 2898 #undef expand3 2899 #undef expand4 2900 2901 // Jump tables for the indirect lock functions 2902 // Only fill in the odd entries, that avoids the need to shift out the low bit 2903 2904 // init functions 2905 #define expand(l, op) 0, __kmp_init_direct_lock, 2906 void (*__kmp_direct_init[])(kmp_dyna_lock_t *, kmp_dyna_lockseq_t) = { 2907 __kmp_init_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, init)}; 2908 #undef expand 2909 2910 // destroy functions 2911 #define expand(l, op) 0, (void (*)(kmp_dyna_lock_t *))__kmp_##op##_##l##_lock, 2912 static void (*direct_destroy[])(kmp_dyna_lock_t *) = { 2913 __kmp_destroy_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, destroy)}; 2914 #undef expand 2915 #define expand(l, op) \ 2916 0, (void (*)(kmp_dyna_lock_t *))__kmp_destroy_##l##_lock_with_checks, 2917 static void (*direct_destroy_check[])(kmp_dyna_lock_t *) = { 2918 __kmp_destroy_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, destroy)}; 2919 #undef expand 2920 2921 // set/acquire functions 2922 #define expand(l, op) \ 2923 0, (int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock, 2924 static int (*direct_set[])(kmp_dyna_lock_t *, kmp_int32) = { 2925 __kmp_set_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, acquire)}; 2926 #undef expand 2927 #define expand(l, op) \ 2928 0, (int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock_with_checks, 2929 static int (*direct_set_check[])(kmp_dyna_lock_t *, kmp_int32) = { 2930 __kmp_set_indirect_lock_with_checks, 0, 2931 KMP_FOREACH_D_LOCK(expand, acquire)}; 2932 #undef expand 2933 2934 // unset/release and test functions 2935 #define expand(l, op) \ 2936 0, (int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock, 2937 static int (*direct_unset[])(kmp_dyna_lock_t *, kmp_int32) = { 2938 __kmp_unset_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, release)}; 2939 static int (*direct_test[])(kmp_dyna_lock_t *, kmp_int32) = { 2940 __kmp_test_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, test)}; 2941 #undef expand 2942 #define expand(l, op) \ 2943 0, (int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock_with_checks, 2944 static int (*direct_unset_check[])(kmp_dyna_lock_t *, kmp_int32) = { 2945 __kmp_unset_indirect_lock_with_checks, 0, 2946 KMP_FOREACH_D_LOCK(expand, release)}; 2947 static int (*direct_test_check[])(kmp_dyna_lock_t *, kmp_int32) = { 2948 __kmp_test_indirect_lock_with_checks, 0, KMP_FOREACH_D_LOCK(expand, test)}; 2949 #undef expand 2950 2951 // Exposes only one set of jump tables (*lock or *lock_with_checks). 2952 void (**__kmp_direct_destroy)(kmp_dyna_lock_t *) = 0; 2953 int (**__kmp_direct_set)(kmp_dyna_lock_t *, kmp_int32) = 0; 2954 int (**__kmp_direct_unset)(kmp_dyna_lock_t *, kmp_int32) = 0; 2955 int (**__kmp_direct_test)(kmp_dyna_lock_t *, kmp_int32) = 0; 2956 2957 // Jump tables for the indirect lock functions 2958 #define expand(l, op) (void (*)(kmp_user_lock_p)) __kmp_##op##_##l##_##lock, 2959 void (*__kmp_indirect_init[])(kmp_user_lock_p) = { 2960 KMP_FOREACH_I_LOCK(expand, init)}; 2961 #undef expand 2962 2963 #define expand(l, op) (void (*)(kmp_user_lock_p)) __kmp_##op##_##l##_##lock, 2964 static void (*indirect_destroy[])(kmp_user_lock_p) = { 2965 KMP_FOREACH_I_LOCK(expand, destroy)}; 2966 #undef expand 2967 #define expand(l, op) \ 2968 (void (*)(kmp_user_lock_p)) __kmp_##op##_##l##_##lock_with_checks, 2969 static void (*indirect_destroy_check[])(kmp_user_lock_p) = { 2970 KMP_FOREACH_I_LOCK(expand, destroy)}; 2971 #undef expand 2972 2973 // set/acquire functions 2974 #define expand(l, op) \ 2975 (int (*)(kmp_user_lock_p, kmp_int32)) __kmp_##op##_##l##_##lock, 2976 static int (*indirect_set[])(kmp_user_lock_p, 2977 kmp_int32) = {KMP_FOREACH_I_LOCK(expand, acquire)}; 2978 #undef expand 2979 #define expand(l, op) \ 2980 (int (*)(kmp_user_lock_p, kmp_int32)) __kmp_##op##_##l##_##lock_with_checks, 2981 static int (*indirect_set_check[])(kmp_user_lock_p, kmp_int32) = { 2982 KMP_FOREACH_I_LOCK(expand, acquire)}; 2983 #undef expand 2984 2985 // unset/release and test functions 2986 #define expand(l, op) \ 2987 (int (*)(kmp_user_lock_p, kmp_int32)) __kmp_##op##_##l##_##lock, 2988 static int (*indirect_unset[])(kmp_user_lock_p, kmp_int32) = { 2989 KMP_FOREACH_I_LOCK(expand, release)}; 2990 static int (*indirect_test[])(kmp_user_lock_p, 2991 kmp_int32) = {KMP_FOREACH_I_LOCK(expand, test)}; 2992 #undef expand 2993 #define expand(l, op) \ 2994 (int (*)(kmp_user_lock_p, kmp_int32)) __kmp_##op##_##l##_##lock_with_checks, 2995 static int (*indirect_unset_check[])(kmp_user_lock_p, kmp_int32) = { 2996 KMP_FOREACH_I_LOCK(expand, release)}; 2997 static int (*indirect_test_check[])(kmp_user_lock_p, kmp_int32) = { 2998 KMP_FOREACH_I_LOCK(expand, test)}; 2999 #undef expand 3000 3001 // Exposes only one jump tables (*lock or *lock_with_checks). 3002 void (**__kmp_indirect_destroy)(kmp_user_lock_p) = 0; 3003 int (**__kmp_indirect_set)(kmp_user_lock_p, kmp_int32) = 0; 3004 int (**__kmp_indirect_unset)(kmp_user_lock_p, kmp_int32) = 0; 3005 int (**__kmp_indirect_test)(kmp_user_lock_p, kmp_int32) = 0; 3006 3007 // Lock index table. 