1 //===----RTLs/cuda/src/rtl.cpp - Target RTLs Implementation ------- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // RTL for CUDA machine 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <algorithm> 14 #include <cassert> 15 #include <cstddef> 16 #include <cuda.h> 17 #include <list> 18 #include <memory> 19 #include <mutex> 20 #include <string> 21 #include <unordered_map> 22 #include <vector> 23 24 #include "Debug.h" 25 #include "DeviceEnvironment.h" 26 #include "omptarget.h" 27 #include "omptargetplugin.h" 28 29 #define TARGET_NAME CUDA 30 #define DEBUG_PREFIX "Target " GETNAME(TARGET_NAME) " RTL" 31 32 #include "MemoryManager.h" 33 34 #include "llvm/Frontend/OpenMP/OMPConstants.h" 35 36 // Utility for retrieving and printing CUDA error string. 37 #ifdef OMPTARGET_DEBUG 38 #define CUDA_ERR_STRING(err) \ 39 do { \ 40 if (getDebugLevel() > 0) { \ 41 const char *errStr = nullptr; \ 42 CUresult errStr_status = cuGetErrorString(err, &errStr); \ 43 if (errStr_status == CUDA_ERROR_INVALID_VALUE) \ 44 REPORT("Unrecognized CUDA error code: %d\n", err); \ 45 else if (errStr_status == CUDA_SUCCESS) \ 46 REPORT("CUDA error is: %s\n", errStr); \ 47 else { \ 48 REPORT("Unresolved CUDA error code: %d\n", err); \ 49 REPORT("Unsuccessful cuGetErrorString return status: %d\n", \ 50 errStr_status); \ 51 } \ 52 } else { \ 53 const char *errStr = nullptr; \ 54 CUresult errStr_status = cuGetErrorString(err, &errStr); \ 55 if (errStr_status == CUDA_SUCCESS) \ 56 REPORT("%s \n", errStr); \ 57 } \ 58 } while (false) 59 #else // OMPTARGET_DEBUG 60 #define CUDA_ERR_STRING(err) \ 61 do { \ 62 const char *errStr = nullptr; \ 63 CUresult errStr_status = cuGetErrorString(err, &errStr); \ 64 if (errStr_status == CUDA_SUCCESS) \ 65 REPORT("%s \n", errStr); \ 66 } while (false) 67 #endif // OMPTARGET_DEBUG 68 69 #define BOOL2TEXT(b) ((b) ? "Yes" : "No") 70 71 #include "elf_common.h" 72 73 /// Keep entries table per device. 74 struct FuncOrGblEntryTy { 75 __tgt_target_table Table; 76 std::vector<__tgt_offload_entry> Entries; 77 }; 78 79 /// Use a single entity to encode a kernel and a set of flags. 80 struct KernelTy { 81 CUfunction Func; 82 83 // execution mode of kernel 84 llvm::omp::OMPTgtExecModeFlags ExecutionMode; 85 86 /// Maximal number of threads per block for this kernel. 87 int MaxThreadsPerBlock = 0; 88 89 KernelTy(CUfunction Func, llvm::omp::OMPTgtExecModeFlags ExecutionMode) 90 : Func(Func), ExecutionMode(ExecutionMode) {} 91 }; 92 93 namespace { 94 bool checkResult(CUresult Err, const char *ErrMsg) { 95 if (Err == CUDA_SUCCESS) 96 return true; 97 98 REPORT("%s", ErrMsg); 99 CUDA_ERR_STRING(Err); 100 return false; 101 } 102 103 int memcpyDtoD(const void *SrcPtr, void *DstPtr, int64_t Size, 104 CUstream Stream) { 105 CUresult Err = 106 cuMemcpyDtoDAsync((CUdeviceptr)DstPtr, (CUdeviceptr)SrcPtr, Size, Stream); 107 108 if (Err != CUDA_SUCCESS) { 109 DP("Error when copying data from device to device. Pointers: src " 110 "= " DPxMOD ", dst = " DPxMOD ", size = %" PRId64 "\n", 111 DPxPTR(SrcPtr), DPxPTR(DstPtr), Size); 112 CUDA_ERR_STRING(Err); 113 return OFFLOAD_FAIL; 114 } 115 116 return OFFLOAD_SUCCESS; 117 } 118 119 int recordEvent(void *EventPtr, __tgt_async_info *AsyncInfo) { 120 CUstream Stream = reinterpret_cast<CUstream>(AsyncInfo->Queue); 121 CUevent Event = reinterpret_cast<CUevent>(EventPtr); 122 123 CUresult Err = cuEventRecord(Event, Stream); 124 if (Err != CUDA_SUCCESS) { 125 DP("Error when recording event. stream = " DPxMOD ", event = " DPxMOD "\n", 126 DPxPTR(Stream), DPxPTR(Event)); 127 CUDA_ERR_STRING(Err); 128 return OFFLOAD_FAIL; 129 } 130 131 return OFFLOAD_SUCCESS; 132 } 133 134 int syncEvent(void *EventPtr) { 135 CUevent Event = reinterpret_cast<CUevent>(EventPtr); 136 137 CUresult Err = cuEventSynchronize(Event); 138 if (Err != CUDA_SUCCESS) { 139 DP("Error when syncing event = " DPxMOD "\n", DPxPTR(Event)); 140 CUDA_ERR_STRING(Err); 141 return OFFLOAD_FAIL; 142 } 143 144 return OFFLOAD_SUCCESS; 145 } 146 147 namespace { 148 149 // Structure contains per-device data 150 struct DeviceDataTy { 151 /// List that contains all the kernels. 152 std::list<KernelTy> KernelsList; 153 154 std::list<FuncOrGblEntryTy> FuncGblEntries; 155 156 CUcontext Context = nullptr; 157 // Device properties 158 unsigned int ThreadsPerBlock = 0; 159 unsigned int BlocksPerGrid = 0; 160 unsigned int WarpSize = 0; 161 // OpenMP properties 162 int NumTeams = 0; 163 int NumThreads = 0; 164 }; 165 166 /// Resource allocator where \p T is the resource type. 167 /// Functions \p create and \p destroy return OFFLOAD_SUCCESS and OFFLOAD_FAIL 168 /// accordingly. The implementation should not raise any exception. 169 template <typename T> struct AllocatorTy { 170 using ElementTy = T; 171 virtual ~AllocatorTy() {} 172 173 /// Create a resource and assign to R. 174 virtual int create(T &R) noexcept = 0; 175 /// Destroy the resource. 176 virtual int destroy(T) noexcept = 0; 177 }; 178 179 /// Allocator for CUstream. 180 struct StreamAllocatorTy final : public AllocatorTy<CUstream> { 181 /// See AllocatorTy<T>::create. 182 int create(CUstream &Stream) noexcept override { 183 if (!checkResult(cuStreamCreate(&Stream, CU_STREAM_NON_BLOCKING), 184 "Error returned from cuStreamCreate\n")) 185 return OFFLOAD_FAIL; 186 187 return OFFLOAD_SUCCESS; 188 } 189 190 /// See AllocatorTy<T>::destroy. 191 int destroy(CUstream Stream) noexcept override { 192 if (!checkResult(cuStreamDestroy(Stream), 193 "Error returned from cuStreamDestroy\n")) 194 return OFFLOAD_FAIL; 195 196 return OFFLOAD_SUCCESS; 197 } 198 }; 199 200 /// Allocator for CUevent. 201 struct EventAllocatorTy final : public AllocatorTy<CUevent> { 202 /// See AllocatorTy<T>::create. 203 int create(CUevent &Event) noexcept override { 204 if (!checkResult(cuEventCreate(&Event, CU_EVENT_DEFAULT), 205 "Error returned from cuEventCreate\n")) 206 return OFFLOAD_FAIL; 207 208 return OFFLOAD_SUCCESS; 209 } 210 211 /// See AllocatorTy<T>::destroy. 212 int destroy(CUevent Event) noexcept override { 213 if (!checkResult(cuEventDestroy(Event), 214 "Error returned from cuEventDestroy\n")) 215 return OFFLOAD_FAIL; 216 217 return OFFLOAD_SUCCESS; 218 } 219 }; 220 221 /// A generic pool of resources where \p T is the resource type. 222 /// \p T should be copyable as the object is stored in \p std::vector . 223 template <typename AllocTy> class ResourcePoolTy { 224 using ElementTy = typename AllocTy::ElementTy; 225 /// Index of the next available resource. 226 size_t Next = 0; 227 /// Mutex to guard the pool. 228 std::mutex Mutex; 229 /// Pool of resources. The difference between \p Resources and \p Pool is, 230 /// when a resource is acquired and released, it is all on \p Resources. When 231 /// a batch of new resources are needed, they are both added to \p Resources 232 /// and \p Pool. The reason for this setting is, \p Resources could contain 233 /// redundant elements because resources are not released, which can cause 234 /// double free. This setting makes sure that \p Pool always has every 235 /// resource allocated from the device. 236 std::vector<ElementTy> Resources; 237 std::vector<ElementTy> Pool; 238 /// A reference to the corresponding allocator. 239 AllocTy Allocator; 240 241 /// If `Resources` is used up, we will fill in more resources. It assumes that 242 /// the new size `Size` should be always larger than the current size. 243 bool resize(size_t Size) { 244 assert(Resources.size() == Pool.size() && "size mismatch"); 245 auto CurSize = Resources.size(); 246 assert(Size > CurSize && "Unexpected smaller size"); 247 Pool.reserve(Size); 248 Resources.reserve(Size); 249 for (auto I = CurSize; I < Size; ++I) { 250 ElementTy NewItem; 251 int Ret = Allocator.create(NewItem); 252 if (Ret != OFFLOAD_SUCCESS) 253 return false; 254 Pool.push_back(NewItem); 255 Resources.push_back(NewItem); 256 } 257 return true; 258 } 259 260 public: 261 ResourcePoolTy(AllocTy &&A, size_t Size = 0) noexcept 262 : Allocator(std::move(A)) { 263 if (Size) 264 (void)resize(Size); 265 } 266 267 ~ResourcePoolTy() noexcept { clear(); } 268 269 /// Get a resource from pool. `Next` always points to the next available 270 /// resource. That means, `[0, next-1]` have been assigned, and `[id,]` are 271 /// still available. If there is no resource left, we will ask for more. Each 272 /// time a resource is assigned, the id will increase one. 273 /// xxxxxs+++++++++ 274 /// ^ 275 /// Next 276 /// After assignment, the pool becomes the following and s is assigned. 