1 //===--- amdgpu/src/rtl.cpp --------------------------------------- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // RTL for hsa machine
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include <algorithm>
14 #include <assert.h>
15 #include <cstdio>
16 #include <cstdlib>
17 #include <cstring>
18 #include <functional>
19 #include <libelf.h>
20 #include <list>
21 #include <memory>
22 #include <mutex>
23 #include <shared_mutex>
24 #include <unordered_map>
25 #include <vector>
26 
27 // Header from ATMI interface
28 #include "atmi_interop_hsa.h"
29 #include "atmi_runtime.h"
30 
31 #include "internal.h"
32 
33 #include "Debug.h"
34 #include "get_elf_mach_gfx_name.h"
35 #include "machine.h"
36 #include "omptargetplugin.h"
37 #include "print_tracing.h"
38 
39 #include "llvm/Frontend/OpenMP/OMPGridValues.h"
40 
41 #ifndef TARGET_NAME
42 #define TARGET_NAME AMDHSA
43 #endif
44 #define DEBUG_PREFIX "Target " GETNAME(TARGET_NAME) " RTL"
45 
46 // hostrpc interface, FIXME: consider moving to its own include these are
47 // statically linked into amdgpu/plugin if present from hostrpc_services.a,
48 // linked as --whole-archive to override the weak symbols that are used to
49 // implement a fallback for toolchains that do not yet have a hostrpc library.
50 extern "C" {
51 unsigned long hostrpc_assign_buffer(hsa_agent_t agent, hsa_queue_t *this_Q,
52                                     uint32_t device_id);
53 hsa_status_t hostrpc_init();
54 hsa_status_t hostrpc_terminate();
55 
56 __attribute__((weak)) hsa_status_t hostrpc_init() { return HSA_STATUS_SUCCESS; }
57 __attribute__((weak)) hsa_status_t hostrpc_terminate() {
58   return HSA_STATUS_SUCCESS;
59 }
60 __attribute__((weak)) unsigned long
61 hostrpc_assign_buffer(hsa_agent_t, hsa_queue_t *, uint32_t device_id) {
62   DP("Warning: Attempting to assign hostrpc to device %u, but hostrpc library "
63      "missing\n",
64      device_id);
65   return 0;
66 }
67 }
68 
69 // Heuristic parameters used for kernel launch
70 // Number of teams per CU to allow scheduling flexibility
71 static const unsigned DefaultTeamsPerCU = 4;
72 
73 int print_kernel_trace;
74 
75 #ifdef OMPTARGET_DEBUG
76 #define check(msg, status)                                                     \
77   if (status != HSA_STATUS_SUCCESS) {                                          \
78     DP(#msg " failed\n");                                                      \
79   } else {                                                                     \
80     DP(#msg " succeeded\n");                                                   \
81   }
82 #else
83 #define check(msg, status)                                                     \
84   {}
85 #endif
86 
87 #include "elf_common.h"
88 
89 namespace core {
90 hsa_status_t RegisterModuleFromMemory(
91     std::map<std::string, atl_kernel_info_t> &KernelInfo,
92     std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, void *, size_t,
93     hsa_agent_t agent,
94     hsa_status_t (*on_deserialized_data)(void *data, size_t size,
95                                          void *cb_state),
96     void *cb_state, std::vector<hsa_executable_t> &HSAExecutables);
97 }
98 
99 namespace hsa {
100 template <typename C> hsa_status_t iterate_agents(C cb) {
101   auto L = [](hsa_agent_t agent, void *data) -> hsa_status_t {
102     C *unwrapped = static_cast<C *>(data);
103     return (*unwrapped)(agent);
104   };
105   return hsa_iterate_agents(L, static_cast<void *>(&cb));
106 }
107 
108 template <typename C>
109 hsa_status_t amd_agent_iterate_memory_pools(hsa_agent_t Agent, C cb) {
110   auto L = [](hsa_amd_memory_pool_t MemoryPool, void *data) -> hsa_status_t {
111     C *unwrapped = static_cast<C *>(data);
112     return (*unwrapped)(MemoryPool);
113   };
114 
115   return hsa_amd_agent_iterate_memory_pools(Agent, L, static_cast<void *>(&cb));
116 }
117 
118 } // namespace hsa
119 
120 /// Keep entries table per device
121 struct FuncOrGblEntryTy {
122   __tgt_target_table Table;
123   std::vector<__tgt_offload_entry> Entries;
124 };
125 
126 enum ExecutionModeType {
127   SPMD,         // constructors, destructors,
128                 // combined constructs (`teams distribute parallel for [simd]`)
129   GENERIC,      // everything else
130   SPMD_GENERIC, // Generic kernel with SPMD execution
131   NONE
132 };
133 
134 struct KernelArgPool {
135 private:
136   static pthread_mutex_t mutex;
137 
138 public:
139   uint32_t kernarg_segment_size;
140   void *kernarg_region = nullptr;
141   std::queue<int> free_kernarg_segments;
142 
143   uint32_t kernarg_size_including_implicit() {
144     return kernarg_segment_size + sizeof(atmi_implicit_args_t);
145   }
146 
147   ~KernelArgPool() {
148     if (kernarg_region) {
149       auto r = hsa_amd_memory_pool_free(kernarg_region);
150       if (r != HSA_STATUS_SUCCESS) {
151         DP("hsa_amd_memory_pool_free failed: %s\n", get_error_string(r));
152       }
153     }
154   }
155 
156   // Can't really copy or move a mutex
157   KernelArgPool() = default;
158   KernelArgPool(const KernelArgPool &) = delete;
159   KernelArgPool(KernelArgPool &&) = delete;
160 
161   KernelArgPool(uint32_t kernarg_segment_size,
162                 hsa_amd_memory_pool_t &memory_pool)
163       : kernarg_segment_size(kernarg_segment_size) {
164 
165     // atmi uses one pool per kernel for all gpus, with a fixed upper size
166     // preserving that exact scheme here, including the queue<int>
167 
168     hsa_status_t err = hsa_amd_memory_pool_allocate(
169         memory_pool, kernarg_size_including_implicit() * MAX_NUM_KERNELS, 0,
170         &kernarg_region);
171 
172     if (err != HSA_STATUS_SUCCESS) {
173       DP("hsa_amd_memory_pool_allocate failed: %s\n", get_error_string(err));
174       kernarg_region = nullptr; // paranoid
175       return;
176     }
177 
178     err = core::allow_access_to_all_gpu_agents(kernarg_region);
179     if (err != HSA_STATUS_SUCCESS) {
180       DP("hsa allow_access_to_all_gpu_agents failed: %s\n",
181          get_error_string(err));
182       auto r = hsa_amd_memory_pool_free(kernarg_region);
183       if (r != HSA_STATUS_SUCCESS) {
184         // if free failed, can't do anything more to resolve it
185         DP("hsa memory poll free failed: %s\n", get_error_string(err));
186       }
187       kernarg_region = nullptr;
188       return;
189     }
190 
191     for (int i = 0; i < MAX_NUM_KERNELS; i++) {
192       free_kernarg_segments.push(i);
193     }
194   }
195 
196   void *allocate(uint64_t arg_num) {
197     assert((arg_num * sizeof(void *)) == kernarg_segment_size);
198     lock l(&mutex);
199     void *res = nullptr;
200     if (!free_kernarg_segments.empty()) {
201 
202       int free_idx = free_kernarg_segments.front();
203       res = static_cast<void *>(static_cast<char *>(kernarg_region) +
204                                 (free_idx * kernarg_size_including_implicit()));
205       assert(free_idx == pointer_to_index(res));
206       free_kernarg_segments.pop();
207     }
208     return res;
209   }
210 
211   void deallocate(void *ptr) {
212     lock l(&mutex);
213     int idx = pointer_to_index(ptr);
214     free_kernarg_segments.push(idx);
215   }
216 
217 private:
218   int pointer_to_index(void *ptr) {
219     ptrdiff_t bytes =
220         static_cast<char *>(ptr) - static_cast<char *>(kernarg_region);
221     assert(bytes >= 0);
222     assert(bytes % kernarg_size_including_implicit() == 0);
223     return bytes / kernarg_size_including_implicit();
224   }
225   struct lock {
226     lock(pthread_mutex_t *m) : m(m) { pthread_mutex_lock(m); }
227     ~lock() { pthread_mutex_unlock(m); }
228     pthread_mutex_t *m;
229   };
230 };
231 pthread_mutex_t KernelArgPool::mutex = PTHREAD_MUTEX_INITIALIZER;
232 
233 std::unordered_map<std::string /*kernel*/, std::unique_ptr<KernelArgPool>>
234     KernelArgPoolMap;
235 
236 /// Use a single entity to encode a kernel and a set of flags
237 struct KernelTy {
238   // execution mode of kernel
239   // 0 - SPMD mode (without master warp)
240   // 1 - Generic mode (with master warp)
241   // 2 - SPMD mode execution with Generic mode semantics.
242   int8_t ExecutionMode;
243   int16_t ConstWGSize;
244   int32_t device_id;
245   void *CallStackAddr = nullptr;
246   const char *Name;
247 
248   KernelTy(int8_t _ExecutionMode, int16_t _ConstWGSize, int32_t _device_id,
249            void *_CallStackAddr, const char *_Name,
250            uint32_t _kernarg_segment_size,
251            hsa_amd_memory_pool_t &KernArgMemoryPool)
252       : ExecutionMode(_ExecutionMode), ConstWGSize(_ConstWGSize),
253         device_id(_device_id), CallStackAddr(_CallStackAddr), Name(_Name) {
254     DP("Construct kernelinfo: ExecMode %d\n", ExecutionMode);
255 
256     std::string N(_Name);
257     if (KernelArgPoolMap.find(N) == KernelArgPoolMap.end()) {
258       KernelArgPoolMap.insert(
259           std::make_pair(N, std::unique_ptr<KernelArgPool>(new KernelArgPool(
260                                 _kernarg_segment_size, KernArgMemoryPool))));
261     }
262   }
263 };
264 
265 /// List that contains all the kernels.
266 /// FIXME: we may need this to be per device and per library.
267 std::list<KernelTy> KernelsList;
268 
269 template <typename Callback> static hsa_status_t FindAgents(Callback CB) {
270 
271   hsa_status_t err =
272       hsa::iterate_agents([&](hsa_agent_t agent) -> hsa_status_t {
273         hsa_device_type_t device_type;
274         // get_info fails iff HSA runtime not yet initialized
275         hsa_status_t err =
276             hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type);
277         if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS)
278           printf("rtl.cpp: err %d\n", err);
279         assert(err == HSA_STATUS_SUCCESS);
280 
281         CB(device_type, agent);
282         return HSA_STATUS_SUCCESS;
283       });
284 
285   // iterate_agents fails iff HSA runtime not yet initialized
286   if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) {
287     printf("rtl.cpp: err %d\n", err);
288   }
289 
290   return err;
291 }
292 
293 static void callbackQueue(hsa_status_t status, hsa_queue_t *source,
294                           void *data) {
295   if (status != HSA_STATUS_SUCCESS) {
296     const char *status_string;
297     if (hsa_status_string(status, &status_string) != HSA_STATUS_SUCCESS) {
298       status_string = "unavailable";
299     }
300     fprintf(stderr, "[%s:%d] GPU error in queue %p %d (%s)\n", __FILE__,
301             __LINE__, source, status, status_string);
302     abort();
303   }
304 }
305 
306 namespace core {
307 namespace {
308 void packet_store_release(uint32_t *packet, uint16_t header, uint16_t rest) {
309   __atomic_store_n(packet, header | (rest << 16), __ATOMIC_RELEASE);
310 }
311 
312 uint16_t create_header() {
313   uint16_t header = HSA_PACKET_TYPE_KERNEL_DISPATCH << HSA_PACKET_HEADER_TYPE;
314   header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE;
315   header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE;
316   return header;
317 }
318 
319 hsa_status_t addKernArgPool(hsa_amd_memory_pool_t MemoryPool, void *Data) {
320   std::vector<hsa_amd_memory_pool_t> *Result =
321       static_cast<std::vector<hsa_amd_memory_pool_t> *>(Data);
322   bool AllocAllowed = false;
323   hsa_status_t err = hsa_amd_memory_pool_get_info(
324       MemoryPool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED,
325       &AllocAllowed);
326   if (err != HSA_STATUS_SUCCESS) {
327     fprintf(stderr, "Alloc allowed in memory pool check failed: %s\n",
328             get_error_string(err));
329     return err;
330   }
331 
332   if (!AllocAllowed) {
333     // nothing needs to be done here.
