1 /* 2 * kmp_affinity.cpp -- affinity management 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_i18n.h" 16 #include "kmp_io.h" 17 #include "kmp_str.h" 18 #include "kmp_wrapper_getpid.h" 19 #if KMP_USE_HIER_SCHED 20 #include "kmp_dispatch_hier.h" 21 #endif 22 23 // Store the real or imagined machine hierarchy here 24 static hierarchy_info machine_hierarchy; 25 26 void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); } 27 28 void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) { 29 kmp_uint32 depth; 30 // The test below is true if affinity is available, but set to "none". Need to 31 // init on first use of hierarchical barrier. 32 if (TCR_1(machine_hierarchy.uninitialized)) 33 machine_hierarchy.init(NULL, nproc); 34 35 // Adjust the hierarchy in case num threads exceeds original 36 if (nproc > machine_hierarchy.base_num_threads) 37 machine_hierarchy.resize(nproc); 38 39 depth = machine_hierarchy.depth; 40 KMP_DEBUG_ASSERT(depth > 0); 41 42 thr_bar->depth = depth; 43 __kmp_type_convert(machine_hierarchy.numPerLevel[0] - 1, 44 &(thr_bar->base_leaf_kids)); 45 thr_bar->skip_per_level = machine_hierarchy.skipPerLevel; 46 } 47 48 #if KMP_AFFINITY_SUPPORTED 49 50 const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural) { 51 switch (type) { 52 case KMP_HW_SOCKET: 53 return ((plural) ? KMP_I18N_STR(Sockets) : KMP_I18N_STR(Socket)); 54 case KMP_HW_DIE: 55 return ((plural) ? KMP_I18N_STR(Dice) : KMP_I18N_STR(Die)); 56 case KMP_HW_MODULE: 57 return ((plural) ? KMP_I18N_STR(Modules) : KMP_I18N_STR(Module)); 58 case KMP_HW_TILE: 59 return ((plural) ? KMP_I18N_STR(Tiles) : KMP_I18N_STR(Tile)); 60 case KMP_HW_NUMA: 61 return ((plural) ? KMP_I18N_STR(NumaDomains) : KMP_I18N_STR(NumaDomain)); 62 case KMP_HW_L3: 63 return ((plural) ? KMP_I18N_STR(L3Caches) : KMP_I18N_STR(L3Cache)); 64 case KMP_HW_L2: 65 return ((plural) ? KMP_I18N_STR(L2Caches) : KMP_I18N_STR(L2Cache)); 66 case KMP_HW_L1: 67 return ((plural) ? KMP_I18N_STR(L1Caches) : KMP_I18N_STR(L1Cache)); 68 case KMP_HW_CORE: 69 return ((plural) ? KMP_I18N_STR(Cores) : KMP_I18N_STR(Core)); 70 case KMP_HW_THREAD: 71 return ((plural) ? KMP_I18N_STR(Threads) : KMP_I18N_STR(Thread)); 72 case KMP_HW_PROC_GROUP: 73 return ((plural) ? KMP_I18N_STR(ProcGroups) : KMP_I18N_STR(ProcGroup)); 74 } 75 return KMP_I18N_STR(Unknown); 76 } 77 78 // This function removes the topology levels that are radix 1 and don't offer 79 // further information about the topology. The most common example is when you 80 // have one thread context per core, we don't want the extra thread context 81 // level if it offers no unique labels. So they are removed. 82 // return value: the new depth of address2os 83 static int __kmp_affinity_remove_radix_one_levels(AddrUnsPair *addrP, int nTh, 84 int depth, kmp_hw_t *types) { 85 int preference[KMP_HW_LAST]; 86 int top_index1, top_index2; 87 // Set up preference associative array 88 preference[KMP_HW_PROC_GROUP] = 110; 89 preference[KMP_HW_SOCKET] = 100; 90 preference[KMP_HW_CORE] = 95; 91 preference[KMP_HW_THREAD] = 90; 92 preference[KMP_HW_DIE] = 85; 93 preference[KMP_HW_NUMA] = 80; 94 preference[KMP_HW_TILE] = 75; 95 preference[KMP_HW_MODULE] = 73; 96 preference[KMP_HW_L3] = 70; 97 preference[KMP_HW_L2] = 65; 98 preference[KMP_HW_L1] = 60; 99 top_index1 = 0; 100 top_index2 = 1; 101 while (top_index1 < depth - 1 && top_index2 < depth) { 102 KMP_DEBUG_ASSERT(top_index1 >= 0 && top_index1 < depth); 103 KMP_DEBUG_ASSERT(top_index2 >= 0 && top_index2 < depth); 104 kmp_hw_t type1 = types[top_index1]; 105 kmp_hw_t type2 = types[top_index2]; 106 if (type1 == KMP_HW_SOCKET && type2 == KMP_HW_CORE) { 107 top_index1 = top_index2++; 108 continue; 109 } 110 bool radix1 = true; 111 bool all_same = true; 112 unsigned id1 = addrP[0].first.labels[top_index1]; 113 unsigned id2 = addrP[0].first.labels[top_index2]; 114 int pref1 = preference[type1]; 115 int pref2 = preference[type2]; 116 for (int hwidx = 1; hwidx < nTh; ++hwidx) { 117 if (addrP[hwidx].first.labels[top_index1] == id1 && 118 addrP[hwidx].first.labels[top_index2] != id2) { 119 radix1 = false; 120 break; 121 } 122 if (addrP[hwidx].first.labels[top_index2] != id2) 123 all_same = false; 124 id1 = addrP[hwidx].first.labels[top_index1]; 125 id2 = addrP[hwidx].first.labels[top_index2]; 126 } 127 if (radix1) { 128 // Select the layer to remove based on preference 129 kmp_hw_t remove_type, keep_type; 130 int remove_layer, remove_layer_ids; 131 if (pref1 > pref2) { 132 remove_type = type2; 133 remove_layer = remove_layer_ids = top_index2; 134 keep_type = type1; 135 } else { 136 remove_type = type1; 137 remove_layer = remove_layer_ids = top_index1; 138 keep_type = type2; 139 } 140 // If all the indexes for the second (deeper) layer are the same. 141 // e.g., all are zero, then make sure to keep the first layer's ids 142 if (all_same) 143 remove_layer_ids = top_index2; 144 // Remove radix one type by setting the equivalence, removing the id from 145 // the hw threads and removing the layer from types and depth 146 for (int idx = 0; idx < nTh; ++idx) { 147 Address &hw_thread = addrP[idx].first; 148 for (int d = remove_layer_ids; d < depth - 1; ++d) 149 hw_thread.labels[d] = hw_thread.labels[d + 1]; 150 hw_thread.depth--; 151 } 152 for (int idx = remove_layer; idx < depth - 1; ++idx) 153 types[idx] = types[idx + 1]; 154 depth--; 155 } else { 156 top_index1 = top_index2++; 157 } 158 } 159 KMP_ASSERT(depth > 0); 160 return depth; 161 } 162 // Gather the count of each topology layer and the ratio 163 // ratio contains the number of types[i] / types[i+1] and so forth 164 // count contains the absolute number of types[i] 165 static void __kmp_affinity_gather_enumeration_information(AddrUnsPair *addrP, 166 int nTh, int depth, 167 kmp_hw_t *types, 168 int *ratio, 169 int *count) { 170 int previous_id[KMP_HW_LAST]; 171 int max[KMP_HW_LAST]; 172 173 for (int i = 0; i < depth; ++i) { 174 previous_id[i] = -1; 175 max[i] = 0; 176 count[i] = 0; 177 ratio[i] = 0; 178 } 179 for (int i = 0; i < nTh; ++i) { 180 Address &hw_thread = addrP[i].first; 181 for (int layer = 0; layer < depth; ++layer) { 182 int id = hw_thread.labels[layer]; 183 if (id != previous_id[layer]) { 184 // Add an additional increment to each count 185 for (int l = layer; l < depth; ++l) 186 count[l]++; 187 // Keep track of topology layer ratio statistics 188 max[layer]++; 189 for (int l = layer + 1; l < depth; ++l) { 190 if (max[l] > ratio[l]) 191 ratio[l] = max[l]; 192 max[l] = 1; 193 } 194 break; 195 } 196 } 197 for (int layer = 0; layer < depth; ++layer) { 198 previous_id[layer] = hw_thread.labels[layer]; 199 } 200 } 201 for (int layer = 0; layer < depth; ++layer) { 202 if (max[layer] > ratio[layer]) 203 ratio[layer] = max[layer]; 204 } 205 } 206 207 // Find out if the topology is uniform 208 static bool __kmp_affinity_discover_uniformity(int depth, int *ratio, 209 int *count) { 210 int num = 1; 211 for (int level = 0; level < depth; ++level) 212 num *= ratio[level]; 213 return (num == count[depth - 1]); 214 } 215 216 // calculate the number of X's per Y 217 static inline int __kmp_affinity_calculate_ratio(int *ratio, int deep_level, 218 int shallow_level) { 219 int retval = 1; 220 if (deep_level < 0 || shallow_level < 0) 221 return retval; 222 for (int level = deep_level; level > shallow_level; --level) 223 retval *= ratio[level]; 224 return retval; 225 } 226 227 static void __kmp_affinity_print_topology(AddrUnsPair *addrP, int len, 228 int depth, kmp_hw_t *types) { 229 int proc; 230 kmp_str_buf_t buf; 231 __kmp_str_buf_init(&buf); 232 KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY"); 233 for (proc = 0; proc < len; proc++) { 234 for (int i = 0; i < depth; ++i) { 235 __kmp_str_buf_print(&buf, "%s %d ", __kmp_hw_get_catalog_string(types[i]), 236 addrP[proc].first.labels[i]); 237 } 238 KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", addrP[proc].second, buf.str); 239 __kmp_str_buf_clear(&buf); 240 } 241 __kmp_str_buf_free(&buf); 242 } 243 244 // Print out the detailed machine topology map, i.e. the physical locations 245 // of each OS proc. 246 static void __kmp_affinity_print_topology(AddrUnsPair *address2os, int len, 247 int depth, int pkgLevel, 248 int coreLevel, int threadLevel) { 249 int proc; 250 251 KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY"); 252 for (proc = 0; proc < len; proc++) { 253 int level; 254 kmp_str_buf_t buf; 255 __kmp_str_buf_init(&buf); 256 for (level = 0; level < depth; level++) { 257 if (level == threadLevel) { 258 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Thread)); 259 } else if (level == coreLevel) { 260 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Core)); 261 } else if (level == pkgLevel) { 262 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Package)); 263 } else if (level > pkgLevel) { 264 __kmp_str_buf_print(&buf, "%s_%d ", KMP_I18N_STR(Node), 265 level - pkgLevel - 1); 266 } else { 267 __kmp_str_buf_print(&buf, "L%d ", level); 268 } 269 __kmp_str_buf_print(&buf, "%d ", address2os[proc].first.labels[level]); 270 } 271 KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", address2os[proc].second, 272 buf.str); 273 __kmp_str_buf_free(&buf); 274 } 275 } 276 277 bool KMPAffinity::picked_api = false; 278 279 void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); } 280 void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); } 281 void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); } 282 void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); } 283 void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); } 284 void KMPAffinity::operator delete(void *p) { __kmp_free(p); } 285 286 void KMPAffinity::pick_api() { 287 KMPAffinity *affinity_dispatch; 288 if (picked_api) 289 return; 290 #if KMP_USE_HWLOC 291 // Only use Hwloc if affinity isn't explicitly disabled and 292 // user requests Hwloc topology method 293 if (__kmp_affinity_top_method == affinity_top_method_hwloc && 294 __kmp_affinity_type != affinity_disabled) { 295 affinity_dispatch = new KMPHwlocAffinity(); 296 } else 297 #endif 298 { 299 affinity_dispatch = new KMPNativeAffinity(); 300 } 301 __kmp_affinity_dispatch = affinity_dispatch; 302 picked_api = true; 303 } 304 305 void KMPAffinity::destroy_api() { 306 if (__kmp_affinity_dispatch != NULL) { 307 delete __kmp_affinity_dispatch; 308 __kmp_affinity_dispatch = NULL; 309 picked_api = false; 310 } 311 } 312 313 #define KMP_ADVANCE_SCAN(scan) \ 314 while (*scan != '\0') { \ 315 scan++; \ 316 } 317 318 // Print the affinity mask to the character array in a pretty format. 319 // The format is a comma separated list of non-negative integers or integer 320 // ranges: e.g., 1,2,3-5,7,9-15 321 // The format can also be the string "{<empty>}" if no bits are set in mask 322 char *__kmp_affinity_print_mask(char *buf, int buf_len, 323 kmp_affin_mask_t *mask) { 324 int start = 0, finish = 0, previous = 0; 325 bool first_range; 326 KMP_ASSERT(buf); 327 KMP_ASSERT(buf_len >= 40); 328 KMP_ASSERT(mask); 329 char *scan = buf; 330 char *end = buf + buf_len - 1; 331 332 // Check for empty set. 333 if (mask->begin() == mask->end()) { 334 KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}"); 335 KMP_ADVANCE_SCAN(scan); 336 KMP_ASSERT(scan <= end); 337 return buf; 338 } 339 340 first_range = true; 341 start = mask->begin(); 342 while (1) { 343 // Find next range 344 // [start, previous] is inclusive range of contiguous bits in mask 345 for (finish = mask->next(start), previous = start; 346 finish == previous + 1 && finish != mask->end(); 347 finish = mask->next(finish)) { 348 previous = finish; 349 } 350 351 // The first range does not need a comma printed before it, but the rest 352 // of the ranges do need a comma beforehand 353 if (!first_range) { 354 KMP_SNPRINTF(scan, end - scan + 1, "%s", ","); 355 KMP_ADVANCE_SCAN(scan); 356 } else { 357 first_range = false; 358 } 359 // Range with three or more contiguous bits in the affinity mask 360 if (previous - start > 1) { 361 KMP_SNPRINTF(scan, end - scan + 1, "%u-%u", start, previous); 362 } else { 363 // Range with one or two contiguous bits in the affinity mask 364 KMP_SNPRINTF(scan, end - scan + 1, "%u", start); 365 KMP_ADVANCE_SCAN(scan); 366 if (previous - start > 0) { 367 KMP_SNPRINTF(scan, end - scan + 1, ",%u", previous); 368 } 369 } 370 KMP_ADVANCE_SCAN(scan); 371 // Start over with new start point 372 start = finish; 373 if (start == mask->end()) 374 break; 375 // Check for overflow 376 if (end - scan < 2) 377 break; 378 } 379 380 // Check for overflow 381 KMP_ASSERT(scan <= end); 382 return buf; 383 } 384 #undef KMP_ADVANCE_SCAN 385 386 // Print the affinity mask to the string buffer object in a pretty format 387 // The format is a comma separated list of non-negative integers or integer 388 // ranges: e.g., 1,2,3-5,7,9-15 389 // The format can also be the string "{<empty>}" if no bits are set in mask 390 kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf, 391 kmp_affin_mask_t *mask) { 392 int start = 0, finish = 0, previous = 0; 393 bool first_range; 394 KMP_ASSERT(buf); 395 KMP_ASSERT(mask); 396 397 __kmp_str_buf_clear(buf); 398 399 // Check for empty set. 400 if (mask->begin() == mask->end()) { 401 __kmp_str_buf_print(buf, "%s", "{<empty>}"); 402 return buf; 403 } 404 405 first_range = true; 406 start = mask->begin(); 407 while (1) { 408 // Find next range 409 // [start, previous] is inclusive range of contiguous bits in mask 410 for (finish = mask->next(start), previous = start; 411 finish == previous + 1 && finish != mask->end(); 412 finish = mask->next(finish)) { 413 previous = finish; 414 } 415 416 // The first range does not need a comma printed before it, but the rest 417 // of the ranges do need a comma beforehand 418 if (!first_range) { 419 __kmp_str_buf_print(buf, "%s", ","); 420 } else { 421 first_range = false; 422 } 423 // Range with three or more contiguous bits in the affinity mask 424 if (previous - start > 1) { 425 __kmp_str_buf_print(buf, "%u-%u", start, previous); 426 } else { 427 // Range with one or two contiguous bits in the affinity mask 428 __kmp_str_buf_print(buf, "%u", start); 429 if (previous - start > 0) { 430 __kmp_str_buf_print(buf, ",%u", previous); 431 } 432 } 433 // Start over with new start point 434 start = finish; 435 if (start == mask->end()) 436 break; 437 } 438 return buf; 439 } 440 441 void __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) { 442 KMP_CPU_ZERO(mask); 443 444 #if KMP_GROUP_AFFINITY 445 446 if (__kmp_num_proc_groups > 1) { 447 int group; 448 KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL); 449 for (group = 0; group < __kmp_num_proc_groups; group++) { 450 int i; 451 int num = __kmp_GetActiveProcessorCount(group); 452 for (i = 0; i < num; i++) { 453 KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask); 454 } 455 } 456 } else 457 458 #endif /* KMP_GROUP_AFFINITY */ 459 460 { 461 int proc; 462 for (proc = 0; proc < __kmp_xproc; proc++) { 463 KMP_CPU_SET(proc, mask); 464 } 465 } 466 } 467 468 // When sorting by labels, __kmp_affinity_assign_child_nums() must first be 469 // called to renumber the labels from [0..n] and place them into the child_num 470 // vector of the address object. This is done in case the labels used for 471 // the children at one node of the hierarchy differ from those used for 472 // another node at the same level. Example: suppose the machine has 2 nodes 473 // with 2 packages each. The first node contains packages 601 and 602, and 474 // second node contains packages 603 and 604. If we try to sort the table 475 // for "scatter" affinity, the table will still be sorted 601, 602, 603, 604 476 // because we are paying attention to the labels themselves, not the ordinal 477 // child numbers. By using the child numbers in the sort, the result is 478 // {0,0}=601, {0,1}=603, {1,0}=602, {1,1}=604. 479 static void __kmp_affinity_assign_child_nums(AddrUnsPair *address2os, 480 int numAddrs) { 481 KMP_DEBUG_ASSERT(numAddrs > 0); 482 int depth = address2os->first.depth; 483 unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 484 unsigned *lastLabel = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 485 int labCt; 486 for (labCt = 0; labCt < depth; labCt++) { 487 address2os[0].first.childNums[labCt] = counts[labCt] = 0; 488 lastLabel[labCt] = address2os[0].first.labels[labCt]; 489 } 490 int i; 491 for (i = 1; i < numAddrs; i++) { 492 for (labCt = 0; labCt < depth; labCt++) { 493 if (address2os[i].first.labels[labCt] != lastLabel[labCt]) { 494 int labCt2; 495 for (labCt2 = labCt + 1; labCt2 < depth; labCt2++) { 496 counts[labCt2] = 0; 497 lastLabel[labCt2] = address2os[i].first.labels[labCt2]; 498 } 499 counts[labCt]++; 500 lastLabel[labCt] = address2os[i].first.labels[labCt]; 501 break; 502 } 503 } 504 for (labCt = 0; labCt < depth; labCt++) { 505 address2os[i].first.childNums[labCt] = counts[labCt]; 506 } 507 for (; labCt < (int)Address::maxDepth; labCt++) { 508 address2os[i].first.childNums[labCt] = 0; 509 } 510 } 511 __kmp_free(lastLabel); 512 __kmp_free(counts); 513 } 514 515 // All of the __kmp_affinity_create_*_map() routines should set 516 // __kmp_affinity_masks to a vector of affinity mask objects of length 517 // __kmp_affinity_num_masks, if __kmp_affinity_type != affinity_none, and return 518 // the number of levels in the machine topology tree (zero if 519 // __kmp_affinity_type == affinity_none). 520 // 521 // All of the __kmp_affinity_create_*_map() routines should set 522 // *__kmp_affin_fullMask to the affinity mask for the initialization thread. 523 // They need to save and restore the mask, and it could be needed later, so 524 // saving it is just an optimization to avoid calling kmp_get_system_affinity() 525 // again. 526 kmp_affin_mask_t *__kmp_affin_fullMask = NULL; 527 528 static int nCoresPerPkg, nPackages; 529 static int __kmp_nThreadsPerCore; 530 #ifndef KMP_DFLT_NTH_CORES 531 static int __kmp_ncores; 532 #endif 533 static int *__kmp_pu_os_idx = NULL; 534 static int nDiesPerPkg = 1; 535 536 // __kmp_affinity_uniform_topology() doesn't work when called from 537 // places which support arbitrarily many levels in the machine topology 538 // map, i.e. the non-default cases in __kmp_affinity_create_cpuinfo_map() 539 // __kmp_affinity_create_x2apicid_map(). 540 inline static bool __kmp_affinity_uniform_topology() { 541 return __kmp_avail_proc == 542 (__kmp_nThreadsPerCore * nCoresPerPkg * nDiesPerPkg * nPackages); 543 } 544 545 #if KMP_USE_HWLOC 546 547 static inline bool __kmp_hwloc_is_cache_type(hwloc_obj_t obj) { 548 #if HWLOC_API_VERSION >= 0x00020000 549 return hwloc_obj_type_is_cache(obj->type); 550 #else 551 return obj->type == HWLOC_OBJ_CACHE; 552 #endif 553 } 554 555 // Returns KMP_HW_* type derived from HWLOC_* type 556 static inline kmp_hw_t __kmp_hwloc_type_2_topology_type(hwloc_obj_t obj) { 557 558 if (__kmp_hwloc_is_cache_type(obj)) { 559 if (obj->attr->cache.type == HWLOC_OBJ_CACHE_INSTRUCTION) 560 return KMP_HW_UNKNOWN; 561 switch (obj->attr->cache.depth) { 562 case 1: 563 return KMP_HW_L1; 564 case 2: 565 #if KMP_MIC_SUPPORTED 566 if (__kmp_mic_type == mic3) { 567 return KMP_HW_TILE; 568 } 569 #endif 570 return KMP_HW_L2; 571 case 3: 572 return KMP_HW_L3; 573 } 574 return KMP_HW_UNKNOWN; 575 } 576 577 switch (obj->type) { 578 case HWLOC_OBJ_PACKAGE: 579 return KMP_HW_SOCKET; 580 case HWLOC_OBJ_NUMANODE: 581 return KMP_HW_NUMA; 582 case HWLOC_OBJ_CORE: 583 return KMP_HW_CORE; 584 case HWLOC_OBJ_PU: 585 return KMP_HW_THREAD; 586 } 587 return KMP_HW_UNKNOWN; 588 } 589 590 // Returns the number of objects of type 'type' below 'obj' within the topology 591 // tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is 592 // HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET 593 // object. 594 static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj, 595 hwloc_obj_type_t type) { 596 int retval = 0; 597 hwloc_obj_t first; 598 for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type, 599 obj->logical_index, type, 0); 600 first != NULL && 601 hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, obj->type, first) == 602 obj; 603 first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type, 604 first)) { 605 ++retval; 606 } 607 return retval; 608 } 609 610 static int __kmp_hwloc_count_children_by_depth(hwloc_topology_t t, 611 hwloc_obj_t o, 612 kmp_hwloc_depth_t depth, 613 hwloc_obj_t *f) { 614 if (o->depth == depth) { 615 if (*f == NULL) 616 *f = o; // output first descendant found 617 return 1; 618 } 619 int sum = 0; 620 for (unsigned i = 0; i < o->arity; i++) 621 sum += __kmp_hwloc_count_children_by_depth(t, o->children[i], depth, f); 622 return sum; // will be 0 if no one found (as PU arity is 0) 623 } 624 625 static int __kmp_hwloc_count_children_by_type(hwloc_topology_t t, hwloc_obj_t o, 626 hwloc_obj_type_t type, 627 hwloc_obj_t *f) { 628 if (!hwloc_compare_types(o->type, type)) { 629 if (*f == NULL) 630 *f = o; // output first descendant found 631 return 1; 632 } 633 int sum = 0; 634 for (unsigned i = 0; i < o->arity; i++) 635 sum += __kmp_hwloc_count_children_by_type(t, o->children[i], type, f); 636 return sum; // will be 0 if no one found (as PU arity is 0) 637 } 638 639 // This gets the sub_id for a lower object under a higher object in the 640 // topology tree 641 static int __kmp_hwloc_get_sub_id(hwloc_topology_t t, hwloc_obj_t higher, 642 hwloc_obj_t lower) { 643 hwloc_obj_t obj; 644 hwloc_obj_type_t ltype = lower->type; 645 int lindex = lower->logical_index - 1; 646 int sub_id = 0; 647 // Get the previous lower object 648 obj = hwloc_get_obj_by_type(t, ltype, lindex); 649 while (obj && lindex >= 0 && 650 hwloc_bitmap_isincluded(obj->cpuset, higher->cpuset)) { 651 if (obj->userdata) { 652 sub_id = (int)(RCAST(kmp_intptr_t, obj->userdata)); 653 break; 654 } 655 sub_id++; 656 lindex--; 657 obj = hwloc_get_obj_by_type(t, ltype, lindex); 658 } 659 // store sub_id + 1 so that 0 is differed from NULL 660 lower->userdata = RCAST(void *, sub_id + 1); 661 return sub_id; 662 } 663 664 static int __kmp_affinity_create_hwloc_map(AddrUnsPair **address2os, 665 kmp_i18n_id_t *const msg_id) { 666 kmp_hw_t type; 667 int hw_thread_index, sub_id, nActiveThreads; 668 int depth; 669 hwloc_obj_t pu, obj, root, prev; 670 int ratio[KMP_HW_LAST]; 671 int count[KMP_HW_LAST]; 672 kmp_hw_t types[KMP_HW_LAST]; 673 674 hwloc_topology_t tp = __kmp_hwloc_topology; 675 *msg_id = kmp_i18n_null; 676 677 // Save the affinity mask for the current thread. 678 kmp_affin_mask_t *oldMask; 679 KMP_CPU_ALLOC(oldMask); 680 __kmp_get_system_affinity(oldMask, TRUE); 681 682 if (!KMP_AFFINITY_CAPABLE()) { 683 // Hack to try and infer the machine topology using only the data 684 // available from cpuid on the current thread, and __kmp_xproc. 