1 //===----RTLs/hsa/src/rtl.cpp - Target RTLs Implementation -------- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // RTL for hsa machine 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <algorithm> 14 #include <assert.h> 15 #include <cstdio> 16 #include <cstdlib> 17 #include <cstring> 18 #include <dlfcn.h> 19 #include <elf.h> 20 #include <ffi.h> 21 #include <fstream> 22 #include <iostream> 23 #include <libelf.h> 24 #include <list> 25 #include <memory> 26 #include <mutex> 27 #include <shared_mutex> 28 #include <thread> 29 #include <unordered_map> 30 #include <vector> 31 32 // Header from ATMI interface 33 #include "atmi_interop_hsa.h" 34 #include "atmi_runtime.h" 35 36 #include "internal.h" 37 38 #include "Debug.h" 39 #include "get_elf_mach_gfx_name.h" 40 #include "machine.h" 41 #include "omptargetplugin.h" 42 #include "print_tracing.h" 43 44 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 45 46 #ifndef TARGET_NAME 47 #define TARGET_NAME AMDHSA 48 #endif 49 #define DEBUG_PREFIX "Target " GETNAME(TARGET_NAME) " RTL" 50 51 // hostrpc interface, FIXME: consider moving to its own include these are 52 // statically linked into amdgpu/plugin if present from hostrpc_services.a, 53 // linked as --whole-archive to override the weak symbols that are used to 54 // implement a fallback for toolchains that do not yet have a hostrpc library. 55 extern "C" { 56 unsigned long hostrpc_assign_buffer(hsa_agent_t agent, hsa_queue_t *this_Q, 57 uint32_t device_id); 58 hsa_status_t hostrpc_init(); 59 hsa_status_t hostrpc_terminate(); 60 61 __attribute__((weak)) hsa_status_t hostrpc_init() { return HSA_STATUS_SUCCESS; } 62 __attribute__((weak)) hsa_status_t hostrpc_terminate() { 63 return HSA_STATUS_SUCCESS; 64 } 65 __attribute__((weak)) unsigned long 66 hostrpc_assign_buffer(hsa_agent_t, hsa_queue_t *, uint32_t device_id) { 67 DP("Warning: Attempting to assign hostrpc to device %u, but hostrpc library " 68 "missing\n", 69 device_id); 70 return 0; 71 } 72 } 73 74 int print_kernel_trace; 75 76 #ifdef OMPTARGET_DEBUG 77 #define check(msg, status) \ 78 if (status != HSA_STATUS_SUCCESS) { \ 79 DP(#msg " failed\n"); \ 80 } else { \ 81 DP(#msg " succeeded\n"); \ 82 } 83 #else 84 #define check(msg, status) \ 85 {} 86 #endif 87 88 #include "elf_common.h" 89 90 namespace core { 91 hsa_status_t RegisterModuleFromMemory( 92 std::map<std::string, atl_kernel_info_t> &KernelInfo, 93 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, void *, size_t, 94 hsa_agent_t agent, 95 hsa_status_t (*on_deserialized_data)(void *data, size_t size, 96 void *cb_state), 97 void *cb_state, std::vector<hsa_executable_t> &HSAExecutables); 98 } 99 100 namespace hsa { 101 template <typename C> hsa_status_t iterate_agents(C cb) { 102 auto L = [](hsa_agent_t agent, void *data) -> hsa_status_t { 103 C *unwrapped = static_cast<C *>(data); 104 return (*unwrapped)(agent); 105 }; 106 return hsa_iterate_agents(L, static_cast<void *>(&cb)); 107 } 108 109 } // namespace hsa 110 111 /// Keep entries table per device 112 struct FuncOrGblEntryTy { 113 __tgt_target_table Table; 114 std::vector<__tgt_offload_entry> Entries; 115 }; 116 117 enum ExecutionModeType { 118 SPMD, // constructors, destructors, 119 // combined constructs (`teams distribute parallel for [simd]`) 120 GENERIC, // everything else 121 NONE 122 }; 123 124 struct KernelArgPool { 125 private: 126 static pthread_mutex_t mutex; 127 128 public: 129 uint32_t kernarg_segment_size; 130 void *kernarg_region = nullptr; 131 std::queue<int> free_kernarg_segments; 132 133 uint32_t kernarg_size_including_implicit() { 134 return kernarg_segment_size + sizeof(atmi_implicit_args_t); 135 } 136 137 ~KernelArgPool() { 138 if (kernarg_region) { 139 auto r = hsa_amd_memory_pool_free(kernarg_region); 140 if (r != HSA_STATUS_SUCCESS) { 141 DP("hsa_amd_memory_pool_free failed: %s\n", get_error_string(r)); 142 } 143 } 144 } 145 146 // Can't really copy or move a mutex 147 KernelArgPool() = default; 148 KernelArgPool(const KernelArgPool &) = delete; 149 KernelArgPool(KernelArgPool &&) = delete; 150 151 KernelArgPool(uint32_t kernarg_segment_size, 152 hsa_amd_memory_pool_t &memory_pool) 153 : kernarg_segment_size(kernarg_segment_size) { 154 155 // atmi uses one pool per kernel for all gpus, with a fixed upper size 156 // preserving that exact scheme here, including the queue<int> 157 158 hsa_status_t err = hsa_amd_memory_pool_allocate( 159 memory_pool, kernarg_size_including_implicit() * MAX_NUM_KERNELS, 0, 160 &kernarg_region); 161 162 if (err != HSA_STATUS_SUCCESS) { 163 DP("hsa_amd_memory_pool_allocate failed: %s\n", get_error_string(err)); 164 kernarg_region = nullptr; // paranoid 165 return; 166 } 167 168 err = core::allow_access_to_all_gpu_agents(kernarg_region); 169 if (err != HSA_STATUS_SUCCESS) { 170 DP("hsa allow_access_to_all_gpu_agents failed: %s\n", 171 get_error_string(err)); 172 auto r = hsa_amd_memory_pool_free(kernarg_region); 173 if (r != HSA_STATUS_SUCCESS) { 174 // if free failed, can't do anything more to resolve it 175 DP("hsa memory poll free failed: %s\n", get_error_string(err)); 176 } 177 kernarg_region = nullptr; 178 return; 179 } 180 181 for (int i = 0; i < MAX_NUM_KERNELS; i++) { 182 free_kernarg_segments.push(i); 183 } 184 } 185 186 void *allocate(uint64_t arg_num) { 187 assert((arg_num * sizeof(void *)) == kernarg_segment_size); 188 lock l(&mutex); 189 void *res = nullptr; 190 if (!free_kernarg_segments.empty()) { 191 192 int free_idx = free_kernarg_segments.front(); 193 res = static_cast<void *>(static_cast<char *>(kernarg_region) + 194 (free_idx * kernarg_size_including_implicit())); 195 assert(free_idx == pointer_to_index(res)); 196 free_kernarg_segments.pop(); 197 } 198 return res; 199 } 200 201 void deallocate(void *ptr) { 202 lock l(&mutex); 203 int idx = pointer_to_index(ptr); 204 free_kernarg_segments.push(idx); 205 } 206 207 private: 208 int pointer_to_index(void *ptr) { 209 ptrdiff_t bytes = 210 static_cast<char *>(ptr) - static_cast<char *>(kernarg_region); 211 assert(bytes >= 0); 212 assert(bytes % kernarg_size_including_implicit() == 0); 213 return bytes / kernarg_size_including_implicit(); 214 } 215 struct lock { 216 lock(pthread_mutex_t *m) : m(m) { pthread_mutex_lock(m); } 217 ~lock() { pthread_mutex_unlock(m); } 218 pthread_mutex_t *m; 219 }; 220 }; 221 pthread_mutex_t KernelArgPool::mutex = PTHREAD_MUTEX_INITIALIZER; 222 223 std::unordered_map<std::string /*kernel*/, std::unique_ptr<KernelArgPool>> 224 KernelArgPoolMap; 225 226 /// Use a single entity to encode a kernel and a set of flags 227 struct KernelTy { 228 // execution mode of kernel 229 // 0 - SPMD mode (without master warp) 230 // 1 - Generic mode (with master warp) 231 int8_t ExecutionMode; 232 int16_t ConstWGSize; 233 int32_t device_id; 234 void *CallStackAddr = nullptr; 235 const char *Name; 236 237 KernelTy(int8_t _ExecutionMode, int16_t _ConstWGSize, int32_t _device_id, 238 void *_CallStackAddr, const char *_Name, 239 uint32_t _kernarg_segment_size, 240 hsa_amd_memory_pool_t &KernArgMemoryPool) 241 : ExecutionMode(_ExecutionMode), ConstWGSize(_ConstWGSize), 242 device_id(_device_id), CallStackAddr(_CallStackAddr), Name(_Name) { 243 DP("Construct kernelinfo: ExecMode %d\n", ExecutionMode); 244 245 std::string N(_Name); 246 if (KernelArgPoolMap.find(N) == KernelArgPoolMap.end()) { 247 KernelArgPoolMap.insert( 248 std::make_pair(N, std::unique_ptr<KernelArgPool>(new KernelArgPool( 249 _kernarg_segment_size, KernArgMemoryPool)))); 250 } 251 } 252 }; 253 254 /// List that contains all the kernels. 255 /// FIXME: we may need this to be per device and per library. 256 std::list<KernelTy> KernelsList; 257 258 template <typename Callback> static hsa_status_t FindAgents(Callback CB) { 259 260 hsa_status_t err = 261 hsa::iterate_agents([&](hsa_agent_t agent) -> hsa_status_t { 262 hsa_device_type_t device_type; 263 // get_info fails iff HSA runtime not yet initialized 264 hsa_status_t err = 265 hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 266 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) 267 printf("rtl.cpp: err %d\n", err); 268 assert(err == HSA_STATUS_SUCCESS); 269 270 CB(device_type, agent); 271 return HSA_STATUS_SUCCESS; 272 }); 273 274 // iterate_agents fails iff HSA runtime not yet initialized 275 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) { 276 printf("rtl.cpp: err %d\n", err); 277 } 278 279 return err; 280 } 281 282 static void callbackQueue(hsa_status_t status, hsa_queue_t *source, 283 void *data) { 284 if (status != HSA_STATUS_SUCCESS) { 285 const char *status_string; 286 if (hsa_status_string(status, &status_string) != HSA_STATUS_SUCCESS) { 287 status_string = "unavailable"; 288 } 289 fprintf(stderr, "[%s:%d] GPU error in queue %p %d (%s)\n", __FILE__, 290 __LINE__, source, status, status_string); 291 abort(); 292 } 293 } 294 295 namespace core { 296 namespace { 297 void packet_store_release(uint32_t *packet, uint16_t header, uint16_t rest) { 298 __atomic_store_n(packet, header | (rest << 16), __ATOMIC_RELEASE); 299 } 300 301 uint16_t create_header() { 302 uint16_t header = HSA_PACKET_TYPE_KERNEL_DISPATCH << HSA_PACKET_HEADER_TYPE; 303 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE; 