1 //===----RTLs/hsa/src/rtl.cpp - Target RTLs Implementation -------- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // RTL for hsa machine 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <algorithm> 14 #include <assert.h> 15 #include <cstdio> 16 #include <cstdlib> 17 #include <cstring> 18 #include <dlfcn.h> 19 #include <elf.h> 20 #include <ffi.h> 21 #include <fstream> 22 #include <iostream> 23 #include <libelf.h> 24 #include <list> 25 #include <memory> 26 #include <mutex> 27 #include <shared_mutex> 28 #include <thread> 29 #include <unordered_map> 30 #include <vector> 31 32 // Header from ATMI interface 33 #include "atmi_interop_hsa.h" 34 #include "atmi_runtime.h" 35 36 #include "internal.h" 37 38 #include "Debug.h" 39 #include "get_elf_mach_gfx_name.h" 40 #include "omptargetplugin.h" 41 42 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 43 44 #ifndef TARGET_NAME 45 #define TARGET_NAME AMDHSA 46 #endif 47 #define DEBUG_PREFIX "Target " GETNAME(TARGET_NAME) " RTL" 48 49 // hostrpc interface, FIXME: consider moving to its own include these are 50 // statically linked into amdgpu/plugin if present from hostrpc_services.a, 51 // linked as --whole-archive to override the weak symbols that are used to 52 // implement a fallback for toolchains that do not yet have a hostrpc library. 53 extern "C" { 54 unsigned long hostrpc_assign_buffer(hsa_agent_t agent, hsa_queue_t *this_Q, 55 uint32_t device_id); 56 hsa_status_t hostrpc_init(); 57 hsa_status_t hostrpc_terminate(); 58 59 __attribute__((weak)) hsa_status_t hostrpc_init() { return HSA_STATUS_SUCCESS; } 60 __attribute__((weak)) hsa_status_t hostrpc_terminate() { 61 return HSA_STATUS_SUCCESS; 62 } 63 __attribute__((weak)) unsigned long 64 hostrpc_assign_buffer(hsa_agent_t, hsa_queue_t *, uint32_t device_id) { 65 DP("Warning: Attempting to assign hostrpc to device %u, but hostrpc library " 66 "missing\n", 67 device_id); 68 return 0; 69 } 70 } 71 72 int print_kernel_trace; 73 74 // Size of the target call stack struture 75 uint32_t TgtStackItemSize = 0; 76 77 #undef check // Drop definition from internal.h 78 #ifdef OMPTARGET_DEBUG 79 #define check(msg, status) \ 80 if (status != ATMI_STATUS_SUCCESS) { \ 81 /* fprintf(stderr, "[%s:%d] %s failed.\n", __FILE__, __LINE__, #msg);*/ \ 82 DP(#msg " failed\n"); \ 83 /*assert(0);*/ \ 84 } else { \ 85 /* fprintf(stderr, "[%s:%d] %s succeeded.\n", __FILE__, __LINE__, #msg); \ 86 */ \ 87 DP(#msg " succeeded\n"); \ 88 } 89 #else 90 #define check(msg, status) \ 91 {} 92 #endif 93 94 #include "../../common/elf_common.c" 95 96 /// Keep entries table per device 97 struct FuncOrGblEntryTy { 98 __tgt_target_table Table; 99 std::vector<__tgt_offload_entry> Entries; 100 }; 101 102 enum ExecutionModeType { 103 SPMD, // constructors, destructors, 104 // combined constructs (`teams distribute parallel for [simd]`) 105 GENERIC, // everything else 106 NONE 107 }; 108 109 struct KernelArgPool { 110 private: 111 static pthread_mutex_t mutex; 112 113 public: 114 uint32_t kernarg_segment_size; 115 void *kernarg_region = nullptr; 116 std::queue<int> free_kernarg_segments; 117 118 uint32_t kernarg_size_including_implicit() { 119 return kernarg_segment_size + sizeof(atmi_implicit_args_t); 120 } 121 122 ~KernelArgPool() { 123 if (kernarg_region) { 124 auto r = hsa_amd_memory_pool_free(kernarg_region); 125 assert(r == HSA_STATUS_SUCCESS); 126 ErrorCheck(Memory pool free, r); 127 } 128 } 129 130 // Can't really copy or move a mutex 131 KernelArgPool() = default; 132 KernelArgPool(const KernelArgPool &) = delete; 133 KernelArgPool(KernelArgPool &&) = delete; 134 135 KernelArgPool(uint32_t kernarg_segment_size) 136 : kernarg_segment_size(kernarg_segment_size) { 137 138 // atmi uses one pool per kernel for all gpus, with a fixed upper size 139 // preserving that exact scheme here, including the queue<int> 140 { 141 hsa_status_t err = hsa_amd_memory_pool_allocate( 142 atl_gpu_kernarg_pools[0], 143 kernarg_size_including_implicit() * MAX_NUM_KERNELS, 0, 144 &kernarg_region); 145 ErrorCheck(Allocating memory for the executable-kernel, err); 146 core::allow_access_to_all_gpu_agents(kernarg_region); 147 148 for (int i = 0; i < MAX_NUM_KERNELS; i++) { 149 free_kernarg_segments.push(i); 150 } 151 } 152 } 153 154 void *allocate(uint64_t arg_num) { 155 assert((arg_num * sizeof(void *)) == kernarg_segment_size); 156 lock l(&mutex); 157 void *res = nullptr; 158 if (!free_kernarg_segments.empty()) { 159 160 int free_idx = free_kernarg_segments.front(); 161 res = static_cast<void *>(static_cast<char *>(kernarg_region) + 162 (free_idx * kernarg_size_including_implicit())); 163 assert(free_idx == pointer_to_index(res)); 164 free_kernarg_segments.pop(); 165 } 166 return res; 167 } 168 169 void deallocate(void *ptr) { 170 lock l(&mutex); 171 int idx = pointer_to_index(ptr); 172 free_kernarg_segments.push(idx); 173 } 174 175 private: 176 int pointer_to_index(void *ptr) { 177 ptrdiff_t bytes = 178 static_cast<char *>(ptr) - static_cast<char *>(kernarg_region); 179 assert(bytes >= 0); 180 assert(bytes % kernarg_size_including_implicit() == 0); 181 return bytes / kernarg_size_including_implicit(); 182 } 183 struct lock { 184 lock(pthread_mutex_t *m) : m(m) { pthread_mutex_lock(m); } 185 ~lock() { pthread_mutex_unlock(m); } 186 pthread_mutex_t *m; 187 }; 188 }; 189 pthread_mutex_t KernelArgPool::mutex = PTHREAD_MUTEX_INITIALIZER; 190 191 std::unordered_map<std::string /*kernel*/, std::unique_ptr<KernelArgPool>> 192 KernelArgPoolMap; 193 194 /// Use a single entity to encode a kernel and a set of flags 195 struct KernelTy { 196 // execution mode of kernel 197 // 0 - SPMD mode (without master warp) 198 // 1 - Generic mode (with master warp) 199 int8_t ExecutionMode; 200 int16_t ConstWGSize; 201 int32_t device_id; 202 void *CallStackAddr = nullptr; 203 const char *Name; 204 205 KernelTy(int8_t _ExecutionMode, int16_t _ConstWGSize, int32_t _device_id, 206 void *_CallStackAddr, const char *_Name, 207 uint32_t _kernarg_segment_size) 208 : ExecutionMode(_ExecutionMode), ConstWGSize(_ConstWGSize), 209 device_id(_device_id), CallStackAddr(_CallStackAddr), Name(_Name) { 210 DP("Construct kernelinfo: ExecMode %d\n", ExecutionMode); 211 212 std::string N(_Name); 213 if (KernelArgPoolMap.find(N) == KernelArgPoolMap.end()) { 214 KernelArgPoolMap.insert( 215 std::make_pair(N, std::unique_ptr<KernelArgPool>( 216 new KernelArgPool(_kernarg_segment_size)))); 217 } 218 } 219 }; 220 221 /// List that contains all the kernels. 222 /// FIXME: we may need this to be per device and per library. 223 std::list<KernelTy> KernelsList; 224 225 // ATMI API to get gpu and gpu memory place 226 static atmi_place_t get_gpu_place(int device_id) { 227 return ATMI_PLACE_GPU(0, device_id); 228 } 229 static atmi_mem_place_t get_gpu_mem_place(int device_id) { 230 return ATMI_MEM_PLACE_GPU_MEM(0, device_id, 0); 231 } 232 233 static std::vector<hsa_agent_t> find_gpu_agents() { 234 std::vector<hsa_agent_t> res; 235 236 hsa_status_t err = hsa_iterate_agents( 237 [](hsa_agent_t agent, void *data) -> hsa_status_t { 238 std::vector<hsa_agent_t> *res = 239 static_cast<std::vector<hsa_agent_t> *>(data); 240 241 hsa_device_type_t device_type; 242 // get_info fails iff HSA runtime not yet initialized 243 hsa_status_t err = 244 hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 245 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) 246 printf("rtl.cpp: err %d\n", err); 247 assert(err == HSA_STATUS_SUCCESS); 248 249 if (device_type == HSA_DEVICE_TYPE_GPU) { 250 res->push_back(agent); 251 } 252 return HSA_STATUS_SUCCESS; 253 }, 254 &res); 255 256 // iterate_agents fails iff HSA runtime not yet initialized 257 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) 258 printf("rtl.cpp: err %d\n", err); 259 assert(err == HSA_STATUS_SUCCESS); 260 return res; 261 } 262 263 static void callbackQueue(hsa_status_t status, hsa_queue_t *source, 264 void *data) { 265 if (status != HSA_STATUS_SUCCESS) { 266 const char *status_string; 267 if (hsa_status_string(status, &status_string) != HSA_STATUS_SUCCESS) { 268 status_string = "unavailable"; 269 } 270 fprintf(stderr, "[%s:%d] GPU error in queue %p %d (%s)\n", __FILE__, 271 __LINE__, source, status, status_string); 272 abort(); 273 } 274 } 275 276 namespace core { 277 void packet_store_release(uint32_t *packet, uint16_t header, uint16_t rest) { 278 __atomic_store_n(packet, header | (rest << 16), __ATOMIC_RELEASE); 279 } 280 281 uint16_t create_header(hsa_packet_type_t type, int barrier, 282 atmi_task_fence_scope_t acq_fence, 283 atmi_task_fence_scope_t rel_fence) { 284 uint16_t header = type << HSA_PACKET_HEADER_TYPE; 285 header |= barrier << HSA_PACKET_HEADER_BARRIER; 286 header |= (hsa_fence_scope_t) static_cast<int>( 287 acq_fence << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE); 288 header |= (hsa_fence_scope_t) static_cast<int>( 289 rel_fence << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE); 290 return header; 291 } 292 } // namespace core 293 294 /// Class containing all the device information 295 class RTLDeviceInfoTy { 296 std::vector<std::list<FuncOrGblEntryTy>> FuncGblEntries; 297 298 public: 299 // load binary populates symbol tables and mutates various global state 300 // run uses those symbol tables 301 std::shared_timed_mutex load_run_lock; 302 303 int NumberOfDevices; 304 305 // GPU devices 306 std::vector<hsa_agent_t> HSAAgents; 307 std::vector<hsa_queue_t *> HSAQueues; // one per gpu 308 309 // Device properties 310 std::vector<int> ComputeUnits; 311 std::vector<int> GroupsPerDevice; 312 std::vector<int> ThreadsPerGroup; 313 std::vector<int> WarpSize; 314 std::vector<std::string> GPUName; 315 316 // OpenMP properties 317 std::vector<int> NumTeams; 318 std::vector<int> NumThreads; 319 320 // OpenMP Environment properties 321 int EnvNumTeams; 322 int EnvTeamLimit; 323 int EnvMaxTeamsDefault; 324 325 // OpenMP Requires Flags 326 int64_t RequiresFlags; 327 328 // Resource pools 329 SignalPoolT FreeSignalPool; 330 331 struct atmiFreePtrDeletor { 332 void operator()(void *p) { 333 atmi_free(p); // ignore failure to free 334 } 335 }; 336 337 // device_State shared across loaded binaries, error if inconsistent size 338 std::vector<std::pair<std::unique_ptr<void, atmiFreePtrDeletor>, uint64_t>> 339 deviceStateStore; 340 341 static const unsigned HardTeamLimit = 342 (1 << 16) - 1; // 64K needed to fit in uint16 343 static const int DefaultNumTeams = 128; 344 static const int Max_Teams = 345 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_Teams]; 346 static const int Warp_Size = 347 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; 348 static const int Max_WG_Size = 349 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_WG_Size]; 350 static const int Default_WG_Size = 351 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Default_WG_Size]; 352 353 using MemcpyFunc = atmi_status_t (*)(hsa_signal_t, void *, const void *, 354 size_t size, hsa_agent_t); 355 atmi_status_t freesignalpool_memcpy(void *dest, const void *src, size_t size, 356 MemcpyFunc Func, int32_t deviceId) { 357 hsa_agent_t agent = HSAAgents[deviceId]; 358 hsa_signal_t s = FreeSignalPool.pop(); 359 if (s.handle == 0) { 360 return ATMI_STATUS_ERROR; 361 } 362 atmi_status_t r = Func(s, dest, src, size, agent); 363 FreeSignalPool.push(s); 364 return r; 365 } 366 367 atmi_status_t freesignalpool_memcpy_d2h(void *dest, const void *src, 368 size_t size, int32_t deviceId) { 369 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_d2h, deviceId); 370 } 371 372 atmi_status_t freesignalpool_memcpy_h2d(void *dest, const void *src, 373 size_t size, int32_t deviceId) { 374 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_h2d, deviceId); 375 } 376 377 // Record entry point associated with device 378 void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) { 379 assert(device_id < (int32_t)FuncGblEntries.size() && 380 "Unexpected device id!"); 381 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 382 383 E.Entries.push_back(entry); 384 } 385 386 // Return true if the entry is associated with device 387 bool findOffloadEntry(int32_t device_id, void *addr) { 388 assert(device_id < (int32_t)FuncGblEntries.size() && 389 "Unexpected device id!"); 390 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 391 392 for (auto &it : E.Entries) { 393 if (it.addr == addr) 394 return true; 395 } 396 397 return false; 398 } 399 400 // Return the pointer to the target entries table 401 __tgt_target_table *getOffloadEntriesTable(int32_t device_id) { 402 assert(device_id < (int32_t)FuncGblEntries.size() && 403 "Unexpected device id!"); 404 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 405 406 int32_t size = E.Entries.size(); 407 408 // Table is empty 409 if (!size) 410 return 0; 411 412 __tgt_offload_entry *begin = &E.Entries[0]; 413 __tgt_offload_entry *end = &E.Entries[size - 1]; 414 415 // Update table info according to the entries and return the pointer 416 E.Table.EntriesBegin = begin; 417 E.Table.EntriesEnd = ++end; 418 419 return &E.Table; 420 } 421 422 // Clear entries table for a device 423 void clearOffloadEntriesTable(int device_id) { 424 assert(device_id < (int32_t)FuncGblEntries.size() && 425 "Unexpected device id!"); 426 FuncGblEntries[device_id].emplace_back(); 427 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 428 // KernelArgPoolMap.clear(); 429 E.Entries.clear(); 430 E.Table.EntriesBegin = E.Table.EntriesEnd = 0; 431 } 432 433 RTLDeviceInfoTy() { 434 // LIBOMPTARGET_KERNEL_TRACE provides a kernel launch trace to stderr 435 // anytime. You do not need a debug library build. 436 // 0 => no tracing 437 // 1 => tracing dispatch only 438 // >1 => verbosity increase 439 if (char *envStr = getenv("LIBOMPTARGET_KERNEL_TRACE")) 440 print_kernel_trace = atoi(envStr); 441 else 442 print_kernel_trace = 0; 443 444 DP("Start initializing HSA-ATMI\n"); 445 atmi_status_t err = atmi_init(); 446 if (err != ATMI_STATUS_SUCCESS) { 447 DP("Error when initializing HSA-ATMI\n"); 448 return; 449 } 450 // Init hostcall soon after initializing ATMI 451 hostrpc_init(); 452 453 HSAAgents = find_gpu_agents(); 454 NumberOfDevices = (int)HSAAgents.size(); 455 456 if (NumberOfDevices == 0) { 457 DP("There are no devices supporting HSA.\n"); 458 return; 459 } else { 460 DP("There are %d devices supporting HSA.\n", NumberOfDevices); 461 } 462 463 // Init the device info 464 HSAQueues.resize(NumberOfDevices); 465 FuncGblEntries.resize(NumberOfDevices); 466 ThreadsPerGroup.resize(NumberOfDevices); 467 ComputeUnits.resize(NumberOfDevices); 468 GPUName.resize(NumberOfDevices); 469 GroupsPerDevice.resize(NumberOfDevices); 470 WarpSize.resize(NumberOfDevices); 471 NumTeams.resize(NumberOfDevices); 472 NumThreads.resize(NumberOfDevices); 473 deviceStateStore.resize(NumberOfDevices); 474 475 for (int i = 0; i < NumberOfDevices; i++) { 476 uint32_t queue_size = 0; 477 { 478 hsa_status_t err; 479 err = hsa_agent_get_info(HSAAgents[i], HSA_AGENT_INFO_QUEUE_MAX_SIZE, 480 &queue_size); 481 ErrorCheck(Querying the agent maximum queue size, err); 482 if (queue_size > core::Runtime::getInstance().getMaxQueueSize()) { 483 queue_size = core::Runtime::getInstance().getMaxQueueSize(); 484 } 485 } 486 487 hsa_status_t rc = hsa_queue_create( 488 HSAAgents[i], queue_size, HSA_QUEUE_TYPE_MULTI, callbackQueue, NULL, 489 UINT32_MAX, UINT32_MAX, &HSAQueues[i]); 490 if (rc != HSA_STATUS_SUCCESS) { 491 DP("Failed to create HSA queues\n"); 492 return; 493 } 494 495 deviceStateStore[i] = {nullptr, 0}; 496 } 497 498 for (int i = 0; i < NumberOfDevices; i++) { 499 ThreadsPerGroup[i] = RTLDeviceInfoTy::Default_WG_Size; 500 GroupsPerDevice[i] = RTLDeviceInfoTy::DefaultNumTeams; 501 ComputeUnits[i] = 1; 502 DP("Device %d: Initial groupsPerDevice %d & threadsPerGroup %d\n", i, 503 GroupsPerDevice[i], ThreadsPerGroup[i]); 504 } 505 506 // Get environment variables regarding teams 507 char *envStr = getenv("OMP_TEAM_LIMIT"); 508 if (envStr) { 509 // OMP_TEAM_LIMIT has been set 510 EnvTeamLimit = std::stoi(envStr); 511 DP("Parsed OMP_TEAM_LIMIT=%d\n", EnvTeamLimit); 512 } else { 513 EnvTeamLimit = -1; 514 } 515 envStr = getenv("OMP_NUM_TEAMS"); 516 if (envStr) { 517 // OMP_NUM_TEAMS has been set 518 EnvNumTeams = std::stoi(envStr); 519 DP("Parsed OMP_NUM_TEAMS=%d\n", EnvNumTeams); 520 } else { 521 EnvNumTeams = -1; 522 } 523 // Get environment variables regarding expMaxTeams 524 envStr = getenv("OMP_MAX_TEAMS_DEFAULT"); 525 if (envStr) { 526 EnvMaxTeamsDefault = std::stoi(envStr); 527 DP("Parsed OMP_MAX_TEAMS_DEFAULT=%d\n", EnvMaxTeamsDefault); 528 } else { 529 EnvMaxTeamsDefault = -1; 530 } 531 532 // Default state. 