1 /* 2 * kmp_affinity.cpp -- affinity management 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_i18n.h" 16 #include "kmp_io.h" 17 #include "kmp_str.h" 18 #include "kmp_wrapper_getpid.h" 19 #if KMP_USE_HIER_SCHED 20 #include "kmp_dispatch_hier.h" 21 #endif 22 23 // Store the real or imagined machine hierarchy here 24 static hierarchy_info machine_hierarchy; 25 26 void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); } 27 28 void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) { 29 kmp_uint32 depth; 30 // The test below is true if affinity is available, but set to "none". Need to 31 // init on first use of hierarchical barrier. 32 if (TCR_1(machine_hierarchy.uninitialized)) 33 machine_hierarchy.init(NULL, nproc); 34 35 // Adjust the hierarchy in case num threads exceeds original 36 if (nproc > machine_hierarchy.base_num_threads) 37 machine_hierarchy.resize(nproc); 38 39 depth = machine_hierarchy.depth; 40 KMP_DEBUG_ASSERT(depth > 0); 41 42 thr_bar->depth = depth; 43 thr_bar->base_leaf_kids = (kmp_uint8)machine_hierarchy.numPerLevel[0] - 1; 44 thr_bar->skip_per_level = machine_hierarchy.skipPerLevel; 45 } 46 47 #if KMP_AFFINITY_SUPPORTED 48 49 bool KMPAffinity::picked_api = false; 50 51 void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); } 52 void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); } 53 void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); } 54 void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); } 55 void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); } 56 void KMPAffinity::operator delete(void *p) { __kmp_free(p); } 57 58 void KMPAffinity::pick_api() { 59 KMPAffinity *affinity_dispatch; 60 if (picked_api) 61 return; 62 #if KMP_USE_HWLOC 63 // Only use Hwloc if affinity isn't explicitly disabled and 64 // user requests Hwloc topology method 65 if (__kmp_affinity_top_method == affinity_top_method_hwloc && 66 __kmp_affinity_type != affinity_disabled) { 67 affinity_dispatch = new KMPHwlocAffinity(); 68 } else 69 #endif 70 { 71 affinity_dispatch = new KMPNativeAffinity(); 72 } 73 __kmp_affinity_dispatch = affinity_dispatch; 74 picked_api = true; 75 } 76 77 void KMPAffinity::destroy_api() { 78 if (__kmp_affinity_dispatch != NULL) { 79 delete __kmp_affinity_dispatch; 80 __kmp_affinity_dispatch = NULL; 81 picked_api = false; 82 } 83 } 84 85 #define KMP_ADVANCE_SCAN(scan) \ 86 while (*scan != '\0') { \ 87 scan++; \ 88 } 89 90 // Print the affinity mask to the character array in a pretty format. 91 // The format is a comma separated list of non-negative integers or integer 92 // ranges: e.g., 1,2,3-5,7,9-15 93 // The format can also be the string "{<empty>}" if no bits are set in mask 94 char *__kmp_affinity_print_mask(char *buf, int buf_len, 95 kmp_affin_mask_t *mask) { 96 int start = 0, finish = 0, previous = 0; 97 bool first_range; 98 KMP_ASSERT(buf); 99 KMP_ASSERT(buf_len >= 40); 100 KMP_ASSERT(mask); 101 char *scan = buf; 102 char *end = buf + buf_len - 1; 103 104 // Check for empty set. 105 if (mask->begin() == mask->end()) { 106 KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}"); 107 KMP_ADVANCE_SCAN(scan); 108 KMP_ASSERT(scan <= end); 109 return buf; 110 } 111 112 first_range = true; 113 start = mask->begin(); 114 while (1) { 115 // Find next range 116 // [start, previous] is inclusive range of contiguous bits in mask 117 for (finish = mask->next(start), previous = start; 118 finish == previous + 1 && finish != mask->end(); 119 finish = mask->next(finish)) { 120 previous = finish; 121 } 122 123 // The first range does not need a comma printed before it, but the rest 124 // of the ranges do need a comma beforehand 125 if (!first_range) { 126 KMP_SNPRINTF(scan, end - scan + 1, "%s", ","); 127 KMP_ADVANCE_SCAN(scan); 128 } else { 129 first_range = false; 130 } 131 // Range with three or more contiguous bits in the affinity mask 132 if (previous - start > 1) { 133 KMP_SNPRINTF(scan, end - scan + 1, "%d-%d", static_cast<int>(start), 134 static_cast<int>(previous)); 135 } else { 136 // Range with one or two contiguous bits in the affinity mask 137 KMP_SNPRINTF(scan, end - scan + 1, "%d", static_cast<int>(start)); 138 KMP_ADVANCE_SCAN(scan); 139 if (previous - start > 0) { 140 KMP_SNPRINTF(scan, end - scan + 1, ",%d", static_cast<int>(previous)); 141 } 142 } 143 KMP_ADVANCE_SCAN(scan); 144 // Start over with new start point 145 start = finish; 146 if (start == mask->end()) 147 break; 148 // Check for overflow 149 if (end - scan < 2) 150 break; 151 } 152 153 // Check for overflow 154 KMP_ASSERT(scan <= end); 155 return buf; 156 } 157 #undef KMP_ADVANCE_SCAN 158 159 // Print the affinity mask to the string buffer object in a pretty format 160 // The format is a comma separated list of non-negative integers or integer 161 // ranges: e.g., 1,2,3-5,7,9-15 162 // The format can also be the string "{<empty>}" if no bits are set in mask 163 kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf, 164 kmp_affin_mask_t *mask) { 165 int start = 0, finish = 0, previous = 0; 166 bool first_range; 167 KMP_ASSERT(buf); 168 KMP_ASSERT(mask); 169 170 __kmp_str_buf_clear(buf); 171 172 // Check for empty set. 173 if (mask->begin() == mask->end()) { 174 __kmp_str_buf_print(buf, "%s", "{<empty>}"); 175 return buf; 176 } 177 178 first_range = true; 179 start = mask->begin(); 180 while (1) { 181 // Find next range 182 // [start, previous] is inclusive range of contiguous bits in mask 183 for (finish = mask->next(start), previous = start; 184 finish == previous + 1 && finish != mask->end(); 185 finish = mask->next(finish)) { 186 previous = finish; 187 } 188 189 // The first range does not need a comma printed before it, but the rest 190 // of the ranges do need a comma beforehand 191 if (!first_range) { 192 __kmp_str_buf_print(buf, "%s", ","); 193 } else { 194 first_range = false; 195 } 196 // Range with three or more contiguous bits in the affinity mask 197 if (previous - start > 1) { 198 __kmp_str_buf_print(buf, "%d-%d", static_cast<int>(start), 199 static_cast<int>(previous)); 200 } else { 201 // Range with one or two contiguous bits in the affinity mask 202 __kmp_str_buf_print(buf, "%d", static_cast<int>(start)); 203 if (previous - start > 0) { 204 __kmp_str_buf_print(buf, ",%d", static_cast<int>(previous)); 205 } 206 } 207 // Start over with new start point 208 start = finish; 209 if (start == mask->end()) 210 break; 211 } 212 return buf; 213 } 214 215 void __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) { 216 KMP_CPU_ZERO(mask); 217 218 #if KMP_GROUP_AFFINITY 219 220 if (__kmp_num_proc_groups > 1) { 221 int group; 222 KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL); 223 for (group = 0; group < __kmp_num_proc_groups; group++) { 224 int i; 225 int num = __kmp_GetActiveProcessorCount(group); 226 for (i = 0; i < num; i++) { 227 KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask); 228 } 229 } 230 } else 231 232 #endif /* KMP_GROUP_AFFINITY */ 233 234 { 235 int proc; 236 for (proc = 0; proc < __kmp_xproc; proc++) { 237 KMP_CPU_SET(proc, mask); 238 } 239 } 240 } 241 242 // When sorting by labels, __kmp_affinity_assign_child_nums() must first be 243 // called to renumber the labels from [0..n] and place them into the child_num 244 // vector of the address object. This is done in case the labels used for 245 // the children at one node of the hierarchy differ from those used for 246 // another node at the same level. Example: suppose the machine has 2 nodes 247 // with 2 packages each. The first node contains packages 601 and 602, and 248 // second node contains packages 603 and 604. If we try to sort the table 249 // for "scatter" affinity, the table will still be sorted 601, 602, 603, 604 250 // because we are paying attention to the labels themselves, not the ordinal 251 // child numbers. By using the child numbers in the sort, the result is 252 // {0,0}=601, {0,1}=603, {1,0}=602, {1,1}=604. 253 static void __kmp_affinity_assign_child_nums(AddrUnsPair *address2os, 254 int numAddrs) { 255 KMP_DEBUG_ASSERT(numAddrs > 0); 256 int depth = address2os->first.depth; 257 unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 258 unsigned *lastLabel = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 259 int labCt; 260 for (labCt = 0; labCt < depth; labCt++) { 261 address2os[0].first.childNums[labCt] = counts[labCt] = 0; 262 lastLabel[labCt] = address2os[0].first.labels[labCt]; 263 } 264 int i; 265 for (i = 1; i < numAddrs; i++) { 266 for (labCt = 0; labCt < depth; labCt++) { 267 if (address2os[i].first.labels[labCt] != lastLabel[labCt]) { 268 int labCt2; 269 for (labCt2 = labCt + 1; labCt2 < depth; labCt2++) { 270 counts[labCt2] = 0; 271 lastLabel[labCt2] = address2os[i].first.labels[labCt2]; 272 } 273 counts[labCt]++; 274 lastLabel[labCt] = address2os[i].first.labels[labCt]; 275 break; 276 } 277 } 278 for (labCt = 0; labCt < depth; labCt++) { 279 address2os[i].first.childNums[labCt] = counts[labCt]; 280 } 281 for (; labCt < (int)Address::maxDepth; labCt++) { 282 address2os[i].first.childNums[labCt] = 0; 283 } 284 } 285 __kmp_free(lastLabel); 286 __kmp_free(counts); 287 } 288 289 // All of the __kmp_affinity_create_*_map() routines should set 290 // __kmp_affinity_masks to a vector of affinity mask objects of length 291 // __kmp_affinity_num_masks, if __kmp_affinity_type != affinity_none, and return 292 // the number of levels in the machine topology tree (zero if 293 // __kmp_affinity_type == affinity_none). 294 // 295 // All of the __kmp_affinity_create_*_map() routines should set 296 // *__kmp_affin_fullMask to the affinity mask for the initialization thread. 297 // They need to save and restore the mask, and it could be needed later, so 298 // saving it is just an optimization to avoid calling kmp_get_system_affinity() 299 // again. 300 kmp_affin_mask_t *__kmp_affin_fullMask = NULL; 301 302 static int nCoresPerPkg, nPackages; 303 static int __kmp_nThreadsPerCore; 304 #ifndef KMP_DFLT_NTH_CORES 305 static int __kmp_ncores; 306 #endif 307 static int *__kmp_pu_os_idx = NULL; 308 309 // __kmp_affinity_uniform_topology() doesn't work when called from 310 // places which support arbitrarily many levels in the machine topology 311 // map, i.e. the non-default cases in __kmp_affinity_create_cpuinfo_map() 312 // __kmp_affinity_create_x2apicid_map(). 313 inline static bool __kmp_affinity_uniform_topology() { 314 return __kmp_avail_proc == (__kmp_nThreadsPerCore * nCoresPerPkg * nPackages); 315 } 316 317 // Print out the detailed machine topology map, i.e. the physical locations 318 // of each OS proc. 319 static void __kmp_affinity_print_topology(AddrUnsPair *address2os, int len, 320 int depth, int pkgLevel, 321 int coreLevel, int threadLevel) { 322 int proc; 323 324 KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY"); 325 for (proc = 0; proc < len; proc++) { 326 int level; 327 kmp_str_buf_t buf; 328 __kmp_str_buf_init(&buf); 329 for (level = 0; level < depth; level++) { 330 if (level == threadLevel) { 331 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Thread)); 332 } else if (level == coreLevel) { 333 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Core)); 334 } else if (level == pkgLevel) { 335 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Package)); 336 } else if (level > pkgLevel) { 337 __kmp_str_buf_print(&buf, "%s_%d ", KMP_I18N_STR(Node), 338 level - pkgLevel - 1); 339 } else { 340 __kmp_str_buf_print(&buf, "L%d ", level); 341 } 342 __kmp_str_buf_print(&buf, "%d ", address2os[proc].first.labels[level]); 343 } 344 KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", address2os[proc].second, 345 buf.str); 346 __kmp_str_buf_free(&buf); 347 } 348 } 349 350 #if KMP_USE_HWLOC 351 352 static void __kmp_affinity_print_hwloc_tp(AddrUnsPair *addrP, int len, 353 int depth, int *levels) { 354 int proc; 355 kmp_str_buf_t buf; 356 __kmp_str_buf_init(&buf); 357 KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY"); 358 for (proc = 0; proc < len; proc++) { 359 __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Package), 360 addrP[proc].first.labels[0]); 361 if (depth > 1) { 362 int level = 1; // iterate over levels 363 int label = 1; // iterate over labels 364 if (__kmp_numa_detected) 365 // node level follows package 366 if (levels[level++] > 0) 367 __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Node), 368 addrP[proc].first.labels[label++]); 369 if (__kmp_tile_depth > 0) 370 // tile level follows node if any, or package 371 if (levels[level++] > 0) 372 __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Tile), 373 addrP[proc].first.labels[label++]); 374 if (levels[level++] > 0) 375 // core level follows 376 __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Core), 377 addrP[proc].first.labels[label++]); 378 if (levels[level++] > 0) 379 // thread level is the latest 380 __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Thread), 381 addrP[proc].first.labels[label++]); 382 KMP_DEBUG_ASSERT(label == depth); 383 } 384 KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", addrP[proc].second, buf.str); 385 __kmp_str_buf_clear(&buf); 386 } 387 __kmp_str_buf_free(&buf); 388 } 389 390 static int nNodePerPkg, nTilePerPkg, nTilePerNode, nCorePerNode, nCorePerTile; 391 392 // This function removes the topology levels that are radix 1 and don't offer 393 // further information about the topology. The most common example is when you 394 // have one thread context per core, we don't want the extra thread context 395 // level if it offers no unique labels. So they are removed. 396 // return value: the new depth of address2os 397 static int __kmp_affinity_remove_radix_one_levels(AddrUnsPair *addrP, int nTh, 398 int depth, int *levels) { 399 int level; 400 int i; 401 int radix1_detected; 402 int new_depth = depth; 403 for (level = depth - 1; level > 0; --level) { 404 // Detect if this level is radix 1 405 radix1_detected = 1; 406 for (i = 1; i < nTh; ++i) { 407 if (addrP[0].first.labels[level] != addrP[i].first.labels[level]) { 408 // There are differing label values for this level so it stays 409 radix1_detected = 0; 410 break; 411 } 412 } 413 if (!radix1_detected) 414 continue; 415 // Radix 1 was detected 416 --new_depth; 417 levels[level] = -1; // mark level as not present in address2os array 418 if (level == new_depth) { 419 // "turn off" deepest level, just decrement the depth that removes 420 // the level from address2os array 421 for (i = 0; i < nTh; ++i) { 422 addrP[i].first.depth--; 423 } 424 } else { 425 // For other levels, we move labels over and also reduce the depth 426 int j; 427 for (j = level; j < new_depth; ++j) { 428 for (i = 0; i < nTh; ++i) { 429 addrP[i].first.labels[j] = addrP[i].first.labels[j + 1]; 430 addrP[i].first.depth--; 431 } 432 levels[j + 1] -= 1; 433 } 434 } 435 } 436 return new_depth; 437 } 438 439 // Returns the number of objects of type 'type' below 'obj' within the topology 440 // tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is 441 // HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET 442 // object. 443 static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj, 444 hwloc_obj_type_t type) { 445 int retval = 0; 446 hwloc_obj_t first; 447 for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type, 448 obj->logical_index, type, 0); 449 first != NULL && 450 hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, obj->type, first) == 451 obj; 452 first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type, 453 first)) { 454 ++retval; 455 } 456 return retval; 457 } 458 459 static int __kmp_hwloc_count_children_by_depth(hwloc_topology_t t, 460 hwloc_obj_t o, unsigned depth, 461 hwloc_obj_t *f) { 462 if (o->depth == depth) { 463 if (*f == NULL) 464 *f = o; // output first descendant found 465 return 1; 466 } 467 int sum = 0; 468 for (unsigned i = 0; i < o->arity; i++) 469 sum += __kmp_hwloc_count_children_by_depth(t, o->children[i], depth, f); 470 return sum; // will be 0 if no one found (as PU arity is 0) 471 } 472 473 static int __kmp_hwloc_count_children_by_type(hwloc_topology_t t, hwloc_obj_t o, 474 hwloc_obj_type_t type, 475 hwloc_obj_t *f) { 476 if (!hwloc_compare_types(o->type, type)) { 477 if (*f == NULL) 478 *f = o; // output first descendant found 479 return 1; 480 } 481 int sum = 0; 482 for (unsigned i = 0; i < o->arity; i++) 483 sum += __kmp_hwloc_count_children_by_type(t, o->children[i], type, f); 484 return sum; // will be 0 if no one found (as PU arity is 0) 485 } 486 487 static int __kmp_hwloc_process_obj_core_pu(AddrUnsPair *addrPair, 488 int &nActiveThreads, 489 int &num_active_cores, 490 hwloc_obj_t obj, int depth, 491 int *labels) { 492 hwloc_obj_t core = NULL; 493 hwloc_topology_t &tp = __kmp_hwloc_topology; 494 int NC = __kmp_hwloc_count_children_by_type(tp, obj, HWLOC_OBJ_CORE, &core); 495 for (int core_id = 0; core_id < NC; ++core_id, core = core->next_cousin) { 496 hwloc_obj_t pu = NULL; 497 KMP_DEBUG_ASSERT(core != NULL); 498 int num_active_threads = 0; 499 int NT = __kmp_hwloc_count_children_by_type(tp, core, HWLOC_OBJ_PU, &pu); 500 // int NT = core->arity; pu = core->first_child; // faster? 501 for (int pu_id = 0; pu_id < NT; ++pu_id, pu = pu->next_cousin) { 502 KMP_DEBUG_ASSERT(pu != NULL); 503 if (!KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask)) 504 continue; // skip inactive (inaccessible) unit 505 Address addr(depth + 2); 506 KA_TRACE(20, ("Hwloc inserting %d (%d) %d (%d) %d (%d) into address2os\n", 507 obj->os_index, obj->logical_index, core->os_index, 508 core->logical_index, pu->os_index, pu->logical_index)); 509 for (int i = 0; i < depth; ++i) 510 addr.labels[i] = labels[i]; // package, etc. 511 addr.labels[depth] = core_id; // core 512 addr.labels[depth + 1] = pu_id; // pu 513 addrPair[nActiveThreads] = AddrUnsPair(addr, pu->os_index); 514 __kmp_pu_os_idx[nActiveThreads] = pu->os_index; 515 nActiveThreads++; 516 ++num_active_threads; // count active threads per core 517 } 518 if (num_active_threads) { // were there any active threads on the core? 519 ++__kmp_ncores; // count total active cores 520 ++num_active_cores; // count active cores per socket 521 if (num_active_threads > __kmp_nThreadsPerCore) 522 __kmp_nThreadsPerCore = num_active_threads; // calc maximum 523 } 524 } 525 return 0; 526 } 527 528 // Check if NUMA node detected below the package, 529 // and if tile object is detected and return its depth 530 static int __kmp_hwloc_check_numa() { 531 hwloc_topology_t &tp = __kmp_hwloc_topology; 532 hwloc_obj_t hT, hC, hL, hN, hS; // hwloc objects (pointers to) 533 int depth, l2cache_depth, package_depth; 534 535 // Get some PU 536 hT = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PU, 0); 537 if (hT == NULL) // something has gone wrong 538 return 1; 539 540 // check NUMA node below PACKAGE 541 hN = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hT); 542 hS = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hT); 543 KMP_DEBUG_ASSERT(hS != NULL); 544 if (hN != NULL && hN->depth > hS->depth) { 545 __kmp_numa_detected = TRUE; // socket includes node(s) 546 if (__kmp_affinity_gran == affinity_gran_node) { 547 __kmp_affinity_gran = affinity_gran_numa; 548 } 549 } 550 551 package_depth = hwloc_get_type_depth(tp, HWLOC_OBJ_PACKAGE); 552 l2cache_depth = hwloc_get_cache_type_depth(tp, 2, HWLOC_OBJ_CACHE_UNIFIED); 553 // check tile, get object by depth because of multiple caches possible 554 depth = (l2cache_depth < package_depth) ? package_depth : l2cache_depth; 555 hL = hwloc_get_ancestor_obj_by_depth(tp, depth, hT); 556 hC = NULL; // not used, but reset it here just in case 557 if (hL != NULL && 558 __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC) > 1) 559 __kmp_tile_depth = depth; // tile consists of multiple cores 560 return 0; 561 } 562 563 static int __kmp_affinity_create_hwloc_map(AddrUnsPair **address2os, 564 kmp_i18n_id_t *const msg_id) { 565 hwloc_topology_t &tp = __kmp_hwloc_topology; // shortcut of a long name 566 *address2os = NULL; 567 *msg_id = kmp_i18n_null; 568 569 // Save the affinity mask for the current thread. 570 kmp_affin_mask_t *oldMask; 571 KMP_CPU_ALLOC(oldMask); 572 __kmp_get_system_affinity(oldMask, TRUE); 573 __kmp_hwloc_check_numa(); 574 575 if (!KMP_AFFINITY_CAPABLE()) { 576 // Hack to try and infer the machine topology using only the data 577 // available from cpuid on the current thread, and __kmp_xproc. 578 KMP_ASSERT(__kmp_affinity_type == affinity_none); 579 580 nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj( 581 hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0), HWLOC_OBJ_CORE); 582 __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj( 583 hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0), HWLOC_OBJ_PU); 584 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; 585 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 586 if (__kmp_affinity_verbose) { 587 KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY"); 588 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 589 if (__kmp_affinity_uniform_topology()) { 590 KMP_INFORM(Uniform, "KMP_AFFINITY"); 591 } else { 592 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 593 } 594 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 595 __kmp_nThreadsPerCore, __kmp_ncores); 596 } 597 KMP_CPU_FREE(oldMask); 598 return 0; 599 } 600 601 int depth = 3; 602 int levels[5] = {0, 1, 2, 3, 4}; // package, [node,] [tile,] core, thread 603 int labels[3] = {0}; // package [,node] [,tile] - head of lables array 604 if (__kmp_numa_detected) 605 ++depth; 606 if (__kmp_tile_depth) 607 ++depth; 608 609 // Allocate the data structure to be returned. 610 AddrUnsPair *retval = 611 (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc); 612 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 613 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 614 615 // When affinity is off, this routine will still be called to set 616 // __kmp_ncores, as well as __kmp_nThreadsPerCore, 617 // nCoresPerPkg, & nPackages. Make sure all these vars are set 618 // correctly, and return if affinity is not enabled. 619 620 hwloc_obj_t socket, node, tile; 621 int nActiveThreads = 0; 622 int socket_id = 0; 623 // re-calculate globals to count only accessible resources 624 __kmp_ncores = nPackages = nCoresPerPkg = __kmp_nThreadsPerCore = 0; 625 nNodePerPkg = nTilePerPkg = nTilePerNode = nCorePerNode = nCorePerTile = 0; 626 for (socket = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0); socket != NULL; 627 socket = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PACKAGE, socket), 628 socket_id++) { 629 labels[0] = socket_id; 630 if (__kmp_numa_detected) { 631 int NN; 632 int n_active_nodes = 0; 633 node = NULL; 634 NN = __kmp_hwloc_count_children_by_type(tp, socket, HWLOC_OBJ_NUMANODE, 635 &node); 636 for (int node_id = 0; node_id < NN; ++node_id, node = node->next_cousin) { 637 labels[1] = node_id; 638 if (__kmp_tile_depth) { 639 // NUMA + tiles 640 int NT; 641 int n_active_tiles = 0; 642 tile = NULL; 643 NT = __kmp_hwloc_count_children_by_depth(tp, node, __kmp_tile_depth, 644 &tile); 645 for (int tl_id = 0; tl_id < NT; ++tl_id, tile = tile->next_cousin) { 646 labels[2] = tl_id; 647 int n_active_cores = 0; 648 __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, 649 n_active_cores, tile, 3, labels); 650 if (n_active_cores) { // were there any active cores on the socket? 