1 //===--- amdgpu/src/rtl.cpp --------------------------------------- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // RTL for hsa machine
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include <algorithm>
14 #include <assert.h>
15 #include <cstdio>
16 #include <cstdlib>
17 #include <cstring>
18 #include <functional>
19 #include <libelf.h>
20 #include <list>
21 #include <memory>
22 #include <mutex>
23 #include <shared_mutex>
24 #include <unordered_map>
25 #include <vector>
26 
27 #include "interop_hsa.h"
28 #include "impl_runtime.h"
29 
30 #include "internal.h"
31 #include "rt.h"
32 
33 #include "get_elf_mach_gfx_name.h"
34 #include "omptargetplugin.h"
35 #include "print_tracing.h"
36 
37 #include "llvm/Frontend/OpenMP/OMPGridValues.h"
38 
39 
40 // hostrpc interface, FIXME: consider moving to its own include these are
41 // statically linked into amdgpu/plugin if present from hostrpc_services.a,
42 // linked as --whole-archive to override the weak symbols that are used to
43 // implement a fallback for toolchains that do not yet have a hostrpc library.
44 extern "C" {
45 unsigned long hostrpc_assign_buffer(hsa_agent_t agent, hsa_queue_t *this_Q,
46                                     uint32_t device_id);
47 hsa_status_t hostrpc_init();
48 hsa_status_t hostrpc_terminate();
49 
50 __attribute__((weak)) hsa_status_t hostrpc_init() { return HSA_STATUS_SUCCESS; }
51 __attribute__((weak)) hsa_status_t hostrpc_terminate() {
52   return HSA_STATUS_SUCCESS;
53 }
54 __attribute__((weak)) unsigned long
55 hostrpc_assign_buffer(hsa_agent_t, hsa_queue_t *, uint32_t device_id) {
56   DP("Warning: Attempting to assign hostrpc to device %u, but hostrpc library "
57      "missing\n",
58      device_id);
59   return 0;
60 }
61 }
62 
63 // Heuristic parameters used for kernel launch
64 // Number of teams per CU to allow scheduling flexibility
65 static const unsigned DefaultTeamsPerCU = 4;
66 
67 int print_kernel_trace;
68 
69 #ifdef OMPTARGET_DEBUG
70 #define check(msg, status)                                                     \
71   if (status != HSA_STATUS_SUCCESS) {                                          \
72     DP(#msg " failed\n");                                                      \
73   } else {                                                                     \
74     DP(#msg " succeeded\n");                                                   \
75   }
76 #else
77 #define check(msg, status)                                                     \
78   {}
79 #endif
80 
81 #include "elf_common.h"
82 
83 namespace hsa {
84 template <typename C> hsa_status_t iterate_agents(C cb) {
85   auto L = [](hsa_agent_t agent, void *data) -> hsa_status_t {
86     C *unwrapped = static_cast<C *>(data);
87     return (*unwrapped)(agent);
88   };
89   return hsa_iterate_agents(L, static_cast<void *>(&cb));
90 }
91 
92 template <typename C>
93 hsa_status_t amd_agent_iterate_memory_pools(hsa_agent_t Agent, C cb) {
94   auto L = [](hsa_amd_memory_pool_t MemoryPool, void *data) -> hsa_status_t {
95     C *unwrapped = static_cast<C *>(data);
96     return (*unwrapped)(MemoryPool);
97   };
98 
99   return hsa_amd_agent_iterate_memory_pools(Agent, L, static_cast<void *>(&cb));
100 }
101 
102 } // namespace hsa
103 
104 /// Keep entries table per device
105 struct FuncOrGblEntryTy {
106   __tgt_target_table Table;
107   std::vector<__tgt_offload_entry> Entries;
108 };
109 
110 enum ExecutionModeType {
111   SPMD,         // constructors, destructors,
112                 // combined constructs (`teams distribute parallel for [simd]`)
113   GENERIC,      // everything else
114   SPMD_GENERIC, // Generic kernel with SPMD execution
115   NONE
116 };
117 
118 struct KernelArgPool {
119 private:
120   static pthread_mutex_t mutex;
121 
122 public:
123   uint32_t kernarg_segment_size;
124   void *kernarg_region = nullptr;
125   std::queue<int> free_kernarg_segments;
126 
127   uint32_t kernarg_size_including_implicit() {
128     return kernarg_segment_size + sizeof(impl_implicit_args_t);
129   }
130 
131   ~KernelArgPool() {
132     if (kernarg_region) {
133       auto r = hsa_amd_memory_pool_free(kernarg_region);
134       if (r != HSA_STATUS_SUCCESS) {
135         DP("hsa_amd_memory_pool_free failed: %s\n", get_error_string(r));
136       }
137     }
138   }
139 
140   // Can't really copy or move a mutex
141   KernelArgPool() = default;
142   KernelArgPool(const KernelArgPool &) = delete;
143   KernelArgPool(KernelArgPool &&) = delete;
144 
145   KernelArgPool(uint32_t kernarg_segment_size,
146                 hsa_amd_memory_pool_t &memory_pool)
147       : kernarg_segment_size(kernarg_segment_size) {
148 
149     // impl uses one pool per kernel for all gpus, with a fixed upper size
150     // preserving that exact scheme here, including the queue<int>
151 
152     hsa_status_t err = hsa_amd_memory_pool_allocate(
153         memory_pool, kernarg_size_including_implicit() * MAX_NUM_KERNELS, 0,
154         &kernarg_region);
155 
156     if (err != HSA_STATUS_SUCCESS) {
157       DP("hsa_amd_memory_pool_allocate failed: %s\n", get_error_string(err));
158       kernarg_region = nullptr; // paranoid
159       return;
160     }
161 
162     err = core::allow_access_to_all_gpu_agents(kernarg_region);
163     if (err != HSA_STATUS_SUCCESS) {
164       DP("hsa allow_access_to_all_gpu_agents failed: %s\n",
165          get_error_string(err));
166       auto r = hsa_amd_memory_pool_free(kernarg_region);
167       if (r != HSA_STATUS_SUCCESS) {
168         // if free failed, can't do anything more to resolve it
169         DP("hsa memory poll free failed: %s\n", get_error_string(err));
170       }
171       kernarg_region = nullptr;
172       return;
173     }
174 
175     for (int i = 0; i < MAX_NUM_KERNELS; i++) {
176       free_kernarg_segments.push(i);
177     }
178   }
179 
180   void *allocate(uint64_t arg_num) {
181     assert((arg_num * sizeof(void *)) == kernarg_segment_size);
182     lock l(&mutex);
183     void *res = nullptr;
184     if (!free_kernarg_segments.empty()) {
185 
186       int free_idx = free_kernarg_segments.front();
187       res = static_cast<void *>(static_cast<char *>(kernarg_region) +
188                                 (free_idx * kernarg_size_including_implicit()));
189       assert(free_idx == pointer_to_index(res));
190       free_kernarg_segments.pop();
191     }
192     return res;
193   }
194 
195   void deallocate(void *ptr) {
196     lock l(&mutex);
197     int idx = pointer_to_index(ptr);
198     free_kernarg_segments.push(idx);
199   }
200 
201 private:
202   int pointer_to_index(void *ptr) {
203     ptrdiff_t bytes =
204         static_cast<char *>(ptr) - static_cast<char *>(kernarg_region);
205     assert(bytes >= 0);
206     assert(bytes % kernarg_size_including_implicit() == 0);
207     return bytes / kernarg_size_including_implicit();
208   }
209   struct lock {
210     lock(pthread_mutex_t *m) : m(m) { pthread_mutex_lock(m); }
211     ~lock() { pthread_mutex_unlock(m); }
212     pthread_mutex_t *m;
213   };
214 };
215 pthread_mutex_t KernelArgPool::mutex = PTHREAD_MUTEX_INITIALIZER;
216 
217 std::unordered_map<std::string /*kernel*/, std::unique_ptr<KernelArgPool>>
218     KernelArgPoolMap;
219 
220 /// Use a single entity to encode a kernel and a set of flags
221 struct KernelTy {
222   // execution mode of kernel
223   // 0 - SPMD mode (without master warp)
224   // 1 - Generic mode (with master warp)
225   // 2 - SPMD mode execution with Generic mode semantics.
226   int8_t ExecutionMode;
227   int16_t ConstWGSize;
228   int32_t device_id;
229   void *CallStackAddr = nullptr;
230   const char *Name;
231 
232   KernelTy(int8_t _ExecutionMode, int16_t _ConstWGSize, int32_t _device_id,
233            void *_CallStackAddr, const char *_Name,
234            uint32_t _kernarg_segment_size,
235            hsa_amd_memory_pool_t &KernArgMemoryPool)
236       : ExecutionMode(_ExecutionMode), ConstWGSize(_ConstWGSize),
237         device_id(_device_id), CallStackAddr(_CallStackAddr), Name(_Name) {
238     DP("Construct kernelinfo: ExecMode %d\n", ExecutionMode);
239 
240     std::string N(_Name);
241     if (KernelArgPoolMap.find(N) == KernelArgPoolMap.end()) {
242       KernelArgPoolMap.insert(
243           std::make_pair(N, std::unique_ptr<KernelArgPool>(new KernelArgPool(
244                                 _kernarg_segment_size, KernArgMemoryPool))));
245     }
246   }
247 };
248 
249 /// List that contains all the kernels.
250 /// FIXME: we may need this to be per device and per library.
251 std::list<KernelTy> KernelsList;
252 
253 template <typename Callback> static hsa_status_t FindAgents(Callback CB) {
254 
255   hsa_status_t err =
256       hsa::iterate_agents([&](hsa_agent_t agent) -> hsa_status_t {
257         hsa_device_type_t device_type;
258         // get_info fails iff HSA runtime not yet initialized
259         hsa_status_t err =
260             hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type);
261 
262         if (err != HSA_STATUS_SUCCESS) {
263           if (print_kernel_trace > 0)
264             DP("rtl.cpp: err %s\n", get_error_string(err));
265 
266           return err;
267         }
268 
269         CB(device_type, agent);
270         return HSA_STATUS_SUCCESS;
271       });
272 
273   // iterate_agents fails iff HSA runtime not yet initialized
274   if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) {
275     DP("rtl.cpp: err %s\n", get_error_string(err));
276   }
277 
278   return err;
279 }
280 
281 static void callbackQueue(hsa_status_t status, hsa_queue_t *source,
282                           void *data) {
283   if (status != HSA_STATUS_SUCCESS) {
284     const char *status_string;
285     if (hsa_status_string(status, &status_string) != HSA_STATUS_SUCCESS) {
286       status_string = "unavailable";
287     }
288     DP("[%s:%d] GPU error in queue %p %d (%s)\n", __FILE__, __LINE__, source,
289        status, status_string);
290     abort();
291   }
292 }
293 
294 namespace core {
295 namespace {
296 void packet_store_release(uint32_t *packet, uint16_t header, uint16_t rest) {
297   __atomic_store_n(packet, header | (rest << 16), __ATOMIC_RELEASE);
298 }
299 
300 uint16_t create_header() {
301   uint16_t header = HSA_PACKET_TYPE_KERNEL_DISPATCH << HSA_PACKET_HEADER_TYPE;
302   header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE;
303   header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE;
304   return header;
305 }
306 
307 hsa_status_t addKernArgPool(hsa_amd_memory_pool_t MemoryPool, void *Data) {
308   std::vector<hsa_amd_memory_pool_t> *Result =
309       static_cast<std::vector<hsa_amd_memory_pool_t> *>(Data);
310   bool AllocAllowed = false;
311   hsa_status_t err = hsa_amd_memory_pool_get_info(
312       MemoryPool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED,
313       &AllocAllowed);
314   if (err != HSA_STATUS_SUCCESS) {
315     DP("Alloc allowed in memory pool check failed: %s\n",
316        get_error_string(err));
317     return err;
318   }
319 
320   if (!AllocAllowed) {
321     // nothing needs to be done here.
