1 /* 2 * kmp_affinity.cpp -- affinity management 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_i18n.h" 16 #include "kmp_io.h" 17 #include "kmp_str.h" 18 #include "kmp_wrapper_getpid.h" 19 #if KMP_USE_HIER_SCHED 20 #include "kmp_dispatch_hier.h" 21 #endif 22 23 // Store the real or imagined machine hierarchy here 24 static hierarchy_info machine_hierarchy; 25 26 void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); } 27 28 void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) { 29 kmp_uint32 depth; 30 // The test below is true if affinity is available, but set to "none". Need to 31 // init on first use of hierarchical barrier. 32 if (TCR_1(machine_hierarchy.uninitialized)) 33 machine_hierarchy.init(NULL, nproc); 34 35 // Adjust the hierarchy in case num threads exceeds original 36 if (nproc > machine_hierarchy.base_num_threads) 37 machine_hierarchy.resize(nproc); 38 39 depth = machine_hierarchy.depth; 40 KMP_DEBUG_ASSERT(depth > 0); 41 42 thr_bar->depth = depth; 43 __kmp_type_convert(machine_hierarchy.numPerLevel[0] - 1, 44 &(thr_bar->base_leaf_kids)); 45 thr_bar->skip_per_level = machine_hierarchy.skipPerLevel; 46 } 47 48 #if KMP_AFFINITY_SUPPORTED 49 50 const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural) { 51 switch (type) { 52 case KMP_HW_SOCKET: 53 return ((plural) ? KMP_I18N_STR(Sockets) : KMP_I18N_STR(Socket)); 54 case KMP_HW_DIE: 55 return ((plural) ? KMP_I18N_STR(Dice) : KMP_I18N_STR(Die)); 56 case KMP_HW_MODULE: 57 return ((plural) ? KMP_I18N_STR(Modules) : KMP_I18N_STR(Module)); 58 case KMP_HW_TILE: 59 return ((plural) ? KMP_I18N_STR(Tiles) : KMP_I18N_STR(Tile)); 60 case KMP_HW_NUMA: 61 return ((plural) ? KMP_I18N_STR(NumaDomains) : KMP_I18N_STR(NumaDomain)); 62 case KMP_HW_L3: 63 return ((plural) ? KMP_I18N_STR(L3Caches) : KMP_I18N_STR(L3Cache)); 64 case KMP_HW_L2: 65 return ((plural) ? KMP_I18N_STR(L2Caches) : KMP_I18N_STR(L2Cache)); 66 case KMP_HW_L1: 67 return ((plural) ? KMP_I18N_STR(L1Caches) : KMP_I18N_STR(L1Cache)); 68 case KMP_HW_CORE: 69 return ((plural) ? KMP_I18N_STR(Cores) : KMP_I18N_STR(Core)); 70 case KMP_HW_THREAD: 71 return ((plural) ? KMP_I18N_STR(Threads) : KMP_I18N_STR(Thread)); 72 case KMP_HW_PROC_GROUP: 73 return ((plural) ? KMP_I18N_STR(ProcGroups) : KMP_I18N_STR(ProcGroup)); 74 } 75 return KMP_I18N_STR(Unknown); 76 } 77 78 // This function removes the topology levels that are radix 1 and don't offer 79 // further information about the topology. The most common example is when you 80 // have one thread context per core, we don't want the extra thread context 81 // level if it offers no unique labels. So they are removed. 82 // return value: the new depth of address2os 83 static int __kmp_affinity_remove_radix_one_levels(AddrUnsPair *addrP, int nTh, 84 int depth, kmp_hw_t *types) { 85 int preference[KMP_HW_LAST]; 86 int top_index1, top_index2; 87 // Set up preference associative array 88 preference[KMP_HW_PROC_GROUP] = 110; 89 preference[KMP_HW_SOCKET] = 100; 90 preference[KMP_HW_CORE] = 95; 91 preference[KMP_HW_THREAD] = 90; 92 preference[KMP_HW_DIE] = 85; 93 preference[KMP_HW_NUMA] = 80; 94 preference[KMP_HW_TILE] = 75; 95 preference[KMP_HW_MODULE] = 73; 96 preference[KMP_HW_L3] = 70; 97 preference[KMP_HW_L2] = 65; 98 preference[KMP_HW_L1] = 60; 99 top_index1 = 0; 100 top_index2 = 1; 101 while (top_index1 < depth - 1 && top_index2 < depth) { 102 KMP_DEBUG_ASSERT(top_index1 >= 0 && top_index1 < depth); 103 KMP_DEBUG_ASSERT(top_index2 >= 0 && top_index2 < depth); 104 kmp_hw_t type1 = types[top_index1]; 105 kmp_hw_t type2 = types[top_index2]; 106 if (type1 == KMP_HW_SOCKET && type2 == KMP_HW_CORE) { 107 top_index1 = top_index2++; 108 continue; 109 } 110 bool radix1 = true; 111 bool all_same = true; 112 unsigned id1 = addrP[0].first.labels[top_index1]; 113 unsigned id2 = addrP[0].first.labels[top_index2]; 114 int pref1 = preference[type1]; 115 int pref2 = preference[type2]; 116 for (int hwidx = 1; hwidx < nTh; ++hwidx) { 117 if (addrP[hwidx].first.labels[top_index1] == id1 && 118 addrP[hwidx].first.labels[top_index2] != id2) { 119 radix1 = false; 120 break; 121 } 122 if (addrP[hwidx].first.labels[top_index2] != id2) 123 all_same = false; 124 id1 = addrP[hwidx].first.labels[top_index1]; 125 id2 = addrP[hwidx].first.labels[top_index2]; 126 } 127 if (radix1) { 128 // Select the layer to remove based on preference 129 kmp_hw_t remove_type, keep_type; 130 int remove_layer, remove_layer_ids; 131 if (pref1 > pref2) { 132 remove_type = type2; 133 remove_layer = remove_layer_ids = top_index2; 134 keep_type = type1; 135 } else { 136 remove_type = type1; 137 remove_layer = remove_layer_ids = top_index1; 138 keep_type = type2; 139 } 140 // If all the indexes for the second (deeper) layer are the same. 141 // e.g., all are zero, then make sure to keep the first layer's ids 142 if (all_same) 143 remove_layer_ids = top_index2; 144 // Remove radix one type by setting the equivalence, removing the id from 145 // the hw threads and removing the layer from types and depth 146 for (int idx = 0; idx < nTh; ++idx) { 147 Address &hw_thread = addrP[idx].first; 148 for (int d = remove_layer_ids; d < depth - 1; ++d) 149 hw_thread.labels[d] = hw_thread.labels[d + 1]; 150 hw_thread.depth--; 151 } 152 for (int idx = remove_layer; idx < depth - 1; ++idx) 153 types[idx] = types[idx + 1]; 154 depth--; 155 } else { 156 top_index1 = top_index2++; 157 } 158 } 159 KMP_ASSERT(depth > 0); 160 return depth; 161 } 162 // Gather the count of each topology layer and the ratio 163 // ratio contains the number of types[i] / types[i+1] and so forth 164 // count contains the absolute number of types[i] 165 static void __kmp_affinity_gather_enumeration_information(AddrUnsPair *addrP, 166 int nTh, int depth, 167 kmp_hw_t *types, 168 int *ratio, 169 int *count) { 170 int previous_id[KMP_HW_LAST]; 171 int max[KMP_HW_LAST]; 172 173 for (int i = 0; i < depth; ++i) { 174 previous_id[i] = -1; 175 max[i] = 0; 176 count[i] = 0; 177 ratio[i] = 0; 178 } 179 for (int i = 0; i < nTh; ++i) { 180 Address &hw_thread = addrP[i].first; 181 for (int layer = 0; layer < depth; ++layer) { 182 int id = hw_thread.labels[layer]; 183 if (id != previous_id[layer]) { 184 // Add an additional increment to each count 185 for (int l = layer; l < depth; ++l) 186 count[l]++; 187 // Keep track of topology layer ratio statistics 188 max[layer]++; 189 for (int l = layer + 1; l < depth; ++l) { 190 if (max[l] > ratio[l]) 191 ratio[l] = max[l]; 192 max[l] = 1; 193 } 194 break; 195 } 196 } 197 for (int layer = 0; layer < depth; ++layer) { 198 previous_id[layer] = hw_thread.labels[layer]; 199 } 200 } 201 for (int layer = 0; layer < depth; ++layer) { 202 if (max[layer] > ratio[layer]) 203 ratio[layer] = max[layer]; 204 } 205 } 206 207 // Find out if the topology is uniform 208 static bool __kmp_affinity_discover_uniformity(int depth, int *ratio, 209 int *count) { 210 int num = 1; 211 for (int level = 0; level < depth; ++level) 212 num *= ratio[level]; 213 return (num == count[depth - 1]); 214 } 215 216 // calculate the number of X's per Y 217 static inline int __kmp_affinity_calculate_ratio(int *ratio, int deep_level, 218 int shallow_level) { 219 int retval = 1; 220 if (deep_level < 0 || shallow_level < 0) 221 return retval; 222 for (int level = deep_level; level > shallow_level; --level) 223 retval *= ratio[level]; 224 return retval; 225 } 226 227 static void __kmp_affinity_print_topology(AddrUnsPair *addrP, int len, 228 int depth, kmp_hw_t *types) { 229 int proc; 230 kmp_str_buf_t buf; 231 __kmp_str_buf_init(&buf); 232 KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY"); 233 for (proc = 0; proc < len; proc++) { 234 for (int i = 0; i < depth; ++i) { 235 __kmp_str_buf_print(&buf, "%s %d ", __kmp_hw_get_catalog_string(types[i]), 236 addrP[proc].first.labels[i]); 237 } 238 KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", addrP[proc].second, buf.str); 239 __kmp_str_buf_clear(&buf); 240 } 241 __kmp_str_buf_free(&buf); 242 } 243 244 // Print out the detailed machine topology map, i.e. the physical locations 245 // of each OS proc. 246 static void __kmp_affinity_print_topology(AddrUnsPair *address2os, int len, 247 int depth, int pkgLevel, 248 int coreLevel, int threadLevel) { 249 int proc; 250 251 KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY"); 252 for (proc = 0; proc < len; proc++) { 253 int level; 254 kmp_str_buf_t buf; 255 __kmp_str_buf_init(&buf); 256 for (level = 0; level < depth; level++) { 257 if (level == threadLevel) { 258 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Thread)); 259 } else if (level == coreLevel) { 260 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Core)); 261 } else if (level == pkgLevel) { 262 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Package)); 263 } else if (level > pkgLevel) { 264 __kmp_str_buf_print(&buf, "%s_%d ", KMP_I18N_STR(Node), 265 level - pkgLevel - 1); 266 } else { 267 __kmp_str_buf_print(&buf, "L%d ", level); 268 } 269 __kmp_str_buf_print(&buf, "%d ", address2os[proc].first.labels[level]); 270 } 271 KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", address2os[proc].second, 272 buf.str); 273 __kmp_str_buf_free(&buf); 274 } 275 } 276 277 bool KMPAffinity::picked_api = false; 278 279 void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); } 280 void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); } 281 void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); } 282 void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); } 283 void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); } 284 void KMPAffinity::operator delete(void *p) { __kmp_free(p); } 285 286 void KMPAffinity::pick_api() { 287 KMPAffinity *affinity_dispatch; 288 if (picked_api) 289 return; 290 #if KMP_USE_HWLOC 291 // Only use Hwloc if affinity isn't explicitly disabled and 292 // user requests Hwloc topology method 293 if (__kmp_affinity_top_method == affinity_top_method_hwloc && 294 __kmp_affinity_type != affinity_disabled) { 295 affinity_dispatch = new KMPHwlocAffinity(); 296 } else 297 #endif 298 { 299 affinity_dispatch = new KMPNativeAffinity(); 300 } 301 __kmp_affinity_dispatch = affinity_dispatch; 302 picked_api = true; 303 } 304 305 void KMPAffinity::destroy_api() { 306 if (__kmp_affinity_dispatch != NULL) { 307 delete __kmp_affinity_dispatch; 308 __kmp_affinity_dispatch = NULL; 309 picked_api = false; 310 } 311 } 312 313 #define KMP_ADVANCE_SCAN(scan) \ 314 while (*scan != '\0') { \ 315 scan++; \ 316 } 317 318 // Print the affinity mask to the character array in a pretty format. 319 // The format is a comma separated list of non-negative integers or integer 320 // ranges: e.g., 1,2,3-5,7,9-15 321 // The format can also be the string "{<empty>}" if no bits are set in mask 322 char *__kmp_affinity_print_mask(char *buf, int buf_len, 323 kmp_affin_mask_t *mask) { 324 int start = 0, finish = 0, previous = 0; 325 bool first_range; 326 KMP_ASSERT(buf); 327 KMP_ASSERT(buf_len >= 40); 328 KMP_ASSERT(mask); 329 char *scan = buf; 330 char *end = buf + buf_len - 1; 331 332 // Check for empty set. 333 if (mask->begin() == mask->end()) { 334 KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}"); 335 KMP_ADVANCE_SCAN(scan); 336 KMP_ASSERT(scan <= end); 337 return buf; 338 } 339 340 first_range = true; 341 start = mask->begin(); 342 while (1) { 343 // Find next range 344 // [start, previous] is inclusive range of contiguous bits in mask 345 for (finish = mask->next(start), previous = start; 346 finish == previous + 1 && finish != mask->end(); 347 finish = mask->next(finish)) { 348 previous = finish; 349 } 350 351 // The first range does not need a comma printed before it, but the rest 352 // of the ranges do need a comma beforehand 353 if (!first_range) { 354 KMP_SNPRINTF(scan, end - scan + 1, "%s", ","); 355 KMP_ADVANCE_SCAN(scan); 356 } else { 357 first_range = false; 358 } 359 // Range with three or more contiguous bits in the affinity mask 360 if (previous - start > 1) { 361 KMP_SNPRINTF(scan, end - scan + 1, "%u-%u", start, previous); 362 } else { 363 // Range with one or two contiguous bits in the affinity mask 364 KMP_SNPRINTF(scan, end - scan + 1, "%u", start); 365 KMP_ADVANCE_SCAN(scan); 366 if (previous - start > 0) { 367 KMP_SNPRINTF(scan, end - scan + 1, ",%u", previous); 368 } 369 } 370 KMP_ADVANCE_SCAN(scan); 371 // Start over with new start point 372 start = finish; 373 if (start == mask->end()) 374 break; 375 // Check for overflow 376 if (end - scan < 2) 377 break; 378 } 379 380 // Check for overflow 381 KMP_ASSERT(scan <= end); 382 return buf; 383 } 384 #undef KMP_ADVANCE_SCAN 385 386 // Print the affinity mask to the string buffer object in a pretty format 387 // The format is a comma separated list of non-negative integers or integer 388 // ranges: e.g., 1,2,3-5,7,9-15 389 // The format can also be the string "{<empty>}" if no bits are set in mask 390 kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf, 391 kmp_affin_mask_t *mask) { 392 int start = 0, finish = 0, previous = 0; 393 bool first_range; 394 KMP_ASSERT(buf); 395 KMP_ASSERT(mask); 396 397 __kmp_str_buf_clear(buf); 398 399 // Check for empty set. 400 if (mask->begin() == mask->end()) { 401 __kmp_str_buf_print(buf, "%s", "{<empty>}"); 402 return buf; 403 } 404 405 first_range = true; 406 start = mask->begin(); 407 while (1) { 408 // Find next range 409 // [start, previous] is inclusive range of contiguous bits in mask 410 for (finish = mask->next(start), previous = start; 411 finish == previous + 1 && finish != mask->end(); 412 finish = mask->next(finish)) { 413 previous = finish; 414 } 415 416 // The first range does not need a comma printed before it, but the rest 417 // of the ranges do need a comma beforehand 418 if (!first_range) { 419 __kmp_str_buf_print(buf, "%s", ","); 420 } else { 421 first_range = false; 422 } 423 // Range with three or more contiguous bits in the affinity mask 424 if (previous - start > 1) { 425 __kmp_str_buf_print(buf, "%u-%u", start, previous); 426 } else { 427 // Range with one or two contiguous bits in the affinity mask 428 __kmp_str_buf_print(buf, "%u", start); 429 if (previous - start > 0) { 430 __kmp_str_buf_print(buf, ",%u", previous); 431 } 432 } 433 // Start over with new start point 434 start = finish; 435 if (start == mask->end()) 436 break; 437 } 438 return buf; 439 } 440 441 void __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) { 442 KMP_CPU_ZERO(mask); 443 444 #if KMP_GROUP_AFFINITY 445 446 if (__kmp_num_proc_groups > 1) { 447 int group; 448 KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL); 449 for (group = 0; group < __kmp_num_proc_groups; group++) { 450 int i; 451 int num = __kmp_GetActiveProcessorCount(group); 452 for (i = 0; i < num; i++) { 453 KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask); 454 } 455 } 456 } else 457 458 #endif /* KMP_GROUP_AFFINITY */ 459 460 { 461 int proc; 462 for (proc = 0; proc < __kmp_xproc; proc++) { 463 KMP_CPU_SET(proc, mask); 464 } 465 } 466 } 467 468 // When sorting by labels, __kmp_affinity_assign_child_nums() must first be 469 // called to renumber the labels from [0..n] and place them into the child_num 470 // vector of the address object. This is done in case the labels used for 471 // the children at one node of the hierarchy differ from those used for 472 // another node at the same level. Example: suppose the machine has 2 nodes 473 // with 2 packages each. The first node contains packages 601 and 602, and 474 // second node contains packages 603 and 604. If we try to sort the table 475 // for "scatter" affinity, the table will still be sorted 601, 602, 603, 604 476 // because we are paying attention to the labels themselves, not the ordinal 477 // child numbers. By using the child numbers in the sort, the result is 478 // {0,0}=601, {0,1}=603, {1,0}=602, {1,1}=604. 479 static void __kmp_affinity_assign_child_nums(AddrUnsPair *address2os, 480 int numAddrs) { 481 KMP_DEBUG_ASSERT(numAddrs > 0); 482 int depth = address2os->first.depth; 483 unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 484 unsigned *lastLabel = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 485 int labCt; 486 for (labCt = 0; labCt < depth; labCt++) { 487 address2os[0].first.childNums[labCt] = counts[labCt] = 0; 488 lastLabel[labCt] = address2os[0].first.labels[labCt]; 489 } 490 int i; 491 for (i = 1; i < numAddrs; i++) { 492 for (labCt = 0; labCt < depth; labCt++) { 493 if (address2os[i].first.labels[labCt] != lastLabel[labCt]) { 494 int labCt2; 495 for (labCt2 = labCt + 1; labCt2 < depth; labCt2++) { 496 counts[labCt2] = 0; 497 lastLabel[labCt2] = address2os[i].first.labels[labCt2]; 498 } 499 counts[labCt]++; 500 lastLabel[labCt] = address2os[i].first.labels[labCt]; 501 break; 502 } 503 } 504 for (labCt = 0; labCt < depth; labCt++) { 505 address2os[i].first.childNums[labCt] = counts[labCt]; 506 } 507 for (; labCt < (int)Address::maxDepth; labCt++) { 508 address2os[i].first.childNums[labCt] = 0; 509 } 510 } 511 __kmp_free(lastLabel); 512 __kmp_free(counts); 513 } 514 515 // All of the __kmp_affinity_create_*_map() routines should set 516 // __kmp_affinity_masks to a vector of affinity mask objects of length 517 // __kmp_affinity_num_masks, if __kmp_affinity_type != affinity_none, and return 518 // the number of levels in the machine topology tree (zero if 519 // __kmp_affinity_type == affinity_none). 520 // 521 // All of the __kmp_affinity_create_*_map() routines should set 522 // *__kmp_affin_fullMask to the affinity mask for the initialization thread. 523 // They need to save and restore the mask, and it could be needed later, so 524 // saving it is just an optimization to avoid calling kmp_get_system_affinity() 525 // again. 526 kmp_affin_mask_t *__kmp_affin_fullMask = NULL; 527 528 static int nCoresPerPkg, nPackages; 529 static int __kmp_nThreadsPerCore; 530 #ifndef KMP_DFLT_NTH_CORES 531 static int __kmp_ncores; 532 #endif 533 static int *__kmp_pu_os_idx = NULL; 534 static int nDiesPerPkg = 1; 535 536 // __kmp_affinity_uniform_topology() doesn't work when called from 537 // places which support arbitrarily many levels in the machine topology 538 // map, i.e. the non-default cases in __kmp_affinity_create_cpuinfo_map() 539 // __kmp_affinity_create_x2apicid_map(). 540 inline static bool __kmp_affinity_uniform_topology() { 541 return __kmp_avail_proc == 542 (__kmp_nThreadsPerCore * nCoresPerPkg * nDiesPerPkg * nPackages); 543 } 544 545 #if KMP_USE_HWLOC 546 547 static inline bool __kmp_hwloc_is_cache_type(hwloc_obj_t obj) { 548 #if HWLOC_API_VERSION >= 0x00020000 549 return hwloc_obj_type_is_cache(obj->type); 550 #else 551 return obj->type == HWLOC_OBJ_CACHE; 552 #endif 553 } 554 555 // Returns KMP_HW_* type derived from HWLOC_* type 556 static inline kmp_hw_t __kmp_hwloc_type_2_topology_type(hwloc_obj_t obj) { 557 558 if (__kmp_hwloc_is_cache_type(obj)) { 559 if (obj->attr->cache.type == HWLOC_OBJ_CACHE_INSTRUCTION) 560 return KMP_HW_UNKNOWN; 561 switch (obj->attr->cache.depth) { 562 case 1: 563 return KMP_HW_L1; 564 case 2: 565 #if KMP_MIC_SUPPORTED 566 if (__kmp_mic_type == mic3) { 567 return KMP_HW_TILE; 568 } 569 #endif 570 return KMP_HW_L2; 571 case 3: 572 return KMP_HW_L3; 573 } 574 return KMP_HW_UNKNOWN; 575 } 576 577 switch (obj->type) { 578 case HWLOC_OBJ_PACKAGE: 579 return KMP_HW_SOCKET; 580 case HWLOC_OBJ_NUMANODE: 581 return KMP_HW_NUMA; 582 case HWLOC_OBJ_CORE: 583 return KMP_HW_CORE; 584 case HWLOC_OBJ_PU: 585 return KMP_HW_THREAD; 586 } 587 return KMP_HW_UNKNOWN; 588 } 589 590 // Returns the number of objects of type 'type' below 'obj' within the topology 591 // tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is 592 // HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET 593 // object. 594 static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj, 595 hwloc_obj_type_t type) { 596 int retval = 0; 597 hwloc_obj_t first; 598 for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type, 599 obj->logical_index, type, 0); 600 first != NULL && hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, 601 obj->type, first) == obj; 602 first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type, 603 first)) { 604 ++retval; 605 } 606 return retval; 607 } 608 609 static int __kmp_hwloc_count_children_by_depth(hwloc_topology_t t, 610 hwloc_obj_t o, 611 kmp_hwloc_depth_t depth, 612 hwloc_obj_t *f) { 613 if (o->depth == depth) { 614 if (*f == NULL) 615 *f = o; // output first descendant found 616 return 1; 617 } 618 int sum = 0; 619 for (unsigned i = 0; i < o->arity; i++) 620 sum += __kmp_hwloc_count_children_by_depth(t, o->children[i], depth, f); 621 return sum; // will be 0 if no one found (as PU arity is 0) 622 } 623 624 static int __kmp_hwloc_count_children_by_type(hwloc_topology_t t, hwloc_obj_t o, 625 hwloc_obj_type_t type, 626 hwloc_obj_t *f) { 627 if (!hwloc_compare_types(o->type, type)) { 628 if (*f == NULL) 629 *f = o; // output first descendant found 630 return 1; 631 } 632 int sum = 0; 633 for (unsigned i = 0; i < o->arity; i++) 634 sum += __kmp_hwloc_count_children_by_type(t, o->children[i], type, f); 635 return sum; // will be 0 if no one found (as PU arity is 0) 636 } 637 638 // This gets the sub_id for a lower object under a higher object in the 639 // topology tree 640 static int __kmp_hwloc_get_sub_id(hwloc_topology_t t, hwloc_obj_t higher, 641 hwloc_obj_t lower) { 642 hwloc_obj_t obj; 643 hwloc_obj_type_t ltype = lower->type; 644 int lindex = lower->logical_index - 1; 645 int sub_id = 0; 646 // Get the previous lower object 647 obj = hwloc_get_obj_by_type(t, ltype, lindex); 648 while (obj && lindex >= 0 && 649 hwloc_bitmap_isincluded(obj->cpuset, higher->cpuset)) { 650 if (obj->userdata) { 651 sub_id = (int)(RCAST(kmp_intptr_t, obj->userdata)); 652 break; 653 } 654 sub_id++; 655 lindex--; 656 obj = hwloc_get_obj_by_type(t, ltype, lindex); 657 } 658 // store sub_id + 1 so that 0 is differed from NULL 659 lower->userdata = RCAST(void *, sub_id + 1); 660 return sub_id; 661 } 662 663 static int __kmp_affinity_create_hwloc_map(AddrUnsPair **address2os, 664 kmp_i18n_id_t *const msg_id) { 665 kmp_hw_t type; 666 int hw_thread_index, sub_id, nActiveThreads; 667 int depth; 668 hwloc_obj_t pu, obj, root, prev; 669 int ratio[KMP_HW_LAST]; 670 int count[KMP_HW_LAST]; 671 kmp_hw_t types[KMP_HW_LAST]; 672 673 hwloc_topology_t tp = __kmp_hwloc_topology; 674 *msg_id = kmp_i18n_null; 675 676 // Save the affinity mask for the current thread. 677 kmp_affin_mask_t *oldMask; 678 KMP_CPU_ALLOC(oldMask); 679 __kmp_get_system_affinity(oldMask, TRUE); 680 681 if (!KMP_AFFINITY_CAPABLE()) { 682 // Hack to try and infer the machine topology using only the data 683 // available from cpuid on the current thread, and __kmp_xproc. 