334     return HSA_STATUS_SUCCESS;
335   }
336 
337   uint32_t GlobalFlags = 0;
338   err = hsa_amd_memory_pool_get_info(
339       MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags);
340   if (err != HSA_STATUS_SUCCESS) {
341     fprintf(stderr, "Get memory pool info failed: %s\n", get_error_string(err));
342     return err;
343   }
344 
345   size_t size = 0;
346   err = hsa_amd_memory_pool_get_info(MemoryPool, HSA_AMD_MEMORY_POOL_INFO_SIZE,
347                                      &size);
348   if (err != HSA_STATUS_SUCCESS) {
349     fprintf(stderr, "Get memory pool size failed: %s\n", get_error_string(err));
350     return err;
351   }
352 
353   if ((GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) &&
354       (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_KERNARG_INIT) &&
355       size > 0) {
356     Result->push_back(MemoryPool);
357   }
358 
359   return HSA_STATUS_SUCCESS;
360 }
361 
362 std::pair<hsa_status_t, bool>
363 isValidMemoryPool(hsa_amd_memory_pool_t MemoryPool) {
364   bool AllocAllowed = false;
365   hsa_status_t Err = hsa_amd_memory_pool_get_info(
366       MemoryPool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED,
367       &AllocAllowed);
368   if (Err != HSA_STATUS_SUCCESS) {
369     fprintf(stderr, "Alloc allowed in memory pool check failed: %s\n",
370             get_error_string(Err));
371     return {Err, false};
372   }
373 
374   return {HSA_STATUS_SUCCESS, AllocAllowed};
375 }
376 
377 template <typename AccumulatorFunc>
378 hsa_status_t collectMemoryPools(const std::vector<hsa_agent_t> &Agents,
379                                 AccumulatorFunc Func) {
380   for (int DeviceId = 0; DeviceId < Agents.size(); DeviceId++) {
381     hsa_status_t Err = hsa::amd_agent_iterate_memory_pools(
382         Agents[DeviceId], [&](hsa_amd_memory_pool_t MemoryPool) {
383           hsa_status_t Err;
384           bool Valid = false;
385           std::tie(Err, Valid) = isValidMemoryPool(MemoryPool);
386           if (Err != HSA_STATUS_SUCCESS) {
387             return Err;
388           }
389           if (Valid)
390             Func(MemoryPool, DeviceId);
391           return HSA_STATUS_SUCCESS;
392         });
393 
394     if (Err != HSA_STATUS_SUCCESS) {
395       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
396              "Iterate all memory pools", get_error_string(Err));
397       return Err;
398     }
399   }
400 
401   return HSA_STATUS_SUCCESS;
402 }
403 
404 std::pair<hsa_status_t, hsa_amd_memory_pool_t>
405 FindKernargPool(const std::vector<hsa_agent_t> &HSAAgents) {
406   std::vector<hsa_amd_memory_pool_t> KernArgPools;
407   for (const auto &Agent : HSAAgents) {
408     hsa_status_t err = HSA_STATUS_SUCCESS;
409     err = hsa_amd_agent_iterate_memory_pools(
410         Agent, addKernArgPool, static_cast<void *>(&KernArgPools));
411     if (err != HSA_STATUS_SUCCESS) {
412       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
413              "Iterate all memory pools", get_error_string(err));
414       return {err, hsa_amd_memory_pool_t{}};
415     }
416   }
417 
418   if (KernArgPools.empty()) {
419     fprintf(stderr, "Unable to find any valid kernarg pool\n");
420     return {HSA_STATUS_ERROR, hsa_amd_memory_pool_t{}};
421   }
422 
423   return {HSA_STATUS_SUCCESS, KernArgPools[0]};
424 }
425 
426 } // namespace
427 } // namespace core
428 
429 struct EnvironmentVariables {
430   int NumTeams;
431   int TeamLimit;
432   int TeamThreadLimit;
433   int MaxTeamsDefault;
434 };
435 
436 /// Class containing all the device information
437 class RTLDeviceInfoTy {
438   std::vector<std::list<FuncOrGblEntryTy>> FuncGblEntries;
439 
440 public:
441   // load binary populates symbol tables and mutates various global state
442   // run uses those symbol tables
443   std::shared_timed_mutex load_run_lock;
444 
445   int NumberOfDevices;
446 
447   // GPU devices
448   std::vector<hsa_agent_t> HSAAgents;
449   std::vector<hsa_queue_t *> HSAQueues; // one per gpu
450 
451   // CPUs
452   std::vector<hsa_agent_t> CPUAgents;
453 
454   // Device properties
455   std::vector<int> ComputeUnits;
456   std::vector<int> GroupsPerDevice;
457   std::vector<int> ThreadsPerGroup;
458   std::vector<int> WarpSize;
459   std::vector<std::string> GPUName;
460 
461   // OpenMP properties
462   std::vector<int> NumTeams;
463   std::vector<int> NumThreads;
464 
465   // OpenMP Environment properties
466   EnvironmentVariables Env;
467 
468   // OpenMP Requires Flags
469   int64_t RequiresFlags;
470 
471   // Resource pools
472   SignalPoolT FreeSignalPool;
473 
474   bool hostcall_required = false;
475 
476   std::vector<hsa_executable_t> HSAExecutables;
477 
478   std::vector<std::map<std::string, atl_kernel_info_t>> KernelInfoTable;
479   std::vector<std::map<std::string, atl_symbol_info_t>> SymbolInfoTable;
480 
481   hsa_amd_memory_pool_t KernArgPool;
482 
483   // fine grained memory pool for host allocations
484   hsa_amd_memory_pool_t HostFineGrainedMemoryPool;
485 
486   // fine and coarse-grained memory pools per offloading device
487   std::vector<hsa_amd_memory_pool_t> DeviceFineGrainedMemoryPools;
488   std::vector<hsa_amd_memory_pool_t> DeviceCoarseGrainedMemoryPools;
489 
490   struct atmiFreePtrDeletor {
491     void operator()(void *p) {
492       core::Runtime::Memfree(p); // ignore failure to free
493     }
494   };
495 
496   // device_State shared across loaded binaries, error if inconsistent size
497   std::vector<std::pair<std::unique_ptr<void, atmiFreePtrDeletor>, uint64_t>>
498       deviceStateStore;
499 
500   static const unsigned HardTeamLimit =
501       (1 << 16) - 1; // 64K needed to fit in uint16
502   static const int DefaultNumTeams = 128;
503   static const int Max_Teams =
504       llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_Teams];
505   static const int Warp_Size =
506       llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size];
507   static const int Max_WG_Size =
508       llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_WG_Size];
509   static const int Default_WG_Size =
510       llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Default_WG_Size];
511 
512   using MemcpyFunc = hsa_status_t (*)(hsa_signal_t, void *, const void *,
513                                       size_t size, hsa_agent_t);
514   hsa_status_t freesignalpool_memcpy(void *dest, const void *src, size_t size,
515                                      MemcpyFunc Func, int32_t deviceId) {
516     hsa_agent_t agent = HSAAgents[deviceId];
517     hsa_signal_t s = FreeSignalPool.pop();
518     if (s.handle == 0) {
519       return HSA_STATUS_ERROR;
520     }
521     hsa_status_t r = Func(s, dest, src, size, agent);
522     FreeSignalPool.push(s);
523     return r;
524   }
525 
526   hsa_status_t freesignalpool_memcpy_d2h(void *dest, const void *src,
527                                          size_t size, int32_t deviceId) {
528     return freesignalpool_memcpy(dest, src, size, atmi_memcpy_d2h, deviceId);
529   }
530 
531   hsa_status_t freesignalpool_memcpy_h2d(void *dest, const void *src,
532                                          size_t size, int32_t deviceId) {
533     return freesignalpool_memcpy(dest, src, size, atmi_memcpy_h2d, deviceId);
534   }
535 
536   // Record entry point associated with device
537   void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) {
538     assert(device_id < (int32_t)FuncGblEntries.size() &&
539            "Unexpected device id!");
540     FuncOrGblEntryTy &E = FuncGblEntries[device_id].back();
541 
542     E.Entries.push_back(entry);
543   }
544 
545   // Return true if the entry is associated with device
546   bool findOffloadEntry(int32_t device_id, void *addr) {
547     assert(device_id < (int32_t)FuncGblEntries.size() &&
548            "Unexpected device id!");
549     FuncOrGblEntryTy &E = FuncGblEntries[device_id].back();
550 
551     for (auto &it : E.Entries) {
552       if (it.addr == addr)
553         return true;
554     }
555 
556     return false;
557   }
558 
559   // Return the pointer to the target entries table
560   __tgt_target_table *getOffloadEntriesTable(int32_t device_id) {
561     assert(device_id < (int32_t)FuncGblEntries.size() &&
562            "Unexpected device id!");
563     FuncOrGblEntryTy &E = FuncGblEntries[device_id].back();
564 
565     int32_t size = E.Entries.size();
566 
567     // Table is empty
568     if (!size)
569       return 0;
570 
571     __tgt_offload_entry *begin = &E.Entries[0];
572     __tgt_offload_entry *end = &E.Entries[size - 1];
573 
574     // Update table info according to the entries and return the pointer
575     E.Table.EntriesBegin = begin;
576     E.Table.EntriesEnd = ++end;
577 
578     return &E.Table;
579   }
580 
581   // Clear entries table for a device
582   void clearOffloadEntriesTable(int device_id) {
583     assert(device_id < (int32_t)FuncGblEntries.size() &&
584            "Unexpected device id!");
585     FuncGblEntries[device_id].emplace_back();
586     FuncOrGblEntryTy &E = FuncGblEntries[device_id].back();
587     // KernelArgPoolMap.clear();
588     E.Entries.clear();
589     E.Table.EntriesBegin = E.Table.EntriesEnd = 0;
590   }
591 
592   hsa_status_t addDeviceMemoryPool(hsa_amd_memory_pool_t MemoryPool,
593                                    int DeviceId) {
594     assert(DeviceId < DeviceFineGrainedMemoryPools.size() && "Error here.");
595     uint32_t GlobalFlags = 0;
596     hsa_status_t Err = hsa_amd_memory_pool_get_info(
597         MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags);
598 
599     if (Err != HSA_STATUS_SUCCESS) {
600       return Err;
601     }
602 
603     if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) {
604       DeviceFineGrainedMemoryPools[DeviceId] = MemoryPool;
605     } else if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_COARSE_GRAINED) {
606       DeviceCoarseGrainedMemoryPools[DeviceId] = MemoryPool;
607     }
608 
609     return HSA_STATUS_SUCCESS;
610   }
611 
612   hsa_status_t addHostMemoryPool(hsa_amd_memory_pool_t MemoryPool,
613                                  int DeviceId) {
614     uint32_t GlobalFlags = 0;
615     hsa_status_t Err = hsa_amd_memory_pool_get_info(
616         MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags);
617 
618     if (Err != HSA_STATUS_SUCCESS) {
619       return Err;
620     }
621 
622     uint32_t Size;
623     Err = hsa_amd_memory_pool_get_info(MemoryPool,
624                                        HSA_AMD_MEMORY_POOL_INFO_SIZE, &Size);
625     if (Err != HSA_STATUS_SUCCESS) {
626       return Err;
627     }
628 
629     if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED &&
630         Size > 0) {
631       HostFineGrainedMemoryPool = MemoryPool;
632     }
633 
634     return HSA_STATUS_SUCCESS;
635   }
636 
637   hsa_status_t setupMemoryPools() {
638     using namespace std::placeholders;
639     hsa_status_t Err;
640     Err = core::collectMemoryPools(
641         CPUAgents, std::bind(&RTLDeviceInfoTy::addHostMemoryPool, this, _1, _2));
642     if (Err != HSA_STATUS_SUCCESS) {
643       fprintf(stderr, "HSA error in collecting memory pools for CPU: %s\n",
644               get_error_string(Err));
645       return Err;
646     }
647     Err = core::collectMemoryPools(
648         HSAAgents, std::bind(&RTLDeviceInfoTy::addDeviceMemoryPool, this, _1, _2));
649     if (Err != HSA_STATUS_SUCCESS) {
650       fprintf(stderr,
651               "HSA error in collecting memory pools for offload devices: %s\n",
652               get_error_string(Err));
653       return Err;
654     }
655     return HSA_STATUS_SUCCESS;
656   }
657 
658   hsa_amd_memory_pool_t getDeviceMemoryPool(int DeviceId) {
659     assert(DeviceId >= 0 && DeviceId < DeviceCoarseGrainedMemoryPools.size() &&
660            "Invalid device Id");
661     return DeviceCoarseGrainedMemoryPools[DeviceId];
662   }
663 
664   hsa_amd_memory_pool_t getHostMemoryPool() {
665     return HostFineGrainedMemoryPool;
666   }
667 
668   static int readEnvElseMinusOne(const char *Env) {
669     const char *envStr = getenv(Env);
670     int res = -1;
671     if (envStr) {
672       res = std::stoi(envStr);
673       DP("Parsed %s=%d\n", Env, res);
674     }
675     return res;
676   }
677 
678   RTLDeviceInfoTy() {
679     // LIBOMPTARGET_KERNEL_TRACE provides a kernel launch trace to stderr
680     // anytime. You do not need a debug library build.
