1 /* 2 * kmp_affinity.cpp -- affinity management 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // The LLVM Compiler Infrastructure 8 // 9 // This file is dual licensed under the MIT and the University of Illinois Open 10 // Source Licenses. See LICENSE.txt for details. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "kmp.h" 15 #include "kmp_affinity.h" 16 #include "kmp_i18n.h" 17 #include "kmp_io.h" 18 #include "kmp_str.h" 19 #include "kmp_wrapper_getpid.h" 20 #if KMP_USE_HIER_SCHED 21 #include "kmp_dispatch_hier.h" 22 #endif 23 24 // Store the real or imagined machine hierarchy here 25 static hierarchy_info machine_hierarchy; 26 27 void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); } 28 29 void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) { 30 kmp_uint32 depth; 31 // The test below is true if affinity is available, but set to "none". Need to 32 // init on first use of hierarchical barrier. 33 if (TCR_1(machine_hierarchy.uninitialized)) 34 machine_hierarchy.init(NULL, nproc); 35 36 // Adjust the hierarchy in case num threads exceeds original 37 if (nproc > machine_hierarchy.base_num_threads) 38 machine_hierarchy.resize(nproc); 39 40 depth = machine_hierarchy.depth; 41 KMP_DEBUG_ASSERT(depth > 0); 42 43 thr_bar->depth = depth; 44 thr_bar->base_leaf_kids = (kmp_uint8)machine_hierarchy.numPerLevel[0] - 1; 45 thr_bar->skip_per_level = machine_hierarchy.skipPerLevel; 46 } 47 48 #if KMP_AFFINITY_SUPPORTED 49 50 bool KMPAffinity::picked_api = false; 51 52 void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); } 53 void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); } 54 void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); } 55 void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); } 56 void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); } 57 void KMPAffinity::operator delete(void *p) { __kmp_free(p); } 58 59 void KMPAffinity::pick_api() { 60 KMPAffinity *affinity_dispatch; 61 if (picked_api) 62 return; 63 #if KMP_USE_HWLOC 64 // Only use Hwloc if affinity isn't explicitly disabled and 65 // user requests Hwloc topology method 66 if (__kmp_affinity_top_method == affinity_top_method_hwloc && 67 __kmp_affinity_type != affinity_disabled) { 68 affinity_dispatch = new KMPHwlocAffinity(); 69 } else 70 #endif 71 { 72 affinity_dispatch = new KMPNativeAffinity(); 73 } 74 __kmp_affinity_dispatch = affinity_dispatch; 75 picked_api = true; 76 } 77 78 void KMPAffinity::destroy_api() { 79 if (__kmp_affinity_dispatch != NULL) { 80 delete __kmp_affinity_dispatch; 81 __kmp_affinity_dispatch = NULL; 82 picked_api = false; 83 } 84 } 85 86 // Print the affinity mask to the character array in a pretty format. 87 char *__kmp_affinity_print_mask(char *buf, int buf_len, 88 kmp_affin_mask_t *mask) { 89 KMP_ASSERT(buf_len >= 40); 90 char *scan = buf; 91 char *end = buf + buf_len - 1; 92 93 // Find first element / check for empty set. 94 size_t i; 95 i = mask->begin(); 96 if (i == mask->end()) { 97 KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}"); 98 while (*scan != '\0') 99 scan++; 100 KMP_ASSERT(scan <= end); 101 return buf; 102 } 103 104 KMP_SNPRINTF(scan, end - scan + 1, "{%ld", (long)i); 105 while (*scan != '\0') 106 scan++; 107 i++; 108 for (; i != mask->end(); i = mask->next(i)) { 109 if (!KMP_CPU_ISSET(i, mask)) { 110 continue; 111 } 112 113 // Check for buffer overflow. A string of the form ",<n>" will have at most 114 // 10 characters, plus we want to leave room to print ",...}" if the set is 115 // too large to print for a total of 15 characters. We already left room for 116 // '\0' in setting end. 117 if (end - scan < 15) { 118 break; 119 } 120 KMP_SNPRINTF(scan, end - scan + 1, ",%-ld", (long)i); 121 while (*scan != '\0') 122 scan++; 123 } 124 if (i != mask->end()) { 125 KMP_SNPRINTF(scan, end - scan + 1, ",..."); 126 while (*scan != '\0') 127 scan++; 128 } 129 KMP_SNPRINTF(scan, end - scan + 1, "}"); 130 while (*scan != '\0') 131 scan++; 132 KMP_ASSERT(scan <= end); 133 return buf; 134 } 135 136 void __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) { 137 KMP_CPU_ZERO(mask); 138 139 #if KMP_GROUP_AFFINITY 140 141 if (__kmp_num_proc_groups > 1) { 142 int group; 143 KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL); 144 for (group = 0; group < __kmp_num_proc_groups; group++) { 145 int i; 146 int num = __kmp_GetActiveProcessorCount(group); 147 for (i = 0; i < num; i++) { 148 KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask); 149 } 150 } 151 } else 152 153 #endif /* KMP_GROUP_AFFINITY */ 154 155 { 156 int proc; 157 for (proc = 0; proc < __kmp_xproc; proc++) { 158 KMP_CPU_SET(proc, mask); 159 } 160 } 161 } 162 163 // When sorting by labels, __kmp_affinity_assign_child_nums() must first be 164 // called to renumber the labels from [0..n] and place them into the child_num 165 // vector of the address object. This is done in case the labels used for 166 // the children at one node of the hierarchy differ from those used for 167 // another node at the same level. Example: suppose the machine has 2 nodes 168 // with 2 packages each. The first node contains packages 601 and 602, and 169 // second node contains packages 603 and 604. If we try to sort the table 170 // for "scatter" affinity, the table will still be sorted 601, 602, 603, 604 171 // because we are paying attention to the labels themselves, not the ordinal 172 // child numbers. By using the child numbers in the sort, the result is 173 // {0,0}=601, {0,1}=603, {1,0}=602, {1,1}=604. 174 static void __kmp_affinity_assign_child_nums(AddrUnsPair *address2os, 175 int numAddrs) { 176 KMP_DEBUG_ASSERT(numAddrs > 0); 177 int depth = address2os->first.depth; 178 unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 179 unsigned *lastLabel = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 180 int labCt; 181 for (labCt = 0; labCt < depth; labCt++) { 182 address2os[0].first.childNums[labCt] = counts[labCt] = 0; 183 lastLabel[labCt] = address2os[0].first.labels[labCt]; 184 } 185 int i; 186 for (i = 1; i < numAddrs; i++) { 187 for (labCt = 0; labCt < depth; labCt++) { 188 if (address2os[i].first.labels[labCt] != lastLabel[labCt]) { 189 int labCt2; 190 for (labCt2 = labCt + 1; labCt2 < depth; labCt2++) { 191 counts[labCt2] = 0; 192 lastLabel[labCt2] = address2os[i].first.labels[labCt2]; 193 } 194 counts[labCt]++; 195 lastLabel[labCt] = address2os[i].first.labels[labCt]; 196 break; 197 } 198 } 199 for (labCt = 0; labCt < depth; labCt++) { 200 address2os[i].first.childNums[labCt] = counts[labCt]; 201 } 202 for (; labCt < (int)Address::maxDepth; labCt++) { 203 address2os[i].first.childNums[labCt] = 0; 204 } 205 } 206 __kmp_free(lastLabel); 207 __kmp_free(counts); 208 } 209 210 // All of the __kmp_affinity_create_*_map() routines should set 211 // __kmp_affinity_masks to a vector of affinity mask objects of length 212 // __kmp_affinity_num_masks, if __kmp_affinity_type != affinity_none, and return 213 // the number of levels in the machine topology tree (zero if 214 // __kmp_affinity_type == affinity_none). 215 // 216 // All of the __kmp_affinity_create_*_map() routines should set 217 // *__kmp_affin_fullMask to the affinity mask for the initialization thread. 218 // They need to save and restore the mask, and it could be needed later, so 219 // saving it is just an optimization to avoid calling kmp_get_system_affinity() 220 // again. 221 kmp_affin_mask_t *__kmp_affin_fullMask = NULL; 222 223 static int nCoresPerPkg, nPackages; 224 static int __kmp_nThreadsPerCore; 225 #ifndef KMP_DFLT_NTH_CORES 226 static int __kmp_ncores; 227 #endif 228 static int *__kmp_pu_os_idx = NULL; 229 230 // __kmp_affinity_uniform_topology() doesn't work when called from 231 // places which support arbitrarily many levels in the machine topology 232 // map, i.e. the non-default cases in __kmp_affinity_create_cpuinfo_map() 233 // __kmp_affinity_create_x2apicid_map(). 234 inline static bool __kmp_affinity_uniform_topology() { 235 return __kmp_avail_proc == (__kmp_nThreadsPerCore * nCoresPerPkg * nPackages); 236 } 237 238 // Print out the detailed machine topology map, i.e. the physical locations 239 // of each OS proc. 240 static void __kmp_affinity_print_topology(AddrUnsPair *address2os, int len, 241 int depth, int pkgLevel, 242 int coreLevel, int threadLevel) { 243 int proc; 244 245 KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY"); 246 for (proc = 0; proc < len; proc++) { 247 int level; 248 kmp_str_buf_t buf; 249 __kmp_str_buf_init(&buf); 250 for (level = 0; level < depth; level++) { 251 if (level == threadLevel) { 252 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Thread)); 253 } else if (level == coreLevel) { 254 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Core)); 255 } else if (level == pkgLevel) { 256 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Package)); 257 } else if (level > pkgLevel) { 258 __kmp_str_buf_print(&buf, "%s_%d ", KMP_I18N_STR(Node), 259 level - pkgLevel - 1); 260 } else { 261 __kmp_str_buf_print(&buf, "L%d ", level); 262 } 263 __kmp_str_buf_print(&buf, "%d ", address2os[proc].first.labels[level]); 264 } 265 KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", address2os[proc].second, 266 buf.str); 267 __kmp_str_buf_free(&buf); 268 } 269 } 270 271 #if KMP_USE_HWLOC 272 273 static void __kmp_affinity_print_hwloc_tp(AddrUnsPair *addrP, int len, 274 int depth, int *levels) { 275 int proc; 276 kmp_str_buf_t buf; 277 __kmp_str_buf_init(&buf); 278 KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY"); 279 for (proc = 0; proc < len; proc++) { 280 __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Package), 281 addrP[proc].first.labels[0]); 282 if (depth > 1) { 283 int level = 1; // iterate over levels 284 int label = 1; // iterate over labels 285 if (__kmp_numa_detected) 286 // node level follows package 287 if (levels[level++] > 0) 288 __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Node), 289 addrP[proc].first.labels[label++]); 290 if (__kmp_tile_depth > 0) 291 // tile level follows node if any, or package 292 if (levels[level++] > 0) 293 __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Tile), 294 addrP[proc].first.labels[label++]); 295 if (levels[level++] > 0) 296 // core level follows 297 __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Core), 298 addrP[proc].first.labels[label++]); 299 if (levels[level++] > 0) 300 // thread level is the latest 301 __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Thread), 302 addrP[proc].first.labels[label++]); 303 KMP_DEBUG_ASSERT(label == depth); 304 } 305 KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", addrP[proc].second, buf.str); 306 __kmp_str_buf_clear(&buf); 307 } 308 __kmp_str_buf_free(&buf); 309 } 310 311 static int nNodePerPkg, nTilePerPkg, nTilePerNode, nCorePerNode, nCorePerTile; 312 313 // This function removes the topology levels that are radix 1 and don't offer 314 // further information about the topology. The most common example is when you 315 // have one thread context per core, we don't want the extra thread context 316 // level if it offers no unique labels. So they are removed. 317 // return value: the new depth of address2os 318 static int __kmp_affinity_remove_radix_one_levels(AddrUnsPair *addrP, int nTh, 319 int depth, int *levels) { 320 int level; 321 int i; 322 int radix1_detected; 323 int new_depth = depth; 324 for (level = depth - 1; level > 0; --level) { 325 // Detect if this level is radix 1 326 radix1_detected = 1; 327 for (i = 1; i < nTh; ++i) { 328 if (addrP[0].first.labels[level] != addrP[i].first.labels[level]) { 329 // There are differing label values for this level so it stays 330 radix1_detected = 0; 331 break; 332 } 333 } 334 if (!radix1_detected) 335 continue; 336 // Radix 1 was detected 337 --new_depth; 338 levels[level] = -1; // mark level as not present in address2os array 339 if (level == new_depth) { 340 // "turn off" deepest level, just decrement the depth that removes 341 // the level from address2os array 342 for (i = 0; i < nTh; ++i) { 343 addrP[i].first.depth--; 344 } 345 } else { 346 // For other levels, we move labels over and also reduce the depth 347 int j; 348 for (j = level; j < new_depth; ++j) { 349 for (i = 0; i < nTh; ++i) { 350 addrP[i].first.labels[j] = addrP[i].first.labels[j + 1]; 351 addrP[i].first.depth--; 352 } 353 levels[j + 1] -= 1; 354 } 355 } 356 } 357 return new_depth; 358 } 359 360 // Returns the number of objects of type 'type' below 'obj' within the topology 361 // tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is 362 // HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET 363 // object. 364 static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj, 365 hwloc_obj_type_t type) { 366 int retval = 0; 367 hwloc_obj_t first; 368 for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type, 369 obj->logical_index, type, 0); 370 first != NULL && 371 hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, obj->type, first) == 372 obj; 373 first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type, 374 first)) { 375 ++retval; 376 } 377 return retval; 378 } 379 380 static int __kmp_hwloc_count_children_by_depth(hwloc_topology_t t, 381 hwloc_obj_t o, unsigned depth, 382 hwloc_obj_t *f) { 383 if (o->depth == depth) { 384 if (*f == NULL) 385 *f = o; // output first descendant found 386 return 1; 387 } 388 int sum = 0; 389 for (unsigned i = 0; i < o->arity; i++) 390 sum += __kmp_hwloc_count_children_by_depth(t, o->children[i], depth, f); 391 return sum; // will be 0 if no one found (as PU arity is 0) 392 } 393 394 static int __kmp_hwloc_count_children_by_type(hwloc_topology_t t, hwloc_obj_t o, 395 hwloc_obj_type_t type, 396 hwloc_obj_t *f) { 397 if (!hwloc_compare_types(o->type, type)) { 398 if (*f == NULL) 399 *f = o; // output first descendant found 400 return 1; 401 } 402 int sum = 0; 403 for (unsigned i = 0; i < o->arity; i++) 404 sum += __kmp_hwloc_count_children_by_type(t, o->children[i], type, f); 405 return sum; // will be 0 if no one found (as PU arity is 0) 406 } 407 408 static int __kmp_hwloc_process_obj_core_pu(AddrUnsPair *addrPair, 409 int &nActiveThreads, 410 int &num_active_cores, 411 hwloc_obj_t obj, int depth, 412 int *labels) { 413 hwloc_obj_t core = NULL; 414 hwloc_topology_t &tp = __kmp_hwloc_topology; 415 int NC = __kmp_hwloc_count_children_by_type(tp, obj, HWLOC_OBJ_CORE, &core); 416 for (int core_id = 0; core_id < NC; ++core_id, core = core->next_cousin) { 417 hwloc_obj_t pu = NULL; 418 KMP_DEBUG_ASSERT(core != NULL); 419 int num_active_threads = 0; 420 int NT = __kmp_hwloc_count_children_by_type(tp, core, HWLOC_OBJ_PU, &pu); 421 // int NT = core->arity; pu = core->first_child; // faster? 422 for (int pu_id = 0; pu_id < NT; ++pu_id, pu = pu->next_cousin) { 423 KMP_DEBUG_ASSERT(pu != NULL); 424 if (!KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask)) 425 continue; // skip inactive (inaccessible) unit 426 Address addr(depth + 2); 427 KA_TRACE(20, ("Hwloc inserting %d (%d) %d (%d) %d (%d) into address2os\n", 428 obj->os_index, obj->logical_index, core->os_index, 429 core->logical_index, pu->os_index, pu->logical_index)); 430 for (int i = 0; i < depth; ++i) 431 addr.labels[i] = labels[i]; // package, etc. 432 addr.labels[depth] = core_id; // core 433 addr.labels[depth + 1] = pu_id; // pu 434 addrPair[nActiveThreads] = AddrUnsPair(addr, pu->os_index); 435 __kmp_pu_os_idx[nActiveThreads] = pu->os_index; 436 nActiveThreads++; 437 ++num_active_threads; // count active threads per core 438 } 439 if (num_active_threads) { // were there any active threads on the core? 440 ++__kmp_ncores; // count total active cores 441 ++num_active_cores; // count active cores per socket 442 if (num_active_threads > __kmp_nThreadsPerCore) 443 __kmp_nThreadsPerCore = num_active_threads; // calc maximum 444 } 445 } 446 return 0; 447 } 448 449 // Check if NUMA node detected below the package, 450 // and if tile object is detected and return its depth 451 static int __kmp_hwloc_check_numa() { 452 hwloc_topology_t &tp = __kmp_hwloc_topology; 453 hwloc_obj_t hT, hC, hL, hN, hS; // hwloc objects (pointers to) 454 int depth; 455 456 // Get some PU 457 hT = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PU, 0); 458 if (hT == NULL) // something has gone wrong 459 return 1; 460 461 // check NUMA node below PACKAGE 462 hN = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hT); 463 hS = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hT); 464 KMP_DEBUG_ASSERT(hS != NULL); 465 if (hN != NULL && hN->depth > hS->depth) { 466 __kmp_numa_detected = TRUE; // socket includes node(s) 467 if (__kmp_affinity_gran == affinity_gran_node) { 468 __kmp_affinity_gran == affinity_gran_numa; 469 } 470 } 471 472 // check tile, get object by depth because of multiple caches possible 473 depth = hwloc_get_cache_type_depth(tp, 2, HWLOC_OBJ_CACHE_UNIFIED); 474 hL = hwloc_get_ancestor_obj_by_depth(tp, depth, hT); 475 hC = NULL; // not used, but reset it here just in case 476 if (hL != NULL && 477 __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC) > 1) 478 __kmp_tile_depth = depth; // tile consists of multiple cores 479 return 0; 480 } 481 482 static int __kmp_affinity_create_hwloc_map(AddrUnsPair **address2os, 483 kmp_i18n_id_t *const msg_id) { 484 hwloc_topology_t &tp = __kmp_hwloc_topology; // shortcut of a long name 485 *address2os = NULL; 486 *msg_id = kmp_i18n_null; 487 488 // Save the affinity mask for the current thread. 489 kmp_affin_mask_t *oldMask; 490 KMP_CPU_ALLOC(oldMask); 491 __kmp_get_system_affinity(oldMask, TRUE); 492 __kmp_hwloc_check_numa(); 493 494 if (!KMP_AFFINITY_CAPABLE()) { 495 // Hack to try and infer the machine topology using only the data 496 // available from cpuid on the current thread, and __kmp_xproc. 497 KMP_ASSERT(__kmp_affinity_type == affinity_none); 498 499 nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj( 500 hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0), HWLOC_OBJ_CORE); 501 __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj( 502 hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0), HWLOC_OBJ_PU); 503 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; 504 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 505 if (__kmp_affinity_verbose) { 506 KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY"); 507 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 508 if (__kmp_affinity_uniform_topology()) { 509 KMP_INFORM(Uniform, "KMP_AFFINITY"); 510 } else { 511 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 512 } 513 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 514 __kmp_nThreadsPerCore, __kmp_ncores); 515 } 516 KMP_CPU_FREE(oldMask); 517 return 0; 518 } 519 520 int depth = 3; 521 int levels[5] = {0, 1, 2, 3, 4}; // package, [node,] [tile,] core, thread 522 int labels[3] = {0}; // package [,node] [,tile] - head of lables array 523 if (__kmp_numa_detected) 524 ++depth; 525 if (__kmp_tile_depth) 526 ++depth; 527 528 // Allocate the data structure to be returned. 529 AddrUnsPair *retval = 530 (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc); 531 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 532 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 533 534 // When affinity is off, this routine will still be called to set 535 // __kmp_ncores, as well as __kmp_nThreadsPerCore, 536 // nCoresPerPkg, & nPackages. Make sure all these vars are set 537 // correctly, and return if affinity is not enabled. 538 539 hwloc_obj_t socket, node, tile; 540 int nActiveThreads = 0; 541 int socket_id = 0; 542 // re-calculate globals to count only accessible resources 543 __kmp_ncores = nPackages = nCoresPerPkg = __kmp_nThreadsPerCore = 0; 544 nNodePerPkg = nTilePerPkg = nTilePerNode = nCorePerNode = nCorePerTile = 0; 545 for (socket = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0); socket != NULL; 546 socket = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PACKAGE, socket), 547 socket_id++) { 548 labels[0] = socket_id; 549 if (__kmp_numa_detected) { 550 int NN; 551 int n_active_nodes = 0; 552 node = NULL; 553 NN = __kmp_hwloc_count_children_by_type(tp, socket, HWLOC_OBJ_NUMANODE, 554 &node); 555 for (int node_id = 0; node_id < NN; ++node_id, node = node->next_cousin) { 556 labels[1] = node_id; 557 if (__kmp_tile_depth) { 558 // NUMA + tiles 559 int NT; 560 int n_active_tiles = 0; 561 tile = NULL; 562 NT = __kmp_hwloc_count_children_by_depth(tp, node, __kmp_tile_depth, 563 &tile); 564 for (int tl_id = 0; tl_id < NT; ++tl_id, tile = tile->next_cousin) { 565 labels[2] = tl_id; 566 int n_active_cores = 0; 567 __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, 568 n_active_cores, tile, 3, labels); 569 if (n_active_cores) { // were there any active cores on the socket? 570 ++n_active_tiles; // count active tiles per node 571 if (n_active_cores > nCorePerTile) 572 nCorePerTile = n_active_cores; // calc maximum 573 } 574 } 575 if (n_active_tiles) { // were there any active tiles on the socket? 576 ++n_active_nodes; // count active nodes per package 577 if (n_active_tiles > nTilePerNode) 578 nTilePerNode = n_active_tiles; // calc maximum 579 } 580 } else { 581 // NUMA, no tiles 582 int n_active_cores = 0; 583 __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, 584 n_active_cores, node, 2, labels); 585 if (n_active_cores) { // were there any active cores on the socket? 586 ++n_active_nodes; // count active nodes per package 587 if (n_active_cores > nCorePerNode) 588 nCorePerNode = n_active_cores; // calc maximum 589 } 590 } 591 } 592 if (n_active_nodes) { // were there any active nodes on the socket? 593 ++nPackages; // count total active packages 594 if (n_active_nodes > nNodePerPkg) 595 nNodePerPkg = n_active_nodes; // calc maximum 596 } 597 } else { 598 if (__kmp_tile_depth) { 599 // no NUMA, tiles 600 int NT; 601 int n_active_tiles = 0; 602 tile = NULL; 603 NT = __kmp_hwloc_count_children_by_depth(tp, socket, __kmp_tile_depth, 604 &tile); 605 for (int tl_id = 0; tl_id < NT; ++tl_id, tile = tile->next_cousin) { 606 labels[1] = tl_id; 607 int n_active_cores = 0; 608 __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, 609 n_active_cores, tile, 2, labels); 610 if (n_active_cores) { // were there any active cores on the socket? 611 ++n_active_tiles; // count active tiles per package 612 if (n_active_cores > nCorePerTile) 613 nCorePerTile = n_active_cores; // calc maximum 614 } 615 } 616 if (n_active_tiles) { // were there any active tiles on the socket? 