684 KMP_ASSERT(__kmp_affinity_type == affinity_none); 685 // hwloc only guarantees existance of PU object, so check PACKAGE and CORE 686 hwloc_obj_t o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0); 687 if (o != NULL) 688 nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_CORE); 689 else 690 nCoresPerPkg = 1; // no PACKAGE found 691 o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0); 692 if (o != NULL) 693 __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_PU); 694 else 695 __kmp_nThreadsPerCore = 1; // no CORE found 696 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; 697 if (nCoresPerPkg == 0) 698 nCoresPerPkg = 1; // to prevent possible division by 0 699 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 700 if (__kmp_affinity_verbose) { 701 KMP_INFORM(AffNotUsingHwloc, "KMP_AFFINITY"); 702 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 703 if (__kmp_affinity_uniform_topology()) { 704 KMP_INFORM(Uniform, "KMP_AFFINITY"); 705 } else { 706 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 707 } 708 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 709 __kmp_nThreadsPerCore, __kmp_ncores); 710 } 711 KMP_CPU_FREE(oldMask); 712 return 0; 713 } 714 715 root = hwloc_get_root_obj(tp); 716 717 // Figure out the depth and types in the topology 718 depth = 0; 719 pu = hwloc_get_pu_obj_by_os_index(tp, __kmp_affin_fullMask->begin()); 720 obj = pu; 721 types[depth] = KMP_HW_THREAD; 722 depth++; 723 while (obj != root && obj != NULL) { 724 obj = obj->parent; 725 #if HWLOC_API_VERSION >= 0x00020000 726 if (obj->memory_arity) { 727 hwloc_obj_t memory; 728 for (memory = obj->memory_first_child; memory; 729 memory = hwloc_get_next_child(tp, obj, memory)) { 730 if (memory->type == HWLOC_OBJ_NUMANODE) 731 break; 732 } 733 if (memory && memory->type == HWLOC_OBJ_NUMANODE) { 734 types[depth] = KMP_HW_NUMA; 735 depth++; 736 } 737 } 738 #endif 739 type = __kmp_hwloc_type_2_topology_type(obj); 740 if (type != KMP_HW_UNKNOWN) { 741 types[depth] = type; 742 depth++; 743 } 744 } 745 KMP_ASSERT(depth > 0 && depth <= KMP_HW_LAST); 746 747 // Get the order for the types correct 748 for (int i = 0, j = depth - 1; i < j; ++i, --j) { 749 kmp_hw_t temp = types[i]; 750 types[i] = types[j]; 751 types[j] = temp; 752 } 753 754 // Allocate the data structure to be returned. 755 AddrUnsPair *retval = 756 (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc); 757 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 758 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 759 760 hw_thread_index = 0; 761 pu = NULL; 762 nActiveThreads = 0; 763 while (pu = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, pu)) { 764 int index = depth - 1; 765 bool included = KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask); 766 Address hw_thread(depth); 767 if (included) { 768 hw_thread.labels[index] = pu->logical_index; 769 __kmp_pu_os_idx[hw_thread_index] = pu->os_index; 770 index--; 771 nActiveThreads++; 772 } 773 obj = pu; 774 prev = obj; 775 while (obj != root && obj != NULL) { 776 obj = obj->parent; 777 #if HWLOC_API_VERSION >= 0x00020000 778 // NUMA Nodes are handled differently since they are not within the 779 // parent/child structure anymore. They are separate children 780 // of obj (memory_first_child points to first memory child) 781 if (obj->memory_arity) { 782 hwloc_obj_t memory; 783 for (memory = obj->memory_first_child; memory; 784 memory = hwloc_get_next_child(tp, obj, memory)) { 785 if (memory->type == HWLOC_OBJ_NUMANODE) 786 break; 787 } 788 if (memory && memory->type == HWLOC_OBJ_NUMANODE) { 789 sub_id = __kmp_hwloc_get_sub_id(tp, memory, prev); 790 if (included) { 791 hw_thread.labels[index] = memory->logical_index; 792 hw_thread.labels[index + 1] = sub_id; 793 index--; 794 } 795 prev = memory; 796 } 797 } 798 #endif 799 type = __kmp_hwloc_type_2_topology_type(obj); 800 if (type != KMP_HW_UNKNOWN) { 801 sub_id = __kmp_hwloc_get_sub_id(tp, obj, prev); 802 if (included) { 803 hw_thread.labels[index] = obj->logical_index; 804 hw_thread.labels[index + 1] = sub_id; 805 index--; 806 } 807 prev = obj; 808 } 809 } 810 if (included) { 811 retval[hw_thread_index] = AddrUnsPair(hw_thread, pu->os_index); 812 hw_thread_index++; 813 } 814 } 815 816 // If there's only one thread context to bind to, return now. 817 KMP_DEBUG_ASSERT(nActiveThreads == __kmp_avail_proc); 818 KMP_ASSERT(nActiveThreads > 0); 819 if (nActiveThreads == 1) { 820 __kmp_ncores = nPackages = 1; 821 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 822 if (__kmp_affinity_verbose) { 823 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); 824 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 825 KMP_INFORM(Uniform, "KMP_AFFINITY"); 826 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 827 __kmp_nThreadsPerCore, __kmp_ncores); 828 } 829 830 if (__kmp_affinity_type == affinity_none) { 831 __kmp_free(retval); 832 KMP_CPU_FREE(oldMask); 833 return 0; 834 } 835 836 // Form an Address object which only includes the package level. 837 Address addr(1); 838 addr.labels[0] = retval[0].first.labels[0]; 839 retval[0].first = addr; 840 841 if (__kmp_affinity_gran_levels < 0) { 842 __kmp_affinity_gran_levels = 0; 843 } 844 845 if (__kmp_affinity_verbose) { 846 __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1); 847 } 848 849 *address2os = retval; 850 KMP_CPU_FREE(oldMask); 851 return 1; 852 } 853 854 // Sort the table by physical Id. 855 qsort(retval, nActiveThreads, sizeof(*retval), 856 __kmp_affinity_cmp_Address_labels); 857 858 // Find any levels with radiix 1, and remove them from the map 859 // (except for the package level). 860 depth = __kmp_affinity_remove_radix_one_levels(retval, nActiveThreads, depth, 861 types); 862 863 __kmp_affinity_gather_enumeration_information(retval, nActiveThreads, depth, 864 types, ratio, count); 865 866 for (int level = 0; level < depth; ++level) { 867 if ((types[level] == KMP_HW_L2 || types[level] == KMP_HW_L3)) 868 __kmp_tile_depth = level; 869 } 870 871 // This routine should set __kmp_ncores, as well as 872 // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 873 int thread_level, core_level, tile_level, numa_level, socket_level; 874 thread_level = core_level = tile_level = numa_level = socket_level = -1; 875 for (int level = 0; level < depth; ++level) { 876 if (types[level] == KMP_HW_THREAD) 877 thread_level = level; 878 else if (types[level] == KMP_HW_CORE) 879 core_level = level; 880 else if (types[level] == KMP_HW_SOCKET) 881 socket_level = level; 882 else if (types[level] == KMP_HW_TILE) 883 tile_level = level; 884 else if (types[level] == KMP_HW_NUMA) 885 numa_level = level; 886 } 887 __kmp_nThreadsPerCore = 888 __kmp_affinity_calculate_ratio(ratio, thread_level, core_level); 889 nCoresPerPkg = 890 __kmp_affinity_calculate_ratio(ratio, core_level, socket_level); 891 if (socket_level >= 0) 892 nPackages = count[socket_level]; 893 else 894 nPackages = 1; 895 if (core_level >= 0) 896 __kmp_ncores = count[core_level]; 897 else 898 __kmp_ncores = 1; 899 900 unsigned uniform = __kmp_affinity_discover_uniformity(depth, ratio, count); 901 902 // Print the machine topology summary. 903 if (__kmp_affinity_verbose) { 904 kmp_hw_t numerator_type, denominator_type; 905 kmp_str_buf_t buf; 906 __kmp_str_buf_init(&buf); 907 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 908 if (uniform) { 909 KMP_INFORM(Uniform, "KMP_AFFINITY"); 910 } else { 911 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 912 } 913 914 __kmp_str_buf_clear(&buf); 915 916 if (core_level < 0) 917 core_level = depth - 1; 918 int ncores = count[core_level]; 919 920 denominator_type = KMP_HW_UNKNOWN; 921 for (int level = 0; level < depth; ++level) { 922 int c; 923 bool plural; 924 numerator_type = types[level]; 925 c = ratio[level]; 926 plural = (c > 1); 927 if (level == 0) { 928 __kmp_str_buf_print( 929 &buf, "%d %s", c, 930 __kmp_hw_get_catalog_string(numerator_type, plural)); 931 } else { 932 __kmp_str_buf_print(&buf, " x %d %s/%s", c, 933 __kmp_hw_get_catalog_string(numerator_type, plural), 934 __kmp_hw_get_catalog_string(denominator_type)); 935 } 936 denominator_type = numerator_type; 937 } 938 KMP_INFORM(TopologyGeneric, "KMP_AFFINITY", buf.str, ncores); 939 __kmp_str_buf_free(&buf); 940 } 941 942 if (__kmp_affinity_type == affinity_none) { 943 __kmp_free(retval); 944 KMP_CPU_FREE(oldMask); 945 return 0; 946 } 947 948 // Set the granularity level based on what levels are modeled 949 // in the machine topology map. 950 if (__kmp_affinity_gran == affinity_gran_node) 951 __kmp_affinity_gran = affinity_gran_numa; 952 KMP_DEBUG_ASSERT(__kmp_affinity_gran != affinity_gran_default); 953 if (__kmp_affinity_gran_levels < 0) { 954 __kmp_affinity_gran_levels = 0; // lowest level (e.g. fine) 955 if ((thread_level >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) 956 __kmp_affinity_gran_levels++; 957 if ((core_level >= 0) && (__kmp_affinity_gran > affinity_gran_core)) 958 __kmp_affinity_gran_levels++; 959 if ((tile_level >= 0) && (__kmp_affinity_gran > affinity_gran_tile)) 960 __kmp_affinity_gran_levels++; 961 if ((numa_level >= 0) && (__kmp_affinity_gran > affinity_gran_numa)) 962 __kmp_affinity_gran_levels++; 963 if ((socket_level >= 0) && (__kmp_affinity_gran > affinity_gran_package)) 964 __kmp_affinity_gran_levels++; 965 } 966 967 if (__kmp_affinity_verbose) 968 __kmp_affinity_print_topology(retval, nActiveThreads, depth, types); 969 970 KMP_CPU_FREE(oldMask); 971 *address2os = retval; 972 return depth; 973 } 974 #endif // KMP_USE_HWLOC 975 976 // If we don't know how to retrieve the machine's processor topology, or 977 // encounter an error in doing so, this routine is called to form a "flat" 978 // mapping of os thread id's <-> processor id's. 979 static int __kmp_affinity_create_flat_map(AddrUnsPair **address2os, 980 kmp_i18n_id_t *const msg_id) { 981 *address2os = NULL; 982 *msg_id = kmp_i18n_null; 983 984 // Even if __kmp_affinity_type == affinity_none, this routine might still 985 // called to set __kmp_ncores, as well as 986 // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 987 if (!KMP_AFFINITY_CAPABLE()) { 988 KMP_ASSERT(__kmp_affinity_type == affinity_none); 989 __kmp_ncores = nPackages = __kmp_xproc; 990 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 991 if (__kmp_affinity_verbose) { 992 KMP_INFORM(AffFlatTopology, "KMP_AFFINITY"); 993 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 994 KMP_INFORM(Uniform, "KMP_AFFINITY"); 995 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 996 __kmp_nThreadsPerCore, __kmp_ncores); 997 } 998 return 0; 999 } 1000 1001 // When affinity is off, this routine will still be called to set 1002 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 1003 // Make sure all these vars are set correctly, and return now if affinity is 1004 // not enabled. 1005 __kmp_ncores = nPackages = __kmp_avail_proc; 1006 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 1007 if (__kmp_affinity_verbose) { 1008 KMP_INFORM(AffCapableUseFlat, "KMP_AFFINITY"); 1009 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1010 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1011 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1012 __kmp_nThreadsPerCore, __kmp_ncores); 1013 } 1014 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 1015 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 1016 if (__kmp_affinity_type == affinity_none) { 1017 int avail_ct = 0; 1018 int i; 1019 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 1020 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) 1021 continue; 1022 __kmp_pu_os_idx[avail_ct++] = i; // suppose indices are flat 1023 } 1024 return 0; 1025 } 1026 1027 // Construct the data structure to be returned. 1028 *address2os = 1029 (AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc); 1030 int avail_ct = 0; 1031 int i; 1032 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 1033 // Skip this proc if it is not included in the machine model. 1034 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 1035 continue; 1036 } 1037 __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat 1038 Address addr(1); 1039 addr.labels[0] = i; 1040 (*address2os)[avail_ct++] = AddrUnsPair(addr, i); 1041 } 1042 if (__kmp_affinity_verbose) { 1043 KMP_INFORM(OSProcToPackage, "KMP_AFFINITY"); 1044 } 1045 1046 if (__kmp_affinity_gran_levels < 0) { 1047 // Only the package level is modeled in the machine topology map, 1048 // so the #levels of granularity is either 0 or 1. 1049 if (__kmp_affinity_gran > affinity_gran_package) { 1050 __kmp_affinity_gran_levels = 1; 1051 } else { 1052 __kmp_affinity_gran_levels = 0; 1053 } 1054 } 1055 return 1; 1056 } 1057 1058 #if KMP_GROUP_AFFINITY 1059 1060 // If multiple Windows* OS processor groups exist, we can create a 2-level 1061 // topology map with the groups at level 0 and the individual procs at level 1. 1062 // This facilitates letting the threads float among all procs in a group, 1063 // if granularity=group (the default when there are multiple groups). 1064 static int __kmp_affinity_create_proc_group_map(AddrUnsPair **address2os, 1065 kmp_i18n_id_t *const msg_id) { 1066 *address2os = NULL; 1067 *msg_id = kmp_i18n_null; 1068 1069 // If we aren't affinity capable, then return now. 1070 // The flat mapping will be used. 1071 if (!KMP_AFFINITY_CAPABLE()) { 1072 // FIXME set *msg_id 1073 return -1; 1074 } 1075 1076 // Construct the data structure to be returned. 1077 *address2os = 1078 (AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc); 1079 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 1080 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 1081 int avail_ct = 0; 1082 int i; 1083 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 1084 // Skip this proc if it is not included in the machine model. 1085 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 1086 continue; 1087 } 1088 __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat 1089 Address addr(2); 1090 addr.labels[0] = i / (CHAR_BIT * sizeof(DWORD_PTR)); 1091 addr.labels[1] = i % (CHAR_BIT * sizeof(DWORD_PTR)); 1092 (*address2os)[avail_ct++] = AddrUnsPair(addr, i); 1093 1094 if (__kmp_affinity_verbose) { 1095 KMP_INFORM(AffOSProcToGroup, "KMP_AFFINITY", i, addr.labels[0], 1096 addr.labels[1]); 1097 } 1098 } 1099 1100 if (__kmp_affinity_gran_levels < 0) { 1101 if (__kmp_affinity_gran == affinity_gran_group) { 1102 __kmp_affinity_gran_levels = 1; 1103 } else if ((__kmp_affinity_gran == affinity_gran_fine) || 1104 (__kmp_affinity_gran == affinity_gran_thread)) { 1105 __kmp_affinity_gran_levels = 0; 1106 } else { 1107 const char *gran_str = NULL; 1108 if (__kmp_affinity_gran == affinity_gran_core) { 1109 gran_str = "core"; 1110 } else if (__kmp_affinity_gran == affinity_gran_package) { 1111 gran_str = "package"; 1112 } else if (__kmp_affinity_gran == affinity_gran_node) { 1113 gran_str = "node"; 1114 } else { 1115 KMP_ASSERT(0); 1116 } 1117 1118 // Warning: can't use affinity granularity \"gran\" with group topology 1119 // method, using "thread" 1120 __kmp_affinity_gran_levels = 0; 1121 } 1122 } 1123 return 2; 1124 } 1125 1126 #endif /* KMP_GROUP_AFFINITY */ 1127 1128 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1129 1130 /* 1131 * CPUID.B or 1F, Input ECX (sub leaf # aka level number) 1132 Bits Bits Bits Bits 1133 31-16 15-8 7-4 4-0 1134 ---+-----------+--------------+-------------+-----------------+ 1135 EAX| reserved | reserved | reserved | Bits to Shift | 1136 ---+-----------|--------------+-------------+-----------------| 1137 EBX| reserved | Num logical processors at level (16 bits) | 1138 ---+-----------|--------------+-------------------------------| 1139 ECX| reserved | Level Type | Level Number (8 bits) | 1140 ---+-----------+--------------+-------------------------------| 1141 EDX| X2APIC ID (32 bits) | 1142 ---+----------------------------------------------------------+ 1143 */ 1144 1145 enum { 1146 INTEL_LEVEL_TYPE_INVALID = 0, // Package level 1147 INTEL_LEVEL_TYPE_SMT = 1, 1148 INTEL_LEVEL_TYPE_CORE = 2, 1149 INTEL_LEVEL_TYPE_TILE = 3, 1150 INTEL_LEVEL_TYPE_MODULE = 4, 1151 INTEL_LEVEL_TYPE_DIE = 5, 1152 INTEL_LEVEL_TYPE_LAST = 6, 1153 }; 1154 1155 struct cpuid_level_info_t { 1156 unsigned level_type, mask, mask_width, nitems, cache_mask; 1157 }; 1158 1159 template <kmp_uint32 LSB, kmp_uint32 MSB> 1160 static inline unsigned __kmp_extract_bits(kmp_uint32 v) { 1161 const kmp_uint32 SHIFT_LEFT = sizeof(kmp_uint32) * 8 - 1 - MSB; 1162 const kmp_uint32 SHIFT_RIGHT = LSB; 1163 kmp_uint32 retval = v; 1164 retval <<= SHIFT_LEFT; 1165 retval >>= (SHIFT_LEFT + SHIFT_RIGHT); 1166 return retval; 1167 } 1168 1169 static kmp_hw_t __kmp_intel_type_2_topology_type(int intel_type) { 1170 switch (intel_type) { 1171 case INTEL_LEVEL_TYPE_INVALID: 1172 return KMP_HW_SOCKET; 1173 case INTEL_LEVEL_TYPE_SMT: 1174 return KMP_HW_THREAD; 1175 case INTEL_LEVEL_TYPE_CORE: 1176 return KMP_HW_CORE; 1177 // TODO: add support for the tile and module 1178 case INTEL_LEVEL_TYPE_TILE: 1179 return KMP_HW_UNKNOWN; 1180 case INTEL_LEVEL_TYPE_MODULE: 1181 return KMP_HW_UNKNOWN; 1182 case INTEL_LEVEL_TYPE_DIE: 1183 return KMP_HW_DIE; 1184 } 1185 return KMP_HW_UNKNOWN; 1186 } 1187 1188 // This function takes the topology leaf, a levels array to store the levels 1189 // detected and a bitmap of the known levels. 1190 // Returns the number of levels in the topology 1191 static unsigned 1192 __kmp_x2apicid_get_levels(int leaf, 1193 cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST], 1194 kmp_uint64 known_levels) { 1195 unsigned level, levels_index; 1196 unsigned level_type, mask_width, nitems; 1197 kmp_cpuid buf; 1198 1199 // The new algorithm has known topology layers act as highest unknown topology 1200 // layers when unknown topology layers exist. 1201 // e.g., Suppose layers were SMT CORE <Y> <Z> PACKAGE 1202 // Then CORE will take the characteristics (nitems and mask width) of <Z>. 1203 // In developing the id mask for each layer, this eliminates unknown portions 1204 // of the topology while still keeping the correct underlying structure. 1205 level = levels_index = 0; 1206 do { 1207 __kmp_x86_cpuid(leaf, level, &buf); 1208 level_type = __kmp_extract_bits<8, 15>(buf.ecx); 1209 mask_width = __kmp_extract_bits<0, 4>(buf.eax); 1210 nitems = __kmp_extract_bits<0, 15>(buf.ebx); 1211 if (level_type != INTEL_LEVEL_TYPE_INVALID && nitems == 0) 1212 return 0; 1213 1214 if (known_levels & (1ull << level_type)) { 1215 // Add a new level to the topology 1216 KMP_ASSERT(levels_index < INTEL_LEVEL_TYPE_LAST); 1217 levels[levels_index].level_type = level_type; 1218 levels[levels_index].mask_width = mask_width; 1219 levels[levels_index].nitems = nitems; 1220 levels_index++; 1221 } else { 1222 // If it is an unknown level, then logically move the previous layer up 1223 if (levels_index > 0) { 1224 levels[levels_index - 1].mask_width = mask_width; 1225 levels[levels_index - 1].nitems = nitems; 1226 } 1227 } 1228 level++; 1229 } while (level_type != INTEL_LEVEL_TYPE_INVALID); 1230 1231 // Set the masks to & with apicid 1232 for (unsigned i = 0; i < levels_index; ++i) { 1233 if (levels[i].level_type != INTEL_LEVEL_TYPE_INVALID) { 1234 levels[i].mask = ~((-1) << levels[i].mask_width); 1235 levels[i].cache_mask = (-1) << levels[i].mask_width; 1236 for (unsigned j = 0; j < i; ++j) 1237 levels[i].mask ^= levels[j].mask; 1238 } else { 1239 KMP_DEBUG_ASSERT(levels_index > 0); 1240 levels[i].mask = (-1) << levels[i - 1].mask_width; 1241 levels[i].cache_mask = 0; 1242 } 1243 } 1244 return levels_index; 1245 } 1246 1247 static int __kmp_cpuid_mask_width(int count) { 1248 int r = 0; 1249 1250 while ((1 << r) < count) 1251 ++r; 1252 return r; 1253 } 1254 1255 class apicThreadInfo { 1256 public: 1257 unsigned osId; // param to __kmp_affinity_bind_thread 1258 unsigned apicId; // from cpuid after binding 1259 unsigned maxCoresPerPkg; // "" 1260 unsigned maxThreadsPerPkg; // "" 1261 unsigned pkgId; // inferred from above values 1262 unsigned coreId; // "" 1263 unsigned threadId; // "" 1264 }; 1265 1266 static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a, 1267 const void *b) { 1268 const apicThreadInfo *aa = (const apicThreadInfo *)a; 1269 const apicThreadInfo *bb = (const apicThreadInfo *)b; 1270 if (aa->pkgId < bb->pkgId) 1271 return -1; 1272 if (aa->pkgId > bb->pkgId) 1273 return 1; 1274 if (aa->coreId < bb->coreId) 1275 return -1; 1276 if (aa->coreId > bb->coreId) 1277 return 1; 1278 if (aa->threadId < bb->threadId) 1279 return -1; 1280 if (aa->threadId > bb->threadId) 1281 return 1; 1282 return 0; 1283 } 1284 1285 // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use 1286 // an algorithm which cycles through the available os threads, setting 1287 // the current thread's affinity mask to that thread, and then retrieves 1288 // the Apic Id for each thread context using the cpuid instruction. 1289 static int __kmp_affinity_create_apicid_map(AddrUnsPair **address2os, 1290 kmp_i18n_id_t *const msg_id) { 1291 kmp_cpuid buf; 1292 *address2os = NULL; 1293 *msg_id = kmp_i18n_null; 1294 1295 // Check if cpuid leaf 4 is supported. 1296 __kmp_x86_cpuid(0, 0, &buf); 1297 if (buf.eax < 4) { 1298 *msg_id = kmp_i18n_str_NoLeaf4Support; 1299 return -1; 1300 } 1301 1302 // The algorithm used starts by setting the affinity to each available thread 1303 // and retrieving info from the cpuid instruction, so if we are not capable of 1304 // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we 1305 // need to do something else - use the defaults that we calculated from 1306 // issuing cpuid without binding to each proc. 1307 if (!KMP_AFFINITY_CAPABLE()) { 1308 // Hack to try and infer the machine topology using only the data 1309 // available from cpuid on the current thread, and __kmp_xproc. 1310 KMP_ASSERT(__kmp_affinity_type == affinity_none); 1311 1312 // Get an upper bound on the number of threads per package using cpuid(1). 1313 // On some OS/chps combinations where HT is supported by the chip but is 1314 // disabled, this value will be 2 on a single core chip. Usually, it will be 1315 // 2 if HT is enabled and 1 if HT is disabled. 1316 __kmp_x86_cpuid(1, 0, &buf); 1317 int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; 1318 if (maxThreadsPerPkg == 0) { 1319 maxThreadsPerPkg = 1; 1320 } 1321 1322 // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded 1323 // value. 1324 // 1325 // The author of cpu_count.cpp treated this only an upper bound on the 1326 // number of cores, but I haven't seen any cases where it was greater than 1327 // the actual number of cores, so we will treat it as exact in this block of 1328 // code. 1329 // 1330 // First, we need to check if cpuid(4) is supported on this chip. To see if 1331 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or 1332 // greater. 1333 __kmp_x86_cpuid(0, 0, &buf); 1334 if (buf.eax >= 4) { 1335 __kmp_x86_cpuid(4, 0, &buf); 1336 nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; 1337 } else { 1338 nCoresPerPkg = 1; 1339 } 1340 1341 // There is no way to reliably tell if HT is enabled without issuing the 1342 // cpuid instruction from every thread, can correlating the cpuid info, so 1343 // if the machine is not affinity capable, we assume that HT is off. We have 1344 // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine 1345 // does not support HT. 1346 // 1347 // - Older OSes are usually found on machines with older chips, which do not 1348 // support HT. 1349 // - The performance penalty for mistakenly identifying a machine as HT when 1350 // it isn't (which results in blocktime being incorrectly set to 0) is 1351 // greater than the penalty when for mistakenly identifying a machine as 1352 // being 1 thread/core when it is really HT enabled (which results in 1353 // blocktime being incorrectly set to a positive value). 