533 RequiresFlags = OMP_REQ_UNDEFINED; 534 } 535 536 ~RTLDeviceInfoTy() { 537 DP("Finalizing the HSA-ATMI DeviceInfo.\n"); 538 // Run destructors on types that use HSA before 539 // atmi_finalize removes access to it 540 deviceStateStore.clear(); 541 KernelArgPoolMap.clear(); 542 // Terminate hostrpc before finalizing ATMI 543 hostrpc_terminate(); 544 atmi_finalize(); 545 } 546 }; 547 548 pthread_mutex_t SignalPoolT::mutex = PTHREAD_MUTEX_INITIALIZER; 549 550 // TODO: May need to drop the trailing to fields until deviceRTL is updated 551 struct omptarget_device_environmentTy { 552 int32_t debug_level; // gets value of envvar LIBOMPTARGET_DEVICE_RTL_DEBUG 553 // only useful for Debug build of deviceRTLs 554 int32_t num_devices; // gets number of active offload devices 555 int32_t device_num; // gets a value 0 to num_devices-1 556 }; 557 558 static RTLDeviceInfoTy DeviceInfo; 559 560 namespace { 561 562 int32_t dataRetrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size, 563 __tgt_async_info *AsyncInfoPtr) { 564 assert(AsyncInfoPtr && "AsyncInfoPtr is nullptr"); 565 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 566 // Return success if we are not copying back to host from target. 567 if (!HstPtr) 568 return OFFLOAD_SUCCESS; 569 atmi_status_t err; 570 DP("Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 571 (long long unsigned)(Elf64_Addr)TgtPtr, 572 (long long unsigned)(Elf64_Addr)HstPtr); 573 574 err = DeviceInfo.freesignalpool_memcpy_d2h(HstPtr, TgtPtr, (size_t)Size, 575 DeviceId); 576 577 if (err != ATMI_STATUS_SUCCESS) { 578 DP("Error when copying data from device to host. Pointers: " 579 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 580 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 581 return OFFLOAD_FAIL; 582 } 583 DP("DONE Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 584 (long long unsigned)(Elf64_Addr)TgtPtr, 585 (long long unsigned)(Elf64_Addr)HstPtr); 586 return OFFLOAD_SUCCESS; 587 } 588 589 int32_t dataSubmit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size, 590 __tgt_async_info *AsyncInfoPtr) { 591 assert(AsyncInfoPtr && "AsyncInfoPtr is nullptr"); 592 atmi_status_t err; 593 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 594 // Return success if we are not doing host to target. 595 if (!HstPtr) 596 return OFFLOAD_SUCCESS; 597 598 DP("Submit data %ld bytes, (hst:%016llx) -> (tgt:%016llx).\n", Size, 599 (long long unsigned)(Elf64_Addr)HstPtr, 600 (long long unsigned)(Elf64_Addr)TgtPtr); 601 err = DeviceInfo.freesignalpool_memcpy_h2d(TgtPtr, HstPtr, (size_t)Size, 602 DeviceId); 603 if (err != ATMI_STATUS_SUCCESS) { 604 DP("Error when copying data from host to device. Pointers: " 605 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 606 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 607 return OFFLOAD_FAIL; 608 } 609 return OFFLOAD_SUCCESS; 610 } 611 612 // Async. 613 // The implementation was written with cuda streams in mind. The semantics of 614 // that are to execute kernels on a queue in order of insertion. A synchronise 615 // call then makes writes visible between host and device. This means a series 616 // of N data_submit_async calls are expected to execute serially. HSA offers 617 // various options to run the data copies concurrently. This may require changes 618 // to libomptarget. 619 620 // __tgt_async_info* contains a void * Queue. Queue = 0 is used to indicate that 621 // there are no outstanding kernels that need to be synchronized. Any async call 622 // may be passed a Queue==0, at which point the cuda implementation will set it 623 // to non-null (see getStream). The cuda streams are per-device. Upstream may 624 // change this interface to explicitly initialize the async_info_pointer, but 625 // until then hsa lazily initializes it as well. 626 627 void initAsyncInfoPtr(__tgt_async_info *async_info_ptr) { 628 // set non-null while using async calls, return to null to indicate completion 629 assert(async_info_ptr); 630 if (!async_info_ptr->Queue) { 631 async_info_ptr->Queue = reinterpret_cast<void *>(UINT64_MAX); 632 } 633 } 634 void finiAsyncInfoPtr(__tgt_async_info *async_info_ptr) { 635 assert(async_info_ptr); 636 assert(async_info_ptr->Queue); 637 async_info_ptr->Queue = 0; 638 } 639 640 bool elf_machine_id_is_amdgcn(__tgt_device_image *image) { 641 const uint16_t amdgcnMachineID = EM_AMDGPU; 642 int32_t r = elf_check_machine(image, amdgcnMachineID); 643 if (!r) { 644 DP("Supported machine ID not found\n"); 645 } 646 return r; 647 } 648 649 uint32_t elf_e_flags(__tgt_device_image *image) { 650 char *img_begin = (char *)image->ImageStart; 651 size_t img_size = (char *)image->ImageEnd - img_begin; 652 653 Elf *e = elf_memory(img_begin, img_size); 654 if (!e) { 655 DP("Unable to get ELF handle: %s!\n", elf_errmsg(-1)); 656 return 0; 657 } 658 659 Elf64_Ehdr *eh64 = elf64_getehdr(e); 660 661 if (!eh64) { 662 DP("Unable to get machine ID from ELF file!\n"); 663 elf_end(e); 664 return 0; 665 } 666 667 uint32_t Flags = eh64->e_flags; 668 669 elf_end(e); 670 DP("ELF Flags: 0x%x\n", Flags); 671 return Flags; 672 } 673 } // namespace 674 675 int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) { 676 return elf_machine_id_is_amdgcn(image); 677 } 678 679 int __tgt_rtl_number_of_devices() { return DeviceInfo.NumberOfDevices; } 680 681 int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) { 682 DP("Init requires flags to %ld\n", RequiresFlags); 683 DeviceInfo.RequiresFlags = RequiresFlags; 684 return RequiresFlags; 685 } 686 687 int32_t __tgt_rtl_init_device(int device_id) { 688 hsa_status_t err; 689 690 // this is per device id init 691 DP("Initialize the device id: %d\n", device_id); 692 693 hsa_agent_t agent = DeviceInfo.HSAAgents[device_id]; 694 695 // Get number of Compute Unit 696 uint32_t compute_units = 0; 697 err = hsa_agent_get_info( 698 agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT, 699 &compute_units); 700 if (err != HSA_STATUS_SUCCESS) { 701 DeviceInfo.ComputeUnits[device_id] = 1; 702 DP("Error getting compute units : settiing to 1\n"); 703 } else { 704 DeviceInfo.ComputeUnits[device_id] = compute_units; 705 DP("Using %d compute unis per grid\n", DeviceInfo.ComputeUnits[device_id]); 706 } 707 708 char GetInfoName[64]; // 64 max size returned by get info 709 err = hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AGENT_INFO_NAME, 710 (void *)GetInfoName); 711 if (err) 712 DeviceInfo.GPUName[device_id] = "--unknown gpu--"; 713 else { 714 DeviceInfo.GPUName[device_id] = GetInfoName; 715 } 716 717 if (print_kernel_trace == 4) 718 fprintf(stderr, "Device#%-2d CU's: %2d %s\n", device_id, 719 DeviceInfo.ComputeUnits[device_id], 720 DeviceInfo.GPUName[device_id].c_str()); 721 722 // Query attributes to determine number of threads/block and blocks/grid. 723 uint16_t workgroup_max_dim[3]; 724 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_DIM, 725 &workgroup_max_dim); 726 if (err != HSA_STATUS_SUCCESS) { 727 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::DefaultNumTeams; 728 DP("Error getting grid dims: num groups : %d\n", 729 RTLDeviceInfoTy::DefaultNumTeams); 730 } else if (workgroup_max_dim[0] <= RTLDeviceInfoTy::HardTeamLimit) { 731 DeviceInfo.GroupsPerDevice[device_id] = workgroup_max_dim[0]; 732 DP("Using %d ROCm blocks per grid\n", 733 DeviceInfo.GroupsPerDevice[device_id]); 734 } else { 735 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::HardTeamLimit; 736 DP("Max ROCm blocks per grid %d exceeds the hard team limit %d, capping " 737 "at the hard limit\n", 738 workgroup_max_dim[0], RTLDeviceInfoTy::HardTeamLimit); 739 } 740 741 // Get thread limit 742 hsa_dim3_t grid_max_dim; 743 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &grid_max_dim); 744 if (err == HSA_STATUS_SUCCESS) { 745 DeviceInfo.ThreadsPerGroup[device_id] = 746 reinterpret_cast<uint32_t *>(&grid_max_dim)[0] / 747 DeviceInfo.GroupsPerDevice[device_id]; 748 if ((DeviceInfo.ThreadsPerGroup[device_id] > 749 RTLDeviceInfoTy::Max_WG_Size) || 750 DeviceInfo.ThreadsPerGroup[device_id] == 0) { 751 DP("Capped thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 752 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 753 } else { 754 DP("Using ROCm Queried thread limit: %d\n", 755 DeviceInfo.ThreadsPerGroup[device_id]); 756 } 757 } else { 758 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 759 DP("Error getting max block dimension, use default:%d \n", 760 RTLDeviceInfoTy::Max_WG_Size); 761 } 762 763 // Get wavefront size 764 uint32_t wavefront_size = 0; 765 err = 766 hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size); 767 if (err == HSA_STATUS_SUCCESS) { 768 DP("Queried wavefront size: %d\n", wavefront_size); 769 DeviceInfo.WarpSize[device_id] = wavefront_size; 770 } else { 771 DP("Default wavefront size: %d\n", 772 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]); 773 DeviceInfo.WarpSize[device_id] = 774 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; 775 } 776 777 // Adjust teams to the env variables 778 if (DeviceInfo.EnvTeamLimit > 0 && 779 DeviceInfo.GroupsPerDevice[device_id] > DeviceInfo.EnvTeamLimit) { 780 DeviceInfo.GroupsPerDevice[device_id] = DeviceInfo.EnvTeamLimit; 781 DP("Capping max groups per device to OMP_TEAM_LIMIT=%d\n", 782 DeviceInfo.EnvTeamLimit); 783 } 784 785 // Set default number of teams 786 if (DeviceInfo.EnvNumTeams > 0) { 787 DeviceInfo.NumTeams[device_id] = DeviceInfo.EnvNumTeams; 788 DP("Default number of teams set according to environment %d\n", 789 DeviceInfo.EnvNumTeams); 790 } else { 791 char *TeamsPerCUEnvStr = getenv("OMP_TARGET_TEAMS_PER_PROC"); 792 int TeamsPerCU = 1; // default number of teams per CU is 1 793 if (TeamsPerCUEnvStr) { 794 TeamsPerCU = std::stoi(TeamsPerCUEnvStr); 795 } 796 797 DeviceInfo.NumTeams[device_id] = 798 TeamsPerCU * DeviceInfo.ComputeUnits[device_id]; 799 DP("Default number of teams = %d * number of compute units %d\n", 800 TeamsPerCU, DeviceInfo.ComputeUnits[device_id]); 801 } 802 803 if (DeviceInfo.NumTeams[device_id] > DeviceInfo.GroupsPerDevice[device_id]) { 804 DeviceInfo.NumTeams[device_id] = DeviceInfo.GroupsPerDevice[device_id]; 805 DP("Default number of teams exceeds device limit, capping at %d\n", 806 DeviceInfo.GroupsPerDevice[device_id]); 807 } 808 809 // Set default number of threads 810 DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::Default_WG_Size; 811 DP("Default number of threads set according to library's default %d\n", 812 RTLDeviceInfoTy::Default_WG_Size); 813 if (DeviceInfo.NumThreads[device_id] > 814 DeviceInfo.ThreadsPerGroup[device_id]) { 815 DeviceInfo.NumTeams[device_id] = DeviceInfo.ThreadsPerGroup[device_id]; 816 DP("Default number of threads exceeds device limit, capping at %d\n", 817 DeviceInfo.ThreadsPerGroup[device_id]); 818 } 819 820 DP("Device %d: default limit for groupsPerDevice %d & threadsPerGroup %d\n", 821 device_id, DeviceInfo.GroupsPerDevice[device_id], 822 DeviceInfo.ThreadsPerGroup[device_id]); 823 824 DP("Device %d: wavefront size %d, total threads %d x %d = %d\n", device_id, 825 DeviceInfo.WarpSize[device_id], DeviceInfo.ThreadsPerGroup[device_id], 826 DeviceInfo.GroupsPerDevice[device_id], 827 DeviceInfo.GroupsPerDevice[device_id] * 828 DeviceInfo.ThreadsPerGroup[device_id]); 829 830 return OFFLOAD_SUCCESS; 831 } 832 833 namespace { 834 Elf64_Shdr *find_only_SHT_HASH(Elf *elf) { 835 size_t N; 836 int rc = elf_getshdrnum(elf, &N); 837 if (rc != 0) { 838 return nullptr; 839 } 840 841 Elf64_Shdr *result = nullptr; 842 for (size_t i = 0; i < N; i++) { 843 Elf_Scn *scn = elf_getscn(elf, i); 844 if (scn) { 845 Elf64_Shdr *shdr = elf64_getshdr(scn); 846 if (shdr) { 847 if (shdr->sh_type == SHT_HASH) { 848 if (result == nullptr) { 849 result = shdr; 850 } else { 851 // multiple SHT_HASH sections not handled 852 return nullptr; 853 } 854 } 855 } 856 } 857 } 858 return result; 859 } 860 861 const Elf64_Sym *elf_lookup(Elf *elf, char *base, Elf64_Shdr *section_hash, 862 const char *symname) { 863 864 assert(section_hash); 865 size_t section_symtab_index = section_hash->sh_link; 866 Elf64_Shdr *section_symtab = 867 elf64_getshdr(elf_getscn(elf, section_symtab_index)); 868 size_t section_strtab_index = section_symtab->sh_link; 869 870 const Elf64_Sym *symtab = 871 reinterpret_cast<const Elf64_Sym *>(base + section_symtab->sh_offset); 872 873 const uint32_t *hashtab = 874 reinterpret_cast<const uint32_t *>(base + section_hash->sh_offset); 875 876 // Layout: 877 // nbucket 878 // nchain 879 // bucket[nbucket] 880 // chain[nchain] 881 uint32_t nbucket = hashtab[0]; 882 const uint32_t *bucket = &hashtab[2]; 883 const uint32_t *chain = &hashtab[nbucket + 2]; 884 885 const size_t max = strlen(symname) + 1; 886 const uint32_t hash = elf_hash(symname); 887 for (uint32_t i = bucket[hash % nbucket]; i != 0; i = chain[i]) { 888 char *n = elf_strptr(elf, section_strtab_index, symtab[i].st_name); 889 if (strncmp(symname, n, max) == 0) { 890 return &symtab[i]; 891 } 892 } 893 894 return nullptr; 895 } 896 897 typedef struct { 898 void *addr = nullptr; 899 uint32_t size = UINT32_MAX; 900 uint32_t sh_type = SHT_NULL; 901 } symbol_info; 902 903 int get_symbol_info_without_loading(Elf *elf, char *base, const char *symname, 904 symbol_info *res) { 905 if (elf_kind(elf) != ELF_K_ELF) { 906 return 1; 907 } 908 909 Elf64_Shdr *section_hash = find_only_SHT_HASH(elf); 910 if (!section_hash) { 911 return 1; 912 } 913 914 const Elf64_Sym *sym = elf_lookup(elf, base, section_hash, symname); 915 if (!sym) { 916 return 1; 917 } 918 919 if (sym->st_size > UINT32_MAX) { 920 return 1; 921 } 922 923 if (sym->st_shndx == SHN_UNDEF) { 924 return 1; 925 } 926 927 Elf_Scn *section = elf_getscn(elf, sym->st_shndx); 928 if (!section) { 929 return 1; 930 } 931 932 Elf64_Shdr *header = elf64_getshdr(section); 933 if (!header) { 934 return 1; 935 } 936 937 res->addr = sym->st_value + base; 938 res->size = static_cast<uint32_t>(sym->st_size); 939 res->sh_type = header->sh_type; 940 return 0; 941 } 942 943 int get_symbol_info_without_loading(char *base, size_t img_size, 944 const char *symname, symbol_info *res) { 945 Elf *elf = elf_memory(base, img_size); 946 if (elf) { 947 int rc = get_symbol_info_without_loading(elf, base, symname, res); 948 elf_end(elf); 949 return rc; 950 } 951 return 1; 952 } 953 954 atmi_status_t interop_get_symbol_info(char *base, size_t img_size, 955 const char *symname, void **var_addr, 956 uint32_t *var_size) { 957 symbol_info si; 958 int rc = get_symbol_info_without_loading(base, img_size, symname, &si); 959 if (rc == 0) { 960 *var_addr = si.addr; 961 *var_size = si.size; 962 return ATMI_STATUS_SUCCESS; 963 } else { 964 return ATMI_STATUS_ERROR; 965 } 966 } 967 968 template <typename C> 969 atmi_status_t module_register_from_memory_to_place(void *module_bytes, 970 size_t module_size, 971 atmi_place_t place, C cb) { 972 auto L = [](void *data, size_t size, void *cb_state) -> atmi_status_t { 973 C *unwrapped = static_cast<C *>(cb_state); 974 return (*unwrapped)(data, size); 975 }; 976 return atmi_module_register_from_memory_to_place( 977 module_bytes, module_size, place, L, static_cast<void *>(&cb)); 978 } 979 } // namespace 980 981 static uint64_t get_device_State_bytes(char *ImageStart, size_t img_size) { 982 uint64_t device_State_bytes = 0; 983 { 984 // If this is the deviceRTL, get the state variable size 985 symbol_info size_si; 986 int rc = get_symbol_info_without_loading( 987 ImageStart, img_size, "omptarget_nvptx_device_State_size", &size_si); 988 989 if (rc == 0) { 990 if (size_si.size != sizeof(uint64_t)) { 991 fprintf(stderr, 992 "Found device_State_size variable with wrong size, aborting\n"); 993 exit(1); 994 } 995 996 // Read number of bytes directly from the elf 997 memcpy(&device_State_bytes, size_si.addr, sizeof(uint64_t)); 998 } 999 } 1000 return device_State_bytes; 1001 } 1002 1003 static __tgt_target_table * 1004 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1005 1006 static __tgt_target_table * 1007 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1008 1009 __tgt_target_table *__tgt_rtl_load_binary(int32_t device_id, 1010 __tgt_device_image *image) { 1011 DeviceInfo.load_run_lock.lock(); 1012 __tgt_target_table *res = __tgt_rtl_load_binary_locked(device_id, image); 1013 DeviceInfo.load_run_lock.unlock(); 1014 return res; 1015 } 1016 1017 struct device_environment { 1018 // initialise an omptarget_device_environmentTy in the deviceRTL 1019 // patches around differences in the deviceRTL between trunk, aomp, 1020 // rocmcc. Over time these differences will tend to zero and this class 1021 // simplified. 