1 //===----RTLs/hsa/src/rtl.cpp - Target RTLs Implementation -------- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // RTL for hsa machine 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <algorithm> 14 #include <assert.h> 15 #include <cstdio> 16 #include <cstdlib> 17 #include <cstring> 18 #include <elf.h> 19 #include <fstream> 20 #include <functional> 21 #include <iostream> 22 #include <libelf.h> 23 #include <list> 24 #include <memory> 25 #include <mutex> 26 #include <shared_mutex> 27 #include <thread> 28 #include <unordered_map> 29 #include <vector> 30 31 // Header from ATMI interface 32 #include "atmi_interop_hsa.h" 33 #include "atmi_runtime.h" 34 35 #include "internal.h" 36 37 #include "Debug.h" 38 #include "get_elf_mach_gfx_name.h" 39 #include "machine.h" 40 #include "omptargetplugin.h" 41 #include "print_tracing.h" 42 43 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 44 45 #ifndef TARGET_NAME 46 #define TARGET_NAME AMDHSA 47 #endif 48 #define DEBUG_PREFIX "Target " GETNAME(TARGET_NAME) " RTL" 49 50 // hostrpc interface, FIXME: consider moving to its own include these are 51 // statically linked into amdgpu/plugin if present from hostrpc_services.a, 52 // linked as --whole-archive to override the weak symbols that are used to 53 // implement a fallback for toolchains that do not yet have a hostrpc library. 54 extern "C" { 55 unsigned long hostrpc_assign_buffer(hsa_agent_t agent, hsa_queue_t *this_Q, 56 uint32_t device_id); 57 hsa_status_t hostrpc_init(); 58 hsa_status_t hostrpc_terminate(); 59 60 __attribute__((weak)) hsa_status_t hostrpc_init() { return HSA_STATUS_SUCCESS; } 61 __attribute__((weak)) hsa_status_t hostrpc_terminate() { 62 return HSA_STATUS_SUCCESS; 63 } 64 __attribute__((weak)) unsigned long 65 hostrpc_assign_buffer(hsa_agent_t, hsa_queue_t *, uint32_t device_id) { 66 DP("Warning: Attempting to assign hostrpc to device %u, but hostrpc library " 67 "missing\n", 68 device_id); 69 return 0; 70 } 71 } 72 73 int print_kernel_trace; 74 75 #ifdef OMPTARGET_DEBUG 76 #define check(msg, status) \ 77 if (status != HSA_STATUS_SUCCESS) { \ 78 DP(#msg " failed\n"); \ 79 } else { \ 80 DP(#msg " succeeded\n"); \ 81 } 82 #else 83 #define check(msg, status) \ 84 {} 85 #endif 86 87 #include "elf_common.h" 88 89 namespace core { 90 hsa_status_t RegisterModuleFromMemory( 91 std::map<std::string, atl_kernel_info_t> &KernelInfo, 92 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, void *, size_t, 93 hsa_agent_t agent, 94 hsa_status_t (*on_deserialized_data)(void *data, size_t size, 95 void *cb_state), 96 void *cb_state, std::vector<hsa_executable_t> &HSAExecutables); 97 } 98 99 namespace hsa { 100 template <typename C> hsa_status_t iterate_agents(C cb) { 101 auto L = [](hsa_agent_t agent, void *data) -> hsa_status_t { 102 C *unwrapped = static_cast<C *>(data); 103 return (*unwrapped)(agent); 104 }; 105 return hsa_iterate_agents(L, static_cast<void *>(&cb)); 106 } 107 108 template <typename C> 109 hsa_status_t amd_agent_iterate_memory_pools(hsa_agent_t Agent, C cb) { 110 auto L = [](hsa_amd_memory_pool_t MemoryPool, void *data) -> hsa_status_t { 111 C *unwrapped = static_cast<C *>(data); 112 return (*unwrapped)(MemoryPool); 113 }; 114 115 return hsa_amd_agent_iterate_memory_pools(Agent, L, static_cast<void *>(&cb)); 116 } 117 118 } // namespace hsa 119 120 /// Keep entries table per device 121 struct FuncOrGblEntryTy { 122 __tgt_target_table Table; 123 std::vector<__tgt_offload_entry> Entries; 124 }; 125 126 enum ExecutionModeType { 127 SPMD, // constructors, destructors, 128 // combined constructs (`teams distribute parallel for [simd]`) 129 GENERIC, // everything else 130 NONE 131 }; 132 133 struct KernelArgPool { 134 private: 135 static pthread_mutex_t mutex; 136 137 public: 138 uint32_t kernarg_segment_size; 139 void *kernarg_region = nullptr; 140 std::queue<int> free_kernarg_segments; 141 142 uint32_t kernarg_size_including_implicit() { 143 return kernarg_segment_size + sizeof(atmi_implicit_args_t); 144 } 145 146 ~KernelArgPool() { 147 if (kernarg_region) { 148 auto r = hsa_amd_memory_pool_free(kernarg_region); 149 if (r != HSA_STATUS_SUCCESS) { 150 DP("hsa_amd_memory_pool_free failed: %s\n", get_error_string(r)); 151 } 152 } 153 } 154 155 // Can't really copy or move a mutex 156 KernelArgPool() = default; 157 KernelArgPool(const KernelArgPool &) = delete; 158 KernelArgPool(KernelArgPool &&) = delete; 159 160 KernelArgPool(uint32_t kernarg_segment_size, 161 hsa_amd_memory_pool_t &memory_pool) 162 : kernarg_segment_size(kernarg_segment_size) { 163 164 // atmi uses one pool per kernel for all gpus, with a fixed upper size 165 // preserving that exact scheme here, including the queue<int> 166 167 hsa_status_t err = hsa_amd_memory_pool_allocate( 168 memory_pool, kernarg_size_including_implicit() * MAX_NUM_KERNELS, 0, 169 &kernarg_region); 170 171 if (err != HSA_STATUS_SUCCESS) { 172 DP("hsa_amd_memory_pool_allocate failed: %s\n", get_error_string(err)); 173 kernarg_region = nullptr; // paranoid 174 return; 175 } 176 177 err = core::allow_access_to_all_gpu_agents(kernarg_region); 178 if (err != HSA_STATUS_SUCCESS) { 179 DP("hsa allow_access_to_all_gpu_agents failed: %s\n", 180 get_error_string(err)); 181 auto r = hsa_amd_memory_pool_free(kernarg_region); 182 if (r != HSA_STATUS_SUCCESS) { 183 // if free failed, can't do anything more to resolve it 184 DP("hsa memory poll free failed: %s\n", get_error_string(err)); 185 } 186 kernarg_region = nullptr; 187 return; 188 } 189 190 for (int i = 0; i < MAX_NUM_KERNELS; i++) { 191 free_kernarg_segments.push(i); 192 } 193 } 194 195 void *allocate(uint64_t arg_num) { 196 assert((arg_num * sizeof(void *)) == kernarg_segment_size); 197 lock l(&mutex); 198 void *res = nullptr; 199 if (!free_kernarg_segments.empty()) { 200 201 int free_idx = free_kernarg_segments.front(); 202 res = static_cast<void *>(static_cast<char *>(kernarg_region) + 203 (free_idx * kernarg_size_including_implicit())); 204 assert(free_idx == pointer_to_index(res)); 205 free_kernarg_segments.pop(); 206 } 207 return res; 208 } 209 210 void deallocate(void *ptr) { 211 lock l(&mutex); 212 int idx = pointer_to_index(ptr); 213 free_kernarg_segments.push(idx); 214 } 215 216 private: 217 int pointer_to_index(void *ptr) { 218 ptrdiff_t bytes = 219 static_cast<char *>(ptr) - static_cast<char *>(kernarg_region); 220 assert(bytes >= 0); 221 assert(bytes % kernarg_size_including_implicit() == 0); 222 return bytes / kernarg_size_including_implicit(); 223 } 224 struct lock { 225 lock(pthread_mutex_t *m) : m(m) { pthread_mutex_lock(m); } 226 ~lock() { pthread_mutex_unlock(m); } 227 pthread_mutex_t *m; 228 }; 229 }; 230 pthread_mutex_t KernelArgPool::mutex = PTHREAD_MUTEX_INITIALIZER; 231 232 std::unordered_map<std::string /*kernel*/, std::unique_ptr<KernelArgPool>> 233 KernelArgPoolMap; 234 235 /// Use a single entity to encode a kernel and a set of flags 236 struct KernelTy { 237 // execution mode of kernel 238 // 0 - SPMD mode (without master warp) 239 // 1 - Generic mode (with master warp) 240 int8_t ExecutionMode; 241 int16_t ConstWGSize; 242 int32_t device_id; 243 void *CallStackAddr = nullptr; 244 const char *Name; 245 246 KernelTy(int8_t _ExecutionMode, int16_t _ConstWGSize, int32_t _device_id, 247 void *_CallStackAddr, const char *_Name, 248 uint32_t _kernarg_segment_size, 249 hsa_amd_memory_pool_t &KernArgMemoryPool) 250 : ExecutionMode(_ExecutionMode), ConstWGSize(_ConstWGSize), 251 device_id(_device_id), CallStackAddr(_CallStackAddr), Name(_Name) { 252 DP("Construct kernelinfo: ExecMode %d\n", ExecutionMode); 253 254 std::string N(_Name); 255 if (KernelArgPoolMap.find(N) == KernelArgPoolMap.end()) { 256 KernelArgPoolMap.insert( 257 std::make_pair(N, std::unique_ptr<KernelArgPool>(new KernelArgPool( 258 _kernarg_segment_size, KernArgMemoryPool)))); 259 } 260 } 261 }; 262 263 /// List that contains all the kernels. 264 /// FIXME: we may need this to be per device and per library. 265 std::list<KernelTy> KernelsList; 266 267 template <typename Callback> static hsa_status_t FindAgents(Callback CB) { 268 269 hsa_status_t err = 270 hsa::iterate_agents([&](hsa_agent_t agent) -> hsa_status_t { 271 hsa_device_type_t device_type; 272 // get_info fails iff HSA runtime not yet initialized 273 hsa_status_t err = 274 hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 275 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) 276 printf("rtl.cpp: err %d\n", err); 277 assert(err == HSA_STATUS_SUCCESS); 278 279 CB(device_type, agent); 280 return HSA_STATUS_SUCCESS; 281 }); 282 283 // iterate_agents fails iff HSA runtime not yet initialized 284 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) { 285 printf("rtl.cpp: err %d\n", err); 286 } 287 288 return err; 289 } 290 291 static void callbackQueue(hsa_status_t status, hsa_queue_t *source, 292 void *data) { 293 if (status != HSA_STATUS_SUCCESS) { 294 const char *status_string; 295 if (hsa_status_string(status, &status_string) != HSA_STATUS_SUCCESS) { 296 status_string = "unavailable"; 297 } 298 fprintf(stderr, "[%s:%d] GPU error in queue %p %d (%s)\n", __FILE__, 299 __LINE__, source, status, status_string); 300 abort(); 301 } 302 } 303 304 namespace core { 305 namespace { 306 void packet_store_release(uint32_t *packet, uint16_t header, uint16_t rest) { 307 __atomic_store_n(packet, header | (rest << 16), __ATOMIC_RELEASE); 308 } 309 310 uint16_t create_header() { 311 uint16_t header = HSA_PACKET_TYPE_KERNEL_DISPATCH << HSA_PACKET_HEADER_TYPE; 312 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE; 313 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE; 314 return header; 315 } 316 317 hsa_status_t addKernArgPool(hsa_amd_memory_pool_t MemoryPool, void *Data) { 318 std::vector<hsa_amd_memory_pool_t> *Result = 319 