1 /* 2 * kmp_affinity.cpp -- affinity management 3 */ 4 5 6 //===----------------------------------------------------------------------===// 7 // 8 // The LLVM Compiler Infrastructure 9 // 10 // This file is dual licensed under the MIT and the University of Illinois Open 11 // Source Licenses. See LICENSE.txt for details. 12 // 13 //===----------------------------------------------------------------------===// 14 15 16 #include "kmp.h" 17 #include "kmp_i18n.h" 18 #include "kmp_io.h" 19 #include "kmp_str.h" 20 #include "kmp_wrapper_getpid.h" 21 #include "kmp_affinity.h" 22 23 // Store the real or imagined machine hierarchy here 24 static hierarchy_info machine_hierarchy; 25 26 void __kmp_cleanup_hierarchy() { 27 machine_hierarchy.fini(); 28 } 29 30 void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) { 31 kmp_uint32 depth; 32 // The test below is true if affinity is available, but set to "none". Need to init on first use of hierarchical barrier. 33 if (TCR_1(machine_hierarchy.uninitialized)) 34 machine_hierarchy.init(NULL, nproc); 35 36 // Adjust the hierarchy in case num threads exceeds original 37 if (nproc > machine_hierarchy.base_num_threads) 38 machine_hierarchy.resize(nproc); 39 40 depth = machine_hierarchy.depth; 41 KMP_DEBUG_ASSERT(depth > 0); 42 43 thr_bar->depth = depth; 44 thr_bar->base_leaf_kids = (kmp_uint8)machine_hierarchy.numPerLevel[0]-1; 45 thr_bar->skip_per_level = machine_hierarchy.skipPerLevel; 46 } 47 48 #if KMP_AFFINITY_SUPPORTED 49 50 // 51 // Print the affinity mask to the character array in a pretty format. 52 // 53 #if KMP_USE_HWLOC 54 char * 55 __kmp_affinity_print_mask(char *buf, int buf_len, kmp_affin_mask_t *mask) 56 { 57 int num_chars_to_write, num_chars_written; 58 char* scan; 59 KMP_ASSERT(buf_len >= 40); 60 61 // bufsize of 0 just retrieves the needed buffer size. 62 num_chars_to_write = hwloc_bitmap_list_snprintf(buf, 0, (hwloc_bitmap_t)mask); 63 64 // need '{', "xxxxxxxx...xx", '}', '\0' = num_chars_to_write + 3 bytes 65 // * num_chars_to_write returned by hwloc_bitmap_list_snprintf does not 66 // take into account the '\0' character. 67 if(hwloc_bitmap_iszero((hwloc_bitmap_t)mask)) { 68 KMP_SNPRINTF(buf, buf_len, "{<empty>}"); 69 } else if(num_chars_to_write < buf_len - 3) { 70 // no problem fitting the mask into buf_len number of characters 71 buf[0] = '{'; 72 // use buf_len-3 because we have the three characters: '{' '}' '\0' to add to the buffer 73 num_chars_written = hwloc_bitmap_list_snprintf(buf+1, buf_len-3, (hwloc_bitmap_t)mask); 74 buf[num_chars_written+1] = '}'; 75 buf[num_chars_written+2] = '\0'; 76 } else { 77 // Need to truncate the affinity mask string and add ellipsis. 78 // To do this, we first write out the '{' + str(mask) 79 buf[0] = '{'; 80 hwloc_bitmap_list_snprintf(buf+1, buf_len-1, (hwloc_bitmap_t)mask); 81 // then, what we do here is go to the 7th to last character, then go backwards until we are NOT 82 // on a digit then write "...}\0". This way it is a clean ellipsis addition and we don't 83 // overwrite part of an affinity number. i.e., we avoid something like { 45, 67, 8...} and get 84 // { 45, 67,...} instead. 85 scan = buf + buf_len - 7; 86 while(*scan >= '0' && *scan <= '9' && scan >= buf) 87 scan--; 88 *(scan+1) = '.'; 89 *(scan+2) = '.'; 90 *(scan+3) = '.'; 91 *(scan+4) = '}'; 92 *(scan+5) = '\0'; 93 } 94 return buf; 95 } 96 #else 97 char * 98 __kmp_affinity_print_mask(char *buf, int buf_len, kmp_affin_mask_t *mask) 99 { 100 KMP_ASSERT(buf_len >= 40); 101 char *scan = buf; 102 char *end = buf + buf_len - 1; 103 104 // 105 // Find first element / check for empty set. 106 // 107 size_t i; 108 for (i = 0; i < KMP_CPU_SETSIZE; i++) { 109 if (KMP_CPU_ISSET(i, mask)) { 110 break; 111 } 112 } 113 if (i == KMP_CPU_SETSIZE) { 114 KMP_SNPRINTF(scan, end-scan+1, "{<empty>}"); 115 while (*scan != '\0') scan++; 116 KMP_ASSERT(scan <= end); 117 return buf; 118 } 119 120 KMP_SNPRINTF(scan, end-scan+1, "{%ld", (long)i); 121 while (*scan != '\0') scan++; 122 i++; 123 for (; i < KMP_CPU_SETSIZE; i++) { 124 if (! KMP_CPU_ISSET(i, mask)) { 125 continue; 126 } 127 128 // 129 // Check for buffer overflow. A string of the form ",<n>" will have 130 // at most 10 characters, plus we want to leave room to print ",...}" 131 // if the set is too large to print for a total of 15 characters. 132 // We already left room for '\0' in setting end. 133 // 134 if (end - scan < 15) { 135 break; 136 } 137 KMP_SNPRINTF(scan, end-scan+1, ",%-ld", (long)i); 138 while (*scan != '\0') scan++; 139 } 140 if (i < KMP_CPU_SETSIZE) { 141 KMP_SNPRINTF(scan, end-scan+1, ",..."); 142 while (*scan != '\0') scan++; 143 } 144 KMP_SNPRINTF(scan, end-scan+1, "}"); 145 while (*scan != '\0') scan++; 146 KMP_ASSERT(scan <= end); 147 return buf; 148 } 149 #endif // KMP_USE_HWLOC 150 151 152 void 153 __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) 154 { 155 KMP_CPU_ZERO(mask); 156 157 # if KMP_GROUP_AFFINITY 158 159 if (__kmp_num_proc_groups > 1) { 160 int group; 161 KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL); 162 for (group = 0; group < __kmp_num_proc_groups; group++) { 163 int i; 164 int num = __kmp_GetActiveProcessorCount(group); 165 for (i = 0; i < num; i++) { 166 KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask); 167 } 168 } 169 } 170 else 171 172 # endif /* KMP_GROUP_AFFINITY */ 173 174 { 175 int proc; 176 for (proc = 0; proc < __kmp_xproc; proc++) { 177 KMP_CPU_SET(proc, mask); 178 } 179 } 180 } 181 182 // 183 // When sorting by labels, __kmp_affinity_assign_child_nums() must first be 184 // called to renumber the labels from [0..n] and place them into the child_num 185 // vector of the address object. This is done in case the labels used for 186 // the children at one node of the hierarchy differ from those used for 187 // another node at the same level. Example: suppose the machine has 2 nodes 188 // with 2 packages each. The first node contains packages 601 and 602, and 189 // second node contains packages 603 and 604. If we try to sort the table 190 // for "scatter" affinity, the table will still be sorted 601, 602, 603, 604 191 // because we are paying attention to the labels themselves, not the ordinal 192 // child numbers. By using the child numbers in the sort, the result is 193 // {0,0}=601, {0,1}=603, {1,0}=602, {1,1}=604. 194 // 195 static void 196 __kmp_affinity_assign_child_nums(AddrUnsPair *address2os, 197 int numAddrs) 198 { 199 KMP_DEBUG_ASSERT(numAddrs > 0); 200 int depth = address2os->first.depth; 201 unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 202 unsigned *lastLabel = (unsigned *)__kmp_allocate(depth 203 * sizeof(unsigned)); 204 int labCt; 205 for (labCt = 0; labCt < depth; labCt++) { 206 address2os[0].first.childNums[labCt] = counts[labCt] = 0; 207 lastLabel[labCt] = address2os[0].first.labels[labCt]; 208 } 209 int i; 210 for (i = 1; i < numAddrs; i++) { 211 for (labCt = 0; labCt < depth; labCt++) { 212 if (address2os[i].first.labels[labCt] != lastLabel[labCt]) { 213 int labCt2; 214 for (labCt2 = labCt + 1; labCt2 < depth; labCt2++) { 215 counts[labCt2] = 0; 216 lastLabel[labCt2] = address2os[i].first.labels[labCt2]; 217 } 218 counts[labCt]++; 219 lastLabel[labCt] = address2os[i].first.labels[labCt]; 220 break; 221 } 222 } 223 for (labCt = 0; labCt < depth; labCt++) { 224 address2os[i].first.childNums[labCt] = counts[labCt]; 225 } 226 for (; labCt < (int)Address::maxDepth; labCt++) { 227 address2os[i].first.childNums[labCt] = 0; 228 } 229 } 230 __kmp_free(lastLabel); 231 __kmp_free(counts); 232 } 233 234 235 // 236 // All of the __kmp_affinity_create_*_map() routines should set 237 // __kmp_affinity_masks to a vector of affinity mask objects of length 238 // __kmp_affinity_num_masks, if __kmp_affinity_type != affinity_none, and 239 // return the number of levels in the machine topology tree (zero if 240 // __kmp_affinity_type == affinity_none). 241 // 242 // All of the __kmp_affinity_create_*_map() routines should set *__kmp_affin_fullMask 243 // to the affinity mask for the initialization thread. They need to save and 244 // restore the mask, and it could be needed later, so saving it is just an 245 // optimization to avoid calling kmp_get_system_affinity() again. 246 // 247 kmp_affin_mask_t *__kmp_affin_fullMask = NULL; 248 249 static int nCoresPerPkg, nPackages; 250 static int __kmp_nThreadsPerCore; 251 #ifndef KMP_DFLT_NTH_CORES 252 static int __kmp_ncores; 253 #endif 254 static int *__kmp_pu_os_idx = NULL; 255 256 // 257 // __kmp_affinity_uniform_topology() doesn't work when called from 258 // places which support arbitrarily many levels in the machine topology 259 // map, i.e. the non-default cases in __kmp_affinity_create_cpuinfo_map() 260 // __kmp_affinity_create_x2apicid_map(). 261 // 262 inline static bool 263 __kmp_affinity_uniform_topology() 264 { 265 return __kmp_avail_proc == (__kmp_nThreadsPerCore * nCoresPerPkg * nPackages); 266 } 267 268 269 // 270 // Print out the detailed machine topology map, i.e. the physical locations 271 // of each OS proc. 272 // 273 static void 274 __kmp_affinity_print_topology(AddrUnsPair *address2os, int len, int depth, 275 int pkgLevel, int coreLevel, int threadLevel) 276 { 277 int proc; 278 279 KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY"); 280 for (proc = 0; proc < len; proc++) { 281 int level; 282 kmp_str_buf_t buf; 283 __kmp_str_buf_init(&buf); 284 for (level = 0; level < depth; level++) { 285 if (level == threadLevel) { 286 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Thread)); 287 } 288 else if (level == coreLevel) { 289 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Core)); 290 } 291 else if (level == pkgLevel) { 292 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Package)); 293 } 294 else if (level > pkgLevel) { 295 __kmp_str_buf_print(&buf, "%s_%d ", KMP_I18N_STR(Node), 296 level - pkgLevel - 1); 297 } 298 else { 299 __kmp_str_buf_print(&buf, "L%d ", level); 300 } 301 __kmp_str_buf_print(&buf, "%d ", 302 address2os[proc].first.labels[level]); 303 } 304 KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", address2os[proc].second, 305 buf.str); 306 __kmp_str_buf_free(&buf); 307 } 308 } 309 310 #if KMP_USE_HWLOC 311 312 // This function removes the topology levels that are radix 1 and don't offer 313 // further information about the topology. The most common example is when you 314 // have one thread context per core, we don't want the extra thread context 315 // level if it offers no unique labels. So they are removed. 316 // return value: the new depth of address2os 317 static int 318 __kmp_affinity_remove_radix_one_levels(AddrUnsPair *address2os, int nActiveThreads, int depth, int* pkgLevel, int* coreLevel, int* threadLevel) { 319 int level; 320 int i; 321 int radix1_detected; 322 323 for (level = depth-1; level >= 0; --level) { 324 // Always keep the package level 325 if (level == *pkgLevel) 326 continue; 327 // Detect if this level is radix 1 328 radix1_detected = 1; 329 for (i = 1; i < nActiveThreads; ++i) { 330 if (address2os[0].first.labels[level] != address2os[i].first.labels[level]) { 331 // There are differing label values for this level so it stays 332 radix1_detected = 0; 333 break; 334 } 335 } 336 if (!radix1_detected) 337 continue; 338 // Radix 1 was detected 339 if (level == *threadLevel) { 340 // If only one thread per core, then just decrement 341 // the depth which removes the threadlevel from address2os 342 for (i = 0; i < nActiveThreads; ++i) { 343 address2os[i].first.depth--; 344 } 345 *threadLevel = -1; 346 } else if (level == *coreLevel) { 347 // For core level, we move the thread labels over if they are still 348 // valid (*threadLevel != -1), and also reduce the depth another level 349 for (i = 0; i < nActiveThreads; ++i) { 350 if (*threadLevel != -1) { 351 address2os[i].first.labels[*coreLevel] = address2os[i].first.labels[*threadLevel]; 352 } 353 address2os[i].first.depth--; 354 } 355 *coreLevel = -1; 356 } 357 } 358 return address2os[0].first.depth; 359 } 360 361 // Returns the number of objects of type 'type' below 'obj' within the topology tree structure. 362 // e.g., if obj is a HWLOC_OBJ_SOCKET object, and type is HWLOC_OBJ_PU, then 363 // this will return the number of PU's under the SOCKET object. 364 static int 365 __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj, hwloc_obj_type_t type) { 366 int retval = 0; 367 hwloc_obj_t first; 368 for(first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type, obj->logical_index, type, 0); 369 first != NULL && hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, obj->type, first) == obj; 370 first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type, first)) 371 { 372 ++retval; 373 } 374 return retval; 375 } 376 377 static int 378 __kmp_affinity_create_hwloc_map(AddrUnsPair **address2os, 379 kmp_i18n_id_t *const msg_id) 380 { 381 *address2os = NULL; 382 *msg_id = kmp_i18n_null; 383 384 // 385 // Save the affinity mask for the current thread. 386 // 387 kmp_affin_mask_t *oldMask; 388 KMP_CPU_ALLOC(oldMask); 389 __kmp_get_system_affinity(oldMask, TRUE); 390 391 int depth = 3; 392 int pkgLevel = 0; 393 int coreLevel = 1; 394 int threadLevel = 2; 395 396 if (! KMP_AFFINITY_CAPABLE()) 397 { 398 // 399 // Hack to try and infer the machine topology using only the data 400 // available from cpuid on the current thread, and __kmp_xproc. 401 // 402 KMP_ASSERT(__kmp_affinity_type == affinity_none); 403 404 nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(hwloc_get_obj_by_type(__kmp_hwloc_topology, HWLOC_OBJ_SOCKET, 0), HWLOC_OBJ_CORE); 405 __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(hwloc_get_obj_by_type(__kmp_hwloc_topology, HWLOC_OBJ_CORE, 0), HWLOC_OBJ_PU); 406 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; 407 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 408 if (__kmp_affinity_verbose) { 409 KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY"); 410 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 411 if (__kmp_affinity_uniform_topology()) { 412 KMP_INFORM(Uniform, "KMP_AFFINITY"); 413 } else { 414 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 415 } 416 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 417 __kmp_nThreadsPerCore, __kmp_ncores); 418 } 419 KMP_CPU_FREE(oldMask); 420 return 0; 421 } 422 423 // 424 // Allocate the data structure to be returned. 425 // 426 AddrUnsPair *retval = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc); 427 __kmp_pu_os_idx = (int*)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 428 429 // 430 // When affinity is off, this routine will still be called to set 431 // __kmp_ncores, as well as __kmp_nThreadsPerCore, 432 // nCoresPerPkg, & nPackages. Make sure all these vars are set 433 // correctly, and return if affinity is not enabled. 434 // 435 436 hwloc_obj_t pu; 437 hwloc_obj_t core; 438 hwloc_obj_t socket; 439 int nActiveThreads = 0; 440 int socket_identifier = 0; 441 // re-calculate globals to count only accessible resources 442 __kmp_ncores = nPackages = nCoresPerPkg = __kmp_nThreadsPerCore = 0; 443 for(socket = hwloc_get_obj_by_type(__kmp_hwloc_topology, HWLOC_OBJ_SOCKET, 0); 444 socket != NULL; 445 socket = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, HWLOC_OBJ_SOCKET, socket), 446 socket_identifier++) 447 { 448 int core_identifier = 0; 449 int num_active_cores = 0; 450 for(core = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, socket->type, socket->logical_index, HWLOC_OBJ_CORE, 0); 451 core != NULL && hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, socket->type, core) == socket; 452 core = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, HWLOC_OBJ_CORE, core), 453 core_identifier++) 454 { 455 int pu_identifier = 0; 456 int num_active_threads = 0; 457 for(pu = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, core->type, core->logical_index, HWLOC_OBJ_PU, 0); 458 pu != NULL && hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, core->type, pu) == core; 459 pu = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, HWLOC_OBJ_PU, pu), 460 pu_identifier++) 461 { 462 Address addr(3); 463 if(! KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask)) 464 continue; // skip inactive (inaccessible) unit 465 KA_TRACE(20, ("Hwloc inserting %d (%d) %d (%d) %d (%d) into address2os\n", 466 socket->os_index, socket->logical_index, core->os_index, core->logical_index, pu->os_index,pu->logical_index)); 467 addr.labels[0] = socket_identifier; // package 468 addr.labels[1] = core_identifier; // core 469 addr.labels[2] = pu_identifier; // pu 470 retval[nActiveThreads] = AddrUnsPair(addr, pu->os_index); 471 __kmp_pu_os_idx[nActiveThreads] = pu->os_index; // keep os index for each active pu 472 nActiveThreads++; 473 ++num_active_threads; // count active threads per core 474 } 475 if (num_active_threads) { // were there any active threads on the core? 476 ++__kmp_ncores; // count total active cores 477 ++num_active_cores; // count active cores per socket 478 if (num_active_threads > __kmp_nThreadsPerCore) 479 __kmp_nThreadsPerCore = num_active_threads; // calc maximum 480 } 481 } 482 if (num_active_cores) { // were there any active cores on the socket? 483 ++nPackages; // count total active packages 484 if (num_active_cores > nCoresPerPkg) 485 nCoresPerPkg = num_active_cores; // calc maximum 486 } 487 } 488 489 // 490 // If there's only one thread context to bind to, return now. 491 // 492 KMP_DEBUG_ASSERT(nActiveThreads == __kmp_avail_proc); 493 KMP_ASSERT(nActiveThreads > 0); 494 if (nActiveThreads == 1) { 495 __kmp_ncores = nPackages = 1; 496 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 497 if (__kmp_affinity_verbose) { 498 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 499 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 500 501 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); 502 if (__kmp_affinity_respect_mask) { 503 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 504 } else { 505 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 506 } 507 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 508 KMP_INFORM(Uniform, "KMP_AFFINITY"); 509 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 510 __kmp_nThreadsPerCore, __kmp_ncores); 511 } 512 513 if (__kmp_affinity_type == affinity_none) { 514 __kmp_free(retval); 515 KMP_CPU_FREE(oldMask); 516 return 0; 517 } 518 519 // 520 // Form an Address object which only includes the package level. 521 // 522 Address addr(1); 523 addr.labels[0] = retval[0].first.labels[pkgLevel]; 524 retval[0].first = addr; 525 526 if (__kmp_affinity_gran_levels < 0) { 527 __kmp_affinity_gran_levels = 0; 528 } 529 530 if (__kmp_affinity_verbose) { 531 __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1); 532 } 533 534 *address2os = retval; 535 KMP_CPU_FREE(oldMask); 536 return 1; 537 } 538 539 // 540 // Sort the table by physical Id. 541 // 542 qsort(retval, nActiveThreads, sizeof(*retval), __kmp_affinity_cmp_Address_labels); 543 544 // 545 // Check to see if the machine topology is uniform 546 // 547 unsigned uniform = (nPackages * nCoresPerPkg * __kmp_nThreadsPerCore == nActiveThreads); 548 549 // 550 // Print the machine topology summary. 