1 //===----RTLs/hsa/src/rtl.cpp - Target RTLs Implementation -------- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // RTL for hsa machine 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <algorithm> 14 #include <assert.h> 15 #include <cstdio> 16 #include <cstdlib> 17 #include <cstring> 18 #include <dlfcn.h> 19 #include <elf.h> 20 #include <ffi.h> 21 #include <fstream> 22 #include <iostream> 23 #include <libelf.h> 24 #include <list> 25 #include <memory> 26 #include <mutex> 27 #include <shared_mutex> 28 #include <thread> 29 #include <unordered_map> 30 #include <vector> 31 32 // Header from ATMI interface 33 #include "atmi_interop_hsa.h" 34 #include "atmi_runtime.h" 35 36 #include "internal.h" 37 38 #include "Debug.h" 39 #include "get_elf_mach_gfx_name.h" 40 #include "omptargetplugin.h" 41 #include "print_tracing.h" 42 43 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 44 45 #ifndef TARGET_NAME 46 #define TARGET_NAME AMDHSA 47 #endif 48 #define DEBUG_PREFIX "Target " GETNAME(TARGET_NAME) " RTL" 49 50 // hostrpc interface, FIXME: consider moving to its own include these are 51 // statically linked into amdgpu/plugin if present from hostrpc_services.a, 52 // linked as --whole-archive to override the weak symbols that are used to 53 // implement a fallback for toolchains that do not yet have a hostrpc library. 54 extern "C" { 55 unsigned long hostrpc_assign_buffer(hsa_agent_t agent, hsa_queue_t *this_Q, 56 uint32_t device_id); 57 hsa_status_t hostrpc_init(); 58 hsa_status_t hostrpc_terminate(); 59 60 __attribute__((weak)) hsa_status_t hostrpc_init() { return HSA_STATUS_SUCCESS; } 61 __attribute__((weak)) hsa_status_t hostrpc_terminate() { 62 return HSA_STATUS_SUCCESS; 63 } 64 __attribute__((weak)) unsigned long 65 hostrpc_assign_buffer(hsa_agent_t, hsa_queue_t *, uint32_t device_id) { 66 DP("Warning: Attempting to assign hostrpc to device %u, but hostrpc library " 67 "missing\n", 68 device_id); 69 return 0; 70 } 71 } 72 73 int print_kernel_trace; 74 75 #ifdef OMPTARGET_DEBUG 76 #define check(msg, status) \ 77 if (status != ATMI_STATUS_SUCCESS) { \ 78 DP(#msg " failed\n"); \ 79 } else { \ 80 DP(#msg " succeeded\n"); \ 81 } 82 #else 83 #define check(msg, status) \ 84 {} 85 #endif 86 87 #include "elf_common.h" 88 89 /// Keep entries table per device 90 struct FuncOrGblEntryTy { 91 __tgt_target_table Table; 92 std::vector<__tgt_offload_entry> Entries; 93 }; 94 95 enum ExecutionModeType { 96 SPMD, // constructors, destructors, 97 // combined constructs (`teams distribute parallel for [simd]`) 98 GENERIC, // everything else 99 NONE 100 }; 101 102 struct KernelArgPool { 103 private: 104 static pthread_mutex_t mutex; 105 106 public: 107 uint32_t kernarg_segment_size; 108 void *kernarg_region = nullptr; 109 std::queue<int> free_kernarg_segments; 110 111 uint32_t kernarg_size_including_implicit() { 112 return kernarg_segment_size + sizeof(atmi_implicit_args_t); 113 } 114 115 ~KernelArgPool() { 116 if (kernarg_region) { 117 auto r = hsa_amd_memory_pool_free(kernarg_region); 118 if (r != HSA_STATUS_SUCCESS) { 119 DP("hsa_amd_memory_pool_free failed: %s\n", get_error_string(r)); 120 } 121 } 122 } 123 124 // Can't really copy or move a mutex 125 KernelArgPool() = default; 126 KernelArgPool(const KernelArgPool &) = delete; 127 KernelArgPool(KernelArgPool &&) = delete; 128 129 KernelArgPool(uint32_t kernarg_segment_size) 130 : kernarg_segment_size(kernarg_segment_size) { 131 132 // atmi uses one pool per kernel for all gpus, with a fixed upper size 133 // preserving that exact scheme here, including the queue<int> 134 135 hsa_status_t err = hsa_amd_memory_pool_allocate( 136 atl_gpu_kernarg_pools[0], 137 kernarg_size_including_implicit() * MAX_NUM_KERNELS, 0, 138 &kernarg_region); 139 140 if (err != HSA_STATUS_SUCCESS) { 141 DP("hsa_amd_memory_pool_allocate failed: %s\n", get_error_string(err)); 142 kernarg_region = nullptr; // paranoid 143 return; 144 } 145 146 err = core::allow_access_to_all_gpu_agents(kernarg_region); 147 if (err != HSA_STATUS_SUCCESS) { 148 DP("hsa allow_access_to_all_gpu_agents failed: %s\n", 149 get_error_string(err)); 150 auto r = hsa_amd_memory_pool_free(kernarg_region); 151 if (r != HSA_STATUS_SUCCESS) { 152 // if free failed, can't do anything more to resolve it 153 DP("hsa memory poll free failed: %s\n", get_error_string(err)); 154 } 155 kernarg_region = nullptr; 156 return; 157 } 158 159 for (int i = 0; i < MAX_NUM_KERNELS; i++) { 160 free_kernarg_segments.push(i); 161 } 162 } 163 164 void *allocate(uint64_t arg_num) { 165 assert((arg_num * sizeof(void *)) == kernarg_segment_size); 166 lock l(&mutex); 167 void *res = nullptr; 168 if (!free_kernarg_segments.empty()) { 169 170 int free_idx = free_kernarg_segments.front(); 171 res = static_cast<void *>(static_cast<char *>(kernarg_region) + 172 (free_idx * kernarg_size_including_implicit())); 173 assert(free_idx == pointer_to_index(res)); 174 free_kernarg_segments.pop(); 175 } 176 return res; 177 } 178 179 void deallocate(void *ptr) { 180 lock l(&mutex); 181 int idx = pointer_to_index(ptr); 182 free_kernarg_segments.push(idx); 183 } 184 185 private: 186 int pointer_to_index(void *ptr) { 187 ptrdiff_t bytes = 188 static_cast<char *>(ptr) - static_cast<char *>(kernarg_region); 189 assert(bytes >= 0); 190 assert(bytes % kernarg_size_including_implicit() == 0); 191 return bytes / kernarg_size_including_implicit(); 192 } 193 struct lock { 194 lock(pthread_mutex_t *m) : m(m) { pthread_mutex_lock(m); } 195 ~lock() { pthread_mutex_unlock(m); } 196 pthread_mutex_t *m; 197 }; 198 }; 199 pthread_mutex_t KernelArgPool::mutex = PTHREAD_MUTEX_INITIALIZER; 200 201 std::unordered_map<std::string /*kernel*/, std::unique_ptr<KernelArgPool>> 202 KernelArgPoolMap; 203 204 /// Use a single entity to encode a kernel and a set of flags 205 struct KernelTy { 206 // execution mode of kernel 207 // 0 - SPMD mode (without master warp) 208 // 1 - Generic mode (with master warp) 209 int8_t ExecutionMode; 210 int16_t ConstWGSize; 211 int32_t device_id; 212 void *CallStackAddr = nullptr; 213 const char *Name; 214 215 KernelTy(int8_t _ExecutionMode, int16_t _ConstWGSize, int32_t _device_id, 216 void *_CallStackAddr, const char *_Name, 217 uint32_t _kernarg_segment_size) 218 : ExecutionMode(_ExecutionMode), ConstWGSize(_ConstWGSize), 219 device_id(_device_id), CallStackAddr(_CallStackAddr), Name(_Name) { 220 DP("Construct kernelinfo: ExecMode %d\n", ExecutionMode); 221 222 std::string N(_Name); 223 if (KernelArgPoolMap.find(N) == KernelArgPoolMap.end()) { 224 KernelArgPoolMap.insert( 225 std::make_pair(N, std::unique_ptr<KernelArgPool>( 226 new KernelArgPool(_kernarg_segment_size)))); 227 } 228 } 229 }; 230 231 /// List that contains all the kernels. 232 /// FIXME: we may need this to be per device and per library. 233 std::list<KernelTy> KernelsList; 234 235 // ATMI API to get gpu and gpu memory place 236 static atmi_place_t get_gpu_place(int device_id) { 237 return ATMI_PLACE_GPU(0, device_id); 238 } 239 static atmi_mem_place_t get_gpu_mem_place(int device_id) { 240 return ATMI_MEM_PLACE_GPU_MEM(0, device_id, 0); 241 } 242 243 static std::vector<hsa_agent_t> find_gpu_agents() { 244 std::vector<hsa_agent_t> res; 245 246 hsa_status_t err = hsa_iterate_agents( 247 [](hsa_agent_t agent, void *data) -> hsa_status_t { 248 std::vector<hsa_agent_t> *res = 249 static_cast<std::vector<hsa_agent_t> *>(data); 250 251 hsa_device_type_t device_type; 252 // get_info fails iff HSA runtime not yet initialized 253 hsa_status_t err = 254 hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 255 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) 256 printf("rtl.cpp: err %d\n", err); 257 assert(err == HSA_STATUS_SUCCESS); 258 259 if (device_type == HSA_DEVICE_TYPE_GPU) { 260 res->push_back(agent); 261 } 262 return HSA_STATUS_SUCCESS; 263 }, 264 &res); 265 266 // iterate_agents fails iff HSA runtime not yet initialized 267 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) 268 printf("rtl.cpp: err %d\n", err); 269 assert(err == HSA_STATUS_SUCCESS); 270 return res; 271 } 272 273 static void callbackQueue(hsa_status_t status, hsa_queue_t *source, 274 void *data) { 275 if (status != HSA_STATUS_SUCCESS) { 276 const char *status_string; 277 if (hsa_status_string(status, &status_string) != HSA_STATUS_SUCCESS) { 278 status_string = "unavailable"; 279 } 280 fprintf(stderr, "[%s:%d] GPU error in queue %p %d (%s)\n", __FILE__, 281 __LINE__, source, status, status_string); 282 abort(); 283 } 284 } 285 286 