322     return HSA_STATUS_SUCCESS;
323   }
324 
325   uint32_t GlobalFlags = 0;
326   err = hsa_amd_memory_pool_get_info(
327       MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags);
328   if (err != HSA_STATUS_SUCCESS) {
329     DP("Get memory pool info failed: %s\n", get_error_string(err));
330     return err;
331   }
332 
333   size_t size = 0;
334   err = hsa_amd_memory_pool_get_info(MemoryPool, HSA_AMD_MEMORY_POOL_INFO_SIZE,
335                                      &size);
336   if (err != HSA_STATUS_SUCCESS) {
337     DP("Get memory pool size failed: %s\n", get_error_string(err));
338     return err;
339   }
340 
341   if ((GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) &&
342       (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_KERNARG_INIT) &&
343       size > 0) {
344     Result->push_back(MemoryPool);
345   }
346 
347   return HSA_STATUS_SUCCESS;
348 }
349 
350 std::pair<hsa_status_t, bool>
351 isValidMemoryPool(hsa_amd_memory_pool_t MemoryPool) {
352   bool AllocAllowed = false;
353   hsa_status_t Err = hsa_amd_memory_pool_get_info(
354       MemoryPool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED,
355       &AllocAllowed);
356   if (Err != HSA_STATUS_SUCCESS) {
357     DP("Alloc allowed in memory pool check failed: %s\n",
358        get_error_string(Err));
359     return {Err, false};
360   }
361 
362   return {HSA_STATUS_SUCCESS, AllocAllowed};
363 }
364 
365 template <typename AccumulatorFunc>
366 hsa_status_t collectMemoryPools(const std::vector<hsa_agent_t> &Agents,
367                                 AccumulatorFunc Func) {
368   for (int DeviceId = 0; DeviceId < Agents.size(); DeviceId++) {
369     hsa_status_t Err = hsa::amd_agent_iterate_memory_pools(
370         Agents[DeviceId], [&](hsa_amd_memory_pool_t MemoryPool) {
371           hsa_status_t Err;
372           bool Valid = false;
373           std::tie(Err, Valid) = isValidMemoryPool(MemoryPool);
374           if (Err != HSA_STATUS_SUCCESS) {
375             return Err;
376           }
377           if (Valid)
378             Func(MemoryPool, DeviceId);
379           return HSA_STATUS_SUCCESS;
380         });
381 
382     if (Err != HSA_STATUS_SUCCESS) {
383       DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
384          "Iterate all memory pools", get_error_string(Err));
385       return Err;
386     }
387   }
388 
389   return HSA_STATUS_SUCCESS;
390 }
391 
392 std::pair<hsa_status_t, hsa_amd_memory_pool_t>
393 FindKernargPool(const std::vector<hsa_agent_t> &HSAAgents) {
394   std::vector<hsa_amd_memory_pool_t> KernArgPools;
395   for (const auto &Agent : HSAAgents) {
396     hsa_status_t err = HSA_STATUS_SUCCESS;
397     err = hsa_amd_agent_iterate_memory_pools(
398         Agent, addKernArgPool, static_cast<void *>(&KernArgPools));
399     if (err != HSA_STATUS_SUCCESS) {
400       DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
401          "Iterate all memory pools", get_error_string(err));
402       return {err, hsa_amd_memory_pool_t{}};
403     }
404   }
405 
406   if (KernArgPools.empty()) {
407     DP("Unable to find any valid kernarg pool\n");
408     return {HSA_STATUS_ERROR, hsa_amd_memory_pool_t{}};
409   }
410 
411   return {HSA_STATUS_SUCCESS, KernArgPools[0]};
412 }
413 
414 } // namespace
415 } // namespace core
416 
417 struct EnvironmentVariables {
418   int NumTeams;
419   int TeamLimit;
420   int TeamThreadLimit;
421   int MaxTeamsDefault;
422 };
423 
424 template <uint32_t wavesize>
425 static constexpr const llvm::omp::GV &getGridValue() {
426   return llvm::omp::getAMDGPUGridValues<wavesize>();
427 }
428 
429 /// Class containing all the device information
430 class RTLDeviceInfoTy {
431   std::vector<std::list<FuncOrGblEntryTy>> FuncGblEntries;
432   bool HSAInitializeSucceeded = false;
433 
434 public:
435   // load binary populates symbol tables and mutates various global state
436   // run uses those symbol tables
437   std::shared_timed_mutex load_run_lock;
438 
439   int NumberOfDevices = 0;
440 
441   // GPU devices
442   std::vector<hsa_agent_t> HSAAgents;
443   std::vector<hsa_queue_t *> HSAQueues; // one per gpu
444 
445   // CPUs
446   std::vector<hsa_agent_t> CPUAgents;
447 
448   // Device properties
449   std::vector<int> ComputeUnits;
450   std::vector<int> GroupsPerDevice;
451   std::vector<int> ThreadsPerGroup;
452   std::vector<int> WarpSize;
453   std::vector<std::string> GPUName;
454 
455   // OpenMP properties
456   std::vector<int> NumTeams;
457   std::vector<int> NumThreads;
458 
459   // OpenMP Environment properties
460   EnvironmentVariables Env;
461 
462   // OpenMP Requires Flags
463   int64_t RequiresFlags;
464 
465   // Resource pools
466   SignalPoolT FreeSignalPool;
467 
468   bool hostcall_required = false;
469 
470   std::vector<hsa_executable_t> HSAExecutables;
471 
472   std::vector<std::map<std::string, atl_kernel_info_t>> KernelInfoTable;
473   std::vector<std::map<std::string, atl_symbol_info_t>> SymbolInfoTable;
474 
475   hsa_amd_memory_pool_t KernArgPool;
476 
477   // fine grained memory pool for host allocations
478   hsa_amd_memory_pool_t HostFineGrainedMemoryPool;
479 
480   // fine and coarse-grained memory pools per offloading device
481   std::vector<hsa_amd_memory_pool_t> DeviceFineGrainedMemoryPools;
482   std::vector<hsa_amd_memory_pool_t> DeviceCoarseGrainedMemoryPools;
483 
484   struct implFreePtrDeletor {
485     void operator()(void *p) {
486       core::Runtime::Memfree(p); // ignore failure to free
487     }
488   };
489 
490   // device_State shared across loaded binaries, error if inconsistent size
491   std::vector<std::pair<std::unique_ptr<void, implFreePtrDeletor>, uint64_t>>
492       deviceStateStore;
493 
494   static const unsigned HardTeamLimit =
495       (1 << 16) - 1; // 64K needed to fit in uint16
496   static const int DefaultNumTeams = 128;
497 
498   // These need to be per-device since different devices can have different
499   // wave sizes, but are currently the same number for each so that refactor
500   // can be postponed.
501   static_assert(getGridValue<32>().GV_Max_Teams ==
502                     getGridValue<64>().GV_Max_Teams,
503                 "");
504   static const int Max_Teams = getGridValue<64>().GV_Max_Teams;
505 
506   static_assert(getGridValue<32>().GV_Max_WG_Size ==
507                     getGridValue<64>().GV_Max_WG_Size,
508                 "");
509   static const int Max_WG_Size = getGridValue<64>().GV_Max_WG_Size;
510 
511   static_assert(getGridValue<32>().GV_Default_WG_Size ==
512                     getGridValue<64>().GV_Default_WG_Size,
513                 "");
514   static const int Default_WG_Size = getGridValue<64>().GV_Default_WG_Size;
515 
516   using MemcpyFunc = hsa_status_t (*)(hsa_signal_t, void *, const void *,
517                                       size_t size, hsa_agent_t,
518                                       hsa_amd_memory_pool_t);
519   hsa_status_t freesignalpool_memcpy(void *dest, const void *src, size_t size,
520                                      MemcpyFunc Func, int32_t deviceId) {
521     hsa_agent_t agent = HSAAgents[deviceId];
522     hsa_signal_t s = FreeSignalPool.pop();
523     if (s.handle == 0) {
524       return HSA_STATUS_ERROR;
525     }
526     hsa_status_t r = Func(s, dest, src, size, agent, HostFineGrainedMemoryPool);
527     FreeSignalPool.push(s);
528     return r;
529   }
530 
531   hsa_status_t freesignalpool_memcpy_d2h(void *dest, const void *src,
532                                          size_t size, int32_t deviceId) {
533     return freesignalpool_memcpy(dest, src, size, impl_memcpy_d2h, deviceId);
534   }
535 
536   hsa_status_t freesignalpool_memcpy_h2d(void *dest, const void *src,
537                                          size_t size, int32_t deviceId) {
538     return freesignalpool_memcpy(dest, src, size, impl_memcpy_h2d, deviceId);
539   }
540 
541   // Record entry point associated with device
542   void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) {
543     assert(device_id < (int32_t)FuncGblEntries.size() &&
544            "Unexpected device id!");
545     FuncOrGblEntryTy &E = FuncGblEntries[device_id].back();
546 
547     E.Entries.push_back(entry);
548   }
549 
550   // Return true if the entry is associated with device
551   bool findOffloadEntry(int32_t device_id, void *addr) {
552     assert(device_id < (int32_t)FuncGblEntries.size() &&
553            "Unexpected device id!");
554     FuncOrGblEntryTy &E = FuncGblEntries[device_id].back();
555 
556     for (auto &it : E.Entries) {
557       if (it.addr == addr)
558         return true;
559     }
560 
561     return false;
562   }
563 
564   // Return the pointer to the target entries table
565   __tgt_target_table *getOffloadEntriesTable(int32_t device_id) {
566     assert(device_id < (int32_t)FuncGblEntries.size() &&
567            "Unexpected device id!");
568     FuncOrGblEntryTy &E = FuncGblEntries[device_id].back();
569 
570     int32_t size = E.Entries.size();
571 
572     // Table is empty
573     if (!size)
574       return 0;
575 
576     __tgt_offload_entry *begin = &E.Entries[0];
577     __tgt_offload_entry *end = &E.Entries[size - 1];
578 
579     // Update table info according to the entries and return the pointer
580     E.Table.EntriesBegin = begin;
581     E.Table.EntriesEnd = ++end;
582 
583     return &E.Table;
584   }
585 
586   // Clear entries table for a device
587   void clearOffloadEntriesTable(int device_id) {
588     assert(device_id < (int32_t)FuncGblEntries.size() &&
589            "Unexpected device id!");
590     FuncGblEntries[device_id].emplace_back();
591     FuncOrGblEntryTy &E = FuncGblEntries[device_id].back();
592     // KernelArgPoolMap.clear();
593     E.Entries.clear();
594     E.Table.EntriesBegin = E.Table.EntriesEnd = 0;
595   }
596 
597   hsa_status_t addDeviceMemoryPool(hsa_amd_memory_pool_t MemoryPool,
598                                    int DeviceId) {
599     assert(DeviceId < DeviceFineGrainedMemoryPools.size() && "Error here.");
600     uint32_t GlobalFlags = 0;
601     hsa_status_t Err = hsa_amd_memory_pool_get_info(
602         MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags);
603 
604     if (Err != HSA_STATUS_SUCCESS) {
605       return Err;
606     }
607 
608     if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) {
609       DeviceFineGrainedMemoryPools[DeviceId] = MemoryPool;
610     } else if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_COARSE_GRAINED) {
611       DeviceCoarseGrainedMemoryPools[DeviceId] = MemoryPool;
612     }
613 
614     return HSA_STATUS_SUCCESS;
615   }
616 
617   hsa_status_t addHostMemoryPool(hsa_amd_memory_pool_t MemoryPool,
618                                  int DeviceId) {
619     uint32_t GlobalFlags = 0;
620     hsa_status_t Err = hsa_amd_memory_pool_get_info(
621         MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags);
622 
623     if (Err != HSA_STATUS_SUCCESS) {
624       return Err;
625     }
626 
627     uint32_t Size;
628     Err = hsa_amd_memory_pool_get_info(MemoryPool,
629                                        HSA_AMD_MEMORY_POOL_INFO_SIZE, &Size);
630     if (Err != HSA_STATUS_SUCCESS) {
631       return Err;
632     }
633 
634     if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED &&
635         Size > 0) {
636       HostFineGrainedMemoryPool = MemoryPool;
637     }
638 
639     return HSA_STATUS_SUCCESS;
640   }
641 
642   hsa_status_t setupMemoryPools() {
643     using namespace std::placeholders;
644     hsa_status_t Err;
645     Err = core::collectMemoryPools(
646         CPUAgents, std::bind(&RTLDeviceInfoTy::addHostMemoryPool, this, _1, _2));
647     if (Err != HSA_STATUS_SUCCESS) {
648       DP("HSA error in collecting memory pools for CPU: %s\n",
649          get_error_string(Err));
650       return Err;
651     }
652     Err = core::collectMemoryPools(
653         HSAAgents, std::bind(&RTLDeviceInfoTy::addDeviceMemoryPool, this, _1, _2));
654     if (Err != HSA_STATUS_SUCCESS) {
655       DP("HSA error in collecting memory pools for offload devices: %s\n",
656          get_error_string(Err));
657       return Err;
658     }
659     return HSA_STATUS_SUCCESS;
660   }
661 
662   hsa_amd_memory_pool_t getDeviceMemoryPool(int DeviceId) {
663     assert(DeviceId >= 0 && DeviceId < DeviceCoarseGrainedMemoryPools.size() &&
664            "Invalid device Id");
665     return DeviceCoarseGrainedMemoryPools[DeviceId];
666   }
667 
668   hsa_amd_memory_pool_t getHostMemoryPool() {
669     return HostFineGrainedMemoryPool;
670   }
671 
672   static int readEnvElseMinusOne(const char *Env) {
673     const char *envStr = getenv(Env);
674     int res = -1;
675     if (envStr) {
676       res = std::stoi(envStr);
677       DP("Parsed %s=%d\n", Env, res);
678     }
679     return res;
680   }
681 
682   RTLDeviceInfoTy() {
683     // LIBOMPTARGET_KERNEL_TRACE provides a kernel launch trace to stderr
684     // anytime. You do not need a debug library build.
