1 /* 2 * kmp_affinity.cpp -- affinity management 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_i18n.h" 16 #include "kmp_io.h" 17 #include "kmp_str.h" 18 #include "kmp_wrapper_getpid.h" 19 #if KMP_USE_HIER_SCHED 20 #include "kmp_dispatch_hier.h" 21 #endif 22 23 // Store the real or imagined machine hierarchy here 24 static hierarchy_info machine_hierarchy; 25 26 void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); } 27 28 void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) { 29 kmp_uint32 depth; 30 // The test below is true if affinity is available, but set to "none". Need to 31 // init on first use of hierarchical barrier. 32 if (TCR_1(machine_hierarchy.uninitialized)) 33 machine_hierarchy.init(NULL, nproc); 34 35 // Adjust the hierarchy in case num threads exceeds original 36 if (nproc > machine_hierarchy.base_num_threads) 37 machine_hierarchy.resize(nproc); 38 39 depth = machine_hierarchy.depth; 40 KMP_DEBUG_ASSERT(depth > 0); 41 42 thr_bar->depth = depth; 43 thr_bar->base_leaf_kids = (kmp_uint8)machine_hierarchy.numPerLevel[0] - 1; 44 thr_bar->skip_per_level = machine_hierarchy.skipPerLevel; 45 } 46 47 #if KMP_AFFINITY_SUPPORTED 48 49 bool KMPAffinity::picked_api = false; 50 51 void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); } 52 void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); } 53 void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); } 54 void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); } 55 void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); } 56 void KMPAffinity::operator delete(void *p) { __kmp_free(p); } 57 58 void KMPAffinity::pick_api() { 59 KMPAffinity *affinity_dispatch; 60 if (picked_api) 61 return; 62 #if KMP_USE_HWLOC 63 // Only use Hwloc if affinity isn't explicitly disabled and 64 // user requests Hwloc topology method 65 if (__kmp_affinity_top_method == affinity_top_method_hwloc && 66 __kmp_affinity_type != affinity_disabled) { 67 affinity_dispatch = new KMPHwlocAffinity(); 68 } else 69 #endif 70 { 71 affinity_dispatch = new KMPNativeAffinity(); 72 } 73 __kmp_affinity_dispatch = affinity_dispatch; 74 picked_api = true; 75 } 76 77 void KMPAffinity::destroy_api() { 78 if (__kmp_affinity_dispatch != NULL) { 79 delete __kmp_affinity_dispatch; 80 __kmp_affinity_dispatch = NULL; 81 picked_api = false; 82 } 83 } 84 85 #define KMP_ADVANCE_SCAN(scan) \ 86 while (*scan != '\0') { \ 87 scan++; \ 88 } 89 90 // Print the affinity mask to the character array in a pretty format. 91 // The format is a comma separated list of non-negative integers or integer 92 // ranges: e.g., 1,2,3-5,7,9-15 93 // The format can also be the string "{<empty>}" if no bits are set in mask 94 char *__kmp_affinity_print_mask(char *buf, int buf_len, 95 kmp_affin_mask_t *mask) { 96 int start = 0, finish = 0, previous = 0; 97 bool first_range; 98 KMP_ASSERT(buf); 99 KMP_ASSERT(buf_len >= 40); 100 KMP_ASSERT(mask); 101 char *scan = buf; 102 char *end = buf + buf_len - 1; 103 104 // Check for empty set. 105 if (mask->begin() == mask->end()) { 106 KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}"); 107 KMP_ADVANCE_SCAN(scan); 108 KMP_ASSERT(scan <= end); 109 return buf; 110 } 111 112 first_range = true; 113 start = mask->begin(); 114 while (1) { 115 // Find next range 116 // [start, previous] is inclusive range of contiguous bits in mask 117 for (finish = mask->next(start), previous = start; 118 finish == previous + 1 && finish != mask->end(); 119 finish = mask->next(finish)) { 120 previous = finish; 121 } 122 123 // The first range does not need a comma printed before it, but the rest 124 // of the ranges do need a comma beforehand 125 if (!first_range) { 126 KMP_SNPRINTF(scan, end - scan + 1, "%s", ","); 127 KMP_ADVANCE_SCAN(scan); 128 } else { 129 first_range = false; 130 } 131 // Range with three or more contiguous bits in the affinity mask 132 if (previous - start > 1) { 133 KMP_SNPRINTF(scan, end - scan + 1, "%d-%d", static_cast<int>(start), 134 static_cast<int>(previous)); 135 } else { 136 // Range with one or two contiguous bits in the affinity mask 137 KMP_SNPRINTF(scan, end - scan + 1, "%d", static_cast<int>(start)); 138 KMP_ADVANCE_SCAN(scan); 139 if (previous - start > 0) { 140 KMP_SNPRINTF(scan, end - scan + 1, ",%d", static_cast<int>(previous)); 141 } 142 } 143 KMP_ADVANCE_SCAN(scan); 144 // Start over with new start point 145 start = finish; 146 if (start == mask->end()) 147 break; 148 // Check for overflow 149 if (end - scan < 2) 150 break; 151 } 152 153 // Check for overflow 154 KMP_ASSERT(scan <= end); 155 return buf; 156 } 157 #undef KMP_ADVANCE_SCAN 158 159 // Print the affinity mask to the string buffer object in a pretty format 160 // The format is a comma separated list of non-negative integers or integer 161 // ranges: e.g., 1,2,3-5,7,9-15 162 // The format can also be the string "{<empty>}" if no bits are set in mask 163 kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf, 164 kmp_affin_mask_t *mask) { 165 int start = 0, finish = 0, previous = 0; 166 bool first_range; 167 KMP_ASSERT(buf); 168 KMP_ASSERT(mask); 169 170 __kmp_str_buf_clear(buf); 171 172 // Check for empty set. 173 if (mask->begin() == mask->end()) { 174 __kmp_str_buf_print(buf, "%s", "{<empty>}"); 175 return buf; 176 } 177 178 first_range = true; 179 start = mask->begin(); 180 while (1) { 181 // Find next range 182 // [start, previous] is inclusive range of contiguous bits in mask 183 for (finish = mask->next(start), previous = start; 184 finish == previous + 1 && finish != mask->end(); 185 finish = mask->next(finish)) { 186 previous = finish; 187 } 188 189 // The first range does not need a comma printed before it, but the rest 190 // of the ranges do need a comma beforehand 191 if (!first_range) { 192 __kmp_str_buf_print(buf, "%s", ","); 193 } else { 194 first_range = false; 195 } 196 // Range with three or more contiguous bits in the affinity mask 197 if (previous - start > 1) { 198 __kmp_str_buf_print(buf, "%d-%d", static_cast<int>(start), 199 static_cast<int>(previous)); 200 } else { 201 // Range with one or two contiguous bits in the affinity mask 202 __kmp_str_buf_print(buf, "%d", static_cast<int>(start)); 203 if (previous - start > 0) { 204 __kmp_str_buf_print(buf, ",%d", static_cast<int>(previous)); 205 } 206 } 207 // Start over with new start point 208 start = finish; 209 if (start == mask->end()) 210 break; 211 } 212 return buf; 213 } 214 215 void __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) { 216 KMP_CPU_ZERO(mask); 217 218 #if KMP_GROUP_AFFINITY 219 220 if (__kmp_num_proc_groups > 1) { 221 int group; 222 KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL); 223 for (group = 0; group < __kmp_num_proc_groups; group++) { 224 int i; 225 int num = __kmp_GetActiveProcessorCount(group); 226 for (i = 0; i < num; i++) { 227 KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask); 228 } 229 } 230 } else 231 232 #endif /* KMP_GROUP_AFFINITY */ 233 234 { 235 int proc; 236 for (proc = 0; proc < __kmp_xproc; proc++) { 237 KMP_CPU_SET(proc, mask); 238 } 239 } 240 } 241 242 // When sorting by labels, __kmp_affinity_assign_child_nums() must first be 243 // called to renumber the labels from [0..n] and place them into the child_num 244 // vector of the address object. This is done in case the labels used for 245 // the children at one node of the hierarchy differ from those used for 246 // another node at the same level. Example: suppose the machine has 2 nodes 247 // with 2 packages each. The first node contains packages 601 and 602, and 248 // second node contains packages 603 and 604. If we try to sort the table 249 // for "scatter" affinity, the table will still be sorted 601, 602, 603, 604 250 // because we are paying attention to the labels themselves, not the ordinal 251 // child numbers. By using the child numbers in the sort, the result is 252 // {0,0}=601, {0,1}=603, {1,0}=602, {1,1}=604. 253 static void __kmp_affinity_assign_child_nums(AddrUnsPair *address2os, 254 int numAddrs) { 255 KMP_DEBUG_ASSERT(numAddrs > 0); 256 int depth = address2os->first.depth; 257 unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 258 unsigned *lastLabel = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 259 int labCt; 260 for (labCt = 0; labCt < depth; labCt++) { 261 address2os[0].first.childNums[labCt] = counts[labCt] = 0; 262 lastLabel[labCt] = address2os[0].first.labels[labCt]; 263 } 264 int i; 265 for (i = 1; i < numAddrs; i++) { 266 for (labCt = 0; labCt < depth; labCt++) { 267 if (address2os[i].first.labels[labCt] != lastLabel[labCt]) { 268 int labCt2; 269 for (labCt2 = labCt + 1; labCt2 < depth; labCt2++) { 270 counts[labCt2] = 0; 271 lastLabel[labCt2] = address2os[i].first.labels[labCt2]; 272 } 273 counts[labCt]++; 274 lastLabel[labCt] = address2os[i].first.labels[labCt]; 275 break; 276 } 277 } 278 for (labCt = 0; labCt < depth; labCt++) { 279 address2os[i].first.childNums[labCt] = counts[labCt]; 280 } 281 for (; labCt < (int)Address::maxDepth; labCt++) { 282 address2os[i].first.childNums[labCt] = 0; 283 } 284 } 285 __kmp_free(lastLabel); 286 __kmp_free(counts); 287 } 288 289 // All of the __kmp_affinity_create_*_map() routines should set 290 // __kmp_affinity_masks to a vector of affinity mask objects of length 291 // __kmp_affinity_num_masks, if __kmp_affinity_type != affinity_none, and return 292 // the number of levels in the machine topology tree (zero if 293 // __kmp_affinity_type == affinity_none). 294 // 295 // All of the __kmp_affinity_create_*_map() routines should set 296 // *__kmp_affin_fullMask to the affinity mask for the initialization thread. 297 // They need to save and restore the mask, and it could be needed later, so 298 // saving it is just an optimization to avoid calling kmp_get_system_affinity() 299 // again. 300 kmp_affin_mask_t *__kmp_affin_fullMask = NULL; 301 302 static int nCoresPerPkg, nPackages; 303 static int __kmp_nThreadsPerCore; 304 #ifndef KMP_DFLT_NTH_CORES 305 static int __kmp_ncores; 306 #endif 307 static int *__kmp_pu_os_idx = NULL; 308 309 // __kmp_affinity_uniform_topology() doesn't work when called from 310 // places which support arbitrarily many levels in the machine topology 311 // map, i.e. the non-default cases in __kmp_affinity_create_cpuinfo_map() 312 // __kmp_affinity_create_x2apicid_map(). 313 inline static bool __kmp_affinity_uniform_topology() { 314 return __kmp_avail_proc == (__kmp_nThreadsPerCore * nCoresPerPkg * nPackages); 315 } 316 317 // Print out the detailed machine topology map, i.e. the physical locations 318 // of each OS proc. 319 static void __kmp_affinity_print_topology(AddrUnsPair *address2os, int len, 320 int depth, int pkgLevel, 321 int coreLevel, int threadLevel) { 322 int proc; 323 324 KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY"); 325 for (proc = 0; proc < len; proc++) { 326 int level; 327 kmp_str_buf_t buf; 328 __kmp_str_buf_init(&buf); 329 for (level = 0; level < depth; level++) { 330 if (level == threadLevel) { 331 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Thread)); 332 } else if (level == coreLevel) { 333 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Core)); 334 } else if (level == pkgLevel) { 335 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Package)); 336 } else if (level > pkgLevel) { 337 __kmp_str_buf_print(&buf, "%s_%d ", KMP_I18N_STR(Node), 338 level - pkgLevel - 1); 339 } else { 340 __kmp_str_buf_print(&buf, "L%d ", level); 341 } 342 __kmp_str_buf_print(&buf, "%d ", address2os[proc].first.labels[level]); 343 } 344 KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", address2os[proc].second, 345 buf.str); 346 __kmp_str_buf_free(&buf); 347 } 348 } 349 350 #if KMP_USE_HWLOC 351 352 static void __kmp_affinity_print_hwloc_tp(AddrUnsPair *addrP, int len, 353 int depth, int *levels) { 354 int proc; 355 kmp_str_buf_t buf; 356 __kmp_str_buf_init(&buf); 357 KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY"); 358 for (proc = 0; proc < len; proc++) { 359 __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Package), 360 addrP[proc].first.labels[0]); 361 if (depth > 1) { 362 int level = 1; // iterate over levels 363 int label = 1; // iterate over labels 364 if (__kmp_numa_detected) 365 // node level follows package 366 if (levels[level++] > 0) 367 __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Node), 368 addrP[proc].first.labels[label++]); 369 if (__kmp_tile_depth > 0) 370 // tile level follows node if any, or package 371 if (levels[level++] > 0) 372 __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Tile), 373 addrP[proc].first.labels[label++]); 374 if (levels[level++] > 0) 375 // core level follows 376 __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Core), 377 addrP[proc].first.labels[label++]); 378 if (levels[level++] > 0) 379 // thread level is the latest 380 __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Thread), 381 addrP[proc].first.labels[label++]); 382 KMP_DEBUG_ASSERT(label == depth); 383 } 384 KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", addrP[proc].second, buf.str); 385 __kmp_str_buf_clear(&buf); 386 } 387 __kmp_str_buf_free(&buf); 388 } 389 390 static int nNodePerPkg, nTilePerPkg, nTilePerNode, nCorePerNode, nCorePerTile; 391 392 // This function removes the topology levels that are radix 1 and don't offer 393 // further information about the topology. The most common example is when you 394 // have one thread context per core, we don't want the extra thread context 395 // level if it offers no unique labels. So they are removed. 396 // return value: the new depth of address2os 397 static int __kmp_affinity_remove_radix_one_levels(AddrUnsPair *addrP, int nTh, 398 int depth, int *levels) { 399 int level; 400 int i; 401 int radix1_detected; 402 int new_depth = depth; 403 for (level = depth - 1; level > 0; --level) { 404 // Detect if this level is radix 1 405 radix1_detected = 1; 406 for (i = 1; i < nTh; ++i) { 407 if (addrP[0].first.labels[level] != addrP[i].first.labels[level]) { 408 // There are differing label values for this level so it stays 409 radix1_detected = 0; 410 break; 411 } 412 } 413 if (!radix1_detected) 414 continue; 415 // Radix 1 was detected 416 --new_depth; 417 levels[level] = -1; // mark level as not present in address2os array 418 if (level == new_depth) { 419 // "turn off" deepest level, just decrement the depth that removes 420 // the level from address2os array 421 for (i = 0; i < nTh; ++i) { 422 addrP[i].first.depth--; 423 } 424 } else { 425 // For other levels, we move labels over and also reduce the depth 426 int j; 427 for (j = level; j < new_depth; ++j) { 428 for (i = 0; i < nTh; ++i) { 429 addrP[i].first.labels[j] = addrP[i].first.labels[j + 1]; 430 addrP[i].first.depth--; 431 } 432 levels[j + 1] -= 1; 433 } 434 } 435 } 436 return new_depth; 437 } 438 439 // Returns the number of objects of type 'type' below 'obj' within the topology 440 // tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is 441 // HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET 442 // object. 443 static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj, 444 hwloc_obj_type_t type) { 445 int retval = 0; 446 hwloc_obj_t first; 447 for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type, 448 obj->logical_index, type, 0); 449 first != NULL && 450 hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, obj->type, first) == 451 obj; 452 first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type, 453 first)) { 454 ++retval; 455 } 456 return retval; 457 } 458 459 static int __kmp_hwloc_count_children_by_depth(hwloc_topology_t t, 460 hwloc_obj_t o, 461 kmp_hwloc_depth_t depth, 462 hwloc_obj_t *f) { 463 if (o->depth == depth) { 464 if (*f == NULL) 465 *f = o; // output first descendant found 466 return 1; 467 } 468 int sum = 0; 469 for (unsigned i = 0; i < o->arity; i++) 470 sum += __kmp_hwloc_count_children_by_depth(t, o->children[i], depth, f); 471 return sum; // will be 0 if no one found (as PU arity is 0) 472 } 473 474 static int __kmp_hwloc_count_children_by_type(hwloc_topology_t t, hwloc_obj_t o, 475 hwloc_obj_type_t type, 476 hwloc_obj_t *f) { 477 if (!hwloc_compare_types(o->type, type)) { 478 if (*f == NULL) 479 *f = o; // output first descendant found 480 return 1; 481 } 482 int sum = 0; 483 for (unsigned i = 0; i < o->arity; i++) 484 sum += __kmp_hwloc_count_children_by_type(t, o->children[i], type, f); 485 return sum; // will be 0 if no one found (as PU arity is 0) 486 } 487 488 static int __kmp_hwloc_process_obj_core_pu(AddrUnsPair *addrPair, 489 int &nActiveThreads, 490 int &num_active_cores, 491 hwloc_obj_t obj, int depth, 492 int *labels) { 493 hwloc_obj_t core = NULL; 494 hwloc_topology_t &tp = __kmp_hwloc_topology; 495 int NC = __kmp_hwloc_count_children_by_type(tp, obj, HWLOC_OBJ_CORE, &core); 496 for (int core_id = 0; core_id < NC; ++core_id, core = core->next_cousin) { 497 hwloc_obj_t pu = NULL; 498 KMP_DEBUG_ASSERT(core != NULL); 499 int num_active_threads = 0; 500 int NT = __kmp_hwloc_count_children_by_type(tp, core, HWLOC_OBJ_PU, &pu); 501 // int NT = core->arity; pu = core->first_child; // faster? 502 for (int pu_id = 0; pu_id < NT; ++pu_id, pu = pu->next_cousin) { 503 KMP_DEBUG_ASSERT(pu != NULL); 504 if (!KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask)) 505 continue; // skip inactive (inaccessible) unit 506 Address addr(depth + 2); 507 KA_TRACE(20, ("Hwloc inserting %d (%d) %d (%d) %d (%d) into address2os\n", 508 obj->os_index, obj->logical_index, core->os_index, 509 core->logical_index, pu->os_index, pu->logical_index)); 510 for (int i = 0; i < depth; ++i) 511 addr.labels[i] = labels[i]; // package, etc. 512 addr.labels[depth] = core_id; // core 513 addr.labels[depth + 1] = pu_id; // pu 514 addrPair[nActiveThreads] = AddrUnsPair(addr, pu->os_index); 515 __kmp_pu_os_idx[nActiveThreads] = pu->os_index; 516 nActiveThreads++; 517 ++num_active_threads; // count active threads per core 518 } 519 if (num_active_threads) { // were there any active threads on the core? 520 ++__kmp_ncores; // count total active cores 521 ++num_active_cores; // count active cores per socket 522 if (num_active_threads > __kmp_nThreadsPerCore) 523 __kmp_nThreadsPerCore = num_active_threads; // calc maximum 524 } 525 } 526 return 0; 527 } 528 529 // Check if NUMA node detected below the package, 530 // and if tile object is detected and return its depth 531 static int __kmp_hwloc_check_numa() { 532 hwloc_topology_t &tp = __kmp_hwloc_topology; 533 hwloc_obj_t hT, hC, hL, hN, hS; // hwloc objects (pointers to) 534 int depth, l2cache_depth, package_depth; 535 536 // Get some PU 537 hT = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PU, 0); 538 if (hT == NULL) // something has gone wrong 539 return 1; 540 541 // check NUMA node below PACKAGE 542 hN = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hT); 543 hS = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hT); 544 KMP_DEBUG_ASSERT(hS != NULL); 545 if (hN != NULL && hN->depth > hS->depth) { 546 __kmp_numa_detected = TRUE; // socket includes node(s) 547 if (__kmp_affinity_gran == affinity_gran_node) { 548 __kmp_affinity_gran = affinity_gran_numa; 549 } 550 } 551 552 package_depth = hwloc_get_type_depth(tp, HWLOC_OBJ_PACKAGE); 553 l2cache_depth = hwloc_get_cache_type_depth(tp, 2, HWLOC_OBJ_CACHE_UNIFIED); 554 // check tile, get object by depth because of multiple caches possible 555 depth = (l2cache_depth < package_depth) ? package_depth : l2cache_depth; 556 hL = hwloc_get_ancestor_obj_by_depth(tp, depth, hT); 557 hC = NULL; // not used, but reset it here just in case 558 if (hL != NULL && 559 __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC) > 1) 560 __kmp_tile_depth = depth; // tile consists of multiple cores 561 return 0; 562 } 563 564 static int __kmp_affinity_create_hwloc_map(AddrUnsPair **address2os, 565 kmp_i18n_id_t *const msg_id) { 566 hwloc_topology_t &tp = __kmp_hwloc_topology; // shortcut of a long name 567 *address2os = NULL; 568 *msg_id = kmp_i18n_null; 569 570 // Save the affinity mask for the current thread. 571 kmp_affin_mask_t *oldMask; 572 KMP_CPU_ALLOC(oldMask); 573 __kmp_get_system_affinity(oldMask, TRUE); 574 __kmp_hwloc_check_numa(); 575 576 if (!KMP_AFFINITY_CAPABLE()) { 577 // Hack to try and infer the machine topology using only the data 578 // available from cpuid on the current thread, and __kmp_xproc. 579 KMP_ASSERT(__kmp_affinity_type == affinity_none); 580 // hwloc only guarantees existance of PU object, so check PACKAGE and CORE 581 hwloc_obj_t o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0); 582 if (o != NULL) 583 nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_CORE); 584 else 585 nCoresPerPkg = 1; // no PACKAGE found 586 o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0); 587 if (o != NULL) 588 __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_PU); 589 else 590 __kmp_nThreadsPerCore = 1; // no CORE found 591 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; 592 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 593 if (__kmp_affinity_verbose) { 594 KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY"); 595 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 596 if (__kmp_affinity_uniform_topology()) { 597 KMP_INFORM(Uniform, "KMP_AFFINITY"); 598 } else { 599 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 600 } 601 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 602 __kmp_nThreadsPerCore, __kmp_ncores); 603 } 604 KMP_CPU_FREE(oldMask); 605 return 0; 606 } 607 608 int depth = 3; 609 int levels[5] = {0, 1, 2, 3, 4}; // package, [node,] [tile,] core, thread 610 int labels[3] = {0}; // package [,node] [,tile] - head of labels array 611 if (__kmp_numa_detected) 612 ++depth; 613 if (__kmp_tile_depth) 614 ++depth; 615 616 // Allocate the data structure to be returned. 617 AddrUnsPair *retval = 618 (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc); 619 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 620 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 621 622 // When affinity is off, this routine will still be called to set 623 // __kmp_ncores, as well as __kmp_nThreadsPerCore, 624 // nCoresPerPkg, & nPackages. Make sure all these vars are set 625 // correctly, and return if affinity is not enabled. 