617 ++nPackages; // count total active packages 618 if (n_active_tiles > nTilePerPkg) 619 nTilePerPkg = n_active_tiles; // calc maximum 620 } 621 } else { 622 // no NUMA, no tiles 623 int n_active_cores = 0; 624 __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, n_active_cores, 625 socket, 1, labels); 626 if (n_active_cores) { // were there any active cores on the socket? 627 ++nPackages; // count total active packages 628 if (n_active_cores > nCoresPerPkg) 629 nCoresPerPkg = n_active_cores; // calc maximum 630 } 631 } 632 } 633 } 634 635 // If there's only one thread context to bind to, return now. 636 KMP_DEBUG_ASSERT(nActiveThreads == __kmp_avail_proc); 637 KMP_ASSERT(nActiveThreads > 0); 638 if (nActiveThreads == 1) { 639 __kmp_ncores = nPackages = 1; 640 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 641 if (__kmp_affinity_verbose) { 642 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 643 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 644 645 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); 646 if (__kmp_affinity_respect_mask) { 647 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 648 } else { 649 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 650 } 651 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 652 KMP_INFORM(Uniform, "KMP_AFFINITY"); 653 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 654 __kmp_nThreadsPerCore, __kmp_ncores); 655 } 656 657 if (__kmp_affinity_type == affinity_none) { 658 __kmp_free(retval); 659 KMP_CPU_FREE(oldMask); 660 return 0; 661 } 662 663 // Form an Address object which only includes the package level. 664 Address addr(1); 665 addr.labels[0] = retval[0].first.labels[0]; 666 retval[0].first = addr; 667 668 if (__kmp_affinity_gran_levels < 0) { 669 __kmp_affinity_gran_levels = 0; 670 } 671 672 if (__kmp_affinity_verbose) { 673 __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1); 674 } 675 676 *address2os = retval; 677 KMP_CPU_FREE(oldMask); 678 return 1; 679 } 680 681 // Sort the table by physical Id. 682 qsort(retval, nActiveThreads, sizeof(*retval), 683 __kmp_affinity_cmp_Address_labels); 684 685 // Check to see if the machine topology is uniform 686 int nPUs = nPackages * __kmp_nThreadsPerCore; 687 if (__kmp_numa_detected) { 688 if (__kmp_tile_depth) { // NUMA + tiles 689 nPUs *= (nNodePerPkg * nTilePerNode * nCorePerTile); 690 } else { // NUMA, no tiles 691 nPUs *= (nNodePerPkg * nCorePerNode); 692 } 693 } else { 694 if (__kmp_tile_depth) { // no NUMA, tiles 695 nPUs *= (nTilePerPkg * nCorePerTile); 696 } else { // no NUMA, no tiles 697 nPUs *= nCoresPerPkg; 698 } 699 } 700 unsigned uniform = (nPUs == nActiveThreads); 701 702 // Print the machine topology summary. 703 if (__kmp_affinity_verbose) { 704 char mask[KMP_AFFIN_MASK_PRINT_LEN]; 705 __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 706 if (__kmp_affinity_respect_mask) { 707 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask); 708 } else { 709 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask); 710 } 711 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 712 if (uniform) { 713 KMP_INFORM(Uniform, "KMP_AFFINITY"); 714 } else { 715 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 716 } 717 if (__kmp_numa_detected) { 718 if (__kmp_tile_depth) { // NUMA + tiles 719 KMP_INFORM(TopologyExtraNoTi, "KMP_AFFINITY", nPackages, nNodePerPkg, 720 nTilePerNode, nCorePerTile, __kmp_nThreadsPerCore, 721 __kmp_ncores); 722 } else { // NUMA, no tiles 723 KMP_INFORM(TopologyExtraNode, "KMP_AFFINITY", nPackages, nNodePerPkg, 724 nCorePerNode, __kmp_nThreadsPerCore, __kmp_ncores); 725 nPUs *= (nNodePerPkg * nCorePerNode); 726 } 727 } else { 728 if (__kmp_tile_depth) { // no NUMA, tiles 729 KMP_INFORM(TopologyExtraTile, "KMP_AFFINITY", nPackages, nTilePerPkg, 730 nCorePerTile, __kmp_nThreadsPerCore, __kmp_ncores); 731 } else { // no NUMA, no tiles 732 kmp_str_buf_t buf; 733 __kmp_str_buf_init(&buf); 734 __kmp_str_buf_print(&buf, "%d", nPackages); 735 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg, 736 __kmp_nThreadsPerCore, __kmp_ncores); 737 __kmp_str_buf_free(&buf); 738 } 739 } 740 } 741 742 if (__kmp_affinity_type == affinity_none) { 743 __kmp_free(retval); 744 KMP_CPU_FREE(oldMask); 745 return 0; 746 } 747 748 int depth_full = depth; // number of levels before compressing 749 // Find any levels with radiix 1, and remove them from the map 750 // (except for the package level). 751 depth = __kmp_affinity_remove_radix_one_levels(retval, nActiveThreads, depth, 752 levels); 753 KMP_DEBUG_ASSERT(__kmp_affinity_gran != affinity_gran_default); 754 if (__kmp_affinity_gran_levels < 0) { 755 // Set the granularity level based on what levels are modeled 756 // in the machine topology map. 757 __kmp_affinity_gran_levels = 0; // lowest level (e.g. fine) 758 if (__kmp_affinity_gran > affinity_gran_thread) { 759 for (int i = 1; i <= depth_full; ++i) { 760 if (__kmp_affinity_gran <= i) // only count deeper levels 761 break; 762 if (levels[depth_full - i] > 0) 763 __kmp_affinity_gran_levels++; 764 } 765 } 766 if (__kmp_affinity_gran > affinity_gran_package) 767 __kmp_affinity_gran_levels++; // e.g. granularity = group 768 } 769 770 if (__kmp_affinity_verbose) 771 __kmp_affinity_print_hwloc_tp(retval, nActiveThreads, depth, levels); 772 773 KMP_CPU_FREE(oldMask); 774 *address2os = retval; 775 return depth; 776 } 777 #endif // KMP_USE_HWLOC 778 779 // If we don't know how to retrieve the machine's processor topology, or 780 // encounter an error in doing so, this routine is called to form a "flat" 781 // mapping of os thread id's <-> processor id's. 782 static int __kmp_affinity_create_flat_map(AddrUnsPair **address2os, 783 kmp_i18n_id_t *const msg_id) { 784 *address2os = NULL; 785 *msg_id = kmp_i18n_null; 786 787 // Even if __kmp_affinity_type == affinity_none, this routine might still 788 // called to set __kmp_ncores, as well as 789 // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 790 if (!KMP_AFFINITY_CAPABLE()) { 791 KMP_ASSERT(__kmp_affinity_type == affinity_none); 792 __kmp_ncores = nPackages = __kmp_xproc; 793 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 794 if (__kmp_affinity_verbose) { 795 KMP_INFORM(AffFlatTopology, "KMP_AFFINITY"); 796 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 797 KMP_INFORM(Uniform, "KMP_AFFINITY"); 798 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 799 __kmp_nThreadsPerCore, __kmp_ncores); 800 } 801 return 0; 802 } 803 804 // When affinity is off, this routine will still be called to set 805 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 806 // Make sure all these vars are set correctly, and return now if affinity is 807 // not enabled. 808 __kmp_ncores = nPackages = __kmp_avail_proc; 809 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 810 if (__kmp_affinity_verbose) { 811 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 812 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 813 __kmp_affin_fullMask); 814 815 KMP_INFORM(AffCapableUseFlat, "KMP_AFFINITY"); 816 if (__kmp_affinity_respect_mask) { 817 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 818 } else { 819 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 820 } 821 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 822 KMP_INFORM(Uniform, "KMP_AFFINITY"); 823 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 824 __kmp_nThreadsPerCore, __kmp_ncores); 825 } 826 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 827 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 828 if (__kmp_affinity_type == affinity_none) { 829 int avail_ct = 0; 830 int i; 831 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 832 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) 833 continue; 834 __kmp_pu_os_idx[avail_ct++] = i; // suppose indices are flat 835 } 836 return 0; 837 } 838 839 // Contruct the data structure to be returned. 840 *address2os = 841 (AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc); 842 int avail_ct = 0; 843 unsigned int i; 844 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 845 // Skip this proc if it is not included in the machine model. 846 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 847 continue; 848 } 849 __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat 850 Address addr(1); 851 addr.labels[0] = i; 852 (*address2os)[avail_ct++] = AddrUnsPair(addr, i); 853 } 854 if (__kmp_affinity_verbose) { 855 KMP_INFORM(OSProcToPackage, "KMP_AFFINITY"); 856 } 857 858 if (__kmp_affinity_gran_levels < 0) { 859 // Only the package level is modeled in the machine topology map, 860 // so the #levels of granularity is either 0 or 1. 861 if (__kmp_affinity_gran > affinity_gran_package) { 862 __kmp_affinity_gran_levels = 1; 863 } else { 864 __kmp_affinity_gran_levels = 0; 865 } 866 } 867 return 1; 868 } 869 870 #if KMP_GROUP_AFFINITY 871 872 // If multiple Windows* OS processor groups exist, we can create a 2-level 873 // topology map with the groups at level 0 and the individual procs at level 1. 874 // This facilitates letting the threads float among all procs in a group, 875 // if granularity=group (the default when there are multiple groups). 876 static int __kmp_affinity_create_proc_group_map(AddrUnsPair **address2os, 877 kmp_i18n_id_t *const msg_id) { 878 *address2os = NULL; 879 *msg_id = kmp_i18n_null; 880 881 // If we aren't affinity capable, then return now. 882 // The flat mapping will be used. 883 if (!KMP_AFFINITY_CAPABLE()) { 884 // FIXME set *msg_id 885 return -1; 886 } 887 888 // Contruct the data structure to be returned. 889 *address2os = 890 (AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc); 891 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 892 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 893 int avail_ct = 0; 894 int i; 895 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 896 // Skip this proc if it is not included in the machine model. 897 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 898 continue; 899 } 900 __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat 901 Address addr(2); 902 addr.labels[0] = i / (CHAR_BIT * sizeof(DWORD_PTR)); 903 addr.labels[1] = i % (CHAR_BIT * sizeof(DWORD_PTR)); 904 (*address2os)[avail_ct++] = AddrUnsPair(addr, i); 905 906 if (__kmp_affinity_verbose) { 907 KMP_INFORM(AffOSProcToGroup, "KMP_AFFINITY", i, addr.labels[0], 908 addr.labels[1]); 909 } 910 } 911 912 if (__kmp_affinity_gran_levels < 0) { 913 if (__kmp_affinity_gran == affinity_gran_group) { 914 __kmp_affinity_gran_levels = 1; 915 } else if ((__kmp_affinity_gran == affinity_gran_fine) || 916 (__kmp_affinity_gran == affinity_gran_thread)) { 917 __kmp_affinity_gran_levels = 0; 918 } else { 919 const char *gran_str = NULL; 920 if (__kmp_affinity_gran == affinity_gran_core) { 921 gran_str = "core"; 922 } else if (__kmp_affinity_gran == affinity_gran_package) { 923 gran_str = "package"; 924 } else if (__kmp_affinity_gran == affinity_gran_node) { 925 gran_str = "node"; 926 } else { 927 KMP_ASSERT(0); 928 } 929 930 // Warning: can't use affinity granularity \"gran\" with group topology 931 // method, using "thread" 932 __kmp_affinity_gran_levels = 0; 933 } 934 } 935 return 2; 936 } 937 938 #endif /* KMP_GROUP_AFFINITY */ 939 940 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 941 942 static int __kmp_cpuid_mask_width(int count) { 943 int r = 0; 944 945 while ((1 << r) < count) 946 ++r; 947 return r; 948 } 949 950 class apicThreadInfo { 951 public: 952 unsigned osId; // param to __kmp_affinity_bind_thread 953 unsigned apicId; // from cpuid after binding 954 unsigned maxCoresPerPkg; // "" 955 unsigned maxThreadsPerPkg; // "" 956 unsigned pkgId; // inferred from above values 957 unsigned coreId; // "" 958 unsigned threadId; // "" 959 }; 960 961 static int __kmp_affinity_cmp_apicThreadInfo_os_id(const void *a, 962 const void *b) { 963 const apicThreadInfo *aa = (const apicThreadInfo *)a; 964 const apicThreadInfo *bb = (const apicThreadInfo *)b; 965 if (aa->osId < bb->osId) 966 return -1; 967 if (aa->osId > bb->osId) 968 return 1; 969 return 0; 970 } 971 972 static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a, 973 const void *b) { 974 const apicThreadInfo *aa = (const apicThreadInfo *)a; 975 const apicThreadInfo *bb = (const apicThreadInfo *)b; 976 if (aa->pkgId < bb->pkgId) 977 return -1; 978 if (aa->pkgId > bb->pkgId) 979 return 1; 980 if (aa->coreId < bb->coreId) 981 return -1; 982 if (aa->coreId > bb->coreId) 983 return 1; 984 if (aa->threadId < bb->threadId) 985 return -1; 986 if (aa->threadId > bb->threadId) 987 return 1; 988 return 0; 989 } 990 991 // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use 992 // an algorithm which cycles through the available os threads, setting 993 // the current thread's affinity mask to that thread, and then retrieves 994 // the Apic Id for each thread context using the cpuid instruction. 995 static int __kmp_affinity_create_apicid_map(AddrUnsPair **address2os, 996 kmp_i18n_id_t *const msg_id) { 997 kmp_cpuid buf; 998 int rc; 999 *address2os = NULL; 1000 *msg_id = kmp_i18n_null; 1001 1002 // Check if cpuid leaf 4 is supported. 1003 __kmp_x86_cpuid(0, 0, &buf); 1004 if (buf.eax < 4) { 1005 *msg_id = kmp_i18n_str_NoLeaf4Support; 1006 return -1; 1007 } 1008 1009 // The algorithm used starts by setting the affinity to each available thread 1010 // and retrieving info from the cpuid instruction, so if we are not capable of 1011 // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we 1012 // need to do something else - use the defaults that we calculated from 1013 // issuing cpuid without binding to each proc. 1014 if (!KMP_AFFINITY_CAPABLE()) { 1015 // Hack to try and infer the machine topology using only the data 1016 // available from cpuid on the current thread, and __kmp_xproc. 1017 KMP_ASSERT(__kmp_affinity_type == affinity_none); 1018 1019 // Get an upper bound on the number of threads per package using cpuid(1). 1020 // On some OS/chps combinations where HT is supported by the chip but is 1021 // disabled, this value will be 2 on a single core chip. Usually, it will be 1022 // 2 if HT is enabled and 1 if HT is disabled. 1023 __kmp_x86_cpuid(1, 0, &buf); 1024 int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; 1025 if (maxThreadsPerPkg == 0) { 1026 maxThreadsPerPkg = 1; 1027 } 1028 1029 // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded 1030 // value. 1031 // 1032 // The author of cpu_count.cpp treated this only an upper bound on the 1033 // number of cores, but I haven't seen any cases where it was greater than 1034 // the actual number of cores, so we will treat it as exact in this block of 1035 // code. 1036 // 1037 // First, we need to check if cpuid(4) is supported on this chip. To see if 1038 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or 1039 // greater. 1040 __kmp_x86_cpuid(0, 0, &buf); 1041 if (buf.eax >= 4) { 1042 __kmp_x86_cpuid(4, 0, &buf); 1043 nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; 1044 } else { 1045 nCoresPerPkg = 1; 1046 } 1047 1048 // There is no way to reliably tell if HT is enabled without issuing the 1049 // cpuid instruction from every thread, can correlating the cpuid info, so 1050 // if the machine is not affinity capable, we assume that HT is off. We have 1051 // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine 1052 // does not support HT. 1053 // 1054 // - Older OSes are usually found on machines with older chips, which do not 1055 // support HT. 1056 // - The performance penalty for mistakenly identifying a machine as HT when 1057 // it isn't (which results in blocktime being incorrecly set to 0) is 1058 // greater than the penalty when for mistakenly identifying a machine as 1059 // being 1 thread/core when it is really HT enabled (which results in 1060 // blocktime being incorrectly set to a positive value). 1061 __kmp_ncores = __kmp_xproc; 1062 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 1063 __kmp_nThreadsPerCore = 1; 1064 if (__kmp_affinity_verbose) { 1065 KMP_INFORM(AffNotCapableUseLocCpuid, "KMP_AFFINITY"); 1066 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1067 if (__kmp_affinity_uniform_topology()) { 1068 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1069 } else { 1070 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 1071 } 1072 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1073 __kmp_nThreadsPerCore, __kmp_ncores); 1074 } 1075 return 0; 1076 } 1077 1078 // From here on, we can assume that it is safe to call 1079 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if 1080 // __kmp_affinity_type = affinity_none. 1081 1082 // Save the affinity mask for the current thread. 1083 kmp_affin_mask_t *oldMask; 1084 KMP_CPU_ALLOC(oldMask); 1085 KMP_ASSERT(oldMask != NULL); 1086 __kmp_get_system_affinity(oldMask, TRUE); 1087 1088 // Run through each of the available contexts, binding the current thread 1089 // to it, and obtaining the pertinent information using the cpuid instr. 1090 // 1091 // The relevant information is: 1092 // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context 1093 // has a uniqie Apic Id, which is of the form pkg# : core# : thread#. 1094 // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value 1095 // of this field determines the width of the core# + thread# fields in the 1096 // Apic Id. It is also an upper bound on the number of threads per 1097 // package, but it has been verified that situations happen were it is not 1098 // exact. In particular, on certain OS/chip combinations where Intel(R) 1099 // Hyper-Threading Technology is supported by the chip but has been 1100 // disabled, the value of this field will be 2 (for a single core chip). 1101 // On other OS/chip combinations supporting Intel(R) Hyper-Threading 1102 // Technology, the value of this field will be 1 when Intel(R) 1103 // Hyper-Threading Technology is disabled and 2 when it is enabled. 1104 // - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value 1105 // of this field (+1) determines the width of the core# field in the Apic 1106 // Id. The comments in "cpucount.cpp" say that this value is an upper 1107 // bound, but the IA-32 architecture manual says that it is exactly the 1108 // number of cores per package, and I haven't seen any case where it 1109 // wasn't. 1110 // 1111 // From this information, deduce the package Id, core Id, and thread Id, 1112 // and set the corresponding fields in the apicThreadInfo struct. 1113 unsigned i; 1114 apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate( 1115 __kmp_avail_proc * sizeof(apicThreadInfo)); 1116 unsigned nApics = 0; 1117 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 1118 // Skip this proc if it is not included in the machine model. 1119 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 1120 continue; 1121 } 1122 KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc); 1123 1124 __kmp_affinity_dispatch->bind_thread(i); 1125 threadInfo[nApics].osId = i; 1126 1127 // The apic id and max threads per pkg come from cpuid(1). 1128 __kmp_x86_cpuid(1, 0, &buf); 1129 if (((buf.edx >> 9) & 1) == 0) { 1130 __kmp_set_system_affinity(oldMask, TRUE); 1131 __kmp_free(threadInfo); 1132 KMP_CPU_FREE(oldMask); 1133 *msg_id = kmp_i18n_str_ApicNotPresent; 1134 return -1; 1135 } 1136 threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff; 1137 threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; 1138 if (threadInfo[nApics].maxThreadsPerPkg == 0) { 1139 threadInfo[nApics].maxThreadsPerPkg = 1; 1140 } 1141 1142 // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded 1143 // value. 1144 // 1145 // First, we need to check if cpuid(4) is supported on this chip. To see if 1146 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n 1147 // or greater. 1148 __kmp_x86_cpuid(0, 0, &buf); 1149 if (buf.eax >= 4) { 1150 __kmp_x86_cpuid(4, 0, &buf); 1151 threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; 1152 } else { 1153 threadInfo[nApics].maxCoresPerPkg = 1; 1154 } 1155 1156 // Infer the pkgId / coreId / threadId using only the info obtained locally. 1157 int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg); 1158 threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT; 1159 1160 int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg); 1161 int widthT = widthCT - widthC; 1162 if (widthT < 0) { 1163 // I've never seen this one happen, but I suppose it could, if the cpuid 1164 // instruction on a chip was really screwed up. Make sure to restore the 1165 // affinity mask before the tail call. 1166 __kmp_set_system_affinity(oldMask, TRUE); 1167 __kmp_free(threadInfo); 1168 KMP_CPU_FREE(oldMask); 1169 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1170 return -1; 1171 } 1172 1173 int maskC = (1 << widthC) - 1; 1174 threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC; 1175 1176 int maskT = (1 << widthT) - 1; 1177 threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT; 1178 1179 nApics++; 1180 } 1181 1182 // We've collected all the info we need. 1183 // Restore the old affinity mask for this thread. 1184 __kmp_set_system_affinity(oldMask, TRUE); 1185 1186 // If there's only one thread context to bind to, form an Address object 1187 // with depth 1 and return immediately (or, if affinity is off, set 1188 // address2os to NULL and return). 1189 // 1190 // If it is configured to omit the package level when there is only a single 1191 // package, the logic at the end of this routine won't work if there is only 1192 // a single thread - it would try to form an Address object with depth 0. 