static_cast<std::vector<hsa_amd_memory_pool_t> *>(Data); 320 bool AllocAllowed = false; 321 hsa_status_t err = hsa_amd_memory_pool_get_info( 322 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED, 323 &AllocAllowed); 324 if (err != HSA_STATUS_SUCCESS) { 325 fprintf(stderr, "Alloc allowed in memory pool check failed: %s\n", 326 get_error_string(err)); 327 return err; 328 } 329 330 if (!AllocAllowed) { 331 // nothing needs to be done here. 332 return HSA_STATUS_SUCCESS; 333 } 334 335 uint32_t GlobalFlags = 0; 336 err = hsa_amd_memory_pool_get_info( 337 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 338 if (err != HSA_STATUS_SUCCESS) { 339 fprintf(stderr, "Get memory pool info failed: %s\n", get_error_string(err)); 340 return err; 341 } 342 343 size_t size = 0; 344 err = hsa_amd_memory_pool_get_info(MemoryPool, HSA_AMD_MEMORY_POOL_INFO_SIZE, 345 &size); 346 if (err != HSA_STATUS_SUCCESS) { 347 fprintf(stderr, "Get memory pool size failed: %s\n", get_error_string(err)); 348 return err; 349 } 350 351 if ((GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) && 352 (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_KERNARG_INIT) && 353 size > 0) { 354 Result->push_back(MemoryPool); 355 } 356 357 return HSA_STATUS_SUCCESS; 358 } 359 360 std::pair<hsa_status_t, bool> 361 isValidMemoryPool(hsa_amd_memory_pool_t MemoryPool) { 362 bool AllocAllowed = false; 363 hsa_status_t Err = hsa_amd_memory_pool_get_info( 364 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED, 365 &AllocAllowed); 366 if (Err != HSA_STATUS_SUCCESS) { 367 fprintf(stderr, "Alloc allowed in memory pool check failed: %s\n", 368 get_error_string(Err)); 369 return {Err, false}; 370 } 371 372 return {HSA_STATUS_SUCCESS, AllocAllowed}; 373 } 374 375 template <typename AccumulatorFunc> 376 hsa_status_t collectMemoryPools(const std::vector<hsa_agent_t> &Agents, 377 AccumulatorFunc Func) { 378 for (int DeviceId = 0; DeviceId < Agents.size(); DeviceId++) { 379 hsa_status_t Err = hsa::amd_agent_iterate_memory_pools( 380 Agents[DeviceId], [&](hsa_amd_memory_pool_t MemoryPool) { 381 hsa_status_t Err; 382 bool Valid = false; 383 std::tie(Err, Valid) = isValidMemoryPool(MemoryPool); 384 if (Err != HSA_STATUS_SUCCESS) { 385 return Err; 386 } 387 if (Valid) 388 Func(MemoryPool, DeviceId); 389 return HSA_STATUS_SUCCESS; 390 }); 391 392 if (Err != HSA_STATUS_SUCCESS) { 393 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 394 "Iterate all memory pools", get_error_string(Err)); 395 return Err; 396 } 397 } 398 399 return HSA_STATUS_SUCCESS; 400 } 401 402 std::pair<hsa_status_t, hsa_amd_memory_pool_t> 403 FindKernargPool(const std::vector<hsa_agent_t> &HSAAgents) { 404 std::vector<hsa_amd_memory_pool_t> KernArgPools; 405 for (const auto &Agent : HSAAgents) { 406 hsa_status_t err = HSA_STATUS_SUCCESS; 407 err = hsa_amd_agent_iterate_memory_pools( 408 Agent, addKernArgPool, static_cast<void *>(&KernArgPools)); 409 if (err != HSA_STATUS_SUCCESS) { 410 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 411 "Iterate all memory pools", get_error_string(err)); 412 return {err, hsa_amd_memory_pool_t{}}; 413 } 414 } 415 416 if (KernArgPools.empty()) { 417 fprintf(stderr, "Unable to find any valid kernarg pool\n"); 418 return {HSA_STATUS_ERROR, hsa_amd_memory_pool_t{}}; 419 } 420 421 return {HSA_STATUS_SUCCESS, KernArgPools[0]}; 422 } 423 424 } // namespace 425 } // namespace core 426 427 /// Class containing all the device information 428 class RTLDeviceInfoTy { 429 std::vector<std::list<FuncOrGblEntryTy>> FuncGblEntries; 430 431 public: 432 // load binary populates symbol tables and mutates various global state 433 // run uses those symbol tables 434 std::shared_timed_mutex load_run_lock; 435 436 int NumberOfDevices; 437 438 // GPU devices 439 std::vector<hsa_agent_t> HSAAgents; 440 std::vector<hsa_queue_t *> HSAQueues; // one per gpu 441 442 // CPUs 443 std::vector<hsa_agent_t> CPUAgents; 444 445 // Device properties 446 std::vector<int> ComputeUnits; 447 std::vector<int> GroupsPerDevice; 448 std::vector<int> ThreadsPerGroup; 449 std::vector<int> WarpSize; 450 std::vector<std::string> GPUName; 451 452 // OpenMP properties 453 std::vector<int> NumTeams; 454 std::vector<int> NumThreads; 455 456 // OpenMP Environment properties 457 int EnvNumTeams; 458 int EnvTeamLimit; 459 int EnvTeamThreadLimit; 460 int EnvMaxTeamsDefault; 461 462 // OpenMP Requires Flags 463 int64_t RequiresFlags; 464 465 // Resource pools 466 SignalPoolT FreeSignalPool; 467 468 bool hostcall_required = false; 469 470 std::vector<hsa_executable_t> HSAExecutables; 471 472 std::vector<std::map<std::string, atl_kernel_info_t>> KernelInfoTable; 473 std::vector<std::map<std::string, atl_symbol_info_t>> SymbolInfoTable; 474 475 hsa_amd_memory_pool_t KernArgPool; 476 477 // fine grained memory pool for host allocations 478 hsa_amd_memory_pool_t HostFineGrainedMemoryPool; 479 480 // fine and coarse-grained memory pools per offloading device 481 std::vector<hsa_amd_memory_pool_t> DeviceFineGrainedMemoryPools; 482 std::vector<hsa_amd_memory_pool_t> DeviceCoarseGrainedMemoryPools; 483 484 struct atmiFreePtrDeletor { 485 void operator()(void *p) { 486 core::Runtime::Memfree(p); // ignore failure to free 487 } 488 }; 489 490 // device_State shared across loaded binaries, error if inconsistent size 491 std::vector<std::pair<std::unique_ptr<void, atmiFreePtrDeletor>, uint64_t>> 492 deviceStateStore; 493 494 static const unsigned HardTeamLimit = 495 (1 << 16) - 1; // 64K needed to fit in uint16 496 static const int DefaultNumTeams = 128; 497 static const int Max_Teams = 498 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_Teams]; 499 static const int Warp_Size = 500 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; 501 static const int Max_WG_Size = 502 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_WG_Size]; 503 static const int Default_WG_Size = 504 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Default_WG_Size]; 505 506 using MemcpyFunc = hsa_status_t (*)(hsa_signal_t, void *, const void *, 507 size_t size, hsa_agent_t); 508 hsa_status_t freesignalpool_memcpy(void *dest, const void *src, size_t size, 509 MemcpyFunc Func, int32_t deviceId) { 510 hsa_agent_t agent = HSAAgents[deviceId]; 511 hsa_signal_t s = FreeSignalPool.pop(); 512 if (s.handle == 0) { 513 return HSA_STATUS_ERROR; 514 } 515 hsa_status_t r = Func(s, dest, src, size, agent); 516 FreeSignalPool.push(s); 517 return r; 518 } 519 520 hsa_status_t freesignalpool_memcpy_d2h(void *dest, const void *src, 521 size_t size, int32_t deviceId) { 522 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_d2h, deviceId); 523 } 524 525 hsa_status_t freesignalpool_memcpy_h2d(void *dest, const void *src, 526 size_t size, int32_t deviceId) { 527 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_h2d, deviceId); 528 } 529 530 // Record entry point associated with device 531 void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) { 532 assert(device_id < (int32_t)FuncGblEntries.size() && 533 "Unexpected device id!"); 534 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 535 536 E.Entries.push_back(entry); 537 } 538 539 // Return true if the entry is associated with device 540 bool findOffloadEntry(int32_t device_id, void *addr) { 541 assert(device_id < (int32_t)FuncGblEntries.size() && 542 "Unexpected device id!"); 543 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 544 545 for (auto &it : E.Entries) { 546 if (it.addr == addr) 547 return true; 548 } 549 550 return false; 551 } 552 553 // Return the pointer to the target entries table 554 __tgt_target_table *getOffloadEntriesTable(int32_t device_id) { 555 assert(device_id < (int32_t)FuncGblEntries.size() && 556 "Unexpected device id!"); 557 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 558 559 int32_t size = E.Entries.size(); 560 561 // Table is empty 562 if (!size) 563 return 0; 564 565 __tgt_offload_entry *begin = &E.Entries[0]; 566 __tgt_offload_entry *end = &E.Entries[size - 1]; 567 568 // Update table info according to the entries and return the pointer 569 E.Table.EntriesBegin = begin; 570 E.Table.EntriesEnd = ++end; 571 572 return &E.Table; 573 } 574 575 // Clear entries table for a device 576 void clearOffloadEntriesTable(int device_id) { 577 assert(device_id < (int32_t)FuncGblEntries.size() && 578 "Unexpected device id!"); 579 FuncGblEntries[device_id].emplace_back(); 580 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 581 // KernelArgPoolMap.clear(); 582 E.Entries.clear(); 583 E.Table.EntriesBegin = E.Table.EntriesEnd = 0; 584 } 585 586 hsa_status_t addDeviceMemoryPool(hsa_amd_memory_pool_t MemoryPool, 587 int DeviceId) { 588 assert(DeviceId < DeviceFineGrainedMemoryPools.size() && "Error here."); 589 uint32_t GlobalFlags = 0; 590 hsa_status_t Err = hsa_amd_memory_pool_get_info( 591 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 592 593 if (Err != HSA_STATUS_SUCCESS) { 594 return Err; 595 } 596 597 if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) { 598 DeviceFineGrainedMemoryPools[DeviceId] = MemoryPool; 599 } else if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_COARSE_GRAINED) { 600 DeviceCoarseGrainedMemoryPools[DeviceId] = MemoryPool; 601 } 602 603 return HSA_STATUS_SUCCESS; 604 } 605 606 hsa_status_t addHostMemoryPool(hsa_amd_memory_pool_t MemoryPool, 607 int DeviceId) { 608 uint32_t GlobalFlags = 0; 609 hsa_status_t Err = hsa_amd_memory_pool_get_info( 610 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 611 612 if (Err != HSA_STATUS_SUCCESS) { 613 return Err; 614 } 615 616 uint32_t Size; 617 Err = hsa_amd_memory_pool_get_info(MemoryPool, 618 HSA_AMD_MEMORY_POOL_INFO_SIZE, &Size); 619 if (Err != HSA_STATUS_SUCCESS) { 620 return Err; 621 } 622 623 if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED && 624 Size > 0) { 625 HostFineGrainedMemoryPool = MemoryPool; 626 } 627 628 return HSA_STATUS_SUCCESS; 629 } 630 631 hsa_status_t setupMemoryPools() { 632 using namespace std::placeholders; 633 hsa_status_t Err; 634 Err = core::collectMemoryPools( 635 CPUAgents, std::bind(&RTLDeviceInfoTy::addHostMemoryPool, this, _1, _2)); 636 if (Err != HSA_STATUS_SUCCESS) { 637 fprintf(stderr, "HSA error in collecting memory pools for CPU: %s\n", 638 get_error_string(Err)); 639 return Err; 640 } 641 Err = core::collectMemoryPools( 642 HSAAgents, std::bind(&RTLDeviceInfoTy::addDeviceMemoryPool, this, _1, _2)); 643 if (Err != HSA_STATUS_SUCCESS) { 644 fprintf(stderr, 645 "HSA error in collecting memory pools for offload devices: %s\n", 646 get_error_string(Err)); 647 return Err; 648 } 649 return HSA_STATUS_SUCCESS; 650 } 651 652 hsa_amd_memory_pool_t getDeviceMemoryPool(int DeviceId) { 653 assert(DeviceId >= 0 && DeviceId < DeviceCoarseGrainedMemoryPools.size() && 654 "Invalid device Id"); 655 return DeviceCoarseGrainedMemoryPools[DeviceId]; 656 } 657 658 hsa_amd_memory_pool_t getHostMemoryPool() { 659 return HostFineGrainedMemoryPool; 660 } 661 662 RTLDeviceInfoTy() { 663 // LIBOMPTARGET_KERNEL_TRACE provides a kernel launch trace to stderr 664 // anytime. You do not need a debug library build. 