1 //===--- amdgpu/src/rtl.cpp --------------------------------------- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // RTL for AMD hsa machine 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <algorithm> 14 #include <assert.h> 15 #include <cstdio> 16 #include <cstdlib> 17 #include <cstring> 18 #include <functional> 19 #include <libelf.h> 20 #include <list> 21 #include <memory> 22 #include <mutex> 23 #include <shared_mutex> 24 #include <unordered_map> 25 #include <vector> 26 27 #include "interop_hsa.h" 28 #include "impl_runtime.h" 29 30 #include "internal.h" 31 #include "rt.h" 32 33 #include "DeviceEnvironment.h" 34 #include "get_elf_mach_gfx_name.h" 35 #include "omptargetplugin.h" 36 #include "print_tracing.h" 37 38 #include "llvm/Frontend/OpenMP/OMPConstants.h" 39 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 40 41 // hostrpc interface, FIXME: consider moving to its own include these are 42 // statically linked into amdgpu/plugin if present from hostrpc_services.a, 43 // linked as --whole-archive to override the weak symbols that are used to 44 // implement a fallback for toolchains that do not yet have a hostrpc library. 45 extern "C" { 46 uint64_t hostrpc_assign_buffer(hsa_agent_t agent, hsa_queue_t *this_Q, 47 uint32_t device_id); 48 hsa_status_t hostrpc_init(); 49 hsa_status_t hostrpc_terminate(); 50 51 __attribute__((weak)) hsa_status_t hostrpc_init() { return HSA_STATUS_SUCCESS; } 52 __attribute__((weak)) hsa_status_t hostrpc_terminate() { 53 return HSA_STATUS_SUCCESS; 54 } 55 __attribute__((weak)) uint64_t hostrpc_assign_buffer(hsa_agent_t, hsa_queue_t *, 56 uint32_t device_id) { 57 DP("Warning: Attempting to assign hostrpc to device %u, but hostrpc library " 58 "missing\n", 59 device_id); 60 return 0; 61 } 62 } 63 64 // Heuristic parameters used for kernel launch 65 // Number of teams per CU to allow scheduling flexibility 66 static const unsigned DefaultTeamsPerCU = 4; 67 68 int print_kernel_trace; 69 70 #ifdef OMPTARGET_DEBUG 71 #define check(msg, status) \ 72 if (status != HSA_STATUS_SUCCESS) { \ 73 DP(#msg " failed\n"); \ 74 } else { \ 75 DP(#msg " succeeded\n"); \ 76 } 77 #else 78 #define check(msg, status) \ 79 {} 80 #endif 81 82 #include "elf_common.h" 83 84 namespace hsa { 85 template <typename C> hsa_status_t iterate_agents(C cb) { 86 auto L = [](hsa_agent_t agent, void *data) -> hsa_status_t { 87 C *unwrapped = static_cast<C *>(data); 88 return (*unwrapped)(agent); 89 }; 90 return hsa_iterate_agents(L, static_cast<void *>(&cb)); 91 } 92 93 template <typename C> 94 hsa_status_t amd_agent_iterate_memory_pools(hsa_agent_t Agent, C cb) { 95 auto L = [](hsa_amd_memory_pool_t MemoryPool, void *data) -> hsa_status_t { 96 C *unwrapped = static_cast<C *>(data); 97 return (*unwrapped)(MemoryPool); 98 }; 99 100 return hsa_amd_agent_iterate_memory_pools(Agent, L, static_cast<void *>(&cb)); 101 } 102 103 } // namespace hsa 104 105 /// Keep entries table per device 106 struct FuncOrGblEntryTy { 107 __tgt_target_table Table; 108 std::vector<__tgt_offload_entry> Entries; 109 }; 110 111 struct KernelArgPool { 112 private: 113 static pthread_mutex_t mutex; 114 115 public: 116 uint32_t kernarg_segment_size; 117 void *kernarg_region = nullptr; 118 std::queue<int> free_kernarg_segments; 119 120 uint32_t kernarg_size_including_implicit() { 121 return kernarg_segment_size + sizeof(impl_implicit_args_t); 122 } 123 124 ~KernelArgPool() { 125 if (kernarg_region) { 126 auto r = hsa_amd_memory_pool_free(kernarg_region); 127 if (r != HSA_STATUS_SUCCESS) { 128 DP("hsa_amd_memory_pool_free failed: %s\n", get_error_string(r)); 129 } 130 } 131 } 132 133 // Can't really copy or move a mutex 134 KernelArgPool() = default; 135 KernelArgPool(const KernelArgPool &) = delete; 136 KernelArgPool(KernelArgPool &&) = delete; 137 138 KernelArgPool(uint32_t kernarg_segment_size, 139 hsa_amd_memory_pool_t &memory_pool) 140 : kernarg_segment_size(kernarg_segment_size) { 141 142 // impl uses one pool per kernel for all gpus, with a fixed upper size 143 // preserving that exact scheme here, including the queue<int> 144 145 hsa_status_t err = hsa_amd_memory_pool_allocate( 146 memory_pool, kernarg_size_including_implicit() * MAX_NUM_KERNELS, 0, 147 &kernarg_region); 148 149 if (err != HSA_STATUS_SUCCESS) { 150 DP("hsa_amd_memory_pool_allocate failed: %s\n", get_error_string(err)); 151 kernarg_region = nullptr; // paranoid 152 return; 153 } 154 155 err = core::allow_access_to_all_gpu_agents(kernarg_region); 156 if (err != HSA_STATUS_SUCCESS) { 157 DP("hsa allow_access_to_all_gpu_agents failed: %s\n", 158 get_error_string(err)); 159 auto r = hsa_amd_memory_pool_free(kernarg_region); 160 if (r != HSA_STATUS_SUCCESS) { 161 // if free failed, can't do anything more to resolve it 162 DP("hsa memory poll free failed: %s\n", get_error_string(err)); 163 } 164 kernarg_region = nullptr; 165 return; 166 } 167 168 for (int i = 0; i < MAX_NUM_KERNELS; i++) { 169 free_kernarg_segments.push(i); 170 } 171 } 172 173 void *allocate(uint64_t arg_num) { 174 assert((arg_num * sizeof(void *)) == kernarg_segment_size); 175 lock l(&mutex); 176 void *res = nullptr; 177 if (!free_kernarg_segments.empty()) { 178 179 int free_idx = free_kernarg_segments.front(); 180 res = static_cast<void *>(static_cast<char *>(kernarg_region) + 181 (free_idx * kernarg_size_including_implicit())); 182 assert(free_idx == pointer_to_index(res)); 183 free_kernarg_segments.pop(); 184 } 185 return res; 186 } 187 188 void deallocate(void *ptr) { 189 lock l(&mutex); 190 int idx = pointer_to_index(ptr); 191 free_kernarg_segments.push(idx); 192 } 193 194 private: 195 int pointer_to_index(void *ptr) { 196 ptrdiff_t bytes = 197 static_cast<char *>(ptr) - static_cast<char *>(kernarg_region); 198 assert(bytes >= 0); 199 assert(bytes % kernarg_size_including_implicit() == 0); 200 return bytes / kernarg_size_including_implicit(); 201 } 202 struct lock { 203 lock(pthread_mutex_t *m) : m(m) { pthread_mutex_lock(m); } 204 ~lock() { pthread_mutex_unlock(m); } 205 pthread_mutex_t *m; 206 }; 207 }; 208 pthread_mutex_t KernelArgPool::mutex = PTHREAD_MUTEX_INITIALIZER; 209 210 std::unordered_map<std::string /*kernel*/, std::unique_ptr<KernelArgPool>> 211 KernelArgPoolMap; 212 213 /// Use a single entity to encode a kernel and a set of flags 214 struct KernelTy { 215 llvm::omp::OMPTgtExecModeFlags ExecutionMode; 216 int16_t ConstWGSize; 217 int32_t device_id; 218 void *CallStackAddr = nullptr; 219 const char *Name; 220 221 KernelTy(llvm::omp::OMPTgtExecModeFlags _ExecutionMode, int16_t _ConstWGSize, 222 int32_t _device_id, void *_CallStackAddr, const char *_Name, 223 uint32_t _kernarg_segment_size, 224 hsa_amd_memory_pool_t &KernArgMemoryPool) 225 : ExecutionMode(_ExecutionMode), ConstWGSize(_ConstWGSize), 226 device_id(_device_id), CallStackAddr(_CallStackAddr), Name(_Name) { 227 DP("Construct kernelinfo: ExecMode %d\n", ExecutionMode); 228 229 std::string N(_Name); 230 if (KernelArgPoolMap.find(N) == KernelArgPoolMap.end()) { 231 KernelArgPoolMap.insert( 232 std::make_pair(N, std::unique_ptr<KernelArgPool>(new KernelArgPool( 233 _kernarg_segment_size, KernArgMemoryPool)))); 234 } 235 } 236 }; 237 238 /// List that contains all the kernels. 239 /// FIXME: we may need this to be per device and per library. 240 std::list<KernelTy> KernelsList; 241 242 template <typename Callback> static hsa_status_t FindAgents(Callback CB) { 243 244 hsa_status_t err = 245 hsa::iterate_agents([&](hsa_agent_t agent) -> hsa_status_t { 246 hsa_device_type_t device_type; 247 // get_info fails iff HSA runtime not yet initialized 248 hsa_status_t err = 249 hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 250 251 if (err != HSA_STATUS_SUCCESS) { 252 if (print_kernel_trace > 0) 253 DP("rtl.cpp: err %s\n", get_error_string(err)); 254 255 return err; 256 } 257 258 CB(device_type, agent); 259 return HSA_STATUS_SUCCESS; 260 }); 261 262 // iterate_agents fails iff HSA runtime not yet initialized 263 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) { 264 DP("rtl.cpp: err %s\n", get_error_string(err)); 265 } 266 267 return err; 268 } 269 270 static void callbackQueue(hsa_status_t status, hsa_queue_t *source, 271 void *data) { 272 if (status != HSA_STATUS_SUCCESS) { 273 const char *status_string; 274 if (hsa_status_string(status, &status_string) != HSA_STATUS_SUCCESS) { 275 status_string = "unavailable"; 276 } 277 DP("[%s:%d] GPU error in queue %p %d (%s)\n", __FILE__, __LINE__, source, 278 status, status_string); 279 abort(); 280 } 281 } 282 283 namespace core { 284 namespace { 285 286 bool checkResult(hsa_status_t Err, const char *ErrMsg) { 287 if (Err == HSA_STATUS_SUCCESS) 288 return true; 289 290 REPORT("%s", ErrMsg); 291 REPORT("%s", get_error_string(Err)); 292 return false; 293 } 294 295 void packet_store_release(uint32_t *packet, uint16_t header, uint16_t rest) { 296 __atomic_store_n(packet, header | (rest << 16), __ATOMIC_RELEASE); 297 } 298 299 uint16_t create_header() { 300 uint16_t header = HSA_PACKET_TYPE_KERNEL_DISPATCH << HSA_PACKET_HEADER_TYPE; 301 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE; 302 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE; 303 return header; 304 } 305 306 hsa_status_t isValidMemoryPool(hsa_amd_memory_pool_t MemoryPool) { 307 bool AllocAllowed = false; 308 hsa_status_t Err = hsa_amd_memory_pool_get_info( 309 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED, 310 &AllocAllowed); 311 if (Err != HSA_STATUS_SUCCESS) { 312 DP("Alloc allowed in memory pool check failed: %s\n", 313 get_error_string(Err)); 314 return Err; 315 } 316 317 size_t Size = 0; 318 Err = hsa_amd_memory_pool_get_info(MemoryPool, HSA_AMD_MEMORY_POOL_INFO_SIZE, 319 &Size); 320 if (Err != HSA_STATUS_SUCCESS) { 321 DP("Get memory pool size failed: %s\n", get_error_string(Err)); 322 return Err; 323 } 324 325 return (AllocAllowed && Size > 0) ? HSA_STATUS_SUCCESS : HSA_STATUS_ERROR; 326 } 327 328 hsa_status_t addMemoryPool(hsa_amd_memory_pool_t MemoryPool, void *Data) { 329 std::vector<hsa_amd_memory_pool_t> *Result = 330 static_cast<std::vector<hsa_amd_memory_pool_t> *>(Data); 331 332 hsa_status_t err; 333 if ((err = isValidMemoryPool(MemoryPool)) != HSA_STATUS_SUCCESS) { 334 return err; 335 } 336 337 Result->push_back(MemoryPool); 338 return HSA_STATUS_SUCCESS; 339 } 340 341 } // namespace 342 } // namespace core 343 344 struct EnvironmentVariables { 345 int NumTeams; 346 int TeamLimit; 347 int TeamThreadLimit; 348 int MaxTeamsDefault; 349 int DynamicMemSize; 350 }; 351 352 template <uint32_t wavesize> 353 static constexpr const llvm::omp::GV &getGridValue() { 354 return llvm::omp::getAMDGPUGridValues<wavesize>(); 355 } 356 357 struct HSALifetime { 358 // Wrapper around HSA used to ensure it is constructed before other types 359 // and destructed after, which means said other types can use raii for 360 // cleanup without risking running outside of the lifetime of HSA 361 const hsa_status_t S; 362 363 bool HSAInitSuccess() { return S == HSA_STATUS_SUCCESS; } 364 HSALifetime() : S(hsa_init()) {} 365 366 ~HSALifetime() { 367 if (S == HSA_STATUS_SUCCESS) { 368 hsa_status_t Err = hsa_shut_down(); 369 if (Err != HSA_STATUS_SUCCESS) { 370 // Can't call into HSA to get a string from the integer 371 DP("Shutting down HSA failed: %d\n", Err); 372 } 373 } 374 } 375 }; 376 377 // Handle scheduling of multiple hsa_queue's per device to 378 // multiple threads (one scheduler per device) 379 class HSAQueueScheduler { 380 public: 381 HSAQueueScheduler() : current(0) {} 382 383 HSAQueueScheduler(const HSAQueueScheduler &) = delete; 384 385 HSAQueueScheduler(HSAQueueScheduler &&q) { 386 current = q.current.load(); 387 for (uint8_t i = 0; i < NUM_QUEUES_PER_DEVICE; i++) { 388 HSAQueues[i] = q.HSAQueues[i]; 389 q.HSAQueues[i] = nullptr; 390 } 391 } 392 393 // \return false if any HSA queue creation fails 394 bool CreateQueues(hsa_agent_t HSAAgent, uint32_t queue_size) { 395 for (uint8_t i = 0; i < NUM_QUEUES_PER_DEVICE; i++) { 396 hsa_queue_t *Q = nullptr; 397 hsa_status_t rc = 398 hsa_queue_create(HSAAgent, queue_size, HSA_QUEUE_TYPE_MULTI, 399 callbackQueue, NULL, UINT32_MAX, UINT32_MAX, &Q); 400 if (rc != HSA_STATUS_SUCCESS) { 401 DP("Failed to create HSA queue %d\n", i); 402 return false; 403 } 404 HSAQueues[i] = Q; 405 } 406 return true; 407 } 408 409 ~HSAQueueScheduler() { 410 for (uint8_t i = 0; i < NUM_QUEUES_PER_DEVICE; i++) { 411 if (HSAQueues[i]) { 412 hsa_status_t err = hsa_queue_destroy(HSAQueues[i]); 413 if (err != HSA_STATUS_SUCCESS) 414 DP("Error destroying HSA queue"); 415 } 416 } 417 } 418 419 // \return next queue to use for device 420 hsa_queue_t *Next() { 421 return HSAQueues[(current.fetch_add(1, std::memory_order_relaxed)) % 422 NUM_QUEUES_PER_DEVICE]; 423 } 424 425 private: 426 // Number of queues per device 427 enum : uint8_t { NUM_QUEUES_PER_DEVICE = 4 }; 428 hsa_queue_t *HSAQueues[NUM_QUEUES_PER_DEVICE] = {}; 429 std::atomic<uint8_t> current; 430 }; 431 432 /// Class containing all the device information 433 class RTLDeviceInfoTy : HSALifetime { 434 std::vector<std::list<FuncOrGblEntryTy>> FuncGblEntries; 435 436 struct QueueDeleter { 437 void operator()(hsa_queue_t *Q) { 438 if (Q) { 439 hsa_status_t Err = hsa_queue_destroy(Q); 440 if (Err != HSA_STATUS_SUCCESS) { 441 DP("Error destroying hsa queue: %s\n", get_error_string(Err)); 442 } 443 } 444 } 445 }; 446 447 public: 448 bool ConstructionSucceeded = false; 449 450 // load binary populates symbol tables and mutates various global state 451 // run uses those symbol tables 452 std::shared_timed_mutex load_run_lock; 453 454 int NumberOfDevices = 0; 455 456 // GPU devices 457 std::vector<hsa_agent_t> HSAAgents; 458 std::vector<HSAQueueScheduler> HSAQueueSchedulers; // one per gpu 459 460 // CPUs 461 std::vector<hsa_agent_t> CPUAgents; 462 463 // Device properties 464 std::vector<int> ComputeUnits; 465 std::vector<int> GroupsPerDevice; 466 std::vector<int> ThreadsPerGroup; 467 std::vector<int> WarpSize; 468 std::vector<std::string> GPUName; 469 470 // OpenMP properties 471 std::vector<int> NumTeams; 472 std::vector<int> NumThreads; 473 474 // OpenMP Environment properties 475 EnvironmentVariables Env; 476 477 // OpenMP Requires Flags 478 int64_t RequiresFlags; 479 480 // Resource pools 481 SignalPoolT FreeSignalPool; 482 483 bool hostcall_required = false; 484 485 std::vector<hsa_executable_t> HSAExecutables; 486 487 std::vector<std::map<std::string, atl_kernel_info_t>> KernelInfoTable; 488 std::vector<std::map<std::string, atl_symbol_info_t>> SymbolInfoTable; 489 490 hsa_amd_memory_pool_t KernArgPool; 491 492 // fine grained memory pool for host allocations 493 hsa_amd_memory_pool_t HostFineGrainedMemoryPool; 494 495 // fine and coarse-grained memory pools per offloading device 496 std::vector<hsa_amd_memory_pool_t> DeviceFineGrainedMemoryPools; 497 std::vector<hsa_amd_memory_pool_t> DeviceCoarseGrainedMemoryPools; 498 499 struct implFreePtrDeletor { 500 void operator()(void *p) { 501 core::Runtime::Memfree(p); // ignore failure to free 502 } 503 }; 504 505 // device_State shared across loaded binaries, error if inconsistent size 506 std::vector<std::pair<std::unique_ptr<void, implFreePtrDeletor>, uint64_t>> 507 deviceStateStore; 508 509 static const unsigned HardTeamLimit = 510 (1 << 16) - 1; // 64K needed to fit in uint16 511 static const int DefaultNumTeams = 128; 512 513 // These need to be per-device since different devices can have different 514 // wave sizes, but are currently the same number for each so that refactor 515 // can be postponed. 516 static_assert(getGridValue<32>().GV_Max_Teams == 517 getGridValue<64>().GV_Max_Teams, 518 ""); 519 static const int Max_Teams = getGridValue<64>().GV_Max_Teams; 520 521 static_assert(getGridValue<32>().GV_Max_WG_Size == 522 getGridValue<64>().GV_Max_WG_Size, 523 ""); 524 static const int Max_WG_Size = getGridValue<64>().GV_Max_WG_Size; 525 526 static_assert(getGridValue<32>().GV_Default_WG_Size == 527 getGridValue<64>().GV_Default_WG_Size, 528 ""); 529 static const int Default_WG_Size = getGridValue<64>().GV_Default_WG_Size; 530 531 using MemcpyFunc = hsa_status_t (*)(hsa_signal_t, void *, void *, size_t size, 532 hsa_agent_t, hsa_amd_memory_pool_t); 533 hsa_status_t freesignalpool_memcpy(void *dest, void *src, size_t size, 534 MemcpyFunc Func, int32_t deviceId) { 535 hsa_agent_t agent = HSAAgents[deviceId]; 536 hsa_signal_t s = FreeSignalPool.pop(); 537 if (s.handle == 0) { 538 return HSA_STATUS_ERROR; 539 } 540 hsa_status_t r = Func(s, dest, src, size, agent, HostFineGrainedMemoryPool); 541 FreeSignalPool.push(s); 542 return r; 543 } 544 545 hsa_status_t freesignalpool_memcpy_d2h(void *dest, void *src, size_t size, 546 int32_t deviceId) { 547 return freesignalpool_memcpy(dest, src, size, impl_memcpy_d2h, deviceId); 548 } 549 550 hsa_status_t freesignalpool_memcpy_h2d(void *dest, void *src, size_t size, 551 int32_t deviceId) { 552 return freesignalpool_memcpy(dest, src, size, impl_memcpy_h2d, deviceId); 553 } 554 555 static void printDeviceInfo(int32_t device_id, hsa_agent_t agent) { 556 char TmpChar[1000]; 557 uint16_t major, minor; 558 uint32_t TmpUInt; 559 uint32_t TmpUInt2; 560 uint32_t CacheSize[4]; 561 bool TmpBool; 562 uint16_t workgroupMaxDim[3]; 563 hsa_dim3_t gridMaxDim; 564 565 // Getting basic information about HSA and Device 566 core::checkResult( 567 hsa_system_get_info(HSA_SYSTEM_INFO_VERSION_MAJOR, &major), 568 "Error from hsa_system_get_info when obtaining " 569 "HSA_SYSTEM_INFO_VERSION_MAJOR\n"); 570 core::checkResult( 571 hsa_system_get_info(HSA_SYSTEM_INFO_VERSION_MINOR, &minor), 572 "Error from hsa_system_get_info when obtaining " 573 "HSA_SYSTEM_INFO_VERSION_MINOR\n"); 574 printf(" HSA Runtime Version: \t\t%u.%u \n", major, minor); 575 printf(" HSA OpenMP Device Number: \t\t%d \n", device_id); 576 core::checkResult( 577 hsa_agent_get_info( 578 agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_PRODUCT_NAME, TmpChar), 579 "Error returned from hsa_agent_get_info when obtaining " 580 "HSA_AMD_AGENT_INFO_PRODUCT_NAME\n"); 581 printf(" Product Name: \t\t\t%s \n", TmpChar); 582 core::checkResult(hsa_agent_get_info(agent, HSA_AGENT_INFO_NAME, TmpChar), 583 "Error returned from hsa_agent_get_info when obtaining " 584 "HSA_AGENT_INFO_NAME\n"); 585 printf(" Device Name: \t\t\t%s \n", TmpChar); 586 core::checkResult( 587 hsa_agent_get_info(agent, HSA_AGENT_INFO_VENDOR_NAME, TmpChar), 588 "Error returned from hsa_agent_get_info when obtaining " 589 "HSA_AGENT_INFO_NAME\n"); 590 printf(" Vendor Name: \t\t\t%s \n", TmpChar); 591 hsa_device_type_t devType; 592 core::checkResult( 593 hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &devType), 594 "Error returned from hsa_agent_get_info when obtaining " 595 "HSA_AGENT_INFO_DEVICE\n"); 596 printf(" Device Type: \t\t\t%s \n", 597 devType == HSA_DEVICE_TYPE_CPU 598 ? "CPU" 599 : (devType == HSA_DEVICE_TYPE_GPU 600 ? "GPU" 601 : (devType == HSA_DEVICE_TYPE_DSP ? "DSP" : "UNKNOWN"))); 602 core::checkResult( 603 hsa_agent_get_info(agent, HSA_AGENT_INFO_QUEUES_MAX, &TmpUInt), 604 "Error returned from hsa_agent_get_info when obtaining " 605 "HSA_AGENT_INFO_QUEUES_MAX\n"); 606 printf(" Max Queues: \t\t\t%u \n", TmpUInt); 607 core::checkResult( 608 hsa_agent_get_info(agent, HSA_AGENT_INFO_QUEUE_MIN_SIZE, &TmpUInt), 609 "Error returned from hsa_agent_get_info when obtaining " 610 "HSA_AGENT_INFO_QUEUE_MIN_SIZE\n"); 611 printf(" Queue Min Size: \t\t\t%u \n", TmpUInt); 612 core::checkResult( 613 hsa_agent_get_info(agent, HSA_AGENT_INFO_QUEUE_MAX_SIZE, &TmpUInt), 614 "Error returned from hsa_agent_get_info when obtaining " 615 "HSA_AGENT_INFO_QUEUE_MAX_SIZE\n"); 616 printf(" Queue Max Size: \t\t\t%u \n", TmpUInt); 617 618 // Getting cache information 619 printf(" Cache:\n"); 620 621 // FIXME: This is deprecated according to HSA documentation. But using 622 // hsa_agent_iterate_caches and hsa_cache_get_info breaks execution during 623 // runtime. 624 core::checkResult( 625 hsa_agent_get_info(agent, HSA_AGENT_INFO_CACHE_SIZE, CacheSize), 626 "Error returned from hsa_agent_get_info when obtaining " 627 "HSA_AGENT_INFO_CACHE_SIZE\n"); 628 629 for (int i = 0; i < 4; i++) { 630 if (CacheSize[i]) { 631 printf(" L%u: \t\t\t\t%u bytes\n", i, CacheSize[i]); 632 } 633 } 634 635 core::checkResult( 636 hsa_agent_get_info(agent, 637 (hsa_agent_info_t)HSA_AMD_AGENT_INFO_CACHELINE_SIZE, 638 &TmpUInt), 639 "Error returned from hsa_agent_get_info when obtaining " 640 "HSA_AMD_AGENT_INFO_CACHELINE_SIZE\n"); 641 printf(" Cacheline Size: \t\t\t%u \n", TmpUInt); 642 core::checkResult( 643 hsa_agent_get_info( 644 agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_MAX_CLOCK_FREQUENCY, 645 &TmpUInt), 646 "Error returned from hsa_agent_get_info when obtaining " 647 "HSA_AMD_AGENT_INFO_MAX_CLOCK_FREQUENCY\n"); 648 printf(" Max Clock Freq(MHz): \t\t%u \n", TmpUInt); 649 core::checkResult( 650 hsa_agent_get_info( 651 agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT, 652 &TmpUInt), 653 "Error returned from hsa_agent_get_info when obtaining " 654 "HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT\n"); 655 printf(" Compute Units: \t\t\t%u \n", TmpUInt); 656 core::checkResult(hsa_agent_get_info( 657 agent, 658 (hsa_agent_info_t)HSA_AMD_AGENT_INFO_NUM_SIMDS_PER_CU, 659 &TmpUInt), 660 "Error returned from hsa_agent_get_info when obtaining " 661 "HSA_AMD_AGENT_INFO_NUM_SIMDS_PER_CU\n"); 662 printf(" SIMD per CU: \t\t\t%u \n", TmpUInt); 663 core::checkResult( 664 hsa_agent_get_info(agent, HSA_AGENT_INFO_FAST_F16_OPERATION, &TmpBool), 665 "Error returned from hsa_agent_get_info when obtaining " 666 "HSA_AMD_AGENT_INFO_NUM_SIMDS_PER_CU\n"); 667 printf(" Fast F16 Operation: \t\t%s \n", (TmpBool ? "TRUE" : "FALSE")); 668 core::checkResult( 669 hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &TmpUInt2), 670 "Error returned from hsa_agent_get_info when obtaining " 671 "HSA_AGENT_INFO_WAVEFRONT_SIZE\n"); 672 printf(" Wavefront Size: \t\t\t%u \n", TmpUInt2); 673 core::checkResult( 674 hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_SIZE, &TmpUInt), 675 "Error returned from hsa_agent_get_info when obtaining " 676 "HSA_AGENT_INFO_WORKGROUP_MAX_SIZE\n"); 677 printf(" Workgroup Max Size: \t\t%u \n", TmpUInt); 678 core::checkResult(hsa_agent_get_info(agent, 679 HSA_AGENT_INFO_WORKGROUP_MAX_DIM, 680 workgroupMaxDim), 681 "Error returned from hsa_agent_get_info when obtaining " 682 "HSA_AGENT_INFO_WORKGROUP_MAX_DIM\n"); 683 printf(" Workgroup Max Size per Dimension:\n"); 684 printf(" x: \t\t\t\t%u\n", workgroupMaxDim[0]); 685 printf(" y: \t\t\t\t%u\n", workgroupMaxDim[1]); 686 printf(" z: \t\t\t\t%u\n", workgroupMaxDim[2]); 687 core::checkResult(hsa_agent_get_info( 688 agent, 689 (hsa_agent_info_t)HSA_AMD_AGENT_INFO_MAX_WAVES_PER_CU, 690 &TmpUInt), 691 "Error returned from hsa_agent_get_info when obtaining " 692 "HSA_AMD_AGENT_INFO_MAX_WAVES_PER_CU\n"); 693 