1193 KMP_ASSERT(nApics > 0); 1194 if (nApics == 1) { 1195 __kmp_ncores = nPackages = 1; 1196 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 1197 if (__kmp_affinity_verbose) { 1198 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 1199 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 1200 1201 KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY"); 1202 if (__kmp_affinity_respect_mask) { 1203 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 1204 } else { 1205 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 1206 } 1207 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1208 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1209 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1210 __kmp_nThreadsPerCore, __kmp_ncores); 1211 } 1212 1213 if (__kmp_affinity_type == affinity_none) { 1214 __kmp_free(threadInfo); 1215 KMP_CPU_FREE(oldMask); 1216 return 0; 1217 } 1218 1219 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair)); 1220 Address addr(1); 1221 addr.labels[0] = threadInfo[0].pkgId; 1222 (*address2os)[0] = AddrUnsPair(addr, threadInfo[0].osId); 1223 1224 if (__kmp_affinity_gran_levels < 0) { 1225 __kmp_affinity_gran_levels = 0; 1226 } 1227 1228 if (__kmp_affinity_verbose) { 1229 __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1); 1230 } 1231 1232 __kmp_free(threadInfo); 1233 KMP_CPU_FREE(oldMask); 1234 return 1; 1235 } 1236 1237 // Sort the threadInfo table by physical Id. 1238 qsort(threadInfo, nApics, sizeof(*threadInfo), 1239 __kmp_affinity_cmp_apicThreadInfo_phys_id); 1240 1241 // The table is now sorted by pkgId / coreId / threadId, but we really don't 1242 // know the radix of any of the fields. pkgId's may be sparsely assigned among 1243 // the chips on a system. Although coreId's are usually assigned 1244 // [0 .. coresPerPkg-1] and threadId's are usually assigned 1245 // [0..threadsPerCore-1], we don't want to make any such assumptions. 1246 // 1247 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the 1248 // total # packages) are at this point - we want to determine that now. We 1249 // only have an upper bound on the first two figures. 1250 // 1251 // We also perform a consistency check at this point: the values returned by 1252 // the cpuid instruction for any thread bound to a given package had better 1253 // return the same info for maxThreadsPerPkg and maxCoresPerPkg. 1254 nPackages = 1; 1255 nCoresPerPkg = 1; 1256 __kmp_nThreadsPerCore = 1; 1257 unsigned nCores = 1; 1258 1259 unsigned pkgCt = 1; // to determine radii 1260 unsigned lastPkgId = threadInfo[0].pkgId; 1261 unsigned coreCt = 1; 1262 unsigned lastCoreId = threadInfo[0].coreId; 1263 unsigned threadCt = 1; 1264 unsigned lastThreadId = threadInfo[0].threadId; 1265 1266 // intra-pkg consist checks 1267 unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg; 1268 unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg; 1269 1270 for (i = 1; i < nApics; i++) { 1271 if (threadInfo[i].pkgId != lastPkgId) { 1272 nCores++; 1273 pkgCt++; 1274 lastPkgId = threadInfo[i].pkgId; 1275 if ((int)coreCt > nCoresPerPkg) 1276 nCoresPerPkg = coreCt; 1277 coreCt = 1; 1278 lastCoreId = threadInfo[i].coreId; 1279 if ((int)threadCt > __kmp_nThreadsPerCore) 1280 __kmp_nThreadsPerCore = threadCt; 1281 threadCt = 1; 1282 lastThreadId = threadInfo[i].threadId; 1283 1284 // This is a different package, so go on to the next iteration without 1285 // doing any consistency checks. Reset the consistency check vars, though. 1286 prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg; 1287 prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg; 1288 continue; 1289 } 1290 1291 if (threadInfo[i].coreId != lastCoreId) { 1292 nCores++; 1293 coreCt++; 1294 lastCoreId = threadInfo[i].coreId; 1295 if ((int)threadCt > __kmp_nThreadsPerCore) 1296 __kmp_nThreadsPerCore = threadCt; 1297 threadCt = 1; 1298 lastThreadId = threadInfo[i].threadId; 1299 } else if (threadInfo[i].threadId != lastThreadId) { 1300 threadCt++; 1301 lastThreadId = threadInfo[i].threadId; 1302 } else { 1303 __kmp_free(threadInfo); 1304 KMP_CPU_FREE(oldMask); 1305 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; 1306 return -1; 1307 } 1308 1309 // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg 1310 // fields agree between all the threads bounds to a given package. 1311 if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) || 1312 (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) { 1313 __kmp_free(threadInfo); 1314 KMP_CPU_FREE(oldMask); 1315 *msg_id = kmp_i18n_str_InconsistentCpuidInfo; 1316 return -1; 1317 } 1318 } 1319 nPackages = pkgCt; 1320 if ((int)coreCt > nCoresPerPkg) 1321 nCoresPerPkg = coreCt; 1322 if ((int)threadCt > __kmp_nThreadsPerCore) 1323 __kmp_nThreadsPerCore = threadCt; 1324 1325 // When affinity is off, this routine will still be called to set 1326 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 1327 // Make sure all these vars are set correctly, and return now if affinity is 1328 // not enabled. 1329 __kmp_ncores = nCores; 1330 if (__kmp_affinity_verbose) { 1331 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 1332 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 1333 1334 KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY"); 1335 if (__kmp_affinity_respect_mask) { 1336 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 1337 } else { 1338 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 1339 } 1340 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1341 if (__kmp_affinity_uniform_topology()) { 1342 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1343 } else { 1344 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 1345 } 1346 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1347 __kmp_nThreadsPerCore, __kmp_ncores); 1348 } 1349 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 1350 KMP_DEBUG_ASSERT(nApics == __kmp_avail_proc); 1351 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 1352 for (i = 0; i < nApics; ++i) { 1353 __kmp_pu_os_idx[i] = threadInfo[i].osId; 1354 } 1355 if (__kmp_affinity_type == affinity_none) { 1356 __kmp_free(threadInfo); 1357 KMP_CPU_FREE(oldMask); 1358 return 0; 1359 } 1360 1361 // Now that we've determined the number of packages, the number of cores per 1362 // package, and the number of threads per core, we can construct the data 1363 // structure that is to be returned. 1364 int pkgLevel = 0; 1365 int coreLevel = (nCoresPerPkg <= 1) ? -1 : 1; 1366 int threadLevel = 1367 (__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1); 1368 unsigned depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0); 1369 1370 KMP_ASSERT(depth > 0); 1371 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * nApics); 1372 1373 for (i = 0; i < nApics; ++i) { 1374 Address addr(depth); 1375 unsigned os = threadInfo[i].osId; 1376 int d = 0; 1377 1378 if (pkgLevel >= 0) { 1379 addr.labels[d++] = threadInfo[i].pkgId; 1380 } 1381 if (coreLevel >= 0) { 1382 addr.labels[d++] = threadInfo[i].coreId; 1383 } 1384 if (threadLevel >= 0) { 1385 addr.labels[d++] = threadInfo[i].threadId; 1386 } 1387 (*address2os)[i] = AddrUnsPair(addr, os); 1388 } 1389 1390 if (__kmp_affinity_gran_levels < 0) { 1391 // Set the granularity level based on what levels are modeled in the machine 1392 // topology map. 1393 __kmp_affinity_gran_levels = 0; 1394 if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) { 1395 __kmp_affinity_gran_levels++; 1396 } 1397 if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) { 1398 __kmp_affinity_gran_levels++; 1399 } 1400 if ((pkgLevel >= 0) && (__kmp_affinity_gran > affinity_gran_package)) { 1401 __kmp_affinity_gran_levels++; 1402 } 1403 } 1404 1405 if (__kmp_affinity_verbose) { 1406 __kmp_affinity_print_topology(*address2os, nApics, depth, pkgLevel, 1407 coreLevel, threadLevel); 1408 } 1409 1410 __kmp_free(threadInfo); 1411 KMP_CPU_FREE(oldMask); 1412 return depth; 1413 } 1414 1415 // Intel(R) microarchitecture code name Nehalem, Dunnington and later 1416 // architectures support a newer interface for specifying the x2APIC Ids, 1417 // based on cpuid leaf 11. 1418 static int __kmp_affinity_create_x2apicid_map(AddrUnsPair **address2os, 1419 kmp_i18n_id_t *const msg_id) { 1420 kmp_cpuid buf; 1421 *address2os = NULL; 1422 *msg_id = kmp_i18n_null; 1423 1424 // Check to see if cpuid leaf 11 is supported. 1425 __kmp_x86_cpuid(0, 0, &buf); 1426 if (buf.eax < 11) { 1427 *msg_id = kmp_i18n_str_NoLeaf11Support; 1428 return -1; 1429 } 1430 __kmp_x86_cpuid(11, 0, &buf); 1431 if (buf.ebx == 0) { 1432 *msg_id = kmp_i18n_str_NoLeaf11Support; 1433 return -1; 1434 } 1435 1436 // Find the number of levels in the machine topology. While we're at it, get 1437 // the default values for __kmp_nThreadsPerCore & nCoresPerPkg. We will try to 1438 // get more accurate values later by explicitly counting them, but get 1439 // reasonable defaults now, in case we return early. 1440 int level; 1441 int threadLevel = -1; 1442 int coreLevel = -1; 1443 int pkgLevel = -1; 1444 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; 1445 1446 for (level = 0;; level++) { 1447 if (level > 31) { 1448 // FIXME: Hack for DPD200163180 1449 // 1450 // If level is big then something went wrong -> exiting 1451 // 1452 // There could actually be 32 valid levels in the machine topology, but so 1453 // far, the only machine we have seen which does not exit this loop before 1454 // iteration 32 has fubar x2APIC settings. 1455 // 1456 // For now, just reject this case based upon loop trip count. 1457 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1458 return -1; 1459 } 1460 __kmp_x86_cpuid(11, level, &buf); 1461 if (buf.ebx == 0) { 1462 if (pkgLevel < 0) { 1463 // Will infer nPackages from __kmp_xproc 1464 pkgLevel = level; 1465 level++; 1466 } 1467 break; 1468 } 1469 int kind = (buf.ecx >> 8) & 0xff; 1470 if (kind == 1) { 1471 // SMT level 1472 threadLevel = level; 1473 coreLevel = -1; 1474 pkgLevel = -1; 1475 __kmp_nThreadsPerCore = buf.ebx & 0xffff; 1476 if (__kmp_nThreadsPerCore == 0) { 1477 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1478 return -1; 1479 } 1480 } else if (kind == 2) { 1481 // core level 1482 coreLevel = level; 1483 pkgLevel = -1; 1484 nCoresPerPkg = buf.ebx & 0xffff; 1485 if (nCoresPerPkg == 0) { 1486 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1487 return -1; 1488 } 1489 } else { 1490 if (level <= 0) { 1491 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1492 return -1; 1493 } 1494 if (pkgLevel >= 0) { 1495 continue; 1496 } 1497 pkgLevel = level; 1498 nPackages = buf.ebx & 0xffff; 1499 if (nPackages == 0) { 1500 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1501 return -1; 1502 } 1503 } 1504 } 1505 int depth = level; 1506 1507 // In the above loop, "level" was counted from the finest level (usually 1508 // thread) to the coarsest. The caller expects that we will place the labels 1509 // in (*address2os)[].first.labels[] in the inverse order, so we need to 1510 // invert the vars saying which level means what. 1511 if (threadLevel >= 0) { 1512 threadLevel = depth - threadLevel - 1; 1513 } 1514 if (coreLevel >= 0) { 1515 coreLevel = depth - coreLevel - 1; 1516 } 1517 KMP_DEBUG_ASSERT(pkgLevel >= 0); 1518 pkgLevel = depth - pkgLevel - 1; 1519 1520 // The algorithm used starts by setting the affinity to each available thread 1521 // and retrieving info from the cpuid instruction, so if we are not capable of 1522 // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we 1523 // need to do something else - use the defaults that we calculated from 1524 // issuing cpuid without binding to each proc. 1525 if (!KMP_AFFINITY_CAPABLE()) { 1526 // Hack to try and infer the machine topology using only the data 1527 // available from cpuid on the current thread, and __kmp_xproc. 1528 KMP_ASSERT(__kmp_affinity_type == affinity_none); 1529 1530 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; 1531 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 1532 if (__kmp_affinity_verbose) { 1533 KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY"); 1534 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1535 if (__kmp_affinity_uniform_topology()) { 1536 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1537 } else { 1538 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 1539 } 1540 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1541 __kmp_nThreadsPerCore, __kmp_ncores); 1542 } 1543 return 0; 1544 } 1545 1546 // From here on, we can assume that it is safe to call 1547 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if 1548 // __kmp_affinity_type = affinity_none. 1549 1550 // Save the affinity mask for the current thread. 1551 kmp_affin_mask_t *oldMask; 1552 KMP_CPU_ALLOC(oldMask); 1553 __kmp_get_system_affinity(oldMask, TRUE); 1554 1555 // Allocate the data structure to be returned. 1556 AddrUnsPair *retval = 1557 (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc); 1558 1559 // Run through each of the available contexts, binding the current thread 1560 // to it, and obtaining the pertinent information using the cpuid instr. 1561 unsigned int proc; 1562 int nApics = 0; 1563 KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) { 1564 // Skip this proc if it is not included in the machine model. 1565 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 1566 continue; 1567 } 1568 KMP_DEBUG_ASSERT(nApics < __kmp_avail_proc); 1569 1570 __kmp_affinity_dispatch->bind_thread(proc); 1571 1572 // Extract labels for each level in the machine topology map from Apic ID. 1573 Address addr(depth); 1574 int prev_shift = 0; 1575 1576 for (level = 0; level < depth; level++) { 1577 __kmp_x86_cpuid(11, level, &buf); 1578 unsigned apicId = buf.edx; 1579 if (buf.ebx == 0) { 1580 if (level != depth - 1) { 1581 KMP_CPU_FREE(oldMask); 1582 *msg_id = kmp_i18n_str_InconsistentCpuidInfo; 1583 return -1; 1584 } 1585 addr.labels[depth - level - 1] = apicId >> prev_shift; 1586 level++; 1587 break; 1588 } 1589 int shift = buf.eax & 0x1f; 1590 int mask = (1 << shift) - 1; 1591 addr.labels[depth - level - 1] = (apicId & mask) >> prev_shift; 1592 prev_shift = shift; 1593 } 1594 if (level != depth) { 1595 KMP_CPU_FREE(oldMask); 1596 *msg_id = kmp_i18n_str_InconsistentCpuidInfo; 1597 return -1; 1598 } 1599 1600 retval[nApics] = AddrUnsPair(addr, proc); 1601 nApics++; 1602 } 1603 1604 // We've collected all the info we need. 1605 // Restore the old affinity mask for this thread. 1606 __kmp_set_system_affinity(oldMask, TRUE); 1607 1608 // If there's only one thread context to bind to, return now. 1609 KMP_ASSERT(nApics > 0); 1610 if (nApics == 1) { 1611 __kmp_ncores = nPackages = 1; 1612 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 1613 if (__kmp_affinity_verbose) { 1614 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 1615 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 1616 1617 KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY"); 1618 if (__kmp_affinity_respect_mask) { 1619 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 1620 } else { 1621 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 1622 } 1623 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1624 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1625 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1626 __kmp_nThreadsPerCore, __kmp_ncores); 1627 } 1628 1629 if (__kmp_affinity_type == affinity_none) { 1630 __kmp_free(retval); 1631 KMP_CPU_FREE(oldMask); 1632 return 0; 1633 } 1634 1635 // Form an Address object which only includes the package level. 1636 Address addr(1); 1637 addr.labels[0] = retval[0].first.labels[pkgLevel]; 1638 retval[0].first = addr; 1639 1640 if (__kmp_affinity_gran_levels < 0) { 1641 __kmp_affinity_gran_levels = 0; 1642 } 1643 1644 if (__kmp_affinity_verbose) { 1645 __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1); 1646 } 1647 1648 *address2os = retval; 1649 KMP_CPU_FREE(oldMask); 1650 return 1; 1651 } 1652 1653 // Sort the table by physical Id. 1654 qsort(retval, nApics, sizeof(*retval), __kmp_affinity_cmp_Address_labels); 1655 1656 // Find the radix at each of the levels. 1657 unsigned *totals = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 1658 unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 1659 unsigned *maxCt = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 1660 unsigned *last = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 1661 for (level = 0; level < depth; level++) { 1662 totals[level] = 1; 1663 maxCt[level] = 1; 1664 counts[level] = 1; 1665 last[level] = retval[0].first.labels[level]; 1666 } 1667 1668 // From here on, the iteration variable "level" runs from the finest level to 1669 // the coarsest, i.e. we iterate forward through 1670 // (*address2os)[].first.labels[] - in the previous loops, we iterated 1671 // backwards. 1672 for (proc = 1; (int)proc < nApics; proc++) { 1673 int level; 1674 for (level = 0; level < depth; level++) { 1675 if (retval[proc].first.labels[level] != last[level]) { 1676 int j; 1677 for (j = level + 1; j < depth; j++) { 1678 totals[j]++; 1679 counts[j] = 1; 1680 // The line below causes printing incorrect topology information in 1681 // case the max value for some level (maxCt[level]) is encountered 1682 // earlier than some less value while going through the array. For 1683 // example, let pkg0 has 4 cores and pkg1 has 2 cores. Then 1684 // maxCt[1] == 2 1685 // whereas it must be 4. 1686 // TODO!!! Check if it can be commented safely 1687 // maxCt[j] = 1; 1688 last[j] = retval[proc].first.labels[j]; 1689 } 1690 totals[level]++; 1691 counts[level]++; 1692 if (counts[level] > maxCt[level]) { 1693 maxCt[level] = counts[level]; 1694 } 1695 last[level] = retval[proc].first.labels[level]; 1696 break; 1697 } else if (level == depth - 1) { 1698 __kmp_free(last); 1699 __kmp_free(maxCt); 1700 __kmp_free(counts); 1701 __kmp_free(totals); 1702 __kmp_free(retval); 1703 KMP_CPU_FREE(oldMask); 1704 *msg_id = kmp_i18n_str_x2ApicIDsNotUnique; 1705 return -1; 1706 } 1707 } 1708 } 1709 1710 // When affinity is off, this routine will still be called to set 1711 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 1712 // Make sure all these vars are set correctly, and return if affinity is not 1713 // enabled. 1714 if (threadLevel >= 0) { 1715 __kmp_nThreadsPerCore = maxCt[threadLevel]; 1716 } else { 1717 __kmp_nThreadsPerCore = 1; 1718 } 1719 nPackages = totals[pkgLevel]; 1720 1721 if (coreLevel >= 0) { 1722 __kmp_ncores = totals[coreLevel]; 1723 nCoresPerPkg = maxCt[coreLevel]; 1724 } else { 1725 __kmp_ncores = nPackages; 1726 nCoresPerPkg = 1; 1727 } 1728 1729 // Check to see if the machine topology is uniform 1730 unsigned prod = maxCt[0]; 1731 for (level = 1; level < depth; level++) { 1732 prod *= maxCt[level]; 1733 } 1734 bool uniform = (prod == totals[level - 1]); 1735 1736 // Print the machine topology summary. 1737 if (__kmp_affinity_verbose) { 1738 char mask[KMP_AFFIN_MASK_PRINT_LEN]; 1739 __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 1740 1741 KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY"); 1742 if (__kmp_affinity_respect_mask) { 1743 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask); 1744 } else { 1745 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask); 1746 } 1747 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1748 if (uniform) { 1749 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1750 } else { 1751 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 1752 } 1753 1754 kmp_str_buf_t buf; 1755 __kmp_str_buf_init(&buf); 1756 1757 __kmp_str_buf_print(&buf, "%d", totals[0]); 1758 for (level = 1; level <= pkgLevel; level++) { 1759 __kmp_str_buf_print(&buf, " x %d", maxCt[level]); 1760 } 1761 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg, 1762 __kmp_nThreadsPerCore, __kmp_ncores); 1763 1764 __kmp_str_buf_free(&buf); 1765 } 1766 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 1767 KMP_DEBUG_ASSERT(nApics == __kmp_avail_proc); 1768 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 1769 for (proc = 0; (int)proc < nApics; ++proc) { 1770 __kmp_pu_os_idx[proc] = retval[proc].second; 1771 } 1772 if (__kmp_affinity_type == affinity_none) { 1773 __kmp_free(last); 1774 __kmp_free(maxCt); 1775 __kmp_free(counts); 1776 __kmp_free(totals); 1777 __kmp_free(retval); 1778 KMP_CPU_FREE(oldMask); 1779 return 0; 1780 } 1781 1782 // Find any levels with radiix 1, and remove them from the map 1783 // (except for the package level). 