681     //  0 => no tracing
682     //  1 => tracing dispatch only
683     // >1 => verbosity increase
684     if (char *envStr = getenv("LIBOMPTARGET_KERNEL_TRACE"))
685       print_kernel_trace = atoi(envStr);
686     else
687       print_kernel_trace = 0;
688 
689     DP("Start initializing HSA-ATMI\n");
690     hsa_status_t err = core::atl_init_gpu_context();
691     if (err != HSA_STATUS_SUCCESS) {
692       DP("Error when initializing HSA-ATMI\n");
693       return;
694     }
695 
696     // Init hostcall soon after initializing ATMI
697     hostrpc_init();
698 
699     err = FindAgents([&](hsa_device_type_t DeviceType, hsa_agent_t Agent) {
700       if (DeviceType == HSA_DEVICE_TYPE_CPU) {
701         CPUAgents.push_back(Agent);
702       } else {
703         HSAAgents.push_back(Agent);
704       }
705     });
706     if (err != HSA_STATUS_SUCCESS)
707       return;
708 
709     NumberOfDevices = (int)HSAAgents.size();
710 
711     if (NumberOfDevices == 0) {
712       DP("There are no devices supporting HSA.\n");
713       return;
714     } else {
715       DP("There are %d devices supporting HSA.\n", NumberOfDevices);
716     }
717     std::tie(err, KernArgPool) = core::FindKernargPool(CPUAgents);
718     if (err != HSA_STATUS_SUCCESS) {
719       DP("Error when reading memory pools\n");
720       return;
721     }
722 
723     // Init the device info
724     HSAQueues.resize(NumberOfDevices);
725     FuncGblEntries.resize(NumberOfDevices);
726     ThreadsPerGroup.resize(NumberOfDevices);
727     ComputeUnits.resize(NumberOfDevices);
728     GPUName.resize(NumberOfDevices);
729     GroupsPerDevice.resize(NumberOfDevices);
730     WarpSize.resize(NumberOfDevices);
731     NumTeams.resize(NumberOfDevices);
732     NumThreads.resize(NumberOfDevices);
733     deviceStateStore.resize(NumberOfDevices);
734     KernelInfoTable.resize(NumberOfDevices);
735     SymbolInfoTable.resize(NumberOfDevices);
736     DeviceCoarseGrainedMemoryPools.resize(NumberOfDevices);
737     DeviceFineGrainedMemoryPools.resize(NumberOfDevices);
738 
739     err = setupMemoryPools();
740     if (err != HSA_STATUS_SUCCESS) {
741       DP("Error when setting up memory pools");
742       return;
743     }
744 
745     for (int i = 0; i < NumberOfDevices; i++) {
746       HSAQueues[i] = nullptr;
747     }
748 
749     for (int i = 0; i < NumberOfDevices; i++) {
750       uint32_t queue_size = 0;
751       {
752         hsa_status_t err = hsa_agent_get_info(
753             HSAAgents[i], HSA_AGENT_INFO_QUEUE_MAX_SIZE, &queue_size);
754         if (err != HSA_STATUS_SUCCESS) {
755           DP("HSA query QUEUE_MAX_SIZE failed for agent %d\n", i);
756           return;
757         }
758         if (queue_size > core::Runtime::getInstance().getMaxQueueSize()) {
759           queue_size = core::Runtime::getInstance().getMaxQueueSize();
760         }
761       }
762 
763       hsa_status_t rc = hsa_queue_create(
764           HSAAgents[i], queue_size, HSA_QUEUE_TYPE_MULTI, callbackQueue, NULL,
765           UINT32_MAX, UINT32_MAX, &HSAQueues[i]);
766       if (rc != HSA_STATUS_SUCCESS) {
767         DP("Failed to create HSA queue %d\n", i);
768         return;
769       }
770 
771       deviceStateStore[i] = {nullptr, 0};
772     }
773 
774     for (int i = 0; i < NumberOfDevices; i++) {
775       ThreadsPerGroup[i] = RTLDeviceInfoTy::Default_WG_Size;
776       GroupsPerDevice[i] = RTLDeviceInfoTy::DefaultNumTeams;
777       ComputeUnits[i] = 1;
778       DP("Device %d: Initial groupsPerDevice %d & threadsPerGroup %d\n", i,
779          GroupsPerDevice[i], ThreadsPerGroup[i]);
780     }
781 
782     // Get environment variables regarding teams
783     Env.TeamLimit = readEnvElseMinusOne("OMP_TEAM_LIMIT");
784     Env.NumTeams = readEnvElseMinusOne("OMP_NUM_TEAMS");
785     Env.MaxTeamsDefault = readEnvElseMinusOne("OMP_MAX_TEAMS_DEFAULT");
786     Env.TeamThreadLimit = readEnvElseMinusOne("OMP_TEAMS_THREAD_LIMIT");
787 
788     // Default state.
789     RequiresFlags = OMP_REQ_UNDEFINED;
790   }
791 
792   ~RTLDeviceInfoTy() {
793     DP("Finalizing the HSA-ATMI DeviceInfo.\n");
794     // Run destructors on types that use HSA before
795     // atmi_finalize removes access to it
796     deviceStateStore.clear();
797     KernelArgPoolMap.clear();
798     // Terminate hostrpc before finalizing ATMI
799     hostrpc_terminate();
800 
801     hsa_status_t Err;
802     for (uint32_t I = 0; I < HSAExecutables.size(); I++) {
803       Err = hsa_executable_destroy(HSAExecutables[I]);
804       if (Err != HSA_STATUS_SUCCESS) {
805         DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
806            "Destroying executable", get_error_string(Err));
807       }
808     }
809 
810     Err = hsa_shut_down();
811     if (Err != HSA_STATUS_SUCCESS) {
812       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Shutting down HSA",
813              get_error_string(Err));
814     }
815   }
816 };
817 
818 pthread_mutex_t SignalPoolT::mutex = PTHREAD_MUTEX_INITIALIZER;
819 
820 // TODO: May need to drop the trailing to fields until deviceRTL is updated
821 struct omptarget_device_environmentTy {
822   int32_t debug_level; // gets value of envvar LIBOMPTARGET_DEVICE_RTL_DEBUG
823                        // only useful for Debug build of deviceRTLs
824   int32_t num_devices; // gets number of active offload devices
825   int32_t device_num;  // gets a value 0 to num_devices-1
826 };
827 
828 static RTLDeviceInfoTy DeviceInfo;
829 
830 namespace {
831 
832 int32_t dataRetrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size,
833                      __tgt_async_info *AsyncInfo) {
834   assert(AsyncInfo && "AsyncInfo is nullptr");
835   assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large");
836   // Return success if we are not copying back to host from target.
837   if (!HstPtr)
838     return OFFLOAD_SUCCESS;
839   hsa_status_t err;
840   DP("Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size,
841      (long long unsigned)(Elf64_Addr)TgtPtr,
842      (long long unsigned)(Elf64_Addr)HstPtr);
843 
844   err = DeviceInfo.freesignalpool_memcpy_d2h(HstPtr, TgtPtr, (size_t)Size,
845                                              DeviceId);
846 
847   if (err != HSA_STATUS_SUCCESS) {
848     DP("Error when copying data from device to host. Pointers: "
849        "host = 0x%016lx, device = 0x%016lx, size = %lld\n",
850        (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size);
851     return OFFLOAD_FAIL;
852   }
853   DP("DONE Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size,
854      (long long unsigned)(Elf64_Addr)TgtPtr,
855      (long long unsigned)(Elf64_Addr)HstPtr);
856   return OFFLOAD_SUCCESS;
857 }
858 
859 int32_t dataSubmit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size,
860                    __tgt_async_info *AsyncInfo) {
861   assert(AsyncInfo && "AsyncInfo is nullptr");
862   hsa_status_t err;
863   assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large");
864   // Return success if we are not doing host to target.
865   if (!HstPtr)
866     return OFFLOAD_SUCCESS;
867 
868   DP("Submit data %ld bytes, (hst:%016llx) -> (tgt:%016llx).\n", Size,
869      (long long unsigned)(Elf64_Addr)HstPtr,
870      (long long unsigned)(Elf64_Addr)TgtPtr);
871   err = DeviceInfo.freesignalpool_memcpy_h2d(TgtPtr, HstPtr, (size_t)Size,
872                                              DeviceId);
873   if (err != HSA_STATUS_SUCCESS) {
874     DP("Error when copying data from host to device. Pointers: "
875        "host = 0x%016lx, device = 0x%016lx, size = %lld\n",
876        (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size);
877     return OFFLOAD_FAIL;
878   }
879   return OFFLOAD_SUCCESS;
880 }
881 
882 // Async.
883 // The implementation was written with cuda streams in mind. The semantics of
884 // that are to execute kernels on a queue in order of insertion. A synchronise
885 // call then makes writes visible between host and device. This means a series
886 // of N data_submit_async calls are expected to execute serially. HSA offers
887 // various options to run the data copies concurrently. This may require changes
888 // to libomptarget.
889 
890 // __tgt_async_info* contains a void * Queue. Queue = 0 is used to indicate that
891 // there are no outstanding kernels that need to be synchronized. Any async call
892 // may be passed a Queue==0, at which point the cuda implementation will set it
893 // to non-null (see getStream). The cuda streams are per-device. Upstream may
894 // change this interface to explicitly initialize the AsyncInfo_pointer, but
895 // until then hsa lazily initializes it as well.
