1 //===--- amdgpu/src/rtl.cpp --------------------------------------- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // RTL for AMD hsa machine 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <algorithm> 14 #include <assert.h> 15 #include <cstdio> 16 #include <cstdlib> 17 #include <cstring> 18 #include <functional> 19 #include <libelf.h> 20 #include <list> 21 #include <memory> 22 #include <mutex> 23 #include <shared_mutex> 24 #include <unordered_map> 25 #include <vector> 26 27 #include "interop_hsa.h" 28 #include "impl_runtime.h" 29 30 #include "internal.h" 31 #include "rt.h" 32 33 #include "DeviceEnvironment.h" 34 #include "get_elf_mach_gfx_name.h" 35 #include "omptargetplugin.h" 36 #include "print_tracing.h" 37 38 #include "llvm/Frontend/OpenMP/OMPConstants.h" 39 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 40 41 // hostrpc interface, FIXME: consider moving to its own include these are 42 // statically linked into amdgpu/plugin if present from hostrpc_services.a, 43 // linked as --whole-archive to override the weak symbols that are used to 44 // implement a fallback for toolchains that do not yet have a hostrpc library. 45 extern "C" { 46 uint64_t hostrpc_assign_buffer(hsa_agent_t agent, hsa_queue_t *this_Q, 47 uint32_t device_id); 48 hsa_status_t hostrpc_init(); 49 hsa_status_t hostrpc_terminate(); 50 51 __attribute__((weak)) hsa_status_t hostrpc_init() { return HSA_STATUS_SUCCESS; } 52 __attribute__((weak)) hsa_status_t hostrpc_terminate() { 53 return HSA_STATUS_SUCCESS; 54 } 55 __attribute__((weak)) uint64_t hostrpc_assign_buffer(hsa_agent_t, hsa_queue_t *, 56 uint32_t device_id) { 57 DP("Warning: Attempting to assign hostrpc to device %u, but hostrpc library " 58 "missing\n", 59 device_id); 60 return 0; 61 } 62 } 63 64 // Heuristic parameters used for kernel launch 65 // Number of teams per CU to allow scheduling flexibility 66 static const unsigned DefaultTeamsPerCU = 4; 67 68 int print_kernel_trace; 69 70 #ifdef OMPTARGET_DEBUG 71 #define check(msg, status) \ 72 if (status != HSA_STATUS_SUCCESS) { \ 73 DP(#msg " failed\n"); \ 74 } else { \ 75 DP(#msg " succeeded\n"); \ 76 } 77 #else 78 #define check(msg, status) \ 79 {} 80 #endif 81 82 #include "elf_common.h" 83 84 namespace hsa { 85 template <typename C> hsa_status_t iterate_agents(C cb) { 86 auto L = [](hsa_agent_t agent, void *data) -> hsa_status_t { 87 C *unwrapped = static_cast<C *>(data); 88 return (*unwrapped)(agent); 89 }; 90 return hsa_iterate_agents(L, static_cast<void *>(&cb)); 91 } 92 93 template <typename C> 94 hsa_status_t amd_agent_iterate_memory_pools(hsa_agent_t Agent, C cb) { 95 auto L = [](hsa_amd_memory_pool_t MemoryPool, void *data) -> hsa_status_t { 96 C *unwrapped = static_cast<C *>(data); 97 return (*unwrapped)(MemoryPool); 98 }; 99 100 return hsa_amd_agent_iterate_memory_pools(Agent, L, static_cast<void *>(&cb)); 101 } 102 103 } // namespace hsa 104 105 /// Keep entries table per device 106 struct FuncOrGblEntryTy { 107 __tgt_target_table Table; 108 std::vector<__tgt_offload_entry> Entries; 109 }; 110 111 struct KernelArgPool { 112 private: 113 static pthread_mutex_t mutex; 114 115 public: 116 uint32_t kernarg_segment_size; 117 void *kernarg_region = nullptr; 118 std::queue<int> free_kernarg_segments; 119 120 uint32_t kernarg_size_including_implicit() { 121 return kernarg_segment_size + sizeof(impl_implicit_args_t); 122 } 123 124 ~KernelArgPool() { 125 if (kernarg_region) { 126 auto r = hsa_amd_memory_pool_free(kernarg_region); 127 if (r != HSA_STATUS_SUCCESS) { 128 DP("hsa_amd_memory_pool_free failed: %s\n", get_error_string(r)); 129 } 130 } 131 } 132 133 // Can't really copy or move a mutex 134 KernelArgPool() = default; 135 KernelArgPool(const KernelArgPool &) = delete; 136 KernelArgPool(KernelArgPool &&) = delete; 137 138 KernelArgPool(uint32_t kernarg_segment_size, 139 hsa_amd_memory_pool_t &memory_pool) 140 : kernarg_segment_size(kernarg_segment_size) { 141 142 // impl uses one pool per kernel for all gpus, with a fixed upper size 143 // preserving that exact scheme here, including the queue<int> 144 145 hsa_status_t err = hsa_amd_memory_pool_allocate( 146 memory_pool, kernarg_size_including_implicit() * MAX_NUM_KERNELS, 0, 147 &kernarg_region); 148 149 if (err != HSA_STATUS_SUCCESS) { 150 DP("hsa_amd_memory_pool_allocate failed: %s\n", get_error_string(err)); 151 kernarg_region = nullptr; // paranoid 152 return; 153 } 154 155 err = core::allow_access_to_all_gpu_agents(kernarg_region); 156 if (err != HSA_STATUS_SUCCESS) { 157 DP("hsa allow_access_to_all_gpu_agents failed: %s\n", 158 get_error_string(err)); 159 auto r = hsa_amd_memory_pool_free(kernarg_region); 160 if (r != HSA_STATUS_SUCCESS) { 161 // if free failed, can't do anything more to resolve it 162 DP("hsa memory poll free failed: %s\n", get_error_string(err)); 163 } 164 kernarg_region = nullptr; 165 return; 166 } 167 168 for (int i = 0; i < MAX_NUM_KERNELS; i++) { 169 free_kernarg_segments.push(i); 170 } 171 } 172 173 void *allocate(uint64_t arg_num) { 174 assert((arg_num * sizeof(void *)) == kernarg_segment_size); 175 lock l(&mutex); 176 void *res = nullptr; 177 if (!free_kernarg_segments.empty()) { 178 179 int free_idx = free_kernarg_segments.front(); 180 res = static_cast<void *>(static_cast<char *>(kernarg_region) + 181 (free_idx * kernarg_size_including_implicit())); 182 assert(free_idx == pointer_to_index(res)); 183 free_kernarg_segments.pop(); 184 } 185 return res; 186 } 187 188 void deallocate(void *ptr) { 189 lock l(&mutex); 190 int idx = pointer_to_index(ptr); 191 free_kernarg_segments.push(idx); 192 } 193 194 private: 195 int pointer_to_index(void *ptr) { 196 ptrdiff_t bytes = 197 static_cast<char *>(ptr) - static_cast<char *>(kernarg_region); 198 assert(bytes >= 0); 199 assert(bytes % kernarg_size_including_implicit() == 0); 200 return bytes / kernarg_size_including_implicit(); 201 } 202 struct lock { 203 lock(pthread_mutex_t *m) : m(m) { pthread_mutex_lock(m); } 204 ~lock() { pthread_mutex_unlock(m); } 205 pthread_mutex_t *m; 206 }; 207 }; 208 pthread_mutex_t KernelArgPool::mutex = PTHREAD_MUTEX_INITIALIZER; 209 210 std::unordered_map<std::string /*kernel*/, std::unique_ptr<KernelArgPool>> 211 KernelArgPoolMap; 212 213 /// Use a single entity to encode a kernel and a set of flags 214 struct KernelTy { 215 llvm::omp::OMPTgtExecModeFlags ExecutionMode; 216 int16_t ConstWGSize; 217 int32_t device_id; 218 void *CallStackAddr = nullptr; 219 const char *Name; 220 221 KernelTy(llvm::omp::OMPTgtExecModeFlags _ExecutionMode, int16_t _ConstWGSize, 222 int32_t _device_id, void *_CallStackAddr, const char *_Name, 223 uint32_t _kernarg_segment_size, 224 hsa_amd_memory_pool_t &KernArgMemoryPool) 225 : ExecutionMode(_ExecutionMode), ConstWGSize(_ConstWGSize), 226 device_id(_device_id), CallStackAddr(_CallStackAddr), Name(_Name) { 227 DP("Construct kernelinfo: ExecMode %d\n", ExecutionMode); 228 229 std::string N(_Name); 230 if (KernelArgPoolMap.find(N) == KernelArgPoolMap.end()) { 231 KernelArgPoolMap.insert( 232 std::make_pair(N, std::unique_ptr<KernelArgPool>(new KernelArgPool( 233 _kernarg_segment_size, KernArgMemoryPool)))); 234 } 235 } 236 }; 237 238 /// List that contains all the kernels. 239 /// FIXME: we may need this to be per device and per library. 240 std::list<KernelTy> KernelsList; 241 242 template <typename Callback> static hsa_status_t FindAgents(Callback CB) { 243 244 hsa_status_t err = 245 hsa::iterate_agents([&](hsa_agent_t agent) -> hsa_status_t { 246 hsa_device_type_t device_type; 247 // get_info fails iff HSA runtime not yet initialized 248 hsa_status_t err = 249 hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 250 251 if (err != HSA_STATUS_SUCCESS) { 252 if (print_kernel_trace > 0) 253 DP("rtl.cpp: err %s\n", get_error_string(err)); 254 255 return err; 256 } 257 258 CB(device_type, agent); 259 return HSA_STATUS_SUCCESS; 260 }); 261 262 // iterate_agents fails iff HSA runtime not yet initialized 263 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) { 264 DP("rtl.cpp: err %s\n", get_error_string(err)); 265 } 266 267 return err; 268 } 269 270 static void callbackQueue(hsa_status_t status, hsa_queue_t *source, 271 void *data) { 272 if (status != HSA_STATUS_SUCCESS) { 273 const char *status_string; 274 if (hsa_status_string(status, &status_string) != HSA_STATUS_SUCCESS) { 275 status_string = "unavailable"; 276 } 277 DP("[%s:%d] GPU error in queue %p %d (%s)\n", __FILE__, __LINE__, source, 278 status, status_string); 279 abort(); 280 } 281 } 282 283 namespace core { 284 namespace { 285 286 bool checkResult(hsa_status_t Err, const char *ErrMsg) { 287 if (Err == HSA_STATUS_SUCCESS) 288 return true; 289 290 REPORT("%s", ErrMsg); 291 REPORT("%s", get_error_string(Err)); 292 return false; 293 } 294 295 void packet_store_release(uint32_t *packet, uint16_t header, uint16_t rest) { 296 __atomic_store_n(packet, header | (rest << 16), __ATOMIC_RELEASE); 297 } 298 299 uint16_t create_header() { 300 uint16_t header = HSA_PACKET_TYPE_KERNEL_DISPATCH << HSA_PACKET_HEADER_TYPE; 301 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE; 302 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE; 303 return header; 304 } 305 306 hsa_status_t isValidMemoryPool(hsa_amd_memory_pool_t MemoryPool) { 307 bool AllocAllowed = false; 308 hsa_status_t Err = hsa_amd_memory_pool_get_info( 309 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED, 310 &AllocAllowed); 311 if (Err != HSA_STATUS_SUCCESS) { 312 DP("Alloc allowed in memory pool check failed: %s\n", 313 get_error_string(Err)); 314 return Err; 315 } 316 317 size_t Size = 0; 318 Err = hsa_amd_memory_pool_get_info(MemoryPool, HSA_AMD_MEMORY_POOL_INFO_SIZE, 319 &Size); 320 if (Err != HSA_STATUS_SUCCESS) { 321 DP("Get memory pool size failed: %s\n", get_error_string(Err)); 322 return Err; 323 } 324 325 return (AllocAllowed && Size > 0) ? HSA_STATUS_SUCCESS : HSA_STATUS_ERROR; 326 } 327 328 hsa_status_t addMemoryPool(hsa_amd_memory_pool_t MemoryPool, void *Data) { 329 std::vector<hsa_amd_memory_pool_t> *Result = 330 static_cast<std::vector<hsa_amd_memory_pool_t> *>(Data); 331 332 hsa_status_t err; 333 if ((err = isValidMemoryPool(MemoryPool)) != HSA_STATUS_SUCCESS) { 334 return err; 335 } 336 337 Result->push_back(MemoryPool); 338 return HSA_STATUS_SUCCESS; 339 } 340 341 } // namespace 342 } // namespace core 343 344 struct EnvironmentVariables { 345 int NumTeams; 346 int TeamLimit; 347 int TeamThreadLimit; 348 int MaxTeamsDefault; 349 int DynamicMemSize; 350 }; 351 352 template <uint32_t wavesize> 353 static constexpr const llvm::omp::GV &getGridValue() { 354 return llvm::omp::getAMDGPUGridValues<wavesize>(); 355 } 356 357 struct HSALifetime { 358 // Wrapper around HSA used to ensure it is constructed before other types 359 // and destructed after, which means said other types can use raii for 360 // cleanup without risking running outside of the lifetime of HSA 361 const hsa_status_t S; 362 363 bool HSAInitSuccess() { return S == HSA_STATUS_SUCCESS; } 364 HSALifetime() : S(hsa_init()) {} 365 366 ~HSALifetime() { 367 if (S == HSA_STATUS_SUCCESS) { 368 hsa_status_t Err = hsa_shut_down(); 369 if (Err != HSA_STATUS_SUCCESS) { 370 // Can't call into HSA to get a string from the integer 371 DP("Shutting down HSA failed: %d\n", Err); 372 } 373 } 374 } 375 }; 376 377 // Handle scheduling of multiple hsa_queue's per device to 378 // multiple threads (one scheduler per device) 379 class HSAQueueScheduler { 380 public: 381 HSAQueueScheduler() : current(0) {} 382 383 HSAQueueScheduler(const HSAQueueScheduler &) = delete; 384 385 HSAQueueScheduler(HSAQueueScheduler &&q) { 386 current = q.current.load(); 387 for (uint8_t i = 0; i < NUM_QUEUES_PER_DEVICE; i++) { 388 HSAQueues[i] = q.HSAQueues[i]; 389 q.HSAQueues[i] = nullptr; 390 } 391 } 392 393 // \return false if any HSA queue creation fails 394 bool CreateQueues(hsa_agent_t HSAAgent, uint32_t queue_size) { 395 for (uint8_t i = 0; i < NUM_QUEUES_PER_DEVICE; i++) { 396 hsa_queue_t *Q = nullptr; 397 hsa_status_t rc = 398 hsa_queue_create(HSAAgent, queue_size, HSA_QUEUE_TYPE_MULTI, 399 callbackQueue, NULL, UINT32_MAX, UINT32_MAX, &Q); 400 if (rc != HSA_STATUS_SUCCESS) { 401 DP("Failed to create HSA queue %d\n", i); 402 return false; 403 } 404 HSAQueues[i] = Q; 405 } 406 return true; 407 } 408 409 ~HSAQueueScheduler() { 410 for (uint8_t i = 0; i < NUM_QUEUES_PER_DEVICE; i++) { 411 if (HSAQueues[i]) { 412 hsa_status_t err = hsa_queue_destroy(HSAQueues[i]); 413 if (err != HSA_STATUS_SUCCESS) 414 DP("Error destroying HSA queue"); 415 } 416 } 417 } 418 419 // \return next queue to use for device 420 hsa_queue_t *Next() { 421 return HSAQueues[(current.fetch_add(1, std::memory_order_relaxed)) % 422 NUM_QUEUES_PER_DEVICE]; 423 } 424 425 private: 426 // Number of queues per device 427 enum : uint8_t { NUM_QUEUES_PER_DEVICE = 4 }; 428 hsa_queue_t *HSAQueues[NUM_QUEUES_PER_DEVICE] = {}; 429 std::atomic<uint8_t> current; 430 }; 431 432 /// Class containing all the device information 433 class RTLDeviceInfoTy : HSALifetime { 434 std::vector<std::list<FuncOrGblEntryTy>> FuncGblEntries; 435 436 struct QueueDeleter { 437 void operator()(hsa_queue_t *Q) { 438 if (Q) { 439 hsa_status_t Err = hsa_queue_destroy(Q); 440 if (Err != HSA_STATUS_SUCCESS) { 441 DP("Error destroying hsa queue: %s\n", get_error_string(Err)); 442 } 443 } 444 } 445 }; 446 447 public: 448 bool ConstructionSucceeded = false; 449 450 // load binary populates symbol tables and mutates various global state 451 // run uses those symbol tables 452 std::shared_timed_mutex load_run_lock; 453 454 int NumberOfDevices = 0; 455 456 // GPU devices 457 std::vector<hsa_agent_t> HSAAgents; 458 std::vector<HSAQueueScheduler> HSAQueueSchedulers; // one per gpu 459 460 // CPUs 461 std::vector<hsa_agent_t> CPUAgents; 462 463 // Device properties 464 std::vector<int> ComputeUnits; 465 std::vector<int> GroupsPerDevice; 466 std::vector<int> ThreadsPerGroup; 467 std::vector<int> WarpSize; 468 std::vector<std::string> GPUName; 469 470 // OpenMP properties 471 std::vector<int> NumTeams; 472 std::vector<int> NumThreads; 473 474 // OpenMP Environment properties 475 EnvironmentVariables Env; 476 477 // OpenMP Requires Flags 478 int64_t RequiresFlags; 479 480 // Resource pools 481 SignalPoolT FreeSignalPool; 482 483 bool hostcall_required = false; 484 485 std::vector<hsa_executable_t> HSAExecutables; 486 487 std::vector<std::map<std::string, atl_kernel_info_t>> KernelInfoTable; 488 std::vector<std::map<std::string, atl_symbol_info_t>> SymbolInfoTable; 489 490 hsa_amd_memory_pool_t KernArgPool; 491 492 // fine grained memory pool for host allocations 493 hsa_amd_memory_pool_t HostFineGrainedMemoryPool; 494 495 // fine and coarse-grained memory pools per offloading device 496 std::vector<hsa_amd_memory_pool_t> DeviceFineGrainedMemoryPools; 497 std::vector<hsa_amd_memory_pool_t> DeviceCoarseGrainedMemoryPools; 498 499 struct implFreePtrDeletor { 500 void operator()(void *p) { 501 core::Runtime::Memfree(p); // ignore failure to free 502 } 503 }; 504 505 // device_State shared across loaded binaries, error if inconsistent size 506 std::vector<std::pair<std::unique_ptr<void, implFreePtrDeletor>, uint64_t>> 507 deviceStateStore; 508 509 static const unsigned HardTeamLimit = 510 (1 << 16) - 1; // 64K needed to fit in uint16 511 static const int DefaultNumTeams = 128; 512 513 // These need to be per-device since different devices can have different 514 // wave sizes, but are currently the same number for each so that refactor 515 // can be postponed. 516 static_assert(getGridValue<32>().GV_Max_Teams == 517 getGridValue<64>().GV_Max_Teams, 518 ""); 519 static const int Max_Teams = getGridValue<64>().GV_Max_Teams; 520 521 static_assert(getGridValue<32>().GV_Max_WG_Size == 522 getGridValue<64>().GV_Max_WG_Size, 523 ""); 524 static const int Max_WG_Size = getGridValue<64>().GV_Max_WG_Size; 525 526 static_assert(getGridValue<32>().GV_Default_WG_Size == 527 getGridValue<64>().GV_Default_WG_Size, 528 ""); 529 static const int Default_WG_Size = getGridValue<64>().GV_Default_WG_Size; 530 531 using MemcpyFunc = hsa_status_t (*)(hsa_signal_t, void *, void *, size_t size, 532 hsa_agent_t, hsa_amd_memory_pool_t); 533 hsa_status_t freesignalpool_memcpy(void *dest, void *src, size_t size, 534 MemcpyFunc Func, int32_t deviceId) { 535 hsa_agent_t agent = HSAAgents[deviceId]; 536 hsa_signal_t s = FreeSignalPool.pop(); 537 if (s.handle == 0) { 538 return HSA_STATUS_ERROR; 539 } 540 hsa_status_t r = Func(s, dest, src, size, agent, HostFineGrainedMemoryPool); 541 FreeSignalPool.push(s); 542 return r; 543 } 544 545 hsa_status_t freesignalpool_memcpy_d2h(void *dest, void *src, size_t size, 546 int32_t deviceId) { 547 return freesignalpool_memcpy(dest, src, size, impl_memcpy_d2h, deviceId); 548 } 549 550 hsa_status_t freesignalpool_memcpy_h2d(void *dest, void *src, size_t size, 551 int32_t deviceId) { 552 return freesignalpool_memcpy(dest, src, size, impl_memcpy_h2d, deviceId); 553 } 554 555 static void printDeviceInfo(int32_t device_id, hsa_agent_t agent) { 556 char TmpChar[1000]; 557 uint16_t major, minor; 558 uint32_t TmpUInt; 559 uint32_t TmpUInt2; 560 uint32_t CacheSize[4]; 561 bool TmpBool; 562 uint16_t workgroupMaxDim[3]; 563 hsa_dim3_t gridMaxDim; 564 565 // Getting basic information about HSA and Device 566 core::checkResult( 567 hsa_system_get_info(HSA_SYSTEM_INFO_VERSION_MAJOR, &major), 568 "Error from hsa_system_get_info when obtaining " 569 "HSA_SYSTEM_INFO_VERSION_MAJOR\n"); 570 core::checkResult( 571 hsa_system_get_info(HSA_SYSTEM_INFO_VERSION_MINOR, &minor), 572 "Error from hsa_system_get_info when obtaining " 573 "HSA_SYSTEM_INFO_VERSION_MINOR\n"); 574 printf(" HSA Runtime Version: \t\t%u.%u \n", major, minor); 575 printf(" HSA OpenMP Device Number: \t\t%d \n", device_id); 576 core::checkResult( 577 hsa_agent_get_info( 578 agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_PRODUCT_NAME, TmpChar), 579 "Error returned from hsa_agent_get_info when obtaining " 580 "HSA_AMD_AGENT_INFO_PRODUCT_NAME\n"); 581 printf(" Product Name: \t\t\t%s \n", TmpChar); 582 core::checkResult(hsa_agent_get_info(agent, HSA_AGENT_INFO_NAME, TmpChar), 583 "Error returned from hsa_agent_get_info when obtaining " 584 "HSA_AGENT_INFO_NAME\n"); 585 printf(" Device Name: \t\t\t%s \n", TmpChar); 586 core::checkResult( 587 hsa_agent_get_info(agent, HSA_AGENT_INFO_VENDOR_NAME, TmpChar), 588 "Error returned from hsa_agent_get_info when obtaining " 589 "HSA_AGENT_INFO_NAME\n"); 590 printf(" Vendor Name: \t\t\t%s \n", TmpChar); 591 hsa_device_type_t devType; 592 core::checkResult( 593 hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &devType), 594 "Error returned from hsa_agent_get_info when obtaining " 595 "HSA_AGENT_INFO_DEVICE\n"); 596 printf(" Device Type: \t\t\t%s \n", 597 devType == HSA_DEVICE_TYPE_CPU 598 ? "CPU" 599 : (devType == HSA_DEVICE_TYPE_GPU 600 ? "GPU" 601 : (devType == HSA_DEVICE_TYPE_DSP ? "DSP" : "UNKNOWN"))); 602 core::checkResult( 603 hsa_agent_get_info(agent, HSA_AGENT_INFO_QUEUES_MAX, &TmpUInt), 604 "Error returned from hsa_agent_get_info when obtaining " 605 "HSA_AGENT_INFO_QUEUES_MAX\n"); 606 printf(" Max Queues: \t\t\t%u \n", TmpUInt); 607 core::checkResult( 608 hsa_agent_get_info(agent, HSA_AGENT_INFO_QUEUE_MIN_SIZE, &TmpUInt), 609 "Error returned from hsa_agent_get_info when obtaining " 610 "HSA_AGENT_INFO_QUEUE_MIN_SIZE\n"); 611 printf(" Queue Min Size: \t\t\t%u \n", TmpUInt); 612 core::checkResult( 613 hsa_agent_get_info(agent, HSA_AGENT_INFO_QUEUE_MAX_SIZE, &TmpUInt), 614 "Error returned from hsa_agent_get_info when obtaining " 615 "HSA_AGENT_INFO_QUEUE_MAX_SIZE\n"); 616 printf(" Queue Max Size: \t\t\t%u \n", TmpUInt); 617 618 // Getting cache information 619 printf(" Cache:\n"); 620 621 // FIXME: This is deprecated according to HSA documentation. But using 622 // hsa_agent_iterate_caches and hsa_cache_get_info breaks execution during 623 // runtime. 624 core::checkResult( 625 hsa_agent_get_info(agent, HSA_AGENT_INFO_CACHE_SIZE, CacheSize), 626 "Error returned from hsa_agent_get_info when obtaining " 627 "HSA_AGENT_INFO_CACHE_SIZE\n"); 628 629 for (int i = 0; i < 4; i++) { 630 if (CacheSize[i]) { 631 printf(" L%u: \t\t\t\t%u bytes\n", i, CacheSize[i]); 632 } 633 } 634 635 core::checkResult( 636 hsa_agent_get_info(agent, 637 (hsa_agent_info_t)HSA_AMD_AGENT_INFO_CACHELINE_SIZE, 638 &TmpUInt), 639 "Error returned from hsa_agent_get_info when obtaining " 640 "HSA_AMD_AGENT_INFO_CACHELINE_SIZE\n"); 641 printf(" Cacheline Size: \t\t\t%u \n", TmpUInt); 642 core::checkResult( 643 hsa_agent_get_info( 644 agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_MAX_CLOCK_FREQUENCY, 645 &TmpUInt), 646 "Error returned from hsa_agent_get_info when obtaining " 647 "HSA_AMD_AGENT_INFO_MAX_CLOCK_FREQUENCY\n"); 648 printf(" Max Clock Freq(MHz): \t\t%u \n", TmpUInt); 649 core::checkResult( 650 hsa_agent_get_info( 651 agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT, 652 &TmpUInt), 653 "Error returned from hsa_agent_get_info when obtaining " 654 "HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT\n"); 655 printf(" Compute Units: \t\t\t%u \n", TmpUInt); 656 core::checkResult(hsa_agent_get_info( 657 agent, 658 (hsa_agent_info_t)HSA_AMD_AGENT_INFO_NUM_SIMDS_PER_CU, 659 &TmpUInt), 660 "Error returned from hsa_agent_get_info when obtaining " 661 "HSA_AMD_AGENT_INFO_NUM_SIMDS_PER_CU\n"); 662 printf(" SIMD per CU: \t\t\t%u \n", TmpUInt); 663 core::checkResult( 664 hsa_agent_get_info(agent, HSA_AGENT_INFO_FAST_F16_OPERATION, &TmpBool), 665 "Error returned from hsa_agent_get_info when obtaining " 666 "HSA_AMD_AGENT_INFO_NUM_SIMDS_PER_CU\n"); 667 printf(" Fast F16 Operation: \t\t%s \n", (TmpBool ? "TRUE" : "FALSE")); 668 core::checkResult( 669 hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &TmpUInt2), 670 "Error returned from hsa_agent_get_info when obtaining " 671 "HSA_AGENT_INFO_WAVEFRONT_SIZE\n"); 672 printf(" Wavefront Size: \t\t\t%u \n", TmpUInt2); 673 core::checkResult( 674 hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_SIZE, &TmpUInt), 675 "Error returned from hsa_agent_get_info when obtaining " 676 "HSA_AGENT_INFO_WORKGROUP_MAX_SIZE\n"); 677 printf(" Workgroup Max Size: \t\t%u \n", TmpUInt); 678 core::checkResult(hsa_agent_get_info(agent, 679 HSA_AGENT_INFO_WORKGROUP_MAX_DIM, 680 workgroupMaxDim), 681 "Error returned from hsa_agent_get_info when obtaining " 682 "HSA_AGENT_INFO_WORKGROUP_MAX_DIM\n"); 683 printf(" Workgroup Max Size per Dimension:\n"); 684 printf(" x: \t\t\t\t%u\n", workgroupMaxDim[0]); 685 printf(" y: \t\t\t\t%u\n", workgroupMaxDim[1]); 686 printf(" z: \t\t\t\t%u\n", workgroupMaxDim[2]); 687 core::checkResult(hsa_agent_get_info( 688 agent, 689 (hsa_agent_info_t)HSA_AMD_AGENT_INFO_MAX_WAVES_PER_CU, 690 &TmpUInt), 691 "Error returned from hsa_agent_get_info when obtaining " 692 "HSA_AMD_AGENT_INFO_MAX_WAVES_PER_CU\n"); 693 printf(" Max