551 // 552 if (__kmp_affinity_verbose) { 553 char mask[KMP_AFFIN_MASK_PRINT_LEN]; 554 __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 555 556 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); 557 if (__kmp_affinity_respect_mask) { 558 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask); 559 } else { 560 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask); 561 } 562 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 563 if (uniform) { 564 KMP_INFORM(Uniform, "KMP_AFFINITY"); 565 } else { 566 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 567 } 568 569 kmp_str_buf_t buf; 570 __kmp_str_buf_init(&buf); 571 572 __kmp_str_buf_print(&buf, "%d", nPackages); 573 //for (level = 1; level <= pkgLevel; level++) { 574 // __kmp_str_buf_print(&buf, " x %d", maxCt[level]); 575 // } 576 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg, 577 __kmp_nThreadsPerCore, __kmp_ncores); 578 579 __kmp_str_buf_free(&buf); 580 } 581 582 if (__kmp_affinity_type == affinity_none) { 583 __kmp_free(retval); 584 KMP_CPU_FREE(oldMask); 585 return 0; 586 } 587 588 // 589 // Find any levels with radiix 1, and remove them from the map 590 // (except for the package level). 591 // 592 depth = __kmp_affinity_remove_radix_one_levels(retval, nActiveThreads, depth, &pkgLevel, &coreLevel, &threadLevel); 593 594 if (__kmp_affinity_gran_levels < 0) { 595 // 596 // Set the granularity level based on what levels are modeled 597 // in the machine topology map. 598 // 599 __kmp_affinity_gran_levels = 0; 600 if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) { 601 __kmp_affinity_gran_levels++; 602 } 603 if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) { 604 __kmp_affinity_gran_levels++; 605 } 606 if (__kmp_affinity_gran > affinity_gran_package) { 607 __kmp_affinity_gran_levels++; 608 } 609 } 610 611 if (__kmp_affinity_verbose) { 612 __kmp_affinity_print_topology(retval, nActiveThreads, depth, pkgLevel, 613 coreLevel, threadLevel); 614 } 615 616 KMP_CPU_FREE(oldMask); 617 *address2os = retval; 618 return depth; 619 } 620 #endif // KMP_USE_HWLOC 621 622 // 623 // If we don't know how to retrieve the machine's processor topology, or 624 // encounter an error in doing so, this routine is called to form a "flat" 625 // mapping of os thread id's <-> processor id's. 626 // 627 static int 628 __kmp_affinity_create_flat_map(AddrUnsPair **address2os, 629 kmp_i18n_id_t *const msg_id) 630 { 631 *address2os = NULL; 632 *msg_id = kmp_i18n_null; 633 634 // 635 // Even if __kmp_affinity_type == affinity_none, this routine might still 636 // called to set __kmp_ncores, as well as 637 // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 638 // 639 if (! KMP_AFFINITY_CAPABLE()) { 640 KMP_ASSERT(__kmp_affinity_type == affinity_none); 641 __kmp_ncores = nPackages = __kmp_xproc; 642 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 643 if (__kmp_affinity_verbose) { 644 KMP_INFORM(AffFlatTopology, "KMP_AFFINITY"); 645 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 646 KMP_INFORM(Uniform, "KMP_AFFINITY"); 647 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 648 __kmp_nThreadsPerCore, __kmp_ncores); 649 } 650 return 0; 651 } 652 653 // 654 // When affinity is off, this routine will still be called to set 655 // __kmp_ncores, as well as __kmp_nThreadsPerCore, 656 // nCoresPerPkg, & nPackages. Make sure all these vars are set 657 // correctly, and return now if affinity is not enabled. 658 // 659 __kmp_ncores = nPackages = __kmp_avail_proc; 660 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 661 if (__kmp_affinity_verbose) { 662 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 663 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, __kmp_affin_fullMask); 664 665 KMP_INFORM(AffCapableUseFlat, "KMP_AFFINITY"); 666 if (__kmp_affinity_respect_mask) { 667 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 668 } else { 669 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 670 } 671 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 672 KMP_INFORM(Uniform, "KMP_AFFINITY"); 673 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 674 __kmp_nThreadsPerCore, __kmp_ncores); 675 } 676 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 677 __kmp_pu_os_idx = (int*)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 678 if (__kmp_affinity_type == affinity_none) { 679 int avail_ct = 0; 680 unsigned int i; 681 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 682 if (! KMP_CPU_ISSET(i, __kmp_affin_fullMask)) 683 continue; 684 __kmp_pu_os_idx[avail_ct++] = i; // suppose indices are flat 685 } 686 return 0; 687 } 688 689 // 690 // Contruct the data structure to be returned. 691 // 692 *address2os = (AddrUnsPair*) 693 __kmp_allocate(sizeof(**address2os) * __kmp_avail_proc); 694 int avail_ct = 0; 695 unsigned int i; 696 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 697 // 698 // Skip this proc if it is not included in the machine model. 699 // 700 if (! KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 701 continue; 702 } 703 __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat 704 Address addr(1); 705 addr.labels[0] = i; 706 (*address2os)[avail_ct++] = AddrUnsPair(addr,i); 707 } 708 if (__kmp_affinity_verbose) { 709 KMP_INFORM(OSProcToPackage, "KMP_AFFINITY"); 710 } 711 712 if (__kmp_affinity_gran_levels < 0) { 713 // 714 // Only the package level is modeled in the machine topology map, 715 // so the #levels of granularity is either 0 or 1. 716 // 717 if (__kmp_affinity_gran > affinity_gran_package) { 718 __kmp_affinity_gran_levels = 1; 719 } 720 else { 721 __kmp_affinity_gran_levels = 0; 722 } 723 } 724 return 1; 725 } 726 727 728 # if KMP_GROUP_AFFINITY 729 730 // 731 // If multiple Windows* OS processor groups exist, we can create a 2-level 732 // topology map with the groups at level 0 and the individual procs at 733 // level 1. 734 // 735 // This facilitates letting the threads float among all procs in a group, 736 // if granularity=group (the default when there are multiple groups). 737 // 738 static int 739 __kmp_affinity_create_proc_group_map(AddrUnsPair **address2os, 740 kmp_i18n_id_t *const msg_id) 741 { 742 *address2os = NULL; 743 *msg_id = kmp_i18n_null; 744 745 // 746 // If we don't have multiple processor groups, return now. 747 // The flat mapping will be used. 748 // 749 if ((! KMP_AFFINITY_CAPABLE()) || (__kmp_get_proc_group(__kmp_affin_fullMask) >= 0)) { 750 // FIXME set *msg_id 751 return -1; 752 } 753 754 // 755 // Contruct the data structure to be returned. 756 // 757 *address2os = (AddrUnsPair*) 758 __kmp_allocate(sizeof(**address2os) * __kmp_avail_proc); 759 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 760 __kmp_pu_os_idx = (int*)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 761 int avail_ct = 0; 762 int i; 763 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 764 // 765 // Skip this proc if it is not included in the machine model. 766 // 767 if (! KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 768 continue; 769 } 770 __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat 771 Address addr(2); 772 addr.labels[0] = i / (CHAR_BIT * sizeof(DWORD_PTR)); 773 addr.labels[1] = i % (CHAR_BIT * sizeof(DWORD_PTR)); 774 (*address2os)[avail_ct++] = AddrUnsPair(addr,i); 775 776 if (__kmp_affinity_verbose) { 777 KMP_INFORM(AffOSProcToGroup, "KMP_AFFINITY", i, addr.labels[0], 778 addr.labels[1]); 779 } 780 } 781 782 if (__kmp_affinity_gran_levels < 0) { 783 if (__kmp_affinity_gran == affinity_gran_group) { 784 __kmp_affinity_gran_levels = 1; 785 } 786 else if ((__kmp_affinity_gran == affinity_gran_fine) 787 || (__kmp_affinity_gran == affinity_gran_thread)) { 788 __kmp_affinity_gran_levels = 0; 789 } 790 else { 791 const char *gran_str = NULL; 792 if (__kmp_affinity_gran == affinity_gran_core) { 793 gran_str = "core"; 794 } 795 else if (__kmp_affinity_gran == affinity_gran_package) { 796 gran_str = "package"; 797 } 798 else if (__kmp_affinity_gran == affinity_gran_node) { 799 gran_str = "node"; 800 } 801 else { 802 KMP_ASSERT(0); 803 } 804 805 // Warning: can't use affinity granularity \"gran\" with group topology method, using "thread" 806 __kmp_affinity_gran_levels = 0; 807 } 808 } 809 return 2; 810 } 811 812 # endif /* KMP_GROUP_AFFINITY */ 813 814 815 # if KMP_ARCH_X86 || KMP_ARCH_X86_64 816 817 static int 818 __kmp_cpuid_mask_width(int count) { 819 int r = 0; 820 821 while((1<<r) < count) 822 ++r; 823 return r; 824 } 825 826 827 class apicThreadInfo { 828 public: 829 unsigned osId; // param to __kmp_affinity_bind_thread 830 unsigned apicId; // from cpuid after binding 831 unsigned maxCoresPerPkg; // "" 832 unsigned maxThreadsPerPkg; // "" 833 unsigned pkgId; // inferred from above values 834 unsigned coreId; // "" 835 unsigned threadId; // "" 836 }; 837 838 839 static int 840 __kmp_affinity_cmp_apicThreadInfo_os_id(const void *a, const void *b) 841 { 842 const apicThreadInfo *aa = (const apicThreadInfo *)a; 843 const apicThreadInfo *bb = (const apicThreadInfo *)b; 844 if (aa->osId < bb->osId) return -1; 845 if (aa->osId > bb->osId) return 1; 846 return 0; 847 } 848 849 850 static int 851 __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a, const void *b) 852 { 853 const apicThreadInfo *aa = (const apicThreadInfo *)a; 854 const apicThreadInfo *bb = (const apicThreadInfo *)b; 855 if (aa->pkgId < bb->pkgId) return -1; 856 if (aa->pkgId > bb->pkgId) return 1; 857 if (aa->coreId < bb->coreId) return -1; 858 if (aa->coreId > bb->coreId) return 1; 859 if (aa->threadId < bb->threadId) return -1; 860 if (aa->threadId > bb->threadId) return 1; 861 return 0; 862 } 863 864 865 // 866 // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use 867 // an algorithm which cycles through the available os threads, setting 868 // the current thread's affinity mask to that thread, and then retrieves 869 // the Apic Id for each thread context using the cpuid instruction. 870 // 871 static int 872 __kmp_affinity_create_apicid_map(AddrUnsPair **address2os, 873 kmp_i18n_id_t *const msg_id) 874 { 875 kmp_cpuid buf; 876 int rc; 877 *address2os = NULL; 878 *msg_id = kmp_i18n_null; 879 880 // 881 // Check if cpuid leaf 4 is supported. 882 // 883 __kmp_x86_cpuid(0, 0, &buf); 884 if (buf.eax < 4) { 885 *msg_id = kmp_i18n_str_NoLeaf4Support; 886 return -1; 887 } 888 889 // 890 // The algorithm used starts by setting the affinity to each available 891 // thread and retrieving info from the cpuid instruction, so if we are 892 // not capable of calling __kmp_get_system_affinity() and 893 // _kmp_get_system_affinity(), then we need to do something else - use 894 // the defaults that we calculated from issuing cpuid without binding 895 // to each proc. 896 // 897 if (! KMP_AFFINITY_CAPABLE()) { 898 // 899 // Hack to try and infer the machine topology using only the data 900 // available from cpuid on the current thread, and __kmp_xproc. 901 // 902 KMP_ASSERT(__kmp_affinity_type == affinity_none); 903 904 // 905 // Get an upper bound on the number of threads per package using 906 // cpuid(1). 907 // 908 // On some OS/chps combinations where HT is supported by the chip 909 // but is disabled, this value will be 2 on a single core chip. 910 // Usually, it will be 2 if HT is enabled and 1 if HT is disabled. 911 // 912 __kmp_x86_cpuid(1, 0, &buf); 913 int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; 914 if (maxThreadsPerPkg == 0) { 915 maxThreadsPerPkg = 1; 916 } 917 918 // 919 // The num cores per pkg comes from cpuid(4). 920 // 1 must be added to the encoded value. 921 // 922 // The author of cpu_count.cpp treated this only an upper bound 923 // on the number of cores, but I haven't seen any cases where it 924 // was greater than the actual number of cores, so we will treat 925 // it as exact in this block of code. 926 // 927 // First, we need to check if cpuid(4) is supported on this chip. 928 // To see if cpuid(n) is supported, issue cpuid(0) and check if eax 929 // has the value n or greater. 930 // 931 __kmp_x86_cpuid(0, 0, &buf); 932 if (buf.eax >= 4) { 933 __kmp_x86_cpuid(4, 0, &buf); 934 nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; 935 } 936 else { 937 nCoresPerPkg = 1; 938 } 939 940 // 941 // There is no way to reliably tell if HT is enabled without issuing 942 // the cpuid instruction from every thread, can correlating the cpuid 943 // info, so if the machine is not affinity capable, we assume that HT 944 // is off. We have seen quite a few machines where maxThreadsPerPkg 945 // is 2, yet the machine does not support HT. 946 // 947 // - Older OSes are usually found on machines with older chips, which 948 // do not support HT. 949 // 950 // - The performance penalty for mistakenly identifying a machine as 951 // HT when it isn't (which results in blocktime being incorrecly set 952 // to 0) is greater than the penalty when for mistakenly identifying 953 // a machine as being 1 thread/core when it is really HT enabled 954 // (which results in blocktime being incorrectly set to a positive 955 // value). 956 // 957 __kmp_ncores = __kmp_xproc; 958 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 959 __kmp_nThreadsPerCore = 1; 960 if (__kmp_affinity_verbose) { 961 KMP_INFORM(AffNotCapableUseLocCpuid, "KMP_AFFINITY"); 962 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 963 if (__kmp_affinity_uniform_topology()) { 964 KMP_INFORM(Uniform, "KMP_AFFINITY"); 965 } else { 966 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 967 } 968 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 969 __kmp_nThreadsPerCore, __kmp_ncores); 970 } 971 return 0; 972 } 973 974 // 975 // 976 // From here on, we can assume that it is safe to call 977 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), 978 // even if __kmp_affinity_type = affinity_none. 979 // 980 981 // 982 // Save the affinity mask for the current thread. 983 // 984 kmp_affin_mask_t *oldMask; 985 KMP_CPU_ALLOC(oldMask); 986 KMP_ASSERT(oldMask != NULL); 987 __kmp_get_system_affinity(oldMask, TRUE); 988 989 // 990 // Run through each of the available contexts, binding the current thread 991 // to it, and obtaining the pertinent information using the cpuid instr. 992 // 993 // The relevant information is: 994 // 995 // Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context 996 // has a uniqie Apic Id, which is of the form pkg# : core# : thread#. 997 // 998 // Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The 999 // value of this field determines the width of the core# + thread# 1000 // fields in the Apic Id. It is also an upper bound on the number 1001 // of threads per package, but it has been verified that situations 1002 // happen were it is not exact. In particular, on certain OS/chip 1003 // combinations where Intel(R) Hyper-Threading Technology is supported 1004 // by the chip but has 1005 // been disabled, the value of this field will be 2 (for a single core 1006 // chip). On other OS/chip combinations supporting 1007 // Intel(R) Hyper-Threading Technology, the value of 1008 // this field will be 1 when Intel(R) Hyper-Threading Technology is 1009 // disabled and 2 when it is enabled. 1010 // 1011 // Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The 1012 // value of this field (+1) determines the width of the core# field in 1013 // the Apic Id. The comments in "cpucount.cpp" say that this value is 1014 // an upper bound, but the IA-32 architecture manual says that it is 1015 // exactly the number of cores per package, and I haven't seen any 1016 // case where it wasn't. 1017 // 1018 // From this information, deduce the package Id, core Id, and thread Id, 1019 // and set the corresponding fields in the apicThreadInfo struct. 1020 // 1021 unsigned i; 1022 apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate( 1023 __kmp_avail_proc * sizeof(apicThreadInfo)); 1024 unsigned nApics = 0; 1025 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 1026 // 1027 // Skip this proc if it is not included in the machine model. 1028 // 1029 if (! KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 1030 continue; 1031 } 1032 KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc); 1033 1034 __kmp_affinity_bind_thread(i); 1035 threadInfo[nApics].osId = i; 1036 1037 // 1038 // The apic id and max threads per pkg come from cpuid(1). 1039 // 1040 __kmp_x86_cpuid(1, 0, &buf); 1041 if (! (buf.edx >> 9) & 1) { 1042 __kmp_set_system_affinity(oldMask, TRUE); 1043 __kmp_free(threadInfo); 1044 KMP_CPU_FREE(oldMask); 1045 *msg_id = kmp_i18n_str_ApicNotPresent; 1046 return -1; 1047 } 1048 threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff; 1049 threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; 1050 if (threadInfo[nApics].maxThreadsPerPkg == 0) { 1051 threadInfo[nApics].maxThreadsPerPkg = 1; 1052 } 1053 1054 // 1055 // Max cores per pkg comes from cpuid(4). 1056 // 1 must be added to the encoded value. 1057 // 1058 // First, we need to check if cpuid(4) is supported on this chip. 1059 // To see if cpuid(n) is supported, issue cpuid(0) and check if eax 1060 // has the value n or greater. 1061 // 1062 __kmp_x86_cpuid(0, 0, &buf); 1063 if (buf.eax >= 4) { 1064 __kmp_x86_cpuid(4, 0, &buf); 1065 threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; 1066 } 1067 else { 1068 threadInfo[nApics].maxCoresPerPkg = 1; 1069 } 1070 1071 // 1072 // Infer the pkgId / coreId / threadId using only the info 1073 // obtained locally. 1074 // 1075 int widthCT = __kmp_cpuid_mask_width( 1076 threadInfo[nApics].maxThreadsPerPkg); 1077 threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT; 1078 1079 int widthC = __kmp_cpuid_mask_width( 1080 threadInfo[nApics].maxCoresPerPkg); 1081 int widthT = widthCT - widthC; 1082 if (widthT < 0) { 1083 // 1084 // I've never seen this one happen, but I suppose it could, if 1085 // the cpuid instruction on a chip was really screwed up. 1086 // Make sure to restore the affinity mask before the tail call. 1087 // 1088 __kmp_set_system_affinity(oldMask, TRUE); 1089 __kmp_free(threadInfo); 1090 KMP_CPU_FREE(oldMask); 1091 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1092 return -1; 1093 } 1094 1095 int maskC = (1 << widthC) - 1; 1096 threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) 1097 &maskC; 1098 1099 int maskT = (1 << widthT) - 1; 1100 threadInfo[nApics].threadId = threadInfo[nApics].apicId &maskT; 1101 1102 nApics++; 1103 } 1104 1105 // 1106 // We've collected all the info we need. 1107 // Restore the old affinity mask for this thread. 1108 // 1109 __kmp_set_system_affinity(oldMask, TRUE); 1110 1111 // 1112 // If there's only one thread context to bind to, form an Address object 1113 // with depth 1 and return immediately (or, if affinity is off, set 1114 // address2os to NULL and return). 