1 /* 2 * kmp_affinity.cpp -- affinity management 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_i18n.h" 16 #include "kmp_io.h" 17 #include "kmp_str.h" 18 #include "kmp_wrapper_getpid.h" 19 #if KMP_USE_HIER_SCHED 20 #include "kmp_dispatch_hier.h" 21 #endif 22 23 // Store the real or imagined machine hierarchy here 24 static hierarchy_info machine_hierarchy; 25 26 void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); } 27 28 void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) { 29 kmp_uint32 depth; 30 // The test below is true if affinity is available, but set to "none". Need to 31 // init on first use of hierarchical barrier. 32 if (TCR_1(machine_hierarchy.uninitialized)) 33 machine_hierarchy.init(NULL, nproc); 34 35 // Adjust the hierarchy in case num threads exceeds original 36 if (nproc > machine_hierarchy.base_num_threads) 37 machine_hierarchy.resize(nproc); 38 39 depth = machine_hierarchy.depth; 40 KMP_DEBUG_ASSERT(depth > 0); 41 42 thr_bar->depth = depth; 43 thr_bar->base_leaf_kids = (kmp_uint8)machine_hierarchy.numPerLevel[0] - 1; 44 thr_bar->skip_per_level = machine_hierarchy.skipPerLevel; 45 } 46 47 #if KMP_AFFINITY_SUPPORTED 48 49 bool KMPAffinity::picked_api = false; 50 51 void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); } 52 void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); } 53 void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); } 54 void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); } 55 void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); } 56 void KMPAffinity::operator delete(void *p) { __kmp_free(p); } 57 58 void KMPAffinity::pick_api() { 59 KMPAffinity *affinity_dispatch; 60 if (picked_api) 61 return; 62 #if KMP_USE_HWLOC 63 // Only use Hwloc if affinity isn't explicitly disabled and 64 // user requests Hwloc topology method 65 if (__kmp_affinity_top_method == affinity_top_method_hwloc && 66 __kmp_affinity_type != affinity_disabled) { 67 affinity_dispatch = new KMPHwlocAffinity(); 68 } else 69 #endif 70 { 71 affinity_dispatch = new KMPNativeAffinity(); 72 } 73 __kmp_affinity_dispatch = affinity_dispatch; 74 picked_api = true; 75 } 76 77 void KMPAffinity::destroy_api() { 78 if (__kmp_affinity_dispatch != NULL) { 79 delete __kmp_affinity_dispatch; 80 __kmp_affinity_dispatch = NULL; 81 picked_api = false; 82 } 83 } 84 85 #define KMP_ADVANCE_SCAN(scan) \ 86 while (*scan != '\0') { \ 87 scan++; \ 88 } 89 90 // Print the affinity mask to the character array in a pretty format. 91 // The format is a comma separated list of non-negative integers or integer 92 // ranges: e.g., 1,2,3-5,7,9-15 93 // The format can also be the string "{<empty>}" if no bits are set in mask 94 char *__kmp_affinity_print_mask(char *buf, int buf_len, 95 kmp_affin_mask_t *mask) { 96 int start = 0, finish = 0, previous = 0; 97 bool first_range; 98 KMP_ASSERT(buf); 99 KMP_ASSERT(buf_len >= 40); 100 KMP_ASSERT(mask); 101 char *scan = buf; 102 char *end = buf + buf_len - 1; 103 104 // Check for empty set. 105 if (mask->begin() == mask->end()) { 106 KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}"); 107 KMP_ADVANCE_SCAN(scan); 108 KMP_ASSERT(scan <= end); 109 return buf; 110 } 111 112 first_range = true; 113 start = mask->begin(); 114 while (1) { 115 // Find next range 116 // [start, previous] is inclusive range of contiguous bits in mask 117 for (finish = mask->next(start), previous = start; 118 finish == previous + 1 && finish != mask->end(); 119 finish = mask->next(finish)) { 120 previous = finish; 121 } 122 123 // The first range does not need a comma printed before it, but the rest 124 // of the ranges do need a comma beforehand 125 if (!first_range) { 126 KMP_SNPRINTF(scan, end - scan + 1, "%s", ","); 127 KMP_ADVANCE_SCAN(scan); 128 } else { 129 first_range = false; 130 } 131 // Range with three or more contiguous bits in the affinity mask 132 if (previous - start > 1) { 133 KMP_SNPRINTF(scan, end - scan + 1, "%d-%d", static_cast<int>(start), 134 static_cast<int>(previous)); 135 } else { 136 // Range with one or two contiguous bits in the affinity mask 137 KMP_SNPRINTF(scan, end - scan + 1, "%d", static_cast<int>(start)); 138 KMP_ADVANCE_SCAN(scan); 139 if (previous - start > 0) { 140 KMP_SNPRINTF(scan, end - scan + 1, ",%d", static_cast<int>(previous)); 141 } 142 } 143 KMP_ADVANCE_SCAN(scan); 144 // Start over with new start point 145 start = finish; 146 if (start == mask->end()) 147 break; 148 // Check for overflow 149 if (end - scan < 2) 150 break; 151 } 152 153 // Check for overflow 154 KMP_ASSERT(scan <= end); 155 return buf; 156 } 157 #undef KMP_ADVANCE_SCAN 158 159 // Print the affinity mask to the string buffer object in a pretty format 160 // The format is a comma separated list of non-negative integers or integer 161 // ranges: e.g., 1,2,3-5,7,9-15 162 // The format can also be the string "{<empty>}" if no bits are set in mask 163 kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf, 164 kmp_affin_mask_t *mask) { 165 int start = 0, finish = 0, previous = 0; 166 bool first_range; 167 KMP_ASSERT(buf); 168 KMP_ASSERT(mask); 169 170 __kmp_str_buf_clear(buf); 171 172 // Check for empty set. 173 if (mask->begin() == mask->end()) { 174 __kmp_str_buf_print(buf, "%s", "{<empty>}"); 175 return buf; 176 } 177 178 first_range = true; 179 start = mask->begin(); 180 while (1) { 181 // Find next range 182 // [start, previous] is inclusive range of contiguous bits in mask 183 for (finish = mask->next(start), previous = start; 184 finish == previous + 1 && finish != mask->end(); 185 finish = mask->next(finish)) { 186 previous = finish; 187 } 188 189 // The first range does not need a comma printed before it, but the rest 190 // of the ranges do need a comma beforehand 191 if (!first_range) { 192 __kmp_str_buf_print(buf, "%s", ","); 193 } else { 194 first_range = false; 195 } 196 // Range with three or more contiguous bits in the affinity mask 197 if (previous - start > 1) { 198 __kmp_str_buf_print(buf, "%d-%d", static_cast<int>(start), 199 static_cast<int>(previous)); 200 } else { 201 // Range with one or two contiguous bits in the affinity mask 202 __kmp_str_buf_print(buf, "%d", static_cast<int>(start)); 203 if (previous - start > 0) { 204 __kmp_str_buf_print(buf, ",%d", static_cast<int>(previous)); 205 } 206 } 207 // Start over with new start point 208 start = finish; 209 if (start == mask->end()) 210 break; 211 } 212 return buf; 213 } 214 215 void __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) { 216 KMP_CPU_ZERO(mask); 217 218 #if KMP_GROUP_AFFINITY 219 220 if (__kmp_num_proc_groups > 1) { 221 int group; 222 KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL); 223 for (group = 0; group < __kmp_num_proc_groups; group++) { 224 int i; 225 int num = __kmp_GetActiveProcessorCount(group); 226 for (i = 0; i < num; i++) { 227 KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask); 228 } 229 } 230 } else 231 232 #endif /* KMP_GROUP_AFFINITY */ 233 234 { 235 int proc; 236 for (proc = 0; proc < __kmp_xproc; proc++) { 237 KMP_CPU_SET(proc, mask); 238 } 239 } 240 } 241 242 // When sorting by labels, __kmp_affinity_assign_child_nums() must first be 243 // called to renumber the labels from [0..n] and place them into the child_num 244 // vector of the address object. This is done in case the labels used for 245 // the children at one node of the hierarchy differ from those used for 246 // another node at the same level. Example: suppose the machine has 2 nodes 247 // with 2 packages each. The first node contains packages 601 and 602, and 248 // second node contains packages 603 and 604. If we try to sort the table 249 // for "scatter" affinity, the table will still be sorted 601, 602, 603, 604 250 // because we are paying attention to the labels themselves, not the ordinal 251 // child numbers. By using the child numbers in the sort, the result is 252 // {0,0}=601, {0,1}=603, {1,0}=602, {1,1}=604. 253 static void __kmp_affinity_assign_child_nums(AddrUnsPair *address2os, 254 int numAddrs) { 255 KMP_DEBUG_ASSERT(numAddrs > 0); 256 int depth = address2os->first.depth; 257 unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 258 unsigned *lastLabel = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 259 int labCt; 260 for (labCt = 0; labCt < depth; labCt++) { 261 address2os[0].first.childNums[labCt] = counts[labCt] = 0; 262 lastLabel[labCt] = address2os[0].first.labels[labCt]; 263 } 264 int i; 265 for (i = 1; i < numAddrs; i++) { 266 for (labCt = 0; labCt < depth; labCt++) { 267 if (address2os[i].first.labels[labCt] != lastLabel[labCt]) { 268 int labCt2; 269 for (labCt2 = labCt + 1; labCt2 < depth; labCt2++) { 270 counts[labCt2] = 0; 271 lastLabel[labCt2] = address2os[i].first.labels[labCt2]; 272 } 273 counts[labCt]++; 274 lastLabel[labCt] = address2os[i].first.labels[labCt]; 275 break; 276 } 277 } 278 for (labCt = 0; labCt < depth; labCt++) { 279 address2os[i].first.childNums[labCt] = counts[labCt]; 280 } 281 for (; labCt < (int)Address::maxDepth; labCt++) { 282 address2os[i].first.childNums[labCt] = 0; 283 } 284 } 285 __kmp_free(lastLabel); 286 __kmp_free(counts); 287 } 288 289 // All of the __kmp_affinity_create_*_map() routines should set 290 // __kmp_affinity_masks to a vector of affinity mask objects of length 291 // __kmp_affinity_num_masks, if __kmp_affinity_type != affinity_none, and return 292 // the number of levels in the machine topology tree (zero if 293 // __kmp_affinity_type == affinity_none). 294 // 295 // All of the __kmp_affinity_create_*_map() routines should set 296 // *__kmp_affin_fullMask to the affinity mask for the initialization thread. 297 // They need to save and restore the mask, and it could be needed later, so 298 // saving it is just an optimization to avoid calling kmp_get_system_affinity() 299 // again. 300 kmp_affin_mask_t *__kmp_affin_fullMask = NULL; 301 302 static int nCoresPerPkg, nPackages; 303 static int __kmp_nThreadsPerCore; 304 #ifndef KMP_DFLT_NTH_CORES 305 static int __kmp_ncores; 306 #endif 307 static int *__kmp_pu_os_idx = NULL; 308 309 // __kmp_affinity_uniform_topology() doesn't work when called from 310 // places which support arbitrarily many levels in the machine topology 311 // map, i.e. the non-default cases in __kmp_affinity_create_cpuinfo_map() 312 // __kmp_affinity_create_x2apicid_map(). 313 inline static bool __kmp_affinity_uniform_topology() { 314 return __kmp_avail_proc == (__kmp_nThreadsPerCore * nCoresPerPkg * nPackages); 315 } 316 317 // Print out the detailed machine topology map, i.e. the physical locations 318 // of each OS proc. 319 static void __kmp_affinity_print_topology(AddrUnsPair *address2os, int len, 320 int depth, int pkgLevel, 321 int coreLevel, int threadLevel) { 322 int proc; 323 324 KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY"); 325 for (proc = 0; proc < len; proc++) { 326 int level; 327 kmp_str_buf_t buf; 328 __kmp_str_buf_init(&buf); 329 for (level = 0; level < depth; level++) { 330 if (level == threadLevel) { 331 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Thread)); 332 } else if (level == coreLevel) { 333 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Core)); 334 } else if (level == pkgLevel) { 335 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Package)); 336 } else if (level > pkgLevel) { 337 __kmp_str_buf_print(&buf, "%s_%d ", KMP_I18N_STR(Node), 338 level - pkgLevel - 1); 339 } else { 340 __kmp_str_buf_print(&buf, "L%d ", level); 341 } 342 __kmp_str_buf_print(&buf, "%d ", address2os[proc].first.labels[level]); 343 } 344 KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", address2os[proc].second, 345 buf.str); 346 __kmp_str_buf_free(&buf); 347 } 348 } 349 350 #if KMP_USE_HWLOC 351 352 static void __kmp_affinity_print_hwloc_tp(AddrUnsPair *addrP, int len, 353 int depth, int *levels) { 354 int proc; 355 kmp_str_buf_t buf; 356 __kmp_str_buf_init(&buf); 357 KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY"); 358 for (proc = 0; proc < len; proc++) { 359 __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Package), 360 addrP[proc].first.labels[0]); 361 if (depth > 1) { 362 int level = 1; // iterate over levels 363 int label = 1; // iterate over labels 364 if (__kmp_numa_detected) 365 // node level follows package 366 if (levels[level++] > 0) 367 __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Node), 368 addrP[proc].first.labels[label++]); 369 if (__kmp_tile_depth > 0) 370 // tile level follows node if any, or package 371 if (levels[level++] > 0) 372 __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Tile), 373 addrP[proc].first.labels[label++]); 374 if (levels[level++] > 0) 375 // core level follows 376 __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Core), 377 addrP[proc].first.labels[label++]); 378 if (levels[level++] > 0) 379 // thread level is the latest 380 __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Thread), 381 addrP[proc].first.labels[label++]); 382 KMP_DEBUG_ASSERT(label == depth); 383 } 384 KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", addrP[proc].second, buf.str); 385 __kmp_str_buf_clear(&buf); 386 } 387 __kmp_str_buf_free(&buf); 388 } 389 390 static int nNodePerPkg, nTilePerPkg, nTilePerNode, nCorePerNode, nCorePerTile; 391 392 // This function removes the topology levels that are radix 1 and don't offer 393 // further information about the topology. The most common example is when you 394 // have one thread context per core, we don't want the extra thread context 395 // level if it offers no unique labels. So they are removed. 396 // return value: the new depth of address2os 397 static int __kmp_affinity_remove_radix_one_levels(AddrUnsPair *addrP, int nTh, 398 int depth, int *levels) { 399 int level; 400 int i; 401 int radix1_detected; 402 int new_depth = depth; 403 for (level = depth - 1; level > 0; --level) { 404 // Detect if this level is radix 1 405 radix1_detected = 1; 406 for (i = 1; i < nTh; ++i) { 407 if (addrP[0].first.labels[level] != addrP[i].first.labels[level]) { 408 // There are differing label values for this level so it stays 409 radix1_detected = 0; 410 break; 411 } 412 } 413 if (!radix1_detected) 414 continue; 415 // Radix 1 was detected 416 --new_depth; 417 levels[level] = -1; // mark level as not present in address2os array 418 if (level == new_depth) { 419 // "turn off" deepest level, just decrement the depth that removes 420 // the level from address2os array 421 for (i = 0; i < nTh; ++i) { 422 addrP[i].first.depth--; 423 } 424 } else { 425 // For other levels, we move labels over and also reduce the depth 426 int j; 427 for (j = level; j < new_depth; ++j) { 428 for (i = 0; i < nTh; ++i) { 429 addrP[i].first.labels[j] = addrP[i].first.labels[j + 1]; 430 addrP[i].first.depth--; 431 } 432 levels[j + 1] -= 1; 433 } 434 } 435 } 436 return new_depth; 437 } 438 439 // Returns the number of objects of type 'type' below 'obj' within the topology 440 // tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is 441 // HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET 442 // object. 443 static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj, 444 hwloc_obj_type_t type) { 445 int retval = 0; 446 hwloc_obj_t first; 447 for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type, 448 obj->logical_index, type, 0); 449 first != NULL && 450 hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, obj->type, first) == 451 obj; 452 first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type, 453 first)) { 454 ++retval; 455 } 456 return retval; 457 } 458 459 static int __kmp_hwloc_count_children_by_depth(hwloc_topology_t t, 460 hwloc_obj_t o, 461 kmp_hwloc_depth_t depth, 462 hwloc_obj_t *f) { 463 if (o->depth == depth) { 464 if (*f == NULL) 465 *f = o; // output first descendant found 466 return 1; 467 } 468 int sum = 0; 469 for (unsigned i = 0; i < o->arity; i++) 470 sum += __kmp_hwloc_count_children_by_depth(t, o->children[i], depth, f); 471 return sum; // will be 0 if no one found (as PU arity is 0) 472 } 473 474 static int __kmp_hwloc_count_children_by_type(hwloc_topology_t t, hwloc_obj_t o, 475 hwloc_obj_type_t type, 476 hwloc_obj_t *f) { 477 if (!hwloc_compare_types(o->type, type)) { 478 if (*f == NULL) 479 *f = o; // output first descendant found 480 return 1; 481 } 482 int sum = 0; 483 for (unsigned i = 0; i < o->arity; i++) 484 sum += __kmp_hwloc_count_children_by_type(t, o->children[i], type, f); 485 return sum; // will be 0 if no one found (as PU arity is 0) 486 } 487 488 static int __kmp_hwloc_process_obj_core_pu(AddrUnsPair *addrPair, 489 int &nActiveThreads, 490 int &num_active_cores, 491 hwloc_obj_t obj, int depth, 492 int *labels) { 493 hwloc_obj_t core = NULL; 494 hwloc_topology_t &tp = __kmp_hwloc_topology; 495 int NC = __kmp_hwloc_count_children_by_type(tp, obj, HWLOC_OBJ_CORE, &core); 496 for (int core_id = 0; core_id < NC; ++core_id, core = core->next_cousin) { 497 hwloc_obj_t pu = NULL; 498 KMP_DEBUG_ASSERT(core != NULL); 499 int num_active_threads = 0; 500 int NT = __kmp_hwloc_count_children_by_type(tp, core, HWLOC_OBJ_PU, &pu); 501 // int NT = core->arity; pu = core->first_child; // faster? 502 for (int pu_id = 0; pu_id < NT; ++pu_id, pu = pu->next_cousin) { 503 KMP_DEBUG_ASSERT(pu != NULL); 504 if (!KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask)) 505 continue; // skip inactive (inaccessible) unit 506 Address addr(depth + 2); 507 KA_TRACE(20, ("Hwloc inserting %d (%d) %d (%d) %d (%d) into address2os\n", 508 obj->os_index, obj->logical_index, core->os_index, 509 core->logical_index, pu->os_index, pu->logical_index)); 510 for (int i = 0; i < depth; ++i) 511 addr.labels[i] = labels[i]; // package, etc. 512 addr.labels[depth] = core_id; // core 513 addr.labels[depth + 1] = pu_id; // pu 514 addrPair[nActiveThreads] = AddrUnsPair(addr, pu->os_index); 515 __kmp_pu_os_idx[nActiveThreads] = pu->os_index; 516 nActiveThreads++; 517 ++num_active_threads; // count active threads per core 518 } 519 if (num_active_threads) { // were there any active threads on the core? 520 ++__kmp_ncores; // count total active cores 521 ++num_active_cores; // count active cores per socket 522 if (num_active_threads > __kmp_nThreadsPerCore) 523 __kmp_nThreadsPerCore = num_active_threads; // calc maximum 524 } 525 } 526 return 0; 527 } 528 529 // Check if NUMA node detected below the package, 530 // and if tile object is detected and return its depth 531 static int __kmp_hwloc_check_numa() { 532 hwloc_topology_t &tp = __kmp_hwloc_topology; 533 hwloc_obj_t hT, hC, hL, hN, hS; // hwloc objects (pointers to) 534 int depth, l2cache_depth, package_depth; 535 536 // Get some PU 537 hT = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PU, 0); 538 if (hT == NULL) // something has gone wrong 539 return 1; 540 541 // check NUMA node below PACKAGE 542 hN = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hT); 543 hS = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hT); 544 KMP_DEBUG_ASSERT(hS != NULL); 545 if (hN != NULL && hN->depth > hS->depth) { 546 __kmp_numa_detected = TRUE; // socket includes node(s) 547 if (__kmp_affinity_gran == affinity_gran_node) { 548 __kmp_affinity_gran = affinity_gran_numa; 549 } 550 } 551 552 package_depth = hwloc_get_type_depth(tp, HWLOC_OBJ_PACKAGE); 553 l2cache_depth = hwloc_get_cache_type_depth(tp, 2, HWLOC_OBJ_CACHE_UNIFIED); 554 // check tile, get object by depth because of multiple caches possible 555 depth = (l2cache_depth < package_depth) ? package_depth : l2cache_depth; 556 hL = hwloc_get_ancestor_obj_by_depth(tp, depth, hT); 557 hC = NULL; // not used, but reset it here just in case 558 if (hL != NULL && 559 __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC) > 1) 560 __kmp_tile_depth = depth; // tile consists of multiple cores 561 return 0; 562 } 563 564 static int __kmp_affinity_create_hwloc_map(AddrUnsPair **address2os, 565 kmp_i18n_id_t *const msg_id) { 566 hwloc_topology_t &tp = __kmp_hwloc_topology; // shortcut of a long name 567 *address2os = NULL; 568 *msg_id = kmp_i18n_null; 569 570 // Save the affinity mask for the current thread. 571 kmp_affin_mask_t *oldMask; 572 KMP_CPU_ALLOC(oldMask); 573 __kmp_get_system_affinity(oldMask, TRUE); 574 __kmp_hwloc_check_numa(); 575 576 if (!KMP_AFFINITY_CAPABLE()) { 577 // Hack to try and infer the machine topology using only the data 578 // available from cpuid on the current thread, and __kmp_xproc. 579 KMP_ASSERT(__kmp_affinity_type == affinity_none); 580 // hwloc only guarantees existance of PU object, so check PACKAGE and CORE 581 hwloc_obj_t o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0); 582 if (o != NULL) 583 nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_CORE); 584 else 585 nCoresPerPkg = 1; // no PACKAGE found 586 o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0); 587 if (o != NULL) 588 __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_PU); 589 else 590 __kmp_nThreadsPerCore = 1; // no CORE found 591 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; 592 if (nCoresPerPkg == 0) 593 nCoresPerPkg = 1; // to prevent possible division by 0 594 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 595 if (__kmp_affinity_verbose) { 596 KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY"); 597 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 598 if (__kmp_affinity_uniform_topology()) { 599 KMP_INFORM(Uniform, "KMP_AFFINITY"); 600 } else { 601 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 602 } 603 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 604 __kmp_nThreadsPerCore, __kmp_ncores); 605 } 606 KMP_CPU_FREE(oldMask); 607 return 0; 608 } 609 610 int depth = 3; 611 int levels[5] = {0, 1, 2, 3, 4}; // package, [node,] [tile,] core, thread 612 int labels[3] = {0}; // package [,node] [,tile] - head of labels array 613 if (__kmp_numa_detected) 614 ++depth; 615 if (__kmp_tile_depth) 616 ++depth; 617 618 // Allocate the data structure to be returned. 619 AddrUnsPair *retval = 620 (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc); 621 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 622 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 623 624 // When affinity is off, this routine will still be called to set 625 // __kmp_ncores, as well as __kmp_nThreadsPerCore, 626 // nCoresPerPkg, & nPackages. Make sure all these vars are set 627 // correctly, and return if affinity is not enabled. 