1354 __kmp_ncores = __kmp_xproc; 1355 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 1356 __kmp_nThreadsPerCore = 1; 1357 if (__kmp_affinity_verbose) { 1358 KMP_INFORM(AffNotCapableUseLocCpuid, "KMP_AFFINITY"); 1359 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1360 if (__kmp_affinity_uniform_topology()) { 1361 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1362 } else { 1363 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 1364 } 1365 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1366 __kmp_nThreadsPerCore, __kmp_ncores); 1367 } 1368 return 0; 1369 } 1370 1371 // From here on, we can assume that it is safe to call 1372 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if 1373 // __kmp_affinity_type = affinity_none. 1374 1375 // Save the affinity mask for the current thread. 1376 kmp_affin_mask_t *oldMask; 1377 KMP_CPU_ALLOC(oldMask); 1378 KMP_ASSERT(oldMask != NULL); 1379 __kmp_get_system_affinity(oldMask, TRUE); 1380 1381 // Run through each of the available contexts, binding the current thread 1382 // to it, and obtaining the pertinent information using the cpuid instr. 1383 // 1384 // The relevant information is: 1385 // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context 1386 // has a uniqie Apic Id, which is of the form pkg# : core# : thread#. 1387 // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value 1388 // of this field determines the width of the core# + thread# fields in the 1389 // Apic Id. It is also an upper bound on the number of threads per 1390 // package, but it has been verified that situations happen were it is not 1391 // exact. In particular, on certain OS/chip combinations where Intel(R) 1392 // Hyper-Threading Technology is supported by the chip but has been 1393 // disabled, the value of this field will be 2 (for a single core chip). 1394 // On other OS/chip combinations supporting Intel(R) Hyper-Threading 1395 // Technology, the value of this field will be 1 when Intel(R) 1396 // Hyper-Threading Technology is disabled and 2 when it is enabled. 1397 // - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value 1398 // of this field (+1) determines the width of the core# field in the Apic 1399 // Id. The comments in "cpucount.cpp" say that this value is an upper 1400 // bound, but the IA-32 architecture manual says that it is exactly the 1401 // number of cores per package, and I haven't seen any case where it 1402 // wasn't. 1403 // 1404 // From this information, deduce the package Id, core Id, and thread Id, 1405 // and set the corresponding fields in the apicThreadInfo struct. 1406 unsigned i; 1407 apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate( 1408 __kmp_avail_proc * sizeof(apicThreadInfo)); 1409 unsigned nApics = 0; 1410 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 1411 // Skip this proc if it is not included in the machine model. 1412 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 1413 continue; 1414 } 1415 KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc); 1416 1417 __kmp_affinity_dispatch->bind_thread(i); 1418 threadInfo[nApics].osId = i; 1419 1420 // The apic id and max threads per pkg come from cpuid(1). 1421 __kmp_x86_cpuid(1, 0, &buf); 1422 if (((buf.edx >> 9) & 1) == 0) { 1423 __kmp_set_system_affinity(oldMask, TRUE); 1424 __kmp_free(threadInfo); 1425 KMP_CPU_FREE(oldMask); 1426 *msg_id = kmp_i18n_str_ApicNotPresent; 1427 return -1; 1428 } 1429 threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff; 1430 threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; 1431 if (threadInfo[nApics].maxThreadsPerPkg == 0) { 1432 threadInfo[nApics].maxThreadsPerPkg = 1; 1433 } 1434 1435 // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded 1436 // value. 1437 // 1438 // First, we need to check if cpuid(4) is supported on this chip. To see if 1439 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n 1440 // or greater. 1441 __kmp_x86_cpuid(0, 0, &buf); 1442 if (buf.eax >= 4) { 1443 __kmp_x86_cpuid(4, 0, &buf); 1444 threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; 1445 } else { 1446 threadInfo[nApics].maxCoresPerPkg = 1; 1447 } 1448 1449 // Infer the pkgId / coreId / threadId using only the info obtained locally. 1450 int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg); 1451 threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT; 1452 1453 int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg); 1454 int widthT = widthCT - widthC; 1455 if (widthT < 0) { 1456 // I've never seen this one happen, but I suppose it could, if the cpuid 1457 // instruction on a chip was really screwed up. Make sure to restore the 1458 // affinity mask before the tail call. 1459 __kmp_set_system_affinity(oldMask, TRUE); 1460 __kmp_free(threadInfo); 1461 KMP_CPU_FREE(oldMask); 1462 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1463 return -1; 1464 } 1465 1466 int maskC = (1 << widthC) - 1; 1467 threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC; 1468 1469 int maskT = (1 << widthT) - 1; 1470 threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT; 1471 1472 nApics++; 1473 } 1474 1475 // We've collected all the info we need. 1476 // Restore the old affinity mask for this thread. 1477 __kmp_set_system_affinity(oldMask, TRUE); 1478 1479 // If there's only one thread context to bind to, form an Address object 1480 // with depth 1 and return immediately (or, if affinity is off, set 1481 // address2os to NULL and return). 1482 // 1483 // If it is configured to omit the package level when there is only a single 1484 // package, the logic at the end of this routine won't work if there is only 1485 // a single thread - it would try to form an Address object with depth 0. 1486 KMP_ASSERT(nApics > 0); 1487 if (nApics == 1) { 1488 __kmp_ncores = nPackages = 1; 1489 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 1490 if (__kmp_affinity_verbose) { 1491 KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY"); 1492 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1493 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1494 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1495 __kmp_nThreadsPerCore, __kmp_ncores); 1496 } 1497 1498 if (__kmp_affinity_type == affinity_none) { 1499 __kmp_free(threadInfo); 1500 KMP_CPU_FREE(oldMask); 1501 return 0; 1502 } 1503 1504 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair)); 1505 Address addr(1); 1506 addr.labels[0] = threadInfo[0].pkgId; 1507 (*address2os)[0] = AddrUnsPair(addr, threadInfo[0].osId); 1508 1509 if (__kmp_affinity_gran_levels < 0) { 1510 __kmp_affinity_gran_levels = 0; 1511 } 1512 1513 if (__kmp_affinity_verbose) { 1514 __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1); 1515 } 1516 1517 __kmp_free(threadInfo); 1518 KMP_CPU_FREE(oldMask); 1519 return 1; 1520 } 1521 1522 // Sort the threadInfo table by physical Id. 1523 qsort(threadInfo, nApics, sizeof(*threadInfo), 1524 __kmp_affinity_cmp_apicThreadInfo_phys_id); 1525 1526 // The table is now sorted by pkgId / coreId / threadId, but we really don't 1527 // know the radix of any of the fields. pkgId's may be sparsely assigned among 1528 // the chips on a system. Although coreId's are usually assigned 1529 // [0 .. coresPerPkg-1] and threadId's are usually assigned 1530 // [0..threadsPerCore-1], we don't want to make any such assumptions. 1531 // 1532 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the 1533 // total # packages) are at this point - we want to determine that now. We 1534 // only have an upper bound on the first two figures. 1535 // 1536 // We also perform a consistency check at this point: the values returned by 1537 // the cpuid instruction for any thread bound to a given package had better 1538 // return the same info for maxThreadsPerPkg and maxCoresPerPkg. 1539 nPackages = 1; 1540 nCoresPerPkg = 1; 1541 __kmp_nThreadsPerCore = 1; 1542 unsigned nCores = 1; 1543 1544 unsigned pkgCt = 1; // to determine radii 1545 unsigned lastPkgId = threadInfo[0].pkgId; 1546 unsigned coreCt = 1; 1547 unsigned lastCoreId = threadInfo[0].coreId; 1548 unsigned threadCt = 1; 1549 unsigned lastThreadId = threadInfo[0].threadId; 1550 1551 // intra-pkg consist checks 1552 unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg; 1553 unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg; 1554 1555 for (i = 1; i < nApics; i++) { 1556 if (threadInfo[i].pkgId != lastPkgId) { 1557 nCores++; 1558 pkgCt++; 1559 lastPkgId = threadInfo[i].pkgId; 1560 if ((int)coreCt > nCoresPerPkg) 1561 nCoresPerPkg = coreCt; 1562 coreCt = 1; 1563 lastCoreId = threadInfo[i].coreId; 1564 if ((int)threadCt > __kmp_nThreadsPerCore) 1565 __kmp_nThreadsPerCore = threadCt; 1566 threadCt = 1; 1567 lastThreadId = threadInfo[i].threadId; 1568 1569 // This is a different package, so go on to the next iteration without 1570 // doing any consistency checks. Reset the consistency check vars, though. 1571 prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg; 1572 prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg; 1573 continue; 1574 } 1575 1576 if (threadInfo[i].coreId != lastCoreId) { 1577 nCores++; 1578 coreCt++; 1579 lastCoreId = threadInfo[i].coreId; 1580 if ((int)threadCt > __kmp_nThreadsPerCore) 1581 __kmp_nThreadsPerCore = threadCt; 1582 threadCt = 1; 1583 lastThreadId = threadInfo[i].threadId; 1584 } else if (threadInfo[i].threadId != lastThreadId) { 1585 threadCt++; 1586 lastThreadId = threadInfo[i].threadId; 1587 } else { 1588 __kmp_free(threadInfo); 1589 KMP_CPU_FREE(oldMask); 1590 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; 1591 return -1; 1592 } 1593 1594 // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg 1595 // fields agree between all the threads bounds to a given package. 1596 if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) || 1597 (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) { 1598 __kmp_free(threadInfo); 1599 KMP_CPU_FREE(oldMask); 1600 *msg_id = kmp_i18n_str_InconsistentCpuidInfo; 1601 return -1; 1602 } 1603 } 1604 nPackages = pkgCt; 1605 if ((int)coreCt > nCoresPerPkg) 1606 nCoresPerPkg = coreCt; 1607 if ((int)threadCt > __kmp_nThreadsPerCore) 1608 __kmp_nThreadsPerCore = threadCt; 1609 1610 // When affinity is off, this routine will still be called to set 1611 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 1612 // Make sure all these vars are set correctly, and return now if affinity is 1613 // not enabled. 1614 __kmp_ncores = nCores; 1615 if (__kmp_affinity_verbose) { 1616 KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY"); 1617 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1618 if (__kmp_affinity_uniform_topology()) { 1619 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1620 } else { 1621 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 1622 } 1623 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1624 __kmp_nThreadsPerCore, __kmp_ncores); 1625 } 1626 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 1627 KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc); 1628 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 1629 for (i = 0; i < nApics; ++i) { 1630 __kmp_pu_os_idx[i] = threadInfo[i].osId; 1631 } 1632 if (__kmp_affinity_type == affinity_none) { 1633 __kmp_free(threadInfo); 1634 KMP_CPU_FREE(oldMask); 1635 return 0; 1636 } 1637 1638 // Now that we've determined the number of packages, the number of cores per 1639 // package, and the number of threads per core, we can construct the data 1640 // structure that is to be returned. 1641 int pkgLevel = 0; 1642 int coreLevel = (nCoresPerPkg <= 1) ? -1 : 1; 1643 int threadLevel = 1644 (__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1); 1645 unsigned depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0); 1646 1647 KMP_ASSERT(depth > 0); 1648 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * nApics); 1649 1650 for (i = 0; i < nApics; ++i) { 1651 Address addr(depth); 1652 unsigned os = threadInfo[i].osId; 1653 int d = 0; 1654 1655 if (pkgLevel >= 0) { 1656 addr.labels[d++] = threadInfo[i].pkgId; 1657 } 1658 if (coreLevel >= 0) { 1659 addr.labels[d++] = threadInfo[i].coreId; 1660 } 1661 if (threadLevel >= 0) { 1662 addr.labels[d++] = threadInfo[i].threadId; 1663 } 1664 (*address2os)[i] = AddrUnsPair(addr, os); 1665 } 1666 1667 if (__kmp_affinity_gran_levels < 0) { 1668 // Set the granularity level based on what levels are modeled in the machine 1669 // topology map. 1670 __kmp_affinity_gran_levels = 0; 1671 if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) { 1672 __kmp_affinity_gran_levels++; 1673 } 1674 if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) { 1675 __kmp_affinity_gran_levels++; 1676 } 1677 if ((pkgLevel >= 0) && (__kmp_affinity_gran > affinity_gran_package)) { 1678 __kmp_affinity_gran_levels++; 1679 } 1680 } 1681 1682 if (__kmp_affinity_verbose) { 1683 __kmp_affinity_print_topology(*address2os, nApics, depth, pkgLevel, 1684 coreLevel, threadLevel); 1685 } 1686 1687 __kmp_free(threadInfo); 1688 KMP_CPU_FREE(oldMask); 1689 return depth; 1690 } 1691 1692 // Intel(R) microarchitecture code name Nehalem, Dunnington and later 1693 // architectures support a newer interface for specifying the x2APIC Ids, 1694 // based on CPUID.B or CPUID.1F 1695 static int __kmp_affinity_create_x2apicid_map(AddrUnsPair **address2os, 1696 kmp_i18n_id_t *const msg_id) { 1697 1698 cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST]; 1699 int ratio[KMP_HW_LAST]; 1700 int count[KMP_HW_LAST]; 1701 kmp_hw_t types[INTEL_LEVEL_TYPE_LAST]; 1702 unsigned levels_index; 1703 kmp_cpuid buf; 1704 kmp_uint64 known_levels; 1705 int topology_leaf, highest_leaf, apic_id; 1706 int num_leaves; 1707 static int leaves[] = {0, 0}; 1708 1709 kmp_i18n_id_t leaf_message_id; 1710 1711 KMP_BUILD_ASSERT(sizeof(known_levels) * CHAR_BIT > KMP_HW_LAST); 1712 1713 *msg_id = kmp_i18n_null; 1714 1715 // Figure out the known topology levels 1716 known_levels = 0ull; 1717 for (int i = 0; i < INTEL_LEVEL_TYPE_LAST; ++i) { 1718 if (__kmp_intel_type_2_topology_type(i) != KMP_HW_UNKNOWN) { 1719 known_levels |= (1ull << i); 1720 } 1721 } 1722 1723 // Get the highest cpuid leaf supported 1724 __kmp_x86_cpuid(0, 0, &buf); 1725 highest_leaf = buf.eax; 1726 1727 // If a specific topology method was requested, only allow that specific leaf 1728 // otherwise, try both leaves 31 and 11 in that order 1729 num_leaves = 0; 1730 if (__kmp_affinity_top_method == affinity_top_method_x2apicid) { 1731 num_leaves = 1; 1732 leaves[0] = 11; 1733 leaf_message_id = kmp_i18n_str_NoLeaf11Support; 1734 } else if (__kmp_affinity_top_method == affinity_top_method_x2apicid_1f) { 1735 num_leaves = 1; 1736 leaves[0] = 31; 1737 leaf_message_id = kmp_i18n_str_NoLeaf31Support; 1738 } else { 1739 num_leaves = 2; 1740 leaves[0] = 31; 1741 leaves[1] = 11; 1742 leaf_message_id = kmp_i18n_str_NoLeaf11Support; 1743 } 1744 1745 // Check to see if cpuid leaf 31 or 11 is supported. 1746 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; 1747 topology_leaf = -1; 1748 for (int i = 0; i < num_leaves; ++i) { 1749 int leaf = leaves[i]; 1750 if (highest_leaf < leaf) 1751 continue; 1752 __kmp_x86_cpuid(leaf, 0, &buf); 1753 if (buf.ebx == 0) 1754 continue; 1755 topology_leaf = leaf; 1756 levels_index = __kmp_x2apicid_get_levels(leaf, levels, known_levels); 1757 if (levels_index == 0) 1758 continue; 1759 break; 1760 } 1761 if (topology_leaf == -1 || levels_index == 0) { 1762 *msg_id = leaf_message_id; 1763 return -1; 1764 } 1765 KMP_ASSERT(levels_index <= INTEL_LEVEL_TYPE_LAST); 1766 1767 // The algorithm used starts by setting the affinity to each available thread 1768 // and retrieving info from the cpuid instruction, so if we are not capable of 1769 // calling __kmp_get_system_affinity() and __kmp_get_system_affinity(), then 1770 // we need to do something else - use the defaults that we calculated from 1771 // issuing cpuid without binding to each proc. 1772 if (!KMP_AFFINITY_CAPABLE()) { 1773 // Hack to try and infer the machine topology using only the data 1774 // available from cpuid on the current thread, and __kmp_xproc. 1775 KMP_ASSERT(__kmp_affinity_type == affinity_none); 1776 1777 for (unsigned i = 0; i < levels_index; ++i) { 1778 if (levels[i].level_type == INTEL_LEVEL_TYPE_SMT) { 1779 __kmp_nThreadsPerCore = levels[i].nitems; 1780 } else if (levels[i].level_type == INTEL_LEVEL_TYPE_CORE) { 1781 nCoresPerPkg = levels[i].nitems; 1782 } else if (levels[i].level_type == INTEL_LEVEL_TYPE_DIE) { 1783 nDiesPerPkg = levels[i].nitems; 1784 } 1785 } 1786 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; 1787 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 1788 if (__kmp_affinity_verbose) { 1789 KMP_INFORM(AffNotCapableUseLocCpuidL, "KMP_AFFINITY", topology_leaf); 1790 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1791 if (__kmp_affinity_uniform_topology()) { 1792 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1793 } else { 1794 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 1795 } 1796 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1797 __kmp_nThreadsPerCore, __kmp_ncores); 1798 } 1799 return 0; 1800 } 1801 1802 // From here on, we can assume that it is safe to call 1803 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if 1804 // __kmp_affinity_type = affinity_none. 1805 1806 // Save the affinity mask for the current thread. 1807 kmp_affin_mask_t *oldMask; 1808 KMP_CPU_ALLOC(oldMask); 1809 __kmp_get_system_affinity(oldMask, TRUE); 1810 1811 // Allocate the data structure to be returned. 1812 int depth = levels_index; 1813 for (int i = depth - 1, j = 0; i >= 0; --i, ++j) 1814 types[j] = __kmp_intel_type_2_topology_type(levels[i].level_type); 1815 AddrUnsPair *retval = 1816 (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc); 1817 1818 // Run through each of the available contexts, binding the current thread 1819 // to it, and obtaining the pertinent information using the cpuid instr. 1820 unsigned int proc; 1821 int nApics = 0; 1822 KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) { 1823 cpuid_level_info_t my_levels[INTEL_LEVEL_TYPE_LAST]; 1824 unsigned my_levels_index; 1825 1826 // Skip this proc if it is not included in the machine model. 1827 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 1828 continue; 1829 } 1830 KMP_DEBUG_ASSERT(nApics < __kmp_avail_proc); 1831 1832 __kmp_affinity_dispatch->bind_thread(proc); 1833 1834 // New algorithm 1835 __kmp_x86_cpuid(topology_leaf, 0, &buf); 1836 apic_id = buf.edx; 1837 Address addr(depth); 1838 my_levels_index = 1839 __kmp_x2apicid_get_levels(topology_leaf, my_levels, known_levels); 1840 if (my_levels_index == 0 || my_levels_index != levels_index) { 1841 KMP_CPU_FREE(oldMask); 1842 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1843 return -1; 1844 } 1845 // Put in topology information 1846 for (unsigned j = 0, idx = depth - 1; j < my_levels_index; ++j, --idx) { 1847 addr.labels[idx] = apic_id & my_levels[j].mask; 1848 if (j > 0) 1849 addr.labels[idx] >>= my_levels[j - 1].mask_width; 1850 } 1851 retval[nApics++] = AddrUnsPair(addr, proc); 1852 } 1853 1854 // We've collected all the info we need. 1855 // Restore the old affinity mask for this thread. 1856 __kmp_set_system_affinity(oldMask, TRUE); 1857 1858 // If there's only one thread context to bind to, return now. 1859 KMP_ASSERT(nApics > 0); 1860 if (nApics == 1) { 1861 int pkg_level; 1862 __kmp_ncores = nPackages = 1; 1863 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 1864 if (__kmp_affinity_verbose) { 1865 KMP_INFORM(AffUseGlobCpuidL, "KMP_AFFINITY", topology_leaf); 1866 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1867 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1868 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1869 __kmp_nThreadsPerCore, __kmp_ncores); 1870 } 1871 1872 if (__kmp_affinity_type == affinity_none) { 1873 __kmp_free(retval); 1874 KMP_CPU_FREE(oldMask); 1875 return 0; 1876 } 1877 1878 pkg_level = 0; 1879 for (int i = 0; i < depth; ++i) 1880 if (types[i] == KMP_HW_SOCKET) { 1881 pkg_level = i; 1882 break; 1883 } 1884 // Form an Address object which only includes the package level. 1885 Address addr(1); 1886 addr.labels[0] = retval[0].first.labels[pkg_level]; 1887 retval[0].first = addr; 1888 1889 if (__kmp_affinity_gran_levels < 0) { 1890 __kmp_affinity_gran_levels = 0; 1891 } 1892 1893 if (__kmp_affinity_verbose) { 1894 __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1); 1895 } 1896 1897 *address2os = retval; 1898 KMP_CPU_FREE(oldMask); 1899 return 1; 1900 } 1901 1902 // Sort the table by physical Id. 1903 qsort(retval, nApics, sizeof(*retval), __kmp_affinity_cmp_Address_labels); 1904 1905 __kmp_affinity_gather_enumeration_information(retval, nApics, depth, types, 1906 ratio, count); 1907 1908 // When affinity is off, this routine will still be called to set 1909 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 1910 // Make sure all these vars are set correctly, and return if affinity is not 1911 // enabled. 1912 int thread_level, core_level, socket_level, die_level; 1913 thread_level = core_level = die_level = socket_level = -1; 1914 for (int level = 0; level < depth; ++level) { 1915 if (types[level] == KMP_HW_THREAD) 1916 thread_level = level; 1917 else if (types[level] == KMP_HW_CORE) 1918 core_level = level; 1919 else if (types[level] == KMP_HW_DIE) 1920 die_level = level; 1921 else if (types[level] == KMP_HW_SOCKET) 1922 socket_level = level; 1923 } 1924 __kmp_nThreadsPerCore = 1925 __kmp_affinity_calculate_ratio(ratio, thread_level, core_level); 1926 if (die_level > 0) { 1927 nDiesPerPkg = 1928 __kmp_affinity_calculate_ratio(ratio, die_level, socket_level); 1929 nCoresPerPkg = __kmp_affinity_calculate_ratio(ratio, core_level, die_level); 1930 } else { 1931 nCoresPerPkg = 1932 __kmp_affinity_calculate_ratio(ratio, core_level, socket_level); 1933 } 1934 if (socket_level >= 0) 1935 nPackages = count[socket_level]; 1936 else 1937 nPackages = 1; 1938 if (core_level >= 0) 1939 __kmp_ncores = count[core_level]; 1940 else 1941 __kmp_ncores = 1; 1942 1943 // Check to see if the machine topology is uniform 1944 unsigned uniform = __kmp_affinity_discover_uniformity(depth, ratio, count); 1945 1946 // Print the machine topology summary. 