Waves Per CU: \t\t\t%u \n", TmpUInt); 694 printf(" Max Work-item Per CU: \t\t%u \n", TmpUInt * TmpUInt2); 695 core::checkResult( 696 hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_SIZE, &TmpUInt), 697 "Error returned from hsa_agent_get_info when obtaining " 698 "HSA_AGENT_INFO_GRID_MAX_SIZE\n"); 699 printf(" Grid Max Size: \t\t\t%u \n", TmpUInt); 700 core::checkResult( 701 hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &gridMaxDim), 702 "Error returned from hsa_agent_get_info when obtaining " 703 "HSA_AGENT_INFO_GRID_MAX_DIM\n"); 704 printf(" Grid Max Size per Dimension: \t\t\n"); 705 printf(" x: \t\t\t\t%u\n", gridMaxDim.x); 706 printf(" y: \t\t\t\t%u\n", gridMaxDim.y); 707 printf(" z: \t\t\t\t%u\n", gridMaxDim.z); 708 core::checkResult( 709 hsa_agent_get_info(agent, HSA_AGENT_INFO_FBARRIER_MAX_SIZE, &TmpUInt), 710 "Error returned from hsa_agent_get_info when obtaining " 711 "HSA_AGENT_INFO_FBARRIER_MAX_SIZE\n"); 712 printf(" Max fbarriers/Workgrp: \t\t%u\n", TmpUInt); 713 714 printf(" Memory Pools:\n"); 715 auto CB_mem = [](hsa_amd_memory_pool_t region, void *data) -> hsa_status_t { 716 std::string TmpStr; 717 size_t size; 718 bool alloc, access; 719 hsa_amd_segment_t segment; 720 hsa_amd_memory_pool_global_flag_t globalFlags; 721 core::checkResult( 722 hsa_amd_memory_pool_get_info( 723 region, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &globalFlags), 724 "Error returned from hsa_amd_memory_pool_get_info when obtaining " 725 "HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS\n"); 726 core::checkResult(hsa_amd_memory_pool_get_info( 727 region, HSA_AMD_MEMORY_POOL_INFO_SEGMENT, &segment), 728 "Error returned from hsa_amd_memory_pool_get_info when " 729 "obtaining HSA_AMD_MEMORY_POOL_INFO_SEGMENT\n"); 730 731 switch (segment) { 732 case HSA_AMD_SEGMENT_GLOBAL: 733 TmpStr = "GLOBAL; FLAGS: "; 734 if (HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_KERNARG_INIT & globalFlags) 735 TmpStr += "KERNARG, "; 736 if (HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED & globalFlags) 737 TmpStr += "FINE GRAINED, "; 738 if (HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_COARSE_GRAINED & globalFlags) 739 TmpStr += "COARSE GRAINED, "; 740 break; 741 case HSA_AMD_SEGMENT_READONLY: 742 TmpStr = "READONLY"; 743 break; 744 case HSA_AMD_SEGMENT_PRIVATE: 745 TmpStr = "PRIVATE"; 746 break; 747 case HSA_AMD_SEGMENT_GROUP: 748 TmpStr = "GROUP"; 749 break; 750 default: 751 TmpStr = "unknown"; 752 break; 753 } 754 printf(" Pool %s: \n", TmpStr.c_str()); 755 756 core::checkResult(hsa_amd_memory_pool_get_info( 757 region, HSA_AMD_MEMORY_POOL_INFO_SIZE, &size), 758 "Error returned from hsa_amd_memory_pool_get_info when " 759 "obtaining HSA_AMD_MEMORY_POOL_INFO_SIZE\n"); 760 printf(" Size: \t\t\t\t %zu bytes\n", size); 761 core::checkResult( 762 hsa_amd_memory_pool_get_info( 763 region, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED, &alloc), 764 "Error returned from hsa_amd_memory_pool_get_info when obtaining " 765 "HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED\n"); 766 printf(" Allocatable: \t\t\t %s\n", (alloc ? "TRUE" : "FALSE")); 767 core::checkResult( 768 hsa_amd_memory_pool_get_info( 769 region, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_GRANULE, &size), 770 "Error returned from hsa_amd_memory_pool_get_info when obtaining " 771 "HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_GRANULE\n"); 772 printf(" Runtime Alloc Granule: \t\t %zu bytes\n", size); 773 core::checkResult( 774 hsa_amd_memory_pool_get_info( 775 region, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALIGNMENT, &size), 776 "Error returned from hsa_amd_memory_pool_get_info when obtaining " 777 "HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALIGNMENT\n"); 778 printf(" Runtime Alloc alignment: \t %zu bytes\n", size); 779 core::checkResult( 780 hsa_amd_memory_pool_get_info( 781 region, HSA_AMD_MEMORY_POOL_INFO_ACCESSIBLE_BY_ALL, &access), 782 "Error returned from hsa_amd_memory_pool_get_info when obtaining " 783 "HSA_AMD_MEMORY_POOL_INFO_ACCESSIBLE_BY_ALL\n"); 784 printf(" Accessable by all: \t\t %s\n", 785 (access ? "TRUE" : "FALSE")); 786 787 return HSA_STATUS_SUCCESS; 788 }; 789 // Iterate over all the memory regions for this agent. Get the memory region 790 // type and size 791 hsa_amd_agent_iterate_memory_pools(agent, CB_mem, nullptr); 792 793 printf(" ISAs:\n"); 794 auto CB_isas = [](hsa_isa_t isa, void *data) -> hsa_status_t { 795 char TmpChar[1000]; 796 core::checkResult(hsa_isa_get_info_alt(isa, HSA_ISA_INFO_NAME, TmpChar), 797 "Error returned from hsa_isa_get_info_alt when " 798 "obtaining HSA_ISA_INFO_NAME\n"); 799 printf(" Name: \t\t\t\t %s\n", TmpChar); 800 801 return HSA_STATUS_SUCCESS; 802 }; 803 // Iterate over all the memory regions for this agent. Get the memory region 804 // type and size 805 hsa_agent_iterate_isas(agent, CB_isas, nullptr); 806 } 807 808 // Record entry point associated with device 809 void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) { 810 assert(device_id < (int32_t)FuncGblEntries.size() && 811 "Unexpected device id!"); 812 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 813 814 E.Entries.push_back(entry); 815 } 816 817 // Return true if the entry is associated with device 818 bool findOffloadEntry(int32_t device_id, void *addr) { 819 assert(device_id < (int32_t)FuncGblEntries.size() && 820 "Unexpected device id!"); 821 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 822 823 for (auto &it : E.Entries) { 824 if (it.addr == addr) 825 return true; 826 } 827 828 return false; 829 } 830 831 // Return the pointer to the target entries table 832 __tgt_target_table *getOffloadEntriesTable(int32_t device_id) { 833 assert(device_id < (int32_t)FuncGblEntries.size() && 834 "Unexpected device id!"); 835 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 836 837 int32_t size = E.Entries.size(); 838 839 // Table is empty 840 if (!size) 841 return 0; 842 843 __tgt_offload_entry *begin = &E.Entries[0]; 844 __tgt_offload_entry *end = &E.Entries[size - 1]; 845 846 // Update table info according to the entries and return the pointer 847 E.Table.EntriesBegin = begin; 848 E.Table.EntriesEnd = ++end; 849 850 return &E.Table; 851 } 852 853 // Clear entries table for a device 854 void clearOffloadEntriesTable(int device_id) { 855 assert(device_id < (int32_t)FuncGblEntries.size() && 856 "Unexpected device id!"); 857 FuncGblEntries[device_id].emplace_back(); 858 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 859 // KernelArgPoolMap.clear(); 860 E.Entries.clear(); 861 E.Table.EntriesBegin = E.Table.EntriesEnd = 0; 862 } 863 864 hsa_status_t addDeviceMemoryPool(hsa_amd_memory_pool_t MemoryPool, 865 int DeviceId) { 866 assert(DeviceId < DeviceFineGrainedMemoryPools.size() && "Error here."); 867 uint32_t GlobalFlags = 0; 868 hsa_status_t Err = hsa_amd_memory_pool_get_info( 869 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 870 871 if (Err != HSA_STATUS_SUCCESS) { 872 return Err; 873 } 874 875 if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) { 876 DeviceFineGrainedMemoryPools[DeviceId] = MemoryPool; 877 } else if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_COARSE_GRAINED) { 878 DeviceCoarseGrainedMemoryPools[DeviceId] = MemoryPool; 879 } 880 881 return HSA_STATUS_SUCCESS; 882 } 883 884 hsa_status_t setupDevicePools(const std::vector<hsa_agent_t> &Agents) { 885 for (int DeviceId = 0; DeviceId < Agents.size(); DeviceId++) { 886 hsa_status_t Err = hsa::amd_agent_iterate_memory_pools( 887 Agents[DeviceId], [&](hsa_amd_memory_pool_t MemoryPool) { 888 hsa_status_t ValidStatus = core::isValidMemoryPool(MemoryPool); 889 if (ValidStatus != HSA_STATUS_SUCCESS) { 890 DP("Alloc allowed in memory pool check failed: %s\n", 891 get_error_string(ValidStatus)); 892 return HSA_STATUS_SUCCESS; 893 } 894 return addDeviceMemoryPool(MemoryPool, DeviceId); 895 }); 896 897 if (Err != HSA_STATUS_SUCCESS) { 898 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 899 "Iterate all memory pools", get_error_string(Err)); 900 return Err; 901 } 902 } 903 return HSA_STATUS_SUCCESS; 904 } 905 906 hsa_status_t setupHostMemoryPools(std::vector<hsa_agent_t> &Agents) { 907 std::vector<hsa_amd_memory_pool_t> HostPools; 908 909 // collect all the "valid" pools for all the given agents. 910 for (const auto &Agent : Agents) { 911 hsa_status_t Err = hsa_amd_agent_iterate_memory_pools( 912 Agent, core::addMemoryPool, static_cast<void *>(&HostPools)); 913 if (Err != HSA_STATUS_SUCCESS) { 914 DP("addMemoryPool returned %s, continuing\n", get_error_string(Err)); 915 } 916 } 917 918 // We need two fine-grained pools. 919 // 1. One with kernarg flag set for storing kernel arguments 920 // 2. Second for host allocations 921 bool FineGrainedMemoryPoolSet = false; 922 bool KernArgPoolSet = false; 923 for (const auto &MemoryPool : HostPools) { 924 hsa_status_t Err = HSA_STATUS_SUCCESS; 925 uint32_t GlobalFlags = 0; 926 Err = hsa_amd_memory_pool_get_info( 927 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 928 if (Err != HSA_STATUS_SUCCESS) { 929 DP("Get memory pool info failed: %s\n", get_error_string(Err)); 930 return Err; 931 } 932 933 if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) { 934 if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_KERNARG_INIT) { 935 KernArgPool = MemoryPool; 936 KernArgPoolSet = true; 937 } 938 HostFineGrainedMemoryPool = MemoryPool; 939 FineGrainedMemoryPoolSet = true; 940 } 941 } 942 943 if (FineGrainedMemoryPoolSet && KernArgPoolSet) 944 return HSA_STATUS_SUCCESS; 945 946 return HSA_STATUS_ERROR; 947 } 948 949 hsa_amd_memory_pool_t getDeviceMemoryPool(int DeviceId) { 950 assert(DeviceId >= 0 && DeviceId < DeviceCoarseGrainedMemoryPools.size() && 951 "Invalid device Id"); 952 return DeviceCoarseGrainedMemoryPools[DeviceId]; 953 } 954 955 hsa_amd_memory_pool_t getHostMemoryPool() { 956 return HostFineGrainedMemoryPool; 957 } 958 959 static int readEnv(const char *Env, int Default = -1) { 960 const char *envStr = getenv(Env); 961 int res = Default; 962 if (envStr) { 963 res = std::stoi(envStr); 964 DP("Parsed %s=%d\n", Env, res); 965 } 966 return res; 967 } 968 969 RTLDeviceInfoTy() { 970 DP("Start initializing " GETNAME(TARGET_NAME) "\n"); 971 972 // LIBOMPTARGET_KERNEL_TRACE provides a kernel launch trace to stderr 973 // anytime. You do not need a debug library build. 974 // 0 => no tracing 975 // 1 => tracing dispatch only 976 // >1 => verbosity increase 977 978 if (!HSAInitSuccess()) { 979 DP("Error when initializing HSA in " GETNAME(TARGET_NAME) "\n"); 980 return; 981 } 982 983 if (char *envStr = getenv("LIBOMPTARGET_KERNEL_TRACE")) 984 print_kernel_trace = atoi(envStr); 985 else 986 print_kernel_trace = 0; 987 988 hsa_status_t err = core::atl_init_gpu_context(); 989 if (err != HSA_STATUS_SUCCESS) { 990 DP("Error when initializing " GETNAME(TARGET_NAME) "\n"); 991 return; 992 } 993 994 // Init hostcall soon after initializing hsa 995 hostrpc_init(); 996 997 err = FindAgents([&](hsa_device_type_t DeviceType, hsa_agent_t Agent) { 998 if (DeviceType == HSA_DEVICE_TYPE_CPU) { 999 CPUAgents.push_back(Agent); 1000 } else { 1001 HSAAgents.push_back(Agent); 1002 } 1003 }); 1004 if (err != HSA_STATUS_SUCCESS) 1005 return; 1006 1007 NumberOfDevices = (int)HSAAgents.size(); 1008 1009 if (NumberOfDevices == 0) { 1010 DP("There are no devices supporting HSA.\n"); 1011 return; 1012 } else { 1013 DP("There are %d devices supporting HSA.