1115 // 1116 // If it is configured to omit the package level when there is only a 1117 // single package, the logic at the end of this routine won't work if 1118 // there is only a single thread - it would try to form an Address 1119 // object with depth 0. 1120 // 1121 KMP_ASSERT(nApics > 0); 1122 if (nApics == 1) { 1123 __kmp_ncores = nPackages = 1; 1124 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 1125 if (__kmp_affinity_verbose) { 1126 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 1127 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 1128 1129 KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY"); 1130 if (__kmp_affinity_respect_mask) { 1131 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 1132 } else { 1133 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 1134 } 1135 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1136 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1137 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1138 __kmp_nThreadsPerCore, __kmp_ncores); 1139 } 1140 1141 if (__kmp_affinity_type == affinity_none) { 1142 __kmp_free(threadInfo); 1143 KMP_CPU_FREE(oldMask); 1144 return 0; 1145 } 1146 1147 *address2os = (AddrUnsPair*)__kmp_allocate(sizeof(AddrUnsPair)); 1148 Address addr(1); 1149 addr.labels[0] = threadInfo[0].pkgId; 1150 (*address2os)[0] = AddrUnsPair(addr, threadInfo[0].osId); 1151 1152 if (__kmp_affinity_gran_levels < 0) { 1153 __kmp_affinity_gran_levels = 0; 1154 } 1155 1156 if (__kmp_affinity_verbose) { 1157 __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1); 1158 } 1159 1160 __kmp_free(threadInfo); 1161 KMP_CPU_FREE(oldMask); 1162 return 1; 1163 } 1164 1165 // 1166 // Sort the threadInfo table by physical Id. 1167 // 1168 qsort(threadInfo, nApics, sizeof(*threadInfo), 1169 __kmp_affinity_cmp_apicThreadInfo_phys_id); 1170 1171 // 1172 // The table is now sorted by pkgId / coreId / threadId, but we really 1173 // don't know the radix of any of the fields. pkgId's may be sparsely 1174 // assigned among the chips on a system. Although coreId's are usually 1175 // assigned [0 .. coresPerPkg-1] and threadId's are usually assigned 1176 // [0..threadsPerCore-1], we don't want to make any such assumptions. 1177 // 1178 // For that matter, we don't know what coresPerPkg and threadsPerCore 1179 // (or the total # packages) are at this point - we want to determine 1180 // that now. We only have an upper bound on the first two figures. 1181 // 1182 // We also perform a consistency check at this point: the values returned 1183 // by the cpuid instruction for any thread bound to a given package had 1184 // better return the same info for maxThreadsPerPkg and maxCoresPerPkg. 1185 // 1186 nPackages = 1; 1187 nCoresPerPkg = 1; 1188 __kmp_nThreadsPerCore = 1; 1189 unsigned nCores = 1; 1190 1191 unsigned pkgCt = 1; // to determine radii 1192 unsigned lastPkgId = threadInfo[0].pkgId; 1193 unsigned coreCt = 1; 1194 unsigned lastCoreId = threadInfo[0].coreId; 1195 unsigned threadCt = 1; 1196 unsigned lastThreadId = threadInfo[0].threadId; 1197 1198 // intra-pkg consist checks 1199 unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg; 1200 unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg; 1201 1202 for (i = 1; i < nApics; i++) { 1203 if (threadInfo[i].pkgId != lastPkgId) { 1204 nCores++; 1205 pkgCt++; 1206 lastPkgId = threadInfo[i].pkgId; 1207 if ((int)coreCt > nCoresPerPkg) nCoresPerPkg = coreCt; 1208 coreCt = 1; 1209 lastCoreId = threadInfo[i].coreId; 1210 if ((int)threadCt > __kmp_nThreadsPerCore) __kmp_nThreadsPerCore = threadCt; 1211 threadCt = 1; 1212 lastThreadId = threadInfo[i].threadId; 1213 1214 // 1215 // This is a different package, so go on to the next iteration 1216 // without doing any consistency checks. Reset the consistency 1217 // check vars, though. 1218 // 1219 prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg; 1220 prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg; 1221 continue; 1222 } 1223 1224 if (threadInfo[i].coreId != lastCoreId) { 1225 nCores++; 1226 coreCt++; 1227 lastCoreId = threadInfo[i].coreId; 1228 if ((int)threadCt > __kmp_nThreadsPerCore) __kmp_nThreadsPerCore = threadCt; 1229 threadCt = 1; 1230 lastThreadId = threadInfo[i].threadId; 1231 } 1232 else if (threadInfo[i].threadId != lastThreadId) { 1233 threadCt++; 1234 lastThreadId = threadInfo[i].threadId; 1235 } 1236 else { 1237 __kmp_free(threadInfo); 1238 KMP_CPU_FREE(oldMask); 1239 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; 1240 return -1; 1241 } 1242 1243 // 1244 // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg 1245 // fields agree between all the threads bounds to a given package. 1246 // 1247 if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) 1248 || (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) { 1249 __kmp_free(threadInfo); 1250 KMP_CPU_FREE(oldMask); 1251 *msg_id = kmp_i18n_str_InconsistentCpuidInfo; 1252 return -1; 1253 } 1254 } 1255 nPackages = pkgCt; 1256 if ((int)coreCt > nCoresPerPkg) nCoresPerPkg = coreCt; 1257 if ((int)threadCt > __kmp_nThreadsPerCore) __kmp_nThreadsPerCore = threadCt; 1258 1259 // 1260 // When affinity is off, this routine will still be called to set 1261 // __kmp_ncores, as well as __kmp_nThreadsPerCore, 1262 // nCoresPerPkg, & nPackages. Make sure all these vars are set 1263 // correctly, and return now if affinity is not enabled. 1264 // 1265 __kmp_ncores = nCores; 1266 if (__kmp_affinity_verbose) { 1267 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 1268 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 1269 1270 KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY"); 1271 if (__kmp_affinity_respect_mask) { 1272 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 1273 } else { 1274 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 1275 } 1276 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1277 if (__kmp_affinity_uniform_topology()) { 1278 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1279 } else { 1280 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 1281 } 1282 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1283 __kmp_nThreadsPerCore, __kmp_ncores); 1284 1285 } 1286 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 1287 KMP_DEBUG_ASSERT(nApics == __kmp_avail_proc); 1288 __kmp_pu_os_idx = (int*)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 1289 for (i = 0; i < nApics; ++i) { 1290 __kmp_pu_os_idx[i] = threadInfo[i].osId; 1291 } 1292 if (__kmp_affinity_type == affinity_none) { 1293 __kmp_free(threadInfo); 1294 KMP_CPU_FREE(oldMask); 1295 return 0; 1296 } 1297 1298 // 1299 // Now that we've determined the number of packages, the number of cores 1300 // per package, and the number of threads per core, we can construct the 1301 // data structure that is to be returned. 1302 // 1303 int pkgLevel = 0; 1304 int coreLevel = (nCoresPerPkg <= 1) ? -1 : 1; 1305 int threadLevel = (__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1); 1306 unsigned depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0); 1307 1308 KMP_ASSERT(depth > 0); 1309 *address2os = (AddrUnsPair*)__kmp_allocate(sizeof(AddrUnsPair) * nApics); 1310 1311 for (i = 0; i < nApics; ++i) { 1312 Address addr(depth); 1313 unsigned os = threadInfo[i].osId; 1314 int d = 0; 1315 1316 if (pkgLevel >= 0) { 1317 addr.labels[d++] = threadInfo[i].pkgId; 1318 } 1319 if (coreLevel >= 0) { 1320 addr.labels[d++] = threadInfo[i].coreId; 1321 } 1322 if (threadLevel >= 0) { 1323 addr.labels[d++] = threadInfo[i].threadId; 1324 } 1325 (*address2os)[i] = AddrUnsPair(addr, os); 1326 } 1327 1328 if (__kmp_affinity_gran_levels < 0) { 1329 // 1330 // Set the granularity level based on what levels are modeled 1331 // in the machine topology map. 1332 // 1333 __kmp_affinity_gran_levels = 0; 1334 if ((threadLevel >= 0) 1335 && (__kmp_affinity_gran > affinity_gran_thread)) { 1336 __kmp_affinity_gran_levels++; 1337 } 1338 if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) { 1339 __kmp_affinity_gran_levels++; 1340 } 1341 if ((pkgLevel >= 0) && (__kmp_affinity_gran > affinity_gran_package)) { 1342 __kmp_affinity_gran_levels++; 1343 } 1344 } 1345 1346 if (__kmp_affinity_verbose) { 1347 __kmp_affinity_print_topology(*address2os, nApics, depth, pkgLevel, 1348 coreLevel, threadLevel); 1349 } 1350 1351 __kmp_free(threadInfo); 1352 KMP_CPU_FREE(oldMask); 1353 return depth; 1354 } 1355 1356 1357 // 1358 // Intel(R) microarchitecture code name Nehalem, Dunnington and later 1359 // architectures support a newer interface for specifying the x2APIC Ids, 1360 // based on cpuid leaf 11. 1361 // 1362 static int 1363 __kmp_affinity_create_x2apicid_map(AddrUnsPair **address2os, 1364 kmp_i18n_id_t *const msg_id) 1365 { 1366 kmp_cpuid buf; 1367 1368 *address2os = NULL; 1369 *msg_id = kmp_i18n_null; 1370 1371 // 1372 // Check to see if cpuid leaf 11 is supported. 1373 // 1374 __kmp_x86_cpuid(0, 0, &buf); 1375 if (buf.eax < 11) { 1376 *msg_id = kmp_i18n_str_NoLeaf11Support; 1377 return -1; 1378 } 1379 __kmp_x86_cpuid(11, 0, &buf); 1380 if (buf.ebx == 0) { 1381 *msg_id = kmp_i18n_str_NoLeaf11Support; 1382 return -1; 1383 } 1384 1385 // 1386 // Find the number of levels in the machine topology. While we're at it, 1387 // get the default values for __kmp_nThreadsPerCore & nCoresPerPkg. We will 1388 // try to get more accurate values later by explicitly counting them, 1389 // but get reasonable defaults now, in case we return early. 1390 // 1391 int level; 1392 int threadLevel = -1; 1393 int coreLevel = -1; 1394 int pkgLevel = -1; 1395 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; 1396 1397 for (level = 0;; level++) { 1398 if (level > 31) { 1399 // 1400 // FIXME: Hack for DPD200163180 1401 // 1402 // If level is big then something went wrong -> exiting 1403 // 1404 // There could actually be 32 valid levels in the machine topology, 1405 // but so far, the only machine we have seen which does not exit 1406 // this loop before iteration 32 has fubar x2APIC settings. 1407 // 1408 // For now, just reject this case based upon loop trip count. 1409 // 1410 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1411 return -1; 1412 } 1413 __kmp_x86_cpuid(11, level, &buf); 1414 if (buf.ebx == 0) { 1415 if (pkgLevel < 0) { 1416 // 1417 // Will infer nPackages from __kmp_xproc 1418 // 1419 pkgLevel = level; 1420 level++; 1421 } 1422 break; 1423 } 1424 int kind = (buf.ecx >> 8) & 0xff; 1425 if (kind == 1) { 1426 // 1427 // SMT level 1428 // 1429 threadLevel = level; 1430 coreLevel = -1; 1431 pkgLevel = -1; 1432 __kmp_nThreadsPerCore = buf.ebx & 0xffff; 1433 if (__kmp_nThreadsPerCore == 0) { 1434 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1435 return -1; 1436 } 1437 } 1438 else if (kind == 2) { 1439 // 1440 // core level 1441 // 1442 coreLevel = level; 1443 pkgLevel = -1; 1444 nCoresPerPkg = buf.ebx & 0xffff; 1445 if (nCoresPerPkg == 0) { 1446 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1447 return -1; 1448 } 1449 } 1450 else { 1451 if (level <= 0) { 1452 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1453 return -1; 1454 } 1455 if (pkgLevel >= 0) { 1456 continue; 1457 } 1458 pkgLevel = level; 1459 nPackages = buf.ebx & 0xffff; 1460 if (nPackages == 0) { 1461 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1462 return -1; 1463 } 1464 } 1465 } 1466 int depth = level; 1467 1468 // 1469 // In the above loop, "level" was counted from the finest level (usually 1470 // thread) to the coarsest. The caller expects that we will place the 1471 // labels in (*address2os)[].first.labels[] in the inverse order, so 1472 // we need to invert the vars saying which level means what. 1473 // 1474 if (threadLevel >= 0) { 1475 threadLevel = depth - threadLevel - 1; 1476 } 1477 if (coreLevel >= 0) { 1478 coreLevel = depth - coreLevel - 1; 1479 } 1480 KMP_DEBUG_ASSERT(pkgLevel >= 0); 1481 pkgLevel = depth - pkgLevel - 1; 1482 1483 // 1484 // The algorithm used starts by setting the affinity to each available 1485 // thread and retrieving info from the cpuid instruction, so if we are 1486 // not capable of calling __kmp_get_system_affinity() and 1487 // _kmp_get_system_affinity(), then we need to do something else - use 1488 // the defaults that we calculated from issuing cpuid without binding 1489 // to each proc. 1490 // 1491 if (! KMP_AFFINITY_CAPABLE()) 1492 { 1493 // 1494 // Hack to try and infer the machine topology using only the data 1495 // available from cpuid on the current thread, and __kmp_xproc. 1496 // 1497 KMP_ASSERT(__kmp_affinity_type == affinity_none); 1498 1499 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; 1500 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 1501 if (__kmp_affinity_verbose) { 1502 KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY"); 1503 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1504 if (__kmp_affinity_uniform_topology()) { 1505 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1506 } else { 1507 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 1508 } 1509 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1510 __kmp_nThreadsPerCore, __kmp_ncores); 1511 } 1512 return 0; 1513 } 1514 1515 // 1516 // 1517 // From here on, we can assume that it is safe to call 1518 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), 1519 // even if __kmp_affinity_type = affinity_none. 1520 // 1521 1522 // 1523 // Save the affinity mask for the current thread. 1524 // 1525 kmp_affin_mask_t *oldMask; 1526 KMP_CPU_ALLOC(oldMask); 1527 __kmp_get_system_affinity(oldMask, TRUE); 1528 1529 // 1530 // Allocate the data structure to be returned. 1531 // 1532 AddrUnsPair *retval = (AddrUnsPair *) 1533 __kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc); 1534 1535 // 1536 // Run through each of the available contexts, binding the current thread 1537 // to it, and obtaining the pertinent information using the cpuid instr. 1538 // 1539 unsigned int proc; 1540 int nApics = 0; 1541 KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) { 1542 // 1543 // Skip this proc if it is not included in the machine model. 1544 // 1545 if (! KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 1546 continue; 1547 } 1548 KMP_DEBUG_ASSERT(nApics < __kmp_avail_proc); 1549 1550 __kmp_affinity_bind_thread(proc); 1551 1552 // 1553 // Extrach the labels for each level in the machine topology map 1554 // from the Apic ID. 1555 // 1556 Address addr(depth); 1557 int prev_shift = 0; 1558 1559 for (level = 0; level < depth; level++) { 1560 __kmp_x86_cpuid(11, level, &buf); 1561 unsigned apicId = buf.edx; 1562 if (buf.ebx == 0) { 1563 if (level != depth - 1) { 1564 KMP_CPU_FREE(oldMask); 1565 *msg_id = kmp_i18n_str_InconsistentCpuidInfo; 1566 return -1; 1567 } 1568 addr.labels[depth - level - 1] = apicId >> prev_shift; 1569 level++; 1570 break; 1571 } 1572 int shift = buf.eax & 0x1f; 1573 int mask = (1 << shift) - 1; 1574 addr.labels[depth - level - 1] = (apicId & mask) >> prev_shift; 1575 prev_shift = shift; 1576 } 1577 if (level != depth) { 1578 KMP_CPU_FREE(oldMask); 1579 *msg_id = kmp_i18n_str_InconsistentCpuidInfo; 1580 return -1; 1581 } 1582 1583 retval[nApics] = AddrUnsPair(addr, proc); 1584 nApics++; 1585 } 1586 1587 // 1588 // We've collected all the info we need. 1589 // Restore the old affinity mask for this thread. 1590 // 1591 __kmp_set_system_affinity(oldMask, TRUE); 1592 1593 // 1594 // If there's only one thread context to bind to, return now. 1595 // 1596 KMP_ASSERT(nApics > 0); 1597 if (nApics == 1) { 1598 __kmp_ncores = nPackages = 1; 1599 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 1600 if (__kmp_affinity_verbose) { 1601 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 1602 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 1603 1604 KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY"); 1605 if (__kmp_affinity_respect_mask) { 1606 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 1607 } else { 1608 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 1609 } 1610 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1611 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1612 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1613 __kmp_nThreadsPerCore, __kmp_ncores); 1614 } 1615 1616 if (__kmp_affinity_type == affinity_none) { 1617 __kmp_free(retval); 1618 KMP_CPU_FREE(oldMask); 1619 return 0; 1620 } 1621 1622 // 1623 // Form an Address object which only includes the package level. 1624 // 1625 Address addr(1); 1626 addr.labels[0] = retval[0].first.labels[pkgLevel]; 1627 retval[0].first = addr; 1628 1629 if (__kmp_affinity_gran_levels < 0) { 1630 __kmp_affinity_gran_levels = 0; 1631 } 1632 1633 if (__kmp_affinity_verbose) { 1634 __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1); 1635 } 1636 1637 *address2os = retval; 1638 KMP_CPU_FREE(oldMask); 1639 return 1; 1640 } 1641 1642 // 1643 // Sort the table by physical Id. 1644 // 1645 qsort(retval, nApics, sizeof(*retval), __kmp_affinity_cmp_Address_labels); 1646 1647 // 1648 // Find the radix at each of the levels. 1649 // 1650 unsigned *totals = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 1651 unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 1652 unsigned *maxCt = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 1653 unsigned *last = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 1654 for (level = 0; level < depth; level++) { 1655 totals[level] = 1; 1656 maxCt[level] = 1; 1657 counts[level] = 1; 1658 last[level] = retval[0].first.labels[level]; 1659 } 1660 1661 // 1662 // From here on, the iteration variable "level" runs from the finest 1663 // level to the coarsest, i.e. we iterate forward through 1664 // (*address2os)[].first.labels[] - in the previous loops, we iterated 1665 // backwards. 1666 // 1667 for (proc = 1; (int)proc < nApics; proc++) { 1668 int level; 1669 for (level = 0; level < depth; level++) { 1670 if (retval[proc].first.labels[level] != last[level]) { 1671 int j; 1672 for (j = level + 1; j < depth; j++) { 1673 totals[j]++; 1674 counts[j] = 1; 1675 // The line below causes printing incorrect topology information 1676 // in case the max value for some level (maxCt[level]) is encountered earlier than 1677 // some less value while going through the array. 1678 // For example, let pkg0 has 4 cores and pkg1 has 2 cores. Then maxCt[1] == 2 1679 // whereas it must be 4. 1680 // TODO!!! Check if it can be commented safely 1681 //maxCt[j] = 1; 1682 last[j] = retval[proc].first.labels[j]; 1683 } 1684 totals[level]++; 1685 counts[level]++; 1686 if (counts[level] > maxCt[level]) { 1687 maxCt[level] = counts[level]; 1688 } 1689 last[level] = retval[proc].first.labels[level]; 1690 break; 1691 } 1692 else if (level == depth - 1) { 1693 __kmp_free(last); 1694 __kmp_free(maxCt); 1695 __kmp_free(counts); 1696 __kmp_free(totals); 1697 __kmp_free(retval); 1698 KMP_CPU_FREE(oldMask); 1699 *msg_id = kmp_i18n_str_x2ApicIDsNotUnique; 1700 return -1; 1701 } 1702 } 1703 } 1704 1705 // 1706 // When affinity is off, this routine will still be called to set 1707 // __kmp_ncores, as well as __kmp_nThreadsPerCore, 1708 // nCoresPerPkg, & nPackages. Make sure all these vars are set 1709 // correctly, and return if affinity is not enabled. 