1 //===----RTLs/hsa/src/rtl.cpp - Target RTLs Implementation -------- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // RTL for hsa machine 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <algorithm> 14 #include <assert.h> 15 #include <cstdio> 16 #include <cstdlib> 17 #include <cstring> 18 #include <dlfcn.h> 19 #include <elf.h> 20 #include <ffi.h> 21 #include <fstream> 22 #include <iostream> 23 #include <libelf.h> 24 #include <list> 25 #include <memory> 26 #include <mutex> 27 #include <shared_mutex> 28 #include <thread> 29 #include <unordered_map> 30 #include <vector> 31 32 // Header from ATMI interface 33 #include "atmi_interop_hsa.h" 34 #include "atmi_runtime.h" 35 36 #include "internal.h" 37 38 #include "Debug.h" 39 #include "get_elf_mach_gfx_name.h" 40 #include "machine.h" 41 #include "omptargetplugin.h" 42 #include "print_tracing.h" 43 44 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 45 46 #ifndef TARGET_NAME 47 #define TARGET_NAME AMDHSA 48 #endif 49 #define DEBUG_PREFIX "Target " GETNAME(TARGET_NAME) " RTL" 50 51 // hostrpc interface, FIXME: consider moving to its own include these are 52 // statically linked into amdgpu/plugin if present from hostrpc_services.a, 53 // linked as --whole-archive to override the weak symbols that are used to 54 // implement a fallback for toolchains that do not yet have a hostrpc library. 55 extern "C" { 56 unsigned long hostrpc_assign_buffer(hsa_agent_t agent, hsa_queue_t *this_Q, 57 uint32_t device_id); 58 hsa_status_t hostrpc_init(); 59 hsa_status_t hostrpc_terminate(); 60 61 __attribute__((weak)) hsa_status_t hostrpc_init() { return HSA_STATUS_SUCCESS; } 62 __attribute__((weak)) hsa_status_t hostrpc_terminate() { 63 return HSA_STATUS_SUCCESS; 64 } 65 __attribute__((weak)) unsigned long 66 hostrpc_assign_buffer(hsa_agent_t, hsa_queue_t *, uint32_t device_id) { 67 DP("Warning: Attempting to assign hostrpc to device %u, but hostrpc library " 68 "missing\n", 69 device_id); 70 return 0; 71 } 72 } 73 74 int print_kernel_trace; 75 76 #ifdef OMPTARGET_DEBUG 77 #define check(msg, status) \ 78 if (status != HSA_STATUS_SUCCESS) { \ 79 DP(#msg " failed\n"); \ 80 } else { \ 81 DP(#msg " succeeded\n"); \ 82 } 83 #else 84 #define check(msg, status) \ 85 {} 86 #endif 87 88 #include "elf_common.h" 89 90 namespace core { 91 hsa_status_t RegisterModuleFromMemory( 92 std::map<std::string, atl_kernel_info_t> &KernelInfo, 93 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, void *, size_t, 94 hsa_agent_t agent, 95 hsa_status_t (*on_deserialized_data)(void *data, size_t size, 96 void *cb_state), 97 void *cb_state, std::vector<hsa_executable_t> &HSAExecutables); 98 } 99 100 namespace hsa { 101 template <typename C> hsa_status_t iterate_agents(C cb) { 102 auto L = [](hsa_agent_t agent, void *data) -> hsa_status_t { 103 C *unwrapped = static_cast<C *>(data); 104 return (*unwrapped)(agent); 105 }; 106 return hsa_iterate_agents(L, static_cast<void *>(&cb)); 107 } 108 109 } // namespace hsa 110 111 /// Keep entries table per device 112 struct FuncOrGblEntryTy { 113 __tgt_target_table Table; 114 std::vector<__tgt_offload_entry> Entries; 115 }; 116 117 enum ExecutionModeType { 118 SPMD, // constructors, destructors, 119 // combined constructs (`teams distribute parallel for [simd]`) 120 GENERIC, // everything else 121 NONE 122 }; 123 124 struct KernelArgPool { 125 private: 126 static pthread_mutex_t mutex; 127 128 public: 129 uint32_t kernarg_segment_size; 130 void *kernarg_region = nullptr; 131 std::queue<int> free_kernarg_segments; 132 133 uint32_t kernarg_size_including_implicit() { 134 return kernarg_segment_size + sizeof(atmi_implicit_args_t); 135 } 136 137 ~KernelArgPool() { 138 if (kernarg_region) { 139 auto r = hsa_amd_memory_pool_free(kernarg_region); 140 if (r != HSA_STATUS_SUCCESS) { 141 DP("hsa_amd_memory_pool_free failed: %s\n", get_error_string(r)); 142 } 143 } 144 } 145 146 // Can't really copy or move a mutex 147 KernelArgPool() = default; 148 KernelArgPool(const KernelArgPool &) = delete; 149 KernelArgPool(KernelArgPool &&) = delete; 150 151 KernelArgPool(uint32_t kernarg_segment_size, 152 hsa_amd_memory_pool_t &memory_pool) 153 : kernarg_segment_size(kernarg_segment_size) { 154 155 // atmi uses one pool per kernel for all gpus, with a fixed upper size 156 // preserving that exact scheme here, including the queue<int> 157 158 hsa_status_t err = hsa_amd_memory_pool_allocate( 159 memory_pool, kernarg_size_including_implicit() * MAX_NUM_KERNELS, 0, 160 &kernarg_region); 161 162 if (err != HSA_STATUS_SUCCESS) { 163 DP("hsa_amd_memory_pool_allocate failed: %s\n", get_error_string(err)); 164 kernarg_region = nullptr; // paranoid 165 return; 166 } 167 168 err = core::allow_access_to_all_gpu_agents(kernarg_region); 169 if (err != HSA_STATUS_SUCCESS) { 170 DP("hsa allow_access_to_all_gpu_agents failed: %s\n", 171 get_error_string(err)); 172 auto r = hsa_amd_memory_pool_free(kernarg_region); 173 if (r != HSA_STATUS_SUCCESS) { 174 // if free failed, can't do anything more to resolve it 175 DP("hsa memory poll free failed: %s\n", get_error_string(err)); 176 } 177 kernarg_region = nullptr; 178 return; 179 } 180 181 for (int i = 0; i < MAX_NUM_KERNELS; i++) { 182 free_kernarg_segments.push(i); 183 } 184 } 185 186 void *allocate(uint64_t arg_num) { 187 assert((arg_num * sizeof(void *)) == kernarg_segment_size); 188 lock l(&mutex); 189 void *res = nullptr; 190 if (!free_kernarg_segments.empty()) { 191 192 int free_idx = free_kernarg_segments.front(); 193 res = static_cast<void *>(static_cast<char *>(kernarg_region) + 194 (free_idx * kernarg_size_including_implicit())); 195 assert(free_idx == pointer_to_index(res)); 196 free_kernarg_segments.pop(); 197 } 198 return res; 199 } 200 201 void deallocate(void *ptr) { 202 lock l(&mutex); 203 int idx = pointer_to_index(ptr); 204 free_kernarg_segments.push(idx); 205 } 206 207 private: 208 int pointer_to_index(void *ptr) { 209 ptrdiff_t bytes = 210 static_cast<char *>(ptr) - static_cast<char *>(kernarg_region); 211 assert(bytes >= 0); 212 assert(bytes % kernarg_size_including_implicit() == 0); 213 return bytes / kernarg_size_including_implicit(); 214 } 215 struct