665 // 0 => no tracing 666 // 1 => tracing dispatch only 667 // >1 => verbosity increase 668 if (char *envStr = getenv("LIBOMPTARGET_KERNEL_TRACE")) 669 print_kernel_trace = atoi(envStr); 670 else 671 print_kernel_trace = 0; 672 673 DP("Start initializing HSA-ATMI\n"); 674 hsa_status_t err = core::atl_init_gpu_context(); 675 if (err != HSA_STATUS_SUCCESS) { 676 DP("Error when initializing HSA-ATMI\n"); 677 return; 678 } 679 680 // Init hostcall soon after initializing ATMI 681 hostrpc_init(); 682 683 err = FindAgents([&](hsa_device_type_t DeviceType, hsa_agent_t Agent) { 684 if (DeviceType == HSA_DEVICE_TYPE_CPU) { 685 CPUAgents.push_back(Agent); 686 } else { 687 HSAAgents.push_back(Agent); 688 } 689 }); 690 if (err != HSA_STATUS_SUCCESS) 691 return; 692 693 NumberOfDevices = (int)HSAAgents.size(); 694 695 if (NumberOfDevices == 0) { 696 DP("There are no devices supporting HSA.\n"); 697 return; 698 } else { 699 DP("There are %d devices supporting HSA.\n", NumberOfDevices); 700 } 701 std::tie(err, KernArgPool) = core::FindKernargPool(CPUAgents); 702 if (err != HSA_STATUS_SUCCESS) { 703 DP("Error when reading memory pools\n"); 704 return; 705 } 706 707 // Init the device info 708 HSAQueues.resize(NumberOfDevices); 709 FuncGblEntries.resize(NumberOfDevices); 710 ThreadsPerGroup.resize(NumberOfDevices); 711 ComputeUnits.resize(NumberOfDevices); 712 GPUName.resize(NumberOfDevices); 713 GroupsPerDevice.resize(NumberOfDevices); 714 WarpSize.resize(NumberOfDevices); 715 NumTeams.resize(NumberOfDevices); 716 NumThreads.resize(NumberOfDevices); 717 deviceStateStore.resize(NumberOfDevices); 718 KernelInfoTable.resize(NumberOfDevices); 719 SymbolInfoTable.resize(NumberOfDevices); 720 DeviceCoarseGrainedMemoryPools.resize(NumberOfDevices); 721 DeviceFineGrainedMemoryPools.resize(NumberOfDevices); 722 723 err = setupMemoryPools(); 724 if (err != HSA_STATUS_SUCCESS) { 725 DP("Error when setting up memory pools"); 726 return; 727 } 728 729 for (int i = 0; i < NumberOfDevices; i++) { 730 HSAQueues[i] = nullptr; 731 } 732 733 for (int i = 0; i < NumberOfDevices; i++) { 734 uint32_t queue_size = 0; 735 { 736 hsa_status_t err = hsa_agent_get_info( 737 HSAAgents[i], HSA_AGENT_INFO_QUEUE_MAX_SIZE, &queue_size); 738 if (err != HSA_STATUS_SUCCESS) { 739 DP("HSA query QUEUE_MAX_SIZE failed for agent %d\n", i); 740 return; 741 } 742 if (queue_size > core::Runtime::getInstance().getMaxQueueSize()) { 743 queue_size = core::Runtime::getInstance().getMaxQueueSize(); 744 } 745 } 746 747 hsa_status_t rc = hsa_queue_create( 748 HSAAgents[i], queue_size, HSA_QUEUE_TYPE_MULTI, callbackQueue, NULL, 749 UINT32_MAX, UINT32_MAX, &HSAQueues[i]); 750 if (rc != HSA_STATUS_SUCCESS) { 751 DP("Failed to create HSA queue %d\n", i); 752 return; 753 } 754 755 deviceStateStore[i] = {nullptr, 0}; 756 } 757 758 for (int i = 0; i < NumberOfDevices; i++) { 759 ThreadsPerGroup[i] = RTLDeviceInfoTy::Default_WG_Size; 760 GroupsPerDevice[i] = RTLDeviceInfoTy::DefaultNumTeams; 761 ComputeUnits[i] = 1; 762 DP("Device %d: Initial groupsPerDevice %d & threadsPerGroup %d\n", i, 763 GroupsPerDevice[i], ThreadsPerGroup[i]); 764 } 765 766 // Get environment variables regarding teams 767 char *envStr = getenv("OMP_TEAM_LIMIT"); 768 if (envStr) { 769 // OMP_TEAM_LIMIT has been set 770 EnvTeamLimit = std::stoi(envStr); 771 DP("Parsed OMP_TEAM_LIMIT=%d\n", EnvTeamLimit); 772 } else { 773 EnvTeamLimit = -1; 774 } 775 envStr = getenv("OMP_NUM_TEAMS"); 776 if (envStr) { 777 // OMP_NUM_TEAMS has been set 778 EnvNumTeams = std::stoi(envStr); 779 DP("Parsed OMP_NUM_TEAMS=%d\n", EnvNumTeams); 780 } else { 781 EnvNumTeams = -1; 782 } 783 // Get environment variables regarding expMaxTeams 784 envStr = getenv("OMP_MAX_TEAMS_DEFAULT"); 785 if (envStr) { 786 EnvMaxTeamsDefault = std::stoi(envStr); 787 DP("Parsed OMP_MAX_TEAMS_DEFAULT=%d\n", EnvMaxTeamsDefault); 788 } else { 789 EnvMaxTeamsDefault = -1; 790 } 791 envStr = getenv("OMP_TEAMS_THREAD_LIMIT"); 792 if (envStr) { 793 EnvTeamThreadLimit = std::stoi(envStr); 794 DP("Parsed OMP_TEAMS_THREAD_LIMIT=%d\n", EnvTeamThreadLimit); 795 } else { 796 EnvTeamThreadLimit = -1; 797 } 798 799 // Default state. 800 RequiresFlags = OMP_REQ_UNDEFINED; 801 } 802 803 ~RTLDeviceInfoTy() { 804 DP("Finalizing the HSA-ATMI DeviceInfo.\n"); 805 // Run destructors on types that use HSA before 806 // atmi_finalize removes access to it 807 deviceStateStore.clear(); 808 KernelArgPoolMap.clear(); 809 // Terminate hostrpc before finalizing ATMI 810 hostrpc_terminate(); 811 812 hsa_status_t Err; 813 for (uint32_t I = 0; I < HSAExecutables.size(); I++) { 814 Err = hsa_executable_destroy(HSAExecutables[I]); 815 if (Err != HSA_STATUS_SUCCESS) { 816 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 817 "Destroying executable", get_error_string(Err)); 818 } 819 } 820 821 Err = hsa_shut_down(); 822 if (Err != HSA_STATUS_SUCCESS) { 823 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Shutting down HSA", 824 get_error_string(Err)); 825 } 826 } 827 }; 828 829 pthread_mutex_t SignalPoolT::mutex = PTHREAD_MUTEX_INITIALIZER; 830 831 // TODO: May need to drop the trailing to fields until deviceRTL is updated 832 struct omptarget_device_environmentTy { 833 int32_t debug_level; // gets value of envvar LIBOMPTARGET_DEVICE_RTL_DEBUG 834 // only useful for Debug build of deviceRTLs 835 int32_t num_devices; // gets number of active offload devices 836 int32_t device_num; // gets a value 0 to num_devices-1 837 }; 838 839 static RTLDeviceInfoTy DeviceInfo; 840 841 namespace { 842 843 int32_t dataRetrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size, 844 __tgt_async_info *AsyncInfo) { 845 assert(AsyncInfo && "AsyncInfo is nullptr"); 846 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 847 // Return success if we are not copying back to host from target. 848 if (!HstPtr) 849 return OFFLOAD_SUCCESS; 850 hsa_status_t err; 851 DP("Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 852 (long long unsigned)(Elf64_Addr)TgtPtr, 853 (long long unsigned)(Elf64_Addr)HstPtr); 854 855 err = DeviceInfo.freesignalpool_memcpy_d2h(HstPtr, TgtPtr, (size_t)Size, 856 DeviceId); 857 858 if (err != HSA_STATUS_SUCCESS) { 859 DP("Error when copying data from device to host. Pointers: " 860 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 861 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 862 return OFFLOAD_FAIL; 863 } 864 DP("DONE Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 865 (long long unsigned)(Elf64_Addr)TgtPtr, 866 (long long unsigned)(Elf64_Addr)HstPtr); 867 return OFFLOAD_SUCCESS; 868 } 869 870 int32_t dataSubmit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size, 871 __tgt_async_info *AsyncInfo) { 872 assert(AsyncInfo && "AsyncInfo is nullptr"); 873 hsa_status_t err; 874 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 875 // Return success if we are not doing host to target. 876 if (!HstPtr) 877 return OFFLOAD_SUCCESS; 878 879 DP("Submit data %ld bytes, (hst:%016llx) -> (tgt:%016llx).\n", Size, 880 (long long unsigned)(Elf64_Addr)HstPtr, 881 (long long unsigned)(Elf64_Addr)TgtPtr); 882 err = DeviceInfo.freesignalpool_memcpy_h2d(TgtPtr, HstPtr, (size_t)Size, 883 DeviceId); 884 if (err != HSA_STATUS_SUCCESS) { 885 DP("Error when copying data from host to device. Pointers: " 886 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 887 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 888 return OFFLOAD_FAIL; 889 } 890 return OFFLOAD_SUCCESS; 891 } 892 893 // Async. 894 // The implementation was written with cuda streams in mind. The semantics of 895 // that are to execute kernels on a queue in order of insertion. A synchronise 896 // call then makes writes visible between host and device. This means a series 897 // of N data_submit_async calls are expected to execute serially. HSA offers 898 // various options to run the data copies concurrently. This may require changes 899 // to libomptarget. 