277 /// xxxxxs+++++++++ 278 /// ^ 279 /// Next 280 int acquire(ElementTy &R) noexcept { 281 std::lock_guard<std::mutex> LG(Mutex); 282 if (Next == Resources.size()) { 283 auto NewSize = Resources.size() ? Resources.size() * 2 : 1; 284 if (!resize(NewSize)) 285 return OFFLOAD_FAIL; 286 } 287 288 assert(Next < Resources.size()); 289 290 R = Resources[Next++]; 291 292 return OFFLOAD_SUCCESS; 293 } 294 295 /// Return the resource back to the pool. When we return a resource, we need 296 /// to first decrease `Next`, and then copy the resource back. It is worth 297 /// noting that, the order of resources return might be different from that 298 /// they're assigned, that saying, at some point, there might be two identical 299 /// resources. 300 /// xxax+a+++++ 301 /// ^ 302 /// Next 303 /// However, it doesn't matter, because they're always on the two sides of 304 /// `Next`. The left one will in the end be overwritten by another resource. 305 /// Therefore, after several execution, the order of pool might be different 306 /// from its initial state. 307 void release(ElementTy R) noexcept { 308 std::lock_guard<std::mutex> LG(Mutex); 309 Resources[--Next] = R; 310 } 311 312 /// Released all stored resources and clear the pool. 313 /// Note: This function is not thread safe. Be sure to guard it if necessary. 314 void clear() noexcept { 315 for (auto &R : Pool) 316 (void)Allocator.destroy(R); 317 Pool.clear(); 318 Resources.clear(); 319 } 320 }; 321 322 } // namespace 323 324 class DeviceRTLTy { 325 int NumberOfDevices; 326 // OpenMP environment properties 327 int EnvNumTeams; 328 int EnvTeamLimit; 329 int EnvTeamThreadLimit; 330 // OpenMP requires flags 331 int64_t RequiresFlags; 332 // Amount of dynamic shared memory to use at launch. 333 uint64_t DynamicMemorySize; 334 335 /// Number of initial streams for each device. 336 int NumInitialStreams = 32; 337 338 /// Number of initial events for each device. 339 int NumInitialEvents = 8; 340 341 static constexpr const int32_t HardThreadLimit = 1024; 342 static constexpr const int32_t DefaultNumTeams = 128; 343 static constexpr const int32_t DefaultNumThreads = 128; 344 345 using StreamPoolTy = ResourcePoolTy<StreamAllocatorTy>; 346 std::vector<std::unique_ptr<StreamPoolTy>> StreamPool; 347 348 using EventPoolTy = ResourcePoolTy<EventAllocatorTy>; 349 std::vector<std::unique_ptr<EventPoolTy>> EventPool; 350 351 std::vector<DeviceDataTy> DeviceData; 352 std::vector<std::vector<CUmodule>> Modules; 353 354 /// Vector of flags indicating the initalization status of all associated 355 /// devices. 356 std::vector<bool> InitializedFlags; 357 358 enum class PeerAccessState : uint8_t { Unkown, Yes, No }; 359 std::vector<std::vector<PeerAccessState>> PeerAccessMatrix; 360 std::mutex PeerAccessMatrixLock; 361 362 /// A class responsible for interacting with device native runtime library to 363 /// allocate and free memory. 364 class CUDADeviceAllocatorTy : public DeviceAllocatorTy { 365 std::unordered_map<void *, TargetAllocTy> HostPinnedAllocs; 366 367 public: 368 void *allocate(size_t Size, void *, TargetAllocTy Kind) override { 369 if (Size == 0) 370 return nullptr; 371 372 void *MemAlloc = nullptr; 373 CUresult Err; 374 switch (Kind) { 375 case TARGET_ALLOC_DEFAULT: 376 case TARGET_ALLOC_DEVICE: 377 CUdeviceptr DevicePtr; 378 Err = cuMemAlloc(&DevicePtr, Size); 379 MemAlloc = (void *)DevicePtr; 380 if (!checkResult(Err, "Error returned from cuMemAlloc\n")) 381 return nullptr; 382 break; 383 case TARGET_ALLOC_HOST: 384 void *HostPtr; 385 Err = cuMemAllocHost(&HostPtr, Size); 386 MemAlloc = HostPtr; 387 if (!checkResult(Err, "Error returned from cuMemAllocHost\n")) 388 return nullptr; 389 HostPinnedAllocs[MemAlloc] = Kind; 390 break; 391 case TARGET_ALLOC_SHARED: 392 CUdeviceptr SharedPtr; 393 Err = cuMemAllocManaged(&SharedPtr, Size, CU_MEM_ATTACH_GLOBAL); 394 MemAlloc = (void *)SharedPtr; 395 if (!checkResult(Err, "Error returned from cuMemAllocManaged\n")) 396 return nullptr; 397 break; 398 } 399 400 return MemAlloc; 401 } 402 403 int free(void *TgtPtr) override { 404 CUresult Err; 405 // Host pinned memory must be freed differently. 406 TargetAllocTy Kind = 407 (HostPinnedAllocs.find(TgtPtr) == HostPinnedAllocs.end()) 408 ? TARGET_ALLOC_DEFAULT 409 : TARGET_ALLOC_HOST; 410 switch (Kind) { 411 case TARGET_ALLOC_DEFAULT: 412 case TARGET_ALLOC_DEVICE: 413 case TARGET_ALLOC_SHARED: 414 Err = cuMemFree((CUdeviceptr)TgtPtr); 415 if (!checkResult(Err, "Error returned from cuMemFree\n")) 416 return OFFLOAD_FAIL; 417 break; 418 case TARGET_ALLOC_HOST: 419 Err = cuMemFreeHost(TgtPtr); 420 if (!checkResult(Err, "Error returned from cuMemFreeHost\n")) 421 return OFFLOAD_FAIL; 422 break; 423 } 424 425 return OFFLOAD_SUCCESS; 426 } 427 }; 428 429 /// A vector of device allocators 430 std::vector<CUDADeviceAllocatorTy> DeviceAllocators; 431 432 /// A vector of memory managers. Since the memory manager is non-copyable and 433 // non-removable, we wrap them into std::unique_ptr. 434 std::vector<std::unique_ptr<MemoryManagerTy>> MemoryManagers; 435 436 /// Whether use memory manager 437 bool UseMemoryManager = true; 438 439 // Record entry point associated with device 440 void addOffloadEntry(const int DeviceId, const __tgt_offload_entry Entry) { 441 FuncOrGblEntryTy &E = DeviceData[DeviceId].FuncGblEntries.back(); 442 E.Entries.push_back(Entry); 443 } 444 445 // Return a pointer to the entry associated with the pointer 446 const __tgt_offload_entry *getOffloadEntry(const int DeviceId, 447 const void *Addr) const { 448 for (const __tgt_offload_entry &Itr : 449 DeviceData[DeviceId].FuncGblEntries.back().Entries) 450 if (Itr.addr == Addr) 451 return &Itr; 452 453 return nullptr; 454 } 455 456 // Return the pointer to the target entries table 457 __tgt_target_table *getOffloadEntriesTable(const int DeviceId) { 458 FuncOrGblEntryTy &E = DeviceData[DeviceId].FuncGblEntries.back(); 459 460 if (E.Entries.empty()) 461 return nullptr; 462 463 // Update table info according to the entries and return the pointer 464 E.Table.EntriesBegin = E.Entries.data(); 465 E.Table.EntriesEnd = E.Entries.data() + E.Entries.size(); 466 467 return &E.Table; 468 } 469 470 // Clear entries table for a device 471 void clearOffloadEntriesTable(const int DeviceId) { 472 DeviceData[DeviceId].FuncGblEntries.emplace_back(); 473 FuncOrGblEntryTy &E = DeviceData[DeviceId].FuncGblEntries.back(); 474 E.Entries.clear(); 475 E.Table.EntriesBegin = E.Table.EntriesEnd = nullptr; 476 } 477 478 public: 479 CUstream getStream(const int DeviceId, __tgt_async_info *AsyncInfo) const { 480 assert(AsyncInfo && "AsyncInfo is nullptr"); 481 482 if (!AsyncInfo->Queue) { 483 CUstream S; 484 if (StreamPool[DeviceId]->acquire(S) != OFFLOAD_SUCCESS) 485 return nullptr; 486 487 AsyncInfo->Queue = S; 488 } 489 490 return reinterpret_cast<CUstream>(AsyncInfo->Queue); 491 } 492 493 // This class should not be copied 494 DeviceRTLTy(const DeviceRTLTy &) = delete; 495 DeviceRTLTy(DeviceRTLTy &&) = delete; 496 497 DeviceRTLTy() 498 : NumberOfDevices(0), EnvNumTeams(-1), EnvTeamLimit(-1), 499 EnvTeamThreadLimit(-1), RequiresFlags(OMP_REQ_UNDEFINED), 500 DynamicMemorySize(0) { 501 502 DP("Start initializing CUDA\n"); 503 504 CUresult Err = cuInit(0); 505 if (Err == CUDA_ERROR_INVALID_HANDLE) { 506 // Can't call cuGetErrorString if dlsym failed 507 DP("Failed to load CUDA shared library\n"); 508 return; 509 } 510 if (!checkResult(Err, "Error returned from cuInit\n")) { 511 return; 512 } 513 514 Err = cuDeviceGetCount(&NumberOfDevices); 515 if (!checkResult(Err, "Error returned from cuDeviceGetCount\n")) 516 return; 517 518 if (NumberOfDevices == 0) { 519 DP("There are no devices supporting CUDA.