1 //===----RTLs/hsa/src/rtl.cpp - Target RTLs Implementation -------- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // RTL for hsa machine 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <algorithm> 14 #include <assert.h> 15 #include <cstdio> 16 #include <cstdlib> 17 #include <cstring> 18 #include <dlfcn.h> 19 #include <elf.h> 20 #include <ffi.h> 21 #include <fstream> 22 #include <iostream> 23 #include <libelf.h> 24 #include <list> 25 #include <memory> 26 #include <mutex> 27 #include <shared_mutex> 28 #include <thread> 29 #include <unordered_map> 30 #include <vector> 31 32 // Header from ATMI interface 33 #include "atmi_interop_hsa.h" 34 #include "atmi_runtime.h" 35 36 #include "internal.h" 37 38 #include "Debug.h" 39 #include "get_elf_mach_gfx_name.h" 40 #include "omptargetplugin.h" 41 #include "print_tracing.h" 42 43 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 44 45 #ifndef TARGET_NAME 46 #define TARGET_NAME AMDHSA 47 #endif 48 #define DEBUG_PREFIX "Target " GETNAME(TARGET_NAME) " RTL" 49 50 // hostrpc interface, FIXME: consider moving to its own include these are 51 // statically linked into amdgpu/plugin if present from hostrpc_services.a, 52 // linked as --whole-archive to override the weak symbols that are used to 53 // implement a fallback for toolchains that do not yet have a hostrpc library. 54 extern "C" { 55 unsigned long hostrpc_assign_buffer(hsa_agent_t agent, hsa_queue_t *this_Q, 56 uint32_t device_id); 57 hsa_status_t hostrpc_init(); 58 hsa_status_t hostrpc_terminate(); 59 60 __attribute__((weak)) hsa_status_t hostrpc_init() { return HSA_STATUS_SUCCESS; } 61 __attribute__((weak)) hsa_status_t hostrpc_terminate() { 62 return HSA_STATUS_SUCCESS; 63 } 64 __attribute__((weak)) unsigned long 65 hostrpc_assign_buffer(hsa_agent_t, hsa_queue_t *, uint32_t device_id) { 66 DP("Warning: Attempting to assign hostrpc to device %u, but hostrpc library " 67 "missing\n", 68 device_id); 69 return 0; 70 } 71 } 72 73 int print_kernel_trace; 74 75 #ifdef OMPTARGET_DEBUG 76 #define check(msg, status) \ 77 if (status != HSA_STATUS_SUCCESS) { \ 78 DP(#msg " failed\n"); \ 79 } else { \ 80 DP(#msg " succeeded\n"); \ 81 } 82 #else 83 #define check(msg, status) \ 84 {} 85 #endif 86 87 #include "elf_common.h" 88 89 namespace core { 90 hsa_status_t RegisterModuleFromMemory( 91 std::map<std::string, atl_kernel_info_t> &KernelInfo, 92 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, void *, size_t, 93 int DeviceId, 94 hsa_status_t (*on_deserialized_data)(void *data, size_t size, 95 void *cb_state), 96 void *cb_state, std::vector<hsa_executable_t> &HSAExecutables); 97 } 98 99 /// Keep entries table per device 100 struct FuncOrGblEntryTy { 101 __tgt_target_table Table; 102 std::vector<__tgt_offload_entry> Entries; 103 }; 104 105 enum ExecutionModeType { 106 SPMD, // constructors, destructors, 107 // combined constructs (`teams distribute parallel for [simd]`) 108 GENERIC, // everything else 109 NONE 110 }; 111 112 struct KernelArgPool { 113 private: 114 static pthread_mutex_t mutex; 115 116 public: 117 uint32_t kernarg_segment_size; 118 void *kernarg_region = nullptr; 119 std::queue<int> free_kernarg_segments; 120 121 uint32_t kernarg_size_including_implicit() { 122 return kernarg_segment_size + sizeof(atmi_implicit_args_t); 123 } 124 125 ~KernelArgPool() { 126 if (kernarg_region) { 127 auto r = hsa_amd_memory_pool_free(kernarg_region); 128 if (r != HSA_STATUS_SUCCESS) { 129 DP("hsa_amd_memory_pool_free failed: %s\n", get_error_string(r)); 130 } 131 } 132 } 133 134 // Can't really copy or move a mutex 135 KernelArgPool() = default; 136 KernelArgPool(const KernelArgPool &) = delete; 137 KernelArgPool(KernelArgPool &&) = delete; 138 139 KernelArgPool(uint32_t kernarg_segment_size) 140 : kernarg_segment_size(kernarg_segment_size) { 141 142 // atmi uses one pool per kernel for all gpus, with a fixed upper size 143 // preserving that exact scheme here, including the queue<int> 144 145 hsa_status_t err = hsa_amd_memory_pool_allocate( 146 atl_gpu_kernarg_pools[0], 147 kernarg_size_including_implicit() * MAX_NUM_KERNELS, 0, 148 &kernarg_region); 149 150 if (err != HSA_STATUS_SUCCESS) { 151 DP("hsa_amd_memory_pool_allocate failed: %s\n", get_error_string(err)); 152 kernarg_region = nullptr; // paranoid 153 return; 154 } 155 156 err = core::allow_access_to_all_gpu_agents(kernarg_region); 157 if (err != HSA_STATUS_SUCCESS) { 158 DP("hsa allow_access_to_all_gpu_agents failed: %s\n", 159 get_error_string(err)); 160 auto r = hsa_amd_memory_pool_free(kernarg_region); 161 if (r != HSA_STATUS_SUCCESS) { 162 // if free failed, can't do anything more to resolve it 163 DP("hsa memory poll free failed: %s\n", get_error_string(err)); 164 } 165 kernarg_region = nullptr; 166 return; 167 } 168 169 for (int i = 0; i < MAX_NUM_KERNELS; i++) { 170 free_kernarg_segments.push(i); 171 } 172 } 173 174 void *allocate(uint64_t arg_num) { 175 assert((arg_num * sizeof(void *)) == kernarg_segment_size); 176 lock l(&mutex); 177 void *res = nullptr; 178 if (!free_kernarg_segments.empty()) { 179 180 int free_idx = free_kernarg_segments.front(); 181 res = static_cast<void *>(static_cast<char *>(kernarg_region) + 182 (free_idx * kernarg_size_including_implicit())); 183 assert(free_idx == pointer_to_index(res)); 184 free_kernarg_segments.pop(); 185 } 186 return res; 187 } 188 189 void deallocate(void *ptr) { 190 lock l(&mutex); 191 int idx = pointer_to_index(ptr); 192 free_kernarg_segments.push(idx); 193 } 194 195 private: 196 int pointer_to_index(void *ptr) { 197 ptrdiff_t bytes = 198 static_cast<char *>(ptr) - static_cast<char *>(kernarg_region); 199 assert(bytes >= 0); 200 assert(bytes % kernarg_size_including_implicit() == 0); 201 return bytes / kernarg_size_including_implicit(); 202 } 203 struct lock { 204 lock(pthread_mutex_t *m) : m(m) { pthread_mutex_lock(m); } 205 ~lock() { pthread_mutex_unlock(m); } 206 pthread_mutex_t *m; 207 }; 208 }; 209 pthread_mutex_t KernelArgPool::mutex = PTHREAD_MUTEX_INITIALIZER; 210 211 std::unordered_map<std::string /*kernel*/, std::unique_ptr<KernelArgPool>> 212 KernelArgPoolMap; 213 214 /// Use a single entity to encode a kernel and a set of flags 215 struct KernelTy { 216 // execution mode of kernel 217 // 0 - SPMD mode (without master warp) 218 // 1 - Generic mode (with master warp) 219 int8_t ExecutionMode; 220 int16_t ConstWGSize; 221 int32_t device_id; 222 void *CallStackAddr = nullptr; 223 const char *Name; 224 225 KernelTy(int8_t _ExecutionMode, int16_t _ConstWGSize, int32_t _device_id, 226 void *_CallStackAddr, const char *_Name, 227 uint32_t _kernarg_segment_size) 228 : ExecutionMode(_ExecutionMode), ConstWGSize(_ConstWGSize), 229 device_id(_device_id), CallStackAddr(_CallStackAddr), Name(_Name) { 230 DP("Construct kernelinfo: ExecMode %d\n", ExecutionMode); 231 232 std::string N(_Name); 233 if (KernelArgPoolMap.find(N) == KernelArgPoolMap.end()) { 234 KernelArgPoolMap.insert( 235 std::make_pair(N, std::unique_ptr<KernelArgPool>( 236 new KernelArgPool(_kernarg_segment_size)))); 237 } 238 } 239 }; 240 241 /// List that contains all the kernels. 242 /// FIXME: we may need this to be per device and per library. 243 std::list<KernelTy> KernelsList; 244 245 static std::vector<hsa_agent_t> find_gpu_agents() { 246 std::vector<hsa_agent_t> res; 247 248 hsa_status_t err = hsa_iterate_agents( 249 [](hsa_agent_t agent, void *data) -> hsa_status_t { 250 std::vector<hsa_agent_t> *res = 251 static_cast<std::vector<hsa_agent_t> *>(data); 252 253 hsa_device_type_t device_type; 254 // get_info fails iff HSA runtime not yet initialized 255 hsa_status_t err = 256 hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 257 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) 258 printf("rtl.cpp: err %d\n", err); 259 assert(err == HSA_STATUS_SUCCESS); 260 261 if (device_type == HSA_DEVICE_TYPE_GPU) { 262 res->push_back(agent); 263 } 264 return HSA_STATUS_SUCCESS; 265 }, 266 &res); 267 268 // iterate_agents fails iff HSA runtime not yet initialized 269 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) 270 printf("rtl.cpp: err %d\n", err); 271 assert(err == HSA_STATUS_SUCCESS); 272 return res; 273 } 274 275 static void callbackQueue(hsa_status_t status, hsa_queue_t *source, 276 void *data) { 277 if (status != HSA_STATUS_SUCCESS) { 278 const char *status_string; 279 if (hsa_status_string(status, &status_string) != HSA_STATUS_SUCCESS) { 280 status_string = "unavailable"; 281 } 282 fprintf(stderr, "[%s:%d] GPU error in queue %p %d (%s)\n", __FILE__, 283 __LINE__, source, status, status_string); 284 abort(); 285 } 286 } 287 288 namespace core { 289 namespace { 290 void packet_store_release(uint32_t *packet, uint16_t header, uint16_t