1 /* 2 * kmp_lock.cpp -- lock-related functions 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <stddef.h> 14 #include <atomic> 15 16 #include "kmp.h" 17 #include "kmp_i18n.h" 18 #include "kmp_io.h" 19 #include "kmp_itt.h" 20 #include "kmp_lock.h" 21 #include "kmp_wait_release.h" 22 #include "kmp_wrapper_getpid.h" 23 24 #include "tsan_annotations.h" 25 26 #if KMP_USE_FUTEX 27 #include <sys/syscall.h> 28 #include <unistd.h> 29 // We should really include <futex.h>, but that causes compatibility problems on 30 // different Linux* OS distributions that either require that you include (or 31 // break when you try to include) <pci/types.h>. Since all we need is the two 32 // macros below (which are part of the kernel ABI, so can't change) we just 33 // define the constants here and don't include <futex.h> 34 #ifndef FUTEX_WAIT 35 #define FUTEX_WAIT 0 36 #endif 37 #ifndef FUTEX_WAKE 38 #define FUTEX_WAKE 1 39 #endif 40 #endif 41 42 /* Implement spin locks for internal library use. */ 43 /* The algorithm implemented is Lamport's bakery lock [1974]. */ 44 45 void __kmp_validate_locks(void) { 46 int i; 47 kmp_uint32 x, y; 48 49 /* Check to make sure unsigned arithmetic does wraps properly */ 50 x = ~((kmp_uint32)0) - 2; 51 y = x - 2; 52 53 for (i = 0; i < 8; ++i, ++x, ++y) { 54 kmp_uint32 z = (x - y); 55 KMP_ASSERT(z == 2); 56 } 57 58 KMP_ASSERT(offsetof(kmp_base_queuing_lock, tail_id) % 8 == 0); 59 } 60 61 /* ------------------------------------------------------------------------ */ 62 /* test and set locks */ 63 64 // For the non-nested locks, we can only assume that the first 4 bytes were 65 // allocated, since gcc only allocates 4 bytes for omp_lock_t, and the Intel 66 // compiler only allocates a 4 byte pointer on IA-32 architecture. On 67 // Windows* OS on Intel(R) 64, we can assume that all 8 bytes were allocated. 68 // 69 // gcc reserves >= 8 bytes for nested locks, so we can assume that the 70 // entire 8 bytes were allocated for nested locks on all 64-bit platforms. 71 72 static kmp_int32 __kmp_get_tas_lock_owner(kmp_tas_lock_t *lck) { 73 return KMP_LOCK_STRIP(KMP_ATOMIC_LD_RLX(&lck->lk.poll)) - 1; 74 } 75 76 static inline bool __kmp_is_tas_lock_nestable(kmp_tas_lock_t *lck) { 77 return lck->lk.depth_locked != -1; 78 } 79 80 __forceinline static int 81 __kmp_acquire_tas_lock_timed_template(kmp_tas_lock_t *lck, kmp_int32 gtid) { 82 KMP_MB(); 83 84 #ifdef USE_LOCK_PROFILE 85 kmp_uint32 curr = KMP_LOCK_STRIP(lck->lk.poll); 86 if ((curr != 0) && (curr != gtid + 1)) 87 __kmp_printf("LOCK CONTENTION: %p\n", lck); 88 /* else __kmp_printf( "." );*/ 89 #endif /* USE_LOCK_PROFILE */ 90 91 kmp_int32 tas_free = KMP_LOCK_FREE(tas); 92 kmp_int32 tas_busy = KMP_LOCK_BUSY(gtid + 1, tas); 93 94 if (KMP_ATOMIC_LD_RLX(&lck->lk.poll) == tas_free && 95 __kmp_atomic_compare_store_acq(&lck->lk.poll, tas_free, tas_busy)) { 96 KMP_FSYNC_ACQUIRED(lck); 97 return KMP_LOCK_ACQUIRED_FIRST; 98 } 99 100 kmp_uint32 spins; 101 KMP_FSYNC_PREPARE(lck); 102 KMP_INIT_YIELD(spins); 103 kmp_backoff_t backoff = __kmp_spin_backoff_params; 104 do { 105 __kmp_spin_backoff(&backoff); 106 KMP_YIELD_OVERSUB_ELSE_SPIN(spins); 107 } while (KMP_ATOMIC_LD_RLX(&lck->lk.poll) != tas_free || 108 !__kmp_atomic_compare_store_acq(&lck->lk.poll, tas_free, tas_busy)); 109 KMP_FSYNC_ACQUIRED(lck); 110 return KMP_LOCK_ACQUIRED_FIRST; 111 } 112 113 int __kmp_acquire_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) { 114 int retval = __kmp_acquire_tas_lock_timed_template(lck, gtid); 115 ANNOTATE_TAS_ACQUIRED(lck); 116 return retval; 117 } 118 119 static int __kmp_acquire_tas_lock_with_checks(kmp_tas_lock_t *lck, 120 kmp_int32 gtid) { 121 char const *const func = "omp_set_lock"; 122 if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) && 123 __kmp_is_tas_lock_nestable(lck)) { 124 KMP_FATAL(LockNestableUsedAsSimple, func); 125 } 126 if ((gtid >= 0) && (__kmp_get_tas_lock_owner(lck) == gtid)) { 127 KMP_FATAL(LockIsAlreadyOwned, func); 128 } 129 return __kmp_acquire_tas_lock(lck, gtid); 130 } 131 132 int __kmp_test_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) { 133 kmp_int32 tas_free = KMP_LOCK_FREE(tas); 134 kmp_int32 tas_busy = KMP_LOCK_BUSY(gtid + 1, tas); 135 if (KMP_ATOMIC_LD_RLX(&lck->lk.poll) == tas_free && 136 __kmp_atomic_compare_store_acq(&lck->lk.poll, tas_free, tas_busy)) { 137 KMP_FSYNC_ACQUIRED(lck); 138 return TRUE; 139 } 140 return FALSE; 141 } 142 143 static int __kmp_test_tas_lock_with_checks(kmp_tas_lock_t *lck, 144 kmp_int32 gtid) { 145 char const *const func = "omp_test_lock"; 146 if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) && 147 __kmp_is_tas_lock_nestable(lck)) { 148 KMP_FATAL(LockNestableUsedAsSimple, func); 149 } 150 return __kmp_test_tas_lock(lck, gtid); 151 } 152 153 int __kmp_release_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) { 154 KMP_MB(); /* Flush all pending memory write invalidates. */ 155 156 KMP_FSYNC_RELEASING(lck); 157 ANNOTATE_TAS_RELEASED(lck); 158 KMP_ATOMIC_ST_REL(&lck->lk.poll, KMP_LOCK_FREE(tas)); 159 KMP_MB(); /* Flush all pending memory write invalidates. */ 160 161 KMP_YIELD_OVERSUB(); 162 return KMP_LOCK_RELEASED; 163 } 164 165 static int __kmp_release_tas_lock_with_checks(kmp_tas_lock_t *lck, 166 kmp_int32 gtid) { 167 char const *const func = "omp_unset_lock"; 168 KMP_MB(); /* in case another processor initialized lock */ 169 if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) && 170 __kmp_is_tas_lock_nestable(lck)) { 171 KMP_FATAL(LockNestableUsedAsSimple, func); 172 } 173 if (__kmp_get_tas_lock_owner(lck) == -1) { 174 KMP_FATAL(LockUnsettingFree, func); 175 } 176 if ((gtid >= 0) && (__kmp_get_tas_lock_owner(lck) >= 0) && 177 (__kmp_get_tas_lock_owner(lck) != gtid)) { 178 KMP_FATAL(LockUnsettingSetByAnother, func); 179 } 180 return __kmp_release_tas_lock(lck, gtid); 181 } 182 183 void __kmp_init_tas_lock(kmp_tas_lock_t *lck) { 184 lck->lk.poll = KMP_LOCK_FREE(tas); 185 } 186 187 void __kmp_destroy_tas_lock(kmp_tas_lock_t *lck) { lck->lk.poll = 0; } 188 189 static void __kmp_destroy_tas_lock_with_checks(kmp_tas_lock_t *lck) { 190 char const *const func = "omp_destroy_lock"; 191 if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) && 192 __kmp_is_tas_lock_nestable(lck)) { 193 KMP_FATAL(LockNestableUsedAsSimple, func); 194 } 195 if (__kmp_get_tas_lock_owner(lck) != -1) { 196 KMP_FATAL(LockStillOwned, func); 197 } 198 __kmp_destroy_tas_lock(lck); 199 } 200 201 // nested test and set locks 202 203 int __kmp_acquire_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) { 204 KMP_DEBUG_ASSERT(gtid >= 0); 205 206 if (__kmp_get_tas_lock_owner(lck) == gtid) { 207 lck->lk.depth_locked += 1; 208 return KMP_LOCK_ACQUIRED_NEXT; 209 } else { 210 __kmp_acquire_tas_lock_timed_template(lck, gtid); 211 ANNOTATE_TAS_ACQUIRED(lck); 212 lck->lk.depth_locked = 1; 213 return KMP_LOCK_ACQUIRED_FIRST; 214 } 215 } 216 217 static int __kmp_acquire_nested_tas_lock_with_checks(kmp_tas_lock_t *lck, 218 kmp_int32 gtid) { 219 char const *const func = "omp_set_nest_lock"; 220 if (!__kmp_is_tas_lock_nestable(lck)) { 221 KMP_FATAL(LockSimpleUsedAsNestable, func); 222 } 223 return __kmp_acquire_nested_tas_lock(lck, gtid); 224 } 225 226 int __kmp_test_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) { 227 int retval; 228 229 KMP_DEBUG_ASSERT(gtid >= 0); 230 231 if (__kmp_get_tas_lock_owner(lck) == gtid) { 232 retval = ++lck->lk.depth_locked; 233 } else if (!__kmp_test_tas_lock(lck, gtid)) { 234 retval = 0; 235 } else { 236 KMP_MB(); 237 retval = lck->lk.depth_locked = 1; 238 } 239 return retval; 240 } 241 242 static int __kmp_test_nested_tas_lock_with_checks(kmp_tas_lock_t *lck, 243 kmp_int32 gtid) { 244 char const *const func = "omp_test_nest_lock"; 245 if (!__kmp_is_tas_lock_nestable(lck)) { 246 KMP_FATAL(LockSimpleUsedAsNestable, func); 247 } 248 return __kmp_test_nested_tas_lock(lck, gtid); 249 } 250 251 int __kmp_release_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) { 252 KMP_DEBUG_ASSERT(gtid >= 0); 253 254 KMP_MB(); 255 if (--(lck->lk.depth_locked) == 0) { 256 __kmp_release_tas_lock(lck, gtid); 257 return KMP_LOCK_RELEASED; 258 } 259 return KMP_LOCK_STILL_HELD; 260 } 261 262 static int __kmp_release_nested_tas_lock_with_checks(kmp_tas_lock_t *lck, 263 kmp_int32 gtid) { 264 char const *const func = "omp_unset_nest_lock"; 265 KMP_MB(); /* in case another processor initialized lock */ 266 if (!__kmp_is_tas_lock_nestable(lck)) { 267 KMP_FATAL(LockSimpleUsedAsNestable, func); 268 } 269 if (__kmp_get_tas_lock_owner(lck) == -1) { 270 KMP_FATAL(LockUnsettingFree, func); 271 } 272 if (__kmp_get_tas_lock_owner(lck) != gtid) { 273 KMP_FATAL(LockUnsettingSetByAnother, func); 274 } 275 return __kmp_release_nested_tas_lock(lck, gtid); 276 } 277 278 void __kmp_init_nested_tas_lock(kmp_tas_lock_t *lck) { 279 __kmp_init_tas_lock(lck); 280 lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks 281 } 282 283 void __kmp_destroy_nested_tas_lock(kmp_tas_lock_t *lck) { 284 __kmp_destroy_tas_lock(lck); 285 lck->lk.depth_locked = 0; 286 } 287 288 static void __kmp_destroy_nested_tas_lock_with_checks(kmp_tas_lock_t *lck) { 289 char const *const func = "omp_destroy_nest_lock"; 290 if (!__kmp_is_tas_lock_nestable(lck)) { 291 KMP_FATAL(LockSimpleUsedAsNestable, func); 292 } 293 if (__kmp_get_tas_lock_owner(lck) != -1) { 294 KMP_FATAL(LockStillOwned, func); 295 } 296 __kmp_destroy_nested_tas_lock(lck); 297 } 298 299 #if KMP_USE_FUTEX 300 301 /* ------------------------------------------------------------------------ */ 302 /* futex locks */ 303 304 // futex locks are really just test and set locks, with a different method 305 // of handling contention. They take the same amount of space as test and 306 // set locks, and are allocated the same way (i.e. use the area allocated by 307 // the compiler for non-nested locks / allocate nested locks on the heap). 308 309 static kmp_int32 __kmp_get_futex_lock_owner(kmp_futex_lock_t *lck) { 310 return KMP_LOCK_STRIP((TCR_4(lck->lk.poll) >> 1)) - 1; 311 } 312 313 static inline bool __kmp_is_futex_lock_nestable(kmp_futex_lock_t *lck) { 314 return lck->lk.depth_locked != -1; 315 } 316 317 __forceinline static int 318 __kmp_acquire_futex_lock_timed_template(kmp_futex_lock_t *lck, kmp_int32 gtid) { 319 kmp_int32 gtid_code = (gtid + 1) << 1; 320 321 KMP_MB(); 322 323 #ifdef USE_LOCK_PROFILE 324 kmp_uint32 curr = KMP_LOCK_STRIP(TCR_4(lck->lk.poll)); 325 if ((curr != 0) && (curr != gtid_code)) 326 __kmp_printf("LOCK CONTENTION: %p\n", lck); 327 /* else __kmp_printf( "." );*/ 328 #endif /* USE_LOCK_PROFILE */ 329 330 KMP_FSYNC_PREPARE(lck); 331 KA_TRACE(1000, ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d entering\n", 332 lck, lck->lk.poll, gtid)); 333 334 kmp_int32 poll_val; 335 336 while ((poll_val = KMP_COMPARE_AND_STORE_RET32( 337 &(lck->lk.poll), KMP_LOCK_FREE(futex), 338 KMP_LOCK_BUSY(gtid_code, futex))) != KMP_LOCK_FREE(futex)) { 339 340 kmp_int32 cond = KMP_LOCK_STRIP(poll_val) & 1; 341 KA_TRACE( 342 1000, 343 ("__kmp_acquire_futex_lock: lck:%p, T#%d poll_val = 0x%x cond = 0x%x\n", 344 lck, gtid, poll_val, cond)); 345 346 // NOTE: if you try to use the following condition for this branch 347 // 348 // if ( poll_val & 1 == 0 ) 349 // 350 // Then the 12.0 compiler has a bug where the following block will 351 // always be skipped, regardless of the value of the LSB of poll_val. 352 if (!cond) { 353 // Try to set the lsb in the poll to indicate to the owner 354 // thread that they need to wake this thread up. 355 if (!KMP_COMPARE_AND_STORE_REL32(&(lck->lk.poll), poll_val, 356 poll_val | KMP_LOCK_BUSY(1, futex))) { 357 KA_TRACE( 358 1000, 359 ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d can't set bit 0\n", 360 lck, lck->lk.poll, gtid)); 361 continue; 362 } 363 poll_val |= KMP_LOCK_BUSY(1, futex); 364 365 KA_TRACE(1000, 366 ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d bit 0 set\n", lck, 367 lck->lk.poll, gtid)); 368 } 369 370 KA_TRACE( 371 1000, 372 ("__kmp_acquire_futex_lock: lck:%p, T#%d before futex_wait(0x%x)\n", 373 lck, gtid, poll_val)); 374 375 long rc; 376 if ((rc = syscall(__NR_futex, &(lck->lk.poll), FUTEX_WAIT, poll_val, NULL, 377 NULL, 0)) != 0) { 378 KA_TRACE(1000, ("__kmp_acquire_futex_lock: lck:%p, T#%d futex_wait(0x%x) " 379 "failed (rc=%ld errno=%d)\n", 380 lck, gtid, poll_val, rc, errno)); 381 continue; 382 } 383 384 KA_TRACE(1000, 385 ("__kmp_acquire_futex_lock: lck:%p, T#%d after futex_wait(0x%x)\n", 386 lck, gtid, poll_val)); 387 // This thread has now done a successful futex wait call and was entered on 388 // the OS futex queue. We must now perform a futex wake call when releasing 389 // the lock, as we have no idea how many other threads are in the queue. 390 gtid_code |= 1; 391 } 392 393 KMP_FSYNC_ACQUIRED(lck); 394 KA_TRACE(1000, ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d exiting\n", lck, 395 lck->lk.poll, gtid)); 396 return KMP_LOCK_ACQUIRED_FIRST; 397 } 398 399 int __kmp_acquire_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) { 400 int retval = __kmp_acquire_futex_lock_timed_template(lck, gtid); 401 ANNOTATE_FUTEX_ACQUIRED(lck); 402 return retval; 403 } 404 405 static int __kmp_acquire_futex_lock_with_checks(kmp_futex_lock_t *lck, 406 kmp_int32 gtid) { 407 char const *const func = "omp_set_lock"; 408 if ((sizeof(kmp_futex_lock_t) <= OMP_LOCK_T_SIZE) && 409 __kmp_is_futex_lock_nestable(lck)) { 410 KMP_FATAL(LockNestableUsedAsSimple, func); 411 } 412 if ((gtid >= 0) && (__kmp_get_futex_lock_owner(lck) == gtid)) { 413 KMP_FATAL(LockIsAlreadyOwned, func); 414 } 415 return __kmp_acquire_futex_lock(lck, gtid); 416 } 417 418 int __kmp_test_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) { 419 if (KMP_COMPARE_AND_STORE_ACQ32(&(lck->lk.poll), KMP_LOCK_FREE(futex), 420 KMP_LOCK_BUSY((gtid + 1) << 1, futex))) { 421 KMP_FSYNC_ACQUIRED(lck); 422 return TRUE; 423 } 424 return FALSE; 425 } 426 427 static int __kmp_test_futex_lock_with_checks(kmp_futex_lock_t *lck, 428 kmp_int32 gtid) { 429 char const *const func = "omp_test_lock"; 430 if ((sizeof(kmp_futex_lock_t) <= OMP_LOCK_T_SIZE) && 431 __kmp_is_futex_lock_nestable(lck)) { 432 KMP_FATAL(LockNestableUsedAsSimple, func); 433 } 434 return __kmp_test_futex_lock(lck, gtid); 435 } 436 437 int __kmp_release_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) { 438 KMP_MB(); /* Flush all pending memory write invalidates. */ 439 440 KA_TRACE(1000, ("__kmp_release_futex_lock: lck:%p(0x%x), T#%d entering\n", 441 lck, lck->lk.poll, gtid)); 442 443 KMP_FSYNC_RELEASING(lck); 444 ANNOTATE_FUTEX_RELEASED(lck); 445 446 kmp_int32 poll_val = KMP_XCHG_FIXED32(&(lck->lk.poll), KMP_LOCK_FREE(futex)); 447 448 KA_TRACE(1000, 449 ("__kmp_release_futex_lock: lck:%p, T#%d released poll_val = 0x%x\n", 450 lck, gtid, poll_val)); 451 452 if (KMP_LOCK_STRIP(poll_val) & 1) { 453 KA_TRACE(1000, 454 ("__kmp_release_futex_lock: lck:%p, T#%d futex_wake 1 thread\n", 455 lck, gtid)); 456 syscall(__NR_futex, &(lck->lk.poll), FUTEX_WAKE, KMP_LOCK_BUSY(1, futex), 457 NULL, NULL, 0); 458 } 459 460 KMP_MB(); /* Flush all pending memory write invalidates. */ 461 462 KA_TRACE(1000, ("__kmp_release_futex_lock: lck:%p(0x%x), T#%d exiting\n", lck, 463 lck->lk.poll, gtid)); 464 465 KMP_YIELD_OVERSUB(); 466 return KMP_LOCK_RELEASED; 467 } 468 469 static int __kmp_release_futex_lock_with_checks(kmp_futex_lock_t *lck, 470 kmp_int32 gtid) { 471 char const *const func = "omp_unset_lock"; 472 KMP_MB(); /* in case another processor initialized lock */ 473 if ((sizeof(kmp_futex_lock_t) <= OMP_LOCK_T_SIZE) && 474 __kmp_is_futex_lock_nestable(lck)) { 475 KMP_FATAL(LockNestableUsedAsSimple, func); 476 } 477 if (__kmp_get_futex_lock_owner(lck) == -1) { 478 KMP_FATAL(LockUnsettingFree, func); 479 } 480 if ((gtid >= 0) && (__kmp_get_futex_lock_owner(lck) >= 0) && 481 (__kmp_get_futex_lock_owner(lck) != gtid)) { 482 KMP_FATAL(LockUnsettingSetByAnother, func); 483 } 484 return __kmp_release_futex_lock(lck, gtid); 485 } 486 487 void __kmp_init_futex_lock(kmp_futex_lock_t *lck) { 488 TCW_4(lck->lk.poll, KMP_LOCK_FREE(futex)); 489 } 490 491 void __kmp_destroy_futex_lock(kmp_futex_lock_t *lck) { lck->lk.poll = 0; } 492 493 static void __kmp_destroy_futex_lock_with_checks(kmp_futex_lock_t *lck) { 494 char const *const func = "omp_destroy_lock"; 495 if ((sizeof(kmp_futex_lock_t) <= OMP_LOCK_T_SIZE) && 496 __kmp_is_futex_lock_nestable(lck)) { 497 KMP_FATAL(LockNestableUsedAsSimple, func); 498 } 499 if (__kmp_get_futex_lock_owner(lck) != -1) { 500 KMP_FATAL(LockStillOwned, func); 501 } 502 __kmp_destroy_futex_lock(lck); 503 } 504 505 // nested futex locks 506 507 int __kmp_acquire_nested_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) { 508 KMP_DEBUG_ASSERT(gtid >= 0); 509 510 if (__kmp_get_futex_lock_owner(lck) == gtid) { 511 lck->lk.depth_locked += 1; 512 return KMP_LOCK_ACQUIRED_NEXT; 513 } else { 514 __kmp_acquire_futex_lock_timed_template(lck, gtid); 515 ANNOTATE_FUTEX_ACQUIRED(lck); 516 lck->lk.depth_locked = 1; 517 return KMP_LOCK_ACQUIRED_FIRST; 518 } 519 } 520 521 static int __kmp_acquire_nested_futex_lock_with_checks(kmp_futex_lock_t *lck, 522 kmp_int32 gtid) { 523 char const *const func = "omp_set_nest_lock"; 524 if (!__kmp_is_futex_lock_nestable(lck)) { 525 KMP_FATAL(LockSimpleUsedAsNestable, func); 526 } 527 return __kmp_acquire_nested_futex_lock(lck, gtid); 528 } 529 530 int __kmp_test_nested_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) { 531 int retval; 532 533 KMP_DEBUG_ASSERT(gtid >= 0); 534 535 if (__kmp_get_futex_lock_owner(lck) == gtid) { 536 retval = ++lck->lk.depth_locked; 537 } else if (!