printf(" Max Waves Per CU: \t\t\t%u \n", TmpUInt); 694 printf(" Max Work-item Per CU: \t\t%u \n", TmpUInt * TmpUInt2); 695 core::checkResult( 696 hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_SIZE, &TmpUInt), 697 "Error returned from hsa_agent_get_info when obtaining " 698 "HSA_AGENT_INFO_GRID_MAX_SIZE\n"); 699 printf(" Grid Max Size: \t\t\t%u \n", TmpUInt); 700 core::checkResult( 701 hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &gridMaxDim), 702 "Error returned from hsa_agent_get_info when obtaining " 703 "HSA_AGENT_INFO_GRID_MAX_DIM\n"); 704 printf(" Grid Max Size per Dimension: \t\t\n"); 705 printf(" x: \t\t\t\t%u\n", gridMaxDim.x); 706 printf(" y: \t\t\t\t%u\n", gridMaxDim.y); 707 printf(" z: \t\t\t\t%u\n", gridMaxDim.z); 708 core::checkResult( 709 hsa_agent_get_info(agent, HSA_AGENT_INFO_FBARRIER_MAX_SIZE, &TmpUInt), 710 "Error returned from hsa_agent_get_info when obtaining " 711 "HSA_AGENT_INFO_FBARRIER_MAX_SIZE\n"); 712 printf(" Max fbarriers/Workgrp: \t\t%u\n", TmpUInt); 713 714 printf(" Memory Pools:\n"); 715 auto CB_mem = [](hsa_amd_memory_pool_t region, void *data) -> hsa_status_t { 716 std::string TmpStr; 717 size_t size; 718 bool alloc, access; 719 hsa_amd_segment_t segment; 720 hsa_amd_memory_pool_global_flag_t globalFlags; 721 core::checkResult( 722 hsa_amd_memory_pool_get_info( 723 region, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &globalFlags), 724 "Error returned from hsa_amd_memory_pool_get_info when obtaining " 725 "HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS\n"); 726 core::checkResult(hsa_amd_memory_pool_get_info( 727 region, HSA_AMD_MEMORY_POOL_INFO_SEGMENT, &segment), 728 "Error returned from hsa_amd_memory_pool_get_info when " 729 "obtaining HSA_AMD_MEMORY_POOL_INFO_SEGMENT\n"); 730 731 switch (segment) { 732 case HSA_AMD_SEGMENT_GLOBAL: 733 TmpStr = "GLOBAL; FLAGS: "; 734 if (HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_KERNARG_INIT & globalFlags) 735 TmpStr += "KERNARG, "; 736 if (HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED & globalFlags) 737 TmpStr += "FINE GRAINED, "; 738 if (HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_COARSE_GRAINED & globalFlags) 739 TmpStr += "COARSE GRAINED, "; 740 break; 741 case HSA_AMD_SEGMENT_READONLY: 742 TmpStr = "READONLY"; 743 break; 744 case HSA_AMD_SEGMENT_PRIVATE: 745 TmpStr = "PRIVATE"; 746 break; 747 case HSA_AMD_SEGMENT_GROUP: 748 TmpStr = "GROUP"; 749 break; 750 } 751 printf(" Pool %s: \n", TmpStr.c_str()); 752 753 core::checkResult(hsa_amd_memory_pool_get_info( 754 region, HSA_AMD_MEMORY_POOL_INFO_SIZE, &size), 755 "Error returned from hsa_amd_memory_pool_get_info when " 756 "obtaining HSA_AMD_MEMORY_POOL_INFO_SIZE\n"); 757 printf(" Size: \t\t\t\t %zu bytes\n", size); 758 core::checkResult( 759 hsa_amd_memory_pool_get_info( 760 region, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED, &alloc), 761 "Error returned from hsa_amd_memory_pool_get_info when obtaining " 762 "HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED\n"); 763 printf(" Allocatable: \t\t\t %s\n", (alloc ? "TRUE" : "FALSE")); 764 core::checkResult( 765 hsa_amd_memory_pool_get_info( 766 region, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_GRANULE, &size), 767 "Error returned from hsa_amd_memory_pool_get_info when obtaining " 768 "HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_GRANULE\n"); 769 printf(" Runtime Alloc Granule: \t\t %zu bytes\n", size); 770 core::checkResult( 771 hsa_amd_memory_pool_get_info( 772 region, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALIGNMENT, &size), 773 "Error returned from hsa_amd_memory_pool_get_info when obtaining " 774 "HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALIGNMENT\n"); 775 printf(" Runtime Alloc alignment: \t %zu bytes\n", size); 776 core::checkResult( 777 hsa_amd_memory_pool_get_info( 778 region, HSA_AMD_MEMORY_POOL_INFO_ACCESSIBLE_BY_ALL, &access), 779 "Error returned from hsa_amd_memory_pool_get_info when obtaining " 780 "HSA_AMD_MEMORY_POOL_INFO_ACCESSIBLE_BY_ALL\n"); 781 printf(" Accessable by all: \t\t %s\n", 782 (access ? "TRUE" : "FALSE")); 783 784 return HSA_STATUS_SUCCESS; 785 }; 786 // Iterate over all the memory regions for this agent. Get the memory region 787 // type and size 788 hsa_amd_agent_iterate_memory_pools(agent, CB_mem, nullptr); 789 790 printf(" ISAs:\n"); 791 auto CB_isas = [](hsa_isa_t isa, void *data) -> hsa_status_t { 792 char TmpChar[1000]; 793 core::checkResult(hsa_isa_get_info_alt(isa, HSA_ISA_INFO_NAME, TmpChar), 794 "Error returned from hsa_isa_get_info_alt when " 795 "obtaining HSA_ISA_INFO_NAME\n"); 796 printf(" Name: \t\t\t\t %s\n", TmpChar); 797 798 return HSA_STATUS_SUCCESS; 799 }; 800 // Iterate over all the memory regions for this agent. Get the memory region 801 // type and size 802 hsa_agent_iterate_isas(agent, CB_isas, nullptr); 803 } 804 805 // Record entry point associated with device 806 void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) { 807 assert(device_id < (int32_t)FuncGblEntries.size() && 808 "Unexpected device id!"); 809 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 810 811 E.Entries.push_back(entry); 812 } 813 814 // Return true if the entry is associated with device 815 bool findOffloadEntry(int32_t device_id, void *addr) { 816 assert(device_id < (int32_t)FuncGblEntries.size() && 817 "Unexpected device id!"); 818 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 819 820 for (auto &it : E.Entries) { 821 if (it.addr == addr) 822 return true; 823 } 824 825 return false; 826 } 827 828 // Return the pointer to the target entries table 829 __tgt_target_table *getOffloadEntriesTable(int32_t device_id) { 830 assert(device_id < (int32_t)FuncGblEntries.size() && 831 "Unexpected device id!"); 832 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 833 834 int32_t size = E.Entries.size(); 835 836 // Table is empty 837 if (!size) 838 return 0; 839 840 __tgt_offload_entry *begin = &E.Entries[0]; 841 __tgt_offload_entry *end = &E.Entries[size - 1]; 842 843 // Update table info according to the entries and return the pointer 844 E.Table.EntriesBegin = begin; 845 E.Table.EntriesEnd = ++end; 846 847 return &E.Table; 848 } 849 850 // Clear entries table for a device 851 void clearOffloadEntriesTable(int device_id) { 852 assert(device_id < (int32_t)FuncGblEntries.size() && 853 "Unexpected device id!"); 854 FuncGblEntries[device_id].emplace_back(); 855 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 856 // KernelArgPoolMap.clear(); 857 E.Entries.clear(); 858 E.Table.EntriesBegin = E.Table.EntriesEnd = 0; 859 } 860 861 hsa_status_t addDeviceMemoryPool(hsa_amd_memory_pool_t MemoryPool, 862 int DeviceId) { 863 assert(DeviceId < DeviceFineGrainedMemoryPools.size() && "Error here."); 864 uint32_t GlobalFlags = 0; 865 hsa_status_t Err = hsa_amd_memory_pool_get_info( 866 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 867 868 if (Err != HSA_STATUS_SUCCESS) { 869 return Err; 870 } 871 872 if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) { 873 DeviceFineGrainedMemoryPools[DeviceId] = MemoryPool; 874 } else if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_COARSE_GRAINED) { 875 DeviceCoarseGrainedMemoryPools[DeviceId] = MemoryPool; 876 } 877 878 return HSA_STATUS_SUCCESS; 879 } 880 881 hsa_status_t setupDevicePools(const std::vector<hsa_agent_t> &Agents) { 882 for (int DeviceId = 0; DeviceId < Agents.size(); DeviceId++) { 883 hsa_status_t Err = hsa::amd_agent_iterate_memory_pools( 884 Agents[DeviceId], [&](hsa_amd_memory_pool_t MemoryPool) { 885 hsa_status_t ValidStatus = core::isValidMemoryPool(MemoryPool); 886 if (ValidStatus != HSA_STATUS_SUCCESS) { 887 DP("Alloc allowed in memory pool check failed: %s\n", 888 get_error_string(ValidStatus)); 889 return HSA_STATUS_SUCCESS; 890 } 891 return addDeviceMemoryPool(MemoryPool, DeviceId); 892 }); 893 894 if (Err != HSA_STATUS_SUCCESS) { 895 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 896 "Iterate all memory pools", get_error_string(Err)); 897 return Err; 898 } 899 } 900 return HSA_STATUS_SUCCESS; 901 } 902 903 hsa_status_t setupHostMemoryPools(std::vector<hsa_agent_t> &Agents) { 904 std::vector<hsa_amd_memory_pool_t> HostPools; 905 906 // collect all the "valid" pools for all the given agents. 907 for (const auto &Agent : Agents) { 908 hsa_status_t Err = hsa_amd_agent_iterate_memory_pools( 909 Agent, core::addMemoryPool, static_cast<void *>(&HostPools)); 910 if (Err != HSA_STATUS_SUCCESS) { 911 DP("addMemoryPool returned %s, continuing\n", get_error_string(Err)); 912 } 913 } 914 915 // We need two fine-grained pools. 916 // 1. One with kernarg flag set for storing kernel arguments 917 // 2. Second for host allocations 918 bool FineGrainedMemoryPoolSet = false; 919 bool KernArgPoolSet = false; 920 for (const auto &MemoryPool : HostPools) { 921 hsa_status_t Err = HSA_STATUS_SUCCESS; 922 uint32_t GlobalFlags = 0; 923 Err = hsa_amd_memory_pool_get_info( 924 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 925 if (Err != HSA_STATUS_SUCCESS) { 926 DP("Get memory pool info failed: %s\n", get_error_string(Err)); 927 return Err; 928 } 929 930 if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) { 931 if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_KERNARG_INIT) { 932 KernArgPool = MemoryPool; 933 KernArgPoolSet = true; 934 } 935 HostFineGrainedMemoryPool = MemoryPool; 936 FineGrainedMemoryPoolSet = true; 937 } 938 } 939 940 if (FineGrainedMemoryPoolSet && KernArgPoolSet) 941 return HSA_STATUS_SUCCESS; 942 943 return HSA_STATUS_ERROR; 944 } 945 946 hsa_amd_memory_pool_t getDeviceMemoryPool(int DeviceId) { 947 assert(DeviceId >= 0 && DeviceId < DeviceCoarseGrainedMemoryPools.size() && 948 "Invalid device Id"); 949 return DeviceCoarseGrainedMemoryPools[DeviceId]; 950 } 951 952 hsa_amd_memory_pool_t getHostMemoryPool() { 953 return HostFineGrainedMemoryPool; 954 } 955 956 static int readEnv(const char *Env, int Default = -1) { 957 const char *envStr = getenv(Env); 958 int res = Default; 959 if (envStr) { 960 res = std::stoi(envStr); 961 DP("Parsed %s=%d\n", Env, res); 962 } 963 return res; 964 } 965 966 RTLDeviceInfoTy() { 967 DP("Start initializing " GETNAME(TARGET_NAME) "\n"); 968 969 // LIBOMPTARGET_KERNEL_TRACE provides a kernel launch trace to stderr 970 // anytime. You do not need a debug library build. 971 // 0 => no tracing 972 // 1 => tracing dispatch only 973 // >1 => verbosity increase 974 975 if (!HSAInitSuccess()) { 976 DP("Error when initializing HSA in " GETNAME(TARGET_NAME) "\n"); 977 return; 978 } 979 980 if (char *envStr = getenv("LIBOMPTARGET_KERNEL_TRACE")) 981 print_kernel_trace = atoi(envStr); 982 else 983 print_kernel_trace = 0; 984 985 hsa_status_t err = core::atl_init_gpu_context(); 986 if (err != HSA_STATUS_SUCCESS) { 987 DP("Error when initializing " GETNAME(TARGET_NAME) "\n"); 988 return; 989 } 990 991 // Init hostcall soon after initializing hsa 992 hostrpc_init(); 993 994 err = FindAgents([&](hsa_device_type_t DeviceType, hsa_agent_t Agent) { 995 if (DeviceType == HSA_DEVICE_TYPE_CPU) { 996 CPUAgents.push_back(Agent); 997 } else { 998 HSAAgents.push_back(Agent); 999 } 1000 }); 1001 if (err != HSA_STATUS_SUCCESS) 1002 return; 1003 1004 NumberOfDevices = (int)HSAAgents.size(); 1005 1006 if (NumberOfDevices == 0) { 1007 DP("There are no devices supporting HSA.\n"); 1008 return; 1009 } else { 1010 DP("There are %d devices supporting HSA.