lock { 216 lock(pthread_mutex_t *m) : m(m) { pthread_mutex_lock(m); } 217 ~lock() { pthread_mutex_unlock(m); } 218 pthread_mutex_t *m; 219 }; 220 }; 221 pthread_mutex_t KernelArgPool::mutex = PTHREAD_MUTEX_INITIALIZER; 222 223 std::unordered_map<std::string /*kernel*/, std::unique_ptr<KernelArgPool>> 224 KernelArgPoolMap; 225 226 /// Use a single entity to encode a kernel and a set of flags 227 struct KernelTy { 228 // execution mode of kernel 229 // 0 - SPMD mode (without master warp) 230 // 1 - Generic mode (with master warp) 231 int8_t ExecutionMode; 232 int16_t ConstWGSize; 233 int32_t device_id; 234 void *CallStackAddr = nullptr; 235 const char *Name; 236 237 KernelTy(int8_t _ExecutionMode, int16_t _ConstWGSize, int32_t _device_id, 238 void *_CallStackAddr, const char *_Name, 239 uint32_t _kernarg_segment_size, 240 hsa_amd_memory_pool_t &KernArgMemoryPool) 241 : ExecutionMode(_ExecutionMode), ConstWGSize(_ConstWGSize), 242 device_id(_device_id), CallStackAddr(_CallStackAddr), Name(_Name) { 243 DP("Construct kernelinfo: ExecMode %d\n", ExecutionMode); 244 245 std::string N(_Name); 246 if (KernelArgPoolMap.find(N) == KernelArgPoolMap.end()) { 247 KernelArgPoolMap.insert( 248 std::make_pair(N, std::unique_ptr<KernelArgPool>(new KernelArgPool( 249 _kernarg_segment_size, KernArgMemoryPool)))); 250 } 251 } 252 }; 253 254 /// List that contains all the kernels. 255 /// FIXME: we may need this to be per device and per library. 256 std::list<KernelTy> KernelsList; 257 258 template <typename Callback> static hsa_status_t FindAgents(Callback CB) { 259 260 hsa_status_t err = 261 hsa::iterate_agents([&](hsa_agent_t agent) -> hsa_status_t { 262 hsa_device_type_t device_type; 263 // get_info fails iff HSA runtime not yet initialized 264 hsa_status_t err = 265 hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 266 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) 267 printf("rtl.cpp: err %d\n", err); 268 assert(err == HSA_STATUS_SUCCESS); 269 270 CB(device_type, agent); 271 return HSA_STATUS_SUCCESS; 272 }); 273 274 // iterate_agents fails iff HSA runtime not yet initialized 275 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) { 276 printf("rtl.cpp: err %d\n", err); 277 } 278 279 return err; 280 } 281 282 static void callbackQueue(hsa_status_t status, hsa_queue_t *source, 283 void *data) { 284 if (status != HSA_STATUS_SUCCESS) { 285 const char *status_string; 286 if (hsa_status_string(status, &status_string) != HSA_STATUS_SUCCESS) { 287 status_string = "unavailable"; 288 } 289 fprintf(stderr, "[%s:%d] GPU error in queue %p %d (%s)\n", __FILE__, 290 __LINE__, source, status, status_string); 291 abort(); 292 } 293 } 294 295 namespace core { 296 namespace { 297 void packet_store_release(uint32_t *packet, uint16_t header, uint16_t rest) { 298 __atomic_store_n(packet, header | (rest << 16), __ATOMIC_RELEASE); 299 } 300 301 uint16_t create_header() { 302 uint16_t header = HSA_PACKET_TYPE_KERNEL_DISPATCH << HSA_PACKET_HEADER_TYPE; 303 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE; 304 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE; 305 return header; 306 } 307 308 hsa_status_t addKernArgPool(hsa_amd_memory_pool_t MemoryPool, void *Data) { 309 std::vector<hsa_amd_memory_pool_t> *Result = 310 static_cast<std::vector<hsa_amd_memory_pool_t> *>(Data); 311 bool AllocAllowed = false; 312 hsa_status_t err = hsa_amd_memory_pool_get_info( 313 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED, 314 &AllocAllowed); 315 if (err != HSA_STATUS_SUCCESS) { 316 fprintf(stderr, "Alloc allowed in memory pool check failed: %s\n", 317 get_error_string(err)); 318 return err; 319 } 320 321 if (!AllocAllowed) { 322 // nothing needs to be done here. 323 return HSA_STATUS_SUCCESS; 324 } 325 326 uint32_t GlobalFlags = 0; 327 err = hsa_amd_memory_pool_get_info( 328 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 329 if (err != HSA_STATUS_SUCCESS) { 330 fprintf(stderr, "Get memory pool info failed: %s\n", get_error_string(err)); 331 return err; 332 } 333 334 if ((GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) && 335 (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_KERNARG_INIT)) { 336 size_t size = 0; 337 err = hsa_amd_memory_pool_get_info(MemoryPool, 338 HSA_AMD_MEMORY_POOL_INFO_SIZE, &size); 339 if (err != HSA_STATUS_SUCCESS) { 340 fprintf(stderr, "Get memory pool size failed: %s\n", 341 get_error_string(err)); 342 return err; 343 } 344 if (size > 0) 345 Result->push_back(MemoryPool); 346 } 347 348 return HSA_STATUS_SUCCESS; 349 } 350 351 std::pair<hsa_status_t, hsa_amd_memory_pool_t> 352 FindKernargPool(const std::vector<hsa_agent_t> &HSAAgents) { 353 std::vector<hsa_amd_memory_pool_t> KernArgPools; 354 for (const auto &Agent : HSAAgents) { 355 hsa_status_t err = HSA_STATUS_SUCCESS; 356 err = hsa_amd_agent_iterate_memory_pools( 357 Agent, addKernArgPool, static_cast<void *>(&KernArgPools)); 358 if (err != HSA_STATUS_SUCCESS) { 359 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 360 "Iterate all memory pools", get_error_string(err)); 361 return {err, hsa_amd_memory_pool_t{}}; 362 } 363 } 364 365 if (KernArgPools.empty()) { 366 fprintf(stderr, "Unable to find any valid kernarg pool\n"); 367 return {HSA_STATUS_ERROR, hsa_amd_memory_pool_t{}}; 368 } 369 370 return {HSA_STATUS_SUCCESS, KernArgPools[0]}; 371 } 372 373 } // namespace 374 } // namespace core 375 376 /// Class containing all the device information 377 class RTLDeviceInfoTy { 378 std::vector<std::list<FuncOrGblEntryTy>> FuncGblEntries; 379 380 public: 381 // load binary populates symbol tables and mutates various global state 382 // run uses those symbol tables 383 std::shared_timed_mutex load_run_lock; 384 385 int NumberOfDevices; 386 387 // GPU devices 388 std::vector<hsa_agent_t> HSAAgents; 389 std::vector<hsa_queue_t *> HSAQueues; // one per gpu 390 391 // CPUs 392 std::vector<hsa_agent_t> CPUAgents; 393 394 // Device properties 395 std::vector<int> ComputeUnits; 396 std::vector<int> GroupsPerDevice; 397 std::vector<int> ThreadsPerGroup; 398 std::vector<int> WarpSize; 399 std::vector<std::string> GPUName; 400 401 // OpenMP properties 402 std::vector<int> NumTeams; 