628 629 hwloc_obj_t socket, node, tile; 630 int nActiveThreads = 0; 631 int socket_id = 0; 632 // re-calculate globals to count only accessible resources 633 __kmp_ncores = nPackages = nCoresPerPkg = __kmp_nThreadsPerCore = 0; 634 nNodePerPkg = nTilePerPkg = nTilePerNode = nCorePerNode = nCorePerTile = 0; 635 for (socket = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0); socket != NULL; 636 socket = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PACKAGE, socket), 637 socket_id++) { 638 labels[0] = socket_id; 639 if (__kmp_numa_detected) { 640 int NN; 641 int n_active_nodes = 0; 642 node = NULL; 643 NN = __kmp_hwloc_count_children_by_type(tp, socket, HWLOC_OBJ_NUMANODE, 644 &node); 645 for (int node_id = 0; node_id < NN; ++node_id, node = node->next_cousin) { 646 labels[1] = node_id; 647 if (__kmp_tile_depth) { 648 // NUMA + tiles 649 int NT; 650 int n_active_tiles = 0; 651 tile = NULL; 652 NT = __kmp_hwloc_count_children_by_depth(tp, node, __kmp_tile_depth, 653 &tile); 654 for (int tl_id = 0; tl_id < NT; ++tl_id, tile = tile->next_cousin) { 655 labels[2] = tl_id; 656 int n_active_cores = 0; 657 __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, 658 n_active_cores, tile, 3, labels); 659 if (n_active_cores) { // were there any active cores on the socket? 660 ++n_active_tiles; // count active tiles per node 661 if (n_active_cores > nCorePerTile) 662 nCorePerTile = n_active_cores; // calc maximum 663 } 664 } 665 if (n_active_tiles) { // were there any active tiles on the socket? 666 ++n_active_nodes; // count active nodes per package 667 if (n_active_tiles > nTilePerNode) 668 nTilePerNode = n_active_tiles; // calc maximum 669 } 670 } else { 671 // NUMA, no tiles 672 int n_active_cores = 0; 673 __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, 674 n_active_cores, node, 2, labels); 675 if (n_active_cores) { // were there any active cores on the socket? 676 ++n_active_nodes; // count active nodes per package 677 if (n_active_cores > nCorePerNode) 678 nCorePerNode = n_active_cores; // calc maximum 679 } 680 } 681 } 682 if (n_active_nodes) { // were there any active nodes on the socket? 683 ++nPackages; // count total active packages 684 if (n_active_nodes > nNodePerPkg) 685 nNodePerPkg = n_active_nodes; // calc maximum 686 } 687 } else { 688 if (__kmp_tile_depth) { 689 // no NUMA, tiles 690 int NT; 691 int n_active_tiles = 0; 692 tile = NULL; 693 NT = __kmp_hwloc_count_children_by_depth(tp, socket, __kmp_tile_depth, 694 &tile); 695 for (int tl_id = 0; tl_id < NT; ++tl_id, tile = tile->next_cousin) { 696 labels[1] = tl_id; 697 int n_active_cores = 0; 698 __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, 699 n_active_cores, tile, 2, labels); 700 if (n_active_cores) { // were there any active cores on the socket? 701 ++n_active_tiles; // count active tiles per package 702 if (n_active_cores > nCorePerTile) 703 nCorePerTile = n_active_cores; // calc maximum 704 } 705 } 706 if (n_active_tiles) { // were there any active tiles on the socket? 707 ++nPackages; // count total active packages 708 if (n_active_tiles > nTilePerPkg) 709 nTilePerPkg = n_active_tiles; // calc maximum 710 } 711 } else { 712 // no NUMA, no tiles 713 int n_active_cores = 0; 714 __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, n_active_cores, 715 socket, 1, labels); 716 if (n_active_cores) { // were there any active cores on the socket? 717 ++nPackages; // count total active packages 718 if (n_active_cores > nCoresPerPkg) 719 nCoresPerPkg = n_active_cores; // calc maximum 720 } 721 } 722 } 723 } 724 725 // If there's only one thread context to bind to, return now. 726 KMP_DEBUG_ASSERT(nActiveThreads == __kmp_avail_proc); 727 KMP_ASSERT(nActiveThreads > 0); 728 if (nActiveThreads == 1) { 729 __kmp_ncores = nPackages = 1; 730 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 731 if (__kmp_affinity_verbose) { 732 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 733 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 734 735 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); 736 if (__kmp_affinity_respect_mask) { 737 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 738 } else { 739 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 740 } 741 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 742 KMP_INFORM(Uniform, "KMP_AFFINITY"); 743 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 744 __kmp_nThreadsPerCore, __kmp_ncores); 745 } 746 747 if (__kmp_affinity_type == affinity_none) { 748 __kmp_free(retval); 749 KMP_CPU_FREE(oldMask); 750 return 0; 751 } 752 753 // Form an Address object which only includes the package level. 754 Address addr(1); 755 addr.labels[0] = retval[0].first.labels[0]; 756 retval[0].first = addr; 757 758 if (__kmp_affinity_gran_levels < 0) { 759 __kmp_affinity_gran_levels = 0; 760 } 761 762 if (__kmp_affinity_verbose) { 763 __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1); 764 } 765 766 *address2os = retval; 767 KMP_CPU_FREE(oldMask); 768 return 1; 769 } 770 771 // Sort the table by physical Id. 772 qsort(retval, nActiveThreads, sizeof(*retval), 773 __kmp_affinity_cmp_Address_labels); 774 775 // Check to see if the machine topology is uniform 776 int nPUs = nPackages * __kmp_nThreadsPerCore; 777 if (__kmp_numa_detected) { 778 if (__kmp_tile_depth) { // NUMA + tiles 779 nPUs *= (nNodePerPkg * nTilePerNode * nCorePerTile); 780 } else { // NUMA, no tiles 781 nPUs *= (nNodePerPkg * nCorePerNode); 782 } 783 } else { 784 if (__kmp_tile_depth) { // no NUMA, tiles 785 nPUs *= (nTilePerPkg * nCorePerTile); 786 } else { // no NUMA, no tiles 787 nPUs *= nCoresPerPkg; 788 } 789 } 790 unsigned uniform = (nPUs == nActiveThreads); 791 792 // Print the machine topology summary. 793 if (__kmp_affinity_verbose) { 794 char mask[KMP_AFFIN_MASK_PRINT_LEN]; 795 __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 796 if (__kmp_affinity_respect_mask) { 797 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask); 798 } else { 799 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask); 800 } 801 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 802 if (uniform) { 803 KMP_INFORM(Uniform, "KMP_AFFINITY"); 804 } else { 805 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 806 } 807 if (__kmp_numa_detected) { 808 if (__kmp_tile_depth) { // NUMA + tiles 809 KMP_INFORM(TopologyExtraNoTi, "KMP_AFFINITY", nPackages, nNodePerPkg, 810 nTilePerNode, nCorePerTile, __kmp_nThreadsPerCore, 811 __kmp_ncores); 812 } else { // NUMA, no tiles 813 KMP_INFORM(TopologyExtraNode, "KMP_AFFINITY", nPackages, nNodePerPkg, 814 nCorePerNode, __kmp_nThreadsPerCore, __kmp_ncores); 815 nPUs *= (nNodePerPkg * nCorePerNode); 816 } 817 } else { 818 if (__kmp_tile_depth) { // no NUMA, tiles 819 KMP_INFORM(TopologyExtraTile, "KMP_AFFINITY", nPackages, nTilePerPkg, 820 nCorePerTile, __kmp_nThreadsPerCore, __kmp_ncores); 821 } else { // no NUMA, no tiles 822 kmp_str_buf_t buf; 823 __kmp_str_buf_init(&buf); 824 __kmp_str_buf_print(&buf, "%d", nPackages); 825 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg, 826 __kmp_nThreadsPerCore, __kmp_ncores); 827 __kmp_str_buf_free(&buf); 828 } 829 } 830 } 831 832 if (__kmp_affinity_type == affinity_none) { 833 __kmp_free(retval); 834 KMP_CPU_FREE(oldMask); 835 return 0; 836 } 837 838 int depth_full = depth; // number of levels before compressing 839 // Find any levels with radix 1, and remove them from the map 840 // (except for the package level). 841 depth = __kmp_affinity_remove_radix_one_levels(retval, nActiveThreads, depth, 842 levels); 843 KMP_DEBUG_ASSERT(__kmp_affinity_gran != affinity_gran_default); 844 if (__kmp_affinity_gran_levels < 0) { 845 // Set the granularity level based on what levels are modeled 846 // in the machine topology map. 847 __kmp_affinity_gran_levels = 0; // lowest level (e.g. fine) 848 if (__kmp_affinity_gran > affinity_gran_thread) { 849 for (int i = 1; i <= depth_full; ++i) { 850 if (__kmp_affinity_gran <= i) // only count deeper levels 851 break; 852 if (levels[depth_full - i] > 0) 853 __kmp_affinity_gran_levels++; 854 } 855 } 856 if (__kmp_affinity_gran > affinity_gran_package) 857 __kmp_affinity_gran_levels++; // e.g. granularity = group 858 } 859 860 if (__kmp_affinity_verbose) 861 __kmp_affinity_print_hwloc_tp(retval, nActiveThreads, depth, levels); 862 863 KMP_CPU_FREE(oldMask); 864 *address2os = retval; 865 return depth; 866 } 867 #endif // KMP_USE_HWLOC 868 869 // If we don't know how to retrieve the machine's processor topology, or 870 // encounter an error in doing so, this routine is called to form a "flat" 871 // mapping of os thread id's <-> processor id's. 872 static int __kmp_affinity_create_flat_map(AddrUnsPair **address2os, 873 kmp_i18n_id_t *const msg_id) { 874 *address2os = NULL; 875 *msg_id = kmp_i18n_null; 876 877 // Even if __kmp_affinity_type == affinity_none, this routine might still 878 // called to set __kmp_ncores, as well as 879 // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 880 if (!KMP_AFFINITY_CAPABLE()) { 881 KMP_ASSERT(__kmp_affinity_type == affinity_none); 882 __kmp_ncores = nPackages = __kmp_xproc; 883 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 884 if (__kmp_affinity_verbose) { 885 KMP_INFORM(AffFlatTopology, "KMP_AFFINITY"); 886 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 887 KMP_INFORM(Uniform, "KMP_AFFINITY"); 888 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 889 __kmp_nThreadsPerCore, __kmp_ncores); 890 } 891 return 0; 892 } 893 894 // When affinity is off, this routine will still be called to set 895 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 896 // Make sure all these vars are set correctly, and return now if affinity is 897 // not enabled. 898 __kmp_ncores = nPackages = __kmp_avail_proc; 899 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 900 if (__kmp_affinity_verbose) { 901 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 902 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 903 __kmp_affin_fullMask); 904 905 KMP_INFORM(AffCapableUseFlat, "KMP_AFFINITY"); 906 if (__kmp_affinity_respect_mask) { 907 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 908 } else { 909 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 910 } 911 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 912 KMP_INFORM(Uniform, "KMP_AFFINITY"); 913 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 914 __kmp_nThreadsPerCore, __kmp_ncores); 915 } 916 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 917 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 918 if (__kmp_affinity_type == affinity_none) { 919 int avail_ct = 0; 920 int i; 921 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 922 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) 923 continue; 924 __kmp_pu_os_idx[avail_ct++] = i; // suppose indices are flat 925 } 926 return 0; 927 } 928 929 // Construct the data structure to be returned. 930 *address2os = 931 (AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc); 932 int avail_ct = 0; 933 int i; 934 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 935 // Skip this proc if it is not included in the machine model. 936 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 937 continue; 938 } 939 __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat 940 Address addr(1); 941 addr.labels[0] = i; 942 (*address2os)[avail_ct++] = AddrUnsPair(addr, i); 943 } 944 if (__kmp_affinity_verbose) { 945 KMP_INFORM(OSProcToPackage, "KMP_AFFINITY"); 946 } 947 948 if (__kmp_affinity_gran_levels < 0) { 949 // Only the package level is modeled in the machine topology map, 950 // so the #levels of granularity is either 0 or 1. 951 if (__kmp_affinity_gran > affinity_gran_package) { 952 __kmp_affinity_gran_levels = 1; 953 } else { 954 __kmp_affinity_gran_levels = 0; 955 } 956 } 957 return 1; 958 } 959 960 #if KMP_GROUP_AFFINITY 961 962 // If multiple Windows* OS processor groups exist, we can create a 2-level 963 // topology map with the groups at level 0 and the individual procs at level 1. 964 // This facilitates letting the threads float among all procs in a group, 965 // if granularity=group (the default when there are multiple groups). 966 static int __kmp_affinity_create_proc_group_map(AddrUnsPair **address2os, 967 kmp_i18n_id_t *const msg_id) { 968 *address2os = NULL; 969 *msg_id = kmp_i18n_null; 970 971 // If we aren't affinity capable, then return now. 972 // The flat mapping will be used. 973 if (!KMP_AFFINITY_CAPABLE()) { 974 // FIXME set *msg_id 975 return -1; 976 } 977 978 // Construct the data structure to be returned. 979 *address2os = 980 (AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc); 981 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 982 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 983 int avail_ct = 0; 984 int i; 985 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 986 // Skip this proc if it is not included in the machine model. 987 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 988 continue; 989 } 990 __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat 991 Address addr(2); 992 addr.labels[0] = i / (CHAR_BIT * sizeof(DWORD_PTR)); 993 addr.labels[1] = i % (CHAR_BIT * sizeof(DWORD_PTR)); 994 (*address2os)[avail_ct++] = AddrUnsPair(addr, i); 995 996 if (__kmp_affinity_verbose) { 997 KMP_INFORM(AffOSProcToGroup, "KMP_AFFINITY", i, addr.labels[0], 998 addr.labels[1]); 999 } 1000 } 1001 1002 if (__kmp_affinity_gran_levels < 0) { 1003 if (__kmp_affinity_gran == affinity_gran_group) { 1004 __kmp_affinity_gran_levels = 1; 1005 } else if ((__kmp_affinity_gran == affinity_gran_fine) || 1006 (__kmp_affinity_gran == affinity_gran_thread)) { 1007 __kmp_affinity_gran_levels = 0; 1008 } else { 1009 const char *gran_str = NULL; 1010 if (__kmp_affinity_gran == affinity_gran_core) { 1011 gran_str = "core"; 1012 } else if (__kmp_affinity_gran == affinity_gran_package) { 1013 gran_str = "package"; 1014 } else if (__kmp_affinity_gran == affinity_gran_node) { 1015 gran_str = "node"; 1016 } else { 1017 KMP_ASSERT(0); 1018 } 1019 1020 // Warning: can't use affinity granularity \"gran\" with group topology 1021 // method, using "thread" 1022 __kmp_affinity_gran_levels = 0; 1023 } 1024 } 1025 return 2; 1026 } 1027 1028 #endif /* KMP_GROUP_AFFINITY */ 1029 1030 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1031 1032 static int __kmp_cpuid_mask_width(int count) { 1033 int r = 0; 1034 1035 while ((1 << r) < count) 1036 ++r; 1037 return r; 1038 } 1039 1040 class apicThreadInfo { 1041 public: 1042 unsigned osId; // param to __kmp_affinity_bind_thread 1043 unsigned apicId; // from cpuid after binding 1044 unsigned maxCoresPerPkg; // "" 1045 unsigned maxThreadsPerPkg; // "" 1046 unsigned pkgId; // inferred from above values 1047 unsigned coreId; // "" 1048 unsigned threadId; // "" 1049 }; 1050 1051 static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a, 1052 const void *b) { 1053 const apicThreadInfo *aa = (const apicThreadInfo *)a; 1054 const apicThreadInfo *bb = (const apicThreadInfo *)b; 1055 if (aa->pkgId < bb->pkgId) 1056 return -1; 1057 if (aa->pkgId > bb->pkgId) 1058 return 1; 1059 if (aa->coreId < bb->coreId) 1060 return -1; 1061 if (aa->coreId > bb->coreId) 1062 return 1; 1063 if (aa->threadId < bb->threadId) 1064 return -1; 1065 if (aa->threadId > bb->threadId) 1066 return 1; 1067 return 0; 1068 } 1069 1070 // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use 1071 // an algorithm which cycles through the available os threads, setting 1072 // the current thread's affinity mask to that thread, and then retrieves 1073 // the Apic Id for each thread context using the cpuid instruction. 1074 static int __kmp_affinity_create_apicid_map(AddrUnsPair **address2os, 1075 kmp_i18n_id_t *const msg_id) { 1076 kmp_cpuid buf; 1077 *address2os = NULL; 1078 *msg_id = kmp_i18n_null; 1079 1080 // Check if cpuid leaf 4 is supported. 1081 __kmp_x86_cpuid(0, 0, &buf); 1082 if (buf.eax < 4) { 1083 *msg_id = kmp_i18n_str_NoLeaf4Support; 1084 return -1; 1085 } 1086 1087 // The algorithm used starts by setting the affinity to each available thread 1088 // and retrieving info from the cpuid instruction, so if we are not capable of 1089 // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we 1090 // need to do something else - use the defaults that we calculated from 1091 // issuing cpuid without binding to each proc. 1092 if (!KMP_AFFINITY_CAPABLE()) { 1093 // Hack to try and infer the machine topology using only the data 1094 // available from cpuid on the current thread, and __kmp_xproc. 1095 KMP_ASSERT(__kmp_affinity_type == affinity_none); 1096 1097 // Get an upper bound on the number of threads per package using cpuid(1). 1098 // On some OS/chps combinations where HT is supported by the chip but is 1099 // disabled, this value will be 2 on a single core chip. Usually, it will be 1100 // 2 if HT is enabled and 1 if HT is disabled. 1101 __kmp_x86_cpuid(1, 0, &buf); 1102 int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; 1103 if (maxThreadsPerPkg == 0) { 1104 maxThreadsPerPkg = 1; 1105 } 1106 1107 // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded 1108 // value. 1109 // 1110 // The author of cpu_count.cpp treated this only an upper bound on the 1111 // number of cores, but I haven't seen any cases where it was greater than 1112 // the actual number of cores, so we will treat it as exact in this block of 1113 // code. 1114 // 1115 // First, we need to check if cpuid(4) is supported on this chip. To see if 1116 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or 1117 // greater. 1118 __kmp_x86_cpuid(0, 0, &buf); 1119 if (buf.eax >= 4) { 1120 __kmp_x86_cpuid(4, 0, &buf); 1121 nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; 1122 } else { 1123 nCoresPerPkg = 1; 1124 } 1125 1126 // There is no way to reliably tell if HT is enabled without issuing the 1127 // cpuid instruction from every thread, can correlating the cpuid info, so 1128 // if the machine is not affinity capable, we assume that HT is off. We have 1129 // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine 1130 // does not support HT. 1131 // 1132 // - Older OSes are usually found on machines with older chips, which do not 1133 // support HT. 1134 // - The performance penalty for mistakenly identifying a machine as HT when 1135 // it isn't (which results in blocktime being incorrectly set to 0) is 1136 // greater than the penalty when for mistakenly identifying a machine as 1137 // being 1 thread/core when it is really HT enabled (which results in 1138 // blocktime being incorrectly set to a positive value). 1139 __kmp_ncores = __kmp_xproc; 1140 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 1141 __kmp_nThreadsPerCore = 1; 1142 if (__kmp_affinity_verbose) { 1143 KMP_INFORM(AffNotCapableUseLocCpuid, "KMP_AFFINITY"); 1144 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1145 if (__kmp_affinity_uniform_topology()) { 1146 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1147 } else { 1148 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 1149 } 1150 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1151 __kmp_nThreadsPerCore, __kmp_ncores); 1152 } 1153 return 0; 1154 } 1155 1156 // From here on, we can assume that it is safe to call 1157 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if 1158 // __kmp_affinity_type = affinity_none. 1159 1160 // Save the affinity mask for the current thread. 1161 kmp_affin_mask_t *oldMask; 1162 KMP_CPU_ALLOC(oldMask); 1163 KMP_ASSERT(oldMask != NULL); 1164 __kmp_get_system_affinity(oldMask, TRUE); 1165 1166 // Run through each of the available contexts, binding the current thread 1167 // to it, and obtaining the pertinent information using the cpuid instr. 1168 // 1169 // The relevant information is: 1170 // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context 1171 // has a uniqie Apic Id, which is of the form pkg# : core# : thread#. 1172 // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value 1173 // of this field determines the width of the core# + thread# fields in the 1174 // Apic Id. It is also an upper bound on the number of threads per 1175 // package, but it has been verified that situations happen were it is not 1176 // exact. In particular, on certain OS/chip combinations where Intel(R) 1177 // Hyper-Threading Technology is supported by the chip but has been 1178 // disabled, the value of this field will be 2 (for a single core chip). 1179 // On other OS/chip combinations supporting Intel(R) Hyper-Threading 1180 // Technology, the value of this field will be 1 when Intel(R) 1181 // Hyper-Threading Technology is disabled and 2 when it is enabled. 1182 // - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value 1183 // of this field (+1) determines the width of the core# field in the Apic 1184 // Id. The comments in "cpucount.cpp" say that this value is an upper 1185 // bound, but the IA-32 architecture manual says that it is exactly the 1186 // number of cores per package, and I haven't seen any case where it 1187 // wasn't. 1188 // 1189 // From this information, deduce the package Id, core Id, and thread Id, 1190 // and set the corresponding fields in the apicThreadInfo struct. 1191 unsigned i; 1192 apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate( 1193 __kmp_avail_proc * sizeof(apicThreadInfo)); 1194 unsigned nApics = 0; 1195 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 1196 // Skip this proc if it is not included in the machine model. 1197 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 1198 continue; 1199 } 1200 KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc); 1201 1202 __kmp_affinity_dispatch->bind_thread(i); 1203 threadInfo[nApics].osId = i; 1204 1205 // The apic id and max threads per pkg come from cpuid(1). 1206 __kmp_x86_cpuid(1, 0, &buf); 1207 if (((buf.edx >> 9) & 1) == 0) { 1208 __kmp_set_system_affinity(oldMask, TRUE); 1209 __kmp_free(threadInfo); 1210 KMP_CPU_FREE(oldMask); 1211 *msg_id = kmp_i18n_str_ApicNotPresent; 1212 return -1; 1213 } 1214 threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff; 1215 threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; 1216 if (threadInfo[nApics].maxThreadsPerPkg == 0) { 1217 threadInfo[nApics].maxThreadsPerPkg = 1; 1218 } 1219 1220 // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded 1221 // value. 1222 // 1223 // First, we need to check if cpuid(4) is supported on this chip. To see if 1224 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n 1225 // or greater. 1226 __kmp_x86_cpuid(0, 0, &buf); 1227 if (buf.eax >= 4) { 1228 __kmp_x86_cpuid(4, 0, &buf); 1229 threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; 1230 } else { 1231 threadInfo[nApics].maxCoresPerPkg = 1; 1232 } 1233 1234 // Infer the pkgId / coreId / threadId using only the info obtained locally. 