1 /* 2 * kmp_affinity.cpp -- affinity management 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_i18n.h" 16 #include "kmp_io.h" 17 #include "kmp_str.h" 18 #include "kmp_wrapper_getpid.h" 19 #if KMP_USE_HIER_SCHED 20 #include "kmp_dispatch_hier.h" 21 #endif 22 23 // Store the real or imagined machine hierarchy here 24 static hierarchy_info machine_hierarchy; 25 26 void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); } 27 28 void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) { 29 kmp_uint32 depth; 30 // The test below is true if affinity is available, but set to "none". Need to 31 // init on first use of hierarchical barrier. 32 if (TCR_1(machine_hierarchy.uninitialized)) 33 machine_hierarchy.init(NULL, nproc); 34 35 // Adjust the hierarchy in case num threads exceeds original 36 if (nproc > machine_hierarchy.base_num_threads) 37 machine_hierarchy.resize(nproc); 38 39 depth = machine_hierarchy.depth; 40 KMP_DEBUG_ASSERT(depth > 0); 41 42 thr_bar->depth = depth; 43 thr_bar->base_leaf_kids = (kmp_uint8)machine_hierarchy.numPerLevel[0] - 1; 44 thr_bar->skip_per_level = machine_hierarchy.skipPerLevel; 45 } 46 47 #if KMP_AFFINITY_SUPPORTED 48 49 bool KMPAffinity::picked_api = false; 50 51 void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); } 52 void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); } 53 void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); } 54 void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); } 55 void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); } 56 void KMPAffinity::operator delete(void *p) { __kmp_free(p); } 57 58 void KMPAffinity::pick_api() { 59 KMPAffinity *affinity_dispatch; 60 if (picked_api) 61 return; 62 #if KMP_USE_HWLOC 63 // Only use Hwloc if affinity isn't explicitly disabled and 64 // user requests Hwloc topology method 65 if (__kmp_affinity_top_method == affinity_top_method_hwloc && 66 __kmp_affinity_type != affinity_disabled) { 67 affinity_dispatch = new KMPHwlocAffinity(); 68 } else 69 #endif 70 { 71 affinity_dispatch = new KMPNativeAffinity(); 72 } 73 __kmp_affinity_dispatch = affinity_dispatch; 74 picked_api = true; 75 } 76 77 void KMPAffinity::destroy_api() { 78 if (__kmp_affinity_dispatch != NULL) { 79 delete __kmp_affinity_dispatch; 80 __kmp_affinity_dispatch = NULL; 81 picked_api = false; 82 } 83 } 84 85 #define KMP_ADVANCE_SCAN(scan) \ 86 while (*scan != '\0') { \ 87 scan++; \ 88 } 89 90 // Print the affinity mask to the character array in a pretty format. 91 // The format is a comma separated list of non-negative integers or integer 92 // ranges: e.g., 1,2,3-5,7,9-15 93 // The format can also be the string "{<empty>}" if no bits are set in mask 94 char *__kmp_affinity_print_mask(char *buf, int buf_len, 95 kmp_affin_mask_t *mask) { 96 int start = 0, finish = 0, previous = 0; 97 bool first_range; 98 KMP_ASSERT(buf); 99 KMP_ASSERT(buf_len >= 40); 100 KMP_ASSERT(mask); 101 char *scan = buf; 102 char *end = buf + buf_len - 1; 103 104 // Check for empty set. 105 if (mask->begin() == mask->end()) { 106 KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}"); 107 KMP_ADVANCE_SCAN(scan); 108 KMP_ASSERT(scan <= end); 109 return buf; 110 } 111 112 first_range = true; 113 start = mask->begin(); 114 while (1) { 115 // Find next range 116 // [start, previous] is inclusive range of contiguous bits in mask 117 for (finish = mask->next(start), previous = start; 118 finish == previous + 1 && finish != mask->end(); 119 finish = mask->next(finish)) { 120 previous = finish; 121 } 122 123 // The first range does not need a comma printed before it, but the rest 124 // of the ranges do need a comma beforehand 125 if (!first_range) { 126 KMP_SNPRINTF(scan, end - scan + 1, "%s", ","); 127 KMP_ADVANCE_SCAN(scan); 128 } else { 129 first_range = false; 130 } 131 // Range with three or more contiguous bits in the affinity mask 132 if (previous - start > 1) { 133 KMP_SNPRINTF(scan, end - scan + 1, "%d-%d", static_cast<int>(start), 134 static_cast<int>(previous)); 135 } else { 136 // Range with one or two contiguous bits in the affinity mask 137 KMP_SNPRINTF(scan, end - scan + 1, "%d", static_cast<int>(start)); 138 KMP_ADVANCE_SCAN(scan); 139 if (previous - start > 0) { 140 KMP_SNPRINTF(scan, end - scan + 1, ",%d", static_cast<int>(previous)); 141 } 142 } 143 KMP_ADVANCE_SCAN(scan); 144 // Start over with new start point 145 start = finish; 146 if (start == mask->end()) 147 break; 148 // Check for overflow 149 if (end - scan < 2) 150 break; 151 } 152 153 // Check for overflow 154 KMP_ASSERT(scan <= end); 155 return buf; 156 } 157 #undef KMP_ADVANCE_SCAN 158 159 // Print the affinity mask to the string buffer object in a pretty format 160 // The format is a comma separated list of non-negative integers or integer 161 // ranges: e.g., 1,2,3-5,7,9-15 162 // The format can also be the string "{<empty>}" if no bits are set in mask 163 kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf, 164 kmp_affin_mask_t *mask) { 165 int start = 0, finish = 0, previous = 0; 166 bool first_range; 167 KMP_ASSERT(buf); 168 KMP_ASSERT(mask); 169 170 __kmp_str_buf_clear(buf); 171 172 // Check for empty set. 173 if (mask->begin() == mask->end()) { 174 __kmp_str_buf_print(buf, "%s", "{<empty>}"); 175 return buf; 176 } 177 178 first_range = true; 179 start = mask->begin(); 180 while (1) { 181 // Find next range 182 // [start, previous] is inclusive range of contiguous bits in mask 183 for (finish = mask->next(start), previous = start; 184 finish == previous + 1 && finish != mask->end(); 185 finish = mask->next(finish)) { 186 previous = finish; 187 } 188 189 // The first range does not need a comma printed before it, but the rest 190 // of the ranges do need a comma beforehand 191 if (!first_range) { 192 __kmp_str_buf_print(buf, "%s", ","); 193 } else { 194 first_range = false; 195 } 196 // Range with three or more contiguous bits in the affinity mask 197 if (previous - start > 1) { 198 __kmp_str_buf_print(buf, "%d-%d", static_cast<int>(start), 199 static_cast<int>(previous)); 200 } else { 201 // Range with one or two contiguous bits in the affinity mask 202 __kmp_str_buf_print(buf, "%d", static_cast<int>(start)); 203 if (previous - start > 0) { 204 __kmp_str_buf_print(buf, ",%d", static_cast<int>(previous)); 205 } 206 } 207 // Start over with new start point 208 start = finish; 209 if (start == mask->end()) 210 break; 211 } 212 return buf; 213 } 214 215 void __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) { 216 KMP_CPU_ZERO(mask); 217 218 #if KMP_GROUP_AFFINITY 219 220 if (__kmp_num_proc_groups > 1) { 221 int group; 222 KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL); 223 for (group = 0; group < __kmp_num_proc_groups; group++) { 224 int i; 225 int num = __kmp_GetActiveProcessorCount(group); 226 for (i = 0; i < num; i++) { 227 KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask); 228 } 229 } 230 } else 231 232 #endif /* KMP_GROUP_AFFINITY */ 233 234 { 235 int proc; 236 for (proc = 0; proc < __kmp_xproc; proc++) { 237 KMP_CPU_SET(proc, mask); 238 } 239 } 240 } 241 242 // When sorting by labels, __kmp_affinity_assign_child_nums() must first be 243 // called to renumber the labels from [0..n] and place them into the child_num 244 // vector of the address object. This is done in case the labels used for 245 // the children at one node of the hierarchy differ from those used for 246 // another node at the same level. Example: suppose the machine has 2 nodes 247 // with 2 packages each. The first node contains packages 601 and 602, and 248 // second node contains packages 603 and 604. If we try to sort the table 249 // for "scatter" affinity, the table will still be sorted 601, 602, 603, 604 250 // because we are paying attention to the labels themselves, not the ordinal 251 // child numbers. By using the child numbers in the sort, the result is 252 // {0,0}=601, {0,1}=603, {1,0}=602, {1,1}=604. 253 static void __kmp_affinity_assign_child_nums(AddrUnsPair *address2os, 254 int numAddrs) { 255 KMP_DEBUG_ASSERT(numAddrs > 0); 256 int depth = address2os->first.depth; 257 unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 258 unsigned *lastLabel = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 259 int labCt; 260 for (labCt = 0; labCt < depth; labCt++) { 261 address2os[0].first.childNums[labCt] = counts[labCt] = 0; 262 lastLabel[labCt] = address2os[0].first.labels[labCt]; 263 } 264 int i; 265 for (i = 1; i < numAddrs; i++) { 266 for (labCt = 0; labCt < depth; labCt++) { 267 if (address2os[i].first.labels[labCt] != lastLabel[labCt]) { 268 int labCt2; 269 for (labCt2 = labCt + 1; labCt2 < depth; labCt2++) { 270 counts[labCt2] = 0; 271 lastLabel[labCt2] = address2os[i].first.labels[labCt2]; 272 } 273 counts[labCt]++; 274 lastLabel[labCt] = address2os[i].first.labels[labCt]; 275 break; 276 } 277 } 278 for (labCt = 0; labCt < depth; labCt++) { 279 address2os[i].first.childNums[labCt] = counts[labCt]; 280 } 281 for (; labCt < (int)Address::maxDepth; labCt++) { 282 address2os[i].first.childNums[labCt] = 0; 283 } 284 } 285 __kmp_free(lastLabel); 286 __kmp_free(counts); 287 } 288 289 // All of the __kmp_affinity_create_*_map() routines should set 290 // __kmp_affinity_masks to a vector of affinity mask objects of length 291 // __kmp_affinity_num_masks, if __kmp_affinity_type != affinity_none, and return 292 // the number of levels in the machine topology tree (zero if 293 // __kmp_affinity_type == affinity_none). 294 // 295 // All of the __kmp_affinity_create_*_map() routines should set 296 // *__kmp_affin_fullMask to the affinity mask for the initialization thread. 297 // They need to save and restore the mask, and it could be needed later, so 298 // saving it is just an optimization to avoid calling kmp_get_system_affinity() 299 // again. 300 kmp_affin_mask_t *__kmp_affin_fullMask = NULL; 301 302 static int nCoresPerPkg, nPackages; 303 static int __kmp_nThreadsPerCore; 304 #ifndef KMP_DFLT_NTH_CORES 305 static int __kmp_ncores; 306 #endif 307 static int *__kmp_pu_os_idx = NULL; 308 309 // __kmp_affinity_uniform_topology() doesn't work when called from 310 // places which support arbitrarily many levels in the machine topology 311 // map, i.e. the non-default cases in __kmp_affinity_create_cpuinfo_map() 312 // __kmp_affinity_create_x2apicid_map(). 313 inline static bool __kmp_affinity_uniform_topology() { 314 return __kmp_avail_proc == (__kmp_nThreadsPerCore * nCoresPerPkg * nPackages); 315 } 316 317 // Print out the detailed machine topology map, i.e. the physical locations 318 // of each OS proc. 319 static void __kmp_affinity_print_topology(AddrUnsPair *address2os, int len, 320 int depth, int pkgLevel, 321 int coreLevel, int threadLevel) { 322 int proc; 323 324 KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY"); 325 for (proc = 0; proc < len; proc++) { 326 int level; 327 kmp_str_buf_t buf; 328 __kmp_str_buf_init(&buf); 329 for (level = 0; level < depth; level++) { 330 if (level == threadLevel) { 331 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Thread)); 332 } else if (level == coreLevel) { 333 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Core)); 334 } else if (level == pkgLevel) { 335 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Package)); 336 } else if (level > pkgLevel) { 337 __kmp_str_buf_print(&buf, "%s_%d ", KMP_I18N_STR(Node), 338 level - pkgLevel - 1); 339 } else { 340 __kmp_str_buf_print(&buf, "L%d ", level); 341 } 342 __kmp_str_buf_print(&buf, "%d ", address2os[proc].first.labels[level]); 343 } 344 KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", address2os[proc].second, 345 buf.str); 346 __kmp_str_buf_free(&buf); 347 } 348 } 349 350 #if KMP_USE_HWLOC 351 352 static void __kmp_affinity_print_hwloc_tp(AddrUnsPair *addrP, int len, 353 int depth, int *levels) { 354 int proc; 355 kmp_str_buf_t buf; 356 __kmp_str_buf_init(&buf); 357 KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY"); 358 for (proc = 0; proc < len; proc++) { 359 __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Package), 360 addrP[proc].first.labels[0]); 361 if (depth > 1) { 362 int level = 1; // iterate over levels 363 int label = 1; // iterate over labels 364 if (__kmp_numa_detected) 365 // node level follows package 366 if (levels[level++] > 0) 367 __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Node), 368 addrP[proc].first.labels[label++]); 369 if (__kmp_tile_depth > 0) 370 // tile level follows node if any, or package 371 if (levels[level++] > 0) 372 __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Tile), 373 addrP[proc].first.labels[label++]); 374 if (levels[level++] > 0) 375 // core level follows 376 __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Core), 377 addrP[proc].first.labels[label++]); 378 if (levels[level++] > 0) 379 // thread level is the latest 380 __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Thread), 381 addrP[proc].first.labels[label++]); 382 KMP_DEBUG_ASSERT(label == depth); 383 } 384 KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", addrP[proc].second, buf.str); 385 __kmp_str_buf_clear(&buf); 386 } 387 __kmp_str_buf_free(&buf); 388 } 389 390 static int nNodePerPkg, nTilePerPkg, nTilePerNode, nCorePerNode, nCorePerTile; 391 392 // This function removes the topology levels that are radix 1 and don't offer 393 // further information about the topology. The most common example is when you 394 // have one thread context per core, we don't want the extra thread context 395 // level if it offers no unique labels. So they are removed. 396 // return value: the new depth of address2os 397 static int __kmp_affinity_remove_radix_one_levels(AddrUnsPair *addrP, int nTh, 398 int depth, int *levels) { 399 int level; 400 int i; 401 int radix1_detected; 402 int new_depth = depth; 403 for (level = depth - 1; level > 0; --level) { 404 // Detect if this level is radix 1 405 radix1_detected = 1; 406 for (i = 1; i < nTh; ++i) { 407 if (addrP[0].first.labels[level] != addrP[i].first.labels[level]) { 408 // There are differing label values for this level so it stays 409 radix1_detected = 0; 410 break; 411 } 412 } 413 if (!radix1_detected) 414 continue; 415 // Radix 1 was detected 416 --new_depth; 417 levels[level] = -1; // mark level as not present in address2os array 418 if (level == new_depth) { 419 // "turn off" deepest level, just decrement the depth that removes 420 // the level from address2os array 421 for (i = 0; i < nTh; ++i) { 422 addrP[i].first.depth--; 423 } 424 } else { 425 // For other levels, we move labels over and also reduce the depth 426 int j; 427 for (j = level; j < new_depth; ++j) { 428 for (i = 0; i < nTh; ++i) { 429 addrP[i].first.labels[j] = addrP[i].first.labels[j + 1]; 430 addrP[i].first.depth--; 431 } 432 levels[j + 1] -= 1; 433 } 434 } 435 } 436 return new_depth; 437 } 438 439 // Returns the number of objects of type 'type' below 'obj' within the topology 440 // tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is 441 // HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET 442 // object. 443 static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj, 444 hwloc_obj_type_t type) { 445 int retval = 0; 446 hwloc_obj_t first; 447 for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type, 448 obj->logical_index, type, 0); 449 first != NULL && 450 hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, obj->type, first) == 451 obj; 452 first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type, 453 first)) { 454 ++retval; 455 } 456 return retval; 457 } 458 459 static int __kmp_hwloc_count_children_by_depth(hwloc_topology_t t, 460 hwloc_obj_t o, unsigned depth, 461 hwloc_obj_t *f) { 462 if (o->depth == depth) { 463 if (*f == NULL) 464 *f = o; // output first descendant found 465 return 1; 466 } 467 int sum = 0; 468 for (unsigned i = 0; i < o->arity; i++) 469 sum += __kmp_hwloc_count_children_by_depth(t, o->children[i], depth, f); 470 return sum; // will be 0 if no one found (as PU arity is 0) 471 } 472 473 static int __kmp_hwloc_count_children_by_type(hwloc_topology_t t, hwloc_obj_t o, 474 hwloc_obj_type_t type, 475 hwloc_obj_t *f) { 476 if (!hwloc_compare_types(o->type, type)) { 477 if (*f == NULL) 478 *f = o; // output first descendant found 479 return 1; 480 } 481 int sum = 0; 482 for (unsigned i = 0; i < o->arity; i++) 483 sum += __kmp_hwloc_count_children_by_type(t, o->children[i], type, f); 484 return sum; // will be 0 if no one found (as PU arity is 0) 485 } 486 487 static int __kmp_hwloc_process_obj_core_pu(AddrUnsPair *addrPair, 488 int &nActiveThreads, 489 int &num_active_cores, 490 hwloc_obj_t obj, int depth, 491 int *labels) { 492 hwloc_obj_t core = NULL; 493 hwloc_topology_t &tp = __kmp_hwloc_topology; 494 int NC = __kmp_hwloc_count_children_by_type(tp, obj, HWLOC_OBJ_CORE, &core); 495 for (int core_id = 0; core_id < NC; ++core_id, core = core->next_cousin) { 496 hwloc_obj_t pu = NULL; 497 KMP_DEBUG_ASSERT(core != NULL); 498 int num_active_threads = 0; 499 int NT = __kmp_hwloc_count_children_by_type(tp, core, HWLOC_OBJ_PU, &pu); 500 // int NT = core->arity; pu = core->first_child; // faster? 501 for (int pu_id = 0; pu_id < NT; ++pu_id, pu = pu->next_cousin) { 502 KMP_DEBUG_ASSERT(pu != NULL); 503 if (!KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask)) 504 continue; // skip inactive (inaccessible) unit 505 Address addr(depth + 2); 506 KA_TRACE(20, ("Hwloc inserting %d (%d) %d (%d) %d (%d) into address2os\n", 507 obj->os_index, obj->logical_index, core->os_index, 508 core->logical_index, pu->os_index, pu->logical_index)); 509 for (int i = 0; i < depth; ++i) 510 addr.labels[i] = labels[i]; // package, etc. 511 addr.labels[depth] = core_id; // core 512 addr.labels[depth + 1] = pu_id; // pu 513 addrPair[nActiveThreads] = AddrUnsPair(addr, pu->os_index); 514 __kmp_pu_os_idx[nActiveThreads] = pu->os_index; 515 nActiveThreads++; 516 ++num_active_threads; // count active threads per core 517 } 518 if (num_active_threads) { // were there any active threads on the core? 519 ++__kmp_ncores; // count total active cores 520 ++num_active_cores; // count active cores per socket 521 if (num_active_threads > __kmp_nThreadsPerCore) 522 __kmp_nThreadsPerCore = num_active_threads; // calc maximum 523 } 524 } 525 return 0; 526 } 527 528 // Check if NUMA node detected below the package, 529 // and if tile object is detected and return its depth 530 static int __kmp_hwloc_check_numa() { 531 hwloc_topology_t &tp = __kmp_hwloc_topology; 532 hwloc_obj_t hT, hC, hL, hN, hS; // hwloc objects (pointers to) 533 int depth; 534 535 // Get some PU 536 hT = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PU, 0); 537 if (hT == NULL) // something has gone wrong 538 return 1; 539 540 // check NUMA node below PACKAGE 541 hN = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hT); 542 hS = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hT); 543 KMP_DEBUG_ASSERT(hS != NULL); 544 if (hN != NULL && hN->depth > hS->depth) { 545 __kmp_numa_detected = TRUE; // socket includes node(s) 546 if (__kmp_affinity_gran == affinity_gran_node) { 547 __kmp_affinity_gran == affinity_gran_numa; 548 } 549 } 550 551 // check tile, get object by depth because of multiple caches possible 552 depth = hwloc_get_cache_type_depth(tp, 2, HWLOC_OBJ_CACHE_UNIFIED); 553 hL = hwloc_get_ancestor_obj_by_depth(tp, depth, hT); 554 hC = NULL; // not used, but reset it here just in case 555 if (hL != NULL && 556 __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC) > 1) 557 __kmp_tile_depth = depth; // tile consists of multiple cores 558 return 0; 559 } 560 561 static int __kmp_affinity_create_hwloc_map(AddrUnsPair **address2os, 562 kmp_i18n_id_t *const msg_id) { 563 hwloc_topology_t &tp = __kmp_hwloc_topology; // shortcut of a long name 564 *address2os = NULL; 565 *msg_id = kmp_i18n_null; 566 567 // Save the affinity mask for the current thread. 568 kmp_affin_mask_t *oldMask; 569 KMP_CPU_ALLOC(oldMask); 570 __kmp_get_system_affinity(oldMask, TRUE); 571 __kmp_hwloc_check_numa(); 572 573 if (!KMP_AFFINITY_CAPABLE()) { 574 // Hack to try and infer the machine topology using only the data 575 // available from cpuid on the current thread, and __kmp_xproc. 576 KMP_ASSERT(__kmp_affinity_type == affinity_none); 577 578 nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj( 579 hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0), HWLOC_OBJ_CORE); 580 __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj( 581 hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0), HWLOC_OBJ_PU); 582 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; 583 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 584 if (__kmp_affinity_verbose) { 585 KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY"); 586 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 587 if (__kmp_affinity_uniform_topology()) { 588 KMP_INFORM(Uniform, "KMP_AFFINITY"); 589 } else { 590 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 591 } 592 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 593 __kmp_nThreadsPerCore, __kmp_ncores); 594 } 595 KMP_CPU_FREE(oldMask); 596 return 0; 597 } 598 599 int depth = 3; 600 int levels[5] = {0, 1, 2, 3, 4}; // package, [node,] [tile,] core, thread 601 int labels[3] = {0}; // package [,node] [,tile] - head of lables array 602 if (__kmp_numa_detected) 603 ++depth; 604 if (__kmp_tile_depth) 605 ++depth; 606 607 // Allocate the data structure to be returned. 608 AddrUnsPair *retval = 609 (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc); 610 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 611 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 612 613 // When affinity is off, this routine will still be called to set 614 // __kmp_ncores, as well as __kmp_nThreadsPerCore, 615 // nCoresPerPkg, & nPackages. Make sure all these vars are set 616 // correctly, and return if affinity is not enabled. 617 618 hwloc_obj_t socket, node, tile; 619 int nActiveThreads = 0; 620 int socket_id = 0; 621 // re-calculate globals to count only accessible resources 622 __kmp_ncores = nPackages = nCoresPerPkg = __kmp_nThreadsPerCore = 0; 623 nNodePerPkg = nTilePerPkg = nTilePerNode = nCorePerNode = nCorePerTile = 0; 624 for (socket = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0); socket != NULL; 625 socket = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PACKAGE, socket), 626 socket_id++) { 627 labels[0] = socket_id; 628 if (__kmp_numa_detected) { 629 int NN; 630 int n_active_nodes = 0; 631 node = NULL; 632 NN = __kmp_hwloc_count_children_by_type(tp, socket, HWLOC_OBJ_NUMANODE, 633 &node); 634 for (int node_id = 0; node_id < NN; ++node_id, node = node->next_cousin) { 635 labels[1] = node_id; 636 if (__kmp_tile_depth) { 637 // NUMA + tiles 638 int NT; 639 int n_active_tiles = 0; 640 tile = NULL; 641 NT = __kmp_hwloc_count_children_by_depth(tp, node, __kmp_tile_depth, 642 &tile); 643 for (int tl_id = 0; tl_id < NT; ++tl_id, tile = tile->next_cousin) { 644 labels[2] = tl_id; 645 int n_active_cores = 0; 646 __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, 647 n_active_cores, tile, 3, labels); 648 if (n_active_cores) { // were there any active cores on the socket? 