namespace core { 287 namespace { 288 void packet_store_release(uint32_t *packet, uint16_t header, uint16_t rest) { 289 __atomic_store_n(packet, header | (rest << 16), __ATOMIC_RELEASE); 290 } 291 292 uint16_t create_header() { 293 uint16_t header = HSA_PACKET_TYPE_KERNEL_DISPATCH << HSA_PACKET_HEADER_TYPE; 294 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE; 295 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE; 296 return header; 297 } 298 } // namespace 299 } // namespace core 300 301 /// Class containing all the device information 302 class RTLDeviceInfoTy { 303 std::vector<std::list<FuncOrGblEntryTy>> FuncGblEntries; 304 305 public: 306 // load binary populates symbol tables and mutates various global state 307 // run uses those symbol tables 308 std::shared_timed_mutex load_run_lock; 309 310 int NumberOfDevices; 311 312 // GPU devices 313 std::vector<hsa_agent_t> HSAAgents; 314 std::vector<hsa_queue_t *> HSAQueues; // one per gpu 315 316 // Device properties 317 std::vector<int> ComputeUnits; 318 std::vector<int> GroupsPerDevice; 319 std::vector<int> ThreadsPerGroup; 320 std::vector<int> WarpSize; 321 std::vector<std::string> GPUName; 322 323 // OpenMP properties 324 std::vector<int> NumTeams; 325 std::vector<int> NumThreads; 326 327 // OpenMP Environment properties 328 int EnvNumTeams; 329 int EnvTeamLimit; 330 int EnvMaxTeamsDefault; 331 332 // OpenMP Requires Flags 333 int64_t RequiresFlags; 334 335 // Resource pools 336 SignalPoolT FreeSignalPool; 337 338 std::vector<hsa_executable_t> HSAExecutables; 339 340 struct atmiFreePtrDeletor { 341 void operator()(void *p) { 342 atmi_free(p); // ignore failure to free 343 } 344 }; 345 346 // device_State shared across loaded binaries, error if inconsistent size 347 std::vector<std::pair<std::unique_ptr<void, atmiFreePtrDeletor>, uint64_t>> 348 deviceStateStore; 349 350 static const unsigned HardTeamLimit = 351 (1 << 16) - 1; // 64K needed to fit in uint16 352 static const int DefaultNumTeams = 128; 353 static const int Max_Teams = 354 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_Teams]; 355 static const int Warp_Size = 356 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; 357 static const int Max_WG_Size = 358 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_WG_Size]; 359 static const int Default_WG_Size = 360 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Default_WG_Size]; 361 362 using MemcpyFunc = atmi_status_t (*)(hsa_signal_t, void *, const void *, 363 size_t size, hsa_agent_t); 364 atmi_status_t freesignalpool_memcpy(void *dest, const void *src, size_t size, 365 MemcpyFunc Func, int32_t deviceId) { 366 hsa_agent_t agent = HSAAgents[deviceId]; 367 hsa_signal_t s = FreeSignalPool.pop(); 368 if (s.handle == 0) { 369 return ATMI_STATUS_ERROR; 370 } 371 atmi_status_t r = Func(s, dest, src, size, agent); 372 FreeSignalPool.push(s); 373 return r; 374 } 375 376 atmi_status_t freesignalpool_memcpy_d2h(void *dest, const void *src, 377 size_t size, int32_t deviceId) { 378 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_d2h, deviceId); 379 } 380 381 atmi_status_t freesignalpool_memcpy_h2d(void *dest, const void *src, 382 size_t size, int32_t deviceId) { 383 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_h2d, deviceId); 384 } 385 386 // Record entry point associated with device 387 void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) { 388 assert(device_id < (int32_t)FuncGblEntries.size() && 389 "Unexpected device id!"); 390 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 391 392 E.Entries.push_back(entry); 393 } 394 395 // Return true if the entry is associated with device 396 bool findOffloadEntry(int32_t device_id, void *addr) { 397 assert(device_id < (int32_t)FuncGblEntries.size() && 398 "Unexpected device id!"); 399 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 400 401 for (auto &it : E.Entries) { 402 if (it.addr == addr) 403 return true; 404 } 405 406 return false; 407 } 408 409 // Return the pointer to the target entries table 410 __tgt_target_table *getOffloadEntriesTable(int32_t device_id) { 411 assert(device_id < (int32_t)FuncGblEntries.size() && 412 "Unexpected device id!"); 413 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 414 415 int32_t size = E.Entries.size(); 416 417 // Table is empty 418 if (!size) 419 return 0; 420 421 __tgt_offload_entry *begin = &E.Entries[0]; 422 __tgt_offload_entry *end = &E.Entries[size - 1]; 423 424 // Update table info according to the entries and return the pointer 425 E.Table.EntriesBegin = begin; 426 E.Table.EntriesEnd = ++end; 427 428 return &E.Table; 429 } 430 431 // Clear entries table for a device 432 void clearOffloadEntriesTable(int device_id) { 433 assert(device_id < (int32_t)FuncGblEntries.size() && 434 "Unexpected device id!"); 435 FuncGblEntries[device_id].emplace_back(); 436 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 437 // KernelArgPoolMap.clear(); 438 E.Entries.clear(); 439 E.Table.EntriesBegin = E.Table.EntriesEnd = 0; 440 } 441 442 RTLDeviceInfoTy() { 443 // LIBOMPTARGET_KERNEL_TRACE provides a kernel launch trace to stderr 444 // anytime. You do not need a debug library build. 445 // 0 => no tracing 446 // 1 => tracing dispatch only 447 // >1 => verbosity increase 448 if (char *envStr = getenv("LIBOMPTARGET_KERNEL_TRACE")) 449 print_kernel_trace = atoi(envStr); 450 else 451 print_kernel_trace = 0; 452 453 DP("Start initializing HSA-ATMI\n"); 454 atmi_status_t err = atmi_init(); 455 if (err != ATMI_STATUS_SUCCESS) { 456 DP("Error when initializing HSA-ATMI\n"); 457 return; 458 } 459 // Init hostcall soon after initializing ATMI 460 hostrpc_init(); 461 462 HSAAgents = find_gpu_agents(); 463 NumberOfDevices = (int)HSAAgents.size(); 464 465 if (NumberOfDevices == 0) { 466 DP("There are no devices supporting HSA.\n"); 467 return; 468 } else { 469 DP("There are %d devices supporting HSA.\n", NumberOfDevices); 470 } 471 472 // Init the device info 473 HSAQueues.resize(NumberOfDevices); 474 FuncGblEntries.resize(NumberOfDevices); 475 ThreadsPerGroup.resize(NumberOfDevices); 476 ComputeUnits.resize(NumberOfDevices); 477 GPUName.resize(NumberOfDevices); 478 GroupsPerDevice.resize(NumberOfDevices); 479 WarpSize.resize(NumberOfDevices); 480 NumTeams.resize(NumberOfDevices); 481 NumThreads.resize(NumberOfDevices); 482 deviceStateStore.resize(NumberOfDevices); 483 484 for (int i = 0; i < NumberOfDevices; i++) { 485 HSAQueues[i] = nullptr; 486 } 487 488 for (int i = 0; i < NumberOfDevices; i++) { 489 uint32_t queue_size = 0; 490 { 491 hsa_status_t err = hsa_agent_get_info( 492 HSAAgents[i], HSA_AGENT_INFO_QUEUE_MAX_SIZE, &queue_size); 493 if (err != HSA_STATUS_SUCCESS) { 494 DP("HSA query QUEUE_MAX_SIZE failed for agent %d\n", i); 495 return; 496 } 497 if (queue_size > core::Runtime::getInstance().getMaxQueueSize()) { 498 queue_size = core::Runtime::getInstance().getMaxQueueSize(); 499 } 500 } 501 502 hsa_status_t rc = hsa_queue_create( 503 HSAAgents[i], queue_size, HSA_QUEUE_TYPE_MULTI, callbackQueue, NULL, 504 UINT32_MAX, UINT32_MAX, &HSAQueues[i]); 505 if (rc != HSA_STATUS_SUCCESS) { 506 DP("Failed to create HSA queue %d\n", i); 507 return; 508 } 509 510 deviceStateStore[i] = {nullptr, 0}; 511 } 512 513 for (int i = 0; i < NumberOfDevices; i++) { 514 ThreadsPerGroup[i] = RTLDeviceInfoTy::Default_WG_Size; 515 GroupsPerDevice[i] = RTLDeviceInfoTy::DefaultNumTeams; 516 ComputeUnits[i] = 1; 517 DP("Device %d: Initial groupsPerDevice %d & threadsPerGroup %d\n", i, 518 GroupsPerDevice[i], ThreadsPerGroup[i]); 519 } 520 521 // Get environment variables regarding teams 522 char *envStr = getenv("OMP_TEAM_LIMIT"); 523 if (envStr) { 524 // OMP_TEAM_LIMIT has been set 525 EnvTeamLimit = std::stoi(envStr); 526 DP("Parsed OMP_TEAM_LIMIT=%d\n", EnvTeamLimit); 527 } else { 528 EnvTeamLimit = -1; 529 } 530 envStr = getenv("OMP_NUM_TEAMS"); 531 if (envStr) { 532 // OMP_NUM_TEAMS has been set 533 EnvNumTeams = std::stoi(envStr); 534 DP("Parsed OMP_NUM_TEAMS=%d\n", EnvNumTeams); 535 } else { 536 EnvNumTeams = -1; 537 } 538 // Get environment variables regarding expMaxTeams 539 envStr = getenv("OMP_MAX_TEAMS_DEFAULT"); 540 if (envStr) { 541 EnvMaxTeamsDefault = std::stoi(envStr); 542 DP("Parsed OMP_MAX_TEAMS_DEFAULT=%d\n", EnvMaxTeamsDefault); 543 } else { 544 EnvMaxTeamsDefault = -1; 545 } 546 547 // Default state. 548 RequiresFlags = OMP_REQ_UNDEFINED; 549 } 550 551 ~RTLDeviceInfoTy() { 552 DP("Finalizing the HSA-ATMI DeviceInfo.