1 /* 2 * kmp_affinity.cpp -- affinity management 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_i18n.h" 16 #include "kmp_io.h" 17 #include "kmp_str.h" 18 #include "kmp_wrapper_getpid.h" 19 #if KMP_USE_HIER_SCHED 20 #include "kmp_dispatch_hier.h" 21 #endif 22 #if KMP_USE_HWLOC 23 // Copied from hwloc 24 #define HWLOC_GROUP_KIND_INTEL_MODULE 102 25 #define HWLOC_GROUP_KIND_INTEL_TILE 103 26 #define HWLOC_GROUP_KIND_INTEL_DIE 104 27 #define HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP 220 28 #endif 29 #include <ctype.h> 30 31 // The machine topology 32 kmp_topology_t *__kmp_topology = nullptr; 33 // KMP_HW_SUBSET environment variable 34 kmp_hw_subset_t *__kmp_hw_subset = nullptr; 35 36 // Store the real or imagined machine hierarchy here 37 static hierarchy_info machine_hierarchy; 38 39 void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); } 40 41 void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) { 42 kmp_uint32 depth; 43 // The test below is true if affinity is available, but set to "none". Need to 44 // init on first use of hierarchical barrier. 45 if (TCR_1(machine_hierarchy.uninitialized)) 46 machine_hierarchy.init(nproc); 47 48 // Adjust the hierarchy in case num threads exceeds original 49 if (nproc > machine_hierarchy.base_num_threads) 50 machine_hierarchy.resize(nproc); 51 52 depth = machine_hierarchy.depth; 53 KMP_DEBUG_ASSERT(depth > 0); 54 55 thr_bar->depth = depth; 56 __kmp_type_convert(machine_hierarchy.numPerLevel[0] - 1, 57 &(thr_bar->base_leaf_kids)); 58 thr_bar->skip_per_level = machine_hierarchy.skipPerLevel; 59 } 60 61 static int nCoresPerPkg, nPackages; 62 static int __kmp_nThreadsPerCore; 63 #ifndef KMP_DFLT_NTH_CORES 64 static int __kmp_ncores; 65 #endif 66 67 const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural) { 68 switch (type) { 69 case KMP_HW_SOCKET: 70 return ((plural) ? KMP_I18N_STR(Sockets) : KMP_I18N_STR(Socket)); 71 case KMP_HW_DIE: 72 return ((plural) ? KMP_I18N_STR(Dice) : KMP_I18N_STR(Die)); 73 case KMP_HW_MODULE: 74 return ((plural) ? KMP_I18N_STR(Modules) : KMP_I18N_STR(Module)); 75 case KMP_HW_TILE: 76 return ((plural) ? KMP_I18N_STR(Tiles) : KMP_I18N_STR(Tile)); 77 case KMP_HW_NUMA: 78 return ((plural) ? KMP_I18N_STR(NumaDomains) : KMP_I18N_STR(NumaDomain)); 79 case KMP_HW_L3: 80 return ((plural) ? KMP_I18N_STR(L3Caches) : KMP_I18N_STR(L3Cache)); 81 case KMP_HW_L2: 82 return ((plural) ? KMP_I18N_STR(L2Caches) : KMP_I18N_STR(L2Cache)); 83 case KMP_HW_L1: 84 return ((plural) ? KMP_I18N_STR(L1Caches) : KMP_I18N_STR(L1Cache)); 85 case KMP_HW_LLC: 86 return ((plural) ? KMP_I18N_STR(LLCaches) : KMP_I18N_STR(LLCache)); 87 case KMP_HW_CORE: 88 return ((plural) ? KMP_I18N_STR(Cores) : KMP_I18N_STR(Core)); 89 case KMP_HW_THREAD: 90 return ((plural) ? KMP_I18N_STR(Threads) : KMP_I18N_STR(Thread)); 91 case KMP_HW_PROC_GROUP: 92 return ((plural) ? KMP_I18N_STR(ProcGroups) : KMP_I18N_STR(ProcGroup)); 93 } 94 return KMP_I18N_STR(Unknown); 95 } 96 97 const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural) { 98 switch (type) { 99 case KMP_HW_SOCKET: 100 return ((plural) ? "sockets" : "socket"); 101 case KMP_HW_DIE: 102 return ((plural) ? "dice" : "die"); 103 case KMP_HW_MODULE: 104 return ((plural) ? "modules" : "module"); 105 case KMP_HW_TILE: 106 return ((plural) ? "tiles" : "tile"); 107 case KMP_HW_NUMA: 108 return ((plural) ? "numa_domains" : "numa_domain"); 109 case KMP_HW_L3: 110 return ((plural) ? "l3_caches" : "l3_cache"); 111 case KMP_HW_L2: 112 return ((plural) ? "l2_caches" : "l2_cache"); 113 case KMP_HW_L1: 114 return ((plural) ? "l1_caches" : "l1_cache"); 115 case KMP_HW_LLC: 116 return ((plural) ? "ll_caches" : "ll_cache"); 117 case KMP_HW_CORE: 118 return ((plural) ? "cores" : "core"); 119 case KMP_HW_THREAD: 120 return ((plural) ? "threads" : "thread"); 121 case KMP_HW_PROC_GROUP: 122 return ((plural) ? "proc_groups" : "proc_group"); 123 } 124 return ((plural) ? "unknowns" : "unknown"); 125 } 126 127 const char *__kmp_hw_get_core_type_string(kmp_hw_core_type_t type) { 128 switch (type) { 129 case KMP_HW_CORE_TYPE_UNKNOWN: 130 return "unknown"; 131 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 132 case KMP_HW_CORE_TYPE_ATOM: 133 return "Intel Atom(R) processor"; 134 case KMP_HW_CORE_TYPE_CORE: 135 return "Intel(R) Core(TM) processor"; 136 #endif 137 } 138 return "unknown"; 139 } 140 141 //////////////////////////////////////////////////////////////////////////////// 142 // kmp_hw_thread_t methods 143 int kmp_hw_thread_t::compare_ids(const void *a, const void *b) { 144 const kmp_hw_thread_t *ahwthread = (const kmp_hw_thread_t *)a; 145 const kmp_hw_thread_t *bhwthread = (const kmp_hw_thread_t *)b; 146 int depth = __kmp_topology->get_depth(); 147 for (int level = 0; level < depth; ++level) { 148 if (ahwthread->ids[level] < bhwthread->ids[level]) 149 return -1; 150 else if (ahwthread->ids[level] > bhwthread->ids[level]) 151 return 1; 152 } 153 if (ahwthread->os_id < bhwthread->os_id) 154 return -1; 155 else if (ahwthread->os_id > bhwthread->os_id) 156 return 1; 157 return 0; 158 } 159 160 #if KMP_AFFINITY_SUPPORTED 161 int kmp_hw_thread_t::compare_compact(const void *a, const void *b) { 162 int i; 163 const kmp_hw_thread_t *aa = (const kmp_hw_thread_t *)a; 164 const kmp_hw_thread_t *bb = (const kmp_hw_thread_t *)b; 165 int depth = __kmp_topology->get_depth(); 166 KMP_DEBUG_ASSERT(__kmp_affinity_compact >= 0); 167 KMP_DEBUG_ASSERT(__kmp_affinity_compact <= depth); 168 for (i = 0; i < __kmp_affinity_compact; i++) { 169 int j = depth - i - 1; 170 if (aa->sub_ids[j] < bb->sub_ids[j]) 171 return -1; 172 if (aa->sub_ids[j] > bb->sub_ids[j]) 173 return 1; 174 } 175 for (; i < depth; i++) { 176 int j = i - __kmp_affinity_compact; 177 if (aa->sub_ids[j] < bb->sub_ids[j]) 178 return -1; 179 if (aa->sub_ids[j] > bb->sub_ids[j]) 180 return 1; 181 } 182 return 0; 183 } 184 #endif 185 186 void kmp_hw_thread_t::print() const { 187 int depth = __kmp_topology->get_depth(); 188 printf("%4d ", os_id); 189 for (int i = 0; i < depth; ++i) { 190 printf("%4d ", ids[i]); 191 } 192 if (attrs) { 193 if (attrs.is_core_type_valid()) 194 printf(" (%s)", __kmp_hw_get_core_type_string(attrs.get_core_type())); 195 if (attrs.is_core_eff_valid()) 196 printf(" (eff=%d)", attrs.get_core_eff()); 197 } 198 printf("\n"); 199 } 200 201 //////////////////////////////////////////////////////////////////////////////// 202 // kmp_topology_t methods 203 204 // Add a layer to the topology based on the ids. Assume the topology 205 // is perfectly nested (i.e., so no object has more than one parent) 206 void kmp_topology_t::_insert_layer(kmp_hw_t type, const int *ids) { 207 // Figure out where the layer should go by comparing the ids of the current 208 // layers with the new ids 209 int target_layer; 210 int previous_id = kmp_hw_thread_t::UNKNOWN_ID; 211 int previous_new_id = kmp_hw_thread_t::UNKNOWN_ID; 212 213 // Start from the highest layer and work down to find target layer 214 // If new layer is equal to another layer then put the new layer above 215 for (target_layer = 0; target_layer < depth; ++target_layer) { 216 bool layers_equal = true; 217 bool strictly_above_target_layer = false; 218 for (int i = 0; i < num_hw_threads; ++i) { 219 int id = hw_threads[i].ids[target_layer]; 220 int new_id = ids[i]; 221 if (id != previous_id && new_id == previous_new_id) { 222 // Found the layer we are strictly above 223 strictly_above_target_layer = true; 224 layers_equal = false; 225 break; 226 } else if (id == previous_id && new_id != previous_new_id) { 227 // Found a layer we are below. Move to next layer and check. 228 layers_equal = false; 229 break; 230 } 231 previous_id = id; 232 previous_new_id = new_id; 233 } 234 if (strictly_above_target_layer || layers_equal) 235 break; 236 } 237 238 // Found the layer we are above. Now move everything to accommodate the new 239 // layer. And put the new ids and type into the topology. 240 for (int i = depth - 1, j = depth; i >= target_layer; --i, --j) 241 types[j] = types[i]; 242 types[target_layer] = type; 243 for (int k = 0; k < num_hw_threads; ++k) { 244 for (int i = depth - 1, j = depth; i >= target_layer; --i, --j) 245 hw_threads[k].ids[j] = hw_threads[k].ids[i]; 246 hw_threads[k].ids[target_layer] = ids[k]; 247 } 248 equivalent[type] = type; 249 depth++; 250 } 251 252 #if KMP_GROUP_AFFINITY 253 // Insert the Windows Processor Group structure into the topology 254 void kmp_topology_t::_insert_windows_proc_groups() { 255 // Do not insert the processor group structure for a single group 256 if (__kmp_num_proc_groups == 1) 257 return; 258 kmp_affin_mask_t *mask; 259 int *ids = (int *)__kmp_allocate(sizeof(int) * num_hw_threads); 260 KMP_CPU_ALLOC(mask); 261 for (int i = 0; i < num_hw_threads; ++i) { 262 KMP_CPU_ZERO(mask); 263 KMP_CPU_SET(hw_threads[i].os_id, mask); 264 ids[i] = __kmp_get_proc_group(mask); 265 } 266 KMP_CPU_FREE(mask); 267 _insert_layer(KMP_HW_PROC_GROUP, ids); 268 __kmp_free(ids); 269 } 270 #endif 271 272 // Remove layers that don't add information to the topology. 273 // This is done by having the layer take on the id = UNKNOWN_ID (-1) 274 void kmp_topology_t::_remove_radix1_layers() { 275 int preference[KMP_HW_LAST]; 276 int top_index1, top_index2; 277 // Set up preference associative array 278 preference[KMP_HW_SOCKET] = 110; 279 preference[KMP_HW_PROC_GROUP] = 100; 280 preference[KMP_HW_CORE] = 95; 281 preference[KMP_HW_THREAD] = 90; 282 preference[KMP_HW_NUMA] = 85; 283 preference[KMP_HW_DIE] = 80; 284 preference[KMP_HW_TILE] = 75; 285 preference[KMP_HW_MODULE] = 73; 286 preference[KMP_HW_L3] = 70; 287 preference[KMP_HW_L2] = 65; 288 preference[KMP_HW_L1] = 60; 289 preference[KMP_HW_LLC] = 5; 290 top_index1 = 0; 291 top_index2 = 1; 292 while (top_index1 < depth - 1 && top_index2 < depth) { 293 kmp_hw_t type1 = types[top_index1]; 294 kmp_hw_t type2 = types[top_index2]; 295 KMP_ASSERT_VALID_HW_TYPE(type1); 296 KMP_ASSERT_VALID_HW_TYPE(type2); 297 // Do not allow the three main topology levels (sockets, cores, threads) to 298 // be compacted down 299 if ((type1 == KMP_HW_THREAD || type1 == KMP_HW_CORE || 300 type1 == KMP_HW_SOCKET) && 301 (type2 == KMP_HW_THREAD || type2 == KMP_HW_CORE || 302 type2 == KMP_HW_SOCKET)) { 303 top_index1 = top_index2++; 304 continue; 305 } 306 bool radix1 = true; 307 bool all_same = true; 308 int id1 = hw_threads[0].ids[top_index1]; 309 int id2 = hw_threads[0].ids[top_index2]; 310 int pref1 = preference[type1]; 311 int pref2 = preference[type2]; 312 for (int hwidx = 1; hwidx < num_hw_threads; ++hwidx) { 313 if (hw_threads[hwidx].ids[top_index1] == id1 && 314 hw_threads[hwidx].ids[top_index2] != id2) { 315 radix1 = false; 316 break; 317 } 318 if (hw_threads[hwidx].ids[top_index2] != id2) 319 all_same = false; 320 id1 = hw_threads[hwidx].ids[top_index1]; 321 id2 = hw_threads[hwidx].ids[top_index2]; 322 } 323 if (radix1) { 324 // Select the layer to remove based on preference 325 kmp_hw_t remove_type, keep_type; 326 int remove_layer, remove_layer_ids; 327 if (pref1 > pref2) { 328 remove_type = type2; 329 remove_layer = remove_layer_ids = top_index2; 330 keep_type = type1; 331 } else { 332 remove_type = type1; 333 remove_layer = remove_layer_ids = top_index1; 334 keep_type = type2; 335 } 336 // If all the indexes for the second (deeper) layer are the same. 337 // e.g., all are zero, then make sure to keep the first layer's ids 338 if (all_same) 339 remove_layer_ids = top_index2; 340 // Remove radix one type by setting the equivalence, removing the id from 341 // the hw threads and removing the layer from types and depth 342 set_equivalent_type(remove_type, keep_type); 343 for (int idx = 0; idx < num_hw_threads; ++idx) { 344 kmp_hw_thread_t &hw_thread = hw_threads[idx]; 345 for (int d = remove_layer_ids; d < depth - 1; ++d) 346 hw_thread.ids[d] = hw_thread.ids[d + 1]; 347 } 348 for (int idx = remove_layer; idx < depth - 1; ++idx) 349 types[idx] = types[idx + 1]; 350 depth--; 351 } else { 352 top_index1 = top_index2++; 353 } 354 } 355 KMP_ASSERT(depth > 0); 356 } 357 358 void kmp_topology_t::_set_last_level_cache() { 359 if (get_equivalent_type(KMP_HW_L3) != KMP_HW_UNKNOWN) 360 set_equivalent_type(KMP_HW_LLC, KMP_HW_L3); 361 else if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN) 362 set_equivalent_type(KMP_HW_LLC, KMP_HW_L2); 363 #if KMP_MIC_SUPPORTED 364 else if (__kmp_mic_type == mic3) { 365 if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN) 366 set_equivalent_type(KMP_HW_LLC, KMP_HW_L2); 367 else if (get_equivalent_type(KMP_HW_TILE) != KMP_HW_UNKNOWN) 368 set_equivalent_type(KMP_HW_LLC, KMP_HW_TILE); 369 // L2/Tile wasn't detected so just say L1 370 else 371 set_equivalent_type(KMP_HW_LLC, KMP_HW_L1); 372 } 373 #endif 374 else if (get_equivalent_type(KMP_HW_L1) != KMP_HW_UNKNOWN) 375 set_equivalent_type(KMP_HW_LLC, KMP_HW_L1); 376 // Fallback is to set last level cache to socket or core 377 if (get_equivalent_type(KMP_HW_LLC) == KMP_HW_UNKNOWN) { 378 if (get_equivalent_type(KMP_HW_SOCKET) != KMP_HW_UNKNOWN) 379 set_equivalent_type(KMP_HW_LLC, KMP_HW_SOCKET); 380 else if (get_equivalent_type(KMP_HW_CORE) != KMP_HW_UNKNOWN) 381 set_equivalent_type(KMP_HW_LLC, KMP_HW_CORE); 382 } 383 KMP_ASSERT(get_equivalent_type(KMP_HW_LLC) != KMP_HW_UNKNOWN); 384 } 385 386 // Gather the count of each topology layer and the ratio 387 void kmp_topology_t::_gather_enumeration_information() { 388 int previous_id[KMP_HW_LAST]; 389 int max[KMP_HW_LAST]; 390 391 for (int i = 0; i < depth; ++i) { 392 previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID; 393 max[i] = 0; 394 count[i] = 0; 395 ratio[i] = 0; 396 } 397 int core_level = get_level(KMP_HW_CORE); 398 for (int i = 0; i < num_hw_threads; ++i) { 399 kmp_hw_thread_t &hw_thread = hw_threads[i]; 400 for (int layer = 0; layer < depth; ++layer) { 401 int id = hw_thread.ids[layer]; 402 if (id != previous_id[layer]) { 403 // Add an additional increment to each count 404 for (int l = layer; l < depth; ++l) 405 count[l]++; 406 // Keep track of topology layer ratio statistics 407 max[layer]++; 408 for (int l = layer + 1; l < depth; ++l) { 409 if (max[l] > ratio[l]) 410 ratio[l] = max[l]; 411 max[l] = 1; 412 } 413 // Figure out the number of different core types 414 // and efficiencies for hybrid CPUs 415 if (__kmp_is_hybrid_cpu() && core_level >= 0 && layer <= core_level) { 416 if (hw_thread.attrs.is_core_eff_valid() && 417 hw_thread.attrs.core_eff >= num_core_efficiencies) { 418 // Because efficiencies can range from 0 to max efficiency - 1, 419 // the number of efficiencies is max efficiency + 1 420 num_core_efficiencies = hw_thread.attrs.core_eff + 1; 421 } 422 if (hw_thread.attrs.is_core_type_valid()) { 423 bool found = false; 424 for (int j = 0; j < num_core_types; ++j) { 425 if (hw_thread.attrs.get_core_type() == core_types[j]) { 426 found = true; 427 break; 428 } 429 } 430 if (!found) { 431 KMP_ASSERT(num_core_types < KMP_HW_MAX_NUM_CORE_TYPES); 432 core_types[num_core_types++] = hw_thread.attrs.get_core_type(); 433 } 434 } 435 } 436 break; 437 } 438 } 439 for (int layer = 0; layer < depth; ++layer) { 440 previous_id[layer] = hw_thread.ids[layer]; 441 } 442 } 443 for (int layer = 0; layer < depth; ++layer) { 444 if (max[layer] > ratio[layer]) 445 ratio[layer] = max[layer]; 446 } 447 } 448 449 int kmp_topology_t::_get_ncores_with_attr(const kmp_hw_attr_t &attr, 450 int above_level, 451 bool find_all) const { 452 int current, current_max; 453 int previous_id[KMP_HW_LAST]; 454 for (int i = 0; i < depth; ++i) 455 previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID; 456 int core_level = get_level(KMP_HW_CORE); 457 if (find_all) 458 above_level = -1; 459 KMP_ASSERT(above_level < core_level); 460 current_max = 0; 461 current = 0; 462 for (int i = 0; i < num_hw_threads; ++i) { 463 kmp_hw_thread_t &hw_thread = hw_threads[i]; 464 if (!find_all && hw_thread.ids[above_level] != previous_id[above_level]) { 465 if (current > current_max) 466 current_max = current; 467 current = hw_thread.attrs.contains(attr); 468 } else { 469 for (int level = above_level + 1; level <= core_level; ++level) { 470 if (hw_thread.ids[level] != previous_id[level]) { 471 if (hw_thread.attrs.contains(attr)) 472 current++; 473 break; 474 } 475 } 476 } 477 for (int level = 0; level < depth; ++level) 478 previous_id[level] = hw_thread.ids[level]; 479 } 480 if (current > current_max) 481 current_max = current; 482 return current_max; 483 } 484 485 // Find out if the topology is uniform 486 void kmp_topology_t::_discover_uniformity() { 487 int num = 1; 488 for (int level = 0; level < depth; ++level) 489 num *= ratio[level]; 490 flags.uniform = (num == count[depth - 1]); 491 } 492 493 // Set all the sub_ids for each hardware thread 494 void kmp_topology_t::_set_sub_ids() { 495 int previous_id[KMP_HW_LAST]; 496 int sub_id[KMP_HW_LAST]; 497 498 for (int i = 0; i < depth; ++i) { 499 previous_id[i] = -1; 500 sub_id[i] = -1; 501 } 502 for (int i = 0; i < num_hw_threads; ++i) { 503 kmp_hw_thread_t &hw_thread = hw_threads[i]; 504 // Setup the sub_id 505 for (int j = 0; j < depth; ++j) { 506 if (hw_thread.ids[j] != previous_id[j]) { 507 sub_id[j]++; 508 for (int k = j + 1; k < depth; ++k) { 509 sub_id[k] = 0; 510 } 511 break; 512 } 513 } 514 // Set previous_id 515 for (int j = 0; j < depth; ++j) { 516 previous_id[j] = hw_thread.ids[j]; 517 } 518 // Set the sub_ids field 519 for (int j = 0; j < depth; ++j) { 520 hw_thread.sub_ids[j] = sub_id[j]; 521 } 522 } 523 } 524 525 void kmp_topology_t::_set_globals() { 526 // Set nCoresPerPkg, nPackages, __kmp_nThreadsPerCore, __kmp_ncores 527 int core_level, thread_level, package_level; 528 package_level = get_level(KMP_HW_SOCKET); 529 #if KMP_GROUP_AFFINITY 530 if (package_level == -1) 531 package_level = get_level(KMP_HW_PROC_GROUP); 532 #endif 533 core_level = get_level(KMP_HW_CORE); 534 thread_level = get_level(KMP_HW_THREAD); 535 536 KMP_ASSERT(core_level != -1); 537 KMP_ASSERT(thread_level != -1); 538 539 __kmp_nThreadsPerCore = calculate_ratio(thread_level, core_level); 540 if (package_level != -1) { 541 nCoresPerPkg = calculate_ratio(core_level, package_level); 542 nPackages = get_count(package_level); 543 } else { 544 // assume one socket 545 nCoresPerPkg = get_count(core_level); 546 nPackages = 1; 547 } 548 #ifndef KMP_DFLT_NTH_CORES 549 __kmp_ncores = get_count(core_level); 550 #endif 551 } 552 553 kmp_topology_t *kmp_topology_t::allocate(int nproc, int ndepth, 554 const kmp_hw_t *types) { 555 kmp_topology_t *retval; 556 // Allocate all data in one large allocation 557 size_t size = sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc + 558 sizeof(int) * (size_t)KMP_HW_LAST * 3; 559 char *bytes = (char *)__kmp_allocate(size); 560 retval = (kmp_topology_t *)bytes; 561 if (nproc > 0) { 562 retval->hw_threads = (kmp_hw_thread_t *)(bytes + sizeof(kmp_topology_t)); 563 } else { 564 retval->hw_threads = nullptr; 565 } 566 retval->num_hw_threads = nproc; 567 retval->depth = ndepth; 568 int *arr = 569 (int *)(bytes + sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc); 570 retval->types = (kmp_hw_t *)arr; 571 retval->ratio = arr + (size_t)KMP_HW_LAST; 572 retval->count = arr + 2 * (size_t)KMP_HW_LAST; 573 retval->num_core_efficiencies = 0; 574 retval->num_core_types = 0; 575 for (int i = 0; i < KMP_HW_MAX_NUM_CORE_TYPES; ++i) 576 retval->core_types[i] = KMP_HW_CORE_TYPE_UNKNOWN; 577 KMP_FOREACH_HW_TYPE(type) { retval->equivalent[type] = KMP_HW_UNKNOWN; } 578 for (int i = 0; i < ndepth; ++i) { 579 retval->types[i] = types[i]; 580 retval->equivalent[types[i]] = types[i]; 581 } 582 return retval; 583 } 584 585 void kmp_topology_t::deallocate(kmp_topology_t *topology) { 586 if (topology) 587 __kmp_free(topology); 588 } 589 590 bool kmp_topology_t::check_ids() const { 591 // Assume ids have been sorted 592 if (num_hw_threads == 0) 593 return true; 594 for (int i = 1; i < num_hw_threads; ++i) { 595 kmp_hw_thread_t ¤t_thread = hw_threads[i]; 596 kmp_hw_thread_t &previous_thread = hw_threads[i - 1]; 597 bool unique = false; 598 for (int j = 0; j < depth; ++j) { 599 if (previous_thread.ids[j] != current_thread.ids[j]) { 600 unique = true; 601 break; 602 } 603 } 604 if (unique) 605 continue; 606 return false; 607 } 608 return true; 609 } 610 611 void kmp_topology_t::dump() const { 612 printf("***********************\n"); 613 printf("*** __kmp_topology: ***\n"); 614 printf("***********************\n"); 615 printf("* depth: %d\n", depth); 616 617 printf("* types: "); 618 for (int i = 0; i < depth; ++i) 619 printf("%15s ", __kmp_hw_get_keyword(types[i])); 620 printf("\n"); 621 622 printf("* ratio: "); 623 for (int i = 0; i < depth; ++i) { 624 printf("%15d ", ratio[i]); 625 } 626 printf("\n"); 627 628 printf("* count: "); 629 for (int i = 0; i < depth; ++i) { 630 printf("%15d ", count[i]); 631 } 632 printf("\n"); 633 634 printf("* num_core_eff: %d\n", num_core_efficiencies); 635 printf("* num_core_types: %d\n", num_core_types); 636 printf("* core_types: "); 637 for (int i = 0; i < num_core_types; ++i) 638 printf("%3d ", core_types[i]); 639 printf("\n"); 640 641 printf("* equivalent map:\n"); 642 KMP_FOREACH_HW_TYPE(i) { 643 const char *key = __kmp_hw_get_keyword(i); 644 const char *value = __kmp_hw_get_keyword(equivalent[i]); 645 printf("%-15s -> %-15s\n", key, value); 646 } 647 648 printf("* uniform: %s\n", (is_uniform() ? "Yes" : "No")); 649 650 printf("* num_hw_threads: %d\n", num_hw_threads); 651 printf("* hw_threads:\n"); 652 for (int i = 0; i < num_hw_threads; ++i) { 653 hw_threads[i].print(); 654 } 655 printf("***********************\n"); 656 } 657 658 void kmp_topology_t::print(const char *env_var) const { 659 kmp_str_buf_t buf; 660 int print_types_depth; 661 __kmp_str_buf_init(&buf); 662 