649 ++n_active_tiles; // count active tiles per node 650 if (n_active_cores > nCorePerTile) 651 nCorePerTile = n_active_cores; // calc maximum 652 } 653 } 654 if (n_active_tiles) { // were there any active tiles on the socket? 655 ++n_active_nodes; // count active nodes per package 656 if (n_active_tiles > nTilePerNode) 657 nTilePerNode = n_active_tiles; // calc maximum 658 } 659 } else { 660 // NUMA, no tiles 661 int n_active_cores = 0; 662 __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, 663 n_active_cores, node, 2, labels); 664 if (n_active_cores) { // were there any active cores on the socket? 665 ++n_active_nodes; // count active nodes per package 666 if (n_active_cores > nCorePerNode) 667 nCorePerNode = n_active_cores; // calc maximum 668 } 669 } 670 } 671 if (n_active_nodes) { // were there any active nodes on the socket? 672 ++nPackages; // count total active packages 673 if (n_active_nodes > nNodePerPkg) 674 nNodePerPkg = n_active_nodes; // calc maximum 675 } 676 } else { 677 if (__kmp_tile_depth) { 678 // no NUMA, tiles 679 int NT; 680 int n_active_tiles = 0; 681 tile = NULL; 682 NT = __kmp_hwloc_count_children_by_depth(tp, socket, __kmp_tile_depth, 683 &tile); 684 for (int tl_id = 0; tl_id < NT; ++tl_id, tile = tile->next_cousin) { 685 labels[1] = tl_id; 686 int n_active_cores = 0; 687 __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, 688 n_active_cores, tile, 2, labels); 689 if (n_active_cores) { // were there any active cores on the socket? 690 ++n_active_tiles; // count active tiles per package 691 if (n_active_cores > nCorePerTile) 692 nCorePerTile = n_active_cores; // calc maximum 693 } 694 } 695 if (n_active_tiles) { // were there any active tiles on the socket? 696 ++nPackages; // count total active packages 697 if (n_active_tiles > nTilePerPkg) 698 nTilePerPkg = n_active_tiles; // calc maximum 699 } 700 } else { 701 // no NUMA, no tiles 702 int n_active_cores = 0; 703 __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, n_active_cores, 704 socket, 1, labels); 705 if (n_active_cores) { // were there any active cores on the socket? 706 ++nPackages; // count total active packages 707 if (n_active_cores > nCoresPerPkg) 708 nCoresPerPkg = n_active_cores; // calc maximum 709 } 710 } 711 } 712 } 713 714 // If there's only one thread context to bind to, return now. 715 KMP_DEBUG_ASSERT(nActiveThreads == __kmp_avail_proc); 716 KMP_ASSERT(nActiveThreads > 0); 717 if (nActiveThreads == 1) { 718 __kmp_ncores = nPackages = 1; 719 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 720 if (__kmp_affinity_verbose) { 721 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 722 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 723 724 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); 725 if (__kmp_affinity_respect_mask) { 726 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 727 } else { 728 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 729 } 730 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 731 KMP_INFORM(Uniform, "KMP_AFFINITY"); 732 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 733 __kmp_nThreadsPerCore, __kmp_ncores); 734 } 735 736 if (__kmp_affinity_type == affinity_none) { 737 __kmp_free(retval); 738 KMP_CPU_FREE(oldMask); 739 return 0; 740 } 741 742 // Form an Address object which only includes the package level. 743 Address addr(1); 744 addr.labels[0] = retval[0].first.labels[0]; 745 retval[0].first = addr; 746 747 if (__kmp_affinity_gran_levels < 0) { 748 __kmp_affinity_gran_levels = 0; 749 } 750 751 if (__kmp_affinity_verbose) { 752 __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1); 753 } 754 755 *address2os = retval; 756 KMP_CPU_FREE(oldMask); 757 return 1; 758 } 759 760 // Sort the table by physical Id. 761 qsort(retval, nActiveThreads, sizeof(*retval), 762 __kmp_affinity_cmp_Address_labels); 763 764 // Check to see if the machine topology is uniform 765 int nPUs = nPackages * __kmp_nThreadsPerCore; 766 if (__kmp_numa_detected) { 767 if (__kmp_tile_depth) { // NUMA + tiles 768 nPUs *= (nNodePerPkg * nTilePerNode * nCorePerTile); 769 } else { // NUMA, no tiles 770 nPUs *= (nNodePerPkg * nCorePerNode); 771 } 772 } else { 773 if (__kmp_tile_depth) { // no NUMA, tiles 774 nPUs *= (nTilePerPkg * nCorePerTile); 775 } else { // no NUMA, no tiles 776 nPUs *= nCoresPerPkg; 777 } 778 } 779 unsigned uniform = (nPUs == nActiveThreads); 780 781 // Print the machine topology summary. 782 if (__kmp_affinity_verbose) { 783 char mask[KMP_AFFIN_MASK_PRINT_LEN]; 784 __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 785 if (__kmp_affinity_respect_mask) { 786 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask); 787 } else { 788 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask); 789 } 790 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 791 if (uniform) { 792 KMP_INFORM(Uniform, "KMP_AFFINITY"); 793 } else { 794 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 795 } 796 if (__kmp_numa_detected) { 797 if (__kmp_tile_depth) { // NUMA + tiles 798 KMP_INFORM(TopologyExtraNoTi, "KMP_AFFINITY", nPackages, nNodePerPkg, 799 nTilePerNode, nCorePerTile, __kmp_nThreadsPerCore, 800 __kmp_ncores); 801 } else { // NUMA, no tiles 802 KMP_INFORM(TopologyExtraNode, "KMP_AFFINITY", nPackages, nNodePerPkg, 803 nCorePerNode, __kmp_nThreadsPerCore, __kmp_ncores); 804 nPUs *= (nNodePerPkg * nCorePerNode); 805 } 806 } else { 807 if (__kmp_tile_depth) { // no NUMA, tiles 808 KMP_INFORM(TopologyExtraTile, "KMP_AFFINITY", nPackages, nTilePerPkg, 809 nCorePerTile, __kmp_nThreadsPerCore, __kmp_ncores); 810 } else { // no NUMA, no tiles 811 kmp_str_buf_t buf; 812 __kmp_str_buf_init(&buf); 813 __kmp_str_buf_print(&buf, "%d", nPackages); 814 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg, 815 __kmp_nThreadsPerCore, __kmp_ncores); 816 __kmp_str_buf_free(&buf); 817 } 818 } 819 } 820 821 if (__kmp_affinity_type == affinity_none) { 822 __kmp_free(retval); 823 KMP_CPU_FREE(oldMask); 824 return 0; 825 } 826 827 int depth_full = depth; // number of levels before compressing 828 // Find any levels with radiix 1, and remove them from the map 829 // (except for the package level). 830 depth = __kmp_affinity_remove_radix_one_levels(retval, nActiveThreads, depth, 831 levels); 832 KMP_DEBUG_ASSERT(__kmp_affinity_gran != affinity_gran_default); 833 if (__kmp_affinity_gran_levels < 0) { 834 // Set the granularity level based on what levels are modeled 835 // in the machine topology map. 836 __kmp_affinity_gran_levels = 0; // lowest level (e.g. fine) 837 if (__kmp_affinity_gran > affinity_gran_thread) { 838 for (int i = 1; i <= depth_full; ++i) { 839 if (__kmp_affinity_gran <= i) // only count deeper levels 840 break; 841 if (levels[depth_full - i] > 0) 842 __kmp_affinity_gran_levels++; 843 } 844 } 845 if (__kmp_affinity_gran > affinity_gran_package) 846 __kmp_affinity_gran_levels++; // e.g. granularity = group 847 } 848 849 if (__kmp_affinity_verbose) 850 __kmp_affinity_print_hwloc_tp(retval, nActiveThreads, depth, levels); 851 852 KMP_CPU_FREE(oldMask); 853 *address2os = retval; 854 return depth; 855 } 856 #endif // KMP_USE_HWLOC 857 858 // If we don't know how to retrieve the machine's processor topology, or 859 // encounter an error in doing so, this routine is called to form a "flat" 860 // mapping of os thread id's <-> processor id's. 861 static int __kmp_affinity_create_flat_map(AddrUnsPair **address2os, 862 kmp_i18n_id_t *const msg_id) { 863 *address2os = NULL; 864 *msg_id = kmp_i18n_null; 865 866 // Even if __kmp_affinity_type == affinity_none, this routine might still 867 // called to set __kmp_ncores, as well as 868 // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 869 if (!KMP_AFFINITY_CAPABLE()) { 870 KMP_ASSERT(__kmp_affinity_type == affinity_none); 871 __kmp_ncores = nPackages = __kmp_xproc; 872 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 873 if (__kmp_affinity_verbose) { 874 KMP_INFORM(AffFlatTopology, "KMP_AFFINITY"); 875 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 876 KMP_INFORM(Uniform, "KMP_AFFINITY"); 877 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 878 __kmp_nThreadsPerCore, __kmp_ncores); 879 } 880 return 0; 881 } 882 883 // When affinity is off, this routine will still be called to set 884 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 885 // Make sure all these vars are set correctly, and return now if affinity is 886 // not enabled. 887 __kmp_ncores = nPackages = __kmp_avail_proc; 888 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 889 if (__kmp_affinity_verbose) { 890 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 891 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 892 __kmp_affin_fullMask); 893 894 KMP_INFORM(AffCapableUseFlat, "KMP_AFFINITY"); 895 if (__kmp_affinity_respect_mask) { 896 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 897 } else { 898 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 899 } 900 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 901 KMP_INFORM(Uniform, "KMP_AFFINITY"); 902 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 903 __kmp_nThreadsPerCore, __kmp_ncores); 904 } 905 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 906 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 907 if (__kmp_affinity_type == affinity_none) { 908 int avail_ct = 0; 909 int i; 910 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 911 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) 912 continue; 913 __kmp_pu_os_idx[avail_ct++] = i; // suppose indices are flat 914 } 915 return 0; 916 } 917 918 // Contruct the data structure to be returned. 919 *address2os = 920 (AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc); 921 int avail_ct = 0; 922 int i; 923 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 924 // Skip this proc if it is not included in the machine model. 925 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 926 continue; 927 } 928 __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat 929 Address addr(1); 930 addr.labels[0] = i; 931 (*address2os)[avail_ct++] = AddrUnsPair(addr, i); 932 } 933 if (__kmp_affinity_verbose) { 934 KMP_INFORM(OSProcToPackage, "KMP_AFFINITY"); 935 } 936 937 if (__kmp_affinity_gran_levels < 0) { 938 // Only the package level is modeled in the machine topology map, 939 // so the #levels of granularity is either 0 or 1. 940 if (__kmp_affinity_gran > affinity_gran_package) { 941 __kmp_affinity_gran_levels = 1; 942 } else { 943 __kmp_affinity_gran_levels = 0; 944 } 945 } 946 return 1; 947 } 948 949 #if KMP_GROUP_AFFINITY 950 951 // If multiple Windows* OS processor groups exist, we can create a 2-level 952 // topology map with the groups at level 0 and the individual procs at level 1. 953 // This facilitates letting the threads float among all procs in a group, 954 // if granularity=group (the default when there are multiple groups). 955 static int __kmp_affinity_create_proc_group_map(AddrUnsPair **address2os, 956 kmp_i18n_id_t *const msg_id) { 957 *address2os = NULL; 958 *msg_id = kmp_i18n_null; 959 960 // If we aren't affinity capable, then return now. 961 // The flat mapping will be used. 962 if (!KMP_AFFINITY_CAPABLE()) { 963 // FIXME set *msg_id 964 return -1; 965 } 966 967 // Contruct the data structure to be returned. 968 *address2os = 969 (AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc); 970 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 971 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 972 int avail_ct = 0; 973 int i; 974 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 975 // Skip this proc if it is not included in the machine model. 976 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 977 continue; 978 } 979 __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat 980 Address addr(2); 981 addr.labels[0] = i / (CHAR_BIT * sizeof(DWORD_PTR)); 982 addr.labels[1] = i % (CHAR_BIT * sizeof(DWORD_PTR)); 983 (*address2os)[avail_ct++] = AddrUnsPair(addr, i); 984 985 if (__kmp_affinity_verbose) { 986 KMP_INFORM(AffOSProcToGroup, "KMP_AFFINITY", i, addr.labels[0], 987 addr.labels[1]); 988 } 989 } 990 991 if (__kmp_affinity_gran_levels < 0) { 992 if (__kmp_affinity_gran == affinity_gran_group) { 993 __kmp_affinity_gran_levels = 1; 994 } else if ((__kmp_affinity_gran == affinity_gran_fine) || 995 (__kmp_affinity_gran == affinity_gran_thread)) { 996 __kmp_affinity_gran_levels = 0; 997 } else { 998 const char *gran_str = NULL; 999 if (__kmp_affinity_gran == affinity_gran_core) { 1000 gran_str = "core"; 1001 } else if (__kmp_affinity_gran == affinity_gran_package) { 1002 gran_str = "package"; 1003 } else if (__kmp_affinity_gran == affinity_gran_node) { 1004 gran_str = "node"; 1005 } else { 1006 KMP_ASSERT(0); 1007 } 1008 1009 // Warning: can't use affinity granularity \"gran\" with group topology 1010 // method, using "thread" 1011 __kmp_affinity_gran_levels = 0; 1012 } 1013 } 1014 return 2; 1015 } 1016 1017 #endif /* KMP_GROUP_AFFINITY */ 1018 1019 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1020 1021 static int __kmp_cpuid_mask_width(int count) { 1022 int r = 0; 1023 1024 while ((1 << r) < count) 1025 ++r; 1026 return r; 1027 } 1028 1029 class apicThreadInfo { 1030 public: 1031 unsigned osId; // param to __kmp_affinity_bind_thread 1032 unsigned apicId; // from cpuid after binding 1033 unsigned maxCoresPerPkg; // "" 1034 unsigned maxThreadsPerPkg; // "" 1035 unsigned pkgId; // inferred from above values 1036 unsigned coreId; // "" 1037 unsigned threadId; // "" 1038 }; 1039 1040 static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a, 1041 const void *b) { 1042 const apicThreadInfo *aa = (const apicThreadInfo *)a; 1043 const apicThreadInfo *bb = (const apicThreadInfo *)b; 1044 if (aa->pkgId < bb->pkgId) 1045 return -1; 1046 if (aa->pkgId > bb->pkgId) 1047 return 1; 1048 if (aa->coreId < bb->coreId) 1049 return -1; 1050 if (aa->coreId > bb->coreId) 1051 return 1; 1052 if (aa->threadId < bb->threadId) 1053 return -1; 1054 if (aa->threadId > bb->threadId) 1055 return 1; 1056 return 0; 1057 } 1058 1059 // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use 1060 // an algorithm which cycles through the available os threads, setting 1061 // the current thread's affinity mask to that thread, and then retrieves 1062 // the Apic Id for each thread context using the cpuid instruction. 1063 static int __kmp_affinity_create_apicid_map(AddrUnsPair **address2os, 1064 kmp_i18n_id_t *const msg_id) { 1065 kmp_cpuid buf; 1066 *address2os = NULL; 1067 *msg_id = kmp_i18n_null; 1068 1069 // Check if cpuid leaf 4 is supported. 1070 __kmp_x86_cpuid(0, 0, &buf); 1071 if (buf.eax < 4) { 1072 *msg_id = kmp_i18n_str_NoLeaf4Support; 1073 return -1; 1074 } 1075 1076 // The algorithm used starts by setting the affinity to each available thread 1077 // and retrieving info from the cpuid instruction, so if we are not capable of 1078 // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we 1079 // need to do something else - use the defaults that we calculated from 1080 // issuing cpuid without binding to each proc. 1081 if (!KMP_AFFINITY_CAPABLE()) { 1082 // Hack to try and infer the machine topology using only the data 1083 // available from cpuid on the current thread, and __kmp_xproc. 1084 KMP_ASSERT(__kmp_affinity_type == affinity_none); 1085 1086 // Get an upper bound on the number of threads per package using cpuid(1). 1087 // On some OS/chps combinations where HT is supported by the chip but is 1088 // disabled, this value will be 2 on a single core chip. Usually, it will be 1089 // 2 if HT is enabled and 1 if HT is disabled. 1090 __kmp_x86_cpuid(1, 0, &buf); 1091 int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; 1092 if (maxThreadsPerPkg == 0) { 1093 maxThreadsPerPkg = 1; 1094 } 1095 1096 // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded 1097 // value. 1098 // 1099 // The author of cpu_count.cpp treated this only an upper bound on the 1100 // number of cores, but I haven't seen any cases where it was greater than 1101 // the actual number of cores, so we will treat it as exact in this block of 1102 // code. 1103 // 1104 // First, we need to check if cpuid(4) is supported on this chip. To see if 1105 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or 1106 // greater. 1107 __kmp_x86_cpuid(0, 0, &buf); 1108 if (buf.eax >= 4) { 1109 __kmp_x86_cpuid(4, 0, &buf); 1110 nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; 1111 } else { 1112 nCoresPerPkg = 1; 1113 } 1114 1115 // There is no way to reliably tell if HT is enabled without issuing the 1116 // cpuid instruction from every thread, can correlating the cpuid info, so 1117 // if the machine is not affinity capable, we assume that HT is off. We have 1118 // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine 1119 // does not support HT. 1120 // 1121 // - Older OSes are usually found on machines with older chips, which do not 1122 // support HT. 1123 // - The performance penalty for mistakenly identifying a machine as HT when 1124 // it isn't (which results in blocktime being incorrecly set to 0) is 1125 // greater than the penalty when for mistakenly identifying a machine as 1126 // being 1 thread/core when it is really HT enabled (which results in 1127 // blocktime being incorrectly set to a positive value). 1128 __kmp_ncores = __kmp_xproc; 1129 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 1130 __kmp_nThreadsPerCore = 1; 1131 if (__kmp_affinity_verbose) { 1132 KMP_INFORM(AffNotCapableUseLocCpuid, "KMP_AFFINITY"); 1133 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1134 if (__kmp_affinity_uniform_topology()) { 1135 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1136 } else { 1137 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 1138 } 1139 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1140 __kmp_nThreadsPerCore, __kmp_ncores); 1141 } 1142 return 0; 1143 } 1144 1145 // From here on, we can assume that it is safe to call 1146 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if 1147 // __kmp_affinity_type = affinity_none. 1148 1149 // Save the affinity mask for the current thread. 1150 kmp_affin_mask_t *oldMask; 1151 KMP_CPU_ALLOC(oldMask); 1152 KMP_ASSERT(oldMask != NULL); 1153 __kmp_get_system_affinity(oldMask, TRUE); 1154 1155 // Run through each of the available contexts, binding the current thread 1156 // to it, and obtaining the pertinent information using the cpuid instr. 1157 // 1158 // The relevant information is: 1159 // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context 1160 // has a uniqie Apic Id, which is of the form pkg# : core# : thread#. 1161 // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value 1162 // of this field determines the width of the core# + thread# fields in the 1163 // Apic Id. It is also an upper bound on the number of threads per 1164 // package, but it has been verified that situations happen were it is not 1165 // exact. In particular, on certain OS/chip combinations where Intel(R) 1166 // Hyper-Threading Technology is supported by the chip but has been 1167 // disabled, the value of this field will be 2 (for a single core chip). 1168 // On other OS/chip combinations supporting Intel(R) Hyper-Threading 1169 // Technology, the value of this field will be 1 when Intel(R) 1170 // Hyper-Threading Technology is disabled and 2 when it is enabled. 1171 // - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value 1172 // of this field (+1) determines the width of the core# field in the Apic 1173 // Id. The comments in "cpucount.cpp" say that this value is an upper 1174 // bound, but the IA-32 architecture manual says that it is exactly the 1175 // number of cores per package, and I haven't seen any case where it 1176 // wasn't. 1177 // 1178 // From this information, deduce the package Id, core Id, and thread Id, 1179 // and set the corresponding fields in the apicThreadInfo struct. 1180 unsigned i; 1181 apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate( 1182 __kmp_avail_proc * sizeof(apicThreadInfo)); 1183 unsigned nApics = 0; 1184 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 1185 // Skip this proc if it is not included in the machine model. 1186 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 1187 continue; 1188 } 1189 KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc); 1190 1191 __kmp_affinity_dispatch->bind_thread(i); 1192 threadInfo[nApics].osId = i; 1193 1194 // The apic id and max threads per pkg come from cpuid(1). 1195 __kmp_x86_cpuid(1, 0, &buf); 1196 if (((buf.edx >> 9) & 1) == 0) { 1197 __kmp_set_system_affinity(oldMask, TRUE); 1198 __kmp_free(threadInfo); 1199 KMP_CPU_FREE(oldMask); 1200 *msg_id = kmp_i18n_str_ApicNotPresent; 1201 return -1; 1202 } 1203 threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff; 1204 threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; 1205 if (threadInfo[nApics].maxThreadsPerPkg == 0) { 1206 threadInfo[nApics].maxThreadsPerPkg = 1; 1207 } 1208 1209 // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded 1210 // value. 1211 // 1212 // First, we need to check if cpuid(4) is supported on this chip. To see if 1213 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n 1214 // or greater. 1215 __kmp_x86_cpuid(0, 0, &buf); 1216 if (buf.eax >= 4) { 1217 __kmp_x86_cpuid(4, 0, &buf); 1218 threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; 1219 } else { 1220 threadInfo[nApics].maxCoresPerPkg = 1; 1221 } 1222 1223 // Infer the pkgId / coreId / threadId using only the info obtained locally. 1224 int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg); 1225 threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT; 1226 1227 int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg); 1228 int widthT = widthCT - widthC; 1229 if (widthT < 0) { 1230 // I've never seen this one happen, but I suppose it could, if the cpuid 1231 // instruction on a chip was really screwed up. Make sure to restore the 1232 // affinity mask before the tail call. 1233 __kmp_set_system_affinity(oldMask, TRUE); 1234 __kmp_free(threadInfo); 1235 KMP_CPU_FREE(oldMask); 1236 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1237 return -1; 1238 } 1239 1240 int maskC = (1 << widthC) - 1; 1241 threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC; 1242 1243 int maskT = (1 << widthT) - 1; 1244 threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT; 1245 1246 nApics++; 1247 } 1248 1249 // We've collected all the info we need. 1250 // Restore the old affinity mask for this thread. 