1 //===--- amdgpu/src/rtl.cpp --------------------------------------- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // RTL for AMD hsa machine 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <algorithm> 14 #include <assert.h> 15 #include <cstdio> 16 #include <cstdlib> 17 #include <cstring> 18 #include <functional> 19 #include <libelf.h> 20 #include <list> 21 #include <memory> 22 #include <mutex> 23 #include <shared_mutex> 24 #include <unordered_map> 25 #include <vector> 26 27 #include "interop_hsa.h" 28 #include "impl_runtime.h" 29 30 #include "internal.h" 31 #include "rt.h" 32 33 #include "DeviceEnvironment.h" 34 #include "get_elf_mach_gfx_name.h" 35 #include "omptargetplugin.h" 36 #include "print_tracing.h" 37 38 #include "llvm/Frontend/OpenMP/OMPConstants.h" 39 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 40 41 // hostrpc interface, FIXME: consider moving to its own include these are 42 // statically linked into amdgpu/plugin if present from hostrpc_services.a, 43 // linked as --whole-archive to override the weak symbols that are used to 44 // implement a fallback for toolchains that do not yet have a hostrpc library. 45 extern "C" { 46 unsigned long hostrpc_assign_buffer(hsa_agent_t agent, hsa_queue_t *this_Q, 47 uint32_t device_id); 48 hsa_status_t hostrpc_init(); 49 hsa_status_t hostrpc_terminate(); 50 51 __attribute__((weak)) hsa_status_t hostrpc_init() { return HSA_STATUS_SUCCESS; } 52 __attribute__((weak)) hsa_status_t hostrpc_terminate() { 53 return HSA_STATUS_SUCCESS; 54 } 55 __attribute__((weak)) unsigned long 56 hostrpc_assign_buffer(hsa_agent_t, hsa_queue_t *, uint32_t device_id) { 57 DP("Warning: Attempting to assign hostrpc to device %u, but hostrpc library " 58 "missing\n", 59 device_id); 60 return 0; 61 } 62 } 63 64 // Heuristic parameters used for kernel launch 65 // Number of teams per CU to allow scheduling flexibility 66 static const unsigned DefaultTeamsPerCU = 4; 67 68 int print_kernel_trace; 69 70 #ifdef OMPTARGET_DEBUG 71 #define check(msg, status) \ 72 if (status != HSA_STATUS_SUCCESS) { \ 73 DP(#msg " failed\n"); \ 74 } else { \ 75 DP(#msg " succeeded\n"); \ 76 } 77 #else 78 #define check(msg, status) \ 79 {} 80 #endif 81 82 #include "elf_common.h" 83 84 namespace hsa { 85 template <typename C> hsa_status_t iterate_agents(C cb) { 86 auto L = [](hsa_agent_t agent, void *data) -> hsa_status_t { 87 C *unwrapped = static_cast<C *>(data); 88 return (*unwrapped)(agent); 89 }; 90 return hsa_iterate_agents(L, static_cast<void *>(&cb)); 91 } 92 93 template <typename C> 94 hsa_status_t amd_agent_iterate_memory_pools(hsa_agent_t Agent, C cb) { 95 auto L = [](hsa_amd_memory_pool_t MemoryPool, void *data) -> hsa_status_t { 96 C *unwrapped = static_cast<C *>(data); 97 return (*unwrapped)(MemoryPool); 98 }; 99 100 return hsa_amd_agent_iterate_memory_pools(Agent, L, static_cast<void *>(&cb)); 101 } 102 103 } // namespace hsa 104 105 /// Keep entries table per device 106 struct FuncOrGblEntryTy { 107 __tgt_target_table Table; 108 std::vector<__tgt_offload_entry> Entries; 109 }; 110 111 struct KernelArgPool { 112 private: 113 static pthread_mutex_t mutex; 114 115 public: 116 uint32_t kernarg_segment_size; 117 void *kernarg_region = nullptr; 118 std::queue<int> free_kernarg_segments; 119 120 uint32_t kernarg_size_including_implicit() { 121 return kernarg_segment_size + sizeof(impl_implicit_args_t); 122 } 123 124 ~KernelArgPool() { 125 if (kernarg_region) { 126 auto r = hsa_amd_memory_pool_free(kernarg_region); 127 if (r != HSA_STATUS_SUCCESS) { 128 DP("hsa_amd_memory_pool_free failed: %s\n", get_error_string(r)); 129 } 130 } 131 } 132 133 // Can't really copy or move a mutex 134 KernelArgPool() = default; 135 KernelArgPool(const KernelArgPool &) = delete; 136 KernelArgPool(KernelArgPool &&) = delete; 137 138 KernelArgPool(uint32_t kernarg_segment_size, 139 hsa_amd_memory_pool_t &memory_pool) 140 : kernarg_segment_size(kernarg_segment_size) { 141 142 // impl uses one pool per kernel for all gpus, with a fixed upper size 143 // preserving that exact scheme here, including the queue<int> 144 145 hsa_status_t err = hsa_amd_memory_pool_allocate( 146 memory_pool, kernarg_size_including_implicit() * MAX_NUM_KERNELS, 0, 147 &kernarg_region); 148 149 if (err != HSA_STATUS_SUCCESS) { 150 DP("hsa_amd_memory_pool_allocate failed: %s\n", get_error_string(err)); 151 kernarg_region = nullptr; // paranoid 152 return; 153 } 154 155 err = core::allow_access_to_all_gpu_agents(kernarg_region); 156 if (err != HSA_STATUS_SUCCESS) { 157 DP("hsa allow_access_to_all_gpu_agents failed: %s\n", 158 get_error_string(err)); 159 auto r = hsa_amd_memory_pool_free(kernarg_region); 160 if (r != HSA_STATUS_SUCCESS) { 161 // if free failed, can't do anything more to resolve it 162 DP("hsa memory poll free failed: %s\n", get_error_string(err)); 163 } 164 kernarg_region = nullptr; 165 return; 166 } 167 168 for (int i = 0; i < MAX_NUM_KERNELS; i++) { 169 free_kernarg_segments.push(i); 170 } 171 } 172 173 void *allocate(uint64_t arg_num) { 174 assert((arg_num * sizeof(void *)) == kernarg_segment_size); 175 lock l(&mutex); 176 void *res = nullptr; 177 if (!free_kernarg_segments.empty()) { 178 179 int free_idx = free_kernarg_segments.front(); 180 res = static_cast<void *>(static_cast<char *>(kernarg_region) + 181 (free_idx * kernarg_size_including_implicit())); 182 assert(free_idx == pointer_to_index(res)); 183 free_kernarg_segments.pop(); 184 } 185 return res; 186 } 187 188 void deallocate(void *ptr) { 189 lock l(&mutex); 190 int idx = pointer_to_index(ptr); 191 free_kernarg_segments.push(idx); 192 } 193 194 private: 195 int pointer_to_index(void *ptr) { 196 ptrdiff_t bytes = 197 static_cast<char *>(ptr) - static_cast<char *>(kernarg_region); 198 assert(bytes >= 0); 199 assert(bytes % kernarg_size_including_implicit() == 0); 200 return bytes / kernarg_size_including_implicit(); 201 } 202 struct lock { 203 lock(pthread_mutex_t *m) : m(m) { pthread_mutex_lock(m); } 204 ~lock() { pthread_mutex_unlock(m); } 205 pthread_mutex_t *m; 206 }; 207 }; 208 pthread_mutex_t KernelArgPool::mutex = PTHREAD_MUTEX_INITIALIZER; 209 210 std::unordered_map<std::string /*kernel*/, std::unique_ptr<KernelArgPool>> 211 KernelArgPoolMap; 212 213 /// Use a single entity to encode a kernel and a set of flags 214 struct KernelTy { 215 llvm::omp::OMPTgtExecModeFlags ExecutionMode; 216 int16_t ConstWGSize; 217 int32_t device_id; 218 void *CallStackAddr = nullptr; 219 const char *Name; 220 221 KernelTy(llvm::omp::OMPTgtExecModeFlags _ExecutionMode, int16_t _ConstWGSize, 222 int32_t _device_id, void *_CallStackAddr, const char *_Name, 223 uint32_t _kernarg_segment_size, 224 hsa_amd_memory_pool_t &KernArgMemoryPool) 225 : ExecutionMode(_ExecutionMode), ConstWGSize(_ConstWGSize), 226 device_id(_device_id), CallStackAddr(_CallStackAddr), Name(_Name) { 227 DP("Construct kernelinfo: ExecMode %d\n", ExecutionMode); 228 229 std::string N(_Name); 230 if (KernelArgPoolMap.find(N) == KernelArgPoolMap.end()) { 231 KernelArgPoolMap.insert( 232 std::make_pair(N, std::unique_ptr<KernelArgPool>(new KernelArgPool( 233 _kernarg_segment_size, KernArgMemoryPool)))); 234 } 235 } 236 }; 237 238 /// List that contains all the kernels. 239 /// FIXME: we may need this to be per device and per library. 240 std::list<KernelTy> KernelsList; 241 242 template <typename Callback> static hsa_status_t FindAgents(Callback CB) { 243 244 hsa_status_t err = 245 hsa::iterate_agents([&](hsa_agent_t agent) -> hsa_status_t { 246 hsa_device_type_t device_type; 247 // get_info fails iff HSA runtime not yet initialized 248 hsa_status_t err = 249 hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 250 251 if (err != HSA_STATUS_SUCCESS) { 252 if (print_kernel_trace > 0) 253 DP("rtl.cpp: err %s\n", get_error_string(err)); 254 255 return err; 256 } 257 258 CB(device_type, agent); 259 return HSA_STATUS_SUCCESS; 260 }); 261 262 // iterate_agents fails iff HSA runtime not yet initialized 263 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) { 264 DP("rtl.cpp: err %s\n", get_error_string(err)); 265 } 266 267 return err; 268 } 269 270 static void callbackQueue(hsa_status_t status, hsa_queue_t *source, 271 void *data) { 272 if (status != HSA_STATUS_SUCCESS) { 273 const char *status_string; 274 if (hsa_status_string(status, &status_string) != HSA_STATUS_SUCCESS) { 275 status_string = "unavailable"; 276 } 277 DP("[%s:%d] GPU error in queue %p %d (%s)\n", __FILE__, __LINE__, source, 278 status, status_string); 279 abort(); 280 } 281 } 282 283 namespace core { 284 namespace { 285 void packet_store_release(uint32_t *packet, uint16_t header, uint16_t rest) { 286 __atomic_store_n(packet, header | (rest << 16), __ATOMIC_RELEASE); 287 } 288 289 uint16_t create_header() { 290 uint16_t header = HSA_PACKET_TYPE_KERNEL_DISPATCH << HSA_PACKET_HEADER_TYPE; 291 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE; 292 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE; 293 return header; 294 } 295 296 hsa_status_t isValidMemoryPool(hsa_amd_memory_pool_t MemoryPool) { 297 bool AllocAllowed = false; 298 hsa_status_t Err = hsa_amd_memory_pool_get_info( 299 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED, 300 &AllocAllowed); 301 if (Err != HSA_STATUS_SUCCESS) { 302 DP("Alloc allowed in memory pool check failed: %s\n", 303 get_error_string(Err)); 304 return Err; 305 } 306 307 size_t Size = 0; 308 Err = hsa_amd_memory_pool_get_info(MemoryPool, HSA_AMD_MEMORY_POOL_INFO_SIZE, 309 &Size); 310 if (Err != HSA_STATUS_SUCCESS) { 311 DP("Get memory pool size failed: %s\n", get_error_string(Err)); 312 return Err; 313 } 314 315 return (AllocAllowed && Size > 0) ? HSA_STATUS_SUCCESS : HSA_STATUS_ERROR; 316 } 317 318 hsa_status_t addMemoryPool(hsa_amd_memory_pool_t MemoryPool, void *Data) { 319 std::vector<hsa_amd_memory_pool_t> *Result = 320 static_cast<std::vector<hsa_amd_memory_pool_t> *>(Data); 321 322 hsa_status_t err; 323 if ((err = isValidMemoryPool(MemoryPool)) != HSA_STATUS_SUCCESS) { 324 return err; 325 } 326 327 Result->push_back(MemoryPool); 328 return HSA_STATUS_SUCCESS; 329 } 330 331 } // namespace 332 } // namespace core 333 334 struct EnvironmentVariables { 335 int NumTeams; 336 int TeamLimit; 337 int TeamThreadLimit; 338 int MaxTeamsDefault; 339 }; 340 341 template <uint32_t wavesize> 342 static constexpr const llvm::omp::GV &getGridValue() { 343 return llvm::omp::getAMDGPUGridValues<wavesize>(); 344 } 345 346 struct HSALifetime { 347 // Wrapper around HSA used to ensure it is constructed before other types 348 // and destructed after, which means said other types can use raii for 349 // cleanup without risking running outside of the lifetime of HSA 350 const hsa_status_t S; 351 352 bool success() { return S == HSA_STATUS_SUCCESS; } 353 HSALifetime() : S(hsa_init()) {} 354 355 ~HSALifetime() { 356 if (S == HSA_STATUS_SUCCESS) { 357 hsa_status_t Err = hsa_shut_down(); 358 if (Err != HSA_STATUS_SUCCESS) { 359 // Can't call into HSA to get a string from the integer 360 DP("Shutting down HSA failed: %d\n", Err); 361 } 362 } 363 } 364 }; 365 366 /// Class containing all the device information 367 class RTLDeviceInfoTy { 368 HSALifetime HSA; // First field => constructed first and destructed last 369 std::vector<std::list<FuncOrGblEntryTy>> FuncGblEntries; 370 371 struct QueueDeleter { 372 void operator()(hsa_queue_t *Q) { 373 if (Q) { 374 hsa_status_t Err = hsa_queue_destroy(Q); 375 if (Err != HSA_STATUS_SUCCESS) { 376 DP("Error destroying hsa queue: %s\n", get_error_string(Err)); 377 } 378 } 379 } 380 }; 381 382 public: 383 bool ConstructionSucceeded = false; 384 385 // load binary populates symbol tables and mutates various global state 386 // run uses those symbol tables 387 std::shared_timed_mutex load_run_lock; 388 389 int NumberOfDevices = 0; 390 391 // GPU devices 392 std::vector<hsa_agent_t> HSAAgents; 393 std::vector<std::unique_ptr<hsa_queue_t, QueueDeleter>> 394 HSAQueues; // one per gpu 395 396 // CPUs 397 std::vector<hsa_agent_t> CPUAgents; 398 399 // Device properties 400 std::vector<int> ComputeUnits; 401 std::vector<int> GroupsPerDevice; 402 std::vector<int> ThreadsPerGroup; 403 std::vector<int> WarpSize; 404 std::vector<std::string> GPUName; 405 406 // OpenMP properties 407 std::vector<int> NumTeams; 408 std::vector<int> NumThreads; 409 410 // OpenMP Environment properties 411 EnvironmentVariables Env; 412 413 // OpenMP Requires Flags 414 int64_t RequiresFlags; 415 416 // Resource pools 417 SignalPoolT FreeSignalPool; 418 419 bool hostcall_required = false; 420 421 std::vector<hsa_executable_t> HSAExecutables; 422 423 std::vector<std::map<std::string, atl_kernel_info_t>> KernelInfoTable; 424 std::vector<std::map<std::string, atl_symbol_info_t>> SymbolInfoTable; 425 426 hsa_amd_memory_pool_t KernArgPool; 427 428 // fine grained memory pool for host allocations 429 hsa_amd_memory_pool_t HostFineGrainedMemoryPool; 430 431 // fine and coarse-grained memory pools per offloading device 432 std::vector<hsa_amd_memory_pool_t> DeviceFineGrainedMemoryPools; 433 std::vector<hsa_amd_memory_pool_t> DeviceCoarseGrainedMemoryPools; 434 435 struct implFreePtrDeletor { 436 void operator()(void *p) { 437 core::Runtime::Memfree(p); // ignore failure to free 438 } 439 }; 440 441 // device_State shared across loaded binaries, error if inconsistent size 442 std::vector<std::pair<std::unique_ptr<void, implFreePtrDeletor>, uint64_t>> 443 deviceStateStore; 444 445 static const unsigned HardTeamLimit = 446 (1 << 16) - 1; // 64K needed to fit in uint16 447 static const int DefaultNumTeams = 128; 448 449 // These need to be per-device since different devices can have different 450 // wave sizes, but are currently the same number for each so that refactor 451 // can be postponed. 452 static_assert(getGridValue<32>().GV_Max_Teams == 453 getGridValue<64>().GV_Max_Teams, 454 ""); 455 static const int Max_Teams = getGridValue<64>().GV_Max_Teams; 456 457 static_assert(getGridValue<32>().GV_Max_WG_Size == 458 getGridValue<64>().GV_Max_WG_Size, 459 ""); 460 static const int Max_WG_Size = getGridValue<64>().GV_Max_WG_Size; 461 462 static_assert(getGridValue<32>().GV_Default_WG_Size == 463 getGridValue<64>().GV_Default_WG_Size, 464 ""); 465 static const int Default_WG_Size = getGridValue<64>().GV_Default_WG_Size; 466 467 using MemcpyFunc = hsa_status_t (*)(hsa_signal_t, void *, const void *, 468 size_t size, hsa_agent_t, 469 hsa_amd_memory_pool_t); 470 hsa_status_t freesignalpool_memcpy(void *dest, const void *src, size_t size, 471 MemcpyFunc Func, int32_t deviceId) { 472 hsa_agent_t agent = HSAAgents[deviceId]; 473 hsa_signal_t s = FreeSignalPool.pop(); 474 if (s.handle == 0) { 475 return HSA_STATUS_ERROR; 476 } 477 hsa_status_t r = Func(s, dest, src, size, agent, HostFineGrainedMemoryPool); 478 FreeSignalPool.push(s); 479 return r; 480 } 481 482 hsa_status_t freesignalpool_memcpy_d2h(void *dest, const void *src, 483 size_t size, int32_t deviceId) { 484 return freesignalpool_memcpy(dest, src, size, impl_memcpy_d2h, deviceId); 485 } 486 487 hsa_status_t freesignalpool_memcpy_h2d(void *dest, const void *src, 488 size_t size, int32_t deviceId) { 489 return freesignalpool_memcpy(dest, src, size, impl_memcpy_h2d, deviceId); 490 } 491 492 // Record entry point associated with device 493 void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) { 494 assert(device_id < (int32_t)FuncGblEntries.size() && 495 "Unexpected device id!"); 496 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 497 498 E.Entries.push_back(entry); 499 } 500 501 // Return true if the entry is associated with device 502 bool findOffloadEntry(int32_t device_id, void *addr) { 503 assert(device_id < (int32_t)FuncGblEntries.size() && 504 "Unexpected device id!"); 505 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 506 507 for (auto &it : E.Entries) { 508 if (it.addr == addr) 509 return true; 510 } 511 512 return false; 513 } 514 515 // Return the pointer to the target entries table 516 __tgt_target_table *getOffloadEntriesTable(int32_t device_id) { 517 assert(device_id < (int32_t)FuncGblEntries.size() && 518 "Unexpected device id!"); 519 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 520 521 int32_t size = E.Entries.size(); 522 523 // Table is empty 524 if (!size) 525 return 0; 526 527 __tgt_offload_entry *begin = &E.Entries[0]; 528 __tgt_offload_entry *end = &E.Entries[size - 1]; 529 530 // Update table info according to the entries and return the pointer 531 E.Table.EntriesBegin = begin; 532 E.Table.EntriesEnd = ++end; 533 534 return &E.Table; 535 } 536 537 // Clear entries table for a device 538 void clearOffloadEntriesTable(int device_id) { 539 assert(device_id < (int32_t)FuncGblEntries.size() && 540 "Unexpected device id!"); 541 FuncGblEntries[device_id].emplace_back(); 542 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 543 // KernelArgPoolMap.clear(); 544 E.Entries.clear(); 545 E.Table.EntriesBegin = E.Table.EntriesEnd = 0; 546 } 547 548 hsa_status_t addDeviceMemoryPool(hsa_amd_memory_pool_t MemoryPool, 549 int DeviceId) { 550 assert(DeviceId < DeviceFineGrainedMemoryPools.size() && "Error here."); 551 uint32_t GlobalFlags = 0; 552 hsa_status_t Err = hsa_amd_memory_pool_get_info( 553 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 554 555 if (Err != HSA_STATUS_SUCCESS) { 556 return Err; 557 } 558 559 if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) { 560 DeviceFineGrainedMemoryPools[DeviceId] = MemoryPool; 561 } else if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_COARSE_GRAINED) { 562 DeviceCoarseGrainedMemoryPools[DeviceId] = MemoryPool; 563 } 564 565 return HSA_STATUS_SUCCESS; 566 } 567 568 hsa_status_t setupDevicePools(const std::vector<hsa_agent_t> &Agents) { 569 for (int DeviceId = 0; DeviceId < Agents.size(); DeviceId++) { 570 hsa_status_t Err = hsa::amd_agent_iterate_memory_pools( 571 Agents[DeviceId], [&](hsa_amd_memory_pool_t MemoryPool) { 572 hsa_status_t ValidStatus = core::isValidMemoryPool(MemoryPool); 573 if (ValidStatus != HSA_STATUS_SUCCESS) { 574 DP("Alloc allowed in memory pool check failed: %s\n", 575 get_error_string(ValidStatus)); 576 return HSA_STATUS_SUCCESS; 577 } 578 return addDeviceMemoryPool(MemoryPool, DeviceId); 579 }); 580 581 if (Err != HSA_STATUS_SUCCESS) { 582 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 583 "Iterate all memory pools", get_error_string(Err)); 584 return Err; 585 } 586 } 587 return HSA_STATUS_SUCCESS; 588 } 589 590 hsa_status_t setupHostMemoryPools(std::vector<hsa_agent_t> &Agents) { 591 std::vector<hsa_amd_memory_pool_t> HostPools; 592 593 // collect all the "valid" pools for all the given agents. 594 for (const auto &Agent : Agents) { 595 hsa_status_t Err = hsa_amd_agent_iterate_memory_pools( 596 Agent, core::addMemoryPool, static_cast<void *>(&HostPools)); 597 if (Err != HSA_STATUS_SUCCESS) { 598 DP("addMemoryPool returned %s, continuing\n", get_error_string(Err)); 599 } 600 } 601 602 // We need two fine-grained pools. 