651 ++n_active_tiles; // count active tiles per node 652 if (n_active_cores > nCorePerTile) 653 nCorePerTile = n_active_cores; // calc maximum 654 } 655 } 656 if (n_active_tiles) { // were there any active tiles on the socket? 657 ++n_active_nodes; // count active nodes per package 658 if (n_active_tiles > nTilePerNode) 659 nTilePerNode = n_active_tiles; // calc maximum 660 } 661 } else { 662 // NUMA, no tiles 663 int n_active_cores = 0; 664 __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, 665 n_active_cores, node, 2, labels); 666 if (n_active_cores) { // were there any active cores on the socket? 667 ++n_active_nodes; // count active nodes per package 668 if (n_active_cores > nCorePerNode) 669 nCorePerNode = n_active_cores; // calc maximum 670 } 671 } 672 } 673 if (n_active_nodes) { // were there any active nodes on the socket? 674 ++nPackages; // count total active packages 675 if (n_active_nodes > nNodePerPkg) 676 nNodePerPkg = n_active_nodes; // calc maximum 677 } 678 } else { 679 if (__kmp_tile_depth) { 680 // no NUMA, tiles 681 int NT; 682 int n_active_tiles = 0; 683 tile = NULL; 684 NT = __kmp_hwloc_count_children_by_depth(tp, socket, __kmp_tile_depth, 685 &tile); 686 for (int tl_id = 0; tl_id < NT; ++tl_id, tile = tile->next_cousin) { 687 labels[1] = tl_id; 688 int n_active_cores = 0; 689 __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, 690 n_active_cores, tile, 2, labels); 691 if (n_active_cores) { // were there any active cores on the socket? 692 ++n_active_tiles; // count active tiles per package 693 if (n_active_cores > nCorePerTile) 694 nCorePerTile = n_active_cores; // calc maximum 695 } 696 } 697 if (n_active_tiles) { // were there any active tiles on the socket? 698 ++nPackages; // count total active packages 699 if (n_active_tiles > nTilePerPkg) 700 nTilePerPkg = n_active_tiles; // calc maximum 701 } 702 } else { 703 // no NUMA, no tiles 704 int n_active_cores = 0; 705 __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, n_active_cores, 706 socket, 1, labels); 707 if (n_active_cores) { // were there any active cores on the socket? 708 ++nPackages; // count total active packages 709 if (n_active_cores > nCoresPerPkg) 710 nCoresPerPkg = n_active_cores; // calc maximum 711 } 712 } 713 } 714 } 715 716 // If there's only one thread context to bind to, return now. 717 KMP_DEBUG_ASSERT(nActiveThreads == __kmp_avail_proc); 718 KMP_ASSERT(nActiveThreads > 0); 719 if (nActiveThreads == 1) { 720 __kmp_ncores = nPackages = 1; 721 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 722 if (__kmp_affinity_verbose) { 723 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 724 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 725 726 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); 727 if (__kmp_affinity_respect_mask) { 728 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 729 } else { 730 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 731 } 732 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 733 KMP_INFORM(Uniform, "KMP_AFFINITY"); 734 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 735 __kmp_nThreadsPerCore, __kmp_ncores); 736 } 737 738 if (__kmp_affinity_type == affinity_none) { 739 __kmp_free(retval); 740 KMP_CPU_FREE(oldMask); 741 return 0; 742 } 743 744 // Form an Address object which only includes the package level. 745 Address addr(1); 746 addr.labels[0] = retval[0].first.labels[0]; 747 retval[0].first = addr; 748 749 if (__kmp_affinity_gran_levels < 0) { 750 __kmp_affinity_gran_levels = 0; 751 } 752 753 if (__kmp_affinity_verbose) { 754 __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1); 755 } 756 757 *address2os = retval; 758 KMP_CPU_FREE(oldMask); 759 return 1; 760 } 761 762 // Sort the table by physical Id. 763 qsort(retval, nActiveThreads, sizeof(*retval), 764 __kmp_affinity_cmp_Address_labels); 765 766 // Check to see if the machine topology is uniform 767 int nPUs = nPackages * __kmp_nThreadsPerCore; 768 if (__kmp_numa_detected) { 769 if (__kmp_tile_depth) { // NUMA + tiles 770 nPUs *= (nNodePerPkg * nTilePerNode * nCorePerTile); 771 } else { // NUMA, no tiles 772 nPUs *= (nNodePerPkg * nCorePerNode); 773 } 774 } else { 775 if (__kmp_tile_depth) { // no NUMA, tiles 776 nPUs *= (nTilePerPkg * nCorePerTile); 777 } else { // no NUMA, no tiles 778 nPUs *= nCoresPerPkg; 779 } 780 } 781 unsigned uniform = (nPUs == nActiveThreads); 782 783 // Print the machine topology summary. 784 if (__kmp_affinity_verbose) { 785 char mask[KMP_AFFIN_MASK_PRINT_LEN]; 786 __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 787 if (__kmp_affinity_respect_mask) { 788 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask); 789 } else { 790 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask); 791 } 792 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 793 if (uniform) { 794 KMP_INFORM(Uniform, "KMP_AFFINITY"); 795 } else { 796 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 797 } 798 if (__kmp_numa_detected) { 799 if (__kmp_tile_depth) { // NUMA + tiles 800 KMP_INFORM(TopologyExtraNoTi, "KMP_AFFINITY", nPackages, nNodePerPkg, 801 nTilePerNode, nCorePerTile, __kmp_nThreadsPerCore, 802 __kmp_ncores); 803 } else { // NUMA, no tiles 804 KMP_INFORM(TopologyExtraNode, "KMP_AFFINITY", nPackages, nNodePerPkg, 805 nCorePerNode, __kmp_nThreadsPerCore, __kmp_ncores); 806 nPUs *= (nNodePerPkg * nCorePerNode); 807 } 808 } else { 809 if (__kmp_tile_depth) { // no NUMA, tiles 810 KMP_INFORM(TopologyExtraTile, "KMP_AFFINITY", nPackages, nTilePerPkg, 811 nCorePerTile, __kmp_nThreadsPerCore, __kmp_ncores); 812 } else { // no NUMA, no tiles 813 kmp_str_buf_t buf; 814 __kmp_str_buf_init(&buf); 815 __kmp_str_buf_print(&buf, "%d", nPackages); 816 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg, 817 __kmp_nThreadsPerCore, __kmp_ncores); 818 __kmp_str_buf_free(&buf); 819 } 820 } 821 } 822 823 if (__kmp_affinity_type == affinity_none) { 824 __kmp_free(retval); 825 KMP_CPU_FREE(oldMask); 826 return 0; 827 } 828 829 int depth_full = depth; // number of levels before compressing 830 // Find any levels with radiix 1, and remove them from the map 831 // (except for the package level). 832 depth = __kmp_affinity_remove_radix_one_levels(retval, nActiveThreads, depth, 833 levels); 834 KMP_DEBUG_ASSERT(__kmp_affinity_gran != affinity_gran_default); 835 if (__kmp_affinity_gran_levels < 0) { 836 // Set the granularity level based on what levels are modeled 837 // in the machine topology map. 838 __kmp_affinity_gran_levels = 0; // lowest level (e.g. fine) 839 if (__kmp_affinity_gran > affinity_gran_thread) { 840 for (int i = 1; i <= depth_full; ++i) { 841 if (__kmp_affinity_gran <= i) // only count deeper levels 842 break; 843 if (levels[depth_full - i] > 0) 844 __kmp_affinity_gran_levels++; 845 } 846 } 847 if (__kmp_affinity_gran > affinity_gran_package) 848 __kmp_affinity_gran_levels++; // e.g. granularity = group 849 } 850 851 if (__kmp_affinity_verbose) 852 __kmp_affinity_print_hwloc_tp(retval, nActiveThreads, depth, levels); 853 854 KMP_CPU_FREE(oldMask); 855 *address2os = retval; 856 return depth; 857 } 858 #endif // KMP_USE_HWLOC 859 860 // If we don't know how to retrieve the machine's processor topology, or 861 // encounter an error in doing so, this routine is called to form a "flat" 862 // mapping of os thread id's <-> processor id's. 863 static int __kmp_affinity_create_flat_map(AddrUnsPair **address2os, 864 kmp_i18n_id_t *const msg_id) { 865 *address2os = NULL; 866 *msg_id = kmp_i18n_null; 867 868 // Even if __kmp_affinity_type == affinity_none, this routine might still 869 // called to set __kmp_ncores, as well as 870 // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 871 if (!KMP_AFFINITY_CAPABLE()) { 872 KMP_ASSERT(__kmp_affinity_type == affinity_none); 873 __kmp_ncores = nPackages = __kmp_xproc; 874 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 875 if (__kmp_affinity_verbose) { 876 KMP_INFORM(AffFlatTopology, "KMP_AFFINITY"); 877 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 878 KMP_INFORM(Uniform, "KMP_AFFINITY"); 879 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 880 __kmp_nThreadsPerCore, __kmp_ncores); 881 } 882 return 0; 883 } 884 885 // When affinity is off, this routine will still be called to set 886 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 887 // Make sure all these vars are set correctly, and return now if affinity is 888 // not enabled. 889 __kmp_ncores = nPackages = __kmp_avail_proc; 890 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 891 if (__kmp_affinity_verbose) { 892 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 893 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 894 __kmp_affin_fullMask); 895 896 KMP_INFORM(AffCapableUseFlat, "KMP_AFFINITY"); 897 if (__kmp_affinity_respect_mask) { 898 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 899 } else { 900 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 901 } 902 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 903 KMP_INFORM(Uniform, "KMP_AFFINITY"); 904 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 905 __kmp_nThreadsPerCore, __kmp_ncores); 906 } 907 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 908 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 909 if (__kmp_affinity_type == affinity_none) { 910 int avail_ct = 0; 911 int i; 912 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 913 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) 914 continue; 915 __kmp_pu_os_idx[avail_ct++] = i; // suppose indices are flat 916 } 917 return 0; 918 } 919 920 // Contruct the data structure to be returned. 921 *address2os = 922 (AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc); 923 int avail_ct = 0; 924 int i; 925 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 926 // Skip this proc if it is not included in the machine model. 927 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 928 continue; 929 } 930 __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat 931 Address addr(1); 932 addr.labels[0] = i; 933 (*address2os)[avail_ct++] = AddrUnsPair(addr, i); 934 } 935 if (__kmp_affinity_verbose) { 936 KMP_INFORM(OSProcToPackage, "KMP_AFFINITY"); 937 } 938 939 if (__kmp_affinity_gran_levels < 0) { 940 // Only the package level is modeled in the machine topology map, 941 // so the #levels of granularity is either 0 or 1. 942 if (__kmp_affinity_gran > affinity_gran_package) { 943 __kmp_affinity_gran_levels = 1; 944 } else { 945 __kmp_affinity_gran_levels = 0; 946 } 947 } 948 return 1; 949 } 950 951 #if KMP_GROUP_AFFINITY 952 953 // If multiple Windows* OS processor groups exist, we can create a 2-level 954 // topology map with the groups at level 0 and the individual procs at level 1. 955 // This facilitates letting the threads float among all procs in a group, 956 // if granularity=group (the default when there are multiple groups). 957 static int __kmp_affinity_create_proc_group_map(AddrUnsPair **address2os, 958 kmp_i18n_id_t *const msg_id) { 959 *address2os = NULL; 960 *msg_id = kmp_i18n_null; 961 962 // If we aren't affinity capable, then return now. 963 // The flat mapping will be used. 964 if (!KMP_AFFINITY_CAPABLE()) { 965 // FIXME set *msg_id 966 return -1; 967 } 968 969 // Contruct the data structure to be returned. 970 *address2os = 971 (AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc); 972 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 973 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 974 int avail_ct = 0; 975 int i; 976 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 977 // Skip this proc if it is not included in the machine model. 978 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 979 continue; 980 } 981 __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat 982 Address addr(2); 983 addr.labels[0] = i / (CHAR_BIT * sizeof(DWORD_PTR)); 984 addr.labels[1] = i % (CHAR_BIT * sizeof(DWORD_PTR)); 985 (*address2os)[avail_ct++] = AddrUnsPair(addr, i); 986 987 if (__kmp_affinity_verbose) { 988 KMP_INFORM(AffOSProcToGroup, "KMP_AFFINITY", i, addr.labels[0], 989 addr.labels[1]); 990 } 991 } 992 993 if (__kmp_affinity_gran_levels < 0) { 994 if (__kmp_affinity_gran == affinity_gran_group) { 995 __kmp_affinity_gran_levels = 1; 996 } else if ((__kmp_affinity_gran == affinity_gran_fine) || 997 (__kmp_affinity_gran == affinity_gran_thread)) { 998 __kmp_affinity_gran_levels = 0; 999 } else { 1000 const char *gran_str = NULL; 1001 if (__kmp_affinity_gran == affinity_gran_core) { 1002 gran_str = "core"; 1003 } else if (__kmp_affinity_gran == affinity_gran_package) { 1004 gran_str = "package"; 1005 } else if (__kmp_affinity_gran == affinity_gran_node) { 1006 gran_str = "node"; 1007 } else { 1008 KMP_ASSERT(0); 1009 } 1010 1011 // Warning: can't use affinity granularity \"gran\" with group topology 1012 // method, using "thread" 1013 __kmp_affinity_gran_levels = 0; 1014 } 1015 } 1016 return 2; 1017 } 1018 1019 #endif /* KMP_GROUP_AFFINITY */ 1020 1021 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1022 1023 static int __kmp_cpuid_mask_width(int count) { 1024 int r = 0; 1025 1026 while ((1 << r) < count) 1027 ++r; 1028 return r; 1029 } 1030 1031 class apicThreadInfo { 1032 public: 1033 unsigned osId; // param to __kmp_affinity_bind_thread 1034 unsigned apicId; // from cpuid after binding 1035 unsigned maxCoresPerPkg; // "" 1036 unsigned maxThreadsPerPkg; // "" 1037 unsigned pkgId; // inferred from above values 1038 unsigned coreId; // "" 1039 unsigned threadId; // "" 1040 }; 1041 1042 static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a, 1043 const void *b) { 1044 const apicThreadInfo *aa = (const apicThreadInfo *)a; 1045 const apicThreadInfo *bb = (const apicThreadInfo *)b; 1046 if (aa->pkgId < bb->pkgId) 1047 return -1; 1048 if (aa->pkgId > bb->pkgId) 1049 return 1; 1050 if (aa->coreId < bb->coreId) 1051 return -1; 1052 if (aa->coreId > bb->coreId) 1053 return 1; 1054 if (aa->threadId < bb->threadId) 1055 return -1; 1056 if (aa->threadId > bb->threadId) 1057 return 1; 1058 return 0; 1059 } 1060 1061 // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use 1062 // an algorithm which cycles through the available os threads, setting 1063 // the current thread's affinity mask to that thread, and then retrieves 1064 // the Apic Id for each thread context using the cpuid instruction. 1065 static int __kmp_affinity_create_apicid_map(AddrUnsPair **address2os, 1066 kmp_i18n_id_t *const msg_id) { 1067 kmp_cpuid buf; 1068 *address2os = NULL; 1069 *msg_id = kmp_i18n_null; 1070 1071 // Check if cpuid leaf 4 is supported. 1072 __kmp_x86_cpuid(0, 0, &buf); 1073 if (buf.eax < 4) { 1074 *msg_id = kmp_i18n_str_NoLeaf4Support; 1075 return -1; 1076 } 1077 1078 // The algorithm used starts by setting the affinity to each available thread 1079 // and retrieving info from the cpuid instruction, so if we are not capable of 1080 // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we 1081 // need to do something else - use the defaults that we calculated from 1082 // issuing cpuid without binding to each proc. 1083 if (!KMP_AFFINITY_CAPABLE()) { 1084 // Hack to try and infer the machine topology using only the data 1085 // available from cpuid on the current thread, and __kmp_xproc. 1086 KMP_ASSERT(__kmp_affinity_type == affinity_none); 1087 1088 // Get an upper bound on the number of threads per package using cpuid(1). 1089 // On some OS/chps combinations where HT is supported by the chip but is 1090 // disabled, this value will be 2 on a single core chip. Usually, it will be 1091 // 2 if HT is enabled and 1 if HT is disabled. 1092 __kmp_x86_cpuid(1, 0, &buf); 1093 int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; 1094 if (maxThreadsPerPkg == 0) { 1095 maxThreadsPerPkg = 1; 1096 } 1097 1098 // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded 1099 // value. 1100 // 1101 // The author of cpu_count.cpp treated this only an upper bound on the 1102 // number of cores, but I haven't seen any cases where it was greater than 1103 // the actual number of cores, so we will treat it as exact in this block of 1104 // code. 1105 // 1106 // First, we need to check if cpuid(4) is supported on this chip. To see if 1107 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or 1108 // greater. 1109 __kmp_x86_cpuid(0, 0, &buf); 1110 if (buf.eax >= 4) { 1111 __kmp_x86_cpuid(4, 0, &buf); 1112 nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; 1113 } else { 1114 nCoresPerPkg = 1; 1115 } 1116 1117 // There is no way to reliably tell if HT is enabled without issuing the 1118 // cpuid instruction from every thread, can correlating the cpuid info, so 1119 // if the machine is not affinity capable, we assume that HT is off. We have 1120 // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine 1121 // does not support HT. 1122 // 1123 // - Older OSes are usually found on machines with older chips, which do not 1124 // support HT. 1125 // - The performance penalty for mistakenly identifying a machine as HT when 1126 // it isn't (which results in blocktime being incorrecly set to 0) is 1127 // greater than the penalty when for mistakenly identifying a machine as 1128 // being 1 thread/core when it is really HT enabled (which results in 1129 // blocktime being incorrectly set to a positive value). 1130 __kmp_ncores = __kmp_xproc; 1131 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 1132 __kmp_nThreadsPerCore = 1; 1133 if (__kmp_affinity_verbose) { 1134 KMP_INFORM(AffNotCapableUseLocCpuid, "KMP_AFFINITY"); 1135 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1136 if (__kmp_affinity_uniform_topology()) { 1137 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1138 } else { 1139 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 1140 } 1141 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1142 __kmp_nThreadsPerCore, __kmp_ncores); 1143 } 1144 return 0; 1145 } 1146 1147 // From here on, we can assume that it is safe to call 1148 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if 1149 // __kmp_affinity_type = affinity_none. 1150 1151 // Save the affinity mask for the current thread. 1152 kmp_affin_mask_t *oldMask; 1153 KMP_CPU_ALLOC(oldMask); 1154 KMP_ASSERT(oldMask != NULL); 1155 __kmp_get_system_affinity(oldMask, TRUE); 1156 1157 // Run through each of the available contexts, binding the current thread 1158 // to it, and obtaining the pertinent information using the cpuid instr. 1159 // 1160 // The relevant information is: 1161 // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context 1162 // has a uniqie Apic Id, which is of the form pkg# : core# : thread#. 1163 // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value 1164 // of this field determines the width of the core# + thread# fields in the 1165 // Apic Id. It is also an upper bound on the number of threads per 1166 // package, but it has been verified that situations happen were it is not 1167 // exact. In particular, on certain OS/chip combinations where Intel(R) 1168 // Hyper-Threading Technology is supported by the chip but has been 1169 // disabled, the value of this field will be 2 (for a single core chip). 1170 // On other OS/chip combinations supporting Intel(R) Hyper-Threading 1171 // Technology, the value of this field will be 1 when Intel(R) 1172 // Hyper-Threading Technology is disabled and 2 when it is enabled. 1173 // - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value 1174 // of this field (+1) determines the width of the core# field in the Apic 1175 // Id. The comments in "cpucount.cpp" say that this value is an upper 1176 // bound, but the IA-32 architecture manual says that it is exactly the 1177 // number of cores per package, and I haven't seen any case where it 1178 // wasn't. 1179 // 1180 // From this information, deduce the package Id, core Id, and thread Id, 1181 // and set the corresponding fields in the apicThreadInfo struct. 1182 unsigned i; 1183 apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate( 1184 __kmp_avail_proc * sizeof(apicThreadInfo)); 1185 unsigned nApics = 0; 1186 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 1187 // Skip this proc if it is not included in the machine model. 1188 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 1189 continue; 1190 } 1191 KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc); 1192 1193 __kmp_affinity_dispatch->bind_thread(i); 1194 threadInfo[nApics].osId = i; 1195 1196 // The apic id and max threads per pkg come from cpuid(1). 1197 __kmp_x86_cpuid(1, 0, &buf); 1198 if (((buf.edx >> 9) & 1) == 0) { 1199 __kmp_set_system_affinity(oldMask, TRUE); 1200 __kmp_free(threadInfo); 1201 KMP_CPU_FREE(oldMask); 1202 *msg_id = kmp_i18n_str_ApicNotPresent; 1203 return -1; 1204 } 1205 threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff; 1206 threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; 1207 if (threadInfo[nApics].maxThreadsPerPkg == 0) { 1208 threadInfo[nApics].maxThreadsPerPkg = 1; 1209 } 1210 1211 // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded 1212 // value. 1213 // 1214 // First, we need to check if cpuid(4) is supported on this chip. To see if 1215 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n 1216 // or greater. 1217 __kmp_x86_cpuid(0, 0, &buf); 1218 if (buf.eax >= 4) { 1219 __kmp_x86_cpuid(4, 0, &buf); 1220 threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; 1221 } else { 1222 threadInfo[nApics].maxCoresPerPkg = 1; 1223 } 1224 1225 // Infer the pkgId / coreId / threadId using only the info obtained locally. 1226 int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg); 1227 threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT; 1228 1229 int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg); 1230 int widthT = widthCT - widthC; 1231 if (widthT < 0) { 1232 // I've never seen this one happen, but I suppose it could, if the cpuid 1233 // instruction on a chip was really screwed up. Make sure to restore the 1234 // affinity mask before the tail call. 1235 __kmp_set_system_affinity(oldMask, TRUE); 1236 __kmp_free(threadInfo); 1237 KMP_CPU_FREE(oldMask); 1238 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1239 return -1; 1240 } 1241 1242 int maskC = (1 << widthC) - 1; 1243 threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC; 1244 1245 int maskT = (1 << widthT) - 1; 1246 threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT; 1247 1248 nApics++; 1249 } 1250 1251 // We've collected all the info we need. 1252 // Restore the old affinity mask for this thread. 