1 /*
2  * kmp_affinity.cpp -- affinity management
3  */
4 
5 
6 //===----------------------------------------------------------------------===//
7 //
8 //                     The LLVM Compiler Infrastructure
9 //
10 // This file is dual licensed under the MIT and the University of Illinois Open
11 // Source Licenses. See LICENSE.txt for details.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 
16 #include "kmp.h"
17 #include "kmp_i18n.h"
18 #include "kmp_io.h"
19 #include "kmp_str.h"
20 #include "kmp_wrapper_getpid.h"
21 #include "kmp_affinity.h"
22 
23 // Store the real or imagined machine hierarchy here
24 static hierarchy_info machine_hierarchy;
25 
26 void __kmp_cleanup_hierarchy() {
27     machine_hierarchy.fini();
28 }
29 
30 void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) {
31     kmp_uint32 depth;
32     // The test below is true if affinity is available, but set to "none". Need to init on first use of hierarchical barrier.
33     if (TCR_1(machine_hierarchy.uninitialized))
34         machine_hierarchy.init(NULL, nproc);
35 
36     // Adjust the hierarchy in case num threads exceeds original
37     if (nproc > machine_hierarchy.base_num_threads)
38         machine_hierarchy.resize(nproc);
39 
40     depth = machine_hierarchy.depth;
41     KMP_DEBUG_ASSERT(depth > 0);
42 
43     thr_bar->depth = depth;
44     thr_bar->base_leaf_kids = (kmp_uint8)machine_hierarchy.numPerLevel[0]-1;
45     thr_bar->skip_per_level = machine_hierarchy.skipPerLevel;
46 }
47 
48 #if KMP_AFFINITY_SUPPORTED
49 
50 //
51 // Print the affinity mask to the character array in a pretty format.
52 //
53 #if KMP_USE_HWLOC
54 char *
55 __kmp_affinity_print_mask(char *buf, int buf_len, kmp_affin_mask_t *mask)
56 {
57     int num_chars_to_write, num_chars_written;
58     char* scan;
59     KMP_ASSERT(buf_len >= 40);
60 
61     // bufsize of 0 just retrieves the needed buffer size.
62     num_chars_to_write = hwloc_bitmap_list_snprintf(buf, 0, (hwloc_bitmap_t)mask);
63 
64     // need '{', "xxxxxxxx...xx", '}', '\0' = num_chars_to_write + 3 bytes
65     // * num_chars_to_write returned by hwloc_bitmap_list_snprintf does not
66     //   take into account the '\0' character.
67     if(hwloc_bitmap_iszero((hwloc_bitmap_t)mask)) {
68         KMP_SNPRINTF(buf, buf_len, "{<empty>}");
69     } else if(num_chars_to_write < buf_len - 3) {
70         // no problem fitting the mask into buf_len number of characters
71         buf[0] = '{';
72         // use buf_len-3 because we have the three characters: '{' '}' '\0' to add to the buffer
73         num_chars_written = hwloc_bitmap_list_snprintf(buf+1, buf_len-3, (hwloc_bitmap_t)mask);
74         buf[num_chars_written+1] = '}';
75         buf[num_chars_written+2] = '\0';
76     } else {
77         // Need to truncate the affinity mask string and add ellipsis.
78         // To do this, we first write out the '{' + str(mask)
79         buf[0] = '{';
80         hwloc_bitmap_list_snprintf(buf+1, buf_len-1, (hwloc_bitmap_t)mask);
81         // then, what we do here is go to the 7th to last character, then go backwards until we are NOT
82         // on a digit then write "...}\0".  This way it is a clean ellipsis addition and we don't
83         // overwrite part of an affinity number. i.e., we avoid something like { 45, 67, 8...} and get
84         // { 45, 67,...} instead.
85         scan = buf + buf_len - 7;
86         while(*scan >= '0' && *scan <= '9' && scan >= buf)
87             scan--;
88         *(scan+1) = '.';
89         *(scan+2) = '.';
90         *(scan+3) = '.';
91         *(scan+4) = '}';
92         *(scan+5) = '\0';
93     }
94     return buf;
95 }
96 #else
97 char *
98 __kmp_affinity_print_mask(char *buf, int buf_len, kmp_affin_mask_t *mask)
99 {
100     KMP_ASSERT(buf_len >= 40);
101     char *scan = buf;
102     char *end = buf + buf_len - 1;
103 
104     //
105     // Find first element / check for empty set.
106     //
107     size_t i;
108     for (i = 0; i < KMP_CPU_SETSIZE; i++) {
109         if (KMP_CPU_ISSET(i, mask)) {
110             break;
111         }
112     }
113     if (i == KMP_CPU_SETSIZE) {
114         KMP_SNPRINTF(scan, end-scan+1, "{<empty>}");
115         while (*scan != '\0') scan++;
116         KMP_ASSERT(scan <= end);
117         return buf;
118     }
119 
120     KMP_SNPRINTF(scan, end-scan+1, "{%ld", (long)i);
121     while (*scan != '\0') scan++;
122     i++;
123     for (; i < KMP_CPU_SETSIZE; i++) {
124         if (! KMP_CPU_ISSET(i, mask)) {
125             continue;
126         }
127 
128         //
129         // Check for buffer overflow.  A string of the form ",<n>" will have
130         // at most 10 characters, plus we want to leave room to print ",...}"
131         // if the set is too large to print for a total of 15 characters.
132         // We already left room for '\0' in setting end.
133         //
134         if (end - scan < 15) {
135            break;
136         }
137         KMP_SNPRINTF(scan, end-scan+1, ",%-ld", (long)i);
138         while (*scan != '\0') scan++;
139     }
140     if (i < KMP_CPU_SETSIZE) {
141         KMP_SNPRINTF(scan, end-scan+1,  ",...");
142         while (*scan != '\0') scan++;
143     }
144     KMP_SNPRINTF(scan, end-scan+1, "}");
145     while (*scan != '\0') scan++;
146     KMP_ASSERT(scan <= end);
147     return buf;
148 }
149 #endif // KMP_USE_HWLOC
150 
151 
152 void
153 __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask)
154 {
155     KMP_CPU_ZERO(mask);
156 
157 # if KMP_GROUP_AFFINITY
158 
159     if (__kmp_num_proc_groups > 1) {
160         int group;
161         KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL);
162         for (group = 0; group < __kmp_num_proc_groups; group++) {
163             int i;
164             int num = __kmp_GetActiveProcessorCount(group);
165             for (i = 0; i < num; i++) {
166                 KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask);
167             }
168         }
169     }
170     else
171 
172 # endif /* KMP_GROUP_AFFINITY */
173 
174     {
175         int proc;
176         for (proc = 0; proc < __kmp_xproc; proc++) {
177             KMP_CPU_SET(proc, mask);
178         }
179     }
180 }
181 
182 //
183 // When sorting by labels, __kmp_affinity_assign_child_nums() must first be
184 // called to renumber the labels from [0..n] and place them into the child_num
185 // vector of the address object.  This is done in case the labels used for
186 // the children at one node of the hierarchy differ from those used for
187 // another node at the same level.  Example:  suppose the machine has 2 nodes
188 // with 2 packages each.  The first node contains packages 601 and 602, and
189 // second node contains packages 603 and 604.  If we try to sort the table
190 // for "scatter" affinity, the table will still be sorted 601, 602, 603, 604
191 // because we are paying attention to the labels themselves, not the ordinal
192 // child numbers.  By using the child numbers in the sort, the result is
193 // {0,0}=601, {0,1}=603, {1,0}=602, {1,1}=604.
194 //
195 static void
196 __kmp_affinity_assign_child_nums(AddrUnsPair *address2os,
197   int numAddrs)
198 {
199     KMP_DEBUG_ASSERT(numAddrs > 0);
200     int depth = address2os->first.depth;
201     unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
202     unsigned *lastLabel = (unsigned *)__kmp_allocate(depth
203       * sizeof(unsigned));
204     int labCt;
205     for (labCt = 0; labCt < depth; labCt++) {
206         address2os[0].first.childNums[labCt] = counts[labCt] = 0;
207         lastLabel[labCt] = address2os[0].first.labels[labCt];
208     }
209     int i;
210     for (i = 1; i < numAddrs; i++) {
211         for (labCt = 0; labCt < depth; labCt++) {
212             if (address2os[i].first.labels[labCt] != lastLabel[labCt]) {
213                 int labCt2;
214                 for (labCt2 = labCt + 1; labCt2 < depth; labCt2++) {
215                     counts[labCt2] = 0;
216                     lastLabel[labCt2] = address2os[i].first.labels[labCt2];
217                 }
218                 counts[labCt]++;
219                 lastLabel[labCt] = address2os[i].first.labels[labCt];
220                 break;
221             }
222         }
223         for (labCt = 0; labCt < depth; labCt++) {
224             address2os[i].first.childNums[labCt] = counts[labCt];
225         }
226         for (; labCt < (int)Address::maxDepth; labCt++) {
227             address2os[i].first.childNums[labCt] = 0;
228         }
229     }
230 }
231 
232 
233 //
234 // All of the __kmp_affinity_create_*_map() routines should set
235 // __kmp_affinity_masks to a vector of affinity mask objects of length
236 // __kmp_affinity_num_masks, if __kmp_affinity_type != affinity_none, and
237 // return the number of levels in the machine topology tree (zero if
238 // __kmp_affinity_type == affinity_none).
239 //
240 // All of the __kmp_affinity_create_*_map() routines should set *fullMask
241 // to the affinity mask for the initialization thread.  They need to save and
242 // restore the mask, and it could be needed later, so saving it is just an
243 // optimization to avoid calling kmp_get_system_affinity() again.
244 //
245 static kmp_affin_mask_t *fullMask = NULL;
246 
247 kmp_affin_mask_t *
248 __kmp_affinity_get_fullMask() { return fullMask; }
249 
250 
251 static int nCoresPerPkg, nPackages;
252 static int __kmp_nThreadsPerCore;
253 #ifndef KMP_DFLT_NTH_CORES
254 static int __kmp_ncores;
255 #endif
256 
257 //
258 // __kmp_affinity_uniform_topology() doesn't work when called from
259 // places which support arbitrarily many levels in the machine topology
260 // map, i.e. the non-default cases in __kmp_affinity_create_cpuinfo_map()
261 // __kmp_affinity_create_x2apicid_map().
262 //
263 inline static bool
264 __kmp_affinity_uniform_topology()
265 {
266     return __kmp_avail_proc == (__kmp_nThreadsPerCore * nCoresPerPkg * nPackages);
267 }
268 
269 
270 //
271 // Print out the detailed machine topology map, i.e. the physical locations
272 // of each OS proc.
273 //
274 static void
275 __kmp_affinity_print_topology(AddrUnsPair *address2os, int len, int depth,
276   int pkgLevel, int coreLevel, int threadLevel)
277 {
278     int proc;
279 
280     KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY");
281     for (proc = 0; proc < len; proc++) {
282         int level;
283         kmp_str_buf_t buf;
284         __kmp_str_buf_init(&buf);
285         for (level = 0; level < depth; level++) {
286             if (level == threadLevel) {
287                 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Thread));
288             }
289             else if (level == coreLevel) {
290                 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Core));
291             }
292             else if (level == pkgLevel) {
293                 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Package));
294             }
295             else if (level > pkgLevel) {
296                 __kmp_str_buf_print(&buf, "%s_%d ", KMP_I18N_STR(Node),
297                   level - pkgLevel - 1);
298             }
299             else {
300                 __kmp_str_buf_print(&buf, "L%d ", level);
301             }
302             __kmp_str_buf_print(&buf, "%d ",
303               address2os[proc].first.labels[level]);
304         }
305         KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", address2os[proc].second,
306           buf.str);
307         __kmp_str_buf_free(&buf);
308     }
309 }
310 
311 #if KMP_USE_HWLOC
312 static int
313 __kmp_affinity_create_hwloc_map(AddrUnsPair **address2os,
314   kmp_i18n_id_t *const msg_id)
315 {
316     *address2os = NULL;
317     *msg_id = kmp_i18n_null;
318 
319     //
320     // Save the affinity mask for the current thread.
321     //
322     kmp_affin_mask_t *oldMask;
323     KMP_CPU_ALLOC(oldMask);
324     __kmp_get_system_affinity(oldMask, TRUE);
325 
326     unsigned depth = hwloc_topology_get_depth(__kmp_hwloc_topology);
327     int threadLevel = hwloc_get_type_depth(__kmp_hwloc_topology, HWLOC_OBJ_PU);
328     int coreLevel = hwloc_get_type_depth(__kmp_hwloc_topology, HWLOC_OBJ_CORE);
329     int pkgLevel = hwloc_get_type_depth(__kmp_hwloc_topology, HWLOC_OBJ_SOCKET);
330     __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 0;
331 
332     //
333     // This makes an assumption about the topology being four levels:
334     // machines -> packages -> cores -> hardware threads
335     //
336     hwloc_obj_t current_level_iterator = hwloc_get_root_obj(__kmp_hwloc_topology);
337     hwloc_obj_t child_iterator;
338     for(child_iterator = hwloc_get_next_child(__kmp_hwloc_topology, current_level_iterator, NULL);
339         child_iterator != NULL;
340         child_iterator = hwloc_get_next_child(__kmp_hwloc_topology, current_level_iterator, child_iterator))
341     {
342         nPackages++;
343     }
344     current_level_iterator = hwloc_get_obj_by_depth(__kmp_hwloc_topology, pkgLevel, 0);
345     for(child_iterator = hwloc_get_next_child(__kmp_hwloc_topology, current_level_iterator, NULL);
346         child_iterator != NULL;
347         child_iterator = hwloc_get_next_child(__kmp_hwloc_topology, current_level_iterator, child_iterator))
348     {
349         nCoresPerPkg++;
350     }
351     current_level_iterator = hwloc_get_obj_by_depth(__kmp_hwloc_topology, coreLevel, 0);
352     for(child_iterator = hwloc_get_next_child(__kmp_hwloc_topology, current_level_iterator, NULL);
353         child_iterator != NULL;
354         child_iterator = hwloc_get_next_child(__kmp_hwloc_topology, current_level_iterator, child_iterator))
355     {
356         __kmp_nThreadsPerCore++;
357     }
358 
359     if (! KMP_AFFINITY_CAPABLE())
360     {
361         //
362         // Hack to try and infer the machine topology using only the data
363         // available from cpuid on the current thread, and __kmp_xproc.
364         //
365         KMP_ASSERT(__kmp_affinity_type == affinity_none);
366 
367         __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
368         nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
369         if (__kmp_affinity_verbose) {
370             KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY");
371             KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
372             if (__kmp_affinity_uniform_topology()) {
373                 KMP_INFORM(Uniform, "KMP_AFFINITY");
374             } else {
375                 KMP_INFORM(NonUniform, "KMP_AFFINITY");
376             }
377             KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
378               __kmp_nThreadsPerCore, __kmp_ncores);
379         }
380         return 0;
381     }
382 
383     //
384     // Allocate the data structure to be returned.
385     //
386     AddrUnsPair *retval = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc);
387 
388     unsigned num_hardware_threads = hwloc_get_nbobjs_by_depth(__kmp_hwloc_topology, threadLevel);
389     unsigned i;
390     hwloc_obj_t hardware_thread_iterator;
391     int nActiveThreads = 0;
392     for(i=0;i<num_hardware_threads;i++) {
393         hardware_thread_iterator = hwloc_get_obj_by_depth(__kmp_hwloc_topology, threadLevel, i);
394         Address addr(3);
395         if(! KMP_CPU_ISSET(i, fullMask)) continue;
396         addr.labels[0] = hardware_thread_iterator->parent->parent->logical_index;
397         addr.labels[1] = hardware_thread_iterator->parent->logical_index % nCoresPerPkg;
398         addr.labels[2] = hardware_thread_iterator->logical_index % __kmp_nThreadsPerCore;
399         retval[nActiveThreads] = AddrUnsPair(addr, hardware_thread_iterator->os_index);
400         nActiveThreads++;
401     }
402 
403     //
404     // If there's only one thread context to bind to, return now.
405     //
406     KMP_ASSERT(nActiveThreads > 0);
407     if (nActiveThreads == 1) {
408         __kmp_ncores = nPackages = 1;
409         __kmp_nThreadsPerCore = nCoresPerPkg = 1;
410         if (__kmp_affinity_verbose) {
411             char buf[KMP_AFFIN_MASK_PRINT_LEN];
412             __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
413 
414             KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
415             if (__kmp_affinity_respect_mask) {
416                 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
417             } else {
418                 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
419             }
420             KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
421             KMP_INFORM(Uniform, "KMP_AFFINITY");
422             KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
423               __kmp_nThreadsPerCore, __kmp_ncores);
424         }
425 
426         if (__kmp_affinity_type == affinity_none) {
427             __kmp_free(retval);
428             KMP_CPU_FREE(oldMask);
429             return 0;
430         }
431 
432         //
433         // Form an Address object which only includes the package level.
434         //
435         Address addr(1);
436         addr.labels[0] = retval[0].first.labels[pkgLevel-1];
437         retval[0].first = addr;
438 
439         if (__kmp_affinity_gran_levels < 0) {
440             __kmp_affinity_gran_levels = 0;
441         }
442 
443         if (__kmp_affinity_verbose) {
444             __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1);
445         }
446 
447         *address2os = retval;
448         KMP_CPU_FREE(oldMask);
449         return 1;
450     }
451 
452     //
453     // Sort the table by physical Id.
454     //
455     qsort(retval, nActiveThreads, sizeof(*retval), __kmp_affinity_cmp_Address_labels);
456 
457     //
458     // When affinity is off, this routine will still be called to set
459     // __kmp_ncores, as well as __kmp_nThreadsPerCore,
460     // nCoresPerPkg, & nPackages.  Make sure all these vars are set
461     // correctly, and return if affinity is not enabled.
462     //
463     __kmp_ncores = hwloc_get_nbobjs_by_depth(__kmp_hwloc_topology, coreLevel);
464 
465     //
466     // Check to see if the machine topology is uniform
467     //
468     unsigned npackages = hwloc_get_nbobjs_by_depth(__kmp_hwloc_topology, pkgLevel);
469     unsigned ncores = __kmp_ncores;
470     unsigned nthreads = hwloc_get_nbobjs_by_depth(__kmp_hwloc_topology, threadLevel);
471     unsigned uniform = (npackages * nCoresPerPkg * __kmp_nThreadsPerCore == nthreads);
472 
473     //
474     // Print the machine topology summary.
475     //
476     if (__kmp_affinity_verbose) {
477         char mask[KMP_AFFIN_MASK_PRINT_LEN];
478         __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
479 
480         KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
481         if (__kmp_affinity_respect_mask) {
482             KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask);
483         } else {
484             KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask);
485         }
486         KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
487         if (uniform) {
488             KMP_INFORM(Uniform, "KMP_AFFINITY");
489         } else {
490             KMP_INFORM(NonUniform, "KMP_AFFINITY");
491         }
492 
493         kmp_str_buf_t buf;
494         __kmp_str_buf_init(&buf);
495 
496         __kmp_str_buf_print(&buf, "%d", npackages);
497         //for (level = 1; level <= pkgLevel; level++) {
498         //    __kmp_str_buf_print(&buf, " x %d", maxCt[level]);
499        // }
500         KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg,
501           __kmp_nThreadsPerCore, __kmp_ncores);
502 
503         __kmp_str_buf_free(&buf);
504     }
505 
506     if (__kmp_affinity_type == affinity_none) {
507         KMP_CPU_FREE(oldMask);
508         return 0;
509     }
510 
511     //
512     // Find any levels with radiix 1, and remove them from the map
513     // (except for the package level).
514     //
515     int new_depth = 0;
516     int level;
517     unsigned proc;
518     for (level = 1; level < (int)depth; level++) {
519         if ((hwloc_get_nbobjs_by_depth(__kmp_hwloc_topology,level) == 1) && (level != pkgLevel)) {
520            continue;
521         }
522         new_depth++;
523     }
524 
525     //
526     // If we are removing any levels, allocate a new vector to return,
527     // and copy the relevant information to it.
528     //
529     if (new_depth != depth-1) {
530         AddrUnsPair *new_retval = (AddrUnsPair *)__kmp_allocate(
531           sizeof(AddrUnsPair) * nActiveThreads);
532         for (proc = 0; (int)proc < nActiveThreads; proc++) {
533             Address addr(new_depth);
534             new_retval[proc] = AddrUnsPair(addr, retval[proc].second);
535         }
536         int new_level = 0;
537         for (level = 1; level < (int)depth; level++) {
538             if ((hwloc_get_nbobjs_by_depth(__kmp_hwloc_topology,level) == 1) && (level != pkgLevel)) {
539                if (level == threadLevel) {
540                    threadLevel = -1;
541                }
542                else if ((threadLevel >= 0) && (level < threadLevel)) {
543                    threadLevel--;
544                }
545                if (level == coreLevel) {
546                    coreLevel = -1;
547                }
548                else if ((coreLevel >= 0) && (level < coreLevel)) {
549                    coreLevel--;
550                }
551                if (level < pkgLevel) {
552                    pkgLevel--;
553                }
554                continue;
555             }
556             for (proc = 0; (int)proc < nActiveThreads; proc++) {
557                 new_retval[proc].first.labels[new_level]
558                   = retval[proc].first.labels[level];
559             }
560             new_level++;
561         }
562 
563         __kmp_free(retval);
564         retval = new_retval;
565         depth = new_depth;
566     }
567 
568     if (__kmp_affinity_gran_levels < 0) {
569         //
570         // Set the granularity level based on what levels are modeled
571         // in the machine topology map.