__kmp_test_futex_lock(lck, gtid)) { 538 retval = 0; 539 } else { 540 KMP_MB(); 541 retval = lck->lk.depth_locked = 1; 542 } 543 return retval; 544 } 545 546 static int __kmp_test_nested_futex_lock_with_checks(kmp_futex_lock_t *lck, 547 kmp_int32 gtid) { 548 char const *const func = "omp_test_nest_lock"; 549 if (!__kmp_is_futex_lock_nestable(lck)) { 550 KMP_FATAL(LockSimpleUsedAsNestable, func); 551 } 552 return __kmp_test_nested_futex_lock(lck, gtid); 553 } 554 555 int __kmp_release_nested_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) { 556 KMP_DEBUG_ASSERT(gtid >= 0); 557 558 KMP_MB(); 559 if (--(lck->lk.depth_locked) == 0) { 560 __kmp_release_futex_lock(lck, gtid); 561 return KMP_LOCK_RELEASED; 562 } 563 return KMP_LOCK_STILL_HELD; 564 } 565 566 static int __kmp_release_nested_futex_lock_with_checks(kmp_futex_lock_t *lck, 567 kmp_int32 gtid) { 568 char const *const func = "omp_unset_nest_lock"; 569 KMP_MB(); /* in case another processor initialized lock */ 570 if (!__kmp_is_futex_lock_nestable(lck)) { 571 KMP_FATAL(LockSimpleUsedAsNestable, func); 572 } 573 if (__kmp_get_futex_lock_owner(lck) == -1) { 574 KMP_FATAL(LockUnsettingFree, func); 575 } 576 if (__kmp_get_futex_lock_owner(lck) != gtid) { 577 KMP_FATAL(LockUnsettingSetByAnother, func); 578 } 579 return __kmp_release_nested_futex_lock(lck, gtid); 580 } 581 582 void __kmp_init_nested_futex_lock(kmp_futex_lock_t *lck) { 583 __kmp_init_futex_lock(lck); 584 lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks 585 } 586 587 void __kmp_destroy_nested_futex_lock(kmp_futex_lock_t *lck) { 588 __kmp_destroy_futex_lock(lck); 589 lck->lk.depth_locked = 0; 590 } 591 592 static void __kmp_destroy_nested_futex_lock_with_checks(kmp_futex_lock_t *lck) { 593 char const *const func = "omp_destroy_nest_lock"; 594 if (!__kmp_is_futex_lock_nestable(lck)) { 595 KMP_FATAL(LockSimpleUsedAsNestable, func); 596 } 597 if (__kmp_get_futex_lock_owner(lck) != -1) { 598 KMP_FATAL(LockStillOwned, func); 599 } 600 __kmp_destroy_nested_futex_lock(lck); 601 } 602 603 #endif // KMP_USE_FUTEX 604 605 /* ------------------------------------------------------------------------ */ 606 /* ticket (bakery) locks */ 607 608 static kmp_int32 __kmp_get_ticket_lock_owner(kmp_ticket_lock_t *lck) { 609 return std::atomic_load_explicit(&lck->lk.owner_id, 610 std::memory_order_relaxed) - 611 1; 612 } 613 614 static inline bool __kmp_is_ticket_lock_nestable(kmp_ticket_lock_t *lck) { 615 return std::atomic_load_explicit(&lck->lk.depth_locked, 616 std::memory_order_relaxed) != -1; 617 } 618 619 static kmp_uint32 __kmp_bakery_check(void *now_serving, kmp_uint32 my_ticket) { 620 return std::atomic_load_explicit((std::atomic<unsigned> *)now_serving, 621 std::memory_order_acquire) == my_ticket; 622 } 623 624 __forceinline static int 625 __kmp_acquire_ticket_lock_timed_template(kmp_ticket_lock_t *lck, 626 kmp_int32 gtid) { 627 kmp_uint32 my_ticket = std::atomic_fetch_add_explicit( 628 &lck->lk.next_ticket, 1U, std::memory_order_relaxed); 629 630 #ifdef USE_LOCK_PROFILE 631 if (std::atomic_load_explicit(&lck->lk.now_serving, 632 std::memory_order_relaxed) != my_ticket) 633 __kmp_printf("LOCK CONTENTION: %p\n", lck); 634 /* else __kmp_printf( "." );*/ 635 #endif /* USE_LOCK_PROFILE */ 636 637 if (std::atomic_load_explicit(&lck->lk.now_serving, 638 std::memory_order_acquire) == my_ticket) { 639 return KMP_LOCK_ACQUIRED_FIRST; 640 } 641 KMP_WAIT_PTR(&lck->lk.now_serving, my_ticket, __kmp_bakery_check, lck); 642 return KMP_LOCK_ACQUIRED_FIRST; 643 } 644 645 int __kmp_acquire_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) { 646 int retval = __kmp_acquire_ticket_lock_timed_template(lck, gtid); 647 ANNOTATE_TICKET_ACQUIRED(lck); 648 return retval; 649 } 650 651 static int __kmp_acquire_ticket_lock_with_checks(kmp_ticket_lock_t *lck, 652 kmp_int32 gtid) { 653 char const *const func = "omp_set_lock"; 654 655 if (!std::atomic_load_explicit(&lck->lk.initialized, 656 std::memory_order_relaxed)) { 657 KMP_FATAL(LockIsUninitialized, func); 658 } 659 if (lck->lk.self != lck) { 660 KMP_FATAL(LockIsUninitialized, func); 661 } 662 if (__kmp_is_ticket_lock_nestable(lck)) { 663 KMP_FATAL(LockNestableUsedAsSimple, func); 664 } 665 if ((gtid >= 0) && (__kmp_get_ticket_lock_owner(lck) == gtid)) { 666 KMP_FATAL(LockIsAlreadyOwned, func); 667 } 668 669 __kmp_acquire_ticket_lock(lck, gtid); 670 671 std::atomic_store_explicit(&lck->lk.owner_id, gtid + 1, 672 std::memory_order_relaxed); 673 return KMP_LOCK_ACQUIRED_FIRST; 674 } 675 676 int __kmp_test_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) { 677 kmp_uint32 my_ticket = std::atomic_load_explicit(&lck->lk.next_ticket, 678 std::memory_order_relaxed); 679 680 if (std::atomic_load_explicit(&lck->lk.now_serving, 681 std::memory_order_relaxed) == my_ticket) { 682 kmp_uint32 next_ticket = my_ticket + 1; 683 if (std::atomic_compare_exchange_strong_explicit( 684 &lck->lk.next_ticket, &my_ticket, next_ticket, 685 std::memory_order_acquire, std::memory_order_acquire)) { 686 return TRUE; 687 } 688 } 689 return FALSE; 690 } 691 692 static int __kmp_test_ticket_lock_with_checks(kmp_ticket_lock_t *lck, 693 kmp_int32 gtid) { 694 char const *const func = "omp_test_lock"; 695 696 if (!std::atomic_load_explicit(&lck->lk.initialized, 697 std::memory_order_relaxed)) { 698 KMP_FATAL(LockIsUninitialized, func); 699 } 700 if (lck->lk.self != lck) { 701 KMP_FATAL(LockIsUninitialized, func); 702 } 703 if (__kmp_is_ticket_lock_nestable(lck)) { 704 KMP_FATAL(LockNestableUsedAsSimple, func); 705 } 706 707 int retval = __kmp_test_ticket_lock(lck, gtid); 708 709 if (retval) { 710 std::atomic_store_explicit(&lck->lk.owner_id, gtid + 1, 711 std::memory_order_relaxed); 712 } 713 return retval; 714 } 715 716 int __kmp_release_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) { 717 kmp_uint32 distance = std::atomic_load_explicit(&lck->lk.next_ticket, 718 std::memory_order_relaxed) - 719 std::atomic_load_explicit(&lck->lk.now_serving, 720 std::memory_order_relaxed); 721 722 ANNOTATE_TICKET_RELEASED(lck); 723 std::atomic_fetch_add_explicit(&lck->lk.now_serving, 1U, 724 std::memory_order_release); 725 726 KMP_YIELD(distance > 727 (kmp_uint32)(__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc)); 728 return KMP_LOCK_RELEASED; 729 } 730 731 static int __kmp_release_ticket_lock_with_checks(kmp_ticket_lock_t *lck, 732 kmp_int32 gtid) { 733 char const *const func = "omp_unset_lock"; 734 735 if (!std::atomic_load_explicit(&lck->lk.initialized, 736 std::memory_order_relaxed)) { 737 KMP_FATAL(LockIsUninitialized, func); 738 } 739 if (lck->lk.self != lck) { 740 KMP_FATAL(LockIsUninitialized, func); 741 } 742 if (__kmp_is_ticket_lock_nestable(lck)) { 743 KMP_FATAL(LockNestableUsedAsSimple, func); 744 } 745 if (__kmp_get_ticket_lock_owner(lck) == -1) { 746 KMP_FATAL(LockUnsettingFree, func); 747 } 748 if ((gtid >= 0) && (__kmp_get_ticket_lock_owner(lck) >= 0) && 749 (__kmp_get_ticket_lock_owner(lck) != gtid)) { 750 KMP_FATAL(LockUnsettingSetByAnother, func); 751 } 752 std::atomic_store_explicit(&lck->lk.owner_id, 0, std::memory_order_relaxed); 753 return __kmp_release_ticket_lock(lck, gtid); 754 } 755 756 void __kmp_init_ticket_lock(kmp_ticket_lock_t *lck) { 757 lck->lk.location = NULL; 758 lck->lk.self = lck; 759 std::atomic_store_explicit(&lck->lk.next_ticket, 0U, 760 std::memory_order_relaxed); 761 std::atomic_store_explicit(&lck->lk.now_serving, 0U, 762 std::memory_order_relaxed); 763 std::atomic_store_explicit( 764 &lck->lk.owner_id, 0, 765 std::memory_order_relaxed); // no thread owns the lock. 766 std::atomic_store_explicit( 767 &lck->lk.depth_locked, -1, 768 std::memory_order_relaxed); // -1 => not a nested lock. 769 std::atomic_store_explicit(&lck->lk.initialized, true, 770 std::memory_order_release); 771 } 772 773 void __kmp_destroy_ticket_lock(kmp_ticket_lock_t *lck) { 774 std::atomic_store_explicit(&lck->lk.initialized, false, 775 std::memory_order_release); 776 lck->lk.self = NULL; 777 lck->lk.location = NULL; 778 std::atomic_store_explicit(&lck->lk.next_ticket, 0U, 779 std::memory_order_relaxed); 780 std::atomic_store_explicit(&lck->lk.now_serving, 0U, 781 std::memory_order_relaxed); 782 std::atomic_store_explicit(&lck->lk.owner_id, 0, std::memory_order_relaxed); 783 std::atomic_store_explicit(&lck->lk.depth_locked, -1, 784 std::memory_order_relaxed); 785 } 786 787 static void __kmp_destroy_ticket_lock_with_checks(kmp_ticket_lock_t *lck) { 788 char const *const func = "omp_destroy_lock"; 789 790 if (!std::atomic_load_explicit(&lck->lk.initialized, 791 std::memory_order_relaxed)) { 792 KMP_FATAL(LockIsUninitialized, func); 793 } 794 if (lck->lk.self != lck) { 795 KMP_FATAL(LockIsUninitialized, func); 796 } 797 if (__kmp_is_ticket_lock_nestable(lck)) { 798 KMP_FATAL(LockNestableUsedAsSimple, func); 799 } 800 if (__kmp_get_ticket_lock_owner(lck) != -1) { 801 KMP_FATAL(LockStillOwned, func); 802 } 803 __kmp_destroy_ticket_lock(lck); 804 } 805 806 // nested ticket locks 807 808 int __kmp_acquire_nested_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) { 809 KMP_DEBUG_ASSERT(gtid >= 0); 810 811 if (__kmp_get_ticket_lock_owner(lck) == gtid) { 812 std::atomic_fetch_add_explicit(&lck->lk.depth_locked, 1, 813 std::memory_order_relaxed); 814 return KMP_LOCK_ACQUIRED_NEXT; 815 } else { 816 __kmp_acquire_ticket_lock_timed_template(lck, gtid); 817 ANNOTATE_TICKET_ACQUIRED(lck); 818 std::atomic_store_explicit(&lck->lk.depth_locked, 1, 819 std::memory_order_relaxed); 820 std::atomic_store_explicit(&lck->lk.owner_id, gtid + 1, 821 std::memory_order_relaxed); 822 return KMP_LOCK_ACQUIRED_FIRST; 823 } 824 } 825 826 static int __kmp_acquire_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck, 827 kmp_int32 gtid) { 828 char const *const func = "omp_set_nest_lock"; 829 830 if (!std::atomic_load_explicit(&lck->lk.initialized, 831 std::memory_order_relaxed)) { 832 KMP_FATAL(LockIsUninitialized, func); 833 } 834 if (lck->lk.self != lck) { 835 KMP_FATAL(LockIsUninitialized, func); 836 } 837 if (!__kmp_is_ticket_lock_nestable(lck)) { 838 KMP_FATAL(LockSimpleUsedAsNestable, func); 839 } 840 return __kmp_acquire_nested_ticket_lock(lck, gtid); 841 } 842 843 int __kmp_test_nested_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) { 844 int retval; 845 846 KMP_DEBUG_ASSERT(gtid >= 0); 847 848 if (__kmp_get_ticket_lock_owner(lck) == gtid) { 849 retval = std::atomic_fetch_add_explicit(&lck->lk.depth_locked, 1, 850 std::memory_order_relaxed) + 851 1; 852 } else if (!__kmp_test_ticket_lock(lck, gtid)) { 853 retval = 0; 854 } else { 855 std::atomic_store_explicit(&lck->lk.depth_locked, 1, 856 std::memory_order_relaxed); 857 std::atomic_store_explicit(&lck->lk.owner_id, gtid + 1, 858 std::memory_order_relaxed); 859 retval = 1; 860 } 861 return retval; 862 } 863 864 static int __kmp_test_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck, 865 kmp_int32 gtid) { 866 char const *const func = "omp_test_nest_lock"; 867 868 if (!std::atomic_load_explicit(&lck->lk.initialized, 869 std::memory_order_relaxed)) { 870 KMP_FATAL(LockIsUninitialized, func); 871 } 872 if (lck->lk.self != lck) { 873 KMP_FATAL(LockIsUninitialized, func); 874 } 875 if (!__kmp_is_ticket_lock_nestable(lck)) { 876 KMP_FATAL(LockSimpleUsedAsNestable, func); 877 } 878 return __kmp_test_nested_ticket_lock(lck, gtid); 879 } 880 881 int __kmp_release_nested_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) { 882 KMP_DEBUG_ASSERT(gtid >= 0); 883 884 if ((std::atomic_fetch_add_explicit(&lck->lk.depth_locked, -1, 885 std::memory_order_relaxed) - 886 1) == 0) { 887 std::atomic_store_explicit(&lck->lk.owner_id, 0, std::memory_order_relaxed); 888 __kmp_release_ticket_lock(lck, gtid); 889 return KMP_LOCK_RELEASED; 890 } 891 return KMP_LOCK_STILL_HELD; 892 } 893 894 static int __kmp_release_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck, 895 kmp_int32 gtid) { 896 char const *const func = "omp_unset_nest_lock"; 897 898 if (!std::atomic_load_explicit(&lck->lk.initialized, 899 std::memory_order_relaxed)) { 900 KMP_FATAL(LockIsUninitialized, func); 901 } 902 if (lck->lk.self != lck) { 903 KMP_FATAL(LockIsUninitialized, func); 904 } 905 if (!__kmp_is_ticket_lock_nestable(lck)) { 906 KMP_FATAL(LockSimpleUsedAsNestable, func); 907 } 908 if (__kmp_get_ticket_lock_owner(lck) == -1) { 909 KMP_FATAL(LockUnsettingFree, func); 910 } 911 if (__kmp_get_ticket_lock_owner(lck) != gtid) { 912 KMP_FATAL(LockUnsettingSetByAnother, func); 913 } 914 return __kmp_release_nested_ticket_lock(lck, gtid); 915 } 916 917 void __kmp_init_nested_ticket_lock(kmp_ticket_lock_t *lck) { 918 __kmp_init_ticket_lock(lck); 919 std::atomic_store_explicit(&lck->lk.depth_locked, 0, 920 std::memory_order_relaxed); 921 // >= 0 for nestable locks, -1 for simple locks 922 } 923 924 void __kmp_destroy_nested_ticket_lock(kmp_ticket_lock_t *lck) { 925 __kmp_destroy_ticket_lock(lck); 926 std::atomic_store_explicit(&lck->lk.depth_locked, 0, 927 std::memory_order_relaxed); 928 } 929 930 static void 931 __kmp_destroy_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck) { 932 char const *const func = "omp_destroy_nest_lock"; 933 934 if (!std::atomic_load_explicit(&lck->lk.initialized, 935 std::memory_order_relaxed)) { 936 KMP_FATAL(LockIsUninitialized, func); 937 } 938 if (lck->lk.self != lck) { 939 KMP_FATAL(LockIsUninitialized, func); 940 } 941 if (!__kmp_is_ticket_lock_nestable(lck)) { 942 KMP_FATAL(LockSimpleUsedAsNestable, func); 943 } 944 if (__kmp_get_ticket_lock_owner(lck) != -1) { 945 KMP_FATAL(LockStillOwned, func); 946 } 947 __kmp_destroy_nested_ticket_lock(lck); 948 } 949 950 // access functions to fields which don't exist for all lock kinds. 951 952 static const ident_t *__kmp_get_ticket_lock_location(kmp_ticket_lock_t *lck) { 953 return lck->lk.location; 954 } 955 956 static void __kmp_set_ticket_lock_location(kmp_ticket_lock_t *lck, 957 const ident_t *loc) { 958 lck->lk.location = loc; 959 } 960 961 static kmp_lock_flags_t __kmp_get_ticket_lock_flags(kmp_ticket_lock_t *lck) { 962 return lck->lk.flags; 963 } 964 965 static void __kmp_set_ticket_lock_flags(kmp_ticket_lock_t *lck, 966 kmp_lock_flags_t flags) { 967 lck->lk.flags = flags; 968 } 969 970 /* ------------------------------------------------------------------------ */ 971 /* queuing locks */ 972 973 /* First the states 974 (head,tail) = 0, 0 means lock is unheld, nobody on queue 975 UINT_MAX or -1, 0 means lock is held, nobody on queue 976 h, h means lock held or about to transition, 977 1 element on queue 978 h, t h <> t, means lock is held or about to 979 transition, >1 elements on queue 980 981 Now the transitions 982 Acquire(0,0) = -1 ,0 983 Release(0,0) = Error 984 Acquire(-1,0) = h ,h h > 0 985 Release(-1,0) = 0 ,0 986 Acquire(h,h) = h ,t h > 0, t > 0, h <> t 987 Release(h,h) = -1 ,0 h > 0 988 Acquire(h,t) = h ,t' h > 0, t > 0, t' > 0, h <> t, h <> t', t <> t' 989 Release(h,t) = h',t h > 0, t > 0, h <> t, h <> h', h' maybe = t 990 991 And pictorially 992 993 +-----+ 994 | 0, 0|------- release -------> Error 995 +-----+ 996 | ^ 997 acquire| |release 998 | | 999 | | 1000 v | 1001 +-----+ 1002 |-1, 0| 1003 +-----+ 1004 | ^ 1005 acquire| |release 1006 | | 1007 | | 1008 v | 1009 +-----+ 1010 | h, h| 1011 +-----+ 1012 | ^ 1013 acquire| |release 1014 | | 1015 | | 1016 v | 1017 +-----+ 1018 | h, t|----- acquire, release loopback ---+ 1019 +-----+ | 1020 ^ | 1021 | | 1022 +------------------------------------+ 1023 */ 1024 1025 #ifdef DEBUG_QUEUING_LOCKS 1026 1027 /* Stuff for circular trace buffer */ 1028 #define TRACE_BUF_ELE 1024 1029 static char traces[TRACE_BUF_ELE][128] = {0}; 1030 static int tc = 0; 1031 #define TRACE_LOCK(X, Y) \ 1032 KMP_SNPRINTF(traces[tc++ % TRACE_BUF_ELE], 128, "t%d at %s\n", X, Y); 1033 #define TRACE_LOCK_T(X, Y, Z) \ 1034 KMP_SNPRINTF(traces[tc++ % TRACE_BUF_ELE], 128, "t%d at %s%d\n", X, Y, Z); 1035 #define TRACE_LOCK_HT(X, Y, Z, Q) \ 1036 KMP_SNPRINTF(traces[tc++ % TRACE_BUF_ELE], 128, "t%d at %s %d,%d\n", X, Y, \ 1037 Z, Q); 1038 1039 static void __kmp_dump_queuing_lock(kmp_info_t *this_thr, kmp_int32 gtid, 1040 kmp_queuing_lock_t *lck, kmp_int32 head_id, 1041 kmp_int32 tail_id) { 1042 kmp_int32 t, i; 1043 1044 __kmp_printf_no_lock("\n__kmp_dump_queuing_lock: TRACE BEGINS HERE! \n"); 1045 1046 i = tc % TRACE_BUF_ELE; 1047 __kmp_printf_no_lock("%s\n", traces[i]); 1048 i = (i + 1) % TRACE_BUF_ELE; 1049 while (i != (tc % TRACE_BUF_ELE)) { 1050 __kmp_printf_no_lock("%s", traces[i]); 1051 i = (i + 1) % TRACE_BUF_ELE; 1052 } 1053 __kmp_printf_no_lock("\n"); 1054 1055 __kmp_printf_no_lock("\n__kmp_dump_queuing_lock: gtid+1:%d, spin_here:%d, " 1056 "next_wait:%d, head_id:%d, tail_id:%d\n", 1057 gtid + 1, this_thr->th.th_spin_here, 1058 this_thr->th.th_next_waiting, head_id, tail_id); 1059 1060 __kmp_printf_no_lock("\t\thead: %d ", lck->lk.head_id); 1061 1062 if (lck->lk.head_id >= 1) { 1063 t = __kmp_threads[lck->lk.head_id - 1]->th.th_next_waiting; 1064 while (t > 0) { 1065 __kmp_printf_no_lock("-> %d ", t); 1066 t = __kmp_threads[t - 1]->th.th_next_waiting; 1067 } 1068 } 1069 __kmp_printf_no_lock("; tail: %d ", lck->lk.tail_id); 1070 __kmp_printf_no_lock("\n\n"); 1071 } 1072 1073 #endif /* DEBUG_QUEUING_LOCKS */ 1074 1075 static kmp_int32 __kmp_get_queuing_lock_owner(kmp_queuing_lock_t *lck) { 1076 return TCR_4(lck->lk.owner_id) - 1; 1077 } 1078 1079 static inline bool __kmp_is_queuing_lock_nestable(kmp_queuing_lock_t *lck) { 1080 return lck->lk.depth_locked != -1; 1081 } 1082 1083 /* Acquire a lock using a the queuing lock implementation */ 1084 template <bool takeTime> 1085 /* [TLW] The unused template above is left behind because of what BEB believes 1086 is a potential compiler problem with __forceinline. */ 1087 __forceinline static int 1088 __kmp_acquire_queuing_lock_timed_template(kmp_queuing_lock_t *lck, 1089 kmp_int32 gtid) { 1090 kmp_info_t *this_thr = __kmp_thread_from_gtid(gtid); 1091 volatile kmp_int32 *head_id_p = &lck->lk.head_id; 1092 volatile kmp_int32 *tail_id_p = &lck->lk.tail_id; 1093 volatile kmp_uint32 *spin_here_p; 1094 1095 #if OMPT_SUPPORT 1096 ompt_state_t prev_state = ompt_state_undefined; 1097 #endif 1098 1099 KA_TRACE(1000, 1100 ("__kmp_acquire_queuing_lock: lck:%p, T#%d entering\n", lck, gtid)); 1101 1102 KMP_FSYNC_PREPARE(lck); 1103 KMP_DEBUG_ASSERT(this_thr != NULL); 1104 spin_here_p = &this_thr->th.th_spin_here; 1105 1106 #ifdef DEBUG_QUEUING_LOCKS 1107 TRACE_LOCK(gtid + 1, "acq ent"); 1108 if (*spin_here_p) 1109 __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p); 1110 if (this_thr->th.th_next_waiting != 0) 1111 __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p); 1112 #endif 1113 KMP_DEBUG_ASSERT(!