626 627 hwloc_obj_t socket, node, tile; 628 int nActiveThreads = 0; 629 int socket_id = 0; 630 // re-calculate globals to count only accessible resources 631 __kmp_ncores = nPackages = nCoresPerPkg = __kmp_nThreadsPerCore = 0; 632 nNodePerPkg = nTilePerPkg = nTilePerNode = nCorePerNode = nCorePerTile = 0; 633 for (socket = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0); socket != NULL; 634 socket = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PACKAGE, socket), 635 socket_id++) { 636 labels[0] = socket_id; 637 if (__kmp_numa_detected) { 638 int NN; 639 int n_active_nodes = 0; 640 node = NULL; 641 NN = __kmp_hwloc_count_children_by_type(tp, socket, HWLOC_OBJ_NUMANODE, 642 &node); 643 for (int node_id = 0; node_id < NN; ++node_id, node = node->next_cousin) { 644 labels[1] = node_id; 645 if (__kmp_tile_depth) { 646 // NUMA + tiles 647 int NT; 648 int n_active_tiles = 0; 649 tile = NULL; 650 NT = __kmp_hwloc_count_children_by_depth(tp, node, __kmp_tile_depth, 651 &tile); 652 for (int tl_id = 0; tl_id < NT; ++tl_id, tile = tile->next_cousin) { 653 labels[2] = tl_id; 654 int n_active_cores = 0; 655 __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, 656 n_active_cores, tile, 3, labels); 657 if (n_active_cores) { // were there any active cores on the socket? 658 ++n_active_tiles; // count active tiles per node 659 if (n_active_cores > nCorePerTile) 660 nCorePerTile = n_active_cores; // calc maximum 661 } 662 } 663 if (n_active_tiles) { // were there any active tiles on the socket? 664 ++n_active_nodes; // count active nodes per package 665 if (n_active_tiles > nTilePerNode) 666 nTilePerNode = n_active_tiles; // calc maximum 667 } 668 } else { 669 // NUMA, no tiles 670 int n_active_cores = 0; 671 __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, 672 n_active_cores, node, 2, labels); 673 if (n_active_cores) { // were there any active cores on the socket? 674 ++n_active_nodes; // count active nodes per package 675 if (n_active_cores > nCorePerNode) 676 nCorePerNode = n_active_cores; // calc maximum 677 } 678 } 679 } 680 if (n_active_nodes) { // were there any active nodes on the socket? 681 ++nPackages; // count total active packages 682 if (n_active_nodes > nNodePerPkg) 683 nNodePerPkg = n_active_nodes; // calc maximum 684 } 685 } else { 686 if (__kmp_tile_depth) { 687 // no NUMA, tiles 688 int NT; 689 int n_active_tiles = 0; 690 tile = NULL; 691 NT = __kmp_hwloc_count_children_by_depth(tp, socket, __kmp_tile_depth, 692 &tile); 693 for (int tl_id = 0; tl_id < NT; ++tl_id, tile = tile->next_cousin) { 694 labels[1] = tl_id; 695 int n_active_cores = 0; 696 __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, 697 n_active_cores, tile, 2, labels); 698 if (n_active_cores) { // were there any active cores on the socket? 699 ++n_active_tiles; // count active tiles per package 700 if (n_active_cores > nCorePerTile) 701 nCorePerTile = n_active_cores; // calc maximum 702 } 703 } 704 if (n_active_tiles) { // were there any active tiles on the socket? 705 ++nPackages; // count total active packages 706 if (n_active_tiles > nTilePerPkg) 707 nTilePerPkg = n_active_tiles; // calc maximum 708 } 709 } else { 710 // no NUMA, no tiles 711 int n_active_cores = 0; 712 __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, n_active_cores, 713 socket, 1, labels); 714 if (n_active_cores) { // were there any active cores on the socket? 715 ++nPackages; // count total active packages 716 if (n_active_cores > nCoresPerPkg) 717 nCoresPerPkg = n_active_cores; // calc maximum 718 } 719 } 720 } 721 } 722 723 // If there's only one thread context to bind to, return now. 724 KMP_DEBUG_ASSERT(nActiveThreads == __kmp_avail_proc); 725 KMP_ASSERT(nActiveThreads > 0); 726 if (nActiveThreads == 1) { 727 __kmp_ncores = nPackages = 1; 728 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 729 if (__kmp_affinity_verbose) { 730 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 731 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 732 733 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); 734 if (__kmp_affinity_respect_mask) { 735 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 736 } else { 737 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 738 } 739 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 740 KMP_INFORM(Uniform, "KMP_AFFINITY"); 741 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 742 __kmp_nThreadsPerCore, __kmp_ncores); 743 } 744 745 if (__kmp_affinity_type == affinity_none) { 746 __kmp_free(retval); 747 KMP_CPU_FREE(oldMask); 748 return 0; 749 } 750 751 // Form an Address object which only includes the package level. 752 Address addr(1); 753 addr.labels[0] = retval[0].first.labels[0]; 754 retval[0].first = addr; 755 756 if (__kmp_affinity_gran_levels < 0) { 757 __kmp_affinity_gran_levels = 0; 758 } 759 760 if (__kmp_affinity_verbose) { 761 __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1); 762 } 763 764 *address2os = retval; 765 KMP_CPU_FREE(oldMask); 766 return 1; 767 } 768 769 // Sort the table by physical Id. 770 qsort(retval, nActiveThreads, sizeof(*retval), 771 __kmp_affinity_cmp_Address_labels); 772 773 // Check to see if the machine topology is uniform 774 int nPUs = nPackages * __kmp_nThreadsPerCore; 775 if (__kmp_numa_detected) { 776 if (__kmp_tile_depth) { // NUMA + tiles 777 nPUs *= (nNodePerPkg * nTilePerNode * nCorePerTile); 778 } else { // NUMA, no tiles 779 nPUs *= (nNodePerPkg * nCorePerNode); 780 } 781 } else { 782 if (__kmp_tile_depth) { // no NUMA, tiles 783 nPUs *= (nTilePerPkg * nCorePerTile); 784 } else { // no NUMA, no tiles 785 nPUs *= nCoresPerPkg; 786 } 787 } 788 unsigned uniform = (nPUs == nActiveThreads); 789 790 // Print the machine topology summary. 791 if (__kmp_affinity_verbose) { 792 char mask[KMP_AFFIN_MASK_PRINT_LEN]; 793 __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 794 if (__kmp_affinity_respect_mask) { 795 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask); 796 } else { 797 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask); 798 } 799 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 800 if (uniform) { 801 KMP_INFORM(Uniform, "KMP_AFFINITY"); 802 } else { 803 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 804 } 805 if (__kmp_numa_detected) { 806 if (__kmp_tile_depth) { // NUMA + tiles 807 KMP_INFORM(TopologyExtraNoTi, "KMP_AFFINITY", nPackages, nNodePerPkg, 808 nTilePerNode, nCorePerTile, __kmp_nThreadsPerCore, 809 __kmp_ncores); 810 } else { // NUMA, no tiles 811 KMP_INFORM(TopologyExtraNode, "KMP_AFFINITY", nPackages, nNodePerPkg, 812 nCorePerNode, __kmp_nThreadsPerCore, __kmp_ncores); 813 nPUs *= (nNodePerPkg * nCorePerNode); 814 } 815 } else { 816 if (__kmp_tile_depth) { // no NUMA, tiles 817 KMP_INFORM(TopologyExtraTile, "KMP_AFFINITY", nPackages, nTilePerPkg, 818 nCorePerTile, __kmp_nThreadsPerCore, __kmp_ncores); 819 } else { // no NUMA, no tiles 820 kmp_str_buf_t buf; 821 __kmp_str_buf_init(&buf); 822 __kmp_str_buf_print(&buf, "%d", nPackages); 823 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg, 824 __kmp_nThreadsPerCore, __kmp_ncores); 825 __kmp_str_buf_free(&buf); 826 } 827 } 828 } 829 830 if (__kmp_affinity_type == affinity_none) { 831 __kmp_free(retval); 832 KMP_CPU_FREE(oldMask); 833 return 0; 834 } 835 836 int depth_full = depth; // number of levels before compressing 837 // Find any levels with radix 1, and remove them from the map 838 // (except for the package level). 839 depth = __kmp_affinity_remove_radix_one_levels(retval, nActiveThreads, depth, 840 levels); 841 KMP_DEBUG_ASSERT(__kmp_affinity_gran != affinity_gran_default); 842 if (__kmp_affinity_gran_levels < 0) { 843 // Set the granularity level based on what levels are modeled 844 // in the machine topology map. 845 __kmp_affinity_gran_levels = 0; // lowest level (e.g. fine) 846 if (__kmp_affinity_gran > affinity_gran_thread) { 847 for (int i = 1; i <= depth_full; ++i) { 848 if (__kmp_affinity_gran <= i) // only count deeper levels 849 break; 850 if (levels[depth_full - i] > 0) 851 __kmp_affinity_gran_levels++; 852 } 853 } 854 if (__kmp_affinity_gran > affinity_gran_package) 855 __kmp_affinity_gran_levels++; // e.g. granularity = group 856 } 857 858 if (__kmp_affinity_verbose) 859 __kmp_affinity_print_hwloc_tp(retval, nActiveThreads, depth, levels); 860 861 KMP_CPU_FREE(oldMask); 862 *address2os = retval; 863 return depth; 864 } 865 #endif // KMP_USE_HWLOC 866 867 // If we don't know how to retrieve the machine's processor topology, or 868 // encounter an error in doing so, this routine is called to form a "flat" 869 // mapping of os thread id's <-> processor id's. 870 static int __kmp_affinity_create_flat_map(AddrUnsPair **address2os, 871 kmp_i18n_id_t *const msg_id) { 872 *address2os = NULL; 873 *msg_id = kmp_i18n_null; 874 875 // Even if __kmp_affinity_type == affinity_none, this routine might still 876 // called to set __kmp_ncores, as well as 877 // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 878 if (!KMP_AFFINITY_CAPABLE()) { 879 KMP_ASSERT(__kmp_affinity_type == affinity_none); 880 __kmp_ncores = nPackages = __kmp_xproc; 881 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 882 if (__kmp_affinity_verbose) { 883 KMP_INFORM(AffFlatTopology, "KMP_AFFINITY"); 884 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 885 KMP_INFORM(Uniform, "KMP_AFFINITY"); 886 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 887 __kmp_nThreadsPerCore, __kmp_ncores); 888 } 889 return 0; 890 } 891 892 // When affinity is off, this routine will still be called to set 893 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 894 // Make sure all these vars are set correctly, and return now if affinity is 895 // not enabled. 896 __kmp_ncores = nPackages = __kmp_avail_proc; 897 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 898 if (__kmp_affinity_verbose) { 899 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 900 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 901 __kmp_affin_fullMask); 902 903 KMP_INFORM(AffCapableUseFlat, "KMP_AFFINITY"); 904 if (__kmp_affinity_respect_mask) { 905 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 906 } else { 907 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 908 } 909 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 910 KMP_INFORM(Uniform, "KMP_AFFINITY"); 911 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 912 __kmp_nThreadsPerCore, __kmp_ncores); 913 } 914 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 915 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 916 if (__kmp_affinity_type == affinity_none) { 917 int avail_ct = 0; 918 int i; 919 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 920 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) 921 continue; 922 __kmp_pu_os_idx[avail_ct++] = i; // suppose indices are flat 923 } 924 return 0; 925 } 926 927 // Construct the data structure to be returned. 928 *address2os = 929 (AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc); 930 int avail_ct = 0; 931 int i; 932 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 933 // Skip this proc if it is not included in the machine model. 934 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 935 continue; 936 } 937 __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat 938 Address addr(1); 939 addr.labels[0] = i; 940 (*address2os)[avail_ct++] = AddrUnsPair(addr, i); 941 } 942 if (__kmp_affinity_verbose) { 943 KMP_INFORM(OSProcToPackage, "KMP_AFFINITY"); 944 } 945 946 if (__kmp_affinity_gran_levels < 0) { 947 // Only the package level is modeled in the machine topology map, 948 // so the #levels of granularity is either 0 or 1. 949 if (__kmp_affinity_gran > affinity_gran_package) { 950 __kmp_affinity_gran_levels = 1; 951 } else { 952 __kmp_affinity_gran_levels = 0; 953 } 954 } 955 return 1; 956 } 957 958 #if KMP_GROUP_AFFINITY 959 960 // If multiple Windows* OS processor groups exist, we can create a 2-level 961 // topology map with the groups at level 0 and the individual procs at level 1. 962 // This facilitates letting the threads float among all procs in a group, 963 // if granularity=group (the default when there are multiple groups). 964 static int __kmp_affinity_create_proc_group_map(AddrUnsPair **address2os, 965 kmp_i18n_id_t *const msg_id) { 966 *address2os = NULL; 967 *msg_id = kmp_i18n_null; 968 969 // If we aren't affinity capable, then return now. 970 // The flat mapping will be used. 971 if (!KMP_AFFINITY_CAPABLE()) { 972 // FIXME set *msg_id 973 return -1; 974 } 975 976 // Construct the data structure to be returned. 977 *address2os = 978 (AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc); 979 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 980 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 981 int avail_ct = 0; 982 int i; 983 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 984 // Skip this proc if it is not included in the machine model. 985 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 986 continue; 987 } 988 __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat 989 Address addr(2); 990 addr.labels[0] = i / (CHAR_BIT * sizeof(DWORD_PTR)); 991 addr.labels[1] = i % (CHAR_BIT * sizeof(DWORD_PTR)); 992 (*address2os)[avail_ct++] = AddrUnsPair(addr, i); 993 994 if (__kmp_affinity_verbose) { 995 KMP_INFORM(AffOSProcToGroup, "KMP_AFFINITY", i, addr.labels[0], 996 addr.labels[1]); 997 } 998 } 999 1000 if (__kmp_affinity_gran_levels < 0) { 1001 if (__kmp_affinity_gran == affinity_gran_group) { 1002 __kmp_affinity_gran_levels = 1; 1003 } else if ((__kmp_affinity_gran == affinity_gran_fine) || 1004 (__kmp_affinity_gran == affinity_gran_thread)) { 1005 __kmp_affinity_gran_levels = 0; 1006 } else { 1007 const char *gran_str = NULL; 1008 if (__kmp_affinity_gran == affinity_gran_core) { 1009 gran_str = "core"; 1010 } else if (__kmp_affinity_gran == affinity_gran_package) { 1011 gran_str = "package"; 1012 } else if (__kmp_affinity_gran == affinity_gran_node) { 1013 gran_str = "node"; 1014 } else { 1015 KMP_ASSERT(0); 1016 } 1017 1018 // Warning: can't use affinity granularity \"gran\" with group topology 1019 // method, using "thread" 1020 __kmp_affinity_gran_levels = 0; 1021 } 1022 } 1023 return 2; 1024 } 1025 1026 #endif /* KMP_GROUP_AFFINITY */ 1027 1028 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1029 1030 static int __kmp_cpuid_mask_width(int count) { 1031 int r = 0; 1032 1033 while ((1 << r) < count) 1034 ++r; 1035 return r; 1036 } 1037 1038 class apicThreadInfo { 1039 public: 1040 unsigned osId; // param to __kmp_affinity_bind_thread 1041 unsigned apicId; // from cpuid after binding 1042 unsigned maxCoresPerPkg; // "" 1043 unsigned maxThreadsPerPkg; // "" 1044 unsigned pkgId; // inferred from above values 1045 unsigned coreId; // "" 1046 unsigned threadId; // "" 1047 }; 1048 1049 static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a, 1050 const void *b) { 1051 const apicThreadInfo *aa = (const apicThreadInfo *)a; 1052 const apicThreadInfo *bb = (const apicThreadInfo *)b; 1053 if (aa->pkgId < bb->pkgId) 1054 return -1; 1055 if (aa->pkgId > bb->pkgId) 1056 return 1; 1057 if (aa->coreId < bb->coreId) 1058 return -1; 1059 if (aa->coreId > bb->coreId) 1060 return 1; 1061 if (aa->threadId < bb->threadId) 1062 return -1; 1063 if (aa->threadId > bb->threadId) 1064 return 1; 1065 return 0; 1066 } 1067 1068 // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use 1069 // an algorithm which cycles through the available os threads, setting 1070 // the current thread's affinity mask to that thread, and then retrieves 1071 // the Apic Id for each thread context using the cpuid instruction. 1072 static int __kmp_affinity_create_apicid_map(AddrUnsPair **address2os, 1073 kmp_i18n_id_t *const msg_id) { 1074 kmp_cpuid buf; 1075 *address2os = NULL; 1076 *msg_id = kmp_i18n_null; 1077 1078 // Check if cpuid leaf 4 is supported. 1079 __kmp_x86_cpuid(0, 0, &buf); 1080 if (buf.eax < 4) { 1081 *msg_id = kmp_i18n_str_NoLeaf4Support; 1082 return -1; 1083 } 1084 1085 // The algorithm used starts by setting the affinity to each available thread 1086 // and retrieving info from the cpuid instruction, so if we are not capable of 1087 // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we 1088 // need to do something else - use the defaults that we calculated from 1089 // issuing cpuid without binding to each proc. 1090 if (!KMP_AFFINITY_CAPABLE()) { 1091 // Hack to try and infer the machine topology using only the data 1092 // available from cpuid on the current thread, and __kmp_xproc. 1093 KMP_ASSERT(__kmp_affinity_type == affinity_none); 1094 1095 // Get an upper bound on the number of threads per package using cpuid(1). 1096 // On some OS/chps combinations where HT is supported by the chip but is 1097 // disabled, this value will be 2 on a single core chip. Usually, it will be 1098 // 2 if HT is enabled and 1 if HT is disabled. 1099 __kmp_x86_cpuid(1, 0, &buf); 1100 int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; 1101 if (maxThreadsPerPkg == 0) { 1102 maxThreadsPerPkg = 1; 1103 } 1104 1105 // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded 1106 // value. 1107 // 1108 // The author of cpu_count.cpp treated this only an upper bound on the 1109 // number of cores, but I haven't seen any cases where it was greater than 1110 // the actual number of cores, so we will treat it as exact in this block of 1111 // code. 1112 // 1113 // First, we need to check if cpuid(4) is supported on this chip. To see if 1114 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or 1115 // greater. 1116 __kmp_x86_cpuid(0, 0, &buf); 1117 if (buf.eax >= 4) { 1118 __kmp_x86_cpuid(4, 0, &buf); 1119 nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; 1120 } else { 1121 nCoresPerPkg = 1; 1122 } 1123 1124 // There is no way to reliably tell if HT is enabled without issuing the 1125 // cpuid instruction from every thread, can correlating the cpuid info, so 1126 // if the machine is not affinity capable, we assume that HT is off. We have 1127 // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine 1128 // does not support HT. 1129 // 1130 // - Older OSes are usually found on machines with older chips, which do not 1131 // support HT. 1132 // - The performance penalty for mistakenly identifying a machine as HT when 1133 // it isn't (which results in blocktime being incorrectly set to 0) is 1134 // greater than the penalty when for mistakenly identifying a machine as 1135 // being 1 thread/core when it is really HT enabled (which results in 1136 // blocktime being incorrectly set to a positive value). 1137 __kmp_ncores = __kmp_xproc; 1138 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 1139 __kmp_nThreadsPerCore = 1; 1140 if (__kmp_affinity_verbose) { 1141 KMP_INFORM(AffNotCapableUseLocCpuid, "KMP_AFFINITY"); 1142 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1143 if (__kmp_affinity_uniform_topology()) { 1144 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1145 } else { 1146 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 1147 } 1148 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1149 __kmp_nThreadsPerCore, __kmp_ncores); 1150 } 1151 return 0; 1152 } 1153 1154 // From here on, we can assume that it is safe to call 1155 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if 1156 // __kmp_affinity_type = affinity_none. 1157 1158 // Save the affinity mask for the current thread. 1159 kmp_affin_mask_t *oldMask; 1160 KMP_CPU_ALLOC(oldMask); 1161 KMP_ASSERT(oldMask != NULL); 1162 __kmp_get_system_affinity(oldMask, TRUE); 1163 1164 // Run through each of the available contexts, binding the current thread 1165 // to it, and obtaining the pertinent information using the cpuid instr. 1166 // 1167 // The relevant information is: 1168 // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context 1169 // has a uniqie Apic Id, which is of the form pkg# : core# : thread#. 1170 // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value 1171 // of this field determines the width of the core# + thread# fields in the 1172 // Apic Id. It is also an upper bound on the number of threads per 1173 // package, but it has been verified that situations happen were it is not 1174 // exact. In particular, on certain OS/chip combinations where Intel(R) 1175 // Hyper-Threading Technology is supported by the chip but has been 1176 // disabled, the value of this field will be 2 (for a single core chip). 1177 // On other OS/chip combinations supporting Intel(R) Hyper-Threading 1178 // Technology, the value of this field will be 1 when Intel(R) 1179 // Hyper-Threading Technology is disabled and 2 when it is enabled. 1180 // - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value 1181 // of this field (+1) determines the width of the core# field in the Apic 1182 // Id. The comments in "cpucount.cpp" say that this value is an upper 1183 // bound, but the IA-32 architecture manual says that it is exactly the 1184 // number of cores per package, and I haven't seen any case where it 1185 // wasn't. 1186 // 1187 // From this information, deduce the package Id, core Id, and thread Id, 1188 // and set the corresponding fields in the apicThreadInfo struct. 1189 unsigned i; 1190 apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate( 1191 __kmp_avail_proc * sizeof(apicThreadInfo)); 1192 unsigned nApics = 0; 1193 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 1194 // Skip this proc if it is not included in the machine model. 1195 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 1196 continue; 1197 } 1198 KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc); 1199 1200 __kmp_affinity_dispatch->bind_thread(i); 1201 threadInfo[nApics].osId = i; 1202 1203 // The apic id and max threads per pkg come from cpuid(1). 1204 __kmp_x86_cpuid(1, 0, &buf); 1205 if (((buf.edx >> 9) & 1) == 0) { 1206 __kmp_set_system_affinity(oldMask, TRUE); 1207 __kmp_free(threadInfo); 1208 KMP_CPU_FREE(oldMask); 1209 *msg_id = kmp_i18n_str_ApicNotPresent; 1210 return -1; 1211 } 1212 threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff; 1213 threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; 1214 if (threadInfo[nApics].maxThreadsPerPkg == 0) { 1215 threadInfo[nApics].maxThreadsPerPkg = 1; 1216 } 1217 1218 // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded 1219 // value. 1220 // 1221 // First, we need to check if cpuid(4) is supported on this chip. To see if 1222 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n 1223 // or greater. 1224 __kmp_x86_cpuid(0, 0, &buf); 1225 if (buf.eax >= 4) { 1226 __kmp_x86_cpuid(4, 0, &buf); 1227 threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; 1228 } else { 1229 threadInfo[nApics].maxCoresPerPkg = 1; 1230 } 1231 1232 // Infer the pkgId / coreId / threadId using only the info obtained locally. 