1 //===----RTLs/hsa/src/rtl.cpp - Target RTLs Implementation -------- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // RTL for hsa machine 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <algorithm> 14 #include <assert.h> 15 #include <cstdio> 16 #include <cstdlib> 17 #include <cstring> 18 #include <dlfcn.h> 19 #include <elf.h> 20 #include <ffi.h> 21 #include <fstream> 22 #include <iostream> 23 #include <libelf.h> 24 #include <list> 25 #include <memory> 26 #include <mutex> 27 #include <shared_mutex> 28 #include <thread> 29 #include <unordered_map> 30 #include <vector> 31 32 // Header from ATMI interface 33 #include "atmi_interop_hsa.h" 34 #include "atmi_runtime.h" 35 36 #include "internal.h" 37 38 #include "Debug.h" 39 #include "get_elf_mach_gfx_name.h" 40 #include "omptargetplugin.h" 41 #include "print_tracing.h" 42 43 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 44 45 #ifndef TARGET_NAME 46 #define TARGET_NAME AMDHSA 47 #endif 48 #define DEBUG_PREFIX "Target " GETNAME(TARGET_NAME) " RTL" 49 50 // hostrpc interface, FIXME: consider moving to its own include these are 51 // statically linked into amdgpu/plugin if present from hostrpc_services.a, 52 // linked as --whole-archive to override the weak symbols that are used to 53 // implement a fallback for toolchains that do not yet have a hostrpc library. 54 extern "C" { 55 unsigned long hostrpc_assign_buffer(hsa_agent_t agent, hsa_queue_t *this_Q, 56 uint32_t device_id); 57 hsa_status_t hostrpc_init(); 58 hsa_status_t hostrpc_terminate(); 59 60 __attribute__((weak)) hsa_status_t hostrpc_init() { return HSA_STATUS_SUCCESS; } 61 __attribute__((weak)) hsa_status_t hostrpc_terminate() { 62 return HSA_STATUS_SUCCESS; 63 } 64 __attribute__((weak)) unsigned long 65 hostrpc_assign_buffer(hsa_agent_t, hsa_queue_t *, uint32_t device_id) { 66 DP("Warning: Attempting to assign hostrpc to device %u, but hostrpc library " 67 "missing\n", 68 device_id); 69 return 0; 70 } 71 } 72 73 int print_kernel_trace; 74 75 #undef check // Drop definition from internal.h 76 #ifdef OMPTARGET_DEBUG 77 #define check(msg, status) \ 78 if (status != ATMI_STATUS_SUCCESS) { \ 79 DP(#msg " failed\n"); \ 80 } else { \ 81 DP(#msg " succeeded\n"); \ 82 } 83 #else 84 #define check(msg, status) \ 85 {} 86 #endif 87 88 #include "elf_common.h" 89 90 /// Keep entries table per device 91 struct FuncOrGblEntryTy { 92 __tgt_target_table Table; 93 std::vector<__tgt_offload_entry> Entries; 94 }; 95 96 enum ExecutionModeType { 97 SPMD, // constructors, destructors, 98 // combined constructs (`teams distribute parallel for [simd]`) 99 GENERIC, // everything else 100 NONE 101 }; 102 103 struct KernelArgPool { 104 private: 105 static pthread_mutex_t mutex; 106 107 public: 108 uint32_t kernarg_segment_size; 109 void *kernarg_region = nullptr; 110 std::queue<int> free_kernarg_segments; 111 112 uint32_t kernarg_size_including_implicit() { 113 return kernarg_segment_size + sizeof(atmi_implicit_args_t); 114 } 115 116 ~KernelArgPool() { 117 if (kernarg_region) { 118 auto r = hsa_amd_memory_pool_free(kernarg_region); 119 assert(r == HSA_STATUS_SUCCESS); 120 if (r != HSA_STATUS_SUCCESS) { 121 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 122 "Memory pool free", get_error_string(r)); 123 exit(1); 124 } 125 } 126 } 127 128 // Can't really copy or move a mutex 129 KernelArgPool() = default; 130 KernelArgPool(const KernelArgPool &) = delete; 131 KernelArgPool(KernelArgPool &&) = delete; 132 133 KernelArgPool(uint32_t kernarg_segment_size) 134 : kernarg_segment_size(kernarg_segment_size) { 135 136 // atmi uses one pool per kernel for all gpus, with a fixed upper size 137 // preserving that exact scheme here, including the queue<int> 138 { 139 hsa_status_t err = hsa_amd_memory_pool_allocate( 140 atl_gpu_kernarg_pools[0], 141 kernarg_size_including_implicit() * MAX_NUM_KERNELS, 0, 142 &kernarg_region); 143 if (err != HSA_STATUS_SUCCESS) { 144 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 145 "Allocating memory for the executable-kernel", 146 get_error_string(err)); 147 exit(1); 148 } 149 core::allow_access_to_all_gpu_agents(kernarg_region); 150 151 for (int i = 0; i < MAX_NUM_KERNELS; i++) { 152 free_kernarg_segments.push(i); 153 } 154 } 155 } 156 157 void *allocate(uint64_t arg_num) { 158 assert((arg_num * sizeof(void *)) == kernarg_segment_size); 159 lock l(&mutex); 160 void *res = nullptr; 161 if (!free_kernarg_segments.empty()) { 162 163 int free_idx = free_kernarg_segments.front(); 164 res = static_cast<void *>(static_cast<char *>(kernarg_region) + 165 (free_idx * kernarg_size_including_implicit())); 166 assert(free_idx == pointer_to_index(res)); 167 free_kernarg_segments.pop(); 168 } 169 return res; 170 } 171 172 void deallocate(void *ptr) { 173 lock l(&mutex); 174 int idx = pointer_to_index(ptr); 175 free_kernarg_segments.push(idx); 176 } 177 178 private: 179 int pointer_to_index(void *ptr) { 180 ptrdiff_t bytes = 181 static_cast<char *>(ptr) - static_cast<char *>(kernarg_region); 182 assert(bytes >= 0); 183 assert(bytes % kernarg_size_including_implicit() == 0); 184 return bytes / kernarg_size_including_implicit(); 185 } 186 struct lock { 187 lock(pthread_mutex_t *m) : m(m) { pthread_mutex_lock(m); } 188 ~lock() { pthread_mutex_unlock(m); } 189 pthread_mutex_t *m; 190 }; 191 }; 192 pthread_mutex_t KernelArgPool::mutex = PTHREAD_MUTEX_INITIALIZER; 193 194 std::unordered_map<std::string /*kernel*/, std::unique_ptr<KernelArgPool>> 195 KernelArgPoolMap; 196 197 /// Use a single entity to encode a kernel and a set of flags 198 struct KernelTy { 199 // execution mode of kernel 200 // 0 - SPMD mode (without master warp) 201 // 1 - Generic mode (with master warp) 202 int8_t ExecutionMode; 203 int16_t ConstWGSize; 204 int32_t device_id; 205 void *CallStackAddr = nullptr; 206 const char *Name; 207 208 KernelTy(int8_t _ExecutionMode, int16_t _ConstWGSize, int32_t _device_id, 209 void *_CallStackAddr, const char *_Name, 210 uint32_t _kernarg_segment_size) 211 : ExecutionMode(_ExecutionMode), ConstWGSize(_ConstWGSize), 212 device_id(_device_id), CallStackAddr(_CallStackAddr), Name(_Name) { 213 DP("Construct kernelinfo: ExecMode %d\n", ExecutionMode); 214 215 std::string N(_Name); 216 if (KernelArgPoolMap.find(N) == KernelArgPoolMap.end()) { 217 KernelArgPoolMap.insert( 218 std::make_pair(N, std::unique_ptr<KernelArgPool>( 219 new KernelArgPool(_kernarg_segment_size)))); 220 } 221 } 222 }; 223 224 /// List that contains all the kernels. 225 /// FIXME: we may need this to be per device and per library. 226 std::list<KernelTy> KernelsList; 227 228 // ATMI API to get gpu and gpu memory place 229 static atmi_place_t get_gpu_place(int device_id) { 230 return ATMI_PLACE_GPU(0, device_id); 231 } 232 static atmi_mem_place_t get_gpu_mem_place(int device_id) { 233 return ATMI_MEM_PLACE_GPU_MEM(0, device_id, 0); 234 } 235 236 static std::vector<hsa_agent_t> find_gpu_agents() { 237 std::vector<hsa_agent_t> res; 238 239 hsa_status_t err = hsa_iterate_agents( 240 [](hsa_agent_t agent, void *data) -> hsa_status_t { 241 std::vector<hsa_agent_t> *res = 242 static_cast<std::vector<hsa_agent_t> *>(data); 243 244 hsa_device_type_t device_type; 245 // get_info fails iff HSA runtime not yet initialized 246 hsa_status_t err = 247 hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 248 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) 249 printf("rtl.cpp: err %d\n", err); 250 assert(err == HSA_STATUS_SUCCESS); 251 252 if (device_type == HSA_DEVICE_TYPE_GPU) { 253 res->push_back(agent); 254 } 255 return HSA_STATUS_SUCCESS; 256 }, 257 &res); 258 259 // iterate_agents fails iff HSA runtime not yet initialized 260 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) 261 printf("rtl.cpp: err %d\n", err); 262 assert(err == HSA_STATUS_SUCCESS); 263 return res; 264 } 265 266 static void callbackQueue(hsa_status_t status, hsa_queue_t *source, 267 void *data) { 268 if (status != HSA_STATUS_SUCCESS) { 269 const char *status_string; 270 if (hsa_status_string(status, &status_string) != HSA_STATUS_SUCCESS) { 271 status_string = "unavailable"; 272 } 273 fprintf(stderr, "[%s:%d] GPU error in queue %p %d (%s)\n", __FILE__, 274 __LINE__, source, status, status_string); 275 abort(); 276 } 277 } 278 279 namespace core { 280 namespace { 281 void packet_store_release(uint32_t *packet, uint16_t header, uint16_t rest) { 282 __atomic_store_n(packet, header | (rest << 16), __ATOMIC_RELEASE); 283 } 284 285 uint16_t create_header() { 