685 KMP_ASSERT(__kmp_affinity_type == affinity_none); 686 // hwloc only guarantees existance of PU object, so check PACKAGE and CORE 687 hwloc_obj_t o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0); 688 if (o != NULL) 689 nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_CORE); 690 else 691 nCoresPerPkg = 1; // no PACKAGE found 692 o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0); 693 if (o != NULL) 694 __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_PU); 695 else 696 __kmp_nThreadsPerCore = 1; // no CORE found 697 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; 698 if (nCoresPerPkg == 0) 699 nCoresPerPkg = 1; // to prevent possible division by 0 700 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 701 if (__kmp_affinity_verbose) { 702 KMP_INFORM(AffNotUsingHwloc, "KMP_AFFINITY"); 703 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 704 if (__kmp_affinity_uniform_topology()) { 705 KMP_INFORM(Uniform, "KMP_AFFINITY"); 706 } else { 707 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 708 } 709 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 710 __kmp_nThreadsPerCore, __kmp_ncores); 711 } 712 KMP_CPU_FREE(oldMask); 713 return 0; 714 } 715 716 root = hwloc_get_root_obj(tp); 717 718 // Figure out the depth and types in the topology 719 depth = 0; 720 pu = hwloc_get_pu_obj_by_os_index(tp, __kmp_affin_fullMask->begin()); 721 obj = pu; 722 types[depth] = KMP_HW_THREAD; 723 depth++; 724 while (obj != root && obj != NULL) { 725 obj = obj->parent; 726 #if HWLOC_API_VERSION >= 0x00020000 727 if (obj->memory_arity) { 728 hwloc_obj_t memory; 729 for (memory = obj->memory_first_child; memory; 730 memory = hwloc_get_next_child(tp, obj, memory)) { 731 if (memory->type == HWLOC_OBJ_NUMANODE) 732 break; 733 } 734 if (memory && memory->type == HWLOC_OBJ_NUMANODE) { 735 types[depth] = KMP_HW_NUMA; 736 depth++; 737 } 738 } 739 #endif 740 type = __kmp_hwloc_type_2_topology_type(obj); 741 if (type != KMP_HW_UNKNOWN) { 742 types[depth] = type; 743 depth++; 744 } 745 } 746 KMP_ASSERT(depth > 0 && depth <= KMP_HW_LAST); 747 748 // Get the order for the types correct 749 for (int i = 0, j = depth - 1; i < j; ++i, --j) { 750 kmp_hw_t temp = types[i]; 751 types[i] = types[j]; 752 types[j] = temp; 753 } 754 755 // Allocate the data structure to be returned. 756 AddrUnsPair *retval = 757 (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc); 758 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 759 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 760 761 hw_thread_index = 0; 762 pu = NULL; 763 nActiveThreads = 0; 764 while (pu = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, pu)) { 765 int index = depth - 1; 766 bool included = KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask); 767 Address hw_thread(depth); 768 if (included) { 769 hw_thread.labels[index] = pu->logical_index; 770 __kmp_pu_os_idx[hw_thread_index] = pu->os_index; 771 index--; 772 nActiveThreads++; 773 } 774 obj = pu; 775 prev = obj; 776 while (obj != root && obj != NULL) { 777 obj = obj->parent; 778 #if HWLOC_API_VERSION >= 0x00020000 779 // NUMA Nodes are handled differently since they are not within the 780 // parent/child structure anymore. They are separate children 781 // of obj (memory_first_child points to first memory child) 782 if (obj->memory_arity) { 783 hwloc_obj_t memory; 784 for (memory = obj->memory_first_child; memory; 785 memory = hwloc_get_next_child(tp, obj, memory)) { 786 if (memory->type == HWLOC_OBJ_NUMANODE) 787 break; 788 } 789 if (memory && memory->type == HWLOC_OBJ_NUMANODE) { 790 sub_id = __kmp_hwloc_get_sub_id(tp, memory, prev); 791 if (included) { 792 hw_thread.labels[index] = memory->logical_index; 793 hw_thread.labels[index + 1] = sub_id; 794 index--; 795 } 796 prev = memory; 797 } 798 } 799 #endif 800 type = __kmp_hwloc_type_2_topology_type(obj); 801 if (type != KMP_HW_UNKNOWN) { 802 sub_id = __kmp_hwloc_get_sub_id(tp, obj, prev); 803 if (included) { 804 hw_thread.labels[index] = obj->logical_index; 805 hw_thread.labels[index + 1] = sub_id; 806 index--; 807 } 808 prev = obj; 809 } 810 } 811 if (included) { 812 retval[hw_thread_index] = AddrUnsPair(hw_thread, pu->os_index); 813 hw_thread_index++; 814 } 815 } 816 817 // If there's only one thread context to bind to, return now. 818 KMP_DEBUG_ASSERT(nActiveThreads == __kmp_avail_proc); 819 KMP_ASSERT(nActiveThreads > 0); 820 if (nActiveThreads == 1) { 821 __kmp_ncores = nPackages = 1; 822 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 823 if (__kmp_affinity_verbose) { 824 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); 825 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 826 KMP_INFORM(Uniform, "KMP_AFFINITY"); 827 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 828 __kmp_nThreadsPerCore, __kmp_ncores); 829 } 830 831 if (__kmp_affinity_type == affinity_none) { 832 __kmp_free(retval); 833 KMP_CPU_FREE(oldMask); 834 return 0; 835 } 836 837 // Form an Address object which only includes the package level. 838 Address addr(1); 839 addr.labels[0] = retval[0].first.labels[0]; 840 retval[0].first = addr; 841 842 if (__kmp_affinity_gran_levels < 0) { 843 __kmp_affinity_gran_levels = 0; 844 } 845 846 if (__kmp_affinity_verbose) { 847 __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1); 848 } 849 850 *address2os = retval; 851 KMP_CPU_FREE(oldMask); 852 return 1; 853 } 854 855 // Sort the table by physical Id. 856 qsort(retval, nActiveThreads, sizeof(*retval), 857 __kmp_affinity_cmp_Address_labels); 858 859 // Find any levels with radiix 1, and remove them from the map 860 // (except for the package level). 861 depth = __kmp_affinity_remove_radix_one_levels(retval, nActiveThreads, depth, 862 types); 863 864 __kmp_affinity_gather_enumeration_information(retval, nActiveThreads, depth, 865 types, ratio, count); 866 867 for (int level = 0; level < depth; ++level) { 868 if ((types[level] == KMP_HW_L2 || types[level] == KMP_HW_L3)) 869 __kmp_tile_depth = level; 870 } 871 872 // This routine should set __kmp_ncores, as well as 873 // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 874 int thread_level, core_level, tile_level, numa_level, socket_level; 875 thread_level = core_level = tile_level = numa_level = socket_level = -1; 876 for (int level = 0; level < depth; ++level) { 877 if (types[level] == KMP_HW_THREAD) 878 thread_level = level; 879 else if (types[level] == KMP_HW_CORE) 880 core_level = level; 881 else if (types[level] == KMP_HW_SOCKET) 882 socket_level = level; 883 else if (types[level] == KMP_HW_TILE) 884 tile_level = level; 885 else if (types[level] == KMP_HW_NUMA) 886 numa_level = level; 887 } 888 __kmp_nThreadsPerCore = 889 __kmp_affinity_calculate_ratio(ratio, thread_level, core_level); 890 nCoresPerPkg = 891 __kmp_affinity_calculate_ratio(ratio, core_level, socket_level); 892 if (socket_level >= 0) 893 nPackages = count[socket_level]; 894 else 895 nPackages = 1; 896 if (core_level >= 0) 897 __kmp_ncores = count[core_level]; 898 else 899 __kmp_ncores = 1; 900 901 unsigned uniform = __kmp_affinity_discover_uniformity(depth, ratio, count); 902 903 // Print the machine topology summary. 904 if (__kmp_affinity_verbose) { 905 kmp_hw_t numerator_type, denominator_type; 906 kmp_str_buf_t buf; 907 __kmp_str_buf_init(&buf); 908 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 909 if (uniform) { 910 KMP_INFORM(Uniform, "KMP_AFFINITY"); 911 } else { 912 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 913 } 914 915 __kmp_str_buf_clear(&buf); 916 917 if (core_level < 0) 918 core_level = depth - 1; 919 int ncores = count[core_level]; 920 921 denominator_type = KMP_HW_UNKNOWN; 922 for (int level = 0; level < depth; ++level) { 923 int c; 924 bool plural; 925 numerator_type = types[level]; 926 c = ratio[level]; 927 plural = (c > 1); 928 if (level == 0) { 929 __kmp_str_buf_print(&buf, "%d %s", c, __kmp_hw_get_catalog_string( 930 numerator_type, plural)); 931 } else { 932 __kmp_str_buf_print(&buf, " x %d %s/%s", c, 933 __kmp_hw_get_catalog_string(numerator_type, plural), 934 __kmp_hw_get_catalog_string(denominator_type)); 935 } 936 denominator_type = numerator_type; 937 } 938 KMP_INFORM(TopologyGeneric, "KMP_AFFINITY", buf.str, ncores); 939 __kmp_str_buf_free(&buf); 940 } 941 942 if (__kmp_affinity_type == affinity_none) { 943 __kmp_free(retval); 944 KMP_CPU_FREE(oldMask); 945 return 0; 946 } 947 948 // Set the granularity level based on what levels are modeled 949 // in the machine topology map. 950 if (__kmp_affinity_gran == affinity_gran_node) 951 __kmp_affinity_gran = affinity_gran_numa; 952 KMP_DEBUG_ASSERT(__kmp_affinity_gran != affinity_gran_default); 953 if (__kmp_affinity_gran_levels < 0) { 954 __kmp_affinity_gran_levels = 0; // lowest level (e.g. fine) 955 if ((thread_level >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) 956 __kmp_affinity_gran_levels++; 957 if ((core_level >= 0) && (__kmp_affinity_gran > affinity_gran_core)) 958 __kmp_affinity_gran_levels++; 959 if ((tile_level >= 0) && (__kmp_affinity_gran > affinity_gran_tile)) 960 __kmp_affinity_gran_levels++; 961 if ((numa_level >= 0) && (__kmp_affinity_gran > affinity_gran_numa)) 962 __kmp_affinity_gran_levels++; 963 if ((socket_level >= 0) && (__kmp_affinity_gran > affinity_gran_package)) 964 __kmp_affinity_gran_levels++; 965 } 966 967 if (__kmp_affinity_verbose) 968 __kmp_affinity_print_topology(retval, nActiveThreads, depth, types); 969 970 KMP_CPU_FREE(oldMask); 971 *address2os = retval; 972 return depth; 973 } 974 #endif // KMP_USE_HWLOC 975 976 // If we don't know how to retrieve the machine's processor topology, or 977 // encounter an error in doing so, this routine is called to form a "flat" 978 // mapping of os thread id's <-> processor id's. 979 static int __kmp_affinity_create_flat_map(AddrUnsPair **address2os, 980 kmp_i18n_id_t *const msg_id) { 981 *address2os = NULL; 982 *msg_id = kmp_i18n_null; 983 984 // Even if __kmp_affinity_type == affinity_none, this routine might still 985 // called to set __kmp_ncores, as well as 986 // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 987 if (!KMP_AFFINITY_CAPABLE()) { 988 KMP_ASSERT(__kmp_affinity_type == affinity_none); 989 __kmp_ncores = nPackages = __kmp_xproc; 990 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 991 if (__kmp_affinity_verbose) { 992 KMP_INFORM(AffFlatTopology, "KMP_AFFINITY"); 993 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 994 KMP_INFORM(Uniform, "KMP_AFFINITY"); 995 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 996 __kmp_nThreadsPerCore, __kmp_ncores); 997 } 998 return 0; 999 } 1000 1001 // When affinity is off, this routine will still be called to set 1002 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 1003 // Make sure all these vars are set correctly, and return now if affinity is 1004 // not enabled. 1005 __kmp_ncores = nPackages = __kmp_avail_proc; 1006 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 1007 if (__kmp_affinity_verbose) { 1008 KMP_INFORM(AffCapableUseFlat, "KMP_AFFINITY"); 1009 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1010 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1011 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1012 __kmp_nThreadsPerCore, __kmp_ncores); 1013 } 1014 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 1015 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 1016 if (__kmp_affinity_type == affinity_none) { 1017 int avail_ct = 0; 1018 int i; 1019 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 1020 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) 1021 continue; 1022 __kmp_pu_os_idx[avail_ct++] = i; // suppose indices are flat 1023 } 1024 return 0; 1025 } 1026 1027 // Construct the data structure to be returned. 1028 *address2os = 1029 (AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc); 1030 int avail_ct = 0; 1031 int i; 1032 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 1033 // Skip this proc if it is not included in the machine model. 1034 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 1035 continue; 1036 } 1037 __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat 1038 Address addr(1); 1039 addr.labels[0] = i; 1040 (*address2os)[avail_ct++] = AddrUnsPair(addr, i); 1041 } 1042 if (__kmp_affinity_verbose) { 1043 KMP_INFORM(OSProcToPackage, "KMP_AFFINITY"); 1044 } 1045 1046 if (__kmp_affinity_gran_levels < 0) { 1047 // Only the package level is modeled in the machine topology map, 1048 // so the #levels of granularity is either 0 or 1. 1049 if (__kmp_affinity_gran > affinity_gran_package) { 1050 __kmp_affinity_gran_levels = 1; 1051 } else { 1052 __kmp_affinity_gran_levels = 0; 1053 } 1054 } 1055 return 1; 1056 } 1057 1058 #if KMP_GROUP_AFFINITY 1059 1060 // If multiple Windows* OS processor groups exist, we can create a 2-level 1061 // topology map with the groups at level 0 and the individual procs at level 1. 1062 // This facilitates letting the threads float among all procs in a group, 1063 // if granularity=group (the default when there are multiple groups). 1064 static int __kmp_affinity_create_proc_group_map(AddrUnsPair **address2os, 1065 kmp_i18n_id_t *const msg_id) { 1066 *address2os = NULL; 1067 *msg_id = kmp_i18n_null; 1068 1069 // If we aren't affinity capable, then return now. 1070 // The flat mapping will be used. 1071 if (!KMP_AFFINITY_CAPABLE()) { 1072 // FIXME set *msg_id 1073 return -1; 1074 } 1075 1076 // Construct the data structure to be returned. 1077 *address2os = 1078 (AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc); 1079 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 1080 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 1081 int avail_ct = 0; 1082 int i; 1083 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 1084 // Skip this proc if it is not included in the machine model. 1085 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 1086 continue; 1087 } 1088 __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat 1089 Address addr(2); 1090 addr.labels[0] = i / (CHAR_BIT * sizeof(DWORD_PTR)); 1091 addr.labels[1] = i % (CHAR_BIT * sizeof(DWORD_PTR)); 1092 (*address2os)[avail_ct++] = AddrUnsPair(addr, i); 1093 1094 if (__kmp_affinity_verbose) { 1095 KMP_INFORM(AffOSProcToGroup, "KMP_AFFINITY", i, addr.labels[0], 1096 addr.labels[1]); 1097 } 1098 } 1099 1100 if (__kmp_affinity_gran_levels < 0) { 1101 if (__kmp_affinity_gran == affinity_gran_group) { 1102 __kmp_affinity_gran_levels = 1; 1103 } else if ((__kmp_affinity_gran == affinity_gran_fine) || 1104 (__kmp_affinity_gran == affinity_gran_thread)) { 1105 __kmp_affinity_gran_levels = 0; 1106 } else { 1107 const char *gran_str = NULL; 1108 if (__kmp_affinity_gran == affinity_gran_core) { 1109 gran_str = "core"; 1110 } else if (__kmp_affinity_gran == affinity_gran_package) { 1111 gran_str = "package"; 1112 } else if (__kmp_affinity_gran == affinity_gran_node) { 1113 gran_str = "node"; 1114 } else { 1115 KMP_ASSERT(0); 1116 } 1117 1118 // Warning: can't use affinity granularity \"gran\" with group topology 1119 // method, using "thread" 1120 __kmp_affinity_gran_levels = 0; 1121 } 1122 } 1123 return 2; 1124 } 1125 1126 #endif /* KMP_GROUP_AFFINITY */ 1127 1128 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1129 1130 /* 1131 * CPUID.B or 1F, Input ECX (sub leaf # aka level number) 1132 Bits Bits Bits Bits 1133 31-16 15-8 7-4 4-0 1134 ---+-----------+--------------+-------------+-----------------+ 1135 EAX| reserved | reserved | reserved | Bits to Shift | 1136 ---+-----------|--------------+-------------+-----------------| 1137 EBX| reserved | Num logical processors at level (16 bits) | 1138 ---+-----------|--------------+-------------------------------| 1139 ECX| reserved | Level Type | Level Number (8 bits) | 1140 ---+-----------+--------------+-------------------------------| 1141 EDX| X2APIC ID (32 bits) | 1142 ---+----------------------------------------------------------+ 1143 */ 1144 1145 enum { 1146 INTEL_LEVEL_TYPE_INVALID = 0, // Package level 1147 INTEL_LEVEL_TYPE_SMT = 1, 1148 INTEL_LEVEL_TYPE_CORE = 2, 1149 INTEL_LEVEL_TYPE_TILE = 3, 1150 INTEL_LEVEL_TYPE_MODULE = 4, 1151 INTEL_LEVEL_TYPE_DIE = 5, 1152 INTEL_LEVEL_TYPE_LAST = 6, 1153 }; 1154 1155 struct cpuid_level_info_t { 1156 unsigned level_type, mask, mask_width, nitems, cache_mask; 1157 }; 1158 1159 template <kmp_uint32 LSB, kmp_uint32 MSB> 1160 static inline unsigned __kmp_extract_bits(kmp_uint32 v) { 1161 const kmp_uint32 SHIFT_LEFT = sizeof(kmp_uint32) * 8 - 1 - MSB; 1162 const kmp_uint32 SHIFT_RIGHT = LSB; 1163 kmp_uint32 retval = v; 1164 retval <<= SHIFT_LEFT; 1165 retval >>= (SHIFT_LEFT + SHIFT_RIGHT); 1166 return retval; 1167 } 1168 1169 static kmp_hw_t __kmp_intel_type_2_topology_type(int intel_type) { 1170 switch (intel_type) { 1171 case INTEL_LEVEL_TYPE_INVALID: 1172 return KMP_HW_SOCKET; 1173 case INTEL_LEVEL_TYPE_SMT: 1174 return KMP_HW_THREAD; 1175 case INTEL_LEVEL_TYPE_CORE: 1176 return KMP_HW_CORE; 1177 // TODO: add support for the tile and module 1178 case INTEL_LEVEL_TYPE_TILE: 1179 return KMP_HW_UNKNOWN; 1180 case INTEL_LEVEL_TYPE_MODULE: 1181 return KMP_HW_UNKNOWN; 1182 case INTEL_LEVEL_TYPE_DIE: 1183 return KMP_HW_DIE; 1184 } 1185 return KMP_HW_UNKNOWN; 1186 } 1187 1188 // This function takes the topology leaf, a levels array to store the levels 1189 // detected and a bitmap of the known levels. 1190 // Returns the number of levels in the topology 1191 static unsigned 1192 __kmp_x2apicid_get_levels(int leaf, 1193 cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST], 1194 kmp_uint64 known_levels) { 1195 unsigned level, levels_index; 1196 unsigned level_type, mask_width, nitems; 1197 kmp_cpuid buf; 1198 1199 // The new algorithm has known topology layers act as highest unknown topology 1200 // layers when unknown topology layers exist. 1201 // e.g., Suppose layers were SMT CORE <Y> <Z> PACKAGE 1202 // Then CORE will take the characteristics (nitems and mask width) of <Z>. 1203 // In developing the id mask for each layer, this eliminates unknown portions 1204 // of the topology while still keeping the correct underlying structure. 1205 level = levels_index = 0; 1206 do { 1207 __kmp_x86_cpuid(leaf, level, &buf); 1208 level_type = __kmp_extract_bits<8, 15>(buf.ecx); 1209 mask_width = __kmp_extract_bits<0, 4>(buf.eax); 1210 nitems = __kmp_extract_bits<0, 15>(buf.ebx); 1211 if (level_type != INTEL_LEVEL_TYPE_INVALID && nitems == 0) 1212 return 0; 1213 1214 if (known_levels & (1ull << level_type)) { 1215 // Add a new level to the topology 1216 KMP_ASSERT(levels_index < INTEL_LEVEL_TYPE_LAST); 1217 levels[levels_index].level_type = level_type; 1218 levels[levels_index].mask_width = mask_width; 1219 levels[levels_index].nitems = nitems; 1220 levels_index++; 1221 } else { 1222 // If it is an unknown level, then logically move the previous layer up 1223 if (levels_index > 0) { 1224 levels[levels_index - 1].mask_width = mask_width; 1225 levels[levels_index - 1].nitems = nitems; 1226 } 1227 } 1228 level++; 1229 } while (level_type != INTEL_LEVEL_TYPE_INVALID); 1230 1231 // Set the masks to & with apicid 1232 for (unsigned i = 0; i < levels_index; ++i) { 1233 if (levels[i].level_type != INTEL_LEVEL_TYPE_INVALID) { 1234 levels[i].mask = ~((-1) << levels[i].mask_width); 1235 levels[i].cache_mask = (-1) << levels[i].mask_width; 1236 for (unsigned j = 0; j < i; ++j) 1237 levels[i].mask ^= levels[j].mask; 1238 } else { 1239 KMP_DEBUG_ASSERT(levels_index > 0); 1240 levels[i].mask = (-1) << levels[i - 1].mask_width; 1241 levels[i].cache_mask = 0; 1242 } 1243 } 1244 return levels_index; 1245 } 1246 1247 static int __kmp_cpuid_mask_width(int count) { 1248 int r = 0; 1249 1250 while ((1 << r) < count) 1251 ++r; 1252 return r; 1253 } 1254 1255 class apicThreadInfo { 1256 public: 1257 unsigned osId; // param to __kmp_affinity_bind_thread 1258 unsigned apicId; // from cpuid after binding 1259 unsigned maxCoresPerPkg; // "" 1260 unsigned maxThreadsPerPkg; // "" 1261 unsigned pkgId; // inferred from above values 1262 unsigned coreId; // "" 1263 unsigned threadId; // "" 1264 }; 1265 1266 static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a, 1267 const void *b) { 1268 const apicThreadInfo *aa = (const apicThreadInfo *)a; 1269 const apicThreadInfo *bb = (const apicThreadInfo *)b; 1270 if (aa->pkgId < bb->pkgId) 1271 return -1; 1272 if (aa->pkgId > bb->pkgId) 1273 return 1; 1274 if (aa->coreId < bb->coreId) 1275 return -1; 1276 if (aa->coreId > bb->coreId) 1277 return 1; 1278 if (aa->threadId < bb->threadId) 1279 return -1; 1280 if (aa->threadId > bb->threadId) 1281 return 1; 1282 return 0; 1283 } 1284 1285 // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use 1286 // an algorithm which cycles through the available os threads, setting 1287 // the current thread's affinity mask to that thread, and then retrieves 1288 // the Apic Id for each thread context using the cpuid instruction. 1289 static int __kmp_affinity_create_apicid_map(AddrUnsPair **address2os, 1290 kmp_i18n_id_t *const msg_id) { 1291 kmp_cpuid buf; 1292 *address2os = NULL; 1293 *msg_id = kmp_i18n_null; 1294 1295 // Check if cpuid leaf 4 is supported. 1296 __kmp_x86_cpuid(0, 0, &buf); 1297 if (buf.eax < 4) { 1298 *msg_id = kmp_i18n_str_NoLeaf4Support; 1299 return -1; 1300 } 1301 1302 // The algorithm used starts by setting the affinity to each available thread 1303 // and retrieving info from the cpuid instruction, so if we are not capable of 1304 // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we 1305 // need to do something else - use the defaults that we calculated from 1306 // issuing cpuid without binding to each proc. 1307 if (!KMP_AFFINITY_CAPABLE()) { 1308 // Hack to try and infer the machine topology using only the data 1309 // available from cpuid on the current thread, and __kmp_xproc. 1310 KMP_ASSERT(__kmp_affinity_type == affinity_none); 1311 1312 // Get an upper bound on the number of threads per package using cpuid(1). 1313 // On some OS/chps combinations where HT is supported by the chip but is 1314 // disabled, this value will be 2 on a single core chip. Usually, it will be 1315 // 2 if HT is enabled and 1 if HT is disabled. 1316 __kmp_x86_cpuid(1, 0, &buf); 1317 int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; 1318 if (maxThreadsPerPkg == 0) { 1319 maxThreadsPerPkg = 1; 1320 } 1321 1322 // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded 1323 // value. 1324 // 1325 // The author of cpu_count.cpp treated this only an upper bound on the 1326 // number of cores, but I haven't seen any cases where it was greater than 1327 // the actual number of cores, so we will treat it as exact in this block of 1328 // code. 1329 // 1330 // First, we need to check if cpuid(4) is supported on this chip. To see if 1331 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or 1332 // greater. 