403 std::vector<int> NumThreads; 404 405 // OpenMP Environment properties 406 int EnvNumTeams; 407 int EnvTeamLimit; 408 int EnvMaxTeamsDefault; 409 410 // OpenMP Requires Flags 411 int64_t RequiresFlags; 412 413 // Resource pools 414 SignalPoolT FreeSignalPool; 415 416 bool hostcall_required = false; 417 418 std::vector<hsa_executable_t> HSAExecutables; 419 420 std::vector<std::map<std::string, atl_kernel_info_t>> KernelInfoTable; 421 std::vector<std::map<std::string, atl_symbol_info_t>> SymbolInfoTable; 422 423 hsa_amd_memory_pool_t KernArgPool; 424 425 struct atmiFreePtrDeletor { 426 void operator()(void *p) { 427 core::Runtime::Memfree(p); // ignore failure to free 428 } 429 }; 430 431 // device_State shared across loaded binaries, error if inconsistent size 432 std::vector<std::pair<std::unique_ptr<void, atmiFreePtrDeletor>, uint64_t>> 433 deviceStateStore; 434 435 static const unsigned HardTeamLimit = 436 (1 << 16) - 1; // 64K needed to fit in uint16 437 static const int DefaultNumTeams = 128; 438 static const int Max_Teams = 439 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_Teams]; 440 static const int Warp_Size = 441 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; 442 static const int Max_WG_Size = 443 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_WG_Size]; 444 static const int Default_WG_Size = 445 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Default_WG_Size]; 446 447 using MemcpyFunc = hsa_status_t (*)(hsa_signal_t, void *, const void *, 448 size_t size, hsa_agent_t); 449 hsa_status_t freesignalpool_memcpy(void *dest, const void *src, size_t size, 450 MemcpyFunc Func, int32_t deviceId) { 451 hsa_agent_t agent = HSAAgents[deviceId]; 452 hsa_signal_t s = FreeSignalPool.pop(); 453 if (s.handle == 0) { 454 return HSA_STATUS_ERROR; 455 } 456 hsa_status_t r = Func(s, dest, src, size, agent); 457 FreeSignalPool.push(s); 458 return r; 459 } 460 461 hsa_status_t freesignalpool_memcpy_d2h(void *dest, const void *src, 462 size_t size, int32_t deviceId) { 463 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_d2h, deviceId); 464 } 465 466 hsa_status_t freesignalpool_memcpy_h2d(void *dest, const void *src, 467 size_t size, int32_t deviceId) { 468 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_h2d, deviceId); 469 } 470 471 // Record entry point associated with device 472 void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) { 473 assert(device_id < (int32_t)FuncGblEntries.size() && 474 "Unexpected device id!"); 475 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 476 477 E.Entries.push_back(entry); 478 } 479 480 // Return true if the entry is associated with device 481 bool findOffloadEntry(int32_t device_id, void *addr) { 482 assert(device_id < (int32_t)FuncGblEntries.size() && 483 "Unexpected device id!"); 484 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 485 486 for (auto &it : E.Entries) { 487 if (it.addr == addr) 488 return true; 489 } 490 491 return false; 492 } 493 494 // Return the pointer to the target entries table 495 __tgt_target_table *getOffloadEntriesTable(int32_t device_id) { 496 assert(device_id < (int32_t)FuncGblEntries.size() && 497 "Unexpected device id!"); 498 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 499 500 int32_t size = E.Entries.size(); 501 502 // Table is empty 503 if (!size) 504 return 0; 505 506 __tgt_offload_entry *begin = &E.Entries[0]; 507 __tgt_offload_entry *end = &E.Entries[size - 1]; 508 509 // Update table info according to the entries and return the pointer 510 E.Table.EntriesBegin = begin; 511 E.Table.EntriesEnd = ++end; 512 513 return &E.Table; 514 } 515 516 // Clear entries table for a device 517 void clearOffloadEntriesTable(int device_id) { 518 assert(device_id < (int32_t)FuncGblEntries.size() && 519 "Unexpected device id!"); 520 FuncGblEntries[device_id].emplace_back(); 521 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 522 // KernelArgPoolMap.clear(); 523 E.Entries.clear(); 524 E.Table.EntriesBegin = E.Table.EntriesEnd = 0; 525 } 526 527 RTLDeviceInfoTy() { 528 // LIBOMPTARGET_KERNEL_TRACE provides a kernel launch trace to stderr 529 // anytime. You do not need a debug library build. 530 // 0 => no tracing 531 // 1 => tracing dispatch only 532 // >1 => verbosity increase 533 if (char *envStr = getenv("LIBOMPTARGET_KERNEL_TRACE")) 534 print_kernel_trace = atoi(envStr); 535 else 536 print_kernel_trace = 0; 537 538 DP("Start initializing HSA-ATMI\n"); 539 hsa_status_t err = core::atl_init_gpu_context(); 540 if (err != HSA_STATUS_SUCCESS) { 541 DP("Error when initializing HSA-ATMI\n"); 542 return; 543 } 544 545 // Init hostcall soon after initializing ATMI 546 hostrpc_init(); 547 548 err = FindAgents([&](hsa_device_type_t DeviceType, hsa_agent_t Agent) { 549 if (DeviceType == HSA_DEVICE_TYPE_CPU) { 550 CPUAgents.push_back(Agent); 551 } else { 552 HSAAgents.push_back(Agent); 553 } 554 }); 555 if (err != HSA_STATUS_SUCCESS) 556 return; 557 558 NumberOfDevices = (int)HSAAgents.size(); 559 560 if (NumberOfDevices == 0) { 561 DP("There are no devices supporting HSA.\n"); 562 return; 563 } else { 564 DP("There are %d devices supporting HSA.\n", NumberOfDevices); 565 } 566 std::tie(err, KernArgPool) = core::FindKernargPool(CPUAgents); 567 if (err != HSA_STATUS_SUCCESS) { 568 DP("Error when reading memory pools\n"); 569 return; 570 } 571 572 // Init the device info 573 HSAQueues.resize(NumberOfDevices); 574 FuncGblEntries.resize(NumberOfDevices); 575 ThreadsPerGroup.resize(NumberOfDevices); 576 ComputeUnits.resize(NumberOfDevices); 577 GPUName.resize(NumberOfDevices); 578 GroupsPerDevice.resize(NumberOfDevices); 579 WarpSize.resize(NumberOfDevices); 580 NumTeams.resize(NumberOfDevices); 581 NumThreads.resize(NumberOfDevices); 582 deviceStateStore.resize(NumberOfDevices); 583 KernelInfoTable.resize(NumberOfDevices); 584 SymbolInfoTable.resize(NumberOfDevices); 585 586 for (int i = 0; i < NumberOfDevices; i++) { 587 HSAQueues[i] = nullptr; 588 } 589 590 for (int i = 0; i < NumberOfDevices; i++) { 591 uint32_t queue_size = 0; 592 { 593 hsa_status_t err = hsa_agent_get_info( 594 HSAAgents[i], HSA_AGENT_INFO_QUEUE_MAX_SIZE, &queue_size); 