685     //  0 => no tracing
686     //  1 => tracing dispatch only
687     // >1 => verbosity increase
688     if (char *envStr = getenv("LIBOMPTARGET_KERNEL_TRACE"))
689       print_kernel_trace = atoi(envStr);
690     else
691       print_kernel_trace = 0;
692 
693     DP("Start initializing " GETNAME(TARGET_NAME) "\n");
694     hsa_status_t err = core::atl_init_gpu_context();
695     if (err == HSA_STATUS_SUCCESS) {
696       HSAInitializeSucceeded = true;
697     } else {
698       DP("Error when initializing " GETNAME(TARGET_NAME) "\n");
699       return;
700     }
701 
702     // Init hostcall soon after initializing hsa
703     hostrpc_init();
704 
705     err = FindAgents([&](hsa_device_type_t DeviceType, hsa_agent_t Agent) {
706       if (DeviceType == HSA_DEVICE_TYPE_CPU) {
707         CPUAgents.push_back(Agent);
708       } else {
709         HSAAgents.push_back(Agent);
710       }
711     });
712     if (err != HSA_STATUS_SUCCESS)
713       return;
714 
715     NumberOfDevices = (int)HSAAgents.size();
716 
717     if (NumberOfDevices == 0) {
718       DP("There are no devices supporting HSA.\n");
719       return;
720     } else {
721       DP("There are %d devices supporting HSA.\n", NumberOfDevices);
722     }
723     std::tie(err, KernArgPool) = core::FindKernargPool(CPUAgents);
724     if (err != HSA_STATUS_SUCCESS) {
725       DP("Error when reading memory pools\n");
726       return;
727     }
728 
729     // Init the device info
730     HSAQueues.resize(NumberOfDevices);
731     FuncGblEntries.resize(NumberOfDevices);
732     ThreadsPerGroup.resize(NumberOfDevices);
733     ComputeUnits.resize(NumberOfDevices);
734     GPUName.resize(NumberOfDevices);
735     GroupsPerDevice.resize(NumberOfDevices);
736     WarpSize.resize(NumberOfDevices);
737     NumTeams.resize(NumberOfDevices);
738     NumThreads.resize(NumberOfDevices);
739     deviceStateStore.resize(NumberOfDevices);
740     KernelInfoTable.resize(NumberOfDevices);
741     SymbolInfoTable.resize(NumberOfDevices);
742     DeviceCoarseGrainedMemoryPools.resize(NumberOfDevices);
743     DeviceFineGrainedMemoryPools.resize(NumberOfDevices);
744 
745     err = setupMemoryPools();
746     if (err != HSA_STATUS_SUCCESS) {
747       DP("Error when setting up memory pools");
748       return;
749     }
750 
751     for (int i = 0; i < NumberOfDevices; i++) {
752       HSAQueues[i] = nullptr;
753     }
754 
755     for (int i = 0; i < NumberOfDevices; i++) {
756       uint32_t queue_size = 0;
757       {
758         hsa_status_t err = hsa_agent_get_info(
759             HSAAgents[i], HSA_AGENT_INFO_QUEUE_MAX_SIZE, &queue_size);
760         if (err != HSA_STATUS_SUCCESS) {
761           DP("HSA query QUEUE_MAX_SIZE failed for agent %d\n", i);
762           return;
763         }
764         enum { MaxQueueSize = 4096 };
765         if (queue_size > MaxQueueSize) {
766           queue_size = MaxQueueSize;
767         }
768       }
769 
770       hsa_status_t rc = hsa_queue_create(
771           HSAAgents[i], queue_size, HSA_QUEUE_TYPE_MULTI, callbackQueue, NULL,
772           UINT32_MAX, UINT32_MAX, &HSAQueues[i]);
773       if (rc != HSA_STATUS_SUCCESS) {
774         DP("Failed to create HSA queue %d\n", i);
775         return;
776       }
777 
778       deviceStateStore[i] = {nullptr, 0};
779     }
780 
781     for (int i = 0; i < NumberOfDevices; i++) {
782       ThreadsPerGroup[i] = RTLDeviceInfoTy::Default_WG_Size;
783       GroupsPerDevice[i] = RTLDeviceInfoTy::DefaultNumTeams;
784       ComputeUnits[i] = 1;
785       DP("Device %d: Initial groupsPerDevice %d & threadsPerGroup %d\n", i,
786          GroupsPerDevice[i], ThreadsPerGroup[i]);
787     }
788 
789     // Get environment variables regarding teams
790     Env.TeamLimit = readEnvElseMinusOne("OMP_TEAM_LIMIT");
791     Env.NumTeams = readEnvElseMinusOne("OMP_NUM_TEAMS");
792     Env.MaxTeamsDefault = readEnvElseMinusOne("OMP_MAX_TEAMS_DEFAULT");
793     Env.TeamThreadLimit = readEnvElseMinusOne("OMP_TEAMS_THREAD_LIMIT");
794 
795     // Default state.
796     RequiresFlags = OMP_REQ_UNDEFINED;
797   }
798 
799   ~RTLDeviceInfoTy() {
800     DP("Finalizing the " GETNAME(TARGET_NAME) " DeviceInfo.\n");
801     if (!HSAInitializeSucceeded) {
802       // Then none of these can have been set up and they can't be torn down
803       return;
804     }
805     // Run destructors on types that use HSA before
806     // impl_finalize removes access to it
807     deviceStateStore.clear();
808     KernelArgPoolMap.clear();
809     // Terminate hostrpc before finalizing hsa
810     hostrpc_terminate();
811 
812     hsa_status_t Err;
813     for (uint32_t I = 0; I < HSAExecutables.size(); I++) {
814       Err = hsa_executable_destroy(HSAExecutables[I]);
815       if (Err != HSA_STATUS_SUCCESS) {
816         DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
817            "Destroying executable", get_error_string(Err));
818       }
819     }
820 
821     Err = hsa_shut_down();
822     if (Err != HSA_STATUS_SUCCESS) {
823       DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Shutting down HSA",
824          get_error_string(Err));
825     }
826   }
827 };
828 
829 pthread_mutex_t SignalPoolT::mutex = PTHREAD_MUTEX_INITIALIZER;
830 
831 // TODO: May need to drop the trailing to fields until deviceRTL is updated
832 struct omptarget_device_environmentTy {
833   int32_t debug_level; // gets value of envvar LIBOMPTARGET_DEVICE_RTL_DEBUG
834                        // only useful for Debug build of deviceRTLs
835   int32_t num_devices; // gets number of active offload devices
836   int32_t device_num;  // gets a value 0 to num_devices-1
837 };
838 
839 static RTLDeviceInfoTy DeviceInfo;
840 
841 namespace {
842 
843 int32_t dataRetrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size,
844                      __tgt_async_info *AsyncInfo) {
845   assert(AsyncInfo && "AsyncInfo is nullptr");
846   assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large");
847   // Return success if we are not copying back to host from target.
848   if (!HstPtr)
849     return OFFLOAD_SUCCESS;
850   hsa_status_t err;
851   DP("Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size,
852      (long long unsigned)(Elf64_Addr)TgtPtr,
853      (long long unsigned)(Elf64_Addr)HstPtr);
854 
855   err = DeviceInfo.freesignalpool_memcpy_d2h(HstPtr, TgtPtr, (size_t)Size,
856                                              DeviceId);
857 
858   if (err != HSA_STATUS_SUCCESS) {
859     DP("Error when copying data from device to host. Pointers: "
860        "host = 0x%016lx, device = 0x%016lx, size = %lld\n",
861        (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size);
862     return OFFLOAD_FAIL;
863   }
864   DP("DONE Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size,
865      (long long unsigned)(Elf64_Addr)TgtPtr,
866      (long long unsigned)(Elf64_Addr)HstPtr);
867   return OFFLOAD_SUCCESS;
868 }
869 
870 int32_t dataSubmit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size,
871                    __tgt_async_info *AsyncInfo) {
872   assert(AsyncInfo && "AsyncInfo is nullptr");
873   hsa_status_t err;
874   assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large");
875   // Return success if we are not doing host to target.
876   if (!HstPtr)
877     return OFFLOAD_SUCCESS;
878 
879   DP("Submit data %ld bytes, (hst:%016llx) -> (tgt:%016llx).\n", Size,
880      (long long unsigned)(Elf64_Addr)HstPtr,
881      (long long unsigned)(Elf64_Addr)TgtPtr);
882   err = DeviceInfo.freesignalpool_memcpy_h2d(TgtPtr, HstPtr, (size_t)Size,
883                                              DeviceId);
884   if (err != HSA_STATUS_SUCCESS) {
885     DP("Error when copying data from host to device. Pointers: "
886        "host = 0x%016lx, device = 0x%016lx, size = %lld\n",
887        (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size);
888     return OFFLOAD_FAIL;
889   }
890   return OFFLOAD_SUCCESS;
891 }
892 
893 // Async.
894 // The implementation was written with cuda streams in mind. The semantics of
895 // that are to execute kernels on a queue in order of insertion. A synchronise
896 // call then makes writes visible between host and device. This means a series
897 // of N data_submit_async calls are expected to execute serially. HSA offers
898 // various options to run the data copies concurrently. This may require changes
899 // to libomptarget.
900 
901 // __tgt_async_info* contains a void * Queue. Queue = 0 is used to indicate that
902 // there are no outstanding kernels that need to be synchronized. Any async call
903 // may be passed a Queue==0, at which point the cuda implementation will set it
904 // to non-null (see getStream). The cuda streams are per-device. Upstream may
905 // change this interface to explicitly initialize the AsyncInfo_pointer, but
906 // until then hsa lazily initializes it as well.
