1 /* 2 * kmp_affinity.cpp -- affinity management 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_i18n.h" 16 #include "kmp_io.h" 17 #include "kmp_str.h" 18 #include "kmp_wrapper_getpid.h" 19 #if KMP_USE_HIER_SCHED 20 #include "kmp_dispatch_hier.h" 21 #endif 22 #if KMP_USE_HWLOC 23 // Copied from hwloc 24 #define HWLOC_GROUP_KIND_INTEL_MODULE 102 25 #define HWLOC_GROUP_KIND_INTEL_TILE 103 26 #define HWLOC_GROUP_KIND_INTEL_DIE 104 27 #define HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP 220 28 #endif 29 #include <ctype.h> 30 31 // The machine topology 32 kmp_topology_t *__kmp_topology = nullptr; 33 // KMP_HW_SUBSET environment variable 34 kmp_hw_subset_t *__kmp_hw_subset = nullptr; 35 36 // Store the real or imagined machine hierarchy here 37 static hierarchy_info machine_hierarchy; 38 39 void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); } 40 41 void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) { 42 kmp_uint32 depth; 43 // The test below is true if affinity is available, but set to "none". Need to 44 // init on first use of hierarchical barrier. 45 if (TCR_1(machine_hierarchy.uninitialized)) 46 machine_hierarchy.init(nproc); 47 48 // Adjust the hierarchy in case num threads exceeds original 49 if (nproc > machine_hierarchy.base_num_threads) 50 machine_hierarchy.resize(nproc); 51 52 depth = machine_hierarchy.depth; 53 KMP_DEBUG_ASSERT(depth > 0); 54 55 thr_bar->depth = depth; 56 __kmp_type_convert(machine_hierarchy.numPerLevel[0] - 1, 57 &(thr_bar->base_leaf_kids)); 58 thr_bar->skip_per_level = machine_hierarchy.skipPerLevel; 59 } 60 61 static int nCoresPerPkg, nPackages; 62 static int __kmp_nThreadsPerCore; 63 #ifndef KMP_DFLT_NTH_CORES 64 static int __kmp_ncores; 65 #endif 66 67 const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural) { 68 switch (type) { 69 case KMP_HW_SOCKET: 70 return ((plural) ? KMP_I18N_STR(Sockets) : KMP_I18N_STR(Socket)); 71 case KMP_HW_DIE: 72 return ((plural) ? KMP_I18N_STR(Dice) : KMP_I18N_STR(Die)); 73 case KMP_HW_MODULE: 74 return ((plural) ? KMP_I18N_STR(Modules) : KMP_I18N_STR(Module)); 75 case KMP_HW_TILE: 76 return ((plural) ? KMP_I18N_STR(Tiles) : KMP_I18N_STR(Tile)); 77 case KMP_HW_NUMA: 78 return ((plural) ? KMP_I18N_STR(NumaDomains) : KMP_I18N_STR(NumaDomain)); 79 case KMP_HW_L3: 80 return ((plural) ? KMP_I18N_STR(L3Caches) : KMP_I18N_STR(L3Cache)); 81 case KMP_HW_L2: 82 return ((plural) ? KMP_I18N_STR(L2Caches) : KMP_I18N_STR(L2Cache)); 83 case KMP_HW_L1: 84 return ((plural) ? KMP_I18N_STR(L1Caches) : KMP_I18N_STR(L1Cache)); 85 case KMP_HW_LLC: 86 return ((plural) ? KMP_I18N_STR(LLCaches) : KMP_I18N_STR(LLCache)); 87 case KMP_HW_CORE: 88 return ((plural) ? KMP_I18N_STR(Cores) : KMP_I18N_STR(Core)); 89 case KMP_HW_THREAD: 90 return ((plural) ? KMP_I18N_STR(Threads) : KMP_I18N_STR(Thread)); 91 case KMP_HW_PROC_GROUP: 92 return ((plural) ? KMP_I18N_STR(ProcGroups) : KMP_I18N_STR(ProcGroup)); 93 } 94 return KMP_I18N_STR(Unknown); 95 } 96 97 const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural) { 98 switch (type) { 99 case KMP_HW_SOCKET: 100 return ((plural) ? "sockets" : "socket"); 101 case KMP_HW_DIE: 102 return ((plural) ? "dice" : "die"); 103 case KMP_HW_MODULE: 104 return ((plural) ? "modules" : "module"); 105 case KMP_HW_TILE: 106 return ((plural) ? "tiles" : "tile"); 107 case KMP_HW_NUMA: 108 return ((plural) ? "numa_domains" : "numa_domain"); 109 case KMP_HW_L3: 110 return ((plural) ? "l3_caches" : "l3_cache"); 111 case KMP_HW_L2: 112 return ((plural) ? "l2_caches" : "l2_cache"); 113 case KMP_HW_L1: 114 return ((plural) ? "l1_caches" : "l1_cache"); 115 case KMP_HW_LLC: 116 return ((plural) ? "ll_caches" : "ll_cache"); 117 case KMP_HW_CORE: 118 return ((plural) ? "cores" : "core"); 119 case KMP_HW_THREAD: 120 return ((plural) ? "threads" : "thread"); 121 case KMP_HW_PROC_GROUP: 122 return ((plural) ? "proc_groups" : "proc_group"); 123 } 124 return ((plural) ? "unknowns" : "unknown"); 125 } 126 127 const char *__kmp_hw_get_core_type_string(kmp_hw_core_type_t type) { 128 switch (type) { 129 case KMP_HW_CORE_TYPE_UNKNOWN: 130 return "unknown"; 131 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 132 case KMP_HW_CORE_TYPE_ATOM: 133 return "Intel Atom(R) processor"; 134 case KMP_HW_CORE_TYPE_CORE: 135 return "Intel(R) Core(TM) processor"; 136 #endif 137 } 138 return "unknown"; 139 } 140 141 //////////////////////////////////////////////////////////////////////////////// 142 // kmp_hw_thread_t methods 143 int kmp_hw_thread_t::compare_ids(const void *a, const void *b) { 144 const kmp_hw_thread_t *ahwthread = (const kmp_hw_thread_t *)a; 145 const kmp_hw_thread_t *bhwthread = (const kmp_hw_thread_t *)b; 146 int depth = __kmp_topology->get_depth(); 147 for (int level = 0; level < depth; ++level) { 148 if (ahwthread->ids[level] < bhwthread->ids[level]) 149 return -1; 150 else if (ahwthread->ids[level] > bhwthread->ids[level]) 151 return 1; 152 } 153 if (ahwthread->os_id < bhwthread->os_id) 154 return -1; 155 else if (ahwthread->os_id > bhwthread->os_id) 156 return 1; 157 return 0; 158 } 159 160 #if KMP_AFFINITY_SUPPORTED 161 int kmp_hw_thread_t::compare_compact(const void *a, const void *b) { 162 int i; 163 const kmp_hw_thread_t *aa = (const kmp_hw_thread_t *)a; 164 const kmp_hw_thread_t *bb = (const kmp_hw_thread_t *)b; 165 int depth = __kmp_topology->get_depth(); 166 KMP_DEBUG_ASSERT(__kmp_affinity_compact >= 0); 167 KMP_DEBUG_ASSERT(__kmp_affinity_compact <= depth); 168 for (i = 0; i < __kmp_affinity_compact; i++) { 169 int j = depth - i - 1; 170 if (aa->sub_ids[j] < bb->sub_ids[j]) 171 return -1; 172 if (aa->sub_ids[j] > bb->sub_ids[j]) 173 return 1; 174 } 175 for (; i < depth; i++) { 176 int j = i - __kmp_affinity_compact; 177 if (aa->sub_ids[j] < bb->sub_ids[j]) 178 return -1; 179 if (aa->sub_ids[j] > bb->sub_ids[j]) 180 return 1; 181 } 182 return 0; 183 } 184 #endif 185 186 void kmp_hw_thread_t::print() const { 187 int depth = __kmp_topology->get_depth(); 188 printf("%4d ", os_id); 189 for (int i = 0; i < depth; ++i) { 190 printf("%4d ", ids[i]); 191 } 192 if (attrs) { 193 if (attrs.is_core_type_valid()) 194 printf(" (%s)", __kmp_hw_get_core_type_string(attrs.get_core_type())); 195 if (attrs.is_core_eff_valid()) 196 printf(" (eff=%d)", attrs.get_core_eff()); 197 } 198 printf("\n"); 199 } 200 201 //////////////////////////////////////////////////////////////////////////////// 202 // kmp_topology_t methods 203 204 // Add a layer to the topology based on the ids. Assume the topology 205 // is perfectly nested (i.e., so no object has more than one parent) 206 void kmp_topology_t::_insert_layer(kmp_hw_t type, const int *ids) { 207 // Figure out where the layer should go by comparing the ids of the current 208 // layers with the new ids 209 int target_layer; 210 int previous_id = kmp_hw_thread_t::UNKNOWN_ID; 211 int previous_new_id = kmp_hw_thread_t::UNKNOWN_ID; 212 213 // Start from the highest layer and work down to find target layer 214 // If new layer is equal to another layer then put the new layer above 215 for (target_layer = 0; target_layer < depth; ++target_layer) { 216 bool layers_equal = true; 217 bool strictly_above_target_layer = false; 218 for (int i = 0; i < num_hw_threads; ++i) { 219 int id = hw_threads[i].ids[target_layer]; 220 int new_id = ids[i]; 221 if (id != previous_id && new_id == previous_new_id) { 222 // Found the layer we are strictly above 223 strictly_above_target_layer = true; 224 layers_equal = false; 225 break; 226 } else if (id == previous_id && new_id != previous_new_id) { 227 // Found a layer we are below. Move to next layer and check. 228 layers_equal = false; 229 break; 230 } 231 previous_id = id; 232 previous_new_id = new_id; 233 } 234 if (strictly_above_target_layer || layers_equal) 235 break; 236 } 237 238 // Found the layer we are above. Now move everything to accommodate the new 239 // layer. And put the new ids and type into the topology. 240 for (int i = depth - 1, j = depth; i >= target_layer; --i, --j) 241 types[j] = types[i]; 242 types[target_layer] = type; 243 for (int k = 0; k < num_hw_threads; ++k) { 244 for (int i = depth - 1, j = depth; i >= target_layer; --i, --j) 245 hw_threads[k].ids[j] = hw_threads[k].ids[i]; 246 hw_threads[k].ids[target_layer] = ids[k]; 247 } 248 equivalent[type] = type; 249 depth++; 250 } 251 252 #if KMP_GROUP_AFFINITY 253 // Insert the Windows Processor Group structure into the topology 254 void kmp_topology_t::_insert_windows_proc_groups() { 255 // Do not insert the processor group structure for a single group 256 if (__kmp_num_proc_groups == 1) 257 return; 258 kmp_affin_mask_t *mask; 259 int *ids = (int *)__kmp_allocate(sizeof(int) * num_hw_threads); 260 KMP_CPU_ALLOC(mask); 261 for (int i = 0; i < num_hw_threads; ++i) { 262 KMP_CPU_ZERO(mask); 263 KMP_CPU_SET(hw_threads[i].os_id, mask); 264 ids[i] = __kmp_get_proc_group(mask); 265 } 266 KMP_CPU_FREE(mask); 267 _insert_layer(KMP_HW_PROC_GROUP, ids); 268 __kmp_free(ids); 269 } 270 #endif 271 272 // Remove layers that don't add information to the topology. 273 // This is done by having the layer take on the id = UNKNOWN_ID (-1) 274 void kmp_topology_t::_remove_radix1_layers() { 275 int preference[KMP_HW_LAST]; 276 int top_index1, top_index2; 277 // Set up preference associative array 278 preference[KMP_HW_SOCKET] = 110; 279 preference[KMP_HW_PROC_GROUP] = 100; 280 preference[KMP_HW_CORE] = 95; 281 preference[KMP_HW_THREAD] = 90; 282 preference[KMP_HW_NUMA] = 85; 283 preference[KMP_HW_DIE] = 80; 284 preference[KMP_HW_TILE] = 75; 285 preference[KMP_HW_MODULE] = 73; 286 preference[KMP_HW_L3] = 70; 287 preference[KMP_HW_L2] = 65; 288 preference[KMP_HW_L1] = 60; 289 preference[KMP_HW_LLC] = 5; 290 top_index1 = 0; 291 top_index2 = 1; 292 while (top_index1 < depth - 1 && top_index2 < depth) { 293 kmp_hw_t type1 = types[top_index1]; 294 kmp_hw_t type2 = types[top_index2]; 295 KMP_ASSERT_VALID_HW_TYPE(type1); 296 KMP_ASSERT_VALID_HW_TYPE(type2); 297 // Do not allow the three main topology levels (sockets, cores, threads) to 298 // be compacted down 299 if ((type1 == KMP_HW_THREAD || type1 == KMP_HW_CORE || 300 type1 == KMP_HW_SOCKET) && 301 (type2 == KMP_HW_THREAD || type2 == KMP_HW_CORE || 302 type2 == KMP_HW_SOCKET)) { 303 top_index1 = top_index2++; 304 continue; 305 } 306 bool radix1 = true; 307 bool all_same = true; 308 int id1 = hw_threads[0].ids[top_index1]; 309 int id2 = hw_threads[0].ids[top_index2]; 310 int pref1 = preference[type1]; 311 int pref2 = preference[type2]; 312 for (int hwidx = 1; hwidx < num_hw_threads; ++hwidx) { 313 if (hw_threads[hwidx].ids[top_index1] == id1 && 314 hw_threads[hwidx].ids[top_index2] != id2) { 315 radix1 = false; 316 break; 317 } 318 if (hw_threads[hwidx].ids[top_index2] != id2) 319 all_same = false; 320 id1 = hw_threads[hwidx].ids[top_index1]; 321 id2 = hw_threads[hwidx].ids[top_index2]; 322 } 323 if (radix1) { 324 // Select the layer to remove based on preference 325 kmp_hw_t remove_type, keep_type; 326 int remove_layer, remove_layer_ids; 327 if (pref1 > pref2) { 328 remove_type = type2; 329 remove_layer = remove_layer_ids = top_index2; 330 keep_type = type1; 331 } else { 332 remove_type = type1; 333 remove_layer = remove_layer_ids = top_index1; 334 keep_type = type2; 335 } 336 // If all the indexes for the second (deeper) layer are the same. 337 // e.g., all are zero, then make sure to keep the first layer's ids 338 if (all_same) 339 remove_layer_ids = top_index2; 340 // Remove radix one type by setting the equivalence, removing the id from 341 // the hw threads and removing the layer from types and depth 342 set_equivalent_type(remove_type, keep_type); 343 for (int idx = 0; idx < num_hw_threads; ++idx) { 344 kmp_hw_thread_t &hw_thread = hw_threads[idx]; 345 for (int d = remove_layer_ids; d < depth - 1; ++d) 346 hw_thread.ids[d] = hw_thread.ids[d + 1]; 347 } 348 for (int idx = remove_layer; idx < depth - 1; ++idx) 349 types[idx] = types[idx + 1]; 350 depth--; 351 } else { 352 top_index1 = top_index2++; 353 } 354 } 355 KMP_ASSERT(depth > 0); 356 } 357 358 void kmp_topology_t::_set_last_level_cache() { 359 if (get_equivalent_type(KMP_HW_L3) != KMP_HW_UNKNOWN) 360 set_equivalent_type(KMP_HW_LLC, KMP_HW_L3); 361 else if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN) 362 set_equivalent_type(KMP_HW_LLC, KMP_HW_L2); 363 #if KMP_MIC_SUPPORTED 364 else if (__kmp_mic_type == mic3) { 365 if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN) 366 set_equivalent_type(KMP_HW_LLC, KMP_HW_L2); 367 else if (get_equivalent_type(KMP_HW_TILE) != KMP_HW_UNKNOWN) 368 set_equivalent_type(KMP_HW_LLC, KMP_HW_TILE); 369 // L2/Tile wasn't detected so just say L1 370 else 371 set_equivalent_type(KMP_HW_LLC, KMP_HW_L1); 372 } 373 #endif 374 else if (get_equivalent_type(KMP_HW_L1) != KMP_HW_UNKNOWN) 375 set_equivalent_type(KMP_HW_LLC, KMP_HW_L1); 376 // Fallback is to set last level cache to socket or core 377 if (get_equivalent_type(KMP_HW_LLC) == KMP_HW_UNKNOWN) { 378 if (get_equivalent_type(KMP_HW_SOCKET) != KMP_HW_UNKNOWN) 379 set_equivalent_type(KMP_HW_LLC, KMP_HW_SOCKET); 380 else if (get_equivalent_type(KMP_HW_CORE) != KMP_HW_UNKNOWN) 381 set_equivalent_type(KMP_HW_LLC, KMP_HW_CORE); 382 } 383 KMP_ASSERT(get_equivalent_type(KMP_HW_LLC) != KMP_HW_UNKNOWN); 384 } 385 386 // Gather the count of each topology layer and the ratio 387 void kmp_topology_t::_gather_enumeration_information() { 388 int previous_id[KMP_HW_LAST]; 389 int max[KMP_HW_LAST]; 390 391 for (int i = 0; i < depth; ++i) { 392 previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID; 393 max[i] = 0; 394 count[i] = 0; 395 ratio[i] = 0; 396 } 397 int core_level = get_level(KMP_HW_CORE); 398 for (int i = 0; i < num_hw_threads; ++i) { 399 kmp_hw_thread_t &hw_thread = hw_threads[i]; 400 for (int layer = 0; layer < depth; ++layer) { 401 int id = hw_thread.ids[layer]; 402 if (id != previous_id[layer]) { 403 // Add an additional increment to each count 404 for (int l = layer; l < depth; ++l) 405 count[l]++; 406 // Keep track of topology layer ratio statistics 407 max[layer]++; 408 for (int l = layer + 1; l < depth; ++l) { 409 if (max[l] > ratio[l]) 410 ratio[l] = max[l]; 411 max[l] = 1; 412 } 413 // Figure out the number of different core types 414 // and efficiencies for hybrid CPUs 415 if (__kmp_is_hybrid_cpu() && core_level >= 0 && layer <= core_level) { 416 if (hw_thread.attrs.is_core_eff_valid() && 417 hw_thread.attrs.core_eff >= num_core_efficiencies) { 418 // Because efficiencies can range from 0 to max efficiency - 1, 419 // the number of efficiencies is max efficiency + 1 420 num_core_efficiencies = hw_thread.attrs.core_eff + 1; 421 } 422 if (hw_thread.attrs.is_core_type_valid()) { 423 bool found = false; 424 for (int j = 0; j < num_core_types; ++j) { 425 if (hw_thread.attrs.get_core_type() == core_types[j]) { 426 found = true; 427 break; 428 } 429 } 430 if (!found) { 431 KMP_ASSERT(num_core_types < KMP_HW_MAX_NUM_CORE_TYPES); 432 core_types[num_core_types++] = hw_thread.attrs.get_core_type(); 433 } 434 } 435 } 436 break; 437 } 438 } 439 for (int layer = 0; layer < depth; ++layer) { 440 previous_id[layer] = hw_thread.ids[layer]; 441 } 442 } 443 for (int layer = 0; layer < depth; ++layer) { 444 if (max[layer] > ratio[layer]) 445 ratio[layer] = max[layer]; 446 } 447 } 448 449 int kmp_topology_t::_get_ncores_with_attr(const kmp_hw_attr_t &attr, 450 int above_level, 451 bool find_all) const { 452 int current, current_max; 453 int previous_id[KMP_HW_LAST]; 454 for (int i = 0; i < depth; ++i) 455 previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID; 456 int core_level = get_level(KMP_HW_CORE); 457 if (find_all) 458 above_level = -1; 459 KMP_ASSERT(above_level < core_level); 460 current_max = 0; 461 current = 0; 462 for (int i = 0; i < num_hw_threads; ++i) { 463 kmp_hw_thread_t &hw_thread = hw_threads[i]; 464 if (!find_all && hw_thread.ids[above_level] != previous_id[above_level]) { 465 if (current > current_max) 466 current_max = current; 467 current = hw_thread.attrs.contains(attr); 468 } else { 469 for (int level = above_level + 1; level <= core_level; ++level) { 470 if (hw_thread.ids[level] != previous_id[level]) { 471 if (hw_thread.attrs.contains(attr)) 472 current++; 473 break; 474 } 475 } 476 } 477 for (int level = 0; level < depth; ++level) 478 previous_id[level] = hw_thread.ids[level]; 479 } 480 if (current > current_max) 481 current_max = current; 482 return current_max; 483 } 484 485 // Find out if the topology is uniform 486 void kmp_topology_t::_discover_uniformity() { 487 int num = 1; 488 for (int level = 0; level < depth; ++level) 489 num *= ratio[level]; 490 flags.uniform = (num == count[depth - 1]); 491 } 492 493 // Set all the sub_ids for each hardware thread 494 void kmp_topology_t::_set_sub_ids() { 495 int previous_id[KMP_HW_LAST]; 496 int sub_id[KMP_HW_LAST]; 497 498 for (int i = 0; i < depth; ++i) { 499 previous_id[i] = -1; 500 sub_id[i] = -1; 501 } 502 for (int i = 0; i < num_hw_threads; ++i) { 503 kmp_hw_thread_t &hw_thread = hw_threads[i]; 504 // Setup the sub_id 505 for (int j = 0; j < depth; ++j) { 506 if (hw_thread.ids[j] != previous_id[j]) { 507 sub_id[j]++; 508 for (int k = j + 1; k < depth; ++k) { 509 sub_id[k] = 0; 510 } 511 break; 512 } 513 } 514 // Set previous_id 515 for (int j = 0; j < depth; ++j) { 516 previous_id[j] = hw_thread.ids[j]; 517 } 518 // Set the sub_ids field 519 for (int j = 0; j < depth; ++j) { 520 hw_thread.sub_ids[j] = sub_id[j]; 521 } 522 } 523 } 524 525 void kmp_topology_t::_set_globals() { 526 // Set nCoresPerPkg, nPackages, __kmp_nThreadsPerCore, __kmp_ncores 527 int core_level, thread_level, package_level; 528 package_level = get_level(KMP_HW_SOCKET); 529 #if KMP_GROUP_AFFINITY 530 if (package_level == -1) 531 package_level = get_level(KMP_HW_PROC_GROUP); 532 #endif 533 core_level = get_level(KMP_HW_CORE); 534 thread_level = get_level(KMP_HW_THREAD); 535 536 KMP_ASSERT(core_level != -1); 537 KMP_ASSERT(thread_level != -1); 538 539 __kmp_nThreadsPerCore = calculate_ratio(thread_level, core_level); 540 if (package_level != -1) { 541 nCoresPerPkg = calculate_ratio(core_level, package_level); 542 nPackages = get_count(package_level); 543 } else { 544 // assume one socket 545 nCoresPerPkg = get_count(core_level); 546 nPackages = 1; 547 } 548 #ifndef KMP_DFLT_NTH_CORES 549 __kmp_ncores = get_count(core_level); 550 #endif 551 } 552 553 kmp_topology_t *kmp_topology_t::allocate(int nproc, int ndepth, 554 const kmp_hw_t *types) { 555 kmp_topology_t *retval; 556 // Allocate all data in one large allocation 557 size_t size = sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc + 558 sizeof(int) * (size_t)KMP_HW_LAST * 3; 559 char *bytes = (char *)__kmp_allocate(size); 560 retval = (kmp_topology_t *)bytes; 561 if (nproc > 0) { 562 retval->hw_threads = (kmp_hw_thread_t *)(bytes + sizeof(kmp_topology_t)); 563 } else { 564 retval->hw_threads = nullptr; 565 } 566 retval->num_hw_threads = nproc; 567 retval->depth = ndepth; 568 int *arr = 569 (int *)(bytes + sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc); 570 retval->types = (kmp_hw_t *)arr; 571 retval->ratio = arr + (size_t)KMP_HW_LAST; 572 retval->count = arr + 2 * (size_t)KMP_HW_LAST; 573 retval->num_core_efficiencies = 0; 574 retval->num_core_types = 0; 575 for (int i = 0; i < KMP_HW_MAX_NUM_CORE_TYPES; ++i) 576 retval->core_types[i] = KMP_HW_CORE_TYPE_UNKNOWN; 577 KMP_FOREACH_HW_TYPE(type) { retval->equivalent[type] = KMP_HW_UNKNOWN; } 578 for (int i = 0; i < ndepth; ++i) { 579 retval->types[i] = types[i]; 580 retval->equivalent[types[i]] = types[i]; 581 } 582 return retval; 583 } 584 585 void kmp_topology_t::deallocate(kmp_topology_t *topology) { 586 if (topology) 587 __kmp_free(topology); 588 } 589 590 bool kmp_topology_t::check_ids() const { 591 // Assume ids have been sorted 592 if (num_hw_threads == 0) 593 return true; 594 for (int i = 1; i < num_hw_threads; ++i) { 595 kmp_hw_thread_t ¤t_thread = hw_threads[i]; 596 kmp_hw_thread_t &previous_thread = hw_threads[i - 1]; 597 bool unique = false; 598 for (int j = 0; j < depth; ++j) { 599 if (previous_thread.ids[j] != current_thread.ids[j]) { 600 unique = true; 601 break; 602 } 603 } 604 if (unique) 605 continue; 606 return false; 607 } 608 return true; 609 } 610 611 void kmp_topology_t::dump() const { 612 printf("***********************\n"); 613 printf("*** __kmp_topology: ***\n"); 614 printf("***********************\n"); 615 printf("* depth: %d\n", depth); 616 617 printf("* types: "); 618 for (int i = 0; i < depth; ++i) 619 printf("%15s ", __kmp_hw_get_keyword(types[i])); 620 printf("\n"); 621 622 printf("* ratio: "); 623 for (int i = 0; i < depth; ++i) { 624 printf("%15d ", ratio[i]); 625 } 626 printf("\n"); 627 628 printf("* count: "); 629 for (int i = 0; i < depth; ++i) { 630 printf("%15d ", count[i]); 631 } 632 printf("\n"); 633 634 printf("* num_core_eff: %d\n", num_core_efficiencies); 635 printf("* num_core_types: %d\n", num_core_types); 636 printf("* core_types: "); 637 for (int i = 0; i < num_core_types; ++i) 638 printf("%3d ", core_types[i]); 639 printf("\n"); 640 641 printf("* equivalent map:\n"); 642 KMP_FOREACH_HW_TYPE(i) { 643 const char *key = __kmp_hw_get_keyword(i); 644 const char *value = __kmp_hw_get_keyword(equivalent[i]); 645 printf("%-15s -> %-15s\n", key, value); 646 } 647 648 printf("* uniform: %s\n", (is_uniform() ? "Yes" : "No")); 649 650 printf("* num_hw_threads: %d\n", num_hw_threads); 651 printf("* hw_threads:\n"); 652 for (int i = 0; i < num_hw_threads; ++i) { 653 hw_threads[i].print(); 654 } 655 printf("***********************\n"); 656 } 657 658 void kmp_topology_t::print(const char *env_var) const { 659 kmp_str_buf_t buf; 660 int print_types_depth; 661 __kmp_str_buf_init(&buf); 662 kmp_hw_t print_types[KMP_HW_LAST + 2]; 663 664 // Num Available Threads 665 KMP_INFORM(AvailableOSProc, env_var, num_hw_threads); 666 667 // Uniform or not 668 if (is_uniform()) { 669 KMP_INFORM(Uniform, env_var); 670 } else { 671 KMP_INFORM(NonUniform, env_var); 672 } 673 674 // Equivalent types 675 KMP_FOREACH_HW_TYPE(type) { 676 kmp_hw_t eq_type = equivalent[type]; 677 if (eq_type != KMP_HW_UNKNOWN && eq_type != type) { 678 KMP_INFORM(AffEqualTopologyTypes, env_var, 679 __kmp_hw_get_catalog_string(type), 680 __kmp_hw_get_catalog_string(eq_type)); 681 } 682 } 683 684 // Quick topology 685 KMP_ASSERT(depth > 0 && depth <= (int)KMP_HW_LAST); 686 // Create a print types array that always guarantees printing 687 // the core and thread level 688 print_types_depth = 0; 689 for (int level = 0; level < depth; ++level) 690 print_types[print_types_depth++] = types[level]; 691 if (equivalent[KMP_HW_CORE] != KMP_HW_CORE) { 692 // Force in the core level for quick topology 693 if (print_types[print_types_depth - 1] == KMP_HW_THREAD) { 694 // Force core before thread e.g., 1 socket X 2 threads/socket 695 // becomes 1 socket X 1 core/socket X 2 threads/socket 696 print_types[print_types_depth - 1] = KMP_HW_CORE; 697 print_types[print_types_depth++] = KMP_HW_THREAD; 698 } else { 699 print_types[print_types_depth++] = KMP_HW_CORE; 700 } 701 } 702 // Always put threads at very end of quick topology 703 if (equivalent[KMP_HW_THREAD] != KMP_HW_THREAD) 704 print_types[print_types_depth++] = KMP_HW_THREAD; 705 706 __kmp_str_buf_clear(&buf); 707 kmp_hw_t numerator_type; 708 kmp_hw_t denominator_type = KMP_HW_UNKNOWN; 709 int core_level = get_level(KMP_HW_CORE); 710 int ncores = get_count(core_level); 711 712 for (int plevel = 0, level = 0; plevel < print_types_depth; ++plevel) { 713 int c; 714 bool plural; 715 numerator_type = print_types[plevel]; 716 KMP_ASSERT_VALID_HW_TYPE(numerator_type); 717 if (equivalent[numerator_type] != numerator_type) 718 c = 1; 719 else 720 c = get_ratio(level++); 721 plural = (c > 1); 722 if (plevel == 0) { 723 __kmp_str_buf_print(&buf, "%d %s", c, 724 __kmp_hw_get_catalog_string(numerator_type, plural)); 725 } else { 726 __kmp_str_buf_print(&buf, " x %d %s/%s", c, 727 __kmp_hw_get_catalog_string(numerator_type, plural), 728 __kmp_hw_get_catalog_string(denominator_type)); 729 } 730 denominator_type = numerator_type; 731 } 732 KMP_INFORM(TopologyGeneric, env_var, buf.str, ncores); 733 734 // Hybrid topology information 735 if (__kmp_is_hybrid_cpu()) { 736 for (int i = 0; i < num_core_types; ++i) { 737 kmp_hw_core_type_t core_type = core_types[i]; 738 kmp_hw_attr_t attr; 739 attr.clear(); 740 attr.set_core_type(core_type); 741 int ncores = get_ncores_with_attr(attr); 742 if (ncores > 0) { 743 KMP_INFORM(TopologyHybrid, env_var, ncores, 744 __kmp_hw_get_core_type_string(core_type)); 745 KMP_ASSERT(num_core_efficiencies <= KMP_HW_MAX_NUM_CORE_EFFS) 746 for (int eff = 0; eff < num_core_efficiencies; ++eff) { 747 attr.set_core_eff(eff); 748 int ncores_with_eff = get_ncores_with_attr(attr); 749 if (ncores_with_eff > 0) { 750 KMP_INFORM(TopologyHybridCoreEff, env_var, ncores_with_eff, eff); 751 } 752 } 753 } 754 } 755 } 756 757 if (num_hw_threads <= 0) { 758 __kmp_str_buf_free(&buf); 759 return; 760 } 761 762 // Full OS proc to hardware thread map 763 KMP_INFORM(OSProcToPhysicalThreadMap, env_var); 764 for (int i = 0; i < num_hw_threads; i++) { 765 __kmp_str_buf_clear(&buf); 766 for (int level = 0; level < depth; ++level) { 767 kmp_hw_t type = types[level]; 768 __kmp_str_buf_print(&buf, "%s ", __kmp_hw_get_catalog_string(type)); 769 __kmp_str_buf_print(&buf, "%d ", hw_threads[i].ids[level]); 770 } 771 if (__kmp_is_hybrid_cpu()) 772 __kmp_str_buf_print( 773 &buf, "(%s)", 774 __kmp_hw_get_core_type_string(hw_threads[i].attrs.get_core_type())); 775 KMP_INFORM(OSProcMapToPack, env_var, hw_threads[i].os_id, buf.str); 776 } 777 778 __kmp_str_buf_free(&buf); 779 } 780 781 void kmp_topology_t::canonicalize() { 782 #if KMP_GROUP_AFFINITY 783 _insert_windows_proc_groups(); 784 #endif 785 _remove_radix1_layers(); 786 _gather_enumeration_information(); 787 _discover_uniformity(); 788 _set_sub_ids(); 789 _set_globals(); 790 _set_last_level_cache(); 791 792 #if KMP_MIC_SUPPORTED 793 // Manually Add L2 = Tile equivalence 794 if (__kmp_mic_type == mic3) { 795 if (get_level(KMP_HW_L2) != -1) 796 set_equivalent_type(KMP_HW_TILE, KMP_HW_L2); 797 else if (get_level(KMP_HW_TILE) != -1) 798 set_equivalent_type(KMP_HW_L2, KMP_HW_TILE); 799 } 800 #endif 801 802 // Perform post canonicalization checking 803 KMP_ASSERT(depth > 0); 804 for (int level = 0; level < depth; ++level) { 805 // All counts, ratios, and types must be valid 806 KMP_ASSERT(count[level] > 0 && ratio[level] > 0); 807 KMP_ASSERT_VALID_HW_TYPE(types[level]); 808 // Detected types must point to themselves 809 KMP_ASSERT(equivalent[types[level]] == types[level]); 810 } 811 812 #if KMP_AFFINITY_SUPPORTED 813 // Set the number of affinity granularity levels 814 if (__kmp_affinity_gran_levels < 0) { 815 kmp_hw_t gran_type = get_equivalent_type(__kmp_affinity_gran); 816 // Check if user's granularity request is valid 817 if (gran_type == KMP_HW_UNKNOWN) { 818 // First try core, then thread, then package 819 kmp_hw_t gran_types[3] = {KMP_HW_CORE, KMP_HW_THREAD, KMP_HW_SOCKET}; 820 for (auto g : gran_types) { 821 if (get_equivalent_type(g) != KMP_HW_UNKNOWN) { 822 gran_type = g; 823 break; 824 } 825 } 826 KMP_ASSERT(gran_type != KMP_HW_UNKNOWN); 827 // Warn user what granularity setting will be used instead 828 KMP_WARNING(AffGranularityBad, "KMP_AFFINITY", 829 __kmp_hw_get_catalog_string(__kmp_affinity_gran), 830 __kmp_hw_get_catalog_string(gran_type)); 831 __kmp_affinity_gran = gran_type; 832 } 833 #if KMP_GROUP_AFFINITY 834 // If more than one processor group exists, and the level of 835 // granularity specified by the user is too coarse, then the 836 // granularity must be adjusted "down" to processor group affinity 837 // because threads can only exist within one processor group. 838 // For example, if a user sets granularity=socket and there are two 839 // processor groups that cover a socket, then the runtime must 840 // restrict the granularity down to the processor group level. 841 if (__kmp_num_proc_groups > 1) { 842 int gran_depth = get_level(gran_type); 843 int proc_group_depth = get_level(KMP_HW_PROC_GROUP); 844 if (gran_depth >= 0 && proc_group_depth >= 0 && 845 gran_depth < proc_group_depth) { 846 KMP_WARNING(AffGranTooCoarseProcGroup, "KMP_AFFINITY", 847 __kmp_hw_get_catalog_string(__kmp_affinity_gran)); 848 __kmp_affinity_gran = gran_type = KMP_HW_PROC_GROUP; 849 } 850 } 851 #endif 852 __kmp_affinity_gran_levels = 0; 853 for (int i = depth - 1; i >= 0 && get_type(i) != gran_type; --i) 854 __kmp_affinity_gran_levels++; 855 } 856 #endif // KMP_AFFINITY_SUPPORTED 857 } 858 859 // Canonicalize an explicit packages X cores/pkg X threads/core topology 860 void kmp_topology_t::canonicalize(int npackages, int ncores_per_pkg, 861 int nthreads_per_core, int ncores) { 862 int ndepth = 3; 863 depth = ndepth; 864 KMP_FOREACH_HW_TYPE(i) { equivalent[i] = KMP_HW_UNKNOWN; } 865 for (int level = 0; level < depth; ++level) { 866 count[level] = 0; 867 ratio[level] = 0; 868 } 869 count[0] = npackages; 870 count[1] = ncores; 871 count[2] = __kmp_xproc; 872 ratio[0] = npackages; 873 ratio[1] = ncores_per_pkg; 874 ratio[2] = nthreads_per_core; 875 equivalent[KMP_HW_SOCKET] = KMP_HW_SOCKET; 876 equivalent[KMP_HW_CORE] = KMP_HW_CORE; 877 equivalent[KMP_HW_THREAD] = KMP_HW_THREAD; 878 types[0] = KMP_HW_SOCKET; 879 types[1] = KMP_HW_CORE; 880 types[2] = KMP_HW_THREAD; 881 //__kmp_avail_proc = __kmp_xproc; 882 _discover_uniformity(); 883 } 884 885 // Represents running sub IDs for a single core attribute where 886 // attribute values have SIZE possibilities. 887 template <size_t SIZE, typename IndexFunc> struct kmp_sub_ids_t { 888 int last_level; // last level in topology to consider for sub_ids 889 int sub_id[SIZE]; // The sub ID for a given attribute value 890 int prev_sub_id[KMP_HW_LAST]; 891 IndexFunc indexer; 892 893 public: 894 kmp_sub_ids_t(int last_level) : last_level(last_level) { 895 KMP_ASSERT(last_level < KMP_HW_LAST); 896 for (size_t i = 0; i < SIZE; ++i) 897 sub_id[i] = -1; 898 for (size_t i = 0; i < KMP_HW_LAST; ++i) 899 prev_sub_id[i] = -1; 900 } 901 void update(const kmp_hw_thread_t &hw_thread) { 902 int idx = indexer(hw_thread); 903 KMP_ASSERT(idx < (int)SIZE); 904 for (int level = 0; level <= last_level; ++level) { 905 if (hw_thread.sub_ids[level] != prev_sub_id[level]) { 906 if (level < last_level) 907 sub_id[idx] = -1; 908 sub_id[idx]++; 909 break; 910 } 911 } 912 for (int level = 0; level <= last_level; ++level) 913 prev_sub_id[level] = hw_thread.sub_ids[level]; 914 } 915 int get_sub_id(const kmp_hw_thread_t &hw_thread) const { 916 return sub_id[indexer(hw_thread)]; 917 } 918 }; 919 920 static kmp_str_buf_t * 921 __kmp_hw_get_catalog_core_string(const kmp_hw_attr_t &attr, kmp_str_buf_t *buf, 922 bool plural) { 923 __kmp_str_buf_init(buf); 924 if (attr.is_core_type_valid()) 925 __kmp_str_buf_print(buf, "%s %s", 926 __kmp_hw_get_core_type_string(attr.get_core_type()), 927 __kmp_hw_get_catalog_string(KMP_HW_CORE, plural)); 928 else 929 __kmp_str_buf_print(buf, "%s eff=%d", 930 __kmp_hw_get_catalog_string(KMP_HW_CORE, plural), 931 attr.get_core_eff()); 932 return buf; 933 } 934 935 // Apply the KMP_HW_SUBSET envirable to the topology 936 // Returns true if KMP_HW_SUBSET filtered any processors 937 // otherwise, returns false 938 bool kmp_topology_t::filter_hw_subset() { 939 // If KMP_HW_SUBSET wasn't requested, then do nothing. 940 if (!__kmp_hw_subset) 941 return false; 942 943 // First, sort the KMP_HW_SUBSET items by the machine topology 944 __kmp_hw_subset->sort(); 945 946 // Check to see if KMP_HW_SUBSET is a valid subset of the detected topology 947 bool using_core_types = false; 948 bool using_core_effs = false; 949 int hw_subset_depth = __kmp_hw_subset->get_depth(); 950 kmp_hw_t specified[KMP_HW_LAST]; 951 int *topology_levels = (int *)KMP_ALLOCA(sizeof(int) * hw_subset_depth); 952 KMP_ASSERT(hw_subset_depth > 0); 953 KMP_FOREACH_HW_TYPE(i) { specified[i] = KMP_HW_UNKNOWN; } 954 int core_level = get_level(KMP_HW_CORE); 955 for (int i = 0; i < hw_subset_depth; ++i) { 956 int max_count; 957 const kmp_hw_subset_t::item_t &item = __kmp_hw_subset->at(i); 958 int num = item.num[0]; 959 int offset = item.offset[0]; 960 kmp_hw_t type = item.type; 961 kmp_hw_t equivalent_type = equivalent[type]; 962 int level = get_level(type); 963 topology_levels[i] = level; 964 965 // Check to see if current layer is in detected machine topology 966 if (equivalent_type != KMP_HW_UNKNOWN) { 967 __kmp_hw_subset->at(i).type = equivalent_type; 968 } else { 969 KMP_WARNING(AffHWSubsetNotExistGeneric, 970 __kmp_hw_get_catalog_string(type)); 971 return false; 972 } 973 974 // Check to see if current layer has already been 975 // specified either directly or through an equivalent type 976 if (specified[equivalent_type] != KMP_HW_UNKNOWN) { 977 KMP_WARNING(AffHWSubsetEqvLayers, __kmp_hw_get_catalog_string(type), 978 __kmp_hw_get_catalog_string(specified[equivalent_type])); 979 return false; 980 } 981 specified[equivalent_type] = type; 982 983 // Check to see if each layer's num & offset parameters are valid 984 max_count = get_ratio(level); 985 if (max_count < 0 || 986 (num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) { 987 bool plural = (num > 1); 988 KMP_WARNING(AffHWSubsetManyGeneric, 989 __kmp_hw_get_catalog_string(type, plural)); 990 return false; 991 } 992 993 // Check to see if core attributes are consistent 994 if (core_level == level) { 995 // Determine which core attributes are specified 996 for (int j = 0; j < item.num_attrs; ++j) { 997 if (item.attr[j].is_core_type_valid()) 998 using_core_types = true; 999 if (item.attr[j].is_core_eff_valid()) 1000 using_core_effs = true; 1001 } 1002 1003 // Check if using a single core attribute on non-hybrid arch. 1004 // Do not ignore all of KMP_HW_SUBSET, just ignore the attribute. 1005 // 1006 // Check if using multiple core attributes on non-hyrbid arch. 1007 // Ignore all of KMP_HW_SUBSET if this is the case. 1008 if ((using_core_effs || using_core_types) && !__kmp_is_hybrid_cpu()) { 1009 if (item.num_attrs == 1) { 1010 if (using_core_effs) { 1011 KMP_WARNING(AffHWSubsetIgnoringAttr, "efficiency"); 1012 } else { 1013 KMP_WARNING(AffHWSubsetIgnoringAttr, "core_type"); 1014 } 1015 using_core_effs = false; 1016 using_core_types = false; 1017 } else { 1018 KMP_WARNING(AffHWSubsetAttrsNonHybrid); 1019 return false; 1020 } 1021 } 1022 1023 // Check if using both core types and core efficiencies together 1024 if (using_core_types && using_core_effs) { 1025 KMP_WARNING(AffHWSubsetIncompat, "core_type", "efficiency"); 1026 return false; 1027 } 1028 1029 // Check that core efficiency values are valid 1030 if (using_core_effs) { 1031 for (int j = 0; j < item.num_attrs; ++j) { 1032 if (item.attr[j].is_core_eff_valid()) { 1033 int core_eff = item.attr[j].get_core_eff(); 1034 if (core_eff < 0 || core_eff >= num_core_efficiencies) { 1035 kmp_str_buf_t buf; 1036 __kmp_str_buf_init(&buf); 1037 __kmp_str_buf_print(&buf, "%d", item.attr[j].get_core_eff()); 1038 __kmp_msg(kmp_ms_warning, 1039 KMP_MSG(AffHWSubsetAttrInvalid, "efficiency", buf.str), 1040 KMP_HNT(ValidValuesRange, 0, num_core_efficiencies - 1), 1041 __kmp_msg_null); 1042 __kmp_str_buf_free(&buf); 1043 return false; 1044 } 1045 } 1046 } 1047 } 1048 1049 // Check that the number of requested cores with attributes is valid 1050 if (using_core_types || using_core_effs) { 1051 for (int j = 0; j < item.num_attrs; ++j) { 1052 int num = item.num[j]; 1053 int offset = item.offset[j]; 1054 int level_above = core_level - 1; 1055 if (level_above >= 0) { 1056 max_count = get_ncores_with_attr_per(item.attr[j], level_above); 1057 if (max_count <= 0 || 1058 (num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) { 1059 kmp_str_buf_t buf; 1060 __kmp_hw_get_catalog_core_string(item.attr[j], &buf, num > 0); 1061 KMP_WARNING(AffHWSubsetManyGeneric, buf.str); 1062 __kmp_str_buf_free(&buf); 1063 return false; 1064 } 1065 } 1066 } 1067 } 1068 1069 if ((using_core_types || using_core_effs) && item.num_attrs > 1) { 1070 for (int j = 0; j < item.num_attrs; ++j) { 1071 // Ambiguous use of specific core attribute + generic core 1072 // e.g., 4c & 3c:intel_core or 4c & 3c:eff1 1073 if (!item.attr[j]) { 1074 kmp_hw_attr_t other_attr; 1075 for (int k = 0; k < item.num_attrs; ++k) { 1076 if (item.attr[k] != item.attr[j]) { 1077 other_attr = item.attr[k]; 1078 break; 1079 } 1080 } 1081 kmp_str_buf_t buf; 1082 __kmp_hw_get_catalog_core_string(other_attr, &buf, item.num[j] > 0); 1083 KMP_WARNING(AffHWSubsetIncompat, 1084 __kmp_hw_get_catalog_string(KMP_HW_CORE), buf.str); 1085 __kmp_str_buf_free(&buf); 1086 return false; 1087 } 1088 // Allow specifying a specific core type or core eff exactly once 1089 for (int k = 0; k < j; ++k) { 1090 if (!item.attr[j] || !item.attr[k]) 1091 continue; 1092 if (item.attr[k] == item.attr[j]) { 1093 kmp_str_buf_t buf; 1094 __kmp_hw_get_catalog_core_string(item.attr[j], &buf, 1095 item.num[j] > 0); 1096 KMP_WARNING(AffHWSubsetAttrRepeat, buf.str); 1097 __kmp_str_buf_free(&buf); 1098 return false; 1099 } 1100 } 1101 } 1102 } 1103 } 1104 } 1105 1106 struct core_type_indexer { 1107 int operator()(const kmp_hw_thread_t &t) const { 1108 switch (t.attrs.get_core_type()) { 1109 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1110 case KMP_HW_CORE_TYPE_ATOM: 1111 return 1; 1112 case KMP_HW_CORE_TYPE_CORE: 1113 return 2; 1114 #endif 1115 case KMP_HW_CORE_TYPE_UNKNOWN: 1116 return 0; 1117 } 1118 KMP_ASSERT(0); 1119 return 0; 1120 } 1121 }; 1122 struct core_eff_indexer { 1123 int operator()(const kmp_hw_thread_t &t) const { 1124 return t.attrs.get_core_eff(); 1125 } 1126 }; 1127 1128 kmp_sub_ids_t<KMP_HW_MAX_NUM_CORE_TYPES, core_type_indexer> core_type_sub_ids( 1129 core_level); 1130 kmp_sub_ids_t<KMP_HW_MAX_NUM_CORE_EFFS, core_eff_indexer> core_eff_sub_ids( 1131 core_level); 1132 1133 // Determine which hardware threads should be filtered. 1134 int num_filtered = 0; 1135 bool *filtered = (bool *)__kmp_allocate(sizeof(bool) * num_hw_threads); 1136 for (int i = 0; i < num_hw_threads; ++i) { 1137 kmp_hw_thread_t &hw_thread = hw_threads[i]; 1138 // Update type_sub_id 1139 if (using_core_types) 1140 core_type_sub_ids.update(hw_thread); 1141 if (using_core_effs) 1142 core_eff_sub_ids.update(hw_thread); 1143 1144 // Check to see if this hardware thread should be filtered 1145 bool should_be_filtered = false; 1146 for (int hw_subset_index = 0; hw_subset_index < hw_subset_depth; 1147 ++hw_subset_index) { 1148 const auto &hw_subset_item = __kmp_hw_subset->at(hw_subset_index); 1149 int level = topology_levels[hw_subset_index]; 1150 if (level == -1) 1151 continue; 1152 if ((using_core_effs || using_core_types) && level == core_level) { 1153 // Look for the core attribute in KMP_HW_SUBSET which corresponds 1154 // to this hardware thread's core attribute. Use this num,offset plus 1155 // the running sub_id for the particular core attribute of this hardware 1156 // thread to determine if the hardware thread should be filtered or not. 1157 int attr_idx; 1158 kmp_hw_core_type_t core_type = hw_thread.attrs.get_core_type(); 1159 int core_eff = hw_thread.attrs.get_core_eff(); 1160 for (attr_idx = 0; attr_idx < hw_subset_item.num_attrs; ++attr_idx) { 1161 if (using_core_types && 1162 hw_subset_item.attr[attr_idx].get_core_type() == core_type) 1163 break; 1164 if (using_core_effs && 1165 hw_subset_item.attr[attr_idx].get_core_eff() == core_eff) 1166 break; 1167 } 1168 // This core attribute isn't in the KMP_HW_SUBSET so always filter it. 1169 if (attr_idx == hw_subset_item.num_attrs) { 1170 should_be_filtered = true; 1171 break; 1172 } 1173 int sub_id; 1174 int num = hw_subset_item.num[attr_idx]; 1175 int offset = hw_subset_item.offset[attr_idx]; 1176 if (using_core_types) 1177 sub_id = core_type_sub_ids.get_sub_id(hw_thread); 1178 else 1179 sub_id = core_eff_sub_ids.get_sub_id(hw_thread); 1180 if (sub_id < offset || 1181 (num != kmp_hw_subset_t::USE_ALL && sub_id >= offset + num)) { 1182 should_be_filtered = true; 1183 break; 1184 } 1185 } else { 1186 int num = hw_subset_item.num[0]; 1187 int offset = hw_subset_item.offset[0]; 1188 if (hw_thread.sub_ids[level] < offset || 1189 (num != kmp_hw_subset_t::USE_ALL && 1190 hw_thread.sub_ids[level] >= offset + num)) { 1191 should_be_filtered = true; 1192 break; 1193 } 1194 } 1195 } 1196 // Collect filtering information 1197 filtered[i] = should_be_filtered; 1198 if (should_be_filtered) 1199 num_filtered++; 1200 } 1201 1202 // One last check that we shouldn't allow filtering entire machine 1203 if (num_filtered == num_hw_threads) { 1204 KMP_WARNING(AffHWSubsetAllFiltered); 1205 __kmp_free(filtered); 1206 return false; 1207 } 1208 1209 // Apply the filter 1210 int new_index = 0; 1211 for (int i = 0; i < num_hw_threads; ++i) { 1212 if (!filtered[i]) { 1213 if (i != new_index) 1214 hw_threads[new_index] = hw_threads[i]; 1215 new_index++; 1216 } else { 1217 #if KMP_AFFINITY_SUPPORTED 1218 KMP_CPU_CLR(hw_threads[i].os_id, __kmp_affin_fullMask); 1219 #endif 1220 __kmp_avail_proc--; 1221 } 1222 } 1223 1224 KMP_DEBUG_ASSERT(new_index <= num_hw_threads); 1225 num_hw_threads = new_index; 1226 1227 // Post hardware subset canonicalization 1228 _gather_enumeration_information(); 1229 _discover_uniformity(); 1230 _set_globals(); 1231 _set_last_level_cache(); 1232 __kmp_free(filtered); 1233 return true; 1234 } 1235 1236 bool kmp_topology_t::is_close(int hwt1, int hwt2, int hw_level) const { 1237 if (hw_level >= depth) 1238 return true; 1239 bool retval = true; 1240 const kmp_hw_thread_t &t1 = hw_threads[hwt1]; 1241 const kmp_hw_thread_t &t2 = hw_threads[hwt2]; 1242 for (int i = 0; i < (depth - hw_level); ++i) { 1243 if (t1.ids[i] != t2.ids[i]) 1244 return false; 1245 } 1246 return retval; 1247 } 1248 1249 //////////////////////////////////////////////////////////////////////////////// 1250 1251 #if KMP_AFFINITY_SUPPORTED 1252 class kmp_affinity_raii_t { 1253 kmp_affin_mask_t *mask; 1254 bool restored; 1255 1256 public: 1257 kmp_affinity_raii_t() : restored(false) { 1258 KMP_CPU_ALLOC(mask); 1259 KMP_ASSERT(mask != NULL); 1260 __kmp_get_system_affinity(mask, TRUE); 1261 } 1262 void restore() { 1263 __kmp_set_system_affinity(mask, TRUE); 1264 KMP_CPU_FREE(mask); 1265 restored = true; 1266 } 1267 ~kmp_affinity_raii_t() { 1268 if (!restored) { 1269 __kmp_set_system_affinity(mask, TRUE); 1270 KMP_CPU_FREE(mask); 1271 } 1272 } 1273 }; 1274 1275 bool KMPAffinity::picked_api = false; 1276 1277 void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); } 1278 void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); } 1279 void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); } 1280 void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); } 1281 void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); } 1282 void KMPAffinity::operator delete(void *p) { __kmp_free(p); } 1283 1284 void KMPAffinity::pick_api() { 1285 KMPAffinity *affinity_dispatch; 1286 if (picked_api) 1287 return; 1288 #if KMP_USE_HWLOC 1289 // Only use Hwloc if affinity isn't explicitly disabled and 1290 // user requests Hwloc topology method 1291 if (__kmp_affinity_top_method == affinity_top_method_hwloc && 1292 __kmp_affinity_type != affinity_disabled) { 1293 affinity_dispatch = new KMPHwlocAffinity(); 1294 } else 1295 #endif 1296 { 1297 affinity_dispatch = new KMPNativeAffinity(); 1298 } 1299 __kmp_affinity_dispatch = affinity_dispatch; 1300 picked_api = true; 1301 } 1302 1303 void KMPAffinity::destroy_api() { 1304 if (__kmp_affinity_dispatch != NULL) { 1305 delete __kmp_affinity_dispatch; 1306 __kmp_affinity_dispatch = NULL; 1307 picked_api = false; 1308 } 1309 } 1310 1311 #define KMP_ADVANCE_SCAN(scan) \ 1312 while (*scan != '\0') { \ 1313 scan++; \ 1314 } 1315 1316 // Print the affinity mask to the character array in a pretty format. 