1 /* 2 * kmp_affinity.cpp -- affinity management 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_i18n.h" 16 #include "kmp_io.h" 17 #include "kmp_str.h" 18 #include "kmp_wrapper_getpid.h" 19 #if KMP_USE_HIER_SCHED 20 #include "kmp_dispatch_hier.h" 21 #endif 22 #if KMP_USE_HWLOC 23 // Copied from hwloc 24 #define HWLOC_GROUP_KIND_INTEL_MODULE 102 25 #define HWLOC_GROUP_KIND_INTEL_TILE 103 26 #define HWLOC_GROUP_KIND_INTEL_DIE 104 27 #define HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP 220 28 #endif 29 #include <ctype.h> 30 31 // The machine topology 32 kmp_topology_t *__kmp_topology = nullptr; 33 // KMP_HW_SUBSET environment variable 34 kmp_hw_subset_t *__kmp_hw_subset = nullptr; 35 36 // Store the real or imagined machine hierarchy here 37 static hierarchy_info machine_hierarchy; 38 39 void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); } 40 41 void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) { 42 kmp_uint32 depth; 43 // The test below is true if affinity is available, but set to "none". Need to 44 // init on first use of hierarchical barrier. 45 if (TCR_1(machine_hierarchy.uninitialized)) 46 machine_hierarchy.init(nproc); 47 48 // Adjust the hierarchy in case num threads exceeds original 49 if (nproc > machine_hierarchy.base_num_threads) 50 machine_hierarchy.resize(nproc); 51 52 depth = machine_hierarchy.depth; 53 KMP_DEBUG_ASSERT(depth > 0); 54 55 thr_bar->depth = depth; 56 __kmp_type_convert(machine_hierarchy.numPerLevel[0] - 1, 57 &(thr_bar->base_leaf_kids)); 58 thr_bar->skip_per_level = machine_hierarchy.skipPerLevel; 59 } 60 61 static int nCoresPerPkg, nPackages; 62 static int __kmp_nThreadsPerCore; 63 #ifndef KMP_DFLT_NTH_CORES 64 static int __kmp_ncores; 65 #endif 66 67 const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural) { 68 switch (type) { 69 case KMP_HW_SOCKET: 70 return ((plural) ? KMP_I18N_STR(Sockets) : KMP_I18N_STR(Socket)); 71 case KMP_HW_DIE: 72 return ((plural) ? KMP_I18N_STR(Dice) : KMP_I18N_STR(Die)); 73 case KMP_HW_MODULE: 74 return ((plural) ? KMP_I18N_STR(Modules) : KMP_I18N_STR(Module)); 75 case KMP_HW_TILE: 76 return ((plural) ? KMP_I18N_STR(Tiles) : KMP_I18N_STR(Tile)); 77 case KMP_HW_NUMA: 78 return ((plural) ? KMP_I18N_STR(NumaDomains) : KMP_I18N_STR(NumaDomain)); 79 case KMP_HW_L3: 80 return ((plural) ? KMP_I18N_STR(L3Caches) : KMP_I18N_STR(L3Cache)); 81 case KMP_HW_L2: 82 return ((plural) ? KMP_I18N_STR(L2Caches) : KMP_I18N_STR(L2Cache)); 83 case KMP_HW_L1: 84 return ((plural) ? KMP_I18N_STR(L1Caches) : KMP_I18N_STR(L1Cache)); 85 case KMP_HW_LLC: 86 return ((plural) ? KMP_I18N_STR(LLCaches) : KMP_I18N_STR(LLCache)); 87 case KMP_HW_CORE: 88 return ((plural) ? KMP_I18N_STR(Cores) : KMP_I18N_STR(Core)); 89 case KMP_HW_THREAD: 90 return ((plural) ? KMP_I18N_STR(Threads) : KMP_I18N_STR(Thread)); 91 case KMP_HW_PROC_GROUP: 92 return ((plural) ? KMP_I18N_STR(ProcGroups) : KMP_I18N_STR(ProcGroup)); 93 } 94 return KMP_I18N_STR(Unknown); 95 } 96 97 const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural) { 98 switch (type) { 99 case KMP_HW_SOCKET: 100 return ((plural) ? "sockets" : "socket"); 101 case KMP_HW_DIE: 102 return ((plural) ? "dice" : "die"); 103 case KMP_HW_MODULE: 104 return ((plural) ? "modules" : "module"); 105 case KMP_HW_TILE: 106 return ((plural) ? "tiles" : "tile"); 107 case KMP_HW_NUMA: 108 return ((plural) ? "numa_domains" : "numa_domain"); 109 case KMP_HW_L3: 110 return ((plural) ? "l3_caches" : "l3_cache"); 111 case KMP_HW_L2: 112 return ((plural) ? "l2_caches" : "l2_cache"); 113 case KMP_HW_L1: 114 return ((plural) ? "l1_caches" : "l1_cache"); 115 case KMP_HW_LLC: 116 return ((plural) ? "ll_caches" : "ll_cache"); 117 case KMP_HW_CORE: 118 return ((plural) ? "cores" : "core"); 119 case KMP_HW_THREAD: 120 return ((plural) ? "threads" : "thread"); 121 case KMP_HW_PROC_GROUP: 122 return ((plural) ? "proc_groups" : "proc_group"); 123 } 124 return ((plural) ? "unknowns" : "unknown"); 125 } 126 127 const char *__kmp_hw_get_core_type_string(kmp_hw_core_type_t type) { 128 switch (type) { 129 case KMP_HW_CORE_TYPE_UNKNOWN: 130 return "unknown"; 131 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 132 case KMP_HW_CORE_TYPE_ATOM: 133 return "Intel Atom(R) processor"; 134 case KMP_HW_CORE_TYPE_CORE: 135 return "Intel(R) Core(TM) processor"; 136 #endif 137 } 138 return "unknown"; 139 } 140 141 //////////////////////////////////////////////////////////////////////////////// 142 // kmp_hw_thread_t methods 143 int kmp_hw_thread_t::compare_ids(const void *a, const void *b) { 144 const kmp_hw_thread_t *ahwthread = (const kmp_hw_thread_t *)a; 145 const kmp_hw_thread_t *bhwthread = (const kmp_hw_thread_t *)b; 146 int depth = __kmp_topology->get_depth(); 147 for (int level = 0; level < depth; ++level) { 148 if (ahwthread->ids[level] < bhwthread->ids[level]) 149 return -1; 150 else if (ahwthread->ids[level] > bhwthread->ids[level]) 151 return 1; 152 } 153 if (ahwthread->os_id < bhwthread->os_id) 154 return -1; 155 else if (ahwthread->os_id > bhwthread->os_id) 156 return 1; 157 return 0; 158 } 159 160 #if KMP_AFFINITY_SUPPORTED 161 int kmp_hw_thread_t::compare_compact(const void *a, const void *b) { 162 int i; 163 const kmp_hw_thread_t *aa = (const kmp_hw_thread_t *)a; 164 const kmp_hw_thread_t *bb = (const kmp_hw_thread_t *)b; 165 int depth = __kmp_topology->get_depth(); 166 KMP_DEBUG_ASSERT(__kmp_affinity_compact >= 0); 167 KMP_DEBUG_ASSERT(__kmp_affinity_compact <= depth); 168 for (i = 0; i < __kmp_affinity_compact; i++) { 169 int j = depth - i - 1; 170 if (aa->sub_ids[j] < bb->sub_ids[j]) 171 return -1; 172 if (aa->sub_ids[j] > bb->sub_ids[j]) 173 return 1; 174 } 175 for (; i < depth; i++) { 176 int j = i - __kmp_affinity_compact; 177 if (aa->sub_ids[j] < bb->sub_ids[j]) 178 return -1; 179 if (aa->sub_ids[j] > bb->sub_ids[j]) 180 return 1; 181 } 182 return 0; 183 } 184 #endif 185 186 void kmp_hw_thread_t::print() const { 187 int depth = __kmp_topology->get_depth(); 188 printf("%4d ", os_id); 189 for (int i = 0; i < depth; ++i) { 190 printf("%4d ", ids[i]); 191 } 192 if (attrs) { 193 if (attrs.is_core_type_valid()) 194 printf(" (%s)", __kmp_hw_get_core_type_string(attrs.get_core_type())); 195 if (attrs.is_core_eff_valid()) 196 printf(" (eff=%d)", attrs.get_core_eff()); 197 } 198 printf("\n"); 199 } 200 201 //////////////////////////////////////////////////////////////////////////////// 202 // kmp_topology_t methods 203 204 // Add a layer to the topology based on the ids. Assume the topology 205 // is perfectly nested (i.e., so no object has more than one parent) 206 void kmp_topology_t::_insert_layer(kmp_hw_t type, const int *ids) { 207 // Figure out where the layer should go by comparing the ids of the current 208 // layers with the new ids 209 int target_layer; 210 int previous_id = kmp_hw_thread_t::UNKNOWN_ID; 211 int previous_new_id = kmp_hw_thread_t::UNKNOWN_ID; 212 213 // Start from the highest layer and work down to find target layer 214 // If new layer is equal to another layer then put the new layer above 215 for (target_layer = 0; target_layer < depth; ++target_layer) { 216 bool layers_equal = true; 217 bool strictly_above_target_layer = false; 218 for (int i = 0; i < num_hw_threads; ++i) { 219 int id = hw_threads[i].ids[target_layer]; 220 int new_id = ids[i]; 221 if (id != previous_id && new_id == previous_new_id) { 222 // Found the layer we are strictly above 223 strictly_above_target_layer = true; 224 layers_equal = false; 225 break; 226 } else if (id == previous_id && new_id != previous_new_id) { 227 // Found a layer we are below. Move to next layer and check. 228 layers_equal = false; 229 break; 230 } 231 previous_id = id; 232 previous_new_id = new_id; 233 } 234 if (strictly_above_target_layer || layers_equal) 235 break; 236 } 237 238 // Found the layer we are above. Now move everything to accommodate the new 239 // layer. And put the new ids and type into the topology. 240 for (int i = depth - 1, j = depth; i >= target_layer; --i, --j) 241 types[j] = types[i]; 242 types[target_layer] = type; 243 for (int k = 0; k < num_hw_threads; ++k) { 244 for (int i = depth - 1, j = depth; i >= target_layer; --i, --j) 245 hw_threads[k].ids[j] = hw_threads[k].ids[i]; 246 hw_threads[k].ids[target_layer] = ids[k]; 247 } 248 equivalent[type] = type; 249 depth++; 250 } 251 252 #if KMP_GROUP_AFFINITY 253 // Insert the Windows Processor Group structure into the topology 254 void kmp_topology_t::_insert_windows_proc_groups() { 255 // Do not insert the processor group structure for a single group 256 if (__kmp_num_proc_groups == 1) 257 return; 258 kmp_affin_mask_t *mask; 259 int *ids = (int *)__kmp_allocate(sizeof(int) * num_hw_threads); 260 KMP_CPU_ALLOC(mask); 261 for (int i = 0; i < num_hw_threads; ++i) { 262 KMP_CPU_ZERO(mask); 263 KMP_CPU_SET(hw_threads[i].os_id, mask); 264 ids[i] = __kmp_get_proc_group(mask); 265 } 266 KMP_CPU_FREE(mask); 267 _insert_layer(KMP_HW_PROC_GROUP, ids); 268 __kmp_free(ids); 269 } 270 #endif 271 272 // Remove layers that don't add information to the topology. 273 // This is done by having the layer take on the id = UNKNOWN_ID (-1) 274 void kmp_topology_t::_remove_radix1_layers() { 275 int preference[KMP_HW_LAST]; 276 int top_index1, top_index2; 277 // Set up preference associative array 278 preference[KMP_HW_SOCKET] = 110; 279 preference[KMP_HW_PROC_GROUP] = 100; 280 preference[KMP_HW_CORE] = 95; 281 preference[KMP_HW_THREAD] = 90; 282 preference[KMP_HW_NUMA] = 85; 283 preference[KMP_HW_DIE] = 80; 284 preference[KMP_HW_TILE] = 75; 285 preference[KMP_HW_MODULE] = 73; 286 preference[KMP_HW_L3] = 70; 287 preference[KMP_HW_L2] = 65; 288 preference[KMP_HW_L1] = 60; 289 preference[KMP_HW_LLC] = 5; 290 top_index1 = 0; 291 top_index2 = 1; 292 while (top_index1 < depth - 1 && top_index2 < depth) { 293 kmp_hw_t type1 = types[top_index1]; 294 kmp_hw_t type2 = types[top_index2]; 295 KMP_ASSERT_VALID_HW_TYPE(type1); 296 KMP_ASSERT_VALID_HW_TYPE(type2); 297 // Do not allow the three main topology levels (sockets, cores, threads) to 298 // be compacted down 299 if ((type1 == KMP_HW_THREAD || type1 == KMP_HW_CORE || 300 type1 == KMP_HW_SOCKET) && 301 (type2 == KMP_HW_THREAD || type2 == KMP_HW_CORE || 302 type2 == KMP_HW_SOCKET)) { 303 top_index1 = top_index2++; 304 continue; 305 } 306 bool radix1 = true; 307 bool all_same = true; 308 int id1 = hw_threads[0].ids[top_index1]; 309 int id2 = hw_threads[0].ids[top_index2]; 310 int pref1 = preference[type1]; 311 int pref2 = preference[type2]; 312 for (int hwidx = 1; hwidx < num_hw_threads; ++hwidx) { 313 if (hw_threads[hwidx].ids[top_index1] == id1 && 314 hw_threads[hwidx].ids[top_index2] != id2) { 315 radix1 = false; 316 break; 317 } 318 if (hw_threads[hwidx].ids[top_index2] != id2) 319 all_same = false; 320 id1 = hw_threads[hwidx].ids[top_index1]; 321 id2 = hw_threads[hwidx].ids[top_index2]; 322 } 323 if (radix1) { 324 // Select the layer to remove based on preference 325 kmp_hw_t remove_type, keep_type; 326 int remove_layer, remove_layer_ids; 327 if (pref1 > pref2) { 328 remove_type = type2; 329 remove_layer = remove_layer_ids = top_index2; 330 keep_type = type1; 331 } else { 332 remove_type = type1; 333 remove_layer = remove_layer_ids = top_index1; 334 keep_type = type2; 335 } 336 // If all the indexes for the second (deeper) layer are the same. 337 // e.g., all are zero, then make sure to keep the first layer's ids 338 if (all_same) 339 remove_layer_ids = top_index2; 340 // Remove radix one type by setting the equivalence, removing the id from 341 // the hw threads and removing the layer from types and depth 342 set_equivalent_type(remove_type, keep_type); 343 for (int idx = 0; idx < num_hw_threads; ++idx) { 344 kmp_hw_thread_t &hw_thread = hw_threads[idx]; 345 for (int d = remove_layer_ids; d < depth - 1; ++d) 346 hw_thread.ids[d] = hw_thread.ids[d + 1]; 347 } 348 for (int idx = remove_layer; idx < depth - 1; ++idx) 349 types[idx] = types[idx + 1]; 350 depth--; 351 } else { 352 top_index1 = top_index2++; 353 } 354 } 355 KMP_ASSERT(depth > 0); 356 } 357 358 void kmp_topology_t::_set_last_level_cache() { 359 if (get_equivalent_type(KMP_HW_L3) != KMP_HW_UNKNOWN) 360 set_equivalent_type(KMP_HW_LLC, KMP_HW_L3); 361 else if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN) 362 set_equivalent_type(KMP_HW_LLC, KMP_HW_L2); 363 #if KMP_MIC_SUPPORTED 364 else if (__kmp_mic_type == mic3) { 365 if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN) 366 set_equivalent_type(KMP_HW_LLC, KMP_HW_L2); 367 else if (get_equivalent_type(KMP_HW_TILE) != KMP_HW_UNKNOWN) 368 set_equivalent_type(KMP_HW_LLC, KMP_HW_TILE); 369 // L2/Tile wasn't detected so just say L1 370 else 371 set_equivalent_type(KMP_HW_LLC, KMP_HW_L1); 372 } 373 #endif 374 else if (get_equivalent_type(KMP_HW_L1) != KMP_HW_UNKNOWN) 375 set_equivalent_type(KMP_HW_LLC, KMP_HW_L1); 376 // Fallback is to set last level cache to socket or core 377 if (get_equivalent_type(KMP_HW_LLC) == KMP_HW_UNKNOWN) { 378 if (get_equivalent_type(KMP_HW_SOCKET) != KMP_HW_UNKNOWN) 379 set_equivalent_type(KMP_HW_LLC, KMP_HW_SOCKET); 380 else if (get_equivalent_type(KMP_HW_CORE) != KMP_HW_UNKNOWN) 381 set_equivalent_type(KMP_HW_LLC, KMP_HW_CORE); 382 } 383 KMP_ASSERT(get_equivalent_type(KMP_HW_LLC) != KMP_HW_UNKNOWN); 384 } 385 386 // Gather the count of each topology layer and the ratio 387 void kmp_topology_t::_gather_enumeration_information() { 388 int previous_id[KMP_HW_LAST]; 389 int max[KMP_HW_LAST]; 390 391 for (int i = 0; i < depth; ++i) { 392 previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID; 393 max[i] = 0; 394 count[i] = 0; 395 ratio[i] = 0; 396 } 397 int core_level = get_level(KMP_HW_CORE); 398 for (int i = 0; i < num_hw_threads; ++i) { 399 kmp_hw_thread_t &hw_thread = hw_threads[i]; 400 for (int layer = 0; layer < depth; ++layer) { 401 int id = hw_thread.ids[layer]; 402 if (id != previous_id[layer]) { 403 // Add an additional increment to each count 404 for (int l = layer; l < depth; ++l) 405 count[l]++; 406 // Keep track of topology layer ratio statistics 407 max[layer]++; 408 for (int l = layer + 1; l < depth; ++l) { 409 if (max[l] > ratio[l]) 410 ratio[l] = max[l]; 411 max[l] = 1; 412 } 413 // Figure out the number of different core types 414 // and efficiencies for hybrid CPUs 415 if (__kmp_is_hybrid_cpu() && core_level >= 0 && layer <= core_level) { 416 if (hw_thread.attrs.is_core_eff_valid() && 417 hw_thread.attrs.core_eff >= num_core_efficiencies) { 418 // Because efficiencies can range from 0 to max efficiency - 1, 419 // the number of efficiencies is max efficiency + 1 420 num_core_efficiencies = hw_thread.attrs.core_eff + 1; 421 } 422 if (hw_thread.attrs.is_core_type_valid()) { 423 bool found = false; 424 for (int j = 0; j < num_core_types; ++j) { 425 if (hw_thread.attrs.get_core_type() == core_types[j]) { 426 found = true; 427 break; 428 } 429 } 430 if (!found) { 431 KMP_ASSERT(num_core_types < KMP_HW_MAX_NUM_CORE_TYPES); 432 core_types[num_core_types++] = hw_thread.attrs.get_core_type(); 433 } 434 } 435 } 436 break; 437 } 438 } 439 for (int layer = 0; layer < depth; ++layer) { 440 previous_id[layer] = hw_thread.ids[layer]; 441 } 442 } 443 for (int layer = 0; layer < depth; ++layer) { 444 if (max[layer] > ratio[layer]) 445 ratio[layer] = max[layer]; 446 } 447 } 448 449 int kmp_topology_t::_get_ncores_with_attr(const kmp_hw_attr_t &attr, 450 int above_level, 451 bool find_all) const { 452 int current, current_max; 453 int previous_id[KMP_HW_LAST]; 454 for (int i = 0; i < depth; ++i) 455 previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID; 456 int core_level = get_level(KMP_HW_CORE); 457 if (find_all) 458 above_level = -1; 459 KMP_ASSERT(above_level < core_level); 460 current_max = 0; 461 current = 0; 462 for (int i = 0; i < num_hw_threads; ++i) { 463 kmp_hw_thread_t &hw_thread = hw_threads[i]; 464 if (!find_all && hw_thread.ids[above_level] != previous_id[above_level]) { 465 if (current > current_max) 466 current_max = current; 467 current = hw_thread.attrs.contains(attr); 468 } else { 469 for (int level = above_level + 1; level <= core_level; ++level) { 470 if (hw_thread.ids[level] != previous_id[level]) { 471 if (hw_thread.attrs.contains(attr)) 472 current++; 473 break; 474 } 475 } 476 } 477 for (int level = 0; level < depth; ++level) 478 previous_id[level] = hw_thread.ids[level]; 479 } 480 if (current > current_max) 481 current_max = current; 482 return current_max; 483 } 484 485 // Find out if the topology is uniform 486 void kmp_topology_t::_discover_uniformity() { 487 int num = 1; 488 for (int level = 0; level < depth; ++level) 489 num *= ratio[level]; 490 flags.uniform = (num == count[depth - 1]); 491 } 492 493 // Set all the sub_ids for each hardware thread 494 void kmp_topology_t::_set_sub_ids() { 495 int previous_id[KMP_HW_LAST]; 496 int sub_id[KMP_HW_LAST]; 497 498 for (int i = 0; i < depth; ++i) { 499 previous_id[i] = -1; 500 sub_id[i] = -1; 501 } 502 for (int i = 0; i < num_hw_threads; ++i) { 503 kmp_hw_thread_t &hw_thread = hw_threads[i]; 504 // Setup the sub_id 505 for (int j = 0; j < depth; ++j) { 506 if (hw_thread.ids[j] != previous_id[j]) { 507 sub_id[j]++; 508 for (int k = j + 1; k < depth; ++k) { 509 sub_id[k] = 0; 510 } 511 break; 512 } 513 } 514 // Set previous_id 515 for (int j = 0; j < depth; ++j) { 516 previous_id[j] = hw_thread.ids[j]; 517 } 518 // Set the sub_ids field 519 for (int j = 0; j < depth; ++j) { 520 hw_thread.sub_ids[j] = sub_id[j]; 521 } 522 } 523 } 524 525 void kmp_topology_t::_set_globals() { 526 // Set nCoresPerPkg, nPackages, __kmp_nThreadsPerCore, __kmp_ncores 527 int core_level, thread_level, package_level; 528 package_level = get_level(KMP_HW_SOCKET); 529 #if KMP_GROUP_AFFINITY 530 if (package_level == -1) 531 package_level = get_level(KMP_HW_PROC_GROUP); 532 #endif 533 core_level = get_level(KMP_HW_CORE); 534 thread_level = get_level(KMP_HW_THREAD); 535 536 KMP_ASSERT(core_level != -1); 537 KMP_ASSERT(thread_level != -1); 538 539 __kmp_nThreadsPerCore = calculate_ratio(thread_level, core_level); 540 if (package_level != -1) { 541 nCoresPerPkg = calculate_ratio(core_level, package_level); 542 nPackages = get_count(package_level); 543 } else { 544 // assume one socket 545 nCoresPerPkg = get_count(core_level); 546 nPackages = 1; 547 } 548 #ifndef KMP_DFLT_NTH_CORES 549 __kmp_ncores = get_count(core_level); 550 #endif 551 } 552 553 kmp_topology_t *kmp_topology_t::allocate(int nproc, int ndepth, 554 const kmp_hw_t *types) { 555 kmp_topology_t *retval; 556 // Allocate all data in one large allocation 557 size_t size = sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc + 558 sizeof(int) * (size_t)KMP_HW_LAST * 3; 559 char *bytes = (char *)__kmp_allocate(size); 560 retval = (kmp_topology_t *)bytes; 561 if (nproc > 0) { 562 retval->hw_threads = (kmp_hw_thread_t *)(bytes + sizeof(kmp_topology_t)); 563 } else { 564 retval->hw_threads = nullptr; 565 } 566 retval->num_hw_threads = nproc; 567 retval->depth = ndepth; 568 int *arr = 569 (int *)(bytes + sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc); 570 retval->types = (kmp_hw_t *)arr; 571 retval->ratio = arr + (size_t)KMP_HW_LAST; 572 retval->count = arr + 2 * (size_t)KMP_HW_LAST; 573 retval->num_core_efficiencies = 0; 574 retval->num_core_types = 0; 575 for (int i = 0; i < KMP_HW_MAX_NUM_CORE_TYPES; ++i) 576 retval->core_types[i] = KMP_HW_CORE_TYPE_UNKNOWN; 577 KMP_FOREACH_HW_TYPE(type) { retval->equivalent[type] = KMP_HW_UNKNOWN; } 578 for (int i = 0; i < ndepth; ++i) { 579 retval->types[i] = types[i]; 580 retval->equivalent[types[i]] = types[i]; 581 } 582 return retval; 583 } 584 585 void kmp_topology_t::deallocate(kmp_topology_t *topology) { 586 if (topology) 587 __kmp_free(topology); 588 } 589 590 bool kmp_topology_t::check_ids() const { 591 // Assume ids have been sorted 592 if (num_hw_threads == 0) 593 return true; 594 for (int i = 1; i < num_hw_threads; ++i) { 595 kmp_hw_thread_t ¤t_thread = hw_threads[i]; 596 kmp_hw_thread_t &previous_thread = hw_threads[i - 1]; 597 bool unique = false; 598 for (int j = 0; j < depth; ++j) { 599 if (previous_thread.ids[j] != current_thread.ids[j]) { 600 unique = true; 601 break; 602 } 603 } 604 if (unique) 605 continue; 606 return false; 607 } 608 return true; 609 } 610 611 void kmp_topology_t::dump() const { 612 printf("***********************\n"); 613 printf("*** __kmp_topology: ***\n"); 614 printf("***********************\n"); 615 printf("* depth: %d\n", depth); 616 617 printf("* types: "); 618 for (int i = 0; i < depth; ++i) 619 printf("%15s ", __kmp_hw_get_keyword(types[i])); 620 printf("\n"); 621 622 printf("* ratio: "); 623 for (int i = 0; i < depth; ++i) { 624 printf("%15d ", ratio[i]); 625 } 626 printf("\n"); 627 628 printf("* count: "); 629 for (int i = 0; i < depth; ++i) { 630 printf("%15d ", count[i]); 631 } 632 printf("\n"); 633 634 printf("* num_core_eff: %d\n", num_core_efficiencies); 635 printf("* num_core_types: %d\n", num_core_types); 636 printf("* core_types: "); 637 for (int i = 0; i < num_core_types; ++i) 638 printf("%3d ", core_types[i]); 639 printf("\n"); 640 641 printf("* equivalent map:\n"); 642 KMP_FOREACH_HW_TYPE(i) { 643 const char *key = __kmp_hw_get_keyword(i); 644 const char *value = __kmp_hw_get_keyword(equivalent[i]); 645 printf("%-15s -> %-15s\n", key, value); 646 } 647 648 printf("* uniform: %s\n", (is_uniform() ? "Yes" : "No")); 649 650 printf("* num_hw_threads: %d\n", num_hw_threads); 651 printf("* hw_threads:\n"); 652 for (int i = 0; i < num_hw_threads; ++i) { 653 hw_threads[i].print(); 654 } 655 printf("***********************\n"); 656 } 657 658 void kmp_topology_t::print(const char *env_var) const { 659 kmp_str_buf_t buf; 660 int print_types_depth; 661 __kmp_str_buf_init(&buf); 662 kmp_hw_t