907 
908 void initAsyncInfo(__tgt_async_info *AsyncInfo) {
909   // set non-null while using async calls, return to null to indicate completion
910   assert(AsyncInfo);
911   if (!AsyncInfo->Queue) {
912     AsyncInfo->Queue = reinterpret_cast<void *>(UINT64_MAX);
913   }
914 }
915 void finiAsyncInfo(__tgt_async_info *AsyncInfo) {
916   assert(AsyncInfo);
917   assert(AsyncInfo->Queue);
918   AsyncInfo->Queue = 0;
919 }
920 
921 bool elf_machine_id_is_amdgcn(__tgt_device_image *image) {
922   const uint16_t amdgcnMachineID = 224; // EM_AMDGPU may not be in system elf.h
923   int32_t r = elf_check_machine(image, amdgcnMachineID);
924   if (!r) {
925     DP("Supported machine ID not found\n");
926   }
927   return r;
928 }
929 
930 uint32_t elf_e_flags(__tgt_device_image *image) {
931   char *img_begin = (char *)image->ImageStart;
932   size_t img_size = (char *)image->ImageEnd - img_begin;
933 
934   Elf *e = elf_memory(img_begin, img_size);
935   if (!e) {
936     DP("Unable to get ELF handle: %s!\n", elf_errmsg(-1));
937     return 0;
938   }
939 
940   Elf64_Ehdr *eh64 = elf64_getehdr(e);
941 
942   if (!eh64) {
943     DP("Unable to get machine ID from ELF file!\n");
944     elf_end(e);
945     return 0;
946   }
947 
948   uint32_t Flags = eh64->e_flags;
949 
950   elf_end(e);
951   DP("ELF Flags: 0x%x\n", Flags);
952   return Flags;
953 }
954 } // namespace
955 
956 int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) {
957   return elf_machine_id_is_amdgcn(image);
958 }
959 
960 int __tgt_rtl_number_of_devices() { return DeviceInfo.NumberOfDevices; }
961 
962 int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) {
963   DP("Init requires flags to %ld\n", RequiresFlags);
964   DeviceInfo.RequiresFlags = RequiresFlags;
965   return RequiresFlags;
966 }
967 
968 namespace {
969 template <typename T> bool enforce_upper_bound(T *value, T upper) {
970   bool changed = *value > upper;
971   if (changed) {
972     *value = upper;
973   }
974   return changed;
975 }
976 } // namespace
977 
978 int32_t __tgt_rtl_init_device(int device_id) {
979   hsa_status_t err;
980 
981   // this is per device id init
982   DP("Initialize the device id: %d\n", device_id);
983 
984   hsa_agent_t agent = DeviceInfo.HSAAgents[device_id];
985 
986   // Get number of Compute Unit
987   uint32_t compute_units = 0;
988   err = hsa_agent_get_info(
989       agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT,
990       &compute_units);
991   if (err != HSA_STATUS_SUCCESS) {
992     DeviceInfo.ComputeUnits[device_id] = 1;
993     DP("Error getting compute units : settiing to 1\n");
994   } else {
995     DeviceInfo.ComputeUnits[device_id] = compute_units;
996     DP("Using %d compute unis per grid\n", DeviceInfo.ComputeUnits[device_id]);
997   }
998 
999   char GetInfoName[64]; // 64 max size returned by get info
1000   err = hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AGENT_INFO_NAME,
1001                            (void *)GetInfoName);
1002   if (err)
1003     DeviceInfo.GPUName[device_id] = "--unknown gpu--";
1004   else {
1005     DeviceInfo.GPUName[device_id] = GetInfoName;
1006   }
1007 
1008   if (print_kernel_trace & STARTUP_DETAILS)
1009     DP("Device#%-2d CU's: %2d %s\n", device_id,
1010        DeviceInfo.ComputeUnits[device_id],
1011        DeviceInfo.GPUName[device_id].c_str());
1012 
1013   // Query attributes to determine number of threads/block and blocks/grid.
1014   uint16_t workgroup_max_dim[3];
1015   err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_DIM,
1016                            &workgroup_max_dim);
1017   if (err != HSA_STATUS_SUCCESS) {
1018     DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::DefaultNumTeams;
1019     DP("Error getting grid dims: num groups : %d\n",
1020        RTLDeviceInfoTy::DefaultNumTeams);
1021   } else if (workgroup_max_dim[0] <= RTLDeviceInfoTy::HardTeamLimit) {
1022     DeviceInfo.GroupsPerDevice[device_id] = workgroup_max_dim[0];
1023     DP("Using %d ROCm blocks per grid\n",
1024        DeviceInfo.GroupsPerDevice[device_id]);
1025   } else {
1026     DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::HardTeamLimit;
1027     DP("Max ROCm blocks per grid %d exceeds the hard team limit %d, capping "
1028        "at the hard limit\n",
1029        workgroup_max_dim[0], RTLDeviceInfoTy::HardTeamLimit);
1030   }
1031 
1032   // Get thread limit
1033   hsa_dim3_t grid_max_dim;
1034   err = hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &grid_max_dim);
1035   if (err == HSA_STATUS_SUCCESS) {
1036     DeviceInfo.ThreadsPerGroup[device_id] =
1037         reinterpret_cast<uint32_t *>(&grid_max_dim)[0] /
1038         DeviceInfo.GroupsPerDevice[device_id];
1039 
1040     if (DeviceInfo.ThreadsPerGroup[device_id] == 0) {
1041       DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size;
1042       DP("Default thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size);
1043     } else if (enforce_upper_bound(&DeviceInfo.ThreadsPerGroup[device_id],
1044                                    RTLDeviceInfoTy::Max_WG_Size)) {
1045       DP("Capped thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size);
1046     } else {
1047       DP("Using ROCm Queried thread limit: %d\n",
1048          DeviceInfo.ThreadsPerGroup[device_id]);
1049     }
1050   } else {
1051     DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size;
1052     DP("Error getting max block dimension, use default:%d \n",
1053        RTLDeviceInfoTy::Max_WG_Size);
1054   }
1055 
1056   // Get wavefront size
1057   uint32_t wavefront_size = 0;
1058   err =
1059       hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size);
1060   if (err == HSA_STATUS_SUCCESS) {
1061     DP("Queried wavefront size: %d\n", wavefront_size);
1062     DeviceInfo.WarpSize[device_id] = wavefront_size;
1063   } else {
1064     // TODO: Burn the wavefront size into the code object
1065     DP("Warning: Unknown wavefront size, assuming 64\n");
1066     DeviceInfo.WarpSize[device_id] = 64;
1067   }
1068 
1069   // Adjust teams to the env variables
1070 
1071   if (DeviceInfo.Env.TeamLimit > 0 &&
1072       (enforce_upper_bound(&DeviceInfo.GroupsPerDevice[device_id],
1073                            DeviceInfo.Env.TeamLimit))) {
1074     DP("Capping max groups per device to OMP_TEAM_LIMIT=%d\n",
1075        DeviceInfo.Env.TeamLimit);
1076   }
1077 
1078   // Set default number of teams
1079   if (DeviceInfo.Env.NumTeams > 0) {
1080     DeviceInfo.NumTeams[device_id] = DeviceInfo.Env.NumTeams;
1081     DP("Default number of teams set according to environment %d\n",
1082        DeviceInfo.Env.NumTeams);
1083   } else {
1084     char *TeamsPerCUEnvStr = getenv("OMP_TARGET_TEAMS_PER_PROC");
1085     int TeamsPerCU = DefaultTeamsPerCU;
1086     if (TeamsPerCUEnvStr) {
1087       TeamsPerCU = std::stoi(TeamsPerCUEnvStr);
1088     }
1089 
1090     DeviceInfo.NumTeams[device_id] =
1091         TeamsPerCU * DeviceInfo.ComputeUnits[device_id];
1092     DP("Default number of teams = %d * number of compute units %d\n",
1093        TeamsPerCU, DeviceInfo.ComputeUnits[device_id]);
1094   }
1095 
1096   if (enforce_upper_bound(&DeviceInfo.NumTeams[device_id],
1097                           DeviceInfo.GroupsPerDevice[device_id])) {
1098     DP("Default number of teams exceeds device limit, capping at %d\n",
1099        DeviceInfo.GroupsPerDevice[device_id]);
1100   }
1101 
1102   // Adjust threads to the env variables
1103   if (DeviceInfo.Env.TeamThreadLimit > 0 &&
1104       (enforce_upper_bound(&DeviceInfo.NumThreads[device_id],
1105                            DeviceInfo.Env.TeamThreadLimit))) {
1106     DP("Capping max number of threads to OMP_TEAMS_THREAD_LIMIT=%d\n",
1107        DeviceInfo.Env.TeamThreadLimit);
1108   }
1109 
1110   // Set default number of threads
1111   DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::Default_WG_Size;
1112   DP("Default number of threads set according to library's default %d\n",
1113      RTLDeviceInfoTy::Default_WG_Size);
1114   if (enforce_upper_bound(&DeviceInfo.NumThreads[device_id],
1115                           DeviceInfo.ThreadsPerGroup[device_id])) {
1116     DP("Default number of threads exceeds device limit, capping at %d\n",
1117        DeviceInfo.ThreadsPerGroup[device_id]);
1118   }
1119 
1120   DP("Device %d: default limit for groupsPerDevice %d & threadsPerGroup %d\n",
1121      device_id, DeviceInfo.GroupsPerDevice[device_id],
1122      DeviceInfo.ThreadsPerGroup[device_id]);
1123 
1124   DP("Device %d: wavefront size %d, total threads %d x %d = %d\n", device_id,
1125      DeviceInfo.WarpSize[device_id], DeviceInfo.ThreadsPerGroup[device_id],
1126      DeviceInfo.GroupsPerDevice[device_id],
1127      DeviceInfo.GroupsPerDevice[device_id] *
1128          DeviceInfo.ThreadsPerGroup[device_id]);
1129 
1130   return OFFLOAD_SUCCESS;
1131 }
1132 
1133 namespace {
1134 Elf64_Shdr *find_only_SHT_HASH(Elf *elf) {
1135   size_t N;
1136   int rc = elf_getshdrnum(elf, &N);
1137   if (rc != 0) {
1138     return nullptr;
1139   }
1140 
1141   Elf64_Shdr *result = nullptr;
1142   for (size_t i = 0; i < N; i++) {
1143     Elf_Scn *scn = elf_getscn(elf, i);
1144     if (scn) {
1145       Elf64_Shdr *shdr = elf64_getshdr(scn);
1146       if (shdr) {
1147         if (shdr->sh_type == SHT_HASH) {
1148           if (result == nullptr) {
1149             result = shdr;
1150           } else {
1151             // multiple SHT_HASH sections not handled
1152             return nullptr;
1153           }
1154         }
1155       }
1156     }
1157   }
1158   return result;
1159 }
1160 
1161 const Elf64_Sym *elf_lookup(Elf *elf, char *base, Elf64_Shdr *section_hash,
1162                             const char *symname) {
1163 
1164   assert(section_hash);
1165   size_t section_symtab_index = section_hash->sh_link;
1166   Elf64_Shdr *section_symtab =
1167       elf64_getshdr(elf_getscn(elf, section_symtab_index));
1168   size_t section_strtab_index = section_symtab->sh_link;
1169 
1170   const Elf64_Sym *symtab =
1171       reinterpret_cast<const Elf64_Sym *>(base + section_symtab->sh_offset);
1172 
1173   const uint32_t *hashtab =
1174       reinterpret_cast<const uint32_t *>(base + section_hash->sh_offset);
1175 
1176   // Layout:
1177   // nbucket
1178   // nchain
1179   // bucket[nbucket]
1180   // chain[nchain]
1181   uint32_t nbucket = hashtab[0];
1182   const uint32_t *bucket = &hashtab[2];
1183   const uint32_t *chain = &hashtab[nbucket + 2];
1184 
1185   const size_t max = strlen(symname) + 1;
1186   const uint32_t hash = elf_hash(symname);
1187   for (uint32_t i = bucket[hash % nbucket]; i != 0; i = chain[i]) {
1188     char *n = elf_strptr(elf, section_strtab_index, symtab[i].st_name);
1189     if (strncmp(symname, n, max) == 0) {
1190       return &symtab[i];
1191     }
1192   }
1193 
1194   return nullptr;
1195 }
1196 
1197 struct symbol_info {
1198   void *addr = nullptr;
1199   uint32_t size = UINT32_MAX;
1200   uint32_t sh_type = SHT_NULL;
1201 };
1202 
1203 int get_symbol_info_without_loading(Elf *elf, char *base, const char *symname,
1204                                     symbol_info *res) {
1205   if (elf_kind(elf) != ELF_K_ELF) {
1206     return 1;
1207   }
1208 
1209   Elf64_Shdr *section_hash = find_only_SHT_HASH(elf);
1210   if (!section_hash) {
1211     return 1;
1212   }
1213 
1214   const Elf64_Sym *sym = elf_lookup(elf, base, section_hash, symname);
1215   if (!sym) {
1216     return 1;
1217   }
1218 
1219   if (sym->st_size > UINT32_MAX) {
1220     return 1;
1221   }
1222 
1223   if (sym->st_shndx == SHN_UNDEF) {
1224     return 1;
1225   }
1226 
1227   Elf_Scn *section = elf_getscn(elf, sym->st_shndx);
1228   if (!section) {
1229     return 1;
1230   }
1231 
1232   Elf64_Shdr *header = elf64_getshdr(section);