1784 int new_depth = 0; 1785 for (level = 0; level < depth; level++) { 1786 if ((maxCt[level] == 1) && (level != pkgLevel)) { 1787 continue; 1788 } 1789 new_depth++; 1790 } 1791 1792 // If we are removing any levels, allocate a new vector to return, 1793 // and copy the relevant information to it. 1794 if (new_depth != depth) { 1795 AddrUnsPair *new_retval = 1796 (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * nApics); 1797 for (proc = 0; (int)proc < nApics; proc++) { 1798 Address addr(new_depth); 1799 new_retval[proc] = AddrUnsPair(addr, retval[proc].second); 1800 } 1801 int new_level = 0; 1802 int newPkgLevel = -1; 1803 int newCoreLevel = -1; 1804 int newThreadLevel = -1; 1805 int i; 1806 for (level = 0; level < depth; level++) { 1807 if ((maxCt[level] == 1) && (level != pkgLevel)) { 1808 // Remove this level. Never remove the package level 1809 continue; 1810 } 1811 if (level == pkgLevel) { 1812 newPkgLevel = new_level; 1813 } 1814 if (level == coreLevel) { 1815 newCoreLevel = new_level; 1816 } 1817 if (level == threadLevel) { 1818 newThreadLevel = new_level; 1819 } 1820 for (proc = 0; (int)proc < nApics; proc++) { 1821 new_retval[proc].first.labels[new_level] = 1822 retval[proc].first.labels[level]; 1823 } 1824 new_level++; 1825 } 1826 1827 __kmp_free(retval); 1828 retval = new_retval; 1829 depth = new_depth; 1830 pkgLevel = newPkgLevel; 1831 coreLevel = newCoreLevel; 1832 threadLevel = newThreadLevel; 1833 } 1834 1835 if (__kmp_affinity_gran_levels < 0) { 1836 // Set the granularity level based on what levels are modeled 1837 // in the machine topology map. 1838 __kmp_affinity_gran_levels = 0; 1839 if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) { 1840 __kmp_affinity_gran_levels++; 1841 } 1842 if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) { 1843 __kmp_affinity_gran_levels++; 1844 } 1845 if (__kmp_affinity_gran > affinity_gran_package) { 1846 __kmp_affinity_gran_levels++; 1847 } 1848 } 1849 1850 if (__kmp_affinity_verbose) { 1851 __kmp_affinity_print_topology(retval, nApics, depth, pkgLevel, coreLevel, 1852 threadLevel); 1853 } 1854 1855 __kmp_free(last); 1856 __kmp_free(maxCt); 1857 __kmp_free(counts); 1858 __kmp_free(totals); 1859 KMP_CPU_FREE(oldMask); 1860 *address2os = retval; 1861 return depth; 1862 } 1863 1864 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 1865 1866 #define osIdIndex 0 1867 #define threadIdIndex 1 1868 #define coreIdIndex 2 1869 #define pkgIdIndex 3 1870 #define nodeIdIndex 4 1871 1872 typedef unsigned *ProcCpuInfo; 1873 static unsigned maxIndex = pkgIdIndex; 1874 1875 static int __kmp_affinity_cmp_ProcCpuInfo_os_id(const void *a, const void *b) { 1876 const unsigned *aa = (const unsigned *)a; 1877 const unsigned *bb = (const unsigned *)b; 1878 if (aa[osIdIndex] < bb[osIdIndex]) 1879 return -1; 1880 if (aa[osIdIndex] > bb[osIdIndex]) 1881 return 1; 1882 return 0; 1883 } 1884 1885 static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a, 1886 const void *b) { 1887 unsigned i; 1888 const unsigned *aa = *(unsigned *const *)a; 1889 const unsigned *bb = *(unsigned *const *)b; 1890 for (i = maxIndex;; i--) { 1891 if (aa[i] < bb[i]) 1892 return -1; 1893 if (aa[i] > bb[i]) 1894 return 1; 1895 if (i == osIdIndex) 1896 break; 1897 } 1898 return 0; 1899 } 1900 1901 #if KMP_USE_HIER_SCHED 1902 // Set the array sizes for the hierarchy layers 1903 static void __kmp_dispatch_set_hierarchy_values() { 1904 // Set the maximum number of L1's to number of cores 1905 // Set the maximum number of L2's to to either number of cores / 2 for 1906 // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing 1907 // Or the number of cores for Intel(R) Xeon(R) processors 1908 // Set the maximum number of NUMA nodes and L3's to number of packages 1909 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] = 1910 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; 1911 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores; 1912 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 1913 if (__kmp_mic_type >= mic3) 1914 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2; 1915 else 1916 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 1917 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores; 1918 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages; 1919 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages; 1920 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1; 1921 // Set the number of threads per unit 1922 // Number of hardware threads per L1/L2/L3/NUMA/LOOP 1923 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1; 1924 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] = 1925 __kmp_nThreadsPerCore; 1926 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 1927 if (__kmp_mic_type >= mic3) 1928 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = 1929 2 * __kmp_nThreadsPerCore; 1930 else 1931 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 1932 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = 1933 __kmp_nThreadsPerCore; 1934 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] = 1935 nCoresPerPkg * __kmp_nThreadsPerCore; 1936 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] = 1937 nCoresPerPkg * __kmp_nThreadsPerCore; 1938 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] = 1939 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; 1940 } 1941 1942 // Return the index into the hierarchy for this tid and layer type (L1, L2, etc) 1943 // i.e., this thread's L1 or this thread's L2, etc. 1944 int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) { 1945 int index = type + 1; 1946 int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1]; 1947 KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST); 1948 if (type == kmp_hier_layer_e::LAYER_THREAD) 1949 return tid; 1950 else if (type == kmp_hier_layer_e::LAYER_LOOP) 1951 return 0; 1952 KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0); 1953 if (tid >= num_hw_threads) 1954 tid = tid % num_hw_threads; 1955 return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index]; 1956 } 1957 1958 // Return the number of t1's per t2 1959 int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) { 1960 int i1 = t1 + 1; 1961 int i2 = t2 + 1; 1962 KMP_DEBUG_ASSERT(i1 <= i2); 1963 KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST); 1964 KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST); 1965 KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0); 1966 // (nthreads/t2) / (nthreads/t1) = t1 / t2 1967 return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1]; 1968 } 1969 #endif // KMP_USE_HIER_SCHED 1970 1971 // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the 1972 // affinity map. 1973 static int __kmp_affinity_create_cpuinfo_map(AddrUnsPair **address2os, 1974 int *line, 1975 kmp_i18n_id_t *const msg_id, 1976 FILE *f) { 1977 *address2os = NULL; 1978 *msg_id = kmp_i18n_null; 1979 1980 // Scan of the file, and count the number of "processor" (osId) fields, 1981 // and find the highest value of <n> for a node_<n> field. 1982 char buf[256]; 1983 unsigned num_records = 0; 1984 while (!feof(f)) { 1985 buf[sizeof(buf) - 1] = 1; 1986 if (!fgets(buf, sizeof(buf), f)) { 1987 // Read errors presumably because of EOF 1988 break; 1989 } 1990 1991 char s1[] = "processor"; 1992 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { 1993 num_records++; 1994 continue; 1995 } 1996 1997 // FIXME - this will match "node_<n> <garbage>" 1998 unsigned level; 1999 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { 2000 if (nodeIdIndex + level >= maxIndex) { 2001 maxIndex = nodeIdIndex + level; 2002 } 2003 continue; 2004 } 2005 } 2006 2007 // Check for empty file / no valid processor records, or too many. The number 2008 // of records can't exceed the number of valid bits in the affinity mask. 2009 if (num_records == 0) { 2010 *line = 0; 2011 *msg_id = kmp_i18n_str_NoProcRecords; 2012 return -1; 2013 } 2014 if (num_records > (unsigned)__kmp_xproc) { 2015 *line = 0; 2016 *msg_id = kmp_i18n_str_TooManyProcRecords; 2017 return -1; 2018 } 2019 2020 // Set the file pointer back to the begginning, so that we can scan the file 2021 // again, this time performing a full parse of the data. Allocate a vector of 2022 // ProcCpuInfo object, where we will place the data. Adding an extra element 2023 // at the end allows us to remove a lot of extra checks for termination 2024 // conditions. 2025 if (fseek(f, 0, SEEK_SET) != 0) { 2026 *line = 0; 2027 *msg_id = kmp_i18n_str_CantRewindCpuinfo; 2028 return -1; 2029 } 2030 2031 // Allocate the array of records to store the proc info in. The dummy 2032 // element at the end makes the logic in filling them out easier to code. 2033 unsigned **threadInfo = 2034 (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *)); 2035 unsigned i; 2036 for (i = 0; i <= num_records; i++) { 2037 threadInfo[i] = 2038 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2039 } 2040 2041 #define CLEANUP_THREAD_INFO \ 2042 for (i = 0; i <= num_records; i++) { \ 2043 __kmp_free(threadInfo[i]); \ 2044 } \ 2045 __kmp_free(threadInfo); 2046 2047 // A value of UINT_MAX means that we didn't find the field 2048 unsigned __index; 2049 2050 #define INIT_PROC_INFO(p) \ 2051 for (__index = 0; __index <= maxIndex; __index++) { \ 2052 (p)[__index] = UINT_MAX; \ 2053 } 2054 2055 for (i = 0; i <= num_records; i++) { 2056 INIT_PROC_INFO(threadInfo[i]); 2057 } 2058 2059 unsigned num_avail = 0; 2060 *line = 0; 2061 while (!feof(f)) { 2062 // Create an inner scoping level, so that all the goto targets at the end of 2063 // the loop appear in an outer scoping level. This avoids warnings about 2064 // jumping past an initialization to a target in the same block. 2065 { 2066 buf[sizeof(buf) - 1] = 1; 2067 bool long_line = false; 2068 if (!fgets(buf, sizeof(buf), f)) { 2069 // Read errors presumably because of EOF 2070 // If there is valid data in threadInfo[num_avail], then fake 2071 // a blank line in ensure that the last address gets parsed. 2072 bool valid = false; 2073 for (i = 0; i <= maxIndex; i++) { 2074 if (threadInfo[num_avail][i] != UINT_MAX) { 2075 valid = true; 2076 } 2077 } 2078 if (!valid) { 2079 break; 2080 } 2081 buf[0] = 0; 2082 } else if (!buf[sizeof(buf) - 1]) { 2083 // The line is longer than the buffer. Set a flag and don't 2084 // emit an error if we were going to ignore the line, anyway. 2085 long_line = true; 2086 2087 #define CHECK_LINE \ 2088 if (long_line) { \ 2089 CLEANUP_THREAD_INFO; \ 2090 *msg_id = kmp_i18n_str_LongLineCpuinfo; \ 2091 return -1; \ 2092 } 2093 } 2094 (*line)++; 2095 2096 char s1[] = "processor"; 2097 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { 2098 CHECK_LINE; 2099 char *p = strchr(buf + sizeof(s1) - 1, ':'); 2100 unsigned val; 2101 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2102 goto no_val; 2103 if (threadInfo[num_avail][osIdIndex] != UINT_MAX) 2104 #if KMP_ARCH_AARCH64 2105 // Handle the old AArch64 /proc/cpuinfo layout differently, 2106 // it contains all of the 'processor' entries listed in a 2107 // single 'Processor' section, therefore the normal looking 2108 // for duplicates in that section will always fail. 2109 num_avail++; 2110 #else 2111 goto dup_field; 2112 #endif 2113 threadInfo[num_avail][osIdIndex] = val; 2114 #if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64) 2115 char path[256]; 2116 KMP_SNPRINTF( 2117 path, sizeof(path), 2118 "/sys/devices/system/cpu/cpu%u/topology/physical_package_id", 2119 threadInfo[num_avail][osIdIndex]); 2120 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]); 2121 2122 KMP_SNPRINTF(path, sizeof(path), 2123 "/sys/devices/system/cpu/cpu%u/topology/core_id", 2124 threadInfo[num_avail][osIdIndex]); 2125 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]); 2126 continue; 2127 #else 2128 } 2129 char s2[] = "physical id"; 2130 if (strncmp(buf, s2, sizeof(s2) - 1) == 0) { 2131 CHECK_LINE; 2132 char *p = strchr(buf + sizeof(s2) - 1, ':'); 2133 unsigned val; 2134 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2135 goto no_val; 2136 if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX) 2137 goto dup_field; 2138 threadInfo[num_avail][pkgIdIndex] = val; 2139 continue; 2140 } 2141 char s3[] = "core id"; 2142 if (strncmp(buf, s3, sizeof(s3) - 1) == 0) { 2143 CHECK_LINE; 2144 char *p = strchr(buf + sizeof(s3) - 1, ':'); 2145 unsigned val; 2146 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2147 goto no_val; 2148 if (threadInfo[num_avail][coreIdIndex] != UINT_MAX) 2149 goto dup_field; 2150 threadInfo[num_avail][coreIdIndex] = val; 2151 continue; 2152 #endif // KMP_OS_LINUX && USE_SYSFS_INFO 2153 } 2154 char s4[] = "thread id"; 2155 if (strncmp(buf, s4, sizeof(s4) - 1) == 0) { 2156 CHECK_LINE; 2157 char *p = strchr(buf + sizeof(s4) - 1, ':'); 2158 unsigned val; 2159 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2160 goto no_val; 2161 if (threadInfo[num_avail][threadIdIndex] != UINT_MAX) 2162 goto dup_field; 2163 threadInfo[num_avail][threadIdIndex] = val; 2164 continue; 2165 } 2166 unsigned level; 2167 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { 2168 CHECK_LINE; 2169 char *p = strchr(buf + sizeof(s4) - 1, ':'); 2170 unsigned val; 2171 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2172 goto no_val; 2173 KMP_ASSERT(nodeIdIndex + level <= maxIndex); 2174 if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX) 2175 goto dup_field; 2176 threadInfo[num_avail][nodeIdIndex + level] = val; 2177 continue; 2178 } 2179 2180 // We didn't recognize the leading token on the line. There are lots of 2181 // leading tokens that we don't recognize - if the line isn't empty, go on 2182 // to the next line. 2183 if ((*buf != 0) && (*buf != '\n')) { 2184 // If the line is longer than the buffer, read characters 2185 // until we find a newline. 2186 if (long_line) { 2187 int ch; 2188 while (((ch = fgetc(f)) != EOF) && (ch != '\n')) 2189 ; 2190 } 2191 continue; 2192 } 2193 2194 // A newline has signalled the end of the processor record. 2195 // Check that there aren't too many procs specified. 2196 if ((int)num_avail == __kmp_xproc) { 2197 CLEANUP_THREAD_INFO; 2198 *msg_id = kmp_i18n_str_TooManyEntries; 2199 return -1; 2200 } 2201 2202 // Check for missing fields. The osId field must be there, and we 2203 // currently require that the physical id field is specified, also. 2204 if (threadInfo[num_avail][osIdIndex] == UINT_MAX) { 2205 CLEANUP_THREAD_INFO; 2206 *msg_id = kmp_i18n_str_MissingProcField; 2207 return -1; 2208 } 2209 if (threadInfo[0][pkgIdIndex] == UINT_MAX) { 2210 CLEANUP_THREAD_INFO; 2211 *msg_id = kmp_i18n_str_MissingPhysicalIDField; 2212 return -1; 2213 } 2214 2215 // Skip this proc if it is not included in the machine model. 2216 if (!KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex], 2217 __kmp_affin_fullMask)) { 2218 INIT_PROC_INFO(threadInfo[num_avail]); 2219 continue; 2220 } 2221 2222 // We have a successful parse of this proc's info. 2223 // Increment the counter, and prepare for the next proc. 2224 num_avail++; 2225 KMP_ASSERT(num_avail <= num_records); 2226 INIT_PROC_INFO(threadInfo[num_avail]); 2227 } 2228 continue; 2229 2230 no_val: 2231 CLEANUP_THREAD_INFO; 2232 *msg_id = kmp_i18n_str_MissingValCpuinfo; 2233 return -1; 2234 2235 dup_field: 2236 CLEANUP_THREAD_INFO; 2237 *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo; 2238 return -1; 2239 } 2240 *line = 0; 2241 2242 #if KMP_MIC && REDUCE_TEAM_SIZE 2243 unsigned teamSize = 0; 2244 #endif // KMP_MIC && REDUCE_TEAM_SIZE 2245 2246 // check for num_records == __kmp_xproc ??? 2247 2248 // If there's only one thread context to bind to, form an Address object with 2249 // depth 1 and return immediately (or, if affinity is off, set address2os to 2250 // NULL and return). 2251 // 2252 // If it is configured to omit the package level when there is only a single 2253 // package, the logic at the end of this routine won't work if there is only a 2254 // single thread - it would try to form an Address object with depth 0. 2255 KMP_ASSERT(num_avail > 0); 2256 KMP_ASSERT(num_avail <= num_records); 2257 if (num_avail == 1) { 2258 __kmp_ncores = 1; 2259 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; 2260 if (__kmp_affinity_verbose) { 2261 if (!KMP_AFFINITY_CAPABLE()) { 2262 KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY"); 2263 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 2264 KMP_INFORM(Uniform, "KMP_AFFINITY"); 2265 } else { 2266 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 2267 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 2268 __kmp_affin_fullMask); 2269 KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY"); 2270 if (__kmp_affinity_respect_mask) { 2271 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 2272 } else { 2273 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 2274 } 2275 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 2276 KMP_INFORM(Uniform, "KMP_AFFINITY"); 2277 } 2278 int index; 2279 kmp_str_buf_t buf; 2280 __kmp_str_buf_init(&buf); 2281 __kmp_str_buf_print(&buf, "1"); 2282 for (index = maxIndex - 1; index > pkgIdIndex; index--) { 2283 __kmp_str_buf_print(&buf, " x 1"); 2284 } 2285 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, 1, 1, 1); 2286 __kmp_str_buf_free(&buf); 2287 } 2288 2289 if (__kmp_affinity_type == affinity_none) { 2290 CLEANUP_THREAD_INFO; 2291 return 0; 2292 } 2293 2294 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair)); 2295 Address addr(1); 2296 addr.labels[0] = threadInfo[0][pkgIdIndex]; 2297 (*address2os)[0] = AddrUnsPair(addr, threadInfo[0][osIdIndex]); 2298 2299 if (__kmp_affinity_gran_levels < 0) { 2300 __kmp_affinity_gran_levels = 0; 2301 } 2302 2303 if (__kmp_affinity_verbose) { 2304 __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1); 2305 } 2306 2307 CLEANUP_THREAD_INFO; 2308 return 1; 2309 } 2310 2311 // Sort the threadInfo table by physical Id. 2312 qsort(threadInfo, num_avail, sizeof(*threadInfo), 2313 __kmp_affinity_cmp_ProcCpuInfo_phys_id); 2314 2315 // The table is now sorted by pkgId / coreId / threadId, but we really don't 2316 // know the radix of any of the fields. pkgId's may be sparsely assigned among 2317 // the chips on a system. Although coreId's are usually assigned 2318 // [0 .. coresPerPkg-1] and threadId's are usually assigned 2319 // [0..threadsPerCore-1], we don't want to make any such assumptions. 2320 // 2321 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the 2322 // total # packages) are at this point - we want to determine that now. We 2323 // only have an upper bound on the first two figures. 2324 unsigned *counts = 2325 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2326 unsigned *maxCt = 2327 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2328 unsigned *totals = 2329 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2330 unsigned *lastId = 2331 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2332 2333 bool assign_thread_ids = false; 2334 unsigned threadIdCt; 2335 unsigned index; 2336 2337 restart_radix_check: 2338 threadIdCt = 0; 2339 2340 // Initialize the counter arrays with data from threadInfo[0]. 2341 if (assign_thread_ids) { 2342 if (threadInfo[0][threadIdIndex] == UINT_MAX) { 2343 threadInfo[0][threadIdIndex] = threadIdCt++; 2344 } else if (threadIdCt <= threadInfo[0][threadIdIndex]) { 2345 threadIdCt = threadInfo[0][threadIdIndex] + 1; 2346 } 2347 } 2348 for (index = 0; index <= maxIndex; index++) { 2349 counts[index] = 1; 2350 maxCt[index] = 1; 2351 totals[index] = 1; 2352 lastId[index] = threadInfo[0][index]; 2353 ; 2354 } 2355 2356 // Run through the rest of the OS procs. 2357 for (i = 1; i < num_avail; i++) { 2358 // Find the most significant index whose id differs from the id for the 2359 // previous OS proc. 2360 for (index = maxIndex; index >= threadIdIndex; index--) { 2361 if (assign_thread_ids && (index == threadIdIndex)) { 2362 // Auto-assign the thread id field if it wasn't specified. 2363 if (threadInfo[i][threadIdIndex] == UINT_MAX) { 2364 threadInfo[i][threadIdIndex] = threadIdCt++; 2365 } 2366 // Apparently the thread id field was specified for some entries and not 2367 // others. Start the thread id counter off at the next higher thread id. 2368 else if (threadIdCt <= threadInfo[i][threadIdIndex]) { 2369 threadIdCt = threadInfo[i][threadIdIndex] + 1; 2370 } 2371 } 2372 if (threadInfo[i][index] != lastId[index]) { 2373 // Run through all indices which are less significant, and reset the 2374 // counts to 1. At all levels up to and including index, we need to 2375 // increment the totals and record the last id. 2376 unsigned index2; 2377 for (index2 = threadIdIndex; index2 < index; index2++) { 2378 totals[index2]++; 2379 if (counts[index2] > maxCt[index2]) { 2380 maxCt[index2] = counts[index2]; 2381 } 2382 counts[index2] = 1; 2383 lastId[index2] = threadInfo[i][index2]; 2384 } 2385 counts[index]++; 2386 totals[index]++; 2387 lastId[index] = threadInfo[i][index]; 2388 2389 if (assign_thread_ids && (index > threadIdIndex)) { 2390 2391 #if KMP_MIC && REDUCE_TEAM_SIZE 2392 // The default team size is the total #threads in the machine 2393 // minus 1 thread for every core that has 3 or more threads. 2394 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); 2395 #endif // KMP_MIC && REDUCE_TEAM_SIZE 2396 2397 // Restart the thread counter, as we are on a new core. 2398 threadIdCt = 0; 2399 2400 // Auto-assign the thread id field if it wasn't specified. 2401 if (threadInfo[i][threadIdIndex] == UINT_MAX) { 2402 threadInfo[i][threadIdIndex] = threadIdCt++; 2403 } 2404 2405 // Aparrently the thread id field was specified for some entries and 2406 // not others. Start the thread id counter off at the next higher 2407 // thread id. 2408 else if (threadIdCt <= threadInfo[i][threadIdIndex]) { 2409 threadIdCt = threadInfo[i][threadIdIndex] + 1; 2410 } 2411 } 2412 break; 2413 } 2414 } 2415 if (index < threadIdIndex) { 2416 // If thread ids were specified, it is an error if they are not unique. 2417 // Also, check that we waven't already restarted the loop (to be safe - 2418 // shouldn't need to). 2419 if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) { 2420 __kmp_free(lastId); 2421 __kmp_free(totals); 2422 __kmp_free(maxCt); 2423 __kmp_free(counts); 2424 CLEANUP_THREAD_INFO; 2425 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; 2426 return -1; 2427 } 2428 2429 // If the thread ids were not specified and we see entries entries that 2430 // are duplicates, start the loop over and assign the thread ids manually. 2431 assign_thread_ids = true; 2432 goto restart_radix_check; 2433 } 2434 } 2435 2436 #if KMP_MIC && REDUCE_TEAM_SIZE 2437 // The default team size is the total #threads in the machine 2438 // minus 1 thread for every core that has 3 or more threads. 2439 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); 2440 #endif // KMP_MIC && REDUCE_TEAM_SIZE 2441 2442 for (index = threadIdIndex; index <= maxIndex; index++) { 2443 if (counts[index] > maxCt[index]) { 2444 maxCt[index] = counts[index]; 2445 } 2446 } 2447 2448 __kmp_nThreadsPerCore = maxCt[threadIdIndex]; 2449 nCoresPerPkg = maxCt[coreIdIndex]; 2450 nPackages = totals[pkgIdIndex]; 2451 2452 // Check to see if the machine topology is uniform 2453 unsigned prod = totals[maxIndex]; 2454 for (index = threadIdIndex; index < maxIndex; index++) { 2455 prod *= maxCt[index]; 2456 } 2457 bool uniform = (prod == totals[threadIdIndex]); 2458 2459 // When affinity is off, this routine will still be called to set 2460 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 2461 // Make sure all these vars are set correctly, and return now if affinity is 2462 // not enabled. 2463 __kmp_ncores = totals[coreIdIndex]; 2464 2465 if (__kmp_affinity_verbose) { 2466 if (!KMP_AFFINITY_CAPABLE()) { 2467 KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY"); 2468 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 2469 if (uniform) { 2470 KMP_INFORM(Uniform, "KMP_AFFINITY"); 2471 } else { 2472 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 2473 } 2474 } else { 2475 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 2476 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 2477 __kmp_affin_fullMask); 2478 KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY"); 2479 if (__kmp_affinity_respect_mask) { 2480 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 2481 } else { 2482 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 2483 } 2484 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 2485 if (uniform) { 2486 KMP_INFORM(Uniform, "KMP_AFFINITY"); 2487 } else { 2488 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 2489 } 2490 } 2491 kmp_str_buf_t buf; 2492 __kmp_str_buf_init(&buf); 2493 2494 __kmp_str_buf_print(&buf, "%d", totals[maxIndex]); 2495 for (index = maxIndex - 1; index >= pkgIdIndex; index--) { 2496 __kmp_str_buf_print(&buf, " x %d", maxCt[index]); 2497 } 2498 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, maxCt[coreIdIndex], 2499 maxCt[threadIdIndex], __kmp_ncores); 2500 2501 __kmp_str_buf_free(&buf); 2502 } 2503 2504 #if KMP_MIC && REDUCE_TEAM_SIZE 2505 // Set the default team size. 2506 if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) { 2507 __kmp_dflt_team_nth = teamSize; 2508 KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting " 2509 "__kmp_dflt_team_nth = %d\n", 2510 __kmp_dflt_team_nth)); 2511 } 2512 #endif // KMP_MIC && REDUCE_TEAM_SIZE 2513 2514 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 2515 KMP_DEBUG_ASSERT(num_avail == __kmp_avail_proc); 2516 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 2517 for (i = 0; i < num_avail; ++i) { // fill the os indices 2518 __kmp_pu_os_idx[i] = threadInfo[i][osIdIndex]; 2519 } 2520 2521 if (__kmp_affinity_type == affinity_none) { 2522 __kmp_free(lastId); 2523 __kmp_free(totals); 2524 __kmp_free(maxCt); 2525 __kmp_free(counts); 2526 CLEANUP_THREAD_INFO; 2527 return 0; 2528 } 2529 2530 // Count the number of levels which have more nodes at that level than at the 2531 // parent's level (with there being an implicit root node of the top level). 