1 //===----RTLs/hsa/src/rtl.cpp - Target RTLs Implementation -------- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // RTL for hsa machine 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <algorithm> 14 #include <assert.h> 15 #include <cstdio> 16 #include <cstdlib> 17 #include <cstring> 18 #include <dlfcn.h> 19 #include <elf.h> 20 #include <ffi.h> 21 #include <fstream> 22 #include <iostream> 23 #include <libelf.h> 24 #include <list> 25 #include <memory> 26 #include <mutex> 27 #include <shared_mutex> 28 #include <thread> 29 #include <unordered_map> 30 #include <vector> 31 32 // Header from ATMI interface 33 #include "atmi_interop_hsa.h" 34 #include "atmi_runtime.h" 35 36 #include "internal.h" 37 38 #include "Debug.h" 39 #include "omptargetplugin.h" 40 41 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 42 43 #ifndef TARGET_NAME 44 #define TARGET_NAME AMDHSA 45 #endif 46 #define DEBUG_PREFIX "Target " GETNAME(TARGET_NAME) " RTL" 47 48 int print_kernel_trace; 49 50 // Size of the target call stack struture 51 uint32_t TgtStackItemSize = 0; 52 53 #undef check // Drop definition from internal.h 54 #ifdef OMPTARGET_DEBUG 55 #define check(msg, status) \ 56 if (status != ATMI_STATUS_SUCCESS) { \ 57 /* fprintf(stderr, "[%s:%d] %s failed.\n", __FILE__, __LINE__, #msg);*/ \ 58 DP(#msg " failed\n"); \ 59 /*assert(0);*/ \ 60 } else { \ 61 /* fprintf(stderr, "[%s:%d] %s succeeded.\n", __FILE__, __LINE__, #msg); \ 62 */ \ 63 DP(#msg " succeeded\n"); \ 64 } 65 #else 66 #define check(msg, status) \ 67 {} 68 #endif 69 70 #include "../../common/elf_common.c" 71 72 static bool elf_machine_id_is_amdgcn(__tgt_device_image *image) { 73 const uint16_t amdgcnMachineID = 224; 74 int32_t r = elf_check_machine(image, amdgcnMachineID); 75 if (!r) { 76 DP("Supported machine ID not found\n"); 77 } 78 return r; 79 } 80 81 /// Keep entries table per device 82 struct FuncOrGblEntryTy { 83 __tgt_target_table Table; 84 std::vector<__tgt_offload_entry> Entries; 85 }; 86 87 enum ExecutionModeType { 88 SPMD, // constructors, destructors, 89 // combined constructs (`teams distribute parallel for [simd]`) 90 GENERIC, // everything else 91 NONE 92 }; 93 94 struct KernelArgPool { 95 private: 96 static pthread_mutex_t mutex; 97 98 public: 99 uint32_t kernarg_segment_size; 100 void *kernarg_region = nullptr; 101 std::queue<int> free_kernarg_segments; 102 103 uint32_t kernarg_size_including_implicit() { 104 return kernarg_segment_size + sizeof(atmi_implicit_args_t); 105 } 106 107 ~KernelArgPool() { 108 if (kernarg_region) { 109 auto r = hsa_amd_memory_pool_free(kernarg_region); 110 assert(r == HSA_STATUS_SUCCESS); 111 ErrorCheck(Memory pool free, r); 112 } 113 } 114 115 // Can't really copy or move a mutex 116 KernelArgPool() = default; 117 KernelArgPool(const KernelArgPool &) = delete; 118 KernelArgPool(KernelArgPool &&) = delete; 119 120 KernelArgPool(uint32_t kernarg_segment_size) 121 : kernarg_segment_size(kernarg_segment_size) { 122 123 // atmi uses one pool per kernel for all gpus, with a fixed upper size 124 // preserving that exact scheme here, including the queue<int> 125 { 126 hsa_status_t err = hsa_amd_memory_pool_allocate( 127 atl_gpu_kernarg_pools[0], 128 kernarg_size_including_implicit() * MAX_NUM_KERNELS, 0, 129 &kernarg_region); 130 ErrorCheck(Allocating memory for the executable-kernel, err); 131 core::allow_access_to_all_gpu_agents(kernarg_region); 132 133 for (int i = 0; i < MAX_NUM_KERNELS; i++) { 134 free_kernarg_segments.push(i); 135 } 136 } 137 } 138 139 void *allocate(uint64_t arg_num) { 140 assert((arg_num * sizeof(void *)) == kernarg_segment_size); 141 lock l(&mutex); 142 void *res = nullptr; 143 if (!free_kernarg_segments.empty()) { 144 145 int free_idx = free_kernarg_segments.front(); 146 res = static_cast<void *>(static_cast<char *>(kernarg_region) + 147 (free_idx * kernarg_size_including_implicit())); 148 assert(free_idx == pointer_to_index(res)); 149 free_kernarg_segments.pop(); 150 } 151 return res; 152 } 153 154 void deallocate(void *ptr) { 155 lock l(&mutex); 156 int idx = pointer_to_index(ptr); 157 free_kernarg_segments.push(idx); 158 } 159 160 private: 161 int pointer_to_index(void *ptr) { 162 ptrdiff_t bytes = 163 static_cast<char *>(ptr) - static_cast<char *>(kernarg_region); 164 assert(bytes >= 0); 165 assert(bytes % kernarg_size_including_implicit() == 0); 166 return bytes / kernarg_size_including_implicit(); 167 } 168 struct lock { 169 lock(pthread_mutex_t *m) : m(m) { pthread_mutex_lock(m); } 170 ~lock() { pthread_mutex_unlock(m); } 171 pthread_mutex_t *m; 172 }; 173 }; 174 pthread_mutex_t KernelArgPool::mutex = PTHREAD_MUTEX_INITIALIZER; 175 176 std::unordered_map<std::string /*kernel*/, std::unique_ptr<KernelArgPool>> 177 KernelArgPoolMap; 178 179 /// Use a single entity to encode a kernel and a set of flags 180 struct KernelTy { 181 // execution mode of kernel 182 // 0 - SPMD mode (without master warp) 183 // 1 - Generic mode (with master warp) 184 int8_t ExecutionMode; 185 int16_t ConstWGSize; 186 int8_t MaxParLevel; 187 int32_t device_id; 188 void *CallStackAddr; 189 const char *Name; 190 191 KernelTy(int8_t _ExecutionMode, int16_t _ConstWGSize, int8_t _MaxParLevel, 192 int32_t _device_id, void *_CallStackAddr, const char *_Name, 193 uint32_t _kernarg_segment_size) 194 : ExecutionMode(_ExecutionMode), ConstWGSize(_ConstWGSize), 195 MaxParLevel(_MaxParLevel), device_id(_device_id), 196 CallStackAddr(_CallStackAddr), Name(_Name) { 197 DP("Construct kernelinfo: ExecMode %d\n", ExecutionMode); 198 199 std::string N(_Name); 200 if (KernelArgPoolMap.find(N) == KernelArgPoolMap.end()) { 201 KernelArgPoolMap.insert( 202 std::make_pair(N, std::unique_ptr<KernelArgPool>( 203 new KernelArgPool(_kernarg_segment_size)))); 204 } 205 } 206 }; 207 208 /// List that contains all the kernels. 209 /// FIXME: we may need this to be per device and per library. 210 std::list<KernelTy> KernelsList; 211 212 // ATMI API to get gpu and gpu memory place 213 static atmi_place_t get_gpu_place(int device_id) { 214 return ATMI_PLACE_GPU(0, device_id); 215 } 216 static atmi_mem_place_t get_gpu_mem_place(int device_id) { 217 return ATMI_MEM_PLACE_GPU_MEM(0, device_id, 0); 218 } 219 220 static std::vector<hsa_agent_t> find_gpu_agents() { 221 std::vector<hsa_agent_t> res; 222 223 hsa_status_t err = hsa_iterate_agents( 224 [](hsa_agent_t agent, void *data) -> hsa_status_t { 225 std::vector<hsa_agent_t> *res = 226 static_cast<std::vector<hsa_agent_t> *>(data); 227 228 hsa_device_type_t device_type; 229 // get_info fails iff HSA runtime not yet initialized 230 hsa_status_t err = 231 hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 232 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) 233 printf("rtl.cpp: err %d\n", err); 234 assert(err == HSA_STATUS_SUCCESS); 235 236 if (device_type == HSA_DEVICE_TYPE_GPU) { 237 res->push_back(agent); 238 } 239 return HSA_STATUS_SUCCESS; 240 }, 241 &res); 242 243 // iterate_agents fails iff HSA runtime not yet initialized 244 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) 245 printf("rtl.cpp: err %d\n", err); 246 assert(err == HSA_STATUS_SUCCESS); 247 return res; 248 } 249 250 static void callbackQueue(hsa_status_t status, hsa_queue_t *source, 251 void *data) { 252 if (status != HSA_STATUS_SUCCESS) { 253 const char *status_string; 254 if (hsa_status_string(status, &status_string) != HSA_STATUS_SUCCESS) { 255 status_string = "unavailable"; 256 } 257 fprintf(stderr, "[%s:%d] GPU error in queue %p %d (%s)\n", __FILE__, 258 __LINE__, source, status, status_string); 259 abort(); 260 } 261 } 262 263 namespace core { 264 void packet_store_release(uint32_t *packet, uint16_t header, uint16_t rest) { 265 __atomic_store_n(packet, header | (rest << 16), __ATOMIC_RELEASE); 266 } 267 268 uint16_t create_header(hsa_packet_type_t type, int barrier, 269 atmi_task_fence_scope_t acq_fence, 270 atmi_task_fence_scope_t rel_fence) { 271 uint16_t header = type << HSA_PACKET_HEADER_TYPE; 272 header |= barrier << HSA_PACKET_HEADER_BARRIER; 273 header |= (hsa_fence_scope_t) static_cast<int>( 274 acq_fence << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE); 275 header |= (hsa_fence_scope_t) static_cast<int>( 276 rel_fence << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE); 277 return header; 278 } 279 } // namespace core 280 281 /// Class containing all the device information 282 class RTLDeviceInfoTy { 283 std::vector<std::list<FuncOrGblEntryTy>> FuncGblEntries; 284 285 public: 286 // load binary populates symbol tables and mutates various global state 287 // run uses those symbol tables 288 std::shared_timed_mutex load_run_lock; 289 290 int NumberOfDevices; 291 292 // GPU devices 293 std::vector<hsa_agent_t> HSAAgents; 294 std::vector<hsa_queue_t *> HSAQueues; // one per gpu 295 296 // Device properties 297 std::vector<int> ComputeUnits; 298 std::vector<int> GroupsPerDevice; 299 std::vector<int> ThreadsPerGroup; 300 std::vector<int> WarpSize; 301 302 // OpenMP properties 303 std::vector<int> NumTeams; 304 std::vector<int> NumThreads; 305 306 // OpenMP Environment properties 307 int EnvNumTeams; 308 int EnvTeamLimit; 309 int EnvMaxTeamsDefault; 310 311 // OpenMP Requires Flags 312 int64_t RequiresFlags; 313 314 // Resource pools 315 SignalPoolT FreeSignalPool; 316 317 struct atmiFreePtrDeletor { 318 void operator()(void *p) { 319 atmi_free(p); // ignore failure to free 320 } 321 }; 322 323 // device_State shared across loaded binaries, error if inconsistent size 324 std::vector<std::pair<std::unique_ptr<void, atmiFreePtrDeletor>, uint64_t>> 325 deviceStateStore; 326 327 static const int HardTeamLimit = 1 << 20; // 1 Meg 328 static const int DefaultNumTeams = 128; 329 static const int Max_Teams = 330 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_Teams]; 331 static const int Warp_Size = 332 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; 333 static const int Max_WG_Size = 334 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_WG_Size]; 335 static const int Default_WG_Size = 336 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Default_WG_Size]; 337 338 using MemcpyFunc = atmi_status_t(hsa_signal_t, void *, const void *, 339 size_t size); 340 atmi_status_t freesignalpool_memcpy(void *dest, const void *src, size_t size, 341 MemcpyFunc Func) { 342 hsa_signal_t s = FreeSignalPool.pop(); 343 if (s.handle == 0) { 344 return ATMI_STATUS_ERROR; 345 } 346 atmi_status_t r = Func(s, dest, src, size); 347 FreeSignalPool.push(s); 348 return r; 349 } 350 351 atmi_status_t freesignalpool_memcpy_d2h(void *dest, const void *src, 352 size_t size) { 353 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_d2h); 354 } 355 356 atmi_status_t freesignalpool_memcpy_h2d(void *dest, const void *src, 357 size_t size) { 358 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_h2d); 359 } 360 361 // Record entry point associated with device 362 void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) { 363 assert(device_id < (int32_t)FuncGblEntries.size() && 364 "Unexpected device id!"); 365 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 366 367 E.Entries.push_back(entry); 368 } 369 370 // Return true if the entry is associated with device 371 bool findOffloadEntry(int32_t device_id, void *addr) { 372 assert(device_id < (int32_t)FuncGblEntries.size() && 373 "Unexpected device id!"); 374 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 375 376 for (auto &it : E.Entries) { 377 if (it.addr == addr) 378 return true; 379 } 380 381 return false; 382 } 383 384 // Return the pointer to the target entries table 385 __tgt_target_table *getOffloadEntriesTable(int32_t device_id) { 386 assert(device_id < (int32_t)FuncGblEntries.size() && 387 "Unexpected device id!"); 388 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 389 390 int32_t size = E.Entries.size(); 391 392 // Table is empty 393 if (!size) 394 return 0; 395 396 __tgt_offload_entry *begin = &E.Entries[0]; 397 __tgt_offload_entry *end = &E.Entries[size - 1]; 398 399 // Update table info according to the entries and return the pointer 400 E.Table.EntriesBegin = begin; 401 E.Table.EntriesEnd = ++end; 402 403 return &E.Table; 404 } 405 406 // Clear entries table for a device 407 void clearOffloadEntriesTable(int device_id) { 408 assert(device_id < (int32_t)FuncGblEntries.size() && 409 "Unexpected device id!"); 410 FuncGblEntries[device_id].emplace_back(); 411 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 412 // KernelArgPoolMap.clear(); 413 E.Entries.clear(); 414 E.Table.EntriesBegin = E.Table.EntriesEnd = 0; 415 } 416 417 RTLDeviceInfoTy() { 418 // LIBOMPTARGET_KERNEL_TRACE provides a kernel launch trace to stderr 419 // anytime. You do not need a debug library build. 420 // 0 => no tracing 421 // 1 => tracing dispatch only 422 // >1 => verbosity increase 423 if (char *envStr = getenv("LIBOMPTARGET_KERNEL_TRACE")) 424 print_kernel_trace = atoi(envStr); 425 else 426 print_kernel_trace = 0; 427 428 DP("Start initializing HSA-ATMI\n"); 429 atmi_status_t err = atmi_init(); 430 if (err != ATMI_STATUS_SUCCESS) { 431 DP("Error when initializing HSA-ATMI\n"); 432 return; 433 } 434 435 HSAAgents = find_gpu_agents(); 436 NumberOfDevices = (int)HSAAgents.size(); 437 438 if (NumberOfDevices == 0) { 439 DP("There are no devices supporting HSA.\n"); 440 return; 441 } else { 442 DP("There are %d devices supporting HSA.\n", NumberOfDevices); 443 } 444 445 // Init the device info 446 HSAQueues.resize(NumberOfDevices); 447 FuncGblEntries.resize(NumberOfDevices); 448 ThreadsPerGroup.resize(NumberOfDevices); 449 ComputeUnits.resize(NumberOfDevices); 450 GroupsPerDevice.resize(NumberOfDevices); 451 WarpSize.resize(NumberOfDevices); 452 NumTeams.resize(NumberOfDevices); 453 NumThreads.resize(NumberOfDevices); 454 deviceStateStore.resize(NumberOfDevices); 455 456 for (int i = 0; i < NumberOfDevices; i++) { 457 uint32_t queue_size = 0; 458 { 459 hsa_status_t err; 460 err = hsa_agent_get_info(HSAAgents[i], HSA_AGENT_INFO_QUEUE_MAX_SIZE, 461 &queue_size); 462 ErrorCheck(Querying the agent maximum queue size, err); 463 if (queue_size > core::Runtime::getInstance().getMaxQueueSize()) { 464 queue_size = core::Runtime::getInstance().getMaxQueueSize(); 465 } 466 } 467 468 hsa_status_t rc = hsa_queue_create( 469 HSAAgents[i], queue_size, HSA_QUEUE_TYPE_MULTI, callbackQueue, NULL, 470 UINT32_MAX, UINT32_MAX, &HSAQueues[i]); 471 if (rc != HSA_STATUS_SUCCESS) { 472 DP("Failed to create HSA queues\n"); 473 return; 474 } 475 476 deviceStateStore[i] = {nullptr, 0}; 477 } 478 479 for (int i = 0; i < NumberOfDevices; i++) { 480 ThreadsPerGroup[i] = RTLDeviceInfoTy::Default_WG_Size; 481 GroupsPerDevice[i] = RTLDeviceInfoTy::DefaultNumTeams; 482 ComputeUnits[i] = 1; 483 DP("Device %d: Initial groupsPerDevice %d & threadsPerGroup %d\n", i, 484 GroupsPerDevice[i], ThreadsPerGroup[i]); 485 } 486 487 // Get environment variables regarding teams 488 char *envStr = getenv("OMP_TEAM_LIMIT"); 489 if (envStr) { 490 // OMP_TEAM_LIMIT has been set 491 EnvTeamLimit = std::stoi(envStr); 492 DP("Parsed OMP_TEAM_LIMIT=%d\n", EnvTeamLimit); 493 } else { 494 EnvTeamLimit = -1; 495 } 496 envStr = getenv("OMP_NUM_TEAMS"); 497 if (envStr) { 498 // OMP_NUM_TEAMS has been set 499 EnvNumTeams = std::stoi(envStr); 500 DP("Parsed OMP_NUM_TEAMS=%d\n", EnvNumTeams); 501 } else { 502 EnvNumTeams = -1; 503 } 504 // Get environment variables regarding expMaxTeams 505 envStr = getenv("OMP_MAX_TEAMS_DEFAULT"); 506 if (envStr) { 507 EnvMaxTeamsDefault = std::stoi(envStr); 508 DP("Parsed OMP_MAX_TEAMS_DEFAULT=%d\n", EnvMaxTeamsDefault); 509 } else { 510 EnvMaxTeamsDefault = -1; 511 } 512 513 // Default state. 