*spin_here_p); 1114 KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0); 1115 1116 /* The following st.rel to spin_here_p needs to precede the cmpxchg.acq to 1117 head_id_p that may follow, not just in execution order, but also in 1118 visibility order. This way, when a releasing thread observes the changes to 1119 the queue by this thread, it can rightly assume that spin_here_p has 1120 already been set to TRUE, so that when it sets spin_here_p to FALSE, it is 1121 not premature. If the releasing thread sets spin_here_p to FALSE before 1122 this thread sets it to TRUE, this thread will hang. */ 1123 *spin_here_p = TRUE; /* before enqueuing to prevent race */ 1124 1125 while (1) { 1126 kmp_int32 enqueued; 1127 kmp_int32 head; 1128 kmp_int32 tail; 1129 1130 head = *head_id_p; 1131 1132 switch (head) { 1133 1134 case -1: { 1135 #ifdef DEBUG_QUEUING_LOCKS 1136 tail = *tail_id_p; 1137 TRACE_LOCK_HT(gtid + 1, "acq read: ", head, tail); 1138 #endif 1139 tail = 0; /* to make sure next link asynchronously read is not set 1140 accidentally; this assignment prevents us from entering the 1141 if ( t > 0 ) condition in the enqueued case below, which is not 1142 necessary for this state transition */ 1143 1144 /* try (-1,0)->(tid,tid) */ 1145 enqueued = KMP_COMPARE_AND_STORE_ACQ64((volatile kmp_int64 *)tail_id_p, 1146 KMP_PACK_64(-1, 0), 1147 KMP_PACK_64(gtid + 1, gtid + 1)); 1148 #ifdef DEBUG_QUEUING_LOCKS 1149 if (enqueued) 1150 TRACE_LOCK(gtid + 1, "acq enq: (-1,0)->(tid,tid)"); 1151 #endif 1152 } break; 1153 1154 default: { 1155 tail = *tail_id_p; 1156 KMP_DEBUG_ASSERT(tail != gtid + 1); 1157 1158 #ifdef DEBUG_QUEUING_LOCKS 1159 TRACE_LOCK_HT(gtid + 1, "acq read: ", head, tail); 1160 #endif 1161 1162 if (tail == 0) { 1163 enqueued = FALSE; 1164 } else { 1165 /* try (h,t) or (h,h)->(h,tid) */ 1166 enqueued = KMP_COMPARE_AND_STORE_ACQ32(tail_id_p, tail, gtid + 1); 1167 1168 #ifdef DEBUG_QUEUING_LOCKS 1169 if (enqueued) 1170 TRACE_LOCK(gtid + 1, "acq enq: (h,t)->(h,tid)"); 1171 #endif 1172 } 1173 } break; 1174 1175 case 0: /* empty queue */ 1176 { 1177 kmp_int32 grabbed_lock; 1178 1179 #ifdef DEBUG_QUEUING_LOCKS 1180 tail = *tail_id_p; 1181 TRACE_LOCK_HT(gtid + 1, "acq read: ", head, tail); 1182 #endif 1183 /* try (0,0)->(-1,0) */ 1184 1185 /* only legal transition out of head = 0 is head = -1 with no change to 1186 * tail */ 1187 grabbed_lock = KMP_COMPARE_AND_STORE_ACQ32(head_id_p, 0, -1); 1188 1189 if (grabbed_lock) { 1190 1191 *spin_here_p = FALSE; 1192 1193 KA_TRACE( 1194 1000, 1195 ("__kmp_acquire_queuing_lock: lck:%p, T#%d exiting: no queuing\n", 1196 lck, gtid)); 1197 #ifdef DEBUG_QUEUING_LOCKS 1198 TRACE_LOCK_HT(gtid + 1, "acq exit: ", head, 0); 1199 #endif 1200 1201 #if OMPT_SUPPORT 1202 if (ompt_enabled.enabled && prev_state != ompt_state_undefined) { 1203 /* change the state before clearing wait_id */ 1204 this_thr->th.ompt_thread_info.state = prev_state; 1205 this_thr->th.ompt_thread_info.wait_id = 0; 1206 } 1207 #endif 1208 1209 KMP_FSYNC_ACQUIRED(lck); 1210 return KMP_LOCK_ACQUIRED_FIRST; /* lock holder cannot be on queue */ 1211 } 1212 enqueued = FALSE; 1213 } break; 1214 } 1215 1216 #if OMPT_SUPPORT 1217 if (ompt_enabled.enabled && prev_state == ompt_state_undefined) { 1218 /* this thread will spin; set wait_id before entering wait state */ 1219 prev_state = this_thr->th.ompt_thread_info.state; 1220 this_thr->th.ompt_thread_info.wait_id = (uint64_t)lck; 1221 this_thr->th.ompt_thread_info.state = ompt_state_wait_lock; 1222 } 1223 #endif 1224 1225 if (enqueued) { 1226 if (tail > 0) { 1227 kmp_info_t *tail_thr = __kmp_thread_from_gtid(tail - 1); 1228 KMP_ASSERT(tail_thr != NULL); 1229 tail_thr->th.th_next_waiting = gtid + 1; 1230 /* corresponding wait for this write in release code */ 1231 } 1232 KA_TRACE(1000, 1233 ("__kmp_acquire_queuing_lock: lck:%p, T#%d waiting for lock\n", 1234 lck, gtid)); 1235 1236 KMP_MB(); 1237 // ToDo: Use __kmp_wait_sleep or similar when blocktime != inf 1238 KMP_WAIT(spin_here_p, FALSE, KMP_EQ, lck); 1239 // Synchronize writes to both runtime thread structures 1240 // and writes in user code. 1241 KMP_MB(); 1242 1243 #ifdef DEBUG_QUEUING_LOCKS 1244 TRACE_LOCK(gtid + 1, "acq spin"); 1245 1246 if (this_thr->th.th_next_waiting != 0) 1247 __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p); 1248 #endif 1249 KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0); 1250 KA_TRACE(1000, ("__kmp_acquire_queuing_lock: lck:%p, T#%d exiting: after " 1251 "waiting on queue\n", 1252 lck, gtid)); 1253 1254 #ifdef DEBUG_QUEUING_LOCKS 1255 TRACE_LOCK(gtid + 1, "acq exit 2"); 1256 #endif 1257 1258 #if OMPT_SUPPORT 1259 /* change the state before clearing wait_id */ 1260 this_thr->th.ompt_thread_info.state = prev_state; 1261 this_thr->th.ompt_thread_info.wait_id = 0; 1262 #endif 1263 1264 /* got lock, we were dequeued by the thread that released lock */ 1265 return KMP_LOCK_ACQUIRED_FIRST; 1266 } 1267 1268 /* Yield if number of threads > number of logical processors */ 1269 /* ToDo: Not sure why this should only be in oversubscription case, 1270 maybe should be traditional YIELD_INIT/YIELD_WHEN loop */ 1271 KMP_YIELD_OVERSUB(); 1272 1273 #ifdef DEBUG_QUEUING_LOCKS 1274 TRACE_LOCK(gtid + 1, "acq retry"); 1275 #endif 1276 } 1277 KMP_ASSERT2(0, "should not get here"); 1278 return KMP_LOCK_ACQUIRED_FIRST; 1279 } 1280 1281 int __kmp_acquire_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) { 1282 KMP_DEBUG_ASSERT(gtid >= 0); 1283 1284 int retval = __kmp_acquire_queuing_lock_timed_template<false>(lck, gtid); 1285 ANNOTATE_QUEUING_ACQUIRED(lck); 1286 return retval; 1287 } 1288 1289 static int __kmp_acquire_queuing_lock_with_checks(kmp_queuing_lock_t *lck, 1290 kmp_int32 gtid) { 1291 char const *const func = "omp_set_lock"; 1292 if (lck->lk.initialized != lck) { 1293 KMP_FATAL(LockIsUninitialized, func); 1294 } 1295 if (__kmp_is_queuing_lock_nestable(lck)) { 1296 KMP_FATAL(LockNestableUsedAsSimple, func); 1297 } 1298 if (__kmp_get_queuing_lock_owner(lck) == gtid) { 1299 KMP_FATAL(LockIsAlreadyOwned, func); 1300 } 1301 1302 __kmp_acquire_queuing_lock(lck, gtid); 1303 1304 lck->lk.owner_id = gtid + 1; 1305 return KMP_LOCK_ACQUIRED_FIRST; 1306 } 1307 1308 int __kmp_test_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) { 1309 volatile kmp_int32 *head_id_p = &lck->lk.head_id; 1310 kmp_int32 head; 1311 #ifdef KMP_DEBUG 1312 kmp_info_t *this_thr; 1313 #endif 1314 1315 KA_TRACE(1000, ("__kmp_test_queuing_lock: T#%d entering\n", gtid)); 1316 KMP_DEBUG_ASSERT(gtid >= 0); 1317 #ifdef KMP_DEBUG 1318 this_thr = __kmp_thread_from_gtid(gtid); 1319 KMP_DEBUG_ASSERT(this_thr != NULL); 1320 KMP_DEBUG_ASSERT(!this_thr->th.th_spin_here); 1321 #endif 1322 1323 head = *head_id_p; 1324 1325 if (head == 0) { /* nobody on queue, nobody holding */ 1326 /* try (0,0)->(-1,0) */ 1327 if (KMP_COMPARE_AND_STORE_ACQ32(head_id_p, 0, -1)) { 1328 KA_TRACE(1000, 1329 ("__kmp_test_queuing_lock: T#%d exiting: holding lock\n", gtid)); 1330 KMP_FSYNC_ACQUIRED(lck); 1331 ANNOTATE_QUEUING_ACQUIRED(lck); 1332 return TRUE; 1333 } 1334 } 1335 1336 KA_TRACE(1000, 1337 ("__kmp_test_queuing_lock: T#%d exiting: without lock\n", gtid)); 1338 return FALSE; 1339 } 1340 1341 static int __kmp_test_queuing_lock_with_checks(kmp_queuing_lock_t *lck, 1342 kmp_int32 gtid) { 1343 char const *const func = "omp_test_lock"; 1344 if (lck->lk.initialized != lck) { 1345 KMP_FATAL(LockIsUninitialized, func); 1346 } 1347 if (__kmp_is_queuing_lock_nestable(lck)) { 1348 KMP_FATAL(LockNestableUsedAsSimple, func); 1349 } 1350 1351 int retval = __kmp_test_queuing_lock(lck, gtid); 1352 1353 if (retval) { 1354 lck->lk.owner_id = gtid + 1; 1355 } 1356 return retval; 1357 } 1358 1359 int __kmp_release_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) { 1360 kmp_info_t *this_thr; 1361 volatile kmp_int32 *head_id_p = &lck->lk.head_id; 1362 volatile kmp_int32 *tail_id_p = &lck->lk.tail_id; 1363 1364 KA_TRACE(1000, 1365 ("__kmp_release_queuing_lock: lck:%p, T#%d entering\n", lck, gtid)); 1366 KMP_DEBUG_ASSERT(gtid >= 0); 1367 this_thr = __kmp_thread_from_gtid(gtid); 1368 KMP_DEBUG_ASSERT(this_thr != NULL); 1369 #ifdef DEBUG_QUEUING_LOCKS 1370 TRACE_LOCK(gtid + 1, "rel ent"); 1371 1372 if (this_thr->th.th_spin_here) 1373 __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p); 1374 if (this_thr->th.th_next_waiting != 0) 1375 __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p); 1376 #endif 1377 KMP_DEBUG_ASSERT(!this_thr->th.th_spin_here); 1378 KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0); 1379 1380 KMP_FSYNC_RELEASING(lck); 1381 ANNOTATE_QUEUING_RELEASED(lck); 1382 1383 while (1) { 1384 kmp_int32 dequeued; 1385 kmp_int32 head; 1386 kmp_int32 tail; 1387 1388 head = *head_id_p; 1389 1390 #ifdef DEBUG_QUEUING_LOCKS 1391 tail = *tail_id_p; 1392 TRACE_LOCK_HT(gtid + 1, "rel read: ", head, tail); 1393 if (head == 0) 1394 __kmp_dump_queuing_lock(this_thr, gtid, lck, head, tail); 1395 #endif 1396 KMP_DEBUG_ASSERT(head != 1397 0); /* holding the lock, head must be -1 or queue head */ 1398 1399 if (head == -1) { /* nobody on queue */ 1400 /* try (-1,0)->(0,0) */ 1401 if (KMP_COMPARE_AND_STORE_REL32(head_id_p, -1, 0)) { 1402 KA_TRACE( 1403 1000, 1404 ("__kmp_release_queuing_lock: lck:%p, T#%d exiting: queue empty\n", 1405 lck, gtid)); 1406 #ifdef DEBUG_QUEUING_LOCKS 1407 TRACE_LOCK_HT(gtid + 1, "rel exit: ", 0, 0); 1408 #endif 1409 1410 #if OMPT_SUPPORT 1411 /* nothing to do - no other thread is trying to shift blame */ 1412 #endif 1413 return KMP_LOCK_RELEASED; 1414 } 1415 dequeued = FALSE; 1416 } else { 1417 KMP_MB(); 1418 tail = *tail_id_p; 1419 if (head == tail) { /* only one thread on the queue */ 1420 #ifdef DEBUG_QUEUING_LOCKS 1421 if (head <= 0) 1422 __kmp_dump_queuing_lock(this_thr, gtid, lck, head, tail); 1423 #endif 1424 KMP_DEBUG_ASSERT(head > 0); 1425 1426 /* try (h,h)->(-1,0) */ 1427 dequeued = KMP_COMPARE_AND_STORE_REL64( 1428 RCAST(volatile kmp_int64 *, tail_id_p), KMP_PACK_64(head, head), 1429 KMP_PACK_64(-1, 0)); 1430 #ifdef DEBUG_QUEUING_LOCKS 1431 TRACE_LOCK(gtid + 1, "rel deq: (h,h)->(-1,0)"); 1432 #endif 1433 1434 } else { 1435 volatile kmp_int32 *waiting_id_p; 1436 kmp_info_t *head_thr = __kmp_thread_from_gtid(head - 1); 1437 KMP_DEBUG_ASSERT(head_thr != NULL); 1438 waiting_id_p = &head_thr->th.th_next_waiting; 1439 1440 /* Does this require synchronous reads? */ 1441 #ifdef DEBUG_QUEUING_LOCKS 1442 if (head <= 0 || tail <= 0) 1443 __kmp_dump_queuing_lock(this_thr, gtid, lck, head, tail); 1444 #endif 1445 KMP_DEBUG_ASSERT(head > 0 && tail > 0); 1446 1447 /* try (h,t)->(h',t) or (t,t) */ 1448 KMP_MB(); 1449 /* make sure enqueuing thread has time to update next waiting thread 1450 * field */ 1451 *head_id_p = 1452 KMP_WAIT((volatile kmp_uint32 *)waiting_id_p, 0, KMP_NEQ, NULL); 1453 #ifdef DEBUG_QUEUING_LOCKS 1454 TRACE_LOCK(gtid + 1, "rel deq: (h,t)->(h',t)"); 1455 #endif 1456 dequeued = TRUE; 1457 } 1458 } 1459 1460 if (dequeued) { 1461 kmp_info_t *head_thr = __kmp_thread_from_gtid(head - 1); 1462 KMP_DEBUG_ASSERT(head_thr != NULL); 1463 1464 /* Does this require synchronous reads? */ 1465 #ifdef DEBUG_QUEUING_LOCKS 1466 if (head <= 0 || tail <= 0) 1467 __kmp_dump_queuing_lock(this_thr, gtid, lck, head, tail); 1468 #endif 1469 KMP_DEBUG_ASSERT(head > 0 && tail > 0); 1470 1471 /* For clean code only. Thread not released until next statement prevents 1472 race with acquire code. */ 1473 head_thr->th.th_next_waiting = 0; 1474 #ifdef DEBUG_QUEUING_LOCKS 1475 TRACE_LOCK_T(gtid + 1, "rel nw=0 for t=", head); 1476 #endif 1477 1478 KMP_MB(); 1479 /* reset spin value */ 1480 head_thr->th.th_spin_here = FALSE; 1481 1482 KA_TRACE(1000, ("__kmp_release_queuing_lock: lck:%p, T#%d exiting: after " 1483 "dequeuing\n", 1484 lck, gtid)); 1485 #ifdef DEBUG_QUEUING_LOCKS 1486 TRACE_LOCK(gtid + 1, "rel exit 2"); 1487 #endif 1488 return KMP_LOCK_RELEASED; 1489 } 1490 /* KMP_CPU_PAUSE(); don't want to make releasing thread hold up acquiring 1491 threads */ 1492 1493 #ifdef DEBUG_QUEUING_LOCKS 1494 TRACE_LOCK(gtid + 1, "rel retry"); 1495 #endif 1496 1497 } /* while */ 1498 KMP_ASSERT2(0, "should not get here"); 1499 return KMP_LOCK_RELEASED; 1500 } 1501 1502 static int __kmp_release_queuing_lock_with_checks(kmp_queuing_lock_t *lck, 1503 kmp_int32 gtid) { 1504 char const *const func = "omp_unset_lock"; 1505 KMP_MB(); /* in case another processor initialized lock */ 1506 if (lck->lk.initialized != lck) { 1507 KMP_FATAL(LockIsUninitialized, func); 1508 } 1509 if (__kmp_is_queuing_lock_nestable(lck)) { 1510 KMP_FATAL(LockNestableUsedAsSimple, func); 1511 } 1512 if (__kmp_get_queuing_lock_owner(lck) == -1) { 1513 KMP_FATAL(LockUnsettingFree, func); 1514 } 1515 if (__kmp_get_queuing_lock_owner(lck) != gtid) { 1516 KMP_FATAL(LockUnsettingSetByAnother, func); 1517 } 1518 lck->lk.owner_id = 0; 1519 return __kmp_release_queuing_lock(lck, gtid); 1520 } 1521 1522 void __kmp_init_queuing_lock(kmp_queuing_lock_t *lck) { 1523 lck->lk.location = NULL; 1524 lck->lk.head_id = 0; 1525 lck->lk.tail_id = 0; 1526 lck->lk.next_ticket = 0; 1527 lck->lk.now_serving = 0; 1528 lck->lk.owner_id = 0; // no thread owns the lock. 1529 lck->lk.depth_locked = -1; // >= 0 for nestable locks, -1 for simple locks. 1530 lck->lk.initialized = lck; 1531 1532 KA_TRACE(1000, ("__kmp_init_queuing_lock: lock %p initialized\n", lck)); 1533 } 1534 1535 void __kmp_destroy_queuing_lock(kmp_queuing_lock_t *lck) { 1536 lck->lk.initialized = NULL; 1537 lck->lk.location = NULL; 1538 lck->lk.head_id = 0; 1539 lck->lk.tail_id = 0; 1540 lck->lk.next_ticket = 0; 1541 lck->lk.now_serving = 0; 1542 lck->lk.owner_id = 0; 1543 lck->lk.depth_locked = -1; 1544 } 1545 1546 static void __kmp_destroy_queuing_lock_with_checks(kmp_queuing_lock_t *lck) { 1547 char const *const func = "omp_destroy_lock"; 1548 if (lck->lk.initialized != lck) { 1549 KMP_FATAL(LockIsUninitialized, func); 1550 } 1551 if (__kmp_is_queuing_lock_nestable(lck)) { 1552 KMP_FATAL(LockNestableUsedAsSimple, func); 1553 } 1554 if (__kmp_get_queuing_lock_owner(lck) != -1) { 1555 KMP_FATAL(LockStillOwned, func); 1556 } 1557 __kmp_destroy_queuing_lock(lck); 1558 } 1559 1560 // nested queuing locks 1561 1562 int __kmp_acquire_nested_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) { 1563 KMP_DEBUG_ASSERT(gtid >= 0); 1564 1565 if (__kmp_get_queuing_lock_owner(lck) == gtid) { 1566 lck->lk.depth_locked += 1; 1567 return KMP_LOCK_ACQUIRED_NEXT; 1568 } else { 1569 __kmp_acquire_queuing_lock_timed_template<false>(lck, gtid); 1570 ANNOTATE_QUEUING_ACQUIRED(lck); 1571 KMP_MB(); 1572 lck->lk.depth_locked = 1; 1573 KMP_MB(); 1574 lck->lk.owner_id = gtid + 1; 1575 return KMP_LOCK_ACQUIRED_FIRST; 1576 } 1577 } 1578 1579 static int 1580 __kmp_acquire_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck, 1581 kmp_int32 gtid) { 1582 char const *const func = "omp_set_nest_lock"; 1583 if (lck->lk.initialized != lck) { 1584 KMP_FATAL(LockIsUninitialized, func); 1585 } 1586 if (!__kmp_is_queuing_lock_nestable(lck)) { 1587 KMP_FATAL(LockSimpleUsedAsNestable, func); 1588 } 1589 return __kmp_acquire_nested_queuing_lock(lck, gtid); 1590 } 1591 1592 int __kmp_test_nested_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) { 1593 int retval; 1594 1595 KMP_DEBUG_ASSERT(gtid >= 0); 1596 1597 if (__kmp_get_queuing_lock_owner(lck) == gtid) { 1598 retval = ++lck->lk.depth_locked; 1599 } else if (!__kmp_test_queuing_lock(lck, gtid)) { 1600 retval = 0; 1601 } else { 1602 KMP_MB(); 1603 retval = lck->lk.depth_locked = 1; 1604 KMP_MB(); 1605 lck->lk.owner_id = gtid + 1; 1606 } 1607 return retval; 1608 } 1609 1610 static int __kmp_test_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck, 1611 kmp_int32 gtid) { 1612 char const *const func = "omp_test_nest_lock"; 1613 if (lck->lk.initialized != lck) { 1614 KMP_FATAL(LockIsUninitialized, func); 1615 } 1616 if (!__kmp_is_queuing_lock_nestable(lck)) { 1617 KMP_FATAL(LockSimpleUsedAsNestable, func); 1618 } 1619 return __kmp_test_nested_queuing_lock(lck, gtid); 1620 } 1621 1622 int __kmp_release_nested_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) { 1623 KMP_DEBUG_ASSERT(gtid >= 0); 1624 1625 KMP_MB(); 1626 if (--(lck->lk.depth_locked) == 0) { 1627 KMP_MB(); 1628 lck->lk.owner_id = 0; 1629 __kmp_release_queuing_lock(lck, gtid); 1630 return KMP_LOCK_RELEASED; 1631 } 1632 return KMP_LOCK_STILL_HELD; 1633 } 1634 1635 static int 1636 __kmp_release_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck, 1637 kmp_int32 gtid) { 1638 char const *const func = "omp_unset_nest_lock"; 1639 KMP_MB(); /* in case another processor initialized lock */ 1640 if (lck->lk.initialized != lck) { 1641 KMP_FATAL(LockIsUninitialized, func); 1642 } 1643 if (!