1710 // 1711 if (threadLevel >= 0) { 1712 __kmp_nThreadsPerCore = maxCt[threadLevel]; 1713 } 1714 else { 1715 __kmp_nThreadsPerCore = 1; 1716 } 1717 nPackages = totals[pkgLevel]; 1718 1719 if (coreLevel >= 0) { 1720 __kmp_ncores = totals[coreLevel]; 1721 nCoresPerPkg = maxCt[coreLevel]; 1722 } 1723 else { 1724 __kmp_ncores = nPackages; 1725 nCoresPerPkg = 1; 1726 } 1727 1728 // 1729 // Check to see if the machine topology is uniform 1730 // 1731 unsigned prod = maxCt[0]; 1732 for (level = 1; level < depth; level++) { 1733 prod *= maxCt[level]; 1734 } 1735 bool uniform = (prod == totals[level - 1]); 1736 1737 // 1738 // Print the machine topology summary. 1739 // 1740 if (__kmp_affinity_verbose) { 1741 char mask[KMP_AFFIN_MASK_PRINT_LEN]; 1742 __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 1743 1744 KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY"); 1745 if (__kmp_affinity_respect_mask) { 1746 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask); 1747 } else { 1748 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask); 1749 } 1750 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1751 if (uniform) { 1752 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1753 } else { 1754 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 1755 } 1756 1757 kmp_str_buf_t buf; 1758 __kmp_str_buf_init(&buf); 1759 1760 __kmp_str_buf_print(&buf, "%d", totals[0]); 1761 for (level = 1; level <= pkgLevel; level++) { 1762 __kmp_str_buf_print(&buf, " x %d", maxCt[level]); 1763 } 1764 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg, 1765 __kmp_nThreadsPerCore, __kmp_ncores); 1766 1767 __kmp_str_buf_free(&buf); 1768 } 1769 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 1770 KMP_DEBUG_ASSERT(nApics == __kmp_avail_proc); 1771 __kmp_pu_os_idx = (int*)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 1772 for (proc = 0; (int)proc < nApics; ++proc) { 1773 __kmp_pu_os_idx[proc] = retval[proc].second; 1774 } 1775 if (__kmp_affinity_type == affinity_none) { 1776 __kmp_free(last); 1777 __kmp_free(maxCt); 1778 __kmp_free(counts); 1779 __kmp_free(totals); 1780 __kmp_free(retval); 1781 KMP_CPU_FREE(oldMask); 1782 return 0; 1783 } 1784 1785 // 1786 // Find any levels with radiix 1, and remove them from the map 1787 // (except for the package level). 1788 // 1789 int new_depth = 0; 1790 for (level = 0; level < depth; level++) { 1791 if ((maxCt[level] == 1) && (level != pkgLevel)) { 1792 continue; 1793 } 1794 new_depth++; 1795 } 1796 1797 // 1798 // If we are removing any levels, allocate a new vector to return, 1799 // and copy the relevant information to it. 1800 // 1801 if (new_depth != depth) { 1802 AddrUnsPair *new_retval = (AddrUnsPair *)__kmp_allocate( 1803 sizeof(AddrUnsPair) * nApics); 1804 for (proc = 0; (int)proc < nApics; proc++) { 1805 Address addr(new_depth); 1806 new_retval[proc] = AddrUnsPair(addr, retval[proc].second); 1807 } 1808 int new_level = 0; 1809 int newPkgLevel = -1; 1810 int newCoreLevel = -1; 1811 int newThreadLevel = -1; 1812 int i; 1813 for (level = 0; level < depth; level++) { 1814 if ((maxCt[level] == 1) 1815 && (level != pkgLevel)) { 1816 // 1817 // Remove this level. Never remove the package level 1818 // 1819 continue; 1820 } 1821 if (level == pkgLevel) { 1822 newPkgLevel = level; 1823 } 1824 if (level == coreLevel) { 1825 newCoreLevel = level; 1826 } 1827 if (level == threadLevel) { 1828 newThreadLevel = level; 1829 } 1830 for (proc = 0; (int)proc < nApics; proc++) { 1831 new_retval[proc].first.labels[new_level] 1832 = retval[proc].first.labels[level]; 1833 } 1834 new_level++; 1835 } 1836 1837 __kmp_free(retval); 1838 retval = new_retval; 1839 depth = new_depth; 1840 pkgLevel = newPkgLevel; 1841 coreLevel = newCoreLevel; 1842 threadLevel = newThreadLevel; 1843 } 1844 1845 if (__kmp_affinity_gran_levels < 0) { 1846 // 1847 // Set the granularity level based on what levels are modeled 1848 // in the machine topology map. 1849 // 1850 __kmp_affinity_gran_levels = 0; 1851 if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) { 1852 __kmp_affinity_gran_levels++; 1853 } 1854 if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) { 1855 __kmp_affinity_gran_levels++; 1856 } 1857 if (__kmp_affinity_gran > affinity_gran_package) { 1858 __kmp_affinity_gran_levels++; 1859 } 1860 } 1861 1862 if (__kmp_affinity_verbose) { 1863 __kmp_affinity_print_topology(retval, nApics, depth, pkgLevel, 1864 coreLevel, threadLevel); 1865 } 1866 1867 __kmp_free(last); 1868 __kmp_free(maxCt); 1869 __kmp_free(counts); 1870 __kmp_free(totals); 1871 KMP_CPU_FREE(oldMask); 1872 *address2os = retval; 1873 return depth; 1874 } 1875 1876 1877 # endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 1878 1879 1880 #define osIdIndex 0 1881 #define threadIdIndex 1 1882 #define coreIdIndex 2 1883 #define pkgIdIndex 3 1884 #define nodeIdIndex 4 1885 1886 typedef unsigned *ProcCpuInfo; 1887 static unsigned maxIndex = pkgIdIndex; 1888 1889 1890 static int 1891 __kmp_affinity_cmp_ProcCpuInfo_os_id(const void *a, const void *b) 1892 { 1893 const unsigned *aa = (const unsigned *)a; 1894 const unsigned *bb = (const unsigned *)b; 1895 if (aa[osIdIndex] < bb[osIdIndex]) return -1; 1896 if (aa[osIdIndex] > bb[osIdIndex]) return 1; 1897 return 0; 1898 }; 1899 1900 1901 static int 1902 __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a, const void *b) 1903 { 1904 unsigned i; 1905 const unsigned *aa = *((const unsigned **)a); 1906 const unsigned *bb = *((const unsigned **)b); 1907 for (i = maxIndex; ; i--) { 1908 if (aa[i] < bb[i]) return -1; 1909 if (aa[i] > bb[i]) return 1; 1910 if (i == osIdIndex) break; 1911 } 1912 return 0; 1913 } 1914 1915 1916 // 1917 // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the 1918 // affinity map. 1919 // 1920 static int 1921 __kmp_affinity_create_cpuinfo_map(AddrUnsPair **address2os, int *line, 1922 kmp_i18n_id_t *const msg_id, FILE *f) 1923 { 1924 *address2os = NULL; 1925 *msg_id = kmp_i18n_null; 1926 1927 // 1928 // Scan of the file, and count the number of "processor" (osId) fields, 1929 // and find the highest value of <n> for a node_<n> field. 1930 // 1931 char buf[256]; 1932 unsigned num_records = 0; 1933 while (! feof(f)) { 1934 buf[sizeof(buf) - 1] = 1; 1935 if (! fgets(buf, sizeof(buf), f)) { 1936 // 1937 // Read errors presumably because of EOF 1938 // 1939 break; 1940 } 1941 1942 char s1[] = "processor"; 1943 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { 1944 num_records++; 1945 continue; 1946 } 1947 1948 // 1949 // FIXME - this will match "node_<n> <garbage>" 1950 // 1951 unsigned level; 1952 if (KMP_SSCANF(buf, "node_%d id", &level) == 1) { 1953 if (nodeIdIndex + level >= maxIndex) { 1954 maxIndex = nodeIdIndex + level; 1955 } 1956 continue; 1957 } 1958 } 1959 1960 // 1961 // Check for empty file / no valid processor records, or too many. 1962 // The number of records can't exceed the number of valid bits in the 1963 // affinity mask. 1964 // 1965 if (num_records == 0) { 1966 *line = 0; 1967 *msg_id = kmp_i18n_str_NoProcRecords; 1968 return -1; 1969 } 1970 if (num_records > (unsigned)__kmp_xproc) { 1971 *line = 0; 1972 *msg_id = kmp_i18n_str_TooManyProcRecords; 1973 return -1; 1974 } 1975 1976 // 1977 // Set the file pointer back to the begginning, so that we can scan the 1978 // file again, this time performing a full parse of the data. 1979 // Allocate a vector of ProcCpuInfo object, where we will place the data. 1980 // Adding an extra element at the end allows us to remove a lot of extra 1981 // checks for termination conditions. 1982 // 1983 if (fseek(f, 0, SEEK_SET) != 0) { 1984 *line = 0; 1985 *msg_id = kmp_i18n_str_CantRewindCpuinfo; 1986 return -1; 1987 } 1988 1989 // 1990 // Allocate the array of records to store the proc info in. The dummy 1991 // element at the end makes the logic in filling them out easier to code. 1992 // 1993 unsigned **threadInfo = (unsigned **)__kmp_allocate((num_records + 1) 1994 * sizeof(unsigned *)); 1995 unsigned i; 1996 for (i = 0; i <= num_records; i++) { 1997 threadInfo[i] = (unsigned *)__kmp_allocate((maxIndex + 1) 1998 * sizeof(unsigned)); 1999 } 2000 2001 #define CLEANUP_THREAD_INFO \ 2002 for (i = 0; i <= num_records; i++) { \ 2003 __kmp_free(threadInfo[i]); \ 2004 } \ 2005 __kmp_free(threadInfo); 2006 2007 // 2008 // A value of UINT_MAX means that we didn't find the field 2009 // 2010 unsigned __index; 2011 2012 #define INIT_PROC_INFO(p) \ 2013 for (__index = 0; __index <= maxIndex; __index++) { \ 2014 (p)[__index] = UINT_MAX; \ 2015 } 2016 2017 for (i = 0; i <= num_records; i++) { 2018 INIT_PROC_INFO(threadInfo[i]); 2019 } 2020 2021 unsigned num_avail = 0; 2022 *line = 0; 2023 while (! feof(f)) { 2024 // 2025 // Create an inner scoping level, so that all the goto targets at the 2026 // end of the loop appear in an outer scoping level. This avoids 2027 // warnings about jumping past an initialization to a target in the 2028 // same block. 2029 // 2030 { 2031 buf[sizeof(buf) - 1] = 1; 2032 bool long_line = false; 2033 if (! fgets(buf, sizeof(buf), f)) { 2034 // 2035 // Read errors presumably because of EOF 2036 // 2037 // If there is valid data in threadInfo[num_avail], then fake 2038 // a blank line in ensure that the last address gets parsed. 2039 // 2040 bool valid = false; 2041 for (i = 0; i <= maxIndex; i++) { 2042 if (threadInfo[num_avail][i] != UINT_MAX) { 2043 valid = true; 2044 } 2045 } 2046 if (! valid) { 2047 break; 2048 } 2049 buf[0] = 0; 2050 } else if (!buf[sizeof(buf) - 1]) { 2051 // 2052 // The line is longer than the buffer. Set a flag and don't 2053 // emit an error if we were going to ignore the line, anyway. 2054 // 2055 long_line = true; 2056 2057 #define CHECK_LINE \ 2058 if (long_line) { \ 2059 CLEANUP_THREAD_INFO; \ 2060 *msg_id = kmp_i18n_str_LongLineCpuinfo; \ 2061 return -1; \ 2062 } 2063 } 2064 (*line)++; 2065 2066 char s1[] = "processor"; 2067 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { 2068 CHECK_LINE; 2069 char *p = strchr(buf + sizeof(s1) - 1, ':'); 2070 unsigned val; 2071 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val; 2072 if (threadInfo[num_avail][osIdIndex] != UINT_MAX) goto dup_field; 2073 threadInfo[num_avail][osIdIndex] = val; 2074 #if KMP_OS_LINUX && USE_SYSFS_INFO 2075 char path[256]; 2076 KMP_SNPRINTF(path, sizeof(path), 2077 "/sys/devices/system/cpu/cpu%u/topology/physical_package_id", 2078 threadInfo[num_avail][osIdIndex]); 2079 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]); 2080 2081 KMP_SNPRINTF(path, sizeof(path), 2082 "/sys/devices/system/cpu/cpu%u/topology/core_id", 2083 threadInfo[num_avail][osIdIndex]); 2084 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]); 2085 continue; 2086 #else 2087 } 2088 char s2[] = "physical id"; 2089 if (strncmp(buf, s2, sizeof(s2) - 1) == 0) { 2090 CHECK_LINE; 2091 char *p = strchr(buf + sizeof(s2) - 1, ':'); 2092 unsigned val; 2093 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val; 2094 if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX) goto dup_field; 2095 threadInfo[num_avail][pkgIdIndex] = val; 2096 continue; 2097 } 2098 char s3[] = "core id"; 2099 if (strncmp(buf, s3, sizeof(s3) - 1) == 0) { 2100 CHECK_LINE; 2101 char *p = strchr(buf + sizeof(s3) - 1, ':'); 2102 unsigned val; 2103 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val; 2104 if (threadInfo[num_avail][coreIdIndex] != UINT_MAX) goto dup_field; 2105 threadInfo[num_avail][coreIdIndex] = val; 2106 continue; 2107 #endif // KMP_OS_LINUX && USE_SYSFS_INFO 2108 } 2109 char s4[] = "thread id"; 2110 if (strncmp(buf, s4, sizeof(s4) - 1) == 0) { 2111 CHECK_LINE; 2112 char *p = strchr(buf + sizeof(s4) - 1, ':'); 2113 unsigned val; 2114 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val; 2115 if (threadInfo[num_avail][threadIdIndex] != UINT_MAX) goto dup_field; 2116 threadInfo[num_avail][threadIdIndex] = val; 2117 continue; 2118 } 2119 unsigned level; 2120 if (KMP_SSCANF(buf, "node_%d id", &level) == 1) { 2121 CHECK_LINE; 2122 char *p = strchr(buf + sizeof(s4) - 1, ':'); 2123 unsigned val; 2124 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val; 2125 KMP_ASSERT(nodeIdIndex + level <= maxIndex); 2126 if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX) goto dup_field; 2127 threadInfo[num_avail][nodeIdIndex + level] = val; 2128 continue; 2129 } 2130 2131 // 2132 // We didn't recognize the leading token on the line. 2133 // There are lots of leading tokens that we don't recognize - 2134 // if the line isn't empty, go on to the next line. 2135 // 2136 if ((*buf != 0) && (*buf != '\n')) { 2137 // 2138 // If the line is longer than the buffer, read characters 2139 // until we find a newline. 2140 // 2141 if (long_line) { 2142 int ch; 2143 while (((ch = fgetc(f)) != EOF) && (ch != '\n')); 2144 } 2145 continue; 2146 } 2147 2148 // 2149 // A newline has signalled the end of the processor record. 2150 // Check that there aren't too many procs specified. 2151 // 2152 if ((int)num_avail == __kmp_xproc) { 2153 CLEANUP_THREAD_INFO; 2154 *msg_id = kmp_i18n_str_TooManyEntries; 2155 return -1; 2156 } 2157 2158 // 2159 // Check for missing fields. The osId field must be there, and we 2160 // currently require that the physical id field is specified, also. 2161 // 2162 if (threadInfo[num_avail][osIdIndex] == UINT_MAX) { 2163 CLEANUP_THREAD_INFO; 2164 *msg_id = kmp_i18n_str_MissingProcField; 2165 return -1; 2166 } 2167 if (threadInfo[0][pkgIdIndex] == UINT_MAX) { 2168 CLEANUP_THREAD_INFO; 2169 *msg_id = kmp_i18n_str_MissingPhysicalIDField; 2170 return -1; 2171 } 2172 2173 // 2174 // Skip this proc if it is not included in the machine model. 2175 // 2176 if (! KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex], __kmp_affin_fullMask)) { 2177 INIT_PROC_INFO(threadInfo[num_avail]); 2178 continue; 2179 } 2180 2181 // 2182 // We have a successful parse of this proc's info. 2183 // Increment the counter, and prepare for the next proc. 2184 // 2185 num_avail++; 2186 KMP_ASSERT(num_avail <= num_records); 2187 INIT_PROC_INFO(threadInfo[num_avail]); 2188 } 2189 continue; 2190 2191 no_val: 2192 CLEANUP_THREAD_INFO; 2193 *msg_id = kmp_i18n_str_MissingValCpuinfo; 2194 return -1; 2195 2196 dup_field: 2197 CLEANUP_THREAD_INFO; 2198 *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo; 2199 return -1; 2200 } 2201 *line = 0; 2202 2203 # if KMP_MIC && REDUCE_TEAM_SIZE 2204 unsigned teamSize = 0; 2205 # endif // KMP_MIC && REDUCE_TEAM_SIZE 2206 2207 // check for num_records == __kmp_xproc ??? 2208 2209 // 2210 // If there's only one thread context to bind to, form an Address object 2211 // with depth 1 and return immediately (or, if affinity is off, set 2212 // address2os to NULL and return). 2213 // 2214 // If it is configured to omit the package level when there is only a 2215 // single package, the logic at the end of this routine won't work if 2216 // there is only a single thread - it would try to form an Address 2217 // object with depth 0. 2218 // 2219 KMP_ASSERT(num_avail > 0); 2220 KMP_ASSERT(num_avail <= num_records); 2221 if (num_avail == 1) { 2222 __kmp_ncores = 1; 2223 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; 2224 if (__kmp_affinity_verbose) { 2225 if (! KMP_AFFINITY_CAPABLE()) { 2226 KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY"); 2227 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 2228 KMP_INFORM(Uniform, "KMP_AFFINITY"); 2229 } 2230 else { 2231 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 2232 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 2233 __kmp_affin_fullMask); 2234 KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY"); 2235 if (__kmp_affinity_respect_mask) { 2236 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 2237 } else { 2238 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 2239 } 2240 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 2241 KMP_INFORM(Uniform, "KMP_AFFINITY"); 2242 } 2243 int index; 2244 kmp_str_buf_t buf; 2245 __kmp_str_buf_init(&buf); 2246 __kmp_str_buf_print(&buf, "1"); 2247 for (index = maxIndex - 1; index > pkgIdIndex; index--) { 2248 __kmp_str_buf_print(&buf, " x 1"); 2249 } 2250 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, 1, 1, 1); 2251 __kmp_str_buf_free(&buf); 2252 } 2253 2254 if (__kmp_affinity_type == affinity_none) { 2255 CLEANUP_THREAD_INFO; 2256 return 0; 2257 } 2258 2259 *address2os = (AddrUnsPair*)__kmp_allocate(sizeof(AddrUnsPair)); 2260 Address addr(1); 2261 addr.labels[0] = threadInfo[0][pkgIdIndex]; 2262 (*address2os)[0] = AddrUnsPair(addr, threadInfo[0][osIdIndex]); 2263 2264 if (__kmp_affinity_gran_levels < 0) { 2265 __kmp_affinity_gran_levels = 0; 2266 } 2267 2268 if (__kmp_affinity_verbose) { 2269 __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1); 2270 } 2271 2272 CLEANUP_THREAD_INFO; 2273 return 1; 2274 } 2275 2276 // 2277 // Sort the threadInfo table by physical Id. 2278 // 2279 qsort(threadInfo, num_avail, sizeof(*threadInfo), 2280 __kmp_affinity_cmp_ProcCpuInfo_phys_id); 2281 2282 // 2283 // The table is now sorted by pkgId / coreId / threadId, but we really 2284 // don't know the radix of any of the fields. pkgId's may be sparsely 2285 // assigned among the chips on a system. Although coreId's are usually 2286 // assigned [0 .. coresPerPkg-1] and threadId's are usually assigned 2287 // [0..threadsPerCore-1], we don't want to make any such assumptions. 2288 // 2289 // For that matter, we don't know what coresPerPkg and threadsPerCore 2290 // (or the total # packages) are at this point - we want to determine 2291 // that now. We only have an upper bound on the first two figures. 2292 // 2293 unsigned *counts = (unsigned *)__kmp_allocate((maxIndex + 1) 2294 * sizeof(unsigned)); 2295 unsigned *maxCt = (unsigned *)__kmp_allocate((maxIndex + 1) 2296 * sizeof(unsigned)); 2297 unsigned *totals = (unsigned *)__kmp_allocate((maxIndex + 1) 2298 * sizeof(unsigned)); 2299 unsigned *lastId = (unsigned *)__kmp_allocate((maxIndex + 1) 2300 * sizeof(unsigned)); 2301 2302 bool assign_thread_ids = false; 2303 unsigned threadIdCt; 2304 unsigned index; 2305 2306 restart_radix_check: 2307 threadIdCt = 0; 2308 2309 // 2310 // Initialize the counter arrays with data from threadInfo[0]. 2311 // 2312 if (assign_thread_ids) { 2313 if (threadInfo[0][threadIdIndex] == UINT_MAX) { 2314 threadInfo[0][threadIdIndex] = threadIdCt++; 2315 } 2316 else if (threadIdCt <= threadInfo[0][threadIdIndex]) { 2317 threadIdCt = threadInfo[0][threadIdIndex] + 1; 2318 } 2319 } 2320 for (index = 0; index <= maxIndex; index++) { 2321 counts[index] = 1; 2322 maxCt[index] = 1; 2323 totals[index] = 1; 2324 lastId[index] = threadInfo[0][index];; 2325 } 2326 2327 // 2328 // Run through the rest of the OS procs. 