3008 kmp_indirect_lock_table_t __kmp_i_lock_table; 3009 3010 // Size of indirect locks. 3011 static kmp_uint32 __kmp_indirect_lock_size[KMP_NUM_I_LOCKS] = {0}; 3012 3013 // Jump tables for lock accessor/modifier. 3014 void (*__kmp_indirect_set_location[KMP_NUM_I_LOCKS])(kmp_user_lock_p, 3015 const ident_t *) = {0}; 3016 void (*__kmp_indirect_set_flags[KMP_NUM_I_LOCKS])(kmp_user_lock_p, 3017 kmp_lock_flags_t) = {0}; 3018 const ident_t *(*__kmp_indirect_get_location[KMP_NUM_I_LOCKS])( 3019 kmp_user_lock_p) = {0}; 3020 kmp_lock_flags_t (*__kmp_indirect_get_flags[KMP_NUM_I_LOCKS])( 3021 kmp_user_lock_p) = {0}; 3022 3023 // Use different lock pools for different lock types. 3024 static kmp_indirect_lock_t *__kmp_indirect_lock_pool[KMP_NUM_I_LOCKS] = {0}; 3025 3026 // User lock allocator for dynamically dispatched indirect locks. Every entry of 3027 // the indirect lock table holds the address and type of the allocated indirect 3028 // lock (kmp_indirect_lock_t), and the size of the table doubles when it is 3029 // full. A destroyed indirect lock object is returned to the reusable pool of 3030 // locks, unique to each lock type. 3031 kmp_indirect_lock_t *__kmp_allocate_indirect_lock(void **user_lock, 3032 kmp_int32 gtid, 3033 kmp_indirect_locktag_t tag) { 3034 kmp_indirect_lock_t *lck; 3035 kmp_lock_index_t idx; 3036 3037 __kmp_acquire_lock(&__kmp_global_lock, gtid); 3038 3039 if (__kmp_indirect_lock_pool[tag] != NULL) { 3040 // Reuse the allocated and destroyed lock object 3041 lck = __kmp_indirect_lock_pool[tag]; 3042 if (OMP_LOCK_T_SIZE < sizeof(void *)) 3043 idx = lck->lock->pool.index; 3044 __kmp_indirect_lock_pool[tag] = (kmp_indirect_lock_t *)lck->lock->pool.next; 3045 KA_TRACE(20, ("__kmp_allocate_indirect_lock: reusing an existing lock %p\n", 3046 lck)); 3047 } else { 3048 idx = __kmp_i_lock_table.next; 3049 // Check capacity and double the size if it is full 3050 if (idx == __kmp_i_lock_table.size) { 3051 // Double up the space for block pointers 3052 int row = __kmp_i_lock_table.size / KMP_I_LOCK_CHUNK; 3053 kmp_indirect_lock_t **new_table = (kmp_indirect_lock_t **)__kmp_allocate( 3054 2 * row * sizeof(kmp_indirect_lock_t *)); 3055 KMP_MEMCPY(new_table, __kmp_i_lock_table.table, 3056 row * sizeof(kmp_indirect_lock_t *)); 3057 kmp_indirect_lock_t **old_table = __kmp_i_lock_table.table; 3058 __kmp_i_lock_table.table = new_table; 3059 __kmp_free(old_table); 3060 // Allocate new objects in the new blocks 3061 for (int i = row; i < 2 * row; ++i) 3062 *(__kmp_i_lock_table.table + i) = (kmp_indirect_lock_t *)__kmp_allocate( 3063 KMP_I_LOCK_CHUNK * sizeof(kmp_indirect_lock_t)); 3064 __kmp_i_lock_table.size = 2 * idx; 3065 } 3066 __kmp_i_lock_table.next++; 3067 lck = KMP_GET_I_LOCK(idx); 3068 // Allocate a new base lock object 3069 lck->lock = (kmp_user_lock_p)__kmp_allocate(__kmp_indirect_lock_size[tag]); 3070 KA_TRACE(20, 3071 ("__kmp_allocate_indirect_lock: allocated a new lock %p\n", lck)); 3072 } 3073 3074 __kmp_release_lock(&__kmp_global_lock, gtid); 3075 3076 lck->type = tag; 3077 3078 if (OMP_LOCK_T_SIZE < sizeof(void *)) { 3079 *((kmp_lock_index_t *)user_lock) = idx 3080 << 1; // indirect lock word must be even 3081 } else { 3082 *((kmp_indirect_lock_t **)user_lock) = lck; 3083 } 3084 3085 return lck; 3086 } 3087 3088 // User lock lookup for dynamically dispatched locks. 3089 static __forceinline kmp_indirect_lock_t * 3090 __kmp_lookup_indirect_lock(void **user_lock, const char *func) { 3091 if (__kmp_env_consistency_check) { 3092 kmp_indirect_lock_t *lck = NULL; 3093 if (user_lock == NULL) { 3094 KMP_FATAL(LockIsUninitialized, func); 3095 } 3096 if (OMP_LOCK_T_SIZE < sizeof(void *)) { 3097 kmp_lock_index_t idx = KMP_EXTRACT_I_INDEX(user_lock); 3098 if (idx >= __kmp_i_lock_table.size) { 3099 KMP_FATAL(LockIsUninitialized, func); 3100 } 3101 lck = KMP_GET_I_LOCK(idx); 3102 } else { 3103 lck = *((kmp_indirect_lock_t **)user_lock); 3104 } 3105 if (lck == NULL) { 3106 KMP_FATAL(LockIsUninitialized, func); 3107 } 3108 return lck; 3109 } else { 3110 if (OMP_LOCK_T_SIZE < sizeof(void *)) { 3111 return KMP_GET_I_LOCK(KMP_EXTRACT_I_INDEX(user_lock)); 3112 } else { 3113 return *((kmp_indirect_lock_t **)user_lock); 3114 } 3115 } 3116 } 3117 3118 static void __kmp_init_indirect_lock(kmp_dyna_lock_t *lock, 3119 kmp_dyna_lockseq_t seq) { 3120 #if KMP_USE_ADAPTIVE_LOCKS 3121 if (seq == lockseq_adaptive && !__kmp_cpuinfo.rtm) { 3122 KMP_WARNING(AdaptiveNotSupported, "kmp_lockseq_t", "adaptive"); 3123 seq = lockseq_queuing; 3124 } 3125 #endif 3126 #if KMP_USE_TSX 3127 if (seq == lockseq_rtm && !