286 uint16_t header = HSA_PACKET_TYPE_KERNEL_DISPATCH << HSA_PACKET_HEADER_TYPE; 287 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE; 288 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE; 289 return header; 290 } 291 } // namespace 292 } // namespace core 293 294 /// Class containing all the device information 295 class RTLDeviceInfoTy { 296 std::vector<std::list<FuncOrGblEntryTy>> FuncGblEntries; 297 298 public: 299 // load binary populates symbol tables and mutates various global state 300 // run uses those symbol tables 301 std::shared_timed_mutex load_run_lock; 302 303 int NumberOfDevices; 304 305 // GPU devices 306 std::vector<hsa_agent_t> HSAAgents; 307 std::vector<hsa_queue_t *> HSAQueues; // one per gpu 308 309 // Device properties 310 std::vector<int> ComputeUnits; 311 std::vector<int> GroupsPerDevice; 312 std::vector<int> ThreadsPerGroup; 313 std::vector<int> WarpSize; 314 std::vector<std::string> GPUName; 315 316 // OpenMP properties 317 std::vector<int> NumTeams; 318 std::vector<int> NumThreads; 319 320 // OpenMP Environment properties 321 int EnvNumTeams; 322 int EnvTeamLimit; 323 int EnvMaxTeamsDefault; 324 325 // OpenMP Requires Flags 326 int64_t RequiresFlags; 327 328 // Resource pools 329 SignalPoolT FreeSignalPool; 330 331 std::vector<hsa_executable_t> HSAExecutables; 332 333 struct atmiFreePtrDeletor { 334 void operator()(void *p) { 335 atmi_free(p); // ignore failure to free 336 } 337 }; 338 339 // device_State shared across loaded binaries, error if inconsistent size 340 std::vector<std::pair<std::unique_ptr<void, atmiFreePtrDeletor>, uint64_t>> 341 deviceStateStore; 342 343 static const unsigned HardTeamLimit = 344 (1 << 16) - 1; // 64K needed to fit in uint16 345 static const int DefaultNumTeams = 128; 346 static const int Max_Teams = 347 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_Teams]; 348 static const int Warp_Size = 349 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; 350 static const int Max_WG_Size = 351 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_WG_Size]; 352 static const int Default_WG_Size = 353 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Default_WG_Size]; 354 355 using MemcpyFunc = atmi_status_t (*)(hsa_signal_t, void *, const void *, 356 size_t size, hsa_agent_t); 357 atmi_status_t freesignalpool_memcpy(void *dest, const void *src, size_t size, 358 MemcpyFunc Func, int32_t deviceId) { 359 hsa_agent_t agent = HSAAgents[deviceId]; 360 hsa_signal_t s = FreeSignalPool.pop(); 361 if (s.handle == 0) { 362 return ATMI_STATUS_ERROR; 363 } 364 atmi_status_t r = Func(s, dest, src, size, agent); 365 FreeSignalPool.push(s); 366 return r; 367 } 368 369 atmi_status_t freesignalpool_memcpy_d2h(void *dest, const void *src, 370 size_t size, int32_t deviceId) { 371 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_d2h, deviceId); 372 } 373 374 atmi_status_t freesignalpool_memcpy_h2d(void *dest, const void *src, 375 size_t size, int32_t deviceId) { 376 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_h2d, deviceId); 377 } 378 379 // Record entry point associated with device 380 void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) { 381 assert(device_id < (int32_t)FuncGblEntries.size() && 382 "Unexpected device id!"); 383 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 384 385 E.Entries.push_back(entry); 386 } 387 388 // Return true if the entry is associated with device 389 bool findOffloadEntry(int32_t device_id, void *addr) { 390 assert(device_id < (int32_t)FuncGblEntries.size() && 391 "Unexpected device id!"); 392 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 393 394 for (auto &it : E.Entries) { 395 if (it.addr == addr) 396 return true; 397 } 398 399 return false; 400 } 401 402 // Return the pointer to the target entries table 403 __tgt_target_table *getOffloadEntriesTable(int32_t device_id) { 404 assert(device_id < (int32_t)FuncGblEntries.size() && 405 "Unexpected device id!"); 406 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 407 408 int32_t size = E.Entries.size(); 409 410 // Table is empty 411 if (!size) 412 return 0; 413 414 __tgt_offload_entry *begin = &E.Entries[0]; 415 __tgt_offload_entry *end = &E.Entries[size - 1]; 416 417 // Update table info according to the entries and return the pointer 418 E.Table.EntriesBegin = begin; 419 E.Table.EntriesEnd = ++end; 420 421 return &E.Table; 422 } 423 424 // Clear entries table for a device 425 void clearOffloadEntriesTable(int device_id) { 426 assert(device_id < (int32_t)FuncGblEntries.size() && 427 "Unexpected device id!"); 428 FuncGblEntries[device_id].emplace_back(); 429 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 430 // KernelArgPoolMap.clear(); 431 E.Entries.clear(); 432 E.Table.EntriesBegin = E.Table.EntriesEnd = 0; 433 } 434 435 RTLDeviceInfoTy() { 436 // LIBOMPTARGET_KERNEL_TRACE provides a kernel launch trace to stderr 437 // anytime. You do not need a debug library build. 438 // 0 => no tracing 439 // 1 => tracing dispatch only 440 // >1 => verbosity increase 441 if (char *envStr = getenv("LIBOMPTARGET_KERNEL_TRACE")) 442 print_kernel_trace = atoi(envStr); 443 else 444 print_kernel_trace = 0; 445 446 DP("Start initializing HSA-ATMI\n"); 447 atmi_status_t err = atmi_init(); 448 if (err != ATMI_STATUS_SUCCESS) { 449 DP("Error when initializing HSA-ATMI\n"); 450 return; 451 } 452 // Init hostcall soon after initializing ATMI 453 hostrpc_init(); 454 455 HSAAgents = find_gpu_agents(); 456 NumberOfDevices = (int)HSAAgents.size(); 457 458 if (NumberOfDevices == 0) { 459 DP("There are no devices supporting HSA.\n"); 460 return; 461 } else { 462 DP("There are %d devices supporting HSA.\n", NumberOfDevices); 463 } 464 465 // Init the device info 466 HSAQueues.resize(NumberOfDevices); 467 FuncGblEntries.resize(NumberOfDevices); 468 ThreadsPerGroup.resize(NumberOfDevices); 469 ComputeUnits.resize(NumberOfDevices); 470 GPUName.resize(NumberOfDevices); 471 GroupsPerDevice.resize(NumberOfDevices); 472 WarpSize.resize(NumberOfDevices); 473 NumTeams.resize(NumberOfDevices); 474 NumThreads.resize(NumberOfDevices); 475 deviceStateStore.resize(NumberOfDevices); 476 477 for (int i = 0; i < NumberOfDevices; i++) { 478 uint32_t queue_size = 0; 479 { 480 hsa_status_t err; 481 err = hsa_agent_get_info(HSAAgents[i], HSA_AGENT_INFO_QUEUE_MAX_SIZE, 482 &queue_size); 483 if (err != HSA_STATUS_SUCCESS) { 484 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 485 "Querying the agent maximum queue size", 486 get_error_string(err)); 487 exit(1); 488 } 489 if (queue_size > core::Runtime::getInstance().getMaxQueueSize()) { 490 queue_size = core::Runtime::getInstance().getMaxQueueSize(); 491 } 492 } 493 494 hsa_status_t rc = hsa_queue_create( 495 HSAAgents[i], queue_size, HSA_QUEUE_TYPE_MULTI, callbackQueue, NULL, 496 UINT32_MAX, UINT32_MAX, &HSAQueues[i]); 497 if (rc != HSA_STATUS_SUCCESS) { 498 DP("Failed to create HSA queues\n"); 499 return; 500 } 501 502 deviceStateStore[i] = {nullptr, 0}; 503 } 504 505 for (int i = 0; i < NumberOfDevices; i++) { 506 ThreadsPerGroup[i] = RTLDeviceInfoTy::Default_WG_Size; 507 GroupsPerDevice[i] = RTLDeviceInfoTy::DefaultNumTeams; 508 ComputeUnits[i] = 1; 509 DP("Device %d: Initial groupsPerDevice %d & threadsPerGroup %d\n", i, 510 GroupsPerDevice[i], ThreadsPerGroup[i]); 511 } 512 513 // Get environment variables regarding teams 514 char *envStr = getenv("OMP_TEAM_LIMIT"); 515 if (envStr) { 516 // OMP_TEAM_LIMIT has been set 517 EnvTeamLimit = std::stoi(envStr); 518 DP("Parsed OMP_TEAM_LIMIT=%d\n", EnvTeamLimit); 519 } else { 520 EnvTeamLimit = -1; 521 } 522 envStr = getenv("OMP_NUM_TEAMS"); 523 if (envStr) { 524 // OMP_NUM_TEAMS has been set 525 EnvNumTeams = std::stoi(envStr); 526 DP("Parsed OMP_NUM_TEAMS=%d\n", EnvNumTeams); 527 } else { 528 EnvNumTeams = -1; 529 } 530 // Get environment variables regarding expMaxTeams 531 envStr = getenv("OMP_MAX_TEAMS_DEFAULT"); 532 if (envStr) { 533 EnvMaxTeamsDefault = std::stoi(envStr); 534 DP("Parsed OMP_MAX_TEAMS_DEFAULT=%d\n", EnvMaxTeamsDefault); 535 } else { 536 EnvMaxTeamsDefault = -1; 537 } 538 539 // Default state. 540 RequiresFlags = OMP_REQ_UNDEFINED; 541 } 542 543 void DestroyHSAExecutables() { 544 hsa_status_t Err; 545 for (uint32_t I = 0; I < HSAExecutables.size(); I++) { 546 Err = hsa_executable_destroy(HSAExecutables[I]); 547 if (Err != HSA_STATUS_SUCCESS) { 548 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 549 "Destroying executable", get_error_string(Err)); 550 return; 551 } 552 } 553 } 554 555 ~RTLDeviceInfoTy() { 556 DP("Finalizing the HSA-ATMI DeviceInfo.