rest) { 291 __atomic_store_n(packet, header | (rest << 16), __ATOMIC_RELEASE); 292 } 293 294 uint16_t create_header() { 295 uint16_t header = HSA_PACKET_TYPE_KERNEL_DISPATCH << HSA_PACKET_HEADER_TYPE; 296 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE; 297 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE; 298 return header; 299 } 300 } // namespace 301 } // namespace core 302 303 /// Class containing all the device information 304 class RTLDeviceInfoTy { 305 std::vector<std::list<FuncOrGblEntryTy>> FuncGblEntries; 306 307 public: 308 // load binary populates symbol tables and mutates various global state 309 // run uses those symbol tables 310 std::shared_timed_mutex load_run_lock; 311 312 int NumberOfDevices; 313 314 // GPU devices 315 std::vector<hsa_agent_t> HSAAgents; 316 std::vector<hsa_queue_t *> HSAQueues; // one per gpu 317 318 // Device properties 319 std::vector<int> ComputeUnits; 320 std::vector<int> GroupsPerDevice; 321 std::vector<int> ThreadsPerGroup; 322 std::vector<int> WarpSize; 323 std::vector<std::string> GPUName; 324 325 // OpenMP properties 326 std::vector<int> NumTeams; 327 std::vector<int> NumThreads; 328 329 // OpenMP Environment properties 330 int EnvNumTeams; 331 int EnvTeamLimit; 332 int EnvMaxTeamsDefault; 333 334 // OpenMP Requires Flags 335 int64_t RequiresFlags; 336 337 // Resource pools 338 SignalPoolT FreeSignalPool; 339 340 bool hostcall_required = false; 341 342 std::vector<hsa_executable_t> HSAExecutables; 343 344 std::vector<std::map<std::string, atl_kernel_info_t>> KernelInfoTable; 345 std::vector<std::map<std::string, atl_symbol_info_t>> SymbolInfoTable; 346 347 struct atmiFreePtrDeletor { 348 void operator()(void *p) { 349 core::Runtime::Memfree(p); // ignore failure to free 350 } 351 }; 352 353 // device_State shared across loaded binaries, error if inconsistent size 354 std::vector<std::pair<std::unique_ptr<void, atmiFreePtrDeletor>, uint64_t>> 355 deviceStateStore; 356 357 static const unsigned HardTeamLimit = 358 (1 << 16) - 1; // 64K needed to fit in uint16 359 static const int DefaultNumTeams = 128; 360 static const int Max_Teams = 361 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_Teams]; 362 static const int Warp_Size = 363 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; 364 static const int Max_WG_Size = 365 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_WG_Size]; 366 static const int Default_WG_Size = 367 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Default_WG_Size]; 368 369 using MemcpyFunc = hsa_status_t (*)(hsa_signal_t, void *, const void *, 370 size_t size, hsa_agent_t); 371 hsa_status_t freesignalpool_memcpy(void *dest, const void *src, size_t size, 372 MemcpyFunc Func, int32_t deviceId) { 373 hsa_agent_t agent = HSAAgents[deviceId]; 374 hsa_signal_t s = FreeSignalPool.pop(); 375 if (s.handle == 0) { 376 return HSA_STATUS_ERROR; 377 } 378 hsa_status_t r = Func(s, dest, src, size, agent); 379 FreeSignalPool.push(s); 380 return r; 381 } 382 383 hsa_status_t freesignalpool_memcpy_d2h(void *dest, const void *src, 384 size_t size, int32_t deviceId) { 385 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_d2h, deviceId); 386 } 387 388 hsa_status_t freesignalpool_memcpy_h2d(void *dest, const void *src, 389 size_t size, int32_t deviceId) { 390 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_h2d, deviceId); 391 } 392 393 // Record entry point associated with device 394 void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) { 395 assert(device_id < (int32_t)FuncGblEntries.size() && 396 "Unexpected device id!"); 397 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 398 399 E.Entries.push_back(entry); 400 } 401 402 // Return true if the entry is associated with device 403 bool findOffloadEntry(int32_t device_id, void *addr) { 404 assert(device_id < (int32_t)FuncGblEntries.size() && 405 "Unexpected device id!"); 406 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 407 408 for (auto &it : E.Entries) { 409 if (it.addr == addr) 410 return true; 411 } 412 413 return false; 414 } 415 416 // Return the pointer to the target entries table 417 __tgt_target_table *getOffloadEntriesTable(int32_t device_id) { 418 assert(device_id < (int32_t)FuncGblEntries.size() && 419 "Unexpected device id!"); 420 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 421 422 int32_t size = E.Entries.size(); 423 424 // Table is empty 425 if (!size) 426 return 0; 427 428 __tgt_offload_entry *begin = &E.Entries[0]; 429 __tgt_offload_entry *end = &E.Entries[size - 1]; 430 431 // Update table info according to the entries and return the pointer 432 E.Table.EntriesBegin = begin; 433 E.Table.EntriesEnd = ++end; 434 435 return &E.Table; 436 } 437 438 // Clear entries table for a device 439 void clearOffloadEntriesTable(int device_id) { 440 assert(device_id < (int32_t)FuncGblEntries.size() && 441 "Unexpected device id!"); 442 FuncGblEntries[device_id].emplace_back(); 443 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 444 // KernelArgPoolMap.clear(); 445 E.Entries.clear(); 446 E.Table.EntriesBegin = E.Table.EntriesEnd = 0; 447 } 448 449 RTLDeviceInfoTy() { 450 // LIBOMPTARGET_KERNEL_TRACE provides a kernel launch trace to stderr 451 // anytime. You do not need a debug library build. 452 // 0 => no tracing 453 // 1 => tracing dispatch only 454 // >1 => verbosity increase 455 if (char *envStr = getenv("LIBOMPTARGET_KERNEL_TRACE")) 456 print_kernel_trace = atoi(envStr); 457 else 458 print_kernel_trace = 0; 459 460 DP("Start initializing HSA-ATMI\n"); 461 hsa_status_t err = core::atl_init_gpu_context(); 462 if (err != HSA_STATUS_SUCCESS) { 463 DP("Error when initializing HSA-ATMI\n"); 464 return; 465 } 466 467 // Init hostcall soon after initializing ATMI 468 hostrpc_init(); 469 470 HSAAgents = find_gpu_agents(); 471 NumberOfDevices = (int)HSAAgents.size(); 472 473 if (NumberOfDevices == 0) { 474 DP("There are no devices supporting HSA.\n"); 475 return; 476 } else { 477 DP("There are %d devices supporting HSA.\n", NumberOfDevices); 478 } 479 480 // Init the device info 481 HSAQueues.resize(NumberOfDevices); 482 FuncGblEntries.resize(NumberOfDevices); 483 ThreadsPerGroup.resize(NumberOfDevices); 484 ComputeUnits.resize(NumberOfDevices); 485 GPUName.resize(NumberOfDevices); 486 GroupsPerDevice.resize(NumberOfDevices); 487 WarpSize.resize(NumberOfDevices); 488 NumTeams.resize(NumberOfDevices); 489 NumThreads.resize(NumberOfDevices); 490 deviceStateStore.resize(NumberOfDevices); 491 KernelInfoTable.resize(NumberOfDevices); 492 SymbolInfoTable.resize(NumberOfDevices); 493 494 for (int i = 0; i < NumberOfDevices; i++) { 495 HSAQueues[i] = nullptr; 496 } 497 498 for (int i = 0; i < NumberOfDevices; i++) { 499 uint32_t queue_size = 0; 500 { 501 hsa_status_t err = hsa_agent_get_info( 502 HSAAgents[i], HSA_AGENT_INFO_QUEUE_MAX_SIZE, &queue_size); 503 if (err != HSA_STATUS_SUCCESS) { 504 DP("HSA query QUEUE_MAX_SIZE failed for agent %d\n", i); 505 return; 506 } 507 if (queue_size > core::Runtime::getInstance().getMaxQueueSize()) { 508 queue_size = core::Runtime::getInstance().getMaxQueueSize(); 509 } 510 } 511 512 hsa_status_t rc = hsa_queue_create( 513 HSAAgents[i], queue_size, HSA_QUEUE_TYPE_MULTI, callbackQueue, NULL, 514 UINT32_MAX, UINT32_MAX, &HSAQueues[i]); 515 if (rc != HSA_STATUS_SUCCESS) { 516 DP("Failed to create HSA queue %d\n", i); 517 return; 518 } 519 520 deviceStateStore[i] = {nullptr, 0}; 521 } 522 523 for (int i = 0; i < NumberOfDevices; i++) { 524 ThreadsPerGroup[i] = RTLDeviceInfoTy::Default_WG_Size; 525 GroupsPerDevice[i] = RTLDeviceInfoTy::DefaultNumTeams; 526 ComputeUnits[i] = 1; 527 DP("Device %d: Initial groupsPerDevice %d & threadsPerGroup %d\n", i, 528 GroupsPerDevice[i], ThreadsPerGroup[i]); 529 } 530 531 // Get environment variables regarding teams 532 char *envStr = getenv("OMP_TEAM_LIMIT"); 533 if (envStr) { 534 // OMP_TEAM_LIMIT has been set 535 EnvTeamLimit = std::stoi(envStr); 536 DP("Parsed OMP_TEAM_LIMIT=%d\n", EnvTeamLimit); 537 } else { 538 EnvTeamLimit = -1; 539 } 540 envStr = getenv("OMP_NUM_TEAMS"); 541 if (envStr) { 542 // OMP_NUM_TEAMS has been set 543 EnvNumTeams = std::stoi(envStr); 544 DP("Parsed OMP_NUM_TEAMS=%d\n", EnvNumTeams); 545 } else { 546 EnvNumTeams = -1; 547 } 548 // Get environment variables regarding expMaxTeams 549 envStr = getenv("OMP_MAX_TEAMS_DEFAULT"); 550 if (envStr) { 551 EnvMaxTeamsDefault = std::stoi(envStr); 552 DP("Parsed OMP_MAX_TEAMS_DEFAULT=%d\n", EnvMaxTeamsDefault); 553 } else { 554 EnvMaxTeamsDefault = -1; 555 } 556 557 // Default state. 558 RequiresFlags = OMP_REQ_UNDEFINED; 559 } 560 561 ~RTLDeviceInfoTy() { 562 DP("Finalizing the HSA-ATMI DeviceInfo.