514 RequiresFlags = OMP_REQ_UNDEFINED; 515 } 516 517 ~RTLDeviceInfoTy() { 518 DP("Finalizing the HSA-ATMI DeviceInfo.\n"); 519 // Run destructors on types that use HSA before 520 // atmi_finalize removes access to it 521 deviceStateStore.clear(); 522 KernelArgPoolMap.clear(); 523 atmi_finalize(); 524 } 525 }; 526 527 pthread_mutex_t SignalPoolT::mutex = PTHREAD_MUTEX_INITIALIZER; 528 529 // TODO: May need to drop the trailing to fields until deviceRTL is updated 530 struct omptarget_device_environmentTy { 531 int32_t debug_level; // gets value of envvar LIBOMPTARGET_DEVICE_RTL_DEBUG 532 // only useful for Debug build of deviceRTLs 533 int32_t num_devices; // gets number of active offload devices 534 int32_t device_num; // gets a value 0 to num_devices-1 535 }; 536 537 static RTLDeviceInfoTy DeviceInfo; 538 539 namespace { 540 541 int32_t dataRetrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size, 542 __tgt_async_info *AsyncInfoPtr) { 543 assert(AsyncInfoPtr && "AsyncInfoPtr is nullptr"); 544 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 545 // Return success if we are not copying back to host from target. 546 if (!HstPtr) 547 return OFFLOAD_SUCCESS; 548 atmi_status_t err; 549 DP("Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 550 (long long unsigned)(Elf64_Addr)TgtPtr, 551 (long long unsigned)(Elf64_Addr)HstPtr); 552 553 err = DeviceInfo.freesignalpool_memcpy_d2h(HstPtr, TgtPtr, (size_t)Size); 554 555 if (err != ATMI_STATUS_SUCCESS) { 556 DP("Error when copying data from device to host. Pointers: " 557 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 558 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 559 return OFFLOAD_FAIL; 560 } 561 DP("DONE Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 562 (long long unsigned)(Elf64_Addr)TgtPtr, 563 (long long unsigned)(Elf64_Addr)HstPtr); 564 return OFFLOAD_SUCCESS; 565 } 566 567 int32_t dataSubmit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size, 568 __tgt_async_info *AsyncInfoPtr) { 569 assert(AsyncInfoPtr && "AsyncInfoPtr is nullptr"); 570 atmi_status_t err; 571 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 572 // Return success if we are not doing host to target. 573 if (!HstPtr) 574 return OFFLOAD_SUCCESS; 575 576 DP("Submit data %ld bytes, (hst:%016llx) -> (tgt:%016llx).\n", Size, 577 (long long unsigned)(Elf64_Addr)HstPtr, 578 (long long unsigned)(Elf64_Addr)TgtPtr); 579 err = DeviceInfo.freesignalpool_memcpy_h2d(TgtPtr, HstPtr, (size_t)Size); 580 if (err != ATMI_STATUS_SUCCESS) { 581 DP("Error when copying data from host to device. Pointers: " 582 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 583 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 584 return OFFLOAD_FAIL; 585 } 586 return OFFLOAD_SUCCESS; 587 } 588 589 // Async. 590 // The implementation was written with cuda streams in mind. The semantics of 591 // that are to execute kernels on a queue in order of insertion. A synchronise 592 // call then makes writes visible between host and device. This means a series 593 // of N data_submit_async calls are expected to execute serially. HSA offers 594 // various options to run the data copies concurrently. This may require changes 595 // to libomptarget. 596 597 // __tgt_async_info* contains a void * Queue. Queue = 0 is used to indicate that 598 // there are no outstanding kernels that need to be synchronized. Any async call 599 // may be passed a Queue==0, at which point the cuda implementation will set it 600 // to non-null (see getStream). The cuda streams are per-device. Upstream may 601 // change this interface to explicitly initialize the async_info_pointer, but 602 // until then hsa lazily initializes it as well. 603 604 void initAsyncInfoPtr(__tgt_async_info *async_info_ptr) { 605 // set non-null while using async calls, return to null to indicate completion 606 assert(async_info_ptr); 607 if (!async_info_ptr->Queue) { 608 async_info_ptr->Queue = reinterpret_cast<void *>(UINT64_MAX); 609 } 610 } 611 void finiAsyncInfoPtr(__tgt_async_info *async_info_ptr) { 612 assert(async_info_ptr); 613 assert(async_info_ptr->Queue); 614 async_info_ptr->Queue = 0; 615 } 616 } // namespace 617 618 int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) { 619 return elf_machine_id_is_amdgcn(image); 620 } 621 622 int __tgt_rtl_number_of_devices() { return DeviceInfo.NumberOfDevices; } 623 624 int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) { 625 DP("Init requires flags to %ld\n", RequiresFlags); 626 DeviceInfo.RequiresFlags = RequiresFlags; 627 return RequiresFlags; 628 } 629 630 int32_t __tgt_rtl_init_device(int device_id) { 631 hsa_status_t err; 632 633 // this is per device id init 634 DP("Initialize the device id: %d\n", device_id); 635 636 hsa_agent_t agent = DeviceInfo.HSAAgents[device_id]; 637 638 // Get number of Compute Unit 639 uint32_t compute_units = 0; 640 err = hsa_agent_get_info( 641 agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT, 642 &compute_units); 643 if (err != HSA_STATUS_SUCCESS) { 644 DeviceInfo.ComputeUnits[device_id] = 1; 645 DP("Error getting compute units : settiing to 1\n"); 646 } else { 647 DeviceInfo.ComputeUnits[device_id] = compute_units; 648 DP("Using %d compute unis per grid\n", DeviceInfo.ComputeUnits[device_id]); 649 } 650 if (print_kernel_trace > 1) 651 fprintf(stderr, "Device#%-2d CU's: %2d\n", device_id, 652 DeviceInfo.ComputeUnits[device_id]); 653 654 // Query attributes to determine number of threads/block and blocks/grid. 655 uint16_t workgroup_max_dim[3]; 656 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_DIM, 657 &workgroup_max_dim); 658 if (err != HSA_STATUS_SUCCESS) { 659 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::DefaultNumTeams; 660 DP("Error getting grid dims: num groups : %d\n", 661 RTLDeviceInfoTy::DefaultNumTeams); 662 } else if (workgroup_max_dim[0] <= RTLDeviceInfoTy::HardTeamLimit) { 663 DeviceInfo.GroupsPerDevice[device_id] = workgroup_max_dim[0]; 664 DP("Using %d ROCm blocks per grid\n", 665 DeviceInfo.GroupsPerDevice[device_id]); 666 } else { 667 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::HardTeamLimit; 668 DP("Max ROCm blocks per grid %d exceeds the hard team limit %d, capping " 669 "at the hard limit\n", 670 workgroup_max_dim[0], RTLDeviceInfoTy::HardTeamLimit); 671 } 672 673 // Get thread limit 674 hsa_dim3_t grid_max_dim; 675 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &grid_max_dim); 676 if (err == HSA_STATUS_SUCCESS) { 677 DeviceInfo.ThreadsPerGroup[device_id] = 678 reinterpret_cast<uint32_t *>(&grid_max_dim)[0] / 679 DeviceInfo.GroupsPerDevice[device_id]; 680 if ((DeviceInfo.ThreadsPerGroup[device_id] > 681 RTLDeviceInfoTy::Max_WG_Size) || 682 DeviceInfo.ThreadsPerGroup[device_id] == 0) { 683 DP("Capped thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 684 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 685 } else { 686 DP("Using ROCm Queried thread limit: %d\n", 687 DeviceInfo.ThreadsPerGroup[device_id]); 688 } 689 } else { 690 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 691 DP("Error getting max block dimension, use default:%d \n", 692 RTLDeviceInfoTy::Max_WG_Size); 693 } 694 695 // Get wavefront size 696 uint32_t wavefront_size = 0; 697 err = 698 hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size); 699 if (err == HSA_STATUS_SUCCESS) { 700 DP("Queried wavefront size: %d\n", wavefront_size); 701 DeviceInfo.WarpSize[device_id] = wavefront_size; 702 } else { 703 DP("Default wavefront size: %d\n", 704 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]); 705 DeviceInfo.WarpSize[device_id] = 706 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; 707 } 708 709 // Adjust teams to the env variables 710 if (DeviceInfo.EnvTeamLimit > 0 && 711 DeviceInfo.GroupsPerDevice[device_id] > DeviceInfo.EnvTeamLimit) { 712 DeviceInfo.GroupsPerDevice[device_id] = DeviceInfo.EnvTeamLimit; 713 DP("Capping max groups per device to OMP_TEAM_LIMIT=%d\n", 714 DeviceInfo.EnvTeamLimit); 715 } 716 717 // Set default number of teams 718 if (DeviceInfo.EnvNumTeams > 0) { 719 DeviceInfo.NumTeams[device_id] = DeviceInfo.EnvNumTeams; 720 DP("Default number of teams set according to environment %d\n", 721 DeviceInfo.EnvNumTeams); 722 } else { 723 DeviceInfo.NumTeams[device_id] = RTLDeviceInfoTy::DefaultNumTeams; 724 DP("Default number of teams set according to library's default %d\n", 725 RTLDeviceInfoTy::DefaultNumTeams); 726 } 727 728 if (DeviceInfo.NumTeams[device_id] > DeviceInfo.GroupsPerDevice[device_id]) { 729 DeviceInfo.NumTeams[device_id] = DeviceInfo.GroupsPerDevice[device_id]; 730 DP("Default number of teams exceeds device limit, capping at %d\n", 731 DeviceInfo.GroupsPerDevice[device_id]); 732 } 733 734 // Set default number of threads 735 DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::Default_WG_Size; 736 DP("Default number of threads set according to library's default %d\n", 737 RTLDeviceInfoTy::Default_WG_Size); 738 if (DeviceInfo.NumThreads[device_id] > 739 DeviceInfo.ThreadsPerGroup[device_id]) { 740 DeviceInfo.NumTeams[device_id] = DeviceInfo.ThreadsPerGroup[device_id]; 741 DP("Default number of threads exceeds device limit, capping at %d\n", 742 DeviceInfo.ThreadsPerGroup[device_id]); 743 } 744 745 DP("Device %d: default limit for groupsPerDevice %d & threadsPerGroup %d\n", 746 device_id, DeviceInfo.GroupsPerDevice[device_id], 747 DeviceInfo.ThreadsPerGroup[device_id]); 748 749 DP("Device %d: wavefront size %d, total threads %d x %d = %d\n", device_id, 750 DeviceInfo.WarpSize[device_id], DeviceInfo.ThreadsPerGroup[device_id], 751 DeviceInfo.GroupsPerDevice[device_id], 752 DeviceInfo.GroupsPerDevice[device_id] * 753 DeviceInfo.ThreadsPerGroup[device_id]); 754 755 return OFFLOAD_SUCCESS; 756 } 757 758 namespace { 759 Elf64_Shdr *find_only_SHT_HASH(Elf *elf) { 760 size_t N; 761 int rc = elf_getshdrnum(elf, &N); 762 if (rc != 0) { 763 return nullptr; 764 } 765 766 Elf64_Shdr *result = nullptr; 767 for (size_t i = 0; i < N; i++) { 768 Elf_Scn *scn = elf_getscn(elf, i); 769 if (scn) { 770 Elf64_Shdr *shdr = elf64_getshdr(scn); 771 if (shdr) { 772 if (shdr->sh_type == SHT_HASH) { 773 if (result == nullptr) { 774 result = shdr; 775 } else { 776 // multiple SHT_HASH sections not handled 777 return nullptr; 778 } 779 } 780 } 781 } 782 } 783 return result; 784 } 785 786 const Elf64_Sym *elf_lookup(Elf *elf, char *base, Elf64_Shdr *section_hash, 787 const char *symname) { 788 789 assert(section_hash); 790 size_t section_symtab_index = section_hash->sh_link; 791 Elf64_Shdr *section_symtab = 792 elf64_getshdr(elf_getscn(elf, section_symtab_index)); 793 size_t section_strtab_index = section_symtab->sh_link; 794 795 const Elf64_Sym *symtab = 796 reinterpret_cast<const Elf64_Sym *>(base + section_symtab->sh_offset); 797 798 const uint32_t *hashtab = 799 reinterpret_cast<const uint32_t *>(base + section_hash->sh_offset); 800 801 // Layout: 802 // nbucket 803 // nchain 804 // bucket[nbucket] 805 // chain[nchain] 806 uint32_t nbucket = hashtab[0]; 807 const uint32_t *bucket = &hashtab[2]; 808 const uint32_t *chain = &hashtab[nbucket + 2]; 809 810 const size_t max = strlen(symname) + 1; 811 const uint32_t hash = elf_hash(symname); 812 for (uint32_t i = bucket[hash % nbucket]; i != 0; i = chain[i]) { 813 char *n = elf_strptr(elf, section_strtab_index, symtab[i].st_name); 814 if (strncmp(symname, n, max) == 0) { 815 return &symtab[i]; 816 } 817 } 818 819 return nullptr; 820 } 821 822 typedef struct { 823 void *addr = nullptr; 824 uint32_t size = UINT32_MAX; 825 } symbol_info; 826 827 int get_symbol_info_without_loading(Elf *elf, char *base, const char *symname, 828 symbol_info *res) { 829 if (elf_kind(elf) != ELF_K_ELF) { 830 return 1; 831 } 832 833 Elf64_Shdr *section_hash = find_only_SHT_HASH(elf); 834 if (!section_hash) { 835 return 1; 836 } 837 838 const Elf64_Sym *sym = elf_lookup(elf, base, section_hash, symname); 839 if (!sym) { 840 return 1; 841 } 842 843 if (sym->st_size > UINT32_MAX) { 844 return 1; 845 } 846 847 res->size = static_cast<uint32_t>(sym->st_size); 848 res->addr = sym->st_value + base; 849 return 0; 850 } 851 852 int get_symbol_info_without_loading(char *base, size_t img_size, 853 const char *symname, symbol_info *res) { 854 Elf *elf = elf_memory(base, img_size); 855 if (elf) { 856 int rc = get_symbol_info_without_loading(elf, base, symname, res); 857 elf_end(elf); 858 return rc; 859 } 860 return 1; 861 } 862 863 atmi_status_t interop_get_symbol_info(char *base, size_t img_size, 864 const char *symname, void **var_addr, 865 uint32_t *var_size) { 866 symbol_info si; 867 int rc = get_symbol_info_without_loading(base, img_size, symname, &si); 868 if (rc == 0) { 869 *var_addr = si.addr; 870 *var_size = si.size; 871 return ATMI_STATUS_SUCCESS; 872 } else { 873 return ATMI_STATUS_ERROR; 874 } 875 } 876 877 template <typename C> 878 atmi_status_t module_register_from_memory_to_place(void *module_bytes, 879 size_t module_size, 880 atmi_place_t place, C cb) { 881 auto L = [](void *data, size_t size, void *cb_state) -> atmi_status_t { 882 C *unwrapped = static_cast<C *>(cb_state); 883 return (*unwrapped)(data, size); 884 }; 885 return atmi_module_register_from_memory_to_place( 886 module_bytes, module_size, place, L, static_cast<void *>(&cb)); 887 } 888 } // namespace 889 890 static uint64_t get_device_State_bytes(char *ImageStart, size_t img_size) { 891 uint64_t device_State_bytes = 0; 892 { 893 // If this is the deviceRTL, get the state variable size 894 symbol_info size_si; 895 int rc = get_symbol_info_without_loading( 896 ImageStart, img_size, "omptarget_nvptx_device_State_size", &size_si); 897 898 if (rc == 0) { 899 if (size_si.size != sizeof(uint64_t)) { 900 fprintf(stderr, 901 "Found device_State_size variable with wrong size, aborting\n"); 902 exit(1); 903 } 904 905 // Read number of bytes directly from the elf 906 memcpy(&device_State_bytes, size_si.addr, sizeof(uint64_t)); 907 } 908 } 909 return device_State_bytes; 910 } 911 912 static __tgt_target_table * 913 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 914 915 static __tgt_target_table * 916 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 917 918 __tgt_target_table *__tgt_rtl_load_binary(int32_t device_id, 919 __tgt_device_image *image) { 920 DeviceInfo.load_run_lock.lock(); 921 __tgt_target_table *res = __tgt_rtl_load_binary_locked(device_id, image); 922 DeviceInfo.load_run_lock.unlock(); 923 return res; 924 } 925 926 __tgt_target_table *__tgt_rtl_load_binary_locked(int32_t device_id, 927 __tgt_device_image *image) { 928 929 const size_t img_size = (char *)image->ImageEnd - (char *)image->ImageStart; 930 931 DeviceInfo.clearOffloadEntriesTable(device_id); 932 933 // We do not need to set the ELF version because the caller of this function 934 // had to do that to decide the right runtime to use 935 936 if (!elf_machine_id_is_amdgcn(image)) { 937 return NULL; 938 } 939 940 omptarget_device_environmentTy host_device_env; 941 host_device_env.num_devices = DeviceInfo.NumberOfDevices; 942 host_device_env.device_num = device_id; 943 host_device_env.debug_level = 0; 944 #ifdef OMPTARGET_DEBUG 945 if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) { 946 host_device_env.debug_level = std::stoi(envStr); 947 } 948 #endif 949 950 auto on_deserialized_data = [&](void *data, size_t size) -> atmi_status_t { 951 const char *device_env_Name = "omptarget_device_environment"; 952 symbol_info si; 953 int rc = get_symbol_info_without_loading((char *)image->ImageStart, 954 img_size, device_env_Name, &si); 955 if (rc != 0) { 956 DP("Finding global device environment '%s' - symbol missing.