1317 // The format is a comma separated list of non-negative integers or integer 1318 // ranges: e.g., 1,2,3-5,7,9-15 1319 // The format can also be the string "{<empty>}" if no bits are set in mask 1320 char *__kmp_affinity_print_mask(char *buf, int buf_len, 1321 kmp_affin_mask_t *mask) { 1322 int start = 0, finish = 0, previous = 0; 1323 bool first_range; 1324 KMP_ASSERT(buf); 1325 KMP_ASSERT(buf_len >= 40); 1326 KMP_ASSERT(mask); 1327 char *scan = buf; 1328 char *end = buf + buf_len - 1; 1329 1330 // Check for empty set. 1331 if (mask->begin() == mask->end()) { 1332 KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}"); 1333 KMP_ADVANCE_SCAN(scan); 1334 KMP_ASSERT(scan <= end); 1335 return buf; 1336 } 1337 1338 first_range = true; 1339 start = mask->begin(); 1340 while (1) { 1341 // Find next range 1342 // [start, previous] is inclusive range of contiguous bits in mask 1343 for (finish = mask->next(start), previous = start; 1344 finish == previous + 1 && finish != mask->end(); 1345 finish = mask->next(finish)) { 1346 previous = finish; 1347 } 1348 1349 // The first range does not need a comma printed before it, but the rest 1350 // of the ranges do need a comma beforehand 1351 if (!first_range) { 1352 KMP_SNPRINTF(scan, end - scan + 1, "%s", ","); 1353 KMP_ADVANCE_SCAN(scan); 1354 } else { 1355 first_range = false; 1356 } 1357 // Range with three or more contiguous bits in the affinity mask 1358 if (previous - start > 1) { 1359 KMP_SNPRINTF(scan, end - scan + 1, "%u-%u", start, previous); 1360 } else { 1361 // Range with one or two contiguous bits in the affinity mask 1362 KMP_SNPRINTF(scan, end - scan + 1, "%u", start); 1363 KMP_ADVANCE_SCAN(scan); 1364 if (previous - start > 0) { 1365 KMP_SNPRINTF(scan, end - scan + 1, ",%u", previous); 1366 } 1367 } 1368 KMP_ADVANCE_SCAN(scan); 1369 // Start over with new start point 1370 start = finish; 1371 if (start == mask->end()) 1372 break; 1373 // Check for overflow 1374 if (end - scan < 2) 1375 break; 1376 } 1377 1378 // Check for overflow 1379 KMP_ASSERT(scan <= end); 1380 return buf; 1381 } 1382 #undef KMP_ADVANCE_SCAN 1383 1384 // Print the affinity mask to the string buffer object in a pretty format 1385 // The format is a comma separated list of non-negative integers or integer 1386 // ranges: e.g., 1,2,3-5,7,9-15 1387 // The format can also be the string "{<empty>}" if no bits are set in mask 1388 kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf, 1389 kmp_affin_mask_t *mask) { 1390 int start = 0, finish = 0, previous = 0; 1391 bool first_range; 1392 KMP_ASSERT(buf); 1393 KMP_ASSERT(mask); 1394 1395 __kmp_str_buf_clear(buf); 1396 1397 // Check for empty set. 1398 if (mask->begin() == mask->end()) { 1399 __kmp_str_buf_print(buf, "%s", "{<empty>}"); 1400 return buf; 1401 } 1402 1403 first_range = true; 1404 start = mask->begin(); 1405 while (1) { 1406 // Find next range 1407 // [start, previous] is inclusive range of contiguous bits in mask 1408 for (finish = mask->next(start), previous = start; 1409 finish == previous + 1 && finish != mask->end(); 1410 finish = mask->next(finish)) { 1411 previous = finish; 1412 } 1413 1414 // The first range does not need a comma printed before it, but the rest 1415 // of the ranges do need a comma beforehand 1416 if (!first_range) { 1417 __kmp_str_buf_print(buf, "%s", ","); 1418 } else { 1419 first_range = false; 1420 } 1421 // Range with three or more contiguous bits in the affinity mask 1422 if (previous - start > 1) { 1423 __kmp_str_buf_print(buf, "%u-%u", start, previous); 1424 } else { 1425 // Range with one or two contiguous bits in the affinity mask 1426 __kmp_str_buf_print(buf, "%u", start); 1427 if (previous - start > 0) { 1428 __kmp_str_buf_print(buf, ",%u", previous); 1429 } 1430 } 1431 // Start over with new start point 1432 start = finish; 1433 if (start == mask->end()) 1434 break; 1435 } 1436 return buf; 1437 } 1438 1439 // Return (possibly empty) affinity mask representing the offline CPUs 1440 // Caller must free the mask 1441 kmp_affin_mask_t *__kmp_affinity_get_offline_cpus() { 1442 kmp_affin_mask_t *offline; 1443 KMP_CPU_ALLOC(offline); 1444 KMP_CPU_ZERO(offline); 1445 #if KMP_OS_LINUX 1446 int n, begin_cpu, end_cpu; 1447 kmp_safe_raii_file_t offline_file; 1448 auto skip_ws = [](FILE *f) { 1449 int c; 1450 do { 1451 c = fgetc(f); 1452 } while (isspace(c)); 1453 if (c != EOF) 1454 ungetc(c, f); 1455 }; 1456 // File contains CSV of integer ranges representing the offline CPUs 1457 // e.g., 1,2,4-7,9,11-15 1458 int status = offline_file.try_open("/sys/devices/system/cpu/offline", "r"); 1459 if (status != 0) 1460 return offline; 1461 while (!feof(offline_file)) { 1462 skip_ws(offline_file); 1463 n = fscanf(offline_file, "%d", &begin_cpu); 1464 if (n != 1) 1465 break; 1466 skip_ws(offline_file); 1467 int c = fgetc(offline_file); 1468 if (c == EOF || c == ',') { 1469 // Just single CPU 1470 end_cpu = begin_cpu; 1471 } else if (c == '-') { 1472 // Range of CPUs 1473 skip_ws(offline_file); 1474 n = fscanf(offline_file, "%d", &end_cpu); 1475 if (n != 1) 1476 break; 1477 skip_ws(offline_file); 1478 c = fgetc(offline_file); // skip ',' 1479 } else { 1480 // Syntax problem 1481 break; 1482 } 1483 // Ensure a valid range of CPUs 1484 if (begin_cpu < 0 || begin_cpu >= __kmp_xproc || end_cpu < 0 || 1485 end_cpu >= __kmp_xproc || begin_cpu > end_cpu) { 1486 continue; 1487 } 1488 // Insert [begin_cpu, end_cpu] into offline mask 1489 for (int cpu = begin_cpu; cpu <= end_cpu; ++cpu) { 1490 KMP_CPU_SET(cpu, offline); 1491 } 1492 } 1493 #endif 1494 return offline; 1495 } 1496 1497 // Return the number of available procs 1498 int __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) { 1499 int avail_proc = 0; 1500 KMP_CPU_ZERO(mask); 1501 1502 #if KMP_GROUP_AFFINITY 1503 1504 if (__kmp_num_proc_groups > 1) { 1505 int group; 1506 KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL); 1507 for (group = 0; group < __kmp_num_proc_groups; group++) { 1508 int i; 1509 int num = __kmp_GetActiveProcessorCount(group); 1510 for (i = 0; i < num; i++) { 1511 KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask); 1512 avail_proc++; 1513 } 1514 } 1515 } else 1516 1517 #endif /* KMP_GROUP_AFFINITY */ 1518 1519 { 1520 int proc; 1521 kmp_affin_mask_t *offline_cpus = __kmp_affinity_get_offline_cpus(); 1522 for (proc = 0; proc < __kmp_xproc; proc++) { 1523 // Skip offline CPUs 1524 if (KMP_CPU_ISSET(proc, offline_cpus)) 1525 continue; 1526 KMP_CPU_SET(proc, mask); 1527 avail_proc++; 1528 } 1529 KMP_CPU_FREE(offline_cpus); 1530 } 1531 1532 return avail_proc; 1533 } 1534 1535 // All of the __kmp_affinity_create_*_map() routines should allocate the 1536 // internal topology object and set the layer ids for it. Each routine 1537 // returns a boolean on whether it was successful at doing so. 1538 kmp_affin_mask_t *__kmp_affin_fullMask = NULL; 1539 // Original mask is a subset of full mask in multiple processor groups topology 1540 kmp_affin_mask_t *__kmp_affin_origMask = NULL; 1541 1542 #if KMP_USE_HWLOC 1543 static inline bool __kmp_hwloc_is_cache_type(hwloc_obj_t obj) { 1544 #if HWLOC_API_VERSION >= 0x00020000 1545 return hwloc_obj_type_is_cache(obj->type); 1546 #else 1547 return obj->type == HWLOC_OBJ_CACHE; 1548 #endif 1549 } 1550 1551 // Returns KMP_HW_* type derived from HWLOC_* type 1552 static inline kmp_hw_t __kmp_hwloc_type_2_topology_type(hwloc_obj_t obj) { 1553 1554 if (__kmp_hwloc_is_cache_type(obj)) { 1555 if (obj->attr->cache.type == HWLOC_OBJ_CACHE_INSTRUCTION) 1556 return KMP_HW_UNKNOWN; 1557 switch (obj->attr->cache.depth) { 1558 case 1: 1559 return KMP_HW_L1; 1560 case 2: 1561 #if KMP_MIC_SUPPORTED 1562 if (__kmp_mic_type == mic3) { 1563 return KMP_HW_TILE; 1564 } 1565 #endif 1566 return KMP_HW_L2; 1567 case 3: 1568 return KMP_HW_L3; 1569 } 1570 return KMP_HW_UNKNOWN; 1571 } 1572 1573 switch (obj->type) { 1574 case HWLOC_OBJ_PACKAGE: 1575 return KMP_HW_SOCKET; 1576 case HWLOC_OBJ_NUMANODE: 1577 return KMP_HW_NUMA; 1578 case HWLOC_OBJ_CORE: 1579 return KMP_HW_CORE; 1580 case HWLOC_OBJ_PU: 1581 return KMP_HW_THREAD; 1582 case HWLOC_OBJ_GROUP: 1583 if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_DIE) 1584 return KMP_HW_DIE; 1585 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_TILE) 1586 return KMP_HW_TILE; 1587 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_MODULE) 1588 return KMP_HW_MODULE; 1589 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP) 1590 return KMP_HW_PROC_GROUP; 1591 return KMP_HW_UNKNOWN; 1592 #if HWLOC_API_VERSION >= 0x00020100 1593 case HWLOC_OBJ_DIE: 1594 return KMP_HW_DIE; 1595 #endif 1596 } 1597 return KMP_HW_UNKNOWN; 1598 } 1599 1600 // Returns the number of objects of type 'type' below 'obj' within the topology 1601 // tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is 1602 // HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET 1603 // object. 1604 static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj, 1605 hwloc_obj_type_t type) { 1606 int retval = 0; 1607 hwloc_obj_t first; 1608 for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type, 1609 obj->logical_index, type, 0); 1610 first != NULL && hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, 1611 obj->type, first) == obj; 1612 first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type, 1613 first)) { 1614 ++retval; 1615 } 1616 return retval; 1617 } 1618 1619 // This gets the sub_id for a lower object under a higher object in the 1620 // topology tree 1621 static int __kmp_hwloc_get_sub_id(hwloc_topology_t t, hwloc_obj_t higher, 1622 hwloc_obj_t lower) { 1623 hwloc_obj_t obj; 1624 hwloc_obj_type_t ltype = lower->type; 1625 int lindex = lower->logical_index - 1; 1626 int sub_id = 0; 1627 // Get the previous lower object 1628 obj = hwloc_get_obj_by_type(t, ltype, lindex); 1629 while (obj && lindex >= 0 && 1630 hwloc_bitmap_isincluded(obj->cpuset, higher->cpuset)) { 1631 if (obj->userdata) { 1632 sub_id = (int)(RCAST(kmp_intptr_t, obj->userdata)); 1633 break; 1634 } 1635 sub_id++; 1636 lindex--; 1637 obj = hwloc_get_obj_by_type(t, ltype, lindex); 1638 } 1639 // store sub_id + 1 so that 0 is differed from NULL 1640 lower->userdata = RCAST(void *, sub_id + 1); 1641 return sub_id; 1642 } 1643 1644 static bool __kmp_affinity_create_hwloc_map(kmp_i18n_id_t *const msg_id) { 1645 kmp_hw_t type; 1646 int hw_thread_index, sub_id; 1647 int depth; 1648 hwloc_obj_t pu, obj, root, prev; 1649 kmp_hw_t types[KMP_HW_LAST]; 1650 hwloc_obj_type_t hwloc_types[KMP_HW_LAST]; 1651 1652 hwloc_topology_t tp = __kmp_hwloc_topology; 1653 *msg_id = kmp_i18n_null; 1654 if (__kmp_affinity_verbose) { 1655 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); 1656 } 1657 1658 if (!KMP_AFFINITY_CAPABLE()) { 1659 // Hack to try and infer the machine topology using only the data 1660 // available from hwloc on the current thread, and __kmp_xproc. 1661 KMP_ASSERT(__kmp_affinity_type == affinity_none); 1662 // hwloc only guarantees existance of PU object, so check PACKAGE and CORE 1663 hwloc_obj_t o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0); 1664 if (o != NULL) 1665 nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_CORE); 1666 else 1667 nCoresPerPkg = 1; // no PACKAGE found 1668 o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0); 1669 if (o != NULL) 1670 __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_PU); 1671 else 1672 __kmp_nThreadsPerCore = 1; // no CORE found 1673 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; 1674 if (nCoresPerPkg == 0) 1675 nCoresPerPkg = 1; // to prevent possible division by 0 1676 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 1677 return true; 1678 } 1679 1680 // Handle multiple types of cores if they exist on the system 1681 int nr_cpu_kinds = hwloc_cpukinds_get_nr(tp, 0); 1682 1683 typedef struct kmp_hwloc_cpukinds_info_t { 1684 int efficiency; 1685 kmp_hw_core_type_t core_type; 1686 hwloc_bitmap_t mask; 1687 } kmp_hwloc_cpukinds_info_t; 1688 kmp_hwloc_cpukinds_info_t *cpukinds = nullptr; 1689 1690 if (nr_cpu_kinds > 0) { 1691 unsigned nr_infos; 1692 struct hwloc_info_s *infos; 1693 cpukinds = (kmp_hwloc_cpukinds_info_t *)__kmp_allocate( 1694 sizeof(kmp_hwloc_cpukinds_info_t) * nr_cpu_kinds); 1695 for (unsigned idx = 0; idx < (unsigned)nr_cpu_kinds; ++idx) { 1696 cpukinds[idx].efficiency = -1; 1697 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_UNKNOWN; 1698 cpukinds[idx].mask = hwloc_bitmap_alloc(); 1699 if (hwloc_cpukinds_get_info(tp, idx, cpukinds[idx].mask, 1700 &cpukinds[idx].efficiency, &nr_infos, &infos, 1701 0) == 0) { 1702 for (unsigned i = 0; i < nr_infos; ++i) { 1703 if (__kmp_str_match("CoreType", 8, infos[i].name)) { 1704 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1705 if (__kmp_str_match("IntelAtom", 9, infos[i].value)) { 1706 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_ATOM; 1707 break; 1708 } else if (__kmp_str_match("IntelCore", 9, infos[i].value)) { 1709 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_CORE; 1710 break; 1711 } 1712 #endif 1713 } 1714 } 1715 } 1716 } 1717 } 1718 1719 root = hwloc_get_root_obj(tp); 1720 1721 // Figure out the depth and types in the topology 1722 depth = 0; 1723 pu = hwloc_get_pu_obj_by_os_index(tp, __kmp_affin_fullMask->begin()); 1724 KMP_ASSERT(pu); 1725 obj = pu; 1726 types[depth] = KMP_HW_THREAD; 1727 hwloc_types[depth] = obj->type; 1728 depth++; 1729 while (obj != root && obj != NULL) { 1730 obj = obj->parent; 1731 #if HWLOC_API_VERSION >= 0x00020000 1732 if (obj->memory_arity) { 1733 hwloc_obj_t memory; 1734 for (memory = obj->memory_first_child; memory; 1735 memory = hwloc_get_next_child(tp, obj, memory)) { 1736 if (memory->type == HWLOC_OBJ_NUMANODE) 1737 break; 1738 } 1739 if (memory && memory->type == HWLOC_OBJ_NUMANODE) { 1740 types[depth] = KMP_HW_NUMA; 1741 hwloc_types[depth] = memory->type; 1742 depth++; 1743 } 1744 } 1745 #endif 1746 type = __kmp_hwloc_type_2_topology_type(obj); 1747 if (type != KMP_HW_UNKNOWN) { 1748 types[depth] = type; 1749 hwloc_types[depth] = obj->type; 1750 depth++; 1751 } 1752 } 1753 KMP_ASSERT(depth > 0); 1754 1755 // Get the order for the types correct 1756 for (int i = 0, j = depth - 1; i < j; ++i, --j) { 1757 hwloc_obj_type_t hwloc_temp = hwloc_types[i]; 1758 kmp_hw_t temp = types[i]; 1759 types[i] = types[j]; 1760 types[j] = temp; 1761 hwloc_types[i] = hwloc_types[j]; 1762 hwloc_types[j] = hwloc_temp; 1763 } 1764 1765 // Allocate the data structure to be returned. 1766 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); 1767 1768 hw_thread_index = 0; 1769 pu = NULL; 1770 while ((pu = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, pu))) { 1771 int index = depth - 1; 1772 bool included = KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask); 1773 kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index); 1774 if (included) { 1775 hw_thread.clear(); 1776 hw_thread.ids[index] = pu->logical_index; 1777 hw_thread.os_id = pu->os_index; 1778 // If multiple core types, then set that attribute for the hardware thread 1779 if (cpukinds) { 1780 int cpukind_index = -1; 1781 for (int i = 0; i < nr_cpu_kinds; ++i) { 1782 if (hwloc_bitmap_isset(cpukinds[i].mask, hw_thread.os_id)) { 1783 cpukind_index = i; 1784 break; 1785 } 1786 } 1787 if (cpukind_index >= 0) { 1788 hw_thread.attrs.set_core_type(cpukinds[cpukind_index].core_type); 1789 hw_thread.attrs.set_core_eff(cpukinds[cpukind_index].efficiency); 1790 } 1791 } 1792 index--; 1793 } 1794 obj = pu; 1795 prev = obj; 1796 while (obj != root && obj != NULL) { 1797 obj = obj->parent; 1798 #if HWLOC_API_VERSION >= 0x00020000 1799 // NUMA Nodes are handled differently since they are not within the 1800 // parent/child structure anymore. They are separate children 1801 // of obj (memory_first_child points to first memory child) 1802 if (obj->memory_arity) { 1803 hwloc_obj_t memory; 1804 for (memory = obj->memory_first_child; memory; 1805 memory = hwloc_get_next_child(tp, obj, memory)) { 1806 if (memory->type == HWLOC_OBJ_NUMANODE) 1807 break; 1808 } 1809 if (memory && memory->type == HWLOC_OBJ_NUMANODE) { 1810 sub_id = __kmp_hwloc_get_sub_id(tp, memory, prev); 1811 if (included) { 1812 hw_thread.ids[index] = memory->logical_index; 1813 hw_thread.ids[index + 1] = sub_id; 1814 index--; 1815 } 1816 prev = memory; 1817 } 1818 prev = obj; 1819 } 1820 #endif 1821 type = __kmp_hwloc_type_2_topology_type(obj); 1822 if (type != KMP_HW_UNKNOWN) { 1823 sub_id = __kmp_hwloc_get_sub_id(tp, obj, prev); 1824 if (included) { 1825 hw_thread.ids[index] = obj->logical_index; 1826 hw_thread.ids[index + 1] = sub_id; 1827 index--; 1828 } 1829 prev = obj; 1830 } 1831 } 1832 if (included) 1833 hw_thread_index++; 1834 } 1835 1836 // Free the core types information 1837 if (cpukinds) { 1838 for (int idx = 0; idx < nr_cpu_kinds; ++idx) 1839 hwloc_bitmap_free(cpukinds[idx].mask); 1840 __kmp_free(cpukinds); 1841 } 1842 __kmp_topology->sort_ids(); 1843 return true; 1844 } 1845 #endif // KMP_USE_HWLOC 1846 1847 // If we don't know how to retrieve the machine's processor topology, or 1848 // encounter an error in doing so, this routine is called to form a "flat" 1849 // mapping of os thread id's <-> processor id's. 1850 static bool __kmp_affinity_create_flat_map(kmp_i18n_id_t *const msg_id) { 1851 *msg_id = kmp_i18n_null; 1852 int depth = 3; 1853 kmp_hw_t types[] = {KMP_HW_SOCKET, KMP_HW_CORE, KMP_HW_THREAD}; 1854 1855 if (__kmp_affinity_verbose) { 1856 KMP_INFORM(UsingFlatOS, "KMP_AFFINITY"); 1857 } 1858 1859 // Even if __kmp_affinity_type == affinity_none, this routine might still 1860 // called to set __kmp_ncores, as well as 1861 // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 1862 if (!KMP_AFFINITY_CAPABLE()) { 1863 KMP_ASSERT(__kmp_affinity_type == affinity_none); 1864 __kmp_ncores = nPackages = __kmp_xproc; 1865 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 1866 return true; 1867 } 1868 1869 // When affinity is off, this routine will still be called to set 1870 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 1871 // Make sure all these vars are set correctly, and return now if affinity is 1872 // not enabled. 1873 __kmp_ncores = nPackages = __kmp_avail_proc; 1874 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 1875 1876 // Construct the data structure to be returned. 1877 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); 1878 int avail_ct = 0; 1879 int i; 1880 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 1881 // Skip this proc if it is not included in the machine model. 1882 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 1883 continue; 1884 } 1885 kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct); 1886 hw_thread.clear(); 1887 hw_thread.os_id = i; 1888 hw_thread.ids[0] = i; 1889 hw_thread.ids[1] = 0; 1890 hw_thread.ids[2] = 0; 1891 avail_ct++; 1892 } 1893 if (__kmp_affinity_verbose) { 1894 KMP_INFORM(OSProcToPackage, "KMP_AFFINITY"); 1895 } 1896 return true; 1897 } 1898 1899 #if KMP_GROUP_AFFINITY 1900 // If multiple Windows* OS processor groups exist, we can create a 2-level 1901 // topology map with the groups at level 0 and the individual procs at level 1. 1902 // This facilitates letting the threads float among all procs in a group, 1903 // if granularity=group (the default when there are multiple groups). 1904 static bool __kmp_affinity_create_proc_group_map(kmp_i18n_id_t *const msg_id) { 1905 *msg_id = kmp_i18n_null; 1906 int depth = 3; 1907 kmp_hw_t types[] = {KMP_HW_PROC_GROUP, KMP_HW_CORE, KMP_HW_THREAD}; 1908 const static size_t BITS_PER_GROUP = CHAR_BIT * sizeof(DWORD_PTR); 1909 1910 if (__kmp_affinity_verbose) { 1911 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY"); 1912 } 1913 1914 // If we aren't affinity capable, then use flat topology 1915 if (!KMP_AFFINITY_CAPABLE()) { 1916 KMP_ASSERT(__kmp_affinity_type == affinity_none); 1917 nPackages = __kmp_num_proc_groups; 1918 __kmp_nThreadsPerCore = 1; 1919 __kmp_ncores = __kmp_xproc; 1920 nCoresPerPkg = nPackages / __kmp_ncores; 1921 return true; 1922 } 1923 1924 // Construct the data structure to be returned. 1925 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); 1926 int avail_ct = 0; 1927 int i; 1928 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 1929 // Skip this proc if it is not included in the machine model. 