603 // 1. One with kernarg flag set for storing kernel arguments 604 // 2. Second for host allocations 605 bool FineGrainedMemoryPoolSet = false; 606 bool KernArgPoolSet = false; 607 for (const auto &MemoryPool : HostPools) { 608 hsa_status_t Err = HSA_STATUS_SUCCESS; 609 uint32_t GlobalFlags = 0; 610 Err = hsa_amd_memory_pool_get_info( 611 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 612 if (Err != HSA_STATUS_SUCCESS) { 613 DP("Get memory pool info failed: %s\n", get_error_string(Err)); 614 return Err; 615 } 616 617 if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) { 618 if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_KERNARG_INIT) { 619 KernArgPool = MemoryPool; 620 KernArgPoolSet = true; 621 } 622 HostFineGrainedMemoryPool = MemoryPool; 623 FineGrainedMemoryPoolSet = true; 624 } 625 } 626 627 if (FineGrainedMemoryPoolSet && KernArgPoolSet) 628 return HSA_STATUS_SUCCESS; 629 630 return HSA_STATUS_ERROR; 631 } 632 633 hsa_amd_memory_pool_t getDeviceMemoryPool(int DeviceId) { 634 assert(DeviceId >= 0 && DeviceId < DeviceCoarseGrainedMemoryPools.size() && 635 "Invalid device Id"); 636 return DeviceCoarseGrainedMemoryPools[DeviceId]; 637 } 638 639 hsa_amd_memory_pool_t getHostMemoryPool() { 640 return HostFineGrainedMemoryPool; 641 } 642 643 static int readEnvElseMinusOne(const char *Env) { 644 const char *envStr = getenv(Env); 645 int res = -1; 646 if (envStr) { 647 res = std::stoi(envStr); 648 DP("Parsed %s=%d\n", Env, res); 649 } 650 return res; 651 } 652 653 RTLDeviceInfoTy() { 654 DP("Start initializing " GETNAME(TARGET_NAME) "\n"); 655 656 // LIBOMPTARGET_KERNEL_TRACE provides a kernel launch trace to stderr 657 // anytime. You do not need a debug library build. 658 // 0 => no tracing 659 // 1 => tracing dispatch only 660 // >1 => verbosity increase 661 662 if (!HSA.success()) { 663 DP("Error when initializing HSA in " GETNAME(TARGET_NAME) "\n"); 664 return; 665 } 666 667 if (char *envStr = getenv("LIBOMPTARGET_KERNEL_TRACE")) 668 print_kernel_trace = atoi(envStr); 669 else 670 print_kernel_trace = 0; 671 672 hsa_status_t err = core::atl_init_gpu_context(); 673 if (err != HSA_STATUS_SUCCESS) { 674 DP("Error when initializing " GETNAME(TARGET_NAME) "\n"); 675 return; 676 } 677 678 // Init hostcall soon after initializing hsa 679 hostrpc_init(); 680 681 err = FindAgents([&](hsa_device_type_t DeviceType, hsa_agent_t Agent) { 682 if (DeviceType == HSA_DEVICE_TYPE_CPU) { 683 CPUAgents.push_back(Agent); 684 } else { 685 HSAAgents.push_back(Agent); 686 } 687 }); 688 if (err != HSA_STATUS_SUCCESS) 689 return; 690 691 NumberOfDevices = (int)HSAAgents.size(); 692 693 if (NumberOfDevices == 0) { 694 DP("There are no devices supporting HSA.\n"); 695 return; 696 } else { 697 DP("There are %d devices supporting HSA.\n", NumberOfDevices); 698 } 699 700 // Init the device info 701 HSAQueues.resize(NumberOfDevices); 702 FuncGblEntries.resize(NumberOfDevices); 703 ThreadsPerGroup.resize(NumberOfDevices); 704 ComputeUnits.resize(NumberOfDevices); 705 GPUName.resize(NumberOfDevices); 706 GroupsPerDevice.resize(NumberOfDevices); 707 WarpSize.resize(NumberOfDevices); 708 NumTeams.resize(NumberOfDevices); 709 NumThreads.resize(NumberOfDevices); 710 deviceStateStore.resize(NumberOfDevices); 711 KernelInfoTable.resize(NumberOfDevices); 712 SymbolInfoTable.resize(NumberOfDevices); 713 DeviceCoarseGrainedMemoryPools.resize(NumberOfDevices); 714 DeviceFineGrainedMemoryPools.resize(NumberOfDevices); 715 716 err = setupDevicePools(HSAAgents); 717 if (err != HSA_STATUS_SUCCESS) { 718 DP("Setup for Device Memory Pools failed\n"); 719 return; 720 } 721 722 err = setupHostMemoryPools(CPUAgents); 723 if (err != HSA_STATUS_SUCCESS) { 724 DP("Setup for Host Memory Pools failed\n"); 725 return; 726 } 727 728 for (int i = 0; i < NumberOfDevices; i++) { 729 uint32_t queue_size = 0; 730 { 731 hsa_status_t err = hsa_agent_get_info( 732 HSAAgents[i], HSA_AGENT_INFO_QUEUE_MAX_SIZE, &queue_size); 733 if (err != HSA_STATUS_SUCCESS) { 734 DP("HSA query QUEUE_MAX_SIZE failed for agent %d\n", i); 735 return; 736 } 737 enum { MaxQueueSize = 4096 }; 738 if (queue_size > MaxQueueSize) { 739 queue_size = MaxQueueSize; 740 } 741 } 742 743 { 744 hsa_queue_t *Q = nullptr; 745 hsa_status_t rc = 746 hsa_queue_create(HSAAgents[i], queue_size, HSA_QUEUE_TYPE_MULTI, 747 callbackQueue, NULL, UINT32_MAX, UINT32_MAX, &Q); 748 if (rc != HSA_STATUS_SUCCESS) { 749 DP("Failed to create HSA queue %d\n", i); 750 return; 751 } 752 HSAQueues[i].reset(Q); 753 } 754 755 deviceStateStore[i] = {nullptr, 0}; 756 } 757 758 for (int i = 0; i < NumberOfDevices; i++) { 759 ThreadsPerGroup[i] = RTLDeviceInfoTy::Default_WG_Size; 760 GroupsPerDevice[i] = RTLDeviceInfoTy::DefaultNumTeams; 761 ComputeUnits[i] = 1; 762 DP("Device %d: Initial groupsPerDevice %d & threadsPerGroup %d\n", i, 763 GroupsPerDevice[i], ThreadsPerGroup[i]); 764 } 765 766 // Get environment variables regarding teams 767 Env.TeamLimit = readEnvElseMinusOne("OMP_TEAM_LIMIT"); 768 Env.NumTeams = readEnvElseMinusOne("OMP_NUM_TEAMS"); 769 Env.MaxTeamsDefault = readEnvElseMinusOne("OMP_MAX_TEAMS_DEFAULT"); 770 Env.TeamThreadLimit = readEnvElseMinusOne("OMP_TEAMS_THREAD_LIMIT"); 771 772 // Default state. 773 RequiresFlags = OMP_REQ_UNDEFINED; 774 775 ConstructionSucceeded = true; 776 } 777 778 ~RTLDeviceInfoTy() { 779 DP("Finalizing the " GETNAME(TARGET_NAME) " DeviceInfo.\n"); 780 if (!HSA.success()) { 781 // Then none of these can have been set up and they can't be torn down 782 return; 783 } 784 // Run destructors on types that use HSA before 785 // impl_finalize removes access to it 786 deviceStateStore.clear(); 787 KernelArgPoolMap.clear(); 788 // Terminate hostrpc before finalizing hsa 789 hostrpc_terminate(); 790 791 hsa_status_t Err; 792 for (uint32_t I = 0; I < HSAExecutables.size(); I++) { 793 Err = hsa_executable_destroy(HSAExecutables[I]); 794 if (Err != HSA_STATUS_SUCCESS) { 795 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 796 "Destroying executable", get_error_string(Err)); 797 } 798 } 799 } 800 }; 801 802 pthread_mutex_t SignalPoolT::mutex = PTHREAD_MUTEX_INITIALIZER; 803 804 static RTLDeviceInfoTy DeviceInfo; 805 806 namespace { 807 808 int32_t dataRetrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size, 809 __tgt_async_info *AsyncInfo) { 810 assert(AsyncInfo && "AsyncInfo is nullptr"); 811 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 812 // Return success if we are not copying back to host from target. 813 if (!HstPtr) 814 return OFFLOAD_SUCCESS; 815 hsa_status_t err; 816 DP("Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 817 (long long unsigned)(Elf64_Addr)TgtPtr, 818 (long long unsigned)(Elf64_Addr)HstPtr); 819 820 err = DeviceInfo.freesignalpool_memcpy_d2h(HstPtr, TgtPtr, (size_t)Size, 821 DeviceId); 822 823 if (err != HSA_STATUS_SUCCESS) { 824 DP("Error when copying data from device to host. Pointers: " 825 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 826 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 827 return OFFLOAD_FAIL; 828 } 829 DP("DONE Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 830 (long long unsigned)(Elf64_Addr)TgtPtr, 831 (long long unsigned)(Elf64_Addr)HstPtr); 832 return OFFLOAD_SUCCESS; 833 } 834 835 int32_t dataSubmit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size, 836 __tgt_async_info *AsyncInfo) { 837 assert(AsyncInfo && "AsyncInfo is nullptr"); 838 hsa_status_t err; 839 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 840 // Return success if we are not doing host to target. 841 if (!HstPtr) 842 return OFFLOAD_SUCCESS; 843 844 DP("Submit data %ld bytes, (hst:%016llx) -> (tgt:%016llx).\n", Size, 845 (long long unsigned)(Elf64_Addr)HstPtr, 846 (long long unsigned)(Elf64_Addr)TgtPtr); 847 err = DeviceInfo.freesignalpool_memcpy_h2d(TgtPtr, HstPtr, (size_t)Size, 848 DeviceId); 849 if (err != HSA_STATUS_SUCCESS) { 850 DP("Error when copying data from host to device. Pointers: " 851 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 852 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 853 return OFFLOAD_FAIL; 854 } 855 return OFFLOAD_SUCCESS; 856 } 857 858 // Async. 859 // The implementation was written with cuda streams in mind. The semantics of 860 // that are to execute kernels on a queue in order of insertion. A synchronise 861 // call then makes writes visible between host and device. This means a series 862 // of N data_submit_async calls are expected to execute serially. HSA offers 863 // various options to run the data copies concurrently. This may require changes 864 // to libomptarget. 865 866 // __tgt_async_info* contains a void * Queue. Queue = 0 is used to indicate that 867 // there are no outstanding kernels that need to be synchronized. Any async call 868 // may be passed a Queue==0, at which point the cuda implementation will set it 869 // to non-null (see getStream). The cuda streams are per-device. Upstream may 870 // change this interface to explicitly initialize the AsyncInfo_pointer, but 871 // until then hsa lazily initializes it as well. 872 873 void initAsyncInfo(__tgt_async_info *AsyncInfo) { 874 // set non-null while using async calls, return to null to indicate completion 875 assert(AsyncInfo); 876 if (!AsyncInfo->Queue) { 877 AsyncInfo->Queue = reinterpret_cast<void *>(UINT64_MAX); 878 } 879 } 880 void finiAsyncInfo(__tgt_async_info *AsyncInfo) { 881 assert(AsyncInfo); 882 assert(AsyncInfo->Queue); 883 AsyncInfo->Queue = 0; 884 } 885 886 bool elf_machine_id_is_amdgcn(__tgt_device_image *image) { 887 const uint16_t amdgcnMachineID = 224; // EM_AMDGPU may not be in system elf.h 888 int32_t r = elf_check_machine(image, amdgcnMachineID); 889 if (!r) { 890 DP("Supported machine ID not found\n"); 891 } 892 return r; 893 } 894 895 uint32_t elf_e_flags(__tgt_device_image *image) { 896 char *img_begin = (char *)image->ImageStart; 897 size_t img_size = (char *)image->ImageEnd - img_begin; 898 899 Elf *e = elf_memory(img_begin, img_size); 900 if (!e) { 901 DP("Unable to get ELF handle: %s!