1251 __kmp_set_system_affinity(oldMask, TRUE); 1252 1253 // If there's only one thread context to bind to, form an Address object 1254 // with depth 1 and return immediately (or, if affinity is off, set 1255 // address2os to NULL and return). 1256 // 1257 // If it is configured to omit the package level when there is only a single 1258 // package, the logic at the end of this routine won't work if there is only 1259 // a single thread - it would try to form an Address object with depth 0. 1260 KMP_ASSERT(nApics > 0); 1261 if (nApics == 1) { 1262 __kmp_ncores = nPackages = 1; 1263 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 1264 if (__kmp_affinity_verbose) { 1265 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 1266 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 1267 1268 KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY"); 1269 if (__kmp_affinity_respect_mask) { 1270 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 1271 } else { 1272 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 1273 } 1274 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1275 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1276 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1277 __kmp_nThreadsPerCore, __kmp_ncores); 1278 } 1279 1280 if (__kmp_affinity_type == affinity_none) { 1281 __kmp_free(threadInfo); 1282 KMP_CPU_FREE(oldMask); 1283 return 0; 1284 } 1285 1286 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair)); 1287 Address addr(1); 1288 addr.labels[0] = threadInfo[0].pkgId; 1289 (*address2os)[0] = AddrUnsPair(addr, threadInfo[0].osId); 1290 1291 if (__kmp_affinity_gran_levels < 0) { 1292 __kmp_affinity_gran_levels = 0; 1293 } 1294 1295 if (__kmp_affinity_verbose) { 1296 __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1); 1297 } 1298 1299 __kmp_free(threadInfo); 1300 KMP_CPU_FREE(oldMask); 1301 return 1; 1302 } 1303 1304 // Sort the threadInfo table by physical Id. 1305 qsort(threadInfo, nApics, sizeof(*threadInfo), 1306 __kmp_affinity_cmp_apicThreadInfo_phys_id); 1307 1308 // The table is now sorted by pkgId / coreId / threadId, but we really don't 1309 // know the radix of any of the fields. pkgId's may be sparsely assigned among 1310 // the chips on a system. Although coreId's are usually assigned 1311 // [0 .. coresPerPkg-1] and threadId's are usually assigned 1312 // [0..threadsPerCore-1], we don't want to make any such assumptions. 1313 // 1314 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the 1315 // total # packages) are at this point - we want to determine that now. We 1316 // only have an upper bound on the first two figures. 1317 // 1318 // We also perform a consistency check at this point: the values returned by 1319 // the cpuid instruction for any thread bound to a given package had better 1320 // return the same info for maxThreadsPerPkg and maxCoresPerPkg. 1321 nPackages = 1; 1322 nCoresPerPkg = 1; 1323 __kmp_nThreadsPerCore = 1; 1324 unsigned nCores = 1; 1325 1326 unsigned pkgCt = 1; // to determine radii 1327 unsigned lastPkgId = threadInfo[0].pkgId; 1328 unsigned coreCt = 1; 1329 unsigned lastCoreId = threadInfo[0].coreId; 1330 unsigned threadCt = 1; 1331 unsigned lastThreadId = threadInfo[0].threadId; 1332 1333 // intra-pkg consist checks 1334 unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg; 1335 unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg; 1336 1337 for (i = 1; i < nApics; i++) { 1338 if (threadInfo[i].pkgId != lastPkgId) { 1339 nCores++; 1340 pkgCt++; 1341 lastPkgId = threadInfo[i].pkgId; 1342 if ((int)coreCt > nCoresPerPkg) 1343 nCoresPerPkg = coreCt; 1344 coreCt = 1; 1345 lastCoreId = threadInfo[i].coreId; 1346 if ((int)threadCt > __kmp_nThreadsPerCore) 1347 __kmp_nThreadsPerCore = threadCt; 1348 threadCt = 1; 1349 lastThreadId = threadInfo[i].threadId; 1350 1351 // This is a different package, so go on to the next iteration without 1352 // doing any consistency checks. Reset the consistency check vars, though. 1353 prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg; 1354 prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg; 1355 continue; 1356 } 1357 1358 if (threadInfo[i].coreId != lastCoreId) { 1359 nCores++; 1360 coreCt++; 1361 lastCoreId = threadInfo[i].coreId; 1362 if ((int)threadCt > __kmp_nThreadsPerCore) 1363 __kmp_nThreadsPerCore = threadCt; 1364 threadCt = 1; 1365 lastThreadId = threadInfo[i].threadId; 1366 } else if (threadInfo[i].threadId != lastThreadId) { 1367 threadCt++; 1368 lastThreadId = threadInfo[i].threadId; 1369 } else { 1370 __kmp_free(threadInfo); 1371 KMP_CPU_FREE(oldMask); 1372 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; 1373 return -1; 1374 } 1375 1376 // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg 1377 // fields agree between all the threads bounds to a given package. 1378 if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) || 1379 (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) { 1380 __kmp_free(threadInfo); 1381 KMP_CPU_FREE(oldMask); 1382 *msg_id = kmp_i18n_str_InconsistentCpuidInfo; 1383 return -1; 1384 } 1385 } 1386 nPackages = pkgCt; 1387 if ((int)coreCt > nCoresPerPkg) 1388 nCoresPerPkg = coreCt; 1389 if ((int)threadCt > __kmp_nThreadsPerCore) 1390 __kmp_nThreadsPerCore = threadCt; 1391 1392 // When affinity is off, this routine will still be called to set 1393 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 1394 // Make sure all these vars are set correctly, and return now if affinity is 1395 // not enabled. 1396 __kmp_ncores = nCores; 1397 if (__kmp_affinity_verbose) { 1398 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 1399 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 1400 1401 KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY"); 1402 if (__kmp_affinity_respect_mask) { 1403 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 1404 } else { 1405 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 1406 } 1407 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1408 if (__kmp_affinity_uniform_topology()) { 1409 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1410 } else { 1411 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 1412 } 1413 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1414 __kmp_nThreadsPerCore, __kmp_ncores); 1415 } 1416 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 1417 KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc); 1418 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 1419 for (i = 0; i < nApics; ++i) { 1420 __kmp_pu_os_idx[i] = threadInfo[i].osId; 1421 } 1422 if (__kmp_affinity_type == affinity_none) { 1423 __kmp_free(threadInfo); 1424 KMP_CPU_FREE(oldMask); 1425 return 0; 1426 } 1427 1428 // Now that we've determined the number of packages, the number of cores per 1429 // package, and the number of threads per core, we can construct the data 1430 // structure that is to be returned. 1431 int pkgLevel = 0; 1432 int coreLevel = (nCoresPerPkg <= 1) ? -1 : 1; 1433 int threadLevel = 1434 (__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1); 1435 unsigned depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0); 1436 1437 KMP_ASSERT(depth > 0); 1438 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * nApics); 1439 1440 for (i = 0; i < nApics; ++i) { 1441 Address addr(depth); 1442 unsigned os = threadInfo[i].osId; 1443 int d = 0; 1444 1445 if (pkgLevel >= 0) { 1446 addr.labels[d++] = threadInfo[i].pkgId; 1447 } 1448 if (coreLevel >= 0) { 1449 addr.labels[d++] = threadInfo[i].coreId; 1450 } 1451 if (threadLevel >= 0) { 1452 addr.labels[d++] = threadInfo[i].threadId; 1453 } 1454 (*address2os)[i] = AddrUnsPair(addr, os); 1455 } 1456 1457 if (__kmp_affinity_gran_levels < 0) { 1458 // Set the granularity level based on what levels are modeled in the machine 1459 // topology map. 1460 __kmp_affinity_gran_levels = 0; 1461 if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) { 1462 __kmp_affinity_gran_levels++; 1463 } 1464 if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) { 1465 __kmp_affinity_gran_levels++; 1466 } 1467 if ((pkgLevel >= 0) && (__kmp_affinity_gran > affinity_gran_package)) { 1468 __kmp_affinity_gran_levels++; 1469 } 1470 } 1471 1472 if (__kmp_affinity_verbose) { 1473 __kmp_affinity_print_topology(*address2os, nApics, depth, pkgLevel, 1474 coreLevel, threadLevel); 1475 } 1476 1477 __kmp_free(threadInfo); 1478 KMP_CPU_FREE(oldMask); 1479 return depth; 1480 } 1481 1482 // Intel(R) microarchitecture code name Nehalem, Dunnington and later 1483 // architectures support a newer interface for specifying the x2APIC Ids, 1484 // based on cpuid leaf 11. 1485 static int __kmp_affinity_create_x2apicid_map(AddrUnsPair **address2os, 1486 kmp_i18n_id_t *const msg_id) { 1487 kmp_cpuid buf; 1488 *address2os = NULL; 1489 *msg_id = kmp_i18n_null; 1490 1491 // Check to see if cpuid leaf 11 is supported. 1492 __kmp_x86_cpuid(0, 0, &buf); 1493 if (buf.eax < 11) { 1494 *msg_id = kmp_i18n_str_NoLeaf11Support; 1495 return -1; 1496 } 1497 __kmp_x86_cpuid(11, 0, &buf); 1498 if (buf.ebx == 0) { 1499 *msg_id = kmp_i18n_str_NoLeaf11Support; 1500 return -1; 1501 } 1502 1503 // Find the number of levels in the machine topology. While we're at it, get 1504 // the default values for __kmp_nThreadsPerCore & nCoresPerPkg. We will try to 1505 // get more accurate values later by explicitly counting them, but get 1506 // reasonable defaults now, in case we return early. 1507 int level; 1508 int threadLevel = -1; 1509 int coreLevel = -1; 1510 int pkgLevel = -1; 1511 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; 1512 1513 for (level = 0;; level++) { 1514 if (level > 31) { 1515 // FIXME: Hack for DPD200163180 1516 // 1517 // If level is big then something went wrong -> exiting 1518 // 1519 // There could actually be 32 valid levels in the machine topology, but so 1520 // far, the only machine we have seen which does not exit this loop before 1521 // iteration 32 has fubar x2APIC settings. 1522 // 1523 // For now, just reject this case based upon loop trip count. 1524 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1525 return -1; 1526 } 1527 __kmp_x86_cpuid(11, level, &buf); 1528 if (buf.ebx == 0) { 1529 if (pkgLevel < 0) { 1530 // Will infer nPackages from __kmp_xproc 1531 pkgLevel = level; 1532 level++; 1533 } 1534 break; 1535 } 1536 int kind = (buf.ecx >> 8) & 0xff; 1537 if (kind == 1) { 1538 // SMT level 1539 threadLevel = level; 1540 coreLevel = -1; 1541 pkgLevel = -1; 1542 __kmp_nThreadsPerCore = buf.ebx & 0xffff; 1543 if (__kmp_nThreadsPerCore == 0) { 1544 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1545 return -1; 1546 } 1547 } else if (kind == 2) { 1548 // core level 1549 coreLevel = level; 1550 pkgLevel = -1; 1551 nCoresPerPkg = buf.ebx & 0xffff; 1552 if (nCoresPerPkg == 0) { 1553 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1554 return -1; 1555 } 1556 } else { 1557 if (level <= 0) { 1558 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1559 return -1; 1560 } 1561 if (pkgLevel >= 0) { 1562 continue; 1563 } 1564 pkgLevel = level; 1565 nPackages = buf.ebx & 0xffff; 1566 if (nPackages == 0) { 1567 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1568 return -1; 1569 } 1570 } 1571 } 1572 int depth = level; 1573 1574 // In the above loop, "level" was counted from the finest level (usually 1575 // thread) to the coarsest. The caller expects that we will place the labels 1576 // in (*address2os)[].first.labels[] in the inverse order, so we need to 1577 // invert the vars saying which level means what. 1578 if (threadLevel >= 0) { 1579 threadLevel = depth - threadLevel - 1; 1580 } 1581 if (coreLevel >= 0) { 1582 coreLevel = depth - coreLevel - 1; 1583 } 1584 KMP_DEBUG_ASSERT(pkgLevel >= 0); 1585 pkgLevel = depth - pkgLevel - 1; 1586 1587 // The algorithm used starts by setting the affinity to each available thread 1588 // and retrieving info from the cpuid instruction, so if we are not capable of 1589 // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we 1590 // need to do something else - use the defaults that we calculated from 1591 // issuing cpuid without binding to each proc. 1592 if (!KMP_AFFINITY_CAPABLE()) { 1593 // Hack to try and infer the machine topology using only the data 1594 // available from cpuid on the current thread, and __kmp_xproc. 1595 KMP_ASSERT(__kmp_affinity_type == affinity_none); 1596 1597 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; 1598 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 1599 if (__kmp_affinity_verbose) { 1600 KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY"); 1601 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1602 if (__kmp_affinity_uniform_topology()) { 1603 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1604 } else { 1605 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 1606 } 1607 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1608 __kmp_nThreadsPerCore, __kmp_ncores); 1609 } 1610 return 0; 1611 } 1612 1613 // From here on, we can assume that it is safe to call 1614 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if 1615 // __kmp_affinity_type = affinity_none. 1616 1617 // Save the affinity mask for the current thread. 1618 kmp_affin_mask_t *oldMask; 1619 KMP_CPU_ALLOC(oldMask); 1620 __kmp_get_system_affinity(oldMask, TRUE); 1621 1622 // Allocate the data structure to be returned. 1623 AddrUnsPair *retval = 1624 (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc); 1625 1626 // Run through each of the available contexts, binding the current thread 1627 // to it, and obtaining the pertinent information using the cpuid instr. 1628 unsigned int proc; 1629 int nApics = 0; 1630 KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) { 1631 // Skip this proc if it is not included in the machine model. 1632 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 1633 continue; 1634 } 1635 KMP_DEBUG_ASSERT(nApics < __kmp_avail_proc); 1636 1637 __kmp_affinity_dispatch->bind_thread(proc); 1638 1639 // Extract labels for each level in the machine topology map from Apic ID. 1640 Address addr(depth); 1641 int prev_shift = 0; 1642 1643 for (level = 0; level < depth; level++) { 1644 __kmp_x86_cpuid(11, level, &buf); 1645 unsigned apicId = buf.edx; 1646 if (buf.ebx == 0) { 1647 if (level != depth - 1) { 1648 KMP_CPU_FREE(oldMask); 1649 *msg_id = kmp_i18n_str_InconsistentCpuidInfo; 1650 return -1; 1651 } 1652 addr.labels[depth - level - 1] = apicId >> prev_shift; 1653 level++; 1654 break; 1655 } 1656 int shift = buf.eax & 0x1f; 1657 int mask = (1 << shift) - 1; 1658 addr.labels[depth - level - 1] = (apicId & mask) >> prev_shift; 1659 prev_shift = shift; 1660 } 1661 if (level != depth) { 1662 KMP_CPU_FREE(oldMask); 1663 *msg_id = kmp_i18n_str_InconsistentCpuidInfo; 1664 return -1; 1665 } 1666 1667 retval[nApics] = AddrUnsPair(addr, proc); 1668 nApics++; 1669 } 1670 1671 // We've collected all the info we need. 1672 // Restore the old affinity mask for this thread. 1673 __kmp_set_system_affinity(oldMask, TRUE); 1674 1675 // If there's only one thread context to bind to, return now. 1676 KMP_ASSERT(nApics > 0); 1677 if (nApics == 1) { 1678 __kmp_ncores = nPackages = 1; 1679 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 1680 if (__kmp_affinity_verbose) { 1681 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 1682 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 1683 1684 KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY"); 1685 if (__kmp_affinity_respect_mask) { 1686 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 1687 } else { 1688 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 1689 } 1690 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1691 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1692 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1693 __kmp_nThreadsPerCore, __kmp_ncores); 1694 } 1695 1696 if (__kmp_affinity_type == affinity_none) { 1697 __kmp_free(retval); 1698 KMP_CPU_FREE(oldMask); 1699 return 0; 1700 } 1701 1702 // Form an Address object which only includes the package level. 1703 Address addr(1); 1704 addr.labels[0] = retval[0].first.labels[pkgLevel]; 1705 retval[0].first = addr; 1706 1707 if (__kmp_affinity_gran_levels < 0) { 1708 __kmp_affinity_gran_levels = 0; 1709 } 1710 1711 if (__kmp_affinity_verbose) { 1712 __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1); 1713 } 1714 1715 *address2os = retval; 1716 KMP_CPU_FREE(oldMask); 1717 return 1; 1718 } 1719 1720 // Sort the table by physical Id. 1721 qsort(retval, nApics, sizeof(*retval), __kmp_affinity_cmp_Address_labels); 1722 1723 // Find the radix at each of the levels. 1724 unsigned *totals = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 1725 unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 1726 unsigned *maxCt = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 1727 unsigned *last = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 1728 for (level = 0; level < depth; level++) { 1729 totals[level] = 1; 1730 maxCt[level] = 1; 1731 counts[level] = 1; 1732 last[level] = retval[0].first.labels[level]; 1733 } 1734 1735 // From here on, the iteration variable "level" runs from the finest level to 1736 // the coarsest, i.e. we iterate forward through 1737 // (*address2os)[].first.labels[] - in the previous loops, we iterated 1738 // backwards. 1739 for (proc = 1; (int)proc < nApics; proc++) { 1740 int level; 1741 for (level = 0; level < depth; level++) { 1742 if (retval[proc].first.labels[level] != last[level]) { 1743 int j; 1744 for (j = level + 1; j < depth; j++) { 1745 totals[j]++; 1746 counts[j] = 1; 1747 // The line below causes printing incorrect topology information in 1748 // case the max value for some level (maxCt[level]) is encountered 1749 // earlier than some less value while going through the array. For 1750 // example, let pkg0 has 4 cores and pkg1 has 2 cores. Then 1751 // maxCt[1] == 2 1752 // whereas it must be 4. 1753 // TODO!!! Check if it can be commented safely 1754 // maxCt[j] = 1; 1755 last[j] = retval[proc].first.labels[j]; 1756 } 1757 totals[level]++; 1758 counts[level]++; 1759 if (counts[level] > maxCt[level]) { 1760 maxCt[level] = counts[level]; 1761 } 1762 last[level] = retval[proc].first.labels[level]; 1763 break; 1764 } else if (level == depth - 1) { 1765 __kmp_free(last); 1766 __kmp_free(maxCt); 1767 __kmp_free(counts); 1768 __kmp_free(totals); 1769 __kmp_free(retval); 1770 KMP_CPU_FREE(oldMask); 1771 *msg_id = kmp_i18n_str_x2ApicIDsNotUnique; 1772 return -1; 1773 } 1774 } 1775 } 1776 1777 // When affinity is off, this routine will still be called to set 1778 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 1779 // Make sure all these vars are set correctly, and return if affinity is not 1780 // enabled. 1781 if (threadLevel >= 0) { 1782 __kmp_nThreadsPerCore = maxCt[threadLevel]; 1783 } else { 1784 __kmp_nThreadsPerCore = 1; 1785 } 1786 nPackages = totals[pkgLevel]; 1787 1788 if (coreLevel >= 0) { 1789 __kmp_ncores = totals[coreLevel]; 1790 nCoresPerPkg = maxCt[coreLevel]; 1791 } else { 1792 __kmp_ncores = nPackages; 1793 nCoresPerPkg = 1; 1794 } 1795 1796 // Check to see if the machine topology is uniform 1797 unsigned prod = maxCt[0]; 1798 for (level = 1; level < depth; level++) { 1799 prod *= maxCt[level]; 1800 } 1801 bool uniform = (prod == totals[level - 1]); 1802 1803 // Print the machine topology summary. 1804 if (__kmp_affinity_verbose) { 1805 char mask[KMP_AFFIN_MASK_PRINT_LEN]; 1806 __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 1807 1808 KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY"); 1809 if (__kmp_affinity_respect_mask) { 1810 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask); 1811 } else { 1812 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask); 1813 } 1814 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1815 if (uniform) { 1816 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1817 } else { 1818 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 1819 } 1820 1821 kmp_str_buf_t buf; 1822 __kmp_str_buf_init(&buf); 1823 1824 __kmp_str_buf_print(&buf, "%d", totals[0]); 1825 for (level = 1; level <= pkgLevel; level++) { 1826 __kmp_str_buf_print(&buf, " x %d", maxCt[level]); 1827 } 1828 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg, 1829 __kmp_nThreadsPerCore, __kmp_ncores); 1830 1831 __kmp_str_buf_free(&buf); 1832 } 1833 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 1834 KMP_DEBUG_ASSERT(nApics == __kmp_avail_proc); 1835 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 1836 for (proc = 0; (int)proc < nApics; ++proc) { 1837 __kmp_pu_os_idx[proc] = retval[proc].second; 1838 } 1839 if (__kmp_affinity_type == affinity_none) { 1840 __kmp_free(last); 1841 __kmp_free(maxCt); 1842 __kmp_free(counts); 1843 __kmp_free(totals); 1844 __kmp_free(retval); 1845 KMP_CPU_FREE(oldMask); 1846 return 0; 1847 } 1848 1849 // Find any levels with radiix 1, and remove them from the map 1850 // (except for the package level). 