900 901 // __tgt_async_info* contains a void * Queue. Queue = 0 is used to indicate that 902 // there are no outstanding kernels that need to be synchronized. Any async call 903 // may be passed a Queue==0, at which point the cuda implementation will set it 904 // to non-null (see getStream). The cuda streams are per-device. Upstream may 905 // change this interface to explicitly initialize the AsyncInfo_pointer, but 906 // until then hsa lazily initializes it as well. 907 908 void initAsyncInfo(__tgt_async_info *AsyncInfo) { 909 // set non-null while using async calls, return to null to indicate completion 910 assert(AsyncInfo); 911 if (!AsyncInfo->Queue) { 912 AsyncInfo->Queue = reinterpret_cast<void *>(UINT64_MAX); 913 } 914 } 915 void finiAsyncInfo(__tgt_async_info *AsyncInfo) { 916 assert(AsyncInfo); 917 assert(AsyncInfo->Queue); 918 AsyncInfo->Queue = 0; 919 } 920 921 bool elf_machine_id_is_amdgcn(__tgt_device_image *image) { 922 const uint16_t amdgcnMachineID = 224; // EM_AMDGPU may not be in system elf.h 923 int32_t r = elf_check_machine(image, amdgcnMachineID); 924 if (!r) { 925 DP("Supported machine ID not found\n"); 926 } 927 return r; 928 } 929 930 uint32_t elf_e_flags(__tgt_device_image *image) { 931 char *img_begin = (char *)image->ImageStart; 932 size_t img_size = (char *)image->ImageEnd - img_begin; 933 934 Elf *e = elf_memory(img_begin, img_size); 935 if (!e) { 936 DP("Unable to get ELF handle: %s!\n", elf_errmsg(-1)); 937 return 0; 938 } 939 940 Elf64_Ehdr *eh64 = elf64_getehdr(e); 941 942 if (!eh64) { 943 DP("Unable to get machine ID from ELF file!\n"); 944 elf_end(e); 945 return 0; 946 } 947 948 uint32_t Flags = eh64->e_flags; 949 950 elf_end(e); 951 DP("ELF Flags: 0x%x\n", Flags); 952 return Flags; 953 } 954 } // namespace 955 956 int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) { 957 return elf_machine_id_is_amdgcn(image); 958 } 959 960 int __tgt_rtl_number_of_devices() { return DeviceInfo.NumberOfDevices; } 961 962 int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) { 963 DP("Init requires flags to %ld\n", RequiresFlags); 964 DeviceInfo.RequiresFlags = RequiresFlags; 965 return RequiresFlags; 966 } 967 968 namespace { 969 template <typename T> bool enforce_upper_bound(T *value, T upper) { 970 bool changed = *value > upper; 971 if (changed) { 972 *value = upper; 973 } 974 return changed; 975 } 976 } // namespace 977 978 int32_t __tgt_rtl_init_device(int device_id) { 979 hsa_status_t err; 980 981 // this is per device id init 982 DP("Initialize the device id: %d\n", device_id); 983 984 hsa_agent_t agent = DeviceInfo.HSAAgents[device_id]; 985 986 // Get number of Compute Unit 987 uint32_t compute_units = 0; 988 err = hsa_agent_get_info( 989 agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT, 990 &compute_units); 991 if (err != HSA_STATUS_SUCCESS) { 992 DeviceInfo.ComputeUnits[device_id] = 1; 993 DP("Error getting compute units : settiing to 1\n"); 994 } else { 995 DeviceInfo.ComputeUnits[device_id] = compute_units; 996 DP("Using %d compute unis per grid\n", DeviceInfo.ComputeUnits[device_id]); 997 } 998 999 char GetInfoName[64]; // 64 max size returned by get info 1000 err = hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AGENT_INFO_NAME, 1001 (void *)GetInfoName); 1002 if (err) 1003 DeviceInfo.GPUName[device_id] = "--unknown gpu--"; 1004 else { 1005 DeviceInfo.GPUName[device_id] = GetInfoName; 1006 } 1007 1008 if (print_kernel_trace & STARTUP_DETAILS) 1009 fprintf(stderr, "Device#%-2d CU's: %2d %s\n", device_id, 1010 DeviceInfo.ComputeUnits[device_id], 1011 DeviceInfo.GPUName[device_id].c_str()); 1012 1013 // Query attributes to determine number of threads/block and blocks/grid. 1014 uint16_t workgroup_max_dim[3]; 1015 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_DIM, 1016 &workgroup_max_dim); 1017 if (err != HSA_STATUS_SUCCESS) { 1018 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::DefaultNumTeams; 1019 DP("Error getting grid dims: num groups : %d\n", 1020 RTLDeviceInfoTy::DefaultNumTeams); 1021 } else if (workgroup_max_dim[0] <= RTLDeviceInfoTy::HardTeamLimit) { 1022 DeviceInfo.GroupsPerDevice[device_id] = workgroup_max_dim[0]; 1023 DP("Using %d ROCm blocks per grid\n", 1024 DeviceInfo.GroupsPerDevice[device_id]); 1025 } else { 1026 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::HardTeamLimit; 1027 DP("Max ROCm blocks per grid %d exceeds the hard team limit %d, capping " 1028 "at the hard limit\n", 1029 workgroup_max_dim[0], RTLDeviceInfoTy::HardTeamLimit); 1030 } 1031 1032 // Get thread limit 1033 hsa_dim3_t grid_max_dim; 1034 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &grid_max_dim); 1035 if (err == HSA_STATUS_SUCCESS) { 1036 DeviceInfo.ThreadsPerGroup[device_id] = 1037 reinterpret_cast<uint32_t *>(&grid_max_dim)[0] / 1038 DeviceInfo.GroupsPerDevice[device_id]; 1039 1040 if (DeviceInfo.ThreadsPerGroup[device_id] == 0) { 1041 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 1042 DP("Default thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 1043 } else if (enforce_upper_bound(&DeviceInfo.ThreadsPerGroup[device_id], 1044 RTLDeviceInfoTy::Max_WG_Size)) { 1045 DP("Capped thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 1046 } else { 1047 DP("Using ROCm Queried thread limit: %d\n", 1048 DeviceInfo.ThreadsPerGroup[device_id]); 1049 } 1050 } else { 1051 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 1052 DP("Error getting max block dimension, use default:%d \n", 1053 RTLDeviceInfoTy::Max_WG_Size); 1054 } 1055 1056 // Get wavefront size 1057 uint32_t wavefront_size = 0; 1058 err = 1059 hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size); 1060 if (err == HSA_STATUS_SUCCESS) { 1061 DP("Queried wavefront size: %d\n", wavefront_size); 1062 DeviceInfo.WarpSize[device_id] = wavefront_size; 1063 } else { 1064 DP("Default wavefront size: %d\n", 1065 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]); 1066 DeviceInfo.WarpSize[device_id] = 1067 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; 1068 } 1069 1070 // Adjust teams to the env variables 1071 1072 if (DeviceInfo.EnvTeamLimit > 0 && 1073 (enforce_upper_bound(&DeviceInfo.GroupsPerDevice[device_id], 1074 DeviceInfo.EnvTeamLimit))) { 1075 DP("Capping max groups per device to OMP_TEAM_LIMIT=%d\n", 1076 DeviceInfo.EnvTeamLimit); 1077 } 1078 1079 // Set default number of teams 1080 if (DeviceInfo.EnvNumTeams > 0) { 1081 DeviceInfo.NumTeams[device_id] = DeviceInfo.EnvNumTeams; 1082 DP("Default number of teams set according to environment %d\n", 1083 DeviceInfo.EnvNumTeams); 1084 } else { 1085 char *TeamsPerCUEnvStr = getenv("OMP_TARGET_TEAMS_PER_PROC"); 1086 int TeamsPerCU = 1; // default number of teams per CU is 1 1087 if (TeamsPerCUEnvStr) { 1088 TeamsPerCU = std::stoi(TeamsPerCUEnvStr); 1089 } 1090 1091 DeviceInfo.NumTeams[device_id] = 1092 TeamsPerCU * DeviceInfo.ComputeUnits[device_id]; 1093 DP("Default number of teams = %d * number of compute units %d\n", 1094 TeamsPerCU, DeviceInfo.ComputeUnits[device_id]); 1095 } 1096 1097 if (enforce_upper_bound(&DeviceInfo.NumTeams[device_id], 1098 DeviceInfo.GroupsPerDevice[device_id])) { 1099 DP("Default number of teams exceeds device limit, capping at %d\n", 1100 DeviceInfo.GroupsPerDevice[device_id]); 1101 } 1102 1103 // Adjust threads to the env variables 1104 if (DeviceInfo.EnvTeamThreadLimit > 0 && 1105 (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], 1106 DeviceInfo.EnvTeamThreadLimit))) { 1107 DP("Capping max number of threads to OMP_TEAMS_THREAD_LIMIT=%d\n", 1108 DeviceInfo.EnvTeamThreadLimit); 1109 } 1110 1111 // Set default number of threads 1112 DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::Default_WG_Size; 1113 DP("Default number of threads set according to library's default %d\n", 1114 RTLDeviceInfoTy::Default_WG_Size); 1115 if (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], 1116 DeviceInfo.ThreadsPerGroup[device_id])) { 1117 DP("Default number of threads exceeds device limit, capping at %d\n", 1118 DeviceInfo.ThreadsPerGroup[device_id]); 1119 } 1120 1121 DP("Device %d: default limit for groupsPerDevice %d & threadsPerGroup %d\n", 1122 device_id, DeviceInfo.GroupsPerDevice[device_id], 1123 DeviceInfo.ThreadsPerGroup[device_id]); 1124 1125 DP("Device %d: wavefront size %d, total threads %d x %d = %d\n", device_id, 1126 DeviceInfo.WarpSize[device_id], DeviceInfo.ThreadsPerGroup[device_id], 1127 DeviceInfo.GroupsPerDevice[device_id], 1128 DeviceInfo.GroupsPerDevice[device_id] * 1129 DeviceInfo.ThreadsPerGroup[device_id]); 1130 1131 return OFFLOAD_SUCCESS; 1132 } 1133 1134 namespace { 1135 Elf64_Shdr *find_only_SHT_HASH(Elf *elf) { 1136 size_t N; 1137 int rc = elf_getshdrnum(elf, &N); 1138 if (rc != 0) { 1139 return nullptr; 1140 } 1141 1142 Elf64_Shdr *result = nullptr; 1143 for (size_t i = 0; i < N; i++) { 1144 Elf_Scn *scn = elf_getscn(elf, i); 1145 if (scn) { 1146 Elf64_Shdr *shdr = elf64_getshdr(scn); 1147 if (shdr) { 1148 if (shdr->sh_type == SHT_HASH) { 1149 if (result == nullptr) { 1150 result = shdr; 1151 } else { 1152 // multiple SHT_HASH sections not handled 1153 return nullptr; 1154 } 1155 } 1156 } 1157 } 1158 } 1159 return result; 1160 } 1161 1162 const Elf64_Sym *elf_lookup(Elf *elf, char *base, Elf64_Shdr *section_hash, 1163 const char *symname) { 1164 1165 assert(section_hash); 1166 size_t section_symtab_index = section_hash->sh_link; 1167 Elf64_Shdr *section_symtab = 1168 elf64_getshdr(elf_getscn(elf, section_symtab_index)); 1169 size_t section_strtab_index = section_symtab->sh_link; 1170 1171 const Elf64_Sym *symtab = 1172 reinterpret_cast<const Elf64_Sym *>(base + section_symtab->sh_offset); 1173 1174 const uint32_t *hashtab = 1175 reinterpret_cast<const uint32_t *>(base + section_hash->sh_offset); 1176 1177 // Layout: 1178 // nbucket 1179 // nchain 1180 // bucket[nbucket] 1181 // chain[nchain] 1182 uint32_t nbucket = hashtab[0]; 1183 const uint32_t *bucket = &hashtab[2]; 1184 const uint32_t *chain = &hashtab[nbucket + 2]; 1185 1186 const size_t max = strlen(symname) + 1; 1187 const uint32_t hash = elf_hash(symname); 1188 for (uint32_t i = bucket[hash % nbucket]; i != 0; i = chain[i]) { 1189 char *n = elf_strptr(elf, section_strtab_index, symtab[i].st_name); 1190 if (strncmp(symname, n, max) == 0) { 1191 return &symtab[i]; 1192 } 1193 } 1194 1195 return nullptr; 