\n"); 520 return; 521 } 522 523 DeviceData.resize(NumberOfDevices); 524 Modules.resize(NumberOfDevices); 525 StreamPool.resize(NumberOfDevices); 526 EventPool.resize(NumberOfDevices); 527 PeerAccessMatrix.resize(NumberOfDevices); 528 for (auto &V : PeerAccessMatrix) 529 V.resize(NumberOfDevices, PeerAccessState::Unkown); 530 531 // Get environment variables regarding teams 532 if (const char *EnvStr = getenv("OMP_TEAM_LIMIT")) { 533 // OMP_TEAM_LIMIT has been set 534 EnvTeamLimit = std::stoi(EnvStr); 535 DP("Parsed OMP_TEAM_LIMIT=%d\n", EnvTeamLimit); 536 } 537 if (const char *EnvStr = getenv("OMP_TEAMS_THREAD_LIMIT")) { 538 // OMP_TEAMS_THREAD_LIMIT has been set 539 EnvTeamThreadLimit = std::stoi(EnvStr); 540 DP("Parsed OMP_TEAMS_THREAD_LIMIT=%d\n", EnvTeamThreadLimit); 541 } 542 if (const char *EnvStr = getenv("OMP_NUM_TEAMS")) { 543 // OMP_NUM_TEAMS has been set 544 EnvNumTeams = std::stoi(EnvStr); 545 DP("Parsed OMP_NUM_TEAMS=%d\n", EnvNumTeams); 546 } 547 if (const char *EnvStr = getenv("LIBOMPTARGET_SHARED_MEMORY_SIZE")) { 548 // LIBOMPTARGET_SHARED_MEMORY_SIZE has been set 549 DynamicMemorySize = std::stoi(EnvStr); 550 DP("Parsed LIBOMPTARGET_SHARED_MEMORY_SIZE = %" PRIu64 "\n", 551 DynamicMemorySize); 552 } 553 if (const char *EnvStr = getenv("LIBOMPTARGET_NUM_INITIAL_STREAMS")) { 554 // LIBOMPTARGET_NUM_INITIAL_STREAMS has been set 555 NumInitialStreams = std::stoi(EnvStr); 556 DP("Parsed LIBOMPTARGET_NUM_INITIAL_STREAMS=%d\n", NumInitialStreams); 557 } 558 559 for (int I = 0; I < NumberOfDevices; ++I) 560 DeviceAllocators.emplace_back(); 561 562 // Get the size threshold from environment variable 563 std::pair<size_t, bool> Res = MemoryManagerTy::getSizeThresholdFromEnv(); 564 UseMemoryManager = Res.second; 565 size_t MemoryManagerThreshold = Res.first; 566 567 if (UseMemoryManager) 568 for (int I = 0; I < NumberOfDevices; ++I) 569 MemoryManagers.emplace_back(std::make_unique<MemoryManagerTy>( 570 DeviceAllocators[I], MemoryManagerThreshold)); 571 572 // We lazily initialize all devices later. 573 InitializedFlags.assign(NumberOfDevices, false); 574 } 575 576 ~DeviceRTLTy() { 577 for (int DeviceId = 0; DeviceId < NumberOfDevices; ++DeviceId) 578 deinitDevice(DeviceId); 579 } 580 581 // Check whether a given DeviceId is valid 582 bool isValidDeviceId(const int DeviceId) const { 583 return DeviceId >= 0 && DeviceId < NumberOfDevices; 584 } 585 586 int getNumOfDevices() const { return NumberOfDevices; } 587 588 void setRequiresFlag(const int64_t Flags) { this->RequiresFlags = Flags; } 589 590 int initDevice(const int DeviceId) { 591 CUdevice Device; 592 593 DP("Getting device %d\n", DeviceId); 594 CUresult Err = cuDeviceGet(&Device, DeviceId); 595 if (!checkResult(Err, "Error returned from cuDeviceGet\n")) 596 return OFFLOAD_FAIL; 597 598 assert(InitializedFlags[DeviceId] == false && "Reinitializing device!"); 599 InitializedFlags[DeviceId] = true; 600 601 // Query the current flags of the primary context and set its flags if 602 // it is inactive 603 unsigned int FormerPrimaryCtxFlags = 0; 604 int FormerPrimaryCtxIsActive = 0; 605 Err = cuDevicePrimaryCtxGetState(Device, &FormerPrimaryCtxFlags, 606 &FormerPrimaryCtxIsActive); 607 if (!checkResult(Err, "Error returned from cuDevicePrimaryCtxGetState\n")) 608 return OFFLOAD_FAIL; 609 610 if (FormerPrimaryCtxIsActive) { 611 DP("The primary context is active, no change to its flags\n"); 612 if ((FormerPrimaryCtxFlags & CU_CTX_SCHED_MASK) != 613 CU_CTX_SCHED_BLOCKING_SYNC) 614 DP("Warning the current flags are not CU_CTX_SCHED_BLOCKING_SYNC\n"); 615 } else { 616 DP("The primary context is inactive, set its flags to " 617 "CU_CTX_SCHED_BLOCKING_SYNC\n"); 618 Err = cuDevicePrimaryCtxSetFlags(Device, CU_CTX_SCHED_BLOCKING_SYNC); 619 if (!checkResult(Err, "Error returned from cuDevicePrimaryCtxSetFlags\n")) 620 return OFFLOAD_FAIL; 621 } 622 623 // Retain the per device primary context and save it to use whenever this 624 // device is selected. 625 Err = cuDevicePrimaryCtxRetain(&DeviceData[DeviceId].Context, Device); 626 if (!checkResult(Err, "Error returned from cuDevicePrimaryCtxRetain\n")) 627 return OFFLOAD_FAIL; 628 629 Err = cuCtxSetCurrent(DeviceData[DeviceId].Context); 630 if (!checkResult(Err, "Error returned from cuCtxSetCurrent\n")) 631 return OFFLOAD_FAIL; 632 633 // Initialize the stream pool. 634 if (!StreamPool[DeviceId]) 635 StreamPool[DeviceId] = std::make_unique<StreamPoolTy>(StreamAllocatorTy(), 636 NumInitialStreams); 637 638 // Initialize the event pool. 639 if (!EventPool[DeviceId]) 640 EventPool[DeviceId] = 641 std::make_unique<EventPoolTy>(EventAllocatorTy(), NumInitialEvents); 642 643 // Query attributes to determine number of threads/block and blocks/grid. 644 int MaxGridDimX; 645 Err = cuDeviceGetAttribute(&MaxGridDimX, CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_X, 646 Device); 647 if (Err != CUDA_SUCCESS) { 648 DP("Error getting max grid dimension, use default value %d\n", 649 DeviceRTLTy::DefaultNumTeams); 650 DeviceData[DeviceId].BlocksPerGrid = DeviceRTLTy::DefaultNumTeams; 651 } else { 652 DP("Using %d CUDA blocks per grid\n", MaxGridDimX); 653 DeviceData[DeviceId].BlocksPerGrid = MaxGridDimX; 654 } 655 656 // We are only exploiting threads along the x axis. 657 int MaxBlockDimX; 658 Err = cuDeviceGetAttribute(&MaxBlockDimX, 659 CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_X, Device); 660 if (Err != CUDA_SUCCESS) { 661 DP("Error getting max block dimension, use default value %d\n", 662 DeviceRTLTy::DefaultNumThreads); 663 DeviceData[DeviceId].ThreadsPerBlock = DeviceRTLTy::DefaultNumThreads; 664 } else { 665 DP("Using %d CUDA threads per block\n", MaxBlockDimX); 666 DeviceData[DeviceId].ThreadsPerBlock = MaxBlockDimX; 667 668 if (EnvTeamThreadLimit > 0 && 669 DeviceData[DeviceId].ThreadsPerBlock > EnvTeamThreadLimit) { 670 DP("Max CUDA threads per block %d exceeds the thread limit %d set by " 671 "OMP_TEAMS_THREAD_LIMIT, capping at the limit\n", 672 DeviceData[DeviceId].ThreadsPerBlock, EnvTeamThreadLimit); 673 DeviceData[DeviceId].ThreadsPerBlock = EnvTeamThreadLimit; 674 } 675 if (DeviceData[DeviceId].ThreadsPerBlock > DeviceRTLTy::HardThreadLimit) { 676 DP("Max CUDA threads per block %d exceeds the hard thread limit %d, " 677 "capping at the hard limit\n", 678 DeviceData[DeviceId].ThreadsPerBlock, DeviceRTLTy::HardThreadLimit); 679 DeviceData[DeviceId].ThreadsPerBlock = DeviceRTLTy::HardThreadLimit; 680 } 681 } 682 683 // Get and set warp size 684 int WarpSize; 685 Err = 686 cuDeviceGetAttribute(&WarpSize, CU_DEVICE_ATTRIBUTE_WARP_SIZE, Device); 687 if (Err != CUDA_SUCCESS) { 688 DP("Error getting warp size, assume default value 32\n"); 689 DeviceData[DeviceId].WarpSize = 32; 690 } else { 691 DP("Using warp size %d\n", WarpSize); 692 DeviceData[DeviceId].WarpSize = WarpSize; 693 } 694 695 // Adjust teams to the env variables 696 if (EnvTeamLimit > 0 && DeviceData[DeviceId].BlocksPerGrid > EnvTeamLimit) { 697 DP("Capping max CUDA blocks per grid to OMP_TEAM_LIMIT=%d\n", 698 EnvTeamLimit); 699 DeviceData[DeviceId].BlocksPerGrid = EnvTeamLimit; 700 } 701 702 size_t StackLimit; 703 size_t HeapLimit; 704 if (const char *EnvStr = getenv("LIBOMPTARGET_STACK_SIZE")) { 705 StackLimit = std::stol(EnvStr); 706 if (cuCtxSetLimit(CU_LIMIT_STACK_SIZE, StackLimit) != CUDA_SUCCESS) 707 return OFFLOAD_FAIL; 708 } else { 709 if (cuCtxGetLimit(&StackLimit, CU_LIMIT_STACK_SIZE) != CUDA_SUCCESS) 710 return OFFLOAD_FAIL; 711 } 712 if (const char *EnvStr = getenv("LIBOMPTARGET_HEAP_SIZE")) { 713 HeapLimit = std::stol(EnvStr); 714 if (cuCtxSetLimit(CU_LIMIT_MALLOC_HEAP_SIZE, HeapLimit) != CUDA_SUCCESS) 715 return OFFLOAD_FAIL; 716 } else { 717 if (cuCtxGetLimit(&HeapLimit, CU_LIMIT_MALLOC_HEAP_SIZE) != CUDA_SUCCESS) 718 return OFFLOAD_FAIL; 719 } 720 721 INFO(OMP_INFOTYPE_PLUGIN_KERNEL, DeviceId, 722 "Device supports up to %d CUDA blocks and %d threads with a " 723 "warp size of %d\n", 724 DeviceData[DeviceId].BlocksPerGrid, 725 DeviceData[DeviceId].ThreadsPerBlock, DeviceData[DeviceId].WarpSize); 726 INFO(OMP_INFOTYPE_PLUGIN_KERNEL, DeviceId, 727 "Device heap size is %d Bytes, device stack size is %d Bytes per " 728 "thread\n", 729 (int)HeapLimit, (int)StackLimit); 730 731 // Set default number of teams 732 if (EnvNumTeams > 0) { 733 DP("Default number of teams set according to environment %d\n", 734 EnvNumTeams); 735 DeviceData[DeviceId].NumTeams = EnvNumTeams; 736 } else { 737 DeviceData[DeviceId].NumTeams = DeviceRTLTy::DefaultNumTeams; 738 DP("Default number of teams set according to library's default %d\n", 739 DeviceRTLTy::DefaultNumTeams); 740 } 741 742 if (DeviceData[DeviceId].NumTeams > DeviceData[DeviceId].BlocksPerGrid) { 743 DP("Default number of teams exceeds device limit, capping at %d\n", 744 DeviceData[DeviceId].BlocksPerGrid); 745 DeviceData[DeviceId].NumTeams = DeviceData[DeviceId].BlocksPerGrid; 746 } 747 748 // Set default number of threads 749 DeviceData[DeviceId].NumThreads = DeviceRTLTy::DefaultNumThreads; 750 DP("Default number of threads set according to library's default %d\n", 751 DeviceRTLTy::DefaultNumThreads); 752 if (DeviceData[DeviceId].NumThreads > 753 DeviceData[DeviceId].ThreadsPerBlock) { 754 DP("Default number of threads exceeds device limit, capping at %d\n", 755 DeviceData[DeviceId].ThreadsPerBlock); 756 DeviceData[DeviceId].NumThreads = DeviceData[DeviceId].ThreadsPerBlock; 757 } 758 759 return OFFLOAD_SUCCESS; 760 } 761 762 int deinitDevice(const int DeviceId) { 763 auto IsInitialized = InitializedFlags[DeviceId]; 764 if (!IsInitialized) 765 return OFFLOAD_SUCCESS; 766 InitializedFlags[DeviceId] = false; 767 768 if (UseMemoryManager) 769 MemoryManagers[DeviceId].release(); 770 771 StreamPool[DeviceId].reset(); 772 EventPool[DeviceId].reset(); 773 774 DeviceDataTy &D = DeviceData[DeviceId]; 775 if (!checkResult(cuCtxSetCurrent(D.Context), 776 "Error returned from cuCtxSetCurrent\n")) 777 return OFFLOAD_FAIL; 778 779 // Unload all modules. 