\n"); 563 // Run destructors on types that use HSA before 564 // atmi_finalize removes access to it 565 deviceStateStore.clear(); 566 KernelArgPoolMap.clear(); 567 // Terminate hostrpc before finalizing ATMI 568 hostrpc_terminate(); 569 570 hsa_status_t Err; 571 for (uint32_t I = 0; I < HSAExecutables.size(); I++) { 572 Err = hsa_executable_destroy(HSAExecutables[I]); 573 if (Err != HSA_STATUS_SUCCESS) { 574 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 575 "Destroying executable", get_error_string(Err)); 576 } 577 } 578 579 Err = hsa_shut_down(); 580 if (Err != HSA_STATUS_SUCCESS) { 581 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Shutting down HSA", 582 get_error_string(Err)); 583 } 584 } 585 }; 586 587 pthread_mutex_t SignalPoolT::mutex = PTHREAD_MUTEX_INITIALIZER; 588 589 // TODO: May need to drop the trailing to fields until deviceRTL is updated 590 struct omptarget_device_environmentTy { 591 int32_t debug_level; // gets value of envvar LIBOMPTARGET_DEVICE_RTL_DEBUG 592 // only useful for Debug build of deviceRTLs 593 int32_t num_devices; // gets number of active offload devices 594 int32_t device_num; // gets a value 0 to num_devices-1 595 }; 596 597 static RTLDeviceInfoTy DeviceInfo; 598 599 namespace { 600 601 int32_t dataRetrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size, 602 __tgt_async_info *AsyncInfo) { 603 assert(AsyncInfo && "AsyncInfo is nullptr"); 604 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 605 // Return success if we are not copying back to host from target. 606 if (!HstPtr) 607 return OFFLOAD_SUCCESS; 608 hsa_status_t err; 609 DP("Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 610 (long long unsigned)(Elf64_Addr)TgtPtr, 611 (long long unsigned)(Elf64_Addr)HstPtr); 612 613 err = DeviceInfo.freesignalpool_memcpy_d2h(HstPtr, TgtPtr, (size_t)Size, 614 DeviceId); 615 616 if (err != HSA_STATUS_SUCCESS) { 617 DP("Error when copying data from device to host. Pointers: " 618 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 619 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 620 return OFFLOAD_FAIL; 621 } 622 DP("DONE Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 623 (long long unsigned)(Elf64_Addr)TgtPtr, 624 (long long unsigned)(Elf64_Addr)HstPtr); 625 return OFFLOAD_SUCCESS; 626 } 627 628 int32_t dataSubmit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size, 629 __tgt_async_info *AsyncInfo) { 630 assert(AsyncInfo && "AsyncInfo is nullptr"); 631 hsa_status_t err; 632 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 633 // Return success if we are not doing host to target. 634 if (!HstPtr) 635 return OFFLOAD_SUCCESS; 636 637 DP("Submit data %ld bytes, (hst:%016llx) -> (tgt:%016llx).\n", Size, 638 (long long unsigned)(Elf64_Addr)HstPtr, 639 (long long unsigned)(Elf64_Addr)TgtPtr); 640 err = DeviceInfo.freesignalpool_memcpy_h2d(TgtPtr, HstPtr, (size_t)Size, 641 DeviceId); 642 if (err != HSA_STATUS_SUCCESS) { 643 DP("Error when copying data from host to device. Pointers: " 644 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 645 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 646 return OFFLOAD_FAIL; 647 } 648 return OFFLOAD_SUCCESS; 649 } 650 651 // Async. 652 // The implementation was written with cuda streams in mind. The semantics of 653 // that are to execute kernels on a queue in order of insertion. A synchronise 654 // call then makes writes visible between host and device. This means a series 655 // of N data_submit_async calls are expected to execute serially. HSA offers 656 // various options to run the data copies concurrently. This may require changes 657 // to libomptarget. 658 659 // __tgt_async_info* contains a void * Queue. Queue = 0 is used to indicate that 660 // there are no outstanding kernels that need to be synchronized. Any async call 661 // may be passed a Queue==0, at which point the cuda implementation will set it 662 // to non-null (see getStream). The cuda streams are per-device. Upstream may 663 // change this interface to explicitly initialize the AsyncInfo_pointer, but 664 // until then hsa lazily initializes it as well. 665 666 void initAsyncInfo(__tgt_async_info *AsyncInfo) { 667 // set non-null while using async calls, return to null to indicate completion 668 assert(AsyncInfo); 669 if (!AsyncInfo->Queue) { 670 AsyncInfo->Queue = reinterpret_cast<void *>(UINT64_MAX); 671 } 672 } 673 void finiAsyncInfo(__tgt_async_info *AsyncInfo) { 674 assert(AsyncInfo); 675 assert(AsyncInfo->Queue); 676 AsyncInfo->Queue = 0; 677 } 678 679 bool elf_machine_id_is_amdgcn(__tgt_device_image *image) { 680 const uint16_t amdgcnMachineID = 224; // EM_AMDGPU may not be in system elf.h 681 int32_t r = elf_check_machine(image, amdgcnMachineID); 682 if (!r) { 683 DP("Supported machine ID not found\n"); 684 } 685 return r; 686 } 687 688 uint32_t elf_e_flags(__tgt_device_image *image) { 689 char *img_begin = (char *)image->ImageStart; 690 size_t img_size = (char *)image->ImageEnd - img_begin; 691 692 Elf *e = elf_memory(img_begin, img_size); 693 if (!e) { 694 DP("Unable to get ELF handle: %s!\n", elf_errmsg(-1)); 695 return 0; 696 } 697 698 Elf64_Ehdr *eh64 = elf64_getehdr(e); 699 700 if (!eh64) { 701 DP("Unable to get machine ID from ELF file!\n"); 702 elf_end(e); 703 return 0; 704 } 705 706 uint32_t Flags = eh64->e_flags; 707 708 elf_end(e); 709 DP("ELF Flags: 0x%x\n", Flags); 710 return Flags; 711 } 712 } // namespace 713 714 int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) { 715 return elf_machine_id_is_amdgcn(image); 716 } 717 718 int __tgt_rtl_number_of_devices() { return DeviceInfo.NumberOfDevices; } 719 720 int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) { 721 DP("Init requires flags to %ld\n", RequiresFlags); 722 DeviceInfo.RequiresFlags = RequiresFlags; 723 return RequiresFlags; 724 } 725 726 namespace { 727 template <typename T> bool enforce_upper_bound(T *value, T upper) { 728 bool changed = *value > upper; 729 if (changed) { 730 *value = upper; 731 } 732 return changed; 733 } 734 } // namespace 735 736 int32_t __tgt_rtl_init_device(int device_id) { 737 hsa_status_t err; 738 739 // this is per device id init 740 DP("Initialize the device id: %d\n", device_id); 741 742 hsa_agent_t agent = DeviceInfo.HSAAgents[device_id]; 743 744 // Get number of Compute Unit 745 uint32_t compute_units = 0; 746 err = hsa_agent_get_info( 747 agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT, 748 &compute_units); 749 if (err != HSA_STATUS_SUCCESS) { 750 DeviceInfo.ComputeUnits[device_id] = 1; 751 DP("Error getting compute units : settiing to 1\n"); 752 } else { 753 DeviceInfo.ComputeUnits[device_id] = compute_units; 754 DP("Using %d compute unis per grid\n", DeviceInfo.ComputeUnits[device_id]); 755 } 756 757 char GetInfoName[64]; // 64 max size returned by get info 758 err = hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AGENT_INFO_NAME, 759 (void *)GetInfoName); 760 if (err) 761 DeviceInfo.GPUName[device_id] = "--unknown gpu--"; 762 else { 763 DeviceInfo.GPUName[device_id] = GetInfoName; 764 } 765 766 if (print_kernel_trace & STARTUP_DETAILS) 767 fprintf(stderr, "Device#%-2d CU's: %2d %s\n", device_id, 768 DeviceInfo.ComputeUnits[device_id], 769 DeviceInfo.GPUName[device_id].c_str()); 770 771 // Query attributes to determine number of threads/block and blocks/grid. 772 uint16_t workgroup_max_dim[3]; 773 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_DIM, 774 &workgroup_max_dim); 775 if (err != HSA_STATUS_SUCCESS) { 776 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::DefaultNumTeams; 777 DP("Error getting grid dims: num groups : %d\n", 778 RTLDeviceInfoTy::DefaultNumTeams); 779 } else if (workgroup_max_dim[0] <= RTLDeviceInfoTy::HardTeamLimit) { 780 DeviceInfo.GroupsPerDevice[device_id] = workgroup_max_dim[0]; 781 DP("Using %d ROCm blocks per grid\n", 782 DeviceInfo.GroupsPerDevice[device_id]); 783 } else { 784 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::HardTeamLimit; 785 DP("Max ROCm blocks per grid %d exceeds the hard team limit %d, capping " 786 "at the hard limit\n", 787 workgroup_max_dim[0], RTLDeviceInfoTy::HardTeamLimit); 788 } 789 790 // Get thread limit 791 hsa_dim3_t grid_max_dim; 792 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &grid_max_dim); 793 if (err == HSA_STATUS_SUCCESS) { 794 DeviceInfo.ThreadsPerGroup[device_id] = 795 reinterpret_cast<uint32_t *>(&grid_max_dim)[0] / 796 DeviceInfo.GroupsPerDevice[device_id]; 797 798 if (DeviceInfo.ThreadsPerGroup[device_id] == 0) { 799 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 800 DP("Default thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 801 } else if (enforce_upper_bound(&DeviceInfo.ThreadsPerGroup[device_id], 802 RTLDeviceInfoTy::Max_WG_Size)) { 