1233   if (!header) {
1234     return 1;
1235   }
1236 
1237   res->addr = sym->st_value + base;
1238   res->size = static_cast<uint32_t>(sym->st_size);
1239   res->sh_type = header->sh_type;
1240   return 0;
1241 }
1242 
1243 int get_symbol_info_without_loading(char *base, size_t img_size,
1244                                     const char *symname, symbol_info *res) {
1245   Elf *elf = elf_memory(base, img_size);
1246   if (elf) {
1247     int rc = get_symbol_info_without_loading(elf, base, symname, res);
1248     elf_end(elf);
1249     return rc;
1250   }
1251   return 1;
1252 }
1253 
1254 hsa_status_t interop_get_symbol_info(char *base, size_t img_size,
1255                                      const char *symname, void **var_addr,
1256                                      uint32_t *var_size) {
1257   symbol_info si;
1258   int rc = get_symbol_info_without_loading(base, img_size, symname, &si);
1259   if (rc == 0) {
1260     *var_addr = si.addr;
1261     *var_size = si.size;
1262     return HSA_STATUS_SUCCESS;
1263   } else {
1264     return HSA_STATUS_ERROR;
1265   }
1266 }
1267 
1268 template <typename C>
1269 hsa_status_t module_register_from_memory_to_place(
1270     std::map<std::string, atl_kernel_info_t> &KernelInfoTable,
1271     std::map<std::string, atl_symbol_info_t> &SymbolInfoTable,
1272     void *module_bytes, size_t module_size, int DeviceId, C cb,
1273     std::vector<hsa_executable_t> &HSAExecutables) {
1274   auto L = [](void *data, size_t size, void *cb_state) -> hsa_status_t {
1275     C *unwrapped = static_cast<C *>(cb_state);
1276     return (*unwrapped)(data, size);
1277   };
1278   return core::RegisterModuleFromMemory(
1279       KernelInfoTable, SymbolInfoTable, module_bytes, module_size,
1280       DeviceInfo.HSAAgents[DeviceId], L, static_cast<void *>(&cb),
1281       HSAExecutables);
1282 }
1283 } // namespace
1284 
1285 static uint64_t get_device_State_bytes(char *ImageStart, size_t img_size) {
1286   uint64_t device_State_bytes = 0;
1287   {
1288     // If this is the deviceRTL, get the state variable size
1289     symbol_info size_si;
1290     int rc = get_symbol_info_without_loading(
1291         ImageStart, img_size, "omptarget_nvptx_device_State_size", &size_si);
1292 
1293     if (rc == 0) {
1294       if (size_si.size != sizeof(uint64_t)) {
1295         DP("Found device_State_size variable with wrong size\n");
1296         return 0;
1297       }
1298 
1299       // Read number of bytes directly from the elf
1300       memcpy(&device_State_bytes, size_si.addr, sizeof(uint64_t));
1301     }
1302   }
1303   return device_State_bytes;
1304 }
1305 
1306 static __tgt_target_table *
1307 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image);
1308 
1309 static __tgt_target_table *
1310 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image);
1311 
1312 __tgt_target_table *__tgt_rtl_load_binary(int32_t device_id,
1313                                           __tgt_device_image *image) {
1314   DeviceInfo.load_run_lock.lock();
1315   __tgt_target_table *res = __tgt_rtl_load_binary_locked(device_id, image);
1316   DeviceInfo.load_run_lock.unlock();
1317   return res;
1318 }
1319 
1320 struct device_environment {
1321   // initialise an omptarget_device_environmentTy in the deviceRTL
1322   // patches around differences in the deviceRTL between trunk, aomp,
1323   // rocmcc. Over time these differences will tend to zero and this class
1324   // simplified.
1325   // Symbol may be in .data or .bss, and may be missing fields:
1326   //  - aomp has debug_level, num_devices, device_num
1327   //  - trunk has debug_level
1328   //  - under review in trunk is debug_level, device_num
1329   //  - rocmcc matches aomp, patch to swap num_devices and device_num
1330 
1331   // The symbol may also have been deadstripped because the device side
1332   // accessors were unused.
1333 
1334   // If the symbol is in .data (aomp, rocm) it can be written directly.
1335   // If it is in .bss, we must wait for it to be allocated space on the
1336   // gpu (trunk) and initialize after loading.
1337   const char *sym() { return "omptarget_device_environment"; }
1338 
1339   omptarget_device_environmentTy host_device_env;
1340   symbol_info si;
1341   bool valid = false;
1342 
1343   __tgt_device_image *image;
1344   const size_t img_size;
1345 
1346   device_environment(int device_id, int number_devices,
1347                      __tgt_device_image *image, const size_t img_size)
1348       : image(image), img_size(img_size) {
1349 
1350     host_device_env.num_devices = number_devices;
1351     host_device_env.device_num = device_id;
1352     host_device_env.debug_level = 0;
1353 #ifdef OMPTARGET_DEBUG
1354     if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) {
1355       host_device_env.debug_level = std::stoi(envStr);
1356     }
1357 #endif
1358 
1359     int rc = get_symbol_info_without_loading((char *)image->ImageStart,
1360                                              img_size, sym(), &si);
1361     if (rc != 0) {
1362       DP("Finding global device environment '%s' - symbol missing.\n", sym());
1363       return;
1364     }
1365 
1366     if (si.size > sizeof(host_device_env)) {
1367       DP("Symbol '%s' has size %u, expected at most %zu.\n", sym(), si.size,
1368          sizeof(host_device_env));
1369       return;
1370     }
1371 
1372     valid = true;
1373   }
1374 
1375   bool in_image() { return si.sh_type != SHT_NOBITS; }
1376 
1377   hsa_status_t before_loading(void *data, size_t size) {
1378     if (valid) {
1379       if (in_image()) {
1380         DP("Setting global device environment before load (%u bytes)\n",
1381            si.size);
1382         uint64_t offset = (char *)si.addr - (char *)image->ImageStart;
1383         void *pos = (char *)data + offset;
1384         memcpy(pos, &host_device_env, si.size);
1385       }
1386     }
1387     return HSA_STATUS_SUCCESS;
1388   }
1389 
1390   hsa_status_t after_loading() {
1391     if (valid) {
1392       if (!in_image()) {
1393         DP("Setting global device environment after load (%u bytes)\n",
1394            si.size);
1395         int device_id = host_device_env.device_num;
1396         auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id];
1397         void *state_ptr;
1398         uint32_t state_ptr_size;
1399         hsa_status_t err = interop_hsa_get_symbol_info(
1400             SymbolInfo, device_id, sym(), &state_ptr, &state_ptr_size);
1401         if (err != HSA_STATUS_SUCCESS) {
1402           DP("failed to find %s in loaded image\n", sym());
1403           return err;
1404         }
1405 
1406         if (state_ptr_size != si.size) {
1407           DP("Symbol had size %u before loading, %u after\n", state_ptr_size,
1408              si.size);
1409           return HSA_STATUS_ERROR;
1410         }
1411 
1412         return DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &host_device_env,
1413                                                     state_ptr_size, device_id);
1414       }
1415     }
1416     return HSA_STATUS_SUCCESS;
1417   }
1418 };
1419 
1420 static hsa_status_t impl_calloc(void **ret_ptr, size_t size, int DeviceId) {
1421   uint64_t rounded = 4 * ((size + 3) / 4);
1422   void *ptr;
1423   hsa_amd_memory_pool_t MemoryPool = DeviceInfo.getDeviceMemoryPool(DeviceId);
1424   hsa_status_t err = hsa_amd_memory_pool_allocate(MemoryPool, rounded, 0, &ptr);
1425   if (err != HSA_STATUS_SUCCESS) {
1426     return err;
1427   }
1428 
1429   hsa_status_t rc = hsa_amd_memory_fill(ptr, 0, rounded / 4);
1430   if (rc != HSA_STATUS_SUCCESS) {
1431     DP("zero fill device_state failed with %u\n", rc);
1432     core::Runtime::Memfree(ptr);
1433     return HSA_STATUS_ERROR;
1434   }
1435 
1436   *ret_ptr = ptr;
1437   return HSA_STATUS_SUCCESS;
1438 }
1439 
1440 static bool image_contains_symbol(void *data, size_t size, const char *sym) {
1441   symbol_info si;
1442   int rc = get_symbol_info_without_loading((char *)data, size, sym, &si);
1443   return (rc == 0) && (si.addr != nullptr);
1444 }
1445 
1446 __tgt_target_table *__tgt_rtl_load_binary_locked(int32_t device_id,
1447                                                  __tgt_device_image *image) {
1448   // This function loads the device image onto gpu[device_id] and does other
1449   // per-image initialization work. Specifically:
1450   //
1451   // - Initialize an omptarget_device_environmentTy instance embedded in the
1452   //   image at the symbol "omptarget_device_environment"
1453   //   Fields debug_level, device_num, num_devices. Used by the deviceRTL.
1454   //
1455   // - Allocate a large array per-gpu (could be moved to init_device)
1456   //   - Read a uint64_t at symbol omptarget_nvptx_device_State_size
1457   //   - Allocate at least that many bytes of gpu memory
1458   //   - Zero initialize it
1459   //   - Write the pointer to the symbol omptarget_nvptx_device_State
1460   //
1461   // - Pulls some per-kernel information together from various sources and
1462   //   records it in the KernelsList for quicker access later
1463   //
1464   // The initialization can be done before or after loading the image onto the
1465   // gpu. This function presently does a mixture. Using the hsa api to get/set
1466   // the information is simpler to implement, in exchange for more complicated
1467   // runtime behaviour. E.g. launching a kernel or using dma to get eight bytes
1468   // back from the gpu vs a hashtable lookup on the host.
1469 
1470   const size_t img_size = (char *)image->ImageEnd - (char *)image->ImageStart;
1471 
1472   DeviceInfo.clearOffloadEntriesTable(device_id);
1473 
1474   // We do not need to set the ELF version because the caller of this function
1475   // had to do that to decide the right runtime to use
1476 
1477   if (!elf_machine_id_is_amdgcn(image)) {
1478     return NULL;
1479   }
1480 
1481   {
1482     auto env = device_environment(device_id, DeviceInfo.NumberOfDevices, image,
1483                                   img_size);
1484 
1485     auto &KernelInfo = DeviceInfo.KernelInfoTable[device_id];
1486     auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id];
1487     hsa_status_t err = module_register_from_memory_to_place(
1488         KernelInfo, SymbolInfo, (void *)image->ImageStart, img_size, device_id,
1489         [&](void *data, size_t size) {
1490           if (image_contains_symbol(data, size, "needs_hostcall_buffer")) {
1491             __atomic_store_n(&DeviceInfo.hostcall_required, true,
1492                              __ATOMIC_RELEASE);
1493           }
1494           return env.before_loading(data, size);
1495         },
1496         DeviceInfo.HSAExecutables);
1497 
1498     check("Module registering", err);
1499     if (err != HSA_STATUS_SUCCESS) {
1500       const char *DeviceName = DeviceInfo.GPUName[device_id].c_str();
1501       const char *ElfName = get_elf_mach_gfx_name(elf_e_flags(image));
1502 
1503       if (strcmp(DeviceName, ElfName) != 0) {
1504         DP("Possible gpu arch mismatch: device:%s, image:%s please check"
1505            " compiler flag: -march=<gpu>\n",
1506            DeviceName, ElfName);
1507       } else {
1508         DP("Error loading image onto GPU: %s\n", get_error_string(err));
1509       }
1510 
1511       return NULL;
1512     }
1513 
1514     err = env.after_loading();
1515     if (err != HSA_STATUS_SUCCESS) {
1516       return NULL;
1517     }
1518   }
1519 
1520   DP("AMDGPU module successfully loaded!\n");
1521 
1522   {
1523     // the device_State array is either large value in bss or a void* that
1524     // needs to be assigned to a pointer to an array of size device_state_bytes
1525     // If absent, it has been deadstripped and needs no setup.