572         //
573         __kmp_affinity_gran_levels = 0;
574         if ((threadLevel-1 >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) {
575             __kmp_affinity_gran_levels++;
576         }
577         if ((coreLevel-1 >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
578             __kmp_affinity_gran_levels++;
579         }
580         if (__kmp_affinity_gran > affinity_gran_package) {
581             __kmp_affinity_gran_levels++;
582         }
583     }
584 
585     if (__kmp_affinity_verbose) {
586         __kmp_affinity_print_topology(retval, nActiveThreads, depth-1, pkgLevel-1,
587           coreLevel-1, threadLevel-1);
588     }
589 
590     KMP_CPU_FREE(oldMask);
591     *address2os = retval;
592     if(depth == 0) return 0;
593     else return depth-1;
594 }
595 #endif // KMP_USE_HWLOC
596 
597 //
598 // If we don't know how to retrieve the machine's processor topology, or
599 // encounter an error in doing so, this routine is called to form a "flat"
600 // mapping of os thread id's <-> processor id's.
601 //
602 static int
603 __kmp_affinity_create_flat_map(AddrUnsPair **address2os,
604   kmp_i18n_id_t *const msg_id)
605 {
606     *address2os = NULL;
607     *msg_id = kmp_i18n_null;
608 
609     //
610     // Even if __kmp_affinity_type == affinity_none, this routine might still
611     // called to set __kmp_ncores, as well as
612     // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
613     //
614     if (! KMP_AFFINITY_CAPABLE()) {
615         KMP_ASSERT(__kmp_affinity_type == affinity_none);
616         __kmp_ncores = nPackages = __kmp_xproc;
617         __kmp_nThreadsPerCore = nCoresPerPkg = 1;
618         if (__kmp_affinity_verbose) {
619             KMP_INFORM(AffFlatTopology, "KMP_AFFINITY");
620             KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
621             KMP_INFORM(Uniform, "KMP_AFFINITY");
622             KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
623               __kmp_nThreadsPerCore, __kmp_ncores);
624         }
625         return 0;
626     }
627 
628     //
629     // When affinity is off, this routine will still be called to set
630     // __kmp_ncores, as well as __kmp_nThreadsPerCore,
631     // nCoresPerPkg, & nPackages.  Make sure all these vars are set
632     //  correctly, and return now if affinity is not enabled.
633     //
634     __kmp_ncores = nPackages = __kmp_avail_proc;
635     __kmp_nThreadsPerCore = nCoresPerPkg = 1;
636     if (__kmp_affinity_verbose) {
637         char buf[KMP_AFFIN_MASK_PRINT_LEN];
638         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, fullMask);
639 
640         KMP_INFORM(AffCapableUseFlat, "KMP_AFFINITY");
641         if (__kmp_affinity_respect_mask) {
642             KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
643         } else {
644             KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
645         }
646         KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
647         KMP_INFORM(Uniform, "KMP_AFFINITY");
648         KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
649           __kmp_nThreadsPerCore, __kmp_ncores);
650     }
651     if (__kmp_affinity_type == affinity_none) {
652         return 0;
653     }
654 
655     //
656     // Contruct the data structure to be returned.
657     //
658     *address2os = (AddrUnsPair*)
659       __kmp_allocate(sizeof(**address2os) * __kmp_avail_proc);
660     int avail_ct = 0;
661     unsigned int i;
662     KMP_CPU_SET_ITERATE(i, fullMask) {
663         //
664         // Skip this proc if it is not included in the machine model.
665         //
666         if (! KMP_CPU_ISSET(i, fullMask)) {
667             continue;
668         }
669 
670         Address addr(1);
671         addr.labels[0] = i;
672         (*address2os)[avail_ct++] = AddrUnsPair(addr,i);
673     }
674     if (__kmp_affinity_verbose) {
675         KMP_INFORM(OSProcToPackage, "KMP_AFFINITY");
676     }
677 
678     if (__kmp_affinity_gran_levels < 0) {
679         //
680         // Only the package level is modeled in the machine topology map,
681         // so the #levels of granularity is either 0 or 1.
682         //
683         if (__kmp_affinity_gran > affinity_gran_package) {
684             __kmp_affinity_gran_levels = 1;
685         }
686         else {
687             __kmp_affinity_gran_levels = 0;
688         }
689     }
690     return 1;
691 }
692 
693 
694 # if KMP_GROUP_AFFINITY
695 
696 //
697 // If multiple Windows* OS processor groups exist, we can create a 2-level
698 // topology map with the groups at level 0 and the individual procs at
699 // level 1.
700 //
701 // This facilitates letting the threads float among all procs in a group,
702 // if granularity=group (the default when there are multiple groups).
703 //
704 static int
705 __kmp_affinity_create_proc_group_map(AddrUnsPair **address2os,
706   kmp_i18n_id_t *const msg_id)
707 {
708     *address2os = NULL;
709     *msg_id = kmp_i18n_null;
710 
711     //
712     // If we don't have multiple processor groups, return now.
713     // The flat mapping will be used.
714     //
715     if ((! KMP_AFFINITY_CAPABLE()) || (__kmp_get_proc_group(fullMask) >= 0)) {
716         // FIXME set *msg_id
717         return -1;
718     }
719 
720     //
721     // Contruct the data structure to be returned.
722     //
723     *address2os = (AddrUnsPair*)
724       __kmp_allocate(sizeof(**address2os) * __kmp_avail_proc);
725     int avail_ct = 0;
726     int i;
727     KMP_CPU_SET_ITERATE(i, fullMask) {
728         //
729         // Skip this proc if it is not included in the machine model.
730         //
731         if (! KMP_CPU_ISSET(i, fullMask)) {
732             continue;
733         }
734 
735         Address addr(2);
736         addr.labels[0] = i / (CHAR_BIT * sizeof(DWORD_PTR));
737         addr.labels[1] = i % (CHAR_BIT * sizeof(DWORD_PTR));
738         (*address2os)[avail_ct++] = AddrUnsPair(addr,i);
739 
740         if (__kmp_affinity_verbose) {
741             KMP_INFORM(AffOSProcToGroup, "KMP_AFFINITY", i, addr.labels[0],
742               addr.labels[1]);
743         }
744     }
745 
746     if (__kmp_affinity_gran_levels < 0) {
747         if (__kmp_affinity_gran == affinity_gran_group) {
748             __kmp_affinity_gran_levels = 1;
749         }
750         else if ((__kmp_affinity_gran == affinity_gran_fine)
751           || (__kmp_affinity_gran == affinity_gran_thread)) {
752             __kmp_affinity_gran_levels = 0;
753         }
754         else {
755             const char *gran_str = NULL;
756             if (__kmp_affinity_gran == affinity_gran_core) {
757                 gran_str = "core";
758             }
759             else if (__kmp_affinity_gran == affinity_gran_package) {
760                 gran_str = "package";
761             }
762             else if (__kmp_affinity_gran == affinity_gran_node) {
763                 gran_str = "node";
764             }
765             else {
766                 KMP_ASSERT(0);
767             }
768 
769             // Warning: can't use affinity granularity \"gran\" with group topology method, using "thread"
770             __kmp_affinity_gran_levels = 0;
771         }
772     }
773     return 2;
774 }
775 
776 # endif /* KMP_GROUP_AFFINITY */
777 
778 
779 # if KMP_ARCH_X86 || KMP_ARCH_X86_64
780 
781 static int
782 __kmp_cpuid_mask_width(int count) {
783     int r = 0;
784 
785     while((1<<r) < count)
786         ++r;
787     return r;
788 }
789 
790 
791 class apicThreadInfo {
792 public:
793     unsigned osId;              // param to __kmp_affinity_bind_thread
794     unsigned apicId;            // from cpuid after binding
795     unsigned maxCoresPerPkg;    //      ""
796     unsigned maxThreadsPerPkg;  //      ""
797     unsigned pkgId;             // inferred from above values
798     unsigned coreId;            //      ""
799     unsigned threadId;          //      ""
800 };
801 
802 
803 static int
804 __kmp_affinity_cmp_apicThreadInfo_os_id(const void *a, const void *b)
805 {
806     const apicThreadInfo *aa = (const apicThreadInfo *)a;
807     const apicThreadInfo *bb = (const apicThreadInfo *)b;
808     if (aa->osId < bb->osId) return -1;
809     if (aa->osId > bb->osId) return 1;
810     return 0;
811 }
812 
813 
814 static int
815 __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a, const void *b)
816 {
817     const apicThreadInfo *aa = (const apicThreadInfo *)a;
818     const apicThreadInfo *bb = (const apicThreadInfo *)b;
819     if (aa->pkgId < bb->pkgId) return -1;
820     if (aa->pkgId > bb->pkgId) return 1;
821     if (aa->coreId < bb->coreId) return -1;
822     if (aa->coreId > bb->coreId) return 1;
823     if (aa->threadId < bb->threadId) return -1;
824     if (aa->threadId > bb->threadId) return 1;
825     return 0;
826 }
827 
828 
829 //
830 // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use
831 // an algorithm which cycles through the available os threads, setting
832 // the current thread's affinity mask to that thread, and then retrieves
833 // the Apic Id for each thread context using the cpuid instruction.
834 //
835 static int
836 __kmp_affinity_create_apicid_map(AddrUnsPair **address2os,
837   kmp_i18n_id_t *const msg_id)
838 {
839     kmp_cpuid buf;
840     int rc;
841     *address2os = NULL;
842     *msg_id = kmp_i18n_null;
843 
844     //
845     // Check if cpuid leaf 4 is supported.
846     //
847         __kmp_x86_cpuid(0, 0, &buf);
848         if (buf.eax < 4) {
849             *msg_id = kmp_i18n_str_NoLeaf4Support;
850             return -1;
851         }
852 
853     //
854     // The algorithm used starts by setting the affinity to each available
855     // thread and retrieving info from the cpuid instruction, so if we are
856     // not capable of calling __kmp_get_system_affinity() and
857     // _kmp_get_system_affinity(), then we need to do something else - use
858     // the defaults that we calculated from issuing cpuid without binding
859     // to each proc.
860     //
861     if (! KMP_AFFINITY_CAPABLE()) {
862         //
863         // Hack to try and infer the machine topology using only the data
864         // available from cpuid on the current thread, and __kmp_xproc.
865         //
866         KMP_ASSERT(__kmp_affinity_type == affinity_none);
867 
868         //
869         // Get an upper bound on the number of threads per package using
870         // cpuid(1).
871         //
872         // On some OS/chps combinations where HT is supported by the chip
873         // but is disabled, this value will be 2 on a single core chip.
874         // Usually, it will be 2 if HT is enabled and 1 if HT is disabled.
875         //
876         __kmp_x86_cpuid(1, 0, &buf);
877         int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
878         if (maxThreadsPerPkg == 0) {
879             maxThreadsPerPkg = 1;
880         }
881 
882         //
883         // The num cores per pkg comes from cpuid(4).
884         // 1 must be added to the encoded value.
885         //
886         // The author of cpu_count.cpp treated this only an upper bound
887         // on the number of cores, but I haven't seen any cases where it
888         // was greater than the actual number of cores, so we will treat
889         // it as exact in this block of code.
890         //
891         // First, we need to check if cpuid(4) is supported on this chip.
892         // To see if cpuid(n) is supported, issue cpuid(0) and check if eax
893         // has the value n or greater.
894         //
895         __kmp_x86_cpuid(0, 0, &buf);
896         if (buf.eax >= 4) {
897             __kmp_x86_cpuid(4, 0, &buf);
898             nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
899         }
900         else {
901             nCoresPerPkg = 1;
902         }
903 
904         //
905         // There is no way to reliably tell if HT is enabled without issuing
906         // the cpuid instruction from every thread, can correlating the cpuid
907         // info, so if the machine is not affinity capable, we assume that HT
908         // is off.  We have seen quite a few machines where maxThreadsPerPkg
909         // is 2, yet the machine does not support HT.
910         //
911         // - Older OSes are usually found on machines with older chips, which
912         //   do not support HT.
913         //
914         // - The performance penalty for mistakenly identifying a machine as
915         //   HT when it isn't (which results in blocktime being incorrecly set
916         //   to 0) is greater than the penalty when for mistakenly identifying
917         //   a machine as being 1 thread/core when it is really HT enabled
918         //   (which results in blocktime being incorrectly set to a positive
919         //   value).
920         //
921         __kmp_ncores = __kmp_xproc;
922         nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
923         __kmp_nThreadsPerCore = 1;
924         if (__kmp_affinity_verbose) {
925             KMP_INFORM(AffNotCapableUseLocCpuid, "KMP_AFFINITY");
926             KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
927             if (__kmp_affinity_uniform_topology()) {
928                 KMP_INFORM(Uniform, "KMP_AFFINITY");
929             } else {
930                 KMP_INFORM(NonUniform, "KMP_AFFINITY");
931             }
932             KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
933               __kmp_nThreadsPerCore, __kmp_ncores);
934         }
935         return 0;
936     }
937 
938     //
939     //
940     // From here on, we can assume that it is safe to call
941     // __kmp_get_system_affinity() and __kmp_set_system_affinity(),
942     // even if __kmp_affinity_type = affinity_none.
943     //
944 
945     //
946     // Save the affinity mask for the current thread.
947     //
948     kmp_affin_mask_t *oldMask;
949     KMP_CPU_ALLOC(oldMask);
950     KMP_ASSERT(oldMask != NULL);
951     __kmp_get_system_affinity(oldMask, TRUE);
952 
953     //
954     // Run through each of the available contexts, binding the current thread
955     // to it, and obtaining the pertinent information using the cpuid instr.
956     //
957     // The relevant information is:
958     //
959     // Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context
960     //    has a uniqie Apic Id, which is of the form pkg# : core# : thread#.
961     //
962     // Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1).  The
963     //    value of this field determines the width of the core# + thread#
964     //    fields in the Apic Id.  It is also an upper bound on the number
965     //    of threads per package, but it has been verified that situations
966     //    happen were it is not exact.  In particular, on certain OS/chip
967     //    combinations where Intel(R) Hyper-Threading Technology is supported
968     //    by the chip but has
969     //    been disabled, the value of this field will be 2 (for a single core
970     //    chip).  On other OS/chip combinations supporting
971     //    Intel(R) Hyper-Threading Technology, the value of
972     //    this field will be 1 when Intel(R) Hyper-Threading Technology is
973     //    disabled and 2 when it is enabled.
974     //
975     // Max Cores Per Pkg:  Bits 26:31 of eax after issuing cpuid(4).  The
976     //    value of this field (+1) determines the width of the core# field in
977     //    the Apic Id.  The comments in "cpucount.cpp" say that this value is
978     //    an upper bound, but the IA-32 architecture manual says that it is
979     //    exactly the number of cores per package, and I haven't seen any
980     //    case where it wasn't.
981     //
982     // From this information, deduce the package Id, core Id, and thread Id,
983     // and set the corresponding fields in the apicThreadInfo struct.
984     //
985     unsigned i;
986     apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate(
987       __kmp_avail_proc * sizeof(apicThreadInfo));
988     unsigned nApics = 0;
989     KMP_CPU_SET_ITERATE(i, fullMask) {
990         //
991         // Skip this proc if it is not included in the machine model.
992         //
993         if (! KMP_CPU_ISSET(i, fullMask)) {
994             continue;
995         }
996         KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc);
997 
998         __kmp_affinity_bind_thread(i);
999         threadInfo[nApics].osId = i;
1000 
1001         //
1002         // The apic id and max threads per pkg come from cpuid(1).
1003         //
1004         __kmp_x86_cpuid(1, 0, &buf);
1005         if (! (buf.edx >> 9) & 1) {
1006             __kmp_set_system_affinity(oldMask, TRUE);
1007             __kmp_free(threadInfo);
1008             KMP_CPU_FREE(oldMask);
1009             *msg_id = kmp_i18n_str_ApicNotPresent;
1010             return -1;
1011         }
1012         threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff;
1013         threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
1014         if (threadInfo[nApics].maxThreadsPerPkg == 0) {
1015             threadInfo[nApics].maxThreadsPerPkg = 1;
1016         }
1017 
1018         //
1019         // Max cores per pkg comes from cpuid(4).
1020         // 1 must be added to the encoded value.
1021         //
1022         // First, we need to check if cpuid(4) is supported on this chip.
1023         // To see if cpuid(n) is supported, issue cpuid(0) and check if eax
1024         // has the value n or greater.
1025         //
1026         __kmp_x86_cpuid(0, 0, &buf);
1027         if (buf.eax >= 4) {
1028             __kmp_x86_cpuid(4, 0, &buf);
1029             threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
1030         }
1031         else {
1032             threadInfo[nApics].maxCoresPerPkg = 1;
1033         }
1034 
1035         //
1036         // Infer the pkgId / coreId / threadId using only the info
1037         // obtained locally.
1038         //
1039         int widthCT = __kmp_cpuid_mask_width(
1040           threadInfo[nApics].maxThreadsPerPkg);
1041         threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT;
1042 
1043         int widthC = __kmp_cpuid_mask_width(
1044           threadInfo[nApics].maxCoresPerPkg);
1045         int widthT = widthCT - widthC;
1046         if (widthT < 0) {
1047             //
1048             // I've never seen this one happen, but I suppose it could, if
1049             // the cpuid instruction on a chip was really screwed up.
1050             // Make sure to restore the affinity mask before the tail call.
1051             //
1052             __kmp_set_system_affinity(oldMask, TRUE);
1053             __kmp_free(threadInfo);
1054             KMP_CPU_FREE(oldMask);
1055             *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1056             return -1;
1057         }
1058 
1059         int maskC = (1 << widthC) - 1;
1060         threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT)
1061           &maskC;
1062 
1063         int maskT = (1 << widthT) - 1;
1064         threadInfo[nApics].threadId = threadInfo[nApics].apicId &maskT;
1065 
1066         nApics++;
1067     }
1068 
1069     //
1070     // We've collected all the info we need.
1071     // Restore the old affinity mask for this thread.
1072     //
1073     __kmp_set_system_affinity(oldMask, TRUE);
1074 
1075     //
1076     // If there's only one thread context to bind to, form an Address object
1077     // with depth 1 and return immediately (or, if affinity is off, set
1078     // address2os to NULL and return).
1079     //
1080     // If it is configured to omit the package level when there is only a
1081     // single package, the logic at the end of this routine won't work if
1082     // there is only a single thread - it would try to form an Address
1083     // object with depth 0.
1084     //
1085     KMP_ASSERT(nApics > 0);
1086     if (nApics == 1) {
1087         __kmp_ncores = nPackages = 1;
1088         __kmp_nThreadsPerCore = nCoresPerPkg = 1;
1089         if (__kmp_affinity_verbose) {
1090             char buf[KMP_AFFIN_MASK_PRINT_LEN];
1091             __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
1092 
1093             KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY");
1094             if (__kmp_affinity_respect_mask) {
1095                 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
1096             } else {
1097                 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
1098             }
1099             KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1100             KMP_INFORM(Uniform, "KMP_AFFINITY");
1101             KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1102               __kmp_nThreadsPerCore, __kmp_ncores);
1103         }
1104 
1105         if (__kmp_affinity_type == affinity_none) {
1106             __kmp_free(threadInfo);
1107             KMP_CPU_FREE(oldMask);
1108             return 0;
1109         }
1110 
1111         *address2os = (AddrUnsPair*)__kmp_allocate(sizeof(AddrUnsPair));
1112         Address addr(1);
1113         addr.labels[0] = threadInfo[0].pkgId;
1114         (*address2os)[0] = AddrUnsPair(addr, threadInfo[0].osId);
1115 
1116         if (__kmp_affinity_gran_levels < 0) {
1117             __kmp_affinity_gran_levels = 0;
1118         }
1119 
1120         if (__kmp_affinity_verbose) {
1121             __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1);
1122         }
1123 
1124         __kmp_free(threadInfo);
1125         KMP_CPU_FREE(oldMask);
1126         return 1;
1127     }
1128 
1129     //
1130     // Sort the threadInfo table by physical Id.
1131     //
1132     qsort(threadInfo, nApics, sizeof(*threadInfo),
1133       __kmp_affinity_cmp_apicThreadInfo_phys_id);
1134 
1135     //
1136     // The table is now sorted by pkgId / coreId / threadId, but we really
1137     // don't know the radix of any of the fields.  pkgId's may be sparsely
1138     // assigned among the chips on a system.  Although coreId's are usually
1139     // assigned [0 .. coresPerPkg-1] and threadId's are usually assigned
1140     // [0..threadsPerCore-1], we don't want to make any such assumptions.