2329 // 2330 for (i = 1; i < num_avail; i++) { 2331 // 2332 // Find the most significant index whose id differs 2333 // from the id for the previous OS proc. 2334 // 2335 for (index = maxIndex; index >= threadIdIndex; index--) { 2336 if (assign_thread_ids && (index == threadIdIndex)) { 2337 // 2338 // Auto-assign the thread id field if it wasn't specified. 2339 // 2340 if (threadInfo[i][threadIdIndex] == UINT_MAX) { 2341 threadInfo[i][threadIdIndex] = threadIdCt++; 2342 } 2343 2344 // 2345 // Aparrently the thread id field was specified for some 2346 // entries and not others. Start the thread id counter 2347 // off at the next higher thread id. 2348 // 2349 else if (threadIdCt <= threadInfo[i][threadIdIndex]) { 2350 threadIdCt = threadInfo[i][threadIdIndex] + 1; 2351 } 2352 } 2353 if (threadInfo[i][index] != lastId[index]) { 2354 // 2355 // Run through all indices which are less significant, 2356 // and reset the counts to 1. 2357 // 2358 // At all levels up to and including index, we need to 2359 // increment the totals and record the last id. 2360 // 2361 unsigned index2; 2362 for (index2 = threadIdIndex; index2 < index; index2++) { 2363 totals[index2]++; 2364 if (counts[index2] > maxCt[index2]) { 2365 maxCt[index2] = counts[index2]; 2366 } 2367 counts[index2] = 1; 2368 lastId[index2] = threadInfo[i][index2]; 2369 } 2370 counts[index]++; 2371 totals[index]++; 2372 lastId[index] = threadInfo[i][index]; 2373 2374 if (assign_thread_ids && (index > threadIdIndex)) { 2375 2376 # if KMP_MIC && REDUCE_TEAM_SIZE 2377 // 2378 // The default team size is the total #threads in the machine 2379 // minus 1 thread for every core that has 3 or more threads. 2380 // 2381 teamSize += ( threadIdCt <= 2 ) ? ( threadIdCt ) : ( threadIdCt - 1 ); 2382 # endif // KMP_MIC && REDUCE_TEAM_SIZE 2383 2384 // 2385 // Restart the thread counter, as we are on a new core. 2386 // 2387 threadIdCt = 0; 2388 2389 // 2390 // Auto-assign the thread id field if it wasn't specified. 2391 // 2392 if (threadInfo[i][threadIdIndex] == UINT_MAX) { 2393 threadInfo[i][threadIdIndex] = threadIdCt++; 2394 } 2395 2396 // 2397 // Aparrently the thread id field was specified for some 2398 // entries and not others. Start the thread id counter 2399 // off at the next higher thread id. 2400 // 2401 else if (threadIdCt <= threadInfo[i][threadIdIndex]) { 2402 threadIdCt = threadInfo[i][threadIdIndex] + 1; 2403 } 2404 } 2405 break; 2406 } 2407 } 2408 if (index < threadIdIndex) { 2409 // 2410 // If thread ids were specified, it is an error if they are not 2411 // unique. Also, check that we waven't already restarted the 2412 // loop (to be safe - shouldn't need to). 2413 // 2414 if ((threadInfo[i][threadIdIndex] != UINT_MAX) 2415 || assign_thread_ids) { 2416 __kmp_free(lastId); 2417 __kmp_free(totals); 2418 __kmp_free(maxCt); 2419 __kmp_free(counts); 2420 CLEANUP_THREAD_INFO; 2421 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; 2422 return -1; 2423 } 2424 2425 // 2426 // If the thread ids were not specified and we see entries 2427 // entries that are duplicates, start the loop over and 2428 // assign the thread ids manually. 2429 // 2430 assign_thread_ids = true; 2431 goto restart_radix_check; 2432 } 2433 } 2434 2435 # if KMP_MIC && REDUCE_TEAM_SIZE 2436 // 2437 // The default team size is the total #threads in the machine 2438 // minus 1 thread for every core that has 3 or more threads. 2439 // 2440 teamSize += ( threadIdCt <= 2 ) ? ( threadIdCt ) : ( threadIdCt - 1 ); 2441 # endif // KMP_MIC && REDUCE_TEAM_SIZE 2442 2443 for (index = threadIdIndex; index <= maxIndex; index++) { 2444 if (counts[index] > maxCt[index]) { 2445 maxCt[index] = counts[index]; 2446 } 2447 } 2448 2449 __kmp_nThreadsPerCore = maxCt[threadIdIndex]; 2450 nCoresPerPkg = maxCt[coreIdIndex]; 2451 nPackages = totals[pkgIdIndex]; 2452 2453 // 2454 // Check to see if the machine topology is uniform 2455 // 2456 unsigned prod = totals[maxIndex]; 2457 for (index = threadIdIndex; index < maxIndex; index++) { 2458 prod *= maxCt[index]; 2459 } 2460 bool uniform = (prod == totals[threadIdIndex]); 2461 2462 // 2463 // When affinity is off, this routine will still be called to set 2464 // __kmp_ncores, as well as __kmp_nThreadsPerCore, 2465 // nCoresPerPkg, & nPackages. Make sure all these vars are set 2466 // correctly, and return now if affinity is not enabled. 2467 // 2468 __kmp_ncores = totals[coreIdIndex]; 2469 2470 if (__kmp_affinity_verbose) { 2471 if (! KMP_AFFINITY_CAPABLE()) { 2472 KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY"); 2473 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 2474 if (uniform) { 2475 KMP_INFORM(Uniform, "KMP_AFFINITY"); 2476 } else { 2477 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 2478 } 2479 } 2480 else { 2481 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 2482 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, __kmp_affin_fullMask); 2483 KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY"); 2484 if (__kmp_affinity_respect_mask) { 2485 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 2486 } else { 2487 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 2488 } 2489 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 2490 if (uniform) { 2491 KMP_INFORM(Uniform, "KMP_AFFINITY"); 2492 } else { 2493 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 2494 } 2495 } 2496 kmp_str_buf_t buf; 2497 __kmp_str_buf_init(&buf); 2498 2499 __kmp_str_buf_print(&buf, "%d", totals[maxIndex]); 2500 for (index = maxIndex - 1; index >= pkgIdIndex; index--) { 2501 __kmp_str_buf_print(&buf, " x %d", maxCt[index]); 2502 } 2503 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, maxCt[coreIdIndex], 2504 maxCt[threadIdIndex], __kmp_ncores); 2505 2506 __kmp_str_buf_free(&buf); 2507 } 2508 2509 # if KMP_MIC && REDUCE_TEAM_SIZE 2510 // 2511 // Set the default team size. 2512 // 2513 if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) { 2514 __kmp_dflt_team_nth = teamSize; 2515 KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting __kmp_dflt_team_nth = %d\n", 2516 __kmp_dflt_team_nth)); 2517 } 2518 # endif // KMP_MIC && REDUCE_TEAM_SIZE 2519 2520 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 2521 KMP_DEBUG_ASSERT(num_avail == __kmp_avail_proc); 2522 __kmp_pu_os_idx = (int*)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 2523 for (i = 0; i < num_avail; ++i) { // fill the os indices 2524 __kmp_pu_os_idx[i] = threadInfo[i][osIdIndex]; 2525 } 2526 2527 if (__kmp_affinity_type == affinity_none) { 2528 __kmp_free(lastId); 2529 __kmp_free(totals); 2530 __kmp_free(maxCt); 2531 __kmp_free(counts); 2532 CLEANUP_THREAD_INFO; 2533 return 0; 2534 } 2535 2536 // 2537 // Count the number of levels which have more nodes at that level than 2538 // at the parent's level (with there being an implicit root node of 2539 // the top level). This is equivalent to saying that there is at least 2540 // one node at this level which has a sibling. These levels are in the 2541 // map, and the package level is always in the map. 2542 // 2543 bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool)); 2544 int level = 0; 2545 for (index = threadIdIndex; index < maxIndex; index++) { 2546 KMP_ASSERT(totals[index] >= totals[index + 1]); 2547 inMap[index] = (totals[index] > totals[index + 1]); 2548 } 2549 inMap[maxIndex] = (totals[maxIndex] > 1); 2550 inMap[pkgIdIndex] = true; 2551 2552 int depth = 0; 2553 for (index = threadIdIndex; index <= maxIndex; index++) { 2554 if (inMap[index]) { 2555 depth++; 2556 } 2557 } 2558 KMP_ASSERT(depth > 0); 2559 2560 // 2561 // Construct the data structure that is to be returned. 2562 // 2563 *address2os = (AddrUnsPair*) 2564 __kmp_allocate(sizeof(AddrUnsPair) * num_avail); 2565 int pkgLevel = -1; 2566 int coreLevel = -1; 2567 int threadLevel = -1; 2568 2569 for (i = 0; i < num_avail; ++i) { 2570 Address addr(depth); 2571 unsigned os = threadInfo[i][osIdIndex]; 2572 int src_index; 2573 int dst_index = 0; 2574 2575 for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) { 2576 if (! inMap[src_index]) { 2577 continue; 2578 } 2579 addr.labels[dst_index] = threadInfo[i][src_index]; 2580 if (src_index == pkgIdIndex) { 2581 pkgLevel = dst_index; 2582 } 2583 else if (src_index == coreIdIndex) { 2584 coreLevel = dst_index; 2585 } 2586 else if (src_index == threadIdIndex) { 2587 threadLevel = dst_index; 2588 } 2589 dst_index++; 2590 } 2591 (*address2os)[i] = AddrUnsPair(addr, os); 2592 } 2593 2594 if (__kmp_affinity_gran_levels < 0) { 2595 // 2596 // Set the granularity level based on what levels are modeled 2597 // in the machine topology map. 2598 // 2599 unsigned src_index; 2600 __kmp_affinity_gran_levels = 0; 2601 for (src_index = threadIdIndex; src_index <= maxIndex; src_index++) { 2602 if (! inMap[src_index]) { 2603 continue; 2604 } 2605 switch (src_index) { 2606 case threadIdIndex: 2607 if (__kmp_affinity_gran > affinity_gran_thread) { 2608 __kmp_affinity_gran_levels++; 2609 } 2610 2611 break; 2612 case coreIdIndex: 2613 if (__kmp_affinity_gran > affinity_gran_core) { 2614 __kmp_affinity_gran_levels++; 2615 } 2616 break; 2617 2618 case pkgIdIndex: 2619 if (__kmp_affinity_gran > affinity_gran_package) { 2620 __kmp_affinity_gran_levels++; 2621 } 2622 break; 2623 } 2624 } 2625 } 2626 2627 if (__kmp_affinity_verbose) { 2628 __kmp_affinity_print_topology(*address2os, num_avail, depth, pkgLevel, 2629 coreLevel, threadLevel); 2630 } 2631 2632 __kmp_free(inMap); 2633 __kmp_free(lastId); 2634 __kmp_free(totals); 2635 __kmp_free(maxCt); 2636 __kmp_free(counts); 2637 CLEANUP_THREAD_INFO; 2638 return depth; 2639 } 2640 2641 2642 // 2643 // Create and return a table of affinity masks, indexed by OS thread ID. 2644 // This routine handles OR'ing together all the affinity masks of threads 2645 // that are sufficiently close, if granularity > fine. 2646 // 2647 static kmp_affin_mask_t * 2648 __kmp_create_masks(unsigned *maxIndex, unsigned *numUnique, 2649 AddrUnsPair *address2os, unsigned numAddrs) 2650 { 2651 // 2652 // First form a table of affinity masks in order of OS thread id. 2653 // 2654 unsigned depth; 2655 unsigned maxOsId; 2656 unsigned i; 2657 2658 KMP_ASSERT(numAddrs > 0); 2659 depth = address2os[0].first.depth; 2660 2661 maxOsId = 0; 2662 for (i = 0; i < numAddrs; i++) { 2663 unsigned osId = address2os[i].second; 2664 if (osId > maxOsId) { 2665 maxOsId = osId; 2666 } 2667 } 2668 kmp_affin_mask_t *osId2Mask; 2669 KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId+1)); 2670 2671 // 2672 // Sort the address2os table according to physical order. Doing so 2673 // will put all threads on the same core/package/node in consecutive 2674 // locations. 2675 // 2676 qsort(address2os, numAddrs, sizeof(*address2os), 2677 __kmp_affinity_cmp_Address_labels); 2678 2679 KMP_ASSERT(__kmp_affinity_gran_levels >= 0); 2680 if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) { 2681 KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels); 2682 } 2683 if (__kmp_affinity_gran_levels >= (int)depth) { 2684 if (__kmp_affinity_verbose || (__kmp_affinity_warnings 2685 && (__kmp_affinity_type != affinity_none))) { 2686 KMP_WARNING(AffThreadsMayMigrate); 2687 } 2688 } 2689 2690 // 2691 // Run through the table, forming the masks for all threads on each 2692 // core. Threads on the same core will have identical "Address" 2693 // objects, not considering the last level, which must be the thread 2694 // id. All threads on a core will appear consecutively. 2695 // 2696 unsigned unique = 0; 2697 unsigned j = 0; // index of 1st thread on core 2698 unsigned leader = 0; 2699 Address *leaderAddr = &(address2os[0].first); 2700 kmp_affin_mask_t *sum; 2701 KMP_CPU_ALLOC_ON_STACK(sum); 2702 KMP_CPU_ZERO(sum); 2703 KMP_CPU_SET(address2os[0].second, sum); 2704 for (i = 1; i < numAddrs; i++) { 2705 // 2706 // If this thread is sufficiently close to the leader (within the 2707 // granularity setting), then set the bit for this os thread in the 2708 // affinity mask for this group, and go on to the next thread. 2709 // 2710 if (leaderAddr->isClose(address2os[i].first, 2711 __kmp_affinity_gran_levels)) { 2712 KMP_CPU_SET(address2os[i].second, sum); 2713 continue; 2714 } 2715 2716 // 2717 // For every thread in this group, copy the mask to the thread's 2718 // entry in the osId2Mask table. Mark the first address as a 2719 // leader. 2720 // 2721 for (; j < i; j++) { 2722 unsigned osId = address2os[j].second; 2723 KMP_DEBUG_ASSERT(osId <= maxOsId); 2724 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); 2725 KMP_CPU_COPY(mask, sum); 2726 address2os[j].first.leader = (j == leader); 2727 } 2728 unique++; 2729 2730 // 2731 // Start a new mask. 2732 // 2733 leader = i; 2734 leaderAddr = &(address2os[i].first); 2735 KMP_CPU_ZERO(sum); 2736 KMP_CPU_SET(address2os[i].second, sum); 2737 } 2738 2739 // 2740 // For every thread in last group, copy the mask to the thread's 2741 // entry in the osId2Mask table. 2742 // 2743 for (; j < i; j++) { 2744 unsigned osId = address2os[j].second; 2745 KMP_DEBUG_ASSERT(osId <= maxOsId); 2746 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); 2747 KMP_CPU_COPY(mask, sum); 2748 address2os[j].first.leader = (j == leader); 2749 } 2750 unique++; 2751 KMP_CPU_FREE_FROM_STACK(sum); 2752 2753 *maxIndex = maxOsId; 2754 *numUnique = unique; 2755 return osId2Mask; 2756 } 2757 2758 2759 // 2760 // Stuff for the affinity proclist parsers. It's easier to declare these vars 2761 // as file-static than to try and pass them through the calling sequence of 2762 // the recursive-descent OMP_PLACES parser. 2763 // 2764 static kmp_affin_mask_t *newMasks; 2765 static int numNewMasks; 2766 static int nextNewMask; 2767 2768 #define ADD_MASK(_mask) \ 2769 { \ 2770 if (nextNewMask >= numNewMasks) { \ 2771 int i; \ 2772 numNewMasks *= 2; \ 2773 kmp_affin_mask_t* temp; \ 2774 KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \ 2775 for(i=0;i<numNewMasks/2;i++) { \ 2776 kmp_affin_mask_t* src = KMP_CPU_INDEX(newMasks, i); \ 2777 kmp_affin_mask_t* dest = KMP_CPU_INDEX(temp, i); \ 2778 KMP_CPU_COPY(dest, src); \ 2779 } \ 2780 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks/2); \ 2781 newMasks = temp; \ 2782 } \ 2783 KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \ 2784 nextNewMask++; \ 2785 } 2786 2787 #define ADD_MASK_OSID(_osId,_osId2Mask,_maxOsId) \ 2788 { \ 2789 if (((_osId) > _maxOsId) || \ 2790 (! KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \ 2791 if (__kmp_affinity_verbose || (__kmp_affinity_warnings \ 2792 && (__kmp_affinity_type != affinity_none))) { \ 2793 KMP_WARNING(AffIgnoreInvalidProcID, _osId); \ 2794 } \ 2795 } \ 2796 else { \ 2797 ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \ 2798 } \ 2799 } 2800 2801 2802 // 2803 // Re-parse the proclist (for the explicit affinity type), and form the list 2804 // of affinity newMasks indexed by gtid. 2805 // 2806 static void 2807 __kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks, 2808 unsigned int *out_numMasks, const char *proclist, 2809 kmp_affin_mask_t *osId2Mask, int maxOsId) 2810 { 2811 int i; 2812 const char *scan = proclist; 2813 const char *next = proclist; 2814 2815 // 2816 // We use malloc() for the temporary mask vector, 2817 // so that we can use realloc() to extend it. 2818 // 2819 numNewMasks = 2; 2820 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); 2821 nextNewMask = 0; 2822 kmp_affin_mask_t *sumMask; 2823 KMP_CPU_ALLOC(sumMask); 2824 int setSize = 0; 2825 2826 for (;;) { 2827 int start, end, stride; 2828 2829 SKIP_WS(scan); 2830 next = scan; 2831 if (*next == '\0') { 2832 break; 2833 } 2834 2835 if (*next == '{') { 2836 int num; 2837 setSize = 0; 2838 next++; // skip '{' 2839 SKIP_WS(next); 2840 scan = next; 2841 2842 // 2843 // Read the first integer in the set. 2844 // 2845 KMP_ASSERT2((*next >= '0') && (*next <= '9'), 2846 "bad proclist"); 2847 SKIP_DIGITS(next); 2848 num = __kmp_str_to_int(scan, *next); 2849 KMP_ASSERT2(num >= 0, "bad explicit proc list"); 2850 2851 // 2852 // Copy the mask for that osId to the sum (union) mask. 2853 // 2854 if ((num > maxOsId) || 2855 (! KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 2856 if (__kmp_affinity_verbose || (__kmp_affinity_warnings 2857 && (__kmp_affinity_type != affinity_none))) { 2858 KMP_WARNING(AffIgnoreInvalidProcID, num); 2859 } 2860 KMP_CPU_ZERO(sumMask); 2861 } 2862 else { 2863 KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num)); 2864 setSize = 1; 2865 } 2866 2867 for (;;) { 2868 // 2869 // Check for end of set. 2870 // 2871 SKIP_WS(next); 2872 if (*next == '}') { 2873 next++; // skip '}' 2874 break; 2875 } 2876 2877 // 2878 // Skip optional comma. 2879 // 2880 if (*next == ',') { 2881 next++; 2882 } 2883 SKIP_WS(next); 2884 2885 // 2886 // Read the next integer in the set. 2887 // 2888 scan = next; 2889 KMP_ASSERT2((*next >= '0') && (*next <= '9'), 2890 "bad explicit proc list"); 2891 2892 SKIP_DIGITS(next); 2893 num = __kmp_str_to_int(scan, *next); 2894 KMP_ASSERT2(num >= 0, "bad explicit proc list"); 2895 2896 // 2897 // Add the mask for that osId to the sum mask. 2898 // 2899 if ((num > maxOsId) || 2900 (! KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 2901 if (__kmp_affinity_verbose || (__kmp_affinity_warnings 2902 && (__kmp_affinity_type != affinity_none))) { 2903 KMP_WARNING(AffIgnoreInvalidProcID, num); 2904 } 2905 } 2906 else { 2907 KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num)); 2908 setSize++; 2909 } 2910 } 2911 if (setSize > 0) { 2912 ADD_MASK(sumMask); 2913 } 2914 2915 SKIP_WS(next); 2916 if (*next == ',') { 2917 next++; 2918 } 2919 scan = next; 2920 continue; 2921 } 2922 2923 // 2924 // Read the first integer. 2925 // 2926 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 2927 SKIP_DIGITS(next); 2928 start = __kmp_str_to_int(scan, *next); 2929 KMP_ASSERT2(start >= 0, "bad explicit proc list"); 2930 SKIP_WS(next); 2931 2932 // 2933 // If this isn't a range, then add a mask to the list and go on. 2934 // 2935 if (*next != '-') { 2936 ADD_MASK_OSID(start, osId2Mask, maxOsId); 2937 2938 // 2939 // Skip optional comma. 2940 // 2941 if (*next == ',') { 2942 next++; 2943 } 2944 scan = next; 2945 continue; 2946 } 2947 2948 // 2949 // This is a range. Skip over the '-' and read in the 2nd int. 2950 // 2951 next++; // skip '-' 2952 SKIP_WS(next); 2953 scan = next; 2954 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 2955 SKIP_DIGITS(next); 2956 end = __kmp_str_to_int(scan, *next); 2957 KMP_ASSERT2(end >= 0, "bad explicit proc list"); 2958 2959 // 2960 // Check for a stride parameter 2961 // 2962 stride = 1; 2963 SKIP_WS(next); 2964 if (*next == ':') { 2965 // 2966 // A stride is specified. Skip over the ':" and read the 3rd int. 2967 // 2968 int sign = +1; 2969 next++; // skip ':' 2970 SKIP_WS(next); 2971 scan = next; 2972 if (*next == '-') { 2973 sign = -1; 2974 next++; 2975 SKIP_WS(next); 2976 scan = next; 2977 } 2978 KMP_ASSERT2((*next >= '0') && (*next <= '9'), 2979 "bad explicit proc list"); 2980 SKIP_DIGITS(next); 2981 stride = __kmp_str_to_int(scan, *next); 2982 KMP_ASSERT2(stride >= 0, "bad explicit proc list"); 2983 stride *= sign; 2984 } 2985 2986 // 2987 // Do some range checks. 