1253 __kmp_set_system_affinity(oldMask, TRUE); 1254 1255 // If there's only one thread context to bind to, form an Address object 1256 // with depth 1 and return immediately (or, if affinity is off, set 1257 // address2os to NULL and return). 1258 // 1259 // If it is configured to omit the package level when there is only a single 1260 // package, the logic at the end of this routine won't work if there is only 1261 // a single thread - it would try to form an Address object with depth 0. 1262 KMP_ASSERT(nApics > 0); 1263 if (nApics == 1) { 1264 __kmp_ncores = nPackages = 1; 1265 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 1266 if (__kmp_affinity_verbose) { 1267 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 1268 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 1269 1270 KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY"); 1271 if (__kmp_affinity_respect_mask) { 1272 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 1273 } else { 1274 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 1275 } 1276 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1277 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1278 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1279 __kmp_nThreadsPerCore, __kmp_ncores); 1280 } 1281 1282 if (__kmp_affinity_type == affinity_none) { 1283 __kmp_free(threadInfo); 1284 KMP_CPU_FREE(oldMask); 1285 return 0; 1286 } 1287 1288 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair)); 1289 Address addr(1); 1290 addr.labels[0] = threadInfo[0].pkgId; 1291 (*address2os)[0] = AddrUnsPair(addr, threadInfo[0].osId); 1292 1293 if (__kmp_affinity_gran_levels < 0) { 1294 __kmp_affinity_gran_levels = 0; 1295 } 1296 1297 if (__kmp_affinity_verbose) { 1298 __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1); 1299 } 1300 1301 __kmp_free(threadInfo); 1302 KMP_CPU_FREE(oldMask); 1303 return 1; 1304 } 1305 1306 // Sort the threadInfo table by physical Id. 1307 qsort(threadInfo, nApics, sizeof(*threadInfo), 1308 __kmp_affinity_cmp_apicThreadInfo_phys_id); 1309 1310 // The table is now sorted by pkgId / coreId / threadId, but we really don't 1311 // know the radix of any of the fields. pkgId's may be sparsely assigned among 1312 // the chips on a system. Although coreId's are usually assigned 1313 // [0 .. coresPerPkg-1] and threadId's are usually assigned 1314 // [0..threadsPerCore-1], we don't want to make any such assumptions. 1315 // 1316 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the 1317 // total # packages) are at this point - we want to determine that now. We 1318 // only have an upper bound on the first two figures. 1319 // 1320 // We also perform a consistency check at this point: the values returned by 1321 // the cpuid instruction for any thread bound to a given package had better 1322 // return the same info for maxThreadsPerPkg and maxCoresPerPkg. 1323 nPackages = 1; 1324 nCoresPerPkg = 1; 1325 __kmp_nThreadsPerCore = 1; 1326 unsigned nCores = 1; 1327 1328 unsigned pkgCt = 1; // to determine radii 1329 unsigned lastPkgId = threadInfo[0].pkgId; 1330 unsigned coreCt = 1; 1331 unsigned lastCoreId = threadInfo[0].coreId; 1332 unsigned threadCt = 1; 1333 unsigned lastThreadId = threadInfo[0].threadId; 1334 1335 // intra-pkg consist checks 1336 unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg; 1337 unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg; 1338 1339 for (i = 1; i < nApics; i++) { 1340 if (threadInfo[i].pkgId != lastPkgId) { 1341 nCores++; 1342 pkgCt++; 1343 lastPkgId = threadInfo[i].pkgId; 1344 if ((int)coreCt > nCoresPerPkg) 1345 nCoresPerPkg = coreCt; 1346 coreCt = 1; 1347 lastCoreId = threadInfo[i].coreId; 1348 if ((int)threadCt > __kmp_nThreadsPerCore) 1349 __kmp_nThreadsPerCore = threadCt; 1350 threadCt = 1; 1351 lastThreadId = threadInfo[i].threadId; 1352 1353 // This is a different package, so go on to the next iteration without 1354 // doing any consistency checks. Reset the consistency check vars, though. 1355 prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg; 1356 prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg; 1357 continue; 1358 } 1359 1360 if (threadInfo[i].coreId != lastCoreId) { 1361 nCores++; 1362 coreCt++; 1363 lastCoreId = threadInfo[i].coreId; 1364 if ((int)threadCt > __kmp_nThreadsPerCore) 1365 __kmp_nThreadsPerCore = threadCt; 1366 threadCt = 1; 1367 lastThreadId = threadInfo[i].threadId; 1368 } else if (threadInfo[i].threadId != lastThreadId) { 1369 threadCt++; 1370 lastThreadId = threadInfo[i].threadId; 1371 } else { 1372 __kmp_free(threadInfo); 1373 KMP_CPU_FREE(oldMask); 1374 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; 1375 return -1; 1376 } 1377 1378 // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg 1379 // fields agree between all the threads bounds to a given package. 1380 if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) || 1381 (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) { 1382 __kmp_free(threadInfo); 1383 KMP_CPU_FREE(oldMask); 1384 *msg_id = kmp_i18n_str_InconsistentCpuidInfo; 1385 return -1; 1386 } 1387 } 1388 nPackages = pkgCt; 1389 if ((int)coreCt > nCoresPerPkg) 1390 nCoresPerPkg = coreCt; 1391 if ((int)threadCt > __kmp_nThreadsPerCore) 1392 __kmp_nThreadsPerCore = threadCt; 1393 1394 // When affinity is off, this routine will still be called to set 1395 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 1396 // Make sure all these vars are set correctly, and return now if affinity is 1397 // not enabled. 1398 __kmp_ncores = nCores; 1399 if (__kmp_affinity_verbose) { 1400 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 1401 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 1402 1403 KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY"); 1404 if (__kmp_affinity_respect_mask) { 1405 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 1406 } else { 1407 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 1408 } 1409 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1410 if (__kmp_affinity_uniform_topology()) { 1411 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1412 } else { 1413 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 1414 } 1415 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1416 __kmp_nThreadsPerCore, __kmp_ncores); 1417 } 1418 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 1419 KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc); 1420 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 1421 for (i = 0; i < nApics; ++i) { 1422 __kmp_pu_os_idx[i] = threadInfo[i].osId; 1423 } 1424 if (__kmp_affinity_type == affinity_none) { 1425 __kmp_free(threadInfo); 1426 KMP_CPU_FREE(oldMask); 1427 return 0; 1428 } 1429 1430 // Now that we've determined the number of packages, the number of cores per 1431 // package, and the number of threads per core, we can construct the data 1432 // structure that is to be returned. 1433 int pkgLevel = 0; 1434 int coreLevel = (nCoresPerPkg <= 1) ? -1 : 1; 1435 int threadLevel = 1436 (__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1); 1437 unsigned depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0); 1438 1439 KMP_ASSERT(depth > 0); 1440 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * nApics); 1441 1442 for (i = 0; i < nApics; ++i) { 1443 Address addr(depth); 1444 unsigned os = threadInfo[i].osId; 1445 int d = 0; 1446 1447 if (pkgLevel >= 0) { 1448 addr.labels[d++] = threadInfo[i].pkgId; 1449 } 1450 if (coreLevel >= 0) { 1451 addr.labels[d++] = threadInfo[i].coreId; 1452 } 1453 if (threadLevel >= 0) { 1454 addr.labels[d++] = threadInfo[i].threadId; 1455 } 1456 (*address2os)[i] = AddrUnsPair(addr, os); 1457 } 1458 1459 if (__kmp_affinity_gran_levels < 0) { 1460 // Set the granularity level based on what levels are modeled in the machine 1461 // topology map. 1462 __kmp_affinity_gran_levels = 0; 1463 if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) { 1464 __kmp_affinity_gran_levels++; 1465 } 1466 if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) { 1467 __kmp_affinity_gran_levels++; 1468 } 1469 if ((pkgLevel >= 0) && (__kmp_affinity_gran > affinity_gran_package)) { 1470 __kmp_affinity_gran_levels++; 1471 } 1472 } 1473 1474 if (__kmp_affinity_verbose) { 1475 __kmp_affinity_print_topology(*address2os, nApics, depth, pkgLevel, 1476 coreLevel, threadLevel); 1477 } 1478 1479 __kmp_free(threadInfo); 1480 KMP_CPU_FREE(oldMask); 1481 return depth; 1482 } 1483 1484 // Intel(R) microarchitecture code name Nehalem, Dunnington and later 1485 // architectures support a newer interface for specifying the x2APIC Ids, 1486 // based on cpuid leaf 11. 1487 static int __kmp_affinity_create_x2apicid_map(AddrUnsPair **address2os, 1488 kmp_i18n_id_t *const msg_id) { 1489 kmp_cpuid buf; 1490 *address2os = NULL; 1491 *msg_id = kmp_i18n_null; 1492 1493 // Check to see if cpuid leaf 11 is supported. 1494 __kmp_x86_cpuid(0, 0, &buf); 1495 if (buf.eax < 11) { 1496 *msg_id = kmp_i18n_str_NoLeaf11Support; 1497 return -1; 1498 } 1499 __kmp_x86_cpuid(11, 0, &buf); 1500 if (buf.ebx == 0) { 1501 *msg_id = kmp_i18n_str_NoLeaf11Support; 1502 return -1; 1503 } 1504 1505 // Find the number of levels in the machine topology. While we're at it, get 1506 // the default values for __kmp_nThreadsPerCore & nCoresPerPkg. We will try to 1507 // get more accurate values later by explicitly counting them, but get 1508 // reasonable defaults now, in case we return early. 1509 int level; 1510 int threadLevel = -1; 1511 int coreLevel = -1; 1512 int pkgLevel = -1; 1513 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; 1514 1515 for (level = 0;; level++) { 1516 if (level > 31) { 1517 // FIXME: Hack for DPD200163180 1518 // 1519 // If level is big then something went wrong -> exiting 1520 // 1521 // There could actually be 32 valid levels in the machine topology, but so 1522 // far, the only machine we have seen which does not exit this loop before 1523 // iteration 32 has fubar x2APIC settings. 1524 // 1525 // For now, just reject this case based upon loop trip count. 1526 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1527 return -1; 1528 } 1529 __kmp_x86_cpuid(11, level, &buf); 1530 if (buf.ebx == 0) { 1531 if (pkgLevel < 0) { 1532 // Will infer nPackages from __kmp_xproc 1533 pkgLevel = level; 1534 level++; 1535 } 1536 break; 1537 } 1538 int kind = (buf.ecx >> 8) & 0xff; 1539 if (kind == 1) { 1540 // SMT level 1541 threadLevel = level; 1542 coreLevel = -1; 1543 pkgLevel = -1; 1544 __kmp_nThreadsPerCore = buf.ebx & 0xffff; 1545 if (__kmp_nThreadsPerCore == 0) { 1546 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1547 return -1; 1548 } 1549 } else if (kind == 2) { 1550 // core level 1551 coreLevel = level; 1552 pkgLevel = -1; 1553 nCoresPerPkg = buf.ebx & 0xffff; 1554 if (nCoresPerPkg == 0) { 1555 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1556 return -1; 1557 } 1558 } else { 1559 if (level <= 0) { 1560 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1561 return -1; 1562 } 1563 if (pkgLevel >= 0) { 1564 continue; 1565 } 1566 pkgLevel = level; 1567 nPackages = buf.ebx & 0xffff; 1568 if (nPackages == 0) { 1569 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1570 return -1; 1571 } 1572 } 1573 } 1574 int depth = level; 1575 1576 // In the above loop, "level" was counted from the finest level (usually 1577 // thread) to the coarsest. The caller expects that we will place the labels 1578 // in (*address2os)[].first.labels[] in the inverse order, so we need to 1579 // invert the vars saying which level means what. 1580 if (threadLevel >= 0) { 1581 threadLevel = depth - threadLevel - 1; 1582 } 1583 if (coreLevel >= 0) { 1584 coreLevel = depth - coreLevel - 1; 1585 } 1586 KMP_DEBUG_ASSERT(pkgLevel >= 0); 1587 pkgLevel = depth - pkgLevel - 1; 1588 1589 // The algorithm used starts by setting the affinity to each available thread 1590 // and retrieving info from the cpuid instruction, so if we are not capable of 1591 // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we 1592 // need to do something else - use the defaults that we calculated from 1593 // issuing cpuid without binding to each proc. 1594 if (!KMP_AFFINITY_CAPABLE()) { 1595 // Hack to try and infer the machine topology using only the data 1596 // available from cpuid on the current thread, and __kmp_xproc. 1597 KMP_ASSERT(__kmp_affinity_type == affinity_none); 1598 1599 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; 1600 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 1601 if (__kmp_affinity_verbose) { 1602 KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY"); 1603 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1604 if (__kmp_affinity_uniform_topology()) { 1605 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1606 } else { 1607 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 1608 } 1609 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1610 __kmp_nThreadsPerCore, __kmp_ncores); 1611 } 1612 return 0; 1613 } 1614 1615 // From here on, we can assume that it is safe to call 1616 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if 1617 // __kmp_affinity_type = affinity_none. 1618 1619 // Save the affinity mask for the current thread. 1620 kmp_affin_mask_t *oldMask; 1621 KMP_CPU_ALLOC(oldMask); 1622 __kmp_get_system_affinity(oldMask, TRUE); 1623 1624 // Allocate the data structure to be returned. 1625 AddrUnsPair *retval = 1626 (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc); 1627 1628 // Run through each of the available contexts, binding the current thread 1629 // to it, and obtaining the pertinent information using the cpuid instr. 1630 unsigned int proc; 1631 int nApics = 0; 1632 KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) { 1633 // Skip this proc if it is not included in the machine model. 1634 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 1635 continue; 1636 } 1637 KMP_DEBUG_ASSERT(nApics < __kmp_avail_proc); 1638 1639 __kmp_affinity_dispatch->bind_thread(proc); 1640 1641 // Extract labels for each level in the machine topology map from Apic ID. 1642 Address addr(depth); 1643 int prev_shift = 0; 1644 1645 for (level = 0; level < depth; level++) { 1646 __kmp_x86_cpuid(11, level, &buf); 1647 unsigned apicId = buf.edx; 1648 if (buf.ebx == 0) { 1649 if (level != depth - 1) { 1650 KMP_CPU_FREE(oldMask); 1651 *msg_id = kmp_i18n_str_InconsistentCpuidInfo; 1652 return -1; 1653 } 1654 addr.labels[depth - level - 1] = apicId >> prev_shift; 1655 level++; 1656 break; 1657 } 1658 int shift = buf.eax & 0x1f; 1659 int mask = (1 << shift) - 1; 1660 addr.labels[depth - level - 1] = (apicId & mask) >> prev_shift; 1661 prev_shift = shift; 1662 } 1663 if (level != depth) { 1664 KMP_CPU_FREE(oldMask); 1665 *msg_id = kmp_i18n_str_InconsistentCpuidInfo; 1666 return -1; 1667 } 1668 1669 retval[nApics] = AddrUnsPair(addr, proc); 1670 nApics++; 1671 } 1672 1673 // We've collected all the info we need. 1674 // Restore the old affinity mask for this thread. 1675 __kmp_set_system_affinity(oldMask, TRUE); 1676 1677 // If there's only one thread context to bind to, return now. 1678 KMP_ASSERT(nApics > 0); 1679 if (nApics == 1) { 1680 __kmp_ncores = nPackages = 1; 1681 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 1682 if (__kmp_affinity_verbose) { 1683 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 1684 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 1685 1686 KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY"); 1687 if (__kmp_affinity_respect_mask) { 1688 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 1689 } else { 1690 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 1691 } 1692 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1693 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1694 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1695 __kmp_nThreadsPerCore, __kmp_ncores); 1696 } 1697 1698 if (__kmp_affinity_type == affinity_none) { 1699 __kmp_free(retval); 1700 KMP_CPU_FREE(oldMask); 1701 return 0; 1702 } 1703 1704 // Form an Address object which only includes the package level. 1705 Address addr(1); 1706 addr.labels[0] = retval[0].first.labels[pkgLevel]; 1707 retval[0].first = addr; 1708 1709 if (__kmp_affinity_gran_levels < 0) { 1710 __kmp_affinity_gran_levels = 0; 1711 } 1712 1713 if (__kmp_affinity_verbose) { 1714 __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1); 1715 } 1716 1717 *address2os = retval; 1718 KMP_CPU_FREE(oldMask); 1719 return 1; 1720 } 1721 1722 // Sort the table by physical Id. 1723 qsort(retval, nApics, sizeof(*retval), __kmp_affinity_cmp_Address_labels); 1724 1725 // Find the radix at each of the levels. 1726 unsigned *totals = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 1727 unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 1728 unsigned *maxCt = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 1729 unsigned *last = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 1730 for (level = 0; level < depth; level++) { 1731 totals[level] = 1; 1732 maxCt[level] = 1; 1733 counts[level] = 1; 1734 last[level] = retval[0].first.labels[level]; 1735 } 1736 1737 // From here on, the iteration variable "level" runs from the finest level to 1738 // the coarsest, i.e. we iterate forward through 1739 // (*address2os)[].first.labels[] - in the previous loops, we iterated 1740 // backwards. 1741 for (proc = 1; (int)proc < nApics; proc++) { 1742 int level; 1743 for (level = 0; level < depth; level++) { 1744 if (retval[proc].first.labels[level] != last[level]) { 1745 int j; 1746 for (j = level + 1; j < depth; j++) { 1747 totals[j]++; 1748 counts[j] = 1; 1749 // The line below causes printing incorrect topology information in 1750 // case the max value for some level (maxCt[level]) is encountered 1751 // earlier than some less value while going through the array. For 1752 // example, let pkg0 has 4 cores and pkg1 has 2 cores. Then 1753 // maxCt[1] == 2 1754 // whereas it must be 4. 1755 // TODO!!! Check if it can be commented safely 1756 // maxCt[j] = 1; 1757 last[j] = retval[proc].first.labels[j]; 1758 } 1759 totals[level]++; 1760 counts[level]++; 1761 if (counts[level] > maxCt[level]) { 1762 maxCt[level] = counts[level]; 1763 } 1764 last[level] = retval[proc].first.labels[level]; 1765 break; 1766 } else if (level == depth - 1) { 1767 __kmp_free(last); 1768 __kmp_free(maxCt); 1769 __kmp_free(counts); 1770 __kmp_free(totals); 1771 __kmp_free(retval); 1772 KMP_CPU_FREE(oldMask); 1773 *msg_id = kmp_i18n_str_x2ApicIDsNotUnique; 1774 return -1; 1775 } 1776 } 1777 } 1778 1779 // When affinity is off, this routine will still be called to set 1780 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 1781 // Make sure all these vars are set correctly, and return if affinity is not 1782 // enabled. 1783 if (threadLevel >= 0) { 1784 __kmp_nThreadsPerCore = maxCt[threadLevel]; 1785 } else { 1786 __kmp_nThreadsPerCore = 1; 1787 } 1788 nPackages = totals[pkgLevel]; 1789 1790 if (coreLevel >= 0) { 1791 __kmp_ncores = totals[coreLevel]; 1792 nCoresPerPkg = maxCt[coreLevel]; 1793 } else { 1794 __kmp_ncores = nPackages; 1795 nCoresPerPkg = 1; 1796 } 1797 1798 // Check to see if the machine topology is uniform 1799 unsigned prod = maxCt[0]; 1800 for (level = 1; level < depth; level++) { 1801 prod *= maxCt[level]; 1802 } 1803 bool uniform = (prod == totals[level - 1]); 1804 1805 // Print the machine topology summary. 1806 if (__kmp_affinity_verbose) { 1807 char mask[KMP_AFFIN_MASK_PRINT_LEN]; 1808 __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 1809 1810 KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY"); 1811 if (__kmp_affinity_respect_mask) { 1812 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask); 1813 } else { 1814 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask); 1815 } 1816 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1817 if (uniform) { 1818 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1819 } else { 1820 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 1821 } 1822 1823 kmp_str_buf_t buf; 1824 __kmp_str_buf_init(&buf); 1825 1826 __kmp_str_buf_print(&buf, "%d", totals[0]); 1827 for (level = 1; level <= pkgLevel; level++) { 1828 __kmp_str_buf_print(&buf, " x %d", maxCt[level]); 1829 } 1830 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg, 1831 __kmp_nThreadsPerCore, __kmp_ncores); 1832 1833 __kmp_str_buf_free(&buf); 1834 } 1835 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 1836 KMP_DEBUG_ASSERT(nApics == __kmp_avail_proc); 1837 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 1838 for (proc = 0; (int)proc < nApics; ++proc) { 1839 __kmp_pu_os_idx[proc] = retval[proc].second; 1840 } 1841 if (__kmp_affinity_type == affinity_none) { 1842 __kmp_free(last); 1843 __kmp_free(maxCt); 1844 __kmp_free(counts); 1845 __kmp_free(totals); 1846 __kmp_free(retval); 1847 KMP_CPU_FREE(oldMask); 1848 return 0; 1849 } 1850 1851 // Find any levels with radiix 1, and remove them from the map 1852 // (except for the package level). 