\n"); 553 // Run destructors on types that use HSA before 554 // atmi_finalize removes access to it 555 deviceStateStore.clear(); 556 KernelArgPoolMap.clear(); 557 // Terminate hostrpc before finalizing ATMI 558 hostrpc_terminate(); 559 560 for (uint32_t I = 0; I < HSAExecutables.size(); I++) { 561 hsa_status_t Err = hsa_executable_destroy(HSAExecutables[I]); 562 if (Err != HSA_STATUS_SUCCESS) { 563 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 564 "Destroying executable", get_error_string(Err)); 565 } 566 } 567 568 atmi_finalize(); 569 } 570 }; 571 572 pthread_mutex_t SignalPoolT::mutex = PTHREAD_MUTEX_INITIALIZER; 573 574 // TODO: May need to drop the trailing to fields until deviceRTL is updated 575 struct omptarget_device_environmentTy { 576 int32_t debug_level; // gets value of envvar LIBOMPTARGET_DEVICE_RTL_DEBUG 577 // only useful for Debug build of deviceRTLs 578 int32_t num_devices; // gets number of active offload devices 579 int32_t device_num; // gets a value 0 to num_devices-1 580 }; 581 582 static RTLDeviceInfoTy DeviceInfo; 583 584 namespace { 585 586 int32_t dataRetrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size, 587 __tgt_async_info *AsyncInfo) { 588 assert(AsyncInfo && "AsyncInfo is nullptr"); 589 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 590 // Return success if we are not copying back to host from target. 591 if (!HstPtr) 592 return OFFLOAD_SUCCESS; 593 atmi_status_t err; 594 DP("Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 595 (long long unsigned)(Elf64_Addr)TgtPtr, 596 (long long unsigned)(Elf64_Addr)HstPtr); 597 598 err = DeviceInfo.freesignalpool_memcpy_d2h(HstPtr, TgtPtr, (size_t)Size, 599 DeviceId); 600 601 if (err != ATMI_STATUS_SUCCESS) { 602 DP("Error when copying data from device to host. Pointers: " 603 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 604 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 605 return OFFLOAD_FAIL; 606 } 607 DP("DONE Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 608 (long long unsigned)(Elf64_Addr)TgtPtr, 609 (long long unsigned)(Elf64_Addr)HstPtr); 610 return OFFLOAD_SUCCESS; 611 } 612 613 int32_t dataSubmit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size, 614 __tgt_async_info *AsyncInfo) { 615 assert(AsyncInfo && "AsyncInfo is nullptr"); 616 atmi_status_t err; 617 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 618 // Return success if we are not doing host to target. 619 if (!HstPtr) 620 return OFFLOAD_SUCCESS; 621 622 DP("Submit data %ld bytes, (hst:%016llx) -> (tgt:%016llx).\n", Size, 623 (long long unsigned)(Elf64_Addr)HstPtr, 624 (long long unsigned)(Elf64_Addr)TgtPtr); 625 err = DeviceInfo.freesignalpool_memcpy_h2d(TgtPtr, HstPtr, (size_t)Size, 626 DeviceId); 627 if (err != ATMI_STATUS_SUCCESS) { 628 DP("Error when copying data from host to device. Pointers: " 629 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 630 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 631 return OFFLOAD_FAIL; 632 } 633 return OFFLOAD_SUCCESS; 634 } 635 636 // Async. 637 // The implementation was written with cuda streams in mind. The semantics of 638 // that are to execute kernels on a queue in order of insertion. A synchronise 639 // call then makes writes visible between host and device. This means a series 640 // of N data_submit_async calls are expected to execute serially. HSA offers 641 // various options to run the data copies concurrently. This may require changes 642 // to libomptarget. 643 644 // __tgt_async_info* contains a void * Queue. Queue = 0 is used to indicate that 645 // there are no outstanding kernels that need to be synchronized. Any async call 646 // may be passed a Queue==0, at which point the cuda implementation will set it 647 // to non-null (see getStream). The cuda streams are per-device. Upstream may 648 // change this interface to explicitly initialize the AsyncInfo_pointer, but 649 // until then hsa lazily initializes it as well. 650 651 void initAsyncInfo(__tgt_async_info *AsyncInfo) { 652 // set non-null while using async calls, return to null to indicate completion 653 assert(AsyncInfo); 654 if (!AsyncInfo->Queue) { 655 AsyncInfo->Queue = reinterpret_cast<void *>(UINT64_MAX); 656 } 657 } 658 void finiAsyncInfo(__tgt_async_info *AsyncInfo) { 659 assert(AsyncInfo); 660 assert(AsyncInfo->Queue); 661 AsyncInfo->Queue = 0; 662 } 663 664 bool elf_machine_id_is_amdgcn(__tgt_device_image *image) { 665 const uint16_t amdgcnMachineID = 224; // EM_AMDGPU may not be in system elf.h 666 int32_t r = elf_check_machine(image, amdgcnMachineID); 667 if (!r) { 668 DP("Supported machine ID not found\n"); 669 } 670 return r; 671 } 672 673 uint32_t elf_e_flags(__tgt_device_image *image) { 674 char *img_begin = (char *)image->ImageStart; 675 size_t img_size = (char *)image->ImageEnd - img_begin; 676 677 Elf *e = elf_memory(img_begin, img_size); 678 if (!e) { 679 DP("Unable to get ELF handle: %s!\n", elf_errmsg(-1)); 680 return 0; 681 } 682 683 Elf64_Ehdr *eh64 = elf64_getehdr(e); 684 685 if (!eh64) { 686 DP("Unable to get machine ID from ELF file!\n"); 687 elf_end(e); 688 return 0; 689 } 690 691 uint32_t Flags = eh64->e_flags; 692 693 elf_end(e); 694 DP("ELF Flags: 0x%x\n", Flags); 695 return Flags; 696 } 697 } // namespace 698 699 int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) { 700 return elf_machine_id_is_amdgcn(image); 701 } 702 703 int __tgt_rtl_number_of_devices() { return DeviceInfo.NumberOfDevices; } 704 705 int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) { 706 DP("Init requires flags to %ld\n", RequiresFlags); 707 DeviceInfo.RequiresFlags = RequiresFlags; 708 return RequiresFlags; 709 } 710 711 int32_t __tgt_rtl_init_device(int device_id) { 712 hsa_status_t err; 713 714 // this is per device id init 715 DP("Initialize the device id: %d\n", device_id); 716 717 hsa_agent_t agent = DeviceInfo.HSAAgents[device_id]; 718 719 // Get number of Compute Unit 720 uint32_t compute_units = 0; 721 err = hsa_agent_get_info( 722 agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT, 723 &compute_units); 724 if (err != HSA_STATUS_SUCCESS) { 725 DeviceInfo.ComputeUnits[device_id] = 1; 726 DP("Error getting compute units : settiing to 1\n"); 727 } else { 728 DeviceInfo.ComputeUnits[device_id] = compute_units; 729 DP("Using %d compute unis per grid\n", DeviceInfo.ComputeUnits[device_id]); 730 } 731 732 char GetInfoName[64]; // 64 max size returned by get info 733 err = hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AGENT_INFO_NAME, 734 (void *)GetInfoName); 735 if (err) 736 DeviceInfo.GPUName[device_id] = "--unknown gpu--"; 737 else { 738 DeviceInfo.GPUName[device_id] = GetInfoName; 739 } 740 741 if (print_kernel_trace & STARTUP_DETAILS) 742 fprintf(stderr, "Device#%-2d CU's: %2d %s\n", device_id, 743 DeviceInfo.ComputeUnits[device_id], 744 DeviceInfo.GPUName[device_id].c_str()); 745 746 // Query attributes to determine number of threads/block and blocks/grid. 747 uint16_t workgroup_max_dim[3]; 748 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_DIM, 749 &workgroup_max_dim); 750 if (err != HSA_STATUS_SUCCESS) { 751 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::DefaultNumTeams; 752 DP("Error getting grid dims: num groups : %d\n", 753 RTLDeviceInfoTy::DefaultNumTeams); 754 } else if (workgroup_max_dim[0] <= RTLDeviceInfoTy::HardTeamLimit) { 755 DeviceInfo.GroupsPerDevice[device_id] = workgroup_max_dim[0]; 756 DP("Using %d ROCm blocks per grid\n", 757 DeviceInfo.GroupsPerDevice[device_id]); 758 } else { 759 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::HardTeamLimit; 760 DP("Max ROCm blocks per grid %d exceeds the hard team limit %d, capping " 761 "at the hard limit\n", 762 workgroup_max_dim[0], RTLDeviceInfoTy::HardTeamLimit); 763 } 764 765 // Get thread limit 766 hsa_dim3_t grid_max_dim; 767 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &grid_max_dim); 768 if (err == HSA_STATUS_SUCCESS) { 769 DeviceInfo.ThreadsPerGroup[device_id] = 770 reinterpret_cast<uint32_t *>(&grid_max_dim)[0] / 771 DeviceInfo.GroupsPerDevice[device_id]; 772 if ((DeviceInfo.ThreadsPerGroup[device_id] > 773 RTLDeviceInfoTy::Max_WG_Size) || 774 DeviceInfo.ThreadsPerGroup[device_id] == 0) { 775 DP("Capped thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 776 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 777 } else { 778 DP("Using ROCm Queried thread limit: %d\n", 779 DeviceInfo.ThreadsPerGroup[device_id]); 780 } 781 } else { 782 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 783 DP("Error