1851 int new_depth = 0; 1852 for (level = 0; level < depth; level++) { 1853 if ((maxCt[level] == 1) && (level != pkgLevel)) { 1854 continue; 1855 } 1856 new_depth++; 1857 } 1858 1859 // If we are removing any levels, allocate a new vector to return, 1860 // and copy the relevant information to it. 1861 if (new_depth != depth) { 1862 AddrUnsPair *new_retval = 1863 (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * nApics); 1864 for (proc = 0; (int)proc < nApics; proc++) { 1865 Address addr(new_depth); 1866 new_retval[proc] = AddrUnsPair(addr, retval[proc].second); 1867 } 1868 int new_level = 0; 1869 int newPkgLevel = -1; 1870 int newCoreLevel = -1; 1871 int newThreadLevel = -1; 1872 for (level = 0; level < depth; level++) { 1873 if ((maxCt[level] == 1) && (level != pkgLevel)) { 1874 // Remove this level. Never remove the package level 1875 continue; 1876 } 1877 if (level == pkgLevel) { 1878 newPkgLevel = new_level; 1879 } 1880 if (level == coreLevel) { 1881 newCoreLevel = new_level; 1882 } 1883 if (level == threadLevel) { 1884 newThreadLevel = new_level; 1885 } 1886 for (proc = 0; (int)proc < nApics; proc++) { 1887 new_retval[proc].first.labels[new_level] = 1888 retval[proc].first.labels[level]; 1889 } 1890 new_level++; 1891 } 1892 1893 __kmp_free(retval); 1894 retval = new_retval; 1895 depth = new_depth; 1896 pkgLevel = newPkgLevel; 1897 coreLevel = newCoreLevel; 1898 threadLevel = newThreadLevel; 1899 } 1900 1901 if (__kmp_affinity_gran_levels < 0) { 1902 // Set the granularity level based on what levels are modeled 1903 // in the machine topology map. 1904 __kmp_affinity_gran_levels = 0; 1905 if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) { 1906 __kmp_affinity_gran_levels++; 1907 } 1908 if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) { 1909 __kmp_affinity_gran_levels++; 1910 } 1911 if (__kmp_affinity_gran > affinity_gran_package) { 1912 __kmp_affinity_gran_levels++; 1913 } 1914 } 1915 1916 if (__kmp_affinity_verbose) { 1917 __kmp_affinity_print_topology(retval, nApics, depth, pkgLevel, coreLevel, 1918 threadLevel); 1919 } 1920 1921 __kmp_free(last); 1922 __kmp_free(maxCt); 1923 __kmp_free(counts); 1924 __kmp_free(totals); 1925 KMP_CPU_FREE(oldMask); 1926 *address2os = retval; 1927 return depth; 1928 } 1929 1930 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 1931 1932 #define osIdIndex 0 1933 #define threadIdIndex 1 1934 #define coreIdIndex 2 1935 #define pkgIdIndex 3 1936 #define nodeIdIndex 4 1937 1938 typedef unsigned *ProcCpuInfo; 1939 static unsigned maxIndex = pkgIdIndex; 1940 1941 static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a, 1942 const void *b) { 1943 unsigned i; 1944 const unsigned *aa = *(unsigned *const *)a; 1945 const unsigned *bb = *(unsigned *const *)b; 1946 for (i = maxIndex;; i--) { 1947 if (aa[i] < bb[i]) 1948 return -1; 1949 if (aa[i] > bb[i]) 1950 return 1; 1951 if (i == osIdIndex) 1952 break; 1953 } 1954 return 0; 1955 } 1956 1957 #if KMP_USE_HIER_SCHED 1958 // Set the array sizes for the hierarchy layers 1959 static void __kmp_dispatch_set_hierarchy_values() { 1960 // Set the maximum number of L1's to number of cores 1961 // Set the maximum number of L2's to to either number of cores / 2 for 1962 // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing 1963 // Or the number of cores for Intel(R) Xeon(R) processors 1964 // Set the maximum number of NUMA nodes and L3's to number of packages 1965 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] = 1966 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; 1967 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores; 1968 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 1969 if (__kmp_mic_type >= mic3) 1970 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2; 1971 else 1972 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 1973 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores; 1974 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages; 1975 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages; 1976 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1; 1977 // Set the number of threads per unit 1978 // Number of hardware threads per L1/L2/L3/NUMA/LOOP 1979 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1; 1980 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] = 1981 __kmp_nThreadsPerCore; 1982 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 1983 if (__kmp_mic_type >= mic3) 1984 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = 1985 2 * __kmp_nThreadsPerCore; 1986 else 1987 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 1988 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = 1989 __kmp_nThreadsPerCore; 1990 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] = 1991 nCoresPerPkg * __kmp_nThreadsPerCore; 1992 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] = 1993 nCoresPerPkg * __kmp_nThreadsPerCore; 1994 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] = 1995 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; 1996 } 1997 1998 // Return the index into the hierarchy for this tid and layer type (L1, L2, etc) 1999 // i.e., this thread's L1 or this thread's L2, etc. 2000 int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) { 2001 int index = type + 1; 2002 int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1]; 2003 KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST); 2004 if (type == kmp_hier_layer_e::LAYER_THREAD) 2005 return tid; 2006 else if (type == kmp_hier_layer_e::LAYER_LOOP) 2007 return 0; 2008 KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0); 2009 if (tid >= num_hw_threads) 2010 tid = tid % num_hw_threads; 2011 return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index]; 2012 } 2013 2014 // Return the number of t1's per t2 2015 int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) { 2016 int i1 = t1 + 1; 2017 int i2 = t2 + 1; 2018 KMP_DEBUG_ASSERT(i1 <= i2); 2019 KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST); 2020 KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST); 2021 KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0); 2022 // (nthreads/t2) / (nthreads/t1) = t1 / t2 2023 return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1]; 2024 } 2025 #endif // KMP_USE_HIER_SCHED 2026 2027 // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the 2028 // affinity map. 2029 static int __kmp_affinity_create_cpuinfo_map(AddrUnsPair **address2os, 2030 int *line, 2031 kmp_i18n_id_t *const msg_id, 2032 FILE *f) { 2033 *address2os = NULL; 2034 *msg_id = kmp_i18n_null; 2035 2036 // Scan of the file, and count the number of "processor" (osId) fields, 2037 // and find the highest value of <n> for a node_<n> field. 2038 char buf[256]; 2039 unsigned num_records = 0; 2040 while (!feof(f)) { 2041 buf[sizeof(buf) - 1] = 1; 2042 if (!fgets(buf, sizeof(buf), f)) { 2043 // Read errors presumably because of EOF 2044 break; 2045 } 2046 2047 char s1[] = "processor"; 2048 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { 2049 num_records++; 2050 continue; 2051 } 2052 2053 // FIXME - this will match "node_<n> <garbage>" 2054 unsigned level; 2055 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { 2056 if (nodeIdIndex + level >= maxIndex) { 2057 maxIndex = nodeIdIndex + level; 2058 } 2059 continue; 2060 } 2061 } 2062 2063 // Check for empty file / no valid processor records, or too many. The number 2064 // of records can't exceed the number of valid bits in the affinity mask. 2065 if (num_records == 0) { 2066 *line = 0; 2067 *msg_id = kmp_i18n_str_NoProcRecords; 2068 return -1; 2069 } 2070 if (num_records > (unsigned)__kmp_xproc) { 2071 *line = 0; 2072 *msg_id = kmp_i18n_str_TooManyProcRecords; 2073 return -1; 2074 } 2075 2076 // Set the file pointer back to the begginning, so that we can scan the file 2077 // again, this time performing a full parse of the data. Allocate a vector of 2078 // ProcCpuInfo object, where we will place the data. Adding an extra element 2079 // at the end allows us to remove a lot of extra checks for termination 2080 // conditions. 2081 if (fseek(f, 0, SEEK_SET) != 0) { 2082 *line = 0; 2083 *msg_id = kmp_i18n_str_CantRewindCpuinfo; 2084 return -1; 2085 } 2086 2087 // Allocate the array of records to store the proc info in. The dummy 2088 // element at the end makes the logic in filling them out easier to code. 2089 unsigned **threadInfo = 2090 (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *)); 2091 unsigned i; 2092 for (i = 0; i <= num_records; i++) { 2093 threadInfo[i] = 2094 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2095 } 2096 2097 #define CLEANUP_THREAD_INFO \ 2098 for (i = 0; i <= num_records; i++) { \ 2099 __kmp_free(threadInfo[i]); \ 2100 } \ 2101 __kmp_free(threadInfo); 2102 2103 // A value of UINT_MAX means that we didn't find the field 2104 unsigned __index; 2105 2106 #define INIT_PROC_INFO(p) \ 2107 for (__index = 0; __index <= maxIndex; __index++) { \ 2108 (p)[__index] = UINT_MAX; \ 2109 } 2110 2111 for (i = 0; i <= num_records; i++) { 2112 INIT_PROC_INFO(threadInfo[i]); 2113 } 2114 2115 unsigned num_avail = 0; 2116 *line = 0; 2117 while (!feof(f)) { 2118 // Create an inner scoping level, so that all the goto targets at the end of 2119 // the loop appear in an outer scoping level. This avoids warnings about 2120 // jumping past an initialization to a target in the same block. 2121 { 2122 buf[sizeof(buf) - 1] = 1; 2123 bool long_line = false; 2124 if (!fgets(buf, sizeof(buf), f)) { 2125 // Read errors presumably because of EOF 2126 // If there is valid data in threadInfo[num_avail], then fake 2127 // a blank line in ensure that the last address gets parsed. 2128 bool valid = false; 2129 for (i = 0; i <= maxIndex; i++) { 2130 if (threadInfo[num_avail][i] != UINT_MAX) { 2131 valid = true; 2132 } 2133 } 2134 if (!valid) { 2135 break; 2136 } 2137 buf[0] = 0; 2138 } else if (!buf[sizeof(buf) - 1]) { 2139 // The line is longer than the buffer. Set a flag and don't 2140 // emit an error if we were going to ignore the line, anyway. 2141 long_line = true; 2142 2143 #define CHECK_LINE \ 2144 if (long_line) { \ 2145 CLEANUP_THREAD_INFO; \ 2146 *msg_id = kmp_i18n_str_LongLineCpuinfo; \ 2147 return -1; \ 2148 } 2149 } 2150 (*line)++; 2151 2152 char s1[] = "processor"; 2153 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { 2154 CHECK_LINE; 2155 char *p = strchr(buf + sizeof(s1) - 1, ':'); 2156 unsigned val; 2157 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2158 goto no_val; 2159 if (threadInfo[num_avail][osIdIndex] != UINT_MAX) 2160 #if KMP_ARCH_AARCH64 2161 // Handle the old AArch64 /proc/cpuinfo layout differently, 2162 // it contains all of the 'processor' entries listed in a 2163 // single 'Processor' section, therefore the normal looking 2164 // for duplicates in that section will always fail. 2165 num_avail++; 2166 #else 2167 goto dup_field; 2168 #endif 2169 threadInfo[num_avail][osIdIndex] = val; 2170 #if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64) 2171 char path[256]; 2172 KMP_SNPRINTF( 2173 path, sizeof(path), 2174 "/sys/devices/system/cpu/cpu%u/topology/physical_package_id", 2175 threadInfo[num_avail][osIdIndex]); 2176 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]); 2177 2178 KMP_SNPRINTF(path, sizeof(path), 2179 "/sys/devices/system/cpu/cpu%u/topology/core_id", 2180 threadInfo[num_avail][osIdIndex]); 2181 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]); 2182 continue; 2183 #else 2184 } 2185 char s2[] = "physical id"; 2186 if (strncmp(buf, s2, sizeof(s2) - 1) == 0) { 2187 CHECK_LINE; 2188 char *p = strchr(buf + sizeof(s2) - 1, ':'); 2189 unsigned val; 2190 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2191 goto no_val; 2192 if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX) 2193 goto dup_field; 2194 threadInfo[num_avail][pkgIdIndex] = val; 2195 continue; 2196 } 2197 char s3[] = "core id"; 2198 if (strncmp(buf, s3, sizeof(s3) - 1) == 0) { 2199 CHECK_LINE; 2200 char *p = strchr(buf + sizeof(s3) - 1, ':'); 2201 unsigned val; 2202 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2203 goto no_val; 2204 if (threadInfo[num_avail][coreIdIndex] != UINT_MAX) 2205 goto dup_field; 2206 threadInfo[num_avail][coreIdIndex] = val; 2207 continue; 2208 #endif // KMP_OS_LINUX && USE_SYSFS_INFO 2209 } 2210 char s4[] = "thread id"; 2211 if (strncmp(buf, s4, sizeof(s4) - 1) == 0) { 2212 CHECK_LINE; 2213 char *p = strchr(buf + sizeof(s4) - 1, ':'); 2214 unsigned val; 2215 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2216 goto no_val; 2217 if (threadInfo[num_avail][threadIdIndex] != UINT_MAX) 2218 goto dup_field; 2219 threadInfo[num_avail][threadIdIndex] = val; 2220 continue; 2221 } 2222 unsigned level; 2223 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { 2224 CHECK_LINE; 2225 char *p = strchr(buf + sizeof(s4) - 1, ':'); 2226 unsigned val; 2227 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2228 goto no_val; 2229 KMP_ASSERT(nodeIdIndex + level <= maxIndex); 2230 if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX) 2231 goto dup_field; 2232 threadInfo[num_avail][nodeIdIndex + level] = val; 2233 continue; 2234 } 2235 2236 // We didn't recognize the leading token on the line. There are lots of 2237 // leading tokens that we don't recognize - if the line isn't empty, go on 2238 // to the next line. 2239 if ((*buf != 0) && (*buf != '\n')) { 2240 // If the line is longer than the buffer, read characters 2241 // until we find a newline. 2242 if (long_line) { 2243 int ch; 2244 while (((ch = fgetc(f)) != EOF) && (ch != '\n')) 2245 ; 2246 } 2247 continue; 2248 } 2249 2250 // A newline has signalled the end of the processor record. 2251 // Check that there aren't too many procs specified. 2252 if ((int)num_avail == __kmp_xproc) { 2253 CLEANUP_THREAD_INFO; 2254 *msg_id = kmp_i18n_str_TooManyEntries; 2255 return -1; 2256 } 2257 2258 // Check for missing fields. The osId field must be there, and we 2259 // currently require that the physical id field is specified, also. 2260 if (threadInfo[num_avail][osIdIndex] == UINT_MAX) { 2261 CLEANUP_THREAD_INFO; 2262 *msg_id = kmp_i18n_str_MissingProcField; 2263 return -1; 2264 } 2265 if (threadInfo[0][pkgIdIndex] == UINT_MAX) { 2266 CLEANUP_THREAD_INFO; 2267 *msg_id = kmp_i18n_str_MissingPhysicalIDField; 2268 return -1; 2269 } 2270 2271 // Skip this proc if it is not included in the machine model. 2272 if (!KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex], 2273 __kmp_affin_fullMask)) { 2274 INIT_PROC_INFO(threadInfo[num_avail]); 2275 continue; 2276 } 2277 2278 // We have a successful parse of this proc's info. 2279 // Increment the counter, and prepare for the next proc. 2280 num_avail++; 2281 KMP_ASSERT(num_avail <= num_records); 2282 INIT_PROC_INFO(threadInfo[num_avail]); 2283 } 2284 continue; 2285 2286 no_val: 2287 CLEANUP_THREAD_INFO; 2288 *msg_id = kmp_i18n_str_MissingValCpuinfo; 2289 return -1; 2290 2291 dup_field: 2292 CLEANUP_THREAD_INFO; 2293 *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo; 2294 return -1; 2295 } 2296 *line = 0; 2297 2298 #if KMP_MIC && REDUCE_TEAM_SIZE 2299 unsigned teamSize = 0; 2300 #endif // KMP_MIC && REDUCE_TEAM_SIZE 2301 2302 // check for num_records == __kmp_xproc ??? 2303 2304 // If there's only one thread context to bind to, form an Address object with 2305 // depth 1 and return immediately (or, if affinity is off, set address2os to 2306 // NULL and return). 2307 // 2308 // If it is configured to omit the package level when there is only a single 2309 // package, the logic at the end of this routine won't work if there is only a 2310 // single thread - it would try to form an Address object with depth 0. 2311 KMP_ASSERT(num_avail > 0); 2312 KMP_ASSERT(num_avail <= num_records); 2313 if (num_avail == 1) { 2314 __kmp_ncores = 1; 2315 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; 2316 if (__kmp_affinity_verbose) { 2317 if (!KMP_AFFINITY_CAPABLE()) { 2318 KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY"); 2319 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 2320 KMP_INFORM(Uniform, "KMP_AFFINITY"); 2321 } else { 2322 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 2323 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 2324 __kmp_affin_fullMask); 2325 KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY"); 2326 if (__kmp_affinity_respect_mask) { 2327 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 2328 } else { 2329 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 2330 } 2331 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 2332 KMP_INFORM(Uniform, "KMP_AFFINITY"); 2333 } 2334 int index; 2335 kmp_str_buf_t buf; 2336 __kmp_str_buf_init(&buf); 2337 __kmp_str_buf_print(&buf, "1"); 2338 for (index = maxIndex - 1; index > pkgIdIndex; index--) { 2339 __kmp_str_buf_print(&buf, " x 1"); 2340 } 2341 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, 1, 1, 1); 2342 __kmp_str_buf_free(&buf); 2343 } 2344 2345 if (__kmp_affinity_type == affinity_none) { 2346 CLEANUP_THREAD_INFO; 2347 return 0; 2348 } 2349 2350 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair)); 2351 Address addr(1); 2352 addr.labels[0] = threadInfo[0][pkgIdIndex]; 2353 (*address2os)[0] = AddrUnsPair(addr, threadInfo[0][osIdIndex]); 2354 2355 if (__kmp_affinity_gran_levels < 0) { 2356 __kmp_affinity_gran_levels = 0; 2357 } 2358 2359 if (__kmp_affinity_verbose) { 2360 __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1); 2361 } 2362 2363 CLEANUP_THREAD_INFO; 2364 return 1; 2365 } 2366 2367 // Sort the threadInfo table by physical Id. 2368 qsort(threadInfo, num_avail, sizeof(*threadInfo), 2369 __kmp_affinity_cmp_ProcCpuInfo_phys_id); 2370 2371 // The table is now sorted by pkgId / coreId / threadId, but we really don't 2372 // know the radix of any of the fields. pkgId's may be sparsely assigned among 2373 // the chips on a system. Although coreId's are usually assigned 2374 // [0 .. coresPerPkg-1] and threadId's are usually assigned 2375 // [0..threadsPerCore-1], we don't want to make any such assumptions. 2376 // 2377 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the 2378 // total # packages) are at this point - we want to determine that now. We 2379 // only have an upper bound on the first two figures. 2380 unsigned *counts = 2381 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2382 unsigned *maxCt = 2383 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2384 unsigned *totals = 2385 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2386 unsigned *lastId = 2387 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2388 2389 bool assign_thread_ids = false; 2390 unsigned threadIdCt; 2391 unsigned index; 2392 2393 restart_radix_check: 2394 threadIdCt = 0; 2395 2396 // Initialize the counter arrays with data from threadInfo[0]. 2397 if (assign_thread_ids) { 2398 if (threadInfo[0][threadIdIndex] == UINT_MAX) { 2399 threadInfo[0][threadIdIndex] = threadIdCt++; 2400 } else if (threadIdCt <= threadInfo[0][threadIdIndex]) { 2401 threadIdCt = threadInfo[0][threadIdIndex] + 1; 2402 } 2403 } 2404 for (index = 0; index <= maxIndex; index++) { 2405 counts[index] = 1; 2406 maxCt[index] = 1; 2407 totals[index] = 1; 2408 lastId[index] = threadInfo[0][index]; 2409 ; 2410 } 2411 2412 // Run through the rest of the OS procs. 2413 for (i = 1; i < num_avail; i++) { 2414 // Find the most significant index whose id differs from the id for the 2415 // previous OS proc. 2416 for (index = maxIndex; index >= threadIdIndex; index--) { 2417 if (assign_thread_ids && (index == threadIdIndex)) { 2418 // Auto-assign the thread id field if it wasn't specified. 2419 if (threadInfo[i][threadIdIndex] == UINT_MAX) { 2420 threadInfo[i][threadIdIndex] = threadIdCt++; 2421 } 2422 // Apparently the thread id field was specified for some entries and not 2423 // others. Start the thread id counter off at the next higher thread id. 2424 else if (threadIdCt <= threadInfo[i][threadIdIndex]) { 2425 threadIdCt = threadInfo[i][threadIdIndex] + 1; 2426 } 2427 } 2428 if (threadInfo[i][index] != lastId[index]) { 2429 // Run through all indices which are less significant, and reset the 2430 // counts to 1. At all levels up to and including index, we need to 2431 // increment the totals and record the last id. 2432 unsigned index2; 2433 for (index2 = threadIdIndex; index2 < index; index2++) { 2434 totals[index2]++; 2435 if (counts[index2] > maxCt[index2]) { 2436 maxCt[index2] = counts[index2]; 2437 } 2438 counts[index2] = 1; 2439 lastId[index2] = threadInfo[i][index2]; 2440 } 2441 counts[index]++; 2442 totals[index]++; 2443 lastId[index] = threadInfo[i][index]; 2444 2445 if (assign_thread_ids && (index > threadIdIndex)) { 2446 2447 #if KMP_MIC && REDUCE_TEAM_SIZE 2448 // The default team size is the total #threads in the machine 2449 // minus 1 thread for every core that has 3 or more threads. 2450 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); 2451 #endif // KMP_MIC && REDUCE_TEAM_SIZE 2452 2453 // Restart the thread counter, as we are on a new core. 2454 threadIdCt = 0; 2455 2456 // Auto-assign the thread id field if it wasn't specified. 2457 if (threadInfo[i][threadIdIndex] == UINT_MAX) { 2458 threadInfo[i][threadIdIndex] = threadIdCt++; 2459 } 2460 2461 // Aparrently the thread id field was specified for some entries and 2462 // not others. Start the thread id counter off at the next higher 2463 // thread id. 2464 else if (threadIdCt <= threadInfo[i][threadIdIndex]) { 2465 threadIdCt = threadInfo[i][threadIdIndex] + 1; 2466 } 2467 } 2468 break; 2469 } 2470 } 2471 if (index < threadIdIndex) { 2472 // If thread ids were specified, it is an error if they are not unique. 2473 // Also, check that we waven't already restarted the loop (to be safe - 2474 // shouldn't need to). 2475 if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) { 2476 __kmp_free(lastId); 2477 __kmp_free(totals); 2478 __kmp_free(maxCt); 2479 __kmp_free(counts); 2480 CLEANUP_THREAD_INFO; 2481 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; 2482 return -1; 2483 } 2484 2485 // If the thread ids were not specified and we see entries entries that 2486 // are duplicates, start the loop over and assign the thread ids manually. 2487 assign_thread_ids = true; 2488 goto restart_radix_check; 2489 } 2490 } 2491 2492 #if KMP_MIC && REDUCE_TEAM_SIZE 2493 // The default team size is the total #threads in the machine 2494 // minus 1 thread for every core that has 3 or more threads. 2495 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); 2496 #endif // KMP_MIC && REDUCE_TEAM_SIZE 2497 2498 for (index = threadIdIndex; index <= maxIndex; index++) { 2499 if (counts[index] > maxCt[index]) { 2500 maxCt[index] = counts[index]; 2501 } 2502 } 2503 2504 __kmp_nThreadsPerCore = maxCt[threadIdIndex]; 2505 nCoresPerPkg = maxCt[coreIdIndex]; 2506 nPackages = totals[pkgIdIndex]; 2507 2508 // Check to see if the machine topology is uniform 2509 unsigned prod = totals[maxIndex]; 2510 for (index = threadIdIndex; index < maxIndex; index++) { 2511 prod *= maxCt[index]; 2512 } 2513 bool uniform = (prod == totals[threadIdIndex]); 2514 2515 // When affinity is off, this routine will still be called to set 2516 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 2517 // Make sure all these vars are set correctly, and return now if affinity is 2518 // not enabled. 