\n", 957 device_env_Name); 958 // no need to return FAIL, consider this is a not a device debug build. 959 return ATMI_STATUS_SUCCESS; 960 } 961 if (si.size != sizeof(host_device_env)) { 962 return ATMI_STATUS_ERROR; 963 } 964 DP("Setting global device environment %lu bytes\n", si.size); 965 uint64_t offset = (char *)si.addr - (char *)image->ImageStart; 966 void *pos = (char *)data + offset; 967 memcpy(pos, &host_device_env, sizeof(host_device_env)); 968 return ATMI_STATUS_SUCCESS; 969 }; 970 971 atmi_status_t err; 972 { 973 err = module_register_from_memory_to_place( 974 (void *)image->ImageStart, img_size, get_gpu_place(device_id), 975 on_deserialized_data); 976 977 check("Module registering", err); 978 if (err != ATMI_STATUS_SUCCESS) { 979 char GPUName[64] = "--unknown gpu--"; 980 hsa_agent_t agent = DeviceInfo.HSAAgents[device_id]; 981 (void)hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AGENT_INFO_NAME, 982 (void *)GPUName); 983 fprintf(stderr, 984 "Possible gpu arch mismatch: %s, please check" 985 " compiler: -march=<gpu> flag\n", 986 GPUName); 987 return NULL; 988 } 989 } 990 991 DP("ATMI module successfully loaded!\n"); 992 993 // Zero the pseudo-bss variable by calling into hsa 994 // Do this post-load to handle got 995 uint64_t device_State_bytes = 996 get_device_State_bytes((char *)image->ImageStart, img_size); 997 auto &dss = DeviceInfo.deviceStateStore[device_id]; 998 if (device_State_bytes != 0) { 999 1000 if (dss.first.get() == nullptr) { 1001 assert(dss.second == 0); 1002 void *ptr = NULL; 1003 atmi_status_t err = 1004 atmi_malloc(&ptr, device_State_bytes, get_gpu_mem_place(device_id)); 1005 if (err != ATMI_STATUS_SUCCESS) { 1006 fprintf(stderr, "Failed to allocate device_state array\n"); 1007 return NULL; 1008 } 1009 dss = {std::unique_ptr<void, RTLDeviceInfoTy::atmiFreePtrDeletor>{ptr}, 1010 device_State_bytes}; 1011 } 1012 1013 void *ptr = dss.first.get(); 1014 if (device_State_bytes != dss.second) { 1015 fprintf(stderr, "Inconsistent sizes of device_State unsupported\n"); 1016 exit(1); 1017 } 1018 1019 void *state_ptr; 1020 uint32_t state_ptr_size; 1021 err = atmi_interop_hsa_get_symbol_info(get_gpu_mem_place(device_id), 1022 "omptarget_nvptx_device_State", 1023 &state_ptr, &state_ptr_size); 1024 1025 if (err != ATMI_STATUS_SUCCESS) { 1026 fprintf(stderr, "failed to find device_state ptr\n"); 1027 return NULL; 1028 } 1029 if (state_ptr_size != sizeof(void *)) { 1030 fprintf(stderr, "unexpected size of state_ptr %u != %zu\n", 1031 state_ptr_size, sizeof(void *)); 1032 return NULL; 1033 } 1034 1035 // write ptr to device memory so it can be used by later kernels 1036 err = DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &ptr, sizeof(void *)); 1037 if (err != ATMI_STATUS_SUCCESS) { 1038 fprintf(stderr, "memcpy install of state_ptr failed\n"); 1039 return NULL; 1040 } 1041 1042 assert((device_State_bytes & 0x3) == 0); // known >= 4 byte aligned 1043 hsa_status_t rc = hsa_amd_memory_fill(ptr, 0, device_State_bytes / 4); 1044 if (rc != HSA_STATUS_SUCCESS) { 1045 fprintf(stderr, "zero fill device_state failed with %u\n", rc); 1046 return NULL; 1047 } 1048 } 1049 1050 // TODO: Check with Guansong to understand the below comment more thoroughly. 1051 // Here, we take advantage of the data that is appended after img_end to get 1052 // the symbols' name we need to load. This data consist of the host entries 1053 // begin and end as well as the target name (see the offloading linker script 1054 // creation in clang compiler). 1055 1056 // Find the symbols in the module by name. The name can be obtain by 1057 // concatenating the host entry name with the target name 1058 1059 __tgt_offload_entry *HostBegin = image->EntriesBegin; 1060 __tgt_offload_entry *HostEnd = image->EntriesEnd; 1061 1062 for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) { 1063 1064 if (!e->addr) { 1065 // The host should have always something in the address to 1066 // uniquely identify the target region. 1067 fprintf(stderr, "Analyzing host entry '<null>' (size = %lld)...\n", 1068 (unsigned long long)e->size); 1069 return NULL; 1070 } 1071 1072 if (e->size) { 1073 __tgt_offload_entry entry = *e; 1074 1075 void *varptr; 1076 uint32_t varsize; 1077 1078 err = atmi_interop_hsa_get_symbol_info(get_gpu_mem_place(device_id), 1079 e->name, &varptr, &varsize); 1080 1081 if (err != ATMI_STATUS_SUCCESS) { 1082 DP("Loading global '%s' (Failed)\n", e->name); 1083 // Inform the user what symbol prevented offloading 1084 fprintf(stderr, "Loading global '%s' (Failed)\n", e->name); 1085 return NULL; 1086 } 1087 1088 if (varsize != e->size) { 1089 DP("Loading global '%s' - size mismatch (%u != %lu)\n", e->name, 1090 varsize, e->size); 1091 return NULL; 1092 } 1093 1094 DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n", 1095 DPxPTR(e - HostBegin), e->name, DPxPTR(varptr)); 1096 entry.addr = (void *)varptr; 1097 1098 DeviceInfo.addOffloadEntry(device_id, entry); 1099 1100 if (DeviceInfo.RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY && 1101 e->flags & OMP_DECLARE_TARGET_LINK) { 1102 // If unified memory is present any target link variables 1103 // can access host addresses directly. There is no longer a 1104 // need for device copies. 1105 err = DeviceInfo.freesignalpool_memcpy_h2d(varptr, e->addr, 1106 sizeof(void *)); 1107 if (err != ATMI_STATUS_SUCCESS) 1108 DP("Error when copying USM\n"); 1109 DP("Copy linked variable host address (" DPxMOD ")" 1110 "to device address (" DPxMOD ")\n", 1111 DPxPTR(*((void **)e->addr)), DPxPTR(varptr)); 1112 } 1113 1114 continue; 1115 } 1116 1117 DP("to find the kernel name: %s size: %lu\n", e->name, strlen(e->name)); 1118 1119 atmi_mem_place_t place = get_gpu_mem_place(device_id); 1120 uint32_t kernarg_segment_size; 1121 err = atmi_interop_hsa_get_kernel_info( 1122 place, e->name, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE, 1123 &kernarg_segment_size); 1124 1125 // each arg is a void * in this openmp implementation 1126 uint32_t arg_num = kernarg_segment_size / sizeof(void *); 1127 std::vector<size_t> arg_sizes(arg_num); 1128 for (std::vector<size_t>::iterator it = arg_sizes.begin(); 1129 it != arg_sizes.end(); it++) { 1130 *it = sizeof(void *); 1131 } 1132 1133 // default value GENERIC (in case symbol is missing from cubin file) 1134 int8_t ExecModeVal = ExecutionModeType::GENERIC; 1135 1136 // get flat group size if present, else Default_WG_Size 1137 int16_t WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1138 1139 // Max parallel level 1140 int16_t MaxParLevVal = 0; 1141 1142 // get Kernel Descriptor if present. 