getting max block dimension, use default:%d \n", 784 RTLDeviceInfoTy::Max_WG_Size); 785 } 786 787 // Get wavefront size 788 uint32_t wavefront_size = 0; 789 err = 790 hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size); 791 if (err == HSA_STATUS_SUCCESS) { 792 DP("Queried wavefront size: %d\n", wavefront_size); 793 DeviceInfo.WarpSize[device_id] = wavefront_size; 794 } else { 795 DP("Default wavefront size: %d\n", 796 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]); 797 DeviceInfo.WarpSize[device_id] = 798 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; 799 } 800 801 // Adjust teams to the env variables 802 if (DeviceInfo.EnvTeamLimit > 0 && 803 DeviceInfo.GroupsPerDevice[device_id] > DeviceInfo.EnvTeamLimit) { 804 DeviceInfo.GroupsPerDevice[device_id] = DeviceInfo.EnvTeamLimit; 805 DP("Capping max groups per device to OMP_TEAM_LIMIT=%d\n", 806 DeviceInfo.EnvTeamLimit); 807 } 808 809 // Set default number of teams 810 if (DeviceInfo.EnvNumTeams > 0) { 811 DeviceInfo.NumTeams[device_id] = DeviceInfo.EnvNumTeams; 812 DP("Default number of teams set according to environment %d\n", 813 DeviceInfo.EnvNumTeams); 814 } else { 815 char *TeamsPerCUEnvStr = getenv("OMP_TARGET_TEAMS_PER_PROC"); 816 int TeamsPerCU = 1; // default number of teams per CU is 1 817 if (TeamsPerCUEnvStr) { 818 TeamsPerCU = std::stoi(TeamsPerCUEnvStr); 819 } 820 821 DeviceInfo.NumTeams[device_id] = 822 TeamsPerCU * DeviceInfo.ComputeUnits[device_id]; 823 DP("Default number of teams = %d * number of compute units %d\n", 824 TeamsPerCU, DeviceInfo.ComputeUnits[device_id]); 825 } 826 827 if (DeviceInfo.NumTeams[device_id] > DeviceInfo.GroupsPerDevice[device_id]) { 828 DeviceInfo.NumTeams[device_id] = DeviceInfo.GroupsPerDevice[device_id]; 829 DP("Default number of teams exceeds device limit, capping at %d\n", 830 DeviceInfo.GroupsPerDevice[device_id]); 831 } 832 833 // Set default number of threads 834 DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::Default_WG_Size; 835 DP("Default number of threads set according to library's default %d\n", 836 RTLDeviceInfoTy::Default_WG_Size); 837 if (DeviceInfo.NumThreads[device_id] > 838 DeviceInfo.ThreadsPerGroup[device_id]) { 839 DeviceInfo.NumTeams[device_id] = DeviceInfo.ThreadsPerGroup[device_id]; 840 DP("Default number of threads exceeds device limit, capping at %d\n", 841 DeviceInfo.ThreadsPerGroup[device_id]); 842 } 843 844 DP("Device %d: default limit for groupsPerDevice %d & threadsPerGroup %d\n", 845 device_id, DeviceInfo.GroupsPerDevice[device_id], 846 DeviceInfo.ThreadsPerGroup[device_id]); 847 848 DP("Device %d: wavefront size %d, total threads %d x %d = %d\n", device_id, 849 DeviceInfo.WarpSize[device_id], DeviceInfo.ThreadsPerGroup[device_id], 850 DeviceInfo.GroupsPerDevice[device_id], 851 DeviceInfo.GroupsPerDevice[device_id] * 852 DeviceInfo.ThreadsPerGroup[device_id]); 853 854 return OFFLOAD_SUCCESS; 855 } 856 857 namespace { 858 Elf64_Shdr *find_only_SHT_HASH(Elf *elf) { 859 size_t N; 860 int rc = elf_getshdrnum(elf, &N); 861 if (rc != 0) { 862 return nullptr; 863 } 864 865 Elf64_Shdr *result = nullptr; 866 for (size_t i = 0; i < N; i++) { 867 Elf_Scn *scn = elf_getscn(elf, i); 868 if (scn) { 869 Elf64_Shdr *shdr = elf64_getshdr(scn); 870 if (shdr) { 871 if (shdr->sh_type == SHT_HASH) { 872 if (result == nullptr) { 873 result = shdr; 874 } else { 875 // multiple SHT_HASH sections not handled 876 return nullptr; 877 } 878 } 879 } 880 } 881 } 882 return result; 883 } 884 885 const Elf64_Sym *elf_lookup(Elf *elf, char *base, Elf64_Shdr *section_hash, 886 const char *symname) { 887 888 assert(section_hash); 889 size_t section_symtab_index = section_hash->sh_link; 890 Elf64_Shdr *section_symtab = 891 elf64_getshdr(elf_getscn(elf, section_symtab_index)); 892 size_t section_strtab_index = section_symtab->sh_link; 893 894 const Elf64_Sym *symtab = 895 reinterpret_cast<const Elf64_Sym *>(base + section_symtab->sh_offset); 896 897 const uint32_t *hashtab = 898 reinterpret_cast<const uint32_t *>(base + section_hash->sh_offset); 899 900 // Layout: 901 // nbucket 902 // nchain 903 // bucket[nbucket] 904 // chain[nchain] 905 uint32_t nbucket = hashtab[0]; 906 const uint32_t *bucket = &hashtab[2]; 907 const uint32_t *chain = &hashtab[nbucket + 2]; 908 909 const size_t max = strlen(symname) + 1; 910 const uint32_t hash = elf_hash(symname); 911 for (uint32_t i = bucket[hash % nbucket]; i != 0; i = chain[i]) { 912 char *n = elf_strptr(elf, section_strtab_index, symtab[i].st_name); 913 if (strncmp(symname, n, max) == 0) { 914 return &symtab[i]; 915 } 916 } 917 918 return nullptr; 919 } 920 921 typedef struct { 922 void *addr = nullptr; 923 uint32_t size = UINT32_MAX; 924 uint32_t sh_type = SHT_NULL; 925 } symbol_info; 926 927 int get_symbol_info_without_loading(Elf *elf, char *base, const char *symname, 928 symbol_info *res) { 929 if (elf_kind(elf) != ELF_K_ELF) { 930 return 1; 931 } 932 933 Elf64_Shdr *section_hash = find_only_SHT_HASH(elf); 934 if (!section_hash) { 935 return 1; 936 } 937 938 const Elf64_Sym *sym = elf_lookup(elf, base, section_hash, symname); 939 if (!sym) { 940 return 1; 941 } 942 943 if (sym->st_size > UINT32_MAX) { 944 return 1; 945 } 946 947 if (sym->st_shndx == SHN_UNDEF) { 948 return 1; 949 } 950 951 Elf_Scn *section = elf_getscn(elf, sym->st_shndx); 952 if (!section) { 953 return 1; 954 } 955 956 Elf64_Shdr *header = elf64_getshdr(section); 957 if (!header) { 958 return 1; 959 } 960 961 res->addr = sym->st_value + base; 962 res->size = static_cast<uint32_t>(sym->st_size); 963 res->sh_type = header->sh_type; 964 return 0; 965 } 966 967 int get_symbol_info_without_loading(char *base, size_t img_size, 968 const char *symname, symbol_info *res) { 969 Elf *elf = elf_memory(base, img_size); 970 if (elf) { 971 int rc = get_symbol_info_without_loading(elf, base, symname, res); 972 elf_end(elf); 973 return rc; 974 } 975 return 1; 976 } 977 978 atmi_status_t interop_get_symbol_info(char *base, size_t img_size, 979 const char *symname, void **var_addr, 980 uint32_t *var_size) { 981 symbol_info si; 982 int rc = get_symbol_info_without_loading(base, img_size, symname, &si); 983 if (rc == 0) { 984 *var_addr = si.addr; 985 *var_size = si.size; 986 return ATMI_STATUS_SUCCESS; 987 } else { 988 return ATMI_STATUS_ERROR; 989 } 990 } 991 992 template <typename C> 993 atmi_status_t module_register_from_memory_to_place( 994 void *module_bytes, size_t module_size, atmi_place_t place, C cb, 995 std::vector<hsa_executable_t> &HSAExecutables) { 996 auto L = [](void *data, size_t size, void *cb_state) -> atmi_status_t { 997 C *unwrapped = static_cast<C *>(cb_state); 998 return (*unwrapped)(data, size); 999 }; 1000 return core::Runtime::RegisterModuleFromMemory( 1001 module_bytes, module_size, place, L, static_cast<void *>(&cb), 1002 HSAExecutables); 1003 } 1004 } // namespace 1005 1006 static uint64_t get_device_State_bytes(char *ImageStart, size_t img_size) { 1007 uint64_t device_State_bytes = 0; 1008 { 1009 // If this is the deviceRTL, get the state variable size 1010 symbol_info size_si; 1011 int rc = get_symbol_info_without_loading( 1012 ImageStart, img_size, "omptarget_nvptx_device_State_size", &size_si); 1013 1014 if (rc == 0) { 1015 if (size_si.size != sizeof(uint64_t)) { 1016 DP("Found device_State_size variable with wrong size\n"); 1017 return 0; 1018 } 1019 1020 // Read number of bytes directly from the elf 1021 memcpy(&device_State_bytes, size_si.addr, sizeof(uint64_t)); 1022 } 1023 } 1024 return device_State_bytes; 1025 } 1026 1027 static __tgt_target_table * 1028 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1029 1030 static __tgt_target_table * 1031 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1032 1033 __tgt_target_table *__tgt_rtl_load_binary(int32_t device_id, 1034 __tgt_device_image *image) { 1035 DeviceInfo.load_run_lock.lock(); 1036 __tgt_target_table *res = __tgt_rtl_load_binary_locked(device_id, image); 1037 DeviceInfo.load_run_lock.unlock(); 1038 return res; 1039 } 1040 1041 struct device_environment { 1042 // initialise an omptarget_device_environmentTy in the deviceRTL 1043 // patches around differences in the deviceRTL between trunk, aomp, 1044 // rocmcc. Over time these differences will tend to zero and this class 1045 // simplified. 1046 // Symbol may be in .data or .bss, and may be missing fields: 1047 // - aomp has debug_level, num_devices, device_num 1048 // - trunk has debug_level 1049 // - under review in trunk is debug_level, device_num 1050 // - rocmcc matches aomp, patch to swap num_devices and device_num 1051 1052 // The symbol may also have been deadstripped because the device side 1053 // accessors were unused. 