1947 if (__kmp_affinity_verbose) { 1948 kmp_hw_t numerator_type, denominator_type; 1949 KMP_INFORM(AffUseGlobCpuidL, "KMP_AFFINITY", topology_leaf); 1950 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1951 if (uniform) { 1952 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1953 } else { 1954 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 1955 } 1956 1957 kmp_str_buf_t buf; 1958 __kmp_str_buf_init(&buf); 1959 1960 if (core_level < 0) 1961 core_level = depth - 1; 1962 int ncores = count[core_level]; 1963 1964 denominator_type = KMP_HW_UNKNOWN; 1965 for (int level = 0; level < depth; ++level) { 1966 int c; 1967 bool plural; 1968 numerator_type = types[level]; 1969 c = ratio[level]; 1970 plural = (c > 1); 1971 if (level == 0) { 1972 __kmp_str_buf_print( 1973 &buf, "%d %s", c, 1974 __kmp_hw_get_catalog_string(numerator_type, plural)); 1975 } else { 1976 __kmp_str_buf_print(&buf, " x %d %s/%s", c, 1977 __kmp_hw_get_catalog_string(numerator_type, plural), 1978 __kmp_hw_get_catalog_string(denominator_type)); 1979 } 1980 denominator_type = numerator_type; 1981 } 1982 KMP_INFORM(TopologyGeneric, "KMP_AFFINITY", buf.str, ncores); 1983 __kmp_str_buf_free(&buf); 1984 } 1985 1986 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 1987 KMP_DEBUG_ASSERT(nApics == __kmp_avail_proc); 1988 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 1989 for (proc = 0; (int)proc < nApics; ++proc) { 1990 __kmp_pu_os_idx[proc] = retval[proc].second; 1991 } 1992 if (__kmp_affinity_type == affinity_none) { 1993 __kmp_free(retval); 1994 KMP_CPU_FREE(oldMask); 1995 return 0; 1996 } 1997 1998 // Find any levels with radix 1, and remove them from the map 1999 // (except for the package level). 2000 depth = __kmp_affinity_remove_radix_one_levels(retval, nApics, depth, types); 2001 thread_level = core_level = die_level = socket_level = -1; 2002 for (int level = 0; level < depth; ++level) { 2003 if (types[level] == KMP_HW_THREAD) 2004 thread_level = level; 2005 else if (types[level] == KMP_HW_CORE) 2006 core_level = level; 2007 else if (types[level] == KMP_HW_DIE) 2008 die_level = level; 2009 else if (types[level] == KMP_HW_SOCKET) 2010 socket_level = level; 2011 } 2012 2013 if (__kmp_affinity_gran_levels < 0) { 2014 // Set the granularity level based on what levels are modeled 2015 // in the machine topology map. 2016 __kmp_affinity_gran_levels = 0; 2017 if ((thread_level >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) { 2018 __kmp_affinity_gran_levels++; 2019 } 2020 if ((core_level >= 0) && (__kmp_affinity_gran > affinity_gran_core)) { 2021 __kmp_affinity_gran_levels++; 2022 } 2023 if ((die_level >= 0) && (__kmp_affinity_gran > affinity_gran_die)) { 2024 __kmp_affinity_gran_levels++; 2025 } 2026 if (__kmp_affinity_gran > affinity_gran_package) { 2027 __kmp_affinity_gran_levels++; 2028 } 2029 } 2030 2031 if (__kmp_affinity_verbose) { 2032 __kmp_affinity_print_topology(retval, nApics, depth, types); 2033 } 2034 2035 KMP_CPU_FREE(oldMask); 2036 *address2os = retval; 2037 return depth; 2038 } 2039 2040 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 2041 2042 #define osIdIndex 0 2043 #define threadIdIndex 1 2044 #define coreIdIndex 2 2045 #define pkgIdIndex 3 2046 #define nodeIdIndex 4 2047 2048 typedef unsigned *ProcCpuInfo; 2049 static unsigned maxIndex = pkgIdIndex; 2050 2051 static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a, 2052 const void *b) { 2053 unsigned i; 2054 const unsigned *aa = *(unsigned *const *)a; 2055 const unsigned *bb = *(unsigned *const *)b; 2056 for (i = maxIndex;; i--) { 2057 if (aa[i] < bb[i]) 2058 return -1; 2059 if (aa[i] > bb[i]) 2060 return 1; 2061 if (i == osIdIndex) 2062 break; 2063 } 2064 return 0; 2065 } 2066 2067 #if KMP_USE_HIER_SCHED 2068 // Set the array sizes for the hierarchy layers 2069 static void __kmp_dispatch_set_hierarchy_values() { 2070 // Set the maximum number of L1's to number of cores 2071 // Set the maximum number of L2's to to either number of cores / 2 for 2072 // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing 2073 // Or the number of cores for Intel(R) Xeon(R) processors 2074 // Set the maximum number of NUMA nodes and L3's to number of packages 2075 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] = 2076 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; 2077 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores; 2078 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \ 2079 KMP_MIC_SUPPORTED 2080 if (__kmp_mic_type >= mic3) 2081 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2; 2082 else 2083 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 2084 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores; 2085 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages; 2086 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages; 2087 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1; 2088 // Set the number of threads per unit 2089 // Number of hardware threads per L1/L2/L3/NUMA/LOOP 2090 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1; 2091 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] = 2092 __kmp_nThreadsPerCore; 2093 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \ 2094 KMP_MIC_SUPPORTED 2095 if (__kmp_mic_type >= mic3) 2096 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = 2097 2 * __kmp_nThreadsPerCore; 2098 else 2099 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 2100 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = 2101 __kmp_nThreadsPerCore; 2102 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] = 2103 nCoresPerPkg * __kmp_nThreadsPerCore; 2104 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] = 2105 nCoresPerPkg * __kmp_nThreadsPerCore; 2106 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] = 2107 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; 2108 } 2109 2110 // Return the index into the hierarchy for this tid and layer type (L1, L2, etc) 2111 // i.e., this thread's L1 or this thread's L2, etc. 2112 int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) { 2113 int index = type + 1; 2114 int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1]; 2115 KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST); 2116 if (type == kmp_hier_layer_e::LAYER_THREAD) 2117 return tid; 2118 else if (type == kmp_hier_layer_e::LAYER_LOOP) 2119 return 0; 2120 KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0); 2121 if (tid >= num_hw_threads) 2122 tid = tid % num_hw_threads; 2123 return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index]; 2124 } 2125 2126 // Return the number of t1's per t2 2127 int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) { 2128 int i1 = t1 + 1; 2129 int i2 = t2 + 1; 2130 KMP_DEBUG_ASSERT(i1 <= i2); 2131 KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST); 2132 KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST); 2133 KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0); 2134 // (nthreads/t2) / (nthreads/t1) = t1 / t2 2135 return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1]; 2136 } 2137 #endif // KMP_USE_HIER_SCHED 2138 2139 // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the 2140 // affinity map. 2141 static int __kmp_affinity_create_cpuinfo_map(AddrUnsPair **address2os, 2142 int *line, 2143 kmp_i18n_id_t *const msg_id, 2144 FILE *f) { 2145 *address2os = NULL; 2146 *msg_id = kmp_i18n_null; 2147 2148 // Scan of the file, and count the number of "processor" (osId) fields, 2149 // and find the highest value of <n> for a node_<n> field. 2150 char buf[256]; 2151 unsigned num_records = 0; 2152 while (!feof(f)) { 2153 buf[sizeof(buf) - 1] = 1; 2154 if (!fgets(buf, sizeof(buf), f)) { 2155 // Read errors presumably because of EOF 2156 break; 2157 } 2158 2159 char s1[] = "processor"; 2160 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { 2161 num_records++; 2162 continue; 2163 } 2164 2165 // FIXME - this will match "node_<n> <garbage>" 2166 unsigned level; 2167 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { 2168 if (nodeIdIndex + level >= maxIndex) { 2169 maxIndex = nodeIdIndex + level; 2170 } 2171 continue; 2172 } 2173 } 2174 2175 // Check for empty file / no valid processor records, or too many. The number 2176 // of records can't exceed the number of valid bits in the affinity mask. 2177 if (num_records == 0) { 2178 *line = 0; 2179 *msg_id = kmp_i18n_str_NoProcRecords; 2180 return -1; 2181 } 2182 if (num_records > (unsigned)__kmp_xproc) { 2183 *line = 0; 2184 *msg_id = kmp_i18n_str_TooManyProcRecords; 2185 return -1; 2186 } 2187 2188 // Set the file pointer back to the beginning, so that we can scan the file 2189 // again, this time performing a full parse of the data. Allocate a vector of 2190 // ProcCpuInfo object, where we will place the data. Adding an extra element 2191 // at the end allows us to remove a lot of extra checks for termination 2192 // conditions. 2193 if (fseek(f, 0, SEEK_SET) != 0) { 2194 *line = 0; 2195 *msg_id = kmp_i18n_str_CantRewindCpuinfo; 2196 return -1; 2197 } 2198 2199 // Allocate the array of records to store the proc info in. The dummy 2200 // element at the end makes the logic in filling them out easier to code. 2201 unsigned **threadInfo = 2202 (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *)); 2203 unsigned i; 2204 for (i = 0; i <= num_records; i++) { 2205 threadInfo[i] = 2206 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2207 } 2208 2209 #define CLEANUP_THREAD_INFO \ 2210 for (i = 0; i <= num_records; i++) { \ 2211 __kmp_free(threadInfo[i]); \ 2212 } \ 2213 __kmp_free(threadInfo); 2214 2215 // A value of UINT_MAX means that we didn't find the field 2216 unsigned __index; 2217 2218 #define INIT_PROC_INFO(p) \ 2219 for (__index = 0; __index <= maxIndex; __index++) { \ 2220 (p)[__index] = UINT_MAX; \ 2221 } 2222 2223 for (i = 0; i <= num_records; i++) { 2224 INIT_PROC_INFO(threadInfo[i]); 2225 } 2226 2227 unsigned num_avail = 0; 2228 *line = 0; 2229 while (!feof(f)) { 2230 // Create an inner scoping level, so that all the goto targets at the end of 2231 // the loop appear in an outer scoping level. This avoids warnings about 2232 // jumping past an initialization to a target in the same block. 2233 { 2234 buf[sizeof(buf) - 1] = 1; 2235 bool long_line = false; 2236 if (!fgets(buf, sizeof(buf), f)) { 2237 // Read errors presumably because of EOF 2238 // If there is valid data in threadInfo[num_avail], then fake 2239 // a blank line in ensure that the last address gets parsed. 2240 bool valid = false; 2241 for (i = 0; i <= maxIndex; i++) { 2242 if (threadInfo[num_avail][i] != UINT_MAX) { 2243 valid = true; 2244 } 2245 } 2246 if (!valid) { 2247 break; 2248 } 2249 buf[0] = 0; 2250 } else if (!buf[sizeof(buf) - 1]) { 2251 // The line is longer than the buffer. Set a flag and don't 2252 // emit an error if we were going to ignore the line, anyway. 2253 long_line = true; 2254 2255 #define CHECK_LINE \ 2256 if (long_line) { \ 2257 CLEANUP_THREAD_INFO; \ 2258 *msg_id = kmp_i18n_str_LongLineCpuinfo; \ 2259 return -1; \ 2260 } 2261 } 2262 (*line)++; 2263 2264 char s1[] = "processor"; 2265 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { 2266 CHECK_LINE; 2267 char *p = strchr(buf + sizeof(s1) - 1, ':'); 2268 unsigned val; 2269 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2270 goto no_val; 2271 if (threadInfo[num_avail][osIdIndex] != UINT_MAX) 2272 #if KMP_ARCH_AARCH64 2273 // Handle the old AArch64 /proc/cpuinfo layout differently, 2274 // it contains all of the 'processor' entries listed in a 2275 // single 'Processor' section, therefore the normal looking 2276 // for duplicates in that section will always fail. 2277 num_avail++; 2278 #else 2279 goto dup_field; 2280 #endif 2281 threadInfo[num_avail][osIdIndex] = val; 2282 #if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64) 2283 char path[256]; 2284 KMP_SNPRINTF( 2285 path, sizeof(path), 2286 "/sys/devices/system/cpu/cpu%u/topology/physical_package_id", 2287 threadInfo[num_avail][osIdIndex]); 2288 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]); 2289 2290 KMP_SNPRINTF(path, sizeof(path), 2291 "/sys/devices/system/cpu/cpu%u/topology/core_id", 2292 threadInfo[num_avail][osIdIndex]); 2293 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]); 2294 continue; 2295 #else 2296 } 2297 char s2[] = "physical id"; 2298 if (strncmp(buf, s2, sizeof(s2) - 1) == 0) { 2299 CHECK_LINE; 2300 char *p = strchr(buf + sizeof(s2) - 1, ':'); 2301 unsigned val; 2302 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2303 goto no_val; 2304 if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX) 2305 goto dup_field; 2306 threadInfo[num_avail][pkgIdIndex] = val; 2307 continue; 2308 } 2309 char s3[] = "core id"; 2310 if (strncmp(buf, s3, sizeof(s3) - 1) == 0) { 2311 CHECK_LINE; 2312 char *p = strchr(buf + sizeof(s3) - 1, ':'); 2313 unsigned val; 2314 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2315 goto no_val; 2316 if (threadInfo[num_avail][coreIdIndex] != UINT_MAX) 2317 goto dup_field; 2318 threadInfo[num_avail][coreIdIndex] = val; 2319 continue; 2320 #endif // KMP_OS_LINUX && USE_SYSFS_INFO 2321 } 2322 char s4[] = "thread id"; 2323 if (strncmp(buf, s4, sizeof(s4) - 1) == 0) { 2324 CHECK_LINE; 2325 char *p = strchr(buf + sizeof(s4) - 1, ':'); 2326 unsigned val; 2327 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2328 goto no_val; 2329 if (threadInfo[num_avail][threadIdIndex] != UINT_MAX) 2330 goto dup_field; 2331 threadInfo[num_avail][threadIdIndex] = val; 2332 continue; 2333 } 2334 unsigned level; 2335 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { 2336 CHECK_LINE; 2337 char *p = strchr(buf + sizeof(s4) - 1, ':'); 2338 unsigned val; 2339 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2340 goto no_val; 2341 KMP_ASSERT(nodeIdIndex + level <= maxIndex); 2342 if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX) 2343 goto dup_field; 2344 threadInfo[num_avail][nodeIdIndex + level] = val; 2345 continue; 2346 } 2347 2348 // We didn't recognize the leading token on the line. There are lots of 2349 // leading tokens that we don't recognize - if the line isn't empty, go on 2350 // to the next line. 2351 if ((*buf != 0) && (*buf != '\n')) { 2352 // If the line is longer than the buffer, read characters 2353 // until we find a newline. 2354 if (long_line) { 2355 int ch; 2356 while (((ch = fgetc(f)) != EOF) && (ch != '\n')) 2357 ; 2358 } 2359 continue; 2360 } 2361 2362 // A newline has signalled the end of the processor record. 2363 // Check that there aren't too many procs specified. 2364 if ((int)num_avail == __kmp_xproc) { 2365 CLEANUP_THREAD_INFO; 2366 *msg_id = kmp_i18n_str_TooManyEntries; 2367 return -1; 2368 } 2369 2370 // Check for missing fields. The osId field must be there, and we 2371 // currently require that the physical id field is specified, also. 2372 if (threadInfo[num_avail][osIdIndex] == UINT_MAX) { 2373 CLEANUP_THREAD_INFO; 2374 *msg_id = kmp_i18n_str_MissingProcField; 2375 return -1; 2376 } 2377 if (threadInfo[0][pkgIdIndex] == UINT_MAX) { 2378 CLEANUP_THREAD_INFO; 2379 *msg_id = kmp_i18n_str_MissingPhysicalIDField; 2380 return -1; 2381 } 2382 2383 // Skip this proc if it is not included in the machine model. 2384 if (!KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex], 2385 __kmp_affin_fullMask)) { 2386 INIT_PROC_INFO(threadInfo[num_avail]); 2387 continue; 2388 } 2389 2390 // We have a successful parse of this proc's info. 2391 // Increment the counter, and prepare for the next proc. 2392 num_avail++; 2393 KMP_ASSERT(num_avail <= num_records); 2394 INIT_PROC_INFO(threadInfo[num_avail]); 2395 } 2396 continue; 2397 2398 no_val: 2399 CLEANUP_THREAD_INFO; 2400 *msg_id = kmp_i18n_str_MissingValCpuinfo; 2401 return -1; 2402 2403 dup_field: 2404 CLEANUP_THREAD_INFO; 2405 *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo; 2406 return -1; 2407 } 2408 *line = 0; 2409 2410 #if KMP_MIC && REDUCE_TEAM_SIZE 2411 unsigned teamSize = 0; 2412 #endif // KMP_MIC && REDUCE_TEAM_SIZE 2413 2414 // check for num_records == __kmp_xproc ??? 2415 2416 // If there's only one thread context to bind to, form an Address object with 2417 // depth 1 and return immediately (or, if affinity is off, set address2os to 2418 // NULL and return). 2419 // 2420 // If it is configured to omit the package level when there is only a single 2421 // package, the logic at the end of this routine won't work if there is only a 2422 // single thread - it would try to form an Address object with depth 0. 2423 KMP_ASSERT(num_avail > 0); 2424 KMP_ASSERT(num_avail <= num_records); 2425 if (num_avail == 1) { 2426 __kmp_ncores = 1; 2427 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; 2428 if (__kmp_affinity_verbose) { 2429 if (!KMP_AFFINITY_CAPABLE()) { 2430 KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY"); 2431 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 2432 KMP_INFORM(Uniform, "KMP_AFFINITY"); 2433 } else { 2434 KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY"); 2435 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 2436 KMP_INFORM(Uniform, "KMP_AFFINITY"); 2437 } 2438 int index; 2439 kmp_str_buf_t buf; 2440 __kmp_str_buf_init(&buf); 2441 __kmp_str_buf_print(&buf, "1"); 2442 for (index = maxIndex - 1; index > pkgIdIndex; index--) { 2443 __kmp_str_buf_print(&buf, " x 1"); 2444 } 2445 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, 1, 1, 1); 2446 __kmp_str_buf_free(&buf); 2447 } 2448 2449 if (__kmp_affinity_type == affinity_none) { 2450 CLEANUP_THREAD_INFO; 2451 return 0; 2452 } 2453 2454 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair)); 2455 Address addr(1); 2456 addr.labels[0] = threadInfo[0][pkgIdIndex]; 2457 (*address2os)[0] = AddrUnsPair(addr, threadInfo[0][osIdIndex]); 2458 2459 if (__kmp_affinity_gran_levels < 0) { 2460 __kmp_affinity_gran_levels = 0; 2461 } 2462 2463 if (__kmp_affinity_verbose) { 2464 __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1); 2465 } 2466 2467 CLEANUP_THREAD_INFO; 2468 return 1; 2469 } 2470 2471 // Sort the threadInfo table by physical Id. 2472 qsort(threadInfo, num_avail, sizeof(*threadInfo), 2473 __kmp_affinity_cmp_ProcCpuInfo_phys_id); 2474 2475 // The table is now sorted by pkgId / coreId / threadId, but we really don't 2476 // know the radix of any of the fields. pkgId's may be sparsely assigned among 2477 // the chips on a system. Although coreId's are usually assigned 2478 // [0 .. coresPerPkg-1] and threadId's are usually assigned 2479 // [0..threadsPerCore-1], we don't want to make any such assumptions. 2480 // 2481 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the 2482 // total # packages) are at this point - we want to determine that now. We 2483 // only have an upper bound on the first two figures. 2484 unsigned *counts = 2485 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2486 unsigned *maxCt = 2487 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2488 unsigned *totals = 2489 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2490 unsigned *lastId = 2491 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2492 2493 bool assign_thread_ids = false; 2494 unsigned threadIdCt; 2495 unsigned index; 2496 2497 restart_radix_check: 2498 threadIdCt = 0; 2499 2500 // Initialize the counter arrays with data from threadInfo[0]. 2501 if (assign_thread_ids) { 2502 if (threadInfo[0][threadIdIndex] == UINT_MAX) { 2503 threadInfo[0][threadIdIndex] = threadIdCt++; 2504 } else if (threadIdCt <= threadInfo[0][threadIdIndex]) { 2505 threadIdCt = threadInfo[0][threadIdIndex] + 1; 2506 } 2507 } 2508 for (index = 0; index <= maxIndex; index++) { 2509 counts[index] = 1; 2510 maxCt[index] = 1; 2511 totals[index] = 1; 2512 lastId[index] = threadInfo[0][index]; 2513 ; 2514 } 2515 2516 // Run through the rest of the OS procs. 2517 for (i = 1; i < num_avail; i++) { 2518 // Find the most significant index whose id differs from the id for the 2519 // previous OS proc. 2520 for (index = maxIndex; index >= threadIdIndex; index--) { 2521 if (assign_thread_ids && (index == threadIdIndex)) { 2522 // Auto-assign the thread id field if it wasn't specified. 2523 if (threadInfo[i][threadIdIndex] == UINT_MAX) { 2524 threadInfo[i][threadIdIndex] = threadIdCt++; 2525 } 2526 // Apparently the thread id field was specified for some entries and not 2527 // others. Start the thread id counter off at the next higher thread id. 2528 else if (threadIdCt <= threadInfo[i][threadIdIndex]) { 2529 threadIdCt = threadInfo[i][threadIdIndex] + 1; 2530 } 2531 } 2532 if (threadInfo[i][index] != lastId[index]) { 2533 // Run through all indices which are less significant, and reset the 2534 // counts to 1. At all levels up to and including index, we need to 2535 // increment the totals and record the last id. 2536 unsigned index2; 2537 for (index2 = threadIdIndex; index2 < index; index2++) { 2538 totals[index2]++; 2539 if (counts[index2] > maxCt[index2]) { 2540 maxCt[index2] = counts[index2]; 2541 } 2542 counts[index2] = 1; 2543 lastId[index2] = threadInfo[i][index2]; 2544 } 2545 counts[index]++; 2546 totals[index]++; 2547 lastId[index] = threadInfo[i][index]; 2548 2549 if (assign_thread_ids && (index > threadIdIndex)) { 2550 2551 #if KMP_MIC && REDUCE_TEAM_SIZE 2552 // The default team size is the total #threads in the machine 2553 // minus 1 thread for every core that has 3 or more threads. 2554 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); 2555 #endif // KMP_MIC && REDUCE_TEAM_SIZE 2556 2557 // Restart the thread counter, as we are on a new core. 2558 threadIdCt = 0; 2559 2560 // Auto-assign the thread id field if it wasn't specified. 2561 if (threadInfo[i][threadIdIndex] == UINT_MAX) { 2562 threadInfo[i][threadIdIndex] = threadIdCt++; 2563 } 2564 2565 // Apparently the thread id field was specified for some entries and 2566 // not others. Start the thread id counter off at the next higher 2567 // thread id. 2568 else if (threadIdCt <= threadInfo[i][threadIdIndex]) { 2569 threadIdCt = threadInfo[i][threadIdIndex] + 1; 2570 } 2571 } 2572 break; 2573 } 2574 } 2575 if (index < threadIdIndex) { 2576 // If thread ids were specified, it is an error if they are not unique. 2577 // Also, check that we waven't already restarted the loop (to be safe - 2578 // shouldn't need to). 2579 if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) { 2580 __kmp_free(lastId); 2581 __kmp_free(totals); 2582 __kmp_free(maxCt); 2583 __kmp_free(counts); 2584 CLEANUP_THREAD_INFO; 2585 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; 2586 return -1; 2587 } 2588 2589 // If the thread ids were not specified and we see entries entries that 2590 // are duplicates, start the loop over and assign the thread ids manually. 2591 assign_thread_ids = true; 2592 goto restart_radix_check; 2593 } 2594 } 2595 2596 #if KMP_MIC && REDUCE_TEAM_SIZE 2597 // The default team size is the total #threads in the machine 2598 // minus 1 thread for every core that has 3 or more threads. 