print_types[KMP_HW_LAST + 2]; 663 664 // Num Available Threads 665 KMP_INFORM(AvailableOSProc, env_var, num_hw_threads); 666 667 // Uniform or not 668 if (is_uniform()) { 669 KMP_INFORM(Uniform, env_var); 670 } else { 671 KMP_INFORM(NonUniform, env_var); 672 } 673 674 // Equivalent types 675 KMP_FOREACH_HW_TYPE(type) { 676 kmp_hw_t eq_type = equivalent[type]; 677 if (eq_type != KMP_HW_UNKNOWN && eq_type != type) { 678 KMP_INFORM(AffEqualTopologyTypes, env_var, 679 __kmp_hw_get_catalog_string(type), 680 __kmp_hw_get_catalog_string(eq_type)); 681 } 682 } 683 684 // Quick topology 685 KMP_ASSERT(depth > 0 && depth <= (int)KMP_HW_LAST); 686 // Create a print types array that always guarantees printing 687 // the core and thread level 688 print_types_depth = 0; 689 for (int level = 0; level < depth; ++level) 690 print_types[print_types_depth++] = types[level]; 691 if (equivalent[KMP_HW_CORE] != KMP_HW_CORE) { 692 // Force in the core level for quick topology 693 if (print_types[print_types_depth - 1] == KMP_HW_THREAD) { 694 // Force core before thread e.g., 1 socket X 2 threads/socket 695 // becomes 1 socket X 1 core/socket X 2 threads/socket 696 print_types[print_types_depth - 1] = KMP_HW_CORE; 697 print_types[print_types_depth++] = KMP_HW_THREAD; 698 } else { 699 print_types[print_types_depth++] = KMP_HW_CORE; 700 } 701 } 702 // Always put threads at very end of quick topology 703 if (equivalent[KMP_HW_THREAD] != KMP_HW_THREAD) 704 print_types[print_types_depth++] = KMP_HW_THREAD; 705 706 __kmp_str_buf_clear(&buf); 707 kmp_hw_t numerator_type; 708 kmp_hw_t denominator_type = KMP_HW_UNKNOWN; 709 int core_level = get_level(KMP_HW_CORE); 710 int ncores = get_count(core_level); 711 712 for (int plevel = 0, level = 0; plevel < print_types_depth; ++plevel) { 713 int c; 714 bool plural; 715 numerator_type = print_types[plevel]; 716 KMP_ASSERT_VALID_HW_TYPE(numerator_type); 717 if (equivalent[numerator_type] != numerator_type) 718 c = 1; 719 else 720 c = get_ratio(level++); 721 plural = (c > 1); 722 if (plevel == 0) { 723 __kmp_str_buf_print(&buf, "%d %s", c, 724 __kmp_hw_get_catalog_string(numerator_type, plural)); 725 } else { 726 __kmp_str_buf_print(&buf, " x %d %s/%s", c, 727 __kmp_hw_get_catalog_string(numerator_type, plural), 728 __kmp_hw_get_catalog_string(denominator_type)); 729 } 730 denominator_type = numerator_type; 731 } 732 KMP_INFORM(TopologyGeneric, env_var, buf.str, ncores); 733 734 // Hybrid topology information 735 if (__kmp_is_hybrid_cpu()) { 736 for (int i = 0; i < num_core_types; ++i) { 737 kmp_hw_core_type_t core_type = core_types[i]; 738 kmp_hw_attr_t attr; 739 attr.clear(); 740 attr.set_core_type(core_type); 741 int ncores = get_ncores_with_attr(attr); 742 if (ncores > 0) { 743 KMP_INFORM(TopologyHybrid, env_var, ncores, 744 __kmp_hw_get_core_type_string(core_type)); 745 KMP_ASSERT(num_core_efficiencies <= KMP_HW_MAX_NUM_CORE_EFFS) 746 for (int eff = 0; eff < num_core_efficiencies; ++eff) { 747 attr.set_core_eff(eff); 748 int ncores_with_eff = get_ncores_with_attr(attr); 749 if (ncores_with_eff > 0) { 750 KMP_INFORM(TopologyHybridCoreEff, env_var, ncores_with_eff, eff); 751 } 752 } 753 } 754 } 755 } 756 757 if (num_hw_threads <= 0) { 758 __kmp_str_buf_free(&buf); 759 return; 760 } 761 762 // Full OS proc to hardware thread map 763 KMP_INFORM(OSProcToPhysicalThreadMap, env_var); 764 for (int i = 0; i < num_hw_threads; i++) { 765 __kmp_str_buf_clear(&buf); 766 for (int level = 0; level < depth; ++level) { 767 kmp_hw_t type = types[level]; 768 __kmp_str_buf_print(&buf, "%s ", __kmp_hw_get_catalog_string(type)); 769 __kmp_str_buf_print(&buf, "%d ", hw_threads[i].ids[level]); 770 } 771 if (__kmp_is_hybrid_cpu()) 772 __kmp_str_buf_print( 773 &buf, "(%s)", 774 __kmp_hw_get_core_type_string(hw_threads[i].attrs.get_core_type())); 775 KMP_INFORM(OSProcMapToPack, env_var, hw_threads[i].os_id, buf.str); 776 } 777 778 __kmp_str_buf_free(&buf); 779 } 780 781 void kmp_topology_t::canonicalize() { 782 #if KMP_GROUP_AFFINITY 783 _insert_windows_proc_groups(); 784 #endif 785 _remove_radix1_layers(); 786 _gather_enumeration_information(); 787 _discover_uniformity(); 788 _set_sub_ids(); 789 _set_globals(); 790 _set_last_level_cache(); 791 792 #if KMP_MIC_SUPPORTED 793 // Manually Add L2 = Tile equivalence 794 if (__kmp_mic_type == mic3) { 795 if (get_level(KMP_HW_L2) != -1) 796 set_equivalent_type(KMP_HW_TILE, KMP_HW_L2); 797 else if (get_level(KMP_HW_TILE) != -1) 798 set_equivalent_type(KMP_HW_L2, KMP_HW_TILE); 799 } 800 #endif 801 802 // Perform post canonicalization checking 803 KMP_ASSERT(depth > 0); 804 for (int level = 0; level < depth; ++level) { 805 // All counts, ratios, and types must be valid 806 KMP_ASSERT(count[level] > 0 && ratio[level] > 0); 807 KMP_ASSERT_VALID_HW_TYPE(types[level]); 808 // Detected types must point to themselves 809 KMP_ASSERT(equivalent[types[level]] == types[level]); 810 } 811 812 #if KMP_AFFINITY_SUPPORTED 813 // Set the number of affinity granularity levels 814 if (__kmp_affinity_gran_levels < 0) { 815 kmp_hw_t gran_type = get_equivalent_type(__kmp_affinity_gran); 816 // Check if user's granularity request is valid 817 if (gran_type == KMP_HW_UNKNOWN) { 818 // First try core, then thread, then package 819 kmp_hw_t gran_types[3] = {KMP_HW_CORE, KMP_HW_THREAD, KMP_HW_SOCKET}; 820 for (auto g : gran_types) { 821 if (__kmp_topology->get_equivalent_type(g) != KMP_HW_UNKNOWN) { 822 gran_type = g; 823 break; 824 } 825 } 826 KMP_ASSERT(gran_type != KMP_HW_UNKNOWN); 827 // Warn user what granularity setting will be used instead 828 KMP_WARNING(AffGranularityBad, "KMP_AFFINITY", 829 __kmp_hw_get_catalog_string(__kmp_affinity_gran), 830 __kmp_hw_get_catalog_string(gran_type)); 831 __kmp_affinity_gran = gran_type; 832 } 833 #if KMP_GROUP_AFFINITY 834 // If more than one processor group exists, and the level of 835 // granularity specified by the user is too coarse, then the 836 // granularity must be adjusted "down" to processor group affinity 837 // because threads can only exist within one processor group. 838 // For example, if a user sets granularity=socket and there are two 839 // processor groups that cover a socket, then the runtime must 840 // restrict the granularity down to the processor group level. 841 if (__kmp_num_proc_groups > 1) { 842 int gran_depth = __kmp_topology->get_level(gran_type); 843 int proc_group_depth = __kmp_topology->get_level(KMP_HW_PROC_GROUP); 844 if (gran_depth >= 0 && proc_group_depth >= 0 && 845 gran_depth < proc_group_depth) { 846 KMP_WARNING(AffGranTooCoarseProcGroup, "KMP_AFFINITY", 847 __kmp_hw_get_catalog_string(__kmp_affinity_gran)); 848 __kmp_affinity_gran = gran_type = KMP_HW_PROC_GROUP; 849 } 850 } 851 #endif 852 __kmp_affinity_gran_levels = 0; 853 for (int i = depth - 1; i >= 0 && get_type(i) != gran_type; --i) 854 __kmp_affinity_gran_levels++; 855 } 856 #endif // KMP_AFFINITY_SUPPORTED 857 } 858 859 // Canonicalize an explicit packages X cores/pkg X threads/core topology 860 void kmp_topology_t::canonicalize(int npackages, int ncores_per_pkg, 861 int nthreads_per_core, int ncores) { 862 int ndepth = 3; 863 depth = ndepth; 864 KMP_FOREACH_HW_TYPE(i) { equivalent[i] = KMP_HW_UNKNOWN; } 865 for (int level = 0; level < depth; ++level) { 866 count[level] = 0; 867 ratio[level] = 0; 868 } 869 count[0] = npackages; 870 count[1] = ncores; 871 count[2] = __kmp_xproc; 872 ratio[0] = npackages; 873 ratio[1] = ncores_per_pkg; 874 ratio[2] = nthreads_per_core; 875 equivalent[KMP_HW_SOCKET] = KMP_HW_SOCKET; 876 equivalent[KMP_HW_CORE] = KMP_HW_CORE; 877 equivalent[KMP_HW_THREAD] = KMP_HW_THREAD; 878 types[0] = KMP_HW_SOCKET; 879 types[1] = KMP_HW_CORE; 880 types[2] = KMP_HW_THREAD; 881 //__kmp_avail_proc = __kmp_xproc; 882 _discover_uniformity(); 883 } 884 885 // Represents running sub IDs for a single core attribute where 886 // attribute values have SIZE possibilities. 887 template <size_t SIZE, typename IndexFunc> struct kmp_sub_ids_t { 888 int last_level; // last level in topology to consider for sub_ids 889 int sub_id[SIZE]; // The sub ID for a given attribute value 890 int prev_sub_id[KMP_HW_LAST]; 891 IndexFunc indexer; 892 893 public: 894 kmp_sub_ids_t(int last_level) : last_level(last_level) { 895 KMP_ASSERT(last_level < KMP_HW_LAST); 896 for (size_t i = 0; i < SIZE; ++i) 897 sub_id[i] = -1; 898 for (size_t i = 0; i < KMP_HW_LAST; ++i) 899 prev_sub_id[i] = -1; 900 } 901 void update(const kmp_hw_thread_t &hw_thread) { 902 int idx = indexer(hw_thread); 903 KMP_ASSERT(idx < (int)SIZE); 904 for (int level = 0; level <= last_level; ++level) { 905 if (hw_thread.sub_ids[level] != prev_sub_id[level]) { 906 if (level < last_level) 907 sub_id[idx] = -1; 908 sub_id[idx]++; 909 break; 910 } 911 } 912 for (int level = 0; level <= last_level; ++level) 913 prev_sub_id[level] = hw_thread.sub_ids[level]; 914 } 915 int get_sub_id(const kmp_hw_thread_t &hw_thread) const { 916 return sub_id[indexer(hw_thread)]; 917 } 918 }; 919 920 static kmp_str_buf_t * 921 __kmp_hw_get_catalog_core_string(const kmp_hw_attr_t &attr, kmp_str_buf_t *buf, 922 bool plural) { 923 __kmp_str_buf_init(buf); 924 if (attr.is_core_type_valid()) 925 __kmp_str_buf_print(buf, "%s %s", 926 __kmp_hw_get_core_type_string(attr.get_core_type()), 927 __kmp_hw_get_catalog_string(KMP_HW_CORE, plural)); 928 else 929 __kmp_str_buf_print(buf, "%s eff=%d", 930 __kmp_hw_get_catalog_string(KMP_HW_CORE, plural), 931 attr.get_core_eff()); 932 return buf; 933 } 934 935 // Apply the KMP_HW_SUBSET envirable to the topology 936 // Returns true if KMP_HW_SUBSET filtered any processors 937 // otherwise, returns false 938 bool kmp_topology_t::filter_hw_subset() { 939 // If KMP_HW_SUBSET wasn't requested, then do nothing. 940 if (!__kmp_hw_subset) 941 return false; 942 943 // First, sort the KMP_HW_SUBSET items by the machine topology 944 __kmp_hw_subset->sort(); 945 946 // Check to see if KMP_HW_SUBSET is a valid subset of the detected topology 947 bool using_core_types = false; 948 bool using_core_effs = false; 949 int hw_subset_depth = __kmp_hw_subset->get_depth(); 950 kmp_hw_t specified[KMP_HW_LAST]; 951 int topology_levels[hw_subset_depth]; 952 KMP_ASSERT(hw_subset_depth > 0); 953 KMP_FOREACH_HW_TYPE(i) { specified[i] = KMP_HW_UNKNOWN; } 954 int core_level = get_level(KMP_HW_CORE); 955 for (int i = 0; i < hw_subset_depth; ++i) { 956 int max_count; 957 const kmp_hw_subset_t::item_t &item = __kmp_hw_subset->at(i); 958 int num = item.num[0]; 959 int offset = item.offset[0]; 960 kmp_hw_t type = item.type; 961 kmp_hw_t equivalent_type = equivalent[type]; 962 int level = get_level(type); 963 topology_levels[i] = level; 964 965 // Check to see if current layer is in detected machine topology 966 if (equivalent_type != KMP_HW_UNKNOWN) { 967 __kmp_hw_subset->at(i).type = equivalent_type; 968 } else { 969 KMP_WARNING(AffHWSubsetNotExistGeneric, 970 __kmp_hw_get_catalog_string(type)); 971 return false; 972 } 973 974 // Check to see if current layer has already been 975 // specified either directly or through an equivalent type 976 if (specified[equivalent_type] != KMP_HW_UNKNOWN) { 977 KMP_WARNING(AffHWSubsetEqvLayers, __kmp_hw_get_catalog_string(type), 978 __kmp_hw_get_catalog_string(specified[equivalent_type])); 979 return false; 980 } 981 specified[equivalent_type] = type; 982 983 // Check to see if each layer's num & offset parameters are valid 984 max_count = get_ratio(level); 985 if (max_count < 0 || num + offset > max_count) { 986 bool plural = (num > 1); 987 KMP_WARNING(AffHWSubsetManyGeneric, 988 __kmp_hw_get_catalog_string(type, plural)); 989 return false; 990 } 991 992 // Check to see if core attributes are consistent 993 if (core_level == level) { 994 // Determine which core attributes are specified 995 for (int j = 0; j < item.num_attrs; ++j) { 996 if (item.attr[j].is_core_type_valid()) 997 using_core_types = true; 998 if (item.attr[j].is_core_eff_valid()) 999 using_core_effs = true; 1000 } 1001 1002 // Check if using a single core attribute on non-hybrid arch. 1003 // Do not ignore all of KMP_HW_SUBSET, just ignore the attribute. 1004 // 1005 // Check if using multiple core attributes on non-hyrbid arch. 1006 // Ignore all of KMP_HW_SUBSET if this is the case. 1007 if ((using_core_effs || using_core_types) && !__kmp_is_hybrid_cpu()) { 1008 if (item.num_attrs == 1) { 1009 if (using_core_effs) { 1010 KMP_WARNING(AffHWSubsetIgnoringAttr, "efficiency"); 1011 } else { 1012 KMP_WARNING(AffHWSubsetIgnoringAttr, "core_type"); 1013 } 1014 using_core_effs = false; 1015 using_core_types = false; 1016 } else { 1017 KMP_WARNING(AffHWSubsetAttrsNonHybrid); 1018 return false; 1019 } 1020 } 1021 1022 // Check if using both core types and core efficiencies together 1023 if (using_core_types && using_core_effs) { 1024 KMP_WARNING(AffHWSubsetIncompat, "core_type", "efficiency"); 1025 return false; 1026 } 1027 1028 // Check that core efficiency values are valid 1029 if (using_core_effs) { 1030 for (int j = 0; j < item.num_attrs; ++j) { 1031 if (item.attr[j].is_core_eff_valid()) { 1032 int core_eff = item.attr[j].get_core_eff(); 1033 if (core_eff < 0 || core_eff >= num_core_efficiencies) { 1034 kmp_str_buf_t buf; 1035 __kmp_str_buf_init(&buf); 1036 __kmp_str_buf_print(&buf, "%d", item.attr[j].get_core_eff()); 1037 __kmp_msg(kmp_ms_warning, 1038 KMP_MSG(AffHWSubsetAttrInvalid, "efficiency", buf.str), 1039 KMP_HNT(ValidValuesRange, 0, num_core_efficiencies - 1), 1040 __kmp_msg_null); 1041 __kmp_str_buf_free(&buf); 1042 return false; 1043 } 1044 } 1045 } 1046 } 1047 1048 // Check that the number of requested cores with attributes is valid 1049 if (using_core_types || using_core_effs) { 1050 for (int j = 0; j < item.num_attrs; ++j) { 1051 int num = item.num[j]; 1052 int offset = item.offset[j]; 1053 int level_above = core_level - 1; 1054 if (level_above >= 0) { 1055 max_count = get_ncores_with_attr_per(item.attr[j], level_above); 1056 if (max_count <= 0 || num + offset > max_count) { 1057 kmp_str_buf_t buf; 1058 __kmp_hw_get_catalog_core_string(item.attr[j], &buf, num > 0); 1059 KMP_WARNING(AffHWSubsetManyGeneric, buf.str); 1060 __kmp_str_buf_free(&buf); 1061 return false; 1062 } 1063 } 1064 } 1065 } 1066 1067 if ((using_core_types || using_core_effs) && item.num_attrs > 1) { 1068 for (int j = 0; j < item.num_attrs; ++j) { 1069 // Ambiguous use of specific core attribute + generic core 1070 // e.g., 4c & 3c:intel_core or 4c & 3c:eff1 1071 if (!item.attr[j]) { 1072 kmp_hw_attr_t other_attr; 1073 for (int k = 0; k < item.num_attrs; ++k) { 1074 if (item.attr[k] != item.attr[j]) { 1075 other_attr = item.attr[k]; 1076 break; 1077 } 1078 } 1079 kmp_str_buf_t buf; 1080 __kmp_hw_get_catalog_core_string(other_attr, &buf, item.num[j] > 0); 1081 KMP_WARNING(AffHWSubsetIncompat, 1082 __kmp_hw_get_catalog_string(KMP_HW_CORE), buf.str); 1083 __kmp_str_buf_free(&buf); 1084 return false; 1085 } 1086 // Allow specifying a specific core type or core eff exactly once 1087 for (int k = 0; k < j; ++k) { 1088 if (!item.attr[j] || !item.attr[k]) 1089 continue; 1090 if (item.attr[k] == item.attr[j]) { 1091 kmp_str_buf_t buf; 1092 __kmp_hw_get_catalog_core_string(item.attr[j], &buf, 1093 item.num[j] > 0); 1094 KMP_WARNING(AffHWSubsetAttrRepeat, buf.str); 1095 __kmp_str_buf_free(&buf); 1096 return false; 1097 } 1098 } 1099 } 1100 } 1101 } 1102 } 1103 1104 struct core_type_indexer { 1105 int operator()(const kmp_hw_thread_t &t) const { 1106 switch (t.attrs.get_core_type()) { 1107 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1108 case KMP_HW_CORE_TYPE_ATOM: 1109 return 1; 1110 case KMP_HW_CORE_TYPE_CORE: 1111 return 2; 1112 #endif 1113 case KMP_HW_CORE_TYPE_UNKNOWN: 1114 return 0; 1115 } 1116 KMP_ASSERT(0); 1117 return 0; 1118 } 1119 }; 1120 struct core_eff_indexer { 1121 int operator()(const kmp_hw_thread_t &t) const { 1122 return t.attrs.get_core_eff(); 1123 } 1124 }; 1125 1126 kmp_sub_ids_t<KMP_HW_MAX_NUM_CORE_TYPES, core_type_indexer> core_type_sub_ids( 1127 core_level); 1128 kmp_sub_ids_t<KMP_HW_MAX_NUM_CORE_EFFS, core_eff_indexer> core_eff_sub_ids( 1129 core_level); 1130 1131 // Determine which hardware threads should be filtered. 1132 int num_filtered = 0; 1133 bool *filtered = (bool *)__kmp_allocate(sizeof(bool) * num_hw_threads); 1134 for (int i = 0; i < num_hw_threads; ++i) { 1135 kmp_hw_thread_t &hw_thread = hw_threads[i]; 1136 // Update type_sub_id 1137 if (using_core_types) 1138 core_type_sub_ids.update(hw_thread); 1139 if (using_core_effs) 1140 core_eff_sub_ids.update(hw_thread); 1141 1142 // Check to see if this hardware thread should be filtered 1143 bool should_be_filtered = false; 1144 for (int hw_subset_index = 0; hw_subset_index < hw_subset_depth; 1145 ++hw_subset_index) { 1146 const auto &hw_subset_item = __kmp_hw_subset->at(hw_subset_index); 1147 int level = topology_levels[hw_subset_index]; 1148 if (level == -1) 1149 continue; 1150 if ((using_core_effs || using_core_types) && level == core_level) { 1151 // Look for the core attribute in KMP_HW_SUBSET which corresponds 1152 // to this hardware thread's core attribute. Use this num,offset plus 1153 // the running sub_id for the particular core attribute of this hardware 1154 // thread to determine if the hardware thread should be filtered or not. 1155 int attr_idx; 1156 kmp_hw_core_type_t core_type = hw_thread.attrs.get_core_type(); 1157 int core_eff = hw_thread.attrs.get_core_eff(); 1158 for (attr_idx = 0; attr_idx < hw_subset_item.num_attrs; ++attr_idx) { 1159 if (using_core_types && 1160 hw_subset_item.attr[attr_idx].get_core_type() == core_type) 1161 break; 1162 if (using_core_effs && 1163 hw_subset_item.attr[attr_idx].get_core_eff() == core_eff) 1164 break; 1165 } 1166 // This core attribute isn't in the KMP_HW_SUBSET so always filter it. 1167 if (attr_idx == hw_subset_item.num_attrs) { 1168 should_be_filtered = true; 1169 break; 1170 } 1171 int sub_id; 1172 int num = hw_subset_item.num[attr_idx]; 1173 int offset = hw_subset_item.offset[attr_idx]; 1174 if (using_core_types) 1175 sub_id = core_type_sub_ids.get_sub_id(hw_thread); 1176 else 1177 sub_id = core_eff_sub_ids.get_sub_id(hw_thread); 1178 if (sub_id < offset || sub_id >= offset + num) { 1179 should_be_filtered = true; 1180 break; 1181 } 1182 } else { 1183 int num = hw_subset_item.num[0]; 1184 int offset = hw_subset_item.offset[0]; 1185 if (hw_thread.sub_ids[level] < offset || 1186 hw_thread.sub_ids[level] >= offset + num) { 1187 should_be_filtered = true; 1188 break; 1189 } 1190 } 1191 } 1192 // Collect filtering information 1193 filtered[i] = should_be_filtered; 1194 if (should_be_filtered) 1195 num_filtered++; 1196 } 1197 1198 // One last check that we shouldn't allow filtering entire machine 1199 if (num_filtered == num_hw_threads) { 1200 KMP_WARNING(AffHWSubsetAllFiltered); 1201 __kmp_free(filtered); 1202 return false; 1203 } 1204 1205 // Apply the filter 1206 int new_index = 0; 1207 for (int i = 0; i < num_hw_threads; ++i) { 1208 if (!filtered[i]) { 1209 if (i != new_index) 1210 hw_threads[new_index] = hw_threads[i]; 1211 new_index++; 1212 } else { 1213 #if KMP_AFFINITY_SUPPORTED 1214 KMP_CPU_CLR(hw_threads[i].os_id, __kmp_affin_fullMask); 1215 #endif 1216 __kmp_avail_proc--; 1217 } 1218 } 1219 1220 KMP_DEBUG_ASSERT(new_index <= num_hw_threads); 1221 num_hw_threads = new_index; 1222 1223 // Post hardware subset canonicalization 1224 _gather_enumeration_information(); 1225 _discover_uniformity(); 1226 _set_globals(); 1227 _set_last_level_cache(); 1228 __kmp_free(filtered); 1229 return true; 1230 } 1231 1232 bool kmp_topology_t::is_close(int hwt1, int hwt2, int hw_level) const { 1233 if (hw_level >= depth) 1234 return true; 1235 bool retval = true; 1236 const kmp_hw_thread_t &t1 = hw_threads[hwt1]; 1237 const kmp_hw_thread_t &t2 = hw_threads[hwt2]; 1238 for (int i = 0; i < (depth - hw_level); ++i) { 1239 if (t1.ids[i] != t2.ids[i]) 1240 return false; 1241 } 1242 return retval; 1243 } 1244 1245 //////////////////////////////////////////////////////////////////////////////// 1246 1247 #if KMP_AFFINITY_SUPPORTED 1248 class kmp_affinity_raii_t { 1249 kmp_affin_mask_t *mask; 1250 bool restored; 1251 1252 public: 1253 kmp_affinity_raii_t() : restored(false) { 1254 KMP_CPU_ALLOC(mask); 1255 KMP_ASSERT(mask != NULL); 1256 __kmp_get_system_affinity(mask, TRUE); 1257 } 1258 void restore() { 1259 __kmp_set_system_affinity(mask, TRUE); 1260 KMP_CPU_FREE(mask); 1261 restored = true; 1262 } 1263 ~kmp_affinity_raii_t() { 1264 if (!restored) { 1265 __kmp_set_system_affinity(mask, TRUE); 1266 KMP_CPU_FREE(mask); 1267 } 1268 } 1269 }; 1270 1271 bool KMPAffinity::picked_api = false; 1272 1273 void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); } 1274 void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); } 1275 void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); } 1276 void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); } 1277 void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); } 1278 void KMPAffinity::operator delete(void *p) { __kmp_free(p); } 1279 1280 void KMPAffinity::pick_api() { 1281 KMPAffinity *affinity_dispatch; 1282 if (picked_api) 1283 return; 1284 #if KMP_USE_HWLOC 1285 // Only use Hwloc if affinity isn't explicitly disabled and 1286 // user requests Hwloc topology method 1287 if (__kmp_affinity_top_method == affinity_top_method_hwloc && 1288 __kmp_affinity_type != affinity_disabled) { 1289 affinity_dispatch = new KMPHwlocAffinity(); 1290 } else 1291 #endif 1292 { 1293 affinity_dispatch = new KMPNativeAffinity(); 1294 } 1295 __kmp_affinity_dispatch = affinity_dispatch; 1296 picked_api = true; 1297 } 1298 1299 void KMPAffinity::destroy_api() { 1300 if (__kmp_affinity_dispatch != NULL) { 1301 delete __kmp_affinity_dispatch; 1302 __kmp_affinity_dispatch = NULL; 1303 picked_api = false; 1304 } 1305 } 1306 1307 #define KMP_ADVANCE_SCAN(scan) \ 1308 while (*scan != '\0') { \ 1309 scan++; \ 1310 } 1311 1312 // Print the affinity mask to the character array in a pretty format. 