1054 1055 // If the symbol is in .data (aomp, rocm) it can be written directly. 1056 // If it is in .bss, we must wait for it to be allocated space on the 1057 // gpu (trunk) and initialize after loading. 1058 const char *sym() { return "omptarget_device_environment"; } 1059 1060 omptarget_device_environmentTy host_device_env; 1061 symbol_info si; 1062 bool valid = false; 1063 1064 __tgt_device_image *image; 1065 const size_t img_size; 1066 1067 device_environment(int device_id, int number_devices, 1068 __tgt_device_image *image, const size_t img_size) 1069 : image(image), img_size(img_size) { 1070 1071 host_device_env.num_devices = number_devices; 1072 host_device_env.device_num = device_id; 1073 host_device_env.debug_level = 0; 1074 #ifdef OMPTARGET_DEBUG 1075 if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) { 1076 host_device_env.debug_level = std::stoi(envStr); 1077 } 1078 #endif 1079 1080 int rc = get_symbol_info_without_loading((char *)image->ImageStart, 1081 img_size, sym(), &si); 1082 if (rc != 0) { 1083 DP("Finding global device environment '%s' - symbol missing.\n", sym()); 1084 return; 1085 } 1086 1087 if (si.size > sizeof(host_device_env)) { 1088 DP("Symbol '%s' has size %u, expected at most %zu.\n", sym(), si.size, 1089 sizeof(host_device_env)); 1090 return; 1091 } 1092 1093 valid = true; 1094 } 1095 1096 bool in_image() { return si.sh_type != SHT_NOBITS; } 1097 1098 atmi_status_t before_loading(void *data, size_t size) { 1099 if (valid) { 1100 if (in_image()) { 1101 DP("Setting global device environment before load (%u bytes)\n", 1102 si.size); 1103 uint64_t offset = (char *)si.addr - (char *)image->ImageStart; 1104 void *pos = (char *)data + offset; 1105 memcpy(pos, &host_device_env, si.size); 1106 } 1107 } 1108 return ATMI_STATUS_SUCCESS; 1109 } 1110 1111 atmi_status_t after_loading() { 1112 if (valid) { 1113 if (!in_image()) { 1114 DP("Setting global device environment after load (%u bytes)\n", 1115 si.size); 1116 int device_id = host_device_env.device_num; 1117 1118 void *state_ptr; 1119 uint32_t state_ptr_size; 1120 atmi_status_t err = atmi_interop_hsa_get_symbol_info( 1121 get_gpu_mem_place(device_id), sym(), &state_ptr, &state_ptr_size); 1122 if (err != ATMI_STATUS_SUCCESS) { 1123 DP("failed to find %s in loaded image\n", sym()); 1124 return err; 1125 } 1126 1127 if (state_ptr_size != si.size) { 1128 DP("Symbol had size %u before loading, %u after\n", state_ptr_size, 1129 si.size); 1130 return ATMI_STATUS_ERROR; 1131 } 1132 1133 return DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &host_device_env, 1134 state_ptr_size, device_id); 1135 } 1136 } 1137 return ATMI_STATUS_SUCCESS; 1138 } 1139 }; 1140 1141 static atmi_status_t atmi_calloc(void **ret_ptr, size_t size, 1142 atmi_mem_place_t place) { 1143 uint64_t rounded = 4 * ((size + 3) / 4); 1144 void *ptr; 1145 atmi_status_t err = atmi_malloc(&ptr, rounded, place); 1146 if (err != ATMI_STATUS_SUCCESS) { 1147 return err; 1148 } 1149 1150 hsa_status_t rc = hsa_amd_memory_fill(ptr, 0, rounded / 4); 1151 if (rc != HSA_STATUS_SUCCESS) { 1152 fprintf(stderr, "zero fill device_state failed with %u\n", rc); 1153 atmi_free(ptr); 1154 return ATMI_STATUS_ERROR; 1155 } 1156 1157 *ret_ptr = ptr; 1158 return ATMI_STATUS_SUCCESS; 1159 } 1160 1161 __tgt_target_table *__tgt_rtl_load_binary_locked(int32_t device_id, 1162 __tgt_device_image *image) { 1163 // This function loads the device image onto gpu[device_id] and does other 1164 // per-image initialization work. Specifically: 1165 // 1166 // - Initialize an omptarget_device_environmentTy instance embedded in the 1167 // image at the symbol "omptarget_device_environment" 1168 // Fields debug_level, device_num, num_devices. Used by the deviceRTL. 1169 // 1170 // - Allocate a large array per-gpu (could be moved to init_device) 1171 // - Read a uint64_t at symbol omptarget_nvptx_device_State_size 1172 // - Allocate at least that many bytes of gpu memory 1173 // - Zero initialize it 1174 // - Write the pointer to the symbol omptarget_nvptx_device_State 1175 // 1176 // - Pulls some per-kernel information together from various sources and 1177 // records it in the KernelsList for quicker access later 1178 // 1179 // The initialization can be done before or after loading the image onto the 1180 // gpu. This function presently does a mixture. Using the hsa api to get/set 1181 // the information is simpler to implement, in exchange for more complicated 1182 // runtime behaviour. E.g. launching a kernel or using dma to get eight bytes 1183 // back from the gpu vs a hashtable lookup on the host. 1184 1185 const size_t img_size = (char *)image->ImageEnd - (char *)image->ImageStart; 1186 1187 DeviceInfo.clearOffloadEntriesTable(device_id); 1188 1189 // We do not need to set the ELF version because the caller of this function 1190 // had to do that to decide the right runtime to use 1191 1192 if (!elf_machine_id_is_amdgcn(image)) { 1193 return NULL; 1194 } 1195 1196 { 1197 auto env = device_environment(device_id, DeviceInfo.NumberOfDevices, image, 1198 img_size); 1199 1200 atmi_status_t err = module_register_from_memory_to_place( 1201 (void *)image->ImageStart, img_size, get_gpu_place(device_id), 1202 [&](void *data, size_t size) { return env.before_loading(data, size); }, 1203 DeviceInfo.HSAExecutables); 1204 1205 check("Module registering", err); 1206 if (err != ATMI_STATUS_SUCCESS) { 1207 fprintf(stderr, 1208 "Possible gpu arch mismatch: device:%s, image:%s please check" 1209 " compiler flag: -march=<gpu>\n", 1210 DeviceInfo.GPUName[device_id].c_str(), 1211 get_elf_mach_gfx_name(elf_e_flags(image))); 1212 return NULL; 1213 } 1214 1215 err = env.after_loading(); 1216 if (err != ATMI_STATUS_SUCCESS) { 1217 return NULL; 1218 } 1219 } 1220 1221 DP("ATMI module successfully loaded!\n"); 1222 1223 { 1224 // the device_State array is either large value in bss or a void* that 1225 // needs to be assigned to a pointer to an array of size device_state_bytes 1226 // If absent, it has been deadstripped and needs no setup. 1227 1228 void *state_ptr; 1229 uint32_t state_ptr_size; 1230 atmi_status_t err = atmi_interop_hsa_get_symbol_info( 1231 get_gpu_mem_place(device_id), "omptarget_nvptx_device_State", 1232 &state_ptr, &state_ptr_size); 1233 1234 if (err != ATMI_STATUS_SUCCESS) { 1235 DP("No device_state symbol found, skipping initialization\n"); 1236 } else { 1237 if (state_ptr_size < sizeof(void *)) { 1238 DP("unexpected size of state_ptr %u != %zu\n", state_ptr_size, 1239 sizeof(void *)); 1240 return NULL; 1241 } 1242 1243 // if it's larger than a void*, assume it's a bss array and no further 1244 // initialization is required. Only try to set up a pointer for 1245 // sizeof(void*) 1246 if (state_ptr_size == sizeof(void *)) { 1247 uint64_t device_State_bytes = 1248 get_device_State_bytes((char *)image->ImageStart, img_size); 1249 if (device_State_bytes == 0) { 1250 DP("Can't initialize device_State, missing size information\n"); 1251 return NULL; 1252 } 1253 1254 auto &dss = DeviceInfo.deviceStateStore[device_id]; 1255 if (dss.first.get() == nullptr) { 1256 assert(dss.second == 0); 1257 void *ptr = NULL; 1258 atmi_status_t err = atmi_calloc(&ptr, device_State_bytes, 1259 get_gpu_mem_place(device_id)); 1260 if (err != ATMI_STATUS_SUCCESS) { 1261 DP("Failed to allocate device_state array\n"); 1262 return NULL; 1263 } 1264 dss = { 1265 std::unique_ptr<void, RTLDeviceInfoTy::atmiFreePtrDeletor>{ptr}, 1266 device_State_bytes, 1267 }; 1268 } 1269 1270 void *ptr = dss.first.get(); 1271 if (device_State_bytes != dss.second) { 1272 DP("Inconsistent sizes of device_State unsupported\n"); 1273 return NULL; 1274 } 1275 1276 // write ptr to device memory so it can be used by later kernels 1277 err = DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &ptr, 1278 sizeof(void *), device_id); 1279 if (err != ATMI_STATUS_SUCCESS) { 1280 DP("memcpy install of state_ptr failed\n"); 1281 return NULL; 1282 } 1283 } 1284 } 1285 } 1286 1287 // Here, we take advantage of the data that is appended after img_end to get 1288 // the symbols' name we need to load. This data consist of the host entries 1289 // begin and end as well as the target name (see the offloading linker script 1290 // creation in clang compiler). 