2988 // 2989 KMP_ASSERT2(stride != 0, "bad explicit proc list"); 2990 if (stride > 0) { 2991 KMP_ASSERT2(start <= end, "bad explicit proc list"); 2992 } 2993 else { 2994 KMP_ASSERT2(start >= end, "bad explicit proc list"); 2995 } 2996 KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list"); 2997 2998 // 2999 // Add the mask for each OS proc # to the list. 3000 // 3001 if (stride > 0) { 3002 do { 3003 ADD_MASK_OSID(start, osId2Mask, maxOsId); 3004 start += stride; 3005 } while (start <= end); 3006 } 3007 else { 3008 do { 3009 ADD_MASK_OSID(start, osId2Mask, maxOsId); 3010 start += stride; 3011 } while (start >= end); 3012 } 3013 3014 // 3015 // Skip optional comma. 3016 // 3017 SKIP_WS(next); 3018 if (*next == ',') { 3019 next++; 3020 } 3021 scan = next; 3022 } 3023 3024 *out_numMasks = nextNewMask; 3025 if (nextNewMask == 0) { 3026 *out_masks = NULL; 3027 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3028 return; 3029 } 3030 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); 3031 for(i = 0; i < nextNewMask; i++) { 3032 kmp_affin_mask_t* src = KMP_CPU_INDEX(newMasks, i); 3033 kmp_affin_mask_t* dest = KMP_CPU_INDEX((*out_masks), i); 3034 KMP_CPU_COPY(dest, src); 3035 } 3036 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3037 KMP_CPU_FREE(sumMask); 3038 } 3039 3040 3041 # if OMP_40_ENABLED 3042 3043 /*----------------------------------------------------------------------------- 3044 3045 Re-parse the OMP_PLACES proc id list, forming the newMasks for the different 3046 places. Again, Here is the grammar: 3047 3048 place_list := place 3049 place_list := place , place_list 3050 place := num 3051 place := place : num 3052 place := place : num : signed 3053 place := { subplacelist } 3054 place := ! place // (lowest priority) 3055 subplace_list := subplace 3056 subplace_list := subplace , subplace_list 3057 subplace := num 3058 subplace := num : num 3059 subplace := num : num : signed 3060 signed := num 3061 signed := + signed 3062 signed := - signed 3063 3064 -----------------------------------------------------------------------------*/ 3065 3066 static void 3067 __kmp_process_subplace_list(const char **scan, kmp_affin_mask_t *osId2Mask, 3068 int maxOsId, kmp_affin_mask_t *tempMask, int *setSize) 3069 { 3070 const char *next; 3071 3072 for (;;) { 3073 int start, count, stride, i; 3074 3075 // 3076 // Read in the starting proc id 3077 // 3078 SKIP_WS(*scan); 3079 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), 3080 "bad explicit places list"); 3081 next = *scan; 3082 SKIP_DIGITS(next); 3083 start = __kmp_str_to_int(*scan, *next); 3084 KMP_ASSERT(start >= 0); 3085 *scan = next; 3086 3087 // 3088 // valid follow sets are ',' ':' and '}' 3089 // 3090 SKIP_WS(*scan); 3091 if (**scan == '}' || **scan == ',') { 3092 if ((start > maxOsId) || 3093 (! KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3094 if (__kmp_affinity_verbose || (__kmp_affinity_warnings 3095 && (__kmp_affinity_type != affinity_none))) { 3096 KMP_WARNING(AffIgnoreInvalidProcID, start); 3097 } 3098 } 3099 else { 3100 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3101 (*setSize)++; 3102 } 3103 if (**scan == '}') { 3104 break; 3105 } 3106 (*scan)++; // skip ',' 3107 continue; 3108 } 3109 KMP_ASSERT2(**scan == ':', "bad explicit places list"); 3110 (*scan)++; // skip ':' 3111 3112 // 3113 // Read count parameter 3114 // 3115 SKIP_WS(*scan); 3116 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), 3117 "bad explicit places list"); 3118 next = *scan; 3119 SKIP_DIGITS(next); 3120 count = __kmp_str_to_int(*scan, *next); 3121 KMP_ASSERT(count >= 0); 3122 *scan = next; 3123 3124 // 3125 // valid follow sets are ',' ':' and '}' 3126 // 3127 SKIP_WS(*scan); 3128 if (**scan == '}' || **scan == ',') { 3129 for (i = 0; i < count; i++) { 3130 if ((start > maxOsId) || 3131 (! KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3132 if (__kmp_affinity_verbose || (__kmp_affinity_warnings 3133 && (__kmp_affinity_type != affinity_none))) { 3134 KMP_WARNING(AffIgnoreInvalidProcID, start); 3135 } 3136 break; // don't proliferate warnings for large count 3137 } 3138 else { 3139 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3140 start++; 3141 (*setSize)++; 3142 } 3143 } 3144 if (**scan == '}') { 3145 break; 3146 } 3147 (*scan)++; // skip ',' 3148 continue; 3149 } 3150 KMP_ASSERT2(**scan == ':', "bad explicit places list"); 3151 (*scan)++; // skip ':' 3152 3153 // 3154 // Read stride parameter 3155 // 3156 int sign = +1; 3157 for (;;) { 3158 SKIP_WS(*scan); 3159 if (**scan == '+') { 3160 (*scan)++; // skip '+' 3161 continue; 3162 } 3163 if (**scan == '-') { 3164 sign *= -1; 3165 (*scan)++; // skip '-' 3166 continue; 3167 } 3168 break; 3169 } 3170 SKIP_WS(*scan); 3171 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), 3172 "bad explicit places list"); 3173 next = *scan; 3174 SKIP_DIGITS(next); 3175 stride = __kmp_str_to_int(*scan, *next); 3176 KMP_ASSERT(stride >= 0); 3177 *scan = next; 3178 stride *= sign; 3179 3180 // 3181 // valid follow sets are ',' and '}' 3182 // 3183 SKIP_WS(*scan); 3184 if (**scan == '}' || **scan == ',') { 3185 for (i = 0; i < count; i++) { 3186 if ((start > maxOsId) || 3187 (! KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3188 if (__kmp_affinity_verbose || (__kmp_affinity_warnings 3189 && (__kmp_affinity_type != affinity_none))) { 3190 KMP_WARNING(AffIgnoreInvalidProcID, start); 3191 } 3192 break; // don't proliferate warnings for large count 3193 } 3194 else { 3195 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3196 start += stride; 3197 (*setSize)++; 3198 } 3199 } 3200 if (**scan == '}') { 3201 break; 3202 } 3203 (*scan)++; // skip ',' 3204 continue; 3205 } 3206 3207 KMP_ASSERT2(0, "bad explicit places list"); 3208 } 3209 } 3210 3211 3212 static void 3213 __kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask, 3214 int maxOsId, kmp_affin_mask_t *tempMask, int *setSize) 3215 { 3216 const char *next; 3217 3218 // 3219 // valid follow sets are '{' '!' and num 3220 // 3221 SKIP_WS(*scan); 3222 if (**scan == '{') { 3223 (*scan)++; // skip '{' 3224 __kmp_process_subplace_list(scan, osId2Mask, maxOsId , tempMask, 3225 setSize); 3226 KMP_ASSERT2(**scan == '}', "bad explicit places list"); 3227 (*scan)++; // skip '}' 3228 } 3229 else if (**scan == '!') { 3230 (*scan)++; // skip '!' 3231 __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize); 3232 KMP_CPU_COMPLEMENT(maxOsId, tempMask); 3233 } 3234 else if ((**scan >= '0') && (**scan <= '9')) { 3235 next = *scan; 3236 SKIP_DIGITS(next); 3237 int num = __kmp_str_to_int(*scan, *next); 3238 KMP_ASSERT(num >= 0); 3239 if ((num > maxOsId) || 3240 (! KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 3241 if (__kmp_affinity_verbose || (__kmp_affinity_warnings 3242 && (__kmp_affinity_type != affinity_none))) { 3243 KMP_WARNING(AffIgnoreInvalidProcID, num); 3244 } 3245 } 3246 else { 3247 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num)); 3248 (*setSize)++; 3249 } 3250 *scan = next; // skip num 3251 } 3252 else { 3253 KMP_ASSERT2(0, "bad explicit places list"); 3254 } 3255 } 3256 3257 3258 //static void 3259 void 3260 __kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks, 3261 unsigned int *out_numMasks, const char *placelist, 3262 kmp_affin_mask_t *osId2Mask, int maxOsId) 3263 { 3264 int i,j,count,stride,sign; 3265 const char *scan = placelist; 3266 const char *next = placelist; 3267 3268 numNewMasks = 2; 3269 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); 3270 nextNewMask = 0; 3271 3272 // tempMask is modified based on the previous or initial 3273 // place to form the current place 3274 // previousMask contains the previous place 3275 kmp_affin_mask_t *tempMask; 3276 kmp_affin_mask_t *previousMask; 3277 KMP_CPU_ALLOC(tempMask); 3278 KMP_CPU_ZERO(tempMask); 3279 KMP_CPU_ALLOC(previousMask); 3280 KMP_CPU_ZERO(previousMask); 3281 int setSize = 0; 3282 3283 for (;;) { 3284 __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize); 3285 3286 // 3287 // valid follow sets are ',' ':' and EOL 3288 // 3289 SKIP_WS(scan); 3290 if (*scan == '\0' || *scan == ',') { 3291 if (setSize > 0) { 3292 ADD_MASK(tempMask); 3293 } 3294 KMP_CPU_ZERO(tempMask); 3295 setSize = 0; 3296 if (*scan == '\0') { 3297 break; 3298 } 3299 scan++; // skip ',' 3300 continue; 3301 } 3302 3303 KMP_ASSERT2(*scan == ':', "bad explicit places list"); 3304 scan++; // skip ':' 3305 3306 // 3307 // Read count parameter 3308 // 3309 SKIP_WS(scan); 3310 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), 3311 "bad explicit places list"); 3312 next = scan; 3313 SKIP_DIGITS(next); 3314 count = __kmp_str_to_int(scan, *next); 3315 KMP_ASSERT(count >= 0); 3316 scan = next; 3317 3318 // 3319 // valid follow sets are ',' ':' and EOL 3320 // 3321 SKIP_WS(scan); 3322 if (*scan == '\0' || *scan == ',') { 3323 stride = +1; 3324 } 3325 else { 3326 KMP_ASSERT2(*scan == ':', "bad explicit places list"); 3327 scan++; // skip ':' 3328 3329 // 3330 // Read stride parameter 3331 // 3332 sign = +1; 3333 for (;;) { 3334 SKIP_WS(scan); 3335 if (*scan == '+') { 3336 scan++; // skip '+' 3337 continue; 3338 } 3339 if (*scan == '-') { 3340 sign *= -1; 3341 scan++; // skip '-' 3342 continue; 3343 } 3344 break; 3345 } 3346 SKIP_WS(scan); 3347 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), 3348 "bad explicit places list"); 3349 next = scan; 3350 SKIP_DIGITS(next); 3351 stride = __kmp_str_to_int(scan, *next); 3352 KMP_DEBUG_ASSERT(stride >= 0); 3353 scan = next; 3354 stride *= sign; 3355 } 3356 3357 // Add places determined by initial_place : count : stride 3358 for (i = 0; i < count; i++) { 3359 if (setSize == 0) { 3360 break; 3361 } 3362 // Add the current place, then build the next place (tempMask) from that 3363 KMP_CPU_COPY(previousMask, tempMask); 3364 ADD_MASK(previousMask); 3365 KMP_CPU_ZERO(tempMask); 3366 setSize = 0; 3367 KMP_CPU_SET_ITERATE(j, previousMask) { 3368 if (! KMP_CPU_ISSET(j, previousMask)) { 3369 continue; 3370 } 3371 if ((j+stride > maxOsId) || (j+stride < 0) || 3372 (! KMP_CPU_ISSET(j, __kmp_affin_fullMask)) || 3373 (! KMP_CPU_ISSET(j+stride, KMP_CPU_INDEX(osId2Mask, j+stride)))) { 3374 if ((__kmp_affinity_verbose || (__kmp_affinity_warnings 3375 && (__kmp_affinity_type != affinity_none))) && i < count - 1) { 3376 KMP_WARNING(AffIgnoreInvalidProcID, j+stride); 3377 } 3378 continue; 3379 } 3380 KMP_CPU_SET(j+stride, tempMask); 3381 setSize++; 3382 } 3383 } 3384 KMP_CPU_ZERO(tempMask); 3385 setSize = 0; 3386 3387 // 3388 // valid follow sets are ',' and EOL 3389 // 3390 SKIP_WS(scan); 3391 if (*scan == '\0') { 3392 break; 3393 } 3394 if (*scan == ',') { 3395 scan++; // skip ',' 3396 continue; 3397 } 3398 3399 KMP_ASSERT2(0, "bad explicit places list"); 3400 } 3401 3402 *out_numMasks = nextNewMask; 3403 if (nextNewMask == 0) { 3404 *out_masks = NULL; 3405 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3406 return; 3407 } 3408 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); 3409 KMP_CPU_FREE(tempMask); 3410 KMP_CPU_FREE(previousMask); 3411 for(i = 0; i < nextNewMask; i++) { 3412 kmp_affin_mask_t* src = KMP_CPU_INDEX(newMasks, i); 3413 kmp_affin_mask_t* dest = KMP_CPU_INDEX((*out_masks), i); 3414 KMP_CPU_COPY(dest, src); 3415 } 3416 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3417 } 3418 3419 # endif /* OMP_40_ENABLED */ 3420 3421 #undef ADD_MASK 3422 #undef ADD_MASK_OSID 3423 3424 static void 3425 __kmp_apply_thread_places(AddrUnsPair **pAddr, int depth) 3426 { 3427 int i, j, k, n_old = 0, n_new = 0, proc_num = 0; 3428 if (__kmp_place_num_sockets == 0 && 3429 __kmp_place_num_cores == 0 && 3430 __kmp_place_num_threads_per_core == 0 ) 3431 goto _exit; // no topology limiting actions requested, exit 3432 if (__kmp_place_num_sockets == 0) 3433 __kmp_place_num_sockets = nPackages; // use all available sockets 3434 if (__kmp_place_num_cores == 0) 3435 __kmp_place_num_cores = nCoresPerPkg; // use all available cores 3436 if (__kmp_place_num_threads_per_core == 0 || 3437 __kmp_place_num_threads_per_core > __kmp_nThreadsPerCore) 3438 __kmp_place_num_threads_per_core = __kmp_nThreadsPerCore; // use all HW contexts 3439 3440 if ( !__kmp_affinity_uniform_topology() ) { 3441 KMP_WARNING( AffHWSubsetNonUniform ); 3442 goto _exit; // don't support non-uniform topology 3443 } 3444 if ( depth > 3 ) { 3445 KMP_WARNING( AffHWSubsetNonThreeLevel ); 3446 goto _exit; // don't support not-3-level topology 3447 } 3448 if (__kmp_place_socket_offset + __kmp_place_num_sockets > nPackages) { 3449 KMP_WARNING(AffHWSubsetManySockets); 3450 goto _exit; 3451 } 3452 if ( __kmp_place_core_offset + __kmp_place_num_cores > nCoresPerPkg ) { 3453 KMP_WARNING( AffHWSubsetManyCores ); 3454 goto _exit; 3455 } 3456 3457 AddrUnsPair *newAddr; 3458 if (pAddr) // pAddr is NULL in case of affinity_none 3459 newAddr = (AddrUnsPair *)__kmp_allocate( sizeof(AddrUnsPair) * 3460 __kmp_place_num_sockets * __kmp_place_num_cores * __kmp_place_num_threads_per_core); 3461 3462 for (i = 0; i < nPackages; ++i) { 3463 if (i < __kmp_place_socket_offset || 3464 i >= __kmp_place_socket_offset + __kmp_place_num_sockets) { 3465 n_old += nCoresPerPkg * __kmp_nThreadsPerCore; // skip not-requested socket 3466 if (__kmp_pu_os_idx != NULL) { 3467 for (j = 0; j < nCoresPerPkg; ++j) { // walk through skipped socket 3468 for (k = 0; k < __kmp_nThreadsPerCore; ++k) { 3469 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask); 3470 ++proc_num; 3471 } 3472 } 3473 } 3474 } else { 3475 for (j = 0; j < nCoresPerPkg; ++j) { // walk through requested socket 3476 if (j < __kmp_place_core_offset || 3477 j >= __kmp_place_core_offset + __kmp_place_num_cores) { 3478 n_old += __kmp_nThreadsPerCore; // skip not-requested core 3479 if (__kmp_pu_os_idx != NULL) { 3480 for (k = 0; k < __kmp_nThreadsPerCore; ++k) { // walk through skipped core 3481 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask); 3482 ++proc_num; 3483 } 3484 } 3485 } else { 3486 for (k = 0; k < __kmp_nThreadsPerCore; ++k) { // walk through requested core 3487 if (k < __kmp_place_num_threads_per_core) { 3488 if (pAddr) 3489 newAddr[n_new] = (*pAddr)[n_old]; // collect requested thread's data 3490 n_new++; 3491 } else { 3492 if (__kmp_pu_os_idx != NULL) 3493 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask); 3494 } 3495 n_old++; 3496 ++proc_num; 3497 } 3498 } 3499 } 3500 } 3501 } 3502 KMP_DEBUG_ASSERT(n_old == nPackages * nCoresPerPkg * __kmp_nThreadsPerCore); 3503 KMP_DEBUG_ASSERT(n_new == __kmp_place_num_sockets * __kmp_place_num_cores * 3504 __kmp_place_num_threads_per_core); 3505 3506 nPackages = __kmp_place_num_sockets; // correct nPackages 3507 nCoresPerPkg = __kmp_place_num_cores; // correct nCoresPerPkg 3508 __kmp_nThreadsPerCore = __kmp_place_num_threads_per_core; // correct __kmp_nThreadsPerCore 3509 __kmp_avail_proc = n_new; // correct avail_proc 3510 __kmp_ncores = nPackages * __kmp_place_num_cores; // correct ncores 3511 3512 if (pAddr) { 3513 __kmp_free( *pAddr ); 3514 *pAddr = newAddr; // replace old topology with new one 3515 } 3516 _exit: 3517 if (__kmp_pu_os_idx != NULL) { 3518 __kmp_free(__kmp_pu_os_idx); 3519 __kmp_pu_os_idx = NULL; 3520 } 3521 } 3522 3523 // 3524 // This function figures out the deepest level at which there is at least one cluster/core 3525 // with more than one processing unit bound to it. 3526 // 3527 static int 3528 __kmp_affinity_find_core_level(const AddrUnsPair *address2os, int nprocs, int bottom_level) 3529 { 3530 int core_level = 0; 3531 3532 for( int i = 0; i < nprocs; i++ ) { 3533 for( int j = bottom_level; j > 0; j-- ) { 3534 if( address2os[i].first.labels[j] > 0 ) { 3535 if( core_level < ( j - 1 ) ) { 3536 core_level = j - 1; 3537 } 3538 } 3539 } 3540 } 3541 return core_level; 3542 } 3543 3544 // 3545 // This function counts number of clusters/cores at given level. 3546 // 3547 static int __kmp_affinity_compute_ncores(const AddrUnsPair *address2os, int nprocs, int bottom_level, int core_level) 3548 { 3549 int ncores = 0; 3550 int i, j; 3551 3552 j = bottom_level; 3553 for( i = 0; i < nprocs; i++ ) { 3554 for ( j = bottom_level; j > core_level; j-- ) { 3555 if( ( i + 1 ) < nprocs ) { 3556 if( address2os[i + 1].first.labels[j] > 0 ) { 3557 break; 3558 } 3559 } 3560 } 3561 if( j == core_level ) { 3562 ncores++; 3563 } 3564 } 3565 if( j > core_level ) { 3566 // 3567 // In case of ( nprocs < __kmp_avail_proc ) we may end too deep and miss one core. 3568 // May occur when called from __kmp_affinity_find_core(). 3569 // 3570 ncores++; 3571 } 3572 return ncores; 3573 } 3574 3575 // 3576 // This function finds to which cluster/core given processing unit is bound. 3577 // 3578 static int __kmp_affinity_find_core(const AddrUnsPair *address2os, int proc, int bottom_level, int core_level) 3579 { 3580 return __kmp_affinity_compute_ncores(address2os, proc + 1, bottom_level, core_level) - 1; 3581 } 3582 3583 // 3584 // This function finds maximal number of processing units bound to a cluster/core at given level. 3585 // 3586 static int __kmp_affinity_max_proc_per_core(const AddrUnsPair *address2os, int nprocs, int bottom_level, int core_level) 3587 { 3588 int maxprocpercore = 0; 3589 3590 if( core_level < bottom_level ) { 3591 for( int i = 0; i < nprocs; i++ ) { 3592 int percore = address2os[i].first.labels[core_level + 1] + 1; 3593 3594 if( percore > maxprocpercore ) { 3595 maxprocpercore = percore; 3596 } 3597 } 3598 } else { 3599 maxprocpercore = 1; 3600 } 3601 return maxprocpercore; 3602 } 3603 3604 static AddrUnsPair *address2os = NULL; 3605 static int * procarr = NULL; 3606 static int __kmp_aff_depth = 0; 3607 3608 #define KMP_EXIT_AFF_NONE \ 3609 KMP_ASSERT(__kmp_affinity_type == affinity_none); \ 3610 KMP_ASSERT(address2os == NULL); \ 3611 __kmp_apply_thread_places(NULL, 0); \ 3612 return; 3613 3614 static int 3615 __kmp_affinity_cmp_Address_child_num(const void *a, const void *b) 3616 { 3617 const Address *aa = (const Address *)&(((AddrUnsPair *)a) 3618 ->first); 3619 const Address *bb = (const Address *)&(((AddrUnsPair *)b) 3620 ->first); 3621 unsigned depth = aa->depth; 3622 unsigned i; 3623 KMP_DEBUG_ASSERT(depth == bb->depth); 3624 KMP_DEBUG_ASSERT((unsigned)__kmp_affinity_compact <= depth); 3625 KMP_DEBUG_ASSERT(__kmp_affinity_compact >= 0); 3626 for (i = 0; i < (unsigned)__kmp_affinity_compact; i++) { 3627 int j = depth - i - 1; 3628 if (aa->childNums[j] < bb->childNums[j]) return -1; 3629 if (aa->childNums[j] > bb->childNums[j]) return 1; 3630 } 3631 for (; i < depth; i++) { 3632 int j = i - __kmp_affinity_compact; 3633 if (aa->childNums[j] < bb->childNums[j]) return -1; 3634 if (aa->childNums[j] > bb->childNums[j]) return 1; 3635 } 3636 return 0; 3637 } 3638 3639 static void 3640 __kmp_aux_affinity_initialize(void) 3641 { 3642 if (__kmp_affinity_masks != NULL) { 3643 KMP_ASSERT(__kmp_affin_fullMask != NULL); 3644 return; 3645 } 3646 3647 // 3648 // Create the "full" mask - this defines all of the processors that we 3649 // consider to be in the machine model. If respect is set, then it is 3650 // the initialization thread's affinity mask. Otherwise, it is all 3651 // processors that we know about on the machine. 