kmp_hw_t print_types[KMP_HW_LAST + 2]; 663 664 // Num Available Threads 665 KMP_INFORM(AvailableOSProc, env_var, num_hw_threads); 666 667 // Uniform or not 668 if (is_uniform()) { 669 KMP_INFORM(Uniform, env_var); 670 } else { 671 KMP_INFORM(NonUniform, env_var); 672 } 673 674 // Equivalent types 675 KMP_FOREACH_HW_TYPE(type) { 676 kmp_hw_t eq_type = equivalent[type]; 677 if (eq_type != KMP_HW_UNKNOWN && eq_type != type) { 678 KMP_INFORM(AffEqualTopologyTypes, env_var, 679 __kmp_hw_get_catalog_string(type), 680 __kmp_hw_get_catalog_string(eq_type)); 681 } 682 } 683 684 // Quick topology 685 KMP_ASSERT(depth > 0 && depth <= (int)KMP_HW_LAST); 686 // Create a print types array that always guarantees printing 687 // the core and thread level 688 print_types_depth = 0; 689 for (int level = 0; level < depth; ++level) 690 print_types[print_types_depth++] = types[level]; 691 if (equivalent[KMP_HW_CORE] != KMP_HW_CORE) { 692 // Force in the core level for quick topology 693 if (print_types[print_types_depth - 1] == KMP_HW_THREAD) { 694 // Force core before thread e.g., 1 socket X 2 threads/socket 695 // becomes 1 socket X 1 core/socket X 2 threads/socket 696 print_types[print_types_depth - 1] = KMP_HW_CORE; 697 print_types[print_types_depth++] = KMP_HW_THREAD; 698 } else { 699 print_types[print_types_depth++] = KMP_HW_CORE; 700 } 701 } 702 // Always put threads at very end of quick topology 703 if (equivalent[KMP_HW_THREAD] != KMP_HW_THREAD) 704 print_types[print_types_depth++] = KMP_HW_THREAD; 705 706 __kmp_str_buf_clear(&buf); 707 kmp_hw_t numerator_type; 708 kmp_hw_t denominator_type = KMP_HW_UNKNOWN; 709 int core_level = get_level(KMP_HW_CORE); 710 int ncores = get_count(core_level); 711 712 for (int plevel = 0, level = 0; plevel < print_types_depth; ++plevel) { 713 int c; 714 bool plural; 715 numerator_type = print_types[plevel]; 716 KMP_ASSERT_VALID_HW_TYPE(numerator_type); 717 if (equivalent[numerator_type] != numerator_type) 718 c = 1; 719 else 720 c = get_ratio(level++); 721 plural = (c > 1); 722 if (plevel == 0) { 723 __kmp_str_buf_print(&buf, "%d %s", c, 724 __kmp_hw_get_catalog_string(numerator_type, plural)); 725 } else { 726 __kmp_str_buf_print(&buf, " x %d %s/%s", c, 727 __kmp_hw_get_catalog_string(numerator_type, plural), 728 __kmp_hw_get_catalog_string(denominator_type)); 729 } 730 denominator_type = numerator_type; 731 } 732 KMP_INFORM(TopologyGeneric, env_var, buf.str, ncores); 733 734 // Hybrid topology information 735 if (__kmp_is_hybrid_cpu()) { 736 for (int i = 0; i < num_core_types; ++i) { 737 kmp_hw_core_type_t core_type = core_types[i]; 738 kmp_hw_attr_t attr; 739 attr.clear(); 740 attr.set_core_type(core_type); 741 int ncores = get_ncores_with_attr(attr); 742 if (ncores > 0) { 743 KMP_INFORM(TopologyHybrid, env_var, ncores, 744 __kmp_hw_get_core_type_string(core_type)); 745 KMP_ASSERT(num_core_efficiencies <= KMP_HW_MAX_NUM_CORE_EFFS) 746 for (int eff = 0; eff < num_core_efficiencies; ++eff) { 747 attr.set_core_eff(eff); 748 int ncores_with_eff = get_ncores_with_attr(attr); 749 if (ncores_with_eff > 0) { 750 KMP_INFORM(TopologyHybridCoreEff, env_var, ncores_with_eff, eff); 751 } 752 } 753 } 754 } 755 } 756 757 if (num_hw_threads <= 0) { 758 __kmp_str_buf_free(&buf); 759 return; 760 } 761 762 // Full OS proc to hardware thread map 763 KMP_INFORM(OSProcToPhysicalThreadMap, env_var); 764 for (int i = 0; i < num_hw_threads; i++) { 765 __kmp_str_buf_clear(&buf); 766 for (int level = 0; level < depth; ++level) { 767 kmp_hw_t type = types[level]; 768 __kmp_str_buf_print(&buf, "%s ", __kmp_hw_get_catalog_string(type)); 769 __kmp_str_buf_print(&buf, "%d ", hw_threads[i].ids[level]); 770 } 771 if (__kmp_is_hybrid_cpu()) 772 __kmp_str_buf_print( 773 &buf, "(%s)", 774 __kmp_hw_get_core_type_string(hw_threads[i].attrs.get_core_type())); 775 KMP_INFORM(OSProcMapToPack, env_var, hw_threads[i].os_id, buf.str); 776 } 777 778 __kmp_str_buf_free(&buf); 779 } 780 781 void kmp_topology_t::canonicalize() { 782 #if KMP_GROUP_AFFINITY 783 _insert_windows_proc_groups(); 784 #endif 785 _remove_radix1_layers(); 786 _gather_enumeration_information(); 787 _discover_uniformity(); 788 _set_sub_ids(); 789 _set_globals(); 790 _set_last_level_cache(); 791 792 #if KMP_MIC_SUPPORTED 793 // Manually Add L2 = Tile equivalence 794 if (__kmp_mic_type == mic3) { 795 if (get_level(KMP_HW_L2) != -1) 796 set_equivalent_type(KMP_HW_TILE, KMP_HW_L2); 797 else if (get_level(KMP_HW_TILE) != -1) 798 set_equivalent_type(KMP_HW_L2, KMP_HW_TILE); 799 } 800 #endif 801 802 // Perform post canonicalization checking 803 KMP_ASSERT(depth > 0); 804 for (int level = 0; level < depth; ++level) { 805 // All counts, ratios, and types must be valid 806 KMP_ASSERT(count[level] > 0 && ratio[level] > 0); 807 KMP_ASSERT_VALID_HW_TYPE(types[level]); 808 // Detected types must point to themselves 809 KMP_ASSERT(equivalent[types[level]] == types[level]); 810 } 811 812 #if KMP_AFFINITY_SUPPORTED 813 // Set the number of affinity granularity levels 814 if (__kmp_affinity_gran_levels < 0) { 815 kmp_hw_t gran_type = get_equivalent_type(__kmp_affinity_gran); 816 // Check if user's granularity request is valid 817 if (gran_type == KMP_HW_UNKNOWN) { 818 // First try core, then thread, then package 819 kmp_hw_t gran_types[3] = {KMP_HW_CORE, KMP_HW_THREAD, KMP_HW_SOCKET}; 820 for (auto g : gran_types) { 821 if (__kmp_topology->get_equivalent_type(g) != KMP_HW_UNKNOWN) { 822 gran_type = g; 823 break; 824 } 825 } 826 KMP_ASSERT(gran_type != KMP_HW_UNKNOWN); 827 // Warn user what granularity setting will be used instead 828 KMP_WARNING(AffGranularityBad, "KMP_AFFINITY", 829 __kmp_hw_get_catalog_string(__kmp_affinity_gran), 830 __kmp_hw_get_catalog_string(gran_type)); 831 __kmp_affinity_gran = gran_type; 832 } 833 #if KMP_GROUP_AFFINITY 834 // If more than one processor group exists, and the level of 835 // granularity specified by the user is too coarse, then the 836 // granularity must be adjusted "down" to processor group affinity 837 // because threads can only exist within one processor group. 838 // For example, if a user sets granularity=socket and there are two 839 // processor groups that cover a socket, then the runtime must 840 // restrict the granularity down to the processor group level. 841 if (__kmp_num_proc_groups > 1) { 842 int gran_depth = __kmp_topology->get_level(gran_type); 843 int proc_group_depth = __kmp_topology->get_level(KMP_HW_PROC_GROUP); 844 if (gran_depth >= 0 && proc_group_depth >= 0 && 845 gran_depth < proc_group_depth) { 846 KMP_WARNING(AffGranTooCoarseProcGroup, "KMP_AFFINITY", 847 __kmp_hw_get_catalog_string(__kmp_affinity_gran)); 848 __kmp_affinity_gran = gran_type = KMP_HW_PROC_GROUP; 849 } 850 } 851 #endif 852 __kmp_affinity_gran_levels = 0; 853 for (int i = depth - 1; i >= 0 && get_type(i) != gran_type; --i) 854 __kmp_affinity_gran_levels++; 855 } 856 #endif // KMP_AFFINITY_SUPPORTED 857 } 858 859 // Canonicalize an explicit packages X cores/pkg X threads/core topology 860 void kmp_topology_t::canonicalize(int npackages, int ncores_per_pkg, 861 int nthreads_per_core, int ncores) { 862 int ndepth = 3; 863 depth = ndepth; 864 KMP_FOREACH_HW_TYPE(i) { equivalent[i] = KMP_HW_UNKNOWN; } 865 for (int level = 0; level < depth; ++level) { 866 count[level] = 0; 867 ratio[level] = 0; 868 } 869 count[0] = npackages; 870 count[1] = ncores; 871 count[2] = __kmp_xproc; 872 ratio[0] = npackages; 873 ratio[1] = ncores_per_pkg; 874 ratio[2] = nthreads_per_core; 875 equivalent[KMP_HW_SOCKET] = KMP_HW_SOCKET; 876 equivalent[KMP_HW_CORE] = KMP_HW_CORE; 877 equivalent[KMP_HW_THREAD] = KMP_HW_THREAD; 878 types[0] = KMP_HW_SOCKET; 879 types[1] = KMP_HW_CORE; 880 types[2] = KMP_HW_THREAD; 881 //__kmp_avail_proc = __kmp_xproc; 882 _discover_uniformity(); 883 } 884 885 // Represents running sub IDs for a single core attribute where 886 // attribute values have SIZE possibilities. 887 template <size_t SIZE, typename IndexFunc> struct kmp_sub_ids_t { 888 int last_level; // last level in topology to consider for sub_ids 889 int sub_id[SIZE]; // The sub ID for a given attribute value 890 int prev_sub_id[KMP_HW_LAST]; 891 IndexFunc indexer; 892 893 public: 894 kmp_sub_ids_t(int last_level) : last_level(last_level) { 895 KMP_ASSERT(last_level < KMP_HW_LAST); 896 for (size_t i = 0; i < SIZE; ++i) 897 sub_id[i] = -1; 898 for (size_t i = 0; i < KMP_HW_LAST; ++i) 899 prev_sub_id[i] = -1; 900 } 901 void update(const kmp_hw_thread_t &hw_thread) { 902 int idx = indexer(hw_thread); 903 KMP_ASSERT(idx < (int)SIZE); 904 for (int level = 0; level <= last_level; ++level) { 905 if (hw_thread.sub_ids[level] != prev_sub_id[level]) { 906 if (level < last_level) 907 sub_id[idx] = -1; 908 sub_id[idx]++; 909 break; 910 } 911 } 912 for (int level = 0; level <= last_level; ++level) 913 prev_sub_id[level] = hw_thread.sub_ids[level]; 914 } 915 int get_sub_id(const kmp_hw_thread_t &hw_thread) const { 916 return sub_id[indexer(hw_thread)]; 917 } 918 }; 919 920 static kmp_str_buf_t * 921 __kmp_hw_get_catalog_core_string(const kmp_hw_attr_t &attr, kmp_str_buf_t *buf, 922 bool plural) { 923 __kmp_str_buf_init(buf); 924 if (attr.is_core_type_valid()) 925 __kmp_str_buf_print(buf, "%s %s", 926 __kmp_hw_get_core_type_string(attr.get_core_type()), 927 __kmp_hw_get_catalog_string(KMP_HW_CORE, plural)); 928 else 929 __kmp_str_buf_print(buf, "%s eff=%d", 930 __kmp_hw_get_catalog_string(KMP_HW_CORE, plural), 931 attr.get_core_eff()); 932 return buf; 933 } 934 935 // Apply the KMP_HW_SUBSET envirable to the topology 936 // Returns true if KMP_HW_SUBSET filtered any processors 937 // otherwise, returns false 938 bool kmp_topology_t::filter_hw_subset() { 939 // If KMP_HW_SUBSET wasn't requested, then do nothing. 940 if (!__kmp_hw_subset) 941 return false; 942 943 // First, sort the KMP_HW_SUBSET items by the machine topology 944 __kmp_hw_subset->sort(); 945 946 // Check to see if KMP_HW_SUBSET is a valid subset of the detected topology 947 bool using_core_types = false; 948 bool using_core_effs = false; 949 int hw_subset_depth = __kmp_hw_subset->get_depth(); 950 kmp_hw_t specified[KMP_HW_LAST]; 951 int topology_levels[hw_subset_depth]; 952 KMP_ASSERT(hw_subset_depth > 0); 953 KMP_FOREACH_HW_TYPE(i) { specified[i] = KMP_HW_UNKNOWN; } 954 int core_level = get_level(KMP_HW_CORE); 955 for (int i = 0; i < hw_subset_depth; ++i) { 956 int max_count; 957 const kmp_hw_subset_t::item_t &item = __kmp_hw_subset->at(i); 958 int num = item.num[0]; 959 int offset = item.offset[0]; 960 kmp_hw_t type = item.type; 961 kmp_hw_t equivalent_type = equivalent[type]; 962 int level = get_level(type); 963 topology_levels[i] = level; 964 965 // Check to see if current layer is in detected machine topology 966 if (equivalent_type != KMP_HW_UNKNOWN) { 967 __kmp_hw_subset->at(i).type = equivalent_type; 968 } else { 969 KMP_WARNING(AffHWSubsetNotExistGeneric, 970 __kmp_hw_get_catalog_string(type)); 971 return false; 972 } 973 974 // Check to see if current layer has already been 975 // specified either directly or through an equivalent type 976 if (specified[equivalent_type] != KMP_HW_UNKNOWN) { 977 KMP_WARNING(AffHWSubsetEqvLayers, __kmp_hw_get_catalog_string(type), 978 __kmp_hw_get_catalog_string(specified[equivalent_type])); 979 return false; 980 } 981 specified[equivalent_type] = type; 982 983 // Check to see if each layer's num & offset parameters are valid 984 max_count = get_ratio(level); 985 if (max_count < 0 || num + offset > max_count) { 986 bool plural = (num > 1); 987 KMP_WARNING(AffHWSubsetManyGeneric, 988 __kmp_hw_get_catalog_string(type, plural)); 989 return false; 990 } 991 992 // Check to see if core attributes are consistent 993 if (core_level == level) { 994 // Determine which core attributes are specified 995 for (int j = 0; j < item.num_attrs; ++j) { 996 if (item.attr[j].is_core_type_valid()) 997 using_core_types = true; 998 if (item.attr[j].is_core_eff_valid()) 999 using_core_effs = true; 1000 } 1001 1002 // Check if using a single core attribute on non-hybrid arch. 1003 // Do not ignore all of KMP_HW_SUBSET, just ignore the attribute. 1004 // 1005 // Check if using multiple core attributes on non-hyrbid arch. 1006 // Ignore all of KMP_HW_SUBSET if this is the case. 1007 if ((using_core_effs || using_core_types) && !__kmp_is_hybrid_cpu()) { 1008 if (item.num_attrs == 1) { 1009 if (using_core_effs) { 1010 KMP_WARNING(AffHWSubsetIgnoringAttr, "efficiency"); 1011 } else { 1012 KMP_WARNING(AffHWSubsetIgnoringAttr, "core_type"); 1013 } 1014 using_core_effs = false; 1015 using_core_types = false; 1016 } else { 1017 KMP_WARNING(AffHWSubsetAttrsNonHybrid); 1018 return false; 1019 } 1020 } 1021 1022 // Check if using both core types and core efficiencies together 1023 if (using_core_types && using_core_effs) { 1024 KMP_WARNING(AffHWSubsetIncompat, "core_type", "efficiency"); 1025 return false; 1026 } 1027 1028 // Check that core efficiency values are valid 1029 if (using_core_effs) { 1030 for (int j = 0; j < item.num_attrs; ++j) { 1031 if (item.attr[j].is_core_eff_valid()) { 1032 int core_eff = item.attr[j].get_core_eff(); 1033 if (core_eff < 0 || core_eff >= num_core_efficiencies) { 1034 kmp_str_buf_t buf; 1035 __kmp_str_buf_init(&buf); 1036 __kmp_str_buf_print(&buf, "%d", item.attr[j].get_core_eff()); 1037 __kmp_msg(kmp_ms_warning, 1038 KMP_MSG(AffHWSubsetAttrInvalid, "efficiency", buf.str), 1039 KMP_HNT(ValidValuesRange, 0, num_core_efficiencies - 1), 1040 __kmp_msg_null); 1041 __kmp_str_buf_free(&buf); 1042 return false; 1043 } 1044 } 1045 } 1046 } 1047 1048 // Check that the number of requested cores with attributes is valid 1049 if (using_core_types || using_core_effs) { 1050 for (int j = 0; j < item.num_attrs; ++j) { 1051 int num = item.num[j]; 1052 int offset = item.offset[j]; 1053 int level_above = core_level - 1; 1054 if (level_above >= 0) { 1055 max_count = get_ncores_with_attr_per(item.attr[j], level_above); 1056 if (max_count <= 0 || num + offset > max_count) { 1057 kmp_str_buf_t buf; 1058 __kmp_hw_get_catalog_core_string(item.attr[j], &buf, num > 0); 1059 KMP_WARNING(AffHWSubsetManyGeneric, buf.str); 1060 __kmp_str_buf_free(&buf); 1061 return false; 1062 } 1063 } 1064 } 1065 } 1066 1067 if ((using_core_types || using_core_effs) && item.num_attrs > 1) { 1068 for (int j = 0; j < item.num_attrs; ++j) { 1069 // Ambiguous use of specific core attribute + generic core 1070 // e.g., 4c & 3c:intel_core or 4c & 3c:eff1 1071 if (!item.attr[j]) { 1072 kmp_hw_attr_t other_attr; 1073 for (int k = 0; k < item.num_attrs; ++k) { 1074 if (item.attr[k] != item.attr[j]) { 1075 other_attr = item.attr[k]; 1076 break; 1077 } 1078 } 1079 kmp_str_buf_t buf; 1080 __kmp_hw_get_catalog_core_string(other_attr, &buf, item.num[j] > 0); 1081 KMP_WARNING(AffHWSubsetIncompat, 1082 __kmp_hw_get_catalog_string(KMP_HW_CORE), buf.str); 1083 __kmp_str_buf_free(&buf); 1084 return false; 1085 } 1086 // Allow specifying a specific core type or core eff exactly once 1087 for (int k = 0; k < j; ++k) { 1088 if (!item.attr[j] || !item.attr[k]) 1089 continue; 1090 if (item.attr[k] == item.attr[j]) { 1091 kmp_str_buf_t buf; 1092 __kmp_hw_get_catalog_core_string(item.attr[j], &buf, 1093 item.num[j] > 0); 1094 KMP_WARNING(AffHWSubsetAttrRepeat, buf.str); 1095 __kmp_str_buf_free(&buf); 1096 return false; 1097 } 1098 } 1099 } 1100 } 1101 } 1102 } 1103 1104 struct core_type_indexer { 1105 int operator()(const kmp_hw_thread_t &t) const { 1106 switch (t.attrs.get_core_type()) { 1107 case KMP_HW_CORE_TYPE_ATOM: 1108 return 1; 1109 case KMP_HW_CORE_TYPE_CORE: 1110 return 2; 1111 case KMP_HW_CORE_TYPE_UNKNOWN: 1112 return 0; 1113 } 1114 KMP_ASSERT(0); 1115 return 0; 1116 } 1117 }; 1118 struct core_eff_indexer { 1119 int operator()(const kmp_hw_thread_t &t) const { 1120 return t.attrs.get_core_eff(); 1121 } 1122 }; 1123 1124 kmp_sub_ids_t<KMP_HW_MAX_NUM_CORE_TYPES, core_type_indexer> core_type_sub_ids( 1125 core_level); 1126 kmp_sub_ids_t<KMP_HW_MAX_NUM_CORE_EFFS, core_eff_indexer> core_eff_sub_ids( 1127 core_level); 1128 1129 // Determine which hardware threads should be filtered. 1130 int num_filtered = 0; 1131 bool *filtered = (bool *)__kmp_allocate(sizeof(bool) * num_hw_threads); 1132 for (int i = 0; i < num_hw_threads; ++i) { 1133 kmp_hw_thread_t &hw_thread = hw_threads[i]; 1134 // Update type_sub_id 1135 if (using_core_types) 1136 core_type_sub_ids.update(hw_thread); 1137 if (using_core_effs) 1138 core_eff_sub_ids.update(hw_thread); 1139 1140 // Check to see if this hardware thread should be filtered 1141 bool should_be_filtered = false; 1142 for (int hw_subset_index = 0; hw_subset_index < hw_subset_depth; 1143 ++hw_subset_index) { 1144 const auto &hw_subset_item = __kmp_hw_subset->at(hw_subset_index); 1145 int level = topology_levels[hw_subset_index]; 1146 if (level == -1) 1147 continue; 1148 if ((using_core_effs || using_core_types) && level == core_level) { 1149 // Look for the core attribute in KMP_HW_SUBSET which corresponds 1150 // to this hardware thread's core attribute. Use this num,offset plus 1151 // the running sub_id for the particular core attribute of this hardware 1152 // thread to determine if the hardware thread should be filtered or not. 1153 int attr_idx; 1154 kmp_hw_core_type_t core_type = hw_thread.attrs.get_core_type(); 1155 int core_eff = hw_thread.attrs.get_core_eff(); 1156 for (attr_idx = 0; attr_idx < hw_subset_item.num_attrs; ++attr_idx) { 1157 if (using_core_types && 1158 hw_subset_item.attr[attr_idx].get_core_type() == core_type) 1159 break; 1160 if (using_core_effs && 1161 hw_subset_item.attr[attr_idx].get_core_eff() == core_eff) 1162 break; 1163 } 1164 // This core attribute isn't in the KMP_HW_SUBSET so always filter it. 1165 if (attr_idx == hw_subset_item.num_attrs) { 1166 should_be_filtered = true; 1167 break; 1168 } 1169 int sub_id; 1170 int num = hw_subset_item.num[attr_idx]; 1171 int offset = hw_subset_item.offset[attr_idx]; 1172 if (using_core_types) 1173 sub_id = core_type_sub_ids.get_sub_id(hw_thread); 1174 else 1175 sub_id = core_eff_sub_ids.get_sub_id(hw_thread); 1176 if (sub_id < offset || sub_id >= offset + num) { 1177 should_be_filtered = true; 1178 break; 1179 } 1180 } else { 1181 int num = hw_subset_item.num[0]; 1182 int offset = hw_subset_item.offset[0]; 1183 if (hw_thread.sub_ids[level] < offset || 1184 hw_thread.sub_ids[level] >= offset + num) { 1185 should_be_filtered = true; 1186 break; 1187 } 1188 } 1189 } 1190 // Collect filtering information 1191 filtered[i] = should_be_filtered; 1192 if (should_be_filtered) 1193 num_filtered++; 1194 } 1195 1196 // One last check that we shouldn't allow filtering entire machine 1197 if (num_filtered == num_hw_threads) { 1198 KMP_WARNING(AffHWSubsetAllFiltered); 1199 __kmp_free(filtered); 1200 return false; 1201 } 1202 1203 // Apply the filter 1204 int new_index = 0; 1205 for (int i = 0; i < num_hw_threads; ++i) { 1206 if (!filtered[i]) { 1207 if (i != new_index) 1208 hw_threads[new_index] = hw_threads[i]; 1209 new_index++; 1210 } else { 1211 #if KMP_AFFINITY_SUPPORTED 1212 KMP_CPU_CLR(hw_threads[i].os_id, __kmp_affin_fullMask); 1213 #endif 1214 __kmp_avail_proc--; 1215 } 1216 } 1217 1218 KMP_DEBUG_ASSERT(new_index <= num_hw_threads); 1219 num_hw_threads = new_index; 1220 1221 // Post hardware subset canonicalization 1222 _gather_enumeration_information(); 1223 _discover_uniformity(); 1224 _set_globals(); 1225 _set_last_level_cache(); 1226 __kmp_free(filtered); 1227 return true; 1228 } 1229 1230 bool kmp_topology_t::is_close(int hwt1, int hwt2, int hw_level) const { 1231 if (hw_level >= depth) 1232 return true; 1233 bool retval = true; 1234 const kmp_hw_thread_t &t1 = hw_threads[hwt1]; 1235 const kmp_hw_thread_t &t2 = hw_threads[hwt2]; 1236 for (int i = 0; i < (depth - hw_level); ++i) { 1237 if (t1.ids[i] != t2.ids[i]) 1238 return false; 1239 } 1240 return retval; 1241 } 1242 1243 //////////////////////////////////////////////////////////////////////////////// 1244 1245 #if KMP_AFFINITY_SUPPORTED 1246 class kmp_affinity_raii_t { 1247 kmp_affin_mask_t *mask; 1248 bool restored; 1249 1250 public: 1251 kmp_affinity_raii_t() : restored(false) { 1252 KMP_CPU_ALLOC(mask); 1253 KMP_ASSERT(mask != NULL); 1254 __kmp_get_system_affinity(mask, TRUE); 1255 } 1256 void restore() { 1257 __kmp_set_system_affinity(mask, TRUE); 1258 KMP_CPU_FREE(mask); 1259 restored = true; 1260 } 1261 ~kmp_affinity_raii_t() { 1262 if (!restored) { 1263 __kmp_set_system_affinity(mask, TRUE); 1264 KMP_CPU_FREE(mask); 1265 } 1266 } 1267 }; 1268 1269 bool KMPAffinity::picked_api = false; 1270 1271 void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); } 1272 void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); } 1273 void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); } 1274 void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); } 1275 void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); } 1276 void KMPAffinity::operator delete(void *p) { __kmp_free(p); } 1277 1278 void KMPAffinity::pick_api() { 1279 KMPAffinity *affinity_dispatch; 1280 if (picked_api) 1281 return; 1282 #if KMP_USE_HWLOC 1283 // Only use Hwloc if affinity isn't explicitly disabled and 1284 // user requests Hwloc topology method 1285 if (__kmp_affinity_top_method == affinity_top_method_hwloc && 1286 __kmp_affinity_type != affinity_disabled) { 1287 affinity_dispatch = new KMPHwlocAffinity(); 1288 } else 1289 #endif 1290 { 1291 affinity_dispatch = new KMPNativeAffinity(); 1292 } 1293 __kmp_affinity_dispatch = affinity_dispatch; 1294 picked_api = true; 1295 } 1296 1297 void KMPAffinity::destroy_api() { 1298 if (__kmp_affinity_dispatch != NULL) { 1299 delete __kmp_affinity_dispatch; 1300 __kmp_affinity_dispatch = NULL; 1301 picked_api = false; 1302 } 1303 } 1304 1305 #define KMP_ADVANCE_SCAN(scan) \ 1306 while (*scan != '\0') { \ 1307 scan++; \ 1308 } 1309 1310 // Print the affinity mask to the character array in a pretty format. 