1196 } 1197 1198 typedef struct { 1199 void *addr = nullptr; 1200 uint32_t size = UINT32_MAX; 1201 uint32_t sh_type = SHT_NULL; 1202 } symbol_info; 1203 1204 int get_symbol_info_without_loading(Elf *elf, char *base, const char *symname, 1205 symbol_info *res) { 1206 if (elf_kind(elf) != ELF_K_ELF) { 1207 return 1; 1208 } 1209 1210 Elf64_Shdr *section_hash = find_only_SHT_HASH(elf); 1211 if (!section_hash) { 1212 return 1; 1213 } 1214 1215 const Elf64_Sym *sym = elf_lookup(elf, base, section_hash, symname); 1216 if (!sym) { 1217 return 1; 1218 } 1219 1220 if (sym->st_size > UINT32_MAX) { 1221 return 1; 1222 } 1223 1224 if (sym->st_shndx == SHN_UNDEF) { 1225 return 1; 1226 } 1227 1228 Elf_Scn *section = elf_getscn(elf, sym->st_shndx); 1229 if (!section) { 1230 return 1; 1231 } 1232 1233 Elf64_Shdr *header = elf64_getshdr(section); 1234 if (!header) { 1235 return 1; 1236 } 1237 1238 res->addr = sym->st_value + base; 1239 res->size = static_cast<uint32_t>(sym->st_size); 1240 res->sh_type = header->sh_type; 1241 return 0; 1242 } 1243 1244 int get_symbol_info_without_loading(char *base, size_t img_size, 1245 const char *symname, symbol_info *res) { 1246 Elf *elf = elf_memory(base, img_size); 1247 if (elf) { 1248 int rc = get_symbol_info_without_loading(elf, base, symname, res); 1249 elf_end(elf); 1250 return rc; 1251 } 1252 return 1; 1253 } 1254 1255 hsa_status_t interop_get_symbol_info(char *base, size_t img_size, 1256 const char *symname, void **var_addr, 1257 uint32_t *var_size) { 1258 symbol_info si; 1259 int rc = get_symbol_info_without_loading(base, img_size, symname, &si); 1260 if (rc == 0) { 1261 *var_addr = si.addr; 1262 *var_size = si.size; 1263 return HSA_STATUS_SUCCESS; 1264 } else { 1265 return HSA_STATUS_ERROR; 1266 } 1267 } 1268 1269 template <typename C> 1270 hsa_status_t module_register_from_memory_to_place( 1271 std::map<std::string, atl_kernel_info_t> &KernelInfoTable, 1272 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, 1273 void *module_bytes, size_t module_size, int DeviceId, C cb, 1274 std::vector<hsa_executable_t> &HSAExecutables) { 1275 auto L = [](void *data, size_t size, void *cb_state) -> hsa_status_t { 1276 C *unwrapped = static_cast<C *>(cb_state); 1277 return (*unwrapped)(data, size); 1278 }; 1279 return core::RegisterModuleFromMemory( 1280 KernelInfoTable, SymbolInfoTable, module_bytes, module_size, 1281 DeviceInfo.HSAAgents[DeviceId], L, static_cast<void *>(&cb), 1282 HSAExecutables); 1283 } 1284 } // namespace 1285 1286 static uint64_t get_device_State_bytes(char *ImageStart, size_t img_size) { 1287 uint64_t device_State_bytes = 0; 1288 { 1289 // If this is the deviceRTL, get the state variable size 1290 symbol_info size_si; 1291 int rc = get_symbol_info_without_loading( 1292 ImageStart, img_size, "omptarget_nvptx_device_State_size", &size_si); 1293 1294 if (rc == 0) { 1295 if (size_si.size != sizeof(uint64_t)) { 1296 DP("Found device_State_size variable with wrong size\n"); 1297 return 0; 1298 } 1299 1300 // Read number of bytes directly from the elf 1301 memcpy(&device_State_bytes, size_si.addr, sizeof(uint64_t)); 1302 } 1303 } 1304 return device_State_bytes; 1305 } 1306 1307 static __tgt_target_table * 1308 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1309 1310 static __tgt_target_table * 1311 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1312 1313 __tgt_target_table *__tgt_rtl_load_binary(int32_t device_id, 1314 __tgt_device_image *image) { 1315 DeviceInfo.load_run_lock.lock(); 1316 __tgt_target_table *res = __tgt_rtl_load_binary_locked(device_id, image); 1317 DeviceInfo.load_run_lock.unlock(); 1318 return res; 1319 } 1320 1321 struct device_environment { 1322 // initialise an omptarget_device_environmentTy in the deviceRTL 1323 // patches around differences in the deviceRTL between trunk, aomp, 1324 // rocmcc. Over time these differences will tend to zero and this class 1325 // simplified. 1326 // Symbol may be in .data or .bss, and may be missing fields: 1327 // - aomp has debug_level, num_devices, device_num 1328 // - trunk has debug_level 1329 // - under review in trunk is debug_level, device_num 1330 // - rocmcc matches aomp, patch to swap num_devices and device_num 1331 1332 // The symbol may also have been deadstripped because the device side 1333 // accessors were unused. 1334 1335 // If the symbol is in .data (aomp, rocm) it can be written directly. 1336 // If it is in .bss, we must wait for it to be allocated space on the 1337 // gpu (trunk) and initialize after loading. 1338 const char *sym() { return "omptarget_device_environment"; } 1339 1340 omptarget_device_environmentTy host_device_env; 1341 symbol_info si; 1342 bool valid = false; 1343 1344 __tgt_device_image *image; 1345 const size_t img_size; 1346 1347 device_environment(int device_id, int number_devices, 1348 __tgt_device_image *image, const size_t img_size) 1349 : image(image), img_size(img_size) { 1350 1351 host_device_env.num_devices = number_devices; 1352 host_device_env.device_num = device_id; 1353 host_device_env.debug_level = 0; 1354 #ifdef OMPTARGET_DEBUG 1355 if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) { 1356 host_device_env.debug_level = std::stoi(envStr); 1357 } 1358 #endif 1359 1360 int rc = get_symbol_info_without_loading((char *)image->ImageStart, 1361 img_size, sym(), &si); 1362 if (rc != 0) { 1363 DP("Finding global device environment '%s' - symbol missing.\n", sym()); 1364 return; 1365 } 1366 1367 if (si.size > sizeof(host_device_env)) { 1368 DP("Symbol '%s' has size %u, expected at most %zu.\n", sym(), si.size, 1369 sizeof(host_device_env)); 1370 return; 1371 } 1372 1373 valid = true; 1374 } 1375 1376 bool in_image() { return si.sh_type != SHT_NOBITS; } 1377 1378 hsa_status_t before_loading(void *data, size_t size) { 1379 if (valid) { 1380 if (in_image()) { 1381 DP("Setting global device environment before load (%u bytes)\n", 1382 si.size); 1383 uint64_t offset = (char *)si.addr - (char *)image->ImageStart; 1384 void *pos = (char *)data + offset; 1385 memcpy(pos, &host_device_env, si.size); 1386 } 1387 } 1388 return HSA_STATUS_SUCCESS; 1389 } 1390 1391 hsa_status_t after_loading() { 1392 if (valid) { 1393 if (!in_image()) { 1394 DP("Setting global device environment after load (%u bytes)\n", 1395 si.size); 1396 int device_id = host_device_env.device_num; 1397 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1398 void *state_ptr; 1399 uint32_t state_ptr_size; 1400 hsa_status_t err = atmi_interop_hsa_get_symbol_info( 1401 SymbolInfo, device_id, sym(), &state_ptr, &state_ptr_size); 1402 if (err != HSA_STATUS_SUCCESS) { 1403 DP("failed to find %s in loaded image\n", sym()); 1404 return err; 1405 } 1406 1407 if (state_ptr_size != si.size) { 1408 DP("Symbol had size %u before loading, %u after\n", state_ptr_size, 1409 si.size); 1410 return HSA_STATUS_ERROR; 1411 } 1412 1413 return DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &host_device_env, 1414 state_ptr_size, device_id); 1415 } 1416 } 1417 return HSA_STATUS_SUCCESS; 1418 } 1419 }; 1420 1421 static hsa_status_t atmi_calloc(void **ret_ptr, size_t size, int DeviceId) { 1422 uint64_t rounded = 4 * ((size + 3) / 4); 1423 void *ptr; 1424 hsa_status_t err = core::Runtime::DeviceMalloc(&ptr, rounded, DeviceId); 1425 if (err != HSA_STATUS_SUCCESS) { 1426 return err; 1427 } 1428 1429 hsa_status_t rc = hsa_amd_memory_fill(ptr, 0, rounded / 4); 1430 if (rc != HSA_STATUS_SUCCESS) { 1431 fprintf(stderr, "zero fill device_state failed with %u\n", rc); 1432 core::Runtime::Memfree(ptr); 1433 return HSA_STATUS_ERROR; 1434 } 1435 1436 *ret_ptr = ptr; 1437 return HSA_STATUS_SUCCESS; 1438 } 1439 1440 static bool image_contains_symbol(void *data, size_t size, const char *sym) { 1441 symbol_info si; 1442 int rc = get_symbol_info_without_loading((char *)data, size, sym, &si); 1443 return (rc == 0) && (si.addr != nullptr); 1444 } 1445 1446 __tgt_target_table *__tgt_rtl_load_binary_locked(int32_t device_id, 1447 __tgt_device_image *image) { 1448 // This function loads the device image onto gpu[device_id] and does other 1449 // per-image initialization work. Specifically: 1450 // 1451 // - Initialize an omptarget_device_environmentTy instance embedded in the 1452 // image at the symbol "omptarget_device_environment" 1453 // Fields debug_level, device_num, num_devices. Used by the deviceRTL. 1454 // 1455 // - Allocate a large array per-gpu (could be moved to init_device) 1456 // - Read a uint64_t at symbol omptarget_nvptx_device_State_size 1457 // - Allocate at least that many bytes of gpu memory 1458 // - Zero initialize it 1459 // - Write the pointer to the symbol omptarget_nvptx_device_State 1460 // 1461 // - Pulls some per-kernel information together from various sources and 1462 // records it in the KernelsList for quicker access later 1463 // 1464 // The initialization can be done before or after loading the image onto the 1465 // gpu. This function presently does a mixture. Using the hsa api to get/set 1466 // the information is simpler to implement, in exchange for more complicated 1467 // runtime behaviour. E.g. launching a kernel or using dma to get eight bytes 1468 // back from the gpu vs a hashtable lookup on the host. 1469 1470 const size_t img_size = (char *)image->ImageEnd - (char *)image->ImageStart; 1471 1472 DeviceInfo.clearOffloadEntriesTable(device_id); 1473 1474 // We do not need to set the ELF version because the caller of this function 1475 // had to do that to decide the right runtime to use 1476 1477 if (!elf_machine_id_is_amdgcn(image)) { 1478 return NULL; 1479 } 1480 1481 { 1482 auto env = device_environment(device_id, DeviceInfo.NumberOfDevices, image, 1483 img_size); 1484 1485 auto &KernelInfo = DeviceInfo.KernelInfoTable[device_id]; 1486 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1487 hsa_status_t err = module_register_from_memory_to_place( 1488 KernelInfo, SymbolInfo, (void *)image->ImageStart, img_size, device_id, 1489 [&](void *data, size_t size) { 1490 if (image_contains_symbol(data, size, "needs_hostcall_buffer")) { 1491 __atomic_store_n(&DeviceInfo.hostcall_required, true, 1492 __ATOMIC_RELEASE); 1493 } 1494 return env.before_loading(data, size); 1495 }, 1496 DeviceInfo.HSAExecutables); 1497 1498 check("Module registering", err); 1499 if (err != HSA_STATUS_SUCCESS) { 1500 fprintf(stderr, 1501 "Possible gpu arch mismatch: device:%s, image:%s please check" 1502 " compiler flag: -march=<gpu>\n", 1503 DeviceInfo.GPUName[device_id].c_str(), 1504 get_elf_mach_gfx_name(elf_e_flags(image))); 1505 return NULL; 1506 } 1507 1508 err = env.after_loading(); 1509 if (err != HSA_STATUS_SUCCESS) { 1510 return NULL; 1511 } 1512 } 1513 1514 DP("ATMI module successfully loaded!