\n", NumberOfDevices); 1014 } 1015 1016 // Init the device info 1017 HSAQueueSchedulers.reserve(NumberOfDevices); 1018 FuncGblEntries.resize(NumberOfDevices); 1019 ThreadsPerGroup.resize(NumberOfDevices); 1020 ComputeUnits.resize(NumberOfDevices); 1021 GPUName.resize(NumberOfDevices); 1022 GroupsPerDevice.resize(NumberOfDevices); 1023 WarpSize.resize(NumberOfDevices); 1024 NumTeams.resize(NumberOfDevices); 1025 NumThreads.resize(NumberOfDevices); 1026 deviceStateStore.resize(NumberOfDevices); 1027 KernelInfoTable.resize(NumberOfDevices); 1028 SymbolInfoTable.resize(NumberOfDevices); 1029 DeviceCoarseGrainedMemoryPools.resize(NumberOfDevices); 1030 DeviceFineGrainedMemoryPools.resize(NumberOfDevices); 1031 1032 err = setupDevicePools(HSAAgents); 1033 if (err != HSA_STATUS_SUCCESS) { 1034 DP("Setup for Device Memory Pools failed\n"); 1035 return; 1036 } 1037 1038 err = setupHostMemoryPools(CPUAgents); 1039 if (err != HSA_STATUS_SUCCESS) { 1040 DP("Setup for Host Memory Pools failed\n"); 1041 return; 1042 } 1043 1044 for (int i = 0; i < NumberOfDevices; i++) { 1045 uint32_t queue_size = 0; 1046 { 1047 hsa_status_t err = hsa_agent_get_info( 1048 HSAAgents[i], HSA_AGENT_INFO_QUEUE_MAX_SIZE, &queue_size); 1049 if (err != HSA_STATUS_SUCCESS) { 1050 DP("HSA query QUEUE_MAX_SIZE failed for agent %d\n", i); 1051 return; 1052 } 1053 enum { MaxQueueSize = 4096 }; 1054 if (queue_size > MaxQueueSize) { 1055 queue_size = MaxQueueSize; 1056 } 1057 } 1058 1059 { 1060 HSAQueueScheduler QSched; 1061 if (!QSched.CreateQueues(HSAAgents[i], queue_size)) 1062 return; 1063 HSAQueueSchedulers.emplace_back(std::move(QSched)); 1064 } 1065 1066 deviceStateStore[i] = {nullptr, 0}; 1067 } 1068 1069 for (int i = 0; i < NumberOfDevices; i++) { 1070 ThreadsPerGroup[i] = RTLDeviceInfoTy::Default_WG_Size; 1071 GroupsPerDevice[i] = RTLDeviceInfoTy::DefaultNumTeams; 1072 ComputeUnits[i] = 1; 1073 DP("Device %d: Initial groupsPerDevice %d & threadsPerGroup %d\n", i, 1074 GroupsPerDevice[i], ThreadsPerGroup[i]); 1075 } 1076 1077 // Get environment variables regarding teams 1078 Env.TeamLimit = readEnv("OMP_TEAM_LIMIT"); 1079 Env.NumTeams = readEnv("OMP_NUM_TEAMS"); 1080 Env.MaxTeamsDefault = readEnv("OMP_MAX_TEAMS_DEFAULT"); 1081 Env.TeamThreadLimit = readEnv("OMP_TEAMS_THREAD_LIMIT"); 1082 Env.DynamicMemSize = readEnv("LIBOMPTARGET_SHARED_MEMORY_SIZE", 0); 1083 1084 // Default state. 1085 RequiresFlags = OMP_REQ_UNDEFINED; 1086 1087 ConstructionSucceeded = true; 1088 } 1089 1090 ~RTLDeviceInfoTy() { 1091 DP("Finalizing the " GETNAME(TARGET_NAME) " DeviceInfo.\n"); 1092 if (!HSAInitSuccess()) { 1093 // Then none of these can have been set up and they can't be torn down 1094 return; 1095 } 1096 // Run destructors on types that use HSA before 1097 // impl_finalize removes access to it 1098 deviceStateStore.clear(); 1099 KernelArgPoolMap.clear(); 1100 // Terminate hostrpc before finalizing hsa 1101 hostrpc_terminate(); 1102 1103 hsa_status_t Err; 1104 for (uint32_t I = 0; I < HSAExecutables.size(); I++) { 1105 Err = hsa_executable_destroy(HSAExecutables[I]); 1106 if (Err != HSA_STATUS_SUCCESS) { 1107 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1108 "Destroying executable", get_error_string(Err)); 1109 } 1110 } 1111 } 1112 }; 1113 1114 pthread_mutex_t SignalPoolT::mutex = PTHREAD_MUTEX_INITIALIZER; 1115 1116 static RTLDeviceInfoTy DeviceInfo; 1117 1118 namespace { 1119 1120 int32_t dataRetrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size, 1121 __tgt_async_info *AsyncInfo) { 1122 assert(AsyncInfo && "AsyncInfo is nullptr"); 1123 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 1124 // Return success if we are not copying back to host from target. 1125 if (!HstPtr) 1126 return OFFLOAD_SUCCESS; 1127 hsa_status_t err; 1128 DP("Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 1129 (long long unsigned)(Elf64_Addr)TgtPtr, 1130 (long long unsigned)(Elf64_Addr)HstPtr); 1131 1132 err = DeviceInfo.freesignalpool_memcpy_d2h(HstPtr, TgtPtr, (size_t)Size, 1133 DeviceId); 1134 1135 if (err != HSA_STATUS_SUCCESS) { 1136 DP("Error when copying data from device to host. Pointers: " 1137 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 1138 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 1139 return OFFLOAD_FAIL; 1140 } 1141 DP("DONE Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 1142 (long long unsigned)(Elf64_Addr)TgtPtr, 1143 (long long unsigned)(Elf64_Addr)HstPtr); 1144 return OFFLOAD_SUCCESS; 1145 } 1146 1147 int32_t dataSubmit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size, 1148 __tgt_async_info *AsyncInfo) { 1149 assert(AsyncInfo && "AsyncInfo is nullptr"); 1150 hsa_status_t err; 1151 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 1152 // Return success if we are not doing host to target. 1153 if (!HstPtr) 1154 return OFFLOAD_SUCCESS; 1155 1156 DP("Submit data %ld bytes, (hst:%016llx) -> (tgt:%016llx).\n", Size, 1157 (long long unsigned)(Elf64_Addr)HstPtr, 1158 (long long unsigned)(Elf64_Addr)TgtPtr); 1159 err = DeviceInfo.freesignalpool_memcpy_h2d(TgtPtr, HstPtr, (size_t)Size, 1160 DeviceId); 1161 if (err != HSA_STATUS_SUCCESS) { 1162 DP("Error when copying data from host to device. Pointers: " 1163 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 1164 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 1165 return OFFLOAD_FAIL; 1166 } 1167 return OFFLOAD_SUCCESS; 1168 } 1169 1170 // Async. 1171 // The implementation was written with cuda streams in mind. The semantics of 1172 // that are to execute kernels on a queue in order of insertion. A synchronise 1173 // call then makes writes visible between host and device. This means a series 1174 // of N data_submit_async calls are expected to execute serially. HSA offers 1175 // various options to run the data copies concurrently. This may require changes 1176 // to libomptarget. 1177 1178 // __tgt_async_info* contains a void * Queue. Queue = 0 is used to indicate that 1179 // there are no outstanding kernels that need to be synchronized. Any async call 1180 // may be passed a Queue==0, at which point the cuda implementation will set it 1181 // to non-null (see getStream). The cuda streams are per-device. Upstream may 1182 // change this interface to explicitly initialize the AsyncInfo_pointer, but 1183 // until then hsa lazily initializes it as well. 1184 1185 void initAsyncInfo(__tgt_async_info *AsyncInfo) { 1186 // set non-null while using async calls, return to null to indicate completion 1187 assert(AsyncInfo); 1188 if (!AsyncInfo->Queue) { 1189 AsyncInfo->Queue = reinterpret_cast<void *>(UINT64_MAX); 1190 } 1191 } 1192 void finiAsyncInfo(__tgt_async_info *AsyncInfo) { 1193 assert(AsyncInfo); 1194 assert(AsyncInfo->Queue); 1195 AsyncInfo->Queue = 0; 1196 } 1197 1198 // Determine launch values for kernel. 1199 struct launchVals { 1200 int WorkgroupSize; 1201 int GridSize; 1202 }; 1203 launchVals getLaunchVals(int WarpSize, EnvironmentVariables Env, 1204 int ConstWGSize, 1205 llvm::omp::OMPTgtExecModeFlags ExecutionMode, 1206 int num_teams, int thread_limit, 1207 uint64_t loop_tripcount, int DeviceNumTeams) { 1208 1209 int threadsPerGroup = RTLDeviceInfoTy::Default_WG_Size; 1210 int num_groups = 0; 1211 1212 int Max_Teams = 1213 Env.MaxTeamsDefault > 0 ? Env.MaxTeamsDefault : DeviceNumTeams; 1214 if (Max_Teams > RTLDeviceInfoTy::HardTeamLimit) 1215 Max_Teams = RTLDeviceInfoTy::HardTeamLimit; 1216 1217 if (print_kernel_trace & STARTUP_DETAILS) { 1218 DP("RTLDeviceInfoTy::Max_Teams: %d\n", RTLDeviceInfoTy::Max_Teams); 1219 DP("Max_Teams: %d\n", Max_Teams); 1220 DP("RTLDeviceInfoTy::Warp_Size: %d\n", WarpSize); 1221 DP("RTLDeviceInfoTy::Max_WG_Size: %d\n", RTLDeviceInfoTy::Max_WG_Size); 1222 DP("RTLDeviceInfoTy::Default_WG_Size: %d\n", 1223 RTLDeviceInfoTy::Default_WG_Size); 1224 DP("thread_limit: %d\n", thread_limit); 1225 DP("threadsPerGroup: %d\n", threadsPerGroup); 1226 DP("ConstWGSize: %d\n", ConstWGSize); 1227 } 1228 // check for thread_limit() clause 1229 if (thread_limit > 0) { 1230 threadsPerGroup = thread_limit; 1231 DP("Setting threads per block to requested %d\n", thread_limit); 1232 // Add master warp for GENERIC 1233 if (ExecutionMode == 1234 llvm::omp::OMPTgtExecModeFlags::OMP_TGT_EXEC_MODE_GENERIC) { 1235 threadsPerGroup += WarpSize; 1236 DP("Adding master wavefront: +%d threads\n", WarpSize); 1237 } 1238 if (threadsPerGroup > RTLDeviceInfoTy::Max_WG_Size) { // limit to max 1239 threadsPerGroup = RTLDeviceInfoTy::Max_WG_Size; 1240 DP("Setting threads per block to maximum %d\n", threadsPerGroup); 1241 } 1242 } 1243 // check flat_max_work_group_size attr here 1244 if (threadsPerGroup > ConstWGSize) { 1245 threadsPerGroup = ConstWGSize; 1246 DP("Reduced threadsPerGroup to flat-attr-group-size limit %d\n", 1247 threadsPerGroup); 1248 } 1249 if (print_kernel_trace & STARTUP_DETAILS) 1250 DP("threadsPerGroup: %d\n", threadsPerGroup); 1251 DP("Preparing %d threads\n", threadsPerGroup); 1252 1253 // Set default num_groups (teams) 1254 if (Env.TeamLimit > 0) 1255 num_groups = (Max_Teams < Env.TeamLimit) ? Max_Teams : Env.TeamLimit; 1256 else 1257 num_groups = Max_Teams; 1258 DP("Set default num of groups %d\n", num_groups); 1259 1260 if (print_kernel_trace & STARTUP_DETAILS) { 1261 DP("num_groups: %d\n", num_groups); 1262 DP("num_teams: %d\n", num_teams); 1263 } 1264 1265 // Reduce num_groups if threadsPerGroup exceeds RTLDeviceInfoTy::Max_WG_Size 1266 // This reduction is typical for default case (no thread_limit clause). 1267 // or when user goes crazy with num_teams clause. 1268 // FIXME: We cant distinguish between a constant or variable thread limit. 1269 // So we only handle constant thread_limits. 1270 if (threadsPerGroup > 1271 RTLDeviceInfoTy::Default_WG_Size) // 256 < threadsPerGroup <= 1024 1272 // Should we round threadsPerGroup up to nearest WarpSize 1273 // here? 1274 num_groups = (Max_Teams * RTLDeviceInfoTy::Max_WG_Size) / threadsPerGroup; 1275 1276 // check for num_teams() clause 1277 if (num_teams > 0) { 1278 num_groups = (num_teams < num_groups) ? num_teams : num_groups; 1279 } 1280 if (print_kernel_trace & STARTUP_DETAILS) { 1281 DP("num_groups: %d\n", num_groups); 1282 DP("Env.NumTeams %d\n", Env.NumTeams); 1283 DP("Env.TeamLimit %d\n", Env.TeamLimit); 1284 } 1285 1286 if (Env.NumTeams > 0) { 1287 num_groups = (Env.NumTeams < num_groups) ? Env.NumTeams : num_groups; 1288 DP("Modifying teams based on Env.NumTeams %d\n", Env.NumTeams); 1289 } else if (Env.TeamLimit > 0) { 1290 num_groups = (Env.TeamLimit < num_groups) ? Env.TeamLimit : num_groups; 1291 DP("Modifying teams based on Env.TeamLimit%d\n", Env.TeamLimit); 1292 } else { 1293 if (num_teams <= 0) { 1294 if (loop_tripcount > 0) { 1295 if (ExecutionMode == 1296 llvm::omp::OMPTgtExecModeFlags::OMP_TGT_EXEC_MODE_SPMD) { 1297 // round up to the nearest integer 1298 num_groups = ((loop_tripcount - 1) / threadsPerGroup) + 1; 1299 } else if (ExecutionMode == 1300 llvm::omp::OMPTgtExecModeFlags::OMP_TGT_EXEC_MODE_GENERIC) { 1301 num_groups = loop_tripcount; 1302 } else /* OMP_TGT_EXEC_MODE_GENERIC_SPMD */ { 1303 // This is a generic kernel that was transformed to use SPMD-mode 1304 // execution but uses Generic-mode semantics for scheduling. 