780 for (auto &M : Modules[DeviceId]) 781 if (!checkResult(cuModuleUnload(M), 782 "Error returned from cuModuleUnload\n")) 783 return OFFLOAD_FAIL; 784 785 // Destroy context. 786 CUdevice Device; 787 if (!checkResult(cuCtxGetDevice(&Device), 788 "Error returned from cuCtxGetDevice\n")) 789 return OFFLOAD_FAIL; 790 791 if (!checkResult(cuDevicePrimaryCtxRelease(Device), 792 "Error returned from cuDevicePrimaryCtxRelease\n")) 793 return OFFLOAD_FAIL; 794 795 return OFFLOAD_SUCCESS; 796 } 797 798 __tgt_target_table *loadBinary(const int DeviceId, 799 const __tgt_device_image *Image) { 800 // Clear the offload table as we are going to create a new one. 801 clearOffloadEntriesTable(DeviceId); 802 803 // Create the module and extract the function pointers. 804 CUmodule Module; 805 DP("Load data from image " DPxMOD "\n", DPxPTR(Image->ImageStart)); 806 CUresult Err = 807 cuModuleLoadDataEx(&Module, Image->ImageStart, 0, nullptr, nullptr); 808 if (!checkResult(Err, "Error returned from cuModuleLoadDataEx\n")) 809 return nullptr; 810 811 DP("CUDA module successfully loaded!\n"); 812 813 Modules[DeviceId].push_back(Module); 814 815 // Find the symbols in the module by name. 816 const __tgt_offload_entry *HostBegin = Image->EntriesBegin; 817 const __tgt_offload_entry *HostEnd = Image->EntriesEnd; 818 819 std::list<KernelTy> &KernelsList = DeviceData[DeviceId].KernelsList; 820 for (const __tgt_offload_entry *E = HostBegin; E != HostEnd; ++E) { 821 if (!E->addr) { 822 // We return nullptr when something like this happens, the host should 823 // have always something in the address to uniquely identify the target 824 // region. 825 DP("Invalid binary: host entry '<null>' (size = %zd)...\n", E->size); 826 return nullptr; 827 } 828 829 if (E->size) { 830 __tgt_offload_entry Entry = *E; 831 CUdeviceptr CUPtr; 832 size_t CUSize; 833 Err = cuModuleGetGlobal(&CUPtr, &CUSize, Module, E->name); 834 // We keep this style here because we need the name 835 if (Err != CUDA_SUCCESS) { 836 REPORT("Loading global '%s' Failed\n", E->name); 837 CUDA_ERR_STRING(Err); 838 return nullptr; 839 } 840 841 if (CUSize != E->size) { 842 DP("Loading global '%s' - size mismatch (%zd != %zd)\n", E->name, 843 CUSize, E->size); 844 return nullptr; 845 } 846 847 DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n", 848 DPxPTR(E - HostBegin), E->name, DPxPTR(CUPtr)); 849 850 Entry.addr = (void *)(CUPtr); 851 852 // Note: In the current implementation declare target variables 853 // can either be link or to. This means that once unified 854 // memory is activated via the requires directive, the variable 855 // can be used directly from the host in both cases. 856 // TODO: when variables types other than to or link are added, 857 // the below condition should be changed to explicitly 858 // check for to and link variables types: 859 // (RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY && (e->flags & 860 // OMP_DECLARE_TARGET_LINK || e->flags == OMP_DECLARE_TARGET_TO)) 861 if (RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY) { 862 // If unified memory is present any target link or to variables 863 // can access host addresses directly. There is no longer a 864 // need for device copies. 865 cuMemcpyHtoD(CUPtr, E->addr, sizeof(void *)); 866 DP("Copy linked variable host address (" DPxMOD 867 ") to device address (" DPxMOD ")\n", 868 DPxPTR(*((void **)E->addr)), DPxPTR(CUPtr)); 869 } 870 871 addOffloadEntry(DeviceId, Entry); 872 873 continue; 874 } 875 876 CUfunction Func; 877 Err = cuModuleGetFunction(&Func, Module, E->name); 878 // We keep this style here because we need the name 879 if (Err != CUDA_SUCCESS) { 880 REPORT("Loading '%s' Failed\n", E->name); 881 CUDA_ERR_STRING(Err); 882 return nullptr; 883 } 884 885 DP("Entry point " DPxMOD " maps to %s (" DPxMOD ")\n", 886 DPxPTR(E - HostBegin), E->name, DPxPTR(Func)); 887 888 // default value GENERIC (in case symbol is missing from cubin file) 889 llvm::omp::OMPTgtExecModeFlags ExecModeVal; 890 std::string ExecModeNameStr(E->name); 891 ExecModeNameStr += "_exec_mode"; 892 const char *ExecModeName = ExecModeNameStr.c_str(); 893 894 CUdeviceptr ExecModePtr; 895 size_t CUSize; 896 Err = cuModuleGetGlobal(&ExecModePtr, &CUSize, Module, ExecModeName); 897 if (Err == CUDA_SUCCESS) { 898 if (CUSize != sizeof(llvm::omp::OMPTgtExecModeFlags)) { 899 DP("Loading global exec_mode '%s' - size mismatch (%zd != %zd)\n", 900 ExecModeName, CUSize, sizeof(llvm::omp::OMPTgtExecModeFlags)); 901 return nullptr; 902 } 903 904 Err = cuMemcpyDtoH(&ExecModeVal, ExecModePtr, CUSize); 905 if (Err != CUDA_SUCCESS) { 906 REPORT("Error when copying data from device to host. Pointers: " 907 "host = " DPxMOD ", device = " DPxMOD ", size = %zd\n", 908 DPxPTR(&ExecModeVal), DPxPTR(ExecModePtr), CUSize); 909 CUDA_ERR_STRING(Err); 910 return nullptr; 911 } 912 } else { 913 DP("Loading global exec_mode '%s' - symbol missing, using default " 914 "value GENERIC (1)\n", 915 ExecModeName); 916 } 917 918 KernelsList.emplace_back(Func, ExecModeVal); 919 920 __tgt_offload_entry Entry = *E; 921 Entry.addr = &KernelsList.back(); 922 addOffloadEntry(DeviceId, Entry); 923 } 924 925 // send device environment data to the device 926 { 927 // TODO: The device ID used here is not the real device ID used by OpenMP. 928 DeviceEnvironmentTy DeviceEnv{0, static_cast<uint32_t>(NumberOfDevices), 929 static_cast<uint32_t>(DeviceId), 930 static_cast<uint32_t>(DynamicMemorySize)}; 931 932 if (const char *EnvStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) 933 DeviceEnv.DebugKind = std::stoi(EnvStr); 934 935 const char *DeviceEnvName = "omptarget_device_environment"; 936 CUdeviceptr DeviceEnvPtr; 937 size_t CUSize; 938 939 Err = cuModuleGetGlobal(&DeviceEnvPtr, &CUSize, Module, DeviceEnvName); 940 if (Err == CUDA_SUCCESS) { 941 if (CUSize != sizeof(DeviceEnv)) { 942 REPORT( 943 "Global device_environment '%s' - size mismatch (%zu != %zu)\n", 944 DeviceEnvName, CUSize, sizeof(int32_t)); 945 CUDA_ERR_STRING(Err); 946 return nullptr; 947 } 948 949 Err = cuMemcpyHtoD(DeviceEnvPtr, &DeviceEnv, CUSize); 950 if (Err != CUDA_SUCCESS) { 951 REPORT("Error when copying data from host to device. Pointers: " 952 "host = " DPxMOD ", device = " DPxMOD ", size = %zu\n", 953 DPxPTR(&DeviceEnv), DPxPTR(DeviceEnvPtr), CUSize); 954 CUDA_ERR_STRING(Err); 955 return nullptr; 956 } 957 958 DP("Sending global device environment data %zu bytes\n", CUSize); 959 } else { 960 DP("Finding global device environment '%s' - symbol missing.\n", 961 DeviceEnvName); 962 DP("Continue, considering this is a device RTL which does not accept " 963 "environment setting.