1143 // Keep struct in sync wih getTgtAttributeStructQTy in CGOpenMPRuntime.cpp 1144 struct KernDescValType { 1145 uint16_t Version; 1146 uint16_t TSize; 1147 uint16_t WG_Size; 1148 uint8_t Mode; 1149 uint8_t HostServices; 1150 uint8_t MaxParallelLevel; 1151 }; 1152 struct KernDescValType KernDescVal; 1153 std::string KernDescNameStr(e->name); 1154 KernDescNameStr += "_kern_desc"; 1155 const char *KernDescName = KernDescNameStr.c_str(); 1156 1157 void *KernDescPtr; 1158 uint32_t KernDescSize; 1159 void *CallStackAddr; 1160 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1161 KernDescName, &KernDescPtr, &KernDescSize); 1162 1163 if (err == ATMI_STATUS_SUCCESS) { 1164 if ((size_t)KernDescSize != sizeof(KernDescVal)) 1165 DP("Loading global computation properties '%s' - size mismatch (%u != " 1166 "%lu)\n", 1167 KernDescName, KernDescSize, sizeof(KernDescVal)); 1168 1169 memcpy(&KernDescVal, KernDescPtr, (size_t)KernDescSize); 1170 1171 // Check structure size against recorded size. 1172 if ((size_t)KernDescSize != KernDescVal.TSize) 1173 DP("KernDescVal size %lu does not match advertized size %d for '%s'\n", 1174 sizeof(KernDescVal), KernDescVal.TSize, KernDescName); 1175 1176 DP("After loading global for %s KernDesc \n", KernDescName); 1177 DP("KernDesc: Version: %d\n", KernDescVal.Version); 1178 DP("KernDesc: TSize: %d\n", KernDescVal.TSize); 1179 DP("KernDesc: WG_Size: %d\n", KernDescVal.WG_Size); 1180 DP("KernDesc: Mode: %d\n", KernDescVal.Mode); 1181 DP("KernDesc: HostServices: %x\n", KernDescVal.HostServices); 1182 DP("KernDesc: MaxParallelLevel: %x\n", KernDescVal.MaxParallelLevel); 1183 1184 // gather location of callStack and size of struct 1185 MaxParLevVal = KernDescVal.MaxParallelLevel; 1186 if (MaxParLevVal > 0) { 1187 uint32_t varsize; 1188 const char *CsNam = "omptarget_nest_par_call_stack"; 1189 err = atmi_interop_hsa_get_symbol_info(place, CsNam, &CallStackAddr, 1190 &varsize); 1191 if (err != ATMI_STATUS_SUCCESS) { 1192 fprintf(stderr, "Addr of %s failed\n", CsNam); 1193 return NULL; 1194 } 1195 void *StructSizePtr; 1196 const char *SsNam = "omptarget_nest_par_call_struct_size"; 1197 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1198 SsNam, &StructSizePtr, &varsize); 1199 if ((err != ATMI_STATUS_SUCCESS) || 1200 (varsize != sizeof(TgtStackItemSize))) { 1201 fprintf(stderr, "Addr of %s failed\n", SsNam); 1202 return NULL; 1203 } 1204 memcpy(&TgtStackItemSize, StructSizePtr, sizeof(TgtStackItemSize)); 1205 DP("Size of our struct is %d\n", TgtStackItemSize); 1206 } 1207 1208 // Get ExecMode 1209 ExecModeVal = KernDescVal.Mode; 1210 DP("ExecModeVal %d\n", ExecModeVal); 1211 if (KernDescVal.WG_Size == 0) { 1212 KernDescVal.WG_Size = RTLDeviceInfoTy::Default_WG_Size; 1213 DP("Setting KernDescVal.WG_Size to default %d\n", KernDescVal.WG_Size); 1214 } 1215 WGSizeVal = KernDescVal.WG_Size; 1216 DP("WGSizeVal %d\n", WGSizeVal); 1217 check("Loading KernDesc computation property", err); 1218 } else { 1219 DP("Warning: Loading KernDesc '%s' - symbol not found, ", KernDescName); 1220 1221 // Generic 1222 std::string ExecModeNameStr(e->name); 1223 ExecModeNameStr += "_exec_mode"; 1224 const char *ExecModeName = ExecModeNameStr.c_str(); 1225 1226 void *ExecModePtr; 1227 uint32_t varsize; 1228 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1229 ExecModeName, &ExecModePtr, &varsize); 1230 1231 if (err == ATMI_STATUS_SUCCESS) { 1232 if ((size_t)varsize != sizeof(int8_t)) { 1233 DP("Loading global computation properties '%s' - size mismatch(%u != " 1234 "%lu)\n", 1235 ExecModeName, varsize, sizeof(int8_t)); 1236 return NULL; 1237 } 1238 1239 memcpy(&ExecModeVal, ExecModePtr, (size_t)varsize); 1240 1241 DP("After loading global for %s ExecMode = %d\n", ExecModeName, 1242 ExecModeVal); 1243 1244 if (ExecModeVal < 0 || ExecModeVal > 1) { 1245 DP("Error wrong exec_mode value specified in HSA code object file: " 1246 "%d\n", 1247 ExecModeVal); 1248 return NULL; 1249 } 1250 } else { 1251 DP("Loading global exec_mode '%s' - symbol missing, using default " 1252 "value " 1253 "GENERIC (1)\n", 1254 ExecModeName); 1255 } 1256 check("Loading computation property", err); 1257 1258 // Flat group size 1259 std::string WGSizeNameStr(e->name); 1260 WGSizeNameStr += "_wg_size"; 1261 const char *WGSizeName = WGSizeNameStr.c_str(); 1262 1263 void *WGSizePtr; 1264 uint32_t WGSize; 1265 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1266 WGSizeName, &WGSizePtr, &WGSize); 1267 1268 if (err == ATMI_STATUS_SUCCESS) { 1269 if ((size_t)WGSize != sizeof(int16_t)) { 1270 DP("Loading global computation properties '%s' - size mismatch (%u " 1271 "!= " 1272 "%lu)\n", 1273 WGSizeName, WGSize, sizeof(int16_t)); 1274 return NULL; 1275 } 1276 1277 memcpy(&WGSizeVal, WGSizePtr, (size_t)WGSize); 1278 1279 DP("After loading global for %s WGSize = %d\n", WGSizeName, WGSizeVal); 1280 1281 if (WGSizeVal < RTLDeviceInfoTy::Default_WG_Size || 1282 WGSizeVal > RTLDeviceInfoTy::Max_WG_Size) { 1283 DP("Error wrong WGSize value specified in HSA code object file: " 1284 "%d\n", 1285 WGSizeVal); 1286 WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1287 } 1288 } else { 1289 DP("Warning: Loading WGSize '%s' - symbol not found, " 1290 "using default value %d\n", 1291 WGSizeName, WGSizeVal); 1292 } 1293 1294 check("Loading WGSize computation property", err); 1295 } 1296 1297 KernelsList.push_back(KernelTy(ExecModeVal, WGSizeVal, MaxParLevVal, 1298 device_id, CallStackAddr, e->name, 1299 kernarg_segment_size)); 1300 __tgt_offload_entry entry = *e; 1301 entry.addr = (void *)&KernelsList.back(); 1302 DeviceInfo.addOffloadEntry(device_id, entry); 1303 DP("Entry point %ld maps to %s\n", e - HostBegin, e->name); 1304 } 1305 1306 return DeviceInfo.getOffloadEntriesTable(device_id); 1307 } 1308 1309 void *__tgt_rtl_data_alloc(int device_id, int64_t size, void *) { 1310 void *ptr = NULL; 1311 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1312 atmi_status_t err = atmi_malloc(&ptr, size, get_gpu_mem_place(device_id)); 1313 DP("Tgt alloc data %ld bytes, (tgt:%016llx).\n", size, 1314 (long long unsigned)(Elf64_Addr)ptr); 1315 ptr = (err == ATMI_STATUS_SUCCESS) ? ptr : NULL; 1316 return ptr; 1317 } 1318 1319 int32_t __tgt_rtl_data_submit(int device_id, void *tgt_ptr, void *hst_ptr, 1320 int64_t size) { 1321 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1322 __tgt_async_info async_info; 1323 int32_t rc = dataSubmit(device_id, tgt_ptr, hst_ptr, size, &async_info); 1324 if (rc != OFFLOAD_SUCCESS) 1325 return OFFLOAD_FAIL; 1326 1327 return __tgt_rtl_synchronize(device_id, &async_info); 1328 } 1329 1330 int32_t __tgt_rtl_data_submit_async(int device_id, void *tgt_ptr, void *hst_ptr, 1331 int64_t size, 1332 __tgt_async_info *async_info_ptr) { 1333 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1334 if (async_info_ptr) { 1335 initAsyncInfoPtr(async_info_ptr); 1336 return dataSubmit(device_id, tgt_ptr, hst_ptr, size, async_info_ptr); 1337 } else { 1338 return __tgt_rtl_data_submit(device_id, tgt_ptr, hst_ptr, size); 1339 } 1340 } 1341 1342 int32_t __tgt_rtl_data_retrieve(int device_id, void *hst_ptr, void *tgt_ptr, 1343 int64_t size) { 1344 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1345 __tgt_async_info async_info; 1346 int32_t rc = dataRetrieve(device_id, hst_ptr, tgt_ptr, size, &async_info); 1347 if (rc != OFFLOAD_SUCCESS) 1348 return OFFLOAD_FAIL; 1349 1350 return __tgt_rtl_synchronize(device_id, &async_info); 1351 } 1352 1353 int32_t __tgt_rtl_data_retrieve_async(int device_id, void *hst_ptr, 1354 void *tgt_ptr, int64_t size, 1355 __tgt_async_info *async_info_ptr) { 1356 assert(async_info_ptr && "async_info is nullptr"); 1357 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1358 initAsyncInfoPtr(async_info_ptr); 1359 return dataRetrieve(device_id, hst_ptr, tgt_ptr, size, async_info_ptr); 1360 } 1361 1362 int32_t __tgt_rtl_data_delete(int device_id, void *tgt_ptr) { 1363 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1364 atmi_status_t err; 1365 DP("Tgt free data (tgt:%016llx).\n", (long long unsigned)(Elf64_Addr)tgt_ptr); 1366 err = atmi_free(tgt_ptr); 1367 if (err != ATMI_STATUS_SUCCESS) { 1368 DP("Error when freeing CUDA memory\n"); 1369 return OFFLOAD_FAIL; 1370 } 1371 return OFFLOAD_SUCCESS; 1372 } 1373 1374 // Determine launch values for threadsPerGroup and num_groups. 