1305 num_groups = loop_tripcount; 1306 } 1307 DP("Using %d teams due to loop trip count %" PRIu64 " and number of " 1308 "threads per block %d\n", 1309 num_groups, loop_tripcount, threadsPerGroup); 1310 } 1311 } else { 1312 num_groups = num_teams; 1313 } 1314 if (num_groups > Max_Teams) { 1315 num_groups = Max_Teams; 1316 if (print_kernel_trace & STARTUP_DETAILS) 1317 DP("Limiting num_groups %d to Max_Teams %d \n", num_groups, Max_Teams); 1318 } 1319 if (num_groups > num_teams && num_teams > 0) { 1320 num_groups = num_teams; 1321 if (print_kernel_trace & STARTUP_DETAILS) 1322 DP("Limiting num_groups %d to clause num_teams %d \n", num_groups, 1323 num_teams); 1324 } 1325 } 1326 1327 // num_teams clause always honored, no matter what, unless DEFAULT is active. 1328 if (num_teams > 0) { 1329 num_groups = num_teams; 1330 // Cap num_groups to EnvMaxTeamsDefault if set. 1331 if (Env.MaxTeamsDefault > 0 && num_groups > Env.MaxTeamsDefault) 1332 num_groups = Env.MaxTeamsDefault; 1333 } 1334 if (print_kernel_trace & STARTUP_DETAILS) { 1335 DP("threadsPerGroup: %d\n", threadsPerGroup); 1336 DP("num_groups: %d\n", num_groups); 1337 DP("loop_tripcount: %ld\n", loop_tripcount); 1338 } 1339 DP("Final %d num_groups and %d threadsPerGroup\n", num_groups, 1340 threadsPerGroup); 1341 1342 launchVals res; 1343 res.WorkgroupSize = threadsPerGroup; 1344 res.GridSize = threadsPerGroup * num_groups; 1345 return res; 1346 } 1347 1348 static uint64_t acquire_available_packet_id(hsa_queue_t *queue) { 1349 uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1); 1350 bool full = true; 1351 while (full) { 1352 full = 1353 packet_id >= (queue->size + hsa_queue_load_read_index_scacquire(queue)); 1354 } 1355 return packet_id; 1356 } 1357 1358 int32_t runRegionLocked(int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 1359 ptrdiff_t *tgt_offsets, int32_t arg_num, 1360 int32_t num_teams, int32_t thread_limit, 1361 uint64_t loop_tripcount) { 1362 // Set the context we are using 1363 // update thread limit content in gpu memory if un-initialized or specified 1364 // from host 1365 1366 DP("Run target team region thread_limit %d\n", thread_limit); 1367 1368 // All args are references. 1369 std::vector<void *> args(arg_num); 1370 std::vector<void *> ptrs(arg_num); 1371 1372 DP("Arg_num: %d\n", arg_num); 1373 for (int32_t i = 0; i < arg_num; ++i) { 1374 ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]); 1375 args[i] = &ptrs[i]; 1376 DP("Offseted base: arg[%d]:" DPxMOD "\n", i, DPxPTR(ptrs[i])); 1377 } 1378 1379 KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr; 1380 1381 std::string kernel_name = std::string(KernelInfo->Name); 1382 auto &KernelInfoTable = DeviceInfo.KernelInfoTable; 1383 if (KernelInfoTable[device_id].find(kernel_name) == 1384 KernelInfoTable[device_id].end()) { 1385 DP("Kernel %s not found\n", kernel_name.c_str()); 1386 return OFFLOAD_FAIL; 1387 } 1388 1389 const atl_kernel_info_t KernelInfoEntry = 1390 KernelInfoTable[device_id][kernel_name]; 1391 const uint32_t group_segment_size = 1392 KernelInfoEntry.group_segment_size + DeviceInfo.Env.DynamicMemSize; 1393 const uint32_t sgpr_count = KernelInfoEntry.sgpr_count; 1394 const uint32_t vgpr_count = KernelInfoEntry.vgpr_count; 1395 const uint32_t sgpr_spill_count = KernelInfoEntry.sgpr_spill_count; 1396 const uint32_t vgpr_spill_count = KernelInfoEntry.vgpr_spill_count; 1397 1398 assert(arg_num == (int)KernelInfoEntry.explicit_argument_count); 1399 1400 /* 1401 * Set limit based on ThreadsPerGroup and GroupsPerDevice 1402 */ 1403 launchVals LV = 1404 getLaunchVals(DeviceInfo.WarpSize[device_id], DeviceInfo.Env, 1405 KernelInfo->ConstWGSize, KernelInfo->ExecutionMode, 1406 num_teams, // From run_region arg 1407 thread_limit, // From run_region arg 1408 loop_tripcount, // From run_region arg 1409 DeviceInfo.NumTeams[KernelInfo->device_id]); 1410 const int GridSize = LV.GridSize; 1411 const int WorkgroupSize = LV.WorkgroupSize; 1412 1413 if (print_kernel_trace >= LAUNCH) { 1414 int num_groups = GridSize / WorkgroupSize; 1415 // enum modes are SPMD, GENERIC, NONE 0,1,2 1416 // if doing rtl timing, print to stderr, unless stdout requested. 1417 bool traceToStdout = print_kernel_trace & (RTL_TO_STDOUT | RTL_TIMING); 1418 fprintf(traceToStdout ? stdout : stderr, 1419 "DEVID:%2d SGN:%1d ConstWGSize:%-4d args:%2d teamsXthrds:(%4dX%4d) " 1420 "reqd:(%4dX%4d) lds_usage:%uB sgpr_count:%u vgpr_count:%u " 1421 "sgpr_spill_count:%u vgpr_spill_count:%u tripcount:%lu n:%s\n", 1422 device_id, KernelInfo->ExecutionMode, KernelInfo->ConstWGSize, 1423 arg_num, num_groups, WorkgroupSize, num_teams, thread_limit, 1424 group_segment_size, sgpr_count, vgpr_count, sgpr_spill_count, 1425 vgpr_spill_count, loop_tripcount, KernelInfo->Name); 1426 } 1427 1428 // Run on the device. 1429 { 1430 hsa_queue_t *queue = DeviceInfo.HSAQueueSchedulers[device_id].Next(); 1431 if (!queue) { 1432 return OFFLOAD_FAIL; 1433 } 1434 uint64_t packet_id = acquire_available_packet_id(queue); 1435 1436 const uint32_t mask = queue->size - 1; // size is a power of 2 1437 hsa_kernel_dispatch_packet_t *packet = 1438 (hsa_kernel_dispatch_packet_t *)queue->base_address + 1439 (packet_id & mask); 1440 1441 // packet->header is written last 1442 packet->setup = UINT16_C(1) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS; 1443 packet->workgroup_size_x = WorkgroupSize; 1444 packet->workgroup_size_y = 1; 1445 packet->workgroup_size_z = 1; 1446 packet->reserved0 = 0; 1447 packet->grid_size_x = GridSize; 1448 packet->grid_size_y = 1; 1449 packet->grid_size_z = 1; 1450 packet->private_segment_size = KernelInfoEntry.private_segment_size; 1451 packet->group_segment_size = group_segment_size; 1452 packet->kernel_object = KernelInfoEntry.kernel_object; 1453 packet->kernarg_address = 0; // use the block allocator 1454 packet->reserved2 = 0; // impl writes id_ here 1455 packet->completion_signal = {0}; // may want a pool of signals 1456 1457 KernelArgPool *ArgPool = nullptr; 1458 void *kernarg = nullptr; 1459 { 1460 auto it = KernelArgPoolMap.find(std::string(KernelInfo->Name)); 1461 if (it != KernelArgPoolMap.end()) { 1462 ArgPool = (it->second).get(); 1463 } 1464 } 1465 if (!ArgPool) { 1466 DP("Warning: No ArgPool for %s on device %d\n", KernelInfo->Name, 1467 device_id); 1468 } 1469 { 1470 if (ArgPool) { 1471 assert(ArgPool->kernarg_segment_size == (arg_num * sizeof(void *))); 1472 kernarg = ArgPool->allocate(arg_num); 1473 } 1474 if (!kernarg) { 1475 DP("Allocate kernarg failed\n"); 1476 return OFFLOAD_FAIL; 1477 } 1478 1479 // Copy explicit arguments 1480 for (int i = 0; i < arg_num; i++) { 1481 memcpy((char *)kernarg + sizeof(void *) * i, args[i], sizeof(void *)); 1482 } 1483 1484 // Initialize implicit arguments. TODO: Which of these can be dropped 1485 impl_implicit_args_t *impl_args = 1486 reinterpret_cast<impl_implicit_args_t *>( 1487 static_cast<char *>(kernarg) + ArgPool->kernarg_segment_size); 1488 memset(impl_args, 0, 1489 sizeof(impl_implicit_args_t)); // may not be necessary 1490 impl_args->offset_x = 0; 1491 impl_args->offset_y = 0; 1492 impl_args->offset_z = 0; 1493 1494 // assign a hostcall buffer for the selected Q 1495 if (__atomic_load_n(&DeviceInfo.hostcall_required, __ATOMIC_ACQUIRE)) { 1496 // hostrpc_assign_buffer is not thread safe, and this function is 1497 // under a multiple reader lock, not a writer lock. 1498 static pthread_mutex_t hostcall_init_lock = PTHREAD_MUTEX_INITIALIZER; 1499 pthread_mutex_lock(&hostcall_init_lock); 1500 uint64_t buffer = hostrpc_assign_buffer(DeviceInfo.HSAAgents[device_id], 1501 queue, device_id); 1502 pthread_mutex_unlock(&hostcall_init_lock); 1503 if (!buffer) { 1504 DP("hostrpc_assign_buffer failed, gpu would dereference null and " 1505 "error\n"); 1506 return OFFLOAD_FAIL; 1507 } 1508 1509 DP("Implicit argument count: %d\n", 1510 KernelInfoEntry.implicit_argument_count); 1511 if (KernelInfoEntry.implicit_argument_count >= 4) { 1512 // Initialise pointer for implicit_argument_count != 0 ABI 1513 // Guess that the right implicit argument is at offset 24 after 1514 // the explicit arguments. In the future, should be able to read 1515 // the offset from msgpack. Clang is not annotating it at present. 1516 uint64_t Offset = 1517 sizeof(void *) * (KernelInfoEntry.explicit_argument_count + 3); 1518 if ((Offset + 8) > ArgPool->kernarg_size_including_implicit()) { 1519 DP("Bad offset of hostcall: %lu, exceeds kernarg size w/ implicit " 1520 "args: %d\n", 1521 Offset + 8, ArgPool->kernarg_size_including_implicit()); 1522 } else { 1523 memcpy(static_cast<char *>(kernarg) + Offset, &buffer, 8); 1524 } 1525 } 1526 1527 // initialise pointer for implicit_argument_count == 0 ABI 1528 impl_args->hostcall_ptr = buffer; 1529 } 1530 1531 packet->kernarg_address = kernarg; 1532 } 1533 1534 hsa_signal_t s = DeviceInfo.FreeSignalPool.pop(); 1535 if (s.handle == 0) { 1536 DP("Failed to get signal instance\n"); 1537 return OFFLOAD_FAIL; 1538 } 1539 packet->completion_signal = s; 1540 hsa_signal_store_relaxed(packet->completion_signal, 1); 1541 1542 // Publish the packet indicating it is ready to be processed 1543 core::packet_store_release(reinterpret_cast<uint32_t *>(packet), 1544 core::create_header(), packet->setup); 1545 1546 // Since the packet is already published, its contents must not be 1547 // accessed any more 1548 hsa_signal_store_relaxed(queue->doorbell_signal, packet_id); 1549 1550 while (hsa_signal_wait_scacquire(s, HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX, 1551 HSA_WAIT_STATE_BLOCKED) != 0) 1552 ; 1553 1554 assert(ArgPool); 1555 ArgPool->deallocate(kernarg); 1556 DeviceInfo.FreeSignalPool.push(s); 1557 } 1558 1559 DP("Kernel completed\n"); 1560 return OFFLOAD_SUCCESS; 1561 } 1562 1563 bool elf_machine_id_is_amdgcn(__tgt_device_image *image) { 1564 const uint16_t amdgcnMachineID = 224; // EM_AMDGPU may not be in system elf.h 1565 int32_t r = elf_check_machine(image, amdgcnMachineID); 1566 if (!r) { 1567 DP("Supported machine ID not found\n"); 1568 } 1569 return r; 1570 } 1571 1572 uint32_t elf_e_flags(__tgt_device_image *image) { 1573 char *img_begin = (char *)image->ImageStart; 1574 size_t img_size = (char *)image->ImageEnd - img_begin; 1575 1576 Elf *e = elf_memory(img_begin, img_size); 1577 if (!e) { 1578 DP("Unable to get ELF handle: %s!\n", elf_errmsg(-1)); 1579 return 0; 1580 } 1581 1582 Elf64_Ehdr *eh64 = elf64_getehdr(e); 1583 1584 if (!eh64) { 1585 DP("Unable to get machine ID from ELF file!