\n"); 964 } 965 } 966 967 return getOffloadEntriesTable(DeviceId); 968 } 969 970 void *dataAlloc(const int DeviceId, const int64_t Size, 971 const TargetAllocTy Kind) { 972 switch (Kind) { 973 case TARGET_ALLOC_DEFAULT: 974 case TARGET_ALLOC_DEVICE: 975 if (UseMemoryManager) 976 return MemoryManagers[DeviceId]->allocate(Size, nullptr); 977 else 978 return DeviceAllocators[DeviceId].allocate(Size, nullptr, Kind); 979 case TARGET_ALLOC_HOST: 980 case TARGET_ALLOC_SHARED: 981 return DeviceAllocators[DeviceId].allocate(Size, nullptr, Kind); 982 } 983 984 REPORT("Invalid target data allocation kind or requested allocator not " 985 "implemented yet\n"); 986 987 return nullptr; 988 } 989 990 int dataSubmit(const int DeviceId, const void *TgtPtr, const void *HstPtr, 991 const int64_t Size, __tgt_async_info *AsyncInfo) const { 992 assert(AsyncInfo && "AsyncInfo is nullptr"); 993 994 CUstream Stream = getStream(DeviceId, AsyncInfo); 995 CUresult Err = cuMemcpyHtoDAsync((CUdeviceptr)TgtPtr, HstPtr, Size, Stream); 996 if (Err != CUDA_SUCCESS) { 997 DP("Error when copying data from host to device. Pointers: host " 998 "= " DPxMOD ", device = " DPxMOD ", size = %" PRId64 "\n", 999 DPxPTR(HstPtr), DPxPTR(TgtPtr), Size); 1000 CUDA_ERR_STRING(Err); 1001 return OFFLOAD_FAIL; 1002 } 1003 1004 return OFFLOAD_SUCCESS; 1005 } 1006 1007 int dataRetrieve(const int DeviceId, void *HstPtr, const void *TgtPtr, 1008 const int64_t Size, __tgt_async_info *AsyncInfo) const { 1009 assert(AsyncInfo && "AsyncInfo is nullptr"); 1010 1011 CUstream Stream = getStream(DeviceId, AsyncInfo); 1012 CUresult Err = cuMemcpyDtoHAsync(HstPtr, (CUdeviceptr)TgtPtr, Size, Stream); 1013 if (Err != CUDA_SUCCESS) { 1014 DP("Error when copying data from device to host. Pointers: host " 1015 "= " DPxMOD ", device = " DPxMOD ", size = %" PRId64 "\n", 1016 DPxPTR(HstPtr), DPxPTR(TgtPtr), Size); 1017 CUDA_ERR_STRING(Err); 1018 return OFFLOAD_FAIL; 1019 } 1020 1021 return OFFLOAD_SUCCESS; 1022 } 1023 1024 int dataExchange(int SrcDevId, const void *SrcPtr, int DstDevId, void *DstPtr, 1025 int64_t Size, __tgt_async_info *AsyncInfo) { 1026 assert(AsyncInfo && "AsyncInfo is nullptr"); 1027 1028 CUresult Err; 1029 CUstream Stream = getStream(SrcDevId, AsyncInfo); 1030 1031 // If they are two devices, we try peer to peer copy first 1032 if (SrcDevId != DstDevId) { 1033 std::lock_guard<std::mutex> LG(PeerAccessMatrixLock); 1034 1035 switch (PeerAccessMatrix[SrcDevId][DstDevId]) { 1036 case PeerAccessState::No: { 1037 REPORT("Peer access from %" PRId32 " to %" PRId32 1038 " is not supported. Fall back to D2D memcpy.\n", 1039 SrcDevId, DstDevId); 1040 return memcpyDtoD(SrcPtr, DstPtr, Size, Stream); 1041 } 1042 case PeerAccessState::Unkown: { 1043 int CanAccessPeer = 0; 1044 Err = cuDeviceCanAccessPeer(&CanAccessPeer, SrcDevId, DstDevId); 1045 if (Err != CUDA_SUCCESS) { 1046 REPORT("Error returned from cuDeviceCanAccessPeer. src = %" PRId32 1047 ", dst = %" PRId32 ". Fall back to D2D memcpy.\n", 1048 SrcDevId, DstDevId); 1049 CUDA_ERR_STRING(Err); 1050 PeerAccessMatrix[SrcDevId][DstDevId] = PeerAccessState::No; 1051 return memcpyDtoD(SrcPtr, DstPtr, Size, Stream); 1052 } 1053 1054 if (!CanAccessPeer) { 1055 REPORT("P2P access from %d to %d is not supported. Fall back to D2D " 1056 "memcpy.\n", 1057 SrcDevId, DstDevId); 1058 PeerAccessMatrix[SrcDevId][DstDevId] = PeerAccessState::No; 1059 return memcpyDtoD(SrcPtr, DstPtr, Size, Stream); 1060 } 1061 1062 Err = cuCtxEnablePeerAccess(DeviceData[DstDevId].Context, 0); 1063 if (Err != CUDA_SUCCESS) { 1064 REPORT("Error returned from cuCtxEnablePeerAccess. src = %" PRId32 1065 ", dst = %" PRId32 ". Fall back to D2D memcpy.\n", 1066 SrcDevId, DstDevId); 1067 CUDA_ERR_STRING(Err); 1068 PeerAccessMatrix[SrcDevId][DstDevId] = PeerAccessState::No; 1069 return memcpyDtoD(SrcPtr, DstPtr, Size, Stream); 1070 } 1071 1072 PeerAccessMatrix[SrcDevId][DstDevId] = PeerAccessState::Yes; 1073 1074 LLVM_FALLTHROUGH; 1075 } 1076 case PeerAccessState::Yes: { 1077 Err = cuMemcpyPeerAsync( 1078 (CUdeviceptr)DstPtr, DeviceData[DstDevId].Context, 1079 (CUdeviceptr)SrcPtr, DeviceData[SrcDevId].Context, Size, Stream); 1080 if (Err == CUDA_SUCCESS) 1081 return OFFLOAD_SUCCESS; 1082 1083 DP("Error returned from cuMemcpyPeerAsync. src_ptr = " DPxMOD 1084 ", src_id =%" PRId32 ", dst_ptr = " DPxMOD ", dst_id =%" PRId32 1085 ". Fall back to D2D memcpy.\n", 1086 DPxPTR(SrcPtr), SrcDevId, DPxPTR(DstPtr), DstDevId); 1087 CUDA_ERR_STRING(Err); 1088 1089 return memcpyDtoD(SrcPtr, DstPtr, Size, Stream); 1090 } 1091 } 1092 } 1093 1094 return memcpyDtoD(SrcPtr, DstPtr, Size, Stream); 1095 } 1096 1097 int dataDelete(const int DeviceId, void *TgtPtr) { 1098 if (UseMemoryManager) 1099 return MemoryManagers[DeviceId]->free(TgtPtr); 1100 1101 return DeviceAllocators[DeviceId].free(TgtPtr); 1102 } 1103 1104 int runTargetTeamRegion(const int DeviceId, void *TgtEntryPtr, void **TgtArgs, 1105 ptrdiff_t *TgtOffsets, const int ArgNum, 1106 const int TeamNum, const int ThreadLimit, 1107 const unsigned int LoopTripCount, 1108 __tgt_async_info *AsyncInfo) const { 1109 // All args are references. 1110 std::vector<void *> Args(ArgNum); 1111 std::vector<void *> Ptrs(ArgNum); 1112 1113 for (int I = 0; I < ArgNum; ++I) { 1114 Ptrs[I] = (void *)((intptr_t)TgtArgs[I] + TgtOffsets[I]); 1115 Args[I] = &Ptrs[I]; 1116 } 1117 1118 KernelTy *KernelInfo = reinterpret_cast<KernelTy *>(TgtEntryPtr); 1119 1120 const bool IsSPMDGenericMode = 1121 KernelInfo->ExecutionMode == llvm::omp::OMP_TGT_EXEC_MODE_GENERIC_SPMD; 1122 const bool IsSPMDMode = 1123 KernelInfo->ExecutionMode == llvm::omp::OMP_TGT_EXEC_MODE_SPMD; 1124 const bool IsGenericMode = 1125 KernelInfo->ExecutionMode == llvm::omp::OMP_TGT_EXEC_MODE_GENERIC; 1126 1127 int CudaThreadsPerBlock; 1128 if (ThreadLimit > 0) { 1129 DP("Setting CUDA threads per block to requested %d\n", ThreadLimit); 1130 CudaThreadsPerBlock = ThreadLimit; 1131 // Add master warp if necessary 1132 if (IsGenericMode) { 1133 DP("Adding master warp: +%d threads\n", DeviceData[DeviceId].WarpSize); 1134 CudaThreadsPerBlock += DeviceData[DeviceId].WarpSize; 1135 } 1136 } else { 1137 DP("Setting CUDA threads per block to default %d\n", 1138 DeviceData[DeviceId].NumThreads); 1139 CudaThreadsPerBlock = DeviceData[DeviceId].NumThreads; 1140 } 1141 1142 if (CudaThreadsPerBlock > DeviceData[DeviceId].ThreadsPerBlock) { 1143 DP("Threads per block capped at device limit %d\n", 1144 DeviceData[DeviceId].ThreadsPerBlock); 1145 CudaThreadsPerBlock = DeviceData[DeviceId].ThreadsPerBlock; 1146 } 1147 1148 CUresult Err; 1149 if (!KernelInfo->MaxThreadsPerBlock) { 1150 Err = cuFuncGetAttribute(&KernelInfo->MaxThreadsPerBlock, 1151 CU_FUNC_ATTRIBUTE_MAX_THREADS_PER_BLOCK, 1152 KernelInfo->Func); 1153 if (!checkResult(Err, "Error returned from cuFuncGetAttribute\n")) 1154 return OFFLOAD_FAIL; 1155 } 1156 1157 if (KernelInfo->MaxThreadsPerBlock < CudaThreadsPerBlock) { 1158 DP("Threads per block capped at kernel limit %d\n", 1159 KernelInfo->MaxThreadsPerBlock); 1160 CudaThreadsPerBlock = KernelInfo->MaxThreadsPerBlock; 1161 } 1162 1163 unsigned int CudaBlocksPerGrid; 1164 if (TeamNum <= 0) { 1165 if (LoopTripCount > 0 && EnvNumTeams < 0) { 1166 if (IsSPMDGenericMode) { 1167 // If we reach this point, then we are executing a kernel that was 1168 // transformed from Generic-mode to SPMD-mode. This kernel has 1169 // SPMD-mode execution, but needs its blocks to be scheduled 1170 // differently because the current loop trip count only applies to the 1171 // `teams distribute` region and will create var too few blocks using 1172 // the regular SPMD-mode method. 