304 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE; 305 return header; 306 } 307 308 hsa_status_t addKernArgPool(hsa_amd_memory_pool_t MemoryPool, void *Data) { 309 std::vector<hsa_amd_memory_pool_t> *Result = 310 static_cast<std::vector<hsa_amd_memory_pool_t> *>(Data); 311 bool AllocAllowed = false; 312 hsa_status_t err = hsa_amd_memory_pool_get_info( 313 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED, 314 &AllocAllowed); 315 if (err != HSA_STATUS_SUCCESS) { 316 fprintf(stderr, "Alloc allowed in memory pool check failed: %s\n", 317 get_error_string(err)); 318 return err; 319 } 320 321 if (!AllocAllowed) { 322 // nothing needs to be done here. 323 return HSA_STATUS_SUCCESS; 324 } 325 326 uint32_t GlobalFlags = 0; 327 err = hsa_amd_memory_pool_get_info( 328 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 329 if (err != HSA_STATUS_SUCCESS) { 330 fprintf(stderr, "Get memory pool info failed: %s\n", get_error_string(err)); 331 return err; 332 } 333 334 if ((GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) && 335 (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_KERNARG_INIT)) { 336 size_t size = 0; 337 err = hsa_amd_memory_pool_get_info(MemoryPool, 338 HSA_AMD_MEMORY_POOL_INFO_SIZE, &size); 339 if (err != HSA_STATUS_SUCCESS) { 340 fprintf(stderr, "Get memory pool size failed: %s\n", 341 get_error_string(err)); 342 return err; 343 } 344 if (size > 0) 345 Result->push_back(MemoryPool); 346 } 347 348 return HSA_STATUS_SUCCESS; 349 } 350 351 std::pair<hsa_status_t, hsa_amd_memory_pool_t> 352 FindKernargPool(const std::vector<hsa_agent_t> &HSAAgents) { 353 std::vector<hsa_amd_memory_pool_t> KernArgPools; 354 for (const auto &Agent : HSAAgents) { 355 hsa_status_t err = HSA_STATUS_SUCCESS; 356 err = hsa_amd_agent_iterate_memory_pools( 357 Agent, addKernArgPool, static_cast<void *>(&KernArgPools)); 358 if (err != HSA_STATUS_SUCCESS) { 359 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 360 "Iterate all memory pools", get_error_string(err)); 361 return {err, hsa_amd_memory_pool_t{}}; 362 } 363 } 364 365 if (KernArgPools.empty()) { 366 fprintf(stderr, "Unable to find any valid kernarg pool\n"); 367 return {HSA_STATUS_ERROR, hsa_amd_memory_pool_t{}}; 368 } 369 370 return {HSA_STATUS_SUCCESS, KernArgPools[0]}; 371 } 372 373 } // namespace 374 } // namespace core 375 376 /// Class containing all the device information 377 class RTLDeviceInfoTy { 378 std::vector<std::list<FuncOrGblEntryTy>> FuncGblEntries; 379 380 public: 381 // load binary populates symbol tables and mutates various global state 382 // run uses those symbol tables 383 std::shared_timed_mutex load_run_lock; 384 385 int NumberOfDevices; 386 387 // GPU devices 388 std::vector<hsa_agent_t> HSAAgents; 389 std::vector<hsa_queue_t *> HSAQueues; // one per gpu 390 391 // CPUs 392 std::vector<hsa_agent_t> CPUAgents; 393 394 // Device properties 395 std::vector<int> ComputeUnits; 396 std::vector<int> GroupsPerDevice; 397 std::vector<int> ThreadsPerGroup; 398 std::vector<int> WarpSize; 399 std::vector<std::string> GPUName; 400 401 // OpenMP properties 402 std::vector<int> NumTeams; 403 std::vector<int> NumThreads; 404 405 // OpenMP Environment properties 406 int EnvNumTeams; 407 int EnvTeamLimit; 408 int EnvTeamThreadLimit; 409 int EnvMaxTeamsDefault; 410 411 // OpenMP Requires Flags 412 int64_t RequiresFlags; 413 414 // Resource pools 415 SignalPoolT FreeSignalPool; 416 417 bool hostcall_required = false; 418 419 std::vector<hsa_executable_t> HSAExecutables; 420 421 std::vector<std::map<std::string, atl_kernel_info_t>> KernelInfoTable; 422 std::vector<std::map<std::string, atl_symbol_info_t>> SymbolInfoTable; 423 424 hsa_amd_memory_pool_t KernArgPool; 425 426 struct atmiFreePtrDeletor { 427 void operator()(void *p) { 428 core::Runtime::Memfree(p); // ignore failure to free 429 } 430 }; 431 432 // device_State shared across loaded binaries, error if inconsistent size 433 std::vector<std::pair<std::unique_ptr<void, atmiFreePtrDeletor>, uint64_t>> 434 deviceStateStore; 435 436 static const unsigned HardTeamLimit = 437 (1 << 16) - 1; // 64K needed to fit in uint16 438 static const int DefaultNumTeams = 128; 439 static const int Max_Teams = 440 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_Teams]; 441 static const int Warp_Size = 442 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; 443 static const int Max_WG_Size = 444 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_WG_Size]; 445 static const int Default_WG_Size = 446 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Default_WG_Size]; 447 448 using MemcpyFunc = hsa_status_t (*)(hsa_signal_t, void *, const void *, 449 size_t size, hsa_agent_t); 450 hsa_status_t freesignalpool_memcpy(void *dest, const void *src, size_t size, 451 MemcpyFunc Func, int32_t deviceId) { 452 hsa_agent_t agent = HSAAgents[deviceId]; 453 hsa_signal_t s = FreeSignalPool.pop(); 454 if (s.handle == 0) { 455 return HSA_STATUS_ERROR; 456 } 457 hsa_status_t r = Func(s, dest, src, size, agent); 458 FreeSignalPool.push(s); 459 return r; 460 } 461 462 hsa_status_t freesignalpool_memcpy_d2h(void *dest, const void *src, 463 size_t size, int32_t deviceId) { 464 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_d2h, deviceId); 465 } 466 467 hsa_status_t freesignalpool_memcpy_h2d(void *dest, const void *src, 468 size_t size, int32_t deviceId) { 469 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_h2d, deviceId); 470 } 471 472 // Record entry point associated with device 473 void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) { 474 assert(device_id < (int32_t)FuncGblEntries.size() && 475 "Unexpected device id!"); 476 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 477 478 E.Entries.push_back(entry); 479 } 480 481 // Return true if the entry is associated with device 482 bool findOffloadEntry(int32_t device_id, void *addr) { 483 assert(device_id < (int32_t)FuncGblEntries.size() && 484 "Unexpected device id!"); 485 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 486 487 for (auto &it : E.Entries) { 488 if (it.addr == addr) 489 return true; 490 } 491 492 return false; 493 } 494 495 // Return the pointer to the target entries table 496 __tgt_target_table *getOffloadEntriesTable(int32_t device_id) { 497 assert(device_id < (int32_t)FuncGblEntries.size() && 498 "Unexpected device id!"); 499 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 500 501 int32_t size = E.Entries.size(); 502 503 // Table is empty 504 if (!size) 505 return 0; 506 507 __tgt_offload_entry *begin = &E.Entries[0]; 508 __tgt_offload_entry *end = &E.Entries[size - 1]; 509 510 // Update table info according to the entries and return the pointer 511 E.Table.EntriesBegin = begin; 512 E.Table.EntriesEnd = ++end; 513 514 return &E.Table; 515 } 516 517 // Clear entries table for a device 518 void clearOffloadEntriesTable(int device_id) { 519 assert(device_id < (int32_t)FuncGblEntries.size() && 520 "Unexpected device id!"); 521 FuncGblEntries[device_id].emplace_back(); 522 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 523 // KernelArgPoolMap.clear(); 524 E.Entries.clear(); 525 E.Table.EntriesBegin = E.Table.EntriesEnd = 0; 526 } 527 528 RTLDeviceInfoTy() { 529 // LIBOMPTARGET_KERNEL_TRACE provides a kernel launch trace to stderr 530 // anytime. You do not need a debug library build. 531 // 0 => no tracing 532 // 1 => tracing dispatch only 533 // >1 => verbosity increase 534 if (char *envStr = getenv("LIBOMPTARGET_KERNEL_TRACE")) 535 print_kernel_trace = atoi(envStr); 536 else 537 print_kernel_trace = 0; 538 539 DP("Start initializing HSA-ATMI\n"); 540 hsa_status_t err = core::atl_init_gpu_context(); 541 if (err != HSA_STATUS_SUCCESS) { 542 DP("Error when initializing HSA-ATMI\n"); 543 return; 544 } 545 546 // Init hostcall soon after initializing ATMI 547 hostrpc_init(); 548 549 err = FindAgents([&](hsa_device_type_t DeviceType, hsa_agent_t Agent) { 550 if (DeviceType == HSA_DEVICE_TYPE_CPU) { 551 CPUAgents.push_back(Agent); 552 } else { 553 HSAAgents.push_back(Agent); 554 } 555 }); 556 if (err != HSA_STATUS_SUCCESS) 557 return; 558 559 NumberOfDevices = (int)HSAAgents.size(); 560 561 if (NumberOfDevices == 0) { 562 DP("There are no devices supporting HSA.\n"); 563 return; 564 } else { 565 DP("There are %d devices supporting HSA.