__kmp_cpuinfo.rtm) { 3128 seq = lockseq_queuing; 3129 } 3130 #endif 3131 kmp_indirect_locktag_t tag = KMP_GET_I_TAG(seq); 3132 kmp_indirect_lock_t *l = 3133 __kmp_allocate_indirect_lock((void **)lock, __kmp_entry_gtid(), tag); 3134 KMP_I_LOCK_FUNC(l, init)(l->lock); 3135 KA_TRACE( 3136 20, ("__kmp_init_indirect_lock: initialized indirect lock with type#%d\n", 3137 seq)); 3138 } 3139 3140 static void __kmp_destroy_indirect_lock(kmp_dyna_lock_t *lock) { 3141 kmp_uint32 gtid = __kmp_entry_gtid(); 3142 kmp_indirect_lock_t *l = 3143 __kmp_lookup_indirect_lock((void **)lock, "omp_destroy_lock"); 3144 KMP_I_LOCK_FUNC(l, destroy)(l->lock); 3145 kmp_indirect_locktag_t tag = l->type; 3146 3147 __kmp_acquire_lock(&__kmp_global_lock, gtid); 3148 3149 // Use the base lock's space to keep the pool chain. 3150 l->lock->pool.next = (kmp_user_lock_p)__kmp_indirect_lock_pool[tag]; 3151 if (OMP_LOCK_T_SIZE < sizeof(void *)) { 3152 l->lock->pool.index = KMP_EXTRACT_I_INDEX(lock); 3153 } 3154 __kmp_indirect_lock_pool[tag] = l; 3155 3156 __kmp_release_lock(&__kmp_global_lock, gtid); 3157 } 3158 3159 static int __kmp_set_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32 gtid) { 3160 kmp_indirect_lock_t *l = KMP_LOOKUP_I_LOCK(lock); 3161 return KMP_I_LOCK_FUNC(l, set)(l->lock, gtid); 3162 } 3163 3164 static int __kmp_unset_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32 gtid) { 3165 kmp_indirect_lock_t *l = KMP_LOOKUP_I_LOCK(lock); 3166 return KMP_I_LOCK_FUNC(l, unset)(l->lock, gtid); 3167 } 3168 3169 static int __kmp_test_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32 gtid) { 3170 kmp_indirect_lock_t *l = KMP_LOOKUP_I_LOCK(lock); 3171 return KMP_I_LOCK_FUNC(l, test)(l->lock, gtid); 3172 } 3173 3174 static int __kmp_set_indirect_lock_with_checks(kmp_dyna_lock_t *lock, 3175 kmp_int32 gtid) { 3176 kmp_indirect_lock_t *l = 3177 __kmp_lookup_indirect_lock((void **)lock, "omp_set_lock"); 3178 return KMP_I_LOCK_FUNC(l, set)(l->lock, gtid); 3179 } 3180 3181 static int __kmp_unset_indirect_lock_with_checks(kmp_dyna_lock_t *lock, 3182 kmp_int32 gtid) { 3183 kmp_indirect_lock_t *l = 3184 __kmp_lookup_indirect_lock((void **)lock, "omp_unset_lock"); 3185 return KMP_I_LOCK_FUNC(l, unset)(l->lock, gtid); 3186 } 3187 3188 static int __kmp_test_indirect_lock_with_checks(kmp_dyna_lock_t *lock, 3189 kmp_int32 gtid) { 3190 kmp_indirect_lock_t *l = 3191 __kmp_lookup_indirect_lock((void **)lock, "omp_test_lock"); 3192 return KMP_I_LOCK_FUNC(l, test)(l->lock, gtid); 3193 } 3194 3195 kmp_dyna_lockseq_t __kmp_user_lock_seq = lockseq_queuing; 3196 3197 // This is used only in kmp_error.cpp when consistency checking is on. 3198 kmp_int32 __kmp_get_user_lock_owner(kmp_user_lock_p lck, kmp_uint32 seq) { 3199 switch (seq) { 3200 case lockseq_tas: 3201 case lockseq_nested_tas: 3202 return __kmp_get_tas_lock_owner((kmp_tas_lock_t *)lck); 3203 #if KMP_USE_FUTEX 3204 case lockseq_futex: 3205 case lockseq_nested_futex: 3206 return __kmp_get_futex_lock_owner((kmp_futex_lock_t *)lck); 3207 #endif 3208 case lockseq_ticket: 3209 case lockseq_nested_ticket: 3210 return __kmp_get_ticket_lock_owner((kmp_ticket_lock_t *)lck); 3211 case lockseq_queuing: 3212 case lockseq_nested_queuing: 3213 #if KMP_USE_ADAPTIVE_LOCKS 3214 case lockseq_adaptive: 3215 #endif 3216 return __kmp_get_queuing_lock_owner((kmp_queuing_lock_t *)lck); 3217 case lockseq_drdpa: 3218 case lockseq_nested_drdpa: 3219 return __kmp_get_drdpa_lock_owner((kmp_drdpa_lock_t *)lck); 3220 default: 3221 return 0; 3222 } 3223 } 3224 3225 // Initializes data for dynamic user locks. 3226 void __kmp_init_dynamic_user_locks() { 3227 // Initialize jump table for the lock functions 3228 if (__kmp_env_consistency_check) { 3229 __kmp_direct_set = direct_set_check; 3230 __kmp_direct_unset = direct_unset_check; 3231 __kmp_direct_test = direct_test_check; 3232 __kmp_direct_destroy = direct_destroy_check; 3233 __kmp_indirect_set = indirect_set_check; 3234 __kmp_indirect_unset = indirect_unset_check; 3235 __kmp_indirect_test = indirect_test_check; 3236 __kmp_indirect_destroy = indirect_destroy_check; 3237 } else { 3238 __kmp_direct_set = direct_set; 3239 __kmp_direct_unset = direct_unset; 3240 __kmp_direct_test = direct_test; 3241 __kmp_direct_destroy = direct_destroy; 3242 __kmp_indirect_set = indirect_set; 3243 __kmp_indirect_unset = indirect_unset; 3244 __kmp_indirect_test = indirect_test; 3245 __kmp_indirect_destroy = indirect_destroy; 3246 } 3247 // If the user locks have already been initialized, then return. Allow the 3248 // switch between different KMP_CONSISTENCY_CHECK values, but do not allocate 3249 // new lock tables if they have already been allocated. 