1291 1292 // Find the symbols in the module by name. The name can be obtain by 1293 // concatenating the host entry name with the target name 1294 1295 __tgt_offload_entry *HostBegin = image->EntriesBegin; 1296 __tgt_offload_entry *HostEnd = image->EntriesEnd; 1297 1298 for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) { 1299 1300 if (!e->addr) { 1301 // The host should have always something in the address to 1302 // uniquely identify the target region. 1303 fprintf(stderr, "Analyzing host entry '<null>' (size = %lld)...\n", 1304 (unsigned long long)e->size); 1305 return NULL; 1306 } 1307 1308 if (e->size) { 1309 __tgt_offload_entry entry = *e; 1310 1311 void *varptr; 1312 uint32_t varsize; 1313 1314 atmi_status_t err = atmi_interop_hsa_get_symbol_info( 1315 get_gpu_mem_place(device_id), e->name, &varptr, &varsize); 1316 1317 if (err != ATMI_STATUS_SUCCESS) { 1318 // Inform the user what symbol prevented offloading 1319 DP("Loading global '%s' (Failed)\n", e->name); 1320 return NULL; 1321 } 1322 1323 if (varsize != e->size) { 1324 DP("Loading global '%s' - size mismatch (%u != %lu)\n", e->name, 1325 varsize, e->size); 1326 return NULL; 1327 } 1328 1329 DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n", 1330 DPxPTR(e - HostBegin), e->name, DPxPTR(varptr)); 1331 entry.addr = (void *)varptr; 1332 1333 DeviceInfo.addOffloadEntry(device_id, entry); 1334 1335 if (DeviceInfo.RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY && 1336 e->flags & OMP_DECLARE_TARGET_LINK) { 1337 // If unified memory is present any target link variables 1338 // can access host addresses directly. There is no longer a 1339 // need for device copies. 1340 err = DeviceInfo.freesignalpool_memcpy_h2d(varptr, e->addr, 1341 sizeof(void *), device_id); 1342 if (err != ATMI_STATUS_SUCCESS) 1343 DP("Error when copying USM\n"); 1344 DP("Copy linked variable host address (" DPxMOD ")" 1345 "to device address (" DPxMOD ")\n", 1346 DPxPTR(*((void **)e->addr)), DPxPTR(varptr)); 1347 } 1348 1349 continue; 1350 } 1351 1352 DP("to find the kernel name: %s size: %lu\n", e->name, strlen(e->name)); 1353 1354 atmi_mem_place_t place = get_gpu_mem_place(device_id); 1355 uint32_t kernarg_segment_size; 1356 atmi_status_t err = atmi_interop_hsa_get_kernel_info( 1357 place, e->name, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE, 1358 &kernarg_segment_size); 1359 1360 // each arg is a void * in this openmp implementation 1361 uint32_t arg_num = kernarg_segment_size / sizeof(void *); 1362 std::vector<size_t> arg_sizes(arg_num); 1363 for (std::vector<size_t>::iterator it = arg_sizes.begin(); 1364 it != arg_sizes.end(); it++) { 1365 *it = sizeof(void *); 1366 } 1367 1368 // default value GENERIC (in case symbol is missing from cubin file) 1369 int8_t ExecModeVal = ExecutionModeType::GENERIC; 1370 1371 // get flat group size if present, else Default_WG_Size 1372 int16_t WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1373 1374 // get Kernel Descriptor if present. 1375 // Keep struct in sync wih getTgtAttributeStructQTy in CGOpenMPRuntime.cpp 1376 struct KernDescValType { 1377 uint16_t Version; 1378 uint16_t TSize; 1379 uint16_t WG_Size; 1380 uint8_t Mode; 1381 }; 1382 struct KernDescValType KernDescVal; 1383 std::string KernDescNameStr(e->name); 1384 KernDescNameStr += "_kern_desc"; 1385 const char *KernDescName = KernDescNameStr.c_str(); 1386 1387 void *KernDescPtr; 1388 uint32_t KernDescSize; 1389 void *CallStackAddr = nullptr; 1390 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1391 KernDescName, &KernDescPtr, &KernDescSize); 1392 1393 if (err == ATMI_STATUS_SUCCESS) { 1394 if ((size_t)KernDescSize != sizeof(KernDescVal)) 1395 DP("Loading global computation properties '%s' - size mismatch (%u != " 1396 "%lu)\n", 1397 KernDescName, KernDescSize, sizeof(KernDescVal)); 1398 1399 memcpy(&KernDescVal, KernDescPtr, (size_t)KernDescSize); 1400 1401 // Check structure size against recorded size. 1402 if ((size_t)KernDescSize != KernDescVal.TSize) 1403 DP("KernDescVal size %lu does not match advertized size %d for '%s'\n", 1404 sizeof(KernDescVal), KernDescVal.TSize, KernDescName); 1405 1406 DP("After loading global for %s KernDesc \n", KernDescName); 1407 DP("KernDesc: Version: %d\n", KernDescVal.Version); 1408 DP("KernDesc: TSize: %d\n", KernDescVal.TSize); 1409 DP("KernDesc: WG_Size: %d\n", KernDescVal.WG_Size); 1410 DP("KernDesc: Mode: %d\n", KernDescVal.Mode); 1411 1412 // Get ExecMode 1413 ExecModeVal = KernDescVal.Mode; 1414 DP("ExecModeVal %d\n", ExecModeVal); 1415 if (KernDescVal.WG_Size == 0) { 1416 KernDescVal.WG_Size = RTLDeviceInfoTy::Default_WG_Size; 1417 DP("Setting KernDescVal.WG_Size to default %d\n", KernDescVal.WG_Size); 1418 } 1419 WGSizeVal = KernDescVal.WG_Size; 1420 DP("WGSizeVal %d\n", WGSizeVal); 1421 check("Loading KernDesc computation property", err); 1422 } else { 1423 DP("Warning: Loading KernDesc '%s' - symbol not found, ", KernDescName); 1424 1425 // Generic 1426 std::string ExecModeNameStr(e->name); 1427 ExecModeNameStr += "_exec_mode"; 1428 const char *ExecModeName = ExecModeNameStr.c_str(); 1429 1430 void *ExecModePtr; 1431 uint32_t varsize; 1432 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1433 ExecModeName, &ExecModePtr, &varsize); 1434 1435 if (err == ATMI_STATUS_SUCCESS) { 1436 if ((size_t)varsize != sizeof(int8_t)) { 1437 DP("Loading global computation properties '%s' - size mismatch(%u != " 1438 "%lu)\n", 1439 ExecModeName, varsize, sizeof(int8_t)); 1440 return NULL; 1441 } 1442 1443 memcpy(&ExecModeVal, ExecModePtr, (size_t)varsize); 1444 1445 DP("After loading global for %s ExecMode = %d\n", ExecModeName, 1446 ExecModeVal); 1447 1448 if (ExecModeVal < 0 || ExecModeVal > 1) { 1449 DP("Error wrong exec_mode value specified in HSA code object file: " 1450 "%d\n", 1451 ExecModeVal); 1452 return NULL; 1453 } 1454 } else { 1455 DP("Loading global exec_mode '%s' - symbol missing, using default " 1456 "value " 1457 "GENERIC (1)\n", 1458 ExecModeName); 1459 } 1460 check("Loading computation property", err); 1461 1462 // Flat group size 1463 std::string WGSizeNameStr(e->name); 1464 WGSizeNameStr += "_wg_size"; 1465 const char *WGSizeName = WGSizeNameStr.c_str(); 1466 1467 void *WGSizePtr; 1468 uint32_t WGSize; 1469 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1470 WGSizeName, &WGSizePtr, &WGSize); 1471 1472 if (err == ATMI_STATUS_SUCCESS) { 1473 if ((size_t)WGSize != sizeof(int16_t)) { 1474 DP("Loading global computation properties '%s' - size mismatch (%u " 1475 "!= " 1476 "%lu)\n", 1477 WGSizeName, WGSize, sizeof(int16_t)); 1478 return NULL; 1479 } 1480 1481 memcpy(&WGSizeVal, WGSizePtr, (size_t)WGSize); 1482 1483 DP("After loading global for %s WGSize = %d\n", WGSizeName, WGSizeVal); 1484 1485 if (WGSizeVal < RTLDeviceInfoTy::Default_WG_Size || 1486 WGSizeVal > RTLDeviceInfoTy::Max_WG_Size) { 1487 DP("Error wrong WGSize value specified in HSA code object file: " 1488 "%d\n", 1489 WGSizeVal); 1490 WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1491 } 1492 } else { 1493 DP("Warning: Loading WGSize '%s' - symbol not found, " 1494 "using default value %d\n", 1495 WGSizeName, WGSizeVal); 1496 } 1497 1498 check("Loading WGSize computation property", err); 1499 } 1500 1501 KernelsList.push_back(KernelTy(ExecModeVal, WGSizeVal, device_id, 1502 CallStackAddr, e->name, 1503 kernarg_segment_size)); 1504 __tgt_offload_entry entry = *e; 1505 entry.addr = (void *)&KernelsList.back(); 1506 DeviceInfo.addOffloadEntry(device_id, entry); 1507 DP("Entry point %ld maps to %s\n", e - HostBegin, e->name); 1508 } 1509 1510 return DeviceInfo.getOffloadEntriesTable(device_id); 1511 } 1512 1513 void *__tgt_rtl_data_alloc(int device_id, int64_t size, void *, int32_t kind) { 1514 void *ptr = NULL; 1515 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1516 1517 if (kind != TARGET_ALLOC_DEFAULT) { 1518 REPORT("Invalid target data allocation kind or requested allocator not " 1519 "implemented yet\n"); 1520 return NULL; 1521 } 1522 1523 atmi_status_t err = atmi_malloc(&ptr, size, get_gpu_mem_place(device_id)); 1524 DP("Tgt alloc data %ld bytes, (tgt:%016llx).