\n", NumberOfDevices); 1011 } 1012 1013 // Init the device info 1014 HSAQueueSchedulers.reserve(NumberOfDevices); 1015 FuncGblEntries.resize(NumberOfDevices); 1016 ThreadsPerGroup.resize(NumberOfDevices); 1017 ComputeUnits.resize(NumberOfDevices); 1018 GPUName.resize(NumberOfDevices); 1019 GroupsPerDevice.resize(NumberOfDevices); 1020 WarpSize.resize(NumberOfDevices); 1021 NumTeams.resize(NumberOfDevices); 1022 NumThreads.resize(NumberOfDevices); 1023 deviceStateStore.resize(NumberOfDevices); 1024 KernelInfoTable.resize(NumberOfDevices); 1025 SymbolInfoTable.resize(NumberOfDevices); 1026 DeviceCoarseGrainedMemoryPools.resize(NumberOfDevices); 1027 DeviceFineGrainedMemoryPools.resize(NumberOfDevices); 1028 1029 err = setupDevicePools(HSAAgents); 1030 if (err != HSA_STATUS_SUCCESS) { 1031 DP("Setup for Device Memory Pools failed\n"); 1032 return; 1033 } 1034 1035 err = setupHostMemoryPools(CPUAgents); 1036 if (err != HSA_STATUS_SUCCESS) { 1037 DP("Setup for Host Memory Pools failed\n"); 1038 return; 1039 } 1040 1041 for (int i = 0; i < NumberOfDevices; i++) { 1042 uint32_t queue_size = 0; 1043 { 1044 hsa_status_t err = hsa_agent_get_info( 1045 HSAAgents[i], HSA_AGENT_INFO_QUEUE_MAX_SIZE, &queue_size); 1046 if (err != HSA_STATUS_SUCCESS) { 1047 DP("HSA query QUEUE_MAX_SIZE failed for agent %d\n", i); 1048 return; 1049 } 1050 enum { MaxQueueSize = 4096 }; 1051 if (queue_size > MaxQueueSize) { 1052 queue_size = MaxQueueSize; 1053 } 1054 } 1055 1056 { 1057 HSAQueueScheduler QSched; 1058 if (!QSched.CreateQueues(HSAAgents[i], queue_size)) 1059 return; 1060 HSAQueueSchedulers.emplace_back(std::move(QSched)); 1061 } 1062 1063 deviceStateStore[i] = {nullptr, 0}; 1064 } 1065 1066 for (int i = 0; i < NumberOfDevices; i++) { 1067 ThreadsPerGroup[i] = RTLDeviceInfoTy::Default_WG_Size; 1068 GroupsPerDevice[i] = RTLDeviceInfoTy::DefaultNumTeams; 1069 ComputeUnits[i] = 1; 1070 DP("Device %d: Initial groupsPerDevice %d & threadsPerGroup %d\n", i, 1071 GroupsPerDevice[i], ThreadsPerGroup[i]); 1072 } 1073 1074 // Get environment variables regarding teams 1075 Env.TeamLimit = readEnv("OMP_TEAM_LIMIT"); 1076 Env.NumTeams = readEnv("OMP_NUM_TEAMS"); 1077 Env.MaxTeamsDefault = readEnv("OMP_MAX_TEAMS_DEFAULT"); 1078 Env.TeamThreadLimit = readEnv("OMP_TEAMS_THREAD_LIMIT"); 1079 Env.DynamicMemSize = readEnv("LIBOMPTARGET_SHARED_MEMORY_SIZE", 0); 1080 1081 // Default state. 1082 RequiresFlags = OMP_REQ_UNDEFINED; 1083 1084 ConstructionSucceeded = true; 1085 } 1086 1087 ~RTLDeviceInfoTy() { 1088 DP("Finalizing the " GETNAME(TARGET_NAME) " DeviceInfo.\n"); 1089 if (!HSAInitSuccess()) { 1090 // Then none of these can have been set up and they can't be torn down 1091 return; 1092 } 1093 // Run destructors on types that use HSA before 1094 // impl_finalize removes access to it 1095 deviceStateStore.clear(); 1096 KernelArgPoolMap.clear(); 1097 // Terminate hostrpc before finalizing hsa 1098 hostrpc_terminate(); 1099 1100 hsa_status_t Err; 1101 for (uint32_t I = 0; I < HSAExecutables.size(); I++) { 1102 Err = hsa_executable_destroy(HSAExecutables[I]); 1103 if (Err != HSA_STATUS_SUCCESS) { 1104 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1105 "Destroying executable", get_error_string(Err)); 1106 } 1107 } 1108 } 1109 }; 1110 1111 pthread_mutex_t SignalPoolT::mutex = PTHREAD_MUTEX_INITIALIZER; 1112 1113 static RTLDeviceInfoTy DeviceInfo; 1114 1115 namespace { 1116 1117 int32_t dataRetrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size, 1118 __tgt_async_info *AsyncInfo) { 1119 assert(AsyncInfo && "AsyncInfo is nullptr"); 1120 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 1121 // Return success if we are not copying back to host from target. 1122 if (!HstPtr) 1123 return OFFLOAD_SUCCESS; 1124 hsa_status_t err; 1125 DP("Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 1126 (long long unsigned)(Elf64_Addr)TgtPtr, 1127 (long long unsigned)(Elf64_Addr)HstPtr); 1128 1129 err = DeviceInfo.freesignalpool_memcpy_d2h(HstPtr, TgtPtr, (size_t)Size, 1130 DeviceId); 1131 1132 if (err != HSA_STATUS_SUCCESS) { 1133 DP("Error when copying data from device to host. Pointers: " 1134 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 1135 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 1136 return OFFLOAD_FAIL; 1137 } 1138 DP("DONE Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 1139 (long long unsigned)(Elf64_Addr)TgtPtr, 1140 (long long unsigned)(Elf64_Addr)HstPtr); 1141 return OFFLOAD_SUCCESS; 1142 } 1143 1144 int32_t dataSubmit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size, 1145 __tgt_async_info *AsyncInfo) { 1146 assert(AsyncInfo && "AsyncInfo is nullptr"); 1147 hsa_status_t err; 1148 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 1149 // Return success if we are not doing host to target. 1150 if (!HstPtr) 1151 return OFFLOAD_SUCCESS; 1152 1153 DP("Submit data %ld bytes, (hst:%016llx) -> (tgt:%016llx).\n", Size, 1154 (long long unsigned)(Elf64_Addr)HstPtr, 1155 (long long unsigned)(Elf64_Addr)TgtPtr); 1156 err = DeviceInfo.freesignalpool_memcpy_h2d(TgtPtr, HstPtr, (size_t)Size, 1157 DeviceId); 1158 if (err != HSA_STATUS_SUCCESS) { 1159 DP("Error when copying data from host to device. Pointers: " 1160 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 1161 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 1162 return OFFLOAD_FAIL; 1163 } 1164 return OFFLOAD_SUCCESS; 1165 } 1166 1167 // Async. 1168 // The implementation was written with cuda streams in mind. The semantics of 1169 // that are to execute kernels on a queue in order of insertion. A synchronise 1170 // call then makes writes visible between host and device. This means a series 1171 // of N data_submit_async calls are expected to execute serially. HSA offers 1172 // various options to run the data copies concurrently. This may require changes 1173 // to libomptarget. 1174 1175 // __tgt_async_info* contains a void * Queue. Queue = 0 is used to indicate that 1176 // there are no outstanding kernels that need to be synchronized. Any async call 1177 // may be passed a Queue==0, at which point the cuda implementation will set it 1178 // to non-null (see getStream). The cuda streams are per-device. Upstream may 1179 // change this interface to explicitly initialize the AsyncInfo_pointer, but 1180 // until then hsa lazily initializes it as well. 1181 1182 void initAsyncInfo(__tgt_async_info *AsyncInfo) { 1183 // set non-null while using async calls, return to null to indicate completion 1184 assert(AsyncInfo); 1185 if (!AsyncInfo->Queue) { 1186 AsyncInfo->Queue = reinterpret_cast<void *>(UINT64_MAX); 1187 } 1188 } 1189 void finiAsyncInfo(__tgt_async_info *AsyncInfo) { 1190 assert(AsyncInfo); 1191 assert(AsyncInfo->Queue); 1192 AsyncInfo->Queue = 0; 1193 } 1194 1195 // Determine launch values for kernel. 1196 struct launchVals { 1197 int WorkgroupSize; 1198 int GridSize; 1199 }; 1200 launchVals getLaunchVals(int WarpSize, EnvironmentVariables Env, 1201 int ConstWGSize, 1202 llvm::omp::OMPTgtExecModeFlags ExecutionMode, 1203 int num_teams, int thread_limit, 1204 uint64_t loop_tripcount, int DeviceNumTeams) { 1205 1206 int threadsPerGroup = RTLDeviceInfoTy::Default_WG_Size; 1207 int num_groups = 0; 1208 1209 int Max_Teams = 1210 Env.MaxTeamsDefault > 0 ? Env.MaxTeamsDefault : DeviceNumTeams; 1211 if (Max_Teams > RTLDeviceInfoTy::HardTeamLimit) 1212 Max_Teams = RTLDeviceInfoTy::HardTeamLimit; 1213 1214 if (print_kernel_trace & STARTUP_DETAILS) { 1215 DP("RTLDeviceInfoTy::Max_Teams: %d\n", RTLDeviceInfoTy::Max_Teams); 1216 DP("Max_Teams: %d\n", Max_Teams); 1217 DP("RTLDeviceInfoTy::Warp_Size: %d\n", WarpSize); 1218 DP("RTLDeviceInfoTy::Max_WG_Size: %d\n", RTLDeviceInfoTy::Max_WG_Size); 1219 DP("RTLDeviceInfoTy::Default_WG_Size: %d\n", 1220 RTLDeviceInfoTy::Default_WG_Size); 1221 DP("thread_limit: %d\n", thread_limit); 1222 DP("threadsPerGroup: %d\n", threadsPerGroup); 1223 DP("ConstWGSize: %d\n", ConstWGSize); 1224 } 1225 // check for thread_limit() clause 1226 if (thread_limit > 0) { 1227 threadsPerGroup = thread_limit; 1228 DP("Setting threads per block to requested %d\n", thread_limit); 1229 // Add master warp for GENERIC 1230 if (ExecutionMode == 1231 llvm::omp::OMPTgtExecModeFlags::OMP_TGT_EXEC_MODE_GENERIC) { 1232 threadsPerGroup += WarpSize; 1233 DP("Adding master wavefront: +%d threads\n", WarpSize); 1234 } 1235 if (threadsPerGroup > RTLDeviceInfoTy::Max_WG_Size) { // limit to max 1236 threadsPerGroup = RTLDeviceInfoTy::Max_WG_Size; 1237 DP("Setting threads per block to maximum %d\n", threadsPerGroup); 1238 } 1239 } 1240 // check flat_max_work_group_size attr here 1241 if (threadsPerGroup > ConstWGSize) { 1242 threadsPerGroup = ConstWGSize; 1243 DP("Reduced threadsPerGroup to flat-attr-group-size limit %d\n", 1244 threadsPerGroup); 1245 } 1246 if (print_kernel_trace & STARTUP_DETAILS) 1247 DP("threadsPerGroup: %d\n", threadsPerGroup); 1248 DP("Preparing %d threads\n", threadsPerGroup); 1249 1250 // Set default num_groups (teams) 1251 if (Env.TeamLimit > 0) 1252 num_groups = (Max_Teams < Env.TeamLimit) ? Max_Teams : Env.TeamLimit; 1253 else 1254 num_groups = Max_Teams; 1255 DP("Set default num of groups %d\n", num_groups); 1256 1257 if (print_kernel_trace & STARTUP_DETAILS) { 1258 DP("num_groups: %d\n", num_groups); 1259 DP("num_teams: %d\n", num_teams); 1260 } 1261 1262 // Reduce num_groups if threadsPerGroup exceeds RTLDeviceInfoTy::Max_WG_Size 1263 // This reduction is typical for default case (no thread_limit clause). 1264 // or when user goes crazy with num_teams clause. 1265 // FIXME: We cant distinguish between a constant or variable thread limit. 1266 // So we only handle constant thread_limits. 1267 if (threadsPerGroup > 1268 RTLDeviceInfoTy::Default_WG_Size) // 256 < threadsPerGroup <= 1024 1269 // Should we round threadsPerGroup up to nearest WarpSize 1270 // here? 1271 num_groups = (Max_Teams * RTLDeviceInfoTy::Max_WG_Size) / threadsPerGroup; 1272 1273 // check for num_teams() clause 1274 if (num_teams > 0) { 1275 num_groups = (num_teams < num_groups) ? num_teams : num_groups; 1276 } 1277 if (print_kernel_trace & STARTUP_DETAILS) { 1278 DP("num_groups: %d\n", num_groups); 1279 DP("Env.NumTeams %d\n", Env.NumTeams); 1280 DP("Env.TeamLimit %d\n", Env.TeamLimit); 1281 } 1282 1283 if (Env.NumTeams > 0) { 1284 num_groups = (Env.NumTeams < num_groups) ? Env.NumTeams : num_groups; 1285 DP("Modifying teams based on Env.NumTeams %d\n", Env.NumTeams); 1286 } else if (Env.TeamLimit > 0) { 1287 num_groups = (Env.TeamLimit < num_groups) ? Env.TeamLimit : num_groups; 1288 DP("Modifying teams based on Env.TeamLimit%d\n", Env.TeamLimit); 1289 } else { 1290 if (num_teams <= 0) { 1291 if (loop_tripcount > 0) { 1292 if (ExecutionMode == 1293 llvm::omp::OMPTgtExecModeFlags::OMP_TGT_EXEC_MODE_SPMD) { 1294 // round up to the nearest integer 1295 num_groups = ((loop_tripcount - 1) / threadsPerGroup) + 1; 1296 } else if (ExecutionMode == 1297 llvm::omp::OMPTgtExecModeFlags::OMP_TGT_EXEC_MODE_GENERIC) { 1298 num_groups = loop_tripcount; 1299 } else /* OMP_TGT_EXEC_MODE_GENERIC_SPMD */ { 1300 // This is a generic kernel that was transformed to use SPMD-mode 1301 // execution but uses Generic-mode semantics for scheduling. 