595 if (err != HSA_STATUS_SUCCESS) { 596 DP("HSA query QUEUE_MAX_SIZE failed for agent %d\n", i); 597 return; 598 } 599 if (queue_size > core::Runtime::getInstance().getMaxQueueSize()) { 600 queue_size = core::Runtime::getInstance().getMaxQueueSize(); 601 } 602 } 603 604 hsa_status_t rc = hsa_queue_create( 605 HSAAgents[i], queue_size, HSA_QUEUE_TYPE_MULTI, callbackQueue, NULL, 606 UINT32_MAX, UINT32_MAX, &HSAQueues[i]); 607 if (rc != HSA_STATUS_SUCCESS) { 608 DP("Failed to create HSA queue %d\n", i); 609 return; 610 } 611 612 deviceStateStore[i] = {nullptr, 0}; 613 } 614 615 for (int i = 0; i < NumberOfDevices; i++) { 616 ThreadsPerGroup[i] = RTLDeviceInfoTy::Default_WG_Size; 617 GroupsPerDevice[i] = RTLDeviceInfoTy::DefaultNumTeams; 618 ComputeUnits[i] = 1; 619 DP("Device %d: Initial groupsPerDevice %d & threadsPerGroup %d\n", i, 620 GroupsPerDevice[i], ThreadsPerGroup[i]); 621 } 622 623 // Get environment variables regarding teams 624 char *envStr = getenv("OMP_TEAM_LIMIT"); 625 if (envStr) { 626 // OMP_TEAM_LIMIT has been set 627 EnvTeamLimit = std::stoi(envStr); 628 DP("Parsed OMP_TEAM_LIMIT=%d\n", EnvTeamLimit); 629 } else { 630 EnvTeamLimit = -1; 631 } 632 envStr = getenv("OMP_NUM_TEAMS"); 633 if (envStr) { 634 // OMP_NUM_TEAMS has been set 635 EnvNumTeams = std::stoi(envStr); 636 DP("Parsed OMP_NUM_TEAMS=%d\n", EnvNumTeams); 637 } else { 638 EnvNumTeams = -1; 639 } 640 // Get environment variables regarding expMaxTeams 641 envStr = getenv("OMP_MAX_TEAMS_DEFAULT"); 642 if (envStr) { 643 EnvMaxTeamsDefault = std::stoi(envStr); 644 DP("Parsed OMP_MAX_TEAMS_DEFAULT=%d\n", EnvMaxTeamsDefault); 645 } else { 646 EnvMaxTeamsDefault = -1; 647 } 648 649 // Default state. 650 RequiresFlags = OMP_REQ_UNDEFINED; 651 } 652 653 ~RTLDeviceInfoTy() { 654 DP("Finalizing the HSA-ATMI DeviceInfo.\n"); 655 // Run destructors on types that use HSA before 656 // atmi_finalize removes access to it 657 deviceStateStore.clear(); 658 KernelArgPoolMap.clear(); 659 // Terminate hostrpc before finalizing ATMI 660 hostrpc_terminate(); 661 662 hsa_status_t Err; 663 for (uint32_t I = 0; I < HSAExecutables.size(); I++) { 664 Err = hsa_executable_destroy(HSAExecutables[I]); 665 if (Err != HSA_STATUS_SUCCESS) { 666 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 667 "Destroying executable", get_error_string(Err)); 668 } 669 } 670 671 Err = hsa_shut_down(); 672 if (Err != HSA_STATUS_SUCCESS) { 673 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Shutting down HSA", 674 get_error_string(Err)); 675 } 676 } 677 }; 678 679 pthread_mutex_t SignalPoolT::mutex = PTHREAD_MUTEX_INITIALIZER; 680 681 // TODO: May need to drop the trailing to fields until deviceRTL is updated 682 struct omptarget_device_environmentTy { 683 int32_t debug_level; // gets value of envvar LIBOMPTARGET_DEVICE_RTL_DEBUG 684 // only useful for Debug build of deviceRTLs 685 int32_t num_devices; // gets number of active offload devices 686 int32_t device_num; // gets a value 0 to num_devices-1 687 }; 688 689 static RTLDeviceInfoTy DeviceInfo; 690 691 namespace { 692 693 int32_t dataRetrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size, 694 __tgt_async_info *AsyncInfo) { 695 assert(AsyncInfo && "AsyncInfo is nullptr"); 696 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 697 // Return success if we are not copying back to host from target. 698 if (!HstPtr) 699 return OFFLOAD_SUCCESS; 700 hsa_status_t err; 701 DP("Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 702 (long long unsigned)(Elf64_Addr)TgtPtr, 703 (long long unsigned)(Elf64_Addr)HstPtr); 704 705 err = DeviceInfo.freesignalpool_memcpy_d2h(HstPtr, TgtPtr, (size_t)Size, 706 DeviceId); 707 708 if (err != HSA_STATUS_SUCCESS) { 709 DP("Error when copying data from device to host. Pointers: " 710 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 711 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 712 return OFFLOAD_FAIL; 713 } 714 DP("DONE Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 715 (long long unsigned)(Elf64_Addr)TgtPtr, 716 (long long unsigned)(Elf64_Addr)HstPtr); 717 return OFFLOAD_SUCCESS; 718 } 719 720 int32_t dataSubmit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size, 721 __tgt_async_info *AsyncInfo) { 722 assert(AsyncInfo && "AsyncInfo is nullptr"); 723 hsa_status_t err; 724 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 725 // Return success if we are not doing host to target. 726 if (!HstPtr) 727 return OFFLOAD_SUCCESS; 728 729 DP("Submit data %ld bytes, (hst:%016llx) -> (tgt:%016llx).\n", Size, 730 (long long unsigned)(Elf64_Addr)HstPtr, 731 (long long unsigned)(Elf64_Addr)TgtPtr); 732 err = DeviceInfo.freesignalpool_memcpy_h2d(TgtPtr, HstPtr, (size_t)Size, 733 DeviceId); 734 if (err != HSA_STATUS_SUCCESS) { 735 DP("Error when copying data from host to device. Pointers: " 736 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 737 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 738 return OFFLOAD_FAIL; 739 } 740 return OFFLOAD_SUCCESS; 741 } 742 743 // Async. 744 // The implementation was written with cuda streams in mind. The semantics of 745 // that are to execute kernels on a queue in order of insertion. A synchronise 746 // call then makes writes visible between host and device. This means a series 747 // of N data_submit_async calls are expected to execute serially. HSA offers 748 // various options to run the data copies concurrently. This may require changes 749 // to libomptarget. 