1141     //
1142     // For that matter, we don't know what coresPerPkg and threadsPerCore
1143     // (or the total # packages) are at this point - we want to determine
1144     // that now.  We only have an upper bound on the first two figures.
1145     //
1146     // We also perform a consistency check at this point: the values returned
1147     // by the cpuid instruction for any thread bound to a given package had
1148     // better return the same info for maxThreadsPerPkg and maxCoresPerPkg.
1149     //
1150     nPackages = 1;
1151     nCoresPerPkg = 1;
1152     __kmp_nThreadsPerCore = 1;
1153     unsigned nCores = 1;
1154 
1155     unsigned pkgCt = 1;                         // to determine radii
1156     unsigned lastPkgId = threadInfo[0].pkgId;
1157     unsigned coreCt = 1;
1158     unsigned lastCoreId = threadInfo[0].coreId;
1159     unsigned threadCt = 1;
1160     unsigned lastThreadId = threadInfo[0].threadId;
1161 
1162                                                 // intra-pkg consist checks
1163     unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg;
1164     unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg;
1165 
1166     for (i = 1; i < nApics; i++) {
1167         if (threadInfo[i].pkgId != lastPkgId) {
1168             nCores++;
1169             pkgCt++;
1170             lastPkgId = threadInfo[i].pkgId;
1171             if ((int)coreCt > nCoresPerPkg) nCoresPerPkg = coreCt;
1172             coreCt = 1;
1173             lastCoreId = threadInfo[i].coreId;
1174             if ((int)threadCt > __kmp_nThreadsPerCore) __kmp_nThreadsPerCore = threadCt;
1175             threadCt = 1;
1176             lastThreadId = threadInfo[i].threadId;
1177 
1178             //
1179             // This is a different package, so go on to the next iteration
1180             // without doing any consistency checks.  Reset the consistency
1181             // check vars, though.
1182             //
1183             prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg;
1184             prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg;
1185             continue;
1186         }
1187 
1188         if (threadInfo[i].coreId != lastCoreId) {
1189             nCores++;
1190             coreCt++;
1191             lastCoreId = threadInfo[i].coreId;
1192             if ((int)threadCt > __kmp_nThreadsPerCore) __kmp_nThreadsPerCore = threadCt;
1193             threadCt = 1;
1194             lastThreadId = threadInfo[i].threadId;
1195         }
1196         else if (threadInfo[i].threadId != lastThreadId) {
1197             threadCt++;
1198             lastThreadId = threadInfo[i].threadId;
1199         }
1200         else {
1201             __kmp_free(threadInfo);
1202             KMP_CPU_FREE(oldMask);
1203             *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
1204             return -1;
1205         }
1206 
1207         //
1208         // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg
1209         // fields agree between all the threads bounds to a given package.
1210         //
1211         if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg)
1212           || (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) {
1213             __kmp_free(threadInfo);
1214             KMP_CPU_FREE(oldMask);
1215             *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
1216             return -1;
1217         }
1218     }
1219     nPackages = pkgCt;
1220     if ((int)coreCt > nCoresPerPkg) nCoresPerPkg = coreCt;
1221     if ((int)threadCt > __kmp_nThreadsPerCore) __kmp_nThreadsPerCore = threadCt;
1222 
1223     //
1224     // When affinity is off, this routine will still be called to set
1225     // __kmp_ncores, as well as __kmp_nThreadsPerCore,
1226     // nCoresPerPkg, & nPackages.  Make sure all these vars are set
1227     // correctly, and return now if affinity is not enabled.
1228     //
1229     __kmp_ncores = nCores;
1230     if (__kmp_affinity_verbose) {
1231         char buf[KMP_AFFIN_MASK_PRINT_LEN];
1232         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
1233 
1234         KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY");
1235         if (__kmp_affinity_respect_mask) {
1236             KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
1237         } else {
1238             KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
1239         }
1240         KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1241         if (__kmp_affinity_uniform_topology()) {
1242             KMP_INFORM(Uniform, "KMP_AFFINITY");
1243         } else {
1244             KMP_INFORM(NonUniform, "KMP_AFFINITY");
1245         }
1246         KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1247           __kmp_nThreadsPerCore, __kmp_ncores);
1248 
1249     }
1250 
1251     if (__kmp_affinity_type == affinity_none) {
1252         __kmp_free(threadInfo);
1253         KMP_CPU_FREE(oldMask);
1254         return 0;
1255     }
1256 
1257     //
1258     // Now that we've determined the number of packages, the number of cores
1259     // per package, and the number of threads per core, we can construct the
1260     // data structure that is to be returned.
1261     //
1262     int pkgLevel = 0;
1263     int coreLevel = (nCoresPerPkg <= 1) ? -1 : 1;
1264     int threadLevel = (__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1);
1265     unsigned depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0);
1266 
1267     KMP_ASSERT(depth > 0);
1268     *address2os = (AddrUnsPair*)__kmp_allocate(sizeof(AddrUnsPair) * nApics);
1269 
1270     for (i = 0; i < nApics; ++i) {
1271         Address addr(depth);
1272         unsigned os = threadInfo[i].osId;
1273         int d = 0;
1274 
1275         if (pkgLevel >= 0) {
1276             addr.labels[d++] = threadInfo[i].pkgId;
1277         }
1278         if (coreLevel >= 0) {
1279             addr.labels[d++] = threadInfo[i].coreId;
1280         }
1281         if (threadLevel >= 0) {
1282             addr.labels[d++] = threadInfo[i].threadId;
1283         }
1284         (*address2os)[i] = AddrUnsPair(addr, os);
1285     }
1286 
1287     if (__kmp_affinity_gran_levels < 0) {
1288         //
1289         // Set the granularity level based on what levels are modeled
1290         // in the machine topology map.
1291         //
1292         __kmp_affinity_gran_levels = 0;
1293         if ((threadLevel >= 0)
1294           && (__kmp_affinity_gran > affinity_gran_thread)) {
1295             __kmp_affinity_gran_levels++;
1296         }
1297         if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
1298             __kmp_affinity_gran_levels++;
1299         }
1300         if ((pkgLevel >= 0) && (__kmp_affinity_gran > affinity_gran_package)) {
1301             __kmp_affinity_gran_levels++;
1302         }
1303     }
1304 
1305     if (__kmp_affinity_verbose) {
1306         __kmp_affinity_print_topology(*address2os, nApics, depth, pkgLevel,
1307           coreLevel, threadLevel);
1308     }
1309 
1310     __kmp_free(threadInfo);
1311     KMP_CPU_FREE(oldMask);
1312     return depth;
1313 }
1314 
1315 
1316 //
1317 // Intel(R) microarchitecture code name Nehalem, Dunnington and later
1318 // architectures support a newer interface for specifying the x2APIC Ids,
1319 // based on cpuid leaf 11.
1320 //
1321 static int
1322 __kmp_affinity_create_x2apicid_map(AddrUnsPair **address2os,
1323   kmp_i18n_id_t *const msg_id)
1324 {
1325     kmp_cpuid buf;
1326 
1327     *address2os = NULL;
1328     *msg_id = kmp_i18n_null;
1329 
1330     //
1331     // Check to see if cpuid leaf 11 is supported.
1332     //
1333     __kmp_x86_cpuid(0, 0, &buf);
1334     if (buf.eax < 11) {
1335         *msg_id = kmp_i18n_str_NoLeaf11Support;
1336         return -1;
1337     }
1338     __kmp_x86_cpuid(11, 0, &buf);
1339     if (buf.ebx == 0) {
1340         *msg_id = kmp_i18n_str_NoLeaf11Support;
1341         return -1;
1342     }
1343 
1344     //
1345     // Find the number of levels in the machine topology.  While we're at it,
1346     // get the default values for __kmp_nThreadsPerCore & nCoresPerPkg.  We will
1347     // try to get more accurate values later by explicitly counting them,
1348     // but get reasonable defaults now, in case we return early.
1349     //
1350     int level;
1351     int threadLevel = -1;
1352     int coreLevel = -1;
1353     int pkgLevel = -1;
1354     __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
1355 
1356     for (level = 0;; level++) {
1357         if (level > 31) {
1358             //
1359             // FIXME: Hack for DPD200163180
1360             //
1361             // If level is big then something went wrong -> exiting
1362             //
1363             // There could actually be 32 valid levels in the machine topology,
1364             // but so far, the only machine we have seen which does not exit
1365             // this loop before iteration 32 has fubar x2APIC settings.
1366             //
1367             // For now, just reject this case based upon loop trip count.
1368             //
1369             *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1370             return -1;
1371         }
1372         __kmp_x86_cpuid(11, level, &buf);
1373         if (buf.ebx == 0) {
1374             if (pkgLevel < 0) {
1375                 //
1376                 // Will infer nPackages from __kmp_xproc
1377                 //
1378                 pkgLevel = level;
1379                 level++;
1380             }
1381             break;
1382         }
1383         int kind = (buf.ecx >> 8) & 0xff;
1384         if (kind == 1) {
1385             //
1386             // SMT level
1387             //
1388             threadLevel = level;
1389             coreLevel = -1;
1390             pkgLevel = -1;
1391             __kmp_nThreadsPerCore = buf.ebx & 0xff;
1392             if (__kmp_nThreadsPerCore == 0) {
1393                 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1394                 return -1;
1395             }
1396         }
1397         else if (kind == 2) {
1398             //
1399             // core level
1400             //
1401             coreLevel = level;
1402             pkgLevel = -1;
1403             nCoresPerPkg = buf.ebx & 0xff;
1404             if (nCoresPerPkg == 0) {
1405                 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1406                 return -1;
1407             }
1408         }
1409         else {
1410             if (level <= 0) {
1411                 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1412                 return -1;
1413             }
1414             if (pkgLevel >= 0) {
1415                 continue;
1416             }
1417             pkgLevel = level;
1418             nPackages = buf.ebx & 0xff;
1419             if (nPackages == 0) {
1420                 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1421                 return -1;
1422             }
1423         }
1424     }
1425     int depth = level;
1426 
1427     //
1428     // In the above loop, "level" was counted from the finest level (usually
1429     // thread) to the coarsest.  The caller expects that we will place the
1430     // labels in (*address2os)[].first.labels[] in the inverse order, so
1431     // we need to invert the vars saying which level means what.
1432     //
1433     if (threadLevel >= 0) {
1434         threadLevel = depth - threadLevel - 1;
1435     }
1436     if (coreLevel >= 0) {
1437         coreLevel = depth - coreLevel - 1;
1438     }
1439     KMP_DEBUG_ASSERT(pkgLevel >= 0);
1440     pkgLevel = depth - pkgLevel - 1;
1441 
1442     //
1443     // The algorithm used starts by setting the affinity to each available
1444     // thread and retrieving info from the cpuid instruction, so if we are
1445     // not capable of calling __kmp_get_system_affinity() and
1446     // _kmp_get_system_affinity(), then we need to do something else - use
1447     // the defaults that we calculated from issuing cpuid without binding
1448     // to each proc.
1449     //
1450     if (! KMP_AFFINITY_CAPABLE())
1451     {
1452         //
1453         // Hack to try and infer the machine topology using only the data
1454         // available from cpuid on the current thread, and __kmp_xproc.
1455         //
1456         KMP_ASSERT(__kmp_affinity_type == affinity_none);
1457 
1458         __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
1459         nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
1460         if (__kmp_affinity_verbose) {
1461             KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY");
1462             KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1463             if (__kmp_affinity_uniform_topology()) {
1464                 KMP_INFORM(Uniform, "KMP_AFFINITY");
1465             } else {
1466                 KMP_INFORM(NonUniform, "KMP_AFFINITY");
1467             }
1468             KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1469               __kmp_nThreadsPerCore, __kmp_ncores);
1470         }
1471         return 0;
1472     }
1473 
1474     //
1475     //
1476     // From here on, we can assume that it is safe to call
1477     // __kmp_get_system_affinity() and __kmp_set_system_affinity(),
1478     // even if __kmp_affinity_type = affinity_none.
1479     //
1480 
1481     //
1482     // Save the affinity mask for the current thread.
1483     //
1484     kmp_affin_mask_t *oldMask;
1485     KMP_CPU_ALLOC(oldMask);
1486     __kmp_get_system_affinity(oldMask, TRUE);
1487 
1488     //
1489     // Allocate the data structure to be returned.
1490     //
1491     AddrUnsPair *retval = (AddrUnsPair *)
1492       __kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc);
1493 
1494     //
1495     // Run through each of the available contexts, binding the current thread
1496     // to it, and obtaining the pertinent information using the cpuid instr.
1497     //
1498     unsigned int proc;
1499     int nApics = 0;
1500     KMP_CPU_SET_ITERATE(proc, fullMask) {
1501         //
1502         // Skip this proc if it is not included in the machine model.
1503         //
1504         if (! KMP_CPU_ISSET(proc, fullMask)) {
1505             continue;
1506         }
1507         KMP_DEBUG_ASSERT(nApics < __kmp_avail_proc);
1508 
1509         __kmp_affinity_bind_thread(proc);
1510 
1511         //
1512         // Extrach the labels for each level in the machine topology map
1513         // from the Apic ID.
1514         //
1515         Address addr(depth);
1516         int prev_shift = 0;
1517 
1518         for (level = 0; level < depth; level++) {
1519             __kmp_x86_cpuid(11, level, &buf);
1520             unsigned apicId = buf.edx;
1521             if (buf.ebx == 0) {
1522                 if (level != depth - 1) {
1523                     KMP_CPU_FREE(oldMask);
1524                     *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
1525                     return -1;
1526                 }
1527                 addr.labels[depth - level - 1] = apicId >> prev_shift;
1528                 level++;
1529                 break;
1530             }
1531             int shift = buf.eax & 0x1f;
1532             int mask = (1 << shift) - 1;
1533             addr.labels[depth - level - 1] = (apicId & mask) >> prev_shift;
1534             prev_shift = shift;
1535         }
1536         if (level != depth) {
1537             KMP_CPU_FREE(oldMask);
1538             *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
1539             return -1;
1540         }
1541 
1542         retval[nApics] = AddrUnsPair(addr, proc);
1543         nApics++;
1544     }
1545 
1546     //
1547     // We've collected all the info we need.
1548     // Restore the old affinity mask for this thread.
1549     //
1550     __kmp_set_system_affinity(oldMask, TRUE);
1551 
1552     //
1553     // If there's only one thread context to bind to, return now.
1554     //
1555     KMP_ASSERT(nApics > 0);
1556     if (nApics == 1) {
1557         __kmp_ncores = nPackages = 1;
1558         __kmp_nThreadsPerCore = nCoresPerPkg = 1;
1559         if (__kmp_affinity_verbose) {
1560             char buf[KMP_AFFIN_MASK_PRINT_LEN];
1561             __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
1562 
1563             KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY");
1564             if (__kmp_affinity_respect_mask) {
1565                 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
1566             } else {
1567                 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
1568             }
1569             KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1570             KMP_INFORM(Uniform, "KMP_AFFINITY");
1571             KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1572               __kmp_nThreadsPerCore, __kmp_ncores);
1573         }
1574 
1575         if (__kmp_affinity_type == affinity_none) {
1576             __kmp_free(retval);
1577             KMP_CPU_FREE(oldMask);
1578             return 0;
1579         }
1580 
1581         //
1582         // Form an Address object which only includes the package level.
1583         //
1584         Address addr(1);
1585         addr.labels[0] = retval[0].first.labels[pkgLevel];
1586         retval[0].first = addr;
1587 
1588         if (__kmp_affinity_gran_levels < 0) {
1589             __kmp_affinity_gran_levels = 0;
1590         }
1591 
1592         if (__kmp_affinity_verbose) {
1593             __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1);
1594         }
1595 
1596         *address2os = retval;
1597         KMP_CPU_FREE(oldMask);
1598         return 1;
1599     }
1600 
1601     //
1602     // Sort the table by physical Id.
1603     //
1604     qsort(retval, nApics, sizeof(*retval), __kmp_affinity_cmp_Address_labels);
1605 
1606     //
1607     // Find the radix at each of the levels.
1608     //
1609     unsigned *totals = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1610     unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1611     unsigned *maxCt = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1612     unsigned *last = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1613     for (level = 0; level < depth; level++) {
1614         totals[level] = 1;
1615         maxCt[level] = 1;
1616         counts[level] = 1;
1617         last[level] = retval[0].first.labels[level];
1618     }
1619 
1620     //
1621     // From here on, the iteration variable "level" runs from the finest
1622     // level to the coarsest, i.e. we iterate forward through
1623     // (*address2os)[].first.labels[] - in the previous loops, we iterated
1624     // backwards.
1625     //
1626     for (proc = 1; (int)proc < nApics; proc++) {
1627         int level;
1628         for (level = 0; level < depth; level++) {
1629             if (retval[proc].first.labels[level] != last[level]) {
1630                 int j;
1631                 for (j = level + 1; j < depth; j++) {
1632                     totals[j]++;
1633                     counts[j] = 1;
1634                     // The line below causes printing incorrect topology information
1635                     // in case the max value for some level (maxCt[level]) is encountered earlier than
1636                     // some less value while going through the array.
1637                     // For example, let pkg0 has 4 cores and pkg1 has 2 cores. Then maxCt[1] == 2
1638                     // whereas it must be 4.
1639                     // TODO!!! Check if it can be commented safely
1640                     //maxCt[j] = 1;
1641                     last[j] = retval[proc].first.labels[j];
1642                 }
1643                 totals[level]++;
1644                 counts[level]++;
1645                 if (counts[level] > maxCt[level]) {
1646                     maxCt[level] = counts[level];
1647                 }
1648                 last[level] = retval[proc].first.labels[level];
1649                 break;
1650             }
1651             else if (level == depth - 1) {
1652                 __kmp_free(last);
1653                 __kmp_free(maxCt);
1654                 __kmp_free(counts);
1655                 __kmp_free(totals);
1656                 __kmp_free(retval);
1657                 KMP_CPU_FREE(oldMask);
1658                 *msg_id = kmp_i18n_str_x2ApicIDsNotUnique;
1659                 return -1;
1660             }
1661         }
1662     }
1663 
1664     //
1665     // When affinity is off, this routine will still be called to set
1666     // __kmp_ncores, as well as __kmp_nThreadsPerCore,
1667     // nCoresPerPkg, & nPackages.  Make sure all these vars are set
1668     // correctly, and return if affinity is not enabled.
1669     //
1670     if (threadLevel >= 0) {
1671         __kmp_nThreadsPerCore = maxCt[threadLevel];
1672     }
1673     else {
1674         __kmp_nThreadsPerCore = 1;
1675     }
1676     nPackages = totals[pkgLevel];
1677 
1678     if (coreLevel >= 0) {
1679         __kmp_ncores = totals[coreLevel];
1680         nCoresPerPkg = maxCt[coreLevel];
1681     }
1682     else {
1683         __kmp_ncores = nPackages;
1684         nCoresPerPkg = 1;
1685     }
1686 
1687     //
1688     // Check to see if the machine topology is uniform
1689     //
1690     unsigned prod = maxCt[0];
1691     for (level = 1; level < depth; level++) {
1692        prod *= maxCt[level];
1693     }
1694     bool uniform = (prod == totals[level - 1]);
1695 
1696     //
1697     // Print the machine topology summary.
1698     //
1699     if (__kmp_affinity_verbose) {
1700         char mask[KMP_AFFIN_MASK_PRINT_LEN];
1701         __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
1702 
1703         KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY");
1704         if (__kmp_affinity_respect_mask) {
1705             KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask);
1706         } else {
1707             KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask);
1708         }
1709         KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1710         if (uniform) {
1711             KMP_INFORM(Uniform, "KMP_AFFINITY");
1712         } else {
1713             KMP_INFORM(NonUniform, "KMP_AFFINITY");
1714         }
1715 
1716         kmp_str_buf_t buf;
1717         __kmp_str_buf_init(&buf);
1718 
1719         __kmp_str_buf_print(&buf, "%d", totals[0]);
1720         for (level = 1; level <= pkgLevel; level++) {
1721             __kmp_str_buf_print(&buf, " x %d", maxCt[level]);
1722         }
1723         KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg,
1724           __kmp_nThreadsPerCore, __kmp_ncores);
1725 
1726         __kmp_str_buf_free(&buf);
1727     }
1728 
1729     if (__kmp_affinity_type == affinity_none) {
1730         __kmp_free(last);
1731         __kmp_free(maxCt);
1732         __kmp_free(counts);
1733         __kmp_free(totals);
1734         __kmp_free(retval);
1735         KMP_CPU_FREE(oldMask);
1736         return 0;
1737     }
1738 
1739     //
1740     // Find any levels with radiix 1, and remove them from the map
1741     // (except for the package level).
1742     //
1743     int new_depth = 0;
1744     for (level = 0; level < depth; level++) {
1745         if ((maxCt[level] == 1) && (level != pkgLevel)) {
1746            continue;
1747         }
1748         new_depth++;
1749     }
1750 
1751     //
1752     // If we are removing any levels, allocate a new vector to return,
1753     // and copy the relevant information to it.