3250 if (__kmp_init_user_locks) 3251 return; 3252 3253 // Initialize lock index table 3254 __kmp_i_lock_table.size = KMP_I_LOCK_CHUNK; 3255 __kmp_i_lock_table.table = 3256 (kmp_indirect_lock_t **)__kmp_allocate(sizeof(kmp_indirect_lock_t *)); 3257 *(__kmp_i_lock_table.table) = (kmp_indirect_lock_t *)__kmp_allocate( 3258 KMP_I_LOCK_CHUNK * sizeof(kmp_indirect_lock_t)); 3259 __kmp_i_lock_table.next = 0; 3260 3261 // Indirect lock size 3262 __kmp_indirect_lock_size[locktag_ticket] = sizeof(kmp_ticket_lock_t); 3263 __kmp_indirect_lock_size[locktag_queuing] = sizeof(kmp_queuing_lock_t); 3264 #if KMP_USE_ADAPTIVE_LOCKS 3265 __kmp_indirect_lock_size[locktag_adaptive] = sizeof(kmp_adaptive_lock_t); 3266 #endif 3267 __kmp_indirect_lock_size[locktag_drdpa] = sizeof(kmp_drdpa_lock_t); 3268 #if KMP_USE_TSX 3269 __kmp_indirect_lock_size[locktag_rtm] = sizeof(kmp_queuing_lock_t); 3270 #endif 3271 __kmp_indirect_lock_size[locktag_nested_tas] = sizeof(kmp_tas_lock_t); 3272 #if KMP_USE_FUTEX 3273 __kmp_indirect_lock_size[locktag_nested_futex] = sizeof(kmp_futex_lock_t); 3274 #endif 3275 __kmp_indirect_lock_size[locktag_nested_ticket] = sizeof(kmp_ticket_lock_t); 3276 __kmp_indirect_lock_size[locktag_nested_queuing] = sizeof(kmp_queuing_lock_t); 3277 __kmp_indirect_lock_size[locktag_nested_drdpa] = sizeof(kmp_drdpa_lock_t); 3278 3279 // Initialize lock accessor/modifier 3280 #define fill_jumps(table, expand, sep) \ 3281 { \ 3282 table[locktag##sep##ticket] = expand(ticket); \ 3283 table[locktag##sep##queuing] = expand(queuing); \ 3284 table[locktag##sep##drdpa] = expand(drdpa); \ 3285 } 3286 3287 #if KMP_USE_ADAPTIVE_LOCKS 3288 #define fill_table(table, expand) \ 3289 { \ 3290 fill_jumps(table, expand, _); \ 3291 table[locktag_adaptive] = expand(queuing); \ 3292 fill_jumps(table, expand, _nested_); \ 3293 } 3294 #else 3295 #define fill_table(table, expand) \ 3296 { \ 3297 fill_jumps(table, expand, _); \ 3298 fill_jumps(table, expand, _nested_); \ 3299 } 3300 #endif // KMP_USE_ADAPTIVE_LOCKS 3301 3302 #define expand(l) \ 3303 (void (*)(kmp_user_lock_p, const ident_t *)) __kmp_set_##l##_lock_location 3304 fill_table(__kmp_indirect_set_location, expand); 3305 #undef expand 3306 #define expand(l) \ 3307 (void (*)(kmp_user_lock_p, kmp_lock_flags_t)) __kmp_set_##l##_lock_flags 3308 fill_table(__kmp_indirect_set_flags, expand); 3309 #undef expand 3310 #define expand(l) \ 3311 (const ident_t *(*)(kmp_user_lock_p)) __kmp_get_##l##_lock_location 3312 fill_table(__kmp_indirect_get_location, expand); 3313 #undef expand 3314 #define expand(l) \ 3315 (kmp_lock_flags_t(*)(kmp_user_lock_p)) __kmp_get_##l##_lock_flags 3316 fill_table(__kmp_indirect_get_flags, expand); 3317 #undef expand 3318 3319 __kmp_init_user_locks = TRUE; 3320 } 3321 3322 // Clean up the lock table. 3323 void __kmp_cleanup_indirect_user_locks() { 3324 kmp_lock_index_t i; 3325 int k; 3326 3327 // Clean up locks in the pools first (they were already destroyed before going 3328 // into the pools). 3329 for (k = 0; k < KMP_NUM_I_LOCKS; ++k) { 3330 kmp_indirect_lock_t *l = __kmp_indirect_lock_pool[k]; 3331 while (l != NULL) { 3332 kmp_indirect_lock_t *ll = l; 3333 l = (kmp_indirect_lock_t *)l->lock->pool.next; 3334 KA_TRACE(20, ("__kmp_cleanup_indirect_user_locks: freeing %p from pool\n", 3335 ll)); 3336 __kmp_free(ll->lock); 3337 ll->lock = NULL; 3338 } 3339 __kmp_indirect_lock_pool[k] = NULL; 3340 } 3341 // Clean up the remaining undestroyed locks. 3342 for (i = 0; i < __kmp_i_lock_table.next; i++) { 3343 kmp_indirect_lock_t *l = KMP_GET_I_LOCK(i); 3344 if (l->lock != NULL) { 3345 // Locks not destroyed explicitly need to be destroyed here. 3346 KMP_I_LOCK_FUNC(l, destroy)(l->lock); 3347 KA_TRACE( 3348 20, 3349 ("__kmp_cleanup_indirect_user_locks: destroy/freeing %p from table\n", 3350 l)); 3351 __kmp_free(l->lock); 3352 } 3353 } 3354 // Free the table 3355 for (i = 0; i < __kmp_i_lock_table.size / KMP_I_LOCK_CHUNK; i++) 3356 __kmp_free(__kmp_i_lock_table.table[i]); 3357 __kmp_free(__kmp_i_lock_table.table); 3358 3359 __kmp_init_user_locks = FALSE; 3360 } 3361 3362 enum kmp_lock_kind __kmp_user_lock_kind = lk_default; 3363 int __kmp_num_locks_in_block = 1; // FIXME - tune this value 3364 3365 #else // KMP_USE_DYNAMIC_LOCK 3366 3367 static void __kmp_init_tas_lock_with_checks(kmp_tas_lock_t *lck) { 3368 __kmp_init_tas_lock(lck); 3369 } 3370 3371 static void __kmp_init_nested_tas_lock_with_checks(kmp_tas_lock_t *lck) { 3372 __kmp_init_nested_tas_lock(lck); 3373 } 3374 3375 #if KMP_USE_FUTEX 3376 static void __kmp_init_futex_lock_with_checks(kmp_futex_lock_t *lck) { 3377 __kmp_init_futex_lock(lck); 3378 } 3379 3380 static void __kmp_init_nested_futex_lock_with_checks(kmp_futex_lock_t *lck) { 3381 __kmp_init_nested_futex_lock(lck); 3382 } 3383 #endif 3384 3385 static int __kmp_is_ticket_lock_initialized(kmp_ticket_lock_t *lck) { 3386 return lck == lck->lk.self; 3387 } 3388 3389 static void __kmp_init_ticket_lock_with_checks(kmp_ticket_lock_t *lck) { 3390 __kmp_init_ticket_lock(lck); 3391 } 3392 3393 static void __kmp_init_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck) { 3394 __kmp_init_nested_ticket_lock(lck); 3395 } 3396 3397 static int __kmp_is_queuing_lock_initialized(kmp_queuing_lock_t *lck) { 3398 return lck == lck->lk.initialized; 3399 } 3400 3401 static void __kmp_init_queuing_lock_with_checks(kmp_queuing_lock_t *lck) { 3402 __kmp_init_queuing_lock(lck); 3403 } 3404 3405 static void 3406 __kmp_init_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck) { 3407 __kmp_init_nested_queuing_lock(lck); 3408 } 3409 3410 #if KMP_USE_ADAPTIVE_LOCKS 3411 static void __kmp_init_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck) { 3412 __kmp_init_adaptive_lock(lck); 3413 } 3414 #endif 3415 3416 static int __kmp_is_drdpa_lock_initialized(kmp_drdpa_lock_t *lck) { 3417 return lck == lck->lk.initialized; 3418 } 3419 3420 static void __kmp_init_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck) { 3421 __kmp_init_drdpa_lock(lck); 3422 } 3423 3424 static void __kmp_init_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck) { 3425 __kmp_init_nested_drdpa_lock(lck); 3426 } 3427 3428 /* user locks 3429 * They are implemented as a table of function pointers which are set to the 3430 * lock functions of the appropriate kind, once that has been determined. */ 3431 3432 enum kmp_lock_kind __kmp_user_lock_kind = lk_default; 3433 3434 size_t __kmp_base_user_lock_size = 0; 3435 size_t __kmp_user_lock_size = 0; 3436 3437 kmp_int32 (*__kmp_get_user_lock_owner_)(kmp_user_lock_p lck) = NULL; 3438 int (*__kmp_acquire_user_lock_with_checks_)(kmp_user_lock_p lck, 3439 kmp_int32 gtid) = NULL; 3440 3441 int (*__kmp_test_user_lock_with_checks_)(kmp_user_lock_p lck, 3442 kmp_int32 gtid) = NULL; 3443 int (*__kmp_release_user_lock_with_checks_)(kmp_user_lock_p lck, 3444 kmp_int32 gtid) = NULL; 3445 void (*__kmp_init_user_lock_with_checks_)(kmp_user_lock_p lck) = NULL; 3446 void (*__kmp_destroy_user_lock_)(kmp_user_lock_p lck) = NULL; 3447 void (*__kmp_destroy_user_lock_with_checks_)(kmp_user_lock_p lck) = NULL; 3448 int (*__kmp_acquire_nested_user_lock_with_checks_)(kmp_user_lock_p lck, 3449 kmp_int32 gtid) = NULL; 3450 3451 int (*__kmp_test_nested_user_lock_with_checks_)(kmp_user_lock_p lck, 3452 kmp_int32 gtid) = NULL; 3453 int (*__kmp_release_nested_user_lock_with_checks_)(kmp_user_lock_p lck, 3454 kmp_int32 gtid) = NULL; 3455 void (*__kmp_init_nested_user_lock_with_checks_)(kmp_user_lock_p lck) = NULL; 3456 void (*__kmp_destroy_nested_user_lock_with_checks_)(kmp_user_lock_p lck) = NULL; 3457 3458 int (*__kmp_is_user_lock_initialized_)(kmp_user_lock_p lck) = NULL; 3459 const ident_t *(*__kmp_get_user_lock_location_)(kmp_user_lock_p lck) = NULL; 3460 void (*__kmp_set_user_lock_location_)(kmp_user_lock_p lck, 3461 const ident_t *loc) = NULL; 3462 kmp_lock_flags_t (*__kmp_get_user_lock_flags_)(kmp_user_lock_p lck) = NULL; 3463 void (*__kmp_set_user_lock_flags_)(kmp_user_lock_p lck, 3464 kmp_lock_flags_t flags) = NULL; 3465 3466 void __kmp_set_user_lock_vptrs(kmp_lock_kind_t user_lock_kind) { 3467 switch (user_lock_kind) { 3468 case lk_default: 3469 default: 3470 KMP_ASSERT(0); 3471 3472 case lk_tas: { 3473 __kmp_base_user_lock_size = sizeof(kmp_base_tas_lock_t); 3474 __kmp_user_lock_size = sizeof(kmp_tas_lock_t); 3475 3476 __kmp_get_user_lock_owner_ = 3477 (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_tas_lock_owner); 3478 3479 if (__kmp_env_consistency_check) { 3480 KMP_BIND_USER_LOCK_WITH_CHECKS(tas); 3481 KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(tas); 3482 } else { 3483 KMP_BIND_USER_LOCK(tas); 3484 KMP_BIND_NESTED_USER_LOCK(tas); 3485 } 3486 3487 __kmp_destroy_user_lock_ = 3488 (void (*)(kmp_user_lock_p))(&__kmp_destroy_tas_lock); 3489 3490 __kmp_is_user_lock_initialized_ = (int (*)(kmp_user_lock_p))NULL; 3491 3492 __kmp_get_user_lock_location_ = (const ident_t *(*)(kmp_user_lock_p))NULL; 3493 3494 __kmp_set_user_lock_location_ = 3495 (void (*)(kmp_user_lock_p, const ident_t *))NULL; 3496 3497 __kmp_get_user_lock_flags_ = (kmp_lock_flags_t(*)(kmp_user_lock_p))NULL; 3498 3499 __kmp_set_user_lock_flags_ = 3500 (void (*)(kmp_user_lock_p, kmp_lock_flags_t))NULL; 3501 } break; 3502 3503 #if KMP_USE_FUTEX 3504 3505 case lk_futex: { 3506 __kmp_base_user_lock_size = sizeof(kmp_base_futex_lock_t); 3507 __kmp_user_lock_size = sizeof(kmp_futex_lock_t); 3508 3509 __kmp_get_user_lock_owner_ = 3510 (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_futex_lock_owner); 3511 3512 if (__kmp_env_consistency_check) { 3513 KMP_BIND_USER_LOCK_WITH_CHECKS(futex); 3514 KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(futex); 3515 } else { 3516 KMP_BIND_USER_LOCK(futex); 3517 KMP_BIND_NESTED_USER_LOCK(futex); 3518 } 3519 3520 __kmp_destroy_user_lock_ = 3521 (void (*)(kmp_user_lock_p))(&__kmp_destroy_futex_lock); 3522 3523 __kmp_is_user_lock_initialized_ = (int (*)(kmp_user_lock_p))NULL; 3524 3525 __kmp_get_user_lock_location_ = (const ident_t *(*)(kmp_user_lock_p))NULL; 3526 3527 __kmp_set_user_lock_location_ = 3528 (void (*)(kmp_user_lock_p, const ident_t *))NULL; 3529 3530 __kmp_get_user_lock_flags_ = (kmp_lock_flags_t(*)(kmp_user_lock_p))NULL; 3531 3532 __kmp_set_user_lock_flags_ = 3533 (void (*)(kmp_user_lock_p, kmp_lock_flags_t))NULL; 3534 } break; 3535 3536 #endif // KMP_USE_FUTEX 3537 3538 case lk_ticket: { 3539 __kmp_base_user_lock_size = sizeof(kmp_base_ticket_lock_t); 3540 __kmp_user_lock_size = sizeof(kmp_ticket_lock_t); 3541 3542 __kmp_get_user_lock_owner_ = 3543 (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_ticket_lock_owner); 3544 3545 if (__kmp_env_consistency_check) { 3546 KMP_BIND_USER_LOCK_WITH_CHECKS(ticket); 3547 KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(ticket); 3548 } else { 3549 KMP_BIND_USER_LOCK(ticket); 3550 KMP_BIND_NESTED_USER_LOCK(ticket); 3551 } 3552 3553 __kmp_destroy_user_lock_ = 3554 (void (*)(kmp_user_lock_p))(&__kmp_destroy_ticket_lock); 3555 3556 __kmp_is_user_lock_initialized_ = 3557 (int (*)(kmp_user_lock_p))(&__kmp_is_ticket_lock_initialized); 3558 3559 __kmp_get_user_lock_location_ = 3560 (const ident_t *(*)(kmp_user_lock_p))(&__kmp_get_ticket_lock_location); 3561 3562 __kmp_set_user_lock_location_ = (void (*)( 3563 kmp_user_lock_p, const ident_t *))(&__kmp_set_ticket_lock_location); 3564 3565 __kmp_get_user_lock_flags_ = 3566 (kmp_lock_flags_t(*)(kmp_user_lock_p))(&__kmp_get_ticket_lock_flags); 3567 3568 __kmp_set_user_lock_flags_ = (void (*)(kmp_user_lock_p, kmp_lock_flags_t))( 3569 &__kmp_set_ticket_lock_flags); 3570 } break; 3571 3572 case lk_queuing: { 3573 __kmp_base_user_lock_size = sizeof(kmp_base_queuing_lock_t); 3574 __kmp_user_lock_size = sizeof(kmp_queuing_lock_t); 3575 3576 __kmp_get_user_lock_owner_ = 3577 (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_owner); 3578 3579 if (__kmp_env_consistency_check) { 3580 KMP_BIND_USER_LOCK_WITH_CHECKS(queuing); 3581 KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(queuing); 3582 } else { 3583 KMP_BIND_USER_LOCK(queuing); 3584 KMP_BIND_NESTED_USER_LOCK(queuing); 3585 } 3586 3587 __kmp_destroy_user_lock_ = 3588 (void (*)(kmp_user_lock_p))(&__kmp_destroy_queuing_lock); 3589 3590 __kmp_is_user_lock_initialized_ = 3591 (int (*)(kmp_user_lock_p))(&__kmp_is_queuing_lock_initialized); 3592 3593 __kmp_get_user_lock_location_ = 3594 (const ident_t *(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_location); 3595 3596 __kmp_set_user_lock_location_ = (void (*)( 3597 kmp_user_lock_p, const ident_t *))(&__kmp_set_queuing_lock_location); 3598 3599 __kmp_get_user_lock_flags_ = 3600 (kmp_lock_flags_t(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_flags); 3601 3602 __kmp_set_user_lock_flags_ = (void (*)(kmp_user_lock_p, kmp_lock_flags_t))( 3603 &__kmp_set_queuing_lock_flags); 3604 } break; 3605 3606 #if KMP_USE_ADAPTIVE_LOCKS 3607 case lk_adaptive: { 3608 __kmp_base_user_lock_size = sizeof(kmp_base_adaptive_lock_t); 3609 __kmp_user_lock_size = sizeof(kmp_adaptive_lock_t); 3610 3611 __kmp_get_user_lock_owner_ = 3612 (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_owner); 3613 3614 if (__kmp_env_consistency_check) { 3615 KMP_BIND_USER_LOCK_WITH_CHECKS(adaptive); 3616 } else { 3617 KMP_BIND_USER_LOCK(adaptive); 3618 } 3619 3620 __kmp_destroy_user_lock_ = 3621 (void (*)(kmp_user_lock_p))(&__kmp_destroy_adaptive_lock); 3622 3623 __kmp_is_user_lock_initialized_ = 3624 (int (*)(kmp_user_lock_p))(&__kmp_is_queuing_lock_initialized); 3625 3626 __kmp_get_user_lock_location_ = 3627 (const ident_t *(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_location); 3628 3629 __kmp_set_user_lock_location_ = (void (*)( 3630 kmp_user_lock_p, const ident_t *))(&__kmp_set_queuing_lock_location); 3631 3632 __kmp_get_user_lock_flags_ = 3633 (kmp_lock_flags_t(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_flags); 3634 3635 __kmp_set_user_lock_flags_ = (void (*)(kmp_user_lock_p, kmp_lock_flags_t))( 3636 &__kmp_set_queuing_lock_flags); 3637 3638 } break; 3639 #endif // KMP_USE_ADAPTIVE_LOCKS 3640 3641 case lk_drdpa: { 3642 __kmp_base_user_lock_size = sizeof(kmp_base_drdpa_lock_t); 3643 __kmp_user_lock_size = sizeof(kmp_drdpa_lock_t); 3644 3645 __kmp_get_user_lock_owner_ = 3646 (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_drdpa_lock_owner); 3647 3648 if (__kmp_env_consistency_check) { 3649 KMP_BIND_USER_LOCK_WITH_CHECKS(drdpa); 3650 KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(drdpa); 3651 } else { 3652 KMP_BIND_USER_LOCK(drdpa); 3653 KMP_BIND_NESTED_USER_LOCK(drdpa); 3654 } 3655 3656 __kmp_destroy_user_lock_ = 3657 (void (*)(kmp_user_lock_p))(&__kmp_destroy_drdpa_lock); 3658 3659 __kmp_is_user_lock_initialized_ = 3660 (int (*)(kmp_user_lock_p))(&__kmp_is_drdpa_lock_initialized); 3661 3662 __kmp_get_user_lock_location_ = 3663 (const ident_t *(*)(kmp_user_lock_p))(&__kmp_get_drdpa_lock_location); 3664 3665 __kmp_set_user_lock_location_ = (void (*)( 3666 kmp_user_lock_p, const ident_t *))(&__kmp_set_drdpa_lock_location); 3667 3668 __kmp_get_user_lock_flags_ = 3669 (kmp_lock_flags_t(*)(kmp_user_lock_p))(&__kmp_get_drdpa_lock_flags); 3670 3671 __kmp_set_user_lock_flags_ = (void (*)(kmp_user_lock_p, kmp_lock_flags_t))( 3672 &__kmp_set_drdpa_lock_flags); 3673 } break; 3674 } 3675 } 3676 3677 // ---------------------------------------------------------------------------- 3678 // User lock table & lock allocation 3679 3680 kmp_lock_table_t __kmp_user_lock_table = {1, 0, NULL}; 3681 kmp_user_lock_p __kmp_lock_pool = NULL; 3682 3683 // Lock block-allocation support. 