\n"); 557 // Run destructors on types that use HSA before 558 // atmi_finalize removes access to it 559 deviceStateStore.clear(); 560 KernelArgPoolMap.clear(); 561 // Terminate hostrpc before finalizing ATMI 562 hostrpc_terminate(); 563 564 DestroyHSAExecutables(); 565 atmi_finalize(); 566 } 567 }; 568 569 pthread_mutex_t SignalPoolT::mutex = PTHREAD_MUTEX_INITIALIZER; 570 571 // TODO: May need to drop the trailing to fields until deviceRTL is updated 572 struct omptarget_device_environmentTy { 573 int32_t debug_level; // gets value of envvar LIBOMPTARGET_DEVICE_RTL_DEBUG 574 // only useful for Debug build of deviceRTLs 575 int32_t num_devices; // gets number of active offload devices 576 int32_t device_num; // gets a value 0 to num_devices-1 577 }; 578 579 static RTLDeviceInfoTy DeviceInfo; 580 581 namespace { 582 583 int32_t dataRetrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size, 584 __tgt_async_info *AsyncInfo) { 585 assert(AsyncInfo && "AsyncInfo is nullptr"); 586 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 587 // Return success if we are not copying back to host from target. 588 if (!HstPtr) 589 return OFFLOAD_SUCCESS; 590 atmi_status_t err; 591 DP("Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 592 (long long unsigned)(Elf64_Addr)TgtPtr, 593 (long long unsigned)(Elf64_Addr)HstPtr); 594 595 err = DeviceInfo.freesignalpool_memcpy_d2h(HstPtr, TgtPtr, (size_t)Size, 596 DeviceId); 597 598 if (err != ATMI_STATUS_SUCCESS) { 599 DP("Error when copying data from device to host. Pointers: " 600 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 601 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 602 return OFFLOAD_FAIL; 603 } 604 DP("DONE Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 605 (long long unsigned)(Elf64_Addr)TgtPtr, 606 (long long unsigned)(Elf64_Addr)HstPtr); 607 return OFFLOAD_SUCCESS; 608 } 609 610 int32_t dataSubmit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size, 611 __tgt_async_info *AsyncInfo) { 612 assert(AsyncInfo && "AsyncInfo is nullptr"); 613 atmi_status_t err; 614 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 615 // Return success if we are not doing host to target. 616 if (!HstPtr) 617 return OFFLOAD_SUCCESS; 618 619 DP("Submit data %ld bytes, (hst:%016llx) -> (tgt:%016llx).\n", Size, 620 (long long unsigned)(Elf64_Addr)HstPtr, 621 (long long unsigned)(Elf64_Addr)TgtPtr); 622 err = DeviceInfo.freesignalpool_memcpy_h2d(TgtPtr, HstPtr, (size_t)Size, 623 DeviceId); 624 if (err != ATMI_STATUS_SUCCESS) { 625 DP("Error when copying data from host to device. Pointers: " 626 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 627 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 628 return OFFLOAD_FAIL; 629 } 630 return OFFLOAD_SUCCESS; 631 } 632 633 // Async. 634 // The implementation was written with cuda streams in mind. The semantics of 635 // that are to execute kernels on a queue in order of insertion. A synchronise 636 // call then makes writes visible between host and device. This means a series 637 // of N data_submit_async calls are expected to execute serially. HSA offers 638 // various options to run the data copies concurrently. This may require changes 639 // to libomptarget. 640 641 // __tgt_async_info* contains a void * Queue. Queue = 0 is used to indicate that 642 // there are no outstanding kernels that need to be synchronized. Any async call 643 // may be passed a Queue==0, at which point the cuda implementation will set it 644 // to non-null (see getStream). The cuda streams are per-device. Upstream may 645 // change this interface to explicitly initialize the AsyncInfo_pointer, but 646 // until then hsa lazily initializes it as well. 647 648 void initAsyncInfo(__tgt_async_info *AsyncInfo) { 649 // set non-null while using async calls, return to null to indicate completion 650 assert(AsyncInfo); 651 if (!AsyncInfo->Queue) { 652 AsyncInfo->Queue = reinterpret_cast<void *>(UINT64_MAX); 653 } 654 } 655 void finiAsyncInfo(__tgt_async_info *AsyncInfo) { 656 assert(AsyncInfo); 657 assert(AsyncInfo->Queue); 658 AsyncInfo->Queue = 0; 659 } 660 661 bool elf_machine_id_is_amdgcn(__tgt_device_image *image) { 662 const uint16_t amdgcnMachineID = 224; // EM_AMDGPU may not be in system elf.h 663 int32_t r = elf_check_machine(image, amdgcnMachineID); 664 if (!r) { 665 DP("Supported machine ID not found\n"); 666 } 667 return r; 668 } 669 670 uint32_t elf_e_flags(__tgt_device_image *image) { 671 char *img_begin = (char *)image->ImageStart; 672 size_t img_size = (char *)image->ImageEnd - img_begin; 673 674 Elf *e = elf_memory(img_begin, img_size); 675 if (!e) { 676 DP("Unable to get ELF handle: %s!\n", elf_errmsg(-1)); 677 return 0; 678 } 679 680 Elf64_Ehdr *eh64 = elf64_getehdr(e); 681 682 if (!eh64) { 683 DP("Unable to get machine ID from ELF file!\n"); 684 elf_end(e); 685 return 0; 686 } 687 688 uint32_t Flags = eh64->e_flags; 689 690 elf_end(e); 691 DP("ELF Flags: 0x%x\n", Flags); 692 return Flags; 693 } 694 } // namespace 695 696 int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) { 697 return elf_machine_id_is_amdgcn(image); 698 } 699 700 int __tgt_rtl_number_of_devices() { return DeviceInfo.NumberOfDevices; } 701 702 int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) { 703 DP("Init requires flags to %ld\n", RequiresFlags); 704 DeviceInfo.RequiresFlags = RequiresFlags; 705 return RequiresFlags; 706 } 707 708 int32_t __tgt_rtl_init_device(int device_id) { 709 hsa_status_t err; 710 711 // this is per device id init 712 DP("Initialize the device id: %d\n", device_id); 713 714 hsa_agent_t agent = DeviceInfo.HSAAgents[device_id]; 715 716 // Get number of Compute Unit 717 uint32_t compute_units = 0; 718 err = hsa_agent_get_info( 719 agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT, 720 &compute_units); 721 if (err != HSA_STATUS_SUCCESS) { 722 DeviceInfo.ComputeUnits[device_id] = 1; 723 DP("Error getting compute units : settiing to 1\n"); 724 } else { 725 DeviceInfo.ComputeUnits[device_id] = compute_units; 726 DP("Using %d compute unis per grid\n", DeviceInfo.ComputeUnits[device_id]); 727 } 728 729 char GetInfoName[64]; // 64 max size returned by get info 730 err = hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AGENT_INFO_NAME, 731 (void *)GetInfoName); 732 if (err) 733 DeviceInfo.GPUName[device_id] = "--unknown gpu--"; 734 else { 735 DeviceInfo.GPUName[device_id] = GetInfoName; 736 } 737 738 if (print_kernel_trace & STARTUP_DETAILS) 739 fprintf(stderr, "Device#%-2d CU's: %2d %s\n", device_id, 740 DeviceInfo.ComputeUnits[device_id], 741 DeviceInfo.GPUName[device_id].c_str()); 742 743 // Query attributes to determine number of threads/block and blocks/grid. 744 uint16_t workgroup_max_dim[3]; 745 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_DIM, 746 &workgroup_max_dim); 747 if (err != HSA_STATUS_SUCCESS) { 748 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::DefaultNumTeams; 749 DP("Error getting grid dims: num groups : %d\n", 750 RTLDeviceInfoTy::DefaultNumTeams); 751 } else if (workgroup_max_dim[0] <= RTLDeviceInfoTy::HardTeamLimit) { 752 DeviceInfo.GroupsPerDevice[device_id] = workgroup_max_dim[0]; 753 DP("Using %d ROCm blocks per grid\n", 754 DeviceInfo.GroupsPerDevice[device_id]); 755 } else { 756 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::HardTeamLimit; 757 DP("Max ROCm blocks per grid %d exceeds the hard team limit %d, capping " 758 "at the hard limit\n", 759 workgroup_max_dim[0], RTLDeviceInfoTy::HardTeamLimit); 760 } 761 762 // Get thread limit 763 hsa_dim3_t grid_max_dim; 764 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &grid_max_dim); 765 if (err == HSA_STATUS_SUCCESS) { 766 DeviceInfo.ThreadsPerGroup[device_id] = 767 reinterpret_cast<uint32_t *>(&grid_max_dim)[0] / 768 DeviceInfo.GroupsPerDevice[device_id]; 769 if ((DeviceInfo.ThreadsPerGroup[device_id] > 770 RTLDeviceInfoTy::Max_WG_Size) || 771 DeviceInfo.ThreadsPerGroup[device_id] == 0) { 772 DP("Capped thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 773 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 774 } else { 775 DP("Using ROCm Queried thread limit: %d\n", 776 DeviceInfo.ThreadsPerGroup[device_id]); 777 } 778 } else { 779 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 780 DP("Error getting max block dimension, use default:%d \n", 781 RTLDeviceInfoTy::Max_WG_Size); 782 } 783 784 // Get wavefront size 785 uint32_t wavefront_size = 0; 786 err = 787 hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size); 788 if (err == HSA_STATUS_SUCCESS) { 789 DP("Queried wavefront size: %d\n", wavefront_size); 790 DeviceInfo.WarpSize[device_id] = wavefront_size; 791 } else { 792 DP("Default wavefront size: %d\n", 793 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]); 794 DeviceInfo.WarpSize[device_id] = 795 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; 796 } 797 798 // Adjust teams to the env variables 799 if (DeviceInfo.EnvTeamLimit > 0 && 800 DeviceInfo.GroupsPerDevice[device_id] > DeviceInfo.EnvTeamLimit) { 801 DeviceInfo.GroupsPerDevice[device_id] = DeviceInfo.EnvTeamLimit; 802 DP("Capping max groups per device to OMP_TEAM_LIMIT=%d\n", 803 DeviceInfo.EnvTeamLimit); 804 } 805 806 // Set default number of teams 807 if (DeviceInfo.EnvNumTeams > 0) { 808 DeviceInfo.NumTeams[device_id] = DeviceInfo.EnvNumTeams; 809 DP("Default number of teams set according to environment %d\n", 810 DeviceInfo.EnvNumTeams); 811 } else { 812 char *TeamsPerCUEnvStr = getenv("OMP_TARGET_TEAMS_PER_PROC"); 813 int TeamsPerCU = 1; // default number of teams per CU is 1 814 if (TeamsPerCUEnvStr) { 815 TeamsPerCU = std::stoi(TeamsPerCUEnvStr); 816 } 817 818 DeviceInfo.NumTeams[device_id] = 819 TeamsPerCU * DeviceInfo.ComputeUnits[device_id]; 820 DP("Default number of teams = %d * number of compute units %d\n", 821 TeamsPerCU, DeviceInfo.ComputeUnits[device_id]); 822 } 823 824 if (DeviceInfo.NumTeams[device_id] > DeviceInfo.GroupsPerDevice[device_id]) { 825 DeviceInfo.NumTeams[device_id] = DeviceInfo.GroupsPerDevice[device_id]; 826 DP("Default number of teams exceeds device limit, capping at %d\n", 827 DeviceInfo.GroupsPerDevice[device_id]); 828 } 829 830 // Set default number of threads 831 DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::Default_WG_Size; 832 DP("Default number of threads set according to library's default %d\n", 833 RTLDeviceInfoTy::Default_WG_Size); 834 if (DeviceInfo.NumThreads[device_id] > 835 DeviceInfo.ThreadsPerGroup[device_id]) { 836 DeviceInfo.NumTeams[device_id] = DeviceInfo.ThreadsPerGroup[device_id]; 837 DP("Default number of threads exceeds device limit, capping at %d\n", 838 DeviceInfo.ThreadsPerGroup[device_id]); 839 } 840 841 DP("Device %d: default limit for groupsPerDevice %d & threadsPerGroup %d\n", 842 device_id, DeviceInfo.GroupsPerDevice[device_id], 843 DeviceInfo.ThreadsPerGroup[device_id]); 844 845 DP("Device %d: wavefront size %d, total threads %d x %d = %d\n", device_id, 846 DeviceInfo.WarpSize[device_id], DeviceInfo.ThreadsPerGroup[device_id], 847 DeviceInfo.GroupsPerDevice[device_id], 848 DeviceInfo.GroupsPerDevice[device_id] * 849 DeviceInfo.ThreadsPerGroup[device_id]); 850 851 return OFFLOAD_SUCCESS; 852 } 853 854 namespace { 855 Elf64_Shdr *find_only_SHT_HASH(Elf *elf) { 856 size_t N; 857 int rc = elf_getshdrnum(elf, &N); 858 if (rc != 0) { 859 return nullptr; 860 } 861 862 Elf64_Shdr *result = nullptr; 863 for (size_t i = 0; i < N; i++) { 864 Elf_Scn *scn = elf_getscn(elf, i); 865 if (scn) { 866 Elf64_Shdr *shdr = elf64_getshdr(scn); 867 if (shdr) { 868 if (shdr->sh_type == SHT_HASH) { 869 if (result == nullptr) { 870 result = shdr; 871 } else { 872 // multiple SHT_HASH sections not handled 873 return nullptr; 874 } 875 } 876 } 877 } 878 } 879 return result; 880 } 881 882 const Elf64_Sym *elf_lookup(Elf *elf, char *base, Elf64_Shdr *section_hash, 883 const char *symname) { 884 885 assert(section_hash); 886 size_t section_symtab_index = section_hash->sh_link; 887 Elf64_Shdr *section_symtab = 888 elf64_getshdr(elf_getscn(elf, section_symtab_index)); 889 size_t section_strtab_index = section_symtab->sh_link; 890 891 const Elf64_Sym *symtab = 892 reinterpret_cast<const Elf64_Sym *>(base + section_symtab->sh_offset); 893 894 const uint32_t *hashtab = 895 reinterpret_cast<const uint32_t *>(base + section_hash->sh_offset); 896 897 // Layout: 898 // nbucket 899 // nchain 900 // bucket[nbucket] 901 // chain[nchain] 902 uint32_t nbucket = hashtab[0]; 903 const uint32_t *bucket = &hashtab[2]; 904 const uint32_t *chain = &hashtab[nbucket + 2]; 905 906 const size_t max = strlen(symname) + 1; 907 const uint32_t hash = elf_hash(symname); 908 for (uint32_t i = bucket[hash % nbucket]; i != 0; i = chain[i]) { 909 char *n = elf_strptr(elf, section_strtab_index, symtab[i].st_name); 910 if (strncmp(symname, n, max) == 0) { 911 return &symtab[i]; 912 } 913 } 914 915 return nullptr; 916 } 917 918 typedef struct { 919 void *addr = nullptr; 920 uint32_t size = UINT32_MAX; 921 uint32_t sh_type = SHT_NULL; 922 } symbol_info; 923 924 int get_symbol_info_without_loading(Elf *elf, char *base, const char *symname, 925 symbol_info *res) { 926 if (elf_kind(elf) != ELF_K_ELF) { 927 return 1; 928 } 929 930 Elf64_Shdr *section_hash = find_only_SHT_HASH(elf); 931 if (!section_hash) { 932 return 1; 933 } 934 935 const Elf64_Sym *sym = elf_lookup(elf, base, section_hash, symname); 936 if (!sym) { 937 return 1; 938 } 939 940 if (sym->st_size > UINT32_MAX) { 941 return 1; 942 } 943 944 if (sym->st_shndx == SHN_UNDEF) { 945 return 1; 946 } 947 948 Elf_Scn *section = elf_getscn(elf, sym->st_shndx); 949 if (!section) { 950 return 1; 951 } 952 953 Elf64_Shdr *header = elf64_getshdr(section); 954 if (!header) { 955 return 1; 956 } 957 958 res->addr = sym->st_value + base; 959 res->size = static_cast<uint32_t>(sym->st_size); 960 res->sh_type = header->sh_type; 961 return 0; 962 } 963 964 int get_symbol_info_without_loading(char *base, size_t img_size, 965 const char *symname, symbol_info *res) { 966 Elf *elf = elf_memory(base, img_size); 967 if (elf) { 968 int rc = get_symbol_info_without_loading(elf, base, symname, res); 969 elf_end(elf); 970 return rc; 971 } 972 return 1; 973 } 974 975 atmi_status_t interop_get_symbol_info(char *base, size_t img_size, 976 const char *symname, void **var_addr, 977 uint32_t *var_size) { 978 symbol_info si; 979 int rc = get_symbol_info_without_loading(base, img_size, symname, &si); 980 if (rc == 0) { 981 *var_addr = si.addr; 982 *var_size = si.size; 983 return ATMI_STATUS_SUCCESS; 984 } else { 985 return ATMI_STATUS_ERROR; 986 } 987 } 988 989 template <typename C> 990 atmi_status_t module_register_from_memory_to_place( 991 void *module_bytes, size_t module_size, atmi_place_t place, C cb, 992 std::vector<hsa_executable_t> &HSAExecutables) { 993 auto L = [](void *data, size_t size, void *cb_state) -> atmi_status_t { 994 C *unwrapped = static_cast<C *>(cb_state); 995 return (*unwrapped)(data, size); 996 }; 997 return core::Runtime::RegisterModuleFromMemory( 998 module_bytes, module_size, place, L, static_cast<void *>(&cb), 999 HSAExecutables); 1000 } 1001 } // namespace 1002 1003 static uint64_t get_device_State_bytes(char *ImageStart, size_t img_size) { 1004 uint64_t device_State_bytes = 0; 1005 { 1006 // If this is the deviceRTL, get the state variable size 1007 symbol_info size_si; 1008 int rc = get_symbol_info_without_loading( 1009 ImageStart, img_size, "omptarget_nvptx_device_State_size", &size_si); 1010 1011 if (rc == 0) { 1012 if (size_si.size != sizeof(uint64_t)) { 1013 fprintf(stderr, 1014 "Found device_State_size variable with wrong size, aborting\n"); 1015 exit(1); 1016 } 1017 1018 // Read number of bytes directly from the elf 1019 memcpy(&device_State_bytes, size_si.addr, sizeof(uint64_t)); 1020 } 1021 } 1022 return device_State_bytes; 1023 } 1024 1025 static __tgt_target_table * 1026 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1027 1028 static __tgt_target_table * 1029 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1030 1031 __tgt_target_table *__tgt_rtl_load_binary(int32_t device_id, 1032 __tgt_device_image *image) { 1033 DeviceInfo.load_run_lock.lock(); 1034 __tgt_target_table *res = __tgt_rtl_load_binary_locked(device_id, image); 1035 DeviceInfo.load_run_lock.unlock(); 1036 return res; 1037 } 1038 1039 struct device_environment { 1040 // initialise an omptarget_device_environmentTy in the deviceRTL 1041 // patches around differences in the deviceRTL between trunk, aomp, 1042 // rocmcc. Over time these differences will tend to zero and this class 1043 // simplified. 1044 // Symbol may be in .data or .bss, and may be missing fields: 1045 // - aomp has debug_level, num_devices, device_num 1046 // - trunk has debug_level 1047 // - under review in trunk is debug_level, device_num 1048 // - rocmcc matches aomp, patch to swap num_devices and device_num 1049 1050 // The symbol may also have been deadstripped because the device side 1051 // accessors were unused. 