1302 num_groups = loop_tripcount; 1303 } 1304 DP("Using %d teams due to loop trip count %" PRIu64 " and number of " 1305 "threads per block %d\n", 1306 num_groups, loop_tripcount, threadsPerGroup); 1307 } 1308 } else { 1309 num_groups = num_teams; 1310 } 1311 if (num_groups > Max_Teams) { 1312 num_groups = Max_Teams; 1313 if (print_kernel_trace & STARTUP_DETAILS) 1314 DP("Limiting num_groups %d to Max_Teams %d \n", num_groups, Max_Teams); 1315 } 1316 if (num_groups > num_teams && num_teams > 0) { 1317 num_groups = num_teams; 1318 if (print_kernel_trace & STARTUP_DETAILS) 1319 DP("Limiting num_groups %d to clause num_teams %d \n", num_groups, 1320 num_teams); 1321 } 1322 } 1323 1324 // num_teams clause always honored, no matter what, unless DEFAULT is active. 1325 if (num_teams > 0) { 1326 num_groups = num_teams; 1327 // Cap num_groups to EnvMaxTeamsDefault if set. 1328 if (Env.MaxTeamsDefault > 0 && num_groups > Env.MaxTeamsDefault) 1329 num_groups = Env.MaxTeamsDefault; 1330 } 1331 if (print_kernel_trace & STARTUP_DETAILS) { 1332 DP("threadsPerGroup: %d\n", threadsPerGroup); 1333 DP("num_groups: %d\n", num_groups); 1334 DP("loop_tripcount: %ld\n", loop_tripcount); 1335 } 1336 DP("Final %d num_groups and %d threadsPerGroup\n", num_groups, 1337 threadsPerGroup); 1338 1339 launchVals res; 1340 res.WorkgroupSize = threadsPerGroup; 1341 res.GridSize = threadsPerGroup * num_groups; 1342 return res; 1343 } 1344 1345 static uint64_t acquire_available_packet_id(hsa_queue_t *queue) { 1346 uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1); 1347 bool full = true; 1348 while (full) { 1349 full = 1350 packet_id >= (queue->size + hsa_queue_load_read_index_scacquire(queue)); 1351 } 1352 return packet_id; 1353 } 1354 1355 int32_t runRegionLocked(int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 1356 ptrdiff_t *tgt_offsets, int32_t arg_num, 1357 int32_t num_teams, int32_t thread_limit, 1358 uint64_t loop_tripcount) { 1359 // Set the context we are using 1360 // update thread limit content in gpu memory if un-initialized or specified 1361 // from host 1362 1363 DP("Run target team region thread_limit %d\n", thread_limit); 1364 1365 // All args are references. 1366 std::vector<void *> args(arg_num); 1367 std::vector<void *> ptrs(arg_num); 1368 1369 DP("Arg_num: %d\n", arg_num); 1370 for (int32_t i = 0; i < arg_num; ++i) { 1371 ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]); 1372 args[i] = &ptrs[i]; 1373 DP("Offseted base: arg[%d]:" DPxMOD "\n", i, DPxPTR(ptrs[i])); 1374 } 1375 1376 KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr; 1377 1378 std::string kernel_name = std::string(KernelInfo->Name); 1379 auto &KernelInfoTable = DeviceInfo.KernelInfoTable; 1380 if (KernelInfoTable[device_id].find(kernel_name) == 1381 KernelInfoTable[device_id].end()) { 1382 DP("Kernel %s not found\n", kernel_name.c_str()); 1383 return OFFLOAD_FAIL; 1384 } 1385 1386 const atl_kernel_info_t KernelInfoEntry = 1387 KernelInfoTable[device_id][kernel_name]; 1388 const uint32_t group_segment_size = 1389 KernelInfoEntry.group_segment_size + DeviceInfo.Env.DynamicMemSize; 1390 const uint32_t sgpr_count = KernelInfoEntry.sgpr_count; 1391 const uint32_t vgpr_count = KernelInfoEntry.vgpr_count; 1392 const uint32_t sgpr_spill_count = KernelInfoEntry.sgpr_spill_count; 1393 const uint32_t vgpr_spill_count = KernelInfoEntry.vgpr_spill_count; 1394 1395 assert(arg_num == (int)KernelInfoEntry.explicit_argument_count); 1396 1397 /* 1398 * Set limit based on ThreadsPerGroup and GroupsPerDevice 1399 */ 1400 launchVals LV = 1401 getLaunchVals(DeviceInfo.WarpSize[device_id], DeviceInfo.Env, 1402 KernelInfo->ConstWGSize, KernelInfo->ExecutionMode, 1403 num_teams, // From run_region arg 1404 thread_limit, // From run_region arg 1405 loop_tripcount, // From run_region arg 1406 DeviceInfo.NumTeams[KernelInfo->device_id]); 1407 const int GridSize = LV.GridSize; 1408 const int WorkgroupSize = LV.WorkgroupSize; 1409 1410 if (print_kernel_trace >= LAUNCH) { 1411 int num_groups = GridSize / WorkgroupSize; 1412 // enum modes are SPMD, GENERIC, NONE 0,1,2 1413 // if doing rtl timing, print to stderr, unless stdout requested. 1414 bool traceToStdout = print_kernel_trace & (RTL_TO_STDOUT | RTL_TIMING); 1415 fprintf(traceToStdout ? stdout : stderr, 1416 "DEVID:%2d SGN:%1d ConstWGSize:%-4d args:%2d teamsXthrds:(%4dX%4d) " 1417 "reqd:(%4dX%4d) lds_usage:%uB sgpr_count:%u vgpr_count:%u " 1418 "sgpr_spill_count:%u vgpr_spill_count:%u tripcount:%lu n:%s\n", 1419 device_id, KernelInfo->ExecutionMode, KernelInfo->ConstWGSize, 1420 arg_num, num_groups, WorkgroupSize, num_teams, thread_limit, 1421 group_segment_size, sgpr_count, vgpr_count, sgpr_spill_count, 1422 vgpr_spill_count, loop_tripcount, KernelInfo->Name); 1423 } 1424 1425 // Run on the device. 1426 { 1427 hsa_queue_t *queue = DeviceInfo.HSAQueueSchedulers[device_id].Next(); 1428 if (!queue) { 1429 return OFFLOAD_FAIL; 1430 } 1431 uint64_t packet_id = acquire_available_packet_id(queue); 1432 1433 const uint32_t mask = queue->size - 1; // size is a power of 2 1434 hsa_kernel_dispatch_packet_t *packet = 1435 (hsa_kernel_dispatch_packet_t *)queue->base_address + 1436 (packet_id & mask); 1437 1438 // packet->header is written last 1439 packet->setup = UINT16_C(1) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS; 1440 packet->workgroup_size_x = WorkgroupSize; 1441 packet->workgroup_size_y = 1; 1442 packet->workgroup_size_z = 1; 1443 packet->reserved0 = 0; 1444 packet->grid_size_x = GridSize; 1445 packet->grid_size_y = 1; 1446 packet->grid_size_z = 1; 1447 packet->private_segment_size = KernelInfoEntry.private_segment_size; 1448 packet->group_segment_size = group_segment_size; 1449 packet->kernel_object = KernelInfoEntry.kernel_object; 1450 packet->kernarg_address = 0; // use the block allocator 1451 packet->reserved2 = 0; // impl writes id_ here 1452 packet->completion_signal = {0}; // may want a pool of signals 1453 1454 KernelArgPool *ArgPool = nullptr; 1455 void *kernarg = nullptr; 1456 { 1457 auto it = KernelArgPoolMap.find(std::string(KernelInfo->Name)); 1458 if (it != KernelArgPoolMap.end()) { 1459 ArgPool = (it->second).get(); 1460 } 1461 } 1462 if (!ArgPool) { 1463 DP("Warning: No ArgPool for %s on device %d\n", KernelInfo->Name, 1464 device_id); 1465 } 1466 { 1467 if (ArgPool) { 1468 assert(ArgPool->kernarg_segment_size == (arg_num * sizeof(void *))); 1469 kernarg = ArgPool->allocate(arg_num); 1470 } 1471 if (!kernarg) { 1472 DP("Allocate kernarg failed\n"); 1473 return OFFLOAD_FAIL; 1474 } 1475 1476 // Copy explicit arguments 1477 for (int i = 0; i < arg_num; i++) { 1478 memcpy((char *)kernarg + sizeof(void *) * i, args[i], sizeof(void *)); 1479 } 1480 1481 // Initialize implicit arguments. TODO: Which of these can be dropped 1482 impl_implicit_args_t *impl_args = 1483 reinterpret_cast<impl_implicit_args_t *>( 1484 static_cast<char *>(kernarg) + ArgPool->kernarg_segment_size); 1485 memset(impl_args, 0, 1486 sizeof(impl_implicit_args_t)); // may not be necessary 1487 impl_args->offset_x = 0; 1488 impl_args->offset_y = 0; 1489 impl_args->offset_z = 0; 1490 1491 // assign a hostcall buffer for the selected Q 1492 if (__atomic_load_n(&DeviceInfo.hostcall_required, __ATOMIC_ACQUIRE)) { 1493 // hostrpc_assign_buffer is not thread safe, and this function is 1494 // under a multiple reader lock, not a writer lock. 1495 static pthread_mutex_t hostcall_init_lock = PTHREAD_MUTEX_INITIALIZER; 1496 pthread_mutex_lock(&hostcall_init_lock); 1497 uint64_t buffer = hostrpc_assign_buffer(DeviceInfo.HSAAgents[device_id], 1498 queue, device_id); 1499 pthread_mutex_unlock(&hostcall_init_lock); 1500 if (!buffer) { 1501 DP("hostrpc_assign_buffer failed, gpu would dereference null and " 1502 "error\n"); 1503 return OFFLOAD_FAIL; 1504 } 1505 1506 DP("Implicit argument count: %d\n", 1507 KernelInfoEntry.implicit_argument_count); 1508 if (KernelInfoEntry.implicit_argument_count >= 4) { 1509 // Initialise pointer for implicit_argument_count != 0 ABI 1510 // Guess that the right implicit argument is at offset 24 after 1511 // the explicit arguments. In the future, should be able to read 1512 // the offset from msgpack. Clang is not annotating it at present. 1513 uint64_t Offset = 1514 sizeof(void *) * (KernelInfoEntry.explicit_argument_count + 3); 1515 if ((Offset + 8) > ArgPool->kernarg_size_including_implicit()) { 1516 DP("Bad offset of hostcall: %lu, exceeds kernarg size w/ implicit " 1517 "args: %d\n", 1518 Offset + 8, ArgPool->kernarg_size_including_implicit()); 1519 } else { 1520 memcpy(static_cast<char *>(kernarg) + Offset, &buffer, 8); 1521 } 1522 } 1523 1524 // initialise pointer for implicit_argument_count == 0 ABI 1525 impl_args->hostcall_ptr = buffer; 1526 } 1527 1528 packet->kernarg_address = kernarg; 1529 } 1530 1531 hsa_signal_t s = DeviceInfo.FreeSignalPool.pop(); 1532 if (s.handle == 0) { 1533 DP("Failed to get signal instance\n"); 1534 return OFFLOAD_FAIL; 1535 } 1536 packet->completion_signal = s; 1537 hsa_signal_store_relaxed(packet->completion_signal, 1); 1538 1539 // Publish the packet indicating it is ready to be processed 1540 core::packet_store_release(reinterpret_cast<uint32_t *>(packet), 1541 core::create_header(), packet->setup); 1542 1543 // Since the packet is already published, its contents must not be 1544 // accessed any more 1545 hsa_signal_store_relaxed(queue->doorbell_signal, packet_id); 1546 1547 while (hsa_signal_wait_scacquire(s, HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX, 1548 HSA_WAIT_STATE_BLOCKED) != 0) 1549 ; 1550 1551 assert(ArgPool); 1552 ArgPool->deallocate(kernarg); 1553 DeviceInfo.FreeSignalPool.push(s); 1554 } 1555 1556 DP("Kernel completed\n"); 1557 return OFFLOAD_SUCCESS; 1558 } 1559 1560 bool elf_machine_id_is_amdgcn(__tgt_device_image *image) { 1561 const uint16_t amdgcnMachineID = 224; // EM_AMDGPU may not be in system elf.h 1562 int32_t r = elf_check_machine(image, amdgcnMachineID); 1563 if (!r) { 1564 DP("Supported machine ID not found\n"); 1565 } 1566 return r; 1567 } 1568 1569 uint32_t elf_e_flags(__tgt_device_image *image) { 1570 char *img_begin = (char *)image->ImageStart; 1571 size_t img_size = (char *)image->ImageEnd - img_begin; 1572 1573 Elf *e = elf_memory(img_begin, img_size); 1574 if (!e) { 1575 DP("Unable to get ELF handle: %s!\n", elf_errmsg(-1)); 1576 return 0; 1577 } 1578 1579 Elf64_Ehdr *eh64 = elf64_getehdr(e); 1580 1581 if (!eh64) { 1582 DP("Unable to get machine ID from ELF file!