3684 kmp_block_of_locks *__kmp_lock_blocks = NULL; 3685 int __kmp_num_locks_in_block = 1; // FIXME - tune this value 3686 3687 static kmp_lock_index_t __kmp_lock_table_insert(kmp_user_lock_p lck) { 3688 // Assume that kmp_global_lock is held upon entry/exit. 3689 kmp_lock_index_t index; 3690 if (__kmp_user_lock_table.used >= __kmp_user_lock_table.allocated) { 3691 kmp_lock_index_t size; 3692 kmp_user_lock_p *table; 3693 // Reallocate lock table. 3694 if (__kmp_user_lock_table.allocated == 0) { 3695 size = 1024; 3696 } else { 3697 size = __kmp_user_lock_table.allocated * 2; 3698 } 3699 table = (kmp_user_lock_p *)__kmp_allocate(sizeof(kmp_user_lock_p) * size); 3700 KMP_MEMCPY(table + 1, __kmp_user_lock_table.table + 1, 3701 sizeof(kmp_user_lock_p) * (__kmp_user_lock_table.used - 1)); 3702 table[0] = (kmp_user_lock_p)__kmp_user_lock_table.table; 3703 // We cannot free the previous table now, since it may be in use by other 3704 // threads. So save the pointer to the previous table in in the first 3705 // element of the new table. All the tables will be organized into a list, 3706 // and could be freed when library shutting down. 3707 __kmp_user_lock_table.table = table; 3708 __kmp_user_lock_table.allocated = size; 3709 } 3710 KMP_DEBUG_ASSERT(__kmp_user_lock_table.used < 3711 __kmp_user_lock_table.allocated); 3712 index = __kmp_user_lock_table.used; 3713 __kmp_user_lock_table.table[index] = lck; 3714 ++__kmp_user_lock_table.used; 3715 return index; 3716 } 3717 3718 static kmp_user_lock_p __kmp_lock_block_allocate() { 3719 // Assume that kmp_global_lock is held upon entry/exit. 3720 static int last_index = 0; 3721 if ((last_index >= __kmp_num_locks_in_block) || (__kmp_lock_blocks == NULL)) { 3722 // Restart the index. 3723 last_index = 0; 3724 // Need to allocate a new block. 3725 KMP_DEBUG_ASSERT(__kmp_user_lock_size > 0); 3726 size_t space_for_locks = __kmp_user_lock_size * __kmp_num_locks_in_block; 3727 char *buffer = 3728 (char *)__kmp_allocate(space_for_locks + sizeof(kmp_block_of_locks)); 3729 // Set up the new block. 3730 kmp_block_of_locks *new_block = 3731 (kmp_block_of_locks *)(&buffer[space_for_locks]); 3732 new_block->next_block = __kmp_lock_blocks; 3733 new_block->locks = (void *)buffer; 3734 // Publish the new block. 3735 KMP_MB(); 3736 __kmp_lock_blocks = new_block; 3737 } 3738 kmp_user_lock_p ret = (kmp_user_lock_p)(&( 3739 ((char *)(__kmp_lock_blocks->locks))[last_index * __kmp_user_lock_size])); 3740 last_index++; 3741 return ret; 3742 } 3743 3744 // Get memory for a lock. It may be freshly allocated memory or reused memory 3745 // from lock pool. 3746 kmp_user_lock_p __kmp_user_lock_allocate(void **user_lock, kmp_int32 gtid, 3747 kmp_lock_flags_t flags) { 3748 kmp_user_lock_p lck; 3749 kmp_lock_index_t index; 3750 KMP_DEBUG_ASSERT(user_lock); 3751 3752 __kmp_acquire_lock(&__kmp_global_lock, gtid); 3753 3754 if (__kmp_lock_pool == NULL) { 3755 // Lock pool is empty. Allocate new memory. 3756 3757 // ANNOTATION: Found no good way to express the syncronisation 3758 // between allocation and usage, so ignore the allocation 3759 ANNOTATE_IGNORE_WRITES_BEGIN(); 3760 if (__kmp_num_locks_in_block <= 1) { // Tune this cutoff point. 3761 lck = (kmp_user_lock_p)__kmp_allocate(__kmp_user_lock_size); 3762 } else { 3763 lck = __kmp_lock_block_allocate(); 3764 } 3765 ANNOTATE_IGNORE_WRITES_END(); 3766 3767 // Insert lock in the table so that it can be freed in __kmp_cleanup, 3768 // and debugger has info on all allocated locks. 3769 index = __kmp_lock_table_insert(lck); 3770 } else { 3771 // Pick up lock from pool. 3772 lck = __kmp_lock_pool; 3773 index = __kmp_lock_pool->pool.index; 3774 __kmp_lock_pool = __kmp_lock_pool->pool.next; 3775 } 3776 3777 // We could potentially differentiate between nested and regular locks 3778 // here, and do the lock table lookup for regular locks only. 3779 if (OMP_LOCK_T_SIZE < sizeof(void *)) { 3780 *((kmp_lock_index_t *)user_lock) = index; 3781 } else { 3782 *((kmp_user_lock_p *)user_lock) = lck; 3783 } 3784 3785 // mark the lock if it is critical section lock. 3786 __kmp_set_user_lock_flags(lck, flags); 3787 3788 __kmp_release_lock(&__kmp_global_lock, gtid); // AC: TODO move this line upper 3789 3790 return lck; 3791 } 3792 3793 // Put lock's memory to pool for reusing. 3794 void __kmp_user_lock_free(void **user_lock, kmp_int32 gtid, 3795 kmp_user_lock_p lck) { 3796 KMP_DEBUG_ASSERT(user_lock != NULL); 3797 KMP_DEBUG_ASSERT(lck != NULL); 3798 3799 __kmp_acquire_lock(&__kmp_global_lock, gtid); 3800 3801 lck->pool.next = __kmp_lock_pool; 3802 __kmp_lock_pool = lck; 3803 if (OMP_LOCK_T_SIZE < sizeof(void *)) { 3804 kmp_lock_index_t index = *((kmp_lock_index_t *)user_lock); 3805 KMP_DEBUG_ASSERT(0 < index && index <= __kmp_user_lock_table.used); 3806 lck->pool.index = index; 3807 } 3808 3809 __kmp_release_lock(&__kmp_global_lock, gtid); 3810 } 3811 3812 kmp_user_lock_p __kmp_lookup_user_lock(void **user_lock, char const *func) { 3813 kmp_user_lock_p lck = NULL; 3814 3815 if (__kmp_env_consistency_check) { 3816 if (user_lock == NULL) { 3817 KMP_FATAL(LockIsUninitialized, func); 3818 } 3819 } 3820 3821 if (OMP_LOCK_T_SIZE < sizeof(void *)) { 3822 kmp_lock_index_t index = *((kmp_lock_index_t *)user_lock); 3823 if (__kmp_env_consistency_check) { 3824 if (!