1173 CudaBlocksPerGrid = LoopTripCount; 1174 } else if (IsSPMDMode) { 1175 // We have a combined construct, i.e. `target teams distribute 1176 // parallel for [simd]`. We launch so many teams so that each thread 1177 // will execute one iteration of the loop. round up to the nearest 1178 // integer 1179 CudaBlocksPerGrid = ((LoopTripCount - 1) / CudaThreadsPerBlock) + 1; 1180 } else if (IsGenericMode) { 1181 // If we reach this point, then we have a non-combined construct, i.e. 1182 // `teams distribute` with a nested `parallel for` and each team is 1183 // assigned one iteration of the `distribute` loop. E.g.: 1184 // 1185 // #pragma omp target teams distribute 1186 // for(...loop_tripcount...) { 1187 // #pragma omp parallel for 1188 // for(...) {} 1189 // } 1190 // 1191 // Threads within a team will execute the iterations of the `parallel` 1192 // loop. 1193 CudaBlocksPerGrid = LoopTripCount; 1194 } else { 1195 REPORT("Unknown execution mode: %d\n", 1196 static_cast<int8_t>(KernelInfo->ExecutionMode)); 1197 return OFFLOAD_FAIL; 1198 } 1199 DP("Using %d teams due to loop trip count %" PRIu32 1200 " and number of threads per block %d\n", 1201 CudaBlocksPerGrid, LoopTripCount, CudaThreadsPerBlock); 1202 } else { 1203 DP("Using default number of teams %d\n", DeviceData[DeviceId].NumTeams); 1204 CudaBlocksPerGrid = DeviceData[DeviceId].NumTeams; 1205 } 1206 } else { 1207 DP("Using requested number of teams %d\n", TeamNum); 1208 CudaBlocksPerGrid = TeamNum; 1209 } 1210 1211 if (CudaBlocksPerGrid > DeviceData[DeviceId].BlocksPerGrid) { 1212 DP("Capping number of teams to team limit %d\n", 1213 DeviceData[DeviceId].BlocksPerGrid); 1214 CudaBlocksPerGrid = DeviceData[DeviceId].BlocksPerGrid; 1215 } 1216 1217 INFO(OMP_INFOTYPE_PLUGIN_KERNEL, DeviceId, 1218 "Launching kernel %s with %d blocks and %d threads in %s mode\n", 1219 (getOffloadEntry(DeviceId, TgtEntryPtr)) 1220 ? getOffloadEntry(DeviceId, TgtEntryPtr)->name 1221 : "(null)", 1222 CudaBlocksPerGrid, CudaThreadsPerBlock, 1223 (!IsSPMDMode ? (IsGenericMode ? "Generic" : "SPMD-Generic") : "SPMD")); 1224 1225 CUstream Stream = getStream(DeviceId, AsyncInfo); 1226 Err = cuLaunchKernel(KernelInfo->Func, CudaBlocksPerGrid, /* gridDimY */ 1, 1227 /* gridDimZ */ 1, CudaThreadsPerBlock, 1228 /* blockDimY */ 1, /* blockDimZ */ 1, 1229 DynamicMemorySize, Stream, &Args[0], nullptr); 1230 if (!checkResult(Err, "Error returned from cuLaunchKernel\n")) 1231 return OFFLOAD_FAIL; 1232 1233 DP("Launch of entry point at " DPxMOD " successful!\n", 1234 DPxPTR(TgtEntryPtr)); 1235 1236 return OFFLOAD_SUCCESS; 1237 } 1238 1239 int synchronize(const int DeviceId, __tgt_async_info *AsyncInfo) const { 1240 CUstream Stream = reinterpret_cast<CUstream>(AsyncInfo->Queue); 1241 CUresult Err = cuStreamSynchronize(Stream); 1242 1243 // Once the stream is synchronized, return it to stream pool and reset 1244 // AsyncInfo. This is to make sure the synchronization only works for its 1245 // own tasks. 1246 StreamPool[DeviceId]->release(reinterpret_cast<CUstream>(AsyncInfo->Queue)); 1247 AsyncInfo->Queue = nullptr; 1248 1249 if (Err != CUDA_SUCCESS) { 1250 DP("Error when synchronizing stream. stream = " DPxMOD 1251 ", async info ptr = " DPxMOD "\n", 1252 DPxPTR(Stream), DPxPTR(AsyncInfo)); 1253 CUDA_ERR_STRING(Err); 1254 } 1255 return (Err == CUDA_SUCCESS) ? OFFLOAD_SUCCESS : OFFLOAD_FAIL; 1256 } 1257 1258 void printDeviceInfo(int32_t DeviceId) { 1259 char TmpChar[1000]; 1260 std::string TmpStr; 1261 size_t TmpSt; 1262 int TmpInt, TmpInt2, TmpInt3; 1263 1264 CUdevice Device; 1265 checkResult(cuDeviceGet(&Device, DeviceId), 1266 "Error returned from cuCtxGetDevice\n"); 1267 1268 cuDriverGetVersion(&TmpInt); 1269 printf(" CUDA Driver Version: \t\t%d \n", TmpInt); 1270 printf(" CUDA Device Number: \t\t%d \n", DeviceId); 1271 checkResult(cuDeviceGetName(TmpChar, 1000, Device), 1272 "Error returned from cuDeviceGetName\n"); 1273 printf(" Device Name: \t\t\t%s \n", TmpChar); 1274 checkResult(cuDeviceTotalMem(&TmpSt, Device), 1275 "Error returned from cuDeviceTotalMem\n"); 1276 printf(" Global Memory Size: \t\t%zu bytes \n", TmpSt); 1277 checkResult(cuDeviceGetAttribute( 1278 &TmpInt, CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT, Device), 1279 "Error returned from cuDeviceGetAttribute\n"); 1280 printf(" Number of Multiprocessors: \t\t%d \n", TmpInt); 1281 checkResult( 1282 cuDeviceGetAttribute(&TmpInt, CU_DEVICE_ATTRIBUTE_GPU_OVERLAP, Device), 1283 "Error returned from cuDeviceGetAttribute\n"); 1284 printf(" Concurrent Copy and Execution: \t%s \n", BOOL2TEXT(TmpInt)); 1285 checkResult(cuDeviceGetAttribute( 1286 &TmpInt, CU_DEVICE_ATTRIBUTE_TOTAL_CONSTANT_MEMORY, Device), 1287 "Error returned from cuDeviceGetAttribute\n"); 1288 printf(" Total Constant Memory: \t\t%d bytes\n", TmpInt); 1289 checkResult( 1290 cuDeviceGetAttribute( 1291 &TmpInt, CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK, Device), 1292 "Error returned from cuDeviceGetAttribute\n"); 1293 printf(" Max Shared Memory per Block: \t%d bytes \n", TmpInt); 1294 checkResult( 1295 cuDeviceGetAttribute( 1296 &TmpInt, CU_DEVICE_ATTRIBUTE_MAX_REGISTERS_PER_BLOCK, Device), 1297 "Error returned from cuDeviceGetAttribute\n"); 1298 printf(" Registers per Block: \t\t%d \n", TmpInt); 1299 checkResult( 1300 cuDeviceGetAttribute(&TmpInt, CU_DEVICE_ATTRIBUTE_WARP_SIZE, Device), 1301 "Error returned from cuDeviceGetAttribute\n"); 1302 printf(" Warp Size: \t\t\t\t%d Threads \n", TmpInt); 1303 checkResult(cuDeviceGetAttribute( 1304 &TmpInt, CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_BLOCK, Device), 1305 "Error returned from cuDeviceGetAttribute\n"); 1306 printf(" Maximum Threads per Block: \t\t%d \n", TmpInt); 1307 checkResult(cuDeviceGetAttribute( 1308 &TmpInt, CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_X, Device), 1309 "Error returned from cuDeviceGetAttribute\n"); 1310 checkResult(cuDeviceGetAttribute( 1311 &TmpInt2, CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Y, Device), 1312 "Error returned from cuDeviceGetAttribute\n"); 1313 checkResult(cuDeviceGetAttribute( 1314 &TmpInt3, CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Z, Device), 1315 "Error returned from cuDeviceGetAttribute\n"); 1316 printf(" Maximum Block Dimensions: \t\t%d, %d, %d \n", TmpInt, TmpInt2, 1317 TmpInt3); 1318 checkResult(cuDeviceGetAttribute( 1319 &TmpInt, CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_X, Device), 1320 "Error returned from cuDeviceGetAttribute\n"); 1321 checkResult(cuDeviceGetAttribute( 1322 &TmpInt2, CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Y, Device), 1323 "Error returned from cuDeviceGetAttribute\n"); 1324 checkResult(cuDeviceGetAttribute( 1325 &TmpInt3, CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Z, Device), 1326 "Error returned from cuDeviceGetAttribute\n"); 1327 printf(" Maximum Grid Dimensions: \t\t%d x %d x %d \n", TmpInt, TmpInt2, 1328 TmpInt3); 1329 checkResult( 1330 cuDeviceGetAttribute(&TmpInt, CU_DEVICE_ATTRIBUTE_MAX_PITCH, Device), 1331 "Error returned from cuDeviceGetAttribute\n"); 1332 printf(" Maximum Memory Pitch: \t\t%d bytes \n", TmpInt); 1333 checkResult(cuDeviceGetAttribute( 1334 &TmpInt, CU_DEVICE_ATTRIBUTE_TEXTURE_ALIGNMENT, Device), 1335 "Error returned from cuDeviceGetAttribute\n"); 1336 printf(" Texture Alignment: \t\t\t%d bytes \n", TmpInt); 1337 checkResult( 1338 cuDeviceGetAttribute(&TmpInt, CU_DEVICE_ATTRIBUTE_CLOCK_RATE, Device), 1339 "Error returned from cuDeviceGetAttribute\n"); 1340 printf(" Clock Rate: \t\t\t%d kHz\n", TmpInt); 1341 checkResult(cuDeviceGetAttribute( 1342 &TmpInt, CU_DEVICE_ATTRIBUTE_KERNEL_EXEC_TIMEOUT, Device), 1343 "Error returned from cuDeviceGetAttribute\n"); 1344 printf(" Execution Timeout: \t\t\t%s \n", BOOL2TEXT(TmpInt)); 1345 checkResult( 1346 cuDeviceGetAttribute(&TmpInt, CU_DEVICE_ATTRIBUTE_INTEGRATED, Device), 1347 "Error returned from cuDeviceGetAttribute\n"); 1348 printf(" Integrated Device: \t\t\t%s \n", BOOL2TEXT(TmpInt)); 1349 checkResult(cuDeviceGetAttribute( 1350 &TmpInt, CU_DEVICE_ATTRIBUTE_CAN_MAP_HOST_MEMORY, Device), 1351 "Error returned from cuDeviceGetAttribute\n"); 1352 printf(" Can Map Host Memory: \t\t%s \n", BOOL2TEXT(TmpInt)); 1353 checkResult( 1354 cuDeviceGetAttribute(&TmpInt, CU_DEVICE_ATTRIBUTE_COMPUTE_MODE, Device), 1355 "Error returned from cuDeviceGetAttribute\n"); 1356 if (TmpInt == CU_COMPUTEMODE_DEFAULT) 1357 TmpStr = "DEFAULT"; 1358 else if (TmpInt == CU_COMPUTEMODE_PROHIBITED) 1359 TmpStr = "PROHIBITED"; 1360 else if (TmpInt == CU_COMPUTEMODE_EXCLUSIVE_PROCESS) 1361 TmpStr = "EXCLUSIVE PROCESS"; 1362 else 1363 TmpStr = "unknown"; 1364 printf(" Compute Mode: \t\t\t%s \n", TmpStr.c_str()); 1365 checkResult(cuDeviceGetAttribute( 1366 &TmpInt, CU_DEVICE_ATTRIBUTE_CONCURRENT_KERNELS, Device), 1367 "Error returned from cuDeviceGetAttribute\n"); 1368 printf(" Concurrent Kernels: \t\t%s \n", BOOL2TEXT(TmpInt)); 1369 checkResult( 1370 cuDeviceGetAttribute(&TmpInt, CU_DEVICE_ATTRIBUTE_ECC_ENABLED, Device), 1371 "Error returned from cuDeviceGetAttribute\n"); 1372 printf(" ECC Enabled: \t\t\t%s \n", BOOL2TEXT(TmpInt)); 1373 checkResult(cuDeviceGetAttribute( 1374 &TmpInt, CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE, Device), 1375 "Error returned from cuDeviceGetAttribute\n"); 1376 printf(" Memory Clock Rate: \t\t\t%d kHz\n", TmpInt); 1377 checkResult( 1378 cuDeviceGetAttribute( 1379 &TmpInt, CU_DEVICE_ATTRIBUTE_GLOBAL_MEMORY_BUS_WIDTH, Device), 1380 "Error returned from cuDeviceGetAttribute\n"); 1381 printf(" Memory Bus Width: \t\t\t%d