\n", NumberOfDevices); 566 } 567 std::tie(err, KernArgPool) = core::FindKernargPool(CPUAgents); 568 if (err != HSA_STATUS_SUCCESS) { 569 DP("Error when reading memory pools\n"); 570 return; 571 } 572 573 // Init the device info 574 HSAQueues.resize(NumberOfDevices); 575 FuncGblEntries.resize(NumberOfDevices); 576 ThreadsPerGroup.resize(NumberOfDevices); 577 ComputeUnits.resize(NumberOfDevices); 578 GPUName.resize(NumberOfDevices); 579 GroupsPerDevice.resize(NumberOfDevices); 580 WarpSize.resize(NumberOfDevices); 581 NumTeams.resize(NumberOfDevices); 582 NumThreads.resize(NumberOfDevices); 583 deviceStateStore.resize(NumberOfDevices); 584 KernelInfoTable.resize(NumberOfDevices); 585 SymbolInfoTable.resize(NumberOfDevices); 586 587 for (int i = 0; i < NumberOfDevices; i++) { 588 HSAQueues[i] = nullptr; 589 } 590 591 for (int i = 0; i < NumberOfDevices; i++) { 592 uint32_t queue_size = 0; 593 { 594 hsa_status_t err = hsa_agent_get_info( 595 HSAAgents[i], HSA_AGENT_INFO_QUEUE_MAX_SIZE, &queue_size); 596 if (err != HSA_STATUS_SUCCESS) { 597 DP("HSA query QUEUE_MAX_SIZE failed for agent %d\n", i); 598 return; 599 } 600 if (queue_size > core::Runtime::getInstance().getMaxQueueSize()) { 601 queue_size = core::Runtime::getInstance().getMaxQueueSize(); 602 } 603 } 604 605 hsa_status_t rc = hsa_queue_create( 606 HSAAgents[i], queue_size, HSA_QUEUE_TYPE_MULTI, callbackQueue, NULL, 607 UINT32_MAX, UINT32_MAX, &HSAQueues[i]); 608 if (rc != HSA_STATUS_SUCCESS) { 609 DP("Failed to create HSA queue %d\n", i); 610 return; 611 } 612 613 deviceStateStore[i] = {nullptr, 0}; 614 } 615 616 for (int i = 0; i < NumberOfDevices; i++) { 617 ThreadsPerGroup[i] = RTLDeviceInfoTy::Default_WG_Size; 618 GroupsPerDevice[i] = RTLDeviceInfoTy::DefaultNumTeams; 619 ComputeUnits[i] = 1; 620 DP("Device %d: Initial groupsPerDevice %d & threadsPerGroup %d\n", i, 621 GroupsPerDevice[i], ThreadsPerGroup[i]); 622 } 623 624 // Get environment variables regarding teams 625 char *envStr = getenv("OMP_TEAM_LIMIT"); 626 if (envStr) { 627 // OMP_TEAM_LIMIT has been set 628 EnvTeamLimit = std::stoi(envStr); 629 DP("Parsed OMP_TEAM_LIMIT=%d\n", EnvTeamLimit); 630 } else { 631 EnvTeamLimit = -1; 632 } 633 envStr = getenv("OMP_NUM_TEAMS"); 634 if (envStr) { 635 // OMP_NUM_TEAMS has been set 636 EnvNumTeams = std::stoi(envStr); 637 DP("Parsed OMP_NUM_TEAMS=%d\n", EnvNumTeams); 638 } else { 639 EnvNumTeams = -1; 640 } 641 // Get environment variables regarding expMaxTeams 642 envStr = getenv("OMP_MAX_TEAMS_DEFAULT"); 643 if (envStr) { 644 EnvMaxTeamsDefault = std::stoi(envStr); 645 DP("Parsed OMP_MAX_TEAMS_DEFAULT=%d\n", EnvMaxTeamsDefault); 646 } else { 647 EnvMaxTeamsDefault = -1; 648 } 649 envStr = getenv("OMP_TEAMS_THREAD_LIMIT"); 650 if (envStr) { 651 EnvTeamThreadLimit = std::stoi(envStr); 652 DP("Parsed OMP_TEAMS_THREAD_LIMIT=%d\n", EnvTeamThreadLimit); 653 } else { 654 EnvTeamThreadLimit = -1; 655 } 656 657 // Default state. 658 RequiresFlags = OMP_REQ_UNDEFINED; 659 } 660 661 ~RTLDeviceInfoTy() { 662 DP("Finalizing the HSA-ATMI DeviceInfo.\n"); 663 // Run destructors on types that use HSA before 664 // atmi_finalize removes access to it 665 deviceStateStore.clear(); 666 KernelArgPoolMap.clear(); 667 // Terminate hostrpc before finalizing ATMI 668 hostrpc_terminate(); 669 670 hsa_status_t Err; 671 for (uint32_t I = 0; I < HSAExecutables.size(); I++) { 672 Err = hsa_executable_destroy(HSAExecutables[I]); 673 if (Err != HSA_STATUS_SUCCESS) { 674 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 675 "Destroying executable", get_error_string(Err)); 676 } 677 } 678 679 Err = hsa_shut_down(); 680 if (Err != HSA_STATUS_SUCCESS) { 681 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Shutting down HSA", 682 get_error_string(Err)); 683 } 684 } 685 }; 686 687 pthread_mutex_t SignalPoolT::mutex = PTHREAD_MUTEX_INITIALIZER; 688 689 // TODO: May need to drop the trailing to fields until deviceRTL is updated 690 struct omptarget_device_environmentTy { 691 int32_t debug_level; // gets value of envvar LIBOMPTARGET_DEVICE_RTL_DEBUG 692 // only useful for Debug build of deviceRTLs 693 int32_t num_devices; // gets number of active offload devices 694 int32_t device_num; // gets a value 0 to num_devices-1 695 }; 696 697 static RTLDeviceInfoTy DeviceInfo; 698 699 namespace { 700 701 int32_t dataRetrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size, 702 __tgt_async_info *AsyncInfo) { 703 assert(AsyncInfo && "AsyncInfo is nullptr"); 704 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 705 // Return success if we are not copying back to host from target. 706 if (!HstPtr) 707 return OFFLOAD_SUCCESS; 708 hsa_status_t err; 709 DP("Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 710 (long long unsigned)(Elf64_Addr)TgtPtr, 711 (long long unsigned)(Elf64_Addr)HstPtr); 712 713 err = DeviceInfo.freesignalpool_memcpy_d2h(HstPtr, TgtPtr, (size_t)Size, 714 DeviceId); 715 716 if (err != HSA_STATUS_SUCCESS) { 717 DP("Error when copying data from device to host. Pointers: " 718 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 719 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 720 return OFFLOAD_FAIL; 721 } 722 DP("DONE Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 723 (long long unsigned)(Elf64_Addr)TgtPtr, 724 (long long unsigned)(Elf64_Addr)HstPtr); 725 return OFFLOAD_SUCCESS; 726 } 727 728 int32_t dataSubmit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size, 729 __tgt_async_info *AsyncInfo) { 730 assert(AsyncInfo && "AsyncInfo is nullptr"); 731 hsa_status_t err; 732 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 733 // Return success if we are not doing host to target. 734 if (!HstPtr) 735 return OFFLOAD_SUCCESS; 736 737 DP("Submit data %ld bytes, (hst:%016llx) -> (tgt:%016llx).\n", Size, 738 (long long unsigned)(Elf64_Addr)HstPtr, 739 (long long unsigned)(Elf64_Addr)TgtPtr); 740 err = DeviceInfo.freesignalpool_memcpy_h2d(TgtPtr, HstPtr, (size_t)Size, 741 DeviceId); 742 if (err != HSA_STATUS_SUCCESS) { 743 DP("Error when copying data from host to device. Pointers: " 744 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 745 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 746 return OFFLOAD_FAIL; 747 } 748 return OFFLOAD_SUCCESS; 749 } 750 751 // Async. 752 // The implementation was written with cuda streams in mind. The semantics of 753 // that are to execute kernels on a queue in order of insertion. A synchronise 754 // call then makes writes visible between host and device. This means a series 755 // of N data_submit_async calls are expected to execute serially. HSA offers 756 // various options to run the data copies concurrently. This may require changes 757 // to libomptarget. 758 759 // __tgt_async_info* contains a void * Queue. Queue = 0 is used to indicate that 760 // there are no outstanding kernels that need to be synchronized. Any async call 761 // may be passed a Queue==0, at which point the cuda implementation will set it 762 // to non-null (see getStream). The cuda streams are per-device. Upstream may 763 // change this interface to explicitly initialize the AsyncInfo_pointer, but 764 // until then hsa lazily initializes it as well. 765 766 void initAsyncInfo(__tgt_async_info *AsyncInfo) { 767 // set non-null while using async calls, return to null to indicate completion 768 assert(AsyncInfo); 769 if (!AsyncInfo->Queue) { 770 AsyncInfo->Queue = reinterpret_cast<void *>(UINT64_MAX); 771 } 772 } 773 void finiAsyncInfo(__tgt_async_info *AsyncInfo) { 774 assert(AsyncInfo); 775 assert(AsyncInfo->Queue); 776 AsyncInfo->Queue = 0; 777 } 778 779 bool elf_machine_id_is_amdgcn(__tgt_device_image *image) { 780 const uint16_t amdgcnMachineID = 224; // EM_AMDGPU may not be in system elf.h 781 int32_t r = elf_check_machine(image, amdgcnMachineID); 782 if (!r) { 783 DP("Supported machine ID not found\n"); 784 } 785 return r; 786 } 787 788 uint32_t elf_e_flags(__tgt_device_image *image) { 789 char *img_begin = (char *)image->ImageStart; 790 size_t img_size = (char *)image->ImageEnd - img_begin; 791 792 Elf *e = elf_memory(img_begin, img_size); 793 if (!e) { 794 DP("Unable to get ELF handle: %s!\n", elf_errmsg(-1)); 795 return 0; 796 } 797 798 Elf64_Ehdr *eh64 = elf64_getehdr(e); 799 800 if (!eh64) { 801 DP("Unable to get machine ID from ELF file!\n"); 802 elf_end(e); 803 return 0; 804 } 805 806 uint32_t Flags = eh64->e_flags; 807 808 elf_end(e); 809 DP("ELF Flags: 0x%x\n", Flags); 810 return Flags; 811 } 812 } // namespace 813 814 int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) { 815 return elf_machine_id_is_amdgcn(image); 816 } 817 818 int __tgt_rtl_number_of_devices() { return DeviceInfo.NumberOfDevices; } 819 820 int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) { 821 DP("Init requires flags to %ld\n", RequiresFlags); 822 DeviceInfo.RequiresFlags = RequiresFlags; 823 return RequiresFlags; 824 } 825 826 namespace { 827 template <typename T> bool enforce_upper_bound(T *value, T upper) { 828 bool changed = *value > upper; 829 if (changed) { 830 *value = upper; 831 } 832 return changed; 833 } 834 } // namespace 835 836 int32_t __tgt_rtl_init_device(int device_id) { 837 hsa_status_t err; 838 839 // this is per device id init 840 DP("Initialize the device id: %d\n", device_id); 841 842 hsa_agent_t agent = DeviceInfo.HSAAgents[device_id]; 843 844 // Get number of Compute Unit 845 uint32_t compute_units = 0; 846 err = hsa_agent_get_info( 847 agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT, 848 &compute_units); 849 if (err != HSA_STATUS_SUCCESS) { 850 DeviceInfo.ComputeUnits[device_id] = 1; 851 DP("Error getting compute units : settiing to 1\n"); 852 } else { 853 DeviceInfo.ComputeUnits[device_id] = compute_units; 854 DP("Using %d compute unis per grid\n", DeviceInfo.ComputeUnits[device_id]); 855 } 856 857 char GetInfoName[64]; // 64 max size returned by get info 858 err = hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AGENT_INFO_NAME, 859 (void *)GetInfoName); 860 if (err) 861 DeviceInfo.GPUName[device_id] = "--unknown gpu--"; 862 else { 863 