\n"); 1515 1516 { 1517 // the device_State array is either large value in bss or a void* that 1518 // needs to be assigned to a pointer to an array of size device_state_bytes 1519 // If absent, it has been deadstripped and needs no setup. 1520 1521 void *state_ptr; 1522 uint32_t state_ptr_size; 1523 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 1524 hsa_status_t err = atmi_interop_hsa_get_symbol_info( 1525 SymbolInfoMap, device_id, "omptarget_nvptx_device_State", &state_ptr, 1526 &state_ptr_size); 1527 1528 if (err != HSA_STATUS_SUCCESS) { 1529 DP("No device_state symbol found, skipping initialization\n"); 1530 } else { 1531 if (state_ptr_size < sizeof(void *)) { 1532 DP("unexpected size of state_ptr %u != %zu\n", state_ptr_size, 1533 sizeof(void *)); 1534 return NULL; 1535 } 1536 1537 // if it's larger than a void*, assume it's a bss array and no further 1538 // initialization is required. Only try to set up a pointer for 1539 // sizeof(void*) 1540 if (state_ptr_size == sizeof(void *)) { 1541 uint64_t device_State_bytes = 1542 get_device_State_bytes((char *)image->ImageStart, img_size); 1543 if (device_State_bytes == 0) { 1544 DP("Can't initialize device_State, missing size information\n"); 1545 return NULL; 1546 } 1547 1548 auto &dss = DeviceInfo.deviceStateStore[device_id]; 1549 if (dss.first.get() == nullptr) { 1550 assert(dss.second == 0); 1551 void *ptr = NULL; 1552 hsa_status_t err = atmi_calloc(&ptr, device_State_bytes, device_id); 1553 if (err != HSA_STATUS_SUCCESS) { 1554 DP("Failed to allocate device_state array\n"); 1555 return NULL; 1556 } 1557 dss = { 1558 std::unique_ptr<void, RTLDeviceInfoTy::atmiFreePtrDeletor>{ptr}, 1559 device_State_bytes, 1560 }; 1561 } 1562 1563 void *ptr = dss.first.get(); 1564 if (device_State_bytes != dss.second) { 1565 DP("Inconsistent sizes of device_State unsupported\n"); 1566 return NULL; 1567 } 1568 1569 // write ptr to device memory so it can be used by later kernels 1570 err = DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &ptr, 1571 sizeof(void *), device_id); 1572 if (err != HSA_STATUS_SUCCESS) { 1573 DP("memcpy install of state_ptr failed\n"); 1574 return NULL; 1575 } 1576 } 1577 } 1578 } 1579 1580 // Here, we take advantage of the data that is appended after img_end to get 1581 // the symbols' name we need to load. This data consist of the host entries 1582 // begin and end as well as the target name (see the offloading linker script 1583 // creation in clang compiler). 1584 1585 // Find the symbols in the module by name. The name can be obtain by 1586 // concatenating the host entry name with the target name 1587 1588 __tgt_offload_entry *HostBegin = image->EntriesBegin; 1589 __tgt_offload_entry *HostEnd = image->EntriesEnd; 1590 1591 for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) { 1592 1593 if (!e->addr) { 1594 // The host should have always something in the address to 1595 // uniquely identify the target region. 1596 fprintf(stderr, "Analyzing host entry '<null>' (size = %lld)...\n", 1597 (unsigned long long)e->size); 1598 return NULL; 1599 } 1600 1601 if (e->size) { 1602 __tgt_offload_entry entry = *e; 1603 1604 void *varptr; 1605 uint32_t varsize; 1606 1607 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 1608 hsa_status_t err = atmi_interop_hsa_get_symbol_info( 1609 SymbolInfoMap, device_id, e->name, &varptr, &varsize); 1610 1611 if (err != HSA_STATUS_SUCCESS) { 1612 // Inform the user what symbol prevented offloading 1613 DP("Loading global '%s' (Failed)\n", e->name); 1614 return NULL; 1615 } 1616 1617 if (varsize != e->size) { 1618 DP("Loading global '%s' - size mismatch (%u != %lu)\n", e->name, 1619 varsize, e->size); 1620 return NULL; 1621 } 1622 1623 DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n", 1624 DPxPTR(e - HostBegin), e->name, DPxPTR(varptr)); 1625 entry.addr = (void *)varptr; 1626 1627 DeviceInfo.addOffloadEntry(device_id, entry); 1628 1629 if (DeviceInfo.RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY && 1630 e->flags & OMP_DECLARE_TARGET_LINK) { 1631 // If unified memory is present any target link variables 1632 // can access host addresses directly. There is no longer a 1633 // need for device copies. 1634 err = DeviceInfo.freesignalpool_memcpy_h2d(varptr, e->addr, 1635 sizeof(void *), device_id); 1636 if (err != HSA_STATUS_SUCCESS) 1637 DP("Error when copying USM\n"); 1638 DP("Copy linked variable host address (" DPxMOD ")" 1639 "to device address (" DPxMOD ")\n", 1640 DPxPTR(*((void **)e->addr)), DPxPTR(varptr)); 1641 } 1642 1643 continue; 1644 } 1645 1646 DP("to find the kernel name: %s size: %lu\n", e->name, strlen(e->name)); 1647 1648 uint32_t kernarg_segment_size; 1649 auto &KernelInfoMap = DeviceInfo.KernelInfoTable[device_id]; 1650 hsa_status_t err = atmi_interop_hsa_get_kernel_info( 1651 KernelInfoMap, device_id, e->name, 1652 HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE, 1653 &kernarg_segment_size); 1654 1655 // each arg is a void * in this openmp implementation 1656 uint32_t arg_num = kernarg_segment_size / sizeof(void *); 1657 std::vector<size_t> arg_sizes(arg_num); 1658 for (std::vector<size_t>::iterator it = arg_sizes.begin(); 1659 it != arg_sizes.end(); it++) { 1660 *it = sizeof(void *); 1661 } 1662 1663 // default value GENERIC (in case symbol is missing from cubin file) 1664 int8_t ExecModeVal = ExecutionModeType::GENERIC; 1665 1666 // get flat group size if present, else Default_WG_Size 1667 int16_t WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1668 1669 // get Kernel Descriptor if present. 1670 // Keep struct in sync wih getTgtAttributeStructQTy in CGOpenMPRuntime.cpp 1671 struct KernDescValType { 1672 uint16_t Version; 1673 uint16_t TSize; 1674 uint16_t WG_Size; 1675 uint8_t Mode; 1676 }; 1677 struct KernDescValType KernDescVal; 1678 std::string KernDescNameStr(e->name); 1679 KernDescNameStr += "_kern_desc"; 1680 const char *KernDescName = KernDescNameStr.c_str(); 1681 1682 void *KernDescPtr; 1683 uint32_t KernDescSize; 1684 void *CallStackAddr = nullptr; 1685 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1686 KernDescName, &KernDescPtr, &KernDescSize); 1687 1688 if (err == HSA_STATUS_SUCCESS) { 1689 if ((size_t)KernDescSize != sizeof(KernDescVal)) 1690 DP("Loading global computation properties '%s' - size mismatch (%u != " 1691 "%lu)\n", 1692 KernDescName, KernDescSize, sizeof(KernDescVal)); 1693 1694 memcpy(&KernDescVal, KernDescPtr, (size_t)KernDescSize); 1695 1696 // Check structure size against recorded size. 1697 if ((size_t)KernDescSize != KernDescVal.TSize) 1698 DP("KernDescVal size %lu does not match advertized size %d for '%s'\n", 1699 sizeof(KernDescVal), KernDescVal.TSize, KernDescName); 1700 1701 DP("After loading global for %s KernDesc \n", KernDescName); 1702 DP("KernDesc: Version: %d\n", KernDescVal.Version); 1703 DP("KernDesc: TSize: %d\n", KernDescVal.TSize); 1704 DP("KernDesc: WG_Size: %d\n", KernDescVal.WG_Size); 1705 DP("KernDesc: Mode: %d\n", KernDescVal.Mode); 1706 1707 // Get ExecMode 1708 ExecModeVal = KernDescVal.Mode; 1709 DP("ExecModeVal %d\n", ExecModeVal); 1710 if (KernDescVal.WG_Size == 0) { 1711 KernDescVal.WG_Size = RTLDeviceInfoTy::Default_WG_Size; 1712 DP("Setting KernDescVal.WG_Size to default %d\n", KernDescVal.WG_Size); 1713 } 1714 WGSizeVal = KernDescVal.WG_Size; 1715 DP("WGSizeVal %d\n", WGSizeVal); 1716 check("Loading KernDesc computation property", err); 1717 } else { 1718 DP("Warning: Loading KernDesc '%s' - symbol not found, ", KernDescName); 1719 1720 // Generic 1721 std::string ExecModeNameStr(e->name); 1722 ExecModeNameStr += "_exec_mode"; 1723 const char *ExecModeName = ExecModeNameStr.c_str(); 1724 1725 void *ExecModePtr; 1726 uint32_t varsize; 1727 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1728 ExecModeName, &ExecModePtr, &varsize); 1729 1730 if (err == HSA_STATUS_SUCCESS) { 1731 if ((size_t)varsize != sizeof(int8_t)) { 1732 DP("Loading global computation properties '%s' - size mismatch(%u != " 1733 "%lu)\n", 1734 ExecModeName, varsize, sizeof(int8_t)); 1735 return NULL; 1736 } 1737 1738 memcpy(&ExecModeVal, ExecModePtr, (size_t)varsize); 1739 1740 DP("After loading global for %s ExecMode = %d\n", ExecModeName, 1741 ExecModeVal); 1742 1743 if (ExecModeVal < 0 || ExecModeVal > 1) { 1744 DP("Error wrong exec_mode value specified in HSA code object file: " 1745 "%d\n", 1746 ExecModeVal); 1747 return NULL; 1748 } 1749 } else { 1750 DP("Loading global exec_mode '%s' - symbol missing, using default " 1751 "value " 1752 "GENERIC (1)\n", 1753 ExecModeName); 1754 } 1755 check("Loading computation property", err); 1756 1757 // Flat group size 1758 std::string WGSizeNameStr(e->name); 1759 WGSizeNameStr += "_wg_size"; 1760 const char *WGSizeName = WGSizeNameStr.c_str(); 1761 1762 void *WGSizePtr; 1763 uint32_t WGSize; 1764 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1765 WGSizeName, &WGSizePtr, &WGSize); 1766 1767 if (err == HSA_STATUS_SUCCESS) { 1768 if ((size_t)WGSize != sizeof(int16_t)) { 1769 DP("Loading global computation properties '%s' - size mismatch (%u " 1770 "!