1313 // The format is a comma separated list of non-negative integers or integer 1314 // ranges: e.g., 1,2,3-5,7,9-15 1315 // The format can also be the string "{<empty>}" if no bits are set in mask 1316 char *__kmp_affinity_print_mask(char *buf, int buf_len, 1317 kmp_affin_mask_t *mask) { 1318 int start = 0, finish = 0, previous = 0; 1319 bool first_range; 1320 KMP_ASSERT(buf); 1321 KMP_ASSERT(buf_len >= 40); 1322 KMP_ASSERT(mask); 1323 char *scan = buf; 1324 char *end = buf + buf_len - 1; 1325 1326 // Check for empty set. 1327 if (mask->begin() == mask->end()) { 1328 KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}"); 1329 KMP_ADVANCE_SCAN(scan); 1330 KMP_ASSERT(scan <= end); 1331 return buf; 1332 } 1333 1334 first_range = true; 1335 start = mask->begin(); 1336 while (1) { 1337 // Find next range 1338 // [start, previous] is inclusive range of contiguous bits in mask 1339 for (finish = mask->next(start), previous = start; 1340 finish == previous + 1 && finish != mask->end(); 1341 finish = mask->next(finish)) { 1342 previous = finish; 1343 } 1344 1345 // The first range does not need a comma printed before it, but the rest 1346 // of the ranges do need a comma beforehand 1347 if (!first_range) { 1348 KMP_SNPRINTF(scan, end - scan + 1, "%s", ","); 1349 KMP_ADVANCE_SCAN(scan); 1350 } else { 1351 first_range = false; 1352 } 1353 // Range with three or more contiguous bits in the affinity mask 1354 if (previous - start > 1) { 1355 KMP_SNPRINTF(scan, end - scan + 1, "%u-%u", start, previous); 1356 } else { 1357 // Range with one or two contiguous bits in the affinity mask 1358 KMP_SNPRINTF(scan, end - scan + 1, "%u", start); 1359 KMP_ADVANCE_SCAN(scan); 1360 if (previous - start > 0) { 1361 KMP_SNPRINTF(scan, end - scan + 1, ",%u", previous); 1362 } 1363 } 1364 KMP_ADVANCE_SCAN(scan); 1365 // Start over with new start point 1366 start = finish; 1367 if (start == mask->end()) 1368 break; 1369 // Check for overflow 1370 if (end - scan < 2) 1371 break; 1372 } 1373 1374 // Check for overflow 1375 KMP_ASSERT(scan <= end); 1376 return buf; 1377 } 1378 #undef KMP_ADVANCE_SCAN 1379 1380 // Print the affinity mask to the string buffer object in a pretty format 1381 // The format is a comma separated list of non-negative integers or integer 1382 // ranges: e.g., 1,2,3-5,7,9-15 1383 // The format can also be the string "{<empty>}" if no bits are set in mask 1384 kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf, 1385 kmp_affin_mask_t *mask) { 1386 int start = 0, finish = 0, previous = 0; 1387 bool first_range; 1388 KMP_ASSERT(buf); 1389 KMP_ASSERT(mask); 1390 1391 __kmp_str_buf_clear(buf); 1392 1393 // Check for empty set. 1394 if (mask->begin() == mask->end()) { 1395 __kmp_str_buf_print(buf, "%s", "{<empty>}"); 1396 return buf; 1397 } 1398 1399 first_range = true; 1400 start = mask->begin(); 1401 while (1) { 1402 // Find next range 1403 // [start, previous] is inclusive range of contiguous bits in mask 1404 for (finish = mask->next(start), previous = start; 1405 finish == previous + 1 && finish != mask->end(); 1406 finish = mask->next(finish)) { 1407 previous = finish; 1408 } 1409 1410 // The first range does not need a comma printed before it, but the rest 1411 // of the ranges do need a comma beforehand 1412 if (!first_range) { 1413 __kmp_str_buf_print(buf, "%s", ","); 1414 } else { 1415 first_range = false; 1416 } 1417 // Range with three or more contiguous bits in the affinity mask 1418 if (previous - start > 1) { 1419 __kmp_str_buf_print(buf, "%u-%u", start, previous); 1420 } else { 1421 // Range with one or two contiguous bits in the affinity mask 1422 __kmp_str_buf_print(buf, "%u", start); 1423 if (previous - start > 0) { 1424 __kmp_str_buf_print(buf, ",%u", previous); 1425 } 1426 } 1427 // Start over with new start point 1428 start = finish; 1429 if (start == mask->end()) 1430 break; 1431 } 1432 return buf; 1433 } 1434 1435 // Return (possibly empty) affinity mask representing the offline CPUs 1436 // Caller must free the mask 1437 kmp_affin_mask_t *__kmp_affinity_get_offline_cpus() { 1438 kmp_affin_mask_t *offline; 1439 KMP_CPU_ALLOC(offline); 1440 KMP_CPU_ZERO(offline); 1441 #if KMP_OS_LINUX 1442 int n, begin_cpu, end_cpu; 1443 kmp_safe_raii_file_t offline_file; 1444 auto skip_ws = [](FILE *f) { 1445 int c; 1446 do { 1447 c = fgetc(f); 1448 } while (isspace(c)); 1449 if (c != EOF) 1450 ungetc(c, f); 1451 }; 1452 // File contains CSV of integer ranges representing the offline CPUs 1453 // e.g., 1,2,4-7,9,11-15 1454 int status = offline_file.try_open("/sys/devices/system/cpu/offline", "r"); 1455 if (status != 0) 1456 return offline; 1457 while (!feof(offline_file)) { 1458 skip_ws(offline_file); 1459 n = fscanf(offline_file, "%d", &begin_cpu); 1460 if (n != 1) 1461 break; 1462 skip_ws(offline_file); 1463 int c = fgetc(offline_file); 1464 if (c == EOF || c == ',') { 1465 // Just single CPU 1466 end_cpu = begin_cpu; 1467 } else if (c == '-') { 1468 // Range of CPUs 1469 skip_ws(offline_file); 1470 n = fscanf(offline_file, "%d", &end_cpu); 1471 if (n != 1) 1472 break; 1473 skip_ws(offline_file); 1474 c = fgetc(offline_file); // skip ',' 1475 } else { 1476 // Syntax problem 1477 break; 1478 } 1479 // Ensure a valid range of CPUs 1480 if (begin_cpu < 0 || begin_cpu >= __kmp_xproc || end_cpu < 0 || 1481 end_cpu >= __kmp_xproc || begin_cpu > end_cpu) { 1482 continue; 1483 } 1484 // Insert [begin_cpu, end_cpu] into offline mask 1485 for (int cpu = begin_cpu; cpu <= end_cpu; ++cpu) { 1486 KMP_CPU_SET(cpu, offline); 1487 } 1488 } 1489 #endif 1490 return offline; 1491 } 1492 1493 // Return the number of available procs 1494 int __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) { 1495 int avail_proc = 0; 1496 KMP_CPU_ZERO(mask); 1497 1498 #if KMP_GROUP_AFFINITY 1499 1500 if (__kmp_num_proc_groups > 1) { 1501 int group; 1502 KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL); 1503 for (group = 0; group < __kmp_num_proc_groups; group++) { 1504 int i; 1505 int num = __kmp_GetActiveProcessorCount(group); 1506 for (i = 0; i < num; i++) { 1507 KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask); 1508 avail_proc++; 1509 } 1510 } 1511 } else 1512 1513 #endif /* KMP_GROUP_AFFINITY */ 1514 1515 { 1516 int proc; 1517 kmp_affin_mask_t *offline_cpus = __kmp_affinity_get_offline_cpus(); 1518 for (proc = 0; proc < __kmp_xproc; proc++) { 1519 // Skip offline CPUs 1520 if (KMP_CPU_ISSET(proc, offline_cpus)) 1521 continue; 1522 KMP_CPU_SET(proc, mask); 1523 avail_proc++; 1524 } 1525 KMP_CPU_FREE(offline_cpus); 1526 } 1527 1528 return avail_proc; 1529 } 1530 1531 // All of the __kmp_affinity_create_*_map() routines should allocate the 1532 // internal topology object and set the layer ids for it. Each routine 1533 // returns a boolean on whether it was successful at doing so. 1534 kmp_affin_mask_t *__kmp_affin_fullMask = NULL; 1535 1536 #if KMP_USE_HWLOC 1537 static inline bool __kmp_hwloc_is_cache_type(hwloc_obj_t obj) { 1538 #if HWLOC_API_VERSION >= 0x00020000 1539 return hwloc_obj_type_is_cache(obj->type); 1540 #else 1541 return obj->type == HWLOC_OBJ_CACHE; 1542 #endif 1543 } 1544 1545 // Returns KMP_HW_* type derived from HWLOC_* type 1546 static inline kmp_hw_t __kmp_hwloc_type_2_topology_type(hwloc_obj_t obj) { 1547 1548 if (__kmp_hwloc_is_cache_type(obj)) { 1549 if (obj->attr->cache.type == HWLOC_OBJ_CACHE_INSTRUCTION) 1550 return KMP_HW_UNKNOWN; 1551 switch (obj->attr->cache.depth) { 1552 case 1: 1553 return KMP_HW_L1; 1554 case 2: 1555 #if KMP_MIC_SUPPORTED 1556 if (__kmp_mic_type == mic3) { 1557 return KMP_HW_TILE; 1558 } 1559 #endif 1560 return KMP_HW_L2; 1561 case 3: 1562 return KMP_HW_L3; 1563 } 1564 return KMP_HW_UNKNOWN; 1565 } 1566 1567 switch (obj->type) { 1568 case HWLOC_OBJ_PACKAGE: 1569 return KMP_HW_SOCKET; 1570 case HWLOC_OBJ_NUMANODE: 1571 return KMP_HW_NUMA; 1572 case HWLOC_OBJ_CORE: 1573 return KMP_HW_CORE; 1574 case HWLOC_OBJ_PU: 1575 return KMP_HW_THREAD; 1576 case HWLOC_OBJ_GROUP: 1577 if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_DIE) 1578 return KMP_HW_DIE; 1579 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_TILE) 1580 return KMP_HW_TILE; 1581 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_MODULE) 1582 return KMP_HW_MODULE; 1583 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP) 1584 return KMP_HW_PROC_GROUP; 1585 return KMP_HW_UNKNOWN; 1586 #if HWLOC_API_VERSION >= 0x00020100 1587 case HWLOC_OBJ_DIE: 1588 return KMP_HW_DIE; 1589 #endif 1590 } 1591 return KMP_HW_UNKNOWN; 1592 } 1593 1594 // Returns the number of objects of type 'type' below 'obj' within the topology 1595 // tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is 1596 // HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET 1597 // object. 1598 static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj, 1599 hwloc_obj_type_t type) { 1600 int retval = 0; 1601 hwloc_obj_t first; 1602 for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type, 1603 obj->logical_index, type, 0); 1604 first != NULL && hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, 1605 obj->type, first) == obj; 1606 first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type, 1607 first)) { 1608 ++retval; 1609 } 1610 return retval; 1611 } 1612 1613 // This gets the sub_id for a lower object under a higher object in the 1614 // topology tree 1615 static int __kmp_hwloc_get_sub_id(hwloc_topology_t t, hwloc_obj_t higher, 1616 hwloc_obj_t lower) { 1617 hwloc_obj_t obj; 1618 hwloc_obj_type_t ltype = lower->type; 1619 int lindex = lower->logical_index - 1; 1620 int sub_id = 0; 1621 // Get the previous lower object 1622 obj = hwloc_get_obj_by_type(t, ltype, lindex); 1623 while (obj && lindex >= 0 && 1624 hwloc_bitmap_isincluded(obj->cpuset, higher->cpuset)) { 1625 if (obj->userdata) { 1626 sub_id = (int)(RCAST(kmp_intptr_t, obj->userdata)); 1627 break; 1628 } 1629 sub_id++; 1630 lindex--; 1631 obj = hwloc_get_obj_by_type(t, ltype, lindex); 1632 } 1633 // store sub_id + 1 so that 0 is differed from NULL 1634 lower->userdata = RCAST(void *, sub_id + 1); 1635 return sub_id; 1636 } 1637 1638 static bool __kmp_affinity_create_hwloc_map(kmp_i18n_id_t *const msg_id) { 1639 kmp_hw_t type; 1640 int hw_thread_index, sub_id; 1641 int depth; 1642 hwloc_obj_t pu, obj, root, prev; 1643 kmp_hw_t types[KMP_HW_LAST]; 1644 hwloc_obj_type_t hwloc_types[KMP_HW_LAST]; 1645 1646 hwloc_topology_t tp = __kmp_hwloc_topology; 1647 *msg_id = kmp_i18n_null; 1648 if (__kmp_affinity_verbose) { 1649 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); 1650 } 1651 1652 if (!KMP_AFFINITY_CAPABLE()) { 1653 // Hack to try and infer the machine topology using only the data 1654 // available from hwloc on the current thread, and __kmp_xproc. 1655 KMP_ASSERT(__kmp_affinity_type == affinity_none); 1656 // hwloc only guarantees existance of PU object, so check PACKAGE and CORE 1657 hwloc_obj_t o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0); 1658 if (o != NULL) 1659 nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_CORE); 1660 else 1661 nCoresPerPkg = 1; // no PACKAGE found 1662 o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0); 1663 if (o != NULL) 1664 __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_PU); 1665 else 1666 __kmp_nThreadsPerCore = 1; // no CORE found 1667 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; 1668 if (nCoresPerPkg == 0) 1669 nCoresPerPkg = 1; // to prevent possible division by 0 1670 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 1671 return true; 1672 } 1673 1674 // Handle multiple types of cores if they exist on the system 1675 int nr_cpu_kinds = hwloc_cpukinds_get_nr(tp, 0); 1676 1677 typedef struct kmp_hwloc_cpukinds_info_t { 1678 int efficiency; 1679 kmp_hw_core_type_t core_type; 1680 hwloc_bitmap_t mask; 1681 } kmp_hwloc_cpukinds_info_t; 1682 kmp_hwloc_cpukinds_info_t *cpukinds = nullptr; 1683 1684 if (nr_cpu_kinds > 0) { 1685 unsigned nr_infos; 1686 struct hwloc_info_s *infos; 1687 cpukinds = (kmp_hwloc_cpukinds_info_t *)__kmp_allocate( 1688 sizeof(kmp_hwloc_cpukinds_info_t) * nr_cpu_kinds); 1689 for (unsigned idx = 0; idx < (unsigned)nr_cpu_kinds; ++idx) { 1690 cpukinds[idx].efficiency = -1; 1691 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_UNKNOWN; 1692 cpukinds[idx].mask = hwloc_bitmap_alloc(); 1693 if (hwloc_cpukinds_get_info(tp, idx, cpukinds[idx].mask, 1694 &cpukinds[idx].efficiency, &nr_infos, &infos, 1695 0) == 0) { 1696 for (unsigned i = 0; i < nr_infos; ++i) { 1697 if (__kmp_str_match("CoreType", 8, infos[i].name)) { 1698 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1699 if (__kmp_str_match("IntelAtom", 9, infos[i].value)) { 1700 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_ATOM; 1701 break; 1702 } else if (__kmp_str_match("IntelCore", 9, infos[i].value)) { 1703 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_CORE; 1704 break; 1705 } 1706 #endif 1707 } 1708 } 1709 } 1710 } 1711 } 1712 1713 root = hwloc_get_root_obj(tp); 1714 1715 // Figure out the depth and types in the topology 1716 depth = 0; 1717 pu = hwloc_get_pu_obj_by_os_index(tp, __kmp_affin_fullMask->begin()); 1718 KMP_ASSERT(pu); 1719 obj = pu; 1720 types[depth] = KMP_HW_THREAD; 1721 hwloc_types[depth] = obj->type; 1722 depth++; 1723 while (obj != root && obj != NULL) { 1724 obj = obj->parent; 1725 #if HWLOC_API_VERSION >= 0x00020000 1726 if (obj->memory_arity) { 1727 hwloc_obj_t memory; 1728 for (memory = obj->memory_first_child; memory; 1729 memory = hwloc_get_next_child(tp, obj, memory)) { 1730 if (memory->type == HWLOC_OBJ_NUMANODE) 1731 break; 1732 } 1733 if (memory && memory->type == HWLOC_OBJ_NUMANODE) { 1734 types[depth] = KMP_HW_NUMA; 1735 hwloc_types[depth] = memory->type; 1736 depth++; 1737 } 1738 } 1739 #endif 1740 type = __kmp_hwloc_type_2_topology_type(obj); 1741 if (type != KMP_HW_UNKNOWN) { 1742 types[depth] = type; 1743 hwloc_types[depth] = obj->type; 1744 depth++; 1745 } 1746 } 1747 KMP_ASSERT(depth > 0); 1748 1749 // Get the order for the types correct 1750 for (int i = 0, j = depth - 1; i < j; ++i, --j) { 1751 hwloc_obj_type_t hwloc_temp = hwloc_types[i]; 1752 kmp_hw_t temp = types[i]; 1753 types[i] = types[j]; 1754 types[j] = temp; 1755 hwloc_types[i] = hwloc_types[j]; 1756 hwloc_types[j] = hwloc_temp; 1757 } 1758 1759 // Allocate the data structure to be returned. 1760 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); 1761 1762 hw_thread_index = 0; 1763 pu = NULL; 1764 while (pu = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, pu)) { 1765 int index = depth - 1; 1766 bool included = KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask); 1767 kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index); 1768 if (included) { 1769 hw_thread.clear(); 1770 hw_thread.ids[index] = pu->logical_index; 1771 hw_thread.os_id = pu->os_index; 1772 // If multiple core types, then set that attribute for the hardware thread 1773 if (cpukinds) { 1774 int cpukind_index = -1; 1775 for (int i = 0; i < nr_cpu_kinds; ++i) { 1776 if (hwloc_bitmap_isset(cpukinds[i].mask, hw_thread.os_id)) { 1777 cpukind_index = i; 1778 break; 1779 } 1780 } 1781 if (cpukind_index >= 0) { 1782 hw_thread.attrs.set_core_type(cpukinds[cpukind_index].core_type); 1783 hw_thread.attrs.set_core_eff(cpukinds[cpukind_index].efficiency); 1784 } 1785 } 1786 index--; 1787 } 1788 obj = pu; 1789 prev = obj; 1790 while (obj != root && obj != NULL) { 1791 obj = obj->parent; 1792 #if HWLOC_API_VERSION >= 0x00020000 1793 // NUMA Nodes are handled differently since they are not within the 1794 // parent/child structure anymore. They are separate children 1795 // of obj (memory_first_child points to first memory child) 1796 if (obj->memory_arity) { 1797 hwloc_obj_t memory; 1798 for (memory = obj->memory_first_child; memory; 1799 memory = hwloc_get_next_child(tp, obj, memory)) { 1800 if (memory->type == HWLOC_OBJ_NUMANODE) 1801 break; 1802 } 1803 if (memory && memory->type == HWLOC_OBJ_NUMANODE) { 1804 sub_id = __kmp_hwloc_get_sub_id(tp, memory, prev); 1805 if (included) { 1806 hw_thread.ids[index] = memory->logical_index; 1807 hw_thread.ids[index + 1] = sub_id; 1808 index--; 1809 } 1810 prev = memory; 1811 } 1812 prev = obj; 1813 } 1814 #endif 1815 type = __kmp_hwloc_type_2_topology_type(obj); 1816 if (type != KMP_HW_UNKNOWN) { 1817 sub_id = __kmp_hwloc_get_sub_id(tp, obj, prev); 1818 if (included) { 1819 hw_thread.ids[index] = obj->logical_index; 1820 hw_thread.ids[index + 1] = sub_id; 1821 index--; 1822 } 1823 prev = obj; 1824 } 1825 } 1826 if (included) 1827 hw_thread_index++; 1828 } 1829 1830 // Free the core types information 1831 if (cpukinds) { 1832 for (int idx = 0; idx < nr_cpu_kinds; ++idx) 1833 hwloc_bitmap_free(cpukinds[idx].mask); 1834 __kmp_free(cpukinds); 1835 } 1836 __kmp_topology->sort_ids(); 1837 return true; 1838 } 1839 #endif // KMP_USE_HWLOC 1840 1841 // If we don't know how to retrieve the machine's processor topology, or 1842 // encounter an error in doing so, this routine is called to form a "flat" 1843 // mapping of os thread id's <-> processor id's. 1844 static bool __kmp_affinity_create_flat_map(kmp_i18n_id_t *const msg_id) { 1845 *msg_id = kmp_i18n_null; 1846 int depth = 3; 1847 kmp_hw_t types[] = {KMP_HW_SOCKET, KMP_HW_CORE, KMP_HW_THREAD}; 1848 1849 if (__kmp_affinity_verbose) { 1850 KMP_INFORM(UsingFlatOS, "KMP_AFFINITY"); 1851 } 1852 1853 // Even if __kmp_affinity_type == affinity_none, this routine might still 1854 // called to set __kmp_ncores, as well as 1855 // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 1856 if (!KMP_AFFINITY_CAPABLE()) { 1857 KMP_ASSERT(__kmp_affinity_type == affinity_none); 1858 __kmp_ncores = nPackages = __kmp_xproc; 1859 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 1860 return true; 1861 } 1862 1863 // When affinity is off, this routine will still be called to set 1864 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 1865 // Make sure all these vars are set correctly, and return now if affinity is 1866 // not enabled. 1867 __kmp_ncores = nPackages = __kmp_avail_proc; 1868 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 1869 1870 // Construct the data structure to be returned. 1871 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); 1872 int avail_ct = 0; 1873 int i; 1874 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 1875 // Skip this proc if it is not included in the machine model. 1876 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 1877 continue; 1878 } 1879 kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct); 1880 hw_thread.clear(); 1881 hw_thread.os_id = i; 1882 hw_thread.ids[0] = i; 1883 hw_thread.ids[1] = 0; 1884 hw_thread.ids[2] = 0; 1885 avail_ct++; 1886 } 1887 if (__kmp_affinity_verbose) { 1888 KMP_INFORM(OSProcToPackage, "KMP_AFFINITY"); 1889 } 1890 return true; 1891 } 1892 1893 #if KMP_GROUP_AFFINITY 1894 // If multiple Windows* OS processor groups exist, we can create a 2-level 1895 // topology map with the groups at level 0 and the individual procs at level 1. 1896 // This facilitates letting the threads float among all procs in a group, 1897 // if granularity=group (the default when there are multiple groups). 1898 static bool __kmp_affinity_create_proc_group_map(kmp_i18n_id_t *const msg_id) { 1899 *msg_id = kmp_i18n_null; 1900 int depth = 3; 1901 kmp_hw_t types[] = {KMP_HW_PROC_GROUP, KMP_HW_CORE, KMP_HW_THREAD}; 1902 const static size_t BITS_PER_GROUP = CHAR_BIT * sizeof(DWORD_PTR); 1903 1904 if (__kmp_affinity_verbose) { 1905 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY"); 1906 } 1907 1908 // If we aren't affinity capable, then use flat topology 1909 if (!KMP_AFFINITY_CAPABLE()) { 1910 KMP_ASSERT(__kmp_affinity_type == affinity_none); 1911 nPackages = __kmp_num_proc_groups; 1912 __kmp_nThreadsPerCore = 1; 1913 __kmp_ncores = __kmp_xproc; 1914 nCoresPerPkg = nPackages / __kmp_ncores; 1915 return true; 1916 } 1917 1918 // Construct the data structure to be returned. 1919 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); 1920 int avail_ct = 0; 1921 int i; 1922 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 1923 // Skip this proc if it is not included in the machine model. 