3652 // 3653 if (__kmp_affin_fullMask == NULL) { 3654 KMP_CPU_ALLOC(__kmp_affin_fullMask); 3655 } 3656 if (KMP_AFFINITY_CAPABLE()) { 3657 if (__kmp_affinity_respect_mask) { 3658 __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE); 3659 3660 // 3661 // Count the number of available processors. 3662 // 3663 unsigned i; 3664 __kmp_avail_proc = 0; 3665 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 3666 if (! KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 3667 continue; 3668 } 3669 __kmp_avail_proc++; 3670 } 3671 if (__kmp_avail_proc > __kmp_xproc) { 3672 if (__kmp_affinity_verbose || (__kmp_affinity_warnings 3673 && (__kmp_affinity_type != affinity_none))) { 3674 KMP_WARNING(ErrorInitializeAffinity); 3675 } 3676 __kmp_affinity_type = affinity_none; 3677 KMP_AFFINITY_DISABLE(); 3678 return; 3679 } 3680 } 3681 else { 3682 __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask); 3683 __kmp_avail_proc = __kmp_xproc; 3684 } 3685 } 3686 3687 int depth = -1; 3688 kmp_i18n_id_t msg_id = kmp_i18n_null; 3689 3690 // 3691 // For backward compatibility, setting KMP_CPUINFO_FILE => 3692 // KMP_TOPOLOGY_METHOD=cpuinfo 3693 // 3694 if ((__kmp_cpuinfo_file != NULL) && 3695 (__kmp_affinity_top_method == affinity_top_method_all)) { 3696 __kmp_affinity_top_method = affinity_top_method_cpuinfo; 3697 } 3698 3699 if (__kmp_affinity_top_method == affinity_top_method_all) { 3700 // 3701 // In the default code path, errors are not fatal - we just try using 3702 // another method. We only emit a warning message if affinity is on, 3703 // or the verbose flag is set, an the nowarnings flag was not set. 3704 // 3705 const char *file_name = NULL; 3706 int line = 0; 3707 # if KMP_USE_HWLOC 3708 if (depth < 0) { 3709 if (__kmp_affinity_verbose) { 3710 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); 3711 } 3712 if(!__kmp_hwloc_error) { 3713 depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id); 3714 if (depth == 0) { 3715 KMP_EXIT_AFF_NONE; 3716 } else if(depth < 0 && __kmp_affinity_verbose) { 3717 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY"); 3718 } 3719 } else if(__kmp_affinity_verbose) { 3720 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY"); 3721 } 3722 } 3723 # endif 3724 3725 # if KMP_ARCH_X86 || KMP_ARCH_X86_64 3726 3727 if (depth < 0) { 3728 if (__kmp_affinity_verbose) { 3729 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC)); 3730 } 3731 3732 file_name = NULL; 3733 depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id); 3734 if (depth == 0) { 3735 KMP_EXIT_AFF_NONE; 3736 } 3737 3738 if (depth < 0) { 3739 if (__kmp_affinity_verbose) { 3740 if (msg_id != kmp_i18n_null) { 3741 KMP_INFORM(AffInfoStrStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id), 3742 KMP_I18N_STR(DecodingLegacyAPIC)); 3743 } 3744 else { 3745 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC)); 3746 } 3747 } 3748 3749 file_name = NULL; 3750 depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id); 3751 if (depth == 0) { 3752 KMP_EXIT_AFF_NONE; 3753 } 3754 } 3755 } 3756 3757 # endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 3758 3759 # if KMP_OS_LINUX 3760 3761 if (depth < 0) { 3762 if (__kmp_affinity_verbose) { 3763 if (msg_id != kmp_i18n_null) { 3764 KMP_INFORM(AffStrParseFilename, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id), "/proc/cpuinfo"); 3765 } 3766 else { 3767 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", "/proc/cpuinfo"); 3768 } 3769 } 3770 3771 FILE *f = fopen("/proc/cpuinfo", "r"); 3772 if (f == NULL) { 3773 msg_id = kmp_i18n_str_CantOpenCpuinfo; 3774 } 3775 else { 3776 file_name = "/proc/cpuinfo"; 3777 depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f); 3778 fclose(f); 3779 if (depth == 0) { 3780 KMP_EXIT_AFF_NONE; 3781 } 3782 } 3783 } 3784 3785 # endif /* KMP_OS_LINUX */ 3786 3787 # if KMP_GROUP_AFFINITY 3788 3789 if ((depth < 0) && (__kmp_num_proc_groups > 1)) { 3790 if (__kmp_affinity_verbose) { 3791 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY"); 3792 } 3793 3794 depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id); 3795 KMP_ASSERT(depth != 0); 3796 } 3797 3798 # endif /* KMP_GROUP_AFFINITY */ 3799 3800 if (depth < 0) { 3801 if (__kmp_affinity_verbose && (msg_id != kmp_i18n_null)) { 3802 if (file_name == NULL) { 3803 KMP_INFORM(UsingFlatOS, __kmp_i18n_catgets(msg_id)); 3804 } 3805 else if (line == 0) { 3806 KMP_INFORM(UsingFlatOSFile, file_name, __kmp_i18n_catgets(msg_id)); 3807 } 3808 else { 3809 KMP_INFORM(UsingFlatOSFileLine, file_name, line, __kmp_i18n_catgets(msg_id)); 3810 } 3811 } 3812 // FIXME - print msg if msg_id = kmp_i18n_null ??? 3813 3814 file_name = ""; 3815 depth = __kmp_affinity_create_flat_map(&address2os, &msg_id); 3816 if (depth == 0) { 3817 KMP_EXIT_AFF_NONE; 3818 } 3819 KMP_ASSERT(depth > 0); 3820 KMP_ASSERT(address2os != NULL); 3821 } 3822 } 3823 3824 // 3825 // If the user has specified that a paricular topology discovery method 3826 // is to be used, then we abort if that method fails. The exception is 3827 // group affinity, which might have been implicitly set. 3828 // 3829 3830 # if KMP_ARCH_X86 || KMP_ARCH_X86_64 3831 3832 else if (__kmp_affinity_top_method == affinity_top_method_x2apicid) { 3833 if (__kmp_affinity_verbose) { 3834 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", 3835 KMP_I18N_STR(Decodingx2APIC)); 3836 } 3837 3838 depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id); 3839 if (depth == 0) { 3840 KMP_EXIT_AFF_NONE; 3841 } 3842 if (depth < 0) { 3843 KMP_ASSERT(msg_id != kmp_i18n_null); 3844 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 3845 } 3846 } 3847 else if (__kmp_affinity_top_method == affinity_top_method_apicid) { 3848 if (__kmp_affinity_verbose) { 3849 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", 3850 KMP_I18N_STR(DecodingLegacyAPIC)); 3851 } 3852 3853 depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id); 3854 if (depth == 0) { 3855 KMP_EXIT_AFF_NONE; 3856 } 3857 if (depth < 0) { 3858 KMP_ASSERT(msg_id != kmp_i18n_null); 3859 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 3860 } 3861 } 3862 3863 # endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 3864 3865 else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) { 3866 const char *filename; 3867 if (__kmp_cpuinfo_file != NULL) { 3868 filename = __kmp_cpuinfo_file; 3869 } 3870 else { 3871 filename = "/proc/cpuinfo"; 3872 } 3873 3874 if (__kmp_affinity_verbose) { 3875 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename); 3876 } 3877 3878 FILE *f = fopen(filename, "r"); 3879 if (f == NULL) { 3880 int code = errno; 3881 if (__kmp_cpuinfo_file != NULL) { 3882 __kmp_msg( 3883 kmp_ms_fatal, 3884 KMP_MSG(CantOpenFileForReading, filename), 3885 KMP_ERR(code), 3886 KMP_HNT(NameComesFrom_CPUINFO_FILE), 3887 __kmp_msg_null 3888 ); 3889 } 3890 else { 3891 __kmp_msg( 3892 kmp_ms_fatal, 3893 KMP_MSG(CantOpenFileForReading, filename), 3894 KMP_ERR(code), 3895 __kmp_msg_null 3896 ); 3897 } 3898 } 3899 int line = 0; 3900 depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f); 3901 fclose(f); 3902 if (depth < 0) { 3903 KMP_ASSERT(msg_id != kmp_i18n_null); 3904 if (line > 0) { 3905 KMP_FATAL(FileLineMsgExiting, filename, line, __kmp_i18n_catgets(msg_id)); 3906 } 3907 else { 3908 KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id)); 3909 } 3910 } 3911 if (__kmp_affinity_type == affinity_none) { 3912 KMP_ASSERT(depth == 0); 3913 KMP_EXIT_AFF_NONE; 3914 } 3915 } 3916 3917 # if KMP_GROUP_AFFINITY 3918 3919 else if (__kmp_affinity_top_method == affinity_top_method_group) { 3920 if (__kmp_affinity_verbose) { 3921 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY"); 3922 } 3923 3924 depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id); 3925 KMP_ASSERT(depth != 0); 3926 if (depth < 0) { 3927 KMP_ASSERT(msg_id != kmp_i18n_null); 3928 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 3929 } 3930 } 3931 3932 # endif /* KMP_GROUP_AFFINITY */ 3933 3934 else if (__kmp_affinity_top_method == affinity_top_method_flat) { 3935 if (__kmp_affinity_verbose) { 3936 KMP_INFORM(AffUsingFlatOS, "KMP_AFFINITY"); 3937 } 3938 3939 depth = __kmp_affinity_create_flat_map(&address2os, &msg_id); 3940 if (depth == 0) { 3941 KMP_EXIT_AFF_NONE; 3942 } 3943 // should not fail 3944 KMP_ASSERT(depth > 0); 3945 KMP_ASSERT(address2os != NULL); 3946 } 3947 3948 # if KMP_USE_HWLOC 3949 else if (__kmp_affinity_top_method == affinity_top_method_hwloc) { 3950 if (__kmp_affinity_verbose) { 3951 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); 3952 } 3953 depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id); 3954 if (depth == 0) { 3955 KMP_EXIT_AFF_NONE; 3956 } 3957 } 3958 # endif // KMP_USE_HWLOC 3959 3960 if (address2os == NULL) { 3961 if (KMP_AFFINITY_CAPABLE() 3962 && (__kmp_affinity_verbose || (__kmp_affinity_warnings 3963 && (__kmp_affinity_type != affinity_none)))) { 3964 KMP_WARNING(ErrorInitializeAffinity); 3965 } 3966 __kmp_affinity_type = affinity_none; 3967 KMP_AFFINITY_DISABLE(); 3968 return; 3969 } 3970 3971 __kmp_apply_thread_places(&address2os, depth); 3972 3973 // 3974 // Create the table of masks, indexed by thread Id. 3975 // 3976 unsigned maxIndex; 3977 unsigned numUnique; 3978 kmp_affin_mask_t *osId2Mask = __kmp_create_masks(&maxIndex, &numUnique, 3979 address2os, __kmp_avail_proc); 3980 if (__kmp_affinity_gran_levels == 0) { 3981 KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc); 3982 } 3983 3984 // 3985 // Set the childNums vector in all Address objects. This must be done 3986 // before we can sort using __kmp_affinity_cmp_Address_child_num(), 3987 // which takes into account the setting of __kmp_affinity_compact. 3988 // 3989 __kmp_affinity_assign_child_nums(address2os, __kmp_avail_proc); 3990 3991 switch (__kmp_affinity_type) { 3992 3993 case affinity_explicit: 3994 KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL); 3995 # if OMP_40_ENABLED 3996 if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) 3997 # endif 3998 { 3999 __kmp_affinity_process_proclist(&__kmp_affinity_masks, 4000 &__kmp_affinity_num_masks, __kmp_affinity_proclist, osId2Mask, 4001 maxIndex); 4002 } 4003 # if OMP_40_ENABLED 4004 else { 4005 __kmp_affinity_process_placelist(&__kmp_affinity_masks, 4006 &__kmp_affinity_num_masks, __kmp_affinity_proclist, osId2Mask, 4007 maxIndex); 4008 } 4009 # endif 4010 if (__kmp_affinity_num_masks == 0) { 4011 if (__kmp_affinity_verbose || (__kmp_affinity_warnings 4012 && (__kmp_affinity_type != affinity_none))) { 4013 KMP_WARNING(AffNoValidProcID); 4014 } 4015 __kmp_affinity_type = affinity_none; 4016 return; 4017 } 4018 break; 4019 4020 // 4021 // The other affinity types rely on sorting the Addresses according 4022 // to some permutation of the machine topology tree. Set 4023 // __kmp_affinity_compact and __kmp_affinity_offset appropriately, 4024 // then jump to a common code fragment to do the sort and create 4025 // the array of affinity masks. 4026 // 4027 4028 case affinity_logical: 4029 __kmp_affinity_compact = 0; 4030 if (__kmp_affinity_offset) { 4031 __kmp_affinity_offset = __kmp_nThreadsPerCore * __kmp_affinity_offset 4032 % __kmp_avail_proc; 4033 } 4034 goto sortAddresses; 4035 4036 case affinity_physical: 4037 if (__kmp_nThreadsPerCore > 1) { 4038 __kmp_affinity_compact = 1; 4039 if (__kmp_affinity_compact >= depth) { 4040 __kmp_affinity_compact = 0; 4041 } 4042 } else { 4043 __kmp_affinity_compact = 0; 4044 } 4045 if (__kmp_affinity_offset) { 4046 __kmp_affinity_offset = __kmp_nThreadsPerCore * __kmp_affinity_offset 4047 % __kmp_avail_proc; 4048 } 4049 goto sortAddresses; 4050 4051 case affinity_scatter: 4052 if (__kmp_affinity_compact >= depth) { 4053 __kmp_affinity_compact = 0; 4054 } 4055 else { 4056 __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact; 4057 } 4058 goto sortAddresses; 4059 4060 case affinity_compact: 4061 if (__kmp_affinity_compact >= depth) { 4062 __kmp_affinity_compact = depth - 1; 4063 } 4064 goto sortAddresses; 4065 4066 case affinity_balanced: 4067 if( depth <= 1 ) { 4068 if( __kmp_affinity_verbose || __kmp_affinity_warnings ) { 4069 KMP_WARNING( AffBalancedNotAvail, "KMP_AFFINITY" ); 4070 } 4071 __kmp_affinity_type = affinity_none; 4072 return; 4073 } else if( __kmp_affinity_uniform_topology() ) { 4074 break; 4075 } else { // Non-uniform topology 4076 4077 // Save the depth for further usage 4078 __kmp_aff_depth = depth; 4079 4080 int core_level = __kmp_affinity_find_core_level(address2os, __kmp_avail_proc, depth - 1); 4081 int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc, depth - 1, core_level); 4082 int maxprocpercore = __kmp_affinity_max_proc_per_core(address2os, __kmp_avail_proc, depth - 1, core_level); 4083 4084 int nproc = ncores * maxprocpercore; 4085 if( ( nproc < 2 ) || ( nproc < __kmp_avail_proc ) ) { 4086 if( __kmp_affinity_verbose || __kmp_affinity_warnings ) { 4087 KMP_WARNING( AffBalancedNotAvail, "KMP_AFFINITY" ); 4088 } 4089 __kmp_affinity_type = affinity_none; 4090 return; 4091 } 4092 4093 procarr = ( int * )__kmp_allocate( sizeof( int ) * nproc ); 4094 for( int i = 0; i < nproc; i++ ) { 4095 procarr[ i ] = -1; 4096 } 4097 4098 int lastcore = -1; 4099 int inlastcore = 0; 4100 for( int i = 0; i < __kmp_avail_proc; i++ ) { 4101 int proc = address2os[ i ].second; 4102 int core = __kmp_affinity_find_core(address2os, i, depth - 1, core_level); 4103 4104 if ( core == lastcore ) { 4105 inlastcore++; 4106 } else { 4107 inlastcore = 0; 4108 } 4109 lastcore = core; 4110 4111 procarr[ core * maxprocpercore + inlastcore ] = proc; 4112 } 4113 4114 break; 4115 } 4116 4117 sortAddresses: 4118 // 4119 // Allocate the gtid->affinity mask table. 4120 // 4121 if (__kmp_affinity_dups) { 4122 __kmp_affinity_num_masks = __kmp_avail_proc; 4123 } 4124 else { 4125 __kmp_affinity_num_masks = numUnique; 4126 } 4127 4128 # if OMP_40_ENABLED 4129 if ( ( __kmp_nested_proc_bind.bind_types[0] != proc_bind_intel ) 4130 && ( __kmp_affinity_num_places > 0 ) 4131 && ( (unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks ) ) { 4132 __kmp_affinity_num_masks = __kmp_affinity_num_places; 4133 } 4134 # endif 4135 4136 KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); 4137 4138 // 4139 // Sort the address2os table according to the current setting of 4140 // __kmp_affinity_compact, then fill out __kmp_affinity_masks. 4141 // 4142 qsort(address2os, __kmp_avail_proc, sizeof(*address2os), 4143 __kmp_affinity_cmp_Address_child_num); 4144 { 4145 int i; 4146 unsigned j; 4147 for (i = 0, j = 0; i < __kmp_avail_proc; i++) { 4148 if ((! __kmp_affinity_dups) && (! address2os[i].first.leader)) { 4149 continue; 4150 } 4151 unsigned osId = address2os[i].second; 4152 kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId); 4153 kmp_affin_mask_t *dest 4154 = KMP_CPU_INDEX(__kmp_affinity_masks, j); 4155 KMP_ASSERT(KMP_CPU_ISSET(osId, src)); 4156 KMP_CPU_COPY(dest, src); 4157 if (++j >= __kmp_affinity_num_masks) { 4158 break; 4159 } 4160 } 4161 KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks); 4162 } 4163 break; 4164 4165 default: 4166 KMP_ASSERT2(0, "Unexpected affinity setting"); 4167 } 4168 4169 KMP_CPU_FREE_ARRAY(osId2Mask, maxIndex+1); 4170 machine_hierarchy.init(address2os, __kmp_avail_proc); 4171 } 4172 #undef KMP_EXIT_AFF_NONE 4173 4174 4175 void 4176 __kmp_affinity_initialize(void) 4177 { 4178 // 4179 // Much of the code above was written assumming that if a machine was not 4180 // affinity capable, then __kmp_affinity_type == affinity_none. We now 4181 // explicitly represent this as __kmp_affinity_type == affinity_disabled. 4182 // 4183 // There are too many checks for __kmp_affinity_type == affinity_none 4184 // in this code. Instead of trying to change them all, check if 4185 // __kmp_affinity_type == affinity_disabled, and if so, slam it with 4186 // affinity_none, call the real initialization routine, then restore 4187 // __kmp_affinity_type to affinity_disabled. 4188 // 4189 int disabled = (__kmp_affinity_type == affinity_disabled); 4190 if (! KMP_AFFINITY_CAPABLE()) { 4191 KMP_ASSERT(disabled); 4192 } 4193 if (disabled) { 4194 __kmp_affinity_type = affinity_none; 4195 } 4196 __kmp_aux_affinity_initialize(); 4197 if (disabled) { 4198 __kmp_affinity_type = affinity_disabled; 4199 } 4200 } 4201 4202 4203 void 4204 __kmp_affinity_uninitialize(void) 4205 { 4206 if (__kmp_affinity_masks != NULL) { 4207 KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); 4208 __kmp_affinity_masks = NULL; 4209 } 4210 if (__kmp_affin_fullMask != NULL) { 4211 KMP_CPU_FREE(__kmp_affin_fullMask); 4212 __kmp_affin_fullMask = NULL; 4213 } 4214 __kmp_affinity_num_masks = 0; 4215 # if OMP_40_ENABLED 4216 __kmp_affinity_num_places = 0; 4217 # endif 4218 if (__kmp_affinity_proclist != NULL) { 4219 __kmp_free(__kmp_affinity_proclist); 4220 __kmp_affinity_proclist = NULL; 4221 } 4222 if( address2os != NULL ) { 4223 __kmp_free( address2os ); 4224 address2os = NULL; 4225 } 4226 if( procarr != NULL ) { 4227 __kmp_free( procarr ); 4228 procarr = NULL; 4229 } 4230 # if KMP_USE_HWLOC 4231 if (__kmp_hwloc_topology != NULL) { 4232 hwloc_topology_destroy(__kmp_hwloc_topology); 4233 __kmp_hwloc_topology = NULL; 4234 } 4235 # endif 4236 } 4237 4238 4239 void 4240 __kmp_affinity_set_init_mask(int gtid, int isa_root) 4241 { 4242 if (! KMP_AFFINITY_CAPABLE()) { 4243 return; 4244 } 4245 4246 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); 4247 if (th->th.th_affin_mask == NULL) { 4248 KMP_CPU_ALLOC(th->th.th_affin_mask); 4249 } 4250 else { 4251 KMP_CPU_ZERO(th->th.th_affin_mask); 4252 } 4253 4254 // 4255 // Copy the thread mask to the kmp_info_t strucuture. 4256 // If __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one 4257 // that has all of the OS proc ids set, or if __kmp_affinity_respect_mask 4258 // is set, then the full mask is the same as the mask of the initialization 4259 // thread. 