1333 __kmp_x86_cpuid(0, 0, &buf); 1334 if (buf.eax >= 4) { 1335 __kmp_x86_cpuid(4, 0, &buf); 1336 nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; 1337 } else { 1338 nCoresPerPkg = 1; 1339 } 1340 1341 // There is no way to reliably tell if HT is enabled without issuing the 1342 // cpuid instruction from every thread, can correlating the cpuid info, so 1343 // if the machine is not affinity capable, we assume that HT is off. We have 1344 // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine 1345 // does not support HT. 1346 // 1347 // - Older OSes are usually found on machines with older chips, which do not 1348 // support HT. 1349 // - The performance penalty for mistakenly identifying a machine as HT when 1350 // it isn't (which results in blocktime being incorrectly set to 0) is 1351 // greater than the penalty when for mistakenly identifying a machine as 1352 // being 1 thread/core when it is really HT enabled (which results in 1353 // blocktime being incorrectly set to a positive value). 1354 __kmp_ncores = __kmp_xproc; 1355 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 1356 __kmp_nThreadsPerCore = 1; 1357 if (__kmp_affinity_verbose) { 1358 KMP_INFORM(AffNotCapableUseLocCpuid, "KMP_AFFINITY"); 1359 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1360 if (__kmp_affinity_uniform_topology()) { 1361 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1362 } else { 1363 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 1364 } 1365 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1366 __kmp_nThreadsPerCore, __kmp_ncores); 1367 } 1368 return 0; 1369 } 1370 1371 // From here on, we can assume that it is safe to call 1372 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if 1373 // __kmp_affinity_type = affinity_none. 1374 1375 // Save the affinity mask for the current thread. 1376 kmp_affin_mask_t *oldMask; 1377 KMP_CPU_ALLOC(oldMask); 1378 KMP_ASSERT(oldMask != NULL); 1379 __kmp_get_system_affinity(oldMask, TRUE); 1380 1381 // Run through each of the available contexts, binding the current thread 1382 // to it, and obtaining the pertinent information using the cpuid instr. 1383 // 1384 // The relevant information is: 1385 // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context 1386 // has a uniqie Apic Id, which is of the form pkg# : core# : thread#. 1387 // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value 1388 // of this field determines the width of the core# + thread# fields in the 1389 // Apic Id. It is also an upper bound on the number of threads per 1390 // package, but it has been verified that situations happen were it is not 1391 // exact. In particular, on certain OS/chip combinations where Intel(R) 1392 // Hyper-Threading Technology is supported by the chip but has been 1393 // disabled, the value of this field will be 2 (for a single core chip). 1394 // On other OS/chip combinations supporting Intel(R) Hyper-Threading 1395 // Technology, the value of this field will be 1 when Intel(R) 1396 // Hyper-Threading Technology is disabled and 2 when it is enabled. 1397 // - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value 1398 // of this field (+1) determines the width of the core# field in the Apic 1399 // Id. The comments in "cpucount.cpp" say that this value is an upper 1400 // bound, but the IA-32 architecture manual says that it is exactly the 1401 // number of cores per package, and I haven't seen any case where it 1402 // wasn't. 1403 // 1404 // From this information, deduce the package Id, core Id, and thread Id, 1405 // and set the corresponding fields in the apicThreadInfo struct. 1406 unsigned i; 1407 apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate( 1408 __kmp_avail_proc * sizeof(apicThreadInfo)); 1409 unsigned nApics = 0; 1410 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 1411 // Skip this proc if it is not included in the machine model. 1412 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 1413 continue; 1414 } 1415 KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc); 1416 1417 __kmp_affinity_dispatch->bind_thread(i); 1418 threadInfo[nApics].osId = i; 1419 1420 // The apic id and max threads per pkg come from cpuid(1). 1421 __kmp_x86_cpuid(1, 0, &buf); 1422 if (((buf.edx >> 9) & 1) == 0) { 1423 __kmp_set_system_affinity(oldMask, TRUE); 1424 __kmp_free(threadInfo); 1425 KMP_CPU_FREE(oldMask); 1426 *msg_id = kmp_i18n_str_ApicNotPresent; 1427 return -1; 1428 } 1429 threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff; 1430 threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; 1431 if (threadInfo[nApics].maxThreadsPerPkg == 0) { 1432 threadInfo[nApics].maxThreadsPerPkg = 1; 1433 } 1434 1435 // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded 1436 // value. 1437 // 1438 // First, we need to check if cpuid(4) is supported on this chip. To see if 1439 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n 1440 // or greater. 1441 __kmp_x86_cpuid(0, 0, &buf); 1442 if (buf.eax >= 4) { 1443 __kmp_x86_cpuid(4, 0, &buf); 1444 threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; 1445 } else { 1446 threadInfo[nApics].maxCoresPerPkg = 1; 1447 } 1448 1449 // Infer the pkgId / coreId / threadId using only the info obtained locally. 1450 int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg); 1451 threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT; 1452 1453 int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg); 1454 int widthT = widthCT - widthC; 1455 if (widthT < 0) { 1456 // I've never seen this one happen, but I suppose it could, if the cpuid 1457 // instruction on a chip was really screwed up. Make sure to restore the 1458 // affinity mask before the tail call. 1459 __kmp_set_system_affinity(oldMask, TRUE); 1460 __kmp_free(threadInfo); 1461 KMP_CPU_FREE(oldMask); 1462 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1463 return -1; 1464 } 1465 1466 int maskC = (1 << widthC) - 1; 1467 threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC; 1468 1469 int maskT = (1 << widthT) - 1; 1470 threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT; 1471 1472 nApics++; 1473 } 1474 1475 // We've collected all the info we need. 1476 // Restore the old affinity mask for this thread. 1477 __kmp_set_system_affinity(oldMask, TRUE); 1478 1479 // If there's only one thread context to bind to, form an Address object 1480 // with depth 1 and return immediately (or, if affinity is off, set 1481 // address2os to NULL and return). 1482 // 1483 // If it is configured to omit the package level when there is only a single 1484 // package, the logic at the end of this routine won't work if there is only 1485 // a single thread - it would try to form an Address object with depth 0. 1486 KMP_ASSERT(nApics > 0); 1487 if (nApics == 1) { 1488 __kmp_ncores = nPackages = 1; 1489 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 1490 if (__kmp_affinity_verbose) { 1491 KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY"); 1492 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1493 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1494 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1495 __kmp_nThreadsPerCore, __kmp_ncores); 1496 } 1497 1498 if (__kmp_affinity_type == affinity_none) { 1499 __kmp_free(threadInfo); 1500 KMP_CPU_FREE(oldMask); 1501 return 0; 1502 } 1503 1504 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair)); 1505 Address addr(1); 1506 addr.labels[0] = threadInfo[0].pkgId; 1507 (*address2os)[0] = AddrUnsPair(addr, threadInfo[0].osId); 1508 1509 if (__kmp_affinity_gran_levels < 0) { 1510 __kmp_affinity_gran_levels = 0; 1511 } 1512 1513 if (__kmp_affinity_verbose) { 1514 __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1); 1515 } 1516 1517 __kmp_free(threadInfo); 1518 KMP_CPU_FREE(oldMask); 1519 return 1; 1520 } 1521 1522 // Sort the threadInfo table by physical Id. 1523 qsort(threadInfo, nApics, sizeof(*threadInfo), 1524 __kmp_affinity_cmp_apicThreadInfo_phys_id); 1525 1526 // The table is now sorted by pkgId / coreId / threadId, but we really don't 1527 // know the radix of any of the fields. pkgId's may be sparsely assigned among 1528 // the chips on a system. Although coreId's are usually assigned 1529 // [0 .. coresPerPkg-1] and threadId's are usually assigned 1530 // [0..threadsPerCore-1], we don't want to make any such assumptions. 1531 // 1532 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the 1533 // total # packages) are at this point - we want to determine that now. We 1534 // only have an upper bound on the first two figures. 1535 // 1536 // We also perform a consistency check at this point: the values returned by 1537 // the cpuid instruction for any thread bound to a given package had better 1538 // return the same info for maxThreadsPerPkg and maxCoresPerPkg. 1539 nPackages = 1; 1540 nCoresPerPkg = 1; 1541 __kmp_nThreadsPerCore = 1; 1542 unsigned nCores = 1; 1543 1544 unsigned pkgCt = 1; // to determine radii 1545 unsigned lastPkgId = threadInfo[0].pkgId; 1546 unsigned coreCt = 1; 1547 unsigned lastCoreId = threadInfo[0].coreId; 1548 unsigned threadCt = 1; 1549 unsigned lastThreadId = threadInfo[0].threadId; 1550 1551 // intra-pkg consist checks 1552 unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg; 1553 unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg; 1554 1555 for (i = 1; i < nApics; i++) { 1556 if (threadInfo[i].pkgId != lastPkgId) { 1557 nCores++; 1558 pkgCt++; 1559 lastPkgId = threadInfo[i].pkgId; 1560 if ((int)coreCt > nCoresPerPkg) 1561 nCoresPerPkg = coreCt; 1562 coreCt = 1; 1563 lastCoreId = threadInfo[i].coreId; 1564 if ((int)threadCt > __kmp_nThreadsPerCore) 1565 __kmp_nThreadsPerCore = threadCt; 1566 threadCt = 1; 1567 lastThreadId = threadInfo[i].threadId; 1568 1569 // This is a different package, so go on to the next iteration without 1570 // doing any consistency checks. Reset the consistency check vars, though. 1571 prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg; 1572 prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg; 1573 continue; 1574 } 1575 1576 if (threadInfo[i].coreId != lastCoreId) { 1577 nCores++; 1578 coreCt++; 1579 lastCoreId = threadInfo[i].coreId; 1580 if ((int)threadCt > __kmp_nThreadsPerCore) 1581 __kmp_nThreadsPerCore = threadCt; 1582 threadCt = 1; 1583 lastThreadId = threadInfo[i].threadId; 1584 } else if (threadInfo[i].threadId != lastThreadId) { 1585 threadCt++; 1586 lastThreadId = threadInfo[i].threadId; 1587 } else { 1588 __kmp_free(threadInfo); 1589 KMP_CPU_FREE(oldMask); 1590 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; 1591 return -1; 1592 } 1593 1594 // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg 1595 // fields agree between all the threads bounds to a given package. 1596 if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) || 1597 (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) { 1598 __kmp_free(threadInfo); 1599 KMP_CPU_FREE(oldMask); 1600 *msg_id = kmp_i18n_str_InconsistentCpuidInfo; 1601 return -1; 1602 } 1603 } 1604 nPackages = pkgCt; 1605 if ((int)coreCt > nCoresPerPkg) 1606 nCoresPerPkg = coreCt; 1607 if ((int)threadCt > __kmp_nThreadsPerCore) 1608 __kmp_nThreadsPerCore = threadCt; 1609 1610 // When affinity is off, this routine will still be called to set 1611 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 1612 // Make sure all these vars are set correctly, and return now if affinity is 1613 // not enabled. 1614 __kmp_ncores = nCores; 1615 if (__kmp_affinity_verbose) { 1616 KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY"); 1617 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1618 if (__kmp_affinity_uniform_topology()) { 1619 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1620 } else { 1621 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 1622 } 1623 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1624 __kmp_nThreadsPerCore, __kmp_ncores); 1625 } 1626 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 1627 KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc); 1628 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 1629 for (i = 0; i < nApics; ++i) { 1630 __kmp_pu_os_idx[i] = threadInfo[i].osId; 1631 } 1632 if (__kmp_affinity_type == affinity_none) { 1633 __kmp_free(threadInfo); 1634 KMP_CPU_FREE(oldMask); 1635 return 0; 1636 } 1637 1638 // Now that we've determined the number of packages, the number of cores per 1639 // package, and the number of threads per core, we can construct the data 1640 // structure that is to be returned. 1641 int pkgLevel = 0; 1642 int coreLevel = (nCoresPerPkg <= 1) ? -1 : 1; 1643 int threadLevel = 1644 (__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1); 1645 unsigned depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0); 1646 1647 KMP_ASSERT(depth > 0); 1648 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * nApics); 1649 1650 for (i = 0; i < nApics; ++i) { 1651 Address addr(depth); 1652 unsigned os = threadInfo[i].osId; 1653 int d = 0; 1654 1655 if (pkgLevel >= 0) { 1656 addr.labels[d++] = threadInfo[i].pkgId; 1657 } 1658 if (coreLevel >= 0) { 1659 addr.labels[d++] = threadInfo[i].coreId; 1660 } 1661 if (threadLevel >= 0) { 1662 addr.labels[d++] = threadInfo[i].threadId; 1663 } 1664 (*address2os)[i] = AddrUnsPair(addr, os); 1665 } 1666 1667 if (__kmp_affinity_gran_levels < 0) { 1668 // Set the granularity level based on what levels are modeled in the machine 1669 // topology map. 1670 __kmp_affinity_gran_levels = 0; 1671 if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) { 1672 __kmp_affinity_gran_levels++; 1673 } 1674 if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) { 1675 __kmp_affinity_gran_levels++; 1676 } 1677 if ((pkgLevel >= 0) && (__kmp_affinity_gran > affinity_gran_package)) { 1678 __kmp_affinity_gran_levels++; 1679 } 1680 } 1681 1682 if (__kmp_affinity_verbose) { 1683 __kmp_affinity_print_topology(*address2os, nApics, depth, pkgLevel, 1684 coreLevel, threadLevel); 1685 } 1686 1687 __kmp_free(threadInfo); 1688 KMP_CPU_FREE(oldMask); 1689 return depth; 1690 } 1691 1692 // Intel(R) microarchitecture code name Nehalem, Dunnington and later 1693 // architectures support a newer interface for specifying the x2APIC Ids, 1694 // based on CPUID.B or CPUID.1F 1695 static int __kmp_affinity_create_x2apicid_map(AddrUnsPair **address2os, 1696 kmp_i18n_id_t *const msg_id) { 1697 1698 cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST]; 1699 int ratio[KMP_HW_LAST]; 1700 int count[KMP_HW_LAST]; 1701 kmp_hw_t types[INTEL_LEVEL_TYPE_LAST]; 1702 unsigned levels_index; 1703 kmp_cpuid buf; 1704 kmp_uint64 known_levels; 1705 int topology_leaf, highest_leaf, apic_id; 1706 int num_leaves; 1707 static int leaves[] = {0, 0}; 1708 1709 kmp_i18n_id_t leaf_message_id; 1710 1711 KMP_BUILD_ASSERT(sizeof(known_levels) * CHAR_BIT > KMP_HW_LAST); 1712 1713 *msg_id = kmp_i18n_null; 1714 1715 // Figure out the known topology levels 1716 known_levels = 0ull; 1717 for (int i = 0; i < INTEL_LEVEL_TYPE_LAST; ++i) { 1718 if (__kmp_intel_type_2_topology_type(i) != KMP_HW_UNKNOWN) { 1719 known_levels |= (1ull << i); 1720 } 1721 } 1722 1723 // Get the highest cpuid leaf supported 1724 __kmp_x86_cpuid(0, 0, &buf); 1725 highest_leaf = buf.eax; 1726 1727 // If a specific topology method was requested, only allow that specific leaf 1728 // otherwise, try both leaves 31 and 11 in that order 1729 num_leaves = 0; 1730 if (__kmp_affinity_top_method == affinity_top_method_x2apicid) { 1731 num_leaves = 1; 1732 leaves[0] = 11; 1733 leaf_message_id = kmp_i18n_str_NoLeaf11Support; 1734 } else if (__kmp_affinity_top_method == affinity_top_method_x2apicid_1f) { 1735 num_leaves = 1; 1736 leaves[0] = 31; 1737 leaf_message_id = kmp_i18n_str_NoLeaf31Support; 1738 } else { 1739 num_leaves = 2; 1740 leaves[0] = 31; 1741 leaves[1] = 11; 1742 leaf_message_id = kmp_i18n_str_NoLeaf11Support; 1743 } 1744 1745 // Check to see if cpuid leaf 31 or 11 is supported. 1746 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; 1747 topology_leaf = -1; 1748 for (int i = 0; i < num_leaves; ++i) { 1749 int leaf = leaves[i]; 1750 if (highest_leaf < leaf) 1751 continue; 1752 __kmp_x86_cpuid(leaf, 0, &buf); 1753 if (buf.ebx == 0) 1754 continue; 1755 topology_leaf = leaf; 1756 levels_index = __kmp_x2apicid_get_levels(leaf, levels, known_levels); 1757 if (levels_index == 0) 1758 continue; 1759 break; 1760 } 1761 if (topology_leaf == -1 || levels_index == 0) { 1762 *msg_id = leaf_message_id; 1763 return -1; 1764 } 1765 KMP_ASSERT(levels_index <= INTEL_LEVEL_TYPE_LAST); 1766 1767 // The algorithm used starts by setting the affinity to each available thread 1768 // and retrieving info from the cpuid instruction, so if we are not capable of 1769 // calling __kmp_get_system_affinity() and __kmp_get_system_affinity(), then 1770 // we need to do something else - use the defaults that we calculated from 1771 // issuing cpuid without binding to each proc. 1772 if (!KMP_AFFINITY_CAPABLE()) { 1773 // Hack to try and infer the machine topology using only the data 1774 // available from cpuid on the current thread, and __kmp_xproc. 1775 KMP_ASSERT(__kmp_affinity_type == affinity_none); 1776 1777 for (unsigned i = 0; i < levels_index; ++i) { 1778 if (levels[i].level_type == INTEL_LEVEL_TYPE_SMT) { 1779 __kmp_nThreadsPerCore = levels[i].nitems; 1780 } else if (levels[i].level_type == INTEL_LEVEL_TYPE_CORE) { 1781 nCoresPerPkg = levels[i].nitems; 1782 } else if (levels[i].level_type == INTEL_LEVEL_TYPE_DIE) { 1783 nDiesPerPkg = levels[i].nitems; 1784 } 1785 } 1786 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; 1787 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 1788 if (__kmp_affinity_verbose) { 1789 KMP_INFORM(AffNotCapableUseLocCpuidL, "KMP_AFFINITY", topology_leaf); 1790 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1791 if (__kmp_affinity_uniform_topology()) { 1792 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1793 } else { 1794 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 1795 } 1796 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1797 __kmp_nThreadsPerCore, __kmp_ncores); 1798 } 1799 return 0; 1800 } 1801 1802 // From here on, we can assume that it is safe to call 1803 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if 1804 // __kmp_affinity_type = affinity_none. 1805 1806 // Save the affinity mask for the current thread. 1807 kmp_affin_mask_t *oldMask; 1808 KMP_CPU_ALLOC(oldMask); 1809 __kmp_get_system_affinity(oldMask, TRUE); 1810 1811 // Allocate the data structure to be returned. 1812 int depth = levels_index; 1813 for (int i = depth - 1, j = 0; i >= 0; --i, ++j) 1814 types[j] = __kmp_intel_type_2_topology_type(levels[i].level_type); 1815 AddrUnsPair *retval = 1816 (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc); 1817 1818 // Run through each of the available contexts, binding the current thread 1819 // to it, and obtaining the pertinent information using the cpuid instr. 1820 unsigned int proc; 1821 int nApics = 0; 1822 KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) { 1823 cpuid_level_info_t my_levels[INTEL_LEVEL_TYPE_LAST]; 1824 unsigned my_levels_index; 1825 1826 // Skip this proc if it is not included in the machine model. 1827 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 1828 continue; 1829 } 1830 KMP_DEBUG_ASSERT(nApics < __kmp_avail_proc); 1831 1832 __kmp_affinity_dispatch->bind_thread(proc); 1833 1834 // New algorithm 1835 __kmp_x86_cpuid(topology_leaf, 0, &buf); 1836 apic_id = buf.edx; 1837 Address addr(depth); 1838 my_levels_index = 1839 __kmp_x2apicid_get_levels(topology_leaf, my_levels, known_levels); 1840 if (my_levels_index == 0 || my_levels_index != levels_index) { 1841 KMP_CPU_FREE(oldMask); 1842 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1843 return -1; 1844 } 1845 // Put in topology information 1846 for (unsigned j = 0, idx = depth - 1; j < my_levels_index; ++j, --idx) { 1847 addr.labels[idx] = apic_id & my_levels[j].mask; 1848 if (j > 0) 1849 addr.labels[idx] >>= my_levels[j - 1].mask_width; 1850 } 1851 retval[nApics++] = AddrUnsPair(addr, proc); 1852 } 1853 1854 // We've collected all the info we need. 1855 // Restore the old affinity mask for this thread. 1856 __kmp_set_system_affinity(oldMask, TRUE); 1857 1858 // If there's only one thread context to bind to, return now. 1859 KMP_ASSERT(nApics > 0); 1860 if (nApics == 1) { 1861 int pkg_level; 1862 __kmp_ncores = nPackages = 1; 1863 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 1864 if (__kmp_affinity_verbose) { 1865 KMP_INFORM(AffUseGlobCpuidL, "KMP_AFFINITY", topology_leaf); 1866 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1867 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1868 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1869 __kmp_nThreadsPerCore, __kmp_ncores); 1870 } 1871 1872 if (__kmp_affinity_type == affinity_none) { 1873 __kmp_free(retval); 1874 KMP_CPU_FREE(oldMask); 1875 return 0; 1876 } 1877 1878 pkg_level = 0; 1879 for (int i = 0; i < depth; ++i) 1880 if (types[i] == KMP_HW_SOCKET) { 1881 pkg_level = i; 1882 break; 1883 } 1884 // Form an Address object which only includes the package level. 1885 Address addr(1); 1886 addr.labels[0] = retval[0].first.labels[pkg_level]; 1887 retval[0].first = addr; 1888 1889 if (__kmp_affinity_gran_levels < 0) { 1890 __kmp_affinity_gran_levels = 0; 1891 } 1892 1893 if (__kmp_affinity_verbose) { 1894 __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1); 1895 } 1896 1897 *address2os = retval; 1898 KMP_CPU_FREE(oldMask); 1899 return 1; 1900 } 1901 1902 // Sort the table by physical Id. 1903 qsort(retval, nApics, sizeof(*retval), __kmp_affinity_cmp_Address_labels); 1904 1905 __kmp_affinity_gather_enumeration_information(retval, nApics, depth, types, 1906 ratio, count); 1907 1908 // When affinity is off, this routine will still be called to set 1909 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 1910 // Make sure all these vars are set correctly, and return if affinity is not 1911 // enabled. 1912 int thread_level, core_level, socket_level, die_level; 1913 thread_level = core_level = die_level = socket_level = -1; 1914 for (int level = 0; level < depth; ++level) { 1915 if (types[level] == KMP_HW_THREAD) 1916 thread_level = level; 1917 else if (types[level] == KMP_HW_CORE) 1918 core_level = level; 1919 else if (types[level] == KMP_HW_DIE) 1920 die_level = level; 1921 else if (types[level] == KMP_HW_SOCKET) 1922 socket_level = level; 1923 } 1924 __kmp_nThreadsPerCore = 1925 __kmp_affinity_calculate_ratio(ratio, thread_level, core_level); 1926 if (die_level > 0) { 1927 nDiesPerPkg = 1928 __kmp_affinity_calculate_ratio(ratio, die_level, socket_level); 1929 nCoresPerPkg = __kmp_affinity_calculate_ratio(ratio, core_level, die_level); 1930 } else { 1931 nCoresPerPkg = 1932 __kmp_affinity_calculate_ratio(ratio, core_level, socket_level); 1933 } 1934 if (socket_level >= 0) 1935 nPackages = count[socket_level]; 1936 else 1937 nPackages = 1; 1938 if (core_level >= 0) 1939 __kmp_ncores = count[core_level]; 1940 else 1941 __kmp_ncores = 1; 1942 1943 // Check to see if the machine topology is uniform 1944 unsigned uniform = __kmp_affinity_discover_uniformity(depth, ratio, count); 1945 1946 // Print the machine topology summary. 