\n", size, 1525 (long long unsigned)(Elf64_Addr)ptr); 1526 ptr = (err == ATMI_STATUS_SUCCESS) ? ptr : NULL; 1527 return ptr; 1528 } 1529 1530 int32_t __tgt_rtl_data_submit(int device_id, void *tgt_ptr, void *hst_ptr, 1531 int64_t size) { 1532 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1533 __tgt_async_info AsyncInfo; 1534 int32_t rc = dataSubmit(device_id, tgt_ptr, hst_ptr, size, &AsyncInfo); 1535 if (rc != OFFLOAD_SUCCESS) 1536 return OFFLOAD_FAIL; 1537 1538 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1539 } 1540 1541 int32_t __tgt_rtl_data_submit_async(int device_id, void *tgt_ptr, void *hst_ptr, 1542 int64_t size, __tgt_async_info *AsyncInfo) { 1543 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1544 if (AsyncInfo) { 1545 initAsyncInfo(AsyncInfo); 1546 return dataSubmit(device_id, tgt_ptr, hst_ptr, size, AsyncInfo); 1547 } else { 1548 return __tgt_rtl_data_submit(device_id, tgt_ptr, hst_ptr, size); 1549 } 1550 } 1551 1552 int32_t __tgt_rtl_data_retrieve(int device_id, void *hst_ptr, void *tgt_ptr, 1553 int64_t size) { 1554 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1555 __tgt_async_info AsyncInfo; 1556 int32_t rc = dataRetrieve(device_id, hst_ptr, tgt_ptr, size, &AsyncInfo); 1557 if (rc != OFFLOAD_SUCCESS) 1558 return OFFLOAD_FAIL; 1559 1560 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1561 } 1562 1563 int32_t __tgt_rtl_data_retrieve_async(int device_id, void *hst_ptr, 1564 void *tgt_ptr, int64_t size, 1565 __tgt_async_info *AsyncInfo) { 1566 assert(AsyncInfo && "AsyncInfo is nullptr"); 1567 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1568 initAsyncInfo(AsyncInfo); 1569 return dataRetrieve(device_id, hst_ptr, tgt_ptr, size, AsyncInfo); 1570 } 1571 1572 int32_t __tgt_rtl_data_delete(int device_id, void *tgt_ptr) { 1573 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1574 atmi_status_t err; 1575 DP("Tgt free data (tgt:%016llx).\n", (long long unsigned)(Elf64_Addr)tgt_ptr); 1576 err = atmi_free(tgt_ptr); 1577 if (err != ATMI_STATUS_SUCCESS) { 1578 DP("Error when freeing CUDA memory\n"); 1579 return OFFLOAD_FAIL; 1580 } 1581 return OFFLOAD_SUCCESS; 1582 } 1583 1584 // Determine launch values for threadsPerGroup and num_groups. 1585 // Outputs: treadsPerGroup, num_groups 1586 // Inputs: Max_Teams, Max_WG_Size, Warp_Size, ExecutionMode, 1587 // EnvTeamLimit, EnvNumTeams, num_teams, thread_limit, 1588 // loop_tripcount. 1589 void getLaunchVals(int &threadsPerGroup, int &num_groups, int ConstWGSize, 1590 int ExecutionMode, int EnvTeamLimit, int EnvNumTeams, 1591 int num_teams, int thread_limit, uint64_t loop_tripcount, 1592 int32_t device_id) { 1593 1594 int Max_Teams = DeviceInfo.EnvMaxTeamsDefault > 0 1595 ? DeviceInfo.EnvMaxTeamsDefault 1596 : DeviceInfo.NumTeams[device_id]; 1597 if (Max_Teams > DeviceInfo.HardTeamLimit) 1598 Max_Teams = DeviceInfo.HardTeamLimit; 1599 1600 if (print_kernel_trace & STARTUP_DETAILS) { 1601 fprintf(stderr, "RTLDeviceInfoTy::Max_Teams: %d\n", 1602 RTLDeviceInfoTy::Max_Teams); 1603 fprintf(stderr, "Max_Teams: %d\n", Max_Teams); 1604 fprintf(stderr, "RTLDeviceInfoTy::Warp_Size: %d\n", 1605 RTLDeviceInfoTy::Warp_Size); 1606 fprintf(stderr, "RTLDeviceInfoTy::Max_WG_Size: %d\n", 1607 RTLDeviceInfoTy::Max_WG_Size); 1608 fprintf(stderr, "RTLDeviceInfoTy::Default_WG_Size: %d\n", 1609 RTLDeviceInfoTy::Default_WG_Size); 1610 fprintf(stderr, "thread_limit: %d\n", thread_limit); 1611 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1612 fprintf(stderr, "ConstWGSize: %d\n", ConstWGSize); 1613 } 1614 // check for thread_limit() clause 1615 if (thread_limit > 0) { 1616 threadsPerGroup = thread_limit; 1617 DP("Setting threads per block to requested %d\n", thread_limit); 1618 if (ExecutionMode == GENERIC) { // Add master warp for GENERIC 1619 threadsPerGroup += RTLDeviceInfoTy::Warp_Size; 1620 DP("Adding master wavefront: +%d threads\n", RTLDeviceInfoTy::Warp_Size); 1621 } 1622 if (threadsPerGroup > RTLDeviceInfoTy::Max_WG_Size) { // limit to max 1623 threadsPerGroup = RTLDeviceInfoTy::Max_WG_Size; 1624 DP("Setting threads per block to maximum %d\n", threadsPerGroup); 1625 } 1626 } 1627 // check flat_max_work_group_size attr here 1628 if (threadsPerGroup > ConstWGSize) { 1629 threadsPerGroup = ConstWGSize; 1630 DP("Reduced threadsPerGroup to flat-attr-group-size limit %d\n", 1631 threadsPerGroup); 1632 } 1633 if (print_kernel_trace & STARTUP_DETAILS) 1634 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1635 DP("Preparing %d threads\n", threadsPerGroup); 1636 1637 // Set default num_groups (teams) 1638 if (DeviceInfo.EnvTeamLimit > 0) 1639 num_groups = (Max_Teams < DeviceInfo.EnvTeamLimit) 1640 ? Max_Teams 1641 : DeviceInfo.EnvTeamLimit; 1642 else 1643 num_groups = Max_Teams; 1644 DP("Set default num of groups %d\n", num_groups); 1645 1646 if (print_kernel_trace & STARTUP_DETAILS) { 1647 fprintf(stderr, "num_groups: %d\n", num_groups); 1648 fprintf(stderr, "num_teams: %d\n", num_teams); 1649 } 1650 1651 // Reduce num_groups if threadsPerGroup exceeds RTLDeviceInfoTy::Max_WG_Size 1652 // This reduction is typical for default case (no thread_limit clause). 1653 // or when user goes crazy with num_teams clause. 1654 // FIXME: We cant distinguish between a constant or variable thread limit. 1655 // So we only handle constant thread_limits. 1656 if (threadsPerGroup > 1657 RTLDeviceInfoTy::Default_WG_Size) // 256 < threadsPerGroup <= 1024 1658 // Should we round threadsPerGroup up to nearest RTLDeviceInfoTy::Warp_Size 1659 // here? 1660 num_groups = (Max_Teams * RTLDeviceInfoTy::Max_WG_Size) / threadsPerGroup; 1661 1662 // check for num_teams() clause 1663 if (num_teams > 0) { 1664 num_groups = (num_teams < num_groups) ? num_teams : num_groups; 1665 } 1666 if (print_kernel_trace & STARTUP_DETAILS) { 1667 fprintf(stderr, "num_groups: %d\n", num_groups); 1668 fprintf(stderr, "DeviceInfo.EnvNumTeams %d\n", DeviceInfo.EnvNumTeams); 1669 fprintf(stderr, "DeviceInfo.EnvTeamLimit %d\n", DeviceInfo.EnvTeamLimit); 1670 } 1671 1672 if (DeviceInfo.EnvNumTeams > 0) { 1673 num_groups = (DeviceInfo.EnvNumTeams < num_groups) ? DeviceInfo.EnvNumTeams 1674 : num_groups; 1675 DP("Modifying teams based on EnvNumTeams %d\n", DeviceInfo.EnvNumTeams); 1676 } else if (DeviceInfo.EnvTeamLimit > 0) { 1677 num_groups = (DeviceInfo.EnvTeamLimit < num_groups) 1678 ? DeviceInfo.EnvTeamLimit 1679 : num_groups; 1680 DP("Modifying teams based on EnvTeamLimit%d\n", DeviceInfo.EnvTeamLimit); 1681 } else { 1682 if (num_teams <= 0) { 1683 if (loop_tripcount > 0) { 1684 if (ExecutionMode == SPMD) { 1685 // round up to the nearest integer 1686 num_groups = ((loop_tripcount - 1) / threadsPerGroup) + 1; 1687 } else { 1688 num_groups = loop_tripcount; 1689 } 1690 DP("Using %d teams due to loop trip count %" PRIu64 " and number of " 1691 "threads per block %d\n", 1692 num_groups, loop_tripcount, threadsPerGroup); 1693 } 1694 } else { 1695 num_groups = num_teams; 1696 } 1697 if (num_groups > Max_Teams) { 1698 num_groups = Max_Teams; 1699 if (print_kernel_trace & STARTUP_DETAILS) 1700 fprintf(stderr, "Limiting num_groups %d to Max_Teams %d \n", num_groups, 1701 Max_Teams); 1702 } 1703 if (num_groups > num_teams && num_teams > 0) { 1704 num_groups = num_teams; 1705 if (print_kernel_trace & STARTUP_DETAILS) 1706 fprintf(stderr, "Limiting num_groups %d to clause num_teams %d \n", 1707 num_groups, num_teams); 1708 } 1709 } 1710 1711 // num_teams clause always honored, no matter what, unless DEFAULT is active. 1712 if (num_teams > 0) { 1713 num_groups = num_teams; 1714 // Cap num_groups to EnvMaxTeamsDefault if set. 1715 if (DeviceInfo.EnvMaxTeamsDefault > 0 && 1716 num_groups > DeviceInfo.EnvMaxTeamsDefault) 1717 num_groups = DeviceInfo.EnvMaxTeamsDefault; 1718 } 1719 if (print_kernel_trace & STARTUP_DETAILS) { 1720 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1721 fprintf(stderr, "num_groups: %d\n", num_groups); 1722 fprintf(stderr, "loop_tripcount: %ld\n", loop_tripcount); 1723 } 1724 DP("Final %d num_groups and %d threadsPerGroup\n", num_groups, 1725 threadsPerGroup); 1726 } 1727 1728 static uint64_t acquire_available_packet_id(hsa_queue_t *queue) { 1729 uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1); 1730 bool full = true; 1731 while (full) { 1732 full = 1733 packet_id >= (queue->size + hsa_queue_load_read_index_scacquire(queue)); 1734 } 1735 return packet_id; 1736 } 1737 1738 extern bool g_atmi_hostcall_required; // declared without header by atmi 1739 1740 static int32_t __tgt_rtl_run_target_team_region_locked( 1741 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 1742 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 1743 int32_t thread_limit, uint64_t loop_tripcount); 1744 1745 int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr, 1746 void **tgt_args, 1747 ptrdiff_t *tgt_offsets, 1748 int32_t arg_num, int32_t num_teams, 1749 int32_t thread_limit, 1750 uint64_t loop_tripcount) { 1751 1752 DeviceInfo.load_run_lock.lock_shared(); 1753 int32_t res = __tgt_rtl_run_target_team_region_locked( 1754 device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, num_teams, 1755 thread_limit, loop_tripcount); 1756 1757 DeviceInfo.load_run_lock.unlock_shared(); 1758 return res; 1759 } 1760 1761 int32_t __tgt_rtl_run_target_team_region_locked( 1762 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 1763 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 1764 int32_t thread_limit, uint64_t loop_tripcount) { 1765 // Set the context we are using 1766 // update thread limit content in gpu memory if un-initialized or specified 1767 // from host 1768 1769 DP("Run target team region thread_limit %d\n", thread_limit); 1770 1771 // All args are references. 