1233 int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg); 1234 threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT; 1235 1236 int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg); 1237 int widthT = widthCT - widthC; 1238 if (widthT < 0) { 1239 // I've never seen this one happen, but I suppose it could, if the cpuid 1240 // instruction on a chip was really screwed up. Make sure to restore the 1241 // affinity mask before the tail call. 1242 __kmp_set_system_affinity(oldMask, TRUE); 1243 __kmp_free(threadInfo); 1244 KMP_CPU_FREE(oldMask); 1245 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1246 return -1; 1247 } 1248 1249 int maskC = (1 << widthC) - 1; 1250 threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC; 1251 1252 int maskT = (1 << widthT) - 1; 1253 threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT; 1254 1255 nApics++; 1256 } 1257 1258 // We've collected all the info we need. 1259 // Restore the old affinity mask for this thread. 1260 __kmp_set_system_affinity(oldMask, TRUE); 1261 1262 // If there's only one thread context to bind to, form an Address object 1263 // with depth 1 and return immediately (or, if affinity is off, set 1264 // address2os to NULL and return). 1265 // 1266 // If it is configured to omit the package level when there is only a single 1267 // package, the logic at the end of this routine won't work if there is only 1268 // a single thread - it would try to form an Address object with depth 0. 1269 KMP_ASSERT(nApics > 0); 1270 if (nApics == 1) { 1271 __kmp_ncores = nPackages = 1; 1272 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 1273 if (__kmp_affinity_verbose) { 1274 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 1275 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 1276 1277 KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY"); 1278 if (__kmp_affinity_respect_mask) { 1279 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 1280 } else { 1281 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 1282 } 1283 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1284 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1285 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1286 __kmp_nThreadsPerCore, __kmp_ncores); 1287 } 1288 1289 if (__kmp_affinity_type == affinity_none) { 1290 __kmp_free(threadInfo); 1291 KMP_CPU_FREE(oldMask); 1292 return 0; 1293 } 1294 1295 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair)); 1296 Address addr(1); 1297 addr.labels[0] = threadInfo[0].pkgId; 1298 (*address2os)[0] = AddrUnsPair(addr, threadInfo[0].osId); 1299 1300 if (__kmp_affinity_gran_levels < 0) { 1301 __kmp_affinity_gran_levels = 0; 1302 } 1303 1304 if (__kmp_affinity_verbose) { 1305 __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1); 1306 } 1307 1308 __kmp_free(threadInfo); 1309 KMP_CPU_FREE(oldMask); 1310 return 1; 1311 } 1312 1313 // Sort the threadInfo table by physical Id. 1314 qsort(threadInfo, nApics, sizeof(*threadInfo), 1315 __kmp_affinity_cmp_apicThreadInfo_phys_id); 1316 1317 // The table is now sorted by pkgId / coreId / threadId, but we really don't 1318 // know the radix of any of the fields. pkgId's may be sparsely assigned among 1319 // the chips on a system. Although coreId's are usually assigned 1320 // [0 .. coresPerPkg-1] and threadId's are usually assigned 1321 // [0..threadsPerCore-1], we don't want to make any such assumptions. 1322 // 1323 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the 1324 // total # packages) are at this point - we want to determine that now. We 1325 // only have an upper bound on the first two figures. 1326 // 1327 // We also perform a consistency check at this point: the values returned by 1328 // the cpuid instruction for any thread bound to a given package had better 1329 // return the same info for maxThreadsPerPkg and maxCoresPerPkg. 1330 nPackages = 1; 1331 nCoresPerPkg = 1; 1332 __kmp_nThreadsPerCore = 1; 1333 unsigned nCores = 1; 1334 1335 unsigned pkgCt = 1; // to determine radii 1336 unsigned lastPkgId = threadInfo[0].pkgId; 1337 unsigned coreCt = 1; 1338 unsigned lastCoreId = threadInfo[0].coreId; 1339 unsigned threadCt = 1; 1340 unsigned lastThreadId = threadInfo[0].threadId; 1341 1342 // intra-pkg consist checks 1343 unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg; 1344 unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg; 1345 1346 for (i = 1; i < nApics; i++) { 1347 if (threadInfo[i].pkgId != lastPkgId) { 1348 nCores++; 1349 pkgCt++; 1350 lastPkgId = threadInfo[i].pkgId; 1351 if ((int)coreCt > nCoresPerPkg) 1352 nCoresPerPkg = coreCt; 1353 coreCt = 1; 1354 lastCoreId = threadInfo[i].coreId; 1355 if ((int)threadCt > __kmp_nThreadsPerCore) 1356 __kmp_nThreadsPerCore = threadCt; 1357 threadCt = 1; 1358 lastThreadId = threadInfo[i].threadId; 1359 1360 // This is a different package, so go on to the next iteration without 1361 // doing any consistency checks. Reset the consistency check vars, though. 1362 prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg; 1363 prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg; 1364 continue; 1365 } 1366 1367 if (threadInfo[i].coreId != lastCoreId) { 1368 nCores++; 1369 coreCt++; 1370 lastCoreId = threadInfo[i].coreId; 1371 if ((int)threadCt > __kmp_nThreadsPerCore) 1372 __kmp_nThreadsPerCore = threadCt; 1373 threadCt = 1; 1374 lastThreadId = threadInfo[i].threadId; 1375 } else if (threadInfo[i].threadId != lastThreadId) { 1376 threadCt++; 1377 lastThreadId = threadInfo[i].threadId; 1378 } else { 1379 __kmp_free(threadInfo); 1380 KMP_CPU_FREE(oldMask); 1381 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; 1382 return -1; 1383 } 1384 1385 // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg 1386 // fields agree between all the threads bounds to a given package. 1387 if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) || 1388 (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) { 1389 __kmp_free(threadInfo); 1390 KMP_CPU_FREE(oldMask); 1391 *msg_id = kmp_i18n_str_InconsistentCpuidInfo; 1392 return -1; 1393 } 1394 } 1395 nPackages = pkgCt; 1396 if ((int)coreCt > nCoresPerPkg) 1397 nCoresPerPkg = coreCt; 1398 if ((int)threadCt > __kmp_nThreadsPerCore) 1399 __kmp_nThreadsPerCore = threadCt; 1400 1401 // When affinity is off, this routine will still be called to set 1402 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 1403 // Make sure all these vars are set correctly, and return now if affinity is 1404 // not enabled. 1405 __kmp_ncores = nCores; 1406 if (__kmp_affinity_verbose) { 1407 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 1408 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 1409 1410 KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY"); 1411 if (__kmp_affinity_respect_mask) { 1412 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 1413 } else { 1414 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 1415 } 1416 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1417 if (__kmp_affinity_uniform_topology()) { 1418 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1419 } else { 1420 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 1421 } 1422 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1423 __kmp_nThreadsPerCore, __kmp_ncores); 1424 } 1425 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 1426 KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc); 1427 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 1428 for (i = 0; i < nApics; ++i) { 1429 __kmp_pu_os_idx[i] = threadInfo[i].osId; 1430 } 1431 if (__kmp_affinity_type == affinity_none) { 1432 __kmp_free(threadInfo); 1433 KMP_CPU_FREE(oldMask); 1434 return 0; 1435 } 1436 1437 // Now that we've determined the number of packages, the number of cores per 1438 // package, and the number of threads per core, we can construct the data 1439 // structure that is to be returned. 1440 int pkgLevel = 0; 1441 int coreLevel = (nCoresPerPkg <= 1) ? -1 : 1; 1442 int threadLevel = 1443 (__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1); 1444 unsigned depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0); 1445 1446 KMP_ASSERT(depth > 0); 1447 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * nApics); 1448 1449 for (i = 0; i < nApics; ++i) { 1450 Address addr(depth); 1451 unsigned os = threadInfo[i].osId; 1452 int d = 0; 1453 1454 if (pkgLevel >= 0) { 1455 addr.labels[d++] = threadInfo[i].pkgId; 1456 } 1457 if (coreLevel >= 0) { 1458 addr.labels[d++] = threadInfo[i].coreId; 1459 } 1460 if (threadLevel >= 0) { 1461 addr.labels[d++] = threadInfo[i].threadId; 1462 } 1463 (*address2os)[i] = AddrUnsPair(addr, os); 1464 } 1465 1466 if (__kmp_affinity_gran_levels < 0) { 1467 // Set the granularity level based on what levels are modeled in the machine 1468 // topology map. 1469 __kmp_affinity_gran_levels = 0; 1470 if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) { 1471 __kmp_affinity_gran_levels++; 1472 } 1473 if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) { 1474 __kmp_affinity_gran_levels++; 1475 } 1476 if ((pkgLevel >= 0) && (__kmp_affinity_gran > affinity_gran_package)) { 1477 __kmp_affinity_gran_levels++; 1478 } 1479 } 1480 1481 if (__kmp_affinity_verbose) { 1482 __kmp_affinity_print_topology(*address2os, nApics, depth, pkgLevel, 1483 coreLevel, threadLevel); 1484 } 1485 1486 __kmp_free(threadInfo); 1487 KMP_CPU_FREE(oldMask); 1488 return depth; 1489 } 1490 1491 // Intel(R) microarchitecture code name Nehalem, Dunnington and later 1492 // architectures support a newer interface for specifying the x2APIC Ids, 1493 // based on cpuid leaf 11. 1494 static int __kmp_affinity_create_x2apicid_map(AddrUnsPair **address2os, 1495 kmp_i18n_id_t *const msg_id) { 1496 kmp_cpuid buf; 1497 *address2os = NULL; 1498 *msg_id = kmp_i18n_null; 1499 1500 // Check to see if cpuid leaf 11 is supported. 1501 __kmp_x86_cpuid(0, 0, &buf); 1502 if (buf.eax < 11) { 1503 *msg_id = kmp_i18n_str_NoLeaf11Support; 1504 return -1; 1505 } 1506 __kmp_x86_cpuid(11, 0, &buf); 1507 if (buf.ebx == 0) { 1508 *msg_id = kmp_i18n_str_NoLeaf11Support; 1509 return -1; 1510 } 1511 1512 // Find the number of levels in the machine topology. While we're at it, get 1513 // the default values for __kmp_nThreadsPerCore & nCoresPerPkg. We will try to 1514 // get more accurate values later by explicitly counting them, but get 1515 // reasonable defaults now, in case we return early. 1516 int level; 1517 int threadLevel = -1; 1518 int coreLevel = -1; 1519 int pkgLevel = -1; 1520 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; 1521 1522 for (level = 0;; level++) { 1523 if (level > 31) { 1524 // FIXME: Hack for DPD200163180 1525 // 1526 // If level is big then something went wrong -> exiting 1527 // 1528 // There could actually be 32 valid levels in the machine topology, but so 1529 // far, the only machine we have seen which does not exit this loop before 1530 // iteration 32 has fubar x2APIC settings. 1531 // 1532 // For now, just reject this case based upon loop trip count. 1533 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1534 return -1; 1535 } 1536 __kmp_x86_cpuid(11, level, &buf); 1537 if (buf.ebx == 0) { 1538 if (pkgLevel < 0) { 1539 // Will infer nPackages from __kmp_xproc 1540 pkgLevel = level; 1541 level++; 1542 } 1543 break; 1544 } 1545 int kind = (buf.ecx >> 8) & 0xff; 1546 if (kind == 1) { 1547 // SMT level 1548 threadLevel = level; 1549 coreLevel = -1; 1550 pkgLevel = -1; 1551 __kmp_nThreadsPerCore = buf.ebx & 0xffff; 1552 if (__kmp_nThreadsPerCore == 0) { 1553 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1554 return -1; 1555 } 1556 } else if (kind == 2) { 1557 // core level 1558 coreLevel = level; 1559 pkgLevel = -1; 1560 nCoresPerPkg = buf.ebx & 0xffff; 1561 if (nCoresPerPkg == 0) { 1562 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1563 return -1; 1564 } 1565 } else { 1566 if (level <= 0) { 1567 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1568 return -1; 1569 } 1570 if (pkgLevel >= 0) { 1571 continue; 1572 } 1573 pkgLevel = level; 1574 nPackages = buf.ebx & 0xffff; 1575 if (nPackages == 0) { 1576 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1577 return -1; 1578 } 1579 } 1580 } 1581 int depth = level; 1582 1583 // In the above loop, "level" was counted from the finest level (usually 1584 // thread) to the coarsest. The caller expects that we will place the labels 1585 // in (*address2os)[].first.labels[] in the inverse order, so we need to 1586 // invert the vars saying which level means what. 1587 if (threadLevel >= 0) { 1588 threadLevel = depth - threadLevel - 1; 1589 } 1590 if (coreLevel >= 0) { 1591 coreLevel = depth - coreLevel - 1; 1592 } 1593 KMP_DEBUG_ASSERT(pkgLevel >= 0); 1594 pkgLevel = depth - pkgLevel - 1; 1595 1596 // The algorithm used starts by setting the affinity to each available thread 1597 // and retrieving info from the cpuid instruction, so if we are not capable of 1598 // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we 1599 // need to do something else - use the defaults that we calculated from 1600 // issuing cpuid without binding to each proc. 1601 if (!KMP_AFFINITY_CAPABLE()) { 1602 // Hack to try and infer the machine topology using only the data 1603 // available from cpuid on the current thread, and __kmp_xproc. 1604 KMP_ASSERT(__kmp_affinity_type == affinity_none); 1605 1606 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; 1607 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 1608 if (__kmp_affinity_verbose) { 1609 KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY"); 1610 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1611 if (__kmp_affinity_uniform_topology()) { 1612 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1613 } else { 1614 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 1615 } 1616 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1617 __kmp_nThreadsPerCore, __kmp_ncores); 1618 } 1619 return 0; 1620 } 1621 1622 // From here on, we can assume that it is safe to call 1623 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if 1624 // __kmp_affinity_type = affinity_none. 1625 1626 // Save the affinity mask for the current thread. 1627 kmp_affin_mask_t *oldMask; 1628 KMP_CPU_ALLOC(oldMask); 1629 __kmp_get_system_affinity(oldMask, TRUE); 1630 1631 // Allocate the data structure to be returned. 1632 AddrUnsPair *retval = 1633 (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc); 1634 1635 // Run through each of the available contexts, binding the current thread 1636 // to it, and obtaining the pertinent information using the cpuid instr. 1637 unsigned int proc; 1638 int nApics = 0; 1639 KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) { 1640 // Skip this proc if it is not included in the machine model. 1641 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 1642 continue; 1643 } 1644 KMP_DEBUG_ASSERT(nApics < __kmp_avail_proc); 1645 1646 __kmp_affinity_dispatch->bind_thread(proc); 1647 1648 // Extract labels for each level in the machine topology map from Apic ID. 1649 Address addr(depth); 1650 int prev_shift = 0; 1651 1652 for (level = 0; level < depth; level++) { 1653 __kmp_x86_cpuid(11, level, &buf); 1654 unsigned apicId = buf.edx; 1655 if (buf.ebx == 0) { 1656 if (level != depth - 1) { 1657 KMP_CPU_FREE(oldMask); 1658 *msg_id = kmp_i18n_str_InconsistentCpuidInfo; 1659 return -1; 1660 } 1661 addr.labels[depth - level - 1] = apicId >> prev_shift; 1662 level++; 1663 break; 1664 } 1665 int shift = buf.eax & 0x1f; 1666 int mask = (1 << shift) - 1; 1667 addr.labels[depth - level - 1] = (apicId & mask) >> prev_shift; 1668 prev_shift = shift; 1669 } 1670 if (level != depth) { 1671 KMP_CPU_FREE(oldMask); 1672 *msg_id = kmp_i18n_str_InconsistentCpuidInfo; 1673 return -1; 1674 } 1675 1676 retval[nApics] = AddrUnsPair(addr, proc); 1677 nApics++; 1678 } 1679 1680 // We've collected all the info we need. 1681 // Restore the old affinity mask for this thread. 1682 __kmp_set_system_affinity(oldMask, TRUE); 1683 1684 // If there's only one thread context to bind to, return now. 1685 KMP_ASSERT(nApics > 0); 1686 if (nApics == 1) { 1687 __kmp_ncores = nPackages = 1; 1688 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 1689 if (__kmp_affinity_verbose) { 1690 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 1691 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 1692 1693 KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY"); 1694 if (__kmp_affinity_respect_mask) { 1695 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 1696 } else { 1697 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 1698 } 1699 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1700 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1701 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1702 __kmp_nThreadsPerCore, __kmp_ncores); 1703 } 1704 1705 if (__kmp_affinity_type == affinity_none) { 1706 __kmp_free(retval); 1707 KMP_CPU_FREE(oldMask); 1708 return 0; 1709 } 1710 1711 // Form an Address object which only includes the package level. 1712 Address addr(1); 1713 addr.labels[0] = retval[0].first.labels[pkgLevel]; 1714 retval[0].first = addr; 1715 1716 if (__kmp_affinity_gran_levels < 0) { 1717 __kmp_affinity_gran_levels = 0; 1718 } 1719 1720 if (__kmp_affinity_verbose) { 1721 __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1); 1722 } 1723 1724 *address2os = retval; 1725 KMP_CPU_FREE(oldMask); 1726 return 1; 1727 } 1728 1729 // Sort the table by physical Id. 1730 qsort(retval, nApics, sizeof(*retval), __kmp_affinity_cmp_Address_labels); 1731 1732 // Find the radix at each of the levels. 1733 unsigned *totals = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 1734 unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 1735 unsigned *maxCt = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 1736 unsigned *last = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 1737 for (level = 0; level < depth; level++) { 1738 totals[level] = 1; 1739 maxCt[level] = 1; 1740 counts[level] = 1; 1741 last[level] = retval[0].first.labels[level]; 1742 } 1743 1744 // From here on, the iteration variable "level" runs from the finest level to 1745 // the coarsest, i.e. we iterate forward through 1746 // (*address2os)[].first.labels[] - in the previous loops, we iterated 1747 // backwards. 1748 for (proc = 1; (int)proc < nApics; proc++) { 1749 int level; 1750 for (level = 0; level < depth; level++) { 1751 if (retval[proc].first.labels[level] != last[level]) { 1752 int j; 1753 for (j = level + 1; j < depth; j++) { 1754 totals[j]++; 1755 counts[j] = 1; 1756 // The line below causes printing incorrect topology information in 1757 // case the max value for some level (maxCt[level]) is encountered 1758 // earlier than some less value while going through the array. For 1759 // example, let pkg0 has 4 cores and pkg1 has 2 cores. Then 1760 // maxCt[1] == 2 1761 // whereas it must be 4. 1762 // TODO!!! Check if it can be commented safely 1763 // maxCt[j] = 1; 1764 last[j] = retval[proc].first.labels[j]; 1765 } 1766 totals[level]++; 1767 counts[level]++; 1768 if (counts[level] > maxCt[level]) { 1769 maxCt[level] = counts[level]; 1770 } 1771 last[level] = retval[proc].first.labels[level]; 1772 break; 1773 } else if (level == depth - 1) { 1774 __kmp_free(last); 1775 __kmp_free(maxCt); 1776 __kmp_free(counts); 1777 __kmp_free(totals); 1778 __kmp_free(retval); 1779 KMP_CPU_FREE(oldMask); 1780 *msg_id = kmp_i18n_str_x2ApicIDsNotUnique; 1781 return -1; 1782 } 1783 } 1784 } 1785 1786 // When affinity is off, this routine will still be called to set 1787 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 1788 // Make sure all these vars are set correctly, and return if affinity is not 1789 // enabled. 1790 if (threadLevel >= 0) { 1791 __kmp_nThreadsPerCore = maxCt[threadLevel]; 1792 } else { 1793 __kmp_nThreadsPerCore = 1; 1794 } 1795 nPackages = totals[pkgLevel]; 1796 1797 if (coreLevel >= 0) { 1798 __kmp_ncores = totals[coreLevel]; 1799 nCoresPerPkg = maxCt[coreLevel]; 1800 } else { 1801 __kmp_ncores = nPackages; 1802 nCoresPerPkg = 1; 1803 } 1804 1805 // Check to see if the machine topology is uniform 1806 unsigned prod = maxCt[0]; 1807 for (level = 1; level < depth; level++) { 1808 prod *= maxCt[level]; 1809 } 1810 bool uniform = (prod == totals[level - 1]); 1811 1812 // Print the machine topology summary. 1813 if (__kmp_affinity_verbose) { 1814 char mask[KMP_AFFIN_MASK_PRINT_LEN]; 1815 __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 1816 1817 KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY"); 1818 if (__kmp_affinity_respect_mask) { 1819 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask); 1820 } else { 1821 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask); 1822 } 1823 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1824 if (uniform) { 1825 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1826 } else { 1827 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 1828 } 1829 1830 kmp_str_buf_t buf; 1831 __kmp_str_buf_init(&buf); 1832 1833 __kmp_str_buf_print(&buf, "%d", totals[0]); 1834 for (level = 1; level <= pkgLevel; level++) { 1835 __kmp_str_buf_print(&buf, " x %d", maxCt[level]); 1836 } 1837 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg, 1838 __kmp_nThreadsPerCore, __kmp_ncores); 1839 1840 __kmp_str_buf_free(&buf); 1841 } 1842 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 1843 KMP_DEBUG_ASSERT(nApics == __kmp_avail_proc); 1844 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 1845 for (proc = 0; (int)proc < nApics; ++proc) { 1846 __kmp_pu_os_idx[proc] = retval[proc].second; 1847 } 1848 if (__kmp_affinity_type == affinity_none) { 1849 __kmp_free(last); 1850 __kmp_free(maxCt); 1851 __kmp_free(counts); 1852 __kmp_free(totals); 1853 __kmp_free(retval); 1854 KMP_CPU_FREE(oldMask); 1855 return 0; 1856 } 1857 1858 // Find any levels with radix 1, and remove them from the map 1859 // (except for the package level). 