1375 // Outputs: treadsPerGroup, num_groups 1376 // Inputs: Max_Teams, Max_WG_Size, Warp_Size, ExecutionMode, 1377 // EnvTeamLimit, EnvNumTeams, num_teams, thread_limit, 1378 // loop_tripcount. 1379 void getLaunchVals(int &threadsPerGroup, int &num_groups, int ConstWGSize, 1380 int ExecutionMode, int EnvTeamLimit, int EnvNumTeams, 1381 int num_teams, int thread_limit, uint64_t loop_tripcount) { 1382 1383 int Max_Teams = DeviceInfo.EnvMaxTeamsDefault > 0 1384 ? DeviceInfo.EnvMaxTeamsDefault 1385 : DeviceInfo.Max_Teams; 1386 if (Max_Teams > DeviceInfo.HardTeamLimit) 1387 Max_Teams = DeviceInfo.HardTeamLimit; 1388 1389 if (print_kernel_trace > 1) { 1390 fprintf(stderr, "RTLDeviceInfoTy::Max_Teams: %d\n", 1391 RTLDeviceInfoTy::Max_Teams); 1392 fprintf(stderr, "Max_Teams: %d\n", Max_Teams); 1393 fprintf(stderr, "RTLDeviceInfoTy::Warp_Size: %d\n", 1394 RTLDeviceInfoTy::Warp_Size); 1395 fprintf(stderr, "RTLDeviceInfoTy::Max_WG_Size: %d\n", 1396 RTLDeviceInfoTy::Max_WG_Size); 1397 fprintf(stderr, "RTLDeviceInfoTy::Default_WG_Size: %d\n", 1398 RTLDeviceInfoTy::Default_WG_Size); 1399 fprintf(stderr, "thread_limit: %d\n", thread_limit); 1400 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1401 fprintf(stderr, "ConstWGSize: %d\n", ConstWGSize); 1402 } 1403 // check for thread_limit() clause 1404 if (thread_limit > 0) { 1405 threadsPerGroup = thread_limit; 1406 DP("Setting threads per block to requested %d\n", thread_limit); 1407 if (ExecutionMode == GENERIC) { // Add master warp for GENERIC 1408 threadsPerGroup += RTLDeviceInfoTy::Warp_Size; 1409 DP("Adding master wavefront: +%d threads\n", RTLDeviceInfoTy::Warp_Size); 1410 } 1411 if (threadsPerGroup > RTLDeviceInfoTy::Max_WG_Size) { // limit to max 1412 threadsPerGroup = RTLDeviceInfoTy::Max_WG_Size; 1413 DP("Setting threads per block to maximum %d\n", threadsPerGroup); 1414 } 1415 } 1416 // check flat_max_work_group_size attr here 1417 if (threadsPerGroup > ConstWGSize) { 1418 threadsPerGroup = ConstWGSize; 1419 DP("Reduced threadsPerGroup to flat-attr-group-size limit %d\n", 1420 threadsPerGroup); 1421 } 1422 if (print_kernel_trace > 1) 1423 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1424 DP("Preparing %d threads\n", threadsPerGroup); 1425 1426 // Set default num_groups (teams) 1427 if (DeviceInfo.EnvTeamLimit > 0) 1428 num_groups = (Max_Teams < DeviceInfo.EnvTeamLimit) 1429 ? Max_Teams 1430 : DeviceInfo.EnvTeamLimit; 1431 else 1432 num_groups = Max_Teams; 1433 DP("Set default num of groups %d\n", num_groups); 1434 1435 if (print_kernel_trace > 1) { 1436 fprintf(stderr, "num_groups: %d\n", num_groups); 1437 fprintf(stderr, "num_teams: %d\n", num_teams); 1438 } 1439 1440 // Reduce num_groups if threadsPerGroup exceeds RTLDeviceInfoTy::Max_WG_Size 1441 // This reduction is typical for default case (no thread_limit clause). 1442 // or when user goes crazy with num_teams clause. 1443 // FIXME: We cant distinguish between a constant or variable thread limit. 1444 // So we only handle constant thread_limits. 1445 if (threadsPerGroup > 1446 RTLDeviceInfoTy::Default_WG_Size) // 256 < threadsPerGroup <= 1024 1447 // Should we round threadsPerGroup up to nearest RTLDeviceInfoTy::Warp_Size 1448 // here? 1449 num_groups = (Max_Teams * RTLDeviceInfoTy::Max_WG_Size) / threadsPerGroup; 1450 1451 // check for num_teams() clause 1452 if (num_teams > 0) { 1453 num_groups = (num_teams < num_groups) ? num_teams : num_groups; 1454 } 1455 if (print_kernel_trace > 1) { 1456 fprintf(stderr, "num_groups: %d\n", num_groups); 1457 fprintf(stderr, "DeviceInfo.EnvNumTeams %d\n", DeviceInfo.EnvNumTeams); 1458 fprintf(stderr, "DeviceInfo.EnvTeamLimit %d\n", DeviceInfo.EnvTeamLimit); 1459 } 1460 1461 if (DeviceInfo.EnvNumTeams > 0) { 1462 num_groups = (DeviceInfo.EnvNumTeams < num_groups) ? DeviceInfo.EnvNumTeams 1463 : num_groups; 1464 DP("Modifying teams based on EnvNumTeams %d\n", DeviceInfo.EnvNumTeams); 1465 } else if (DeviceInfo.EnvTeamLimit > 0) { 1466 num_groups = (DeviceInfo.EnvTeamLimit < num_groups) 1467 ? DeviceInfo.EnvTeamLimit 1468 : num_groups; 1469 DP("Modifying teams based on EnvTeamLimit%d\n", DeviceInfo.EnvTeamLimit); 1470 } else { 1471 if (num_teams <= 0) { 1472 if (loop_tripcount > 0) { 1473 if (ExecutionMode == SPMD) { 1474 // round up to the nearest integer 1475 num_groups = ((loop_tripcount - 1) / threadsPerGroup) + 1; 1476 } else { 1477 num_groups = loop_tripcount; 1478 } 1479 DP("Using %d teams due to loop trip count %" PRIu64 " and number of " 1480 "threads per block %d\n", 1481 num_groups, loop_tripcount, threadsPerGroup); 1482 } 1483 } else { 1484 num_groups = num_teams; 1485 } 1486 if (num_groups > Max_Teams) { 1487 num_groups = Max_Teams; 1488 if (print_kernel_trace > 1) 1489 fprintf(stderr, "Limiting num_groups %d to Max_Teams %d \n", num_groups, 1490 Max_Teams); 1491 } 1492 if (num_groups > num_teams && num_teams > 0) { 1493 num_groups = num_teams; 1494 if (print_kernel_trace > 1) 1495 fprintf(stderr, "Limiting num_groups %d to clause num_teams %d \n", 1496 num_groups, num_teams); 1497 } 1498 } 1499 1500 // num_teams clause always honored, no matter what, unless DEFAULT is active. 1501 if (num_teams > 0) { 1502 num_groups = num_teams; 1503 // Cap num_groups to EnvMaxTeamsDefault if set. 1504 if (DeviceInfo.EnvMaxTeamsDefault > 0 && 1505 num_groups > DeviceInfo.EnvMaxTeamsDefault) 1506 num_groups = DeviceInfo.EnvMaxTeamsDefault; 1507 } 1508 if (print_kernel_trace > 1) { 1509 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1510 fprintf(stderr, "num_groups: %d\n", num_groups); 1511 fprintf(stderr, "loop_tripcount: %ld\n", loop_tripcount); 1512 } 1513 DP("Final %d num_groups and %d threadsPerGroup\n", num_groups, 1514 threadsPerGroup); 1515 } 1516 1517 static void *AllocateNestedParallelCallMemory(int MaxParLevel, int NumGroups, 1518 int ThreadsPerGroup, 1519 int device_id, 1520 void *CallStackAddr, int SPMD) { 1521 if (print_kernel_trace > 1) 1522 fprintf(stderr, "MaxParLevel %d SPMD %d NumGroups %d NumThrds %d\n", 1523 MaxParLevel, SPMD, NumGroups, ThreadsPerGroup); 1524 // Total memory needed is Teams * Threads * ParLevels 1525 size_t NestedMemSize = 1526 MaxParLevel * NumGroups * ThreadsPerGroup * TgtStackItemSize * 4; 1527 1528 if (print_kernel_trace > 1) 1529 fprintf(stderr, "NestedMemSize %ld \n", NestedMemSize); 1530 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1531 void *TgtPtr = NULL; 1532 atmi_status_t err = 1533 atmi_malloc(&TgtPtr, NestedMemSize, get_gpu_mem_place(device_id)); 1534 err = DeviceInfo.freesignalpool_memcpy_h2d(CallStackAddr, &TgtPtr, 1535 sizeof(void *)); 1536 if (print_kernel_trace > 2) 1537 fprintf(stderr, "CallSck %lx TgtPtr %lx *TgtPtr %lx \n", 1538 (long)CallStackAddr, (long)&TgtPtr, (long)TgtPtr); 1539 if (err != ATMI_STATUS_SUCCESS) { 1540 fprintf(stderr, "Mem not wrtten to target, err %d\n", err); 1541 } 1542 return TgtPtr; // we need to free this after kernel. 