750 751 // __tgt_async_info* contains a void * Queue. Queue = 0 is used to indicate that 752 // there are no outstanding kernels that need to be synchronized. Any async call 753 // may be passed a Queue==0, at which point the cuda implementation will set it 754 // to non-null (see getStream). The cuda streams are per-device. Upstream may 755 // change this interface to explicitly initialize the AsyncInfo_pointer, but 756 // until then hsa lazily initializes it as well. 757 758 void initAsyncInfo(__tgt_async_info *AsyncInfo) { 759 // set non-null while using async calls, return to null to indicate completion 760 assert(AsyncInfo); 761 if (!AsyncInfo->Queue) { 762 AsyncInfo->Queue = reinterpret_cast<void *>(UINT64_MAX); 763 } 764 } 765 void finiAsyncInfo(__tgt_async_info *AsyncInfo) { 766 assert(AsyncInfo); 767 assert(AsyncInfo->Queue); 768 AsyncInfo->Queue = 0; 769 } 770 771 bool elf_machine_id_is_amdgcn(__tgt_device_image *image) { 772 const uint16_t amdgcnMachineID = 224; // EM_AMDGPU may not be in system elf.h 773 int32_t r = elf_check_machine(image, amdgcnMachineID); 774 if (!r) { 775 DP("Supported machine ID not found\n"); 776 } 777 return r; 778 } 779 780 uint32_t elf_e_flags(__tgt_device_image *image) { 781 char *img_begin = (char *)image->ImageStart; 782 size_t img_size = (char *)image->ImageEnd - img_begin; 783 784 Elf *e = elf_memory(img_begin, img_size); 785 if (!e) { 786 DP("Unable to get ELF handle: %s!\n", elf_errmsg(-1)); 787 return 0; 788 } 789 790 Elf64_Ehdr *eh64 = elf64_getehdr(e); 791 792 if (!eh64) { 793 DP("Unable to get machine ID from ELF file!\n"); 794 elf_end(e); 795 return 0; 796 } 797 798 uint32_t Flags = eh64->e_flags; 799 800 elf_end(e); 801 DP("ELF Flags: 0x%x\n", Flags); 802 return Flags; 803 } 804 } // namespace 805 806 int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) { 807 return elf_machine_id_is_amdgcn(image); 808 } 809 810 int __tgt_rtl_number_of_devices() { return DeviceInfo.NumberOfDevices; } 811 812 int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) { 813 DP("Init requires flags to %ld\n", RequiresFlags); 814 DeviceInfo.RequiresFlags = RequiresFlags; 815 return RequiresFlags; 816 } 817 818 namespace { 819 template <typename T> bool enforce_upper_bound(T *value, T upper) { 820 bool changed = *value > upper; 821 if (changed) { 822 *value = upper; 823 } 824 return changed; 825 } 826 } // namespace 827 828 int32_t __tgt_rtl_init_device(int device_id) { 829 hsa_status_t err; 830 831 // this is per device id init 832 DP("Initialize the device id: %d\n", device_id); 833 834 hsa_agent_t agent = DeviceInfo.HSAAgents[device_id]; 835 836 // Get number of Compute Unit 837 uint32_t compute_units = 0; 838 err = hsa_agent_get_info( 839 agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT, 840 &compute_units); 841 if (err != HSA_STATUS_SUCCESS) { 842 DeviceInfo.ComputeUnits[device_id] = 1; 843 DP("Error getting compute units : settiing to 1\n"); 844 } else { 845 DeviceInfo.ComputeUnits[device_id] = compute_units; 846 DP("Using %d compute unis per grid\n", DeviceInfo.ComputeUnits[device_id]); 847 } 848 849 char GetInfoName[64]; // 64 max size returned by get info 850 err = hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AGENT_INFO_NAME, 851 (void *)GetInfoName); 852 if (err) 853 DeviceInfo.GPUName[device_id] = "--unknown gpu--"; 854 else { 855 DeviceInfo.GPUName[device_id] = GetInfoName; 856 } 857 858 if (print_kernel_trace & STARTUP_DETAILS) 859 fprintf(stderr, "Device#%-2d CU's: %2d %s\n", device_id, 860 DeviceInfo.ComputeUnits[device_id], 861 DeviceInfo.GPUName[device_id].c_str()); 862 863 // Query attributes to determine number of threads/block and blocks/grid. 864 uint16_t workgroup_max_dim[3]; 865 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_DIM, 866 &workgroup_max_dim); 867 if (err != HSA_STATUS_SUCCESS) { 868 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::DefaultNumTeams; 869 DP("Error getting grid dims: num groups : %d\n", 870 RTLDeviceInfoTy::DefaultNumTeams); 871 } else if (workgroup_max_dim[0] <= RTLDeviceInfoTy::HardTeamLimit) { 872 DeviceInfo.GroupsPerDevice[device_id] = workgroup_max_dim[0]; 873 DP("Using %d ROCm blocks per grid\n", 874 DeviceInfo.GroupsPerDevice[device_id]); 875 } else { 876 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::HardTeamLimit; 877 DP("Max ROCm blocks per grid %d exceeds the hard team limit %d, capping " 878 "at the hard limit\n", 879 workgroup_max_dim[0], RTLDeviceInfoTy::HardTeamLimit); 880 } 881 882 // Get thread limit 883 hsa_dim3_t grid_max_dim; 884 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &grid_max_dim); 885 if (err == HSA_STATUS_SUCCESS) { 886 DeviceInfo.ThreadsPerGroup[device_id] = 887 reinterpret_cast<uint32_t *>(&grid_max_dim)[0] / 888 DeviceInfo.GroupsPerDevice[device_id]; 889 890 if (DeviceInfo.ThreadsPerGroup[device_id] == 0) { 891 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 892 DP("Default thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 893 } else if (enforce_upper_bound(&DeviceInfo.ThreadsPerGroup[device_id], 894 RTLDeviceInfoTy::Max_WG_Size)) { 895 DP("Capped thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 896 } else { 897 DP("Using ROCm Queried thread limit: %d\n", 898 DeviceInfo.ThreadsPerGroup[device_id]); 899 } 900 } else { 901 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 902 DP("Error getting max block dimension, use default:%d \n", 903 RTLDeviceInfoTy::Max_WG_Size); 904 } 905 906 // Get wavefront size 907 uint32_t wavefront_size = 0; 908 err = 909 hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size); 910 if (err == HSA_STATUS_SUCCESS) { 911 DP("Queried wavefront size: %d\n", wavefront_size); 912 DeviceInfo.WarpSize[device_id] = wavefront_size; 913 } else { 914 DP("Default wavefront size: %d\n", 915 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]); 916 DeviceInfo.WarpSize[device_id] = 917 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; 918 } 919 920 // Adjust teams to the env variables 921 922 if (DeviceInfo.EnvTeamLimit > 0 && 923 (enforce_upper_bound(&DeviceInfo.GroupsPerDevice[device_id], 924 DeviceInfo.EnvTeamLimit))) { 925 DP("Capping max groups per device to OMP_TEAM_LIMIT=%d\n", 926 DeviceInfo.EnvTeamLimit); 927 } 928 929 // Set default number of teams 930 if (DeviceInfo.EnvNumTeams > 0) { 931 DeviceInfo.NumTeams[device_id] = DeviceInfo.EnvNumTeams; 932 DP("Default number of teams set according to environment %d\n", 933 DeviceInfo.EnvNumTeams); 934 } else { 935 char *TeamsPerCUEnvStr = getenv("OMP_TARGET_TEAMS_PER_PROC"); 936 int TeamsPerCU = 1; // default number of teams per CU is 1 937 if (TeamsPerCUEnvStr) { 938 TeamsPerCU = std::stoi(TeamsPerCUEnvStr); 939 } 940 941 DeviceInfo.NumTeams[device_id] = 942 TeamsPerCU * DeviceInfo.ComputeUnits[device_id]; 943 DP("Default number of teams = %d * number of compute