1311 // The format is a comma separated list of non-negative integers or integer 1312 // ranges: e.g., 1,2,3-5,7,9-15 1313 // The format can also be the string "{<empty>}" if no bits are set in mask 1314 char *__kmp_affinity_print_mask(char *buf, int buf_len, 1315 kmp_affin_mask_t *mask) { 1316 int start = 0, finish = 0, previous = 0; 1317 bool first_range; 1318 KMP_ASSERT(buf); 1319 KMP_ASSERT(buf_len >= 40); 1320 KMP_ASSERT(mask); 1321 char *scan = buf; 1322 char *end = buf + buf_len - 1; 1323 1324 // Check for empty set. 1325 if (mask->begin() == mask->end()) { 1326 KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}"); 1327 KMP_ADVANCE_SCAN(scan); 1328 KMP_ASSERT(scan <= end); 1329 return buf; 1330 } 1331 1332 first_range = true; 1333 start = mask->begin(); 1334 while (1) { 1335 // Find next range 1336 // [start, previous] is inclusive range of contiguous bits in mask 1337 for (finish = mask->next(start), previous = start; 1338 finish == previous + 1 && finish != mask->end(); 1339 finish = mask->next(finish)) { 1340 previous = finish; 1341 } 1342 1343 // The first range does not need a comma printed before it, but the rest 1344 // of the ranges do need a comma beforehand 1345 if (!first_range) { 1346 KMP_SNPRINTF(scan, end - scan + 1, "%s", ","); 1347 KMP_ADVANCE_SCAN(scan); 1348 } else { 1349 first_range = false; 1350 } 1351 // Range with three or more contiguous bits in the affinity mask 1352 if (previous - start > 1) { 1353 KMP_SNPRINTF(scan, end - scan + 1, "%u-%u", start, previous); 1354 } else { 1355 // Range with one or two contiguous bits in the affinity mask 1356 KMP_SNPRINTF(scan, end - scan + 1, "%u", start); 1357 KMP_ADVANCE_SCAN(scan); 1358 if (previous - start > 0) { 1359 KMP_SNPRINTF(scan, end - scan + 1, ",%u", previous); 1360 } 1361 } 1362 KMP_ADVANCE_SCAN(scan); 1363 // Start over with new start point 1364 start = finish; 1365 if (start == mask->end()) 1366 break; 1367 // Check for overflow 1368 if (end - scan < 2) 1369 break; 1370 } 1371 1372 // Check for overflow 1373 KMP_ASSERT(scan <= end); 1374 return buf; 1375 } 1376 #undef KMP_ADVANCE_SCAN 1377 1378 // Print the affinity mask to the string buffer object in a pretty format 1379 // The format is a comma separated list of non-negative integers or integer 1380 // ranges: e.g., 1,2,3-5,7,9-15 1381 // The format can also be the string "{<empty>}" if no bits are set in mask 1382 kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf, 1383 kmp_affin_mask_t *mask) { 1384 int start = 0, finish = 0, previous = 0; 1385 bool first_range; 1386 KMP_ASSERT(buf); 1387 KMP_ASSERT(mask); 1388 1389 __kmp_str_buf_clear(buf); 1390 1391 // Check for empty set. 1392 if (mask->begin() == mask->end()) { 1393 __kmp_str_buf_print(buf, "%s", "{<empty>}"); 1394 return buf; 1395 } 1396 1397 first_range = true; 1398 start = mask->begin(); 1399 while (1) { 1400 // Find next range 1401 // [start, previous] is inclusive range of contiguous bits in mask 1402 for (finish = mask->next(start), previous = start; 1403 finish == previous + 1 && finish != mask->end(); 1404 finish = mask->next(finish)) { 1405 previous = finish; 1406 } 1407 1408 // The first range does not need a comma printed before it, but the rest 1409 // of the ranges do need a comma beforehand 1410 if (!first_range) { 1411 __kmp_str_buf_print(buf, "%s", ","); 1412 } else { 1413 first_range = false; 1414 } 1415 // Range with three or more contiguous bits in the affinity mask 1416 if (previous - start > 1) { 1417 __kmp_str_buf_print(buf, "%u-%u", start, previous); 1418 } else { 1419 // Range with one or two contiguous bits in the affinity mask 1420 __kmp_str_buf_print(buf, "%u", start); 1421 if (previous - start > 0) { 1422 __kmp_str_buf_print(buf, ",%u", previous); 1423 } 1424 } 1425 // Start over with new start point 1426 start = finish; 1427 if (start == mask->end()) 1428 break; 1429 } 1430 return buf; 1431 } 1432 1433 // Return (possibly empty) affinity mask representing the offline CPUs 1434 // Caller must free the mask 1435 kmp_affin_mask_t *__kmp_affinity_get_offline_cpus() { 1436 kmp_affin_mask_t *offline; 1437 KMP_CPU_ALLOC(offline); 1438 KMP_CPU_ZERO(offline); 1439 #if KMP_OS_LINUX 1440 int n, begin_cpu, end_cpu; 1441 kmp_safe_raii_file_t offline_file; 1442 auto skip_ws = [](FILE *f) { 1443 int c; 1444 do { 1445 c = fgetc(f); 1446 } while (isspace(c)); 1447 if (c != EOF) 1448 ungetc(c, f); 1449 }; 1450 // File contains CSV of integer ranges representing the offline CPUs 1451 // e.g., 1,2,4-7,9,11-15 1452 int status = offline_file.try_open("/sys/devices/system/cpu/offline", "r"); 1453 if (status != 0) 1454 return offline; 1455 while (!feof(offline_file)) { 1456 skip_ws(offline_file); 1457 n = fscanf(offline_file, "%d", &begin_cpu); 1458 if (n != 1) 1459 break; 1460 skip_ws(offline_file); 1461 int c = fgetc(offline_file); 1462 if (c == EOF || c == ',') { 1463 // Just single CPU 1464 end_cpu = begin_cpu; 1465 } else if (c == '-') { 1466 // Range of CPUs 1467 skip_ws(offline_file); 1468 n = fscanf(offline_file, "%d", &end_cpu); 1469 if (n != 1) 1470 break; 1471 skip_ws(offline_file); 1472 c = fgetc(offline_file); // skip ',' 1473 } else { 1474 // Syntax problem 1475 break; 1476 } 1477 // Ensure a valid range of CPUs 1478 if (begin_cpu < 0 || begin_cpu >= __kmp_xproc || end_cpu < 0 || 1479 end_cpu >= __kmp_xproc || begin_cpu > end_cpu) { 1480 continue; 1481 } 1482 // Insert [begin_cpu, end_cpu] into offline mask 1483 for (int cpu = begin_cpu; cpu <= end_cpu; ++cpu) { 1484 KMP_CPU_SET(cpu, offline); 1485 } 1486 } 1487 #endif 1488 return offline; 1489 } 1490 1491 // Return the number of available procs 1492 int __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) { 1493 int avail_proc = 0; 1494 KMP_CPU_ZERO(mask); 1495 1496 #if KMP_GROUP_AFFINITY 1497 1498 if (__kmp_num_proc_groups > 1) { 1499 int group; 1500 KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL); 1501 for (group = 0; group < __kmp_num_proc_groups; group++) { 1502 int i; 1503 int num = __kmp_GetActiveProcessorCount(group); 1504 for (i = 0; i < num; i++) { 1505 KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask); 1506 avail_proc++; 1507 } 1508 } 1509 } else 1510 1511 #endif /* KMP_GROUP_AFFINITY */ 1512 1513 { 1514 int proc; 1515 kmp_affin_mask_t *offline_cpus = __kmp_affinity_get_offline_cpus(); 1516 for (proc = 0; proc < __kmp_xproc; proc++) { 1517 // Skip offline CPUs 1518 if (KMP_CPU_ISSET(proc, offline_cpus)) 1519 continue; 1520 KMP_CPU_SET(proc, mask); 1521 avail_proc++; 1522 } 1523 KMP_CPU_FREE(offline_cpus); 1524 } 1525 1526 return avail_proc; 1527 } 1528 1529 // All of the __kmp_affinity_create_*_map() routines should allocate the 1530 // internal topology object and set the layer ids for it. Each routine 1531 // returns a boolean on whether it was successful at doing so. 1532 kmp_affin_mask_t *__kmp_affin_fullMask = NULL; 1533 1534 #if KMP_USE_HWLOC 1535 static inline bool __kmp_hwloc_is_cache_type(hwloc_obj_t obj) { 1536 #if HWLOC_API_VERSION >= 0x00020000 1537 return hwloc_obj_type_is_cache(obj->type); 1538 #else 1539 return obj->type == HWLOC_OBJ_CACHE; 1540 #endif 1541 } 1542 1543 // Returns KMP_HW_* type derived from HWLOC_* type 1544 static inline kmp_hw_t __kmp_hwloc_type_2_topology_type(hwloc_obj_t obj) { 1545 1546 if (__kmp_hwloc_is_cache_type(obj)) { 1547 if (obj->attr->cache.type == HWLOC_OBJ_CACHE_INSTRUCTION) 1548 return KMP_HW_UNKNOWN; 1549 switch (obj->attr->cache.depth) { 1550 case 1: 1551 return KMP_HW_L1; 1552 case 2: 1553 #if KMP_MIC_SUPPORTED 1554 if (__kmp_mic_type == mic3) { 1555 return KMP_HW_TILE; 1556 } 1557 #endif 1558 return KMP_HW_L2; 1559 case 3: 1560 return KMP_HW_L3; 1561 } 1562 return KMP_HW_UNKNOWN; 1563 } 1564 1565 switch (obj->type) { 1566 case HWLOC_OBJ_PACKAGE: 1567 return KMP_HW_SOCKET; 1568 case HWLOC_OBJ_NUMANODE: 1569 return KMP_HW_NUMA; 1570 case HWLOC_OBJ_CORE: 1571 return KMP_HW_CORE; 1572 case HWLOC_OBJ_PU: 1573 return KMP_HW_THREAD; 1574 case HWLOC_OBJ_GROUP: 1575 if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_DIE) 1576 return KMP_HW_DIE; 1577 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_TILE) 1578 return KMP_HW_TILE; 1579 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_MODULE) 1580 return KMP_HW_MODULE; 1581 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP) 1582 return KMP_HW_PROC_GROUP; 1583 return KMP_HW_UNKNOWN; 1584 #if HWLOC_API_VERSION >= 0x00020100 1585 case HWLOC_OBJ_DIE: 1586 return KMP_HW_DIE; 1587 #endif 1588 } 1589 return KMP_HW_UNKNOWN; 1590 } 1591 1592 // Returns the number of objects of type 'type' below 'obj' within the topology 1593 // tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is 1594 // HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET 1595 // object. 1596 static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj, 1597 hwloc_obj_type_t type) { 1598 int retval = 0; 1599 hwloc_obj_t first; 1600 for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type, 1601 obj->logical_index, type, 0); 1602 first != NULL && hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, 1603 obj->type, first) == obj; 1604 first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type, 1605 first)) { 1606 ++retval; 1607 } 1608 return retval; 1609 } 1610 1611 // This gets the sub_id for a lower object under a higher object in the 1612 // topology tree 1613 static int __kmp_hwloc_get_sub_id(hwloc_topology_t t, hwloc_obj_t higher, 1614 hwloc_obj_t lower) { 1615 hwloc_obj_t obj; 1616 hwloc_obj_type_t ltype = lower->type; 1617 int lindex = lower->logical_index - 1; 1618 int sub_id = 0; 1619 // Get the previous lower object 1620 obj = hwloc_get_obj_by_type(t, ltype, lindex); 1621 while (obj && lindex >= 0 && 1622 hwloc_bitmap_isincluded(obj->cpuset, higher->cpuset)) { 1623 if (obj->userdata) { 1624 sub_id = (int)(RCAST(kmp_intptr_t, obj->userdata)); 1625 break; 1626 } 1627 sub_id++; 1628 lindex--; 1629 obj = hwloc_get_obj_by_type(t, ltype, lindex); 1630 } 1631 // store sub_id + 1 so that 0 is differed from NULL 1632 lower->userdata = RCAST(void *, sub_id + 1); 1633 return sub_id; 1634 } 1635 1636 static bool __kmp_affinity_create_hwloc_map(kmp_i18n_id_t *const msg_id) { 1637 kmp_hw_t type; 1638 int hw_thread_index, sub_id; 1639 int depth; 1640 hwloc_obj_t pu, obj, root, prev; 1641 kmp_hw_t types[KMP_HW_LAST]; 1642 hwloc_obj_type_t hwloc_types[KMP_HW_LAST]; 1643 1644 hwloc_topology_t tp = __kmp_hwloc_topology; 1645 *msg_id = kmp_i18n_null; 1646 if (__kmp_affinity_verbose) { 1647 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); 1648 } 1649 1650 if (!KMP_AFFINITY_CAPABLE()) { 1651 // Hack to try and infer the machine topology using only the data 1652 // available from hwloc on the current thread, and __kmp_xproc. 1653 KMP_ASSERT(__kmp_affinity_type == affinity_none); 1654 // hwloc only guarantees existance of PU object, so check PACKAGE and CORE 1655 hwloc_obj_t o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0); 1656 if (o != NULL) 1657 nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_CORE); 1658 else 1659 nCoresPerPkg = 1; // no PACKAGE found 1660 o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0); 1661 if (o != NULL) 1662 __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_PU); 1663 else 1664 __kmp_nThreadsPerCore = 1; // no CORE found 1665 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; 1666 if (nCoresPerPkg == 0) 1667 nCoresPerPkg = 1; // to prevent possible division by 0 1668 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 1669 return true; 1670 } 1671 1672 // Handle multiple types of cores if they exist on the system 1673 int nr_cpu_kinds = hwloc_cpukinds_get_nr(tp, 0); 1674 1675 typedef struct kmp_hwloc_cpukinds_info_t { 1676 int efficiency; 1677 kmp_hw_core_type_t core_type; 1678 hwloc_bitmap_t mask; 1679 } kmp_hwloc_cpukinds_info_t; 1680 kmp_hwloc_cpukinds_info_t *cpukinds = nullptr; 1681 1682 if (nr_cpu_kinds > 0) { 1683 unsigned nr_infos; 1684 struct hwloc_info_s *infos; 1685 cpukinds = (kmp_hwloc_cpukinds_info_t *)__kmp_allocate( 1686 sizeof(kmp_hwloc_cpukinds_info_t) * nr_cpu_kinds); 1687 for (unsigned idx = 0; idx < (unsigned)nr_cpu_kinds; ++idx) { 1688 cpukinds[idx].efficiency = -1; 1689 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_UNKNOWN; 1690 cpukinds[idx].mask = hwloc_bitmap_alloc(); 1691 if (hwloc_cpukinds_get_info(tp, idx, cpukinds[idx].mask, 1692 &cpukinds[idx].efficiency, &nr_infos, &infos, 1693 0) == 0) { 1694 for (unsigned i = 0; i < nr_infos; ++i) { 1695 if (__kmp_str_match("CoreType", 8, infos[i].name)) { 1696 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1697 if (__kmp_str_match("IntelAtom", 9, infos[i].value)) { 1698 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_ATOM; 1699 break; 1700 } else if (__kmp_str_match("IntelCore", 9, infos[i].value)) { 1701 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_CORE; 1702 break; 1703 } 1704 #endif 1705 } 1706 } 1707 } 1708 } 1709 } 1710 1711 root = hwloc_get_root_obj(tp); 1712 1713 // Figure out the depth and types in the topology 1714 depth = 0; 1715 pu = hwloc_get_pu_obj_by_os_index(tp, __kmp_affin_fullMask->begin()); 1716 KMP_ASSERT(pu); 1717 obj = pu; 1718 types[depth] = KMP_HW_THREAD; 1719 hwloc_types[depth] = obj->type; 1720 depth++; 1721 while (obj != root && obj != NULL) { 1722 obj = obj->parent; 1723 #if HWLOC_API_VERSION >= 0x00020000 1724 if (obj->memory_arity) { 1725 hwloc_obj_t memory; 1726 for (memory = obj->memory_first_child; memory; 1727 memory = hwloc_get_next_child(tp, obj, memory)) { 1728 if (memory->type == HWLOC_OBJ_NUMANODE) 1729 break; 1730 } 1731 if (memory && memory->type == HWLOC_OBJ_NUMANODE) { 1732 types[depth] = KMP_HW_NUMA; 1733 hwloc_types[depth] = memory->type; 1734 depth++; 1735 } 1736 } 1737 #endif 1738 type = __kmp_hwloc_type_2_topology_type(obj); 1739 if (type != KMP_HW_UNKNOWN) { 1740 types[depth] = type; 1741 hwloc_types[depth] = obj->type; 1742 depth++; 1743 } 1744 } 1745 KMP_ASSERT(depth > 0); 1746 1747 // Get the order for the types correct 1748 for (int i = 0, j = depth - 1; i < j; ++i, --j) { 1749 hwloc_obj_type_t hwloc_temp = hwloc_types[i]; 1750 kmp_hw_t temp = types[i]; 1751 types[i] = types[j]; 1752 types[j] = temp; 1753 hwloc_types[i] = hwloc_types[j]; 1754 hwloc_types[j] = hwloc_temp; 1755 } 1756 1757 // Allocate the data structure to be returned. 1758 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); 1759 1760 hw_thread_index = 0; 1761 pu = NULL; 1762 while (pu = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, pu)) { 1763 int index = depth - 1; 1764 bool included = KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask); 1765 kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index); 1766 if (included) { 1767 hw_thread.clear(); 1768 hw_thread.ids[index] = pu->logical_index; 1769 hw_thread.os_id = pu->os_index; 1770 // If multiple core types, then set that attribute for the hardware thread 1771 if (cpukinds) { 1772 int cpukind_index = -1; 1773 for (int i = 0; i < nr_cpu_kinds; ++i) { 1774 if (hwloc_bitmap_isset(cpukinds[i].mask, hw_thread.os_id)) { 1775 cpukind_index = i; 1776 break; 1777 } 1778 } 1779 if (cpukind_index >= 0) { 1780 hw_thread.attrs.set_core_type(cpukinds[cpukind_index].core_type); 1781 hw_thread.attrs.set_core_eff(cpukinds[cpukind_index].efficiency); 1782 } 1783 } 1784 index--; 1785 } 1786 obj = pu; 1787 prev = obj; 1788 while (obj != root && obj != NULL) { 1789 obj = obj->parent; 1790 #if HWLOC_API_VERSION >= 0x00020000 1791 // NUMA Nodes are handled differently since they are not within the 1792 // parent/child structure anymore. They are separate children 1793 // of obj (memory_first_child points to first memory child) 1794 if (obj->memory_arity) { 1795 hwloc_obj_t memory; 1796 for (memory = obj->memory_first_child; memory; 1797 memory = hwloc_get_next_child(tp, obj, memory)) { 1798 if (memory->type == HWLOC_OBJ_NUMANODE) 1799 break; 1800 } 1801 if (memory && memory->type == HWLOC_OBJ_NUMANODE) { 1802 sub_id = __kmp_hwloc_get_sub_id(tp, memory, prev); 1803 if (included) { 1804 hw_thread.ids[index] = memory->logical_index; 1805 hw_thread.ids[index + 1] = sub_id; 1806 index--; 1807 } 1808 prev = memory; 1809 } 1810 prev = obj; 1811 } 1812 #endif 1813 type = __kmp_hwloc_type_2_topology_type(obj); 1814 if (type != KMP_HW_UNKNOWN) { 1815 sub_id = __kmp_hwloc_get_sub_id(tp, obj, prev); 1816 if (included) { 1817 hw_thread.ids[index] = obj->logical_index; 1818 hw_thread.ids[index + 1] = sub_id; 1819 index--; 1820 } 1821 prev = obj; 1822 } 1823 } 1824 if (included) 1825 hw_thread_index++; 1826 } 1827 1828 // Free the core types information 1829 if (cpukinds) { 1830 for (int idx = 0; idx < nr_cpu_kinds; ++idx) 1831 hwloc_bitmap_free(cpukinds[idx].mask); 1832 __kmp_free(cpukinds); 1833 } 1834 __kmp_topology->sort_ids(); 1835 return true; 1836 } 1837 #endif // KMP_USE_HWLOC 1838 1839 // If we don't know how to retrieve the machine's processor topology, or 1840 // encounter an error in doing so, this routine is called to form a "flat" 1841 // mapping of os thread id's <-> processor id's. 1842 static bool __kmp_affinity_create_flat_map(kmp_i18n_id_t *const msg_id) { 1843 *msg_id = kmp_i18n_null; 1844 int depth = 3; 1845 kmp_hw_t types[] = {KMP_HW_SOCKET, KMP_HW_CORE, KMP_HW_THREAD}; 1846 1847 if (__kmp_affinity_verbose) { 1848 KMP_INFORM(UsingFlatOS, "KMP_AFFINITY"); 1849 } 1850 1851 // Even if __kmp_affinity_type == affinity_none, this routine might still 1852 // called to set __kmp_ncores, as well as 1853 // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 1854 if (!KMP_AFFINITY_CAPABLE()) { 1855 KMP_ASSERT(__kmp_affinity_type == affinity_none); 1856 __kmp_ncores = nPackages = __kmp_xproc; 1857 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 1858 return true; 1859 } 1860 1861 // When affinity is off, this routine will still be called to set 1862 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 1863 // Make sure all these vars are set correctly, and return now if affinity is 1864 // not enabled. 1865 __kmp_ncores = nPackages = __kmp_avail_proc; 1866 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 1867 1868 // Construct the data structure to be returned. 1869 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); 1870 int avail_ct = 0; 1871 int i; 1872 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 1873 // Skip this proc if it is not included in the machine model. 1874 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 1875 continue; 1876 } 1877 kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct); 1878 hw_thread.clear(); 1879 hw_thread.os_id = i; 1880 hw_thread.ids[0] = i; 1881 hw_thread.ids[1] = 0; 1882 hw_thread.ids[2] = 0; 1883 avail_ct++; 1884 } 1885 if (__kmp_affinity_verbose) { 1886 KMP_INFORM(OSProcToPackage, "KMP_AFFINITY"); 1887 } 1888 return true; 1889 } 1890 1891 #if KMP_GROUP_AFFINITY 1892 // If multiple Windows* OS processor groups exist, we can create a 2-level 1893 // topology map with the groups at level 0 and the individual procs at level 1. 1894 // This facilitates letting the threads float among all procs in a group, 1895 // if granularity=group (the default when there are multiple groups). 1896 static bool __kmp_affinity_create_proc_group_map(kmp_i18n_id_t *const msg_id) { 1897 *msg_id = kmp_i18n_null; 1898 int depth = 3; 1899 kmp_hw_t types[] = {KMP_HW_PROC_GROUP, KMP_HW_CORE, KMP_HW_THREAD}; 1900 const static size_t BITS_PER_GROUP = CHAR_BIT * sizeof(DWORD_PTR); 1901 1902 if (__kmp_affinity_verbose) { 1903 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY"); 1904 } 1905 1906 // If we aren't affinity capable, then use flat topology 1907 if (!KMP_AFFINITY_CAPABLE()) { 1908 KMP_ASSERT(__kmp_affinity_type == affinity_none); 1909 nPackages = __kmp_num_proc_groups; 1910 __kmp_nThreadsPerCore = 1; 1911 __kmp_ncores = __kmp_xproc; 1912 nCoresPerPkg = nPackages / __kmp_ncores; 1913 return true; 1914 } 1915 1916 // Construct the data structure to be returned. 1917 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); 1918 int avail_ct = 0; 1919 int i; 1920 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 1921 // Skip this proc if it is not included in the machine model. 