DeviceInfo.GPUName[device_id] = GetInfoName; 864 } 865 866 if (print_kernel_trace & STARTUP_DETAILS) 867 fprintf(stderr, "Device#%-2d CU's: %2d %s\n", device_id, 868 DeviceInfo.ComputeUnits[device_id], 869 DeviceInfo.GPUName[device_id].c_str()); 870 871 // Query attributes to determine number of threads/block and blocks/grid. 872 uint16_t workgroup_max_dim[3]; 873 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_DIM, 874 &workgroup_max_dim); 875 if (err != HSA_STATUS_SUCCESS) { 876 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::DefaultNumTeams; 877 DP("Error getting grid dims: num groups : %d\n", 878 RTLDeviceInfoTy::DefaultNumTeams); 879 } else if (workgroup_max_dim[0] <= RTLDeviceInfoTy::HardTeamLimit) { 880 DeviceInfo.GroupsPerDevice[device_id] = workgroup_max_dim[0]; 881 DP("Using %d ROCm blocks per grid\n", 882 DeviceInfo.GroupsPerDevice[device_id]); 883 } else { 884 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::HardTeamLimit; 885 DP("Max ROCm blocks per grid %d exceeds the hard team limit %d, capping " 886 "at the hard limit\n", 887 workgroup_max_dim[0], RTLDeviceInfoTy::HardTeamLimit); 888 } 889 890 // Get thread limit 891 hsa_dim3_t grid_max_dim; 892 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &grid_max_dim); 893 if (err == HSA_STATUS_SUCCESS) { 894 DeviceInfo.ThreadsPerGroup[device_id] = 895 reinterpret_cast<uint32_t *>(&grid_max_dim)[0] / 896 DeviceInfo.GroupsPerDevice[device_id]; 897 898 if (DeviceInfo.ThreadsPerGroup[device_id] == 0) { 899 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 900 DP("Default thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 901 } else if (enforce_upper_bound(&DeviceInfo.ThreadsPerGroup[device_id], 902 RTLDeviceInfoTy::Max_WG_Size)) { 903 DP("Capped thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 904 } else { 905 DP("Using ROCm Queried thread limit: %d\n", 906 DeviceInfo.ThreadsPerGroup[device_id]); 907 } 908 } else { 909 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 910 DP("Error getting max block dimension, use default:%d \n", 911 RTLDeviceInfoTy::Max_WG_Size); 912 } 913 914 // Get wavefront size 915 uint32_t wavefront_size = 0; 916 err = 917 hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size); 918 if (err == HSA_STATUS_SUCCESS) { 919 DP("Queried wavefront size: %d\n", wavefront_size); 920 DeviceInfo.WarpSize[device_id] = wavefront_size; 921 } else { 922 DP("Default wavefront size: %d\n", 923 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]); 924 DeviceInfo.WarpSize[device_id] = 925 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; 926 } 927 928 // Adjust teams to the env variables 929 930 if (DeviceInfo.EnvTeamLimit > 0 && 931 (enforce_upper_bound(&DeviceInfo.GroupsPerDevice[device_id], 932 DeviceInfo.EnvTeamLimit))) { 933 DP("Capping max groups per device to OMP_TEAM_LIMIT=%d\n", 934 DeviceInfo.EnvTeamLimit); 935 } 936 937 // Set default number of teams 938 if (DeviceInfo.EnvNumTeams > 0) { 939 DeviceInfo.NumTeams[device_id] = DeviceInfo.EnvNumTeams; 940 DP("Default number of teams set according to environment %d\n", 941 DeviceInfo.EnvNumTeams); 942 } else { 943 char *TeamsPerCUEnvStr = getenv("OMP_TARGET_TEAMS_PER_PROC"); 944 int TeamsPerCU = 1; // default number of teams per CU is 1 945 if (TeamsPerCUEnvStr) { 946 TeamsPerCU = std::stoi(TeamsPerCUEnvStr); 947 } 948 949 DeviceInfo.NumTeams[device_id] = 950 TeamsPerCU * DeviceInfo.ComputeUnits[device_id]; 951 DP("Default number of teams = %d * number of compute units %d\n", 952 TeamsPerCU, DeviceInfo.ComputeUnits[device_id]); 953 } 954 955 if (enforce_upper_bound(&DeviceInfo.NumTeams[device_id], 956 DeviceInfo.GroupsPerDevice[device_id])) { 957 DP("Default number of teams exceeds device limit, capping at %d\n", 958 DeviceInfo.GroupsPerDevice[device_id]); 959 } 960 961 // Adjust threads to the env variables 962 if (DeviceInfo.EnvTeamThreadLimit > 0 && 963 (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], 964 DeviceInfo.EnvTeamThreadLimit))) { 965 DP("Capping max number of threads to OMP_TEAMS_THREAD_LIMIT=%d\n", 966 DeviceInfo.EnvTeamThreadLimit); 967 } 968 969 // Set default number of threads 970 DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::Default_WG_Size; 971 DP("Default number of threads set according to library's default %d\n", 972 RTLDeviceInfoTy::Default_WG_Size); 973 if (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], 974 DeviceInfo.ThreadsPerGroup[device_id])) { 975 DP("Default number of threads exceeds device limit, capping at %d\n", 976 DeviceInfo.ThreadsPerGroup[device_id]); 977 } 978 979 DP("Device %d: default limit for groupsPerDevice %d & threadsPerGroup %d\n", 980 device_id, DeviceInfo.GroupsPerDevice[device_id], 981 DeviceInfo.ThreadsPerGroup[device_id]); 982 983 DP("Device %d: wavefront size %d, total threads %d x %d = %d\n", device_id, 984 DeviceInfo.WarpSize[device_id], DeviceInfo.ThreadsPerGroup[device_id], 985 DeviceInfo.GroupsPerDevice[device_id], 986 DeviceInfo.GroupsPerDevice[device_id] * 987 DeviceInfo.ThreadsPerGroup[device_id]); 988 989 return OFFLOAD_SUCCESS; 990 } 991 992 namespace { 993 Elf64_Shdr *find_only_SHT_HASH(Elf *elf) { 994 size_t N; 995 int rc = elf_getshdrnum(elf, &N); 996 if (rc != 0) { 997 return nullptr; 998 } 999 1000 Elf64_Shdr *result = nullptr; 1001 for (size_t i = 0; i < N; i++) { 1002 Elf_Scn *scn = elf_getscn(elf, i); 1003 if (scn) { 1004 Elf64_Shdr *shdr = elf64_getshdr(scn); 1005 if (shdr) { 1006 if (shdr->sh_type == SHT_HASH) { 1007 if (result == nullptr) { 1008 result = shdr; 1009 } else { 1010 // multiple SHT_HASH sections not handled 1011 return nullptr; 1012 } 1013 } 1014 } 1015 } 1016 } 1017 return result; 1018 } 1019 1020 const Elf64_Sym *elf_lookup(Elf *elf, char *base, Elf64_Shdr *section_hash, 1021 const char *symname) { 1022 1023 assert(section_hash); 1024 size_t section_symtab_index = section_hash->sh_link; 1025 Elf64_Shdr *section_symtab = 1026 elf64_getshdr(elf_getscn(elf, section_symtab_index)); 1027 size_t section_strtab_index = section_symtab->sh_link; 1028 1029 const Elf64_Sym *symtab = 1030 reinterpret_cast<const Elf64_Sym *>(base + section_symtab->sh_offset); 1031 1032 const uint32_t *hashtab = 1033 reinterpret_cast<const uint32_t *>(base + section_hash->sh_offset); 1034 1035 // Layout: 1036 // nbucket 1037 // nchain 1038 // bucket[nbucket] 1039 // chain[nchain] 1040 uint32_t nbucket = hashtab[0]; 1041 const uint32_t *bucket = &hashtab[2]; 1042 const uint32_t *chain = &hashtab[nbucket + 2]; 1043 1044 const size_t max = strlen(symname) + 1; 1045 const uint32_t hash = elf_hash(symname); 1046 for (uint32_t i = bucket[hash % nbucket]; i != 0; i = chain[i]) { 1047 char *n = elf_strptr(elf, section_strtab_index, symtab[i].st_name); 1048 if (strncmp(symname, n, max) == 0) { 1049 return &symtab[i]; 1050 } 1051 } 1052 1053 return nullptr; 1054 } 1055 1056 typedef struct { 1057 void *addr = nullptr; 1058 uint32_t size = UINT32_MAX; 1059 uint32_t sh_type = SHT_NULL; 1060 } symbol_info; 1061 1062 int get_symbol_info_without_loading(Elf *elf, char *base, const char *symname, 1063 symbol_info *res) { 1064 if (elf_kind(elf) != ELF_K_ELF) { 1065 return 1; 1066 } 1067 1068 Elf64_Shdr *section_hash = find_only_SHT_HASH(elf); 1069 if (!section_hash) { 1070 return 1; 1071 } 1072 1073 const Elf64_Sym *sym = elf_lookup(elf, base, section_hash, symname); 1074 if (!sym) { 1075 return 1; 1076 } 1077 1078 if (sym->st_size > UINT32_MAX) { 1079 return 1; 1080 } 1081 1082 if (sym->st_shndx == SHN_UNDEF) { 1083 return 1; 1084 } 1085 1086 Elf_Scn *section = elf_getscn(elf, sym->st_shndx); 1087 if (!section) { 1088 return 1; 1089 } 1090 1091 Elf64_Shdr *header = elf64_getshdr(section); 1092 if (!header) { 1093 return 1; 1094 } 1095 1096 res->addr = sym->st_value + base; 1097 res->size = static_cast<uint32_t>(sym->st_size); 1098 res->sh_type = header->sh_type; 1099 return 0; 1100 } 1101 1102 int get_symbol_info_without_loading(char *base, size_t img_size, 1103 const char *symname, symbol_info *res) { 1104 Elf *elf = elf_memory(base, img_size); 1105 if (elf) { 1106 int rc = get_symbol_info_without_loading(elf, base, symname, res); 1107 elf_end(elf); 1108 return rc; 1109 } 1110 return 1; 1111 } 1112 1113 hsa_status_t interop_get_symbol_info(char *base, size_t img_size, 1114 const char *symname, void **var_addr, 1115 uint32_t *var_size) { 1116 symbol_info si; 1117 int rc = get_symbol_info_without_loading(base, img_size, symname, &si); 1118 if (rc == 0) { 1119 *var_addr = si.addr; 1120 *var_size = si.size; 1121 return HSA_STATUS_SUCCESS; 1122 } else { 1123 return HSA_STATUS_ERROR; 1124 } 1125 } 1126 1127 template <typename C> 1128 hsa_status_t module_register_from_memory_to_place( 1129 std::map<std::string, atl_kernel_info_t> &KernelInfoTable, 1130 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, 1131 void *module_bytes, size_t module_size, int DeviceId, C cb, 1132 std::vector<hsa_executable_t> &HSAExecutables) { 1133 auto L = [](void *data, size_t size, void *cb_state) -> hsa_status_t { 1134 C *unwrapped = static_cast<C *>(cb_state); 1135 return (*unwrapped)(data, size); 1136 }; 1137 return core::RegisterModuleFromMemory( 1138 KernelInfoTable, SymbolInfoTable, module_bytes, module_size, 