2532 // This is equivalent to saying that there is at least one node at this level 2533 // which has a sibling. These levels are in the map, and the package level is 2534 // always in the map. 2535 bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool)); 2536 int level = 0; 2537 for (index = threadIdIndex; index < maxIndex; index++) { 2538 KMP_ASSERT(totals[index] >= totals[index + 1]); 2539 inMap[index] = (totals[index] > totals[index + 1]); 2540 } 2541 inMap[maxIndex] = (totals[maxIndex] > 1); 2542 inMap[pkgIdIndex] = true; 2543 2544 int depth = 0; 2545 for (index = threadIdIndex; index <= maxIndex; index++) { 2546 if (inMap[index]) { 2547 depth++; 2548 } 2549 } 2550 KMP_ASSERT(depth > 0); 2551 2552 // Construct the data structure that is to be returned. 2553 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * num_avail); 2554 int pkgLevel = -1; 2555 int coreLevel = -1; 2556 int threadLevel = -1; 2557 2558 for (i = 0; i < num_avail; ++i) { 2559 Address addr(depth); 2560 unsigned os = threadInfo[i][osIdIndex]; 2561 int src_index; 2562 int dst_index = 0; 2563 2564 for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) { 2565 if (!inMap[src_index]) { 2566 continue; 2567 } 2568 addr.labels[dst_index] = threadInfo[i][src_index]; 2569 if (src_index == pkgIdIndex) { 2570 pkgLevel = dst_index; 2571 } else if (src_index == coreIdIndex) { 2572 coreLevel = dst_index; 2573 } else if (src_index == threadIdIndex) { 2574 threadLevel = dst_index; 2575 } 2576 dst_index++; 2577 } 2578 (*address2os)[i] = AddrUnsPair(addr, os); 2579 } 2580 2581 if (__kmp_affinity_gran_levels < 0) { 2582 // Set the granularity level based on what levels are modeled 2583 // in the machine topology map. 2584 unsigned src_index; 2585 __kmp_affinity_gran_levels = 0; 2586 for (src_index = threadIdIndex; src_index <= maxIndex; src_index++) { 2587 if (!inMap[src_index]) { 2588 continue; 2589 } 2590 switch (src_index) { 2591 case threadIdIndex: 2592 if (__kmp_affinity_gran > affinity_gran_thread) { 2593 __kmp_affinity_gran_levels++; 2594 } 2595 2596 break; 2597 case coreIdIndex: 2598 if (__kmp_affinity_gran > affinity_gran_core) { 2599 __kmp_affinity_gran_levels++; 2600 } 2601 break; 2602 2603 case pkgIdIndex: 2604 if (__kmp_affinity_gran > affinity_gran_package) { 2605 __kmp_affinity_gran_levels++; 2606 } 2607 break; 2608 } 2609 } 2610 } 2611 2612 if (__kmp_affinity_verbose) { 2613 __kmp_affinity_print_topology(*address2os, num_avail, depth, pkgLevel, 2614 coreLevel, threadLevel); 2615 } 2616 2617 __kmp_free(inMap); 2618 __kmp_free(lastId); 2619 __kmp_free(totals); 2620 __kmp_free(maxCt); 2621 __kmp_free(counts); 2622 CLEANUP_THREAD_INFO; 2623 return depth; 2624 } 2625 2626 // Create and return a table of affinity masks, indexed by OS thread ID. 2627 // This routine handles OR'ing together all the affinity masks of threads 2628 // that are sufficiently close, if granularity > fine. 2629 static kmp_affin_mask_t *__kmp_create_masks(unsigned *maxIndex, 2630 unsigned *numUnique, 2631 AddrUnsPair *address2os, 2632 unsigned numAddrs) { 2633 // First form a table of affinity masks in order of OS thread id. 2634 unsigned depth; 2635 unsigned maxOsId; 2636 unsigned i; 2637 2638 KMP_ASSERT(numAddrs > 0); 2639 depth = address2os[0].first.depth; 2640 2641 maxOsId = 0; 2642 for (i = numAddrs - 1;; --i) { 2643 unsigned osId = address2os[i].second; 2644 if (osId > maxOsId) { 2645 maxOsId = osId; 2646 } 2647 if (i == 0) 2648 break; 2649 } 2650 kmp_affin_mask_t *osId2Mask; 2651 KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId + 1)); 2652 2653 // Sort the address2os table according to physical order. Doing so will put 2654 // all threads on the same core/package/node in consecutive locations. 2655 qsort(address2os, numAddrs, sizeof(*address2os), 2656 __kmp_affinity_cmp_Address_labels); 2657 2658 KMP_ASSERT(__kmp_affinity_gran_levels >= 0); 2659 if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) { 2660 KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels); 2661 } 2662 if (__kmp_affinity_gran_levels >= (int)depth) { 2663 if (__kmp_affinity_verbose || 2664 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { 2665 KMP_WARNING(AffThreadsMayMigrate); 2666 } 2667 } 2668 2669 // Run through the table, forming the masks for all threads on each core. 2670 // Threads on the same core will have identical "Address" objects, not 2671 // considering the last level, which must be the thread id. All threads on a 2672 // core will appear consecutively. 2673 unsigned unique = 0; 2674 unsigned j = 0; // index of 1st thread on core 2675 unsigned leader = 0; 2676 Address *leaderAddr = &(address2os[0].first); 2677 kmp_affin_mask_t *sum; 2678 KMP_CPU_ALLOC_ON_STACK(sum); 2679 KMP_CPU_ZERO(sum); 2680 KMP_CPU_SET(address2os[0].second, sum); 2681 for (i = 1; i < numAddrs; i++) { 2682 // If this thread is sufficiently close to the leader (within the 2683 // granularity setting), then set the bit for this os thread in the 2684 // affinity mask for this group, and go on to the next thread. 2685 if (leaderAddr->isClose(address2os[i].first, __kmp_affinity_gran_levels)) { 2686 KMP_CPU_SET(address2os[i].second, sum); 2687 continue; 2688 } 2689 2690 // For every thread in this group, copy the mask to the thread's entry in 2691 // the osId2Mask table. Mark the first address as a leader. 2692 for (; j < i; j++) { 2693 unsigned osId = address2os[j].second; 2694 KMP_DEBUG_ASSERT(osId <= maxOsId); 2695 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); 2696 KMP_CPU_COPY(mask, sum); 2697 address2os[j].first.leader = (j == leader); 2698 } 2699 unique++; 2700 2701 // Start a new mask. 2702 leader = i; 2703 leaderAddr = &(address2os[i].first); 2704 KMP_CPU_ZERO(sum); 2705 KMP_CPU_SET(address2os[i].second, sum); 2706 } 2707 2708 // For every thread in last group, copy the mask to the thread's 2709 // entry in the osId2Mask table. 2710 for (; j < i; j++) { 2711 unsigned osId = address2os[j].second; 2712 KMP_DEBUG_ASSERT(osId <= maxOsId); 2713 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); 2714 KMP_CPU_COPY(mask, sum); 2715 address2os[j].first.leader = (j == leader); 2716 } 2717 unique++; 2718 KMP_CPU_FREE_FROM_STACK(sum); 2719 2720 *maxIndex = maxOsId; 2721 *numUnique = unique; 2722 return osId2Mask; 2723 } 2724 2725 // Stuff for the affinity proclist parsers. It's easier to declare these vars 2726 // as file-static than to try and pass them through the calling sequence of 2727 // the recursive-descent OMP_PLACES parser. 2728 static kmp_affin_mask_t *newMasks; 2729 static int numNewMasks; 2730 static int nextNewMask; 2731 2732 #define ADD_MASK(_mask) \ 2733 { \ 2734 if (nextNewMask >= numNewMasks) { \ 2735 int i; \ 2736 numNewMasks *= 2; \ 2737 kmp_affin_mask_t *temp; \ 2738 KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \ 2739 for (i = 0; i < numNewMasks / 2; i++) { \ 2740 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); \ 2741 kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i); \ 2742 KMP_CPU_COPY(dest, src); \ 2743 } \ 2744 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2); \ 2745 newMasks = temp; \ 2746 } \ 2747 KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \ 2748 nextNewMask++; \ 2749 } 2750 2751 #define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \ 2752 { \ 2753 if (((_osId) > _maxOsId) || \ 2754 (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \ 2755 if (__kmp_affinity_verbose || \ 2756 (__kmp_affinity_warnings && \ 2757 (__kmp_affinity_type != affinity_none))) { \ 2758 KMP_WARNING(AffIgnoreInvalidProcID, _osId); \ 2759 } \ 2760 } else { \ 2761 ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \ 2762 } \ 2763 } 2764 2765 // Re-parse the proclist (for the explicit affinity type), and form the list 2766 // of affinity newMasks indexed by gtid. 2767 static void __kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks, 2768 unsigned int *out_numMasks, 2769 const char *proclist, 2770 kmp_affin_mask_t *osId2Mask, 2771 int maxOsId) { 2772 int i; 2773 const char *scan = proclist; 2774 const char *next = proclist; 2775 2776 // We use malloc() for the temporary mask vector, so that we can use 2777 // realloc() to extend it. 2778 numNewMasks = 2; 2779 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); 2780 nextNewMask = 0; 2781 kmp_affin_mask_t *sumMask; 2782 KMP_CPU_ALLOC(sumMask); 2783 int setSize = 0; 2784 2785 for (;;) { 2786 int start, end, stride; 2787 2788 SKIP_WS(scan); 2789 next = scan; 2790 if (*next == '\0') { 2791 break; 2792 } 2793 2794 if (*next == '{') { 2795 int num; 2796 setSize = 0; 2797 next++; // skip '{' 2798 SKIP_WS(next); 2799 scan = next; 2800 2801 // Read the first integer in the set. 2802 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist"); 2803 SKIP_DIGITS(next); 2804 num = __kmp_str_to_int(scan, *next); 2805 KMP_ASSERT2(num >= 0, "bad explicit proc list"); 2806 2807 // Copy the mask for that osId to the sum (union) mask. 2808 if ((num > maxOsId) || 2809 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 2810 if (__kmp_affinity_verbose || 2811 (__kmp_affinity_warnings && 2812 (__kmp_affinity_type != affinity_none))) { 2813 KMP_WARNING(AffIgnoreInvalidProcID, num); 2814 } 2815 KMP_CPU_ZERO(sumMask); 2816 } else { 2817 KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num)); 2818 setSize = 1; 2819 } 2820 2821 for (;;) { 2822 // Check for end of set. 2823 SKIP_WS(next); 2824 if (*next == '}') { 2825 next++; // skip '}' 2826 break; 2827 } 2828 2829 // Skip optional comma. 2830 if (*next == ',') { 2831 next++; 2832 } 2833 SKIP_WS(next); 2834 2835 // Read the next integer in the set. 2836 scan = next; 2837 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 2838 2839 SKIP_DIGITS(next); 2840 num = __kmp_str_to_int(scan, *next); 2841 KMP_ASSERT2(num >= 0, "bad explicit proc list"); 2842 2843 // Add the mask for that osId to the sum mask. 2844 if ((num > maxOsId) || 2845 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 2846 if (__kmp_affinity_verbose || 2847 (__kmp_affinity_warnings && 2848 (__kmp_affinity_type != affinity_none))) { 2849 KMP_WARNING(AffIgnoreInvalidProcID, num); 2850 } 2851 } else { 2852 KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num)); 2853 setSize++; 2854 } 2855 } 2856 if (setSize > 0) { 2857 ADD_MASK(sumMask); 2858 } 2859 2860 SKIP_WS(next); 2861 if (*next == ',') { 2862 next++; 2863 } 2864 scan = next; 2865 continue; 2866 } 2867 2868 // Read the first integer. 2869 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 2870 SKIP_DIGITS(next); 2871 start = __kmp_str_to_int(scan, *next); 2872 KMP_ASSERT2(start >= 0, "bad explicit proc list"); 2873 SKIP_WS(next); 2874 2875 // If this isn't a range, then add a mask to the list and go on. 2876 if (*next != '-') { 2877 ADD_MASK_OSID(start, osId2Mask, maxOsId); 2878 2879 // Skip optional comma. 2880 if (*next == ',') { 2881 next++; 2882 } 2883 scan = next; 2884 continue; 2885 } 2886 2887 // This is a range. Skip over the '-' and read in the 2nd int. 2888 next++; // skip '-' 2889 SKIP_WS(next); 2890 scan = next; 2891 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 2892 SKIP_DIGITS(next); 2893 end = __kmp_str_to_int(scan, *next); 2894 KMP_ASSERT2(end >= 0, "bad explicit proc list"); 2895 2896 // Check for a stride parameter 2897 stride = 1; 2898 SKIP_WS(next); 2899 if (*next == ':') { 2900 // A stride is specified. Skip over the ':" and read the 3rd int. 2901 int sign = +1; 2902 next++; // skip ':' 2903 SKIP_WS(next); 2904 scan = next; 2905 if (*next == '-') { 2906 sign = -1; 2907 next++; 2908 SKIP_WS(next); 2909 scan = next; 2910 } 2911 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 2912 SKIP_DIGITS(next); 2913 stride = __kmp_str_to_int(scan, *next); 2914 KMP_ASSERT2(stride >= 0, "bad explicit proc list"); 2915 stride *= sign; 2916 } 2917 2918 // Do some range checks. 2919 KMP_ASSERT2(stride != 0, "bad explicit proc list"); 2920 if (stride > 0) { 2921 KMP_ASSERT2(start <= end, "bad explicit proc list"); 2922 } else { 2923 KMP_ASSERT2(start >= end, "bad explicit proc list"); 2924 } 2925 KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list"); 2926 2927 // Add the mask for each OS proc # to the list. 2928 if (stride > 0) { 2929 do { 2930 ADD_MASK_OSID(start, osId2Mask, maxOsId); 2931 start += stride; 2932 } while (start <= end); 2933 } else { 2934 do { 2935 ADD_MASK_OSID(start, osId2Mask, maxOsId); 2936 start += stride; 2937 } while (start >= end); 2938 } 2939 2940 // Skip optional comma. 2941 SKIP_WS(next); 2942 if (*next == ',') { 2943 next++; 2944 } 2945 scan = next; 2946 } 2947 2948 *out_numMasks = nextNewMask; 2949 if (nextNewMask == 0) { 2950 *out_masks = NULL; 2951 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 2952 return; 2953 } 2954 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); 2955 for (i = 0; i < nextNewMask; i++) { 2956 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); 2957 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); 2958 KMP_CPU_COPY(dest, src); 2959 } 2960 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 2961 KMP_CPU_FREE(sumMask); 2962 } 2963 2964 #if OMP_40_ENABLED 2965 2966 /*----------------------------------------------------------------------------- 2967 Re-parse the OMP_PLACES proc id list, forming the newMasks for the different 2968 places. Again, Here is the grammar: 2969 2970 place_list := place 2971 place_list := place , place_list 2972 place := num 2973 place := place : num 2974 place := place : num : signed 2975 place := { subplacelist } 2976 place := ! place // (lowest priority) 2977 subplace_list := subplace 2978 subplace_list := subplace , subplace_list 2979 subplace := num 2980 subplace := num : num 2981 subplace := num : num : signed 2982 signed := num 2983 signed := + signed 2984 signed := - signed 2985 -----------------------------------------------------------------------------*/ 2986 2987 static void __kmp_process_subplace_list(const char **scan, 2988 kmp_affin_mask_t *osId2Mask, 2989 int maxOsId, kmp_affin_mask_t *tempMask, 2990 int *setSize) { 2991 const char *next; 2992 2993 for (;;) { 2994 int start, count, stride, i; 2995 2996 // Read in the starting proc id 2997 SKIP_WS(*scan); 2998 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 2999 next = *scan; 3000 SKIP_DIGITS(next); 3001 start = __kmp_str_to_int(*scan, *next); 3002 KMP_ASSERT(start >= 0); 3003 *scan = next; 3004 3005 // valid follow sets are ',' ':' and '}' 3006 SKIP_WS(*scan); 3007 if (**scan == '}' || **scan == ',') { 3008 if ((start > maxOsId) || 3009 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3010 if (__kmp_affinity_verbose || 3011 (__kmp_affinity_warnings && 3012 (__kmp_affinity_type != affinity_none))) { 3013 KMP_WARNING(AffIgnoreInvalidProcID, start); 3014 } 3015 } else { 3016 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3017 (*setSize)++; 3018 } 3019 if (**scan == '}') { 3020 break; 3021 } 3022 (*scan)++; // skip ',' 3023 continue; 3024 } 3025 KMP_ASSERT2(**scan == ':', "bad explicit places list"); 3026 (*scan)++; // skip ':' 3027 3028 // Read count parameter 3029 SKIP_WS(*scan); 3030 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3031 next = *scan; 3032 SKIP_DIGITS(next); 3033 count = __kmp_str_to_int(*scan, *next); 3034 KMP_ASSERT(count >= 0); 3035 *scan = next; 3036 3037 // valid follow sets are ',' ':' and '}' 3038 SKIP_WS(*scan); 3039 if (**scan == '}' || **scan == ',') { 3040 for (i = 0; i < count; i++) { 3041 if ((start > maxOsId) || 3042 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3043 if (__kmp_affinity_verbose || 3044 (__kmp_affinity_warnings && 3045 (__kmp_affinity_type != affinity_none))) { 3046 KMP_WARNING(AffIgnoreInvalidProcID, start); 3047 } 3048 break; // don't proliferate warnings for large count 3049 } else { 3050 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3051 start++; 3052 (*setSize)++; 3053 } 3054 } 3055 if (**scan == '}') { 3056 break; 3057 } 3058 (*scan)++; // skip ',' 3059 continue; 3060 } 3061 KMP_ASSERT2(**scan == ':', "bad explicit places list"); 3062 (*scan)++; // skip ':' 3063 3064 // Read stride parameter 3065 int sign = +1; 3066 for (;;) { 3067 SKIP_WS(*scan); 3068 if (**scan == '+') { 3069 (*scan)++; // skip '+' 3070 continue; 3071 } 3072 if (**scan == '-') { 3073 sign *= -1; 3074 (*scan)++; // skip '-' 3075 continue; 3076 } 3077 break; 3078 } 3079 SKIP_WS(*scan); 3080 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3081 next = *scan; 3082 SKIP_DIGITS(next); 3083 stride = __kmp_str_to_int(*scan, *next); 3084 KMP_ASSERT(stride >= 0); 3085 *scan = next; 3086 stride *= sign; 3087 3088 // valid follow sets are ',' and '}' 3089 SKIP_WS(*scan); 3090 if (**scan == '}' || **scan == ',') { 3091 for (i = 0; i < count; i++) { 3092 if ((start > maxOsId) || 3093 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3094 if (__kmp_affinity_verbose || 3095 (__kmp_affinity_warnings && 3096 (__kmp_affinity_type != affinity_none))) { 3097 KMP_WARNING(AffIgnoreInvalidProcID, start); 3098 } 3099 break; // don't proliferate warnings for large count 3100 } else { 3101 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3102 start += stride; 3103 (*setSize)++; 3104 } 3105 } 3106 if (**scan == '}') { 3107 break; 3108 } 3109 (*scan)++; // skip ',' 3110 continue; 3111 } 3112 3113 KMP_ASSERT2(0, "bad explicit places list"); 3114 } 3115 } 3116 3117 static void __kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask, 3118 int maxOsId, kmp_affin_mask_t *tempMask, 3119 int *setSize) { 3120 const char *next; 3121 3122 // valid follow sets are '{' '!' and num 3123 SKIP_WS(*scan); 3124 if (**scan == '{') { 3125 (*scan)++; // skip '{' 3126 __kmp_process_subplace_list(scan, osId2Mask, maxOsId, tempMask, setSize); 3127 KMP_ASSERT2(**scan == '}', "bad explicit places list"); 3128 (*scan)++; // skip '}' 3129 } else if (**scan == '!') { 3130 (*scan)++; // skip '!' 3131 __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize); 3132 KMP_CPU_COMPLEMENT(maxOsId, tempMask); 3133 } else if ((**scan >= '0') && (**scan <= '9')) { 3134 next = *scan; 3135 SKIP_DIGITS(next); 3136 int num = __kmp_str_to_int(*scan, *next); 3137 KMP_ASSERT(num >= 0); 3138 if ((num > maxOsId) || 3139 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 3140 if (__kmp_affinity_verbose || 3141 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { 3142 KMP_WARNING(AffIgnoreInvalidProcID, num); 3143 } 3144 } else { 3145 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num)); 3146 (*setSize)++; 3147 } 3148 *scan = next; // skip num 3149 } else { 3150 KMP_ASSERT2(0, "bad explicit places list"); 3151 } 3152 } 3153 3154 // static void 3155 void __kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks, 3156 unsigned int *out_numMasks, 3157 const char *placelist, 3158 kmp_affin_mask_t *osId2Mask, 3159 int maxOsId) { 3160 int i, j, count, stride, sign; 3161 const char *scan = placelist; 3162 const char *next = placelist; 3163 3164 numNewMasks = 2; 3165 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); 3166 nextNewMask = 0; 3167 3168 // tempMask is modified based on the previous or initial 3169 // place to form the current place 3170 // previousMask contains the previous place 3171 kmp_affin_mask_t *tempMask; 3172 kmp_affin_mask_t *previousMask; 3173 KMP_CPU_ALLOC(tempMask); 3174 KMP_CPU_ZERO(tempMask); 3175 KMP_CPU_ALLOC(previousMask); 3176 KMP_CPU_ZERO(previousMask); 3177 int setSize = 0; 3178 3179 for (;;) { 3180 __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize); 3181 3182 // valid follow sets are ',' ':' and EOL 3183 SKIP_WS(scan); 3184 if (*scan == '\0' || *scan == ',') { 3185 if (setSize > 0) { 3186 ADD_MASK(tempMask); 3187 } 3188 KMP_CPU_ZERO(tempMask); 3189 setSize = 0; 3190 if (*scan == '\0') { 3191 break; 3192 } 3193 scan++; // skip ',' 3194 continue; 3195 } 3196 3197 KMP_ASSERT2(*scan == ':', "bad explicit places list"); 3198 scan++; // skip ':' 3199 3200 // Read count parameter 3201 SKIP_WS(scan); 3202 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); 3203 next = scan; 3204 SKIP_DIGITS(next); 3205 count = __kmp_str_to_int(scan, *next); 3206 KMP_ASSERT(count >= 0); 3207 scan = next; 3208 3209 // valid follow sets are ',' ':' and EOL 3210 SKIP_WS(scan); 3211 if (*scan == '\0' || *scan == ',') { 3212 stride = +1; 3213 } else { 3214 KMP_ASSERT2(*scan == ':', "bad explicit places list"); 3215 scan++; // skip ':' 3216 3217 // Read stride parameter 3218 sign = +1; 3219 for (;;) { 3220 SKIP_WS(scan); 3221 if (*scan == '+') { 3222 scan++; // skip '+' 3223 continue; 3224 } 3225 if (*scan == '-') { 3226 sign *= -1; 3227 scan++; // skip '-' 3228 continue; 3229 } 3230 break; 3231 } 3232 SKIP_WS(scan); 3233 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); 3234 next = scan; 3235 SKIP_DIGITS(next); 3236 stride = __kmp_str_to_int(scan, *next); 3237 KMP_DEBUG_ASSERT(stride >= 0); 3238 scan = next; 3239 stride *= sign; 3240 } 3241 3242 // Add places determined by initial_place : count : stride 3243 for (i = 0; i < count; i++) { 3244 if (setSize == 0) { 3245 break; 3246 } 3247 // Add the current place, then build the next place (tempMask) from that 3248 KMP_CPU_COPY(previousMask, tempMask); 3249 ADD_MASK(previousMask); 3250 KMP_CPU_ZERO(tempMask); 3251 setSize = 0; 3252 KMP_CPU_SET_ITERATE(j, previousMask) { 3253 if (!KMP_CPU_ISSET(j, previousMask)) { 3254 continue; 3255 } 3256 if ((j + stride > maxOsId) || (j + stride < 0) || 3257 (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) || 3258 (!KMP_CPU_ISSET(j + stride, 3259 KMP_CPU_INDEX(osId2Mask, j + stride)))) { 3260 if ((__kmp_affinity_verbose || 3261 (__kmp_affinity_warnings && 3262 (__kmp_affinity_type != affinity_none))) && 3263 i < count - 1) { 3264 KMP_WARNING(AffIgnoreInvalidProcID, j + stride); 3265 } 3266 continue; 3267 } 3268 KMP_CPU_SET(j + stride, tempMask); 3269 setSize++; 3270 } 3271 } 3272 KMP_CPU_ZERO(tempMask); 3273 setSize = 0; 3274 3275 // valid follow sets are ',' and EOL 3276 SKIP_WS(scan); 3277 if (*scan == '\0') { 3278 break; 3279 } 3280 if (*scan == ',') { 3281 scan++; // skip ',' 3282 continue; 3283 } 3284 3285 KMP_ASSERT2(0, "bad explicit places list"); 3286 } 3287 3288 *out_numMasks = nextNewMask; 3289 if (nextNewMask == 0) { 3290 *out_masks = NULL; 3291 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3292 return; 3293 } 3294 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); 3295 KMP_CPU_FREE(tempMask); 3296 KMP_CPU_FREE(previousMask); 3297 for (i = 0; i < nextNewMask; i++) { 3298 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); 3299 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); 3300 KMP_CPU_COPY(dest, src); 3301 } 3302 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3303 } 3304 3305 #endif /* OMP_40_ENABLED */ 3306 3307 #undef ADD_MASK 3308 #undef ADD_MASK_OSID 3309 3310 #if KMP_USE_HWLOC 3311 static int __kmp_hwloc_skip_PUs_obj(hwloc_topology_t t, hwloc_obj_t o) { 3312 // skip PUs descendants of the object o 3313 int skipped = 0; 3314 hwloc_obj_t hT = NULL; 3315 int N = __kmp_hwloc_count_children_by_type(t, o, HWLOC_OBJ_PU, &hT); 3316 for (int i = 0; i < N; ++i) { 3317 KMP_DEBUG_ASSERT(hT); 3318 unsigned idx = hT->os_index; 3319 if (KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3320 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3321 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3322 ++skipped; 3323 } 3324 hT = hwloc_get_next_obj_by_type(t, HWLOC_OBJ_PU, hT); 3325 } 3326 return skipped; // count number of skipped units 3327 } 3328 3329 static int __kmp_hwloc_obj_has_PUs(hwloc_topology_t t, hwloc_obj_t o) { 3330 // check if obj has PUs present in fullMask 3331 hwloc_obj_t hT = NULL; 3332 int N = __kmp_hwloc_count_children_by_type(t, o, HWLOC_OBJ_PU, &hT); 3333 for (int i = 0; i < N; ++i) { 3334 KMP_DEBUG_ASSERT(hT); 3335 unsigned idx = hT->os_index; 3336 if (KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) 3337 return 1; // found PU 3338 hT = hwloc_get_next_obj_by_type(t, HWLOC_OBJ_PU, hT); 3339 } 3340 return 0; // no PUs found 3341 } 3342 #endif // KMP_USE_HWLOC 3343 3344 static void __kmp_apply_thread_places(AddrUnsPair **pAddr, int depth) { 3345 AddrUnsPair *newAddr; 3346 if (__kmp_hws_requested == 0) 3347 goto _exit; // no topology limiting actions requested, exit 3348 #if KMP_USE_HWLOC 3349 if (__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) { 3350 // Number of subobjects calculated dynamically, this works fine for 3351 // any non-uniform topology. 