1924 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 1925 continue; 1926 } 1927 kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct++); 1928 hw_thread.clear(); 1929 hw_thread.os_id = i; 1930 hw_thread.ids[0] = i / BITS_PER_GROUP; 1931 hw_thread.ids[1] = hw_thread.ids[2] = i % BITS_PER_GROUP; 1932 } 1933 return true; 1934 } 1935 #endif /* KMP_GROUP_AFFINITY */ 1936 1937 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1938 1939 template <kmp_uint32 LSB, kmp_uint32 MSB> 1940 static inline unsigned __kmp_extract_bits(kmp_uint32 v) { 1941 const kmp_uint32 SHIFT_LEFT = sizeof(kmp_uint32) * 8 - 1 - MSB; 1942 const kmp_uint32 SHIFT_RIGHT = LSB; 1943 kmp_uint32 retval = v; 1944 retval <<= SHIFT_LEFT; 1945 retval >>= (SHIFT_LEFT + SHIFT_RIGHT); 1946 return retval; 1947 } 1948 1949 static int __kmp_cpuid_mask_width(int count) { 1950 int r = 0; 1951 1952 while ((1 << r) < count) 1953 ++r; 1954 return r; 1955 } 1956 1957 class apicThreadInfo { 1958 public: 1959 unsigned osId; // param to __kmp_affinity_bind_thread 1960 unsigned apicId; // from cpuid after binding 1961 unsigned maxCoresPerPkg; // "" 1962 unsigned maxThreadsPerPkg; // "" 1963 unsigned pkgId; // inferred from above values 1964 unsigned coreId; // "" 1965 unsigned threadId; // "" 1966 }; 1967 1968 static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a, 1969 const void *b) { 1970 const apicThreadInfo *aa = (const apicThreadInfo *)a; 1971 const apicThreadInfo *bb = (const apicThreadInfo *)b; 1972 if (aa->pkgId < bb->pkgId) 1973 return -1; 1974 if (aa->pkgId > bb->pkgId) 1975 return 1; 1976 if (aa->coreId < bb->coreId) 1977 return -1; 1978 if (aa->coreId > bb->coreId) 1979 return 1; 1980 if (aa->threadId < bb->threadId) 1981 return -1; 1982 if (aa->threadId > bb->threadId) 1983 return 1; 1984 return 0; 1985 } 1986 1987 class kmp_cache_info_t { 1988 public: 1989 struct info_t { 1990 unsigned level, mask; 1991 }; 1992 kmp_cache_info_t() : depth(0) { get_leaf4_levels(); } 1993 size_t get_depth() const { return depth; } 1994 info_t &operator[](size_t index) { return table[index]; } 1995 const info_t &operator[](size_t index) const { return table[index]; } 1996 1997 static kmp_hw_t get_topology_type(unsigned level) { 1998 KMP_DEBUG_ASSERT(level >= 1 && level <= MAX_CACHE_LEVEL); 1999 switch (level) { 2000 case 1: 2001 return KMP_HW_L1; 2002 case 2: 2003 return KMP_HW_L2; 2004 case 3: 2005 return KMP_HW_L3; 2006 } 2007 return KMP_HW_UNKNOWN; 2008 } 2009 2010 private: 2011 static const int MAX_CACHE_LEVEL = 3; 2012 2013 size_t depth; 2014 info_t table[MAX_CACHE_LEVEL]; 2015 2016 void get_leaf4_levels() { 2017 unsigned level = 0; 2018 while (depth < MAX_CACHE_LEVEL) { 2019 unsigned cache_type, max_threads_sharing; 2020 unsigned cache_level, cache_mask_width; 2021 kmp_cpuid buf2; 2022 __kmp_x86_cpuid(4, level, &buf2); 2023 cache_type = __kmp_extract_bits<0, 4>(buf2.eax); 2024 if (!cache_type) 2025 break; 2026 // Skip instruction caches 2027 if (cache_type == 2) { 2028 level++; 2029 continue; 2030 } 2031 max_threads_sharing = __kmp_extract_bits<14, 25>(buf2.eax) + 1; 2032 cache_mask_width = __kmp_cpuid_mask_width(max_threads_sharing); 2033 cache_level = __kmp_extract_bits<5, 7>(buf2.eax); 2034 table[depth].level = cache_level; 2035 table[depth].mask = ((-1) << cache_mask_width); 2036 depth++; 2037 level++; 2038 } 2039 } 2040 }; 2041 2042 // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use 2043 // an algorithm which cycles through the available os threads, setting 2044 // the current thread's affinity mask to that thread, and then retrieves 2045 // the Apic Id for each thread context using the cpuid instruction. 2046 static bool __kmp_affinity_create_apicid_map(kmp_i18n_id_t *const msg_id) { 2047 kmp_cpuid buf; 2048 *msg_id = kmp_i18n_null; 2049 2050 if (__kmp_affinity_verbose) { 2051 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC)); 2052 } 2053 2054 // Check if cpuid leaf 4 is supported. 2055 __kmp_x86_cpuid(0, 0, &buf); 2056 if (buf.eax < 4) { 2057 *msg_id = kmp_i18n_str_NoLeaf4Support; 2058 return false; 2059 } 2060 2061 // The algorithm used starts by setting the affinity to each available thread 2062 // and retrieving info from the cpuid instruction, so if we are not capable of 2063 // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we 2064 // need to do something else - use the defaults that we calculated from 2065 // issuing cpuid without binding to each proc. 2066 if (!KMP_AFFINITY_CAPABLE()) { 2067 // Hack to try and infer the machine topology using only the data 2068 // available from cpuid on the current thread, and __kmp_xproc. 2069 KMP_ASSERT(__kmp_affinity_type == affinity_none); 2070 2071 // Get an upper bound on the number of threads per package using cpuid(1). 2072 // On some OS/chps combinations where HT is supported by the chip but is 2073 // disabled, this value will be 2 on a single core chip. Usually, it will be 2074 // 2 if HT is enabled and 1 if HT is disabled. 2075 __kmp_x86_cpuid(1, 0, &buf); 2076 int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; 2077 if (maxThreadsPerPkg == 0) { 2078 maxThreadsPerPkg = 1; 2079 } 2080 2081 // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded 2082 // value. 2083 // 2084 // The author of cpu_count.cpp treated this only an upper bound on the 2085 // number of cores, but I haven't seen any cases where it was greater than 2086 // the actual number of cores, so we will treat it as exact in this block of 2087 // code. 2088 // 2089 // First, we need to check if cpuid(4) is supported on this chip. To see if 2090 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or 2091 // greater. 2092 __kmp_x86_cpuid(0, 0, &buf); 2093 if (buf.eax >= 4) { 2094 __kmp_x86_cpuid(4, 0, &buf); 2095 nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; 2096 } else { 2097 nCoresPerPkg = 1; 2098 } 2099 2100 // There is no way to reliably tell if HT is enabled without issuing the 2101 // cpuid instruction from every thread, can correlating the cpuid info, so 2102 // if the machine is not affinity capable, we assume that HT is off. We have 2103 // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine 2104 // does not support HT. 2105 // 2106 // - Older OSes are usually found on machines with older chips, which do not 2107 // support HT. 2108 // - The performance penalty for mistakenly identifying a machine as HT when 2109 // it isn't (which results in blocktime being incorrectly set to 0) is 2110 // greater than the penalty when for mistakenly identifying a machine as 2111 // being 1 thread/core when it is really HT enabled (which results in 2112 // blocktime being incorrectly set to a positive value). 2113 __kmp_ncores = __kmp_xproc; 2114 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 2115 __kmp_nThreadsPerCore = 1; 2116 return true; 2117 } 2118 2119 // From here on, we can assume that it is safe to call 2120 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if 2121 // __kmp_affinity_type = affinity_none. 2122 2123 // Save the affinity mask for the current thread. 2124 kmp_affinity_raii_t previous_affinity; 2125 2126 // Run through each of the available contexts, binding the current thread 2127 // to it, and obtaining the pertinent information using the cpuid instr. 2128 // 2129 // The relevant information is: 2130 // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context 2131 // has a uniqie Apic Id, which is of the form pkg# : core# : thread#. 2132 // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value 2133 // of this field determines the width of the core# + thread# fields in the 2134 // Apic Id. It is also an upper bound on the number of threads per 2135 // package, but it has been verified that situations happen were it is not 2136 // exact. In particular, on certain OS/chip combinations where Intel(R) 2137 // Hyper-Threading Technology is supported by the chip but has been 2138 // disabled, the value of this field will be 2 (for a single core chip). 2139 // On other OS/chip combinations supporting Intel(R) Hyper-Threading 2140 // Technology, the value of this field will be 1 when Intel(R) 2141 // Hyper-Threading Technology is disabled and 2 when it is enabled. 2142 // - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value 2143 // of this field (+1) determines the width of the core# field in the Apic 2144 // Id. The comments in "cpucount.cpp" say that this value is an upper 2145 // bound, but the IA-32 architecture manual says that it is exactly the 2146 // number of cores per package, and I haven't seen any case where it 2147 // wasn't. 2148 // 2149 // From this information, deduce the package Id, core Id, and thread Id, 2150 // and set the corresponding fields in the apicThreadInfo struct. 2151 unsigned i; 2152 apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate( 2153 __kmp_avail_proc * sizeof(apicThreadInfo)); 2154 unsigned nApics = 0; 2155 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 2156 // Skip this proc if it is not included in the machine model. 2157 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 2158 continue; 2159 } 2160 KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc); 2161 2162 __kmp_affinity_dispatch->bind_thread(i); 2163 threadInfo[nApics].osId = i; 2164 2165 // The apic id and max threads per pkg come from cpuid(1). 2166 __kmp_x86_cpuid(1, 0, &buf); 2167 if (((buf.edx >> 9) & 1) == 0) { 2168 __kmp_free(threadInfo); 2169 *msg_id = kmp_i18n_str_ApicNotPresent; 2170 return false; 2171 } 2172 threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff; 2173 threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; 2174 if (threadInfo[nApics].maxThreadsPerPkg == 0) { 2175 threadInfo[nApics].maxThreadsPerPkg = 1; 2176 } 2177 2178 // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded 2179 // value. 2180 // 2181 // First, we need to check if cpuid(4) is supported on this chip. To see if 2182 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n 2183 // or greater. 2184 __kmp_x86_cpuid(0, 0, &buf); 2185 if (buf.eax >= 4) { 2186 __kmp_x86_cpuid(4, 0, &buf); 2187 threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; 2188 } else { 2189 threadInfo[nApics].maxCoresPerPkg = 1; 2190 } 2191 2192 // Infer the pkgId / coreId / threadId using only the info obtained locally. 2193 int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg); 2194 threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT; 2195 2196 int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg); 2197 int widthT = widthCT - widthC; 2198 if (widthT < 0) { 2199 // I've never seen this one happen, but I suppose it could, if the cpuid 2200 // instruction on a chip was really screwed up. Make sure to restore the 2201 // affinity mask before the tail call. 2202 __kmp_free(threadInfo); 2203 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 2204 return false; 2205 } 2206 2207 int maskC = (1 << widthC) - 1; 2208 threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC; 2209 2210 int maskT = (1 << widthT) - 1; 2211 threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT; 2212 2213 nApics++; 2214 } 2215 2216 // We've collected all the info we need. 2217 // Restore the old affinity mask for this thread. 2218 previous_affinity.restore(); 2219 2220 // Sort the threadInfo table by physical Id. 2221 qsort(threadInfo, nApics, sizeof(*threadInfo), 2222 __kmp_affinity_cmp_apicThreadInfo_phys_id); 2223 2224 // The table is now sorted by pkgId / coreId / threadId, but we really don't 2225 // know the radix of any of the fields. pkgId's may be sparsely assigned among 2226 // the chips on a system. Although coreId's are usually assigned 2227 // [0 .. coresPerPkg-1] and threadId's are usually assigned 2228 // [0..threadsPerCore-1], we don't want to make any such assumptions. 2229 // 2230 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the 2231 // total # packages) are at this point - we want to determine that now. We 2232 // only have an upper bound on the first two figures. 2233 // 2234 // We also perform a consistency check at this point: the values returned by 2235 // the cpuid instruction for any thread bound to a given package had better 2236 // return the same info for maxThreadsPerPkg and maxCoresPerPkg. 2237 nPackages = 1; 2238 nCoresPerPkg = 1; 2239 __kmp_nThreadsPerCore = 1; 2240 unsigned nCores = 1; 2241 2242 unsigned pkgCt = 1; // to determine radii 2243 unsigned lastPkgId = threadInfo[0].pkgId; 2244 unsigned coreCt = 1; 2245 unsigned lastCoreId = threadInfo[0].coreId; 2246 unsigned threadCt = 1; 2247 unsigned lastThreadId = threadInfo[0].threadId; 2248 2249 // intra-pkg consist checks 2250 unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg; 2251 unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg; 2252 2253 for (i = 1; i < nApics; i++) { 2254 if (threadInfo[i].pkgId != lastPkgId) { 2255 nCores++; 2256 pkgCt++; 2257 lastPkgId = threadInfo[i].pkgId; 2258 if ((int)coreCt > nCoresPerPkg) 2259 nCoresPerPkg = coreCt; 2260 coreCt = 1; 2261 lastCoreId = threadInfo[i].coreId; 2262 if ((int)threadCt > __kmp_nThreadsPerCore) 2263 __kmp_nThreadsPerCore = threadCt; 2264 threadCt = 1; 2265 lastThreadId = threadInfo[i].threadId; 2266 2267 // This is a different package, so go on to the next iteration without 2268 // doing any consistency checks. Reset the consistency check vars, though. 2269 prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg; 2270 prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg; 2271 continue; 2272 } 2273 2274 if (threadInfo[i].coreId != lastCoreId) { 2275 nCores++; 2276 coreCt++; 2277 lastCoreId = threadInfo[i].coreId; 2278 if ((int)threadCt > __kmp_nThreadsPerCore) 2279 __kmp_nThreadsPerCore = threadCt; 2280 threadCt = 1; 2281 lastThreadId = threadInfo[i].threadId; 2282 } else if (threadInfo[i].threadId != lastThreadId) { 2283 threadCt++; 2284 lastThreadId = threadInfo[i].threadId; 2285 } else { 2286 __kmp_free(threadInfo); 2287 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; 2288 return false; 2289 } 2290 2291 // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg 2292 // fields agree between all the threads bounds to a given package. 2293 if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) || 2294 (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) { 2295 __kmp_free(threadInfo); 2296 *msg_id = kmp_i18n_str_InconsistentCpuidInfo; 2297 return false; 2298 } 2299 } 2300 // When affinity is off, this routine will still be called to set 2301 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 2302 // Make sure all these vars are set correctly 2303 nPackages = pkgCt; 2304 if ((int)coreCt > nCoresPerPkg) 2305 nCoresPerPkg = coreCt; 2306 if ((int)threadCt > __kmp_nThreadsPerCore) 2307 __kmp_nThreadsPerCore = threadCt; 2308 __kmp_ncores = nCores; 2309 KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc); 2310 2311 // Now that we've determined the number of packages, the number of cores per 2312 // package, and the number of threads per core, we can construct the data 2313 // structure that is to be returned. 2314 int idx = 0; 2315 int pkgLevel = 0; 2316 int coreLevel = 1; 2317 int threadLevel = 2; 2318 //(__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1); 2319 int depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0); 2320 kmp_hw_t types[3]; 2321 if (pkgLevel >= 0) 2322 types[idx++] = KMP_HW_SOCKET; 2323 if (coreLevel >= 0) 2324 types[idx++] = KMP_HW_CORE; 2325 if (threadLevel >= 0) 2326 types[idx++] = KMP_HW_THREAD; 2327 2328 KMP_ASSERT(depth > 0); 2329 __kmp_topology = kmp_topology_t::allocate(nApics, depth, types); 2330 2331 for (i = 0; i < nApics; ++i) { 2332 idx = 0; 2333 unsigned os = threadInfo[i].osId; 2334 kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); 2335 hw_thread.clear(); 2336 2337 if (pkgLevel >= 0) { 2338 hw_thread.ids[idx++] = threadInfo[i].pkgId; 2339 } 2340 if (coreLevel >= 0) { 2341 hw_thread.ids[idx++] = threadInfo[i].coreId; 2342 } 2343 if (threadLevel >= 0) { 2344 hw_thread.ids[idx++] = threadInfo[i].threadId; 2345 } 2346 hw_thread.os_id = os; 2347 } 2348 2349 __kmp_free(threadInfo); 2350 __kmp_topology->sort_ids(); 2351 if (!__kmp_topology->check_ids()) { 2352 kmp_topology_t::deallocate(__kmp_topology); 2353 __kmp_topology = nullptr; 2354 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; 2355 return false; 2356 } 2357 return true; 2358 } 2359 2360 // Hybrid cpu detection using CPUID.1A 2361 // Thread should be pinned to processor already 2362 static void __kmp_get_hybrid_info(kmp_hw_core_type_t *type, int *efficiency, 2363 unsigned *native_model_id) { 2364 kmp_cpuid buf; 2365 __kmp_x86_cpuid(0x1a, 0, &buf); 2366 *type = (kmp_hw_core_type_t)__kmp_extract_bits<24, 31>(buf.eax); 2367 switch (*type) { 2368 case KMP_HW_CORE_TYPE_ATOM: 2369 *efficiency = 0; 2370 break; 2371 case KMP_HW_CORE_TYPE_CORE: 2372 *efficiency = 1; 2373 break; 2374 default: 2375 *efficiency = 0; 2376 } 2377 *native_model_id = __kmp_extract_bits<0, 23>(buf.eax); 2378 } 2379 2380 // Intel(R) microarchitecture code name Nehalem, Dunnington and later 2381 // architectures support a newer interface for specifying the x2APIC Ids, 2382 // based on CPUID.B or CPUID.1F 2383 /* 2384 * CPUID.B or 1F, Input ECX (sub leaf # aka level number) 2385 Bits Bits Bits Bits 2386 31-16 15-8 7-4 4-0 2387 ---+-----------+--------------+-------------+-----------------+ 2388 EAX| reserved | reserved | reserved | Bits to Shift | 2389 ---+-----------|--------------+-------------+-----------------| 2390 EBX| reserved | Num logical processors at level (16 bits) | 2391 ---+-----------|--------------+-------------------------------| 2392 ECX| reserved | Level Type | Level Number (8 bits) | 2393 ---+-----------+--------------+-------------------------------| 2394 EDX| X2APIC ID (32 bits) | 2395 ---+----------------------------------------------------------+ 2396 */ 2397 2398 enum { 2399 INTEL_LEVEL_TYPE_INVALID = 0, // Package level 2400 INTEL_LEVEL_TYPE_SMT = 1, 2401 INTEL_LEVEL_TYPE_CORE = 2, 2402 INTEL_LEVEL_TYPE_TILE = 3, 2403 INTEL_LEVEL_TYPE_MODULE = 4, 2404 INTEL_LEVEL_TYPE_DIE = 5, 2405 INTEL_LEVEL_TYPE_LAST = 6, 2406 }; 2407 2408 struct cpuid_level_info_t { 2409 unsigned level_type, mask, mask_width, nitems, cache_mask; 2410 }; 2411 2412 static kmp_hw_t __kmp_intel_type_2_topology_type(int intel_type) { 2413 switch (intel_type) { 2414 case INTEL_LEVEL_TYPE_INVALID: 2415 return KMP_HW_SOCKET; 2416 case INTEL_LEVEL_TYPE_SMT: 2417 return KMP_HW_THREAD; 2418 case INTEL_LEVEL_TYPE_CORE: 2419 return KMP_HW_CORE; 2420 case INTEL_LEVEL_TYPE_TILE: 2421 return KMP_HW_TILE; 2422 case INTEL_LEVEL_TYPE_MODULE: 2423 return KMP_HW_MODULE; 2424 case INTEL_LEVEL_TYPE_DIE: 2425 return KMP_HW_DIE; 2426 } 2427 return KMP_HW_UNKNOWN; 2428 } 2429 2430 // This function takes the topology leaf, a levels array to store the levels 2431 // detected and a bitmap of the known levels. 2432 // Returns the number of levels in the topology 2433 static unsigned 2434 __kmp_x2apicid_get_levels(int leaf, 2435 cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST], 2436 kmp_uint64 known_levels) { 2437 unsigned level, levels_index; 2438 unsigned level_type, mask_width, nitems; 2439 kmp_cpuid buf; 2440 2441 // New algorithm has known topology layers act as highest unknown topology 2442 // layers when unknown topology layers exist. 2443 // e.g., Suppose layers were SMT <X> CORE <Y> <Z> PACKAGE, where <X> <Y> <Z> 2444 // are unknown topology layers, Then SMT will take the characteristics of 2445 // (SMT x <X>) and CORE will take the characteristics of (CORE x <Y> x <Z>). 2446 // This eliminates unknown portions of the topology while still keeping the 2447 // correct structure. 2448 level = levels_index = 0; 2449 do { 2450 __kmp_x86_cpuid(leaf, level, &buf); 2451 level_type = __kmp_extract_bits<8, 15>(buf.ecx); 2452 mask_width = __kmp_extract_bits<0, 4>(buf.eax); 2453 nitems = __kmp_extract_bits<0, 15>(buf.ebx); 2454 if (level_type != INTEL_LEVEL_TYPE_INVALID && nitems == 0) 2455 return 0; 2456 2457 if (known_levels & (1ull << level_type)) { 2458 // Add a new level to the topology 2459 KMP_ASSERT(levels_index < INTEL_LEVEL_TYPE_LAST); 2460 levels[levels_index].level_type = level_type; 2461 levels[levels_index].mask_width = mask_width; 2462 levels[levels_index].nitems = nitems; 2463 levels_index++; 2464 } else { 2465 // If it is an unknown level, then logically move the previous layer up 2466 if (levels_index > 0) { 2467 levels[levels_index - 1].mask_width = mask_width; 2468 levels[levels_index - 1].nitems = nitems; 2469 } 2470 } 2471 level++; 2472 } while (level_type != INTEL_LEVEL_TYPE_INVALID); 2473 2474 // Set the masks to & with apicid 2475 for (unsigned i = 0; i < levels_index; ++i) { 2476 if (levels[i].level_type != INTEL_LEVEL_TYPE_INVALID) { 2477 levels[i].mask = ~((-1) << levels[i].mask_width); 2478 levels[i].cache_mask = (-1) << levels[i].mask_width; 2479 for (unsigned j = 0; j < i; ++j) 2480 levels[i].mask ^= levels[j].mask; 2481 } else { 2482 KMP_DEBUG_ASSERT(levels_index > 0); 2483 levels[i].mask = (-1) << levels[i - 1].mask_width; 2484 levels[i].cache_mask = 0; 2485 } 2486 } 2487 return levels_index; 2488 } 2489 2490 static bool __kmp_affinity_create_x2apicid_map(kmp_i18n_id_t *const msg_id) { 2491 2492 cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST]; 2493 kmp_hw_t types[INTEL_LEVEL_TYPE_LAST]; 2494 unsigned levels_index; 2495 kmp_cpuid buf; 2496 kmp_uint64 known_levels; 2497 int topology_leaf, highest_leaf, apic_id; 2498 int num_leaves; 2499 static int leaves[] = {0, 0}; 2500 2501 kmp_i18n_id_t leaf_message_id; 2502 2503 KMP_BUILD_ASSERT(sizeof(known_levels) * CHAR_BIT > KMP_HW_LAST); 2504 2505 *msg_id = kmp_i18n_null; 2506 if (__kmp_affinity_verbose) { 2507 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC)); 2508 } 2509 2510 // Figure out the known topology levels 2511 known_levels = 0ull; 2512 for (int i = 0; i < INTEL_LEVEL_TYPE_LAST; ++i) { 2513 if (__kmp_intel_type_2_topology_type(i) != KMP_HW_UNKNOWN) { 2514 known_levels |= (1ull << i); 2515 } 2516 } 2517 2518 // Get the highest cpuid leaf supported 2519 __kmp_x86_cpuid(0, 0, &buf); 2520 highest_leaf = buf.eax; 2521 2522 // If a specific topology method was requested, only allow that specific leaf 2523 // otherwise, try both leaves 31 and 11 in that order 2524 num_leaves = 0; 2525 if (__kmp_affinity_top_method == affinity_top_method_x2apicid) { 2526 num_leaves = 1; 2527 leaves[0] = 11; 2528 leaf_message_id = kmp_i18n_str_NoLeaf11Support; 2529 } else if (__kmp_affinity_top_method == affinity_top_method_x2apicid_1f) { 2530 num_leaves = 1; 2531 leaves[0] = 31; 2532 leaf_message_id = kmp_i18n_str_NoLeaf31Support; 2533 } else { 2534 num_leaves = 2; 2535 leaves[0] = 31; 2536 leaves[1] = 11; 2537 leaf_message_id = kmp_i18n_str_NoLeaf11Support; 2538 } 2539 2540 // Check to see if cpuid leaf 31 or 11 is supported. 