1139 DeviceInfo.HSAAgents[DeviceId], L, static_cast<void *>(&cb), 1140 HSAExecutables); 1141 } 1142 } // namespace 1143 1144 static uint64_t get_device_State_bytes(char *ImageStart, size_t img_size) { 1145 uint64_t device_State_bytes = 0; 1146 { 1147 // If this is the deviceRTL, get the state variable size 1148 symbol_info size_si; 1149 int rc = get_symbol_info_without_loading( 1150 ImageStart, img_size, "omptarget_nvptx_device_State_size", &size_si); 1151 1152 if (rc == 0) { 1153 if (size_si.size != sizeof(uint64_t)) { 1154 DP("Found device_State_size variable with wrong size\n"); 1155 return 0; 1156 } 1157 1158 // Read number of bytes directly from the elf 1159 memcpy(&device_State_bytes, size_si.addr, sizeof(uint64_t)); 1160 } 1161 } 1162 return device_State_bytes; 1163 } 1164 1165 static __tgt_target_table * 1166 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1167 1168 static __tgt_target_table * 1169 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1170 1171 __tgt_target_table *__tgt_rtl_load_binary(int32_t device_id, 1172 __tgt_device_image *image) { 1173 DeviceInfo.load_run_lock.lock(); 1174 __tgt_target_table *res = __tgt_rtl_load_binary_locked(device_id, image); 1175 DeviceInfo.load_run_lock.unlock(); 1176 return res; 1177 } 1178 1179 struct device_environment { 1180 // initialise an omptarget_device_environmentTy in the deviceRTL 1181 // patches around differences in the deviceRTL between trunk, aomp, 1182 // rocmcc. Over time these differences will tend to zero and this class 1183 // simplified. 1184 // Symbol may be in .data or .bss, and may be missing fields: 1185 // - aomp has debug_level, num_devices, device_num 1186 // - trunk has debug_level 1187 // - under review in trunk is debug_level, device_num 1188 // - rocmcc matches aomp, patch to swap num_devices and device_num 1189 1190 // The symbol may also have been deadstripped because the device side 1191 // accessors were unused. 1192 1193 // If the symbol is in .data (aomp, rocm) it can be written directly. 1194 // If it is in .bss, we must wait for it to be allocated space on the 1195 // gpu (trunk) and initialize after loading. 1196 const char *sym() { return "omptarget_device_environment"; } 1197 1198 omptarget_device_environmentTy host_device_env; 1199 symbol_info si; 1200 bool valid = false; 1201 1202 __tgt_device_image *image; 1203 const size_t img_size; 1204 1205 device_environment(int device_id, int number_devices, 1206 __tgt_device_image *image, const size_t img_size) 1207 : image(image), img_size(img_size) { 1208 1209 host_device_env.num_devices = number_devices; 1210 host_device_env.device_num = device_id; 1211 host_device_env.debug_level = 0; 1212 #ifdef OMPTARGET_DEBUG 1213 if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) { 1214 host_device_env.debug_level = std::stoi(envStr); 1215 } 1216 #endif 1217 1218 int rc = get_symbol_info_without_loading((char *)image->ImageStart, 1219 img_size, sym(), &si); 1220 if (rc != 0) { 1221 DP("Finding global device environment '%s' - symbol missing.\n", sym()); 1222 return; 1223 } 1224 1225 if (si.size > sizeof(host_device_env)) { 1226 DP("Symbol '%s' has size %u, expected at most %zu.\n", sym(), si.size, 1227 sizeof(host_device_env)); 1228 return; 1229 } 1230 1231 valid = true; 1232 } 1233 1234 bool in_image() { return si.sh_type != SHT_NOBITS; } 1235 1236 hsa_status_t before_loading(void *data, size_t size) { 1237 if (valid) { 1238 if (in_image()) { 1239 DP("Setting global device environment before load (%u bytes)\n", 1240 si.size); 1241 uint64_t offset = (char *)si.addr - (char *)image->ImageStart; 1242 void *pos = (char *)data + offset; 1243 memcpy(pos, &host_device_env, si.size); 1244 } 1245 } 1246 return HSA_STATUS_SUCCESS; 1247 } 1248 1249 hsa_status_t after_loading() { 1250 if (valid) { 1251 if (!in_image()) { 1252 DP("Setting global device environment after load (%u bytes)\n", 1253 si.size); 1254 int device_id = host_device_env.device_num; 1255 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1256 void *state_ptr; 1257 uint32_t state_ptr_size; 1258 hsa_status_t err = atmi_interop_hsa_get_symbol_info( 1259 SymbolInfo, device_id, sym(), &state_ptr, &state_ptr_size); 1260 if (err != HSA_STATUS_SUCCESS) { 1261 DP("failed to find %s in loaded image\n", sym()); 1262 return err; 1263 } 1264 1265 if (state_ptr_size != si.size) { 1266 DP("Symbol had size %u before loading, %u after\n", state_ptr_size, 1267 si.size); 1268 return HSA_STATUS_ERROR; 1269 } 1270 1271 return DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &host_device_env, 1272 state_ptr_size, device_id); 1273 } 1274 } 1275 return HSA_STATUS_SUCCESS; 1276 } 1277 }; 1278 1279 static hsa_status_t atmi_calloc(void **ret_ptr, size_t size, int DeviceId) { 1280 uint64_t rounded = 4 * ((size + 3) / 4); 1281 void *ptr; 1282 hsa_status_t err = core::Runtime::DeviceMalloc(&ptr, rounded, DeviceId); 1283 if (err != HSA_STATUS_SUCCESS) { 1284 return err; 1285 } 1286 1287 hsa_status_t rc = hsa_amd_memory_fill(ptr, 0, rounded / 4); 1288 if (rc != HSA_STATUS_SUCCESS) { 1289 fprintf(stderr, "zero fill device_state failed with %u\n", rc); 1290 core::Runtime::Memfree(ptr); 1291 return HSA_STATUS_ERROR; 1292 } 1293 1294 *ret_ptr = ptr; 1295 return HSA_STATUS_SUCCESS; 1296 } 1297 1298 static bool image_contains_symbol(void *data, size_t size, const char *sym) { 1299 symbol_info si; 1300 int rc = get_symbol_info_without_loading((char *)data, size, sym, &si); 1301 return (rc == 0) && (si.addr != nullptr); 1302 } 1303 1304 __tgt_target_table *__tgt_rtl_load_binary_locked(int32_t device_id, 1305 __tgt_device_image *image) { 1306 // This function loads the device image onto gpu[device_id] and does other 1307 // per-image initialization work. Specifically: 1308 // 1309 // - Initialize an omptarget_device_environmentTy instance embedded in the 1310 // image at the symbol "omptarget_device_environment" 1311 // Fields debug_level, device_num, num_devices. Used by the deviceRTL. 1312 // 1313 // - Allocate a large array per-gpu (could be moved to init_device) 1314 // - Read a uint64_t at symbol omptarget_nvptx_device_State_size 1315 // - Allocate at least that many bytes of gpu memory 1316 // - Zero initialize it 1317 // - Write the pointer to the symbol omptarget_nvptx_device_State 1318 // 1319 // - Pulls some per-kernel information together from various sources and 1320 // records it in the KernelsList for quicker access later 1321 // 1322 // The initialization can be done before or after loading the image onto the 1323 // gpu. This function presently does a mixture. Using the hsa api to get/set 1324 // the information is simpler to implement, in exchange for more complicated 1325 // runtime behaviour. E.g. launching a kernel or using dma to get eight bytes 1326 // back from the gpu vs a hashtable lookup on the host. 1327 1328 const size_t img_size = (char *)image->ImageEnd - (char *)image->ImageStart; 1329 1330 DeviceInfo.clearOffloadEntriesTable(device_id); 1331 1332 // We do not need to set the ELF version because the caller of this function 1333 // had to do that to decide the right runtime to use 1334 1335 if (!elf_machine_id_is_amdgcn(image)) { 1336 return NULL; 1337 } 1338 1339 { 1340 auto env = device_environment(device_id, DeviceInfo.NumberOfDevices, image, 1341 img_size); 1342 1343 auto &KernelInfo = DeviceInfo.KernelInfoTable[device_id]; 1344 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1345 hsa_status_t err = module_register_from_memory_to_place( 1346 KernelInfo, SymbolInfo, (void *)image->ImageStart, img_size, device_id, 1347 [&](void *data, size_t size) { 1348 if (image_contains_symbol(data, size, "needs_hostcall_buffer")) { 1349 __atomic_store_n(&DeviceInfo.hostcall_required, true, 1350 __ATOMIC_RELEASE); 1351 } 1352 return env.before_loading(data, size); 1353 }, 1354 DeviceInfo.HSAExecutables); 1355 1356 check("Module registering", err); 1357 if (err != HSA_STATUS_SUCCESS) { 1358 fprintf(stderr, 1359 "Possible gpu arch mismatch: device:%s, image:%s please check" 1360 " compiler flag: -march=<gpu>\n", 1361 DeviceInfo.GPUName[device_id].c_str(), 1362 get_elf_mach_gfx_name(elf_e_flags(image))); 1363 return NULL; 1364 } 1365 1366 err = env.after_loading(); 1367 if (err != HSA_STATUS_SUCCESS) { 1368 return NULL; 1369 } 1370 } 1371 1372 DP("ATMI module successfully loaded!\n"); 1373 1374 { 1375 // the device_State array is either large value in bss or a void* that 1376 // needs to be assigned to a pointer to an array of size device_state_bytes 1377 // If absent, it has been deadstripped and needs no setup. 