\n"); 1586 elf_end(e); 1587 return 0; 1588 } 1589 1590 uint32_t Flags = eh64->e_flags; 1591 1592 elf_end(e); 1593 DP("ELF Flags: 0x%x\n", Flags); 1594 return Flags; 1595 } 1596 1597 template <typename T> bool enforce_upper_bound(T *value, T upper) { 1598 bool changed = *value > upper; 1599 if (changed) { 1600 *value = upper; 1601 } 1602 return changed; 1603 } 1604 1605 Elf64_Shdr *find_only_SHT_HASH(Elf *elf) { 1606 size_t N; 1607 int rc = elf_getshdrnum(elf, &N); 1608 if (rc != 0) { 1609 return nullptr; 1610 } 1611 1612 Elf64_Shdr *result = nullptr; 1613 for (size_t i = 0; i < N; i++) { 1614 Elf_Scn *scn = elf_getscn(elf, i); 1615 if (scn) { 1616 Elf64_Shdr *shdr = elf64_getshdr(scn); 1617 if (shdr) { 1618 if (shdr->sh_type == SHT_HASH) { 1619 if (result == nullptr) { 1620 result = shdr; 1621 } else { 1622 // multiple SHT_HASH sections not handled 1623 return nullptr; 1624 } 1625 } 1626 } 1627 } 1628 } 1629 return result; 1630 } 1631 1632 const Elf64_Sym *elf_lookup(Elf *elf, char *base, Elf64_Shdr *section_hash, 1633 const char *symname) { 1634 1635 assert(section_hash); 1636 size_t section_symtab_index = section_hash->sh_link; 1637 Elf64_Shdr *section_symtab = 1638 elf64_getshdr(elf_getscn(elf, section_symtab_index)); 1639 size_t section_strtab_index = section_symtab->sh_link; 1640 1641 const Elf64_Sym *symtab = 1642 reinterpret_cast<const Elf64_Sym *>(base + section_symtab->sh_offset); 1643 1644 const uint32_t *hashtab = 1645 reinterpret_cast<const uint32_t *>(base + section_hash->sh_offset); 1646 1647 // Layout: 1648 // nbucket 1649 // nchain 1650 // bucket[nbucket] 1651 // chain[nchain] 1652 uint32_t nbucket = hashtab[0]; 1653 const uint32_t *bucket = &hashtab[2]; 1654 const uint32_t *chain = &hashtab[nbucket + 2]; 1655 1656 const size_t max = strlen(symname) + 1; 1657 const uint32_t hash = elf_hash(symname); 1658 for (uint32_t i = bucket[hash % nbucket]; i != 0; i = chain[i]) { 1659 char *n = elf_strptr(elf, section_strtab_index, symtab[i].st_name); 1660 if (strncmp(symname, n, max) == 0) { 1661 return &symtab[i]; 1662 } 1663 } 1664 1665 return nullptr; 1666 } 1667 1668 struct symbol_info { 1669 void *addr = nullptr; 1670 uint32_t size = UINT32_MAX; 1671 uint32_t sh_type = SHT_NULL; 1672 }; 1673 1674 int get_symbol_info_without_loading(Elf *elf, char *base, const char *symname, 1675 symbol_info *res) { 1676 if (elf_kind(elf) != ELF_K_ELF) { 1677 return 1; 1678 } 1679 1680 Elf64_Shdr *section_hash = find_only_SHT_HASH(elf); 1681 if (!section_hash) { 1682 return 1; 1683 } 1684 1685 const Elf64_Sym *sym = elf_lookup(elf, base, section_hash, symname); 1686 if (!sym) { 1687 return 1; 1688 } 1689 1690 if (sym->st_size > UINT32_MAX) { 1691 return 1; 1692 } 1693 1694 if (sym->st_shndx == SHN_UNDEF) { 1695 return 1; 1696 } 1697 1698 Elf_Scn *section = elf_getscn(elf, sym->st_shndx); 1699 if (!section) { 1700 return 1; 1701 } 1702 1703 Elf64_Shdr *header = elf64_getshdr(section); 1704 if (!header) { 1705 return 1; 1706 } 1707 1708 res->addr = sym->st_value + base; 1709 res->size = static_cast<uint32_t>(sym->st_size); 1710 res->sh_type = header->sh_type; 1711 return 0; 1712 } 1713 1714 int get_symbol_info_without_loading(char *base, size_t img_size, 1715 const char *symname, symbol_info *res) { 1716 Elf *elf = elf_memory(base, img_size); 1717 if (elf) { 1718 int rc = get_symbol_info_without_loading(elf, base, symname, res); 1719 elf_end(elf); 1720 return rc; 1721 } 1722 return 1; 1723 } 1724 1725 hsa_status_t interop_get_symbol_info(char *base, size_t img_size, 1726 const char *symname, void **var_addr, 1727 uint32_t *var_size) { 1728 symbol_info si; 1729 int rc = get_symbol_info_without_loading(base, img_size, symname, &si); 1730 if (rc == 0) { 1731 *var_addr = si.addr; 1732 *var_size = si.size; 1733 return HSA_STATUS_SUCCESS; 1734 } else { 1735 return HSA_STATUS_ERROR; 1736 } 1737 } 1738 1739 template <typename C> 1740 hsa_status_t module_register_from_memory_to_place( 1741 std::map<std::string, atl_kernel_info_t> &KernelInfoTable, 1742 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, 1743 void *module_bytes, size_t module_size, int DeviceId, C cb, 1744 std::vector<hsa_executable_t> &HSAExecutables) { 1745 auto L = [](void *data, size_t size, void *cb_state) -> hsa_status_t { 1746 C *unwrapped = static_cast<C *>(cb_state); 1747 return (*unwrapped)(data, size); 1748 }; 1749 return core::RegisterModuleFromMemory( 1750 KernelInfoTable, SymbolInfoTable, module_bytes, module_size, 1751 DeviceInfo.HSAAgents[DeviceId], L, static_cast<void *>(&cb), 1752 HSAExecutables); 1753 } 1754 1755 uint64_t get_device_State_bytes(char *ImageStart, size_t img_size) { 1756 uint64_t device_State_bytes = 0; 1757 { 1758 // If this is the deviceRTL, get the state variable size 1759 symbol_info size_si; 1760 int rc = get_symbol_info_without_loading( 1761 ImageStart, img_size, "omptarget_nvptx_device_State_size", &size_si); 1762 1763 if (rc == 0) { 1764 if (size_si.size != sizeof(uint64_t)) { 1765 DP("Found device_State_size variable with wrong size\n"); 1766 return 0; 1767 } 1768 1769 // Read number of bytes directly from the elf 1770 memcpy(&device_State_bytes, size_si.addr, sizeof(uint64_t)); 1771 } 1772 } 1773 return device_State_bytes; 1774 } 1775 1776 struct device_environment { 1777 // initialise an DeviceEnvironmentTy in the deviceRTL 1778 // patches around differences in the deviceRTL between trunk, aomp, 1779 // rocmcc. Over time these differences will tend to zero and this class 1780 // simplified. 1781 // Symbol may be in .data or .bss, and may be missing fields, todo: 1782 // review aomp/trunk/rocm and simplify the following 1783 1784 // The symbol may also have been deadstripped because the device side 1785 // accessors were unused. 1786 1787 // If the symbol is in .data (aomp, rocm) it can be written directly. 1788 // If it is in .bss, we must wait for it to be allocated space on the 1789 // gpu (trunk) and initialize after loading. 1790 const char *sym() { return "omptarget_device_environment"; } 1791 1792 DeviceEnvironmentTy host_device_env; 1793 symbol_info si; 1794 bool valid = false; 1795 1796 __tgt_device_image *image; 1797 const size_t img_size; 1798 1799 device_environment(int device_id, int number_devices, int dynamic_mem_size, 1800 __tgt_device_image *image, const size_t img_size) 1801 : image(image), img_size(img_size) { 1802 1803 host_device_env.NumDevices = number_devices; 1804 host_device_env.DeviceNum = device_id; 1805 host_device_env.DebugKind = 0; 1806 host_device_env.DynamicMemSize = dynamic_mem_size; 1807 if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) { 1808 host_device_env.DebugKind = std::stoi(envStr); 1809 } 1810 1811 int rc = get_symbol_info_without_loading((char *)image->ImageStart, 1812 img_size, sym(), &si); 1813 if (rc != 0) { 1814 DP("Finding global device environment '%s' - symbol missing.\n", sym()); 1815 return; 1816 } 1817 1818 if (si.size > sizeof(host_device_env)) { 1819 DP("Symbol '%s' has size %u, expected at most %zu.\n", sym(), si.size, 1820 sizeof(host_device_env)); 1821 return; 1822 } 1823 1824 valid = true; 1825 } 1826 1827 bool in_image() { return si.sh_type != SHT_NOBITS; } 1828 1829 hsa_status_t before_loading(void *data, size_t size) { 1830 if (valid) { 1831 if (in_image()) { 1832 DP("Setting global device environment before load (%u bytes)\n", 1833 si.size); 1834 uint64_t offset = (char *)si.addr - (char *)image->ImageStart; 1835 void *pos = (char *)data + offset; 1836 memcpy(pos, &host_device_env, si.size); 1837 } 1838 } 1839 return HSA_STATUS_SUCCESS; 1840 } 1841 1842 hsa_status_t after_loading() { 1843 if (valid) { 1844 if (!in_image()) { 1845 DP("Setting global device environment after load (%u bytes)\n", 1846 si.size); 1847 int device_id = host_device_env.DeviceNum; 1848 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1849 void *state_ptr; 1850 uint32_t state_ptr_size; 1851 hsa_status_t err = interop_hsa_get_symbol_info( 1852 SymbolInfo, device_id, sym(), &state_ptr, &state_ptr_size); 1853 if (err != HSA_STATUS_SUCCESS) { 1854 DP("failed to find %s in loaded image\n", sym()); 1855 return err; 1856 } 1857 1858 if (state_ptr_size != si.size) { 1859 DP("Symbol had size %u before loading, %u after\n", state_ptr_size, 1860 si.size); 1861 return HSA_STATUS_ERROR; 1862 } 1863 1864 return DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &host_device_env, 1865 state_ptr_size, device_id); 1866 } 1867 } 1868 return HSA_STATUS_SUCCESS; 1869 } 1870 }; 1871 1872 hsa_status_t impl_calloc(void **ret_ptr, size_t size, int DeviceId) { 1873 uint64_t rounded = 4 * ((size + 3) / 4); 1874 void *ptr; 1875 hsa_amd_memory_pool_t MemoryPool = DeviceInfo.getDeviceMemoryPool(DeviceId); 1876 hsa_status_t err = hsa_amd_memory_pool_allocate(MemoryPool, rounded, 0, &ptr); 1877 if (err != HSA_STATUS_SUCCESS) { 1878 return err; 1879 } 1880 1881 hsa_status_t rc = hsa_amd_memory_fill(ptr, 0, rounded / 4); 1882 if (rc != HSA_STATUS_SUCCESS) { 1883 DP("zero fill device_state failed with %u\n", rc); 1884 core::Runtime::Memfree(ptr); 1885 return HSA_STATUS_ERROR; 1886 } 1887 1888 *ret_ptr = ptr; 1889 return HSA_STATUS_SUCCESS; 1890 } 1891 1892 bool image_contains_symbol(void *data, size_t size, const char *sym) { 1893 symbol_info si; 1894 int rc = get_symbol_info_without_loading((char *)data, size, sym, &si); 1895 return (rc == 0) && (si.addr != nullptr); 1896 } 1897 1898 } // namespace 1899 1900 namespace core { 1901 hsa_status_t allow_access_to_all_gpu_agents(void *ptr) { 1902 return hsa_amd_agents_allow_access(DeviceInfo.HSAAgents.size(), 1903 &DeviceInfo.HSAAgents[0], NULL, ptr); 1904 } 1905 } // namespace core 1906 1907 extern "C" { 1908 int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) { 1909 return elf_machine_id_is_amdgcn(image); 1910 } 1911 1912 int __tgt_rtl_number_of_devices() { 1913 // If the construction failed, no methods are safe to call 1914 if (DeviceInfo.ConstructionSucceeded) { 1915 return DeviceInfo.NumberOfDevices; 1916 } else { 1917 DP("AMDGPU plugin construction failed. Zero devices available\n"); 1918 return 0; 1919 } 1920 } 1921 1922 int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) { 1923 DP("Init requires flags to %ld\n", RequiresFlags); 1924 DeviceInfo.RequiresFlags = RequiresFlags; 1925 return RequiresFlags; 1926 } 1927 1928 int32_t __tgt_rtl_init_device(int device_id) { 1929 hsa_status_t err; 1930 1931 // this is per device id init 1932 DP("Initialize the device id: %d\n", device_id); 1933 1934 hsa_agent_t agent = DeviceInfo.HSAAgents[device_id]; 1935 1936 // Get number of Compute Unit 1937 uint32_t compute_units = 0; 1938 err = hsa_agent_get_info( 1939 agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT, 1940 &compute_units); 1941 if (err != HSA_STATUS_SUCCESS) { 1942 DeviceInfo.ComputeUnits[device_id] = 1; 1943 DP("Error getting compute units : settiing to 1\n"); 1944 } else { 1945 DeviceInfo.ComputeUnits[device_id] = compute_units; 1946 DP("Using %d compute unis per grid\n", DeviceInfo.ComputeUnits[device_id]); 1947 } 1948 1949 char GetInfoName[64]; // 64 max size returned by get info 1950 err = hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AGENT_INFO_NAME, 1951 (void *)GetInfoName); 1952 if (err) 1953 DeviceInfo.GPUName[device_id] = "--unknown gpu--"; 1954 else { 1955 DeviceInfo.GPUName[device_id] = GetInfoName; 1956 } 1957 1958 if (print_kernel_trace & STARTUP_DETAILS) 1959 DP("Device#%-2d CU's: %2d %s\n", device_id, 1960 DeviceInfo.ComputeUnits[device_id], 1961 DeviceInfo.GPUName[device_id].c_str()); 1962 1963 // Query attributes to determine number of threads/block and blocks/grid. 1964 uint16_t workgroup_max_dim[3]; 1965 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_DIM, 1966 &workgroup_max_dim); 1967 if (err != HSA_STATUS_SUCCESS) { 1968 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::DefaultNumTeams; 1969 DP("Error getting grid dims: num groups : %d\n", 1970 RTLDeviceInfoTy::DefaultNumTeams); 1971 } else if (workgroup_max_dim[0] <= RTLDeviceInfoTy::HardTeamLimit) { 1972 DeviceInfo.GroupsPerDevice[device_id] = workgroup_max_dim[0]; 1973 DP("Using %d ROCm blocks per grid\n", 1974 DeviceInfo.GroupsPerDevice[device_id]); 1975 } else { 1976 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::HardTeamLimit; 1977 DP("Max ROCm blocks per grid %d exceeds the hard team limit %d, capping " 1978 "at the hard limit\n", 1979 workgroup_max_dim[0], RTLDeviceInfoTy::HardTeamLimit); 1980 } 1981 1982 // Get thread limit 1983 hsa_dim3_t grid_max_dim; 1984 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &grid_max_dim); 1985 if (err == HSA_STATUS_SUCCESS) { 1986 DeviceInfo.ThreadsPerGroup[device_id] = 1987 reinterpret_cast<uint32_t *>(&grid_max_dim)[0] / 1988 DeviceInfo.GroupsPerDevice[device_id]; 1989 1990 if (DeviceInfo.ThreadsPerGroup[device_id] == 0) { 1991 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 1992 DP("Default thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 1993 } else if (enforce_upper_bound(&DeviceInfo.ThreadsPerGroup[device_id], 1994 RTLDeviceInfoTy::Max_WG_Size)) { 1995 DP("Capped thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 1996 } else { 1997 DP("Using ROCm Queried thread limit: %d\n", 1998 DeviceInfo.ThreadsPerGroup[device_id]); 1999 } 2000 } else { 2001 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 2002 DP("Error getting max block dimension, use default:%d \n", 2003 RTLDeviceInfoTy::Max_WG_Size); 2004 } 2005 2006 // Get wavefront size 2007 uint32_t wavefront_size = 0; 2008 err = 2009 hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size); 2010 if (err == HSA_STATUS_SUCCESS) { 2011 DP("Queried wavefront size: %d\n", wavefront_size); 2012 DeviceInfo.WarpSize[device_id] = wavefront_size; 2013 } else { 2014 // TODO: Burn the wavefront size into the code object 2015 DP("Warning: Unknown wavefront size, assuming 64\n"); 2016 DeviceInfo.WarpSize[device_id] = 64; 2017 } 2018 2019 // Adjust teams to the env variables 2020 2021 if (DeviceInfo.Env.TeamLimit > 0 && 2022 (enforce_upper_bound(&DeviceInfo.GroupsPerDevice[device_id], 2023 DeviceInfo.Env.TeamLimit))) { 2024 DP("Capping max groups per device to OMP_TEAM_LIMIT=%d\n", 2025 DeviceInfo.Env.TeamLimit); 2026 } 2027 2028 // Set default number of teams 2029 if (DeviceInfo.Env.NumTeams > 0) { 2030 DeviceInfo.NumTeams[device_id] = DeviceInfo.Env.NumTeams; 2031 DP("Default number of teams set according to environment %d\n", 2032 DeviceInfo.Env.NumTeams); 2033 } else { 2034 char *TeamsPerCUEnvStr = getenv("OMP_TARGET_TEAMS_PER_PROC"); 2035 int TeamsPerCU = DefaultTeamsPerCU; 2036 if (TeamsPerCUEnvStr) { 2037 TeamsPerCU = std::stoi(TeamsPerCUEnvStr); 2038 } 2039 2040 DeviceInfo.NumTeams[device_id] = 2041 TeamsPerCU * DeviceInfo.ComputeUnits[device_id]; 2042 DP("Default number of teams = %d * number of compute units %d\n", 2043 TeamsPerCU, DeviceInfo.ComputeUnits[device_id]); 2044 } 2045 2046 if (enforce_upper_bound(&DeviceInfo.NumTeams[device_id], 2047 DeviceInfo.GroupsPerDevice[device_id])) { 2048 DP("Default number of teams exceeds device limit, capping at %d\n", 2049 DeviceInfo.GroupsPerDevice[device_id]); 2050 } 2051 2052 // Adjust threads to the env variables 2053 if (DeviceInfo.Env.TeamThreadLimit > 0 && 2054 (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], 2055 DeviceInfo.Env.TeamThreadLimit))) { 2056 DP("Capping max number of threads to OMP_TEAMS_THREAD_LIMIT=%d\n", 2057 DeviceInfo.Env.TeamThreadLimit); 2058 } 2059 2060 // Set default number of threads 2061 DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::Default_WG_Size; 2062 DP("Default number of threads set according to library's default %d\n", 2063 RTLDeviceInfoTy::Default_WG_Size); 2064 if (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], 2065 DeviceInfo.ThreadsPerGroup[device_id])) { 2066 DP("Default number of threads exceeds device limit, capping at %d\n", 2067 DeviceInfo.ThreadsPerGroup[device_id]); 2068 } 2069 2070 DP("Device %d: default limit for groupsPerDevice %d & threadsPerGroup %d\n", 2071 device_id, DeviceInfo.GroupsPerDevice[device_id], 2072 DeviceInfo.ThreadsPerGroup[device_id]); 2073 2074 DP("Device %d: wavefront size %d, total threads %d x %d = %d\n", device_id, 2075 DeviceInfo.WarpSize[device_id], DeviceInfo.ThreadsPerGroup[device_id], 2076 DeviceInfo.GroupsPerDevice[device_id], 2077 DeviceInfo.GroupsPerDevice[device_id] * 2078 DeviceInfo.ThreadsPerGroup[device_id]); 2079 2080 return OFFLOAD_SUCCESS; 2081 } 2082 2083 static __tgt_target_table * 2084 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 2085 2086 __tgt_target_table *__tgt_rtl_load_binary(int32_t device_id, 2087 __tgt_device_image *image) { 2088 DeviceInfo.load_run_lock.lock(); 2089 __tgt_target_table *res = __tgt_rtl_load_binary_locked(device_id, image); 2090 DeviceInfo.load_run_lock.unlock(); 2091 return res; 2092 } 2093 2094 __tgt_target_table *__tgt_rtl_load_binary_locked(int32_t device_id, 2095 __tgt_device_image *image) { 2096 // This function loads the device image onto gpu[device_id] and does other 2097 // per-image initialization work. Specifically: 2098 // 2099 // - Initialize an DeviceEnvironmentTy instance embedded in the 2100 // image at the symbol "omptarget_device_environment" 2101 // Fields DebugKind, DeviceNum, NumDevices. Used by the deviceRTL. 2102 // 2103 // - Allocate a large array per-gpu (could be moved to init_device) 2104 // - Read a uint64_t at symbol omptarget_nvptx_device_State_size 2105 // - Allocate at least that many bytes of gpu memory 2106 // - Zero initialize it 2107 // - Write the pointer to the symbol omptarget_nvptx_device_State 2108 // 2109 // - Pulls some per-kernel information together from various sources and 2110 // records it in the KernelsList for quicker access later 2111 // 2112 // The initialization can be done before or after loading the image onto the 2113 // gpu. This function presently does a mixture. Using the hsa api to get/set 2114 // the information is simpler to implement, in exchange for more complicated 2115 // runtime behaviour. E.g. launching a kernel or using dma to get eight bytes 2116 // back from the gpu vs a hashtable lookup on the host. 2117 2118 const size_t img_size = (char *)image->ImageEnd - (char *)image->ImageStart; 2119 2120 DeviceInfo.clearOffloadEntriesTable(device_id); 2121 2122 // We do not need to set the ELF version because the caller of this function 2123 // had to do that to decide the right runtime to use 2124 2125 if (!elf_machine_id_is_amdgcn(image)) { 2126 return NULL; 2127 } 2128 2129 { 2130 auto env = 2131 device_environment(device_id, DeviceInfo.NumberOfDevices, 2132 DeviceInfo.Env.DynamicMemSize, image, img_size); 2133 2134 auto &KernelInfo = DeviceInfo.KernelInfoTable[device_id]; 2135 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 2136 hsa_status_t err = module_register_from_memory_to_place( 2137 KernelInfo, SymbolInfo, (void *)image->ImageStart, img_size, device_id, 2138 [&](void *data, size_t size) { 2139 if (image_contains_symbol(data, size, "needs_hostcall_buffer")) { 2140 __atomic_store_n(&DeviceInfo.hostcall_required, true, 2141 __ATOMIC_RELEASE); 2142 } 2143 return env.before_loading(data, size); 2144 }, 2145 DeviceInfo.HSAExecutables); 2146 2147 check("Module registering", err); 2148 if (err != HSA_STATUS_SUCCESS) { 2149 const char *DeviceName = DeviceInfo.GPUName[device_id].c_str(); 2150 const char *ElfName = get_elf_mach_gfx_name(elf_e_flags(image)); 2151 2152 if (strcmp(DeviceName, ElfName) != 0) { 2153 DP("Possible gpu arch mismatch: device:%s, image:%s please check" 2154 " compiler flag: -march=<gpu>\n", 2155 DeviceName, ElfName); 2156 } else { 2157 DP("Error loading image onto GPU: %s\n", get_error_string(err)); 2158 } 2159 2160 return NULL; 2161 } 2162 2163 err = env.after_loading(); 2164 if (err != HSA_STATUS_SUCCESS) { 2165 return NULL; 2166 } 2167 } 2168 2169 DP("AMDGPU module successfully loaded!\n"); 2170 2171 { 2172 // the device_State array is either large value in bss or a void* that 2173 // needs to be assigned to a pointer to an array of size device_state_bytes 2174 // If absent, it has been deadstripped and needs no setup. 2175 2176 void *state_ptr; 2177 uint32_t state_ptr_size; 2178 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 2179 hsa_status_t err = interop_hsa_get_symbol_info( 2180 SymbolInfoMap, device_id, "omptarget_nvptx_device_State", &state_ptr, 2181 &state_ptr_size); 2182 2183 if (err != HSA_STATUS_SUCCESS) { 2184 DP("No device_state symbol found, skipping initialization\n"); 2185 } else { 2186 if (state_ptr_size < sizeof(void *)) { 2187 DP("unexpected size of state_ptr %u != %zu\n", state_ptr_size, 2188 sizeof(void *)); 2189 return NULL; 2190 } 2191 2192 // if it's larger than a void*, assume it's a bss array and no further 2193 // initialization is required. Only try to set up a pointer for 2194 // sizeof(void*) 2195 if (state_ptr_size == sizeof(void *)) { 2196 uint64_t device_State_bytes = 2197 get_device_State_bytes((char *)image->ImageStart, img_size); 2198 if (device_State_bytes == 0) { 2199 DP("Can't initialize device_State, missing size information\n"); 2200 return NULL; 2201 } 2202 2203 auto &dss = DeviceInfo.deviceStateStore[device_id]; 2204 if (dss.first.get() == nullptr) { 2205 assert(dss.second == 0); 2206 void *ptr = NULL; 2207 hsa_status_t err = impl_calloc(&ptr, device_State_bytes, device_id); 2208 if (err != HSA_STATUS_SUCCESS) { 2209 DP("Failed to allocate device_state array\n"); 2210 return NULL; 2211 } 2212 dss = { 2213 std::unique_ptr<void, RTLDeviceInfoTy::implFreePtrDeletor>{ptr}, 2214 device_State_bytes, 2215 }; 2216 } 2217 2218 void *ptr = dss.first.get(); 2219 if (device_State_bytes != dss.second) { 2220 DP("Inconsistent sizes of device_State unsupported\n"); 2221 return NULL; 2222 } 2223 2224 // write ptr to device memory so it can be used by later kernels 2225 err = DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &ptr, 2226 sizeof(void *), device_id); 2227 if (err != HSA_STATUS_SUCCESS) { 2228 DP("memcpy install of state_ptr failed\n"); 2229 return NULL; 2230 } 2231 } 2232 } 2233 } 2234 2235 // Here, we take advantage of the data that is appended after img_end to get 2236 // the symbols' name we need to load. This data consist of the host entries 2237 // begin and end as well as the target name (see the offloading linker script 2238 // creation in clang compiler). 2239 2240 // Find the symbols in the module by name. The name can be obtain by 2241 // concatenating the host entry name with the target name 2242 2243 __tgt_offload_entry *HostBegin = image->EntriesBegin; 2244 __tgt_offload_entry *HostEnd = image->EntriesEnd; 2245 2246 for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) { 2247 2248 if (!e->addr) { 2249 // The host should have always something in the address to 2250 // uniquely identify the target region. 2251 DP("Analyzing host entry '<null>' (size = %lld)...\n", 2252 (unsigned long long)e->size); 2253 return NULL; 2254 } 2255 2256 if (e->size) { 2257 __tgt_offload_entry entry = *e; 2258 2259 void *varptr; 2260 uint32_t varsize; 2261 2262 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 2263 hsa_status_t err = interop_hsa_get_symbol_info( 2264 SymbolInfoMap, device_id, e->name, &varptr, &varsize); 2265 2266 if (err != HSA_STATUS_SUCCESS) { 2267 // Inform the user what symbol prevented offloading 2268 DP("Loading global '%s' (Failed)\n", e->name); 2269 return NULL; 2270 } 2271 2272 if (varsize != e->size) { 2273 DP("Loading global '%s' - size mismatch (%u != %lu)\n", e->name, 2274 varsize, e->size); 2275 return NULL; 2276 } 2277 2278 DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n", 2279 DPxPTR(e - HostBegin), e->name, DPxPTR(varptr)); 2280 entry.addr = (void *)varptr; 2281 2282 DeviceInfo.addOffloadEntry(device_id, entry); 2283 2284 if (DeviceInfo.RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY && 2285 e->flags & OMP_DECLARE_TARGET_LINK) { 2286 // If unified memory is present any target link variables 2287 // can access host addresses directly. There is no longer a 2288 // need for device copies. 