2541 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; 2542 topology_leaf = -1; 2543 for (int i = 0; i < num_leaves; ++i) { 2544 int leaf = leaves[i]; 2545 if (highest_leaf < leaf) 2546 continue; 2547 __kmp_x86_cpuid(leaf, 0, &buf); 2548 if (buf.ebx == 0) 2549 continue; 2550 topology_leaf = leaf; 2551 levels_index = __kmp_x2apicid_get_levels(leaf, levels, known_levels); 2552 if (levels_index == 0) 2553 continue; 2554 break; 2555 } 2556 if (topology_leaf == -1 || levels_index == 0) { 2557 *msg_id = leaf_message_id; 2558 return false; 2559 } 2560 KMP_ASSERT(levels_index <= INTEL_LEVEL_TYPE_LAST); 2561 2562 // The algorithm used starts by setting the affinity to each available thread 2563 // and retrieving info from the cpuid instruction, so if we are not capable of 2564 // calling __kmp_get_system_affinity() and __kmp_get_system_affinity(), then 2565 // we need to do something else - use the defaults that we calculated from 2566 // issuing cpuid without binding to each proc. 2567 if (!KMP_AFFINITY_CAPABLE()) { 2568 // Hack to try and infer the machine topology using only the data 2569 // available from cpuid on the current thread, and __kmp_xproc. 2570 KMP_ASSERT(__kmp_affinity_type == affinity_none); 2571 for (unsigned i = 0; i < levels_index; ++i) { 2572 if (levels[i].level_type == INTEL_LEVEL_TYPE_SMT) { 2573 __kmp_nThreadsPerCore = levels[i].nitems; 2574 } else if (levels[i].level_type == INTEL_LEVEL_TYPE_CORE) { 2575 nCoresPerPkg = levels[i].nitems; 2576 } 2577 } 2578 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; 2579 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 2580 return true; 2581 } 2582 2583 // Allocate the data structure to be returned. 2584 int depth = levels_index; 2585 for (int i = depth - 1, j = 0; i >= 0; --i, ++j) 2586 types[j] = __kmp_intel_type_2_topology_type(levels[i].level_type); 2587 __kmp_topology = 2588 kmp_topology_t::allocate(__kmp_avail_proc, levels_index, types); 2589 2590 // Insert equivalent cache types if they exist 2591 kmp_cache_info_t cache_info; 2592 for (size_t i = 0; i < cache_info.get_depth(); ++i) { 2593 const kmp_cache_info_t::info_t &info = cache_info[i]; 2594 unsigned cache_mask = info.mask; 2595 unsigned cache_level = info.level; 2596 for (unsigned j = 0; j < levels_index; ++j) { 2597 unsigned hw_cache_mask = levels[j].cache_mask; 2598 kmp_hw_t cache_type = kmp_cache_info_t::get_topology_type(cache_level); 2599 if (hw_cache_mask == cache_mask && j < levels_index - 1) { 2600 kmp_hw_t type = 2601 __kmp_intel_type_2_topology_type(levels[j + 1].level_type); 2602 __kmp_topology->set_equivalent_type(cache_type, type); 2603 } 2604 } 2605 } 2606 2607 // From here on, we can assume that it is safe to call 2608 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if 2609 // __kmp_affinity_type = affinity_none. 2610 2611 // Save the affinity mask for the current thread. 2612 kmp_affinity_raii_t previous_affinity; 2613 2614 // Run through each of the available contexts, binding the current thread 2615 // to it, and obtaining the pertinent information using the cpuid instr. 2616 unsigned int proc; 2617 int hw_thread_index = 0; 2618 KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) { 2619 cpuid_level_info_t my_levels[INTEL_LEVEL_TYPE_LAST]; 2620 unsigned my_levels_index; 2621 2622 // Skip this proc if it is not included in the machine model. 2623 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 2624 continue; 2625 } 2626 KMP_DEBUG_ASSERT(hw_thread_index < __kmp_avail_proc); 2627 2628 __kmp_affinity_dispatch->bind_thread(proc); 2629 2630 // New algorithm 2631 __kmp_x86_cpuid(topology_leaf, 0, &buf); 2632 apic_id = buf.edx; 2633 kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index); 2634 my_levels_index = 2635 __kmp_x2apicid_get_levels(topology_leaf, my_levels, known_levels); 2636 if (my_levels_index == 0 || my_levels_index != levels_index) { 2637 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 2638 return false; 2639 } 2640 hw_thread.clear(); 2641 hw_thread.os_id = proc; 2642 // Put in topology information 2643 for (unsigned j = 0, idx = depth - 1; j < my_levels_index; ++j, --idx) { 2644 hw_thread.ids[idx] = apic_id & my_levels[j].mask; 2645 if (j > 0) { 2646 hw_thread.ids[idx] >>= my_levels[j - 1].mask_width; 2647 } 2648 } 2649 // Hybrid information 2650 if (__kmp_is_hybrid_cpu() && highest_leaf >= 0x1a) { 2651 kmp_hw_core_type_t type; 2652 unsigned native_model_id; 2653 int efficiency; 2654 __kmp_get_hybrid_info(&type, &efficiency, &native_model_id); 2655 hw_thread.attrs.set_core_type(type); 2656 hw_thread.attrs.set_core_eff(efficiency); 2657 } 2658 hw_thread_index++; 2659 } 2660 KMP_ASSERT(hw_thread_index > 0); 2661 __kmp_topology->sort_ids(); 2662 if (!__kmp_topology->check_ids()) { 2663 kmp_topology_t::deallocate(__kmp_topology); 2664 __kmp_topology = nullptr; 2665 *msg_id = kmp_i18n_str_x2ApicIDsNotUnique; 2666 return false; 2667 } 2668 return true; 2669 } 2670 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 2671 2672 #define osIdIndex 0 2673 #define threadIdIndex 1 2674 #define coreIdIndex 2 2675 #define pkgIdIndex 3 2676 #define nodeIdIndex 4 2677 2678 typedef unsigned *ProcCpuInfo; 2679 static unsigned maxIndex = pkgIdIndex; 2680 2681 static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a, 2682 const void *b) { 2683 unsigned i; 2684 const unsigned *aa = *(unsigned *const *)a; 2685 const unsigned *bb = *(unsigned *const *)b; 2686 for (i = maxIndex;; i--) { 2687 if (aa[i] < bb[i]) 2688 return -1; 2689 if (aa[i] > bb[i]) 2690 return 1; 2691 if (i == osIdIndex) 2692 break; 2693 } 2694 return 0; 2695 } 2696 2697 #if KMP_USE_HIER_SCHED 2698 // Set the array sizes for the hierarchy layers 2699 static void __kmp_dispatch_set_hierarchy_values() { 2700 // Set the maximum number of L1's to number of cores 2701 // Set the maximum number of L2's to to either number of cores / 2 for 2702 // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing 2703 // Or the number of cores for Intel(R) Xeon(R) processors 2704 // Set the maximum number of NUMA nodes and L3's to number of packages 2705 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] = 2706 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; 2707 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores; 2708 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \ 2709 KMP_MIC_SUPPORTED 2710 if (__kmp_mic_type >= mic3) 2711 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2; 2712 else 2713 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 2714 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores; 2715 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages; 2716 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages; 2717 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1; 2718 // Set the number of threads per unit 2719 // Number of hardware threads per L1/L2/L3/NUMA/LOOP 2720 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1; 2721 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] = 2722 __kmp_nThreadsPerCore; 2723 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \ 2724 KMP_MIC_SUPPORTED 2725 if (__kmp_mic_type >= mic3) 2726 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = 2727 2 * __kmp_nThreadsPerCore; 2728 else 2729 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 2730 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = 2731 __kmp_nThreadsPerCore; 2732 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] = 2733 nCoresPerPkg * __kmp_nThreadsPerCore; 2734 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] = 2735 nCoresPerPkg * __kmp_nThreadsPerCore; 2736 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] = 2737 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; 2738 } 2739 2740 // Return the index into the hierarchy for this tid and layer type (L1, L2, etc) 2741 // i.e., this thread's L1 or this thread's L2, etc. 2742 int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) { 2743 int index = type + 1; 2744 int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1]; 2745 KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST); 2746 if (type == kmp_hier_layer_e::LAYER_THREAD) 2747 return tid; 2748 else if (type == kmp_hier_layer_e::LAYER_LOOP) 2749 return 0; 2750 KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0); 2751 if (tid >= num_hw_threads) 2752 tid = tid % num_hw_threads; 2753 return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index]; 2754 } 2755 2756 // Return the number of t1's per t2 2757 int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) { 2758 int i1 = t1 + 1; 2759 int i2 = t2 + 1; 2760 KMP_DEBUG_ASSERT(i1 <= i2); 2761 KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST); 2762 KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST); 2763 KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0); 2764 // (nthreads/t2) / (nthreads/t1) = t1 / t2 2765 return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1]; 2766 } 2767 #endif // KMP_USE_HIER_SCHED 2768 2769 static inline const char *__kmp_cpuinfo_get_filename() { 2770 const char *filename; 2771 if (__kmp_cpuinfo_file != nullptr) 2772 filename = __kmp_cpuinfo_file; 2773 else 2774 filename = "/proc/cpuinfo"; 2775 return filename; 2776 } 2777 2778 static inline const char *__kmp_cpuinfo_get_envvar() { 2779 const char *envvar = nullptr; 2780 if (__kmp_cpuinfo_file != nullptr) 2781 envvar = "KMP_CPUINFO_FILE"; 2782 return envvar; 2783 } 2784 2785 // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the 2786 // affinity map. 2787 static bool __kmp_affinity_create_cpuinfo_map(int *line, 2788 kmp_i18n_id_t *const msg_id) { 2789 const char *filename = __kmp_cpuinfo_get_filename(); 2790 const char *envvar = __kmp_cpuinfo_get_envvar(); 2791 *msg_id = kmp_i18n_null; 2792 2793 if (__kmp_affinity_verbose) { 2794 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename); 2795 } 2796 2797 kmp_safe_raii_file_t f(filename, "r", envvar); 2798 2799 // Scan of the file, and count the number of "processor" (osId) fields, 2800 // and find the highest value of <n> for a node_<n> field. 2801 char buf[256]; 2802 unsigned num_records = 0; 2803 while (!feof(f)) { 2804 buf[sizeof(buf) - 1] = 1; 2805 if (!fgets(buf, sizeof(buf), f)) { 2806 // Read errors presumably because of EOF 2807 break; 2808 } 2809 2810 char s1[] = "processor"; 2811 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { 2812 num_records++; 2813 continue; 2814 } 2815 2816 // FIXME - this will match "node_<n> <garbage>" 2817 unsigned level; 2818 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { 2819 // validate the input fisrt: 2820 if (level > (unsigned)__kmp_xproc) { // level is too big 2821 level = __kmp_xproc; 2822 } 2823 if (nodeIdIndex + level >= maxIndex) { 2824 maxIndex = nodeIdIndex + level; 2825 } 2826 continue; 2827 } 2828 } 2829 2830 // Check for empty file / no valid processor records, or too many. The number 2831 // of records can't exceed the number of valid bits in the affinity mask. 2832 if (num_records == 0) { 2833 *msg_id = kmp_i18n_str_NoProcRecords; 2834 return false; 2835 } 2836 if (num_records > (unsigned)__kmp_xproc) { 2837 *msg_id = kmp_i18n_str_TooManyProcRecords; 2838 return false; 2839 } 2840 2841 // Set the file pointer back to the beginning, so that we can scan the file 2842 // again, this time performing a full parse of the data. Allocate a vector of 2843 // ProcCpuInfo object, where we will place the data. Adding an extra element 2844 // at the end allows us to remove a lot of extra checks for termination 2845 // conditions. 2846 if (fseek(f, 0, SEEK_SET) != 0) { 2847 *msg_id = kmp_i18n_str_CantRewindCpuinfo; 2848 return false; 2849 } 2850 2851 // Allocate the array of records to store the proc info in. The dummy 2852 // element at the end makes the logic in filling them out easier to code. 2853 unsigned **threadInfo = 2854 (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *)); 2855 unsigned i; 2856 for (i = 0; i <= num_records; i++) { 2857 threadInfo[i] = 2858 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2859 } 2860 2861 #define CLEANUP_THREAD_INFO \ 2862 for (i = 0; i <= num_records; i++) { \ 2863 __kmp_free(threadInfo[i]); \ 2864 } \ 2865 __kmp_free(threadInfo); 2866 2867 // A value of UINT_MAX means that we didn't find the field 2868 unsigned __index; 2869 2870 #define INIT_PROC_INFO(p) \ 2871 for (__index = 0; __index <= maxIndex; __index++) { \ 2872 (p)[__index] = UINT_MAX; \ 2873 } 2874 2875 for (i = 0; i <= num_records; i++) { 2876 INIT_PROC_INFO(threadInfo[i]); 2877 } 2878 2879 unsigned num_avail = 0; 2880 *line = 0; 2881 while (!feof(f)) { 2882 // Create an inner scoping level, so that all the goto targets at the end of 2883 // the loop appear in an outer scoping level. This avoids warnings about 2884 // jumping past an initialization to a target in the same block. 2885 { 2886 buf[sizeof(buf) - 1] = 1; 2887 bool long_line = false; 2888 if (!fgets(buf, sizeof(buf), f)) { 2889 // Read errors presumably because of EOF 2890 // If there is valid data in threadInfo[num_avail], then fake 2891 // a blank line in ensure that the last address gets parsed. 2892 bool valid = false; 2893 for (i = 0; i <= maxIndex; i++) { 2894 if (threadInfo[num_avail][i] != UINT_MAX) { 2895 valid = true; 2896 } 2897 } 2898 if (!valid) { 2899 break; 2900 } 2901 buf[0] = 0; 2902 } else if (!buf[sizeof(buf) - 1]) { 2903 // The line is longer than the buffer. Set a flag and don't 2904 // emit an error if we were going to ignore the line, anyway. 2905 long_line = true; 2906 2907 #define CHECK_LINE \ 2908 if (long_line) { \ 2909 CLEANUP_THREAD_INFO; \ 2910 *msg_id = kmp_i18n_str_LongLineCpuinfo; \ 2911 return false; \ 2912 } 2913 } 2914 (*line)++; 2915 2916 char s1[] = "processor"; 2917 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { 2918 CHECK_LINE; 2919 char *p = strchr(buf + sizeof(s1) - 1, ':'); 2920 unsigned val; 2921 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2922 goto no_val; 2923 if (threadInfo[num_avail][osIdIndex] != UINT_MAX) 2924 #if KMP_ARCH_AARCH64 2925 // Handle the old AArch64 /proc/cpuinfo layout differently, 2926 // it contains all of the 'processor' entries listed in a 2927 // single 'Processor' section, therefore the normal looking 2928 // for duplicates in that section will always fail. 2929 num_avail++; 2930 #else 2931 goto dup_field; 2932 #endif 2933 threadInfo[num_avail][osIdIndex] = val; 2934 #if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64) 2935 char path[256]; 2936 KMP_SNPRINTF( 2937 path, sizeof(path), 2938 "/sys/devices/system/cpu/cpu%u/topology/physical_package_id", 2939 threadInfo[num_avail][osIdIndex]); 2940 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]); 2941 2942 KMP_SNPRINTF(path, sizeof(path), 2943 "/sys/devices/system/cpu/cpu%u/topology/core_id", 2944 threadInfo[num_avail][osIdIndex]); 2945 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]); 2946 continue; 2947 #else 2948 } 2949 char s2[] = "physical id"; 2950 if (strncmp(buf, s2, sizeof(s2) - 1) == 0) { 2951 CHECK_LINE; 2952 char *p = strchr(buf + sizeof(s2) - 1, ':'); 2953 unsigned val; 2954 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2955 goto no_val; 2956 if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX) 2957 goto dup_field; 2958 threadInfo[num_avail][pkgIdIndex] = val; 2959 continue; 2960 } 2961 char s3[] = "core id"; 2962 if (strncmp(buf, s3, sizeof(s3) - 1) == 0) { 2963 CHECK_LINE; 2964 char *p = strchr(buf + sizeof(s3) - 1, ':'); 2965 unsigned val; 2966 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2967 goto no_val; 2968 if (threadInfo[num_avail][coreIdIndex] != UINT_MAX) 2969 goto dup_field; 2970 threadInfo[num_avail][coreIdIndex] = val; 2971 continue; 2972 #endif // KMP_OS_LINUX && USE_SYSFS_INFO 2973 } 2974 char s4[] = "thread id"; 2975 if (strncmp(buf, s4, sizeof(s4) - 1) == 0) { 2976 CHECK_LINE; 2977 char *p = strchr(buf + sizeof(s4) - 1, ':'); 2978 unsigned val; 2979 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2980 goto no_val; 2981 if (threadInfo[num_avail][threadIdIndex] != UINT_MAX) 2982 goto dup_field; 2983 threadInfo[num_avail][threadIdIndex] = val; 2984 continue; 2985 } 2986 unsigned level; 2987 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { 2988 CHECK_LINE; 2989 char *p = strchr(buf + sizeof(s4) - 1, ':'); 2990 unsigned val; 2991 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2992 goto no_val; 2993 // validate the input before using level: 2994 if (level > (unsigned)__kmp_xproc) { // level is too big 2995 level = __kmp_xproc; 2996 } 2997 if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX) 2998 goto dup_field; 2999 threadInfo[num_avail][nodeIdIndex + level] = val; 3000 continue; 3001 } 3002 3003 // We didn't recognize the leading token on the line. There are lots of 3004 // leading tokens that we don't recognize - if the line isn't empty, go on 3005 // to the next line. 3006 if ((*buf != 0) && (*buf != '\n')) { 3007 // If the line is longer than the buffer, read characters 3008 // until we find a newline. 3009 if (long_line) { 3010 int ch; 3011 while (((ch = fgetc(f)) != EOF) && (ch != '\n')) 3012 ; 3013 } 3014 continue; 3015 } 3016 3017 // A newline has signalled the end of the processor record. 3018 // Check that there aren't too many procs specified. 3019 if ((int)num_avail == __kmp_xproc) { 3020 CLEANUP_THREAD_INFO; 3021 *msg_id = kmp_i18n_str_TooManyEntries; 3022 return false; 3023 } 3024 3025 // Check for missing fields. The osId field must be there, and we 3026 // currently require that the physical id field is specified, also. 3027 if (threadInfo[num_avail][osIdIndex] == UINT_MAX) { 3028 CLEANUP_THREAD_INFO; 3029 *msg_id = kmp_i18n_str_MissingProcField; 3030 return false; 3031 } 3032 if (threadInfo[0][pkgIdIndex] == UINT_MAX) { 3033 CLEANUP_THREAD_INFO; 3034 *msg_id = kmp_i18n_str_MissingPhysicalIDField; 3035 return false; 3036 } 3037 3038 // Skip this proc if it is not included in the machine model. 3039 if (!KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex], 3040 __kmp_affin_fullMask)) { 3041 INIT_PROC_INFO(threadInfo[num_avail]); 3042 continue; 3043 } 3044 3045 // We have a successful parse of this proc's info. 3046 // Increment the counter, and prepare for the next proc. 3047 num_avail++; 3048 KMP_ASSERT(num_avail <= num_records); 3049 INIT_PROC_INFO(threadInfo[num_avail]); 3050 } 3051 continue; 3052 3053 no_val: 3054 CLEANUP_THREAD_INFO; 3055 *msg_id = kmp_i18n_str_MissingValCpuinfo; 3056 return false; 3057 3058 dup_field: 3059 CLEANUP_THREAD_INFO; 3060 *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo; 3061 return false; 3062 } 3063 *line = 0; 3064 3065 #if KMP_MIC && REDUCE_TEAM_SIZE 3066 unsigned teamSize = 0; 3067 #endif // KMP_MIC && REDUCE_TEAM_SIZE 3068 3069 // check for num_records == __kmp_xproc ??? 3070 3071 // If it is configured to omit the package level when there is only a single 3072 // package, the logic at the end of this routine won't work if there is only a 3073 // single thread 3074 KMP_ASSERT(num_avail > 0); 3075 KMP_ASSERT(num_avail <= num_records); 3076 3077 // Sort the threadInfo table by physical Id. 3078 qsort(threadInfo, num_avail, sizeof(*threadInfo), 3079 __kmp_affinity_cmp_ProcCpuInfo_phys_id); 3080 3081 // The table is now sorted by pkgId / coreId / threadId, but we really don't 3082 // know the radix of any of the fields. pkgId's may be sparsely assigned among 3083 // the chips on a system. Although coreId's are usually assigned 3084 // [0 .. coresPerPkg-1] and threadId's are usually assigned 3085 // [0..threadsPerCore-1], we don't want to make any such assumptions. 3086 // 3087 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the 3088 // total # packages) are at this point - we want to determine that now. We 3089 // only have an upper bound on the first two figures. 3090 unsigned *counts = 3091 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 3092 unsigned *maxCt = 3093 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 3094 unsigned *totals = 3095 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 3096 unsigned *lastId = 3097 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 3098 3099 bool assign_thread_ids = false; 3100 unsigned threadIdCt; 3101 unsigned index; 3102 3103 restart_radix_check: 3104 threadIdCt = 0; 3105 3106 // Initialize the counter arrays with data from threadInfo[0]. 3107 if (assign_thread_ids) { 3108 if (threadInfo[0][threadIdIndex] == UINT_MAX) { 3109 threadInfo[0][threadIdIndex] = threadIdCt++; 3110 } else if (threadIdCt <= threadInfo[0][threadIdIndex]) { 3111 threadIdCt = threadInfo[0][threadIdIndex] + 1; 3112 } 3113 } 3114 for (index = 0; index <= maxIndex; index++) { 3115 counts[index] = 1; 3116 maxCt[index] = 1; 3117 totals[index] = 1; 3118 lastId[index] = threadInfo[0][index]; 3119 ; 3120 } 3121 3122 // Run through the rest of the OS procs. 3123 for (i = 1; i < num_avail; i++) { 3124 // Find the most significant index whose id differs from the id for the 3125 // previous OS proc. 3126 for (index = maxIndex; index >= threadIdIndex; index--) { 3127 if (assign_thread_ids && (index == threadIdIndex)) { 3128 // Auto-assign the thread id field if it wasn't specified. 3129 if (threadInfo[i][threadIdIndex] == UINT_MAX) { 3130 threadInfo[i][threadIdIndex] = threadIdCt++; 3131 } 3132 // Apparently the thread id field was specified for some entries and not 3133 // others. Start the thread id counter off at the next higher thread id. 3134 else if (threadIdCt <= threadInfo[i][threadIdIndex]) { 3135 threadIdCt = threadInfo[i][threadIdIndex] + 1; 3136 } 3137 } 3138 if (threadInfo[i][index] != lastId[index]) { 3139 // Run through all indices which are less significant, and reset the 3140 // counts to 1. At all levels up to and including index, we need to 3141 // increment the totals and record the last id. 3142 unsigned index2; 3143 for (index2 = threadIdIndex; index2 < index; index2++) { 3144 totals[index2]++; 3145 if (counts[index2] > maxCt[index2]) { 3146 maxCt[index2] = counts[index2]; 3147 } 3148 counts[index2] = 1; 3149 lastId[index2] = threadInfo[i][index2]; 3150 } 3151 counts[index]++; 3152 totals[index]++; 3153 lastId[index] = threadInfo[i][index]; 3154 3155 if (assign_thread_ids && (index > threadIdIndex)) { 3156 3157 #if KMP_MIC && REDUCE_TEAM_SIZE 3158 // The default team size is the total #threads in the machine 3159 // minus 1 thread for every core that has 3 or more threads. 