1022 // Symbol may be in .data or .bss, and may be missing fields: 1023 // - aomp has debug_level, num_devices, device_num 1024 // - trunk has debug_level 1025 // - under review in trunk is debug_level, device_num 1026 // - rocmcc matches aomp, patch to swap num_devices and device_num 1027 1028 // If the symbol is in .data (aomp, rocm) it can be written directly. 1029 // If it is in .bss, we must wait for it to be allocated space on the 1030 // gpu (trunk) and initialize after loading. 1031 const char *sym() { return "omptarget_device_environment"; } 1032 1033 omptarget_device_environmentTy host_device_env; 1034 symbol_info si; 1035 bool valid = false; 1036 1037 __tgt_device_image *image; 1038 const size_t img_size; 1039 1040 device_environment(int device_id, int number_devices, 1041 __tgt_device_image *image, const size_t img_size) 1042 : image(image), img_size(img_size) { 1043 1044 host_device_env.num_devices = number_devices; 1045 host_device_env.device_num = device_id; 1046 host_device_env.debug_level = 0; 1047 #ifdef OMPTARGET_DEBUG 1048 if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) { 1049 host_device_env.debug_level = std::stoi(envStr); 1050 } 1051 #endif 1052 1053 int rc = get_symbol_info_without_loading((char *)image->ImageStart, 1054 img_size, sym(), &si); 1055 if (rc != 0) { 1056 DP("Finding global device environment '%s' - symbol missing.\n", sym()); 1057 return; 1058 } 1059 1060 if (si.size > sizeof(host_device_env)) { 1061 DP("Symbol '%s' has size %u, expected at most %zu.\n", sym(), si.size, 1062 sizeof(host_device_env)); 1063 return; 1064 } 1065 1066 valid = true; 1067 } 1068 1069 bool in_image() { return si.sh_type != SHT_NOBITS; } 1070 1071 atmi_status_t before_loading(void *data, size_t size) { 1072 assert(valid); 1073 if (in_image()) { 1074 DP("Setting global device environment before load (%u bytes)\n", si.size); 1075 uint64_t offset = (char *)si.addr - (char *)image->ImageStart; 1076 void *pos = (char *)data + offset; 1077 memcpy(pos, &host_device_env, si.size); 1078 } 1079 return ATMI_STATUS_SUCCESS; 1080 } 1081 1082 atmi_status_t after_loading() { 1083 assert(valid); 1084 if (!in_image()) { 1085 DP("Setting global device environment after load (%u bytes)\n", si.size); 1086 int device_id = host_device_env.device_num; 1087 1088 void *state_ptr; 1089 uint32_t state_ptr_size; 1090 atmi_status_t err = atmi_interop_hsa_get_symbol_info( 1091 get_gpu_mem_place(device_id), sym(), &state_ptr, &state_ptr_size); 1092 if (err != ATMI_STATUS_SUCCESS) { 1093 DP("failed to find %s in loaded image\n", sym()); 1094 return err; 1095 } 1096 1097 if (state_ptr_size != si.size) { 1098 DP("Symbol had size %u before loading, %u after\n", state_ptr_size, 1099 si.size); 1100 return ATMI_STATUS_ERROR; 1101 } 1102 1103 return DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &host_device_env, 1104 state_ptr_size, device_id); 1105 } 1106 return ATMI_STATUS_SUCCESS; 1107 } 1108 }; 1109 1110 static atmi_status_t atmi_calloc(void **ret_ptr, size_t size, 1111 atmi_mem_place_t place) { 1112 uint64_t rounded = 4 * ((size + 3) / 4); 1113 void *ptr; 1114 atmi_status_t err = atmi_malloc(&ptr, rounded, place); 1115 if (err != ATMI_STATUS_SUCCESS) { 1116 return err; 1117 } 1118 1119 hsa_status_t rc = hsa_amd_memory_fill(ptr, 0, rounded / 4); 1120 if (rc != HSA_STATUS_SUCCESS) { 1121 fprintf(stderr, "zero fill device_state failed with %u\n", rc); 1122 atmi_free(ptr); 1123 return ATMI_STATUS_ERROR; 1124 } 1125 1126 *ret_ptr = ptr; 1127 return ATMI_STATUS_SUCCESS; 1128 } 1129 1130 __tgt_target_table *__tgt_rtl_load_binary_locked(int32_t device_id, 1131 __tgt_device_image *image) { 1132 // This function loads the device image onto gpu[device_id] and does other 1133 // per-image initialization work. Specifically: 1134 // 1135 // - Initialize an omptarget_device_environmentTy instance embedded in the 1136 // image at the symbol "omptarget_device_environment" 1137 // Fields debug_level, device_num, num_devices. Used by the deviceRTL. 1138 // 1139 // - Allocate a large array per-gpu (could be moved to init_device) 1140 // - Read a uint64_t at symbol omptarget_nvptx_device_State_size 1141 // - Allocate at least that many bytes of gpu memory 1142 // - Zero initialize it 1143 // - Write the pointer to the symbol omptarget_nvptx_device_State 1144 // 1145 // - Pulls some per-kernel information together from various sources and 1146 // records it in the KernelsList for quicker access later 1147 // 1148 // The initialization can be done before or after loading the image onto the 1149 // gpu. This function presently does a mixture. Using the hsa api to get/set 1150 // the information is simpler to implement, in exchange for more complicated 1151 // runtime behaviour. E.g. launching a kernel or using dma to get eight bytes 1152 // back from the gpu vs a hashtable lookup on the host. 1153 1154 const size_t img_size = (char *)image->ImageEnd - (char *)image->ImageStart; 1155 1156 DeviceInfo.clearOffloadEntriesTable(device_id); 1157 1158 // We do not need to set the ELF version because the caller of this function 1159 // had to do that to decide the right runtime to use 1160 1161 if (!elf_machine_id_is_amdgcn(image)) { 1162 return NULL; 1163 } 1164 1165 { 1166 auto env = device_environment(device_id, DeviceInfo.NumberOfDevices, image, 1167 img_size); 1168 if (!env.valid) { 1169 return NULL; 1170 } 1171 1172 atmi_status_t err = module_register_from_memory_to_place( 1173 (void *)image->ImageStart, img_size, get_gpu_place(device_id), 1174 [&](void *data, size_t size) { 1175 return env.before_loading(data, size); 1176 }); 1177 1178 check("Module registering", err); 1179 if (err != ATMI_STATUS_SUCCESS) { 1180 fprintf(stderr, 1181 "Possible gpu arch mismatch: device:%s, image:%s please check" 1182 " compiler flag: -march=<gpu>\n", 1183 DeviceInfo.GPUName[device_id].c_str(), 1184 get_elf_mach_gfx_name(elf_e_flags(image))); 1185 return NULL; 1186 } 1187 1188 err = env.after_loading(); 1189 if (err != ATMI_STATUS_SUCCESS) { 1190 return NULL; 1191 } 1192 } 1193 1194 DP("ATMI module successfully loaded!\n"); 1195 1196 { 1197 // the device_State array is either large value in bss or a void* that 1198 // needs to be assigned to a pointer to an array of size device_state_bytes 1199 1200 void *state_ptr; 1201 uint32_t state_ptr_size; 1202 atmi_status_t err = atmi_interop_hsa_get_symbol_info( 1203 get_gpu_mem_place(device_id), "omptarget_nvptx_device_State", 1204 &state_ptr, &state_ptr_size); 1205 1206 if (err != ATMI_STATUS_SUCCESS) { 1207 fprintf(stderr, "failed to find device_state symbol\n"); 1208 return NULL; 1209 } 1210 1211 if (state_ptr_size < sizeof(void *)) { 1212 fprintf(stderr, "unexpected size of state_ptr %u != %zu\n", 1213 state_ptr_size, sizeof(void *)); 1214 return NULL; 1215 } 1216 1217 // if it's larger than a void*, assume it's a bss array and no further 1218 // initialization is required. Only try to set up a pointer for 1219 // sizeof(void*) 1220 if (state_ptr_size == sizeof(void *)) { 1221 uint64_t device_State_bytes = 1222 get_device_State_bytes((char *)image->ImageStart, img_size); 1223 if (device_State_bytes == 0) { 1224 return NULL; 1225 } 1226 1227 auto &dss = DeviceInfo.deviceStateStore[device_id]; 1228 if (dss.first.get() == nullptr) { 1229 assert(dss.second == 0); 1230 void *ptr = NULL; 1231 atmi_status_t err = 1232 atmi_calloc(&ptr, device_State_bytes, get_gpu_mem_place(device_id)); 1233 if (err != ATMI_STATUS_SUCCESS) { 1234 fprintf(stderr, "Failed to allocate device_state array\n"); 1235 return NULL; 1236 } 1237 dss = {std::unique_ptr<void, RTLDeviceInfoTy::atmiFreePtrDeletor>{ptr}, 1238 device_State_bytes}; 1239 } 1240 1241 void *ptr = dss.first.get(); 1242 if (device_State_bytes != dss.second) { 1243 fprintf(stderr, "Inconsistent sizes of device_State unsupported\n"); 1244 exit(1); 1245 } 1246 1247 // write ptr to device memory so it can be used by later kernels 1248 err = DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &ptr, 1249 sizeof(void *), device_id); 1250 if (err != ATMI_STATUS_SUCCESS) { 1251 fprintf(stderr, "memcpy install of state_ptr failed\n"); 1252 return NULL; 1253 } 1254 } 1255 } 1256 1257 // TODO: Check with Guansong to understand the below comment more thoroughly. 