\n", elf_errmsg(-1)); 902 return 0; 903 } 904 905 Elf64_Ehdr *eh64 = elf64_getehdr(e); 906 907 if (!eh64) { 908 DP("Unable to get machine ID from ELF file!\n"); 909 elf_end(e); 910 return 0; 911 } 912 913 uint32_t Flags = eh64->e_flags; 914 915 elf_end(e); 916 DP("ELF Flags: 0x%x\n", Flags); 917 return Flags; 918 } 919 } // namespace 920 921 int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) { 922 return elf_machine_id_is_amdgcn(image); 923 } 924 925 int __tgt_rtl_number_of_devices() { 926 // If the construction failed, no methods are safe to call 927 if (DeviceInfo.ConstructionSucceeded) { 928 return DeviceInfo.NumberOfDevices; 929 } else { 930 DP("AMDGPU plugin construction failed. Zero devices available\n"); 931 return 0; 932 } 933 } 934 935 int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) { 936 DP("Init requires flags to %ld\n", RequiresFlags); 937 DeviceInfo.RequiresFlags = RequiresFlags; 938 return RequiresFlags; 939 } 940 941 namespace { 942 template <typename T> bool enforce_upper_bound(T *value, T upper) { 943 bool changed = *value > upper; 944 if (changed) { 945 *value = upper; 946 } 947 return changed; 948 } 949 } // namespace 950 951 int32_t __tgt_rtl_init_device(int device_id) { 952 hsa_status_t err; 953 954 // this is per device id init 955 DP("Initialize the device id: %d\n", device_id); 956 957 hsa_agent_t agent = DeviceInfo.HSAAgents[device_id]; 958 959 // Get number of Compute Unit 960 uint32_t compute_units = 0; 961 err = hsa_agent_get_info( 962 agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT, 963 &compute_units); 964 if (err != HSA_STATUS_SUCCESS) { 965 DeviceInfo.ComputeUnits[device_id] = 1; 966 DP("Error getting compute units : settiing to 1\n"); 967 } else { 968 DeviceInfo.ComputeUnits[device_id] = compute_units; 969 DP("Using %d compute unis per grid\n", DeviceInfo.ComputeUnits[device_id]); 970 } 971 972 char GetInfoName[64]; // 64 max size returned by get info 973 err = hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AGENT_INFO_NAME, 974 (void *)GetInfoName); 975 if (err) 976 DeviceInfo.GPUName[device_id] = "--unknown gpu--"; 977 else { 978 DeviceInfo.GPUName[device_id] = GetInfoName; 979 } 980 981 if (print_kernel_trace & STARTUP_DETAILS) 982 DP("Device#%-2d CU's: %2d %s\n", device_id, 983 DeviceInfo.ComputeUnits[device_id], 984 DeviceInfo.GPUName[device_id].c_str()); 985 986 // Query attributes to determine number of threads/block and blocks/grid. 987 uint16_t workgroup_max_dim[3]; 988 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_DIM, 989 &workgroup_max_dim); 990 if (err != HSA_STATUS_SUCCESS) { 991 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::DefaultNumTeams; 992 DP("Error getting grid dims: num groups : %d\n", 993 RTLDeviceInfoTy::DefaultNumTeams); 994 } else if (workgroup_max_dim[0] <= RTLDeviceInfoTy::HardTeamLimit) { 995 DeviceInfo.GroupsPerDevice[device_id] = workgroup_max_dim[0]; 996 DP("Using %d ROCm blocks per grid\n", 997 DeviceInfo.GroupsPerDevice[device_id]); 998 } else { 999 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::HardTeamLimit; 1000 DP("Max ROCm blocks per grid %d exceeds the hard team limit %d, capping " 1001 "at the hard limit\n", 1002 workgroup_max_dim[0], RTLDeviceInfoTy::HardTeamLimit); 1003 } 1004 1005 // Get thread limit 1006 hsa_dim3_t grid_max_dim; 1007 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &grid_max_dim); 1008 if (err == HSA_STATUS_SUCCESS) { 1009 DeviceInfo.ThreadsPerGroup[device_id] = 1010 reinterpret_cast<uint32_t *>(&grid_max_dim)[0] / 1011 DeviceInfo.GroupsPerDevice[device_id]; 1012 1013 if (DeviceInfo.ThreadsPerGroup[device_id] == 0) { 1014 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 1015 DP("Default thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 1016 } else if (enforce_upper_bound(&DeviceInfo.ThreadsPerGroup[device_id], 1017 RTLDeviceInfoTy::Max_WG_Size)) { 1018 DP("Capped thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 1019 } else { 1020 DP("Using ROCm Queried thread limit: %d\n", 1021 DeviceInfo.ThreadsPerGroup[device_id]); 1022 } 1023 } else { 1024 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 1025 DP("Error getting max block dimension, use default:%d \n", 1026 RTLDeviceInfoTy::Max_WG_Size); 1027 } 1028 1029 // Get wavefront size 1030 uint32_t wavefront_size = 0; 1031 err = 1032 hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size); 1033 if (err == HSA_STATUS_SUCCESS) { 1034 DP("Queried wavefront size: %d\n", wavefront_size); 1035 DeviceInfo.WarpSize[device_id] = wavefront_size; 1036 } else { 1037 // TODO: Burn the wavefront size into the code object 1038 DP("Warning: Unknown wavefront size, assuming 64\n"); 1039 DeviceInfo.WarpSize[device_id] = 64; 1040 } 1041 1042 // Adjust teams to the env variables 1043 1044 if (DeviceInfo.Env.TeamLimit > 0 && 1045 (enforce_upper_bound(&DeviceInfo.GroupsPerDevice[device_id], 1046 DeviceInfo.Env.TeamLimit))) { 1047 DP("Capping max groups per device to OMP_TEAM_LIMIT=%d\n", 1048 DeviceInfo.Env.TeamLimit); 1049 } 1050 1051 // Set default number of teams 1052 if (DeviceInfo.Env.NumTeams > 0) { 1053 DeviceInfo.NumTeams[device_id] = DeviceInfo.Env.NumTeams; 1054 DP("Default number of teams set according to environment %d\n", 1055 DeviceInfo.Env.NumTeams); 1056 } else { 1057 char *TeamsPerCUEnvStr = getenv("OMP_TARGET_TEAMS_PER_PROC"); 1058 int TeamsPerCU = DefaultTeamsPerCU; 1059 if (TeamsPerCUEnvStr) { 1060 TeamsPerCU = std::stoi(TeamsPerCUEnvStr); 1061 } 1062 1063 DeviceInfo.NumTeams[device_id] = 1064 TeamsPerCU * DeviceInfo.ComputeUnits[device_id]; 1065 DP("Default number of teams = %d * number of compute units %d\n", 1066 TeamsPerCU, DeviceInfo.ComputeUnits[device_id]); 1067 } 1068 1069 if (enforce_upper_bound(&DeviceInfo.NumTeams[device_id], 1070 DeviceInfo.GroupsPerDevice[device_id])) { 1071 DP("Default number of teams exceeds device limit, capping at %d\n", 1072 DeviceInfo.GroupsPerDevice[device_id]); 1073 } 1074 1075 // Adjust threads to the env variables 1076 if (DeviceInfo.Env.TeamThreadLimit > 0 && 1077 (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], 1078 DeviceInfo.Env.TeamThreadLimit))) { 1079 DP("Capping max number of threads to OMP_TEAMS_THREAD_LIMIT=%d\n", 1080 DeviceInfo.Env.TeamThreadLimit); 1081 } 1082 1083 // Set default number of threads 1084 DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::Default_WG_Size; 1085 DP("Default number of threads set according to library's default %d\n", 1086 RTLDeviceInfoTy::Default_WG_Size); 1087 if (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], 1088 DeviceInfo.ThreadsPerGroup[device_id])) { 1089 DP("Default number of threads exceeds device limit, capping at %d\n", 1090 DeviceInfo.ThreadsPerGroup[device_id]); 1091 } 1092 1093 DP("Device %d: default limit for groupsPerDevice %d & threadsPerGroup %d\n", 1094 device_id, DeviceInfo.GroupsPerDevice[device_id], 1095 DeviceInfo.ThreadsPerGroup[device_id]); 1096 1097 DP("Device %d: wavefront size %d, total threads %d x %d = %d\n", device_id, 1098 DeviceInfo.WarpSize[device_id], DeviceInfo.ThreadsPerGroup[device_id], 1099 DeviceInfo.GroupsPerDevice[device_id], 1100 DeviceInfo.GroupsPerDevice[device_id] * 1101 DeviceInfo.ThreadsPerGroup[device_id]); 1102 1103 return OFFLOAD_SUCCESS; 1104 } 1105 1106 namespace { 1107 Elf64_Shdr *find_only_SHT_HASH(Elf *elf) { 1108 size_t N; 1109 int rc = elf_getshdrnum(elf, &N); 1110 if (rc != 0) { 1111 return nullptr; 1112 } 1113 1114 Elf64_Shdr *result = nullptr; 1115 for (size_t i = 0; i < N; i++) { 1116 Elf_Scn *scn = elf_getscn(elf, i); 1117 if (scn) { 1118 Elf64_Shdr *shdr = elf64_getshdr(scn); 1119 if (shdr) { 1120 if (shdr->sh_type == SHT_HASH) { 1121 if (result == nullptr) { 1122 result = shdr; 1123 } else { 1124 // multiple SHT_HASH sections not handled 1125 return nullptr; 1126 } 1127 } 1128 } 1129 } 1130 } 1131 return result; 1132 } 1133 1134 const Elf64_Sym *elf_lookup(Elf *elf, char *base, Elf64_Shdr *section_hash, 1135 const char *symname) { 1136 1137 assert(section_hash); 1138 size_t section_symtab_index = section_hash->sh_link; 1139 Elf64_Shdr *section_symtab = 1140 elf64_getshdr(elf_getscn(elf, section_symtab_index)); 1141 size_t section_strtab_index = section_symtab->sh_link; 1142 1143 const Elf64_Sym *symtab = 1144 reinterpret_cast<const Elf64_Sym *>(base + section_symtab->sh_offset); 1145 1146 const uint32_t *hashtab = 1147 reinterpret_cast<const uint32_t *>(base + section_hash->sh_offset); 1148 1149 // Layout: 1150 // nbucket 1151 // nchain 1152 // bucket[nbucket] 1153 // chain[nchain] 1154 uint32_t nbucket = hashtab[0]; 1155 const uint32_t *bucket = &hashtab[2]; 1156 const uint32_t *chain = &hashtab[nbucket + 2]; 1157 1158 const size_t max = strlen(symname) + 1; 1159 const uint32_t hash = elf_hash(symname); 1160 for (uint32_t i = bucket[hash % nbucket]; i != 0; i = chain[i]) { 1161 char *n = elf_strptr(elf, section_strtab_index, symtab[i].st_name); 1162 if (strncmp(symname, n, max) == 0) { 1163 return &symtab[i]; 1164 } 1165 } 1166 1167 return nullptr; 1168 } 1169 1170 struct symbol_info { 1171 void *addr = nullptr; 1172 uint32_t size = UINT32_MAX; 1173 uint32_t sh_type = SHT_NULL; 1174 }; 1175 1176 int get_symbol_info_without_loading(Elf *elf, char *base, const char *symname, 1177 symbol_info *res) { 1178 if (elf_kind(elf) != ELF_K_ELF) { 1179 return 1; 1180 } 1181 1182 Elf64_Shdr *section_hash = find_only_SHT_HASH(elf); 1183 if (!section_hash) { 1184 return 1; 1185 } 1186 1187 const Elf64_Sym *sym = elf_lookup(elf, base, section_hash, symname); 1188 if (!sym) { 1189 return 1; 1190 } 1191 1192 if (sym->st_size > UINT32_MAX) { 1193 return 1; 1194 } 1195 1196 if (sym->st_shndx == SHN_UNDEF) { 1197 