1052 1053 // If the symbol is in .data (aomp, rocm) it can be written directly. 1054 // If it is in .bss, we must wait for it to be allocated space on the 1055 // gpu (trunk) and initialize after loading. 1056 const char *sym() { return "omptarget_device_environment"; } 1057 1058 omptarget_device_environmentTy host_device_env; 1059 symbol_info si; 1060 bool valid = false; 1061 1062 __tgt_device_image *image; 1063 const size_t img_size; 1064 1065 device_environment(int device_id, int number_devices, 1066 __tgt_device_image *image, const size_t img_size) 1067 : image(image), img_size(img_size) { 1068 1069 host_device_env.num_devices = number_devices; 1070 host_device_env.device_num = device_id; 1071 host_device_env.debug_level = 0; 1072 #ifdef OMPTARGET_DEBUG 1073 if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) { 1074 host_device_env.debug_level = std::stoi(envStr); 1075 } 1076 #endif 1077 1078 int rc = get_symbol_info_without_loading((char *)image->ImageStart, 1079 img_size, sym(), &si); 1080 if (rc != 0) { 1081 DP("Finding global device environment '%s' - symbol missing.\n", sym()); 1082 return; 1083 } 1084 1085 if (si.size > sizeof(host_device_env)) { 1086 DP("Symbol '%s' has size %u, expected at most %zu.\n", sym(), si.size, 1087 sizeof(host_device_env)); 1088 return; 1089 } 1090 1091 valid = true; 1092 } 1093 1094 bool in_image() { return si.sh_type != SHT_NOBITS; } 1095 1096 atmi_status_t before_loading(void *data, size_t size) { 1097 if (valid) { 1098 if (in_image()) { 1099 DP("Setting global device environment before load (%u bytes)\n", 1100 si.size); 1101 uint64_t offset = (char *)si.addr - (char *)image->ImageStart; 1102 void *pos = (char *)data + offset; 1103 memcpy(pos, &host_device_env, si.size); 1104 } 1105 } 1106 return ATMI_STATUS_SUCCESS; 1107 } 1108 1109 atmi_status_t after_loading() { 1110 if (valid) { 1111 if (!in_image()) { 1112 DP("Setting global device environment after load (%u bytes)\n", 1113 si.size); 1114 int device_id = host_device_env.device_num; 1115 1116 void *state_ptr; 1117 uint32_t state_ptr_size; 1118 atmi_status_t err = atmi_interop_hsa_get_symbol_info( 1119 get_gpu_mem_place(device_id), sym(), &state_ptr, &state_ptr_size); 1120 if (err != ATMI_STATUS_SUCCESS) { 1121 DP("failed to find %s in loaded image\n", sym()); 1122 return err; 1123 } 1124 1125 if (state_ptr_size != si.size) { 1126 DP("Symbol had size %u before loading, %u after\n", state_ptr_size, 1127 si.size); 1128 return ATMI_STATUS_ERROR; 1129 } 1130 1131 return DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &host_device_env, 1132 state_ptr_size, device_id); 1133 } 1134 } 1135 return ATMI_STATUS_SUCCESS; 1136 } 1137 }; 1138 1139 static atmi_status_t atmi_calloc(void **ret_ptr, size_t size, 1140 atmi_mem_place_t place) { 1141 uint64_t rounded = 4 * ((size + 3) / 4); 1142 void *ptr; 1143 atmi_status_t err = atmi_malloc(&ptr, rounded, place); 1144 if (err != ATMI_STATUS_SUCCESS) { 1145 return err; 1146 } 1147 1148 hsa_status_t rc = hsa_amd_memory_fill(ptr, 0, rounded / 4); 1149 if (rc != HSA_STATUS_SUCCESS) { 1150 fprintf(stderr, "zero fill device_state failed with %u\n", rc); 1151 atmi_free(ptr); 1152 return ATMI_STATUS_ERROR; 1153 } 1154 1155 *ret_ptr = ptr; 1156 return ATMI_STATUS_SUCCESS; 1157 } 1158 1159 __tgt_target_table *__tgt_rtl_load_binary_locked(int32_t device_id, 1160 __tgt_device_image *image) { 1161 // This function loads the device image onto gpu[device_id] and does other 1162 // per-image initialization work. Specifically: 1163 // 1164 // - Initialize an omptarget_device_environmentTy instance embedded in the 1165 // image at the symbol "omptarget_device_environment" 1166 // Fields debug_level, device_num, num_devices. Used by the deviceRTL. 1167 // 1168 // - Allocate a large array per-gpu (could be moved to init_device) 1169 // - Read a uint64_t at symbol omptarget_nvptx_device_State_size 1170 // - Allocate at least that many bytes of gpu memory 1171 // - Zero initialize it 1172 // - Write the pointer to the symbol omptarget_nvptx_device_State 1173 // 1174 // - Pulls some per-kernel information together from various sources and 1175 // records it in the KernelsList for quicker access later 1176 // 1177 // The initialization can be done before or after loading the image onto the 1178 // gpu. This function presently does a mixture. Using the hsa api to get/set 1179 // the information is simpler to implement, in exchange for more complicated 1180 // runtime behaviour. E.g. launching a kernel or using dma to get eight bytes 1181 // back from the gpu vs a hashtable lookup on the host. 1182 1183 const size_t img_size = (char *)image->ImageEnd - (char *)image->ImageStart; 1184 1185 DeviceInfo.clearOffloadEntriesTable(device_id); 1186 1187 // We do not need to set the ELF version because the caller of this function 1188 // had to do that to decide the right runtime to use 1189 1190 if (!elf_machine_id_is_amdgcn(image)) { 1191 return NULL; 1192 } 1193 1194 { 1195 auto env = device_environment(device_id, DeviceInfo.NumberOfDevices, image, 1196 img_size); 1197 1198 atmi_status_t err = module_register_from_memory_to_place( 1199 (void *)image->ImageStart, img_size, get_gpu_place(device_id), 1200 [&](void *data, size_t size) { return env.before_loading(data, size); }, 1201 DeviceInfo.HSAExecutables); 1202 1203 check("Module registering", err); 1204 if (err != ATMI_STATUS_SUCCESS) { 1205 fprintf(stderr, 1206 "Possible gpu arch mismatch: device:%s, image:%s please check" 1207 " compiler flag: -march=<gpu>\n", 1208 DeviceInfo.GPUName[device_id].c_str(), 1209 get_elf_mach_gfx_name(elf_e_flags(image))); 1210 return NULL; 1211 } 1212 1213 err = env.after_loading(); 1214 if (err != ATMI_STATUS_SUCCESS) { 1215 return NULL; 1216 } 1217 } 1218 1219 DP("ATMI module successfully loaded!\n"); 1220 1221 { 1222 // the device_State array is either large value in bss or a void* that 1223 // needs to be assigned to a pointer to an array of size device_state_bytes 1224 // If absent, it has been deadstripped and needs no setup. 1225 1226 void *state_ptr; 1227 uint32_t state_ptr_size; 1228 atmi_status_t err = atmi_interop_hsa_get_symbol_info( 1229 get_gpu_mem_place(device_id), "omptarget_nvptx_device_State", 1230 &state_ptr, &state_ptr_size); 1231 1232 if (err != ATMI_STATUS_SUCCESS) { 1233 DP("No device_state symbol found, skipping initialization\n"); 1234 } else { 1235 if (state_ptr_size < sizeof(void *)) { 1236 DP("unexpected size of state_ptr %u != %zu\n", state_ptr_size, 1237 sizeof(void *)); 1238 return NULL; 1239 } 1240 1241 // if it's larger than a void*, assume it's a bss array and no further 1242 // initialization is required. Only try to set up a pointer for 1243 // sizeof(void*) 1244 if (state_ptr_size == sizeof(void *)) { 1245 uint64_t device_State_bytes = 1246 get_device_State_bytes((char *)image->ImageStart, img_size); 1247 if (device_State_bytes == 0) { 1248 DP("Can't initialize device_State, missing size information\n"); 1249 return NULL; 1250 } 1251 1252 auto &dss = DeviceInfo.deviceStateStore[device_id]; 1253 if (dss.first.get() == nullptr) { 1254 assert(dss.second == 0); 1255 void *ptr = NULL; 1256 atmi_status_t err = atmi_calloc(&ptr, device_State_bytes, 1257 get_gpu_mem_place(device_id)); 1258 if (err != ATMI_STATUS_SUCCESS) { 1259 DP("Failed to allocate device_state array\n"); 1260 return NULL; 1261 } 1262 dss = { 1263 std::unique_ptr<void, RTLDeviceInfoTy::atmiFreePtrDeletor>{ptr}, 1264 device_State_bytes, 1265 }; 1266 } 1267 1268 void *ptr = dss.first.get(); 1269 if (device_State_bytes != dss.second) { 1270 DP("Inconsistent sizes of device_State unsupported\n"); 1271 return NULL; 1272 } 1273 1274 // write ptr to device memory so it can be used by later kernels 1275 err = DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &ptr, 1276 sizeof(void *), device_id); 1277 if (err != ATMI_STATUS_SUCCESS) { 1278 DP("memcpy install of state_ptr failed\n"); 1279 return NULL; 1280 } 1281 } 1282 } 1283 } 1284 1285 // Here, we take advantage of the data that is appended after img_end to get 1286 // the symbols' name we need to load. This data consist of the host entries 1287 // begin and end as well as the target name (see the offloading linker script 1288 // creation in clang compiler). 