1258 // Here, we take advantage of the data that is appended after img_end to get 1259 // the symbols' name we need to load. This data consist of the host entries 1260 // begin and end as well as the target name (see the offloading linker script 1261 // creation in clang compiler). 1262 1263 // Find the symbols in the module by name. The name can be obtain by 1264 // concatenating the host entry name with the target name 1265 1266 __tgt_offload_entry *HostBegin = image->EntriesBegin; 1267 __tgt_offload_entry *HostEnd = image->EntriesEnd; 1268 1269 for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) { 1270 1271 if (!e->addr) { 1272 // The host should have always something in the address to 1273 // uniquely identify the target region. 1274 fprintf(stderr, "Analyzing host entry '<null>' (size = %lld)...\n", 1275 (unsigned long long)e->size); 1276 return NULL; 1277 } 1278 1279 if (e->size) { 1280 __tgt_offload_entry entry = *e; 1281 1282 void *varptr; 1283 uint32_t varsize; 1284 1285 atmi_status_t err = atmi_interop_hsa_get_symbol_info( 1286 get_gpu_mem_place(device_id), e->name, &varptr, &varsize); 1287 1288 if (err != ATMI_STATUS_SUCCESS) { 1289 DP("Loading global '%s' (Failed)\n", e->name); 1290 // Inform the user what symbol prevented offloading 1291 fprintf(stderr, "Loading global '%s' (Failed)\n", e->name); 1292 return NULL; 1293 } 1294 1295 if (varsize != e->size) { 1296 DP("Loading global '%s' - size mismatch (%u != %lu)\n", e->name, 1297 varsize, e->size); 1298 return NULL; 1299 } 1300 1301 DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n", 1302 DPxPTR(e - HostBegin), e->name, DPxPTR(varptr)); 1303 entry.addr = (void *)varptr; 1304 1305 DeviceInfo.addOffloadEntry(device_id, entry); 1306 1307 if (DeviceInfo.RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY && 1308 e->flags & OMP_DECLARE_TARGET_LINK) { 1309 // If unified memory is present any target link variables 1310 // can access host addresses directly. There is no longer a 1311 // need for device copies. 1312 err = DeviceInfo.freesignalpool_memcpy_h2d(varptr, e->addr, 1313 sizeof(void *), device_id); 1314 if (err != ATMI_STATUS_SUCCESS) 1315 DP("Error when copying USM\n"); 1316 DP("Copy linked variable host address (" DPxMOD ")" 1317 "to device address (" DPxMOD ")\n", 1318 DPxPTR(*((void **)e->addr)), DPxPTR(varptr)); 1319 } 1320 1321 continue; 1322 } 1323 1324 DP("to find the kernel name: %s size: %lu\n", e->name, strlen(e->name)); 1325 1326 atmi_mem_place_t place = get_gpu_mem_place(device_id); 1327 uint32_t kernarg_segment_size; 1328 atmi_status_t err = atmi_interop_hsa_get_kernel_info( 1329 place, e->name, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE, 1330 &kernarg_segment_size); 1331 1332 // each arg is a void * in this openmp implementation 1333 uint32_t arg_num = kernarg_segment_size / sizeof(void *); 1334 std::vector<size_t> arg_sizes(arg_num); 1335 for (std::vector<size_t>::iterator it = arg_sizes.begin(); 1336 it != arg_sizes.end(); it++) { 1337 *it = sizeof(void *); 1338 } 1339 1340 // default value GENERIC (in case symbol is missing from cubin file) 1341 int8_t ExecModeVal = ExecutionModeType::GENERIC; 1342 1343 // get flat group size if present, else Default_WG_Size 1344 int16_t WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1345 1346 // get Kernel Descriptor if present. 1347 // Keep struct in sync wih getTgtAttributeStructQTy in CGOpenMPRuntime.cpp 1348 struct KernDescValType { 1349 uint16_t Version; 1350 uint16_t TSize; 1351 uint16_t WG_Size; 1352 uint8_t Mode; 1353 }; 1354 struct KernDescValType KernDescVal; 1355 std::string KernDescNameStr(e->name); 1356 KernDescNameStr += "_kern_desc"; 1357 const char *KernDescName = KernDescNameStr.c_str(); 1358 1359 void *KernDescPtr; 1360 uint32_t KernDescSize; 1361 void *CallStackAddr = nullptr; 1362 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1363 KernDescName, &KernDescPtr, &KernDescSize); 1364 1365 if (err == ATMI_STATUS_SUCCESS) { 1366 if ((size_t)KernDescSize != sizeof(KernDescVal)) 1367 DP("Loading global computation properties '%s' - size mismatch (%u != " 1368 "%lu)\n", 1369 KernDescName, KernDescSize, sizeof(KernDescVal)); 1370 1371 memcpy(&KernDescVal, KernDescPtr, (size_t)KernDescSize); 1372 1373 // Check structure size against recorded size. 1374 if ((size_t)KernDescSize != KernDescVal.TSize) 1375 DP("KernDescVal size %lu does not match advertized size %d for '%s'\n", 1376 sizeof(KernDescVal), KernDescVal.TSize, KernDescName); 1377 1378 DP("After loading global for %s KernDesc \n", KernDescName); 1379 DP("KernDesc: Version: %d\n", KernDescVal.Version); 1380 DP("KernDesc: TSize: %d\n", KernDescVal.TSize); 1381 DP("KernDesc: WG_Size: %d\n", KernDescVal.WG_Size); 1382 DP("KernDesc: Mode: %d\n", KernDescVal.Mode); 1383 1384 // Get ExecMode 1385 ExecModeVal = KernDescVal.Mode; 1386 DP("ExecModeVal %d\n", ExecModeVal); 1387 if (KernDescVal.WG_Size == 0) { 1388 KernDescVal.WG_Size = RTLDeviceInfoTy::Default_WG_Size; 1389 DP("Setting KernDescVal.WG_Size to default %d\n", KernDescVal.WG_Size); 1390 } 1391 WGSizeVal = KernDescVal.WG_Size; 1392 DP("WGSizeVal %d\n", WGSizeVal); 1393 check("Loading KernDesc computation property", err); 1394 } else { 1395 DP("Warning: Loading KernDesc '%s' - symbol not found, ", KernDescName); 1396 1397 // Generic 1398 std::string ExecModeNameStr(e->name); 1399 ExecModeNameStr += "_exec_mode"; 1400 const char *ExecModeName = ExecModeNameStr.c_str(); 1401 1402 void *ExecModePtr; 1403 uint32_t varsize; 1404 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1405 ExecModeName, &ExecModePtr, &varsize); 1406 1407 if (err == ATMI_STATUS_SUCCESS) { 1408 if ((size_t)varsize != sizeof(int8_t)) { 1409 DP("Loading global computation properties '%s' - size mismatch(%u != " 1410 "%lu)\n", 1411 ExecModeName, varsize, sizeof(int8_t)); 1412 return NULL; 1413 } 1414 1415 memcpy(&ExecModeVal, ExecModePtr, (size_t)varsize); 1416 1417 DP("After loading global for %s ExecMode = %d\n", ExecModeName, 1418 ExecModeVal); 1419 1420 if (ExecModeVal < 0 || ExecModeVal > 1) { 1421 DP("Error wrong exec_mode value specified in HSA code object file: " 1422 "%d\n", 1423 ExecModeVal); 1424 return NULL; 1425 } 1426 } else { 1427 DP("Loading global exec_mode '%s' - symbol missing, using default " 1428 "value " 1429 "GENERIC (1)\n", 1430 ExecModeName); 1431 } 1432 check("Loading computation property", err); 1433 1434 // Flat group size 1435 std::string WGSizeNameStr(e->name); 1436 WGSizeNameStr += "_wg_size"; 1437 const char *WGSizeName = WGSizeNameStr.c_str(); 1438 1439 void *WGSizePtr; 1440 uint32_t WGSize; 1441 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1442 WGSizeName, &WGSizePtr, &WGSize); 1443 1444 if (err == ATMI_STATUS_SUCCESS) { 1445 if ((size_t)WGSize != sizeof(int16_t)) { 1446 DP("Loading global computation properties '%s' - size mismatch (%u " 1447 "!= " 1448 "%lu)\n", 1449 WGSizeName, WGSize, sizeof(int16_t)); 1450 return NULL; 1451 } 1452 1453 memcpy(&WGSizeVal, WGSizePtr, (size_t)WGSize); 1454 1455 DP("After loading global for %s WGSize = %d\n", WGSizeName, WGSizeVal); 1456 1457 if (WGSizeVal < RTLDeviceInfoTy::Default_WG_Size || 1458 WGSizeVal > RTLDeviceInfoTy::Max_WG_Size) { 1459 DP("Error wrong WGSize value specified in HSA code object file: " 1460 "%d\n", 1461 WGSizeVal); 1462 WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1463 } 1464 } else { 1465 DP("Warning: Loading WGSize '%s' - symbol not found, " 1466 "using default value %d\n", 1467 WGSizeName, WGSizeVal); 1468 } 1469 1470 check("Loading WGSize computation property", err); 1471 } 1472 1473 KernelsList.push_back(KernelTy(ExecModeVal, WGSizeVal, device_id, 1474 CallStackAddr, e->name, 1475 kernarg_segment_size)); 1476 __tgt_offload_entry entry = *e; 1477 entry.addr = (void *)&KernelsList.back(); 1478 DeviceInfo.addOffloadEntry(device_id, entry); 1479 DP("Entry point %ld maps to %s\n", e - HostBegin, e->name); 1480 } 1481 1482 return DeviceInfo.getOffloadEntriesTable(device_id); 1483 } 1484 1485 void *__tgt_rtl_data_alloc(int device_id, int64_t size, void *) { 1486 void *ptr = NULL; 1487 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1488 atmi_status_t err = atmi_malloc(&ptr, size, get_gpu_mem_place(device_id)); 1489 DP("Tgt alloc data %ld bytes, (tgt:%016llx).