return 1; 1198 } 1199 1200 Elf_Scn *section = elf_getscn(elf, sym->st_shndx); 1201 if (!section) { 1202 return 1; 1203 } 1204 1205 Elf64_Shdr *header = elf64_getshdr(section); 1206 if (!header) { 1207 return 1; 1208 } 1209 1210 res->addr = sym->st_value + base; 1211 res->size = static_cast<uint32_t>(sym->st_size); 1212 res->sh_type = header->sh_type; 1213 return 0; 1214 } 1215 1216 int get_symbol_info_without_loading(char *base, size_t img_size, 1217 const char *symname, symbol_info *res) { 1218 Elf *elf = elf_memory(base, img_size); 1219 if (elf) { 1220 int rc = get_symbol_info_without_loading(elf, base, symname, res); 1221 elf_end(elf); 1222 return rc; 1223 } 1224 return 1; 1225 } 1226 1227 hsa_status_t interop_get_symbol_info(char *base, size_t img_size, 1228 const char *symname, void **var_addr, 1229 uint32_t *var_size) { 1230 symbol_info si; 1231 int rc = get_symbol_info_without_loading(base, img_size, symname, &si); 1232 if (rc == 0) { 1233 *var_addr = si.addr; 1234 *var_size = si.size; 1235 return HSA_STATUS_SUCCESS; 1236 } else { 1237 return HSA_STATUS_ERROR; 1238 } 1239 } 1240 1241 template <typename C> 1242 hsa_status_t module_register_from_memory_to_place( 1243 std::map<std::string, atl_kernel_info_t> &KernelInfoTable, 1244 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, 1245 void *module_bytes, size_t module_size, int DeviceId, C cb, 1246 std::vector<hsa_executable_t> &HSAExecutables) { 1247 auto L = [](void *data, size_t size, void *cb_state) -> hsa_status_t { 1248 C *unwrapped = static_cast<C *>(cb_state); 1249 return (*unwrapped)(data, size); 1250 }; 1251 return core::RegisterModuleFromMemory( 1252 KernelInfoTable, SymbolInfoTable, module_bytes, module_size, 1253 DeviceInfo.HSAAgents[DeviceId], L, static_cast<void *>(&cb), 1254 HSAExecutables); 1255 } 1256 } // namespace 1257 1258 static uint64_t get_device_State_bytes(char *ImageStart, size_t img_size) { 1259 uint64_t device_State_bytes = 0; 1260 { 1261 // If this is the deviceRTL, get the state variable size 1262 symbol_info size_si; 1263 int rc = get_symbol_info_without_loading( 1264 ImageStart, img_size, "omptarget_nvptx_device_State_size", &size_si); 1265 1266 if (rc == 0) { 1267 if (size_si.size != sizeof(uint64_t)) { 1268 DP("Found device_State_size variable with wrong size\n"); 1269 return 0; 1270 } 1271 1272 // Read number of bytes directly from the elf 1273 memcpy(&device_State_bytes, size_si.addr, sizeof(uint64_t)); 1274 } 1275 } 1276 return device_State_bytes; 1277 } 1278 1279 static __tgt_target_table * 1280 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1281 1282 static __tgt_target_table * 1283 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1284 1285 __tgt_target_table *__tgt_rtl_load_binary(int32_t device_id, 1286 __tgt_device_image *image) { 1287 DeviceInfo.load_run_lock.lock(); 1288 __tgt_target_table *res = __tgt_rtl_load_binary_locked(device_id, image); 1289 DeviceInfo.load_run_lock.unlock(); 1290 return res; 1291 } 1292 1293 struct device_environment { 1294 // initialise an DeviceEnvironmentTy in the deviceRTL 1295 // patches around differences in the deviceRTL between trunk, aomp, 1296 // rocmcc. Over time these differences will tend to zero and this class 1297 // simplified. 1298 // Symbol may be in .data or .bss, and may be missing fields, todo: 1299 // review aomp/trunk/rocm and simplify the following 1300 1301 // The symbol may also have been deadstripped because the device side 1302 // accessors were unused. 1303 1304 // If the symbol is in .data (aomp, rocm) it can be written directly. 1305 // If it is in .bss, we must wait for it to be allocated space on the 1306 // gpu (trunk) and initialize after loading. 1307 const char *sym() { return "omptarget_device_environment"; } 1308 1309 DeviceEnvironmentTy host_device_env; 1310 symbol_info si; 1311 bool valid = false; 1312 1313 __tgt_device_image *image; 1314 const size_t img_size; 1315 1316 device_environment(int device_id, int number_devices, 1317 __tgt_device_image *image, const size_t img_size) 1318 : image(image), img_size(img_size) { 1319 1320 host_device_env.NumDevices = number_devices; 1321 host_device_env.DeviceNum = device_id; 1322 host_device_env.DebugKind = 0; 1323 host_device_env.DynamicMemSize = 0; 1324 if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) { 1325 host_device_env.DebugKind = std::stoi(envStr); 1326 } 1327 1328 int rc = get_symbol_info_without_loading((char *)image->ImageStart, 1329 img_size, sym(), &si); 1330 if (rc != 0) { 1331 DP("Finding global device environment '%s' - symbol missing.\n", sym()); 1332 return; 1333 } 1334 1335 if (si.size > sizeof(host_device_env)) { 1336 DP("Symbol '%s' has size %u, expected at most %zu.\n", sym(), si.size, 1337 sizeof(host_device_env)); 1338 return; 1339 } 1340 1341 valid = true; 1342 } 1343 1344 bool in_image() { return si.sh_type != SHT_NOBITS; } 1345 1346 hsa_status_t before_loading(void *data, size_t size) { 1347 if (valid) { 1348 if (in_image()) { 1349 DP("Setting global device environment before load (%u bytes)\n", 1350 si.size); 1351 uint64_t offset = (char *)si.addr - (char *)image->ImageStart; 1352 void *pos = (char *)data + offset; 1353 memcpy(pos, &host_device_env, si.size); 1354 } 1355 } 1356 return HSA_STATUS_SUCCESS; 1357 } 1358 1359 hsa_status_t after_loading() { 1360 if (valid) { 1361 if (!in_image()) { 1362 DP("Setting global device environment after load (%u bytes)\n", 1363 si.size); 1364 int device_id = host_device_env.DeviceNum; 1365 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1366 void *state_ptr; 1367 uint32_t state_ptr_size; 1368 hsa_status_t err = interop_hsa_get_symbol_info( 1369 SymbolInfo, device_id, sym(), &state_ptr, &state_ptr_size); 1370 if (err != HSA_STATUS_SUCCESS) { 1371 DP("failed to find %s in loaded image\n", sym()); 1372 return err; 1373 } 1374 1375 if (state_ptr_size != si.size) { 1376 DP("Symbol had size %u before loading, %u after\n", state_ptr_size, 1377 si.size); 1378 return HSA_STATUS_ERROR; 1379 } 1380 1381 return DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &host_device_env, 1382 state_ptr_size, device_id); 1383 } 1384 } 1385 return HSA_STATUS_SUCCESS; 1386 } 1387 }; 1388 1389 static hsa_status_t impl_calloc(void **ret_ptr, size_t size, int DeviceId) { 1390 uint64_t rounded = 4 * ((size + 3) / 4); 1391 void *ptr; 1392 hsa_amd_memory_pool_t MemoryPool = DeviceInfo.getDeviceMemoryPool(DeviceId); 1393 hsa_status_t err = hsa_amd_memory_pool_allocate(MemoryPool, rounded, 0, &ptr); 1394 if (err != HSA_STATUS_SUCCESS) { 1395 return err; 1396 } 1397 1398 hsa_status_t rc = hsa_amd_memory_fill(ptr, 0, rounded / 4); 1399 if (rc != HSA_STATUS_SUCCESS) { 1400 DP("zero fill device_state failed with %u\n", rc); 1401 core::Runtime::Memfree(ptr); 1402 return HSA_STATUS_ERROR; 1403 } 1404 1405 *ret_ptr = ptr; 1406 return HSA_STATUS_SUCCESS; 1407 } 1408 1409 static bool image_contains_symbol(void *data, size_t size, const char *sym) { 1410 symbol_info si; 1411 int rc = get_symbol_info_without_loading((char *)data, size, sym, &si); 1412 return (rc == 0) && (si.addr != nullptr); 1413 } 1414 1415 __tgt_target_table *__tgt_rtl_load_binary_locked(int32_t device_id, 1416 __tgt_device_image *image) { 1417 // This function loads the device image onto gpu[device_id] and does other 1418 // per-image initialization work. Specifically: 1419 // 1420 // - Initialize an DeviceEnvironmentTy instance embedded in the 1421 // image at the symbol "omptarget_device_environment" 1422 // Fields DebugKind, DeviceNum, NumDevices. Used by the deviceRTL. 1423 // 1424 // - Allocate a large array per-gpu (could be moved to init_device) 1425 // - Read a uint64_t at symbol omptarget_nvptx_device_State_size 1426 // - Allocate at least that many bytes of gpu memory 1427 // - Zero initialize it 1428 // - Write the pointer to the symbol omptarget_nvptx_device_State 1429 // 1430 // - Pulls some per-kernel information together from various sources and 1431 // records it in the KernelsList for quicker access later 1432 // 1433 // The initialization can be done before or after loading the image onto the 1434 // gpu. This function presently does a mixture. Using the hsa api to get/set 1435 // the information is simpler to implement, in exchange for more complicated 1436 // runtime behaviour. E.g. launching a kernel or using dma to get eight bytes 1437 // back from the gpu vs a hashtable lookup on the host. 1438 1439 const size_t img_size = (char *)image->ImageEnd - (char *)image->ImageStart; 1440 1441 DeviceInfo.clearOffloadEntriesTable(device_id); 1442 1443 // We do not need to set the ELF version because the caller of this function 1444 // had to do that to decide the right runtime to use 1445 1446 if (!elf_machine_id_is_amdgcn(image)) { 1447 return NULL; 1448 } 1449 1450 { 1451 auto env = device_environment(device_id, DeviceInfo.NumberOfDevices, image, 1452 img_size); 1453 1454 auto &KernelInfo = DeviceInfo.KernelInfoTable[device_id]; 1455 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1456 hsa_status_t err = module_register_from_memory_to_place( 1457 KernelInfo, SymbolInfo, (void *)image->ImageStart, img_size, device_id, 1458 [&](void *data, size_t size) { 1459 if (image_contains_symbol(data, size, "needs_hostcall_buffer")) { 1460 __atomic_store_n(&DeviceInfo.hostcall_required, true, 1461 __ATOMIC_RELEASE); 1462 } 1463 return env.before_loading(data, size); 1464 }, 1465 DeviceInfo.HSAExecutables); 1466 1467 check("Module registering", err); 1468 if (err != HSA_STATUS_SUCCESS) { 1469 const char *DeviceName = DeviceInfo.GPUName[device_id].c_str(); 1470 const char *ElfName = get_elf_mach_gfx_name(elf_e_flags(image)); 1471 1472 if (strcmp(DeviceName, ElfName) != 0) { 1473 DP("Possible gpu arch mismatch: device:%s, image:%s please check" 1474 " compiler flag: -march=<gpu>\n", 1475 DeviceName, ElfName); 1476 } else { 1477 DP("Error loading image onto GPU: %s\n", get_error_string(err)); 1478 } 1479 1480 return NULL; 1481 } 1482 1483 err = env.after_loading(); 1484 if (err != HSA_STATUS_SUCCESS) { 1485 return NULL; 1486 } 1487 } 1488 1489 DP("AMDGPU module successfully loaded!