1922 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 1923 continue; 1924 } 1925 kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct++); 1926 hw_thread.clear(); 1927 hw_thread.os_id = i; 1928 hw_thread.ids[0] = i / BITS_PER_GROUP; 1929 hw_thread.ids[1] = hw_thread.ids[2] = i % BITS_PER_GROUP; 1930 } 1931 return true; 1932 } 1933 #endif /* KMP_GROUP_AFFINITY */ 1934 1935 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1936 1937 template <kmp_uint32 LSB, kmp_uint32 MSB> 1938 static inline unsigned __kmp_extract_bits(kmp_uint32 v) { 1939 const kmp_uint32 SHIFT_LEFT = sizeof(kmp_uint32) * 8 - 1 - MSB; 1940 const kmp_uint32 SHIFT_RIGHT = LSB; 1941 kmp_uint32 retval = v; 1942 retval <<= SHIFT_LEFT; 1943 retval >>= (SHIFT_LEFT + SHIFT_RIGHT); 1944 return retval; 1945 } 1946 1947 static int __kmp_cpuid_mask_width(int count) { 1948 int r = 0; 1949 1950 while ((1 << r) < count) 1951 ++r; 1952 return r; 1953 } 1954 1955 class apicThreadInfo { 1956 public: 1957 unsigned osId; // param to __kmp_affinity_bind_thread 1958 unsigned apicId; // from cpuid after binding 1959 unsigned maxCoresPerPkg; // "" 1960 unsigned maxThreadsPerPkg; // "" 1961 unsigned pkgId; // inferred from above values 1962 unsigned coreId; // "" 1963 unsigned threadId; // "" 1964 }; 1965 1966 static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a, 1967 const void *b) { 1968 const apicThreadInfo *aa = (const apicThreadInfo *)a; 1969 const apicThreadInfo *bb = (const apicThreadInfo *)b; 1970 if (aa->pkgId < bb->pkgId) 1971 return -1; 1972 if (aa->pkgId > bb->pkgId) 1973 return 1; 1974 if (aa->coreId < bb->coreId) 1975 return -1; 1976 if (aa->coreId > bb->coreId) 1977 return 1; 1978 if (aa->threadId < bb->threadId) 1979 return -1; 1980 if (aa->threadId > bb->threadId) 1981 return 1; 1982 return 0; 1983 } 1984 1985 class kmp_cache_info_t { 1986 public: 1987 struct info_t { 1988 unsigned level, mask; 1989 }; 1990 kmp_cache_info_t() : depth(0) { get_leaf4_levels(); } 1991 size_t get_depth() const { return depth; } 1992 info_t &operator[](size_t index) { return table[index]; } 1993 const info_t &operator[](size_t index) const { return table[index]; } 1994 1995 static kmp_hw_t get_topology_type(unsigned level) { 1996 KMP_DEBUG_ASSERT(level >= 1 && level <= MAX_CACHE_LEVEL); 1997 switch (level) { 1998 case 1: 1999 return KMP_HW_L1; 2000 case 2: 2001 return KMP_HW_L2; 2002 case 3: 2003 return KMP_HW_L3; 2004 } 2005 return KMP_HW_UNKNOWN; 2006 } 2007 2008 private: 2009 static const int MAX_CACHE_LEVEL = 3; 2010 2011 size_t depth; 2012 info_t table[MAX_CACHE_LEVEL]; 2013 2014 void get_leaf4_levels() { 2015 unsigned level = 0; 2016 while (depth < MAX_CACHE_LEVEL) { 2017 unsigned cache_type, max_threads_sharing; 2018 unsigned cache_level, cache_mask_width; 2019 kmp_cpuid buf2; 2020 __kmp_x86_cpuid(4, level, &buf2); 2021 cache_type = __kmp_extract_bits<0, 4>(buf2.eax); 2022 if (!cache_type) 2023 break; 2024 // Skip instruction caches 2025 if (cache_type == 2) { 2026 level++; 2027 continue; 2028 } 2029 max_threads_sharing = __kmp_extract_bits<14, 25>(buf2.eax) + 1; 2030 cache_mask_width = __kmp_cpuid_mask_width(max_threads_sharing); 2031 cache_level = __kmp_extract_bits<5, 7>(buf2.eax); 2032 table[depth].level = cache_level; 2033 table[depth].mask = ((-1) << cache_mask_width); 2034 depth++; 2035 level++; 2036 } 2037 } 2038 }; 2039 2040 // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use 2041 // an algorithm which cycles through the available os threads, setting 2042 // the current thread's affinity mask to that thread, and then retrieves 2043 // the Apic Id for each thread context using the cpuid instruction. 2044 static bool __kmp_affinity_create_apicid_map(kmp_i18n_id_t *const msg_id) { 2045 kmp_cpuid buf; 2046 *msg_id = kmp_i18n_null; 2047 2048 if (__kmp_affinity_verbose) { 2049 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC)); 2050 } 2051 2052 // Check if cpuid leaf 4 is supported. 2053 __kmp_x86_cpuid(0, 0, &buf); 2054 if (buf.eax < 4) { 2055 *msg_id = kmp_i18n_str_NoLeaf4Support; 2056 return false; 2057 } 2058 2059 // The algorithm used starts by setting the affinity to each available thread 2060 // and retrieving info from the cpuid instruction, so if we are not capable of 2061 // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we 2062 // need to do something else - use the defaults that we calculated from 2063 // issuing cpuid without binding to each proc. 2064 if (!KMP_AFFINITY_CAPABLE()) { 2065 // Hack to try and infer the machine topology using only the data 2066 // available from cpuid on the current thread, and __kmp_xproc. 2067 KMP_ASSERT(__kmp_affinity_type == affinity_none); 2068 2069 // Get an upper bound on the number of threads per package using cpuid(1). 2070 // On some OS/chps combinations where HT is supported by the chip but is 2071 // disabled, this value will be 2 on a single core chip. Usually, it will be 2072 // 2 if HT is enabled and 1 if HT is disabled. 2073 __kmp_x86_cpuid(1, 0, &buf); 2074 int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; 2075 if (maxThreadsPerPkg == 0) { 2076 maxThreadsPerPkg = 1; 2077 } 2078 2079 // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded 2080 // value. 2081 // 2082 // The author of cpu_count.cpp treated this only an upper bound on the 2083 // number of cores, but I haven't seen any cases where it was greater than 2084 // the actual number of cores, so we will treat it as exact in this block of 2085 // code. 2086 // 2087 // First, we need to check if cpuid(4) is supported on this chip. To see if 2088 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or 2089 // greater. 2090 __kmp_x86_cpuid(0, 0, &buf); 2091 if (buf.eax >= 4) { 2092 __kmp_x86_cpuid(4, 0, &buf); 2093 nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; 2094 } else { 2095 nCoresPerPkg = 1; 2096 } 2097 2098 // There is no way to reliably tell if HT is enabled without issuing the 2099 // cpuid instruction from every thread, can correlating the cpuid info, so 2100 // if the machine is not affinity capable, we assume that HT is off. We have 2101 // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine 2102 // does not support HT. 2103 // 2104 // - Older OSes are usually found on machines with older chips, which do not 2105 // support HT. 2106 // - The performance penalty for mistakenly identifying a machine as HT when 2107 // it isn't (which results in blocktime being incorrectly set to 0) is 2108 // greater than the penalty when for mistakenly identifying a machine as 2109 // being 1 thread/core when it is really HT enabled (which results in 2110 // blocktime being incorrectly set to a positive value). 2111 __kmp_ncores = __kmp_xproc; 2112 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 2113 __kmp_nThreadsPerCore = 1; 2114 return true; 2115 } 2116 2117 // From here on, we can assume that it is safe to call 2118 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if 2119 // __kmp_affinity_type = affinity_none. 2120 2121 // Save the affinity mask for the current thread. 2122 kmp_affinity_raii_t previous_affinity; 2123 2124 // Run through each of the available contexts, binding the current thread 2125 // to it, and obtaining the pertinent information using the cpuid instr. 2126 // 2127 // The relevant information is: 2128 // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context 2129 // has a uniqie Apic Id, which is of the form pkg# : core# : thread#. 2130 // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value 2131 // of this field determines the width of the core# + thread# fields in the 2132 // Apic Id. It is also an upper bound on the number of threads per 2133 // package, but it has been verified that situations happen were it is not 2134 // exact. In particular, on certain OS/chip combinations where Intel(R) 2135 // Hyper-Threading Technology is supported by the chip but has been 2136 // disabled, the value of this field will be 2 (for a single core chip). 2137 // On other OS/chip combinations supporting Intel(R) Hyper-Threading 2138 // Technology, the value of this field will be 1 when Intel(R) 2139 // Hyper-Threading Technology is disabled and 2 when it is enabled. 2140 // - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value 2141 // of this field (+1) determines the width of the core# field in the Apic 2142 // Id. The comments in "cpucount.cpp" say that this value is an upper 2143 // bound, but the IA-32 architecture manual says that it is exactly the 2144 // number of cores per package, and I haven't seen any case where it 2145 // wasn't. 2146 // 2147 // From this information, deduce the package Id, core Id, and thread Id, 2148 // and set the corresponding fields in the apicThreadInfo struct. 2149 unsigned i; 2150 apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate( 2151 __kmp_avail_proc * sizeof(apicThreadInfo)); 2152 unsigned nApics = 0; 2153 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 2154 // Skip this proc if it is not included in the machine model. 2155 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 2156 continue; 2157 } 2158 KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc); 2159 2160 __kmp_affinity_dispatch->bind_thread(i); 2161 threadInfo[nApics].osId = i; 2162 2163 // The apic id and max threads per pkg come from cpuid(1). 2164 __kmp_x86_cpuid(1, 0, &buf); 2165 if (((buf.edx >> 9) & 1) == 0) { 2166 __kmp_free(threadInfo); 2167 *msg_id = kmp_i18n_str_ApicNotPresent; 2168 return false; 2169 } 2170 threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff; 2171 threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; 2172 if (threadInfo[nApics].maxThreadsPerPkg == 0) { 2173 threadInfo[nApics].maxThreadsPerPkg = 1; 2174 } 2175 2176 // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded 2177 // value. 2178 // 2179 // First, we need to check if cpuid(4) is supported on this chip. To see if 2180 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n 2181 // or greater. 2182 __kmp_x86_cpuid(0, 0, &buf); 2183 if (buf.eax >= 4) { 2184 __kmp_x86_cpuid(4, 0, &buf); 2185 threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; 2186 } else { 2187 threadInfo[nApics].maxCoresPerPkg = 1; 2188 } 2189 2190 // Infer the pkgId / coreId / threadId using only the info obtained locally. 2191 int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg); 2192 threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT; 2193 2194 int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg); 2195 int widthT = widthCT - widthC; 2196 if (widthT < 0) { 2197 // I've never seen this one happen, but I suppose it could, if the cpuid 2198 // instruction on a chip was really screwed up. Make sure to restore the 2199 // affinity mask before the tail call. 2200 __kmp_free(threadInfo); 2201 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 2202 return false; 2203 } 2204 2205 int maskC = (1 << widthC) - 1; 2206 threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC; 2207 2208 int maskT = (1 << widthT) - 1; 2209 threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT; 2210 2211 nApics++; 2212 } 2213 2214 // We've collected all the info we need. 2215 // Restore the old affinity mask for this thread. 2216 previous_affinity.restore(); 2217 2218 // Sort the threadInfo table by physical Id. 2219 qsort(threadInfo, nApics, sizeof(*threadInfo), 2220 __kmp_affinity_cmp_apicThreadInfo_phys_id); 2221 2222 // The table is now sorted by pkgId / coreId / threadId, but we really don't 2223 // know the radix of any of the fields. pkgId's may be sparsely assigned among 2224 // the chips on a system. Although coreId's are usually assigned 2225 // [0 .. coresPerPkg-1] and threadId's are usually assigned 2226 // [0..threadsPerCore-1], we don't want to make any such assumptions. 2227 // 2228 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the 2229 // total # packages) are at this point - we want to determine that now. We 2230 // only have an upper bound on the first two figures. 2231 // 2232 // We also perform a consistency check at this point: the values returned by 2233 // the cpuid instruction for any thread bound to a given package had better 2234 // return the same info for maxThreadsPerPkg and maxCoresPerPkg. 2235 nPackages = 1; 2236 nCoresPerPkg = 1; 2237 __kmp_nThreadsPerCore = 1; 2238 unsigned nCores = 1; 2239 2240 unsigned pkgCt = 1; // to determine radii 2241 unsigned lastPkgId = threadInfo[0].pkgId; 2242 unsigned coreCt = 1; 2243 unsigned lastCoreId = threadInfo[0].coreId; 2244 unsigned threadCt = 1; 2245 unsigned lastThreadId = threadInfo[0].threadId; 2246 2247 // intra-pkg consist checks 2248 unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg; 2249 unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg; 2250 2251 for (i = 1; i < nApics; i++) { 2252 if (threadInfo[i].pkgId != lastPkgId) { 2253 nCores++; 2254 pkgCt++; 2255 lastPkgId = threadInfo[i].pkgId; 2256 if ((int)coreCt > nCoresPerPkg) 2257 nCoresPerPkg = coreCt; 2258 coreCt = 1; 2259 lastCoreId = threadInfo[i].coreId; 2260 if ((int)threadCt > __kmp_nThreadsPerCore) 2261 __kmp_nThreadsPerCore = threadCt; 2262 threadCt = 1; 2263 lastThreadId = threadInfo[i].threadId; 2264 2265 // This is a different package, so go on to the next iteration without 2266 // doing any consistency checks. Reset the consistency check vars, though. 2267 prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg; 2268 prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg; 2269 continue; 2270 } 2271 2272 if (threadInfo[i].coreId != lastCoreId) { 2273 nCores++; 2274 coreCt++; 2275 lastCoreId = threadInfo[i].coreId; 2276 if ((int)threadCt > __kmp_nThreadsPerCore) 2277 __kmp_nThreadsPerCore = threadCt; 2278 threadCt = 1; 2279 lastThreadId = threadInfo[i].threadId; 2280 } else if (threadInfo[i].threadId != lastThreadId) { 2281 threadCt++; 2282 lastThreadId = threadInfo[i].threadId; 2283 } else { 2284 __kmp_free(threadInfo); 2285 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; 2286 return false; 2287 } 2288 2289 // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg 2290 // fields agree between all the threads bounds to a given package. 2291 if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) || 2292 (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) { 2293 __kmp_free(threadInfo); 2294 *msg_id = kmp_i18n_str_InconsistentCpuidInfo; 2295 return false; 2296 } 2297 } 2298 // When affinity is off, this routine will still be called to set 2299 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 2300 // Make sure all these vars are set correctly 2301 nPackages = pkgCt; 2302 if ((int)coreCt > nCoresPerPkg) 2303 nCoresPerPkg = coreCt; 2304 if ((int)threadCt > __kmp_nThreadsPerCore) 2305 __kmp_nThreadsPerCore = threadCt; 2306 __kmp_ncores = nCores; 2307 KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc); 2308 2309 // Now that we've determined the number of packages, the number of cores per 2310 // package, and the number of threads per core, we can construct the data 2311 // structure that is to be returned. 2312 int idx = 0; 2313 int pkgLevel = 0; 2314 int coreLevel = 1; 2315 int threadLevel = 2; 2316 //(__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1); 2317 int depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0); 2318 kmp_hw_t types[3]; 2319 if (pkgLevel >= 0) 2320 types[idx++] = KMP_HW_SOCKET; 2321 if (coreLevel >= 0) 2322 types[idx++] = KMP_HW_CORE; 2323 if (threadLevel >= 0) 2324 types[idx++] = KMP_HW_THREAD; 2325 2326 KMP_ASSERT(depth > 0); 2327 __kmp_topology = kmp_topology_t::allocate(nApics, depth, types); 2328 2329 for (i = 0; i < nApics; ++i) { 2330 idx = 0; 2331 unsigned os = threadInfo[i].osId; 2332 kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); 2333 hw_thread.clear(); 2334 2335 if (pkgLevel >= 0) { 2336 hw_thread.ids[idx++] = threadInfo[i].pkgId; 2337 } 2338 if (coreLevel >= 0) { 2339 hw_thread.ids[idx++] = threadInfo[i].coreId; 2340 } 2341 if (threadLevel >= 0) { 2342 hw_thread.ids[idx++] = threadInfo[i].threadId; 2343 } 2344 hw_thread.os_id = os; 2345 } 2346 2347 __kmp_free(threadInfo); 2348 __kmp_topology->sort_ids(); 2349 if (!__kmp_topology->check_ids()) { 2350 kmp_topology_t::deallocate(__kmp_topology); 2351 __kmp_topology = nullptr; 2352 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; 2353 return false; 2354 } 2355 return true; 2356 } 2357 2358 // Hybrid cpu detection using CPUID.1A 2359 // Thread should be pinned to processor already 2360 static void __kmp_get_hybrid_info(kmp_hw_core_type_t *type, int *efficiency, 2361 unsigned *native_model_id) { 2362 kmp_cpuid buf; 2363 __kmp_x86_cpuid(0x1a, 0, &buf); 2364 *type = (kmp_hw_core_type_t)__kmp_extract_bits<24, 31>(buf.eax); 2365 switch (*type) { 2366 case KMP_HW_CORE_TYPE_ATOM: 2367 *efficiency = 0; 2368 break; 2369 case KMP_HW_CORE_TYPE_CORE: 2370 *efficiency = 1; 2371 break; 2372 default: 2373 *efficiency = 0; 2374 } 2375 *native_model_id = __kmp_extract_bits<0, 23>(buf.eax); 2376 } 2377 2378 // Intel(R) microarchitecture code name Nehalem, Dunnington and later 2379 // architectures support a newer interface for specifying the x2APIC Ids, 2380 // based on CPUID.B or CPUID.1F 2381 /* 2382 * CPUID.B or 1F, Input ECX (sub leaf # aka level number) 2383 Bits Bits Bits Bits 2384 31-16 15-8 7-4 4-0 2385 ---+-----------+--------------+-------------+-----------------+ 2386 EAX| reserved | reserved | reserved | Bits to Shift | 2387 ---+-----------|--------------+-------------+-----------------| 2388 EBX| reserved | Num logical processors at level (16 bits) | 2389 ---+-----------|--------------+-------------------------------| 2390 ECX| reserved | Level Type | Level Number (8 bits) | 2391 ---+-----------+--------------+-------------------------------| 2392 EDX| X2APIC ID (32 bits) | 2393 ---+----------------------------------------------------------+ 2394 */ 2395 2396 enum { 2397 INTEL_LEVEL_TYPE_INVALID = 0, // Package level 2398 INTEL_LEVEL_TYPE_SMT = 1, 2399 INTEL_LEVEL_TYPE_CORE = 2, 2400 INTEL_LEVEL_TYPE_TILE = 3, 2401 INTEL_LEVEL_TYPE_MODULE = 4, 2402 INTEL_LEVEL_TYPE_DIE = 5, 2403 INTEL_LEVEL_TYPE_LAST = 6, 2404 }; 2405 2406 struct cpuid_level_info_t { 2407 unsigned level_type, mask, mask_width, nitems, cache_mask; 2408 }; 2409 2410 static kmp_hw_t __kmp_intel_type_2_topology_type(int intel_type) { 2411 switch (intel_type) { 2412 case INTEL_LEVEL_TYPE_INVALID: 2413 return KMP_HW_SOCKET; 2414 case INTEL_LEVEL_TYPE_SMT: 2415 return KMP_HW_THREAD; 2416 case INTEL_LEVEL_TYPE_CORE: 2417 return KMP_HW_CORE; 2418 case INTEL_LEVEL_TYPE_TILE: 2419 return KMP_HW_TILE; 2420 case INTEL_LEVEL_TYPE_MODULE: 2421 return KMP_HW_MODULE; 2422 case INTEL_LEVEL_TYPE_DIE: 2423 return KMP_HW_DIE; 2424 } 2425 return KMP_HW_UNKNOWN; 2426 } 2427 2428 // This function takes the topology leaf, a levels array to store the levels 2429 // detected and a bitmap of the known levels. 2430 // Returns the number of levels in the topology 2431 static unsigned 2432 __kmp_x2apicid_get_levels(int leaf, 2433 cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST], 2434 kmp_uint64 known_levels) { 2435 unsigned level, levels_index; 2436 unsigned level_type, mask_width, nitems; 2437 kmp_cpuid buf; 2438 2439 // New algorithm has known topology layers act as highest unknown topology 2440 // layers when unknown topology layers exist. 2441 // e.g., Suppose layers were SMT <X> CORE <Y> <Z> PACKAGE, where <X> <Y> <Z> 2442 // are unknown topology layers, Then SMT will take the characteristics of 2443 // (SMT x <X>) and CORE will take the characteristics of (CORE x <Y> x <Z>). 2444 // This eliminates unknown portions of the topology while still keeping the 2445 // correct structure. 2446 level = levels_index = 0; 2447 do { 2448 __kmp_x86_cpuid(leaf, level, &buf); 2449 level_type = __kmp_extract_bits<8, 15>(buf.ecx); 2450 mask_width = __kmp_extract_bits<0, 4>(buf.eax); 2451 nitems = __kmp_extract_bits<0, 15>(buf.ebx); 2452 if (level_type != INTEL_LEVEL_TYPE_INVALID && nitems == 0) 2453 return 0; 2454 2455 if (known_levels & (1ull << level_type)) { 2456 // Add a new level to the topology 2457 KMP_ASSERT(levels_index < INTEL_LEVEL_TYPE_LAST); 2458 levels[levels_index].level_type = level_type; 2459 levels[levels_index].mask_width = mask_width; 2460 levels[levels_index].nitems = nitems; 2461 levels_index++; 2462 } else { 2463 // If it is an unknown level, then logically move the previous layer up 2464 if (levels_index > 0) { 2465 levels[levels_index - 1].mask_width = mask_width; 2466 levels[levels_index - 1].nitems = nitems; 2467 } 2468 } 2469 level++; 2470 } while (level_type != INTEL_LEVEL_TYPE_INVALID); 2471 2472 // Set the masks to & with apicid 2473 for (unsigned i = 0; i < levels_index; ++i) { 2474 if (levels[i].level_type != INTEL_LEVEL_TYPE_INVALID) { 2475 levels[i].mask = ~((-1) << levels[i].mask_width); 2476 levels[i].cache_mask = (-1) << levels[i].mask_width; 2477 for (unsigned j = 0; j < i; ++j) 2478 levels[i].mask ^= levels[j].mask; 2479 } else { 2480 KMP_DEBUG_ASSERT(levels_index > 0); 2481 levels[i].mask = (-1) << levels[i - 1].mask_width; 2482 levels[i].cache_mask = 0; 2483 } 2484 } 2485 return levels_index; 2486 } 2487 2488 static bool __kmp_affinity_create_x2apicid_map(kmp_i18n_id_t *const msg_id) { 2489 2490 cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST]; 2491 kmp_hw_t types[INTEL_LEVEL_TYPE_LAST]; 2492 unsigned levels_index; 2493 kmp_cpuid buf; 2494 kmp_uint64 known_levels; 2495 int topology_leaf, highest_leaf, apic_id; 2496 int num_leaves; 2497 static int leaves[] = {0, 0}; 2498 2499 kmp_i18n_id_t leaf_message_id; 2500 2501 KMP_BUILD_ASSERT(sizeof(known_levels) * CHAR_BIT > KMP_HW_LAST); 2502 2503 *msg_id = kmp_i18n_null; 2504 if (__kmp_affinity_verbose) { 2505 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC)); 2506 } 2507 2508 // Figure out the known topology levels 2509 known_levels = 0ull; 2510 for (int i = 0; i < INTEL_LEVEL_TYPE_LAST; ++i) { 2511 if (__kmp_intel_type_2_topology_type(i) != KMP_HW_UNKNOWN) { 2512 known_levels |= (1ull << i); 2513 } 2514 } 2515 2516 // Get the highest cpuid leaf supported 2517 __kmp_x86_cpuid(0, 0, &buf); 2518 highest_leaf = buf.eax; 2519 2520 // If a specific topology method was requested, only allow that specific leaf 2521 // otherwise, try both leaves 31 and 11 in that order 2522 num_leaves = 0; 2523 if (__kmp_affinity_top_method == affinity_top_method_x2apicid) { 2524 num_leaves = 1; 2525 leaves[0] = 11; 2526 leaf_message_id = kmp_i18n_str_NoLeaf11Support; 2527 } else if (__kmp_affinity_top_method == affinity_top_method_x2apicid_1f) { 2528 num_leaves = 1; 2529 leaves[0] = 31; 2530 leaf_message_id = kmp_i18n_str_NoLeaf31Support; 2531 } else { 2532 num_leaves = 2; 2533 leaves[0] = 31; 2534 leaves[1] = 11; 2535 leaf_message_id = kmp_i18n_str_NoLeaf11Support; 2536 } 2537 2538 // Check to see if cpuid leaf 31 or 11 is supported. 