1235 int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg); 1236 threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT; 1237 1238 int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg); 1239 int widthT = widthCT - widthC; 1240 if (widthT < 0) { 1241 // I've never seen this one happen, but I suppose it could, if the cpuid 1242 // instruction on a chip was really screwed up. Make sure to restore the 1243 // affinity mask before the tail call. 1244 __kmp_set_system_affinity(oldMask, TRUE); 1245 __kmp_free(threadInfo); 1246 KMP_CPU_FREE(oldMask); 1247 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1248 return -1; 1249 } 1250 1251 int maskC = (1 << widthC) - 1; 1252 threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC; 1253 1254 int maskT = (1 << widthT) - 1; 1255 threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT; 1256 1257 nApics++; 1258 } 1259 1260 // We've collected all the info we need. 1261 // Restore the old affinity mask for this thread. 1262 __kmp_set_system_affinity(oldMask, TRUE); 1263 1264 // If there's only one thread context to bind to, form an Address object 1265 // with depth 1 and return immediately (or, if affinity is off, set 1266 // address2os to NULL and return). 1267 // 1268 // If it is configured to omit the package level when there is only a single 1269 // package, the logic at the end of this routine won't work if there is only 1270 // a single thread - it would try to form an Address object with depth 0. 1271 KMP_ASSERT(nApics > 0); 1272 if (nApics == 1) { 1273 __kmp_ncores = nPackages = 1; 1274 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 1275 if (__kmp_affinity_verbose) { 1276 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 1277 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 1278 1279 KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY"); 1280 if (__kmp_affinity_respect_mask) { 1281 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 1282 } else { 1283 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 1284 } 1285 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1286 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1287 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1288 __kmp_nThreadsPerCore, __kmp_ncores); 1289 } 1290 1291 if (__kmp_affinity_type == affinity_none) { 1292 __kmp_free(threadInfo); 1293 KMP_CPU_FREE(oldMask); 1294 return 0; 1295 } 1296 1297 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair)); 1298 Address addr(1); 1299 addr.labels[0] = threadInfo[0].pkgId; 1300 (*address2os)[0] = AddrUnsPair(addr, threadInfo[0].osId); 1301 1302 if (__kmp_affinity_gran_levels < 0) { 1303 __kmp_affinity_gran_levels = 0; 1304 } 1305 1306 if (__kmp_affinity_verbose) { 1307 __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1); 1308 } 1309 1310 __kmp_free(threadInfo); 1311 KMP_CPU_FREE(oldMask); 1312 return 1; 1313 } 1314 1315 // Sort the threadInfo table by physical Id. 1316 qsort(threadInfo, nApics, sizeof(*threadInfo), 1317 __kmp_affinity_cmp_apicThreadInfo_phys_id); 1318 1319 // The table is now sorted by pkgId / coreId / threadId, but we really don't 1320 // know the radix of any of the fields. pkgId's may be sparsely assigned among 1321 // the chips on a system. Although coreId's are usually assigned 1322 // [0 .. coresPerPkg-1] and threadId's are usually assigned 1323 // [0..threadsPerCore-1], we don't want to make any such assumptions. 1324 // 1325 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the 1326 // total # packages) are at this point - we want to determine that now. We 1327 // only have an upper bound on the first two figures. 1328 // 1329 // We also perform a consistency check at this point: the values returned by 1330 // the cpuid instruction for any thread bound to a given package had better 1331 // return the same info for maxThreadsPerPkg and maxCoresPerPkg. 1332 nPackages = 1; 1333 nCoresPerPkg = 1; 1334 __kmp_nThreadsPerCore = 1; 1335 unsigned nCores = 1; 1336 1337 unsigned pkgCt = 1; // to determine radii 1338 unsigned lastPkgId = threadInfo[0].pkgId; 1339 unsigned coreCt = 1; 1340 unsigned lastCoreId = threadInfo[0].coreId; 1341 unsigned threadCt = 1; 1342 unsigned lastThreadId = threadInfo[0].threadId; 1343 1344 // intra-pkg consist checks 1345 unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg; 1346 unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg; 1347 1348 for (i = 1; i < nApics; i++) { 1349 if (threadInfo[i].pkgId != lastPkgId) { 1350 nCores++; 1351 pkgCt++; 1352 lastPkgId = threadInfo[i].pkgId; 1353 if ((int)coreCt > nCoresPerPkg) 1354 nCoresPerPkg = coreCt; 1355 coreCt = 1; 1356 lastCoreId = threadInfo[i].coreId; 1357 if ((int)threadCt > __kmp_nThreadsPerCore) 1358 __kmp_nThreadsPerCore = threadCt; 1359 threadCt = 1; 1360 lastThreadId = threadInfo[i].threadId; 1361 1362 // This is a different package, so go on to the next iteration without 1363 // doing any consistency checks. Reset the consistency check vars, though. 1364 prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg; 1365 prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg; 1366 continue; 1367 } 1368 1369 if (threadInfo[i].coreId != lastCoreId) { 1370 nCores++; 1371 coreCt++; 1372 lastCoreId = threadInfo[i].coreId; 1373 if ((int)threadCt > __kmp_nThreadsPerCore) 1374 __kmp_nThreadsPerCore = threadCt; 1375 threadCt = 1; 1376 lastThreadId = threadInfo[i].threadId; 1377 } else if (threadInfo[i].threadId != lastThreadId) { 1378 threadCt++; 1379 lastThreadId = threadInfo[i].threadId; 1380 } else { 1381 __kmp_free(threadInfo); 1382 KMP_CPU_FREE(oldMask); 1383 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; 1384 return -1; 1385 } 1386 1387 // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg 1388 // fields agree between all the threads bounds to a given package. 1389 if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) || 1390 (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) { 1391 __kmp_free(threadInfo); 1392 KMP_CPU_FREE(oldMask); 1393 *msg_id = kmp_i18n_str_InconsistentCpuidInfo; 1394 return -1; 1395 } 1396 } 1397 nPackages = pkgCt; 1398 if ((int)coreCt > nCoresPerPkg) 1399 nCoresPerPkg = coreCt; 1400 if ((int)threadCt > __kmp_nThreadsPerCore) 1401 __kmp_nThreadsPerCore = threadCt; 1402 1403 // When affinity is off, this routine will still be called to set 1404 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 1405 // Make sure all these vars are set correctly, and return now if affinity is 1406 // not enabled. 1407 __kmp_ncores = nCores; 1408 if (__kmp_affinity_verbose) { 1409 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 1410 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 1411 1412 KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY"); 1413 if (__kmp_affinity_respect_mask) { 1414 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 1415 } else { 1416 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 1417 } 1418 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1419 if (__kmp_affinity_uniform_topology()) { 1420 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1421 } else { 1422 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 1423 } 1424 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1425 __kmp_nThreadsPerCore, __kmp_ncores); 1426 } 1427 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 1428 KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc); 1429 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 1430 for (i = 0; i < nApics; ++i) { 1431 __kmp_pu_os_idx[i] = threadInfo[i].osId; 1432 } 1433 if (__kmp_affinity_type == affinity_none) { 1434 __kmp_free(threadInfo); 1435 KMP_CPU_FREE(oldMask); 1436 return 0; 1437 } 1438 1439 // Now that we've determined the number of packages, the number of cores per 1440 // package, and the number of threads per core, we can construct the data 1441 // structure that is to be returned. 1442 int pkgLevel = 0; 1443 int coreLevel = (nCoresPerPkg <= 1) ? -1 : 1; 1444 int threadLevel = 1445 (__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1); 1446 unsigned depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0); 1447 1448 KMP_ASSERT(depth > 0); 1449 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * nApics); 1450 1451 for (i = 0; i < nApics; ++i) { 1452 Address addr(depth); 1453 unsigned os = threadInfo[i].osId; 1454 int d = 0; 1455 1456 if (pkgLevel >= 0) { 1457 addr.labels[d++] = threadInfo[i].pkgId; 1458 } 1459 if (coreLevel >= 0) { 1460 addr.labels[d++] = threadInfo[i].coreId; 1461 } 1462 if (threadLevel >= 0) { 1463 addr.labels[d++] = threadInfo[i].threadId; 1464 } 1465 (*address2os)[i] = AddrUnsPair(addr, os); 1466 } 1467 1468 if (__kmp_affinity_gran_levels < 0) { 1469 // Set the granularity level based on what levels are modeled in the machine 1470 // topology map. 1471 __kmp_affinity_gran_levels = 0; 1472 if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) { 1473 __kmp_affinity_gran_levels++; 1474 } 1475 if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) { 1476 __kmp_affinity_gran_levels++; 1477 } 1478 if ((pkgLevel >= 0) && (__kmp_affinity_gran > affinity_gran_package)) { 1479 __kmp_affinity_gran_levels++; 1480 } 1481 } 1482 1483 if (__kmp_affinity_verbose) { 1484 __kmp_affinity_print_topology(*address2os, nApics, depth, pkgLevel, 1485 coreLevel, threadLevel); 1486 } 1487 1488 __kmp_free(threadInfo); 1489 KMP_CPU_FREE(oldMask); 1490 return depth; 1491 } 1492 1493 // Intel(R) microarchitecture code name Nehalem, Dunnington and later 1494 // architectures support a newer interface for specifying the x2APIC Ids, 1495 // based on cpuid leaf 11. 1496 static int __kmp_affinity_create_x2apicid_map(AddrUnsPair **address2os, 1497 kmp_i18n_id_t *const msg_id) { 1498 kmp_cpuid buf; 1499 *address2os = NULL; 1500 *msg_id = kmp_i18n_null; 1501 1502 // Check to see if cpuid leaf 11 is supported. 1503 __kmp_x86_cpuid(0, 0, &buf); 1504 if (buf.eax < 11) { 1505 *msg_id = kmp_i18n_str_NoLeaf11Support; 1506 return -1; 1507 } 1508 __kmp_x86_cpuid(11, 0, &buf); 1509 if (buf.ebx == 0) { 1510 *msg_id = kmp_i18n_str_NoLeaf11Support; 1511 return -1; 1512 } 1513 1514 // Find the number of levels in the machine topology. While we're at it, get 1515 // the default values for __kmp_nThreadsPerCore & nCoresPerPkg. We will try to 1516 // get more accurate values later by explicitly counting them, but get 1517 // reasonable defaults now, in case we return early. 1518 int level; 1519 int threadLevel = -1; 1520 int coreLevel = -1; 1521 int pkgLevel = -1; 1522 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; 1523 1524 for (level = 0;; level++) { 1525 if (level > 31) { 1526 // FIXME: Hack for DPD200163180 1527 // 1528 // If level is big then something went wrong -> exiting 1529 // 1530 // There could actually be 32 valid levels in the machine topology, but so 1531 // far, the only machine we have seen which does not exit this loop before 1532 // iteration 32 has fubar x2APIC settings. 1533 // 1534 // For now, just reject this case based upon loop trip count. 1535 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1536 return -1; 1537 } 1538 __kmp_x86_cpuid(11, level, &buf); 1539 if (buf.ebx == 0) { 1540 if (pkgLevel < 0) { 1541 // Will infer nPackages from __kmp_xproc 1542 pkgLevel = level; 1543 level++; 1544 } 1545 break; 1546 } 1547 int kind = (buf.ecx >> 8) & 0xff; 1548 if (kind == 1) { 1549 // SMT level 1550 threadLevel = level; 1551 coreLevel = -1; 1552 pkgLevel = -1; 1553 __kmp_nThreadsPerCore = buf.ebx & 0xffff; 1554 if (__kmp_nThreadsPerCore == 0) { 1555 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1556 return -1; 1557 } 1558 } else if (kind == 2) { 1559 // core level 1560 coreLevel = level; 1561 pkgLevel = -1; 1562 nCoresPerPkg = buf.ebx & 0xffff; 1563 if (nCoresPerPkg == 0) { 1564 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1565 return -1; 1566 } 1567 } else { 1568 if (level <= 0) { 1569 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1570 return -1; 1571 } 1572 if (pkgLevel >= 0) { 1573 continue; 1574 } 1575 pkgLevel = level; 1576 nPackages = buf.ebx & 0xffff; 1577 if (nPackages == 0) { 1578 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1579 return -1; 1580 } 1581 } 1582 } 1583 int depth = level; 1584 1585 // In the above loop, "level" was counted from the finest level (usually 1586 // thread) to the coarsest. The caller expects that we will place the labels 1587 // in (*address2os)[].first.labels[] in the inverse order, so we need to 1588 // invert the vars saying which level means what. 1589 if (threadLevel >= 0) { 1590 threadLevel = depth - threadLevel - 1; 1591 } 1592 if (coreLevel >= 0) { 1593 coreLevel = depth - coreLevel - 1; 1594 } 1595 KMP_DEBUG_ASSERT(pkgLevel >= 0); 1596 pkgLevel = depth - pkgLevel - 1; 1597 1598 // The algorithm used starts by setting the affinity to each available thread 1599 // and retrieving info from the cpuid instruction, so if we are not capable of 1600 // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we 1601 // need to do something else - use the defaults that we calculated from 1602 // issuing cpuid without binding to each proc. 1603 if (!KMP_AFFINITY_CAPABLE()) { 1604 // Hack to try and infer the machine topology using only the data 1605 // available from cpuid on the current thread, and __kmp_xproc. 1606 KMP_ASSERT(__kmp_affinity_type == affinity_none); 1607 1608 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; 1609 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 1610 if (__kmp_affinity_verbose) { 1611 KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY"); 1612 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1613 if (__kmp_affinity_uniform_topology()) { 1614 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1615 } else { 1616 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 1617 } 1618 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1619 __kmp_nThreadsPerCore, __kmp_ncores); 1620 } 1621 return 0; 1622 } 1623 1624 // From here on, we can assume that it is safe to call 1625 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if 1626 // __kmp_affinity_type = affinity_none. 1627 1628 // Save the affinity mask for the current thread. 1629 kmp_affin_mask_t *oldMask; 1630 KMP_CPU_ALLOC(oldMask); 1631 __kmp_get_system_affinity(oldMask, TRUE); 1632 1633 // Allocate the data structure to be returned. 1634 AddrUnsPair *retval = 1635 (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc); 1636 1637 // Run through each of the available contexts, binding the current thread 1638 // to it, and obtaining the pertinent information using the cpuid instr. 1639 unsigned int proc; 1640 int nApics = 0; 1641 KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) { 1642 // Skip this proc if it is not included in the machine model. 1643 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 1644 continue; 1645 } 1646 KMP_DEBUG_ASSERT(nApics < __kmp_avail_proc); 1647 1648 __kmp_affinity_dispatch->bind_thread(proc); 1649 1650 // Extract labels for each level in the machine topology map from Apic ID. 1651 Address addr(depth); 1652 int prev_shift = 0; 1653 1654 for (level = 0; level < depth; level++) { 1655 __kmp_x86_cpuid(11, level, &buf); 1656 unsigned apicId = buf.edx; 1657 if (buf.ebx == 0) { 1658 if (level != depth - 1) { 1659 KMP_CPU_FREE(oldMask); 1660 *msg_id = kmp_i18n_str_InconsistentCpuidInfo; 1661 return -1; 1662 } 1663 addr.labels[depth - level - 1] = apicId >> prev_shift; 1664 level++; 1665 break; 1666 } 1667 int shift = buf.eax & 0x1f; 1668 int mask = (1 << shift) - 1; 1669 addr.labels[depth - level - 1] = (apicId & mask) >> prev_shift; 1670 prev_shift = shift; 1671 } 1672 if (level != depth) { 1673 KMP_CPU_FREE(oldMask); 1674 *msg_id = kmp_i18n_str_InconsistentCpuidInfo; 1675 return -1; 1676 } 1677 1678 retval[nApics] = AddrUnsPair(addr, proc); 1679 nApics++; 1680 } 1681 1682 // We've collected all the info we need. 1683 // Restore the old affinity mask for this thread. 1684 __kmp_set_system_affinity(oldMask, TRUE); 1685 1686 // If there's only one thread context to bind to, return now. 1687 KMP_ASSERT(nApics > 0); 1688 if (nApics == 1) { 1689 __kmp_ncores = nPackages = 1; 1690 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 1691 if (__kmp_affinity_verbose) { 1692 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 1693 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 1694 1695 KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY"); 1696 if (__kmp_affinity_respect_mask) { 1697 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 1698 } else { 1699 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 1700 } 1701 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1702 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1703 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1704 __kmp_nThreadsPerCore, __kmp_ncores); 1705 } 1706 1707 if (__kmp_affinity_type == affinity_none) { 1708 __kmp_free(retval); 1709 KMP_CPU_FREE(oldMask); 1710 return 0; 1711 } 1712 1713 // Form an Address object which only includes the package level. 1714 Address addr(1); 1715 addr.labels[0] = retval[0].first.labels[pkgLevel]; 1716 retval[0].first = addr; 1717 1718 if (__kmp_affinity_gran_levels < 0) { 1719 __kmp_affinity_gran_levels = 0; 1720 } 1721 1722 if (__kmp_affinity_verbose) { 1723 __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1); 1724 } 1725 1726 *address2os = retval; 1727 KMP_CPU_FREE(oldMask); 1728 return 1; 1729 } 1730 1731 // Sort the table by physical Id. 1732 qsort(retval, nApics, sizeof(*retval), __kmp_affinity_cmp_Address_labels); 1733 1734 // Find the radix at each of the levels. 1735 unsigned *totals = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 1736 unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 1737 unsigned *maxCt = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 1738 unsigned *last = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 1739 for (level = 0; level < depth; level++) { 1740 totals[level] = 1; 1741 maxCt[level] = 1; 1742 counts[level] = 1; 1743 last[level] = retval[0].first.labels[level]; 1744 } 1745 1746 // From here on, the iteration variable "level" runs from the finest level to 1747 // the coarsest, i.e. we iterate forward through 1748 // (*address2os)[].first.labels[] - in the previous loops, we iterated 1749 // backwards. 1750 for (proc = 1; (int)proc < nApics; proc++) { 1751 int level; 1752 for (level = 0; level < depth; level++) { 1753 if (retval[proc].first.labels[level] != last[level]) { 1754 int j; 1755 for (j = level + 1; j < depth; j++) { 1756 totals[j]++; 1757 counts[j] = 1; 1758 // The line below causes printing incorrect topology information in 1759 // case the max value for some level (maxCt[level]) is encountered 1760 // earlier than some less value while going through the array. For 1761 // example, let pkg0 has 4 cores and pkg1 has 2 cores. Then 1762 // maxCt[1] == 2 1763 // whereas it must be 4. 1764 // TODO!!! Check if it can be commented safely 1765 // maxCt[j] = 1; 1766 last[j] = retval[proc].first.labels[j]; 1767 } 1768 totals[level]++; 1769 counts[level]++; 1770 if (counts[level] > maxCt[level]) { 1771 maxCt[level] = counts[level]; 1772 } 1773 last[level] = retval[proc].first.labels[level]; 1774 break; 1775 } else if (level == depth - 1) { 1776 __kmp_free(last); 1777 __kmp_free(maxCt); 1778 __kmp_free(counts); 1779 __kmp_free(totals); 1780 __kmp_free(retval); 1781 KMP_CPU_FREE(oldMask); 1782 *msg_id = kmp_i18n_str_x2ApicIDsNotUnique; 1783 return -1; 1784 } 1785 } 1786 } 1787 1788 // When affinity is off, this routine will still be called to set 1789 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 1790 // Make sure all these vars are set correctly, and return if affinity is not 1791 // enabled. 1792 if (threadLevel >= 0) { 1793 __kmp_nThreadsPerCore = maxCt[threadLevel]; 1794 } else { 1795 __kmp_nThreadsPerCore = 1; 1796 } 1797 nPackages = totals[pkgLevel]; 1798 1799 if (coreLevel >= 0) { 1800 __kmp_ncores = totals[coreLevel]; 1801 nCoresPerPkg = maxCt[coreLevel]; 1802 } else { 1803 __kmp_ncores = nPackages; 1804 nCoresPerPkg = 1; 1805 } 1806 1807 // Check to see if the machine topology is uniform 1808 unsigned prod = maxCt[0]; 1809 for (level = 1; level < depth; level++) { 1810 prod *= maxCt[level]; 1811 } 1812 bool uniform = (prod == totals[level - 1]); 1813 1814 // Print the machine topology summary. 1815 if (__kmp_affinity_verbose) { 1816 char mask[KMP_AFFIN_MASK_PRINT_LEN]; 1817 __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 1818 1819 KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY"); 1820 if (__kmp_affinity_respect_mask) { 1821 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask); 1822 } else { 1823 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask); 1824 } 1825 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1826 if (uniform) { 1827 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1828 } else { 1829 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 1830 } 1831 1832 kmp_str_buf_t buf; 1833 __kmp_str_buf_init(&buf); 1834 1835 __kmp_str_buf_print(&buf, "%d", totals[0]); 1836 for (level = 1; level <= pkgLevel; level++) { 1837 __kmp_str_buf_print(&buf, " x %d", maxCt[level]); 1838 } 1839 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg, 1840 __kmp_nThreadsPerCore, __kmp_ncores); 1841 1842 __kmp_str_buf_free(&buf); 1843 } 1844 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 1845 KMP_DEBUG_ASSERT(nApics == __kmp_avail_proc); 1846 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 1847 for (proc = 0; (int)proc < nApics; ++proc) { 1848 __kmp_pu_os_idx[proc] = retval[proc].second; 1849 } 1850 if (__kmp_affinity_type == affinity_none) { 1851 __kmp_free(last); 1852 __kmp_free(maxCt); 1853 __kmp_free(counts); 1854 __kmp_free(totals); 1855 __kmp_free(retval); 1856 KMP_CPU_FREE(oldMask); 1857 return 0; 1858 } 1859 1860 // Find any levels with radix 1, and remove them from the map 1861 // (except for the package level). 