bits\n", TmpInt); 1382 checkResult(cuDeviceGetAttribute(&TmpInt, CU_DEVICE_ATTRIBUTE_L2_CACHE_SIZE, 1383 Device), 1384 "Error returned from cuDeviceGetAttribute\n"); 1385 printf(" L2 Cache Size: \t\t\t%d bytes \n", TmpInt); 1386 checkResult(cuDeviceGetAttribute( 1387 &TmpInt, CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_MULTIPROCESSOR, 1388 Device), 1389 "Error returned from cuDeviceGetAttribute\n"); 1390 printf(" Max Threads Per SMP: \t\t%d \n", TmpInt); 1391 checkResult(cuDeviceGetAttribute( 1392 &TmpInt, CU_DEVICE_ATTRIBUTE_ASYNC_ENGINE_COUNT, Device), 1393 "Error returned from cuDeviceGetAttribute\n"); 1394 printf(" Async Engines: \t\t\t%s (%d) \n", BOOL2TEXT(TmpInt), TmpInt); 1395 checkResult(cuDeviceGetAttribute( 1396 &TmpInt, CU_DEVICE_ATTRIBUTE_UNIFIED_ADDRESSING, Device), 1397 "Error returned from cuDeviceGetAttribute\n"); 1398 printf(" Unified Addressing: \t\t%s \n", BOOL2TEXT(TmpInt)); 1399 checkResult(cuDeviceGetAttribute( 1400 &TmpInt, CU_DEVICE_ATTRIBUTE_MANAGED_MEMORY, Device), 1401 "Error returned from cuDeviceGetAttribute\n"); 1402 printf(" Managed Memory: \t\t\t%s \n", BOOL2TEXT(TmpInt)); 1403 checkResult( 1404 cuDeviceGetAttribute( 1405 &TmpInt, CU_DEVICE_ATTRIBUTE_CONCURRENT_MANAGED_ACCESS, Device), 1406 "Error returned from cuDeviceGetAttribute\n"); 1407 printf(" Concurrent Managed Memory: \t\t%s \n", BOOL2TEXT(TmpInt)); 1408 checkResult( 1409 cuDeviceGetAttribute( 1410 &TmpInt, CU_DEVICE_ATTRIBUTE_COMPUTE_PREEMPTION_SUPPORTED, Device), 1411 "Error returned from cuDeviceGetAttribute\n"); 1412 printf(" Preemption Supported: \t\t%s \n", BOOL2TEXT(TmpInt)); 1413 checkResult(cuDeviceGetAttribute( 1414 &TmpInt, CU_DEVICE_ATTRIBUTE_COOPERATIVE_LAUNCH, Device), 1415 "Error returned from cuDeviceGetAttribute\n"); 1416 printf(" Cooperative Launch: \t\t%s \n", BOOL2TEXT(TmpInt)); 1417 checkResult(cuDeviceGetAttribute( 1418 &TmpInt, CU_DEVICE_ATTRIBUTE_MULTI_GPU_BOARD, Device), 1419 "Error returned from cuDeviceGetAttribute\n"); 1420 printf(" Multi-Device Boars: \t\t%s \n", BOOL2TEXT(TmpInt)); 1421 checkResult( 1422 cuDeviceGetAttribute( 1423 &TmpInt, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, Device), 1424 "Error returned from cuDeviceGetAttribute\n"); 1425 checkResult( 1426 cuDeviceGetAttribute( 1427 &TmpInt2, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, Device), 1428 "Error returned from cuDeviceGetAttribute\n"); 1429 printf(" Compute Capabilities: \t\t%d%d \n", TmpInt, TmpInt2); 1430 } 1431 1432 int createEvent(int DeviceId, void **P) { 1433 CUevent Event = nullptr; 1434 if (EventPool[DeviceId]->acquire(Event) != OFFLOAD_SUCCESS) 1435 return OFFLOAD_FAIL; 1436 *P = Event; 1437 return OFFLOAD_SUCCESS; 1438 } 1439 1440 int destroyEvent(int DeviceId, void *EventPtr) { 1441 EventPool[DeviceId]->release(reinterpret_cast<CUevent>(EventPtr)); 1442 return OFFLOAD_SUCCESS; 1443 } 1444 1445 int waitEvent(const int DeviceId, __tgt_async_info *AsyncInfo, 1446 void *EventPtr) const { 1447 CUstream Stream = getStream(DeviceId, AsyncInfo); 1448 CUevent Event = reinterpret_cast<CUevent>(EventPtr); 1449 1450 // We don't use CU_EVENT_WAIT_DEFAULT here as it is only available from 1451 // specific CUDA version, and defined as 0x0. In previous version, per CUDA 1452 // API document, that argument has to be 0x0. 1453 CUresult Err = cuStreamWaitEvent(Stream, Event, 0); 1454 if (Err != CUDA_SUCCESS) { 1455 DP("Error when waiting event. stream = " DPxMOD ", event = " DPxMOD "\n", 1456 DPxPTR(Stream), DPxPTR(Event)); 1457 CUDA_ERR_STRING(Err); 1458 return OFFLOAD_FAIL; 1459 } 1460 1461 return OFFLOAD_SUCCESS; 1462 } 1463 1464 int releaseAsyncInfo(int DeviceId, __tgt_async_info *AsyncInfo) const { 1465 if (AsyncInfo->Queue) { 1466 StreamPool[DeviceId]->release( 1467 reinterpret_cast<CUstream>(AsyncInfo->Queue)); 1468 AsyncInfo->Queue = nullptr; 1469 } 1470 1471 return OFFLOAD_SUCCESS; 1472 } 1473 1474 int initAsyncInfo(int DeviceId, __tgt_async_info **AsyncInfo) const { 1475 *AsyncInfo = new __tgt_async_info; 1476 getStream(DeviceId, *AsyncInfo); 1477 return OFFLOAD_SUCCESS; 1478 } 1479 1480 int initDeviceInfo(int DeviceId, __tgt_device_info *DeviceInfo, 1481 const char **ErrStr) const { 1482 assert(DeviceInfo && "DeviceInfo is nullptr"); 1483 1484 if (!DeviceInfo->Context) 1485 DeviceInfo->Context = DeviceData[DeviceId].Context; 1486 if (!DeviceInfo->Device) { 1487 CUdevice Dev; 1488 CUresult Err = cuDeviceGet(&Dev, DeviceId); 1489 if (Err == CUDA_SUCCESS) { 1490 DeviceInfo->Device = reinterpret_cast<void *>(Dev); 1491 } else { 1492 cuGetErrorString(Err, ErrStr); 1493 return OFFLOAD_FAIL; 1494 } 1495 } 1496 return OFFLOAD_SUCCESS; 1497 } 1498 1499 int setContext(int DeviceId) { 1500 assert(InitializedFlags[DeviceId] && "Device is not initialized"); 1501 1502 CUresult Err = cuCtxSetCurrent(DeviceData[DeviceId].Context); 1503 if (!checkResult(Err, "error returned from cuCtxSetCurrent")) 1504 return OFFLOAD_FAIL; 1505 1506 return OFFLOAD_SUCCESS; 1507 } 1508 }; 1509 1510 DeviceRTLTy DeviceRTL; 1511 } // namespace 1512 1513 // Exposed library API function 1514 #ifdef __cplusplus 1515 extern "C" { 1516 #endif 1517 1518 int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *Image) { 1519 return elf_check_machine(Image, /* EM_CUDA */ 190); 1520 } 1521 1522 int32_t __tgt_rtl_number_of_devices() { return DeviceRTL.getNumOfDevices(); } 1523 1524 int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) { 1525 DP("Init requires flags to %" PRId64 "\n", RequiresFlags); 1526 DeviceRTL.setRequiresFlag(RequiresFlags); 1527 return RequiresFlags; 1528 } 1529 1530 int32_t __tgt_rtl_is_data_exchangable(int32_t SrcDevId, int DstDevId) { 1531 if (DeviceRTL.isValidDeviceId(SrcDevId) && 1532 DeviceRTL.isValidDeviceId(DstDevId)) 1533 return 1; 1534 1535 return 0; 1536 } 1537 1538 int32_t __tgt_rtl_init_device(int32_t DeviceId) { 1539 assert(DeviceRTL.isValidDeviceId(DeviceId) && "device_id is invalid"); 1540 // Context is set when init the device. 1541 1542 return DeviceRTL.initDevice(DeviceId); 1543 } 1544 1545 int32_t __tgt_rtl_deinit_device(int32_t DeviceId) { 1546 assert(DeviceRTL.isValidDeviceId(DeviceId) && "device_id is invalid"); 1547 // Context is set when deinit the device. 1548 1549 return DeviceRTL.deinitDevice(DeviceId); 1550 } 1551 1552 __tgt_target_table *__tgt_rtl_load_binary(int32_t DeviceId, 1553 __tgt_device_image *Image) { 1554 assert(DeviceRTL.isValidDeviceId(DeviceId) && "device_id is invalid"); 1555 1556 if (DeviceRTL.setContext(DeviceId) != OFFLOAD_SUCCESS) 1557 return nullptr; 1558 1559 return DeviceRTL.loadBinary(DeviceId, Image); 1560 } 1561 1562 void *__tgt_rtl_data_alloc(int32_t DeviceId, int64_t Size, void *, 1563 int32_t Kind) { 1564 assert(DeviceRTL.isValidDeviceId(DeviceId) && "device_id is invalid"); 1565 1566 if (DeviceRTL.setContext(DeviceId) != OFFLOAD_SUCCESS) 1567 return nullptr; 1568 1569 return DeviceRTL.dataAlloc(DeviceId, Size, (TargetAllocTy)Kind); 1570 } 1571 1572 int32_t __tgt_rtl_data_submit(int32_t DeviceId, void *TgtPtr, void *HstPtr, 1573 int64_t Size) { 1574 assert(DeviceRTL.isValidDeviceId(DeviceId) && "device_id is invalid"); 1575 // Context is set in __tgt_rtl_data_submit_async. 1576 1577 __tgt_async_info AsyncInfo; 1578 const int32_t Rc = 1579 __tgt_rtl_data_submit_async(DeviceId, TgtPtr, HstPtr, Size, &AsyncInfo); 1580 if (Rc != OFFLOAD_SUCCESS) 1581 return OFFLOAD_FAIL; 1582 1583 return __tgt_rtl_synchronize(DeviceId, &AsyncInfo); 1584 } 1585 1586 int32_t __tgt_rtl_data_submit_async(int32_t DeviceId, void *TgtPtr, 1587 void *HstPtr, int64_t Size, 1588 __tgt_async_info *AsyncInfoPtr) { 1589 assert(DeviceRTL.isValidDeviceId(DeviceId) && "device_id is invalid"); 1590 assert(AsyncInfoPtr && "async_info_ptr is nullptr"); 1591 1592 if (DeviceRTL.setContext(DeviceId) != OFFLOAD_SUCCESS) 1593 return OFFLOAD_FAIL; 1594 1595 return DeviceRTL.dataSubmit(DeviceId, TgtPtr, HstPtr, Size, AsyncInfoPtr); 1596 } 1597 1598 int32_t __tgt_rtl_data_retrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, 1599 int64_t Size) { 1600 assert(DeviceRTL.isValidDeviceId(DeviceId) && "device_id is invalid"); 1601 // Context is set in __tgt_rtl_data_retrieve_async. 