2539 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; 2540 topology_leaf = -1; 2541 for (int i = 0; i < num_leaves; ++i) { 2542 int leaf = leaves[i]; 2543 if (highest_leaf < leaf) 2544 continue; 2545 __kmp_x86_cpuid(leaf, 0, &buf); 2546 if (buf.ebx == 0) 2547 continue; 2548 topology_leaf = leaf; 2549 levels_index = __kmp_x2apicid_get_levels(leaf, levels, known_levels); 2550 if (levels_index == 0) 2551 continue; 2552 break; 2553 } 2554 if (topology_leaf == -1 || levels_index == 0) { 2555 *msg_id = leaf_message_id; 2556 return false; 2557 } 2558 KMP_ASSERT(levels_index <= INTEL_LEVEL_TYPE_LAST); 2559 2560 // The algorithm used starts by setting the affinity to each available thread 2561 // and retrieving info from the cpuid instruction, so if we are not capable of 2562 // calling __kmp_get_system_affinity() and __kmp_get_system_affinity(), then 2563 // we need to do something else - use the defaults that we calculated from 2564 // issuing cpuid without binding to each proc. 2565 if (!KMP_AFFINITY_CAPABLE()) { 2566 // Hack to try and infer the machine topology using only the data 2567 // available from cpuid on the current thread, and __kmp_xproc. 2568 KMP_ASSERT(__kmp_affinity_type == affinity_none); 2569 for (unsigned i = 0; i < levels_index; ++i) { 2570 if (levels[i].level_type == INTEL_LEVEL_TYPE_SMT) { 2571 __kmp_nThreadsPerCore = levels[i].nitems; 2572 } else if (levels[i].level_type == INTEL_LEVEL_TYPE_CORE) { 2573 nCoresPerPkg = levels[i].nitems; 2574 } 2575 } 2576 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; 2577 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 2578 return true; 2579 } 2580 2581 // Allocate the data structure to be returned. 2582 int depth = levels_index; 2583 for (int i = depth - 1, j = 0; i >= 0; --i, ++j) 2584 types[j] = __kmp_intel_type_2_topology_type(levels[i].level_type); 2585 __kmp_topology = 2586 kmp_topology_t::allocate(__kmp_avail_proc, levels_index, types); 2587 2588 // Insert equivalent cache types if they exist 2589 kmp_cache_info_t cache_info; 2590 for (size_t i = 0; i < cache_info.get_depth(); ++i) { 2591 const kmp_cache_info_t::info_t &info = cache_info[i]; 2592 unsigned cache_mask = info.mask; 2593 unsigned cache_level = info.level; 2594 for (unsigned j = 0; j < levels_index; ++j) { 2595 unsigned hw_cache_mask = levels[j].cache_mask; 2596 kmp_hw_t cache_type = kmp_cache_info_t::get_topology_type(cache_level); 2597 if (hw_cache_mask == cache_mask && j < levels_index - 1) { 2598 kmp_hw_t type = 2599 __kmp_intel_type_2_topology_type(levels[j + 1].level_type); 2600 __kmp_topology->set_equivalent_type(cache_type, type); 2601 } 2602 } 2603 } 2604 2605 // From here on, we can assume that it is safe to call 2606 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if 2607 // __kmp_affinity_type = affinity_none. 2608 2609 // Save the affinity mask for the current thread. 2610 kmp_affinity_raii_t previous_affinity; 2611 2612 // Run through each of the available contexts, binding the current thread 2613 // to it, and obtaining the pertinent information using the cpuid instr. 2614 unsigned int proc; 2615 int hw_thread_index = 0; 2616 KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) { 2617 cpuid_level_info_t my_levels[INTEL_LEVEL_TYPE_LAST]; 2618 unsigned my_levels_index; 2619 2620 // Skip this proc if it is not included in the machine model. 2621 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 2622 continue; 2623 } 2624 KMP_DEBUG_ASSERT(hw_thread_index < __kmp_avail_proc); 2625 2626 __kmp_affinity_dispatch->bind_thread(proc); 2627 2628 // New algorithm 2629 __kmp_x86_cpuid(topology_leaf, 0, &buf); 2630 apic_id = buf.edx; 2631 kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index); 2632 my_levels_index = 2633 __kmp_x2apicid_get_levels(topology_leaf, my_levels, known_levels); 2634 if (my_levels_index == 0 || my_levels_index != levels_index) { 2635 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 2636 return false; 2637 } 2638 hw_thread.clear(); 2639 hw_thread.os_id = proc; 2640 // Put in topology information 2641 for (unsigned j = 0, idx = depth - 1; j < my_levels_index; ++j, --idx) { 2642 hw_thread.ids[idx] = apic_id & my_levels[j].mask; 2643 if (j > 0) { 2644 hw_thread.ids[idx] >>= my_levels[j - 1].mask_width; 2645 } 2646 } 2647 // Hybrid information 2648 if (__kmp_is_hybrid_cpu() && highest_leaf >= 0x1a) { 2649 kmp_hw_core_type_t type; 2650 unsigned native_model_id; 2651 int efficiency; 2652 __kmp_get_hybrid_info(&type, &efficiency, &native_model_id); 2653 hw_thread.attrs.set_core_type(type); 2654 hw_thread.attrs.set_core_eff(efficiency); 2655 } 2656 hw_thread_index++; 2657 } 2658 KMP_ASSERT(hw_thread_index > 0); 2659 __kmp_topology->sort_ids(); 2660 if (!__kmp_topology->check_ids()) { 2661 kmp_topology_t::deallocate(__kmp_topology); 2662 __kmp_topology = nullptr; 2663 *msg_id = kmp_i18n_str_x2ApicIDsNotUnique; 2664 return false; 2665 } 2666 return true; 2667 } 2668 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 2669 2670 #define osIdIndex 0 2671 #define threadIdIndex 1 2672 #define coreIdIndex 2 2673 #define pkgIdIndex 3 2674 #define nodeIdIndex 4 2675 2676 typedef unsigned *ProcCpuInfo; 2677 static unsigned maxIndex = pkgIdIndex; 2678 2679 static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a, 2680 const void *b) { 2681 unsigned i; 2682 const unsigned *aa = *(unsigned *const *)a; 2683 const unsigned *bb = *(unsigned *const *)b; 2684 for (i = maxIndex;; i--) { 2685 if (aa[i] < bb[i]) 2686 return -1; 2687 if (aa[i] > bb[i]) 2688 return 1; 2689 if (i == osIdIndex) 2690 break; 2691 } 2692 return 0; 2693 } 2694 2695 #if KMP_USE_HIER_SCHED 2696 // Set the array sizes for the hierarchy layers 2697 static void __kmp_dispatch_set_hierarchy_values() { 2698 // Set the maximum number of L1's to number of cores 2699 // Set the maximum number of L2's to to either number of cores / 2 for 2700 // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing 2701 // Or the number of cores for Intel(R) Xeon(R) processors 2702 // Set the maximum number of NUMA nodes and L3's to number of packages 2703 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] = 2704 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; 2705 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores; 2706 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \ 2707 KMP_MIC_SUPPORTED 2708 if (__kmp_mic_type >= mic3) 2709 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2; 2710 else 2711 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 2712 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores; 2713 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages; 2714 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages; 2715 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1; 2716 // Set the number of threads per unit 2717 // Number of hardware threads per L1/L2/L3/NUMA/LOOP 2718 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1; 2719 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] = 2720 __kmp_nThreadsPerCore; 2721 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \ 2722 KMP_MIC_SUPPORTED 2723 if (__kmp_mic_type >= mic3) 2724 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = 2725 2 * __kmp_nThreadsPerCore; 2726 else 2727 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 2728 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = 2729 __kmp_nThreadsPerCore; 2730 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] = 2731 nCoresPerPkg * __kmp_nThreadsPerCore; 2732 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] = 2733 nCoresPerPkg * __kmp_nThreadsPerCore; 2734 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] = 2735 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; 2736 } 2737 2738 // Return the index into the hierarchy for this tid and layer type (L1, L2, etc) 2739 // i.e., this thread's L1 or this thread's L2, etc. 2740 int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) { 2741 int index = type + 1; 2742 int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1]; 2743 KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST); 2744 if (type == kmp_hier_layer_e::LAYER_THREAD) 2745 return tid; 2746 else if (type == kmp_hier_layer_e::LAYER_LOOP) 2747 return 0; 2748 KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0); 2749 if (tid >= num_hw_threads) 2750 tid = tid % num_hw_threads; 2751 return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index]; 2752 } 2753 2754 // Return the number of t1's per t2 2755 int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) { 2756 int i1 = t1 + 1; 2757 int i2 = t2 + 1; 2758 KMP_DEBUG_ASSERT(i1 <= i2); 2759 KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST); 2760 KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST); 2761 KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0); 2762 // (nthreads/t2) / (nthreads/t1) = t1 / t2 2763 return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1]; 2764 } 2765 #endif // KMP_USE_HIER_SCHED 2766 2767 static inline const char *__kmp_cpuinfo_get_filename() { 2768 const char *filename; 2769 if (__kmp_cpuinfo_file != nullptr) 2770 filename = __kmp_cpuinfo_file; 2771 else 2772 filename = "/proc/cpuinfo"; 2773 return filename; 2774 } 2775 2776 static inline const char *__kmp_cpuinfo_get_envvar() { 2777 const char *envvar = nullptr; 2778 if (__kmp_cpuinfo_file != nullptr) 2779 envvar = "KMP_CPUINFO_FILE"; 2780 return envvar; 2781 } 2782 2783 // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the 2784 // affinity map. 2785 static bool __kmp_affinity_create_cpuinfo_map(int *line, 2786 kmp_i18n_id_t *const msg_id) { 2787 const char *filename = __kmp_cpuinfo_get_filename(); 2788 const char *envvar = __kmp_cpuinfo_get_envvar(); 2789 *msg_id = kmp_i18n_null; 2790 2791 if (__kmp_affinity_verbose) { 2792 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename); 2793 } 2794 2795 kmp_safe_raii_file_t f(filename, "r", envvar); 2796 2797 // Scan of the file, and count the number of "processor" (osId) fields, 2798 // and find the highest value of <n> for a node_<n> field. 2799 char buf[256]; 2800 unsigned num_records = 0; 2801 while (!feof(f)) { 2802 buf[sizeof(buf) - 1] = 1; 2803 if (!fgets(buf, sizeof(buf), f)) { 2804 // Read errors presumably because of EOF 2805 break; 2806 } 2807 2808 char s1[] = "processor"; 2809 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { 2810 num_records++; 2811 continue; 2812 } 2813 2814 // FIXME - this will match "node_<n> <garbage>" 2815 unsigned level; 2816 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { 2817 // validate the input fisrt: 2818 if (level > (unsigned)__kmp_xproc) { // level is too big 2819 level = __kmp_xproc; 2820 } 2821 if (nodeIdIndex + level >= maxIndex) { 2822 maxIndex = nodeIdIndex + level; 2823 } 2824 continue; 2825 } 2826 } 2827 2828 // Check for empty file / no valid processor records, or too many. The number 2829 // of records can't exceed the number of valid bits in the affinity mask. 2830 if (num_records == 0) { 2831 *msg_id = kmp_i18n_str_NoProcRecords; 2832 return false; 2833 } 2834 if (num_records > (unsigned)__kmp_xproc) { 2835 *msg_id = kmp_i18n_str_TooManyProcRecords; 2836 return false; 2837 } 2838 2839 // Set the file pointer back to the beginning, so that we can scan the file 2840 // again, this time performing a full parse of the data. Allocate a vector of 2841 // ProcCpuInfo object, where we will place the data. Adding an extra element 2842 // at the end allows us to remove a lot of extra checks for termination 2843 // conditions. 2844 if (fseek(f, 0, SEEK_SET) != 0) { 2845 *msg_id = kmp_i18n_str_CantRewindCpuinfo; 2846 return false; 2847 } 2848 2849 // Allocate the array of records to store the proc info in. The dummy 2850 // element at the end makes the logic in filling them out easier to code. 2851 unsigned **threadInfo = 2852 (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *)); 2853 unsigned i; 2854 for (i = 0; i <= num_records; i++) { 2855 threadInfo[i] = 2856 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2857 } 2858 2859 #define CLEANUP_THREAD_INFO \ 2860 for (i = 0; i <= num_records; i++) { \ 2861 __kmp_free(threadInfo[i]); \ 2862 } \ 2863 __kmp_free(threadInfo); 2864 2865 // A value of UINT_MAX means that we didn't find the field 2866 unsigned __index; 2867 2868 #define INIT_PROC_INFO(p) \ 2869 for (__index = 0; __index <= maxIndex; __index++) { \ 2870 (p)[__index] = UINT_MAX; \ 2871 } 2872 2873 for (i = 0; i <= num_records; i++) { 2874 INIT_PROC_INFO(threadInfo[i]); 2875 } 2876 2877 unsigned num_avail = 0; 2878 *line = 0; 2879 while (!feof(f)) { 2880 // Create an inner scoping level, so that all the goto targets at the end of 2881 // the loop appear in an outer scoping level. This avoids warnings about 2882 // jumping past an initialization to a target in the same block. 2883 { 2884 buf[sizeof(buf) - 1] = 1; 2885 bool long_line = false; 2886 if (!fgets(buf, sizeof(buf), f)) { 2887 // Read errors presumably because of EOF 2888 // If there is valid data in threadInfo[num_avail], then fake 2889 // a blank line in ensure that the last address gets parsed. 2890 bool valid = false; 2891 for (i = 0; i <= maxIndex; i++) { 2892 if (threadInfo[num_avail][i] != UINT_MAX) { 2893 valid = true; 2894 } 2895 } 2896 if (!valid) { 2897 break; 2898 } 2899 buf[0] = 0; 2900 } else if (!buf[sizeof(buf) - 1]) { 2901 // The line is longer than the buffer. Set a flag and don't 2902 // emit an error if we were going to ignore the line, anyway. 2903 long_line = true; 2904 2905 #define CHECK_LINE \ 2906 if (long_line) { \ 2907 CLEANUP_THREAD_INFO; \ 2908 *msg_id = kmp_i18n_str_LongLineCpuinfo; \ 2909 return false; \ 2910 } 2911 } 2912 (*line)++; 2913 2914 char s1[] = "processor"; 2915 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { 2916 CHECK_LINE; 2917 char *p = strchr(buf + sizeof(s1) - 1, ':'); 2918 unsigned val; 2919 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2920 goto no_val; 2921 if (threadInfo[num_avail][osIdIndex] != UINT_MAX) 2922 #if KMP_ARCH_AARCH64 2923 // Handle the old AArch64 /proc/cpuinfo layout differently, 2924 // it contains all of the 'processor' entries listed in a 2925 // single 'Processor' section, therefore the normal looking 2926 // for duplicates in that section will always fail. 2927 num_avail++; 2928 #else 2929 goto dup_field; 2930 #endif 2931 threadInfo[num_avail][osIdIndex] = val; 2932 #if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64) 2933 char path[256]; 2934 KMP_SNPRINTF( 2935 path, sizeof(path), 2936 "/sys/devices/system/cpu/cpu%u/topology/physical_package_id", 2937 threadInfo[num_avail][osIdIndex]); 2938 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]); 2939 2940 KMP_SNPRINTF(path, sizeof(path), 2941 "/sys/devices/system/cpu/cpu%u/topology/core_id", 2942 threadInfo[num_avail][osIdIndex]); 2943 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]); 2944 continue; 2945 #else 2946 } 2947 char s2[] = "physical id"; 2948 if (strncmp(buf, s2, sizeof(s2) - 1) == 0) { 2949 CHECK_LINE; 2950 char *p = strchr(buf + sizeof(s2) - 1, ':'); 2951 unsigned val; 2952 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2953 goto no_val; 2954 if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX) 2955 goto dup_field; 2956 threadInfo[num_avail][pkgIdIndex] = val; 2957 continue; 2958 } 2959 char s3[] = "core id"; 2960 if (strncmp(buf, s3, sizeof(s3) - 1) == 0) { 2961 CHECK_LINE; 2962 char *p = strchr(buf + sizeof(s3) - 1, ':'); 2963 unsigned val; 2964 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2965 goto no_val; 2966 if (threadInfo[num_avail][coreIdIndex] != UINT_MAX) 2967 goto dup_field; 2968 threadInfo[num_avail][coreIdIndex] = val; 2969 continue; 2970 #endif // KMP_OS_LINUX && USE_SYSFS_INFO 2971 } 2972 char s4[] = "thread id"; 2973 if (strncmp(buf, s4, sizeof(s4) - 1) == 0) { 2974 CHECK_LINE; 2975 char *p = strchr(buf + sizeof(s4) - 1, ':'); 2976 unsigned val; 2977 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2978 goto no_val; 2979 if (threadInfo[num_avail][threadIdIndex] != UINT_MAX) 2980 goto dup_field; 2981 threadInfo[num_avail][threadIdIndex] = val; 2982 continue; 2983 } 2984 unsigned level; 2985 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { 2986 CHECK_LINE; 2987 char *p = strchr(buf + sizeof(s4) - 1, ':'); 2988 unsigned val; 2989 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2990 goto no_val; 2991 // validate the input before using level: 2992 if (level > (unsigned)__kmp_xproc) { // level is too big 2993 level = __kmp_xproc; 2994 } 2995 if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX) 2996 goto dup_field; 2997 threadInfo[num_avail][nodeIdIndex + level] = val; 2998 continue; 2999 } 3000 3001 // We didn't recognize the leading token on the line. There are lots of 3002 // leading tokens that we don't recognize - if the line isn't empty, go on 3003 // to the next line. 3004 if ((*buf != 0) && (*buf != '\n')) { 3005 // If the line is longer than the buffer, read characters 3006 // until we find a newline. 3007 if (long_line) { 3008 int ch; 3009 while (((ch = fgetc(f)) != EOF) && (ch != '\n')) 3010 ; 3011 } 3012 continue; 3013 } 3014 3015 // A newline has signalled the end of the processor record. 3016 // Check that there aren't too many procs specified. 3017 if ((int)num_avail == __kmp_xproc) { 3018 CLEANUP_THREAD_INFO; 3019 *msg_id = kmp_i18n_str_TooManyEntries; 3020 return false; 3021 } 3022 3023 // Check for missing fields. The osId field must be there, and we 3024 // currently require that the physical id field is specified, also. 3025 if (threadInfo[num_avail][osIdIndex] == UINT_MAX) { 3026 CLEANUP_THREAD_INFO; 3027 *msg_id = kmp_i18n_str_MissingProcField; 3028 return false; 3029 } 3030 if (threadInfo[0][pkgIdIndex] == UINT_MAX) { 3031 CLEANUP_THREAD_INFO; 3032 *msg_id = kmp_i18n_str_MissingPhysicalIDField; 3033 return false; 3034 } 3035 3036 // Skip this proc if it is not included in the machine model. 3037 if (!KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex], 3038 __kmp_affin_fullMask)) { 3039 INIT_PROC_INFO(threadInfo[num_avail]); 3040 continue; 3041 } 3042 3043 // We have a successful parse of this proc's info. 3044 // Increment the counter, and prepare for the next proc. 3045 num_avail++; 3046 KMP_ASSERT(num_avail <= num_records); 3047 INIT_PROC_INFO(threadInfo[num_avail]); 3048 } 3049 continue; 3050 3051 no_val: 3052 CLEANUP_THREAD_INFO; 3053 *msg_id = kmp_i18n_str_MissingValCpuinfo; 3054 return false; 3055 3056 dup_field: 3057 CLEANUP_THREAD_INFO; 3058 *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo; 3059 return false; 3060 } 3061 *line = 0; 3062 3063 #if KMP_MIC && REDUCE_TEAM_SIZE 3064 unsigned teamSize = 0; 3065 #endif // KMP_MIC && REDUCE_TEAM_SIZE 3066 3067 // check for num_records == __kmp_xproc ??? 3068 3069 // If it is configured to omit the package level when there is only a single 3070 // package, the logic at the end of this routine won't work if there is only a 3071 // single thread 3072 KMP_ASSERT(num_avail > 0); 3073 KMP_ASSERT(num_avail <= num_records); 3074 3075 // Sort the threadInfo table by physical Id. 3076 qsort(threadInfo, num_avail, sizeof(*threadInfo), 3077 __kmp_affinity_cmp_ProcCpuInfo_phys_id); 3078 3079 // The table is now sorted by pkgId / coreId / threadId, but we really don't 3080 // know the radix of any of the fields. pkgId's may be sparsely assigned among 3081 // the chips on a system. Although coreId's are usually assigned 3082 // [0 .. coresPerPkg-1] and threadId's are usually assigned 3083 // [0..threadsPerCore-1], we don't want to make any such assumptions. 3084 // 3085 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the 3086 // total # packages) are at this point - we want to determine that now. We 3087 // only have an upper bound on the first two figures. 3088 unsigned *counts = 3089 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 3090 unsigned *maxCt = 3091 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 3092 unsigned *totals = 3093 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 3094 unsigned *lastId = 3095 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 3096 3097 bool assign_thread_ids = false; 3098 unsigned threadIdCt; 3099 unsigned index; 3100 3101 restart_radix_check: 3102 threadIdCt = 0; 3103 3104 // Initialize the counter arrays with data from threadInfo[0]. 3105 if (assign_thread_ids) { 3106 if (threadInfo[0][threadIdIndex] == UINT_MAX) { 3107 threadInfo[0][threadIdIndex] = threadIdCt++; 3108 } else if (threadIdCt <= threadInfo[0][threadIdIndex]) { 3109 threadIdCt = threadInfo[0][threadIdIndex] + 1; 3110 } 3111 } 3112 for (index = 0; index <= maxIndex; index++) { 3113 counts[index] = 1; 3114 maxCt[index] = 1; 3115 totals[index] = 1; 3116 lastId[index] = threadInfo[0][index]; 3117 ; 3118 } 3119 3120 // Run through the rest of the OS procs. 3121 for (i = 1; i < num_avail; i++) { 3122 // Find the most significant index whose id differs from the id for the 3123 // previous OS proc. 3124 for (index = maxIndex; index >= threadIdIndex; index--) { 3125 if (assign_thread_ids && (index == threadIdIndex)) { 3126 // Auto-assign the thread id field if it wasn't specified. 3127 if (threadInfo[i][threadIdIndex] == UINT_MAX) { 3128 threadInfo[i][threadIdIndex] = threadIdCt++; 3129 } 3130 // Apparently the thread id field was specified for some entries and not 3131 // others. Start the thread id counter off at the next higher thread id. 3132 else if (threadIdCt <= threadInfo[i][threadIdIndex]) { 3133 threadIdCt = threadInfo[i][threadIdIndex] + 1; 3134 } 3135 } 3136 if (threadInfo[i][index] != lastId[index]) { 3137 // Run through all indices which are less significant, and reset the 3138 // counts to 1. At all levels up to and including index, we need to 3139 // increment the totals and record the last id. 3140 unsigned index2; 3141 for (index2 = threadIdIndex; index2 < index; index2++) { 3142 totals[index2]++; 3143 if (counts[index2] > maxCt[index2]) { 3144 maxCt[index2] = counts[index2]; 3145 } 3146 counts[index2] = 1; 3147 lastId[index2] = threadInfo[i][index2]; 3148 } 3149 counts[index]++; 3150 totals[index]++; 3151 lastId[index] = threadInfo[i][index]; 3152 3153 if (assign_thread_ids && (index > threadIdIndex)) { 3154 3155 #if KMP_MIC && REDUCE_TEAM_SIZE 3156 // The default team size is the total #threads in the machine 3157 // minus 1 thread for every core that has 3 or more threads. 