3160 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); 3161 #endif // KMP_MIC && REDUCE_TEAM_SIZE 3162 3163 // Restart the thread counter, as we are on a new core. 3164 threadIdCt = 0; 3165 3166 // Auto-assign the thread id field if it wasn't specified. 3167 if (threadInfo[i][threadIdIndex] == UINT_MAX) { 3168 threadInfo[i][threadIdIndex] = threadIdCt++; 3169 } 3170 3171 // Apparently the thread id field was specified for some entries and 3172 // not others. Start the thread id counter off at the next higher 3173 // thread id. 3174 else if (threadIdCt <= threadInfo[i][threadIdIndex]) { 3175 threadIdCt = threadInfo[i][threadIdIndex] + 1; 3176 } 3177 } 3178 break; 3179 } 3180 } 3181 if (index < threadIdIndex) { 3182 // If thread ids were specified, it is an error if they are not unique. 3183 // Also, check that we waven't already restarted the loop (to be safe - 3184 // shouldn't need to). 3185 if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) { 3186 __kmp_free(lastId); 3187 __kmp_free(totals); 3188 __kmp_free(maxCt); 3189 __kmp_free(counts); 3190 CLEANUP_THREAD_INFO; 3191 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; 3192 return false; 3193 } 3194 3195 // If the thread ids were not specified and we see entries entries that 3196 // are duplicates, start the loop over and assign the thread ids manually. 3197 assign_thread_ids = true; 3198 goto restart_radix_check; 3199 } 3200 } 3201 3202 #if KMP_MIC && REDUCE_TEAM_SIZE 3203 // The default team size is the total #threads in the machine 3204 // minus 1 thread for every core that has 3 or more threads. 3205 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); 3206 #endif // KMP_MIC && REDUCE_TEAM_SIZE 3207 3208 for (index = threadIdIndex; index <= maxIndex; index++) { 3209 if (counts[index] > maxCt[index]) { 3210 maxCt[index] = counts[index]; 3211 } 3212 } 3213 3214 __kmp_nThreadsPerCore = maxCt[threadIdIndex]; 3215 nCoresPerPkg = maxCt[coreIdIndex]; 3216 nPackages = totals[pkgIdIndex]; 3217 3218 // When affinity is off, this routine will still be called to set 3219 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 3220 // Make sure all these vars are set correctly, and return now if affinity is 3221 // not enabled. 3222 __kmp_ncores = totals[coreIdIndex]; 3223 if (!KMP_AFFINITY_CAPABLE()) { 3224 KMP_ASSERT(__kmp_affinity_type == affinity_none); 3225 return true; 3226 } 3227 3228 #if KMP_MIC && REDUCE_TEAM_SIZE 3229 // Set the default team size. 3230 if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) { 3231 __kmp_dflt_team_nth = teamSize; 3232 KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting " 3233 "__kmp_dflt_team_nth = %d\n", 3234 __kmp_dflt_team_nth)); 3235 } 3236 #endif // KMP_MIC && REDUCE_TEAM_SIZE 3237 3238 KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc); 3239 3240 // Count the number of levels which have more nodes at that level than at the 3241 // parent's level (with there being an implicit root node of the top level). 3242 // This is equivalent to saying that there is at least one node at this level 3243 // which has a sibling. These levels are in the map, and the package level is 3244 // always in the map. 3245 bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool)); 3246 for (index = threadIdIndex; index < maxIndex; index++) { 3247 KMP_ASSERT(totals[index] >= totals[index + 1]); 3248 inMap[index] = (totals[index] > totals[index + 1]); 3249 } 3250 inMap[maxIndex] = (totals[maxIndex] > 1); 3251 inMap[pkgIdIndex] = true; 3252 inMap[coreIdIndex] = true; 3253 inMap[threadIdIndex] = true; 3254 3255 int depth = 0; 3256 int idx = 0; 3257 kmp_hw_t types[KMP_HW_LAST]; 3258 int pkgLevel = -1; 3259 int coreLevel = -1; 3260 int threadLevel = -1; 3261 for (index = threadIdIndex; index <= maxIndex; index++) { 3262 if (inMap[index]) { 3263 depth++; 3264 } 3265 } 3266 if (inMap[pkgIdIndex]) { 3267 pkgLevel = idx; 3268 types[idx++] = KMP_HW_SOCKET; 3269 } 3270 if (inMap[coreIdIndex]) { 3271 coreLevel = idx; 3272 types[idx++] = KMP_HW_CORE; 3273 } 3274 if (inMap[threadIdIndex]) { 3275 threadLevel = idx; 3276 types[idx++] = KMP_HW_THREAD; 3277 } 3278 KMP_ASSERT(depth > 0); 3279 3280 // Construct the data structure that is to be returned. 3281 __kmp_topology = kmp_topology_t::allocate(num_avail, depth, types); 3282 3283 for (i = 0; i < num_avail; ++i) { 3284 unsigned os = threadInfo[i][osIdIndex]; 3285 int src_index; 3286 int dst_index = 0; 3287 kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); 3288 hw_thread.clear(); 3289 hw_thread.os_id = os; 3290 3291 idx = 0; 3292 for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) { 3293 if (!inMap[src_index]) { 3294 continue; 3295 } 3296 if (src_index == pkgIdIndex) { 3297 hw_thread.ids[pkgLevel] = threadInfo[i][src_index]; 3298 } else if (src_index == coreIdIndex) { 3299 hw_thread.ids[coreLevel] = threadInfo[i][src_index]; 3300 } else if (src_index == threadIdIndex) { 3301 hw_thread.ids[threadLevel] = threadInfo[i][src_index]; 3302 } 3303 dst_index++; 3304 } 3305 } 3306 3307 __kmp_free(inMap); 3308 __kmp_free(lastId); 3309 __kmp_free(totals); 3310 __kmp_free(maxCt); 3311 __kmp_free(counts); 3312 CLEANUP_THREAD_INFO; 3313 __kmp_topology->sort_ids(); 3314 if (!__kmp_topology->check_ids()) { 3315 kmp_topology_t::deallocate(__kmp_topology); 3316 __kmp_topology = nullptr; 3317 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; 3318 return false; 3319 } 3320 return true; 3321 } 3322 3323 // Create and return a table of affinity masks, indexed by OS thread ID. 3324 // This routine handles OR'ing together all the affinity masks of threads 3325 // that are sufficiently close, if granularity > fine. 3326 static kmp_affin_mask_t *__kmp_create_masks(unsigned *maxIndex, 3327 unsigned *numUnique) { 3328 // First form a table of affinity masks in order of OS thread id. 3329 int maxOsId; 3330 int i; 3331 int numAddrs = __kmp_topology->get_num_hw_threads(); 3332 int depth = __kmp_topology->get_depth(); 3333 KMP_ASSERT(numAddrs); 3334 KMP_ASSERT(depth); 3335 3336 maxOsId = 0; 3337 for (i = numAddrs - 1;; --i) { 3338 int osId = __kmp_topology->at(i).os_id; 3339 if (osId > maxOsId) { 3340 maxOsId = osId; 3341 } 3342 if (i == 0) 3343 break; 3344 } 3345 kmp_affin_mask_t *osId2Mask; 3346 KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId + 1)); 3347 KMP_ASSERT(__kmp_affinity_gran_levels >= 0); 3348 if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) { 3349 KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels); 3350 } 3351 if (__kmp_affinity_gran_levels >= (int)depth) { 3352 if (__kmp_affinity_verbose || 3353 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { 3354 KMP_WARNING(AffThreadsMayMigrate); 3355 } 3356 } 3357 3358 // Run through the table, forming the masks for all threads on each core. 3359 // Threads on the same core will have identical kmp_hw_thread_t objects, not 3360 // considering the last level, which must be the thread id. All threads on a 3361 // core will appear consecutively. 3362 int unique = 0; 3363 int j = 0; // index of 1st thread on core 3364 int leader = 0; 3365 kmp_affin_mask_t *sum; 3366 KMP_CPU_ALLOC_ON_STACK(sum); 3367 KMP_CPU_ZERO(sum); 3368 KMP_CPU_SET(__kmp_topology->at(0).os_id, sum); 3369 for (i = 1; i < numAddrs; i++) { 3370 // If this thread is sufficiently close to the leader (within the 3371 // granularity setting), then set the bit for this os thread in the 3372 // affinity mask for this group, and go on to the next thread. 3373 if (__kmp_topology->is_close(leader, i, __kmp_affinity_gran_levels)) { 3374 KMP_CPU_SET(__kmp_topology->at(i).os_id, sum); 3375 continue; 3376 } 3377 3378 // For every thread in this group, copy the mask to the thread's entry in 3379 // the osId2Mask table. Mark the first address as a leader. 3380 for (; j < i; j++) { 3381 int osId = __kmp_topology->at(j).os_id; 3382 KMP_DEBUG_ASSERT(osId <= maxOsId); 3383 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); 3384 KMP_CPU_COPY(mask, sum); 3385 __kmp_topology->at(j).leader = (j == leader); 3386 } 3387 unique++; 3388 3389 // Start a new mask. 3390 leader = i; 3391 KMP_CPU_ZERO(sum); 3392 KMP_CPU_SET(__kmp_topology->at(i).os_id, sum); 3393 } 3394 3395 // For every thread in last group, copy the mask to the thread's 3396 // entry in the osId2Mask table. 3397 for (; j < i; j++) { 3398 int osId = __kmp_topology->at(j).os_id; 3399 KMP_DEBUG_ASSERT(osId <= maxOsId); 3400 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); 3401 KMP_CPU_COPY(mask, sum); 3402 __kmp_topology->at(j).leader = (j == leader); 3403 } 3404 unique++; 3405 KMP_CPU_FREE_FROM_STACK(sum); 3406 3407 *maxIndex = maxOsId; 3408 *numUnique = unique; 3409 return osId2Mask; 3410 } 3411 3412 // Stuff for the affinity proclist parsers. It's easier to declare these vars 3413 // as file-static than to try and pass them through the calling sequence of 3414 // the recursive-descent OMP_PLACES parser. 3415 static kmp_affin_mask_t *newMasks; 3416 static int numNewMasks; 3417 static int nextNewMask; 3418 3419 #define ADD_MASK(_mask) \ 3420 { \ 3421 if (nextNewMask >= numNewMasks) { \ 3422 int i; \ 3423 numNewMasks *= 2; \ 3424 kmp_affin_mask_t *temp; \ 3425 KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \ 3426 for (i = 0; i < numNewMasks / 2; i++) { \ 3427 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); \ 3428 kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i); \ 3429 KMP_CPU_COPY(dest, src); \ 3430 } \ 3431 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2); \ 3432 newMasks = temp; \ 3433 } \ 3434 KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \ 3435 nextNewMask++; \ 3436 } 3437 3438 #define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \ 3439 { \ 3440 if (((_osId) > _maxOsId) || \ 3441 (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \ 3442 if (__kmp_affinity_verbose || \ 3443 (__kmp_affinity_warnings && \ 3444 (__kmp_affinity_type != affinity_none))) { \ 3445 KMP_WARNING(AffIgnoreInvalidProcID, _osId); \ 3446 } \ 3447 } else { \ 3448 ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \ 3449 } \ 3450 } 3451 3452 // Re-parse the proclist (for the explicit affinity type), and form the list 3453 // of affinity newMasks indexed by gtid. 3454 static void __kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks, 3455 unsigned int *out_numMasks, 3456 const char *proclist, 3457 kmp_affin_mask_t *osId2Mask, 3458 int maxOsId) { 3459 int i; 3460 const char *scan = proclist; 3461 const char *next = proclist; 3462 3463 // We use malloc() for the temporary mask vector, so that we can use 3464 // realloc() to extend it. 3465 numNewMasks = 2; 3466 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); 3467 nextNewMask = 0; 3468 kmp_affin_mask_t *sumMask; 3469 KMP_CPU_ALLOC(sumMask); 3470 int setSize = 0; 3471 3472 for (;;) { 3473 int start, end, stride; 3474 3475 SKIP_WS(scan); 3476 next = scan; 3477 if (*next == '\0') { 3478 break; 3479 } 3480 3481 if (*next == '{') { 3482 int num; 3483 setSize = 0; 3484 next++; // skip '{' 3485 SKIP_WS(next); 3486 scan = next; 3487 3488 // Read the first integer in the set. 3489 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist"); 3490 SKIP_DIGITS(next); 3491 num = __kmp_str_to_int(scan, *next); 3492 KMP_ASSERT2(num >= 0, "bad explicit proc list"); 3493 3494 // Copy the mask for that osId to the sum (union) mask. 3495 if ((num > maxOsId) || 3496 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 3497 if (__kmp_affinity_verbose || 3498 (__kmp_affinity_warnings && 3499 (__kmp_affinity_type != affinity_none))) { 3500 KMP_WARNING(AffIgnoreInvalidProcID, num); 3501 } 3502 KMP_CPU_ZERO(sumMask); 3503 } else { 3504 KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num)); 3505 setSize = 1; 3506 } 3507 3508 for (;;) { 3509 // Check for end of set. 3510 SKIP_WS(next); 3511 if (*next == '}') { 3512 next++; // skip '}' 3513 break; 3514 } 3515 3516 // Skip optional comma. 3517 if (*next == ',') { 3518 next++; 3519 } 3520 SKIP_WS(next); 3521 3522 // Read the next integer in the set. 3523 scan = next; 3524 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 3525 3526 SKIP_DIGITS(next); 3527 num = __kmp_str_to_int(scan, *next); 3528 KMP_ASSERT2(num >= 0, "bad explicit proc list"); 3529 3530 // Add the mask for that osId to the sum mask. 3531 if ((num > maxOsId) || 3532 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 3533 if (__kmp_affinity_verbose || 3534 (__kmp_affinity_warnings && 3535 (__kmp_affinity_type != affinity_none))) { 3536 KMP_WARNING(AffIgnoreInvalidProcID, num); 3537 } 3538 } else { 3539 KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num)); 3540 setSize++; 3541 } 3542 } 3543 if (setSize > 0) { 3544 ADD_MASK(sumMask); 3545 } 3546 3547 SKIP_WS(next); 3548 if (*next == ',') { 3549 next++; 3550 } 3551 scan = next; 3552 continue; 3553 } 3554 3555 // Read the first integer. 3556 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 3557 SKIP_DIGITS(next); 3558 start = __kmp_str_to_int(scan, *next); 3559 KMP_ASSERT2(start >= 0, "bad explicit proc list"); 3560 SKIP_WS(next); 3561 3562 // If this isn't a range, then add a mask to the list and go on. 3563 if (*next != '-') { 3564 ADD_MASK_OSID(start, osId2Mask, maxOsId); 3565 3566 // Skip optional comma. 3567 if (*next == ',') { 3568 next++; 3569 } 3570 scan = next; 3571 continue; 3572 } 3573 3574 // This is a range. Skip over the '-' and read in the 2nd int. 3575 next++; // skip '-' 3576 SKIP_WS(next); 3577 scan = next; 3578 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 3579 SKIP_DIGITS(next); 3580 end = __kmp_str_to_int(scan, *next); 3581 KMP_ASSERT2(end >= 0, "bad explicit proc list"); 3582 3583 // Check for a stride parameter 3584 stride = 1; 3585 SKIP_WS(next); 3586 if (*next == ':') { 3587 // A stride is specified. Skip over the ':" and read the 3rd int. 3588 int sign = +1; 3589 next++; // skip ':' 3590 SKIP_WS(next); 3591 scan = next; 3592 if (*next == '-') { 3593 sign = -1; 3594 next++; 3595 SKIP_WS(next); 3596 scan = next; 3597 } 3598 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 3599 SKIP_DIGITS(next); 3600 stride = __kmp_str_to_int(scan, *next); 3601 KMP_ASSERT2(stride >= 0, "bad explicit proc list"); 3602 stride *= sign; 3603 } 3604 3605 // Do some range checks. 3606 KMP_ASSERT2(stride != 0, "bad explicit proc list"); 3607 if (stride > 0) { 3608 KMP_ASSERT2(start <= end, "bad explicit proc list"); 3609 } else { 3610 KMP_ASSERT2(start >= end, "bad explicit proc list"); 3611 } 3612 KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list"); 3613 3614 // Add the mask for each OS proc # to the list. 3615 if (stride > 0) { 3616 do { 3617 ADD_MASK_OSID(start, osId2Mask, maxOsId); 3618 start += stride; 3619 } while (start <= end); 3620 } else { 3621 do { 3622 ADD_MASK_OSID(start, osId2Mask, maxOsId); 3623 start += stride; 3624 } while (start >= end); 3625 } 3626 3627 // Skip optional comma. 3628 SKIP_WS(next); 3629 if (*next == ',') { 3630 next++; 3631 } 3632 scan = next; 3633 } 3634 3635 *out_numMasks = nextNewMask; 3636 if (nextNewMask == 0) { 3637 *out_masks = NULL; 3638 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3639 return; 3640 } 3641 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); 3642 for (i = 0; i < nextNewMask; i++) { 3643 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); 3644 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); 3645 KMP_CPU_COPY(dest, src); 3646 } 3647 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3648 KMP_CPU_FREE(sumMask); 3649 } 3650 3651 /*----------------------------------------------------------------------------- 3652 Re-parse the OMP_PLACES proc id list, forming the newMasks for the different 3653 places. Again, Here is the grammar: 3654 3655 place_list := place 3656 place_list := place , place_list 3657 place := num 3658 place := place : num 3659 place := place : num : signed 3660 place := { subplacelist } 3661 place := ! place // (lowest priority) 3662 subplace_list := subplace 3663 subplace_list := subplace , subplace_list 3664 subplace := num 3665 subplace := num : num 3666 subplace := num : num : signed 3667 signed := num 3668 signed := + signed 3669 signed := - signed 3670 -----------------------------------------------------------------------------*/ 3671 static void __kmp_process_subplace_list(const char **scan, 3672 kmp_affin_mask_t *osId2Mask, 3673 int maxOsId, kmp_affin_mask_t *tempMask, 3674 int *setSize) { 3675 const char *next; 3676 3677 for (;;) { 3678 int start, count, stride, i; 3679 3680 // Read in the starting proc id 3681 SKIP_WS(*scan); 3682 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3683 next = *scan; 3684 SKIP_DIGITS(next); 3685 start = __kmp_str_to_int(*scan, *next); 3686 KMP_ASSERT(start >= 0); 3687 *scan = next; 3688 3689 // valid follow sets are ',' ':' and '}' 3690 SKIP_WS(*scan); 3691 if (**scan == '}' || **scan == ',') { 3692 if ((start > maxOsId) || 3693 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3694 if (__kmp_affinity_verbose || 3695 (__kmp_affinity_warnings && 3696 (__kmp_affinity_type != affinity_none))) { 3697 KMP_WARNING(AffIgnoreInvalidProcID, start); 3698 } 3699 } else { 3700 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3701 (*setSize)++; 3702 } 3703 if (**scan == '}') { 3704 break; 3705 } 3706 (*scan)++; // skip ',' 3707 continue; 3708 } 3709 KMP_ASSERT2(**scan == ':', "bad explicit places list"); 3710 (*scan)++; // skip ':' 3711 3712 // Read count parameter 3713 SKIP_WS(*scan); 3714 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3715 next = *scan; 3716 SKIP_DIGITS(next); 3717 count = __kmp_str_to_int(*scan, *next); 3718 KMP_ASSERT(count >= 0); 3719 *scan = next; 3720 3721 // valid follow sets are ',' ':' and '}' 3722 SKIP_WS(*scan); 3723 if (**scan == '}' || **scan == ',') { 3724 for (i = 0; i < count; i++) { 3725 if ((start > maxOsId) || 3726 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3727 if (__kmp_affinity_verbose || 3728 (__kmp_affinity_warnings && 3729 (__kmp_affinity_type != affinity_none))) { 3730 KMP_WARNING(AffIgnoreInvalidProcID, start); 3731 } 3732 break; // don't proliferate warnings for large count 3733 } else { 3734 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3735 start++; 3736 (*setSize)++; 3737 } 3738 } 3739 if (**scan == '}') { 3740 break; 3741 } 3742 (*scan)++; // skip ',' 3743 continue; 3744 } 3745 KMP_ASSERT2(**scan == ':', "bad explicit places list"); 3746 (*scan)++; // skip ':' 3747 3748 // Read stride parameter 3749 int sign = +1; 3750 for (;;) { 3751 SKIP_WS(*scan); 3752 if (**scan == '+') { 3753 (*scan)++; // skip '+' 3754 continue; 3755 } 3756 if (**scan == '-') { 3757 sign *= -1; 3758 (*scan)++; // skip '-' 3759 continue; 3760 } 3761 break; 3762 } 3763 SKIP_WS(*scan); 3764 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3765 next = *scan; 3766 SKIP_DIGITS(next); 3767 stride = __kmp_str_to_int(*scan, *next); 3768 KMP_ASSERT(stride >= 0); 3769 *scan = next; 3770 stride *= sign; 3771 3772 // valid follow sets are ',' and '}' 3773 SKIP_WS(*scan); 3774 if (**scan == '}' || **scan == ',') { 3775 for (i = 0; i < count; i++) { 3776 if ((start > maxOsId) || 3777 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3778 if (__kmp_affinity_verbose || 3779 (__kmp_affinity_warnings && 3780 (__kmp_affinity_type != affinity_none))) { 3781 KMP_WARNING(AffIgnoreInvalidProcID, start); 3782 } 3783 break; // don't proliferate warnings for large count 3784 } else { 3785 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3786 start += stride; 3787 (*setSize)++; 3788 } 3789 } 3790 if (**scan == '}') { 3791 break; 3792 } 3793 (*scan)++; // skip ',' 3794 continue; 3795 } 3796 3797 KMP_ASSERT2(0, "bad explicit places list"); 3798 } 3799 } 3800 3801 static void __kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask, 3802 int maxOsId, kmp_affin_mask_t *tempMask, 3803 int *setSize) { 3804 const char *next; 3805 3806 // valid follow sets are '{' '!' and num 3807 SKIP_WS(*scan); 3808 if (**scan == '{') { 3809 (*scan)++; // skip '{' 3810 __kmp_process_subplace_list(scan, osId2Mask, maxOsId, tempMask, setSize); 3811 KMP_ASSERT2(**scan == '}', "bad explicit places list"); 3812 (*scan)++; // skip '}' 3813 } else if (**scan == '!') { 3814 (*scan)++; // skip '!' 