1862 int new_depth = 0; 1863 for (level = 0; level < depth; level++) { 1864 if ((maxCt[level] == 1) && (level != pkgLevel)) { 1865 continue; 1866 } 1867 new_depth++; 1868 } 1869 1870 // If we are removing any levels, allocate a new vector to return, 1871 // and copy the relevant information to it. 1872 if (new_depth != depth) { 1873 AddrUnsPair *new_retval = 1874 (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * nApics); 1875 for (proc = 0; (int)proc < nApics; proc++) { 1876 Address addr(new_depth); 1877 new_retval[proc] = AddrUnsPair(addr, retval[proc].second); 1878 } 1879 int new_level = 0; 1880 int newPkgLevel = -1; 1881 int newCoreLevel = -1; 1882 int newThreadLevel = -1; 1883 for (level = 0; level < depth; level++) { 1884 if ((maxCt[level] == 1) && (level != pkgLevel)) { 1885 // Remove this level. Never remove the package level 1886 continue; 1887 } 1888 if (level == pkgLevel) { 1889 newPkgLevel = new_level; 1890 } 1891 if (level == coreLevel) { 1892 newCoreLevel = new_level; 1893 } 1894 if (level == threadLevel) { 1895 newThreadLevel = new_level; 1896 } 1897 for (proc = 0; (int)proc < nApics; proc++) { 1898 new_retval[proc].first.labels[new_level] = 1899 retval[proc].first.labels[level]; 1900 } 1901 new_level++; 1902 } 1903 1904 __kmp_free(retval); 1905 retval = new_retval; 1906 depth = new_depth; 1907 pkgLevel = newPkgLevel; 1908 coreLevel = newCoreLevel; 1909 threadLevel = newThreadLevel; 1910 } 1911 1912 if (__kmp_affinity_gran_levels < 0) { 1913 // Set the granularity level based on what levels are modeled 1914 // in the machine topology map. 1915 __kmp_affinity_gran_levels = 0; 1916 if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) { 1917 __kmp_affinity_gran_levels++; 1918 } 1919 if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) { 1920 __kmp_affinity_gran_levels++; 1921 } 1922 if (__kmp_affinity_gran > affinity_gran_package) { 1923 __kmp_affinity_gran_levels++; 1924 } 1925 } 1926 1927 if (__kmp_affinity_verbose) { 1928 __kmp_affinity_print_topology(retval, nApics, depth, pkgLevel, coreLevel, 1929 threadLevel); 1930 } 1931 1932 __kmp_free(last); 1933 __kmp_free(maxCt); 1934 __kmp_free(counts); 1935 __kmp_free(totals); 1936 KMP_CPU_FREE(oldMask); 1937 *address2os = retval; 1938 return depth; 1939 } 1940 1941 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 1942 1943 #define osIdIndex 0 1944 #define threadIdIndex 1 1945 #define coreIdIndex 2 1946 #define pkgIdIndex 3 1947 #define nodeIdIndex 4 1948 1949 typedef unsigned *ProcCpuInfo; 1950 static unsigned maxIndex = pkgIdIndex; 1951 1952 static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a, 1953 const void *b) { 1954 unsigned i; 1955 const unsigned *aa = *(unsigned *const *)a; 1956 const unsigned *bb = *(unsigned *const *)b; 1957 for (i = maxIndex;; i--) { 1958 if (aa[i] < bb[i]) 1959 return -1; 1960 if (aa[i] > bb[i]) 1961 return 1; 1962 if (i == osIdIndex) 1963 break; 1964 } 1965 return 0; 1966 } 1967 1968 #if KMP_USE_HIER_SCHED 1969 // Set the array sizes for the hierarchy layers 1970 static void __kmp_dispatch_set_hierarchy_values() { 1971 // Set the maximum number of L1's to number of cores 1972 // Set the maximum number of L2's to to either number of cores / 2 for 1973 // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing 1974 // Or the number of cores for Intel(R) Xeon(R) processors 1975 // Set the maximum number of NUMA nodes and L3's to number of packages 1976 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] = 1977 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; 1978 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores; 1979 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \ 1980 KMP_MIC_SUPPORTED 1981 if (__kmp_mic_type >= mic3) 1982 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2; 1983 else 1984 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 1985 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores; 1986 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages; 1987 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages; 1988 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1; 1989 // Set the number of threads per unit 1990 // Number of hardware threads per L1/L2/L3/NUMA/LOOP 1991 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1; 1992 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] = 1993 __kmp_nThreadsPerCore; 1994 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \ 1995 KMP_MIC_SUPPORTED 1996 if (__kmp_mic_type >= mic3) 1997 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = 1998 2 * __kmp_nThreadsPerCore; 1999 else 2000 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 2001 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = 2002 __kmp_nThreadsPerCore; 2003 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] = 2004 nCoresPerPkg * __kmp_nThreadsPerCore; 2005 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] = 2006 nCoresPerPkg * __kmp_nThreadsPerCore; 2007 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] = 2008 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; 2009 } 2010 2011 // Return the index into the hierarchy for this tid and layer type (L1, L2, etc) 2012 // i.e., this thread's L1 or this thread's L2, etc. 2013 int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) { 2014 int index = type + 1; 2015 int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1]; 2016 KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST); 2017 if (type == kmp_hier_layer_e::LAYER_THREAD) 2018 return tid; 2019 else if (type == kmp_hier_layer_e::LAYER_LOOP) 2020 return 0; 2021 KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0); 2022 if (tid >= num_hw_threads) 2023 tid = tid % num_hw_threads; 2024 return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index]; 2025 } 2026 2027 // Return the number of t1's per t2 2028 int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) { 2029 int i1 = t1 + 1; 2030 int i2 = t2 + 1; 2031 KMP_DEBUG_ASSERT(i1 <= i2); 2032 KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST); 2033 KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST); 2034 KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0); 2035 // (nthreads/t2) / (nthreads/t1) = t1 / t2 2036 return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1]; 2037 } 2038 #endif // KMP_USE_HIER_SCHED 2039 2040 // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the 2041 // affinity map. 2042 static int __kmp_affinity_create_cpuinfo_map(AddrUnsPair **address2os, 2043 int *line, 2044 kmp_i18n_id_t *const msg_id, 2045 FILE *f) { 2046 *address2os = NULL; 2047 *msg_id = kmp_i18n_null; 2048 2049 // Scan of the file, and count the number of "processor" (osId) fields, 2050 // and find the highest value of <n> for a node_<n> field. 2051 char buf[256]; 2052 unsigned num_records = 0; 2053 while (!feof(f)) { 2054 buf[sizeof(buf) - 1] = 1; 2055 if (!fgets(buf, sizeof(buf), f)) { 2056 // Read errors presumably because of EOF 2057 break; 2058 } 2059 2060 char s1[] = "processor"; 2061 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { 2062 num_records++; 2063 continue; 2064 } 2065 2066 // FIXME - this will match "node_<n> <garbage>" 2067 unsigned level; 2068 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { 2069 if (nodeIdIndex + level >= maxIndex) { 2070 maxIndex = nodeIdIndex + level; 2071 } 2072 continue; 2073 } 2074 } 2075 2076 // Check for empty file / no valid processor records, or too many. The number 2077 // of records can't exceed the number of valid bits in the affinity mask. 2078 if (num_records == 0) { 2079 *line = 0; 2080 *msg_id = kmp_i18n_str_NoProcRecords; 2081 return -1; 2082 } 2083 if (num_records > (unsigned)__kmp_xproc) { 2084 *line = 0; 2085 *msg_id = kmp_i18n_str_TooManyProcRecords; 2086 return -1; 2087 } 2088 2089 // Set the file pointer back to the beginning, so that we can scan the file 2090 // again, this time performing a full parse of the data. Allocate a vector of 2091 // ProcCpuInfo object, where we will place the data. Adding an extra element 2092 // at the end allows us to remove a lot of extra checks for termination 2093 // conditions. 2094 if (fseek(f, 0, SEEK_SET) != 0) { 2095 *line = 0; 2096 *msg_id = kmp_i18n_str_CantRewindCpuinfo; 2097 return -1; 2098 } 2099 2100 // Allocate the array of records to store the proc info in. The dummy 2101 // element at the end makes the logic in filling them out easier to code. 2102 unsigned **threadInfo = 2103 (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *)); 2104 unsigned i; 2105 for (i = 0; i <= num_records; i++) { 2106 threadInfo[i] = 2107 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2108 } 2109 2110 #define CLEANUP_THREAD_INFO \ 2111 for (i = 0; i <= num_records; i++) { \ 2112 __kmp_free(threadInfo[i]); \ 2113 } \ 2114 __kmp_free(threadInfo); 2115 2116 // A value of UINT_MAX means that we didn't find the field 2117 unsigned __index; 2118 2119 #define INIT_PROC_INFO(p) \ 2120 for (__index = 0; __index <= maxIndex; __index++) { \ 2121 (p)[__index] = UINT_MAX; \ 2122 } 2123 2124 for (i = 0; i <= num_records; i++) { 2125 INIT_PROC_INFO(threadInfo[i]); 2126 } 2127 2128 unsigned num_avail = 0; 2129 *line = 0; 2130 while (!feof(f)) { 2131 // Create an inner scoping level, so that all the goto targets at the end of 2132 // the loop appear in an outer scoping level. This avoids warnings about 2133 // jumping past an initialization to a target in the same block. 2134 { 2135 buf[sizeof(buf) - 1] = 1; 2136 bool long_line = false; 2137 if (!fgets(buf, sizeof(buf), f)) { 2138 // Read errors presumably because of EOF 2139 // If there is valid data in threadInfo[num_avail], then fake 2140 // a blank line in ensure that the last address gets parsed. 2141 bool valid = false; 2142 for (i = 0; i <= maxIndex; i++) { 2143 if (threadInfo[num_avail][i] != UINT_MAX) { 2144 valid = true; 2145 } 2146 } 2147 if (!valid) { 2148 break; 2149 } 2150 buf[0] = 0; 2151 } else if (!buf[sizeof(buf) - 1]) { 2152 // The line is longer than the buffer. Set a flag and don't 2153 // emit an error if we were going to ignore the line, anyway. 2154 long_line = true; 2155 2156 #define CHECK_LINE \ 2157 if (long_line) { \ 2158 CLEANUP_THREAD_INFO; \ 2159 *msg_id = kmp_i18n_str_LongLineCpuinfo; \ 2160 return -1; \ 2161 } 2162 } 2163 (*line)++; 2164 2165 char s1[] = "processor"; 2166 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { 2167 CHECK_LINE; 2168 char *p = strchr(buf + sizeof(s1) - 1, ':'); 2169 unsigned val; 2170 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2171 goto no_val; 2172 if (threadInfo[num_avail][osIdIndex] != UINT_MAX) 2173 #if KMP_ARCH_AARCH64 2174 // Handle the old AArch64 /proc/cpuinfo layout differently, 2175 // it contains all of the 'processor' entries listed in a 2176 // single 'Processor' section, therefore the normal looking 2177 // for duplicates in that section will always fail. 2178 num_avail++; 2179 #else 2180 goto dup_field; 2181 #endif 2182 threadInfo[num_avail][osIdIndex] = val; 2183 #if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64) 2184 char path[256]; 2185 KMP_SNPRINTF( 2186 path, sizeof(path), 2187 "/sys/devices/system/cpu/cpu%u/topology/physical_package_id", 2188 threadInfo[num_avail][osIdIndex]); 2189 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]); 2190 2191 KMP_SNPRINTF(path, sizeof(path), 2192 "/sys/devices/system/cpu/cpu%u/topology/core_id", 2193 threadInfo[num_avail][osIdIndex]); 2194 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]); 2195 continue; 2196 #else 2197 } 2198 char s2[] = "physical id"; 2199 if (strncmp(buf, s2, sizeof(s2) - 1) == 0) { 2200 CHECK_LINE; 2201 char *p = strchr(buf + sizeof(s2) - 1, ':'); 2202 unsigned val; 2203 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2204 goto no_val; 2205 if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX) 2206 goto dup_field; 2207 threadInfo[num_avail][pkgIdIndex] = val; 2208 continue; 2209 } 2210 char s3[] = "core id"; 2211 if (strncmp(buf, s3, sizeof(s3) - 1) == 0) { 2212 CHECK_LINE; 2213 char *p = strchr(buf + sizeof(s3) - 1, ':'); 2214 unsigned val; 2215 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2216 goto no_val; 2217 if (threadInfo[num_avail][coreIdIndex] != UINT_MAX) 2218 goto dup_field; 2219 threadInfo[num_avail][coreIdIndex] = val; 2220 continue; 2221 #endif // KMP_OS_LINUX && USE_SYSFS_INFO 2222 } 2223 char s4[] = "thread id"; 2224 if (strncmp(buf, s4, sizeof(s4) - 1) == 0) { 2225 CHECK_LINE; 2226 char *p = strchr(buf + sizeof(s4) - 1, ':'); 2227 unsigned val; 2228 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2229 goto no_val; 2230 if (threadInfo[num_avail][threadIdIndex] != UINT_MAX) 2231 goto dup_field; 2232 threadInfo[num_avail][threadIdIndex] = val; 2233 continue; 2234 } 2235 unsigned level; 2236 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { 2237 CHECK_LINE; 2238 char *p = strchr(buf + sizeof(s4) - 1, ':'); 2239 unsigned val; 2240 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2241 goto no_val; 2242 KMP_ASSERT(nodeIdIndex + level <= maxIndex); 2243 if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX) 2244 goto dup_field; 2245 threadInfo[num_avail][nodeIdIndex + level] = val; 2246 continue; 2247 } 2248 2249 // We didn't recognize the leading token on the line. There are lots of 2250 // leading tokens that we don't recognize - if the line isn't empty, go on 2251 // to the next line. 2252 if ((*buf != 0) && (*buf != '\n')) { 2253 // If the line is longer than the buffer, read characters 2254 // until we find a newline. 2255 if (long_line) { 2256 int ch; 2257 while (((ch = fgetc(f)) != EOF) && (ch != '\n')) 2258 ; 2259 } 2260 continue; 2261 } 2262 2263 // A newline has signalled the end of the processor record. 2264 // Check that there aren't too many procs specified. 2265 if ((int)num_avail == __kmp_xproc) { 2266 CLEANUP_THREAD_INFO; 2267 *msg_id = kmp_i18n_str_TooManyEntries; 2268 return -1; 2269 } 2270 2271 // Check for missing fields. The osId field must be there, and we 2272 // currently require that the physical id field is specified, also. 2273 if (threadInfo[num_avail][osIdIndex] == UINT_MAX) { 2274 CLEANUP_THREAD_INFO; 2275 *msg_id = kmp_i18n_str_MissingProcField; 2276 return -1; 2277 } 2278 if (threadInfo[0][pkgIdIndex] == UINT_MAX) { 2279 CLEANUP_THREAD_INFO; 2280 *msg_id = kmp_i18n_str_MissingPhysicalIDField; 2281 return -1; 2282 } 2283 2284 // Skip this proc if it is not included in the machine model. 2285 if (!KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex], 2286 __kmp_affin_fullMask)) { 2287 INIT_PROC_INFO(threadInfo[num_avail]); 2288 continue; 2289 } 2290 2291 // We have a successful parse of this proc's info. 2292 // Increment the counter, and prepare for the next proc. 2293 num_avail++; 2294 KMP_ASSERT(num_avail <= num_records); 2295 INIT_PROC_INFO(threadInfo[num_avail]); 2296 } 2297 continue; 2298 2299 no_val: 2300 CLEANUP_THREAD_INFO; 2301 *msg_id = kmp_i18n_str_MissingValCpuinfo; 2302 return -1; 2303 2304 dup_field: 2305 CLEANUP_THREAD_INFO; 2306 *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo; 2307 return -1; 2308 } 2309 *line = 0; 2310 2311 #if KMP_MIC && REDUCE_TEAM_SIZE 2312 unsigned teamSize = 0; 2313 #endif // KMP_MIC && REDUCE_TEAM_SIZE 2314 2315 // check for num_records == __kmp_xproc ??? 2316 2317 // If there's only one thread context to bind to, form an Address object with 2318 // depth 1 and return immediately (or, if affinity is off, set address2os to 2319 // NULL and return). 2320 // 2321 // If it is configured to omit the package level when there is only a single 2322 // package, the logic at the end of this routine won't work if there is only a 2323 // single thread - it would try to form an Address object with depth 0. 2324 KMP_ASSERT(num_avail > 0); 2325 KMP_ASSERT(num_avail <= num_records); 2326 if (num_avail == 1) { 2327 __kmp_ncores = 1; 2328 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; 2329 if (__kmp_affinity_verbose) { 2330 if (!KMP_AFFINITY_CAPABLE()) { 2331 KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY"); 2332 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 2333 KMP_INFORM(Uniform, "KMP_AFFINITY"); 2334 } else { 2335 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 2336 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 2337 __kmp_affin_fullMask); 2338 KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY"); 2339 if (__kmp_affinity_respect_mask) { 2340 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 2341 } else { 2342 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 2343 } 2344 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 2345 KMP_INFORM(Uniform, "KMP_AFFINITY"); 2346 } 2347 int index; 2348 kmp_str_buf_t buf; 2349 __kmp_str_buf_init(&buf); 2350 __kmp_str_buf_print(&buf, "1"); 2351 for (index = maxIndex - 1; index > pkgIdIndex; index--) { 2352 __kmp_str_buf_print(&buf, " x 1"); 2353 } 2354 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, 1, 1, 1); 2355 __kmp_str_buf_free(&buf); 2356 } 2357 2358 if (__kmp_affinity_type == affinity_none) { 2359 CLEANUP_THREAD_INFO; 2360 return 0; 2361 } 2362 2363 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair)); 2364 Address addr(1); 2365 addr.labels[0] = threadInfo[0][pkgIdIndex]; 2366 (*address2os)[0] = AddrUnsPair(addr, threadInfo[0][osIdIndex]); 2367 2368 if (__kmp_affinity_gran_levels < 0) { 2369 __kmp_affinity_gran_levels = 0; 2370 } 2371 2372 if (__kmp_affinity_verbose) { 2373 __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1); 2374 } 2375 2376 CLEANUP_THREAD_INFO; 2377 return 1; 2378 } 2379 2380 // Sort the threadInfo table by physical Id. 2381 qsort(threadInfo, num_avail, sizeof(*threadInfo), 2382 __kmp_affinity_cmp_ProcCpuInfo_phys_id); 2383 2384 // The table is now sorted by pkgId / coreId / threadId, but we really don't 2385 // know the radix of any of the fields. pkgId's may be sparsely assigned among 2386 // the chips on a system. Although coreId's are usually assigned 2387 // [0 .. coresPerPkg-1] and threadId's are usually assigned 2388 // [0..threadsPerCore-1], we don't want to make any such assumptions. 2389 // 2390 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the 2391 // total # packages) are at this point - we want to determine that now. We 2392 // only have an upper bound on the first two figures. 2393 unsigned *counts = 2394 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2395 unsigned *maxCt = 2396 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2397 unsigned *totals = 2398 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2399 unsigned *lastId = 2400 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2401 2402 bool assign_thread_ids = false; 2403 unsigned threadIdCt; 2404 unsigned index; 2405 2406 restart_radix_check: 2407 threadIdCt = 0; 2408 2409 // Initialize the counter arrays with data from threadInfo[0]. 2410 if (assign_thread_ids) { 2411 if (threadInfo[0][threadIdIndex] == UINT_MAX) { 2412 threadInfo[0][threadIdIndex] = threadIdCt++; 2413 } else if (threadIdCt <= threadInfo[0][threadIdIndex]) { 2414 threadIdCt = threadInfo[0][threadIdIndex] + 1; 2415 } 2416 } 2417 for (index = 0; index <= maxIndex; index++) { 2418 counts[index] = 1; 2419 maxCt[index] = 1; 2420 totals[index] = 1; 2421 lastId[index] = threadInfo[0][index]; 2422 ; 2423 } 2424 2425 // Run through the rest of the OS procs. 2426 for (i = 1; i < num_avail; i++) { 2427 // Find the most significant index whose id differs from the id for the 2428 // previous OS proc. 2429 for (index = maxIndex; index >= threadIdIndex; index--) { 2430 if (assign_thread_ids && (index == threadIdIndex)) { 2431 // Auto-assign the thread id field if it wasn't specified. 2432 if (threadInfo[i][threadIdIndex] == UINT_MAX) { 2433 threadInfo[i][threadIdIndex] = threadIdCt++; 2434 } 2435 // Apparently the thread id field was specified for some entries and not 2436 // others. Start the thread id counter off at the next higher thread id. 2437 else if (threadIdCt <= threadInfo[i][threadIdIndex]) { 2438 threadIdCt = threadInfo[i][threadIdIndex] + 1; 2439 } 2440 } 2441 if (threadInfo[i][index] != lastId[index]) { 2442 // Run through all indices which are less significant, and reset the 2443 // counts to 1. At all levels up to and including index, we need to 2444 // increment the totals and record the last id. 2445 unsigned index2; 2446 for (index2 = threadIdIndex; index2 < index; index2++) { 2447 totals[index2]++; 2448 if (counts[index2] > maxCt[index2]) { 2449 maxCt[index2] = counts[index2]; 2450 } 2451 counts[index2] = 1; 2452 lastId[index2] = threadInfo[i][index2]; 2453 } 2454 counts[index]++; 2455 totals[index]++; 2456 lastId[index] = threadInfo[i][index]; 2457 2458 if (assign_thread_ids && (index > threadIdIndex)) { 2459 2460 #if KMP_MIC && REDUCE_TEAM_SIZE 2461 // The default team size is the total #threads in the machine 2462 // minus 1 thread for every core that has 3 or more threads. 2463 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); 2464 #endif // KMP_MIC && REDUCE_TEAM_SIZE 2465 2466 // Restart the thread counter, as we are on a new core. 2467 threadIdCt = 0; 2468 2469 // Auto-assign the thread id field if it wasn't specified. 2470 if (threadInfo[i][threadIdIndex] == UINT_MAX) { 2471 threadInfo[i][threadIdIndex] = threadIdCt++; 2472 } 2473 2474 // Apparently the thread id field was specified for some entries and 2475 // not others. Start the thread id counter off at the next higher 2476 // thread id. 2477 else if (threadIdCt <= threadInfo[i][threadIdIndex]) { 2478 threadIdCt = threadInfo[i][threadIdIndex] + 1; 2479 } 2480 } 2481 break; 2482 } 2483 } 2484 if (index < threadIdIndex) { 2485 // If thread ids were specified, it is an error if they are not unique. 2486 // Also, check that we waven't already restarted the loop (to be safe - 2487 // shouldn't need to). 2488 if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) { 2489 __kmp_free(lastId); 2490 __kmp_free(totals); 2491 __kmp_free(maxCt); 2492 __kmp_free(counts); 2493 CLEANUP_THREAD_INFO; 2494 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; 2495 return -1; 2496 } 2497 2498 // If the thread ids were not specified and we see entries entries that 2499 // are duplicates, start the loop over and assign the thread ids manually. 2500 assign_thread_ids = true; 2501 goto restart_radix_check; 2502 } 2503 } 2504 2505 #if KMP_MIC && REDUCE_TEAM_SIZE 2506 // The default team size is the total #threads in the machine 2507 // minus 1 thread for every core that has 3 or more threads. 2508 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); 2509 #endif // KMP_MIC && REDUCE_TEAM_SIZE 2510 2511 for (index = threadIdIndex; index <= maxIndex; index++) { 2512 if (counts[index] > maxCt[index]) { 2513 maxCt[index] = counts[index]; 2514 } 2515 } 2516 2517 __kmp_nThreadsPerCore = maxCt[threadIdIndex]; 2518 nCoresPerPkg = maxCt[coreIdIndex]; 2519 nPackages = totals[pkgIdIndex]; 2520 2521 // Check to see if the machine topology is uniform 2522 unsigned prod = totals[maxIndex]; 2523 for (index = threadIdIndex; index < maxIndex; index++) { 2524 prod *= maxCt[index]; 2525 } 2526 bool uniform = (prod == totals[threadIdIndex]); 2527 2528 // When affinity is off, this routine will still be called to set 2529 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 2530 // Make sure all these vars are set correctly, and return now if affinity is 2531 // not enabled. 