3158 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); 3159 #endif // KMP_MIC && REDUCE_TEAM_SIZE 3160 3161 // Restart the thread counter, as we are on a new core. 3162 threadIdCt = 0; 3163 3164 // Auto-assign the thread id field if it wasn't specified. 3165 if (threadInfo[i][threadIdIndex] == UINT_MAX) { 3166 threadInfo[i][threadIdIndex] = threadIdCt++; 3167 } 3168 3169 // Apparently the thread id field was specified for some entries and 3170 // not others. Start the thread id counter off at the next higher 3171 // thread id. 3172 else if (threadIdCt <= threadInfo[i][threadIdIndex]) { 3173 threadIdCt = threadInfo[i][threadIdIndex] + 1; 3174 } 3175 } 3176 break; 3177 } 3178 } 3179 if (index < threadIdIndex) { 3180 // If thread ids were specified, it is an error if they are not unique. 3181 // Also, check that we waven't already restarted the loop (to be safe - 3182 // shouldn't need to). 3183 if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) { 3184 __kmp_free(lastId); 3185 __kmp_free(totals); 3186 __kmp_free(maxCt); 3187 __kmp_free(counts); 3188 CLEANUP_THREAD_INFO; 3189 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; 3190 return false; 3191 } 3192 3193 // If the thread ids were not specified and we see entries entries that 3194 // are duplicates, start the loop over and assign the thread ids manually. 3195 assign_thread_ids = true; 3196 goto restart_radix_check; 3197 } 3198 } 3199 3200 #if KMP_MIC && REDUCE_TEAM_SIZE 3201 // The default team size is the total #threads in the machine 3202 // minus 1 thread for every core that has 3 or more threads. 3203 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); 3204 #endif // KMP_MIC && REDUCE_TEAM_SIZE 3205 3206 for (index = threadIdIndex; index <= maxIndex; index++) { 3207 if (counts[index] > maxCt[index]) { 3208 maxCt[index] = counts[index]; 3209 } 3210 } 3211 3212 __kmp_nThreadsPerCore = maxCt[threadIdIndex]; 3213 nCoresPerPkg = maxCt[coreIdIndex]; 3214 nPackages = totals[pkgIdIndex]; 3215 3216 // When affinity is off, this routine will still be called to set 3217 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 3218 // Make sure all these vars are set correctly, and return now if affinity is 3219 // not enabled. 3220 __kmp_ncores = totals[coreIdIndex]; 3221 if (!KMP_AFFINITY_CAPABLE()) { 3222 KMP_ASSERT(__kmp_affinity_type == affinity_none); 3223 return true; 3224 } 3225 3226 #if KMP_MIC && REDUCE_TEAM_SIZE 3227 // Set the default team size. 3228 if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) { 3229 __kmp_dflt_team_nth = teamSize; 3230 KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting " 3231 "__kmp_dflt_team_nth = %d\n", 3232 __kmp_dflt_team_nth)); 3233 } 3234 #endif // KMP_MIC && REDUCE_TEAM_SIZE 3235 3236 KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc); 3237 3238 // Count the number of levels which have more nodes at that level than at the 3239 // parent's level (with there being an implicit root node of the top level). 3240 // This is equivalent to saying that there is at least one node at this level 3241 // which has a sibling. These levels are in the map, and the package level is 3242 // always in the map. 3243 bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool)); 3244 for (index = threadIdIndex; index < maxIndex; index++) { 3245 KMP_ASSERT(totals[index] >= totals[index + 1]); 3246 inMap[index] = (totals[index] > totals[index + 1]); 3247 } 3248 inMap[maxIndex] = (totals[maxIndex] > 1); 3249 inMap[pkgIdIndex] = true; 3250 inMap[coreIdIndex] = true; 3251 inMap[threadIdIndex] = true; 3252 3253 int depth = 0; 3254 int idx = 0; 3255 kmp_hw_t types[KMP_HW_LAST]; 3256 int pkgLevel = -1; 3257 int coreLevel = -1; 3258 int threadLevel = -1; 3259 for (index = threadIdIndex; index <= maxIndex; index++) { 3260 if (inMap[index]) { 3261 depth++; 3262 } 3263 } 3264 if (inMap[pkgIdIndex]) { 3265 pkgLevel = idx; 3266 types[idx++] = KMP_HW_SOCKET; 3267 } 3268 if (inMap[coreIdIndex]) { 3269 coreLevel = idx; 3270 types[idx++] = KMP_HW_CORE; 3271 } 3272 if (inMap[threadIdIndex]) { 3273 threadLevel = idx; 3274 types[idx++] = KMP_HW_THREAD; 3275 } 3276 KMP_ASSERT(depth > 0); 3277 3278 // Construct the data structure that is to be returned. 3279 __kmp_topology = kmp_topology_t::allocate(num_avail, depth, types); 3280 3281 for (i = 0; i < num_avail; ++i) { 3282 unsigned os = threadInfo[i][osIdIndex]; 3283 int src_index; 3284 int dst_index = 0; 3285 kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); 3286 hw_thread.clear(); 3287 hw_thread.os_id = os; 3288 3289 idx = 0; 3290 for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) { 3291 if (!inMap[src_index]) { 3292 continue; 3293 } 3294 if (src_index == pkgIdIndex) { 3295 hw_thread.ids[pkgLevel] = threadInfo[i][src_index]; 3296 } else if (src_index == coreIdIndex) { 3297 hw_thread.ids[coreLevel] = threadInfo[i][src_index]; 3298 } else if (src_index == threadIdIndex) { 3299 hw_thread.ids[threadLevel] = threadInfo[i][src_index]; 3300 } 3301 dst_index++; 3302 } 3303 } 3304 3305 __kmp_free(inMap); 3306 __kmp_free(lastId); 3307 __kmp_free(totals); 3308 __kmp_free(maxCt); 3309 __kmp_free(counts); 3310 CLEANUP_THREAD_INFO; 3311 __kmp_topology->sort_ids(); 3312 if (!__kmp_topology->check_ids()) { 3313 kmp_topology_t::deallocate(__kmp_topology); 3314 __kmp_topology = nullptr; 3315 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; 3316 return false; 3317 } 3318 return true; 3319 } 3320 3321 // Create and return a table of affinity masks, indexed by OS thread ID. 3322 // This routine handles OR'ing together all the affinity masks of threads 3323 // that are sufficiently close, if granularity > fine. 3324 static kmp_affin_mask_t *__kmp_create_masks(unsigned *maxIndex, 3325 unsigned *numUnique) { 3326 // First form a table of affinity masks in order of OS thread id. 3327 int maxOsId; 3328 int i; 3329 int numAddrs = __kmp_topology->get_num_hw_threads(); 3330 int depth = __kmp_topology->get_depth(); 3331 KMP_ASSERT(numAddrs); 3332 KMP_ASSERT(depth); 3333 3334 maxOsId = 0; 3335 for (i = numAddrs - 1;; --i) { 3336 int osId = __kmp_topology->at(i).os_id; 3337 if (osId > maxOsId) { 3338 maxOsId = osId; 3339 } 3340 if (i == 0) 3341 break; 3342 } 3343 kmp_affin_mask_t *osId2Mask; 3344 KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId + 1)); 3345 KMP_ASSERT(__kmp_affinity_gran_levels >= 0); 3346 if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) { 3347 KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels); 3348 } 3349 if (__kmp_affinity_gran_levels >= (int)depth) { 3350 if (__kmp_affinity_verbose || 3351 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { 3352 KMP_WARNING(AffThreadsMayMigrate); 3353 } 3354 } 3355 3356 // Run through the table, forming the masks for all threads on each core. 3357 // Threads on the same core will have identical kmp_hw_thread_t objects, not 3358 // considering the last level, which must be the thread id. All threads on a 3359 // core will appear consecutively. 3360 int unique = 0; 3361 int j = 0; // index of 1st thread on core 3362 int leader = 0; 3363 kmp_affin_mask_t *sum; 3364 KMP_CPU_ALLOC_ON_STACK(sum); 3365 KMP_CPU_ZERO(sum); 3366 KMP_CPU_SET(__kmp_topology->at(0).os_id, sum); 3367 for (i = 1; i < numAddrs; i++) { 3368 // If this thread is sufficiently close to the leader (within the 3369 // granularity setting), then set the bit for this os thread in the 3370 // affinity mask for this group, and go on to the next thread. 3371 if (__kmp_topology->is_close(leader, i, __kmp_affinity_gran_levels)) { 3372 KMP_CPU_SET(__kmp_topology->at(i).os_id, sum); 3373 continue; 3374 } 3375 3376 // For every thread in this group, copy the mask to the thread's entry in 3377 // the osId2Mask table. Mark the first address as a leader. 3378 for (; j < i; j++) { 3379 int osId = __kmp_topology->at(j).os_id; 3380 KMP_DEBUG_ASSERT(osId <= maxOsId); 3381 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); 3382 KMP_CPU_COPY(mask, sum); 3383 __kmp_topology->at(j).leader = (j == leader); 3384 } 3385 unique++; 3386 3387 // Start a new mask. 3388 leader = i; 3389 KMP_CPU_ZERO(sum); 3390 KMP_CPU_SET(__kmp_topology->at(i).os_id, sum); 3391 } 3392 3393 // For every thread in last group, copy the mask to the thread's 3394 // entry in the osId2Mask table. 3395 for (; j < i; j++) { 3396 int osId = __kmp_topology->at(j).os_id; 3397 KMP_DEBUG_ASSERT(osId <= maxOsId); 3398 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); 3399 KMP_CPU_COPY(mask, sum); 3400 __kmp_topology->at(j).leader = (j == leader); 3401 } 3402 unique++; 3403 KMP_CPU_FREE_FROM_STACK(sum); 3404 3405 *maxIndex = maxOsId; 3406 *numUnique = unique; 3407 return osId2Mask; 3408 } 3409 3410 // Stuff for the affinity proclist parsers. It's easier to declare these vars 3411 // as file-static than to try and pass them through the calling sequence of 3412 // the recursive-descent OMP_PLACES parser. 3413 static kmp_affin_mask_t *newMasks; 3414 static int numNewMasks; 3415 static int nextNewMask; 3416 3417 #define ADD_MASK(_mask) \ 3418 { \ 3419 if (nextNewMask >= numNewMasks) { \ 3420 int i; \ 3421 numNewMasks *= 2; \ 3422 kmp_affin_mask_t *temp; \ 3423 KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \ 3424 for (i = 0; i < numNewMasks / 2; i++) { \ 3425 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); \ 3426 kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i); \ 3427 KMP_CPU_COPY(dest, src); \ 3428 } \ 3429 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2); \ 3430 newMasks = temp; \ 3431 } \ 3432 KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \ 3433 nextNewMask++; \ 3434 } 3435 3436 #define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \ 3437 { \ 3438 if (((_osId) > _maxOsId) || \ 3439 (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \ 3440 if (__kmp_affinity_verbose || \ 3441 (__kmp_affinity_warnings && \ 3442 (__kmp_affinity_type != affinity_none))) { \ 3443 KMP_WARNING(AffIgnoreInvalidProcID, _osId); \ 3444 } \ 3445 } else { \ 3446 ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \ 3447 } \ 3448 } 3449 3450 // Re-parse the proclist (for the explicit affinity type), and form the list 3451 // of affinity newMasks indexed by gtid. 3452 static void __kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks, 3453 unsigned int *out_numMasks, 3454 const char *proclist, 3455 kmp_affin_mask_t *osId2Mask, 3456 int maxOsId) { 3457 int i; 3458 const char *scan = proclist; 3459 const char *next = proclist; 3460 3461 // We use malloc() for the temporary mask vector, so that we can use 3462 // realloc() to extend it. 3463 numNewMasks = 2; 3464 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); 3465 nextNewMask = 0; 3466 kmp_affin_mask_t *sumMask; 3467 KMP_CPU_ALLOC(sumMask); 3468 int setSize = 0; 3469 3470 for (;;) { 3471 int start, end, stride; 3472 3473 SKIP_WS(scan); 3474 next = scan; 3475 if (*next == '\0') { 3476 break; 3477 } 3478 3479 if (*next == '{') { 3480 int num; 3481 setSize = 0; 3482 next++; // skip '{' 3483 SKIP_WS(next); 3484 scan = next; 3485 3486 // Read the first integer in the set. 3487 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist"); 3488 SKIP_DIGITS(next); 3489 num = __kmp_str_to_int(scan, *next); 3490 KMP_ASSERT2(num >= 0, "bad explicit proc list"); 3491 3492 // Copy the mask for that osId to the sum (union) mask. 3493 if ((num > maxOsId) || 3494 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 3495 if (__kmp_affinity_verbose || 3496 (__kmp_affinity_warnings && 3497 (__kmp_affinity_type != affinity_none))) { 3498 KMP_WARNING(AffIgnoreInvalidProcID, num); 3499 } 3500 KMP_CPU_ZERO(sumMask); 3501 } else { 3502 KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num)); 3503 setSize = 1; 3504 } 3505 3506 for (;;) { 3507 // Check for end of set. 3508 SKIP_WS(next); 3509 if (*next == '}') { 3510 next++; // skip '}' 3511 break; 3512 } 3513 3514 // Skip optional comma. 3515 if (*next == ',') { 3516 next++; 3517 } 3518 SKIP_WS(next); 3519 3520 // Read the next integer in the set. 3521 scan = next; 3522 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 3523 3524 SKIP_DIGITS(next); 3525 num = __kmp_str_to_int(scan, *next); 3526 KMP_ASSERT2(num >= 0, "bad explicit proc list"); 3527 3528 // Add the mask for that osId to the sum mask. 3529 if ((num > maxOsId) || 3530 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 3531 if (__kmp_affinity_verbose || 3532 (__kmp_affinity_warnings && 3533 (__kmp_affinity_type != affinity_none))) { 3534 KMP_WARNING(AffIgnoreInvalidProcID, num); 3535 } 3536 } else { 3537 KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num)); 3538 setSize++; 3539 } 3540 } 3541 if (setSize > 0) { 3542 ADD_MASK(sumMask); 3543 } 3544 3545 SKIP_WS(next); 3546 if (*next == ',') { 3547 next++; 3548 } 3549 scan = next; 3550 continue; 3551 } 3552 3553 // Read the first integer. 3554 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 3555 SKIP_DIGITS(next); 3556 start = __kmp_str_to_int(scan, *next); 3557 KMP_ASSERT2(start >= 0, "bad explicit proc list"); 3558 SKIP_WS(next); 3559 3560 // If this isn't a range, then add a mask to the list and go on. 3561 if (*next != '-') { 3562 ADD_MASK_OSID(start, osId2Mask, maxOsId); 3563 3564 // Skip optional comma. 3565 if (*next == ',') { 3566 next++; 3567 } 3568 scan = next; 3569 continue; 3570 } 3571 3572 // This is a range. Skip over the '-' and read in the 2nd int. 3573 next++; // skip '-' 3574 SKIP_WS(next); 3575 scan = next; 3576 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 3577 SKIP_DIGITS(next); 3578 end = __kmp_str_to_int(scan, *next); 3579 KMP_ASSERT2(end >= 0, "bad explicit proc list"); 3580 3581 // Check for a stride parameter 3582 stride = 1; 3583 SKIP_WS(next); 3584 if (*next == ':') { 3585 // A stride is specified. Skip over the ':" and read the 3rd int. 3586 int sign = +1; 3587 next++; // skip ':' 3588 SKIP_WS(next); 3589 scan = next; 3590 if (*next == '-') { 3591 sign = -1; 3592 next++; 3593 SKIP_WS(next); 3594 scan = next; 3595 } 3596 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 3597 SKIP_DIGITS(next); 3598 stride = __kmp_str_to_int(scan, *next); 3599 KMP_ASSERT2(stride >= 0, "bad explicit proc list"); 3600 stride *= sign; 3601 } 3602 3603 // Do some range checks. 3604 KMP_ASSERT2(stride != 0, "bad explicit proc list"); 3605 if (stride > 0) { 3606 KMP_ASSERT2(start <= end, "bad explicit proc list"); 3607 } else { 3608 KMP_ASSERT2(start >= end, "bad explicit proc list"); 3609 } 3610 KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list"); 3611 3612 // Add the mask for each OS proc # to the list. 3613 if (stride > 0) { 3614 do { 3615 ADD_MASK_OSID(start, osId2Mask, maxOsId); 3616 start += stride; 3617 } while (start <= end); 3618 } else { 3619 do { 3620 ADD_MASK_OSID(start, osId2Mask, maxOsId); 3621 start += stride; 3622 } while (start >= end); 3623 } 3624 3625 // Skip optional comma. 3626 SKIP_WS(next); 3627 if (*next == ',') { 3628 next++; 3629 } 3630 scan = next; 3631 } 3632 3633 *out_numMasks = nextNewMask; 3634 if (nextNewMask == 0) { 3635 *out_masks = NULL; 3636 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3637 return; 3638 } 3639 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); 3640 for (i = 0; i < nextNewMask; i++) { 3641 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); 3642 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); 3643 KMP_CPU_COPY(dest, src); 3644 } 3645 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3646 KMP_CPU_FREE(sumMask); 3647 } 3648 3649 /*----------------------------------------------------------------------------- 3650 Re-parse the OMP_PLACES proc id list, forming the newMasks for the different 3651 places. Again, Here is the grammar: 3652 3653 place_list := place 3654 place_list := place , place_list 3655 place := num 3656 place := place : num 3657 place := place : num : signed 3658 place := { subplacelist } 3659 place := ! place // (lowest priority) 3660 subplace_list := subplace 3661 subplace_list := subplace , subplace_list 3662 subplace := num 3663 subplace := num : num 3664 subplace := num : num : signed 3665 signed := num 3666 signed := + signed 3667 signed := - signed 3668 -----------------------------------------------------------------------------*/ 3669 static void __kmp_process_subplace_list(const char **scan, 3670 kmp_affin_mask_t *osId2Mask, 3671 int maxOsId, kmp_affin_mask_t *tempMask, 3672 int *setSize) { 3673 const char *next; 3674 3675 for (;;) { 3676 int start, count, stride, i; 3677 3678 // Read in the starting proc id 3679 SKIP_WS(*scan); 3680 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3681 next = *scan; 3682 SKIP_DIGITS(next); 3683 start = __kmp_str_to_int(*scan, *next); 3684 KMP_ASSERT(start >= 0); 3685 *scan = next; 3686 3687 // valid follow sets are ',' ':' and '}' 3688 SKIP_WS(*scan); 3689 if (**scan == '}' || **scan == ',') { 3690 if ((start > maxOsId) || 3691 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3692 if (__kmp_affinity_verbose || 3693 (__kmp_affinity_warnings && 3694 (__kmp_affinity_type != affinity_none))) { 3695 KMP_WARNING(AffIgnoreInvalidProcID, start); 3696 } 3697 } else { 3698 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3699 (*setSize)++; 3700 } 3701 if (**scan == '}') { 3702 break; 3703 } 3704 (*scan)++; // skip ',' 3705 continue; 3706 } 3707 KMP_ASSERT2(**scan == ':', "bad explicit places list"); 3708 (*scan)++; // skip ':' 3709 3710 // Read count parameter 3711 SKIP_WS(*scan); 3712 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3713 next = *scan; 3714 SKIP_DIGITS(next); 3715 count = __kmp_str_to_int(*scan, *next); 3716 KMP_ASSERT(count >= 0); 3717 *scan = next; 3718 3719 // valid follow sets are ',' ':' and '}' 3720 SKIP_WS(*scan); 3721 if (**scan == '}' || **scan == ',') { 3722 for (i = 0; i < count; i++) { 3723 if ((start > maxOsId) || 3724 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3725 if (__kmp_affinity_verbose || 3726 (__kmp_affinity_warnings && 3727 (__kmp_affinity_type != affinity_none))) { 3728 KMP_WARNING(AffIgnoreInvalidProcID, start); 3729 } 3730 break; // don't proliferate warnings for large count 3731 } else { 3732 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3733 start++; 3734 (*setSize)++; 3735 } 3736 } 3737 if (**scan == '}') { 3738 break; 3739 } 3740 (*scan)++; // skip ',' 3741 continue; 3742 } 3743 KMP_ASSERT2(**scan == ':', "bad explicit places list"); 3744 (*scan)++; // skip ':' 3745 3746 // Read stride parameter 3747 int sign = +1; 3748 for (;;) { 3749 SKIP_WS(*scan); 3750 if (**scan == '+') { 3751 (*scan)++; // skip '+' 3752 continue; 3753 } 3754 if (**scan == '-') { 3755 sign *= -1; 3756 (*scan)++; // skip '-' 3757 continue; 3758 } 3759 break; 3760 } 3761 SKIP_WS(*scan); 3762 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3763 next = *scan; 3764 SKIP_DIGITS(next); 3765 stride = __kmp_str_to_int(*scan, *next); 3766 KMP_ASSERT(stride >= 0); 3767 *scan = next; 3768 stride *= sign; 3769 3770 // valid follow sets are ',' and '}' 3771 SKIP_WS(*scan); 3772 if (**scan == '}' || **scan == ',') { 3773 for (i = 0; i < count; i++) { 3774 if ((start > maxOsId) || 3775 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3776 if (__kmp_affinity_verbose || 3777 (__kmp_affinity_warnings && 3778 (__kmp_affinity_type != affinity_none))) { 3779 KMP_WARNING(AffIgnoreInvalidProcID, start); 3780 } 3781 break; // don't proliferate warnings for large count 3782 } else { 3783 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3784 start += stride; 3785 (*setSize)++; 3786 } 3787 } 3788 if (**scan == '}') { 3789 break; 3790 } 3791 (*scan)++; // skip ',' 3792 continue; 3793 } 3794 3795 KMP_ASSERT2(0, "bad explicit places list"); 3796 } 3797 } 3798 3799 static void __kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask, 3800 int maxOsId, kmp_affin_mask_t *tempMask, 3801 int *setSize) { 3802 const char *next; 3803 3804 // valid follow sets are '{' '!' and num 3805 SKIP_WS(*scan); 3806 if (**scan == '{') { 3807 (*scan)++; // skip '{' 3808 __kmp_process_subplace_list(scan, osId2Mask, maxOsId, tempMask, setSize); 3809 KMP_ASSERT2(**scan == '}', "bad explicit places list"); 3810 (*scan)++; // skip '}' 3811 } else if (**scan == '!') { 3812 (*scan)++; // skip '!' 