= " 1771 "%lu)\n", 1772 WGSizeName, WGSize, sizeof(int16_t)); 1773 return NULL; 1774 } 1775 1776 memcpy(&WGSizeVal, WGSizePtr, (size_t)WGSize); 1777 1778 DP("After loading global for %s WGSize = %d\n", WGSizeName, WGSizeVal); 1779 1780 if (WGSizeVal < RTLDeviceInfoTy::Default_WG_Size || 1781 WGSizeVal > RTLDeviceInfoTy::Max_WG_Size) { 1782 DP("Error wrong WGSize value specified in HSA code object file: " 1783 "%d\n", 1784 WGSizeVal); 1785 WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1786 } 1787 } else { 1788 DP("Warning: Loading WGSize '%s' - symbol not found, " 1789 "using default value %d\n", 1790 WGSizeName, WGSizeVal); 1791 } 1792 1793 check("Loading WGSize computation property", err); 1794 } 1795 1796 KernelsList.push_back(KernelTy(ExecModeVal, WGSizeVal, device_id, 1797 CallStackAddr, e->name, kernarg_segment_size, 1798 DeviceInfo.KernArgPool)); 1799 __tgt_offload_entry entry = *e; 1800 entry.addr = (void *)&KernelsList.back(); 1801 DeviceInfo.addOffloadEntry(device_id, entry); 1802 DP("Entry point %ld maps to %s\n", e - HostBegin, e->name); 1803 } 1804 1805 return DeviceInfo.getOffloadEntriesTable(device_id); 1806 } 1807 1808 void *__tgt_rtl_data_alloc(int device_id, int64_t size, void *, int32_t kind) { 1809 void *ptr = NULL; 1810 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1811 1812 if (kind != TARGET_ALLOC_DEFAULT) { 1813 REPORT("Invalid target data allocation kind or requested allocator not " 1814 "implemented yet\n"); 1815 return NULL; 1816 } 1817 1818 hsa_status_t err = core::Runtime::DeviceMalloc(&ptr, size, device_id); 1819 DP("Tgt alloc data %ld bytes, (tgt:%016llx).\n", size, 1820 (long long unsigned)(Elf64_Addr)ptr); 1821 ptr = (err == HSA_STATUS_SUCCESS) ? ptr : NULL; 1822 return ptr; 1823 } 1824 1825 int32_t __tgt_rtl_data_submit(int device_id, void *tgt_ptr, void *hst_ptr, 1826 int64_t size) { 1827 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1828 __tgt_async_info AsyncInfo; 1829 int32_t rc = dataSubmit(device_id, tgt_ptr, hst_ptr, size, &AsyncInfo); 1830 if (rc != OFFLOAD_SUCCESS) 1831 return OFFLOAD_FAIL; 1832 1833 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1834 } 1835 1836 int32_t __tgt_rtl_data_submit_async(int device_id, void *tgt_ptr, void *hst_ptr, 1837 int64_t size, __tgt_async_info *AsyncInfo) { 1838 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1839 if (AsyncInfo) { 1840 initAsyncInfo(AsyncInfo); 1841 return dataSubmit(device_id, tgt_ptr, hst_ptr, size, AsyncInfo); 1842 } else { 1843 return __tgt_rtl_data_submit(device_id, tgt_ptr, hst_ptr, size); 1844 } 1845 } 1846 1847 int32_t __tgt_rtl_data_retrieve(int device_id, void *hst_ptr, void *tgt_ptr, 1848 int64_t size) { 1849 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1850 __tgt_async_info AsyncInfo; 1851 int32_t rc = dataRetrieve(device_id, hst_ptr, tgt_ptr, size, &AsyncInfo); 1852 if (rc != OFFLOAD_SUCCESS) 1853 return OFFLOAD_FAIL; 1854 1855 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1856 } 1857 1858 int32_t __tgt_rtl_data_retrieve_async(int device_id, void *hst_ptr, 1859 void *tgt_ptr, int64_t size, 1860 __tgt_async_info *AsyncInfo) { 1861 assert(AsyncInfo && "AsyncInfo is nullptr"); 1862 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1863 initAsyncInfo(AsyncInfo); 1864 return dataRetrieve(device_id, hst_ptr, tgt_ptr, size, AsyncInfo); 1865 } 1866 1867 int32_t __tgt_rtl_data_delete(int device_id, void *tgt_ptr) { 1868 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1869 hsa_status_t err; 1870 DP("Tgt free data (tgt:%016llx).\n", (long long unsigned)(Elf64_Addr)tgt_ptr); 1871 err = core::Runtime::Memfree(tgt_ptr); 1872 if (err != HSA_STATUS_SUCCESS) { 1873 DP("Error when freeing CUDA memory\n"); 1874 return OFFLOAD_FAIL; 1875 } 1876 return OFFLOAD_SUCCESS; 1877 } 1878 1879 // Determine launch values for threadsPerGroup and num_groups. 1880 // Outputs: treadsPerGroup, num_groups 1881 // Inputs: Max_Teams, Max_WG_Size, Warp_Size, ExecutionMode, 1882 // EnvTeamLimit, EnvNumTeams, num_teams, thread_limit, 1883 // loop_tripcount. 1884 void getLaunchVals(int &threadsPerGroup, int &num_groups, int ConstWGSize, 1885 int ExecutionMode, int EnvTeamLimit, int EnvNumTeams, 1886 int num_teams, int thread_limit, uint64_t loop_tripcount, 1887 int32_t device_id) { 1888 1889 int Max_Teams = DeviceInfo.EnvMaxTeamsDefault > 0 1890 ? DeviceInfo.EnvMaxTeamsDefault 1891 : DeviceInfo.NumTeams[device_id]; 1892 if (Max_Teams > DeviceInfo.HardTeamLimit) 1893 Max_Teams = DeviceInfo.HardTeamLimit; 1894 1895 if (print_kernel_trace & STARTUP_DETAILS) { 1896 fprintf(stderr, "RTLDeviceInfoTy::Max_Teams: %d\n", 1897 RTLDeviceInfoTy::Max_Teams); 1898 fprintf(stderr, "Max_Teams: %d\n", Max_Teams); 1899 fprintf(stderr, "RTLDeviceInfoTy::Warp_Size: %d\n", 1900 RTLDeviceInfoTy::Warp_Size); 1901 fprintf(stderr, "RTLDeviceInfoTy::Max_WG_Size: %d\n", 1902 RTLDeviceInfoTy::Max_WG_Size); 1903 fprintf(stderr, "RTLDeviceInfoTy::Default_WG_Size: %d\n", 1904 RTLDeviceInfoTy::Default_WG_Size); 1905 fprintf(stderr, "thread_limit: %d\n", thread_limit); 1906 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1907 fprintf(stderr, "ConstWGSize: %d\n", ConstWGSize); 1908 } 1909 // check for thread_limit() clause 1910 if (thread_limit > 0) { 1911 threadsPerGroup = thread_limit; 1912 DP("Setting threads per block to requested %d\n", thread_limit); 1913 if (ExecutionMode == GENERIC) { // Add master warp for GENERIC 1914 threadsPerGroup += RTLDeviceInfoTy::Warp_Size; 1915 DP("Adding master wavefront: +%d threads\n", RTLDeviceInfoTy::Warp_Size); 1916 } 1917 if (threadsPerGroup > RTLDeviceInfoTy::Max_WG_Size) { // limit to max 1918 threadsPerGroup = RTLDeviceInfoTy::Max_WG_Size; 1919 DP("Setting threads per block to maximum %d\n", threadsPerGroup); 1920 } 1921 } 1922 // check flat_max_work_group_size attr here 1923 if (threadsPerGroup > ConstWGSize) { 1924 threadsPerGroup = ConstWGSize; 1925 DP("Reduced threadsPerGroup to flat-attr-group-size limit %d\n", 1926 threadsPerGroup); 1927 } 1928 if (print_kernel_trace & STARTUP_DETAILS) 1929 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1930 DP("Preparing %d threads\n", threadsPerGroup); 1931 1932 // Set default num_groups (teams) 1933 if (DeviceInfo.EnvTeamLimit > 0) 1934 num_groups = (Max_Teams < DeviceInfo.EnvTeamLimit) 1935 ? Max_Teams 1936 : DeviceInfo.EnvTeamLimit; 1937 else 1938 num_groups = Max_Teams; 1939 DP("Set default num of groups %d\n", num_groups); 1940 1941 if (print_kernel_trace & STARTUP_DETAILS) { 1942 fprintf(stderr, "num_groups: %d\n", num_groups); 1943 fprintf(stderr, "num_teams: %d\n", num_teams); 1944 } 1945 1946 // Reduce num_groups if threadsPerGroup exceeds RTLDeviceInfoTy::Max_WG_Size 1947 // This reduction is typical for default case (no thread_limit clause). 1948 // or when user goes crazy with num_teams clause. 1949 // FIXME: We cant distinguish between a constant or variable thread limit. 1950 // So we only handle constant thread_limits. 1951 if (threadsPerGroup > 1952 RTLDeviceInfoTy::Default_WG_Size) // 256 < threadsPerGroup <= 1024 1953 // Should we round threadsPerGroup up to nearest RTLDeviceInfoTy::Warp_Size 1954 // here? 1955 num_groups = (Max_Teams * RTLDeviceInfoTy::Max_WG_Size) / threadsPerGroup; 1956 1957 // check for num_teams() clause 1958 if (num_teams > 0) { 1959 num_groups = (num_teams < num_groups) ? num_teams : num_groups; 1960 } 1961 if (print_kernel_trace & STARTUP_DETAILS) { 1962 fprintf(stderr, "num_groups: %d\n", num_groups); 1963 fprintf(stderr, "DeviceInfo.EnvNumTeams %d\n", DeviceInfo.EnvNumTeams); 1964 fprintf(stderr, "DeviceInfo.EnvTeamLimit %d\n", DeviceInfo.EnvTeamLimit); 1965 } 1966 1967 if (DeviceInfo.EnvNumTeams > 0) { 1968 num_groups = (DeviceInfo.EnvNumTeams < num_groups) ? DeviceInfo.EnvNumTeams 1969 : num_groups; 1970 DP("Modifying teams based on EnvNumTeams %d\n", DeviceInfo.EnvNumTeams); 1971 } else if (DeviceInfo.EnvTeamLimit > 0) { 1972 num_groups = (DeviceInfo.EnvTeamLimit < num_groups) 1973 ? DeviceInfo.EnvTeamLimit 1974 : num_groups; 1975 DP("Modifying teams based on EnvTeamLimit%d\n", DeviceInfo.EnvTeamLimit); 1976 } else { 1977 if (num_teams <= 0) { 1978 if (loop_tripcount > 0) { 1979 if (ExecutionMode == SPMD) { 1980 // round up to the nearest integer 1981 num_groups = ((loop_tripcount - 1) / threadsPerGroup) + 1; 1982 } else { 1983 num_groups = loop_tripcount; 1984 } 1985 DP("Using %d teams due to loop trip count %" PRIu64 " and number of " 1986 "threads per block %d\n", 1987 num_groups, loop_tripcount, threadsPerGroup); 1988 } 1989 } else { 1990 num_groups = num_teams; 1991 } 1992 if (num_groups > Max_Teams) { 1993 num_groups = Max_Teams; 1994 if (print_kernel_trace & STARTUP_DETAILS) 1995 fprintf(stderr, "Limiting num_groups %d to Max_Teams %d \n", num_groups, 1996 Max_Teams); 1997 } 1998 if (num_groups > num_teams && num_teams > 0) { 1999 num_groups = num_teams; 2000 if (print_kernel_trace & STARTUP_DETAILS) 2001 fprintf(stderr, "Limiting num_groups %d to clause num_teams %d \n", 2002 num_groups, num_teams); 2003 } 2004 } 2005 2006 // num_teams clause always honored, no matter what, unless DEFAULT is active. 