1947 if (__kmp_affinity_verbose) { 1948 kmp_hw_t numerator_type, denominator_type; 1949 KMP_INFORM(AffUseGlobCpuidL, "KMP_AFFINITY", topology_leaf); 1950 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1951 if (uniform) { 1952 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1953 } else { 1954 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 1955 } 1956 1957 kmp_str_buf_t buf; 1958 __kmp_str_buf_init(&buf); 1959 1960 if (core_level < 0) 1961 core_level = depth - 1; 1962 int ncores = count[core_level]; 1963 1964 denominator_type = KMP_HW_UNKNOWN; 1965 for (int level = 0; level < depth; ++level) { 1966 int c; 1967 bool plural; 1968 numerator_type = types[level]; 1969 c = ratio[level]; 1970 plural = (c > 1); 1971 if (level == 0) { 1972 __kmp_str_buf_print(&buf, "%d %s", c, __kmp_hw_get_catalog_string( 1973 numerator_type, plural)); 1974 } else { 1975 __kmp_str_buf_print(&buf, " x %d %s/%s", c, 1976 __kmp_hw_get_catalog_string(numerator_type, plural), 1977 __kmp_hw_get_catalog_string(denominator_type)); 1978 } 1979 denominator_type = numerator_type; 1980 } 1981 KMP_INFORM(TopologyGeneric, "KMP_AFFINITY", buf.str, ncores); 1982 __kmp_str_buf_free(&buf); 1983 } 1984 1985 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 1986 KMP_DEBUG_ASSERT(nApics == __kmp_avail_proc); 1987 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 1988 for (proc = 0; (int)proc < nApics; ++proc) { 1989 __kmp_pu_os_idx[proc] = retval[proc].second; 1990 } 1991 if (__kmp_affinity_type == affinity_none) { 1992 __kmp_free(retval); 1993 KMP_CPU_FREE(oldMask); 1994 return 0; 1995 } 1996 1997 // Find any levels with radix 1, and remove them from the map 1998 // (except for the package level). 1999 depth = __kmp_affinity_remove_radix_one_levels(retval, nApics, depth, types); 2000 thread_level = core_level = die_level = socket_level = -1; 2001 for (int level = 0; level < depth; ++level) { 2002 if (types[level] == KMP_HW_THREAD) 2003 thread_level = level; 2004 else if (types[level] == KMP_HW_CORE) 2005 core_level = level; 2006 else if (types[level] == KMP_HW_DIE) 2007 die_level = level; 2008 else if (types[level] == KMP_HW_SOCKET) 2009 socket_level = level; 2010 } 2011 2012 if (__kmp_affinity_gran_levels < 0) { 2013 // Set the granularity level based on what levels are modeled 2014 // in the machine topology map. 2015 __kmp_affinity_gran_levels = 0; 2016 if ((thread_level >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) { 2017 __kmp_affinity_gran_levels++; 2018 } 2019 if ((core_level >= 0) && (__kmp_affinity_gran > affinity_gran_core)) { 2020 __kmp_affinity_gran_levels++; 2021 } 2022 if ((die_level >= 0) && (__kmp_affinity_gran > affinity_gran_die)) { 2023 __kmp_affinity_gran_levels++; 2024 } 2025 if (__kmp_affinity_gran > affinity_gran_package) { 2026 __kmp_affinity_gran_levels++; 2027 } 2028 } 2029 2030 if (__kmp_affinity_verbose) { 2031 __kmp_affinity_print_topology(retval, nApics, depth, types); 2032 } 2033 2034 KMP_CPU_FREE(oldMask); 2035 *address2os = retval; 2036 return depth; 2037 } 2038 2039 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 2040 2041 #define osIdIndex 0 2042 #define threadIdIndex 1 2043 #define coreIdIndex 2 2044 #define pkgIdIndex 3 2045 #define nodeIdIndex 4 2046 2047 typedef unsigned *ProcCpuInfo; 2048 static unsigned maxIndex = pkgIdIndex; 2049 2050 static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a, 2051 const void *b) { 2052 unsigned i; 2053 const unsigned *aa = *(unsigned *const *)a; 2054 const unsigned *bb = *(unsigned *const *)b; 2055 for (i = maxIndex;; i--) { 2056 if (aa[i] < bb[i]) 2057 return -1; 2058 if (aa[i] > bb[i]) 2059 return 1; 2060 if (i == osIdIndex) 2061 break; 2062 } 2063 return 0; 2064 } 2065 2066 #if KMP_USE_HIER_SCHED 2067 // Set the array sizes for the hierarchy layers 2068 static void __kmp_dispatch_set_hierarchy_values() { 2069 // Set the maximum number of L1's to number of cores 2070 // Set the maximum number of L2's to to either number of cores / 2 for 2071 // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing 2072 // Or the number of cores for Intel(R) Xeon(R) processors 2073 // Set the maximum number of NUMA nodes and L3's to number of packages 2074 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] = 2075 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; 2076 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores; 2077 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \ 2078 KMP_MIC_SUPPORTED 2079 if (__kmp_mic_type >= mic3) 2080 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2; 2081 else 2082 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 2083 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores; 2084 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages; 2085 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages; 2086 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1; 2087 // Set the number of threads per unit 2088 // Number of hardware threads per L1/L2/L3/NUMA/LOOP 2089 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1; 2090 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] = 2091 __kmp_nThreadsPerCore; 2092 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \ 2093 KMP_MIC_SUPPORTED 2094 if (__kmp_mic_type >= mic3) 2095 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = 2096 2 * __kmp_nThreadsPerCore; 2097 else 2098 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 2099 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = 2100 __kmp_nThreadsPerCore; 2101 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] = 2102 nCoresPerPkg * __kmp_nThreadsPerCore; 2103 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] = 2104 nCoresPerPkg * __kmp_nThreadsPerCore; 2105 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] = 2106 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; 2107 } 2108 2109 // Return the index into the hierarchy for this tid and layer type (L1, L2, etc) 2110 // i.e., this thread's L1 or this thread's L2, etc. 2111 int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) { 2112 int index = type + 1; 2113 int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1]; 2114 KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST); 2115 if (type == kmp_hier_layer_e::LAYER_THREAD) 2116 return tid; 2117 else if (type == kmp_hier_layer_e::LAYER_LOOP) 2118 return 0; 2119 KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0); 2120 if (tid >= num_hw_threads) 2121 tid = tid % num_hw_threads; 2122 return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index]; 2123 } 2124 2125 // Return the number of t1's per t2 2126 int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) { 2127 int i1 = t1 + 1; 2128 int i2 = t2 + 1; 2129 KMP_DEBUG_ASSERT(i1 <= i2); 2130 KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST); 2131 KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST); 2132 KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0); 2133 // (nthreads/t2) / (nthreads/t1) = t1 / t2 2134 return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1]; 2135 } 2136 #endif // KMP_USE_HIER_SCHED 2137 2138 // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the 2139 // affinity map. 2140 static int __kmp_affinity_create_cpuinfo_map(AddrUnsPair **address2os, 2141 int *line, 2142 kmp_i18n_id_t *const msg_id, 2143 FILE *f) { 2144 *address2os = NULL; 2145 *msg_id = kmp_i18n_null; 2146 2147 // Scan of the file, and count the number of "processor" (osId) fields, 2148 // and find the highest value of <n> for a node_<n> field. 2149 char buf[256]; 2150 unsigned num_records = 0; 2151 while (!feof(f)) { 2152 buf[sizeof(buf) - 1] = 1; 2153 if (!fgets(buf, sizeof(buf), f)) { 2154 // Read errors presumably because of EOF 2155 break; 2156 } 2157 2158 char s1[] = "processor"; 2159 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { 2160 num_records++; 2161 continue; 2162 } 2163 2164 // FIXME - this will match "node_<n> <garbage>" 2165 unsigned level; 2166 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { 2167 if (nodeIdIndex + level >= maxIndex) { 2168 maxIndex = nodeIdIndex + level; 2169 } 2170 continue; 2171 } 2172 } 2173 2174 // Check for empty file / no valid processor records, or too many. The number 2175 // of records can't exceed the number of valid bits in the affinity mask. 2176 if (num_records == 0) { 2177 *line = 0; 2178 *msg_id = kmp_i18n_str_NoProcRecords; 2179 return -1; 2180 } 2181 if (num_records > (unsigned)__kmp_xproc) { 2182 *line = 0; 2183 *msg_id = kmp_i18n_str_TooManyProcRecords; 2184 return -1; 2185 } 2186 2187 // Set the file pointer back to the beginning, so that we can scan the file 2188 // again, this time performing a full parse of the data. Allocate a vector of 2189 // ProcCpuInfo object, where we will place the data. Adding an extra element 2190 // at the end allows us to remove a lot of extra checks for termination 2191 // conditions. 2192 if (fseek(f, 0, SEEK_SET) != 0) { 2193 *line = 0; 2194 *msg_id = kmp_i18n_str_CantRewindCpuinfo; 2195 return -1; 2196 } 2197 2198 // Allocate the array of records to store the proc info in. The dummy 2199 // element at the end makes the logic in filling them out easier to code. 2200 unsigned **threadInfo = 2201 (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *)); 2202 unsigned i; 2203 for (i = 0; i <= num_records; i++) { 2204 threadInfo[i] = 2205 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2206 } 2207 2208 #define CLEANUP_THREAD_INFO \ 2209 for (i = 0; i <= num_records; i++) { \ 2210 __kmp_free(threadInfo[i]); \ 2211 } \ 2212 __kmp_free(threadInfo); 2213 2214 // A value of UINT_MAX means that we didn't find the field 2215 unsigned __index; 2216 2217 #define INIT_PROC_INFO(p) \ 2218 for (__index = 0; __index <= maxIndex; __index++) { \ 2219 (p)[__index] = UINT_MAX; \ 2220 } 2221 2222 for (i = 0; i <= num_records; i++) { 2223 INIT_PROC_INFO(threadInfo[i]); 2224 } 2225 2226 unsigned num_avail = 0; 2227 *line = 0; 2228 while (!feof(f)) { 2229 // Create an inner scoping level, so that all the goto targets at the end of 2230 // the loop appear in an outer scoping level. This avoids warnings about 2231 // jumping past an initialization to a target in the same block. 2232 { 2233 buf[sizeof(buf) - 1] = 1; 2234 bool long_line = false; 2235 if (!fgets(buf, sizeof(buf), f)) { 2236 // Read errors presumably because of EOF 2237 // If there is valid data in threadInfo[num_avail], then fake 2238 // a blank line in ensure that the last address gets parsed. 2239 bool valid = false; 2240 for (i = 0; i <= maxIndex; i++) { 2241 if (threadInfo[num_avail][i] != UINT_MAX) { 2242 valid = true; 2243 } 2244 } 2245 if (!valid) { 2246 break; 2247 } 2248 buf[0] = 0; 2249 } else if (!buf[sizeof(buf) - 1]) { 2250 // The line is longer than the buffer. Set a flag and don't 2251 // emit an error if we were going to ignore the line, anyway. 2252 long_line = true; 2253 2254 #define CHECK_LINE \ 2255 if (long_line) { \ 2256 CLEANUP_THREAD_INFO; \ 2257 *msg_id = kmp_i18n_str_LongLineCpuinfo; \ 2258 return -1; \ 2259 } 2260 } 2261 (*line)++; 2262 2263 char s1[] = "processor"; 2264 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { 2265 CHECK_LINE; 2266 char *p = strchr(buf + sizeof(s1) - 1, ':'); 2267 unsigned val; 2268 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2269 goto no_val; 2270 if (threadInfo[num_avail][osIdIndex] != UINT_MAX) 2271 #if KMP_ARCH_AARCH64 2272 // Handle the old AArch64 /proc/cpuinfo layout differently, 2273 // it contains all of the 'processor' entries listed in a 2274 // single 'Processor' section, therefore the normal looking 2275 // for duplicates in that section will always fail. 2276 num_avail++; 2277 #else 2278 goto dup_field; 2279 #endif 2280 threadInfo[num_avail][osIdIndex] = val; 2281 #if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64) 2282 char path[256]; 2283 KMP_SNPRINTF( 2284 path, sizeof(path), 2285 "/sys/devices/system/cpu/cpu%u/topology/physical_package_id", 2286 threadInfo[num_avail][osIdIndex]); 2287 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]); 2288 2289 KMP_SNPRINTF(path, sizeof(path), 2290 "/sys/devices/system/cpu/cpu%u/topology/core_id", 2291 threadInfo[num_avail][osIdIndex]); 2292 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]); 2293 continue; 2294 #else 2295 } 2296 char s2[] = "physical id"; 2297 if (strncmp(buf, s2, sizeof(s2) - 1) == 0) { 2298 CHECK_LINE; 2299 char *p = strchr(buf + sizeof(s2) - 1, ':'); 2300 unsigned val; 2301 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2302 goto no_val; 2303 if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX) 2304 goto dup_field; 2305 threadInfo[num_avail][pkgIdIndex] = val; 2306 continue; 2307 } 2308 char s3[] = "core id"; 2309 if (strncmp(buf, s3, sizeof(s3) - 1) == 0) { 2310 CHECK_LINE; 2311 char *p = strchr(buf + sizeof(s3) - 1, ':'); 2312 unsigned val; 2313 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2314 goto no_val; 2315 if (threadInfo[num_avail][coreIdIndex] != UINT_MAX) 2316 goto dup_field; 2317 threadInfo[num_avail][coreIdIndex] = val; 2318 continue; 2319 #endif // KMP_OS_LINUX && USE_SYSFS_INFO 2320 } 2321 char s4[] = "thread id"; 2322 if (strncmp(buf, s4, sizeof(s4) - 1) == 0) { 2323 CHECK_LINE; 2324 char *p = strchr(buf + sizeof(s4) - 1, ':'); 2325 unsigned val; 2326 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2327 goto no_val; 2328 if (threadInfo[num_avail][threadIdIndex] != UINT_MAX) 2329 goto dup_field; 2330 threadInfo[num_avail][threadIdIndex] = val; 2331 continue; 2332 } 2333 unsigned level; 2334 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { 2335 CHECK_LINE; 2336 char *p = strchr(buf + sizeof(s4) - 1, ':'); 2337 unsigned val; 2338 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2339 goto no_val; 2340 KMP_ASSERT(nodeIdIndex + level <= maxIndex); 2341 if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX) 2342 goto dup_field; 2343 threadInfo[num_avail][nodeIdIndex + level] = val; 2344 continue; 2345 } 2346 2347 // We didn't recognize the leading token on the line. There are lots of 2348 // leading tokens that we don't recognize - if the line isn't empty, go on 2349 // to the next line. 2350 if ((*buf != 0) && (*buf != '\n')) { 2351 // If the line is longer than the buffer, read characters 2352 // until we find a newline. 2353 if (long_line) { 2354 int ch; 2355 while (((ch = fgetc(f)) != EOF) && (ch != '\n')) 2356 ; 2357 } 2358 continue; 2359 } 2360 2361 // A newline has signalled the end of the processor record. 2362 // Check that there aren't too many procs specified. 2363 if ((int)num_avail == __kmp_xproc) { 2364 CLEANUP_THREAD_INFO; 2365 *msg_id = kmp_i18n_str_TooManyEntries; 2366 return -1; 2367 } 2368 2369 // Check for missing fields. The osId field must be there, and we 2370 // currently require that the physical id field is specified, also. 2371 if (threadInfo[num_avail][osIdIndex] == UINT_MAX) { 2372 CLEANUP_THREAD_INFO; 2373 *msg_id = kmp_i18n_str_MissingProcField; 2374 return -1; 2375 } 2376 if (threadInfo[0][pkgIdIndex] == UINT_MAX) { 2377 CLEANUP_THREAD_INFO; 2378 *msg_id = kmp_i18n_str_MissingPhysicalIDField; 2379 return -1; 2380 } 2381 2382 // Skip this proc if it is not included in the machine model. 2383 if (!KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex], 2384 __kmp_affin_fullMask)) { 2385 INIT_PROC_INFO(threadInfo[num_avail]); 2386 continue; 2387 } 2388 2389 // We have a successful parse of this proc's info. 2390 // Increment the counter, and prepare for the next proc. 2391 num_avail++; 2392 KMP_ASSERT(num_avail <= num_records); 2393 INIT_PROC_INFO(threadInfo[num_avail]); 2394 } 2395 continue; 2396 2397 no_val: 2398 CLEANUP_THREAD_INFO; 2399 *msg_id = kmp_i18n_str_MissingValCpuinfo; 2400 return -1; 2401 2402 dup_field: 2403 CLEANUP_THREAD_INFO; 2404 *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo; 2405 return -1; 2406 } 2407 *line = 0; 2408 2409 #if KMP_MIC && REDUCE_TEAM_SIZE 2410 unsigned teamSize = 0; 2411 #endif // KMP_MIC && REDUCE_TEAM_SIZE 2412 2413 // check for num_records == __kmp_xproc ??? 2414 2415 // If there's only one thread context to bind to, form an Address object with 2416 // depth 1 and return immediately (or, if affinity is off, set address2os to 2417 // NULL and return). 2418 // 2419 // If it is configured to omit the package level when there is only a single 2420 // package, the logic at the end of this routine won't work if there is only a 2421 // single thread - it would try to form an Address object with depth 0. 2422 KMP_ASSERT(num_avail > 0); 2423 KMP_ASSERT(num_avail <= num_records); 2424 if (num_avail == 1) { 2425 __kmp_ncores = 1; 2426 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; 2427 if (__kmp_affinity_verbose) { 2428 if (!KMP_AFFINITY_CAPABLE()) { 2429 KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY"); 2430 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 2431 KMP_INFORM(Uniform, "KMP_AFFINITY"); 2432 } else { 2433 KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY"); 2434 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 2435 KMP_INFORM(Uniform, "KMP_AFFINITY"); 2436 } 2437 int index; 2438 kmp_str_buf_t buf; 2439 __kmp_str_buf_init(&buf); 2440 __kmp_str_buf_print(&buf, "1"); 2441 for (index = maxIndex - 1; index > pkgIdIndex; index--) { 2442 __kmp_str_buf_print(&buf, " x 1"); 2443 } 2444 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, 1, 1, 1); 2445 __kmp_str_buf_free(&buf); 2446 } 2447 2448 if (__kmp_affinity_type == affinity_none) { 2449 CLEANUP_THREAD_INFO; 2450 return 0; 2451 } 2452 2453 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair)); 2454 Address addr(1); 2455 addr.labels[0] = threadInfo[0][pkgIdIndex]; 2456 (*address2os)[0] = AddrUnsPair(addr, threadInfo[0][osIdIndex]); 2457 2458 if (__kmp_affinity_gran_levels < 0) { 2459 __kmp_affinity_gran_levels = 0; 2460 } 2461 2462 if (__kmp_affinity_verbose) { 2463 __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1); 2464 } 2465 2466 CLEANUP_THREAD_INFO; 2467 return 1; 2468 } 2469 2470 // Sort the threadInfo table by physical Id. 2471 qsort(threadInfo, num_avail, sizeof(*threadInfo), 2472 __kmp_affinity_cmp_ProcCpuInfo_phys_id); 2473 2474 // The table is now sorted by pkgId / coreId / threadId, but we really don't 2475 // know the radix of any of the fields. pkgId's may be sparsely assigned among 2476 // the chips on a system. Although coreId's are usually assigned 2477 // [0 .. coresPerPkg-1] and threadId's are usually assigned 2478 // [0..threadsPerCore-1], we don't want to make any such assumptions. 2479 // 2480 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the 2481 // total # packages) are at this point - we want to determine that now. We 2482 // only have an upper bound on the first two figures. 2483 unsigned *counts = 2484 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2485 unsigned *maxCt = 2486 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2487 unsigned *totals = 2488 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2489 unsigned *lastId = 2490 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2491 2492 bool assign_thread_ids = false; 2493 unsigned threadIdCt; 2494 unsigned index; 2495 2496 restart_radix_check: 2497 threadIdCt = 0; 2498 2499 // Initialize the counter arrays with data from threadInfo[0]. 2500 if (assign_thread_ids) { 2501 if (threadInfo[0][threadIdIndex] == UINT_MAX) { 2502 threadInfo[0][threadIdIndex] = threadIdCt++; 2503 } else if (threadIdCt <= threadInfo[0][threadIdIndex]) { 2504 threadIdCt = threadInfo[0][threadIdIndex] + 1; 2505 } 2506 } 2507 for (index = 0; index <= maxIndex; index++) { 2508 counts[index] = 1; 2509 maxCt[index] = 1; 2510 totals[index] = 1; 2511 lastId[index] = threadInfo[0][index]; 2512 ; 2513 } 2514 2515 // Run through the rest of the OS procs. 2516 for (i = 1; i < num_avail; i++) { 2517 // Find the most significant index whose id differs from the id for the 2518 // previous OS proc. 2519 for (index = maxIndex; index >= threadIdIndex; index--) { 2520 if (assign_thread_ids && (index == threadIdIndex)) { 2521 // Auto-assign the thread id field if it wasn't specified. 2522 if (threadInfo[i][threadIdIndex] == UINT_MAX) { 2523 threadInfo[i][threadIdIndex] = threadIdCt++; 2524 } 2525 // Apparently the thread id field was specified for some entries and not 2526 // others. Start the thread id counter off at the next higher thread id. 2527 else if (threadIdCt <= threadInfo[i][threadIdIndex]) { 2528 threadIdCt = threadInfo[i][threadIdIndex] + 1; 2529 } 2530 } 2531 if (threadInfo[i][index] != lastId[index]) { 2532 // Run through all indices which are less significant, and reset the 2533 // counts to 1. At all levels up to and including index, we need to 2534 // increment the totals and record the last id. 2535 unsigned index2; 2536 for (index2 = threadIdIndex; index2 < index; index2++) { 2537 totals[index2]++; 2538 if (counts[index2] > maxCt[index2]) { 2539 maxCt[index2] = counts[index2]; 2540 } 2541 counts[index2] = 1; 2542 lastId[index2] = threadInfo[i][index2]; 2543 } 2544 counts[index]++; 2545 totals[index]++; 2546 lastId[index] = threadInfo[i][index]; 2547 2548 if (assign_thread_ids && (index > threadIdIndex)) { 2549 2550 #if KMP_MIC && REDUCE_TEAM_SIZE 2551 // The default team size is the total #threads in the machine 2552 // minus 1 thread for every core that has 3 or more threads. 2553 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); 2554 #endif // KMP_MIC && REDUCE_TEAM_SIZE 2555 2556 // Restart the thread counter, as we are on a new core. 2557 threadIdCt = 0; 2558 2559 // Auto-assign the thread id field if it wasn't specified. 2560 if (threadInfo[i][threadIdIndex] == UINT_MAX) { 2561 threadInfo[i][threadIdIndex] = threadIdCt++; 2562 } 2563 2564 // Apparently the thread id field was specified for some entries and 2565 // not others. Start the thread id counter off at the next higher 2566 // thread id. 2567 else if (threadIdCt <= threadInfo[i][threadIdIndex]) { 2568 threadIdCt = threadInfo[i][threadIdIndex] + 1; 2569 } 2570 } 2571 break; 2572 } 2573 } 2574 if (index < threadIdIndex) { 2575 // If thread ids were specified, it is an error if they are not unique. 2576 // Also, check that we waven't already restarted the loop (to be safe - 2577 // shouldn't need to). 2578 if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) { 2579 __kmp_free(lastId); 2580 __kmp_free(totals); 2581 __kmp_free(maxCt); 2582 __kmp_free(counts); 2583 CLEANUP_THREAD_INFO; 2584 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; 2585 return -1; 2586 } 2587 2588 // If the thread ids were not specified and we see entries entries that 2589 // are duplicates, start the loop over and assign the thread ids manually. 2590 assign_thread_ids = true; 2591 goto restart_radix_check; 2592 } 2593 } 2594 2595 #if KMP_MIC && REDUCE_TEAM_SIZE 2596 // The default team size is the total #threads in the machine 2597 // minus 1 thread for every core that has 3 or more threads. 