1289 1290 // Find the symbols in the module by name. The name can be obtain by 1291 // concatenating the host entry name with the target name 1292 1293 __tgt_offload_entry *HostBegin = image->EntriesBegin; 1294 __tgt_offload_entry *HostEnd = image->EntriesEnd; 1295 1296 for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) { 1297 1298 if (!e->addr) { 1299 // The host should have always something in the address to 1300 // uniquely identify the target region. 1301 fprintf(stderr, "Analyzing host entry '<null>' (size = %lld)...\n", 1302 (unsigned long long)e->size); 1303 return NULL; 1304 } 1305 1306 if (e->size) { 1307 __tgt_offload_entry entry = *e; 1308 1309 void *varptr; 1310 uint32_t varsize; 1311 1312 atmi_status_t err = atmi_interop_hsa_get_symbol_info( 1313 get_gpu_mem_place(device_id), e->name, &varptr, &varsize); 1314 1315 if (err != ATMI_STATUS_SUCCESS) { 1316 // Inform the user what symbol prevented offloading 1317 DP("Loading global '%s' (Failed)\n", e->name); 1318 return NULL; 1319 } 1320 1321 if (varsize != e->size) { 1322 DP("Loading global '%s' - size mismatch (%u != %lu)\n", e->name, 1323 varsize, e->size); 1324 return NULL; 1325 } 1326 1327 DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n", 1328 DPxPTR(e - HostBegin), e->name, DPxPTR(varptr)); 1329 entry.addr = (void *)varptr; 1330 1331 DeviceInfo.addOffloadEntry(device_id, entry); 1332 1333 if (DeviceInfo.RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY && 1334 e->flags & OMP_DECLARE_TARGET_LINK) { 1335 // If unified memory is present any target link variables 1336 // can access host addresses directly. There is no longer a 1337 // need for device copies. 1338 err = DeviceInfo.freesignalpool_memcpy_h2d(varptr, e->addr, 1339 sizeof(void *), device_id); 1340 if (err != ATMI_STATUS_SUCCESS) 1341 DP("Error when copying USM\n"); 1342 DP("Copy linked variable host address (" DPxMOD ")" 1343 "to device address (" DPxMOD ")\n", 1344 DPxPTR(*((void **)e->addr)), DPxPTR(varptr)); 1345 } 1346 1347 continue; 1348 } 1349 1350 DP("to find the kernel name: %s size: %lu\n", e->name, strlen(e->name)); 1351 1352 atmi_mem_place_t place = get_gpu_mem_place(device_id); 1353 uint32_t kernarg_segment_size; 1354 atmi_status_t err = atmi_interop_hsa_get_kernel_info( 1355 place, e->name, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE, 1356 &kernarg_segment_size); 1357 1358 // each arg is a void * in this openmp implementation 1359 uint32_t arg_num = kernarg_segment_size / sizeof(void *); 1360 std::vector<size_t> arg_sizes(arg_num); 1361 for (std::vector<size_t>::iterator it = arg_sizes.begin(); 1362 it != arg_sizes.end(); it++) { 1363 *it = sizeof(void *); 1364 } 1365 1366 // default value GENERIC (in case symbol is missing from cubin file) 1367 int8_t ExecModeVal = ExecutionModeType::GENERIC; 1368 1369 // get flat group size if present, else Default_WG_Size 1370 int16_t WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1371 1372 // get Kernel Descriptor if present. 1373 // Keep struct in sync wih getTgtAttributeStructQTy in CGOpenMPRuntime.cpp 1374 struct KernDescValType { 1375 uint16_t Version; 1376 uint16_t TSize; 1377 uint16_t WG_Size; 1378 uint8_t Mode; 1379 }; 1380 struct KernDescValType KernDescVal; 1381 std::string KernDescNameStr(e->name); 1382 KernDescNameStr += "_kern_desc"; 1383 const char *KernDescName = KernDescNameStr.c_str(); 1384 1385 void *KernDescPtr; 1386 uint32_t KernDescSize; 1387 void *CallStackAddr = nullptr; 1388 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1389 KernDescName, &KernDescPtr, &KernDescSize); 1390 1391 if (err == ATMI_STATUS_SUCCESS) { 1392 if ((size_t)KernDescSize != sizeof(KernDescVal)) 1393 DP("Loading global computation properties '%s' - size mismatch (%u != " 1394 "%lu)\n", 1395 KernDescName, KernDescSize, sizeof(KernDescVal)); 1396 1397 memcpy(&KernDescVal, KernDescPtr, (size_t)KernDescSize); 1398 1399 // Check structure size against recorded size. 1400 if ((size_t)KernDescSize != KernDescVal.TSize) 1401 DP("KernDescVal size %lu does not match advertized size %d for '%s'\n", 1402 sizeof(KernDescVal), KernDescVal.TSize, KernDescName); 1403 1404 DP("After loading global for %s KernDesc \n", KernDescName); 1405 DP("KernDesc: Version: %d\n", KernDescVal.Version); 1406 DP("KernDesc: TSize: %d\n", KernDescVal.TSize); 1407 DP("KernDesc: WG_Size: %d\n", KernDescVal.WG_Size); 1408 DP("KernDesc: Mode: %d\n", KernDescVal.Mode); 1409 1410 // Get ExecMode 1411 ExecModeVal = KernDescVal.Mode; 1412 DP("ExecModeVal %d\n", ExecModeVal); 1413 if (KernDescVal.WG_Size == 0) { 1414 KernDescVal.WG_Size = RTLDeviceInfoTy::Default_WG_Size; 1415 DP("Setting KernDescVal.WG_Size to default %d\n", KernDescVal.WG_Size); 1416 } 1417 WGSizeVal = KernDescVal.WG_Size; 1418 DP("WGSizeVal %d\n", WGSizeVal); 1419 check("Loading KernDesc computation property", err); 1420 } else { 1421 DP("Warning: Loading KernDesc '%s' - symbol not found, ", KernDescName); 1422 1423 // Generic 1424 std::string ExecModeNameStr(e->name); 1425 ExecModeNameStr += "_exec_mode"; 1426 const char *ExecModeName = ExecModeNameStr.c_str(); 1427 1428 void *ExecModePtr; 1429 uint32_t varsize; 1430 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1431 ExecModeName, &ExecModePtr, &varsize); 1432 1433 if (err == ATMI_STATUS_SUCCESS) { 1434 if ((size_t)varsize != sizeof(int8_t)) { 1435 DP("Loading global computation properties '%s' - size mismatch(%u != " 1436 "%lu)\n", 1437 ExecModeName, varsize, sizeof(int8_t)); 1438 return NULL; 1439 } 1440 1441 memcpy(&ExecModeVal, ExecModePtr, (size_t)varsize); 1442 1443 DP("After loading global for %s ExecMode = %d\n", ExecModeName, 1444 ExecModeVal); 1445 1446 if (ExecModeVal < 0 || ExecModeVal > 1) { 1447 DP("Error wrong exec_mode value specified in HSA code object file: " 1448 "%d\n", 1449 ExecModeVal); 1450 return NULL; 1451 } 1452 } else { 1453 DP("Loading global exec_mode '%s' - symbol missing, using default " 1454 "value " 1455 "GENERIC (1)\n", 1456 ExecModeName); 1457 } 1458 check("Loading computation property", err); 1459 1460 // Flat group size 1461 std::string WGSizeNameStr(e->name); 1462 WGSizeNameStr += "_wg_size"; 1463 const char *WGSizeName = WGSizeNameStr.c_str(); 1464 1465 void *WGSizePtr; 1466 uint32_t WGSize; 1467 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1468 WGSizeName, &WGSizePtr, &WGSize); 1469 1470 if (err == ATMI_STATUS_SUCCESS) { 1471 if ((size_t)WGSize != sizeof(int16_t)) { 1472 DP("Loading global computation properties '%s' - size mismatch (%u " 1473 "!= " 1474 "%lu)\n", 1475 WGSizeName, WGSize, sizeof(int16_t)); 1476 return NULL; 1477 } 1478 1479 memcpy(&WGSizeVal, WGSizePtr, (size_t)WGSize); 1480 1481 DP("After loading global for %s WGSize = %d\n", WGSizeName, WGSizeVal); 1482 1483 if (WGSizeVal < RTLDeviceInfoTy::Default_WG_Size || 1484 WGSizeVal > RTLDeviceInfoTy::Max_WG_Size) { 1485 DP("Error wrong WGSize value specified in HSA code object file: " 1486 "%d\n", 1487 WGSizeVal); 1488 WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1489 } 1490 } else { 1491 DP("Warning: Loading WGSize '%s' - symbol not found, " 1492 "using default value %d\n", 1493 WGSizeName, WGSizeVal); 1494 } 1495 1496 check("Loading WGSize computation property", err); 1497 } 1498 1499 KernelsList.push_back(KernelTy(ExecModeVal, WGSizeVal, device_id, 1500 CallStackAddr, e->name, 1501 kernarg_segment_size)); 1502 __tgt_offload_entry entry = *e; 1503 entry.addr = (void *)&KernelsList.back(); 1504 DeviceInfo.addOffloadEntry(device_id, entry); 1505 DP("Entry point %ld maps to %s\n", e - HostBegin, e->name); 1506 } 1507 1508 return DeviceInfo.getOffloadEntriesTable(device_id); 1509 } 1510 1511 void *__tgt_rtl_data_alloc(int device_id, int64_t size, void *, int32_t kind) { 1512 void *ptr = NULL; 1513 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1514 1515 if (kind != TARGET_ALLOC_DEFAULT) { 1516 REPORT("Invalid target data allocation kind or requested allocator not " 1517 "implemented yet\n"); 1518 return NULL; 1519 } 1520 1521 atmi_status_t err = atmi_malloc(&ptr, size, get_gpu_mem_place(device_id)); 1522 DP("Tgt alloc data %ld bytes, (tgt:%016llx).