896 
897 void initAsyncInfo(__tgt_async_info *AsyncInfo) {
898   // set non-null while using async calls, return to null to indicate completion
899   assert(AsyncInfo);
900   if (!AsyncInfo->Queue) {
901     AsyncInfo->Queue = reinterpret_cast<void *>(UINT64_MAX);
902   }
903 }
904 void finiAsyncInfo(__tgt_async_info *AsyncInfo) {
905   assert(AsyncInfo);
906   assert(AsyncInfo->Queue);
907   AsyncInfo->Queue = 0;
908 }
909 
910 bool elf_machine_id_is_amdgcn(__tgt_device_image *image) {
911   const uint16_t amdgcnMachineID = 224; // EM_AMDGPU may not be in system elf.h
912   int32_t r = elf_check_machine(image, amdgcnMachineID);
913   if (!r) {
914     DP("Supported machine ID not found\n");
915   }
916   return r;
917 }
918 
919 uint32_t elf_e_flags(__tgt_device_image *image) {
920   char *img_begin = (char *)image->ImageStart;
921   size_t img_size = (char *)image->ImageEnd - img_begin;
922 
923   Elf *e = elf_memory(img_begin, img_size);
924   if (!e) {
925     DP("Unable to get ELF handle: %s!\n", elf_errmsg(-1));
926     return 0;
927   }
928 
929   Elf64_Ehdr *eh64 = elf64_getehdr(e);
930 
931   if (!eh64) {
932     DP("Unable to get machine ID from ELF file!\n");
933     elf_end(e);
934     return 0;
935   }
936 
937   uint32_t Flags = eh64->e_flags;
938 
939   elf_end(e);
940   DP("ELF Flags: 0x%x\n", Flags);
941   return Flags;
942 }
943 } // namespace
944 
945 int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) {
946   return elf_machine_id_is_amdgcn(image);
947 }
948 
949 int __tgt_rtl_number_of_devices() { return DeviceInfo.NumberOfDevices; }
950 
951 int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) {
952   DP("Init requires flags to %ld\n", RequiresFlags);
953   DeviceInfo.RequiresFlags = RequiresFlags;
954   return RequiresFlags;
955 }
956 
957 namespace {
958 template <typename T> bool enforce_upper_bound(T *value, T upper) {
959   bool changed = *value > upper;
960   if (changed) {
961     *value = upper;
962   }
963   return changed;
964 }
965 } // namespace
966 
967 int32_t __tgt_rtl_init_device(int device_id) {
968   hsa_status_t err;
969 
970   // this is per device id init
971   DP("Initialize the device id: %d\n", device_id);
972 
973   hsa_agent_t agent = DeviceInfo.HSAAgents[device_id];
974 
975   // Get number of Compute Unit
976   uint32_t compute_units = 0;
977   err = hsa_agent_get_info(
978       agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT,
979       &compute_units);
980   if (err != HSA_STATUS_SUCCESS) {
981     DeviceInfo.ComputeUnits[device_id] = 1;
982     DP("Error getting compute units : settiing to 1\n");
983   } else {
984     DeviceInfo.ComputeUnits[device_id] = compute_units;
985     DP("Using %d compute unis per grid\n", DeviceInfo.ComputeUnits[device_id]);
986   }
987 
988   char GetInfoName[64]; // 64 max size returned by get info
989   err = hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AGENT_INFO_NAME,
990                            (void *)GetInfoName);
991   if (err)
992     DeviceInfo.GPUName[device_id] = "--unknown gpu--";
993   else {
994     DeviceInfo.GPUName[device_id] = GetInfoName;
995   }
996 
997   if (print_kernel_trace & STARTUP_DETAILS)
998     fprintf(stderr, "Device#%-2d CU's: %2d %s\n", device_id,
999             DeviceInfo.ComputeUnits[device_id],
1000             DeviceInfo.GPUName[device_id].c_str());
1001 
1002   // Query attributes to determine number of threads/block and blocks/grid.
1003   uint16_t workgroup_max_dim[3];
1004   err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_DIM,
1005                            &workgroup_max_dim);
1006   if (err != HSA_STATUS_SUCCESS) {
1007     DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::DefaultNumTeams;
1008     DP("Error getting grid dims: num groups : %d\n",
1009        RTLDeviceInfoTy::DefaultNumTeams);
1010   } else if (workgroup_max_dim[0] <= RTLDeviceInfoTy::HardTeamLimit) {
1011     DeviceInfo.GroupsPerDevice[device_id] = workgroup_max_dim[0];
1012     DP("Using %d ROCm blocks per grid\n",
1013        DeviceInfo.GroupsPerDevice[device_id]);
1014   } else {
1015     DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::HardTeamLimit;
1016     DP("Max ROCm blocks per grid %d exceeds the hard team limit %d, capping "
1017        "at the hard limit\n",
1018        workgroup_max_dim[0], RTLDeviceInfoTy::HardTeamLimit);
1019   }
1020 
1021   // Get thread limit
1022   hsa_dim3_t grid_max_dim;
1023   err = hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &grid_max_dim);
1024   if (err == HSA_STATUS_SUCCESS) {
1025     DeviceInfo.ThreadsPerGroup[device_id] =
1026         reinterpret_cast<uint32_t *>(&grid_max_dim)[0] /
1027         DeviceInfo.GroupsPerDevice[device_id];
1028 
1029     if (DeviceInfo.ThreadsPerGroup[device_id] == 0) {
1030       DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size;
1031       DP("Default thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size);
1032     } else if (enforce_upper_bound(&DeviceInfo.ThreadsPerGroup[device_id],
1033                                    RTLDeviceInfoTy::Max_WG_Size)) {
1034       DP("Capped thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size);
1035     } else {
1036       DP("Using ROCm Queried thread limit: %d\n",
1037          DeviceInfo.ThreadsPerGroup[device_id]);
1038     }
1039   } else {
1040     DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size;
1041     DP("Error getting max block dimension, use default:%d \n",
1042        RTLDeviceInfoTy::Max_WG_Size);
1043   }
1044 
1045   // Get wavefront size
1046   uint32_t wavefront_size = 0;
1047   err =
1048       hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size);
1049   if (err == HSA_STATUS_SUCCESS) {
1050     DP("Queried wavefront size: %d\n", wavefront_size);
1051     DeviceInfo.WarpSize[device_id] = wavefront_size;
1052   } else {
1053     DP("Default wavefront size: %d\n",
1054        llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]);
1055     DeviceInfo.WarpSize[device_id] =
1056         llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size];
1057   }
1058 
1059   // Adjust teams to the env variables
1060 
1061   if (DeviceInfo.Env.TeamLimit > 0 &&
1062       (enforce_upper_bound(&DeviceInfo.GroupsPerDevice[device_id],
1063                            DeviceInfo.Env.TeamLimit))) {
1064     DP("Capping max groups per device to OMP_TEAM_LIMIT=%d\n",
1065        DeviceInfo.Env.TeamLimit);
1066   }
1067 
1068   // Set default number of teams
1069   if (DeviceInfo.Env.NumTeams > 0) {
1070     DeviceInfo.NumTeams[device_id] = DeviceInfo.Env.NumTeams;
1071     DP("Default number of teams set according to environment %d\n",
1072        DeviceInfo.Env.NumTeams);
1073   } else {
1074     char *TeamsPerCUEnvStr = getenv("OMP_TARGET_TEAMS_PER_PROC");
1075     int TeamsPerCU = DefaultTeamsPerCU;
1076     if (TeamsPerCUEnvStr) {
1077       TeamsPerCU = std::stoi(TeamsPerCUEnvStr);
1078     }
1079 
1080     DeviceInfo.NumTeams[device_id] =
1081         TeamsPerCU * DeviceInfo.ComputeUnits[device_id];
1082     DP("Default number of teams = %d * number of compute units %d\n",
1083        TeamsPerCU, DeviceInfo.ComputeUnits[device_id]);
1084   }
1085 
1086   if (enforce_upper_bound(&DeviceInfo.NumTeams[device_id],
1087                           DeviceInfo.GroupsPerDevice[device_id])) {
1088     DP("Default number of teams exceeds device limit, capping at %d\n",
1089        DeviceInfo.GroupsPerDevice[device_id]);
1090   }
1091 
1092   // Adjust threads to the env variables
1093   if (DeviceInfo.Env.TeamThreadLimit > 0 &&
1094       (enforce_upper_bound(&DeviceInfo.NumThreads[device_id],
1095                            DeviceInfo.Env.TeamThreadLimit))) {
1096     DP("Capping max number of threads to OMP_TEAMS_THREAD_LIMIT=%d\n",
1097        DeviceInfo.Env.TeamThreadLimit);
1098   }
1099 
1100   // Set default number of threads
1101   DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::Default_WG_Size;
1102   DP("Default number of threads set according to library's default %d\n",
1103      RTLDeviceInfoTy::Default_WG_Size);
1104   if (enforce_upper_bound(&DeviceInfo.NumThreads[device_id],
1105                           DeviceInfo.ThreadsPerGroup[device_id])) {
1106     DP("Default number of threads exceeds device limit, capping at %d\n",
1107        DeviceInfo.ThreadsPerGroup[device_id]);
1108   }
1109 
1110   DP("Device %d: default limit for groupsPerDevice %d & threadsPerGroup %d\n",
1111      device_id, DeviceInfo.GroupsPerDevice[device_id],
1112      DeviceInfo.ThreadsPerGroup[device_id]);
1113 
1114   DP("Device %d: wavefront size %d, total threads %d x %d = %d\n", device_id,
1115      DeviceInfo.WarpSize[device_id], DeviceInfo.ThreadsPerGroup[device_id],
1116      DeviceInfo.GroupsPerDevice[device_id],
1117      DeviceInfo.GroupsPerDevice[device_id] *
1118          DeviceInfo.ThreadsPerGroup[device_id]);
1119 
1120   return OFFLOAD_SUCCESS;
1121 }
1122 
1123 namespace {
1124 Elf64_Shdr *find_only_SHT_HASH(Elf *elf) {
1125   size_t N;
1126   int rc = elf_getshdrnum(elf, &N);
1127   if (rc != 0) {
1128     return nullptr;
1129   }
1130 
1131   Elf64_Shdr *result = nullptr;
1132   for (size_t i = 0; i < N; i++) {
1133     Elf_Scn *scn = elf_getscn(elf, i);
1134     if (scn) {
1135       Elf64_Shdr *shdr = elf64_getshdr(scn);
1136       if (shdr) {
1137         if (shdr->sh_type == SHT_HASH) {
1138           if (result == nullptr) {
1139             result = shdr;
1140           } else {
1141             // multiple SHT_HASH sections not handled
1142             return nullptr;
1143           }
1144         }
1145       }
1146     }
1147   }
1148   return result;
1149 }
1150 
1151 const Elf64_Sym *elf_lookup(Elf *elf, char *base, Elf64_Shdr *section_hash,
1152                             const char *symname) {
1153 
1154   assert(section_hash);
1155   size_t section_symtab_index = section_hash->sh_link;
1156   Elf64_Shdr *section_symtab =
1157       elf64_getshdr(elf_getscn(elf, section_symtab_index));
1158   size_t section_strtab_index = section_symtab->sh_link;
1159 
1160   const Elf64_Sym *symtab =
1161       reinterpret_cast<const Elf64_Sym *>(base + section_symtab->sh_offset);
1162 
1163   const uint32_t *hashtab =
1164       reinterpret_cast<const uint32_t *>(base + section_hash->sh_offset);
1165 
1166   // Layout:
1167   // nbucket
1168   // nchain
1169   // bucket[nbucket]
1170   // chain[nchain]
1171   uint32_t nbucket = hashtab[0];
1172   const uint32_t *bucket = &hashtab[2];
1173   const uint32_t *chain = &hashtab[nbucket + 2];
1174 
1175   const size_t max = strlen(symname) + 1;
1176   const uint32_t hash = elf_hash(symname);
1177   for (uint32_t i = bucket[hash % nbucket]; i != 0; i = chain[i]) {
1178     char *n = elf_strptr(elf, section_strtab_index, symtab[i].st_name);
1179     if (strncmp(symname, n, max) == 0) {
1180       return &symtab[i];
1181     }
1182   }
1183 
1184   return nullptr;
1185 }
1186 
1187 struct symbol_info {
1188   void *addr = nullptr;
1189   uint32_t size = UINT32_MAX;
1190   uint32_t sh_type = SHT_NULL;
1191 };
1192 
1193 int get_symbol_info_without_loading(Elf *elf, char *base, const char *symname,
1194                                     symbol_info *res) {
1195   if (elf_kind(elf) != ELF_K_ELF) {
1196     return 1;
1197   }
1198 
1199   Elf64_Shdr *section_hash = find_only_SHT_HASH(elf);
1200   if (!section_hash) {
1201     return 1;
1202   }
1203 
1204   const Elf64_Sym *sym = elf_lookup(elf, base, section_hash, symname);
1205   if (!sym) {
1206     return 1;
1207   }
1208 
1209   if (sym->st_size > UINT32_MAX) {
1210     return 1;
1211   }
1212 
1213   if (sym->st_shndx == SHN_UNDEF) {