\n", size, 1490 (long long unsigned)(Elf64_Addr)ptr); 1491 ptr = (err == ATMI_STATUS_SUCCESS) ? ptr : NULL; 1492 return ptr; 1493 } 1494 1495 int32_t __tgt_rtl_data_submit(int device_id, void *tgt_ptr, void *hst_ptr, 1496 int64_t size) { 1497 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1498 __tgt_async_info async_info; 1499 int32_t rc = dataSubmit(device_id, tgt_ptr, hst_ptr, size, &async_info); 1500 if (rc != OFFLOAD_SUCCESS) 1501 return OFFLOAD_FAIL; 1502 1503 return __tgt_rtl_synchronize(device_id, &async_info); 1504 } 1505 1506 int32_t __tgt_rtl_data_submit_async(int device_id, void *tgt_ptr, void *hst_ptr, 1507 int64_t size, 1508 __tgt_async_info *async_info_ptr) { 1509 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1510 if (async_info_ptr) { 1511 initAsyncInfoPtr(async_info_ptr); 1512 return dataSubmit(device_id, tgt_ptr, hst_ptr, size, async_info_ptr); 1513 } else { 1514 return __tgt_rtl_data_submit(device_id, tgt_ptr, hst_ptr, size); 1515 } 1516 } 1517 1518 int32_t __tgt_rtl_data_retrieve(int device_id, void *hst_ptr, void *tgt_ptr, 1519 int64_t size) { 1520 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1521 __tgt_async_info async_info; 1522 int32_t rc = dataRetrieve(device_id, hst_ptr, tgt_ptr, size, &async_info); 1523 if (rc != OFFLOAD_SUCCESS) 1524 return OFFLOAD_FAIL; 1525 1526 return __tgt_rtl_synchronize(device_id, &async_info); 1527 } 1528 1529 int32_t __tgt_rtl_data_retrieve_async(int device_id, void *hst_ptr, 1530 void *tgt_ptr, int64_t size, 1531 __tgt_async_info *async_info_ptr) { 1532 assert(async_info_ptr && "async_info is nullptr"); 1533 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1534 initAsyncInfoPtr(async_info_ptr); 1535 return dataRetrieve(device_id, hst_ptr, tgt_ptr, size, async_info_ptr); 1536 } 1537 1538 int32_t __tgt_rtl_data_delete(int device_id, void *tgt_ptr) { 1539 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1540 atmi_status_t err; 1541 DP("Tgt free data (tgt:%016llx).\n", (long long unsigned)(Elf64_Addr)tgt_ptr); 1542 err = atmi_free(tgt_ptr); 1543 if (err != ATMI_STATUS_SUCCESS) { 1544 DP("Error when freeing CUDA memory\n"); 1545 return OFFLOAD_FAIL; 1546 } 1547 return OFFLOAD_SUCCESS; 1548 } 1549 1550 // Determine launch values for threadsPerGroup and num_groups. 1551 // Outputs: treadsPerGroup, num_groups 1552 // Inputs: Max_Teams, Max_WG_Size, Warp_Size, ExecutionMode, 1553 // EnvTeamLimit, EnvNumTeams, num_teams, thread_limit, 1554 // loop_tripcount. 1555 void getLaunchVals(int &threadsPerGroup, int &num_groups, int ConstWGSize, 1556 int ExecutionMode, int EnvTeamLimit, int EnvNumTeams, 1557 int num_teams, int thread_limit, uint64_t loop_tripcount, 1558 int32_t device_id) { 1559 1560 int Max_Teams = DeviceInfo.EnvMaxTeamsDefault > 0 1561 ? DeviceInfo.EnvMaxTeamsDefault 1562 : DeviceInfo.NumTeams[device_id]; 1563 if (Max_Teams > DeviceInfo.HardTeamLimit) 1564 Max_Teams = DeviceInfo.HardTeamLimit; 1565 1566 if (print_kernel_trace == 4) { 1567 fprintf(stderr, "RTLDeviceInfoTy::Max_Teams: %d\n", 1568 RTLDeviceInfoTy::Max_Teams); 1569 fprintf(stderr, "Max_Teams: %d\n", Max_Teams); 1570 fprintf(stderr, "RTLDeviceInfoTy::Warp_Size: %d\n", 1571 RTLDeviceInfoTy::Warp_Size); 1572 fprintf(stderr, "RTLDeviceInfoTy::Max_WG_Size: %d\n", 1573 RTLDeviceInfoTy::Max_WG_Size); 1574 fprintf(stderr, "RTLDeviceInfoTy::Default_WG_Size: %d\n", 1575 RTLDeviceInfoTy::Default_WG_Size); 1576 fprintf(stderr, "thread_limit: %d\n", thread_limit); 1577 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1578 fprintf(stderr, "ConstWGSize: %d\n", ConstWGSize); 1579 } 1580 // check for thread_limit() clause 1581 if (thread_limit > 0) { 1582 threadsPerGroup = thread_limit; 1583 DP("Setting threads per block to requested %d\n", thread_limit); 1584 if (ExecutionMode == GENERIC) { // Add master warp for GENERIC 1585 threadsPerGroup += RTLDeviceInfoTy::Warp_Size; 1586 DP("Adding master wavefront: +%d threads\n", RTLDeviceInfoTy::Warp_Size); 1587 } 1588 if (threadsPerGroup > RTLDeviceInfoTy::Max_WG_Size) { // limit to max 1589 threadsPerGroup = RTLDeviceInfoTy::Max_WG_Size; 1590 DP("Setting threads per block to maximum %d\n", threadsPerGroup); 1591 } 1592 } 1593 // check flat_max_work_group_size attr here 1594 if (threadsPerGroup > ConstWGSize) { 1595 threadsPerGroup = ConstWGSize; 1596 DP("Reduced threadsPerGroup to flat-attr-group-size limit %d\n", 1597 threadsPerGroup); 1598 } 1599 if (print_kernel_trace == 4) 1600 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1601 DP("Preparing %d threads\n", threadsPerGroup); 1602 1603 // Set default num_groups (teams) 1604 if (DeviceInfo.EnvTeamLimit > 0) 1605 num_groups = (Max_Teams < DeviceInfo.EnvTeamLimit) 1606 ? Max_Teams 1607 : DeviceInfo.EnvTeamLimit; 1608 else 1609 num_groups = Max_Teams; 1610 DP("Set default num of groups %d\n", num_groups); 1611 1612 if (print_kernel_trace == 4) { 1613 fprintf(stderr, "num_groups: %d\n", num_groups); 1614 fprintf(stderr, "num_teams: %d\n", num_teams); 1615 } 1616 1617 // Reduce num_groups if threadsPerGroup exceeds RTLDeviceInfoTy::Max_WG_Size 1618 // This reduction is typical for default case (no thread_limit clause). 1619 // or when user goes crazy with num_teams clause. 1620 // FIXME: We cant distinguish between a constant or variable thread limit. 1621 // So we only handle constant thread_limits. 1622 if (threadsPerGroup > 1623 RTLDeviceInfoTy::Default_WG_Size) // 256 < threadsPerGroup <= 1024 1624 // Should we round threadsPerGroup up to nearest RTLDeviceInfoTy::Warp_Size 1625 // here? 1626 num_groups = (Max_Teams * RTLDeviceInfoTy::Max_WG_Size) / threadsPerGroup; 1627 1628 // check for num_teams() clause 1629 if (num_teams > 0) { 1630 num_groups = (num_teams < num_groups) ? num_teams : num_groups; 1631 } 1632 if (print_kernel_trace == 4) { 1633 fprintf(stderr, "num_groups: %d\n", num_groups); 1634 fprintf(stderr, "DeviceInfo.EnvNumTeams %d\n", DeviceInfo.EnvNumTeams); 1635 fprintf(stderr, "DeviceInfo.EnvTeamLimit %d\n", DeviceInfo.EnvTeamLimit); 1636 } 1637 1638 if (DeviceInfo.EnvNumTeams > 0) { 1639 num_groups = (DeviceInfo.EnvNumTeams < num_groups) ? DeviceInfo.EnvNumTeams 1640 : num_groups; 1641 DP("Modifying teams based on EnvNumTeams %d\n", DeviceInfo.EnvNumTeams); 1642 } else if (DeviceInfo.EnvTeamLimit > 0) { 1643 num_groups = (DeviceInfo.EnvTeamLimit < num_groups) 1644 ? DeviceInfo.EnvTeamLimit 1645 : num_groups; 1646 DP("Modifying teams based on EnvTeamLimit%d\n", DeviceInfo.EnvTeamLimit); 1647 } else { 1648 if (num_teams <= 0) { 1649 if (loop_tripcount > 0) { 1650 if (ExecutionMode == SPMD) { 1651 // round up to the nearest integer 1652 num_groups = ((loop_tripcount - 1) / threadsPerGroup) + 1; 1653 } else { 1654 num_groups = loop_tripcount; 1655 } 1656 DP("Using %d teams due to loop trip count %" PRIu64 " and number of " 1657 "threads per block %d\n", 1658 num_groups, loop_tripcount, threadsPerGroup); 1659 } 1660 } else { 1661 num_groups = num_teams; 1662 } 1663 if (num_groups > Max_Teams) { 1664 num_groups = Max_Teams; 1665 if (print_kernel_trace == 4) 1666 fprintf(stderr, "Limiting num_groups %d to Max_Teams %d \n", num_groups, 1667 Max_Teams); 1668 } 1669 if (num_groups > num_teams && num_teams > 0) { 1670 num_groups = num_teams; 1671 if (print_kernel_trace == 4) 1672 fprintf(stderr, "Limiting num_groups %d to clause num_teams %d \n", 1673 num_groups, num_teams); 1674 } 1675 } 1676 1677 // num_teams clause always honored, no matter what, unless DEFAULT is active. 