1930 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 1931 continue; 1932 } 1933 kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct++); 1934 hw_thread.clear(); 1935 hw_thread.os_id = i; 1936 hw_thread.ids[0] = i / BITS_PER_GROUP; 1937 hw_thread.ids[1] = hw_thread.ids[2] = i % BITS_PER_GROUP; 1938 } 1939 return true; 1940 } 1941 #endif /* KMP_GROUP_AFFINITY */ 1942 1943 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1944 1945 template <kmp_uint32 LSB, kmp_uint32 MSB> 1946 static inline unsigned __kmp_extract_bits(kmp_uint32 v) { 1947 const kmp_uint32 SHIFT_LEFT = sizeof(kmp_uint32) * 8 - 1 - MSB; 1948 const kmp_uint32 SHIFT_RIGHT = LSB; 1949 kmp_uint32 retval = v; 1950 retval <<= SHIFT_LEFT; 1951 retval >>= (SHIFT_LEFT + SHIFT_RIGHT); 1952 return retval; 1953 } 1954 1955 static int __kmp_cpuid_mask_width(int count) { 1956 int r = 0; 1957 1958 while ((1 << r) < count) 1959 ++r; 1960 return r; 1961 } 1962 1963 class apicThreadInfo { 1964 public: 1965 unsigned osId; // param to __kmp_affinity_bind_thread 1966 unsigned apicId; // from cpuid after binding 1967 unsigned maxCoresPerPkg; // "" 1968 unsigned maxThreadsPerPkg; // "" 1969 unsigned pkgId; // inferred from above values 1970 unsigned coreId; // "" 1971 unsigned threadId; // "" 1972 }; 1973 1974 static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a, 1975 const void *b) { 1976 const apicThreadInfo *aa = (const apicThreadInfo *)a; 1977 const apicThreadInfo *bb = (const apicThreadInfo *)b; 1978 if (aa->pkgId < bb->pkgId) 1979 return -1; 1980 if (aa->pkgId > bb->pkgId) 1981 return 1; 1982 if (aa->coreId < bb->coreId) 1983 return -1; 1984 if (aa->coreId > bb->coreId) 1985 return 1; 1986 if (aa->threadId < bb->threadId) 1987 return -1; 1988 if (aa->threadId > bb->threadId) 1989 return 1; 1990 return 0; 1991 } 1992 1993 class kmp_cache_info_t { 1994 public: 1995 struct info_t { 1996 unsigned level, mask; 1997 }; 1998 kmp_cache_info_t() : depth(0) { get_leaf4_levels(); } 1999 size_t get_depth() const { return depth; } 2000 info_t &operator[](size_t index) { return table[index]; } 2001 const info_t &operator[](size_t index) const { return table[index]; } 2002 2003 static kmp_hw_t get_topology_type(unsigned level) { 2004 KMP_DEBUG_ASSERT(level >= 1 && level <= MAX_CACHE_LEVEL); 2005 switch (level) { 2006 case 1: 2007 return KMP_HW_L1; 2008 case 2: 2009 return KMP_HW_L2; 2010 case 3: 2011 return KMP_HW_L3; 2012 } 2013 return KMP_HW_UNKNOWN; 2014 } 2015 2016 private: 2017 static const int MAX_CACHE_LEVEL = 3; 2018 2019 size_t depth; 2020 info_t table[MAX_CACHE_LEVEL]; 2021 2022 void get_leaf4_levels() { 2023 unsigned level = 0; 2024 while (depth < MAX_CACHE_LEVEL) { 2025 unsigned cache_type, max_threads_sharing; 2026 unsigned cache_level, cache_mask_width; 2027 kmp_cpuid buf2; 2028 __kmp_x86_cpuid(4, level, &buf2); 2029 cache_type = __kmp_extract_bits<0, 4>(buf2.eax); 2030 if (!cache_type) 2031 break; 2032 // Skip instruction caches 2033 if (cache_type == 2) { 2034 level++; 2035 continue; 2036 } 2037 max_threads_sharing = __kmp_extract_bits<14, 25>(buf2.eax) + 1; 2038 cache_mask_width = __kmp_cpuid_mask_width(max_threads_sharing); 2039 cache_level = __kmp_extract_bits<5, 7>(buf2.eax); 2040 table[depth].level = cache_level; 2041 table[depth].mask = ((-1) << cache_mask_width); 2042 depth++; 2043 level++; 2044 } 2045 } 2046 }; 2047 2048 // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use 2049 // an algorithm which cycles through the available os threads, setting 2050 // the current thread's affinity mask to that thread, and then retrieves 2051 // the Apic Id for each thread context using the cpuid instruction. 2052 static bool __kmp_affinity_create_apicid_map(kmp_i18n_id_t *const msg_id) { 2053 kmp_cpuid buf; 2054 *msg_id = kmp_i18n_null; 2055 2056 if (__kmp_affinity_verbose) { 2057 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC)); 2058 } 2059 2060 // Check if cpuid leaf 4 is supported. 2061 __kmp_x86_cpuid(0, 0, &buf); 2062 if (buf.eax < 4) { 2063 *msg_id = kmp_i18n_str_NoLeaf4Support; 2064 return false; 2065 } 2066 2067 // The algorithm used starts by setting the affinity to each available thread 2068 // and retrieving info from the cpuid instruction, so if we are not capable of 2069 // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we 2070 // need to do something else - use the defaults that we calculated from 2071 // issuing cpuid without binding to each proc. 2072 if (!KMP_AFFINITY_CAPABLE()) { 2073 // Hack to try and infer the machine topology using only the data 2074 // available from cpuid on the current thread, and __kmp_xproc. 2075 KMP_ASSERT(__kmp_affinity_type == affinity_none); 2076 2077 // Get an upper bound on the number of threads per package using cpuid(1). 2078 // On some OS/chps combinations where HT is supported by the chip but is 2079 // disabled, this value will be 2 on a single core chip. Usually, it will be 2080 // 2 if HT is enabled and 1 if HT is disabled. 2081 __kmp_x86_cpuid(1, 0, &buf); 2082 int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; 2083 if (maxThreadsPerPkg == 0) { 2084 maxThreadsPerPkg = 1; 2085 } 2086 2087 // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded 2088 // value. 2089 // 2090 // The author of cpu_count.cpp treated this only an upper bound on the 2091 // number of cores, but I haven't seen any cases where it was greater than 2092 // the actual number of cores, so we will treat it as exact in this block of 2093 // code. 2094 // 2095 // First, we need to check if cpuid(4) is supported on this chip. To see if 2096 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or 2097 // greater. 2098 __kmp_x86_cpuid(0, 0, &buf); 2099 if (buf.eax >= 4) { 2100 __kmp_x86_cpuid(4, 0, &buf); 2101 nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; 2102 } else { 2103 nCoresPerPkg = 1; 2104 } 2105 2106 // There is no way to reliably tell if HT is enabled without issuing the 2107 // cpuid instruction from every thread, can correlating the cpuid info, so 2108 // if the machine is not affinity capable, we assume that HT is off. We have 2109 // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine 2110 // does not support HT. 2111 // 2112 // - Older OSes are usually found on machines with older chips, which do not 2113 // support HT. 2114 // - The performance penalty for mistakenly identifying a machine as HT when 2115 // it isn't (which results in blocktime being incorrectly set to 0) is 2116 // greater than the penalty when for mistakenly identifying a machine as 2117 // being 1 thread/core when it is really HT enabled (which results in 2118 // blocktime being incorrectly set to a positive value). 2119 __kmp_ncores = __kmp_xproc; 2120 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 2121 __kmp_nThreadsPerCore = 1; 2122 return true; 2123 } 2124 2125 // From here on, we can assume that it is safe to call 2126 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if 2127 // __kmp_affinity_type = affinity_none. 2128 2129 // Save the affinity mask for the current thread. 2130 kmp_affinity_raii_t previous_affinity; 2131 2132 // Run through each of the available contexts, binding the current thread 2133 // to it, and obtaining the pertinent information using the cpuid instr. 2134 // 2135 // The relevant information is: 2136 // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context 2137 // has a uniqie Apic Id, which is of the form pkg# : core# : thread#. 2138 // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value 2139 // of this field determines the width of the core# + thread# fields in the 2140 // Apic Id. It is also an upper bound on the number of threads per 2141 // package, but it has been verified that situations happen were it is not 2142 // exact. In particular, on certain OS/chip combinations where Intel(R) 2143 // Hyper-Threading Technology is supported by the chip but has been 2144 // disabled, the value of this field will be 2 (for a single core chip). 2145 // On other OS/chip combinations supporting Intel(R) Hyper-Threading 2146 // Technology, the value of this field will be 1 when Intel(R) 2147 // Hyper-Threading Technology is disabled and 2 when it is enabled. 2148 // - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value 2149 // of this field (+1) determines the width of the core# field in the Apic 2150 // Id. The comments in "cpucount.cpp" say that this value is an upper 2151 // bound, but the IA-32 architecture manual says that it is exactly the 2152 // number of cores per package, and I haven't seen any case where it 2153 // wasn't. 2154 // 2155 // From this information, deduce the package Id, core Id, and thread Id, 2156 // and set the corresponding fields in the apicThreadInfo struct. 2157 unsigned i; 2158 apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate( 2159 __kmp_avail_proc * sizeof(apicThreadInfo)); 2160 unsigned nApics = 0; 2161 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 2162 // Skip this proc if it is not included in the machine model. 2163 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 2164 continue; 2165 } 2166 KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc); 2167 2168 __kmp_affinity_dispatch->bind_thread(i); 2169 threadInfo[nApics].osId = i; 2170 2171 // The apic id and max threads per pkg come from cpuid(1). 2172 __kmp_x86_cpuid(1, 0, &buf); 2173 if (((buf.edx >> 9) & 1) == 0) { 2174 __kmp_free(threadInfo); 2175 *msg_id = kmp_i18n_str_ApicNotPresent; 2176 return false; 2177 } 2178 threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff; 2179 threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; 2180 if (threadInfo[nApics].maxThreadsPerPkg == 0) { 2181 threadInfo[nApics].maxThreadsPerPkg = 1; 2182 } 2183 2184 // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded 2185 // value. 2186 // 2187 // First, we need to check if cpuid(4) is supported on this chip. To see if 2188 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n 2189 // or greater. 2190 __kmp_x86_cpuid(0, 0, &buf); 2191 if (buf.eax >= 4) { 2192 __kmp_x86_cpuid(4, 0, &buf); 2193 threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; 2194 } else { 2195 threadInfo[nApics].maxCoresPerPkg = 1; 2196 } 2197 2198 // Infer the pkgId / coreId / threadId using only the info obtained locally. 2199 int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg); 2200 threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT; 2201 2202 int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg); 2203 int widthT = widthCT - widthC; 2204 if (widthT < 0) { 2205 // I've never seen this one happen, but I suppose it could, if the cpuid 2206 // instruction on a chip was really screwed up. Make sure to restore the 2207 // affinity mask before the tail call. 2208 __kmp_free(threadInfo); 2209 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 2210 return false; 2211 } 2212 2213 int maskC = (1 << widthC) - 1; 2214 threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC; 2215 2216 int maskT = (1 << widthT) - 1; 2217 threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT; 2218 2219 nApics++; 2220 } 2221 2222 // We've collected all the info we need. 2223 // Restore the old affinity mask for this thread. 2224 previous_affinity.restore(); 2225 2226 // Sort the threadInfo table by physical Id. 2227 qsort(threadInfo, nApics, sizeof(*threadInfo), 2228 __kmp_affinity_cmp_apicThreadInfo_phys_id); 2229 2230 // The table is now sorted by pkgId / coreId / threadId, but we really don't 2231 // know the radix of any of the fields. pkgId's may be sparsely assigned among 2232 // the chips on a system. Although coreId's are usually assigned 2233 // [0 .. coresPerPkg-1] and threadId's are usually assigned 2234 // [0..threadsPerCore-1], we don't want to make any such assumptions. 2235 // 2236 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the 2237 // total # packages) are at this point - we want to determine that now. We 2238 // only have an upper bound on the first two figures. 2239 // 2240 // We also perform a consistency check at this point: the values returned by 2241 // the cpuid instruction for any thread bound to a given package had better 2242 // return the same info for maxThreadsPerPkg and maxCoresPerPkg. 2243 nPackages = 1; 2244 nCoresPerPkg = 1; 2245 __kmp_nThreadsPerCore = 1; 2246 unsigned nCores = 1; 2247 2248 unsigned pkgCt = 1; // to determine radii 2249 unsigned lastPkgId = threadInfo[0].pkgId; 2250 unsigned coreCt = 1; 2251 unsigned lastCoreId = threadInfo[0].coreId; 2252 unsigned threadCt = 1; 2253 unsigned lastThreadId = threadInfo[0].threadId; 2254 2255 // intra-pkg consist checks 2256 unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg; 2257 unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg; 2258 2259 for (i = 1; i < nApics; i++) { 2260 if (threadInfo[i].pkgId != lastPkgId) { 2261 nCores++; 2262 pkgCt++; 2263 lastPkgId = threadInfo[i].pkgId; 2264 if ((int)coreCt > nCoresPerPkg) 2265 nCoresPerPkg = coreCt; 2266 coreCt = 1; 2267 lastCoreId = threadInfo[i].coreId; 2268 if ((int)threadCt > __kmp_nThreadsPerCore) 2269 __kmp_nThreadsPerCore = threadCt; 2270 threadCt = 1; 2271 lastThreadId = threadInfo[i].threadId; 2272 2273 // This is a different package, so go on to the next iteration without 2274 // doing any consistency checks. Reset the consistency check vars, though. 2275 prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg; 2276 prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg; 2277 continue; 2278 } 2279 2280 if (threadInfo[i].coreId != lastCoreId) { 2281 nCores++; 2282 coreCt++; 2283 lastCoreId = threadInfo[i].coreId; 2284 if ((int)threadCt > __kmp_nThreadsPerCore) 2285 __kmp_nThreadsPerCore = threadCt; 2286 threadCt = 1; 2287 lastThreadId = threadInfo[i].threadId; 2288 } else if (threadInfo[i].threadId != lastThreadId) { 2289 threadCt++; 2290 lastThreadId = threadInfo[i].threadId; 2291 } else { 2292 __kmp_free(threadInfo); 2293 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; 2294 return false; 2295 } 2296 2297 // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg 2298 // fields agree between all the threads bounds to a given package. 2299 if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) || 2300 (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) { 2301 __kmp_free(threadInfo); 2302 *msg_id = kmp_i18n_str_InconsistentCpuidInfo; 2303 return false; 2304 } 2305 } 2306 // When affinity is off, this routine will still be called to set 2307 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 2308 // Make sure all these vars are set correctly 2309 nPackages = pkgCt; 2310 if ((int)coreCt > nCoresPerPkg) 2311 nCoresPerPkg = coreCt; 2312 if ((int)threadCt > __kmp_nThreadsPerCore) 2313 __kmp_nThreadsPerCore = threadCt; 2314 __kmp_ncores = nCores; 2315 KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc); 2316 2317 // Now that we've determined the number of packages, the number of cores per 2318 // package, and the number of threads per core, we can construct the data 2319 // structure that is to be returned. 2320 int idx = 0; 2321 int pkgLevel = 0; 2322 int coreLevel = 1; 2323 int threadLevel = 2; 2324 //(__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1); 2325 int depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0); 2326 kmp_hw_t types[3]; 2327 if (pkgLevel >= 0) 2328 types[idx++] = KMP_HW_SOCKET; 2329 if (coreLevel >= 0) 2330 types[idx++] = KMP_HW_CORE; 2331 if (threadLevel >= 0) 2332 types[idx++] = KMP_HW_THREAD; 2333 2334 KMP_ASSERT(depth > 0); 2335 __kmp_topology = kmp_topology_t::allocate(nApics, depth, types); 2336 2337 for (i = 0; i < nApics; ++i) { 2338 idx = 0; 2339 unsigned os = threadInfo[i].osId; 2340 kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); 2341 hw_thread.clear(); 2342 2343 if (pkgLevel >= 0) { 2344 hw_thread.ids[idx++] = threadInfo[i].pkgId; 2345 } 2346 if (coreLevel >= 0) { 2347 hw_thread.ids[idx++] = threadInfo[i].coreId; 2348 } 2349 if (threadLevel >= 0) { 2350 hw_thread.ids[idx++] = threadInfo[i].threadId; 2351 } 2352 hw_thread.os_id = os; 2353 } 2354 2355 __kmp_free(threadInfo); 2356 __kmp_topology->sort_ids(); 2357 if (!__kmp_topology->check_ids()) { 2358 kmp_topology_t::deallocate(__kmp_topology); 2359 __kmp_topology = nullptr; 2360 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; 2361 return false; 2362 } 2363 return true; 2364 } 2365 2366 // Hybrid cpu detection using CPUID.1A 2367 // Thread should be pinned to processor already 2368 static void __kmp_get_hybrid_info(kmp_hw_core_type_t *type, int *efficiency, 2369 unsigned *native_model_id) { 2370 kmp_cpuid buf; 2371 __kmp_x86_cpuid(0x1a, 0, &buf); 2372 *type = (kmp_hw_core_type_t)__kmp_extract_bits<24, 31>(buf.eax); 2373 switch (*type) { 2374 case KMP_HW_CORE_TYPE_ATOM: 2375 *efficiency = 0; 2376 break; 2377 case KMP_HW_CORE_TYPE_CORE: 2378 *efficiency = 1; 2379 break; 2380 default: 2381 *efficiency = 0; 2382 } 2383 *native_model_id = __kmp_extract_bits<0, 23>(buf.eax); 2384 } 2385 2386 // Intel(R) microarchitecture code name Nehalem, Dunnington and later 2387 // architectures support a newer interface for specifying the x2APIC Ids, 2388 // based on CPUID.B or CPUID.1F 2389 /* 2390 * CPUID.B or 1F, Input ECX (sub leaf # aka level number) 2391 Bits Bits Bits Bits 2392 31-16 15-8 7-4 4-0 2393 ---+-----------+--------------+-------------+-----------------+ 2394 EAX| reserved | reserved | reserved | Bits to Shift | 2395 ---+-----------|--------------+-------------+-----------------| 2396 EBX| reserved | Num logical processors at level (16 bits) | 2397 ---+-----------|--------------+-------------------------------| 2398 ECX| reserved | Level Type | Level Number (8 bits) | 2399 ---+-----------+--------------+-------------------------------| 2400 EDX| X2APIC ID (32 bits) | 2401 ---+----------------------------------------------------------+ 2402 */ 2403 2404 enum { 2405 INTEL_LEVEL_TYPE_INVALID = 0, // Package level 2406 INTEL_LEVEL_TYPE_SMT = 1, 2407 INTEL_LEVEL_TYPE_CORE = 2, 2408 INTEL_LEVEL_TYPE_TILE = 3, 2409 INTEL_LEVEL_TYPE_MODULE = 4, 2410 INTEL_LEVEL_TYPE_DIE = 5, 2411 INTEL_LEVEL_TYPE_LAST = 6, 2412 }; 2413 2414 struct cpuid_level_info_t { 2415 unsigned level_type, mask, mask_width, nitems, cache_mask; 2416 }; 2417 2418 static kmp_hw_t __kmp_intel_type_2_topology_type(int intel_type) { 2419 switch (intel_type) { 2420 case INTEL_LEVEL_TYPE_INVALID: 2421 return KMP_HW_SOCKET; 2422 case INTEL_LEVEL_TYPE_SMT: 2423 return KMP_HW_THREAD; 2424 case INTEL_LEVEL_TYPE_CORE: 2425 return KMP_HW_CORE; 2426 case INTEL_LEVEL_TYPE_TILE: 2427 return KMP_HW_TILE; 2428 case INTEL_LEVEL_TYPE_MODULE: 2429 return KMP_HW_MODULE; 2430 case INTEL_LEVEL_TYPE_DIE: 2431 return KMP_HW_DIE; 2432 } 2433 return KMP_HW_UNKNOWN; 2434 } 2435 2436 // This function takes the topology leaf, a levels array to store the levels 2437 // detected and a bitmap of the known levels. 2438 // Returns the number of levels in the topology 2439 static unsigned 2440 __kmp_x2apicid_get_levels(int leaf, 2441 cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST], 2442 kmp_uint64 known_levels) { 2443 unsigned level, levels_index; 2444 unsigned level_type, mask_width, nitems; 2445 kmp_cpuid buf; 2446 2447 // New algorithm has known topology layers act as highest unknown topology 2448 // layers when unknown topology layers exist. 2449 // e.g., Suppose layers were SMT <X> CORE <Y> <Z> PACKAGE, where <X> <Y> <Z> 2450 // are unknown topology layers, Then SMT will take the characteristics of 2451 // (SMT x <X>) and CORE will take the characteristics of (CORE x <Y> x <Z>). 2452 // This eliminates unknown portions of the topology while still keeping the 2453 // correct structure. 2454 level = levels_index = 0; 2455 do { 2456 __kmp_x86_cpuid(leaf, level, &buf); 2457 level_type = __kmp_extract_bits<8, 15>(buf.ecx); 2458 mask_width = __kmp_extract_bits<0, 4>(buf.eax); 2459 nitems = __kmp_extract_bits<0, 15>(buf.ebx); 2460 if (level_type != INTEL_LEVEL_TYPE_INVALID && nitems == 0) 2461 return 0; 2462 2463 if (known_levels & (1ull << level_type)) { 2464 // Add a new level to the topology 2465 KMP_ASSERT(levels_index < INTEL_LEVEL_TYPE_LAST); 2466 levels[levels_index].level_type = level_type; 2467 levels[levels_index].mask_width = mask_width; 2468 levels[levels_index].nitems = nitems; 2469 levels_index++; 2470 } else { 2471 // If it is an unknown level, then logically move the previous layer up 2472 if (levels_index > 0) { 2473 levels[levels_index - 1].mask_width = mask_width; 2474 levels[levels_index - 1].nitems = nitems; 2475 } 2476 } 2477 level++; 2478 } while (level_type != INTEL_LEVEL_TYPE_INVALID); 2479 2480 // Set the masks to & with apicid 2481 for (unsigned i = 0; i < levels_index; ++i) { 2482 if (levels[i].level_type != INTEL_LEVEL_TYPE_INVALID) { 2483 levels[i].mask = ~((-1) << levels[i].mask_width); 2484 levels[i].cache_mask = (-1) << levels[i].mask_width; 2485 for (unsigned j = 0; j < i; ++j) 2486 levels[i].mask ^= levels[j].mask; 2487 } else { 2488 KMP_DEBUG_ASSERT(levels_index > 0); 2489 levels[i].mask = (-1) << levels[i - 1].mask_width; 2490 levels[i].cache_mask = 0; 2491 } 2492 } 2493 return levels_index; 2494 } 2495 2496 static bool __kmp_affinity_create_x2apicid_map(kmp_i18n_id_t *const msg_id) { 2497 2498 cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST]; 2499 kmp_hw_t types[INTEL_LEVEL_TYPE_LAST]; 2500 unsigned levels_index; 2501 kmp_cpuid buf; 2502 kmp_uint64 known_levels; 2503 int topology_leaf, highest_leaf, apic_id; 2504 int num_leaves; 2505 static int leaves[] = {0, 0}; 2506 2507 kmp_i18n_id_t leaf_message_id; 2508 2509 KMP_BUILD_ASSERT(sizeof(known_levels) * CHAR_BIT > KMP_HW_LAST); 2510 2511 *msg_id = kmp_i18n_null; 2512 if (__kmp_affinity_verbose) { 2513 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC)); 2514 } 2515 2516 // Figure out the known topology levels 2517 known_levels = 0ull; 2518 for (int i = 0; i < INTEL_LEVEL_TYPE_LAST; ++i) { 2519 if (__kmp_intel_type_2_topology_type(i) != KMP_HW_UNKNOWN) { 2520 known_levels |= (1ull << i); 2521 } 2522 } 2523 2524 // Get the highest cpuid leaf supported 2525 __kmp_x86_cpuid(0, 0, &buf); 2526 highest_leaf = buf.eax; 2527 2528 // If a specific topology method was requested, only allow that specific leaf 2529 // otherwise, try both leaves 31 and 11 in that order 2530 num_leaves = 0; 2531 if (__kmp_affinity_top_method == affinity_top_method_x2apicid) { 2532 num_leaves = 1; 2533 leaves[0] = 11; 2534 leaf_message_id = kmp_i18n_str_NoLeaf11Support; 2535 } else if (__kmp_affinity_top_method == affinity_top_method_x2apicid_1f) { 2536 num_leaves = 1; 2537 leaves[0] = 31; 2538 leaf_message_id = kmp_i18n_str_NoLeaf31Support; 2539 } else { 2540 num_leaves = 2; 2541 leaves[0] = 31; 2542 leaves[1] = 11; 2543 leaf_message_id = kmp_i18n_str_NoLeaf11Support; 2544 } 2545 2546 // Check to see if cpuid leaf 31 or 11 is supported. 