3813 __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize); 3814 KMP_CPU_COMPLEMENT(maxOsId, tempMask); 3815 } else if ((**scan >= '0') && (**scan <= '9')) { 3816 next = *scan; 3817 SKIP_DIGITS(next); 3818 int num = __kmp_str_to_int(*scan, *next); 3819 KMP_ASSERT(num >= 0); 3820 if ((num > maxOsId) || 3821 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 3822 if (__kmp_affinity_verbose || 3823 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { 3824 KMP_WARNING(AffIgnoreInvalidProcID, num); 3825 } 3826 } else { 3827 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num)); 3828 (*setSize)++; 3829 } 3830 *scan = next; // skip num 3831 } else { 3832 KMP_ASSERT2(0, "bad explicit places list"); 3833 } 3834 } 3835 3836 // static void 3837 void __kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks, 3838 unsigned int *out_numMasks, 3839 const char *placelist, 3840 kmp_affin_mask_t *osId2Mask, 3841 int maxOsId) { 3842 int i, j, count, stride, sign; 3843 const char *scan = placelist; 3844 const char *next = placelist; 3845 3846 numNewMasks = 2; 3847 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); 3848 nextNewMask = 0; 3849 3850 // tempMask is modified based on the previous or initial 3851 // place to form the current place 3852 // previousMask contains the previous place 3853 kmp_affin_mask_t *tempMask; 3854 kmp_affin_mask_t *previousMask; 3855 KMP_CPU_ALLOC(tempMask); 3856 KMP_CPU_ZERO(tempMask); 3857 KMP_CPU_ALLOC(previousMask); 3858 KMP_CPU_ZERO(previousMask); 3859 int setSize = 0; 3860 3861 for (;;) { 3862 __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize); 3863 3864 // valid follow sets are ',' ':' and EOL 3865 SKIP_WS(scan); 3866 if (*scan == '\0' || *scan == ',') { 3867 if (setSize > 0) { 3868 ADD_MASK(tempMask); 3869 } 3870 KMP_CPU_ZERO(tempMask); 3871 setSize = 0; 3872 if (*scan == '\0') { 3873 break; 3874 } 3875 scan++; // skip ',' 3876 continue; 3877 } 3878 3879 KMP_ASSERT2(*scan == ':', "bad explicit places list"); 3880 scan++; // skip ':' 3881 3882 // Read count parameter 3883 SKIP_WS(scan); 3884 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); 3885 next = scan; 3886 SKIP_DIGITS(next); 3887 count = __kmp_str_to_int(scan, *next); 3888 KMP_ASSERT(count >= 0); 3889 scan = next; 3890 3891 // valid follow sets are ',' ':' and EOL 3892 SKIP_WS(scan); 3893 if (*scan == '\0' || *scan == ',') { 3894 stride = +1; 3895 } else { 3896 KMP_ASSERT2(*scan == ':', "bad explicit places list"); 3897 scan++; // skip ':' 3898 3899 // Read stride parameter 3900 sign = +1; 3901 for (;;) { 3902 SKIP_WS(scan); 3903 if (*scan == '+') { 3904 scan++; // skip '+' 3905 continue; 3906 } 3907 if (*scan == '-') { 3908 sign *= -1; 3909 scan++; // skip '-' 3910 continue; 3911 } 3912 break; 3913 } 3914 SKIP_WS(scan); 3915 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); 3916 next = scan; 3917 SKIP_DIGITS(next); 3918 stride = __kmp_str_to_int(scan, *next); 3919 KMP_DEBUG_ASSERT(stride >= 0); 3920 scan = next; 3921 stride *= sign; 3922 } 3923 3924 // Add places determined by initial_place : count : stride 3925 for (i = 0; i < count; i++) { 3926 if (setSize == 0) { 3927 break; 3928 } 3929 // Add the current place, then build the next place (tempMask) from that 3930 KMP_CPU_COPY(previousMask, tempMask); 3931 ADD_MASK(previousMask); 3932 KMP_CPU_ZERO(tempMask); 3933 setSize = 0; 3934 KMP_CPU_SET_ITERATE(j, previousMask) { 3935 if (!KMP_CPU_ISSET(j, previousMask)) { 3936 continue; 3937 } 3938 if ((j + stride > maxOsId) || (j + stride < 0) || 3939 (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) || 3940 (!KMP_CPU_ISSET(j + stride, 3941 KMP_CPU_INDEX(osId2Mask, j + stride)))) { 3942 if ((__kmp_affinity_verbose || 3943 (__kmp_affinity_warnings && 3944 (__kmp_affinity_type != affinity_none))) && 3945 i < count - 1) { 3946 KMP_WARNING(AffIgnoreInvalidProcID, j + stride); 3947 } 3948 continue; 3949 } 3950 KMP_CPU_SET(j + stride, tempMask); 3951 setSize++; 3952 } 3953 } 3954 KMP_CPU_ZERO(tempMask); 3955 setSize = 0; 3956 3957 // valid follow sets are ',' and EOL 3958 SKIP_WS(scan); 3959 if (*scan == '\0') { 3960 break; 3961 } 3962 if (*scan == ',') { 3963 scan++; // skip ',' 3964 continue; 3965 } 3966 3967 KMP_ASSERT2(0, "bad explicit places list"); 3968 } 3969 3970 *out_numMasks = nextNewMask; 3971 if (nextNewMask == 0) { 3972 *out_masks = NULL; 3973 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3974 return; 3975 } 3976 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); 3977 KMP_CPU_FREE(tempMask); 3978 KMP_CPU_FREE(previousMask); 3979 for (i = 0; i < nextNewMask; i++) { 3980 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); 3981 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); 3982 KMP_CPU_COPY(dest, src); 3983 } 3984 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3985 } 3986 3987 #undef ADD_MASK 3988 #undef ADD_MASK_OSID 3989 3990 // This function figures out the deepest level at which there is at least one 3991 // cluster/core with more than one processing unit bound to it. 3992 static int __kmp_affinity_find_core_level(int nprocs, int bottom_level) { 3993 int core_level = 0; 3994 3995 for (int i = 0; i < nprocs; i++) { 3996 const kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); 3997 for (int j = bottom_level; j > 0; j--) { 3998 if (hw_thread.ids[j] > 0) { 3999 if (core_level < (j - 1)) { 4000 core_level = j - 1; 4001 } 4002 } 4003 } 4004 } 4005 return core_level; 4006 } 4007 4008 // This function counts number of clusters/cores at given level. 4009 static int __kmp_affinity_compute_ncores(int nprocs, int bottom_level, 4010 int core_level) { 4011 return __kmp_topology->get_count(core_level); 4012 } 4013 // This function finds to which cluster/core given processing unit is bound. 4014 static int __kmp_affinity_find_core(int proc, int bottom_level, 4015 int core_level) { 4016 int core = 0; 4017 KMP_DEBUG_ASSERT(proc >= 0 && proc < __kmp_topology->get_num_hw_threads()); 4018 for (int i = 0; i <= proc; ++i) { 4019 if (i + 1 <= proc) { 4020 for (int j = 0; j <= core_level; ++j) { 4021 if (__kmp_topology->at(i + 1).sub_ids[j] != 4022 __kmp_topology->at(i).sub_ids[j]) { 4023 core++; 4024 break; 4025 } 4026 } 4027 } 4028 } 4029 return core; 4030 } 4031 4032 // This function finds maximal number of processing units bound to a 4033 // cluster/core at given level. 4034 static int __kmp_affinity_max_proc_per_core(int nprocs, int bottom_level, 4035 int core_level) { 4036 if (core_level >= bottom_level) 4037 return 1; 4038 int thread_level = __kmp_topology->get_level(KMP_HW_THREAD); 4039 return __kmp_topology->calculate_ratio(thread_level, core_level); 4040 } 4041 4042 static int *procarr = NULL; 4043 static int __kmp_aff_depth = 0; 4044 4045 // Create a one element mask array (set of places) which only contains the 4046 // initial process's affinity mask 4047 static void __kmp_create_affinity_none_places() { 4048 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4049 KMP_ASSERT(__kmp_affinity_type == affinity_none); 4050 __kmp_affinity_num_masks = 1; 4051 KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); 4052 kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, 0); 4053 KMP_CPU_COPY(dest, __kmp_affin_fullMask); 4054 } 4055 4056 static void __kmp_aux_affinity_initialize(void) { 4057 if (__kmp_affinity_masks != NULL) { 4058 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4059 return; 4060 } 4061 4062 // Create the "full" mask - this defines all of the processors that we 4063 // consider to be in the machine model. If respect is set, then it is the 4064 // initialization thread's affinity mask. Otherwise, it is all processors that 4065 // we know about on the machine. 4066 if (__kmp_affin_fullMask == NULL) { 4067 KMP_CPU_ALLOC(__kmp_affin_fullMask); 4068 } 4069 if (KMP_AFFINITY_CAPABLE()) { 4070 __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE); 4071 if (__kmp_affinity_respect_mask) { 4072 // Count the number of available processors. 4073 unsigned i; 4074 __kmp_avail_proc = 0; 4075 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 4076 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 4077 continue; 4078 } 4079 __kmp_avail_proc++; 4080 } 4081 if (__kmp_avail_proc > __kmp_xproc) { 4082 if (__kmp_affinity_verbose || 4083 (__kmp_affinity_warnings && 4084 (__kmp_affinity_type != affinity_none))) { 4085 KMP_WARNING(ErrorInitializeAffinity); 4086 } 4087 __kmp_affinity_type = affinity_none; 4088 KMP_AFFINITY_DISABLE(); 4089 return; 4090 } 4091 4092 if (__kmp_affinity_verbose) { 4093 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4094 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4095 __kmp_affin_fullMask); 4096 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 4097 } 4098 } else { 4099 if (__kmp_affinity_verbose) { 4100 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4101 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4102 __kmp_affin_fullMask); 4103 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 4104 } 4105 __kmp_avail_proc = 4106 __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask); 4107 #if KMP_OS_WINDOWS 4108 // Set the process affinity mask since threads' affinity 4109 // masks must be subset of process mask in Windows* OS 4110 __kmp_affin_fullMask->set_process_affinity(true); 4111 #endif 4112 } 4113 } 4114 4115 kmp_i18n_id_t msg_id = kmp_i18n_null; 4116 4117 // For backward compatibility, setting KMP_CPUINFO_FILE => 4118 // KMP_TOPOLOGY_METHOD=cpuinfo 4119 if ((__kmp_cpuinfo_file != NULL) && 4120 (__kmp_affinity_top_method == affinity_top_method_all)) { 4121 __kmp_affinity_top_method = affinity_top_method_cpuinfo; 4122 } 4123 4124 bool success = false; 4125 if (__kmp_affinity_top_method == affinity_top_method_all) { 4126 // In the default code path, errors are not fatal - we just try using 4127 // another method. We only emit a warning message if affinity is on, or the 4128 // verbose flag is set, an the nowarnings flag was not set. 4129 #if KMP_USE_HWLOC 4130 if (!success && 4131 __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) { 4132 if (!__kmp_hwloc_error) { 4133 success = __kmp_affinity_create_hwloc_map(&msg_id); 4134 if (!success && __kmp_affinity_verbose) { 4135 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY"); 4136 } 4137 } else if (__kmp_affinity_verbose) { 4138 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY"); 4139 } 4140 } 4141 #endif 4142 4143 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4144 if (!success) { 4145 success = __kmp_affinity_create_x2apicid_map(&msg_id); 4146 if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) { 4147 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id)); 4148 } 4149 } 4150 if (!success) { 4151 success = __kmp_affinity_create_apicid_map(&msg_id); 4152 if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) { 4153 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id)); 4154 } 4155 } 4156 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4157 4158 #if KMP_OS_LINUX 4159 if (!success) { 4160 int line = 0; 4161 success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id); 4162 if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) { 4163 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id)); 4164 } 4165 } 4166 #endif /* KMP_OS_LINUX */ 4167 4168 #if KMP_GROUP_AFFINITY 4169 if (!success && (__kmp_num_proc_groups > 1)) { 4170 success = __kmp_affinity_create_proc_group_map(&msg_id); 4171 if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) { 4172 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id)); 4173 } 4174 } 4175 #endif /* KMP_GROUP_AFFINITY */ 4176 4177 if (!success) { 4178 success = __kmp_affinity_create_flat_map(&msg_id); 4179 if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) { 4180 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id)); 4181 } 4182 KMP_ASSERT(success); 4183 } 4184 } 4185 4186 // If the user has specified that a paricular topology discovery method is to be 4187 // used, then we abort if that method fails. The exception is group affinity, 4188 // which might have been implicitly set. 4189 #if KMP_USE_HWLOC 4190 else if (__kmp_affinity_top_method == affinity_top_method_hwloc) { 4191 KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC); 4192 success = __kmp_affinity_create_hwloc_map(&msg_id); 4193 if (!success) { 4194 KMP_ASSERT(msg_id != kmp_i18n_null); 4195 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4196 } 4197 } 4198 #endif // KMP_USE_HWLOC 4199 4200 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4201 else if (__kmp_affinity_top_method == affinity_top_method_x2apicid || 4202 __kmp_affinity_top_method == affinity_top_method_x2apicid_1f) { 4203 success = __kmp_affinity_create_x2apicid_map(&msg_id); 4204 if (!success) { 4205 KMP_ASSERT(msg_id != kmp_i18n_null); 4206 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4207 } 4208 } else if (__kmp_affinity_top_method == affinity_top_method_apicid) { 4209 success = __kmp_affinity_create_apicid_map(&msg_id); 4210 if (!success) { 4211 KMP_ASSERT(msg_id != kmp_i18n_null); 4212 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4213 } 4214 } 4215 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4216 4217 else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) { 4218 int line = 0; 4219 success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id); 4220 if (!success) { 4221 KMP_ASSERT(msg_id != kmp_i18n_null); 4222 const char *filename = __kmp_cpuinfo_get_filename(); 4223 if (line > 0) { 4224 KMP_FATAL(FileLineMsgExiting, filename, line, 4225 __kmp_i18n_catgets(msg_id)); 4226 } else { 4227 KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id)); 4228 } 4229 } 4230 } 4231 4232 #if KMP_GROUP_AFFINITY 4233 else if (__kmp_affinity_top_method == affinity_top_method_group) { 4234 success = __kmp_affinity_create_proc_group_map(&msg_id); 4235 KMP_ASSERT(success); 4236 if (!success) { 4237 KMP_ASSERT(msg_id != kmp_i18n_null); 4238 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4239 } 4240 } 4241 #endif /* KMP_GROUP_AFFINITY */ 4242 4243 else if (__kmp_affinity_top_method == affinity_top_method_flat) { 4244 success = __kmp_affinity_create_flat_map(&msg_id); 4245 // should not fail 4246 KMP_ASSERT(success); 4247 } 4248 4249 // Early exit if topology could not be created 4250 if (!__kmp_topology) { 4251 if (KMP_AFFINITY_CAPABLE() && 4252 (__kmp_affinity_verbose || 4253 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none)))) { 4254 KMP_WARNING(ErrorInitializeAffinity); 4255 } 4256 if (nPackages > 0 && nCoresPerPkg > 0 && __kmp_nThreadsPerCore > 0 && 4257 __kmp_ncores > 0) { 4258 __kmp_topology = kmp_topology_t::allocate(0, 0, NULL); 4259 __kmp_topology->canonicalize(nPackages, nCoresPerPkg, 4260 __kmp_nThreadsPerCore, __kmp_ncores); 4261 if (__kmp_affinity_verbose) { 4262 __kmp_topology->print("KMP_AFFINITY"); 4263 } 4264 } 4265 __kmp_affinity_type = affinity_none; 4266 __kmp_create_affinity_none_places(); 4267 #if KMP_USE_HIER_SCHED 4268 __kmp_dispatch_set_hierarchy_values(); 4269 #endif 4270 KMP_AFFINITY_DISABLE(); 4271 return; 4272 } 4273 4274 // Canonicalize, print (if requested), apply KMP_HW_SUBSET, and 4275 // initialize other data structures which depend on the topology 4276 __kmp_topology->canonicalize(); 4277 if (__kmp_affinity_verbose) 4278 __kmp_topology->print("KMP_AFFINITY"); 4279 bool filtered = __kmp_topology->filter_hw_subset(); 4280 if (filtered && __kmp_affinity_verbose) 4281 __kmp_topology->print("KMP_HW_SUBSET"); 4282 machine_hierarchy.init(__kmp_topology->get_num_hw_threads()); 4283 KMP_ASSERT(__kmp_avail_proc == __kmp_topology->get_num_hw_threads()); 4284 // If KMP_AFFINITY=none, then only create the single "none" place 4285 // which is the process's initial affinity mask or the number of 4286 // hardware threads depending on respect,norespect 4287 if (__kmp_affinity_type == affinity_none) { 4288 __kmp_create_affinity_none_places(); 4289 #if KMP_USE_HIER_SCHED 4290 __kmp_dispatch_set_hierarchy_values(); 4291 #endif 4292 return; 4293 } 4294 int depth = __kmp_topology->get_depth(); 4295 4296 // Create the table of masks, indexed by thread Id. 4297 unsigned maxIndex; 4298 unsigned numUnique; 4299 kmp_affin_mask_t *osId2Mask = __kmp_create_masks(&maxIndex, &numUnique); 4300 if (__kmp_affinity_gran_levels == 0) { 4301 KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc); 4302 } 4303 4304 switch (__kmp_affinity_type) { 4305 4306 case affinity_explicit: 4307 KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL); 4308 if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) { 4309 __kmp_affinity_process_proclist( 4310 &__kmp_affinity_masks, &__kmp_affinity_num_masks, 4311 __kmp_affinity_proclist, osId2Mask, maxIndex); 4312 } else { 4313 __kmp_affinity_process_placelist( 4314 &__kmp_affinity_masks, &__kmp_affinity_num_masks, 4315 __kmp_affinity_proclist, osId2Mask, maxIndex); 4316 } 4317 if (__kmp_affinity_num_masks == 0) { 4318 if (__kmp_affinity_verbose || 4319 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { 4320 KMP_WARNING(AffNoValidProcID); 4321 } 4322 __kmp_affinity_type = affinity_none; 4323 __kmp_create_affinity_none_places(); 4324 return; 4325 } 4326 break; 4327 4328 // The other affinity types rely on sorting the hardware threads according to 4329 // some permutation of the machine topology tree. Set __kmp_affinity_compact 4330 // and __kmp_affinity_offset appropriately, then jump to a common code 4331 // fragment to do the sort and create the array of affinity masks. 4332 case affinity_logical: 4333 __kmp_affinity_compact = 0; 4334 if (__kmp_affinity_offset) { 4335 __kmp_affinity_offset = 4336 __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc; 4337 } 4338 goto sortTopology; 4339 4340 case affinity_physical: 4341 if (__kmp_nThreadsPerCore > 1) { 4342 __kmp_affinity_compact = 1; 4343 if (__kmp_affinity_compact >= depth) { 4344 __kmp_affinity_compact = 0; 4345 } 4346 } else { 4347 __kmp_affinity_compact = 0; 4348 } 4349 if (__kmp_affinity_offset) { 4350 __kmp_affinity_offset = 4351 __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc; 4352 } 4353 goto sortTopology; 4354 4355 case affinity_scatter: 4356 if (__kmp_affinity_compact >= depth) { 4357 __kmp_affinity_compact = 0; 4358 } else { 4359 __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact; 4360 } 4361 goto sortTopology; 4362 4363 case affinity_compact: 4364 if (__kmp_affinity_compact >= depth) { 4365 __kmp_affinity_compact = depth - 1; 4366 } 4367 goto sortTopology; 4368 4369 case affinity_balanced: 4370 if (depth <= 1) { 4371 if (__kmp_affinity_verbose || __kmp_affinity_warnings) { 4372 KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY"); 4373 } 4374 __kmp_affinity_type = affinity_none; 4375 __kmp_create_affinity_none_places(); 4376 return; 4377 } else if (!__kmp_topology->is_uniform()) { 4378 // Save the depth for further usage 4379 __kmp_aff_depth = depth; 4380 4381 int core_level = 4382 __kmp_affinity_find_core_level(__kmp_avail_proc, depth - 1); 4383 int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, depth - 1, 4384 core_level); 4385 int maxprocpercore = __kmp_affinity_max_proc_per_core( 4386 __kmp_avail_proc, depth - 1, core_level); 4387 4388 int nproc = ncores * maxprocpercore; 4389 if ((nproc < 2) || (nproc < __kmp_avail_proc)) { 4390 if (__kmp_affinity_verbose || __kmp_affinity_warnings) { 4391 KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY"); 4392 } 4393 __kmp_affinity_type = affinity_none; 4394 return; 4395 } 4396 4397 procarr = (int *)__kmp_allocate(sizeof(int) * nproc); 4398 for (int i = 0; i < nproc; i++) { 4399 procarr[i] = -1; 4400 } 4401 4402 int lastcore = -1; 4403 int inlastcore = 0; 4404 for (int i = 0; i < __kmp_avail_proc; i++) { 4405 int proc = __kmp_topology->at(i).os_id; 4406 int core = __kmp_affinity_find_core(i, depth - 1, core_level); 4407 4408 if (core == lastcore) { 4409 inlastcore++; 4410 } else { 4411 inlastcore = 0; 4412 } 4413 lastcore = core; 4414 4415 procarr[core * maxprocpercore + inlastcore] = proc; 4416 } 4417 } 4418 if (__kmp_affinity_compact >= depth) { 4419 __kmp_affinity_compact = depth - 1; 4420 } 4421 4422 sortTopology: 4423 // Allocate the gtid->affinity mask table. 4424 if (__kmp_affinity_dups) { 4425 __kmp_affinity_num_masks = __kmp_avail_proc; 4426 } else { 4427 __kmp_affinity_num_masks = numUnique; 4428 } 4429 4430 if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) && 4431 (__kmp_affinity_num_places > 0) && 4432 ((unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks)) { 4433 __kmp_affinity_num_masks = __kmp_affinity_num_places; 4434 } 4435 4436 KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); 4437 4438 // Sort the topology table according to the current setting of 4439 // __kmp_affinity_compact, then fill out __kmp_affinity_masks. 4440 __kmp_topology->sort_compact(); 4441 { 4442 int i; 4443 unsigned j; 4444 int num_hw_threads = __kmp_topology->get_num_hw_threads(); 4445 for (i = 0, j = 0; i < num_hw_threads; i++) { 4446 if ((!__kmp_affinity_dups) && (!__kmp_topology->at(i).leader)) { 4447 continue; 4448 } 4449 int osId = __kmp_topology->at(i).os_id; 4450 4451 kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId); 4452 kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, j); 4453 KMP_ASSERT(KMP_CPU_ISSET(osId, src)); 4454 KMP_CPU_COPY(dest, src); 4455 if (++j >= __kmp_affinity_num_masks) { 4456 break; 4457 } 4458 } 4459 KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks); 4460 } 4461 // Sort the topology back using ids 4462 __kmp_topology->sort_ids(); 4463 break; 4464 4465 default: 4466 KMP_ASSERT2(0, "Unexpected affinity setting"); 4467 } 4468 4469 KMP_CPU_FREE_ARRAY(osId2Mask, maxIndex + 1); 4470 } 4471 4472 void __kmp_affinity_initialize(void) { 4473 // Much of the code above was written assuming that if a machine was not 4474 // affinity capable, then __kmp_affinity_type == affinity_none. We now 4475 // explicitly represent this as __kmp_affinity_type == affinity_disabled. 4476 // There are too many checks for __kmp_affinity_type == affinity_none 4477 // in this code. Instead of trying to change them all, check if 4478 // __kmp_affinity_type == affinity_disabled, and if so, slam it with 4479 // affinity_none, call the real initialization routine, then restore 4480 // __kmp_affinity_type to affinity_disabled. 