1860 int new_depth = 0; 1861 for (level = 0; level < depth; level++) { 1862 if ((maxCt[level] == 1) && (level != pkgLevel)) { 1863 continue; 1864 } 1865 new_depth++; 1866 } 1867 1868 // If we are removing any levels, allocate a new vector to return, 1869 // and copy the relevant information to it. 1870 if (new_depth != depth) { 1871 AddrUnsPair *new_retval = 1872 (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * nApics); 1873 for (proc = 0; (int)proc < nApics; proc++) { 1874 Address addr(new_depth); 1875 new_retval[proc] = AddrUnsPair(addr, retval[proc].second); 1876 } 1877 int new_level = 0; 1878 int newPkgLevel = -1; 1879 int newCoreLevel = -1; 1880 int newThreadLevel = -1; 1881 for (level = 0; level < depth; level++) { 1882 if ((maxCt[level] == 1) && (level != pkgLevel)) { 1883 // Remove this level. Never remove the package level 1884 continue; 1885 } 1886 if (level == pkgLevel) { 1887 newPkgLevel = new_level; 1888 } 1889 if (level == coreLevel) { 1890 newCoreLevel = new_level; 1891 } 1892 if (level == threadLevel) { 1893 newThreadLevel = new_level; 1894 } 1895 for (proc = 0; (int)proc < nApics; proc++) { 1896 new_retval[proc].first.labels[new_level] = 1897 retval[proc].first.labels[level]; 1898 } 1899 new_level++; 1900 } 1901 1902 __kmp_free(retval); 1903 retval = new_retval; 1904 depth = new_depth; 1905 pkgLevel = newPkgLevel; 1906 coreLevel = newCoreLevel; 1907 threadLevel = newThreadLevel; 1908 } 1909 1910 if (__kmp_affinity_gran_levels < 0) { 1911 // Set the granularity level based on what levels are modeled 1912 // in the machine topology map. 1913 __kmp_affinity_gran_levels = 0; 1914 if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) { 1915 __kmp_affinity_gran_levels++; 1916 } 1917 if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) { 1918 __kmp_affinity_gran_levels++; 1919 } 1920 if (__kmp_affinity_gran > affinity_gran_package) { 1921 __kmp_affinity_gran_levels++; 1922 } 1923 } 1924 1925 if (__kmp_affinity_verbose) { 1926 __kmp_affinity_print_topology(retval, nApics, depth, pkgLevel, coreLevel, 1927 threadLevel); 1928 } 1929 1930 __kmp_free(last); 1931 __kmp_free(maxCt); 1932 __kmp_free(counts); 1933 __kmp_free(totals); 1934 KMP_CPU_FREE(oldMask); 1935 *address2os = retval; 1936 return depth; 1937 } 1938 1939 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 1940 1941 #define osIdIndex 0 1942 #define threadIdIndex 1 1943 #define coreIdIndex 2 1944 #define pkgIdIndex 3 1945 #define nodeIdIndex 4 1946 1947 typedef unsigned *ProcCpuInfo; 1948 static unsigned maxIndex = pkgIdIndex; 1949 1950 static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a, 1951 const void *b) { 1952 unsigned i; 1953 const unsigned *aa = *(unsigned *const *)a; 1954 const unsigned *bb = *(unsigned *const *)b; 1955 for (i = maxIndex;; i--) { 1956 if (aa[i] < bb[i]) 1957 return -1; 1958 if (aa[i] > bb[i]) 1959 return 1; 1960 if (i == osIdIndex) 1961 break; 1962 } 1963 return 0; 1964 } 1965 1966 #if KMP_USE_HIER_SCHED 1967 // Set the array sizes for the hierarchy layers 1968 static void __kmp_dispatch_set_hierarchy_values() { 1969 // Set the maximum number of L1's to number of cores 1970 // Set the maximum number of L2's to to either number of cores / 2 for 1971 // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing 1972 // Or the number of cores for Intel(R) Xeon(R) processors 1973 // Set the maximum number of NUMA nodes and L3's to number of packages 1974 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] = 1975 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; 1976 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores; 1977 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \ 1978 KMP_MIC_SUPPORTED 1979 if (__kmp_mic_type >= mic3) 1980 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2; 1981 else 1982 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 1983 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores; 1984 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages; 1985 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages; 1986 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1; 1987 // Set the number of threads per unit 1988 // Number of hardware threads per L1/L2/L3/NUMA/LOOP 1989 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1; 1990 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] = 1991 __kmp_nThreadsPerCore; 1992 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \ 1993 KMP_MIC_SUPPORTED 1994 if (__kmp_mic_type >= mic3) 1995 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = 1996 2 * __kmp_nThreadsPerCore; 1997 else 1998 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 1999 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = 2000 __kmp_nThreadsPerCore; 2001 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] = 2002 nCoresPerPkg * __kmp_nThreadsPerCore; 2003 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] = 2004 nCoresPerPkg * __kmp_nThreadsPerCore; 2005 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] = 2006 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; 2007 } 2008 2009 // Return the index into the hierarchy for this tid and layer type (L1, L2, etc) 2010 // i.e., this thread's L1 or this thread's L2, etc. 2011 int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) { 2012 int index = type + 1; 2013 int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1]; 2014 KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST); 2015 if (type == kmp_hier_layer_e::LAYER_THREAD) 2016 return tid; 2017 else if (type == kmp_hier_layer_e::LAYER_LOOP) 2018 return 0; 2019 KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0); 2020 if (tid >= num_hw_threads) 2021 tid = tid % num_hw_threads; 2022 return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index]; 2023 } 2024 2025 // Return the number of t1's per t2 2026 int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) { 2027 int i1 = t1 + 1; 2028 int i2 = t2 + 1; 2029 KMP_DEBUG_ASSERT(i1 <= i2); 2030 KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST); 2031 KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST); 2032 KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0); 2033 // (nthreads/t2) / (nthreads/t1) = t1 / t2 2034 return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1]; 2035 } 2036 #endif // KMP_USE_HIER_SCHED 2037 2038 // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the 2039 // affinity map. 2040 static int __kmp_affinity_create_cpuinfo_map(AddrUnsPair **address2os, 2041 int *line, 2042 kmp_i18n_id_t *const msg_id, 2043 FILE *f) { 2044 *address2os = NULL; 2045 *msg_id = kmp_i18n_null; 2046 2047 // Scan of the file, and count the number of "processor" (osId) fields, 2048 // and find the highest value of <n> for a node_<n> field. 2049 char buf[256]; 2050 unsigned num_records = 0; 2051 while (!feof(f)) { 2052 buf[sizeof(buf) - 1] = 1; 2053 if (!fgets(buf, sizeof(buf), f)) { 2054 // Read errors presumably because of EOF 2055 break; 2056 } 2057 2058 char s1[] = "processor"; 2059 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { 2060 num_records++; 2061 continue; 2062 } 2063 2064 // FIXME - this will match "node_<n> <garbage>" 2065 unsigned level; 2066 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { 2067 if (nodeIdIndex + level >= maxIndex) { 2068 maxIndex = nodeIdIndex + level; 2069 } 2070 continue; 2071 } 2072 } 2073 2074 // Check for empty file / no valid processor records, or too many. The number 2075 // of records can't exceed the number of valid bits in the affinity mask. 2076 if (num_records == 0) { 2077 *line = 0; 2078 *msg_id = kmp_i18n_str_NoProcRecords; 2079 return -1; 2080 } 2081 if (num_records > (unsigned)__kmp_xproc) { 2082 *line = 0; 2083 *msg_id = kmp_i18n_str_TooManyProcRecords; 2084 return -1; 2085 } 2086 2087 // Set the file pointer back to the beginning, so that we can scan the file 2088 // again, this time performing a full parse of the data. Allocate a vector of 2089 // ProcCpuInfo object, where we will place the data. Adding an extra element 2090 // at the end allows us to remove a lot of extra checks for termination 2091 // conditions. 2092 if (fseek(f, 0, SEEK_SET) != 0) { 2093 *line = 0; 2094 *msg_id = kmp_i18n_str_CantRewindCpuinfo; 2095 return -1; 2096 } 2097 2098 // Allocate the array of records to store the proc info in. The dummy 2099 // element at the end makes the logic in filling them out easier to code. 2100 unsigned **threadInfo = 2101 (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *)); 2102 unsigned i; 2103 for (i = 0; i <= num_records; i++) { 2104 threadInfo[i] = 2105 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2106 } 2107 2108 #define CLEANUP_THREAD_INFO \ 2109 for (i = 0; i <= num_records; i++) { \ 2110 __kmp_free(threadInfo[i]); \ 2111 } \ 2112 __kmp_free(threadInfo); 2113 2114 // A value of UINT_MAX means that we didn't find the field 2115 unsigned __index; 2116 2117 #define INIT_PROC_INFO(p) \ 2118 for (__index = 0; __index <= maxIndex; __index++) { \ 2119 (p)[__index] = UINT_MAX; \ 2120 } 2121 2122 for (i = 0; i <= num_records; i++) { 2123 INIT_PROC_INFO(threadInfo[i]); 2124 } 2125 2126 unsigned num_avail = 0; 2127 *line = 0; 2128 while (!feof(f)) { 2129 // Create an inner scoping level, so that all the goto targets at the end of 2130 // the loop appear in an outer scoping level. This avoids warnings about 2131 // jumping past an initialization to a target in the same block. 2132 { 2133 buf[sizeof(buf) - 1] = 1; 2134 bool long_line = false; 2135 if (!fgets(buf, sizeof(buf), f)) { 2136 // Read errors presumably because of EOF 2137 // If there is valid data in threadInfo[num_avail], then fake 2138 // a blank line in ensure that the last address gets parsed. 2139 bool valid = false; 2140 for (i = 0; i <= maxIndex; i++) { 2141 if (threadInfo[num_avail][i] != UINT_MAX) { 2142 valid = true; 2143 } 2144 } 2145 if (!valid) { 2146 break; 2147 } 2148 buf[0] = 0; 2149 } else if (!buf[sizeof(buf) - 1]) { 2150 // The line is longer than the buffer. Set a flag and don't 2151 // emit an error if we were going to ignore the line, anyway. 2152 long_line = true; 2153 2154 #define CHECK_LINE \ 2155 if (long_line) { \ 2156 CLEANUP_THREAD_INFO; \ 2157 *msg_id = kmp_i18n_str_LongLineCpuinfo; \ 2158 return -1; \ 2159 } 2160 } 2161 (*line)++; 2162 2163 char s1[] = "processor"; 2164 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { 2165 CHECK_LINE; 2166 char *p = strchr(buf + sizeof(s1) - 1, ':'); 2167 unsigned val; 2168 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2169 goto no_val; 2170 if (threadInfo[num_avail][osIdIndex] != UINT_MAX) 2171 #if KMP_ARCH_AARCH64 2172 // Handle the old AArch64 /proc/cpuinfo layout differently, 2173 // it contains all of the 'processor' entries listed in a 2174 // single 'Processor' section, therefore the normal looking 2175 // for duplicates in that section will always fail. 2176 num_avail++; 2177 #else 2178 goto dup_field; 2179 #endif 2180 threadInfo[num_avail][osIdIndex] = val; 2181 #if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64) 2182 char path[256]; 2183 KMP_SNPRINTF( 2184 path, sizeof(path), 2185 "/sys/devices/system/cpu/cpu%u/topology/physical_package_id", 2186 threadInfo[num_avail][osIdIndex]); 2187 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]); 2188 2189 KMP_SNPRINTF(path, sizeof(path), 2190 "/sys/devices/system/cpu/cpu%u/topology/core_id", 2191 threadInfo[num_avail][osIdIndex]); 2192 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]); 2193 continue; 2194 #else 2195 } 2196 char s2[] = "physical id"; 2197 if (strncmp(buf, s2, sizeof(s2) - 1) == 0) { 2198 CHECK_LINE; 2199 char *p = strchr(buf + sizeof(s2) - 1, ':'); 2200 unsigned val; 2201 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2202 goto no_val; 2203 if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX) 2204 goto dup_field; 2205 threadInfo[num_avail][pkgIdIndex] = val; 2206 continue; 2207 } 2208 char s3[] = "core id"; 2209 if (strncmp(buf, s3, sizeof(s3) - 1) == 0) { 2210 CHECK_LINE; 2211 char *p = strchr(buf + sizeof(s3) - 1, ':'); 2212 unsigned val; 2213 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2214 goto no_val; 2215 if (threadInfo[num_avail][coreIdIndex] != UINT_MAX) 2216 goto dup_field; 2217 threadInfo[num_avail][coreIdIndex] = val; 2218 continue; 2219 #endif // KMP_OS_LINUX && USE_SYSFS_INFO 2220 } 2221 char s4[] = "thread id"; 2222 if (strncmp(buf, s4, sizeof(s4) - 1) == 0) { 2223 CHECK_LINE; 2224 char *p = strchr(buf + sizeof(s4) - 1, ':'); 2225 unsigned val; 2226 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2227 goto no_val; 2228 if (threadInfo[num_avail][threadIdIndex] != UINT_MAX) 2229 goto dup_field; 2230 threadInfo[num_avail][threadIdIndex] = val; 2231 continue; 2232 } 2233 unsigned level; 2234 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { 2235 CHECK_LINE; 2236 char *p = strchr(buf + sizeof(s4) - 1, ':'); 2237 unsigned val; 2238 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2239 goto no_val; 2240 KMP_ASSERT(nodeIdIndex + level <= maxIndex); 2241 if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX) 2242 goto dup_field; 2243 threadInfo[num_avail][nodeIdIndex + level] = val; 2244 continue; 2245 } 2246 2247 // We didn't recognize the leading token on the line. There are lots of 2248 // leading tokens that we don't recognize - if the line isn't empty, go on 2249 // to the next line. 2250 if ((*buf != 0) && (*buf != '\n')) { 2251 // If the line is longer than the buffer, read characters 2252 // until we find a newline. 2253 if (long_line) { 2254 int ch; 2255 while (((ch = fgetc(f)) != EOF) && (ch != '\n')) 2256 ; 2257 } 2258 continue; 2259 } 2260 2261 // A newline has signalled the end of the processor record. 2262 // Check that there aren't too many procs specified. 2263 if ((int)num_avail == __kmp_xproc) { 2264 CLEANUP_THREAD_INFO; 2265 *msg_id = kmp_i18n_str_TooManyEntries; 2266 return -1; 2267 } 2268 2269 // Check for missing fields. The osId field must be there, and we 2270 // currently require that the physical id field is specified, also. 2271 if (threadInfo[num_avail][osIdIndex] == UINT_MAX) { 2272 CLEANUP_THREAD_INFO; 2273 *msg_id = kmp_i18n_str_MissingProcField; 2274 return -1; 2275 } 2276 if (threadInfo[0][pkgIdIndex] == UINT_MAX) { 2277 CLEANUP_THREAD_INFO; 2278 *msg_id = kmp_i18n_str_MissingPhysicalIDField; 2279 return -1; 2280 } 2281 2282 // Skip this proc if it is not included in the machine model. 2283 if (!KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex], 2284 __kmp_affin_fullMask)) { 2285 INIT_PROC_INFO(threadInfo[num_avail]); 2286 continue; 2287 } 2288 2289 // We have a successful parse of this proc's info. 2290 // Increment the counter, and prepare for the next proc. 2291 num_avail++; 2292 KMP_ASSERT(num_avail <= num_records); 2293 INIT_PROC_INFO(threadInfo[num_avail]); 2294 } 2295 continue; 2296 2297 no_val: 2298 CLEANUP_THREAD_INFO; 2299 *msg_id = kmp_i18n_str_MissingValCpuinfo; 2300 return -1; 2301 2302 dup_field: 2303 CLEANUP_THREAD_INFO; 2304 *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo; 2305 return -1; 2306 } 2307 *line = 0; 2308 2309 #if KMP_MIC && REDUCE_TEAM_SIZE 2310 unsigned teamSize = 0; 2311 #endif // KMP_MIC && REDUCE_TEAM_SIZE 2312 2313 // check for num_records == __kmp_xproc ??? 2314 2315 // If there's only one thread context to bind to, form an Address object with 2316 // depth 1 and return immediately (or, if affinity is off, set address2os to 2317 // NULL and return). 2318 // 2319 // If it is configured to omit the package level when there is only a single 2320 // package, the logic at the end of this routine won't work if there is only a 2321 // single thread - it would try to form an Address object with depth 0. 2322 KMP_ASSERT(num_avail > 0); 2323 KMP_ASSERT(num_avail <= num_records); 2324 if (num_avail == 1) { 2325 __kmp_ncores = 1; 2326 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; 2327 if (__kmp_affinity_verbose) { 2328 if (!KMP_AFFINITY_CAPABLE()) { 2329 KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY"); 2330 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 2331 KMP_INFORM(Uniform, "KMP_AFFINITY"); 2332 } else { 2333 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 2334 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 2335 __kmp_affin_fullMask); 2336 KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY"); 2337 if (__kmp_affinity_respect_mask) { 2338 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 2339 } else { 2340 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 2341 } 2342 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 2343 KMP_INFORM(Uniform, "KMP_AFFINITY"); 2344 } 2345 int index; 2346 kmp_str_buf_t buf; 2347 __kmp_str_buf_init(&buf); 2348 __kmp_str_buf_print(&buf, "1"); 2349 for (index = maxIndex - 1; index > pkgIdIndex; index--) { 2350 __kmp_str_buf_print(&buf, " x 1"); 2351 } 2352 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, 1, 1, 1); 2353 __kmp_str_buf_free(&buf); 2354 } 2355 2356 if (__kmp_affinity_type == affinity_none) { 2357 CLEANUP_THREAD_INFO; 2358 return 0; 2359 } 2360 2361 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair)); 2362 Address addr(1); 2363 addr.labels[0] = threadInfo[0][pkgIdIndex]; 2364 (*address2os)[0] = AddrUnsPair(addr, threadInfo[0][osIdIndex]); 2365 2366 if (__kmp_affinity_gran_levels < 0) { 2367 __kmp_affinity_gran_levels = 0; 2368 } 2369 2370 if (__kmp_affinity_verbose) { 2371 __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1); 2372 } 2373 2374 CLEANUP_THREAD_INFO; 2375 return 1; 2376 } 2377 2378 // Sort the threadInfo table by physical Id. 2379 qsort(threadInfo, num_avail, sizeof(*threadInfo), 2380 __kmp_affinity_cmp_ProcCpuInfo_phys_id); 2381 2382 // The table is now sorted by pkgId / coreId / threadId, but we really don't 2383 // know the radix of any of the fields. pkgId's may be sparsely assigned among 2384 // the chips on a system. Although coreId's are usually assigned 2385 // [0 .. coresPerPkg-1] and threadId's are usually assigned 2386 // [0..threadsPerCore-1], we don't want to make any such assumptions. 2387 // 2388 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the 2389 // total # packages) are at this point - we want to determine that now. We 2390 // only have an upper bound on the first two figures. 2391 unsigned *counts = 2392 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2393 unsigned *maxCt = 2394 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2395 unsigned *totals = 2396 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2397 unsigned *lastId = 2398 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2399 2400 bool assign_thread_ids = false; 2401 unsigned threadIdCt; 2402 unsigned index; 2403 2404 restart_radix_check: 2405 threadIdCt = 0; 2406 2407 // Initialize the counter arrays with data from threadInfo[0]. 2408 if (assign_thread_ids) { 2409 if (threadInfo[0][threadIdIndex] == UINT_MAX) { 2410 threadInfo[0][threadIdIndex] = threadIdCt++; 2411 } else if (threadIdCt <= threadInfo[0][threadIdIndex]) { 2412 threadIdCt = threadInfo[0][threadIdIndex] + 1; 2413 } 2414 } 2415 for (index = 0; index <= maxIndex; index++) { 2416 counts[index] = 1; 2417 maxCt[index] = 1; 2418 totals[index] = 1; 2419 lastId[index] = threadInfo[0][index]; 2420 ; 2421 } 2422 2423 // Run through the rest of the OS procs. 2424 for (i = 1; i < num_avail; i++) { 2425 // Find the most significant index whose id differs from the id for the 2426 // previous OS proc. 2427 for (index = maxIndex; index >= threadIdIndex; index--) { 2428 if (assign_thread_ids && (index == threadIdIndex)) { 2429 // Auto-assign the thread id field if it wasn't specified. 2430 if (threadInfo[i][threadIdIndex] == UINT_MAX) { 2431 threadInfo[i][threadIdIndex] = threadIdCt++; 2432 } 2433 // Apparently the thread id field was specified for some entries and not 2434 // others. Start the thread id counter off at the next higher thread id. 2435 else if (threadIdCt <= threadInfo[i][threadIdIndex]) { 2436 threadIdCt = threadInfo[i][threadIdIndex] + 1; 2437 } 2438 } 2439 if (threadInfo[i][index] != lastId[index]) { 2440 // Run through all indices which are less significant, and reset the 2441 // counts to 1. At all levels up to and including index, we need to 2442 // increment the totals and record the last id. 2443 unsigned index2; 2444 for (index2 = threadIdIndex; index2 < index; index2++) { 2445 totals[index2]++; 2446 if (counts[index2] > maxCt[index2]) { 2447 maxCt[index2] = counts[index2]; 2448 } 2449 counts[index2] = 1; 2450 lastId[index2] = threadInfo[i][index2]; 2451 } 2452 counts[index]++; 2453 totals[index]++; 2454 lastId[index] = threadInfo[i][index]; 2455 2456 if (assign_thread_ids && (index > threadIdIndex)) { 2457 2458 #if KMP_MIC && REDUCE_TEAM_SIZE 2459 // The default team size is the total #threads in the machine 2460 // minus 1 thread for every core that has 3 or more threads. 2461 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); 2462 #endif // KMP_MIC && REDUCE_TEAM_SIZE 2463 2464 // Restart the thread counter, as we are on a new core. 2465 threadIdCt = 0; 2466 2467 // Auto-assign the thread id field if it wasn't specified. 2468 if (threadInfo[i][threadIdIndex] == UINT_MAX) { 2469 threadInfo[i][threadIdIndex] = threadIdCt++; 2470 } 2471 2472 // Apparently the thread id field was specified for some entries and 2473 // not others. Start the thread id counter off at the next higher 2474 // thread id. 2475 else if (threadIdCt <= threadInfo[i][threadIdIndex]) { 2476 threadIdCt = threadInfo[i][threadIdIndex] + 1; 2477 } 2478 } 2479 break; 2480 } 2481 } 2482 if (index < threadIdIndex) { 2483 // If thread ids were specified, it is an error if they are not unique. 2484 // Also, check that we waven't already restarted the loop (to be safe - 2485 // shouldn't need to). 2486 if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) { 2487 __kmp_free(lastId); 2488 __kmp_free(totals); 2489 __kmp_free(maxCt); 2490 __kmp_free(counts); 2491 CLEANUP_THREAD_INFO; 2492 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; 2493 return -1; 2494 } 2495 2496 // If the thread ids were not specified and we see entries entries that 2497 // are duplicates, start the loop over and assign the thread ids manually. 2498 assign_thread_ids = true; 2499 goto restart_radix_check; 2500 } 2501 } 2502 2503 #if KMP_MIC && REDUCE_TEAM_SIZE 2504 // The default team size is the total #threads in the machine 2505 // minus 1 thread for every core that has 3 or more threads. 2506 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); 2507 #endif // KMP_MIC && REDUCE_TEAM_SIZE 2508 2509 for (index = threadIdIndex; index <= maxIndex; index++) { 2510 if (counts[index] > maxCt[index]) { 2511 maxCt[index] = counts[index]; 2512 } 2513 } 2514 2515 __kmp_nThreadsPerCore = maxCt[threadIdIndex]; 2516 nCoresPerPkg = maxCt[coreIdIndex]; 2517 nPackages = totals[pkgIdIndex]; 2518 2519 // Check to see if the machine topology is uniform 2520 unsigned prod = totals[maxIndex]; 2521 for (index = threadIdIndex; index < maxIndex; index++) { 2522 prod *= maxCt[index]; 2523 } 2524 bool uniform = (prod == totals[threadIdIndex]); 2525 2526 // When affinity is off, this routine will still be called to set 2527 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 2528 // Make sure all these vars are set correctly, and return now if affinity is 2529 // not enabled. 