1678 if (num_teams > 0) { 1679 num_groups = num_teams; 1680 // Cap num_groups to EnvMaxTeamsDefault if set. 1681 if (DeviceInfo.EnvMaxTeamsDefault > 0 && 1682 num_groups > DeviceInfo.EnvMaxTeamsDefault) 1683 num_groups = DeviceInfo.EnvMaxTeamsDefault; 1684 } 1685 if (print_kernel_trace == 4) { 1686 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1687 fprintf(stderr, "num_groups: %d\n", num_groups); 1688 fprintf(stderr, "loop_tripcount: %ld\n", loop_tripcount); 1689 } 1690 DP("Final %d num_groups and %d threadsPerGroup\n", num_groups, 1691 threadsPerGroup); 1692 } 1693 1694 static uint64_t acquire_available_packet_id(hsa_queue_t *queue) { 1695 uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1); 1696 bool full = true; 1697 while (full) { 1698 full = 1699 packet_id >= (queue->size + hsa_queue_load_read_index_scacquire(queue)); 1700 } 1701 return packet_id; 1702 } 1703 1704 extern bool g_atmi_hostcall_required; // declared without header by atmi 1705 1706 static int32_t __tgt_rtl_run_target_team_region_locked( 1707 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 1708 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 1709 int32_t thread_limit, uint64_t loop_tripcount); 1710 1711 int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr, 1712 void **tgt_args, 1713 ptrdiff_t *tgt_offsets, 1714 int32_t arg_num, int32_t num_teams, 1715 int32_t thread_limit, 1716 uint64_t loop_tripcount) { 1717 1718 DeviceInfo.load_run_lock.lock_shared(); 1719 int32_t res = __tgt_rtl_run_target_team_region_locked( 1720 device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, num_teams, 1721 thread_limit, loop_tripcount); 1722 1723 DeviceInfo.load_run_lock.unlock_shared(); 1724 return res; 1725 } 1726 1727 int32_t __tgt_rtl_run_target_team_region_locked( 1728 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 1729 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 1730 int32_t thread_limit, uint64_t loop_tripcount) { 1731 // Set the context we are using 1732 // update thread limit content in gpu memory if un-initialized or specified 1733 // from host 1734 1735 DP("Run target team region thread_limit %d\n", thread_limit); 1736 1737 // All args are references. 1738 std::vector<void *> args(arg_num); 1739 std::vector<void *> ptrs(arg_num); 1740 1741 DP("Arg_num: %d\n", arg_num); 1742 for (int32_t i = 0; i < arg_num; ++i) { 1743 ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]); 1744 args[i] = &ptrs[i]; 1745 DP("Offseted base: arg[%d]:" DPxMOD "\n", i, DPxPTR(ptrs[i])); 1746 } 1747 1748 KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr; 1749 1750 /* 1751 * Set limit based on ThreadsPerGroup and GroupsPerDevice 1752 */ 1753 int num_groups = 0; 1754 1755 int threadsPerGroup = RTLDeviceInfoTy::Default_WG_Size; 1756 1757 getLaunchVals(threadsPerGroup, num_groups, KernelInfo->ConstWGSize, 1758 KernelInfo->ExecutionMode, DeviceInfo.EnvTeamLimit, 1759 DeviceInfo.EnvNumTeams, 1760 num_teams, // From run_region arg 1761 thread_limit, // From run_region arg 1762 loop_tripcount, // From run_region arg 1763 KernelInfo->device_id); 1764 1765 if (print_kernel_trace == 4) 1766 // enum modes are SPMD, GENERIC, NONE 0,1,2 1767 fprintf(stderr, 1768 "DEVID:%2d SGN:%1d ConstWGSize:%-4d args:%2d teamsXthrds:(%4dX%4d) " 1769 "reqd:(%4dX%4d) n:%s\n", 1770 device_id, KernelInfo->ExecutionMode, KernelInfo->ConstWGSize, 1771 arg_num, num_groups, threadsPerGroup, num_teams, thread_limit, 1772 KernelInfo->Name); 1773 1774 // Run on the device. 1775 { 1776 hsa_queue_t *queue = DeviceInfo.HSAQueues[device_id]; 1777 uint64_t packet_id = acquire_available_packet_id(queue); 1778 1779 const uint32_t mask = queue->size - 1; // size is a power of 2 1780 hsa_kernel_dispatch_packet_t *packet = 1781 (hsa_kernel_dispatch_packet_t *)queue->base_address + 1782 (packet_id & mask); 1783 1784 // packet->header is written last 1785 packet->setup = UINT16_C(1) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS; 1786 packet->workgroup_size_x = threadsPerGroup; 1787 packet->workgroup_size_y = 1; 1788 packet->workgroup_size_z = 1; 1789 packet->reserved0 = 0; 1790 packet->grid_size_x = num_groups * threadsPerGroup; 1791 packet->grid_size_y = 1; 1792 packet->grid_size_z = 1; 1793 packet->private_segment_size = 0; 1794 packet->group_segment_size = 0; 1795 packet->kernel_object = 0; 1796 packet->kernarg_address = 0; // use the block allocator 1797 packet->reserved2 = 0; // atmi writes id_ here 1798 packet->completion_signal = {0}; // may want a pool of signals 1799 1800 std::string kernel_name = std::string(KernelInfo->Name); 1801 { 1802 assert(KernelInfoTable[device_id].find(kernel_name) != 1803 KernelInfoTable[device_id].end()); 1804 auto it = KernelInfoTable[device_id][kernel_name]; 1805 packet->kernel_object = it.kernel_object; 1806 packet->private_segment_size = it.private_segment_size; 1807 packet->group_segment_size = it.group_segment_size; 1808 assert(arg_num == (int)it.num_args); 1809 } 1810 1811 KernelArgPool *ArgPool = nullptr; 1812 { 1813 auto it = KernelArgPoolMap.find(std::string(KernelInfo->Name)); 1814 if (it != KernelArgPoolMap.end()) { 1815 ArgPool = (it->second).get(); 1816 } 1817 } 1818 if (!ArgPool) { 1819 fprintf(stderr, "Warning: No ArgPool for %s on device %d\n", 1820 KernelInfo->Name, device_id); 1821 } 1822 { 1823 void *kernarg = nullptr; 1824 if (ArgPool) { 1825 assert(ArgPool->kernarg_segment_size == (arg_num * sizeof(void *))); 1826 kernarg = ArgPool->allocate(arg_num); 1827 } 1828 if (!kernarg) { 1829 printf("Allocate kernarg failed\n"); 1830 exit(1); 1831 } 1832 1833 // Copy explicit arguments 1834 for (int i = 0; i < arg_num; i++) { 1835 memcpy((char *)kernarg + sizeof(void *) * i, args[i], sizeof(void *)); 1836 } 1837 1838 // Initialize implicit arguments. ATMI seems to leave most fields 1839 // uninitialized 1840 atmi_implicit_args_t *impl_args = 1841 reinterpret_cast<atmi_implicit_args_t *>( 1842 static_cast<char *>(kernarg) + ArgPool->kernarg_segment_size); 1843 memset(impl_args, 0, 1844 sizeof(atmi_implicit_args_t)); // may not be necessary 1845 impl_args->offset_x = 0; 1846 impl_args->offset_y = 0; 1847 impl_args->offset_z = 0; 1848 1849 // assign a hostcall buffer for the selected Q 1850 if (g_atmi_hostcall_required) { 1851 // hostrpc_assign_buffer is not thread safe, and this function is 1852 // under a multiple reader lock, not a writer lock. 1853 static pthread_mutex_t hostcall_init_lock = PTHREAD_MUTEX_INITIALIZER; 1854 pthread_mutex_lock(&hostcall_init_lock); 1855 impl_args->hostcall_ptr = hostrpc_assign_buffer( 1856 DeviceInfo.HSAAgents[device_id], queue, device_id); 1857 pthread_mutex_unlock(&hostcall_init_lock); 1858 if (!impl_args->hostcall_ptr) { 1859 DP("hostrpc_assign_buffer failed, gpu would dereference null and " 1860 "error\n"); 1861 return OFFLOAD_FAIL; 1862 } 1863 } 1864 1865 packet->kernarg_address = kernarg; 1866 } 1867 1868 { 1869 hsa_signal_t s = DeviceInfo.FreeSignalPool.pop(); 1870 if (s.handle == 0) { 1871 printf("Failed to get signal instance\n"); 1872 exit(1); 1873 } 1874 packet->completion_signal = s; 1875 hsa_signal_store_relaxed(packet->completion_signal, 1); 1876 } 1877 1878 core::packet_store_release( 1879 reinterpret_cast<uint32_t *>(packet), 1880 core::create_header(HSA_PACKET_TYPE_KERNEL_DISPATCH, 0, 1881 ATMI_FENCE_SCOPE_SYSTEM, ATMI_FENCE_SCOPE_SYSTEM), 1882 packet->setup); 1883 1884 hsa_signal_store_relaxed(queue->doorbell_signal, packet_id); 1885 1886 while (hsa_signal_wait_scacquire(packet->completion_signal, 1887 HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX, 1888 HSA_WAIT_STATE_BLOCKED) != 0) 1889 ; 1890 1891 assert(ArgPool); 1892 ArgPool->deallocate(packet->kernarg_address); 1893 DeviceInfo.FreeSignalPool.push(packet->completion_signal); 1894 } 1895 1896 DP("Kernel completed\n"); 1897 return OFFLOAD_SUCCESS; 1898 } 1899 1900 int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr, 1901 void **tgt_args, ptrdiff_t *tgt_offsets, 1902 int32_t arg_num) { 1903 // use one team and one thread 1904 // fix thread num 1905 int32_t team_num = 1; 1906 int32_t thread_limit = 0; // use default 1907 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 1908 tgt_offsets, arg_num, team_num, 1909 thread_limit, 0); 1910 } 1911 1912 int32_t __tgt_rtl_run_target_region_async(int32_t device_id, 1913 void *tgt_entry_ptr, void **tgt_args, 1914 ptrdiff_t *tgt_offsets, 1915 int32_t arg_num, 1916 __tgt_async_info *async_info_ptr) { 1917 assert(async_info_ptr && "async_info is nullptr"); 1918 initAsyncInfoPtr(async_info_ptr); 1919 1920 // use one team and one thread 1921 // fix thread num 1922 int32_t team_num = 1; 1923 int32_t thread_limit = 0; // use default 1924 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 1925 tgt_offsets, arg_num, team_num, 1926 thread_limit, 0); 1927 } 1928 1929 int32_t __tgt_rtl_synchronize(int32_t device_id, 1930 __tgt_async_info *async_info_ptr) { 1931 assert(async_info_ptr && "async_info is nullptr"); 1932 1933 // Cuda asserts that async_info_ptr->Queue is non-null, but this invariant 1934 // is not ensured by devices.cpp for amdgcn 1935 // assert(async_info_ptr->Queue && "async_info_ptr->Queue is nullptr"); 1936 if (async_info_ptr->Queue) { 1937 finiAsyncInfoPtr(async_info_ptr); 1938 } 1939 return OFFLOAD_SUCCESS; 1940 } 1941