__kmp_is_queuing_lock_nestable(lck)) { 1644 KMP_FATAL(LockSimpleUsedAsNestable, func); 1645 } 1646 if (__kmp_get_queuing_lock_owner(lck) == -1) { 1647 KMP_FATAL(LockUnsettingFree, func); 1648 } 1649 if (__kmp_get_queuing_lock_owner(lck) != gtid) { 1650 KMP_FATAL(LockUnsettingSetByAnother, func); 1651 } 1652 return __kmp_release_nested_queuing_lock(lck, gtid); 1653 } 1654 1655 void __kmp_init_nested_queuing_lock(kmp_queuing_lock_t *lck) { 1656 __kmp_init_queuing_lock(lck); 1657 lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks 1658 } 1659 1660 void __kmp_destroy_nested_queuing_lock(kmp_queuing_lock_t *lck) { 1661 __kmp_destroy_queuing_lock(lck); 1662 lck->lk.depth_locked = 0; 1663 } 1664 1665 static void 1666 __kmp_destroy_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck) { 1667 char const *const func = "omp_destroy_nest_lock"; 1668 if (lck->lk.initialized != lck) { 1669 KMP_FATAL(LockIsUninitialized, func); 1670 } 1671 if (!__kmp_is_queuing_lock_nestable(lck)) { 1672 KMP_FATAL(LockSimpleUsedAsNestable, func); 1673 } 1674 if (__kmp_get_queuing_lock_owner(lck) != -1) { 1675 KMP_FATAL(LockStillOwned, func); 1676 } 1677 __kmp_destroy_nested_queuing_lock(lck); 1678 } 1679 1680 // access functions to fields which don't exist for all lock kinds. 1681 1682 static const ident_t *__kmp_get_queuing_lock_location(kmp_queuing_lock_t *lck) { 1683 return lck->lk.location; 1684 } 1685 1686 static void __kmp_set_queuing_lock_location(kmp_queuing_lock_t *lck, 1687 const ident_t *loc) { 1688 lck->lk.location = loc; 1689 } 1690 1691 static kmp_lock_flags_t __kmp_get_queuing_lock_flags(kmp_queuing_lock_t *lck) { 1692 return lck->lk.flags; 1693 } 1694 1695 static void __kmp_set_queuing_lock_flags(kmp_queuing_lock_t *lck, 1696 kmp_lock_flags_t flags) { 1697 lck->lk.flags = flags; 1698 } 1699 1700 #if KMP_USE_ADAPTIVE_LOCKS 1701 1702 /* RTM Adaptive locks */ 1703 1704 #if KMP_HAVE_RTM_INTRINSICS 1705 #include <immintrin.h> 1706 #define SOFT_ABORT_MASK (_XABORT_RETRY | _XABORT_CONFLICT | _XABORT_EXPLICIT) 1707 1708 #else 1709 1710 // Values from the status register after failed speculation. 1711 #define _XBEGIN_STARTED (~0u) 1712 #define _XABORT_EXPLICIT (1 << 0) 1713 #define _XABORT_RETRY (1 << 1) 1714 #define _XABORT_CONFLICT (1 << 2) 1715 #define _XABORT_CAPACITY (1 << 3) 1716 #define _XABORT_DEBUG (1 << 4) 1717 #define _XABORT_NESTED (1 << 5) 1718 #define _XABORT_CODE(x) ((unsigned char)(((x) >> 24) & 0xFF)) 1719 1720 // Aborts for which it's worth trying again immediately 1721 #define SOFT_ABORT_MASK (_XABORT_RETRY | _XABORT_CONFLICT | _XABORT_EXPLICIT) 1722 1723 #define STRINGIZE_INTERNAL(arg) #arg 1724 #define STRINGIZE(arg) STRINGIZE_INTERNAL(arg) 1725 1726 // Access to RTM instructions 1727 /*A version of XBegin which returns -1 on speculation, and the value of EAX on 1728 an abort. This is the same definition as the compiler intrinsic that will be 1729 supported at some point. */ 1730 static __inline int _xbegin() { 1731 int res = -1; 1732 1733 #if KMP_OS_WINDOWS 1734 #if KMP_ARCH_X86_64 1735 _asm { 1736 _emit 0xC7 1737 _emit 0xF8 1738 _emit 2 1739 _emit 0 1740 _emit 0 1741 _emit 0 1742 jmp L2 1743 mov res, eax 1744 L2: 1745 } 1746 #else /* IA32 */ 1747 _asm { 1748 _emit 0xC7 1749 _emit 0xF8 1750 _emit 2 1751 _emit 0 1752 _emit 0 1753 _emit 0 1754 jmp L2 1755 mov res, eax 1756 L2: 1757 } 1758 #endif // KMP_ARCH_X86_64 1759 #else 1760 /* Note that %eax must be noted as killed (clobbered), because the XSR is 1761 returned in %eax(%rax) on abort. Other register values are restored, so 1762 don't need to be killed. 1763 1764 We must also mark 'res' as an input and an output, since otherwise 1765 'res=-1' may be dropped as being dead, whereas we do need the assignment on 1766 the successful (i.e., non-abort) path. */ 1767 __asm__ volatile("1: .byte 0xC7; .byte 0xF8;\n" 1768 " .long 1f-1b-6\n" 1769 " jmp 2f\n" 1770 "1: movl %%eax,%0\n" 1771 "2:" 1772 : "+r"(res)::"memory", "%eax"); 1773 #endif // KMP_OS_WINDOWS 1774 return res; 1775 } 1776 1777 /* Transaction end */ 1778 static __inline void _xend() { 1779 #if KMP_OS_WINDOWS 1780 __asm { 1781 _emit 0x0f 1782 _emit 0x01 1783 _emit 0xd5 1784 } 1785 #else 1786 __asm__ volatile(".byte 0x0f; .byte 0x01; .byte 0xd5" ::: "memory"); 1787 #endif 1788 } 1789 1790 /* This is a macro, the argument must be a single byte constant which can be 1791 evaluated by the inline assembler, since it is emitted as a byte into the 1792 assembly code. */ 1793 // clang-format off 1794 #if KMP_OS_WINDOWS 1795 #define _xabort(ARG) _asm _emit 0xc6 _asm _emit 0xf8 _asm _emit ARG 1796 #else 1797 #define _xabort(ARG) \ 1798 __asm__ volatile(".byte 0xC6; .byte 0xF8; .byte " STRINGIZE(ARG):::"memory"); 1799 #endif 1800 // clang-format on 1801 #endif // KMP_COMPILER_ICC && __INTEL_COMPILER >= 1300 1802 1803 // Statistics is collected for testing purpose 1804 #if KMP_DEBUG_ADAPTIVE_LOCKS 1805 1806 // We accumulate speculative lock statistics when the lock is destroyed. We 1807 // keep locks that haven't been destroyed in the liveLocks list so that we can 1808 // grab their statistics too. 1809 static kmp_adaptive_lock_statistics_t destroyedStats; 1810 1811 // To hold the list of live locks. 1812 static kmp_adaptive_lock_info_t liveLocks; 1813 1814 // A lock so we can safely update the list of locks. 1815 static kmp_bootstrap_lock_t chain_lock = 1816 KMP_BOOTSTRAP_LOCK_INITIALIZER(chain_lock); 1817 1818 // Initialize the list of stats. 1819 void __kmp_init_speculative_stats() { 1820 kmp_adaptive_lock_info_t *lck = &liveLocks; 1821 1822 memset(CCAST(kmp_adaptive_lock_statistics_t *, &(lck->stats)), 0, 1823 sizeof(lck->stats)); 1824 lck->stats.next = lck; 1825 lck->stats.prev = lck; 1826 1827 KMP_ASSERT(lck->stats.next->stats.prev == lck); 1828 KMP_ASSERT(lck->stats.prev->stats.next == lck); 1829 1830 __kmp_init_bootstrap_lock(&chain_lock); 1831 } 1832 1833 // Insert the lock into the circular list 1834 static void __kmp_remember_lock(kmp_adaptive_lock_info_t *lck) { 1835 __kmp_acquire_bootstrap_lock(&chain_lock); 1836 1837 lck->stats.next = liveLocks.stats.next; 1838 lck->stats.prev = &liveLocks; 1839 1840 liveLocks.stats.next = lck; 1841 lck->stats.next->stats.prev = lck; 1842 1843 KMP_ASSERT(lck->stats.next->stats.prev == lck); 1844 KMP_ASSERT(lck->stats.prev->stats.next == lck); 1845 1846 __kmp_release_bootstrap_lock(&chain_lock); 1847 } 1848 1849 static void __kmp_forget_lock(kmp_adaptive_lock_info_t *lck) { 1850 KMP_ASSERT(lck->stats.next->stats.prev == lck); 1851 KMP_ASSERT(lck->stats.prev->stats.next == lck); 1852 1853 kmp_adaptive_lock_info_t *n = lck->stats.next; 1854 kmp_adaptive_lock_info_t *p = lck->stats.prev; 1855 1856 n->stats.prev = p; 1857 p->stats.next = n; 1858 } 1859 1860 static void __kmp_zero_speculative_stats(kmp_adaptive_lock_info_t *lck) { 1861 memset(CCAST(kmp_adaptive_lock_statistics_t *, &lck->stats), 0, 1862 sizeof(lck->stats)); 1863 __kmp_remember_lock(lck); 1864 } 1865 1866 static void __kmp_add_stats(kmp_adaptive_lock_statistics_t *t, 1867 kmp_adaptive_lock_info_t *lck) { 1868 kmp_adaptive_lock_statistics_t volatile *s = &lck->stats; 1869 1870 t->nonSpeculativeAcquireAttempts += lck->acquire_attempts; 1871 t->successfulSpeculations += s->successfulSpeculations; 1872 t->hardFailedSpeculations += s->hardFailedSpeculations; 1873 t->softFailedSpeculations += s->softFailedSpeculations; 1874 t->nonSpeculativeAcquires += s->nonSpeculativeAcquires; 1875 t->lemmingYields += s->lemmingYields; 1876 } 1877 1878 static void __kmp_accumulate_speculative_stats(kmp_adaptive_lock_info_t *lck) { 1879 __kmp_acquire_bootstrap_lock(&chain_lock); 1880 1881 __kmp_add_stats(&destroyedStats, lck); 1882 __kmp_forget_lock(lck); 1883 1884 __kmp_release_bootstrap_lock(&chain_lock); 1885 } 1886 1887 static float percent(kmp_uint32 count, kmp_uint32 total) { 1888 return (total == 0) ? 0.0 : (100.0 * count) / total; 1889 } 1890 1891 void __kmp_print_speculative_stats() { 1892 kmp_adaptive_lock_statistics_t total = destroyedStats; 1893 kmp_adaptive_lock_info_t *lck; 1894 1895 for (lck = liveLocks.stats.next; lck != &liveLocks; lck = lck->stats.next) { 1896 __kmp_add_stats(&total, lck); 1897 } 1898 kmp_adaptive_lock_statistics_t *t = &total; 1899 kmp_uint32 totalSections = 1900 t->nonSpeculativeAcquires + t->successfulSpeculations; 1901 kmp_uint32 totalSpeculations = t->successfulSpeculations + 1902 t->hardFailedSpeculations + 1903 t->softFailedSpeculations; 1904 if (totalSections <= 0) 1905 return; 1906 1907 kmp_safe_raii_file_t statsFile; 1908 if (strcmp(__kmp_speculative_statsfile, "-") == 0) { 1909 statsFile.set_stdout(); 1910 } else { 1911 size_t buffLen = KMP_STRLEN(__kmp_speculative_statsfile) + 20; 1912 char buffer[buffLen]; 1913 KMP_SNPRINTF(&buffer[0], buffLen, __kmp_speculative_statsfile, 1914 (kmp_int32)getpid()); 1915 statsFile.open(buffer, "w"); 1916 } 1917 1918 fprintf(statsFile, "Speculative lock statistics (all approximate!)\n"); 1919 fprintf(statsFile, 1920 " Lock parameters: \n" 1921 " max_soft_retries : %10d\n" 1922 " max_badness : %10d\n", 1923 __kmp_adaptive_backoff_params.max_soft_retries, 1924 __kmp_adaptive_backoff_params.max_badness); 1925 fprintf(statsFile, " Non-speculative acquire attempts : %10d\n", 1926 t->nonSpeculativeAcquireAttempts); 1927 fprintf(statsFile, " Total critical sections : %10d\n", 1928 totalSections); 1929 fprintf(statsFile, " Successful speculations : %10d (%5.1f%%)\n", 1930 t->successfulSpeculations, 1931 percent(t->successfulSpeculations, totalSections)); 1932 fprintf(statsFile, " Non-speculative acquires : %10d (%5.1f%%)\n", 1933 t->nonSpeculativeAcquires, 1934 percent(t->nonSpeculativeAcquires, totalSections)); 1935 fprintf(statsFile, " Lemming yields : %10d\n\n", 1936 t->lemmingYields); 1937 1938 fprintf(statsFile, " Speculative acquire attempts : %10d\n", 1939 totalSpeculations); 1940 fprintf(statsFile, " Successes : %10d (%5.1f%%)\n", 1941 t->successfulSpeculations, 1942 percent(t->successfulSpeculations, totalSpeculations)); 1943 fprintf(statsFile, " Soft failures : %10d (%5.1f%%)\n", 1944 t->softFailedSpeculations, 1945 percent(t->softFailedSpeculations, totalSpeculations)); 1946 fprintf(statsFile, " Hard failures : %10d (%5.1f%%)\n", 1947 t->hardFailedSpeculations, 1948 percent(t->hardFailedSpeculations, totalSpeculations)); 1949 } 1950 1951 #define KMP_INC_STAT(lck, stat) (lck->lk.adaptive.stats.stat++) 1952 #else 1953 #define KMP_INC_STAT(lck, stat) 1954 1955 #endif // KMP_DEBUG_ADAPTIVE_LOCKS 1956 1957 static inline bool __kmp_is_unlocked_queuing_lock(kmp_queuing_lock_t *lck) { 1958 // It is enough to check that the head_id is zero. 1959 // We don't also need to check the tail. 1960 bool res = lck->lk.head_id == 0; 1961 1962 // We need a fence here, since we must ensure that no memory operations 1963 // from later in this thread float above that read. 1964 #if KMP_COMPILER_ICC 1965 _mm_mfence(); 1966 #else 1967 __sync_synchronize(); 1968 #endif 1969 1970 return res; 1971 } 1972 1973 // Functions for manipulating the badness 1974 static __inline void 1975 __kmp_update_badness_after_success(kmp_adaptive_lock_t *lck) { 1976 // Reset the badness to zero so we eagerly try to speculate again 1977 lck->lk.adaptive.badness = 0; 1978 KMP_INC_STAT(lck, successfulSpeculations); 1979 } 1980 1981 // Create a bit mask with one more set bit. 1982 static __inline void __kmp_step_badness(kmp_adaptive_lock_t *lck) { 1983 kmp_uint32 newBadness = (lck->lk.adaptive.badness << 1) | 1; 1984 if (newBadness > lck->lk.adaptive.max_badness) { 1985 return; 1986 } else { 1987 lck->lk.adaptive.badness = newBadness; 1988 } 1989 } 1990 1991 // Check whether speculation should be attempted. 1992 KMP_ATTRIBUTE_TARGET_RTM 1993 static __inline int __kmp_should_speculate(kmp_adaptive_lock_t *lck, 1994 kmp_int32 gtid) { 1995 kmp_uint32 badness = lck->lk.adaptive.badness; 1996 kmp_uint32 attempts = lck->lk.adaptive.acquire_attempts; 1997 int res = (attempts & badness) == 0; 1998 return res; 1999 } 2000 2001 // Attempt to acquire only the speculative lock. 2002 // Does not back off to the non-speculative lock. 2003 KMP_ATTRIBUTE_TARGET_RTM 2004 static int __kmp_test_adaptive_lock_only(kmp_adaptive_lock_t *lck, 2005 kmp_int32 gtid) { 2006 int retries = lck->lk.adaptive.max_soft_retries; 2007 2008 // We don't explicitly count the start of speculation, rather we record the 2009 // results (success, hard fail, soft fail). The sum of all of those is the 2010 // total number of times we started speculation since all speculations must 2011 // end one of those ways. 2012 do { 2013 kmp_uint32 status = _xbegin(); 2014 // Switch this in to disable actual speculation but exercise at least some 2015 // of the rest of the code. Useful for debugging... 2016 // kmp_uint32 status = _XABORT_NESTED; 2017 2018 if (status == _XBEGIN_STARTED) { 2019 /* We have successfully started speculation. Check that no-one acquired 2020 the lock for real between when we last looked and now. This also gets 2021 the lock cache line into our read-set, which we need so that we'll 2022 abort if anyone later claims it for real. */ 2023 if (!__kmp_is_unlocked_queuing_lock(GET_QLK_PTR(lck))) { 2024 // Lock is now visibly acquired, so someone beat us to it. Abort the 2025 // transaction so we'll restart from _xbegin with the failure status. 2026 _xabort(0x01); 2027 KMP_ASSERT2(0, "should not get here"); 2028 } 2029 return 1; // Lock has been acquired (speculatively) 2030 } else { 2031 // We have aborted, update the statistics 2032 if (status & SOFT_ABORT_MASK) { 2033 KMP_INC_STAT(lck, softFailedSpeculations); 2034 // and loop round to retry. 2035 } else { 2036 KMP_INC_STAT(lck, hardFailedSpeculations); 2037 // Give up if we had a hard failure. 2038 break; 2039 } 2040 } 2041 } while (retries--); // Loop while we have retries, and didn't fail hard. 2042 2043 // Either we had a hard failure or we didn't succeed softly after 2044 // the full set of attempts, so back off the badness. 2045 __kmp_step_badness(lck); 2046 return 0; 2047 } 2048 2049 // Attempt to acquire the speculative lock, or back off to the non-speculative 2050 // one if the speculative lock cannot be acquired. 2051 // We can succeed speculatively, non-speculatively, or fail. 2052 static int __kmp_test_adaptive_lock(kmp_adaptive_lock_t *lck, kmp_int32 gtid) { 2053 // First try to acquire the lock speculatively 2054 if (__kmp_should_speculate(lck, gtid) && 2055 __kmp_test_adaptive_lock_only(lck, gtid)) 2056 return 1; 2057 2058 // Speculative acquisition failed, so try to acquire it non-speculatively. 2059 // Count the non-speculative acquire attempt 2060 lck->lk.adaptive.acquire_attempts++; 2061 2062 // Use base, non-speculative lock. 2063 if (__kmp_test_queuing_lock(GET_QLK_PTR(lck), gtid)) { 2064 KMP_INC_STAT(lck, nonSpeculativeAcquires); 2065 return 1; // Lock is acquired (non-speculatively) 2066 } else { 2067 return 0; // Failed to acquire the lock, it's already visibly locked. 2068 } 2069 } 2070 2071 static int __kmp_test_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck, 2072 kmp_int32 gtid) { 2073 char const *const func = "omp_test_lock"; 2074 if (lck->lk.qlk.initialized != GET_QLK_PTR(lck)) { 2075 KMP_FATAL(LockIsUninitialized, func); 2076 } 2077 2078 int retval = __kmp_test_adaptive_lock(lck, gtid); 2079 2080 if (retval) { 2081 lck->lk.qlk.owner_id = gtid + 1; 2082 } 2083 return retval; 2084 } 2085 2086 // Block until we can acquire a speculative, adaptive lock. We check whether we 2087 // should be trying to speculate. If we should be, we check the real lock to see 2088 // if it is free, and, if not, pause without attempting to acquire it until it 2089 // is. Then we try the speculative acquire. This means that although we suffer 2090 // from lemmings a little (because all we can't acquire the lock speculatively 2091 // until the queue of threads waiting has cleared), we don't get into a state 2092 // where we can never acquire the lock speculatively (because we force the queue 2093 // to clear by preventing new arrivals from entering the queue). This does mean 2094 // that when we're trying to break lemmings, the lock is no longer fair. However 2095 // OpenMP makes no guarantee that its locks are fair, so this isn't a real 2096 // problem. 2097 static void __kmp_acquire_adaptive_lock(kmp_adaptive_lock_t *lck, 2098 kmp_int32 gtid) { 2099 if (__kmp_should_speculate(lck, gtid)) { 2100 if (__kmp_is_unlocked_queuing_lock(GET_QLK_PTR(lck))) { 2101 if (__kmp_test_adaptive_lock_only(lck, gtid)) 2102 return; 2103 // We tried speculation and failed, so give up. 2104 } else { 2105 // We can't try speculation until the lock is free, so we pause here 2106 // (without suspending on the queueing lock, to allow it to drain, then 2107 // try again. All other threads will also see the same result for 2108 // shouldSpeculate, so will be doing the same if they try to claim the 2109 // lock from now on. 2110 while (!__kmp_is_unlocked_queuing_lock(GET_QLK_PTR(lck))) { 2111 KMP_INC_STAT(lck, lemmingYields); 2112 KMP_YIELD(TRUE); 2113 } 2114 2115 if (__kmp_test_adaptive_lock_only(lck, gtid)) 2116 return; 2117 } 2118 } 2119 2120 // Speculative acquisition failed, so acquire it non-speculatively. 