1853 int new_depth = 0; 1854 for (level = 0; level < depth; level++) { 1855 if ((maxCt[level] == 1) && (level != pkgLevel)) { 1856 continue; 1857 } 1858 new_depth++; 1859 } 1860 1861 // If we are removing any levels, allocate a new vector to return, 1862 // and copy the relevant information to it. 1863 if (new_depth != depth) { 1864 AddrUnsPair *new_retval = 1865 (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * nApics); 1866 for (proc = 0; (int)proc < nApics; proc++) { 1867 Address addr(new_depth); 1868 new_retval[proc] = AddrUnsPair(addr, retval[proc].second); 1869 } 1870 int new_level = 0; 1871 int newPkgLevel = -1; 1872 int newCoreLevel = -1; 1873 int newThreadLevel = -1; 1874 for (level = 0; level < depth; level++) { 1875 if ((maxCt[level] == 1) && (level != pkgLevel)) { 1876 // Remove this level. Never remove the package level 1877 continue; 1878 } 1879 if (level == pkgLevel) { 1880 newPkgLevel = new_level; 1881 } 1882 if (level == coreLevel) { 1883 newCoreLevel = new_level; 1884 } 1885 if (level == threadLevel) { 1886 newThreadLevel = new_level; 1887 } 1888 for (proc = 0; (int)proc < nApics; proc++) { 1889 new_retval[proc].first.labels[new_level] = 1890 retval[proc].first.labels[level]; 1891 } 1892 new_level++; 1893 } 1894 1895 __kmp_free(retval); 1896 retval = new_retval; 1897 depth = new_depth; 1898 pkgLevel = newPkgLevel; 1899 coreLevel = newCoreLevel; 1900 threadLevel = newThreadLevel; 1901 } 1902 1903 if (__kmp_affinity_gran_levels < 0) { 1904 // Set the granularity level based on what levels are modeled 1905 // in the machine topology map. 1906 __kmp_affinity_gran_levels = 0; 1907 if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) { 1908 __kmp_affinity_gran_levels++; 1909 } 1910 if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) { 1911 __kmp_affinity_gran_levels++; 1912 } 1913 if (__kmp_affinity_gran > affinity_gran_package) { 1914 __kmp_affinity_gran_levels++; 1915 } 1916 } 1917 1918 if (__kmp_affinity_verbose) { 1919 __kmp_affinity_print_topology(retval, nApics, depth, pkgLevel, coreLevel, 1920 threadLevel); 1921 } 1922 1923 __kmp_free(last); 1924 __kmp_free(maxCt); 1925 __kmp_free(counts); 1926 __kmp_free(totals); 1927 KMP_CPU_FREE(oldMask); 1928 *address2os = retval; 1929 return depth; 1930 } 1931 1932 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 1933 1934 #define osIdIndex 0 1935 #define threadIdIndex 1 1936 #define coreIdIndex 2 1937 #define pkgIdIndex 3 1938 #define nodeIdIndex 4 1939 1940 typedef unsigned *ProcCpuInfo; 1941 static unsigned maxIndex = pkgIdIndex; 1942 1943 static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a, 1944 const void *b) { 1945 unsigned i; 1946 const unsigned *aa = *(unsigned *const *)a; 1947 const unsigned *bb = *(unsigned *const *)b; 1948 for (i = maxIndex;; i--) { 1949 if (aa[i] < bb[i]) 1950 return -1; 1951 if (aa[i] > bb[i]) 1952 return 1; 1953 if (i == osIdIndex) 1954 break; 1955 } 1956 return 0; 1957 } 1958 1959 #if KMP_USE_HIER_SCHED 1960 // Set the array sizes for the hierarchy layers 1961 static void __kmp_dispatch_set_hierarchy_values() { 1962 // Set the maximum number of L1's to number of cores 1963 // Set the maximum number of L2's to to either number of cores / 2 for 1964 // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing 1965 // Or the number of cores for Intel(R) Xeon(R) processors 1966 // Set the maximum number of NUMA nodes and L3's to number of packages 1967 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] = 1968 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; 1969 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores; 1970 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 1971 if (__kmp_mic_type >= mic3) 1972 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2; 1973 else 1974 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 1975 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores; 1976 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages; 1977 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages; 1978 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1; 1979 // Set the number of threads per unit 1980 // Number of hardware threads per L1/L2/L3/NUMA/LOOP 1981 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1; 1982 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] = 1983 __kmp_nThreadsPerCore; 1984 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 1985 if (__kmp_mic_type >= mic3) 1986 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = 1987 2 * __kmp_nThreadsPerCore; 1988 else 1989 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 1990 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = 1991 __kmp_nThreadsPerCore; 1992 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] = 1993 nCoresPerPkg * __kmp_nThreadsPerCore; 1994 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] = 1995 nCoresPerPkg * __kmp_nThreadsPerCore; 1996 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] = 1997 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; 1998 } 1999 2000 // Return the index into the hierarchy for this tid and layer type (L1, L2, etc) 2001 // i.e., this thread's L1 or this thread's L2, etc. 2002 int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) { 2003 int index = type + 1; 2004 int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1]; 2005 KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST); 2006 if (type == kmp_hier_layer_e::LAYER_THREAD) 2007 return tid; 2008 else if (type == kmp_hier_layer_e::LAYER_LOOP) 2009 return 0; 2010 KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0); 2011 if (tid >= num_hw_threads) 2012 tid = tid % num_hw_threads; 2013 return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index]; 2014 } 2015 2016 // Return the number of t1's per t2 2017 int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) { 2018 int i1 = t1 + 1; 2019 int i2 = t2 + 1; 2020 KMP_DEBUG_ASSERT(i1 <= i2); 2021 KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST); 2022 KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST); 2023 KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0); 2024 // (nthreads/t2) / (nthreads/t1) = t1 / t2 2025 return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1]; 2026 } 2027 #endif // KMP_USE_HIER_SCHED 2028 2029 // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the 2030 // affinity map. 2031 static int __kmp_affinity_create_cpuinfo_map(AddrUnsPair **address2os, 2032 int *line, 2033 kmp_i18n_id_t *const msg_id, 2034 FILE *f) { 2035 *address2os = NULL; 2036 *msg_id = kmp_i18n_null; 2037 2038 // Scan of the file, and count the number of "processor" (osId) fields, 2039 // and find the highest value of <n> for a node_<n> field. 2040 char buf[256]; 2041 unsigned num_records = 0; 2042 while (!feof(f)) { 2043 buf[sizeof(buf) - 1] = 1; 2044 if (!fgets(buf, sizeof(buf), f)) { 2045 // Read errors presumably because of EOF 2046 break; 2047 } 2048 2049 char s1[] = "processor"; 2050 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { 2051 num_records++; 2052 continue; 2053 } 2054 2055 // FIXME - this will match "node_<n> <garbage>" 2056 unsigned level; 2057 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { 2058 if (nodeIdIndex + level >= maxIndex) { 2059 maxIndex = nodeIdIndex + level; 2060 } 2061 continue; 2062 } 2063 } 2064 2065 // Check for empty file / no valid processor records, or too many. The number 2066 // of records can't exceed the number of valid bits in the affinity mask. 2067 if (num_records == 0) { 2068 *line = 0; 2069 *msg_id = kmp_i18n_str_NoProcRecords; 2070 return -1; 2071 } 2072 if (num_records > (unsigned)__kmp_xproc) { 2073 *line = 0; 2074 *msg_id = kmp_i18n_str_TooManyProcRecords; 2075 return -1; 2076 } 2077 2078 // Set the file pointer back to the begginning, so that we can scan the file 2079 // again, this time performing a full parse of the data. Allocate a vector of 2080 // ProcCpuInfo object, where we will place the data. Adding an extra element 2081 // at the end allows us to remove a lot of extra checks for termination 2082 // conditions. 2083 if (fseek(f, 0, SEEK_SET) != 0) { 2084 *line = 0; 2085 *msg_id = kmp_i18n_str_CantRewindCpuinfo; 2086 return -1; 2087 } 2088 2089 // Allocate the array of records to store the proc info in. The dummy 2090 // element at the end makes the logic in filling them out easier to code. 2091 unsigned **threadInfo = 2092 (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *)); 2093 unsigned i; 2094 for (i = 0; i <= num_records; i++) { 2095 threadInfo[i] = 2096 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2097 } 2098 2099 #define CLEANUP_THREAD_INFO \ 2100 for (i = 0; i <= num_records; i++) { \ 2101 __kmp_free(threadInfo[i]); \ 2102 } \ 2103 __kmp_free(threadInfo); 2104 2105 // A value of UINT_MAX means that we didn't find the field 2106 unsigned __index; 2107 2108 #define INIT_PROC_INFO(p) \ 2109 for (__index = 0; __index <= maxIndex; __index++) { \ 2110 (p)[__index] = UINT_MAX; \ 2111 } 2112 2113 for (i = 0; i <= num_records; i++) { 2114 INIT_PROC_INFO(threadInfo[i]); 2115 } 2116 2117 unsigned num_avail = 0; 2118 *line = 0; 2119 while (!feof(f)) { 2120 // Create an inner scoping level, so that all the goto targets at the end of 2121 // the loop appear in an outer scoping level. This avoids warnings about 2122 // jumping past an initialization to a target in the same block. 2123 { 2124 buf[sizeof(buf) - 1] = 1; 2125 bool long_line = false; 2126 if (!fgets(buf, sizeof(buf), f)) { 2127 // Read errors presumably because of EOF 2128 // If there is valid data in threadInfo[num_avail], then fake 2129 // a blank line in ensure that the last address gets parsed. 2130 bool valid = false; 2131 for (i = 0; i <= maxIndex; i++) { 2132 if (threadInfo[num_avail][i] != UINT_MAX) { 2133 valid = true; 2134 } 2135 } 2136 if (!valid) { 2137 break; 2138 } 2139 buf[0] = 0; 2140 } else if (!buf[sizeof(buf) - 1]) { 2141 // The line is longer than the buffer. Set a flag and don't 2142 // emit an error if we were going to ignore the line, anyway. 2143 long_line = true; 2144 2145 #define CHECK_LINE \ 2146 if (long_line) { \ 2147 CLEANUP_THREAD_INFO; \ 2148 *msg_id = kmp_i18n_str_LongLineCpuinfo; \ 2149 return -1; \ 2150 } 2151 } 2152 (*line)++; 2153 2154 char s1[] = "processor"; 2155 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { 2156 CHECK_LINE; 2157 char *p = strchr(buf + sizeof(s1) - 1, ':'); 2158 unsigned val; 2159 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2160 goto no_val; 2161 if (threadInfo[num_avail][osIdIndex] != UINT_MAX) 2162 #if KMP_ARCH_AARCH64 2163 // Handle the old AArch64 /proc/cpuinfo layout differently, 2164 // it contains all of the 'processor' entries listed in a 2165 // single 'Processor' section, therefore the normal looking 2166 // for duplicates in that section will always fail. 2167 num_avail++; 2168 #else 2169 goto dup_field; 2170 #endif 2171 threadInfo[num_avail][osIdIndex] = val; 2172 #if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64) 2173 char path[256]; 2174 KMP_SNPRINTF( 2175 path, sizeof(path), 2176 "/sys/devices/system/cpu/cpu%u/topology/physical_package_id", 2177 threadInfo[num_avail][osIdIndex]); 2178 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]); 2179 2180 KMP_SNPRINTF(path, sizeof(path), 2181 "/sys/devices/system/cpu/cpu%u/topology/core_id", 2182 threadInfo[num_avail][osIdIndex]); 2183 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]); 2184 continue; 2185 #else 2186 } 2187 char s2[] = "physical id"; 2188 if (strncmp(buf, s2, sizeof(s2) - 1) == 0) { 2189 CHECK_LINE; 2190 char *p = strchr(buf + sizeof(s2) - 1, ':'); 2191 unsigned val; 2192 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2193 goto no_val; 2194 if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX) 2195 goto dup_field; 2196 threadInfo[num_avail][pkgIdIndex] = val; 2197 continue; 2198 } 2199 char s3[] = "core id"; 2200 if (strncmp(buf, s3, sizeof(s3) - 1) == 0) { 2201 CHECK_LINE; 2202 char *p = strchr(buf + sizeof(s3) - 1, ':'); 2203 unsigned val; 2204 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2205 goto no_val; 2206 if (threadInfo[num_avail][coreIdIndex] != UINT_MAX) 2207 goto dup_field; 2208 threadInfo[num_avail][coreIdIndex] = val; 2209 continue; 2210 #endif // KMP_OS_LINUX && USE_SYSFS_INFO 2211 } 2212 char s4[] = "thread id"; 2213 if (strncmp(buf, s4, sizeof(s4) - 1) == 0) { 2214 CHECK_LINE; 2215 char *p = strchr(buf + sizeof(s4) - 1, ':'); 2216 unsigned val; 2217 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2218 goto no_val; 2219 if (threadInfo[num_avail][threadIdIndex] != UINT_MAX) 2220 goto dup_field; 2221 threadInfo[num_avail][threadIdIndex] = val; 2222 continue; 2223 } 2224 unsigned level; 2225 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { 2226 CHECK_LINE; 2227 char *p = strchr(buf + sizeof(s4) - 1, ':'); 2228 unsigned val; 2229 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2230 goto no_val; 2231 KMP_ASSERT(nodeIdIndex + level <= maxIndex); 2232 if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX) 2233 goto dup_field; 2234 threadInfo[num_avail][nodeIdIndex + level] = val; 2235 continue; 2236 } 2237 2238 // We didn't recognize the leading token on the line. There are lots of 2239 // leading tokens that we don't recognize - if the line isn't empty, go on 2240 // to the next line. 2241 if ((*buf != 0) && (*buf != '\n')) { 2242 // If the line is longer than the buffer, read characters 2243 // until we find a newline. 2244 if (long_line) { 2245 int ch; 2246 while (((ch = fgetc(f)) != EOF) && (ch != '\n')) 2247 ; 2248 } 2249 continue; 2250 } 2251 2252 // A newline has signalled the end of the processor record. 2253 // Check that there aren't too many procs specified. 2254 if ((int)num_avail == __kmp_xproc) { 2255 CLEANUP_THREAD_INFO; 2256 *msg_id = kmp_i18n_str_TooManyEntries; 2257 return -1; 2258 } 2259 2260 // Check for missing fields. The osId field must be there, and we 2261 // currently require that the physical id field is specified, also. 2262 if (threadInfo[num_avail][osIdIndex] == UINT_MAX) { 2263 CLEANUP_THREAD_INFO; 2264 *msg_id = kmp_i18n_str_MissingProcField; 2265 return -1; 2266 } 2267 if (threadInfo[0][pkgIdIndex] == UINT_MAX) { 2268 CLEANUP_THREAD_INFO; 2269 *msg_id = kmp_i18n_str_MissingPhysicalIDField; 2270 return -1; 2271 } 2272 2273 // Skip this proc if it is not included in the machine model. 2274 if (!KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex], 2275 __kmp_affin_fullMask)) { 2276 INIT_PROC_INFO(threadInfo[num_avail]); 2277 continue; 2278 } 2279 2280 // We have a successful parse of this proc's info. 2281 // Increment the counter, and prepare for the next proc. 2282 num_avail++; 2283 KMP_ASSERT(num_avail <= num_records); 2284 INIT_PROC_INFO(threadInfo[num_avail]); 2285 } 2286 continue; 2287 2288 no_val: 2289 CLEANUP_THREAD_INFO; 2290 *msg_id = kmp_i18n_str_MissingValCpuinfo; 2291 return -1; 2292 2293 dup_field: 2294 CLEANUP_THREAD_INFO; 2295 *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo; 2296 return -1; 2297 } 2298 *line = 0; 2299 2300 #if KMP_MIC && REDUCE_TEAM_SIZE 2301 unsigned teamSize = 0; 2302 #endif // KMP_MIC && REDUCE_TEAM_SIZE 2303 2304 // check for num_records == __kmp_xproc ??? 2305 2306 // If there's only one thread context to bind to, form an Address object with 2307 // depth 1 and return immediately (or, if affinity is off, set address2os to 2308 // NULL and return). 2309 // 2310 // If it is configured to omit the package level when there is only a single 2311 // package, the logic at the end of this routine won't work if there is only a 2312 // single thread - it would try to form an Address object with depth 0. 2313 KMP_ASSERT(num_avail > 0); 2314 KMP_ASSERT(num_avail <= num_records); 2315 if (num_avail == 1) { 2316 __kmp_ncores = 1; 2317 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; 2318 if (__kmp_affinity_verbose) { 2319 if (!KMP_AFFINITY_CAPABLE()) { 2320 KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY"); 2321 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 2322 KMP_INFORM(Uniform, "KMP_AFFINITY"); 2323 } else { 2324 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 2325 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 2326 __kmp_affin_fullMask); 2327 KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY"); 2328 if (__kmp_affinity_respect_mask) { 2329 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 2330 } else { 2331 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 2332 } 2333 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 2334 KMP_INFORM(Uniform, "KMP_AFFINITY"); 2335 } 2336 int index; 2337 kmp_str_buf_t buf; 2338 __kmp_str_buf_init(&buf); 2339 __kmp_str_buf_print(&buf, "1"); 2340 for (index = maxIndex - 1; index > pkgIdIndex; index--) { 2341 __kmp_str_buf_print(&buf, " x 1"); 2342 } 2343 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, 1, 1, 1); 2344 __kmp_str_buf_free(&buf); 2345 } 2346 2347 if (__kmp_affinity_type == affinity_none) { 2348 CLEANUP_THREAD_INFO; 2349 return 0; 2350 } 2351 2352 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair)); 2353 Address addr(1); 2354 addr.labels[0] = threadInfo[0][pkgIdIndex]; 2355 (*address2os)[0] = AddrUnsPair(addr, threadInfo[0][osIdIndex]); 2356 2357 if (__kmp_affinity_gran_levels < 0) { 2358 __kmp_affinity_gran_levels = 0; 2359 } 2360 2361 if (__kmp_affinity_verbose) { 2362 __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1); 2363 } 2364 2365 CLEANUP_THREAD_INFO; 2366 return 1; 2367 } 2368 2369 // Sort the threadInfo table by physical Id. 2370 qsort(threadInfo, num_avail, sizeof(*threadInfo), 2371 __kmp_affinity_cmp_ProcCpuInfo_phys_id); 2372 2373 // The table is now sorted by pkgId / coreId / threadId, but we really don't 2374 // know the radix of any of the fields. pkgId's may be sparsely assigned among 2375 // the chips on a system. Although coreId's are usually assigned 2376 // [0 .. coresPerPkg-1] and threadId's are usually assigned 2377 // [0..threadsPerCore-1], we don't want to make any such assumptions. 2378 // 2379 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the 2380 // total # packages) are at this point - we want to determine that now. We 2381 // only have an upper bound on the first two figures. 2382 unsigned *counts = 2383 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2384 unsigned *maxCt = 2385 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2386 unsigned *totals = 2387 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2388 unsigned *lastId = 2389 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2390 2391 bool assign_thread_ids = false; 2392 unsigned threadIdCt; 2393 unsigned index; 2394 2395 restart_radix_check: 2396 threadIdCt = 0; 2397 2398 // Initialize the counter arrays with data from threadInfo[0]. 2399 if (assign_thread_ids) { 2400 if (threadInfo[0][threadIdIndex] == UINT_MAX) { 2401 threadInfo[0][threadIdIndex] = threadIdCt++; 2402 } else if (threadIdCt <= threadInfo[0][threadIdIndex]) { 2403 threadIdCt = threadInfo[0][threadIdIndex] + 1; 2404 } 2405 } 2406 for (index = 0; index <= maxIndex; index++) { 2407 counts[index] = 1; 2408 maxCt[index] = 1; 2409 totals[index] = 1; 2410 lastId[index] = threadInfo[0][index]; 2411 ; 2412 } 2413 2414 // Run through the rest of the OS procs. 2415 for (i = 1; i < num_avail; i++) { 2416 // Find the most significant index whose id differs from the id for the 2417 // previous OS proc. 2418 for (index = maxIndex; index >= threadIdIndex; index--) { 2419 if (assign_thread_ids && (index == threadIdIndex)) { 2420 // Auto-assign the thread id field if it wasn't specified. 2421 if (threadInfo[i][threadIdIndex] == UINT_MAX) { 2422 threadInfo[i][threadIdIndex] = threadIdCt++; 2423 } 2424 // Apparently the thread id field was specified for some entries and not 2425 // others. Start the thread id counter off at the next higher thread id. 2426 else if (threadIdCt <= threadInfo[i][threadIdIndex]) { 2427 threadIdCt = threadInfo[i][threadIdIndex] + 1; 2428 } 2429 } 2430 if (threadInfo[i][index] != lastId[index]) { 2431 // Run through all indices which are less significant, and reset the 2432 // counts to 1. At all levels up to and including index, we need to 2433 // increment the totals and record the last id. 2434 unsigned index2; 2435 for (index2 = threadIdIndex; index2 < index; index2++) { 2436 totals[index2]++; 2437 if (counts[index2] > maxCt[index2]) { 2438 maxCt[index2] = counts[index2]; 2439 } 2440 counts[index2] = 1; 2441 lastId[index2] = threadInfo[i][index2]; 2442 } 2443 counts[index]++; 2444 totals[index]++; 2445 lastId[index] = threadInfo[i][index]; 2446 2447 if (assign_thread_ids && (index > threadIdIndex)) { 2448 2449 #if KMP_MIC && REDUCE_TEAM_SIZE 2450 // The default team size is the total #threads in the machine 2451 // minus 1 thread for every core that has 3 or more threads. 2452 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); 2453 #endif // KMP_MIC && REDUCE_TEAM_SIZE 2454 2455 // Restart the thread counter, as we are on a new core. 2456 threadIdCt = 0; 2457 2458 // Auto-assign the thread id field if it wasn't specified. 2459 if (threadInfo[i][threadIdIndex] == UINT_MAX) { 2460 threadInfo[i][threadIdIndex] = threadIdCt++; 2461 } 2462 2463 // Aparrently the thread id field was specified for some entries and 2464 // not others. Start the thread id counter off at the next higher 2465 // thread id. 2466 else if (threadIdCt <= threadInfo[i][threadIdIndex]) { 2467 threadIdCt = threadInfo[i][threadIdIndex] + 1; 2468 } 2469 } 2470 break; 2471 } 2472 } 2473 if (index < threadIdIndex) { 2474 // If thread ids were specified, it is an error if they are not unique. 2475 // Also, check that we waven't already restarted the loop (to be safe - 2476 // shouldn't need to). 2477 if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) { 2478 __kmp_free(lastId); 2479 __kmp_free(totals); 2480 __kmp_free(maxCt); 2481 __kmp_free(counts); 2482 CLEANUP_THREAD_INFO; 2483 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; 2484 return -1; 2485 } 2486 2487 // If the thread ids were not specified and we see entries entries that 2488 // are duplicates, start the loop over and assign the thread ids manually. 2489 assign_thread_ids = true; 2490 goto restart_radix_check; 2491 } 2492 } 2493 2494 #if KMP_MIC && REDUCE_TEAM_SIZE 2495 // The default team size is the total #threads in the machine 2496 // minus 1 thread for every core that has 3 or more threads. 2497 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); 2498 #endif // KMP_MIC && REDUCE_TEAM_SIZE 2499 2500 for (index = threadIdIndex; index <= maxIndex; index++) { 2501 if (counts[index] > maxCt[index]) { 2502 maxCt[index] = counts[index]; 2503 } 2504 } 2505 2506 __kmp_nThreadsPerCore = maxCt[threadIdIndex]; 2507 nCoresPerPkg = maxCt[coreIdIndex]; 2508 nPackages = totals[pkgIdIndex]; 2509 2510 // Check to see if the machine topology is uniform 2511 unsigned prod = totals[maxIndex]; 2512 for (index = threadIdIndex; index < maxIndex; index++) { 2513 prod *= maxCt[index]; 2514 } 2515 bool uniform = (prod == totals[threadIdIndex]); 2516 2517 // When affinity is off, this routine will still be called to set 2518 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 2519 // Make sure all these vars are set correctly, and return now if affinity is 2520 // not enabled. 