2598 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); 2599 #endif // KMP_MIC && REDUCE_TEAM_SIZE 2600 2601 for (index = threadIdIndex; index <= maxIndex; index++) { 2602 if (counts[index] > maxCt[index]) { 2603 maxCt[index] = counts[index]; 2604 } 2605 } 2606 2607 __kmp_nThreadsPerCore = maxCt[threadIdIndex]; 2608 nCoresPerPkg = maxCt[coreIdIndex]; 2609 nPackages = totals[pkgIdIndex]; 2610 2611 // Check to see if the machine topology is uniform 2612 unsigned prod = totals[maxIndex]; 2613 for (index = threadIdIndex; index < maxIndex; index++) { 2614 prod *= maxCt[index]; 2615 } 2616 bool uniform = (prod == totals[threadIdIndex]); 2617 2618 // When affinity is off, this routine will still be called to set 2619 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 2620 // Make sure all these vars are set correctly, and return now if affinity is 2621 // not enabled. 2622 __kmp_ncores = totals[coreIdIndex]; 2623 2624 if (__kmp_affinity_verbose) { 2625 if (!KMP_AFFINITY_CAPABLE()) { 2626 KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY"); 2627 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 2628 if (uniform) { 2629 KMP_INFORM(Uniform, "KMP_AFFINITY"); 2630 } else { 2631 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 2632 } 2633 } else { 2634 KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY"); 2635 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 2636 if (uniform) { 2637 KMP_INFORM(Uniform, "KMP_AFFINITY"); 2638 } else { 2639 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 2640 } 2641 } 2642 kmp_str_buf_t buf; 2643 __kmp_str_buf_init(&buf); 2644 2645 __kmp_str_buf_print(&buf, "%d", totals[maxIndex]); 2646 for (index = maxIndex - 1; index >= pkgIdIndex; index--) { 2647 __kmp_str_buf_print(&buf, " x %d", maxCt[index]); 2648 } 2649 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, maxCt[coreIdIndex], 2650 maxCt[threadIdIndex], __kmp_ncores); 2651 2652 __kmp_str_buf_free(&buf); 2653 } 2654 2655 #if KMP_MIC && REDUCE_TEAM_SIZE 2656 // Set the default team size. 2657 if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) { 2658 __kmp_dflt_team_nth = teamSize; 2659 KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting " 2660 "__kmp_dflt_team_nth = %d\n", 2661 __kmp_dflt_team_nth)); 2662 } 2663 #endif // KMP_MIC && REDUCE_TEAM_SIZE 2664 2665 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 2666 KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc); 2667 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 2668 for (i = 0; i < num_avail; ++i) { // fill the os indices 2669 __kmp_pu_os_idx[i] = threadInfo[i][osIdIndex]; 2670 } 2671 2672 if (__kmp_affinity_type == affinity_none) { 2673 __kmp_free(lastId); 2674 __kmp_free(totals); 2675 __kmp_free(maxCt); 2676 __kmp_free(counts); 2677 CLEANUP_THREAD_INFO; 2678 return 0; 2679 } 2680 2681 // Count the number of levels which have more nodes at that level than at the 2682 // parent's level (with there being an implicit root node of the top level). 2683 // This is equivalent to saying that there is at least one node at this level 2684 // which has a sibling. These levels are in the map, and the package level is 2685 // always in the map. 2686 bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool)); 2687 for (index = threadIdIndex; index < maxIndex; index++) { 2688 KMP_ASSERT(totals[index] >= totals[index + 1]); 2689 inMap[index] = (totals[index] > totals[index + 1]); 2690 } 2691 inMap[maxIndex] = (totals[maxIndex] > 1); 2692 inMap[pkgIdIndex] = true; 2693 2694 int depth = 0; 2695 for (index = threadIdIndex; index <= maxIndex; index++) { 2696 if (inMap[index]) { 2697 depth++; 2698 } 2699 } 2700 KMP_ASSERT(depth > 0); 2701 2702 // Construct the data structure that is to be returned. 2703 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * num_avail); 2704 int pkgLevel = -1; 2705 int coreLevel = -1; 2706 int threadLevel = -1; 2707 2708 for (i = 0; i < num_avail; ++i) { 2709 Address addr(depth); 2710 unsigned os = threadInfo[i][osIdIndex]; 2711 int src_index; 2712 int dst_index = 0; 2713 2714 for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) { 2715 if (!inMap[src_index]) { 2716 continue; 2717 } 2718 addr.labels[dst_index] = threadInfo[i][src_index]; 2719 if (src_index == pkgIdIndex) { 2720 pkgLevel = dst_index; 2721 } else if (src_index == coreIdIndex) { 2722 coreLevel = dst_index; 2723 } else if (src_index == threadIdIndex) { 2724 threadLevel = dst_index; 2725 } 2726 dst_index++; 2727 } 2728 (*address2os)[i] = AddrUnsPair(addr, os); 2729 } 2730 2731 if (__kmp_affinity_gran_levels < 0) { 2732 // Set the granularity level based on what levels are modeled 2733 // in the machine topology map. 2734 unsigned src_index; 2735 __kmp_affinity_gran_levels = 0; 2736 for (src_index = threadIdIndex; src_index <= maxIndex; src_index++) { 2737 if (!inMap[src_index]) { 2738 continue; 2739 } 2740 switch (src_index) { 2741 case threadIdIndex: 2742 if (__kmp_affinity_gran > affinity_gran_thread) { 2743 __kmp_affinity_gran_levels++; 2744 } 2745 2746 break; 2747 case coreIdIndex: 2748 if (__kmp_affinity_gran > affinity_gran_core) { 2749 __kmp_affinity_gran_levels++; 2750 } 2751 break; 2752 2753 case pkgIdIndex: 2754 if (__kmp_affinity_gran > affinity_gran_package) { 2755 __kmp_affinity_gran_levels++; 2756 } 2757 break; 2758 } 2759 } 2760 } 2761 2762 if (__kmp_affinity_verbose) { 2763 __kmp_affinity_print_topology(*address2os, num_avail, depth, pkgLevel, 2764 coreLevel, threadLevel); 2765 } 2766 2767 __kmp_free(inMap); 2768 __kmp_free(lastId); 2769 __kmp_free(totals); 2770 __kmp_free(maxCt); 2771 __kmp_free(counts); 2772 CLEANUP_THREAD_INFO; 2773 return depth; 2774 } 2775 2776 // Create and return a table of affinity masks, indexed by OS thread ID. 2777 // This routine handles OR'ing together all the affinity masks of threads 2778 // that are sufficiently close, if granularity > fine. 2779 static kmp_affin_mask_t *__kmp_create_masks(unsigned *maxIndex, 2780 unsigned *numUnique, 2781 AddrUnsPair *address2os, 2782 unsigned numAddrs) { 2783 // First form a table of affinity masks in order of OS thread id. 2784 unsigned depth; 2785 unsigned maxOsId; 2786 unsigned i; 2787 2788 KMP_ASSERT(numAddrs > 0); 2789 depth = address2os[0].first.depth; 2790 2791 maxOsId = 0; 2792 for (i = numAddrs - 1;; --i) { 2793 unsigned osId = address2os[i].second; 2794 if (osId > maxOsId) { 2795 maxOsId = osId; 2796 } 2797 if (i == 0) 2798 break; 2799 } 2800 kmp_affin_mask_t *osId2Mask; 2801 KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId + 1)); 2802 2803 // Sort the address2os table according to physical order. Doing so will put 2804 // all threads on the same core/package/node in consecutive locations. 2805 qsort(address2os, numAddrs, sizeof(*address2os), 2806 __kmp_affinity_cmp_Address_labels); 2807 2808 KMP_ASSERT(__kmp_affinity_gran_levels >= 0); 2809 if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) { 2810 KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels); 2811 } 2812 if (__kmp_affinity_gran_levels >= (int)depth) { 2813 if (__kmp_affinity_verbose || 2814 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { 2815 KMP_WARNING(AffThreadsMayMigrate); 2816 } 2817 } 2818 2819 // Run through the table, forming the masks for all threads on each core. 2820 // Threads on the same core will have identical "Address" objects, not 2821 // considering the last level, which must be the thread id. All threads on a 2822 // core will appear consecutively. 2823 unsigned unique = 0; 2824 unsigned j = 0; // index of 1st thread on core 2825 unsigned leader = 0; 2826 Address *leaderAddr = &(address2os[0].first); 2827 kmp_affin_mask_t *sum; 2828 KMP_CPU_ALLOC_ON_STACK(sum); 2829 KMP_CPU_ZERO(sum); 2830 KMP_CPU_SET(address2os[0].second, sum); 2831 for (i = 1; i < numAddrs; i++) { 2832 // If this thread is sufficiently close to the leader (within the 2833 // granularity setting), then set the bit for this os thread in the 2834 // affinity mask for this group, and go on to the next thread. 2835 if (leaderAddr->isClose(address2os[i].first, __kmp_affinity_gran_levels)) { 2836 KMP_CPU_SET(address2os[i].second, sum); 2837 continue; 2838 } 2839 2840 // For every thread in this group, copy the mask to the thread's entry in 2841 // the osId2Mask table. Mark the first address as a leader. 2842 for (; j < i; j++) { 2843 unsigned osId = address2os[j].second; 2844 KMP_DEBUG_ASSERT(osId <= maxOsId); 2845 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); 2846 KMP_CPU_COPY(mask, sum); 2847 address2os[j].first.leader = (j == leader); 2848 } 2849 unique++; 2850 2851 // Start a new mask. 2852 leader = i; 2853 leaderAddr = &(address2os[i].first); 2854 KMP_CPU_ZERO(sum); 2855 KMP_CPU_SET(address2os[i].second, sum); 2856 } 2857 2858 // For every thread in last group, copy the mask to the thread's 2859 // entry in the osId2Mask table. 2860 for (; j < i; j++) { 2861 unsigned osId = address2os[j].second; 2862 KMP_DEBUG_ASSERT(osId <= maxOsId); 2863 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); 2864 KMP_CPU_COPY(mask, sum); 2865 address2os[j].first.leader = (j == leader); 2866 } 2867 unique++; 2868 KMP_CPU_FREE_FROM_STACK(sum); 2869 2870 *maxIndex = maxOsId; 2871 *numUnique = unique; 2872 return osId2Mask; 2873 } 2874 2875 // Stuff for the affinity proclist parsers. It's easier to declare these vars 2876 // as file-static than to try and pass them through the calling sequence of 2877 // the recursive-descent OMP_PLACES parser. 2878 static kmp_affin_mask_t *newMasks; 2879 static int numNewMasks; 2880 static int nextNewMask; 2881 2882 #define ADD_MASK(_mask) \ 2883 { \ 2884 if (nextNewMask >= numNewMasks) { \ 2885 int i; \ 2886 numNewMasks *= 2; \ 2887 kmp_affin_mask_t *temp; \ 2888 KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \ 2889 for (i = 0; i < numNewMasks / 2; i++) { \ 2890 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); \ 2891 kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i); \ 2892 KMP_CPU_COPY(dest, src); \ 2893 } \ 2894 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2); \ 2895 newMasks = temp; \ 2896 } \ 2897 KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \ 2898 nextNewMask++; \ 2899 } 2900 2901 #define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \ 2902 { \ 2903 if (((_osId) > _maxOsId) || \ 2904 (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \ 2905 if (__kmp_affinity_verbose || \ 2906 (__kmp_affinity_warnings && \ 2907 (__kmp_affinity_type != affinity_none))) { \ 2908 KMP_WARNING(AffIgnoreInvalidProcID, _osId); \ 2909 } \ 2910 } else { \ 2911 ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \ 2912 } \ 2913 } 2914 2915 // Re-parse the proclist (for the explicit affinity type), and form the list 2916 // of affinity newMasks indexed by gtid. 2917 static void __kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks, 2918 unsigned int *out_numMasks, 2919 const char *proclist, 2920 kmp_affin_mask_t *osId2Mask, 2921 int maxOsId) { 2922 int i; 2923 const char *scan = proclist; 2924 const char *next = proclist; 2925 2926 // We use malloc() for the temporary mask vector, so that we can use 2927 // realloc() to extend it. 2928 numNewMasks = 2; 2929 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); 2930 nextNewMask = 0; 2931 kmp_affin_mask_t *sumMask; 2932 KMP_CPU_ALLOC(sumMask); 2933 int setSize = 0; 2934 2935 for (;;) { 2936 int start, end, stride; 2937 2938 SKIP_WS(scan); 2939 next = scan; 2940 if (*next == '\0') { 2941 break; 2942 } 2943 2944 if (*next == '{') { 2945 int num; 2946 setSize = 0; 2947 next++; // skip '{' 2948 SKIP_WS(next); 2949 scan = next; 2950 2951 // Read the first integer in the set. 2952 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist"); 2953 SKIP_DIGITS(next); 2954 num = __kmp_str_to_int(scan, *next); 2955 KMP_ASSERT2(num >= 0, "bad explicit proc list"); 2956 2957 // Copy the mask for that osId to the sum (union) mask. 2958 if ((num > maxOsId) || 2959 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 2960 if (__kmp_affinity_verbose || 2961 (__kmp_affinity_warnings && 2962 (__kmp_affinity_type != affinity_none))) { 2963 KMP_WARNING(AffIgnoreInvalidProcID, num); 2964 } 2965 KMP_CPU_ZERO(sumMask); 2966 } else { 2967 KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num)); 2968 setSize = 1; 2969 } 2970 2971 for (;;) { 2972 // Check for end of set. 2973 SKIP_WS(next); 2974 if (*next == '}') { 2975 next++; // skip '}' 2976 break; 2977 } 2978 2979 // Skip optional comma. 2980 if (*next == ',') { 2981 next++; 2982 } 2983 SKIP_WS(next); 2984 2985 // Read the next integer in the set. 2986 scan = next; 2987 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 2988 2989 SKIP_DIGITS(next); 2990 num = __kmp_str_to_int(scan, *next); 2991 KMP_ASSERT2(num >= 0, "bad explicit proc list"); 2992 2993 // Add the mask for that osId to the sum mask. 2994 if ((num > maxOsId) || 2995 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 2996 if (__kmp_affinity_verbose || 2997 (__kmp_affinity_warnings && 2998 (__kmp_affinity_type != affinity_none))) { 2999 KMP_WARNING(AffIgnoreInvalidProcID, num); 3000 } 3001 } else { 3002 KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num)); 3003 setSize++; 3004 } 3005 } 3006 if (setSize > 0) { 3007 ADD_MASK(sumMask); 3008 } 3009 3010 SKIP_WS(next); 3011 if (*next == ',') { 3012 next++; 3013 } 3014 scan = next; 3015 continue; 3016 } 3017 3018 // Read the first integer. 3019 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 3020 SKIP_DIGITS(next); 3021 start = __kmp_str_to_int(scan, *next); 3022 KMP_ASSERT2(start >= 0, "bad explicit proc list"); 3023 SKIP_WS(next); 3024 3025 // If this isn't a range, then add a mask to the list and go on. 3026 if (*next != '-') { 3027 ADD_MASK_OSID(start, osId2Mask, maxOsId); 3028 3029 // Skip optional comma. 3030 if (*next == ',') { 3031 next++; 3032 } 3033 scan = next; 3034 continue; 3035 } 3036 3037 // This is a range. Skip over the '-' and read in the 2nd int. 3038 next++; // skip '-' 3039 SKIP_WS(next); 3040 scan = next; 3041 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 3042 SKIP_DIGITS(next); 3043 end = __kmp_str_to_int(scan, *next); 3044 KMP_ASSERT2(end >= 0, "bad explicit proc list"); 3045 3046 // Check for a stride parameter 3047 stride = 1; 3048 SKIP_WS(next); 3049 if (*next == ':') { 3050 // A stride is specified. Skip over the ':" and read the 3rd int. 3051 int sign = +1; 3052 next++; // skip ':' 3053 SKIP_WS(next); 3054 scan = next; 3055 if (*next == '-') { 3056 sign = -1; 3057 next++; 3058 SKIP_WS(next); 3059 scan = next; 3060 } 3061 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 3062 SKIP_DIGITS(next); 3063 stride = __kmp_str_to_int(scan, *next); 3064 KMP_ASSERT2(stride >= 0, "bad explicit proc list"); 3065 stride *= sign; 3066 } 3067 3068 // Do some range checks. 3069 KMP_ASSERT2(stride != 0, "bad explicit proc list"); 3070 if (stride > 0) { 3071 KMP_ASSERT2(start <= end, "bad explicit proc list"); 3072 } else { 3073 KMP_ASSERT2(start >= end, "bad explicit proc list"); 3074 } 3075 KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list"); 3076 3077 // Add the mask for each OS proc # to the list. 3078 if (stride > 0) { 3079 do { 3080 ADD_MASK_OSID(start, osId2Mask, maxOsId); 3081 start += stride; 3082 } while (start <= end); 3083 } else { 3084 do { 3085 ADD_MASK_OSID(start, osId2Mask, maxOsId); 3086 start += stride; 3087 } while (start >= end); 3088 } 3089 3090 // Skip optional comma. 3091 SKIP_WS(next); 3092 if (*next == ',') { 3093 next++; 3094 } 3095 scan = next; 3096 } 3097 3098 *out_numMasks = nextNewMask; 3099 if (nextNewMask == 0) { 3100 *out_masks = NULL; 3101 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3102 return; 3103 } 3104 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); 3105 for (i = 0; i < nextNewMask; i++) { 3106 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); 3107 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); 3108 KMP_CPU_COPY(dest, src); 3109 } 3110 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3111 KMP_CPU_FREE(sumMask); 3112 } 3113 3114 /*----------------------------------------------------------------------------- 3115 Re-parse the OMP_PLACES proc id list, forming the newMasks for the different 3116 places. Again, Here is the grammar: 3117 3118 place_list := place 3119 place_list := place , place_list 3120 place := num 3121 place := place : num 3122 place := place : num : signed 3123 place := { subplacelist } 3124 place := ! place // (lowest priority) 3125 subplace_list := subplace 3126 subplace_list := subplace , subplace_list 3127 subplace := num 3128 subplace := num : num 3129 subplace := num : num : signed 3130 signed := num 3131 signed := + signed 3132 signed := - signed 3133 -----------------------------------------------------------------------------*/ 3134 static void __kmp_process_subplace_list(const char **scan, 3135 kmp_affin_mask_t *osId2Mask, 3136 int maxOsId, kmp_affin_mask_t *tempMask, 3137 int *setSize) { 3138 const char *next; 3139 3140 for (;;) { 3141 int start, count, stride, i; 3142 3143 // Read in the starting proc id 3144 SKIP_WS(*scan); 3145 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3146 next = *scan; 3147 SKIP_DIGITS(next); 3148 start = __kmp_str_to_int(*scan, *next); 3149 KMP_ASSERT(start >= 0); 3150 *scan = next; 3151 3152 // valid follow sets are ',' ':' and '}' 3153 SKIP_WS(*scan); 3154 if (**scan == '}' || **scan == ',') { 3155 if ((start > maxOsId) || 3156 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3157 if (__kmp_affinity_verbose || 3158 (__kmp_affinity_warnings && 3159 (__kmp_affinity_type != affinity_none))) { 3160 KMP_WARNING(AffIgnoreInvalidProcID, start); 3161 } 3162 } else { 3163 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3164 (*setSize)++; 3165 } 3166 if (**scan == '}') { 3167 break; 3168 } 3169 (*scan)++; // skip ',' 3170 continue; 3171 } 3172 KMP_ASSERT2(**scan == ':', "bad explicit places list"); 3173 (*scan)++; // skip ':' 3174 3175 // Read count parameter 3176 SKIP_WS(*scan); 3177 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3178 next = *scan; 3179 SKIP_DIGITS(next); 3180 count = __kmp_str_to_int(*scan, *next); 3181 KMP_ASSERT(count >= 0); 3182 *scan = next; 3183 3184 // valid follow sets are ',' ':' and '}' 3185 SKIP_WS(*scan); 3186 if (**scan == '}' || **scan == ',') { 3187 for (i = 0; i < count; i++) { 3188 if ((start > maxOsId) || 3189 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3190 if (__kmp_affinity_verbose || 3191 (__kmp_affinity_warnings && 3192 (__kmp_affinity_type != affinity_none))) { 3193 KMP_WARNING(AffIgnoreInvalidProcID, start); 3194 } 3195 break; // don't proliferate warnings for large count 3196 } else { 3197 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3198 start++; 3199 (*setSize)++; 3200 } 3201 } 3202 if (**scan == '}') { 3203 break; 3204 } 3205 (*scan)++; // skip ',' 3206 continue; 3207 } 3208 KMP_ASSERT2(**scan == ':', "bad explicit places list"); 3209 (*scan)++; // skip ':' 3210 3211 // Read stride parameter 3212 int sign = +1; 3213 for (;;) { 3214 SKIP_WS(*scan); 3215 if (**scan == '+') { 3216 (*scan)++; // skip '+' 3217 continue; 3218 } 3219 if (**scan == '-') { 3220 sign *= -1; 3221 (*scan)++; // skip '-' 3222 continue; 3223 } 3224 break; 3225 } 3226 SKIP_WS(*scan); 3227 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3228 next = *scan; 3229 SKIP_DIGITS(next); 3230 stride = __kmp_str_to_int(*scan, *next); 3231 KMP_ASSERT(stride >= 0); 3232 *scan = next; 3233 stride *= sign; 3234 3235 // valid follow sets are ',' and '}' 3236 SKIP_WS(*scan); 3237 if (**scan == '}' || **scan == ',') { 3238 for (i = 0; i < count; i++) { 3239 if ((start > maxOsId) || 3240 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3241 if (__kmp_affinity_verbose || 3242 (__kmp_affinity_warnings && 3243 (__kmp_affinity_type != affinity_none))) { 3244 KMP_WARNING(AffIgnoreInvalidProcID, start); 3245 } 3246 break; // don't proliferate warnings for large count 3247 } else { 3248 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3249 start += stride; 3250 (*setSize)++; 3251 } 3252 } 3253 if (**scan == '}') { 3254 break; 3255 } 3256 (*scan)++; // skip ',' 3257 continue; 3258 } 3259 3260 KMP_ASSERT2(0, "bad explicit places list"); 3261 } 3262 } 3263 3264 static void __kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask, 3265 int maxOsId, kmp_affin_mask_t *tempMask, 3266 int *setSize) { 3267 const char *next; 3268 3269 // valid follow sets are '{' '!' and num 3270 SKIP_WS(*scan); 3271 if (**scan == '{') { 3272 (*scan)++; // skip '{' 3273 __kmp_process_subplace_list(scan, osId2Mask, maxOsId, tempMask, setSize); 3274 KMP_ASSERT2(**scan == '}', "bad explicit places list"); 3275 (*scan)++; // skip '}' 3276 } else if (**scan == '!') { 3277 (*scan)++; // skip '!' 