2532 __kmp_ncores = totals[coreIdIndex]; 2533 2534 if (__kmp_affinity_verbose) { 2535 if (!KMP_AFFINITY_CAPABLE()) { 2536 KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY"); 2537 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 2538 if (uniform) { 2539 KMP_INFORM(Uniform, "KMP_AFFINITY"); 2540 } else { 2541 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 2542 } 2543 } else { 2544 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 2545 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 2546 __kmp_affin_fullMask); 2547 KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY"); 2548 if (__kmp_affinity_respect_mask) { 2549 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 2550 } else { 2551 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 2552 } 2553 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 2554 if (uniform) { 2555 KMP_INFORM(Uniform, "KMP_AFFINITY"); 2556 } else { 2557 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 2558 } 2559 } 2560 kmp_str_buf_t buf; 2561 __kmp_str_buf_init(&buf); 2562 2563 __kmp_str_buf_print(&buf, "%d", totals[maxIndex]); 2564 for (index = maxIndex - 1; index >= pkgIdIndex; index--) { 2565 __kmp_str_buf_print(&buf, " x %d", maxCt[index]); 2566 } 2567 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, maxCt[coreIdIndex], 2568 maxCt[threadIdIndex], __kmp_ncores); 2569 2570 __kmp_str_buf_free(&buf); 2571 } 2572 2573 #if KMP_MIC && REDUCE_TEAM_SIZE 2574 // Set the default team size. 2575 if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) { 2576 __kmp_dflt_team_nth = teamSize; 2577 KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting " 2578 "__kmp_dflt_team_nth = %d\n", 2579 __kmp_dflt_team_nth)); 2580 } 2581 #endif // KMP_MIC && REDUCE_TEAM_SIZE 2582 2583 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 2584 KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc); 2585 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 2586 for (i = 0; i < num_avail; ++i) { // fill the os indices 2587 __kmp_pu_os_idx[i] = threadInfo[i][osIdIndex]; 2588 } 2589 2590 if (__kmp_affinity_type == affinity_none) { 2591 __kmp_free(lastId); 2592 __kmp_free(totals); 2593 __kmp_free(maxCt); 2594 __kmp_free(counts); 2595 CLEANUP_THREAD_INFO; 2596 return 0; 2597 } 2598 2599 // Count the number of levels which have more nodes at that level than at the 2600 // parent's level (with there being an implicit root node of the top level). 2601 // This is equivalent to saying that there is at least one node at this level 2602 // which has a sibling. These levels are in the map, and the package level is 2603 // always in the map. 2604 bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool)); 2605 for (index = threadIdIndex; index < maxIndex; index++) { 2606 KMP_ASSERT(totals[index] >= totals[index + 1]); 2607 inMap[index] = (totals[index] > totals[index + 1]); 2608 } 2609 inMap[maxIndex] = (totals[maxIndex] > 1); 2610 inMap[pkgIdIndex] = true; 2611 2612 int depth = 0; 2613 for (index = threadIdIndex; index <= maxIndex; index++) { 2614 if (inMap[index]) { 2615 depth++; 2616 } 2617 } 2618 KMP_ASSERT(depth > 0); 2619 2620 // Construct the data structure that is to be returned. 2621 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * num_avail); 2622 int pkgLevel = -1; 2623 int coreLevel = -1; 2624 int threadLevel = -1; 2625 2626 for (i = 0; i < num_avail; ++i) { 2627 Address addr(depth); 2628 unsigned os = threadInfo[i][osIdIndex]; 2629 int src_index; 2630 int dst_index = 0; 2631 2632 for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) { 2633 if (!inMap[src_index]) { 2634 continue; 2635 } 2636 addr.labels[dst_index] = threadInfo[i][src_index]; 2637 if (src_index == pkgIdIndex) { 2638 pkgLevel = dst_index; 2639 } else if (src_index == coreIdIndex) { 2640 coreLevel = dst_index; 2641 } else if (src_index == threadIdIndex) { 2642 threadLevel = dst_index; 2643 } 2644 dst_index++; 2645 } 2646 (*address2os)[i] = AddrUnsPair(addr, os); 2647 } 2648 2649 if (__kmp_affinity_gran_levels < 0) { 2650 // Set the granularity level based on what levels are modeled 2651 // in the machine topology map. 2652 unsigned src_index; 2653 __kmp_affinity_gran_levels = 0; 2654 for (src_index = threadIdIndex; src_index <= maxIndex; src_index++) { 2655 if (!inMap[src_index]) { 2656 continue; 2657 } 2658 switch (src_index) { 2659 case threadIdIndex: 2660 if (__kmp_affinity_gran > affinity_gran_thread) { 2661 __kmp_affinity_gran_levels++; 2662 } 2663 2664 break; 2665 case coreIdIndex: 2666 if (__kmp_affinity_gran > affinity_gran_core) { 2667 __kmp_affinity_gran_levels++; 2668 } 2669 break; 2670 2671 case pkgIdIndex: 2672 if (__kmp_affinity_gran > affinity_gran_package) { 2673 __kmp_affinity_gran_levels++; 2674 } 2675 break; 2676 } 2677 } 2678 } 2679 2680 if (__kmp_affinity_verbose) { 2681 __kmp_affinity_print_topology(*address2os, num_avail, depth, pkgLevel, 2682 coreLevel, threadLevel); 2683 } 2684 2685 __kmp_free(inMap); 2686 __kmp_free(lastId); 2687 __kmp_free(totals); 2688 __kmp_free(maxCt); 2689 __kmp_free(counts); 2690 CLEANUP_THREAD_INFO; 2691 return depth; 2692 } 2693 2694 // Create and return a table of affinity masks, indexed by OS thread ID. 2695 // This routine handles OR'ing together all the affinity masks of threads 2696 // that are sufficiently close, if granularity > fine. 2697 static kmp_affin_mask_t *__kmp_create_masks(unsigned *maxIndex, 2698 unsigned *numUnique, 2699 AddrUnsPair *address2os, 2700 unsigned numAddrs) { 2701 // First form a table of affinity masks in order of OS thread id. 2702 unsigned depth; 2703 unsigned maxOsId; 2704 unsigned i; 2705 2706 KMP_ASSERT(numAddrs > 0); 2707 depth = address2os[0].first.depth; 2708 2709 maxOsId = 0; 2710 for (i = numAddrs - 1;; --i) { 2711 unsigned osId = address2os[i].second; 2712 if (osId > maxOsId) { 2713 maxOsId = osId; 2714 } 2715 if (i == 0) 2716 break; 2717 } 2718 kmp_affin_mask_t *osId2Mask; 2719 KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId + 1)); 2720 2721 // Sort the address2os table according to physical order. Doing so will put 2722 // all threads on the same core/package/node in consecutive locations. 2723 qsort(address2os, numAddrs, sizeof(*address2os), 2724 __kmp_affinity_cmp_Address_labels); 2725 2726 KMP_ASSERT(__kmp_affinity_gran_levels >= 0); 2727 if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) { 2728 KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels); 2729 } 2730 if (__kmp_affinity_gran_levels >= (int)depth) { 2731 if (__kmp_affinity_verbose || 2732 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { 2733 KMP_WARNING(AffThreadsMayMigrate); 2734 } 2735 } 2736 2737 // Run through the table, forming the masks for all threads on each core. 2738 // Threads on the same core will have identical "Address" objects, not 2739 // considering the last level, which must be the thread id. All threads on a 2740 // core will appear consecutively. 2741 unsigned unique = 0; 2742 unsigned j = 0; // index of 1st thread on core 2743 unsigned leader = 0; 2744 Address *leaderAddr = &(address2os[0].first); 2745 kmp_affin_mask_t *sum; 2746 KMP_CPU_ALLOC_ON_STACK(sum); 2747 KMP_CPU_ZERO(sum); 2748 KMP_CPU_SET(address2os[0].second, sum); 2749 for (i = 1; i < numAddrs; i++) { 2750 // If this thread is sufficiently close to the leader (within the 2751 // granularity setting), then set the bit for this os thread in the 2752 // affinity mask for this group, and go on to the next thread. 2753 if (leaderAddr->isClose(address2os[i].first, __kmp_affinity_gran_levels)) { 2754 KMP_CPU_SET(address2os[i].second, sum); 2755 continue; 2756 } 2757 2758 // For every thread in this group, copy the mask to the thread's entry in 2759 // the osId2Mask table. Mark the first address as a leader. 2760 for (; j < i; j++) { 2761 unsigned osId = address2os[j].second; 2762 KMP_DEBUG_ASSERT(osId <= maxOsId); 2763 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); 2764 KMP_CPU_COPY(mask, sum); 2765 address2os[j].first.leader = (j == leader); 2766 } 2767 unique++; 2768 2769 // Start a new mask. 2770 leader = i; 2771 leaderAddr = &(address2os[i].first); 2772 KMP_CPU_ZERO(sum); 2773 KMP_CPU_SET(address2os[i].second, sum); 2774 } 2775 2776 // For every thread in last group, copy the mask to the thread's 2777 // entry in the osId2Mask table. 2778 for (; j < i; j++) { 2779 unsigned osId = address2os[j].second; 2780 KMP_DEBUG_ASSERT(osId <= maxOsId); 2781 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); 2782 KMP_CPU_COPY(mask, sum); 2783 address2os[j].first.leader = (j == leader); 2784 } 2785 unique++; 2786 KMP_CPU_FREE_FROM_STACK(sum); 2787 2788 *maxIndex = maxOsId; 2789 *numUnique = unique; 2790 return osId2Mask; 2791 } 2792 2793 // Stuff for the affinity proclist parsers. It's easier to declare these vars 2794 // as file-static than to try and pass them through the calling sequence of 2795 // the recursive-descent OMP_PLACES parser. 2796 static kmp_affin_mask_t *newMasks; 2797 static int numNewMasks; 2798 static int nextNewMask; 2799 2800 #define ADD_MASK(_mask) \ 2801 { \ 2802 if (nextNewMask >= numNewMasks) { \ 2803 int i; \ 2804 numNewMasks *= 2; \ 2805 kmp_affin_mask_t *temp; \ 2806 KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \ 2807 for (i = 0; i < numNewMasks / 2; i++) { \ 2808 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); \ 2809 kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i); \ 2810 KMP_CPU_COPY(dest, src); \ 2811 } \ 2812 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2); \ 2813 newMasks = temp; \ 2814 } \ 2815 KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \ 2816 nextNewMask++; \ 2817 } 2818 2819 #define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \ 2820 { \ 2821 if (((_osId) > _maxOsId) || \ 2822 (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \ 2823 if (__kmp_affinity_verbose || \ 2824 (__kmp_affinity_warnings && \ 2825 (__kmp_affinity_type != affinity_none))) { \ 2826 KMP_WARNING(AffIgnoreInvalidProcID, _osId); \ 2827 } \ 2828 } else { \ 2829 ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \ 2830 } \ 2831 } 2832 2833 // Re-parse the proclist (for the explicit affinity type), and form the list 2834 // of affinity newMasks indexed by gtid. 2835 static void __kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks, 2836 unsigned int *out_numMasks, 2837 const char *proclist, 2838 kmp_affin_mask_t *osId2Mask, 2839 int maxOsId) { 2840 int i; 2841 const char *scan = proclist; 2842 const char *next = proclist; 2843 2844 // We use malloc() for the temporary mask vector, so that we can use 2845 // realloc() to extend it. 2846 numNewMasks = 2; 2847 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); 2848 nextNewMask = 0; 2849 kmp_affin_mask_t *sumMask; 2850 KMP_CPU_ALLOC(sumMask); 2851 int setSize = 0; 2852 2853 for (;;) { 2854 int start, end, stride; 2855 2856 SKIP_WS(scan); 2857 next = scan; 2858 if (*next == '\0') { 2859 break; 2860 } 2861 2862 if (*next == '{') { 2863 int num; 2864 setSize = 0; 2865 next++; // skip '{' 2866 SKIP_WS(next); 2867 scan = next; 2868 2869 // Read the first integer in the set. 2870 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist"); 2871 SKIP_DIGITS(next); 2872 num = __kmp_str_to_int(scan, *next); 2873 KMP_ASSERT2(num >= 0, "bad explicit proc list"); 2874 2875 // Copy the mask for that osId to the sum (union) mask. 2876 if ((num > maxOsId) || 2877 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 2878 if (__kmp_affinity_verbose || 2879 (__kmp_affinity_warnings && 2880 (__kmp_affinity_type != affinity_none))) { 2881 KMP_WARNING(AffIgnoreInvalidProcID, num); 2882 } 2883 KMP_CPU_ZERO(sumMask); 2884 } else { 2885 KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num)); 2886 setSize = 1; 2887 } 2888 2889 for (;;) { 2890 // Check for end of set. 2891 SKIP_WS(next); 2892 if (*next == '}') { 2893 next++; // skip '}' 2894 break; 2895 } 2896 2897 // Skip optional comma. 2898 if (*next == ',') { 2899 next++; 2900 } 2901 SKIP_WS(next); 2902 2903 // Read the next integer in the set. 2904 scan = next; 2905 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 2906 2907 SKIP_DIGITS(next); 2908 num = __kmp_str_to_int(scan, *next); 2909 KMP_ASSERT2(num >= 0, "bad explicit proc list"); 2910 2911 // Add the mask for that osId to the sum mask. 2912 if ((num > maxOsId) || 2913 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 2914 if (__kmp_affinity_verbose || 2915 (__kmp_affinity_warnings && 2916 (__kmp_affinity_type != affinity_none))) { 2917 KMP_WARNING(AffIgnoreInvalidProcID, num); 2918 } 2919 } else { 2920 KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num)); 2921 setSize++; 2922 } 2923 } 2924 if (setSize > 0) { 2925 ADD_MASK(sumMask); 2926 } 2927 2928 SKIP_WS(next); 2929 if (*next == ',') { 2930 next++; 2931 } 2932 scan = next; 2933 continue; 2934 } 2935 2936 // Read the first integer. 2937 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 2938 SKIP_DIGITS(next); 2939 start = __kmp_str_to_int(scan, *next); 2940 KMP_ASSERT2(start >= 0, "bad explicit proc list"); 2941 SKIP_WS(next); 2942 2943 // If this isn't a range, then add a mask to the list and go on. 2944 if (*next != '-') { 2945 ADD_MASK_OSID(start, osId2Mask, maxOsId); 2946 2947 // Skip optional comma. 2948 if (*next == ',') { 2949 next++; 2950 } 2951 scan = next; 2952 continue; 2953 } 2954 2955 // This is a range. Skip over the '-' and read in the 2nd int. 2956 next++; // skip '-' 2957 SKIP_WS(next); 2958 scan = next; 2959 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 2960 SKIP_DIGITS(next); 2961 end = __kmp_str_to_int(scan, *next); 2962 KMP_ASSERT2(end >= 0, "bad explicit proc list"); 2963 2964 // Check for a stride parameter 2965 stride = 1; 2966 SKIP_WS(next); 2967 if (*next == ':') { 2968 // A stride is specified. Skip over the ':" and read the 3rd int. 2969 int sign = +1; 2970 next++; // skip ':' 2971 SKIP_WS(next); 2972 scan = next; 2973 if (*next == '-') { 2974 sign = -1; 2975 next++; 2976 SKIP_WS(next); 2977 scan = next; 2978 } 2979 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 2980 SKIP_DIGITS(next); 2981 stride = __kmp_str_to_int(scan, *next); 2982 KMP_ASSERT2(stride >= 0, "bad explicit proc list"); 2983 stride *= sign; 2984 } 2985 2986 // Do some range checks. 2987 KMP_ASSERT2(stride != 0, "bad explicit proc list"); 2988 if (stride > 0) { 2989 KMP_ASSERT2(start <= end, "bad explicit proc list"); 2990 } else { 2991 KMP_ASSERT2(start >= end, "bad explicit proc list"); 2992 } 2993 KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list"); 2994 2995 // Add the mask for each OS proc # to the list. 2996 if (stride > 0) { 2997 do { 2998 ADD_MASK_OSID(start, osId2Mask, maxOsId); 2999 start += stride; 3000 } while (start <= end); 3001 } else { 3002 do { 3003 ADD_MASK_OSID(start, osId2Mask, maxOsId); 3004 start += stride; 3005 } while (start >= end); 3006 } 3007 3008 // Skip optional comma. 3009 SKIP_WS(next); 3010 if (*next == ',') { 3011 next++; 3012 } 3013 scan = next; 3014 } 3015 3016 *out_numMasks = nextNewMask; 3017 if (nextNewMask == 0) { 3018 *out_masks = NULL; 3019 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3020 return; 3021 } 3022 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); 3023 for (i = 0; i < nextNewMask; i++) { 3024 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); 3025 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); 3026 KMP_CPU_COPY(dest, src); 3027 } 3028 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3029 KMP_CPU_FREE(sumMask); 3030 } 3031 3032 /*----------------------------------------------------------------------------- 3033 Re-parse the OMP_PLACES proc id list, forming the newMasks for the different 3034 places. Again, Here is the grammar: 3035 3036 place_list := place 3037 place_list := place , place_list 3038 place := num 3039 place := place : num 3040 place := place : num : signed 3041 place := { subplacelist } 3042 place := ! place // (lowest priority) 3043 subplace_list := subplace 3044 subplace_list := subplace , subplace_list 3045 subplace := num 3046 subplace := num : num 3047 subplace := num : num : signed 3048 signed := num 3049 signed := + signed 3050 signed := - signed 3051 -----------------------------------------------------------------------------*/ 3052 static void __kmp_process_subplace_list(const char **scan, 3053 kmp_affin_mask_t *osId2Mask, 3054 int maxOsId, kmp_affin_mask_t *tempMask, 3055 int *setSize) { 3056 const char *next; 3057 3058 for (;;) { 3059 int start, count, stride, i; 3060 3061 // Read in the starting proc id 3062 SKIP_WS(*scan); 3063 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3064 next = *scan; 3065 SKIP_DIGITS(next); 3066 start = __kmp_str_to_int(*scan, *next); 3067 KMP_ASSERT(start >= 0); 3068 *scan = next; 3069 3070 // valid follow sets are ',' ':' and '}' 3071 SKIP_WS(*scan); 3072 if (**scan == '}' || **scan == ',') { 3073 if ((start > maxOsId) || 3074 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3075 if (__kmp_affinity_verbose || 3076 (__kmp_affinity_warnings && 3077 (__kmp_affinity_type != affinity_none))) { 3078 KMP_WARNING(AffIgnoreInvalidProcID, start); 3079 } 3080 } else { 3081 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3082 (*setSize)++; 3083 } 3084 if (**scan == '}') { 3085 break; 3086 } 3087 (*scan)++; // skip ',' 3088 continue; 3089 } 3090 KMP_ASSERT2(**scan == ':', "bad explicit places list"); 3091 (*scan)++; // skip ':' 3092 3093 // Read count parameter 3094 SKIP_WS(*scan); 3095 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3096 next = *scan; 3097 SKIP_DIGITS(next); 3098 count = __kmp_str_to_int(*scan, *next); 3099 KMP_ASSERT(count >= 0); 3100 *scan = next; 3101 3102 // valid follow sets are ',' ':' and '}' 3103 SKIP_WS(*scan); 3104 if (**scan == '}' || **scan == ',') { 3105 for (i = 0; i < count; i++) { 3106 if ((start > maxOsId) || 3107 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3108 if (__kmp_affinity_verbose || 3109 (__kmp_affinity_warnings && 3110 (__kmp_affinity_type != affinity_none))) { 3111 KMP_WARNING(AffIgnoreInvalidProcID, start); 3112 } 3113 break; // don't proliferate warnings for large count 3114 } else { 3115 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3116 start++; 3117 (*setSize)++; 3118 } 3119 } 3120 if (**scan == '}') { 3121 break; 3122 } 3123 (*scan)++; // skip ',' 3124 continue; 3125 } 3126 KMP_ASSERT2(**scan == ':', "bad explicit places list"); 3127 (*scan)++; // skip ':' 3128 3129 // Read stride parameter 3130 int sign = +1; 3131 for (;;) { 3132 SKIP_WS(*scan); 3133 if (**scan == '+') { 3134 (*scan)++; // skip '+' 3135 continue; 3136 } 3137 if (**scan == '-') { 3138 sign *= -1; 3139 (*scan)++; // skip '-' 3140 continue; 3141 } 3142 break; 3143 } 3144 SKIP_WS(*scan); 3145 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3146 next = *scan; 3147 SKIP_DIGITS(next); 3148 stride = __kmp_str_to_int(*scan, *next); 3149 KMP_ASSERT(stride >= 0); 3150 *scan = next; 3151 stride *= sign; 3152 3153 // valid follow sets are ',' and '}' 3154 SKIP_WS(*scan); 3155 if (**scan == '}' || **scan == ',') { 3156 for (i = 0; i < count; i++) { 3157 if ((start > maxOsId) || 3158 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3159 if (__kmp_affinity_verbose || 3160 (__kmp_affinity_warnings && 3161 (__kmp_affinity_type != affinity_none))) { 3162 KMP_WARNING(AffIgnoreInvalidProcID, start); 3163 } 3164 break; // don't proliferate warnings for large count 3165 } else { 3166 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3167 start += stride; 3168 (*setSize)++; 3169 } 3170 } 3171 if (**scan == '}') { 3172 break; 3173 } 3174 (*scan)++; // skip ',' 3175 continue; 3176 } 3177 3178 KMP_ASSERT2(0, "bad explicit places list"); 3179 } 3180 } 3181 3182 static void __kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask, 3183 int maxOsId, kmp_affin_mask_t *tempMask, 3184 int *setSize) { 3185 const char *next; 3186 3187 // valid follow sets are '{' '!' and num 3188 SKIP_WS(*scan); 3189 if (**scan == '{') { 3190 (*scan)++; // skip '{' 3191 __kmp_process_subplace_list(scan, osId2Mask, maxOsId, tempMask, setSize); 3192 KMP_ASSERT2(**scan == '}', "bad explicit places list"); 3193 (*scan)++; // skip '}' 3194 } else if (**scan == '!') { 3195 (*scan)++; // skip '!' 