2530 __kmp_ncores = totals[coreIdIndex]; 2531 2532 if (__kmp_affinity_verbose) { 2533 if (!KMP_AFFINITY_CAPABLE()) { 2534 KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY"); 2535 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 2536 if (uniform) { 2537 KMP_INFORM(Uniform, "KMP_AFFINITY"); 2538 } else { 2539 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 2540 } 2541 } else { 2542 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 2543 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 2544 __kmp_affin_fullMask); 2545 KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY"); 2546 if (__kmp_affinity_respect_mask) { 2547 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 2548 } else { 2549 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 2550 } 2551 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 2552 if (uniform) { 2553 KMP_INFORM(Uniform, "KMP_AFFINITY"); 2554 } else { 2555 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 2556 } 2557 } 2558 kmp_str_buf_t buf; 2559 __kmp_str_buf_init(&buf); 2560 2561 __kmp_str_buf_print(&buf, "%d", totals[maxIndex]); 2562 for (index = maxIndex - 1; index >= pkgIdIndex; index--) { 2563 __kmp_str_buf_print(&buf, " x %d", maxCt[index]); 2564 } 2565 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, maxCt[coreIdIndex], 2566 maxCt[threadIdIndex], __kmp_ncores); 2567 2568 __kmp_str_buf_free(&buf); 2569 } 2570 2571 #if KMP_MIC && REDUCE_TEAM_SIZE 2572 // Set the default team size. 2573 if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) { 2574 __kmp_dflt_team_nth = teamSize; 2575 KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting " 2576 "__kmp_dflt_team_nth = %d\n", 2577 __kmp_dflt_team_nth)); 2578 } 2579 #endif // KMP_MIC && REDUCE_TEAM_SIZE 2580 2581 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 2582 KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc); 2583 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 2584 for (i = 0; i < num_avail; ++i) { // fill the os indices 2585 __kmp_pu_os_idx[i] = threadInfo[i][osIdIndex]; 2586 } 2587 2588 if (__kmp_affinity_type == affinity_none) { 2589 __kmp_free(lastId); 2590 __kmp_free(totals); 2591 __kmp_free(maxCt); 2592 __kmp_free(counts); 2593 CLEANUP_THREAD_INFO; 2594 return 0; 2595 } 2596 2597 // Count the number of levels which have more nodes at that level than at the 2598 // parent's level (with there being an implicit root node of the top level). 2599 // This is equivalent to saying that there is at least one node at this level 2600 // which has a sibling. These levels are in the map, and the package level is 2601 // always in the map. 2602 bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool)); 2603 for (index = threadIdIndex; index < maxIndex; index++) { 2604 KMP_ASSERT(totals[index] >= totals[index + 1]); 2605 inMap[index] = (totals[index] > totals[index + 1]); 2606 } 2607 inMap[maxIndex] = (totals[maxIndex] > 1); 2608 inMap[pkgIdIndex] = true; 2609 2610 int depth = 0; 2611 for (index = threadIdIndex; index <= maxIndex; index++) { 2612 if (inMap[index]) { 2613 depth++; 2614 } 2615 } 2616 KMP_ASSERT(depth > 0); 2617 2618 // Construct the data structure that is to be returned. 2619 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * num_avail); 2620 int pkgLevel = -1; 2621 int coreLevel = -1; 2622 int threadLevel = -1; 2623 2624 for (i = 0; i < num_avail; ++i) { 2625 Address addr(depth); 2626 unsigned os = threadInfo[i][osIdIndex]; 2627 int src_index; 2628 int dst_index = 0; 2629 2630 for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) { 2631 if (!inMap[src_index]) { 2632 continue; 2633 } 2634 addr.labels[dst_index] = threadInfo[i][src_index]; 2635 if (src_index == pkgIdIndex) { 2636 pkgLevel = dst_index; 2637 } else if (src_index == coreIdIndex) { 2638 coreLevel = dst_index; 2639 } else if (src_index == threadIdIndex) { 2640 threadLevel = dst_index; 2641 } 2642 dst_index++; 2643 } 2644 (*address2os)[i] = AddrUnsPair(addr, os); 2645 } 2646 2647 if (__kmp_affinity_gran_levels < 0) { 2648 // Set the granularity level based on what levels are modeled 2649 // in the machine topology map. 2650 unsigned src_index; 2651 __kmp_affinity_gran_levels = 0; 2652 for (src_index = threadIdIndex; src_index <= maxIndex; src_index++) { 2653 if (!inMap[src_index]) { 2654 continue; 2655 } 2656 switch (src_index) { 2657 case threadIdIndex: 2658 if (__kmp_affinity_gran > affinity_gran_thread) { 2659 __kmp_affinity_gran_levels++; 2660 } 2661 2662 break; 2663 case coreIdIndex: 2664 if (__kmp_affinity_gran > affinity_gran_core) { 2665 __kmp_affinity_gran_levels++; 2666 } 2667 break; 2668 2669 case pkgIdIndex: 2670 if (__kmp_affinity_gran > affinity_gran_package) { 2671 __kmp_affinity_gran_levels++; 2672 } 2673 break; 2674 } 2675 } 2676 } 2677 2678 if (__kmp_affinity_verbose) { 2679 __kmp_affinity_print_topology(*address2os, num_avail, depth, pkgLevel, 2680 coreLevel, threadLevel); 2681 } 2682 2683 __kmp_free(inMap); 2684 __kmp_free(lastId); 2685 __kmp_free(totals); 2686 __kmp_free(maxCt); 2687 __kmp_free(counts); 2688 CLEANUP_THREAD_INFO; 2689 return depth; 2690 } 2691 2692 // Create and return a table of affinity masks, indexed by OS thread ID. 2693 // This routine handles OR'ing together all the affinity masks of threads 2694 // that are sufficiently close, if granularity > fine. 2695 static kmp_affin_mask_t *__kmp_create_masks(unsigned *maxIndex, 2696 unsigned *numUnique, 2697 AddrUnsPair *address2os, 2698 unsigned numAddrs) { 2699 // First form a table of affinity masks in order of OS thread id. 2700 unsigned depth; 2701 unsigned maxOsId; 2702 unsigned i; 2703 2704 KMP_ASSERT(numAddrs > 0); 2705 depth = address2os[0].first.depth; 2706 2707 maxOsId = 0; 2708 for (i = numAddrs - 1;; --i) { 2709 unsigned osId = address2os[i].second; 2710 if (osId > maxOsId) { 2711 maxOsId = osId; 2712 } 2713 if (i == 0) 2714 break; 2715 } 2716 kmp_affin_mask_t *osId2Mask; 2717 KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId + 1)); 2718 2719 // Sort the address2os table according to physical order. Doing so will put 2720 // all threads on the same core/package/node in consecutive locations. 2721 qsort(address2os, numAddrs, sizeof(*address2os), 2722 __kmp_affinity_cmp_Address_labels); 2723 2724 KMP_ASSERT(__kmp_affinity_gran_levels >= 0); 2725 if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) { 2726 KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels); 2727 } 2728 if (__kmp_affinity_gran_levels >= (int)depth) { 2729 if (__kmp_affinity_verbose || 2730 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { 2731 KMP_WARNING(AffThreadsMayMigrate); 2732 } 2733 } 2734 2735 // Run through the table, forming the masks for all threads on each core. 2736 // Threads on the same core will have identical "Address" objects, not 2737 // considering the last level, which must be the thread id. All threads on a 2738 // core will appear consecutively. 2739 unsigned unique = 0; 2740 unsigned j = 0; // index of 1st thread on core 2741 unsigned leader = 0; 2742 Address *leaderAddr = &(address2os[0].first); 2743 kmp_affin_mask_t *sum; 2744 KMP_CPU_ALLOC_ON_STACK(sum); 2745 KMP_CPU_ZERO(sum); 2746 KMP_CPU_SET(address2os[0].second, sum); 2747 for (i = 1; i < numAddrs; i++) { 2748 // If this thread is sufficiently close to the leader (within the 2749 // granularity setting), then set the bit for this os thread in the 2750 // affinity mask for this group, and go on to the next thread. 2751 if (leaderAddr->isClose(address2os[i].first, __kmp_affinity_gran_levels)) { 2752 KMP_CPU_SET(address2os[i].second, sum); 2753 continue; 2754 } 2755 2756 // For every thread in this group, copy the mask to the thread's entry in 2757 // the osId2Mask table. Mark the first address as a leader. 2758 for (; j < i; j++) { 2759 unsigned osId = address2os[j].second; 2760 KMP_DEBUG_ASSERT(osId <= maxOsId); 2761 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); 2762 KMP_CPU_COPY(mask, sum); 2763 address2os[j].first.leader = (j == leader); 2764 } 2765 unique++; 2766 2767 // Start a new mask. 2768 leader = i; 2769 leaderAddr = &(address2os[i].first); 2770 KMP_CPU_ZERO(sum); 2771 KMP_CPU_SET(address2os[i].second, sum); 2772 } 2773 2774 // For every thread in last group, copy the mask to the thread's 2775 // entry in the osId2Mask table. 2776 for (; j < i; j++) { 2777 unsigned osId = address2os[j].second; 2778 KMP_DEBUG_ASSERT(osId <= maxOsId); 2779 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); 2780 KMP_CPU_COPY(mask, sum); 2781 address2os[j].first.leader = (j == leader); 2782 } 2783 unique++; 2784 KMP_CPU_FREE_FROM_STACK(sum); 2785 2786 *maxIndex = maxOsId; 2787 *numUnique = unique; 2788 return osId2Mask; 2789 } 2790 2791 // Stuff for the affinity proclist parsers. It's easier to declare these vars 2792 // as file-static than to try and pass them through the calling sequence of 2793 // the recursive-descent OMP_PLACES parser. 2794 static kmp_affin_mask_t *newMasks; 2795 static int numNewMasks; 2796 static int nextNewMask; 2797 2798 #define ADD_MASK(_mask) \ 2799 { \ 2800 if (nextNewMask >= numNewMasks) { \ 2801 int i; \ 2802 numNewMasks *= 2; \ 2803 kmp_affin_mask_t *temp; \ 2804 KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \ 2805 for (i = 0; i < numNewMasks / 2; i++) { \ 2806 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); \ 2807 kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i); \ 2808 KMP_CPU_COPY(dest, src); \ 2809 } \ 2810 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2); \ 2811 newMasks = temp; \ 2812 } \ 2813 KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \ 2814 nextNewMask++; \ 2815 } 2816 2817 #define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \ 2818 { \ 2819 if (((_osId) > _maxOsId) || \ 2820 (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \ 2821 if (__kmp_affinity_verbose || \ 2822 (__kmp_affinity_warnings && \ 2823 (__kmp_affinity_type != affinity_none))) { \ 2824 KMP_WARNING(AffIgnoreInvalidProcID, _osId); \ 2825 } \ 2826 } else { \ 2827 ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \ 2828 } \ 2829 } 2830 2831 // Re-parse the proclist (for the explicit affinity type), and form the list 2832 // of affinity newMasks indexed by gtid. 2833 static void __kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks, 2834 unsigned int *out_numMasks, 2835 const char *proclist, 2836 kmp_affin_mask_t *osId2Mask, 2837 int maxOsId) { 2838 int i; 2839 const char *scan = proclist; 2840 const char *next = proclist; 2841 2842 // We use malloc() for the temporary mask vector, so that we can use 2843 // realloc() to extend it. 2844 numNewMasks = 2; 2845 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); 2846 nextNewMask = 0; 2847 kmp_affin_mask_t *sumMask; 2848 KMP_CPU_ALLOC(sumMask); 2849 int setSize = 0; 2850 2851 for (;;) { 2852 int start, end, stride; 2853 2854 SKIP_WS(scan); 2855 next = scan; 2856 if (*next == '\0') { 2857 break; 2858 } 2859 2860 if (*next == '{') { 2861 int num; 2862 setSize = 0; 2863 next++; // skip '{' 2864 SKIP_WS(next); 2865 scan = next; 2866 2867 // Read the first integer in the set. 2868 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist"); 2869 SKIP_DIGITS(next); 2870 num = __kmp_str_to_int(scan, *next); 2871 KMP_ASSERT2(num >= 0, "bad explicit proc list"); 2872 2873 // Copy the mask for that osId to the sum (union) mask. 2874 if ((num > maxOsId) || 2875 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 2876 if (__kmp_affinity_verbose || 2877 (__kmp_affinity_warnings && 2878 (__kmp_affinity_type != affinity_none))) { 2879 KMP_WARNING(AffIgnoreInvalidProcID, num); 2880 } 2881 KMP_CPU_ZERO(sumMask); 2882 } else { 2883 KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num)); 2884 setSize = 1; 2885 } 2886 2887 for (;;) { 2888 // Check for end of set. 2889 SKIP_WS(next); 2890 if (*next == '}') { 2891 next++; // skip '}' 2892 break; 2893 } 2894 2895 // Skip optional comma. 2896 if (*next == ',') { 2897 next++; 2898 } 2899 SKIP_WS(next); 2900 2901 // Read the next integer in the set. 2902 scan = next; 2903 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 2904 2905 SKIP_DIGITS(next); 2906 num = __kmp_str_to_int(scan, *next); 2907 KMP_ASSERT2(num >= 0, "bad explicit proc list"); 2908 2909 // Add the mask for that osId to the sum mask. 2910 if ((num > maxOsId) || 2911 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 2912 if (__kmp_affinity_verbose || 2913 (__kmp_affinity_warnings && 2914 (__kmp_affinity_type != affinity_none))) { 2915 KMP_WARNING(AffIgnoreInvalidProcID, num); 2916 } 2917 } else { 2918 KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num)); 2919 setSize++; 2920 } 2921 } 2922 if (setSize > 0) { 2923 ADD_MASK(sumMask); 2924 } 2925 2926 SKIP_WS(next); 2927 if (*next == ',') { 2928 next++; 2929 } 2930 scan = next; 2931 continue; 2932 } 2933 2934 // Read the first integer. 2935 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 2936 SKIP_DIGITS(next); 2937 start = __kmp_str_to_int(scan, *next); 2938 KMP_ASSERT2(start >= 0, "bad explicit proc list"); 2939 SKIP_WS(next); 2940 2941 // If this isn't a range, then add a mask to the list and go on. 2942 if (*next != '-') { 2943 ADD_MASK_OSID(start, osId2Mask, maxOsId); 2944 2945 // Skip optional comma. 2946 if (*next == ',') { 2947 next++; 2948 } 2949 scan = next; 2950 continue; 2951 } 2952 2953 // This is a range. Skip over the '-' and read in the 2nd int. 2954 next++; // skip '-' 2955 SKIP_WS(next); 2956 scan = next; 2957 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 2958 SKIP_DIGITS(next); 2959 end = __kmp_str_to_int(scan, *next); 2960 KMP_ASSERT2(end >= 0, "bad explicit proc list"); 2961 2962 // Check for a stride parameter 2963 stride = 1; 2964 SKIP_WS(next); 2965 if (*next == ':') { 2966 // A stride is specified. Skip over the ':" and read the 3rd int. 2967 int sign = +1; 2968 next++; // skip ':' 2969 SKIP_WS(next); 2970 scan = next; 2971 if (*next == '-') { 2972 sign = -1; 2973 next++; 2974 SKIP_WS(next); 2975 scan = next; 2976 } 2977 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 2978 SKIP_DIGITS(next); 2979 stride = __kmp_str_to_int(scan, *next); 2980 KMP_ASSERT2(stride >= 0, "bad explicit proc list"); 2981 stride *= sign; 2982 } 2983 2984 // Do some range checks. 2985 KMP_ASSERT2(stride != 0, "bad explicit proc list"); 2986 if (stride > 0) { 2987 KMP_ASSERT2(start <= end, "bad explicit proc list"); 2988 } else { 2989 KMP_ASSERT2(start >= end, "bad explicit proc list"); 2990 } 2991 KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list"); 2992 2993 // Add the mask for each OS proc # to the list. 2994 if (stride > 0) { 2995 do { 2996 ADD_MASK_OSID(start, osId2Mask, maxOsId); 2997 start += stride; 2998 } while (start <= end); 2999 } else { 3000 do { 3001 ADD_MASK_OSID(start, osId2Mask, maxOsId); 3002 start += stride; 3003 } while (start >= end); 3004 } 3005 3006 // Skip optional comma. 3007 SKIP_WS(next); 3008 if (*next == ',') { 3009 next++; 3010 } 3011 scan = next; 3012 } 3013 3014 *out_numMasks = nextNewMask; 3015 if (nextNewMask == 0) { 3016 *out_masks = NULL; 3017 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3018 return; 3019 } 3020 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); 3021 for (i = 0; i < nextNewMask; i++) { 3022 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); 3023 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); 3024 KMP_CPU_COPY(dest, src); 3025 } 3026 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3027 KMP_CPU_FREE(sumMask); 3028 } 3029 3030 /*----------------------------------------------------------------------------- 3031 Re-parse the OMP_PLACES proc id list, forming the newMasks for the different 3032 places. Again, Here is the grammar: 3033 3034 place_list := place 3035 place_list := place , place_list 3036 place := num 3037 place := place : num 3038 place := place : num : signed 3039 place := { subplacelist } 3040 place := ! place // (lowest priority) 3041 subplace_list := subplace 3042 subplace_list := subplace , subplace_list 3043 subplace := num 3044 subplace := num : num 3045 subplace := num : num : signed 3046 signed := num 3047 signed := + signed 3048 signed := - signed 3049 -----------------------------------------------------------------------------*/ 3050 static void __kmp_process_subplace_list(const char **scan, 3051 kmp_affin_mask_t *osId2Mask, 3052 int maxOsId, kmp_affin_mask_t *tempMask, 3053 int *setSize) { 3054 const char *next; 3055 3056 for (;;) { 3057 int start, count, stride, i; 3058 3059 // Read in the starting proc id 3060 SKIP_WS(*scan); 3061 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3062 next = *scan; 3063 SKIP_DIGITS(next); 3064 start = __kmp_str_to_int(*scan, *next); 3065 KMP_ASSERT(start >= 0); 3066 *scan = next; 3067 3068 // valid follow sets are ',' ':' and '}' 3069 SKIP_WS(*scan); 3070 if (**scan == '}' || **scan == ',') { 3071 if ((start > maxOsId) || 3072 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3073 if (__kmp_affinity_verbose || 3074 (__kmp_affinity_warnings && 3075 (__kmp_affinity_type != affinity_none))) { 3076 KMP_WARNING(AffIgnoreInvalidProcID, start); 3077 } 3078 } else { 3079 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3080 (*setSize)++; 3081 } 3082 if (**scan == '}') { 3083 break; 3084 } 3085 (*scan)++; // skip ',' 3086 continue; 3087 } 3088 KMP_ASSERT2(**scan == ':', "bad explicit places list"); 3089 (*scan)++; // skip ':' 3090 3091 // Read count parameter 3092 SKIP_WS(*scan); 3093 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3094 next = *scan; 3095 SKIP_DIGITS(next); 3096 count = __kmp_str_to_int(*scan, *next); 3097 KMP_ASSERT(count >= 0); 3098 *scan = next; 3099 3100 // valid follow sets are ',' ':' and '}' 3101 SKIP_WS(*scan); 3102 if (**scan == '}' || **scan == ',') { 3103 for (i = 0; i < count; i++) { 3104 if ((start > maxOsId) || 3105 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3106 if (__kmp_affinity_verbose || 3107 (__kmp_affinity_warnings && 3108 (__kmp_affinity_type != affinity_none))) { 3109 KMP_WARNING(AffIgnoreInvalidProcID, start); 3110 } 3111 break; // don't proliferate warnings for large count 3112 } else { 3113 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3114 start++; 3115 (*setSize)++; 3116 } 3117 } 3118 if (**scan == '}') { 3119 break; 3120 } 3121 (*scan)++; // skip ',' 3122 continue; 3123 } 3124 KMP_ASSERT2(**scan == ':', "bad explicit places list"); 3125 (*scan)++; // skip ':' 3126 3127 // Read stride parameter 3128 int sign = +1; 3129 for (;;) { 3130 SKIP_WS(*scan); 3131 if (**scan == '+') { 3132 (*scan)++; // skip '+' 3133 continue; 3134 } 3135 if (**scan == '-') { 3136 sign *= -1; 3137 (*scan)++; // skip '-' 3138 continue; 3139 } 3140 break; 3141 } 3142 SKIP_WS(*scan); 3143 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3144 next = *scan; 3145 SKIP_DIGITS(next); 3146 stride = __kmp_str_to_int(*scan, *next); 3147 KMP_ASSERT(stride >= 0); 3148 *scan = next; 3149 stride *= sign; 3150 3151 // valid follow sets are ',' and '}' 3152 SKIP_WS(*scan); 3153 if (**scan == '}' || **scan == ',') { 3154 for (i = 0; i < count; i++) { 3155 if ((start > maxOsId) || 3156 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3157 if (__kmp_affinity_verbose || 3158 (__kmp_affinity_warnings && 3159 (__kmp_affinity_type != affinity_none))) { 3160 KMP_WARNING(AffIgnoreInvalidProcID, start); 3161 } 3162 break; // don't proliferate warnings for large count 3163 } else { 3164 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3165 start += stride; 3166 (*setSize)++; 3167 } 3168 } 3169 if (**scan == '}') { 3170 break; 3171 } 3172 (*scan)++; // skip ',' 3173 continue; 3174 } 3175 3176 KMP_ASSERT2(0, "bad explicit places list"); 3177 } 3178 } 3179 3180 static void __kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask, 3181 int maxOsId, kmp_affin_mask_t *tempMask, 3182 int *setSize) { 3183 const char *next; 3184 3185 // valid follow sets are '{' '!' and num 3186 SKIP_WS(*scan); 3187 if (**scan == '{') { 3188 (*scan)++; // skip '{' 3189 __kmp_process_subplace_list(scan, osId2Mask, maxOsId, tempMask, setSize); 3190 KMP_ASSERT2(**scan == '}', "bad explicit places list"); 3191 (*scan)++; // skip '}' 3192 } else if (**scan == '!') { 3193 (*scan)++; // skip '!' 