2121 // Count the non-speculative acquire attempt 2122 lck->lk.adaptive.acquire_attempts++; 2123 2124 __kmp_acquire_queuing_lock_timed_template<FALSE>(GET_QLK_PTR(lck), gtid); 2125 // We have acquired the base lock, so count that. 2126 KMP_INC_STAT(lck, nonSpeculativeAcquires); 2127 ANNOTATE_QUEUING_ACQUIRED(lck); 2128 } 2129 2130 static void __kmp_acquire_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck, 2131 kmp_int32 gtid) { 2132 char const *const func = "omp_set_lock"; 2133 if (lck->lk.qlk.initialized != GET_QLK_PTR(lck)) { 2134 KMP_FATAL(LockIsUninitialized, func); 2135 } 2136 if (__kmp_get_queuing_lock_owner(GET_QLK_PTR(lck)) == gtid) { 2137 KMP_FATAL(LockIsAlreadyOwned, func); 2138 } 2139 2140 __kmp_acquire_adaptive_lock(lck, gtid); 2141 2142 lck->lk.qlk.owner_id = gtid + 1; 2143 } 2144 2145 KMP_ATTRIBUTE_TARGET_RTM 2146 static int __kmp_release_adaptive_lock(kmp_adaptive_lock_t *lck, 2147 kmp_int32 gtid) { 2148 if (__kmp_is_unlocked_queuing_lock(GET_QLK_PTR( 2149 lck))) { // If the lock doesn't look claimed we must be speculating. 2150 // (Or the user's code is buggy and they're releasing without locking; 2151 // if we had XTEST we'd be able to check that case...) 2152 _xend(); // Exit speculation 2153 __kmp_update_badness_after_success(lck); 2154 } else { // Since the lock *is* visibly locked we're not speculating, 2155 // so should use the underlying lock's release scheme. 2156 __kmp_release_queuing_lock(GET_QLK_PTR(lck), gtid); 2157 } 2158 return KMP_LOCK_RELEASED; 2159 } 2160 2161 static int __kmp_release_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck, 2162 kmp_int32 gtid) { 2163 char const *const func = "omp_unset_lock"; 2164 KMP_MB(); /* in case another processor initialized lock */ 2165 if (lck->lk.qlk.initialized != GET_QLK_PTR(lck)) { 2166 KMP_FATAL(LockIsUninitialized, func); 2167 } 2168 if (__kmp_get_queuing_lock_owner(GET_QLK_PTR(lck)) == -1) { 2169 KMP_FATAL(LockUnsettingFree, func); 2170 } 2171 if (__kmp_get_queuing_lock_owner(GET_QLK_PTR(lck)) != gtid) { 2172 KMP_FATAL(LockUnsettingSetByAnother, func); 2173 } 2174 lck->lk.qlk.owner_id = 0; 2175 __kmp_release_adaptive_lock(lck, gtid); 2176 return KMP_LOCK_RELEASED; 2177 } 2178 2179 static void __kmp_init_adaptive_lock(kmp_adaptive_lock_t *lck) { 2180 __kmp_init_queuing_lock(GET_QLK_PTR(lck)); 2181 lck->lk.adaptive.badness = 0; 2182 lck->lk.adaptive.acquire_attempts = 0; // nonSpeculativeAcquireAttempts = 0; 2183 lck->lk.adaptive.max_soft_retries = 2184 __kmp_adaptive_backoff_params.max_soft_retries; 2185 lck->lk.adaptive.max_badness = __kmp_adaptive_backoff_params.max_badness; 2186 #if KMP_DEBUG_ADAPTIVE_LOCKS 2187 __kmp_zero_speculative_stats(&lck->lk.adaptive); 2188 #endif 2189 KA_TRACE(1000, ("__kmp_init_adaptive_lock: lock %p initialized\n", lck)); 2190 } 2191 2192 static void __kmp_destroy_adaptive_lock(kmp_adaptive_lock_t *lck) { 2193 #if KMP_DEBUG_ADAPTIVE_LOCKS 2194 __kmp_accumulate_speculative_stats(&lck->lk.adaptive); 2195 #endif 2196 __kmp_destroy_queuing_lock(GET_QLK_PTR(lck)); 2197 // Nothing needed for the speculative part. 2198 } 2199 2200 static void __kmp_destroy_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck) { 2201 char const *const func = "omp_destroy_lock"; 2202 if (lck->lk.qlk.initialized != GET_QLK_PTR(lck)) { 2203 KMP_FATAL(LockIsUninitialized, func); 2204 } 2205 if (__kmp_get_queuing_lock_owner(GET_QLK_PTR(lck)) != -1) { 2206 KMP_FATAL(LockStillOwned, func); 2207 } 2208 __kmp_destroy_adaptive_lock(lck); 2209 } 2210 2211 #endif // KMP_USE_ADAPTIVE_LOCKS 2212 2213 /* ------------------------------------------------------------------------ */ 2214 /* DRDPA ticket locks */ 2215 /* "DRDPA" means Dynamically Reconfigurable Distributed Polling Area */ 2216 2217 static kmp_int32 __kmp_get_drdpa_lock_owner(kmp_drdpa_lock_t *lck) { 2218 return lck->lk.owner_id - 1; 2219 } 2220 2221 static inline bool __kmp_is_drdpa_lock_nestable(kmp_drdpa_lock_t *lck) { 2222 return lck->lk.depth_locked != -1; 2223 } 2224 2225 __forceinline static int 2226 __kmp_acquire_drdpa_lock_timed_template(kmp_drdpa_lock_t *lck, kmp_int32 gtid) { 2227 kmp_uint64 ticket = KMP_ATOMIC_INC(&lck->lk.next_ticket); 2228 kmp_uint64 mask = lck->lk.mask; // atomic load 2229 std::atomic<kmp_uint64> *polls = lck->lk.polls; 2230 2231 #ifdef USE_LOCK_PROFILE 2232 if (polls[ticket & mask] != ticket) 2233 __kmp_printf("LOCK CONTENTION: %p\n", lck); 2234 /* else __kmp_printf( "." );*/ 2235 #endif /* USE_LOCK_PROFILE */ 2236 2237 // Now spin-wait, but reload the polls pointer and mask, in case the 2238 // polling area has been reconfigured. Unless it is reconfigured, the 2239 // reloads stay in L1 cache and are cheap. 2240 // 2241 // Keep this code in sync with KMP_WAIT, in kmp_dispatch.cpp !!! 2242 // The current implementation of KMP_WAIT doesn't allow for mask 2243 // and poll to be re-read every spin iteration. 2244 kmp_uint32 spins; 2245 KMP_FSYNC_PREPARE(lck); 2246 KMP_INIT_YIELD(spins); 2247 while (polls[ticket & mask] < ticket) { // atomic load 2248 KMP_YIELD_OVERSUB_ELSE_SPIN(spins); 2249 // Re-read the mask and the poll pointer from the lock structure. 2250 // 2251 // Make certain that "mask" is read before "polls" !!! 2252 // 2253 // If another thread picks reconfigures the polling area and updates their 2254 // values, and we get the new value of mask and the old polls pointer, we 2255 // could access memory beyond the end of the old polling area. 2256 mask = lck->lk.mask; // atomic load 2257 polls = lck->lk.polls; // atomic load 2258 } 2259 2260 // Critical section starts here 2261 KMP_FSYNC_ACQUIRED(lck); 2262 KA_TRACE(1000, ("__kmp_acquire_drdpa_lock: ticket #%lld acquired lock %p\n", 2263 ticket, lck)); 2264 lck->lk.now_serving = ticket; // non-volatile store 2265 2266 // Deallocate a garbage polling area if we know that we are the last 2267 // thread that could possibly access it. 2268 // 2269 // The >= check is in case __kmp_test_drdpa_lock() allocated the cleanup 2270 // ticket. 2271 if ((lck->lk.old_polls != NULL) && (ticket >= lck->lk.cleanup_ticket)) { 2272 __kmp_free(lck->lk.old_polls); 2273 lck->lk.old_polls = NULL; 2274 lck->lk.cleanup_ticket = 0; 2275 } 2276 2277 // Check to see if we should reconfigure the polling area. 2278 // If there is still a garbage polling area to be deallocated from a 2279 // previous reconfiguration, let a later thread reconfigure it. 2280 if (lck->lk.old_polls == NULL) { 2281 bool reconfigure = false; 2282 std::atomic<kmp_uint64> *old_polls = polls; 2283 kmp_uint32 num_polls = TCR_4(lck->lk.num_polls); 2284 2285 if (TCR_4(__kmp_nth) > 2286 (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc)) { 2287 // We are in oversubscription mode. Contract the polling area 2288 // down to a single location, if that hasn't been done already. 2289 if (num_polls > 1) { 2290 reconfigure = true; 2291 num_polls = TCR_4(lck->lk.num_polls); 2292 mask = 0; 2293 num_polls = 1; 2294 polls = (std::atomic<kmp_uint64> *)__kmp_allocate(num_polls * 2295 sizeof(*polls)); 2296 polls[0] = ticket; 2297 } 2298 } else { 2299 // We are in under/fully subscribed mode. Check the number of 2300 // threads waiting on the lock. The size of the polling area 2301 // should be at least the number of threads waiting. 2302 kmp_uint64 num_waiting = TCR_8(lck->lk.next_ticket) - ticket - 1; 2303 if (num_waiting > num_polls) { 2304 kmp_uint32 old_num_polls = num_polls; 2305 reconfigure = true; 2306 do { 2307 mask = (mask << 1) | 1; 2308 num_polls *= 2; 2309 } while (num_polls <= num_waiting); 2310 2311 // Allocate the new polling area, and copy the relevant portion 2312 // of the old polling area to the new area. __kmp_allocate() 2313 // zeroes the memory it allocates, and most of the old area is 2314 // just zero padding, so we only copy the release counters. 2315 polls = (std::atomic<kmp_uint64> *)__kmp_allocate(num_polls * 2316 sizeof(*polls)); 2317 kmp_uint32 i; 2318 for (i = 0; i < old_num_polls; i++) { 2319 polls[i].store(old_polls[i]); 2320 } 2321 } 2322 } 2323 2324 if (reconfigure) { 2325 // Now write the updated fields back to the lock structure. 2326 // 2327 // Make certain that "polls" is written before "mask" !!! 2328 // 2329 // If another thread picks up the new value of mask and the old polls 2330 // pointer , it could access memory beyond the end of the old polling 2331 // area. 2332 // 2333 // On x86, we need memory fences. 2334 KA_TRACE(1000, ("__kmp_acquire_drdpa_lock: ticket #%lld reconfiguring " 2335 "lock %p to %d polls\n", 2336 ticket, lck, num_polls)); 2337 2338 lck->lk.old_polls = old_polls; 2339 lck->lk.polls = polls; // atomic store 2340 2341 KMP_MB(); 2342 2343 lck->lk.num_polls = num_polls; 2344 lck->lk.mask = mask; // atomic store 2345 2346 KMP_MB(); 2347 2348 // Only after the new polling area and mask have been flushed 2349 // to main memory can we update the cleanup ticket field. 2350 // 2351 // volatile load / non-volatile store 2352 lck->lk.cleanup_ticket = lck->lk.next_ticket; 2353 } 2354 } 2355 return KMP_LOCK_ACQUIRED_FIRST; 2356 } 2357 2358 int __kmp_acquire_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) { 2359 int retval = __kmp_acquire_drdpa_lock_timed_template(lck, gtid); 2360 ANNOTATE_DRDPA_ACQUIRED(lck); 2361 return retval; 2362 } 2363 2364 static int __kmp_acquire_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck, 2365 kmp_int32 gtid) { 2366 char const *const func = "omp_set_lock"; 2367 if (lck->lk.initialized != lck) { 2368 KMP_FATAL(LockIsUninitialized, func); 2369 } 2370 if (__kmp_is_drdpa_lock_nestable(lck)) { 2371 KMP_FATAL(LockNestableUsedAsSimple, func); 2372 } 2373 if ((gtid >= 0) && (__kmp_get_drdpa_lock_owner(lck) == gtid)) { 2374 KMP_FATAL(LockIsAlreadyOwned, func); 2375 } 2376 2377 __kmp_acquire_drdpa_lock(lck, gtid); 2378 2379 lck->lk.owner_id = gtid + 1; 2380 return KMP_LOCK_ACQUIRED_FIRST; 2381 } 2382 2383 int __kmp_test_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) { 2384 // First get a ticket, then read the polls pointer and the mask. 2385 // The polls pointer must be read before the mask!!! (See above) 2386 kmp_uint64 ticket = lck->lk.next_ticket; // atomic load 2387 std::atomic<kmp_uint64> *polls = lck->lk.polls; 2388 kmp_uint64 mask = lck->lk.mask; // atomic load 2389 if (polls[ticket & mask] == ticket) { 2390 kmp_uint64 next_ticket = ticket + 1; 2391 if (__kmp_atomic_compare_store_acq(&lck->lk.next_ticket, ticket, 2392 next_ticket)) { 2393 KMP_FSYNC_ACQUIRED(lck); 2394 KA_TRACE(1000, ("__kmp_test_drdpa_lock: ticket #%lld acquired lock %p\n", 2395 ticket, lck)); 2396 lck->lk.now_serving = ticket; // non-volatile store 2397 2398 // Since no threads are waiting, there is no possibility that we would 2399 // want to reconfigure the polling area. We might have the cleanup ticket 2400 // value (which says that it is now safe to deallocate old_polls), but 2401 // we'll let a later thread which calls __kmp_acquire_lock do that - this 2402 // routine isn't supposed to block, and we would risk blocks if we called 2403 // __kmp_free() to do the deallocation. 2404 return TRUE; 2405 } 2406 } 2407 return FALSE; 2408 } 2409 2410 static int __kmp_test_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck, 2411 kmp_int32 gtid) { 2412 char const *const func = "omp_test_lock"; 2413 if (lck->lk.initialized != lck) { 2414 KMP_FATAL(LockIsUninitialized, func); 2415 } 2416 if (__kmp_is_drdpa_lock_nestable(lck)) { 2417 KMP_FATAL(LockNestableUsedAsSimple, func); 2418 } 2419 2420 int retval = __kmp_test_drdpa_lock(lck, gtid); 2421 2422 if (retval) { 2423 lck->lk.owner_id = gtid + 1; 2424 } 2425 return retval; 2426 } 2427 2428 int __kmp_release_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) { 2429 // Read the ticket value from the lock data struct, then the polls pointer and 2430 // the mask. The polls pointer must be read before the mask!!! (See above) 2431 kmp_uint64 ticket = lck->lk.now_serving + 1; // non-atomic load 2432 std::atomic<kmp_uint64> *polls = lck->lk.polls; // atomic load 2433 kmp_uint64 mask = lck->lk.mask; // atomic load 2434 KA_TRACE(1000, ("__kmp_release_drdpa_lock: ticket #%lld released lock %p\n", 2435 ticket - 1, lck)); 2436 KMP_FSYNC_RELEASING(lck); 2437 ANNOTATE_DRDPA_RELEASED(lck); 2438 polls[ticket & mask] = ticket; // atomic store 2439 return KMP_LOCK_RELEASED; 2440 } 2441 2442 static int __kmp_release_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck, 2443 kmp_int32 gtid) { 2444 char const *const func = "omp_unset_lock"; 2445 KMP_MB(); /* in case another processor initialized lock */ 2446 if (lck->lk.initialized != lck) { 2447 KMP_FATAL(LockIsUninitialized, func); 2448 } 2449 if (__kmp_is_drdpa_lock_nestable(lck)) { 2450 KMP_FATAL(LockNestableUsedAsSimple, func); 2451 } 2452 if (__kmp_get_drdpa_lock_owner(lck) == -1) { 2453 KMP_FATAL(LockUnsettingFree, func); 2454 } 2455 if ((gtid >= 0) && (__kmp_get_drdpa_lock_owner(lck) >= 0) && 2456 (__kmp_get_drdpa_lock_owner(lck) != gtid)) { 2457 KMP_FATAL(LockUnsettingSetByAnother, func); 2458 } 2459 lck->lk.owner_id = 0; 2460 return __kmp_release_drdpa_lock(lck, gtid); 2461 } 2462 2463 void __kmp_init_drdpa_lock(kmp_drdpa_lock_t *lck) { 2464 lck->lk.location = NULL; 2465 lck->lk.mask = 0; 2466 lck->lk.num_polls = 1; 2467 lck->lk.polls = (std::atomic<kmp_uint64> *)__kmp_allocate( 2468 lck->lk.num_polls * sizeof(*(lck->lk.polls))); 2469 lck->lk.cleanup_ticket = 0; 2470 lck->lk.old_polls = NULL; 2471 lck->lk.next_ticket = 0; 2472 lck->lk.now_serving = 0; 2473 lck->lk.owner_id = 0; // no thread owns the lock. 2474 lck->lk.depth_locked = -1; // >= 0 for nestable locks, -1 for simple locks. 2475 lck->lk.initialized = lck; 2476 2477 KA_TRACE(1000, ("__kmp_init_drdpa_lock: lock %p initialized\n", lck)); 2478 } 2479 2480 void __kmp_destroy_drdpa_lock(kmp_drdpa_lock_t *lck) { 2481 lck->lk.initialized = NULL; 2482 lck->lk.location = NULL; 2483 if (lck->lk.polls.load() != NULL) { 2484 __kmp_free(lck->lk.polls.load()); 2485 lck->lk.polls = NULL; 2486 } 2487 if (lck->lk.old_polls != NULL) { 2488 __kmp_free(lck->lk.old_polls); 2489 lck->lk.old_polls = NULL; 2490 } 2491 lck->lk.mask = 0; 2492 lck->lk.num_polls = 0; 2493 lck->lk.cleanup_ticket = 0; 2494 lck->lk.next_ticket = 0; 2495 lck->lk.now_serving = 0; 2496 lck->lk.owner_id = 0; 2497 lck->lk.depth_locked = -1; 2498 } 2499 2500 static void __kmp_destroy_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck) { 2501 char const *const func = "omp_destroy_lock"; 2502 if (lck->lk.initialized != lck) { 2503 KMP_FATAL(LockIsUninitialized, func); 2504 } 2505 if (__kmp_is_drdpa_lock_nestable(lck)) { 2506 KMP_FATAL(LockNestableUsedAsSimple, func); 2507 } 2508 if (__kmp_get_drdpa_lock_owner(lck) != -1) { 2509 KMP_FATAL(LockStillOwned, func); 2510 } 2511 __kmp_destroy_drdpa_lock(lck); 2512 } 2513 2514 // nested drdpa ticket locks 2515 2516 int __kmp_acquire_nested_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) { 2517 KMP_DEBUG_ASSERT(gtid >= 0); 2518 2519 if (__kmp_get_drdpa_lock_owner(lck) == gtid) { 2520 lck->lk.depth_locked += 1; 2521 return KMP_LOCK_ACQUIRED_NEXT; 2522 } else { 2523 __kmp_acquire_drdpa_lock_timed_template(lck, gtid); 2524 ANNOTATE_DRDPA_ACQUIRED(lck); 2525 KMP_MB(); 2526 lck->lk.depth_locked = 1; 2527 KMP_MB(); 2528 lck->lk.owner_id = gtid + 1; 2529 return KMP_LOCK_ACQUIRED_FIRST; 2530 } 2531 } 2532 2533 static void __kmp_acquire_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck, 2534 kmp_int32 gtid) { 2535 char const *const func = "omp_set_nest_lock"; 2536 if (lck->lk.initialized != lck) { 2537 KMP_FATAL(LockIsUninitialized, func); 2538 } 2539 if (!__kmp_is_drdpa_lock_nestable(lck)) { 2540 KMP_FATAL(LockSimpleUsedAsNestable, func); 2541 } 2542 __kmp_acquire_nested_drdpa_lock(lck, gtid); 2543 } 2544 2545 int __kmp_test_nested_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) { 2546 int retval; 2547 2548 KMP_DEBUG_ASSERT(gtid >= 0); 2549 2550 if (__kmp_get_drdpa_lock_owner(lck) == gtid) { 2551 retval = ++lck->lk.depth_locked; 2552 } else if (!__kmp_test_drdpa_lock(lck, gtid)) { 2553 retval = 0; 2554 } else { 2555 KMP_MB(); 2556 retval = lck->lk.depth_locked = 1; 2557 KMP_MB(); 2558 lck->lk.owner_id = gtid + 1; 2559 } 2560 return retval; 2561 } 2562 2563 static int __kmp_test_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck, 2564 kmp_int32 gtid) { 2565 char const *const func = "omp_test_nest_lock"; 2566 if (lck->lk.initialized != lck) { 2567 KMP_FATAL(LockIsUninitialized, func); 2568 } 2569 if (!__kmp_is_drdpa_lock_nestable(lck)) { 2570 KMP_FATAL(LockSimpleUsedAsNestable, func); 2571 } 2572 return __kmp_test_nested_drdpa_lock(lck, gtid); 2573 } 2574 2575 int __kmp_release_nested_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) { 2576 KMP_DEBUG_ASSERT(gtid >= 0); 2577 2578 KMP_MB(); 2579 if (--(lck->lk.depth_locked) == 0) { 2580 KMP_MB(); 2581 lck->lk.owner_id = 0; 2582 __kmp_release_drdpa_lock(lck, gtid); 2583 return KMP_LOCK_RELEASED; 2584 } 2585 return KMP_LOCK_STILL_HELD; 2586 } 2587 2588 static int __kmp_release_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck, 2589 kmp_int32 gtid) { 2590 char const *const func = "omp_unset_nest_lock"; 2591 KMP_MB(); /* in case another processor initialized lock */ 2592 if (lck->lk.initialized != lck) { 2593 KMP_FATAL(LockIsUninitialized, func); 2594 } 2595 if (!__kmp_is_drdpa_lock_nestable(lck)) { 2596 KMP_FATAL(LockSimpleUsedAsNestable, func); 2597 } 2598 if (__kmp_get_drdpa_lock_owner(lck) == -1) { 2599 KMP_FATAL(LockUnsettingFree, func); 2600 } 2601 if (__kmp_get_drdpa_lock_owner(lck) != gtid) { 2602 KMP_FATAL(LockUnsettingSetByAnother, func); 2603 } 2604 return __kmp_release_nested_drdpa_lock(lck, gtid); 2605 } 2606 2607 void __kmp_init_nested_drdpa_lock(kmp_drdpa_lock_t *lck) { 2608 __kmp_init_drdpa_lock(lck); 2609 lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks 2610 } 2611 2612 void __kmp_destroy_nested_drdpa_lock(kmp_drdpa_lock_t *lck) { 2613 __kmp_destroy_drdpa_lock(lck); 2614 lck->lk.depth_locked = 0; 2615 } 2616 2617 static void __kmp_destroy_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck) { 2618 char const *const func = "omp_destroy_nest_lock"; 2619 if (lck->lk.initialized != lck) { 2620 KMP_FATAL(LockIsUninitialized, func); 2621 } 2622 if (!