2599 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); 2600 #endif // KMP_MIC && REDUCE_TEAM_SIZE 2601 2602 for (index = threadIdIndex; index <= maxIndex; index++) { 2603 if (counts[index] > maxCt[index]) { 2604 maxCt[index] = counts[index]; 2605 } 2606 } 2607 2608 __kmp_nThreadsPerCore = maxCt[threadIdIndex]; 2609 nCoresPerPkg = maxCt[coreIdIndex]; 2610 nPackages = totals[pkgIdIndex]; 2611 2612 // Check to see if the machine topology is uniform 2613 unsigned prod = totals[maxIndex]; 2614 for (index = threadIdIndex; index < maxIndex; index++) { 2615 prod *= maxCt[index]; 2616 } 2617 bool uniform = (prod == totals[threadIdIndex]); 2618 2619 // When affinity is off, this routine will still be called to set 2620 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 2621 // Make sure all these vars are set correctly, and return now if affinity is 2622 // not enabled. 2623 __kmp_ncores = totals[coreIdIndex]; 2624 2625 if (__kmp_affinity_verbose) { 2626 if (!KMP_AFFINITY_CAPABLE()) { 2627 KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY"); 2628 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 2629 if (uniform) { 2630 KMP_INFORM(Uniform, "KMP_AFFINITY"); 2631 } else { 2632 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 2633 } 2634 } else { 2635 KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY"); 2636 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 2637 if (uniform) { 2638 KMP_INFORM(Uniform, "KMP_AFFINITY"); 2639 } else { 2640 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 2641 } 2642 } 2643 kmp_str_buf_t buf; 2644 __kmp_str_buf_init(&buf); 2645 2646 __kmp_str_buf_print(&buf, "%d", totals[maxIndex]); 2647 for (index = maxIndex - 1; index >= pkgIdIndex; index--) { 2648 __kmp_str_buf_print(&buf, " x %d", maxCt[index]); 2649 } 2650 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, maxCt[coreIdIndex], 2651 maxCt[threadIdIndex], __kmp_ncores); 2652 2653 __kmp_str_buf_free(&buf); 2654 } 2655 2656 #if KMP_MIC && REDUCE_TEAM_SIZE 2657 // Set the default team size. 2658 if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) { 2659 __kmp_dflt_team_nth = teamSize; 2660 KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting " 2661 "__kmp_dflt_team_nth = %d\n", 2662 __kmp_dflt_team_nth)); 2663 } 2664 #endif // KMP_MIC && REDUCE_TEAM_SIZE 2665 2666 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 2667 KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc); 2668 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 2669 for (i = 0; i < num_avail; ++i) { // fill the os indices 2670 __kmp_pu_os_idx[i] = threadInfo[i][osIdIndex]; 2671 } 2672 2673 if (__kmp_affinity_type == affinity_none) { 2674 __kmp_free(lastId); 2675 __kmp_free(totals); 2676 __kmp_free(maxCt); 2677 __kmp_free(counts); 2678 CLEANUP_THREAD_INFO; 2679 return 0; 2680 } 2681 2682 // Count the number of levels which have more nodes at that level than at the 2683 // parent's level (with there being an implicit root node of the top level). 2684 // This is equivalent to saying that there is at least one node at this level 2685 // which has a sibling. These levels are in the map, and the package level is 2686 // always in the map. 2687 bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool)); 2688 for (index = threadIdIndex; index < maxIndex; index++) { 2689 KMP_ASSERT(totals[index] >= totals[index + 1]); 2690 inMap[index] = (totals[index] > totals[index + 1]); 2691 } 2692 inMap[maxIndex] = (totals[maxIndex] > 1); 2693 inMap[pkgIdIndex] = true; 2694 2695 int depth = 0; 2696 for (index = threadIdIndex; index <= maxIndex; index++) { 2697 if (inMap[index]) { 2698 depth++; 2699 } 2700 } 2701 KMP_ASSERT(depth > 0); 2702 2703 // Construct the data structure that is to be returned. 2704 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * num_avail); 2705 int pkgLevel = -1; 2706 int coreLevel = -1; 2707 int threadLevel = -1; 2708 2709 for (i = 0; i < num_avail; ++i) { 2710 Address addr(depth); 2711 unsigned os = threadInfo[i][osIdIndex]; 2712 int src_index; 2713 int dst_index = 0; 2714 2715 for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) { 2716 if (!inMap[src_index]) { 2717 continue; 2718 } 2719 addr.labels[dst_index] = threadInfo[i][src_index]; 2720 if (src_index == pkgIdIndex) { 2721 pkgLevel = dst_index; 2722 } else if (src_index == coreIdIndex) { 2723 coreLevel = dst_index; 2724 } else if (src_index == threadIdIndex) { 2725 threadLevel = dst_index; 2726 } 2727 dst_index++; 2728 } 2729 (*address2os)[i] = AddrUnsPair(addr, os); 2730 } 2731 2732 if (__kmp_affinity_gran_levels < 0) { 2733 // Set the granularity level based on what levels are modeled 2734 // in the machine topology map. 2735 unsigned src_index; 2736 __kmp_affinity_gran_levels = 0; 2737 for (src_index = threadIdIndex; src_index <= maxIndex; src_index++) { 2738 if (!inMap[src_index]) { 2739 continue; 2740 } 2741 switch (src_index) { 2742 case threadIdIndex: 2743 if (__kmp_affinity_gran > affinity_gran_thread) { 2744 __kmp_affinity_gran_levels++; 2745 } 2746 2747 break; 2748 case coreIdIndex: 2749 if (__kmp_affinity_gran > affinity_gran_core) { 2750 __kmp_affinity_gran_levels++; 2751 } 2752 break; 2753 2754 case pkgIdIndex: 2755 if (__kmp_affinity_gran > affinity_gran_package) { 2756 __kmp_affinity_gran_levels++; 2757 } 2758 break; 2759 } 2760 } 2761 } 2762 2763 if (__kmp_affinity_verbose) { 2764 __kmp_affinity_print_topology(*address2os, num_avail, depth, pkgLevel, 2765 coreLevel, threadLevel); 2766 } 2767 2768 __kmp_free(inMap); 2769 __kmp_free(lastId); 2770 __kmp_free(totals); 2771 __kmp_free(maxCt); 2772 __kmp_free(counts); 2773 CLEANUP_THREAD_INFO; 2774 return depth; 2775 } 2776 2777 // Create and return a table of affinity masks, indexed by OS thread ID. 2778 // This routine handles OR'ing together all the affinity masks of threads 2779 // that are sufficiently close, if granularity > fine. 2780 static kmp_affin_mask_t *__kmp_create_masks(unsigned *maxIndex, 2781 unsigned *numUnique, 2782 AddrUnsPair *address2os, 2783 unsigned numAddrs) { 2784 // First form a table of affinity masks in order of OS thread id. 2785 unsigned depth; 2786 unsigned maxOsId; 2787 unsigned i; 2788 2789 KMP_ASSERT(numAddrs > 0); 2790 depth = address2os[0].first.depth; 2791 2792 maxOsId = 0; 2793 for (i = numAddrs - 1;; --i) { 2794 unsigned osId = address2os[i].second; 2795 if (osId > maxOsId) { 2796 maxOsId = osId; 2797 } 2798 if (i == 0) 2799 break; 2800 } 2801 kmp_affin_mask_t *osId2Mask; 2802 KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId + 1)); 2803 2804 // Sort the address2os table according to physical order. Doing so will put 2805 // all threads on the same core/package/node in consecutive locations. 2806 qsort(address2os, numAddrs, sizeof(*address2os), 2807 __kmp_affinity_cmp_Address_labels); 2808 2809 KMP_ASSERT(__kmp_affinity_gran_levels >= 0); 2810 if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) { 2811 KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels); 2812 } 2813 if (__kmp_affinity_gran_levels >= (int)depth) { 2814 if (__kmp_affinity_verbose || 2815 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { 2816 KMP_WARNING(AffThreadsMayMigrate); 2817 } 2818 } 2819 2820 // Run through the table, forming the masks for all threads on each core. 2821 // Threads on the same core will have identical "Address" objects, not 2822 // considering the last level, which must be the thread id. All threads on a 2823 // core will appear consecutively. 2824 unsigned unique = 0; 2825 unsigned j = 0; // index of 1st thread on core 2826 unsigned leader = 0; 2827 Address *leaderAddr = &(address2os[0].first); 2828 kmp_affin_mask_t *sum; 2829 KMP_CPU_ALLOC_ON_STACK(sum); 2830 KMP_CPU_ZERO(sum); 2831 KMP_CPU_SET(address2os[0].second, sum); 2832 for (i = 1; i < numAddrs; i++) { 2833 // If this thread is sufficiently close to the leader (within the 2834 // granularity setting), then set the bit for this os thread in the 2835 // affinity mask for this group, and go on to the next thread. 2836 if (leaderAddr->isClose(address2os[i].first, __kmp_affinity_gran_levels)) { 2837 KMP_CPU_SET(address2os[i].second, sum); 2838 continue; 2839 } 2840 2841 // For every thread in this group, copy the mask to the thread's entry in 2842 // the osId2Mask table. Mark the first address as a leader. 2843 for (; j < i; j++) { 2844 unsigned osId = address2os[j].second; 2845 KMP_DEBUG_ASSERT(osId <= maxOsId); 2846 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); 2847 KMP_CPU_COPY(mask, sum); 2848 address2os[j].first.leader = (j == leader); 2849 } 2850 unique++; 2851 2852 // Start a new mask. 2853 leader = i; 2854 leaderAddr = &(address2os[i].first); 2855 KMP_CPU_ZERO(sum); 2856 KMP_CPU_SET(address2os[i].second, sum); 2857 } 2858 2859 // For every thread in last group, copy the mask to the thread's 2860 // entry in the osId2Mask table. 2861 for (; j < i; j++) { 2862 unsigned osId = address2os[j].second; 2863 KMP_DEBUG_ASSERT(osId <= maxOsId); 2864 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); 2865 KMP_CPU_COPY(mask, sum); 2866 address2os[j].first.leader = (j == leader); 2867 } 2868 unique++; 2869 KMP_CPU_FREE_FROM_STACK(sum); 2870 2871 *maxIndex = maxOsId; 2872 *numUnique = unique; 2873 return osId2Mask; 2874 } 2875 2876 // Stuff for the affinity proclist parsers. It's easier to declare these vars 2877 // as file-static than to try and pass them through the calling sequence of 2878 // the recursive-descent OMP_PLACES parser. 2879 static kmp_affin_mask_t *newMasks; 2880 static int numNewMasks; 2881 static int nextNewMask; 2882 2883 #define ADD_MASK(_mask) \ 2884 { \ 2885 if (nextNewMask >= numNewMasks) { \ 2886 int i; \ 2887 numNewMasks *= 2; \ 2888 kmp_affin_mask_t *temp; \ 2889 KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \ 2890 for (i = 0; i < numNewMasks / 2; i++) { \ 2891 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); \ 2892 kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i); \ 2893 KMP_CPU_COPY(dest, src); \ 2894 } \ 2895 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2); \ 2896 newMasks = temp; \ 2897 } \ 2898 KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \ 2899 nextNewMask++; \ 2900 } 2901 2902 #define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \ 2903 { \ 2904 if (((_osId) > _maxOsId) || \ 2905 (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \ 2906 if (__kmp_affinity_verbose || \ 2907 (__kmp_affinity_warnings && \ 2908 (__kmp_affinity_type != affinity_none))) { \ 2909 KMP_WARNING(AffIgnoreInvalidProcID, _osId); \ 2910 } \ 2911 } else { \ 2912 ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \ 2913 } \ 2914 } 2915 2916 // Re-parse the proclist (for the explicit affinity type), and form the list 2917 // of affinity newMasks indexed by gtid. 2918 static void __kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks, 2919 unsigned int *out_numMasks, 2920 const char *proclist, 2921 kmp_affin_mask_t *osId2Mask, 2922 int maxOsId) { 2923 int i; 2924 const char *scan = proclist; 2925 const char *next = proclist; 2926 2927 // We use malloc() for the temporary mask vector, so that we can use 2928 // realloc() to extend it. 2929 numNewMasks = 2; 2930 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); 2931 nextNewMask = 0; 2932 kmp_affin_mask_t *sumMask; 2933 KMP_CPU_ALLOC(sumMask); 2934 int setSize = 0; 2935 2936 for (;;) { 2937 int start, end, stride; 2938 2939 SKIP_WS(scan); 2940 next = scan; 2941 if (*next == '\0') { 2942 break; 2943 } 2944 2945 if (*next == '{') { 2946 int num; 2947 setSize = 0; 2948 next++; // skip '{' 2949 SKIP_WS(next); 2950 scan = next; 2951 2952 // Read the first integer in the set. 2953 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist"); 2954 SKIP_DIGITS(next); 2955 num = __kmp_str_to_int(scan, *next); 2956 KMP_ASSERT2(num >= 0, "bad explicit proc list"); 2957 2958 // Copy the mask for that osId to the sum (union) mask. 2959 if ((num > maxOsId) || 2960 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 2961 if (__kmp_affinity_verbose || 2962 (__kmp_affinity_warnings && 2963 (__kmp_affinity_type != affinity_none))) { 2964 KMP_WARNING(AffIgnoreInvalidProcID, num); 2965 } 2966 KMP_CPU_ZERO(sumMask); 2967 } else { 2968 KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num)); 2969 setSize = 1; 2970 } 2971 2972 for (;;) { 2973 // Check for end of set. 2974 SKIP_WS(next); 2975 if (*next == '}') { 2976 next++; // skip '}' 2977 break; 2978 } 2979 2980 // Skip optional comma. 2981 if (*next == ',') { 2982 next++; 2983 } 2984 SKIP_WS(next); 2985 2986 // Read the next integer in the set. 2987 scan = next; 2988 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 2989 2990 SKIP_DIGITS(next); 2991 num = __kmp_str_to_int(scan, *next); 2992 KMP_ASSERT2(num >= 0, "bad explicit proc list"); 2993 2994 // Add the mask for that osId to the sum mask. 2995 if ((num > maxOsId) || 2996 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 2997 if (__kmp_affinity_verbose || 2998 (__kmp_affinity_warnings && 2999 (__kmp_affinity_type != affinity_none))) { 3000 KMP_WARNING(AffIgnoreInvalidProcID, num); 3001 } 3002 } else { 3003 KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num)); 3004 setSize++; 3005 } 3006 } 3007 if (setSize > 0) { 3008 ADD_MASK(sumMask); 3009 } 3010 3011 SKIP_WS(next); 3012 if (*next == ',') { 3013 next++; 3014 } 3015 scan = next; 3016 continue; 3017 } 3018 3019 // Read the first integer. 3020 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 3021 SKIP_DIGITS(next); 3022 start = __kmp_str_to_int(scan, *next); 3023 KMP_ASSERT2(start >= 0, "bad explicit proc list"); 3024 SKIP_WS(next); 3025 3026 // If this isn't a range, then add a mask to the list and go on. 3027 if (*next != '-') { 3028 ADD_MASK_OSID(start, osId2Mask, maxOsId); 3029 3030 // Skip optional comma. 3031 if (*next == ',') { 3032 next++; 3033 } 3034 scan = next; 3035 continue; 3036 } 3037 3038 // This is a range. Skip over the '-' and read in the 2nd int. 3039 next++; // skip '-' 3040 SKIP_WS(next); 3041 scan = next; 3042 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 3043 SKIP_DIGITS(next); 3044 end = __kmp_str_to_int(scan, *next); 3045 KMP_ASSERT2(end >= 0, "bad explicit proc list"); 3046 3047 // Check for a stride parameter 3048 stride = 1; 3049 SKIP_WS(next); 3050 if (*next == ':') { 3051 // A stride is specified. Skip over the ':" and read the 3rd int. 3052 int sign = +1; 3053 next++; // skip ':' 3054 SKIP_WS(next); 3055 scan = next; 3056 if (*next == '-') { 3057 sign = -1; 3058 next++; 3059 SKIP_WS(next); 3060 scan = next; 3061 } 3062 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 3063 SKIP_DIGITS(next); 3064 stride = __kmp_str_to_int(scan, *next); 3065 KMP_ASSERT2(stride >= 0, "bad explicit proc list"); 3066 stride *= sign; 3067 } 3068 3069 // Do some range checks. 3070 KMP_ASSERT2(stride != 0, "bad explicit proc list"); 3071 if (stride > 0) { 3072 KMP_ASSERT2(start <= end, "bad explicit proc list"); 3073 } else { 3074 KMP_ASSERT2(start >= end, "bad explicit proc list"); 3075 } 3076 KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list"); 3077 3078 // Add the mask for each OS proc # to the list. 3079 if (stride > 0) { 3080 do { 3081 ADD_MASK_OSID(start, osId2Mask, maxOsId); 3082 start += stride; 3083 } while (start <= end); 3084 } else { 3085 do { 3086 ADD_MASK_OSID(start, osId2Mask, maxOsId); 3087 start += stride; 3088 } while (start >= end); 3089 } 3090 3091 // Skip optional comma. 3092 SKIP_WS(next); 3093 if (*next == ',') { 3094 next++; 3095 } 3096 scan = next; 3097 } 3098 3099 *out_numMasks = nextNewMask; 3100 if (nextNewMask == 0) { 3101 *out_masks = NULL; 3102 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3103 return; 3104 } 3105 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); 3106 for (i = 0; i < nextNewMask; i++) { 3107 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); 3108 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); 3109 KMP_CPU_COPY(dest, src); 3110 } 3111 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3112 KMP_CPU_FREE(sumMask); 3113 } 3114 3115 /*----------------------------------------------------------------------------- 3116 Re-parse the OMP_PLACES proc id list, forming the newMasks for the different 3117 places. Again, Here is the grammar: 3118 3119 place_list := place 3120 place_list := place , place_list 3121 place := num 3122 place := place : num 3123 place := place : num : signed 3124 place := { subplacelist } 3125 place := ! place // (lowest priority) 3126 subplace_list := subplace 3127 subplace_list := subplace , subplace_list 3128 subplace := num 3129 subplace := num : num 3130 subplace := num : num : signed 3131 signed := num 3132 signed := + signed 3133 signed := - signed 3134 -----------------------------------------------------------------------------*/ 3135 static void __kmp_process_subplace_list(const char **scan, 3136 kmp_affin_mask_t *osId2Mask, 3137 int maxOsId, kmp_affin_mask_t *tempMask, 3138 int *setSize) { 3139 const char *next; 3140 3141 for (;;) { 3142 int start, count, stride, i; 3143 3144 // Read in the starting proc id 3145 SKIP_WS(*scan); 3146 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3147 next = *scan; 3148 SKIP_DIGITS(next); 3149 start = __kmp_str_to_int(*scan, *next); 3150 KMP_ASSERT(start >= 0); 3151 *scan = next; 3152 3153 // valid follow sets are ',' ':' and '}' 3154 SKIP_WS(*scan); 3155 if (**scan == '}' || **scan == ',') { 3156 if ((start > maxOsId) || 3157 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3158 if (__kmp_affinity_verbose || 3159 (__kmp_affinity_warnings && 3160 (__kmp_affinity_type != affinity_none))) { 3161 KMP_WARNING(AffIgnoreInvalidProcID, start); 3162 } 3163 } else { 3164 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3165 (*setSize)++; 3166 } 3167 if (**scan == '}') { 3168 break; 3169 } 3170 (*scan)++; // skip ',' 3171 continue; 3172 } 3173 KMP_ASSERT2(**scan == ':', "bad explicit places list"); 3174 (*scan)++; // skip ':' 3175 3176 // Read count parameter 3177 SKIP_WS(*scan); 3178 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3179 next = *scan; 3180 SKIP_DIGITS(next); 3181 count = __kmp_str_to_int(*scan, *next); 3182 KMP_ASSERT(count >= 0); 3183 *scan = next; 3184 3185 // valid follow sets are ',' ':' and '}' 3186 SKIP_WS(*scan); 3187 if (**scan == '}' || **scan == ',') { 3188 for (i = 0; i < count; i++) { 3189 if ((start > maxOsId) || 3190 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3191 if (__kmp_affinity_verbose || 3192 (__kmp_affinity_warnings && 3193 (__kmp_affinity_type != affinity_none))) { 3194 KMP_WARNING(AffIgnoreInvalidProcID, start); 3195 } 3196 break; // don't proliferate warnings for large count 3197 } else { 3198 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3199 start++; 3200 (*setSize)++; 3201 } 3202 } 3203 if (**scan == '}') { 3204 break; 3205 } 3206 (*scan)++; // skip ',' 3207 continue; 3208 } 3209 KMP_ASSERT2(**scan == ':', "bad explicit places list"); 3210 (*scan)++; // skip ':' 3211 3212 // Read stride parameter 3213 int sign = +1; 3214 for (;;) { 3215 SKIP_WS(*scan); 3216 if (**scan == '+') { 3217 (*scan)++; // skip '+' 3218 continue; 3219 } 3220 if (**scan == '-') { 3221 sign *= -1; 3222 (*scan)++; // skip '-' 3223 continue; 3224 } 3225 break; 3226 } 3227 SKIP_WS(*scan); 3228 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3229 next = *scan; 3230 SKIP_DIGITS(next); 3231 stride = __kmp_str_to_int(*scan, *next); 3232 KMP_ASSERT(stride >= 0); 3233 *scan = next; 3234 stride *= sign; 3235 3236 // valid follow sets are ',' and '}' 3237 SKIP_WS(*scan); 3238 if (**scan == '}' || **scan == ',') { 3239 for (i = 0; i < count; i++) { 3240 if ((start > maxOsId) || 3241 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3242 if (__kmp_affinity_verbose || 3243 (__kmp_affinity_warnings && 3244 (__kmp_affinity_type != affinity_none))) { 3245 KMP_WARNING(AffIgnoreInvalidProcID, start); 3246 } 3247 break; // don't proliferate warnings for large count 3248 } else { 3249 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3250 start += stride; 3251 (*setSize)++; 3252 } 3253 } 3254 if (**scan == '}') { 3255 break; 3256 } 3257 (*scan)++; // skip ',' 3258 continue; 3259 } 3260 3261 KMP_ASSERT2(0, "bad explicit places list"); 3262 } 3263 } 3264 3265 static void __kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask, 3266 int maxOsId, kmp_affin_mask_t *tempMask, 3267 int *setSize) { 3268 const char *next; 3269 3270 // valid follow sets are '{' '!' and num 3271 SKIP_WS(*scan); 3272 if (**scan == '{') { 3273 (*scan)++; // skip '{' 3274 __kmp_process_subplace_list(scan, osId2Mask, maxOsId, tempMask, setSize); 3275 KMP_ASSERT2(**scan == '}', "bad explicit places list"); 3276 (*scan)++; // skip '}' 3277 } else if (**scan == '!') { 3278 (*scan)++; // skip '!' 