\n"); 1490 1491 { 1492 // the device_State array is either large value in bss or a void* that 1493 // needs to be assigned to a pointer to an array of size device_state_bytes 1494 // If absent, it has been deadstripped and needs no setup. 1495 1496 void *state_ptr; 1497 uint32_t state_ptr_size; 1498 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 1499 hsa_status_t err = interop_hsa_get_symbol_info( 1500 SymbolInfoMap, device_id, "omptarget_nvptx_device_State", &state_ptr, 1501 &state_ptr_size); 1502 1503 if (err != HSA_STATUS_SUCCESS) { 1504 DP("No device_state symbol found, skipping initialization\n"); 1505 } else { 1506 if (state_ptr_size < sizeof(void *)) { 1507 DP("unexpected size of state_ptr %u != %zu\n", state_ptr_size, 1508 sizeof(void *)); 1509 return NULL; 1510 } 1511 1512 // if it's larger than a void*, assume it's a bss array and no further 1513 // initialization is required. Only try to set up a pointer for 1514 // sizeof(void*) 1515 if (state_ptr_size == sizeof(void *)) { 1516 uint64_t device_State_bytes = 1517 get_device_State_bytes((char *)image->ImageStart, img_size); 1518 if (device_State_bytes == 0) { 1519 DP("Can't initialize device_State, missing size information\n"); 1520 return NULL; 1521 } 1522 1523 auto &dss = DeviceInfo.deviceStateStore[device_id]; 1524 if (dss.first.get() == nullptr) { 1525 assert(dss.second == 0); 1526 void *ptr = NULL; 1527 hsa_status_t err = impl_calloc(&ptr, device_State_bytes, device_id); 1528 if (err != HSA_STATUS_SUCCESS) { 1529 DP("Failed to allocate device_state array\n"); 1530 return NULL; 1531 } 1532 dss = { 1533 std::unique_ptr<void, RTLDeviceInfoTy::implFreePtrDeletor>{ptr}, 1534 device_State_bytes, 1535 }; 1536 } 1537 1538 void *ptr = dss.first.get(); 1539 if (device_State_bytes != dss.second) { 1540 DP("Inconsistent sizes of device_State unsupported\n"); 1541 return NULL; 1542 } 1543 1544 // write ptr to device memory so it can be used by later kernels 1545 err = DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &ptr, 1546 sizeof(void *), device_id); 1547 if (err != HSA_STATUS_SUCCESS) { 1548 DP("memcpy install of state_ptr failed\n"); 1549 return NULL; 1550 } 1551 } 1552 } 1553 } 1554 1555 // Here, we take advantage of the data that is appended after img_end to get 1556 // the symbols' name we need to load. This data consist of the host entries 1557 // begin and end as well as the target name (see the offloading linker script 1558 // creation in clang compiler). 1559 1560 // Find the symbols in the module by name. The name can be obtain by 1561 // concatenating the host entry name with the target name 1562 1563 __tgt_offload_entry *HostBegin = image->EntriesBegin; 1564 __tgt_offload_entry *HostEnd = image->EntriesEnd; 1565 1566 for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) { 1567 1568 if (!e->addr) { 1569 // The host should have always something in the address to 1570 // uniquely identify the target region. 1571 DP("Analyzing host entry '<null>' (size = %lld)...\n", 1572 (unsigned long long)e->size); 1573 return NULL; 1574 } 1575 1576 if (e->size) { 1577 __tgt_offload_entry entry = *e; 1578 1579 void *varptr; 1580 uint32_t varsize; 1581 1582 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 1583 hsa_status_t err = interop_hsa_get_symbol_info( 1584 SymbolInfoMap, device_id, e->name, &varptr, &varsize); 1585 1586 if (err != HSA_STATUS_SUCCESS) { 1587 // Inform the user what symbol prevented offloading 1588 DP("Loading global '%s' (Failed)\n", e->name); 1589 return NULL; 1590 } 1591 1592 if (varsize != e->size) { 1593 DP("Loading global '%s' - size mismatch (%u != %lu)\n", e->name, 1594 varsize, e->size); 1595 return NULL; 1596 } 1597 1598 DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n", 1599 DPxPTR(e - HostBegin), e->name, DPxPTR(varptr)); 1600 entry.addr = (void *)varptr; 1601 1602 DeviceInfo.addOffloadEntry(device_id, entry); 1603 1604 if (DeviceInfo.RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY && 1605 e->flags & OMP_DECLARE_TARGET_LINK) { 1606 // If unified memory is present any target link variables 1607 // can access host addresses directly. There is no longer a 1608 // need for device copies. 1609 err = DeviceInfo.freesignalpool_memcpy_h2d(varptr, e->addr, 1610 sizeof(void *), device_id); 1611 if (err != HSA_STATUS_SUCCESS) 1612 DP("Error when copying USM\n"); 1613 DP("Copy linked variable host address (" DPxMOD ")" 1614 "to device address (" DPxMOD ")\n", 1615 DPxPTR(*((void **)e->addr)), DPxPTR(varptr)); 1616 } 1617 1618 continue; 1619 } 1620 1621 DP("to find the kernel name: %s size: %lu\n", e->name, strlen(e->name)); 1622 1623 uint32_t kernarg_segment_size; 1624 auto &KernelInfoMap = DeviceInfo.KernelInfoTable[device_id]; 1625 hsa_status_t err = interop_hsa_get_kernel_info( 1626 KernelInfoMap, device_id, e->name, 1627 HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE, 1628 &kernarg_segment_size); 1629 1630 // each arg is a void * in this openmp implementation 1631 uint32_t arg_num = kernarg_segment_size / sizeof(void *); 1632 std::vector<size_t> arg_sizes(arg_num); 1633 for (std::vector<size_t>::iterator it = arg_sizes.begin(); 1634 it != arg_sizes.end(); it++) { 1635 *it = sizeof(void *); 1636 } 1637 1638 // default value GENERIC (in case symbol is missing from cubin file) 1639 llvm::omp::OMPTgtExecModeFlags ExecModeVal = 1640 llvm::omp::OMPTgtExecModeFlags::OMP_TGT_EXEC_MODE_GENERIC; 1641 1642 // get flat group size if present, else Default_WG_Size 1643 int16_t WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1644 1645 // get Kernel Descriptor if present. 1646 // Keep struct in sync wih getTgtAttributeStructQTy in CGOpenMPRuntime.cpp 1647 struct KernDescValType { 1648 uint16_t Version; 1649 uint16_t TSize; 1650 uint16_t WG_Size; 1651 }; 1652 struct KernDescValType KernDescVal; 1653 std::string KernDescNameStr(e->name); 1654 KernDescNameStr += "_kern_desc"; 1655 const char *KernDescName = KernDescNameStr.c_str(); 1656 1657 void *KernDescPtr; 1658 uint32_t KernDescSize; 1659 void *CallStackAddr = nullptr; 1660 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1661 KernDescName, &KernDescPtr, &KernDescSize); 1662 1663 if (err == HSA_STATUS_SUCCESS) { 1664 if ((size_t)KernDescSize != sizeof(KernDescVal)) 1665 DP("Loading global computation properties '%s' - size mismatch (%u != " 1666 "%lu)\n", 1667 KernDescName, KernDescSize, sizeof(KernDescVal)); 1668 1669 memcpy(&KernDescVal, KernDescPtr, (size_t)KernDescSize); 1670 1671 // Check structure size against recorded size. 1672 if ((size_t)KernDescSize != KernDescVal.TSize) 1673 DP("KernDescVal size %lu does not match advertized size %d for '%s'\n", 1674 sizeof(KernDescVal), KernDescVal.TSize, KernDescName); 1675 1676 DP("After loading global for %s KernDesc \n", KernDescName); 1677 DP("KernDesc: Version: %d\n", KernDescVal.Version); 1678 DP("KernDesc: TSize: %d\n", KernDescVal.TSize); 1679 DP("KernDesc: WG_Size: %d\n", KernDescVal.WG_Size); 1680 1681 if (KernDescVal.WG_Size == 0) { 1682 KernDescVal.WG_Size = RTLDeviceInfoTy::Default_WG_Size; 1683 DP("Setting KernDescVal.WG_Size to default %d\n", KernDescVal.WG_Size); 1684 } 1685 WGSizeVal = KernDescVal.WG_Size; 1686 DP("WGSizeVal %d\n", WGSizeVal); 1687 check("Loading KernDesc computation property", err); 1688 } else { 1689 DP("Warning: Loading KernDesc '%s' - symbol not found, ", KernDescName); 1690 1691 // Flat group size 1692 std::string WGSizeNameStr(e->name); 1693 WGSizeNameStr += "_wg_size"; 1694 const char *WGSizeName = WGSizeNameStr.c_str(); 1695 1696 void *WGSizePtr; 1697 uint32_t WGSize; 1698 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1699 WGSizeName, &WGSizePtr, &WGSize); 1700 1701 if (err == HSA_STATUS_SUCCESS) { 1702 if ((size_t)WGSize != sizeof(int16_t)) { 1703 DP("Loading global computation properties '%s' - size mismatch (%u " 1704 "!