1214     return 1;
1215   }
1216 
1217   Elf_Scn *section = elf_getscn(elf, sym->st_shndx);
1218   if (!section) {
1219     return 1;
1220   }
1221 
1222   Elf64_Shdr *header = elf64_getshdr(section);
1223   if (!header) {
1224     return 1;
1225   }
1226 
1227   res->addr = sym->st_value + base;
1228   res->size = static_cast<uint32_t>(sym->st_size);
1229   res->sh_type = header->sh_type;
1230   return 0;
1231 }
1232 
1233 int get_symbol_info_without_loading(char *base, size_t img_size,
1234                                     const char *symname, symbol_info *res) {
1235   Elf *elf = elf_memory(base, img_size);
1236   if (elf) {
1237     int rc = get_symbol_info_without_loading(elf, base, symname, res);
1238     elf_end(elf);
1239     return rc;
1240   }
1241   return 1;
1242 }
1243 
1244 hsa_status_t interop_get_symbol_info(char *base, size_t img_size,
1245                                      const char *symname, void **var_addr,
1246                                      uint32_t *var_size) {
1247   symbol_info si;
1248   int rc = get_symbol_info_without_loading(base, img_size, symname, &si);
1249   if (rc == 0) {
1250     *var_addr = si.addr;
1251     *var_size = si.size;
1252     return HSA_STATUS_SUCCESS;
1253   } else {
1254     return HSA_STATUS_ERROR;
1255   }
1256 }
1257 
1258 template <typename C>
1259 hsa_status_t module_register_from_memory_to_place(
1260     std::map<std::string, atl_kernel_info_t> &KernelInfoTable,
1261     std::map<std::string, atl_symbol_info_t> &SymbolInfoTable,
1262     void *module_bytes, size_t module_size, int DeviceId, C cb,
1263     std::vector<hsa_executable_t> &HSAExecutables) {
1264   auto L = [](void *data, size_t size, void *cb_state) -> hsa_status_t {
1265     C *unwrapped = static_cast<C *>(cb_state);
1266     return (*unwrapped)(data, size);
1267   };
1268   return core::RegisterModuleFromMemory(
1269       KernelInfoTable, SymbolInfoTable, module_bytes, module_size,
1270       DeviceInfo.HSAAgents[DeviceId], L, static_cast<void *>(&cb),
1271       HSAExecutables);
1272 }
1273 } // namespace
1274 
1275 static uint64_t get_device_State_bytes(char *ImageStart, size_t img_size) {
1276   uint64_t device_State_bytes = 0;
1277   {
1278     // If this is the deviceRTL, get the state variable size
1279     symbol_info size_si;
1280     int rc = get_symbol_info_without_loading(
1281         ImageStart, img_size, "omptarget_nvptx_device_State_size", &size_si);
1282 
1283     if (rc == 0) {
1284       if (size_si.size != sizeof(uint64_t)) {
1285         DP("Found device_State_size variable with wrong size\n");
1286         return 0;
1287       }
1288 
1289       // Read number of bytes directly from the elf
1290       memcpy(&device_State_bytes, size_si.addr, sizeof(uint64_t));
1291     }
1292   }
1293   return device_State_bytes;
1294 }
1295 
1296 static __tgt_target_table *
1297 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image);
1298 
1299 static __tgt_target_table *
1300 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image);
1301 
1302 __tgt_target_table *__tgt_rtl_load_binary(int32_t device_id,
1303                                           __tgt_device_image *image) {
1304   DeviceInfo.load_run_lock.lock();
1305   __tgt_target_table *res = __tgt_rtl_load_binary_locked(device_id, image);
1306   DeviceInfo.load_run_lock.unlock();
1307   return res;
1308 }
1309 
1310 struct device_environment {
1311   // initialise an omptarget_device_environmentTy in the deviceRTL
1312   // patches around differences in the deviceRTL between trunk, aomp,
1313   // rocmcc. Over time these differences will tend to zero and this class
1314   // simplified.
1315   // Symbol may be in .data or .bss, and may be missing fields:
1316   //  - aomp has debug_level, num_devices, device_num
1317   //  - trunk has debug_level
1318   //  - under review in trunk is debug_level, device_num
1319   //  - rocmcc matches aomp, patch to swap num_devices and device_num
1320 
1321   // The symbol may also have been deadstripped because the device side
1322   // accessors were unused.
1323 
1324   // If the symbol is in .data (aomp, rocm) it can be written directly.
1325   // If it is in .bss, we must wait for it to be allocated space on the
1326   // gpu (trunk) and initialize after loading.
1327   const char *sym() { return "omptarget_device_environment"; }
1328 
1329   omptarget_device_environmentTy host_device_env;
1330   symbol_info si;
1331   bool valid = false;
1332 
1333   __tgt_device_image *image;
1334   const size_t img_size;
1335 
1336   device_environment(int device_id, int number_devices,
1337                      __tgt_device_image *image, const size_t img_size)
1338       : image(image), img_size(img_size) {
1339 
1340     host_device_env.num_devices = number_devices;
1341     host_device_env.device_num = device_id;
1342     host_device_env.debug_level = 0;
1343 #ifdef OMPTARGET_DEBUG
1344     if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) {
1345       host_device_env.debug_level = std::stoi(envStr);
1346     }
1347 #endif
1348 
1349     int rc = get_symbol_info_without_loading((char *)image->ImageStart,
1350                                              img_size, sym(), &si);
1351     if (rc != 0) {
1352       DP("Finding global device environment '%s' - symbol missing.\n", sym());
1353       return;
1354     }
1355 
1356     if (si.size > sizeof(host_device_env)) {
1357       DP("Symbol '%s' has size %u, expected at most %zu.\n", sym(), si.size,
1358          sizeof(host_device_env));
1359       return;
1360     }
1361 
1362     valid = true;
1363   }
1364 
1365   bool in_image() { return si.sh_type != SHT_NOBITS; }
1366 
1367   hsa_status_t before_loading(void *data, size_t size) {
1368     if (valid) {
1369       if (in_image()) {
1370         DP("Setting global device environment before load (%u bytes)\n",
1371            si.size);
1372         uint64_t offset = (char *)si.addr - (char *)image->ImageStart;
1373         void *pos = (char *)data + offset;
1374         memcpy(pos, &host_device_env, si.size);
1375       }
1376     }
1377     return HSA_STATUS_SUCCESS;
1378   }
1379 
1380   hsa_status_t after_loading() {
1381     if (valid) {
1382       if (!in_image()) {
1383         DP("Setting global device environment after load (%u bytes)\n",
1384            si.size);
1385         int device_id = host_device_env.device_num;
1386         auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id];
1387         void *state_ptr;
1388         uint32_t state_ptr_size;
1389         hsa_status_t err = atmi_interop_hsa_get_symbol_info(
1390             SymbolInfo, device_id, sym(), &state_ptr, &state_ptr_size);
1391         if (err != HSA_STATUS_SUCCESS) {
1392           DP("failed to find %s in loaded image\n", sym());
1393           return err;
1394         }
1395 
1396         if (state_ptr_size != si.size) {
1397           DP("Symbol had size %u before loading, %u after\n", state_ptr_size,
1398              si.size);
1399           return HSA_STATUS_ERROR;
1400         }
1401 
1402         return DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &host_device_env,
1403                                                     state_ptr_size, device_id);
1404       }
1405     }
1406     return HSA_STATUS_SUCCESS;
1407   }
1408 };
1409 
1410 static hsa_status_t atmi_calloc(void **ret_ptr, size_t size, int DeviceId) {
1411   uint64_t rounded = 4 * ((size + 3) / 4);
1412   void *ptr;
1413   hsa_status_t err = core::Runtime::DeviceMalloc(&ptr, rounded, DeviceId);
1414   if (err != HSA_STATUS_SUCCESS) {
1415     return err;
1416   }
1417 
1418   hsa_status_t rc = hsa_amd_memory_fill(ptr, 0, rounded / 4);
1419   if (rc != HSA_STATUS_SUCCESS) {
1420     fprintf(stderr, "zero fill device_state failed with %u\n", rc);
1421     core::Runtime::Memfree(ptr);
1422     return HSA_STATUS_ERROR;
1423   }
1424 
1425   *ret_ptr = ptr;
1426   return HSA_STATUS_SUCCESS;
1427 }
1428 
1429 static bool image_contains_symbol(void *data, size_t size, const char *sym) {
1430   symbol_info si;
1431   int rc = get_symbol_info_without_loading((char *)data, size, sym, &si);
1432   return (rc == 0) && (si.addr != nullptr);
1433 }
1434 
1435 __tgt_target_table *__tgt_rtl_load_binary_locked(int32_t device_id,
1436                                                  __tgt_device_image *image) {
1437   // This function loads the device image onto gpu[device_id] and does other
1438   // per-image initialization work. Specifically:
1439   //
1440   // - Initialize an omptarget_device_environmentTy instance embedded in the
1441   //   image at the symbol "omptarget_device_environment"
1442   //   Fields debug_level, device_num, num_devices. Used by the deviceRTL.
1443   //
1444   // - Allocate a large array per-gpu (could be moved to init_device)
1445   //   - Read a uint64_t at symbol omptarget_nvptx_device_State_size
1446   //   - Allocate at least that many bytes of gpu memory
1447   //   - Zero initialize it
1448   //   - Write the pointer to the symbol omptarget_nvptx_device_State
1449   //
1450   // - Pulls some per-kernel information together from various sources and
1451   //   records it in the KernelsList for quicker access later
1452   //
1453   // The initialization can be done before or after loading the image onto the
1454   // gpu. This function presently does a mixture. Using the hsa api to get/set
1455   // the information is simpler to implement, in exchange for more complicated
1456   // runtime behaviour. E.g. launching a kernel or using dma to get eight bytes
1457   // back from the gpu vs a hashtable lookup on the host.
1458 
1459   const size_t img_size = (char *)image->ImageEnd - (char *)image->ImageStart;
1460 
1461   DeviceInfo.clearOffloadEntriesTable(device_id);
1462 
1463   // We do not need to set the ELF version because the caller of this function
1464   // had to do that to decide the right runtime to use
1465 
1466   if (!elf_machine_id_is_amdgcn(image)) {
1467     return NULL;
1468   }
1469 
1470   {
1471     auto env = device_environment(device_id, DeviceInfo.NumberOfDevices, image,
1472                                   img_size);
1473 
1474     auto &KernelInfo = DeviceInfo.KernelInfoTable[device_id];
1475     auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id];
1476     hsa_status_t err = module_register_from_memory_to_place(
1477         KernelInfo, SymbolInfo, (void *)image->ImageStart, img_size, device_id,
1478         [&](void *data, size_t size) {
1479           if (image_contains_symbol(data, size, "needs_hostcall_buffer")) {
1480             __atomic_store_n(&DeviceInfo.hostcall_required, true,
1481                              __ATOMIC_RELEASE);
1482           }
1483           return env.before_loading(data, size);
1484         },
1485         DeviceInfo.HSAExecutables);
1486 
1487     check("Module registering", err);
1488     if (err != HSA_STATUS_SUCCESS) {
1489       fprintf(stderr,
1490               "Possible gpu arch mismatch: device:%s, image:%s please check"
1491               " compiler flag: -march=<gpu>\n",
1492               DeviceInfo.GPUName[device_id].c_str(),
1493               get_elf_mach_gfx_name(elf_e_flags(image)));
1494       return NULL;
1495     }
1496 
1497     err = env.after_loading();
1498     if (err != HSA_STATUS_SUCCESS) {
1499       return NULL;
1500     }
1501   }
1502 
1503   DP("ATMI module successfully loaded!\n");
1504 
1505   {
1506     // the device_State array is either large value in bss or a void* that
1507     // needs to be assigned to a pointer to an array of size device_state_bytes
1508     // If absent, it has been deadstripped and needs no setup.