803 DP("Capped thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 804 } else { 805 DP("Using ROCm Queried thread limit: %d\n", 806 DeviceInfo.ThreadsPerGroup[device_id]); 807 } 808 } else { 809 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 810 DP("Error getting max block dimension, use default:%d \n", 811 RTLDeviceInfoTy::Max_WG_Size); 812 } 813 814 // Get wavefront size 815 uint32_t wavefront_size = 0; 816 err = 817 hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size); 818 if (err == HSA_STATUS_SUCCESS) { 819 DP("Queried wavefront size: %d\n", wavefront_size); 820 DeviceInfo.WarpSize[device_id] = wavefront_size; 821 } else { 822 DP("Default wavefront size: %d\n", 823 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]); 824 DeviceInfo.WarpSize[device_id] = 825 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; 826 } 827 828 // Adjust teams to the env variables 829 830 if (DeviceInfo.EnvTeamLimit > 0 && 831 (enforce_upper_bound(&DeviceInfo.GroupsPerDevice[device_id], 832 DeviceInfo.EnvTeamLimit))) { 833 DP("Capping max groups per device to OMP_TEAM_LIMIT=%d\n", 834 DeviceInfo.EnvTeamLimit); 835 } 836 837 // Set default number of teams 838 if (DeviceInfo.EnvNumTeams > 0) { 839 DeviceInfo.NumTeams[device_id] = DeviceInfo.EnvNumTeams; 840 DP("Default number of teams set according to environment %d\n", 841 DeviceInfo.EnvNumTeams); 842 } else { 843 char *TeamsPerCUEnvStr = getenv("OMP_TARGET_TEAMS_PER_PROC"); 844 int TeamsPerCU = 1; // default number of teams per CU is 1 845 if (TeamsPerCUEnvStr) { 846 TeamsPerCU = std::stoi(TeamsPerCUEnvStr); 847 } 848 849 DeviceInfo.NumTeams[device_id] = 850 TeamsPerCU * DeviceInfo.ComputeUnits[device_id]; 851 DP("Default number of teams = %d * number of compute units %d\n", 852 TeamsPerCU, DeviceInfo.ComputeUnits[device_id]); 853 } 854 855 if (enforce_upper_bound(&DeviceInfo.NumTeams[device_id], 856 DeviceInfo.GroupsPerDevice[device_id])) { 857 DP("Default number of teams exceeds device limit, capping at %d\n", 858 DeviceInfo.GroupsPerDevice[device_id]); 859 } 860 861 // Set default number of threads 862 DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::Default_WG_Size; 863 DP("Default number of threads set according to library's default %d\n", 864 RTLDeviceInfoTy::Default_WG_Size); 865 if (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], 866 DeviceInfo.ThreadsPerGroup[device_id])) { 867 DP("Default number of threads exceeds device limit, capping at %d\n", 868 DeviceInfo.ThreadsPerGroup[device_id]); 869 } 870 871 DP("Device %d: default limit for groupsPerDevice %d & threadsPerGroup %d\n", 872 device_id, DeviceInfo.GroupsPerDevice[device_id], 873 DeviceInfo.ThreadsPerGroup[device_id]); 874 875 DP("Device %d: wavefront size %d, total threads %d x %d = %d\n", device_id, 876 DeviceInfo.WarpSize[device_id], DeviceInfo.ThreadsPerGroup[device_id], 877 DeviceInfo.GroupsPerDevice[device_id], 878 DeviceInfo.GroupsPerDevice[device_id] * 879 DeviceInfo.ThreadsPerGroup[device_id]); 880 881 return OFFLOAD_SUCCESS; 882 } 883 884 namespace { 885 Elf64_Shdr *find_only_SHT_HASH(Elf *elf) { 886 size_t N; 887 int rc = elf_getshdrnum(elf, &N); 888 if (rc != 0) { 889 return nullptr; 890 } 891 892 Elf64_Shdr *result = nullptr; 893 for (size_t i = 0; i < N; i++) { 894 Elf_Scn *scn = elf_getscn(elf, i); 895 if (scn) { 896 Elf64_Shdr *shdr = elf64_getshdr(scn); 897 if (shdr) { 898 if (shdr->sh_type == SHT_HASH) { 899 if (result == nullptr) { 900 result = shdr; 901 } else { 902 // multiple SHT_HASH sections not handled 903 return nullptr; 904 } 905 } 906 } 907 } 908 } 909 return result; 910 } 911 912 const Elf64_Sym *elf_lookup(Elf *elf, char *base, Elf64_Shdr *section_hash, 913 const char *symname) { 914 915 assert(section_hash); 916 size_t section_symtab_index = section_hash->sh_link; 917 Elf64_Shdr *section_symtab = 918 elf64_getshdr(elf_getscn(elf, section_symtab_index)); 919 size_t section_strtab_index = section_symtab->sh_link; 920 921 const Elf64_Sym *symtab = 922 reinterpret_cast<const Elf64_Sym *>(base + section_symtab->sh_offset); 923 924 const uint32_t *hashtab = 925 reinterpret_cast<const uint32_t *>(base + section_hash->sh_offset); 926 927 // Layout: 928 // nbucket 929 // nchain 930 // bucket[nbucket] 931 // chain[nchain] 932 uint32_t nbucket = hashtab[0]; 933 const uint32_t *bucket = &hashtab[2]; 934 const uint32_t *chain = &hashtab[nbucket + 2]; 935 936 const size_t max = strlen(symname) + 1; 937 const uint32_t hash = elf_hash(symname); 938 for (uint32_t i = bucket[hash % nbucket]; i != 0; i = chain[i]) { 939 char *n = elf_strptr(elf, section_strtab_index, symtab[i].st_name); 940 if (strncmp(symname, n, max) == 0) { 941 return &symtab[i]; 942 } 943 } 944 945 return nullptr; 946 } 947 948 typedef struct { 949 void *addr = nullptr; 950 uint32_t size = UINT32_MAX; 951 uint32_t sh_type = SHT_NULL; 952 } symbol_info; 953 954 int get_symbol_info_without_loading(Elf *elf, char *base, const char *symname, 955 symbol_info *res) { 956 if (elf_kind(elf) != ELF_K_ELF) { 957 return 1; 958 } 959 960 Elf64_Shdr *section_hash = find_only_SHT_HASH(elf); 961 if (!section_hash) { 962 return 1; 963 } 964 965 const Elf64_Sym *sym = elf_lookup(elf, base, section_hash, symname); 966 if (!sym) { 967 return 1; 968 } 969 970 if (sym->st_size > UINT32_MAX) { 971 return 1; 972 } 973 974 if (sym->st_shndx == SHN_UNDEF) { 975 return 1; 976 } 977 978 Elf_Scn *section = elf_getscn(elf, sym->st_shndx); 979 if (!section) { 980 return 1; 981 } 982 983 Elf64_Shdr *header = elf64_getshdr(section); 984 if (!header) { 985 return 1; 986 } 987 988 res->addr = sym->st_value + base; 989 res->size = static_cast<uint32_t>(sym->st_size); 990 res->sh_type = header->sh_type; 991 return 0; 992 } 993 994 int get_symbol_info_without_loading(char *base, size_t img_size, 995 const char *symname, symbol_info *res) { 996 Elf *elf = elf_memory(base, img_size); 997 if (elf) { 998 int rc = get_symbol_info_without_loading(elf, base, symname, res); 999 elf_end(elf); 1000 return rc; 1001 } 1002 return 1; 1003 } 1004 1005 hsa_status_t interop_get_symbol_info(char *base, size_t img_size, 1006 const char *symname, void **var_addr, 1007 uint32_t *var_size) { 1008 symbol_info si; 1009 int rc = get_symbol_info_without_loading(base, img_size, symname, &si); 1010 if (rc == 0) { 1011 *var_addr = si.addr; 1012 *var_size = si.size; 1013 return HSA_STATUS_SUCCESS; 1014 } else { 1015 return HSA_STATUS_ERROR; 1016 } 1017 } 1018 1019 template <typename C> 1020 hsa_status_t module_register_from_memory_to_place( 1021 std::map<std::string, atl_kernel_info_t> &KernelInfoTable, 1022 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, 1023 void *module_bytes, size_t module_size, int DeviceId, C cb, 1024 std::vector<hsa_executable_t> &HSAExecutables) { 1025 auto L = [](void *data, size_t size, void *cb_state) -> hsa_status_t { 1026 C *unwrapped = static_cast<C *>(cb_state); 1027 return (*unwrapped)(data, size); 1028 }; 1029 return core::RegisterModuleFromMemory( 1030 KernelInfoTable, SymbolInfoTable, module_bytes, module_size, DeviceId, L, 1031 static_cast<void *>(&cb), HSAExecutables); 1032 } 1033 } // namespace 1034 1035 static uint64_t get_device_State_bytes(char *ImageStart, size_t img_size) { 1036 uint64_t device_State_bytes = 0; 1037 { 1038 // If this is the deviceRTL, get the state variable size 1039 symbol_info size_si; 1040 int rc = get_symbol_info_without_loading( 1041 ImageStart, img_size, "omptarget_nvptx_device_State_size", &size_si); 1042 1043 if (rc == 0) { 1044 if (size_si.size != sizeof(uint64_t)) { 1045 DP("Found device_State_size variable with wrong size\n"); 1046 return 0; 1047 } 1048 1049 // Read number of bytes directly from the elf 1050 memcpy(&device_State_bytes, size_si.addr, sizeof(uint64_t)); 1051 } 1052 } 1053 return device_State_bytes; 1054 } 1055 1056 static __tgt_target_table * 1057 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1058 1059 static __tgt_target_table * 1060 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1061 1062 __tgt_target_table *__tgt_rtl_load_binary(int32_t device_id, 1063 __tgt_device_image *image) { 1064 DeviceInfo.load_run_lock.lock(); 1065 __tgt_target_table *res = __tgt_rtl_load_binary_locked(device_id, image); 1066 DeviceInfo.load_run_lock.unlock(); 1067 return res; 1068 } 1069 1070 struct device_environment { 1071 // initialise an omptarget_device_environmentTy in the deviceRTL 1072 // patches around differences in the deviceRTL between trunk, aomp, 1073 // rocmcc. Over time these differences will tend to zero and this class 1074 // simplified. 