2521 __kmp_ncores = totals[coreIdIndex]; 2522 2523 if (__kmp_affinity_verbose) { 2524 if (!KMP_AFFINITY_CAPABLE()) { 2525 KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY"); 2526 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 2527 if (uniform) { 2528 KMP_INFORM(Uniform, "KMP_AFFINITY"); 2529 } else { 2530 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 2531 } 2532 } else { 2533 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 2534 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 2535 __kmp_affin_fullMask); 2536 KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY"); 2537 if (__kmp_affinity_respect_mask) { 2538 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 2539 } else { 2540 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 2541 } 2542 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 2543 if (uniform) { 2544 KMP_INFORM(Uniform, "KMP_AFFINITY"); 2545 } else { 2546 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 2547 } 2548 } 2549 kmp_str_buf_t buf; 2550 __kmp_str_buf_init(&buf); 2551 2552 __kmp_str_buf_print(&buf, "%d", totals[maxIndex]); 2553 for (index = maxIndex - 1; index >= pkgIdIndex; index--) { 2554 __kmp_str_buf_print(&buf, " x %d", maxCt[index]); 2555 } 2556 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, maxCt[coreIdIndex], 2557 maxCt[threadIdIndex], __kmp_ncores); 2558 2559 __kmp_str_buf_free(&buf); 2560 } 2561 2562 #if KMP_MIC && REDUCE_TEAM_SIZE 2563 // Set the default team size. 2564 if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) { 2565 __kmp_dflt_team_nth = teamSize; 2566 KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting " 2567 "__kmp_dflt_team_nth = %d\n", 2568 __kmp_dflt_team_nth)); 2569 } 2570 #endif // KMP_MIC && REDUCE_TEAM_SIZE 2571 2572 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 2573 KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc); 2574 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 2575 for (i = 0; i < num_avail; ++i) { // fill the os indices 2576 __kmp_pu_os_idx[i] = threadInfo[i][osIdIndex]; 2577 } 2578 2579 if (__kmp_affinity_type == affinity_none) { 2580 __kmp_free(lastId); 2581 __kmp_free(totals); 2582 __kmp_free(maxCt); 2583 __kmp_free(counts); 2584 CLEANUP_THREAD_INFO; 2585 return 0; 2586 } 2587 2588 // Count the number of levels which have more nodes at that level than at the 2589 // parent's level (with there being an implicit root node of the top level). 2590 // This is equivalent to saying that there is at least one node at this level 2591 // which has a sibling. These levels are in the map, and the package level is 2592 // always in the map. 2593 bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool)); 2594 for (index = threadIdIndex; index < maxIndex; index++) { 2595 KMP_ASSERT(totals[index] >= totals[index + 1]); 2596 inMap[index] = (totals[index] > totals[index + 1]); 2597 } 2598 inMap[maxIndex] = (totals[maxIndex] > 1); 2599 inMap[pkgIdIndex] = true; 2600 2601 int depth = 0; 2602 for (index = threadIdIndex; index <= maxIndex; index++) { 2603 if (inMap[index]) { 2604 depth++; 2605 } 2606 } 2607 KMP_ASSERT(depth > 0); 2608 2609 // Construct the data structure that is to be returned. 2610 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * num_avail); 2611 int pkgLevel = -1; 2612 int coreLevel = -1; 2613 int threadLevel = -1; 2614 2615 for (i = 0; i < num_avail; ++i) { 2616 Address addr(depth); 2617 unsigned os = threadInfo[i][osIdIndex]; 2618 int src_index; 2619 int dst_index = 0; 2620 2621 for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) { 2622 if (!inMap[src_index]) { 2623 continue; 2624 } 2625 addr.labels[dst_index] = threadInfo[i][src_index]; 2626 if (src_index == pkgIdIndex) { 2627 pkgLevel = dst_index; 2628 } else if (src_index == coreIdIndex) { 2629 coreLevel = dst_index; 2630 } else if (src_index == threadIdIndex) { 2631 threadLevel = dst_index; 2632 } 2633 dst_index++; 2634 } 2635 (*address2os)[i] = AddrUnsPair(addr, os); 2636 } 2637 2638 if (__kmp_affinity_gran_levels < 0) { 2639 // Set the granularity level based on what levels are modeled 2640 // in the machine topology map. 2641 unsigned src_index; 2642 __kmp_affinity_gran_levels = 0; 2643 for (src_index = threadIdIndex; src_index <= maxIndex; src_index++) { 2644 if (!inMap[src_index]) { 2645 continue; 2646 } 2647 switch (src_index) { 2648 case threadIdIndex: 2649 if (__kmp_affinity_gran > affinity_gran_thread) { 2650 __kmp_affinity_gran_levels++; 2651 } 2652 2653 break; 2654 case coreIdIndex: 2655 if (__kmp_affinity_gran > affinity_gran_core) { 2656 __kmp_affinity_gran_levels++; 2657 } 2658 break; 2659 2660 case pkgIdIndex: 2661 if (__kmp_affinity_gran > affinity_gran_package) { 2662 __kmp_affinity_gran_levels++; 2663 } 2664 break; 2665 } 2666 } 2667 } 2668 2669 if (__kmp_affinity_verbose) { 2670 __kmp_affinity_print_topology(*address2os, num_avail, depth, pkgLevel, 2671 coreLevel, threadLevel); 2672 } 2673 2674 __kmp_free(inMap); 2675 __kmp_free(lastId); 2676 __kmp_free(totals); 2677 __kmp_free(maxCt); 2678 __kmp_free(counts); 2679 CLEANUP_THREAD_INFO; 2680 return depth; 2681 } 2682 2683 // Create and return a table of affinity masks, indexed by OS thread ID. 2684 // This routine handles OR'ing together all the affinity masks of threads 2685 // that are sufficiently close, if granularity > fine. 2686 static kmp_affin_mask_t *__kmp_create_masks(unsigned *maxIndex, 2687 unsigned *numUnique, 2688 AddrUnsPair *address2os, 2689 unsigned numAddrs) { 2690 // First form a table of affinity masks in order of OS thread id. 2691 unsigned depth; 2692 unsigned maxOsId; 2693 unsigned i; 2694 2695 KMP_ASSERT(numAddrs > 0); 2696 depth = address2os[0].first.depth; 2697 2698 maxOsId = 0; 2699 for (i = numAddrs - 1;; --i) { 2700 unsigned osId = address2os[i].second; 2701 if (osId > maxOsId) { 2702 maxOsId = osId; 2703 } 2704 if (i == 0) 2705 break; 2706 } 2707 kmp_affin_mask_t *osId2Mask; 2708 KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId + 1)); 2709 2710 // Sort the address2os table according to physical order. Doing so will put 2711 // all threads on the same core/package/node in consecutive locations. 2712 qsort(address2os, numAddrs, sizeof(*address2os), 2713 __kmp_affinity_cmp_Address_labels); 2714 2715 KMP_ASSERT(__kmp_affinity_gran_levels >= 0); 2716 if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) { 2717 KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels); 2718 } 2719 if (__kmp_affinity_gran_levels >= (int)depth) { 2720 if (__kmp_affinity_verbose || 2721 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { 2722 KMP_WARNING(AffThreadsMayMigrate); 2723 } 2724 } 2725 2726 // Run through the table, forming the masks for all threads on each core. 2727 // Threads on the same core will have identical "Address" objects, not 2728 // considering the last level, which must be the thread id. All threads on a 2729 // core will appear consecutively. 2730 unsigned unique = 0; 2731 unsigned j = 0; // index of 1st thread on core 2732 unsigned leader = 0; 2733 Address *leaderAddr = &(address2os[0].first); 2734 kmp_affin_mask_t *sum; 2735 KMP_CPU_ALLOC_ON_STACK(sum); 2736 KMP_CPU_ZERO(sum); 2737 KMP_CPU_SET(address2os[0].second, sum); 2738 for (i = 1; i < numAddrs; i++) { 2739 // If this thread is sufficiently close to the leader (within the 2740 // granularity setting), then set the bit for this os thread in the 2741 // affinity mask for this group, and go on to the next thread. 2742 if (leaderAddr->isClose(address2os[i].first, __kmp_affinity_gran_levels)) { 2743 KMP_CPU_SET(address2os[i].second, sum); 2744 continue; 2745 } 2746 2747 // For every thread in this group, copy the mask to the thread's entry in 2748 // the osId2Mask table. Mark the first address as a leader. 2749 for (; j < i; j++) { 2750 unsigned osId = address2os[j].second; 2751 KMP_DEBUG_ASSERT(osId <= maxOsId); 2752 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); 2753 KMP_CPU_COPY(mask, sum); 2754 address2os[j].first.leader = (j == leader); 2755 } 2756 unique++; 2757 2758 // Start a new mask. 2759 leader = i; 2760 leaderAddr = &(address2os[i].first); 2761 KMP_CPU_ZERO(sum); 2762 KMP_CPU_SET(address2os[i].second, sum); 2763 } 2764 2765 // For every thread in last group, copy the mask to the thread's 2766 // entry in the osId2Mask table. 2767 for (; j < i; j++) { 2768 unsigned osId = address2os[j].second; 2769 KMP_DEBUG_ASSERT(osId <= maxOsId); 2770 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); 2771 KMP_CPU_COPY(mask, sum); 2772 address2os[j].first.leader = (j == leader); 2773 } 2774 unique++; 2775 KMP_CPU_FREE_FROM_STACK(sum); 2776 2777 *maxIndex = maxOsId; 2778 *numUnique = unique; 2779 return osId2Mask; 2780 } 2781 2782 // Stuff for the affinity proclist parsers. It's easier to declare these vars 2783 // as file-static than to try and pass them through the calling sequence of 2784 // the recursive-descent OMP_PLACES parser. 2785 static kmp_affin_mask_t *newMasks; 2786 static int numNewMasks; 2787 static int nextNewMask; 2788 2789 #define ADD_MASK(_mask) \ 2790 { \ 2791 if (nextNewMask >= numNewMasks) { \ 2792 int i; \ 2793 numNewMasks *= 2; \ 2794 kmp_affin_mask_t *temp; \ 2795 KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \ 2796 for (i = 0; i < numNewMasks / 2; i++) { \ 2797 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); \ 2798 kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i); \ 2799 KMP_CPU_COPY(dest, src); \ 2800 } \ 2801 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2); \ 2802 newMasks = temp; \ 2803 } \ 2804 KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \ 2805 nextNewMask++; \ 2806 } 2807 2808 #define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \ 2809 { \ 2810 if (((_osId) > _maxOsId) || \ 2811 (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \ 2812 if (__kmp_affinity_verbose || \ 2813 (__kmp_affinity_warnings && \ 2814 (__kmp_affinity_type != affinity_none))) { \ 2815 KMP_WARNING(AffIgnoreInvalidProcID, _osId); \ 2816 } \ 2817 } else { \ 2818 ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \ 2819 } \ 2820 } 2821 2822 // Re-parse the proclist (for the explicit affinity type), and form the list 2823 // of affinity newMasks indexed by gtid. 2824 static void __kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks, 2825 unsigned int *out_numMasks, 2826 const char *proclist, 2827 kmp_affin_mask_t *osId2Mask, 2828 int maxOsId) { 2829 int i; 2830 const char *scan = proclist; 2831 const char *next = proclist; 2832 2833 // We use malloc() for the temporary mask vector, so that we can use 2834 // realloc() to extend it. 2835 numNewMasks = 2; 2836 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); 2837 nextNewMask = 0; 2838 kmp_affin_mask_t *sumMask; 2839 KMP_CPU_ALLOC(sumMask); 2840 int setSize = 0; 2841 2842 for (;;) { 2843 int start, end, stride; 2844 2845 SKIP_WS(scan); 2846 next = scan; 2847 if (*next == '\0') { 2848 break; 2849 } 2850 2851 if (*next == '{') { 2852 int num; 2853 setSize = 0; 2854 next++; // skip '{' 2855 SKIP_WS(next); 2856 scan = next; 2857 2858 // Read the first integer in the set. 2859 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist"); 2860 SKIP_DIGITS(next); 2861 num = __kmp_str_to_int(scan, *next); 2862 KMP_ASSERT2(num >= 0, "bad explicit proc list"); 2863 2864 // Copy the mask for that osId to the sum (union) mask. 2865 if ((num > maxOsId) || 2866 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 2867 if (__kmp_affinity_verbose || 2868 (__kmp_affinity_warnings && 2869 (__kmp_affinity_type != affinity_none))) { 2870 KMP_WARNING(AffIgnoreInvalidProcID, num); 2871 } 2872 KMP_CPU_ZERO(sumMask); 2873 } else { 2874 KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num)); 2875 setSize = 1; 2876 } 2877 2878 for (;;) { 2879 // Check for end of set. 2880 SKIP_WS(next); 2881 if (*next == '}') { 2882 next++; // skip '}' 2883 break; 2884 } 2885 2886 // Skip optional comma. 2887 if (*next == ',') { 2888 next++; 2889 } 2890 SKIP_WS(next); 2891 2892 // Read the next integer in the set. 2893 scan = next; 2894 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 2895 2896 SKIP_DIGITS(next); 2897 num = __kmp_str_to_int(scan, *next); 2898 KMP_ASSERT2(num >= 0, "bad explicit proc list"); 2899 2900 // Add the mask for that osId to the sum mask. 2901 if ((num > maxOsId) || 2902 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 2903 if (__kmp_affinity_verbose || 2904 (__kmp_affinity_warnings && 2905 (__kmp_affinity_type != affinity_none))) { 2906 KMP_WARNING(AffIgnoreInvalidProcID, num); 2907 } 2908 } else { 2909 KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num)); 2910 setSize++; 2911 } 2912 } 2913 if (setSize > 0) { 2914 ADD_MASK(sumMask); 2915 } 2916 2917 SKIP_WS(next); 2918 if (*next == ',') { 2919 next++; 2920 } 2921 scan = next; 2922 continue; 2923 } 2924 2925 // Read the first integer. 2926 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 2927 SKIP_DIGITS(next); 2928 start = __kmp_str_to_int(scan, *next); 2929 KMP_ASSERT2(start >= 0, "bad explicit proc list"); 2930 SKIP_WS(next); 2931 2932 // If this isn't a range, then add a mask to the list and go on. 2933 if (*next != '-') { 2934 ADD_MASK_OSID(start, osId2Mask, maxOsId); 2935 2936 // Skip optional comma. 2937 if (*next == ',') { 2938 next++; 2939 } 2940 scan = next; 2941 continue; 2942 } 2943 2944 // This is a range. Skip over the '-' and read in the 2nd int. 2945 next++; // skip '-' 2946 SKIP_WS(next); 2947 scan = next; 2948 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 2949 SKIP_DIGITS(next); 2950 end = __kmp_str_to_int(scan, *next); 2951 KMP_ASSERT2(end >= 0, "bad explicit proc list"); 2952 2953 // Check for a stride parameter 2954 stride = 1; 2955 SKIP_WS(next); 2956 if (*next == ':') { 2957 // A stride is specified. Skip over the ':" and read the 3rd int. 2958 int sign = +1; 2959 next++; // skip ':' 2960 SKIP_WS(next); 2961 scan = next; 2962 if (*next == '-') { 2963 sign = -1; 2964 next++; 2965 SKIP_WS(next); 2966 scan = next; 2967 } 2968 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 2969 SKIP_DIGITS(next); 2970 stride = __kmp_str_to_int(scan, *next); 2971 KMP_ASSERT2(stride >= 0, "bad explicit proc list"); 2972 stride *= sign; 2973 } 2974 2975 // Do some range checks. 2976 KMP_ASSERT2(stride != 0, "bad explicit proc list"); 2977 if (stride > 0) { 2978 KMP_ASSERT2(start <= end, "bad explicit proc list"); 2979 } else { 2980 KMP_ASSERT2(start >= end, "bad explicit proc list"); 2981 } 2982 KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list"); 2983 2984 // Add the mask for each OS proc # to the list. 2985 if (stride > 0) { 2986 do { 2987 ADD_MASK_OSID(start, osId2Mask, maxOsId); 2988 start += stride; 2989 } while (start <= end); 2990 } else { 2991 do { 2992 ADD_MASK_OSID(start, osId2Mask, maxOsId); 2993 start += stride; 2994 } while (start >= end); 2995 } 2996 2997 // Skip optional comma. 2998 SKIP_WS(next); 2999 if (*next == ',') { 3000 next++; 3001 } 3002 scan = next; 3003 } 3004 3005 *out_numMasks = nextNewMask; 3006 if (nextNewMask == 0) { 3007 *out_masks = NULL; 3008 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3009 return; 3010 } 3011 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); 3012 for (i = 0; i < nextNewMask; i++) { 3013 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); 3014 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); 3015 KMP_CPU_COPY(dest, src); 3016 } 3017 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3018 KMP_CPU_FREE(sumMask); 3019 } 3020 3021 #if OMP_40_ENABLED 3022 3023 /*----------------------------------------------------------------------------- 3024 Re-parse the OMP_PLACES proc id list, forming the newMasks for the different 3025 places. Again, Here is the grammar: 3026 3027 place_list := place 3028 place_list := place , place_list 3029 place := num 3030 place := place : num 3031 place := place : num : signed 3032 place := { subplacelist } 3033 place := ! place // (lowest priority) 3034 subplace_list := subplace 3035 subplace_list := subplace , subplace_list 3036 subplace := num 3037 subplace := num : num 3038 subplace := num : num : signed 3039 signed := num 3040 signed := + signed 3041 signed := - signed 3042 -----------------------------------------------------------------------------*/ 3043 3044 static void __kmp_process_subplace_list(const char **scan, 3045 kmp_affin_mask_t *osId2Mask, 3046 int maxOsId, kmp_affin_mask_t *tempMask, 3047 int *setSize) { 3048 const char *next; 3049 3050 for (;;) { 3051 int start, count, stride, i; 3052 3053 // Read in the starting proc id 3054 SKIP_WS(*scan); 3055 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3056 next = *scan; 3057 SKIP_DIGITS(next); 3058 start = __kmp_str_to_int(*scan, *next); 3059 KMP_ASSERT(start >= 0); 3060 *scan = next; 3061 3062 // valid follow sets are ',' ':' and '}' 3063 SKIP_WS(*scan); 3064 if (**scan == '}' || **scan == ',') { 3065 if ((start > maxOsId) || 3066 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3067 if (__kmp_affinity_verbose || 3068 (__kmp_affinity_warnings && 3069 (__kmp_affinity_type != affinity_none))) { 3070 KMP_WARNING(AffIgnoreInvalidProcID, start); 3071 } 3072 } else { 3073 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3074 (*setSize)++; 3075 } 3076 if (**scan == '}') { 3077 break; 3078 } 3079 (*scan)++; // skip ',' 3080 continue; 3081 } 3082 KMP_ASSERT2(**scan == ':', "bad explicit places list"); 3083 (*scan)++; // skip ':' 3084 3085 // Read count parameter 3086 SKIP_WS(*scan); 3087 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3088 next = *scan; 3089 SKIP_DIGITS(next); 3090 count = __kmp_str_to_int(*scan, *next); 3091 KMP_ASSERT(count >= 0); 3092 *scan = next; 3093 3094 // valid follow sets are ',' ':' and '}' 3095 SKIP_WS(*scan); 3096 if (**scan == '}' || **scan == ',') { 3097 for (i = 0; i < count; i++) { 3098 if ((start > maxOsId) || 3099 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3100 if (__kmp_affinity_verbose || 3101 (__kmp_affinity_warnings && 3102 (__kmp_affinity_type != affinity_none))) { 3103 KMP_WARNING(AffIgnoreInvalidProcID, start); 3104 } 3105 break; // don't proliferate warnings for large count 3106 } else { 3107 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3108 start++; 3109 (*setSize)++; 3110 } 3111 } 3112 if (**scan == '}') { 3113 break; 3114 } 3115 (*scan)++; // skip ',' 3116 continue; 3117 } 3118 KMP_ASSERT2(**scan == ':', "bad explicit places list"); 3119 (*scan)++; // skip ':' 3120 3121 // Read stride parameter 3122 int sign = +1; 3123 for (;;) { 3124 SKIP_WS(*scan); 3125 if (**scan == '+') { 3126 (*scan)++; // skip '+' 3127 continue; 3128 } 3129 if (**scan == '-') { 3130 sign *= -1; 3131 (*scan)++; // skip '-' 3132 continue; 3133 } 3134 break; 3135 } 3136 SKIP_WS(*scan); 3137 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3138 next = *scan; 3139 SKIP_DIGITS(next); 3140 stride = __kmp_str_to_int(*scan, *next); 3141 KMP_ASSERT(stride >= 0); 3142 *scan = next; 3143 stride *= sign; 3144 3145 // valid follow sets are ',' and '}' 3146 SKIP_WS(*scan); 3147 if (**scan == '}' || **scan == ',') { 3148 for (i = 0; i < count; i++) { 3149 if ((start > maxOsId) || 3150 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3151 if (__kmp_affinity_verbose || 3152 (__kmp_affinity_warnings && 3153 (__kmp_affinity_type != affinity_none))) { 3154 KMP_WARNING(AffIgnoreInvalidProcID, start); 3155 } 3156 break; // don't proliferate warnings for large count 3157 } else { 3158 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3159 start += stride; 3160 (*setSize)++; 3161 } 3162 } 3163 if (**scan == '}') { 3164 break; 3165 } 3166 (*scan)++; // skip ',' 3167 continue; 3168 } 3169 3170 KMP_ASSERT2(0, "bad explicit places list"); 3171 } 3172 } 3173 3174 static void __kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask, 3175 int maxOsId, kmp_affin_mask_t *tempMask, 3176 int *setSize) { 3177 const char *next; 3178 3179 // valid follow sets are '{' '!' and num 3180 SKIP_WS(*scan); 3181 if (**scan == '{') { 3182 (*scan)++; // skip '{' 3183 __kmp_process_subplace_list(scan, osId2Mask, maxOsId, tempMask, setSize); 3184 KMP_ASSERT2(**scan == '}', "bad explicit places list"); 3185 (*scan)++; // skip '}' 3186 } else if (**scan == '!') { 3187 (*scan)++; // skip '!' 