2547 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; 2548 topology_leaf = -1; 2549 for (int i = 0; i < num_leaves; ++i) { 2550 int leaf = leaves[i]; 2551 if (highest_leaf < leaf) 2552 continue; 2553 __kmp_x86_cpuid(leaf, 0, &buf); 2554 if (buf.ebx == 0) 2555 continue; 2556 topology_leaf = leaf; 2557 levels_index = __kmp_x2apicid_get_levels(leaf, levels, known_levels); 2558 if (levels_index == 0) 2559 continue; 2560 break; 2561 } 2562 if (topology_leaf == -1 || levels_index == 0) { 2563 *msg_id = leaf_message_id; 2564 return false; 2565 } 2566 KMP_ASSERT(levels_index <= INTEL_LEVEL_TYPE_LAST); 2567 2568 // The algorithm used starts by setting the affinity to each available thread 2569 // and retrieving info from the cpuid instruction, so if we are not capable of 2570 // calling __kmp_get_system_affinity() and __kmp_get_system_affinity(), then 2571 // we need to do something else - use the defaults that we calculated from 2572 // issuing cpuid without binding to each proc. 2573 if (!KMP_AFFINITY_CAPABLE()) { 2574 // Hack to try and infer the machine topology using only the data 2575 // available from cpuid on the current thread, and __kmp_xproc. 2576 KMP_ASSERT(__kmp_affinity_type == affinity_none); 2577 for (unsigned i = 0; i < levels_index; ++i) { 2578 if (levels[i].level_type == INTEL_LEVEL_TYPE_SMT) { 2579 __kmp_nThreadsPerCore = levels[i].nitems; 2580 } else if (levels[i].level_type == INTEL_LEVEL_TYPE_CORE) { 2581 nCoresPerPkg = levels[i].nitems; 2582 } 2583 } 2584 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; 2585 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 2586 return true; 2587 } 2588 2589 // Allocate the data structure to be returned. 2590 int depth = levels_index; 2591 for (int i = depth - 1, j = 0; i >= 0; --i, ++j) 2592 types[j] = __kmp_intel_type_2_topology_type(levels[i].level_type); 2593 __kmp_topology = 2594 kmp_topology_t::allocate(__kmp_avail_proc, levels_index, types); 2595 2596 // Insert equivalent cache types if they exist 2597 kmp_cache_info_t cache_info; 2598 for (size_t i = 0; i < cache_info.get_depth(); ++i) { 2599 const kmp_cache_info_t::info_t &info = cache_info[i]; 2600 unsigned cache_mask = info.mask; 2601 unsigned cache_level = info.level; 2602 for (unsigned j = 0; j < levels_index; ++j) { 2603 unsigned hw_cache_mask = levels[j].cache_mask; 2604 kmp_hw_t cache_type = kmp_cache_info_t::get_topology_type(cache_level); 2605 if (hw_cache_mask == cache_mask && j < levels_index - 1) { 2606 kmp_hw_t type = 2607 __kmp_intel_type_2_topology_type(levels[j + 1].level_type); 2608 __kmp_topology->set_equivalent_type(cache_type, type); 2609 } 2610 } 2611 } 2612 2613 // From here on, we can assume that it is safe to call 2614 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if 2615 // __kmp_affinity_type = affinity_none. 2616 2617 // Save the affinity mask for the current thread. 2618 kmp_affinity_raii_t previous_affinity; 2619 2620 // Run through each of the available contexts, binding the current thread 2621 // to it, and obtaining the pertinent information using the cpuid instr. 2622 unsigned int proc; 2623 int hw_thread_index = 0; 2624 KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) { 2625 cpuid_level_info_t my_levels[INTEL_LEVEL_TYPE_LAST]; 2626 unsigned my_levels_index; 2627 2628 // Skip this proc if it is not included in the machine model. 2629 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 2630 continue; 2631 } 2632 KMP_DEBUG_ASSERT(hw_thread_index < __kmp_avail_proc); 2633 2634 __kmp_affinity_dispatch->bind_thread(proc); 2635 2636 // New algorithm 2637 __kmp_x86_cpuid(topology_leaf, 0, &buf); 2638 apic_id = buf.edx; 2639 kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index); 2640 my_levels_index = 2641 __kmp_x2apicid_get_levels(topology_leaf, my_levels, known_levels); 2642 if (my_levels_index == 0 || my_levels_index != levels_index) { 2643 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 2644 return false; 2645 } 2646 hw_thread.clear(); 2647 hw_thread.os_id = proc; 2648 // Put in topology information 2649 for (unsigned j = 0, idx = depth - 1; j < my_levels_index; ++j, --idx) { 2650 hw_thread.ids[idx] = apic_id & my_levels[j].mask; 2651 if (j > 0) { 2652 hw_thread.ids[idx] >>= my_levels[j - 1].mask_width; 2653 } 2654 } 2655 // Hybrid information 2656 if (__kmp_is_hybrid_cpu() && highest_leaf >= 0x1a) { 2657 kmp_hw_core_type_t type; 2658 unsigned native_model_id; 2659 int efficiency; 2660 __kmp_get_hybrid_info(&type, &efficiency, &native_model_id); 2661 hw_thread.attrs.set_core_type(type); 2662 hw_thread.attrs.set_core_eff(efficiency); 2663 } 2664 hw_thread_index++; 2665 } 2666 KMP_ASSERT(hw_thread_index > 0); 2667 __kmp_topology->sort_ids(); 2668 if (!__kmp_topology->check_ids()) { 2669 kmp_topology_t::deallocate(__kmp_topology); 2670 __kmp_topology = nullptr; 2671 *msg_id = kmp_i18n_str_x2ApicIDsNotUnique; 2672 return false; 2673 } 2674 return true; 2675 } 2676 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 2677 2678 #define osIdIndex 0 2679 #define threadIdIndex 1 2680 #define coreIdIndex 2 2681 #define pkgIdIndex 3 2682 #define nodeIdIndex 4 2683 2684 typedef unsigned *ProcCpuInfo; 2685 static unsigned maxIndex = pkgIdIndex; 2686 2687 static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a, 2688 const void *b) { 2689 unsigned i; 2690 const unsigned *aa = *(unsigned *const *)a; 2691 const unsigned *bb = *(unsigned *const *)b; 2692 for (i = maxIndex;; i--) { 2693 if (aa[i] < bb[i]) 2694 return -1; 2695 if (aa[i] > bb[i]) 2696 return 1; 2697 if (i == osIdIndex) 2698 break; 2699 } 2700 return 0; 2701 } 2702 2703 #if KMP_USE_HIER_SCHED 2704 // Set the array sizes for the hierarchy layers 2705 static void __kmp_dispatch_set_hierarchy_values() { 2706 // Set the maximum number of L1's to number of cores 2707 // Set the maximum number of L2's to to either number of cores / 2 for 2708 // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing 2709 // Or the number of cores for Intel(R) Xeon(R) processors 2710 // Set the maximum number of NUMA nodes and L3's to number of packages 2711 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] = 2712 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; 2713 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores; 2714 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \ 2715 KMP_MIC_SUPPORTED 2716 if (__kmp_mic_type >= mic3) 2717 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2; 2718 else 2719 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 2720 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores; 2721 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages; 2722 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages; 2723 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1; 2724 // Set the number of threads per unit 2725 // Number of hardware threads per L1/L2/L3/NUMA/LOOP 2726 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1; 2727 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] = 2728 __kmp_nThreadsPerCore; 2729 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \ 2730 KMP_MIC_SUPPORTED 2731 if (__kmp_mic_type >= mic3) 2732 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = 2733 2 * __kmp_nThreadsPerCore; 2734 else 2735 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 2736 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = 2737 __kmp_nThreadsPerCore; 2738 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] = 2739 nCoresPerPkg * __kmp_nThreadsPerCore; 2740 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] = 2741 nCoresPerPkg * __kmp_nThreadsPerCore; 2742 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] = 2743 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; 2744 } 2745 2746 // Return the index into the hierarchy for this tid and layer type (L1, L2, etc) 2747 // i.e., this thread's L1 or this thread's L2, etc. 2748 int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) { 2749 int index = type + 1; 2750 int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1]; 2751 KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST); 2752 if (type == kmp_hier_layer_e::LAYER_THREAD) 2753 return tid; 2754 else if (type == kmp_hier_layer_e::LAYER_LOOP) 2755 return 0; 2756 KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0); 2757 if (tid >= num_hw_threads) 2758 tid = tid % num_hw_threads; 2759 return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index]; 2760 } 2761 2762 // Return the number of t1's per t2 2763 int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) { 2764 int i1 = t1 + 1; 2765 int i2 = t2 + 1; 2766 KMP_DEBUG_ASSERT(i1 <= i2); 2767 KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST); 2768 KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST); 2769 KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0); 2770 // (nthreads/t2) / (nthreads/t1) = t1 / t2 2771 return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1]; 2772 } 2773 #endif // KMP_USE_HIER_SCHED 2774 2775 static inline const char *__kmp_cpuinfo_get_filename() { 2776 const char *filename; 2777 if (__kmp_cpuinfo_file != nullptr) 2778 filename = __kmp_cpuinfo_file; 2779 else 2780 filename = "/proc/cpuinfo"; 2781 return filename; 2782 } 2783 2784 static inline const char *__kmp_cpuinfo_get_envvar() { 2785 const char *envvar = nullptr; 2786 if (__kmp_cpuinfo_file != nullptr) 2787 envvar = "KMP_CPUINFO_FILE"; 2788 return envvar; 2789 } 2790 2791 // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the 2792 // affinity map. 2793 static bool __kmp_affinity_create_cpuinfo_map(int *line, 2794 kmp_i18n_id_t *const msg_id) { 2795 const char *filename = __kmp_cpuinfo_get_filename(); 2796 const char *envvar = __kmp_cpuinfo_get_envvar(); 2797 *msg_id = kmp_i18n_null; 2798 2799 if (__kmp_affinity_verbose) { 2800 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename); 2801 } 2802 2803 kmp_safe_raii_file_t f(filename, "r", envvar); 2804 2805 // Scan of the file, and count the number of "processor" (osId) fields, 2806 // and find the highest value of <n> for a node_<n> field. 2807 char buf[256]; 2808 unsigned num_records = 0; 2809 while (!feof(f)) { 2810 buf[sizeof(buf) - 1] = 1; 2811 if (!fgets(buf, sizeof(buf), f)) { 2812 // Read errors presumably because of EOF 2813 break; 2814 } 2815 2816 char s1[] = "processor"; 2817 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { 2818 num_records++; 2819 continue; 2820 } 2821 2822 // FIXME - this will match "node_<n> <garbage>" 2823 unsigned level; 2824 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { 2825 // validate the input fisrt: 2826 if (level > (unsigned)__kmp_xproc) { // level is too big 2827 level = __kmp_xproc; 2828 } 2829 if (nodeIdIndex + level >= maxIndex) { 2830 maxIndex = nodeIdIndex + level; 2831 } 2832 continue; 2833 } 2834 } 2835 2836 // Check for empty file / no valid processor records, or too many. The number 2837 // of records can't exceed the number of valid bits in the affinity mask. 2838 if (num_records == 0) { 2839 *msg_id = kmp_i18n_str_NoProcRecords; 2840 return false; 2841 } 2842 if (num_records > (unsigned)__kmp_xproc) { 2843 *msg_id = kmp_i18n_str_TooManyProcRecords; 2844 return false; 2845 } 2846 2847 // Set the file pointer back to the beginning, so that we can scan the file 2848 // again, this time performing a full parse of the data. Allocate a vector of 2849 // ProcCpuInfo object, where we will place the data. Adding an extra element 2850 // at the end allows us to remove a lot of extra checks for termination 2851 // conditions. 2852 if (fseek(f, 0, SEEK_SET) != 0) { 2853 *msg_id = kmp_i18n_str_CantRewindCpuinfo; 2854 return false; 2855 } 2856 2857 // Allocate the array of records to store the proc info in. The dummy 2858 // element at the end makes the logic in filling them out easier to code. 2859 unsigned **threadInfo = 2860 (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *)); 2861 unsigned i; 2862 for (i = 0; i <= num_records; i++) { 2863 threadInfo[i] = 2864 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2865 } 2866 2867 #define CLEANUP_THREAD_INFO \ 2868 for (i = 0; i <= num_records; i++) { \ 2869 __kmp_free(threadInfo[i]); \ 2870 } \ 2871 __kmp_free(threadInfo); 2872 2873 // A value of UINT_MAX means that we didn't find the field 2874 unsigned __index; 2875 2876 #define INIT_PROC_INFO(p) \ 2877 for (__index = 0; __index <= maxIndex; __index++) { \ 2878 (p)[__index] = UINT_MAX; \ 2879 } 2880 2881 for (i = 0; i <= num_records; i++) { 2882 INIT_PROC_INFO(threadInfo[i]); 2883 } 2884 2885 unsigned num_avail = 0; 2886 *line = 0; 2887 while (!feof(f)) { 2888 // Create an inner scoping level, so that all the goto targets at the end of 2889 // the loop appear in an outer scoping level. This avoids warnings about 2890 // jumping past an initialization to a target in the same block. 2891 { 2892 buf[sizeof(buf) - 1] = 1; 2893 bool long_line = false; 2894 if (!fgets(buf, sizeof(buf), f)) { 2895 // Read errors presumably because of EOF 2896 // If there is valid data in threadInfo[num_avail], then fake 2897 // a blank line in ensure that the last address gets parsed. 2898 bool valid = false; 2899 for (i = 0; i <= maxIndex; i++) { 2900 if (threadInfo[num_avail][i] != UINT_MAX) { 2901 valid = true; 2902 } 2903 } 2904 if (!valid) { 2905 break; 2906 } 2907 buf[0] = 0; 2908 } else if (!buf[sizeof(buf) - 1]) { 2909 // The line is longer than the buffer. Set a flag and don't 2910 // emit an error if we were going to ignore the line, anyway. 2911 long_line = true; 2912 2913 #define CHECK_LINE \ 2914 if (long_line) { \ 2915 CLEANUP_THREAD_INFO; \ 2916 *msg_id = kmp_i18n_str_LongLineCpuinfo; \ 2917 return false; \ 2918 } 2919 } 2920 (*line)++; 2921 2922 char s1[] = "processor"; 2923 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { 2924 CHECK_LINE; 2925 char *p = strchr(buf + sizeof(s1) - 1, ':'); 2926 unsigned val; 2927 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2928 goto no_val; 2929 if (threadInfo[num_avail][osIdIndex] != UINT_MAX) 2930 #if KMP_ARCH_AARCH64 2931 // Handle the old AArch64 /proc/cpuinfo layout differently, 2932 // it contains all of the 'processor' entries listed in a 2933 // single 'Processor' section, therefore the normal looking 2934 // for duplicates in that section will always fail. 2935 num_avail++; 2936 #else 2937 goto dup_field; 2938 #endif 2939 threadInfo[num_avail][osIdIndex] = val; 2940 #if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64) 2941 char path[256]; 2942 KMP_SNPRINTF( 2943 path, sizeof(path), 2944 "/sys/devices/system/cpu/cpu%u/topology/physical_package_id", 2945 threadInfo[num_avail][osIdIndex]); 2946 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]); 2947 2948 KMP_SNPRINTF(path, sizeof(path), 2949 "/sys/devices/system/cpu/cpu%u/topology/core_id", 2950 threadInfo[num_avail][osIdIndex]); 2951 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]); 2952 continue; 2953 #else 2954 } 2955 char s2[] = "physical id"; 2956 if (strncmp(buf, s2, sizeof(s2) - 1) == 0) { 2957 CHECK_LINE; 2958 char *p = strchr(buf + sizeof(s2) - 1, ':'); 2959 unsigned val; 2960 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2961 goto no_val; 2962 if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX) 2963 goto dup_field; 2964 threadInfo[num_avail][pkgIdIndex] = val; 2965 continue; 2966 } 2967 char s3[] = "core id"; 2968 if (strncmp(buf, s3, sizeof(s3) - 1) == 0) { 2969 CHECK_LINE; 2970 char *p = strchr(buf + sizeof(s3) - 1, ':'); 2971 unsigned val; 2972 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2973 goto no_val; 2974 if (threadInfo[num_avail][coreIdIndex] != UINT_MAX) 2975 goto dup_field; 2976 threadInfo[num_avail][coreIdIndex] = val; 2977 continue; 2978 #endif // KMP_OS_LINUX && USE_SYSFS_INFO 2979 } 2980 char s4[] = "thread id"; 2981 if (strncmp(buf, s4, sizeof(s4) - 1) == 0) { 2982 CHECK_LINE; 2983 char *p = strchr(buf + sizeof(s4) - 1, ':'); 2984 unsigned val; 2985 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2986 goto no_val; 2987 if (threadInfo[num_avail][threadIdIndex] != UINT_MAX) 2988 goto dup_field; 2989 threadInfo[num_avail][threadIdIndex] = val; 2990 continue; 2991 } 2992 unsigned level; 2993 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { 2994 CHECK_LINE; 2995 char *p = strchr(buf + sizeof(s4) - 1, ':'); 2996 unsigned val; 2997 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2998 goto no_val; 2999 // validate the input before using level: 3000 if (level > (unsigned)__kmp_xproc) { // level is too big 3001 level = __kmp_xproc; 3002 } 3003 if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX) 3004 goto dup_field; 3005 threadInfo[num_avail][nodeIdIndex + level] = val; 3006 continue; 3007 } 3008 3009 // We didn't recognize the leading token on the line. There are lots of 3010 // leading tokens that we don't recognize - if the line isn't empty, go on 3011 // to the next line. 3012 if ((*buf != 0) && (*buf != '\n')) { 3013 // If the line is longer than the buffer, read characters 3014 // until we find a newline. 3015 if (long_line) { 3016 int ch; 3017 while (((ch = fgetc(f)) != EOF) && (ch != '\n')) 3018 ; 3019 } 3020 continue; 3021 } 3022 3023 // A newline has signalled the end of the processor record. 3024 // Check that there aren't too many procs specified. 3025 if ((int)num_avail == __kmp_xproc) { 3026 CLEANUP_THREAD_INFO; 3027 *msg_id = kmp_i18n_str_TooManyEntries; 3028 return false; 3029 } 3030 3031 // Check for missing fields. The osId field must be there, and we 3032 // currently require that the physical id field is specified, also. 3033 if (threadInfo[num_avail][osIdIndex] == UINT_MAX) { 3034 CLEANUP_THREAD_INFO; 3035 *msg_id = kmp_i18n_str_MissingProcField; 3036 return false; 3037 } 3038 if (threadInfo[0][pkgIdIndex] == UINT_MAX) { 3039 CLEANUP_THREAD_INFO; 3040 *msg_id = kmp_i18n_str_MissingPhysicalIDField; 3041 return false; 3042 } 3043 3044 // Skip this proc if it is not included in the machine model. 3045 if (!KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex], 3046 __kmp_affin_fullMask)) { 3047 INIT_PROC_INFO(threadInfo[num_avail]); 3048 continue; 3049 } 3050 3051 // We have a successful parse of this proc's info. 3052 // Increment the counter, and prepare for the next proc. 3053 num_avail++; 3054 KMP_ASSERT(num_avail <= num_records); 3055 INIT_PROC_INFO(threadInfo[num_avail]); 3056 } 3057 continue; 3058 3059 no_val: 3060 CLEANUP_THREAD_INFO; 3061 *msg_id = kmp_i18n_str_MissingValCpuinfo; 3062 return false; 3063 3064 dup_field: 3065 CLEANUP_THREAD_INFO; 3066 *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo; 3067 return false; 3068 } 3069 *line = 0; 3070 3071 #if KMP_MIC && REDUCE_TEAM_SIZE 3072 unsigned teamSize = 0; 3073 #endif // KMP_MIC && REDUCE_TEAM_SIZE 3074 3075 // check for num_records == __kmp_xproc ??? 3076 3077 // If it is configured to omit the package level when there is only a single 3078 // package, the logic at the end of this routine won't work if there is only a 3079 // single thread 3080 KMP_ASSERT(num_avail > 0); 3081 KMP_ASSERT(num_avail <= num_records); 3082 3083 // Sort the threadInfo table by physical Id. 3084 qsort(threadInfo, num_avail, sizeof(*threadInfo), 3085 __kmp_affinity_cmp_ProcCpuInfo_phys_id); 3086 3087 // The table is now sorted by pkgId / coreId / threadId, but we really don't 3088 // know the radix of any of the fields. pkgId's may be sparsely assigned among 3089 // the chips on a system. Although coreId's are usually assigned 3090 // [0 .. coresPerPkg-1] and threadId's are usually assigned 3091 // [0..threadsPerCore-1], we don't want to make any such assumptions. 3092 // 3093 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the 3094 // total # packages) are at this point - we want to determine that now. We 3095 // only have an upper bound on the first two figures. 3096 unsigned *counts = 3097 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 3098 unsigned *maxCt = 3099 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 3100 unsigned *totals = 3101 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 3102 unsigned *lastId = 3103 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 3104 3105 bool assign_thread_ids = false; 3106 unsigned threadIdCt; 3107 unsigned index; 3108 3109 restart_radix_check: 3110 threadIdCt = 0; 3111 3112 // Initialize the counter arrays with data from threadInfo[0]. 3113 if (assign_thread_ids) { 3114 if (threadInfo[0][threadIdIndex] == UINT_MAX) { 3115 threadInfo[0][threadIdIndex] = threadIdCt++; 3116 } else if (threadIdCt <= threadInfo[0][threadIdIndex]) { 3117 threadIdCt = threadInfo[0][threadIdIndex] + 1; 3118 } 3119 } 3120 for (index = 0; index <= maxIndex; index++) { 3121 counts[index] = 1; 3122 maxCt[index] = 1; 3123 totals[index] = 1; 3124 lastId[index] = threadInfo[0][index]; 3125 ; 3126 } 3127 3128 // Run through the rest of the OS procs. 3129 for (i = 1; i < num_avail; i++) { 3130 // Find the most significant index whose id differs from the id for the 3131 // previous OS proc. 3132 for (index = maxIndex; index >= threadIdIndex; index--) { 3133 if (assign_thread_ids && (index == threadIdIndex)) { 3134 // Auto-assign the thread id field if it wasn't specified. 3135 if (threadInfo[i][threadIdIndex] == UINT_MAX) { 3136 threadInfo[i][threadIdIndex] = threadIdCt++; 3137 } 3138 // Apparently the thread id field was specified for some entries and not 3139 // others. Start the thread id counter off at the next higher thread id. 3140 else if (threadIdCt <= threadInfo[i][threadIdIndex]) { 3141 threadIdCt = threadInfo[i][threadIdIndex] + 1; 3142 } 3143 } 3144 if (threadInfo[i][index] != lastId[index]) { 3145 // Run through all indices which are less significant, and reset the 3146 // counts to 1. At all levels up to and including index, we need to 3147 // increment the totals and record the last id. 3148 unsigned index2; 3149 for (index2 = threadIdIndex; index2 < index; index2++) { 3150 totals[index2]++; 3151 if (counts[index2] > maxCt[index2]) { 3152 maxCt[index2] = counts[index2]; 3153 } 3154 counts[index2] = 1; 3155 lastId[index2] = threadInfo[i][index2]; 3156 } 3157 counts[index]++; 3158 totals[index]++; 3159 lastId[index] = threadInfo[i][index]; 3160 3161 if (assign_thread_ids && (index > threadIdIndex)) { 3162 3163 #if KMP_MIC && REDUCE_TEAM_SIZE 3164 // The default team size is the total #threads in the machine 3165 // minus 1 thread for every core that has 3 or more threads. 