1509 
1510     void *state_ptr;
1511     uint32_t state_ptr_size;
1512     auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id];
1513     hsa_status_t err = atmi_interop_hsa_get_symbol_info(
1514         SymbolInfoMap, device_id, "omptarget_nvptx_device_State", &state_ptr,
1515         &state_ptr_size);
1516 
1517     if (err != HSA_STATUS_SUCCESS) {
1518       DP("No device_state symbol found, skipping initialization\n");
1519     } else {
1520       if (state_ptr_size < sizeof(void *)) {
1521         DP("unexpected size of state_ptr %u != %zu\n", state_ptr_size,
1522            sizeof(void *));
1523         return NULL;
1524       }
1525 
1526       // if it's larger than a void*, assume it's a bss array and no further
1527       // initialization is required. Only try to set up a pointer for
1528       // sizeof(void*)
1529       if (state_ptr_size == sizeof(void *)) {
1530         uint64_t device_State_bytes =
1531             get_device_State_bytes((char *)image->ImageStart, img_size);
1532         if (device_State_bytes == 0) {
1533           DP("Can't initialize device_State, missing size information\n");
1534           return NULL;
1535         }
1536 
1537         auto &dss = DeviceInfo.deviceStateStore[device_id];
1538         if (dss.first.get() == nullptr) {
1539           assert(dss.second == 0);
1540           void *ptr = NULL;
1541           hsa_status_t err = atmi_calloc(&ptr, device_State_bytes, device_id);
1542           if (err != HSA_STATUS_SUCCESS) {
1543             DP("Failed to allocate device_state array\n");
1544             return NULL;
1545           }
1546           dss = {
1547               std::unique_ptr<void, RTLDeviceInfoTy::atmiFreePtrDeletor>{ptr},
1548               device_State_bytes,
1549           };
1550         }
1551 
1552         void *ptr = dss.first.get();
1553         if (device_State_bytes != dss.second) {
1554           DP("Inconsistent sizes of device_State unsupported\n");
1555           return NULL;
1556         }
1557 
1558         // write ptr to device memory so it can be used by later kernels
1559         err = DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &ptr,
1560                                                    sizeof(void *), device_id);
1561         if (err != HSA_STATUS_SUCCESS) {
1562           DP("memcpy install of state_ptr failed\n");
1563           return NULL;
1564         }
1565       }
1566     }
1567   }
1568 
1569   // Here, we take advantage of the data that is appended after img_end to get
1570   // the symbols' name we need to load. This data consist of the host entries
1571   // begin and end as well as the target name (see the offloading linker script
1572   // creation in clang compiler).
1573 
1574   // Find the symbols in the module by name. The name can be obtain by
1575   // concatenating the host entry name with the target name
1576 
1577   __tgt_offload_entry *HostBegin = image->EntriesBegin;
1578   __tgt_offload_entry *HostEnd = image->EntriesEnd;
1579 
1580   for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) {
1581 
1582     if (!e->addr) {
1583       // The host should have always something in the address to
1584       // uniquely identify the target region.
1585       fprintf(stderr, "Analyzing host entry '<null>' (size = %lld)...\n",
1586               (unsigned long long)e->size);
1587       return NULL;
1588     }
1589 
1590     if (e->size) {
1591       __tgt_offload_entry entry = *e;
1592 
1593       void *varptr;
1594       uint32_t varsize;
1595 
1596       auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id];
1597       hsa_status_t err = atmi_interop_hsa_get_symbol_info(
1598           SymbolInfoMap, device_id, e->name, &varptr, &varsize);
1599 
1600       if (err != HSA_STATUS_SUCCESS) {
1601         // Inform the user what symbol prevented offloading
1602         DP("Loading global '%s' (Failed)\n", e->name);
1603         return NULL;
1604       }
1605 
1606       if (varsize != e->size) {
1607         DP("Loading global '%s' - size mismatch (%u != %lu)\n", e->name,
1608            varsize, e->size);
1609         return NULL;
1610       }
1611 
1612       DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n",
1613          DPxPTR(e - HostBegin), e->name, DPxPTR(varptr));
1614       entry.addr = (void *)varptr;
1615 
1616       DeviceInfo.addOffloadEntry(device_id, entry);
1617 
1618       if (DeviceInfo.RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY &&
1619           e->flags & OMP_DECLARE_TARGET_LINK) {
1620         // If unified memory is present any target link variables
1621         // can access host addresses directly. There is no longer a
1622         // need for device copies.
1623         err = DeviceInfo.freesignalpool_memcpy_h2d(varptr, e->addr,
1624                                                    sizeof(void *), device_id);
1625         if (err != HSA_STATUS_SUCCESS)
1626           DP("Error when copying USM\n");
1627         DP("Copy linked variable host address (" DPxMOD ")"
1628            "to device address (" DPxMOD ")\n",
1629            DPxPTR(*((void **)e->addr)), DPxPTR(varptr));
1630       }
1631 
1632       continue;
1633     }
1634 
1635     DP("to find the kernel name: %s size: %lu\n", e->name, strlen(e->name));
1636 
1637     uint32_t kernarg_segment_size;
1638     auto &KernelInfoMap = DeviceInfo.KernelInfoTable[device_id];
1639     hsa_status_t err = atmi_interop_hsa_get_kernel_info(
1640         KernelInfoMap, device_id, e->name,
1641         HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE,
1642         &kernarg_segment_size);
1643 
1644     // each arg is a void * in this openmp implementation
1645     uint32_t arg_num = kernarg_segment_size / sizeof(void *);
1646     std::vector<size_t> arg_sizes(arg_num);
1647     for (std::vector<size_t>::iterator it = arg_sizes.begin();
1648          it != arg_sizes.end(); it++) {
1649       *it = sizeof(void *);
1650     }
1651 
1652     // default value GENERIC (in case symbol is missing from cubin file)
1653     int8_t ExecModeVal = ExecutionModeType::GENERIC;
1654 
1655     // get flat group size if present, else Default_WG_Size
1656     int16_t WGSizeVal = RTLDeviceInfoTy::Default_WG_Size;
1657 
1658     // get Kernel Descriptor if present.
1659     // Keep struct in sync wih getTgtAttributeStructQTy in CGOpenMPRuntime.cpp
1660     struct KernDescValType {
1661       uint16_t Version;
1662       uint16_t TSize;
1663       uint16_t WG_Size;
1664       uint8_t Mode;
1665     };
1666     struct KernDescValType KernDescVal;
1667     std::string KernDescNameStr(e->name);
1668     KernDescNameStr += "_kern_desc";
1669     const char *KernDescName = KernDescNameStr.c_str();
1670 
1671     void *KernDescPtr;
1672     uint32_t KernDescSize;
1673     void *CallStackAddr = nullptr;
1674     err = interop_get_symbol_info((char *)image->ImageStart, img_size,
1675                                   KernDescName, &KernDescPtr, &KernDescSize);
1676 
1677     if (err == HSA_STATUS_SUCCESS) {
1678       if ((size_t)KernDescSize != sizeof(KernDescVal))
1679         DP("Loading global computation properties '%s' - size mismatch (%u != "
1680            "%lu)\n",
1681            KernDescName, KernDescSize, sizeof(KernDescVal));
1682 
1683       memcpy(&KernDescVal, KernDescPtr, (size_t)KernDescSize);
1684 
1685       // Check structure size against recorded size.
1686       if ((size_t)KernDescSize != KernDescVal.TSize)
1687         DP("KernDescVal size %lu does not match advertized size %d for '%s'\n",
1688            sizeof(KernDescVal), KernDescVal.TSize, KernDescName);
1689 
1690       DP("After loading global for %s KernDesc \n", KernDescName);
1691       DP("KernDesc: Version: %d\n", KernDescVal.Version);
1692       DP("KernDesc: TSize: %d\n", KernDescVal.TSize);
1693       DP("KernDesc: WG_Size: %d\n", KernDescVal.WG_Size);
1694       DP("KernDesc: Mode: %d\n", KernDescVal.Mode);
1695 
1696       // Get ExecMode
1697       ExecModeVal = KernDescVal.Mode;
1698       DP("ExecModeVal %d\n", ExecModeVal);
1699       if (KernDescVal.WG_Size == 0) {
1700         KernDescVal.WG_Size = RTLDeviceInfoTy::Default_WG_Size;
1701         DP("Setting KernDescVal.WG_Size to default %d\n", KernDescVal.WG_Size);
1702       }
1703       WGSizeVal = KernDescVal.WG_Size;
1704       DP("WGSizeVal %d\n", WGSizeVal);
1705       check("Loading KernDesc computation property", err);
1706     } else {
1707       DP("Warning: Loading KernDesc '%s' - symbol not found, ", KernDescName);
1708 
1709       // Generic
1710       std::string ExecModeNameStr(e->name);
1711       ExecModeNameStr += "_exec_mode";
1712       const char *ExecModeName = ExecModeNameStr.c_str();
1713 
1714       void *ExecModePtr;
1715       uint32_t varsize;
1716       err = interop_get_symbol_info((char *)image->ImageStart, img_size,
1717                                     ExecModeName, &ExecModePtr, &varsize);
1718 
1719       if (err == HSA_STATUS_SUCCESS) {
1720         if ((size_t)varsize != sizeof(int8_t)) {
1721           DP("Loading global computation properties '%s' - size mismatch(%u != "
1722              "%lu)\n",
1723              ExecModeName, varsize, sizeof(int8_t));
1724           return NULL;
1725         }
1726 
1727         memcpy(&ExecModeVal, ExecModePtr, (size_t)varsize);
1728 
1729         DP("After loading global for %s ExecMode = %d\n", ExecModeName,
1730            ExecModeVal);
1731 
1732         if (ExecModeVal < 0 || ExecModeVal > 2) {
1733           DP("Error wrong exec_mode value specified in HSA code object file: "
1734              "%d\n",
1735              ExecModeVal);
1736           return NULL;
1737         }
1738       } else {
1739         DP("Loading global exec_mode '%s' - symbol missing, using default "
1740            "value "
1741            "GENERIC (1)\n",
1742            ExecModeName);
1743       }
1744       check("Loading computation property", err);
1745 
1746       // Flat group size
1747       std::string WGSizeNameStr(e->name);
1748       WGSizeNameStr += "_wg_size";
1749       const char *WGSizeName = WGSizeNameStr.c_str();
1750 
1751       void *WGSizePtr;
1752       uint32_t WGSize;
1753       err = interop_get_symbol_info((char *)image->ImageStart, img_size,
1754                                     WGSizeName, &WGSizePtr, &WGSize);
1755 
1756       if (err == HSA_STATUS_SUCCESS) {
1757         if ((size_t)WGSize != sizeof(int16_t)) {
1758           DP("Loading global computation properties '%s' - size mismatch (%u "