units %d\n", 944 TeamsPerCU, DeviceInfo.ComputeUnits[device_id]); 945 } 946 947 if (enforce_upper_bound(&DeviceInfo.NumTeams[device_id], 948 DeviceInfo.GroupsPerDevice[device_id])) { 949 DP("Default number of teams exceeds device limit, capping at %d\n", 950 DeviceInfo.GroupsPerDevice[device_id]); 951 } 952 953 // Set default number of threads 954 DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::Default_WG_Size; 955 DP("Default number of threads set according to library's default %d\n", 956 RTLDeviceInfoTy::Default_WG_Size); 957 if (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], 958 DeviceInfo.ThreadsPerGroup[device_id])) { 959 DP("Default number of threads exceeds device limit, capping at %d\n", 960 DeviceInfo.ThreadsPerGroup[device_id]); 961 } 962 963 DP("Device %d: default limit for groupsPerDevice %d & threadsPerGroup %d\n", 964 device_id, DeviceInfo.GroupsPerDevice[device_id], 965 DeviceInfo.ThreadsPerGroup[device_id]); 966 967 DP("Device %d: wavefront size %d, total threads %d x %d = %d\n", device_id, 968 DeviceInfo.WarpSize[device_id], DeviceInfo.ThreadsPerGroup[device_id], 969 DeviceInfo.GroupsPerDevice[device_id], 970 DeviceInfo.GroupsPerDevice[device_id] * 971 DeviceInfo.ThreadsPerGroup[device_id]); 972 973 return OFFLOAD_SUCCESS; 974 } 975 976 namespace { 977 Elf64_Shdr *find_only_SHT_HASH(Elf *elf) { 978 size_t N; 979 int rc = elf_getshdrnum(elf, &N); 980 if (rc != 0) { 981 return nullptr; 982 } 983 984 Elf64_Shdr *result = nullptr; 985 for (size_t i = 0; i < N; i++) { 986 Elf_Scn *scn = elf_getscn(elf, i); 987 if (scn) { 988 Elf64_Shdr *shdr = elf64_getshdr(scn); 989 if (shdr) { 990 if (shdr->sh_type == SHT_HASH) { 991 if (result == nullptr) { 992 result = shdr; 993 } else { 994 // multiple SHT_HASH sections not handled 995 return nullptr; 996 } 997 } 998 } 999 } 1000 } 1001 return result; 1002 } 1003 1004 const Elf64_Sym *elf_lookup(Elf *elf, char *base, Elf64_Shdr *section_hash, 1005 const char *symname) { 1006 1007 assert(section_hash); 1008 size_t section_symtab_index = section_hash->sh_link; 1009 Elf64_Shdr *section_symtab = 1010 elf64_getshdr(elf_getscn(elf, section_symtab_index)); 1011 size_t section_strtab_index = section_symtab->sh_link; 1012 1013 const Elf64_Sym *symtab = 1014 reinterpret_cast<const Elf64_Sym *>(base + section_symtab->sh_offset); 1015 1016 const uint32_t *hashtab = 1017 reinterpret_cast<const uint32_t *>(base + section_hash->sh_offset); 1018 1019 // Layout: 1020 // nbucket 1021 // nchain 1022 // bucket[nbucket] 1023 // chain[nchain] 1024 uint32_t nbucket = hashtab[0]; 1025 const uint32_t *bucket = &hashtab[2]; 1026 const uint32_t *chain = &hashtab[nbucket + 2]; 1027 1028 const size_t max = strlen(symname) + 1; 1029 const uint32_t hash = elf_hash(symname); 1030 for (uint32_t i = bucket[hash % nbucket]; i != 0; i = chain[i]) { 1031 char *n = elf_strptr(elf, section_strtab_index, symtab[i].st_name); 1032 if (strncmp(symname, n, max) == 0) { 1033 return &symtab[i]; 1034 } 1035 } 1036 1037 return nullptr; 1038 } 1039 1040 typedef struct { 1041 void *addr = nullptr; 1042 uint32_t size = UINT32_MAX; 1043 uint32_t sh_type = SHT_NULL; 1044 } symbol_info; 1045 1046 int get_symbol_info_without_loading(Elf *elf, char *base, const char *symname, 1047 symbol_info *res) { 1048 if (elf_kind(elf) != ELF_K_ELF) { 1049 return 1; 1050 } 1051 1052 Elf64_Shdr *section_hash = find_only_SHT_HASH(elf); 1053 if (!section_hash) { 1054 return 1; 1055 } 1056 1057 const Elf64_Sym *sym = elf_lookup(elf, base, section_hash, symname); 1058 if (!sym) { 1059 return 1; 1060 } 1061 1062 if (sym->st_size > UINT32_MAX) { 1063 return 1; 1064 } 1065 1066 if (sym->st_shndx == SHN_UNDEF) { 1067 return 1; 1068 } 1069 1070 Elf_Scn *section = elf_getscn(elf, sym->st_shndx); 1071 if (!section) { 1072 return 1; 1073 } 1074 1075 Elf64_Shdr *header = elf64_getshdr(section); 1076 if (!header) { 1077 return 1; 1078 } 1079 1080 res->addr = sym->st_value + base; 1081 res->size = static_cast<uint32_t>(sym->st_size); 1082 res->sh_type = header->sh_type; 1083 return 0; 1084 } 1085 1086 int get_symbol_info_without_loading(char *base, size_t img_size, 1087 const char *symname, symbol_info *res) { 1088 Elf *elf = elf_memory(base, img_size); 1089 if (elf) { 1090 int rc = get_symbol_info_without_loading(elf, base, symname, res); 1091 elf_end(elf); 1092 return rc; 1093 } 1094 return 1; 1095 } 1096 1097 hsa_status_t interop_get_symbol_info(char *base, size_t img_size, 1098 const char *symname, void **var_addr, 1099 uint32_t *var_size) { 1100 symbol_info si; 1101 int rc = get_symbol_info_without_loading(base, img_size, symname, &si); 1102 if (rc == 0) { 1103 *var_addr = si.addr; 1104 *var_size = si.size; 1105 return HSA_STATUS_SUCCESS; 1106 } else { 1107 return HSA_STATUS_ERROR; 1108 } 1109 } 1110 1111 template <typename C> 1112 hsa_status_t module_register_from_memory_to_place( 1113 std::map<std::string, atl_kernel_info_t> &KernelInfoTable, 1114 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, 1115 void *module_bytes, size_t module_size, int DeviceId, C cb, 1116 std::vector<hsa_executable_t> &HSAExecutables) { 1117 auto L = [](void *data, size_t size, void *cb_state) -> hsa_status_t { 1118 C *unwrapped = static_cast<C *>(cb_state); 1119 return (*unwrapped)(data, size); 1120 }; 1121 return core::RegisterModuleFromMemory( 1122 KernelInfoTable, SymbolInfoTable, module_bytes, module_size, 1123 DeviceInfo.HSAAgents[DeviceId], L, static_cast<void *>(&cb), 1124 HSAExecutables); 1125 } 1126 } // namespace 1127 1128 static uint64_t get_device_State_bytes(char *ImageStart, size_t img_size) { 1129 uint64_t device_State_bytes = 0; 1130 { 1131 // If this is the deviceRTL, get the state variable size 1132 symbol_info size_si; 1133 int rc = get_symbol_info_without_loading( 1134 ImageStart, img_size, "omptarget_nvptx_device_State_size", &size_si); 1135 1136 if (rc == 0) { 1137 if (size_si.size != sizeof(uint64_t)) { 1138 DP("Found device_State_size variable with wrong size\n"); 1139 return 0; 1140 } 1141 1142 // Read number of bytes directly from the elf 1143 memcpy(&device_State_bytes, size_si.addr, sizeof(uint64_t)); 1144 } 1145 } 1146 return device_State_bytes; 1147 } 1148 1149 static __tgt_target_table * 1150 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1151 1152 static __tgt_target_table * 1153 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1154 1155 __tgt_target_table *__tgt_rtl_load_binary(int32_t device_id, 1156 __tgt_device_image *image) { 1157 DeviceInfo.load_run_lock.lock(); 1158 __tgt_target_table *res = __tgt_rtl_load_binary_locked(device_id, image); 1159 DeviceInfo.load_run_lock.unlock(); 1160 return res; 1161 } 1162 1163 struct device_environment { 1164 // initialise an omptarget_device_environmentTy in the deviceRTL 1165 // patches around differences in the deviceRTL between trunk, aomp, 1166 // rocmcc. Over time these differences will tend to zero and this class 1167 // simplified. 