= " 1705 "%lu)\n", 1706 WGSizeName, WGSize, sizeof(int16_t)); 1707 return NULL; 1708 } 1709 1710 memcpy(&WGSizeVal, WGSizePtr, (size_t)WGSize); 1711 1712 DP("After loading global for %s WGSize = %d\n", WGSizeName, WGSizeVal); 1713 1714 if (WGSizeVal < RTLDeviceInfoTy::Default_WG_Size || 1715 WGSizeVal > RTLDeviceInfoTy::Max_WG_Size) { 1716 DP("Error wrong WGSize value specified in HSA code object file: " 1717 "%d\n", 1718 WGSizeVal); 1719 WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1720 } 1721 } else { 1722 DP("Warning: Loading WGSize '%s' - symbol not found, " 1723 "using default value %d\n", 1724 WGSizeName, WGSizeVal); 1725 } 1726 1727 check("Loading WGSize computation property", err); 1728 } 1729 1730 // Read execution mode from global in binary 1731 std::string ExecModeNameStr(e->name); 1732 ExecModeNameStr += "_exec_mode"; 1733 const char *ExecModeName = ExecModeNameStr.c_str(); 1734 1735 void *ExecModePtr; 1736 uint32_t varsize; 1737 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1738 ExecModeName, &ExecModePtr, &varsize); 1739 1740 if (err == HSA_STATUS_SUCCESS) { 1741 if ((size_t)varsize != sizeof(llvm::omp::OMPTgtExecModeFlags)) { 1742 DP("Loading global computation properties '%s' - size mismatch(%u != " 1743 "%lu)\n", 1744 ExecModeName, varsize, sizeof(llvm::omp::OMPTgtExecModeFlags)); 1745 return NULL; 1746 } 1747 1748 memcpy(&ExecModeVal, ExecModePtr, (size_t)varsize); 1749 1750 DP("After loading global for %s ExecMode = %d\n", ExecModeName, 1751 ExecModeVal); 1752 1753 if (ExecModeVal < 0 || 1754 ExecModeVal > llvm::omp::OMP_TGT_EXEC_MODE_GENERIC_SPMD) { 1755 DP("Error wrong exec_mode value specified in HSA code object file: " 1756 "%d\n", 1757 ExecModeVal); 1758 return NULL; 1759 } 1760 } else { 1761 DP("Loading global exec_mode '%s' - symbol missing, using default " 1762 "value " 1763 "GENERIC (1)\n", 1764 ExecModeName); 1765 } 1766 check("Loading computation property", err); 1767 1768 KernelsList.push_back(KernelTy(ExecModeVal, WGSizeVal, device_id, 1769 CallStackAddr, e->name, kernarg_segment_size, 1770 DeviceInfo.KernArgPool)); 1771 __tgt_offload_entry entry = *e; 1772 entry.addr = (void *)&KernelsList.back(); 1773 DeviceInfo.addOffloadEntry(device_id, entry); 1774 DP("Entry point %ld maps to %s\n", e - HostBegin, e->name); 1775 } 1776 1777 return DeviceInfo.getOffloadEntriesTable(device_id); 1778 } 1779 1780 void *__tgt_rtl_data_alloc(int device_id, int64_t size, void *, int32_t kind) { 1781 void *ptr = NULL; 1782 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1783 1784 if (kind != TARGET_ALLOC_DEFAULT) { 1785 REPORT("Invalid target data allocation kind or requested allocator not " 1786 "implemented yet\n"); 1787 return NULL; 1788 } 1789 1790 hsa_amd_memory_pool_t MemoryPool = DeviceInfo.getDeviceMemoryPool(device_id); 1791 hsa_status_t err = hsa_amd_memory_pool_allocate(MemoryPool, size, 0, &ptr); 1792 DP("Tgt alloc data %ld bytes, (tgt:%016llx).\n", size, 1793 (long long unsigned)(Elf64_Addr)ptr); 1794 ptr = (err == HSA_STATUS_SUCCESS) ? ptr : NULL; 1795 return ptr; 1796 } 1797 1798 int32_t __tgt_rtl_data_submit(int device_id, void *tgt_ptr, void *hst_ptr, 1799 int64_t size) { 1800 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1801 __tgt_async_info AsyncInfo; 1802 int32_t rc = dataSubmit(device_id, tgt_ptr, hst_ptr, size, &AsyncInfo); 1803 if (rc != OFFLOAD_SUCCESS) 1804 return OFFLOAD_FAIL; 1805 1806 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1807 } 1808 1809 int32_t __tgt_rtl_data_submit_async(int device_id, void *tgt_ptr, void *hst_ptr, 1810 int64_t size, __tgt_async_info *AsyncInfo) { 1811 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1812 if (AsyncInfo) { 1813 initAsyncInfo(AsyncInfo); 1814 return dataSubmit(device_id, tgt_ptr, hst_ptr, size, AsyncInfo); 1815 } else { 1816 return __tgt_rtl_data_submit(device_id, tgt_ptr, hst_ptr, size); 1817 } 1818 } 1819 1820 int32_t __tgt_rtl_data_retrieve(int device_id, void *hst_ptr, void *tgt_ptr, 1821 int64_t size) { 1822 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1823 __tgt_async_info AsyncInfo; 1824 int32_t rc = dataRetrieve(device_id, hst_ptr, tgt_ptr, size, &AsyncInfo); 1825 if (rc != OFFLOAD_SUCCESS) 1826 return OFFLOAD_FAIL; 1827 1828 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1829 } 1830 1831 int32_t __tgt_rtl_data_retrieve_async(int device_id, void *hst_ptr, 1832 void *tgt_ptr, int64_t size, 1833 __tgt_async_info *AsyncInfo) { 1834 assert(AsyncInfo && "AsyncInfo is nullptr"); 1835 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1836 initAsyncInfo(AsyncInfo); 1837 return dataRetrieve(device_id, hst_ptr, tgt_ptr, size, AsyncInfo); 1838 } 1839 1840 int32_t __tgt_rtl_data_delete(int device_id, void *tgt_ptr) { 1841 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1842 hsa_status_t err; 1843 DP("Tgt free data (tgt:%016llx).\n", (long long unsigned)(Elf64_Addr)tgt_ptr); 1844 err = core::Runtime::Memfree(tgt_ptr); 1845 if (err != HSA_STATUS_SUCCESS) { 1846 DP("Error when freeing CUDA memory\n"); 1847 return OFFLOAD_FAIL; 1848 } 1849 return OFFLOAD_SUCCESS; 1850 } 1851 1852 // Determine launch values for kernel. 1853 struct launchVals { 1854 int WorkgroupSize; 1855 int GridSize; 1856 }; 1857 launchVals getLaunchVals(int WarpSize, EnvironmentVariables Env, 1858 int ConstWGSize, 1859 llvm::omp::OMPTgtExecModeFlags ExecutionMode, 1860 int num_teams, int thread_limit, 1861 uint64_t loop_tripcount, int DeviceNumTeams) { 1862 1863 int threadsPerGroup = RTLDeviceInfoTy::Default_WG_Size; 1864 int num_groups = 0; 1865 1866 int Max_Teams = 1867 Env.MaxTeamsDefault > 0 ? Env.MaxTeamsDefault : DeviceNumTeams; 1868 if (Max_Teams > RTLDeviceInfoTy::HardTeamLimit) 1869 Max_Teams = RTLDeviceInfoTy::HardTeamLimit; 1870 1871 if (print_kernel_trace & STARTUP_DETAILS) { 1872 DP("RTLDeviceInfoTy::Max_Teams: %d\n", RTLDeviceInfoTy::Max_Teams); 1873 DP("Max_Teams: %d\n", Max_Teams); 1874 DP("RTLDeviceInfoTy::Warp_Size: %d\n", WarpSize); 1875 DP("RTLDeviceInfoTy::Max_WG_Size: %d\n", RTLDeviceInfoTy::Max_WG_Size); 1876 DP("RTLDeviceInfoTy::Default_WG_Size: %d\n", 1877 RTLDeviceInfoTy::Default_WG_Size); 1878 DP("thread_limit: %d\n", thread_limit); 1879 DP("threadsPerGroup: %d\n", threadsPerGroup); 1880 DP("ConstWGSize: %d\n", ConstWGSize); 1881 } 1882 // check for thread_limit() clause 1883 if (thread_limit > 0) { 1884 threadsPerGroup = thread_limit; 1885 DP("Setting threads per block to requested %d\n", thread_limit); 1886 // Add master warp for GENERIC 1887 if (ExecutionMode == 1888 llvm::omp::OMPTgtExecModeFlags::OMP_TGT_EXEC_MODE_GENERIC) { 1889 threadsPerGroup += WarpSize; 1890 DP("Adding master wavefront: +%d threads\n", WarpSize); 1891 } 1892 if (threadsPerGroup > RTLDeviceInfoTy::Max_WG_Size) { // limit to max 1893 threadsPerGroup = RTLDeviceInfoTy::Max_WG_Size; 1894 DP("Setting threads per block to maximum %d\n", threadsPerGroup); 1895 } 1896 } 1897 // check flat_max_work_group_size attr here 1898 if (threadsPerGroup > ConstWGSize) { 1899 threadsPerGroup = ConstWGSize; 1900 DP("Reduced threadsPerGroup to flat-attr-group-size limit %d\n", 1901 threadsPerGroup); 1902 } 1903 if (print_kernel_trace & STARTUP_DETAILS) 1904 DP("threadsPerGroup: %d\n", threadsPerGroup); 1905 DP("Preparing %d threads\n", threadsPerGroup); 1906 1907 // Set default num_groups (teams) 1908 if (Env.TeamLimit > 0) 1909 num_groups = (Max_Teams < Env.TeamLimit) ? Max_Teams : Env.TeamLimit; 1910 else 1911 num_groups = Max_Teams; 1912 DP("Set default num of groups %d\n", num_groups); 1913 1914 if (print_kernel_trace & STARTUP_DETAILS) { 1915 DP("num_groups: %d\n", num_groups); 1916 DP("num_teams: %d\n", num_teams); 1917 } 1918 1919 // Reduce num_groups if threadsPerGroup exceeds RTLDeviceInfoTy::Max_WG_Size 1920 // This reduction is typical for default case (no thread_limit clause). 1921 // or when user goes crazy with num_teams clause. 1922 // FIXME: We cant distinguish between a constant or variable thread limit. 1923 // So we only handle constant thread_limits. 1924 if (threadsPerGroup > 1925 RTLDeviceInfoTy::Default_WG_Size) // 256 < threadsPerGroup <= 1024 1926 // Should we round threadsPerGroup up to nearest WarpSize 1927 // here? 1928 num_groups = (Max_Teams * RTLDeviceInfoTy::Max_WG_Size) / threadsPerGroup; 1929 1930 // check for num_teams() clause 1931 if (num_teams > 0) { 1932 num_groups = (num_teams < num_groups) ? num_teams : num_groups; 1933 } 1934 if (print_kernel_trace & STARTUP_DETAILS) { 1935 DP("num_groups: %d\n", num_groups); 1936 DP("Env.NumTeams %d\n", Env.NumTeams); 1937 DP("Env.TeamLimit %d\n", Env.TeamLimit); 1938 } 1939 1940 if (Env.NumTeams > 0) { 1941 num_groups = (Env.NumTeams < num_groups) ? Env.NumTeams : num_groups; 1942 DP("Modifying teams based on Env.NumTeams %d\n", Env.NumTeams); 1943 } else if (Env.TeamLimit > 0) { 1944 num_groups = (Env.TeamLimit < num_groups) ? Env.TeamLimit : num_groups; 1945 DP("Modifying teams based on Env.TeamLimit%d\n", Env.TeamLimit); 1946 } else { 1947 if (num_teams <= 0) { 1948 if (loop_tripcount > 0) { 1949 if (ExecutionMode == 1950 llvm::omp::OMPTgtExecModeFlags::OMP_TGT_EXEC_MODE_SPMD) { 1951 // round up to the nearest integer 1952 num_groups = ((loop_tripcount - 1) / threadsPerGroup) + 1; 1953 } else if (ExecutionMode == 1954 llvm::omp::OMPTgtExecModeFlags::OMP_TGT_EXEC_MODE_GENERIC) { 1955 num_groups = loop_tripcount; 1956 } else /* OMP_TGT_EXEC_MODE_GENERIC_SPMD */ { 1957 // This is a generic kernel that was transformed to use SPMD-mode 1958 // execution but uses Generic-mode semantics for scheduling. 1959 num_groups = loop_tripcount; 1960 } 1961 DP("Using %d teams due to loop trip count %" PRIu64 " and number of " 1962 "threads per block %d\n", 1963 num_groups, loop_tripcount, threadsPerGroup); 1964 } 1965 } else { 1966 num_groups = num_teams; 1967 } 1968 if (num_groups > Max_Teams) { 1969 num_groups = Max_Teams; 1970 if (print_kernel_trace & STARTUP_DETAILS) 1971 DP("Limiting num_groups %d to Max_Teams %d \n", num_groups, Max_Teams); 1972 } 1973 if (num_groups > num_teams && num_teams > 0) { 1974 num_groups = num_teams; 1975 if (print_kernel_trace & STARTUP_DETAILS) 1976 DP("Limiting num_groups %d to clause num_teams %d \n", num_groups, 1977 num_teams); 1978 } 1979 } 1980 1981 // num_teams clause always honored, no matter what, unless DEFAULT is active. 