3279 __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize); 3280 KMP_CPU_COMPLEMENT(maxOsId, tempMask); 3281 } else if ((**scan >= '0') && (**scan <= '9')) { 3282 next = *scan; 3283 SKIP_DIGITS(next); 3284 int num = __kmp_str_to_int(*scan, *next); 3285 KMP_ASSERT(num >= 0); 3286 if ((num > maxOsId) || 3287 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 3288 if (__kmp_affinity_verbose || 3289 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { 3290 KMP_WARNING(AffIgnoreInvalidProcID, num); 3291 } 3292 } else { 3293 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num)); 3294 (*setSize)++; 3295 } 3296 *scan = next; // skip num 3297 } else { 3298 KMP_ASSERT2(0, "bad explicit places list"); 3299 } 3300 } 3301 3302 // static void 3303 void __kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks, 3304 unsigned int *out_numMasks, 3305 const char *placelist, 3306 kmp_affin_mask_t *osId2Mask, 3307 int maxOsId) { 3308 int i, j, count, stride, sign; 3309 const char *scan = placelist; 3310 const char *next = placelist; 3311 3312 numNewMasks = 2; 3313 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); 3314 nextNewMask = 0; 3315 3316 // tempMask is modified based on the previous or initial 3317 // place to form the current place 3318 // previousMask contains the previous place 3319 kmp_affin_mask_t *tempMask; 3320 kmp_affin_mask_t *previousMask; 3321 KMP_CPU_ALLOC(tempMask); 3322 KMP_CPU_ZERO(tempMask); 3323 KMP_CPU_ALLOC(previousMask); 3324 KMP_CPU_ZERO(previousMask); 3325 int setSize = 0; 3326 3327 for (;;) { 3328 __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize); 3329 3330 // valid follow sets are ',' ':' and EOL 3331 SKIP_WS(scan); 3332 if (*scan == '\0' || *scan == ',') { 3333 if (setSize > 0) { 3334 ADD_MASK(tempMask); 3335 } 3336 KMP_CPU_ZERO(tempMask); 3337 setSize = 0; 3338 if (*scan == '\0') { 3339 break; 3340 } 3341 scan++; // skip ',' 3342 continue; 3343 } 3344 3345 KMP_ASSERT2(*scan == ':', "bad explicit places list"); 3346 scan++; // skip ':' 3347 3348 // Read count parameter 3349 SKIP_WS(scan); 3350 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); 3351 next = scan; 3352 SKIP_DIGITS(next); 3353 count = __kmp_str_to_int(scan, *next); 3354 KMP_ASSERT(count >= 0); 3355 scan = next; 3356 3357 // valid follow sets are ',' ':' and EOL 3358 SKIP_WS(scan); 3359 if (*scan == '\0' || *scan == ',') { 3360 stride = +1; 3361 } else { 3362 KMP_ASSERT2(*scan == ':', "bad explicit places list"); 3363 scan++; // skip ':' 3364 3365 // Read stride parameter 3366 sign = +1; 3367 for (;;) { 3368 SKIP_WS(scan); 3369 if (*scan == '+') { 3370 scan++; // skip '+' 3371 continue; 3372 } 3373 if (*scan == '-') { 3374 sign *= -1; 3375 scan++; // skip '-' 3376 continue; 3377 } 3378 break; 3379 } 3380 SKIP_WS(scan); 3381 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); 3382 next = scan; 3383 SKIP_DIGITS(next); 3384 stride = __kmp_str_to_int(scan, *next); 3385 KMP_DEBUG_ASSERT(stride >= 0); 3386 scan = next; 3387 stride *= sign; 3388 } 3389 3390 // Add places determined by initial_place : count : stride 3391 for (i = 0; i < count; i++) { 3392 if (setSize == 0) { 3393 break; 3394 } 3395 // Add the current place, then build the next place (tempMask) from that 3396 KMP_CPU_COPY(previousMask, tempMask); 3397 ADD_MASK(previousMask); 3398 KMP_CPU_ZERO(tempMask); 3399 setSize = 0; 3400 KMP_CPU_SET_ITERATE(j, previousMask) { 3401 if (!KMP_CPU_ISSET(j, previousMask)) { 3402 continue; 3403 } 3404 if ((j + stride > maxOsId) || (j + stride < 0) || 3405 (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) || 3406 (!KMP_CPU_ISSET(j + stride, 3407 KMP_CPU_INDEX(osId2Mask, j + stride)))) { 3408 if ((__kmp_affinity_verbose || 3409 (__kmp_affinity_warnings && 3410 (__kmp_affinity_type != affinity_none))) && 3411 i < count - 1) { 3412 KMP_WARNING(AffIgnoreInvalidProcID, j + stride); 3413 } 3414 continue; 3415 } 3416 KMP_CPU_SET(j + stride, tempMask); 3417 setSize++; 3418 } 3419 } 3420 KMP_CPU_ZERO(tempMask); 3421 setSize = 0; 3422 3423 // valid follow sets are ',' and EOL 3424 SKIP_WS(scan); 3425 if (*scan == '\0') { 3426 break; 3427 } 3428 if (*scan == ',') { 3429 scan++; // skip ',' 3430 continue; 3431 } 3432 3433 KMP_ASSERT2(0, "bad explicit places list"); 3434 } 3435 3436 *out_numMasks = nextNewMask; 3437 if (nextNewMask == 0) { 3438 *out_masks = NULL; 3439 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3440 return; 3441 } 3442 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); 3443 KMP_CPU_FREE(tempMask); 3444 KMP_CPU_FREE(previousMask); 3445 for (i = 0; i < nextNewMask; i++) { 3446 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); 3447 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); 3448 KMP_CPU_COPY(dest, src); 3449 } 3450 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3451 } 3452 3453 #undef ADD_MASK 3454 #undef ADD_MASK_OSID 3455 3456 #if KMP_USE_HWLOC 3457 static int __kmp_hwloc_skip_PUs_obj(hwloc_topology_t t, hwloc_obj_t o) { 3458 // skip PUs descendants of the object o 3459 int skipped = 0; 3460 hwloc_obj_t hT = NULL; 3461 int N = __kmp_hwloc_count_children_by_type(t, o, HWLOC_OBJ_PU, &hT); 3462 for (int i = 0; i < N; ++i) { 3463 KMP_DEBUG_ASSERT(hT); 3464 unsigned idx = hT->os_index; 3465 if (KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3466 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3467 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3468 ++skipped; 3469 } 3470 hT = hwloc_get_next_obj_by_type(t, HWLOC_OBJ_PU, hT); 3471 } 3472 return skipped; // count number of skipped units 3473 } 3474 3475 static int __kmp_hwloc_obj_has_PUs(hwloc_topology_t t, hwloc_obj_t o) { 3476 // check if obj has PUs present in fullMask 3477 hwloc_obj_t hT = NULL; 3478 int N = __kmp_hwloc_count_children_by_type(t, o, HWLOC_OBJ_PU, &hT); 3479 for (int i = 0; i < N; ++i) { 3480 KMP_DEBUG_ASSERT(hT); 3481 unsigned idx = hT->os_index; 3482 if (KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) 3483 return 1; // found PU 3484 hT = hwloc_get_next_obj_by_type(t, HWLOC_OBJ_PU, hT); 3485 } 3486 return 0; // no PUs found 3487 } 3488 #endif // KMP_USE_HWLOC 3489 3490 static void __kmp_apply_thread_places(AddrUnsPair **pAddr, int depth) { 3491 AddrUnsPair *newAddr; 3492 if (__kmp_hws_requested == 0) 3493 goto _exit; // no topology limiting actions requested, exit 3494 #if KMP_USE_HWLOC 3495 if (__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) { 3496 // Number of subobjects calculated dynamically, this works fine for 3497 // any non-uniform topology. 3498 // L2 cache objects are determined by depth, other objects - by type. 3499 hwloc_topology_t tp = __kmp_hwloc_topology; 3500 int nS = 0, nN = 0, nL = 0, nC = 0, 3501 nT = 0; // logical index including skipped 3502 int nCr = 0, nTr = 0; // number of requested units 3503 int nPkg = 0, nCo = 0, n_new = 0, n_old = 0, nCpP = 0, nTpC = 0; // counters 3504 hwloc_obj_t hT, hC, hL, hN, hS; // hwloc objects (pointers to) 3505 int L2depth, idx; 3506 3507 // check support of extensions ---------------------------------- 3508 int numa_support = 0, tile_support = 0; 3509 if (__kmp_pu_os_idx) 3510 hT = hwloc_get_pu_obj_by_os_index(tp, 3511 __kmp_pu_os_idx[__kmp_avail_proc - 1]); 3512 else 3513 hT = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PU, __kmp_avail_proc - 1); 3514 if (hT == NULL) { // something's gone wrong 3515 KMP_WARNING(AffHWSubsetUnsupported); 3516 goto _exit; 3517 } 3518 // check NUMA node 3519 hN = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hT); 3520 hS = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hT); 3521 if (hN != NULL && hN->depth > hS->depth) { 3522 numa_support = 1; // 1 in case socket includes node(s) 3523 } else if (__kmp_hws_node.num > 0) { 3524 // don't support sockets inside NUMA node (no such HW found for testing) 3525 KMP_WARNING(AffHWSubsetUnsupported); 3526 goto _exit; 3527 } 3528 // check L2 cahce, get object by depth because of multiple caches 3529 L2depth = hwloc_get_cache_type_depth(tp, 2, HWLOC_OBJ_CACHE_UNIFIED); 3530 hL = hwloc_get_ancestor_obj_by_depth(tp, L2depth, hT); 3531 if (hL != NULL && 3532 __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC) > 1) { 3533 tile_support = 1; // no sense to count L2 if it includes single core 3534 } else if (__kmp_hws_tile.num > 0) { 3535 if (__kmp_hws_core.num == 0) { 3536 __kmp_hws_core = __kmp_hws_tile; // replace L2 with core 3537 __kmp_hws_tile.num = 0; 3538 } else { 3539 // L2 and core are both requested, but represent same object 3540 KMP_WARNING(AffHWSubsetInvalid); 3541 goto _exit; 3542 } 3543 } 3544 // end of check of extensions ----------------------------------- 3545 3546 // fill in unset items, validate settings ----------------------- 3547 if (__kmp_hws_socket.num == 0) 3548 __kmp_hws_socket.num = nPackages; // use all available sockets 3549 if (__kmp_hws_socket.offset >= nPackages) { 3550 KMP_WARNING(AffHWSubsetManySockets); 3551 goto _exit; 3552 } 3553 if (numa_support) { 3554 hN = NULL; 3555 int NN = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_NUMANODE, 3556 &hN); // num nodes in socket 3557 if (__kmp_hws_node.num == 0) 3558 __kmp_hws_node.num = NN; // use all available nodes 3559 if (__kmp_hws_node.offset >= NN) { 3560 KMP_WARNING(AffHWSubsetManyNodes); 3561 goto _exit; 3562 } 3563 if (tile_support) { 3564 // get num tiles in node 3565 int NL = __kmp_hwloc_count_children_by_depth(tp, hN, L2depth, &hL); 3566 if (__kmp_hws_tile.num == 0) { 3567 __kmp_hws_tile.num = NL + 1; 3568 } // use all available tiles, some node may have more tiles, thus +1 3569 if (__kmp_hws_tile.offset >= NL) { 3570 KMP_WARNING(AffHWSubsetManyTiles); 3571 goto _exit; 3572 } 3573 int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, 3574 &hC); // num cores in tile 3575 if (__kmp_hws_core.num == 0) 3576 __kmp_hws_core.num = NC; // use all available cores 3577 if (__kmp_hws_core.offset >= NC) { 3578 KMP_WARNING(AffHWSubsetManyCores); 3579 goto _exit; 3580 } 3581 } else { // tile_support 3582 int NC = __kmp_hwloc_count_children_by_type(tp, hN, HWLOC_OBJ_CORE, 3583 &hC); // num cores in node 3584 if (__kmp_hws_core.num == 0) 3585 __kmp_hws_core.num = NC; // use all available cores 3586 if (__kmp_hws_core.offset >= NC) { 3587 KMP_WARNING(AffHWSubsetManyCores); 3588 goto _exit; 3589 } 3590 } // tile_support 3591 } else { // numa_support 3592 if (tile_support) { 3593 // get num tiles in socket 3594 int NL = __kmp_hwloc_count_children_by_depth(tp, hS, L2depth, &hL); 3595 if (__kmp_hws_tile.num == 0) 3596 __kmp_hws_tile.num = NL; // use all available tiles 3597 if (__kmp_hws_tile.offset >= NL) { 3598 KMP_WARNING(AffHWSubsetManyTiles); 3599 goto _exit; 3600 } 3601 int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, 3602 &hC); // num cores in tile 3603 if (__kmp_hws_core.num == 0) 3604 __kmp_hws_core.num = NC; // use all available cores 3605 if (__kmp_hws_core.offset >= NC) { 3606 KMP_WARNING(AffHWSubsetManyCores); 3607 goto _exit; 3608 } 3609 } else { // tile_support 3610 int NC = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_CORE, 3611 &hC); // num cores in socket 3612 if (__kmp_hws_core.num == 0) 3613 __kmp_hws_core.num = NC; // use all available cores 3614 if (__kmp_hws_core.offset >= NC) { 3615 KMP_WARNING(AffHWSubsetManyCores); 3616 goto _exit; 3617 } 3618 } // tile_support 3619 } 3620 if (__kmp_hws_proc.num == 0) 3621 __kmp_hws_proc.num = __kmp_nThreadsPerCore; // use all available procs 3622 if (__kmp_hws_proc.offset >= __kmp_nThreadsPerCore) { 3623 KMP_WARNING(AffHWSubsetManyProcs); 3624 goto _exit; 3625 } 3626 // end of validation -------------------------------------------- 3627 3628 if (pAddr) // pAddr is NULL in case of affinity_none 3629 newAddr = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * 3630 __kmp_avail_proc); // max size 3631 // main loop to form HW subset ---------------------------------- 3632 hS = NULL; 3633 int NP = hwloc_get_nbobjs_by_type(tp, HWLOC_OBJ_PACKAGE); 3634 for (int s = 0; s < NP; ++s) { 3635 // Check Socket ----------------------------------------------- 3636 hS = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hS); 3637 if (!__kmp_hwloc_obj_has_PUs(tp, hS)) 3638 continue; // skip socket if all PUs are out of fullMask 3639 ++nS; // only count objects those have PUs in affinity mask 3640 if (nS <= __kmp_hws_socket.offset || 3641 nS > __kmp_hws_socket.num + __kmp_hws_socket.offset) { 3642 n_old += __kmp_hwloc_skip_PUs_obj(tp, hS); // skip socket 3643 continue; // move to next socket 3644 } 3645 nCr = 0; // count number of cores per socket 3646 // socket requested, go down the topology tree 3647 // check 4 cases: (+NUMA+Tile), (+NUMA-Tile), (-NUMA+Tile), (-NUMA-Tile) 3648 if (numa_support) { 3649 nN = 0; 3650 hN = NULL; 3651 // num nodes in current socket 3652 int NN = 3653 __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_NUMANODE, &hN); 3654 for (int n = 0; n < NN; ++n) { 3655 // Check NUMA Node ---------------------------------------- 3656 if (!__kmp_hwloc_obj_has_PUs(tp, hN)) { 3657 hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN); 3658 continue; // skip node if all PUs are out of fullMask 3659 } 3660 ++nN; 3661 if (nN <= __kmp_hws_node.offset || 3662 nN > __kmp_hws_node.num + __kmp_hws_node.offset) { 3663 // skip node as not requested 3664 n_old += __kmp_hwloc_skip_PUs_obj(tp, hN); // skip node 3665 hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN); 3666 continue; // move to next node 3667 } 3668 // node requested, go down the topology tree 3669 if (tile_support) { 3670 nL = 0; 3671 hL = NULL; 3672 int NL = __kmp_hwloc_count_children_by_depth(tp, hN, L2depth, &hL); 3673 for (int l = 0; l < NL; ++l) { 3674 // Check L2 (tile) ------------------------------------ 3675 if (!__kmp_hwloc_obj_has_PUs(tp, hL)) { 3676 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3677 continue; // skip tile if all PUs are out of fullMask 3678 } 3679 ++nL; 3680 if (nL <= __kmp_hws_tile.offset || 3681 nL > __kmp_hws_tile.num + __kmp_hws_tile.offset) { 3682 // skip tile as not requested 3683 n_old += __kmp_hwloc_skip_PUs_obj(tp, hL); // skip tile 3684 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3685 continue; // move to next tile 3686 } 3687 // tile requested, go down the topology tree 3688 nC = 0; 3689 hC = NULL; 3690 // num cores in current tile 3691 int NC = __kmp_hwloc_count_children_by_type(tp, hL, 3692 HWLOC_OBJ_CORE, &hC); 3693 for (int c = 0; c < NC; ++c) { 3694 // Check Core --------------------------------------- 3695 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) { 3696 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3697 continue; // skip core if all PUs are out of fullMask 3698 } 3699 ++nC; 3700 if (nC <= __kmp_hws_core.offset || 3701 nC > __kmp_hws_core.num + __kmp_hws_core.offset) { 3702 // skip node as not requested 3703 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core 3704 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3705 continue; // move to next node 3706 } 3707 // core requested, go down to PUs 3708 nT = 0; 3709 nTr = 0; 3710 hT = NULL; 3711 // num procs in current core 3712 int NT = __kmp_hwloc_count_children_by_type(tp, hC, 3713 HWLOC_OBJ_PU, &hT); 3714 for (int t = 0; t < NT; ++t) { 3715 // Check PU --------------------------------------- 3716 idx = hT->os_index; 3717 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3718 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3719 continue; // skip PU if not in fullMask 3720 } 3721 ++nT; 3722 if (nT <= __kmp_hws_proc.offset || 3723 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) { 3724 // skip PU 3725 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3726 ++n_old; 3727 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3728 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3729 continue; // move to next node 3730 } 3731 ++nTr; 3732 if (pAddr) // collect requested thread's data 3733 newAddr[n_new] = (*pAddr)[n_old]; 3734 ++n_new; 3735 ++n_old; 3736 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3737 } // threads loop 3738 if (nTr > 0) { 3739 ++nCr; // num cores per socket 3740 ++nCo; // total num cores 3741 if (nTr > nTpC) 3742 nTpC = nTr; // calc max threads per core 3743 } 3744 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3745 } // cores loop 3746 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3747 } // tiles loop 3748 } else { // tile_support 3749 // no tiles, check cores 3750 nC = 0; 3751 hC = NULL; 3752 // num cores in current node 3753 int NC = 3754 __kmp_hwloc_count_children_by_type(tp, hN, HWLOC_OBJ_CORE, &hC); 3755 for (int c = 0; c < NC; ++c) { 3756 // Check Core --------------------------------------- 3757 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) { 3758 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3759 continue; // skip core if all PUs are out of fullMask 3760 } 3761 ++nC; 3762 if (nC <= __kmp_hws_core.offset || 3763 nC > __kmp_hws_core.num + __kmp_hws_core.offset) { 3764 // skip node as not requested 3765 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core 3766 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3767 continue; // move to next node 3768 } 3769 // core requested, go down to PUs 3770 nT = 0; 3771 nTr = 0; 3772 hT = NULL; 3773 int NT = 3774 __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT); 3775 for (int t = 0; t < NT; ++t) { 3776 // Check PU --------------------------------------- 3777 idx = hT->os_index; 3778 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3779 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3780 continue; // skip PU if not in fullMask 3781 } 3782 ++nT; 3783 if (nT <= __kmp_hws_proc.offset || 3784 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) { 3785 // skip PU 3786 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3787 ++n_old; 3788 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3789 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3790 continue; // move to next node 3791 } 3792 ++nTr; 3793 if (pAddr) // collect requested thread's data 3794 newAddr[n_new] = (*pAddr)[n_old]; 3795 ++n_new; 3796 ++n_old; 3797 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3798 } // threads loop 3799 if (nTr > 0) { 3800 ++nCr; // num cores per socket 3801 ++nCo; // total num cores 3802 if (nTr > nTpC) 3803 nTpC = nTr; // calc max threads per core 3804 } 3805 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3806 } // cores loop 3807 } // tiles support 3808 hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN); 3809 } // nodes loop 3810 } else { // numa_support 3811 // no NUMA support 3812 if (tile_support) { 3813 nL = 0; 3814 hL = NULL; 3815 // num tiles in current socket 3816 int NL = __kmp_hwloc_count_children_by_depth(tp, hS, L2depth, &hL); 3817 for (int l = 0; l < NL; ++l) { 3818 // Check L2 (tile) ------------------------------------ 3819 if (!__kmp_hwloc_obj_has_PUs(tp, hL)) { 3820 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3821 continue; // skip tile if all PUs are out of fullMask 3822 } 3823 ++nL; 3824 if (nL <= __kmp_hws_tile.offset || 3825 nL > __kmp_hws_tile.num + __kmp_hws_tile.offset) { 3826 // skip tile as not requested 3827 n_old += __kmp_hwloc_skip_PUs_obj(tp, hL); // skip tile 3828 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3829 continue; // move to next tile 3830 } 3831 // tile requested, go down the topology tree 3832 nC = 0; 3833 hC = NULL; 3834 // num cores per tile 3835 int NC = 3836 __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC); 3837 for (int c = 0; c < NC; ++c) { 3838 // Check Core --------------------------------------- 3839 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) { 3840 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3841 continue; // skip core if all PUs are out of fullMask 3842 } 3843 ++nC; 3844 if (nC <= __kmp_hws_core.offset || 3845 nC > __kmp_hws_core.num + __kmp_hws_core.offset) { 3846 // skip node as not requested 3847 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core 3848 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3849 continue; // move to next node 3850 } 3851 // core requested, go down to PUs 3852 nT = 0; 3853 nTr = 0; 3854 hT = NULL; 3855 // num procs per core 3856 int NT = 3857 __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT); 3858 for (int t = 0; t < NT; ++t) { 3859 // Check PU --------------------------------------- 3860 idx = hT->os_index; 3861 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3862 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3863 continue; // skip PU if not in fullMask 3864 } 3865 ++nT; 3866 if (nT <= __kmp_hws_proc.offset || 3867 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) { 3868 // skip PU 3869 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3870 ++n_old; 3871 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3872 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3873 continue; // move to next node 3874 } 3875 ++nTr; 3876 if (pAddr) // collect requested thread's data 3877 newAddr[n_new] = (*pAddr)[n_old]; 3878 ++n_new; 3879 ++n_old; 3880 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3881 } // threads loop 3882 if (nTr > 0) { 3883 ++nCr; // num cores per socket 3884 ++nCo; // total num cores 3885 if (nTr > nTpC) 3886 nTpC = nTr; // calc max threads per core 3887 } 3888 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3889 } // cores loop 3890 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3891 } // tiles loop 3892 } else { // tile_support 3893 // no tiles, check cores 3894 nC = 0; 3895 hC = NULL; 3896 // num cores in socket 3897 int NC = 3898 __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_CORE, &hC); 3899 for (int c = 0; c < NC; ++c) { 3900 // Check Core ------------------------------------------- 3901 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) { 3902 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3903 continue; // skip core if all PUs are out of fullMask 3904 } 3905 ++nC; 3906 if (nC <= __kmp_hws_core.offset || 3907 nC > __kmp_hws_core.num + __kmp_hws_core.offset) { 3908 // skip node as not requested 3909 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core 3910 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3911 continue; // move to next node 3912 } 3913 // core requested, go down to PUs 3914 nT = 0; 3915 nTr = 0; 3916 hT = NULL; 3917 // num procs per core 3918 int NT = 3919 __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT); 3920 for (int t = 0; t < NT; ++t) { 3921 // Check PU --------------------------------------- 3922 idx = hT->os_index; 3923 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3924 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3925 continue; // skip PU if not in fullMask 3926 } 3927 ++nT; 3928 if (nT <= __kmp_hws_proc.offset || 3929 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) { 3930 // skip PU 3931 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3932 ++n_old; 3933 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3934 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3935 continue; // move to next node 3936 } 3937 ++nTr; 3938 if (pAddr) // collect requested thread's data 3939 newAddr[n_new] = (*pAddr)[n_old]; 3940 ++n_new; 3941 ++n_old; 3942 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3943 } // threads loop 3944 if (nTr > 0) { 3945 ++nCr; // num cores per socket 3946 ++nCo; // total num cores 3947 if (nTr > nTpC) 3948 nTpC = nTr; // calc max threads per core 3949 } 3950 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3951 } // cores loop 3952 } // tiles support 3953 } // numa_support 3954 if (nCr > 0) { // found cores? 3955 ++nPkg; // num sockets 3956 if (nCr > nCpP) 3957 nCpP = nCr; // calc max cores per socket 3958 } 3959 } // sockets loop 3960 3961 // check the subset is valid 3962 KMP_DEBUG_ASSERT(n_old == __kmp_avail_proc); 3963 KMP_DEBUG_ASSERT(nPkg > 0); 3964 KMP_DEBUG_ASSERT(nCpP > 0); 3965 KMP_DEBUG_ASSERT(nTpC > 0); 3966 KMP_DEBUG_ASSERT(nCo > 0); 3967 KMP_DEBUG_ASSERT(nPkg <= nPackages); 3968 KMP_DEBUG_ASSERT(nCpP <= nCoresPerPkg); 3969 KMP_DEBUG_ASSERT(nTpC <= __kmp_nThreadsPerCore); 3970 KMP_DEBUG_ASSERT(nCo <= __kmp_ncores); 3971 3972 nPackages = nPkg; // correct num sockets 3973 nCoresPerPkg = nCpP; // correct num cores per socket 3974 __kmp_nThreadsPerCore = nTpC; // correct num threads per core 3975 __kmp_avail_proc = n_new; // correct num procs 3976 __kmp_ncores = nCo; // correct num cores 3977 // hwloc topology method end 3978 } else 3979 #endif // KMP_USE_HWLOC 3980 { 3981 int n_old = 0, n_new = 0, proc_num = 0; 3982 if (__kmp_hws_node.num > 0 || __kmp_hws_tile.num > 0) { 3983 KMP_WARNING(AffHWSubsetNoHWLOC); 3984 goto _exit; 3985 } 3986 if (__kmp_hws_socket.num == 0) 3987 __kmp_hws_socket.num = nPackages; // use all available sockets 3988 if (__kmp_hws_die.num == 0) 3989 __kmp_hws_die.num = nDiesPerPkg; // use all available dies 3990 if (__kmp_hws_core.num == 0) 3991 __kmp_hws_core.num = nCoresPerPkg; // use all available cores 3992 if (__kmp_hws_proc.num == 0 || __kmp_hws_proc.num > __kmp_nThreadsPerCore) 3993 __kmp_hws_proc.num = __kmp_nThreadsPerCore; // use all HW contexts 3994 if (!