3352 // L2 cache objects are determined by depth, other objects - by type. 3353 hwloc_topology_t tp = __kmp_hwloc_topology; 3354 int nS = 0, nN = 0, nL = 0, nC = 0, 3355 nT = 0; // logical index including skipped 3356 int nCr = 0, nTr = 0; // number of requested units 3357 int nPkg = 0, nCo = 0, n_new = 0, n_old = 0, nCpP = 0, nTpC = 0; // counters 3358 hwloc_obj_t hT, hC, hL, hN, hS; // hwloc objects (pointers to) 3359 int L2depth, idx; 3360 3361 // check support of extensions ---------------------------------- 3362 int numa_support = 0, tile_support = 0; 3363 if (__kmp_pu_os_idx) 3364 hT = hwloc_get_pu_obj_by_os_index(tp, 3365 __kmp_pu_os_idx[__kmp_avail_proc - 1]); 3366 else 3367 hT = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PU, __kmp_avail_proc - 1); 3368 if (hT == NULL) { // something's gone wrong 3369 KMP_WARNING(AffHWSubsetUnsupported); 3370 goto _exit; 3371 } 3372 // check NUMA node 3373 hN = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hT); 3374 hS = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hT); 3375 if (hN != NULL && hN->depth > hS->depth) { 3376 numa_support = 1; // 1 in case socket includes node(s) 3377 } else if (__kmp_hws_node.num > 0) { 3378 // don't support sockets inside NUMA node (no such HW found for testing) 3379 KMP_WARNING(AffHWSubsetUnsupported); 3380 goto _exit; 3381 } 3382 // check L2 cahce, get object by depth because of multiple caches 3383 L2depth = hwloc_get_cache_type_depth(tp, 2, HWLOC_OBJ_CACHE_UNIFIED); 3384 hL = hwloc_get_ancestor_obj_by_depth(tp, L2depth, hT); 3385 if (hL != NULL && 3386 __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC) > 1) { 3387 tile_support = 1; // no sense to count L2 if it includes single core 3388 } else if (__kmp_hws_tile.num > 0) { 3389 if (__kmp_hws_core.num == 0) { 3390 __kmp_hws_core = __kmp_hws_tile; // replace L2 with core 3391 __kmp_hws_tile.num = 0; 3392 } else { 3393 // L2 and core are both requested, but represent same object 3394 KMP_WARNING(AffHWSubsetInvalid); 3395 goto _exit; 3396 } 3397 } 3398 // end of check of extensions ----------------------------------- 3399 3400 // fill in unset items, validate settings ----------------------- 3401 if (__kmp_hws_socket.num == 0) 3402 __kmp_hws_socket.num = nPackages; // use all available sockets 3403 if (__kmp_hws_socket.offset >= nPackages) { 3404 KMP_WARNING(AffHWSubsetManySockets); 3405 goto _exit; 3406 } 3407 if (numa_support) { 3408 hN = NULL; 3409 int NN = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_NUMANODE, 3410 &hN); // num nodes in socket 3411 if (__kmp_hws_node.num == 0) 3412 __kmp_hws_node.num = NN; // use all available nodes 3413 if (__kmp_hws_node.offset >= NN) { 3414 KMP_WARNING(AffHWSubsetManyNodes); 3415 goto _exit; 3416 } 3417 if (tile_support) { 3418 // get num tiles in node 3419 int NL = __kmp_hwloc_count_children_by_depth(tp, hN, L2depth, &hL); 3420 if (__kmp_hws_tile.num == 0) { 3421 __kmp_hws_tile.num = NL + 1; 3422 } // use all available tiles, some node may have more tiles, thus +1 3423 if (__kmp_hws_tile.offset >= NL) { 3424 KMP_WARNING(AffHWSubsetManyTiles); 3425 goto _exit; 3426 } 3427 int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, 3428 &hC); // num cores in tile 3429 if (__kmp_hws_core.num == 0) 3430 __kmp_hws_core.num = NC; // use all available cores 3431 if (__kmp_hws_core.offset >= NC) { 3432 KMP_WARNING(AffHWSubsetManyCores); 3433 goto _exit; 3434 } 3435 } else { // tile_support 3436 int NC = __kmp_hwloc_count_children_by_type(tp, hN, HWLOC_OBJ_CORE, 3437 &hC); // num cores in node 3438 if (__kmp_hws_core.num == 0) 3439 __kmp_hws_core.num = NC; // use all available cores 3440 if (__kmp_hws_core.offset >= NC) { 3441 KMP_WARNING(AffHWSubsetManyCores); 3442 goto _exit; 3443 } 3444 } // tile_support 3445 } else { // numa_support 3446 if (tile_support) { 3447 // get num tiles in socket 3448 int NL = __kmp_hwloc_count_children_by_depth(tp, hS, L2depth, &hL); 3449 if (__kmp_hws_tile.num == 0) 3450 __kmp_hws_tile.num = NL; // use all available tiles 3451 if (__kmp_hws_tile.offset >= NL) { 3452 KMP_WARNING(AffHWSubsetManyTiles); 3453 goto _exit; 3454 } 3455 int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, 3456 &hC); // num cores in tile 3457 if (__kmp_hws_core.num == 0) 3458 __kmp_hws_core.num = NC; // use all available cores 3459 if (__kmp_hws_core.offset >= NC) { 3460 KMP_WARNING(AffHWSubsetManyCores); 3461 goto _exit; 3462 } 3463 } else { // tile_support 3464 int NC = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_CORE, 3465 &hC); // num cores in socket 3466 if (__kmp_hws_core.num == 0) 3467 __kmp_hws_core.num = NC; // use all available cores 3468 if (__kmp_hws_core.offset >= NC) { 3469 KMP_WARNING(AffHWSubsetManyCores); 3470 goto _exit; 3471 } 3472 } // tile_support 3473 } 3474 if (__kmp_hws_proc.num == 0) 3475 __kmp_hws_proc.num = __kmp_nThreadsPerCore; // use all available procs 3476 if (__kmp_hws_proc.offset >= __kmp_nThreadsPerCore) { 3477 KMP_WARNING(AffHWSubsetManyProcs); 3478 goto _exit; 3479 } 3480 // end of validation -------------------------------------------- 3481 3482 if (pAddr) // pAddr is NULL in case of affinity_none 3483 newAddr = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * 3484 __kmp_avail_proc); // max size 3485 // main loop to form HW subset ---------------------------------- 3486 hS = NULL; 3487 int NP = hwloc_get_nbobjs_by_type(tp, HWLOC_OBJ_PACKAGE); 3488 for (int s = 0; s < NP; ++s) { 3489 // Check Socket ----------------------------------------------- 3490 hS = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hS); 3491 if (!__kmp_hwloc_obj_has_PUs(tp, hS)) 3492 continue; // skip socket if all PUs are out of fullMask 3493 ++nS; // only count objects those have PUs in affinity mask 3494 if (nS <= __kmp_hws_socket.offset || 3495 nS > __kmp_hws_socket.num + __kmp_hws_socket.offset) { 3496 n_old += __kmp_hwloc_skip_PUs_obj(tp, hS); // skip socket 3497 continue; // move to next socket 3498 } 3499 nCr = 0; // count number of cores per socket 3500 // socket requested, go down the topology tree 3501 // check 4 cases: (+NUMA+Tile), (+NUMA-Tile), (-NUMA+Tile), (-NUMA-Tile) 3502 if (numa_support) { 3503 nN = 0; 3504 hN = NULL; 3505 // num nodes in current socket 3506 int NN = 3507 __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_NUMANODE, &hN); 3508 for (int n = 0; n < NN; ++n) { 3509 // Check NUMA Node ---------------------------------------- 3510 if (!__kmp_hwloc_obj_has_PUs(tp, hN)) { 3511 hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN); 3512 continue; // skip node if all PUs are out of fullMask 3513 } 3514 ++nN; 3515 if (nN <= __kmp_hws_node.offset || 3516 nN > __kmp_hws_node.num + __kmp_hws_node.offset) { 3517 // skip node as not requested 3518 n_old += __kmp_hwloc_skip_PUs_obj(tp, hN); // skip node 3519 hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN); 3520 continue; // move to next node 3521 } 3522 // node requested, go down the topology tree 3523 if (tile_support) { 3524 nL = 0; 3525 hL = NULL; 3526 int NL = __kmp_hwloc_count_children_by_depth(tp, hN, L2depth, &hL); 3527 for (int l = 0; l < NL; ++l) { 3528 // Check L2 (tile) ------------------------------------ 3529 if (!__kmp_hwloc_obj_has_PUs(tp, hL)) { 3530 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3531 continue; // skip tile if all PUs are out of fullMask 3532 } 3533 ++nL; 3534 if (nL <= __kmp_hws_tile.offset || 3535 nL > __kmp_hws_tile.num + __kmp_hws_tile.offset) { 3536 // skip tile as not requested 3537 n_old += __kmp_hwloc_skip_PUs_obj(tp, hL); // skip tile 3538 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3539 continue; // move to next tile 3540 } 3541 // tile requested, go down the topology tree 3542 nC = 0; 3543 hC = NULL; 3544 // num cores in current tile 3545 int NC = __kmp_hwloc_count_children_by_type(tp, hL, 3546 HWLOC_OBJ_CORE, &hC); 3547 for (int c = 0; c < NC; ++c) { 3548 // Check Core --------------------------------------- 3549 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) { 3550 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3551 continue; // skip core if all PUs are out of fullMask 3552 } 3553 ++nC; 3554 if (nC <= __kmp_hws_core.offset || 3555 nC > __kmp_hws_core.num + __kmp_hws_core.offset) { 3556 // skip node as not requested 3557 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core 3558 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3559 continue; // move to next node 3560 } 3561 // core requested, go down to PUs 3562 nT = 0; 3563 nTr = 0; 3564 hT = NULL; 3565 // num procs in current core 3566 int NT = __kmp_hwloc_count_children_by_type(tp, hC, 3567 HWLOC_OBJ_PU, &hT); 3568 for (int t = 0; t < NT; ++t) { 3569 // Check PU --------------------------------------- 3570 idx = hT->os_index; 3571 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3572 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3573 continue; // skip PU if not in fullMask 3574 } 3575 ++nT; 3576 if (nT <= __kmp_hws_proc.offset || 3577 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) { 3578 // skip PU 3579 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3580 ++n_old; 3581 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3582 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3583 continue; // move to next node 3584 } 3585 ++nTr; 3586 if (pAddr) // collect requested thread's data 3587 newAddr[n_new] = (*pAddr)[n_old]; 3588 ++n_new; 3589 ++n_old; 3590 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3591 } // threads loop 3592 if (nTr > 0) { 3593 ++nCr; // num cores per socket 3594 ++nCo; // total num cores 3595 if (nTr > nTpC) 3596 nTpC = nTr; // calc max threads per core 3597 } 3598 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3599 } // cores loop 3600 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3601 } // tiles loop 3602 } else { // tile_support 3603 // no tiles, check cores 3604 nC = 0; 3605 hC = NULL; 3606 // num cores in current node 3607 int NC = 3608 __kmp_hwloc_count_children_by_type(tp, hN, HWLOC_OBJ_CORE, &hC); 3609 for (int c = 0; c < NC; ++c) { 3610 // Check Core --------------------------------------- 3611 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) { 3612 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3613 continue; // skip core if all PUs are out of fullMask 3614 } 3615 ++nC; 3616 if (nC <= __kmp_hws_core.offset || 3617 nC > __kmp_hws_core.num + __kmp_hws_core.offset) { 3618 // skip node as not requested 3619 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core 3620 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3621 continue; // move to next node 3622 } 3623 // core requested, go down to PUs 3624 nT = 0; 3625 nTr = 0; 3626 hT = NULL; 3627 int NT = 3628 __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT); 3629 for (int t = 0; t < NT; ++t) { 3630 // Check PU --------------------------------------- 3631 idx = hT->os_index; 3632 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3633 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3634 continue; // skip PU if not in fullMask 3635 } 3636 ++nT; 3637 if (nT <= __kmp_hws_proc.offset || 3638 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) { 3639 // skip PU 3640 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3641 ++n_old; 3642 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3643 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3644 continue; // move to next node 3645 } 3646 ++nTr; 3647 if (pAddr) // collect requested thread's data 3648 newAddr[n_new] = (*pAddr)[n_old]; 3649 ++n_new; 3650 ++n_old; 3651 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3652 } // threads loop 3653 if (nTr > 0) { 3654 ++nCr; // num cores per socket 3655 ++nCo; // total num cores 3656 if (nTr > nTpC) 3657 nTpC = nTr; // calc max threads per core 3658 } 3659 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3660 } // cores loop 3661 } // tiles support 3662 hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN); 3663 } // nodes loop 3664 } else { // numa_support 3665 // no NUMA support 3666 if (tile_support) { 3667 nL = 0; 3668 hL = NULL; 3669 // num tiles in current socket 3670 int NL = __kmp_hwloc_count_children_by_depth(tp, hS, L2depth, &hL); 3671 for (int l = 0; l < NL; ++l) { 3672 // Check L2 (tile) ------------------------------------ 3673 if (!__kmp_hwloc_obj_has_PUs(tp, hL)) { 3674 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3675 continue; // skip tile if all PUs are out of fullMask 3676 } 3677 ++nL; 3678 if (nL <= __kmp_hws_tile.offset || 3679 nL > __kmp_hws_tile.num + __kmp_hws_tile.offset) { 3680 // skip tile as not requested 3681 n_old += __kmp_hwloc_skip_PUs_obj(tp, hL); // skip tile 3682 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3683 continue; // move to next tile 3684 } 3685 // tile requested, go down the topology tree 3686 nC = 0; 3687 hC = NULL; 3688 // num cores per tile 3689 int NC = 3690 __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC); 3691 for (int c = 0; c < NC; ++c) { 3692 // Check Core --------------------------------------- 3693 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) { 3694 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3695 continue; // skip core if all PUs are out of fullMask 3696 } 3697 ++nC; 3698 if (nC <= __kmp_hws_core.offset || 3699 nC > __kmp_hws_core.num + __kmp_hws_core.offset) { 3700 // skip node as not requested 3701 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core 3702 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3703 continue; // move to next node 3704 } 3705 // core requested, go down to PUs 3706 nT = 0; 3707 nTr = 0; 3708 hT = NULL; 3709 // num procs per core 3710 int NT = 3711 __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT); 3712 for (int t = 0; t < NT; ++t) { 3713 // Check PU --------------------------------------- 3714 idx = hT->os_index; 3715 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3716 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3717 continue; // skip PU if not in fullMask 3718 } 3719 ++nT; 3720 if (nT <= __kmp_hws_proc.offset || 3721 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) { 3722 // skip PU 3723 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3724 ++n_old; 3725 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3726 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3727 continue; // move to next node 3728 } 3729 ++nTr; 3730 if (pAddr) // collect requested thread's data 3731 newAddr[n_new] = (*pAddr)[n_old]; 3732 ++n_new; 3733 ++n_old; 3734 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3735 } // threads loop 3736 if (nTr > 0) { 3737 ++nCr; // num cores per socket 3738 ++nCo; // total num cores 3739 if (nTr > nTpC) 3740 nTpC = nTr; // calc max threads per core 3741 } 3742 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3743 } // cores loop 3744 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3745 } // tiles loop 3746 } else { // tile_support 3747 // no tiles, check cores 3748 nC = 0; 3749 hC = NULL; 3750 // num cores in socket 3751 int NC = 3752 __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_CORE, &hC); 3753 for (int c = 0; c < NC; ++c) { 3754 // Check Core ------------------------------------------- 3755 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) { 3756 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3757 continue; // skip core if all PUs are out of fullMask 3758 } 3759 ++nC; 3760 if (nC <= __kmp_hws_core.offset || 3761 nC > __kmp_hws_core.num + __kmp_hws_core.offset) { 3762 // skip node as not requested 3763 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core 3764 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3765 continue; // move to next node 3766 } 3767 // core requested, go down to PUs 3768 nT = 0; 3769 nTr = 0; 3770 hT = NULL; 3771 // num procs per core 3772 int NT = 3773 __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT); 3774 for (int t = 0; t < NT; ++t) { 3775 // Check PU --------------------------------------- 3776 idx = hT->os_index; 3777 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3778 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3779 continue; // skip PU if not in fullMask 3780 } 3781 ++nT; 3782 if (nT <= __kmp_hws_proc.offset || 3783 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) { 3784 // skip PU 3785 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3786 ++n_old; 3787 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3788 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3789 continue; // move to next node 3790 } 3791 ++nTr; 3792 if (pAddr) // collect requested thread's data 3793 newAddr[n_new] = (*pAddr)[n_old]; 3794 ++n_new; 3795 ++n_old; 3796 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3797 } // threads loop 3798 if (nTr > 0) { 3799 ++nCr; // num cores per socket 3800 ++nCo; // total num cores 3801 if (nTr > nTpC) 3802 nTpC = nTr; // calc max threads per core 3803 } 3804 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3805 } // cores loop 3806 } // tiles support 3807 } // numa_support 3808 if (nCr > 0) { // found cores? 3809 ++nPkg; // num sockets 3810 if (nCr > nCpP) 3811 nCpP = nCr; // calc max cores per socket 3812 } 3813 } // sockets loop 3814 3815 // check the subset is valid 3816 KMP_DEBUG_ASSERT(n_old == __kmp_avail_proc); 3817 KMP_DEBUG_ASSERT(nPkg > 0); 3818 KMP_DEBUG_ASSERT(nCpP > 0); 3819 KMP_DEBUG_ASSERT(nTpC > 0); 3820 KMP_DEBUG_ASSERT(nCo > 0); 3821 KMP_DEBUG_ASSERT(nPkg <= nPackages); 3822 KMP_DEBUG_ASSERT(nCpP <= nCoresPerPkg); 3823 KMP_DEBUG_ASSERT(nTpC <= __kmp_nThreadsPerCore); 3824 KMP_DEBUG_ASSERT(nCo <= __kmp_ncores); 3825 3826 nPackages = nPkg; // correct num sockets 3827 nCoresPerPkg = nCpP; // correct num cores per socket 3828 __kmp_nThreadsPerCore = nTpC; // correct num threads per core 3829 __kmp_avail_proc = n_new; // correct num procs 3830 __kmp_ncores = nCo; // correct num cores 3831 // hwloc topology method end 3832 } else 3833 #endif // KMP_USE_HWLOC 3834 { 3835 int n_old = 0, n_new = 0, proc_num = 0; 3836 if (__kmp_hws_node.num > 0 || __kmp_hws_tile.num > 0) { 3837 KMP_WARNING(AffHWSubsetNoHWLOC); 3838 goto _exit; 3839 } 3840 if (__kmp_hws_socket.num == 0) 3841 __kmp_hws_socket.num = nPackages; // use all available sockets 3842 if (__kmp_hws_core.num == 0) 3843 __kmp_hws_core.num = nCoresPerPkg; // use all available cores 3844 if (__kmp_hws_proc.num == 0 || __kmp_hws_proc.num > __kmp_nThreadsPerCore) 3845 __kmp_hws_proc.num = __kmp_nThreadsPerCore; // use all HW contexts 3846 if (!