2519 __kmp_ncores = totals[coreIdIndex]; 2520 2521 if (__kmp_affinity_verbose) { 2522 if (!KMP_AFFINITY_CAPABLE()) { 2523 KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY"); 2524 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 2525 if (uniform) { 2526 KMP_INFORM(Uniform, "KMP_AFFINITY"); 2527 } else { 2528 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 2529 } 2530 } else { 2531 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 2532 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 2533 __kmp_affin_fullMask); 2534 KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY"); 2535 if (__kmp_affinity_respect_mask) { 2536 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 2537 } else { 2538 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 2539 } 2540 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 2541 if (uniform) { 2542 KMP_INFORM(Uniform, "KMP_AFFINITY"); 2543 } else { 2544 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 2545 } 2546 } 2547 kmp_str_buf_t buf; 2548 __kmp_str_buf_init(&buf); 2549 2550 __kmp_str_buf_print(&buf, "%d", totals[maxIndex]); 2551 for (index = maxIndex - 1; index >= pkgIdIndex; index--) { 2552 __kmp_str_buf_print(&buf, " x %d", maxCt[index]); 2553 } 2554 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, maxCt[coreIdIndex], 2555 maxCt[threadIdIndex], __kmp_ncores); 2556 2557 __kmp_str_buf_free(&buf); 2558 } 2559 2560 #if KMP_MIC && REDUCE_TEAM_SIZE 2561 // Set the default team size. 2562 if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) { 2563 __kmp_dflt_team_nth = teamSize; 2564 KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting " 2565 "__kmp_dflt_team_nth = %d\n", 2566 __kmp_dflt_team_nth)); 2567 } 2568 #endif // KMP_MIC && REDUCE_TEAM_SIZE 2569 2570 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 2571 KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc); 2572 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 2573 for (i = 0; i < num_avail; ++i) { // fill the os indices 2574 __kmp_pu_os_idx[i] = threadInfo[i][osIdIndex]; 2575 } 2576 2577 if (__kmp_affinity_type == affinity_none) { 2578 __kmp_free(lastId); 2579 __kmp_free(totals); 2580 __kmp_free(maxCt); 2581 __kmp_free(counts); 2582 CLEANUP_THREAD_INFO; 2583 return 0; 2584 } 2585 2586 // Count the number of levels which have more nodes at that level than at the 2587 // parent's level (with there being an implicit root node of the top level). 2588 // This is equivalent to saying that there is at least one node at this level 2589 // which has a sibling. These levels are in the map, and the package level is 2590 // always in the map. 2591 bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool)); 2592 for (index = threadIdIndex; index < maxIndex; index++) { 2593 KMP_ASSERT(totals[index] >= totals[index + 1]); 2594 inMap[index] = (totals[index] > totals[index + 1]); 2595 } 2596 inMap[maxIndex] = (totals[maxIndex] > 1); 2597 inMap[pkgIdIndex] = true; 2598 2599 int depth = 0; 2600 for (index = threadIdIndex; index <= maxIndex; index++) { 2601 if (inMap[index]) { 2602 depth++; 2603 } 2604 } 2605 KMP_ASSERT(depth > 0); 2606 2607 // Construct the data structure that is to be returned. 2608 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * num_avail); 2609 int pkgLevel = -1; 2610 int coreLevel = -1; 2611 int threadLevel = -1; 2612 2613 for (i = 0; i < num_avail; ++i) { 2614 Address addr(depth); 2615 unsigned os = threadInfo[i][osIdIndex]; 2616 int src_index; 2617 int dst_index = 0; 2618 2619 for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) { 2620 if (!inMap[src_index]) { 2621 continue; 2622 } 2623 addr.labels[dst_index] = threadInfo[i][src_index]; 2624 if (src_index == pkgIdIndex) { 2625 pkgLevel = dst_index; 2626 } else if (src_index == coreIdIndex) { 2627 coreLevel = dst_index; 2628 } else if (src_index == threadIdIndex) { 2629 threadLevel = dst_index; 2630 } 2631 dst_index++; 2632 } 2633 (*address2os)[i] = AddrUnsPair(addr, os); 2634 } 2635 2636 if (__kmp_affinity_gran_levels < 0) { 2637 // Set the granularity level based on what levels are modeled 2638 // in the machine topology map. 2639 unsigned src_index; 2640 __kmp_affinity_gran_levels = 0; 2641 for (src_index = threadIdIndex; src_index <= maxIndex; src_index++) { 2642 if (!inMap[src_index]) { 2643 continue; 2644 } 2645 switch (src_index) { 2646 case threadIdIndex: 2647 if (__kmp_affinity_gran > affinity_gran_thread) { 2648 __kmp_affinity_gran_levels++; 2649 } 2650 2651 break; 2652 case coreIdIndex: 2653 if (__kmp_affinity_gran > affinity_gran_core) { 2654 __kmp_affinity_gran_levels++; 2655 } 2656 break; 2657 2658 case pkgIdIndex: 2659 if (__kmp_affinity_gran > affinity_gran_package) { 2660 __kmp_affinity_gran_levels++; 2661 } 2662 break; 2663 } 2664 } 2665 } 2666 2667 if (__kmp_affinity_verbose) { 2668 __kmp_affinity_print_topology(*address2os, num_avail, depth, pkgLevel, 2669 coreLevel, threadLevel); 2670 } 2671 2672 __kmp_free(inMap); 2673 __kmp_free(lastId); 2674 __kmp_free(totals); 2675 __kmp_free(maxCt); 2676 __kmp_free(counts); 2677 CLEANUP_THREAD_INFO; 2678 return depth; 2679 } 2680 2681 // Create and return a table of affinity masks, indexed by OS thread ID. 2682 // This routine handles OR'ing together all the affinity masks of threads 2683 // that are sufficiently close, if granularity > fine. 2684 static kmp_affin_mask_t *__kmp_create_masks(unsigned *maxIndex, 2685 unsigned *numUnique, 2686 AddrUnsPair *address2os, 2687 unsigned numAddrs) { 2688 // First form a table of affinity masks in order of OS thread id. 2689 unsigned depth; 2690 unsigned maxOsId; 2691 unsigned i; 2692 2693 KMP_ASSERT(numAddrs > 0); 2694 depth = address2os[0].first.depth; 2695 2696 maxOsId = 0; 2697 for (i = numAddrs - 1;; --i) { 2698 unsigned osId = address2os[i].second; 2699 if (osId > maxOsId) { 2700 maxOsId = osId; 2701 } 2702 if (i == 0) 2703 break; 2704 } 2705 kmp_affin_mask_t *osId2Mask; 2706 KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId + 1)); 2707 2708 // Sort the address2os table according to physical order. Doing so will put 2709 // all threads on the same core/package/node in consecutive locations. 2710 qsort(address2os, numAddrs, sizeof(*address2os), 2711 __kmp_affinity_cmp_Address_labels); 2712 2713 KMP_ASSERT(__kmp_affinity_gran_levels >= 0); 2714 if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) { 2715 KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels); 2716 } 2717 if (__kmp_affinity_gran_levels >= (int)depth) { 2718 if (__kmp_affinity_verbose || 2719 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { 2720 KMP_WARNING(AffThreadsMayMigrate); 2721 } 2722 } 2723 2724 // Run through the table, forming the masks for all threads on each core. 2725 // Threads on the same core will have identical "Address" objects, not 2726 // considering the last level, which must be the thread id. All threads on a 2727 // core will appear consecutively. 2728 unsigned unique = 0; 2729 unsigned j = 0; // index of 1st thread on core 2730 unsigned leader = 0; 2731 Address *leaderAddr = &(address2os[0].first); 2732 kmp_affin_mask_t *sum; 2733 KMP_CPU_ALLOC_ON_STACK(sum); 2734 KMP_CPU_ZERO(sum); 2735 KMP_CPU_SET(address2os[0].second, sum); 2736 for (i = 1; i < numAddrs; i++) { 2737 // If this thread is sufficiently close to the leader (within the 2738 // granularity setting), then set the bit for this os thread in the 2739 // affinity mask for this group, and go on to the next thread. 2740 if (leaderAddr->isClose(address2os[i].first, __kmp_affinity_gran_levels)) { 2741 KMP_CPU_SET(address2os[i].second, sum); 2742 continue; 2743 } 2744 2745 // For every thread in this group, copy the mask to the thread's entry in 2746 // the osId2Mask table. Mark the first address as a leader. 2747 for (; j < i; j++) { 2748 unsigned osId = address2os[j].second; 2749 KMP_DEBUG_ASSERT(osId <= maxOsId); 2750 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); 2751 KMP_CPU_COPY(mask, sum); 2752 address2os[j].first.leader = (j == leader); 2753 } 2754 unique++; 2755 2756 // Start a new mask. 2757 leader = i; 2758 leaderAddr = &(address2os[i].first); 2759 KMP_CPU_ZERO(sum); 2760 KMP_CPU_SET(address2os[i].second, sum); 2761 } 2762 2763 // For every thread in last group, copy the mask to the thread's 2764 // entry in the osId2Mask table. 2765 for (; j < i; j++) { 2766 unsigned osId = address2os[j].second; 2767 KMP_DEBUG_ASSERT(osId <= maxOsId); 2768 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); 2769 KMP_CPU_COPY(mask, sum); 2770 address2os[j].first.leader = (j == leader); 2771 } 2772 unique++; 2773 KMP_CPU_FREE_FROM_STACK(sum); 2774 2775 *maxIndex = maxOsId; 2776 *numUnique = unique; 2777 return osId2Mask; 2778 } 2779 2780 // Stuff for the affinity proclist parsers. It's easier to declare these vars 2781 // as file-static than to try and pass them through the calling sequence of 2782 // the recursive-descent OMP_PLACES parser. 2783 static kmp_affin_mask_t *newMasks; 2784 static int numNewMasks; 2785 static int nextNewMask; 2786 2787 #define ADD_MASK(_mask) \ 2788 { \ 2789 if (nextNewMask >= numNewMasks) { \ 2790 int i; \ 2791 numNewMasks *= 2; \ 2792 kmp_affin_mask_t *temp; \ 2793 KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \ 2794 for (i = 0; i < numNewMasks / 2; i++) { \ 2795 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); \ 2796 kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i); \ 2797 KMP_CPU_COPY(dest, src); \ 2798 } \ 2799 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2); \ 2800 newMasks = temp; \ 2801 } \ 2802 KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \ 2803 nextNewMask++; \ 2804 } 2805 2806 #define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \ 2807 { \ 2808 if (((_osId) > _maxOsId) || \ 2809 (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \ 2810 if (__kmp_affinity_verbose || \ 2811 (__kmp_affinity_warnings && \ 2812 (__kmp_affinity_type != affinity_none))) { \ 2813 KMP_WARNING(AffIgnoreInvalidProcID, _osId); \ 2814 } \ 2815 } else { \ 2816 ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \ 2817 } \ 2818 } 2819 2820 // Re-parse the proclist (for the explicit affinity type), and form the list 2821 // of affinity newMasks indexed by gtid. 2822 static void __kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks, 2823 unsigned int *out_numMasks, 2824 const char *proclist, 2825 kmp_affin_mask_t *osId2Mask, 2826 int maxOsId) { 2827 int i; 2828 const char *scan = proclist; 2829 const char *next = proclist; 2830 2831 // We use malloc() for the temporary mask vector, so that we can use 2832 // realloc() to extend it. 2833 numNewMasks = 2; 2834 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); 2835 nextNewMask = 0; 2836 kmp_affin_mask_t *sumMask; 2837 KMP_CPU_ALLOC(sumMask); 2838 int setSize = 0; 2839 2840 for (;;) { 2841 int start, end, stride; 2842 2843 SKIP_WS(scan); 2844 next = scan; 2845 if (*next == '\0') { 2846 break; 2847 } 2848 2849 if (*next == '{') { 2850 int num; 2851 setSize = 0; 2852 next++; // skip '{' 2853 SKIP_WS(next); 2854 scan = next; 2855 2856 // Read the first integer in the set. 2857 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist"); 2858 SKIP_DIGITS(next); 2859 num = __kmp_str_to_int(scan, *next); 2860 KMP_ASSERT2(num >= 0, "bad explicit proc list"); 2861 2862 // Copy the mask for that osId to the sum (union) mask. 2863 if ((num > maxOsId) || 2864 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 2865 if (__kmp_affinity_verbose || 2866 (__kmp_affinity_warnings && 2867 (__kmp_affinity_type != affinity_none))) { 2868 KMP_WARNING(AffIgnoreInvalidProcID, num); 2869 } 2870 KMP_CPU_ZERO(sumMask); 2871 } else { 2872 KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num)); 2873 setSize = 1; 2874 } 2875 2876 for (;;) { 2877 // Check for end of set. 2878 SKIP_WS(next); 2879 if (*next == '}') { 2880 next++; // skip '}' 2881 break; 2882 } 2883 2884 // Skip optional comma. 2885 if (*next == ',') { 2886 next++; 2887 } 2888 SKIP_WS(next); 2889 2890 // Read the next integer in the set. 2891 scan = next; 2892 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 2893 2894 SKIP_DIGITS(next); 2895 num = __kmp_str_to_int(scan, *next); 2896 KMP_ASSERT2(num >= 0, "bad explicit proc list"); 2897 2898 // Add the mask for that osId to the sum mask. 2899 if ((num > maxOsId) || 2900 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 2901 if (__kmp_affinity_verbose || 2902 (__kmp_affinity_warnings && 2903 (__kmp_affinity_type != affinity_none))) { 2904 KMP_WARNING(AffIgnoreInvalidProcID, num); 2905 } 2906 } else { 2907 KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num)); 2908 setSize++; 2909 } 2910 } 2911 if (setSize > 0) { 2912 ADD_MASK(sumMask); 2913 } 2914 2915 SKIP_WS(next); 2916 if (*next == ',') { 2917 next++; 2918 } 2919 scan = next; 2920 continue; 2921 } 2922 2923 // Read the first integer. 2924 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 2925 SKIP_DIGITS(next); 2926 start = __kmp_str_to_int(scan, *next); 2927 KMP_ASSERT2(start >= 0, "bad explicit proc list"); 2928 SKIP_WS(next); 2929 2930 // If this isn't a range, then add a mask to the list and go on. 2931 if (*next != '-') { 2932 ADD_MASK_OSID(start, osId2Mask, maxOsId); 2933 2934 // Skip optional comma. 2935 if (*next == ',') { 2936 next++; 2937 } 2938 scan = next; 2939 continue; 2940 } 2941 2942 // This is a range. Skip over the '-' and read in the 2nd int. 2943 next++; // skip '-' 2944 SKIP_WS(next); 2945 scan = next; 2946 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 2947 SKIP_DIGITS(next); 2948 end = __kmp_str_to_int(scan, *next); 2949 KMP_ASSERT2(end >= 0, "bad explicit proc list"); 2950 2951 // Check for a stride parameter 2952 stride = 1; 2953 SKIP_WS(next); 2954 if (*next == ':') { 2955 // A stride is specified. Skip over the ':" and read the 3rd int. 2956 int sign = +1; 2957 next++; // skip ':' 2958 SKIP_WS(next); 2959 scan = next; 2960 if (*next == '-') { 2961 sign = -1; 2962 next++; 2963 SKIP_WS(next); 2964 scan = next; 2965 } 2966 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 2967 SKIP_DIGITS(next); 2968 stride = __kmp_str_to_int(scan, *next); 2969 KMP_ASSERT2(stride >= 0, "bad explicit proc list"); 2970 stride *= sign; 2971 } 2972 2973 // Do some range checks. 2974 KMP_ASSERT2(stride != 0, "bad explicit proc list"); 2975 if (stride > 0) { 2976 KMP_ASSERT2(start <= end, "bad explicit proc list"); 2977 } else { 2978 KMP_ASSERT2(start >= end, "bad explicit proc list"); 2979 } 2980 KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list"); 2981 2982 // Add the mask for each OS proc # to the list. 2983 if (stride > 0) { 2984 do { 2985 ADD_MASK_OSID(start, osId2Mask, maxOsId); 2986 start += stride; 2987 } while (start <= end); 2988 } else { 2989 do { 2990 ADD_MASK_OSID(start, osId2Mask, maxOsId); 2991 start += stride; 2992 } while (start >= end); 2993 } 2994 2995 // Skip optional comma. 2996 SKIP_WS(next); 2997 if (*next == ',') { 2998 next++; 2999 } 3000 scan = next; 3001 } 3002 3003 *out_numMasks = nextNewMask; 3004 if (nextNewMask == 0) { 3005 *out_masks = NULL; 3006 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3007 return; 3008 } 3009 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); 3010 for (i = 0; i < nextNewMask; i++) { 3011 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); 3012 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); 3013 KMP_CPU_COPY(dest, src); 3014 } 3015 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3016 KMP_CPU_FREE(sumMask); 3017 } 3018 3019 #if OMP_40_ENABLED 3020 3021 /*----------------------------------------------------------------------------- 3022 Re-parse the OMP_PLACES proc id list, forming the newMasks for the different 3023 places. Again, Here is the grammar: 3024 3025 place_list := place 3026 place_list := place , place_list 3027 place := num 3028 place := place : num 3029 place := place : num : signed 3030 place := { subplacelist } 3031 place := ! place // (lowest priority) 3032 subplace_list := subplace 3033 subplace_list := subplace , subplace_list 3034 subplace := num 3035 subplace := num : num 3036 subplace := num : num : signed 3037 signed := num 3038 signed := + signed 3039 signed := - signed 3040 -----------------------------------------------------------------------------*/ 3041 3042 static void __kmp_process_subplace_list(const char **scan, 3043 kmp_affin_mask_t *osId2Mask, 3044 int maxOsId, kmp_affin_mask_t *tempMask, 3045 int *setSize) { 3046 const char *next; 3047 3048 for (;;) { 3049 int start, count, stride, i; 3050 3051 // Read in the starting proc id 3052 SKIP_WS(*scan); 3053 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3054 next = *scan; 3055 SKIP_DIGITS(next); 3056 start = __kmp_str_to_int(*scan, *next); 3057 KMP_ASSERT(start >= 0); 3058 *scan = next; 3059 3060 // valid follow sets are ',' ':' and '}' 3061 SKIP_WS(*scan); 3062 if (**scan == '}' || **scan == ',') { 3063 if ((start > maxOsId) || 3064 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3065 if (__kmp_affinity_verbose || 3066 (__kmp_affinity_warnings && 3067 (__kmp_affinity_type != affinity_none))) { 3068 KMP_WARNING(AffIgnoreInvalidProcID, start); 3069 } 3070 } else { 3071 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3072 (*setSize)++; 3073 } 3074 if (**scan == '}') { 3075 break; 3076 } 3077 (*scan)++; // skip ',' 3078 continue; 3079 } 3080 KMP_ASSERT2(**scan == ':', "bad explicit places list"); 3081 (*scan)++; // skip ':' 3082 3083 // Read count parameter 3084 SKIP_WS(*scan); 3085 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3086 next = *scan; 3087 SKIP_DIGITS(next); 3088 count = __kmp_str_to_int(*scan, *next); 3089 KMP_ASSERT(count >= 0); 3090 *scan = next; 3091 3092 // valid follow sets are ',' ':' and '}' 3093 SKIP_WS(*scan); 3094 if (**scan == '}' || **scan == ',') { 3095 for (i = 0; i < count; i++) { 3096 if ((start > maxOsId) || 3097 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3098 if (__kmp_affinity_verbose || 3099 (__kmp_affinity_warnings && 3100 (__kmp_affinity_type != affinity_none))) { 3101 KMP_WARNING(AffIgnoreInvalidProcID, start); 3102 } 3103 break; // don't proliferate warnings for large count 3104 } else { 3105 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3106 start++; 3107 (*setSize)++; 3108 } 3109 } 3110 if (**scan == '}') { 3111 break; 3112 } 3113 (*scan)++; // skip ',' 3114 continue; 3115 } 3116 KMP_ASSERT2(**scan == ':', "bad explicit places list"); 3117 (*scan)++; // skip ':' 3118 3119 // Read stride parameter 3120 int sign = +1; 3121 for (;;) { 3122 SKIP_WS(*scan); 3123 if (**scan == '+') { 3124 (*scan)++; // skip '+' 3125 continue; 3126 } 3127 if (**scan == '-') { 3128 sign *= -1; 3129 (*scan)++; // skip '-' 3130 continue; 3131 } 3132 break; 3133 } 3134 SKIP_WS(*scan); 3135 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3136 next = *scan; 3137 SKIP_DIGITS(next); 3138 stride = __kmp_str_to_int(*scan, *next); 3139 KMP_ASSERT(stride >= 0); 3140 *scan = next; 3141 stride *= sign; 3142 3143 // valid follow sets are ',' and '}' 3144 SKIP_WS(*scan); 3145 if (**scan == '}' || **scan == ',') { 3146 for (i = 0; i < count; i++) { 3147 if ((start > maxOsId) || 3148 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3149 if (__kmp_affinity_verbose || 3150 (__kmp_affinity_warnings && 3151 (__kmp_affinity_type != affinity_none))) { 3152 KMP_WARNING(AffIgnoreInvalidProcID, start); 3153 } 3154 break; // don't proliferate warnings for large count 3155 } else { 3156 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3157 start += stride; 3158 (*setSize)++; 3159 } 3160 } 3161 if (**scan == '}') { 3162 break; 3163 } 3164 (*scan)++; // skip ',' 3165 continue; 3166 } 3167 3168 KMP_ASSERT2(0, "bad explicit places list"); 3169 } 3170 } 3171 3172 static void __kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask, 3173 int maxOsId, kmp_affin_mask_t *tempMask, 3174 int *setSize) { 3175 const char *next; 3176 3177 // valid follow sets are '{' '!' and num 3178 SKIP_WS(*scan); 3179 if (**scan == '{') { 3180 (*scan)++; // skip '{' 3181 __kmp_process_subplace_list(scan, osId2Mask, maxOsId, tempMask, setSize); 3182 KMP_ASSERT2(**scan == '}', "bad explicit places list"); 3183 (*scan)++; // skip '}' 3184 } else if (**scan == '!') { 3185 (*scan)++; // skip '!' 3186 __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize); 3187 KMP_CPU_COMPLEMENT(maxOsId, tempMask); 3188 } else if ((**scan >= '0') && (**scan <= '9')) { 3189 next = *scan; 3190 SKIP_DIGITS(next); 3191 int num = __kmp_str_to_int(*scan, *next); 3192 KMP_ASSERT(num >= 0); 3193 if ((num > maxOsId) || 3194 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 3195 if (__kmp_affinity_verbose || 3196 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { 3197 KMP_WARNING(AffIgnoreInvalidProcID, num); 3198 } 3199 } else { 3200 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num)); 3201 (*setSize)++; 3202 } 3203 *scan = next; // skip num 3204 } else { 3205 KMP_ASSERT2(0, "bad explicit places list"); 3206 } 3207 } 3208 3209 // static void 3210 void __kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks, 3211 unsigned int *out_numMasks, 3212 const char *placelist, 3213 kmp_affin_mask_t *osId2Mask, 3214 int maxOsId) { 3215 int i, j, count, stride, sign; 3216 const char *scan = placelist; 3217 const char *next = placelist; 3218 3219 numNewMasks = 2; 3220 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); 3221 nextNewMask = 0; 3222 3223 // tempMask is modified based on the previous or initial 3224 // place to form the current place 3225 // previousMask contains the previous place 3226 kmp_affin_mask_t *tempMask; 3227 kmp_affin_mask_t *previousMask; 3228 KMP_CPU_ALLOC(tempMask); 3229 KMP_CPU_ZERO(tempMask); 3230 KMP_CPU_ALLOC(previousMask); 3231 KMP_CPU_ZERO(previousMask); 3232 int setSize = 0; 3233 3234 for (;;) { 3235 __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize); 3236 3237 // valid follow sets are ',' ':' and EOL 3238 SKIP_WS(scan); 3239 if (*scan == '\0' || *scan == ',') { 3240 if (setSize > 0) { 3241 ADD_MASK(tempMask); 3242 } 3243 KMP_CPU_ZERO(tempMask); 3244 setSize = 0; 3245 if (*scan == '\0') { 3246 break; 3247 } 3248 scan++; // skip ',' 3249 continue; 3250 } 3251 3252 KMP_ASSERT2(*scan == ':', "bad explicit places list"); 3253 scan++; // skip ':' 3254 3255 // Read count parameter 3256 SKIP_WS(scan); 3257 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); 3258 next = scan; 3259 SKIP_DIGITS(next); 3260 count = __kmp_str_to_int(scan, *next); 3261 KMP_ASSERT(count >= 0); 3262 scan = next; 3263 3264 // valid follow sets are ',' ':' and EOL 3265 SKIP_WS(scan); 3266 if (*scan == '\0' || *scan == ',') { 3267 stride = +1; 3268 } else { 3269 KMP_ASSERT2(*scan == ':', "bad explicit places list"); 3270 scan++; // skip ':' 3271 3272 // Read stride parameter 3273 sign = +1; 3274 for (;;) { 3275 SKIP_WS(scan); 3276 if (*scan == '+') { 3277 scan++; // skip '+' 3278 continue; 3279 } 3280 if (*scan == '-') { 3281 sign *= -1; 3282 scan++; // skip '-' 3283 continue; 3284 } 3285 break; 3286 } 3287 SKIP_WS(scan); 3288 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); 3289 next = scan; 3290 SKIP_DIGITS(next); 3291 stride = __kmp_str_to_int(scan, *next); 3292 KMP_DEBUG_ASSERT(stride >= 0); 3293 scan = next; 3294 stride *= sign; 3295 } 3296 3297 // Add places determined by initial_place : count : stride 3298 for (i = 0; i < count; i++) { 3299 if (setSize == 0) { 3300 break; 3301 } 3302 // Add the current place, then build the next place (tempMask) from that 3303 KMP_CPU_COPY(previousMask, tempMask); 3304 ADD_MASK(previousMask); 3305 KMP_CPU_ZERO(tempMask); 3306 setSize = 0; 3307 KMP_CPU_SET_ITERATE(j, previousMask) { 3308 if (!KMP_CPU_ISSET(j, previousMask)) { 3309 continue; 3310 } 3311 if ((j + stride > maxOsId) || (j + stride < 0) || 3312 (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) || 3313 (!KMP_CPU_ISSET(j + stride, 3314 KMP_CPU_INDEX(osId2Mask, j + stride)))) { 3315 if ((__kmp_affinity_verbose || 3316 (__kmp_affinity_warnings && 3317 (__kmp_affinity_type != affinity_none))) && 3318 i < count - 1) { 3319 KMP_WARNING(AffIgnoreInvalidProcID, j + stride); 3320 } 3321 continue; 3322 } 3323 KMP_CPU_SET(j + stride, tempMask); 3324 setSize++; 3325 } 3326 } 3327 KMP_CPU_ZERO(tempMask); 3328 setSize = 0; 3329 3330 // valid follow sets are ',' and EOL 3331 SKIP_WS(scan); 3332 if (*scan == '\0') { 3333 break; 3334 } 3335 if (*scan == ',') { 3336 scan++; // skip ',' 3337 continue; 3338 } 3339 3340 KMP_ASSERT2(0, "bad explicit places list"); 3341 } 3342 3343 *out_numMasks = nextNewMask; 3344 if (nextNewMask == 0) { 3345 *out_masks = NULL; 3346 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3347 return; 3348 } 3349 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); 3350 KMP_CPU_FREE(tempMask); 3351 KMP_CPU_FREE(previousMask); 3352 for (i = 0; i < nextNewMask; i++) { 3353 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); 3354 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); 3355 KMP_CPU_COPY(dest, src); 3356 } 3357 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3358 } 3359 3360 #endif /* OMP_40_ENABLED */ 3361 3362 #undef ADD_MASK 3363 #undef ADD_MASK_OSID 3364 3365 #if KMP_USE_HWLOC 3366 static int __kmp_hwloc_skip_PUs_obj(hwloc_topology_t t, hwloc_obj_t o) { 3367 // skip PUs descendants of the object o 3368 int skipped = 0; 3369 hwloc_obj_t hT = NULL; 3370 int N = __kmp_hwloc_count_children_by_type(t, o, HWLOC_OBJ_PU, &hT); 3371 for (int i = 0; i < N; ++i) { 3372 KMP_DEBUG_ASSERT(hT); 3373 unsigned idx = hT->os_index; 3374 if (KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3375 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3376 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3377 ++skipped; 3378 } 3379 hT = hwloc_get_next_obj_by_type(t, HWLOC_OBJ_PU, hT); 3380 } 3381 return skipped; // count number of skipped units 3382 } 3383 3384 static int __kmp_hwloc_obj_has_PUs(hwloc_topology_t t, hwloc_obj_t o) { 3385 // check if obj has PUs present in fullMask 3386 hwloc_obj_t hT = NULL; 3387 int N = __kmp_hwloc_count_children_by_type(t, o, HWLOC_OBJ_PU, &hT); 3388 for (int i = 0; i < N; ++i) { 3389 KMP_DEBUG_ASSERT(hT); 3390 unsigned idx = hT->os_index; 3391 if (KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) 3392 return 1; // found PU 3393 hT = hwloc_get_next_obj_by_type(t, HWLOC_OBJ_PU, hT); 3394 } 3395 return 0; // no PUs found 3396 } 3397 #endif // KMP_USE_HWLOC 3398 3399 static void __kmp_apply_thread_places(AddrUnsPair **pAddr, int depth) { 3400 AddrUnsPair *newAddr; 3401 if (__kmp_hws_requested == 0) 3402 goto _exit; // no topology limiting actions requested, exit 3403 #if KMP_USE_HWLOC 3404 if (__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) { 3405 // Number of subobjects calculated dynamically, this works fine for 3406 // any non-uniform topology. 