3188 __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize); 3189 KMP_CPU_COMPLEMENT(maxOsId, tempMask); 3190 } else if ((**scan >= '0') && (**scan <= '9')) { 3191 next = *scan; 3192 SKIP_DIGITS(next); 3193 int num = __kmp_str_to_int(*scan, *next); 3194 KMP_ASSERT(num >= 0); 3195 if ((num > maxOsId) || 3196 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 3197 if (__kmp_affinity_verbose || 3198 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { 3199 KMP_WARNING(AffIgnoreInvalidProcID, num); 3200 } 3201 } else { 3202 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num)); 3203 (*setSize)++; 3204 } 3205 *scan = next; // skip num 3206 } else { 3207 KMP_ASSERT2(0, "bad explicit places list"); 3208 } 3209 } 3210 3211 // static void 3212 void __kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks, 3213 unsigned int *out_numMasks, 3214 const char *placelist, 3215 kmp_affin_mask_t *osId2Mask, 3216 int maxOsId) { 3217 int i, j, count, stride, sign; 3218 const char *scan = placelist; 3219 const char *next = placelist; 3220 3221 numNewMasks = 2; 3222 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); 3223 nextNewMask = 0; 3224 3225 // tempMask is modified based on the previous or initial 3226 // place to form the current place 3227 // previousMask contains the previous place 3228 kmp_affin_mask_t *tempMask; 3229 kmp_affin_mask_t *previousMask; 3230 KMP_CPU_ALLOC(tempMask); 3231 KMP_CPU_ZERO(tempMask); 3232 KMP_CPU_ALLOC(previousMask); 3233 KMP_CPU_ZERO(previousMask); 3234 int setSize = 0; 3235 3236 for (;;) { 3237 __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize); 3238 3239 // valid follow sets are ',' ':' and EOL 3240 SKIP_WS(scan); 3241 if (*scan == '\0' || *scan == ',') { 3242 if (setSize > 0) { 3243 ADD_MASK(tempMask); 3244 } 3245 KMP_CPU_ZERO(tempMask); 3246 setSize = 0; 3247 if (*scan == '\0') { 3248 break; 3249 } 3250 scan++; // skip ',' 3251 continue; 3252 } 3253 3254 KMP_ASSERT2(*scan == ':', "bad explicit places list"); 3255 scan++; // skip ':' 3256 3257 // Read count parameter 3258 SKIP_WS(scan); 3259 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); 3260 next = scan; 3261 SKIP_DIGITS(next); 3262 count = __kmp_str_to_int(scan, *next); 3263 KMP_ASSERT(count >= 0); 3264 scan = next; 3265 3266 // valid follow sets are ',' ':' and EOL 3267 SKIP_WS(scan); 3268 if (*scan == '\0' || *scan == ',') { 3269 stride = +1; 3270 } else { 3271 KMP_ASSERT2(*scan == ':', "bad explicit places list"); 3272 scan++; // skip ':' 3273 3274 // Read stride parameter 3275 sign = +1; 3276 for (;;) { 3277 SKIP_WS(scan); 3278 if (*scan == '+') { 3279 scan++; // skip '+' 3280 continue; 3281 } 3282 if (*scan == '-') { 3283 sign *= -1; 3284 scan++; // skip '-' 3285 continue; 3286 } 3287 break; 3288 } 3289 SKIP_WS(scan); 3290 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); 3291 next = scan; 3292 SKIP_DIGITS(next); 3293 stride = __kmp_str_to_int(scan, *next); 3294 KMP_DEBUG_ASSERT(stride >= 0); 3295 scan = next; 3296 stride *= sign; 3297 } 3298 3299 // Add places determined by initial_place : count : stride 3300 for (i = 0; i < count; i++) { 3301 if (setSize == 0) { 3302 break; 3303 } 3304 // Add the current place, then build the next place (tempMask) from that 3305 KMP_CPU_COPY(previousMask, tempMask); 3306 ADD_MASK(previousMask); 3307 KMP_CPU_ZERO(tempMask); 3308 setSize = 0; 3309 KMP_CPU_SET_ITERATE(j, previousMask) { 3310 if (!KMP_CPU_ISSET(j, previousMask)) { 3311 continue; 3312 } 3313 if ((j + stride > maxOsId) || (j + stride < 0) || 3314 (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) || 3315 (!KMP_CPU_ISSET(j + stride, 3316 KMP_CPU_INDEX(osId2Mask, j + stride)))) { 3317 if ((__kmp_affinity_verbose || 3318 (__kmp_affinity_warnings && 3319 (__kmp_affinity_type != affinity_none))) && 3320 i < count - 1) { 3321 KMP_WARNING(AffIgnoreInvalidProcID, j + stride); 3322 } 3323 continue; 3324 } 3325 KMP_CPU_SET(j + stride, tempMask); 3326 setSize++; 3327 } 3328 } 3329 KMP_CPU_ZERO(tempMask); 3330 setSize = 0; 3331 3332 // valid follow sets are ',' and EOL 3333 SKIP_WS(scan); 3334 if (*scan == '\0') { 3335 break; 3336 } 3337 if (*scan == ',') { 3338 scan++; // skip ',' 3339 continue; 3340 } 3341 3342 KMP_ASSERT2(0, "bad explicit places list"); 3343 } 3344 3345 *out_numMasks = nextNewMask; 3346 if (nextNewMask == 0) { 3347 *out_masks = NULL; 3348 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3349 return; 3350 } 3351 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); 3352 KMP_CPU_FREE(tempMask); 3353 KMP_CPU_FREE(previousMask); 3354 for (i = 0; i < nextNewMask; i++) { 3355 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); 3356 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); 3357 KMP_CPU_COPY(dest, src); 3358 } 3359 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3360 } 3361 3362 #endif /* OMP_40_ENABLED */ 3363 3364 #undef ADD_MASK 3365 #undef ADD_MASK_OSID 3366 3367 #if KMP_USE_HWLOC 3368 static int __kmp_hwloc_skip_PUs_obj(hwloc_topology_t t, hwloc_obj_t o) { 3369 // skip PUs descendants of the object o 3370 int skipped = 0; 3371 hwloc_obj_t hT = NULL; 3372 int N = __kmp_hwloc_count_children_by_type(t, o, HWLOC_OBJ_PU, &hT); 3373 for (int i = 0; i < N; ++i) { 3374 KMP_DEBUG_ASSERT(hT); 3375 unsigned idx = hT->os_index; 3376 if (KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3377 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3378 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3379 ++skipped; 3380 } 3381 hT = hwloc_get_next_obj_by_type(t, HWLOC_OBJ_PU, hT); 3382 } 3383 return skipped; // count number of skipped units 3384 } 3385 3386 static int __kmp_hwloc_obj_has_PUs(hwloc_topology_t t, hwloc_obj_t o) { 3387 // check if obj has PUs present in fullMask 3388 hwloc_obj_t hT = NULL; 3389 int N = __kmp_hwloc_count_children_by_type(t, o, HWLOC_OBJ_PU, &hT); 3390 for (int i = 0; i < N; ++i) { 3391 KMP_DEBUG_ASSERT(hT); 3392 unsigned idx = hT->os_index; 3393 if (KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) 3394 return 1; // found PU 3395 hT = hwloc_get_next_obj_by_type(t, HWLOC_OBJ_PU, hT); 3396 } 3397 return 0; // no PUs found 3398 } 3399 #endif // KMP_USE_HWLOC 3400 3401 static void __kmp_apply_thread_places(AddrUnsPair **pAddr, int depth) { 3402 AddrUnsPair *newAddr; 3403 if (__kmp_hws_requested == 0) 3404 goto _exit; // no topology limiting actions requested, exit 3405 #if KMP_USE_HWLOC 3406 if (__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) { 3407 // Number of subobjects calculated dynamically, this works fine for 3408 // any non-uniform topology. 3409 // L2 cache objects are determined by depth, other objects - by type. 3410 hwloc_topology_t tp = __kmp_hwloc_topology; 3411 int nS = 0, nN = 0, nL = 0, nC = 0, 3412 nT = 0; // logical index including skipped 3413 int nCr = 0, nTr = 0; // number of requested units 3414 int nPkg = 0, nCo = 0, n_new = 0, n_old = 0, nCpP = 0, nTpC = 0; // counters 3415 hwloc_obj_t hT, hC, hL, hN, hS; // hwloc objects (pointers to) 3416 int L2depth, idx; 3417 3418 // check support of extensions ---------------------------------- 3419 int numa_support = 0, tile_support = 0; 3420 if (__kmp_pu_os_idx) 3421 hT = hwloc_get_pu_obj_by_os_index(tp, 3422 __kmp_pu_os_idx[__kmp_avail_proc - 1]); 3423 else 3424 hT = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PU, __kmp_avail_proc - 1); 3425 if (hT == NULL) { // something's gone wrong 3426 KMP_WARNING(AffHWSubsetUnsupported); 3427 goto _exit; 3428 } 3429 // check NUMA node 3430 hN = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hT); 3431 hS = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hT); 3432 if (hN != NULL && hN->depth > hS->depth) { 3433 numa_support = 1; // 1 in case socket includes node(s) 3434 } else if (__kmp_hws_node.num > 0) { 3435 // don't support sockets inside NUMA node (no such HW found for testing) 3436 KMP_WARNING(AffHWSubsetUnsupported); 3437 goto _exit; 3438 } 3439 // check L2 cahce, get object by depth because of multiple caches 3440 L2depth = hwloc_get_cache_type_depth(tp, 2, HWLOC_OBJ_CACHE_UNIFIED); 3441 hL = hwloc_get_ancestor_obj_by_depth(tp, L2depth, hT); 3442 if (hL != NULL && 3443 __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC) > 1) { 3444 tile_support = 1; // no sense to count L2 if it includes single core 3445 } else if (__kmp_hws_tile.num > 0) { 3446 if (__kmp_hws_core.num == 0) { 3447 __kmp_hws_core = __kmp_hws_tile; // replace L2 with core 3448 __kmp_hws_tile.num = 0; 3449 } else { 3450 // L2 and core are both requested, but represent same object 3451 KMP_WARNING(AffHWSubsetInvalid); 3452 goto _exit; 3453 } 3454 } 3455 // end of check of extensions ----------------------------------- 3456 3457 // fill in unset items, validate settings ----------------------- 3458 if (__kmp_hws_socket.num == 0) 3459 __kmp_hws_socket.num = nPackages; // use all available sockets 3460 if (__kmp_hws_socket.offset >= nPackages) { 3461 KMP_WARNING(AffHWSubsetManySockets); 3462 goto _exit; 3463 } 3464 if (numa_support) { 3465 hN = NULL; 3466 int NN = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_NUMANODE, 3467 &hN); // num nodes in socket 3468 if (__kmp_hws_node.num == 0) 3469 __kmp_hws_node.num = NN; // use all available nodes 3470 if (__kmp_hws_node.offset >= NN) { 3471 KMP_WARNING(AffHWSubsetManyNodes); 3472 goto _exit; 3473 } 3474 if (tile_support) { 3475 // get num tiles in node 3476 int NL = __kmp_hwloc_count_children_by_depth(tp, hN, L2depth, &hL); 3477 if (__kmp_hws_tile.num == 0) { 3478 __kmp_hws_tile.num = NL + 1; 3479 } // use all available tiles, some node may have more tiles, thus +1 3480 if (__kmp_hws_tile.offset >= NL) { 3481 KMP_WARNING(AffHWSubsetManyTiles); 3482 goto _exit; 3483 } 3484 int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, 3485 &hC); // num cores in tile 3486 if (__kmp_hws_core.num == 0) 3487 __kmp_hws_core.num = NC; // use all available cores 3488 if (__kmp_hws_core.offset >= NC) { 3489 KMP_WARNING(AffHWSubsetManyCores); 3490 goto _exit; 3491 } 3492 } else { // tile_support 3493 int NC = __kmp_hwloc_count_children_by_type(tp, hN, HWLOC_OBJ_CORE, 3494 &hC); // num cores in node 3495 if (__kmp_hws_core.num == 0) 3496 __kmp_hws_core.num = NC; // use all available cores 3497 if (__kmp_hws_core.offset >= NC) { 3498 KMP_WARNING(AffHWSubsetManyCores); 3499 goto _exit; 3500 } 3501 } // tile_support 3502 } else { // numa_support 3503 if (tile_support) { 3504 // get num tiles in socket 3505 int NL = __kmp_hwloc_count_children_by_depth(tp, hS, L2depth, &hL); 3506 if (__kmp_hws_tile.num == 0) 3507 __kmp_hws_tile.num = NL; // use all available tiles 3508 if (__kmp_hws_tile.offset >= NL) { 3509 KMP_WARNING(AffHWSubsetManyTiles); 3510 goto _exit; 3511 } 3512 int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, 3513 &hC); // num cores in tile 3514 if (__kmp_hws_core.num == 0) 3515 __kmp_hws_core.num = NC; // use all available cores 3516 if (__kmp_hws_core.offset >= NC) { 3517 KMP_WARNING(AffHWSubsetManyCores); 3518 goto _exit; 3519 } 3520 } else { // tile_support 3521 int NC = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_CORE, 3522 &hC); // num cores in socket 3523 if (__kmp_hws_core.num == 0) 3524 __kmp_hws_core.num = NC; // use all available cores 3525 if (__kmp_hws_core.offset >= NC) { 3526 KMP_WARNING(AffHWSubsetManyCores); 3527 goto _exit; 3528 } 3529 } // tile_support 3530 } 3531 if (__kmp_hws_proc.num == 0) 3532 __kmp_hws_proc.num = __kmp_nThreadsPerCore; // use all available procs 3533 if (__kmp_hws_proc.offset >= __kmp_nThreadsPerCore) { 3534 KMP_WARNING(AffHWSubsetManyProcs); 3535 goto _exit; 3536 } 3537 // end of validation -------------------------------------------- 3538 3539 if (pAddr) // pAddr is NULL in case of affinity_none 3540 newAddr = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * 3541 __kmp_avail_proc); // max size 3542 // main loop to form HW subset ---------------------------------- 3543 hS = NULL; 3544 int NP = hwloc_get_nbobjs_by_type(tp, HWLOC_OBJ_PACKAGE); 3545 for (int s = 0; s < NP; ++s) { 3546 // Check Socket ----------------------------------------------- 3547 hS = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hS); 3548 if (!__kmp_hwloc_obj_has_PUs(tp, hS)) 3549 continue; // skip socket if all PUs are out of fullMask 3550 ++nS; // only count objects those have PUs in affinity mask 3551 if (nS <= __kmp_hws_socket.offset || 3552 nS > __kmp_hws_socket.num + __kmp_hws_socket.offset) { 3553 n_old += __kmp_hwloc_skip_PUs_obj(tp, hS); // skip socket 3554 continue; // move to next socket 3555 } 3556 nCr = 0; // count number of cores per socket 3557 // socket requested, go down the topology tree 3558 // check 4 cases: (+NUMA+Tile), (+NUMA-Tile), (-NUMA+Tile), (-NUMA-Tile) 3559 if (numa_support) { 3560 nN = 0; 3561 hN = NULL; 3562 // num nodes in current socket 3563 int NN = 3564 __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_NUMANODE, &hN); 3565 for (int n = 0; n < NN; ++n) { 3566 // Check NUMA Node ---------------------------------------- 3567 if (!__kmp_hwloc_obj_has_PUs(tp, hN)) { 3568 hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN); 3569 continue; // skip node if all PUs are out of fullMask 3570 } 3571 ++nN; 3572 if (nN <= __kmp_hws_node.offset || 3573 nN > __kmp_hws_node.num + __kmp_hws_node.offset) { 3574 // skip node as not requested 3575 n_old += __kmp_hwloc_skip_PUs_obj(tp, hN); // skip node 3576 hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN); 3577 continue; // move to next node 3578 } 3579 // node requested, go down the topology tree 3580 if (tile_support) { 3581 nL = 0; 3582 hL = NULL; 3583 int NL = __kmp_hwloc_count_children_by_depth(tp, hN, L2depth, &hL); 3584 for (int l = 0; l < NL; ++l) { 3585 // Check L2 (tile) ------------------------------------ 3586 if (!__kmp_hwloc_obj_has_PUs(tp, hL)) { 3587 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3588 continue; // skip tile if all PUs are out of fullMask 3589 } 3590 ++nL; 3591 if (nL <= __kmp_hws_tile.offset || 3592 nL > __kmp_hws_tile.num + __kmp_hws_tile.offset) { 3593 // skip tile as not requested 3594 n_old += __kmp_hwloc_skip_PUs_obj(tp, hL); // skip tile 3595 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3596 continue; // move to next tile 3597 } 3598 // tile requested, go down the topology tree 3599 nC = 0; 3600 hC = NULL; 3601 // num cores in current tile 3602 int NC = __kmp_hwloc_count_children_by_type(tp, hL, 3603 HWLOC_OBJ_CORE, &hC); 3604 for (int c = 0; c < NC; ++c) { 3605 // Check Core --------------------------------------- 3606 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) { 3607 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3608 continue; // skip core if all PUs are out of fullMask 3609 } 3610 ++nC; 3611 if (nC <= __kmp_hws_core.offset || 3612 nC > __kmp_hws_core.num + __kmp_hws_core.offset) { 3613 // skip node as not requested 3614 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core 3615 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3616 continue; // move to next node 3617 } 3618 // core requested, go down to PUs 3619 nT = 0; 3620 nTr = 0; 3621 hT = NULL; 3622 // num procs in current core 3623 int NT = __kmp_hwloc_count_children_by_type(tp, hC, 3624 HWLOC_OBJ_PU, &hT); 3625 for (int t = 0; t < NT; ++t) { 3626 // Check PU --------------------------------------- 3627 idx = hT->os_index; 3628 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3629 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3630 continue; // skip PU if not in fullMask 3631 } 3632 ++nT; 3633 if (nT <= __kmp_hws_proc.offset || 3634 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) { 3635 // skip PU 3636 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3637 ++n_old; 3638 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3639 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3640 continue; // move to next node 3641 } 3642 ++nTr; 3643 if (pAddr) // collect requested thread's data 3644 newAddr[n_new] = (*pAddr)[n_old]; 3645 ++n_new; 3646 ++n_old; 3647 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3648 } // threads loop 3649 if (nTr > 0) { 3650 ++nCr; // num cores per socket 3651 ++nCo; // total num cores 3652 if (nTr > nTpC) 3653 nTpC = nTr; // calc max threads per core 3654 } 3655 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3656 } // cores loop 3657 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3658 } // tiles loop 3659 } else { // tile_support 3660 // no tiles, check cores 3661 nC = 0; 3662 hC = NULL; 3663 // num cores in current node 3664 int NC = 3665 __kmp_hwloc_count_children_by_type(tp, hN, HWLOC_OBJ_CORE, &hC); 3666 for (int c = 0; c < NC; ++c) { 3667 // Check Core --------------------------------------- 3668 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) { 3669 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3670 continue; // skip core if all PUs are out of fullMask 3671 } 3672 ++nC; 3673 if (nC <= __kmp_hws_core.offset || 3674 nC > __kmp_hws_core.num + __kmp_hws_core.offset) { 3675 // skip node as not requested 3676 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core 3677 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3678 continue; // move to next node 3679 } 3680 // core requested, go down to PUs 3681 nT = 0; 3682 nTr = 0; 3683 hT = NULL; 3684 int NT = 3685 __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT); 3686 for (int t = 0; t < NT; ++t) { 3687 // Check PU --------------------------------------- 3688 idx = hT->os_index; 3689 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3690 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3691 continue; // skip PU if not in fullMask 3692 } 3693 ++nT; 3694 if (nT <= __kmp_hws_proc.offset || 3695 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) { 3696 // skip PU 3697 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3698 ++n_old; 3699 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3700 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3701 continue; // move to next node 3702 } 3703 ++nTr; 3704 if (pAddr) // collect requested thread's data 3705 newAddr[n_new] = (*pAddr)[n_old]; 3706 ++n_new; 3707 ++n_old; 3708 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3709 } // threads loop 3710 if (nTr > 0) { 3711 ++nCr; // num cores per socket 3712 ++nCo; // total num cores 3713 if (nTr > nTpC) 3714 nTpC = nTr; // calc max threads per core 3715 } 3716 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3717 } // cores loop 3718 } // tiles support 3719 hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN); 3720 } // nodes loop 3721 } else { // numa_support 3722 // no NUMA support 3723 if (tile_support) { 3724 nL = 0; 3725 hL = NULL; 3726 // num tiles in current socket 3727 int NL = __kmp_hwloc_count_children_by_depth(tp, hS, L2depth, &hL); 3728 for (int l = 0; l < NL; ++l) { 3729 // Check L2 (tile) ------------------------------------ 3730 if (!__kmp_hwloc_obj_has_PUs(tp, hL)) { 3731 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3732 continue; // skip tile if all PUs are out of fullMask 3733 } 3734 ++nL; 3735 if (nL <= __kmp_hws_tile.offset || 3736 nL > __kmp_hws_tile.num + __kmp_hws_tile.offset) { 3737 // skip tile as not requested 3738 n_old += __kmp_hwloc_skip_PUs_obj(tp, hL); // skip tile 3739 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3740 continue; // move to next tile 3741 } 3742 // tile requested, go down the topology tree 3743 nC = 0; 3744 hC = NULL; 3745 // num cores per tile 3746 int NC = 3747 __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC); 3748 for (int c = 0; c < NC; ++c) { 3749 // Check Core --------------------------------------- 3750 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) { 3751 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3752 continue; // skip core if all PUs are out of fullMask 3753 } 3754 ++nC; 3755 if (nC <= __kmp_hws_core.offset || 3756 nC > __kmp_hws_core.num + __kmp_hws_core.offset) { 3757 // skip node as not requested 3758 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core 3759 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3760 continue; // move to next node 3761 } 3762 // core requested, go down to PUs 3763 nT = 0; 3764 nTr = 0; 3765 hT = NULL; 3766 // num procs per core 3767 int NT = 3768 __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT); 3769 for (int t = 0; t < NT; ++t) { 3770 // Check PU --------------------------------------- 3771 idx = hT->os_index; 3772 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3773 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3774 continue; // skip PU if not in fullMask 3775 } 3776 ++nT; 3777 if (nT <= __kmp_hws_proc.offset || 3778 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) { 3779 // skip PU 3780 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3781 ++n_old; 3782 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3783 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3784 continue; // move to next node 3785 } 3786 ++nTr; 3787 if (pAddr) // collect requested thread's data 3788 newAddr[n_new] = (*pAddr)[n_old]; 3789 ++n_new; 3790 ++n_old; 3791 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3792 } // threads loop 3793 if (nTr > 0) { 3794 ++nCr; // num cores per socket 3795 ++nCo; // total num cores 3796 if (nTr > nTpC) 3797 nTpC = nTr; // calc max threads per core 3798 } 3799 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3800 } // cores loop 3801 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3802 } // tiles loop 3803 } else { // tile_support 3804 // no tiles, check cores 3805 nC = 0; 3806 hC = NULL; 3807 // num cores in socket 3808 int NC = 3809 __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_CORE, &hC); 3810 for (int c = 0; c < NC; ++c) { 3811 // Check Core ------------------------------------------- 3812 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) { 3813 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3814 continue; // skip core if all PUs are out of fullMask 3815 } 3816 ++nC; 3817 if (nC <= __kmp_hws_core.offset || 3818 nC > __kmp_hws_core.num + __kmp_hws_core.offset) { 3819 // skip node as not requested 3820 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core 3821 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3822 continue; // move to next node 3823 } 3824 // core requested, go down to PUs 3825 nT = 0; 3826 nTr = 0; 3827 hT = NULL; 3828 // num procs per core 3829 int NT = 3830 __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT); 3831 for (int t = 0; t < NT; ++t) { 3832 // Check PU --------------------------------------- 3833 idx = hT->os_index; 3834 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3835 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3836 continue; // skip PU if not in fullMask 3837 } 3838 ++nT; 3839 if (nT <= __kmp_hws_proc.offset || 3840 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) { 3841 // skip PU 3842 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3843 ++n_old; 3844 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3845 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3846 continue; // move to next node 3847 } 3848 ++nTr; 3849 if (pAddr) // collect requested thread's data 3850 newAddr[n_new] = (*pAddr)[n_old]; 3851 ++n_new; 3852 ++n_old; 3853 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3854 } // threads loop 3855 if (nTr > 0) { 3856 ++nCr; // num cores per socket 3857 ++nCo; // total num cores 3858 if (nTr > nTpC) 3859 nTpC = nTr; // calc max threads per core 3860 } 3861 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3862 } // cores loop 3863 } // tiles support 3864 } // numa_support 3865 if (nCr > 0) { // found cores? 3866 ++nPkg; // num sockets 3867 if (nCr > nCpP) 3868 nCpP = nCr; // calc max cores per socket 3869 } 3870 } // sockets loop 3871 3872 // check the subset is valid 3873 KMP_DEBUG_ASSERT(n_old == __kmp_avail_proc); 3874 KMP_DEBUG_ASSERT(nPkg > 0); 3875 KMP_DEBUG_ASSERT(nCpP > 0); 3876 KMP_DEBUG_ASSERT(nTpC > 0); 3877 KMP_DEBUG_ASSERT(nCo > 0); 3878 KMP_DEBUG_ASSERT(nPkg <= nPackages); 3879 KMP_DEBUG_ASSERT(nCpP <= nCoresPerPkg); 3880 KMP_DEBUG_ASSERT(nTpC <= __kmp_nThreadsPerCore); 3881 KMP_DEBUG_ASSERT(nCo <= __kmp_ncores); 3882 3883 nPackages = nPkg; // correct num sockets 3884 nCoresPerPkg = nCpP; // correct num cores per socket 3885 __kmp_nThreadsPerCore = nTpC; // correct num threads per core 3886 __kmp_avail_proc = n_new; // correct num procs 3887 __kmp_ncores = nCo; // correct num cores 3888 // hwloc topology method end 3889 } else 3890 #endif // KMP_USE_HWLOC 3891 { 3892 int n_old = 0, n_new = 0, proc_num = 0; 3893 if (__kmp_hws_node.num > 0 || __kmp_hws_tile.num > 0) { 3894 KMP_WARNING(AffHWSubsetNoHWLOC); 3895 goto _exit; 3896 } 3897 if (__kmp_hws_socket.num == 0) 3898 __kmp_hws_socket.num = nPackages; // use all available sockets 3899 if (__kmp_hws_core.num == 0) 3900 __kmp_hws_core.num = nCoresPerPkg; // use all available cores 3901 if (__kmp_hws_proc.num == 0 || __kmp_hws_proc.num > __kmp_nThreadsPerCore) 3902 __kmp_hws_proc.num = __kmp_nThreadsPerCore; // use all HW contexts 3903 if (!