__kmp_affinity_uniform_topology()) { 3847 KMP_WARNING(AffHWSubsetNonUniform); 3848 goto _exit; // don't support non-uniform topology 3849 } 3850 if (depth > 3) { 3851 KMP_WARNING(AffHWSubsetNonThreeLevel); 3852 goto _exit; // don't support not-3-level topology 3853 } 3854 if (__kmp_hws_socket.offset + __kmp_hws_socket.num > nPackages) { 3855 KMP_WARNING(AffHWSubsetManySockets); 3856 goto _exit; 3857 } 3858 if (__kmp_hws_core.offset + __kmp_hws_core.num > nCoresPerPkg) { 3859 KMP_WARNING(AffHWSubsetManyCores); 3860 goto _exit; 3861 } 3862 // Form the requested subset 3863 if (pAddr) // pAddr is NULL in case of affinity_none 3864 newAddr = (AddrUnsPair *)__kmp_allocate( 3865 sizeof(AddrUnsPair) * __kmp_hws_socket.num * __kmp_hws_core.num * 3866 __kmp_hws_proc.num); 3867 for (int i = 0; i < nPackages; ++i) { 3868 if (i < __kmp_hws_socket.offset || 3869 i >= __kmp_hws_socket.offset + __kmp_hws_socket.num) { 3870 // skip not-requested socket 3871 n_old += nCoresPerPkg * __kmp_nThreadsPerCore; 3872 if (__kmp_pu_os_idx != NULL) { 3873 // walk through skipped socket 3874 for (int j = 0; j < nCoresPerPkg; ++j) { 3875 for (int k = 0; k < __kmp_nThreadsPerCore; ++k) { 3876 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask); 3877 ++proc_num; 3878 } 3879 } 3880 } 3881 } else { 3882 // walk through requested socket 3883 for (int j = 0; j < nCoresPerPkg; ++j) { 3884 if (j < __kmp_hws_core.offset || 3885 j >= __kmp_hws_core.offset + 3886 __kmp_hws_core.num) { // skip not-requested core 3887 n_old += __kmp_nThreadsPerCore; 3888 if (__kmp_pu_os_idx != NULL) { 3889 for (int k = 0; k < __kmp_nThreadsPerCore; ++k) { 3890 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask); 3891 ++proc_num; 3892 } 3893 } 3894 } else { 3895 // walk through requested core 3896 for (int k = 0; k < __kmp_nThreadsPerCore; ++k) { 3897 if (k < __kmp_hws_proc.num) { 3898 if (pAddr) // collect requested thread's data 3899 newAddr[n_new] = (*pAddr)[n_old]; 3900 n_new++; 3901 } else { 3902 if (__kmp_pu_os_idx != NULL) 3903 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask); 3904 } 3905 n_old++; 3906 ++proc_num; 3907 } 3908 } 3909 } 3910 } 3911 } 3912 KMP_DEBUG_ASSERT(n_old == nPackages * nCoresPerPkg * __kmp_nThreadsPerCore); 3913 KMP_DEBUG_ASSERT(n_new == 3914 __kmp_hws_socket.num * __kmp_hws_core.num * 3915 __kmp_hws_proc.num); 3916 nPackages = __kmp_hws_socket.num; // correct nPackages 3917 nCoresPerPkg = __kmp_hws_core.num; // correct nCoresPerPkg 3918 __kmp_nThreadsPerCore = __kmp_hws_proc.num; // correct __kmp_nThreadsPerCore 3919 __kmp_avail_proc = n_new; // correct avail_proc 3920 __kmp_ncores = nPackages * __kmp_hws_core.num; // correct ncores 3921 } // non-hwloc topology method 3922 if (pAddr) { 3923 __kmp_free(*pAddr); 3924 *pAddr = newAddr; // replace old topology with new one 3925 } 3926 if (__kmp_affinity_verbose) { 3927 char m[KMP_AFFIN_MASK_PRINT_LEN]; 3928 __kmp_affinity_print_mask(m, KMP_AFFIN_MASK_PRINT_LEN, 3929 __kmp_affin_fullMask); 3930 if (__kmp_affinity_respect_mask) { 3931 KMP_INFORM(InitOSProcSetRespect, "KMP_HW_SUBSET", m); 3932 } else { 3933 KMP_INFORM(InitOSProcSetNotRespect, "KMP_HW_SUBSET", m); 3934 } 3935 KMP_INFORM(AvailableOSProc, "KMP_HW_SUBSET", __kmp_avail_proc); 3936 kmp_str_buf_t buf; 3937 __kmp_str_buf_init(&buf); 3938 __kmp_str_buf_print(&buf, "%d", nPackages); 3939 KMP_INFORM(TopologyExtra, "KMP_HW_SUBSET", buf.str, nCoresPerPkg, 3940 __kmp_nThreadsPerCore, __kmp_ncores); 3941 __kmp_str_buf_free(&buf); 3942 } 3943 _exit: 3944 if (__kmp_pu_os_idx != NULL) { 3945 __kmp_free(__kmp_pu_os_idx); 3946 __kmp_pu_os_idx = NULL; 3947 } 3948 } 3949 3950 // This function figures out the deepest level at which there is at least one 3951 // cluster/core with more than one processing unit bound to it. 3952 static int __kmp_affinity_find_core_level(const AddrUnsPair *address2os, 3953 int nprocs, int bottom_level) { 3954 int core_level = 0; 3955 3956 for (int i = 0; i < nprocs; i++) { 3957 for (int j = bottom_level; j > 0; j--) { 3958 if (address2os[i].first.labels[j] > 0) { 3959 if (core_level < (j - 1)) { 3960 core_level = j - 1; 3961 } 3962 } 3963 } 3964 } 3965 return core_level; 3966 } 3967 3968 // This function counts number of clusters/cores at given level. 3969 static int __kmp_affinity_compute_ncores(const AddrUnsPair *address2os, 3970 int nprocs, int bottom_level, 3971 int core_level) { 3972 int ncores = 0; 3973 int i, j; 3974 3975 j = bottom_level; 3976 for (i = 0; i < nprocs; i++) { 3977 for (j = bottom_level; j > core_level; j--) { 3978 if ((i + 1) < nprocs) { 3979 if (address2os[i + 1].first.labels[j] > 0) { 3980 break; 3981 } 3982 } 3983 } 3984 if (j == core_level) { 3985 ncores++; 3986 } 3987 } 3988 if (j > core_level) { 3989 // In case of ( nprocs < __kmp_avail_proc ) we may end too deep and miss one 3990 // core. May occur when called from __kmp_affinity_find_core(). 3991 ncores++; 3992 } 3993 return ncores; 3994 } 3995 3996 // This function finds to which cluster/core given processing unit is bound. 3997 static int __kmp_affinity_find_core(const AddrUnsPair *address2os, int proc, 3998 int bottom_level, int core_level) { 3999 return __kmp_affinity_compute_ncores(address2os, proc + 1, bottom_level, 4000 core_level) - 4001 1; 4002 } 4003 4004 // This function finds maximal number of processing units bound to a 4005 // cluster/core at given level. 4006 static int __kmp_affinity_max_proc_per_core(const AddrUnsPair *address2os, 4007 int nprocs, int bottom_level, 4008 int core_level) { 4009 int maxprocpercore = 0; 4010 4011 if (core_level < bottom_level) { 4012 for (int i = 0; i < nprocs; i++) { 4013 int percore = address2os[i].first.labels[core_level + 1] + 1; 4014 4015 if (percore > maxprocpercore) { 4016 maxprocpercore = percore; 4017 } 4018 } 4019 } else { 4020 maxprocpercore = 1; 4021 } 4022 return maxprocpercore; 4023 } 4024 4025 static AddrUnsPair *address2os = NULL; 4026 static int *procarr = NULL; 4027 static int __kmp_aff_depth = 0; 4028 4029 #if KMP_USE_HIER_SCHED 4030 #define KMP_EXIT_AFF_NONE \ 4031 KMP_ASSERT(__kmp_affinity_type == affinity_none); \ 4032 KMP_ASSERT(address2os == NULL); \ 4033 __kmp_apply_thread_places(NULL, 0); \ 4034 __kmp_create_affinity_none_places(); \ 4035 __kmp_dispatch_set_hierarchy_values(); \ 4036 return; 4037 #else 4038 #define KMP_EXIT_AFF_NONE \ 4039 KMP_ASSERT(__kmp_affinity_type == affinity_none); \ 4040 KMP_ASSERT(address2os == NULL); \ 4041 __kmp_apply_thread_places(NULL, 0); \ 4042 __kmp_create_affinity_none_places(); \ 4043 return; 4044 #endif 4045 4046 // Create a one element mask array (set of places) which only contains the 4047 // initial process's affinity mask 4048 static void __kmp_create_affinity_none_places() { 4049 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4050 KMP_ASSERT(__kmp_affinity_type == affinity_none); 4051 __kmp_affinity_num_masks = 1; 4052 KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); 4053 kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, 0); 4054 KMP_CPU_COPY(dest, __kmp_affin_fullMask); 4055 } 4056 4057 static int __kmp_affinity_cmp_Address_child_num(const void *a, const void *b) { 4058 const Address *aa = &(((const AddrUnsPair *)a)->first); 4059 const Address *bb = &(((const AddrUnsPair *)b)->first); 4060 unsigned depth = aa->depth; 4061 unsigned i; 4062 KMP_DEBUG_ASSERT(depth == bb->depth); 4063 KMP_DEBUG_ASSERT((unsigned)__kmp_affinity_compact <= depth); 4064 KMP_DEBUG_ASSERT(__kmp_affinity_compact >= 0); 4065 for (i = 0; i < (unsigned)__kmp_affinity_compact; i++) { 4066 int j = depth - i - 1; 4067 if (aa->childNums[j] < bb->childNums[j]) 4068 return -1; 4069 if (aa->childNums[j] > bb->childNums[j]) 4070 return 1; 4071 } 4072 for (; i < depth; i++) { 4073 int j = i - __kmp_affinity_compact; 4074 if (aa->childNums[j] < bb->childNums[j]) 4075 return -1; 4076 if (aa->childNums[j] > bb->childNums[j]) 4077 return 1; 4078 } 4079 return 0; 4080 } 4081 4082 static void __kmp_aux_affinity_initialize(void) { 4083 if (__kmp_affinity_masks != NULL) { 4084 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4085 return; 4086 } 4087 4088 // Create the "full" mask - this defines all of the processors that we 4089 // consider to be in the machine model. If respect is set, then it is the 4090 // initialization thread's affinity mask. Otherwise, it is all processors that 4091 // we know about on the machine. 4092 if (__kmp_affin_fullMask == NULL) { 4093 KMP_CPU_ALLOC(__kmp_affin_fullMask); 4094 } 4095 if (KMP_AFFINITY_CAPABLE()) { 4096 if (__kmp_affinity_respect_mask) { 4097 __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE); 4098 4099 // Count the number of available processors. 4100 unsigned i; 4101 __kmp_avail_proc = 0; 4102 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 4103 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 4104 continue; 4105 } 4106 __kmp_avail_proc++; 4107 } 4108 if (__kmp_avail_proc > __kmp_xproc) { 4109 if (__kmp_affinity_verbose || 4110 (__kmp_affinity_warnings && 4111 (__kmp_affinity_type != affinity_none))) { 4112 KMP_WARNING(ErrorInitializeAffinity); 4113 } 4114 __kmp_affinity_type = affinity_none; 4115 KMP_AFFINITY_DISABLE(); 4116 return; 4117 } 4118 } else { 4119 __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask); 4120 __kmp_avail_proc = __kmp_xproc; 4121 } 4122 } 4123 4124 if (__kmp_affinity_gran == affinity_gran_tile && 4125 // check if user's request is valid 4126 __kmp_affinity_dispatch->get_api_type() == KMPAffinity::NATIVE_OS) { 4127 KMP_WARNING(AffTilesNoHWLOC, "KMP_AFFINITY"); 4128 __kmp_affinity_gran = affinity_gran_package; 4129 } 4130 4131 int depth = -1; 4132 kmp_i18n_id_t msg_id = kmp_i18n_null; 4133 4134 // For backward compatibility, setting KMP_CPUINFO_FILE => 4135 // KMP_TOPOLOGY_METHOD=cpuinfo 4136 if ((__kmp_cpuinfo_file != NULL) && 4137 (__kmp_affinity_top_method == affinity_top_method_all)) { 4138 __kmp_affinity_top_method = affinity_top_method_cpuinfo; 4139 } 4140 4141 if (__kmp_affinity_top_method == affinity_top_method_all) { 4142 // In the default code path, errors are not fatal - we just try using 4143 // another method. We only emit a warning message if affinity is on, or the 4144 // verbose flag is set, an the nowarnings flag was not set. 4145 const char *file_name = NULL; 4146 int line = 0; 4147 #if KMP_USE_HWLOC 4148 if (depth < 0 && 4149 __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) { 4150 if (__kmp_affinity_verbose) { 4151 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); 4152 } 4153 if (!__kmp_hwloc_error) { 4154 depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id); 4155 if (depth == 0) { 4156 KMP_EXIT_AFF_NONE; 4157 } else if (depth < 0 && __kmp_affinity_verbose) { 4158 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY"); 4159 } 4160 } else if (__kmp_affinity_verbose) { 4161 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY"); 4162 } 4163 } 4164 #endif 4165 4166 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4167 4168 if (depth < 0) { 4169 if (__kmp_affinity_verbose) { 4170 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC)); 4171 } 4172 4173 file_name = NULL; 4174 depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id); 4175 if (depth == 0) { 4176 KMP_EXIT_AFF_NONE; 4177 } 4178 4179 if (depth < 0) { 4180 if (__kmp_affinity_verbose) { 4181 if (msg_id != kmp_i18n_null) { 4182 KMP_INFORM(AffInfoStrStr, "KMP_AFFINITY", 4183 __kmp_i18n_catgets(msg_id), 4184 KMP_I18N_STR(DecodingLegacyAPIC)); 4185 } else { 4186 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", 4187 KMP_I18N_STR(DecodingLegacyAPIC)); 4188 } 4189 } 4190 4191 file_name = NULL; 4192 depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id); 4193 if (depth == 0) { 4194 KMP_EXIT_AFF_NONE; 4195 } 4196 } 4197 } 4198 4199 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4200 4201 #if KMP_OS_LINUX 4202 4203 if (depth < 0) { 4204 if (__kmp_affinity_verbose) { 4205 if (msg_id != kmp_i18n_null) { 4206 KMP_INFORM(AffStrParseFilename, "KMP_AFFINITY", 4207 __kmp_i18n_catgets(msg_id), "/proc/cpuinfo"); 4208 } else { 4209 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", "/proc/cpuinfo"); 4210 } 4211 } 4212 4213 FILE *f = fopen("/proc/cpuinfo", "r"); 4214 if (f == NULL) { 4215 msg_id = kmp_i18n_str_CantOpenCpuinfo; 4216 } else { 4217 file_name = "/proc/cpuinfo"; 4218 depth = 4219 __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f); 4220 fclose(f); 4221 if (depth == 0) { 4222 KMP_EXIT_AFF_NONE; 4223 } 4224 } 4225 } 4226 4227 #endif /* KMP_OS_LINUX */ 4228 4229 #if KMP_GROUP_AFFINITY 4230 4231 if ((depth < 0) && (__kmp_num_proc_groups > 1)) { 4232 if (__kmp_affinity_verbose) { 4233 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY"); 4234 } 4235 4236 depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id); 4237 KMP_ASSERT(depth != 0); 4238 } 4239 4240 #endif /* KMP_GROUP_AFFINITY */ 4241 4242 if (depth < 0) { 4243 if (__kmp_affinity_verbose && (msg_id != kmp_i18n_null)) { 4244 if (file_name == NULL) { 4245 KMP_INFORM(UsingFlatOS, __kmp_i18n_catgets(msg_id)); 4246 } else if (line == 0) { 4247 KMP_INFORM(UsingFlatOSFile, file_name, __kmp_i18n_catgets(msg_id)); 4248 } else { 4249 KMP_INFORM(UsingFlatOSFileLine, file_name, line, 4250 __kmp_i18n_catgets(msg_id)); 4251 } 4252 } 4253 // FIXME - print msg if msg_id = kmp_i18n_null ??? 4254 4255 file_name = ""; 4256 depth = __kmp_affinity_create_flat_map(&address2os, &msg_id); 4257 if (depth == 0) { 4258 KMP_EXIT_AFF_NONE; 4259 } 4260 KMP_ASSERT(depth > 0); 4261 KMP_ASSERT(address2os != NULL); 4262 } 4263 } 4264 4265 #if KMP_USE_HWLOC 4266 else if (__kmp_affinity_top_method == affinity_top_method_hwloc) { 4267 KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC); 4268 if (__kmp_affinity_verbose) { 4269 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); 4270 } 4271 depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id); 4272 if (depth == 0) { 4273 KMP_EXIT_AFF_NONE; 4274 } 4275 } 4276 #endif // KMP_USE_HWLOC 4277 4278 // If the user has specified that a paricular topology discovery method is to be 4279 // used, then we abort if that method fails. The exception is group affinity, 4280 // which might have been implicitly set. 4281 4282 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4283 4284 else if (__kmp_affinity_top_method == affinity_top_method_x2apicid) { 4285 if (__kmp_affinity_verbose) { 4286 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC)); 4287 } 4288 4289 depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id); 4290 if (depth == 0) { 4291 KMP_EXIT_AFF_NONE; 4292 } 4293 if (depth < 0) { 4294 KMP_ASSERT(msg_id != kmp_i18n_null); 4295 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4296 } 4297 } else if (__kmp_affinity_top_method == affinity_top_method_apicid) { 4298 if (__kmp_affinity_verbose) { 4299 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC)); 4300 } 4301 4302 depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id); 4303 if (depth == 0) { 4304 KMP_EXIT_AFF_NONE; 4305 } 4306 if (depth < 0) { 4307 KMP_ASSERT(msg_id != kmp_i18n_null); 4308 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4309 } 4310 } 4311 4312 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4313 4314 else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) { 4315 const char *filename; 4316 if (__kmp_cpuinfo_file != NULL) { 4317 filename = __kmp_cpuinfo_file; 4318 } else { 4319 filename = "/proc/cpuinfo"; 4320 } 4321 4322 if (__kmp_affinity_verbose) { 4323 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename); 4324 } 4325 4326 FILE *f = fopen(filename, "r"); 4327 if (f == NULL) { 4328 int code = errno; 4329 if (__kmp_cpuinfo_file != NULL) { 4330 __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code), 4331 KMP_HNT(NameComesFrom_CPUINFO_FILE), __kmp_msg_null); 4332 } else { 4333 __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code), 4334 __kmp_msg_null); 4335 } 4336 } 4337 int line = 0; 4338 depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f); 4339 fclose(f); 4340 if (depth < 0) { 4341 KMP_ASSERT(msg_id != kmp_i18n_null); 4342 if (line > 0) { 4343 KMP_FATAL(FileLineMsgExiting, filename, line, 4344 __kmp_i18n_catgets(msg_id)); 4345 } else { 4346 KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id)); 4347 } 4348 } 4349 if (__kmp_affinity_type == affinity_none) { 4350 KMP_ASSERT(depth == 0); 4351 KMP_EXIT_AFF_NONE; 4352 } 4353 } 4354 4355 #if KMP_GROUP_AFFINITY 4356 4357 else if (__kmp_affinity_top_method == affinity_top_method_group) { 4358 if (__kmp_affinity_verbose) { 4359 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY"); 4360 } 4361 4362 depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id); 4363 KMP_ASSERT(depth != 0); 4364 if (depth < 0) { 4365 KMP_ASSERT(msg_id != kmp_i18n_null); 4366 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4367 } 4368 } 4369 4370 #endif /* KMP_GROUP_AFFINITY */ 4371 4372 else if (__kmp_affinity_top_method == affinity_top_method_flat) { 4373 if (__kmp_affinity_verbose) { 4374 KMP_INFORM(AffUsingFlatOS, "KMP_AFFINITY"); 4375 } 4376 4377 depth = __kmp_affinity_create_flat_map(&address2os, &msg_id); 4378 if (depth == 0) { 4379 KMP_EXIT_AFF_NONE; 4380 } 4381 // should not fail 4382 KMP_ASSERT(depth > 0); 4383 KMP_ASSERT(address2os != NULL); 4384 } 4385 4386 #if KMP_USE_HIER_SCHED 4387 __kmp_dispatch_set_hierarchy_values(); 4388 #endif 4389 4390 if (address2os == NULL) { 4391 if (KMP_AFFINITY_CAPABLE() && 4392 (__kmp_affinity_verbose || 4393 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none)))) { 4394 KMP_WARNING(ErrorInitializeAffinity); 4395 } 4396 __kmp_affinity_type = affinity_none; 4397 __kmp_create_affinity_none_places(); 4398 KMP_AFFINITY_DISABLE(); 4399 return; 4400 } 4401 4402 if (__kmp_affinity_gran == affinity_gran_tile 4403 #if KMP_USE_HWLOC 4404 && __kmp_tile_depth == 0 4405 #endif 4406 ) { 4407 // tiles requested but not detected, warn user on this 4408 KMP_WARNING(AffTilesNoTiles, "KMP_AFFINITY"); 4409 } 4410 4411 __kmp_apply_thread_places(&address2os, depth); 4412 4413 // Create the table of masks, indexed by thread Id. 4414 unsigned maxIndex; 4415 unsigned numUnique; 4416 kmp_affin_mask_t *osId2Mask = 4417 __kmp_create_masks(&maxIndex, &numUnique, address2os, __kmp_avail_proc); 4418 if (__kmp_affinity_gran_levels == 0) { 4419 KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc); 4420 } 4421 4422 // Set the childNums vector in all Address objects. This must be done before 4423 // we can sort using __kmp_affinity_cmp_Address_child_num(), which takes into 4424 // account the setting of __kmp_affinity_compact. 4425 __kmp_affinity_assign_child_nums(address2os, __kmp_avail_proc); 4426 4427 switch (__kmp_affinity_type) { 4428 4429 case affinity_explicit: 4430 KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL); 4431 #if OMP_40_ENABLED 4432 if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) 4433 #endif 4434 { 4435 __kmp_affinity_process_proclist( 4436 &__kmp_affinity_masks, &__kmp_affinity_num_masks, 4437 __kmp_affinity_proclist, osId2Mask, maxIndex); 4438 } 4439 #if OMP_40_ENABLED 4440 else { 4441 __kmp_affinity_process_placelist( 4442 &__kmp_affinity_masks, &__kmp_affinity_num_masks, 4443 __kmp_affinity_proclist, osId2Mask, maxIndex); 4444 } 4445 #endif 4446 if (__kmp_affinity_num_masks == 0) { 4447 if (__kmp_affinity_verbose || 4448 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { 4449 KMP_WARNING(AffNoValidProcID); 4450 } 4451 __kmp_affinity_type = affinity_none; 4452 return; 4453 } 4454 break; 4455 4456 // The other affinity types rely on sorting the Addresses according to some 4457 // permutation of the machine topology tree. Set __kmp_affinity_compact and 4458 // __kmp_affinity_offset appropriately, then jump to a common code fragment 4459 // to do the sort and create the array of affinity masks. 4460 4461 case affinity_logical: 4462 __kmp_affinity_compact = 0; 4463 if (__kmp_affinity_offset) { 4464 __kmp_affinity_offset = 4465 __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc; 4466 } 4467 goto sortAddresses; 4468 4469 case affinity_physical: 4470 if (__kmp_nThreadsPerCore > 1) { 4471 __kmp_affinity_compact = 1; 4472 if (__kmp_affinity_compact >= depth) { 4473 __kmp_affinity_compact = 0; 4474 } 4475 } else { 4476 __kmp_affinity_compact = 0; 4477 } 4478 if (__kmp_affinity_offset) { 4479 __kmp_affinity_offset = 4480 __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc; 4481 } 4482 goto sortAddresses; 4483 4484 case affinity_scatter: 4485 if (__kmp_affinity_compact >= depth) { 4486 __kmp_affinity_compact = 0; 4487 } else { 4488 __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact; 4489 } 4490 goto sortAddresses; 4491 4492 case affinity_compact: 4493 if (__kmp_affinity_compact >= depth) { 4494 __kmp_affinity_compact = depth - 1; 4495 } 4496 goto sortAddresses; 4497 4498 case affinity_balanced: 4499 if (depth <= 1) { 4500 if (__kmp_affinity_verbose || __kmp_affinity_warnings) { 4501 KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY"); 4502 } 4503 __kmp_affinity_type = affinity_none; 4504 return; 4505 } else if (__kmp_affinity_uniform_topology()) { 4506 break; 4507 } else { // Non-uniform topology 4508 4509 // Save the depth for further usage 4510 __kmp_aff_depth = depth; 4511 4512 int core_level = __kmp_affinity_find_core_level( 4513 address2os, __kmp_avail_proc, depth - 1); 4514 int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc, 4515 depth - 1, core_level); 4516 int maxprocpercore = __kmp_affinity_max_proc_per_core( 4517 address2os, __kmp_avail_proc, depth - 1, core_level); 4518 4519 int nproc = ncores * maxprocpercore; 4520 if ((nproc < 2) || (nproc < __kmp_avail_proc)) { 4521 if (__kmp_affinity_verbose || __kmp_affinity_warnings) { 4522 KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY"); 4523 } 4524 __kmp_affinity_type = affinity_none; 4525 return; 4526 } 4527 4528 procarr = (int *)__kmp_allocate(sizeof(int) * nproc); 4529 for (int i = 0; i < nproc; i++) { 4530 procarr[i] = -1; 4531 } 4532 4533 int lastcore = -1; 4534 int inlastcore = 0; 4535 for (int i = 0; i < __kmp_avail_proc; i++) { 4536 int proc = address2os[i].second; 4537 int core = 4538 __kmp_affinity_find_core(address2os, i, depth - 1, core_level); 4539 4540 if (core == lastcore) { 4541 inlastcore++; 4542 } else { 4543 inlastcore = 0; 4544 } 4545 lastcore = core; 4546 4547 procarr[core * maxprocpercore + inlastcore] = proc; 4548 } 4549 4550 break; 4551 } 4552 4553 sortAddresses: 4554 // Allocate the gtid->affinity mask table. 4555 if (__kmp_affinity_dups) { 4556 __kmp_affinity_num_masks = __kmp_avail_proc; 4557 } else { 4558 __kmp_affinity_num_masks = numUnique; 4559 } 4560 4561 #if OMP_40_ENABLED 4562 if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) && 4563 (__kmp_affinity_num_places > 0) && 4564 ((unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks)) { 4565 __kmp_affinity_num_masks = __kmp_affinity_num_places; 4566 } 4567 #endif 4568 4569 KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); 4570 4571 // Sort the address2os table according to the current setting of 4572 // __kmp_affinity_compact, then fill out __kmp_affinity_masks. 4573 qsort(address2os, __kmp_avail_proc, sizeof(*address2os), 4574 __kmp_affinity_cmp_Address_child_num); 4575 { 4576 int i; 4577 unsigned j; 4578 for (i = 0, j = 0; i < __kmp_avail_proc; i++) { 4579 if ((!