\n"); 1583 elf_end(e); 1584 return 0; 1585 } 1586 1587 uint32_t Flags = eh64->e_flags; 1588 1589 elf_end(e); 1590 DP("ELF Flags: 0x%x\n", Flags); 1591 return Flags; 1592 } 1593 1594 template <typename T> bool enforce_upper_bound(T *value, T upper) { 1595 bool changed = *value > upper; 1596 if (changed) { 1597 *value = upper; 1598 } 1599 return changed; 1600 } 1601 1602 Elf64_Shdr *find_only_SHT_HASH(Elf *elf) { 1603 size_t N; 1604 int rc = elf_getshdrnum(elf, &N); 1605 if (rc != 0) { 1606 return nullptr; 1607 } 1608 1609 Elf64_Shdr *result = nullptr; 1610 for (size_t i = 0; i < N; i++) { 1611 Elf_Scn *scn = elf_getscn(elf, i); 1612 if (scn) { 1613 Elf64_Shdr *shdr = elf64_getshdr(scn); 1614 if (shdr) { 1615 if (shdr->sh_type == SHT_HASH) { 1616 if (result == nullptr) { 1617 result = shdr; 1618 } else { 1619 // multiple SHT_HASH sections not handled 1620 return nullptr; 1621 } 1622 } 1623 } 1624 } 1625 } 1626 return result; 1627 } 1628 1629 const Elf64_Sym *elf_lookup(Elf *elf, char *base, Elf64_Shdr *section_hash, 1630 const char *symname) { 1631 1632 assert(section_hash); 1633 size_t section_symtab_index = section_hash->sh_link; 1634 Elf64_Shdr *section_symtab = 1635 elf64_getshdr(elf_getscn(elf, section_symtab_index)); 1636 size_t section_strtab_index = section_symtab->sh_link; 1637 1638 const Elf64_Sym *symtab = 1639 reinterpret_cast<const Elf64_Sym *>(base + section_symtab->sh_offset); 1640 1641 const uint32_t *hashtab = 1642 reinterpret_cast<const uint32_t *>(base + section_hash->sh_offset); 1643 1644 // Layout: 1645 // nbucket 1646 // nchain 1647 // bucket[nbucket] 1648 // chain[nchain] 1649 uint32_t nbucket = hashtab[0]; 1650 const uint32_t *bucket = &hashtab[2]; 1651 const uint32_t *chain = &hashtab[nbucket + 2]; 1652 1653 const size_t max = strlen(symname) + 1; 1654 const uint32_t hash = elf_hash(symname); 1655 for (uint32_t i = bucket[hash % nbucket]; i != 0; i = chain[i]) { 1656 char *n = elf_strptr(elf, section_strtab_index, symtab[i].st_name); 1657 if (strncmp(symname, n, max) == 0) { 1658 return &symtab[i]; 1659 } 1660 } 1661 1662 return nullptr; 1663 } 1664 1665 struct symbol_info { 1666 void *addr = nullptr; 1667 uint32_t size = UINT32_MAX; 1668 uint32_t sh_type = SHT_NULL; 1669 }; 1670 1671 int get_symbol_info_without_loading(Elf *elf, char *base, const char *symname, 1672 symbol_info *res) { 1673 if (elf_kind(elf) != ELF_K_ELF) { 1674 return 1; 1675 } 1676 1677 Elf64_Shdr *section_hash = find_only_SHT_HASH(elf); 1678 if (!section_hash) { 1679 return 1; 1680 } 1681 1682 const Elf64_Sym *sym = elf_lookup(elf, base, section_hash, symname); 1683 if (!sym) { 1684 return 1; 1685 } 1686 1687 if (sym->st_size > UINT32_MAX) { 1688 return 1; 1689 } 1690 1691 if (sym->st_shndx == SHN_UNDEF) { 1692 return 1; 1693 } 1694 1695 Elf_Scn *section = elf_getscn(elf, sym->st_shndx); 1696 if (!section) { 1697 return 1; 1698 } 1699 1700 Elf64_Shdr *header = elf64_getshdr(section); 1701 if (!header) { 1702 return 1; 1703 } 1704 1705 res->addr = sym->st_value + base; 1706 res->size = static_cast<uint32_t>(sym->st_size); 1707 res->sh_type = header->sh_type; 1708 return 0; 1709 } 1710 1711 int get_symbol_info_without_loading(char *base, size_t img_size, 1712 const char *symname, symbol_info *res) { 1713 Elf *elf = elf_memory(base, img_size); 1714 if (elf) { 1715 int rc = get_symbol_info_without_loading(elf, base, symname, res); 1716 elf_end(elf); 1717 return rc; 1718 } 1719 return 1; 1720 } 1721 1722 hsa_status_t interop_get_symbol_info(char *base, size_t img_size, 1723 const char *symname, void **var_addr, 1724 uint32_t *var_size) { 1725 symbol_info si; 1726 int rc = get_symbol_info_without_loading(base, img_size, symname, &si); 1727 if (rc == 0) { 1728 *var_addr = si.addr; 1729 *var_size = si.size; 1730 return HSA_STATUS_SUCCESS; 1731 } else { 1732 return HSA_STATUS_ERROR; 1733 } 1734 } 1735 1736 template <typename C> 1737 hsa_status_t module_register_from_memory_to_place( 1738 std::map<std::string, atl_kernel_info_t> &KernelInfoTable, 1739 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, 1740 void *module_bytes, size_t module_size, int DeviceId, C cb, 1741 std::vector<hsa_executable_t> &HSAExecutables) { 1742 auto L = [](void *data, size_t size, void *cb_state) -> hsa_status_t { 1743 C *unwrapped = static_cast<C *>(cb_state); 1744 return (*unwrapped)(data, size); 1745 }; 1746 return core::RegisterModuleFromMemory( 1747 KernelInfoTable, SymbolInfoTable, module_bytes, module_size, 1748 DeviceInfo.HSAAgents[DeviceId], L, static_cast<void *>(&cb), 1749 HSAExecutables); 1750 } 1751 1752 uint64_t get_device_State_bytes(char *ImageStart, size_t img_size) { 1753 uint64_t device_State_bytes = 0; 1754 { 1755 // If this is the deviceRTL, get the state variable size 1756 symbol_info size_si; 1757 int rc = get_symbol_info_without_loading( 1758 ImageStart, img_size, "omptarget_nvptx_device_State_size", &size_si); 1759 1760 if (rc == 0) { 1761 if (size_si.size != sizeof(uint64_t)) { 1762 DP("Found device_State_size variable with wrong size\n"); 1763 return 0; 1764 } 1765 1766 // Read number of bytes directly from the elf 1767 memcpy(&device_State_bytes, size_si.addr, sizeof(uint64_t)); 1768 } 1769 } 1770 return device_State_bytes; 1771 } 1772 1773 struct device_environment { 1774 // initialise an DeviceEnvironmentTy in the deviceRTL 1775 // patches around differences in the deviceRTL between trunk, aomp, 1776 // rocmcc. Over time these differences will tend to zero and this class 1777 // simplified. 1778 // Symbol may be in .data or .bss, and may be missing fields, todo: 1779 // review aomp/trunk/rocm and simplify the following 1780 1781 // The symbol may also have been deadstripped because the device side 1782 // accessors were unused. 1783 1784 // If the symbol is in .data (aomp, rocm) it can be written directly. 1785 // If it is in .bss, we must wait for it to be allocated space on the 1786 // gpu (trunk) and initialize after loading. 1787 const char *sym() { return "omptarget_device_environment"; } 1788 1789 DeviceEnvironmentTy host_device_env; 1790 symbol_info si; 1791 bool valid = false; 1792 1793 __tgt_device_image *image; 1794 const size_t img_size; 1795 1796 device_environment(int device_id, int number_devices, int dynamic_mem_size, 1797 __tgt_device_image *image, const size_t img_size) 1798 : image(image), img_size(img_size) { 1799 1800 host_device_env.NumDevices = number_devices; 1801 host_device_env.DeviceNum = device_id; 1802 host_device_env.DebugKind = 0; 1803 host_device_env.DynamicMemSize = dynamic_mem_size; 1804 if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) { 1805 host_device_env.DebugKind = std::stoi(envStr); 1806 } 1807 1808 int rc = get_symbol_info_without_loading((char *)image->ImageStart, 1809 img_size, sym(), &si); 1810 if (rc != 0) { 1811 DP("Finding global device environment '%s' - symbol missing.\n", sym()); 1812 return; 1813 } 1814 1815 if (si.size > sizeof(host_device_env)) { 1816 DP("Symbol '%s' has size %u, expected at most %zu.\n", sym(), si.size, 1817 sizeof(host_device_env)); 1818 return; 1819 } 1820 1821 valid = true; 1822 } 1823 1824 bool in_image() { return si.sh_type != SHT_NOBITS; } 1825 1826 hsa_status_t before_loading(void *data, size_t size) { 1827 if (valid) { 1828 if (in_image()) { 1829 DP("Setting global device environment before load (%u bytes)\n", 1830 si.size); 1831 uint64_t offset = (char *)si.addr - (char *)image->ImageStart; 1832 void *pos = (char *)data + offset; 1833 memcpy(pos, &host_device_env, si.size); 1834 } 1835 } 1836 return HSA_STATUS_SUCCESS; 1837 } 1838 1839 hsa_status_t after_loading() { 1840 if (valid) { 1841 if (!in_image()) { 1842 DP("Setting global device environment after load (%u bytes)\n", 1843 si.size); 1844 int device_id = host_device_env.DeviceNum; 1845 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1846 void *state_ptr; 1847 uint32_t state_ptr_size; 1848 hsa_status_t err = interop_hsa_get_symbol_info( 1849 SymbolInfo, device_id, sym(), &state_ptr, &state_ptr_size); 1850 if (err != HSA_STATUS_SUCCESS) { 1851 DP("failed to find %s in loaded image\n", sym()); 1852 return err; 1853 } 1854 1855 if (state_ptr_size != si.size) { 1856 DP("Symbol had size %u before loading, %u after\n", state_ptr_size, 1857 si.size); 1858 return HSA_STATUS_ERROR; 1859 } 1860 1861 return DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &host_device_env, 1862 state_ptr_size, device_id); 1863 } 1864 } 1865 return HSA_STATUS_SUCCESS; 1866 } 1867 }; 1868 1869 hsa_status_t impl_calloc(void **ret_ptr, size_t size, int DeviceId) { 1870 uint64_t rounded = 4 * ((size + 3) / 4); 1871 void *ptr; 1872 hsa_amd_memory_pool_t MemoryPool = DeviceInfo.getDeviceMemoryPool(DeviceId); 1873 hsa_status_t err = hsa_amd_memory_pool_allocate(MemoryPool, rounded, 0, &ptr); 1874 if (err != HSA_STATUS_SUCCESS) { 1875 return err; 1876 } 1877 1878 hsa_status_t rc = hsa_amd_memory_fill(ptr, 0, rounded / 4); 1879 if (rc != HSA_STATUS_SUCCESS) { 1880 DP("zero fill device_state failed with %u\n", rc); 1881 core::Runtime::Memfree(ptr); 1882 return HSA_STATUS_ERROR; 1883 } 1884 1885 *ret_ptr = ptr; 1886 return HSA_STATUS_SUCCESS; 1887 } 1888 1889 bool image_contains_symbol(void *data, size_t size, const char *sym) { 1890 symbol_info si; 1891 int rc = get_symbol_info_without_loading((char *)data, size, sym, &si); 1892 return (rc == 0) && (si.addr != nullptr); 1893 } 1894 1895 } // namespace 1896 1897 namespace core { 1898 hsa_status_t allow_access_to_all_gpu_agents(void *ptr) { 1899 return hsa_amd_agents_allow_access(DeviceInfo.HSAAgents.size(), 1900 &DeviceInfo.HSAAgents[0], NULL, ptr); 1901 } 1902 } // namespace core 1903 1904 extern "C" { 1905 int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) { 1906 return elf_machine_id_is_amdgcn(image); 1907 } 1908 1909 int __tgt_rtl_number_of_devices() { 1910 // If the construction failed, no methods are safe to call 1911 if (DeviceInfo.ConstructionSucceeded) { 1912 return DeviceInfo.NumberOfDevices; 1913 } else { 1914 DP("AMDGPU plugin construction failed. Zero devices available\n"); 1915 return 0; 1916 } 1917 } 1918 1919 int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) { 1920 DP("Init requires flags to %ld\n", RequiresFlags); 1921 DeviceInfo.RequiresFlags = RequiresFlags; 1922 return RequiresFlags; 1923 } 1924 1925 int32_t __tgt_rtl_init_device(int device_id) { 1926 hsa_status_t err; 1927 1928 // this is per device id init 1929 DP("Initialize the device id: %d\n", device_id); 1930 1931 hsa_agent_t agent = DeviceInfo.HSAAgents[device_id]; 1932 1933 // Get number of Compute Unit 1934 uint32_t compute_units = 0; 1935 err = hsa_agent_get_info( 1936 agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT, 1937 &compute_units); 1938 if (err != HSA_STATUS_SUCCESS) { 1939 DeviceInfo.ComputeUnits[device_id] = 1; 1940 DP("Error getting compute units : settiing to 1\n"); 1941 } else { 1942 DeviceInfo.ComputeUnits[device_id] = compute_units; 1943 DP("Using %d compute unis per grid\n", DeviceInfo.ComputeUnits[device_id]); 1944 } 1945 1946 char GetInfoName[64]; // 64 max size returned by get info 1947 err = hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AGENT_INFO_NAME, 1948 (void *)GetInfoName); 1949 if (err) 1950 DeviceInfo.GPUName[device_id] = "--unknown gpu--"; 1951 else { 1952 DeviceInfo.GPUName[device_id] = GetInfoName; 1953 } 1954 1955 if (print_kernel_trace & STARTUP_DETAILS) 1956 DP("Device#%-2d CU's: %2d %s\n", device_id, 1957 DeviceInfo.ComputeUnits[device_id], 1958 DeviceInfo.GPUName[device_id].c_str()); 1959 1960 // Query attributes to determine number of threads/block and blocks/grid. 1961 uint16_t workgroup_max_dim[3]; 1962 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_DIM, 1963 &workgroup_max_dim); 1964 if (err != HSA_STATUS_SUCCESS) { 1965 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::DefaultNumTeams; 1966 DP("Error getting grid dims: num groups : %d\n", 1967 RTLDeviceInfoTy::DefaultNumTeams); 1968 } else if (workgroup_max_dim[0] <= RTLDeviceInfoTy::HardTeamLimit) { 1969 DeviceInfo.GroupsPerDevice[device_id] = workgroup_max_dim[0]; 1970 DP("Using %d ROCm blocks per grid\n", 1971 DeviceInfo.GroupsPerDevice[device_id]); 1972 } else { 1973 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::HardTeamLimit; 1974 DP("Max ROCm blocks per grid %d exceeds the hard team limit %d, capping " 1975 "at the hard limit\n", 1976 workgroup_max_dim[0], RTLDeviceInfoTy::HardTeamLimit); 1977 } 1978 1979 // Get thread limit 1980 hsa_dim3_t grid_max_dim; 1981 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &grid_max_dim); 1982 if (err == HSA_STATUS_SUCCESS) { 1983 DeviceInfo.ThreadsPerGroup[device_id] = 1984 reinterpret_cast<uint32_t *>(&grid_max_dim)[0] / 1985 DeviceInfo.GroupsPerDevice[device_id]; 1986 1987 if (DeviceInfo.ThreadsPerGroup[device_id] == 0) { 1988 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 1989 DP("Default thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 1990 } else if (enforce_upper_bound(&DeviceInfo.ThreadsPerGroup[device_id], 1991 RTLDeviceInfoTy::Max_WG_Size)) { 1992 DP("Capped thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 1993 } else { 1994 DP("Using ROCm Queried thread limit: %d\n", 1995 DeviceInfo.ThreadsPerGroup[device_id]); 1996 } 1997 } else { 1998 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 1999 DP("Error getting max block dimension, use default:%d \n", 2000 RTLDeviceInfoTy::Max_WG_Size); 2001 } 2002 2003 // Get wavefront size 2004 uint32_t wavefront_size = 0; 2005 err = 2006 hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size); 2007 if (err == HSA_STATUS_SUCCESS) { 2008 DP("Queried wavefront size: %d\n", wavefront_size); 2009 DeviceInfo.WarpSize[device_id] = wavefront_size; 2010 } else { 2011 // TODO: Burn the wavefront size into the code object 2012 DP("Warning: Unknown wavefront size, assuming 64\n"); 2013 DeviceInfo.WarpSize[device_id] = 64; 2014 } 2015 2016 // Adjust teams to the env variables 2017 2018 if (DeviceInfo.Env.TeamLimit > 0 && 2019 (enforce_upper_bound(&DeviceInfo.GroupsPerDevice[device_id], 2020 DeviceInfo.Env.TeamLimit))) { 2021 DP("Capping max groups per device to OMP_TEAM_LIMIT=%d\n", 2022 DeviceInfo.Env.TeamLimit); 2023 } 2024 2025 // Set default number of teams 2026 if (DeviceInfo.Env.NumTeams > 0) { 2027 DeviceInfo.NumTeams[device_id] = DeviceInfo.Env.NumTeams; 2028 DP("Default number of teams set according to environment %d\n", 2029 DeviceInfo.Env.NumTeams); 2030 } else { 2031 char *TeamsPerCUEnvStr = getenv("OMP_TARGET_TEAMS_PER_PROC"); 2032 int TeamsPerCU = DefaultTeamsPerCU; 2033 if (TeamsPerCUEnvStr) { 2034 TeamsPerCU = std::stoi(TeamsPerCUEnvStr); 2035 } 2036 2037 DeviceInfo.NumTeams[device_id] = 2038 TeamsPerCU * DeviceInfo.ComputeUnits[device_id]; 2039 DP("Default number of teams = %d * number of compute units %d\n", 2040 TeamsPerCU, DeviceInfo.ComputeUnits[device_id]); 2041 } 2042 2043 if (enforce_upper_bound(&DeviceInfo.NumTeams[device_id], 2044 DeviceInfo.GroupsPerDevice[device_id])) { 2045 DP("Default number of teams exceeds device limit, capping at %d\n", 2046 DeviceInfo.GroupsPerDevice[device_id]); 2047 } 2048 2049 // Adjust threads to the env variables 2050 if (DeviceInfo.Env.TeamThreadLimit > 0 && 2051 (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], 2052 DeviceInfo.Env.TeamThreadLimit))) { 2053 DP("Capping max number of threads to OMP_TEAMS_THREAD_LIMIT=%d\n", 2054 DeviceInfo.Env.TeamThreadLimit); 2055 } 2056 2057 // Set default number of threads 2058 DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::Default_WG_Size; 2059 DP("Default number of threads set according to library's default %d\n", 2060 RTLDeviceInfoTy::Default_WG_Size); 2061 if (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], 2062 DeviceInfo.ThreadsPerGroup[device_id])) { 2063 DP("Default number of threads exceeds device limit, capping at %d\n", 2064 DeviceInfo.ThreadsPerGroup[device_id]); 2065 } 2066 2067 DP("Device %d: default limit for groupsPerDevice %d & threadsPerGroup %d\n", 2068 device_id, DeviceInfo.GroupsPerDevice[device_id], 2069 DeviceInfo.ThreadsPerGroup[device_id]); 2070 2071 DP("Device %d: wavefront size %d, total threads %d x %d = %d\n", device_id, 2072 DeviceInfo.WarpSize[device_id], DeviceInfo.ThreadsPerGroup[device_id], 2073 DeviceInfo.GroupsPerDevice[device_id], 2074 DeviceInfo.GroupsPerDevice[device_id] * 2075 DeviceInfo.ThreadsPerGroup[device_id]); 2076 2077 return OFFLOAD_SUCCESS; 2078 } 2079 2080 static __tgt_target_table * 2081 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 2082 2083 __tgt_target_table *__tgt_rtl_load_binary(int32_t device_id, 2084 __tgt_device_image *image) { 2085 DeviceInfo.load_run_lock.lock(); 2086 __tgt_target_table *res = __tgt_rtl_load_binary_locked(device_id, image); 2087 DeviceInfo.load_run_lock.unlock(); 2088 return res; 2089 } 2090 2091 __tgt_target_table *__tgt_rtl_load_binary_locked(int32_t device_id, 2092 __tgt_device_image *image) { 2093 // This function loads the device image onto gpu[device_id] and does other 2094 // per-image initialization work. Specifically: 2095 // 2096 // - Initialize an DeviceEnvironmentTy instance embedded in the 2097 // image at the symbol "omptarget_device_environment" 2098 // Fields DebugKind, DeviceNum, NumDevices. Used by the deviceRTL. 2099 // 2100 // - Allocate a large array per-gpu (could be moved to init_device) 2101 // - Read a uint64_t at symbol omptarget_nvptx_device_State_size 2102 // - Allocate at least that many bytes of gpu memory 2103 // - Zero initialize it 2104 // - Write the pointer to the symbol omptarget_nvptx_device_State 2105 // 2106 // - Pulls some per-kernel information together from various sources and 2107 // records it in the KernelsList for quicker access later 2108 // 2109 // The initialization can be done before or after loading the image onto the 2110 // gpu. This function presently does a mixture. Using the hsa api to get/set 2111 // the information is simpler to implement, in exchange for more complicated 2112 // runtime behaviour. E.g. launching a kernel or using dma to get eight bytes 2113 // back from the gpu vs a hashtable lookup on the host. 2114 2115 const size_t img_size = (char *)image->ImageEnd - (char *)image->ImageStart; 2116 2117 DeviceInfo.clearOffloadEntriesTable(device_id); 2118 2119 // We do not need to set the ELF version because the caller of this function 2120 // had to do that to decide the right runtime to use 2121 2122 if (!elf_machine_id_is_amdgcn(image)) { 2123 return NULL; 2124 } 2125 2126 { 2127 auto env = 2128 device_environment(device_id, DeviceInfo.NumberOfDevices, 2129 DeviceInfo.Env.DynamicMemSize, image, img_size); 2130 2131 auto &KernelInfo = DeviceInfo.KernelInfoTable[device_id]; 2132 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 2133 hsa_status_t err = module_register_from_memory_to_place( 2134 KernelInfo, SymbolInfo, (void *)image->ImageStart, img_size, device_id, 2135 [&](void *data, size_t size) { 2136 if (image_contains_symbol(data, size, "needs_hostcall_buffer")) { 2137 __atomic_store_n(&DeviceInfo.hostcall_required, true, 2138 __ATOMIC_RELEASE); 2139 } 2140 return env.before_loading(data, size); 2141 }, 2142 DeviceInfo.HSAExecutables); 2143 2144 check("Module registering", err); 2145 if (err != HSA_STATUS_SUCCESS) { 2146 const char *DeviceName = DeviceInfo.GPUName[device_id].c_str(); 2147 const char *ElfName = get_elf_mach_gfx_name(elf_e_flags(image)); 2148 2149 if (strcmp(DeviceName, ElfName) != 0) { 2150 DP("Possible gpu arch mismatch: device:%s, image:%s please check" 2151 " compiler flag: -march=<gpu>\n", 2152 DeviceName, ElfName); 2153 } else { 2154 DP("Error loading image onto GPU: %s\n", get_error_string(err)); 2155 } 2156 2157 return NULL; 2158 } 2159 2160 err = env.after_loading(); 2161 if (err != HSA_STATUS_SUCCESS) { 2162 return NULL; 2163 } 2164 } 2165 2166 DP("AMDGPU module successfully loaded!\n"); 2167 2168 { 2169 // the device_State array is either large value in bss or a void* that 2170 // needs to be assigned to a pointer to an array of size device_state_bytes 2171 // If absent, it has been deadstripped and needs no setup. 2172 2173 void *state_ptr; 2174 uint32_t state_ptr_size; 2175 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 2176 hsa_status_t err = interop_hsa_get_symbol_info( 2177 SymbolInfoMap, device_id, "omptarget_nvptx_device_State", &state_ptr, 2178 &state_ptr_size); 2179 2180 if (err != HSA_STATUS_SUCCESS) { 2181 DP("No device_state symbol found, skipping initialization\n"); 2182 } else { 2183 if (state_ptr_size < sizeof(void *)) { 2184 DP("unexpected size of state_ptr %u != %zu\n", state_ptr_size, 2185 sizeof(void *)); 2186 return NULL; 2187 } 2188 2189 // if it's larger than a void*, assume it's a bss array and no further 2190 // initialization is required. Only try to set up a pointer for 2191 // sizeof(void*) 2192 if (state_ptr_size == sizeof(void *)) { 2193 uint64_t device_State_bytes = 2194 get_device_State_bytes((char *)image->ImageStart, img_size); 2195 if (device_State_bytes == 0) { 2196 DP("Can't initialize device_State, missing size information\n"); 2197 return NULL; 2198 } 2199 2200 auto &dss = DeviceInfo.deviceStateStore[device_id]; 2201 if (dss.first.get() == nullptr) { 2202 assert(dss.second == 0); 2203 void *ptr = NULL; 2204 hsa_status_t err = impl_calloc(&ptr, device_State_bytes, device_id); 2205 if (err != HSA_STATUS_SUCCESS) { 2206 DP("Failed to allocate device_state array\n"); 2207 return NULL; 2208 } 2209 dss = { 2210 std::unique_ptr<void, RTLDeviceInfoTy::implFreePtrDeletor>{ptr}, 2211 device_State_bytes, 2212 }; 2213 } 2214 2215 void *ptr = dss.first.get(); 2216 if (device_State_bytes != dss.second) { 2217 DP("Inconsistent sizes of device_State unsupported\n"); 2218 return NULL; 2219 } 2220 2221 // write ptr to device memory so it can be used by later kernels 2222 err = DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &ptr, 2223 sizeof(void *), device_id); 2224 if (err != HSA_STATUS_SUCCESS) { 2225 DP("memcpy install of state_ptr failed\n"); 2226 return NULL; 2227 } 2228 } 2229 } 2230 } 2231 2232 // Here, we take advantage of the data that is appended after img_end to get 2233 // the symbols' name we need to load. This data consist of the host entries 2234 // begin and end as well as the target name (see the offloading linker script 2235 // creation in clang compiler). 2236 2237 // Find the symbols in the module by name. The name can be obtain by 2238 // concatenating the host entry name with the target name 2239 2240 __tgt_offload_entry *HostBegin = image->EntriesBegin; 2241 __tgt_offload_entry *HostEnd = image->EntriesEnd; 2242 2243 for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) { 2244 2245 if (!e->addr) { 2246 // The host should have always something in the address to 2247 // uniquely identify the target region. 2248 DP("Analyzing host entry '<null>' (size = %lld)...\n", 2249 (unsigned long long)e->size); 2250 return NULL; 2251 } 2252 2253 if (e->size) { 2254 __tgt_offload_entry entry = *e; 2255 2256 void *varptr; 2257 uint32_t varsize; 2258 2259 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 2260 hsa_status_t err = interop_hsa_get_symbol_info( 2261 SymbolInfoMap, device_id, e->name, &varptr, &varsize); 2262 2263 if (err != HSA_STATUS_SUCCESS) { 2264 // Inform the user what symbol prevented offloading 2265 DP("Loading global '%s' (Failed)\n", e->name); 2266 return NULL; 2267 } 2268 2269 if (varsize != e->size) { 2270 DP("Loading global '%s' - size mismatch (%u != %lu)\n", e->name, 2271 varsize, e->size); 2272 return NULL; 2273 } 2274 2275 DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n", 2276 DPxPTR(e - HostBegin), e->name, DPxPTR(varptr)); 2277 entry.addr = (void *)varptr; 2278 2279 DeviceInfo.addOffloadEntry(device_id, entry); 2280 2281 if (DeviceInfo.RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY && 2282 e->flags & OMP_DECLARE_TARGET_LINK) { 2283 // If unified memory is present any target link variables 2284 // can access host addresses directly. There is no longer a 2285 // need for device copies. 