3166 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); 3167 #endif // KMP_MIC && REDUCE_TEAM_SIZE 3168 3169 // Restart the thread counter, as we are on a new core. 3170 threadIdCt = 0; 3171 3172 // Auto-assign the thread id field if it wasn't specified. 3173 if (threadInfo[i][threadIdIndex] == UINT_MAX) { 3174 threadInfo[i][threadIdIndex] = threadIdCt++; 3175 } 3176 3177 // Apparently the thread id field was specified for some entries and 3178 // not others. Start the thread id counter off at the next higher 3179 // thread id. 3180 else if (threadIdCt <= threadInfo[i][threadIdIndex]) { 3181 threadIdCt = threadInfo[i][threadIdIndex] + 1; 3182 } 3183 } 3184 break; 3185 } 3186 } 3187 if (index < threadIdIndex) { 3188 // If thread ids were specified, it is an error if they are not unique. 3189 // Also, check that we waven't already restarted the loop (to be safe - 3190 // shouldn't need to). 3191 if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) { 3192 __kmp_free(lastId); 3193 __kmp_free(totals); 3194 __kmp_free(maxCt); 3195 __kmp_free(counts); 3196 CLEANUP_THREAD_INFO; 3197 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; 3198 return false; 3199 } 3200 3201 // If the thread ids were not specified and we see entries entries that 3202 // are duplicates, start the loop over and assign the thread ids manually. 3203 assign_thread_ids = true; 3204 goto restart_radix_check; 3205 } 3206 } 3207 3208 #if KMP_MIC && REDUCE_TEAM_SIZE 3209 // The default team size is the total #threads in the machine 3210 // minus 1 thread for every core that has 3 or more threads. 3211 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); 3212 #endif // KMP_MIC && REDUCE_TEAM_SIZE 3213 3214 for (index = threadIdIndex; index <= maxIndex; index++) { 3215 if (counts[index] > maxCt[index]) { 3216 maxCt[index] = counts[index]; 3217 } 3218 } 3219 3220 __kmp_nThreadsPerCore = maxCt[threadIdIndex]; 3221 nCoresPerPkg = maxCt[coreIdIndex]; 3222 nPackages = totals[pkgIdIndex]; 3223 3224 // When affinity is off, this routine will still be called to set 3225 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 3226 // Make sure all these vars are set correctly, and return now if affinity is 3227 // not enabled. 3228 __kmp_ncores = totals[coreIdIndex]; 3229 if (!KMP_AFFINITY_CAPABLE()) { 3230 KMP_ASSERT(__kmp_affinity_type == affinity_none); 3231 return true; 3232 } 3233 3234 #if KMP_MIC && REDUCE_TEAM_SIZE 3235 // Set the default team size. 3236 if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) { 3237 __kmp_dflt_team_nth = teamSize; 3238 KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting " 3239 "__kmp_dflt_team_nth = %d\n", 3240 __kmp_dflt_team_nth)); 3241 } 3242 #endif // KMP_MIC && REDUCE_TEAM_SIZE 3243 3244 KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc); 3245 3246 // Count the number of levels which have more nodes at that level than at the 3247 // parent's level (with there being an implicit root node of the top level). 3248 // This is equivalent to saying that there is at least one node at this level 3249 // which has a sibling. These levels are in the map, and the package level is 3250 // always in the map. 3251 bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool)); 3252 for (index = threadIdIndex; index < maxIndex; index++) { 3253 KMP_ASSERT(totals[index] >= totals[index + 1]); 3254 inMap[index] = (totals[index] > totals[index + 1]); 3255 } 3256 inMap[maxIndex] = (totals[maxIndex] > 1); 3257 inMap[pkgIdIndex] = true; 3258 inMap[coreIdIndex] = true; 3259 inMap[threadIdIndex] = true; 3260 3261 int depth = 0; 3262 int idx = 0; 3263 kmp_hw_t types[KMP_HW_LAST]; 3264 int pkgLevel = -1; 3265 int coreLevel = -1; 3266 int threadLevel = -1; 3267 for (index = threadIdIndex; index <= maxIndex; index++) { 3268 if (inMap[index]) { 3269 depth++; 3270 } 3271 } 3272 if (inMap[pkgIdIndex]) { 3273 pkgLevel = idx; 3274 types[idx++] = KMP_HW_SOCKET; 3275 } 3276 if (inMap[coreIdIndex]) { 3277 coreLevel = idx; 3278 types[idx++] = KMP_HW_CORE; 3279 } 3280 if (inMap[threadIdIndex]) { 3281 threadLevel = idx; 3282 types[idx++] = KMP_HW_THREAD; 3283 } 3284 KMP_ASSERT(depth > 0); 3285 3286 // Construct the data structure that is to be returned. 3287 __kmp_topology = kmp_topology_t::allocate(num_avail, depth, types); 3288 3289 for (i = 0; i < num_avail; ++i) { 3290 unsigned os = threadInfo[i][osIdIndex]; 3291 int src_index; 3292 int dst_index = 0; 3293 kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); 3294 hw_thread.clear(); 3295 hw_thread.os_id = os; 3296 3297 idx = 0; 3298 for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) { 3299 if (!inMap[src_index]) { 3300 continue; 3301 } 3302 if (src_index == pkgIdIndex) { 3303 hw_thread.ids[pkgLevel] = threadInfo[i][src_index]; 3304 } else if (src_index == coreIdIndex) { 3305 hw_thread.ids[coreLevel] = threadInfo[i][src_index]; 3306 } else if (src_index == threadIdIndex) { 3307 hw_thread.ids[threadLevel] = threadInfo[i][src_index]; 3308 } 3309 dst_index++; 3310 } 3311 } 3312 3313 __kmp_free(inMap); 3314 __kmp_free(lastId); 3315 __kmp_free(totals); 3316 __kmp_free(maxCt); 3317 __kmp_free(counts); 3318 CLEANUP_THREAD_INFO; 3319 __kmp_topology->sort_ids(); 3320 if (!__kmp_topology->check_ids()) { 3321 kmp_topology_t::deallocate(__kmp_topology); 3322 __kmp_topology = nullptr; 3323 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; 3324 return false; 3325 } 3326 return true; 3327 } 3328 3329 // Create and return a table of affinity masks, indexed by OS thread ID. 3330 // This routine handles OR'ing together all the affinity masks of threads 3331 // that are sufficiently close, if granularity > fine. 3332 static kmp_affin_mask_t *__kmp_create_masks(unsigned *maxIndex, 3333 unsigned *numUnique) { 3334 // First form a table of affinity masks in order of OS thread id. 3335 int maxOsId; 3336 int i; 3337 int numAddrs = __kmp_topology->get_num_hw_threads(); 3338 int depth = __kmp_topology->get_depth(); 3339 KMP_ASSERT(numAddrs); 3340 KMP_ASSERT(depth); 3341 3342 maxOsId = 0; 3343 for (i = numAddrs - 1;; --i) { 3344 int osId = __kmp_topology->at(i).os_id; 3345 if (osId > maxOsId) { 3346 maxOsId = osId; 3347 } 3348 if (i == 0) 3349 break; 3350 } 3351 kmp_affin_mask_t *osId2Mask; 3352 KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId + 1)); 3353 KMP_ASSERT(__kmp_affinity_gran_levels >= 0); 3354 if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) { 3355 KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels); 3356 } 3357 if (__kmp_affinity_gran_levels >= (int)depth) { 3358 if (__kmp_affinity_verbose || 3359 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { 3360 KMP_WARNING(AffThreadsMayMigrate); 3361 } 3362 } 3363 3364 // Run through the table, forming the masks for all threads on each core. 3365 // Threads on the same core will have identical kmp_hw_thread_t objects, not 3366 // considering the last level, which must be the thread id. All threads on a 3367 // core will appear consecutively. 3368 int unique = 0; 3369 int j = 0; // index of 1st thread on core 3370 int leader = 0; 3371 kmp_affin_mask_t *sum; 3372 KMP_CPU_ALLOC_ON_STACK(sum); 3373 KMP_CPU_ZERO(sum); 3374 KMP_CPU_SET(__kmp_topology->at(0).os_id, sum); 3375 for (i = 1; i < numAddrs; i++) { 3376 // If this thread is sufficiently close to the leader (within the 3377 // granularity setting), then set the bit for this os thread in the 3378 // affinity mask for this group, and go on to the next thread. 3379 if (__kmp_topology->is_close(leader, i, __kmp_affinity_gran_levels)) { 3380 KMP_CPU_SET(__kmp_topology->at(i).os_id, sum); 3381 continue; 3382 } 3383 3384 // For every thread in this group, copy the mask to the thread's entry in 3385 // the osId2Mask table. Mark the first address as a leader. 3386 for (; j < i; j++) { 3387 int osId = __kmp_topology->at(j).os_id; 3388 KMP_DEBUG_ASSERT(osId <= maxOsId); 3389 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); 3390 KMP_CPU_COPY(mask, sum); 3391 __kmp_topology->at(j).leader = (j == leader); 3392 } 3393 unique++; 3394 3395 // Start a new mask. 3396 leader = i; 3397 KMP_CPU_ZERO(sum); 3398 KMP_CPU_SET(__kmp_topology->at(i).os_id, sum); 3399 } 3400 3401 // For every thread in last group, copy the mask to the thread's 3402 // entry in the osId2Mask table. 3403 for (; j < i; j++) { 3404 int osId = __kmp_topology->at(j).os_id; 3405 KMP_DEBUG_ASSERT(osId <= maxOsId); 3406 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); 3407 KMP_CPU_COPY(mask, sum); 3408 __kmp_topology->at(j).leader = (j == leader); 3409 } 3410 unique++; 3411 KMP_CPU_FREE_FROM_STACK(sum); 3412 3413 *maxIndex = maxOsId; 3414 *numUnique = unique; 3415 return osId2Mask; 3416 } 3417 3418 // Stuff for the affinity proclist parsers. It's easier to declare these vars 3419 // as file-static than to try and pass them through the calling sequence of 3420 // the recursive-descent OMP_PLACES parser. 3421 static kmp_affin_mask_t *newMasks; 3422 static int numNewMasks; 3423 static int nextNewMask; 3424 3425 #define ADD_MASK(_mask) \ 3426 { \ 3427 if (nextNewMask >= numNewMasks) { \ 3428 int i; \ 3429 numNewMasks *= 2; \ 3430 kmp_affin_mask_t *temp; \ 3431 KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \ 3432 for (i = 0; i < numNewMasks / 2; i++) { \ 3433 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); \ 3434 kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i); \ 3435 KMP_CPU_COPY(dest, src); \ 3436 } \ 3437 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2); \ 3438 newMasks = temp; \ 3439 } \ 3440 KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \ 3441 nextNewMask++; \ 3442 } 3443 3444 #define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \ 3445 { \ 3446 if (((_osId) > _maxOsId) || \ 3447 (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \ 3448 if (__kmp_affinity_verbose || \ 3449 (__kmp_affinity_warnings && \ 3450 (__kmp_affinity_type != affinity_none))) { \ 3451 KMP_WARNING(AffIgnoreInvalidProcID, _osId); \ 3452 } \ 3453 } else { \ 3454 ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \ 3455 } \ 3456 } 3457 3458 // Re-parse the proclist (for the explicit affinity type), and form the list 3459 // of affinity newMasks indexed by gtid. 3460 static void __kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks, 3461 unsigned int *out_numMasks, 3462 const char *proclist, 3463 kmp_affin_mask_t *osId2Mask, 3464 int maxOsId) { 3465 int i; 3466 const char *scan = proclist; 3467 const char *next = proclist; 3468 3469 // We use malloc() for the temporary mask vector, so that we can use 3470 // realloc() to extend it. 3471 numNewMasks = 2; 3472 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); 3473 nextNewMask = 0; 3474 kmp_affin_mask_t *sumMask; 3475 KMP_CPU_ALLOC(sumMask); 3476 int setSize = 0; 3477 3478 for (;;) { 3479 int start, end, stride; 3480 3481 SKIP_WS(scan); 3482 next = scan; 3483 if (*next == '\0') { 3484 break; 3485 } 3486 3487 if (*next == '{') { 3488 int num; 3489 setSize = 0; 3490 next++; // skip '{' 3491 SKIP_WS(next); 3492 scan = next; 3493 3494 // Read the first integer in the set. 3495 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist"); 3496 SKIP_DIGITS(next); 3497 num = __kmp_str_to_int(scan, *next); 3498 KMP_ASSERT2(num >= 0, "bad explicit proc list"); 3499 3500 // Copy the mask for that osId to the sum (union) mask. 3501 if ((num > maxOsId) || 3502 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 3503 if (__kmp_affinity_verbose || 3504 (__kmp_affinity_warnings && 3505 (__kmp_affinity_type != affinity_none))) { 3506 KMP_WARNING(AffIgnoreInvalidProcID, num); 3507 } 3508 KMP_CPU_ZERO(sumMask); 3509 } else { 3510 KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num)); 3511 setSize = 1; 3512 } 3513 3514 for (;;) { 3515 // Check for end of set. 3516 SKIP_WS(next); 3517 if (*next == '}') { 3518 next++; // skip '}' 3519 break; 3520 } 3521 3522 // Skip optional comma. 3523 if (*next == ',') { 3524 next++; 3525 } 3526 SKIP_WS(next); 3527 3528 // Read the next integer in the set. 3529 scan = next; 3530 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 3531 3532 SKIP_DIGITS(next); 3533 num = __kmp_str_to_int(scan, *next); 3534 KMP_ASSERT2(num >= 0, "bad explicit proc list"); 3535 3536 // Add the mask for that osId to the sum mask. 3537 if ((num > maxOsId) || 3538 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 3539 if (__kmp_affinity_verbose || 3540 (__kmp_affinity_warnings && 3541 (__kmp_affinity_type != affinity_none))) { 3542 KMP_WARNING(AffIgnoreInvalidProcID, num); 3543 } 3544 } else { 3545 KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num)); 3546 setSize++; 3547 } 3548 } 3549 if (setSize > 0) { 3550 ADD_MASK(sumMask); 3551 } 3552 3553 SKIP_WS(next); 3554 if (*next == ',') { 3555 next++; 3556 } 3557 scan = next; 3558 continue; 3559 } 3560 3561 // Read the first integer. 3562 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 3563 SKIP_DIGITS(next); 3564 start = __kmp_str_to_int(scan, *next); 3565 KMP_ASSERT2(start >= 0, "bad explicit proc list"); 3566 SKIP_WS(next); 3567 3568 // If this isn't a range, then add a mask to the list and go on. 3569 if (*next != '-') { 3570 ADD_MASK_OSID(start, osId2Mask, maxOsId); 3571 3572 // Skip optional comma. 3573 if (*next == ',') { 3574 next++; 3575 } 3576 scan = next; 3577 continue; 3578 } 3579 3580 // This is a range. Skip over the '-' and read in the 2nd int. 3581 next++; // skip '-' 3582 SKIP_WS(next); 3583 scan = next; 3584 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 3585 SKIP_DIGITS(next); 3586 end = __kmp_str_to_int(scan, *next); 3587 KMP_ASSERT2(end >= 0, "bad explicit proc list"); 3588 3589 // Check for a stride parameter 3590 stride = 1; 3591 SKIP_WS(next); 3592 if (*next == ':') { 3593 // A stride is specified. Skip over the ':" and read the 3rd int. 3594 int sign = +1; 3595 next++; // skip ':' 3596 SKIP_WS(next); 3597 scan = next; 3598 if (*next == '-') { 3599 sign = -1; 3600 next++; 3601 SKIP_WS(next); 3602 scan = next; 3603 } 3604 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 3605 SKIP_DIGITS(next); 3606 stride = __kmp_str_to_int(scan, *next); 3607 KMP_ASSERT2(stride >= 0, "bad explicit proc list"); 3608 stride *= sign; 3609 } 3610 3611 // Do some range checks. 3612 KMP_ASSERT2(stride != 0, "bad explicit proc list"); 3613 if (stride > 0) { 3614 KMP_ASSERT2(start <= end, "bad explicit proc list"); 3615 } else { 3616 KMP_ASSERT2(start >= end, "bad explicit proc list"); 3617 } 3618 KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list"); 3619 3620 // Add the mask for each OS proc # to the list. 3621 if (stride > 0) { 3622 do { 3623 ADD_MASK_OSID(start, osId2Mask, maxOsId); 3624 start += stride; 3625 } while (start <= end); 3626 } else { 3627 do { 3628 ADD_MASK_OSID(start, osId2Mask, maxOsId); 3629 start += stride; 3630 } while (start >= end); 3631 } 3632 3633 // Skip optional comma. 3634 SKIP_WS(next); 3635 if (*next == ',') { 3636 next++; 3637 } 3638 scan = next; 3639 } 3640 3641 *out_numMasks = nextNewMask; 3642 if (nextNewMask == 0) { 3643 *out_masks = NULL; 3644 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3645 return; 3646 } 3647 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); 3648 for (i = 0; i < nextNewMask; i++) { 3649 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); 3650 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); 3651 KMP_CPU_COPY(dest, src); 3652 } 3653 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3654 KMP_CPU_FREE(sumMask); 3655 } 3656 3657 /*----------------------------------------------------------------------------- 3658 Re-parse the OMP_PLACES proc id list, forming the newMasks for the different 3659 places. Again, Here is the grammar: 3660 3661 place_list := place 3662 place_list := place , place_list 3663 place := num 3664 place := place : num 3665 place := place : num : signed 3666 place := { subplacelist } 3667 place := ! place // (lowest priority) 3668 subplace_list := subplace 3669 subplace_list := subplace , subplace_list 3670 subplace := num 3671 subplace := num : num 3672 subplace := num : num : signed 3673 signed := num 3674 signed := + signed 3675 signed := - signed 3676 -----------------------------------------------------------------------------*/ 3677 static void __kmp_process_subplace_list(const char **scan, 3678 kmp_affin_mask_t *osId2Mask, 3679 int maxOsId, kmp_affin_mask_t *tempMask, 3680 int *setSize) { 3681 const char *next; 3682 3683 for (;;) { 3684 int start, count, stride, i; 3685 3686 // Read in the starting proc id 3687 SKIP_WS(*scan); 3688 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3689 next = *scan; 3690 SKIP_DIGITS(next); 3691 start = __kmp_str_to_int(*scan, *next); 3692 KMP_ASSERT(start >= 0); 3693 *scan = next; 3694 3695 // valid follow sets are ',' ':' and '}' 3696 SKIP_WS(*scan); 3697 if (**scan == '}' || **scan == ',') { 3698 if ((start > maxOsId) || 3699 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3700 if (__kmp_affinity_verbose || 3701 (__kmp_affinity_warnings && 3702 (__kmp_affinity_type != affinity_none))) { 3703 KMP_WARNING(AffIgnoreInvalidProcID, start); 3704 } 3705 } else { 3706 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3707 (*setSize)++; 3708 } 3709 if (**scan == '}') { 3710 break; 3711 } 3712 (*scan)++; // skip ',' 3713 continue; 3714 } 3715 KMP_ASSERT2(**scan == ':', "bad explicit places list"); 3716 (*scan)++; // skip ':' 3717 3718 // Read count parameter 3719 SKIP_WS(*scan); 3720 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3721 next = *scan; 3722 SKIP_DIGITS(next); 3723 count = __kmp_str_to_int(*scan, *next); 3724 KMP_ASSERT(count >= 0); 3725 *scan = next; 3726 3727 // valid follow sets are ',' ':' and '}' 3728 SKIP_WS(*scan); 3729 if (**scan == '}' || **scan == ',') { 3730 for (i = 0; i < count; i++) { 3731 if ((start > maxOsId) || 3732 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3733 if (__kmp_affinity_verbose || 3734 (__kmp_affinity_warnings && 3735 (__kmp_affinity_type != affinity_none))) { 3736 KMP_WARNING(AffIgnoreInvalidProcID, start); 3737 } 3738 break; // don't proliferate warnings for large count 3739 } else { 3740 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3741 start++; 3742 (*setSize)++; 3743 } 3744 } 3745 if (**scan == '}') { 3746 break; 3747 } 3748 (*scan)++; // skip ',' 3749 continue; 3750 } 3751 KMP_ASSERT2(**scan == ':', "bad explicit places list"); 3752 (*scan)++; // skip ':' 3753 3754 // Read stride parameter 3755 int sign = +1; 3756 for (;;) { 3757 SKIP_WS(*scan); 3758 if (**scan == '+') { 3759 (*scan)++; // skip '+' 3760 continue; 3761 } 3762 if (**scan == '-') { 3763 sign *= -1; 3764 (*scan)++; // skip '-' 3765 continue; 3766 } 3767 break; 3768 } 3769 SKIP_WS(*scan); 3770 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3771 next = *scan; 3772 SKIP_DIGITS(next); 3773 stride = __kmp_str_to_int(*scan, *next); 3774 KMP_ASSERT(stride >= 0); 3775 *scan = next; 3776 stride *= sign; 3777 3778 // valid follow sets are ',' and '}' 3779 SKIP_WS(*scan); 3780 if (**scan == '}' || **scan == ',') { 3781 for (i = 0; i < count; i++) { 3782 if ((start > maxOsId) || 3783 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3784 if (__kmp_affinity_verbose || 3785 (__kmp_affinity_warnings && 3786 (__kmp_affinity_type != affinity_none))) { 3787 KMP_WARNING(AffIgnoreInvalidProcID, start); 3788 } 3789 break; // don't proliferate warnings for large count 3790 } else { 3791 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3792 start += stride; 3793 (*setSize)++; 3794 } 3795 } 3796 if (**scan == '}') { 3797 break; 3798 } 3799 (*scan)++; // skip ',' 3800 continue; 3801 } 3802 3803 KMP_ASSERT2(0, "bad explicit places list"); 3804 } 3805 } 3806 3807 static void __kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask, 3808 int maxOsId, kmp_affin_mask_t *tempMask, 3809 int *setSize) { 3810 const char *next; 3811 3812 // valid follow sets are '{' '!' and num 3813 SKIP_WS(*scan); 3814 if (**scan == '{') { 3815 (*scan)++; // skip '{' 3816 __kmp_process_subplace_list(scan, osId2Mask, maxOsId, tempMask, setSize); 3817 KMP_ASSERT2(**scan == '}', "bad explicit places list"); 3818 (*scan)++; // skip '}' 3819 } else if (**scan == '!') { 3820 (*scan)++; // skip '!' 