1526 
1527     void *state_ptr;
1528     uint32_t state_ptr_size;
1529     auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id];
1530     hsa_status_t err = interop_hsa_get_symbol_info(
1531         SymbolInfoMap, device_id, "omptarget_nvptx_device_State", &state_ptr,
1532         &state_ptr_size);
1533 
1534     if (err != HSA_STATUS_SUCCESS) {
1535       DP("No device_state symbol found, skipping initialization\n");
1536     } else {
1537       if (state_ptr_size < sizeof(void *)) {
1538         DP("unexpected size of state_ptr %u != %zu\n", state_ptr_size,
1539            sizeof(void *));
1540         return NULL;
1541       }
1542 
1543       // if it's larger than a void*, assume it's a bss array and no further
1544       // initialization is required. Only try to set up a pointer for
1545       // sizeof(void*)
1546       if (state_ptr_size == sizeof(void *)) {
1547         uint64_t device_State_bytes =
1548             get_device_State_bytes((char *)image->ImageStart, img_size);
1549         if (device_State_bytes == 0) {
1550           DP("Can't initialize device_State, missing size information\n");
1551           return NULL;
1552         }
1553 
1554         auto &dss = DeviceInfo.deviceStateStore[device_id];
1555         if (dss.first.get() == nullptr) {
1556           assert(dss.second == 0);
1557           void *ptr = NULL;
1558           hsa_status_t err = impl_calloc(&ptr, device_State_bytes, device_id);
1559           if (err != HSA_STATUS_SUCCESS) {
1560             DP("Failed to allocate device_state array\n");
1561             return NULL;
1562           }
1563           dss = {
1564               std::unique_ptr<void, RTLDeviceInfoTy::implFreePtrDeletor>{ptr},
1565               device_State_bytes,
1566           };
1567         }
1568 
1569         void *ptr = dss.first.get();
1570         if (device_State_bytes != dss.second) {
1571           DP("Inconsistent sizes of device_State unsupported\n");
1572           return NULL;
1573         }
1574 
1575         // write ptr to device memory so it can be used by later kernels
1576         err = DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &ptr,
1577                                                    sizeof(void *), device_id);
1578         if (err != HSA_STATUS_SUCCESS) {
1579           DP("memcpy install of state_ptr failed\n");
1580           return NULL;
1581         }
1582       }
1583     }
1584   }
1585 
1586   // Here, we take advantage of the data that is appended after img_end to get
1587   // the symbols' name we need to load. This data consist of the host entries
1588   // begin and end as well as the target name (see the offloading linker script
1589   // creation in clang compiler).
1590 
1591   // Find the symbols in the module by name. The name can be obtain by
1592   // concatenating the host entry name with the target name
1593 
1594   __tgt_offload_entry *HostBegin = image->EntriesBegin;
1595   __tgt_offload_entry *HostEnd = image->EntriesEnd;
1596 
1597   for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) {
1598 
1599     if (!e->addr) {
1600       // The host should have always something in the address to
1601       // uniquely identify the target region.
1602       DP("Analyzing host entry '<null>' (size = %lld)...\n",
1603          (unsigned long long)e->size);
1604       return NULL;
1605     }
1606 
1607     if (e->size) {
1608       __tgt_offload_entry entry = *e;
1609 
1610       void *varptr;
1611       uint32_t varsize;
1612 
1613       auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id];
1614       hsa_status_t err = interop_hsa_get_symbol_info(
1615           SymbolInfoMap, device_id, e->name, &varptr, &varsize);
1616 
1617       if (err != HSA_STATUS_SUCCESS) {
1618         // Inform the user what symbol prevented offloading
1619         DP("Loading global '%s' (Failed)\n", e->name);
1620         return NULL;
1621       }
1622 
1623       if (varsize != e->size) {
1624         DP("Loading global '%s' - size mismatch (%u != %lu)\n", e->name,
1625            varsize, e->size);
1626         return NULL;
1627       }
1628 
1629       DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n",
1630          DPxPTR(e - HostBegin), e->name, DPxPTR(varptr));
1631       entry.addr = (void *)varptr;
1632 
1633       DeviceInfo.addOffloadEntry(device_id, entry);
1634 
1635       if (DeviceInfo.RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY &&
1636           e->flags & OMP_DECLARE_TARGET_LINK) {
1637         // If unified memory is present any target link variables
1638         // can access host addresses directly. There is no longer a
1639         // need for device copies.
1640         err = DeviceInfo.freesignalpool_memcpy_h2d(varptr, e->addr,
1641                                                    sizeof(void *), device_id);
1642         if (err != HSA_STATUS_SUCCESS)
1643           DP("Error when copying USM\n");
1644         DP("Copy linked variable host address (" DPxMOD ")"
1645            "to device address (" DPxMOD ")\n",
1646            DPxPTR(*((void **)e->addr)), DPxPTR(varptr));
1647       }
1648 
1649       continue;
1650     }
1651 
1652     DP("to find the kernel name: %s size: %lu\n", e->name, strlen(e->name));
1653 
1654     uint32_t kernarg_segment_size;
1655     auto &KernelInfoMap = DeviceInfo.KernelInfoTable[device_id];
1656     hsa_status_t err = interop_hsa_get_kernel_info(
1657         KernelInfoMap, device_id, e->name,
1658         HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE,
1659         &kernarg_segment_size);
1660 
1661     // each arg is a void * in this openmp implementation
1662     uint32_t arg_num = kernarg_segment_size / sizeof(void *);
1663     std::vector<size_t> arg_sizes(arg_num);
1664     for (std::vector<size_t>::iterator it = arg_sizes.begin();
1665          it != arg_sizes.end(); it++) {
1666       *it = sizeof(void *);
1667     }
1668 
1669     // default value GENERIC (in case symbol is missing from cubin file)
1670     int8_t ExecModeVal = ExecutionModeType::GENERIC;
1671 
1672     // get flat group size if present, else Default_WG_Size
1673     int16_t WGSizeVal = RTLDeviceInfoTy::Default_WG_Size;
1674 
1675     // get Kernel Descriptor if present.
1676     // Keep struct in sync wih getTgtAttributeStructQTy in CGOpenMPRuntime.cpp
1677     struct KernDescValType {
1678       uint16_t Version;
1679       uint16_t TSize;
1680       uint16_t WG_Size;
1681       uint8_t Mode;
1682     };
1683     struct KernDescValType KernDescVal;
1684     std::string KernDescNameStr(e->name);
1685     KernDescNameStr += "_kern_desc";
1686     const char *KernDescName = KernDescNameStr.c_str();
1687 
1688     void *KernDescPtr;
1689     uint32_t KernDescSize;
1690     void *CallStackAddr = nullptr;
1691     err = interop_get_symbol_info((char *)image->ImageStart, img_size,
1692                                   KernDescName, &KernDescPtr, &KernDescSize);
1693 
1694     if (err == HSA_STATUS_SUCCESS) {
1695       if ((size_t)KernDescSize != sizeof(KernDescVal))
1696         DP("Loading global computation properties '%s' - size mismatch (%u != "
1697            "%lu)\n",
1698            KernDescName, KernDescSize, sizeof(KernDescVal));
1699 
1700       memcpy(&KernDescVal, KernDescPtr, (size_t)KernDescSize);
1701 
1702       // Check structure size against recorded size.
1703       if ((size_t)KernDescSize != KernDescVal.TSize)
1704         DP("KernDescVal size %lu does not match advertized size %d for '%s'\n",
1705            sizeof(KernDescVal), KernDescVal.TSize, KernDescName);
1706 
1707       DP("After loading global for %s KernDesc \n", KernDescName);
1708       DP("KernDesc: Version: %d\n", KernDescVal.Version);
1709       DP("KernDesc: TSize: %d\n", KernDescVal.TSize);
1710       DP("KernDesc: WG_Size: %d\n", KernDescVal.WG_Size);
1711       DP("KernDesc: Mode: %d\n", KernDescVal.Mode);
1712 
1713       // Get ExecMode
1714       ExecModeVal = KernDescVal.Mode;
1715       DP("ExecModeVal %d\n", ExecModeVal);
1716       if (KernDescVal.WG_Size == 0) {
1717         KernDescVal.WG_Size = RTLDeviceInfoTy::Default_WG_Size;
1718         DP("Setting KernDescVal.WG_Size to default %d\n", KernDescVal.WG_Size);
1719       }
1720       WGSizeVal = KernDescVal.WG_Size;
1721       DP("WGSizeVal %d\n", WGSizeVal);
1722       check("Loading KernDesc computation property", err);
1723     } else {
1724       DP("Warning: Loading KernDesc '%s' - symbol not found, ", KernDescName);
1725 
1726       // Generic
1727       std::string ExecModeNameStr(e->name);
1728       ExecModeNameStr += "_exec_mode";
1729       const char *ExecModeName = ExecModeNameStr.c_str();
1730 
1731       void *ExecModePtr;
1732       uint32_t varsize;
1733       err = interop_get_symbol_info((char *)image->ImageStart, img_size,
1734                                     ExecModeName, &ExecModePtr, &varsize);
1735 
1736       if (err == HSA_STATUS_SUCCESS) {
1737         if ((size_t)varsize != sizeof(int8_t)) {
1738           DP("Loading global computation properties '%s' - size mismatch(%u != "
1739              "%lu)\n",
1740              ExecModeName, varsize, sizeof(int8_t));
1741           return NULL;
1742         }
1743 
1744         memcpy(&ExecModeVal, ExecModePtr, (size_t)varsize);
1745 
1746         DP("After loading global for %s ExecMode = %d\n", ExecModeName,
1747            ExecModeVal);
1748 
1749         if (ExecModeVal < 0 || ExecModeVal > 2) {
1750           DP("Error wrong exec_mode value specified in HSA code object file: "
1751              "%d\n",
1752              ExecModeVal);
1753           return NULL;
1754         }
1755       } else {
1756         DP("Loading global exec_mode '%s' - symbol missing, using default "
1757            "value "
1758            "GENERIC (1)\n",
1759            ExecModeName);
1760       }
1761       check("Loading computation property", err);
1762 
1763       // Flat group size
1764       std::string WGSizeNameStr(e->name);
1765       WGSizeNameStr += "_wg_size";
1766       const char *WGSizeName = WGSizeNameStr.c_str();
1767 
1768       void *WGSizePtr;
1769       uint32_t WGSize;
1770       err = interop_get_symbol_info((char *)image->ImageStart, img_size,
1771                                     WGSizeName, &WGSizePtr, &WGSize);
1772 
1773       if (err == HSA_STATUS_SUCCESS) {