2007 if (num_teams > 0) { 2008 num_groups = num_teams; 2009 // Cap num_groups to EnvMaxTeamsDefault if set. 2010 if (DeviceInfo.EnvMaxTeamsDefault > 0 && 2011 num_groups > DeviceInfo.EnvMaxTeamsDefault) 2012 num_groups = DeviceInfo.EnvMaxTeamsDefault; 2013 } 2014 if (print_kernel_trace & STARTUP_DETAILS) { 2015 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 2016 fprintf(stderr, "num_groups: %d\n", num_groups); 2017 fprintf(stderr, "loop_tripcount: %ld\n", loop_tripcount); 2018 } 2019 DP("Final %d num_groups and %d threadsPerGroup\n", num_groups, 2020 threadsPerGroup); 2021 } 2022 2023 static uint64_t acquire_available_packet_id(hsa_queue_t *queue) { 2024 uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1); 2025 bool full = true; 2026 while (full) { 2027 full = 2028 packet_id >= (queue->size + hsa_queue_load_read_index_scacquire(queue)); 2029 } 2030 return packet_id; 2031 } 2032 2033 static int32_t __tgt_rtl_run_target_team_region_locked( 2034 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 2035 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 2036 int32_t thread_limit, uint64_t loop_tripcount); 2037 2038 int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr, 2039 void **tgt_args, 2040 ptrdiff_t *tgt_offsets, 2041 int32_t arg_num, int32_t num_teams, 2042 int32_t thread_limit, 2043 uint64_t loop_tripcount) { 2044 2045 DeviceInfo.load_run_lock.lock_shared(); 2046 int32_t res = __tgt_rtl_run_target_team_region_locked( 2047 device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, num_teams, 2048 thread_limit, loop_tripcount); 2049 2050 DeviceInfo.load_run_lock.unlock_shared(); 2051 return res; 2052 } 2053 2054 int32_t __tgt_rtl_run_target_team_region_locked( 2055 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 2056 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 2057 int32_t thread_limit, uint64_t loop_tripcount) { 2058 // Set the context we are using 2059 // update thread limit content in gpu memory if un-initialized or specified 2060 // from host 2061 2062 DP("Run target team region thread_limit %d\n", thread_limit); 2063 2064 // All args are references. 2065 std::vector<void *> args(arg_num); 2066 std::vector<void *> ptrs(arg_num); 2067 2068 DP("Arg_num: %d\n", arg_num); 2069 for (int32_t i = 0; i < arg_num; ++i) { 2070 ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]); 2071 args[i] = &ptrs[i]; 2072 DP("Offseted base: arg[%d]:" DPxMOD "\n", i, DPxPTR(ptrs[i])); 2073 } 2074 2075 KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr; 2076 2077 std::string kernel_name = std::string(KernelInfo->Name); 2078 auto &KernelInfoTable = DeviceInfo.KernelInfoTable; 2079 if (KernelInfoTable[device_id].find(kernel_name) == 2080 KernelInfoTable[device_id].end()) { 2081 DP("Kernel %s not found\n", kernel_name.c_str()); 2082 return OFFLOAD_FAIL; 2083 } 2084 2085 const atl_kernel_info_t KernelInfoEntry = 2086 KernelInfoTable[device_id][kernel_name]; 2087 const uint32_t group_segment_size = KernelInfoEntry.group_segment_size; 2088 const uint32_t sgpr_count = KernelInfoEntry.sgpr_count; 2089 const uint32_t vgpr_count = KernelInfoEntry.vgpr_count; 2090 const uint32_t sgpr_spill_count = KernelInfoEntry.sgpr_spill_count; 2091 const uint32_t vgpr_spill_count = KernelInfoEntry.vgpr_spill_count; 2092 2093 assert(arg_num == (int)KernelInfoEntry.num_args); 2094 2095 /* 2096 * Set limit based on ThreadsPerGroup and GroupsPerDevice 2097 */ 2098 int num_groups = 0; 2099 2100 int threadsPerGroup = RTLDeviceInfoTy::Default_WG_Size; 2101 2102 getLaunchVals(threadsPerGroup, num_groups, KernelInfo->ConstWGSize, 2103 KernelInfo->ExecutionMode, DeviceInfo.EnvTeamLimit, 2104 DeviceInfo.EnvNumTeams, 2105 num_teams, // From run_region arg 2106 thread_limit, // From run_region arg 2107 loop_tripcount, // From run_region arg 2108 KernelInfo->device_id); 2109 2110 if (print_kernel_trace >= LAUNCH) { 2111 // enum modes are SPMD, GENERIC, NONE 0,1,2 2112 // if doing rtl timing, print to stderr, unless stdout requested. 2113 bool traceToStdout = print_kernel_trace & (RTL_TO_STDOUT | RTL_TIMING); 2114 fprintf(traceToStdout ? stdout : stderr, 2115 "DEVID:%2d SGN:%1d ConstWGSize:%-4d args:%2d teamsXthrds:(%4dX%4d) " 2116 "reqd:(%4dX%4d) lds_usage:%uB sgpr_count:%u vgpr_count:%u " 2117 "sgpr_spill_count:%u vgpr_spill_count:%u tripcount:%lu n:%s\n", 2118 device_id, KernelInfo->ExecutionMode, KernelInfo->ConstWGSize, 2119 arg_num, num_groups, threadsPerGroup, num_teams, thread_limit, 2120 group_segment_size, sgpr_count, vgpr_count, sgpr_spill_count, 2121 vgpr_spill_count, loop_tripcount, KernelInfo->Name); 2122 } 2123 2124 // Run on the device. 2125 { 2126 hsa_queue_t *queue = DeviceInfo.HSAQueues[device_id]; 2127 if (!queue) { 2128 return OFFLOAD_FAIL; 2129 } 2130 uint64_t packet_id = acquire_available_packet_id(queue); 2131 2132 const uint32_t mask = queue->size - 1; // size is a power of 2 2133 hsa_kernel_dispatch_packet_t *packet = 2134 (hsa_kernel_dispatch_packet_t *)queue->base_address + 2135 (packet_id & mask); 2136 2137 // packet->header is written last 2138 packet->setup = UINT16_C(1) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS; 2139 packet->workgroup_size_x = threadsPerGroup; 2140 packet->workgroup_size_y = 1; 2141 packet->workgroup_size_z = 1; 2142 packet->reserved0 = 0; 2143 packet->grid_size_x = num_groups * threadsPerGroup; 2144 packet->grid_size_y = 1; 2145 packet->grid_size_z = 1; 2146 packet->private_segment_size = KernelInfoEntry.private_segment_size; 2147 packet->group_segment_size = KernelInfoEntry.group_segment_size; 2148 packet->kernel_object = KernelInfoEntry.kernel_object; 2149 packet->kernarg_address = 0; // use the block allocator 2150 packet->reserved2 = 0; // atmi writes id_ here 2151 packet->completion_signal = {0}; // may want a pool of signals 2152 2153 KernelArgPool *ArgPool = nullptr; 2154 { 2155 auto it = KernelArgPoolMap.find(std::string(KernelInfo->Name)); 2156 if (it != KernelArgPoolMap.end()) { 2157 ArgPool = (it->second).get(); 2158 } 2159 } 2160 if (!ArgPool) { 2161 DP("Warning: No ArgPool for %s on device %d\n", KernelInfo->Name, 2162 device_id); 2163 } 2164 { 2165 void *kernarg = nullptr; 2166 if (ArgPool) { 2167 assert(ArgPool->kernarg_segment_size == (arg_num * sizeof(void *))); 2168 kernarg = ArgPool->allocate(arg_num); 2169 } 2170 if (!kernarg) { 2171 DP("Allocate kernarg failed\n"); 2172 return OFFLOAD_FAIL; 2173 } 2174 2175 // Copy explicit arguments 2176 for (int i = 0; i < arg_num; i++) { 2177 memcpy((char *)kernarg + sizeof(void *) * i, args[i], sizeof(void *)); 2178 } 2179 2180 // Initialize implicit arguments. ATMI seems to leave most fields 2181 // uninitialized 2182 atmi_implicit_args_t *impl_args = 2183 reinterpret_cast<atmi_implicit_args_t *>( 2184 static_cast<char *>(kernarg) + ArgPool->kernarg_segment_size); 2185 memset(impl_args, 0, 2186 sizeof(atmi_implicit_args_t)); // may not be necessary 2187 impl_args->offset_x = 0; 2188 impl_args->offset_y = 0; 2189 impl_args->offset_z = 0; 2190 2191 // assign a hostcall buffer for the selected Q 2192 if (__atomic_load_n(&DeviceInfo.hostcall_required, __ATOMIC_ACQUIRE)) { 2193 // hostrpc_assign_buffer is not thread safe, and this function is 2194 // under a multiple reader lock, not a writer lock. 2195 static pthread_mutex_t hostcall_init_lock = PTHREAD_MUTEX_INITIALIZER; 2196 pthread_mutex_lock(&hostcall_init_lock); 2197 impl_args->hostcall_ptr = hostrpc_assign_buffer( 2198 DeviceInfo.HSAAgents[device_id], queue, device_id); 2199 pthread_mutex_unlock(&hostcall_init_lock); 2200 if (!impl_args->hostcall_ptr) { 2201 DP("hostrpc_assign_buffer failed, gpu would dereference null and " 2202 "error\n"); 2203 return OFFLOAD_FAIL; 2204 } 2205 } 2206 2207 packet->kernarg_address = kernarg; 2208 } 2209 2210 { 2211 hsa_signal_t s = DeviceInfo.FreeSignalPool.pop(); 2212 if (s.handle == 0) { 2213 DP("Failed to get signal instance\n"); 2214 return OFFLOAD_FAIL; 2215 } 2216 packet->completion_signal = s; 2217 hsa_signal_store_relaxed(packet->completion_signal, 1); 2218 } 2219 2220 core::packet_store_release(reinterpret_cast<uint32_t *>(packet), 2221 core::create_header(), packet->setup); 2222 2223 hsa_signal_store_relaxed(queue->doorbell_signal, packet_id); 2224 2225 while (hsa_signal_wait_scacquire(packet->completion_signal, 2226 HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX, 2227 HSA_WAIT_STATE_BLOCKED) != 0) 2228 ; 2229 2230 assert(ArgPool); 2231 ArgPool->deallocate(packet->kernarg_address); 2232 DeviceInfo.FreeSignalPool.push(packet->completion_signal); 2233 } 2234 2235 DP("Kernel completed\n"); 2236 return OFFLOAD_SUCCESS; 2237 } 2238 2239 int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr, 2240 void **tgt_args, ptrdiff_t *tgt_offsets, 2241 int32_t arg_num) { 2242 // use one team and one thread 2243 // fix thread num 2244 int32_t team_num = 1; 2245 int32_t thread_limit = 0; // use default 2246 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 2247 tgt_offsets, arg_num, team_num, 2248 thread_limit, 0); 2249 } 2250 2251 int32_t __tgt_rtl_run_target_region_async(int32_t device_id, 2252 void *tgt_entry_ptr, void **tgt_args, 2253 ptrdiff_t *tgt_offsets, 2254 int32_t arg_num, 2255 __tgt_async_info *AsyncInfo) { 2256 assert(AsyncInfo && "AsyncInfo is nullptr"); 2257 initAsyncInfo(AsyncInfo); 2258 2259 // use one team and one thread 2260 // fix thread num 2261 int32_t team_num = 1; 2262 int32_t thread_limit = 0; // use default 2263 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 2264 tgt_offsets, arg_num, team_num, 2265 thread_limit, 0); 2266 } 2267 2268 int32_t __tgt_rtl_synchronize(int32_t device_id, __tgt_async_info *AsyncInfo) { 2269 assert(AsyncInfo && "AsyncInfo is nullptr"); 2270 2271 // Cuda asserts that AsyncInfo->Queue is non-null, but this invariant 2272 // is not ensured by devices.cpp for amdgcn 2273 // assert(AsyncInfo->Queue && "AsyncInfo->Queue is nullptr"); 2274 if (AsyncInfo->Queue) { 2275 finiAsyncInfo(AsyncInfo); 2276 } 2277 return OFFLOAD_SUCCESS; 2278 } 2279 2280 namespace core { 2281 hsa_status_t allow_access_to_all_gpu_agents(void *ptr) { 2282 return hsa_amd_agents_allow_access(DeviceInfo.HSAAgents.size(), 2283 &DeviceInfo.HSAAgents[0], NULL, ptr); 2284 } 2285 2286 } // namespace core 2287