__kmp_affinity_uniform_topology()) { 3904 KMP_WARNING(AffHWSubsetNonUniform); 3905 goto _exit; // don't support non-uniform topology 3906 } 3907 if (depth > 3) { 3908 KMP_WARNING(AffHWSubsetNonThreeLevel); 3909 goto _exit; // don't support not-3-level topology 3910 } 3911 if (__kmp_hws_socket.offset + __kmp_hws_socket.num > nPackages) { 3912 KMP_WARNING(AffHWSubsetManySockets); 3913 goto _exit; 3914 } 3915 if (__kmp_hws_core.offset + __kmp_hws_core.num > nCoresPerPkg) { 3916 KMP_WARNING(AffHWSubsetManyCores); 3917 goto _exit; 3918 } 3919 // Form the requested subset 3920 if (pAddr) // pAddr is NULL in case of affinity_none 3921 newAddr = (AddrUnsPair *)__kmp_allocate( 3922 sizeof(AddrUnsPair) * __kmp_hws_socket.num * __kmp_hws_core.num * 3923 __kmp_hws_proc.num); 3924 for (int i = 0; i < nPackages; ++i) { 3925 if (i < __kmp_hws_socket.offset || 3926 i >= __kmp_hws_socket.offset + __kmp_hws_socket.num) { 3927 // skip not-requested socket 3928 n_old += nCoresPerPkg * __kmp_nThreadsPerCore; 3929 if (__kmp_pu_os_idx != NULL) { 3930 // walk through skipped socket 3931 for (int j = 0; j < nCoresPerPkg; ++j) { 3932 for (int k = 0; k < __kmp_nThreadsPerCore; ++k) { 3933 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask); 3934 ++proc_num; 3935 } 3936 } 3937 } 3938 } else { 3939 // walk through requested socket 3940 for (int j = 0; j < nCoresPerPkg; ++j) { 3941 if (j < __kmp_hws_core.offset || 3942 j >= __kmp_hws_core.offset + 3943 __kmp_hws_core.num) { // skip not-requested core 3944 n_old += __kmp_nThreadsPerCore; 3945 if (__kmp_pu_os_idx != NULL) { 3946 for (int k = 0; k < __kmp_nThreadsPerCore; ++k) { 3947 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask); 3948 ++proc_num; 3949 } 3950 } 3951 } else { 3952 // walk through requested core 3953 for (int k = 0; k < __kmp_nThreadsPerCore; ++k) { 3954 if (k < __kmp_hws_proc.num) { 3955 if (pAddr) // collect requested thread's data 3956 newAddr[n_new] = (*pAddr)[n_old]; 3957 n_new++; 3958 } else { 3959 if (__kmp_pu_os_idx != NULL) 3960 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask); 3961 } 3962 n_old++; 3963 ++proc_num; 3964 } 3965 } 3966 } 3967 } 3968 } 3969 KMP_DEBUG_ASSERT(n_old == nPackages * nCoresPerPkg * __kmp_nThreadsPerCore); 3970 KMP_DEBUG_ASSERT(n_new == 3971 __kmp_hws_socket.num * __kmp_hws_core.num * 3972 __kmp_hws_proc.num); 3973 nPackages = __kmp_hws_socket.num; // correct nPackages 3974 nCoresPerPkg = __kmp_hws_core.num; // correct nCoresPerPkg 3975 __kmp_nThreadsPerCore = __kmp_hws_proc.num; // correct __kmp_nThreadsPerCore 3976 __kmp_avail_proc = n_new; // correct avail_proc 3977 __kmp_ncores = nPackages * __kmp_hws_core.num; // correct ncores 3978 } // non-hwloc topology method 3979 if (pAddr) { 3980 __kmp_free(*pAddr); 3981 *pAddr = newAddr; // replace old topology with new one 3982 } 3983 if (__kmp_affinity_verbose) { 3984 char m[KMP_AFFIN_MASK_PRINT_LEN]; 3985 __kmp_affinity_print_mask(m, KMP_AFFIN_MASK_PRINT_LEN, 3986 __kmp_affin_fullMask); 3987 if (__kmp_affinity_respect_mask) { 3988 KMP_INFORM(InitOSProcSetRespect, "KMP_HW_SUBSET", m); 3989 } else { 3990 KMP_INFORM(InitOSProcSetNotRespect, "KMP_HW_SUBSET", m); 3991 } 3992 KMP_INFORM(AvailableOSProc, "KMP_HW_SUBSET", __kmp_avail_proc); 3993 kmp_str_buf_t buf; 3994 __kmp_str_buf_init(&buf); 3995 __kmp_str_buf_print(&buf, "%d", nPackages); 3996 KMP_INFORM(TopologyExtra, "KMP_HW_SUBSET", buf.str, nCoresPerPkg, 3997 __kmp_nThreadsPerCore, __kmp_ncores); 3998 __kmp_str_buf_free(&buf); 3999 } 4000 _exit: 4001 if (__kmp_pu_os_idx != NULL) { 4002 __kmp_free(__kmp_pu_os_idx); 4003 __kmp_pu_os_idx = NULL; 4004 } 4005 } 4006 4007 // This function figures out the deepest level at which there is at least one 4008 // cluster/core with more than one processing unit bound to it. 4009 static int __kmp_affinity_find_core_level(const AddrUnsPair *address2os, 4010 int nprocs, int bottom_level) { 4011 int core_level = 0; 4012 4013 for (int i = 0; i < nprocs; i++) { 4014 for (int j = bottom_level; j > 0; j--) { 4015 if (address2os[i].first.labels[j] > 0) { 4016 if (core_level < (j - 1)) { 4017 core_level = j - 1; 4018 } 4019 } 4020 } 4021 } 4022 return core_level; 4023 } 4024 4025 // This function counts number of clusters/cores at given level. 4026 static int __kmp_affinity_compute_ncores(const AddrUnsPair *address2os, 4027 int nprocs, int bottom_level, 4028 int core_level) { 4029 int ncores = 0; 4030 int i, j; 4031 4032 j = bottom_level; 4033 for (i = 0; i < nprocs; i++) { 4034 for (j = bottom_level; j > core_level; j--) { 4035 if ((i + 1) < nprocs) { 4036 if (address2os[i + 1].first.labels[j] > 0) { 4037 break; 4038 } 4039 } 4040 } 4041 if (j == core_level) { 4042 ncores++; 4043 } 4044 } 4045 if (j > core_level) { 4046 // In case of ( nprocs < __kmp_avail_proc ) we may end too deep and miss one 4047 // core. May occur when called from __kmp_affinity_find_core(). 4048 ncores++; 4049 } 4050 return ncores; 4051 } 4052 4053 // This function finds to which cluster/core given processing unit is bound. 4054 static int __kmp_affinity_find_core(const AddrUnsPair *address2os, int proc, 4055 int bottom_level, int core_level) { 4056 return __kmp_affinity_compute_ncores(address2os, proc + 1, bottom_level, 4057 core_level) - 4058 1; 4059 } 4060 4061 // This function finds maximal number of processing units bound to a 4062 // cluster/core at given level. 4063 static int __kmp_affinity_max_proc_per_core(const AddrUnsPair *address2os, 4064 int nprocs, int bottom_level, 4065 int core_level) { 4066 int maxprocpercore = 0; 4067 4068 if (core_level < bottom_level) { 4069 for (int i = 0; i < nprocs; i++) { 4070 int percore = address2os[i].first.labels[core_level + 1] + 1; 4071 4072 if (percore > maxprocpercore) { 4073 maxprocpercore = percore; 4074 } 4075 } 4076 } else { 4077 maxprocpercore = 1; 4078 } 4079 return maxprocpercore; 4080 } 4081 4082 static AddrUnsPair *address2os = NULL; 4083 static int *procarr = NULL; 4084 static int __kmp_aff_depth = 0; 4085 4086 #if KMP_USE_HIER_SCHED 4087 #define KMP_EXIT_AFF_NONE \ 4088 KMP_ASSERT(__kmp_affinity_type == affinity_none); \ 4089 KMP_ASSERT(address2os == NULL); \ 4090 __kmp_apply_thread_places(NULL, 0); \ 4091 __kmp_create_affinity_none_places(); \ 4092 __kmp_dispatch_set_hierarchy_values(); \ 4093 return; 4094 #else 4095 #define KMP_EXIT_AFF_NONE \ 4096 KMP_ASSERT(__kmp_affinity_type == affinity_none); \ 4097 KMP_ASSERT(address2os == NULL); \ 4098 __kmp_apply_thread_places(NULL, 0); \ 4099 __kmp_create_affinity_none_places(); \ 4100 return; 4101 #endif 4102 4103 // Create a one element mask array (set of places) which only contains the 4104 // initial process's affinity mask 4105 static void __kmp_create_affinity_none_places() { 4106 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4107 KMP_ASSERT(__kmp_affinity_type == affinity_none); 4108 __kmp_affinity_num_masks = 1; 4109 KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); 4110 kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, 0); 4111 KMP_CPU_COPY(dest, __kmp_affin_fullMask); 4112 } 4113 4114 static int __kmp_affinity_cmp_Address_child_num(const void *a, const void *b) { 4115 const Address *aa = &(((const AddrUnsPair *)a)->first); 4116 const Address *bb = &(((const AddrUnsPair *)b)->first); 4117 unsigned depth = aa->depth; 4118 unsigned i; 4119 KMP_DEBUG_ASSERT(depth == bb->depth); 4120 KMP_DEBUG_ASSERT((unsigned)__kmp_affinity_compact <= depth); 4121 KMP_DEBUG_ASSERT(__kmp_affinity_compact >= 0); 4122 for (i = 0; i < (unsigned)__kmp_affinity_compact; i++) { 4123 int j = depth - i - 1; 4124 if (aa->childNums[j] < bb->childNums[j]) 4125 return -1; 4126 if (aa->childNums[j] > bb->childNums[j]) 4127 return 1; 4128 } 4129 for (; i < depth; i++) { 4130 int j = i - __kmp_affinity_compact; 4131 if (aa->childNums[j] < bb->childNums[j]) 4132 return -1; 4133 if (aa->childNums[j] > bb->childNums[j]) 4134 return 1; 4135 } 4136 return 0; 4137 } 4138 4139 static void __kmp_aux_affinity_initialize(void) { 4140 if (__kmp_affinity_masks != NULL) { 4141 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4142 return; 4143 } 4144 4145 // Create the "full" mask - this defines all of the processors that we 4146 // consider to be in the machine model. If respect is set, then it is the 4147 // initialization thread's affinity mask. Otherwise, it is all processors that 4148 // we know about on the machine. 4149 if (__kmp_affin_fullMask == NULL) { 4150 KMP_CPU_ALLOC(__kmp_affin_fullMask); 4151 } 4152 if (KMP_AFFINITY_CAPABLE()) { 4153 if (__kmp_affinity_respect_mask) { 4154 __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE); 4155 4156 // Count the number of available processors. 4157 unsigned i; 4158 __kmp_avail_proc = 0; 4159 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 4160 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 4161 continue; 4162 } 4163 __kmp_avail_proc++; 4164 } 4165 if (__kmp_avail_proc > __kmp_xproc) { 4166 if (__kmp_affinity_verbose || 4167 (__kmp_affinity_warnings && 4168 (__kmp_affinity_type != affinity_none))) { 4169 KMP_WARNING(ErrorInitializeAffinity); 4170 } 4171 __kmp_affinity_type = affinity_none; 4172 KMP_AFFINITY_DISABLE(); 4173 return; 4174 } 4175 } else { 4176 __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask); 4177 __kmp_avail_proc = __kmp_xproc; 4178 } 4179 } 4180 4181 if (__kmp_affinity_gran == affinity_gran_tile && 4182 // check if user's request is valid 4183 __kmp_affinity_dispatch->get_api_type() == KMPAffinity::NATIVE_OS) { 4184 KMP_WARNING(AffTilesNoHWLOC, "KMP_AFFINITY"); 4185 __kmp_affinity_gran = affinity_gran_package; 4186 } 4187 4188 int depth = -1; 4189 kmp_i18n_id_t msg_id = kmp_i18n_null; 4190 4191 // For backward compatibility, setting KMP_CPUINFO_FILE => 4192 // KMP_TOPOLOGY_METHOD=cpuinfo 4193 if ((__kmp_cpuinfo_file != NULL) && 4194 (__kmp_affinity_top_method == affinity_top_method_all)) { 4195 __kmp_affinity_top_method = affinity_top_method_cpuinfo; 4196 } 4197 4198 if (__kmp_affinity_top_method == affinity_top_method_all) { 4199 // In the default code path, errors are not fatal - we just try using 4200 // another method. We only emit a warning message if affinity is on, or the 4201 // verbose flag is set, an the nowarnings flag was not set. 4202 const char *file_name = NULL; 4203 int line = 0; 4204 #if KMP_USE_HWLOC 4205 if (depth < 0 && 4206 __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) { 4207 if (__kmp_affinity_verbose) { 4208 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); 4209 } 4210 if (!__kmp_hwloc_error) { 4211 depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id); 4212 if (depth == 0) { 4213 KMP_EXIT_AFF_NONE; 4214 } else if (depth < 0 && __kmp_affinity_verbose) { 4215 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY"); 4216 } 4217 } else if (__kmp_affinity_verbose) { 4218 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY"); 4219 } 4220 } 4221 #endif 4222 4223 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4224 4225 if (depth < 0) { 4226 if (__kmp_affinity_verbose) { 4227 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC)); 4228 } 4229 4230 file_name = NULL; 4231 depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id); 4232 if (depth == 0) { 4233 KMP_EXIT_AFF_NONE; 4234 } 4235 4236 if (depth < 0) { 4237 if (__kmp_affinity_verbose) { 4238 if (msg_id != kmp_i18n_null) { 4239 KMP_INFORM(AffInfoStrStr, "KMP_AFFINITY", 4240 __kmp_i18n_catgets(msg_id), 4241 KMP_I18N_STR(DecodingLegacyAPIC)); 4242 } else { 4243 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", 4244 KMP_I18N_STR(DecodingLegacyAPIC)); 4245 } 4246 } 4247 4248 file_name = NULL; 4249 depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id); 4250 if (depth == 0) { 4251 KMP_EXIT_AFF_NONE; 4252 } 4253 } 4254 } 4255 4256 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4257 4258 #if KMP_OS_LINUX 4259 4260 if (depth < 0) { 4261 if (__kmp_affinity_verbose) { 4262 if (msg_id != kmp_i18n_null) { 4263 KMP_INFORM(AffStrParseFilename, "KMP_AFFINITY", 4264 __kmp_i18n_catgets(msg_id), "/proc/cpuinfo"); 4265 } else { 4266 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", "/proc/cpuinfo"); 4267 } 4268 } 4269 4270 FILE *f = fopen("/proc/cpuinfo", "r"); 4271 if (f == NULL) { 4272 msg_id = kmp_i18n_str_CantOpenCpuinfo; 4273 } else { 4274 file_name = "/proc/cpuinfo"; 4275 depth = 4276 __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f); 4277 fclose(f); 4278 if (depth == 0) { 4279 KMP_EXIT_AFF_NONE; 4280 } 4281 } 4282 } 4283 4284 #endif /* KMP_OS_LINUX */ 4285 4286 #if KMP_GROUP_AFFINITY 4287 4288 if ((depth < 0) && (__kmp_num_proc_groups > 1)) { 4289 if (__kmp_affinity_verbose) { 4290 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY"); 4291 } 4292 4293 depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id); 4294 KMP_ASSERT(depth != 0); 4295 } 4296 4297 #endif /* KMP_GROUP_AFFINITY */ 4298 4299 if (depth < 0) { 4300 if (__kmp_affinity_verbose && (msg_id != kmp_i18n_null)) { 4301 if (file_name == NULL) { 4302 KMP_INFORM(UsingFlatOS, __kmp_i18n_catgets(msg_id)); 4303 } else if (line == 0) { 4304 KMP_INFORM(UsingFlatOSFile, file_name, __kmp_i18n_catgets(msg_id)); 4305 } else { 4306 KMP_INFORM(UsingFlatOSFileLine, file_name, line, 4307 __kmp_i18n_catgets(msg_id)); 4308 } 4309 } 4310 // FIXME - print msg if msg_id = kmp_i18n_null ??? 4311 4312 file_name = ""; 4313 depth = __kmp_affinity_create_flat_map(&address2os, &msg_id); 4314 if (depth == 0) { 4315 KMP_EXIT_AFF_NONE; 4316 } 4317 KMP_ASSERT(depth > 0); 4318 KMP_ASSERT(address2os != NULL); 4319 } 4320 } 4321 4322 #if KMP_USE_HWLOC 4323 else if (__kmp_affinity_top_method == affinity_top_method_hwloc) { 4324 KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC); 4325 if (__kmp_affinity_verbose) { 4326 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); 4327 } 4328 depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id); 4329 if (depth == 0) { 4330 KMP_EXIT_AFF_NONE; 4331 } 4332 } 4333 #endif // KMP_USE_HWLOC 4334 4335 // If the user has specified that a paricular topology discovery method is to be 4336 // used, then we abort if that method fails. The exception is group affinity, 4337 // which might have been implicitly set. 4338 4339 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4340 4341 else if (__kmp_affinity_top_method == affinity_top_method_x2apicid) { 4342 if (__kmp_affinity_verbose) { 4343 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC)); 4344 } 4345 4346 depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id); 4347 if (depth == 0) { 4348 KMP_EXIT_AFF_NONE; 4349 } 4350 if (depth < 0) { 4351 KMP_ASSERT(msg_id != kmp_i18n_null); 4352 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4353 } 4354 } else if (__kmp_affinity_top_method == affinity_top_method_apicid) { 4355 if (__kmp_affinity_verbose) { 4356 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC)); 4357 } 4358 4359 depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id); 4360 if (depth == 0) { 4361 KMP_EXIT_AFF_NONE; 4362 } 4363 if (depth < 0) { 4364 KMP_ASSERT(msg_id != kmp_i18n_null); 4365 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4366 } 4367 } 4368 4369 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4370 4371 else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) { 4372 const char *filename; 4373 if (__kmp_cpuinfo_file != NULL) { 4374 filename = __kmp_cpuinfo_file; 4375 } else { 4376 filename = "/proc/cpuinfo"; 4377 } 4378 4379 if (__kmp_affinity_verbose) { 4380 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename); 4381 } 4382 4383 FILE *f = fopen(filename, "r"); 4384 if (f == NULL) { 4385 int code = errno; 4386 if (__kmp_cpuinfo_file != NULL) { 4387 __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code), 4388 KMP_HNT(NameComesFrom_CPUINFO_FILE), __kmp_msg_null); 4389 } else { 4390 __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code), 4391 __kmp_msg_null); 4392 } 4393 } 4394 int line = 0; 4395 depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f); 4396 fclose(f); 4397 if (depth < 0) { 4398 KMP_ASSERT(msg_id != kmp_i18n_null); 4399 if (line > 0) { 4400 KMP_FATAL(FileLineMsgExiting, filename, line, 4401 __kmp_i18n_catgets(msg_id)); 4402 } else { 4403 KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id)); 4404 } 4405 } 4406 if (__kmp_affinity_type == affinity_none) { 4407 KMP_ASSERT(depth == 0); 4408 KMP_EXIT_AFF_NONE; 4409 } 4410 } 4411 4412 #if KMP_GROUP_AFFINITY 4413 4414 else if (__kmp_affinity_top_method == affinity_top_method_group) { 4415 if (__kmp_affinity_verbose) { 4416 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY"); 4417 } 4418 4419 depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id); 4420 KMP_ASSERT(depth != 0); 4421 if (depth < 0) { 4422 KMP_ASSERT(msg_id != kmp_i18n_null); 4423 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4424 } 4425 } 4426 4427 #endif /* KMP_GROUP_AFFINITY */ 4428 4429 else if (__kmp_affinity_top_method == affinity_top_method_flat) { 4430 if (__kmp_affinity_verbose) { 4431 KMP_INFORM(AffUsingFlatOS, "KMP_AFFINITY"); 4432 } 4433 4434 depth = __kmp_affinity_create_flat_map(&address2os, &msg_id); 4435 if (depth == 0) { 4436 KMP_EXIT_AFF_NONE; 4437 } 4438 // should not fail 4439 KMP_ASSERT(depth > 0); 4440 KMP_ASSERT(address2os != NULL); 4441 } 4442 4443 #if KMP_USE_HIER_SCHED 4444 __kmp_dispatch_set_hierarchy_values(); 4445 #endif 4446 4447 if (address2os == NULL) { 4448 if (KMP_AFFINITY_CAPABLE() && 4449 (__kmp_affinity_verbose || 4450 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none)))) { 4451 KMP_WARNING(ErrorInitializeAffinity); 4452 } 4453 __kmp_affinity_type = affinity_none; 4454 __kmp_create_affinity_none_places(); 4455 KMP_AFFINITY_DISABLE(); 4456 return; 4457 } 4458 4459 if (__kmp_affinity_gran == affinity_gran_tile 4460 #if KMP_USE_HWLOC 4461 && __kmp_tile_depth == 0 4462 #endif 4463 ) { 4464 // tiles requested but not detected, warn user on this 4465 KMP_WARNING(AffTilesNoTiles, "KMP_AFFINITY"); 4466 } 4467 4468 __kmp_apply_thread_places(&address2os, depth); 4469 4470 // Create the table of masks, indexed by thread Id. 4471 unsigned maxIndex; 4472 unsigned numUnique; 4473 kmp_affin_mask_t *osId2Mask = 4474 __kmp_create_masks(&maxIndex, &numUnique, address2os, __kmp_avail_proc); 4475 if (__kmp_affinity_gran_levels == 0) { 4476 KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc); 4477 } 4478 4479 // Set the childNums vector in all Address objects. This must be done before 4480 // we can sort using __kmp_affinity_cmp_Address_child_num(), which takes into 4481 // account the setting of __kmp_affinity_compact. 4482 __kmp_affinity_assign_child_nums(address2os, __kmp_avail_proc); 4483 4484 switch (__kmp_affinity_type) { 4485 4486 case affinity_explicit: 4487 KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL); 4488 #if OMP_40_ENABLED 4489 if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) 4490 #endif 4491 { 4492 __kmp_affinity_process_proclist( 4493 &__kmp_affinity_masks, &__kmp_affinity_num_masks, 4494 __kmp_affinity_proclist, osId2Mask, maxIndex); 4495 } 4496 #if OMP_40_ENABLED 4497 else { 4498 __kmp_affinity_process_placelist( 4499 &__kmp_affinity_masks, &__kmp_affinity_num_masks, 4500 __kmp_affinity_proclist, osId2Mask, maxIndex); 4501 } 4502 #endif 4503 if (__kmp_affinity_num_masks == 0) { 4504 if (__kmp_affinity_verbose || 4505 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { 4506 KMP_WARNING(AffNoValidProcID); 4507 } 4508 __kmp_affinity_type = affinity_none; 4509 __kmp_create_affinity_none_places(); 4510 return; 4511 } 4512 break; 4513 4514 // The other affinity types rely on sorting the Addresses according to some 4515 // permutation of the machine topology tree. Set __kmp_affinity_compact and 4516 // __kmp_affinity_offset appropriately, then jump to a common code fragment 4517 // to do the sort and create the array of affinity masks. 4518 4519 case affinity_logical: 4520 __kmp_affinity_compact = 0; 4521 if (__kmp_affinity_offset) { 4522 __kmp_affinity_offset = 4523 __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc; 4524 } 4525 goto sortAddresses; 4526 4527 case affinity_physical: 4528 if (__kmp_nThreadsPerCore > 1) { 4529 __kmp_affinity_compact = 1; 4530 if (__kmp_affinity_compact >= depth) { 4531 __kmp_affinity_compact = 0; 4532 } 4533 } else { 4534 __kmp_affinity_compact = 0; 4535 } 4536 if (__kmp_affinity_offset) { 4537 __kmp_affinity_offset = 4538 __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc; 4539 } 4540 goto sortAddresses; 4541 4542 case affinity_scatter: 4543 if (__kmp_affinity_compact >= depth) { 4544 __kmp_affinity_compact = 0; 4545 } else { 4546 __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact; 4547 } 4548 goto sortAddresses; 4549 4550 case affinity_compact: 4551 if (__kmp_affinity_compact >= depth) { 4552 __kmp_affinity_compact = depth - 1; 4553 } 4554 goto sortAddresses; 4555 4556 case affinity_balanced: 4557 if (depth <= 1) { 4558 if (__kmp_affinity_verbose || __kmp_affinity_warnings) { 4559 KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY"); 4560 } 4561 __kmp_affinity_type = affinity_none; 4562 __kmp_create_affinity_none_places(); 4563 return; 4564 } else if (!__kmp_affinity_uniform_topology()) { 4565 // Save the depth for further usage 4566 __kmp_aff_depth = depth; 4567 4568 int core_level = __kmp_affinity_find_core_level( 4569 address2os, __kmp_avail_proc, depth - 1); 4570 int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc, 4571 depth - 1, core_level); 4572 int maxprocpercore = __kmp_affinity_max_proc_per_core( 4573 address2os, __kmp_avail_proc, depth - 1, core_level); 4574 4575 int nproc = ncores * maxprocpercore; 4576 if ((nproc < 2) || (nproc < __kmp_avail_proc)) { 4577 if (__kmp_affinity_verbose || __kmp_affinity_warnings) { 4578 KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY"); 4579 } 4580 __kmp_affinity_type = affinity_none; 4581 return; 4582 } 4583 4584 procarr = (int *)__kmp_allocate(sizeof(int) * nproc); 4585 for (int i = 0; i < nproc; i++) { 4586 procarr[i] = -1; 4587 } 4588 4589 int lastcore = -1; 4590 int inlastcore = 0; 4591 for (int i = 0; i < __kmp_avail_proc; i++) { 4592 int proc = address2os[i].second; 4593 int core = 4594 __kmp_affinity_find_core(address2os, i, depth - 1, core_level); 4595 4596 if (core == lastcore) { 4597 inlastcore++; 4598 } else { 4599 inlastcore = 0; 4600 } 4601 lastcore = core; 4602 4603 procarr[core * maxprocpercore + inlastcore] = proc; 4604 } 4605 } 4606 if (__kmp_affinity_compact >= depth) { 4607 __kmp_affinity_compact = depth - 1; 4608 } 4609 4610 sortAddresses: 4611 // Allocate the gtid->affinity mask table. 4612 if (__kmp_affinity_dups) { 4613 __kmp_affinity_num_masks = __kmp_avail_proc; 4614 } else { 4615 __kmp_affinity_num_masks = numUnique; 4616 } 4617 4618 #if OMP_40_ENABLED 4619 if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) && 4620 (__kmp_affinity_num_places > 0) && 4621 ((unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks)) { 4622 __kmp_affinity_num_masks = __kmp_affinity_num_places; 4623 } 4624 #endif 4625 4626 KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); 4627 4628 // Sort the address2os table according to the current setting of 4629 // __kmp_affinity_compact, then fill out __kmp_affinity_masks. 4630 qsort(address2os, __kmp_avail_proc, sizeof(*address2os), 4631 __kmp_affinity_cmp_Address_child_num); 4632 { 4633 int i; 4634 unsigned j; 4635 for (i = 0, j = 0; i < __kmp_avail_proc; i++) { 4636 if ((!