__kmp_affinity_dups) && (!address2os[i].first.leader)) { 4580 continue; 4581 } 4582 unsigned osId = address2os[i].second; 4583 kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId); 4584 kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, j); 4585 KMP_ASSERT(KMP_CPU_ISSET(osId, src)); 4586 KMP_CPU_COPY(dest, src); 4587 if (++j >= __kmp_affinity_num_masks) { 4588 break; 4589 } 4590 } 4591 KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks); 4592 } 4593 break; 4594 4595 default: 4596 KMP_ASSERT2(0, "Unexpected affinity setting"); 4597 } 4598 4599 KMP_CPU_FREE_ARRAY(osId2Mask, maxIndex + 1); 4600 machine_hierarchy.init(address2os, __kmp_avail_proc); 4601 } 4602 #undef KMP_EXIT_AFF_NONE 4603 4604 void __kmp_affinity_initialize(void) { 4605 // Much of the code above was written assumming that if a machine was not 4606 // affinity capable, then __kmp_affinity_type == affinity_none. We now 4607 // explicitly represent this as __kmp_affinity_type == affinity_disabled. 4608 // There are too many checks for __kmp_affinity_type == affinity_none 4609 // in this code. Instead of trying to change them all, check if 4610 // __kmp_affinity_type == affinity_disabled, and if so, slam it with 4611 // affinity_none, call the real initialization routine, then restore 4612 // __kmp_affinity_type to affinity_disabled. 4613 int disabled = (__kmp_affinity_type == affinity_disabled); 4614 if (!KMP_AFFINITY_CAPABLE()) { 4615 KMP_ASSERT(disabled); 4616 } 4617 if (disabled) { 4618 __kmp_affinity_type = affinity_none; 4619 } 4620 __kmp_aux_affinity_initialize(); 4621 if (disabled) { 4622 __kmp_affinity_type = affinity_disabled; 4623 } 4624 } 4625 4626 void __kmp_affinity_uninitialize(void) { 4627 if (__kmp_affinity_masks != NULL) { 4628 KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); 4629 __kmp_affinity_masks = NULL; 4630 } 4631 if (__kmp_affin_fullMask != NULL) { 4632 KMP_CPU_FREE(__kmp_affin_fullMask); 4633 __kmp_affin_fullMask = NULL; 4634 } 4635 __kmp_affinity_num_masks = 0; 4636 __kmp_affinity_type = affinity_default; 4637 #if OMP_40_ENABLED 4638 __kmp_affinity_num_places = 0; 4639 #endif 4640 if (__kmp_affinity_proclist != NULL) { 4641 __kmp_free(__kmp_affinity_proclist); 4642 __kmp_affinity_proclist = NULL; 4643 } 4644 if (address2os != NULL) { 4645 __kmp_free(address2os); 4646 address2os = NULL; 4647 } 4648 if (procarr != NULL) { 4649 __kmp_free(procarr); 4650 procarr = NULL; 4651 } 4652 #if KMP_USE_HWLOC 4653 if (__kmp_hwloc_topology != NULL) { 4654 hwloc_topology_destroy(__kmp_hwloc_topology); 4655 __kmp_hwloc_topology = NULL; 4656 } 4657 #endif 4658 KMPAffinity::destroy_api(); 4659 } 4660 4661 void __kmp_affinity_set_init_mask(int gtid, int isa_root) { 4662 if (!KMP_AFFINITY_CAPABLE()) { 4663 return; 4664 } 4665 4666 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); 4667 if (th->th.th_affin_mask == NULL) { 4668 KMP_CPU_ALLOC(th->th.th_affin_mask); 4669 } else { 4670 KMP_CPU_ZERO(th->th.th_affin_mask); 4671 } 4672 4673 // Copy the thread mask to the kmp_info_t strucuture. If 4674 // __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one that 4675 // has all of the OS proc ids set, or if __kmp_affinity_respect_mask is set, 4676 // then the full mask is the same as the mask of the initialization thread. 4677 kmp_affin_mask_t *mask; 4678 int i; 4679 4680 #if OMP_40_ENABLED 4681 if (KMP_AFFINITY_NON_PROC_BIND) 4682 #endif 4683 { 4684 if ((__kmp_affinity_type == affinity_none) || 4685 (__kmp_affinity_type == affinity_balanced)) { 4686 #if KMP_GROUP_AFFINITY 4687 if (__kmp_num_proc_groups > 1) { 4688 return; 4689 } 4690 #endif 4691 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4692 i = 0; 4693 mask = __kmp_affin_fullMask; 4694 } else { 4695 KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0); 4696 i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks; 4697 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); 4698 } 4699 } 4700 #if OMP_40_ENABLED 4701 else { 4702 if ((!isa_root) || 4703 (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) { 4704 #if KMP_GROUP_AFFINITY 4705 if (__kmp_num_proc_groups > 1) { 4706 return; 4707 } 4708 #endif 4709 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4710 i = KMP_PLACE_ALL; 4711 mask = __kmp_affin_fullMask; 4712 } else { 4713 // int i = some hash function or just a counter that doesn't 4714 // always start at 0. Use gtid for now. 4715 KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0); 4716 i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks; 4717 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); 4718 } 4719 } 4720 #endif 4721 4722 #if OMP_40_ENABLED 4723 th->th.th_current_place = i; 4724 if (isa_root) { 4725 th->th.th_new_place = i; 4726 th->th.th_first_place = 0; 4727 th->th.th_last_place = __kmp_affinity_num_masks - 1; 4728 } 4729 4730 if (i == KMP_PLACE_ALL) { 4731 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n", 4732 gtid)); 4733 } else { 4734 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n", 4735 gtid, i)); 4736 } 4737 #else 4738 if (i == -1) { 4739 KA_TRACE( 4740 100, 4741 ("__kmp_affinity_set_init_mask: binding T#%d to __kmp_affin_fullMask\n", 4742 gtid)); 4743 } else { 4744 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to mask %d\n", 4745 gtid, i)); 4746 } 4747 #endif /* OMP_40_ENABLED */ 4748 4749 KMP_CPU_COPY(th->th.th_affin_mask, mask); 4750 4751 if (__kmp_affinity_verbose 4752 /* to avoid duplicate printing (will be correctly printed on barrier) */ 4753 && (__kmp_affinity_type == affinity_none || i != KMP_PLACE_ALL)) { 4754 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4755 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4756 th->th.th_affin_mask); 4757 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), 4758 __kmp_gettid(), gtid, buf); 4759 } 4760 4761 #if KMP_OS_WINDOWS 4762 // On Windows* OS, the process affinity mask might have changed. If the user 4763 // didn't request affinity and this call fails, just continue silently. 4764 // See CQ171393. 4765 if (__kmp_affinity_type == affinity_none) { 4766 __kmp_set_system_affinity(th->th.th_affin_mask, FALSE); 4767 } else 4768 #endif 4769 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); 4770 } 4771 4772 #if OMP_40_ENABLED 4773 4774 void __kmp_affinity_set_place(int gtid) { 4775 int retval; 4776 4777 if (!KMP_AFFINITY_CAPABLE()) { 4778 return; 4779 } 4780 4781 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); 4782 4783 KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current " 4784 "place = %d)\n", 4785 gtid, th->th.th_new_place, th->th.th_current_place)); 4786 4787 // Check that the new place is within this thread's partition. 4788 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4789 KMP_ASSERT(th->th.th_new_place >= 0); 4790 KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks); 4791 if (th->th.th_first_place <= th->th.th_last_place) { 4792 KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) && 4793 (th->th.th_new_place <= th->th.th_last_place)); 4794 } else { 4795 KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) || 4796 (th->th.th_new_place >= th->th.th_last_place)); 4797 } 4798 4799 // Copy the thread mask to the kmp_info_t strucuture, 4800 // and set this thread's affinity. 4801 kmp_affin_mask_t *mask = 4802 KMP_CPU_INDEX(__kmp_affinity_masks, th->th.th_new_place); 4803 KMP_CPU_COPY(th->th.th_affin_mask, mask); 4804 th->th.th_current_place = th->th.th_new_place; 4805 4806 if (__kmp_affinity_verbose) { 4807 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4808 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4809 th->th.th_affin_mask); 4810 KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(), 4811 __kmp_gettid(), gtid, buf); 4812 } 4813 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); 4814 } 4815 4816 #endif /* OMP_40_ENABLED */ 4817 4818 int __kmp_aux_set_affinity(void **mask) { 4819 int gtid; 4820 kmp_info_t *th; 4821 int retval; 4822 4823 if (!KMP_AFFINITY_CAPABLE()) { 4824 return -1; 4825 } 4826 4827 gtid = __kmp_entry_gtid(); 4828 KA_TRACE(1000, ; { 4829 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4830 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4831 (kmp_affin_mask_t *)(*mask)); 4832 __kmp_debug_printf( 4833 "kmp_set_affinity: setting affinity mask for thread %d = %s\n", gtid, 4834 buf); 4835 }); 4836 4837 if (__kmp_env_consistency_check) { 4838 if ((mask == NULL) || (*mask == NULL)) { 4839 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4840 } else { 4841 unsigned proc; 4842 int num_procs = 0; 4843 4844 KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) { 4845 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 4846 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4847 } 4848 if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) { 4849 continue; 4850 } 4851 num_procs++; 4852 } 4853 if (num_procs == 0) { 4854 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4855 } 4856 4857 #if KMP_GROUP_AFFINITY 4858 if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) { 4859 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4860 } 4861 #endif /* KMP_GROUP_AFFINITY */ 4862 } 4863 } 4864 4865 th = __kmp_threads[gtid]; 4866 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4867 retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); 4868 if (retval == 0) { 4869 KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask)); 4870 } 4871 4872 #if OMP_40_ENABLED 4873 th->th.th_current_place = KMP_PLACE_UNDEFINED; 4874 th->th.th_new_place = KMP_PLACE_UNDEFINED; 4875 th->th.th_first_place = 0; 4876 th->th.th_last_place = __kmp_affinity_num_masks - 1; 4877 4878 // Turn off 4.0 affinity for the current tread at this parallel level. 4879 th->th.th_current_task->td_icvs.proc_bind = proc_bind_false; 4880 #endif 4881 4882 return retval; 4883 } 4884 4885 int __kmp_aux_get_affinity(void **mask) { 4886 int gtid; 4887 int retval; 4888 kmp_info_t *th; 4889 4890 if (!KMP_AFFINITY_CAPABLE()) { 4891 return -1; 4892 } 4893 4894 gtid = __kmp_entry_gtid(); 4895 th = __kmp_threads[gtid]; 4896 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4897 4898 KA_TRACE(1000, ; { 4899 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4900 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4901 th->th.th_affin_mask); 4902 __kmp_printf("kmp_get_affinity: stored affinity mask for thread %d = %s\n", 4903 gtid, buf); 4904 }); 4905 4906 if (__kmp_env_consistency_check) { 4907 if ((mask == NULL) || (*mask == NULL)) { 4908 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity"); 4909 } 4910 } 4911 4912 #if !KMP_OS_WINDOWS 4913 4914 retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); 4915 KA_TRACE(1000, ; { 4916 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4917 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4918 (kmp_affin_mask_t *)(*mask)); 4919 __kmp_printf("kmp_get_affinity: system affinity mask for thread %d = %s\n", 4920 gtid, buf); 4921 }); 4922 return retval; 4923 4924 #else 4925 4926 KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask); 4927 return 0; 4928 4929 #endif /* KMP_OS_WINDOWS */ 4930 } 4931 4932 int __kmp_aux_get_affinity_max_proc() { 4933 if (!KMP_AFFINITY_CAPABLE()) { 4934 return 0; 4935 } 4936 #if KMP_GROUP_AFFINITY 4937 if (__kmp_num_proc_groups > 1) { 4938 return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT); 4939 } 4940 #endif 4941 return __kmp_xproc; 4942 } 4943 4944 int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) { 4945 int retval; 4946 4947 if (!KMP_AFFINITY_CAPABLE()) { 4948 return -1; 4949 } 4950 4951 KA_TRACE(1000, ; { 4952 int gtid = __kmp_entry_gtid(); 4953 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4954 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4955 (kmp_affin_mask_t *)(*mask)); 4956 __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in " 4957 "affinity mask for thread %d = %s\n", 4958 proc, gtid, buf); 4959 }); 4960 4961 if (__kmp_env_consistency_check) { 4962 if ((mask == NULL) || (*mask == NULL)) { 4963 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc"); 4964 } 4965 } 4966 4967 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 4968 return -1; 4969 } 4970 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 4971 return -2; 4972 } 4973 4974 KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask)); 4975 return 0; 4976 } 4977 4978 int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) { 4979 int retval; 4980 4981 if (!KMP_AFFINITY_CAPABLE()) { 4982 return -1; 4983 } 4984 4985 KA_TRACE(1000, ; { 4986 int gtid = __kmp_entry_gtid(); 4987 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4988 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4989 (kmp_affin_mask_t *)(*mask)); 4990 __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in " 4991 "affinity mask for thread %d = %s\n", 4992 proc, gtid, buf); 4993 }); 4994 4995 if (__kmp_env_consistency_check) { 4996 if ((mask == NULL) || (*mask == NULL)) { 4997 KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc"); 4998 } 4999 } 5000 5001 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 5002 return -1; 5003 } 5004 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 5005 return -2; 5006 } 5007 5008 KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask)); 5009 return 0; 5010 } 5011 5012 int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) { 5013 int retval; 5014 5015 if (!KMP_AFFINITY_CAPABLE()) { 5016 return -1; 5017 } 5018 5019 KA_TRACE(1000, ; { 5020 int gtid = __kmp_entry_gtid(); 5021 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5022 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5023 (kmp_affin_mask_t *)(*mask)); 5024 __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in " 5025 "affinity mask for thread %d = %s\n", 5026 proc, gtid, buf); 5027 }); 5028 5029 if (__kmp_env_consistency_check) { 5030 if ((mask == NULL) || (*mask == NULL)) { 5031 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc"); 5032 } 5033 } 5034 5035 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 5036 return -1; 5037 } 5038 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 5039 return 0; 5040 } 5041 5042 return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask)); 5043 } 5044 5045 // Dynamic affinity settings - Affinity balanced 5046 void __kmp_balanced_affinity(int tid, int nthreads) { 5047 bool fine_gran = true; 5048 5049 switch (__kmp_affinity_gran) { 5050 case affinity_gran_fine: 5051 case affinity_gran_thread: 5052 break; 5053 case affinity_gran_core: 5054 if (__kmp_nThreadsPerCore > 1) { 5055 fine_gran = false; 5056 } 5057 break; 5058 case affinity_gran_package: 5059 if (nCoresPerPkg > 1) { 5060 fine_gran = false; 5061 } 5062 break; 5063 default: 5064 fine_gran = false; 5065 } 5066 5067 if (__kmp_affinity_uniform_topology()) { 5068 int coreID; 5069 int threadID; 5070 // Number of hyper threads per core in HT machine 5071 int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores; 5072 // Number of cores 5073 int ncores = __kmp_ncores; 5074 if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) { 5075 __kmp_nth_per_core = __kmp_avail_proc / nPackages; 5076 ncores = nPackages; 5077 } 5078 // How many threads will be bound to each core 5079 int chunk = nthreads / ncores; 5080 // How many cores will have an additional thread bound to it - "big cores" 5081 int big_cores = nthreads % ncores; 5082 // Number of threads on the big cores 5083 int big_nth = (chunk + 1) * big_cores; 5084 if (tid < big_nth) { 5085 coreID = tid / (chunk + 1); 5086 threadID = (tid % (chunk + 1)) % __kmp_nth_per_core; 5087 } else { // tid >= big_nth 5088 coreID = (tid - big_cores) / chunk; 5089 threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core; 5090 } 5091 5092 KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(), 5093 "Illegal set affinity operation when not capable"); 5094 5095 kmp_affin_mask_t *mask; 5096 KMP_CPU_ALLOC_ON_STACK(mask); 5097 KMP_CPU_ZERO(mask); 5098 5099 if (fine_gran) { 5100 int osID = address2os[coreID * __kmp_nth_per_core + threadID].second; 5101 KMP_CPU_SET(osID, mask); 5102 } else { 5103 for (int i = 0; i < __kmp_nth_per_core; i++) { 5104 int osID; 5105 osID = address2os[coreID * __kmp_nth_per_core + i].second; 5106 KMP_CPU_SET(osID, mask); 5107 } 5108 } 5109 if (__kmp_affinity_verbose) { 5110 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5111 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); 5112 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), 5113 __kmp_gettid(), tid, buf); 5114 } 5115 __kmp_set_system_affinity(mask, TRUE); 5116 KMP_CPU_FREE_FROM_STACK(mask); 5117 } else { // Non-uniform topology 5118 5119 kmp_affin_mask_t *mask; 5120 KMP_CPU_ALLOC_ON_STACK(mask); 5121 KMP_CPU_ZERO(mask); 5122 5123 int core_level = __kmp_affinity_find_core_level( 5124 address2os, __kmp_avail_proc, __kmp_aff_depth - 1); 5125 int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc, 5126 __kmp_aff_depth - 1, core_level); 5127 int nth_per_core = __kmp_affinity_max_proc_per_core( 5128 address2os, __kmp_avail_proc, __kmp_aff_depth - 1, core_level); 5129 5130 // For performance gain consider the special case nthreads == 5131 // __kmp_avail_proc 5132 if (nthreads == __kmp_avail_proc) { 5133 if (fine_gran) { 5134 int osID = address2os[tid].second; 5135 KMP_CPU_SET(osID, mask); 5136 } else { 5137 int core = __kmp_affinity_find_core(address2os, tid, 5138 __kmp_aff_depth - 1, core_level); 5139 for (int i = 0; i < __kmp_avail_proc; i++) { 5140 int osID = address2os[i].second; 5141 if (__kmp_affinity_find_core(address2os, i, __kmp_aff_depth - 1, 5142 core_level) == core) { 5143 KMP_CPU_SET(osID, mask); 5144 } 5145 } 5146 } 5147 } else if (nthreads <= ncores) { 5148 5149 int core = 0; 5150 for (int i = 0; i < ncores; i++) { 5151 // Check if this core from procarr[] is in the mask 5152 int in_mask = 0; 5153 for (int j = 0; j < nth_per_core; j++) { 5154 if (procarr[i * nth_per_core + j] != -1) { 5155 in_mask = 1; 5156 break; 5157 } 5158 } 5159 if (in_mask) { 5160 if (tid == core) { 5161 for (int j = 0; j < nth_per_core; j++) { 5162 int osID = procarr[i * nth_per_core + j]; 5163 if (osID != -1) { 5164 KMP_CPU_SET(osID, mask); 5165 // For fine granularity it is enough to set the first available 5166 // osID for this core 5167 if (fine_gran) { 5168 break; 5169 } 5170 } 5171 } 5172 break; 5173 } else { 5174 core++; 5175 } 5176 } 5177 } 5178 } else { // nthreads > ncores 5179 // Array to save the number of processors at each core 5180 int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores); 5181 // Array to save the number of cores with "x" available processors; 5182 int *ncores_with_x_procs = 5183 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); 5184 // Array to save the number of cores with # procs from x to nth_per_core 5185 int *ncores_with_x_to_max_procs = 5186 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); 5187 5188 for (int i = 0; i <= nth_per_core; i++) { 5189 ncores_with_x_procs[i] = 0; 5190 ncores_with_x_to_max_procs[i] = 0; 5191 } 5192 5193 for (int i = 0; i < ncores; i++) { 5194 int cnt = 0; 5195 for (int j = 0; j < nth_per_core; j++) { 5196 if (procarr[i * nth_per_core + j] != -1) { 5197 cnt++; 5198 } 5199 } 5200 nproc_at_core[i] = cnt; 5201 ncores_with_x_procs[cnt]++; 5202 } 5203 5204 for (int i = 0; i <= nth_per_core; i++) { 5205 for (int j = i; j <= nth_per_core; j++) { 5206 ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j]; 5207 } 5208 } 5209 5210 // Max number of processors 5211 int nproc = nth_per_core * ncores; 5212 // An array to keep number of threads per each context 5213 int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc); 5214 for (int i = 0; i < nproc; i++) { 5215 newarr[i] = 0; 5216 } 5217 5218 int nth = nthreads; 5219 int flag = 0; 5220 while (nth > 0) { 5221 for (int j = 1; j <= nth_per_core; j++) { 5222 int cnt = ncores_with_x_to_max_procs[j]; 5223 for (int i = 0; i < ncores; i++) { 5224 // Skip the core with 0 processors 5225 if (nproc_at_core[i] == 0) { 5226 continue; 5227 } 5228 for (int k = 0; k < nth_per_core; k++) { 5229 if (procarr[i * nth_per_core + k] != -1) { 5230 if (newarr[i * nth_per_core + k] == 0) { 5231 newarr[i * nth_per_core + k] = 1; 5232 cnt--; 5233 nth--; 5234 break; 5235 } else { 5236 if (flag != 0) { 5237 newarr[i * nth_per_core + k]++; 5238 cnt--; 5239 nth--; 5240 break; 5241 } 5242 } 5243 } 5244 } 5245 if (cnt == 0 || nth == 0) { 5246 break; 5247 } 5248 } 5249 if (nth == 0) { 5250 break; 5251 } 5252 } 5253 flag = 1; 5254 } 5255 int sum = 0; 5256 for (int i = 0; i < nproc; i++) { 5257 sum += newarr[i]; 5258 if (sum > tid) { 5259 if (fine_gran) { 5260 int osID = procarr[i]; 5261 KMP_CPU_SET(osID, mask); 5262 } else { 5263 int coreID = i / nth_per_core; 5264 for (int ii = 0; ii < nth_per_core; ii++) { 5265 int osID = procarr[coreID * nth_per_core + ii]; 5266 if (osID != -1) { 5267 KMP_CPU_SET(osID, mask); 5268 } 5269 } 5270 } 5271 break; 5272 } 5273 } 5274 __kmp_free(newarr); 5275 } 5276 5277 if (__kmp_affinity_verbose) { 5278 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5279 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); 5280 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), 5281 __kmp_gettid(), tid, buf); 5282 } 5283 __kmp_set_system_affinity(mask, TRUE); 5284 KMP_CPU_FREE_FROM_STACK(mask); 5285 } 5286 } 5287 5288 #if KMP_OS_LINUX 5289 // We don't need this entry for Windows because 5290 // there is GetProcessAffinityMask() api 5291 // 5292 // The intended usage is indicated by these steps: 5293 // 1) The user gets the current affinity mask 5294 // 2) Then sets the affinity by calling this function 5295 // 3) Error check the return value 5296 // 4) Use non-OpenMP parallelization 5297 // 5) Reset the affinity to what was stored in step 1) 5298 #ifdef __cplusplus 5299 extern "C" 5300 #endif 5301 int 5302 kmp_set_thread_affinity_mask_initial() 5303 // the function returns 0 on success, 5304 // -1 if we cannot bind thread 5305 // >0 (errno) if an error happened during binding 5306 { 5307 int gtid = __kmp_get_gtid(); 5308 if (gtid < 0) { 5309 // Do not touch non-omp threads 5310 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5311 "non-omp thread, returning\n")); 5312 return -1; 5313 } 5314 if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) { 5315 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5316 "affinity not initialized, returning\n")); 5317 return -1; 5318 } 5319 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5320 "set full mask for thread %d\n", 5321 gtid)); 5322 KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL); 5323 return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE); 5324 } 5325 #endif 5326 5327 #endif // KMP_AFFINITY_SUPPORTED 5328