1774         if ((size_t)WGSize != sizeof(int16_t)) {
1775           DP("Loading global computation properties '%s' - size mismatch (%u "
1776              "!= "
1777              "%lu)\n",
1778              WGSizeName, WGSize, sizeof(int16_t));
1779           return NULL;
1780         }
1781 
1782         memcpy(&WGSizeVal, WGSizePtr, (size_t)WGSize);
1783 
1784         DP("After loading global for %s WGSize = %d\n", WGSizeName, WGSizeVal);
1785 
1786         if (WGSizeVal < RTLDeviceInfoTy::Default_WG_Size ||
1787             WGSizeVal > RTLDeviceInfoTy::Max_WG_Size) {
1788           DP("Error wrong WGSize value specified in HSA code object file: "
1789              "%d\n",
1790              WGSizeVal);
1791           WGSizeVal = RTLDeviceInfoTy::Default_WG_Size;
1792         }
1793       } else {
1794         DP("Warning: Loading WGSize '%s' - symbol not found, "
1795            "using default value %d\n",
1796            WGSizeName, WGSizeVal);
1797       }
1798 
1799       check("Loading WGSize computation property", err);
1800     }
1801 
1802     KernelsList.push_back(KernelTy(ExecModeVal, WGSizeVal, device_id,
1803                                    CallStackAddr, e->name, kernarg_segment_size,
1804                                    DeviceInfo.KernArgPool));
1805     __tgt_offload_entry entry = *e;
1806     entry.addr = (void *)&KernelsList.back();
1807     DeviceInfo.addOffloadEntry(device_id, entry);
1808     DP("Entry point %ld maps to %s\n", e - HostBegin, e->name);
1809   }
1810 
1811   return DeviceInfo.getOffloadEntriesTable(device_id);
1812 }
1813 
1814 void *__tgt_rtl_data_alloc(int device_id, int64_t size, void *, int32_t kind) {
1815   void *ptr = NULL;
1816   assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large");
1817 
1818   if (kind != TARGET_ALLOC_DEFAULT) {
1819     REPORT("Invalid target data allocation kind or requested allocator not "
1820            "implemented yet\n");
1821     return NULL;
1822   }
1823 
1824   hsa_amd_memory_pool_t MemoryPool = DeviceInfo.getDeviceMemoryPool(device_id);
1825   hsa_status_t err = hsa_amd_memory_pool_allocate(MemoryPool, size, 0, &ptr);
1826   DP("Tgt alloc data %ld bytes, (tgt:%016llx).\n", size,
1827      (long long unsigned)(Elf64_Addr)ptr);
1828   ptr = (err == HSA_STATUS_SUCCESS) ? ptr : NULL;
1829   return ptr;
1830 }
1831 
1832 int32_t __tgt_rtl_data_submit(int device_id, void *tgt_ptr, void *hst_ptr,
1833                               int64_t size) {
1834   assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large");
1835   __tgt_async_info AsyncInfo;
1836   int32_t rc = dataSubmit(device_id, tgt_ptr, hst_ptr, size, &AsyncInfo);
1837   if (rc != OFFLOAD_SUCCESS)
1838     return OFFLOAD_FAIL;
1839 
1840   return __tgt_rtl_synchronize(device_id, &AsyncInfo);
1841 }
1842 
1843 int32_t __tgt_rtl_data_submit_async(int device_id, void *tgt_ptr, void *hst_ptr,
1844                                     int64_t size, __tgt_async_info *AsyncInfo) {
1845   assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large");
1846   if (AsyncInfo) {
1847     initAsyncInfo(AsyncInfo);
1848     return dataSubmit(device_id, tgt_ptr, hst_ptr, size, AsyncInfo);
1849   } else {
1850     return __tgt_rtl_data_submit(device_id, tgt_ptr, hst_ptr, size);
1851   }
1852 }
1853 
1854 int32_t __tgt_rtl_data_retrieve(int device_id, void *hst_ptr, void *tgt_ptr,
1855                                 int64_t size) {
1856   assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large");
1857   __tgt_async_info AsyncInfo;
1858   int32_t rc = dataRetrieve(device_id, hst_ptr, tgt_ptr, size, &AsyncInfo);
1859   if (rc != OFFLOAD_SUCCESS)
1860     return OFFLOAD_FAIL;
1861 
1862   return __tgt_rtl_synchronize(device_id, &AsyncInfo);
1863 }
1864 
1865 int32_t __tgt_rtl_data_retrieve_async(int device_id, void *hst_ptr,
1866                                       void *tgt_ptr, int64_t size,
1867                                       __tgt_async_info *AsyncInfo) {
1868   assert(AsyncInfo && "AsyncInfo is nullptr");
1869   assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large");
1870   initAsyncInfo(AsyncInfo);
1871   return dataRetrieve(device_id, hst_ptr, tgt_ptr, size, AsyncInfo);
1872 }
1873 
1874 int32_t __tgt_rtl_data_delete(int device_id, void *tgt_ptr) {
1875   assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large");
1876   hsa_status_t err;
1877   DP("Tgt free data (tgt:%016llx).\n", (long long unsigned)(Elf64_Addr)tgt_ptr);
1878   err = core::Runtime::Memfree(tgt_ptr);
1879   if (err != HSA_STATUS_SUCCESS) {
1880     DP("Error when freeing CUDA memory\n");
1881     return OFFLOAD_FAIL;
1882   }
1883   return OFFLOAD_SUCCESS;
1884 }
1885 
1886 // Determine launch values for kernel.
1887 struct launchVals {
1888   int WorkgroupSize;
1889   int GridSize;
1890 };
1891 launchVals getLaunchVals(int WarpSize, EnvironmentVariables Env,
1892                          int ConstWGSize, int ExecutionMode, int num_teams,
1893                          int thread_limit, uint64_t loop_tripcount,
1894                          int DeviceNumTeams) {
1895 
1896   int threadsPerGroup = RTLDeviceInfoTy::Default_WG_Size;
1897   int num_groups = 0;
1898 
1899   int Max_Teams =
1900       Env.MaxTeamsDefault > 0 ? Env.MaxTeamsDefault : DeviceNumTeams;
1901   if (Max_Teams > RTLDeviceInfoTy::HardTeamLimit)
1902     Max_Teams = RTLDeviceInfoTy::HardTeamLimit;
1903 
1904   if (print_kernel_trace & STARTUP_DETAILS) {
1905     DP("RTLDeviceInfoTy::Max_Teams: %d\n", RTLDeviceInfoTy::Max_Teams);
1906     DP("Max_Teams: %d\n", Max_Teams);
1907     DP("RTLDeviceInfoTy::Warp_Size: %d\n", WarpSize);
1908     DP("RTLDeviceInfoTy::Max_WG_Size: %d\n", RTLDeviceInfoTy::Max_WG_Size);
1909     DP("RTLDeviceInfoTy::Default_WG_Size: %d\n",
1910        RTLDeviceInfoTy::Default_WG_Size);
1911     DP("thread_limit: %d\n", thread_limit);
1912     DP("threadsPerGroup: %d\n", threadsPerGroup);
1913     DP("ConstWGSize: %d\n", ConstWGSize);
1914   }
1915   // check for thread_limit() clause
1916   if (thread_limit > 0) {
1917     threadsPerGroup = thread_limit;
1918     DP("Setting threads per block to requested %d\n", thread_limit);
1919     if (ExecutionMode == GENERIC) { // Add master warp for GENERIC
1920       threadsPerGroup += WarpSize;
1921       DP("Adding master wavefront: +%d threads\n", WarpSize);
1922     }
1923     if (threadsPerGroup > RTLDeviceInfoTy::Max_WG_Size) { // limit to max
1924       threadsPerGroup = RTLDeviceInfoTy::Max_WG_Size;
1925       DP("Setting threads per block to maximum %d\n", threadsPerGroup);
1926     }
1927   }
1928   // check flat_max_work_group_size attr here
1929   if (threadsPerGroup > ConstWGSize) {
1930     threadsPerGroup = ConstWGSize;
1931     DP("Reduced threadsPerGroup to flat-attr-group-size limit %d\n",
1932        threadsPerGroup);
1933   }
1934   if (print_kernel_trace & STARTUP_DETAILS)
1935     DP("threadsPerGroup: %d\n", threadsPerGroup);
1936   DP("Preparing %d threads\n", threadsPerGroup);
1937 
1938   // Set default num_groups (teams)
1939   if (Env.TeamLimit > 0)
1940     num_groups = (Max_Teams < Env.TeamLimit) ? Max_Teams : Env.TeamLimit;
1941   else
1942     num_groups = Max_Teams;
1943   DP("Set default num of groups %d\n", num_groups);
1944 
1945   if (print_kernel_trace & STARTUP_DETAILS) {
1946     DP("num_groups: %d\n", num_groups);
1947     DP("num_teams: %d\n", num_teams);
1948   }
1949 
1950   // Reduce num_groups if threadsPerGroup exceeds RTLDeviceInfoTy::Max_WG_Size
1951   // This reduction is typical for default case (no thread_limit clause).
1952   // or when user goes crazy with num_teams clause.
1953   // FIXME: We cant distinguish between a constant or variable thread limit.
1954   // So we only handle constant thread_limits.
1955   if (threadsPerGroup >
1956       RTLDeviceInfoTy::Default_WG_Size) //  256 < threadsPerGroup <= 1024
1957     // Should we round threadsPerGroup up to nearest WarpSize
1958     // here?
1959     num_groups = (Max_Teams * RTLDeviceInfoTy::Max_WG_Size) / threadsPerGroup;
1960 
1961   // check for num_teams() clause
1962   if (num_teams > 0) {
1963     num_groups = (num_teams < num_groups) ? num_teams : num_groups;
1964   }
1965   if (print_kernel_trace & STARTUP_DETAILS) {
1966     DP("num_groups: %d\n", num_groups);
1967     DP("Env.NumTeams %d\n", Env.NumTeams);
1968     DP("Env.TeamLimit %d\n", Env.TeamLimit);
1969   }
1970 
1971   if (Env.NumTeams > 0) {
1972     num_groups = (Env.NumTeams < num_groups) ? Env.NumTeams : num_groups;
1973     DP("Modifying teams based on Env.NumTeams %d\n", Env.NumTeams);
1974   } else if (Env.TeamLimit > 0) {
1975     num_groups = (Env.TeamLimit < num_groups) ? Env.TeamLimit : num_groups;
1976     DP("Modifying teams based on Env.TeamLimit%d\n", Env.TeamLimit);
1977   } else {
1978     if (num_teams <= 0) {
1979       if (loop_tripcount > 0) {
1980         if (ExecutionMode == SPMD) {
1981           // round up to the nearest integer
1982           num_groups = ((loop_tripcount - 1) / threadsPerGroup) + 1;
1983         } else if (ExecutionMode == GENERIC) {
1984           num_groups = loop_tripcount;
1985         } else /* ExecutionMode == SPMD_GENERIC */ {
1986           // This is a generic kernel that was transformed to use SPMD-mode
1987           // execution but uses Generic-mode semantics for scheduling.
1988           num_groups = loop_tripcount;
1989         }
1990         DP("Using %d teams due to loop trip count %" PRIu64 " and number of "
1991            "threads per block %d\n",
1992            num_groups, loop_tripcount, threadsPerGroup);
1993       }
1994     } else {
1995       num_groups = num_teams;
1996     }
1997     if (num_groups > Max_Teams) {
1998       num_groups = Max_Teams;
1999       if (print_kernel_trace & STARTUP_DETAILS)
2000         DP("Limiting num_groups %d to Max_Teams %d \n", num_groups, Max_Teams);
2001     }
2002     if (num_groups > num_teams && num_teams > 0) {
2003       num_groups = num_teams;
2004       if (print_kernel_trace & STARTUP_DETAILS)
2005         DP("Limiting num_groups %d to clause num_teams %d \n", num_groups,
2006            num_teams);
2007     }
2008   }
2009 
2010   // num_teams clause always honored, no matter what, unless DEFAULT is active.
2011   if (num_teams > 0) {
2012     num_groups = num_teams;
2013     // Cap num_groups to EnvMaxTeamsDefault if set.