3407 // L2 cache objects are determined by depth, other objects - by type. 3408 hwloc_topology_t tp = __kmp_hwloc_topology; 3409 int nS = 0, nN = 0, nL = 0, nC = 0, 3410 nT = 0; // logical index including skipped 3411 int nCr = 0, nTr = 0; // number of requested units 3412 int nPkg = 0, nCo = 0, n_new = 0, n_old = 0, nCpP = 0, nTpC = 0; // counters 3413 hwloc_obj_t hT, hC, hL, hN, hS; // hwloc objects (pointers to) 3414 int L2depth, idx; 3415 3416 // check support of extensions ---------------------------------- 3417 int numa_support = 0, tile_support = 0; 3418 if (__kmp_pu_os_idx) 3419 hT = hwloc_get_pu_obj_by_os_index(tp, 3420 __kmp_pu_os_idx[__kmp_avail_proc - 1]); 3421 else 3422 hT = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PU, __kmp_avail_proc - 1); 3423 if (hT == NULL) { // something's gone wrong 3424 KMP_WARNING(AffHWSubsetUnsupported); 3425 goto _exit; 3426 } 3427 // check NUMA node 3428 hN = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hT); 3429 hS = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hT); 3430 if (hN != NULL && hN->depth > hS->depth) { 3431 numa_support = 1; // 1 in case socket includes node(s) 3432 } else if (__kmp_hws_node.num > 0) { 3433 // don't support sockets inside NUMA node (no such HW found for testing) 3434 KMP_WARNING(AffHWSubsetUnsupported); 3435 goto _exit; 3436 } 3437 // check L2 cahce, get object by depth because of multiple caches 3438 L2depth = hwloc_get_cache_type_depth(tp, 2, HWLOC_OBJ_CACHE_UNIFIED); 3439 hL = hwloc_get_ancestor_obj_by_depth(tp, L2depth, hT); 3440 if (hL != NULL && 3441 __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC) > 1) { 3442 tile_support = 1; // no sense to count L2 if it includes single core 3443 } else if (__kmp_hws_tile.num > 0) { 3444 if (__kmp_hws_core.num == 0) { 3445 __kmp_hws_core = __kmp_hws_tile; // replace L2 with core 3446 __kmp_hws_tile.num = 0; 3447 } else { 3448 // L2 and core are both requested, but represent same object 3449 KMP_WARNING(AffHWSubsetInvalid); 3450 goto _exit; 3451 } 3452 } 3453 // end of check of extensions ----------------------------------- 3454 3455 // fill in unset items, validate settings ----------------------- 3456 if (__kmp_hws_socket.num == 0) 3457 __kmp_hws_socket.num = nPackages; // use all available sockets 3458 if (__kmp_hws_socket.offset >= nPackages) { 3459 KMP_WARNING(AffHWSubsetManySockets); 3460 goto _exit; 3461 } 3462 if (numa_support) { 3463 hN = NULL; 3464 int NN = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_NUMANODE, 3465 &hN); // num nodes in socket 3466 if (__kmp_hws_node.num == 0) 3467 __kmp_hws_node.num = NN; // use all available nodes 3468 if (__kmp_hws_node.offset >= NN) { 3469 KMP_WARNING(AffHWSubsetManyNodes); 3470 goto _exit; 3471 } 3472 if (tile_support) { 3473 // get num tiles in node 3474 int NL = __kmp_hwloc_count_children_by_depth(tp, hN, L2depth, &hL); 3475 if (__kmp_hws_tile.num == 0) { 3476 __kmp_hws_tile.num = NL + 1; 3477 } // use all available tiles, some node may have more tiles, thus +1 3478 if (__kmp_hws_tile.offset >= NL) { 3479 KMP_WARNING(AffHWSubsetManyTiles); 3480 goto _exit; 3481 } 3482 int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, 3483 &hC); // num cores in tile 3484 if (__kmp_hws_core.num == 0) 3485 __kmp_hws_core.num = NC; // use all available cores 3486 if (__kmp_hws_core.offset >= NC) { 3487 KMP_WARNING(AffHWSubsetManyCores); 3488 goto _exit; 3489 } 3490 } else { // tile_support 3491 int NC = __kmp_hwloc_count_children_by_type(tp, hN, HWLOC_OBJ_CORE, 3492 &hC); // num cores in node 3493 if (__kmp_hws_core.num == 0) 3494 __kmp_hws_core.num = NC; // use all available cores 3495 if (__kmp_hws_core.offset >= NC) { 3496 KMP_WARNING(AffHWSubsetManyCores); 3497 goto _exit; 3498 } 3499 } // tile_support 3500 } else { // numa_support 3501 if (tile_support) { 3502 // get num tiles in socket 3503 int NL = __kmp_hwloc_count_children_by_depth(tp, hS, L2depth, &hL); 3504 if (__kmp_hws_tile.num == 0) 3505 __kmp_hws_tile.num = NL; // use all available tiles 3506 if (__kmp_hws_tile.offset >= NL) { 3507 KMP_WARNING(AffHWSubsetManyTiles); 3508 goto _exit; 3509 } 3510 int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, 3511 &hC); // num cores in tile 3512 if (__kmp_hws_core.num == 0) 3513 __kmp_hws_core.num = NC; // use all available cores 3514 if (__kmp_hws_core.offset >= NC) { 3515 KMP_WARNING(AffHWSubsetManyCores); 3516 goto _exit; 3517 } 3518 } else { // tile_support 3519 int NC = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_CORE, 3520 &hC); // num cores in socket 3521 if (__kmp_hws_core.num == 0) 3522 __kmp_hws_core.num = NC; // use all available cores 3523 if (__kmp_hws_core.offset >= NC) { 3524 KMP_WARNING(AffHWSubsetManyCores); 3525 goto _exit; 3526 } 3527 } // tile_support 3528 } 3529 if (__kmp_hws_proc.num == 0) 3530 __kmp_hws_proc.num = __kmp_nThreadsPerCore; // use all available procs 3531 if (__kmp_hws_proc.offset >= __kmp_nThreadsPerCore) { 3532 KMP_WARNING(AffHWSubsetManyProcs); 3533 goto _exit; 3534 } 3535 // end of validation -------------------------------------------- 3536 3537 if (pAddr) // pAddr is NULL in case of affinity_none 3538 newAddr = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * 3539 __kmp_avail_proc); // max size 3540 // main loop to form HW subset ---------------------------------- 3541 hS = NULL; 3542 int NP = hwloc_get_nbobjs_by_type(tp, HWLOC_OBJ_PACKAGE); 3543 for (int s = 0; s < NP; ++s) { 3544 // Check Socket ----------------------------------------------- 3545 hS = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hS); 3546 if (!__kmp_hwloc_obj_has_PUs(tp, hS)) 3547 continue; // skip socket if all PUs are out of fullMask 3548 ++nS; // only count objects those have PUs in affinity mask 3549 if (nS <= __kmp_hws_socket.offset || 3550 nS > __kmp_hws_socket.num + __kmp_hws_socket.offset) { 3551 n_old += __kmp_hwloc_skip_PUs_obj(tp, hS); // skip socket 3552 continue; // move to next socket 3553 } 3554 nCr = 0; // count number of cores per socket 3555 // socket requested, go down the topology tree 3556 // check 4 cases: (+NUMA+Tile), (+NUMA-Tile), (-NUMA+Tile), (-NUMA-Tile) 3557 if (numa_support) { 3558 nN = 0; 3559 hN = NULL; 3560 // num nodes in current socket 3561 int NN = 3562 __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_NUMANODE, &hN); 3563 for (int n = 0; n < NN; ++n) { 3564 // Check NUMA Node ---------------------------------------- 3565 if (!__kmp_hwloc_obj_has_PUs(tp, hN)) { 3566 hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN); 3567 continue; // skip node if all PUs are out of fullMask 3568 } 3569 ++nN; 3570 if (nN <= __kmp_hws_node.offset || 3571 nN > __kmp_hws_node.num + __kmp_hws_node.offset) { 3572 // skip node as not requested 3573 n_old += __kmp_hwloc_skip_PUs_obj(tp, hN); // skip node 3574 hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN); 3575 continue; // move to next node 3576 } 3577 // node requested, go down the topology tree 3578 if (tile_support) { 3579 nL = 0; 3580 hL = NULL; 3581 int NL = __kmp_hwloc_count_children_by_depth(tp, hN, L2depth, &hL); 3582 for (int l = 0; l < NL; ++l) { 3583 // Check L2 (tile) ------------------------------------ 3584 if (!__kmp_hwloc_obj_has_PUs(tp, hL)) { 3585 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3586 continue; // skip tile if all PUs are out of fullMask 3587 } 3588 ++nL; 3589 if (nL <= __kmp_hws_tile.offset || 3590 nL > __kmp_hws_tile.num + __kmp_hws_tile.offset) { 3591 // skip tile as not requested 3592 n_old += __kmp_hwloc_skip_PUs_obj(tp, hL); // skip tile 3593 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3594 continue; // move to next tile 3595 } 3596 // tile requested, go down the topology tree 3597 nC = 0; 3598 hC = NULL; 3599 // num cores in current tile 3600 int NC = __kmp_hwloc_count_children_by_type(tp, hL, 3601 HWLOC_OBJ_CORE, &hC); 3602 for (int c = 0; c < NC; ++c) { 3603 // Check Core --------------------------------------- 3604 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) { 3605 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3606 continue; // skip core if all PUs are out of fullMask 3607 } 3608 ++nC; 3609 if (nC <= __kmp_hws_core.offset || 3610 nC > __kmp_hws_core.num + __kmp_hws_core.offset) { 3611 // skip node as not requested 3612 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core 3613 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3614 continue; // move to next node 3615 } 3616 // core requested, go down to PUs 3617 nT = 0; 3618 nTr = 0; 3619 hT = NULL; 3620 // num procs in current core 3621 int NT = __kmp_hwloc_count_children_by_type(tp, hC, 3622 HWLOC_OBJ_PU, &hT); 3623 for (int t = 0; t < NT; ++t) { 3624 // Check PU --------------------------------------- 3625 idx = hT->os_index; 3626 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3627 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3628 continue; // skip PU if not in fullMask 3629 } 3630 ++nT; 3631 if (nT <= __kmp_hws_proc.offset || 3632 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) { 3633 // skip PU 3634 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3635 ++n_old; 3636 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3637 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3638 continue; // move to next node 3639 } 3640 ++nTr; 3641 if (pAddr) // collect requested thread's data 3642 newAddr[n_new] = (*pAddr)[n_old]; 3643 ++n_new; 3644 ++n_old; 3645 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3646 } // threads loop 3647 if (nTr > 0) { 3648 ++nCr; // num cores per socket 3649 ++nCo; // total num cores 3650 if (nTr > nTpC) 3651 nTpC = nTr; // calc max threads per core 3652 } 3653 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3654 } // cores loop 3655 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3656 } // tiles loop 3657 } else { // tile_support 3658 // no tiles, check cores 3659 nC = 0; 3660 hC = NULL; 3661 // num cores in current node 3662 int NC = 3663 __kmp_hwloc_count_children_by_type(tp, hN, HWLOC_OBJ_CORE, &hC); 3664 for (int c = 0; c < NC; ++c) { 3665 // Check Core --------------------------------------- 3666 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) { 3667 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3668 continue; // skip core if all PUs are out of fullMask 3669 } 3670 ++nC; 3671 if (nC <= __kmp_hws_core.offset || 3672 nC > __kmp_hws_core.num + __kmp_hws_core.offset) { 3673 // skip node as not requested 3674 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core 3675 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3676 continue; // move to next node 3677 } 3678 // core requested, go down to PUs 3679 nT = 0; 3680 nTr = 0; 3681 hT = NULL; 3682 int NT = 3683 __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT); 3684 for (int t = 0; t < NT; ++t) { 3685 // Check PU --------------------------------------- 3686 idx = hT->os_index; 3687 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3688 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3689 continue; // skip PU if not in fullMask 3690 } 3691 ++nT; 3692 if (nT <= __kmp_hws_proc.offset || 3693 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) { 3694 // skip PU 3695 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3696 ++n_old; 3697 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3698 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3699 continue; // move to next node 3700 } 3701 ++nTr; 3702 if (pAddr) // collect requested thread's data 3703 newAddr[n_new] = (*pAddr)[n_old]; 3704 ++n_new; 3705 ++n_old; 3706 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3707 } // threads loop 3708 if (nTr > 0) { 3709 ++nCr; // num cores per socket 3710 ++nCo; // total num cores 3711 if (nTr > nTpC) 3712 nTpC = nTr; // calc max threads per core 3713 } 3714 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3715 } // cores loop 3716 } // tiles support 3717 hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN); 3718 } // nodes loop 3719 } else { // numa_support 3720 // no NUMA support 3721 if (tile_support) { 3722 nL = 0; 3723 hL = NULL; 3724 // num tiles in current socket 3725 int NL = __kmp_hwloc_count_children_by_depth(tp, hS, L2depth, &hL); 3726 for (int l = 0; l < NL; ++l) { 3727 // Check L2 (tile) ------------------------------------ 3728 if (!__kmp_hwloc_obj_has_PUs(tp, hL)) { 3729 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3730 continue; // skip tile if all PUs are out of fullMask 3731 } 3732 ++nL; 3733 if (nL <= __kmp_hws_tile.offset || 3734 nL > __kmp_hws_tile.num + __kmp_hws_tile.offset) { 3735 // skip tile as not requested 3736 n_old += __kmp_hwloc_skip_PUs_obj(tp, hL); // skip tile 3737 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3738 continue; // move to next tile 3739 } 3740 // tile requested, go down the topology tree 3741 nC = 0; 3742 hC = NULL; 3743 // num cores per tile 3744 int NC = 3745 __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC); 3746 for (int c = 0; c < NC; ++c) { 3747 // Check Core --------------------------------------- 3748 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) { 3749 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3750 continue; // skip core if all PUs are out of fullMask 3751 } 3752 ++nC; 3753 if (nC <= __kmp_hws_core.offset || 3754 nC > __kmp_hws_core.num + __kmp_hws_core.offset) { 3755 // skip node as not requested 3756 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core 3757 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3758 continue; // move to next node 3759 } 3760 // core requested, go down to PUs 3761 nT = 0; 3762 nTr = 0; 3763 hT = NULL; 3764 // num procs per core 3765 int NT = 3766 __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT); 3767 for (int t = 0; t < NT; ++t) { 3768 // Check PU --------------------------------------- 3769 idx = hT->os_index; 3770 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3771 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3772 continue; // skip PU if not in fullMask 3773 } 3774 ++nT; 3775 if (nT <= __kmp_hws_proc.offset || 3776 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) { 3777 // skip PU 3778 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3779 ++n_old; 3780 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3781 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3782 continue; // move to next node 3783 } 3784 ++nTr; 3785 if (pAddr) // collect requested thread's data 3786 newAddr[n_new] = (*pAddr)[n_old]; 3787 ++n_new; 3788 ++n_old; 3789 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3790 } // threads loop 3791 if (nTr > 0) { 3792 ++nCr; // num cores per socket 3793 ++nCo; // total num cores 3794 if (nTr > nTpC) 3795 nTpC = nTr; // calc max threads per core 3796 } 3797 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3798 } // cores loop 3799 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3800 } // tiles loop 3801 } else { // tile_support 3802 // no tiles, check cores 3803 nC = 0; 3804 hC = NULL; 3805 // num cores in socket 3806 int NC = 3807 __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_CORE, &hC); 3808 for (int c = 0; c < NC; ++c) { 3809 // Check Core ------------------------------------------- 3810 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) { 3811 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3812 continue; // skip core if all PUs are out of fullMask 3813 } 3814 ++nC; 3815 if (nC <= __kmp_hws_core.offset || 3816 nC > __kmp_hws_core.num + __kmp_hws_core.offset) { 3817 // skip node as not requested 3818 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core 3819 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3820 continue; // move to next node 3821 } 3822 // core requested, go down to PUs 3823 nT = 0; 3824 nTr = 0; 3825 hT = NULL; 3826 // num procs per core 3827 int NT = 3828 __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT); 3829 for (int t = 0; t < NT; ++t) { 3830 // Check PU --------------------------------------- 3831 idx = hT->os_index; 3832 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3833 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3834 continue; // skip PU if not in fullMask 3835 } 3836 ++nT; 3837 if (nT <= __kmp_hws_proc.offset || 3838 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) { 3839 // skip PU 3840 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3841 ++n_old; 3842 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3843 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3844 continue; // move to next node 3845 } 3846 ++nTr; 3847 if (pAddr) // collect requested thread's data 3848 newAddr[n_new] = (*pAddr)[n_old]; 3849 ++n_new; 3850 ++n_old; 3851 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3852 } // threads loop 3853 if (nTr > 0) { 3854 ++nCr; // num cores per socket 3855 ++nCo; // total num cores 3856 if (nTr > nTpC) 3857 nTpC = nTr; // calc max threads per core 3858 } 3859 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3860 } // cores loop 3861 } // tiles support 3862 } // numa_support 3863 if (nCr > 0) { // found cores? 3864 ++nPkg; // num sockets 3865 if (nCr > nCpP) 3866 nCpP = nCr; // calc max cores per socket 3867 } 3868 } // sockets loop 3869 3870 // check the subset is valid 3871 KMP_DEBUG_ASSERT(n_old == __kmp_avail_proc); 3872 KMP_DEBUG_ASSERT(nPkg > 0); 3873 KMP_DEBUG_ASSERT(nCpP > 0); 3874 KMP_DEBUG_ASSERT(nTpC > 0); 3875 KMP_DEBUG_ASSERT(nCo > 0); 3876 KMP_DEBUG_ASSERT(nPkg <= nPackages); 3877 KMP_DEBUG_ASSERT(nCpP <= nCoresPerPkg); 3878 KMP_DEBUG_ASSERT(nTpC <= __kmp_nThreadsPerCore); 3879 KMP_DEBUG_ASSERT(nCo <= __kmp_ncores); 3880 3881 nPackages = nPkg; // correct num sockets 3882 nCoresPerPkg = nCpP; // correct num cores per socket 3883 __kmp_nThreadsPerCore = nTpC; // correct num threads per core 3884 __kmp_avail_proc = n_new; // correct num procs 3885 __kmp_ncores = nCo; // correct num cores 3886 // hwloc topology method end 3887 } else 3888 #endif // KMP_USE_HWLOC 3889 { 3890 int n_old = 0, n_new = 0, proc_num = 0; 3891 if (__kmp_hws_node.num > 0 || __kmp_hws_tile.num > 0) { 3892 KMP_WARNING(AffHWSubsetNoHWLOC); 3893 goto _exit; 3894 } 3895 if (__kmp_hws_socket.num == 0) 3896 __kmp_hws_socket.num = nPackages; // use all available sockets 3897 if (__kmp_hws_core.num == 0) 3898 __kmp_hws_core.num = nCoresPerPkg; // use all available cores 3899 if (__kmp_hws_proc.num == 0 || __kmp_hws_proc.num > __kmp_nThreadsPerCore) 3900 __kmp_hws_proc.num = __kmp_nThreadsPerCore; // use all HW contexts 3901 if (!