__kmp_affinity_uniform_topology()) { 3995 KMP_WARNING(AffHWSubsetNonUniform); 3996 goto _exit; // don't support non-uniform topology 3997 } 3998 if (depth > 4) { 3999 KMP_WARNING(AffHWSubsetNonThreeLevel); 4000 goto _exit; // don't support not-3-level topology 4001 } 4002 if (__kmp_hws_socket.offset + __kmp_hws_socket.num > nPackages) { 4003 KMP_WARNING(AffHWSubsetManySockets); 4004 goto _exit; 4005 } 4006 if (depth == 4 && __kmp_hws_die.offset + __kmp_hws_die.num > nDiesPerPkg) { 4007 KMP_WARNING(AffHWSubsetManyDies); 4008 goto _exit; 4009 } 4010 if (__kmp_hws_core.offset + __kmp_hws_core.num > nCoresPerPkg) { 4011 KMP_WARNING(AffHWSubsetManyCores); 4012 goto _exit; 4013 } 4014 // Form the requested subset 4015 if (pAddr) // pAddr is NULL in case of affinity_none 4016 newAddr = (AddrUnsPair *)__kmp_allocate( 4017 sizeof(AddrUnsPair) * __kmp_hws_socket.num * __kmp_hws_die.num * 4018 __kmp_hws_core.num * __kmp_hws_proc.num); 4019 for (int i = 0; i < nPackages; ++i) { 4020 if (i < __kmp_hws_socket.offset || 4021 i >= __kmp_hws_socket.offset + __kmp_hws_socket.num) { 4022 // skip not-requested socket 4023 n_old += nDiesPerPkg * nCoresPerPkg * __kmp_nThreadsPerCore; 4024 if (__kmp_pu_os_idx != NULL) { 4025 // walk through skipped socket 4026 for (int l = 0; l < nDiesPerPkg; ++l) { 4027 for (int j = 0; j < nCoresPerPkg; ++j) { 4028 for (int k = 0; k < __kmp_nThreadsPerCore; ++k) { 4029 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask); 4030 ++proc_num; 4031 } 4032 } 4033 } 4034 } 4035 } else { 4036 // walk through requested socket 4037 for (int l = 0; l < nDiesPerPkg; ++l) { 4038 // skip unwanted die 4039 if (l < __kmp_hws_die.offset || 4040 l >= __kmp_hws_die.offset + __kmp_hws_die.num) { 4041 n_old += nCoresPerPkg; 4042 if (__kmp_pu_os_idx != NULL) { 4043 for (int k = 0; k < nCoresPerPkg; ++k) { 4044 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask); 4045 ++proc_num; 4046 } 4047 } 4048 } else { 4049 for (int j = 0; j < nCoresPerPkg; ++j) { 4050 if (j < __kmp_hws_core.offset || 4051 j >= __kmp_hws_core.offset + 4052 __kmp_hws_core.num) { // skip not-requested core 4053 n_old += __kmp_nThreadsPerCore; 4054 if (__kmp_pu_os_idx != NULL) { 4055 for (int k = 0; k < __kmp_nThreadsPerCore; ++k) { 4056 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], 4057 __kmp_affin_fullMask); 4058 ++proc_num; 4059 } 4060 } 4061 } else { 4062 // walk through requested core 4063 for (int k = 0; k < __kmp_nThreadsPerCore; ++k) { 4064 if (k < __kmp_hws_proc.num) { 4065 if (pAddr) // collect requested thread's data 4066 newAddr[n_new] = (*pAddr)[n_old]; 4067 n_new++; 4068 } else { 4069 if (__kmp_pu_os_idx != NULL) 4070 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], 4071 __kmp_affin_fullMask); 4072 } 4073 n_old++; 4074 ++proc_num; 4075 } 4076 } 4077 } 4078 } 4079 } 4080 } 4081 } 4082 KMP_DEBUG_ASSERT(n_old == nPackages * nDiesPerPkg * nCoresPerPkg * 4083 __kmp_nThreadsPerCore); 4084 KMP_DEBUG_ASSERT(n_new == __kmp_hws_socket.num * __kmp_hws_die.num * 4085 __kmp_hws_core.num * __kmp_hws_proc.num); 4086 nPackages = __kmp_hws_socket.num; // correct nPackages 4087 nCoresPerPkg = __kmp_hws_core.num; // correct nCoresPerPkg 4088 nDiesPerPkg = __kmp_hws_die.num; // correct nDiesPerPkg 4089 __kmp_nThreadsPerCore = __kmp_hws_proc.num; // correct __kmp_nThreadsPerCore 4090 __kmp_avail_proc = n_new; // correct avail_proc 4091 __kmp_ncores = 4092 nPackages * nDiesPerPkg * __kmp_hws_core.num; // correct ncores 4093 } // non-hwloc topology method 4094 if (pAddr) { 4095 __kmp_free(*pAddr); 4096 *pAddr = newAddr; // replace old topology with new one 4097 } 4098 if (__kmp_affinity_verbose) { 4099 KMP_INFORM(AvailableOSProc, "KMP_HW_SUBSET", __kmp_avail_proc); 4100 kmp_str_buf_t buf; 4101 __kmp_str_buf_init(&buf); 4102 __kmp_str_buf_print(&buf, "%d", nPackages); 4103 KMP_INFORM(TopologyExtra, "KMP_HW_SUBSET", buf.str, nCoresPerPkg, 4104 __kmp_nThreadsPerCore, __kmp_ncores); 4105 __kmp_str_buf_free(&buf); 4106 } 4107 _exit: 4108 if (__kmp_pu_os_idx != NULL) { 4109 __kmp_free(__kmp_pu_os_idx); 4110 __kmp_pu_os_idx = NULL; 4111 } 4112 } 4113 4114 // This function figures out the deepest level at which there is at least one 4115 // cluster/core with more than one processing unit bound to it. 4116 static int __kmp_affinity_find_core_level(const AddrUnsPair *address2os, 4117 int nprocs, int bottom_level) { 4118 int core_level = 0; 4119 4120 for (int i = 0; i < nprocs; i++) { 4121 for (int j = bottom_level; j > 0; j--) { 4122 if (address2os[i].first.labels[j] > 0) { 4123 if (core_level < (j - 1)) { 4124 core_level = j - 1; 4125 } 4126 } 4127 } 4128 } 4129 return core_level; 4130 } 4131 4132 // This function counts number of clusters/cores at given level. 4133 static int __kmp_affinity_compute_ncores(const AddrUnsPair *address2os, 4134 int nprocs, int bottom_level, 4135 int core_level) { 4136 int ncores = 0; 4137 int i, j; 4138 4139 j = bottom_level; 4140 for (i = 0; i < nprocs; i++) { 4141 for (j = bottom_level; j > core_level; j--) { 4142 if ((i + 1) < nprocs) { 4143 if (address2os[i + 1].first.labels[j] > 0) { 4144 break; 4145 } 4146 } 4147 } 4148 if (j == core_level) { 4149 ncores++; 4150 } 4151 } 4152 if (j > core_level) { 4153 // In case of ( nprocs < __kmp_avail_proc ) we may end too deep and miss one 4154 // core. May occur when called from __kmp_affinity_find_core(). 4155 ncores++; 4156 } 4157 return ncores; 4158 } 4159 4160 // This function finds to which cluster/core given processing unit is bound. 4161 static int __kmp_affinity_find_core(const AddrUnsPair *address2os, int proc, 4162 int bottom_level, int core_level) { 4163 return __kmp_affinity_compute_ncores(address2os, proc + 1, bottom_level, 4164 core_level) - 4165 1; 4166 } 4167 4168 // This function finds maximal number of processing units bound to a 4169 // cluster/core at given level. 4170 static int __kmp_affinity_max_proc_per_core(const AddrUnsPair *address2os, 4171 int nprocs, int bottom_level, 4172 int core_level) { 4173 int maxprocpercore = 0; 4174 4175 if (core_level < bottom_level) { 4176 for (int i = 0; i < nprocs; i++) { 4177 int percore = address2os[i].first.labels[core_level + 1] + 1; 4178 4179 if (percore > maxprocpercore) { 4180 maxprocpercore = percore; 4181 } 4182 } 4183 } else { 4184 maxprocpercore = 1; 4185 } 4186 return maxprocpercore; 4187 } 4188 4189 static AddrUnsPair *address2os = NULL; 4190 static int *procarr = NULL; 4191 static int __kmp_aff_depth = 0; 4192 4193 #if KMP_USE_HIER_SCHED 4194 #define KMP_EXIT_AFF_NONE \ 4195 KMP_ASSERT(__kmp_affinity_type == affinity_none); \ 4196 KMP_ASSERT(address2os == NULL); \ 4197 __kmp_apply_thread_places(NULL, 0); \ 4198 __kmp_create_affinity_none_places(); \ 4199 __kmp_dispatch_set_hierarchy_values(); \ 4200 return; 4201 #else 4202 #define KMP_EXIT_AFF_NONE \ 4203 KMP_ASSERT(__kmp_affinity_type == affinity_none); \ 4204 KMP_ASSERT(address2os == NULL); \ 4205 __kmp_apply_thread_places(NULL, 0); \ 4206 __kmp_create_affinity_none_places(); \ 4207 return; 4208 #endif 4209 4210 // Create a one element mask array (set of places) which only contains the 4211 // initial process's affinity mask 4212 static void __kmp_create_affinity_none_places() { 4213 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4214 KMP_ASSERT(__kmp_affinity_type == affinity_none); 4215 __kmp_affinity_num_masks = 1; 4216 KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); 4217 kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, 0); 4218 KMP_CPU_COPY(dest, __kmp_affin_fullMask); 4219 } 4220 4221 static int __kmp_affinity_cmp_Address_child_num(const void *a, const void *b) { 4222 const Address *aa = &(((const AddrUnsPair *)a)->first); 4223 const Address *bb = &(((const AddrUnsPair *)b)->first); 4224 unsigned depth = aa->depth; 4225 unsigned i; 4226 KMP_DEBUG_ASSERT(depth == bb->depth); 4227 KMP_DEBUG_ASSERT((unsigned)__kmp_affinity_compact <= depth); 4228 KMP_DEBUG_ASSERT(__kmp_affinity_compact >= 0); 4229 for (i = 0; i < (unsigned)__kmp_affinity_compact; i++) { 4230 int j = depth - i - 1; 4231 if (aa->childNums[j] < bb->childNums[j]) 4232 return -1; 4233 if (aa->childNums[j] > bb->childNums[j]) 4234 return 1; 4235 } 4236 for (; i < depth; i++) { 4237 int j = i - __kmp_affinity_compact; 4238 if (aa->childNums[j] < bb->childNums[j]) 4239 return -1; 4240 if (aa->childNums[j] > bb->childNums[j]) 4241 return 1; 4242 } 4243 return 0; 4244 } 4245 4246 static void __kmp_aux_affinity_initialize(void) { 4247 if (__kmp_affinity_masks != NULL) { 4248 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4249 return; 4250 } 4251 4252 // Create the "full" mask - this defines all of the processors that we 4253 // consider to be in the machine model. If respect is set, then it is the 4254 // initialization thread's affinity mask. Otherwise, it is all processors that 4255 // we know about on the machine. 4256 if (__kmp_affin_fullMask == NULL) { 4257 KMP_CPU_ALLOC(__kmp_affin_fullMask); 4258 } 4259 if (KMP_AFFINITY_CAPABLE()) { 4260 __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE); 4261 if (__kmp_affinity_respect_mask) { 4262 // Count the number of available processors. 4263 unsigned i; 4264 __kmp_avail_proc = 0; 4265 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 4266 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 4267 continue; 4268 } 4269 __kmp_avail_proc++; 4270 } 4271 if (__kmp_avail_proc > __kmp_xproc) { 4272 if (__kmp_affinity_verbose || 4273 (__kmp_affinity_warnings && 4274 (__kmp_affinity_type != affinity_none))) { 4275 KMP_WARNING(ErrorInitializeAffinity); 4276 } 4277 __kmp_affinity_type = affinity_none; 4278 KMP_AFFINITY_DISABLE(); 4279 return; 4280 } 4281 4282 if (__kmp_affinity_verbose) { 4283 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4284 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4285 __kmp_affin_fullMask); 4286 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 4287 } 4288 } else { 4289 if (__kmp_affinity_verbose) { 4290 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4291 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4292 __kmp_affin_fullMask); 4293 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 4294 } 4295 __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask); 4296 __kmp_avail_proc = __kmp_xproc; 4297 #if KMP_OS_WINDOWS 4298 // Set the process affinity mask since threads' affinity 4299 // masks must be subset of process mask in Windows* OS 4300 __kmp_affin_fullMask->set_process_affinity(true); 4301 #endif 4302 } 4303 } 4304 4305 if (__kmp_affinity_gran == affinity_gran_tile && 4306 // check if user's request is valid 4307 __kmp_affinity_dispatch->get_api_type() == KMPAffinity::NATIVE_OS) { 4308 KMP_WARNING(AffTilesNoHWLOC, "KMP_AFFINITY"); 4309 __kmp_affinity_gran = affinity_gran_package; 4310 } 4311 4312 int depth = -1; 4313 kmp_i18n_id_t msg_id = kmp_i18n_null; 4314 4315 // For backward compatibility, setting KMP_CPUINFO_FILE => 4316 // KMP_TOPOLOGY_METHOD=cpuinfo 4317 if ((__kmp_cpuinfo_file != NULL) && 4318 (__kmp_affinity_top_method == affinity_top_method_all)) { 4319 __kmp_affinity_top_method = affinity_top_method_cpuinfo; 4320 } 4321 4322 if (__kmp_affinity_top_method == affinity_top_method_all) { 4323 // In the default code path, errors are not fatal - we just try using 4324 // another method. We only emit a warning message if affinity is on, or the 4325 // verbose flag is set, and the nowarnings flag was not set. 4326 const char *file_name = NULL; 4327 int line = 0; 4328 #if KMP_USE_HWLOC 4329 if (depth < 0 && 4330 __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) { 4331 if (__kmp_affinity_verbose) { 4332 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); 4333 } 4334 if (!__kmp_hwloc_error) { 4335 depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id); 4336 if (depth == 0) { 4337 KMP_EXIT_AFF_NONE; 4338 } else if (depth < 0 && __kmp_affinity_verbose) { 4339 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY"); 4340 } 4341 } else if (__kmp_affinity_verbose) { 4342 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY"); 4343 } 4344 } 4345 #endif 4346 4347 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4348 4349 if (depth < 0) { 4350 if (__kmp_affinity_verbose) { 4351 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC)); 4352 } 4353 4354 file_name = NULL; 4355 depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id); 4356 if (depth == 0) { 4357 KMP_EXIT_AFF_NONE; 4358 } 4359 4360 if (depth < 0) { 4361 if (__kmp_affinity_verbose) { 4362 if (msg_id != kmp_i18n_null) { 4363 KMP_INFORM(AffInfoStrStr, "KMP_AFFINITY", 4364 __kmp_i18n_catgets(msg_id), 4365 KMP_I18N_STR(DecodingLegacyAPIC)); 4366 } else { 4367 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", 4368 KMP_I18N_STR(DecodingLegacyAPIC)); 4369 } 4370 } 4371 4372 file_name = NULL; 4373 depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id); 4374 if (depth == 0) { 4375 KMP_EXIT_AFF_NONE; 4376 } 4377 } 4378 } 4379 4380 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4381 4382 #if KMP_OS_LINUX 4383 4384 if (depth < 0) { 4385 if (__kmp_affinity_verbose) { 4386 if (msg_id != kmp_i18n_null) { 4387 KMP_INFORM(AffStrParseFilename, "KMP_AFFINITY", 4388 __kmp_i18n_catgets(msg_id), "/proc/cpuinfo"); 4389 } else { 4390 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", "/proc/cpuinfo"); 4391 } 4392 } 4393 4394 kmp_safe_raii_file_t f("/proc/cpuinfo", "r"); 4395 depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f); 4396 if (depth == 0) { 4397 KMP_EXIT_AFF_NONE; 4398 } 4399 } 4400 4401 #endif /* KMP_OS_LINUX */ 4402 4403 #if KMP_GROUP_AFFINITY 4404 4405 if ((depth < 0) && (__kmp_num_proc_groups > 1)) { 4406 if (__kmp_affinity_verbose) { 4407 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY"); 4408 } 4409 4410 depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id); 4411 KMP_ASSERT(depth != 0); 4412 } 4413 4414 #endif /* KMP_GROUP_AFFINITY */ 4415 4416 if (depth < 0) { 4417 if (__kmp_affinity_verbose && (msg_id != kmp_i18n_null)) { 4418 if (file_name == NULL) { 4419 KMP_INFORM(UsingFlatOS, __kmp_i18n_catgets(msg_id)); 4420 } else if (line == 0) { 4421 KMP_INFORM(UsingFlatOSFile, file_name, __kmp_i18n_catgets(msg_id)); 4422 } else { 4423 KMP_INFORM(UsingFlatOSFileLine, file_name, line, 4424 __kmp_i18n_catgets(msg_id)); 4425 } 4426 } 4427 // FIXME - print msg if msg_id = kmp_i18n_null ??? 4428 4429 file_name = ""; 4430 depth = __kmp_affinity_create_flat_map(&address2os, &msg_id); 4431 if (depth == 0) { 4432 KMP_EXIT_AFF_NONE; 4433 } 4434 KMP_ASSERT(depth > 0); 4435 KMP_ASSERT(address2os != NULL); 4436 } 4437 } 4438 4439 #if KMP_USE_HWLOC 4440 else if (__kmp_affinity_top_method == affinity_top_method_hwloc) { 4441 KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC); 4442 if (__kmp_affinity_verbose) { 4443 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); 4444 } 4445 depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id); 4446 if (depth == 0) { 4447 KMP_EXIT_AFF_NONE; 4448 } 4449 } 4450 #endif // KMP_USE_HWLOC 4451 4452 // If the user has specified that a particular topology discovery method is to 4453 // be used, then we abort if that method fails. The exception is group 4454 // affinity, which might have been implicitly set. 4455 4456 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4457 4458 else if (__kmp_affinity_top_method == affinity_top_method_x2apicid || 4459 __kmp_affinity_top_method == affinity_top_method_x2apicid_1f) { 4460 if (__kmp_affinity_verbose) { 4461 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC)); 4462 } 4463 4464 depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id); 4465 if (depth == 0) { 4466 KMP_EXIT_AFF_NONE; 4467 } 4468 if (depth < 0) { 4469 KMP_ASSERT(msg_id != kmp_i18n_null); 4470 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4471 } 4472 } else if (__kmp_affinity_top_method == affinity_top_method_apicid) { 4473 if (__kmp_affinity_verbose) { 4474 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC)); 4475 } 4476 4477 depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id); 4478 if (depth == 0) { 4479 KMP_EXIT_AFF_NONE; 4480 } 4481 if (depth < 0) { 4482 KMP_ASSERT(msg_id != kmp_i18n_null); 4483 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4484 } 4485 } 4486 4487 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4488 4489 else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) { 4490 const char *filename; 4491 const char *env_var = nullptr; 4492 if (__kmp_cpuinfo_file != NULL) { 4493 filename = __kmp_cpuinfo_file; 4494 env_var = "KMP_CPUINFO_FILE"; 4495 } else { 4496 filename = "/proc/cpuinfo"; 4497 } 4498 4499 if (__kmp_affinity_verbose) { 4500 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename); 4501 } 4502 4503 kmp_safe_raii_file_t f(filename, "r", env_var); 4504 int line = 0; 4505 depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f); 4506 if (depth < 0) { 4507 KMP_ASSERT(msg_id != kmp_i18n_null); 4508 if (line > 0) { 4509 KMP_FATAL(FileLineMsgExiting, filename, line, 4510 __kmp_i18n_catgets(msg_id)); 4511 } else { 4512 KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id)); 4513 } 4514 } 4515 if (__kmp_affinity_type == affinity_none) { 4516 KMP_ASSERT(depth == 0); 4517 KMP_EXIT_AFF_NONE; 4518 } 4519 } 4520 4521 #if KMP_GROUP_AFFINITY 4522 4523 else if (__kmp_affinity_top_method == affinity_top_method_group) { 4524 if (__kmp_affinity_verbose) { 4525 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY"); 4526 } 4527 4528 depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id); 4529 KMP_ASSERT(depth != 0); 4530 if (depth < 0) { 4531 KMP_ASSERT(msg_id != kmp_i18n_null); 4532 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4533 } 4534 } 4535 4536 #endif /* KMP_GROUP_AFFINITY */ 4537 4538 else if (__kmp_affinity_top_method == affinity_top_method_flat) { 4539 if (__kmp_affinity_verbose) { 4540 KMP_INFORM(AffUsingFlatOS, "KMP_AFFINITY"); 4541 } 4542 4543 depth = __kmp_affinity_create_flat_map(&address2os, &msg_id); 4544 if (depth == 0) { 4545 KMP_EXIT_AFF_NONE; 4546 } 4547 // should not fail 4548 KMP_ASSERT(depth > 0); 4549 KMP_ASSERT(address2os != NULL); 4550 } 4551 4552 #if KMP_USE_HIER_SCHED 4553 __kmp_dispatch_set_hierarchy_values(); 4554 #endif 4555 4556 if (address2os == NULL) { 4557 if (KMP_AFFINITY_CAPABLE() && 4558 (__kmp_affinity_verbose || 4559 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none)))) { 4560 KMP_WARNING(ErrorInitializeAffinity); 4561 } 4562 __kmp_affinity_type = affinity_none; 4563 __kmp_create_affinity_none_places(); 4564 KMP_AFFINITY_DISABLE(); 4565 return; 4566 } 4567 4568 if (__kmp_affinity_gran == affinity_gran_tile 4569 #if KMP_USE_HWLOC 4570 && __kmp_tile_depth == 0 4571 #endif 4572 ) { 4573 // tiles requested but not detected, warn user on this 4574 KMP_WARNING(AffTilesNoTiles, "KMP_AFFINITY"); 4575 } 4576 4577 __kmp_apply_thread_places(&address2os, depth); 4578 4579 // Create the table of masks, indexed by thread Id. 4580 unsigned maxIndex; 4581 unsigned numUnique; 4582 kmp_affin_mask_t *osId2Mask = 4583 __kmp_create_masks(&maxIndex, &numUnique, address2os, __kmp_avail_proc); 4584 if (__kmp_affinity_gran_levels == 0) { 4585 KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc); 4586 } 4587 4588 // Set the childNums vector in all Address objects. This must be done before 4589 // we can sort using __kmp_affinity_cmp_Address_child_num(), which takes into 4590 // account the setting of __kmp_affinity_compact. 4591 __kmp_affinity_assign_child_nums(address2os, __kmp_avail_proc); 4592 4593 switch (__kmp_affinity_type) { 4594 4595 case affinity_explicit: 4596 KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL); 4597 if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) { 4598 __kmp_affinity_process_proclist( 4599 &__kmp_affinity_masks, &__kmp_affinity_num_masks, 4600 __kmp_affinity_proclist, osId2Mask, maxIndex); 4601 } else { 4602 __kmp_affinity_process_placelist( 4603 &__kmp_affinity_masks, &__kmp_affinity_num_masks, 4604 __kmp_affinity_proclist, osId2Mask, maxIndex); 4605 } 4606 if (__kmp_affinity_num_masks == 0) { 4607 if (__kmp_affinity_verbose || 4608 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { 4609 KMP_WARNING(AffNoValidProcID); 4610 } 4611 __kmp_affinity_type = affinity_none; 4612 __kmp_create_affinity_none_places(); 4613 return; 4614 } 4615 break; 4616 4617 // The other affinity types rely on sorting the Addresses according to some 4618 // permutation of the machine topology tree. Set __kmp_affinity_compact and 4619 // __kmp_affinity_offset appropriately, then jump to a common code fragment 4620 // to do the sort and create the array of affinity masks. 4621 4622 case affinity_logical: 4623 __kmp_affinity_compact = 0; 4624 if (__kmp_affinity_offset) { 4625 __kmp_affinity_offset = 4626 __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc; 4627 } 4628 goto sortAddresses; 4629 4630 case affinity_physical: 4631 if (__kmp_nThreadsPerCore > 1) { 4632 __kmp_affinity_compact = 1; 4633 if (__kmp_affinity_compact >= depth) { 4634 __kmp_affinity_compact = 0; 4635 } 4636 } else { 4637 __kmp_affinity_compact = 0; 4638 } 4639 if (__kmp_affinity_offset) { 4640 __kmp_affinity_offset = 4641 __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc; 4642 } 4643 goto sortAddresses; 4644 4645 case affinity_scatter: 4646 if (__kmp_affinity_compact >= depth) { 4647 __kmp_affinity_compact = 0; 4648 } else { 4649 __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact; 4650 } 4651 goto sortAddresses; 4652 4653 case affinity_compact: 4654 if (__kmp_affinity_compact >= depth) { 4655 __kmp_affinity_compact = depth - 1; 4656 } 4657 goto sortAddresses; 4658 4659 case affinity_balanced: 4660 if (depth <= 1) { 4661 if (__kmp_affinity_verbose || __kmp_affinity_warnings) { 4662 KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY"); 4663 } 4664 __kmp_affinity_type = affinity_none; 4665 __kmp_create_affinity_none_places(); 4666 return; 4667 } else if (!__kmp_affinity_uniform_topology()) { 4668 // Save the depth for further usage 4669 __kmp_aff_depth = depth; 4670 4671 int core_level = __kmp_affinity_find_core_level( 4672 address2os, __kmp_avail_proc, depth - 1); 4673 int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc, 4674 depth - 1, core_level); 4675 int maxprocpercore = __kmp_affinity_max_proc_per_core( 4676 address2os, __kmp_avail_proc, depth - 1, core_level); 4677 4678 int nproc = ncores * maxprocpercore; 4679 if ((nproc < 2) || (nproc < __kmp_avail_proc)) { 4680 if (__kmp_affinity_verbose || __kmp_affinity_warnings) { 4681 KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY"); 4682 } 4683 __kmp_affinity_type = affinity_none; 4684 return; 4685 } 4686 4687 procarr = (int *)__kmp_allocate(sizeof(int) * nproc); 4688 for (int i = 0; i < nproc; i++) { 4689 procarr[i] = -1; 4690 } 4691 4692 int lastcore = -1; 4693 int inlastcore = 0; 4694 for (int i = 0; i < __kmp_avail_proc; i++) { 4695 int proc = address2os[i].second; 4696 int core = 4697 __kmp_affinity_find_core(address2os, i, depth - 1, core_level); 4698 4699 if (core == lastcore) { 4700 inlastcore++; 4701 } else { 4702 inlastcore = 0; 4703 } 4704 lastcore = core; 4705 4706 procarr[core * maxprocpercore + inlastcore] = proc; 4707 } 4708 } 4709 if (__kmp_affinity_compact >= depth) { 4710 __kmp_affinity_compact = depth - 1; 4711 } 4712 4713 sortAddresses: 4714 // Allocate the gtid->affinity mask table. 