1168 // Symbol may be in .data or .bss, and may be missing fields: 1169 // - aomp has debug_level, num_devices, device_num 1170 // - trunk has debug_level 1171 // - under review in trunk is debug_level, device_num 1172 // - rocmcc matches aomp, patch to swap num_devices and device_num 1173 1174 // The symbol may also have been deadstripped because the device side 1175 // accessors were unused. 1176 1177 // If the symbol is in .data (aomp, rocm) it can be written directly. 1178 // If it is in .bss, we must wait for it to be allocated space on the 1179 // gpu (trunk) and initialize after loading. 1180 const char *sym() { return "omptarget_device_environment"; } 1181 1182 omptarget_device_environmentTy host_device_env; 1183 symbol_info si; 1184 bool valid = false; 1185 1186 __tgt_device_image *image; 1187 const size_t img_size; 1188 1189 device_environment(int device_id, int number_devices, 1190 __tgt_device_image *image, const size_t img_size) 1191 : image(image), img_size(img_size) { 1192 1193 host_device_env.num_devices = number_devices; 1194 host_device_env.device_num = device_id; 1195 host_device_env.debug_level = 0; 1196 #ifdef OMPTARGET_DEBUG 1197 if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) { 1198 host_device_env.debug_level = std::stoi(envStr); 1199 } 1200 #endif 1201 1202 int rc = get_symbol_info_without_loading((char *)image->ImageStart, 1203 img_size, sym(), &si); 1204 if (rc != 0) { 1205 DP("Finding global device environment '%s' - symbol missing.\n", sym()); 1206 return; 1207 } 1208 1209 if (si.size > sizeof(host_device_env)) { 1210 DP("Symbol '%s' has size %u, expected at most %zu.\n", sym(), si.size, 1211 sizeof(host_device_env)); 1212 return; 1213 } 1214 1215 valid = true; 1216 } 1217 1218 bool in_image() { return si.sh_type != SHT_NOBITS; } 1219 1220 hsa_status_t before_loading(void *data, size_t size) { 1221 if (valid) { 1222 if (in_image()) { 1223 DP("Setting global device environment before load (%u bytes)\n", 1224 si.size); 1225 uint64_t offset = (char *)si.addr - (char *)image->ImageStart; 1226 void *pos = (char *)data + offset; 1227 memcpy(pos, &host_device_env, si.size); 1228 } 1229 } 1230 return HSA_STATUS_SUCCESS; 1231 } 1232 1233 hsa_status_t after_loading() { 1234 if (valid) { 1235 if (!in_image()) { 1236 DP("Setting global device environment after load (%u bytes)\n", 1237 si.size); 1238 int device_id = host_device_env.device_num; 1239 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1240 void *state_ptr; 1241 uint32_t state_ptr_size; 1242 hsa_status_t err = atmi_interop_hsa_get_symbol_info( 1243 SymbolInfo, device_id, sym(), &state_ptr, &state_ptr_size); 1244 if (err != HSA_STATUS_SUCCESS) { 1245 DP("failed to find %s in loaded image\n", sym()); 1246 return err; 1247 } 1248 1249 if (state_ptr_size != si.size) { 1250 DP("Symbol had size %u before loading, %u after\n", state_ptr_size, 1251 si.size); 1252 return HSA_STATUS_ERROR; 1253 } 1254 1255 return DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &host_device_env, 1256 state_ptr_size, device_id); 1257 } 1258 } 1259 return HSA_STATUS_SUCCESS; 1260 } 1261 }; 1262 1263 static hsa_status_t atmi_calloc(void **ret_ptr, size_t size, int DeviceId) { 1264 uint64_t rounded = 4 * ((size + 3) / 4); 1265 void *ptr; 1266 hsa_status_t err = core::Runtime::DeviceMalloc(&ptr, rounded, DeviceId); 1267 if (err != HSA_STATUS_SUCCESS) { 1268 return err; 1269 } 1270 1271 hsa_status_t rc = hsa_amd_memory_fill(ptr, 0, rounded / 4); 1272 if (rc != HSA_STATUS_SUCCESS) { 1273 fprintf(stderr, "zero fill device_state failed with %u\n", rc); 1274 core::Runtime::Memfree(ptr); 1275 return HSA_STATUS_ERROR; 1276 } 1277 1278 *ret_ptr = ptr; 1279 return HSA_STATUS_SUCCESS; 1280 } 1281 1282 static bool image_contains_symbol(void *data, size_t size, const char *sym) { 1283 symbol_info si; 1284 int rc = get_symbol_info_without_loading((char *)data, size, sym, &si); 1285 return (rc == 0) && (si.addr != nullptr); 1286 } 1287 1288 __tgt_target_table *__tgt_rtl_load_binary_locked(int32_t device_id, 1289 __tgt_device_image *image) { 1290 // This function loads the device image onto gpu[device_id] and does other 1291 // per-image initialization work. Specifically: 1292 // 1293 // - Initialize an omptarget_device_environmentTy instance embedded in the 1294 // image at the symbol "omptarget_device_environment" 1295 // Fields debug_level, device_num, num_devices. Used by the deviceRTL. 1296 // 1297 // - Allocate a large array per-gpu (could be moved to init_device) 1298 // - Read a uint64_t at symbol omptarget_nvptx_device_State_size 1299 // - Allocate at least that many bytes of gpu memory 1300 // - Zero initialize it 1301 // - Write the pointer to the symbol omptarget_nvptx_device_State 1302 // 1303 // - Pulls some per-kernel information together from various sources and 1304 // records it in the KernelsList for quicker access later 1305 // 1306 // The initialization can be done before or after loading the image onto the 1307 // gpu. This function presently does a mixture. Using the hsa api to get/set 1308 // the information is simpler to implement, in exchange for more complicated 1309 // runtime behaviour. E.g. launching a kernel or using dma to get eight bytes 1310 // back from the gpu vs a hashtable lookup on the host. 1311 1312 const size_t img_size = (char *)image->ImageEnd - (char *)image->ImageStart; 1313 1314 