1075 // Symbol may be in .data or .bss, and may be missing fields: 1076 // - aomp has debug_level, num_devices, device_num 1077 // - trunk has debug_level 1078 // - under review in trunk is debug_level, device_num 1079 // - rocmcc matches aomp, patch to swap num_devices and device_num 1080 1081 // The symbol may also have been deadstripped because the device side 1082 // accessors were unused. 1083 1084 // If the symbol is in .data (aomp, rocm) it can be written directly. 1085 // If it is in .bss, we must wait for it to be allocated space on the 1086 // gpu (trunk) and initialize after loading. 1087 const char *sym() { return "omptarget_device_environment"; } 1088 1089 omptarget_device_environmentTy host_device_env; 1090 symbol_info si; 1091 bool valid = false; 1092 1093 __tgt_device_image *image; 1094 const size_t img_size; 1095 1096 device_environment(int device_id, int number_devices, 1097 __tgt_device_image *image, const size_t img_size) 1098 : image(image), img_size(img_size) { 1099 1100 host_device_env.num_devices = number_devices; 1101 host_device_env.device_num = device_id; 1102 host_device_env.debug_level = 0; 1103 #ifdef OMPTARGET_DEBUG 1104 if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) { 1105 host_device_env.debug_level = std::stoi(envStr); 1106 } 1107 #endif 1108 1109 int rc = get_symbol_info_without_loading((char *)image->ImageStart, 1110 img_size, sym(), &si); 1111 if (rc != 0) { 1112 DP("Finding global device environment '%s' - symbol missing.\n", sym()); 1113 return; 1114 } 1115 1116 if (si.size > sizeof(host_device_env)) { 1117 DP("Symbol '%s' has size %u, expected at most %zu.\n", sym(), si.size, 1118 sizeof(host_device_env)); 1119 return; 1120 } 1121 1122 valid = true; 1123 } 1124 1125 bool in_image() { return si.sh_type != SHT_NOBITS; } 1126 1127 hsa_status_t before_loading(void *data, size_t size) { 1128 if (valid) { 1129 if (in_image()) { 1130 DP("Setting global device environment before load (%u bytes)\n", 1131 si.size); 1132 uint64_t offset = (char *)si.addr - (char *)image->ImageStart; 1133 void *pos = (char *)data + offset; 1134 memcpy(pos, &host_device_env, si.size); 1135 } 1136 } 1137 return HSA_STATUS_SUCCESS; 1138 } 1139 1140 hsa_status_t after_loading() { 1141 if (valid) { 1142 if (!in_image()) { 1143 DP("Setting global device environment after load (%u bytes)\n", 1144 si.size); 1145 int device_id = host_device_env.device_num; 1146 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1147 void *state_ptr; 1148 uint32_t state_ptr_size; 1149 hsa_status_t err = atmi_interop_hsa_get_symbol_info( 1150 SymbolInfo, device_id, sym(), &state_ptr, &state_ptr_size); 1151 if (err != HSA_STATUS_SUCCESS) { 1152 DP("failed to find %s in loaded image\n", sym()); 1153 return err; 1154 } 1155 1156 if (state_ptr_size != si.size) { 1157 DP("Symbol had size %u before loading, %u after\n", state_ptr_size, 1158 si.size); 1159 return HSA_STATUS_ERROR; 1160 } 1161 1162 return DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &host_device_env, 1163 state_ptr_size, device_id); 1164 } 1165 } 1166 return HSA_STATUS_SUCCESS; 1167 } 1168 }; 1169 1170 static hsa_status_t atmi_calloc(void **ret_ptr, size_t size, int DeviceId) { 1171 uint64_t rounded = 4 * ((size + 3) / 4); 1172 void *ptr; 1173 hsa_status_t err = core::Runtime::DeviceMalloc(&ptr, rounded, DeviceId); 1174 if (err != HSA_STATUS_SUCCESS) { 1175 return err; 1176 } 1177 1178 hsa_status_t rc = hsa_amd_memory_fill(ptr, 0, rounded / 4); 1179 if (rc != HSA_STATUS_SUCCESS) { 1180 fprintf(stderr, "zero fill device_state failed with %u\n", rc); 1181 core::Runtime::Memfree(ptr); 1182 return HSA_STATUS_ERROR; 1183 } 1184 1185 *ret_ptr = ptr; 1186 return HSA_STATUS_SUCCESS; 1187 } 1188 1189 static bool image_contains_symbol(void *data, size_t size, const char *sym) { 1190 symbol_info si; 1191 int rc = get_symbol_info_without_loading((char *)data, size, sym, &si); 1192 return (rc == 0) && (si.addr != nullptr); 1193 } 1194 1195 __tgt_target_table *__tgt_rtl_load_binary_locked(int32_t device_id, 1196 __tgt_device_image *image) { 1197 // This function loads the device image onto gpu[device_id] and does other 1198 // per-image initialization work. Specifically: 1199 // 1200 // - Initialize an omptarget_device_environmentTy instance embedded in the 1201 // image at the symbol "omptarget_device_environment" 1202 // Fields debug_level, device_num, num_devices. Used by the deviceRTL. 1203 // 1204 // - Allocate a large array per-gpu (could be moved to init_device) 1205 // - Read a uint64_t at symbol omptarget_nvptx_device_State_size 1206 // - Allocate at least that many bytes of gpu memory 1207 // - Zero initialize it 1208 // - Write the pointer to the symbol omptarget_nvptx_device_State 1209 // 1210 // - Pulls some per-kernel information together from various sources and 1211 // records it in the KernelsList for quicker access later 1212 // 1213 // The initialization can be done before or after loading the image onto the 1214 // gpu. This function presently does a mixture. Using the hsa api to get/set 1215 // the information is simpler to implement, in exchange for more complicated 1216 // runtime behaviour. E.g. launching a kernel or using dma to get eight bytes 1217 // back from the gpu vs a hashtable lookup on the host. 1218 1219 const size_t img_size = (char *)image->ImageEnd - (char *)image->ImageStart; 1220 1221 DeviceInfo.clearOffloadEntriesTable(device_id); 1222 1223 // We do not need to set the ELF version because the caller of this function 1224 // had to do that to decide the right runtime to use 1225 1226 if (!elf_machine_id_is_amdgcn(image)) { 1227 return NULL; 1228 } 1229 1230 { 1231 auto env = device_environment(device_id, DeviceInfo.NumberOfDevices, image, 1232 img_size); 1233 1234 auto &KernelInfo = DeviceInfo.KernelInfoTable[device_id]; 1235 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1236 hsa_status_t err = module_register_from_memory_to_place( 1237 KernelInfo, SymbolInfo, (void *)image->ImageStart, img_size, device_id, 1238 [&](void *data, size_t size) { 1239 if (image_contains_symbol(data, size, "needs_hostcall_buffer")) { 1240 __atomic_store_n(&DeviceInfo.hostcall_required, true, 1241 __ATOMIC_RELEASE); 1242 } 1243 return env.before_loading(data, size); 1244 }, 1245 DeviceInfo.HSAExecutables); 1246 1247 check("Module registering", err); 1248 if (err != HSA_STATUS_SUCCESS) { 1249 fprintf(stderr, 1250 "Possible gpu arch mismatch: device:%s, image:%s please check" 1251 " compiler flag: -march=<gpu>\n", 1252 DeviceInfo.GPUName[device_id].c_str(), 1253 get_elf_mach_gfx_name(elf_e_flags(image))); 1254 return NULL; 1255 } 1256 1257 err = env.after_loading(); 1258 if (err != HSA_STATUS_SUCCESS) { 1259 return NULL; 1260 } 1261 } 1262 1263 DP("ATMI module successfully loaded!\n"); 1264 1265 { 1266 // the device_State array is either large value in bss or a void* that 1267 // needs to be assigned to a pointer to an array of size device_state_bytes 1268 // If absent, it has been deadstripped and needs no setup. 1269 1270 void *state_ptr; 1271 uint32_t state_ptr_size; 1272 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 1273 hsa_status_t err = atmi_interop_hsa_get_symbol_info( 1274 SymbolInfoMap, device_id, "omptarget_nvptx_device_State", &state_ptr, 1275 &state_ptr_size); 1276 1277 if (err != HSA_STATUS_SUCCESS) { 1278 DP("No device_state symbol found, skipping initialization\n"); 1279 } else { 1280 if (state_ptr_size < sizeof(void *)) { 1281 DP("unexpected size of state_ptr %u != %zu\n", state_ptr_size, 1282 sizeof(void *)); 1283 return NULL; 1284 } 1285 1286 // if it's larger than a void*, assume it's a bss array and no further 1287 // initialization is required. Only try to set up a pointer for 1288 // sizeof(void*) 1289 if (state_ptr_size == sizeof(void *)) { 1290 uint64_t device_State_bytes = 1291 get_device_State_bytes((char *)image->ImageStart, img_size); 1292 if (device_State_bytes == 0) { 1293 DP("Can't initialize device_State, missing size information\n"); 1294 return NULL; 1295 } 1296 1297 auto &dss = DeviceInfo.deviceStateStore[device_id]; 1298 if (dss.first.get() == nullptr) { 1299 assert(dss.second == 0); 1300 void *ptr = NULL; 1301 hsa_status_t err = atmi_calloc(&ptr, device_State_bytes, device_id); 1302 if (err != HSA_STATUS_SUCCESS) { 1303 DP("Failed to allocate device_state array\n"); 1304 return NULL; 1305 } 1306 dss = { 1307 std::unique_ptr<void, RTLDeviceInfoTy::atmiFreePtrDeletor>{ptr}, 1308 device_State_bytes, 1309 }; 1310 } 1311 1312 void *ptr = dss.first.get(); 1313 if (device_State_bytes != dss.second) { 1314 DP("Inconsistent sizes of device_State unsupported\n"); 1315 return NULL; 1316 } 1317 1318 // write ptr to device memory so it can be used by later kernels 1319 err = DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &ptr, 1320 sizeof(void *), device_id); 1321 if (err != HSA_STATUS_SUCCESS) { 1322 DP("memcpy install of state_ptr failed\n"); 1323 return NULL; 1324 } 1325 } 1326 } 1327 } 1328 1329 // Here, we take advantage of the data that is appended after img_end to get 1330 // the symbols' name we need to load. This data consist of the host entries 1331 // begin and end as well as the target name (see the offloading linker script 1332 // creation in clang compiler). 