1772 std::vector<void *> args(arg_num); 1773 std::vector<void *> ptrs(arg_num); 1774 1775 DP("Arg_num: %d\n", arg_num); 1776 for (int32_t i = 0; i < arg_num; ++i) { 1777 ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]); 1778 args[i] = &ptrs[i]; 1779 DP("Offseted base: arg[%d]:" DPxMOD "\n", i, DPxPTR(ptrs[i])); 1780 } 1781 1782 KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr; 1783 1784 std::string kernel_name = std::string(KernelInfo->Name); 1785 if (KernelInfoTable[device_id].find(kernel_name) == 1786 KernelInfoTable[device_id].end()) { 1787 DP("Kernel %s not found\n", kernel_name.c_str()); 1788 return OFFLOAD_FAIL; 1789 } 1790 1791 uint32_t sgpr_count, vgpr_count, sgpr_spill_count, vgpr_spill_count; 1792 1793 { 1794 auto it = KernelInfoTable[device_id][kernel_name]; 1795 sgpr_count = it.sgpr_count; 1796 vgpr_count = it.vgpr_count; 1797 sgpr_spill_count = it.sgpr_spill_count; 1798 vgpr_spill_count = it.vgpr_spill_count; 1799 } 1800 1801 /* 1802 * Set limit based on ThreadsPerGroup and GroupsPerDevice 1803 */ 1804 int num_groups = 0; 1805 1806 int threadsPerGroup = RTLDeviceInfoTy::Default_WG_Size; 1807 1808 getLaunchVals(threadsPerGroup, num_groups, KernelInfo->ConstWGSize, 1809 KernelInfo->ExecutionMode, DeviceInfo.EnvTeamLimit, 1810 DeviceInfo.EnvNumTeams, 1811 num_teams, // From run_region arg 1812 thread_limit, // From run_region arg 1813 loop_tripcount, // From run_region arg 1814 KernelInfo->device_id); 1815 1816 if (print_kernel_trace >= LAUNCH) { 1817 // enum modes are SPMD, GENERIC, NONE 0,1,2 1818 // if doing rtl timing, print to stderr, unless stdout requested. 1819 bool traceToStdout = print_kernel_trace & (RTL_TO_STDOUT | RTL_TIMING); 1820 fprintf(traceToStdout ? stdout : stderr, 1821 "DEVID:%2d SGN:%1d ConstWGSize:%-4d args:%2d teamsXthrds:(%4dX%4d) " 1822 "reqd:(%4dX%4d) sgpr_count:%u vgpr_count:%u sgpr_spill_count:%u " 1823 "vgpr_spill_count:%u tripcount:%lu n:%s\n", 1824 device_id, KernelInfo->ExecutionMode, KernelInfo->ConstWGSize, 1825 arg_num, num_groups, threadsPerGroup, num_teams, thread_limit, 1826 sgpr_count, vgpr_count, sgpr_spill_count, vgpr_spill_count, 1827 loop_tripcount, KernelInfo->Name); 1828 } 1829 1830 // Run on the device. 1831 { 1832 hsa_queue_t *queue = DeviceInfo.HSAQueues[device_id]; 1833 if (!queue) { 1834 return OFFLOAD_FAIL; 1835 } 1836 uint64_t packet_id = acquire_available_packet_id(queue); 1837 1838 const uint32_t mask = queue->size - 1; // size is a power of 2 1839 hsa_kernel_dispatch_packet_t *packet = 1840 (hsa_kernel_dispatch_packet_t *)queue->base_address + 1841 (packet_id & mask); 1842 1843 // packet->header is written last 1844 packet->setup = UINT16_C(1) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS; 1845 packet->workgroup_size_x = threadsPerGroup; 1846 packet->workgroup_size_y = 1; 1847 packet->workgroup_size_z = 1; 1848 packet->reserved0 = 0; 1849 packet->grid_size_x = num_groups * threadsPerGroup; 1850 packet->grid_size_y = 1; 1851 packet->grid_size_z = 1; 1852 packet->private_segment_size = 0; 1853 packet->group_segment_size = 0; 1854 packet->kernel_object = 0; 1855 packet->kernarg_address = 0; // use the block allocator 1856 packet->reserved2 = 0; // atmi writes id_ here 1857 packet->completion_signal = {0}; // may want a pool of signals 1858 1859 { 1860 auto it = KernelInfoTable[device_id][kernel_name]; 1861 packet->kernel_object = it.kernel_object; 1862 packet->private_segment_size = it.private_segment_size; 1863 packet->group_segment_size = it.group_segment_size; 1864 assert(arg_num == (int)it.num_args); 1865 } 1866 1867 KernelArgPool *ArgPool = nullptr; 1868 { 1869 auto it = KernelArgPoolMap.find(std::string(KernelInfo->Name)); 1870 if (it != KernelArgPoolMap.end()) { 1871 ArgPool = (it->second).get(); 1872 } 1873 } 1874 if (!ArgPool) { 1875 DP("Warning: No ArgPool for %s on device %d\n", KernelInfo->Name, 1876 device_id); 1877 } 1878 { 1879 void *kernarg = nullptr; 1880 if (ArgPool) { 1881 assert(ArgPool->kernarg_segment_size == (arg_num * sizeof(void *))); 1882 kernarg = ArgPool->allocate(arg_num); 1883 } 1884 if (!kernarg) { 1885 DP("Allocate kernarg failed\n"); 1886 return OFFLOAD_FAIL; 1887 } 1888 1889 // Copy explicit arguments 1890 for (int i = 0; i < arg_num; i++) { 1891 memcpy((char *)kernarg + sizeof(void *) * i, args[i], sizeof(void *)); 1892 } 1893 1894 // Initialize implicit arguments. ATMI seems to leave most fields 1895 // uninitialized 1896 atmi_implicit_args_t *impl_args = 1897 reinterpret_cast<atmi_implicit_args_t *>( 1898 static_cast<char *>(kernarg) + ArgPool->kernarg_segment_size); 1899 memset(impl_args, 0, 1900 sizeof(atmi_implicit_args_t)); // may not be necessary 1901 impl_args->offset_x = 0; 1902 impl_args->offset_y = 0; 1903 impl_args->offset_z = 0; 1904 1905 // assign a hostcall buffer for the selected Q 1906 if (g_atmi_hostcall_required) { 1907 // hostrpc_assign_buffer is not thread safe, and this function is 1908 // under a multiple reader lock, not a writer lock. 1909 static pthread_mutex_t hostcall_init_lock = PTHREAD_MUTEX_INITIALIZER; 1910 pthread_mutex_lock(&hostcall_init_lock); 1911 impl_args->hostcall_ptr = hostrpc_assign_buffer( 1912 DeviceInfo.HSAAgents[device_id], queue, device_id); 1913 pthread_mutex_unlock(&hostcall_init_lock); 1914 if (!impl_args->hostcall_ptr) { 1915 DP("hostrpc_assign_buffer failed, gpu would dereference null and " 1916 "error\n"); 1917 return OFFLOAD_FAIL; 1918 } 1919 } 1920 1921 packet->kernarg_address = kernarg; 1922 } 1923 1924 { 1925 hsa_signal_t s = DeviceInfo.FreeSignalPool.pop(); 1926 if (s.handle == 0) { 1927 DP("Failed to get signal instance\n"); 1928 return OFFLOAD_FAIL; 1929 } 1930 packet->completion_signal = s; 1931 hsa_signal_store_relaxed(packet->completion_signal, 1); 1932 } 1933 1934 core::packet_store_release(reinterpret_cast<uint32_t *>(packet), 1935 core::create_header(), packet->setup); 1936 1937 hsa_signal_store_relaxed(queue->doorbell_signal, packet_id); 1938 1939 while (hsa_signal_wait_scacquire(packet->completion_signal, 1940 HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX, 1941 HSA_WAIT_STATE_BLOCKED) != 0) 1942 ; 1943 1944 assert(ArgPool); 1945 ArgPool->deallocate(packet->kernarg_address); 1946 DeviceInfo.FreeSignalPool.push(packet->completion_signal); 1947 } 1948 1949 DP("Kernel completed\n"); 1950 return OFFLOAD_SUCCESS; 1951 } 1952 1953 int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr, 1954 void **tgt_args, ptrdiff_t *tgt_offsets, 1955 int32_t arg_num) { 1956 // use one team and one thread 1957 // fix thread num 1958 int32_t team_num = 1; 1959 int32_t thread_limit = 0; // use default 1960 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 1961 tgt_offsets, arg_num, team_num, 1962 thread_limit, 0); 1963 } 1964 1965 int32_t __tgt_rtl_run_target_region_async(int32_t device_id, 1966 void *tgt_entry_ptr, void **tgt_args, 1967 ptrdiff_t *tgt_offsets, 1968 int32_t arg_num, 1969 __tgt_async_info *AsyncInfo) { 1970 assert(AsyncInfo && "AsyncInfo is nullptr"); 1971 initAsyncInfo(AsyncInfo); 1972 1973 // use one team and one thread 1974 // fix thread num 1975 int32_t team_num = 1; 1976 int32_t thread_limit = 0; // use default 1977 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 1978 tgt_offsets, arg_num, team_num, 1979 thread_limit, 0); 1980 } 1981 1982 int32_t __tgt_rtl_synchronize(int32_t device_id, __tgt_async_info *AsyncInfo) { 1983 assert(AsyncInfo && "AsyncInfo is nullptr"); 1984 1985 // Cuda asserts that AsyncInfo->Queue is non-null, but this invariant 1986 // is not ensured by devices.cpp for amdgcn 1987 // assert(AsyncInfo->Queue && "AsyncInfo->Queue is nullptr"); 1988 if (AsyncInfo->Queue) { 1989 finiAsyncInfo(AsyncInfo); 1990 } 1991 return OFFLOAD_SUCCESS; 1992 } 1993