__kmp_affinity_dups) && (!address2os[i].first.leader)) { 4637 continue; 4638 } 4639 unsigned osId = address2os[i].second; 4640 kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId); 4641 kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, j); 4642 KMP_ASSERT(KMP_CPU_ISSET(osId, src)); 4643 KMP_CPU_COPY(dest, src); 4644 if (++j >= __kmp_affinity_num_masks) { 4645 break; 4646 } 4647 } 4648 KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks); 4649 } 4650 break; 4651 4652 default: 4653 KMP_ASSERT2(0, "Unexpected affinity setting"); 4654 } 4655 4656 KMP_CPU_FREE_ARRAY(osId2Mask, maxIndex + 1); 4657 machine_hierarchy.init(address2os, __kmp_avail_proc); 4658 } 4659 #undef KMP_EXIT_AFF_NONE 4660 4661 void __kmp_affinity_initialize(void) { 4662 // Much of the code above was written assumming that if a machine was not 4663 // affinity capable, then __kmp_affinity_type == affinity_none. We now 4664 // explicitly represent this as __kmp_affinity_type == affinity_disabled. 4665 // There are too many checks for __kmp_affinity_type == affinity_none 4666 // in this code. Instead of trying to change them all, check if 4667 // __kmp_affinity_type == affinity_disabled, and if so, slam it with 4668 // affinity_none, call the real initialization routine, then restore 4669 // __kmp_affinity_type to affinity_disabled. 4670 int disabled = (__kmp_affinity_type == affinity_disabled); 4671 if (!KMP_AFFINITY_CAPABLE()) { 4672 KMP_ASSERT(disabled); 4673 } 4674 if (disabled) { 4675 __kmp_affinity_type = affinity_none; 4676 } 4677 __kmp_aux_affinity_initialize(); 4678 if (disabled) { 4679 __kmp_affinity_type = affinity_disabled; 4680 } 4681 } 4682 4683 void __kmp_affinity_uninitialize(void) { 4684 if (__kmp_affinity_masks != NULL) { 4685 KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); 4686 __kmp_affinity_masks = NULL; 4687 } 4688 if (__kmp_affin_fullMask != NULL) { 4689 KMP_CPU_FREE(__kmp_affin_fullMask); 4690 __kmp_affin_fullMask = NULL; 4691 } 4692 __kmp_affinity_num_masks = 0; 4693 __kmp_affinity_type = affinity_default; 4694 #if OMP_40_ENABLED 4695 __kmp_affinity_num_places = 0; 4696 #endif 4697 if (__kmp_affinity_proclist != NULL) { 4698 __kmp_free(__kmp_affinity_proclist); 4699 __kmp_affinity_proclist = NULL; 4700 } 4701 if (address2os != NULL) { 4702 __kmp_free(address2os); 4703 address2os = NULL; 4704 } 4705 if (procarr != NULL) { 4706 __kmp_free(procarr); 4707 procarr = NULL; 4708 } 4709 #if KMP_USE_HWLOC 4710 if (__kmp_hwloc_topology != NULL) { 4711 hwloc_topology_destroy(__kmp_hwloc_topology); 4712 __kmp_hwloc_topology = NULL; 4713 } 4714 #endif 4715 KMPAffinity::destroy_api(); 4716 } 4717 4718 void __kmp_affinity_set_init_mask(int gtid, int isa_root) { 4719 if (!KMP_AFFINITY_CAPABLE()) { 4720 return; 4721 } 4722 4723 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); 4724 if (th->th.th_affin_mask == NULL) { 4725 KMP_CPU_ALLOC(th->th.th_affin_mask); 4726 } else { 4727 KMP_CPU_ZERO(th->th.th_affin_mask); 4728 } 4729 4730 // Copy the thread mask to the kmp_info_t strucuture. If 4731 // __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one that 4732 // has all of the OS proc ids set, or if __kmp_affinity_respect_mask is set, 4733 // then the full mask is the same as the mask of the initialization thread. 4734 kmp_affin_mask_t *mask; 4735 int i; 4736 4737 #if OMP_40_ENABLED 4738 if (KMP_AFFINITY_NON_PROC_BIND) 4739 #endif 4740 { 4741 if ((__kmp_affinity_type == affinity_none) || 4742 (__kmp_affinity_type == affinity_balanced)) { 4743 #if KMP_GROUP_AFFINITY 4744 if (__kmp_num_proc_groups > 1) { 4745 return; 4746 } 4747 #endif 4748 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4749 i = 0; 4750 mask = __kmp_affin_fullMask; 4751 } else { 4752 KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0); 4753 i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks; 4754 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); 4755 } 4756 } 4757 #if OMP_40_ENABLED 4758 else { 4759 if ((!isa_root) || 4760 (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) { 4761 #if KMP_GROUP_AFFINITY 4762 if (__kmp_num_proc_groups > 1) { 4763 return; 4764 } 4765 #endif 4766 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4767 i = KMP_PLACE_ALL; 4768 mask = __kmp_affin_fullMask; 4769 } else { 4770 // int i = some hash function or just a counter that doesn't 4771 // always start at 0. Use gtid for now. 4772 KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0); 4773 i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks; 4774 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); 4775 } 4776 } 4777 #endif 4778 4779 #if OMP_40_ENABLED 4780 th->th.th_current_place = i; 4781 if (isa_root) { 4782 th->th.th_new_place = i; 4783 th->th.th_first_place = 0; 4784 th->th.th_last_place = __kmp_affinity_num_masks - 1; 4785 } else if (KMP_AFFINITY_NON_PROC_BIND) { 4786 // When using a Non-OMP_PROC_BIND affinity method, 4787 // set all threads' place-partition-var to the entire place list 4788 th->th.th_first_place = 0; 4789 th->th.th_last_place = __kmp_affinity_num_masks - 1; 4790 } 4791 4792 if (i == KMP_PLACE_ALL) { 4793 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n", 4794 gtid)); 4795 } else { 4796 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n", 4797 gtid, i)); 4798 } 4799 #else 4800 if (i == -1) { 4801 KA_TRACE( 4802 100, 4803 ("__kmp_affinity_set_init_mask: binding T#%d to __kmp_affin_fullMask\n", 4804 gtid)); 4805 } else { 4806 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to mask %d\n", 4807 gtid, i)); 4808 } 4809 #endif /* OMP_40_ENABLED */ 4810 4811 KMP_CPU_COPY(th->th.th_affin_mask, mask); 4812 4813 if (__kmp_affinity_verbose 4814 /* to avoid duplicate printing (will be correctly printed on barrier) */ 4815 && (__kmp_affinity_type == affinity_none || 4816 (i != KMP_PLACE_ALL && __kmp_affinity_type != affinity_balanced))) { 4817 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4818 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4819 th->th.th_affin_mask); 4820 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), 4821 __kmp_gettid(), gtid, buf); 4822 } 4823 4824 #if KMP_OS_WINDOWS 4825 // On Windows* OS, the process affinity mask might have changed. If the user 4826 // didn't request affinity and this call fails, just continue silently. 4827 // See CQ171393. 4828 if (__kmp_affinity_type == affinity_none) { 4829 __kmp_set_system_affinity(th->th.th_affin_mask, FALSE); 4830 } else 4831 #endif 4832 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); 4833 } 4834 4835 #if OMP_40_ENABLED 4836 4837 void __kmp_affinity_set_place(int gtid) { 4838 if (!KMP_AFFINITY_CAPABLE()) { 4839 return; 4840 } 4841 4842 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); 4843 4844 KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current " 4845 "place = %d)\n", 4846 gtid, th->th.th_new_place, th->th.th_current_place)); 4847 4848 // Check that the new place is within this thread's partition. 4849 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4850 KMP_ASSERT(th->th.th_new_place >= 0); 4851 KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks); 4852 if (th->th.th_first_place <= th->th.th_last_place) { 4853 KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) && 4854 (th->th.th_new_place <= th->th.th_last_place)); 4855 } else { 4856 KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) || 4857 (th->th.th_new_place >= th->th.th_last_place)); 4858 } 4859 4860 // Copy the thread mask to the kmp_info_t strucuture, 4861 // and set this thread's affinity. 4862 kmp_affin_mask_t *mask = 4863 KMP_CPU_INDEX(__kmp_affinity_masks, th->th.th_new_place); 4864 KMP_CPU_COPY(th->th.th_affin_mask, mask); 4865 th->th.th_current_place = th->th.th_new_place; 4866 4867 if (__kmp_affinity_verbose) { 4868 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4869 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4870 th->th.th_affin_mask); 4871 KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(), 4872 __kmp_gettid(), gtid, buf); 4873 } 4874 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); 4875 } 4876 4877 #endif /* OMP_40_ENABLED */ 4878 4879 int __kmp_aux_set_affinity(void **mask) { 4880 int gtid; 4881 kmp_info_t *th; 4882 int retval; 4883 4884 if (!KMP_AFFINITY_CAPABLE()) { 4885 return -1; 4886 } 4887 4888 gtid = __kmp_entry_gtid(); 4889 KA_TRACE(1000, (""); { 4890 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4891 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4892 (kmp_affin_mask_t *)(*mask)); 4893 __kmp_debug_printf( 4894 "kmp_set_affinity: setting affinity mask for thread %d = %s\n", gtid, 4895 buf); 4896 }); 4897 4898 if (__kmp_env_consistency_check) { 4899 if ((mask == NULL) || (*mask == NULL)) { 4900 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4901 } else { 4902 unsigned proc; 4903 int num_procs = 0; 4904 4905 KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) { 4906 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 4907 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4908 } 4909 if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) { 4910 continue; 4911 } 4912 num_procs++; 4913 } 4914 if (num_procs == 0) { 4915 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4916 } 4917 4918 #if KMP_GROUP_AFFINITY 4919 if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) { 4920 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4921 } 4922 #endif /* KMP_GROUP_AFFINITY */ 4923 } 4924 } 4925 4926 th = __kmp_threads[gtid]; 4927 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4928 retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); 4929 if (retval == 0) { 4930 KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask)); 4931 } 4932 4933 #if OMP_40_ENABLED 4934 th->th.th_current_place = KMP_PLACE_UNDEFINED; 4935 th->th.th_new_place = KMP_PLACE_UNDEFINED; 4936 th->th.th_first_place = 0; 4937 th->th.th_last_place = __kmp_affinity_num_masks - 1; 4938 4939 // Turn off 4.0 affinity for the current tread at this parallel level. 4940 th->th.th_current_task->td_icvs.proc_bind = proc_bind_false; 4941 #endif 4942 4943 return retval; 4944 } 4945 4946 int __kmp_aux_get_affinity(void **mask) { 4947 int gtid; 4948 int retval; 4949 kmp_info_t *th; 4950 4951 if (!KMP_AFFINITY_CAPABLE()) { 4952 return -1; 4953 } 4954 4955 gtid = __kmp_entry_gtid(); 4956 th = __kmp_threads[gtid]; 4957 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4958 4959 KA_TRACE(1000, (""); { 4960 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4961 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4962 th->th.th_affin_mask); 4963 __kmp_printf("kmp_get_affinity: stored affinity mask for thread %d = %s\n", 4964 gtid, buf); 4965 }); 4966 4967 if (__kmp_env_consistency_check) { 4968 if ((mask == NULL) || (*mask == NULL)) { 4969 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity"); 4970 } 4971 } 4972 4973 #if !KMP_OS_WINDOWS 4974 4975 retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); 4976 KA_TRACE(1000, (""); { 4977 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4978 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4979 (kmp_affin_mask_t *)(*mask)); 4980 __kmp_printf("kmp_get_affinity: system affinity mask for thread %d = %s\n", 4981 gtid, buf); 4982 }); 4983 return retval; 4984 4985 #else 4986 4987 KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask); 4988 return 0; 4989 4990 #endif /* KMP_OS_WINDOWS */ 4991 } 4992 4993 int __kmp_aux_get_affinity_max_proc() { 4994 if (!KMP_AFFINITY_CAPABLE()) { 4995 return 0; 4996 } 4997 #if KMP_GROUP_AFFINITY 4998 if (__kmp_num_proc_groups > 1) { 4999 return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT); 5000 } 5001 #endif 5002 return __kmp_xproc; 5003 } 5004 5005 int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) { 5006 if (!KMP_AFFINITY_CAPABLE()) { 5007 return -1; 5008 } 5009 5010 KA_TRACE(1000, (""); { 5011 int gtid = __kmp_entry_gtid(); 5012 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5013 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5014 (kmp_affin_mask_t *)(*mask)); 5015 __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in " 5016 "affinity mask for thread %d = %s\n", 5017 proc, gtid, buf); 5018 }); 5019 5020 if (__kmp_env_consistency_check) { 5021 if ((mask == NULL) || (*mask == NULL)) { 5022 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc"); 5023 } 5024 } 5025 5026 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 5027 return -1; 5028 } 5029 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 5030 return -2; 5031 } 5032 5033 KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask)); 5034 return 0; 5035 } 5036 5037 int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) { 5038 if (!KMP_AFFINITY_CAPABLE()) { 5039 return -1; 5040 } 5041 5042 KA_TRACE(1000, (""); { 5043 int gtid = __kmp_entry_gtid(); 5044 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5045 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5046 (kmp_affin_mask_t *)(*mask)); 5047 __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in " 5048 "affinity mask for thread %d = %s\n", 5049 proc, gtid, buf); 5050 }); 5051 5052 if (__kmp_env_consistency_check) { 5053 if ((mask == NULL) || (*mask == NULL)) { 5054 KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc"); 5055 } 5056 } 5057 5058 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 5059 return -1; 5060 } 5061 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 5062 return -2; 5063 } 5064 5065 KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask)); 5066 return 0; 5067 } 5068 5069 int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) { 5070 if (!KMP_AFFINITY_CAPABLE()) { 5071 return -1; 5072 } 5073 5074 KA_TRACE(1000, (""); { 5075 int gtid = __kmp_entry_gtid(); 5076 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5077 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5078 (kmp_affin_mask_t *)(*mask)); 5079 __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in " 5080 "affinity mask for thread %d = %s\n", 5081 proc, gtid, buf); 5082 }); 5083 5084 if (__kmp_env_consistency_check) { 5085 if ((mask == NULL) || (*mask == NULL)) { 5086 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc"); 5087 } 5088 } 5089 5090 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 5091 return -1; 5092 } 5093 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 5094 return 0; 5095 } 5096 5097 return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask)); 5098 } 5099 5100 // Dynamic affinity settings - Affinity balanced 5101 void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) { 5102 KMP_DEBUG_ASSERT(th); 5103 bool fine_gran = true; 5104 int tid = th->th.th_info.ds.ds_tid; 5105 5106 switch (__kmp_affinity_gran) { 5107 case affinity_gran_fine: 5108 case affinity_gran_thread: 5109 break; 5110 case affinity_gran_core: 5111 if (__kmp_nThreadsPerCore > 1) { 5112 fine_gran = false; 5113 } 5114 break; 5115 case affinity_gran_package: 5116 if (nCoresPerPkg > 1) { 5117 fine_gran = false; 5118 } 5119 break; 5120 default: 5121 fine_gran = false; 5122 } 5123 5124 if (__kmp_affinity_uniform_topology()) { 5125 int coreID; 5126 int threadID; 5127 // Number of hyper threads per core in HT machine 5128 int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores; 5129 // Number of cores 5130 int ncores = __kmp_ncores; 5131 if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) { 5132 __kmp_nth_per_core = __kmp_avail_proc / nPackages; 5133 ncores = nPackages; 5134 } 5135 // How many threads will be bound to each core 5136 int chunk = nthreads / ncores; 5137 // How many cores will have an additional thread bound to it - "big cores" 5138 int big_cores = nthreads % ncores; 5139 // Number of threads on the big cores 5140 int big_nth = (chunk + 1) * big_cores; 5141 if (tid < big_nth) { 5142 coreID = tid / (chunk + 1); 5143 threadID = (tid % (chunk + 1)) % __kmp_nth_per_core; 5144 } else { // tid >= big_nth 5145 coreID = (tid - big_cores) / chunk; 5146 threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core; 5147 } 5148 5149 KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(), 5150 "Illegal set affinity operation when not capable"); 5151 5152 kmp_affin_mask_t *mask = th->th.th_affin_mask; 5153 KMP_CPU_ZERO(mask); 5154 5155 if (fine_gran) { 5156 int osID = address2os[coreID * __kmp_nth_per_core + threadID].second; 5157 KMP_CPU_SET(osID, mask); 5158 } else { 5159 for (int i = 0; i < __kmp_nth_per_core; i++) { 5160 int osID; 5161 osID = address2os[coreID * __kmp_nth_per_core + i].second; 5162 KMP_CPU_SET(osID, mask); 5163 } 5164 } 5165 if (__kmp_affinity_verbose) { 5166 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5167 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); 5168 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), 5169 __kmp_gettid(), tid, buf); 5170 } 5171 __kmp_set_system_affinity(mask, TRUE); 5172 } else { // Non-uniform topology 5173 5174 kmp_affin_mask_t *mask = th->th.th_affin_mask; 5175 KMP_CPU_ZERO(mask); 5176 5177 int core_level = __kmp_affinity_find_core_level( 5178 address2os, __kmp_avail_proc, __kmp_aff_depth - 1); 5179 int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc, 5180 __kmp_aff_depth - 1, core_level); 5181 int nth_per_core = __kmp_affinity_max_proc_per_core( 5182 address2os, __kmp_avail_proc, __kmp_aff_depth - 1, core_level); 5183 5184 // For performance gain consider the special case nthreads == 5185 // __kmp_avail_proc 5186 if (nthreads == __kmp_avail_proc) { 5187 if (fine_gran) { 5188 int osID = address2os[tid].second; 5189 KMP_CPU_SET(osID, mask); 5190 } else { 5191 int core = __kmp_affinity_find_core(address2os, tid, 5192 __kmp_aff_depth - 1, core_level); 5193 for (int i = 0; i < __kmp_avail_proc; i++) { 5194 int osID = address2os[i].second; 5195 if (__kmp_affinity_find_core(address2os, i, __kmp_aff_depth - 1, 5196 core_level) == core) { 5197 KMP_CPU_SET(osID, mask); 5198 } 5199 } 5200 } 5201 } else if (nthreads <= ncores) { 5202 5203 int core = 0; 5204 for (int i = 0; i < ncores; i++) { 5205 // Check if this core from procarr[] is in the mask 5206 int in_mask = 0; 5207 for (int j = 0; j < nth_per_core; j++) { 5208 if (procarr[i * nth_per_core + j] != -1) { 5209 in_mask = 1; 5210 break; 5211 } 5212 } 5213 if (in_mask) { 5214 if (tid == core) { 5215 for (int j = 0; j < nth_per_core; j++) { 5216 int osID = procarr[i * nth_per_core + j]; 5217 if (osID != -1) { 5218 KMP_CPU_SET(osID, mask); 5219 // For fine granularity it is enough to set the first available 5220 // osID for this core 5221 if (fine_gran) { 5222 break; 5223 } 5224 } 5225 } 5226 break; 5227 } else { 5228 core++; 5229 } 5230 } 5231 } 5232 } else { // nthreads > ncores 5233 // Array to save the number of processors at each core 5234 int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores); 5235 // Array to save the number of cores with "x" available processors; 5236 int *ncores_with_x_procs = 5237 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); 5238 // Array to save the number of cores with # procs from x to nth_per_core 5239 int *ncores_with_x_to_max_procs = 5240 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); 5241 5242 for (int i = 0; i <= nth_per_core; i++) { 5243 ncores_with_x_procs[i] = 0; 5244 ncores_with_x_to_max_procs[i] = 0; 5245 } 5246 5247 for (int i = 0; i < ncores; i++) { 5248 int cnt = 0; 5249 for (int j = 0; j < nth_per_core; j++) { 5250 if (procarr[i * nth_per_core + j] != -1) { 5251 cnt++; 5252 } 5253 } 5254 nproc_at_core[i] = cnt; 5255 ncores_with_x_procs[cnt]++; 5256 } 5257 5258 for (int i = 0; i <= nth_per_core; i++) { 5259 for (int j = i; j <= nth_per_core; j++) { 5260 ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j]; 5261 } 5262 } 5263 5264 // Max number of processors 5265 int nproc = nth_per_core * ncores; 5266 // An array to keep number of threads per each context 5267 int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc); 5268 for (int i = 0; i < nproc; i++) { 5269 newarr[i] = 0; 5270 } 5271 5272 int nth = nthreads; 5273 int flag = 0; 5274 while (nth > 0) { 5275 for (int j = 1; j <= nth_per_core; j++) { 5276 int cnt = ncores_with_x_to_max_procs[j]; 5277 for (int i = 0; i < ncores; i++) { 5278 // Skip the core with 0 processors 5279 if (nproc_at_core[i] == 0) { 5280 continue; 5281 } 5282 for (int k = 0; k < nth_per_core; k++) { 5283 if (procarr[i * nth_per_core + k] != -1) { 5284 if (newarr[i * nth_per_core + k] == 0) { 5285 newarr[i * nth_per_core + k] = 1; 5286 cnt--; 5287 nth--; 5288 break; 5289 } else { 5290 if (flag != 0) { 5291 newarr[i * nth_per_core + k]++; 5292 cnt--; 5293 nth--; 5294 break; 5295 } 5296 } 5297 } 5298 } 5299 if (cnt == 0 || nth == 0) { 5300 break; 5301 } 5302 } 5303 if (nth == 0) { 5304 break; 5305 } 5306 } 5307 flag = 1; 5308 } 5309 int sum = 0; 5310 for (int i = 0; i < nproc; i++) { 5311 sum += newarr[i]; 5312 if (sum > tid) { 5313 if (fine_gran) { 5314 int osID = procarr[i]; 5315 KMP_CPU_SET(osID, mask); 5316 } else { 5317 int coreID = i / nth_per_core; 5318 for (int ii = 0; ii < nth_per_core; ii++) { 5319 int osID = procarr[coreID * nth_per_core + ii]; 5320 if (osID != -1) { 5321 KMP_CPU_SET(osID, mask); 5322 } 5323 } 5324 } 5325 break; 5326 } 5327 } 5328 __kmp_free(newarr); 5329 } 5330 5331 if (__kmp_affinity_verbose) { 5332 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5333 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); 5334 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), 5335 __kmp_gettid(), tid, buf); 5336 } 5337 __kmp_set_system_affinity(mask, TRUE); 5338 } 5339 } 5340 5341 #if KMP_OS_LINUX 5342 // We don't need this entry for Windows because 5343 // there is GetProcessAffinityMask() api 5344 // 5345 // The intended usage is indicated by these steps: 5346 // 1) The user gets the current affinity mask 5347 // 2) Then sets the affinity by calling this function 5348 // 3) Error check the return value 5349 // 4) Use non-OpenMP parallelization 5350 // 5) Reset the affinity to what was stored in step 1) 5351 #ifdef __cplusplus 5352 extern "C" 5353 #endif 5354 int 5355 kmp_set_thread_affinity_mask_initial() 5356 // the function returns 0 on success, 5357 // -1 if we cannot bind thread 5358 // >0 (errno) if an error happened during binding 5359 { 5360 int gtid = __kmp_get_gtid(); 5361 if (gtid < 0) { 5362 // Do not touch non-omp threads 5363 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5364 "non-omp thread, returning\n")); 5365 return -1; 5366 } 5367 if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) { 5368 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5369 "affinity not initialized, returning\n")); 5370 return -1; 5371 } 5372 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5373 "set full mask for thread %d\n", 5374 gtid)); 5375 KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL); 5376 return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE); 5377 } 5378 #endif 5379 5380 #endif // KMP_AFFINITY_SUPPORTED 5381