\n", size, 1523 (long long unsigned)(Elf64_Addr)ptr); 1524 ptr = (err == ATMI_STATUS_SUCCESS) ? ptr : NULL; 1525 return ptr; 1526 } 1527 1528 int32_t __tgt_rtl_data_submit(int device_id, void *tgt_ptr, void *hst_ptr, 1529 int64_t size) { 1530 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1531 __tgt_async_info AsyncInfo; 1532 int32_t rc = dataSubmit(device_id, tgt_ptr, hst_ptr, size, &AsyncInfo); 1533 if (rc != OFFLOAD_SUCCESS) 1534 return OFFLOAD_FAIL; 1535 1536 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1537 } 1538 1539 int32_t __tgt_rtl_data_submit_async(int device_id, void *tgt_ptr, void *hst_ptr, 1540 int64_t size, __tgt_async_info *AsyncInfo) { 1541 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1542 if (AsyncInfo) { 1543 initAsyncInfo(AsyncInfo); 1544 return dataSubmit(device_id, tgt_ptr, hst_ptr, size, AsyncInfo); 1545 } else { 1546 return __tgt_rtl_data_submit(device_id, tgt_ptr, hst_ptr, size); 1547 } 1548 } 1549 1550 int32_t __tgt_rtl_data_retrieve(int device_id, void *hst_ptr, void *tgt_ptr, 1551 int64_t size) { 1552 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1553 __tgt_async_info AsyncInfo; 1554 int32_t rc = dataRetrieve(device_id, hst_ptr, tgt_ptr, size, &AsyncInfo); 1555 if (rc != OFFLOAD_SUCCESS) 1556 return OFFLOAD_FAIL; 1557 1558 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1559 } 1560 1561 int32_t __tgt_rtl_data_retrieve_async(int device_id, void *hst_ptr, 1562 void *tgt_ptr, int64_t size, 1563 __tgt_async_info *AsyncInfo) { 1564 assert(AsyncInfo && "AsyncInfo is nullptr"); 1565 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1566 initAsyncInfo(AsyncInfo); 1567 return dataRetrieve(device_id, hst_ptr, tgt_ptr, size, AsyncInfo); 1568 } 1569 1570 int32_t __tgt_rtl_data_delete(int device_id, void *tgt_ptr) { 1571 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1572 atmi_status_t err; 1573 DP("Tgt free data (tgt:%016llx).\n", (long long unsigned)(Elf64_Addr)tgt_ptr); 1574 err = atmi_free(tgt_ptr); 1575 if (err != ATMI_STATUS_SUCCESS) { 1576 DP("Error when freeing CUDA memory\n"); 1577 return OFFLOAD_FAIL; 1578 } 1579 return OFFLOAD_SUCCESS; 1580 } 1581 1582 // Determine launch values for threadsPerGroup and num_groups. 1583 // Outputs: treadsPerGroup, num_groups 1584 // Inputs: Max_Teams, Max_WG_Size, Warp_Size, ExecutionMode, 1585 // EnvTeamLimit, EnvNumTeams, num_teams, thread_limit, 1586 // loop_tripcount. 1587 void getLaunchVals(int &threadsPerGroup, int &num_groups, int ConstWGSize, 1588 int ExecutionMode, int EnvTeamLimit, int EnvNumTeams, 1589 int num_teams, int thread_limit, uint64_t loop_tripcount, 1590 int32_t device_id) { 1591 1592 int Max_Teams = DeviceInfo.EnvMaxTeamsDefault > 0 1593 ? DeviceInfo.EnvMaxTeamsDefault 1594 : DeviceInfo.NumTeams[device_id]; 1595 if (Max_Teams > DeviceInfo.HardTeamLimit) 1596 Max_Teams = DeviceInfo.HardTeamLimit; 1597 1598 if (print_kernel_trace & STARTUP_DETAILS) { 1599 fprintf(stderr, "RTLDeviceInfoTy::Max_Teams: %d\n", 1600 RTLDeviceInfoTy::Max_Teams); 1601 fprintf(stderr, "Max_Teams: %d\n", Max_Teams); 1602 fprintf(stderr, "RTLDeviceInfoTy::Warp_Size: %d\n", 1603 RTLDeviceInfoTy::Warp_Size); 1604 fprintf(stderr, "RTLDeviceInfoTy::Max_WG_Size: %d\n", 1605 RTLDeviceInfoTy::Max_WG_Size); 1606 fprintf(stderr, "RTLDeviceInfoTy::Default_WG_Size: %d\n", 1607 RTLDeviceInfoTy::Default_WG_Size); 1608 fprintf(stderr, "thread_limit: %d\n", thread_limit); 1609 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1610 fprintf(stderr, "ConstWGSize: %d\n", ConstWGSize); 1611 } 1612 // check for thread_limit() clause 1613 if (thread_limit > 0) { 1614 threadsPerGroup = thread_limit; 1615 DP("Setting threads per block to requested %d\n", thread_limit); 1616 if (ExecutionMode == GENERIC) { // Add master warp for GENERIC 1617 threadsPerGroup += RTLDeviceInfoTy::Warp_Size; 1618 DP("Adding master wavefront: +%d threads\n", RTLDeviceInfoTy::Warp_Size); 1619 } 1620 if (threadsPerGroup > RTLDeviceInfoTy::Max_WG_Size) { // limit to max 1621 threadsPerGroup = RTLDeviceInfoTy::Max_WG_Size; 1622 DP("Setting threads per block to maximum %d\n", threadsPerGroup); 1623 } 1624 } 1625 // check flat_max_work_group_size attr here 1626 if (threadsPerGroup > ConstWGSize) { 1627 threadsPerGroup = ConstWGSize; 1628 DP("Reduced threadsPerGroup to flat-attr-group-size limit %d\n", 1629 threadsPerGroup); 1630 } 1631 if (print_kernel_trace & STARTUP_DETAILS) 1632 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1633 DP("Preparing %d threads\n", threadsPerGroup); 1634 1635 // Set default num_groups (teams) 1636 if (DeviceInfo.EnvTeamLimit > 0) 1637 num_groups = (Max_Teams < DeviceInfo.EnvTeamLimit) 1638 ? Max_Teams 1639 : DeviceInfo.EnvTeamLimit; 1640 else 1641 num_groups = Max_Teams; 1642 DP("Set default num of groups %d\n", num_groups); 1643 1644 if (print_kernel_trace & STARTUP_DETAILS) { 1645 fprintf(stderr, "num_groups: %d\n", num_groups); 1646 fprintf(stderr, "num_teams: %d\n", num_teams); 1647 } 1648 1649 // Reduce num_groups if threadsPerGroup exceeds RTLDeviceInfoTy::Max_WG_Size 1650 // This reduction is typical for default case (no thread_limit clause). 1651 // or when user goes crazy with num_teams clause. 1652 // FIXME: We cant distinguish between a constant or variable thread limit. 1653 // So we only handle constant thread_limits. 1654 if (threadsPerGroup > 1655 RTLDeviceInfoTy::Default_WG_Size) // 256 < threadsPerGroup <= 1024 1656 // Should we round threadsPerGroup up to nearest RTLDeviceInfoTy::Warp_Size 1657 // here? 1658 num_groups = (Max_Teams * RTLDeviceInfoTy::Max_WG_Size) / threadsPerGroup; 1659 1660 // check for num_teams() clause 1661 if (num_teams > 0) { 1662 num_groups = (num_teams < num_groups) ? num_teams : num_groups; 1663 } 1664 if (print_kernel_trace & STARTUP_DETAILS) { 1665 fprintf(stderr, "num_groups: %d\n", num_groups); 1666 fprintf(stderr, "DeviceInfo.EnvNumTeams %d\n", DeviceInfo.EnvNumTeams); 1667 fprintf(stderr, "DeviceInfo.EnvTeamLimit %d\n", DeviceInfo.EnvTeamLimit); 1668 } 1669 1670 if (DeviceInfo.EnvNumTeams > 0) { 1671 num_groups = (DeviceInfo.EnvNumTeams < num_groups) ? DeviceInfo.EnvNumTeams 1672 : num_groups; 1673 DP("Modifying teams based on EnvNumTeams %d\n", DeviceInfo.EnvNumTeams); 1674 } else if (DeviceInfo.EnvTeamLimit > 0) { 1675 num_groups = (DeviceInfo.EnvTeamLimit < num_groups) 1676 ? DeviceInfo.EnvTeamLimit 1677 : num_groups; 1678 DP("Modifying teams based on EnvTeamLimit%d\n", DeviceInfo.EnvTeamLimit); 1679 } else { 1680 if (num_teams <= 0) { 1681 if (loop_tripcount > 0) { 1682 if (ExecutionMode == SPMD) { 1683 // round up to the nearest integer 1684 num_groups = ((loop_tripcount - 1) / threadsPerGroup) + 1; 1685 } else { 1686 num_groups = loop_tripcount; 1687 } 1688 DP("Using %d teams due to loop trip count %" PRIu64 " and number of " 1689 "threads per block %d\n", 1690 num_groups, loop_tripcount, threadsPerGroup); 1691 } 1692 } else { 1693 num_groups = num_teams; 1694 } 1695 if (num_groups > Max_Teams) { 1696 num_groups = Max_Teams; 1697 if (print_kernel_trace & STARTUP_DETAILS) 1698 fprintf(stderr, "Limiting num_groups %d to Max_Teams %d \n", num_groups, 1699 Max_Teams); 1700 } 1701 if (num_groups > num_teams && num_teams > 0) { 1702 num_groups = num_teams; 1703 if (print_kernel_trace & STARTUP_DETAILS) 1704 fprintf(stderr, "Limiting num_groups %d to clause num_teams %d \n", 1705 num_groups, num_teams); 1706 } 1707 } 1708 1709 // num_teams clause always honored, no matter what, unless DEFAULT is active. 1710 if (num_teams > 0) { 1711 num_groups = num_teams; 1712 // Cap num_groups to EnvMaxTeamsDefault if set. 1713 if (DeviceInfo.EnvMaxTeamsDefault > 0 && 1714 num_groups > DeviceInfo.EnvMaxTeamsDefault) 1715 num_groups = DeviceInfo.EnvMaxTeamsDefault; 1716 } 1717 if (print_kernel_trace & STARTUP_DETAILS) { 1718 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1719 fprintf(stderr, "num_groups: %d\n", num_groups); 1720 fprintf(stderr, "loop_tripcount: %ld\n", loop_tripcount); 1721 } 1722 DP("Final %d num_groups and %d threadsPerGroup\n", num_groups, 1723 threadsPerGroup); 1724 } 1725 1726 static uint64_t acquire_available_packet_id(hsa_queue_t *queue) { 1727 uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1); 1728 bool full = true; 1729 while (full) { 1730 full = 1731 packet_id >= (queue->size + hsa_queue_load_read_index_scacquire(queue)); 1732 } 1733 return packet_id; 1734 } 1735 1736 extern bool g_atmi_hostcall_required; // declared without header by atmi 1737 1738 static int32_t __tgt_rtl_run_target_team_region_locked( 1739 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 1740 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 1741 int32_t thread_limit, uint64_t loop_tripcount); 1742 1743 int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr, 1744 void **tgt_args, 1745 ptrdiff_t *tgt_offsets, 1746 int32_t arg_num, int32_t num_teams, 1747 int32_t thread_limit, 1748 uint64_t loop_tripcount) { 1749 1750 DeviceInfo.load_run_lock.lock_shared(); 1751 int32_t res = __tgt_rtl_run_target_team_region_locked( 1752 device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, num_teams, 1753 thread_limit, loop_tripcount); 1754 1755 DeviceInfo.load_run_lock.unlock_shared(); 1756 return res; 1757 } 1758 1759 int32_t __tgt_rtl_run_target_team_region_locked( 1760 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 1761 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 1762 int32_t thread_limit, uint64_t loop_tripcount) { 1763 // Set the context we are using 1764 // update thread limit content in gpu memory if un-initialized or specified 1765 // from host 1766 1767 DP("Run target team region thread_limit %d\n", thread_limit); 1768 1769 // All args are references. 