3196 __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize); 3197 KMP_CPU_COMPLEMENT(maxOsId, tempMask); 3198 } else if ((**scan >= '0') && (**scan <= '9')) { 3199 next = *scan; 3200 SKIP_DIGITS(next); 3201 int num = __kmp_str_to_int(*scan, *next); 3202 KMP_ASSERT(num >= 0); 3203 if ((num > maxOsId) || 3204 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 3205 if (__kmp_affinity_verbose || 3206 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { 3207 KMP_WARNING(AffIgnoreInvalidProcID, num); 3208 } 3209 } else { 3210 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num)); 3211 (*setSize)++; 3212 } 3213 *scan = next; // skip num 3214 } else { 3215 KMP_ASSERT2(0, "bad explicit places list"); 3216 } 3217 } 3218 3219 // static void 3220 void __kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks, 3221 unsigned int *out_numMasks, 3222 const char *placelist, 3223 kmp_affin_mask_t *osId2Mask, 3224 int maxOsId) { 3225 int i, j, count, stride, sign; 3226 const char *scan = placelist; 3227 const char *next = placelist; 3228 3229 numNewMasks = 2; 3230 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); 3231 nextNewMask = 0; 3232 3233 // tempMask is modified based on the previous or initial 3234 // place to form the current place 3235 // previousMask contains the previous place 3236 kmp_affin_mask_t *tempMask; 3237 kmp_affin_mask_t *previousMask; 3238 KMP_CPU_ALLOC(tempMask); 3239 KMP_CPU_ZERO(tempMask); 3240 KMP_CPU_ALLOC(previousMask); 3241 KMP_CPU_ZERO(previousMask); 3242 int setSize = 0; 3243 3244 for (;;) { 3245 __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize); 3246 3247 // valid follow sets are ',' ':' and EOL 3248 SKIP_WS(scan); 3249 if (*scan == '\0' || *scan == ',') { 3250 if (setSize > 0) { 3251 ADD_MASK(tempMask); 3252 } 3253 KMP_CPU_ZERO(tempMask); 3254 setSize = 0; 3255 if (*scan == '\0') { 3256 break; 3257 } 3258 scan++; // skip ',' 3259 continue; 3260 } 3261 3262 KMP_ASSERT2(*scan == ':', "bad explicit places list"); 3263 scan++; // skip ':' 3264 3265 // Read count parameter 3266 SKIP_WS(scan); 3267 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); 3268 next = scan; 3269 SKIP_DIGITS(next); 3270 count = __kmp_str_to_int(scan, *next); 3271 KMP_ASSERT(count >= 0); 3272 scan = next; 3273 3274 // valid follow sets are ',' ':' and EOL 3275 SKIP_WS(scan); 3276 if (*scan == '\0' || *scan == ',') { 3277 stride = +1; 3278 } else { 3279 KMP_ASSERT2(*scan == ':', "bad explicit places list"); 3280 scan++; // skip ':' 3281 3282 // Read stride parameter 3283 sign = +1; 3284 for (;;) { 3285 SKIP_WS(scan); 3286 if (*scan == '+') { 3287 scan++; // skip '+' 3288 continue; 3289 } 3290 if (*scan == '-') { 3291 sign *= -1; 3292 scan++; // skip '-' 3293 continue; 3294 } 3295 break; 3296 } 3297 SKIP_WS(scan); 3298 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); 3299 next = scan; 3300 SKIP_DIGITS(next); 3301 stride = __kmp_str_to_int(scan, *next); 3302 KMP_DEBUG_ASSERT(stride >= 0); 3303 scan = next; 3304 stride *= sign; 3305 } 3306 3307 // Add places determined by initial_place : count : stride 3308 for (i = 0; i < count; i++) { 3309 if (setSize == 0) { 3310 break; 3311 } 3312 // Add the current place, then build the next place (tempMask) from that 3313 KMP_CPU_COPY(previousMask, tempMask); 3314 ADD_MASK(previousMask); 3315 KMP_CPU_ZERO(tempMask); 3316 setSize = 0; 3317 KMP_CPU_SET_ITERATE(j, previousMask) { 3318 if (!KMP_CPU_ISSET(j, previousMask)) { 3319 continue; 3320 } 3321 if ((j + stride > maxOsId) || (j + stride < 0) || 3322 (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) || 3323 (!KMP_CPU_ISSET(j + stride, 3324 KMP_CPU_INDEX(osId2Mask, j + stride)))) { 3325 if ((__kmp_affinity_verbose || 3326 (__kmp_affinity_warnings && 3327 (__kmp_affinity_type != affinity_none))) && 3328 i < count - 1) { 3329 KMP_WARNING(AffIgnoreInvalidProcID, j + stride); 3330 } 3331 continue; 3332 } 3333 KMP_CPU_SET(j + stride, tempMask); 3334 setSize++; 3335 } 3336 } 3337 KMP_CPU_ZERO(tempMask); 3338 setSize = 0; 3339 3340 // valid follow sets are ',' and EOL 3341 SKIP_WS(scan); 3342 if (*scan == '\0') { 3343 break; 3344 } 3345 if (*scan == ',') { 3346 scan++; // skip ',' 3347 continue; 3348 } 3349 3350 KMP_ASSERT2(0, "bad explicit places list"); 3351 } 3352 3353 *out_numMasks = nextNewMask; 3354 if (nextNewMask == 0) { 3355 *out_masks = NULL; 3356 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3357 return; 3358 } 3359 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); 3360 KMP_CPU_FREE(tempMask); 3361 KMP_CPU_FREE(previousMask); 3362 for (i = 0; i < nextNewMask; i++) { 3363 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); 3364 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); 3365 KMP_CPU_COPY(dest, src); 3366 } 3367 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3368 } 3369 3370 #undef ADD_MASK 3371 #undef ADD_MASK_OSID 3372 3373 #if KMP_USE_HWLOC 3374 static int __kmp_hwloc_skip_PUs_obj(hwloc_topology_t t, hwloc_obj_t o) { 3375 // skip PUs descendants of the object o 3376 int skipped = 0; 3377 hwloc_obj_t hT = NULL; 3378 int N = __kmp_hwloc_count_children_by_type(t, o, HWLOC_OBJ_PU, &hT); 3379 for (int i = 0; i < N; ++i) { 3380 KMP_DEBUG_ASSERT(hT); 3381 unsigned idx = hT->os_index; 3382 if (KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3383 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3384 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3385 ++skipped; 3386 } 3387 hT = hwloc_get_next_obj_by_type(t, HWLOC_OBJ_PU, hT); 3388 } 3389 return skipped; // count number of skipped units 3390 } 3391 3392 static int __kmp_hwloc_obj_has_PUs(hwloc_topology_t t, hwloc_obj_t o) { 3393 // check if obj has PUs present in fullMask 3394 hwloc_obj_t hT = NULL; 3395 int N = __kmp_hwloc_count_children_by_type(t, o, HWLOC_OBJ_PU, &hT); 3396 for (int i = 0; i < N; ++i) { 3397 KMP_DEBUG_ASSERT(hT); 3398 unsigned idx = hT->os_index; 3399 if (KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) 3400 return 1; // found PU 3401 hT = hwloc_get_next_obj_by_type(t, HWLOC_OBJ_PU, hT); 3402 } 3403 return 0; // no PUs found 3404 } 3405 #endif // KMP_USE_HWLOC 3406 3407 static void __kmp_apply_thread_places(AddrUnsPair **pAddr, int depth) { 3408 AddrUnsPair *newAddr; 3409 if (__kmp_hws_requested == 0) 3410 goto _exit; // no topology limiting actions requested, exit 3411 #if KMP_USE_HWLOC 3412 if (__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) { 3413 // Number of subobjects calculated dynamically, this works fine for 3414 // any non-uniform topology. 3415 // L2 cache objects are determined by depth, other objects - by type. 3416 hwloc_topology_t tp = __kmp_hwloc_topology; 3417 int nS = 0, nN = 0, nL = 0, nC = 0, 3418 nT = 0; // logical index including skipped 3419 int nCr = 0, nTr = 0; // number of requested units 3420 int nPkg = 0, nCo = 0, n_new = 0, n_old = 0, nCpP = 0, nTpC = 0; // counters 3421 hwloc_obj_t hT, hC, hL, hN, hS; // hwloc objects (pointers to) 3422 int L2depth, idx; 3423 3424 // check support of extensions ---------------------------------- 3425 int numa_support = 0, tile_support = 0; 3426 if (__kmp_pu_os_idx) 3427 hT = hwloc_get_pu_obj_by_os_index(tp, 3428 __kmp_pu_os_idx[__kmp_avail_proc - 1]); 3429 else 3430 hT = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PU, __kmp_avail_proc - 1); 3431 if (hT == NULL) { // something's gone wrong 3432 KMP_WARNING(AffHWSubsetUnsupported); 3433 goto _exit; 3434 } 3435 // check NUMA node 3436 hN = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hT); 3437 hS = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hT); 3438 if (hN != NULL && hN->depth > hS->depth) { 3439 numa_support = 1; // 1 in case socket includes node(s) 3440 } else if (__kmp_hws_node.num > 0) { 3441 // don't support sockets inside NUMA node (no such HW found for testing) 3442 KMP_WARNING(AffHWSubsetUnsupported); 3443 goto _exit; 3444 } 3445 // check L2 cahce, get object by depth because of multiple caches 3446 L2depth = hwloc_get_cache_type_depth(tp, 2, HWLOC_OBJ_CACHE_UNIFIED); 3447 hL = hwloc_get_ancestor_obj_by_depth(tp, L2depth, hT); 3448 if (hL != NULL && 3449 __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC) > 1) { 3450 tile_support = 1; // no sense to count L2 if it includes single core 3451 } else if (__kmp_hws_tile.num > 0) { 3452 if (__kmp_hws_core.num == 0) { 3453 __kmp_hws_core = __kmp_hws_tile; // replace L2 with core 3454 __kmp_hws_tile.num = 0; 3455 } else { 3456 // L2 and core are both requested, but represent same object 3457 KMP_WARNING(AffHWSubsetInvalid); 3458 goto _exit; 3459 } 3460 } 3461 // end of check of extensions ----------------------------------- 3462 3463 // fill in unset items, validate settings ----------------------- 3464 if (__kmp_hws_socket.num == 0) 3465 __kmp_hws_socket.num = nPackages; // use all available sockets 3466 if (__kmp_hws_socket.offset >= nPackages) { 3467 KMP_WARNING(AffHWSubsetManySockets); 3468 goto _exit; 3469 } 3470 if (numa_support) { 3471 hN = NULL; 3472 int NN = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_NUMANODE, 3473 &hN); // num nodes in socket 3474 if (__kmp_hws_node.num == 0) 3475 __kmp_hws_node.num = NN; // use all available nodes 3476 if (__kmp_hws_node.offset >= NN) { 3477 KMP_WARNING(AffHWSubsetManyNodes); 3478 goto _exit; 3479 } 3480 if (tile_support) { 3481 // get num tiles in node 3482 int NL = __kmp_hwloc_count_children_by_depth(tp, hN, L2depth, &hL); 3483 if (__kmp_hws_tile.num == 0) { 3484 __kmp_hws_tile.num = NL + 1; 3485 } // use all available tiles, some node may have more tiles, thus +1 3486 if (__kmp_hws_tile.offset >= NL) { 3487 KMP_WARNING(AffHWSubsetManyTiles); 3488 goto _exit; 3489 } 3490 int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, 3491 &hC); // num cores in tile 3492 if (__kmp_hws_core.num == 0) 3493 __kmp_hws_core.num = NC; // use all available cores 3494 if (__kmp_hws_core.offset >= NC) { 3495 KMP_WARNING(AffHWSubsetManyCores); 3496 goto _exit; 3497 } 3498 } else { // tile_support 3499 int NC = __kmp_hwloc_count_children_by_type(tp, hN, HWLOC_OBJ_CORE, 3500 &hC); // num cores in node 3501 if (__kmp_hws_core.num == 0) 3502 __kmp_hws_core.num = NC; // use all available cores 3503 if (__kmp_hws_core.offset >= NC) { 3504 KMP_WARNING(AffHWSubsetManyCores); 3505 goto _exit; 3506 } 3507 } // tile_support 3508 } else { // numa_support 3509 if (tile_support) { 3510 // get num tiles in socket 3511 int NL = __kmp_hwloc_count_children_by_depth(tp, hS, L2depth, &hL); 3512 if (__kmp_hws_tile.num == 0) 3513 __kmp_hws_tile.num = NL; // use all available tiles 3514 if (__kmp_hws_tile.offset >= NL) { 3515 KMP_WARNING(AffHWSubsetManyTiles); 3516 goto _exit; 3517 } 3518 int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, 3519 &hC); // num cores in tile 3520 if (__kmp_hws_core.num == 0) 3521 __kmp_hws_core.num = NC; // use all available cores 3522 if (__kmp_hws_core.offset >= NC) { 3523 KMP_WARNING(AffHWSubsetManyCores); 3524 goto _exit; 3525 } 3526 } else { // tile_support 3527 int NC = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_CORE, 3528 &hC); // num cores in socket 3529 if (__kmp_hws_core.num == 0) 3530 __kmp_hws_core.num = NC; // use all available cores 3531 if (__kmp_hws_core.offset >= NC) { 3532 KMP_WARNING(AffHWSubsetManyCores); 3533 goto _exit; 3534 } 3535 } // tile_support 3536 } 3537 if (__kmp_hws_proc.num == 0) 3538 __kmp_hws_proc.num = __kmp_nThreadsPerCore; // use all available procs 3539 if (__kmp_hws_proc.offset >= __kmp_nThreadsPerCore) { 3540 KMP_WARNING(AffHWSubsetManyProcs); 3541 goto _exit; 3542 } 3543 // end of validation -------------------------------------------- 3544 3545 if (pAddr) // pAddr is NULL in case of affinity_none 3546 newAddr = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * 3547 __kmp_avail_proc); // max size 3548 // main loop to form HW subset ---------------------------------- 3549 hS = NULL; 3550 int NP = hwloc_get_nbobjs_by_type(tp, HWLOC_OBJ_PACKAGE); 3551 for (int s = 0; s < NP; ++s) { 3552 // Check Socket ----------------------------------------------- 3553 hS = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hS); 3554 if (!__kmp_hwloc_obj_has_PUs(tp, hS)) 3555 continue; // skip socket if all PUs are out of fullMask 3556 ++nS; // only count objects those have PUs in affinity mask 3557 if (nS <= __kmp_hws_socket.offset || 3558 nS > __kmp_hws_socket.num + __kmp_hws_socket.offset) { 3559 n_old += __kmp_hwloc_skip_PUs_obj(tp, hS); // skip socket 3560 continue; // move to next socket 3561 } 3562 nCr = 0; // count number of cores per socket 3563 // socket requested, go down the topology tree 3564 // check 4 cases: (+NUMA+Tile), (+NUMA-Tile), (-NUMA+Tile), (-NUMA-Tile) 3565 if (numa_support) { 3566 nN = 0; 3567 hN = NULL; 3568 // num nodes in current socket 3569 int NN = 3570 __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_NUMANODE, &hN); 3571 for (int n = 0; n < NN; ++n) { 3572 // Check NUMA Node ---------------------------------------- 3573 if (!__kmp_hwloc_obj_has_PUs(tp, hN)) { 3574 hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN); 3575 continue; // skip node if all PUs are out of fullMask 3576 } 3577 ++nN; 3578 if (nN <= __kmp_hws_node.offset || 3579 nN > __kmp_hws_node.num + __kmp_hws_node.offset) { 3580 // skip node as not requested 3581 n_old += __kmp_hwloc_skip_PUs_obj(tp, hN); // skip node 3582 hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN); 3583 continue; // move to next node 3584 } 3585 // node requested, go down the topology tree 3586 if (tile_support) { 3587 nL = 0; 3588 hL = NULL; 3589 int NL = __kmp_hwloc_count_children_by_depth(tp, hN, L2depth, &hL); 3590 for (int l = 0; l < NL; ++l) { 3591 // Check L2 (tile) ------------------------------------ 3592 if (!__kmp_hwloc_obj_has_PUs(tp, hL)) { 3593 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3594 continue; // skip tile if all PUs are out of fullMask 3595 } 3596 ++nL; 3597 if (nL <= __kmp_hws_tile.offset || 3598 nL > __kmp_hws_tile.num + __kmp_hws_tile.offset) { 3599 // skip tile as not requested 3600 n_old += __kmp_hwloc_skip_PUs_obj(tp, hL); // skip tile 3601 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3602 continue; // move to next tile 3603 } 3604 // tile requested, go down the topology tree 3605 nC = 0; 3606 hC = NULL; 3607 // num cores in current tile 3608 int NC = __kmp_hwloc_count_children_by_type(tp, hL, 3609 HWLOC_OBJ_CORE, &hC); 3610 for (int c = 0; c < NC; ++c) { 3611 // Check Core --------------------------------------- 3612 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) { 3613 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3614 continue; // skip core if all PUs are out of fullMask 3615 } 3616 ++nC; 3617 if (nC <= __kmp_hws_core.offset || 3618 nC > __kmp_hws_core.num + __kmp_hws_core.offset) { 3619 // skip node as not requested 3620 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core 3621 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3622 continue; // move to next node 3623 } 3624 // core requested, go down to PUs 3625 nT = 0; 3626 nTr = 0; 3627 hT = NULL; 3628 // num procs in current core 3629 int NT = __kmp_hwloc_count_children_by_type(tp, hC, 3630 HWLOC_OBJ_PU, &hT); 3631 for (int t = 0; t < NT; ++t) { 3632 // Check PU --------------------------------------- 3633 idx = hT->os_index; 3634 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3635 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3636 continue; // skip PU if not in fullMask 3637 } 3638 ++nT; 3639 if (nT <= __kmp_hws_proc.offset || 3640 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) { 3641 // skip PU 3642 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3643 ++n_old; 3644 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3645 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3646 continue; // move to next node 3647 } 3648 ++nTr; 3649 if (pAddr) // collect requested thread's data 3650 newAddr[n_new] = (*pAddr)[n_old]; 3651 ++n_new; 3652 ++n_old; 3653 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3654 } // threads loop 3655 if (nTr > 0) { 3656 ++nCr; // num cores per socket 3657 ++nCo; // total num cores 3658 if (nTr > nTpC) 3659 nTpC = nTr; // calc max threads per core 3660 } 3661 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3662 } // cores loop 3663 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3664 } // tiles loop 3665 } else { // tile_support 3666 // no tiles, check cores 3667 nC = 0; 3668 hC = NULL; 3669 // num cores in current node 3670 int NC = 3671 __kmp_hwloc_count_children_by_type(tp, hN, HWLOC_OBJ_CORE, &hC); 3672 for (int c = 0; c < NC; ++c) { 3673 // Check Core --------------------------------------- 3674 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) { 3675 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3676 continue; // skip core if all PUs are out of fullMask 3677 } 3678 ++nC; 3679 if (nC <= __kmp_hws_core.offset || 3680 nC > __kmp_hws_core.num + __kmp_hws_core.offset) { 3681 // skip node as not requested 3682 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core 3683 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3684 continue; // move to next node 3685 } 3686 // core requested, go down to PUs 3687 nT = 0; 3688 nTr = 0; 3689 hT = NULL; 3690 int NT = 3691 __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT); 3692 for (int t = 0; t < NT; ++t) { 3693 // Check PU --------------------------------------- 3694 idx = hT->os_index; 3695 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3696 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3697 continue; // skip PU if not in fullMask 3698 } 3699 ++nT; 3700 if (nT <= __kmp_hws_proc.offset || 3701 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) { 3702 // skip PU 3703 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3704 ++n_old; 3705 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3706 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3707 continue; // move to next node 3708 } 3709 ++nTr; 3710 if (pAddr) // collect requested thread's data 3711 newAddr[n_new] = (*pAddr)[n_old]; 3712 ++n_new; 3713 ++n_old; 3714 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3715 } // threads loop 3716 if (nTr > 0) { 3717 ++nCr; // num cores per socket 3718 ++nCo; // total num cores 3719 if (nTr > nTpC) 3720 nTpC = nTr; // calc max threads per core 3721 } 3722 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3723 } // cores loop 3724 } // tiles support 3725 hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN); 3726 } // nodes loop 3727 } else { // numa_support 3728 // no NUMA support 3729 if (tile_support) { 3730 nL = 0; 3731 hL = NULL; 3732 // num tiles in current socket 3733 int NL = __kmp_hwloc_count_children_by_depth(tp, hS, L2depth, &hL); 3734 for (int l = 0; l < NL; ++l) { 3735 // Check L2 (tile) ------------------------------------ 3736 if (!__kmp_hwloc_obj_has_PUs(tp, hL)) { 3737 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3738 continue; // skip tile if all PUs are out of fullMask 3739 } 3740 ++nL; 3741 if (nL <= __kmp_hws_tile.offset || 3742 nL > __kmp_hws_tile.num + __kmp_hws_tile.offset) { 3743 // skip tile as not requested 3744 n_old += __kmp_hwloc_skip_PUs_obj(tp, hL); // skip tile 3745 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3746 continue; // move to next tile 3747 } 3748 // tile requested, go down the topology tree 3749 nC = 0; 3750 hC = NULL; 3751 // num cores per tile 3752 int NC = 3753 __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC); 3754 for (int c = 0; c < NC; ++c) { 3755 // Check Core --------------------------------------- 3756 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) { 3757 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3758 continue; // skip core if all PUs are out of fullMask 3759 } 3760 ++nC; 3761 if (nC <= __kmp_hws_core.offset || 3762 nC > __kmp_hws_core.num + __kmp_hws_core.offset) { 3763 // skip node as not requested 3764 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core 3765 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3766 continue; // move to next node 3767 } 3768 // core requested, go down to PUs 3769 nT = 0; 3770 nTr = 0; 3771 hT = NULL; 3772 // num procs per core 3773 int NT = 3774 __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT); 3775 for (int t = 0; t < NT; ++t) { 3776 // Check PU --------------------------------------- 3777 idx = hT->os_index; 3778 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3779 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3780 continue; // skip PU if not in fullMask 3781 } 3782 ++nT; 3783 if (nT <= __kmp_hws_proc.offset || 3784 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) { 3785 // skip PU 3786 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3787 ++n_old; 3788 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3789 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3790 continue; // move to next node 3791 } 3792 ++nTr; 3793 if (pAddr) // collect requested thread's data 3794 newAddr[n_new] = (*pAddr)[n_old]; 3795 ++n_new; 3796 ++n_old; 3797 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3798 } // threads loop 3799 if (nTr > 0) { 3800 ++nCr; // num cores per socket 3801 ++nCo; // total num cores 3802 if (nTr > nTpC) 3803 nTpC = nTr; // calc max threads per core 3804 } 3805 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3806 } // cores loop 3807 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3808 } // tiles loop 3809 } else { // tile_support 3810 // no tiles, check cores 3811 nC = 0; 3812 hC = NULL; 3813 // num cores in socket 3814 int NC = 3815 __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_CORE, &hC); 3816 for (int c = 0; c < NC; ++c) { 3817 // Check Core ------------------------------------------- 3818 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) { 3819 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3820 continue; // skip core if all PUs are out of fullMask 3821 } 3822 ++nC; 3823 if (nC <= __kmp_hws_core.offset || 3824 nC > __kmp_hws_core.num + __kmp_hws_core.offset) { 3825 // skip node as not requested 3826 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core 3827 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3828 continue; // move to next node 3829 } 3830 // core requested, go down to PUs 3831 nT = 0; 3832 nTr = 0; 3833 hT = NULL; 3834 // num procs per core 3835 int NT = 3836 __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT); 3837 for (int t = 0; t < NT; ++t) { 3838 // Check PU --------------------------------------- 3839 idx = hT->os_index; 3840 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3841 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3842 continue; // skip PU if not in fullMask 3843 } 3844 ++nT; 3845 if (nT <= __kmp_hws_proc.offset || 3846 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) { 3847 // skip PU 3848 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3849 ++n_old; 3850 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3851 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3852 continue; // move to next node 3853 } 3854 ++nTr; 3855 if (pAddr) // collect requested thread's data 3856 newAddr[n_new] = (*pAddr)[n_old]; 3857 ++n_new; 3858 ++n_old; 3859 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3860 } // threads loop 3861 if (nTr > 0) { 3862 ++nCr; // num cores per socket 3863 ++nCo; // total num cores 3864 if (nTr > nTpC) 3865 nTpC = nTr; // calc max threads per core 3866 } 3867 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3868 } // cores loop 3869 } // tiles support 3870 } // numa_support 3871 if (nCr > 0) { // found cores? 3872 ++nPkg; // num sockets 3873 if (nCr > nCpP) 3874 nCpP = nCr; // calc max cores per socket 3875 } 3876 } // sockets loop 3877 3878 // check the subset is valid 3879 KMP_DEBUG_ASSERT(n_old == __kmp_avail_proc); 3880 KMP_DEBUG_ASSERT(nPkg > 0); 3881 KMP_DEBUG_ASSERT(nCpP > 0); 3882 KMP_DEBUG_ASSERT(nTpC > 0); 3883 KMP_DEBUG_ASSERT(nCo > 0); 3884 KMP_DEBUG_ASSERT(nPkg <= nPackages); 3885 KMP_DEBUG_ASSERT(nCpP <= nCoresPerPkg); 3886 KMP_DEBUG_ASSERT(nTpC <= __kmp_nThreadsPerCore); 3887 KMP_DEBUG_ASSERT(nCo <= __kmp_ncores); 3888 3889 nPackages = nPkg; // correct num sockets 3890 nCoresPerPkg = nCpP; // correct num cores per socket 3891 __kmp_nThreadsPerCore = nTpC; // correct num threads per core 3892 __kmp_avail_proc = n_new; // correct num procs 3893 __kmp_ncores = nCo; // correct num cores 3894 // hwloc topology method end 3895 } else 3896 #endif // KMP_USE_HWLOC 3897 { 3898 int n_old = 0, n_new = 0, proc_num = 0; 3899 if (__kmp_hws_node.num > 0 || __kmp_hws_tile.num > 0) { 3900 KMP_WARNING(AffHWSubsetNoHWLOC); 3901 goto _exit; 3902 } 3903 if (__kmp_hws_socket.num == 0) 3904 __kmp_hws_socket.num = nPackages; // use all available sockets 3905 if (__kmp_hws_core.num == 0) 3906 __kmp_hws_core.num = nCoresPerPkg; // use all available cores 3907 if (__kmp_hws_proc.num == 0 || __kmp_hws_proc.num > __kmp_nThreadsPerCore) 3908 __kmp_hws_proc.num = __kmp_nThreadsPerCore; // use all HW contexts 3909 if (!