2289 err = DeviceInfo.freesignalpool_memcpy_h2d(varptr, e->addr, 2290 sizeof(void *), device_id); 2291 if (err != HSA_STATUS_SUCCESS) 2292 DP("Error when copying USM\n"); 2293 DP("Copy linked variable host address (" DPxMOD ")" 2294 "to device address (" DPxMOD ")\n", 2295 DPxPTR(*((void **)e->addr)), DPxPTR(varptr)); 2296 } 2297 2298 continue; 2299 } 2300 2301 DP("to find the kernel name: %s size: %lu\n", e->name, strlen(e->name)); 2302 2303 // errors in kernarg_segment_size previously treated as = 0 (or as undef) 2304 uint32_t kernarg_segment_size = 0; 2305 auto &KernelInfoMap = DeviceInfo.KernelInfoTable[device_id]; 2306 hsa_status_t err = HSA_STATUS_SUCCESS; 2307 if (!e->name) { 2308 err = HSA_STATUS_ERROR; 2309 } else { 2310 std::string kernelStr = std::string(e->name); 2311 auto It = KernelInfoMap.find(kernelStr); 2312 if (It != KernelInfoMap.end()) { 2313 atl_kernel_info_t info = It->second; 2314 kernarg_segment_size = info.kernel_segment_size; 2315 } else { 2316 err = HSA_STATUS_ERROR; 2317 } 2318 } 2319 2320 // default value GENERIC (in case symbol is missing from cubin file) 2321 llvm::omp::OMPTgtExecModeFlags ExecModeVal = 2322 llvm::omp::OMPTgtExecModeFlags::OMP_TGT_EXEC_MODE_GENERIC; 2323 2324 // get flat group size if present, else Default_WG_Size 2325 int16_t WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 2326 2327 // get Kernel Descriptor if present. 2328 // Keep struct in sync wih getTgtAttributeStructQTy in CGOpenMPRuntime.cpp 2329 struct KernDescValType { 2330 uint16_t Version; 2331 uint16_t TSize; 2332 uint16_t WG_Size; 2333 }; 2334 struct KernDescValType KernDescVal; 2335 std::string KernDescNameStr(e->name); 2336 KernDescNameStr += "_kern_desc"; 2337 const char *KernDescName = KernDescNameStr.c_str(); 2338 2339 void *KernDescPtr; 2340 uint32_t KernDescSize; 2341 void *CallStackAddr = nullptr; 2342 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 2343 KernDescName, &KernDescPtr, &KernDescSize); 2344 2345 if (err == HSA_STATUS_SUCCESS) { 2346 if ((size_t)KernDescSize != sizeof(KernDescVal)) 2347 DP("Loading global computation properties '%s' - size mismatch (%u != " 2348 "%lu)\n", 2349 KernDescName, KernDescSize, sizeof(KernDescVal)); 2350 2351 memcpy(&KernDescVal, KernDescPtr, (size_t)KernDescSize); 2352 2353 // Check structure size against recorded size. 2354 if ((size_t)KernDescSize != KernDescVal.TSize) 2355 DP("KernDescVal size %lu does not match advertized size %d for '%s'\n", 2356 sizeof(KernDescVal), KernDescVal.TSize, KernDescName); 2357 2358 DP("After loading global for %s KernDesc \n", KernDescName); 2359 DP("KernDesc: Version: %d\n", KernDescVal.Version); 2360 DP("KernDesc: TSize: %d\n", KernDescVal.TSize); 2361 DP("KernDesc: WG_Size: %d\n", KernDescVal.WG_Size); 2362 2363 if (KernDescVal.WG_Size == 0) { 2364 KernDescVal.WG_Size = RTLDeviceInfoTy::Default_WG_Size; 2365 DP("Setting KernDescVal.WG_Size to default %d\n", KernDescVal.WG_Size); 2366 } 2367 WGSizeVal = KernDescVal.WG_Size; 2368 DP("WGSizeVal %d\n", WGSizeVal); 2369 check("Loading KernDesc computation property", err); 2370 } else { 2371 DP("Warning: Loading KernDesc '%s' - symbol not found, ", KernDescName); 2372 2373 // Flat group size 2374 std::string WGSizeNameStr(e->name); 2375 WGSizeNameStr += "_wg_size"; 2376 const char *WGSizeName = WGSizeNameStr.c_str(); 2377 2378 void *WGSizePtr; 2379 uint32_t WGSize; 2380 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 2381 WGSizeName, &WGSizePtr, &WGSize); 2382 2383 if (err == HSA_STATUS_SUCCESS) { 2384 if ((size_t)WGSize != sizeof(int16_t)) { 2385 DP("Loading global computation properties '%s' - size mismatch (%u " 2386 "!= " 2387 "%lu)\n", 2388 WGSizeName, WGSize, sizeof(int16_t)); 2389 return NULL; 2390 } 2391 2392 memcpy(&WGSizeVal, WGSizePtr, (size_t)WGSize); 2393 2394 DP("After loading global for %s WGSize = %d\n", WGSizeName, WGSizeVal); 2395 2396 if (WGSizeVal < RTLDeviceInfoTy::Default_WG_Size || 2397 WGSizeVal > RTLDeviceInfoTy::Max_WG_Size) { 2398 DP("Error wrong WGSize value specified in HSA code object file: " 2399 "%d\n", 2400 WGSizeVal); 2401 WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 2402 } 2403 } else { 2404 DP("Warning: Loading WGSize '%s' - symbol not found, " 2405 "using default value %d\n", 2406 WGSizeName, WGSizeVal); 2407 } 2408 2409 check("Loading WGSize computation property", err); 2410 } 2411 2412 // Read execution mode from global in binary 2413 std::string ExecModeNameStr(e->name); 2414 ExecModeNameStr += "_exec_mode"; 2415 const char *ExecModeName = ExecModeNameStr.c_str(); 2416 2417 void *ExecModePtr; 2418 uint32_t varsize; 2419 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 2420 ExecModeName, &ExecModePtr, &varsize); 2421 2422 if (err == HSA_STATUS_SUCCESS) { 2423 if ((size_t)varsize != sizeof(llvm::omp::OMPTgtExecModeFlags)) { 2424 DP("Loading global computation properties '%s' - size mismatch(%u != " 2425 "%lu)\n", 2426 ExecModeName, varsize, sizeof(llvm::omp::OMPTgtExecModeFlags)); 2427 return NULL; 2428 } 2429 2430 memcpy(&ExecModeVal, ExecModePtr, (size_t)varsize); 2431 2432 DP("After loading global for %s ExecMode = %d\n", ExecModeName, 2433 ExecModeVal); 2434 2435 if (ExecModeVal < 0 || 2436 ExecModeVal > llvm::omp::OMP_TGT_EXEC_MODE_GENERIC_SPMD) { 2437 DP("Error wrong exec_mode value specified in HSA code object file: " 2438 "%d\n", 2439 ExecModeVal); 2440 return NULL; 2441 } 2442 } else { 2443 DP("Loading global exec_mode '%s' - symbol missing, using default " 2444 "value " 2445 "GENERIC (1)\n", 2446 ExecModeName); 2447 } 2448 check("Loading computation property", err); 2449 2450 KernelsList.push_back(KernelTy(ExecModeVal, WGSizeVal, device_id, 2451 CallStackAddr, e->name, kernarg_segment_size, 2452 DeviceInfo.KernArgPool)); 2453 __tgt_offload_entry entry = *e; 2454 entry.addr = (void *)&KernelsList.back(); 2455 DeviceInfo.addOffloadEntry(device_id, entry); 2456 DP("Entry point %ld maps to %s\n", e - HostBegin, e->name); 2457 } 2458 2459 return DeviceInfo.getOffloadEntriesTable(device_id); 2460 } 2461 2462 void *__tgt_rtl_data_alloc(int device_id, int64_t size, void *, int32_t kind) { 2463 void *ptr = NULL; 2464 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 2465 2466 if (kind != TARGET_ALLOC_DEFAULT) { 2467 REPORT("Invalid target data allocation kind or requested allocator not " 2468 "implemented yet\n"); 2469 return NULL; 2470 } 2471 2472 hsa_amd_memory_pool_t MemoryPool = DeviceInfo.getDeviceMemoryPool(device_id); 2473 hsa_status_t err = hsa_amd_memory_pool_allocate(MemoryPool, size, 0, &ptr); 2474 DP("Tgt alloc data %ld bytes, (tgt:%016llx).\n", size, 2475 (long long unsigned)(Elf64_Addr)ptr); 2476 ptr = (err == HSA_STATUS_SUCCESS) ? ptr : NULL; 2477 return ptr; 2478 } 2479 2480 int32_t __tgt_rtl_data_submit(int device_id, void *tgt_ptr, void *hst_ptr, 2481 int64_t size) { 2482 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 2483 __tgt_async_info AsyncInfo; 2484 int32_t rc = dataSubmit(device_id, tgt_ptr, hst_ptr, size, &AsyncInfo); 2485 if (rc != OFFLOAD_SUCCESS) 2486 return OFFLOAD_FAIL; 2487 2488 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 2489 } 2490 2491 int32_t __tgt_rtl_data_submit_async(int device_id, void *tgt_ptr, void *hst_ptr, 2492 int64_t size, __tgt_async_info *AsyncInfo) { 2493 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 2494 if (AsyncInfo) { 2495 initAsyncInfo(AsyncInfo); 2496 return dataSubmit(device_id, tgt_ptr, hst_ptr, size, AsyncInfo); 2497 } else { 2498 return __tgt_rtl_data_submit(device_id, tgt_ptr, hst_ptr, size); 2499 } 2500 } 2501 2502 int32_t __tgt_rtl_data_retrieve(int device_id, void *hst_ptr, void *tgt_ptr, 2503 int64_t size) { 2504 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 2505 __tgt_async_info AsyncInfo; 2506 int32_t rc = dataRetrieve(device_id, hst_ptr, tgt_ptr, size, &AsyncInfo); 2507 if (rc != OFFLOAD_SUCCESS) 2508 return OFFLOAD_FAIL; 2509 2510 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 2511 } 2512 2513 int32_t __tgt_rtl_data_retrieve_async(int device_id, void *hst_ptr, 2514 void *tgt_ptr, int64_t size, 2515 __tgt_async_info *AsyncInfo) { 2516 assert(AsyncInfo && "AsyncInfo is nullptr"); 2517 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 2518 initAsyncInfo(AsyncInfo); 2519 return dataRetrieve(device_id, hst_ptr, tgt_ptr, size, AsyncInfo); 2520 } 2521 2522 int32_t __tgt_rtl_data_delete(int device_id, void *tgt_ptr) { 2523 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 2524 hsa_status_t err; 2525 DP("Tgt free data (tgt:%016llx).\n", (long long unsigned)(Elf64_Addr)tgt_ptr); 2526 err = core::Runtime::Memfree(tgt_ptr); 2527 if (err != HSA_STATUS_SUCCESS) { 2528 DP("Error when freeing CUDA memory\n"); 2529 return OFFLOAD_FAIL; 2530 } 2531 return OFFLOAD_SUCCESS; 2532 } 2533 2534 int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr, 2535 void **tgt_args, 2536 ptrdiff_t *tgt_offsets, 2537 int32_t arg_num, int32_t num_teams, 2538 int32_t thread_limit, 2539 uint64_t loop_tripcount) { 2540 2541 DeviceInfo.load_run_lock.lock_shared(); 2542 int32_t res = 2543 runRegionLocked(device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, 2544 num_teams, thread_limit, loop_tripcount); 2545 2546 DeviceInfo.load_run_lock.unlock_shared(); 2547 return res; 2548 } 2549 2550 int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr, 2551 void **tgt_args, ptrdiff_t *tgt_offsets, 2552 int32_t arg_num) { 2553 // use one team and one thread 2554 // fix thread num 2555 int32_t team_num = 1; 2556 int32_t thread_limit = 0; // use default 2557 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 2558 tgt_offsets, arg_num, team_num, 2559 thread_limit, 0); 2560 } 2561 2562 int32_t __tgt_rtl_run_target_team_region_async( 2563 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 2564 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 2565 int32_t thread_limit, uint64_t loop_tripcount, 2566 __tgt_async_info *AsyncInfo) { 2567 assert(AsyncInfo && "AsyncInfo is nullptr"); 2568 initAsyncInfo(AsyncInfo); 2569 2570 DeviceInfo.load_run_lock.lock_shared(); 2571 int32_t res = 2572 runRegionLocked(device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, 2573 num_teams, thread_limit, loop_tripcount); 2574 2575 DeviceInfo.load_run_lock.unlock_shared(); 2576 return res; 2577 } 2578 2579 int32_t __tgt_rtl_run_target_region_async(int32_t device_id, 2580 void *tgt_entry_ptr, void **tgt_args, 2581 ptrdiff_t *tgt_offsets, 2582 int32_t arg_num, 2583 __tgt_async_info *AsyncInfo) { 2584 // use one team and one thread 2585 // fix thread num 2586 int32_t team_num = 1; 2587 int32_t thread_limit = 0; // use default 2588 return __tgt_rtl_run_target_team_region_async( 2589 device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, team_num, 2590 thread_limit, 0, AsyncInfo); 2591 } 2592 2593 int32_t __tgt_rtl_synchronize(int32_t device_id, __tgt_async_info *AsyncInfo) { 2594 assert(AsyncInfo && "AsyncInfo is nullptr"); 2595 2596 // Cuda asserts that AsyncInfo->Queue is non-null, but this invariant 2597 // is not ensured by devices.cpp for amdgcn 2598 // assert(AsyncInfo->Queue && "AsyncInfo->Queue is nullptr"); 2599 if (AsyncInfo->Queue) { 2600 finiAsyncInfo(AsyncInfo); 2601 } 2602 return OFFLOAD_SUCCESS; 2603 } 2604 2605 void __tgt_rtl_print_device_info(int32_t device_id) { 2606 // TODO: Assertion to see if device_id is correct 2607 // NOTE: We don't need to set context for print device info. 2608 2609 DeviceInfo.printDeviceInfo(device_id, DeviceInfo.HSAAgents[device_id]); 2610 } 2611 2612 } // extern "C" 2613