3278 __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize); 3279 KMP_CPU_COMPLEMENT(maxOsId, tempMask); 3280 } else if ((**scan >= '0') && (**scan <= '9')) { 3281 next = *scan; 3282 SKIP_DIGITS(next); 3283 int num = __kmp_str_to_int(*scan, *next); 3284 KMP_ASSERT(num >= 0); 3285 if ((num > maxOsId) || 3286 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 3287 if (__kmp_affinity_verbose || 3288 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { 3289 KMP_WARNING(AffIgnoreInvalidProcID, num); 3290 } 3291 } else { 3292 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num)); 3293 (*setSize)++; 3294 } 3295 *scan = next; // skip num 3296 } else { 3297 KMP_ASSERT2(0, "bad explicit places list"); 3298 } 3299 } 3300 3301 // static void 3302 void __kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks, 3303 unsigned int *out_numMasks, 3304 const char *placelist, 3305 kmp_affin_mask_t *osId2Mask, 3306 int maxOsId) { 3307 int i, j, count, stride, sign; 3308 const char *scan = placelist; 3309 const char *next = placelist; 3310 3311 numNewMasks = 2; 3312 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); 3313 nextNewMask = 0; 3314 3315 // tempMask is modified based on the previous or initial 3316 // place to form the current place 3317 // previousMask contains the previous place 3318 kmp_affin_mask_t *tempMask; 3319 kmp_affin_mask_t *previousMask; 3320 KMP_CPU_ALLOC(tempMask); 3321 KMP_CPU_ZERO(tempMask); 3322 KMP_CPU_ALLOC(previousMask); 3323 KMP_CPU_ZERO(previousMask); 3324 int setSize = 0; 3325 3326 for (;;) { 3327 __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize); 3328 3329 // valid follow sets are ',' ':' and EOL 3330 SKIP_WS(scan); 3331 if (*scan == '\0' || *scan == ',') { 3332 if (setSize > 0) { 3333 ADD_MASK(tempMask); 3334 } 3335 KMP_CPU_ZERO(tempMask); 3336 setSize = 0; 3337 if (*scan == '\0') { 3338 break; 3339 } 3340 scan++; // skip ',' 3341 continue; 3342 } 3343 3344 KMP_ASSERT2(*scan == ':', "bad explicit places list"); 3345 scan++; // skip ':' 3346 3347 // Read count parameter 3348 SKIP_WS(scan); 3349 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); 3350 next = scan; 3351 SKIP_DIGITS(next); 3352 count = __kmp_str_to_int(scan, *next); 3353 KMP_ASSERT(count >= 0); 3354 scan = next; 3355 3356 // valid follow sets are ',' ':' and EOL 3357 SKIP_WS(scan); 3358 if (*scan == '\0' || *scan == ',') { 3359 stride = +1; 3360 } else { 3361 KMP_ASSERT2(*scan == ':', "bad explicit places list"); 3362 scan++; // skip ':' 3363 3364 // Read stride parameter 3365 sign = +1; 3366 for (;;) { 3367 SKIP_WS(scan); 3368 if (*scan == '+') { 3369 scan++; // skip '+' 3370 continue; 3371 } 3372 if (*scan == '-') { 3373 sign *= -1; 3374 scan++; // skip '-' 3375 continue; 3376 } 3377 break; 3378 } 3379 SKIP_WS(scan); 3380 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); 3381 next = scan; 3382 SKIP_DIGITS(next); 3383 stride = __kmp_str_to_int(scan, *next); 3384 KMP_DEBUG_ASSERT(stride >= 0); 3385 scan = next; 3386 stride *= sign; 3387 } 3388 3389 // Add places determined by initial_place : count : stride 3390 for (i = 0; i < count; i++) { 3391 if (setSize == 0) { 3392 break; 3393 } 3394 // Add the current place, then build the next place (tempMask) from that 3395 KMP_CPU_COPY(previousMask, tempMask); 3396 ADD_MASK(previousMask); 3397 KMP_CPU_ZERO(tempMask); 3398 setSize = 0; 3399 KMP_CPU_SET_ITERATE(j, previousMask) { 3400 if (!KMP_CPU_ISSET(j, previousMask)) { 3401 continue; 3402 } 3403 if ((j + stride > maxOsId) || (j + stride < 0) || 3404 (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) || 3405 (!KMP_CPU_ISSET(j + stride, 3406 KMP_CPU_INDEX(osId2Mask, j + stride)))) { 3407 if ((__kmp_affinity_verbose || 3408 (__kmp_affinity_warnings && 3409 (__kmp_affinity_type != affinity_none))) && 3410 i < count - 1) { 3411 KMP_WARNING(AffIgnoreInvalidProcID, j + stride); 3412 } 3413 continue; 3414 } 3415 KMP_CPU_SET(j + stride, tempMask); 3416 setSize++; 3417 } 3418 } 3419 KMP_CPU_ZERO(tempMask); 3420 setSize = 0; 3421 3422 // valid follow sets are ',' and EOL 3423 SKIP_WS(scan); 3424 if (*scan == '\0') { 3425 break; 3426 } 3427 if (*scan == ',') { 3428 scan++; // skip ',' 3429 continue; 3430 } 3431 3432 KMP_ASSERT2(0, "bad explicit places list"); 3433 } 3434 3435 *out_numMasks = nextNewMask; 3436 if (nextNewMask == 0) { 3437 *out_masks = NULL; 3438 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3439 return; 3440 } 3441 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); 3442 KMP_CPU_FREE(tempMask); 3443 KMP_CPU_FREE(previousMask); 3444 for (i = 0; i < nextNewMask; i++) { 3445 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); 3446 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); 3447 KMP_CPU_COPY(dest, src); 3448 } 3449 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3450 } 3451 3452 #undef ADD_MASK 3453 #undef ADD_MASK_OSID 3454 3455 #if KMP_USE_HWLOC 3456 static int __kmp_hwloc_skip_PUs_obj(hwloc_topology_t t, hwloc_obj_t o) { 3457 // skip PUs descendants of the object o 3458 int skipped = 0; 3459 hwloc_obj_t hT = NULL; 3460 int N = __kmp_hwloc_count_children_by_type(t, o, HWLOC_OBJ_PU, &hT); 3461 for (int i = 0; i < N; ++i) { 3462 KMP_DEBUG_ASSERT(hT); 3463 unsigned idx = hT->os_index; 3464 if (KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3465 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3466 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3467 ++skipped; 3468 } 3469 hT = hwloc_get_next_obj_by_type(t, HWLOC_OBJ_PU, hT); 3470 } 3471 return skipped; // count number of skipped units 3472 } 3473 3474 static int __kmp_hwloc_obj_has_PUs(hwloc_topology_t t, hwloc_obj_t o) { 3475 // check if obj has PUs present in fullMask 3476 hwloc_obj_t hT = NULL; 3477 int N = __kmp_hwloc_count_children_by_type(t, o, HWLOC_OBJ_PU, &hT); 3478 for (int i = 0; i < N; ++i) { 3479 KMP_DEBUG_ASSERT(hT); 3480 unsigned idx = hT->os_index; 3481 if (KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) 3482 return 1; // found PU 3483 hT = hwloc_get_next_obj_by_type(t, HWLOC_OBJ_PU, hT); 3484 } 3485 return 0; // no PUs found 3486 } 3487 #endif // KMP_USE_HWLOC 3488 3489 static void __kmp_apply_thread_places(AddrUnsPair **pAddr, int depth) { 3490 AddrUnsPair *newAddr; 3491 if (__kmp_hws_requested == 0) 3492 goto _exit; // no topology limiting actions requested, exit 3493 #if KMP_USE_HWLOC 3494 if (__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) { 3495 // Number of subobjects calculated dynamically, this works fine for 3496 // any non-uniform topology. 3497 // L2 cache objects are determined by depth, other objects - by type. 3498 hwloc_topology_t tp = __kmp_hwloc_topology; 3499 int nS = 0, nN = 0, nL = 0, nC = 0, 3500 nT = 0; // logical index including skipped 3501 int nCr = 0, nTr = 0; // number of requested units 3502 int nPkg = 0, nCo = 0, n_new = 0, n_old = 0, nCpP = 0, nTpC = 0; // counters 3503 hwloc_obj_t hT, hC, hL, hN, hS; // hwloc objects (pointers to) 3504 int L2depth, idx; 3505 3506 // check support of extensions ---------------------------------- 3507 int numa_support = 0, tile_support = 0; 3508 if (__kmp_pu_os_idx) 3509 hT = hwloc_get_pu_obj_by_os_index(tp, 3510 __kmp_pu_os_idx[__kmp_avail_proc - 1]); 3511 else 3512 hT = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PU, __kmp_avail_proc - 1); 3513 if (hT == NULL) { // something's gone wrong 3514 KMP_WARNING(AffHWSubsetUnsupported); 3515 goto _exit; 3516 } 3517 // check NUMA node 3518 hN = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hT); 3519 hS = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hT); 3520 if (hN != NULL && hN->depth > hS->depth) { 3521 numa_support = 1; // 1 in case socket includes node(s) 3522 } else if (__kmp_hws_node.num > 0) { 3523 // don't support sockets inside NUMA node (no such HW found for testing) 3524 KMP_WARNING(AffHWSubsetUnsupported); 3525 goto _exit; 3526 } 3527 // check L2 cahce, get object by depth because of multiple caches 3528 L2depth = hwloc_get_cache_type_depth(tp, 2, HWLOC_OBJ_CACHE_UNIFIED); 3529 hL = hwloc_get_ancestor_obj_by_depth(tp, L2depth, hT); 3530 if (hL != NULL && 3531 __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC) > 1) { 3532 tile_support = 1; // no sense to count L2 if it includes single core 3533 } else if (__kmp_hws_tile.num > 0) { 3534 if (__kmp_hws_core.num == 0) { 3535 __kmp_hws_core = __kmp_hws_tile; // replace L2 with core 3536 __kmp_hws_tile.num = 0; 3537 } else { 3538 // L2 and core are both requested, but represent same object 3539 KMP_WARNING(AffHWSubsetInvalid); 3540 goto _exit; 3541 } 3542 } 3543 // end of check of extensions ----------------------------------- 3544 3545 // fill in unset items, validate settings ----------------------- 3546 if (__kmp_hws_socket.num == 0) 3547 __kmp_hws_socket.num = nPackages; // use all available sockets 3548 if (__kmp_hws_socket.offset >= nPackages) { 3549 KMP_WARNING(AffHWSubsetManySockets); 3550 goto _exit; 3551 } 3552 if (numa_support) { 3553 hN = NULL; 3554 int NN = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_NUMANODE, 3555 &hN); // num nodes in socket 3556 if (__kmp_hws_node.num == 0) 3557 __kmp_hws_node.num = NN; // use all available nodes 3558 if (__kmp_hws_node.offset >= NN) { 3559 KMP_WARNING(AffHWSubsetManyNodes); 3560 goto _exit; 3561 } 3562 if (tile_support) { 3563 // get num tiles in node 3564 int NL = __kmp_hwloc_count_children_by_depth(tp, hN, L2depth, &hL); 3565 if (__kmp_hws_tile.num == 0) { 3566 __kmp_hws_tile.num = NL + 1; 3567 } // use all available tiles, some node may have more tiles, thus +1 3568 if (__kmp_hws_tile.offset >= NL) { 3569 KMP_WARNING(AffHWSubsetManyTiles); 3570 goto _exit; 3571 } 3572 int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, 3573 &hC); // num cores in tile 3574 if (__kmp_hws_core.num == 0) 3575 __kmp_hws_core.num = NC; // use all available cores 3576 if (__kmp_hws_core.offset >= NC) { 3577 KMP_WARNING(AffHWSubsetManyCores); 3578 goto _exit; 3579 } 3580 } else { // tile_support 3581 int NC = __kmp_hwloc_count_children_by_type(tp, hN, HWLOC_OBJ_CORE, 3582 &hC); // num cores in node 3583 if (__kmp_hws_core.num == 0) 3584 __kmp_hws_core.num = NC; // use all available cores 3585 if (__kmp_hws_core.offset >= NC) { 3586 KMP_WARNING(AffHWSubsetManyCores); 3587 goto _exit; 3588 } 3589 } // tile_support 3590 } else { // numa_support 3591 if (tile_support) { 3592 // get num tiles in socket 3593 int NL = __kmp_hwloc_count_children_by_depth(tp, hS, L2depth, &hL); 3594 if (__kmp_hws_tile.num == 0) 3595 __kmp_hws_tile.num = NL; // use all available tiles 3596 if (__kmp_hws_tile.offset >= NL) { 3597 KMP_WARNING(AffHWSubsetManyTiles); 3598 goto _exit; 3599 } 3600 int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, 3601 &hC); // num cores in tile 3602 if (__kmp_hws_core.num == 0) 3603 __kmp_hws_core.num = NC; // use all available cores 3604 if (__kmp_hws_core.offset >= NC) { 3605 KMP_WARNING(AffHWSubsetManyCores); 3606 goto _exit; 3607 } 3608 } else { // tile_support 3609 int NC = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_CORE, 3610 &hC); // num cores in socket 3611 if (__kmp_hws_core.num == 0) 3612 __kmp_hws_core.num = NC; // use all available cores 3613 if (__kmp_hws_core.offset >= NC) { 3614 KMP_WARNING(AffHWSubsetManyCores); 3615 goto _exit; 3616 } 3617 } // tile_support 3618 } 3619 if (__kmp_hws_proc.num == 0) 3620 __kmp_hws_proc.num = __kmp_nThreadsPerCore; // use all available procs 3621 if (__kmp_hws_proc.offset >= __kmp_nThreadsPerCore) { 3622 KMP_WARNING(AffHWSubsetManyProcs); 3623 goto _exit; 3624 } 3625 // end of validation -------------------------------------------- 3626 3627 if (pAddr) // pAddr is NULL in case of affinity_none 3628 newAddr = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * 3629 __kmp_avail_proc); // max size 3630 // main loop to form HW subset ---------------------------------- 3631 hS = NULL; 3632 int NP = hwloc_get_nbobjs_by_type(tp, HWLOC_OBJ_PACKAGE); 3633 for (int s = 0; s < NP; ++s) { 3634 // Check Socket ----------------------------------------------- 3635 hS = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hS); 3636 if (!__kmp_hwloc_obj_has_PUs(tp, hS)) 3637 continue; // skip socket if all PUs are out of fullMask 3638 ++nS; // only count objects those have PUs in affinity mask 3639 if (nS <= __kmp_hws_socket.offset || 3640 nS > __kmp_hws_socket.num + __kmp_hws_socket.offset) { 3641 n_old += __kmp_hwloc_skip_PUs_obj(tp, hS); // skip socket 3642 continue; // move to next socket 3643 } 3644 nCr = 0; // count number of cores per socket 3645 // socket requested, go down the topology tree 3646 // check 4 cases: (+NUMA+Tile), (+NUMA-Tile), (-NUMA+Tile), (-NUMA-Tile) 3647 if (numa_support) { 3648 nN = 0; 3649 hN = NULL; 3650 // num nodes in current socket 3651 int NN = 3652 __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_NUMANODE, &hN); 3653 for (int n = 0; n < NN; ++n) { 3654 // Check NUMA Node ---------------------------------------- 3655 if (!__kmp_hwloc_obj_has_PUs(tp, hN)) { 3656 hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN); 3657 continue; // skip node if all PUs are out of fullMask 3658 } 3659 ++nN; 3660 if (nN <= __kmp_hws_node.offset || 3661 nN > __kmp_hws_node.num + __kmp_hws_node.offset) { 3662 // skip node as not requested 3663 n_old += __kmp_hwloc_skip_PUs_obj(tp, hN); // skip node 3664 hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN); 3665 continue; // move to next node 3666 } 3667 // node requested, go down the topology tree 3668 if (tile_support) { 3669 nL = 0; 3670 hL = NULL; 3671 int NL = __kmp_hwloc_count_children_by_depth(tp, hN, L2depth, &hL); 3672 for (int l = 0; l < NL; ++l) { 3673 // Check L2 (tile) ------------------------------------ 3674 if (!__kmp_hwloc_obj_has_PUs(tp, hL)) { 3675 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3676 continue; // skip tile if all PUs are out of fullMask 3677 } 3678 ++nL; 3679 if (nL <= __kmp_hws_tile.offset || 3680 nL > __kmp_hws_tile.num + __kmp_hws_tile.offset) { 3681 // skip tile as not requested 3682 n_old += __kmp_hwloc_skip_PUs_obj(tp, hL); // skip tile 3683 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3684 continue; // move to next tile 3685 } 3686 // tile requested, go down the topology tree 3687 nC = 0; 3688 hC = NULL; 3689 // num cores in current tile 3690 int NC = __kmp_hwloc_count_children_by_type(tp, hL, 3691 HWLOC_OBJ_CORE, &hC); 3692 for (int c = 0; c < NC; ++c) { 3693 // Check Core --------------------------------------- 3694 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) { 3695 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3696 continue; // skip core if all PUs are out of fullMask 3697 } 3698 ++nC; 3699 if (nC <= __kmp_hws_core.offset || 3700 nC > __kmp_hws_core.num + __kmp_hws_core.offset) { 3701 // skip node as not requested 3702 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core 3703 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3704 continue; // move to next node 3705 } 3706 // core requested, go down to PUs 3707 nT = 0; 3708 nTr = 0; 3709 hT = NULL; 3710 // num procs in current core 3711 int NT = __kmp_hwloc_count_children_by_type(tp, hC, 3712 HWLOC_OBJ_PU, &hT); 3713 for (int t = 0; t < NT; ++t) { 3714 // Check PU --------------------------------------- 3715 idx = hT->os_index; 3716 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3717 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3718 continue; // skip PU if not in fullMask 3719 } 3720 ++nT; 3721 if (nT <= __kmp_hws_proc.offset || 3722 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) { 3723 // skip PU 3724 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3725 ++n_old; 3726 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3727 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3728 continue; // move to next node 3729 } 3730 ++nTr; 3731 if (pAddr) // collect requested thread's data 3732 newAddr[n_new] = (*pAddr)[n_old]; 3733 ++n_new; 3734 ++n_old; 3735 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3736 } // threads loop 3737 if (nTr > 0) { 3738 ++nCr; // num cores per socket 3739 ++nCo; // total num cores 3740 if (nTr > nTpC) 3741 nTpC = nTr; // calc max threads per core 3742 } 3743 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3744 } // cores loop 3745 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3746 } // tiles loop 3747 } else { // tile_support 3748 // no tiles, check cores 3749 nC = 0; 3750 hC = NULL; 3751 // num cores in current node 3752 int NC = 3753 __kmp_hwloc_count_children_by_type(tp, hN, HWLOC_OBJ_CORE, &hC); 3754 for (int c = 0; c < NC; ++c) { 3755 // Check Core --------------------------------------- 3756 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) { 3757 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3758 continue; // skip core if all PUs are out of fullMask 3759 } 3760 ++nC; 3761 if (nC <= __kmp_hws_core.offset || 3762 nC > __kmp_hws_core.num + __kmp_hws_core.offset) { 3763 // skip node as not requested 3764 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core 3765 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3766 continue; // move to next node 3767 } 3768 // core requested, go down to PUs 3769 nT = 0; 3770 nTr = 0; 3771 hT = NULL; 3772 int NT = 3773 __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT); 3774 for (int t = 0; t < NT; ++t) { 3775 // Check PU --------------------------------------- 3776 idx = hT->os_index; 3777 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3778 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3779 continue; // skip PU if not in fullMask 3780 } 3781 ++nT; 3782 if (nT <= __kmp_hws_proc.offset || 3783 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) { 3784 // skip PU 3785 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3786 ++n_old; 3787 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3788 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3789 continue; // move to next node 3790 } 3791 ++nTr; 3792 if (pAddr) // collect requested thread's data 3793 newAddr[n_new] = (*pAddr)[n_old]; 3794 ++n_new; 3795 ++n_old; 3796 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3797 } // threads loop 3798 if (nTr > 0) { 3799 ++nCr; // num cores per socket 3800 ++nCo; // total num cores 3801 if (nTr > nTpC) 3802 nTpC = nTr; // calc max threads per core 3803 } 3804 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3805 } // cores loop 3806 } // tiles support 3807 hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN); 3808 } // nodes loop 3809 } else { // numa_support 3810 // no NUMA support 3811 if (tile_support) { 3812 nL = 0; 3813 hL = NULL; 3814 // num tiles in current socket 3815 int NL = __kmp_hwloc_count_children_by_depth(tp, hS, L2depth, &hL); 3816 for (int l = 0; l < NL; ++l) { 3817 // Check L2 (tile) ------------------------------------ 3818 if (!__kmp_hwloc_obj_has_PUs(tp, hL)) { 3819 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3820 continue; // skip tile if all PUs are out of fullMask 3821 } 3822 ++nL; 3823 if (nL <= __kmp_hws_tile.offset || 3824 nL > __kmp_hws_tile.num + __kmp_hws_tile.offset) { 3825 // skip tile as not requested 3826 n_old += __kmp_hwloc_skip_PUs_obj(tp, hL); // skip tile 3827 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3828 continue; // move to next tile 3829 } 3830 // tile requested, go down the topology tree 3831 nC = 0; 3832 hC = NULL; 3833 // num cores per tile 3834 int NC = 3835 __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC); 3836 for (int c = 0; c < NC; ++c) { 3837 // Check Core --------------------------------------- 3838 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) { 3839 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3840 continue; // skip core if all PUs are out of fullMask 3841 } 3842 ++nC; 3843 if (nC <= __kmp_hws_core.offset || 3844 nC > __kmp_hws_core.num + __kmp_hws_core.offset) { 3845 // skip node as not requested 3846 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core 3847 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3848 continue; // move to next node 3849 } 3850 // core requested, go down to PUs 3851 nT = 0; 3852 nTr = 0; 3853 hT = NULL; 3854 // num procs per core 3855 int NT = 3856 __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT); 3857 for (int t = 0; t < NT; ++t) { 3858 // Check PU --------------------------------------- 3859 idx = hT->os_index; 3860 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3861 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3862 continue; // skip PU if not in fullMask 3863 } 3864 ++nT; 3865 if (nT <= __kmp_hws_proc.offset || 3866 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) { 3867 // skip PU 3868 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3869 ++n_old; 3870 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3871 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3872 continue; // move to next node 3873 } 3874 ++nTr; 3875 if (pAddr) // collect requested thread's data 3876 newAddr[n_new] = (*pAddr)[n_old]; 3877 ++n_new; 3878 ++n_old; 3879 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3880 } // threads loop 3881 if (nTr > 0) { 3882 ++nCr; // num cores per socket 3883 ++nCo; // total num cores 3884 if (nTr > nTpC) 3885 nTpC = nTr; // calc max threads per core 3886 } 3887 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3888 } // cores loop 3889 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3890 } // tiles loop 3891 } else { // tile_support 3892 // no tiles, check cores 3893 nC = 0; 3894 hC = NULL; 3895 // num cores in socket 3896 int NC = 3897 __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_CORE, &hC); 3898 for (int c = 0; c < NC; ++c) { 3899 // Check Core ------------------------------------------- 3900 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) { 3901 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3902 continue; // skip core if all PUs are out of fullMask 3903 } 3904 ++nC; 3905 if (nC <= __kmp_hws_core.offset || 3906 nC > __kmp_hws_core.num + __kmp_hws_core.offset) { 3907 // skip node as not requested 3908 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core 3909 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3910 continue; // move to next node 3911 } 3912 // core requested, go down to PUs 3913 nT = 0; 3914 nTr = 0; 3915 hT = NULL; 3916 // num procs per core 3917 int NT = 3918 __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT); 3919 for (int t = 0; t < NT; ++t) { 3920 // Check PU --------------------------------------- 3921 idx = hT->os_index; 3922 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3923 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3924 continue; // skip PU if not in fullMask 3925 } 3926 ++nT; 3927 if (nT <= __kmp_hws_proc.offset || 3928 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) { 3929 // skip PU 3930 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3931 ++n_old; 3932 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3933 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3934 continue; // move to next node 3935 } 3936 ++nTr; 3937 if (pAddr) // collect requested thread's data 3938 newAddr[n_new] = (*pAddr)[n_old]; 3939 ++n_new; 3940 ++n_old; 3941 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3942 } // threads loop 3943 if (nTr > 0) { 3944 ++nCr; // num cores per socket 3945 ++nCo; // total num cores 3946 if (nTr > nTpC) 3947 nTpC = nTr; // calc max threads per core 3948 } 3949 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3950 } // cores loop 3951 } // tiles support 3952 } // numa_support 3953 if (nCr > 0) { // found cores? 3954 ++nPkg; // num sockets 3955 if (nCr > nCpP) 3956 nCpP = nCr; // calc max cores per socket 3957 } 3958 } // sockets loop 3959 3960 // check the subset is valid 3961 KMP_DEBUG_ASSERT(n_old == __kmp_avail_proc); 3962 KMP_DEBUG_ASSERT(nPkg > 0); 3963 KMP_DEBUG_ASSERT(nCpP > 0); 3964 KMP_DEBUG_ASSERT(nTpC > 0); 3965 KMP_DEBUG_ASSERT(nCo > 0); 3966 KMP_DEBUG_ASSERT(nPkg <= nPackages); 3967 KMP_DEBUG_ASSERT(nCpP <= nCoresPerPkg); 3968 KMP_DEBUG_ASSERT(nTpC <= __kmp_nThreadsPerCore); 3969 KMP_DEBUG_ASSERT(nCo <= __kmp_ncores); 3970 3971 nPackages = nPkg; // correct num sockets 3972 nCoresPerPkg = nCpP; // correct num cores per socket 3973 __kmp_nThreadsPerCore = nTpC; // correct num threads per core 3974 __kmp_avail_proc = n_new; // correct num procs 3975 __kmp_ncores = nCo; // correct num cores 3976 // hwloc topology method end 3977 } else 3978 #endif // KMP_USE_HWLOC 3979 { 3980 int n_old = 0, n_new = 0, proc_num = 0; 3981 if (__kmp_hws_node.num > 0 || __kmp_hws_tile.num > 0) { 3982 KMP_WARNING(AffHWSubsetNoHWLOC); 3983 goto _exit; 3984 } 3985 if (__kmp_hws_socket.num == 0) 3986 __kmp_hws_socket.num = nPackages; // use all available sockets 3987 if (__kmp_hws_die.num == 0) 3988 __kmp_hws_die.num = nDiesPerPkg; // use all available dies 3989 if (__kmp_hws_core.num == 0) 3990 __kmp_hws_core.num = nCoresPerPkg; // use all available cores 3991 if (__kmp_hws_proc.num == 0 || __kmp_hws_proc.num > __kmp_nThreadsPerCore) 3992 __kmp_hws_proc.num = __kmp_nThreadsPerCore; // use all HW contexts 3993 if (!