1378 1379 void *state_ptr; 1380 uint32_t state_ptr_size; 1381 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 1382 hsa_status_t err = atmi_interop_hsa_get_symbol_info( 1383 SymbolInfoMap, device_id, "omptarget_nvptx_device_State", &state_ptr, 1384 &state_ptr_size); 1385 1386 if (err != HSA_STATUS_SUCCESS) { 1387 DP("No device_state symbol found, skipping initialization\n"); 1388 } else { 1389 if (state_ptr_size < sizeof(void *)) { 1390 DP("unexpected size of state_ptr %u != %zu\n", state_ptr_size, 1391 sizeof(void *)); 1392 return NULL; 1393 } 1394 1395 // if it's larger than a void*, assume it's a bss array and no further 1396 // initialization is required. Only try to set up a pointer for 1397 // sizeof(void*) 1398 if (state_ptr_size == sizeof(void *)) { 1399 uint64_t device_State_bytes = 1400 get_device_State_bytes((char *)image->ImageStart, img_size); 1401 if (device_State_bytes == 0) { 1402 DP("Can't initialize device_State, missing size information\n"); 1403 return NULL; 1404 } 1405 1406 auto &dss = DeviceInfo.deviceStateStore[device_id]; 1407 if (dss.first.get() == nullptr) { 1408 assert(dss.second == 0); 1409 void *ptr = NULL; 1410 hsa_status_t err = atmi_calloc(&ptr, device_State_bytes, device_id); 1411 if (err != HSA_STATUS_SUCCESS) { 1412 DP("Failed to allocate device_state array\n"); 1413 return NULL; 1414 } 1415 dss = { 1416 std::unique_ptr<void, RTLDeviceInfoTy::atmiFreePtrDeletor>{ptr}, 1417 device_State_bytes, 1418 }; 1419 } 1420 1421 void *ptr = dss.first.get(); 1422 if (device_State_bytes != dss.second) { 1423 DP("Inconsistent sizes of device_State unsupported\n"); 1424 return NULL; 1425 } 1426 1427 // write ptr to device memory so it can be used by later kernels 1428 err = DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &ptr, 1429 sizeof(void *), device_id); 1430 if (err != HSA_STATUS_SUCCESS) { 1431 DP("memcpy install of state_ptr failed\n"); 1432 return NULL; 1433 } 1434 } 1435 } 1436 } 1437 1438 // Here, we take advantage of the data that is appended after img_end to get 1439 // the symbols' name we need to load. This data consist of the host entries 1440 // begin and end as well as the target name (see the offloading linker script 1441 // creation in clang compiler). 1442 1443 // Find the symbols in the module by name. The name can be obtain by 1444 // concatenating the host entry name with the target name 1445 1446 __tgt_offload_entry *HostBegin = image->EntriesBegin; 1447 __tgt_offload_entry *HostEnd = image->EntriesEnd; 1448 1449 for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) { 1450 1451 if (!e->addr) { 1452 // The host should have always something in the address to 1453 // uniquely identify the target region. 1454 fprintf(stderr, "Analyzing host entry '<null>' (size = %lld)...\n", 1455 (unsigned long long)e->size); 1456 return NULL; 1457 } 1458 1459 if (e->size) { 1460 __tgt_offload_entry entry = *e; 1461 1462 void *varptr; 1463 uint32_t varsize; 1464 1465 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 1466 hsa_status_t err = atmi_interop_hsa_get_symbol_info( 1467 SymbolInfoMap, device_id, e->name, &varptr, &varsize); 1468 1469 if (err != HSA_STATUS_SUCCESS) { 1470 // Inform the user what symbol prevented offloading 1471 DP("Loading global '%s' (Failed)\n", e->name); 1472 return NULL; 1473 } 1474 1475 if (varsize != e->size) { 1476 DP("Loading global '%s' - size mismatch (%u != %lu)\n", e->name, 1477 varsize, e->size); 1478 return NULL; 1479 } 1480 1481 DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n", 1482 DPxPTR(e - HostBegin), e->name, DPxPTR(varptr)); 1483 entry.addr = (void *)varptr; 1484 1485 DeviceInfo.addOffloadEntry(device_id, entry); 1486 1487 if (DeviceInfo.RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY && 1488 e->flags & OMP_DECLARE_TARGET_LINK) { 1489 // If unified memory is present any target link variables 1490 // can access host addresses directly. There is no longer a 1491 // need for device copies. 1492 err = DeviceInfo.freesignalpool_memcpy_h2d(varptr, e->addr, 1493 sizeof(void *), device_id); 1494 if (err != HSA_STATUS_SUCCESS) 1495 DP("Error when copying USM\n"); 1496 DP("Copy linked variable host address (" DPxMOD ")" 1497 "to device address (" DPxMOD ")\n", 1498 DPxPTR(*((void **)e->addr)), DPxPTR(varptr)); 1499 } 1500 1501 continue; 1502 } 1503 1504 DP("to find the kernel name: %s size: %lu\n", e->name, strlen(e->name)); 1505 1506 uint32_t kernarg_segment_size; 1507 auto &KernelInfoMap = DeviceInfo.KernelInfoTable[device_id]; 1508 hsa_status_t err = atmi_interop_hsa_get_kernel_info( 1509 KernelInfoMap, device_id, e->name, 1510 HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE, 1511 &kernarg_segment_size); 1512 1513 // each arg is a void * in this openmp implementation 1514 uint32_t arg_num = kernarg_segment_size / sizeof(void *); 1515 std::vector<size_t> arg_sizes(arg_num); 1516 for (std::vector<size_t>::iterator it = arg_sizes.begin(); 1517 it != arg_sizes.end(); it++) { 1518 *it = sizeof(void *); 1519 } 1520 1521 // default value GENERIC (in case symbol is missing from cubin file) 1522 int8_t ExecModeVal = ExecutionModeType::GENERIC; 1523 1524 // get flat group size if present, else Default_WG_Size 1525 int16_t WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1526 1527 // get Kernel Descriptor if present. 1528 // Keep struct in sync wih getTgtAttributeStructQTy in CGOpenMPRuntime.cpp 1529 struct KernDescValType { 1530 uint16_t Version; 1531 uint16_t TSize; 1532 uint16_t WG_Size; 1533 uint8_t Mode; 1534 }; 1535 struct KernDescValType KernDescVal; 1536 std::string KernDescNameStr(e->name); 1537 KernDescNameStr += "_kern_desc"; 1538 const char *KernDescName = KernDescNameStr.c_str(); 1539 1540 void *KernDescPtr; 1541 uint32_t KernDescSize; 1542 void *CallStackAddr = nullptr; 1543 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1544 KernDescName, &KernDescPtr, &KernDescSize); 1545 1546 if (err == HSA_STATUS_SUCCESS) { 1547 if ((size_t)KernDescSize != sizeof(KernDescVal)) 1548 DP("Loading global computation properties '%s' - size mismatch (%u != " 1549 "%lu)\n", 1550 KernDescName, KernDescSize, sizeof(KernDescVal)); 1551 1552 memcpy(&KernDescVal, KernDescPtr, (size_t)KernDescSize); 1553 1554 // Check structure size against recorded size. 1555 if ((size_t)KernDescSize != KernDescVal.TSize) 1556 DP("KernDescVal size %lu does not match advertized size %d for '%s'\n", 1557 sizeof(KernDescVal), KernDescVal.TSize, KernDescName); 1558 1559 DP("After loading global for %s KernDesc \n", KernDescName); 1560 DP("KernDesc: Version: %d\n", KernDescVal.Version); 1561 DP("KernDesc: TSize: %d\n", KernDescVal.TSize); 1562 DP("KernDesc: WG_Size: %d\n", KernDescVal.WG_Size); 1563 DP("KernDesc: Mode: %d\n", KernDescVal.Mode); 1564 1565 // Get ExecMode 1566 ExecModeVal = KernDescVal.Mode; 1567 DP("ExecModeVal %d\n", ExecModeVal); 1568 if (KernDescVal.WG_Size == 0) { 1569 KernDescVal.WG_Size = RTLDeviceInfoTy::Default_WG_Size; 1570 DP("Setting KernDescVal.WG_Size to default %d\n", KernDescVal.WG_Size); 1571 } 1572 WGSizeVal = KernDescVal.WG_Size; 1573 DP("WGSizeVal %d\n", WGSizeVal); 1574 check("Loading KernDesc computation property", err); 1575 } else { 1576 DP("Warning: Loading KernDesc '%s' - symbol not found, ", KernDescName); 1577 1578 // Generic 1579 std::string ExecModeNameStr(e->name); 1580 ExecModeNameStr += "_exec_mode"; 1581 const char *ExecModeName = ExecModeNameStr.c_str(); 1582 1583 void *ExecModePtr; 1584 uint32_t varsize; 1585 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1586 ExecModeName, &ExecModePtr, &varsize); 1587 1588 if (err == HSA_STATUS_SUCCESS) { 1589 if ((size_t)varsize != sizeof(int8_t)) { 1590 DP("Loading global computation properties '%s' - size mismatch(%u != " 1591 "%lu)\n", 1592 ExecModeName, varsize, sizeof(int8_t)); 1593 return NULL; 1594 } 1595 1596 memcpy(&ExecModeVal, ExecModePtr, (size_t)varsize); 1597 1598 DP("After loading global for %s ExecMode = %d\n", ExecModeName, 1599 ExecModeVal); 1600 1601 if (ExecModeVal < 0 || ExecModeVal > 1) { 1602 DP("Error wrong exec_mode value specified in HSA code object file: " 1603 "%d\n", 1604 ExecModeVal); 1605 return NULL; 1606 } 1607 } else { 1608 DP("Loading global exec_mode '%s' - symbol missing, using default " 1609 "value " 1610 "GENERIC (1)\n", 1611 ExecModeName); 1612 } 1613 check("Loading computation property", err); 1614 1615 // Flat group size 1616 std::string WGSizeNameStr(e->name); 1617 WGSizeNameStr += "_wg_size"; 1618 const char *WGSizeName = WGSizeNameStr.c_str(); 1619 1620 void *WGSizePtr; 1621 uint32_t WGSize; 1622 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1623 WGSizeName, &WGSizePtr, &WGSize); 1624 1625 if (err == HSA_STATUS_SUCCESS) { 1626 if ((size_t)WGSize != sizeof(int16_t)) { 1627 DP("Loading global computation properties '%s' - size mismatch (%u " 1628 "!= " 1629 "%lu)\n", 1630 WGSizeName, WGSize, sizeof(int16_t)); 1631 return NULL; 1632 } 1633 1634 memcpy(&WGSizeVal, WGSizePtr, (size_t)WGSize); 1635 1636 DP("After loading global for %s WGSize = %d\n", WGSizeName, WGSizeVal); 1637 1638 if (WGSizeVal < RTLDeviceInfoTy::Default_WG_Size || 1639 WGSizeVal > RTLDeviceInfoTy::Max_WG_Size) { 1640 DP("Error wrong WGSize value specified in HSA code object file: " 1641 "%d\n", 1642 WGSizeVal); 1643 WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1644 } 1645 } else { 1646 DP("Warning: Loading WGSize '%s' - symbol not found, " 1647 "using default value %d\n", 1648 WGSizeName, WGSizeVal); 1649 } 1650 1651 check("Loading WGSize computation property", err); 1652 } 1653 1654 KernelsList.push_back(KernelTy(ExecModeVal, WGSizeVal, device_id, 1655 CallStackAddr, e->name, kernarg_segment_size, 1656 DeviceInfo.KernArgPool)); 1657 __tgt_offload_entry entry = *e; 1658 entry.addr = (void *)&KernelsList.back(); 1659 DeviceInfo.addOffloadEntry(device_id, entry); 1660 DP("Entry point %ld maps to %s\n", e - HostBegin, e->name); 1661 } 1662 1663 return DeviceInfo.getOffloadEntriesTable(device_id); 1664 } 1665 1666 void *__tgt_rtl_data_alloc(int device_id, int64_t size, void *, int32_t kind) { 1667 void *ptr = NULL; 1668 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1669 1670 if (kind != TARGET_ALLOC_DEFAULT) { 1671 REPORT("Invalid target data allocation kind or requested allocator not " 1672 "implemented yet\n"); 1673 return NULL; 1674 } 1675 1676 hsa_status_t err = core::Runtime::DeviceMalloc(&ptr, size, device_id); 1677 DP("Tgt alloc data %ld bytes, (tgt:%016llx).