1333 1334 // Find the symbols in the module by name. The name can be obtain by 1335 // concatenating the host entry name with the target name 1336 1337 __tgt_offload_entry *HostBegin = image->EntriesBegin; 1338 __tgt_offload_entry *HostEnd = image->EntriesEnd; 1339 1340 for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) { 1341 1342 if (!e->addr) { 1343 // The host should have always something in the address to 1344 // uniquely identify the target region. 1345 fprintf(stderr, "Analyzing host entry '<null>' (size = %lld)...\n", 1346 (unsigned long long)e->size); 1347 return NULL; 1348 } 1349 1350 if (e->size) { 1351 __tgt_offload_entry entry = *e; 1352 1353 void *varptr; 1354 uint32_t varsize; 1355 1356 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 1357 hsa_status_t err = atmi_interop_hsa_get_symbol_info( 1358 SymbolInfoMap, device_id, e->name, &varptr, &varsize); 1359 1360 if (err != HSA_STATUS_SUCCESS) { 1361 // Inform the user what symbol prevented offloading 1362 DP("Loading global '%s' (Failed)\n", e->name); 1363 return NULL; 1364 } 1365 1366 if (varsize != e->size) { 1367 DP("Loading global '%s' - size mismatch (%u != %lu)\n", e->name, 1368 varsize, e->size); 1369 return NULL; 1370 } 1371 1372 DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n", 1373 DPxPTR(e - HostBegin), e->name, DPxPTR(varptr)); 1374 entry.addr = (void *)varptr; 1375 1376 DeviceInfo.addOffloadEntry(device_id, entry); 1377 1378 if (DeviceInfo.RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY && 1379 e->flags & OMP_DECLARE_TARGET_LINK) { 1380 // If unified memory is present any target link variables 1381 // can access host addresses directly. There is no longer a 1382 // need for device copies. 1383 err = DeviceInfo.freesignalpool_memcpy_h2d(varptr, e->addr, 1384 sizeof(void *), device_id); 1385 if (err != HSA_STATUS_SUCCESS) 1386 DP("Error when copying USM\n"); 1387 DP("Copy linked variable host address (" DPxMOD ")" 1388 "to device address (" DPxMOD ")\n", 1389 DPxPTR(*((void **)e->addr)), DPxPTR(varptr)); 1390 } 1391 1392 continue; 1393 } 1394 1395 DP("to find the kernel name: %s size: %lu\n", e->name, strlen(e->name)); 1396 1397 uint32_t kernarg_segment_size; 1398 auto &KernelInfoMap = DeviceInfo.KernelInfoTable[device_id]; 1399 hsa_status_t err = atmi_interop_hsa_get_kernel_info( 1400 KernelInfoMap, device_id, e->name, 1401 HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE, 1402 &kernarg_segment_size); 1403 1404 // each arg is a void * in this openmp implementation 1405 uint32_t arg_num = kernarg_segment_size / sizeof(void *); 1406 std::vector<size_t> arg_sizes(arg_num); 1407 for (std::vector<size_t>::iterator it = arg_sizes.begin(); 1408 it != arg_sizes.end(); it++) { 1409 *it = sizeof(void *); 1410 } 1411 1412 // default value GENERIC (in case symbol is missing from cubin file) 1413 int8_t ExecModeVal = ExecutionModeType::GENERIC; 1414 1415 // get flat group size if present, else Default_WG_Size 1416 int16_t WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1417 1418 // get Kernel Descriptor if present. 1419 // Keep struct in sync wih getTgtAttributeStructQTy in CGOpenMPRuntime.cpp 1420 struct KernDescValType { 1421 uint16_t Version; 1422 uint16_t TSize; 1423 uint16_t WG_Size; 1424 uint8_t Mode; 1425 }; 1426 struct KernDescValType KernDescVal; 1427 std::string KernDescNameStr(e->name); 1428 KernDescNameStr += "_kern_desc"; 1429 const char *KernDescName = KernDescNameStr.c_str(); 1430 1431 void *KernDescPtr; 1432 uint32_t KernDescSize; 1433 void *CallStackAddr = nullptr; 1434 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1435 KernDescName, &KernDescPtr, &KernDescSize); 1436 1437 if (err == HSA_STATUS_SUCCESS) { 1438 if ((size_t)KernDescSize != sizeof(KernDescVal)) 1439 DP("Loading global computation properties '%s' - size mismatch (%u != " 1440 "%lu)\n", 1441 KernDescName, KernDescSize, sizeof(KernDescVal)); 1442 1443 memcpy(&KernDescVal, KernDescPtr, (size_t)KernDescSize); 1444 1445 // Check structure size against recorded size. 1446 if ((size_t)KernDescSize != KernDescVal.TSize) 1447 DP("KernDescVal size %lu does not match advertized size %d for '%s'\n", 1448 sizeof(KernDescVal), KernDescVal.TSize, KernDescName); 1449 1450 DP("After loading global for %s KernDesc \n", KernDescName); 1451 DP("KernDesc: Version: %d\n", KernDescVal.Version); 1452 DP("KernDesc: TSize: %d\n", KernDescVal.TSize); 1453 DP("KernDesc: WG_Size: %d\n", KernDescVal.WG_Size); 1454 DP("KernDesc: Mode: %d\n", KernDescVal.Mode); 1455 1456 // Get ExecMode 1457 ExecModeVal = KernDescVal.Mode; 1458 DP("ExecModeVal %d\n", ExecModeVal); 1459 if (KernDescVal.WG_Size == 0) { 1460 KernDescVal.WG_Size = RTLDeviceInfoTy::Default_WG_Size; 1461 DP("Setting KernDescVal.WG_Size to default %d\n", KernDescVal.WG_Size); 1462 } 1463 WGSizeVal = KernDescVal.WG_Size; 1464 DP("WGSizeVal %d\n", WGSizeVal); 1465 check("Loading KernDesc computation property", err); 1466 } else { 1467 DP("Warning: Loading KernDesc '%s' - symbol not found, ", KernDescName); 1468 1469 // Generic 1470 std::string ExecModeNameStr(e->name); 1471 ExecModeNameStr += "_exec_mode"; 1472 const char *ExecModeName = ExecModeNameStr.c_str(); 1473 1474 void *ExecModePtr; 1475 uint32_t varsize; 1476 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1477 ExecModeName, &ExecModePtr, &varsize); 1478 1479 if (err == HSA_STATUS_SUCCESS) { 1480 if ((size_t)varsize != sizeof(int8_t)) { 1481 DP("Loading global computation properties '%s' - size mismatch(%u != " 1482 "%lu)\n", 1483 ExecModeName, varsize, sizeof(int8_t)); 1484 return NULL; 1485 } 1486 1487 memcpy(&ExecModeVal, ExecModePtr, (size_t)varsize); 1488 1489 DP("After loading global for %s ExecMode = %d\n", ExecModeName, 1490 ExecModeVal); 1491 1492 if (ExecModeVal < 0 || ExecModeVal > 1) { 1493 DP("Error wrong exec_mode value specified in HSA code object file: " 1494 "%d\n", 1495 ExecModeVal); 1496 return NULL; 1497 } 1498 } else { 1499 DP("Loading global exec_mode '%s' - symbol missing, using default " 1500 "value " 1501 "GENERIC (1)\n", 1502 ExecModeName); 1503 } 1504 check("Loading computation property", err); 1505 1506 // Flat group size 1507 std::string WGSizeNameStr(e->name); 1508 WGSizeNameStr += "_wg_size"; 1509 const char *WGSizeName = WGSizeNameStr.c_str(); 1510 1511 void *WGSizePtr; 1512 uint32_t WGSize; 1513 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1514 WGSizeName, &WGSizePtr, &WGSize); 1515 1516 if (err == HSA_STATUS_SUCCESS) { 1517 if ((size_t)WGSize != sizeof(int16_t)) { 1518 DP("Loading global computation properties '%s' - size mismatch (%u " 1519 "!= " 1520 "%lu)\n", 1521 WGSizeName, WGSize, sizeof(int16_t)); 1522 return NULL; 1523 } 1524 1525 memcpy(&WGSizeVal, WGSizePtr, (size_t)WGSize); 1526 1527 DP("After loading global for %s WGSize = %d\n", WGSizeName, WGSizeVal); 1528 1529 if (WGSizeVal < RTLDeviceInfoTy::Default_WG_Size || 1530 WGSizeVal > RTLDeviceInfoTy::Max_WG_Size) { 1531 DP("Error wrong WGSize value specified in HSA code object file: " 1532 "%d\n", 1533 WGSizeVal); 1534 WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1535 } 1536 } else { 1537 DP("Warning: Loading WGSize '%s' - symbol not found, " 1538 "using default value %d\n", 1539 WGSizeName, WGSizeVal); 1540 } 1541 1542 check("Loading WGSize computation property", err); 1543 } 1544 1545 KernelsList.push_back(KernelTy(ExecModeVal, WGSizeVal, device_id, 1546 CallStackAddr, e->name, 1547 kernarg_segment_size)); 1548 __tgt_offload_entry entry = *e; 1549 entry.addr = (void *)&KernelsList.back(); 1550 DeviceInfo.addOffloadEntry(device_id, entry); 1551 DP("Entry point %ld maps to %s\n", e - HostBegin, e->name); 1552 } 1553 1554 return DeviceInfo.getOffloadEntriesTable(device_id); 1555 } 1556 1557 void *__tgt_rtl_data_alloc(int device_id, int64_t size, void *, int32_t kind) { 1558 void *ptr = NULL; 1559 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1560 1561 if (kind != TARGET_ALLOC_DEFAULT) { 1562 REPORT("Invalid target data allocation kind or requested allocator not " 1563 "implemented yet\n"); 1564 return NULL; 1565 } 1566 1567 hsa_status_t err = core::Runtime::DeviceMalloc(&ptr, size, device_id); 1568 DP("Tgt alloc data %ld bytes, (tgt:%016llx).