__kmp_affinity_uniform_topology()) { 3994 KMP_WARNING(AffHWSubsetNonUniform); 3995 goto _exit; // don't support non-uniform topology 3996 } 3997 if (depth > 4) { 3998 KMP_WARNING(AffHWSubsetNonThreeLevel); 3999 goto _exit; // don't support not-3-level topology 4000 } 4001 if (__kmp_hws_socket.offset + __kmp_hws_socket.num > nPackages) { 4002 KMP_WARNING(AffHWSubsetManySockets); 4003 goto _exit; 4004 } 4005 if (depth == 4 && __kmp_hws_die.offset + __kmp_hws_die.num > nDiesPerPkg) { 4006 KMP_WARNING(AffHWSubsetManyDies); 4007 goto _exit; 4008 } 4009 if (__kmp_hws_core.offset + __kmp_hws_core.num > nCoresPerPkg) { 4010 KMP_WARNING(AffHWSubsetManyCores); 4011 goto _exit; 4012 } 4013 // Form the requested subset 4014 if (pAddr) // pAddr is NULL in case of affinity_none 4015 newAddr = (AddrUnsPair *)__kmp_allocate( 4016 sizeof(AddrUnsPair) * __kmp_hws_socket.num * __kmp_hws_die.num * 4017 __kmp_hws_core.num * __kmp_hws_proc.num); 4018 for (int i = 0; i < nPackages; ++i) { 4019 if (i < __kmp_hws_socket.offset || 4020 i >= __kmp_hws_socket.offset + __kmp_hws_socket.num) { 4021 // skip not-requested socket 4022 n_old += nDiesPerPkg * nCoresPerPkg * __kmp_nThreadsPerCore; 4023 if (__kmp_pu_os_idx != NULL) { 4024 // walk through skipped socket 4025 for (int l = 0; l < nDiesPerPkg; ++l) { 4026 for (int j = 0; j < nCoresPerPkg; ++j) { 4027 for (int k = 0; k < __kmp_nThreadsPerCore; ++k) { 4028 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask); 4029 ++proc_num; 4030 } 4031 } 4032 } 4033 } 4034 } else { 4035 // walk through requested socket 4036 for (int l = 0; l < nDiesPerPkg; ++l) { 4037 // skip unwanted die 4038 if (l < __kmp_hws_die.offset || 4039 l >= __kmp_hws_die.offset + __kmp_hws_die.num) { 4040 n_old += nCoresPerPkg; 4041 if (__kmp_pu_os_idx != NULL) { 4042 for (int k = 0; k < nCoresPerPkg; ++k) { 4043 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask); 4044 ++proc_num; 4045 } 4046 } 4047 } else { 4048 for (int j = 0; j < nCoresPerPkg; ++j) { 4049 if (j < __kmp_hws_core.offset || 4050 j >= __kmp_hws_core.offset + 4051 __kmp_hws_core.num) { // skip not-requested core 4052 n_old += __kmp_nThreadsPerCore; 4053 if (__kmp_pu_os_idx != NULL) { 4054 for (int k = 0; k < __kmp_nThreadsPerCore; ++k) { 4055 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], 4056 __kmp_affin_fullMask); 4057 ++proc_num; 4058 } 4059 } 4060 } else { 4061 // walk through requested core 4062 for (int k = 0; k < __kmp_nThreadsPerCore; ++k) { 4063 if (k < __kmp_hws_proc.num) { 4064 if (pAddr) // collect requested thread's data 4065 newAddr[n_new] = (*pAddr)[n_old]; 4066 n_new++; 4067 } else { 4068 if (__kmp_pu_os_idx != NULL) 4069 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], 4070 __kmp_affin_fullMask); 4071 } 4072 n_old++; 4073 ++proc_num; 4074 } 4075 } 4076 } 4077 } 4078 } 4079 } 4080 } 4081 KMP_DEBUG_ASSERT(n_old == 4082 nPackages * nDiesPerPkg * nCoresPerPkg * 4083 __kmp_nThreadsPerCore); 4084 KMP_DEBUG_ASSERT(n_new == 4085 __kmp_hws_socket.num * __kmp_hws_die.num * 4086 __kmp_hws_core.num * __kmp_hws_proc.num); 4087 nPackages = __kmp_hws_socket.num; // correct nPackages 4088 nCoresPerPkg = __kmp_hws_core.num; // correct nCoresPerPkg 4089 nDiesPerPkg = __kmp_hws_die.num; // correct nDiesPerPkg 4090 __kmp_nThreadsPerCore = __kmp_hws_proc.num; // correct __kmp_nThreadsPerCore 4091 __kmp_avail_proc = n_new; // correct avail_proc 4092 __kmp_ncores = 4093 nPackages * nDiesPerPkg * __kmp_hws_core.num; // correct ncores 4094 } // non-hwloc topology method 4095 if (pAddr) { 4096 __kmp_free(*pAddr); 4097 *pAddr = newAddr; // replace old topology with new one 4098 } 4099 if (__kmp_affinity_verbose) { 4100 KMP_INFORM(AvailableOSProc, "KMP_HW_SUBSET", __kmp_avail_proc); 4101 kmp_str_buf_t buf; 4102 __kmp_str_buf_init(&buf); 4103 __kmp_str_buf_print(&buf, "%d", nPackages); 4104 KMP_INFORM(TopologyExtra, "KMP_HW_SUBSET", buf.str, nCoresPerPkg, 4105 __kmp_nThreadsPerCore, __kmp_ncores); 4106 __kmp_str_buf_free(&buf); 4107 } 4108 _exit: 4109 if (__kmp_pu_os_idx != NULL) { 4110 __kmp_free(__kmp_pu_os_idx); 4111 __kmp_pu_os_idx = NULL; 4112 } 4113 } 4114 4115 // This function figures out the deepest level at which there is at least one 4116 // cluster/core with more than one processing unit bound to it. 4117 static int __kmp_affinity_find_core_level(const AddrUnsPair *address2os, 4118 int nprocs, int bottom_level) { 4119 int core_level = 0; 4120 4121 for (int i = 0; i < nprocs; i++) { 4122 for (int j = bottom_level; j > 0; j--) { 4123 if (address2os[i].first.labels[j] > 0) { 4124 if (core_level < (j - 1)) { 4125 core_level = j - 1; 4126 } 4127 } 4128 } 4129 } 4130 return core_level; 4131 } 4132 4133 // This function counts number of clusters/cores at given level. 4134 static int __kmp_affinity_compute_ncores(const AddrUnsPair *address2os, 4135 int nprocs, int bottom_level, 4136 int core_level) { 4137 int ncores = 0; 4138 int i, j; 4139 4140 j = bottom_level; 4141 for (i = 0; i < nprocs; i++) { 4142 for (j = bottom_level; j > core_level; j--) { 4143 if ((i + 1) < nprocs) { 4144 if (address2os[i + 1].first.labels[j] > 0) { 4145 break; 4146 } 4147 } 4148 } 4149 if (j == core_level) { 4150 ncores++; 4151 } 4152 } 4153 if (j > core_level) { 4154 // In case of ( nprocs < __kmp_avail_proc ) we may end too deep and miss one 4155 // core. May occur when called from __kmp_affinity_find_core(). 4156 ncores++; 4157 } 4158 return ncores; 4159 } 4160 4161 // This function finds to which cluster/core given processing unit is bound. 4162 static int __kmp_affinity_find_core(const AddrUnsPair *address2os, int proc, 4163 int bottom_level, int core_level) { 4164 return __kmp_affinity_compute_ncores(address2os, proc + 1, bottom_level, 4165 core_level) - 4166 1; 4167 } 4168 4169 // This function finds maximal number of processing units bound to a 4170 // cluster/core at given level. 4171 static int __kmp_affinity_max_proc_per_core(const AddrUnsPair *address2os, 4172 int nprocs, int bottom_level, 4173 int core_level) { 4174 int maxprocpercore = 0; 4175 4176 if (core_level < bottom_level) { 4177 for (int i = 0; i < nprocs; i++) { 4178 int percore = address2os[i].first.labels[core_level + 1] + 1; 4179 4180 if (percore > maxprocpercore) { 4181 maxprocpercore = percore; 4182 } 4183 } 4184 } else { 4185 maxprocpercore = 1; 4186 } 4187 return maxprocpercore; 4188 } 4189 4190 static AddrUnsPair *address2os = NULL; 4191 static int *procarr = NULL; 4192 static int __kmp_aff_depth = 0; 4193 4194 #if KMP_USE_HIER_SCHED 4195 #define KMP_EXIT_AFF_NONE \ 4196 KMP_ASSERT(__kmp_affinity_type == affinity_none); \ 4197 KMP_ASSERT(address2os == NULL); \ 4198 __kmp_apply_thread_places(NULL, 0); \ 4199 __kmp_create_affinity_none_places(); \ 4200 __kmp_dispatch_set_hierarchy_values(); \ 4201 return; 4202 #else 4203 #define KMP_EXIT_AFF_NONE \ 4204 KMP_ASSERT(__kmp_affinity_type == affinity_none); \ 4205 KMP_ASSERT(address2os == NULL); \ 4206 __kmp_apply_thread_places(NULL, 0); \ 4207 __kmp_create_affinity_none_places(); \ 4208 return; 4209 #endif 4210 4211 // Create a one element mask array (set of places) which only contains the 4212 // initial process's affinity mask 4213 static void __kmp_create_affinity_none_places() { 4214 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4215 KMP_ASSERT(__kmp_affinity_type == affinity_none); 4216 __kmp_affinity_num_masks = 1; 4217 KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); 4218 kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, 0); 4219 KMP_CPU_COPY(dest, __kmp_affin_fullMask); 4220 } 4221 4222 static int __kmp_affinity_cmp_Address_child_num(const void *a, const void *b) { 4223 const Address *aa = &(((const AddrUnsPair *)a)->first); 4224 const Address *bb = &(((const AddrUnsPair *)b)->first); 4225 unsigned depth = aa->depth; 4226 unsigned i; 4227 KMP_DEBUG_ASSERT(depth == bb->depth); 4228 KMP_DEBUG_ASSERT((unsigned)__kmp_affinity_compact <= depth); 4229 KMP_DEBUG_ASSERT(__kmp_affinity_compact >= 0); 4230 for (i = 0; i < (unsigned)__kmp_affinity_compact; i++) { 4231 int j = depth - i - 1; 4232 if (aa->childNums[j] < bb->childNums[j]) 4233 return -1; 4234 if (aa->childNums[j] > bb->childNums[j]) 4235 return 1; 4236 } 4237 for (; i < depth; i++) { 4238 int j = i - __kmp_affinity_compact; 4239 if (aa->childNums[j] < bb->childNums[j]) 4240 return -1; 4241 if (aa->childNums[j] > bb->childNums[j]) 4242 return 1; 4243 } 4244 return 0; 4245 } 4246 4247 static void __kmp_aux_affinity_initialize(void) { 4248 if (__kmp_affinity_masks != NULL) { 4249 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4250 return; 4251 } 4252 4253 // Create the "full" mask - this defines all of the processors that we 4254 // consider to be in the machine model. If respect is set, then it is the 4255 // initialization thread's affinity mask. Otherwise, it is all processors that 4256 // we know about on the machine. 4257 if (__kmp_affin_fullMask == NULL) { 4258 KMP_CPU_ALLOC(__kmp_affin_fullMask); 4259 } 4260 if (KMP_AFFINITY_CAPABLE()) { 4261 __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE); 4262 if (__kmp_affinity_respect_mask) { 4263 // Count the number of available processors. 4264 unsigned i; 4265 __kmp_avail_proc = 0; 4266 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 4267 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 4268 continue; 4269 } 4270 __kmp_avail_proc++; 4271 } 4272 if (__kmp_avail_proc > __kmp_xproc) { 4273 if (__kmp_affinity_verbose || 4274 (__kmp_affinity_warnings && 4275 (__kmp_affinity_type != affinity_none))) { 4276 KMP_WARNING(ErrorInitializeAffinity); 4277 } 4278 __kmp_affinity_type = affinity_none; 4279 KMP_AFFINITY_DISABLE(); 4280 return; 4281 } 4282 4283 if (__kmp_affinity_verbose) { 4284 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4285 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4286 __kmp_affin_fullMask); 4287 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 4288 } 4289 } else { 4290 if (__kmp_affinity_verbose) { 4291 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4292 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4293 __kmp_affin_fullMask); 4294 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 4295 } 4296 __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask); 4297 __kmp_avail_proc = __kmp_xproc; 4298 #if KMP_OS_WINDOWS 4299 // Set the process affinity mask since threads' affinity 4300 // masks must be subset of process mask in Windows* OS 4301 __kmp_affin_fullMask->set_process_affinity(true); 4302 #endif 4303 } 4304 } 4305 4306 if (__kmp_affinity_gran == affinity_gran_tile && 4307 // check if user's request is valid 4308 __kmp_affinity_dispatch->get_api_type() == KMPAffinity::NATIVE_OS) { 4309 KMP_WARNING(AffTilesNoHWLOC, "KMP_AFFINITY"); 4310 __kmp_affinity_gran = affinity_gran_package; 4311 } 4312 4313 int depth = -1; 4314 kmp_i18n_id_t msg_id = kmp_i18n_null; 4315 4316 // For backward compatibility, setting KMP_CPUINFO_FILE => 4317 // KMP_TOPOLOGY_METHOD=cpuinfo 4318 if ((__kmp_cpuinfo_file != NULL) && 4319 (__kmp_affinity_top_method == affinity_top_method_all)) { 4320 __kmp_affinity_top_method = affinity_top_method_cpuinfo; 4321 } 4322 4323 if (__kmp_affinity_top_method == affinity_top_method_all) { 4324 // In the default code path, errors are not fatal - we just try using 4325 // another method. We only emit a warning message if affinity is on, or the 4326 // verbose flag is set, and the nowarnings flag was not set. 4327 const char *file_name = NULL; 4328 int line = 0; 4329 #if KMP_USE_HWLOC 4330 if (depth < 0 && 4331 __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) { 4332 if (__kmp_affinity_verbose) { 4333 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); 4334 } 4335 if (!__kmp_hwloc_error) { 4336 depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id); 4337 if (depth == 0) { 4338 KMP_EXIT_AFF_NONE; 4339 } else if (depth < 0 && __kmp_affinity_verbose) { 4340 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY"); 4341 } 4342 } else if (__kmp_affinity_verbose) { 4343 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY"); 4344 } 4345 } 4346 #endif 4347 4348 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4349 4350 if (depth < 0) { 4351 if (__kmp_affinity_verbose) { 4352 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC)); 4353 } 4354 4355 file_name = NULL; 4356 depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id); 4357 if (depth == 0) { 4358 KMP_EXIT_AFF_NONE; 4359 } 4360 4361 if (depth < 0) { 4362 if (__kmp_affinity_verbose) { 4363 if (msg_id != kmp_i18n_null) { 4364 KMP_INFORM(AffInfoStrStr, "KMP_AFFINITY", 4365 __kmp_i18n_catgets(msg_id), 4366 KMP_I18N_STR(DecodingLegacyAPIC)); 4367 } else { 4368 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", 4369 KMP_I18N_STR(DecodingLegacyAPIC)); 4370 } 4371 } 4372 4373 file_name = NULL; 4374 depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id); 4375 if (depth == 0) { 4376 KMP_EXIT_AFF_NONE; 4377 } 4378 } 4379 } 4380 4381 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4382 4383 #if KMP_OS_LINUX 4384 4385 if (depth < 0) { 4386 if (__kmp_affinity_verbose) { 4387 if (msg_id != kmp_i18n_null) { 4388 KMP_INFORM(AffStrParseFilename, "KMP_AFFINITY", 4389 __kmp_i18n_catgets(msg_id), "/proc/cpuinfo"); 4390 } else { 4391 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", "/proc/cpuinfo"); 4392 } 4393 } 4394 4395 kmp_safe_raii_file_t f("/proc/cpuinfo", "r"); 4396 depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f); 4397 if (depth == 0) { 4398 KMP_EXIT_AFF_NONE; 4399 } 4400 } 4401 4402 #endif /* KMP_OS_LINUX */ 4403 4404 #if KMP_GROUP_AFFINITY 4405 4406 if ((depth < 0) && (__kmp_num_proc_groups > 1)) { 4407 if (__kmp_affinity_verbose) { 4408 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY"); 4409 } 4410 4411 depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id); 4412 KMP_ASSERT(depth != 0); 4413 } 4414 4415 #endif /* KMP_GROUP_AFFINITY */ 4416 4417 if (depth < 0) { 4418 if (__kmp_affinity_verbose && (msg_id != kmp_i18n_null)) { 4419 if (file_name == NULL) { 4420 KMP_INFORM(UsingFlatOS, __kmp_i18n_catgets(msg_id)); 4421 } else if (line == 0) { 4422 KMP_INFORM(UsingFlatOSFile, file_name, __kmp_i18n_catgets(msg_id)); 4423 } else { 4424 KMP_INFORM(UsingFlatOSFileLine, file_name, line, 4425 __kmp_i18n_catgets(msg_id)); 4426 } 4427 } 4428 // FIXME - print msg if msg_id = kmp_i18n_null ??? 4429 4430 file_name = ""; 4431 depth = __kmp_affinity_create_flat_map(&address2os, &msg_id); 4432 if (depth == 0) { 4433 KMP_EXIT_AFF_NONE; 4434 } 4435 KMP_ASSERT(depth > 0); 4436 KMP_ASSERT(address2os != NULL); 4437 } 4438 } 4439 4440 #if KMP_USE_HWLOC 4441 else if (__kmp_affinity_top_method == affinity_top_method_hwloc) { 4442 KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC); 4443 if (__kmp_affinity_verbose) { 4444 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); 4445 } 4446 depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id); 4447 if (depth == 0) { 4448 KMP_EXIT_AFF_NONE; 4449 } 4450 } 4451 #endif // KMP_USE_HWLOC 4452 4453 // If the user has specified that a particular topology discovery method is to be 4454 // used, then we abort if that method fails. The exception is group affinity, 4455 // which might have been implicitly set. 4456 4457 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4458 4459 else if (__kmp_affinity_top_method == affinity_top_method_x2apicid || 4460 __kmp_affinity_top_method == affinity_top_method_x2apicid_1f) { 4461 if (__kmp_affinity_verbose) { 4462 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC)); 4463 } 4464 4465 depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id); 4466 if (depth == 0) { 4467 KMP_EXIT_AFF_NONE; 4468 } 4469 if (depth < 0) { 4470 KMP_ASSERT(msg_id != kmp_i18n_null); 4471 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4472 } 4473 } else if (__kmp_affinity_top_method == affinity_top_method_apicid) { 4474 if (__kmp_affinity_verbose) { 4475 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC)); 4476 } 4477 4478 depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id); 4479 if (depth == 0) { 4480 KMP_EXIT_AFF_NONE; 4481 } 4482 if (depth < 0) { 4483 KMP_ASSERT(msg_id != kmp_i18n_null); 4484 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4485 } 4486 } 4487 4488 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4489 4490 else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) { 4491 const char *filename; 4492 const char *env_var = nullptr; 4493 if (__kmp_cpuinfo_file != NULL) { 4494 filename = __kmp_cpuinfo_file; 4495 env_var = "KMP_CPUINFO_FILE"; 4496 } else { 4497 filename = "/proc/cpuinfo"; 4498 } 4499 4500 if (__kmp_affinity_verbose) { 4501 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename); 4502 } 4503 4504 kmp_safe_raii_file_t f(filename, "r", env_var); 4505 int line = 0; 4506 depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f); 4507 if (depth < 0) { 4508 KMP_ASSERT(msg_id != kmp_i18n_null); 4509 if (line > 0) { 4510 KMP_FATAL(FileLineMsgExiting, filename, line, 4511 __kmp_i18n_catgets(msg_id)); 4512 } else { 4513 KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id)); 4514 } 4515 } 4516 if (__kmp_affinity_type == affinity_none) { 4517 KMP_ASSERT(depth == 0); 4518 KMP_EXIT_AFF_NONE; 4519 } 4520 } 4521 4522 #if KMP_GROUP_AFFINITY 4523 4524 else if (__kmp_affinity_top_method == affinity_top_method_group) { 4525 if (__kmp_affinity_verbose) { 4526 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY"); 4527 } 4528 4529 depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id); 4530 KMP_ASSERT(depth != 0); 4531 if (depth < 0) { 4532 KMP_ASSERT(msg_id != kmp_i18n_null); 4533 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4534 } 4535 } 4536 4537 #endif /* KMP_GROUP_AFFINITY */ 4538 4539 else if (__kmp_affinity_top_method == affinity_top_method_flat) { 4540 if (__kmp_affinity_verbose) { 4541 KMP_INFORM(AffUsingFlatOS, "KMP_AFFINITY"); 4542 } 4543 4544 depth = __kmp_affinity_create_flat_map(&address2os, &msg_id); 4545 if (depth == 0) { 4546 KMP_EXIT_AFF_NONE; 4547 } 4548 // should not fail 4549 KMP_ASSERT(depth > 0); 4550 KMP_ASSERT(address2os != NULL); 4551 } 4552 4553 #if KMP_USE_HIER_SCHED 4554 __kmp_dispatch_set_hierarchy_values(); 4555 #endif 4556 4557 if (address2os == NULL) { 4558 if (KMP_AFFINITY_CAPABLE() && 4559 (__kmp_affinity_verbose || 4560 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none)))) { 4561 KMP_WARNING(ErrorInitializeAffinity); 4562 } 4563 __kmp_affinity_type = affinity_none; 4564 __kmp_create_affinity_none_places(); 4565 KMP_AFFINITY_DISABLE(); 4566 return; 4567 } 4568 4569 if (__kmp_affinity_gran == affinity_gran_tile 4570 #if KMP_USE_HWLOC 4571 && __kmp_tile_depth == 0 4572 #endif 4573 ) { 4574 // tiles requested but not detected, warn user on this 4575 KMP_WARNING(AffTilesNoTiles, "KMP_AFFINITY"); 4576 } 4577 4578 __kmp_apply_thread_places(&address2os, depth); 4579 4580 // Create the table of masks, indexed by thread Id. 4581 unsigned maxIndex; 4582 unsigned numUnique; 4583 kmp_affin_mask_t *osId2Mask = 4584 __kmp_create_masks(&maxIndex, &numUnique, address2os, __kmp_avail_proc); 4585 if (__kmp_affinity_gran_levels == 0) { 4586 KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc); 4587 } 4588 4589 // Set the childNums vector in all Address objects. This must be done before 4590 // we can sort using __kmp_affinity_cmp_Address_child_num(), which takes into 4591 // account the setting of __kmp_affinity_compact. 4592 __kmp_affinity_assign_child_nums(address2os, __kmp_avail_proc); 4593 4594 switch (__kmp_affinity_type) { 4595 4596 case affinity_explicit: 4597 KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL); 4598 if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) { 4599 __kmp_affinity_process_proclist( 4600 &__kmp_affinity_masks, &__kmp_affinity_num_masks, 4601 __kmp_affinity_proclist, osId2Mask, maxIndex); 4602 } else { 4603 __kmp_affinity_process_placelist( 4604 &__kmp_affinity_masks, &__kmp_affinity_num_masks, 4605 __kmp_affinity_proclist, osId2Mask, maxIndex); 4606 } 4607 if (__kmp_affinity_num_masks == 0) { 4608 if (__kmp_affinity_verbose || 4609 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { 4610 KMP_WARNING(AffNoValidProcID); 4611 } 4612 __kmp_affinity_type = affinity_none; 4613 __kmp_create_affinity_none_places(); 4614 return; 4615 } 4616 break; 4617 4618 // The other affinity types rely on sorting the Addresses according to some 4619 // permutation of the machine topology tree. Set __kmp_affinity_compact and 4620 // __kmp_affinity_offset appropriately, then jump to a common code fragment 4621 // to do the sort and create the array of affinity masks. 4622 4623 case affinity_logical: 4624 __kmp_affinity_compact = 0; 4625 if (__kmp_affinity_offset) { 4626 __kmp_affinity_offset = 4627 __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc; 4628 } 4629 goto sortAddresses; 4630 4631 case affinity_physical: 4632 if (__kmp_nThreadsPerCore > 1) { 4633 __kmp_affinity_compact = 1; 4634 if (__kmp_affinity_compact >= depth) { 4635 __kmp_affinity_compact = 0; 4636 } 4637 } else { 4638 __kmp_affinity_compact = 0; 4639 } 4640 if (__kmp_affinity_offset) { 4641 __kmp_affinity_offset = 4642 __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc; 4643 } 4644 goto sortAddresses; 4645 4646 case affinity_scatter: 4647 if (__kmp_affinity_compact >= depth) { 4648 __kmp_affinity_compact = 0; 4649 } else { 4650 __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact; 4651 } 4652 goto sortAddresses; 4653 4654 case affinity_compact: 4655 if (__kmp_affinity_compact >= depth) { 4656 __kmp_affinity_compact = depth - 1; 4657 } 4658 goto sortAddresses; 4659 4660 case affinity_balanced: 4661 if (depth <= 1) { 4662 if (__kmp_affinity_verbose || __kmp_affinity_warnings) { 4663 KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY"); 4664 } 4665 __kmp_affinity_type = affinity_none; 4666 __kmp_create_affinity_none_places(); 4667 return; 4668 } else if (!__kmp_affinity_uniform_topology()) { 4669 // Save the depth for further usage 4670 __kmp_aff_depth = depth; 4671 4672 int core_level = __kmp_affinity_find_core_level( 4673 address2os, __kmp_avail_proc, depth - 1); 4674 int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc, 4675 depth - 1, core_level); 4676 int maxprocpercore = __kmp_affinity_max_proc_per_core( 4677 address2os, __kmp_avail_proc, depth - 1, core_level); 4678 4679 int nproc = ncores * maxprocpercore; 4680 if ((nproc < 2) || (nproc < __kmp_avail_proc)) { 4681 if (__kmp_affinity_verbose || __kmp_affinity_warnings) { 4682 KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY"); 4683 } 4684 __kmp_affinity_type = affinity_none; 4685 return; 4686 } 4687 4688 procarr = (int *)__kmp_allocate(sizeof(int) * nproc); 4689 for (int i = 0; i < nproc; i++) { 4690 procarr[i] = -1; 4691 } 4692 4693 int lastcore = -1; 4694 int inlastcore = 0; 4695 for (int i = 0; i < __kmp_avail_proc; i++) { 4696 int proc = address2os[i].second; 4697 int core = 4698 __kmp_affinity_find_core(address2os, i, depth - 1, core_level); 4699 4700 if (core == lastcore) { 4701 inlastcore++; 4702 } else { 4703 inlastcore = 0; 4704 } 4705 lastcore = core; 4706 4707 procarr[core * maxprocpercore + inlastcore] = proc; 4708 } 4709 } 4710 if (__kmp_affinity_compact >= depth) { 4711 __kmp_affinity_compact = depth - 1; 4712 } 4713 4714 sortAddresses: 4715 // Allocate the gtid->affinity mask table. 