\n", size, 1678 (long long unsigned)(Elf64_Addr)ptr); 1679 ptr = (err == HSA_STATUS_SUCCESS) ? ptr : NULL; 1680 return ptr; 1681 } 1682 1683 int32_t __tgt_rtl_data_submit(int device_id, void *tgt_ptr, void *hst_ptr, 1684 int64_t size) { 1685 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1686 __tgt_async_info AsyncInfo; 1687 int32_t rc = dataSubmit(device_id, tgt_ptr, hst_ptr, size, &AsyncInfo); 1688 if (rc != OFFLOAD_SUCCESS) 1689 return OFFLOAD_FAIL; 1690 1691 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1692 } 1693 1694 int32_t __tgt_rtl_data_submit_async(int device_id, void *tgt_ptr, void *hst_ptr, 1695 int64_t size, __tgt_async_info *AsyncInfo) { 1696 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1697 if (AsyncInfo) { 1698 initAsyncInfo(AsyncInfo); 1699 return dataSubmit(device_id, tgt_ptr, hst_ptr, size, AsyncInfo); 1700 } else { 1701 return __tgt_rtl_data_submit(device_id, tgt_ptr, hst_ptr, size); 1702 } 1703 } 1704 1705 int32_t __tgt_rtl_data_retrieve(int device_id, void *hst_ptr, void *tgt_ptr, 1706 int64_t size) { 1707 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1708 __tgt_async_info AsyncInfo; 1709 int32_t rc = dataRetrieve(device_id, hst_ptr, tgt_ptr, size, &AsyncInfo); 1710 if (rc != OFFLOAD_SUCCESS) 1711 return OFFLOAD_FAIL; 1712 1713 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1714 } 1715 1716 int32_t __tgt_rtl_data_retrieve_async(int device_id, void *hst_ptr, 1717 void *tgt_ptr, int64_t size, 1718 __tgt_async_info *AsyncInfo) { 1719 assert(AsyncInfo && "AsyncInfo is nullptr"); 1720 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1721 initAsyncInfo(AsyncInfo); 1722 return dataRetrieve(device_id, hst_ptr, tgt_ptr, size, AsyncInfo); 1723 } 1724 1725 int32_t __tgt_rtl_data_delete(int device_id, void *tgt_ptr) { 1726 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1727 hsa_status_t err; 1728 DP("Tgt free data (tgt:%016llx).\n", (long long unsigned)(Elf64_Addr)tgt_ptr); 1729 err = core::Runtime::Memfree(tgt_ptr); 1730 if (err != HSA_STATUS_SUCCESS) { 1731 DP("Error when freeing CUDA memory\n"); 1732 return OFFLOAD_FAIL; 1733 } 1734 return OFFLOAD_SUCCESS; 1735 } 1736 1737 // Determine launch values for threadsPerGroup and num_groups. 1738 // Outputs: treadsPerGroup, num_groups 1739 // Inputs: Max_Teams, Max_WG_Size, Warp_Size, ExecutionMode, 1740 // EnvTeamLimit, EnvNumTeams, num_teams, thread_limit, 1741 // loop_tripcount. 1742 void getLaunchVals(int &threadsPerGroup, int &num_groups, int ConstWGSize, 1743 int ExecutionMode, int EnvTeamLimit, int EnvNumTeams, 1744 int num_teams, int thread_limit, uint64_t loop_tripcount, 1745 int32_t device_id) { 1746 1747 int Max_Teams = DeviceInfo.EnvMaxTeamsDefault > 0 1748 ? DeviceInfo.EnvMaxTeamsDefault 1749 : DeviceInfo.NumTeams[device_id]; 1750 if (Max_Teams > DeviceInfo.HardTeamLimit) 1751 Max_Teams = DeviceInfo.HardTeamLimit; 1752 1753 if (print_kernel_trace & STARTUP_DETAILS) { 1754 fprintf(stderr, "RTLDeviceInfoTy::Max_Teams: %d\n", 1755 RTLDeviceInfoTy::Max_Teams); 1756 fprintf(stderr, "Max_Teams: %d\n", Max_Teams); 1757 fprintf(stderr, "RTLDeviceInfoTy::Warp_Size: %d\n", 1758 RTLDeviceInfoTy::Warp_Size); 1759 fprintf(stderr, "RTLDeviceInfoTy::Max_WG_Size: %d\n", 1760 RTLDeviceInfoTy::Max_WG_Size); 1761 fprintf(stderr, "RTLDeviceInfoTy::Default_WG_Size: %d\n", 1762 RTLDeviceInfoTy::Default_WG_Size); 1763 fprintf(stderr, "thread_limit: %d\n", thread_limit); 1764 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1765 fprintf(stderr, "ConstWGSize: %d\n", ConstWGSize); 1766 } 1767 // check for thread_limit() clause 1768 if (thread_limit > 0) { 1769 threadsPerGroup = thread_limit; 1770 DP("Setting threads per block to requested %d\n", thread_limit); 1771 if (ExecutionMode == GENERIC) { // Add master warp for GENERIC 1772 threadsPerGroup += RTLDeviceInfoTy::Warp_Size; 1773 DP("Adding master wavefront: +%d threads\n", RTLDeviceInfoTy::Warp_Size); 1774 } 1775 if (threadsPerGroup > RTLDeviceInfoTy::Max_WG_Size) { // limit to max 1776 threadsPerGroup = RTLDeviceInfoTy::Max_WG_Size; 1777 DP("Setting threads per block to maximum %d\n", threadsPerGroup); 1778 } 1779 } 1780 // check flat_max_work_group_size attr here 1781 if (threadsPerGroup > ConstWGSize) { 1782 threadsPerGroup = ConstWGSize; 1783 DP("Reduced threadsPerGroup to flat-attr-group-size limit %d\n", 1784 threadsPerGroup); 1785 } 1786 if (print_kernel_trace & STARTUP_DETAILS) 1787 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1788 DP("Preparing %d threads\n", threadsPerGroup); 1789 1790 // Set default num_groups (teams) 1791 if (DeviceInfo.EnvTeamLimit > 0) 1792 num_groups = (Max_Teams < DeviceInfo.EnvTeamLimit) 1793 ? Max_Teams 1794 : DeviceInfo.EnvTeamLimit; 1795 else 1796 num_groups = Max_Teams; 1797 DP("Set default num of groups %d\n", num_groups); 1798 1799 if (print_kernel_trace & STARTUP_DETAILS) { 1800 fprintf(stderr, "num_groups: %d\n", num_groups); 1801 fprintf(stderr, "num_teams: %d\n", num_teams); 1802 } 1803 1804 // Reduce num_groups if threadsPerGroup exceeds RTLDeviceInfoTy::Max_WG_Size 1805 // This reduction is typical for default case (no thread_limit clause). 1806 // or when user goes crazy with num_teams clause. 1807 // FIXME: We cant distinguish between a constant or variable thread limit. 1808 // So we only handle constant thread_limits. 1809 if (threadsPerGroup > 1810 RTLDeviceInfoTy::Default_WG_Size) // 256 < threadsPerGroup <= 1024 1811 // Should we round threadsPerGroup up to nearest RTLDeviceInfoTy::Warp_Size 1812 // here? 1813 num_groups = (Max_Teams * RTLDeviceInfoTy::Max_WG_Size) / threadsPerGroup; 1814 1815 // check for num_teams() clause 1816 if (num_teams > 0) { 1817 num_groups = (num_teams < num_groups) ? num_teams : num_groups; 1818 } 1819 if (print_kernel_trace & STARTUP_DETAILS) { 1820 fprintf(stderr, "num_groups: %d\n", num_groups); 1821 fprintf(stderr, "DeviceInfo.EnvNumTeams %d\n", DeviceInfo.EnvNumTeams); 1822 fprintf(stderr, "DeviceInfo.EnvTeamLimit %d\n", DeviceInfo.EnvTeamLimit); 1823 } 1824 1825 if (DeviceInfo.EnvNumTeams > 0) { 1826 num_groups = (DeviceInfo.EnvNumTeams < num_groups) ? DeviceInfo.EnvNumTeams 1827 : num_groups; 1828 DP("Modifying teams based on EnvNumTeams %d\n", DeviceInfo.EnvNumTeams); 1829 } else if (DeviceInfo.EnvTeamLimit > 0) { 1830 num_groups = (DeviceInfo.EnvTeamLimit < num_groups) 1831 ? DeviceInfo.EnvTeamLimit 1832 : num_groups; 1833 DP("Modifying teams based on EnvTeamLimit%d\n", DeviceInfo.EnvTeamLimit); 1834 } else { 1835 if (num_teams <= 0) { 1836 if (loop_tripcount > 0) { 1837 if (ExecutionMode == SPMD) { 1838 // round up to the nearest integer 1839 num_groups = ((loop_tripcount - 1) / threadsPerGroup) + 1; 1840 } else { 1841 num_groups = loop_tripcount; 1842 } 1843 DP("Using %d teams due to loop trip count %" PRIu64 " and number of " 1844 "threads per block %d\n", 1845 num_groups, loop_tripcount, threadsPerGroup); 1846 } 1847 } else { 1848 num_groups = num_teams; 1849 } 1850 if (num_groups > Max_Teams) { 1851 num_groups = Max_Teams; 1852 if (print_kernel_trace & STARTUP_DETAILS) 1853 fprintf(stderr, "Limiting num_groups %d to Max_Teams %d \n", num_groups, 1854 Max_Teams); 1855 } 1856 if (num_groups > num_teams && num_teams > 0) { 1857 num_groups = num_teams; 1858 if (print_kernel_trace & STARTUP_DETAILS) 1859 fprintf(stderr, "Limiting num_groups %d to clause num_teams %d \n", 1860 num_groups, num_teams); 1861 } 1862 } 1863 1864 // num_teams clause always honored, no matter what, unless DEFAULT is active. 