\n", size, 1569 (long long unsigned)(Elf64_Addr)ptr); 1570 ptr = (err == HSA_STATUS_SUCCESS) ? ptr : NULL; 1571 return ptr; 1572 } 1573 1574 int32_t __tgt_rtl_data_submit(int device_id, void *tgt_ptr, void *hst_ptr, 1575 int64_t size) { 1576 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1577 __tgt_async_info AsyncInfo; 1578 int32_t rc = dataSubmit(device_id, tgt_ptr, hst_ptr, size, &AsyncInfo); 1579 if (rc != OFFLOAD_SUCCESS) 1580 return OFFLOAD_FAIL; 1581 1582 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1583 } 1584 1585 int32_t __tgt_rtl_data_submit_async(int device_id, void *tgt_ptr, void *hst_ptr, 1586 int64_t size, __tgt_async_info *AsyncInfo) { 1587 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1588 if (AsyncInfo) { 1589 initAsyncInfo(AsyncInfo); 1590 return dataSubmit(device_id, tgt_ptr, hst_ptr, size, AsyncInfo); 1591 } else { 1592 return __tgt_rtl_data_submit(device_id, tgt_ptr, hst_ptr, size); 1593 } 1594 } 1595 1596 int32_t __tgt_rtl_data_retrieve(int device_id, void *hst_ptr, void *tgt_ptr, 1597 int64_t size) { 1598 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1599 __tgt_async_info AsyncInfo; 1600 int32_t rc = dataRetrieve(device_id, hst_ptr, tgt_ptr, size, &AsyncInfo); 1601 if (rc != OFFLOAD_SUCCESS) 1602 return OFFLOAD_FAIL; 1603 1604 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1605 } 1606 1607 int32_t __tgt_rtl_data_retrieve_async(int device_id, void *hst_ptr, 1608 void *tgt_ptr, int64_t size, 1609 __tgt_async_info *AsyncInfo) { 1610 assert(AsyncInfo && "AsyncInfo is nullptr"); 1611 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1612 initAsyncInfo(AsyncInfo); 1613 return dataRetrieve(device_id, hst_ptr, tgt_ptr, size, AsyncInfo); 1614 } 1615 1616 int32_t __tgt_rtl_data_delete(int device_id, void *tgt_ptr) { 1617 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1618 hsa_status_t err; 1619 DP("Tgt free data (tgt:%016llx).\n", (long long unsigned)(Elf64_Addr)tgt_ptr); 1620 err = core::Runtime::Memfree(tgt_ptr); 1621 if (err != HSA_STATUS_SUCCESS) { 1622 DP("Error when freeing CUDA memory\n"); 1623 return OFFLOAD_FAIL; 1624 } 1625 return OFFLOAD_SUCCESS; 1626 } 1627 1628 // Determine launch values for threadsPerGroup and num_groups. 1629 // Outputs: treadsPerGroup, num_groups 1630 // Inputs: Max_Teams, Max_WG_Size, Warp_Size, ExecutionMode, 1631 // EnvTeamLimit, EnvNumTeams, num_teams, thread_limit, 1632 // loop_tripcount. 1633 void getLaunchVals(int &threadsPerGroup, int &num_groups, int ConstWGSize, 1634 int ExecutionMode, int EnvTeamLimit, int EnvNumTeams, 1635 int num_teams, int thread_limit, uint64_t loop_tripcount, 1636 int32_t device_id) { 1637 1638 int Max_Teams = DeviceInfo.EnvMaxTeamsDefault > 0 1639 ? DeviceInfo.EnvMaxTeamsDefault 1640 : DeviceInfo.NumTeams[device_id]; 1641 if (Max_Teams > DeviceInfo.HardTeamLimit) 1642 Max_Teams = DeviceInfo.HardTeamLimit; 1643 1644 if (print_kernel_trace & STARTUP_DETAILS) { 1645 fprintf(stderr, "RTLDeviceInfoTy::Max_Teams: %d\n", 1646 RTLDeviceInfoTy::Max_Teams); 1647 fprintf(stderr, "Max_Teams: %d\n", Max_Teams); 1648 fprintf(stderr, "RTLDeviceInfoTy::Warp_Size: %d\n", 1649 RTLDeviceInfoTy::Warp_Size); 1650 fprintf(stderr, "RTLDeviceInfoTy::Max_WG_Size: %d\n", 1651 RTLDeviceInfoTy::Max_WG_Size); 1652 fprintf(stderr, "RTLDeviceInfoTy::Default_WG_Size: %d\n", 1653 RTLDeviceInfoTy::Default_WG_Size); 1654 fprintf(stderr, "thread_limit: %d\n", thread_limit); 1655 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1656 fprintf(stderr, "ConstWGSize: %d\n", ConstWGSize); 1657 } 1658 // check for thread_limit() clause 1659 if (thread_limit > 0) { 1660 threadsPerGroup = thread_limit; 1661 DP("Setting threads per block to requested %d\n", thread_limit); 1662 if (ExecutionMode == GENERIC) { // Add master warp for GENERIC 1663 threadsPerGroup += RTLDeviceInfoTy::Warp_Size; 1664 DP("Adding master wavefront: +%d threads\n", RTLDeviceInfoTy::Warp_Size); 1665 } 1666 if (threadsPerGroup > RTLDeviceInfoTy::Max_WG_Size) { // limit to max 1667 threadsPerGroup = RTLDeviceInfoTy::Max_WG_Size; 1668 DP("Setting threads per block to maximum %d\n", threadsPerGroup); 1669 } 1670 } 1671 // check flat_max_work_group_size attr here 1672 if (threadsPerGroup > ConstWGSize) { 1673 threadsPerGroup = ConstWGSize; 1674 DP("Reduced threadsPerGroup to flat-attr-group-size limit %d\n", 1675 threadsPerGroup); 1676 } 1677 if (print_kernel_trace & STARTUP_DETAILS) 1678 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1679 DP("Preparing %d threads\n", threadsPerGroup); 1680 1681 // Set default num_groups (teams) 1682 if (DeviceInfo.EnvTeamLimit > 0) 1683 num_groups = (Max_Teams < DeviceInfo.EnvTeamLimit) 1684 ? Max_Teams 1685 : DeviceInfo.EnvTeamLimit; 1686 else 1687 num_groups = Max_Teams; 1688 DP("Set default num of groups %d\n", num_groups); 1689 1690 if (print_kernel_trace & STARTUP_DETAILS) { 1691 fprintf(stderr, "num_groups: %d\n", num_groups); 1692 fprintf(stderr, "num_teams: %d\n", num_teams); 1693 } 1694 1695 // Reduce num_groups if threadsPerGroup exceeds RTLDeviceInfoTy::Max_WG_Size 1696 // This reduction is typical for default case (no thread_limit clause). 1697 // or when user goes crazy with num_teams clause. 1698 // FIXME: We cant distinguish between a constant or variable thread limit. 1699 // So we only handle constant thread_limits. 1700 if (threadsPerGroup > 1701 RTLDeviceInfoTy::Default_WG_Size) // 256 < threadsPerGroup <= 1024 1702 // Should we round threadsPerGroup up to nearest RTLDeviceInfoTy::Warp_Size 1703 // here? 1704 num_groups = (Max_Teams * RTLDeviceInfoTy::Max_WG_Size) / threadsPerGroup; 1705 1706 // check for num_teams() clause 1707 if (num_teams > 0) { 1708 num_groups = (num_teams < num_groups) ? num_teams : num_groups; 1709 } 1710 if (print_kernel_trace & STARTUP_DETAILS) { 1711 fprintf(stderr, "num_groups: %d\n", num_groups); 1712 fprintf(stderr, "DeviceInfo.EnvNumTeams %d\n", DeviceInfo.EnvNumTeams); 1713 fprintf(stderr, "DeviceInfo.EnvTeamLimit %d\n", DeviceInfo.EnvTeamLimit); 1714 } 1715 1716 if (DeviceInfo.EnvNumTeams > 0) { 1717 num_groups = (DeviceInfo.EnvNumTeams < num_groups) ? DeviceInfo.EnvNumTeams 1718 : num_groups; 1719 DP("Modifying teams based on EnvNumTeams %d\n", DeviceInfo.EnvNumTeams); 1720 } else if (DeviceInfo.EnvTeamLimit > 0) { 1721 num_groups = (DeviceInfo.EnvTeamLimit < num_groups) 1722 ? DeviceInfo.EnvTeamLimit 1723 : num_groups; 1724 DP("Modifying teams based on EnvTeamLimit%d\n", DeviceInfo.EnvTeamLimit); 1725 } else { 1726 if (num_teams <= 0) { 1727 if (loop_tripcount > 0) { 1728 if (ExecutionMode == SPMD) { 1729 // round up to the nearest integer 1730 num_groups = ((loop_tripcount - 1) / threadsPerGroup) + 1; 1731 } else { 1732 num_groups = loop_tripcount; 1733 } 1734 DP("Using %d teams due to loop trip count %" PRIu64 " and number of " 1735 "threads per block %d\n", 1736 num_groups, loop_tripcount, threadsPerGroup); 1737 } 1738 } else { 1739 num_groups = num_teams; 1740 } 1741 if (num_groups > Max_Teams) { 1742 num_groups = Max_Teams; 1743 if (print_kernel_trace & STARTUP_DETAILS) 1744 fprintf(stderr, "Limiting num_groups %d to Max_Teams %d \n", num_groups, 1745 Max_Teams); 1746 } 1747 if (num_groups > num_teams && num_teams > 0) { 1748 num_groups = num_teams; 1749 if (print_kernel_trace & STARTUP_DETAILS) 1750 fprintf(stderr, "Limiting num_groups %d to clause num_teams %d \n", 1751 num_groups, num_teams); 1752 } 1753 } 1754 1755 // num_teams clause always honored, no matter what, unless DEFAULT is active. 1756 if (num_teams > 0) { 1757 num_groups = num_teams; 1758 // Cap num_groups to EnvMaxTeamsDefault if set. 1759 if (DeviceInfo.EnvMaxTeamsDefault > 0 && 1760 num_groups > DeviceInfo.EnvMaxTeamsDefault) 1761 num_groups = DeviceInfo.EnvMaxTeamsDefault; 1762 } 1763 if (print_kernel_trace & STARTUP_DETAILS) { 1764 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1765 fprintf(stderr, "num_groups: %d\n", num_groups); 1766 fprintf(stderr, "loop_tripcount: %ld\n", loop_tripcount); 1767 } 1768 DP("Final %d num_groups and %d threadsPerGroup\n", num_groups, 1769 threadsPerGroup); 1770 } 1771 1772 static uint64_t acquire_available_packet_id(hsa_queue_t *queue) { 1773 uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1); 1774 bool full = true; 1775 while (full) { 1776 full = 1777 packet_id >= (queue->size + hsa_queue_load_read_index_scacquire(queue)); 1778 } 1779 return packet_id; 1780 } 1781 1782 static int32_t __tgt_rtl_run_target_team_region_locked( 1783 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 1784 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 1785 int32_t thread_limit, uint64_t loop_tripcount); 1786 1787 int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr, 1788 void **tgt_args, 1789 ptrdiff_t *tgt_offsets, 1790 int32_t arg_num, int32_t num_teams, 1791 int32_t thread_limit, 1792 uint64_t loop_tripcount) { 1793 1794 DeviceInfo.load_run_lock.lock_shared(); 1795 int32_t res = __tgt_rtl_run_target_team_region_locked( 1796 device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, num_teams, 1797 thread_limit, loop_tripcount); 1798 1799 DeviceInfo.load_run_lock.unlock_shared(); 1800 return res; 1801 } 1802 1803 int32_t __tgt_rtl_run_target_team_region_locked( 1804 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 1805 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 1806 int32_t thread_limit, uint64_t loop_tripcount) { 1807 // Set the context we are using 1808 // update thread limit content in gpu memory if un-initialized or specified 1809 // from host 1810 1811 DP("Run target team region thread_limit %d\n", thread_limit); 1812 1813 // All args are references. 