3815 __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize); 3816 KMP_CPU_COMPLEMENT(maxOsId, tempMask); 3817 } else if ((**scan >= '0') && (**scan <= '9')) { 3818 next = *scan; 3819 SKIP_DIGITS(next); 3820 int num = __kmp_str_to_int(*scan, *next); 3821 KMP_ASSERT(num >= 0); 3822 if ((num > maxOsId) || 3823 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 3824 if (__kmp_affinity_verbose || 3825 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { 3826 KMP_WARNING(AffIgnoreInvalidProcID, num); 3827 } 3828 } else { 3829 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num)); 3830 (*setSize)++; 3831 } 3832 *scan = next; // skip num 3833 } else { 3834 KMP_ASSERT2(0, "bad explicit places list"); 3835 } 3836 } 3837 3838 // static void 3839 void __kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks, 3840 unsigned int *out_numMasks, 3841 const char *placelist, 3842 kmp_affin_mask_t *osId2Mask, 3843 int maxOsId) { 3844 int i, j, count, stride, sign; 3845 const char *scan = placelist; 3846 const char *next = placelist; 3847 3848 numNewMasks = 2; 3849 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); 3850 nextNewMask = 0; 3851 3852 // tempMask is modified based on the previous or initial 3853 // place to form the current place 3854 // previousMask contains the previous place 3855 kmp_affin_mask_t *tempMask; 3856 kmp_affin_mask_t *previousMask; 3857 KMP_CPU_ALLOC(tempMask); 3858 KMP_CPU_ZERO(tempMask); 3859 KMP_CPU_ALLOC(previousMask); 3860 KMP_CPU_ZERO(previousMask); 3861 int setSize = 0; 3862 3863 for (;;) { 3864 __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize); 3865 3866 // valid follow sets are ',' ':' and EOL 3867 SKIP_WS(scan); 3868 if (*scan == '\0' || *scan == ',') { 3869 if (setSize > 0) { 3870 ADD_MASK(tempMask); 3871 } 3872 KMP_CPU_ZERO(tempMask); 3873 setSize = 0; 3874 if (*scan == '\0') { 3875 break; 3876 } 3877 scan++; // skip ',' 3878 continue; 3879 } 3880 3881 KMP_ASSERT2(*scan == ':', "bad explicit places list"); 3882 scan++; // skip ':' 3883 3884 // Read count parameter 3885 SKIP_WS(scan); 3886 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); 3887 next = scan; 3888 SKIP_DIGITS(next); 3889 count = __kmp_str_to_int(scan, *next); 3890 KMP_ASSERT(count >= 0); 3891 scan = next; 3892 3893 // valid follow sets are ',' ':' and EOL 3894 SKIP_WS(scan); 3895 if (*scan == '\0' || *scan == ',') { 3896 stride = +1; 3897 } else { 3898 KMP_ASSERT2(*scan == ':', "bad explicit places list"); 3899 scan++; // skip ':' 3900 3901 // Read stride parameter 3902 sign = +1; 3903 for (;;) { 3904 SKIP_WS(scan); 3905 if (*scan == '+') { 3906 scan++; // skip '+' 3907 continue; 3908 } 3909 if (*scan == '-') { 3910 sign *= -1; 3911 scan++; // skip '-' 3912 continue; 3913 } 3914 break; 3915 } 3916 SKIP_WS(scan); 3917 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); 3918 next = scan; 3919 SKIP_DIGITS(next); 3920 stride = __kmp_str_to_int(scan, *next); 3921 KMP_DEBUG_ASSERT(stride >= 0); 3922 scan = next; 3923 stride *= sign; 3924 } 3925 3926 // Add places determined by initial_place : count : stride 3927 for (i = 0; i < count; i++) { 3928 if (setSize == 0) { 3929 break; 3930 } 3931 // Add the current place, then build the next place (tempMask) from that 3932 KMP_CPU_COPY(previousMask, tempMask); 3933 ADD_MASK(previousMask); 3934 KMP_CPU_ZERO(tempMask); 3935 setSize = 0; 3936 KMP_CPU_SET_ITERATE(j, previousMask) { 3937 if (!KMP_CPU_ISSET(j, previousMask)) { 3938 continue; 3939 } 3940 if ((j + stride > maxOsId) || (j + stride < 0) || 3941 (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) || 3942 (!KMP_CPU_ISSET(j + stride, 3943 KMP_CPU_INDEX(osId2Mask, j + stride)))) { 3944 if ((__kmp_affinity_verbose || 3945 (__kmp_affinity_warnings && 3946 (__kmp_affinity_type != affinity_none))) && 3947 i < count - 1) { 3948 KMP_WARNING(AffIgnoreInvalidProcID, j + stride); 3949 } 3950 continue; 3951 } 3952 KMP_CPU_SET(j + stride, tempMask); 3953 setSize++; 3954 } 3955 } 3956 KMP_CPU_ZERO(tempMask); 3957 setSize = 0; 3958 3959 // valid follow sets are ',' and EOL 3960 SKIP_WS(scan); 3961 if (*scan == '\0') { 3962 break; 3963 } 3964 if (*scan == ',') { 3965 scan++; // skip ',' 3966 continue; 3967 } 3968 3969 KMP_ASSERT2(0, "bad explicit places list"); 3970 } 3971 3972 *out_numMasks = nextNewMask; 3973 if (nextNewMask == 0) { 3974 *out_masks = NULL; 3975 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3976 return; 3977 } 3978 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); 3979 KMP_CPU_FREE(tempMask); 3980 KMP_CPU_FREE(previousMask); 3981 for (i = 0; i < nextNewMask; i++) { 3982 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); 3983 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); 3984 KMP_CPU_COPY(dest, src); 3985 } 3986 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3987 } 3988 3989 #undef ADD_MASK 3990 #undef ADD_MASK_OSID 3991 3992 // This function figures out the deepest level at which there is at least one 3993 // cluster/core with more than one processing unit bound to it. 3994 static int __kmp_affinity_find_core_level(int nprocs, int bottom_level) { 3995 int core_level = 0; 3996 3997 for (int i = 0; i < nprocs; i++) { 3998 const kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); 3999 for (int j = bottom_level; j > 0; j--) { 4000 if (hw_thread.ids[j] > 0) { 4001 if (core_level < (j - 1)) { 4002 core_level = j - 1; 4003 } 4004 } 4005 } 4006 } 4007 return core_level; 4008 } 4009 4010 // This function counts number of clusters/cores at given level. 4011 static int __kmp_affinity_compute_ncores(int nprocs, int bottom_level, 4012 int core_level) { 4013 return __kmp_topology->get_count(core_level); 4014 } 4015 // This function finds to which cluster/core given processing unit is bound. 4016 static int __kmp_affinity_find_core(int proc, int bottom_level, 4017 int core_level) { 4018 int core = 0; 4019 KMP_DEBUG_ASSERT(proc >= 0 && proc < __kmp_topology->get_num_hw_threads()); 4020 for (int i = 0; i <= proc; ++i) { 4021 if (i + 1 <= proc) { 4022 for (int j = 0; j <= core_level; ++j) { 4023 if (__kmp_topology->at(i + 1).sub_ids[j] != 4024 __kmp_topology->at(i).sub_ids[j]) { 4025 core++; 4026 break; 4027 } 4028 } 4029 } 4030 } 4031 return core; 4032 } 4033 4034 // This function finds maximal number of processing units bound to a 4035 // cluster/core at given level. 4036 static int __kmp_affinity_max_proc_per_core(int nprocs, int bottom_level, 4037 int core_level) { 4038 if (core_level >= bottom_level) 4039 return 1; 4040 int thread_level = __kmp_topology->get_level(KMP_HW_THREAD); 4041 return __kmp_topology->calculate_ratio(thread_level, core_level); 4042 } 4043 4044 static int *procarr = NULL; 4045 static int __kmp_aff_depth = 0; 4046 4047 // Create a one element mask array (set of places) which only contains the 4048 // initial process's affinity mask 4049 static void __kmp_create_affinity_none_places() { 4050 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4051 KMP_ASSERT(__kmp_affinity_type == affinity_none); 4052 __kmp_affinity_num_masks = 1; 4053 KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); 4054 kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, 0); 4055 KMP_CPU_COPY(dest, __kmp_affin_fullMask); 4056 } 4057 4058 static void __kmp_aux_affinity_initialize(void) { 4059 if (__kmp_affinity_masks != NULL) { 4060 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4061 return; 4062 } 4063 4064 // Create the "full" mask - this defines all of the processors that we 4065 // consider to be in the machine model. If respect is set, then it is the 4066 // initialization thread's affinity mask. Otherwise, it is all processors that 4067 // we know about on the machine. 4068 if (__kmp_affin_fullMask == NULL) { 4069 KMP_CPU_ALLOC(__kmp_affin_fullMask); 4070 } 4071 if (KMP_AFFINITY_CAPABLE()) { 4072 __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE); 4073 if (__kmp_affinity_respect_mask) { 4074 // Count the number of available processors. 4075 unsigned i; 4076 __kmp_avail_proc = 0; 4077 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 4078 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 4079 continue; 4080 } 4081 __kmp_avail_proc++; 4082 } 4083 if (__kmp_avail_proc > __kmp_xproc) { 4084 if (__kmp_affinity_verbose || 4085 (__kmp_affinity_warnings && 4086 (__kmp_affinity_type != affinity_none))) { 4087 KMP_WARNING(ErrorInitializeAffinity); 4088 } 4089 __kmp_affinity_type = affinity_none; 4090 KMP_AFFINITY_DISABLE(); 4091 return; 4092 } 4093 4094 if (__kmp_affinity_verbose) { 4095 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4096 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4097 __kmp_affin_fullMask); 4098 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 4099 } 4100 } else { 4101 if (__kmp_affinity_verbose) { 4102 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4103 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4104 __kmp_affin_fullMask); 4105 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 4106 } 4107 __kmp_avail_proc = 4108 __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask); 4109 #if KMP_OS_WINDOWS 4110 // Set the process affinity mask since threads' affinity 4111 // masks must be subset of process mask in Windows* OS 4112 __kmp_affin_fullMask->set_process_affinity(true); 4113 #endif 4114 } 4115 } 4116 4117 kmp_i18n_id_t msg_id = kmp_i18n_null; 4118 4119 // For backward compatibility, setting KMP_CPUINFO_FILE => 4120 // KMP_TOPOLOGY_METHOD=cpuinfo 4121 if ((__kmp_cpuinfo_file != NULL) && 4122 (__kmp_affinity_top_method == affinity_top_method_all)) { 4123 __kmp_affinity_top_method = affinity_top_method_cpuinfo; 4124 } 4125 4126 bool success = false; 4127 if (__kmp_affinity_top_method == affinity_top_method_all) { 4128 // In the default code path, errors are not fatal - we just try using 4129 // another method. We only emit a warning message if affinity is on, or the 4130 // verbose flag is set, an the nowarnings flag was not set. 4131 #if KMP_USE_HWLOC 4132 if (!success && 4133 __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) { 4134 if (!__kmp_hwloc_error) { 4135 success = __kmp_affinity_create_hwloc_map(&msg_id); 4136 if (!success && __kmp_affinity_verbose) { 4137 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY"); 4138 } 4139 } else if (__kmp_affinity_verbose) { 4140 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY"); 4141 } 4142 } 4143 #endif 4144 4145 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4146 if (!success) { 4147 success = __kmp_affinity_create_x2apicid_map(&msg_id); 4148 if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) { 4149 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id)); 4150 } 4151 } 4152 if (!success) { 4153 success = __kmp_affinity_create_apicid_map(&msg_id); 4154 if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) { 4155 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id)); 4156 } 4157 } 4158 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4159 4160 #if KMP_OS_LINUX 4161 if (!success) { 4162 int line = 0; 4163 success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id); 4164 if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) { 4165 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id)); 4166 } 4167 } 4168 #endif /* KMP_OS_LINUX */ 4169 4170 #if KMP_GROUP_AFFINITY 4171 if (!success && (__kmp_num_proc_groups > 1)) { 4172 success = __kmp_affinity_create_proc_group_map(&msg_id); 4173 if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) { 4174 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id)); 4175 } 4176 } 4177 #endif /* KMP_GROUP_AFFINITY */ 4178 4179 if (!success) { 4180 success = __kmp_affinity_create_flat_map(&msg_id); 4181 if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) { 4182 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id)); 4183 } 4184 KMP_ASSERT(success); 4185 } 4186 } 4187 4188 // If the user has specified that a paricular topology discovery method is to be 4189 // used, then we abort if that method fails. The exception is group affinity, 4190 // which might have been implicitly set. 4191 #if KMP_USE_HWLOC 4192 else if (__kmp_affinity_top_method == affinity_top_method_hwloc) { 4193 KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC); 4194 success = __kmp_affinity_create_hwloc_map(&msg_id); 4195 if (!success) { 4196 KMP_ASSERT(msg_id != kmp_i18n_null); 4197 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4198 } 4199 } 4200 #endif // KMP_USE_HWLOC 4201 4202 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4203 else if (__kmp_affinity_top_method == affinity_top_method_x2apicid || 4204 __kmp_affinity_top_method == affinity_top_method_x2apicid_1f) { 4205 success = __kmp_affinity_create_x2apicid_map(&msg_id); 4206 if (!success) { 4207 KMP_ASSERT(msg_id != kmp_i18n_null); 4208 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4209 } 4210 } else if (__kmp_affinity_top_method == affinity_top_method_apicid) { 4211 success = __kmp_affinity_create_apicid_map(&msg_id); 4212 if (!success) { 4213 KMP_ASSERT(msg_id != kmp_i18n_null); 4214 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4215 } 4216 } 4217 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4218 4219 else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) { 4220 int line = 0; 4221 success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id); 4222 if (!success) { 4223 KMP_ASSERT(msg_id != kmp_i18n_null); 4224 const char *filename = __kmp_cpuinfo_get_filename(); 4225 if (line > 0) { 4226 KMP_FATAL(FileLineMsgExiting, filename, line, 4227 __kmp_i18n_catgets(msg_id)); 4228 } else { 4229 KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id)); 4230 } 4231 } 4232 } 4233 4234 #if KMP_GROUP_AFFINITY 4235 else if (__kmp_affinity_top_method == affinity_top_method_group) { 4236 success = __kmp_affinity_create_proc_group_map(&msg_id); 4237 KMP_ASSERT(success); 4238 if (!success) { 4239 KMP_ASSERT(msg_id != kmp_i18n_null); 4240 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4241 } 4242 } 4243 #endif /* KMP_GROUP_AFFINITY */ 4244 4245 else if (__kmp_affinity_top_method == affinity_top_method_flat) { 4246 success = __kmp_affinity_create_flat_map(&msg_id); 4247 // should not fail 4248 KMP_ASSERT(success); 4249 } 4250 4251 // Early exit if topology could not be created 4252 if (!__kmp_topology) { 4253 if (KMP_AFFINITY_CAPABLE() && 4254 (__kmp_affinity_verbose || 4255 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none)))) { 4256 KMP_WARNING(ErrorInitializeAffinity); 4257 } 4258 if (nPackages > 0 && nCoresPerPkg > 0 && __kmp_nThreadsPerCore > 0 && 4259 __kmp_ncores > 0) { 4260 __kmp_topology = kmp_topology_t::allocate(0, 0, NULL); 4261 __kmp_topology->canonicalize(nPackages, nCoresPerPkg, 4262 __kmp_nThreadsPerCore, __kmp_ncores); 4263 if (__kmp_affinity_verbose) { 4264 __kmp_topology->print("KMP_AFFINITY"); 4265 } 4266 } 4267 __kmp_affinity_type = affinity_none; 4268 __kmp_create_affinity_none_places(); 4269 #if KMP_USE_HIER_SCHED 4270 __kmp_dispatch_set_hierarchy_values(); 4271 #endif 4272 KMP_AFFINITY_DISABLE(); 4273 return; 4274 } 4275 4276 // Canonicalize, print (if requested), apply KMP_HW_SUBSET, and 4277 // initialize other data structures which depend on the topology 4278 __kmp_topology->canonicalize(); 4279 if (__kmp_affinity_verbose) 4280 __kmp_topology->print("KMP_AFFINITY"); 4281 bool filtered = __kmp_topology->filter_hw_subset(); 4282 if (filtered && __kmp_affinity_verbose) 4283 __kmp_topology->print("KMP_HW_SUBSET"); 4284 machine_hierarchy.init(__kmp_topology->get_num_hw_threads()); 4285 KMP_ASSERT(__kmp_avail_proc == __kmp_topology->get_num_hw_threads()); 4286 // If KMP_AFFINITY=none, then only create the single "none" place 4287 // which is the process's initial affinity mask or the number of 4288 // hardware threads depending on respect,norespect 4289 if (__kmp_affinity_type == affinity_none) { 4290 __kmp_create_affinity_none_places(); 4291 #if KMP_USE_HIER_SCHED 4292 __kmp_dispatch_set_hierarchy_values(); 4293 #endif 4294 return; 4295 } 4296 int depth = __kmp_topology->get_depth(); 4297 4298 // Create the table of masks, indexed by thread Id. 4299 unsigned maxIndex; 4300 unsigned numUnique; 4301 kmp_affin_mask_t *osId2Mask = __kmp_create_masks(&maxIndex, &numUnique); 4302 if (__kmp_affinity_gran_levels == 0) { 4303 KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc); 4304 } 4305 4306 switch (__kmp_affinity_type) { 4307 4308 case affinity_explicit: 4309 KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL); 4310 if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) { 4311 __kmp_affinity_process_proclist( 4312 &__kmp_affinity_masks, &__kmp_affinity_num_masks, 4313 __kmp_affinity_proclist, osId2Mask, maxIndex); 4314 } else { 4315 __kmp_affinity_process_placelist( 4316 &__kmp_affinity_masks, &__kmp_affinity_num_masks, 4317 __kmp_affinity_proclist, osId2Mask, maxIndex); 4318 } 4319 if (__kmp_affinity_num_masks == 0) { 4320 if (__kmp_affinity_verbose || 4321 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { 4322 KMP_WARNING(AffNoValidProcID); 4323 } 4324 __kmp_affinity_type = affinity_none; 4325 __kmp_create_affinity_none_places(); 4326 return; 4327 } 4328 break; 4329 4330 // The other affinity types rely on sorting the hardware threads according to 4331 // some permutation of the machine topology tree. Set __kmp_affinity_compact 4332 // and __kmp_affinity_offset appropriately, then jump to a common code 4333 // fragment to do the sort and create the array of affinity masks. 4334 case affinity_logical: 4335 __kmp_affinity_compact = 0; 4336 if (__kmp_affinity_offset) { 4337 __kmp_affinity_offset = 4338 __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc; 4339 } 4340 goto sortTopology; 4341 4342 case affinity_physical: 4343 if (__kmp_nThreadsPerCore > 1) { 4344 __kmp_affinity_compact = 1; 4345 if (__kmp_affinity_compact >= depth) { 4346 __kmp_affinity_compact = 0; 4347 } 4348 } else { 4349 __kmp_affinity_compact = 0; 4350 } 4351 if (__kmp_affinity_offset) { 4352 __kmp_affinity_offset = 4353 __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc; 4354 } 4355 goto sortTopology; 4356 4357 case affinity_scatter: 4358 if (__kmp_affinity_compact >= depth) { 4359 __kmp_affinity_compact = 0; 4360 } else { 4361 __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact; 4362 } 4363 goto sortTopology; 4364 4365 case affinity_compact: 4366 if (__kmp_affinity_compact >= depth) { 4367 __kmp_affinity_compact = depth - 1; 4368 } 4369 goto sortTopology; 4370 4371 case affinity_balanced: 4372 if (depth <= 1) { 4373 if (__kmp_affinity_verbose || __kmp_affinity_warnings) { 4374 KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY"); 4375 } 4376 __kmp_affinity_type = affinity_none; 4377 __kmp_create_affinity_none_places(); 4378 return; 4379 } else if (!__kmp_topology->is_uniform()) { 4380 // Save the depth for further usage 4381 __kmp_aff_depth = depth; 4382 4383 int core_level = 4384 __kmp_affinity_find_core_level(__kmp_avail_proc, depth - 1); 4385 int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, depth - 1, 4386 core_level); 4387 int maxprocpercore = __kmp_affinity_max_proc_per_core( 4388 __kmp_avail_proc, depth - 1, core_level); 4389 4390 int nproc = ncores * maxprocpercore; 4391 if ((nproc < 2) || (nproc < __kmp_avail_proc)) { 4392 if (__kmp_affinity_verbose || __kmp_affinity_warnings) { 4393 KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY"); 4394 } 4395 __kmp_affinity_type = affinity_none; 4396 return; 4397 } 4398 4399 procarr = (int *)__kmp_allocate(sizeof(int) * nproc); 4400 for (int i = 0; i < nproc; i++) { 4401 procarr[i] = -1; 4402 } 4403 4404 int lastcore = -1; 4405 int inlastcore = 0; 4406 for (int i = 0; i < __kmp_avail_proc; i++) { 4407 int proc = __kmp_topology->at(i).os_id; 4408 int core = __kmp_affinity_find_core(i, depth - 1, core_level); 4409 4410 if (core == lastcore) { 4411 inlastcore++; 4412 } else { 4413 inlastcore = 0; 4414 } 4415 lastcore = core; 4416 4417 procarr[core * maxprocpercore + inlastcore] = proc; 4418 } 4419 } 4420 if (__kmp_affinity_compact >= depth) { 4421 __kmp_affinity_compact = depth - 1; 4422 } 4423 4424 sortTopology: 4425 // Allocate the gtid->affinity mask table. 4426 if (__kmp_affinity_dups) { 4427 __kmp_affinity_num_masks = __kmp_avail_proc; 4428 } else { 4429 __kmp_affinity_num_masks = numUnique; 4430 } 4431 4432 if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) && 4433 (__kmp_affinity_num_places > 0) && 4434 ((unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks)) { 4435 __kmp_affinity_num_masks = __kmp_affinity_num_places; 4436 } 4437 4438 KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); 4439 4440 // Sort the topology table according to the current setting of 4441 // __kmp_affinity_compact, then fill out __kmp_affinity_masks. 4442 __kmp_topology->sort_compact(); 4443 { 4444 int i; 4445 unsigned j; 4446 int num_hw_threads = __kmp_topology->get_num_hw_threads(); 4447 for (i = 0, j = 0; i < num_hw_threads; i++) { 4448 if ((!__kmp_affinity_dups) && (!__kmp_topology->at(i).leader)) { 4449 continue; 4450 } 4451 int osId = __kmp_topology->at(i).os_id; 4452 4453 kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId); 4454 kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, j); 4455 KMP_ASSERT(KMP_CPU_ISSET(osId, src)); 4456 KMP_CPU_COPY(dest, src); 4457 if (++j >= __kmp_affinity_num_masks) { 4458 break; 4459 } 4460 } 4461 KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks); 4462 } 4463 // Sort the topology back using ids 4464 __kmp_topology->sort_ids(); 4465 break; 4466 4467 default: 4468 KMP_ASSERT2(0, "Unexpected affinity setting"); 4469 } 4470 4471 KMP_CPU_FREE_ARRAY(osId2Mask, maxIndex + 1); 4472 } 4473 4474 void __kmp_affinity_initialize(void) { 4475 // Much of the code above was written assuming that if a machine was not 4476 // affinity capable, then __kmp_affinity_type == affinity_none. We now 4477 // explicitly represent this as __kmp_affinity_type == affinity_disabled. 4478 // There are too many checks for __kmp_affinity_type == affinity_none 4479 // in this code. Instead of trying to change them all, check if 4480 // __kmp_affinity_type == affinity_disabled, and if so, slam it with 4481 // affinity_none, call the real initialization routine, then restore 4482 // __kmp_affinity_type to affinity_disabled. 