1543 } 1544 1545 static uint64_t acquire_available_packet_id(hsa_queue_t *queue) { 1546 uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1); 1547 bool full = true; 1548 while (full) { 1549 full = 1550 packet_id >= (queue->size + hsa_queue_load_read_index_scacquire(queue)); 1551 } 1552 return packet_id; 1553 } 1554 1555 static int32_t __tgt_rtl_run_target_team_region_locked( 1556 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 1557 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 1558 int32_t thread_limit, uint64_t loop_tripcount); 1559 1560 int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr, 1561 void **tgt_args, 1562 ptrdiff_t *tgt_offsets, 1563 int32_t arg_num, int32_t num_teams, 1564 int32_t thread_limit, 1565 uint64_t loop_tripcount) { 1566 1567 DeviceInfo.load_run_lock.lock_shared(); 1568 int32_t res = __tgt_rtl_run_target_team_region_locked( 1569 device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, num_teams, 1570 thread_limit, loop_tripcount); 1571 1572 DeviceInfo.load_run_lock.unlock_shared(); 1573 return res; 1574 } 1575 1576 int32_t __tgt_rtl_run_target_team_region_locked( 1577 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 1578 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 1579 int32_t thread_limit, uint64_t loop_tripcount) { 1580 static pthread_mutex_t nested_parallel_mutex = PTHREAD_MUTEX_INITIALIZER; 1581 1582 // Set the context we are using 1583 // update thread limit content in gpu memory if un-initialized or specified 1584 // from host 1585 1586 DP("Run target team region thread_limit %d\n", thread_limit); 1587 1588 // All args are references. 1589 std::vector<void *> args(arg_num); 1590 std::vector<void *> ptrs(arg_num); 1591 1592 DP("Arg_num: %d\n", arg_num); 1593 for (int32_t i = 0; i < arg_num; ++i) { 1594 ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]); 1595 args[i] = &ptrs[i]; 1596 DP("Offseted base: arg[%d]:" DPxMOD "\n", i, DPxPTR(ptrs[i])); 1597 } 1598 1599 KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr; 1600 1601 /* 1602 * Set limit based on ThreadsPerGroup and GroupsPerDevice 1603 */ 1604 int num_groups = 0; 1605 1606 int threadsPerGroup = RTLDeviceInfoTy::Default_WG_Size; 1607 1608 getLaunchVals(threadsPerGroup, num_groups, KernelInfo->ConstWGSize, 1609 KernelInfo->ExecutionMode, DeviceInfo.EnvTeamLimit, 1610 DeviceInfo.EnvNumTeams, 1611 num_teams, // From run_region arg 1612 thread_limit, // From run_region arg 1613 loop_tripcount // From run_region arg 1614 ); 1615 1616 void *TgtCallStack = NULL; 1617 if (KernelInfo->MaxParLevel > 0) { 1618 pthread_mutex_lock(&nested_parallel_mutex); 1619 TgtCallStack = AllocateNestedParallelCallMemory( 1620 KernelInfo->MaxParLevel, num_groups, threadsPerGroup, 1621 KernelInfo->device_id, KernelInfo->CallStackAddr, 1622 KernelInfo->ExecutionMode); 1623 } 1624 if (print_kernel_trace > 0) 1625 // enum modes are SPMD, GENERIC, NONE 0,1,2 1626 fprintf(stderr, 1627 "DEVID:%2d SGN:%1d ConstWGSize:%-4d args:%2d teamsXthrds:(%4dX%4d) " 1628 "reqd:(%4dX%4d) n:%s\n", 1629 device_id, KernelInfo->ExecutionMode, KernelInfo->ConstWGSize, 1630 arg_num, num_groups, threadsPerGroup, num_teams, thread_limit, 1631 KernelInfo->Name); 1632 1633 // Run on the device. 1634 { 1635 hsa_queue_t *queue = DeviceInfo.HSAQueues[device_id]; 1636 uint64_t packet_id = acquire_available_packet_id(queue); 1637 1638 const uint32_t mask = queue->size - 1; // size is a power of 2 1639 hsa_kernel_dispatch_packet_t *packet = 1640 (hsa_kernel_dispatch_packet_t *)queue->base_address + 1641 (packet_id & mask); 1642 1643 // packet->header is written last 1644 packet->setup = UINT16_C(1) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS; 1645 packet->workgroup_size_x = threadsPerGroup; 1646 packet->workgroup_size_y = 1; 1647 packet->workgroup_size_z = 1; 1648 packet->reserved0 = 0; 1649 packet->grid_size_x = num_groups * threadsPerGroup; 1650 packet->grid_size_y = 1; 1651 packet->grid_size_z = 1; 1652 packet->private_segment_size = 0; 1653 packet->group_segment_size = 0; 1654 packet->kernel_object = 0; 1655 packet->kernarg_address = 0; // use the block allocator 1656 packet->reserved2 = 0; // atmi writes id_ here 1657 packet->completion_signal = {0}; // may want a pool of signals 1658 1659 std::string kernel_name = std::string(KernelInfo->Name); 1660 { 1661 assert(KernelInfoTable[device_id].find(kernel_name) != 1662 KernelInfoTable[device_id].end()); 1663 auto it = KernelInfoTable[device_id][kernel_name]; 1664 packet->kernel_object = it.kernel_object; 1665 packet->private_segment_size = it.private_segment_size; 1666 packet->group_segment_size = it.group_segment_size; 1667 assert(arg_num == (int)it.num_args); 1668 } 1669 1670 KernelArgPool *ArgPool = nullptr; 1671 { 1672 auto it = KernelArgPoolMap.find(std::string(KernelInfo->Name)); 1673 if (it != KernelArgPoolMap.end()) { 1674 ArgPool = (it->second).get(); 1675 } 1676 } 1677 if (!ArgPool) { 1678 fprintf(stderr, "Warning: No ArgPool for %s on device %d\n", 1679 KernelInfo->Name, device_id); 1680 } 1681 { 1682 void *kernarg = nullptr; 1683 if (ArgPool) { 1684 assert(ArgPool->kernarg_segment_size == (arg_num * sizeof(void *))); 1685 kernarg = ArgPool->allocate(arg_num); 1686 } 1687 if (!kernarg) { 1688 printf("Allocate kernarg failed\n"); 1689 exit(1); 1690 } 1691 1692 // Copy explicit arguments 1693 for (int i = 0; i < arg_num; i++) { 1694 memcpy((char *)kernarg + sizeof(void *) * i, args[i], sizeof(void *)); 1695 } 1696 1697 // Initialize implicit arguments. ATMI seems to leave most fields 1698 // uninitialized 1699 atmi_implicit_args_t *impl_args = 1700 reinterpret_cast<atmi_implicit_args_t *>( 1701 static_cast<char *>(kernarg) + ArgPool->kernarg_segment_size); 1702 memset(impl_args, 0, 1703 sizeof(atmi_implicit_args_t)); // may not be necessary 1704 impl_args->offset_x = 0; 1705 impl_args->offset_y = 0; 1706 impl_args->offset_z = 0; 1707 1708 packet->kernarg_address = kernarg; 1709 } 1710 1711 { 1712 hsa_signal_t s = DeviceInfo.FreeSignalPool.pop(); 1713 if (s.handle == 0) { 1714 printf("Failed to get signal instance\n"); 1715 exit(1); 1716 } 1717 packet->completion_signal = s; 1718 hsa_signal_store_relaxed(packet->completion_signal, 1); 1719 } 1720 1721 core::packet_store_release( 1722 reinterpret_cast<uint32_t *>(packet), 1723 core::create_header(HSA_PACKET_TYPE_KERNEL_DISPATCH, 0, 1724 ATMI_FENCE_SCOPE_SYSTEM, ATMI_FENCE_SCOPE_SYSTEM), 1725 packet->setup); 1726 1727 hsa_signal_store_relaxed(queue->doorbell_signal, packet_id); 1728 1729 while (hsa_signal_wait_scacquire(packet->completion_signal, 1730 HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX, 1731 HSA_WAIT_STATE_BLOCKED) != 0) 1732 ; 1733 1734 assert(ArgPool); 1735 ArgPool->deallocate(packet->kernarg_address); 1736 DeviceInfo.FreeSignalPool.push(packet->completion_signal); 1737 } 1738 1739 DP("Kernel completed\n"); 1740 // Free call stack for nested 1741 if (TgtCallStack) { 1742 pthread_mutex_unlock(&nested_parallel_mutex); 1743 atmi_free(TgtCallStack); 1744 } 1745 1746 return OFFLOAD_SUCCESS; 1747 } 1748 1749 int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr, 1750 void **tgt_args, ptrdiff_t *tgt_offsets, 1751 int32_t arg_num) { 1752 // use one team and one thread 1753 // fix thread num 1754 int32_t team_num = 1; 1755 int32_t thread_limit = 0; // use default 1756 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 1757 tgt_offsets, arg_num, team_num, 1758 thread_limit, 0); 1759 } 1760 1761 int32_t __tgt_rtl_run_target_region_async(int32_t device_id, 1762 void *tgt_entry_ptr, void **tgt_args, 1763 ptrdiff_t *tgt_offsets, 1764 int32_t arg_num, 1765 __tgt_async_info *async_info_ptr) { 1766 assert(async_info_ptr && "async_info is nullptr"); 1767 initAsyncInfoPtr(async_info_ptr); 1768 1769 // use one team and one thread 1770 // fix thread num 1771 int32_t team_num = 1; 1772 int32_t thread_limit = 0; // use default 1773 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 1774 tgt_offsets, arg_num, team_num, 1775 thread_limit, 0); 1776 } 1777 1778 int32_t __tgt_rtl_synchronize(int32_t device_id, 1779 __tgt_async_info *async_info_ptr) { 1780 assert(async_info_ptr && "async_info is nullptr"); 1781 1782 // Cuda asserts that async_info_ptr->Queue is non-null, but this invariant 1783 // is not ensured by devices.cpp for amdgcn 1784 // assert(async_info_ptr->Queue && "async_info_ptr->Queue is nullptr"); 1785 if (async_info_ptr->Queue) { 1786 finiAsyncInfoPtr(async_info_ptr); 1787 } 1788 return OFFLOAD_SUCCESS; 1789 } 1790