__kmp_is_drdpa_lock_nestable(lck)) { 2623 KMP_FATAL(LockSimpleUsedAsNestable, func); 2624 } 2625 if (__kmp_get_drdpa_lock_owner(lck) != -1) { 2626 KMP_FATAL(LockStillOwned, func); 2627 } 2628 __kmp_destroy_nested_drdpa_lock(lck); 2629 } 2630 2631 // access functions to fields which don't exist for all lock kinds. 2632 2633 static const ident_t *__kmp_get_drdpa_lock_location(kmp_drdpa_lock_t *lck) { 2634 return lck->lk.location; 2635 } 2636 2637 static void __kmp_set_drdpa_lock_location(kmp_drdpa_lock_t *lck, 2638 const ident_t *loc) { 2639 lck->lk.location = loc; 2640 } 2641 2642 static kmp_lock_flags_t __kmp_get_drdpa_lock_flags(kmp_drdpa_lock_t *lck) { 2643 return lck->lk.flags; 2644 } 2645 2646 static void __kmp_set_drdpa_lock_flags(kmp_drdpa_lock_t *lck, 2647 kmp_lock_flags_t flags) { 2648 lck->lk.flags = flags; 2649 } 2650 2651 // Time stamp counter 2652 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 2653 #define __kmp_tsc() __kmp_hardware_timestamp() 2654 // Runtime's default backoff parameters 2655 kmp_backoff_t __kmp_spin_backoff_params = {1, 4096, 100}; 2656 #else 2657 // Use nanoseconds for other platforms 2658 extern kmp_uint64 __kmp_now_nsec(); 2659 kmp_backoff_t __kmp_spin_backoff_params = {1, 256, 100}; 2660 #define __kmp_tsc() __kmp_now_nsec() 2661 #endif 2662 2663 // A useful predicate for dealing with timestamps that may wrap. 2664 // Is a before b? Since the timestamps may wrap, this is asking whether it's 2665 // shorter to go clockwise from a to b around the clock-face, or anti-clockwise. 2666 // Times where going clockwise is less distance than going anti-clockwise 2667 // are in the future, others are in the past. e.g. a = MAX-1, b = MAX+1 (=0), 2668 // then a > b (true) does not mean a reached b; whereas signed(a) = -2, 2669 // signed(b) = 0 captures the actual difference 2670 static inline bool before(kmp_uint64 a, kmp_uint64 b) { 2671 return ((kmp_int64)b - (kmp_int64)a) > 0; 2672 } 2673 2674 // Truncated binary exponential backoff function 2675 void __kmp_spin_backoff(kmp_backoff_t *boff) { 2676 // We could flatten this loop, but making it a nested loop gives better result 2677 kmp_uint32 i; 2678 for (i = boff->step; i > 0; i--) { 2679 kmp_uint64 goal = __kmp_tsc() + boff->min_tick; 2680 do { 2681 KMP_CPU_PAUSE(); 2682 } while (before(__kmp_tsc(), goal)); 2683 } 2684 boff->step = (boff->step << 1 | 1) & (boff->max_backoff - 1); 2685 } 2686 2687 #if KMP_USE_DYNAMIC_LOCK 2688 2689 // Direct lock initializers. It simply writes a tag to the low 8 bits of the 2690 // lock word. 2691 static void __kmp_init_direct_lock(kmp_dyna_lock_t *lck, 2692 kmp_dyna_lockseq_t seq) { 2693 TCW_4(*lck, KMP_GET_D_TAG(seq)); 2694 KA_TRACE( 2695 20, 2696 ("__kmp_init_direct_lock: initialized direct lock with type#%d\n", seq)); 2697 } 2698 2699 #if KMP_USE_TSX 2700 2701 // HLE lock functions - imported from the testbed runtime. 2702 #define HLE_ACQUIRE ".byte 0xf2;" 2703 #define HLE_RELEASE ".byte 0xf3;" 2704 2705 static inline kmp_uint32 swap4(kmp_uint32 volatile *p, kmp_uint32 v) { 2706 __asm__ volatile(HLE_ACQUIRE "xchg %1,%0" : "+r"(v), "+m"(*p) : : "memory"); 2707 return v; 2708 } 2709 2710 static void __kmp_destroy_hle_lock(kmp_dyna_lock_t *lck) { TCW_4(*lck, 0); } 2711 2712 static void __kmp_destroy_hle_lock_with_checks(kmp_dyna_lock_t *lck) { 2713 TCW_4(*lck, 0); 2714 } 2715 2716 static void __kmp_acquire_hle_lock(kmp_dyna_lock_t *lck, kmp_int32 gtid) { 2717 // Use gtid for KMP_LOCK_BUSY if necessary 2718 if (swap4(lck, KMP_LOCK_BUSY(1, hle)) != KMP_LOCK_FREE(hle)) { 2719 int delay = 1; 2720 do { 2721 while (*(kmp_uint32 volatile *)lck != KMP_LOCK_FREE(hle)) { 2722 for (int i = delay; i != 0; --i) 2723 KMP_CPU_PAUSE(); 2724 delay = ((delay << 1) | 1) & 7; 2725 } 2726 } while (swap4(lck, KMP_LOCK_BUSY(1, hle)) != KMP_LOCK_FREE(hle)); 2727 } 2728 } 2729 2730 static void __kmp_acquire_hle_lock_with_checks(kmp_dyna_lock_t *lck, 2731 kmp_int32 gtid) { 2732 __kmp_acquire_hle_lock(lck, gtid); // TODO: add checks 2733 } 2734 2735 static int __kmp_release_hle_lock(kmp_dyna_lock_t *lck, kmp_int32 gtid) { 2736 __asm__ volatile(HLE_RELEASE "movl %1,%0" 2737 : "=m"(*lck) 2738 : "r"(KMP_LOCK_FREE(hle)) 2739 : "memory"); 2740 return KMP_LOCK_RELEASED; 2741 } 2742 2743 static int __kmp_release_hle_lock_with_checks(kmp_dyna_lock_t *lck, 2744 kmp_int32 gtid) { 2745 return __kmp_release_hle_lock(lck, gtid); // TODO: add checks 2746 } 2747 2748 static int __kmp_test_hle_lock(kmp_dyna_lock_t *lck, kmp_int32 gtid) { 2749 return swap4(lck, KMP_LOCK_BUSY(1, hle)) == KMP_LOCK_FREE(hle); 2750 } 2751 2752 static int __kmp_test_hle_lock_with_checks(kmp_dyna_lock_t *lck, 2753 kmp_int32 gtid) { 2754 return __kmp_test_hle_lock(lck, gtid); // TODO: add checks 2755 } 2756 2757 static void __kmp_init_rtm_queuing_lock(kmp_queuing_lock_t *lck) { 2758 __kmp_init_queuing_lock(lck); 2759 } 2760 2761 static void __kmp_destroy_rtm_queuing_lock(kmp_queuing_lock_t *lck) { 2762 __kmp_destroy_queuing_lock(lck); 2763 } 2764 2765 static void 2766 __kmp_destroy_rtm_queuing_lock_with_checks(kmp_queuing_lock_t *lck) { 2767 __kmp_destroy_queuing_lock_with_checks(lck); 2768 } 2769 2770 KMP_ATTRIBUTE_TARGET_RTM 2771 static void __kmp_acquire_rtm_queuing_lock(kmp_queuing_lock_t *lck, 2772 kmp_int32 gtid) { 2773 unsigned retries = 3, status; 2774 do { 2775 status = _xbegin(); 2776 if (status == _XBEGIN_STARTED) { 2777 if (__kmp_is_unlocked_queuing_lock(lck)) 2778 return; 2779 _xabort(0xff); 2780 } 2781 if ((status & _XABORT_EXPLICIT) && _XABORT_CODE(status) == 0xff) { 2782 // Wait until lock becomes free 2783 while (!__kmp_is_unlocked_queuing_lock(lck)) { 2784 KMP_YIELD(TRUE); 2785 } 2786 } else if (!(status & _XABORT_RETRY)) 2787 break; 2788 } while (retries--); 2789 2790 // Fall-back non-speculative lock (xchg) 2791 __kmp_acquire_queuing_lock(lck, gtid); 2792 } 2793 2794 static void __kmp_acquire_rtm_queuing_lock_with_checks(kmp_queuing_lock_t *lck, 2795 kmp_int32 gtid) { 2796 __kmp_acquire_rtm_queuing_lock(lck, gtid); 2797 } 2798 2799 KMP_ATTRIBUTE_TARGET_RTM 2800 static int __kmp_release_rtm_queuing_lock(kmp_queuing_lock_t *lck, 2801 kmp_int32 gtid) { 2802 if (__kmp_is_unlocked_queuing_lock(lck)) { 2803 // Releasing from speculation 2804 _xend(); 2805 } else { 2806 // Releasing from a real lock 2807 __kmp_release_queuing_lock(lck, gtid); 2808 } 2809 return KMP_LOCK_RELEASED; 2810 } 2811 2812 static int __kmp_release_rtm_queuing_lock_with_checks(kmp_queuing_lock_t *lck, 2813 kmp_int32 gtid) { 2814 return __kmp_release_rtm_queuing_lock(lck, gtid); 2815 } 2816 2817 KMP_ATTRIBUTE_TARGET_RTM 2818 static int __kmp_test_rtm_queuing_lock(kmp_queuing_lock_t *lck, 2819 kmp_int32 gtid) { 2820 unsigned retries = 3, status; 2821 do { 2822 status = _xbegin(); 2823 if (status == _XBEGIN_STARTED && __kmp_is_unlocked_queuing_lock(lck)) { 2824 return 1; 2825 } 2826 if (!(status & _XABORT_RETRY)) 2827 break; 2828 } while (retries--); 2829 2830 return __kmp_test_queuing_lock(lck, gtid); 2831 } 2832 2833 static int __kmp_test_rtm_queuing_lock_with_checks(kmp_queuing_lock_t *lck, 2834 kmp_int32 gtid) { 2835 return __kmp_test_rtm_queuing_lock(lck, gtid); 2836 } 2837 2838 // Reuse kmp_tas_lock_t for TSX lock which use RTM with fall-back spin lock. 2839 typedef kmp_tas_lock_t kmp_rtm_spin_lock_t; 2840 2841 static void __kmp_destroy_rtm_spin_lock(kmp_rtm_spin_lock_t *lck) { 2842 KMP_ATOMIC_ST_REL(&lck->lk.poll, 0); 2843 } 2844 2845 static void __kmp_destroy_rtm_spin_lock_with_checks(kmp_rtm_spin_lock_t *lck) { 2846 __kmp_destroy_rtm_spin_lock(lck); 2847 } 2848 2849 KMP_ATTRIBUTE_TARGET_RTM 2850 static int __kmp_acquire_rtm_spin_lock(kmp_rtm_spin_lock_t *lck, 2851 kmp_int32 gtid) { 2852 unsigned retries = 3, status; 2853 kmp_int32 lock_free = KMP_LOCK_FREE(rtm_spin); 2854 kmp_int32 lock_busy = KMP_LOCK_BUSY(1, rtm_spin); 2855 do { 2856 status = _xbegin(); 2857 if (status == _XBEGIN_STARTED) { 2858 if (KMP_ATOMIC_LD_RLX(&lck->lk.poll) == lock_free) 2859 return KMP_LOCK_ACQUIRED_FIRST; 2860 _xabort(0xff); 2861 } 2862 if ((status & _XABORT_EXPLICIT) && _XABORT_CODE(status) == 0xff) { 2863 // Wait until lock becomes free 2864 while (KMP_ATOMIC_LD_RLX(&lck->lk.poll) != lock_free) { 2865 KMP_YIELD(TRUE); 2866 } 2867 } else if (!(status & _XABORT_RETRY)) 2868 break; 2869 } while (retries--); 2870 2871 // Fall-back spin lock 2872 KMP_FSYNC_PREPARE(lck); 2873 kmp_backoff_t backoff = __kmp_spin_backoff_params; 2874 while (KMP_ATOMIC_LD_RLX(&lck->lk.poll) != lock_free || 2875 !__kmp_atomic_compare_store_acq(&lck->lk.poll, lock_free, lock_busy)) { 2876 __kmp_spin_backoff(&backoff); 2877 } 2878 KMP_FSYNC_ACQUIRED(lck); 2879 return KMP_LOCK_ACQUIRED_FIRST; 2880 } 2881 2882 static int __kmp_acquire_rtm_spin_lock_with_checks(kmp_rtm_spin_lock_t *lck, 2883 kmp_int32 gtid) { 2884 return __kmp_acquire_rtm_spin_lock(lck, gtid); 2885 } 2886 2887 KMP_ATTRIBUTE_TARGET_RTM 2888 static int __kmp_release_rtm_spin_lock(kmp_rtm_spin_lock_t *lck, 2889 kmp_int32 gtid) { 2890 if (KMP_ATOMIC_LD_RLX(&lck->lk.poll) == KMP_LOCK_FREE(rtm_spin)) { 2891 // Releasing from speculation 2892 _xend(); 2893 } else { 2894 // Releasing from a real lock 2895 KMP_FSYNC_RELEASING(lck); 2896 KMP_ATOMIC_ST_REL(&lck->lk.poll, KMP_LOCK_FREE(rtm_spin)); 2897 } 2898 return KMP_LOCK_RELEASED; 2899 } 2900 2901 static int __kmp_release_rtm_spin_lock_with_checks(kmp_rtm_spin_lock_t *lck, 2902 kmp_int32 gtid) { 2903 return __kmp_release_rtm_spin_lock(lck, gtid); 2904 } 2905 2906 KMP_ATTRIBUTE_TARGET_RTM 2907 static int __kmp_test_rtm_spin_lock(kmp_rtm_spin_lock_t *lck, kmp_int32 gtid) { 2908 unsigned retries = 3, status; 2909 kmp_int32 lock_free = KMP_LOCK_FREE(rtm_spin); 2910 kmp_int32 lock_busy = KMP_LOCK_BUSY(1, rtm_spin); 2911 do { 2912 status = _xbegin(); 2913 if (status == _XBEGIN_STARTED && 2914 KMP_ATOMIC_LD_RLX(&lck->lk.poll) == lock_free) { 2915 return TRUE; 2916 } 2917 if (!(status & _XABORT_RETRY)) 2918 break; 2919 } while (retries--); 2920 2921 if (KMP_ATOMIC_LD_RLX(&lck->lk.poll) == lock_free && 2922 __kmp_atomic_compare_store_acq(&lck->lk.poll, lock_free, lock_busy)) { 2923 KMP_FSYNC_ACQUIRED(lck); 2924 return TRUE; 2925 } 2926 return FALSE; 2927 } 2928 2929 static int __kmp_test_rtm_spin_lock_with_checks(kmp_rtm_spin_lock_t *lck, 2930 kmp_int32 gtid) { 2931 return __kmp_test_rtm_spin_lock(lck, gtid); 2932 } 2933 2934 #endif // KMP_USE_TSX 2935 2936 // Entry functions for indirect locks (first element of direct lock jump tables) 2937 static void __kmp_init_indirect_lock(kmp_dyna_lock_t *l, 2938 kmp_dyna_lockseq_t tag); 2939 static void __kmp_destroy_indirect_lock(kmp_dyna_lock_t *lock); 2940 static int __kmp_set_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32); 2941 static int __kmp_unset_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32); 2942 static int __kmp_test_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32); 2943 static int __kmp_set_indirect_lock_with_checks(kmp_dyna_lock_t *lock, 2944 kmp_int32); 2945 static int __kmp_unset_indirect_lock_with_checks(kmp_dyna_lock_t *lock, 2946 kmp_int32); 2947 static int __kmp_test_indirect_lock_with_checks(kmp_dyna_lock_t *lock, 2948 kmp_int32); 2949 2950 // Lock function definitions for the union parameter type 2951 #define KMP_FOREACH_LOCK_KIND(m, a) m(ticket, a) m(queuing, a) m(drdpa, a) 2952 2953 #define expand1(lk, op) \ 2954 static void __kmp_##op##_##lk##_##lock(kmp_user_lock_p lock) { \ 2955 __kmp_##op##_##lk##_##lock(&lock->lk); \ 2956 } 2957 #define expand2(lk, op) \ 2958 static int __kmp_##op##_##lk##_##lock(kmp_user_lock_p lock, \ 2959 kmp_int32 gtid) { \ 2960 return __kmp_##op##_##lk##_##lock(&lock->lk, gtid); \ 2961 } 2962 #define expand3(lk, op) \ 2963 static void __kmp_set_##lk##_##lock_flags(kmp_user_lock_p lock, \ 2964 kmp_lock_flags_t flags) { \ 2965 __kmp_set_##lk##_lock_flags(&lock->lk, flags); \ 2966 } 2967 #define expand4(lk, op) \ 2968 static void __kmp_set_##lk##_##lock_location(kmp_user_lock_p lock, \ 2969 const ident_t *loc) { \ 2970 __kmp_set_##lk##_lock_location(&lock->lk, loc); \ 2971 } 2972 2973 KMP_FOREACH_LOCK_KIND(expand1, init) 2974 KMP_FOREACH_LOCK_KIND(expand1, init_nested) 2975 KMP_FOREACH_LOCK_KIND(expand1, destroy) 2976 KMP_FOREACH_LOCK_KIND(expand1, destroy_nested) 2977 KMP_FOREACH_LOCK_KIND(expand2, acquire) 2978 KMP_FOREACH_LOCK_KIND(expand2, acquire_nested) 2979 KMP_FOREACH_LOCK_KIND(expand2, release) 2980 KMP_FOREACH_LOCK_KIND(expand2, release_nested) 2981 KMP_FOREACH_LOCK_KIND(expand2, test) 2982 KMP_FOREACH_LOCK_KIND(expand2, test_nested) 2983 KMP_FOREACH_LOCK_KIND(expand3, ) 2984 KMP_FOREACH_LOCK_KIND(expand4, ) 2985 2986 #undef expand1 2987 #undef expand2 2988 #undef expand3 2989 #undef expand4 2990 2991 // Jump tables for the indirect lock functions 2992 // Only fill in the odd entries, that avoids the need to shift out the low bit 2993 2994 // init functions 2995 #define expand(l, op) 0, __kmp_init_direct_lock, 2996 void (*__kmp_direct_init[])(kmp_dyna_lock_t *, kmp_dyna_lockseq_t) = { 2997 __kmp_init_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, init)}; 2998 #undef expand 2999 3000 // destroy functions 3001 #define expand(l, op) 0, (void (*)(kmp_dyna_lock_t *))__kmp_##op##_##l##_lock, 3002 static void (*direct_destroy[])(kmp_dyna_lock_t *) = { 3003 __kmp_destroy_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, destroy)}; 3004 #undef expand 3005 #define expand(l, op) \ 3006 0, (void (*)(kmp_dyna_lock_t *))__kmp_destroy_##l##_lock_with_checks, 3007 static void (*direct_destroy_check[])(kmp_dyna_lock_t *) = { 3008 __kmp_destroy_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, destroy)}; 3009 #undef expand 3010 3011 // set/acquire functions 3012 #define expand(l, op) \ 3013 0, (int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock, 3014 static int (*direct_set[])(kmp_dyna_lock_t *, kmp_int32) = { 3015 __kmp_set_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, acquire)}; 3016 #undef expand 3017 #define expand(l, op) \ 3018 0, (int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock_with_checks, 3019 static int (*direct_set_check[])(kmp_dyna_lock_t *, kmp_int32) = { 3020 __kmp_set_indirect_lock_with_checks, 0, 3021 KMP_FOREACH_D_LOCK(expand, acquire)}; 3022 #undef expand 3023 3024 // unset/release and test functions 3025 #define expand(l, op) \ 3026 0, (int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock, 3027 static int (*direct_unset[])(kmp_dyna_lock_t *, kmp_int32) = { 3028 __kmp_unset_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, release)}; 3029 static int (*direct_test[])(kmp_dyna_lock_t *, kmp_int32) = { 3030 __kmp_test_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, test)}; 3031 #undef expand 3032 #define expand(l, op) \ 3033 0, (int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock_with_checks, 3034 static int (*direct_unset_check[])(kmp_dyna_lock_t *, kmp_int32) = { 3035 __kmp_unset_indirect_lock_with_checks, 0, 3036 KMP_FOREACH_D_LOCK(expand, release)}; 3037 static int (*direct_test_check[])(kmp_dyna_lock_t *, kmp_int32) = { 3038 __kmp_test_indirect_lock_with_checks, 0, KMP_FOREACH_D_LOCK(expand, test)}; 3039 #undef expand 3040 3041 // Exposes only one set of jump tables (*lock or *lock_with_checks). 3042 void (**__kmp_direct_destroy)(kmp_dyna_lock_t *) = 0; 3043 int (**__kmp_direct_set)(kmp_dyna_lock_t *, kmp_int32) = 0; 3044 int (**__kmp_direct_unset)(kmp_dyna_lock_t *, kmp_int32) = 0; 3045 int (**__kmp_direct_test)(kmp_dyna_lock_t *, kmp_int32) = 0; 3046 3047 // Jump tables for the indirect lock functions 3048 #define expand(l, op) (void (*)(kmp_user_lock_p)) __kmp_##op##_##l##_##lock, 3049 void (*__kmp_indirect_init[])(kmp_user_lock_p) = { 3050 KMP_FOREACH_I_LOCK(expand, init)}; 3051 #undef expand 3052 3053 #define expand(l, op) (void (*)(kmp_user_lock_p)) __kmp_##op##_##l##_##lock, 3054 static void (*indirect_destroy[])(kmp_user_lock_p) = { 3055 KMP_FOREACH_I_LOCK(expand, destroy)}; 3056 #undef expand 3057 #define expand(l, op) \ 3058 (void (*)(kmp_user_lock_p)) __kmp_##op##_##l##_##lock_with_checks, 3059 static void (*indirect_destroy_check[])(kmp_user_lock_p) = { 3060 KMP_FOREACH_I_LOCK(expand, destroy)}; 3061 #undef expand 3062 3063 // set/acquire functions 3064 #define expand(l, op) \ 3065 (int (*)(kmp_user_lock_p, kmp_int32)) __kmp_##op##_##l##_##lock, 3066 static int (*indirect_set[])(kmp_user_lock_p, 3067 kmp_int32) = {KMP_FOREACH_I_LOCK(expand, acquire)}; 3068 #undef expand 3069 #define expand(l, op) \ 3070 (int (*)(kmp_user_lock_p, kmp_int32)) __kmp_##op##_##l##_##lock_with_checks, 3071 static int (*indirect_set_check[])(kmp_user_lock_p, kmp_int32) = { 3072 KMP_FOREACH_I_LOCK(expand, acquire)}; 3073 #undef expand 3074 3075 // unset/release and test functions 3076 #define expand(l, op) \ 3077 (int (*)(kmp_user_lock_p, kmp_int32)) __kmp_##op##_##l##_##lock, 3078 static int (*indirect_unset[])(kmp_user_lock_p, kmp_int32) = { 3079 KMP_FOREACH_I_LOCK(expand, release)}; 3080 static int (*indirect_test[])(kmp_user_lock_p, 3081 kmp_int32) = {KMP_FOREACH_I_LOCK(expand, test)}; 3082 #undef expand 3083 #define expand(l, op) \ 3084 (int (*)(kmp_user_lock_p, kmp_int32)) __kmp_##op##_##l##_##lock_with_checks, 3085 static int (*indirect_unset_check[])(kmp_user_lock_p, kmp_int32) = { 3086 KMP_FOREACH_I_LOCK(expand, release)}; 3087 static int (*indirect_test_check[])(kmp_user_lock_p, kmp_int32) = { 3088 KMP_FOREACH_I_LOCK(expand, test)}; 3089 #undef expand 3090 3091 // Exposes only one jump tables (*lock or *lock_with_checks). 