1770 std::vector<void *> args(arg_num); 1771 std::vector<void *> ptrs(arg_num); 1772 1773 DP("Arg_num: %d\n", arg_num); 1774 for (int32_t i = 0; i < arg_num; ++i) { 1775 ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]); 1776 args[i] = &ptrs[i]; 1777 DP("Offseted base: arg[%d]:" DPxMOD "\n", i, DPxPTR(ptrs[i])); 1778 } 1779 1780 KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr; 1781 1782 std::string kernel_name = std::string(KernelInfo->Name); 1783 if (KernelInfoTable[device_id].find(kernel_name) == 1784 KernelInfoTable[device_id].end()) { 1785 DP("Kernel %s not found\n", kernel_name.c_str()); 1786 return OFFLOAD_FAIL; 1787 } 1788 1789 uint32_t sgpr_count, vgpr_count, sgpr_spill_count, vgpr_spill_count; 1790 1791 { 1792 auto it = KernelInfoTable[device_id][kernel_name]; 1793 sgpr_count = it.sgpr_count; 1794 vgpr_count = it.vgpr_count; 1795 sgpr_spill_count = it.sgpr_spill_count; 1796 vgpr_spill_count = it.vgpr_spill_count; 1797 } 1798 1799 /* 1800 * Set limit based on ThreadsPerGroup and GroupsPerDevice 1801 */ 1802 int num_groups = 0; 1803 1804 int threadsPerGroup = RTLDeviceInfoTy::Default_WG_Size; 1805 1806 getLaunchVals(threadsPerGroup, num_groups, KernelInfo->ConstWGSize, 1807 KernelInfo->ExecutionMode, DeviceInfo.EnvTeamLimit, 1808 DeviceInfo.EnvNumTeams, 1809 num_teams, // From run_region arg 1810 thread_limit, // From run_region arg 1811 loop_tripcount, // From run_region arg 1812 KernelInfo->device_id); 1813 1814 if (print_kernel_trace >= LAUNCH) { 1815 // enum modes are SPMD, GENERIC, NONE 0,1,2 1816 // if doing rtl timing, print to stderr, unless stdout requested. 1817 bool traceToStdout = print_kernel_trace & (RTL_TO_STDOUT | RTL_TIMING); 1818 fprintf(traceToStdout ? stdout : stderr, 1819 "DEVID:%2d SGN:%1d ConstWGSize:%-4d args:%2d teamsXthrds:(%4dX%4d) " 1820 "reqd:(%4dX%4d) sgpr_count:%u vgpr_count:%u sgpr_spill_count:%u " 1821 "vgpr_spill_count:%u tripcount:%lu n:%s\n", 1822 device_id, KernelInfo->ExecutionMode, KernelInfo->ConstWGSize, 1823 arg_num, num_groups, threadsPerGroup, num_teams, thread_limit, 1824 sgpr_count, vgpr_count, sgpr_spill_count, vgpr_spill_count, 1825 loop_tripcount, KernelInfo->Name); 1826 } 1827 1828 // Run on the device. 1829 { 1830 hsa_queue_t *queue = DeviceInfo.HSAQueues[device_id]; 1831 uint64_t packet_id = acquire_available_packet_id(queue); 1832 1833 const uint32_t mask = queue->size - 1; // size is a power of 2 1834 hsa_kernel_dispatch_packet_t *packet = 1835 (hsa_kernel_dispatch_packet_t *)queue->base_address + 1836 (packet_id & mask); 1837 1838 // packet->header is written last 1839 packet->setup = UINT16_C(1) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS; 1840 packet->workgroup_size_x = threadsPerGroup; 1841 packet->workgroup_size_y = 1; 1842 packet->workgroup_size_z = 1; 1843 packet->reserved0 = 0; 1844 packet->grid_size_x = num_groups * threadsPerGroup; 1845 packet->grid_size_y = 1; 1846 packet->grid_size_z = 1; 1847 packet->private_segment_size = 0; 1848 packet->group_segment_size = 0; 1849 packet->kernel_object = 0; 1850 packet->kernarg_address = 0; // use the block allocator 1851 packet->reserved2 = 0; // atmi writes id_ here 1852 packet->completion_signal = {0}; // may want a pool of signals 1853 1854 { 1855 auto it = KernelInfoTable[device_id][kernel_name]; 1856 packet->kernel_object = it.kernel_object; 1857 packet->private_segment_size = it.private_segment_size; 1858 packet->group_segment_size = it.group_segment_size; 1859 assert(arg_num == (int)it.num_args); 1860 } 1861 1862 KernelArgPool *ArgPool = nullptr; 1863 { 1864 auto it = KernelArgPoolMap.find(std::string(KernelInfo->Name)); 1865 if (it != KernelArgPoolMap.end()) { 1866 ArgPool = (it->second).get(); 1867 } 1868 } 1869 if (!ArgPool) { 1870 fprintf(stderr, "Warning: No ArgPool for %s on device %d\n", 1871 KernelInfo->Name, device_id); 1872 } 1873 { 1874 void *kernarg = nullptr; 1875 if (ArgPool) { 1876 assert(ArgPool->kernarg_segment_size == (arg_num * sizeof(void *))); 1877 kernarg = ArgPool->allocate(arg_num); 1878 } 1879 if (!kernarg) { 1880 printf("Allocate kernarg failed\n"); 1881 exit(1); 1882 } 1883 1884 // Copy explicit arguments 1885 for (int i = 0; i < arg_num; i++) { 1886 memcpy((char *)kernarg + sizeof(void *) * i, args[i], sizeof(void *)); 1887 } 1888 1889 // Initialize implicit arguments. ATMI seems to leave most fields 1890 // uninitialized 1891 atmi_implicit_args_t *impl_args = 1892 reinterpret_cast<atmi_implicit_args_t *>( 1893 static_cast<char *>(kernarg) + ArgPool->kernarg_segment_size); 1894 memset(impl_args, 0, 1895 sizeof(atmi_implicit_args_t)); // may not be necessary 1896 impl_args->offset_x = 0; 1897 impl_args->offset_y = 0; 1898 impl_args->offset_z = 0; 1899 1900 // assign a hostcall buffer for the selected Q 1901 if (g_atmi_hostcall_required) { 1902 // hostrpc_assign_buffer is not thread safe, and this function is 1903 // under a multiple reader lock, not a writer lock. 1904 static pthread_mutex_t hostcall_init_lock = PTHREAD_MUTEX_INITIALIZER; 1905 pthread_mutex_lock(&hostcall_init_lock); 1906 impl_args->hostcall_ptr = hostrpc_assign_buffer( 1907 DeviceInfo.HSAAgents[device_id], queue, device_id); 1908 pthread_mutex_unlock(&hostcall_init_lock); 1909 if (!impl_args->hostcall_ptr) { 1910 DP("hostrpc_assign_buffer failed, gpu would dereference null and " 1911 "error\n"); 1912 return OFFLOAD_FAIL; 1913 } 1914 } 1915 1916 packet->kernarg_address = kernarg; 1917 } 1918 1919 { 1920 hsa_signal_t s = DeviceInfo.FreeSignalPool.pop(); 1921 if (s.handle == 0) { 1922 printf("Failed to get signal instance\n"); 1923 exit(1); 1924 } 1925 packet->completion_signal = s; 1926 hsa_signal_store_relaxed(packet->completion_signal, 1); 1927 } 1928 1929 core::packet_store_release(reinterpret_cast<uint32_t *>(packet), 1930 core::create_header(), packet->setup); 1931 1932 hsa_signal_store_relaxed(queue->doorbell_signal, packet_id); 1933 1934 while (hsa_signal_wait_scacquire(packet->completion_signal, 1935 HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX, 1936 HSA_WAIT_STATE_BLOCKED) != 0) 1937 ; 1938 1939 assert(ArgPool); 1940 ArgPool->deallocate(packet->kernarg_address); 1941 DeviceInfo.FreeSignalPool.push(packet->completion_signal); 1942 } 1943 1944 DP("Kernel completed\n"); 1945 return OFFLOAD_SUCCESS; 1946 } 1947 1948 int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr, 1949 void **tgt_args, ptrdiff_t *tgt_offsets, 1950 int32_t arg_num) { 1951 // use one team and one thread 1952 // fix thread num 1953 int32_t team_num = 1; 1954 int32_t thread_limit = 0; // use default 1955 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 1956 tgt_offsets, arg_num, team_num, 1957 thread_limit, 0); 1958 } 1959 1960 int32_t __tgt_rtl_run_target_region_async(int32_t device_id, 1961 void *tgt_entry_ptr, void **tgt_args, 1962 ptrdiff_t *tgt_offsets, 1963 int32_t arg_num, 1964 __tgt_async_info *AsyncInfo) { 1965 assert(AsyncInfo && "AsyncInfo is nullptr"); 1966 initAsyncInfo(AsyncInfo); 1967 1968 // use one team and one thread 1969 // fix thread num 1970 int32_t team_num = 1; 1971 int32_t thread_limit = 0; // use default 1972 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 1973 tgt_offsets, arg_num, team_num, 1974 thread_limit, 0); 1975 } 1976 1977 int32_t __tgt_rtl_synchronize(int32_t device_id, __tgt_async_info *AsyncInfo) { 1978 assert(AsyncInfo && "AsyncInfo is nullptr"); 1979 1980 // Cuda asserts that AsyncInfo->Queue is non-null, but this invariant 1981 // is not ensured by devices.cpp for amdgcn 1982 // assert(AsyncInfo->Queue && "AsyncInfo->Queue is nullptr"); 1983 if (AsyncInfo->Queue) { 1984 finiAsyncInfo(AsyncInfo); 1985 } 1986 return OFFLOAD_SUCCESS; 1987 } 1988