1754     //
1755     if (new_depth != depth) {
1756         AddrUnsPair *new_retval = (AddrUnsPair *)__kmp_allocate(
1757           sizeof(AddrUnsPair) * nApics);
1758         for (proc = 0; (int)proc < nApics; proc++) {
1759             Address addr(new_depth);
1760             new_retval[proc] = AddrUnsPair(addr, retval[proc].second);
1761         }
1762         int new_level = 0;
1763         int newPkgLevel = -1;
1764         int newCoreLevel = -1;
1765         int newThreadLevel = -1;
1766         int i;
1767         for (level = 0; level < depth; level++) {
1768             if ((maxCt[level] == 1)
1769               && (level != pkgLevel)) {
1770                 //
1771                 // Remove this level. Never remove the package level
1772                 //
1773                 continue;
1774             }
1775             if (level == pkgLevel) {
1776                 newPkgLevel = level;
1777             }
1778             if (level == coreLevel) {
1779                 newCoreLevel = level;
1780             }
1781             if (level == threadLevel) {
1782                 newThreadLevel = level;
1783             }
1784             for (proc = 0; (int)proc < nApics; proc++) {
1785                 new_retval[proc].first.labels[new_level]
1786                   = retval[proc].first.labels[level];
1787             }
1788             new_level++;
1789         }
1790 
1791         __kmp_free(retval);
1792         retval = new_retval;
1793         depth = new_depth;
1794         pkgLevel = newPkgLevel;
1795         coreLevel = newCoreLevel;
1796         threadLevel = newThreadLevel;
1797     }
1798 
1799     if (__kmp_affinity_gran_levels < 0) {
1800         //
1801         // Set the granularity level based on what levels are modeled
1802         // in the machine topology map.
1803         //
1804         __kmp_affinity_gran_levels = 0;
1805         if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) {
1806             __kmp_affinity_gran_levels++;
1807         }
1808         if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
1809             __kmp_affinity_gran_levels++;
1810         }
1811         if (__kmp_affinity_gran > affinity_gran_package) {
1812             __kmp_affinity_gran_levels++;
1813         }
1814     }
1815 
1816     if (__kmp_affinity_verbose) {
1817         __kmp_affinity_print_topology(retval, nApics, depth, pkgLevel,
1818           coreLevel, threadLevel);
1819     }
1820 
1821     __kmp_free(last);
1822     __kmp_free(maxCt);
1823     __kmp_free(counts);
1824     __kmp_free(totals);
1825     KMP_CPU_FREE(oldMask);
1826     *address2os = retval;
1827     return depth;
1828 }
1829 
1830 
1831 # endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1832 
1833 
1834 #define osIdIndex       0
1835 #define threadIdIndex   1
1836 #define coreIdIndex     2
1837 #define pkgIdIndex      3
1838 #define nodeIdIndex     4
1839 
1840 typedef unsigned *ProcCpuInfo;
1841 static unsigned maxIndex = pkgIdIndex;
1842 
1843 
1844 static int
1845 __kmp_affinity_cmp_ProcCpuInfo_os_id(const void *a, const void *b)
1846 {
1847     const unsigned *aa = (const unsigned *)a;
1848     const unsigned *bb = (const unsigned *)b;
1849     if (aa[osIdIndex] < bb[osIdIndex]) return -1;
1850     if (aa[osIdIndex] > bb[osIdIndex]) return 1;
1851     return 0;
1852 };
1853 
1854 
1855 static int
1856 __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a, const void *b)
1857 {
1858     unsigned i;
1859     const unsigned *aa = *((const unsigned **)a);
1860     const unsigned *bb = *((const unsigned **)b);
1861     for (i = maxIndex; ; i--) {
1862         if (aa[i] < bb[i]) return -1;
1863         if (aa[i] > bb[i]) return 1;
1864         if (i == osIdIndex) break;
1865     }
1866     return 0;
1867 }
1868 
1869 
1870 //
1871 // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the
1872 // affinity map.
1873 //
1874 static int
1875 __kmp_affinity_create_cpuinfo_map(AddrUnsPair **address2os, int *line,
1876   kmp_i18n_id_t *const msg_id, FILE *f)
1877 {
1878     *address2os = NULL;
1879     *msg_id = kmp_i18n_null;
1880 
1881     //
1882     // Scan of the file, and count the number of "processor" (osId) fields,
1883     // and find the highest value of <n> for a node_<n> field.
1884     //
1885     char buf[256];
1886     unsigned num_records = 0;
1887     while (! feof(f)) {
1888         buf[sizeof(buf) - 1] = 1;
1889         if (! fgets(buf, sizeof(buf), f)) {
1890             //
1891             // Read errors presumably because of EOF
1892             //
1893             break;
1894         }
1895 
1896         char s1[] = "processor";
1897         if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
1898             num_records++;
1899             continue;
1900         }
1901 
1902         //
1903         // FIXME - this will match "node_<n> <garbage>"
1904         //
1905         unsigned level;
1906         if (KMP_SSCANF(buf, "node_%d id", &level) == 1) {
1907             if (nodeIdIndex + level >= maxIndex) {
1908                 maxIndex = nodeIdIndex + level;
1909             }
1910             continue;
1911         }
1912     }
1913 
1914     //
1915     // Check for empty file / no valid processor records, or too many.
1916     // The number of records can't exceed the number of valid bits in the
1917     // affinity mask.
1918     //
1919     if (num_records == 0) {
1920         *line = 0;
1921         *msg_id = kmp_i18n_str_NoProcRecords;
1922         return -1;
1923     }
1924     if (num_records > (unsigned)__kmp_xproc) {
1925         *line = 0;
1926         *msg_id = kmp_i18n_str_TooManyProcRecords;
1927         return -1;
1928     }
1929 
1930     //
1931     // Set the file pointer back to the begginning, so that we can scan the
1932     // file again, this time performing a full parse of the data.
1933     // Allocate a vector of ProcCpuInfo object, where we will place the data.
1934     // Adding an extra element at the end allows us to remove a lot of extra
1935     // checks for termination conditions.
1936     //
1937     if (fseek(f, 0, SEEK_SET) != 0) {
1938         *line = 0;
1939         *msg_id = kmp_i18n_str_CantRewindCpuinfo;
1940         return -1;
1941     }
1942 
1943     //
1944     // Allocate the array of records to store the proc info in.  The dummy
1945     // element at the end makes the logic in filling them out easier to code.
1946     //
1947     unsigned **threadInfo = (unsigned **)__kmp_allocate((num_records + 1)
1948       * sizeof(unsigned *));
1949     unsigned i;
1950     for (i = 0; i <= num_records; i++) {
1951         threadInfo[i] = (unsigned *)__kmp_allocate((maxIndex + 1)
1952           * sizeof(unsigned));
1953     }
1954 
1955 #define CLEANUP_THREAD_INFO \
1956     for (i = 0; i <= num_records; i++) {                                \
1957         __kmp_free(threadInfo[i]);                                      \
1958     }                                                                   \
1959     __kmp_free(threadInfo);
1960 
1961     //
1962     // A value of UINT_MAX means that we didn't find the field
1963     //
1964     unsigned __index;
1965 
1966 #define INIT_PROC_INFO(p) \
1967     for (__index = 0; __index <= maxIndex; __index++) {                 \
1968         (p)[__index] = UINT_MAX;                                        \
1969     }
1970 
1971     for (i = 0; i <= num_records; i++) {
1972         INIT_PROC_INFO(threadInfo[i]);
1973     }
1974 
1975     unsigned num_avail = 0;
1976     *line = 0;
1977     while (! feof(f)) {
1978         //
1979         // Create an inner scoping level, so that all the goto targets at the
1980         // end of the loop appear in an outer scoping level.  This avoids
1981         // warnings about jumping past an initialization to a target in the
1982         // same block.
1983         //
1984         {
1985             buf[sizeof(buf) - 1] = 1;
1986             bool long_line = false;
1987             if (! fgets(buf, sizeof(buf), f)) {
1988                 //
1989                 // Read errors presumably because of EOF
1990                 //
1991                 // If there is valid data in threadInfo[num_avail], then fake
1992                 // a blank line in ensure that the last address gets parsed.
1993                 //
1994                 bool valid = false;
1995                 for (i = 0; i <= maxIndex; i++) {
1996                     if (threadInfo[num_avail][i] != UINT_MAX) {
1997                         valid = true;
1998                     }
1999                 }
2000                 if (! valid) {
2001                     break;
2002                 }
2003                 buf[0] = 0;
2004             } else if (!buf[sizeof(buf) - 1]) {
2005                 //
2006                 // The line is longer than the buffer.  Set a flag and don't
2007                 // emit an error if we were going to ignore the line, anyway.
2008                 //
2009                 long_line = true;
2010 
2011 #define CHECK_LINE \
2012     if (long_line) {                                                    \
2013         CLEANUP_THREAD_INFO;                                            \
2014         *msg_id = kmp_i18n_str_LongLineCpuinfo;                         \
2015         return -1;                                                      \
2016     }
2017             }
2018             (*line)++;
2019 
2020             char s1[] = "processor";
2021             if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
2022                 CHECK_LINE;
2023                 char *p = strchr(buf + sizeof(s1) - 1, ':');
2024                 unsigned val;
2025                 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val;
2026                 if (threadInfo[num_avail][osIdIndex] != UINT_MAX) goto dup_field;
2027                 threadInfo[num_avail][osIdIndex] = val;
2028 #if KMP_OS_LINUX && USE_SYSFS_INFO
2029                 char path[256];
2030                 KMP_SNPRINTF(path, sizeof(path),
2031                     "/sys/devices/system/cpu/cpu%u/topology/physical_package_id",
2032                     threadInfo[num_avail][osIdIndex]);
2033                 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]);
2034 
2035                 KMP_SNPRINTF(path, sizeof(path),
2036                     "/sys/devices/system/cpu/cpu%u/topology/core_id",
2037                     threadInfo[num_avail][osIdIndex]);
2038                 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]);
2039                 continue;
2040 #else
2041             }
2042             char s2[] = "physical id";
2043             if (strncmp(buf, s2, sizeof(s2) - 1) == 0) {
2044                 CHECK_LINE;
2045                 char *p = strchr(buf + sizeof(s2) - 1, ':');
2046                 unsigned val;
2047                 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val;
2048                 if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX) goto dup_field;
2049                 threadInfo[num_avail][pkgIdIndex] = val;
2050                 continue;
2051             }
2052             char s3[] = "core id";
2053             if (strncmp(buf, s3, sizeof(s3) - 1) == 0) {
2054                 CHECK_LINE;
2055                 char *p = strchr(buf + sizeof(s3) - 1, ':');
2056                 unsigned val;
2057                 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val;
2058                 if (threadInfo[num_avail][coreIdIndex] != UINT_MAX) goto dup_field;
2059                 threadInfo[num_avail][coreIdIndex] = val;
2060                 continue;
2061 #endif // KMP_OS_LINUX && USE_SYSFS_INFO
2062             }
2063             char s4[] = "thread id";
2064             if (strncmp(buf, s4, sizeof(s4) - 1) == 0) {
2065                 CHECK_LINE;
2066                 char *p = strchr(buf + sizeof(s4) - 1, ':');
2067                 unsigned val;
2068                 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val;
2069                 if (threadInfo[num_avail][threadIdIndex] != UINT_MAX) goto dup_field;
2070                 threadInfo[num_avail][threadIdIndex] = val;
2071                 continue;
2072             }
2073             unsigned level;
2074             if (KMP_SSCANF(buf, "node_%d id", &level) == 1) {
2075                 CHECK_LINE;
2076                 char *p = strchr(buf + sizeof(s4) - 1, ':');
2077                 unsigned val;
2078                 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val;
2079                 KMP_ASSERT(nodeIdIndex + level <= maxIndex);
2080                 if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX) goto dup_field;
2081                 threadInfo[num_avail][nodeIdIndex + level] = val;
2082                 continue;
2083             }
2084 
2085             //
2086             // We didn't recognize the leading token on the line.
2087             // There are lots of leading tokens that we don't recognize -
2088             // if the line isn't empty, go on to the next line.
2089             //
2090             if ((*buf != 0) && (*buf != '\n')) {
2091                 //
2092                 // If the line is longer than the buffer, read characters
2093                 // until we find a newline.
2094                 //
2095                 if (long_line) {
2096                     int ch;
2097                     while (((ch = fgetc(f)) != EOF) && (ch != '\n'));
2098                 }
2099                 continue;
2100             }
2101 
2102             //
2103             // A newline has signalled the end of the processor record.
2104             // Check that there aren't too many procs specified.
2105             //
2106             if ((int)num_avail == __kmp_xproc) {
2107                 CLEANUP_THREAD_INFO;
2108                 *msg_id = kmp_i18n_str_TooManyEntries;
2109                 return -1;
2110             }
2111 
2112             //
2113             // Check for missing fields.  The osId field must be there, and we
2114             // currently require that the physical id field is specified, also.
2115             //
2116             if (threadInfo[num_avail][osIdIndex] == UINT_MAX) {
2117                 CLEANUP_THREAD_INFO;
2118                 *msg_id = kmp_i18n_str_MissingProcField;
2119                 return -1;
2120             }
2121             if (threadInfo[0][pkgIdIndex] == UINT_MAX) {
2122                 CLEANUP_THREAD_INFO;
2123                 *msg_id = kmp_i18n_str_MissingPhysicalIDField;
2124                 return -1;
2125             }
2126 
2127             //
2128             // Skip this proc if it is not included in the machine model.
2129             //
2130             if (! KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex], fullMask)) {
2131                 INIT_PROC_INFO(threadInfo[num_avail]);
2132                 continue;
2133             }
2134 
2135             //
2136             // We have a successful parse of this proc's info.
2137             // Increment the counter, and prepare for the next proc.
2138             //
2139             num_avail++;
2140             KMP_ASSERT(num_avail <= num_records);
2141             INIT_PROC_INFO(threadInfo[num_avail]);
2142         }
2143         continue;
2144 
2145         no_val:
2146         CLEANUP_THREAD_INFO;
2147         *msg_id = kmp_i18n_str_MissingValCpuinfo;
2148         return -1;
2149 
2150         dup_field:
2151         CLEANUP_THREAD_INFO;
2152         *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo;
2153         return -1;
2154     }
2155     *line = 0;
2156 
2157 # if KMP_MIC && REDUCE_TEAM_SIZE
2158     unsigned teamSize = 0;
2159 # endif // KMP_MIC && REDUCE_TEAM_SIZE
2160 
2161     // check for num_records == __kmp_xproc ???
2162 
2163     //
2164     // If there's only one thread context to bind to, form an Address object
2165     // with depth 1 and return immediately (or, if affinity is off, set
2166     // address2os to NULL and return).
2167     //
2168     // If it is configured to omit the package level when there is only a
2169     // single package, the logic at the end of this routine won't work if
2170     // there is only a single thread - it would try to form an Address
2171     // object with depth 0.
2172     //
2173     KMP_ASSERT(num_avail > 0);
2174     KMP_ASSERT(num_avail <= num_records);
2175     if (num_avail == 1) {
2176         __kmp_ncores = 1;
2177         __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
2178         if (__kmp_affinity_verbose) {
2179             if (! KMP_AFFINITY_CAPABLE()) {
2180                 KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY");
2181                 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2182                 KMP_INFORM(Uniform, "KMP_AFFINITY");
2183             }
2184             else {
2185                 char buf[KMP_AFFIN_MASK_PRINT_LEN];
2186                 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
2187                   fullMask);
2188                 KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY");
2189                 if (__kmp_affinity_respect_mask) {
2190                     KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
2191                 } else {
2192                     KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
2193                 }
2194                 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2195                 KMP_INFORM(Uniform, "KMP_AFFINITY");
2196             }
2197             int index;
2198             kmp_str_buf_t buf;
2199             __kmp_str_buf_init(&buf);
2200             __kmp_str_buf_print(&buf, "1");
2201             for (index = maxIndex - 1; index > pkgIdIndex; index--) {
2202                 __kmp_str_buf_print(&buf, " x 1");
2203             }
2204             KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, 1, 1, 1);
2205             __kmp_str_buf_free(&buf);
2206         }
2207 
2208         if (__kmp_affinity_type == affinity_none) {
2209             CLEANUP_THREAD_INFO;
2210             return 0;
2211         }
2212 
2213         *address2os = (AddrUnsPair*)__kmp_allocate(sizeof(AddrUnsPair));
2214         Address addr(1);
2215         addr.labels[0] = threadInfo[0][pkgIdIndex];
2216         (*address2os)[0] = AddrUnsPair(addr, threadInfo[0][osIdIndex]);
2217 
2218         if (__kmp_affinity_gran_levels < 0) {
2219             __kmp_affinity_gran_levels = 0;
2220         }
2221 
2222         if (__kmp_affinity_verbose) {
2223             __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1);
2224         }
2225 
2226         CLEANUP_THREAD_INFO;
2227         return 1;
2228     }
2229 
2230     //
2231     // Sort the threadInfo table by physical Id.
2232     //
2233     qsort(threadInfo, num_avail, sizeof(*threadInfo),
2234       __kmp_affinity_cmp_ProcCpuInfo_phys_id);
2235 
2236     //
2237     // The table is now sorted by pkgId / coreId / threadId, but we really
2238     // don't know the radix of any of the fields.  pkgId's may be sparsely
2239     // assigned among the chips on a system.  Although coreId's are usually
2240     // assigned [0 .. coresPerPkg-1] and threadId's are usually assigned
2241     // [0..threadsPerCore-1], we don't want to make any such assumptions.
2242     //
2243     // For that matter, we don't know what coresPerPkg and threadsPerCore
2244     // (or the total # packages) are at this point - we want to determine
2245     // that now.  We only have an upper bound on the first two figures.
2246     //
2247     unsigned *counts = (unsigned *)__kmp_allocate((maxIndex + 1)
2248       * sizeof(unsigned));
2249     unsigned *maxCt = (unsigned *)__kmp_allocate((maxIndex + 1)
2250       * sizeof(unsigned));
2251     unsigned *totals = (unsigned *)__kmp_allocate((maxIndex + 1)
2252       * sizeof(unsigned));
2253     unsigned *lastId = (unsigned *)__kmp_allocate((maxIndex + 1)
2254       * sizeof(unsigned));
2255 
2256     bool assign_thread_ids = false;
2257     unsigned threadIdCt;
2258     unsigned index;
2259 
2260     restart_radix_check:
2261     threadIdCt = 0;
2262 
2263     //
2264     // Initialize the counter arrays with data from threadInfo[0].
2265     //
2266     if (assign_thread_ids) {
2267         if (threadInfo[0][threadIdIndex] == UINT_MAX) {
2268             threadInfo[0][threadIdIndex] = threadIdCt++;
2269         }
2270         else if (threadIdCt <= threadInfo[0][threadIdIndex]) {
2271             threadIdCt = threadInfo[0][threadIdIndex] + 1;
2272         }
2273     }
2274     for (index = 0; index <= maxIndex; index++) {
2275         counts[index] = 1;
2276         maxCt[index] = 1;
2277         totals[index] = 1;
2278         lastId[index] = threadInfo[0][index];;
2279     }
2280 
2281     //
2282     // Run through the rest of the OS procs.
2283     //
2284     for (i = 1; i < num_avail; i++) {
2285         //
2286         // Find the most significant index whose id differs
2287         // from the id for the previous OS proc.
2288         //
2289         for (index = maxIndex; index >= threadIdIndex; index--) {
2290             if (assign_thread_ids && (index == threadIdIndex)) {
2291                 //
2292                 // Auto-assign the thread id field if it wasn't specified.
2293                 //
2294                 if (threadInfo[i][threadIdIndex] == UINT_MAX) {
2295                     threadInfo[i][threadIdIndex] = threadIdCt++;
2296                 }
2297 
2298                 //
2299                 // Aparrently the thread id field was specified for some
2300                 // entries and not others.  Start the thread id counter
2301                 // off at the next higher thread id.
2302                 //
2303                 else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
2304                     threadIdCt = threadInfo[i][threadIdIndex] + 1;
2305                 }
2306             }
2307             if (threadInfo[i][index] != lastId[index]) {
2308                 //
2309                 // Run through all indices which are less significant,
2310                 // and reset the counts to 1.
2311                 //
2312                 // At all levels up to and including index, we need to
2313                 // increment the totals and record the last id.
2314                 //
2315                 unsigned index2;
2316                 for (index2 = threadIdIndex; index2 < index; index2++) {
2317                     totals[index2]++;
2318                     if (counts[index2] > maxCt[index2]) {
2319                         maxCt[index2] = counts[index2];
2320                     }
2321                     counts[index2] = 1;
2322                     lastId[index2] = threadInfo[i][index2];
2323                 }
2324                 counts[index]++;
2325                 totals[index]++;
2326                 lastId[index] = threadInfo[i][index];
2327 
2328                 if (assign_thread_ids && (index > threadIdIndex)) {
2329 
2330 # if KMP_MIC && REDUCE_TEAM_SIZE
2331                     //
2332                     // The default team size is the total #threads in the machine
2333                     // minus 1 thread for every core that has 3 or more threads.