3194 __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize); 3195 KMP_CPU_COMPLEMENT(maxOsId, tempMask); 3196 } else if ((**scan >= '0') && (**scan <= '9')) { 3197 next = *scan; 3198 SKIP_DIGITS(next); 3199 int num = __kmp_str_to_int(*scan, *next); 3200 KMP_ASSERT(num >= 0); 3201 if ((num > maxOsId) || 3202 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 3203 if (__kmp_affinity_verbose || 3204 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { 3205 KMP_WARNING(AffIgnoreInvalidProcID, num); 3206 } 3207 } else { 3208 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num)); 3209 (*setSize)++; 3210 } 3211 *scan = next; // skip num 3212 } else { 3213 KMP_ASSERT2(0, "bad explicit places list"); 3214 } 3215 } 3216 3217 // static void 3218 void __kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks, 3219 unsigned int *out_numMasks, 3220 const char *placelist, 3221 kmp_affin_mask_t *osId2Mask, 3222 int maxOsId) { 3223 int i, j, count, stride, sign; 3224 const char *scan = placelist; 3225 const char *next = placelist; 3226 3227 numNewMasks = 2; 3228 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); 3229 nextNewMask = 0; 3230 3231 // tempMask is modified based on the previous or initial 3232 // place to form the current place 3233 // previousMask contains the previous place 3234 kmp_affin_mask_t *tempMask; 3235 kmp_affin_mask_t *previousMask; 3236 KMP_CPU_ALLOC(tempMask); 3237 KMP_CPU_ZERO(tempMask); 3238 KMP_CPU_ALLOC(previousMask); 3239 KMP_CPU_ZERO(previousMask); 3240 int setSize = 0; 3241 3242 for (;;) { 3243 __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize); 3244 3245 // valid follow sets are ',' ':' and EOL 3246 SKIP_WS(scan); 3247 if (*scan == '\0' || *scan == ',') { 3248 if (setSize > 0) { 3249 ADD_MASK(tempMask); 3250 } 3251 KMP_CPU_ZERO(tempMask); 3252 setSize = 0; 3253 if (*scan == '\0') { 3254 break; 3255 } 3256 scan++; // skip ',' 3257 continue; 3258 } 3259 3260 KMP_ASSERT2(*scan == ':', "bad explicit places list"); 3261 scan++; // skip ':' 3262 3263 // Read count parameter 3264 SKIP_WS(scan); 3265 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); 3266 next = scan; 3267 SKIP_DIGITS(next); 3268 count = __kmp_str_to_int(scan, *next); 3269 KMP_ASSERT(count >= 0); 3270 scan = next; 3271 3272 // valid follow sets are ',' ':' and EOL 3273 SKIP_WS(scan); 3274 if (*scan == '\0' || *scan == ',') { 3275 stride = +1; 3276 } else { 3277 KMP_ASSERT2(*scan == ':', "bad explicit places list"); 3278 scan++; // skip ':' 3279 3280 // Read stride parameter 3281 sign = +1; 3282 for (;;) { 3283 SKIP_WS(scan); 3284 if (*scan == '+') { 3285 scan++; // skip '+' 3286 continue; 3287 } 3288 if (*scan == '-') { 3289 sign *= -1; 3290 scan++; // skip '-' 3291 continue; 3292 } 3293 break; 3294 } 3295 SKIP_WS(scan); 3296 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); 3297 next = scan; 3298 SKIP_DIGITS(next); 3299 stride = __kmp_str_to_int(scan, *next); 3300 KMP_DEBUG_ASSERT(stride >= 0); 3301 scan = next; 3302 stride *= sign; 3303 } 3304 3305 // Add places determined by initial_place : count : stride 3306 for (i = 0; i < count; i++) { 3307 if (setSize == 0) { 3308 break; 3309 } 3310 // Add the current place, then build the next place (tempMask) from that 3311 KMP_CPU_COPY(previousMask, tempMask); 3312 ADD_MASK(previousMask); 3313 KMP_CPU_ZERO(tempMask); 3314 setSize = 0; 3315 KMP_CPU_SET_ITERATE(j, previousMask) { 3316 if (!KMP_CPU_ISSET(j, previousMask)) { 3317 continue; 3318 } 3319 if ((j + stride > maxOsId) || (j + stride < 0) || 3320 (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) || 3321 (!KMP_CPU_ISSET(j + stride, 3322 KMP_CPU_INDEX(osId2Mask, j + stride)))) { 3323 if ((__kmp_affinity_verbose || 3324 (__kmp_affinity_warnings && 3325 (__kmp_affinity_type != affinity_none))) && 3326 i < count - 1) { 3327 KMP_WARNING(AffIgnoreInvalidProcID, j + stride); 3328 } 3329 continue; 3330 } 3331 KMP_CPU_SET(j + stride, tempMask); 3332 setSize++; 3333 } 3334 } 3335 KMP_CPU_ZERO(tempMask); 3336 setSize = 0; 3337 3338 // valid follow sets are ',' and EOL 3339 SKIP_WS(scan); 3340 if (*scan == '\0') { 3341 break; 3342 } 3343 if (*scan == ',') { 3344 scan++; // skip ',' 3345 continue; 3346 } 3347 3348 KMP_ASSERT2(0, "bad explicit places list"); 3349 } 3350 3351 *out_numMasks = nextNewMask; 3352 if (nextNewMask == 0) { 3353 *out_masks = NULL; 3354 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3355 return; 3356 } 3357 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); 3358 KMP_CPU_FREE(tempMask); 3359 KMP_CPU_FREE(previousMask); 3360 for (i = 0; i < nextNewMask; i++) { 3361 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); 3362 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); 3363 KMP_CPU_COPY(dest, src); 3364 } 3365 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3366 } 3367 3368 #undef ADD_MASK 3369 #undef ADD_MASK_OSID 3370 3371 #if KMP_USE_HWLOC 3372 static int __kmp_hwloc_skip_PUs_obj(hwloc_topology_t t, hwloc_obj_t o) { 3373 // skip PUs descendants of the object o 3374 int skipped = 0; 3375 hwloc_obj_t hT = NULL; 3376 int N = __kmp_hwloc_count_children_by_type(t, o, HWLOC_OBJ_PU, &hT); 3377 for (int i = 0; i < N; ++i) { 3378 KMP_DEBUG_ASSERT(hT); 3379 unsigned idx = hT->os_index; 3380 if (KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3381 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3382 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3383 ++skipped; 3384 } 3385 hT = hwloc_get_next_obj_by_type(t, HWLOC_OBJ_PU, hT); 3386 } 3387 return skipped; // count number of skipped units 3388 } 3389 3390 static int __kmp_hwloc_obj_has_PUs(hwloc_topology_t t, hwloc_obj_t o) { 3391 // check if obj has PUs present in fullMask 3392 hwloc_obj_t hT = NULL; 3393 int N = __kmp_hwloc_count_children_by_type(t, o, HWLOC_OBJ_PU, &hT); 3394 for (int i = 0; i < N; ++i) { 3395 KMP_DEBUG_ASSERT(hT); 3396 unsigned idx = hT->os_index; 3397 if (KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) 3398 return 1; // found PU 3399 hT = hwloc_get_next_obj_by_type(t, HWLOC_OBJ_PU, hT); 3400 } 3401 return 0; // no PUs found 3402 } 3403 #endif // KMP_USE_HWLOC 3404 3405 static void __kmp_apply_thread_places(AddrUnsPair **pAddr, int depth) { 3406 AddrUnsPair *newAddr; 3407 if (__kmp_hws_requested == 0) 3408 goto _exit; // no topology limiting actions requested, exit 3409 #if KMP_USE_HWLOC 3410 if (__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) { 3411 // Number of subobjects calculated dynamically, this works fine for 3412 // any non-uniform topology. 3413 // L2 cache objects are determined by depth, other objects - by type. 3414 hwloc_topology_t tp = __kmp_hwloc_topology; 3415 int nS = 0, nN = 0, nL = 0, nC = 0, 3416 nT = 0; // logical index including skipped 3417 int nCr = 0, nTr = 0; // number of requested units 3418 int nPkg = 0, nCo = 0, n_new = 0, n_old = 0, nCpP = 0, nTpC = 0; // counters 3419 hwloc_obj_t hT, hC, hL, hN, hS; // hwloc objects (pointers to) 3420 int L2depth, idx; 3421 3422 // check support of extensions ---------------------------------- 3423 int numa_support = 0, tile_support = 0; 3424 if (__kmp_pu_os_idx) 3425 hT = hwloc_get_pu_obj_by_os_index(tp, 3426 __kmp_pu_os_idx[__kmp_avail_proc - 1]); 3427 else 3428 hT = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PU, __kmp_avail_proc - 1); 3429 if (hT == NULL) { // something's gone wrong 3430 KMP_WARNING(AffHWSubsetUnsupported); 3431 goto _exit; 3432 } 3433 // check NUMA node 3434 hN = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hT); 3435 hS = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hT); 3436 if (hN != NULL && hN->depth > hS->depth) { 3437 numa_support = 1; // 1 in case socket includes node(s) 3438 } else if (__kmp_hws_node.num > 0) { 3439 // don't support sockets inside NUMA node (no such HW found for testing) 3440 KMP_WARNING(AffHWSubsetUnsupported); 3441 goto _exit; 3442 } 3443 // check L2 cahce, get object by depth because of multiple caches 3444 L2depth = hwloc_get_cache_type_depth(tp, 2, HWLOC_OBJ_CACHE_UNIFIED); 3445 hL = hwloc_get_ancestor_obj_by_depth(tp, L2depth, hT); 3446 if (hL != NULL && 3447 __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC) > 1) { 3448 tile_support = 1; // no sense to count L2 if it includes single core 3449 } else if (__kmp_hws_tile.num > 0) { 3450 if (__kmp_hws_core.num == 0) { 3451 __kmp_hws_core = __kmp_hws_tile; // replace L2 with core 3452 __kmp_hws_tile.num = 0; 3453 } else { 3454 // L2 and core are both requested, but represent same object 3455 KMP_WARNING(AffHWSubsetInvalid); 3456 goto _exit; 3457 } 3458 } 3459 // end of check of extensions ----------------------------------- 3460 3461 // fill in unset items, validate settings ----------------------- 3462 if (__kmp_hws_socket.num == 0) 3463 __kmp_hws_socket.num = nPackages; // use all available sockets 3464 if (__kmp_hws_socket.offset >= nPackages) { 3465 KMP_WARNING(AffHWSubsetManySockets); 3466 goto _exit; 3467 } 3468 if (numa_support) { 3469 hN = NULL; 3470 int NN = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_NUMANODE, 3471 &hN); // num nodes in socket 3472 if (__kmp_hws_node.num == 0) 3473 __kmp_hws_node.num = NN; // use all available nodes 3474 if (__kmp_hws_node.offset >= NN) { 3475 KMP_WARNING(AffHWSubsetManyNodes); 3476 goto _exit; 3477 } 3478 if (tile_support) { 3479 // get num tiles in node 3480 int NL = __kmp_hwloc_count_children_by_depth(tp, hN, L2depth, &hL); 3481 if (__kmp_hws_tile.num == 0) { 3482 __kmp_hws_tile.num = NL + 1; 3483 } // use all available tiles, some node may have more tiles, thus +1 3484 if (__kmp_hws_tile.offset >= NL) { 3485 KMP_WARNING(AffHWSubsetManyTiles); 3486 goto _exit; 3487 } 3488 int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, 3489 &hC); // num cores in tile 3490 if (__kmp_hws_core.num == 0) 3491 __kmp_hws_core.num = NC; // use all available cores 3492 if (__kmp_hws_core.offset >= NC) { 3493 KMP_WARNING(AffHWSubsetManyCores); 3494 goto _exit; 3495 } 3496 } else { // tile_support 3497 int NC = __kmp_hwloc_count_children_by_type(tp, hN, HWLOC_OBJ_CORE, 3498 &hC); // num cores in node 3499 if (__kmp_hws_core.num == 0) 3500 __kmp_hws_core.num = NC; // use all available cores 3501 if (__kmp_hws_core.offset >= NC) { 3502 KMP_WARNING(AffHWSubsetManyCores); 3503 goto _exit; 3504 } 3505 } // tile_support 3506 } else { // numa_support 3507 if (tile_support) { 3508 // get num tiles in socket 3509 int NL = __kmp_hwloc_count_children_by_depth(tp, hS, L2depth, &hL); 3510 if (__kmp_hws_tile.num == 0) 3511 __kmp_hws_tile.num = NL; // use all available tiles 3512 if (__kmp_hws_tile.offset >= NL) { 3513 KMP_WARNING(AffHWSubsetManyTiles); 3514 goto _exit; 3515 } 3516 int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, 3517 &hC); // num cores in tile 3518 if (__kmp_hws_core.num == 0) 3519 __kmp_hws_core.num = NC; // use all available cores 3520 if (__kmp_hws_core.offset >= NC) { 3521 KMP_WARNING(AffHWSubsetManyCores); 3522 goto _exit; 3523 } 3524 } else { // tile_support 3525 int NC = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_CORE, 3526 &hC); // num cores in socket 3527 if (__kmp_hws_core.num == 0) 3528 __kmp_hws_core.num = NC; // use all available cores 3529 if (__kmp_hws_core.offset >= NC) { 3530 KMP_WARNING(AffHWSubsetManyCores); 3531 goto _exit; 3532 } 3533 } // tile_support 3534 } 3535 if (__kmp_hws_proc.num == 0) 3536 __kmp_hws_proc.num = __kmp_nThreadsPerCore; // use all available procs 3537 if (__kmp_hws_proc.offset >= __kmp_nThreadsPerCore) { 3538 KMP_WARNING(AffHWSubsetManyProcs); 3539 goto _exit; 3540 } 3541 // end of validation -------------------------------------------- 3542 3543 if (pAddr) // pAddr is NULL in case of affinity_none 3544 newAddr = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * 3545 __kmp_avail_proc); // max size 3546 // main loop to form HW subset ---------------------------------- 3547 hS = NULL; 3548 int NP = hwloc_get_nbobjs_by_type(tp, HWLOC_OBJ_PACKAGE); 3549 for (int s = 0; s < NP; ++s) { 3550 // Check Socket ----------------------------------------------- 3551 hS = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hS); 3552 if (!__kmp_hwloc_obj_has_PUs(tp, hS)) 3553 continue; // skip socket if all PUs are out of fullMask 3554 ++nS; // only count objects those have PUs in affinity mask 3555 if (nS <= __kmp_hws_socket.offset || 3556 nS > __kmp_hws_socket.num + __kmp_hws_socket.offset) { 3557 n_old += __kmp_hwloc_skip_PUs_obj(tp, hS); // skip socket 3558 continue; // move to next socket 3559 } 3560 nCr = 0; // count number of cores per socket 3561 // socket requested, go down the topology tree 3562 // check 4 cases: (+NUMA+Tile), (+NUMA-Tile), (-NUMA+Tile), (-NUMA-Tile) 3563 if (numa_support) { 3564 nN = 0; 3565 hN = NULL; 3566 // num nodes in current socket 3567 int NN = 3568 __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_NUMANODE, &hN); 3569 for (int n = 0; n < NN; ++n) { 3570 // Check NUMA Node ---------------------------------------- 3571 if (!__kmp_hwloc_obj_has_PUs(tp, hN)) { 3572 hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN); 3573 continue; // skip node if all PUs are out of fullMask 3574 } 3575 ++nN; 3576 if (nN <= __kmp_hws_node.offset || 3577 nN > __kmp_hws_node.num + __kmp_hws_node.offset) { 3578 // skip node as not requested 3579 n_old += __kmp_hwloc_skip_PUs_obj(tp, hN); // skip node 3580 hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN); 3581 continue; // move to next node 3582 } 3583 // node requested, go down the topology tree 3584 if (tile_support) { 3585 nL = 0; 3586 hL = NULL; 3587 int NL = __kmp_hwloc_count_children_by_depth(tp, hN, L2depth, &hL); 3588 for (int l = 0; l < NL; ++l) { 3589 // Check L2 (tile) ------------------------------------ 3590 if (!__kmp_hwloc_obj_has_PUs(tp, hL)) { 3591 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3592 continue; // skip tile if all PUs are out of fullMask 3593 } 3594 ++nL; 3595 if (nL <= __kmp_hws_tile.offset || 3596 nL > __kmp_hws_tile.num + __kmp_hws_tile.offset) { 3597 // skip tile as not requested 3598 n_old += __kmp_hwloc_skip_PUs_obj(tp, hL); // skip tile 3599 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3600 continue; // move to next tile 3601 } 3602 // tile requested, go down the topology tree 3603 nC = 0; 3604 hC = NULL; 3605 // num cores in current tile 3606 int NC = __kmp_hwloc_count_children_by_type(tp, hL, 3607 HWLOC_OBJ_CORE, &hC); 3608 for (int c = 0; c < NC; ++c) { 3609 // Check Core --------------------------------------- 3610 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) { 3611 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3612 continue; // skip core if all PUs are out of fullMask 3613 } 3614 ++nC; 3615 if (nC <= __kmp_hws_core.offset || 3616 nC > __kmp_hws_core.num + __kmp_hws_core.offset) { 3617 // skip node as not requested 3618 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core 3619 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3620 continue; // move to next node 3621 } 3622 // core requested, go down to PUs 3623 nT = 0; 3624 nTr = 0; 3625 hT = NULL; 3626 // num procs in current core 3627 int NT = __kmp_hwloc_count_children_by_type(tp, hC, 3628 HWLOC_OBJ_PU, &hT); 3629 for (int t = 0; t < NT; ++t) { 3630 // Check PU --------------------------------------- 3631 idx = hT->os_index; 3632 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3633 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3634 continue; // skip PU if not in fullMask 3635 } 3636 ++nT; 3637 if (nT <= __kmp_hws_proc.offset || 3638 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) { 3639 // skip PU 3640 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3641 ++n_old; 3642 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3643 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3644 continue; // move to next node 3645 } 3646 ++nTr; 3647 if (pAddr) // collect requested thread's data 3648 newAddr[n_new] = (*pAddr)[n_old]; 3649 ++n_new; 3650 ++n_old; 3651 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3652 } // threads loop 3653 if (nTr > 0) { 3654 ++nCr; // num cores per socket 3655 ++nCo; // total num cores 3656 if (nTr > nTpC) 3657 nTpC = nTr; // calc max threads per core 3658 } 3659 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3660 } // cores loop 3661 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3662 } // tiles loop 3663 } else { // tile_support 3664 // no tiles, check cores 3665 nC = 0; 3666 hC = NULL; 3667 // num cores in current node 3668 int NC = 3669 __kmp_hwloc_count_children_by_type(tp, hN, HWLOC_OBJ_CORE, &hC); 3670 for (int c = 0; c < NC; ++c) { 3671 // Check Core --------------------------------------- 3672 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) { 3673 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3674 continue; // skip core if all PUs are out of fullMask 3675 } 3676 ++nC; 3677 if (nC <= __kmp_hws_core.offset || 3678 nC > __kmp_hws_core.num + __kmp_hws_core.offset) { 3679 // skip node as not requested 3680 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core 3681 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3682 continue; // move to next node 3683 } 3684 // core requested, go down to PUs 3685 nT = 0; 3686 nTr = 0; 3687 hT = NULL; 3688 int NT = 3689 __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT); 3690 for (int t = 0; t < NT; ++t) { 3691 // Check PU --------------------------------------- 3692 idx = hT->os_index; 3693 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3694 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3695 continue; // skip PU if not in fullMask 3696 } 3697 ++nT; 3698 if (nT <= __kmp_hws_proc.offset || 3699 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) { 3700 // skip PU 3701 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3702 ++n_old; 3703 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3704 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3705 continue; // move to next node 3706 } 3707 ++nTr; 3708 if (pAddr) // collect requested thread's data 3709 newAddr[n_new] = (*pAddr)[n_old]; 3710 ++n_new; 3711 ++n_old; 3712 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3713 } // threads loop 3714 if (nTr > 0) { 3715 ++nCr; // num cores per socket 3716 ++nCo; // total num cores 3717 if (nTr > nTpC) 3718 nTpC = nTr; // calc max threads per core 3719 } 3720 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3721 } // cores loop 3722 } // tiles support 3723 hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN); 3724 } // nodes loop 3725 } else { // numa_support 3726 // no NUMA support 3727 if (tile_support) { 3728 nL = 0; 3729 hL = NULL; 3730 // num tiles in current socket 3731 int NL = __kmp_hwloc_count_children_by_depth(tp, hS, L2depth, &hL); 3732 for (int l = 0; l < NL; ++l) { 3733 // Check L2 (tile) ------------------------------------ 3734 if (!__kmp_hwloc_obj_has_PUs(tp, hL)) { 3735 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3736 continue; // skip tile if all PUs are out of fullMask 3737 } 3738 ++nL; 3739 if (nL <= __kmp_hws_tile.offset || 3740 nL > __kmp_hws_tile.num + __kmp_hws_tile.offset) { 3741 // skip tile as not requested 3742 n_old += __kmp_hwloc_skip_PUs_obj(tp, hL); // skip tile 3743 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3744 continue; // move to next tile 3745 } 3746 // tile requested, go down the topology tree 3747 nC = 0; 3748 hC = NULL; 3749 // num cores per tile 3750 int NC = 3751 __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC); 3752 for (int c = 0; c < NC; ++c) { 3753 // Check Core --------------------------------------- 3754 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) { 3755 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3756 continue; // skip core if all PUs are out of fullMask 3757 } 3758 ++nC; 3759 if (nC <= __kmp_hws_core.offset || 3760 nC > __kmp_hws_core.num + __kmp_hws_core.offset) { 3761 // skip node as not requested 3762 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core 3763 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3764 continue; // move to next node 3765 } 3766 // core requested, go down to PUs 3767 nT = 0; 3768 nTr = 0; 3769 hT = NULL; 3770 // num procs per core 3771 int NT = 3772 __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT); 3773 for (int t = 0; t < NT; ++t) { 3774 // Check PU --------------------------------------- 3775 idx = hT->os_index; 3776 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3777 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3778 continue; // skip PU if not in fullMask 3779 } 3780 ++nT; 3781 if (nT <= __kmp_hws_proc.offset || 3782 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) { 3783 // skip PU 3784 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3785 ++n_old; 3786 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3787 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3788 continue; // move to next node 3789 } 3790 ++nTr; 3791 if (pAddr) // collect requested thread's data 3792 newAddr[n_new] = (*pAddr)[n_old]; 3793 ++n_new; 3794 ++n_old; 3795 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3796 } // threads loop 3797 if (nTr > 0) { 3798 ++nCr; // num cores per socket 3799 ++nCo; // total num cores 3800 if (nTr > nTpC) 3801 nTpC = nTr; // calc max threads per core 3802 } 3803 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3804 } // cores loop 3805 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3806 } // tiles loop 3807 } else { // tile_support 3808 // no tiles, check cores 3809 nC = 0; 3810 hC = NULL; 3811 // num cores in socket 3812 int NC = 3813 __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_CORE, &hC); 3814 for (int c = 0; c < NC; ++c) { 3815 // Check Core ------------------------------------------- 3816 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) { 3817 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3818 continue; // skip core if all PUs are out of fullMask 3819 } 3820 ++nC; 3821 if (nC <= __kmp_hws_core.offset || 3822 nC > __kmp_hws_core.num + __kmp_hws_core.offset) { 3823 // skip node as not requested 3824 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core 3825 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3826 continue; // move to next node 3827 } 3828 // core requested, go down to PUs 3829 nT = 0; 3830 nTr = 0; 3831 hT = NULL; 3832 // num procs per core 3833 int NT = 3834 __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT); 3835 for (int t = 0; t < NT; ++t) { 3836 // Check PU --------------------------------------- 3837 idx = hT->os_index; 3838 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3839 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3840 continue; // skip PU if not in fullMask 3841 } 3842 ++nT; 3843 if (nT <= __kmp_hws_proc.offset || 3844 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) { 3845 // skip PU 3846 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3847 ++n_old; 3848 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3849 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3850 continue; // move to next node 3851 } 3852 ++nTr; 3853 if (pAddr) // collect requested thread's data 3854 newAddr[n_new] = (*pAddr)[n_old]; 3855 ++n_new; 3856 ++n_old; 3857 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3858 } // threads loop 3859 if (nTr > 0) { 3860 ++nCr; // num cores per socket 3861 ++nCo; // total num cores 3862 if (nTr > nTpC) 3863 nTpC = nTr; // calc max threads per core 3864 } 3865 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3866 } // cores loop 3867 } // tiles support 3868 } // numa_support 3869 if (nCr > 0) { // found cores? 3870 ++nPkg; // num sockets 3871 if (nCr > nCpP) 3872 nCpP = nCr; // calc max cores per socket 3873 } 3874 } // sockets loop 3875 3876 // check the subset is valid 3877 KMP_DEBUG_ASSERT(n_old == __kmp_avail_proc); 3878 KMP_DEBUG_ASSERT(nPkg > 0); 3879 KMP_DEBUG_ASSERT(nCpP > 0); 3880 KMP_DEBUG_ASSERT(nTpC > 0); 3881 KMP_DEBUG_ASSERT(nCo > 0); 3882 KMP_DEBUG_ASSERT(nPkg <= nPackages); 3883 KMP_DEBUG_ASSERT(nCpP <= nCoresPerPkg); 3884 KMP_DEBUG_ASSERT(nTpC <= __kmp_nThreadsPerCore); 3885 KMP_DEBUG_ASSERT(nCo <= __kmp_ncores); 3886 3887 nPackages = nPkg; // correct num sockets 3888 nCoresPerPkg = nCpP; // correct num cores per socket 3889 __kmp_nThreadsPerCore = nTpC; // correct num threads per core 3890 __kmp_avail_proc = n_new; // correct num procs 3891 __kmp_ncores = nCo; // correct num cores 3892 // hwloc topology method end 3893 } else 3894 #endif // KMP_USE_HWLOC 3895 { 3896 int n_old = 0, n_new = 0, proc_num = 0; 3897 if (__kmp_hws_node.num > 0 || __kmp_hws_tile.num > 0) { 3898 KMP_WARNING(AffHWSubsetNoHWLOC); 3899 goto _exit; 3900 } 3901 if (__kmp_hws_socket.num == 0) 3902 __kmp_hws_socket.num = nPackages; // use all available sockets 3903 if (__kmp_hws_core.num == 0) 3904 __kmp_hws_core.num = nCoresPerPkg; // use all available cores 3905 if (__kmp_hws_proc.num == 0 || __kmp_hws_proc.num > __kmp_nThreadsPerCore) 3906 __kmp_hws_proc.num = __kmp_nThreadsPerCore; // use all HW contexts 3907 if (!