4716 if (__kmp_affinity_dups) { 4717 __kmp_affinity_num_masks = __kmp_avail_proc; 4718 } else { 4719 __kmp_affinity_num_masks = numUnique; 4720 } 4721 4722 if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) && 4723 (__kmp_affinity_num_places > 0) && 4724 ((unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks)) { 4725 __kmp_affinity_num_masks = __kmp_affinity_num_places; 4726 } 4727 4728 KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); 4729 4730 // Sort the address2os table according to the current setting of 4731 // __kmp_affinity_compact, then fill out __kmp_affinity_masks. 4732 qsort(address2os, __kmp_avail_proc, sizeof(*address2os), 4733 __kmp_affinity_cmp_Address_child_num); 4734 { 4735 int i; 4736 unsigned j; 4737 for (i = 0, j = 0; i < __kmp_avail_proc; i++) { 4738 if ((!__kmp_affinity_dups) && (!address2os[i].first.leader)) { 4739 continue; 4740 } 4741 unsigned osId = address2os[i].second; 4742 kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId); 4743 kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, j); 4744 KMP_ASSERT(KMP_CPU_ISSET(osId, src)); 4745 KMP_CPU_COPY(dest, src); 4746 if (++j >= __kmp_affinity_num_masks) { 4747 break; 4748 } 4749 } 4750 KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks); 4751 } 4752 break; 4753 4754 default: 4755 KMP_ASSERT2(0, "Unexpected affinity setting"); 4756 } 4757 4758 KMP_CPU_FREE_ARRAY(osId2Mask, maxIndex + 1); 4759 machine_hierarchy.init(address2os, __kmp_avail_proc); 4760 } 4761 #undef KMP_EXIT_AFF_NONE 4762 4763 void __kmp_affinity_initialize(void) { 4764 // Much of the code above was written assuming that if a machine was not 4765 // affinity capable, then __kmp_affinity_type == affinity_none. We now 4766 // explicitly represent this as __kmp_affinity_type == affinity_disabled. 4767 // There are too many checks for __kmp_affinity_type == affinity_none 4768 // in this code. Instead of trying to change them all, check if 4769 // __kmp_affinity_type == affinity_disabled, and if so, slam it with 4770 // affinity_none, call the real initialization routine, then restore 4771 // __kmp_affinity_type to affinity_disabled. 4772 int disabled = (__kmp_affinity_type == affinity_disabled); 4773 if (!KMP_AFFINITY_CAPABLE()) { 4774 KMP_ASSERT(disabled); 4775 } 4776 if (disabled) { 4777 __kmp_affinity_type = affinity_none; 4778 } 4779 __kmp_aux_affinity_initialize(); 4780 if (disabled) { 4781 __kmp_affinity_type = affinity_disabled; 4782 } 4783 } 4784 4785 void __kmp_affinity_uninitialize(void) { 4786 if (__kmp_affinity_masks != NULL) { 4787 KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); 4788 __kmp_affinity_masks = NULL; 4789 } 4790 if (__kmp_affin_fullMask != NULL) { 4791 KMP_CPU_FREE(__kmp_affin_fullMask); 4792 __kmp_affin_fullMask = NULL; 4793 } 4794 __kmp_affinity_num_masks = 0; 4795 __kmp_affinity_type = affinity_default; 4796 __kmp_affinity_num_places = 0; 4797 if (__kmp_affinity_proclist != NULL) { 4798 __kmp_free(__kmp_affinity_proclist); 4799 __kmp_affinity_proclist = NULL; 4800 } 4801 if (address2os != NULL) { 4802 __kmp_free(address2os); 4803 address2os = NULL; 4804 } 4805 if (procarr != NULL) { 4806 __kmp_free(procarr); 4807 procarr = NULL; 4808 } 4809 #if KMP_USE_HWLOC 4810 if (__kmp_hwloc_topology != NULL) { 4811 hwloc_topology_destroy(__kmp_hwloc_topology); 4812 __kmp_hwloc_topology = NULL; 4813 } 4814 #endif 4815 KMPAffinity::destroy_api(); 4816 } 4817 4818 void __kmp_affinity_set_init_mask(int gtid, int isa_root) { 4819 if (!KMP_AFFINITY_CAPABLE()) { 4820 return; 4821 } 4822 4823 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); 4824 if (th->th.th_affin_mask == NULL) { 4825 KMP_CPU_ALLOC(th->th.th_affin_mask); 4826 } else { 4827 KMP_CPU_ZERO(th->th.th_affin_mask); 4828 } 4829 4830 // Copy the thread mask to the kmp_info_t structure. If 4831 // __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one that 4832 // has all of the OS proc ids set, or if __kmp_affinity_respect_mask is set, 4833 // then the full mask is the same as the mask of the initialization thread. 4834 kmp_affin_mask_t *mask; 4835 int i; 4836 4837 if (KMP_AFFINITY_NON_PROC_BIND) { 4838 if ((__kmp_affinity_type == affinity_none) || 4839 (__kmp_affinity_type == affinity_balanced)) { 4840 #if KMP_GROUP_AFFINITY 4841 if (__kmp_num_proc_groups > 1) { 4842 return; 4843 } 4844 #endif 4845 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4846 i = 0; 4847 mask = __kmp_affin_fullMask; 4848 } else { 4849 KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0); 4850 i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks; 4851 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); 4852 } 4853 } else { 4854 if ((!isa_root) || 4855 (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) { 4856 #if KMP_GROUP_AFFINITY 4857 if (__kmp_num_proc_groups > 1) { 4858 return; 4859 } 4860 #endif 4861 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4862 i = KMP_PLACE_ALL; 4863 mask = __kmp_affin_fullMask; 4864 } else { 4865 // int i = some hash function or just a counter that doesn't 4866 // always start at 0. Use gtid for now. 4867 KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0); 4868 i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks; 4869 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); 4870 } 4871 } 4872 4873 th->th.th_current_place = i; 4874 if (isa_root) { 4875 th->th.th_new_place = i; 4876 th->th.th_first_place = 0; 4877 th->th.th_last_place = __kmp_affinity_num_masks - 1; 4878 } else if (KMP_AFFINITY_NON_PROC_BIND) { 4879 // When using a Non-OMP_PROC_BIND affinity method, 4880 // set all threads' place-partition-var to the entire place list 4881 th->th.th_first_place = 0; 4882 th->th.th_last_place = __kmp_affinity_num_masks - 1; 4883 } 4884 4885 if (i == KMP_PLACE_ALL) { 4886 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n", 4887 gtid)); 4888 } else { 4889 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n", 4890 gtid, i)); 4891 } 4892 4893 KMP_CPU_COPY(th->th.th_affin_mask, mask); 4894 4895 if (__kmp_affinity_verbose 4896 /* to avoid duplicate printing (will be correctly printed on barrier) */ 4897 && (__kmp_affinity_type == affinity_none || 4898 (i != KMP_PLACE_ALL && __kmp_affinity_type != affinity_balanced))) { 4899 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4900 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4901 th->th.th_affin_mask); 4902 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), 4903 __kmp_gettid(), gtid, buf); 4904 } 4905 4906 #if KMP_OS_WINDOWS 4907 // On Windows* OS, the process affinity mask might have changed. If the user 4908 // didn't request affinity and this call fails, just continue silently. 4909 // See CQ171393. 4910 if (__kmp_affinity_type == affinity_none) { 4911 __kmp_set_system_affinity(th->th.th_affin_mask, FALSE); 4912 } else 4913 #endif 4914 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); 4915 } 4916 4917 void __kmp_affinity_set_place(int gtid) { 4918 if (!KMP_AFFINITY_CAPABLE()) { 4919 return; 4920 } 4921 4922 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); 4923 4924 KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current " 4925 "place = %d)\n", 4926 gtid, th->th.th_new_place, th->th.th_current_place)); 4927 4928 // Check that the new place is within this thread's partition. 4929 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4930 KMP_ASSERT(th->th.th_new_place >= 0); 4931 KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks); 4932 if (th->th.th_first_place <= th->th.th_last_place) { 4933 KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) && 4934 (th->th.th_new_place <= th->th.th_last_place)); 4935 } else { 4936 KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) || 4937 (th->th.th_new_place >= th->th.th_last_place)); 4938 } 4939 4940 // Copy the thread mask to the kmp_info_t structure, 4941 // and set this thread's affinity. 4942 kmp_affin_mask_t *mask = 4943 KMP_CPU_INDEX(__kmp_affinity_masks, th->th.th_new_place); 4944 KMP_CPU_COPY(th->th.th_affin_mask, mask); 4945 th->th.th_current_place = th->th.th_new_place; 4946 4947 if (__kmp_affinity_verbose) { 4948 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4949 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4950 th->th.th_affin_mask); 4951 KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(), 4952 __kmp_gettid(), gtid, buf); 4953 } 4954 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); 4955 } 4956 4957 int __kmp_aux_set_affinity(void **mask) { 4958 int gtid; 4959 kmp_info_t *th; 4960 int retval; 4961 4962 if (!KMP_AFFINITY_CAPABLE()) { 4963 return -1; 4964 } 4965 4966 gtid = __kmp_entry_gtid(); 4967 KA_TRACE(1000, (""); { 4968 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4969 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4970 (kmp_affin_mask_t *)(*mask)); 4971 __kmp_debug_printf( 4972 "kmp_set_affinity: setting affinity mask for thread %d = %s\n", gtid, 4973 buf); 4974 }); 4975 4976 if (__kmp_env_consistency_check) { 4977 if ((mask == NULL) || (*mask == NULL)) { 4978 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4979 } else { 4980 unsigned proc; 4981 int num_procs = 0; 4982 4983 KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) { 4984 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 4985 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4986 } 4987 if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) { 4988 continue; 4989 } 4990 num_procs++; 4991 } 4992 if (num_procs == 0) { 4993 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4994 } 4995 4996 #if KMP_GROUP_AFFINITY 4997 if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) { 4998 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4999 } 5000 #endif /* KMP_GROUP_AFFINITY */ 5001 } 5002 } 5003 5004 th = __kmp_threads[gtid]; 5005 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 5006 retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); 5007 if (retval == 0) { 5008 KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask)); 5009 } 5010 5011 th->th.th_current_place = KMP_PLACE_UNDEFINED; 5012 th->th.th_new_place = KMP_PLACE_UNDEFINED; 5013 th->th.th_first_place = 0; 5014 th->th.th_last_place = __kmp_affinity_num_masks - 1; 5015 5016 // Turn off 4.0 affinity for the current tread at this parallel level. 5017 th->th.th_current_task->td_icvs.proc_bind = proc_bind_false; 5018 5019 return retval; 5020 } 5021 5022 int __kmp_aux_get_affinity(void **mask) { 5023 int gtid; 5024 int retval; 5025 kmp_info_t *th; 5026 5027 if (!KMP_AFFINITY_CAPABLE()) { 5028 return -1; 5029 } 5030 5031 gtid = __kmp_entry_gtid(); 5032 th = __kmp_threads[gtid]; 5033 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 5034 5035 KA_TRACE(1000, (""); { 5036 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5037 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5038 th->th.th_affin_mask); 5039 __kmp_printf("kmp_get_affinity: stored affinity mask for thread %d = %s\n", 5040 gtid, buf); 5041 }); 5042 5043 if (__kmp_env_consistency_check) { 5044 if ((mask == NULL) || (*mask == NULL)) { 5045 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity"); 5046 } 5047 } 5048 5049 #if !KMP_OS_WINDOWS 5050 5051 retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); 5052 KA_TRACE(1000, (""); { 5053 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5054 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5055 (kmp_affin_mask_t *)(*mask)); 5056 __kmp_printf("kmp_get_affinity: system affinity mask for thread %d = %s\n", 5057 gtid, buf); 5058 }); 5059 return retval; 5060 5061 #else 5062 5063 KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask); 5064 return 0; 5065 5066 #endif /* KMP_OS_WINDOWS */ 5067 } 5068 5069 int __kmp_aux_get_affinity_max_proc() { 5070 if (!KMP_AFFINITY_CAPABLE()) { 5071 return 0; 5072 } 5073 #if KMP_GROUP_AFFINITY 5074 if (__kmp_num_proc_groups > 1) { 5075 return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT); 5076 } 5077 #endif 5078 return __kmp_xproc; 5079 } 5080 5081 int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) { 5082 if (!KMP_AFFINITY_CAPABLE()) { 5083 return -1; 5084 } 5085 5086 KA_TRACE(1000, (""); { 5087 int gtid = __kmp_entry_gtid(); 5088 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5089 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5090 (kmp_affin_mask_t *)(*mask)); 5091 __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in " 5092 "affinity mask for thread %d = %s\n", 5093 proc, gtid, buf); 5094 }); 5095 5096 if (__kmp_env_consistency_check) { 5097 if ((mask == NULL) || (*mask == NULL)) { 5098 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc"); 5099 } 5100 } 5101 5102 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 5103 return -1; 5104 } 5105 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 5106 return -2; 5107 } 5108 5109 KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask)); 5110 return 0; 5111 } 5112 5113 int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) { 5114 if (!KMP_AFFINITY_CAPABLE()) { 5115 return -1; 5116 } 5117 5118 KA_TRACE(1000, (""); { 5119 int gtid = __kmp_entry_gtid(); 5120 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5121 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5122 (kmp_affin_mask_t *)(*mask)); 5123 __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in " 5124 "affinity mask for thread %d = %s\n", 5125 proc, gtid, buf); 5126 }); 5127 5128 if (__kmp_env_consistency_check) { 5129 if ((mask == NULL) || (*mask == NULL)) { 5130 KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc"); 5131 } 5132 } 5133 5134 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 5135 return -1; 5136 } 5137 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 5138 return -2; 5139 } 5140 5141 KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask)); 5142 return 0; 5143 } 5144 5145 int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) { 5146 if (!KMP_AFFINITY_CAPABLE()) { 5147 return -1; 5148 } 5149 5150 KA_TRACE(1000, (""); { 5151 int gtid = __kmp_entry_gtid(); 5152 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5153 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5154 (kmp_affin_mask_t *)(*mask)); 5155 __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in " 5156 "affinity mask for thread %d = %s\n", 5157 proc, gtid, buf); 5158 }); 5159 5160 if (__kmp_env_consistency_check) { 5161 if ((mask == NULL) || (*mask == NULL)) { 5162 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc"); 5163 } 5164 } 5165 5166 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 5167 return -1; 5168 } 5169 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 5170 return 0; 5171 } 5172 5173 return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask)); 5174 } 5175 5176 // Dynamic affinity settings - Affinity balanced 5177 void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) { 5178 KMP_DEBUG_ASSERT(th); 5179 bool fine_gran = true; 5180 int tid = th->th.th_info.ds.ds_tid; 5181 5182 switch (__kmp_affinity_gran) { 5183 case affinity_gran_fine: 5184 case affinity_gran_thread: 5185 break; 5186 case affinity_gran_core: 5187 if (__kmp_nThreadsPerCore > 1) { 5188 fine_gran = false; 5189 } 5190 break; 5191 case affinity_gran_package: 5192 if (nCoresPerPkg > 1) { 5193 fine_gran = false; 5194 } 5195 break; 5196 default: 5197 fine_gran = false; 5198 } 5199 5200 if (__kmp_affinity_uniform_topology()) { 5201 int coreID; 5202 int threadID; 5203 // Number of hyper threads per core in HT machine 5204 int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores; 5205 // Number of cores 5206 int ncores = __kmp_ncores; 5207 if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) { 5208 __kmp_nth_per_core = __kmp_avail_proc / nPackages; 5209 ncores = nPackages; 5210 } 5211 // How many threads will be bound to each core 5212 int chunk = nthreads / ncores; 5213 // How many cores will have an additional thread bound to it - "big cores" 5214 int big_cores = nthreads % ncores; 5215 // Number of threads on the big cores 5216 int big_nth = (chunk + 1) * big_cores; 5217 if (tid < big_nth) { 5218 coreID = tid / (chunk + 1); 5219 threadID = (tid % (chunk + 1)) % __kmp_nth_per_core; 5220 } else { // tid >= big_nth 5221 coreID = (tid - big_cores) / chunk; 5222 threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core; 5223 } 5224 5225 KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(), 5226 "Illegal set affinity operation when not capable"); 5227 5228 kmp_affin_mask_t *mask = th->th.th_affin_mask; 5229 KMP_CPU_ZERO(mask); 5230 5231 if (fine_gran) { 5232 int osID = address2os[coreID * __kmp_nth_per_core + threadID].second; 5233 KMP_CPU_SET(osID, mask); 5234 } else { 5235 for (int i = 0; i < __kmp_nth_per_core; i++) { 5236 int osID; 5237 osID = address2os[coreID * __kmp_nth_per_core + i].second; 5238 KMP_CPU_SET(osID, mask); 5239 } 5240 } 5241 if (__kmp_affinity_verbose) { 5242 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5243 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); 5244 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), 5245 __kmp_gettid(), tid, buf); 5246 } 5247 __kmp_set_system_affinity(mask, TRUE); 5248 } else { // Non-uniform topology 5249 5250 kmp_affin_mask_t *mask = th->th.th_affin_mask; 5251 KMP_CPU_ZERO(mask); 5252 5253 int core_level = __kmp_affinity_find_core_level( 5254 address2os, __kmp_avail_proc, __kmp_aff_depth - 1); 5255 int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc, 5256 __kmp_aff_depth - 1, core_level); 5257 int nth_per_core = __kmp_affinity_max_proc_per_core( 5258 address2os, __kmp_avail_proc, __kmp_aff_depth - 1, core_level); 5259 5260 // For performance gain consider the special case nthreads == 5261 // __kmp_avail_proc 5262 if (nthreads == __kmp_avail_proc) { 5263 if (fine_gran) { 5264 int osID = address2os[tid].second; 5265 KMP_CPU_SET(osID, mask); 5266 } else { 5267 int core = __kmp_affinity_find_core(address2os, tid, 5268 __kmp_aff_depth - 1, core_level); 5269 for (int i = 0; i < __kmp_avail_proc; i++) { 5270 int osID = address2os[i].second; 5271 if (__kmp_affinity_find_core(address2os, i, __kmp_aff_depth - 1, 5272 core_level) == core) { 5273 KMP_CPU_SET(osID, mask); 5274 } 5275 } 5276 } 5277 } else if (nthreads <= ncores) { 5278 5279 int core = 0; 5280 for (int i = 0; i < ncores; i++) { 5281 // Check if this core from procarr[] is in the mask 5282 int in_mask = 0; 5283 for (int j = 0; j < nth_per_core; j++) { 5284 if (procarr[i * nth_per_core + j] != -1) { 5285 in_mask = 1; 5286 break; 5287 } 5288 } 5289 if (in_mask) { 5290 if (tid == core) { 5291 for (int j = 0; j < nth_per_core; j++) { 5292 int osID = procarr[i * nth_per_core + j]; 5293 if (osID != -1) { 5294 KMP_CPU_SET(osID, mask); 5295 // For fine granularity it is enough to set the first available 5296 // osID for this core 5297 if (fine_gran) { 5298 break; 5299 } 5300 } 5301 } 5302 break; 5303 } else { 5304 core++; 5305 } 5306 } 5307 } 5308 } else { // nthreads > ncores 5309 // Array to save the number of processors at each core 5310 int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores); 5311 // Array to save the number of cores with "x" available processors; 5312 int *ncores_with_x_procs = 5313 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); 5314 // Array to save the number of cores with # procs from x to nth_per_core 5315 int *ncores_with_x_to_max_procs = 5316 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); 5317 5318 for (int i = 0; i <= nth_per_core; i++) { 5319 ncores_with_x_procs[i] = 0; 5320 ncores_with_x_to_max_procs[i] = 0; 5321 } 5322 5323 for (int i = 0; i < ncores; i++) { 5324 int cnt = 0; 5325 for (int j = 0; j < nth_per_core; j++) { 5326 if (procarr[i * nth_per_core + j] != -1) { 5327 cnt++; 5328 } 5329 } 5330 nproc_at_core[i] = cnt; 5331 ncores_with_x_procs[cnt]++; 5332 } 5333 5334 for (int i = 0; i <= nth_per_core; i++) { 5335 for (int j = i; j <= nth_per_core; j++) { 5336 ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j]; 5337 } 5338 } 5339 5340 // Max number of processors 5341 int nproc = nth_per_core * ncores; 5342 // An array to keep number of threads per each context 5343 int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc); 5344 for (int i = 0; i < nproc; i++) { 5345 newarr[i] = 0; 5346 } 5347 5348 int nth = nthreads; 5349 int flag = 0; 5350 while (nth > 0) { 5351 for (int j = 1; j <= nth_per_core; j++) { 5352 int cnt = ncores_with_x_to_max_procs[j]; 5353 for (int i = 0; i < ncores; i++) { 5354 // Skip the core with 0 processors 5355 if (nproc_at_core[i] == 0) { 5356 continue; 5357 } 5358 for (int k = 0; k < nth_per_core; k++) { 5359 if (procarr[i * nth_per_core + k] != -1) { 5360 if (newarr[i * nth_per_core + k] == 0) { 5361 newarr[i * nth_per_core + k] = 1; 5362 cnt--; 5363 nth--; 5364 break; 5365 } else { 5366 if (flag != 0) { 5367 newarr[i * nth_per_core + k]++; 5368 cnt--; 5369 nth--; 5370 break; 5371 } 5372 } 5373 } 5374 } 5375 if (cnt == 0 || nth == 0) { 5376 break; 5377 } 5378 } 5379 if (nth == 0) { 5380 break; 5381 } 5382 } 5383 flag = 1; 5384 } 5385 int sum = 0; 5386 for (int i = 0; i < nproc; i++) { 5387 sum += newarr[i]; 5388 if (sum > tid) { 5389 if (fine_gran) { 5390 int osID = procarr[i]; 5391 KMP_CPU_SET(osID, mask); 5392 } else { 5393 int coreID = i / nth_per_core; 5394 for (int ii = 0; ii < nth_per_core; ii++) { 5395 int osID = procarr[coreID * nth_per_core + ii]; 5396 if (osID != -1) { 5397 KMP_CPU_SET(osID, mask); 5398 } 5399 } 5400 } 5401 break; 5402 } 5403 } 5404 __kmp_free(newarr); 5405 } 5406 5407 if (__kmp_affinity_verbose) { 5408 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5409 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); 5410 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), 5411 __kmp_gettid(), tid, buf); 5412 } 5413 __kmp_set_system_affinity(mask, TRUE); 5414 } 5415 } 5416 5417 #if KMP_OS_LINUX || KMP_OS_FREEBSD 5418 // We don't need this entry for Windows because 5419 // there is GetProcessAffinityMask() api 5420 // 5421 // The intended usage is indicated by these steps: 5422 // 1) The user gets the current affinity mask 5423 // 2) Then sets the affinity by calling this function 5424 // 3) Error check the return value 5425 // 4) Use non-OpenMP parallelization 5426 // 5) Reset the affinity to what was stored in step 1) 5427 #ifdef __cplusplus 5428 extern "C" 5429 #endif 5430 int 5431 kmp_set_thread_affinity_mask_initial() 5432 // the function returns 0 on success, 5433 // -1 if we cannot bind thread 5434 // >0 (errno) if an error happened during binding 5435 { 5436 int gtid = __kmp_get_gtid(); 5437 if (gtid < 0) { 5438 // Do not touch non-omp threads 5439 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5440 "non-omp thread, returning\n")); 5441 return -1; 5442 } 5443 if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) { 5444 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5445 "affinity not initialized, returning\n")); 5446 return -1; 5447 } 5448 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5449 "set full mask for thread %d\n", 5450 gtid)); 5451 KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL); 5452 return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE); 5453 } 5454 #endif 5455 5456 #endif // KMP_AFFINITY_SUPPORTED 5457