2334                     //
2335                     teamSize += ( threadIdCt <= 2 ) ? ( threadIdCt ) : ( threadIdCt - 1 );
2336 # endif // KMP_MIC && REDUCE_TEAM_SIZE
2337 
2338                     //
2339                     // Restart the thread counter, as we are on a new core.
2340                     //
2341                     threadIdCt = 0;
2342 
2343                     //
2344                     // Auto-assign the thread id field if it wasn't specified.
2345                     //
2346                     if (threadInfo[i][threadIdIndex] == UINT_MAX) {
2347                         threadInfo[i][threadIdIndex] = threadIdCt++;
2348                     }
2349 
2350                     //
2351                     // Aparrently the thread id field was specified for some
2352                     // entries and not others.  Start the thread id counter
2353                     // off at the next higher thread id.
2354                     //
2355                     else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
2356                         threadIdCt = threadInfo[i][threadIdIndex] + 1;
2357                     }
2358                 }
2359                 break;
2360             }
2361         }
2362         if (index < threadIdIndex) {
2363             //
2364             // If thread ids were specified, it is an error if they are not
2365             // unique.  Also, check that we waven't already restarted the
2366             // loop (to be safe - shouldn't need to).
2367             //
2368             if ((threadInfo[i][threadIdIndex] != UINT_MAX)
2369               || assign_thread_ids) {
2370                 __kmp_free(lastId);
2371                 __kmp_free(totals);
2372                 __kmp_free(maxCt);
2373                 __kmp_free(counts);
2374                 CLEANUP_THREAD_INFO;
2375                 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
2376                 return -1;
2377             }
2378 
2379             //
2380             // If the thread ids were not specified and we see entries
2381             // entries that are duplicates, start the loop over and
2382             // assign the thread ids manually.
2383             //
2384             assign_thread_ids = true;
2385             goto restart_radix_check;
2386         }
2387     }
2388 
2389 # if KMP_MIC && REDUCE_TEAM_SIZE
2390     //
2391     // The default team size is the total #threads in the machine
2392     // minus 1 thread for every core that has 3 or more threads.
2393     //
2394     teamSize += ( threadIdCt <= 2 ) ? ( threadIdCt ) : ( threadIdCt - 1 );
2395 # endif // KMP_MIC && REDUCE_TEAM_SIZE
2396 
2397     for (index = threadIdIndex; index <= maxIndex; index++) {
2398         if (counts[index] > maxCt[index]) {
2399             maxCt[index] = counts[index];
2400         }
2401     }
2402 
2403     __kmp_nThreadsPerCore = maxCt[threadIdIndex];
2404     nCoresPerPkg = maxCt[coreIdIndex];
2405     nPackages = totals[pkgIdIndex];
2406 
2407     //
2408     // Check to see if the machine topology is uniform
2409     //
2410     unsigned prod = totals[maxIndex];
2411     for (index = threadIdIndex; index < maxIndex; index++) {
2412        prod *= maxCt[index];
2413     }
2414     bool uniform = (prod == totals[threadIdIndex]);
2415 
2416     //
2417     // When affinity is off, this routine will still be called to set
2418     // __kmp_ncores, as well as __kmp_nThreadsPerCore,
2419     // nCoresPerPkg, & nPackages.  Make sure all these vars are set
2420     // correctly, and return now if affinity is not enabled.
2421     //
2422     __kmp_ncores = totals[coreIdIndex];
2423 
2424     if (__kmp_affinity_verbose) {
2425         if (! KMP_AFFINITY_CAPABLE()) {
2426                 KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY");
2427                 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2428                 if (uniform) {
2429                     KMP_INFORM(Uniform, "KMP_AFFINITY");
2430                 } else {
2431                     KMP_INFORM(NonUniform, "KMP_AFFINITY");
2432                 }
2433         }
2434         else {
2435             char buf[KMP_AFFIN_MASK_PRINT_LEN];
2436             __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, fullMask);
2437                 KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY");
2438                 if (__kmp_affinity_respect_mask) {
2439                     KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
2440                 } else {
2441                     KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
2442                 }
2443                 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2444                 if (uniform) {
2445                     KMP_INFORM(Uniform, "KMP_AFFINITY");
2446                 } else {
2447                     KMP_INFORM(NonUniform, "KMP_AFFINITY");
2448                 }
2449         }
2450         kmp_str_buf_t buf;
2451         __kmp_str_buf_init(&buf);
2452 
2453         __kmp_str_buf_print(&buf, "%d", totals[maxIndex]);
2454         for (index = maxIndex - 1; index >= pkgIdIndex; index--) {
2455             __kmp_str_buf_print(&buf, " x %d", maxCt[index]);
2456         }
2457         KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str,  maxCt[coreIdIndex],
2458           maxCt[threadIdIndex], __kmp_ncores);
2459 
2460         __kmp_str_buf_free(&buf);
2461     }
2462 
2463 # if KMP_MIC && REDUCE_TEAM_SIZE
2464     //
2465     // Set the default team size.
2466     //
2467     if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) {
2468         __kmp_dflt_team_nth = teamSize;
2469         KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting __kmp_dflt_team_nth = %d\n",
2470           __kmp_dflt_team_nth));
2471     }
2472 # endif // KMP_MIC && REDUCE_TEAM_SIZE
2473 
2474     if (__kmp_affinity_type == affinity_none) {
2475         __kmp_free(lastId);
2476         __kmp_free(totals);
2477         __kmp_free(maxCt);
2478         __kmp_free(counts);
2479         CLEANUP_THREAD_INFO;
2480         return 0;
2481     }
2482 
2483     //
2484     // Count the number of levels which have more nodes at that level than
2485     // at the parent's level (with there being an implicit root node of
2486     // the top level).  This is equivalent to saying that there is at least
2487     // one node at this level which has a sibling.  These levels are in the
2488     // map, and the package level is always in the map.
2489     //
2490     bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool));
2491     int level = 0;
2492     for (index = threadIdIndex; index < maxIndex; index++) {
2493         KMP_ASSERT(totals[index] >= totals[index + 1]);
2494         inMap[index] = (totals[index] > totals[index + 1]);
2495     }
2496     inMap[maxIndex] = (totals[maxIndex] > 1);
2497     inMap[pkgIdIndex] = true;
2498 
2499     int depth = 0;
2500     for (index = threadIdIndex; index <= maxIndex; index++) {
2501         if (inMap[index]) {
2502             depth++;
2503         }
2504     }
2505     KMP_ASSERT(depth > 0);
2506 
2507     //
2508     // Construct the data structure that is to be returned.
2509     //
2510     *address2os = (AddrUnsPair*)
2511       __kmp_allocate(sizeof(AddrUnsPair) * num_avail);
2512     int pkgLevel = -1;
2513     int coreLevel = -1;
2514     int threadLevel = -1;
2515 
2516     for (i = 0; i < num_avail; ++i) {
2517         Address addr(depth);
2518         unsigned os = threadInfo[i][osIdIndex];
2519         int src_index;
2520         int dst_index = 0;
2521 
2522         for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) {
2523             if (! inMap[src_index]) {
2524                 continue;
2525             }
2526             addr.labels[dst_index] = threadInfo[i][src_index];
2527             if (src_index == pkgIdIndex) {
2528                 pkgLevel = dst_index;
2529             }
2530             else if (src_index == coreIdIndex) {
2531                 coreLevel = dst_index;
2532             }
2533             else if (src_index == threadIdIndex) {
2534                 threadLevel = dst_index;
2535             }
2536             dst_index++;
2537         }
2538         (*address2os)[i] = AddrUnsPair(addr, os);
2539     }
2540 
2541     if (__kmp_affinity_gran_levels < 0) {
2542         //
2543         // Set the granularity level based on what levels are modeled
2544         // in the machine topology map.
2545         //
2546         unsigned src_index;
2547         __kmp_affinity_gran_levels = 0;
2548         for (src_index = threadIdIndex; src_index <= maxIndex; src_index++) {
2549             if (! inMap[src_index]) {
2550                 continue;
2551             }
2552             switch (src_index) {
2553                 case threadIdIndex:
2554                 if (__kmp_affinity_gran > affinity_gran_thread) {
2555                     __kmp_affinity_gran_levels++;
2556                 }
2557 
2558                 break;
2559                 case coreIdIndex:
2560                 if (__kmp_affinity_gran > affinity_gran_core) {
2561                     __kmp_affinity_gran_levels++;
2562                 }
2563                 break;
2564 
2565                 case pkgIdIndex:
2566                 if (__kmp_affinity_gran > affinity_gran_package) {
2567                     __kmp_affinity_gran_levels++;
2568                 }
2569                 break;
2570             }
2571         }
2572     }
2573 
2574     if (__kmp_affinity_verbose) {
2575         __kmp_affinity_print_topology(*address2os, num_avail, depth, pkgLevel,
2576           coreLevel, threadLevel);
2577     }
2578 
2579     __kmp_free(inMap);
2580     __kmp_free(lastId);
2581     __kmp_free(totals);
2582     __kmp_free(maxCt);
2583     __kmp_free(counts);
2584     CLEANUP_THREAD_INFO;
2585     return depth;
2586 }
2587 
2588 
2589 //
2590 // Create and return a table of affinity masks, indexed by OS thread ID.
2591 // This routine handles OR'ing together all the affinity masks of threads
2592 // that are sufficiently close, if granularity > fine.
2593 //
2594 static kmp_affin_mask_t *
2595 __kmp_create_masks(unsigned *maxIndex, unsigned *numUnique,
2596   AddrUnsPair *address2os, unsigned numAddrs)
2597 {
2598     //
2599     // First form a table of affinity masks in order of OS thread id.
2600     //
2601     unsigned depth;
2602     unsigned maxOsId;
2603     unsigned i;
2604 
2605     KMP_ASSERT(numAddrs > 0);
2606     depth = address2os[0].first.depth;
2607 
2608     maxOsId = 0;
2609     for (i = 0; i < numAddrs; i++) {
2610         unsigned osId = address2os[i].second;
2611         if (osId > maxOsId) {
2612             maxOsId = osId;
2613         }
2614     }
2615     kmp_affin_mask_t *osId2Mask;
2616     KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId+1));
2617 
2618     //
2619     // Sort the address2os table according to physical order.  Doing so
2620     // will put all threads on the same core/package/node in consecutive
2621     // locations.
2622     //
2623     qsort(address2os, numAddrs, sizeof(*address2os),
2624       __kmp_affinity_cmp_Address_labels);
2625 
2626     KMP_ASSERT(__kmp_affinity_gran_levels >= 0);
2627     if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) {
2628         KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY",  __kmp_affinity_gran_levels);
2629     }
2630     if (__kmp_affinity_gran_levels >= (int)depth) {
2631         if (__kmp_affinity_verbose || (__kmp_affinity_warnings
2632           && (__kmp_affinity_type != affinity_none))) {
2633             KMP_WARNING(AffThreadsMayMigrate);
2634         }
2635     }
2636 
2637     //
2638     // Run through the table, forming the masks for all threads on each
2639     // core.  Threads on the same core will have identical "Address"
2640     // objects, not considering the last level, which must be the thread
2641     // id.  All threads on a core will appear consecutively.
2642     //
2643     unsigned unique = 0;
2644     unsigned j = 0;                             // index of 1st thread on core
2645     unsigned leader = 0;
2646     Address *leaderAddr = &(address2os[0].first);
2647     kmp_affin_mask_t *sum;
2648     KMP_CPU_ALLOC_ON_STACK(sum);
2649     KMP_CPU_ZERO(sum);
2650     KMP_CPU_SET(address2os[0].second, sum);
2651     for (i = 1; i < numAddrs; i++) {
2652         //
2653         // If this thread is sufficiently close to the leader (within the
2654         // granularity setting), then set the bit for this os thread in the
2655         // affinity mask for this group, and go on to the next thread.
2656         //
2657         if (leaderAddr->isClose(address2os[i].first,
2658           __kmp_affinity_gran_levels)) {
2659             KMP_CPU_SET(address2os[i].second, sum);
2660             continue;
2661         }
2662 
2663         //
2664         // For every thread in this group, copy the mask to the thread's
2665         // entry in the osId2Mask table.  Mark the first address as a
2666         // leader.
2667         //
2668         for (; j < i; j++) {
2669             unsigned osId = address2os[j].second;
2670             KMP_DEBUG_ASSERT(osId <= maxOsId);
2671             kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
2672             KMP_CPU_COPY(mask, sum);
2673             address2os[j].first.leader = (j == leader);
2674         }
2675         unique++;
2676 
2677         //
2678         // Start a new mask.
2679         //
2680         leader = i;
2681         leaderAddr = &(address2os[i].first);
2682         KMP_CPU_ZERO(sum);
2683         KMP_CPU_SET(address2os[i].second, sum);
2684     }
2685 
2686     //
2687     // For every thread in last group, copy the mask to the thread's
2688     // entry in the osId2Mask table.
2689     //
2690     for (; j < i; j++) {
2691         unsigned osId = address2os[j].second;
2692         KMP_DEBUG_ASSERT(osId <= maxOsId);
2693         kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
2694         KMP_CPU_COPY(mask, sum);
2695         address2os[j].first.leader = (j == leader);
2696     }
2697     unique++;
2698     KMP_CPU_FREE_FROM_STACK(sum);
2699 
2700     *maxIndex = maxOsId;
2701     *numUnique = unique;
2702     return osId2Mask;
2703 }
2704 
2705 
2706 //
2707 // Stuff for the affinity proclist parsers.  It's easier to declare these vars
2708 // as file-static than to try and pass them through the calling sequence of
2709 // the recursive-descent OMP_PLACES parser.
2710 //
2711 static kmp_affin_mask_t *newMasks;
2712 static int numNewMasks;
2713 static int nextNewMask;
2714 
2715 #define ADD_MASK(_mask) \
2716     {                                                                   \
2717         if (nextNewMask >= numNewMasks) {                               \
2718             int i;                                                      \
2719             numNewMasks *= 2;                                           \
2720             kmp_affin_mask_t* temp;                                     \
2721             KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks);            \
2722             for(i=0;i<numNewMasks/2;i++) {                              \
2723                 kmp_affin_mask_t* src  = KMP_CPU_INDEX(newMasks, i);    \
2724                 kmp_affin_mask_t* dest = KMP_CPU_INDEX(temp, i);        \
2725                 KMP_CPU_COPY(dest, src);                                \
2726             }                                                           \
2727             KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks/2);       \
2728             newMasks = temp;                                            \
2729         }                                                               \
2730         KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask));    \
2731         nextNewMask++;                                                  \
2732     }
2733 
2734 #define ADD_MASK_OSID(_osId,_osId2Mask,_maxOsId) \
2735     {                                                                   \
2736         if (((_osId) > _maxOsId) ||                                     \
2737           (! KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \
2738             if (__kmp_affinity_verbose || (__kmp_affinity_warnings      \
2739               && (__kmp_affinity_type != affinity_none))) {             \
2740                 KMP_WARNING(AffIgnoreInvalidProcID, _osId);             \
2741             }                                                           \
2742         }                                                               \
2743         else {                                                          \
2744             ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId)));               \
2745         }                                                               \
2746     }
2747 
2748 
2749 //
2750 // Re-parse the proclist (for the explicit affinity type), and form the list
2751 // of affinity newMasks indexed by gtid.
2752 //
2753 static void
2754 __kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks,
2755   unsigned int *out_numMasks, const char *proclist,
2756   kmp_affin_mask_t *osId2Mask, int maxOsId)
2757 {
2758     int i;
2759     const char *scan = proclist;
2760     const char *next = proclist;
2761 
2762     //
2763     // We use malloc() for the temporary mask vector,
2764     // so that we can use realloc() to extend it.
2765     //
2766     numNewMasks = 2;
2767     KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
2768     nextNewMask = 0;
2769     kmp_affin_mask_t *sumMask;
2770     KMP_CPU_ALLOC(sumMask);
2771     int setSize = 0;
2772 
2773     for (;;) {
2774         int start, end, stride;
2775 
2776         SKIP_WS(scan);
2777         next = scan;
2778         if (*next == '\0') {
2779             break;
2780         }
2781 
2782         if (*next == '{') {
2783             int num;
2784             setSize = 0;
2785             next++;     // skip '{'
2786             SKIP_WS(next);
2787             scan = next;
2788 
2789             //
2790             // Read the first integer in the set.
2791             //
2792             KMP_ASSERT2((*next >= '0') && (*next <= '9'),
2793               "bad proclist");
2794             SKIP_DIGITS(next);
2795             num = __kmp_str_to_int(scan, *next);
2796             KMP_ASSERT2(num >= 0, "bad explicit proc list");
2797 
2798             //
2799             // Copy the mask for that osId to the sum (union) mask.
2800             //
2801             if ((num > maxOsId) ||
2802               (! KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
2803                 if (__kmp_affinity_verbose || (__kmp_affinity_warnings
2804                   && (__kmp_affinity_type != affinity_none))) {
2805                     KMP_WARNING(AffIgnoreInvalidProcID, num);
2806                 }
2807                 KMP_CPU_ZERO(sumMask);
2808             }
2809             else {
2810                 KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num));
2811                 setSize = 1;
2812             }
2813 
2814             for (;;) {
2815                 //
2816                 // Check for end of set.
2817                 //
2818                 SKIP_WS(next);
2819                 if (*next == '}') {
2820                     next++;     // skip '}'
2821                     break;
2822                 }
2823 
2824                 //
2825                 // Skip optional comma.
2826                 //
2827                 if (*next == ',') {
2828                     next++;
2829                 }
2830                 SKIP_WS(next);
2831 
2832                 //
2833                 // Read the next integer in the set.
2834                 //
2835                 scan = next;
2836                 KMP_ASSERT2((*next >= '0') && (*next <= '9'),
2837                   "bad explicit proc list");
2838 
2839                 SKIP_DIGITS(next);
2840                 num = __kmp_str_to_int(scan, *next);
2841                 KMP_ASSERT2(num >= 0, "bad explicit proc list");
2842 
2843                 //
2844                 // Add the mask for that osId to the sum mask.
2845                 //
2846                 if ((num > maxOsId) ||
2847                   (! KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
2848                     if (__kmp_affinity_verbose || (__kmp_affinity_warnings
2849                       && (__kmp_affinity_type != affinity_none))) {
2850                         KMP_WARNING(AffIgnoreInvalidProcID, num);
2851                     }
2852                 }
2853                 else {
2854                     KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num));
2855                     setSize++;
2856                 }
2857             }
2858             if (setSize > 0) {
2859                 ADD_MASK(sumMask);
2860             }
2861 
2862             SKIP_WS(next);
2863             if (*next == ',') {
2864                 next++;
2865             }
2866             scan = next;
2867             continue;
2868         }
2869 
2870         //
2871         // Read the first integer.
2872         //
2873         KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2874         SKIP_DIGITS(next);
2875         start = __kmp_str_to_int(scan, *next);
2876         KMP_ASSERT2(start >= 0, "bad explicit proc list");
2877         SKIP_WS(next);
2878 
2879         //
2880         // If this isn't a range, then add a mask to the list and go on.
2881         //
2882         if (*next != '-') {
2883             ADD_MASK_OSID(start, osId2Mask, maxOsId);
2884 
2885             //
2886             // Skip optional comma.
2887             //
2888             if (*next == ',') {
2889                 next++;
2890             }
2891             scan = next;
2892             continue;
2893         }
2894 
2895         //
2896         // This is a range.  Skip over the '-' and read in the 2nd int.
2897         //
2898         next++;         // skip '-'
2899         SKIP_WS(next);
2900         scan = next;
2901         KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2902         SKIP_DIGITS(next);
2903         end = __kmp_str_to_int(scan, *next);
2904         KMP_ASSERT2(end >= 0, "bad explicit proc list");
2905 
2906         //
2907         // Check for a stride parameter
2908         //
2909         stride = 1;
2910         SKIP_WS(next);
2911         if (*next == ':') {
2912             //
2913             // A stride is specified.  Skip over the ':" and read the 3rd int.
2914             //
2915             int sign = +1;
2916             next++;         // skip ':'
2917             SKIP_WS(next);
2918             scan = next;
2919             if (*next == '-') {
2920                 sign = -1;
2921                 next++;
2922                 SKIP_WS(next);
2923                 scan = next;
2924             }
2925             KMP_ASSERT2((*next >=  '0') && (*next <= '9'),
2926               "bad explicit proc list");
2927             SKIP_DIGITS(next);
2928             stride = __kmp_str_to_int(scan, *next);
2929             KMP_ASSERT2(stride >= 0, "bad explicit proc list");
2930             stride *= sign;
2931         }
2932 
2933         //
2934         // Do some range checks.
2935         //
2936         KMP_ASSERT2(stride != 0, "bad explicit proc list");
2937         if (stride > 0) {
2938             KMP_ASSERT2(start <= end, "bad explicit proc list");
2939         }
2940         else {
2941             KMP_ASSERT2(start >= end, "bad explicit proc list");
2942         }
2943         KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list");
2944 
2945         //
2946         // Add the mask for each OS proc # to the list.