3821 __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize); 3822 KMP_CPU_COMPLEMENT(maxOsId, tempMask); 3823 } else if ((**scan >= '0') && (**scan <= '9')) { 3824 next = *scan; 3825 SKIP_DIGITS(next); 3826 int num = __kmp_str_to_int(*scan, *next); 3827 KMP_ASSERT(num >= 0); 3828 if ((num > maxOsId) || 3829 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 3830 if (__kmp_affinity_verbose || 3831 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { 3832 KMP_WARNING(AffIgnoreInvalidProcID, num); 3833 } 3834 } else { 3835 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num)); 3836 (*setSize)++; 3837 } 3838 *scan = next; // skip num 3839 } else { 3840 KMP_ASSERT2(0, "bad explicit places list"); 3841 } 3842 } 3843 3844 // static void 3845 void __kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks, 3846 unsigned int *out_numMasks, 3847 const char *placelist, 3848 kmp_affin_mask_t *osId2Mask, 3849 int maxOsId) { 3850 int i, j, count, stride, sign; 3851 const char *scan = placelist; 3852 const char *next = placelist; 3853 3854 numNewMasks = 2; 3855 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); 3856 nextNewMask = 0; 3857 3858 // tempMask is modified based on the previous or initial 3859 // place to form the current place 3860 // previousMask contains the previous place 3861 kmp_affin_mask_t *tempMask; 3862 kmp_affin_mask_t *previousMask; 3863 KMP_CPU_ALLOC(tempMask); 3864 KMP_CPU_ZERO(tempMask); 3865 KMP_CPU_ALLOC(previousMask); 3866 KMP_CPU_ZERO(previousMask); 3867 int setSize = 0; 3868 3869 for (;;) { 3870 __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize); 3871 3872 // valid follow sets are ',' ':' and EOL 3873 SKIP_WS(scan); 3874 if (*scan == '\0' || *scan == ',') { 3875 if (setSize > 0) { 3876 ADD_MASK(tempMask); 3877 } 3878 KMP_CPU_ZERO(tempMask); 3879 setSize = 0; 3880 if (*scan == '\0') { 3881 break; 3882 } 3883 scan++; // skip ',' 3884 continue; 3885 } 3886 3887 KMP_ASSERT2(*scan == ':', "bad explicit places list"); 3888 scan++; // skip ':' 3889 3890 // Read count parameter 3891 SKIP_WS(scan); 3892 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); 3893 next = scan; 3894 SKIP_DIGITS(next); 3895 count = __kmp_str_to_int(scan, *next); 3896 KMP_ASSERT(count >= 0); 3897 scan = next; 3898 3899 // valid follow sets are ',' ':' and EOL 3900 SKIP_WS(scan); 3901 if (*scan == '\0' || *scan == ',') { 3902 stride = +1; 3903 } else { 3904 KMP_ASSERT2(*scan == ':', "bad explicit places list"); 3905 scan++; // skip ':' 3906 3907 // Read stride parameter 3908 sign = +1; 3909 for (;;) { 3910 SKIP_WS(scan); 3911 if (*scan == '+') { 3912 scan++; // skip '+' 3913 continue; 3914 } 3915 if (*scan == '-') { 3916 sign *= -1; 3917 scan++; // skip '-' 3918 continue; 3919 } 3920 break; 3921 } 3922 SKIP_WS(scan); 3923 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); 3924 next = scan; 3925 SKIP_DIGITS(next); 3926 stride = __kmp_str_to_int(scan, *next); 3927 KMP_DEBUG_ASSERT(stride >= 0); 3928 scan = next; 3929 stride *= sign; 3930 } 3931 3932 // Add places determined by initial_place : count : stride 3933 for (i = 0; i < count; i++) { 3934 if (setSize == 0) { 3935 break; 3936 } 3937 // Add the current place, then build the next place (tempMask) from that 3938 KMP_CPU_COPY(previousMask, tempMask); 3939 ADD_MASK(previousMask); 3940 KMP_CPU_ZERO(tempMask); 3941 setSize = 0; 3942 KMP_CPU_SET_ITERATE(j, previousMask) { 3943 if (!KMP_CPU_ISSET(j, previousMask)) { 3944 continue; 3945 } 3946 if ((j + stride > maxOsId) || (j + stride < 0) || 3947 (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) || 3948 (!KMP_CPU_ISSET(j + stride, 3949 KMP_CPU_INDEX(osId2Mask, j + stride)))) { 3950 if ((__kmp_affinity_verbose || 3951 (__kmp_affinity_warnings && 3952 (__kmp_affinity_type != affinity_none))) && 3953 i < count - 1) { 3954 KMP_WARNING(AffIgnoreInvalidProcID, j + stride); 3955 } 3956 continue; 3957 } 3958 KMP_CPU_SET(j + stride, tempMask); 3959 setSize++; 3960 } 3961 } 3962 KMP_CPU_ZERO(tempMask); 3963 setSize = 0; 3964 3965 // valid follow sets are ',' and EOL 3966 SKIP_WS(scan); 3967 if (*scan == '\0') { 3968 break; 3969 } 3970 if (*scan == ',') { 3971 scan++; // skip ',' 3972 continue; 3973 } 3974 3975 KMP_ASSERT2(0, "bad explicit places list"); 3976 } 3977 3978 *out_numMasks = nextNewMask; 3979 if (nextNewMask == 0) { 3980 *out_masks = NULL; 3981 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3982 return; 3983 } 3984 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); 3985 KMP_CPU_FREE(tempMask); 3986 KMP_CPU_FREE(previousMask); 3987 for (i = 0; i < nextNewMask; i++) { 3988 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); 3989 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); 3990 KMP_CPU_COPY(dest, src); 3991 } 3992 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3993 } 3994 3995 #undef ADD_MASK 3996 #undef ADD_MASK_OSID 3997 3998 // This function figures out the deepest level at which there is at least one 3999 // cluster/core with more than one processing unit bound to it. 4000 static int __kmp_affinity_find_core_level(int nprocs, int bottom_level) { 4001 int core_level = 0; 4002 4003 for (int i = 0; i < nprocs; i++) { 4004 const kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); 4005 for (int j = bottom_level; j > 0; j--) { 4006 if (hw_thread.ids[j] > 0) { 4007 if (core_level < (j - 1)) { 4008 core_level = j - 1; 4009 } 4010 } 4011 } 4012 } 4013 return core_level; 4014 } 4015 4016 // This function counts number of clusters/cores at given level. 4017 static int __kmp_affinity_compute_ncores(int nprocs, int bottom_level, 4018 int core_level) { 4019 return __kmp_topology->get_count(core_level); 4020 } 4021 // This function finds to which cluster/core given processing unit is bound. 4022 static int __kmp_affinity_find_core(int proc, int bottom_level, 4023 int core_level) { 4024 int core = 0; 4025 KMP_DEBUG_ASSERT(proc >= 0 && proc < __kmp_topology->get_num_hw_threads()); 4026 for (int i = 0; i <= proc; ++i) { 4027 if (i + 1 <= proc) { 4028 for (int j = 0; j <= core_level; ++j) { 4029 if (__kmp_topology->at(i + 1).sub_ids[j] != 4030 __kmp_topology->at(i).sub_ids[j]) { 4031 core++; 4032 break; 4033 } 4034 } 4035 } 4036 } 4037 return core; 4038 } 4039 4040 // This function finds maximal number of processing units bound to a 4041 // cluster/core at given level. 4042 static int __kmp_affinity_max_proc_per_core(int nprocs, int bottom_level, 4043 int core_level) { 4044 if (core_level >= bottom_level) 4045 return 1; 4046 int thread_level = __kmp_topology->get_level(KMP_HW_THREAD); 4047 return __kmp_topology->calculate_ratio(thread_level, core_level); 4048 } 4049 4050 static int *procarr = NULL; 4051 static int __kmp_aff_depth = 0; 4052 4053 // Create a one element mask array (set of places) which only contains the 4054 // initial process's affinity mask 4055 static void __kmp_create_affinity_none_places() { 4056 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4057 KMP_ASSERT(__kmp_affinity_type == affinity_none); 4058 __kmp_affinity_num_masks = 1; 4059 KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); 4060 kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, 0); 4061 KMP_CPU_COPY(dest, __kmp_affin_fullMask); 4062 } 4063 4064 static void __kmp_aux_affinity_initialize(void) { 4065 if (__kmp_affinity_masks != NULL) { 4066 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4067 return; 4068 } 4069 4070 // Create the "full" mask - this defines all of the processors that we 4071 // consider to be in the machine model. If respect is set, then it is the 4072 // initialization thread's affinity mask. Otherwise, it is all processors that 4073 // we know about on the machine. 4074 if (__kmp_affin_fullMask == NULL) { 4075 KMP_CPU_ALLOC(__kmp_affin_fullMask); 4076 } 4077 if (__kmp_affin_origMask == NULL) { 4078 KMP_CPU_ALLOC(__kmp_affin_origMask); 4079 } 4080 if (KMP_AFFINITY_CAPABLE()) { 4081 __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE); 4082 // Make a copy before possible expanding to the entire machine mask 4083 __kmp_affin_origMask->copy(__kmp_affin_fullMask); 4084 if (__kmp_affinity_respect_mask) { 4085 // Count the number of available processors. 4086 unsigned i; 4087 __kmp_avail_proc = 0; 4088 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 4089 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 4090 continue; 4091 } 4092 __kmp_avail_proc++; 4093 } 4094 if (__kmp_avail_proc > __kmp_xproc) { 4095 if (__kmp_affinity_verbose || 4096 (__kmp_affinity_warnings && 4097 (__kmp_affinity_type != affinity_none))) { 4098 KMP_WARNING(ErrorInitializeAffinity); 4099 } 4100 __kmp_affinity_type = affinity_none; 4101 KMP_AFFINITY_DISABLE(); 4102 return; 4103 } 4104 4105 if (__kmp_affinity_verbose) { 4106 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4107 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4108 __kmp_affin_fullMask); 4109 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 4110 } 4111 } else { 4112 if (__kmp_affinity_verbose) { 4113 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4114 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4115 __kmp_affin_fullMask); 4116 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 4117 } 4118 __kmp_avail_proc = 4119 __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask); 4120 #if KMP_OS_WINDOWS 4121 if (__kmp_num_proc_groups <= 1) { 4122 // Copy expanded full mask if topology has single processor group 4123 __kmp_affin_origMask->copy(__kmp_affin_fullMask); 4124 } 4125 // Set the process affinity mask since threads' affinity 4126 // masks must be subset of process mask in Windows* OS 4127 __kmp_affin_fullMask->set_process_affinity(true); 4128 #endif 4129 } 4130 } 4131 4132 kmp_i18n_id_t msg_id = kmp_i18n_null; 4133 4134 // For backward compatibility, setting KMP_CPUINFO_FILE => 4135 // KMP_TOPOLOGY_METHOD=cpuinfo 4136 if ((__kmp_cpuinfo_file != NULL) && 4137 (__kmp_affinity_top_method == affinity_top_method_all)) { 4138 __kmp_affinity_top_method = affinity_top_method_cpuinfo; 4139 } 4140 4141 bool success = false; 4142 if (__kmp_affinity_top_method == affinity_top_method_all) { 4143 // In the default code path, errors are not fatal - we just try using 4144 // another method. We only emit a warning message if affinity is on, or the 4145 // verbose flag is set, an the nowarnings flag was not set. 4146 #if KMP_USE_HWLOC 4147 if (!success && 4148 __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) { 4149 if (!__kmp_hwloc_error) { 4150 success = __kmp_affinity_create_hwloc_map(&msg_id); 4151 if (!success && __kmp_affinity_verbose) { 4152 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY"); 4153 } 4154 } else if (__kmp_affinity_verbose) { 4155 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY"); 4156 } 4157 } 4158 #endif 4159 4160 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4161 if (!success) { 4162 success = __kmp_affinity_create_x2apicid_map(&msg_id); 4163 if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) { 4164 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id)); 4165 } 4166 } 4167 if (!success) { 4168 success = __kmp_affinity_create_apicid_map(&msg_id); 4169 if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) { 4170 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id)); 4171 } 4172 } 4173 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4174 4175 #if KMP_OS_LINUX 4176 if (!success) { 4177 int line = 0; 4178 success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id); 4179 if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) { 4180 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id)); 4181 } 4182 } 4183 #endif /* KMP_OS_LINUX */ 4184 4185 #if KMP_GROUP_AFFINITY 4186 if (!success && (__kmp_num_proc_groups > 1)) { 4187 success = __kmp_affinity_create_proc_group_map(&msg_id); 4188 if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) { 4189 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id)); 4190 } 4191 } 4192 #endif /* KMP_GROUP_AFFINITY */ 4193 4194 if (!success) { 4195 success = __kmp_affinity_create_flat_map(&msg_id); 4196 if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) { 4197 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id)); 4198 } 4199 KMP_ASSERT(success); 4200 } 4201 } 4202 4203 // If the user has specified that a paricular topology discovery method is to be 4204 // used, then we abort if that method fails. The exception is group affinity, 4205 // which might have been implicitly set. 4206 #if KMP_USE_HWLOC 4207 else if (__kmp_affinity_top_method == affinity_top_method_hwloc) { 4208 KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC); 4209 success = __kmp_affinity_create_hwloc_map(&msg_id); 4210 if (!success) { 4211 KMP_ASSERT(msg_id != kmp_i18n_null); 4212 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4213 } 4214 } 4215 #endif // KMP_USE_HWLOC 4216 4217 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4218 else if (__kmp_affinity_top_method == affinity_top_method_x2apicid || 4219 __kmp_affinity_top_method == affinity_top_method_x2apicid_1f) { 4220 success = __kmp_affinity_create_x2apicid_map(&msg_id); 4221 if (!success) { 4222 KMP_ASSERT(msg_id != kmp_i18n_null); 4223 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4224 } 4225 } else if (__kmp_affinity_top_method == affinity_top_method_apicid) { 4226 success = __kmp_affinity_create_apicid_map(&msg_id); 4227 if (!success) { 4228 KMP_ASSERT(msg_id != kmp_i18n_null); 4229 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4230 } 4231 } 4232 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4233 4234 else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) { 4235 int line = 0; 4236 success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id); 4237 if (!success) { 4238 KMP_ASSERT(msg_id != kmp_i18n_null); 4239 const char *filename = __kmp_cpuinfo_get_filename(); 4240 if (line > 0) { 4241 KMP_FATAL(FileLineMsgExiting, filename, line, 4242 __kmp_i18n_catgets(msg_id)); 4243 } else { 4244 KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id)); 4245 } 4246 } 4247 } 4248 4249 #if KMP_GROUP_AFFINITY 4250 else if (__kmp_affinity_top_method == affinity_top_method_group) { 4251 success = __kmp_affinity_create_proc_group_map(&msg_id); 4252 KMP_ASSERT(success); 4253 if (!success) { 4254 KMP_ASSERT(msg_id != kmp_i18n_null); 4255 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4256 } 4257 } 4258 #endif /* KMP_GROUP_AFFINITY */ 4259 4260 else if (__kmp_affinity_top_method == affinity_top_method_flat) { 4261 success = __kmp_affinity_create_flat_map(&msg_id); 4262 // should not fail 4263 KMP_ASSERT(success); 4264 } 4265 4266 // Early exit if topology could not be created 4267 if (!__kmp_topology) { 4268 if (KMP_AFFINITY_CAPABLE() && 4269 (__kmp_affinity_verbose || 4270 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none)))) { 4271 KMP_WARNING(ErrorInitializeAffinity); 4272 } 4273 if (nPackages > 0 && nCoresPerPkg > 0 && __kmp_nThreadsPerCore > 0 && 4274 __kmp_ncores > 0) { 4275 __kmp_topology = kmp_topology_t::allocate(0, 0, NULL); 4276 __kmp_topology->canonicalize(nPackages, nCoresPerPkg, 4277 __kmp_nThreadsPerCore, __kmp_ncores); 4278 if (__kmp_affinity_verbose) { 4279 __kmp_topology->print("KMP_AFFINITY"); 4280 } 4281 } 4282 __kmp_affinity_type = affinity_none; 4283 __kmp_create_affinity_none_places(); 4284 #if KMP_USE_HIER_SCHED 4285 __kmp_dispatch_set_hierarchy_values(); 4286 #endif 4287 KMP_AFFINITY_DISABLE(); 4288 return; 4289 } 4290 4291 // Canonicalize, print (if requested), apply KMP_HW_SUBSET, and 4292 // initialize other data structures which depend on the topology 4293 __kmp_topology->canonicalize(); 4294 if (__kmp_affinity_verbose) 4295 __kmp_topology->print("KMP_AFFINITY"); 4296 bool filtered = __kmp_topology->filter_hw_subset(); 4297 if (filtered) { 4298 #if KMP_OS_WINDOWS 4299 // Copy filtered full mask if topology has single processor group 4300 if (__kmp_num_proc_groups <= 1) 4301 #endif 4302 __kmp_affin_origMask->copy(__kmp_affin_fullMask); 4303 } 4304 if (filtered && __kmp_affinity_verbose) 4305 __kmp_topology->print("KMP_HW_SUBSET"); 4306 machine_hierarchy.init(__kmp_topology->get_num_hw_threads()); 4307 KMP_ASSERT(__kmp_avail_proc == __kmp_topology->get_num_hw_threads()); 4308 // If KMP_AFFINITY=none, then only create the single "none" place 4309 // which is the process's initial affinity mask or the number of 4310 // hardware threads depending on respect,norespect 4311 if (__kmp_affinity_type == affinity_none) { 4312 __kmp_create_affinity_none_places(); 4313 #if KMP_USE_HIER_SCHED 4314 __kmp_dispatch_set_hierarchy_values(); 4315 #endif 4316 return; 4317 } 4318 int depth = __kmp_topology->get_depth(); 4319 4320 // Create the table of masks, indexed by thread Id. 4321 unsigned maxIndex; 4322 unsigned numUnique; 4323 kmp_affin_mask_t *osId2Mask = __kmp_create_masks(&maxIndex, &numUnique); 4324 if (__kmp_affinity_gran_levels == 0) { 4325 KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc); 4326 } 4327 4328 switch (__kmp_affinity_type) { 4329 4330 case affinity_explicit: 4331 KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL); 4332 if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) { 4333 __kmp_affinity_process_proclist( 4334 &__kmp_affinity_masks, &__kmp_affinity_num_masks, 4335 __kmp_affinity_proclist, osId2Mask, maxIndex); 4336 } else { 4337 __kmp_affinity_process_placelist( 4338 &__kmp_affinity_masks, &__kmp_affinity_num_masks, 4339 __kmp_affinity_proclist, osId2Mask, maxIndex); 4340 } 4341 if (__kmp_affinity_num_masks == 0) { 4342 if (__kmp_affinity_verbose || 4343 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { 4344 KMP_WARNING(AffNoValidProcID); 4345 } 4346 __kmp_affinity_type = affinity_none; 4347 __kmp_create_affinity_none_places(); 4348 return; 4349 } 4350 break; 4351 4352 // The other affinity types rely on sorting the hardware threads according to 4353 // some permutation of the machine topology tree. Set __kmp_affinity_compact 4354 // and __kmp_affinity_offset appropriately, then jump to a common code 4355 // fragment to do the sort and create the array of affinity masks. 4356 case affinity_logical: 4357 __kmp_affinity_compact = 0; 4358 if (__kmp_affinity_offset) { 4359 __kmp_affinity_offset = 4360 __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc; 4361 } 4362 goto sortTopology; 4363 4364 case affinity_physical: 4365 if (__kmp_nThreadsPerCore > 1) { 4366 __kmp_affinity_compact = 1; 4367 if (__kmp_affinity_compact >= depth) { 4368 __kmp_affinity_compact = 0; 4369 } 4370 } else { 4371 __kmp_affinity_compact = 0; 4372 } 4373 if (__kmp_affinity_offset) { 4374 __kmp_affinity_offset = 4375 __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc; 4376 } 4377 goto sortTopology; 4378 4379 case affinity_scatter: 4380 if (__kmp_affinity_compact >= depth) { 4381 __kmp_affinity_compact = 0; 4382 } else { 4383 __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact; 4384 } 4385 goto sortTopology; 4386 4387 case affinity_compact: 4388 if (__kmp_affinity_compact >= depth) { 4389 __kmp_affinity_compact = depth - 1; 4390 } 4391 goto sortTopology; 4392 4393 case affinity_balanced: 4394 if (depth <= 1) { 4395 if (__kmp_affinity_verbose || __kmp_affinity_warnings) { 4396 KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY"); 4397 } 4398 __kmp_affinity_type = affinity_none; 4399 __kmp_create_affinity_none_places(); 4400 return; 4401 } else if (!__kmp_topology->is_uniform()) { 4402 // Save the depth for further usage 4403 __kmp_aff_depth = depth; 4404 4405 int core_level = 4406 __kmp_affinity_find_core_level(__kmp_avail_proc, depth - 1); 4407 int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, depth - 1, 4408 core_level); 4409 int maxprocpercore = __kmp_affinity_max_proc_per_core( 4410 __kmp_avail_proc, depth - 1, core_level); 4411 4412 int nproc = ncores * maxprocpercore; 4413 if ((nproc < 2) || (nproc < __kmp_avail_proc)) { 4414 if (__kmp_affinity_verbose || __kmp_affinity_warnings) { 4415 KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY"); 4416 } 4417 __kmp_affinity_type = affinity_none; 4418 return; 4419 } 4420 4421 procarr = (int *)__kmp_allocate(sizeof(int) * nproc); 4422 for (int i = 0; i < nproc; i++) { 4423 procarr[i] = -1; 4424 } 4425 4426 int lastcore = -1; 4427 int inlastcore = 0; 4428 for (int i = 0; i < __kmp_avail_proc; i++) { 4429 int proc = __kmp_topology->at(i).os_id; 4430 int core = __kmp_affinity_find_core(i, depth - 1, core_level); 4431 4432 if (core == lastcore) { 4433 inlastcore++; 4434 } else { 4435 inlastcore = 0; 4436 } 4437 lastcore = core; 4438 4439 procarr[core * maxprocpercore + inlastcore] = proc; 4440 } 4441 } 4442 if (__kmp_affinity_compact >= depth) { 4443 __kmp_affinity_compact = depth - 1; 4444 } 4445 4446 sortTopology: 4447 // Allocate the gtid->affinity mask table. 4448 if (__kmp_affinity_dups) { 4449 __kmp_affinity_num_masks = __kmp_avail_proc; 4450 } else { 4451 __kmp_affinity_num_masks = numUnique; 4452 } 4453 4454 if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) && 4455 (__kmp_affinity_num_places > 0) && 4456 ((unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks)) { 4457 __kmp_affinity_num_masks = __kmp_affinity_num_places; 4458 } 4459 4460 KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); 4461 4462 // Sort the topology table according to the current setting of 4463 // __kmp_affinity_compact, then fill out __kmp_affinity_masks. 4464 __kmp_topology->sort_compact(); 4465 { 4466 int i; 4467 unsigned j; 4468 int num_hw_threads = __kmp_topology->get_num_hw_threads(); 4469 for (i = 0, j = 0; i < num_hw_threads; i++) { 4470 if ((!__kmp_affinity_dups) && (!__kmp_topology->at(i).leader)) { 4471 continue; 4472 } 4473 int osId = __kmp_topology->at(i).os_id; 4474 4475 kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId); 4476 kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, j); 4477 KMP_ASSERT(KMP_CPU_ISSET(osId, src)); 4478 KMP_CPU_COPY(dest, src); 4479 if (++j >= __kmp_affinity_num_masks) { 4480 break; 4481 } 4482 } 4483 KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks); 4484 } 4485 // Sort the topology back using ids 4486 __kmp_topology->sort_ids(); 4487 break; 4488 4489 default: 4490 KMP_ASSERT2(0, "Unexpected affinity setting"); 4491 } 4492 4493 KMP_CPU_FREE_ARRAY(osId2Mask, maxIndex + 1); 4494 } 4495 4496 void __kmp_affinity_initialize(void) { 4497 // Much of the code above was written assuming that if a machine was not 4498 // affinity capable, then __kmp_affinity_type == affinity_none. We now 4499 // explicitly represent this as __kmp_affinity_type == affinity_disabled. 4500 // There are too many checks for __kmp_affinity_type == affinity_none 4501 // in this code. Instead of trying to change them all, check if 4502 // __kmp_affinity_type == affinity_disabled, and if so, slam it with 4503 // affinity_none, call the real initialization routine, then restore 4504 // __kmp_affinity_type to affinity_disabled. 