2014     if (Env.MaxTeamsDefault > 0 && num_groups > Env.MaxTeamsDefault)
2015       num_groups = Env.MaxTeamsDefault;
2016   }
2017   if (print_kernel_trace & STARTUP_DETAILS) {
2018     DP("threadsPerGroup: %d\n", threadsPerGroup);
2019     DP("num_groups: %d\n", num_groups);
2020     DP("loop_tripcount: %ld\n", loop_tripcount);
2021   }
2022   DP("Final %d num_groups and %d threadsPerGroup\n", num_groups,
2023      threadsPerGroup);
2024 
2025   launchVals res;
2026   res.WorkgroupSize = threadsPerGroup;
2027   res.GridSize = threadsPerGroup * num_groups;
2028   return res;
2029 }
2030 
2031 static uint64_t acquire_available_packet_id(hsa_queue_t *queue) {
2032   uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1);
2033   bool full = true;
2034   while (full) {
2035     full =
2036         packet_id >= (queue->size + hsa_queue_load_read_index_scacquire(queue));
2037   }
2038   return packet_id;
2039 }
2040 
2041 static int32_t __tgt_rtl_run_target_team_region_locked(
2042     int32_t device_id, void *tgt_entry_ptr, void **tgt_args,
2043     ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams,
2044     int32_t thread_limit, uint64_t loop_tripcount);
2045 
2046 int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr,
2047                                          void **tgt_args,
2048                                          ptrdiff_t *tgt_offsets,
2049                                          int32_t arg_num, int32_t num_teams,
2050                                          int32_t thread_limit,
2051                                          uint64_t loop_tripcount) {
2052 
2053   DeviceInfo.load_run_lock.lock_shared();
2054   int32_t res = __tgt_rtl_run_target_team_region_locked(
2055       device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, num_teams,
2056       thread_limit, loop_tripcount);
2057 
2058   DeviceInfo.load_run_lock.unlock_shared();
2059   return res;
2060 }
2061 
2062 int32_t __tgt_rtl_run_target_team_region_locked(
2063     int32_t device_id, void *tgt_entry_ptr, void **tgt_args,
2064     ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams,
2065     int32_t thread_limit, uint64_t loop_tripcount) {
2066   // Set the context we are using
2067   // update thread limit content in gpu memory if un-initialized or specified
2068   // from host
2069 
2070   DP("Run target team region thread_limit %d\n", thread_limit);
2071 
2072   // All args are references.
2073   std::vector<void *> args(arg_num);
2074   std::vector<void *> ptrs(arg_num);
2075 
2076   DP("Arg_num: %d\n", arg_num);
2077   for (int32_t i = 0; i < arg_num; ++i) {
2078     ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]);
2079     args[i] = &ptrs[i];
2080     DP("Offseted base: arg[%d]:" DPxMOD "\n", i, DPxPTR(ptrs[i]));
2081   }
2082 
2083   KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr;
2084 
2085   std::string kernel_name = std::string(KernelInfo->Name);
2086   auto &KernelInfoTable = DeviceInfo.KernelInfoTable;
2087   if (KernelInfoTable[device_id].find(kernel_name) ==
2088       KernelInfoTable[device_id].end()) {
2089     DP("Kernel %s not found\n", kernel_name.c_str());
2090     return OFFLOAD_FAIL;
2091   }
2092 
2093   const atl_kernel_info_t KernelInfoEntry =
2094       KernelInfoTable[device_id][kernel_name];
2095   const uint32_t group_segment_size = KernelInfoEntry.group_segment_size;
2096   const uint32_t sgpr_count = KernelInfoEntry.sgpr_count;
2097   const uint32_t vgpr_count = KernelInfoEntry.vgpr_count;
2098   const uint32_t sgpr_spill_count = KernelInfoEntry.sgpr_spill_count;
2099   const uint32_t vgpr_spill_count = KernelInfoEntry.vgpr_spill_count;
2100 
2101   assert(arg_num == (int)KernelInfoEntry.num_args);
2102 
2103   /*
2104    * Set limit based on ThreadsPerGroup and GroupsPerDevice
2105    */
2106   launchVals LV =
2107       getLaunchVals(DeviceInfo.WarpSize[device_id], DeviceInfo.Env,
2108                     KernelInfo->ConstWGSize, KernelInfo->ExecutionMode,
2109                     num_teams,      // From run_region arg
2110                     thread_limit,   // From run_region arg
2111                     loop_tripcount, // From run_region arg
2112                     DeviceInfo.NumTeams[KernelInfo->device_id]);
2113   const int GridSize = LV.GridSize;
2114   const int WorkgroupSize = LV.WorkgroupSize;
2115 
2116   if (print_kernel_trace >= LAUNCH) {
2117     int num_groups = GridSize / WorkgroupSize;
2118     // enum modes are SPMD, GENERIC, NONE 0,1,2
2119     // if doing rtl timing, print to stderr, unless stdout requested.
2120     bool traceToStdout = print_kernel_trace & (RTL_TO_STDOUT | RTL_TIMING);
2121     fprintf(traceToStdout ? stdout : stderr,
2122             "DEVID:%2d SGN:%1d ConstWGSize:%-4d args:%2d teamsXthrds:(%4dX%4d) "
2123             "reqd:(%4dX%4d) lds_usage:%uB sgpr_count:%u vgpr_count:%u "
2124             "sgpr_spill_count:%u vgpr_spill_count:%u tripcount:%lu n:%s\n",
2125             device_id, KernelInfo->ExecutionMode, KernelInfo->ConstWGSize,
2126             arg_num, num_groups, WorkgroupSize, num_teams, thread_limit,
2127             group_segment_size, sgpr_count, vgpr_count, sgpr_spill_count,
2128             vgpr_spill_count, loop_tripcount, KernelInfo->Name);
2129   }
2130 
2131   // Run on the device.
2132   {
2133     hsa_queue_t *queue = DeviceInfo.HSAQueues[device_id];
2134     if (!queue) {
2135       return OFFLOAD_FAIL;
2136     }
2137     uint64_t packet_id = acquire_available_packet_id(queue);
2138 
2139     const uint32_t mask = queue->size - 1; // size is a power of 2
2140     hsa_kernel_dispatch_packet_t *packet =
2141         (hsa_kernel_dispatch_packet_t *)queue->base_address +
2142         (packet_id & mask);
2143 
2144     // packet->header is written last
2145     packet->setup = UINT16_C(1) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS;
2146     packet->workgroup_size_x = WorkgroupSize;
2147     packet->workgroup_size_y = 1;
2148     packet->workgroup_size_z = 1;
2149     packet->reserved0 = 0;
2150     packet->grid_size_x = GridSize;
2151     packet->grid_size_y = 1;
2152     packet->grid_size_z = 1;
2153     packet->private_segment_size = KernelInfoEntry.private_segment_size;
2154     packet->group_segment_size = KernelInfoEntry.group_segment_size;
2155     packet->kernel_object = KernelInfoEntry.kernel_object;
2156     packet->kernarg_address = 0;     // use the block allocator
2157     packet->reserved2 = 0;           // impl writes id_ here
2158     packet->completion_signal = {0}; // may want a pool of signals
2159 
2160     KernelArgPool *ArgPool = nullptr;
2161     {
2162       auto it = KernelArgPoolMap.find(std::string(KernelInfo->Name));
2163       if (it != KernelArgPoolMap.end()) {
2164         ArgPool = (it->second).get();
2165       }
2166     }
2167     if (!ArgPool) {
2168       DP("Warning: No ArgPool for %s on device %d\n", KernelInfo->Name,
2169          device_id);
2170     }
2171     {
2172       void *kernarg = nullptr;
2173       if (ArgPool) {
2174         assert(ArgPool->kernarg_segment_size == (arg_num * sizeof(void *)));
2175         kernarg = ArgPool->allocate(arg_num);
2176       }
2177       if (!kernarg) {
2178         DP("Allocate kernarg failed\n");
2179         return OFFLOAD_FAIL;
2180       }
2181 
2182       // Copy explicit arguments
2183       for (int i = 0; i < arg_num; i++) {
2184         memcpy((char *)kernarg + sizeof(void *) * i, args[i], sizeof(void *));
2185       }
2186 
2187       // Initialize implicit arguments. TODO: Which of these can be dropped
2188       impl_implicit_args_t *impl_args =
2189           reinterpret_cast<impl_implicit_args_t *>(
2190               static_cast<char *>(kernarg) + ArgPool->kernarg_segment_size);
2191       memset(impl_args, 0,
2192              sizeof(impl_implicit_args_t)); // may not be necessary
2193       impl_args->offset_x = 0;
2194       impl_args->offset_y = 0;
2195       impl_args->offset_z = 0;
2196 
2197       // assign a hostcall buffer for the selected Q
2198       if (__atomic_load_n(&DeviceInfo.hostcall_required, __ATOMIC_ACQUIRE)) {
2199         // hostrpc_assign_buffer is not thread safe, and this function is
2200         // under a multiple reader lock, not a writer lock.
2201         static pthread_mutex_t hostcall_init_lock = PTHREAD_MUTEX_INITIALIZER;
2202         pthread_mutex_lock(&hostcall_init_lock);
2203         impl_args->hostcall_ptr = hostrpc_assign_buffer(
2204             DeviceInfo.HSAAgents[device_id], queue, device_id);
2205         pthread_mutex_unlock(&hostcall_init_lock);
2206         if (!impl_args->hostcall_ptr) {
2207           DP("hostrpc_assign_buffer failed, gpu would dereference null and "
2208              "error\n");
2209           return OFFLOAD_FAIL;
2210         }
2211       }
2212 
2213       packet->kernarg_address = kernarg;
2214     }
2215 
2216     {
2217       hsa_signal_t s = DeviceInfo.FreeSignalPool.pop();
2218       if (s.handle == 0) {
2219         DP("Failed to get signal instance\n");
2220         return OFFLOAD_FAIL;
2221       }
2222       packet->completion_signal = s;
2223       hsa_signal_store_relaxed(packet->completion_signal, 1);
2224     }
2225 
2226     core::packet_store_release(reinterpret_cast<uint32_t *>(packet),
2227                                core::create_header(), packet->setup);
2228 
2229     hsa_signal_store_relaxed(queue->doorbell_signal, packet_id);
2230 
2231     while (hsa_signal_wait_scacquire(packet->completion_signal,
2232                                      HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX,
2233                                      HSA_WAIT_STATE_BLOCKED) != 0)
2234       ;
2235 
2236     assert(ArgPool);
2237     ArgPool->deallocate(packet->kernarg_address);
2238     DeviceInfo.FreeSignalPool.push(packet->completion_signal);
2239   }
2240 
2241   DP("Kernel completed\n");
2242   return OFFLOAD_SUCCESS;
2243 }
2244 
2245 int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr,
2246                                     void **tgt_args, ptrdiff_t *tgt_offsets,
2247                                     int32_t arg_num) {
2248   // use one team and one thread
2249   // fix thread num
2250   int32_t team_num = 1;
2251   int32_t thread_limit = 0; // use default
2252   return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args,
2253                                           tgt_offsets, arg_num, team_num,
2254                                           thread_limit, 0);
2255 }
2256 
2257 int32_t __tgt_rtl_run_target_region_async(int32_t device_id,
2258                                           void *tgt_entry_ptr, void **tgt_args,
2259                                           ptrdiff_t *tgt_offsets,
2260                                           int32_t arg_num,
2261                                           __tgt_async_info *AsyncInfo) {
2262   assert(AsyncInfo && "AsyncInfo is nullptr");
2263   initAsyncInfo(AsyncInfo);
2264 
2265   // use one team and one thread
2266   // fix thread num
2267   int32_t team_num = 1;
2268   int32_t thread_limit = 0; // use default
2269   return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args,
2270                                           tgt_offsets, arg_num, team_num,
2271                                           thread_limit, 0);
2272 }
2273 
2274 int32_t __tgt_rtl_synchronize(int32_t device_id, __tgt_async_info *AsyncInfo) {
2275   assert(AsyncInfo && "AsyncInfo is nullptr");
2276 
2277   // Cuda asserts that AsyncInfo->Queue is non-null, but this invariant
2278   // is not ensured by devices.cpp for amdgcn
2279   // assert(AsyncInfo->Queue && "AsyncInfo->Queue is nullptr");
2280   if (AsyncInfo->Queue) {
2281     finiAsyncInfo(AsyncInfo);
2282   }
2283   return OFFLOAD_SUCCESS;
2284 }
2285 
2286 namespace core {
2287 hsa_status_t allow_access_to_all_gpu_agents(void *ptr) {
2288   return hsa_amd_agents_allow_access(DeviceInfo.HSAAgents.size(),
2289                                      &DeviceInfo.HSAAgents[0], NULL, ptr);
2290 }
2291 
2292 } // namespace core
2293