4260 // 4261 kmp_affin_mask_t *mask; 4262 int i; 4263 4264 # if OMP_40_ENABLED 4265 if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) 4266 # endif 4267 { 4268 if ((__kmp_affinity_type == affinity_none) || (__kmp_affinity_type == affinity_balanced) 4269 ) { 4270 # if KMP_GROUP_AFFINITY 4271 if (__kmp_num_proc_groups > 1) { 4272 return; 4273 } 4274 # endif 4275 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4276 i = KMP_PLACE_ALL; 4277 mask = __kmp_affin_fullMask; 4278 } 4279 else { 4280 KMP_DEBUG_ASSERT( __kmp_affinity_num_masks > 0 ); 4281 i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks; 4282 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); 4283 } 4284 } 4285 # if OMP_40_ENABLED 4286 else { 4287 if ((! isa_root) 4288 || (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) { 4289 # if KMP_GROUP_AFFINITY 4290 if (__kmp_num_proc_groups > 1) { 4291 return; 4292 } 4293 # endif 4294 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4295 i = KMP_PLACE_ALL; 4296 mask = __kmp_affin_fullMask; 4297 } 4298 else { 4299 // 4300 // int i = some hash function or just a counter that doesn't 4301 // always start at 0. Use gtid for now. 4302 // 4303 KMP_DEBUG_ASSERT( __kmp_affinity_num_masks > 0 ); 4304 i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks; 4305 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); 4306 } 4307 } 4308 # endif 4309 4310 # if OMP_40_ENABLED 4311 th->th.th_current_place = i; 4312 if (isa_root) { 4313 th->th.th_new_place = i; 4314 th->th.th_first_place = 0; 4315 th->th.th_last_place = __kmp_affinity_num_masks - 1; 4316 } 4317 4318 if (i == KMP_PLACE_ALL) { 4319 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n", 4320 gtid)); 4321 } 4322 else { 4323 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n", 4324 gtid, i)); 4325 } 4326 # else 4327 if (i == -1) { 4328 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to __kmp_affin_fullMask\n", 4329 gtid)); 4330 } 4331 else { 4332 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to mask %d\n", 4333 gtid, i)); 4334 } 4335 # endif /* OMP_40_ENABLED */ 4336 4337 KMP_CPU_COPY(th->th.th_affin_mask, mask); 4338 4339 if (__kmp_affinity_verbose) { 4340 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4341 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4342 th->th.th_affin_mask); 4343 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), gtid, 4344 buf); 4345 } 4346 4347 # if KMP_OS_WINDOWS 4348 // 4349 // On Windows* OS, the process affinity mask might have changed. 4350 // If the user didn't request affinity and this call fails, 4351 // just continue silently. See CQ171393. 4352 // 4353 if ( __kmp_affinity_type == affinity_none ) { 4354 __kmp_set_system_affinity(th->th.th_affin_mask, FALSE); 4355 } 4356 else 4357 # endif 4358 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); 4359 } 4360 4361 4362 # if OMP_40_ENABLED 4363 4364 void 4365 __kmp_affinity_set_place(int gtid) 4366 { 4367 int retval; 4368 4369 if (! KMP_AFFINITY_CAPABLE()) { 4370 return; 4371 } 4372 4373 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); 4374 4375 KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current place = %d)\n", 4376 gtid, th->th.th_new_place, th->th.th_current_place)); 4377 4378 // 4379 // Check that the new place is within this thread's partition. 4380 // 4381 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4382 KMP_ASSERT(th->th.th_new_place >= 0); 4383 KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks); 4384 if (th->th.th_first_place <= th->th.th_last_place) { 4385 KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) 4386 && (th->th.th_new_place <= th->th.th_last_place)); 4387 } 4388 else { 4389 KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) 4390 || (th->th.th_new_place >= th->th.th_last_place)); 4391 } 4392 4393 // 4394 // Copy the thread mask to the kmp_info_t strucuture, 4395 // and set this thread's affinity. 4396 // 4397 kmp_affin_mask_t *mask = KMP_CPU_INDEX(__kmp_affinity_masks, 4398 th->th.th_new_place); 4399 KMP_CPU_COPY(th->th.th_affin_mask, mask); 4400 th->th.th_current_place = th->th.th_new_place; 4401 4402 if (__kmp_affinity_verbose) { 4403 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4404 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4405 th->th.th_affin_mask); 4406 KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(), 4407 gtid, buf); 4408 } 4409 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); 4410 } 4411 4412 # endif /* OMP_40_ENABLED */ 4413 4414 4415 int 4416 __kmp_aux_set_affinity(void **mask) 4417 { 4418 int gtid; 4419 kmp_info_t *th; 4420 int retval; 4421 4422 if (! KMP_AFFINITY_CAPABLE()) { 4423 return -1; 4424 } 4425 4426 gtid = __kmp_entry_gtid(); 4427 KA_TRACE(1000, ;{ 4428 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4429 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4430 (kmp_affin_mask_t *)(*mask)); 4431 __kmp_debug_printf("kmp_set_affinity: setting affinity mask for thread %d = %s\n", 4432 gtid, buf); 4433 }); 4434 4435 if (__kmp_env_consistency_check) { 4436 if ((mask == NULL) || (*mask == NULL)) { 4437 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4438 } 4439 else { 4440 unsigned proc; 4441 int num_procs = 0; 4442 4443 KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t*)(*mask))) { 4444 if (! KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 4445 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4446 } 4447 if (! KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) { 4448 continue; 4449 } 4450 num_procs++; 4451 } 4452 if (num_procs == 0) { 4453 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4454 } 4455 4456 # if KMP_GROUP_AFFINITY 4457 if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) { 4458 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4459 } 4460 # endif /* KMP_GROUP_AFFINITY */ 4461 4462 } 4463 } 4464 4465 th = __kmp_threads[gtid]; 4466 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4467 retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); 4468 if (retval == 0) { 4469 KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask)); 4470 } 4471 4472 # if OMP_40_ENABLED 4473 th->th.th_current_place = KMP_PLACE_UNDEFINED; 4474 th->th.th_new_place = KMP_PLACE_UNDEFINED; 4475 th->th.th_first_place = 0; 4476 th->th.th_last_place = __kmp_affinity_num_masks - 1; 4477 4478 // 4479 // Turn off 4.0 affinity for the current tread at this parallel level. 4480 // 4481 th->th.th_current_task->td_icvs.proc_bind = proc_bind_false; 4482 # endif 4483 4484 return retval; 4485 } 4486 4487 4488 int 4489 __kmp_aux_get_affinity(void **mask) 4490 { 4491 int gtid; 4492 int retval; 4493 kmp_info_t *th; 4494 4495 if (! KMP_AFFINITY_CAPABLE()) { 4496 return -1; 4497 } 4498 4499 gtid = __kmp_entry_gtid(); 4500 th = __kmp_threads[gtid]; 4501 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4502 4503 KA_TRACE(1000, ;{ 4504 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4505 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4506 th->th.th_affin_mask); 4507 __kmp_printf("kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid, buf); 4508 }); 4509 4510 if (__kmp_env_consistency_check) { 4511 if ((mask == NULL) || (*mask == NULL)) { 4512 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity"); 4513 } 4514 } 4515 4516 # if !KMP_OS_WINDOWS 4517 4518 retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); 4519 KA_TRACE(1000, ;{ 4520 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4521 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4522 (kmp_affin_mask_t *)(*mask)); 4523 __kmp_printf("kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid, buf); 4524 }); 4525 return retval; 4526 4527 # else 4528 4529 KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask); 4530 return 0; 4531 4532 # endif /* KMP_OS_WINDOWS */ 4533 4534 } 4535 4536 int 4537 __kmp_aux_get_affinity_max_proc() { 4538 if (! KMP_AFFINITY_CAPABLE()) { 4539 return 0; 4540 } 4541 #if KMP_GROUP_AFFINITY 4542 if ( __kmp_num_proc_groups > 1 ) { 4543 return (int)(__kmp_num_proc_groups*sizeof(DWORD_PTR)*CHAR_BIT); 4544 } 4545 #endif 4546 return __kmp_xproc; 4547 } 4548 4549 int 4550 __kmp_aux_set_affinity_mask_proc(int proc, void **mask) 4551 { 4552 int retval; 4553 4554 if (! KMP_AFFINITY_CAPABLE()) { 4555 return -1; 4556 } 4557 4558 KA_TRACE(1000, ;{ 4559 int gtid = __kmp_entry_gtid(); 4560 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4561 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4562 (kmp_affin_mask_t *)(*mask)); 4563 __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in affinity mask for thread %d = %s\n", 4564 proc, gtid, buf); 4565 }); 4566 4567 if (__kmp_env_consistency_check) { 4568 if ((mask == NULL) || (*mask == NULL)) { 4569 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc"); 4570 } 4571 } 4572 4573 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 4574 return -1; 4575 } 4576 if (! KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 4577 return -2; 4578 } 4579 4580 KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask)); 4581 return 0; 4582 } 4583 4584 4585 int 4586 __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) 4587 { 4588 int retval; 4589 4590 if (! KMP_AFFINITY_CAPABLE()) { 4591 return -1; 4592 } 4593 4594 KA_TRACE(1000, ;{ 4595 int gtid = __kmp_entry_gtid(); 4596 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4597 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4598 (kmp_affin_mask_t *)(*mask)); 4599 __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in affinity mask for thread %d = %s\n", 4600 proc, gtid, buf); 4601 }); 4602 4603 if (__kmp_env_consistency_check) { 4604 if ((mask == NULL) || (*mask == NULL)) { 4605 KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc"); 4606 } 4607 } 4608 4609 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 4610 return -1; 4611 } 4612 if (! KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 4613 return -2; 4614 } 4615 4616 KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask)); 4617 return 0; 4618 } 4619 4620 4621 int 4622 __kmp_aux_get_affinity_mask_proc(int proc, void **mask) 4623 { 4624 int retval; 4625 4626 if (! KMP_AFFINITY_CAPABLE()) { 4627 return -1; 4628 } 4629 4630 KA_TRACE(1000, ;{ 4631 int gtid = __kmp_entry_gtid(); 4632 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4633 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4634 (kmp_affin_mask_t *)(*mask)); 4635 __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in affinity mask for thread %d = %s\n", 4636 proc, gtid, buf); 4637 }); 4638 4639 if (__kmp_env_consistency_check) { 4640 if ((mask == NULL) || (*mask == NULL)) { 4641 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc"); 4642 } 4643 } 4644 4645 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 4646 return -1; 4647 } 4648 if (! KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 4649 return 0; 4650 } 4651 4652 return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask)); 4653 } 4654 4655 4656 // Dynamic affinity settings - Affinity balanced 4657 void __kmp_balanced_affinity( int tid, int nthreads ) 4658 { 4659 bool fine_gran = true; 4660 4661 switch (__kmp_affinity_gran) { 4662 case affinity_gran_fine: 4663 case affinity_gran_thread: 4664 break; 4665 case affinity_gran_core: 4666 if( __kmp_nThreadsPerCore > 1) { 4667 fine_gran = false; 4668 } 4669 break; 4670 case affinity_gran_package: 4671 if( nCoresPerPkg > 1) { 4672 fine_gran = false; 4673 } 4674 break; 4675 default: 4676 fine_gran = false; 4677 } 4678 4679 if( __kmp_affinity_uniform_topology() ) { 4680 int coreID; 4681 int threadID; 4682 // Number of hyper threads per core in HT machine 4683 int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores; 4684 // Number of cores 4685 int ncores = __kmp_ncores; 4686 if( ( nPackages > 1 ) && ( __kmp_nth_per_core <= 1 ) ) { 4687 __kmp_nth_per_core = __kmp_avail_proc / nPackages; 4688 ncores = nPackages; 4689 } 4690 // How many threads will be bound to each core 4691 int chunk = nthreads / ncores; 4692 // How many cores will have an additional thread bound to it - "big cores" 4693 int big_cores = nthreads % ncores; 4694 // Number of threads on the big cores 4695 int big_nth = ( chunk + 1 ) * big_cores; 4696 if( tid < big_nth ) { 4697 coreID = tid / (chunk + 1 ); 4698 threadID = ( tid % (chunk + 1 ) ) % __kmp_nth_per_core ; 4699 } else { //tid >= big_nth 4700 coreID = ( tid - big_cores ) / chunk; 4701 threadID = ( ( tid - big_cores ) % chunk ) % __kmp_nth_per_core ; 4702 } 4703 4704 KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(), 4705 "Illegal set affinity operation when not capable"); 4706 4707 kmp_affin_mask_t *mask; 4708 KMP_CPU_ALLOC_ON_STACK(mask); 4709 KMP_CPU_ZERO(mask); 4710 4711 if( fine_gran ) { 4712 int osID = address2os[ coreID * __kmp_nth_per_core + threadID ].second; 4713 KMP_CPU_SET( osID, mask); 4714 } else { 4715 for( int i = 0; i < __kmp_nth_per_core; i++ ) { 4716 int osID; 4717 osID = address2os[ coreID * __kmp_nth_per_core + i ].second; 4718 KMP_CPU_SET( osID, mask); 4719 } 4720 } 4721 if (__kmp_affinity_verbose) { 4722 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4723 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); 4724 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), 4725 tid, buf); 4726 } 4727 __kmp_set_system_affinity( mask, TRUE ); 4728 KMP_CPU_FREE_FROM_STACK(mask); 4729 } else { // Non-uniform topology 4730 4731 kmp_affin_mask_t *mask; 4732 KMP_CPU_ALLOC_ON_STACK(mask); 4733 KMP_CPU_ZERO(mask); 4734 4735 int core_level = __kmp_affinity_find_core_level(address2os, __kmp_avail_proc, __kmp_aff_depth - 1); 4736 int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc, __kmp_aff_depth - 1, core_level); 4737 int nth_per_core = __kmp_affinity_max_proc_per_core(address2os, __kmp_avail_proc, __kmp_aff_depth - 1, core_level); 4738 4739 // For performance gain consider the special case nthreads == __kmp_avail_proc 4740 if( nthreads == __kmp_avail_proc ) { 4741 if( fine_gran ) { 4742 int osID = address2os[ tid ].second; 4743 KMP_CPU_SET( osID, mask); 4744 } else { 4745 int core = __kmp_affinity_find_core(address2os, tid, __kmp_aff_depth - 1, core_level); 4746 for( int i = 0; i < __kmp_avail_proc; i++ ) { 4747 int osID = address2os[ i ].second; 4748 if( __kmp_affinity_find_core(address2os, i, __kmp_aff_depth - 1, core_level) == core ) { 4749 KMP_CPU_SET( osID, mask); 4750 } 4751 } 4752 } 4753 } else if( nthreads <= ncores ) { 4754 4755 int core = 0; 4756 for( int i = 0; i < ncores; i++ ) { 4757 // Check if this core from procarr[] is in the mask 4758 int in_mask = 0; 4759 for( int j = 0; j < nth_per_core; j++ ) { 4760 if( procarr[ i * nth_per_core + j ] != - 1 ) { 4761 in_mask = 1; 4762 break; 4763 } 4764 } 4765 if( in_mask ) { 4766 if( tid == core ) { 4767 for( int j = 0; j < nth_per_core; j++ ) { 4768 int osID = procarr[ i * nth_per_core + j ]; 4769 if( osID != -1 ) { 4770 KMP_CPU_SET( osID, mask ); 4771 // For fine granularity it is enough to set the first available osID for this core 4772 if( fine_gran) { 4773 break; 4774 } 4775 } 4776 } 4777 break; 4778 } else { 4779 core++; 4780 } 4781 } 4782 } 4783 4784 } else { // nthreads > ncores 4785 4786 // Array to save the number of processors at each core 4787 int* nproc_at_core = (int*)KMP_ALLOCA(sizeof(int)*ncores); 4788 // Array to save the number of cores with "x" available processors; 4789 int* ncores_with_x_procs = (int*)KMP_ALLOCA(sizeof(int)*(nth_per_core+1)); 4790 // Array to save the number of cores with # procs from x to nth_per_core 4791 int* ncores_with_x_to_max_procs = (int*)KMP_ALLOCA(sizeof(int)*(nth_per_core+1)); 4792 4793 for( int i = 0; i <= nth_per_core; i++ ) { 4794 ncores_with_x_procs[ i ] = 0; 4795 ncores_with_x_to_max_procs[ i ] = 0; 4796 } 4797 4798 for( int i = 0; i < ncores; i++ ) { 4799 int cnt = 0; 4800 for( int j = 0; j < nth_per_core; j++ ) { 4801 if( procarr[ i * nth_per_core + j ] != -1 ) { 4802 cnt++; 4803 } 4804 } 4805 nproc_at_core[ i ] = cnt; 4806 ncores_with_x_procs[ cnt ]++; 4807 } 4808 4809 for( int i = 0; i <= nth_per_core; i++ ) { 4810 for( int j = i; j <= nth_per_core; j++ ) { 4811 ncores_with_x_to_max_procs[ i ] += ncores_with_x_procs[ j ]; 4812 } 4813 } 4814 4815 // Max number of processors 4816 int nproc = nth_per_core * ncores; 4817 // An array to keep number of threads per each context 4818 int * newarr = ( int * )__kmp_allocate( sizeof( int ) * nproc ); 4819 for( int i = 0; i < nproc; i++ ) { 4820 newarr[ i ] = 0; 4821 } 4822 4823 int nth = nthreads; 4824 int flag = 0; 4825 while( nth > 0 ) { 4826 for( int j = 1; j <= nth_per_core; j++ ) { 4827 int cnt = ncores_with_x_to_max_procs[ j ]; 4828 for( int i = 0; i < ncores; i++ ) { 4829 // Skip the core with 0 processors 4830 if( nproc_at_core[ i ] == 0 ) { 4831 continue; 4832 } 4833 for( int k = 0; k < nth_per_core; k++ ) { 4834 if( procarr[ i * nth_per_core + k ] != -1 ) { 4835 if( newarr[ i * nth_per_core + k ] == 0 ) { 4836 newarr[ i * nth_per_core + k ] = 1; 4837 cnt--; 4838 nth--; 4839 break; 4840 } else { 4841 if( flag != 0 ) { 4842 newarr[ i * nth_per_core + k ] ++; 4843 cnt--; 4844 nth--; 4845 break; 4846 } 4847 } 4848 } 4849 } 4850 if( cnt == 0 || nth == 0 ) { 4851 break; 4852 } 4853 } 4854 if( nth == 0 ) { 4855 break; 4856 } 4857 } 4858 flag = 1; 4859 } 4860 int sum = 0; 4861 for( int i = 0; i < nproc; i++ ) { 4862 sum += newarr[ i ]; 4863 if( sum > tid ) { 4864 if( fine_gran) { 4865 int osID = procarr[ i ]; 4866 KMP_CPU_SET( osID, mask); 4867 } else { 4868 int coreID = i / nth_per_core; 4869 for( int ii = 0; ii < nth_per_core; ii++ ) { 4870 int osID = procarr[ coreID * nth_per_core + ii ]; 4871 if( osID != -1 ) { 4872 KMP_CPU_SET( osID, mask); 4873 } 4874 } 4875 } 4876 break; 4877 } 4878 } 4879 __kmp_free( newarr ); 4880 } 4881 4882 if (__kmp_affinity_verbose) { 4883 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4884 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); 4885 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), 4886 tid, buf); 4887 } 4888 __kmp_set_system_affinity( mask, TRUE ); 4889 KMP_CPU_FREE_FROM_STACK(mask); 4890 } 4891 } 4892 4893 #if KMP_OS_LINUX 4894 // We don't need this entry for Windows because 4895 // there is GetProcessAffinityMask() api 4896 // 4897 // The intended usage is indicated by these steps: 4898 // 1) The user gets the current affinity mask 4899 // 2) Then sets the affinity by calling this function 4900 // 3) Error check the return value 4901 // 4) Use non-OpenMP parallelization 4902 // 5) Reset the affinity to what was stored in step 1) 4903 #ifdef __cplusplus 4904 extern "C" 4905 #endif 4906 int 4907 kmp_set_thread_affinity_mask_initial() 4908 // the function returns 0 on success, 4909 // -1 if we cannot bind thread 4910 // >0 (errno) if an error happened during binding 4911 { 4912 int gtid = __kmp_get_gtid(); 4913 if (gtid < 0) { 4914 // Do not touch non-omp threads 4915 KA_TRACE(30, ( "kmp_set_thread_affinity_mask_initial: " 4916 "non-omp thread, returning\n")); 4917 return -1; 4918 } 4919 if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) { 4920 KA_TRACE(30, ( "kmp_set_thread_affinity_mask_initial: " 4921 "affinity not initialized, returning\n")); 4922 return -1; 4923 } 4924 KA_TRACE(30, ( "kmp_set_thread_affinity_mask_initial: " 4925 "set full mask for thread %d\n", gtid)); 4926 KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL); 4927 return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE); 4928 } 4929 #endif 4930 4931 #endif // KMP_AFFINITY_SUPPORTED 4932