__kmp_affinity_uniform_topology()) { 3902 KMP_WARNING(AffHWSubsetNonUniform); 3903 goto _exit; // don't support non-uniform topology 3904 } 3905 if (depth > 3) { 3906 KMP_WARNING(AffHWSubsetNonThreeLevel); 3907 goto _exit; // don't support not-3-level topology 3908 } 3909 if (__kmp_hws_socket.offset + __kmp_hws_socket.num > nPackages) { 3910 KMP_WARNING(AffHWSubsetManySockets); 3911 goto _exit; 3912 } 3913 if (__kmp_hws_core.offset + __kmp_hws_core.num > nCoresPerPkg) { 3914 KMP_WARNING(AffHWSubsetManyCores); 3915 goto _exit; 3916 } 3917 // Form the requested subset 3918 if (pAddr) // pAddr is NULL in case of affinity_none 3919 newAddr = (AddrUnsPair *)__kmp_allocate( 3920 sizeof(AddrUnsPair) * __kmp_hws_socket.num * __kmp_hws_core.num * 3921 __kmp_hws_proc.num); 3922 for (int i = 0; i < nPackages; ++i) { 3923 if (i < __kmp_hws_socket.offset || 3924 i >= __kmp_hws_socket.offset + __kmp_hws_socket.num) { 3925 // skip not-requested socket 3926 n_old += nCoresPerPkg * __kmp_nThreadsPerCore; 3927 if (__kmp_pu_os_idx != NULL) { 3928 // walk through skipped socket 3929 for (int j = 0; j < nCoresPerPkg; ++j) { 3930 for (int k = 0; k < __kmp_nThreadsPerCore; ++k) { 3931 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask); 3932 ++proc_num; 3933 } 3934 } 3935 } 3936 } else { 3937 // walk through requested socket 3938 for (int j = 0; j < nCoresPerPkg; ++j) { 3939 if (j < __kmp_hws_core.offset || 3940 j >= __kmp_hws_core.offset + 3941 __kmp_hws_core.num) { // skip not-requested core 3942 n_old += __kmp_nThreadsPerCore; 3943 if (__kmp_pu_os_idx != NULL) { 3944 for (int k = 0; k < __kmp_nThreadsPerCore; ++k) { 3945 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask); 3946 ++proc_num; 3947 } 3948 } 3949 } else { 3950 // walk through requested core 3951 for (int k = 0; k < __kmp_nThreadsPerCore; ++k) { 3952 if (k < __kmp_hws_proc.num) { 3953 if (pAddr) // collect requested thread's data 3954 newAddr[n_new] = (*pAddr)[n_old]; 3955 n_new++; 3956 } else { 3957 if (__kmp_pu_os_idx != NULL) 3958 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask); 3959 } 3960 n_old++; 3961 ++proc_num; 3962 } 3963 } 3964 } 3965 } 3966 } 3967 KMP_DEBUG_ASSERT(n_old == nPackages * nCoresPerPkg * __kmp_nThreadsPerCore); 3968 KMP_DEBUG_ASSERT(n_new == 3969 __kmp_hws_socket.num * __kmp_hws_core.num * 3970 __kmp_hws_proc.num); 3971 nPackages = __kmp_hws_socket.num; // correct nPackages 3972 nCoresPerPkg = __kmp_hws_core.num; // correct nCoresPerPkg 3973 __kmp_nThreadsPerCore = __kmp_hws_proc.num; // correct __kmp_nThreadsPerCore 3974 __kmp_avail_proc = n_new; // correct avail_proc 3975 __kmp_ncores = nPackages * __kmp_hws_core.num; // correct ncores 3976 } // non-hwloc topology method 3977 if (pAddr) { 3978 __kmp_free(*pAddr); 3979 *pAddr = newAddr; // replace old topology with new one 3980 } 3981 if (__kmp_affinity_verbose) { 3982 char m[KMP_AFFIN_MASK_PRINT_LEN]; 3983 __kmp_affinity_print_mask(m, KMP_AFFIN_MASK_PRINT_LEN, 3984 __kmp_affin_fullMask); 3985 if (__kmp_affinity_respect_mask) { 3986 KMP_INFORM(InitOSProcSetRespect, "KMP_HW_SUBSET", m); 3987 } else { 3988 KMP_INFORM(InitOSProcSetNotRespect, "KMP_HW_SUBSET", m); 3989 } 3990 KMP_INFORM(AvailableOSProc, "KMP_HW_SUBSET", __kmp_avail_proc); 3991 kmp_str_buf_t buf; 3992 __kmp_str_buf_init(&buf); 3993 __kmp_str_buf_print(&buf, "%d", nPackages); 3994 KMP_INFORM(TopologyExtra, "KMP_HW_SUBSET", buf.str, nCoresPerPkg, 3995 __kmp_nThreadsPerCore, __kmp_ncores); 3996 __kmp_str_buf_free(&buf); 3997 } 3998 _exit: 3999 if (__kmp_pu_os_idx != NULL) { 4000 __kmp_free(__kmp_pu_os_idx); 4001 __kmp_pu_os_idx = NULL; 4002 } 4003 } 4004 4005 // This function figures out the deepest level at which there is at least one 4006 // cluster/core with more than one processing unit bound to it. 4007 static int __kmp_affinity_find_core_level(const AddrUnsPair *address2os, 4008 int nprocs, int bottom_level) { 4009 int core_level = 0; 4010 4011 for (int i = 0; i < nprocs; i++) { 4012 for (int j = bottom_level; j > 0; j--) { 4013 if (address2os[i].first.labels[j] > 0) { 4014 if (core_level < (j - 1)) { 4015 core_level = j - 1; 4016 } 4017 } 4018 } 4019 } 4020 return core_level; 4021 } 4022 4023 // This function counts number of clusters/cores at given level. 4024 static int __kmp_affinity_compute_ncores(const AddrUnsPair *address2os, 4025 int nprocs, int bottom_level, 4026 int core_level) { 4027 int ncores = 0; 4028 int i, j; 4029 4030 j = bottom_level; 4031 for (i = 0; i < nprocs; i++) { 4032 for (j = bottom_level; j > core_level; j--) { 4033 if ((i + 1) < nprocs) { 4034 if (address2os[i + 1].first.labels[j] > 0) { 4035 break; 4036 } 4037 } 4038 } 4039 if (j == core_level) { 4040 ncores++; 4041 } 4042 } 4043 if (j > core_level) { 4044 // In case of ( nprocs < __kmp_avail_proc ) we may end too deep and miss one 4045 // core. May occur when called from __kmp_affinity_find_core(). 4046 ncores++; 4047 } 4048 return ncores; 4049 } 4050 4051 // This function finds to which cluster/core given processing unit is bound. 4052 static int __kmp_affinity_find_core(const AddrUnsPair *address2os, int proc, 4053 int bottom_level, int core_level) { 4054 return __kmp_affinity_compute_ncores(address2os, proc + 1, bottom_level, 4055 core_level) - 4056 1; 4057 } 4058 4059 // This function finds maximal number of processing units bound to a 4060 // cluster/core at given level. 4061 static int __kmp_affinity_max_proc_per_core(const AddrUnsPair *address2os, 4062 int nprocs, int bottom_level, 4063 int core_level) { 4064 int maxprocpercore = 0; 4065 4066 if (core_level < bottom_level) { 4067 for (int i = 0; i < nprocs; i++) { 4068 int percore = address2os[i].first.labels[core_level + 1] + 1; 4069 4070 if (percore > maxprocpercore) { 4071 maxprocpercore = percore; 4072 } 4073 } 4074 } else { 4075 maxprocpercore = 1; 4076 } 4077 return maxprocpercore; 4078 } 4079 4080 static AddrUnsPair *address2os = NULL; 4081 static int *procarr = NULL; 4082 static int __kmp_aff_depth = 0; 4083 4084 #if KMP_USE_HIER_SCHED 4085 #define KMP_EXIT_AFF_NONE \ 4086 KMP_ASSERT(__kmp_affinity_type == affinity_none); \ 4087 KMP_ASSERT(address2os == NULL); \ 4088 __kmp_apply_thread_places(NULL, 0); \ 4089 __kmp_create_affinity_none_places(); \ 4090 __kmp_dispatch_set_hierarchy_values(); \ 4091 return; 4092 #else 4093 #define KMP_EXIT_AFF_NONE \ 4094 KMP_ASSERT(__kmp_affinity_type == affinity_none); \ 4095 KMP_ASSERT(address2os == NULL); \ 4096 __kmp_apply_thread_places(NULL, 0); \ 4097 __kmp_create_affinity_none_places(); \ 4098 return; 4099 #endif 4100 4101 // Create a one element mask array (set of places) which only contains the 4102 // initial process's affinity mask 4103 static void __kmp_create_affinity_none_places() { 4104 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4105 KMP_ASSERT(__kmp_affinity_type == affinity_none); 4106 __kmp_affinity_num_masks = 1; 4107 KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); 4108 kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, 0); 4109 KMP_CPU_COPY(dest, __kmp_affin_fullMask); 4110 } 4111 4112 static int __kmp_affinity_cmp_Address_child_num(const void *a, const void *b) { 4113 const Address *aa = &(((const AddrUnsPair *)a)->first); 4114 const Address *bb = &(((const AddrUnsPair *)b)->first); 4115 unsigned depth = aa->depth; 4116 unsigned i; 4117 KMP_DEBUG_ASSERT(depth == bb->depth); 4118 KMP_DEBUG_ASSERT((unsigned)__kmp_affinity_compact <= depth); 4119 KMP_DEBUG_ASSERT(__kmp_affinity_compact >= 0); 4120 for (i = 0; i < (unsigned)__kmp_affinity_compact; i++) { 4121 int j = depth - i - 1; 4122 if (aa->childNums[j] < bb->childNums[j]) 4123 return -1; 4124 if (aa->childNums[j] > bb->childNums[j]) 4125 return 1; 4126 } 4127 for (; i < depth; i++) { 4128 int j = i - __kmp_affinity_compact; 4129 if (aa->childNums[j] < bb->childNums[j]) 4130 return -1; 4131 if (aa->childNums[j] > bb->childNums[j]) 4132 return 1; 4133 } 4134 return 0; 4135 } 4136 4137 static void __kmp_aux_affinity_initialize(void) { 4138 if (__kmp_affinity_masks != NULL) { 4139 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4140 return; 4141 } 4142 4143 // Create the "full" mask - this defines all of the processors that we 4144 // consider to be in the machine model. If respect is set, then it is the 4145 // initialization thread's affinity mask. Otherwise, it is all processors that 4146 // we know about on the machine. 4147 if (__kmp_affin_fullMask == NULL) { 4148 KMP_CPU_ALLOC(__kmp_affin_fullMask); 4149 } 4150 if (KMP_AFFINITY_CAPABLE()) { 4151 if (__kmp_affinity_respect_mask) { 4152 __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE); 4153 4154 // Count the number of available processors. 4155 unsigned i; 4156 __kmp_avail_proc = 0; 4157 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 4158 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 4159 continue; 4160 } 4161 __kmp_avail_proc++; 4162 } 4163 if (__kmp_avail_proc > __kmp_xproc) { 4164 if (__kmp_affinity_verbose || 4165 (__kmp_affinity_warnings && 4166 (__kmp_affinity_type != affinity_none))) { 4167 KMP_WARNING(ErrorInitializeAffinity); 4168 } 4169 __kmp_affinity_type = affinity_none; 4170 KMP_AFFINITY_DISABLE(); 4171 return; 4172 } 4173 } else { 4174 __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask); 4175 __kmp_avail_proc = __kmp_xproc; 4176 } 4177 } 4178 4179 if (__kmp_affinity_gran == affinity_gran_tile && 4180 // check if user's request is valid 4181 __kmp_affinity_dispatch->get_api_type() == KMPAffinity::NATIVE_OS) { 4182 KMP_WARNING(AffTilesNoHWLOC, "KMP_AFFINITY"); 4183 __kmp_affinity_gran = affinity_gran_package; 4184 } 4185 4186 int depth = -1; 4187 kmp_i18n_id_t msg_id = kmp_i18n_null; 4188 4189 // For backward compatibility, setting KMP_CPUINFO_FILE => 4190 // KMP_TOPOLOGY_METHOD=cpuinfo 4191 if ((__kmp_cpuinfo_file != NULL) && 4192 (__kmp_affinity_top_method == affinity_top_method_all)) { 4193 __kmp_affinity_top_method = affinity_top_method_cpuinfo; 4194 } 4195 4196 if (__kmp_affinity_top_method == affinity_top_method_all) { 4197 // In the default code path, errors are not fatal - we just try using 4198 // another method. We only emit a warning message if affinity is on, or the 4199 // verbose flag is set, an the nowarnings flag was not set. 4200 const char *file_name = NULL; 4201 int line = 0; 4202 #if KMP_USE_HWLOC 4203 if (depth < 0 && 4204 __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) { 4205 if (__kmp_affinity_verbose) { 4206 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); 4207 } 4208 if (!__kmp_hwloc_error) { 4209 depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id); 4210 if (depth == 0) { 4211 KMP_EXIT_AFF_NONE; 4212 } else if (depth < 0 && __kmp_affinity_verbose) { 4213 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY"); 4214 } 4215 } else if (__kmp_affinity_verbose) { 4216 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY"); 4217 } 4218 } 4219 #endif 4220 4221 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4222 4223 if (depth < 0) { 4224 if (__kmp_affinity_verbose) { 4225 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC)); 4226 } 4227 4228 file_name = NULL; 4229 depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id); 4230 if (depth == 0) { 4231 KMP_EXIT_AFF_NONE; 4232 } 4233 4234 if (depth < 0) { 4235 if (__kmp_affinity_verbose) { 4236 if (msg_id != kmp_i18n_null) { 4237 KMP_INFORM(AffInfoStrStr, "KMP_AFFINITY", 4238 __kmp_i18n_catgets(msg_id), 4239 KMP_I18N_STR(DecodingLegacyAPIC)); 4240 } else { 4241 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", 4242 KMP_I18N_STR(DecodingLegacyAPIC)); 4243 } 4244 } 4245 4246 file_name = NULL; 4247 depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id); 4248 if (depth == 0) { 4249 KMP_EXIT_AFF_NONE; 4250 } 4251 } 4252 } 4253 4254 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4255 4256 #if KMP_OS_LINUX 4257 4258 if (depth < 0) { 4259 if (__kmp_affinity_verbose) { 4260 if (msg_id != kmp_i18n_null) { 4261 KMP_INFORM(AffStrParseFilename, "KMP_AFFINITY", 4262 __kmp_i18n_catgets(msg_id), "/proc/cpuinfo"); 4263 } else { 4264 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", "/proc/cpuinfo"); 4265 } 4266 } 4267 4268 FILE *f = fopen("/proc/cpuinfo", "r"); 4269 if (f == NULL) { 4270 msg_id = kmp_i18n_str_CantOpenCpuinfo; 4271 } else { 4272 file_name = "/proc/cpuinfo"; 4273 depth = 4274 __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f); 4275 fclose(f); 4276 if (depth == 0) { 4277 KMP_EXIT_AFF_NONE; 4278 } 4279 } 4280 } 4281 4282 #endif /* KMP_OS_LINUX */ 4283 4284 #if KMP_GROUP_AFFINITY 4285 4286 if ((depth < 0) && (__kmp_num_proc_groups > 1)) { 4287 if (__kmp_affinity_verbose) { 4288 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY"); 4289 } 4290 4291 depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id); 4292 KMP_ASSERT(depth != 0); 4293 } 4294 4295 #endif /* KMP_GROUP_AFFINITY */ 4296 4297 if (depth < 0) { 4298 if (__kmp_affinity_verbose && (msg_id != kmp_i18n_null)) { 4299 if (file_name == NULL) { 4300 KMP_INFORM(UsingFlatOS, __kmp_i18n_catgets(msg_id)); 4301 } else if (line == 0) { 4302 KMP_INFORM(UsingFlatOSFile, file_name, __kmp_i18n_catgets(msg_id)); 4303 } else { 4304 KMP_INFORM(UsingFlatOSFileLine, file_name, line, 4305 __kmp_i18n_catgets(msg_id)); 4306 } 4307 } 4308 // FIXME - print msg if msg_id = kmp_i18n_null ??? 4309 4310 file_name = ""; 4311 depth = __kmp_affinity_create_flat_map(&address2os, &msg_id); 4312 if (depth == 0) { 4313 KMP_EXIT_AFF_NONE; 4314 } 4315 KMP_ASSERT(depth > 0); 4316 KMP_ASSERT(address2os != NULL); 4317 } 4318 } 4319 4320 #if KMP_USE_HWLOC 4321 else if (__kmp_affinity_top_method == affinity_top_method_hwloc) { 4322 KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC); 4323 if (__kmp_affinity_verbose) { 4324 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); 4325 } 4326 depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id); 4327 if (depth == 0) { 4328 KMP_EXIT_AFF_NONE; 4329 } 4330 } 4331 #endif // KMP_USE_HWLOC 4332 4333 // If the user has specified that a paricular topology discovery method is to be 4334 // used, then we abort if that method fails. The exception is group affinity, 4335 // which might have been implicitly set. 4336 4337 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4338 4339 else if (__kmp_affinity_top_method == affinity_top_method_x2apicid) { 4340 if (__kmp_affinity_verbose) { 4341 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC)); 4342 } 4343 4344 depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id); 4345 if (depth == 0) { 4346 KMP_EXIT_AFF_NONE; 4347 } 4348 if (depth < 0) { 4349 KMP_ASSERT(msg_id != kmp_i18n_null); 4350 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4351 } 4352 } else if (__kmp_affinity_top_method == affinity_top_method_apicid) { 4353 if (__kmp_affinity_verbose) { 4354 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC)); 4355 } 4356 4357 depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id); 4358 if (depth == 0) { 4359 KMP_EXIT_AFF_NONE; 4360 } 4361 if (depth < 0) { 4362 KMP_ASSERT(msg_id != kmp_i18n_null); 4363 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4364 } 4365 } 4366 4367 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4368 4369 else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) { 4370 const char *filename; 4371 if (__kmp_cpuinfo_file != NULL) { 4372 filename = __kmp_cpuinfo_file; 4373 } else { 4374 filename = "/proc/cpuinfo"; 4375 } 4376 4377 if (__kmp_affinity_verbose) { 4378 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename); 4379 } 4380 4381 FILE *f = fopen(filename, "r"); 4382 if (f == NULL) { 4383 int code = errno; 4384 if (__kmp_cpuinfo_file != NULL) { 4385 __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code), 4386 KMP_HNT(NameComesFrom_CPUINFO_FILE), __kmp_msg_null); 4387 } else { 4388 __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code), 4389 __kmp_msg_null); 4390 } 4391 } 4392 int line = 0; 4393 depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f); 4394 fclose(f); 4395 if (depth < 0) { 4396 KMP_ASSERT(msg_id != kmp_i18n_null); 4397 if (line > 0) { 4398 KMP_FATAL(FileLineMsgExiting, filename, line, 4399 __kmp_i18n_catgets(msg_id)); 4400 } else { 4401 KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id)); 4402 } 4403 } 4404 if (__kmp_affinity_type == affinity_none) { 4405 KMP_ASSERT(depth == 0); 4406 KMP_EXIT_AFF_NONE; 4407 } 4408 } 4409 4410 #if KMP_GROUP_AFFINITY 4411 4412 else if (__kmp_affinity_top_method == affinity_top_method_group) { 4413 if (__kmp_affinity_verbose) { 4414 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY"); 4415 } 4416 4417 depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id); 4418 KMP_ASSERT(depth != 0); 4419 if (depth < 0) { 4420 KMP_ASSERT(msg_id != kmp_i18n_null); 4421 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4422 } 4423 } 4424 4425 #endif /* KMP_GROUP_AFFINITY */ 4426 4427 else if (__kmp_affinity_top_method == affinity_top_method_flat) { 4428 if (__kmp_affinity_verbose) { 4429 KMP_INFORM(AffUsingFlatOS, "KMP_AFFINITY"); 4430 } 4431 4432 depth = __kmp_affinity_create_flat_map(&address2os, &msg_id); 4433 if (depth == 0) { 4434 KMP_EXIT_AFF_NONE; 4435 } 4436 // should not fail 4437 KMP_ASSERT(depth > 0); 4438 KMP_ASSERT(address2os != NULL); 4439 } 4440 4441 #if KMP_USE_HIER_SCHED 4442 __kmp_dispatch_set_hierarchy_values(); 4443 #endif 4444 4445 if (address2os == NULL) { 4446 if (KMP_AFFINITY_CAPABLE() && 4447 (__kmp_affinity_verbose || 4448 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none)))) { 4449 KMP_WARNING(ErrorInitializeAffinity); 4450 } 4451 __kmp_affinity_type = affinity_none; 4452 __kmp_create_affinity_none_places(); 4453 KMP_AFFINITY_DISABLE(); 4454 return; 4455 } 4456 4457 if (__kmp_affinity_gran == affinity_gran_tile 4458 #if KMP_USE_HWLOC 4459 && __kmp_tile_depth == 0 4460 #endif 4461 ) { 4462 // tiles requested but not detected, warn user on this 4463 KMP_WARNING(AffTilesNoTiles, "KMP_AFFINITY"); 4464 } 4465 4466 __kmp_apply_thread_places(&address2os, depth); 4467 4468 // Create the table of masks, indexed by thread Id. 4469 unsigned maxIndex; 4470 unsigned numUnique; 4471 kmp_affin_mask_t *osId2Mask = 4472 __kmp_create_masks(&maxIndex, &numUnique, address2os, __kmp_avail_proc); 4473 if (__kmp_affinity_gran_levels == 0) { 4474 KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc); 4475 } 4476 4477 // Set the childNums vector in all Address objects. This must be done before 4478 // we can sort using __kmp_affinity_cmp_Address_child_num(), which takes into 4479 // account the setting of __kmp_affinity_compact. 4480 __kmp_affinity_assign_child_nums(address2os, __kmp_avail_proc); 4481 4482 switch (__kmp_affinity_type) { 4483 4484 case affinity_explicit: 4485 KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL); 4486 #if OMP_40_ENABLED 4487 if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) 4488 #endif 4489 { 4490 __kmp_affinity_process_proclist( 4491 &__kmp_affinity_masks, &__kmp_affinity_num_masks, 4492 __kmp_affinity_proclist, osId2Mask, maxIndex); 4493 } 4494 #if OMP_40_ENABLED 4495 else { 4496 __kmp_affinity_process_placelist( 4497 &__kmp_affinity_masks, &__kmp_affinity_num_masks, 4498 __kmp_affinity_proclist, osId2Mask, maxIndex); 4499 } 4500 #endif 4501 if (__kmp_affinity_num_masks == 0) { 4502 if (__kmp_affinity_verbose || 4503 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { 4504 KMP_WARNING(AffNoValidProcID); 4505 } 4506 __kmp_affinity_type = affinity_none; 4507 __kmp_create_affinity_none_places(); 4508 return; 4509 } 4510 break; 4511 4512 // The other affinity types rely on sorting the Addresses according to some 4513 // permutation of the machine topology tree. Set __kmp_affinity_compact and 4514 // __kmp_affinity_offset appropriately, then jump to a common code fragment 4515 // to do the sort and create the array of affinity masks. 4516 4517 case affinity_logical: 4518 __kmp_affinity_compact = 0; 4519 if (__kmp_affinity_offset) { 4520 __kmp_affinity_offset = 4521 __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc; 4522 } 4523 goto sortAddresses; 4524 4525 case affinity_physical: 4526 if (__kmp_nThreadsPerCore > 1) { 4527 __kmp_affinity_compact = 1; 4528 if (__kmp_affinity_compact >= depth) { 4529 __kmp_affinity_compact = 0; 4530 } 4531 } else { 4532 __kmp_affinity_compact = 0; 4533 } 4534 if (__kmp_affinity_offset) { 4535 __kmp_affinity_offset = 4536 __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc; 4537 } 4538 goto sortAddresses; 4539 4540 case affinity_scatter: 4541 if (__kmp_affinity_compact >= depth) { 4542 __kmp_affinity_compact = 0; 4543 } else { 4544 __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact; 4545 } 4546 goto sortAddresses; 4547 4548 case affinity_compact: 4549 if (__kmp_affinity_compact >= depth) { 4550 __kmp_affinity_compact = depth - 1; 4551 } 4552 goto sortAddresses; 4553 4554 case affinity_balanced: 4555 if (depth <= 1) { 4556 if (__kmp_affinity_verbose || __kmp_affinity_warnings) { 4557 KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY"); 4558 } 4559 __kmp_affinity_type = affinity_none; 4560 __kmp_create_affinity_none_places(); 4561 return; 4562 } else if (!__kmp_affinity_uniform_topology()) { 4563 // Save the depth for further usage 4564 __kmp_aff_depth = depth; 4565 4566 int core_level = __kmp_affinity_find_core_level( 4567 address2os, __kmp_avail_proc, depth - 1); 4568 int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc, 4569 depth - 1, core_level); 4570 int maxprocpercore = __kmp_affinity_max_proc_per_core( 4571 address2os, __kmp_avail_proc, depth - 1, core_level); 4572 4573 int nproc = ncores * maxprocpercore; 4574 if ((nproc < 2) || (nproc < __kmp_avail_proc)) { 4575 if (__kmp_affinity_verbose || __kmp_affinity_warnings) { 4576 KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY"); 4577 } 4578 __kmp_affinity_type = affinity_none; 4579 return; 4580 } 4581 4582 procarr = (int *)__kmp_allocate(sizeof(int) * nproc); 4583 for (int i = 0; i < nproc; i++) { 4584 procarr[i] = -1; 4585 } 4586 4587 int lastcore = -1; 4588 int inlastcore = 0; 4589 for (int i = 0; i < __kmp_avail_proc; i++) { 4590 int proc = address2os[i].second; 4591 int core = 4592 __kmp_affinity_find_core(address2os, i, depth - 1, core_level); 4593 4594 if (core == lastcore) { 4595 inlastcore++; 4596 } else { 4597 inlastcore = 0; 4598 } 4599 lastcore = core; 4600 4601 procarr[core * maxprocpercore + inlastcore] = proc; 4602 } 4603 } 4604 if (__kmp_affinity_compact >= depth) { 4605 __kmp_affinity_compact = depth - 1; 4606 } 4607 4608 sortAddresses: 4609 // Allocate the gtid->affinity mask table. 4610 if (__kmp_affinity_dups) { 4611 __kmp_affinity_num_masks = __kmp_avail_proc; 4612 } else { 4613 __kmp_affinity_num_masks = numUnique; 4614 } 4615 4616 #if OMP_40_ENABLED 4617 if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) && 4618 (__kmp_affinity_num_places > 0) && 4619 ((unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks)) { 4620 __kmp_affinity_num_masks = __kmp_affinity_num_places; 4621 } 4622 #endif 4623 4624 KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); 4625 4626 // Sort the address2os table according to the current setting of 4627 // __kmp_affinity_compact, then fill out __kmp_affinity_masks. 4628 qsort(address2os, __kmp_avail_proc, sizeof(*address2os), 4629 __kmp_affinity_cmp_Address_child_num); 4630 { 4631 int i; 4632 unsigned j; 4633 for (i = 0, j = 0; i < __kmp_avail_proc; i++) { 4634 if ((!