4715 if (__kmp_affinity_dups) { 4716 __kmp_affinity_num_masks = __kmp_avail_proc; 4717 } else { 4718 __kmp_affinity_num_masks = numUnique; 4719 } 4720 4721 if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) && 4722 (__kmp_affinity_num_places > 0) && 4723 ((unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks)) { 4724 __kmp_affinity_num_masks = __kmp_affinity_num_places; 4725 } 4726 4727 KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); 4728 4729 // Sort the address2os table according to the current setting of 4730 // __kmp_affinity_compact, then fill out __kmp_affinity_masks. 4731 qsort(address2os, __kmp_avail_proc, sizeof(*address2os), 4732 __kmp_affinity_cmp_Address_child_num); 4733 { 4734 int i; 4735 unsigned j; 4736 for (i = 0, j = 0; i < __kmp_avail_proc; i++) { 4737 if ((!__kmp_affinity_dups) && (!address2os[i].first.leader)) { 4738 continue; 4739 } 4740 unsigned osId = address2os[i].second; 4741 kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId); 4742 kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, j); 4743 KMP_ASSERT(KMP_CPU_ISSET(osId, src)); 4744 KMP_CPU_COPY(dest, src); 4745 if (++j >= __kmp_affinity_num_masks) { 4746 break; 4747 } 4748 } 4749 KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks); 4750 } 4751 break; 4752 4753 default: 4754 KMP_ASSERT2(0, "Unexpected affinity setting"); 4755 } 4756 4757 KMP_CPU_FREE_ARRAY(osId2Mask, maxIndex + 1); 4758 machine_hierarchy.init(address2os, __kmp_avail_proc); 4759 } 4760 #undef KMP_EXIT_AFF_NONE 4761 4762 void __kmp_affinity_initialize(void) { 4763 // Much of the code above was written assuming that if a machine was not 4764 // affinity capable, then __kmp_affinity_type == affinity_none. We now 4765 // explicitly represent this as __kmp_affinity_type == affinity_disabled. 4766 // There are too many checks for __kmp_affinity_type == affinity_none 4767 // in this code. Instead of trying to change them all, check if 4768 // __kmp_affinity_type == affinity_disabled, and if so, slam it with 4769 // affinity_none, call the real initialization routine, then restore 4770 // __kmp_affinity_type to affinity_disabled. 4771 int disabled = (__kmp_affinity_type == affinity_disabled); 4772 if (!KMP_AFFINITY_CAPABLE()) { 4773 KMP_ASSERT(disabled); 4774 } 4775 if (disabled) { 4776 __kmp_affinity_type = affinity_none; 4777 } 4778 __kmp_aux_affinity_initialize(); 4779 if (disabled) { 4780 __kmp_affinity_type = affinity_disabled; 4781 } 4782 } 4783 4784 void __kmp_affinity_uninitialize(void) { 4785 if (__kmp_affinity_masks != NULL) { 4786 KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); 4787 __kmp_affinity_masks = NULL; 4788 } 4789 if (__kmp_affin_fullMask != NULL) { 4790 KMP_CPU_FREE(__kmp_affin_fullMask); 4791 __kmp_affin_fullMask = NULL; 4792 } 4793 __kmp_affinity_num_masks = 0; 4794 __kmp_affinity_type = affinity_default; 4795 __kmp_affinity_num_places = 0; 4796 if (__kmp_affinity_proclist != NULL) { 4797 __kmp_free(__kmp_affinity_proclist); 4798 __kmp_affinity_proclist = NULL; 4799 } 4800 if (address2os != NULL) { 4801 __kmp_free(address2os); 4802 address2os = NULL; 4803 } 4804 if (procarr != NULL) { 4805 __kmp_free(procarr); 4806 procarr = NULL; 4807 } 4808 #if KMP_USE_HWLOC 4809 if (__kmp_hwloc_topology != NULL) { 4810 hwloc_topology_destroy(__kmp_hwloc_topology); 4811 __kmp_hwloc_topology = NULL; 4812 } 4813 #endif 4814 KMPAffinity::destroy_api(); 4815 } 4816 4817 void __kmp_affinity_set_init_mask(int gtid, int isa_root) { 4818 if (!KMP_AFFINITY_CAPABLE()) { 4819 return; 4820 } 4821 4822 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); 4823 if (th->th.th_affin_mask == NULL) { 4824 KMP_CPU_ALLOC(th->th.th_affin_mask); 4825 } else { 4826 KMP_CPU_ZERO(th->th.th_affin_mask); 4827 } 4828 4829 // Copy the thread mask to the kmp_info_t structure. If 4830 // __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one that 4831 // has all of the OS proc ids set, or if __kmp_affinity_respect_mask is set, 4832 // then the full mask is the same as the mask of the initialization thread. 4833 kmp_affin_mask_t *mask; 4834 int i; 4835 4836 if (KMP_AFFINITY_NON_PROC_BIND) { 4837 if ((__kmp_affinity_type == affinity_none) || 4838 (__kmp_affinity_type == affinity_balanced)) { 4839 #if KMP_GROUP_AFFINITY 4840 if (__kmp_num_proc_groups > 1) { 4841 return; 4842 } 4843 #endif 4844 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4845 i = 0; 4846 mask = __kmp_affin_fullMask; 4847 } else { 4848 KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0); 4849 i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks; 4850 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); 4851 } 4852 } else { 4853 if ((!isa_root) || 4854 (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) { 4855 #if KMP_GROUP_AFFINITY 4856 if (__kmp_num_proc_groups > 1) { 4857 return; 4858 } 4859 #endif 4860 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4861 i = KMP_PLACE_ALL; 4862 mask = __kmp_affin_fullMask; 4863 } else { 4864 // int i = some hash function or just a counter that doesn't 4865 // always start at 0. Use gtid for now. 4866 KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0); 4867 i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks; 4868 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); 4869 } 4870 } 4871 4872 th->th.th_current_place = i; 4873 if (isa_root) { 4874 th->th.th_new_place = i; 4875 th->th.th_first_place = 0; 4876 th->th.th_last_place = __kmp_affinity_num_masks - 1; 4877 } else if (KMP_AFFINITY_NON_PROC_BIND) { 4878 // When using a Non-OMP_PROC_BIND affinity method, 4879 // set all threads' place-partition-var to the entire place list 4880 th->th.th_first_place = 0; 4881 th->th.th_last_place = __kmp_affinity_num_masks - 1; 4882 } 4883 4884 if (i == KMP_PLACE_ALL) { 4885 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n", 4886 gtid)); 4887 } else { 4888 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n", 4889 gtid, i)); 4890 } 4891 4892 KMP_CPU_COPY(th->th.th_affin_mask, mask); 4893 4894 if (__kmp_affinity_verbose 4895 /* to avoid duplicate printing (will be correctly printed on barrier) */ 4896 && (__kmp_affinity_type == affinity_none || 4897 (i != KMP_PLACE_ALL && __kmp_affinity_type != affinity_balanced))) { 4898 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4899 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4900 th->th.th_affin_mask); 4901 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), 4902 __kmp_gettid(), gtid, buf); 4903 } 4904 4905 #if KMP_OS_WINDOWS 4906 // On Windows* OS, the process affinity mask might have changed. If the user 4907 // didn't request affinity and this call fails, just continue silently. 4908 // See CQ171393. 4909 if (__kmp_affinity_type == affinity_none) { 4910 __kmp_set_system_affinity(th->th.th_affin_mask, FALSE); 4911 } else 4912 #endif 4913 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); 4914 } 4915 4916 void __kmp_affinity_set_place(int gtid) { 4917 if (!KMP_AFFINITY_CAPABLE()) { 4918 return; 4919 } 4920 4921 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); 4922 4923 KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current " 4924 "place = %d)\n", 4925 gtid, th->th.th_new_place, th->th.th_current_place)); 4926 4927 // Check that the new place is within this thread's partition. 4928 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4929 KMP_ASSERT(th->th.th_new_place >= 0); 4930 KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks); 4931 if (th->th.th_first_place <= th->th.th_last_place) { 4932 KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) && 4933 (th->th.th_new_place <= th->th.th_last_place)); 4934 } else { 4935 KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) || 4936 (th->th.th_new_place >= th->th.th_last_place)); 4937 } 4938 4939 // Copy the thread mask to the kmp_info_t structure, 4940 // and set this thread's affinity. 4941 kmp_affin_mask_t *mask = 4942 KMP_CPU_INDEX(__kmp_affinity_masks, th->th.th_new_place); 4943 KMP_CPU_COPY(th->th.th_affin_mask, mask); 4944 th->th.th_current_place = th->th.th_new_place; 4945 4946 if (__kmp_affinity_verbose) { 4947 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4948 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4949 th->th.th_affin_mask); 4950 KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(), 4951 __kmp_gettid(), gtid, buf); 4952 } 4953 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); 4954 } 4955 4956 int __kmp_aux_set_affinity(void **mask) { 4957 int gtid; 4958 kmp_info_t *th; 4959 int retval; 4960 4961 if (!KMP_AFFINITY_CAPABLE()) { 4962 return -1; 4963 } 4964 4965 gtid = __kmp_entry_gtid(); 4966 KA_TRACE( 4967 1000, (""); { 4968 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4969 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4970 (kmp_affin_mask_t *)(*mask)); 4971 __kmp_debug_printf( 4972 "kmp_set_affinity: setting affinity mask for thread %d = %s\n", 4973 gtid, buf); 4974 }); 4975 4976 if (__kmp_env_consistency_check) { 4977 if ((mask == NULL) || (*mask == NULL)) { 4978 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4979 } else { 4980 unsigned proc; 4981 int num_procs = 0; 4982 4983 KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) { 4984 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 4985 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4986 } 4987 if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) { 4988 continue; 4989 } 4990 num_procs++; 4991 } 4992 if (num_procs == 0) { 4993 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4994 } 4995 4996 #if KMP_GROUP_AFFINITY 4997 if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) { 4998 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4999 } 5000 #endif /* KMP_GROUP_AFFINITY */ 5001 } 5002 } 5003 5004 th = __kmp_threads[gtid]; 5005 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 5006 retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); 5007 if (retval == 0) { 5008 KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask)); 5009 } 5010 5011 th->th.th_current_place = KMP_PLACE_UNDEFINED; 5012 th->th.th_new_place = KMP_PLACE_UNDEFINED; 5013 th->th.th_first_place = 0; 5014 th->th.th_last_place = __kmp_affinity_num_masks - 1; 5015 5016 // Turn off 4.0 affinity for the current tread at this parallel level. 5017 th->th.th_current_task->td_icvs.proc_bind = proc_bind_false; 5018 5019 return retval; 5020 } 5021 5022 int __kmp_aux_get_affinity(void **mask) { 5023 int gtid; 5024 int retval; 5025 kmp_info_t *th; 5026 5027 if (!KMP_AFFINITY_CAPABLE()) { 5028 return -1; 5029 } 5030 5031 gtid = __kmp_entry_gtid(); 5032 th = __kmp_threads[gtid]; 5033 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 5034 5035 KA_TRACE( 5036 1000, (""); { 5037 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5038 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5039 th->th.th_affin_mask); 5040 __kmp_printf( 5041 "kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid, 5042 buf); 5043 }); 5044 5045 if (__kmp_env_consistency_check) { 5046 if ((mask == NULL) || (*mask == NULL)) { 5047 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity"); 5048 } 5049 } 5050 5051 #if !KMP_OS_WINDOWS 5052 5053 retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); 5054 KA_TRACE( 5055 1000, (""); { 5056 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5057 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5058 (kmp_affin_mask_t *)(*mask)); 5059 __kmp_printf( 5060 "kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid, 5061 buf); 5062 }); 5063 return retval; 5064 5065 #else 5066 (void)retval; 5067 5068 KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask); 5069 return 0; 5070 5071 #endif /* KMP_OS_WINDOWS */ 5072 } 5073 5074 int __kmp_aux_get_affinity_max_proc() { 5075 if (!KMP_AFFINITY_CAPABLE()) { 5076 return 0; 5077 } 5078 #if KMP_GROUP_AFFINITY 5079 if (__kmp_num_proc_groups > 1) { 5080 return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT); 5081 } 5082 #endif 5083 return __kmp_xproc; 5084 } 5085 5086 int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) { 5087 if (!KMP_AFFINITY_CAPABLE()) { 5088 return -1; 5089 } 5090 5091 KA_TRACE( 5092 1000, (""); { 5093 int gtid = __kmp_entry_gtid(); 5094 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5095 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5096 (kmp_affin_mask_t *)(*mask)); 5097 __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in " 5098 "affinity mask for thread %d = %s\n", 5099 proc, gtid, buf); 5100 }); 5101 5102 if (__kmp_env_consistency_check) { 5103 if ((mask == NULL) || (*mask == NULL)) { 5104 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc"); 5105 } 5106 } 5107 5108 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 5109 return -1; 5110 } 5111 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 5112 return -2; 5113 } 5114 5115 KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask)); 5116 return 0; 5117 } 5118 5119 int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) { 5120 if (!KMP_AFFINITY_CAPABLE()) { 5121 return -1; 5122 } 5123 5124 KA_TRACE( 5125 1000, (""); { 5126 int gtid = __kmp_entry_gtid(); 5127 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5128 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5129 (kmp_affin_mask_t *)(*mask)); 5130 __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in " 5131 "affinity mask for thread %d = %s\n", 5132 proc, gtid, buf); 5133 }); 5134 5135 if (__kmp_env_consistency_check) { 5136 if ((mask == NULL) || (*mask == NULL)) { 5137 KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc"); 5138 } 5139 } 5140 5141 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 5142 return -1; 5143 } 5144 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 5145 return -2; 5146 } 5147 5148 KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask)); 5149 return 0; 5150 } 5151 5152 int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) { 5153 if (!KMP_AFFINITY_CAPABLE()) { 5154 return -1; 5155 } 5156 5157 KA_TRACE( 5158 1000, (""); { 5159 int gtid = __kmp_entry_gtid(); 5160 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5161 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5162 (kmp_affin_mask_t *)(*mask)); 5163 __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in " 5164 "affinity mask for thread %d = %s\n", 5165 proc, gtid, buf); 5166 }); 5167 5168 if (__kmp_env_consistency_check) { 5169 if ((mask == NULL) || (*mask == NULL)) { 5170 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc"); 5171 } 5172 } 5173 5174 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 5175 return -1; 5176 } 5177 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 5178 return 0; 5179 } 5180 5181 return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask)); 5182 } 5183 5184 // Dynamic affinity settings - Affinity balanced 5185 void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) { 5186 KMP_DEBUG_ASSERT(th); 5187 bool fine_gran = true; 5188 int tid = th->th.th_info.ds.ds_tid; 5189 5190 switch (__kmp_affinity_gran) { 5191 case affinity_gran_fine: 5192 case affinity_gran_thread: 5193 break; 5194 case affinity_gran_core: 5195 if (__kmp_nThreadsPerCore > 1) { 5196 fine_gran = false; 5197 } 5198 break; 5199 case affinity_gran_package: 5200 if (nCoresPerPkg > 1) { 5201 fine_gran = false; 5202 } 5203 break; 5204 default: 5205 fine_gran = false; 5206 } 5207 5208 if (__kmp_affinity_uniform_topology()) { 5209 int coreID; 5210 int threadID; 5211 // Number of hyper threads per core in HT machine 5212 int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores; 5213 // Number of cores 5214 int ncores = __kmp_ncores; 5215 if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) { 5216 __kmp_nth_per_core = __kmp_avail_proc / nPackages; 5217 ncores = nPackages; 5218 } 5219 // How many threads will be bound to each core 5220 int chunk = nthreads / ncores; 5221 // How many cores will have an additional thread bound to it - "big cores" 5222 int big_cores = nthreads % ncores; 5223 // Number of threads on the big cores 5224 int big_nth = (chunk + 1) * big_cores; 5225 if (tid < big_nth) { 5226 coreID = tid / (chunk + 1); 5227 threadID = (tid % (chunk + 1)) % __kmp_nth_per_core; 5228 } else { // tid >= big_nth 5229 coreID = (tid - big_cores) / chunk; 5230 threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core; 5231 } 5232 5233 KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(), 5234 "Illegal set affinity operation when not capable"); 5235 5236 kmp_affin_mask_t *mask = th->th.th_affin_mask; 5237 KMP_CPU_ZERO(mask); 5238 5239 if (fine_gran) { 5240 int osID = address2os[coreID * __kmp_nth_per_core + threadID].second; 5241 KMP_CPU_SET(osID, mask); 5242 } else { 5243 for (int i = 0; i < __kmp_nth_per_core; i++) { 5244 int osID; 5245 osID = address2os[coreID * __kmp_nth_per_core + i].second; 5246 KMP_CPU_SET(osID, mask); 5247 } 5248 } 5249 if (__kmp_affinity_verbose) { 5250 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5251 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); 5252 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), 5253 __kmp_gettid(), tid, buf); 5254 } 5255 __kmp_set_system_affinity(mask, TRUE); 5256 } else { // Non-uniform topology 5257 5258 kmp_affin_mask_t *mask = th->th.th_affin_mask; 5259 KMP_CPU_ZERO(mask); 5260 5261 int core_level = __kmp_affinity_find_core_level( 5262 address2os, __kmp_avail_proc, __kmp_aff_depth - 1); 5263 int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc, 5264 __kmp_aff_depth - 1, core_level); 5265 int nth_per_core = __kmp_affinity_max_proc_per_core( 5266 address2os, __kmp_avail_proc, __kmp_aff_depth - 1, core_level); 5267 5268 // For performance gain consider the special case nthreads == 5269 // __kmp_avail_proc 5270 if (nthreads == __kmp_avail_proc) { 5271 if (fine_gran) { 5272 int osID = address2os[tid].second; 5273 KMP_CPU_SET(osID, mask); 5274 } else { 5275 int core = __kmp_affinity_find_core(address2os, tid, 5276 __kmp_aff_depth - 1, core_level); 5277 for (int i = 0; i < __kmp_avail_proc; i++) { 5278 int osID = address2os[i].second; 5279 if (__kmp_affinity_find_core(address2os, i, __kmp_aff_depth - 1, 5280 core_level) == core) { 5281 KMP_CPU_SET(osID, mask); 5282 } 5283 } 5284 } 5285 } else if (nthreads <= ncores) { 5286 5287 int core = 0; 5288 for (int i = 0; i < ncores; i++) { 5289 // Check if this core from procarr[] is in the mask 5290 int in_mask = 0; 5291 for (int j = 0; j < nth_per_core; j++) { 5292 if (procarr[i * nth_per_core + j] != -1) { 5293 in_mask = 1; 5294 break; 5295 } 5296 } 5297 if (in_mask) { 5298 if (tid == core) { 5299 for (int j = 0; j < nth_per_core; j++) { 5300 int osID = procarr[i * nth_per_core + j]; 5301 if (osID != -1) { 5302 KMP_CPU_SET(osID, mask); 5303 // For fine granularity it is enough to set the first available 5304 // osID for this core 5305 if (fine_gran) { 5306 break; 5307 } 5308 } 5309 } 5310 break; 5311 } else { 5312 core++; 5313 } 5314 } 5315 } 5316 } else { // nthreads > ncores 5317 // Array to save the number of processors at each core 5318 int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores); 5319 // Array to save the number of cores with "x" available processors; 5320 int *ncores_with_x_procs = 5321 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); 5322 // Array to save the number of cores with # procs from x to nth_per_core 5323 int *ncores_with_x_to_max_procs = 5324 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); 5325 5326 for (int i = 0; i <= nth_per_core; i++) { 5327 ncores_with_x_procs[i] = 0; 5328 ncores_with_x_to_max_procs[i] = 0; 5329 } 5330 5331 for (int i = 0; i < ncores; i++) { 5332 int cnt = 0; 5333 for (int j = 0; j < nth_per_core; j++) { 5334 if (procarr[i * nth_per_core + j] != -1) { 5335 cnt++; 5336 } 5337 } 5338 nproc_at_core[i] = cnt; 5339 ncores_with_x_procs[cnt]++; 5340 } 5341 5342 for (int i = 0; i <= nth_per_core; i++) { 5343 for (int j = i; j <= nth_per_core; j++) { 5344 ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j]; 5345 } 5346 } 5347 5348 // Max number of processors 5349 int nproc = nth_per_core * ncores; 5350 // An array to keep number of threads per each context 5351 int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc); 5352 for (int i = 0; i < nproc; i++) { 5353 newarr[i] = 0; 5354 } 5355 5356 int nth = nthreads; 5357 int flag = 0; 5358 while (nth > 0) { 5359 for (int j = 1; j <= nth_per_core; j++) { 5360 int cnt = ncores_with_x_to_max_procs[j]; 5361 for (int i = 0; i < ncores; i++) { 5362 // Skip the core with 0 processors 5363 if (nproc_at_core[i] == 0) { 5364 continue; 5365 } 5366 for (int k = 0; k < nth_per_core; k++) { 5367 if (procarr[i * nth_per_core + k] != -1) { 5368 if (newarr[i * nth_per_core + k] == 0) { 5369 newarr[i * nth_per_core + k] = 1; 5370 cnt--; 5371 nth--; 5372 break; 5373 } else { 5374 if (flag != 0) { 5375 newarr[i * nth_per_core + k]++; 5376 cnt--; 5377 nth--; 5378 break; 5379 } 5380 } 5381 } 5382 } 5383 if (cnt == 0 || nth == 0) { 5384 break; 5385 } 5386 } 5387 if (nth == 0) { 5388 break; 5389 } 5390 } 5391 flag = 1; 5392 } 5393 int sum = 0; 5394 for (int i = 0; i < nproc; i++) { 5395 sum += newarr[i]; 5396 if (sum > tid) { 5397 if (fine_gran) { 5398 int osID = procarr[i]; 5399 KMP_CPU_SET(osID, mask); 5400 } else { 5401 int coreID = i / nth_per_core; 5402 for (int ii = 0; ii < nth_per_core; ii++) { 5403 int osID = procarr[coreID * nth_per_core + ii]; 5404 if (osID != -1) { 5405 KMP_CPU_SET(osID, mask); 5406 } 5407 } 5408 } 5409 break; 5410 } 5411 } 5412 __kmp_free(newarr); 5413 } 5414 5415 if (__kmp_affinity_verbose) { 5416 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5417 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); 5418 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), 5419 __kmp_gettid(), tid, buf); 5420 } 5421 __kmp_set_system_affinity(mask, TRUE); 5422 } 5423 } 5424 5425 #if KMP_OS_LINUX || KMP_OS_FREEBSD 5426 // We don't need this entry for Windows because 5427 // there is GetProcessAffinityMask() api 5428 // 5429 // The intended usage is indicated by these steps: 5430 // 1) The user gets the current affinity mask 5431 // 2) Then sets the affinity by calling this function 5432 // 3) Error check the return value 5433 // 4) Use non-OpenMP parallelization 5434 // 5) Reset the affinity to what was stored in step 1) 5435 #ifdef __cplusplus 5436 extern "C" 5437 #endif 5438 int 5439 kmp_set_thread_affinity_mask_initial() 5440 // the function returns 0 on success, 5441 // -1 if we cannot bind thread 5442 // >0 (errno) if an error happened during binding 5443 { 5444 int gtid = __kmp_get_gtid(); 5445 if (gtid < 0) { 5446 // Do not touch non-omp threads 5447 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5448 "non-omp thread, returning\n")); 5449 return -1; 5450 } 5451 if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) { 5452 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5453 "affinity not initialized, returning\n")); 5454 return -1; 5455 } 5456 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5457 "set full mask for thread %d\n", 5458 gtid)); 5459 KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL); 5460 return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE); 5461 } 5462 #endif 5463 5464 #endif // KMP_AFFINITY_SUPPORTED 5465