1865 if (num_teams > 0) { 1866 num_groups = num_teams; 1867 // Cap num_groups to EnvMaxTeamsDefault if set. 1868 if (DeviceInfo.EnvMaxTeamsDefault > 0 && 1869 num_groups > DeviceInfo.EnvMaxTeamsDefault) 1870 num_groups = DeviceInfo.EnvMaxTeamsDefault; 1871 } 1872 if (print_kernel_trace & STARTUP_DETAILS) { 1873 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1874 fprintf(stderr, "num_groups: %d\n", num_groups); 1875 fprintf(stderr, "loop_tripcount: %ld\n", loop_tripcount); 1876 } 1877 DP("Final %d num_groups and %d threadsPerGroup\n", num_groups, 1878 threadsPerGroup); 1879 } 1880 1881 static uint64_t acquire_available_packet_id(hsa_queue_t *queue) { 1882 uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1); 1883 bool full = true; 1884 while (full) { 1885 full = 1886 packet_id >= (queue->size + hsa_queue_load_read_index_scacquire(queue)); 1887 } 1888 return packet_id; 1889 } 1890 1891 static int32_t __tgt_rtl_run_target_team_region_locked( 1892 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 1893 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 1894 int32_t thread_limit, uint64_t loop_tripcount); 1895 1896 int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr, 1897 void **tgt_args, 1898 ptrdiff_t *tgt_offsets, 1899 int32_t arg_num, int32_t num_teams, 1900 int32_t thread_limit, 1901 uint64_t loop_tripcount) { 1902 1903 DeviceInfo.load_run_lock.lock_shared(); 1904 int32_t res = __tgt_rtl_run_target_team_region_locked( 1905 device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, num_teams, 1906 thread_limit, loop_tripcount); 1907 1908 DeviceInfo.load_run_lock.unlock_shared(); 1909 return res; 1910 } 1911 1912 int32_t __tgt_rtl_run_target_team_region_locked( 1913 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 1914 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 1915 int32_t thread_limit, uint64_t loop_tripcount) { 1916 // Set the context we are using 1917 // update thread limit content in gpu memory if un-initialized or specified 1918 // from host 1919 1920 DP("Run target team region thread_limit %d\n", thread_limit); 1921 1922 // All args are references. 1923 std::vector<void *> args(arg_num); 1924 std::vector<void *> ptrs(arg_num); 1925 1926 DP("Arg_num: %d\n", arg_num); 1927 for (int32_t i = 0; i < arg_num; ++i) { 1928 ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]); 1929 args[i] = &ptrs[i]; 1930 DP("Offseted base: arg[%d]:" DPxMOD "\n", i, DPxPTR(ptrs[i])); 1931 } 1932 1933 KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr; 1934 1935 std::string kernel_name = std::string(KernelInfo->Name); 1936 auto &KernelInfoTable = DeviceInfo.KernelInfoTable; 1937 if (KernelInfoTable[device_id].find(kernel_name) == 1938 KernelInfoTable[device_id].end()) { 1939 DP("Kernel %s not found\n", kernel_name.c_str()); 1940 return OFFLOAD_FAIL; 1941 } 1942 1943 const atl_kernel_info_t KernelInfoEntry = 1944 KernelInfoTable[device_id][kernel_name]; 1945 const uint32_t group_segment_size = KernelInfoEntry.group_segment_size; 1946 const uint32_t sgpr_count = KernelInfoEntry.sgpr_count; 1947 const uint32_t vgpr_count = KernelInfoEntry.vgpr_count; 1948 const uint32_t sgpr_spill_count = KernelInfoEntry.sgpr_spill_count; 1949 const uint32_t vgpr_spill_count = KernelInfoEntry.vgpr_spill_count; 1950 1951 assert(arg_num == (int)KernelInfoEntry.num_args); 1952 1953 /* 1954 * Set limit based on ThreadsPerGroup and GroupsPerDevice 1955 */ 1956 int num_groups = 0; 1957 1958 int threadsPerGroup = RTLDeviceInfoTy::Default_WG_Size; 1959 1960 getLaunchVals(threadsPerGroup, num_groups, KernelInfo->ConstWGSize, 1961 KernelInfo->ExecutionMode, DeviceInfo.EnvTeamLimit, 1962 DeviceInfo.EnvNumTeams, 1963 num_teams, // From run_region arg 1964 thread_limit, // From run_region arg 1965 loop_tripcount, // From run_region arg 1966 KernelInfo->device_id); 1967 1968 if (print_kernel_trace >= LAUNCH) { 1969 // enum modes are SPMD, GENERIC, NONE 0,1,2 1970 // if doing rtl timing, print to stderr, unless stdout requested. 1971 bool traceToStdout = print_kernel_trace & (RTL_TO_STDOUT | RTL_TIMING); 1972 fprintf(traceToStdout ? stdout : stderr, 1973 "DEVID:%2d SGN:%1d ConstWGSize:%-4d args:%2d teamsXthrds:(%4dX%4d) " 1974 "reqd:(%4dX%4d) lds_usage:%uB sgpr_count:%u vgpr_count:%u " 1975 "sgpr_spill_count:%u vgpr_spill_count:%u tripcount:%lu n:%s\n", 1976 device_id, KernelInfo->ExecutionMode, KernelInfo->ConstWGSize, 1977 arg_num, num_groups, threadsPerGroup, num_teams, thread_limit, 1978 group_segment_size, sgpr_count, vgpr_count, sgpr_spill_count, 1979 vgpr_spill_count, loop_tripcount, KernelInfo->Name); 1980 } 1981 1982 // Run on the device. 1983 { 1984 hsa_queue_t *queue = DeviceInfo.HSAQueues[device_id]; 1985 if (!queue) { 1986 return OFFLOAD_FAIL; 1987 } 1988 uint64_t packet_id = acquire_available_packet_id(queue); 1989 1990 const uint32_t mask = queue->size - 1; // size is a power of 2 1991 hsa_kernel_dispatch_packet_t *packet = 1992 (hsa_kernel_dispatch_packet_t *)queue->base_address + 1993 (packet_id & mask); 1994 1995 // packet->header is written last 1996 packet->setup = UINT16_C(1) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS; 1997 packet->workgroup_size_x = threadsPerGroup; 1998 packet->workgroup_size_y = 1; 1999 packet->workgroup_size_z = 1; 2000 packet->reserved0 = 0; 2001 packet->grid_size_x = num_groups * threadsPerGroup; 2002 packet->grid_size_y = 1; 2003 packet->grid_size_z = 1; 2004 packet->private_segment_size = KernelInfoEntry.private_segment_size; 2005 packet->group_segment_size = KernelInfoEntry.group_segment_size; 2006 packet->kernel_object = KernelInfoEntry.kernel_object; 2007 packet->kernarg_address = 0; // use the block allocator 2008 packet->reserved2 = 0; // atmi writes id_ here 2009 packet->completion_signal = {0}; // may want a pool of signals 2010 2011 KernelArgPool *ArgPool = nullptr; 2012 { 2013 auto it = KernelArgPoolMap.find(std::string(KernelInfo->Name)); 2014 if (it != KernelArgPoolMap.end()) { 2015 ArgPool = (it->second).get(); 2016 } 2017 } 2018 if (!ArgPool) { 2019 DP("Warning: No ArgPool for %s on device %d\n", KernelInfo->Name, 2020 device_id); 2021 } 2022 { 2023 void *kernarg = nullptr; 2024 if (ArgPool) { 2025 assert(ArgPool->kernarg_segment_size == (arg_num * sizeof(void *))); 2026 kernarg = ArgPool->allocate(arg_num); 2027 } 2028 if (!kernarg) { 2029 DP("Allocate kernarg failed\n"); 2030 return OFFLOAD_FAIL; 2031 } 2032 2033 // Copy explicit arguments 2034 for (int i = 0; i < arg_num; i++) { 2035 memcpy((char *)kernarg + sizeof(void *) * i, args[i], sizeof(void *)); 2036 } 2037 2038 // Initialize implicit arguments. ATMI seems to leave most fields 2039 // uninitialized 2040 atmi_implicit_args_t *impl_args = 2041 reinterpret_cast<atmi_implicit_args_t *>( 2042 static_cast<char *>(kernarg) + ArgPool->kernarg_segment_size); 2043 memset(impl_args, 0, 2044 sizeof(atmi_implicit_args_t)); // may not be necessary 2045 impl_args->offset_x = 0; 2046 impl_args->offset_y = 0; 2047 impl_args->offset_z = 0; 2048 2049 // assign a hostcall buffer for the selected Q 2050 if (__atomic_load_n(&DeviceInfo.hostcall_required, __ATOMIC_ACQUIRE)) { 2051 // hostrpc_assign_buffer is not thread safe, and this function is 2052 // under a multiple reader lock, not a writer lock. 2053 static pthread_mutex_t hostcall_init_lock = PTHREAD_MUTEX_INITIALIZER; 2054 pthread_mutex_lock(&hostcall_init_lock); 2055 impl_args->hostcall_ptr = hostrpc_assign_buffer( 2056 DeviceInfo.HSAAgents[device_id], queue, device_id); 2057 pthread_mutex_unlock(&hostcall_init_lock); 2058 if (!impl_args->hostcall_ptr) { 2059 DP("hostrpc_assign_buffer failed, gpu would dereference null and " 2060 "error\n"); 2061 return OFFLOAD_FAIL; 2062 } 2063 } 2064 2065 packet->kernarg_address = kernarg; 2066 } 2067 2068 { 2069 hsa_signal_t s = DeviceInfo.FreeSignalPool.pop(); 2070 if (s.handle == 0) { 2071 DP("Failed to get signal instance\n"); 2072 return OFFLOAD_FAIL; 2073 } 2074 packet->completion_signal = s; 2075 hsa_signal_store_relaxed(packet->completion_signal, 1); 2076 } 2077 2078 core::packet_store_release(reinterpret_cast<uint32_t *>(packet), 2079 core::create_header(), packet->setup); 2080 2081 hsa_signal_store_relaxed(queue->doorbell_signal, packet_id); 2082 2083 while (hsa_signal_wait_scacquire(packet->completion_signal, 2084 HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX, 2085 HSA_WAIT_STATE_BLOCKED) != 0) 2086 ; 2087 2088 assert(ArgPool); 2089 ArgPool->deallocate(packet->kernarg_address); 2090 DeviceInfo.FreeSignalPool.push(packet->completion_signal); 2091 } 2092 2093 DP("Kernel completed\n"); 2094 return OFFLOAD_SUCCESS; 2095 } 2096 2097 int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr, 2098 void **tgt_args, ptrdiff_t *tgt_offsets, 2099 int32_t arg_num) { 2100 // use one team and one thread 2101 // fix thread num 2102 int32_t team_num = 1; 2103 int32_t thread_limit = 0; // use default 2104 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 2105 tgt_offsets, arg_num, team_num, 2106 thread_limit, 0); 2107 } 2108 2109 int32_t __tgt_rtl_run_target_region_async(int32_t device_id, 2110 void *tgt_entry_ptr, void **tgt_args, 2111 ptrdiff_t *tgt_offsets, 2112 int32_t arg_num, 2113 __tgt_async_info *AsyncInfo) { 2114 assert(AsyncInfo && "AsyncInfo is nullptr"); 2115 initAsyncInfo(AsyncInfo); 2116 2117 // use one team and one thread 2118 // fix thread num 2119 int32_t team_num = 1; 2120 int32_t thread_limit = 0; // use default 2121 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 2122 tgt_offsets, arg_num, team_num, 2123 thread_limit, 0); 2124 } 2125 2126 int32_t __tgt_rtl_synchronize(int32_t device_id, __tgt_async_info *AsyncInfo) { 2127 assert(AsyncInfo && "AsyncInfo is nullptr"); 2128 2129 // Cuda asserts that AsyncInfo->Queue is non-null, but this invariant 2130 // is not ensured by devices.cpp for amdgcn 2131 // assert(AsyncInfo->Queue && "AsyncInfo->Queue is nullptr"); 2132 if (AsyncInfo->Queue) { 2133 finiAsyncInfo(AsyncInfo); 2134 } 2135 return OFFLOAD_SUCCESS; 2136 } 2137 2138 namespace core { 2139 hsa_status_t allow_access_to_all_gpu_agents(void *ptr) { 2140 return hsa_amd_agents_allow_access(DeviceInfo.HSAAgents.size(), 2141 &DeviceInfo.HSAAgents[0], NULL, ptr); 2142 } 2143 2144 } // namespace core