(0 < index && index < __kmp_user_lock_table.used)) { 3825 KMP_FATAL(LockIsUninitialized, func); 3826 } 3827 } 3828 KMP_DEBUG_ASSERT(0 < index && index < __kmp_user_lock_table.used); 3829 KMP_DEBUG_ASSERT(__kmp_user_lock_size > 0); 3830 lck = __kmp_user_lock_table.table[index]; 3831 } else { 3832 lck = *((kmp_user_lock_p *)user_lock); 3833 } 3834 3835 if (__kmp_env_consistency_check) { 3836 if (lck == NULL) { 3837 KMP_FATAL(LockIsUninitialized, func); 3838 } 3839 } 3840 3841 return lck; 3842 } 3843 3844 void __kmp_cleanup_user_locks(void) { 3845 // Reset lock pool. Don't worry about lock in the pool--we will free them when 3846 // iterating through lock table (it includes all the locks, dead or alive). 3847 __kmp_lock_pool = NULL; 3848 3849 #define IS_CRITICAL(lck) \ 3850 ((__kmp_get_user_lock_flags_ != NULL) && \ 3851 ((*__kmp_get_user_lock_flags_)(lck)&kmp_lf_critical_section)) 3852 3853 // Loop through lock table, free all locks. 3854 // Do not free item [0], it is reserved for lock tables list. 3855 // 3856 // FIXME - we are iterating through a list of (pointers to) objects of type 3857 // union kmp_user_lock, but we have no way of knowing whether the base type is 3858 // currently "pool" or whatever the global user lock type is. 3859 // 3860 // We are relying on the fact that for all of the user lock types 3861 // (except "tas"), the first field in the lock struct is the "initialized" 3862 // field, which is set to the address of the lock object itself when 3863 // the lock is initialized. When the union is of type "pool", the 3864 // first field is a pointer to the next object in the free list, which 3865 // will not be the same address as the object itself. 3866 // 3867 // This means that the check (*__kmp_is_user_lock_initialized_)(lck) will fail 3868 // for "pool" objects on the free list. This must happen as the "location" 3869 // field of real user locks overlaps the "index" field of "pool" objects. 3870 // 3871 // It would be better to run through the free list, and remove all "pool" 3872 // objects from the lock table before executing this loop. However, 3873 // "pool" objects do not always have their index field set (only on 3874 // lin_32e), and I don't want to search the lock table for the address 3875 // of every "pool" object on the free list. 3876 while (__kmp_user_lock_table.used > 1) { 3877 const ident *loc; 3878 3879 // reduce __kmp_user_lock_table.used before freeing the lock, 3880 // so that state of locks is consistent 3881 kmp_user_lock_p lck = 3882 __kmp_user_lock_table.table[--__kmp_user_lock_table.used]; 3883 3884 if ((__kmp_is_user_lock_initialized_ != NULL) && 3885 (*__kmp_is_user_lock_initialized_)(lck)) { 3886 // Issue a warning if: KMP_CONSISTENCY_CHECK AND lock is initialized AND 3887 // it is NOT a critical section (user is not responsible for destroying 3888 // criticals) AND we know source location to report. 3889 if (__kmp_env_consistency_check && (!IS_CRITICAL(lck)) && 3890 ((loc = __kmp_get_user_lock_location(lck)) != NULL) && 3891 (loc->psource != NULL)) { 3892 kmp_str_loc_t str_loc = __kmp_str_loc_init(loc->psource, 0); 3893 KMP_WARNING(CnsLockNotDestroyed, str_loc.file, str_loc.line); 3894 __kmp_str_loc_free(&str_loc); 3895 } 3896 3897 #ifdef KMP_DEBUG 3898 if (IS_CRITICAL(lck)) { 3899 KA_TRACE( 3900 20, 3901 ("__kmp_cleanup_user_locks: free critical section lock %p (%p)\n", 3902 lck, *(void **)lck)); 3903 } else { 3904 KA_TRACE(20, ("__kmp_cleanup_user_locks: free lock %p (%p)\n", lck, 3905 *(void **)lck)); 3906 } 3907 #endif // KMP_DEBUG 3908 3909 // Cleanup internal lock dynamic resources (for drdpa locks particularly). 3910 __kmp_destroy_user_lock(lck); 3911 } 3912 3913 // Free the lock if block allocation of locks is not used. 3914 if (__kmp_lock_blocks == NULL) { 3915 __kmp_free(lck); 3916 } 3917 } 3918 3919 #undef IS_CRITICAL 3920 3921 // delete lock table(s). 3922 kmp_user_lock_p *table_ptr = __kmp_user_lock_table.table; 3923 __kmp_user_lock_table.table = NULL; 3924 __kmp_user_lock_table.allocated = 0; 3925 3926 while (table_ptr != NULL) { 3927 // In the first element we saved the pointer to the previous 3928 // (smaller) lock table. 3929 kmp_user_lock_p *next = (kmp_user_lock_p *)(table_ptr[0]); 3930 __kmp_free(table_ptr); 3931 table_ptr = next; 3932 } 3933 3934 // Free buffers allocated for blocks of locks. 3935 kmp_block_of_locks_t *block_ptr = __kmp_lock_blocks; 3936 __kmp_lock_blocks = NULL; 3937 3938 while (block_ptr != NULL) { 3939 kmp_block_of_locks_t *next = block_ptr->next_block; 3940 __kmp_free(block_ptr->locks); 3941 // *block_ptr itself was allocated at the end of the locks vector. 3942 block_ptr = next; 3943 } 3944 3945 TCW_4(__kmp_init_user_locks, FALSE); 3946 } 3947 3948 #endif // KMP_USE_DYNAMIC_LOCK 3949