__kmp_affinity_dups) && (!address2os[i].first.leader)) { 4635 continue; 4636 } 4637 unsigned osId = address2os[i].second; 4638 kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId); 4639 kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, j); 4640 KMP_ASSERT(KMP_CPU_ISSET(osId, src)); 4641 KMP_CPU_COPY(dest, src); 4642 if (++j >= __kmp_affinity_num_masks) { 4643 break; 4644 } 4645 } 4646 KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks); 4647 } 4648 break; 4649 4650 default: 4651 KMP_ASSERT2(0, "Unexpected affinity setting"); 4652 } 4653 4654 KMP_CPU_FREE_ARRAY(osId2Mask, maxIndex + 1); 4655 machine_hierarchy.init(address2os, __kmp_avail_proc); 4656 } 4657 #undef KMP_EXIT_AFF_NONE 4658 4659 void __kmp_affinity_initialize(void) { 4660 // Much of the code above was written assumming that if a machine was not 4661 // affinity capable, then __kmp_affinity_type == affinity_none. We now 4662 // explicitly represent this as __kmp_affinity_type == affinity_disabled. 4663 // There are too many checks for __kmp_affinity_type == affinity_none 4664 // in this code. Instead of trying to change them all, check if 4665 // __kmp_affinity_type == affinity_disabled, and if so, slam it with 4666 // affinity_none, call the real initialization routine, then restore 4667 // __kmp_affinity_type to affinity_disabled. 4668 int disabled = (__kmp_affinity_type == affinity_disabled); 4669 if (!KMP_AFFINITY_CAPABLE()) { 4670 KMP_ASSERT(disabled); 4671 } 4672 if (disabled) { 4673 __kmp_affinity_type = affinity_none; 4674 } 4675 __kmp_aux_affinity_initialize(); 4676 if (disabled) { 4677 __kmp_affinity_type = affinity_disabled; 4678 } 4679 } 4680 4681 void __kmp_affinity_uninitialize(void) { 4682 if (__kmp_affinity_masks != NULL) { 4683 KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); 4684 __kmp_affinity_masks = NULL; 4685 } 4686 if (__kmp_affin_fullMask != NULL) { 4687 KMP_CPU_FREE(__kmp_affin_fullMask); 4688 __kmp_affin_fullMask = NULL; 4689 } 4690 __kmp_affinity_num_masks = 0; 4691 __kmp_affinity_type = affinity_default; 4692 #if OMP_40_ENABLED 4693 __kmp_affinity_num_places = 0; 4694 #endif 4695 if (__kmp_affinity_proclist != NULL) { 4696 __kmp_free(__kmp_affinity_proclist); 4697 __kmp_affinity_proclist = NULL; 4698 } 4699 if (address2os != NULL) { 4700 __kmp_free(address2os); 4701 address2os = NULL; 4702 } 4703 if (procarr != NULL) { 4704 __kmp_free(procarr); 4705 procarr = NULL; 4706 } 4707 #if KMP_USE_HWLOC 4708 if (__kmp_hwloc_topology != NULL) { 4709 hwloc_topology_destroy(__kmp_hwloc_topology); 4710 __kmp_hwloc_topology = NULL; 4711 } 4712 #endif 4713 KMPAffinity::destroy_api(); 4714 } 4715 4716 void __kmp_affinity_set_init_mask(int gtid, int isa_root) { 4717 if (!KMP_AFFINITY_CAPABLE()) { 4718 return; 4719 } 4720 4721 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); 4722 if (th->th.th_affin_mask == NULL) { 4723 KMP_CPU_ALLOC(th->th.th_affin_mask); 4724 } else { 4725 KMP_CPU_ZERO(th->th.th_affin_mask); 4726 } 4727 4728 // Copy the thread mask to the kmp_info_t strucuture. If 4729 // __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one that 4730 // has all of the OS proc ids set, or if __kmp_affinity_respect_mask is set, 4731 // then the full mask is the same as the mask of the initialization thread. 4732 kmp_affin_mask_t *mask; 4733 int i; 4734 4735 #if OMP_40_ENABLED 4736 if (KMP_AFFINITY_NON_PROC_BIND) 4737 #endif 4738 { 4739 if ((__kmp_affinity_type == affinity_none) || 4740 (__kmp_affinity_type == affinity_balanced)) { 4741 #if KMP_GROUP_AFFINITY 4742 if (__kmp_num_proc_groups > 1) { 4743 return; 4744 } 4745 #endif 4746 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4747 i = 0; 4748 mask = __kmp_affin_fullMask; 4749 } else { 4750 KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0); 4751 i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks; 4752 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); 4753 } 4754 } 4755 #if OMP_40_ENABLED 4756 else { 4757 if ((!isa_root) || 4758 (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) { 4759 #if KMP_GROUP_AFFINITY 4760 if (__kmp_num_proc_groups > 1) { 4761 return; 4762 } 4763 #endif 4764 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4765 i = KMP_PLACE_ALL; 4766 mask = __kmp_affin_fullMask; 4767 } else { 4768 // int i = some hash function or just a counter that doesn't 4769 // always start at 0. Use gtid for now. 4770 KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0); 4771 i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks; 4772 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); 4773 } 4774 } 4775 #endif 4776 4777 #if OMP_40_ENABLED 4778 th->th.th_current_place = i; 4779 if (isa_root) { 4780 th->th.th_new_place = i; 4781 th->th.th_first_place = 0; 4782 th->th.th_last_place = __kmp_affinity_num_masks - 1; 4783 } else if (KMP_AFFINITY_NON_PROC_BIND) { 4784 // When using a Non-OMP_PROC_BIND affinity method, 4785 // set all threads' place-partition-var to the entire place list 4786 th->th.th_first_place = 0; 4787 th->th.th_last_place = __kmp_affinity_num_masks - 1; 4788 } 4789 4790 if (i == KMP_PLACE_ALL) { 4791 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n", 4792 gtid)); 4793 } else { 4794 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n", 4795 gtid, i)); 4796 } 4797 #else 4798 if (i == -1) { 4799 KA_TRACE( 4800 100, 4801 ("__kmp_affinity_set_init_mask: binding T#%d to __kmp_affin_fullMask\n", 4802 gtid)); 4803 } else { 4804 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to mask %d\n", 4805 gtid, i)); 4806 } 4807 #endif /* OMP_40_ENABLED */ 4808 4809 KMP_CPU_COPY(th->th.th_affin_mask, mask); 4810 4811 if (__kmp_affinity_verbose 4812 /* to avoid duplicate printing (will be correctly printed on barrier) */ 4813 && (__kmp_affinity_type == affinity_none || 4814 (i != KMP_PLACE_ALL && __kmp_affinity_type != affinity_balanced))) { 4815 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4816 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4817 th->th.th_affin_mask); 4818 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), 4819 __kmp_gettid(), gtid, buf); 4820 } 4821 4822 #if KMP_OS_WINDOWS 4823 // On Windows* OS, the process affinity mask might have changed. If the user 4824 // didn't request affinity and this call fails, just continue silently. 4825 // See CQ171393. 4826 if (__kmp_affinity_type == affinity_none) { 4827 __kmp_set_system_affinity(th->th.th_affin_mask, FALSE); 4828 } else 4829 #endif 4830 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); 4831 } 4832 4833 #if OMP_40_ENABLED 4834 4835 void __kmp_affinity_set_place(int gtid) { 4836 if (!KMP_AFFINITY_CAPABLE()) { 4837 return; 4838 } 4839 4840 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); 4841 4842 KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current " 4843 "place = %d)\n", 4844 gtid, th->th.th_new_place, th->th.th_current_place)); 4845 4846 // Check that the new place is within this thread's partition. 4847 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4848 KMP_ASSERT(th->th.th_new_place >= 0); 4849 KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks); 4850 if (th->th.th_first_place <= th->th.th_last_place) { 4851 KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) && 4852 (th->th.th_new_place <= th->th.th_last_place)); 4853 } else { 4854 KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) || 4855 (th->th.th_new_place >= th->th.th_last_place)); 4856 } 4857 4858 // Copy the thread mask to the kmp_info_t strucuture, 4859 // and set this thread's affinity. 4860 kmp_affin_mask_t *mask = 4861 KMP_CPU_INDEX(__kmp_affinity_masks, th->th.th_new_place); 4862 KMP_CPU_COPY(th->th.th_affin_mask, mask); 4863 th->th.th_current_place = th->th.th_new_place; 4864 4865 if (__kmp_affinity_verbose) { 4866 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4867 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4868 th->th.th_affin_mask); 4869 KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(), 4870 __kmp_gettid(), gtid, buf); 4871 } 4872 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); 4873 } 4874 4875 #endif /* OMP_40_ENABLED */ 4876 4877 int __kmp_aux_set_affinity(void **mask) { 4878 int gtid; 4879 kmp_info_t *th; 4880 int retval; 4881 4882 if (!KMP_AFFINITY_CAPABLE()) { 4883 return -1; 4884 } 4885 4886 gtid = __kmp_entry_gtid(); 4887 KA_TRACE(1000, (""); { 4888 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4889 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4890 (kmp_affin_mask_t *)(*mask)); 4891 __kmp_debug_printf( 4892 "kmp_set_affinity: setting affinity mask for thread %d = %s\n", gtid, 4893 buf); 4894 }); 4895 4896 if (__kmp_env_consistency_check) { 4897 if ((mask == NULL) || (*mask == NULL)) { 4898 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4899 } else { 4900 unsigned proc; 4901 int num_procs = 0; 4902 4903 KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) { 4904 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 4905 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4906 } 4907 if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) { 4908 continue; 4909 } 4910 num_procs++; 4911 } 4912 if (num_procs == 0) { 4913 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4914 } 4915 4916 #if KMP_GROUP_AFFINITY 4917 if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) { 4918 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4919 } 4920 #endif /* KMP_GROUP_AFFINITY */ 4921 } 4922 } 4923 4924 th = __kmp_threads[gtid]; 4925 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4926 retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); 4927 if (retval == 0) { 4928 KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask)); 4929 } 4930 4931 #if OMP_40_ENABLED 4932 th->th.th_current_place = KMP_PLACE_UNDEFINED; 4933 th->th.th_new_place = KMP_PLACE_UNDEFINED; 4934 th->th.th_first_place = 0; 4935 th->th.th_last_place = __kmp_affinity_num_masks - 1; 4936 4937 // Turn off 4.0 affinity for the current tread at this parallel level. 4938 th->th.th_current_task->td_icvs.proc_bind = proc_bind_false; 4939 #endif 4940 4941 return retval; 4942 } 4943 4944 int __kmp_aux_get_affinity(void **mask) { 4945 int gtid; 4946 int retval; 4947 kmp_info_t *th; 4948 4949 if (!KMP_AFFINITY_CAPABLE()) { 4950 return -1; 4951 } 4952 4953 gtid = __kmp_entry_gtid(); 4954 th = __kmp_threads[gtid]; 4955 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4956 4957 KA_TRACE(1000, (""); { 4958 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4959 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4960 th->th.th_affin_mask); 4961 __kmp_printf("kmp_get_affinity: stored affinity mask for thread %d = %s\n", 4962 gtid, buf); 4963 }); 4964 4965 if (__kmp_env_consistency_check) { 4966 if ((mask == NULL) || (*mask == NULL)) { 4967 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity"); 4968 } 4969 } 4970 4971 #if !KMP_OS_WINDOWS 4972 4973 retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); 4974 KA_TRACE(1000, (""); { 4975 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4976 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4977 (kmp_affin_mask_t *)(*mask)); 4978 __kmp_printf("kmp_get_affinity: system affinity mask for thread %d = %s\n", 4979 gtid, buf); 4980 }); 4981 return retval; 4982 4983 #else 4984 4985 KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask); 4986 return 0; 4987 4988 #endif /* KMP_OS_WINDOWS */ 4989 } 4990 4991 int __kmp_aux_get_affinity_max_proc() { 4992 if (!KMP_AFFINITY_CAPABLE()) { 4993 return 0; 4994 } 4995 #if KMP_GROUP_AFFINITY 4996 if (__kmp_num_proc_groups > 1) { 4997 return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT); 4998 } 4999 #endif 5000 return __kmp_xproc; 5001 } 5002 5003 int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) { 5004 if (!KMP_AFFINITY_CAPABLE()) { 5005 return -1; 5006 } 5007 5008 KA_TRACE(1000, (""); { 5009 int gtid = __kmp_entry_gtid(); 5010 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5011 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5012 (kmp_affin_mask_t *)(*mask)); 5013 __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in " 5014 "affinity mask for thread %d = %s\n", 5015 proc, gtid, buf); 5016 }); 5017 5018 if (__kmp_env_consistency_check) { 5019 if ((mask == NULL) || (*mask == NULL)) { 5020 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc"); 5021 } 5022 } 5023 5024 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 5025 return -1; 5026 } 5027 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 5028 return -2; 5029 } 5030 5031 KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask)); 5032 return 0; 5033 } 5034 5035 int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) { 5036 if (!KMP_AFFINITY_CAPABLE()) { 5037 return -1; 5038 } 5039 5040 KA_TRACE(1000, (""); { 5041 int gtid = __kmp_entry_gtid(); 5042 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5043 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5044 (kmp_affin_mask_t *)(*mask)); 5045 __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in " 5046 "affinity mask for thread %d = %s\n", 5047 proc, gtid, buf); 5048 }); 5049 5050 if (__kmp_env_consistency_check) { 5051 if ((mask == NULL) || (*mask == NULL)) { 5052 KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc"); 5053 } 5054 } 5055 5056 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 5057 return -1; 5058 } 5059 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 5060 return -2; 5061 } 5062 5063 KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask)); 5064 return 0; 5065 } 5066 5067 int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) { 5068 if (!KMP_AFFINITY_CAPABLE()) { 5069 return -1; 5070 } 5071 5072 KA_TRACE(1000, (""); { 5073 int gtid = __kmp_entry_gtid(); 5074 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5075 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5076 (kmp_affin_mask_t *)(*mask)); 5077 __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in " 5078 "affinity mask for thread %d = %s\n", 5079 proc, gtid, buf); 5080 }); 5081 5082 if (__kmp_env_consistency_check) { 5083 if ((mask == NULL) || (*mask == NULL)) { 5084 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc"); 5085 } 5086 } 5087 5088 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 5089 return -1; 5090 } 5091 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 5092 return 0; 5093 } 5094 5095 return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask)); 5096 } 5097 5098 // Dynamic affinity settings - Affinity balanced 5099 void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) { 5100 KMP_DEBUG_ASSERT(th); 5101 bool fine_gran = true; 5102 int tid = th->th.th_info.ds.ds_tid; 5103 5104 switch (__kmp_affinity_gran) { 5105 case affinity_gran_fine: 5106 case affinity_gran_thread: 5107 break; 5108 case affinity_gran_core: 5109 if (__kmp_nThreadsPerCore > 1) { 5110 fine_gran = false; 5111 } 5112 break; 5113 case affinity_gran_package: 5114 if (nCoresPerPkg > 1) { 5115 fine_gran = false; 5116 } 5117 break; 5118 default: 5119 fine_gran = false; 5120 } 5121 5122 if (__kmp_affinity_uniform_topology()) { 5123 int coreID; 5124 int threadID; 5125 // Number of hyper threads per core in HT machine 5126 int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores; 5127 // Number of cores 5128 int ncores = __kmp_ncores; 5129 if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) { 5130 __kmp_nth_per_core = __kmp_avail_proc / nPackages; 5131 ncores = nPackages; 5132 } 5133 // How many threads will be bound to each core 5134 int chunk = nthreads / ncores; 5135 // How many cores will have an additional thread bound to it - "big cores" 5136 int big_cores = nthreads % ncores; 5137 // Number of threads on the big cores 5138 int big_nth = (chunk + 1) * big_cores; 5139 if (tid < big_nth) { 5140 coreID = tid / (chunk + 1); 5141 threadID = (tid % (chunk + 1)) % __kmp_nth_per_core; 5142 } else { // tid >= big_nth 5143 coreID = (tid - big_cores) / chunk; 5144 threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core; 5145 } 5146 5147 KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(), 5148 "Illegal set affinity operation when not capable"); 5149 5150 kmp_affin_mask_t *mask = th->th.th_affin_mask; 5151 KMP_CPU_ZERO(mask); 5152 5153 if (fine_gran) { 5154 int osID = address2os[coreID * __kmp_nth_per_core + threadID].second; 5155 KMP_CPU_SET(osID, mask); 5156 } else { 5157 for (int i = 0; i < __kmp_nth_per_core; i++) { 5158 int osID; 5159 osID = address2os[coreID * __kmp_nth_per_core + i].second; 5160 KMP_CPU_SET(osID, mask); 5161 } 5162 } 5163 if (__kmp_affinity_verbose) { 5164 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5165 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); 5166 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), 5167 __kmp_gettid(), tid, buf); 5168 } 5169 __kmp_set_system_affinity(mask, TRUE); 5170 } else { // Non-uniform topology 5171 5172 kmp_affin_mask_t *mask = th->th.th_affin_mask; 5173 KMP_CPU_ZERO(mask); 5174 5175 int core_level = __kmp_affinity_find_core_level( 5176 address2os, __kmp_avail_proc, __kmp_aff_depth - 1); 5177 int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc, 5178 __kmp_aff_depth - 1, core_level); 5179 int nth_per_core = __kmp_affinity_max_proc_per_core( 5180 address2os, __kmp_avail_proc, __kmp_aff_depth - 1, core_level); 5181 5182 // For performance gain consider the special case nthreads == 5183 // __kmp_avail_proc 5184 if (nthreads == __kmp_avail_proc) { 5185 if (fine_gran) { 5186 int osID = address2os[tid].second; 5187 KMP_CPU_SET(osID, mask); 5188 } else { 5189 int core = __kmp_affinity_find_core(address2os, tid, 5190 __kmp_aff_depth - 1, core_level); 5191 for (int i = 0; i < __kmp_avail_proc; i++) { 5192 int osID = address2os[i].second; 5193 if (__kmp_affinity_find_core(address2os, i, __kmp_aff_depth - 1, 5194 core_level) == core) { 5195 KMP_CPU_SET(osID, mask); 5196 } 5197 } 5198 } 5199 } else if (nthreads <= ncores) { 5200 5201 int core = 0; 5202 for (int i = 0; i < ncores; i++) { 5203 // Check if this core from procarr[] is in the mask 5204 int in_mask = 0; 5205 for (int j = 0; j < nth_per_core; j++) { 5206 if (procarr[i * nth_per_core + j] != -1) { 5207 in_mask = 1; 5208 break; 5209 } 5210 } 5211 if (in_mask) { 5212 if (tid == core) { 5213 for (int j = 0; j < nth_per_core; j++) { 5214 int osID = procarr[i * nth_per_core + j]; 5215 if (osID != -1) { 5216 KMP_CPU_SET(osID, mask); 5217 // For fine granularity it is enough to set the first available 5218 // osID for this core 5219 if (fine_gran) { 5220 break; 5221 } 5222 } 5223 } 5224 break; 5225 } else { 5226 core++; 5227 } 5228 } 5229 } 5230 } else { // nthreads > ncores 5231 // Array to save the number of processors at each core 5232 int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores); 5233 // Array to save the number of cores with "x" available processors; 5234 int *ncores_with_x_procs = 5235 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); 5236 // Array to save the number of cores with # procs from x to nth_per_core 5237 int *ncores_with_x_to_max_procs = 5238 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); 5239 5240 for (int i = 0; i <= nth_per_core; i++) { 5241 ncores_with_x_procs[i] = 0; 5242 ncores_with_x_to_max_procs[i] = 0; 5243 } 5244 5245 for (int i = 0; i < ncores; i++) { 5246 int cnt = 0; 5247 for (int j = 0; j < nth_per_core; j++) { 5248 if (procarr[i * nth_per_core + j] != -1) { 5249 cnt++; 5250 } 5251 } 5252 nproc_at_core[i] = cnt; 5253 ncores_with_x_procs[cnt]++; 5254 } 5255 5256 for (int i = 0; i <= nth_per_core; i++) { 5257 for (int j = i; j <= nth_per_core; j++) { 5258 ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j]; 5259 } 5260 } 5261 5262 // Max number of processors 5263 int nproc = nth_per_core * ncores; 5264 // An array to keep number of threads per each context 5265 int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc); 5266 for (int i = 0; i < nproc; i++) { 5267 newarr[i] = 0; 5268 } 5269 5270 int nth = nthreads; 5271 int flag = 0; 5272 while (nth > 0) { 5273 for (int j = 1; j <= nth_per_core; j++) { 5274 int cnt = ncores_with_x_to_max_procs[j]; 5275 for (int i = 0; i < ncores; i++) { 5276 // Skip the core with 0 processors 5277 if (nproc_at_core[i] == 0) { 5278 continue; 5279 } 5280 for (int k = 0; k < nth_per_core; k++) { 5281 if (procarr[i * nth_per_core + k] != -1) { 5282 if (newarr[i * nth_per_core + k] == 0) { 5283 newarr[i * nth_per_core + k] = 1; 5284 cnt--; 5285 nth--; 5286 break; 5287 } else { 5288 if (flag != 0) { 5289 newarr[i * nth_per_core + k]++; 5290 cnt--; 5291 nth--; 5292 break; 5293 } 5294 } 5295 } 5296 } 5297 if (cnt == 0 || nth == 0) { 5298 break; 5299 } 5300 } 5301 if (nth == 0) { 5302 break; 5303 } 5304 } 5305 flag = 1; 5306 } 5307 int sum = 0; 5308 for (int i = 0; i < nproc; i++) { 5309 sum += newarr[i]; 5310 if (sum > tid) { 5311 if (fine_gran) { 5312 int osID = procarr[i]; 5313 KMP_CPU_SET(osID, mask); 5314 } else { 5315 int coreID = i / nth_per_core; 5316 for (int ii = 0; ii < nth_per_core; ii++) { 5317 int osID = procarr[coreID * nth_per_core + ii]; 5318 if (osID != -1) { 5319 KMP_CPU_SET(osID, mask); 5320 } 5321 } 5322 } 5323 break; 5324 } 5325 } 5326 __kmp_free(newarr); 5327 } 5328 5329 if (__kmp_affinity_verbose) { 5330 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5331 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); 5332 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), 5333 __kmp_gettid(), tid, buf); 5334 } 5335 __kmp_set_system_affinity(mask, TRUE); 5336 } 5337 } 5338 5339 #if KMP_OS_LINUX 5340 // We don't need this entry for Windows because 5341 // there is GetProcessAffinityMask() api 5342 // 5343 // The intended usage is indicated by these steps: 5344 // 1) The user gets the current affinity mask 5345 // 2) Then sets the affinity by calling this function 5346 // 3) Error check the return value 5347 // 4) Use non-OpenMP parallelization 5348 // 5) Reset the affinity to what was stored in step 1) 5349 #ifdef __cplusplus 5350 extern "C" 5351 #endif 5352 int 5353 kmp_set_thread_affinity_mask_initial() 5354 // the function returns 0 on success, 5355 // -1 if we cannot bind thread 5356 // >0 (errno) if an error happened during binding 5357 { 5358 int gtid = __kmp_get_gtid(); 5359 if (gtid < 0) { 5360 // Do not touch non-omp threads 5361 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5362 "non-omp thread, returning\n")); 5363 return -1; 5364 } 5365 if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) { 5366 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5367 "affinity not initialized, returning\n")); 5368 return -1; 5369 } 5370 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5371 "set full mask for thread %d\n", 5372 gtid)); 5373 KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL); 5374 return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE); 5375 } 5376 #endif 5377 5378 #endif // KMP_AFFINITY_SUPPORTED 5379