1759              "!= "
1760              "%lu)\n",
1761              WGSizeName, WGSize, sizeof(int16_t));
1762           return NULL;
1763         }
1764 
1765         memcpy(&WGSizeVal, WGSizePtr, (size_t)WGSize);
1766 
1767         DP("After loading global for %s WGSize = %d\n", WGSizeName, WGSizeVal);
1768 
1769         if (WGSizeVal < RTLDeviceInfoTy::Default_WG_Size ||
1770             WGSizeVal > RTLDeviceInfoTy::Max_WG_Size) {
1771           DP("Error wrong WGSize value specified in HSA code object file: "
1772              "%d\n",
1773              WGSizeVal);
1774           WGSizeVal = RTLDeviceInfoTy::Default_WG_Size;
1775         }
1776       } else {
1777         DP("Warning: Loading WGSize '%s' - symbol not found, "
1778            "using default value %d\n",
1779            WGSizeName, WGSizeVal);
1780       }
1781 
1782       check("Loading WGSize computation property", err);
1783     }
1784 
1785     KernelsList.push_back(KernelTy(ExecModeVal, WGSizeVal, device_id,
1786                                    CallStackAddr, e->name, kernarg_segment_size,
1787                                    DeviceInfo.KernArgPool));
1788     __tgt_offload_entry entry = *e;
1789     entry.addr = (void *)&KernelsList.back();
1790     DeviceInfo.addOffloadEntry(device_id, entry);
1791     DP("Entry point %ld maps to %s\n", e - HostBegin, e->name);
1792   }
1793 
1794   return DeviceInfo.getOffloadEntriesTable(device_id);
1795 }
1796 
1797 void *__tgt_rtl_data_alloc(int device_id, int64_t size, void *, int32_t kind) {
1798   void *ptr = NULL;
1799   assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large");
1800 
1801   if (kind != TARGET_ALLOC_DEFAULT) {
1802     REPORT("Invalid target data allocation kind or requested allocator not "
1803            "implemented yet\n");
1804     return NULL;
1805   }
1806 
1807   hsa_status_t err = core::Runtime::DeviceMalloc(&ptr, size, device_id);
1808   DP("Tgt alloc data %ld bytes, (tgt:%016llx).\n", size,
1809      (long long unsigned)(Elf64_Addr)ptr);
1810   ptr = (err == HSA_STATUS_SUCCESS) ? ptr : NULL;
1811   return ptr;
1812 }
1813 
1814 int32_t __tgt_rtl_data_submit(int device_id, void *tgt_ptr, void *hst_ptr,
1815                               int64_t size) {
1816   assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large");
1817   __tgt_async_info AsyncInfo;
1818   int32_t rc = dataSubmit(device_id, tgt_ptr, hst_ptr, size, &AsyncInfo);
1819   if (rc != OFFLOAD_SUCCESS)
1820     return OFFLOAD_FAIL;
1821 
1822   return __tgt_rtl_synchronize(device_id, &AsyncInfo);
1823 }
1824 
1825 int32_t __tgt_rtl_data_submit_async(int device_id, void *tgt_ptr, void *hst_ptr,
1826                                     int64_t size, __tgt_async_info *AsyncInfo) {
1827   assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large");
1828   if (AsyncInfo) {
1829     initAsyncInfo(AsyncInfo);
1830     return dataSubmit(device_id, tgt_ptr, hst_ptr, size, AsyncInfo);
1831   } else {
1832     return __tgt_rtl_data_submit(device_id, tgt_ptr, hst_ptr, size);
1833   }
1834 }
1835 
1836 int32_t __tgt_rtl_data_retrieve(int device_id, void *hst_ptr, void *tgt_ptr,
1837                                 int64_t size) {
1838   assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large");
1839   __tgt_async_info AsyncInfo;
1840   int32_t rc = dataRetrieve(device_id, hst_ptr, tgt_ptr, size, &AsyncInfo);
1841   if (rc != OFFLOAD_SUCCESS)
1842     return OFFLOAD_FAIL;
1843 
1844   return __tgt_rtl_synchronize(device_id, &AsyncInfo);
1845 }
1846 
1847 int32_t __tgt_rtl_data_retrieve_async(int device_id, void *hst_ptr,
1848                                       void *tgt_ptr, int64_t size,
1849                                       __tgt_async_info *AsyncInfo) {
1850   assert(AsyncInfo && "AsyncInfo is nullptr");
1851   assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large");
1852   initAsyncInfo(AsyncInfo);
1853   return dataRetrieve(device_id, hst_ptr, tgt_ptr, size, AsyncInfo);
1854 }
1855 
1856 int32_t __tgt_rtl_data_delete(int device_id, void *tgt_ptr) {
1857   assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large");
1858   hsa_status_t err;
1859   DP("Tgt free data (tgt:%016llx).\n", (long long unsigned)(Elf64_Addr)tgt_ptr);
1860   err = core::Runtime::Memfree(tgt_ptr);
1861   if (err != HSA_STATUS_SUCCESS) {
1862     DP("Error when freeing CUDA memory\n");
1863     return OFFLOAD_FAIL;
1864   }
1865   return OFFLOAD_SUCCESS;
1866 }
1867 
1868 // Determine launch values for kernel.
1869 struct launchVals {
1870   int WorkgroupSize;
1871   int GridSize;
1872 };
1873 launchVals getLaunchVals(EnvironmentVariables Env, int ConstWGSize,
1874                          int ExecutionMode, int num_teams, int thread_limit,
1875                          uint64_t loop_tripcount, int DeviceNumTeams) {
1876 
1877   int threadsPerGroup = RTLDeviceInfoTy::Default_WG_Size;
1878   int num_groups = 0;
1879 
1880   int Max_Teams =
1881       Env.MaxTeamsDefault > 0 ? Env.MaxTeamsDefault : DeviceNumTeams;
1882   if (Max_Teams > RTLDeviceInfoTy::HardTeamLimit)
1883     Max_Teams = RTLDeviceInfoTy::HardTeamLimit;
1884 
1885   if (print_kernel_trace & STARTUP_DETAILS) {
1886     fprintf(stderr, "RTLDeviceInfoTy::Max_Teams: %d\n",
1887             RTLDeviceInfoTy::Max_Teams);
1888     fprintf(stderr, "Max_Teams: %d\n", Max_Teams);
1889     fprintf(stderr, "RTLDeviceInfoTy::Warp_Size: %d\n",
1890             RTLDeviceInfoTy::Warp_Size);
1891     fprintf(stderr, "RTLDeviceInfoTy::Max_WG_Size: %d\n",
1892             RTLDeviceInfoTy::Max_WG_Size);
1893     fprintf(stderr, "RTLDeviceInfoTy::Default_WG_Size: %d\n",
1894             RTLDeviceInfoTy::Default_WG_Size);
1895     fprintf(stderr, "thread_limit: %d\n", thread_limit);
1896     fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup);
1897     fprintf(stderr, "ConstWGSize: %d\n", ConstWGSize);
1898   }
1899   // check for thread_limit() clause
1900   if (thread_limit > 0) {
1901     threadsPerGroup = thread_limit;
1902     DP("Setting threads per block to requested %d\n", thread_limit);
1903     if (ExecutionMode == GENERIC) { // Add master warp for GENERIC
1904       threadsPerGroup += RTLDeviceInfoTy::Warp_Size;
1905       DP("Adding master wavefront: +%d threads\n", RTLDeviceInfoTy::Warp_Size);
1906     }
1907     if (threadsPerGroup > RTLDeviceInfoTy::Max_WG_Size) { // limit to max
1908       threadsPerGroup = RTLDeviceInfoTy::Max_WG_Size;
1909       DP("Setting threads per block to maximum %d\n", threadsPerGroup);
1910     }
1911   }
1912   // check flat_max_work_group_size attr here
1913   if (threadsPerGroup > ConstWGSize) {
1914     threadsPerGroup = ConstWGSize;
1915     DP("Reduced threadsPerGroup to flat-attr-group-size limit %d\n",
1916        threadsPerGroup);
1917   }
1918   if (print_kernel_trace & STARTUP_DETAILS)
1919     fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup);
1920   DP("Preparing %d threads\n", threadsPerGroup);
1921 
1922   // Set default num_groups (teams)
1923   if (Env.TeamLimit > 0)
1924     num_groups = (Max_Teams < Env.TeamLimit) ? Max_Teams : Env.TeamLimit;
1925   else
1926     num_groups = Max_Teams;
1927   DP("Set default num of groups %d\n", num_groups);
1928 
1929   if (print_kernel_trace & STARTUP_DETAILS) {
1930     fprintf(stderr, "num_groups: %d\n", num_groups);
1931     fprintf(stderr, "num_teams: %d\n", num_teams);
1932   }
1933 
1934   // Reduce num_groups if threadsPerGroup exceeds RTLDeviceInfoTy::Max_WG_Size
1935   // This reduction is typical for default case (no thread_limit clause).
1936   // or when user goes crazy with num_teams clause.
1937   // FIXME: We cant distinguish between a constant or variable thread limit.
1938   // So we only handle constant thread_limits.
1939   if (threadsPerGroup >
1940       RTLDeviceInfoTy::Default_WG_Size) //  256 < threadsPerGroup <= 1024
1941     // Should we round threadsPerGroup up to nearest RTLDeviceInfoTy::Warp_Size
1942     // here?
1943     num_groups = (Max_Teams * RTLDeviceInfoTy::Max_WG_Size) / threadsPerGroup;
1944 
1945   // check for num_teams() clause
1946   if (num_teams > 0) {
1947     num_groups = (num_teams < num_groups) ? num_teams : num_groups;
1948   }
1949   if (print_kernel_trace & STARTUP_DETAILS) {
1950     fprintf(stderr, "num_groups: %d\n", num_groups);
1951     fprintf(stderr, "Env.NumTeams %d\n", Env.NumTeams);
1952     fprintf(stderr, "Env.TeamLimit %d\n", Env.TeamLimit);
1953   }
1954 
1955   if (Env.NumTeams > 0) {
1956     num_groups = (Env.NumTeams < num_groups) ? Env.NumTeams : num_groups;
1957     DP("Modifying teams based on Env.NumTeams %d\n", Env.NumTeams);
1958   } else if (Env.TeamLimit > 0) {
1959     num_groups = (Env.TeamLimit < num_groups) ? Env.TeamLimit : num_groups;
1960     DP("Modifying teams based on Env.TeamLimit%d\n", Env.TeamLimit);
1961   } else {
1962     if (num_teams <= 0) {
1963       if (loop_tripcount > 0) {
1964         if (ExecutionMode == SPMD) {
1965           // round up to the nearest integer
1966           num_groups = ((loop_tripcount - 1) / threadsPerGroup) + 1;
1967         } else if (ExecutionMode == GENERIC) {
1968           num_groups = loop_tripcount;
1969         } else /* ExecutionMode == SPMD_GENERIC */ {
1970           // This is a generic kernel that was transformed to use SPMD-mode
1971           // execution but uses Generic-mode semantics for scheduling.
1972           num_groups = loop_tripcount;
1973         }
1974         DP("Using %d teams due to loop trip count %" PRIu64 " and number of "
1975            "threads per block %d\n",
1976            num_groups, loop_tripcount, threadsPerGroup);
1977       }
1978     } else {
1979       num_groups = num_teams;
1980     }
1981     if (num_groups > Max_Teams) {
1982       num_groups = Max_Teams;
1983       if (print_kernel_trace & STARTUP_DETAILS)
1984         fprintf(stderr, "Limiting num_groups %d to Max_Teams %d \n", num_groups,
1985                 Max_Teams);
1986     }
1987     if (num_groups > num_teams && num_teams > 0) {
1988       num_groups = num_teams;
1989       if (print_kernel_trace & STARTUP_DETAILS)
1990         fprintf(stderr, "Limiting num_groups %d to clause num_teams %d \n",
1991                 num_groups, num_teams);
1992     }
1993   }
1994 
1995   // num_teams clause always honored, no matter what, unless DEFAULT is active.
1996   if (num_teams > 0) {
1997     num_groups = num_teams;
1998     // Cap num_groups to EnvMaxTeamsDefault if set.