__kmp_affinity_uniform_topology()) { 3908 KMP_WARNING(AffHWSubsetNonUniform); 3909 goto _exit; // don't support non-uniform topology 3910 } 3911 if (depth > 3) { 3912 KMP_WARNING(AffHWSubsetNonThreeLevel); 3913 goto _exit; // don't support not-3-level topology 3914 } 3915 if (__kmp_hws_socket.offset + __kmp_hws_socket.num > nPackages) { 3916 KMP_WARNING(AffHWSubsetManySockets); 3917 goto _exit; 3918 } 3919 if (__kmp_hws_core.offset + __kmp_hws_core.num > nCoresPerPkg) { 3920 KMP_WARNING(AffHWSubsetManyCores); 3921 goto _exit; 3922 } 3923 // Form the requested subset 3924 if (pAddr) // pAddr is NULL in case of affinity_none 3925 newAddr = (AddrUnsPair *)__kmp_allocate( 3926 sizeof(AddrUnsPair) * __kmp_hws_socket.num * __kmp_hws_core.num * 3927 __kmp_hws_proc.num); 3928 for (int i = 0; i < nPackages; ++i) { 3929 if (i < __kmp_hws_socket.offset || 3930 i >= __kmp_hws_socket.offset + __kmp_hws_socket.num) { 3931 // skip not-requested socket 3932 n_old += nCoresPerPkg * __kmp_nThreadsPerCore; 3933 if (__kmp_pu_os_idx != NULL) { 3934 // walk through skipped socket 3935 for (int j = 0; j < nCoresPerPkg; ++j) { 3936 for (int k = 0; k < __kmp_nThreadsPerCore; ++k) { 3937 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask); 3938 ++proc_num; 3939 } 3940 } 3941 } 3942 } else { 3943 // walk through requested socket 3944 for (int j = 0; j < nCoresPerPkg; ++j) { 3945 if (j < __kmp_hws_core.offset || 3946 j >= __kmp_hws_core.offset + 3947 __kmp_hws_core.num) { // skip not-requested core 3948 n_old += __kmp_nThreadsPerCore; 3949 if (__kmp_pu_os_idx != NULL) { 3950 for (int k = 0; k < __kmp_nThreadsPerCore; ++k) { 3951 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask); 3952 ++proc_num; 3953 } 3954 } 3955 } else { 3956 // walk through requested core 3957 for (int k = 0; k < __kmp_nThreadsPerCore; ++k) { 3958 if (k < __kmp_hws_proc.num) { 3959 if (pAddr) // collect requested thread's data 3960 newAddr[n_new] = (*pAddr)[n_old]; 3961 n_new++; 3962 } else { 3963 if (__kmp_pu_os_idx != NULL) 3964 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask); 3965 } 3966 n_old++; 3967 ++proc_num; 3968 } 3969 } 3970 } 3971 } 3972 } 3973 KMP_DEBUG_ASSERT(n_old == nPackages * nCoresPerPkg * __kmp_nThreadsPerCore); 3974 KMP_DEBUG_ASSERT(n_new == 3975 __kmp_hws_socket.num * __kmp_hws_core.num * 3976 __kmp_hws_proc.num); 3977 nPackages = __kmp_hws_socket.num; // correct nPackages 3978 nCoresPerPkg = __kmp_hws_core.num; // correct nCoresPerPkg 3979 __kmp_nThreadsPerCore = __kmp_hws_proc.num; // correct __kmp_nThreadsPerCore 3980 __kmp_avail_proc = n_new; // correct avail_proc 3981 __kmp_ncores = nPackages * __kmp_hws_core.num; // correct ncores 3982 } // non-hwloc topology method 3983 if (pAddr) { 3984 __kmp_free(*pAddr); 3985 *pAddr = newAddr; // replace old topology with new one 3986 } 3987 if (__kmp_affinity_verbose) { 3988 char m[KMP_AFFIN_MASK_PRINT_LEN]; 3989 __kmp_affinity_print_mask(m, KMP_AFFIN_MASK_PRINT_LEN, 3990 __kmp_affin_fullMask); 3991 if (__kmp_affinity_respect_mask) { 3992 KMP_INFORM(InitOSProcSetRespect, "KMP_HW_SUBSET", m); 3993 } else { 3994 KMP_INFORM(InitOSProcSetNotRespect, "KMP_HW_SUBSET", m); 3995 } 3996 KMP_INFORM(AvailableOSProc, "KMP_HW_SUBSET", __kmp_avail_proc); 3997 kmp_str_buf_t buf; 3998 __kmp_str_buf_init(&buf); 3999 __kmp_str_buf_print(&buf, "%d", nPackages); 4000 KMP_INFORM(TopologyExtra, "KMP_HW_SUBSET", buf.str, nCoresPerPkg, 4001 __kmp_nThreadsPerCore, __kmp_ncores); 4002 __kmp_str_buf_free(&buf); 4003 } 4004 _exit: 4005 if (__kmp_pu_os_idx != NULL) { 4006 __kmp_free(__kmp_pu_os_idx); 4007 __kmp_pu_os_idx = NULL; 4008 } 4009 } 4010 4011 // This function figures out the deepest level at which there is at least one 4012 // cluster/core with more than one processing unit bound to it. 4013 static int __kmp_affinity_find_core_level(const AddrUnsPair *address2os, 4014 int nprocs, int bottom_level) { 4015 int core_level = 0; 4016 4017 for (int i = 0; i < nprocs; i++) { 4018 for (int j = bottom_level; j > 0; j--) { 4019 if (address2os[i].first.labels[j] > 0) { 4020 if (core_level < (j - 1)) { 4021 core_level = j - 1; 4022 } 4023 } 4024 } 4025 } 4026 return core_level; 4027 } 4028 4029 // This function counts number of clusters/cores at given level. 4030 static int __kmp_affinity_compute_ncores(const AddrUnsPair *address2os, 4031 int nprocs, int bottom_level, 4032 int core_level) { 4033 int ncores = 0; 4034 int i, j; 4035 4036 j = bottom_level; 4037 for (i = 0; i < nprocs; i++) { 4038 for (j = bottom_level; j > core_level; j--) { 4039 if ((i + 1) < nprocs) { 4040 if (address2os[i + 1].first.labels[j] > 0) { 4041 break; 4042 } 4043 } 4044 } 4045 if (j == core_level) { 4046 ncores++; 4047 } 4048 } 4049 if (j > core_level) { 4050 // In case of ( nprocs < __kmp_avail_proc ) we may end too deep and miss one 4051 // core. May occur when called from __kmp_affinity_find_core(). 4052 ncores++; 4053 } 4054 return ncores; 4055 } 4056 4057 // This function finds to which cluster/core given processing unit is bound. 4058 static int __kmp_affinity_find_core(const AddrUnsPair *address2os, int proc, 4059 int bottom_level, int core_level) { 4060 return __kmp_affinity_compute_ncores(address2os, proc + 1, bottom_level, 4061 core_level) - 4062 1; 4063 } 4064 4065 // This function finds maximal number of processing units bound to a 4066 // cluster/core at given level. 4067 static int __kmp_affinity_max_proc_per_core(const AddrUnsPair *address2os, 4068 int nprocs, int bottom_level, 4069 int core_level) { 4070 int maxprocpercore = 0; 4071 4072 if (core_level < bottom_level) { 4073 for (int i = 0; i < nprocs; i++) { 4074 int percore = address2os[i].first.labels[core_level + 1] + 1; 4075 4076 if (percore > maxprocpercore) { 4077 maxprocpercore = percore; 4078 } 4079 } 4080 } else { 4081 maxprocpercore = 1; 4082 } 4083 return maxprocpercore; 4084 } 4085 4086 static AddrUnsPair *address2os = NULL; 4087 static int *procarr = NULL; 4088 static int __kmp_aff_depth = 0; 4089 4090 #if KMP_USE_HIER_SCHED 4091 #define KMP_EXIT_AFF_NONE \ 4092 KMP_ASSERT(__kmp_affinity_type == affinity_none); \ 4093 KMP_ASSERT(address2os == NULL); \ 4094 __kmp_apply_thread_places(NULL, 0); \ 4095 __kmp_create_affinity_none_places(); \ 4096 __kmp_dispatch_set_hierarchy_values(); \ 4097 return; 4098 #else 4099 #define KMP_EXIT_AFF_NONE \ 4100 KMP_ASSERT(__kmp_affinity_type == affinity_none); \ 4101 KMP_ASSERT(address2os == NULL); \ 4102 __kmp_apply_thread_places(NULL, 0); \ 4103 __kmp_create_affinity_none_places(); \ 4104 return; 4105 #endif 4106 4107 // Create a one element mask array (set of places) which only contains the 4108 // initial process's affinity mask 4109 static void __kmp_create_affinity_none_places() { 4110 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4111 KMP_ASSERT(__kmp_affinity_type == affinity_none); 4112 __kmp_affinity_num_masks = 1; 4113 KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); 4114 kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, 0); 4115 KMP_CPU_COPY(dest, __kmp_affin_fullMask); 4116 } 4117 4118 static int __kmp_affinity_cmp_Address_child_num(const void *a, const void *b) { 4119 const Address *aa = &(((const AddrUnsPair *)a)->first); 4120 const Address *bb = &(((const AddrUnsPair *)b)->first); 4121 unsigned depth = aa->depth; 4122 unsigned i; 4123 KMP_DEBUG_ASSERT(depth == bb->depth); 4124 KMP_DEBUG_ASSERT((unsigned)__kmp_affinity_compact <= depth); 4125 KMP_DEBUG_ASSERT(__kmp_affinity_compact >= 0); 4126 for (i = 0; i < (unsigned)__kmp_affinity_compact; i++) { 4127 int j = depth - i - 1; 4128 if (aa->childNums[j] < bb->childNums[j]) 4129 return -1; 4130 if (aa->childNums[j] > bb->childNums[j]) 4131 return 1; 4132 } 4133 for (; i < depth; i++) { 4134 int j = i - __kmp_affinity_compact; 4135 if (aa->childNums[j] < bb->childNums[j]) 4136 return -1; 4137 if (aa->childNums[j] > bb->childNums[j]) 4138 return 1; 4139 } 4140 return 0; 4141 } 4142 4143 static void __kmp_aux_affinity_initialize(void) { 4144 if (__kmp_affinity_masks != NULL) { 4145 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4146 return; 4147 } 4148 4149 // Create the "full" mask - this defines all of the processors that we 4150 // consider to be in the machine model. If respect is set, then it is the 4151 // initialization thread's affinity mask. Otherwise, it is all processors that 4152 // we know about on the machine. 4153 if (__kmp_affin_fullMask == NULL) { 4154 KMP_CPU_ALLOC(__kmp_affin_fullMask); 4155 } 4156 if (KMP_AFFINITY_CAPABLE()) { 4157 if (__kmp_affinity_respect_mask) { 4158 __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE); 4159 4160 // Count the number of available processors. 4161 unsigned i; 4162 __kmp_avail_proc = 0; 4163 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 4164 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 4165 continue; 4166 } 4167 __kmp_avail_proc++; 4168 } 4169 if (__kmp_avail_proc > __kmp_xproc) { 4170 if (__kmp_affinity_verbose || 4171 (__kmp_affinity_warnings && 4172 (__kmp_affinity_type != affinity_none))) { 4173 KMP_WARNING(ErrorInitializeAffinity); 4174 } 4175 __kmp_affinity_type = affinity_none; 4176 KMP_AFFINITY_DISABLE(); 4177 return; 4178 } 4179 } else { 4180 __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask); 4181 __kmp_avail_proc = __kmp_xproc; 4182 } 4183 } 4184 4185 if (__kmp_affinity_gran == affinity_gran_tile && 4186 // check if user's request is valid 4187 __kmp_affinity_dispatch->get_api_type() == KMPAffinity::NATIVE_OS) { 4188 KMP_WARNING(AffTilesNoHWLOC, "KMP_AFFINITY"); 4189 __kmp_affinity_gran = affinity_gran_package; 4190 } 4191 4192 int depth = -1; 4193 kmp_i18n_id_t msg_id = kmp_i18n_null; 4194 4195 // For backward compatibility, setting KMP_CPUINFO_FILE => 4196 // KMP_TOPOLOGY_METHOD=cpuinfo 4197 if ((__kmp_cpuinfo_file != NULL) && 4198 (__kmp_affinity_top_method == affinity_top_method_all)) { 4199 __kmp_affinity_top_method = affinity_top_method_cpuinfo; 4200 } 4201 4202 if (__kmp_affinity_top_method == affinity_top_method_all) { 4203 // In the default code path, errors are not fatal - we just try using 4204 // another method. We only emit a warning message if affinity is on, or the 4205 // verbose flag is set, and the nowarnings flag was not set. 4206 const char *file_name = NULL; 4207 int line = 0; 4208 #if KMP_USE_HWLOC 4209 if (depth < 0 && 4210 __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) { 4211 if (__kmp_affinity_verbose) { 4212 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); 4213 } 4214 if (!__kmp_hwloc_error) { 4215 depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id); 4216 if (depth == 0) { 4217 KMP_EXIT_AFF_NONE; 4218 } else if (depth < 0 && __kmp_affinity_verbose) { 4219 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY"); 4220 } 4221 } else if (__kmp_affinity_verbose) { 4222 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY"); 4223 } 4224 } 4225 #endif 4226 4227 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4228 4229 if (depth < 0) { 4230 if (__kmp_affinity_verbose) { 4231 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC)); 4232 } 4233 4234 file_name = NULL; 4235 depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id); 4236 if (depth == 0) { 4237 KMP_EXIT_AFF_NONE; 4238 } 4239 4240 if (depth < 0) { 4241 if (__kmp_affinity_verbose) { 4242 if (msg_id != kmp_i18n_null) { 4243 KMP_INFORM(AffInfoStrStr, "KMP_AFFINITY", 4244 __kmp_i18n_catgets(msg_id), 4245 KMP_I18N_STR(DecodingLegacyAPIC)); 4246 } else { 4247 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", 4248 KMP_I18N_STR(DecodingLegacyAPIC)); 4249 } 4250 } 4251 4252 file_name = NULL; 4253 depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id); 4254 if (depth == 0) { 4255 KMP_EXIT_AFF_NONE; 4256 } 4257 } 4258 } 4259 4260 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4261 4262 #if KMP_OS_LINUX 4263 4264 if (depth < 0) { 4265 if (__kmp_affinity_verbose) { 4266 if (msg_id != kmp_i18n_null) { 4267 KMP_INFORM(AffStrParseFilename, "KMP_AFFINITY", 4268 __kmp_i18n_catgets(msg_id), "/proc/cpuinfo"); 4269 } else { 4270 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", "/proc/cpuinfo"); 4271 } 4272 } 4273 4274 FILE *f = fopen("/proc/cpuinfo", "r"); 4275 if (f == NULL) { 4276 msg_id = kmp_i18n_str_CantOpenCpuinfo; 4277 } else { 4278 file_name = "/proc/cpuinfo"; 4279 depth = 4280 __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f); 4281 fclose(f); 4282 if (depth == 0) { 4283 KMP_EXIT_AFF_NONE; 4284 } 4285 } 4286 } 4287 4288 #endif /* KMP_OS_LINUX */ 4289 4290 #if KMP_GROUP_AFFINITY 4291 4292 if ((depth < 0) && (__kmp_num_proc_groups > 1)) { 4293 if (__kmp_affinity_verbose) { 4294 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY"); 4295 } 4296 4297 depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id); 4298 KMP_ASSERT(depth != 0); 4299 } 4300 4301 #endif /* KMP_GROUP_AFFINITY */ 4302 4303 if (depth < 0) { 4304 if (__kmp_affinity_verbose && (msg_id != kmp_i18n_null)) { 4305 if (file_name == NULL) { 4306 KMP_INFORM(UsingFlatOS, __kmp_i18n_catgets(msg_id)); 4307 } else if (line == 0) { 4308 KMP_INFORM(UsingFlatOSFile, file_name, __kmp_i18n_catgets(msg_id)); 4309 } else { 4310 KMP_INFORM(UsingFlatOSFileLine, file_name, line, 4311 __kmp_i18n_catgets(msg_id)); 4312 } 4313 } 4314 // FIXME - print msg if msg_id = kmp_i18n_null ??? 4315 4316 file_name = ""; 4317 depth = __kmp_affinity_create_flat_map(&address2os, &msg_id); 4318 if (depth == 0) { 4319 KMP_EXIT_AFF_NONE; 4320 } 4321 KMP_ASSERT(depth > 0); 4322 KMP_ASSERT(address2os != NULL); 4323 } 4324 } 4325 4326 #if KMP_USE_HWLOC 4327 else if (__kmp_affinity_top_method == affinity_top_method_hwloc) { 4328 KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC); 4329 if (__kmp_affinity_verbose) { 4330 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); 4331 } 4332 depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id); 4333 if (depth == 0) { 4334 KMP_EXIT_AFF_NONE; 4335 } 4336 } 4337 #endif // KMP_USE_HWLOC 4338 4339 // If the user has specified that a particular topology discovery method is to be 4340 // used, then we abort if that method fails. The exception is group affinity, 4341 // which might have been implicitly set. 4342 4343 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4344 4345 else if (__kmp_affinity_top_method == affinity_top_method_x2apicid) { 4346 if (__kmp_affinity_verbose) { 4347 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC)); 4348 } 4349 4350 depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id); 4351 if (depth == 0) { 4352 KMP_EXIT_AFF_NONE; 4353 } 4354 if (depth < 0) { 4355 KMP_ASSERT(msg_id != kmp_i18n_null); 4356 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4357 } 4358 } else if (__kmp_affinity_top_method == affinity_top_method_apicid) { 4359 if (__kmp_affinity_verbose) { 4360 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC)); 4361 } 4362 4363 depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id); 4364 if (depth == 0) { 4365 KMP_EXIT_AFF_NONE; 4366 } 4367 if (depth < 0) { 4368 KMP_ASSERT(msg_id != kmp_i18n_null); 4369 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4370 } 4371 } 4372 4373 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4374 4375 else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) { 4376 const char *filename; 4377 if (__kmp_cpuinfo_file != NULL) { 4378 filename = __kmp_cpuinfo_file; 4379 } else { 4380 filename = "/proc/cpuinfo"; 4381 } 4382 4383 if (__kmp_affinity_verbose) { 4384 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename); 4385 } 4386 4387 FILE *f = fopen(filename, "r"); 4388 if (f == NULL) { 4389 int code = errno; 4390 if (__kmp_cpuinfo_file != NULL) { 4391 __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code), 4392 KMP_HNT(NameComesFrom_CPUINFO_FILE), __kmp_msg_null); 4393 } else { 4394 __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code), 4395 __kmp_msg_null); 4396 } 4397 } 4398 int line = 0; 4399 depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f); 4400 fclose(f); 4401 if (depth < 0) { 4402 KMP_ASSERT(msg_id != kmp_i18n_null); 4403 if (line > 0) { 4404 KMP_FATAL(FileLineMsgExiting, filename, line, 4405 __kmp_i18n_catgets(msg_id)); 4406 } else { 4407 KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id)); 4408 } 4409 } 4410 if (__kmp_affinity_type == affinity_none) { 4411 KMP_ASSERT(depth == 0); 4412 KMP_EXIT_AFF_NONE; 4413 } 4414 } 4415 4416 #if KMP_GROUP_AFFINITY 4417 4418 else if (__kmp_affinity_top_method == affinity_top_method_group) { 4419 if (__kmp_affinity_verbose) { 4420 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY"); 4421 } 4422 4423 depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id); 4424 KMP_ASSERT(depth != 0); 4425 if (depth < 0) { 4426 KMP_ASSERT(msg_id != kmp_i18n_null); 4427 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4428 } 4429 } 4430 4431 #endif /* KMP_GROUP_AFFINITY */ 4432 4433 else if (__kmp_affinity_top_method == affinity_top_method_flat) { 4434 if (__kmp_affinity_verbose) { 4435 KMP_INFORM(AffUsingFlatOS, "KMP_AFFINITY"); 4436 } 4437 4438 depth = __kmp_affinity_create_flat_map(&address2os, &msg_id); 4439 if (depth == 0) { 4440 KMP_EXIT_AFF_NONE; 4441 } 4442 // should not fail 4443 KMP_ASSERT(depth > 0); 4444 KMP_ASSERT(address2os != NULL); 4445 } 4446 4447 #if KMP_USE_HIER_SCHED 4448 __kmp_dispatch_set_hierarchy_values(); 4449 #endif 4450 4451 if (address2os == NULL) { 4452 if (KMP_AFFINITY_CAPABLE() && 4453 (__kmp_affinity_verbose || 4454 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none)))) { 4455 KMP_WARNING(ErrorInitializeAffinity); 4456 } 4457 __kmp_affinity_type = affinity_none; 4458 __kmp_create_affinity_none_places(); 4459 KMP_AFFINITY_DISABLE(); 4460 return; 4461 } 4462 4463 if (__kmp_affinity_gran == affinity_gran_tile 4464 #if KMP_USE_HWLOC 4465 && __kmp_tile_depth == 0 4466 #endif 4467 ) { 4468 // tiles requested but not detected, warn user on this 4469 KMP_WARNING(AffTilesNoTiles, "KMP_AFFINITY"); 4470 } 4471 4472 __kmp_apply_thread_places(&address2os, depth); 4473 4474 // Create the table of masks, indexed by thread Id. 4475 unsigned maxIndex; 4476 unsigned numUnique; 4477 kmp_affin_mask_t *osId2Mask = 4478 __kmp_create_masks(&maxIndex, &numUnique, address2os, __kmp_avail_proc); 4479 if (__kmp_affinity_gran_levels == 0) { 4480 KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc); 4481 } 4482 4483 // Set the childNums vector in all Address objects. This must be done before 4484 // we can sort using __kmp_affinity_cmp_Address_child_num(), which takes into 4485 // account the setting of __kmp_affinity_compact. 4486 __kmp_affinity_assign_child_nums(address2os, __kmp_avail_proc); 4487 4488 switch (__kmp_affinity_type) { 4489 4490 case affinity_explicit: 4491 KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL); 4492 if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) { 4493 __kmp_affinity_process_proclist( 4494 &__kmp_affinity_masks, &__kmp_affinity_num_masks, 4495 __kmp_affinity_proclist, osId2Mask, maxIndex); 4496 } else { 4497 __kmp_affinity_process_placelist( 4498 &__kmp_affinity_masks, &__kmp_affinity_num_masks, 4499 __kmp_affinity_proclist, osId2Mask, maxIndex); 4500 } 4501 if (__kmp_affinity_num_masks == 0) { 4502 if (__kmp_affinity_verbose || 4503 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { 4504 KMP_WARNING(AffNoValidProcID); 4505 } 4506 __kmp_affinity_type = affinity_none; 4507 __kmp_create_affinity_none_places(); 4508 return; 4509 } 4510 break; 4511 4512 // The other affinity types rely on sorting the Addresses according to some 4513 // permutation of the machine topology tree. Set __kmp_affinity_compact and 4514 // __kmp_affinity_offset appropriately, then jump to a common code fragment 4515 // to do the sort and create the array of affinity masks. 4516 4517 case affinity_logical: 4518 __kmp_affinity_compact = 0; 4519 if (__kmp_affinity_offset) { 4520 __kmp_affinity_offset = 4521 __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc; 4522 } 4523 goto sortAddresses; 4524 4525 case affinity_physical: 4526 if (__kmp_nThreadsPerCore > 1) { 4527 __kmp_affinity_compact = 1; 4528 if (__kmp_affinity_compact >= depth) { 4529 __kmp_affinity_compact = 0; 4530 } 4531 } else { 4532 __kmp_affinity_compact = 0; 4533 } 4534 if (__kmp_affinity_offset) { 4535 __kmp_affinity_offset = 4536 __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc; 4537 } 4538 goto sortAddresses; 4539 4540 case affinity_scatter: 4541 if (__kmp_affinity_compact >= depth) { 4542 __kmp_affinity_compact = 0; 4543 } else { 4544 __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact; 4545 } 4546 goto sortAddresses; 4547 4548 case affinity_compact: 4549 if (__kmp_affinity_compact >= depth) { 4550 __kmp_affinity_compact = depth - 1; 4551 } 4552 goto sortAddresses; 4553 4554 case affinity_balanced: 4555 if (depth <= 1) { 4556 if (__kmp_affinity_verbose || __kmp_affinity_warnings) { 4557 KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY"); 4558 } 4559 __kmp_affinity_type = affinity_none; 4560 __kmp_create_affinity_none_places(); 4561 return; 4562 } else if (!__kmp_affinity_uniform_topology()) { 4563 // Save the depth for further usage 4564 __kmp_aff_depth = depth; 4565 4566 int core_level = __kmp_affinity_find_core_level( 4567 address2os, __kmp_avail_proc, depth - 1); 4568 int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc, 4569 depth - 1, core_level); 4570 int maxprocpercore = __kmp_affinity_max_proc_per_core( 4571 address2os, __kmp_avail_proc, depth - 1, core_level); 4572 4573 int nproc = ncores * maxprocpercore; 4574 if ((nproc < 2) || (nproc < __kmp_avail_proc)) { 4575 if (__kmp_affinity_verbose || __kmp_affinity_warnings) { 4576 KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY"); 4577 } 4578 __kmp_affinity_type = affinity_none; 4579 return; 4580 } 4581 4582 procarr = (int *)__kmp_allocate(sizeof(int) * nproc); 4583 for (int i = 0; i < nproc; i++) { 4584 procarr[i] = -1; 4585 } 4586 4587 int lastcore = -1; 4588 int inlastcore = 0; 4589 for (int i = 0; i < __kmp_avail_proc; i++) { 4590 int proc = address2os[i].second; 4591 int core = 4592 __kmp_affinity_find_core(address2os, i, depth - 1, core_level); 4593 4594 if (core == lastcore) { 4595 inlastcore++; 4596 } else { 4597 inlastcore = 0; 4598 } 4599 lastcore = core; 4600 4601 procarr[core * maxprocpercore + inlastcore] = proc; 4602 } 4603 } 4604 if (__kmp_affinity_compact >= depth) { 4605 __kmp_affinity_compact = depth - 1; 4606 } 4607 4608 sortAddresses: 4609 // Allocate the gtid->affinity mask table. 4610 if (__kmp_affinity_dups) { 4611 __kmp_affinity_num_masks = __kmp_avail_proc; 4612 } else { 4613 __kmp_affinity_num_masks = numUnique; 4614 } 4615 4616 if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) && 4617 (__kmp_affinity_num_places > 0) && 4618 ((unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks)) { 4619 __kmp_affinity_num_masks = __kmp_affinity_num_places; 4620 } 4621 4622 KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); 4623 4624 // Sort the address2os table according to the current setting of 4625 // __kmp_affinity_compact, then fill out __kmp_affinity_masks. 