3092 void (**__kmp_indirect_destroy)(kmp_user_lock_p) = 0; 3093 int (**__kmp_indirect_set)(kmp_user_lock_p, kmp_int32) = 0; 3094 int (**__kmp_indirect_unset)(kmp_user_lock_p, kmp_int32) = 0; 3095 int (**__kmp_indirect_test)(kmp_user_lock_p, kmp_int32) = 0; 3096 3097 // Lock index table. 3098 kmp_indirect_lock_table_t __kmp_i_lock_table; 3099 3100 // Size of indirect locks. 3101 static kmp_uint32 __kmp_indirect_lock_size[KMP_NUM_I_LOCKS] = {0}; 3102 3103 // Jump tables for lock accessor/modifier. 3104 void (*__kmp_indirect_set_location[KMP_NUM_I_LOCKS])(kmp_user_lock_p, 3105 const ident_t *) = {0}; 3106 void (*__kmp_indirect_set_flags[KMP_NUM_I_LOCKS])(kmp_user_lock_p, 3107 kmp_lock_flags_t) = {0}; 3108 const ident_t *(*__kmp_indirect_get_location[KMP_NUM_I_LOCKS])( 3109 kmp_user_lock_p) = {0}; 3110 kmp_lock_flags_t (*__kmp_indirect_get_flags[KMP_NUM_I_LOCKS])( 3111 kmp_user_lock_p) = {0}; 3112 3113 // Use different lock pools for different lock types. 3114 static kmp_indirect_lock_t *__kmp_indirect_lock_pool[KMP_NUM_I_LOCKS] = {0}; 3115 3116 // User lock allocator for dynamically dispatched indirect locks. Every entry of 3117 // the indirect lock table holds the address and type of the allocated indirect 3118 // lock (kmp_indirect_lock_t), and the size of the table doubles when it is 3119 // full. A destroyed indirect lock object is returned to the reusable pool of 3120 // locks, unique to each lock type. 3121 kmp_indirect_lock_t *__kmp_allocate_indirect_lock(void **user_lock, 3122 kmp_int32 gtid, 3123 kmp_indirect_locktag_t tag) { 3124 kmp_indirect_lock_t *lck; 3125 kmp_lock_index_t idx; 3126 3127 __kmp_acquire_lock(&__kmp_global_lock, gtid); 3128 3129 if (__kmp_indirect_lock_pool[tag] != NULL) { 3130 // Reuse the allocated and destroyed lock object 3131 lck = __kmp_indirect_lock_pool[tag]; 3132 if (OMP_LOCK_T_SIZE < sizeof(void *)) 3133 idx = lck->lock->pool.index; 3134 __kmp_indirect_lock_pool[tag] = (kmp_indirect_lock_t *)lck->lock->pool.next; 3135 KA_TRACE(20, ("__kmp_allocate_indirect_lock: reusing an existing lock %p\n", 3136 lck)); 3137 } else { 3138 idx = __kmp_i_lock_table.next; 3139 // Check capacity and double the size if it is full 3140 if (idx == __kmp_i_lock_table.size) { 3141 // Double up the space for block pointers 3142 int row = __kmp_i_lock_table.size / KMP_I_LOCK_CHUNK; 3143 kmp_indirect_lock_t **new_table = (kmp_indirect_lock_t **)__kmp_allocate( 3144 2 * row * sizeof(kmp_indirect_lock_t *)); 3145 KMP_MEMCPY(new_table, __kmp_i_lock_table.table, 3146 row * sizeof(kmp_indirect_lock_t *)); 3147 kmp_indirect_lock_t **old_table = __kmp_i_lock_table.table; 3148 __kmp_i_lock_table.table = new_table; 3149 __kmp_free(old_table); 3150 // Allocate new objects in the new blocks 3151 for (int i = row; i < 2 * row; ++i) 3152 *(__kmp_i_lock_table.table + i) = (kmp_indirect_lock_t *)__kmp_allocate( 3153 KMP_I_LOCK_CHUNK * sizeof(kmp_indirect_lock_t)); 3154 __kmp_i_lock_table.size = 2 * idx; 3155 } 3156 __kmp_i_lock_table.next++; 3157 lck = KMP_GET_I_LOCK(idx); 3158 // Allocate a new base lock object 3159 lck->lock = (kmp_user_lock_p)__kmp_allocate(__kmp_indirect_lock_size[tag]); 3160 KA_TRACE(20, 3161 ("__kmp_allocate_indirect_lock: allocated a new lock %p\n", lck)); 3162 } 3163 3164 __kmp_release_lock(&__kmp_global_lock, gtid); 3165 3166 lck->type = tag; 3167 3168 if (OMP_LOCK_T_SIZE < sizeof(void *)) { 3169 *((kmp_lock_index_t *)user_lock) = idx 3170 << 1; // indirect lock word must be even 3171 } else { 3172 *((kmp_indirect_lock_t **)user_lock) = lck; 3173 } 3174 3175 return lck; 3176 } 3177 3178 // User lock lookup for dynamically dispatched locks. 3179 static __forceinline kmp_indirect_lock_t * 3180 __kmp_lookup_indirect_lock(void **user_lock, const char *func) { 3181 if (__kmp_env_consistency_check) { 3182 kmp_indirect_lock_t *lck = NULL; 3183 if (user_lock == NULL) { 3184 KMP_FATAL(LockIsUninitialized, func); 3185 } 3186 if (OMP_LOCK_T_SIZE < sizeof(void *)) { 3187 kmp_lock_index_t idx = KMP_EXTRACT_I_INDEX(user_lock); 3188 if (idx >= __kmp_i_lock_table.size) { 3189 KMP_FATAL(LockIsUninitialized, func); 3190 } 3191 lck = KMP_GET_I_LOCK(idx); 3192 } else { 3193 lck = *((kmp_indirect_lock_t **)user_lock); 3194 } 3195 if (lck == NULL) { 3196 KMP_FATAL(LockIsUninitialized, func); 3197 } 3198 return lck; 3199 } else { 3200 if (OMP_LOCK_T_SIZE < sizeof(void *)) { 3201 return KMP_GET_I_LOCK(KMP_EXTRACT_I_INDEX(user_lock)); 3202 } else { 3203 return *((kmp_indirect_lock_t **)user_lock); 3204 } 3205 } 3206 } 3207 3208 static void __kmp_init_indirect_lock(kmp_dyna_lock_t *lock, 3209 kmp_dyna_lockseq_t seq) { 3210 #if KMP_USE_ADAPTIVE_LOCKS 3211 if (seq == lockseq_adaptive && !__kmp_cpuinfo.rtm) { 3212 KMP_WARNING(AdaptiveNotSupported, "kmp_lockseq_t", "adaptive"); 3213 seq = lockseq_queuing; 3214 } 3215 #endif 3216 #if KMP_USE_TSX 3217 if (seq == lockseq_rtm_queuing && !__kmp_cpuinfo.rtm) { 3218 seq = lockseq_queuing; 3219 } 3220 #endif 3221 kmp_indirect_locktag_t tag = KMP_GET_I_TAG(seq); 3222 kmp_indirect_lock_t *l = 3223 __kmp_allocate_indirect_lock((void **)lock, __kmp_entry_gtid(), tag); 3224 KMP_I_LOCK_FUNC(l, init)(l->lock); 3225 KA_TRACE( 3226 20, ("__kmp_init_indirect_lock: initialized indirect lock with type#%d\n", 3227 seq)); 3228 } 3229 3230 static void __kmp_destroy_indirect_lock(kmp_dyna_lock_t *lock) { 3231 kmp_uint32 gtid = __kmp_entry_gtid(); 3232 kmp_indirect_lock_t *l = 3233 __kmp_lookup_indirect_lock((void **)lock, "omp_destroy_lock"); 3234 KMP_I_LOCK_FUNC(l, destroy)(l->lock); 3235 kmp_indirect_locktag_t tag = l->type; 3236 3237 __kmp_acquire_lock(&__kmp_global_lock, gtid); 3238 3239 // Use the base lock's space to keep the pool chain. 3240 l->lock->pool.next = (kmp_user_lock_p)__kmp_indirect_lock_pool[tag]; 3241 if (OMP_LOCK_T_SIZE < sizeof(void *)) { 3242 l->lock->pool.index = KMP_EXTRACT_I_INDEX(lock); 3243 } 3244 __kmp_indirect_lock_pool[tag] = l; 3245 3246 __kmp_release_lock(&__kmp_global_lock, gtid); 3247 } 3248 3249 static int __kmp_set_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32 gtid) { 3250 kmp_indirect_lock_t *l = KMP_LOOKUP_I_LOCK(lock); 3251 return KMP_I_LOCK_FUNC(l, set)(l->lock, gtid); 3252 } 3253 3254 static int __kmp_unset_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32 gtid) { 3255 kmp_indirect_lock_t *l = KMP_LOOKUP_I_LOCK(lock); 3256 return KMP_I_LOCK_FUNC(l, unset)(l->lock, gtid); 3257 } 3258 3259 static int __kmp_test_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32 gtid) { 3260 kmp_indirect_lock_t *l = KMP_LOOKUP_I_LOCK(lock); 3261 return KMP_I_LOCK_FUNC(l, test)(l->lock, gtid); 3262 } 3263 3264 static int __kmp_set_indirect_lock_with_checks(kmp_dyna_lock_t *lock, 3265 kmp_int32 gtid) { 3266 kmp_indirect_lock_t *l = 3267 __kmp_lookup_indirect_lock((void **)lock, "omp_set_lock"); 3268 return KMP_I_LOCK_FUNC(l, set)(l->lock, gtid); 3269 } 3270 3271 static int __kmp_unset_indirect_lock_with_checks(kmp_dyna_lock_t *lock, 3272 kmp_int32 gtid) { 3273 kmp_indirect_lock_t *l = 3274 __kmp_lookup_indirect_lock((void **)lock, "omp_unset_lock"); 3275 return KMP_I_LOCK_FUNC(l, unset)(l->lock, gtid); 3276 } 3277 3278 static int __kmp_test_indirect_lock_with_checks(kmp_dyna_lock_t *lock, 3279 kmp_int32 gtid) { 3280 kmp_indirect_lock_t *l = 3281 __kmp_lookup_indirect_lock((void **)lock, "omp_test_lock"); 3282 return KMP_I_LOCK_FUNC(l, test)(l->lock, gtid); 3283 } 3284 3285 kmp_dyna_lockseq_t __kmp_user_lock_seq = lockseq_queuing; 3286 3287 // This is used only in kmp_error.cpp when consistency checking is on. 3288 kmp_int32 __kmp_get_user_lock_owner(kmp_user_lock_p lck, kmp_uint32 seq) { 3289 switch (seq) { 3290 case lockseq_tas: 3291 case lockseq_nested_tas: 3292 return __kmp_get_tas_lock_owner((kmp_tas_lock_t *)lck); 3293 #if KMP_USE_FUTEX 3294 case lockseq_futex: 3295 case lockseq_nested_futex: 3296 return __kmp_get_futex_lock_owner((kmp_futex_lock_t *)lck); 3297 #endif 3298 case lockseq_ticket: 3299 case lockseq_nested_ticket: 3300 return __kmp_get_ticket_lock_owner((kmp_ticket_lock_t *)lck); 3301 case lockseq_queuing: 3302 case lockseq_nested_queuing: 3303 #if KMP_USE_ADAPTIVE_LOCKS 3304 case lockseq_adaptive: 3305 #endif 3306 return __kmp_get_queuing_lock_owner((kmp_queuing_lock_t *)lck); 3307 case lockseq_drdpa: 3308 case lockseq_nested_drdpa: 3309 return __kmp_get_drdpa_lock_owner((kmp_drdpa_lock_t *)lck); 3310 default: 3311 return 0; 3312 } 3313 } 3314 3315 // Initializes data for dynamic user locks. 3316 void __kmp_init_dynamic_user_locks() { 3317 // Initialize jump table for the lock functions 3318 if (__kmp_env_consistency_check) { 3319 __kmp_direct_set = direct_set_check; 3320 __kmp_direct_unset = direct_unset_check; 3321 __kmp_direct_test = direct_test_check; 3322 __kmp_direct_destroy = direct_destroy_check; 3323 __kmp_indirect_set = indirect_set_check; 3324 __kmp_indirect_unset = indirect_unset_check; 3325 __kmp_indirect_test = indirect_test_check; 3326 __kmp_indirect_destroy = indirect_destroy_check; 3327 } else { 3328 __kmp_direct_set = direct_set; 3329 __kmp_direct_unset = direct_unset; 3330 __kmp_direct_test = direct_test; 3331 __kmp_direct_destroy = direct_destroy; 3332 __kmp_indirect_set = indirect_set; 3333 __kmp_indirect_unset = indirect_unset; 3334 __kmp_indirect_test = indirect_test; 3335 __kmp_indirect_destroy = indirect_destroy; 3336 } 3337 // If the user locks have already been initialized, then return. Allow the 3338 // switch between different KMP_CONSISTENCY_CHECK values, but do not allocate 3339 // new lock tables if they have already been allocated. 3340 if (__kmp_init_user_locks) 3341 return; 3342 3343 // Initialize lock index table 3344 __kmp_i_lock_table.size = KMP_I_LOCK_CHUNK; 3345 __kmp_i_lock_table.table = 3346 (kmp_indirect_lock_t **)__kmp_allocate(sizeof(kmp_indirect_lock_t *)); 3347 *(__kmp_i_lock_table.table) = (kmp_indirect_lock_t *)__kmp_allocate( 3348 KMP_I_LOCK_CHUNK * sizeof(kmp_indirect_lock_t)); 3349 __kmp_i_lock_table.next = 0; 3350 3351 // Indirect lock size 3352 __kmp_indirect_lock_size[locktag_ticket] = sizeof(kmp_ticket_lock_t); 3353 __kmp_indirect_lock_size[locktag_queuing] = sizeof(kmp_queuing_lock_t); 3354 #if KMP_USE_ADAPTIVE_LOCKS 3355 __kmp_indirect_lock_size[locktag_adaptive] = sizeof(kmp_adaptive_lock_t); 3356 #endif 3357 __kmp_indirect_lock_size[locktag_drdpa] = sizeof(kmp_drdpa_lock_t); 3358 #if KMP_USE_TSX 3359 __kmp_indirect_lock_size[locktag_rtm_queuing] = sizeof(kmp_queuing_lock_t); 3360 #endif 3361 __kmp_indirect_lock_size[locktag_nested_tas] = sizeof(kmp_tas_lock_t); 3362 #if KMP_USE_FUTEX 3363 __kmp_indirect_lock_size[locktag_nested_futex] = sizeof(kmp_futex_lock_t); 3364 #endif 3365 __kmp_indirect_lock_size[locktag_nested_ticket] = sizeof(kmp_ticket_lock_t); 3366 __kmp_indirect_lock_size[locktag_nested_queuing] = sizeof(kmp_queuing_lock_t); 3367 __kmp_indirect_lock_size[locktag_nested_drdpa] = sizeof(kmp_drdpa_lock_t); 3368 3369 // Initialize lock accessor/modifier 3370 #define fill_jumps(table, expand, sep) \ 3371 { \ 3372 table[locktag##sep##ticket] = expand(ticket); \ 3373 table[locktag##sep##queuing] = expand(queuing); \ 3374 table[locktag##sep##drdpa] = expand(drdpa); \ 3375 } 3376 3377 #if KMP_USE_ADAPTIVE_LOCKS 3378 #define fill_table(table, expand) \ 3379 { \ 3380 fill_jumps(table, expand, _); \ 3381 table[locktag_adaptive] = expand(queuing); \ 3382 fill_jumps(table, expand, _nested_); \ 3383 } 3384 #else 3385 #define fill_table(table, expand) \ 3386 { \ 3387 fill_jumps(table, expand, _); \ 3388 fill_jumps(table, expand, _nested_); \ 3389 } 3390 #endif // KMP_USE_ADAPTIVE_LOCKS 3391 3392 #define expand(l) \ 3393 (void (*)(kmp_user_lock_p, const ident_t *)) __kmp_set_##l##_lock_location 3394 fill_table(__kmp_indirect_set_location, expand); 3395 #undef expand 3396 #define expand(l) \ 3397 (void (*)(kmp_user_lock_p, kmp_lock_flags_t)) __kmp_set_##l##_lock_flags 3398 fill_table(__kmp_indirect_set_flags, expand); 3399 #undef expand 3400 #define expand(l) \ 3401 (const ident_t *(*)(kmp_user_lock_p)) __kmp_get_##l##_lock_location 3402 fill_table(__kmp_indirect_get_location, expand); 3403 #undef expand 3404 #define expand(l) \ 3405 (kmp_lock_flags_t(*)(kmp_user_lock_p)) __kmp_get_##l##_lock_flags 3406 fill_table(__kmp_indirect_get_flags, expand); 3407 #undef expand 3408 3409 __kmp_init_user_locks = TRUE; 3410 } 3411 3412 // Clean up the lock table. 3413 void __kmp_cleanup_indirect_user_locks() { 3414 kmp_lock_index_t i; 3415 int k; 3416 3417 // Clean up locks in the pools first (they were already destroyed before going 3418 // into the pools). 3419 for (k = 0; k < KMP_NUM_I_LOCKS; ++k) { 3420 kmp_indirect_lock_t *l = __kmp_indirect_lock_pool[k]; 3421 while (l != NULL) { 3422 kmp_indirect_lock_t *ll = l; 3423 l = (kmp_indirect_lock_t *)l->lock->pool.next; 3424 KA_TRACE(20, ("__kmp_cleanup_indirect_user_locks: freeing %p from pool\n", 3425 ll)); 3426 __kmp_free(ll->lock); 3427 ll->lock = NULL; 3428 } 3429 __kmp_indirect_lock_pool[k] = NULL; 3430 } 3431 // Clean up the remaining undestroyed locks. 3432 for (i = 0; i < __kmp_i_lock_table.next; i++) { 3433 kmp_indirect_lock_t *l = KMP_GET_I_LOCK(i); 3434 if (l->lock != NULL) { 3435 // Locks not destroyed explicitly need to be destroyed here. 3436 KMP_I_LOCK_FUNC(l, destroy)(l->lock); 3437 KA_TRACE( 3438 20, 3439 ("__kmp_cleanup_indirect_user_locks: destroy/freeing %p from table\n", 3440 l)); 3441 __kmp_free(l->lock); 3442 } 3443 } 3444 // Free the table 3445 for (i = 0; i < __kmp_i_lock_table.size / KMP_I_LOCK_CHUNK; i++) 3446 __kmp_free(__kmp_i_lock_table.table[i]); 3447 __kmp_free(__kmp_i_lock_table.table); 3448 3449 __kmp_init_user_locks = FALSE; 3450 } 3451 3452 enum kmp_lock_kind __kmp_user_lock_kind = lk_default; 3453 int __kmp_num_locks_in_block = 1; // FIXME - tune this value 3454 3455 #else // KMP_USE_DYNAMIC_LOCK 3456 3457 static void __kmp_init_tas_lock_with_checks(kmp_tas_lock_t *lck) { 3458 __kmp_init_tas_lock(lck); 3459 } 3460 3461 static void __kmp_init_nested_tas_lock_with_checks(kmp_tas_lock_t *lck) { 3462 __kmp_init_nested_tas_lock(lck); 3463 } 3464 3465 #if KMP_USE_FUTEX 3466 static void __kmp_init_futex_lock_with_checks(kmp_futex_lock_t *lck) { 3467 __kmp_init_futex_lock(lck); 3468 } 3469 3470 static void __kmp_init_nested_futex_lock_with_checks(kmp_futex_lock_t *lck) { 3471 __kmp_init_nested_futex_lock(lck); 3472 } 3473 #endif 3474 3475 static int __kmp_is_ticket_lock_initialized(kmp_ticket_lock_t *lck) { 3476 return lck == lck->lk.self; 3477 } 3478 3479 static void __kmp_init_ticket_lock_with_checks(kmp_ticket_lock_t *lck) { 3480 __kmp_init_ticket_lock(lck); 3481 } 3482 3483 static void __kmp_init_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck) { 3484 __kmp_init_nested_ticket_lock(lck); 3485 } 3486 3487 static int __kmp_is_queuing_lock_initialized(kmp_queuing_lock_t *lck) { 3488 return lck == lck->lk.initialized; 3489 } 3490 3491 static void __kmp_init_queuing_lock_with_checks(kmp_queuing_lock_t *lck) { 3492 __kmp_init_queuing_lock(lck); 3493 } 3494 3495 static void 3496 __kmp_init_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck) { 3497 __kmp_init_nested_queuing_lock(lck); 3498 } 3499 3500 #if KMP_USE_ADAPTIVE_LOCKS 3501 static void __kmp_init_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck) { 3502 __kmp_init_adaptive_lock(lck); 3503 } 3504 #endif 3505 3506 static int __kmp_is_drdpa_lock_initialized(kmp_drdpa_lock_t *lck) { 3507 return lck == lck->lk.initialized; 3508 } 3509 3510 static void __kmp_init_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck) { 3511 __kmp_init_drdpa_lock(lck); 3512 } 3513 3514 static void __kmp_init_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck) { 3515 __kmp_init_nested_drdpa_lock(lck); 3516 } 3517 3518 /* user locks 3519 * They are implemented as a table of function pointers which are set to the 3520 * lock functions of the appropriate kind, once that has been determined. */ 3521 3522 enum kmp_lock_kind __kmp_user_lock_kind = lk_default; 3523 3524 size_t __kmp_base_user_lock_size = 0; 3525 size_t __kmp_user_lock_size = 0; 3526 3527 kmp_int32 (*__kmp_get_user_lock_owner_)(kmp_user_lock_p lck) = NULL; 3528 int (*__kmp_acquire_user_lock_with_checks_)(kmp_user_lock_p lck, 3529 kmp_int32 gtid) = NULL; 3530 3531 int (*__kmp_test_user_lock_with_checks_)(kmp_user_lock_p lck, 3532 kmp_int32 gtid) = NULL; 3533 int (*__kmp_release_user_lock_with_checks_)(kmp_user_lock_p lck, 3534 kmp_int32 gtid) = NULL; 3535 void (*__kmp_init_user_lock_with_checks_)(kmp_user_lock_p lck) = NULL; 3536 void (*__kmp_destroy_user_lock_)(kmp_user_lock_p lck) = NULL; 3537 void (*__kmp_destroy_user_lock_with_checks_)(kmp_user_lock_p lck) = NULL; 3538 int (*__kmp_acquire_nested_user_lock_with_checks_)(kmp_user_lock_p lck, 3539 kmp_int32 gtid) = NULL; 3540 3541 int (*__kmp_test_nested_user_lock_with_checks_)(kmp_user_lock_p lck, 3542 kmp_int32 gtid) = NULL; 3543 int (*__kmp_release_nested_user_lock_with_checks_)(kmp_user_lock_p lck, 3544 kmp_int32 gtid) = NULL; 3545 void (*__kmp_init_nested_user_lock_with_checks_)(kmp_user_lock_p lck) = NULL; 3546 void (*__kmp_destroy_nested_user_lock_with_checks_)(kmp_user_lock_p lck) = NULL; 3547 3548 int (*__kmp_is_user_lock_initialized_)(kmp_user_lock_p lck) = NULL; 3549 const ident_t *(*__kmp_get_user_lock_location_)(kmp_user_lock_p lck) = NULL; 3550 void (*__kmp_set_user_lock_location_)(kmp_user_lock_p lck, 3551 const ident_t *loc) = NULL; 3552 kmp_lock_flags_t (*__kmp_get_user_lock_flags_)(kmp_user_lock_p lck) = NULL; 3553 void (*__kmp_set_user_lock_flags_)(kmp_user_lock_p lck, 3554 kmp_lock_flags_t