4481 int disabled = (__kmp_affinity_type == affinity_disabled); 4482 if (!KMP_AFFINITY_CAPABLE()) { 4483 KMP_ASSERT(disabled); 4484 } 4485 if (disabled) { 4486 __kmp_affinity_type = affinity_none; 4487 } 4488 __kmp_aux_affinity_initialize(); 4489 if (disabled) { 4490 __kmp_affinity_type = affinity_disabled; 4491 } 4492 } 4493 4494 void __kmp_affinity_uninitialize(void) { 4495 if (__kmp_affinity_masks != NULL) { 4496 KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); 4497 __kmp_affinity_masks = NULL; 4498 } 4499 if (__kmp_affin_fullMask != NULL) { 4500 KMP_CPU_FREE(__kmp_affin_fullMask); 4501 __kmp_affin_fullMask = NULL; 4502 } 4503 __kmp_affinity_num_masks = 0; 4504 __kmp_affinity_type = affinity_default; 4505 __kmp_affinity_num_places = 0; 4506 if (__kmp_affinity_proclist != NULL) { 4507 __kmp_free(__kmp_affinity_proclist); 4508 __kmp_affinity_proclist = NULL; 4509 } 4510 if (procarr != NULL) { 4511 __kmp_free(procarr); 4512 procarr = NULL; 4513 } 4514 #if KMP_USE_HWLOC 4515 if (__kmp_hwloc_topology != NULL) { 4516 hwloc_topology_destroy(__kmp_hwloc_topology); 4517 __kmp_hwloc_topology = NULL; 4518 } 4519 #endif 4520 if (__kmp_hw_subset) { 4521 kmp_hw_subset_t::deallocate(__kmp_hw_subset); 4522 __kmp_hw_subset = nullptr; 4523 } 4524 if (__kmp_topology) { 4525 kmp_topology_t::deallocate(__kmp_topology); 4526 __kmp_topology = nullptr; 4527 } 4528 KMPAffinity::destroy_api(); 4529 } 4530 4531 void __kmp_affinity_set_init_mask(int gtid, int isa_root) { 4532 if (!KMP_AFFINITY_CAPABLE()) { 4533 return; 4534 } 4535 4536 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); 4537 if (th->th.th_affin_mask == NULL) { 4538 KMP_CPU_ALLOC(th->th.th_affin_mask); 4539 } else { 4540 KMP_CPU_ZERO(th->th.th_affin_mask); 4541 } 4542 4543 // Copy the thread mask to the kmp_info_t structure. If 4544 // __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one that 4545 // has all of the OS proc ids set, or if __kmp_affinity_respect_mask is set, 4546 // then the full mask is the same as the mask of the initialization thread. 4547 kmp_affin_mask_t *mask; 4548 int i; 4549 4550 if (KMP_AFFINITY_NON_PROC_BIND) { 4551 if ((__kmp_affinity_type == affinity_none) || 4552 (__kmp_affinity_type == affinity_balanced) || 4553 KMP_HIDDEN_HELPER_THREAD(gtid)) { 4554 #if KMP_GROUP_AFFINITY 4555 if (__kmp_num_proc_groups > 1) { 4556 return; 4557 } 4558 #endif 4559 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4560 i = 0; 4561 mask = __kmp_affin_fullMask; 4562 } else { 4563 int mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid); 4564 KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0); 4565 i = (mask_idx + __kmp_affinity_offset) % __kmp_affinity_num_masks; 4566 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); 4567 } 4568 } else { 4569 if ((!isa_root) || KMP_HIDDEN_HELPER_THREAD(gtid) || 4570 (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) { 4571 #if KMP_GROUP_AFFINITY 4572 if (__kmp_num_proc_groups > 1) { 4573 return; 4574 } 4575 #endif 4576 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4577 i = KMP_PLACE_ALL; 4578 mask = __kmp_affin_fullMask; 4579 } else { 4580 // int i = some hash function or just a counter that doesn't 4581 // always start at 0. Use adjusted gtid for now. 4582 int mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid); 4583 KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0); 4584 i = (mask_idx + __kmp_affinity_offset) % __kmp_affinity_num_masks; 4585 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); 4586 } 4587 } 4588 4589 th->th.th_current_place = i; 4590 if (isa_root || KMP_HIDDEN_HELPER_THREAD(gtid)) { 4591 th->th.th_new_place = i; 4592 th->th.th_first_place = 0; 4593 th->th.th_last_place = __kmp_affinity_num_masks - 1; 4594 } else if (KMP_AFFINITY_NON_PROC_BIND) { 4595 // When using a Non-OMP_PROC_BIND affinity method, 4596 // set all threads' place-partition-var to the entire place list 4597 th->th.th_first_place = 0; 4598 th->th.th_last_place = __kmp_affinity_num_masks - 1; 4599 } 4600 4601 if (i == KMP_PLACE_ALL) { 4602 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n", 4603 gtid)); 4604 } else { 4605 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n", 4606 gtid, i)); 4607 } 4608 4609 KMP_CPU_COPY(th->th.th_affin_mask, mask); 4610 4611 if (__kmp_affinity_verbose && !KMP_HIDDEN_HELPER_THREAD(gtid) 4612 /* to avoid duplicate printing (will be correctly printed on barrier) */ 4613 && (__kmp_affinity_type == affinity_none || 4614 (i != KMP_PLACE_ALL && __kmp_affinity_type != affinity_balanced))) { 4615 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4616 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4617 th->th.th_affin_mask); 4618 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), 4619 __kmp_gettid(), gtid, buf); 4620 } 4621 4622 #if KMP_DEBUG 4623 // Hidden helper thread affinity only printed for debug builds 4624 if (__kmp_affinity_verbose && KMP_HIDDEN_HELPER_THREAD(gtid)) { 4625 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4626 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4627 th->th.th_affin_mask); 4628 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY (hidden helper thread)", 4629 (kmp_int32)getpid(), __kmp_gettid(), gtid, buf); 4630 } 4631 #endif 4632 4633 #if KMP_OS_WINDOWS 4634 // On Windows* OS, the process affinity mask might have changed. If the user 4635 // didn't request affinity and this call fails, just continue silently. 4636 // See CQ171393. 4637 if (__kmp_affinity_type == affinity_none) { 4638 __kmp_set_system_affinity(th->th.th_affin_mask, FALSE); 4639 } else 4640 #endif 4641 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); 4642 } 4643 4644 void __kmp_affinity_set_place(int gtid) { 4645 if (!KMP_AFFINITY_CAPABLE()) { 4646 return; 4647 } 4648 4649 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); 4650 4651 KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current " 4652 "place = %d)\n", 4653 gtid, th->th.th_new_place, th->th.th_current_place)); 4654 4655 // Check that the new place is within this thread's partition. 4656 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4657 KMP_ASSERT(th->th.th_new_place >= 0); 4658 KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks); 4659 if (th->th.th_first_place <= th->th.th_last_place) { 4660 KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) && 4661 (th->th.th_new_place <= th->th.th_last_place)); 4662 } else { 4663 KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) || 4664 (th->th.th_new_place >= th->th.th_last_place)); 4665 } 4666 4667 // Copy the thread mask to the kmp_info_t structure, 4668 // and set this thread's affinity. 4669 kmp_affin_mask_t *mask = 4670 KMP_CPU_INDEX(__kmp_affinity_masks, th->th.th_new_place); 4671 KMP_CPU_COPY(th->th.th_affin_mask, mask); 4672 th->th.th_current_place = th->th.th_new_place; 4673 4674 if (__kmp_affinity_verbose) { 4675 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4676 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4677 th->th.th_affin_mask); 4678 KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(), 4679 __kmp_gettid(), gtid, buf); 4680 } 4681 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); 4682 } 4683 4684 int __kmp_aux_set_affinity(void **mask) { 4685 int gtid; 4686 kmp_info_t *th; 4687 int retval; 4688 4689 if (!KMP_AFFINITY_CAPABLE()) { 4690 return -1; 4691 } 4692 4693 gtid = __kmp_entry_gtid(); 4694 KA_TRACE( 4695 1000, (""); { 4696 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4697 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4698 (kmp_affin_mask_t *)(*mask)); 4699 __kmp_debug_printf( 4700 "kmp_set_affinity: setting affinity mask for thread %d = %s\n", 4701 gtid, buf); 4702 }); 4703 4704 if (__kmp_env_consistency_check) { 4705 if ((mask == NULL) || (*mask == NULL)) { 4706 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4707 } else { 4708 unsigned proc; 4709 int num_procs = 0; 4710 4711 KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) { 4712 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 4713 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4714 } 4715 if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) { 4716 continue; 4717 } 4718 num_procs++; 4719 } 4720 if (num_procs == 0) { 4721 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4722 } 4723 4724 #if KMP_GROUP_AFFINITY 4725 if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) { 4726 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4727 } 4728 #endif /* KMP_GROUP_AFFINITY */ 4729 } 4730 } 4731 4732 th = __kmp_threads[gtid]; 4733 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4734 retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); 4735 if (retval == 0) { 4736 KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask)); 4737 } 4738 4739 th->th.th_current_place = KMP_PLACE_UNDEFINED; 4740 th->th.th_new_place = KMP_PLACE_UNDEFINED; 4741 th->th.th_first_place = 0; 4742 th->th.th_last_place = __kmp_affinity_num_masks - 1; 4743 4744 // Turn off 4.0 affinity for the current tread at this parallel level. 4745 th->th.th_current_task->td_icvs.proc_bind = proc_bind_false; 4746 4747 return retval; 4748 } 4749 4750 int __kmp_aux_get_affinity(void **mask) { 4751 int gtid; 4752 int retval; 4753 #if KMP_OS_WINDOWS || KMP_DEBUG 4754 kmp_info_t *th; 4755 #endif 4756 if (!KMP_AFFINITY_CAPABLE()) { 4757 return -1; 4758 } 4759 4760 gtid = __kmp_entry_gtid(); 4761 #if KMP_OS_WINDOWS || KMP_DEBUG 4762 th = __kmp_threads[gtid]; 4763 #else 4764 (void)gtid; // unused variable 4765 #endif 4766 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4767 4768 KA_TRACE( 4769 1000, (""); { 4770 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4771 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4772 th->th.th_affin_mask); 4773 __kmp_printf( 4774 "kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid, 4775 buf); 4776 }); 4777 4778 if (__kmp_env_consistency_check) { 4779 if ((mask == NULL) || (*mask == NULL)) { 4780 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity"); 4781 } 4782 } 4783 4784 #if !KMP_OS_WINDOWS 4785 4786 retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); 4787 KA_TRACE( 4788 1000, (""); { 4789 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4790 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4791 (kmp_affin_mask_t *)(*mask)); 4792 __kmp_printf( 4793 "kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid, 4794 buf); 4795 }); 4796 return retval; 4797 4798 #else 4799 (void)retval; 4800 4801 KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask); 4802 return 0; 4803 4804 #endif /* KMP_OS_WINDOWS */ 4805 } 4806 4807 int __kmp_aux_get_affinity_max_proc() { 4808 if (!KMP_AFFINITY_CAPABLE()) { 4809 return 0; 4810 } 4811 #if KMP_GROUP_AFFINITY 4812 if (__kmp_num_proc_groups > 1) { 4813 return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT); 4814 } 4815 #endif 4816 return __kmp_xproc; 4817 } 4818 4819 int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) { 4820 if (!KMP_AFFINITY_CAPABLE()) { 4821 return -1; 4822 } 4823 4824 KA_TRACE( 4825 1000, (""); { 4826 int gtid = __kmp_entry_gtid(); 4827 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4828 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4829 (kmp_affin_mask_t *)(*mask)); 4830 __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in " 4831 "affinity mask for thread %d = %s\n", 4832 proc, gtid, buf); 4833 }); 4834 4835 if (__kmp_env_consistency_check) { 4836 if ((mask == NULL) || (*mask == NULL)) { 4837 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc"); 4838 } 4839 } 4840 4841 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 4842 return -1; 4843 } 4844 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 4845 return -2; 4846 } 4847 4848 KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask)); 4849 return 0; 4850 } 4851 4852 int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) { 4853 if (!KMP_AFFINITY_CAPABLE()) { 4854 return -1; 4855 } 4856 4857 KA_TRACE( 4858 1000, (""); { 4859 int gtid = __kmp_entry_gtid(); 4860 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4861 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4862 (kmp_affin_mask_t *)(*mask)); 4863 __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in " 4864 "affinity mask for thread %d = %s\n", 4865 proc, gtid, buf); 4866 }); 4867 4868 if (__kmp_env_consistency_check) { 4869 if ((mask == NULL) || (*mask == NULL)) { 4870 KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc"); 4871 } 4872 } 4873 4874 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 4875 return -1; 4876 } 4877 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 4878 return -2; 4879 } 4880 4881 KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask)); 4882 return 0; 4883 } 4884 4885 int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) { 4886 if (!KMP_AFFINITY_CAPABLE()) { 4887 return -1; 4888 } 4889 4890 KA_TRACE( 4891 1000, (""); { 4892 int gtid = __kmp_entry_gtid(); 4893 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4894 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4895 (kmp_affin_mask_t *)(*mask)); 4896 __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in " 4897 "affinity mask for thread %d = %s\n", 4898 proc, gtid, buf); 4899 }); 4900 4901 if (__kmp_env_consistency_check) { 4902 if ((mask == NULL) || (*mask == NULL)) { 4903 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc"); 4904 } 4905 } 4906 4907 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 4908 return -1; 4909 } 4910 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 4911 return 0; 4912 } 4913 4914 return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask)); 4915 } 4916 4917 // Dynamic affinity settings - Affinity balanced 4918 void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) { 4919 KMP_DEBUG_ASSERT(th); 4920 bool fine_gran = true; 4921 int tid = th->th.th_info.ds.ds_tid; 4922 4923 // Do not perform balanced affinity for the hidden helper threads 4924 if (KMP_HIDDEN_HELPER_THREAD(__kmp_gtid_from_thread(th))) 4925 return; 4926 4927 switch (__kmp_affinity_gran) { 4928 case KMP_HW_THREAD: 4929 break; 4930 case KMP_HW_CORE: 4931 if (__kmp_nThreadsPerCore > 1) { 4932 fine_gran = false; 4933 } 4934 break; 4935 case KMP_HW_SOCKET: 4936 if (nCoresPerPkg > 1) { 4937 fine_gran = false; 4938 } 4939 break; 4940 default: 4941 fine_gran = false; 4942 } 4943 4944 if (__kmp_topology->is_uniform()) { 4945 int coreID; 4946 int threadID; 4947 // Number of hyper threads per core in HT machine 4948 int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores; 4949 // Number of cores 4950 int ncores = __kmp_ncores; 4951 if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) { 4952 __kmp_nth_per_core = __kmp_avail_proc / nPackages; 4953 ncores = nPackages; 4954 } 4955 // How many threads will be bound to each core 4956 int chunk = nthreads / ncores; 4957 // How many cores will have an additional thread bound to it - "big cores" 4958 int big_cores = nthreads % ncores; 4959 // Number of threads on the big cores 4960 int big_nth = (chunk + 1) * big_cores; 4961 if (tid < big_nth) { 4962 coreID = tid / (chunk + 1); 4963 threadID = (tid % (chunk + 1)) % __kmp_nth_per_core; 4964 } else { // tid >= big_nth 4965 coreID = (tid - big_cores) / chunk; 4966 threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core; 4967 } 4968 KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(), 4969 "Illegal set affinity operation when not capable"); 4970 4971 kmp_affin_mask_t *mask = th->th.th_affin_mask; 4972 KMP_CPU_ZERO(mask); 4973 4974 if (fine_gran) { 4975 int osID = 4976 __kmp_topology->at(coreID * __kmp_nth_per_core + threadID).os_id; 4977 KMP_CPU_SET(osID, mask); 4978 } else { 4979 for (int i = 0; i < __kmp_nth_per_core; i++) { 4980 int osID; 4981 osID = __kmp_topology->at(coreID * __kmp_nth_per_core + i).os_id; 4982 KMP_CPU_SET(osID, mask); 4983 } 4984 } 4985 if (__kmp_affinity_verbose) { 4986 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4987 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); 4988 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), 4989 __kmp_gettid(), tid, buf); 4990 } 4991 __kmp_set_system_affinity(mask, TRUE); 4992 } else { // Non-uniform topology 4993 4994 kmp_affin_mask_t *mask = th->th.th_affin_mask; 4995 KMP_CPU_ZERO(mask); 4996 4997 int core_level = 4998 __kmp_affinity_find_core_level(__kmp_avail_proc, __kmp_aff_depth - 1); 4999 int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, 5000 __kmp_aff_depth - 1, core_level); 5001 int nth_per_core = __kmp_affinity_max_proc_per_core( 5002 __kmp_avail_proc, __kmp_aff_depth - 1, core_level); 5003 5004 // For performance gain consider the special case nthreads == 5005 // __kmp_avail_proc 5006 if (nthreads == __kmp_avail_proc) { 5007 if (fine_gran) { 5008 int osID = __kmp_topology->at(tid).os_id; 5009 KMP_CPU_SET(osID, mask); 5010 } else { 5011 int core = 5012 __kmp_affinity_find_core(tid, __kmp_aff_depth - 1, core_level); 5013 for (int i = 0; i < __kmp_avail_proc; i++) { 5014 int osID = __kmp_topology->at(i).os_id; 5015 if (__kmp_affinity_find_core(i, __kmp_aff_depth - 1, core_level) == 5016 core) { 5017 KMP_CPU_SET(osID, mask); 5018 } 5019 } 5020 } 5021 } else if (nthreads <= ncores) { 5022 5023 int core = 0; 5024 for (int i = 0; i < ncores; i++) { 5025 // Check if this core from procarr[] is in the mask 5026 int in_mask = 0; 5027 for (int j = 0; j < nth_per_core; j++) { 5028 if (procarr[i * nth_per_core + j] != -1) { 5029 in_mask = 1; 5030 break; 5031 } 5032 } 5033 if (in_mask) { 5034 if (tid == core) { 5035 for (int j = 0; j < nth_per_core; j++) { 5036 int osID = procarr[i * nth_per_core + j]; 5037 if (osID != -1) { 5038 KMP_CPU_SET(osID, mask); 5039 // For fine granularity it is enough to set the first available 5040 // osID for this core 5041 if (fine_gran) { 5042 break; 5043 } 5044 } 5045 } 5046 break; 5047 } else { 5048 core++; 5049 } 5050 } 5051 } 5052 } else { // nthreads > ncores 5053 // Array to save the number of processors at each core 5054 int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores); 5055 // Array to save the number of cores with "x" available processors; 5056 int *ncores_with_x_procs = 5057 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); 5058 // Array to save the number of cores with # procs from x to nth_per_core 5059 int *ncores_with_x_to_max_procs = 5060 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); 5061 5062 for (int i = 0; i <= nth_per_core; i++) { 5063 ncores_with_x_procs[i] = 0; 5064 ncores_with_x_to_max_procs[i] = 0; 5065 } 5066 5067 for (int i = 0; i < ncores; i++) { 5068 int cnt = 0; 5069 for (int j = 0; j < nth_per_core; j++) { 5070 if (procarr[i * nth_per_core + j] != -1) { 5071 cnt++; 5072 } 5073 } 5074 nproc_at_core[i] = cnt; 5075 ncores_with_x_procs[cnt]++; 5076 } 5077 5078 for (int i = 0; i <= nth_per_core; i++) { 5079 for (int j = i; j <= nth_per_core; j++) { 5080 ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j]; 5081 } 5082 } 5083 5084 // Max number of processors 5085 int nproc = nth_per_core * ncores; 5086 // An array to keep number of threads per each context 5087 int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc); 5088 for (int i = 0; i < nproc; i++) { 5089 newarr[i] = 0; 5090 } 5091 5092 int nth = nthreads; 5093 int flag = 0; 5094 while (nth > 0) { 5095 for (int j = 1; j <= nth_per_core; j++) { 5096 int cnt = ncores_with_x_to_max_procs[j]; 5097 for (int i = 0; i < ncores; i++) { 5098 // Skip the core with 0 processors 5099 if (nproc_at_core[i] == 0) { 5100 continue; 5101 } 5102 for (int k = 0; k < nth_per_core; k++) { 5103 if (procarr[i * nth_per_core + k] != -1) { 5104 if (newarr[i * nth_per_core + k] == 0) { 5105 newarr[i * nth_per_core + k] = 1; 5106 cnt--; 5107 nth--; 5108 break; 5109 } else { 5110 if (flag != 0) { 5111 newarr[i * nth_per_core + k]++; 5112 cnt--; 5113 nth--; 5114 break; 5115 } 5116 } 5117 } 5118 } 5119 if (cnt == 0 || nth == 0) { 5120 break; 5121 } 5122 } 5123 if (nth == 0) { 5124 break; 5125 } 5126 } 5127 flag = 1; 5128 } 5129 int sum = 0; 5130 for (int i = 0; i < nproc; i++) { 5131 sum += newarr[i]; 5132 if (sum > tid) { 5133 if (fine_gran) { 5134 int osID = procarr[i]; 5135 KMP_CPU_SET(osID, mask); 5136 } else { 5137 int coreID = i / nth_per_core; 5138 for (int ii = 0; ii < nth_per_core; ii++) { 5139 int osID = procarr[coreID * nth_per_core + ii]; 5140 if (osID != -1) { 5141 KMP_CPU_SET(osID, mask); 5142 } 5143 } 5144 } 5145 break; 5146 } 5147 } 5148 __kmp_free(newarr); 5149 } 5150 5151 if (__kmp_affinity_verbose) { 5152 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5153 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); 5154 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), 5155 __kmp_gettid(), tid, buf); 5156 } 5157 __kmp_set_system_affinity(mask, TRUE); 5158 } 5159 } 5160 5161 #if KMP_OS_LINUX || KMP_OS_FREEBSD 5162 // We don't need this entry for Windows because 5163 // there is GetProcessAffinityMask() api 5164 // 5165 // The intended usage is indicated by these steps: 5166 // 1) The user gets the current affinity mask 5167 // 2) Then sets the affinity by calling this function 5168 // 3) Error check the return value 5169 // 4) Use non-OpenMP parallelization 5170 // 5) Reset the affinity to what was stored in step 1) 5171 #ifdef __cplusplus 5172 extern "C" 5173 #endif 5174 int 5175 kmp_set_thread_affinity_mask_initial() 5176 // the function returns 0 on success, 5177 // -1 if we cannot bind thread 5178 // >0 (errno) if an error happened during binding 5179 { 5180 int gtid = __kmp_get_gtid(); 5181 if (gtid < 0) { 5182 // Do not touch non-omp threads 5183 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5184 "non-omp thread, returning\n")); 5185 return -1; 5186 } 5187 if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) { 5188 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5189 "affinity not initialized, returning\n")); 5190 return -1; 5191 } 5192 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5193 "set full mask for thread %d\n", 5194 gtid)); 5195 KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL); 5196 return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE); 5197 } 5198 #endif 5199 5200 #endif // KMP_AFFINITY_SUPPORTED 5201