1814 std::vector<void *> args(arg_num); 1815 std::vector<void *> ptrs(arg_num); 1816 1817 DP("Arg_num: %d\n", arg_num); 1818 for (int32_t i = 0; i < arg_num; ++i) { 1819 ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]); 1820 args[i] = &ptrs[i]; 1821 DP("Offseted base: arg[%d]:" DPxMOD "\n", i, DPxPTR(ptrs[i])); 1822 } 1823 1824 KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr; 1825 1826 std::string kernel_name = std::string(KernelInfo->Name); 1827 auto &KernelInfoTable = DeviceInfo.KernelInfoTable; 1828 if (KernelInfoTable[device_id].find(kernel_name) == 1829 KernelInfoTable[device_id].end()) { 1830 DP("Kernel %s not found\n", kernel_name.c_str()); 1831 return OFFLOAD_FAIL; 1832 } 1833 1834 const atl_kernel_info_t KernelInfoEntry = 1835 KernelInfoTable[device_id][kernel_name]; 1836 const uint32_t group_segment_size = KernelInfoEntry.group_segment_size; 1837 const uint32_t sgpr_count = KernelInfoEntry.sgpr_count; 1838 const uint32_t vgpr_count = KernelInfoEntry.vgpr_count; 1839 const uint32_t sgpr_spill_count = KernelInfoEntry.sgpr_spill_count; 1840 const uint32_t vgpr_spill_count = KernelInfoEntry.vgpr_spill_count; 1841 1842 assert(arg_num == (int)KernelInfoEntry.num_args); 1843 1844 /* 1845 * Set limit based on ThreadsPerGroup and GroupsPerDevice 1846 */ 1847 int num_groups = 0; 1848 1849 int threadsPerGroup = RTLDeviceInfoTy::Default_WG_Size; 1850 1851 getLaunchVals(threadsPerGroup, num_groups, KernelInfo->ConstWGSize, 1852 KernelInfo->ExecutionMode, DeviceInfo.EnvTeamLimit, 1853 DeviceInfo.EnvNumTeams, 1854 num_teams, // From run_region arg 1855 thread_limit, // From run_region arg 1856 loop_tripcount, // From run_region arg 1857 KernelInfo->device_id); 1858 1859 if (print_kernel_trace >= LAUNCH) { 1860 // enum modes are SPMD, GENERIC, NONE 0,1,2 1861 // if doing rtl timing, print to stderr, unless stdout requested. 1862 bool traceToStdout = print_kernel_trace & (RTL_TO_STDOUT | RTL_TIMING); 1863 fprintf(traceToStdout ? stdout : stderr, 1864 "DEVID:%2d SGN:%1d ConstWGSize:%-4d args:%2d teamsXthrds:(%4dX%4d) " 1865 "reqd:(%4dX%4d) lds_usage:%uB sgpr_count:%u vgpr_count:%u " 1866 "sgpr_spill_count:%u vgpr_spill_count:%u tripcount:%lu n:%s\n", 1867 device_id, KernelInfo->ExecutionMode, KernelInfo->ConstWGSize, 1868 arg_num, num_groups, threadsPerGroup, num_teams, thread_limit, 1869 group_segment_size, sgpr_count, vgpr_count, sgpr_spill_count, 1870 vgpr_spill_count, loop_tripcount, KernelInfo->Name); 1871 } 1872 1873 // Run on the device. 1874 { 1875 hsa_queue_t *queue = DeviceInfo.HSAQueues[device_id]; 1876 if (!queue) { 1877 return OFFLOAD_FAIL; 1878 } 1879 uint64_t packet_id = acquire_available_packet_id(queue); 1880 1881 const uint32_t mask = queue->size - 1; // size is a power of 2 1882 hsa_kernel_dispatch_packet_t *packet = 1883 (hsa_kernel_dispatch_packet_t *)queue->base_address + 1884 (packet_id & mask); 1885 1886 // packet->header is written last 1887 packet->setup = UINT16_C(1) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS; 1888 packet->workgroup_size_x = threadsPerGroup; 1889 packet->workgroup_size_y = 1; 1890 packet->workgroup_size_z = 1; 1891 packet->reserved0 = 0; 1892 packet->grid_size_x = num_groups * threadsPerGroup; 1893 packet->grid_size_y = 1; 1894 packet->grid_size_z = 1; 1895 packet->private_segment_size = KernelInfoEntry.private_segment_size; 1896 packet->group_segment_size = KernelInfoEntry.group_segment_size; 1897 packet->kernel_object = KernelInfoEntry.kernel_object; 1898 packet->kernarg_address = 0; // use the block allocator 1899 packet->reserved2 = 0; // atmi writes id_ here 1900 packet->completion_signal = {0}; // may want a pool of signals 1901 1902 KernelArgPool *ArgPool = nullptr; 1903 { 1904 auto it = KernelArgPoolMap.find(std::string(KernelInfo->Name)); 1905 if (it != KernelArgPoolMap.end()) { 1906 ArgPool = (it->second).get(); 1907 } 1908 } 1909 if (!ArgPool) { 1910 DP("Warning: No ArgPool for %s on device %d\n", KernelInfo->Name, 1911 device_id); 1912 } 1913 { 1914 void *kernarg = nullptr; 1915 if (ArgPool) { 1916 assert(ArgPool->kernarg_segment_size == (arg_num * sizeof(void *))); 1917 kernarg = ArgPool->allocate(arg_num); 1918 } 1919 if (!kernarg) { 1920 DP("Allocate kernarg failed\n"); 1921 return OFFLOAD_FAIL; 1922 } 1923 1924 // Copy explicit arguments 1925 for (int i = 0; i < arg_num; i++) { 1926 memcpy((char *)kernarg + sizeof(void *) * i, args[i], sizeof(void *)); 1927 } 1928 1929 // Initialize implicit arguments. ATMI seems to leave most fields 1930 // uninitialized 1931 atmi_implicit_args_t *impl_args = 1932 reinterpret_cast<atmi_implicit_args_t *>( 1933 static_cast<char *>(kernarg) + ArgPool->kernarg_segment_size); 1934 memset(impl_args, 0, 1935 sizeof(atmi_implicit_args_t)); // may not be necessary 1936 impl_args->offset_x = 0; 1937 impl_args->offset_y = 0; 1938 impl_args->offset_z = 0; 1939 1940 // assign a hostcall buffer for the selected Q 1941 if (__atomic_load_n(&DeviceInfo.hostcall_required, __ATOMIC_ACQUIRE)) { 1942 // hostrpc_assign_buffer is not thread safe, and this function is 1943 // under a multiple reader lock, not a writer lock. 1944 static pthread_mutex_t hostcall_init_lock = PTHREAD_MUTEX_INITIALIZER; 1945 pthread_mutex_lock(&hostcall_init_lock); 1946 impl_args->hostcall_ptr = hostrpc_assign_buffer( 1947 DeviceInfo.HSAAgents[device_id], queue, device_id); 1948 pthread_mutex_unlock(&hostcall_init_lock); 1949 if (!impl_args->hostcall_ptr) { 1950 DP("hostrpc_assign_buffer failed, gpu would dereference null and " 1951 "error\n"); 1952 return OFFLOAD_FAIL; 1953 } 1954 } 1955 1956 packet->kernarg_address = kernarg; 1957 } 1958 1959 { 1960 hsa_signal_t s = DeviceInfo.FreeSignalPool.pop(); 1961 if (s.handle == 0) { 1962 DP("Failed to get signal instance\n"); 1963 return OFFLOAD_FAIL; 1964 } 1965 packet->completion_signal = s; 1966 hsa_signal_store_relaxed(packet->completion_signal, 1); 1967 } 1968 1969 core::packet_store_release(reinterpret_cast<uint32_t *>(packet), 1970 core::create_header(), packet->setup); 1971 1972 hsa_signal_store_relaxed(queue->doorbell_signal, packet_id); 1973 1974 while (hsa_signal_wait_scacquire(packet->completion_signal, 1975 HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX, 1976 HSA_WAIT_STATE_BLOCKED) != 0) 1977 ; 1978 1979 assert(ArgPool); 1980 ArgPool->deallocate(packet->kernarg_address); 1981 DeviceInfo.FreeSignalPool.push(packet->completion_signal); 1982 } 1983 1984 DP("Kernel completed\n"); 1985 return OFFLOAD_SUCCESS; 1986 } 1987 1988 int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr, 1989 void **tgt_args, ptrdiff_t *tgt_offsets, 1990 int32_t arg_num) { 1991 // use one team and one thread 1992 // fix thread num 1993 int32_t team_num = 1; 1994 int32_t thread_limit = 0; // use default 1995 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 1996 tgt_offsets, arg_num, team_num, 1997 thread_limit, 0); 1998 } 1999 2000 int32_t __tgt_rtl_run_target_region_async(int32_t device_id, 2001 void *tgt_entry_ptr, void **tgt_args, 2002 ptrdiff_t *tgt_offsets, 2003 int32_t arg_num, 2004 __tgt_async_info *AsyncInfo) { 2005 assert(AsyncInfo && "AsyncInfo is nullptr"); 2006 initAsyncInfo(AsyncInfo); 2007 2008 // use one team and one thread 2009 // fix thread num 2010 int32_t team_num = 1; 2011 int32_t thread_limit = 0; // use default 2012 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 2013 tgt_offsets, arg_num, team_num, 2014 thread_limit, 0); 2015 } 2016 2017 int32_t __tgt_rtl_synchronize(int32_t device_id, __tgt_async_info *AsyncInfo) { 2018 assert(AsyncInfo && "AsyncInfo is nullptr"); 2019 2020 // Cuda asserts that AsyncInfo->Queue is non-null, but this invariant 2021 // is not ensured by devices.cpp for amdgcn 2022 // assert(AsyncInfo->Queue && "AsyncInfo->Queue is nullptr"); 2023 if (AsyncInfo->Queue) { 2024 finiAsyncInfo(AsyncInfo); 2025 } 2026 return OFFLOAD_SUCCESS; 2027 } 2028