1999     if (Env.MaxTeamsDefault > 0 && num_groups > Env.MaxTeamsDefault)
2000       num_groups = Env.MaxTeamsDefault;
2001   }
2002   if (print_kernel_trace & STARTUP_DETAILS) {
2003     fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup);
2004     fprintf(stderr, "num_groups: %d\n", num_groups);
2005     fprintf(stderr, "loop_tripcount: %ld\n", loop_tripcount);
2006   }
2007   DP("Final %d num_groups and %d threadsPerGroup\n", num_groups,
2008      threadsPerGroup);
2009 
2010   launchVals res;
2011   res.WorkgroupSize = threadsPerGroup;
2012   res.GridSize = threadsPerGroup * num_groups;
2013   return res;
2014 }
2015 
2016 static uint64_t acquire_available_packet_id(hsa_queue_t *queue) {
2017   uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1);
2018   bool full = true;
2019   while (full) {
2020     full =
2021         packet_id >= (queue->size + hsa_queue_load_read_index_scacquire(queue));
2022   }
2023   return packet_id;
2024 }
2025 
2026 static int32_t __tgt_rtl_run_target_team_region_locked(
2027     int32_t device_id, void *tgt_entry_ptr, void **tgt_args,
2028     ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams,
2029     int32_t thread_limit, uint64_t loop_tripcount);
2030 
2031 int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr,
2032                                          void **tgt_args,
2033                                          ptrdiff_t *tgt_offsets,
2034                                          int32_t arg_num, int32_t num_teams,
2035                                          int32_t thread_limit,
2036                                          uint64_t loop_tripcount) {
2037 
2038   DeviceInfo.load_run_lock.lock_shared();
2039   int32_t res = __tgt_rtl_run_target_team_region_locked(
2040       device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, num_teams,
2041       thread_limit, loop_tripcount);
2042 
2043   DeviceInfo.load_run_lock.unlock_shared();
2044   return res;
2045 }
2046 
2047 int32_t __tgt_rtl_run_target_team_region_locked(
2048     int32_t device_id, void *tgt_entry_ptr, void **tgt_args,
2049     ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams,
2050     int32_t thread_limit, uint64_t loop_tripcount) {
2051   // Set the context we are using
2052   // update thread limit content in gpu memory if un-initialized or specified
2053   // from host
2054 
2055   DP("Run target team region thread_limit %d\n", thread_limit);
2056 
2057   // All args are references.
2058   std::vector<void *> args(arg_num);
2059   std::vector<void *> ptrs(arg_num);
2060 
2061   DP("Arg_num: %d\n", arg_num);
2062   for (int32_t i = 0; i < arg_num; ++i) {
2063     ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]);
2064     args[i] = &ptrs[i];
2065     DP("Offseted base: arg[%d]:" DPxMOD "\n", i, DPxPTR(ptrs[i]));
2066   }
2067 
2068   KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr;
2069 
2070   std::string kernel_name = std::string(KernelInfo->Name);
2071   auto &KernelInfoTable = DeviceInfo.KernelInfoTable;
2072   if (KernelInfoTable[device_id].find(kernel_name) ==
2073       KernelInfoTable[device_id].end()) {
2074     DP("Kernel %s not found\n", kernel_name.c_str());
2075     return OFFLOAD_FAIL;
2076   }
2077 
2078   const atl_kernel_info_t KernelInfoEntry =
2079       KernelInfoTable[device_id][kernel_name];
2080   const uint32_t group_segment_size = KernelInfoEntry.group_segment_size;
2081   const uint32_t sgpr_count = KernelInfoEntry.sgpr_count;
2082   const uint32_t vgpr_count = KernelInfoEntry.vgpr_count;
2083   const uint32_t sgpr_spill_count = KernelInfoEntry.sgpr_spill_count;
2084   const uint32_t vgpr_spill_count = KernelInfoEntry.vgpr_spill_count;
2085 
2086   assert(arg_num == (int)KernelInfoEntry.num_args);
2087 
2088   /*
2089    * Set limit based on ThreadsPerGroup and GroupsPerDevice
2090    */
2091   launchVals LV = getLaunchVals(DeviceInfo.Env, KernelInfo->ConstWGSize,
2092                                 KernelInfo->ExecutionMode,
2093                                 num_teams,      // From run_region arg
2094                                 thread_limit,   // From run_region arg
2095                                 loop_tripcount, // From run_region arg
2096                                 DeviceInfo.NumTeams[KernelInfo->device_id]);
2097   const int GridSize = LV.GridSize;
2098   const int WorkgroupSize = LV.WorkgroupSize;
2099 
2100   if (print_kernel_trace >= LAUNCH) {
2101     int num_groups = GridSize / WorkgroupSize;
2102     // enum modes are SPMD, GENERIC, NONE 0,1,2
2103     // if doing rtl timing, print to stderr, unless stdout requested.
2104     bool traceToStdout = print_kernel_trace & (RTL_TO_STDOUT | RTL_TIMING);
2105     fprintf(traceToStdout ? stdout : stderr,
2106             "DEVID:%2d SGN:%1d ConstWGSize:%-4d args:%2d teamsXthrds:(%4dX%4d) "
2107             "reqd:(%4dX%4d) lds_usage:%uB sgpr_count:%u vgpr_count:%u "
2108             "sgpr_spill_count:%u vgpr_spill_count:%u tripcount:%lu n:%s\n",
2109             device_id, KernelInfo->ExecutionMode, KernelInfo->ConstWGSize,
2110             arg_num, num_groups, WorkgroupSize, num_teams, thread_limit,
2111             group_segment_size, sgpr_count, vgpr_count, sgpr_spill_count,
2112             vgpr_spill_count, loop_tripcount, KernelInfo->Name);
2113   }
2114 
2115   // Run on the device.
2116   {
2117     hsa_queue_t *queue = DeviceInfo.HSAQueues[device_id];
2118     if (!queue) {
2119       return OFFLOAD_FAIL;
2120     }
2121     uint64_t packet_id = acquire_available_packet_id(queue);
2122 
2123     const uint32_t mask = queue->size - 1; // size is a power of 2
2124     hsa_kernel_dispatch_packet_t *packet =
2125         (hsa_kernel_dispatch_packet_t *)queue->base_address +
2126         (packet_id & mask);
2127 
2128     // packet->header is written last
2129     packet->setup = UINT16_C(1) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS;
2130     packet->workgroup_size_x = WorkgroupSize;
2131     packet->workgroup_size_y = 1;
2132     packet->workgroup_size_z = 1;
2133     packet->reserved0 = 0;
2134     packet->grid_size_x = GridSize;
2135     packet->grid_size_y = 1;
2136     packet->grid_size_z = 1;
2137     packet->private_segment_size = KernelInfoEntry.private_segment_size;
2138     packet->group_segment_size = KernelInfoEntry.group_segment_size;
2139     packet->kernel_object = KernelInfoEntry.kernel_object;
2140     packet->kernarg_address = 0;     // use the block allocator
2141     packet->reserved2 = 0;           // atmi writes id_ here
2142     packet->completion_signal = {0}; // may want a pool of signals
2143 
2144     KernelArgPool *ArgPool = nullptr;
2145     {
2146       auto it = KernelArgPoolMap.find(std::string(KernelInfo->Name));
2147       if (it != KernelArgPoolMap.end()) {
2148         ArgPool = (it->second).get();
2149       }
2150     }
2151     if (!ArgPool) {
2152       DP("Warning: No ArgPool for %s on device %d\n", KernelInfo->Name,
2153          device_id);
2154     }
2155     {
2156       void *kernarg = nullptr;
2157       if (ArgPool) {
2158         assert(ArgPool->kernarg_segment_size == (arg_num * sizeof(void *)));
2159         kernarg = ArgPool->allocate(arg_num);
2160       }
2161       if (!kernarg) {
2162         DP("Allocate kernarg failed\n");
2163         return OFFLOAD_FAIL;
2164       }
2165 
2166       // Copy explicit arguments
2167       for (int i = 0; i < arg_num; i++) {
2168         memcpy((char *)kernarg + sizeof(void *) * i, args[i], sizeof(void *));
2169       }
2170 
2171       // Initialize implicit arguments. ATMI seems to leave most fields
2172       // uninitialized
2173       atmi_implicit_args_t *impl_args =
2174           reinterpret_cast<atmi_implicit_args_t *>(
2175               static_cast<char *>(kernarg) + ArgPool->kernarg_segment_size);
2176       memset(impl_args, 0,
2177              sizeof(atmi_implicit_args_t)); // may not be necessary
2178       impl_args->offset_x = 0;
2179       impl_args->offset_y = 0;
2180       impl_args->offset_z = 0;
2181 
2182       // assign a hostcall buffer for the selected Q
2183       if (__atomic_load_n(&DeviceInfo.hostcall_required, __ATOMIC_ACQUIRE)) {
2184         // hostrpc_assign_buffer is not thread safe, and this function is
2185         // under a multiple reader lock, not a writer lock.
2186         static pthread_mutex_t hostcall_init_lock = PTHREAD_MUTEX_INITIALIZER;
2187         pthread_mutex_lock(&hostcall_init_lock);
2188         impl_args->hostcall_ptr = hostrpc_assign_buffer(
2189             DeviceInfo.HSAAgents[device_id], queue, device_id);
2190         pthread_mutex_unlock(&hostcall_init_lock);
2191         if (!impl_args->hostcall_ptr) {
2192           DP("hostrpc_assign_buffer failed, gpu would dereference null and "
2193              "error\n");
2194           return OFFLOAD_FAIL;
2195         }
2196       }
2197 
2198       packet->kernarg_address = kernarg;
2199     }
2200 
2201     {
2202       hsa_signal_t s = DeviceInfo.FreeSignalPool.pop();
2203       if (s.handle == 0) {
2204         DP("Failed to get signal instance\n");
2205         return OFFLOAD_FAIL;
2206       }
2207       packet->completion_signal = s;
2208       hsa_signal_store_relaxed(packet->completion_signal, 1);
2209     }
2210 
2211     core::packet_store_release(reinterpret_cast<uint32_t *>(packet),
2212                                core::create_header(), packet->setup);
2213 
2214     hsa_signal_store_relaxed(queue->doorbell_signal, packet_id);
2215 
2216     while (hsa_signal_wait_scacquire(packet->completion_signal,
2217                                      HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX,
2218                                      HSA_WAIT_STATE_BLOCKED) != 0)
2219       ;
2220 
2221     assert(ArgPool);
2222     ArgPool->deallocate(packet->kernarg_address);
2223     DeviceInfo.FreeSignalPool.push(packet->completion_signal);
2224   }
2225 
2226   DP("Kernel completed\n");
2227   return OFFLOAD_SUCCESS;
2228 }
2229 
2230 int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr,
2231                                     void **tgt_args, ptrdiff_t *tgt_offsets,
2232                                     int32_t arg_num) {
2233   // use one team and one thread
2234   // fix thread num
2235   int32_t team_num = 1;
2236   int32_t thread_limit = 0; // use default
2237   return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args,
2238                                           tgt_offsets, arg_num, team_num,
2239                                           thread_limit, 0);
2240 }
2241 
2242 int32_t __tgt_rtl_run_target_region_async(int32_t device_id,
2243                                           void *tgt_entry_ptr, void **tgt_args,
2244                                           ptrdiff_t *tgt_offsets,
2245                                           int32_t arg_num,
2246                                           __tgt_async_info *AsyncInfo) {
2247   assert(AsyncInfo && "AsyncInfo is nullptr");
2248   initAsyncInfo(AsyncInfo);
2249 
2250   // use one team and one thread
2251   // fix thread num
2252   int32_t team_num = 1;
2253   int32_t thread_limit = 0; // use default
2254   return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args,
2255                                           tgt_offsets, arg_num, team_num,
2256                                           thread_limit, 0);
2257 }
2258 
2259 int32_t __tgt_rtl_synchronize(int32_t device_id, __tgt_async_info *AsyncInfo) {
2260   assert(AsyncInfo && "AsyncInfo is nullptr");
2261 
2262   // Cuda asserts that AsyncInfo->Queue is non-null, but this invariant
2263   // is not ensured by devices.cpp for amdgcn
2264   // assert(AsyncInfo->Queue && "AsyncInfo->Queue is nullptr");
2265   if (AsyncInfo->Queue) {
2266     finiAsyncInfo(AsyncInfo);
2267   }
2268   return OFFLOAD_SUCCESS;
2269 }
2270 
2271 namespace core {
2272 hsa_status_t allow_access_to_all_gpu_agents(void *ptr) {
2273   return hsa_amd_agents_allow_access(DeviceInfo.HSAAgents.size(),
2274                                      &DeviceInfo.HSAAgents[0], NULL, ptr);
2275 }
2276 
2277 } // namespace core
2278