2947         //
2948         if (stride > 0) {
2949             do {
2950                 ADD_MASK_OSID(start, osId2Mask, maxOsId);
2951                 start += stride;
2952             } while (start <= end);
2953         }
2954         else {
2955             do {
2956                 ADD_MASK_OSID(start, osId2Mask, maxOsId);
2957                 start += stride;
2958             } while (start >= end);
2959         }
2960 
2961         //
2962         // Skip optional comma.
2963         //
2964         SKIP_WS(next);
2965         if (*next == ',') {
2966             next++;
2967         }
2968         scan = next;
2969     }
2970 
2971     *out_numMasks = nextNewMask;
2972     if (nextNewMask == 0) {
2973         *out_masks = NULL;
2974         KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
2975         return;
2976     }
2977     KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
2978     for(i = 0; i < nextNewMask; i++) {
2979         kmp_affin_mask_t* src  = KMP_CPU_INDEX(newMasks, i);
2980         kmp_affin_mask_t* dest = KMP_CPU_INDEX((*out_masks), i);
2981         KMP_CPU_COPY(dest, src);
2982     }
2983     KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
2984     KMP_CPU_FREE(sumMask);
2985 }
2986 
2987 
2988 # if OMP_40_ENABLED
2989 
2990 /*-----------------------------------------------------------------------------
2991 
2992 Re-parse the OMP_PLACES proc id list, forming the newMasks for the different
2993 places.  Again, Here is the grammar:
2994 
2995 place_list := place
2996 place_list := place , place_list
2997 place := num
2998 place := place : num
2999 place := place : num : signed
3000 place := { subplacelist }
3001 place := ! place                  // (lowest priority)
3002 subplace_list := subplace
3003 subplace_list := subplace , subplace_list
3004 subplace := num
3005 subplace := num : num
3006 subplace := num : num : signed
3007 signed := num
3008 signed := + signed
3009 signed := - signed
3010 
3011 -----------------------------------------------------------------------------*/
3012 
3013 static void
3014 __kmp_process_subplace_list(const char **scan, kmp_affin_mask_t *osId2Mask,
3015   int maxOsId, kmp_affin_mask_t *tempMask, int *setSize)
3016 {
3017     const char *next;
3018 
3019     for (;;) {
3020         int start, count, stride, i;
3021 
3022         //
3023         // Read in the starting proc id
3024         //
3025         SKIP_WS(*scan);
3026         KMP_ASSERT2((**scan >= '0') && (**scan <= '9'),
3027           "bad explicit places list");
3028         next = *scan;
3029         SKIP_DIGITS(next);
3030         start = __kmp_str_to_int(*scan, *next);
3031         KMP_ASSERT(start >= 0);
3032         *scan = next;
3033 
3034         //
3035         // valid follow sets are ',' ':' and '}'
3036         //
3037         SKIP_WS(*scan);
3038         if (**scan == '}' || **scan == ',') {
3039             if ((start > maxOsId) ||
3040               (! KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3041                 if (__kmp_affinity_verbose || (__kmp_affinity_warnings
3042                   && (__kmp_affinity_type != affinity_none))) {
3043                     KMP_WARNING(AffIgnoreInvalidProcID, start);
3044                 }
3045             }
3046             else {
3047                 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3048                 (*setSize)++;
3049             }
3050             if (**scan == '}') {
3051                 break;
3052             }
3053             (*scan)++;  // skip ','
3054             continue;
3055         }
3056         KMP_ASSERT2(**scan == ':', "bad explicit places list");
3057         (*scan)++;      // skip ':'
3058 
3059         //
3060         // Read count parameter
3061         //
3062         SKIP_WS(*scan);
3063         KMP_ASSERT2((**scan >= '0') && (**scan <= '9'),
3064           "bad explicit places list");
3065         next = *scan;
3066         SKIP_DIGITS(next);
3067         count = __kmp_str_to_int(*scan, *next);
3068         KMP_ASSERT(count >= 0);
3069         *scan = next;
3070 
3071         //
3072         // valid follow sets are ',' ':' and '}'
3073         //
3074         SKIP_WS(*scan);
3075         if (**scan == '}' || **scan == ',') {
3076             for (i = 0; i < count; i++) {
3077                 if ((start > maxOsId) ||
3078                   (! KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3079                     if (__kmp_affinity_verbose || (__kmp_affinity_warnings
3080                       && (__kmp_affinity_type != affinity_none))) {
3081                         KMP_WARNING(AffIgnoreInvalidProcID, start);
3082                     }
3083                     break;  // don't proliferate warnings for large count
3084                 }
3085                 else {
3086                     KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3087                     start++;
3088                     (*setSize)++;
3089                 }
3090             }
3091             if (**scan == '}') {
3092                 break;
3093             }
3094             (*scan)++;  // skip ','
3095             continue;
3096         }
3097         KMP_ASSERT2(**scan == ':', "bad explicit places list");
3098         (*scan)++;      // skip ':'
3099 
3100         //
3101         // Read stride parameter
3102         //
3103         int sign = +1;
3104         for (;;) {
3105             SKIP_WS(*scan);
3106             if (**scan == '+') {
3107                 (*scan)++; // skip '+'
3108                 continue;
3109             }
3110             if (**scan == '-') {
3111                 sign *= -1;
3112                 (*scan)++; // skip '-'
3113                 continue;
3114             }
3115             break;
3116         }
3117         SKIP_WS(*scan);
3118         KMP_ASSERT2((**scan >= '0') && (**scan <= '9'),
3119           "bad explicit places list");
3120         next = *scan;
3121         SKIP_DIGITS(next);
3122         stride = __kmp_str_to_int(*scan, *next);
3123         KMP_ASSERT(stride >= 0);
3124         *scan = next;
3125         stride *= sign;
3126 
3127         //
3128         // valid follow sets are ',' and '}'
3129         //
3130         SKIP_WS(*scan);
3131         if (**scan == '}' || **scan == ',') {
3132             for (i = 0; i < count; i++) {
3133                 if ((start > maxOsId) ||
3134                   (! KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3135                     if (__kmp_affinity_verbose || (__kmp_affinity_warnings
3136                       && (__kmp_affinity_type != affinity_none))) {
3137                         KMP_WARNING(AffIgnoreInvalidProcID, start);
3138                     }
3139                     break;  // don't proliferate warnings for large count
3140                 }
3141                 else {
3142                     KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3143                     start += stride;
3144                     (*setSize)++;
3145                 }
3146             }
3147             if (**scan == '}') {
3148                 break;
3149             }
3150             (*scan)++;  // skip ','
3151             continue;
3152         }
3153 
3154         KMP_ASSERT2(0, "bad explicit places list");
3155     }
3156 }
3157 
3158 
3159 static void
3160 __kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask,
3161   int maxOsId, kmp_affin_mask_t *tempMask, int *setSize)
3162 {
3163     const char *next;
3164 
3165     //
3166     // valid follow sets are '{' '!' and num
3167     //
3168     SKIP_WS(*scan);
3169     if (**scan == '{') {
3170         (*scan)++;      // skip '{'
3171         __kmp_process_subplace_list(scan, osId2Mask, maxOsId , tempMask,
3172           setSize);
3173         KMP_ASSERT2(**scan == '}', "bad explicit places list");
3174         (*scan)++;      // skip '}'
3175     }
3176     else if (**scan == '!') {
3177         (*scan)++;      // skip '!'
3178         __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize);
3179         KMP_CPU_COMPLEMENT(maxOsId, tempMask);
3180     }
3181     else if ((**scan >= '0') && (**scan <= '9')) {
3182         next = *scan;
3183         SKIP_DIGITS(next);
3184         int num = __kmp_str_to_int(*scan, *next);
3185         KMP_ASSERT(num >= 0);
3186         if ((num > maxOsId) ||
3187           (! KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
3188             if (__kmp_affinity_verbose || (__kmp_affinity_warnings
3189               && (__kmp_affinity_type != affinity_none))) {
3190                 KMP_WARNING(AffIgnoreInvalidProcID, num);
3191             }
3192         }
3193         else {
3194             KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num));
3195             (*setSize)++;
3196         }
3197         *scan = next;  // skip num
3198     }
3199     else {
3200         KMP_ASSERT2(0, "bad explicit places list");
3201     }
3202 }
3203 
3204 
3205 //static void
3206 void
3207 __kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks,
3208   unsigned int *out_numMasks, const char *placelist,
3209   kmp_affin_mask_t *osId2Mask, int maxOsId)
3210 {
3211     int i,j,count,stride,sign;
3212     const char *scan = placelist;
3213     const char *next = placelist;
3214 
3215     numNewMasks = 2;
3216     KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
3217     nextNewMask = 0;
3218 
3219     // tempMask is modified based on the previous or initial
3220     //   place to form the current place
3221     // previousMask contains the previous place
3222     kmp_affin_mask_t *tempMask;
3223     kmp_affin_mask_t *previousMask;
3224     KMP_CPU_ALLOC(tempMask);
3225     KMP_CPU_ZERO(tempMask);
3226     KMP_CPU_ALLOC(previousMask);
3227     KMP_CPU_ZERO(previousMask);
3228     int setSize = 0;
3229 
3230     for (;;) {
3231         __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize);
3232 
3233         //
3234         // valid follow sets are ',' ':' and EOL
3235         //
3236         SKIP_WS(scan);
3237         if (*scan == '\0' || *scan == ',') {
3238             if (setSize > 0) {
3239                 ADD_MASK(tempMask);
3240             }
3241             KMP_CPU_ZERO(tempMask);
3242             setSize = 0;
3243             if (*scan == '\0') {
3244                 break;
3245             }
3246             scan++;     // skip ','
3247             continue;
3248         }
3249 
3250         KMP_ASSERT2(*scan == ':', "bad explicit places list");
3251         scan++;         // skip ':'
3252 
3253         //
3254         // Read count parameter
3255         //
3256         SKIP_WS(scan);
3257         KMP_ASSERT2((*scan >= '0') && (*scan <= '9'),
3258           "bad explicit places list");
3259         next = scan;
3260         SKIP_DIGITS(next);
3261         count = __kmp_str_to_int(scan, *next);
3262         KMP_ASSERT(count >= 0);
3263         scan = next;
3264 
3265         //
3266         // valid follow sets are ',' ':' and EOL
3267         //
3268         SKIP_WS(scan);
3269         if (*scan == '\0' || *scan == ',') {
3270             stride = +1;
3271         }
3272         else {
3273             KMP_ASSERT2(*scan == ':', "bad explicit places list");
3274             scan++;         // skip ':'
3275 
3276             //
3277             // Read stride parameter
3278             //
3279             sign = +1;
3280             for (;;) {
3281                 SKIP_WS(scan);
3282                 if (*scan == '+') {
3283                     scan++; // skip '+'
3284                     continue;
3285                 }
3286                 if (*scan == '-') {
3287                     sign *= -1;
3288                     scan++; // skip '-'
3289                     continue;
3290                 }
3291                 break;
3292             }
3293             SKIP_WS(scan);
3294             KMP_ASSERT2((*scan >= '0') && (*scan <= '9'),
3295               "bad explicit places list");
3296             next = scan;
3297             SKIP_DIGITS(next);
3298             stride = __kmp_str_to_int(scan, *next);
3299             KMP_DEBUG_ASSERT(stride >= 0);
3300             scan = next;
3301             stride *= sign;
3302         }
3303 
3304         // Add places determined by initial_place : count : stride
3305         for (i = 0; i < count; i++) {
3306             if (setSize == 0) {
3307                 break;
3308             }
3309             // Add the current place, then build the next place (tempMask) from that
3310             KMP_CPU_COPY(previousMask, tempMask);
3311             ADD_MASK(previousMask);
3312             KMP_CPU_ZERO(tempMask);
3313             setSize = 0;
3314             KMP_CPU_SET_ITERATE(j, previousMask) {
3315                 if (! KMP_CPU_ISSET(j, previousMask)) {
3316                     continue;
3317                 }
3318                 else if ((j+stride > maxOsId) || (j+stride < 0) ||
3319                   (! KMP_CPU_ISSET(j+stride, KMP_CPU_INDEX(osId2Mask, j+stride)))) {
3320                     if ((__kmp_affinity_verbose || (__kmp_affinity_warnings
3321                       && (__kmp_affinity_type != affinity_none))) && i < count - 1) {
3322                         KMP_WARNING(AffIgnoreInvalidProcID, j+stride);
3323                     }
3324                 }
3325                 else {
3326                     KMP_CPU_SET(j+stride, tempMask);
3327                     setSize++;
3328                 }
3329             }
3330         }
3331         KMP_CPU_ZERO(tempMask);
3332         setSize = 0;
3333 
3334         //
3335         // valid follow sets are ',' and EOL
3336         //
3337         SKIP_WS(scan);
3338         if (*scan == '\0') {
3339             break;
3340         }
3341         if (*scan == ',') {
3342             scan++;     // skip ','
3343             continue;
3344         }
3345 
3346         KMP_ASSERT2(0, "bad explicit places list");
3347     }
3348 
3349     *out_numMasks = nextNewMask;
3350     if (nextNewMask == 0) {
3351         *out_masks = NULL;
3352         KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3353         return;
3354     }
3355     KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
3356     KMP_CPU_FREE(tempMask);
3357     KMP_CPU_FREE(previousMask);
3358     for(i = 0; i < nextNewMask; i++) {
3359         kmp_affin_mask_t* src  = KMP_CPU_INDEX(newMasks, i);
3360         kmp_affin_mask_t* dest = KMP_CPU_INDEX((*out_masks), i);
3361         KMP_CPU_COPY(dest, src);
3362     }
3363     KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3364 }
3365 
3366 # endif /* OMP_40_ENABLED */
3367 
3368 #undef ADD_MASK
3369 #undef ADD_MASK_OSID
3370 
3371 static void
3372 __kmp_apply_thread_places(AddrUnsPair **pAddr, int depth)
3373 {
3374     if (__kmp_place_num_sockets == 0 &&
3375         __kmp_place_num_cores == 0 &&
3376         __kmp_place_num_threads_per_core == 0 )
3377         return;   // no topology limiting actions requested, exit
3378     if (__kmp_place_num_sockets == 0)
3379         __kmp_place_num_sockets = nPackages;    // use all available sockets
3380     if (__kmp_place_num_cores == 0)
3381         __kmp_place_num_cores = nCoresPerPkg;   // use all available cores
3382     if (__kmp_place_num_threads_per_core == 0 ||
3383         __kmp_place_num_threads_per_core > __kmp_nThreadsPerCore)
3384         __kmp_place_num_threads_per_core = __kmp_nThreadsPerCore; // use all HW contexts
3385 
3386     if ( !__kmp_affinity_uniform_topology() ) {
3387         KMP_WARNING( AffThrPlaceNonUniform );
3388         return; // don't support non-uniform topology
3389     }
3390     if ( depth != 3 ) {
3391         KMP_WARNING( AffThrPlaceNonThreeLevel );
3392         return; // don't support not-3-level topology
3393     }
3394     if (__kmp_place_socket_offset + __kmp_place_num_sockets > nPackages) {
3395         KMP_WARNING(AffThrPlaceManySockets);
3396         return;
3397     }
3398     if ( __kmp_place_core_offset + __kmp_place_num_cores > nCoresPerPkg ) {
3399         KMP_WARNING( AffThrPlaceManyCores );
3400         return;
3401     }
3402 
3403     AddrUnsPair *newAddr = (AddrUnsPair *)__kmp_allocate( sizeof(AddrUnsPair) *
3404         __kmp_place_num_sockets * __kmp_place_num_cores * __kmp_place_num_threads_per_core);
3405 
3406     int i, j, k, n_old = 0, n_new = 0;
3407     for (i = 0; i < nPackages; ++i)
3408         if (i < __kmp_place_socket_offset ||
3409             i >= __kmp_place_socket_offset + __kmp_place_num_sockets)
3410             n_old += nCoresPerPkg * __kmp_nThreadsPerCore; // skip not-requested socket
3411         else
3412             for (j = 0; j < nCoresPerPkg; ++j) // walk through requested socket
3413                 if (j < __kmp_place_core_offset ||
3414                     j >= __kmp_place_core_offset + __kmp_place_num_cores)
3415                     n_old += __kmp_nThreadsPerCore; // skip not-requested core
3416                 else
3417                     for (k = 0; k < __kmp_nThreadsPerCore; ++k) { // walk through requested core
3418                         if (k < __kmp_place_num_threads_per_core) {
3419                             newAddr[n_new] = (*pAddr)[n_old]; // collect requested thread's data
3420                             n_new++;
3421                         }
3422                         n_old++;
3423                     }
3424     KMP_DEBUG_ASSERT(n_old == nPackages * nCoresPerPkg * __kmp_nThreadsPerCore);
3425     KMP_DEBUG_ASSERT(n_new == __kmp_place_num_sockets * __kmp_place_num_cores *
3426                      __kmp_place_num_threads_per_core);
3427 
3428     nPackages = __kmp_place_num_sockets;                      // correct nPackages
3429     nCoresPerPkg = __kmp_place_num_cores;                     // correct nCoresPerPkg
3430     __kmp_nThreadsPerCore = __kmp_place_num_threads_per_core; // correct __kmp_nThreadsPerCore
3431     __kmp_avail_proc = n_new;                                 // correct avail_proc
3432     __kmp_ncores = nPackages * __kmp_place_num_cores;         // correct ncores
3433 
3434     __kmp_free( *pAddr );
3435     *pAddr = newAddr;      // replace old topology with new one
3436 }
3437 
3438 
3439 static AddrUnsPair *address2os = NULL;
3440 static int           * procarr = NULL;
3441 static int     __kmp_aff_depth = 0;
3442 
3443 static void
3444 __kmp_aux_affinity_initialize(void)
3445 {
3446     if (__kmp_affinity_masks != NULL) {
3447         KMP_ASSERT(fullMask != NULL);
3448         return;
3449     }
3450 
3451     //
3452     // Create the "full" mask - this defines all of the processors that we
3453     // consider to be in the machine model.  If respect is set, then it is
3454     // the initialization thread's affinity mask.  Otherwise, it is all
3455     // processors that we know about on the machine.
3456     //
3457     if (fullMask == NULL) {
3458         KMP_CPU_ALLOC(fullMask);
3459     }
3460     if (KMP_AFFINITY_CAPABLE()) {
3461         if (__kmp_affinity_respect_mask) {
3462             __kmp_get_system_affinity(fullMask, TRUE);
3463 
3464             //
3465             // Count the number of available processors.
3466             //
3467             unsigned i;
3468             __kmp_avail_proc = 0;
3469             KMP_CPU_SET_ITERATE(i, fullMask) {
3470                 if (! KMP_CPU_ISSET(i, fullMask)) {
3471                     continue;
3472                 }
3473                 __kmp_avail_proc++;
3474             }
3475             if (__kmp_avail_proc > __kmp_xproc) {
3476                 if (__kmp_affinity_verbose || (__kmp_affinity_warnings
3477                   && (__kmp_affinity_type != affinity_none))) {
3478                     KMP_WARNING(ErrorInitializeAffinity);
3479                 }
3480                 __kmp_affinity_type = affinity_none;
3481                 KMP_AFFINITY_DISABLE();
3482                 return;
3483             }
3484         }
3485         else {
3486             __kmp_affinity_entire_machine_mask(fullMask);
3487             __kmp_avail_proc = __kmp_xproc;
3488         }
3489     }
3490 
3491     int depth = -1;
3492     kmp_i18n_id_t msg_id = kmp_i18n_null;
3493 
3494     //
3495     // For backward compatibility, setting KMP_CPUINFO_FILE =>
3496     // KMP_TOPOLOGY_METHOD=cpuinfo
3497     //
3498     if ((__kmp_cpuinfo_file != NULL) &&
3499       (__kmp_affinity_top_method == affinity_top_method_all)) {
3500         __kmp_affinity_top_method = affinity_top_method_cpuinfo;
3501     }
3502 
3503     if (__kmp_affinity_top_method == affinity_top_method_all) {
3504         //
3505         // In the default code path, errors are not fatal - we just try using
3506         // another method.  We only emit a warning message if affinity is on,
3507         // or the verbose flag is set, an the nowarnings flag was not set.