1602 1603 __tgt_async_info AsyncInfo; 1604 const int32_t Rc = 1605 __tgt_rtl_data_retrieve_async(DeviceId, HstPtr, TgtPtr, Size, &AsyncInfo); 1606 if (Rc != OFFLOAD_SUCCESS) 1607 return OFFLOAD_FAIL; 1608 1609 return __tgt_rtl_synchronize(DeviceId, &AsyncInfo); 1610 } 1611 1612 int32_t __tgt_rtl_data_retrieve_async(int32_t DeviceId, void *HstPtr, 1613 void *TgtPtr, int64_t Size, 1614 __tgt_async_info *AsyncInfoPtr) { 1615 assert(DeviceRTL.isValidDeviceId(DeviceId) && "device_id is invalid"); 1616 assert(AsyncInfoPtr && "async_info_ptr is nullptr"); 1617 1618 if (DeviceRTL.setContext(DeviceId) != OFFLOAD_SUCCESS) 1619 return OFFLOAD_FAIL; 1620 1621 return DeviceRTL.dataRetrieve(DeviceId, HstPtr, TgtPtr, Size, AsyncInfoPtr); 1622 } 1623 1624 int32_t __tgt_rtl_data_exchange_async(int32_t SrcDevId, void *SrcPtr, 1625 int DstDevId, void *DstPtr, int64_t Size, 1626 __tgt_async_info *AsyncInfo) { 1627 assert(DeviceRTL.isValidDeviceId(SrcDevId) && "src_dev_id is invalid"); 1628 assert(DeviceRTL.isValidDeviceId(DstDevId) && "dst_dev_id is invalid"); 1629 assert(AsyncInfo && "AsyncInfo is nullptr"); 1630 1631 if (DeviceRTL.setContext(SrcDevId) != OFFLOAD_SUCCESS) 1632 return OFFLOAD_FAIL; 1633 1634 return DeviceRTL.dataExchange(SrcDevId, SrcPtr, DstDevId, DstPtr, Size, 1635 AsyncInfo); 1636 } 1637 1638 int32_t __tgt_rtl_data_exchange(int32_t SrcDevId, void *SrcPtr, 1639 int32_t DstDevId, void *DstPtr, int64_t Size) { 1640 assert(DeviceRTL.isValidDeviceId(SrcDevId) && "src_dev_id is invalid"); 1641 assert(DeviceRTL.isValidDeviceId(DstDevId) && "dst_dev_id is invalid"); 1642 // Context is set in __tgt_rtl_data_exchange_async. 1643 1644 __tgt_async_info AsyncInfo; 1645 const int32_t Rc = __tgt_rtl_data_exchange_async(SrcDevId, SrcPtr, DstDevId, 1646 DstPtr, Size, &AsyncInfo); 1647 if (Rc != OFFLOAD_SUCCESS) 1648 return OFFLOAD_FAIL; 1649 1650 return __tgt_rtl_synchronize(SrcDevId, &AsyncInfo); 1651 } 1652 1653 int32_t __tgt_rtl_data_delete(int32_t DeviceId, void *TgtPtr) { 1654 assert(DeviceRTL.isValidDeviceId(DeviceId) && "device_id is invalid"); 1655 1656 if (DeviceRTL.setContext(DeviceId) != OFFLOAD_SUCCESS) 1657 return OFFLOAD_FAIL; 1658 1659 return DeviceRTL.dataDelete(DeviceId, TgtPtr); 1660 } 1661 1662 int32_t __tgt_rtl_run_target_team_region(int32_t DeviceId, void *TgtEntryPtr, 1663 void **TgtArgs, ptrdiff_t *TgtOffsets, 1664 int32_t ArgNum, int32_t TeamNum, 1665 int32_t ThreadLimit, 1666 uint64_t LoopTripcount) { 1667 assert(DeviceRTL.isValidDeviceId(DeviceId) && "device_id is invalid"); 1668 // Context is set in __tgt_rtl_run_target_team_region_async. 1669 1670 __tgt_async_info AsyncInfo; 1671 const int32_t Rc = __tgt_rtl_run_target_team_region_async( 1672 DeviceId, TgtEntryPtr, TgtArgs, TgtOffsets, ArgNum, TeamNum, ThreadLimit, 1673 LoopTripcount, &AsyncInfo); 1674 if (Rc != OFFLOAD_SUCCESS) 1675 return OFFLOAD_FAIL; 1676 1677 return __tgt_rtl_synchronize(DeviceId, &AsyncInfo); 1678 } 1679 1680 int32_t __tgt_rtl_run_target_team_region_async( 1681 int32_t DeviceId, void *TgtEntryPtr, void **TgtArgs, ptrdiff_t *TgtOffsets, 1682 int32_t ArgNum, int32_t TeamNum, int32_t ThreadLimit, 1683 uint64_t LoopTripcount, __tgt_async_info *AsyncInfoPtr) { 1684 assert(DeviceRTL.isValidDeviceId(DeviceId) && "device_id is invalid"); 1685 1686 if (DeviceRTL.setContext(DeviceId) != OFFLOAD_SUCCESS) 1687 return OFFLOAD_FAIL; 1688 1689 return DeviceRTL.runTargetTeamRegion(DeviceId, TgtEntryPtr, TgtArgs, 1690 TgtOffsets, ArgNum, TeamNum, ThreadLimit, 1691 LoopTripcount, AsyncInfoPtr); 1692 } 1693 1694 int32_t __tgt_rtl_run_target_region(int32_t DeviceId, void *TgtEntryPtr, 1695 void **TgtArgs, ptrdiff_t *TgtOffsets, 1696 int32_t ArgNum) { 1697 assert(DeviceRTL.isValidDeviceId(DeviceId) && "device_id is invalid"); 1698 // Context is set in __tgt_rtl_run_target_region_async. 1699 1700 __tgt_async_info AsyncInfo; 1701 const int32_t Rc = __tgt_rtl_run_target_region_async( 1702 DeviceId, TgtEntryPtr, TgtArgs, TgtOffsets, ArgNum, &AsyncInfo); 1703 if (Rc != OFFLOAD_SUCCESS) 1704 return OFFLOAD_FAIL; 1705 1706 return __tgt_rtl_synchronize(DeviceId, &AsyncInfo); 1707 } 1708 1709 int32_t __tgt_rtl_run_target_region_async(int32_t DeviceId, void *TgtEntryPtr, 1710 void **TgtArgs, ptrdiff_t *TgtOffsets, 1711 int32_t ArgNum, 1712 __tgt_async_info *AsyncInfoPtr) { 1713 assert(DeviceRTL.isValidDeviceId(DeviceId) && "device_id is invalid"); 1714 // Context is set in __tgt_rtl_run_target_team_region_async. 1715 return __tgt_rtl_run_target_team_region_async( 1716 DeviceId, TgtEntryPtr, TgtArgs, TgtOffsets, ArgNum, 1717 /* team num*/ 1, /* thread_limit */ 1, /* loop_tripcount */ 0, 1718 AsyncInfoPtr); 1719 } 1720 1721 int32_t __tgt_rtl_synchronize(int32_t DeviceId, 1722 __tgt_async_info *AsyncInfoPtr) { 1723 assert(DeviceRTL.isValidDeviceId(DeviceId) && "device_id is invalid"); 1724 assert(AsyncInfoPtr && "async_info_ptr is nullptr"); 1725 assert(AsyncInfoPtr->Queue && "async_info_ptr->Queue is nullptr"); 1726 // NOTE: We don't need to set context for stream sync. 1727 return DeviceRTL.synchronize(DeviceId, AsyncInfoPtr); 1728 } 1729 1730 void __tgt_rtl_set_info_flag(uint32_t NewInfoLevel) { 1731 std::atomic<uint32_t> &InfoLevel = getInfoLevelInternal(); 1732 InfoLevel.store(NewInfoLevel); 1733 } 1734 1735 void __tgt_rtl_print_device_info(int32_t DeviceId) { 1736 assert(DeviceRTL.isValidDeviceId(DeviceId) && "device_id is invalid"); 1737 // NOTE: We don't need to set context for print device info. 1738 DeviceRTL.printDeviceInfo(DeviceId); 1739 } 1740 1741 int32_t __tgt_rtl_create_event(int32_t DeviceId, void **Event) { 1742 assert(Event && "event is nullptr"); 1743 1744 if (DeviceRTL.setContext(DeviceId) != OFFLOAD_SUCCESS) 1745 return OFFLOAD_FAIL; 1746 1747 return DeviceRTL.createEvent(DeviceId, Event); 1748 } 1749 1750 int32_t __tgt_rtl_record_event(int32_t DeviceId, void *EventPtr, 1751 __tgt_async_info *AsyncInfoPtr) { 1752 assert(AsyncInfoPtr && "async_info_ptr is nullptr"); 1753 assert(AsyncInfoPtr->Queue && "async_info_ptr->Queue is nullptr"); 1754 assert(EventPtr && "event_ptr is nullptr"); 1755 // NOTE: We might not need to set context for event record. 1756 return recordEvent(EventPtr, AsyncInfoPtr); 1757 } 1758 1759 int32_t __tgt_rtl_wait_event(int32_t DeviceId, void *EventPtr, 1760 __tgt_async_info *AsyncInfoPtr) { 1761 assert(DeviceRTL.isValidDeviceId(DeviceId) && "device_id is invalid"); 1762 assert(AsyncInfoPtr && "async_info_ptr is nullptr"); 1763 assert(EventPtr && "event is nullptr"); 1764 // If we don't have a queue we need to set the context. 1765 if (!AsyncInfoPtr->Queue && DeviceRTL.setContext(DeviceId) != OFFLOAD_SUCCESS) 1766 return OFFLOAD_FAIL; 1767 return DeviceRTL.waitEvent(DeviceId, AsyncInfoPtr, EventPtr); 1768 } 1769 1770 int32_t __tgt_rtl_sync_event(int32_t DeviceId, void *EventPtr) { 1771 assert(EventPtr && "event is nullptr"); 1772 // NOTE: We might not need to set context for event sync. 1773 return syncEvent(EventPtr); 1774 } 1775 1776 int32_t __tgt_rtl_destroy_event(int32_t DeviceId, void *EventPtr) { 1777 assert(EventPtr && "event is nullptr"); 1778 1779 if (DeviceRTL.setContext(DeviceId) != OFFLOAD_SUCCESS) 1780 return OFFLOAD_FAIL; 1781 1782 return DeviceRTL.destroyEvent(DeviceId, EventPtr); 1783 } 1784 1785 int32_t __tgt_rtl_release_async_info(int32_t DeviceId, 1786 __tgt_async_info *AsyncInfo) { 1787 assert(DeviceRTL.isValidDeviceId(DeviceId) && "device_id is invalid"); 1788 assert(AsyncInfo && "async_info is nullptr"); 1789 1790 if (DeviceRTL.setContext(DeviceId) != OFFLOAD_SUCCESS) 1791 return OFFLOAD_FAIL; 1792 1793 return DeviceRTL.releaseAsyncInfo(DeviceId, AsyncInfo); 1794 } 1795 1796 int32_t __tgt_rtl_init_async_info(int32_t DeviceId, 1797 __tgt_async_info **AsyncInfo) { 1798 assert(DeviceRTL.isValidDeviceId(DeviceId) && "device_id is invalid"); 1799 assert(AsyncInfo && "async_info is nullptr"); 1800 1801 if (DeviceRTL.setContext(DeviceId) != OFFLOAD_SUCCESS) 1802 return OFFLOAD_FAIL; 1803 1804 return DeviceRTL.initAsyncInfo(DeviceId, AsyncInfo); 1805 } 1806 1807 int32_t __tgt_rtl_init_device_info(int32_t DeviceId, 1808 __tgt_device_info *DeviceInfoPtr, 1809 const char **ErrStr) { 1810 assert(DeviceRTL.isValidDeviceId(DeviceId) && "device_id is invalid"); 1811 assert(DeviceInfoPtr && "device_info_ptr is nullptr"); 1812 1813 if (DeviceRTL.setContext(DeviceId) != OFFLOAD_SUCCESS) 1814 return OFFLOAD_FAIL; 1815 1816 return DeviceRTL.initDeviceInfo(DeviceId, DeviceInfoPtr, ErrStr); 1817 } 1818 1819 #ifdef __cplusplus 1820 } 1821 #endif 1822