1982 if (num_teams > 0) { 1983 num_groups = num_teams; 1984 // Cap num_groups to EnvMaxTeamsDefault if set. 1985 if (Env.MaxTeamsDefault > 0 && num_groups > Env.MaxTeamsDefault) 1986 num_groups = Env.MaxTeamsDefault; 1987 } 1988 if (print_kernel_trace & STARTUP_DETAILS) { 1989 DP("threadsPerGroup: %d\n", threadsPerGroup); 1990 DP("num_groups: %d\n", num_groups); 1991 DP("loop_tripcount: %ld\n", loop_tripcount); 1992 } 1993 DP("Final %d num_groups and %d threadsPerGroup\n", num_groups, 1994 threadsPerGroup); 1995 1996 launchVals res; 1997 res.WorkgroupSize = threadsPerGroup; 1998 res.GridSize = threadsPerGroup * num_groups; 1999 return res; 2000 } 2001 2002 static uint64_t acquire_available_packet_id(hsa_queue_t *queue) { 2003 uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1); 2004 bool full = true; 2005 while (full) { 2006 full = 2007 packet_id >= (queue->size + hsa_queue_load_read_index_scacquire(queue)); 2008 } 2009 return packet_id; 2010 } 2011 2012 static int32_t __tgt_rtl_run_target_team_region_locked( 2013 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 2014 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 2015 int32_t thread_limit, uint64_t loop_tripcount); 2016 2017 int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr, 2018 void **tgt_args, 2019 ptrdiff_t *tgt_offsets, 2020 int32_t arg_num, int32_t num_teams, 2021 int32_t thread_limit, 2022 uint64_t loop_tripcount) { 2023 2024 DeviceInfo.load_run_lock.lock_shared(); 2025 int32_t res = __tgt_rtl_run_target_team_region_locked( 2026 device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, num_teams, 2027 thread_limit, loop_tripcount); 2028 2029 DeviceInfo.load_run_lock.unlock_shared(); 2030 return res; 2031 } 2032 2033 int32_t __tgt_rtl_run_target_team_region_locked( 2034 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 2035 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 2036 int32_t thread_limit, uint64_t loop_tripcount) { 2037 // Set the context we are using 2038 // update thread limit content in gpu memory if un-initialized or specified 2039 // from host 2040 2041 DP("Run target team region thread_limit %d\n", thread_limit); 2042 2043 // All args are references. 2044 std::vector<void *> args(arg_num); 2045 std::vector<void *> ptrs(arg_num); 2046 2047 DP("Arg_num: %d\n", arg_num); 2048 for (int32_t i = 0; i < arg_num; ++i) { 2049 ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]); 2050 args[i] = &ptrs[i]; 2051 DP("Offseted base: arg[%d]:" DPxMOD "\n", i, DPxPTR(ptrs[i])); 2052 } 2053 2054 KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr; 2055 2056 std::string kernel_name = std::string(KernelInfo->Name); 2057 auto &KernelInfoTable = DeviceInfo.KernelInfoTable; 2058 if (KernelInfoTable[device_id].find(kernel_name) == 2059 KernelInfoTable[device_id].end()) { 2060 DP("Kernel %s not found\n", kernel_name.c_str()); 2061 return OFFLOAD_FAIL; 2062 } 2063 2064 const atl_kernel_info_t KernelInfoEntry = 2065 KernelInfoTable[device_id][kernel_name]; 2066 const uint32_t group_segment_size = KernelInfoEntry.group_segment_size; 2067 const uint32_t sgpr_count = KernelInfoEntry.sgpr_count; 2068 const uint32_t vgpr_count = KernelInfoEntry.vgpr_count; 2069 const uint32_t sgpr_spill_count = KernelInfoEntry.sgpr_spill_count; 2070 const uint32_t vgpr_spill_count = KernelInfoEntry.vgpr_spill_count; 2071 2072 assert(arg_num == (int)KernelInfoEntry.num_args); 2073 2074 /* 2075 * Set limit based on ThreadsPerGroup and GroupsPerDevice 2076 */ 2077 launchVals LV = 2078 getLaunchVals(DeviceInfo.WarpSize[device_id], DeviceInfo.Env, 2079 KernelInfo->ConstWGSize, KernelInfo->ExecutionMode, 2080 num_teams, // From run_region arg 2081 thread_limit, // From run_region arg 2082 loop_tripcount, // From run_region arg 2083 DeviceInfo.NumTeams[KernelInfo->device_id]); 2084 const int GridSize = LV.GridSize; 2085 const int WorkgroupSize = LV.WorkgroupSize; 2086 2087 if (print_kernel_trace >= LAUNCH) { 2088 int num_groups = GridSize / WorkgroupSize; 2089 // enum modes are SPMD, GENERIC, NONE 0,1,2 2090 // if doing rtl timing, print to stderr, unless stdout requested. 2091 bool traceToStdout = print_kernel_trace & (RTL_TO_STDOUT | RTL_TIMING); 2092 fprintf(traceToStdout ? stdout : stderr, 2093 "DEVID:%2d SGN:%1d ConstWGSize:%-4d args:%2d teamsXthrds:(%4dX%4d) " 2094 "reqd:(%4dX%4d) lds_usage:%uB sgpr_count:%u vgpr_count:%u " 2095 "sgpr_spill_count:%u vgpr_spill_count:%u tripcount:%lu n:%s\n", 2096 device_id, KernelInfo->ExecutionMode, KernelInfo->ConstWGSize, 2097 arg_num, num_groups, WorkgroupSize, num_teams, thread_limit, 2098 group_segment_size, sgpr_count, vgpr_count, sgpr_spill_count, 2099 vgpr_spill_count, loop_tripcount, KernelInfo->Name); 2100 } 2101 2102 // Run on the device. 2103 { 2104 hsa_queue_t *queue = DeviceInfo.HSAQueues[device_id].get(); 2105 if (!queue) { 2106 return OFFLOAD_FAIL; 2107 } 2108 uint64_t packet_id = acquire_available_packet_id(queue); 2109 2110 const uint32_t mask = queue->size - 1; // size is a power of 2 2111 hsa_kernel_dispatch_packet_t *packet = 2112 (hsa_kernel_dispatch_packet_t *)queue->base_address + 2113 (packet_id & mask); 2114 2115 // packet->header is written last 2116 packet->setup = UINT16_C(1) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS; 2117 packet->workgroup_size_x = WorkgroupSize; 2118 packet->workgroup_size_y = 1; 2119 packet->workgroup_size_z = 1; 2120 packet->reserved0 = 0; 2121 packet->grid_size_x = GridSize; 2122 packet->grid_size_y = 1; 2123 packet->grid_size_z = 1; 2124 packet->private_segment_size = KernelInfoEntry.private_segment_size; 2125 packet->group_segment_size = KernelInfoEntry.group_segment_size; 2126 packet->kernel_object = KernelInfoEntry.kernel_object; 2127 packet->kernarg_address = 0; // use the block allocator 2128 packet->reserved2 = 0; // impl writes id_ here 2129 packet->completion_signal = {0}; // may want a pool of signals 2130 2131 KernelArgPool *ArgPool = nullptr; 2132 void *kernarg = nullptr; 2133 { 2134 auto it = KernelArgPoolMap.find(std::string(KernelInfo->Name)); 2135 if (it != KernelArgPoolMap.end()) { 2136 ArgPool = (it->second).get(); 2137 } 2138 } 2139 if (!ArgPool) { 2140 DP("Warning: No ArgPool for %s on device %d\n", KernelInfo->Name, 2141 device_id); 2142 } 2143 { 2144 if (ArgPool) { 2145 assert(ArgPool->kernarg_segment_size == (arg_num * sizeof(void *))); 2146 kernarg = ArgPool->allocate(arg_num); 2147 } 2148 if (!kernarg) { 2149 DP("Allocate kernarg failed\n"); 2150 return OFFLOAD_FAIL; 2151 } 2152 2153 // Copy explicit arguments 2154 for (int i = 0; i < arg_num; i++) { 2155 memcpy((char *)kernarg + sizeof(void *) * i, args[i], sizeof(void *)); 2156 } 2157 2158 // Initialize implicit arguments. TODO: Which of these can be dropped 2159 impl_implicit_args_t *impl_args = 2160 reinterpret_cast<impl_implicit_args_t *>( 2161 static_cast<char *>(kernarg) + ArgPool->kernarg_segment_size); 2162 memset(impl_args, 0, 2163 sizeof(impl_implicit_args_t)); // may not be necessary 2164 impl_args->offset_x = 0; 2165 impl_args->offset_y = 0; 2166 impl_args->offset_z = 0; 2167 2168 // assign a hostcall buffer for the selected Q 2169 if (__atomic_load_n(&DeviceInfo.hostcall_required, __ATOMIC_ACQUIRE)) { 2170 // hostrpc_assign_buffer is not thread safe, and this function is 2171 // under a multiple reader lock, not a writer lock. 2172 static pthread_mutex_t hostcall_init_lock = PTHREAD_MUTEX_INITIALIZER; 2173 pthread_mutex_lock(&hostcall_init_lock); 2174 impl_args->hostcall_ptr = hostrpc_assign_buffer( 2175 DeviceInfo.HSAAgents[device_id], queue, device_id); 2176 pthread_mutex_unlock(&hostcall_init_lock); 2177 if (!impl_args->hostcall_ptr) { 2178 DP("hostrpc_assign_buffer failed, gpu would dereference null and " 2179 "error\n"); 2180 return OFFLOAD_FAIL; 2181 } 2182 } 2183 2184 packet->kernarg_address = kernarg; 2185 } 2186 2187 hsa_signal_t s = DeviceInfo.FreeSignalPool.pop(); 2188 if (s.handle == 0) { 2189 DP("Failed to get signal instance\n"); 2190 return OFFLOAD_FAIL; 2191 } 2192 packet->completion_signal = s; 2193 hsa_signal_store_relaxed(packet->completion_signal, 1); 2194 2195 // Publish the packet indicating it is ready to be processed 2196 core::packet_store_release(reinterpret_cast<uint32_t *>(packet), 2197 core::create_header(), packet->setup); 2198 2199 // Since the packet is already published, its contents must not be 2200 // accessed any more 2201 hsa_signal_store_relaxed(queue->doorbell_signal, packet_id); 2202 2203 while (hsa_signal_wait_scacquire(s, HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX, 2204 HSA_WAIT_STATE_BLOCKED) != 0) 2205 ; 2206 2207 assert(ArgPool); 2208 ArgPool->deallocate(kernarg); 2209 DeviceInfo.FreeSignalPool.push(s); 2210 } 2211 2212 DP("Kernel completed\n"); 2213 return OFFLOAD_SUCCESS; 2214 } 2215 2216 int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr, 2217 void **tgt_args, ptrdiff_t *tgt_offsets, 2218 int32_t arg_num) { 2219 // use one team and one thread 2220 // fix thread num 2221 int32_t team_num = 1; 2222 int32_t thread_limit = 0; // use default 2223 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 2224 tgt_offsets, arg_num, team_num, 2225 thread_limit, 0); 2226 } 2227 2228 int32_t __tgt_rtl_run_target_region_async(int32_t device_id, 2229 void *tgt_entry_ptr, void **tgt_args, 2230 ptrdiff_t *tgt_offsets, 2231 int32_t arg_num, 2232 __tgt_async_info *AsyncInfo) { 2233 assert(AsyncInfo && "AsyncInfo is nullptr"); 2234 initAsyncInfo(AsyncInfo); 2235 2236 // use one team and one thread 2237 // fix thread num 2238 int32_t team_num = 1; 2239 int32_t thread_limit = 0; // use default 2240 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 2241 tgt_offsets, arg_num, team_num, 2242 thread_limit, 0); 2243 } 2244 2245 int32_t __tgt_rtl_synchronize(int32_t device_id, __tgt_async_info *AsyncInfo) { 2246 assert(AsyncInfo && "AsyncInfo is nullptr"); 2247 2248 // Cuda asserts that AsyncInfo->Queue is non-null, but this invariant 2249 // is not ensured by devices.cpp for amdgcn 2250 // assert(AsyncInfo->Queue && "AsyncInfo->Queue is nullptr"); 2251 if (AsyncInfo->Queue) { 2252 finiAsyncInfo(AsyncInfo); 2253 } 2254 return OFFLOAD_SUCCESS; 2255 } 2256 2257 namespace core { 2258 hsa_status_t allow_access_to_all_gpu_agents(void *ptr) { 2259 return hsa_amd_agents_allow_access(DeviceInfo.HSAAgents.size(), 2260 &DeviceInfo.HSAAgents[0], NULL, ptr); 2261 } 2262 2263 } // namespace core 2264