2286 err = DeviceInfo.freesignalpool_memcpy_h2d(varptr, e->addr, 2287 sizeof(void *), device_id); 2288 if (err != HSA_STATUS_SUCCESS) 2289 DP("Error when copying USM\n"); 2290 DP("Copy linked variable host address (" DPxMOD ")" 2291 "to device address (" DPxMOD ")\n", 2292 DPxPTR(*((void **)e->addr)), DPxPTR(varptr)); 2293 } 2294 2295 continue; 2296 } 2297 2298 DP("to find the kernel name: %s size: %lu\n", e->name, strlen(e->name)); 2299 2300 // errors in kernarg_segment_size previously treated as = 0 (or as undef) 2301 uint32_t kernarg_segment_size = 0; 2302 auto &KernelInfoMap = DeviceInfo.KernelInfoTable[device_id]; 2303 hsa_status_t err = HSA_STATUS_SUCCESS; 2304 if (!e->name) { 2305 err = HSA_STATUS_ERROR; 2306 } else { 2307 std::string kernelStr = std::string(e->name); 2308 auto It = KernelInfoMap.find(kernelStr); 2309 if (It != KernelInfoMap.end()) { 2310 atl_kernel_info_t info = It->second; 2311 kernarg_segment_size = info.kernel_segment_size; 2312 } else { 2313 err = HSA_STATUS_ERROR; 2314 } 2315 } 2316 2317 // default value GENERIC (in case symbol is missing from cubin file) 2318 llvm::omp::OMPTgtExecModeFlags ExecModeVal = 2319 llvm::omp::OMPTgtExecModeFlags::OMP_TGT_EXEC_MODE_GENERIC; 2320 2321 // get flat group size if present, else Default_WG_Size 2322 int16_t WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 2323 2324 // get Kernel Descriptor if present. 2325 // Keep struct in sync wih getTgtAttributeStructQTy in CGOpenMPRuntime.cpp 2326 struct KernDescValType { 2327 uint16_t Version; 2328 uint16_t TSize; 2329 uint16_t WG_Size; 2330 }; 2331 struct KernDescValType KernDescVal; 2332 std::string KernDescNameStr(e->name); 2333 KernDescNameStr += "_kern_desc"; 2334 const char *KernDescName = KernDescNameStr.c_str(); 2335 2336 void *KernDescPtr; 2337 uint32_t KernDescSize; 2338 void *CallStackAddr = nullptr; 2339 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 2340 KernDescName, &KernDescPtr, &KernDescSize); 2341 2342 if (err == HSA_STATUS_SUCCESS) { 2343 if ((size_t)KernDescSize != sizeof(KernDescVal)) 2344 DP("Loading global computation properties '%s' - size mismatch (%u != " 2345 "%lu)\n", 2346 KernDescName, KernDescSize, sizeof(KernDescVal)); 2347 2348 memcpy(&KernDescVal, KernDescPtr, (size_t)KernDescSize); 2349 2350 // Check structure size against recorded size. 2351 if ((size_t)KernDescSize != KernDescVal.TSize) 2352 DP("KernDescVal size %lu does not match advertized size %d for '%s'\n", 2353 sizeof(KernDescVal), KernDescVal.TSize, KernDescName); 2354 2355 DP("After loading global for %s KernDesc \n", KernDescName); 2356 DP("KernDesc: Version: %d\n", KernDescVal.Version); 2357 DP("KernDesc: TSize: %d\n", KernDescVal.TSize); 2358 DP("KernDesc: WG_Size: %d\n", KernDescVal.WG_Size); 2359 2360 if (KernDescVal.WG_Size == 0) { 2361 KernDescVal.WG_Size = RTLDeviceInfoTy::Default_WG_Size; 2362 DP("Setting KernDescVal.WG_Size to default %d\n", KernDescVal.WG_Size); 2363 } 2364 WGSizeVal = KernDescVal.WG_Size; 2365 DP("WGSizeVal %d\n", WGSizeVal); 2366 check("Loading KernDesc computation property", err); 2367 } else { 2368 DP("Warning: Loading KernDesc '%s' - symbol not found, ", KernDescName); 2369 2370 // Flat group size 2371 std::string WGSizeNameStr(e->name); 2372 WGSizeNameStr += "_wg_size"; 2373 const char *WGSizeName = WGSizeNameStr.c_str(); 2374 2375 void *WGSizePtr; 2376 uint32_t WGSize; 2377 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 2378 WGSizeName, &WGSizePtr, &WGSize); 2379 2380 if (err == HSA_STATUS_SUCCESS) { 2381 if ((size_t)WGSize != sizeof(int16_t)) { 2382 DP("Loading global computation properties '%s' - size mismatch (%u " 2383 "!= " 2384 "%lu)\n", 2385 WGSizeName, WGSize, sizeof(int16_t)); 2386 return NULL; 2387 } 2388 2389 memcpy(&WGSizeVal, WGSizePtr, (size_t)WGSize); 2390 2391 DP("After loading global for %s WGSize = %d\n", WGSizeName, WGSizeVal); 2392 2393 if (WGSizeVal < RTLDeviceInfoTy::Default_WG_Size || 2394 WGSizeVal > RTLDeviceInfoTy::Max_WG_Size) { 2395 DP("Error wrong WGSize value specified in HSA code object file: " 2396 "%d\n", 2397 WGSizeVal); 2398 WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 2399 } 2400 } else { 2401 DP("Warning: Loading WGSize '%s' - symbol not found, " 2402 "using default value %d\n", 2403 WGSizeName, WGSizeVal); 2404 } 2405 2406 check("Loading WGSize computation property", err); 2407 } 2408 2409 // Read execution mode from global in binary 2410 std::string ExecModeNameStr(e->name); 2411 ExecModeNameStr += "_exec_mode"; 2412 const char *ExecModeName = ExecModeNameStr.c_str(); 2413 2414 void *ExecModePtr; 2415 uint32_t varsize; 2416 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 2417 ExecModeName, &ExecModePtr, &varsize); 2418 2419 if (err == HSA_STATUS_SUCCESS) { 2420 if ((size_t)varsize != sizeof(llvm::omp::OMPTgtExecModeFlags)) { 2421 DP("Loading global computation properties '%s' - size mismatch(%u != " 2422 "%lu)\n", 2423 ExecModeName, varsize, sizeof(llvm::omp::OMPTgtExecModeFlags)); 2424 return NULL; 2425 } 2426 2427 memcpy(&ExecModeVal, ExecModePtr, (size_t)varsize); 2428 2429 DP("After loading global for %s ExecMode = %d\n", ExecModeName, 2430 ExecModeVal); 2431 2432 if (ExecModeVal < 0 || 2433 ExecModeVal > llvm::omp::OMP_TGT_EXEC_MODE_GENERIC_SPMD) { 2434 DP("Error wrong exec_mode value specified in HSA code object file: " 2435 "%d\n", 2436 ExecModeVal); 2437 return NULL; 2438 } 2439 } else { 2440 DP("Loading global exec_mode '%s' - symbol missing, using default " 2441 "value " 2442 "GENERIC (1)\n", 2443 ExecModeName); 2444 } 2445 check("Loading computation property", err); 2446 2447 KernelsList.push_back(KernelTy(ExecModeVal, WGSizeVal, device_id, 2448 CallStackAddr, e->name, kernarg_segment_size, 2449 DeviceInfo.KernArgPool)); 2450 __tgt_offload_entry entry = *e; 2451 entry.addr = (void *)&KernelsList.back(); 2452 DeviceInfo.addOffloadEntry(device_id, entry); 2453 DP("Entry point %ld maps to %s\n", e - HostBegin, e->name); 2454 } 2455 2456 return DeviceInfo.getOffloadEntriesTable(device_id); 2457 } 2458 2459 void *__tgt_rtl_data_alloc(int device_id, int64_t size, void *, int32_t kind) { 2460 void *ptr = NULL; 2461 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 2462 2463 if (kind != TARGET_ALLOC_DEFAULT) { 2464 REPORT("Invalid target data allocation kind or requested allocator not " 2465 "implemented yet\n"); 2466 return NULL; 2467 } 2468 2469 hsa_amd_memory_pool_t MemoryPool = DeviceInfo.getDeviceMemoryPool(device_id); 2470 hsa_status_t err = hsa_amd_memory_pool_allocate(MemoryPool, size, 0, &ptr); 2471 DP("Tgt alloc data %ld bytes, (tgt:%016llx).\n", size, 2472 (long long unsigned)(Elf64_Addr)ptr); 2473 ptr = (err == HSA_STATUS_SUCCESS) ? ptr : NULL; 2474 return ptr; 2475 } 2476 2477 int32_t __tgt_rtl_data_submit(int device_id, void *tgt_ptr, void *hst_ptr, 2478 int64_t size) { 2479 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 2480 __tgt_async_info AsyncInfo; 2481 int32_t rc = dataSubmit(device_id, tgt_ptr, hst_ptr, size, &AsyncInfo); 2482 if (rc != OFFLOAD_SUCCESS) 2483 return OFFLOAD_FAIL; 2484 2485 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 2486 } 2487 2488 int32_t __tgt_rtl_data_submit_async(int device_id, void *tgt_ptr, void *hst_ptr, 2489 int64_t size, __tgt_async_info *AsyncInfo) { 2490 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 2491 if (AsyncInfo) { 2492 initAsyncInfo(AsyncInfo); 2493 return dataSubmit(device_id, tgt_ptr, hst_ptr, size, AsyncInfo); 2494 } else { 2495 return __tgt_rtl_data_submit(device_id, tgt_ptr, hst_ptr, size); 2496 } 2497 } 2498 2499 int32_t __tgt_rtl_data_retrieve(int device_id, void *hst_ptr, void *tgt_ptr, 2500 int64_t size) { 2501 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 2502 __tgt_async_info AsyncInfo; 2503 int32_t rc = dataRetrieve(device_id, hst_ptr, tgt_ptr, size, &AsyncInfo); 2504 if (rc != OFFLOAD_SUCCESS) 2505 return OFFLOAD_FAIL; 2506 2507 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 2508 } 2509 2510 int32_t __tgt_rtl_data_retrieve_async(int device_id, void *hst_ptr, 2511 void *tgt_ptr, int64_t size, 2512 __tgt_async_info *AsyncInfo) { 2513 assert(AsyncInfo && "AsyncInfo is nullptr"); 2514 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 2515 initAsyncInfo(AsyncInfo); 2516 return dataRetrieve(device_id, hst_ptr, tgt_ptr, size, AsyncInfo); 2517 } 2518 2519 int32_t __tgt_rtl_data_delete(int device_id, void *tgt_ptr) { 2520 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 2521 hsa_status_t err; 2522 DP("Tgt free data (tgt:%016llx).\n", (long long unsigned)(Elf64_Addr)tgt_ptr); 2523 err = core::Runtime::Memfree(tgt_ptr); 2524 if (err != HSA_STATUS_SUCCESS) { 2525 DP("Error when freeing CUDA memory\n"); 2526 return OFFLOAD_FAIL; 2527 } 2528 return OFFLOAD_SUCCESS; 2529 } 2530 2531 int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr, 2532 void **tgt_args, 2533 ptrdiff_t *tgt_offsets, 2534 int32_t arg_num, int32_t num_teams, 2535 int32_t thread_limit, 2536 uint64_t loop_tripcount) { 2537 2538 DeviceInfo.load_run_lock.lock_shared(); 2539 int32_t res = 2540 runRegionLocked(device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, 2541 num_teams, thread_limit, loop_tripcount); 2542 2543 DeviceInfo.load_run_lock.unlock_shared(); 2544 return res; 2545 } 2546 2547 int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr, 2548 void **tgt_args, ptrdiff_t *tgt_offsets, 2549 int32_t arg_num) { 2550 // use one team and one thread 2551 // fix thread num 2552 int32_t team_num = 1; 2553 int32_t thread_limit = 0; // use default 2554 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 2555 tgt_offsets, arg_num, team_num, 2556 thread_limit, 0); 2557 } 2558 2559 int32_t __tgt_rtl_run_target_team_region_async( 2560 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 2561 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 2562 int32_t thread_limit, uint64_t loop_tripcount, 2563 __tgt_async_info *AsyncInfo) { 2564 assert(AsyncInfo && "AsyncInfo is nullptr"); 2565 initAsyncInfo(AsyncInfo); 2566 2567 DeviceInfo.load_run_lock.lock_shared(); 2568 int32_t res = 2569 runRegionLocked(device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, 2570 num_teams, thread_limit, loop_tripcount); 2571 2572 DeviceInfo.load_run_lock.unlock_shared(); 2573 return res; 2574 } 2575 2576 int32_t __tgt_rtl_run_target_region_async(int32_t device_id, 2577 void *tgt_entry_ptr, void **tgt_args, 2578 ptrdiff_t *tgt_offsets, 2579 int32_t arg_num, 2580 __tgt_async_info *AsyncInfo) { 2581 // use one team and one thread 2582 // fix thread num 2583 int32_t team_num = 1; 2584 int32_t thread_limit = 0; // use default 2585 return __tgt_rtl_run_target_team_region_async( 2586 device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, team_num, 2587 thread_limit, 0, AsyncInfo); 2588 } 2589 2590 int32_t __tgt_rtl_synchronize(int32_t device_id, __tgt_async_info *AsyncInfo) { 2591 assert(AsyncInfo && "AsyncInfo is nullptr"); 2592 2593 // Cuda asserts that AsyncInfo->Queue is non-null, but this invariant 2594 // is not ensured by devices.cpp for amdgcn 2595 // assert(AsyncInfo->Queue && "AsyncInfo->Queue is nullptr"); 2596 if (AsyncInfo->Queue) { 2597 finiAsyncInfo(AsyncInfo); 2598 } 2599 return OFFLOAD_SUCCESS; 2600 } 2601 2602 void __tgt_rtl_print_device_info(int32_t device_id) { 2603 // TODO: Assertion to see if device_id is correct 2604 // NOTE: We don't need to set context for print device info. 2605 2606 DeviceInfo.printDeviceInfo(device_id, DeviceInfo.HSAAgents[device_id]); 2607 } 2608 2609 } // extern "C" 2610