__kmp_affinity_uniform_topology()) { 3910 KMP_WARNING(AffHWSubsetNonUniform); 3911 goto _exit; // don't support non-uniform topology 3912 } 3913 if (depth > 3) { 3914 KMP_WARNING(AffHWSubsetNonThreeLevel); 3915 goto _exit; // don't support not-3-level topology 3916 } 3917 if (__kmp_hws_socket.offset + __kmp_hws_socket.num > nPackages) { 3918 KMP_WARNING(AffHWSubsetManySockets); 3919 goto _exit; 3920 } 3921 if (__kmp_hws_core.offset + __kmp_hws_core.num > nCoresPerPkg) { 3922 KMP_WARNING(AffHWSubsetManyCores); 3923 goto _exit; 3924 } 3925 // Form the requested subset 3926 if (pAddr) // pAddr is NULL in case of affinity_none 3927 newAddr = (AddrUnsPair *)__kmp_allocate( 3928 sizeof(AddrUnsPair) * __kmp_hws_socket.num * __kmp_hws_core.num * 3929 __kmp_hws_proc.num); 3930 for (int i = 0; i < nPackages; ++i) { 3931 if (i < __kmp_hws_socket.offset || 3932 i >= __kmp_hws_socket.offset + __kmp_hws_socket.num) { 3933 // skip not-requested socket 3934 n_old += nCoresPerPkg * __kmp_nThreadsPerCore; 3935 if (__kmp_pu_os_idx != NULL) { 3936 // walk through skipped socket 3937 for (int j = 0; j < nCoresPerPkg; ++j) { 3938 for (int k = 0; k < __kmp_nThreadsPerCore; ++k) { 3939 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask); 3940 ++proc_num; 3941 } 3942 } 3943 } 3944 } else { 3945 // walk through requested socket 3946 for (int j = 0; j < nCoresPerPkg; ++j) { 3947 if (j < __kmp_hws_core.offset || 3948 j >= __kmp_hws_core.offset + 3949 __kmp_hws_core.num) { // skip not-requested core 3950 n_old += __kmp_nThreadsPerCore; 3951 if (__kmp_pu_os_idx != NULL) { 3952 for (int k = 0; k < __kmp_nThreadsPerCore; ++k) { 3953 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask); 3954 ++proc_num; 3955 } 3956 } 3957 } else { 3958 // walk through requested core 3959 for (int k = 0; k < __kmp_nThreadsPerCore; ++k) { 3960 if (k < __kmp_hws_proc.num) { 3961 if (pAddr) // collect requested thread's data 3962 newAddr[n_new] = (*pAddr)[n_old]; 3963 n_new++; 3964 } else { 3965 if (__kmp_pu_os_idx != NULL) 3966 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask); 3967 } 3968 n_old++; 3969 ++proc_num; 3970 } 3971 } 3972 } 3973 } 3974 } 3975 KMP_DEBUG_ASSERT(n_old == nPackages * nCoresPerPkg * __kmp_nThreadsPerCore); 3976 KMP_DEBUG_ASSERT(n_new == 3977 __kmp_hws_socket.num * __kmp_hws_core.num * 3978 __kmp_hws_proc.num); 3979 nPackages = __kmp_hws_socket.num; // correct nPackages 3980 nCoresPerPkg = __kmp_hws_core.num; // correct nCoresPerPkg 3981 __kmp_nThreadsPerCore = __kmp_hws_proc.num; // correct __kmp_nThreadsPerCore 3982 __kmp_avail_proc = n_new; // correct avail_proc 3983 __kmp_ncores = nPackages * __kmp_hws_core.num; // correct ncores 3984 } // non-hwloc topology method 3985 if (pAddr) { 3986 __kmp_free(*pAddr); 3987 *pAddr = newAddr; // replace old topology with new one 3988 } 3989 if (__kmp_affinity_verbose) { 3990 char m[KMP_AFFIN_MASK_PRINT_LEN]; 3991 __kmp_affinity_print_mask(m, KMP_AFFIN_MASK_PRINT_LEN, 3992 __kmp_affin_fullMask); 3993 if (__kmp_affinity_respect_mask) { 3994 KMP_INFORM(InitOSProcSetRespect, "KMP_HW_SUBSET", m); 3995 } else { 3996 KMP_INFORM(InitOSProcSetNotRespect, "KMP_HW_SUBSET", m); 3997 } 3998 KMP_INFORM(AvailableOSProc, "KMP_HW_SUBSET", __kmp_avail_proc); 3999 kmp_str_buf_t buf; 4000 __kmp_str_buf_init(&buf); 4001 __kmp_str_buf_print(&buf, "%d", nPackages); 4002 KMP_INFORM(TopologyExtra, "KMP_HW_SUBSET", buf.str, nCoresPerPkg, 4003 __kmp_nThreadsPerCore, __kmp_ncores); 4004 __kmp_str_buf_free(&buf); 4005 } 4006 _exit: 4007 if (__kmp_pu_os_idx != NULL) { 4008 __kmp_free(__kmp_pu_os_idx); 4009 __kmp_pu_os_idx = NULL; 4010 } 4011 } 4012 4013 // This function figures out the deepest level at which there is at least one 4014 // cluster/core with more than one processing unit bound to it. 4015 static int __kmp_affinity_find_core_level(const AddrUnsPair *address2os, 4016 int nprocs, int bottom_level) { 4017 int core_level = 0; 4018 4019 for (int i = 0; i < nprocs; i++) { 4020 for (int j = bottom_level; j > 0; j--) { 4021 if (address2os[i].first.labels[j] > 0) { 4022 if (core_level < (j - 1)) { 4023 core_level = j - 1; 4024 } 4025 } 4026 } 4027 } 4028 return core_level; 4029 } 4030 4031 // This function counts number of clusters/cores at given level. 4032 static int __kmp_affinity_compute_ncores(const AddrUnsPair *address2os, 4033 int nprocs, int bottom_level, 4034 int core_level) { 4035 int ncores = 0; 4036 int i, j; 4037 4038 j = bottom_level; 4039 for (i = 0; i < nprocs; i++) { 4040 for (j = bottom_level; j > core_level; j--) { 4041 if ((i + 1) < nprocs) { 4042 if (address2os[i + 1].first.labels[j] > 0) { 4043 break; 4044 } 4045 } 4046 } 4047 if (j == core_level) { 4048 ncores++; 4049 } 4050 } 4051 if (j > core_level) { 4052 // In case of ( nprocs < __kmp_avail_proc ) we may end too deep and miss one 4053 // core. May occur when called from __kmp_affinity_find_core(). 4054 ncores++; 4055 } 4056 return ncores; 4057 } 4058 4059 // This function finds to which cluster/core given processing unit is bound. 4060 static int __kmp_affinity_find_core(const AddrUnsPair *address2os, int proc, 4061 int bottom_level, int core_level) { 4062 return __kmp_affinity_compute_ncores(address2os, proc + 1, bottom_level, 4063 core_level) - 4064 1; 4065 } 4066 4067 // This function finds maximal number of processing units bound to a 4068 // cluster/core at given level. 4069 static int __kmp_affinity_max_proc_per_core(const AddrUnsPair *address2os, 4070 int nprocs, int bottom_level, 4071 int core_level) { 4072 int maxprocpercore = 0; 4073 4074 if (core_level < bottom_level) { 4075 for (int i = 0; i < nprocs; i++) { 4076 int percore = address2os[i].first.labels[core_level + 1] + 1; 4077 4078 if (percore > maxprocpercore) { 4079 maxprocpercore = percore; 4080 } 4081 } 4082 } else { 4083 maxprocpercore = 1; 4084 } 4085 return maxprocpercore; 4086 } 4087 4088 static AddrUnsPair *address2os = NULL; 4089 static int *procarr = NULL; 4090 static int __kmp_aff_depth = 0; 4091 4092 #if KMP_USE_HIER_SCHED 4093 #define KMP_EXIT_AFF_NONE \ 4094 KMP_ASSERT(__kmp_affinity_type == affinity_none); \ 4095 KMP_ASSERT(address2os == NULL); \ 4096 __kmp_apply_thread_places(NULL, 0); \ 4097 __kmp_create_affinity_none_places(); \ 4098 __kmp_dispatch_set_hierarchy_values(); \ 4099 return; 4100 #else 4101 #define KMP_EXIT_AFF_NONE \ 4102 KMP_ASSERT(__kmp_affinity_type == affinity_none); \ 4103 KMP_ASSERT(address2os == NULL); \ 4104 __kmp_apply_thread_places(NULL, 0); \ 4105 __kmp_create_affinity_none_places(); \ 4106 return; 4107 #endif 4108 4109 // Create a one element mask array (set of places) which only contains the 4110 // initial process's affinity mask 4111 static void __kmp_create_affinity_none_places() { 4112 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4113 KMP_ASSERT(__kmp_affinity_type == affinity_none); 4114 __kmp_affinity_num_masks = 1; 4115 KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); 4116 kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, 0); 4117 KMP_CPU_COPY(dest, __kmp_affin_fullMask); 4118 } 4119 4120 static int __kmp_affinity_cmp_Address_child_num(const void *a, const void *b) { 4121 const Address *aa = &(((const AddrUnsPair *)a)->first); 4122 const Address *bb = &(((const AddrUnsPair *)b)->first); 4123 unsigned depth = aa->depth; 4124 unsigned i; 4125 KMP_DEBUG_ASSERT(depth == bb->depth); 4126 KMP_DEBUG_ASSERT((unsigned)__kmp_affinity_compact <= depth); 4127 KMP_DEBUG_ASSERT(__kmp_affinity_compact >= 0); 4128 for (i = 0; i < (unsigned)__kmp_affinity_compact; i++) { 4129 int j = depth - i - 1; 4130 if (aa->childNums[j] < bb->childNums[j]) 4131 return -1; 4132 if (aa->childNums[j] > bb->childNums[j]) 4133 return 1; 4134 } 4135 for (; i < depth; i++) { 4136 int j = i - __kmp_affinity_compact; 4137 if (aa->childNums[j] < bb->childNums[j]) 4138 return -1; 4139 if (aa->childNums[j] > bb->childNums[j]) 4140 return 1; 4141 } 4142 return 0; 4143 } 4144 4145 static void __kmp_aux_affinity_initialize(void) { 4146 if (__kmp_affinity_masks != NULL) { 4147 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4148 return; 4149 } 4150 4151 // Create the "full" mask - this defines all of the processors that we 4152 // consider to be in the machine model. If respect is set, then it is the 4153 // initialization thread's affinity mask. Otherwise, it is all processors that 4154 // we know about on the machine. 4155 if (__kmp_affin_fullMask == NULL) { 4156 KMP_CPU_ALLOC(__kmp_affin_fullMask); 4157 } 4158 if (KMP_AFFINITY_CAPABLE()) { 4159 if (__kmp_affinity_respect_mask) { 4160 __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE); 4161 4162 // Count the number of available processors. 4163 unsigned i; 4164 __kmp_avail_proc = 0; 4165 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 4166 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 4167 continue; 4168 } 4169 __kmp_avail_proc++; 4170 } 4171 if (__kmp_avail_proc > __kmp_xproc) { 4172 if (__kmp_affinity_verbose || 4173 (__kmp_affinity_warnings && 4174 (__kmp_affinity_type != affinity_none))) { 4175 KMP_WARNING(ErrorInitializeAffinity); 4176 } 4177 __kmp_affinity_type = affinity_none; 4178 KMP_AFFINITY_DISABLE(); 4179 return; 4180 } 4181 } else { 4182 __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask); 4183 __kmp_avail_proc = __kmp_xproc; 4184 } 4185 } 4186 4187 if (__kmp_affinity_gran == affinity_gran_tile && 4188 // check if user's request is valid 4189 __kmp_affinity_dispatch->get_api_type() == KMPAffinity::NATIVE_OS) { 4190 KMP_WARNING(AffTilesNoHWLOC, "KMP_AFFINITY"); 4191 __kmp_affinity_gran = affinity_gran_package; 4192 } 4193 4194 int depth = -1; 4195 kmp_i18n_id_t msg_id = kmp_i18n_null; 4196 4197 // For backward compatibility, setting KMP_CPUINFO_FILE => 4198 // KMP_TOPOLOGY_METHOD=cpuinfo 4199 if ((__kmp_cpuinfo_file != NULL) && 4200 (__kmp_affinity_top_method == affinity_top_method_all)) { 4201 __kmp_affinity_top_method = affinity_top_method_cpuinfo; 4202 } 4203 4204 if (__kmp_affinity_top_method == affinity_top_method_all) { 4205 // In the default code path, errors are not fatal - we just try using 4206 // another method. We only emit a warning message if affinity is on, or the 4207 // verbose flag is set, and the nowarnings flag was not set. 4208 const char *file_name = NULL; 4209 int line = 0; 4210 #if KMP_USE_HWLOC 4211 if (depth < 0 && 4212 __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) { 4213 if (__kmp_affinity_verbose) { 4214 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); 4215 } 4216 if (!__kmp_hwloc_error) { 4217 depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id); 4218 if (depth == 0) { 4219 KMP_EXIT_AFF_NONE; 4220 } else if (depth < 0 && __kmp_affinity_verbose) { 4221 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY"); 4222 } 4223 } else if (__kmp_affinity_verbose) { 4224 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY"); 4225 } 4226 } 4227 #endif 4228 4229 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4230 4231 if (depth < 0) { 4232 if (__kmp_affinity_verbose) { 4233 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC)); 4234 } 4235 4236 file_name = NULL; 4237 depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id); 4238 if (depth == 0) { 4239 KMP_EXIT_AFF_NONE; 4240 } 4241 4242 if (depth < 0) { 4243 if (__kmp_affinity_verbose) { 4244 if (msg_id != kmp_i18n_null) { 4245 KMP_INFORM(AffInfoStrStr, "KMP_AFFINITY", 4246 __kmp_i18n_catgets(msg_id), 4247 KMP_I18N_STR(DecodingLegacyAPIC)); 4248 } else { 4249 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", 4250 KMP_I18N_STR(DecodingLegacyAPIC)); 4251 } 4252 } 4253 4254 file_name = NULL; 4255 depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id); 4256 if (depth == 0) { 4257 KMP_EXIT_AFF_NONE; 4258 } 4259 } 4260 } 4261 4262 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4263 4264 #if KMP_OS_LINUX 4265 4266 if (depth < 0) { 4267 if (__kmp_affinity_verbose) { 4268 if (msg_id != kmp_i18n_null) { 4269 KMP_INFORM(AffStrParseFilename, "KMP_AFFINITY", 4270 __kmp_i18n_catgets(msg_id), "/proc/cpuinfo"); 4271 } else { 4272 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", "/proc/cpuinfo"); 4273 } 4274 } 4275 4276 FILE *f = fopen("/proc/cpuinfo", "r"); 4277 if (f == NULL) { 4278 msg_id = kmp_i18n_str_CantOpenCpuinfo; 4279 } else { 4280 file_name = "/proc/cpuinfo"; 4281 depth = 4282 __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f); 4283 fclose(f); 4284 if (depth == 0) { 4285 KMP_EXIT_AFF_NONE; 4286 } 4287 } 4288 } 4289 4290 #endif /* KMP_OS_LINUX */ 4291 4292 #if KMP_GROUP_AFFINITY 4293 4294 if ((depth < 0) && (__kmp_num_proc_groups > 1)) { 4295 if (__kmp_affinity_verbose) { 4296 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY"); 4297 } 4298 4299 depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id); 4300 KMP_ASSERT(depth != 0); 4301 } 4302 4303 #endif /* KMP_GROUP_AFFINITY */ 4304 4305 if (depth < 0) { 4306 if (__kmp_affinity_verbose && (msg_id != kmp_i18n_null)) { 4307 if (file_name == NULL) { 4308 KMP_INFORM(UsingFlatOS, __kmp_i18n_catgets(msg_id)); 4309 } else if (line == 0) { 4310 KMP_INFORM(UsingFlatOSFile, file_name, __kmp_i18n_catgets(msg_id)); 4311 } else { 4312 KMP_INFORM(UsingFlatOSFileLine, file_name, line, 4313 __kmp_i18n_catgets(msg_id)); 4314 } 4315 } 4316 // FIXME - print msg if msg_id = kmp_i18n_null ??? 4317 4318 file_name = ""; 4319 depth = __kmp_affinity_create_flat_map(&address2os, &msg_id); 4320 if (depth == 0) { 4321 KMP_EXIT_AFF_NONE; 4322 } 4323 KMP_ASSERT(depth > 0); 4324 KMP_ASSERT(address2os != NULL); 4325 } 4326 } 4327 4328 #if KMP_USE_HWLOC 4329 else if (__kmp_affinity_top_method == affinity_top_method_hwloc) { 4330 KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC); 4331 if (__kmp_affinity_verbose) { 4332 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); 4333 } 4334 depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id); 4335 if (depth == 0) { 4336 KMP_EXIT_AFF_NONE; 4337 } 4338 } 4339 #endif // KMP_USE_HWLOC 4340 4341 // If the user has specified that a particular topology discovery method is to be 4342 // used, then we abort if that method fails. The exception is group affinity, 4343 // which might have been implicitly set. 4344 4345 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4346 4347 else if (__kmp_affinity_top_method == affinity_top_method_x2apicid) { 4348 if (__kmp_affinity_verbose) { 4349 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC)); 4350 } 4351 4352 depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id); 4353 if (depth == 0) { 4354 KMP_EXIT_AFF_NONE; 4355 } 4356 if (depth < 0) { 4357 KMP_ASSERT(msg_id != kmp_i18n_null); 4358 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4359 } 4360 } else if (__kmp_affinity_top_method == affinity_top_method_apicid) { 4361 if (__kmp_affinity_verbose) { 4362 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC)); 4363 } 4364 4365 depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id); 4366 if (depth == 0) { 4367 KMP_EXIT_AFF_NONE; 4368 } 4369 if (depth < 0) { 4370 KMP_ASSERT(msg_id != kmp_i18n_null); 4371 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4372 } 4373 } 4374 4375 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4376 4377 else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) { 4378 const char *filename; 4379 if (__kmp_cpuinfo_file != NULL) { 4380 filename = __kmp_cpuinfo_file; 4381 } else { 4382 filename = "/proc/cpuinfo"; 4383 } 4384 4385 if (__kmp_affinity_verbose) { 4386 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename); 4387 } 4388 4389 FILE *f = fopen(filename, "r"); 4390 if (f == NULL) { 4391 int code = errno; 4392 if (__kmp_cpuinfo_file != NULL) { 4393 __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code), 4394 KMP_HNT(NameComesFrom_CPUINFO_FILE), __kmp_msg_null); 4395 } else { 4396 __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code), 4397 __kmp_msg_null); 4398 } 4399 } 4400 int line = 0; 4401 depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f); 4402 fclose(f); 4403 if (depth < 0) { 4404 KMP_ASSERT(msg_id != kmp_i18n_null); 4405 if (line > 0) { 4406 KMP_FATAL(FileLineMsgExiting, filename, line, 4407 __kmp_i18n_catgets(msg_id)); 4408 } else { 4409 KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id)); 4410 } 4411 } 4412 if (__kmp_affinity_type == affinity_none) { 4413 KMP_ASSERT(depth == 0); 4414 KMP_EXIT_AFF_NONE; 4415 } 4416 } 4417 4418 #if KMP_GROUP_AFFINITY 4419 4420 else if (__kmp_affinity_top_method == affinity_top_method_group) { 4421 if (__kmp_affinity_verbose) { 4422 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY"); 4423 } 4424 4425 depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id); 4426 KMP_ASSERT(depth != 0); 4427 if (depth < 0) { 4428 KMP_ASSERT(msg_id != kmp_i18n_null); 4429 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4430 } 4431 } 4432 4433 #endif /* KMP_GROUP_AFFINITY */ 4434 4435 else if (__kmp_affinity_top_method == affinity_top_method_flat) { 4436 if (__kmp_affinity_verbose) { 4437 KMP_INFORM(AffUsingFlatOS, "KMP_AFFINITY"); 4438 } 4439 4440 depth = __kmp_affinity_create_flat_map(&address2os, &msg_id); 4441 if (depth == 0) { 4442 KMP_EXIT_AFF_NONE; 4443 } 4444 // should not fail 4445 KMP_ASSERT(depth > 0); 4446 KMP_ASSERT(address2os != NULL); 4447 } 4448 4449 #if KMP_USE_HIER_SCHED 4450 __kmp_dispatch_set_hierarchy_values(); 4451 #endif 4452 4453 if (address2os == NULL) { 4454 if (KMP_AFFINITY_CAPABLE() && 4455 (__kmp_affinity_verbose || 4456 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none)))) { 4457 KMP_WARNING(ErrorInitializeAffinity); 4458 } 4459 __kmp_affinity_type = affinity_none; 4460 __kmp_create_affinity_none_places(); 4461 KMP_AFFINITY_DISABLE(); 4462 return; 4463 } 4464 4465 if (__kmp_affinity_gran == affinity_gran_tile 4466 #if KMP_USE_HWLOC 4467 && __kmp_tile_depth == 0 4468 #endif 4469 ) { 4470 // tiles requested but not detected, warn user on this 4471 KMP_WARNING(AffTilesNoTiles, "KMP_AFFINITY"); 4472 } 4473 4474 __kmp_apply_thread_places(&address2os, depth); 4475 4476 // Create the table of masks, indexed by thread Id. 4477 unsigned maxIndex; 4478 unsigned numUnique; 4479 kmp_affin_mask_t *osId2Mask = 4480 __kmp_create_masks(&maxIndex, &numUnique, address2os, __kmp_avail_proc); 4481 if (__kmp_affinity_gran_levels == 0) { 4482 KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc); 4483 } 4484 4485 // Set the childNums vector in all Address objects. This must be done before 4486 // we can sort using __kmp_affinity_cmp_Address_child_num(), which takes into 4487 // account the setting of __kmp_affinity_compact. 4488 __kmp_affinity_assign_child_nums(address2os, __kmp_avail_proc); 4489 4490 switch (__kmp_affinity_type) { 4491 4492 case affinity_explicit: 4493 KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL); 4494 if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) { 4495 __kmp_affinity_process_proclist( 4496 &__kmp_affinity_masks, &__kmp_affinity_num_masks, 4497 __kmp_affinity_proclist, osId2Mask, maxIndex); 4498 } else { 4499 __kmp_affinity_process_placelist( 4500 &__kmp_affinity_masks, &__kmp_affinity_num_masks, 4501 __kmp_affinity_proclist, osId2Mask, maxIndex); 4502 } 4503 if (__kmp_affinity_num_masks == 0) { 4504 if (__kmp_affinity_verbose || 4505 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { 4506 KMP_WARNING(AffNoValidProcID); 4507 } 4508 __kmp_affinity_type = affinity_none; 4509 __kmp_create_affinity_none_places(); 4510 return; 4511 } 4512 break; 4513 4514 // The other affinity types rely on sorting the Addresses according to some 4515 // permutation of the machine topology tree. Set __kmp_affinity_compact and 4516 // __kmp_affinity_offset appropriately, then jump to a common code fragment 4517 // to do the sort and create the array of affinity masks. 4518 4519 case affinity_logical: 4520 __kmp_affinity_compact = 0; 4521 if (__kmp_affinity_offset) { 4522 __kmp_affinity_offset = 4523 __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc; 4524 } 4525 goto sortAddresses; 4526 4527 case affinity_physical: 4528 if (__kmp_nThreadsPerCore > 1) { 4529 __kmp_affinity_compact = 1; 4530 if (__kmp_affinity_compact >= depth) { 4531 __kmp_affinity_compact = 0; 4532 } 4533 } else { 4534 __kmp_affinity_compact = 0; 4535 } 4536 if (__kmp_affinity_offset) { 4537 __kmp_affinity_offset = 4538 __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc; 4539 } 4540 goto sortAddresses; 4541 4542 case affinity_scatter: 4543 if (__kmp_affinity_compact >= depth) { 4544 __kmp_affinity_compact = 0; 4545 } else { 4546 __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact; 4547 } 4548 goto sortAddresses; 4549 4550 case affinity_compact: 4551 if (__kmp_affinity_compact >= depth) { 4552 __kmp_affinity_compact = depth - 1; 4553 } 4554 goto sortAddresses; 4555 4556 case affinity_balanced: 4557 if (depth <= 1) { 4558 if (__kmp_affinity_verbose || __kmp_affinity_warnings) { 4559 KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY"); 4560 } 4561 __kmp_affinity_type = affinity_none; 4562 __kmp_create_affinity_none_places(); 4563 return; 4564 } else if (!__kmp_affinity_uniform_topology()) { 4565 // Save the depth for further usage 4566 __kmp_aff_depth = depth; 4567 4568 int core_level = __kmp_affinity_find_core_level( 4569 address2os, __kmp_avail_proc, depth - 1); 4570 int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc, 4571 depth - 1, core_level); 4572 int maxprocpercore = __kmp_affinity_max_proc_per_core( 4573 address2os, __kmp_avail_proc, depth - 1, core_level); 4574 4575 int nproc = ncores * maxprocpercore; 4576 if ((nproc < 2) || (nproc < __kmp_avail_proc)) { 4577 if (__kmp_affinity_verbose || __kmp_affinity_warnings) { 4578 KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY"); 4579 } 4580 __kmp_affinity_type = affinity_none; 4581 return; 4582 } 4583 4584 procarr = (int *)__kmp_allocate(sizeof(int) * nproc); 4585 for (int i = 0; i < nproc; i++) { 4586 procarr[i] = -1; 4587 } 4588 4589 int lastcore = -1; 4590 int inlastcore = 0; 4591 for (int i = 0; i < __kmp_avail_proc; i++) { 4592 int proc = address2os[i].second; 4593 int core = 4594 __kmp_affinity_find_core(address2os, i, depth - 1, core_level); 4595 4596 if (core == lastcore) { 4597 inlastcore++; 4598 } else { 4599 inlastcore = 0; 4600 } 4601 lastcore = core; 4602 4603 procarr[core * maxprocpercore + inlastcore] = proc; 4604 } 4605 } 4606 if (__kmp_affinity_compact >= depth) { 4607 __kmp_affinity_compact = depth - 1; 4608 } 4609 4610 sortAddresses: 4611 // Allocate the gtid->affinity mask table. 4612 if (__kmp_affinity_dups) { 4613 __kmp_affinity_num_masks = __kmp_avail_proc; 4614 } else { 4615 __kmp_affinity_num_masks = numUnique; 4616 } 4617 4618 if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) && 4619 (__kmp_affinity_num_places > 0) && 4620 ((unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks)) { 4621 __kmp_affinity_num_masks = __kmp_affinity_num_places; 4622 } 4623 4624 KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); 4625 4626 // Sort the address2os table according to the current setting of 4627 // __kmp_affinity_compact, then fill out __kmp_affinity_masks. 