3508         //
3509         const char *file_name = NULL;
3510         int line = 0;
3511 # if KMP_USE_HWLOC
3512         if (depth < 0) {
3513             if (__kmp_affinity_verbose) {
3514                 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
3515             }
3516             if(!__kmp_hwloc_error) {
3517                 depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id);
3518                 if (depth == 0) {
3519                     KMP_ASSERT(__kmp_affinity_type == affinity_none);
3520                     KMP_ASSERT(address2os == NULL);
3521                     return;
3522                 } else if(depth < 0 && __kmp_affinity_verbose) {
3523                     KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
3524                 }
3525             } else if(__kmp_affinity_verbose) {
3526                 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
3527             }
3528         }
3529 # endif
3530 
3531 # if KMP_ARCH_X86 || KMP_ARCH_X86_64
3532 
3533         if (depth < 0) {
3534             if (__kmp_affinity_verbose) {
3535                 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
3536             }
3537 
3538             file_name = NULL;
3539             depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id);
3540             if (depth == 0) {
3541                 KMP_ASSERT(__kmp_affinity_type == affinity_none);
3542                 KMP_ASSERT(address2os == NULL);
3543                 return;
3544             }
3545 
3546             if (depth < 0) {
3547                 if (__kmp_affinity_verbose) {
3548                     if (msg_id != kmp_i18n_null) {
3549                         KMP_INFORM(AffInfoStrStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id),
3550                           KMP_I18N_STR(DecodingLegacyAPIC));
3551                     }
3552                     else {
3553                         KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC));
3554                     }
3555                 }
3556 
3557                 file_name = NULL;
3558                 depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id);
3559                 if (depth == 0) {
3560                     KMP_ASSERT(__kmp_affinity_type == affinity_none);
3561                     KMP_ASSERT(address2os == NULL);
3562                     return;
3563                 }
3564             }
3565         }
3566 
3567 # endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3568 
3569 # if KMP_OS_LINUX
3570 
3571         if (depth < 0) {
3572             if (__kmp_affinity_verbose) {
3573                 if (msg_id != kmp_i18n_null) {
3574                     KMP_INFORM(AffStrParseFilename, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id), "/proc/cpuinfo");
3575                 }
3576                 else {
3577                     KMP_INFORM(AffParseFilename, "KMP_AFFINITY", "/proc/cpuinfo");
3578                 }
3579             }
3580 
3581             FILE *f = fopen("/proc/cpuinfo", "r");
3582             if (f == NULL) {
3583                 msg_id = kmp_i18n_str_CantOpenCpuinfo;
3584             }
3585             else {
3586                 file_name = "/proc/cpuinfo";
3587                 depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f);
3588                 fclose(f);
3589                 if (depth == 0) {
3590                     KMP_ASSERT(__kmp_affinity_type == affinity_none);
3591                     KMP_ASSERT(address2os == NULL);
3592                     return;
3593                 }
3594             }
3595         }
3596 
3597 # endif /* KMP_OS_LINUX */
3598 
3599 # if KMP_GROUP_AFFINITY
3600 
3601         if ((depth < 0) && (__kmp_num_proc_groups > 1)) {
3602             if (__kmp_affinity_verbose) {
3603                 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
3604             }
3605 
3606             depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id);
3607             KMP_ASSERT(depth != 0);
3608         }
3609 
3610 # endif /* KMP_GROUP_AFFINITY */
3611 
3612         if (depth < 0) {
3613             if (__kmp_affinity_verbose && (msg_id != kmp_i18n_null)) {
3614                 if (file_name == NULL) {
3615                     KMP_INFORM(UsingFlatOS, __kmp_i18n_catgets(msg_id));
3616                 }
3617                 else if (line == 0) {
3618                     KMP_INFORM(UsingFlatOSFile, file_name, __kmp_i18n_catgets(msg_id));
3619                 }
3620                 else {
3621                     KMP_INFORM(UsingFlatOSFileLine, file_name, line, __kmp_i18n_catgets(msg_id));
3622                 }
3623             }
3624             // FIXME - print msg if msg_id = kmp_i18n_null ???
3625 
3626             file_name = "";
3627             depth = __kmp_affinity_create_flat_map(&address2os, &msg_id);
3628             if (depth == 0) {
3629                 KMP_ASSERT(__kmp_affinity_type == affinity_none);
3630                 KMP_ASSERT(address2os == NULL);
3631                 return;
3632             }
3633             KMP_ASSERT(depth > 0);
3634             KMP_ASSERT(address2os != NULL);
3635         }
3636     }
3637 
3638     //
3639     // If the user has specified that a paricular topology discovery method
3640     // is to be used, then we abort if that method fails.  The exception is
3641     // group affinity, which might have been implicitly set.
3642     //
3643 
3644 # if KMP_ARCH_X86 || KMP_ARCH_X86_64
3645 
3646     else if (__kmp_affinity_top_method == affinity_top_method_x2apicid) {
3647         if (__kmp_affinity_verbose) {
3648             KMP_INFORM(AffInfoStr, "KMP_AFFINITY",
3649               KMP_I18N_STR(Decodingx2APIC));
3650         }
3651 
3652         depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id);
3653         if (depth == 0) {
3654             KMP_ASSERT(__kmp_affinity_type == affinity_none);
3655             KMP_ASSERT(address2os == NULL);
3656             return;
3657         }
3658         if (depth < 0) {
3659             KMP_ASSERT(msg_id != kmp_i18n_null);
3660             KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
3661         }
3662     }
3663     else if (__kmp_affinity_top_method == affinity_top_method_apicid) {
3664         if (__kmp_affinity_verbose) {
3665             KMP_INFORM(AffInfoStr, "KMP_AFFINITY",
3666               KMP_I18N_STR(DecodingLegacyAPIC));
3667         }
3668 
3669         depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id);
3670         if (depth == 0) {
3671             KMP_ASSERT(__kmp_affinity_type == affinity_none);
3672             KMP_ASSERT(address2os == NULL);
3673             return;
3674         }
3675         if (depth < 0) {
3676             KMP_ASSERT(msg_id != kmp_i18n_null);
3677             KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
3678         }
3679     }
3680 
3681 # endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3682 
3683     else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) {
3684         const char *filename;
3685         if (__kmp_cpuinfo_file != NULL) {
3686             filename = __kmp_cpuinfo_file;
3687         }
3688         else {
3689             filename = "/proc/cpuinfo";
3690         }
3691 
3692         if (__kmp_affinity_verbose) {
3693             KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename);
3694         }
3695 
3696         FILE *f = fopen(filename, "r");
3697         if (f == NULL) {
3698             int code = errno;
3699             if (__kmp_cpuinfo_file != NULL) {
3700                 __kmp_msg(
3701                     kmp_ms_fatal,
3702                     KMP_MSG(CantOpenFileForReading, filename),
3703                     KMP_ERR(code),
3704                     KMP_HNT(NameComesFrom_CPUINFO_FILE),
3705                     __kmp_msg_null
3706                 );
3707             }
3708             else {
3709                 __kmp_msg(
3710                     kmp_ms_fatal,
3711                     KMP_MSG(CantOpenFileForReading, filename),
3712                     KMP_ERR(code),
3713                     __kmp_msg_null
3714                 );
3715             }
3716         }
3717         int line = 0;
3718         depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f);
3719         fclose(f);
3720         if (depth < 0) {
3721             KMP_ASSERT(msg_id != kmp_i18n_null);
3722             if (line > 0) {
3723                 KMP_FATAL(FileLineMsgExiting, filename, line, __kmp_i18n_catgets(msg_id));
3724             }
3725             else {
3726                 KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id));
3727             }
3728         }
3729         if (__kmp_affinity_type == affinity_none) {
3730             KMP_ASSERT(depth == 0);
3731             KMP_ASSERT(address2os == NULL);
3732             return;
3733         }
3734     }
3735 
3736 # if KMP_GROUP_AFFINITY
3737 
3738     else if (__kmp_affinity_top_method == affinity_top_method_group) {
3739         if (__kmp_affinity_verbose) {
3740             KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
3741         }
3742 
3743         depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id);
3744         KMP_ASSERT(depth != 0);
3745         if (depth < 0) {
3746             KMP_ASSERT(msg_id != kmp_i18n_null);
3747             KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
3748         }
3749     }
3750 
3751 # endif /* KMP_GROUP_AFFINITY */
3752 
3753     else if (__kmp_affinity_top_method == affinity_top_method_flat) {
3754         if (__kmp_affinity_verbose) {
3755             KMP_INFORM(AffUsingFlatOS, "KMP_AFFINITY");
3756         }
3757 
3758         depth = __kmp_affinity_create_flat_map(&address2os, &msg_id);
3759         if (depth == 0) {
3760             KMP_ASSERT(__kmp_affinity_type == affinity_none);
3761             KMP_ASSERT(address2os == NULL);
3762             return;
3763         }
3764         // should not fail
3765         KMP_ASSERT(depth > 0);
3766         KMP_ASSERT(address2os != NULL);
3767     }
3768 
3769 # if KMP_USE_HWLOC
3770     else if (__kmp_affinity_top_method == affinity_top_method_hwloc) {
3771         if (__kmp_affinity_verbose) {
3772             KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
3773         }
3774         depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id);
3775         if (depth == 0) {
3776             KMP_ASSERT(__kmp_affinity_type == affinity_none);
3777             KMP_ASSERT(address2os == NULL);
3778             return;
3779         }
3780     }
3781 # endif // KMP_USE_HWLOC
3782 
3783     if (address2os == NULL) {
3784         if (KMP_AFFINITY_CAPABLE()
3785           && (__kmp_affinity_verbose || (__kmp_affinity_warnings
3786           && (__kmp_affinity_type != affinity_none)))) {
3787             KMP_WARNING(ErrorInitializeAffinity);
3788         }
3789         __kmp_affinity_type = affinity_none;
3790         KMP_AFFINITY_DISABLE();
3791         return;
3792     }
3793 
3794     __kmp_apply_thread_places(&address2os, depth);
3795 
3796     //
3797     // Create the table of masks, indexed by thread Id.
3798     //
3799     unsigned maxIndex;
3800     unsigned numUnique;
3801     kmp_affin_mask_t *osId2Mask = __kmp_create_masks(&maxIndex, &numUnique,
3802       address2os, __kmp_avail_proc);
3803     if (__kmp_affinity_gran_levels == 0) {
3804         KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc);
3805     }
3806 
3807     //
3808     // Set the childNums vector in all Address objects.  This must be done
3809     // before we can sort using __kmp_affinity_cmp_Address_child_num(),
3810     // which takes into account the setting of __kmp_affinity_compact.
3811     //
3812     __kmp_affinity_assign_child_nums(address2os, __kmp_avail_proc);
3813 
3814     switch (__kmp_affinity_type) {
3815 
3816         case affinity_explicit:
3817         KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL);
3818 # if OMP_40_ENABLED
3819         if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel)
3820 # endif
3821         {
3822             __kmp_affinity_process_proclist(&__kmp_affinity_masks,
3823               &__kmp_affinity_num_masks, __kmp_affinity_proclist, osId2Mask,
3824               maxIndex);
3825         }
3826 # if OMP_40_ENABLED
3827         else {
3828             __kmp_affinity_process_placelist(&__kmp_affinity_masks,
3829               &__kmp_affinity_num_masks, __kmp_affinity_proclist, osId2Mask,
3830               maxIndex);
3831         }
3832 # endif
3833         if (__kmp_affinity_num_masks == 0) {
3834             if (__kmp_affinity_verbose || (__kmp_affinity_warnings
3835               && (__kmp_affinity_type != affinity_none))) {
3836                 KMP_WARNING(AffNoValidProcID);
3837             }
3838             __kmp_affinity_type = affinity_none;
3839             return;
3840         }
3841         break;
3842 
3843         //
3844         // The other affinity types rely on sorting the Addresses according
3845         // to some permutation of the machine topology tree.  Set
3846         // __kmp_affinity_compact and __kmp_affinity_offset appropriately,
3847         // then jump to a common code fragment to do the sort and create
3848         // the array of affinity masks.
3849         //
3850 
3851         case affinity_logical:
3852         __kmp_affinity_compact = 0;
3853         if (__kmp_affinity_offset) {
3854             __kmp_affinity_offset = __kmp_nThreadsPerCore * __kmp_affinity_offset
3855               % __kmp_avail_proc;
3856         }
3857         goto sortAddresses;
3858 
3859         case affinity_physical:
3860         if (__kmp_nThreadsPerCore > 1) {
3861             __kmp_affinity_compact = 1;
3862             if (__kmp_affinity_compact >= depth) {
3863                 __kmp_affinity_compact = 0;
3864             }
3865         } else {
3866             __kmp_affinity_compact = 0;
3867         }
3868         if (__kmp_affinity_offset) {
3869             __kmp_affinity_offset = __kmp_nThreadsPerCore * __kmp_affinity_offset
3870               % __kmp_avail_proc;
3871         }
3872         goto sortAddresses;
3873 
3874         case affinity_scatter:
3875         if (__kmp_affinity_compact >= depth) {
3876             __kmp_affinity_compact = 0;
3877         }
3878         else {
3879             __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact;
3880         }
3881         goto sortAddresses;
3882 
3883         case affinity_compact:
3884         if (__kmp_affinity_compact >= depth) {
3885             __kmp_affinity_compact = depth - 1;
3886         }
3887         goto sortAddresses;
3888 
3889         case affinity_balanced:
3890         // Balanced works only for the case of a single package
3891         if( nPackages > 1 ) {
3892             if( __kmp_affinity_verbose || __kmp_affinity_warnings ) {
3893                 KMP_WARNING( AffBalancedNotAvail, "KMP_AFFINITY" );
3894             }
3895             __kmp_affinity_type = affinity_none;
3896             return;
3897         } else if( __kmp_affinity_uniform_topology() ) {
3898             break;
3899         } else { // Non-uniform topology
3900 
3901             // Save the depth for further usage
3902             __kmp_aff_depth = depth;
3903 
3904             // Number of hyper threads per core in HT machine
3905             int nth_per_core = __kmp_nThreadsPerCore;
3906 
3907             int core_level;
3908             if( nth_per_core > 1 ) {
3909                 core_level = depth - 2;
3910             } else {
3911                 core_level = depth - 1;
3912             }
3913             int ncores = address2os[ __kmp_avail_proc - 1 ].first.labels[ core_level ] + 1;
3914             int nproc = nth_per_core * ncores;
3915 
3916             procarr = ( int * )__kmp_allocate( sizeof( int ) * nproc );
3917             for( int i = 0; i < nproc; i++ ) {
3918                 procarr[ i ] = -1;
3919             }
3920 
3921             for( int i = 0; i < __kmp_avail_proc; i++ ) {
3922                 int proc = address2os[ i ].second;
3923                 // If depth == 3 then level=0 - package, level=1 - core, level=2 - thread.
3924                 // If there is only one thread per core then depth == 2: level 0 - package,
3925                 // level 1 - core.
3926                 int level = depth - 1;
3927 
3928                 // __kmp_nth_per_core == 1
3929                 int thread = 0;
3930                 int core = address2os[ i ].first.labels[ level ];
3931                 // If the thread level exists, that is we have more than one thread context per core
3932                 if( nth_per_core > 1 ) {
3933                     thread = address2os[ i ].first.labels[ level ] % nth_per_core;
3934                     core = address2os[ i ].first.labels[ level - 1 ];
3935                 }
3936                 procarr[ core * nth_per_core + thread ] = proc;
3937             }
3938 
3939             break;
3940         }
3941 
3942         sortAddresses:
3943         //
3944         // Allocate the gtid->affinity mask table.
3945         //
3946         if (__kmp_affinity_dups) {
3947             __kmp_affinity_num_masks = __kmp_avail_proc;
3948         }
3949         else {
3950             __kmp_affinity_num_masks = numUnique;
3951         }
3952 
3953 # if OMP_40_ENABLED
3954         if ( ( __kmp_nested_proc_bind.bind_types[0] != proc_bind_intel )
3955           && ( __kmp_affinity_num_places > 0 )
3956           && ( (unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks ) ) {
3957             __kmp_affinity_num_masks = __kmp_affinity_num_places;
3958         }
3959 # endif
3960 
3961         KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
3962 
3963         //
3964         // Sort the address2os table according to the current setting of
3965         // __kmp_affinity_compact, then fill out __kmp_affinity_masks.
3966         //
3967         qsort(address2os, __kmp_avail_proc, sizeof(*address2os),
3968           __kmp_affinity_cmp_Address_child_num);
3969         {
3970             int i;
3971             unsigned j;
3972             for (i = 0, j = 0; i < __kmp_avail_proc; i++) {
3973                 if ((! __kmp_affinity_dups) && (! address2os[i].first.leader)) {
3974                     continue;
3975                 }
3976                 unsigned osId = address2os[i].second;
3977                 kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId);
3978                 kmp_affin_mask_t *dest
3979                   = KMP_CPU_INDEX(__kmp_affinity_masks, j);
3980                 KMP_ASSERT(KMP_CPU_ISSET(osId, src));
3981                 KMP_CPU_COPY(dest, src);
3982                 if (++j >= __kmp_affinity_num_masks) {
3983                     break;
3984                 }
3985             }
3986             KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks);
3987         }
3988         break;
3989 
3990         default:
3991         KMP_ASSERT2(0, "Unexpected affinity setting");
3992     }
3993 
3994     __kmp_free(osId2Mask);
3995     machine_hierarchy.init(address2os, __kmp_avail_proc);
3996 }
3997 
3998 
3999 void
4000 __kmp_affinity_initialize(void)
4001 {
4002     //
4003     // Much of the code above was written assumming that if a machine was not
4004     // affinity capable, then __kmp_affinity_type == affinity_none.  We now
4005     // explicitly represent this as __kmp_affinity_type == affinity_disabled.
4006     //
4007     // There are too many checks for __kmp_affinity_type == affinity_none
4008     // in this code.  Instead of trying to change them all, check if
4009     // __kmp_affinity_type == affinity_disabled, and if so, slam it with
4010     // affinity_none, call the real initialization routine, then restore
4011     // __kmp_affinity_type to affinity_disabled.
4012     //
4013     int disabled = (__kmp_affinity_type == affinity_disabled);
4014     if (! KMP_AFFINITY_CAPABLE()) {
4015         KMP_ASSERT(disabled);
4016     }
4017     if (disabled) {
4018         __kmp_affinity_type = affinity_none;
4019     }
4020     __kmp_aux_affinity_initialize();
4021     if (disabled) {
4022         __kmp_affinity_type = affinity_disabled;
4023     }
4024 }
4025 
4026 
4027 void
4028 __kmp_affinity_uninitialize(void)
4029 {
4030     if (__kmp_affinity_masks != NULL) {
4031         KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
4032         __kmp_affinity_masks = NULL;
4033     }
4034     if (fullMask != NULL) {
4035         KMP_CPU_FREE(fullMask);
4036         fullMask = NULL;
4037     }
4038     __kmp_affinity_num_masks = 0;
4039 # if OMP_40_ENABLED
4040     __kmp_affinity_num_places = 0;
4041 # endif
4042     if (__kmp_affinity_proclist != NULL) {
4043         __kmp_free(__kmp_affinity_proclist);
4044         __kmp_affinity_proclist = NULL;
4045     }
4046     if( address2os != NULL ) {
4047         __kmp_free( address2os );
4048         address2os = NULL;
4049     }
4050     if( procarr != NULL ) {
4051         __kmp_free( procarr );
4052         procarr = NULL;
4053     }
4054 }
4055 
4056 
4057 void
4058 __kmp_affinity_set_init_mask(int gtid, int isa_root)
4059 {
4060     if (! KMP_AFFINITY_CAPABLE()) {
4061         return;
4062     }
4063 
4064     kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
4065     if (th->th.th_affin_mask == NULL) {
4066         KMP_CPU_ALLOC(th->th.th_affin_mask);
4067     }
4068     else {
4069         KMP_CPU_ZERO(th->th.th_affin_mask);
4070     }
4071 
4072     //
4073     // Copy the thread mask to the kmp_info_t strucuture.
4074     // If __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one
4075     // that has all of the OS proc ids set, or if __kmp_affinity_respect_mask
4076     // is set, then the full mask is the same as the mask of the initialization
4077     // thread.
4078     //
4079     kmp_affin_mask_t *mask;
4080     int i;
4081 
4082 # if OMP_40_ENABLED
4083     if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel)
4084 # endif
4085     {
4086         if ((__kmp_affinity_type == affinity_none) || (__kmp_affinity_type == affinity_balanced)
4087           ) {
4088 # if KMP_GROUP_AFFINITY
4089             if (__kmp_num_proc_groups > 1) {
4090                 return;
4091             }
4092 # endif
4093             KMP_ASSERT(fullMask != NULL);
4094             i = KMP_PLACE_ALL;
4095             mask = fullMask;
4096         }
4097         else {
4098             KMP_DEBUG_ASSERT( __kmp_affinity_num_masks > 0 );
4099             i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks;
4100             mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
4101         }
4102     }
4103 # if OMP_40_ENABLED
4104     else {
4105         if ((! isa_root)
4106           || (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) {
4107 #  if KMP_GROUP_AFFINITY
4108             if (__kmp_num_proc_groups > 1) {
4109                 return;
4110             }
4111 #  endif
4112             KMP_ASSERT(fullMask != NULL);
4113             i = KMP_PLACE_ALL;
4114             mask = fullMask;
4115         }
4116         else {
4117             //
4118             // int i = some hash function or just a counter that doesn't
4119             // always start at 0.  Use gtid for now.