flags) = NULL; 3555 3556 void __kmp_set_user_lock_vptrs(kmp_lock_kind_t user_lock_kind) { 3557 switch (user_lock_kind) { 3558 case lk_default: 3559 default: 3560 KMP_ASSERT(0); 3561 3562 case lk_tas: { 3563 __kmp_base_user_lock_size = sizeof(kmp_base_tas_lock_t); 3564 __kmp_user_lock_size = sizeof(kmp_tas_lock_t); 3565 3566 __kmp_get_user_lock_owner_ = 3567 (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_tas_lock_owner); 3568 3569 if (__kmp_env_consistency_check) { 3570 KMP_BIND_USER_LOCK_WITH_CHECKS(tas); 3571 KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(tas); 3572 } else { 3573 KMP_BIND_USER_LOCK(tas); 3574 KMP_BIND_NESTED_USER_LOCK(tas); 3575 } 3576 3577 __kmp_destroy_user_lock_ = 3578 (void (*)(kmp_user_lock_p))(&__kmp_destroy_tas_lock); 3579 3580 __kmp_is_user_lock_initialized_ = (int (*)(kmp_user_lock_p))NULL; 3581 3582 __kmp_get_user_lock_location_ = (const ident_t *(*)(kmp_user_lock_p))NULL; 3583 3584 __kmp_set_user_lock_location_ = 3585 (void (*)(kmp_user_lock_p, const ident_t *))NULL; 3586 3587 __kmp_get_user_lock_flags_ = (kmp_lock_flags_t(*)(kmp_user_lock_p))NULL; 3588 3589 __kmp_set_user_lock_flags_ = 3590 (void (*)(kmp_user_lock_p, kmp_lock_flags_t))NULL; 3591 } break; 3592 3593 #if KMP_USE_FUTEX 3594 3595 case lk_futex: { 3596 __kmp_base_user_lock_size = sizeof(kmp_base_futex_lock_t); 3597 __kmp_user_lock_size = sizeof(kmp_futex_lock_t); 3598 3599 __kmp_get_user_lock_owner_ = 3600 (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_futex_lock_owner); 3601 3602 if (__kmp_env_consistency_check) { 3603 KMP_BIND_USER_LOCK_WITH_CHECKS(futex); 3604 KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(futex); 3605 } else { 3606 KMP_BIND_USER_LOCK(futex); 3607 KMP_BIND_NESTED_USER_LOCK(futex); 3608 } 3609 3610 __kmp_destroy_user_lock_ = 3611 (void (*)(kmp_user_lock_p))(&__kmp_destroy_futex_lock); 3612 3613 __kmp_is_user_lock_initialized_ = (int (*)(kmp_user_lock_p))NULL; 3614 3615 __kmp_get_user_lock_location_ = (const ident_t *(*)(kmp_user_lock_p))NULL; 3616 3617 __kmp_set_user_lock_location_ = 3618 (void (*)(kmp_user_lock_p, const ident_t *))NULL; 3619 3620 __kmp_get_user_lock_flags_ = (kmp_lock_flags_t(*)(kmp_user_lock_p))NULL; 3621 3622 __kmp_set_user_lock_flags_ = 3623 (void (*)(kmp_user_lock_p, kmp_lock_flags_t))NULL; 3624 } break; 3625 3626 #endif // KMP_USE_FUTEX 3627 3628 case lk_ticket: { 3629 __kmp_base_user_lock_size = sizeof(kmp_base_ticket_lock_t); 3630 __kmp_user_lock_size = sizeof(kmp_ticket_lock_t); 3631 3632 __kmp_get_user_lock_owner_ = 3633 (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_ticket_lock_owner); 3634 3635 if (__kmp_env_consistency_check) { 3636 KMP_BIND_USER_LOCK_WITH_CHECKS(ticket); 3637 KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(ticket); 3638 } else { 3639 KMP_BIND_USER_LOCK(ticket); 3640 KMP_BIND_NESTED_USER_LOCK(ticket); 3641 } 3642 3643 __kmp_destroy_user_lock_ = 3644 (void (*)(kmp_user_lock_p))(&__kmp_destroy_ticket_lock); 3645 3646 __kmp_is_user_lock_initialized_ = 3647 (int (*)(kmp_user_lock_p))(&__kmp_is_ticket_lock_initialized); 3648 3649 __kmp_get_user_lock_location_ = 3650 (const ident_t *(*)(kmp_user_lock_p))(&__kmp_get_ticket_lock_location); 3651 3652 __kmp_set_user_lock_location_ = (void (*)( 3653 kmp_user_lock_p, const ident_t *))(&__kmp_set_ticket_lock_location); 3654 3655 __kmp_get_user_lock_flags_ = 3656 (kmp_lock_flags_t(*)(kmp_user_lock_p))(&__kmp_get_ticket_lock_flags); 3657 3658 __kmp_set_user_lock_flags_ = (void (*)(kmp_user_lock_p, kmp_lock_flags_t))( 3659 &__kmp_set_ticket_lock_flags); 3660 } break; 3661 3662 case lk_queuing: { 3663 __kmp_base_user_lock_size = sizeof(kmp_base_queuing_lock_t); 3664 __kmp_user_lock_size = sizeof(kmp_queuing_lock_t); 3665 3666 __kmp_get_user_lock_owner_ = 3667 (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_owner); 3668 3669 if (__kmp_env_consistency_check) { 3670 KMP_BIND_USER_LOCK_WITH_CHECKS(queuing); 3671 KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(queuing); 3672 } else { 3673 KMP_BIND_USER_LOCK(queuing); 3674 KMP_BIND_NESTED_USER_LOCK(queuing); 3675 } 3676 3677 __kmp_destroy_user_lock_ = 3678 (void (*)(kmp_user_lock_p))(&__kmp_destroy_queuing_lock); 3679 3680 __kmp_is_user_lock_initialized_ = 3681 (int (*)(kmp_user_lock_p))(&__kmp_is_queuing_lock_initialized); 3682 3683 __kmp_get_user_lock_location_ = 3684 (const ident_t *(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_location); 3685 3686 __kmp_set_user_lock_location_ = (void (*)( 3687 kmp_user_lock_p, const ident_t *))(&__kmp_set_queuing_lock_location); 3688 3689 __kmp_get_user_lock_flags_ = 3690 (kmp_lock_flags_t(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_flags); 3691 3692 __kmp_set_user_lock_flags_ = (void (*)(kmp_user_lock_p, kmp_lock_flags_t))( 3693 &__kmp_set_queuing_lock_flags); 3694 } break; 3695 3696 #if KMP_USE_ADAPTIVE_LOCKS 3697 case lk_adaptive: { 3698 __kmp_base_user_lock_size = sizeof(kmp_base_adaptive_lock_t); 3699 __kmp_user_lock_size = sizeof(kmp_adaptive_lock_t); 3700 3701 __kmp_get_user_lock_owner_ = 3702 (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_owner); 3703 3704 if (__kmp_env_consistency_check) { 3705 KMP_BIND_USER_LOCK_WITH_CHECKS(adaptive); 3706 } else { 3707 KMP_BIND_USER_LOCK(adaptive); 3708 } 3709 3710 __kmp_destroy_user_lock_ = 3711 (void (*)(kmp_user_lock_p))(&__kmp_destroy_adaptive_lock); 3712 3713 __kmp_is_user_lock_initialized_ = 3714 (int (*)(kmp_user_lock_p))(&__kmp_is_queuing_lock_initialized); 3715 3716 __kmp_get_user_lock_location_ = 3717 (const ident_t *(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_location); 3718 3719 __kmp_set_user_lock_location_ = (void (*)( 3720 kmp_user_lock_p, const ident_t *))(&__kmp_set_queuing_lock_location); 3721 3722 __kmp_get_user_lock_flags_ = 3723 (kmp_lock_flags_t(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_flags); 3724 3725 __kmp_set_user_lock_flags_ = (void (*)(kmp_user_lock_p, kmp_lock_flags_t))( 3726 &__kmp_set_queuing_lock_flags); 3727 3728 } break; 3729 #endif // KMP_USE_ADAPTIVE_LOCKS 3730 3731 case lk_drdpa: { 3732 __kmp_base_user_lock_size = sizeof(kmp_base_drdpa_lock_t); 3733 __kmp_user_lock_size = sizeof(kmp_drdpa_lock_t); 3734 3735 __kmp_get_user_lock_owner_ = 3736 (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_drdpa_lock_owner); 3737 3738 if (__kmp_env_consistency_check) { 3739 KMP_BIND_USER_LOCK_WITH_CHECKS(drdpa); 3740 KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(drdpa); 3741 } else { 3742 KMP_BIND_USER_LOCK(drdpa); 3743 KMP_BIND_NESTED_USER_LOCK(drdpa); 3744 } 3745 3746 __kmp_destroy_user_lock_ = 3747 (void (*)(kmp_user_lock_p))(&__kmp_destroy_drdpa_lock); 3748 3749 __kmp_is_user_lock_initialized_ = 3750 (int (*)(kmp_user_lock_p))(&__kmp_is_drdpa_lock_initialized); 3751 3752 __kmp_get_user_lock_location_ = 3753 (const ident_t *(*)(kmp_user_lock_p))(&__kmp_get_drdpa_lock_location); 3754 3755 __kmp_set_user_lock_location_ = (void (*)( 3756 kmp_user_lock_p, const ident_t *))(&__kmp_set_drdpa_lock_location); 3757 3758 __kmp_get_user_lock_flags_ = 3759 (kmp_lock_flags_t(*)(kmp_user_lock_p))(&__kmp_get_drdpa_lock_flags); 3760 3761 __kmp_set_user_lock_flags_ = (void (*)(kmp_user_lock_p, kmp_lock_flags_t))( 3762 &__kmp_set_drdpa_lock_flags); 3763 } break; 3764 } 3765 } 3766 3767 // ---------------------------------------------------------------------------- 3768 // User lock table & lock allocation 3769 3770 kmp_lock_table_t __kmp_user_lock_table = {1, 0, NULL}; 3771 kmp_user_lock_p __kmp_lock_pool = NULL; 3772 3773 // Lock block-allocation support. 3774 kmp_block_of_locks *__kmp_lock_blocks = NULL; 3775 int __kmp_num_locks_in_block = 1; // FIXME - tune this value 3776 3777 static kmp_lock_index_t __kmp_lock_table_insert(kmp_user_lock_p lck) { 3778 // Assume that kmp_global_lock is held upon entry/exit. 3779 kmp_lock_index_t index; 3780 if (__kmp_user_lock_table.used >= __kmp_user_lock_table.allocated) { 3781 kmp_lock_index_t size; 3782 kmp_user_lock_p *table; 3783 // Reallocate lock table. 3784 if (__kmp_user_lock_table.allocated == 0) { 3785 size = 1024; 3786 } else { 3787 size = __kmp_user_lock_table.allocated * 2; 3788 } 3789 table = (kmp_user_lock_p *)__kmp_allocate(sizeof(kmp_user_lock_p) * size); 3790 KMP_MEMCPY(table + 1, __kmp_user_lock_table.table + 1, 3791 sizeof(kmp_user_lock_p) * (__kmp_user_lock_table.used - 1)); 3792 table[0] = (kmp_user_lock_p)__kmp_user_lock_table.table; 3793 // We cannot free the previous table now, since it may be in use by other 3794 // threads. So save the pointer to the previous table in in the first 3795 // element of the new table. All the tables will be organized into a list, 3796 // and could be freed when library shutting down. 3797 __kmp_user_lock_table.table = table; 3798 __kmp_user_lock_table.allocated = size; 3799 } 3800 KMP_DEBUG_ASSERT(__kmp_user_lock_table.used < 3801 __kmp_user_lock_table.allocated); 3802 index = __kmp_user_lock_table.used; 3803 __kmp_user_lock_table.table[index] = lck; 3804 ++__kmp_user_lock_table.used; 3805 return index; 3806 } 3807 3808 static kmp_user_lock_p __kmp_lock_block_allocate() { 3809 // Assume that kmp_global_lock is held upon entry/exit. 3810 static int last_index = 0; 3811 if ((last_index >= __kmp_num_locks_in_block) || (__kmp_lock_blocks == NULL)) { 3812 // Restart the index. 3813 last_index = 0; 3814 // Need to allocate a new block. 3815 KMP_DEBUG_ASSERT(__kmp_user_lock_size > 0); 3816 size_t space_for_locks = __kmp_user_lock_size * __kmp_num_locks_in_block; 3817 char *buffer = 3818 (char *)__kmp_allocate(space_for_locks + sizeof(kmp_block_of_locks)); 3819 // Set up the new block. 3820 kmp_block_of_locks *new_block = 3821 (kmp_block_of_locks *)(&buffer[space_for_locks]); 3822 new_block->next_block = __kmp_lock_blocks; 3823 new_block->locks = (void *)buffer; 3824 // Publish the new block. 3825 KMP_MB(); 3826 __kmp_lock_blocks = new_block; 3827 } 3828 kmp_user_lock_p ret = (kmp_user_lock_p)(&( 3829 ((char *)(__kmp_lock_blocks->locks))[last_index * __kmp_user_lock_size])); 3830 last_index++; 3831 return ret; 3832 } 3833 3834 // Get memory for a lock. It may be freshly allocated memory or reused memory 3835 // from lock pool. 3836 kmp_user_lock_p __kmp_user_lock_allocate(void **user_lock, kmp_int32 gtid, 3837 kmp_lock_flags_t flags) { 3838 kmp_user_lock_p lck; 3839 kmp_lock_index_t index; 3840 KMP_DEBUG_ASSERT(user_lock); 3841 3842 __kmp_acquire_lock(&__kmp_global_lock, gtid); 3843 3844 if (__kmp_lock_pool == NULL) { 3845 // Lock pool is empty. Allocate new memory. 3846 3847 // ANNOTATION: Found no good way to express the syncronisation 3848 // between allocation and usage, so ignore the allocation 3849 ANNOTATE_IGNORE_WRITES_BEGIN(); 3850 if (__kmp_num_locks_in_block <= 1) { // Tune this cutoff point. 3851 lck = (kmp_user_lock_p)__kmp_allocate(__kmp_user_lock_size); 3852 } else { 3853 lck = __kmp_lock_block_allocate(); 3854 } 3855 ANNOTATE_IGNORE_WRITES_END(); 3856 3857 // Insert lock in the table so that it can be freed in __kmp_cleanup, 3858 // and debugger has info on all allocated locks. 3859 index = __kmp_lock_table_insert(lck); 3860 } else { 3861 // Pick up lock from pool. 3862 lck = __kmp_lock_pool; 3863 index = __kmp_lock_pool->pool.index; 3864 __kmp_lock_pool = __kmp_lock_pool->pool.next; 3865 } 3866 3867 // We could potentially differentiate between nested and regular locks 3868 // here, and do the lock table lookup for regular locks only. 3869 if (OMP_LOCK_T_SIZE < sizeof(void *)) { 3870 *((kmp_lock_index_t *)user_lock) = index; 3871 } else { 3872 *((kmp_user_lock_p *)user_lock) = lck; 3873 } 3874 3875 // mark the lock if it is critical section lock. 3876 __kmp_set_user_lock_flags(lck, flags); 3877 3878 __kmp_release_lock(&__kmp_global_lock, gtid); // AC: TODO move this line upper 3879 3880 return lck; 3881 } 3882 3883 // Put lock's memory to pool for reusing. 3884 void __kmp_user_lock_free(void **user_lock, kmp_int32 gtid, 3885 kmp_user_lock_p lck) { 3886 KMP_DEBUG_ASSERT(user_lock != NULL); 3887 KMP_DEBUG_ASSERT(lck != NULL); 3888 3889 __kmp_acquire_lock(&__kmp_global_lock, gtid); 3890 3891 lck->pool.next = __kmp_lock_pool; 3892 __kmp_lock_pool = lck; 3893 if (OMP_LOCK_T_SIZE < sizeof(void *)) { 3894 kmp_lock_index_t index = *((kmp_lock_index_t *)user_lock); 3895 KMP_DEBUG_ASSERT(0 < index && index <= __kmp_user_lock_table.used); 3896 lck->pool.index = index; 3897 } 3898 3899 __kmp_release_lock(&__kmp_global_lock, gtid); 3900 } 3901 3902 kmp_user_lock_p __kmp_lookup_user_lock(void **user_lock, char const *func) { 3903 kmp_user_lock_p lck = NULL; 3904 3905 if (__kmp_env_consistency_check) { 3906 if (user_lock == NULL) { 3907 KMP_FATAL(LockIsUninitialized, func); 3908 } 3909 } 3910 3911 if (OMP_LOCK_T_SIZE < sizeof(void *)) { 3912 kmp_lock_index_t index = *((kmp_lock_index_t *)user_lock); 3913 if (__kmp_env_consistency_check) { 3914 if (!(0 < index && index < __kmp_user_lock_table.used)) { 3915 KMP_FATAL(LockIsUninitialized, func); 3916 } 3917 } 3918 KMP_DEBUG_ASSERT(0 < index && index < __kmp_user_lock_table.used); 3919 KMP_DEBUG_ASSERT(__kmp_user_lock_size > 0); 3920 lck = __kmp_user_lock_table.table[index]; 3921 } else { 3922 lck = *((kmp_user_lock_p *)user_lock); 3923 } 3924 3925 if (__kmp_env_consistency_check) { 3926 if (lck == NULL) { 3927 KMP_FATAL(LockIsUninitialized, func); 3928 } 3929 } 3930 3931 return lck; 3932 } 3933 3934 void __kmp_cleanup_user_locks(void) { 3935 // Reset lock pool. Don't worry about lock in the pool--we will free them when 3936 // iterating through lock table (it includes all the locks, dead or alive). 3937 __kmp_lock_pool = NULL; 3938 3939 #define IS_CRITICAL(lck) \ 3940 ((__kmp_get_user_lock_flags_ != NULL) && \ 3941 ((*__kmp_get_user_lock_flags_)(lck)&kmp_lf_critical_section)) 3942 3943 // Loop through lock table, free all locks. 3944 // Do not free item [0], it is reserved for lock tables list. 3945 // 3946 // FIXME - we are iterating through a list of (pointers to) objects of type 3947 // union kmp_user_lock, but we have no way of knowing whether the base type is 3948 // currently "pool" or whatever the global user lock type is. 3949 // 3950 // We are relying on the fact that for all of the user lock types 3951 // (except "tas"), the first field in the lock struct is the "initialized" 3952 // field, which is set to the address of the lock object itself when 3953 // the lock is initialized. When the union is of type "pool", the 3954 // first field is a pointer to the next object in the free list, which 3955 // will not be the same address as the object itself. 3956 // 3957 // This means that the check (*__kmp_is_user_lock_initialized_)(lck) will fail 3958 // for "pool" objects on the free list. This must happen as the "location" 3959 // field of real user locks overlaps the "index" field of "pool" objects. 3960 // 3961 // It would be better to run through the free list, and remove all "pool" 3962 // objects from the lock table before executing this loop. However, 3963 // "pool" objects do not always have their index field set (only on 3964 // lin_32e), and I don't want to search the lock table for the address 3965 // of every "pool" object on the free list. 3966 while (__kmp_user_lock_table.used > 1) { 3967 const ident *loc; 3968 3969 // reduce __kmp_user_lock_table.used before freeing the lock, 3970 // so that state of locks is consistent 3971 kmp_user_lock_p lck = 3972 __kmp_user_lock_table.table[--__kmp_user_lock_table.used]; 3973 3974 if ((__kmp_is_user_lock_initialized_ != NULL) && 3975 (*__kmp_is_user_lock_initialized_)(lck)) { 3976 // Issue a warning if: KMP_CONSISTENCY_CHECK AND lock is initialized AND 3977 // it is NOT a critical section (user is not responsible for destroying 3978 // criticals) AND we know source location to report. 3979 if (__kmp_env_consistency_check && (!IS_CRITICAL(lck)) && 3980 ((loc = __kmp_get_user_lock_location(lck)) != NULL) && 3981 (loc->psource != NULL)) { 3982 kmp_str_loc_t str_loc = __kmp_str_loc_init(loc->psource, false); 3983 KMP_WARNING(CnsLockNotDestroyed, str_loc.file, str_loc.line); 3984 __kmp_str_loc_free(&str_loc); 3985 } 3986 3987 #ifdef KMP_DEBUG 3988 if (IS_CRITICAL(lck)) { 3989 KA_TRACE( 3990 20, 3991 ("__kmp_cleanup_user_locks: free critical section lock %p (%p)\n", 3992 lck, *(void **)lck)); 3993 } else { 3994 KA_TRACE(20, ("__kmp_cleanup_user_locks: free lock %p (%p)\n", lck, 3995 *(void **)lck)); 3996 } 3997 #endif // KMP_DEBUG 3998 3999 // Cleanup internal lock dynamic resources (for drdpa locks particularly). 4000 __kmp_destroy_user_lock(lck); 4001 } 4002 4003 // Free the lock if block allocation of locks is not used. 4004 if (__kmp_lock_blocks == NULL) { 4005 __kmp_free(lck); 4006 } 4007 } 4008 4009 #undef IS_CRITICAL 4010 4011 // delete lock table(s). 4012 kmp_user_lock_p *table_ptr = __kmp_user_lock_table.table; 4013 __kmp_user_lock_table.table = NULL; 4014 __kmp_user_lock_table.allocated = 0; 4015 4016 while (table_ptr != NULL) { 4017 // In the first element we saved the pointer to the previous 4018 // (smaller) lock table. 4019 kmp_user_lock_p *next = (kmp_user_lock_p *)(table_ptr[0]); 4020 __kmp_free(table_ptr); 4021 table_ptr = next; 4022 } 4023 4024 // Free buffers allocated for blocks of locks. 4025 kmp_block_of_locks_t *block_ptr = __kmp_lock_blocks; 4026 __kmp_lock_blocks = NULL; 4027 4028 while (block_ptr != NULL) { 4029 kmp_block_of_locks_t *next = block_ptr->next_block; 4030 __kmp_free(block_ptr->locks); 4031 // *block_ptr itself was allocated at the end of the locks vector. 4032 block_ptr = next; 4033 } 4034 4035 TCW_4(__kmp_init_user_locks, FALSE); 4036 } 4037 4038 #endif // KMP_USE_DYNAMIC_LOCK 4039