4628 qsort(address2os, __kmp_avail_proc, sizeof(*address2os), 4629 __kmp_affinity_cmp_Address_child_num); 4630 { 4631 int i; 4632 unsigned j; 4633 for (i = 0, j = 0; i < __kmp_avail_proc; i++) { 4634 if ((!__kmp_affinity_dups) && (!address2os[i].first.leader)) { 4635 continue; 4636 } 4637 unsigned osId = address2os[i].second; 4638 kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId); 4639 kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, j); 4640 KMP_ASSERT(KMP_CPU_ISSET(osId, src)); 4641 KMP_CPU_COPY(dest, src); 4642 if (++j >= __kmp_affinity_num_masks) { 4643 break; 4644 } 4645 } 4646 KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks); 4647 } 4648 break; 4649 4650 default: 4651 KMP_ASSERT2(0, "Unexpected affinity setting"); 4652 } 4653 4654 KMP_CPU_FREE_ARRAY(osId2Mask, maxIndex + 1); 4655 machine_hierarchy.init(address2os, __kmp_avail_proc); 4656 } 4657 #undef KMP_EXIT_AFF_NONE 4658 4659 void __kmp_affinity_initialize(void) { 4660 // Much of the code above was written assuming that if a machine was not 4661 // affinity capable, then __kmp_affinity_type == affinity_none. We now 4662 // explicitly represent this as __kmp_affinity_type == affinity_disabled. 4663 // There are too many checks for __kmp_affinity_type == affinity_none 4664 // in this code. Instead of trying to change them all, check if 4665 // __kmp_affinity_type == affinity_disabled, and if so, slam it with 4666 // affinity_none, call the real initialization routine, then restore 4667 // __kmp_affinity_type to affinity_disabled. 4668 int disabled = (__kmp_affinity_type == affinity_disabled); 4669 if (!KMP_AFFINITY_CAPABLE()) { 4670 KMP_ASSERT(disabled); 4671 } 4672 if (disabled) { 4673 __kmp_affinity_type = affinity_none; 4674 } 4675 __kmp_aux_affinity_initialize(); 4676 if (disabled) { 4677 __kmp_affinity_type = affinity_disabled; 4678 } 4679 } 4680 4681 void __kmp_affinity_uninitialize(void) { 4682 if (__kmp_affinity_masks != NULL) { 4683 KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); 4684 __kmp_affinity_masks = NULL; 4685 } 4686 if (__kmp_affin_fullMask != NULL) { 4687 KMP_CPU_FREE(__kmp_affin_fullMask); 4688 __kmp_affin_fullMask = NULL; 4689 } 4690 __kmp_affinity_num_masks = 0; 4691 __kmp_affinity_type = affinity_default; 4692 __kmp_affinity_num_places = 0; 4693 if (__kmp_affinity_proclist != NULL) { 4694 __kmp_free(__kmp_affinity_proclist); 4695 __kmp_affinity_proclist = NULL; 4696 } 4697 if (address2os != NULL) { 4698 __kmp_free(address2os); 4699 address2os = NULL; 4700 } 4701 if (procarr != NULL) { 4702 __kmp_free(procarr); 4703 procarr = NULL; 4704 } 4705 #if KMP_USE_HWLOC 4706 if (__kmp_hwloc_topology != NULL) { 4707 hwloc_topology_destroy(__kmp_hwloc_topology); 4708 __kmp_hwloc_topology = NULL; 4709 } 4710 #endif 4711 KMPAffinity::destroy_api(); 4712 } 4713 4714 void __kmp_affinity_set_init_mask(int gtid, int isa_root) { 4715 if (!KMP_AFFINITY_CAPABLE()) { 4716 return; 4717 } 4718 4719 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); 4720 if (th->th.th_affin_mask == NULL) { 4721 KMP_CPU_ALLOC(th->th.th_affin_mask); 4722 } else { 4723 KMP_CPU_ZERO(th->th.th_affin_mask); 4724 } 4725 4726 // Copy the thread mask to the kmp_info_t structure. If 4727 // __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one that 4728 // has all of the OS proc ids set, or if __kmp_affinity_respect_mask is set, 4729 // then the full mask is the same as the mask of the initialization thread. 4730 kmp_affin_mask_t *mask; 4731 int i; 4732 4733 if (KMP_AFFINITY_NON_PROC_BIND) { 4734 if ((__kmp_affinity_type == affinity_none) || 4735 (__kmp_affinity_type == affinity_balanced)) { 4736 #if KMP_GROUP_AFFINITY 4737 if (__kmp_num_proc_groups > 1) { 4738 return; 4739 } 4740 #endif 4741 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4742 i = 0; 4743 mask = __kmp_affin_fullMask; 4744 } else { 4745 KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0); 4746 i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks; 4747 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); 4748 } 4749 } else { 4750 if ((!isa_root) || 4751 (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) { 4752 #if KMP_GROUP_AFFINITY 4753 if (__kmp_num_proc_groups > 1) { 4754 return; 4755 } 4756 #endif 4757 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4758 i = KMP_PLACE_ALL; 4759 mask = __kmp_affin_fullMask; 4760 } else { 4761 // int i = some hash function or just a counter that doesn't 4762 // always start at 0. Use gtid for now. 4763 KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0); 4764 i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks; 4765 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); 4766 } 4767 } 4768 4769 th->th.th_current_place = i; 4770 if (isa_root) { 4771 th->th.th_new_place = i; 4772 th->th.th_first_place = 0; 4773 th->th.th_last_place = __kmp_affinity_num_masks - 1; 4774 } else if (KMP_AFFINITY_NON_PROC_BIND) { 4775 // When using a Non-OMP_PROC_BIND affinity method, 4776 // set all threads' place-partition-var to the entire place list 4777 th->th.th_first_place = 0; 4778 th->th.th_last_place = __kmp_affinity_num_masks - 1; 4779 } 4780 4781 if (i == KMP_PLACE_ALL) { 4782 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n", 4783 gtid)); 4784 } else { 4785 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n", 4786 gtid, i)); 4787 } 4788 4789 KMP_CPU_COPY(th->th.th_affin_mask, mask); 4790 4791 if (__kmp_affinity_verbose 4792 /* to avoid duplicate printing (will be correctly printed on barrier) */ 4793 && (__kmp_affinity_type == affinity_none || 4794 (i != KMP_PLACE_ALL && __kmp_affinity_type != affinity_balanced))) { 4795 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4796 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4797 th->th.th_affin_mask); 4798 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), 4799 __kmp_gettid(), gtid, buf); 4800 } 4801 4802 #if KMP_OS_WINDOWS 4803 // On Windows* OS, the process affinity mask might have changed. If the user 4804 // didn't request affinity and this call fails, just continue silently. 4805 // See CQ171393. 4806 if (__kmp_affinity_type == affinity_none) { 4807 __kmp_set_system_affinity(th->th.th_affin_mask, FALSE); 4808 } else 4809 #endif 4810 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); 4811 } 4812 4813 void __kmp_affinity_set_place(int gtid) { 4814 if (!KMP_AFFINITY_CAPABLE()) { 4815 return; 4816 } 4817 4818 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); 4819 4820 KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current " 4821 "place = %d)\n", 4822 gtid, th->th.th_new_place, th->th.th_current_place)); 4823 4824 // Check that the new place is within this thread's partition. 4825 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4826 KMP_ASSERT(th->th.th_new_place >= 0); 4827 KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks); 4828 if (th->th.th_first_place <= th->th.th_last_place) { 4829 KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) && 4830 (th->th.th_new_place <= th->th.th_last_place)); 4831 } else { 4832 KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) || 4833 (th->th.th_new_place >= th->th.th_last_place)); 4834 } 4835 4836 // Copy the thread mask to the kmp_info_t structure, 4837 // and set this thread's affinity. 4838 kmp_affin_mask_t *mask = 4839 KMP_CPU_INDEX(__kmp_affinity_masks, th->th.th_new_place); 4840 KMP_CPU_COPY(th->th.th_affin_mask, mask); 4841 th->th.th_current_place = th->th.th_new_place; 4842 4843 if (__kmp_affinity_verbose) { 4844 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4845 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4846 th->th.th_affin_mask); 4847 KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(), 4848 __kmp_gettid(), gtid, buf); 4849 } 4850 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); 4851 } 4852 4853 int __kmp_aux_set_affinity(void **mask) { 4854 int gtid; 4855 kmp_info_t *th; 4856 int retval; 4857 4858 if (!KMP_AFFINITY_CAPABLE()) { 4859 return -1; 4860 } 4861 4862 gtid = __kmp_entry_gtid(); 4863 KA_TRACE(1000, (""); { 4864 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4865 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4866 (kmp_affin_mask_t *)(*mask)); 4867 __kmp_debug_printf( 4868 "kmp_set_affinity: setting affinity mask for thread %d = %s\n", gtid, 4869 buf); 4870 }); 4871 4872 if (__kmp_env_consistency_check) { 4873 if ((mask == NULL) || (*mask == NULL)) { 4874 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4875 } else { 4876 unsigned proc; 4877 int num_procs = 0; 4878 4879 KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) { 4880 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 4881 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4882 } 4883 if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) { 4884 continue; 4885 } 4886 num_procs++; 4887 } 4888 if (num_procs == 0) { 4889 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4890 } 4891 4892 #if KMP_GROUP_AFFINITY 4893 if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) { 4894 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4895 } 4896 #endif /* KMP_GROUP_AFFINITY */ 4897 } 4898 } 4899 4900 th = __kmp_threads[gtid]; 4901 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4902 retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); 4903 if (retval == 0) { 4904 KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask)); 4905 } 4906 4907 th->th.th_current_place = KMP_PLACE_UNDEFINED; 4908 th->th.th_new_place = KMP_PLACE_UNDEFINED; 4909 th->th.th_first_place = 0; 4910 th->th.th_last_place = __kmp_affinity_num_masks - 1; 4911 4912 // Turn off 4.0 affinity for the current tread at this parallel level. 4913 th->th.th_current_task->td_icvs.proc_bind = proc_bind_false; 4914 4915 return retval; 4916 } 4917 4918 int __kmp_aux_get_affinity(void **mask) { 4919 int gtid; 4920 int retval; 4921 kmp_info_t *th; 4922 4923 if (!KMP_AFFINITY_CAPABLE()) { 4924 return -1; 4925 } 4926 4927 gtid = __kmp_entry_gtid(); 4928 th = __kmp_threads[gtid]; 4929 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4930 4931 KA_TRACE(1000, (""); { 4932 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4933 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4934 th->th.th_affin_mask); 4935 __kmp_printf("kmp_get_affinity: stored affinity mask for thread %d = %s\n", 4936 gtid, buf); 4937 }); 4938 4939 if (__kmp_env_consistency_check) { 4940 if ((mask == NULL) || (*mask == NULL)) { 4941 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity"); 4942 } 4943 } 4944 4945 #if !KMP_OS_WINDOWS 4946 4947 retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); 4948 KA_TRACE(1000, (""); { 4949 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4950 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4951 (kmp_affin_mask_t *)(*mask)); 4952 __kmp_printf("kmp_get_affinity: system affinity mask for thread %d = %s\n", 4953 gtid, buf); 4954 }); 4955 return retval; 4956 4957 #else 4958 4959 KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask); 4960 return 0; 4961 4962 #endif /* KMP_OS_WINDOWS */ 4963 } 4964 4965 int __kmp_aux_get_affinity_max_proc() { 4966 if (!KMP_AFFINITY_CAPABLE()) { 4967 return 0; 4968 } 4969 #if KMP_GROUP_AFFINITY 4970 if (__kmp_num_proc_groups > 1) { 4971 return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT); 4972 } 4973 #endif 4974 return __kmp_xproc; 4975 } 4976 4977 int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) { 4978 if (!KMP_AFFINITY_CAPABLE()) { 4979 return -1; 4980 } 4981 4982 KA_TRACE(1000, (""); { 4983 int gtid = __kmp_entry_gtid(); 4984 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4985 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4986 (kmp_affin_mask_t *)(*mask)); 4987 __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in " 4988 "affinity mask for thread %d = %s\n", 4989 proc, gtid, buf); 4990 }); 4991 4992 if (__kmp_env_consistency_check) { 4993 if ((mask == NULL) || (*mask == NULL)) { 4994 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc"); 4995 } 4996 } 4997 4998 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 4999 return -1; 5000 } 5001 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 5002 return -2; 5003 } 5004 5005 KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask)); 5006 return 0; 5007 } 5008 5009 int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) { 5010 if (!KMP_AFFINITY_CAPABLE()) { 5011 return -1; 5012 } 5013 5014 KA_TRACE(1000, (""); { 5015 int gtid = __kmp_entry_gtid(); 5016 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5017 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5018 (kmp_affin_mask_t *)(*mask)); 5019 __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in " 5020 "affinity mask for thread %d = %s\n", 5021 proc, gtid, buf); 5022 }); 5023 5024 if (__kmp_env_consistency_check) { 5025 if ((mask == NULL) || (*mask == NULL)) { 5026 KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc"); 5027 } 5028 } 5029 5030 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 5031 return -1; 5032 } 5033 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 5034 return -2; 5035 } 5036 5037 KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask)); 5038 return 0; 5039 } 5040 5041 int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) { 5042 if (!KMP_AFFINITY_CAPABLE()) { 5043 return -1; 5044 } 5045 5046 KA_TRACE(1000, (""); { 5047 int gtid = __kmp_entry_gtid(); 5048 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5049 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5050 (kmp_affin_mask_t *)(*mask)); 5051 __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in " 5052 "affinity mask for thread %d = %s\n", 5053 proc, gtid, buf); 5054 }); 5055 5056 if (__kmp_env_consistency_check) { 5057 if ((mask == NULL) || (*mask == NULL)) { 5058 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc"); 5059 } 5060 } 5061 5062 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 5063 return -1; 5064 } 5065 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 5066 return 0; 5067 } 5068 5069 return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask)); 5070 } 5071 5072 // Dynamic affinity settings - Affinity balanced 5073 void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) { 5074 KMP_DEBUG_ASSERT(th); 5075 bool fine_gran = true; 5076 int tid = th->th.th_info.ds.ds_tid; 5077 5078 switch (__kmp_affinity_gran) { 5079 case affinity_gran_fine: 5080 case affinity_gran_thread: 5081 break; 5082 case affinity_gran_core: 5083 if (__kmp_nThreadsPerCore > 1) { 5084 fine_gran = false; 5085 } 5086 break; 5087 case affinity_gran_package: 5088 if (nCoresPerPkg > 1) { 5089 fine_gran = false; 5090 } 5091 break; 5092 default: 5093 fine_gran = false; 5094 } 5095 5096 if (__kmp_affinity_uniform_topology()) { 5097 int coreID; 5098 int threadID; 5099 // Number of hyper threads per core in HT machine 5100 int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores; 5101 // Number of cores 5102 int ncores = __kmp_ncores; 5103 if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) { 5104 __kmp_nth_per_core = __kmp_avail_proc / nPackages; 5105 ncores = nPackages; 5106 } 5107 // How many threads will be bound to each core 5108 int chunk = nthreads / ncores; 5109 // How many cores will have an additional thread bound to it - "big cores" 5110 int big_cores = nthreads % ncores; 5111 // Number of threads on the big cores 5112 int big_nth = (chunk + 1) * big_cores; 5113 if (tid < big_nth) { 5114 coreID = tid / (chunk + 1); 5115 threadID = (tid % (chunk + 1)) % __kmp_nth_per_core; 5116 } else { // tid >= big_nth 5117 coreID = (tid - big_cores) / chunk; 5118 threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core; 5119 } 5120 5121 KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(), 5122 "Illegal set affinity operation when not capable"); 5123 5124 kmp_affin_mask_t *mask = th->th.th_affin_mask; 5125 KMP_CPU_ZERO(mask); 5126 5127 if (fine_gran) { 5128 int osID = address2os[coreID * __kmp_nth_per_core + threadID].second; 5129 KMP_CPU_SET(osID, mask); 5130 } else { 5131 for (int i = 0; i < __kmp_nth_per_core; i++) { 5132 int osID; 5133 osID = address2os[coreID * __kmp_nth_per_core + i].second; 5134 KMP_CPU_SET(osID, mask); 5135 } 5136 } 5137 if (__kmp_affinity_verbose) { 5138 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5139 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); 5140 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), 5141 __kmp_gettid(), tid, buf); 5142 } 5143 __kmp_set_system_affinity(mask, TRUE); 5144 } else { // Non-uniform topology 5145 5146 kmp_affin_mask_t *mask = th->th.th_affin_mask; 5147 KMP_CPU_ZERO(mask); 5148 5149 int core_level = __kmp_affinity_find_core_level( 5150 address2os, __kmp_avail_proc, __kmp_aff_depth - 1); 5151 int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc, 5152 __kmp_aff_depth - 1, core_level); 5153 int nth_per_core = __kmp_affinity_max_proc_per_core( 5154 address2os, __kmp_avail_proc, __kmp_aff_depth - 1, core_level); 5155 5156 // For performance gain consider the special case nthreads == 5157 // __kmp_avail_proc 5158 if (nthreads == __kmp_avail_proc) { 5159 if (fine_gran) { 5160 int osID = address2os[tid].second; 5161 KMP_CPU_SET(osID, mask); 5162 } else { 5163 int core = __kmp_affinity_find_core(address2os, tid, 5164 __kmp_aff_depth - 1, core_level); 5165 for (int i = 0; i < __kmp_avail_proc; i++) { 5166 int osID = address2os[i].second; 5167 if (__kmp_affinity_find_core(address2os, i, __kmp_aff_depth - 1, 5168 core_level) == core) { 5169 KMP_CPU_SET(osID, mask); 5170 } 5171 } 5172 } 5173 } else if (nthreads <= ncores) { 5174 5175 int core = 0; 5176 for (int i = 0; i < ncores; i++) { 5177 // Check if this core from procarr[] is in the mask 5178 int in_mask = 0; 5179 for (int j = 0; j < nth_per_core; j++) { 5180 if (procarr[i * nth_per_core + j] != -1) { 5181 in_mask = 1; 5182 break; 5183 } 5184 } 5185 if (in_mask) { 5186 if (tid == core) { 5187 for (int j = 0; j < nth_per_core; j++) { 5188 int osID = procarr[i * nth_per_core + j]; 5189 if (osID != -1) { 5190 KMP_CPU_SET(osID, mask); 5191 // For fine granularity it is enough to set the first available 5192 // osID for this core 5193 if (fine_gran) { 5194 break; 5195 } 5196 } 5197 } 5198 break; 5199 } else { 5200 core++; 5201 } 5202 } 5203 } 5204 } else { // nthreads > ncores 5205 // Array to save the number of processors at each core 5206 int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores); 5207 // Array to save the number of cores with "x" available processors; 5208 int *ncores_with_x_procs = 5209 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); 5210 // Array to save the number of cores with # procs from x to nth_per_core 5211 int *ncores_with_x_to_max_procs = 5212 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); 5213 5214 for (int i = 0; i <= nth_per_core; i++) { 5215 ncores_with_x_procs[i] = 0; 5216 ncores_with_x_to_max_procs[i] = 0; 5217 } 5218 5219 for (int i = 0; i < ncores; i++) { 5220 int cnt = 0; 5221 for (int j = 0; j < nth_per_core; j++) { 5222 if (procarr[i * nth_per_core + j] != -1) { 5223 cnt++; 5224 } 5225 } 5226 nproc_at_core[i] = cnt; 5227 ncores_with_x_procs[cnt]++; 5228 } 5229 5230 for (int i = 0; i <= nth_per_core; i++) { 5231 for (int j = i; j <= nth_per_core; j++) { 5232 ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j]; 5233 } 5234 } 5235 5236 // Max number of processors 5237 int nproc = nth_per_core * ncores; 5238 // An array to keep number of threads per each context 5239 int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc); 5240 for (int i = 0; i < nproc; i++) { 5241 newarr[i] = 0; 5242 } 5243 5244 int nth = nthreads; 5245 int flag = 0; 5246 while (nth > 0) { 5247 for (int j = 1; j <= nth_per_core; j++) { 5248 int cnt = ncores_with_x_to_max_procs[j]; 5249 for (int i = 0; i < ncores; i++) { 5250 // Skip the core with 0 processors 5251 if (nproc_at_core[i] == 0) { 5252 continue; 5253 } 5254 for (int k = 0; k < nth_per_core; k++) { 5255 if (procarr[i * nth_per_core + k] != -1) { 5256 if (newarr[i * nth_per_core + k] == 0) { 5257 newarr[i * nth_per_core + k] = 1; 5258 cnt--; 5259 nth--; 5260 break; 5261 } else { 5262 if (flag != 0) { 5263 newarr[i * nth_per_core + k]++; 5264 cnt--; 5265 nth--; 5266 break; 5267 } 5268 } 5269 } 5270 } 5271 if (cnt == 0 || nth == 0) { 5272 break; 5273 } 5274 } 5275 if (nth == 0) { 5276 break; 5277 } 5278 } 5279 flag = 1; 5280 } 5281 int sum = 0; 5282 for (int i = 0; i < nproc; i++) { 5283 sum += newarr[i]; 5284 if (sum > tid) { 5285 if (fine_gran) { 5286 int osID = procarr[i]; 5287 KMP_CPU_SET(osID, mask); 5288 } else { 5289 int coreID = i / nth_per_core; 5290 for (int ii = 0; ii < nth_per_core; ii++) { 5291 int osID = procarr[coreID * nth_per_core + ii]; 5292 if (osID != -1) { 5293 KMP_CPU_SET(osID, mask); 5294 } 5295 } 5296 } 5297 break; 5298 } 5299 } 5300 __kmp_free(newarr); 5301 } 5302 5303 if (__kmp_affinity_verbose) { 5304 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5305 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); 5306 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), 5307 __kmp_gettid(), tid, buf); 5308 } 5309 __kmp_set_system_affinity(mask, TRUE); 5310 } 5311 } 5312 5313 #if KMP_OS_LINUX || KMP_OS_FREEBSD 5314 // We don't need this entry for Windows because 5315 // there is GetProcessAffinityMask() api 5316 // 5317 // The intended usage is indicated by these steps: 5318 // 1) The user gets the current affinity mask 5319 // 2) Then sets the affinity by calling this function 5320 // 3) Error check the return value 5321 // 4) Use non-OpenMP parallelization 5322 // 5) Reset the affinity to what was stored in step 1) 5323 #ifdef __cplusplus 5324 extern "C" 5325 #endif 5326 int 5327 kmp_set_thread_affinity_mask_initial() 5328 // the function returns 0 on success, 5329 // -1 if we cannot bind thread 5330 // >0 (errno) if an error happened during binding 5331 { 5332 int gtid = __kmp_get_gtid(); 5333 if (gtid < 0) { 5334 // Do not touch non-omp threads 5335 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5336 "non-omp thread, returning\n")); 5337 return -1; 5338 } 5339 if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) { 5340 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5341 "affinity not initialized, returning\n")); 5342 return -1; 5343 } 5344 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5345 "set full mask for thread %d\n", 5346 gtid)); 5347 KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL); 5348 return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE); 5349 } 5350 #endif 5351 5352 #endif // KMP_AFFINITY_SUPPORTED 5353