4120             //
4121             KMP_DEBUG_ASSERT( __kmp_affinity_num_masks > 0 );
4122             i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks;
4123             mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
4124         }
4125     }
4126 # endif
4127 
4128 # if OMP_40_ENABLED
4129     th->th.th_current_place = i;
4130     if (isa_root) {
4131         th->th.th_new_place = i;
4132         th->th.th_first_place = 0;
4133         th->th.th_last_place = __kmp_affinity_num_masks - 1;
4134     }
4135 
4136     if (i == KMP_PLACE_ALL) {
4137         KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n",
4138           gtid));
4139     }
4140     else {
4141         KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n",
4142           gtid, i));
4143     }
4144 # else
4145     if (i == -1) {
4146         KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to fullMask\n",
4147           gtid));
4148     }
4149     else {
4150         KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to mask %d\n",
4151           gtid, i));
4152     }
4153 # endif /* OMP_40_ENABLED */
4154 
4155     KMP_CPU_COPY(th->th.th_affin_mask, mask);
4156 
4157     if (__kmp_affinity_verbose) {
4158         char buf[KMP_AFFIN_MASK_PRINT_LEN];
4159         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4160           th->th.th_affin_mask);
4161         KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), gtid,
4162           buf);
4163     }
4164 
4165 # if KMP_OS_WINDOWS
4166     //
4167     // On Windows* OS, the process affinity mask might have changed.
4168     // If the user didn't request affinity and this call fails,
4169     // just continue silently.  See CQ171393.
4170     //
4171     if ( __kmp_affinity_type == affinity_none ) {
4172         __kmp_set_system_affinity(th->th.th_affin_mask, FALSE);
4173     }
4174     else
4175 # endif
4176     __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
4177 }
4178 
4179 
4180 # if OMP_40_ENABLED
4181 
4182 void
4183 __kmp_affinity_set_place(int gtid)
4184 {
4185     int retval;
4186 
4187     if (! KMP_AFFINITY_CAPABLE()) {
4188         return;
4189     }
4190 
4191     kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
4192 
4193     KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current place = %d)\n",
4194       gtid, th->th.th_new_place, th->th.th_current_place));
4195 
4196     //
4197     // Check that the new place is within this thread's partition.
4198     //
4199     KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4200     KMP_ASSERT(th->th.th_new_place >= 0);
4201     KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks);
4202     if (th->th.th_first_place <= th->th.th_last_place) {
4203         KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place)
4204          && (th->th.th_new_place <= th->th.th_last_place));
4205     }
4206     else {
4207         KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place)
4208          || (th->th.th_new_place >= th->th.th_last_place));
4209     }
4210 
4211     //
4212     // Copy the thread mask to the kmp_info_t strucuture,
4213     // and set this thread's affinity.
4214     //
4215     kmp_affin_mask_t *mask = KMP_CPU_INDEX(__kmp_affinity_masks,
4216       th->th.th_new_place);
4217     KMP_CPU_COPY(th->th.th_affin_mask, mask);
4218     th->th.th_current_place = th->th.th_new_place;
4219 
4220     if (__kmp_affinity_verbose) {
4221         char buf[KMP_AFFIN_MASK_PRINT_LEN];
4222         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4223           th->th.th_affin_mask);
4224         KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(),
4225           gtid, buf);
4226     }
4227     __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
4228 }
4229 
4230 # endif /* OMP_40_ENABLED */
4231 
4232 
4233 int
4234 __kmp_aux_set_affinity(void **mask)
4235 {
4236     int gtid;
4237     kmp_info_t *th;
4238     int retval;
4239 
4240     if (! KMP_AFFINITY_CAPABLE()) {
4241         return -1;
4242     }
4243 
4244     gtid = __kmp_entry_gtid();
4245     KA_TRACE(1000, ;{
4246         char buf[KMP_AFFIN_MASK_PRINT_LEN];
4247         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4248           (kmp_affin_mask_t *)(*mask));
4249         __kmp_debug_printf("kmp_set_affinity: setting affinity mask for thread %d = %s\n",
4250           gtid, buf);
4251     });
4252 
4253     if (__kmp_env_consistency_check) {
4254         if ((mask == NULL) || (*mask == NULL)) {
4255             KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4256         }
4257         else {
4258             unsigned proc;
4259             int num_procs = 0;
4260 
4261             KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t*)(*mask))) {
4262                 if (! KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) {
4263                     continue;
4264                 }
4265                 num_procs++;
4266                 if (! KMP_CPU_ISSET(proc, fullMask)) {
4267                     KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4268                     break;
4269                 }
4270             }
4271             if (num_procs == 0) {
4272                 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4273             }
4274 
4275 # if KMP_GROUP_AFFINITY
4276             if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) {
4277                 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4278             }
4279 # endif /* KMP_GROUP_AFFINITY */
4280 
4281         }
4282     }
4283 
4284     th = __kmp_threads[gtid];
4285     KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4286     retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
4287     if (retval == 0) {
4288         KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask));
4289     }
4290 
4291 # if OMP_40_ENABLED
4292     th->th.th_current_place = KMP_PLACE_UNDEFINED;
4293     th->th.th_new_place = KMP_PLACE_UNDEFINED;
4294     th->th.th_first_place = 0;
4295     th->th.th_last_place = __kmp_affinity_num_masks - 1;
4296 
4297     //
4298     // Turn off 4.0 affinity for the current tread at this parallel level.
4299     //
4300     th->th.th_current_task->td_icvs.proc_bind = proc_bind_false;
4301 # endif
4302 
4303     return retval;
4304 }
4305 
4306 
4307 int
4308 __kmp_aux_get_affinity(void **mask)
4309 {
4310     int gtid;
4311     int retval;
4312     kmp_info_t *th;
4313 
4314     if (! KMP_AFFINITY_CAPABLE()) {
4315         return -1;
4316     }
4317 
4318     gtid = __kmp_entry_gtid();
4319     th = __kmp_threads[gtid];
4320     KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4321 
4322     KA_TRACE(1000, ;{
4323         char buf[KMP_AFFIN_MASK_PRINT_LEN];
4324         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4325           th->th.th_affin_mask);
4326         __kmp_printf("kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid, buf);
4327     });
4328 
4329     if (__kmp_env_consistency_check) {
4330         if ((mask == NULL) || (*mask == NULL)) {
4331             KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity");
4332         }
4333     }
4334 
4335 # if !KMP_OS_WINDOWS
4336 
4337     retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
4338     KA_TRACE(1000, ;{
4339         char buf[KMP_AFFIN_MASK_PRINT_LEN];
4340         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4341           (kmp_affin_mask_t *)(*mask));
4342         __kmp_printf("kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid, buf);
4343     });
4344     return retval;
4345 
4346 # else
4347 
4348     KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask);
4349     return 0;
4350 
4351 # endif /* KMP_OS_WINDOWS */
4352 
4353 }
4354 
4355 int
4356 __kmp_aux_set_affinity_mask_proc(int proc, void **mask)
4357 {
4358     int retval;
4359 
4360     if (! KMP_AFFINITY_CAPABLE()) {
4361         return -1;
4362     }
4363 
4364     KA_TRACE(1000, ;{
4365         int gtid = __kmp_entry_gtid();
4366         char buf[KMP_AFFIN_MASK_PRINT_LEN];
4367         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4368           (kmp_affin_mask_t *)(*mask));
4369         __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in affinity mask for thread %d = %s\n",
4370           proc, gtid, buf);
4371     });
4372 
4373     if (__kmp_env_consistency_check) {
4374         if ((mask == NULL) || (*mask == NULL)) {
4375             KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc");
4376         }
4377     }
4378 
4379     if ((proc < 0)
4380 # if !KMP_USE_HWLOC
4381          || ((unsigned)proc >= KMP_CPU_SETSIZE)
4382 # endif
4383        ) {
4384         return -1;
4385     }
4386     if (! KMP_CPU_ISSET(proc, fullMask)) {
4387         return -2;
4388     }
4389 
4390     KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask));
4391     return 0;
4392 }
4393 
4394 
4395 int
4396 __kmp_aux_unset_affinity_mask_proc(int proc, void **mask)
4397 {
4398     int retval;
4399 
4400     if (! KMP_AFFINITY_CAPABLE()) {
4401         return -1;
4402     }
4403 
4404     KA_TRACE(1000, ;{
4405         int gtid = __kmp_entry_gtid();
4406         char buf[KMP_AFFIN_MASK_PRINT_LEN];
4407         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4408           (kmp_affin_mask_t *)(*mask));
4409         __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in affinity mask for thread %d = %s\n",
4410           proc, gtid, buf);
4411     });
4412 
4413     if (__kmp_env_consistency_check) {
4414         if ((mask == NULL) || (*mask == NULL)) {
4415             KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc");
4416         }
4417     }
4418 
4419     if ((proc < 0)
4420 # if !KMP_USE_HWLOC
4421          || ((unsigned)proc >= KMP_CPU_SETSIZE)
4422 # endif
4423        ) {
4424         return -1;
4425     }
4426     if (! KMP_CPU_ISSET(proc, fullMask)) {
4427         return -2;
4428     }
4429 
4430     KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask));
4431     return 0;
4432 }
4433 
4434 
4435 int
4436 __kmp_aux_get_affinity_mask_proc(int proc, void **mask)
4437 {
4438     int retval;
4439 
4440     if (! KMP_AFFINITY_CAPABLE()) {
4441         return -1;
4442     }
4443 
4444     KA_TRACE(1000, ;{
4445         int gtid = __kmp_entry_gtid();
4446         char buf[KMP_AFFIN_MASK_PRINT_LEN];
4447         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4448           (kmp_affin_mask_t *)(*mask));
4449         __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in affinity mask for thread %d = %s\n",
4450           proc, gtid, buf);
4451     });
4452 
4453     if (__kmp_env_consistency_check) {
4454         if ((mask == NULL) || (*mask == NULL)) {
4455             KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc");
4456         }
4457     }
4458 
4459     if ((proc < 0)
4460 # if !KMP_USE_HWLOC
4461          || ((unsigned)proc >= KMP_CPU_SETSIZE)
4462 # endif
4463        ) {
4464         return -1;
4465     }
4466     if (! KMP_CPU_ISSET(proc, fullMask)) {
4467         return 0;
4468     }
4469 
4470     return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask));
4471 }
4472 
4473 
4474 // Dynamic affinity settings - Affinity balanced
4475 void __kmp_balanced_affinity( int tid, int nthreads )
4476 {
4477     if( __kmp_affinity_uniform_topology() ) {
4478         int coreID;
4479         int threadID;
4480         // Number of hyper threads per core in HT machine
4481         int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores;
4482         // Number of cores
4483         int ncores = __kmp_ncores;
4484         // How many threads will be bound to each core
4485         int chunk = nthreads / ncores;
4486         // How many cores will have an additional thread bound to it - "big cores"
4487         int big_cores = nthreads % ncores;
4488         // Number of threads on the big cores
4489         int big_nth = ( chunk + 1 ) * big_cores;
4490         if( tid < big_nth ) {
4491             coreID = tid / (chunk + 1 );
4492             threadID = ( tid % (chunk + 1 ) ) % __kmp_nth_per_core ;
4493         } else { //tid >= big_nth
4494             coreID = ( tid - big_cores ) / chunk;
4495             threadID = ( ( tid - big_cores ) % chunk ) % __kmp_nth_per_core ;
4496         }
4497 
4498         KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(),
4499           "Illegal set affinity operation when not capable");
4500 
4501         kmp_affin_mask_t *mask;
4502         KMP_CPU_ALLOC_ON_STACK(mask);
4503         KMP_CPU_ZERO(mask);
4504 
4505         // Granularity == thread
4506         if( __kmp_affinity_gran == affinity_gran_fine || __kmp_affinity_gran == affinity_gran_thread) {
4507             int osID = address2os[ coreID * __kmp_nth_per_core + threadID ].second;
4508             KMP_CPU_SET( osID, mask);
4509         } else if( __kmp_affinity_gran == affinity_gran_core ) { // Granularity == core
4510             for( int i = 0; i < __kmp_nth_per_core; i++ ) {
4511                 int osID;
4512                 osID = address2os[ coreID * __kmp_nth_per_core + i ].second;
4513                 KMP_CPU_SET( osID, mask);
4514             }
4515         }
4516         if (__kmp_affinity_verbose) {
4517             char buf[KMP_AFFIN_MASK_PRINT_LEN];
4518             __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
4519             KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
4520               tid, buf);
4521         }
4522         __kmp_set_system_affinity( mask, TRUE );
4523         KMP_CPU_FREE_FROM_STACK(mask);
4524     } else { // Non-uniform topology
4525 
4526         kmp_affin_mask_t *mask;
4527         KMP_CPU_ALLOC_ON_STACK(mask);
4528         KMP_CPU_ZERO(mask);
4529 
4530         // Number of hyper threads per core in HT machine
4531         int nth_per_core = __kmp_nThreadsPerCore;
4532         int core_level;
4533         if( nth_per_core > 1 ) {
4534             core_level = __kmp_aff_depth - 2;
4535         } else {
4536             core_level = __kmp_aff_depth - 1;
4537         }
4538 
4539         // Number of cores - maximum value; it does not count trail cores with 0 processors
4540         int ncores = address2os[ __kmp_avail_proc - 1 ].first.labels[ core_level ] + 1;
4541 
4542         // For performance gain consider the special case nthreads == __kmp_avail_proc
4543         if( nthreads == __kmp_avail_proc ) {
4544             if( __kmp_affinity_gran == affinity_gran_fine || __kmp_affinity_gran == affinity_gran_thread) {
4545                 int osID = address2os[ tid ].second;
4546                 KMP_CPU_SET( osID, mask);
4547             } else if( __kmp_affinity_gran == affinity_gran_core ) { // Granularity == core
4548                 int coreID = address2os[ tid ].first.labels[ core_level ];
4549                 // We'll count found osIDs for the current core; they can be not more than nth_per_core;
4550                 // since the address2os is sortied we can break when cnt==nth_per_core
4551                 int cnt = 0;
4552                 for( int i = 0; i < __kmp_avail_proc; i++ ) {
4553                     int osID = address2os[ i ].second;
4554                     int core = address2os[ i ].first.labels[ core_level ];
4555                     if( core == coreID ) {
4556                         KMP_CPU_SET( osID, mask);
4557                         cnt++;
4558                         if( cnt == nth_per_core ) {
4559                             break;
4560                         }
4561                     }
4562                 }
4563             }
4564         } else if( nthreads <= __kmp_ncores ) {
4565 
4566             int core = 0;
4567             for( int i = 0; i < ncores; i++ ) {
4568                 // Check if this core from procarr[] is in the mask
4569                 int in_mask = 0;
4570                 for( int j = 0; j < nth_per_core; j++ ) {
4571                     if( procarr[ i * nth_per_core + j ] != - 1 ) {
4572                         in_mask = 1;
4573                         break;
4574                     }
4575                 }
4576                 if( in_mask ) {
4577                     if( tid == core ) {
4578                         for( int j = 0; j < nth_per_core; j++ ) {
4579                             int osID = procarr[ i * nth_per_core + j ];
4580                             if( osID != -1 ) {
4581                                 KMP_CPU_SET( osID, mask );
4582                                 // For granularity=thread it is enough to set the first available osID for this core
4583                                 if( __kmp_affinity_gran == affinity_gran_fine || __kmp_affinity_gran == affinity_gran_thread) {
4584                                     break;
4585                                 }
4586                             }
4587                         }
4588                         break;
4589                     } else {
4590                         core++;
4591                     }
4592                 }
4593             }
4594 
4595         } else { // nthreads > __kmp_ncores
4596 
4597             // Array to save the number of processors at each core
4598             int* nproc_at_core = (int*)KMP_ALLOCA(sizeof(int)*ncores);
4599             // Array to save the number of cores with "x" available processors;
4600             int* ncores_with_x_procs = (int*)KMP_ALLOCA(sizeof(int)*(nth_per_core+1));
4601             // Array to save the number of cores with # procs from x to nth_per_core
4602             int* ncores_with_x_to_max_procs = (int*)KMP_ALLOCA(sizeof(int)*(nth_per_core+1));
4603 
4604             for( int i = 0; i <= nth_per_core; i++ ) {
4605                 ncores_with_x_procs[ i ] = 0;
4606                 ncores_with_x_to_max_procs[ i ] = 0;
4607             }
4608 
4609             for( int i = 0; i < ncores; i++ ) {
4610                 int cnt = 0;
4611                 for( int j = 0; j < nth_per_core; j++ ) {
4612                     if( procarr[ i * nth_per_core + j ] != -1 ) {
4613                         cnt++;
4614                     }
4615                 }
4616                 nproc_at_core[ i ] = cnt;
4617                 ncores_with_x_procs[ cnt ]++;
4618             }
4619 
4620             for( int i = 0; i <= nth_per_core; i++ ) {
4621                 for( int j = i; j <= nth_per_core; j++ ) {
4622                     ncores_with_x_to_max_procs[ i ] += ncores_with_x_procs[ j ];
4623                 }
4624             }
4625 
4626             // Max number of processors
4627             int nproc = nth_per_core * ncores;
4628             // An array to keep number of threads per each context
4629             int * newarr = ( int * )__kmp_allocate( sizeof( int ) * nproc );
4630             for( int i = 0; i < nproc; i++ ) {
4631                 newarr[ i ] = 0;
4632             }
4633 
4634             int nth = nthreads;
4635             int flag = 0;
4636             while( nth > 0 ) {
4637                 for( int j = 1; j <= nth_per_core; j++ ) {
4638                     int cnt = ncores_with_x_to_max_procs[ j ];
4639                     for( int i = 0; i < ncores; i++ ) {
4640                         // Skip the core with 0 processors
4641                         if( nproc_at_core[ i ] == 0 ) {
4642                             continue;
4643                         }
4644                         for( int k = 0; k < nth_per_core; k++ ) {
4645                             if( procarr[ i * nth_per_core + k ] != -1 ) {
4646                                 if( newarr[ i * nth_per_core + k ] == 0 ) {
4647                                     newarr[ i * nth_per_core + k ] = 1;
4648                                     cnt--;
4649                                     nth--;
4650                                     break;
4651                                 } else {
4652                                     if( flag != 0 ) {
4653                                         newarr[ i * nth_per_core + k ] ++;
4654                                         cnt--;
4655                                         nth--;
4656                                         break;
4657                                     }
4658                                 }
4659                             }
4660                         }
4661                         if( cnt == 0 || nth == 0 ) {
4662                             break;
4663                         }
4664                     }
4665                     if( nth == 0 ) {
4666                         break;
4667                     }
4668                 }
4669                 flag = 1;
4670             }
4671             int sum = 0;
4672             for( int i = 0; i < nproc; i++ ) {
4673                 sum += newarr[ i ];
4674                 if( sum > tid ) {
4675                     // Granularity == thread
4676                     if( __kmp_affinity_gran == affinity_gran_fine || __kmp_affinity_gran == affinity_gran_thread) {
4677                         int osID = procarr[ i ];
4678                         KMP_CPU_SET( osID, mask);
4679                     } else if( __kmp_affinity_gran == affinity_gran_core ) { // Granularity == core
4680                         int coreID = i / nth_per_core;
4681                         for( int ii = 0; ii < nth_per_core; ii++ ) {
4682                             int osID = procarr[ coreID * nth_per_core + ii ];
4683                             if( osID != -1 ) {
4684                                 KMP_CPU_SET( osID, mask);
4685                             }
4686                         }
4687                     }
4688                     break;
4689                 }
4690             }
4691             __kmp_free( newarr );
4692         }
4693 
4694         if (__kmp_affinity_verbose) {
4695             char buf[KMP_AFFIN_MASK_PRINT_LEN];
4696             __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
4697             KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
4698               tid, buf);
4699         }
4700         __kmp_set_system_affinity( mask, TRUE );
4701         KMP_CPU_FREE_FROM_STACK(mask);
4702     }
4703 }
4704 
4705 #if KMP_OS_LINUX
4706 // We don't need this entry for Windows because
4707 // there is GetProcessAffinityMask() api
4708 //
4709 // The intended usage is indicated by these steps:
4710 // 1) The user gets the current affinity mask
4711 // 2) Then sets the affinity by calling this function
4712 // 3) Error check the return value
4713 // 4) Use non-OpenMP parallelization
4714 // 5) Reset the affinity to what was stored in step 1)
4715 #ifdef __cplusplus
4716 extern "C"
4717 #endif
4718 int
4719 kmp_set_thread_affinity_mask_initial()
4720 // the function returns 0 on success,
4721 //   -1 if we cannot bind thread
4722 //   >0 (errno) if an error happened during binding
4723 {
4724     int gtid = __kmp_get_gtid();
4725     if (gtid < 0) {
4726         // Do not touch non-omp threads
4727         KA_TRACE(30, ( "kmp_set_thread_affinity_mask_initial: "
4728             "non-omp thread, returning\n"));
4729         return -1;
4730     }
4731     if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) {
4732         KA_TRACE(30, ( "kmp_set_thread_affinity_mask_initial: "
4733             "affinity not initialized, returning\n"));
4734         return -1;
4735     }
4736     KA_TRACE(30, ( "kmp_set_thread_affinity_mask_initial: "
4737         "set full mask for thread %d\n", gtid));
4738     KMP_DEBUG_ASSERT(fullMask != NULL);
4739     return __kmp_set_system_affinity(fullMask, FALSE);
4740 }
4741 #endif
4742 
4743 #endif // KMP_AFFINITY_SUPPORTED
4744