4505 int disabled = (__kmp_affinity_type == affinity_disabled); 4506 if (!KMP_AFFINITY_CAPABLE()) { 4507 KMP_ASSERT(disabled); 4508 } 4509 if (disabled) { 4510 __kmp_affinity_type = affinity_none; 4511 } 4512 __kmp_aux_affinity_initialize(); 4513 if (disabled) { 4514 __kmp_affinity_type = affinity_disabled; 4515 } 4516 } 4517 4518 void __kmp_affinity_uninitialize(void) { 4519 if (__kmp_affinity_masks != NULL) { 4520 KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); 4521 __kmp_affinity_masks = NULL; 4522 } 4523 if (__kmp_affin_fullMask != NULL) { 4524 KMP_CPU_FREE(__kmp_affin_fullMask); 4525 __kmp_affin_fullMask = NULL; 4526 } 4527 if (__kmp_affin_origMask != NULL) { 4528 KMP_CPU_FREE(__kmp_affin_origMask); 4529 __kmp_affin_origMask = NULL; 4530 } 4531 __kmp_affinity_num_masks = 0; 4532 __kmp_affinity_type = affinity_default; 4533 __kmp_affinity_num_places = 0; 4534 if (__kmp_affinity_proclist != NULL) { 4535 __kmp_free(__kmp_affinity_proclist); 4536 __kmp_affinity_proclist = NULL; 4537 } 4538 if (procarr != NULL) { 4539 __kmp_free(procarr); 4540 procarr = NULL; 4541 } 4542 #if KMP_USE_HWLOC 4543 if (__kmp_hwloc_topology != NULL) { 4544 hwloc_topology_destroy(__kmp_hwloc_topology); 4545 __kmp_hwloc_topology = NULL; 4546 } 4547 #endif 4548 if (__kmp_hw_subset) { 4549 kmp_hw_subset_t::deallocate(__kmp_hw_subset); 4550 __kmp_hw_subset = nullptr; 4551 } 4552 if (__kmp_topology) { 4553 kmp_topology_t::deallocate(__kmp_topology); 4554 __kmp_topology = nullptr; 4555 } 4556 KMPAffinity::destroy_api(); 4557 } 4558 4559 void __kmp_affinity_set_init_mask(int gtid, int isa_root) { 4560 if (!KMP_AFFINITY_CAPABLE()) { 4561 return; 4562 } 4563 4564 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); 4565 if (th->th.th_affin_mask == NULL) { 4566 KMP_CPU_ALLOC(th->th.th_affin_mask); 4567 } else { 4568 KMP_CPU_ZERO(th->th.th_affin_mask); 4569 } 4570 4571 // Copy the thread mask to the kmp_info_t structure. If 4572 // __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one that 4573 // has all of the OS proc ids set, or if __kmp_affinity_respect_mask is set, 4574 // then the full mask is the same as the mask of the initialization thread. 4575 kmp_affin_mask_t *mask; 4576 int i; 4577 4578 if (KMP_AFFINITY_NON_PROC_BIND) { 4579 if ((__kmp_affinity_type == affinity_none) || 4580 (__kmp_affinity_type == affinity_balanced) || 4581 KMP_HIDDEN_HELPER_THREAD(gtid)) { 4582 #if KMP_GROUP_AFFINITY 4583 if (__kmp_num_proc_groups > 1) { 4584 return; 4585 } 4586 #endif 4587 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4588 i = 0; 4589 mask = __kmp_affin_fullMask; 4590 } else { 4591 int mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid); 4592 KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0); 4593 i = (mask_idx + __kmp_affinity_offset) % __kmp_affinity_num_masks; 4594 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); 4595 } 4596 } else { 4597 if ((!isa_root) || KMP_HIDDEN_HELPER_THREAD(gtid) || 4598 (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) { 4599 #if KMP_GROUP_AFFINITY 4600 if (__kmp_num_proc_groups > 1) { 4601 return; 4602 } 4603 #endif 4604 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4605 i = KMP_PLACE_ALL; 4606 mask = __kmp_affin_fullMask; 4607 } else { 4608 // int i = some hash function or just a counter that doesn't 4609 // always start at 0. Use adjusted gtid for now. 4610 int mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid); 4611 KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0); 4612 i = (mask_idx + __kmp_affinity_offset) % __kmp_affinity_num_masks; 4613 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); 4614 } 4615 } 4616 4617 th->th.th_current_place = i; 4618 if (isa_root || KMP_HIDDEN_HELPER_THREAD(gtid)) { 4619 th->th.th_new_place = i; 4620 th->th.th_first_place = 0; 4621 th->th.th_last_place = __kmp_affinity_num_masks - 1; 4622 } else if (KMP_AFFINITY_NON_PROC_BIND) { 4623 // When using a Non-OMP_PROC_BIND affinity method, 4624 // set all threads' place-partition-var to the entire place list 4625 th->th.th_first_place = 0; 4626 th->th.th_last_place = __kmp_affinity_num_masks - 1; 4627 } 4628 4629 if (i == KMP_PLACE_ALL) { 4630 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n", 4631 gtid)); 4632 } else { 4633 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n", 4634 gtid, i)); 4635 } 4636 4637 KMP_CPU_COPY(th->th.th_affin_mask, mask); 4638 4639 if (__kmp_affinity_verbose && !KMP_HIDDEN_HELPER_THREAD(gtid) 4640 /* to avoid duplicate printing (will be correctly printed on barrier) */ 4641 && (__kmp_affinity_type == affinity_none || 4642 (i != KMP_PLACE_ALL && __kmp_affinity_type != affinity_balanced))) { 4643 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4644 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4645 th->th.th_affin_mask); 4646 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), 4647 __kmp_gettid(), gtid, buf); 4648 } 4649 4650 #if KMP_DEBUG 4651 // Hidden helper thread affinity only printed for debug builds 4652 if (__kmp_affinity_verbose && KMP_HIDDEN_HELPER_THREAD(gtid)) { 4653 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4654 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4655 th->th.th_affin_mask); 4656 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY (hidden helper thread)", 4657 (kmp_int32)getpid(), __kmp_gettid(), gtid, buf); 4658 } 4659 #endif 4660 4661 #if KMP_OS_WINDOWS 4662 // On Windows* OS, the process affinity mask might have changed. If the user 4663 // didn't request affinity and this call fails, just continue silently. 4664 // See CQ171393. 4665 if (__kmp_affinity_type == affinity_none) { 4666 __kmp_set_system_affinity(th->th.th_affin_mask, FALSE); 4667 } else 4668 #endif 4669 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); 4670 } 4671 4672 void __kmp_affinity_set_place(int gtid) { 4673 if (!KMP_AFFINITY_CAPABLE()) { 4674 return; 4675 } 4676 4677 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); 4678 4679 KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current " 4680 "place = %d)\n", 4681 gtid, th->th.th_new_place, th->th.th_current_place)); 4682 4683 // Check that the new place is within this thread's partition. 4684 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4685 KMP_ASSERT(th->th.th_new_place >= 0); 4686 KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks); 4687 if (th->th.th_first_place <= th->th.th_last_place) { 4688 KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) && 4689 (th->th.th_new_place <= th->th.th_last_place)); 4690 } else { 4691 KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) || 4692 (th->th.th_new_place >= th->th.th_last_place)); 4693 } 4694 4695 // Copy the thread mask to the kmp_info_t structure, 4696 // and set this thread's affinity. 4697 kmp_affin_mask_t *mask = 4698 KMP_CPU_INDEX(__kmp_affinity_masks, th->th.th_new_place); 4699 KMP_CPU_COPY(th->th.th_affin_mask, mask); 4700 th->th.th_current_place = th->th.th_new_place; 4701 4702 if (__kmp_affinity_verbose) { 4703 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4704 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4705 th->th.th_affin_mask); 4706 KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(), 4707 __kmp_gettid(), gtid, buf); 4708 } 4709 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); 4710 } 4711 4712 int __kmp_aux_set_affinity(void **mask) { 4713 int gtid; 4714 kmp_info_t *th; 4715 int retval; 4716 4717 if (!KMP_AFFINITY_CAPABLE()) { 4718 return -1; 4719 } 4720 4721 gtid = __kmp_entry_gtid(); 4722 KA_TRACE( 4723 1000, (""); { 4724 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4725 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4726 (kmp_affin_mask_t *)(*mask)); 4727 __kmp_debug_printf( 4728 "kmp_set_affinity: setting affinity mask for thread %d = %s\n", 4729 gtid, buf); 4730 }); 4731 4732 if (__kmp_env_consistency_check) { 4733 if ((mask == NULL) || (*mask == NULL)) { 4734 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4735 } else { 4736 unsigned proc; 4737 int num_procs = 0; 4738 4739 KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) { 4740 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 4741 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4742 } 4743 if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) { 4744 continue; 4745 } 4746 num_procs++; 4747 } 4748 if (num_procs == 0) { 4749 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4750 } 4751 4752 #if KMP_GROUP_AFFINITY 4753 if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) { 4754 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4755 } 4756 #endif /* KMP_GROUP_AFFINITY */ 4757 } 4758 } 4759 4760 th = __kmp_threads[gtid]; 4761 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4762 retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); 4763 if (retval == 0) { 4764 KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask)); 4765 } 4766 4767 th->th.th_current_place = KMP_PLACE_UNDEFINED; 4768 th->th.th_new_place = KMP_PLACE_UNDEFINED; 4769 th->th.th_first_place = 0; 4770 th->th.th_last_place = __kmp_affinity_num_masks - 1; 4771 4772 // Turn off 4.0 affinity for the current tread at this parallel level. 4773 th->th.th_current_task->td_icvs.proc_bind = proc_bind_false; 4774 4775 return retval; 4776 } 4777 4778 int __kmp_aux_get_affinity(void **mask) { 4779 int gtid; 4780 int retval; 4781 #if KMP_OS_WINDOWS || KMP_DEBUG 4782 kmp_info_t *th; 4783 #endif 4784 if (!KMP_AFFINITY_CAPABLE()) { 4785 return -1; 4786 } 4787 4788 gtid = __kmp_entry_gtid(); 4789 #if KMP_OS_WINDOWS || KMP_DEBUG 4790 th = __kmp_threads[gtid]; 4791 #else 4792 (void)gtid; // unused variable 4793 #endif 4794 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4795 4796 KA_TRACE( 4797 1000, (""); { 4798 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4799 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4800 th->th.th_affin_mask); 4801 __kmp_printf( 4802 "kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid, 4803 buf); 4804 }); 4805 4806 if (__kmp_env_consistency_check) { 4807 if ((mask == NULL) || (*mask == NULL)) { 4808 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity"); 4809 } 4810 } 4811 4812 #if !KMP_OS_WINDOWS 4813 4814 retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); 4815 KA_TRACE( 4816 1000, (""); { 4817 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4818 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4819 (kmp_affin_mask_t *)(*mask)); 4820 __kmp_printf( 4821 "kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid, 4822 buf); 4823 }); 4824 return retval; 4825 4826 #else 4827 (void)retval; 4828 4829 KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask); 4830 return 0; 4831 4832 #endif /* KMP_OS_WINDOWS */ 4833 } 4834 4835 int __kmp_aux_get_affinity_max_proc() { 4836 if (!KMP_AFFINITY_CAPABLE()) { 4837 return 0; 4838 } 4839 #if KMP_GROUP_AFFINITY 4840 if (__kmp_num_proc_groups > 1) { 4841 return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT); 4842 } 4843 #endif 4844 return __kmp_xproc; 4845 } 4846 4847 int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) { 4848 if (!KMP_AFFINITY_CAPABLE()) { 4849 return -1; 4850 } 4851 4852 KA_TRACE( 4853 1000, (""); { 4854 int gtid = __kmp_entry_gtid(); 4855 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4856 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4857 (kmp_affin_mask_t *)(*mask)); 4858 __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in " 4859 "affinity mask for thread %d = %s\n", 4860 proc, gtid, buf); 4861 }); 4862 4863 if (__kmp_env_consistency_check) { 4864 if ((mask == NULL) || (*mask == NULL)) { 4865 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc"); 4866 } 4867 } 4868 4869 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 4870 return -1; 4871 } 4872 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 4873 return -2; 4874 } 4875 4876 KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask)); 4877 return 0; 4878 } 4879 4880 int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) { 4881 if (!KMP_AFFINITY_CAPABLE()) { 4882 return -1; 4883 } 4884 4885 KA_TRACE( 4886 1000, (""); { 4887 int gtid = __kmp_entry_gtid(); 4888 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4889 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4890 (kmp_affin_mask_t *)(*mask)); 4891 __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in " 4892 "affinity mask for thread %d = %s\n", 4893 proc, gtid, buf); 4894 }); 4895 4896 if (__kmp_env_consistency_check) { 4897 if ((mask == NULL) || (*mask == NULL)) { 4898 KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc"); 4899 } 4900 } 4901 4902 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 4903 return -1; 4904 } 4905 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 4906 return -2; 4907 } 4908 4909 KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask)); 4910 return 0; 4911 } 4912 4913 int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) { 4914 if (!KMP_AFFINITY_CAPABLE()) { 4915 return -1; 4916 } 4917 4918 KA_TRACE( 4919 1000, (""); { 4920 int gtid = __kmp_entry_gtid(); 4921 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4922 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4923 (kmp_affin_mask_t *)(*mask)); 4924 __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in " 4925 "affinity mask for thread %d = %s\n", 4926 proc, gtid, buf); 4927 }); 4928 4929 if (__kmp_env_consistency_check) { 4930 if ((mask == NULL) || (*mask == NULL)) { 4931 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc"); 4932 } 4933 } 4934 4935 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 4936 return -1; 4937 } 4938 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 4939 return 0; 4940 } 4941 4942 return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask)); 4943 } 4944 4945 // Dynamic affinity settings - Affinity balanced 4946 void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) { 4947 KMP_DEBUG_ASSERT(th); 4948 bool fine_gran = true; 4949 int tid = th->th.th_info.ds.ds_tid; 4950 4951 // Do not perform balanced affinity for the hidden helper threads 4952 if (KMP_HIDDEN_HELPER_THREAD(__kmp_gtid_from_thread(th))) 4953 return; 4954 4955 switch (__kmp_affinity_gran) { 4956 case KMP_HW_THREAD: 4957 break; 4958 case KMP_HW_CORE: 4959 if (__kmp_nThreadsPerCore > 1) { 4960 fine_gran = false; 4961 } 4962 break; 4963 case KMP_HW_SOCKET: 4964 if (nCoresPerPkg > 1) { 4965 fine_gran = false; 4966 } 4967 break; 4968 default: 4969 fine_gran = false; 4970 } 4971 4972 if (__kmp_topology->is_uniform()) { 4973 int coreID; 4974 int threadID; 4975 // Number of hyper threads per core in HT machine 4976 int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores; 4977 // Number of cores 4978 int ncores = __kmp_ncores; 4979 if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) { 4980 __kmp_nth_per_core = __kmp_avail_proc / nPackages; 4981 ncores = nPackages; 4982 } 4983 // How many threads will be bound to each core 4984 int chunk = nthreads / ncores; 4985 // How many cores will have an additional thread bound to it - "big cores" 4986 int big_cores = nthreads % ncores; 4987 // Number of threads on the big cores 4988 int big_nth = (chunk + 1) * big_cores; 4989 if (tid < big_nth) { 4990 coreID = tid / (chunk + 1); 4991 threadID = (tid % (chunk + 1)) % __kmp_nth_per_core; 4992 } else { // tid >= big_nth 4993 coreID = (tid - big_cores) / chunk; 4994 threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core; 4995 } 4996 KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(), 4997 "Illegal set affinity operation when not capable"); 4998 4999 kmp_affin_mask_t *mask = th->th.th_affin_mask; 5000 KMP_CPU_ZERO(mask); 5001 5002 if (fine_gran) { 5003 int osID = 5004 __kmp_topology->at(coreID * __kmp_nth_per_core + threadID).os_id; 5005 KMP_CPU_SET(osID, mask); 5006 } else { 5007 for (int i = 0; i < __kmp_nth_per_core; i++) { 5008 int osID; 5009 osID = __kmp_topology->at(coreID * __kmp_nth_per_core + i).os_id; 5010 KMP_CPU_SET(osID, mask); 5011 } 5012 } 5013 if (__kmp_affinity_verbose) { 5014 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5015 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); 5016 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), 5017 __kmp_gettid(), tid, buf); 5018 } 5019 __kmp_set_system_affinity(mask, TRUE); 5020 } else { // Non-uniform topology 5021 5022 kmp_affin_mask_t *mask = th->th.th_affin_mask; 5023 KMP_CPU_ZERO(mask); 5024 5025 int core_level = 5026 __kmp_affinity_find_core_level(__kmp_avail_proc, __kmp_aff_depth - 1); 5027 int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, 5028 __kmp_aff_depth - 1, core_level); 5029 int nth_per_core = __kmp_affinity_max_proc_per_core( 5030 __kmp_avail_proc, __kmp_aff_depth - 1, core_level); 5031 5032 // For performance gain consider the special case nthreads == 5033 // __kmp_avail_proc 5034 if (nthreads == __kmp_avail_proc) { 5035 if (fine_gran) { 5036 int osID = __kmp_topology->at(tid).os_id; 5037 KMP_CPU_SET(osID, mask); 5038 } else { 5039 int core = 5040 __kmp_affinity_find_core(tid, __kmp_aff_depth - 1, core_level); 5041 for (int i = 0; i < __kmp_avail_proc; i++) { 5042 int osID = __kmp_topology->at(i).os_id; 5043 if (__kmp_affinity_find_core(i, __kmp_aff_depth - 1, core_level) == 5044 core) { 5045 KMP_CPU_SET(osID, mask); 5046 } 5047 } 5048 } 5049 } else if (nthreads <= ncores) { 5050 5051 int core = 0; 5052 for (int i = 0; i < ncores; i++) { 5053 // Check if this core from procarr[] is in the mask 5054 int in_mask = 0; 5055 for (int j = 0; j < nth_per_core; j++) { 5056 if (procarr[i * nth_per_core + j] != -1) { 5057 in_mask = 1; 5058 break; 5059 } 5060 } 5061 if (in_mask) { 5062 if (tid == core) { 5063 for (int j = 0; j < nth_per_core; j++) { 5064 int osID = procarr[i * nth_per_core + j]; 5065 if (osID != -1) { 5066 KMP_CPU_SET(osID, mask); 5067 // For fine granularity it is enough to set the first available 5068 // osID for this core 5069 if (fine_gran) { 5070 break; 5071 } 5072 } 5073 } 5074 break; 5075 } else { 5076 core++; 5077 } 5078 } 5079 } 5080 } else { // nthreads > ncores 5081 // Array to save the number of processors at each core 5082 int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores); 5083 // Array to save the number of cores with "x" available processors; 5084 int *ncores_with_x_procs = 5085 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); 5086 // Array to save the number of cores with # procs from x to nth_per_core 5087 int *ncores_with_x_to_max_procs = 5088 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); 5089 5090 for (int i = 0; i <= nth_per_core; i++) { 5091 ncores_with_x_procs[i] = 0; 5092 ncores_with_x_to_max_procs[i] = 0; 5093 } 5094 5095 for (int i = 0; i < ncores; i++) { 5096 int cnt = 0; 5097 for (int j = 0; j < nth_per_core; j++) { 5098 if (procarr[i * nth_per_core + j] != -1) { 5099 cnt++; 5100 } 5101 } 5102 nproc_at_core[i] = cnt; 5103 ncores_with_x_procs[cnt]++; 5104 } 5105 5106 for (int i = 0; i <= nth_per_core; i++) { 5107 for (int j = i; j <= nth_per_core; j++) { 5108 ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j]; 5109 } 5110 } 5111 5112 // Max number of processors 5113 int nproc = nth_per_core * ncores; 5114 // An array to keep number of threads per each context 5115 int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc); 5116 for (int i = 0; i < nproc; i++) { 5117 newarr[i] = 0; 5118 } 5119 5120 int nth = nthreads; 5121 int flag = 0; 5122 while (nth > 0) { 5123 for (int j = 1; j <= nth_per_core; j++) { 5124 int cnt = ncores_with_x_to_max_procs[j]; 5125 for (int i = 0; i < ncores; i++) { 5126 // Skip the core with 0 processors 5127 if (nproc_at_core[i] == 0) { 5128 continue; 5129 } 5130 for (int k = 0; k < nth_per_core; k++) { 5131 if (procarr[i * nth_per_core + k] != -1) { 5132 if (newarr[i * nth_per_core + k] == 0) { 5133 newarr[i * nth_per_core + k] = 1; 5134 cnt--; 5135 nth--; 5136 break; 5137 } else { 5138 if (flag != 0) { 5139 newarr[i * nth_per_core + k]++; 5140 cnt--; 5141 nth--; 5142 break; 5143 } 5144 } 5145 } 5146 } 5147 if (cnt == 0 || nth == 0) { 5148 break; 5149 } 5150 } 5151 if (nth == 0) { 5152 break; 5153 } 5154 } 5155 flag = 1; 5156 } 5157 int sum = 0; 5158 for (int i = 0; i < nproc; i++) { 5159 sum += newarr[i]; 5160 if (sum > tid) { 5161 if (fine_gran) { 5162 int osID = procarr[i]; 5163 KMP_CPU_SET(osID, mask); 5164 } else { 5165 int coreID = i / nth_per_core; 5166 for (int ii = 0; ii < nth_per_core; ii++) { 5167 int osID = procarr[coreID * nth_per_core + ii]; 5168 if (osID != -1) { 5169 KMP_CPU_SET(osID, mask); 5170 } 5171 } 5172 } 5173 break; 5174 } 5175 } 5176 __kmp_free(newarr); 5177 } 5178 5179 if (__kmp_affinity_verbose) { 5180 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5181 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); 5182 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), 5183 __kmp_gettid(), tid, buf); 5184 } 5185 __kmp_set_system_affinity(mask, TRUE); 5186 } 5187 } 5188 5189 #if KMP_OS_LINUX || KMP_OS_FREEBSD 5190 // We don't need this entry for Windows because 5191 // there is GetProcessAffinityMask() api 5192 // 5193 // The intended usage is indicated by these steps: 5194 // 1) The user gets the current affinity mask 5195 // 2) Then sets the affinity by calling this function 5196 // 3) Error check the return value 5197 // 4) Use non-OpenMP parallelization 5198 // 5) Reset the affinity to what was stored in step 1) 5199 #ifdef __cplusplus 5200 extern "C" 5201 #endif 5202 int 5203 kmp_set_thread_affinity_mask_initial() 5204 // the function returns 0 on success, 5205 // -1 if we cannot bind thread 5206 // >0 (errno) if an error happened during binding 5207 { 5208 int gtid = __kmp_get_gtid(); 5209 if (gtid < 0) { 5210 // Do not touch non-omp threads 5211 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5212 "non-omp thread, returning\n")); 5213 return -1; 5214 } 5215 if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) { 5216 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5217 "affinity not initialized, returning\n")); 5218 return -1; 5219 } 5220 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5221 "set full mask for thread %d\n", 5222 gtid)); 5223 KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL); 5224 return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE); 5225 } 5226 #endif 5227 5228 #endif // KMP_AFFINITY_SUPPORTED 5229