4626 qsort(address2os, __kmp_avail_proc, sizeof(*address2os), 4627 __kmp_affinity_cmp_Address_child_num); 4628 { 4629 int i; 4630 unsigned j; 4631 for (i = 0, j = 0; i < __kmp_avail_proc; i++) { 4632 if ((!__kmp_affinity_dups) && (!address2os[i].first.leader)) { 4633 continue; 4634 } 4635 unsigned osId = address2os[i].second; 4636 kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId); 4637 kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, j); 4638 KMP_ASSERT(KMP_CPU_ISSET(osId, src)); 4639 KMP_CPU_COPY(dest, src); 4640 if (++j >= __kmp_affinity_num_masks) { 4641 break; 4642 } 4643 } 4644 KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks); 4645 } 4646 break; 4647 4648 default: 4649 KMP_ASSERT2(0, "Unexpected affinity setting"); 4650 } 4651 4652 KMP_CPU_FREE_ARRAY(osId2Mask, maxIndex + 1); 4653 machine_hierarchy.init(address2os, __kmp_avail_proc); 4654 } 4655 #undef KMP_EXIT_AFF_NONE 4656 4657 void __kmp_affinity_initialize(void) { 4658 // Much of the code above was written assuming that if a machine was not 4659 // affinity capable, then __kmp_affinity_type == affinity_none. We now 4660 // explicitly represent this as __kmp_affinity_type == affinity_disabled. 4661 // There are too many checks for __kmp_affinity_type == affinity_none 4662 // in this code. Instead of trying to change them all, check if 4663 // __kmp_affinity_type == affinity_disabled, and if so, slam it with 4664 // affinity_none, call the real initialization routine, then restore 4665 // __kmp_affinity_type to affinity_disabled. 4666 int disabled = (__kmp_affinity_type == affinity_disabled); 4667 if (!KMP_AFFINITY_CAPABLE()) { 4668 KMP_ASSERT(disabled); 4669 } 4670 if (disabled) { 4671 __kmp_affinity_type = affinity_none; 4672 } 4673 __kmp_aux_affinity_initialize(); 4674 if (disabled) { 4675 __kmp_affinity_type = affinity_disabled; 4676 } 4677 } 4678 4679 void __kmp_affinity_uninitialize(void) { 4680 if (__kmp_affinity_masks != NULL) { 4681 KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); 4682 __kmp_affinity_masks = NULL; 4683 } 4684 if (__kmp_affin_fullMask != NULL) { 4685 KMP_CPU_FREE(__kmp_affin_fullMask); 4686 __kmp_affin_fullMask = NULL; 4687 } 4688 __kmp_affinity_num_masks = 0; 4689 __kmp_affinity_type = affinity_default; 4690 __kmp_affinity_num_places = 0; 4691 if (__kmp_affinity_proclist != NULL) { 4692 __kmp_free(__kmp_affinity_proclist); 4693 __kmp_affinity_proclist = NULL; 4694 } 4695 if (address2os != NULL) { 4696 __kmp_free(address2os); 4697 address2os = NULL; 4698 } 4699 if (procarr != NULL) { 4700 __kmp_free(procarr); 4701 procarr = NULL; 4702 } 4703 #if KMP_USE_HWLOC 4704 if (__kmp_hwloc_topology != NULL) { 4705 hwloc_topology_destroy(__kmp_hwloc_topology); 4706 __kmp_hwloc_topology = NULL; 4707 } 4708 #endif 4709 KMPAffinity::destroy_api(); 4710 } 4711 4712 void __kmp_affinity_set_init_mask(int gtid, int isa_root) { 4713 if (!KMP_AFFINITY_CAPABLE()) { 4714 return; 4715 } 4716 4717 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); 4718 if (th->th.th_affin_mask == NULL) { 4719 KMP_CPU_ALLOC(th->th.th_affin_mask); 4720 } else { 4721 KMP_CPU_ZERO(th->th.th_affin_mask); 4722 } 4723 4724 // Copy the thread mask to the kmp_info_t structure. If 4725 // __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one that 4726 // has all of the OS proc ids set, or if __kmp_affinity_respect_mask is set, 4727 // then the full mask is the same as the mask of the initialization thread. 4728 kmp_affin_mask_t *mask; 4729 int i; 4730 4731 if (KMP_AFFINITY_NON_PROC_BIND) { 4732 if ((__kmp_affinity_type == affinity_none) || 4733 (__kmp_affinity_type == affinity_balanced)) { 4734 #if KMP_GROUP_AFFINITY 4735 if (__kmp_num_proc_groups > 1) { 4736 return; 4737 } 4738 #endif 4739 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4740 i = 0; 4741 mask = __kmp_affin_fullMask; 4742 } else { 4743 KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0); 4744 i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks; 4745 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); 4746 } 4747 } else { 4748 if ((!isa_root) || 4749 (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) { 4750 #if KMP_GROUP_AFFINITY 4751 if (__kmp_num_proc_groups > 1) { 4752 return; 4753 } 4754 #endif 4755 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4756 i = KMP_PLACE_ALL; 4757 mask = __kmp_affin_fullMask; 4758 } else { 4759 // int i = some hash function or just a counter that doesn't 4760 // always start at 0. Use gtid for now. 4761 KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0); 4762 i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks; 4763 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); 4764 } 4765 } 4766 4767 th->th.th_current_place = i; 4768 if (isa_root) { 4769 th->th.th_new_place = i; 4770 th->th.th_first_place = 0; 4771 th->th.th_last_place = __kmp_affinity_num_masks - 1; 4772 } else if (KMP_AFFINITY_NON_PROC_BIND) { 4773 // When using a Non-OMP_PROC_BIND affinity method, 4774 // set all threads' place-partition-var to the entire place list 4775 th->th.th_first_place = 0; 4776 th->th.th_last_place = __kmp_affinity_num_masks - 1; 4777 } 4778 4779 if (i == KMP_PLACE_ALL) { 4780 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n", 4781 gtid)); 4782 } else { 4783 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n", 4784 gtid, i)); 4785 } 4786 4787 KMP_CPU_COPY(th->th.th_affin_mask, mask); 4788 4789 if (__kmp_affinity_verbose 4790 /* to avoid duplicate printing (will be correctly printed on barrier) */ 4791 && (__kmp_affinity_type == affinity_none || 4792 (i != KMP_PLACE_ALL && __kmp_affinity_type != affinity_balanced))) { 4793 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4794 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4795 th->th.th_affin_mask); 4796 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), 4797 __kmp_gettid(), gtid, buf); 4798 } 4799 4800 #if KMP_OS_WINDOWS 4801 // On Windows* OS, the process affinity mask might have changed. If the user 4802 // didn't request affinity and this call fails, just continue silently. 4803 // See CQ171393. 4804 if (__kmp_affinity_type == affinity_none) { 4805 __kmp_set_system_affinity(th->th.th_affin_mask, FALSE); 4806 } else 4807 #endif 4808 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); 4809 } 4810 4811 void __kmp_affinity_set_place(int gtid) { 4812 if (!KMP_AFFINITY_CAPABLE()) { 4813 return; 4814 } 4815 4816 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); 4817 4818 KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current " 4819 "place = %d)\n", 4820 gtid, th->th.th_new_place, th->th.th_current_place)); 4821 4822 // Check that the new place is within this thread's partition. 4823 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4824 KMP_ASSERT(th->th.th_new_place >= 0); 4825 KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks); 4826 if (th->th.th_first_place <= th->th.th_last_place) { 4827 KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) && 4828 (th->th.th_new_place <= th->th.th_last_place)); 4829 } else { 4830 KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) || 4831 (th->th.th_new_place >= th->th.th_last_place)); 4832 } 4833 4834 // Copy the thread mask to the kmp_info_t structure, 4835 // and set this thread's affinity. 4836 kmp_affin_mask_t *mask = 4837 KMP_CPU_INDEX(__kmp_affinity_masks, th->th.th_new_place); 4838 KMP_CPU_COPY(th->th.th_affin_mask, mask); 4839 th->th.th_current_place = th->th.th_new_place; 4840 4841 if (__kmp_affinity_verbose) { 4842 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4843 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4844 th->th.th_affin_mask); 4845 KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(), 4846 __kmp_gettid(), gtid, buf); 4847 } 4848 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); 4849 } 4850 4851 int __kmp_aux_set_affinity(void **mask) { 4852 int gtid; 4853 kmp_info_t *th; 4854 int retval; 4855 4856 if (!KMP_AFFINITY_CAPABLE()) { 4857 return -1; 4858 } 4859 4860 gtid = __kmp_entry_gtid(); 4861 KA_TRACE(1000, (""); { 4862 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4863 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4864 (kmp_affin_mask_t *)(*mask)); 4865 __kmp_debug_printf( 4866 "kmp_set_affinity: setting affinity mask for thread %d = %s\n", gtid, 4867 buf); 4868 }); 4869 4870 if (__kmp_env_consistency_check) { 4871 if ((mask == NULL) || (*mask == NULL)) { 4872 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4873 } else { 4874 unsigned proc; 4875 int num_procs = 0; 4876 4877 KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) { 4878 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 4879 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4880 } 4881 if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) { 4882 continue; 4883 } 4884 num_procs++; 4885 } 4886 if (num_procs == 0) { 4887 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4888 } 4889 4890 #if KMP_GROUP_AFFINITY 4891 if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) { 4892 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4893 } 4894 #endif /* KMP_GROUP_AFFINITY */ 4895 } 4896 } 4897 4898 th = __kmp_threads[gtid]; 4899 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4900 retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); 4901 if (retval == 0) { 4902 KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask)); 4903 } 4904 4905 th->th.th_current_place = KMP_PLACE_UNDEFINED; 4906 th->th.th_new_place = KMP_PLACE_UNDEFINED; 4907 th->th.th_first_place = 0; 4908 th->th.th_last_place = __kmp_affinity_num_masks - 1; 4909 4910 // Turn off 4.0 affinity for the current tread at this parallel level. 4911 th->th.th_current_task->td_icvs.proc_bind = proc_bind_false; 4912 4913 return retval; 4914 } 4915 4916 int __kmp_aux_get_affinity(void **mask) { 4917 int gtid; 4918 int retval; 4919 kmp_info_t *th; 4920 4921 if (!KMP_AFFINITY_CAPABLE()) { 4922 return -1; 4923 } 4924 4925 gtid = __kmp_entry_gtid(); 4926 th = __kmp_threads[gtid]; 4927 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4928 4929 KA_TRACE(1000, (""); { 4930 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4931 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4932 th->th.th_affin_mask); 4933 __kmp_printf("kmp_get_affinity: stored affinity mask for thread %d = %s\n", 4934 gtid, buf); 4935 }); 4936 4937 if (__kmp_env_consistency_check) { 4938 if ((mask == NULL) || (*mask == NULL)) { 4939 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity"); 4940 } 4941 } 4942 4943 #if !KMP_OS_WINDOWS 4944 4945 retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); 4946 KA_TRACE(1000, (""); { 4947 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4948 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4949 (kmp_affin_mask_t *)(*mask)); 4950 __kmp_printf("kmp_get_affinity: system affinity mask for thread %d = %s\n", 4951 gtid, buf); 4952 }); 4953 return retval; 4954 4955 #else 4956 4957 KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask); 4958 return 0; 4959 4960 #endif /* KMP_OS_WINDOWS */ 4961 } 4962 4963 int __kmp_aux_get_affinity_max_proc() { 4964 if (!KMP_AFFINITY_CAPABLE()) { 4965 return 0; 4966 } 4967 #if KMP_GROUP_AFFINITY 4968 if (__kmp_num_proc_groups > 1) { 4969 return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT); 4970 } 4971 #endif 4972 return __kmp_xproc; 4973 } 4974 4975 int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) { 4976 if (!KMP_AFFINITY_CAPABLE()) { 4977 return -1; 4978 } 4979 4980 KA_TRACE(1000, (""); { 4981 int gtid = __kmp_entry_gtid(); 4982 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4983 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4984 (kmp_affin_mask_t *)(*mask)); 4985 __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in " 4986 "affinity mask for thread %d = %s\n", 4987 proc, gtid, buf); 4988 }); 4989 4990 if (__kmp_env_consistency_check) { 4991 if ((mask == NULL) || (*mask == NULL)) { 4992 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc"); 4993 } 4994 } 4995 4996 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 4997 return -1; 4998 } 4999 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 5000 return -2; 5001 } 5002 5003 KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask)); 5004 return 0; 5005 } 5006 5007 int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) { 5008 if (!KMP_AFFINITY_CAPABLE()) { 5009 return -1; 5010 } 5011 5012 KA_TRACE(1000, (""); { 5013 int gtid = __kmp_entry_gtid(); 5014 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5015 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5016 (kmp_affin_mask_t *)(*mask)); 5017 __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in " 5018 "affinity mask for thread %d = %s\n", 5019 proc, gtid, buf); 5020 }); 5021 5022 if (__kmp_env_consistency_check) { 5023 if ((mask == NULL) || (*mask == NULL)) { 5024 KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc"); 5025 } 5026 } 5027 5028 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 5029 return -1; 5030 } 5031 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 5032 return -2; 5033 } 5034 5035 KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask)); 5036 return 0; 5037 } 5038 5039 int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) { 5040 if (!KMP_AFFINITY_CAPABLE()) { 5041 return -1; 5042 } 5043 5044 KA_TRACE(1000, (""); { 5045 int gtid = __kmp_entry_gtid(); 5046 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5047 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5048 (kmp_affin_mask_t *)(*mask)); 5049 __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in " 5050 "affinity mask for thread %d = %s\n", 5051 proc, gtid, buf); 5052 }); 5053 5054 if (__kmp_env_consistency_check) { 5055 if ((mask == NULL) || (*mask == NULL)) { 5056 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc"); 5057 } 5058 } 5059 5060 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 5061 return -1; 5062 } 5063 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 5064 return 0; 5065 } 5066 5067 return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask)); 5068 } 5069 5070 // Dynamic affinity settings - Affinity balanced 5071 void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) { 5072 KMP_DEBUG_ASSERT(th); 5073 bool fine_gran = true; 5074 int tid = th->th.th_info.ds.ds_tid; 5075 5076 switch (__kmp_affinity_gran) { 5077 case affinity_gran_fine: 5078 case affinity_gran_thread: 5079 break; 5080 case affinity_gran_core: 5081 if (__kmp_nThreadsPerCore > 1) { 5082 fine_gran = false; 5083 } 5084 break; 5085 case affinity_gran_package: 5086 if (nCoresPerPkg > 1) { 5087 fine_gran = false; 5088 } 5089 break; 5090 default: 5091 fine_gran = false; 5092 } 5093 5094 if (__kmp_affinity_uniform_topology()) { 5095 int coreID; 5096 int threadID; 5097 // Number of hyper threads per core in HT machine 5098 int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores; 5099 // Number of cores 5100 int ncores = __kmp_ncores; 5101 if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) { 5102 __kmp_nth_per_core = __kmp_avail_proc / nPackages; 5103 ncores = nPackages; 5104 } 5105 // How many threads will be bound to each core 5106 int chunk = nthreads / ncores; 5107 // How many cores will have an additional thread bound to it - "big cores" 5108 int big_cores = nthreads % ncores; 5109 // Number of threads on the big cores 5110 int big_nth = (chunk + 1) * big_cores; 5111 if (tid < big_nth) { 5112 coreID = tid / (chunk + 1); 5113 threadID = (tid % (chunk + 1)) % __kmp_nth_per_core; 5114 } else { // tid >= big_nth 5115 coreID = (tid - big_cores) / chunk; 5116 threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core; 5117 } 5118 5119 KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(), 5120 "Illegal set affinity operation when not capable"); 5121 5122 kmp_affin_mask_t *mask = th->th.th_affin_mask; 5123 KMP_CPU_ZERO(mask); 5124 5125 if (fine_gran) { 5126 int osID = address2os[coreID * __kmp_nth_per_core + threadID].second; 5127 KMP_CPU_SET(osID, mask); 5128 } else { 5129 for (int i = 0; i < __kmp_nth_per_core; i++) { 5130 int osID; 5131 osID = address2os[coreID * __kmp_nth_per_core + i].second; 5132 KMP_CPU_SET(osID, mask); 5133 } 5134 } 5135 if (__kmp_affinity_verbose) { 5136 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5137 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); 5138 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), 5139 __kmp_gettid(), tid, buf); 5140 } 5141 __kmp_set_system_affinity(mask, TRUE); 5142 } else { // Non-uniform topology 5143 5144 kmp_affin_mask_t *mask = th->th.th_affin_mask; 5145 KMP_CPU_ZERO(mask); 5146 5147 int core_level = __kmp_affinity_find_core_level( 5148 address2os, __kmp_avail_proc, __kmp_aff_depth - 1); 5149 int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc, 5150 __kmp_aff_depth - 1, core_level); 5151 int nth_per_core = __kmp_affinity_max_proc_per_core( 5152 address2os, __kmp_avail_proc, __kmp_aff_depth - 1, core_level); 5153 5154 // For performance gain consider the special case nthreads == 5155 // __kmp_avail_proc 5156 if (nthreads == __kmp_avail_proc) { 5157 if (fine_gran) { 5158 int osID = address2os[tid].second; 5159 KMP_CPU_SET(osID, mask); 5160 } else { 5161 int core = __kmp_affinity_find_core(address2os, tid, 5162 __kmp_aff_depth - 1, core_level); 5163 for (int i = 0; i < __kmp_avail_proc; i++) { 5164 int osID = address2os[i].second; 5165 if (__kmp_affinity_find_core(address2os, i, __kmp_aff_depth - 1, 5166 core_level) == core) { 5167 KMP_CPU_SET(osID, mask); 5168 } 5169 } 5170 } 5171 } else if (nthreads <= ncores) { 5172 5173 int core = 0; 5174 for (int i = 0; i < ncores; i++) { 5175 // Check if this core from procarr[] is in the mask 5176 int in_mask = 0; 5177 for (int j = 0; j < nth_per_core; j++) { 5178 if (procarr[i * nth_per_core + j] != -1) { 5179 in_mask = 1; 5180 break; 5181 } 5182 } 5183 if (in_mask) { 5184 if (tid == core) { 5185 for (int j = 0; j < nth_per_core; j++) { 5186 int osID = procarr[i * nth_per_core + j]; 5187 if (osID != -1) { 5188 KMP_CPU_SET(osID, mask); 5189 // For fine granularity it is enough to set the first available 5190 // osID for this core 5191 if (fine_gran) { 5192 break; 5193 } 5194 } 5195 } 5196 break; 5197 } else { 5198 core++; 5199 } 5200 } 5201 } 5202 } else { // nthreads > ncores 5203 // Array to save the number of processors at each core 5204 int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores); 5205 // Array to save the number of cores with "x" available processors; 5206 int *ncores_with_x_procs = 5207 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); 5208 // Array to save the number of cores with # procs from x to nth_per_core 5209 int *ncores_with_x_to_max_procs = 5210 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); 5211 5212 for (int i = 0; i <= nth_per_core; i++) { 5213 ncores_with_x_procs[i] = 0; 5214 ncores_with_x_to_max_procs[i] = 0; 5215 } 5216 5217 for (int i = 0; i < ncores; i++) { 5218 int cnt = 0; 5219 for (int j = 0; j < nth_per_core; j++) { 5220 if (procarr[i * nth_per_core + j] != -1) { 5221 cnt++; 5222 } 5223 } 5224 nproc_at_core[i] = cnt; 5225 ncores_with_x_procs[cnt]++; 5226 } 5227 5228 for (int i = 0; i <= nth_per_core; i++) { 5229 for (int j = i; j <= nth_per_core; j++) { 5230 ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j]; 5231 } 5232 } 5233 5234 // Max number of processors 5235 int nproc = nth_per_core * ncores; 5236 // An array to keep number of threads per each context 5237 int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc); 5238 for (int i = 0; i < nproc; i++) { 5239 newarr[i] = 0; 5240 } 5241 5242 int nth = nthreads; 5243 int flag = 0; 5244 while (nth > 0) { 5245 for (int j = 1; j <= nth_per_core; j++) { 5246 int cnt = ncores_with_x_to_max_procs[j]; 5247 for (int i = 0; i < ncores; i++) { 5248 // Skip the core with 0 processors 5249 if (nproc_at_core[i] == 0) { 5250 continue; 5251 } 5252 for (int k = 0; k < nth_per_core; k++) { 5253 if (procarr[i * nth_per_core + k] != -1) { 5254 if (newarr[i * nth_per_core + k] == 0) { 5255 newarr[i * nth_per_core + k] = 1; 5256 cnt--; 5257 nth--; 5258 break; 5259 } else { 5260 if (flag != 0) { 5261 newarr[i * nth_per_core + k]++; 5262 cnt--; 5263 nth--; 5264 break; 5265 } 5266 } 5267 } 5268 } 5269 if (cnt == 0 || nth == 0) { 5270 break; 5271 } 5272 } 5273 if (nth == 0) { 5274 break; 5275 } 5276 } 5277 flag = 1; 5278 } 5279 int sum = 0; 5280 for (int i = 0; i < nproc; i++) { 5281 sum += newarr[i]; 5282 if (sum > tid) { 5283 if (fine_gran) { 5284 int osID = procarr[i]; 5285 KMP_CPU_SET(osID, mask); 5286 } else { 5287 int coreID = i / nth_per_core; 5288 for (int ii = 0; ii < nth_per_core; ii++) { 5289 int osID = procarr[coreID * nth_per_core + ii]; 5290 if (osID != -1) { 5291 KMP_CPU_SET(osID, mask); 5292 } 5293 } 5294 } 5295 break; 5296 } 5297 } 5298 __kmp_free(newarr); 5299 } 5300 5301 if (__kmp_affinity_verbose) { 5302 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5303 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); 5304 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), 5305 __kmp_gettid(), tid, buf); 5306 } 5307 __kmp_set_system_affinity(mask, TRUE); 5308 } 5309 } 5310 5311 #if KMP_OS_LINUX || KMP_OS_FREEBSD 5312 // We don't need this entry for Windows because 5313 // there is GetProcessAffinityMask() api 5314 // 5315 // The intended usage is indicated by these steps: 5316 // 1) The user gets the current affinity mask 5317 // 2) Then sets the affinity by calling this function 5318 // 3) Error check the return value 5319 // 4) Use non-OpenMP parallelization 5320 // 5) Reset the affinity to what was stored in step 1) 5321 #ifdef __cplusplus 5322 extern "C" 5323 #endif 5324 int 5325 kmp_set_thread_affinity_mask_initial() 5326 // the function returns 0 on success, 5327 // -1 if we cannot bind thread 5328 // >0 (errno) if an error happened during binding 5329 { 5330 int gtid = __kmp_get_gtid(); 5331 if (gtid < 0) { 5332 // Do not touch non-omp threads 5333 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5334 "non-omp thread, returning\n")); 5335 return -1; 5336 } 5337 if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) { 5338 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5339 "affinity not initialized, returning\n")); 5340 return -1; 5341 } 5342 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5343 "set full mask for thread %d\n", 5344 gtid)); 5345 KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL); 5346 return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE); 5347 } 5348 #endif 5349 5350 #endif // KMP_AFFINITY_SUPPORTED 5351