4483 int disabled = (__kmp_affinity_type == affinity_disabled); 4484 if (!KMP_AFFINITY_CAPABLE()) { 4485 KMP_ASSERT(disabled); 4486 } 4487 if (disabled) { 4488 __kmp_affinity_type = affinity_none; 4489 } 4490 __kmp_aux_affinity_initialize(); 4491 if (disabled) { 4492 __kmp_affinity_type = affinity_disabled; 4493 } 4494 } 4495 4496 void __kmp_affinity_uninitialize(void) { 4497 if (__kmp_affinity_masks != NULL) { 4498 KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); 4499 __kmp_affinity_masks = NULL; 4500 } 4501 if (__kmp_affin_fullMask != NULL) { 4502 KMP_CPU_FREE(__kmp_affin_fullMask); 4503 __kmp_affin_fullMask = NULL; 4504 } 4505 __kmp_affinity_num_masks = 0; 4506 __kmp_affinity_type = affinity_default; 4507 __kmp_affinity_num_places = 0; 4508 if (__kmp_affinity_proclist != NULL) { 4509 __kmp_free(__kmp_affinity_proclist); 4510 __kmp_affinity_proclist = NULL; 4511 } 4512 if (procarr != NULL) { 4513 __kmp_free(procarr); 4514 procarr = NULL; 4515 } 4516 #if KMP_USE_HWLOC 4517 if (__kmp_hwloc_topology != NULL) { 4518 hwloc_topology_destroy(__kmp_hwloc_topology); 4519 __kmp_hwloc_topology = NULL; 4520 } 4521 #endif 4522 if (__kmp_hw_subset) { 4523 kmp_hw_subset_t::deallocate(__kmp_hw_subset); 4524 __kmp_hw_subset = nullptr; 4525 } 4526 if (__kmp_topology) { 4527 kmp_topology_t::deallocate(__kmp_topology); 4528 __kmp_topology = nullptr; 4529 } 4530 KMPAffinity::destroy_api(); 4531 } 4532 4533 void __kmp_affinity_set_init_mask(int gtid, int isa_root) { 4534 if (!KMP_AFFINITY_CAPABLE()) { 4535 return; 4536 } 4537 4538 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); 4539 if (th->th.th_affin_mask == NULL) { 4540 KMP_CPU_ALLOC(th->th.th_affin_mask); 4541 } else { 4542 KMP_CPU_ZERO(th->th.th_affin_mask); 4543 } 4544 4545 // Copy the thread mask to the kmp_info_t structure. If 4546 // __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one that 4547 // has all of the OS proc ids set, or if __kmp_affinity_respect_mask is set, 4548 // then the full mask is the same as the mask of the initialization thread. 4549 kmp_affin_mask_t *mask; 4550 int i; 4551 4552 if (KMP_AFFINITY_NON_PROC_BIND) { 4553 if ((__kmp_affinity_type == affinity_none) || 4554 (__kmp_affinity_type == affinity_balanced) || 4555 KMP_HIDDEN_HELPER_THREAD(gtid)) { 4556 #if KMP_GROUP_AFFINITY 4557 if (__kmp_num_proc_groups > 1) { 4558 return; 4559 } 4560 #endif 4561 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4562 i = 0; 4563 mask = __kmp_affin_fullMask; 4564 } else { 4565 int mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid); 4566 KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0); 4567 i = (mask_idx + __kmp_affinity_offset) % __kmp_affinity_num_masks; 4568 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); 4569 } 4570 } else { 4571 if ((!isa_root) || KMP_HIDDEN_HELPER_THREAD(gtid) || 4572 (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) { 4573 #if KMP_GROUP_AFFINITY 4574 if (__kmp_num_proc_groups > 1) { 4575 return; 4576 } 4577 #endif 4578 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4579 i = KMP_PLACE_ALL; 4580 mask = __kmp_affin_fullMask; 4581 } else { 4582 // int i = some hash function or just a counter that doesn't 4583 // always start at 0. Use adjusted gtid for now. 4584 int mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid); 4585 KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0); 4586 i = (mask_idx + __kmp_affinity_offset) % __kmp_affinity_num_masks; 4587 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); 4588 } 4589 } 4590 4591 th->th.th_current_place = i; 4592 if (isa_root || KMP_HIDDEN_HELPER_THREAD(gtid)) { 4593 th->th.th_new_place = i; 4594 th->th.th_first_place = 0; 4595 th->th.th_last_place = __kmp_affinity_num_masks - 1; 4596 } else if (KMP_AFFINITY_NON_PROC_BIND) { 4597 // When using a Non-OMP_PROC_BIND affinity method, 4598 // set all threads' place-partition-var to the entire place list 4599 th->th.th_first_place = 0; 4600 th->th.th_last_place = __kmp_affinity_num_masks - 1; 4601 } 4602 4603 if (i == KMP_PLACE_ALL) { 4604 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n", 4605 gtid)); 4606 } else { 4607 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n", 4608 gtid, i)); 4609 } 4610 4611 KMP_CPU_COPY(th->th.th_affin_mask, mask); 4612 4613 if (__kmp_affinity_verbose && !KMP_HIDDEN_HELPER_THREAD(gtid) 4614 /* to avoid duplicate printing (will be correctly printed on barrier) */ 4615 && (__kmp_affinity_type == affinity_none || 4616 (i != KMP_PLACE_ALL && __kmp_affinity_type != affinity_balanced))) { 4617 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4618 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4619 th->th.th_affin_mask); 4620 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), 4621 __kmp_gettid(), gtid, buf); 4622 } 4623 4624 #if KMP_DEBUG 4625 // Hidden helper thread affinity only printed for debug builds 4626 if (__kmp_affinity_verbose && KMP_HIDDEN_HELPER_THREAD(gtid)) { 4627 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4628 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4629 th->th.th_affin_mask); 4630 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY (hidden helper thread)", 4631 (kmp_int32)getpid(), __kmp_gettid(), gtid, buf); 4632 } 4633 #endif 4634 4635 #if KMP_OS_WINDOWS 4636 // On Windows* OS, the process affinity mask might have changed. If the user 4637 // didn't request affinity and this call fails, just continue silently. 4638 // See CQ171393. 4639 if (__kmp_affinity_type == affinity_none) { 4640 __kmp_set_system_affinity(th->th.th_affin_mask, FALSE); 4641 } else 4642 #endif 4643 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); 4644 } 4645 4646 void __kmp_affinity_set_place(int gtid) { 4647 if (!KMP_AFFINITY_CAPABLE()) { 4648 return; 4649 } 4650 4651 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); 4652 4653 KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current " 4654 "place = %d)\n", 4655 gtid, th->th.th_new_place, th->th.th_current_place)); 4656 4657 // Check that the new place is within this thread's partition. 4658 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4659 KMP_ASSERT(th->th.th_new_place >= 0); 4660 KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks); 4661 if (th->th.th_first_place <= th->th.th_last_place) { 4662 KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) && 4663 (th->th.th_new_place <= th->th.th_last_place)); 4664 } else { 4665 KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) || 4666 (th->th.th_new_place >= th->th.th_last_place)); 4667 } 4668 4669 // Copy the thread mask to the kmp_info_t structure, 4670 // and set this thread's affinity. 4671 kmp_affin_mask_t *mask = 4672 KMP_CPU_INDEX(__kmp_affinity_masks, th->th.th_new_place); 4673 KMP_CPU_COPY(th->th.th_affin_mask, mask); 4674 th->th.th_current_place = th->th.th_new_place; 4675 4676 if (__kmp_affinity_verbose) { 4677 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4678 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4679 th->th.th_affin_mask); 4680 KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(), 4681 __kmp_gettid(), gtid, buf); 4682 } 4683 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); 4684 } 4685 4686 int __kmp_aux_set_affinity(void **mask) { 4687 int gtid; 4688 kmp_info_t *th; 4689 int retval; 4690 4691 if (!KMP_AFFINITY_CAPABLE()) { 4692 return -1; 4693 } 4694 4695 gtid = __kmp_entry_gtid(); 4696 KA_TRACE( 4697 1000, (""); { 4698 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4699 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4700 (kmp_affin_mask_t *)(*mask)); 4701 __kmp_debug_printf( 4702 "kmp_set_affinity: setting affinity mask for thread %d = %s\n", 4703 gtid, buf); 4704 }); 4705 4706 if (__kmp_env_consistency_check) { 4707 if ((mask == NULL) || (*mask == NULL)) { 4708 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4709 } else { 4710 unsigned proc; 4711 int num_procs = 0; 4712 4713 KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) { 4714 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 4715 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4716 } 4717 if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) { 4718 continue; 4719 } 4720 num_procs++; 4721 } 4722 if (num_procs == 0) { 4723 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4724 } 4725 4726 #if KMP_GROUP_AFFINITY 4727 if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) { 4728 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4729 } 4730 #endif /* KMP_GROUP_AFFINITY */ 4731 } 4732 } 4733 4734 th = __kmp_threads[gtid]; 4735 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4736 retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); 4737 if (retval == 0) { 4738 KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask)); 4739 } 4740 4741 th->th.th_current_place = KMP_PLACE_UNDEFINED; 4742 th->th.th_new_place = KMP_PLACE_UNDEFINED; 4743 th->th.th_first_place = 0; 4744 th->th.th_last_place = __kmp_affinity_num_masks - 1; 4745 4746 // Turn off 4.0 affinity for the current tread at this parallel level. 4747 th->th.th_current_task->td_icvs.proc_bind = proc_bind_false; 4748 4749 return retval; 4750 } 4751 4752 int __kmp_aux_get_affinity(void **mask) { 4753 int gtid; 4754 int retval; 4755 #if KMP_OS_WINDOWS || KMP_DEBUG 4756 kmp_info_t *th; 4757 #endif 4758 if (!KMP_AFFINITY_CAPABLE()) { 4759 return -1; 4760 } 4761 4762 gtid = __kmp_entry_gtid(); 4763 #if KMP_OS_WINDOWS || KMP_DEBUG 4764 th = __kmp_threads[gtid]; 4765 #else 4766 (void)gtid; // unused variable 4767 #endif 4768 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4769 4770 KA_TRACE( 4771 1000, (""); { 4772 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4773 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4774 th->th.th_affin_mask); 4775 __kmp_printf( 4776 "kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid, 4777 buf); 4778 }); 4779 4780 if (__kmp_env_consistency_check) { 4781 if ((mask == NULL) || (*mask == NULL)) { 4782 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity"); 4783 } 4784 } 4785 4786 #if !KMP_OS_WINDOWS 4787 4788 retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); 4789 KA_TRACE( 4790 1000, (""); { 4791 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4792 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4793 (kmp_affin_mask_t *)(*mask)); 4794 __kmp_printf( 4795 "kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid, 4796 buf); 4797 }); 4798 return retval; 4799 4800 #else 4801 (void)retval; 4802 4803 KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask); 4804 return 0; 4805 4806 #endif /* KMP_OS_WINDOWS */ 4807 } 4808 4809 int __kmp_aux_get_affinity_max_proc() { 4810 if (!KMP_AFFINITY_CAPABLE()) { 4811 return 0; 4812 } 4813 #if KMP_GROUP_AFFINITY 4814 if (__kmp_num_proc_groups > 1) { 4815 return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT); 4816 } 4817 #endif 4818 return __kmp_xproc; 4819 } 4820 4821 int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) { 4822 if (!KMP_AFFINITY_CAPABLE()) { 4823 return -1; 4824 } 4825 4826 KA_TRACE( 4827 1000, (""); { 4828 int gtid = __kmp_entry_gtid(); 4829 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4830 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4831 (kmp_affin_mask_t *)(*mask)); 4832 __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in " 4833 "affinity mask for thread %d = %s\n", 4834 proc, gtid, buf); 4835 }); 4836 4837 if (__kmp_env_consistency_check) { 4838 if ((mask == NULL) || (*mask == NULL)) { 4839 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc"); 4840 } 4841 } 4842 4843 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 4844 return -1; 4845 } 4846 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 4847 return -2; 4848 } 4849 4850 KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask)); 4851 return 0; 4852 } 4853 4854 int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) { 4855 if (!KMP_AFFINITY_CAPABLE()) { 4856 return -1; 4857 } 4858 4859 KA_TRACE( 4860 1000, (""); { 4861 int gtid = __kmp_entry_gtid(); 4862 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4863 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4864 (kmp_affin_mask_t *)(*mask)); 4865 __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in " 4866 "affinity mask for thread %d = %s\n", 4867 proc, gtid, buf); 4868 }); 4869 4870 if (__kmp_env_consistency_check) { 4871 if ((mask == NULL) || (*mask == NULL)) { 4872 KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc"); 4873 } 4874 } 4875 4876 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 4877 return -1; 4878 } 4879 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 4880 return -2; 4881 } 4882 4883 KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask)); 4884 return 0; 4885 } 4886 4887 int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) { 4888 if (!KMP_AFFINITY_CAPABLE()) { 4889 return -1; 4890 } 4891 4892 KA_TRACE( 4893 1000, (""); { 4894 int gtid = __kmp_entry_gtid(); 4895 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4896 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4897 (kmp_affin_mask_t *)(*mask)); 4898 __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in " 4899 "affinity mask for thread %d = %s\n", 4900 proc, gtid, buf); 4901 }); 4902 4903 if (__kmp_env_consistency_check) { 4904 if ((mask == NULL) || (*mask == NULL)) { 4905 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc"); 4906 } 4907 } 4908 4909 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 4910 return -1; 4911 } 4912 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 4913 return 0; 4914 } 4915 4916 return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask)); 4917 } 4918 4919 // Dynamic affinity settings - Affinity balanced 4920 void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) { 4921 KMP_DEBUG_ASSERT(th); 4922 bool fine_gran = true; 4923 int tid = th->th.th_info.ds.ds_tid; 4924 4925 // Do not perform balanced affinity for the hidden helper threads 4926 if (KMP_HIDDEN_HELPER_THREAD(__kmp_gtid_from_thread(th))) 4927 return; 4928 4929 switch (__kmp_affinity_gran) { 4930 case KMP_HW_THREAD: 4931 break; 4932 case KMP_HW_CORE: 4933 if (__kmp_nThreadsPerCore > 1) { 4934 fine_gran = false; 4935 } 4936 break; 4937 case KMP_HW_SOCKET: 4938 if (nCoresPerPkg > 1) { 4939 fine_gran = false; 4940 } 4941 break; 4942 default: 4943 fine_gran = false; 4944 } 4945 4946 if (__kmp_topology->is_uniform()) { 4947 int coreID; 4948 int threadID; 4949 // Number of hyper threads per core in HT machine 4950 int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores; 4951 // Number of cores 4952 int ncores = __kmp_ncores; 4953 if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) { 4954 __kmp_nth_per_core = __kmp_avail_proc / nPackages; 4955 ncores = nPackages; 4956 } 4957 // How many threads will be bound to each core 4958 int chunk = nthreads / ncores; 4959 // How many cores will have an additional thread bound to it - "big cores" 4960 int big_cores = nthreads % ncores; 4961 // Number of threads on the big cores 4962 int big_nth = (chunk + 1) * big_cores; 4963 if (tid < big_nth) { 4964 coreID = tid / (chunk + 1); 4965 threadID = (tid % (chunk + 1)) % __kmp_nth_per_core; 4966 } else { // tid >= big_nth 4967 coreID = (tid - big_cores) / chunk; 4968 threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core; 4969 } 4970 KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(), 4971 "Illegal set affinity operation when not capable"); 4972 4973 kmp_affin_mask_t *mask = th->th.th_affin_mask; 4974 KMP_CPU_ZERO(mask); 4975 4976 if (fine_gran) { 4977 int osID = 4978 __kmp_topology->at(coreID * __kmp_nth_per_core + threadID).os_id; 4979 KMP_CPU_SET(osID, mask); 4980 } else { 4981 for (int i = 0; i < __kmp_nth_per_core; i++) { 4982 int osID; 4983 osID = __kmp_topology->at(coreID * __kmp_nth_per_core + i).os_id; 4984 KMP_CPU_SET(osID, mask); 4985 } 4986 } 4987 if (__kmp_affinity_verbose) { 4988 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4989 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); 4990 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), 4991 __kmp_gettid(), tid, buf); 4992 } 4993 __kmp_set_system_affinity(mask, TRUE); 4994 } else { // Non-uniform topology 4995 4996 kmp_affin_mask_t *mask = th->th.th_affin_mask; 4997 KMP_CPU_ZERO(mask); 4998 4999 int core_level = 5000 __kmp_affinity_find_core_level(__kmp_avail_proc, __kmp_aff_depth - 1); 5001 int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, 5002 __kmp_aff_depth - 1, core_level); 5003 int nth_per_core = __kmp_affinity_max_proc_per_core( 5004 __kmp_avail_proc, __kmp_aff_depth - 1, core_level); 5005 5006 // For performance gain consider the special case nthreads == 5007 // __kmp_avail_proc 5008 if (nthreads == __kmp_avail_proc) { 5009 if (fine_gran) { 5010 int osID = __kmp_topology->at(tid).os_id; 5011 KMP_CPU_SET(osID, mask); 5012 } else { 5013 int core = 5014 __kmp_affinity_find_core(tid, __kmp_aff_depth - 1, core_level); 5015 for (int i = 0; i < __kmp_avail_proc; i++) { 5016 int osID = __kmp_topology->at(i).os_id; 5017 if (__kmp_affinity_find_core(i, __kmp_aff_depth - 1, core_level) == 5018 core) { 5019 KMP_CPU_SET(osID, mask); 5020 } 5021 } 5022 } 5023 } else if (nthreads <= ncores) { 5024 5025 int core = 0; 5026 for (int i = 0; i < ncores; i++) { 5027 // Check if this core from procarr[] is in the mask 5028 int in_mask = 0; 5029 for (int j = 0; j < nth_per_core; j++) { 5030 if (procarr[i * nth_per_core + j] != -1) { 5031 in_mask = 1; 5032 break; 5033 } 5034 } 5035 if (in_mask) { 5036 if (tid == core) { 5037 for (int j = 0; j < nth_per_core; j++) { 5038 int osID = procarr[i * nth_per_core + j]; 5039 if (osID != -1) { 5040 KMP_CPU_SET(osID, mask); 5041 // For fine granularity it is enough to set the first available 5042 // osID for this core 5043 if (fine_gran) { 5044 break; 5045 } 5046 } 5047 } 5048 break; 5049 } else { 5050 core++; 5051 } 5052 } 5053 } 5054 } else { // nthreads > ncores 5055 // Array to save the number of processors at each core 5056 int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores); 5057 // Array to save the number of cores with "x" available processors; 5058 int *ncores_with_x_procs = 5059 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); 5060 // Array to save the number of cores with # procs from x to nth_per_core 5061 int *ncores_with_x_to_max_procs = 5062 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); 5063 5064 for (int i = 0; i <= nth_per_core; i++) { 5065 ncores_with_x_procs[i] = 0; 5066 ncores_with_x_to_max_procs[i] = 0; 5067 } 5068 5069 for (int i = 0; i < ncores; i++) { 5070 int cnt = 0; 5071 for (int j = 0; j < nth_per_core; j++) { 5072 if (procarr[i * nth_per_core + j] != -1) { 5073 cnt++; 5074 } 5075 } 5076 nproc_at_core[i] = cnt; 5077 ncores_with_x_procs[cnt]++; 5078 } 5079 5080 for (int i = 0; i <= nth_per_core; i++) { 5081 for (int j = i; j <= nth_per_core; j++) { 5082 ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j]; 5083 } 5084 } 5085 5086 // Max number of processors 5087 int nproc = nth_per_core * ncores; 5088 // An array to keep number of threads per each context 5089 int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc); 5090 for (int i = 0; i < nproc; i++) { 5091 newarr[i] = 0; 5092 } 5093 5094 int nth = nthreads; 5095 int flag = 0; 5096 while (nth > 0) { 5097 for (int j = 1; j <= nth_per_core; j++) { 5098 int cnt = ncores_with_x_to_max_procs[j]; 5099 for (int i = 0; i < ncores; i++) { 5100 // Skip the core with 0 processors 5101 if (nproc_at_core[i] == 0) { 5102 continue; 5103 } 5104 for (int k = 0; k < nth_per_core; k++) { 5105 if (procarr[i * nth_per_core + k] != -1) { 5106 if (newarr[i * nth_per_core + k] == 0) { 5107 newarr[i * nth_per_core + k] = 1; 5108 cnt--; 5109 nth--; 5110 break; 5111 } else { 5112 if (flag != 0) { 5113 newarr[i * nth_per_core + k]++; 5114 cnt--; 5115 nth--; 5116 break; 5117 } 5118 } 5119 } 5120 } 5121 if (cnt == 0 || nth == 0) { 5122 break; 5123 } 5124 } 5125 if (nth == 0) { 5126 break; 5127 } 5128 } 5129 flag = 1; 5130 } 5131 int sum = 0; 5132 for (int i = 0; i < nproc; i++) { 5133 sum += newarr[i]; 5134 if (sum > tid) { 5135 if (fine_gran) { 5136 int osID = procarr[i]; 5137 KMP_CPU_SET(osID, mask); 5138 } else { 5139 int coreID = i / nth_per_core; 5140 for (int ii = 0; ii < nth_per_core; ii++) { 5141 int osID = procarr[coreID * nth_per_core + ii]; 5142 if (osID != -1) { 5143 KMP_CPU_SET(osID, mask); 5144 } 5145 } 5146 } 5147 break; 5148 } 5149 } 5150 __kmp_free(newarr); 5151 } 5152 5153 if (__kmp_affinity_verbose) { 5154 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5155 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); 5156 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), 5157 __kmp_gettid(), tid, buf); 5158 } 5159 __kmp_set_system_affinity(mask, TRUE); 5160 } 5161 } 5162 5163 #if KMP_OS_LINUX || KMP_OS_FREEBSD 5164 // We don't need this entry for Windows because 5165 // there is GetProcessAffinityMask() api 5166 // 5167 // The intended usage is indicated by these steps: 5168 // 1) The user gets the current affinity mask 5169 // 2) Then sets the affinity by calling this function 5170 // 3) Error check the return value 5171 // 4) Use non-OpenMP parallelization 5172 // 5) Reset the affinity to what was stored in step 1) 5173 #ifdef __cplusplus 5174 extern "C" 5175 #endif 5176 int 5177 kmp_set_thread_affinity_mask_initial() 5178 // the function returns 0 on success, 5179 // -1 if we cannot bind thread 5180 // >0 (errno) if an error happened during binding 5181 { 5182 int gtid = __kmp_get_gtid(); 5183 if (gtid < 0) { 5184 // Do not touch non-omp threads 5185 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5186 "non-omp thread, returning\n")); 5187 return -1; 5188 } 5189 if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) { 5190 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5191 "affinity not initialized, returning\n")); 5192 return -1; 5193 } 5194 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5195 "set full mask for thread %d\n", 5196 gtid)); 5197 KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL); 5198 return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE); 5199 } 5200 #endif 5201 5202 #endif // KMP_AFFINITY_SUPPORTED 5203