DeviceInfo.clearOffloadEntriesTable(device_id); 1315 1316 // We do not need to set the ELF version because the caller of this function 1317 // had to do that to decide the right runtime to use 1318 1319 if (!elf_machine_id_is_amdgcn(image)) { 1320 return NULL; 1321 } 1322 1323 { 1324 auto env = device_environment(device_id, DeviceInfo.NumberOfDevices, image, 1325 img_size); 1326 1327 auto &KernelInfo = DeviceInfo.KernelInfoTable[device_id]; 1328 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1329 hsa_status_t err = module_register_from_memory_to_place( 1330 KernelInfo, SymbolInfo, (void *)image->ImageStart, img_size, device_id, 1331 [&](void *data, size_t size) { 1332 if (image_contains_symbol(data, size, "needs_hostcall_buffer")) { 1333 __atomic_store_n(&DeviceInfo.hostcall_required, true, 1334 __ATOMIC_RELEASE); 1335 } 1336 return env.before_loading(data, size); 1337 }, 1338 DeviceInfo.HSAExecutables); 1339 1340 check("Module registering", err); 1341 if (err != HSA_STATUS_SUCCESS) { 1342 fprintf(stderr, 1343 "Possible gpu arch mismatch: device:%s, image:%s please check" 1344 " compiler flag: -march=<gpu>\n", 1345 DeviceInfo.GPUName[device_id].c_str(), 1346 get_elf_mach_gfx_name(elf_e_flags(image))); 1347 return NULL; 1348 } 1349 1350 err = env.after_loading(); 1351 if (err != HSA_STATUS_SUCCESS) { 1352 return NULL; 1353 } 1354 } 1355 1356 DP("ATMI module successfully loaded!\n"); 1357 1358 { 1359 // the device_State array is either large value in bss or a void* that 1360 // needs to be assigned to a pointer to an array of size device_state_bytes 1361 // If absent, it has been deadstripped and needs no setup. 1362 1363 void *state_ptr; 1364 uint32_t state_ptr_size; 1365 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 1366 hsa_status_t err = atmi_interop_hsa_get_symbol_info( 1367 SymbolInfoMap, device_id, "omptarget_nvptx_device_State", &state_ptr, 1368 &state_ptr_size); 1369 1370 if (err != HSA_STATUS_SUCCESS) { 1371 DP("No device_state symbol found, skipping initialization\n"); 1372 } else { 1373 if (state_ptr_size < sizeof(void *)) { 1374 DP("unexpected size of state_ptr %u != %zu\n", state_ptr_size, 1375 sizeof(void *)); 1376 return NULL; 1377 } 1378 1379 // if it's larger than a void*, assume it's a bss array and no further 1380 // initialization is required. Only try to set up a pointer for 1381 // sizeof(void*) 1382 if (state_ptr_size == sizeof(void *)) { 1383 uint64_t device_State_bytes = 1384 get_device_State_bytes((char *)image->ImageStart, img_size); 1385 if (device_State_bytes == 0) { 1386 DP("Can't initialize device_State, missing size information\n"); 1387 return NULL; 1388 } 1389 1390 auto &dss = DeviceInfo.deviceStateStore[device_id]; 1391 if (dss.first.get() == nullptr) { 1392 assert(dss.second == 0); 1393 void *ptr = NULL; 1394 hsa_status_t err = atmi_calloc(&ptr, device_State_bytes, device_id); 1395 if (err != HSA_STATUS_SUCCESS) { 1396 DP("Failed to allocate device_state array\n"); 1397 return NULL; 1398 } 1399 dss = { 1400 std::unique_ptr<void, RTLDeviceInfoTy::atmiFreePtrDeletor>{ptr}, 1401 device_State_bytes, 1402 }; 1403 } 1404 1405 void *ptr = dss.first.get(); 1406 if (device_State_bytes != dss.second) { 1407 DP("Inconsistent sizes of device_State unsupported\n"); 1408 return NULL; 1409 } 1410 1411 // write ptr to device memory so it can be used by later kernels 1412 err = DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &ptr, 1413 sizeof(void *), device_id); 1414 if (err != HSA_STATUS_SUCCESS) { 1415 DP("memcpy install of state_ptr failed\n"); 1416 return NULL; 1417 } 1418 } 1419 } 1420 } 1421 1422 // Here, we take advantage of the data that is appended after img_end to get 1423 // the symbols' name we need to load. This data consist of the host entries 1424 // begin and end as well as the target name (see the offloading linker script 1425 // creation in clang compiler). 1426 1427 // Find the symbols in the module by name. The name can be obtain by 1428 // concatenating the host entry name with the target name 1429 1430 __tgt_offload_entry *HostBegin = image->EntriesBegin; 1431 __tgt_offload_entry *HostEnd = image->EntriesEnd; 1432 1433 for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) { 1434 1435 if (!e->addr) { 1436 // The host should have always something in the address to 1437 // uniquely identify the target region. 1438 fprintf(stderr, "Analyzing host entry '<null>' (size = %lld)...\n", 1439 (unsigned long long)e->size); 1440 return NULL; 1441 } 1442 1443 if (e->size) { 1444 __tgt_offload_entry entry = *e; 1445 1446 void *varptr; 1447 uint32_t varsize; 1448 1449 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 1450 hsa_status_t err = atmi_interop_hsa_get_symbol_info( 1451 SymbolInfoMap, device_id, e->name, &varptr, &varsize); 1452 1453 if (err != HSA_STATUS_SUCCESS) { 1454 // Inform the user what symbol prevented offloading 1455 DP("Loading global '%s' (Failed)\n", e->name); 1456 return NULL; 1457 } 1458 1459 if (varsize != e->size) { 1460 DP("Loading global '%s' - size mismatch (%u != %lu)\n", e->name, 1461 varsize, e->size); 1462 return NULL; 1463 } 1464 1465 DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n", 1466 DPxPTR(e - HostBegin), e->name, DPxPTR(varptr)); 1467 entry.addr = (void *)varptr; 1468 1469 DeviceInfo.addOffloadEntry(device_id, entry); 1470 1471 if (DeviceInfo.RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY && 1472 e->flags & OMP_DECLARE_TARGET_LINK) { 1473 // If unified memory is present any target link variables 1474 // can access host addresses directly. There is no longer a 1475 // need for device copies. 1476 err = DeviceInfo.freesignalpool_memcpy_h2d(varptr, e->addr, 1477 sizeof(void *), device_id); 1478 if (err != HSA_STATUS_SUCCESS) 1479 DP("Error when copying USM\n"); 1480 DP("Copy linked variable host address (" DPxMOD ")" 1481 "to device address (" DPxMOD ")\n", 1482 DPxPTR(*((void **)e->addr)), DPxPTR(varptr)); 1483 } 1484 1485 continue; 1486 } 1487 1488 DP("to find the kernel name: %s size: %lu\n", e->name, strlen(e->name)); 1489 1490 uint32_t kernarg_segment_size; 1491 auto &KernelInfoMap = DeviceInfo.KernelInfoTable[device_id]; 1492 hsa_status_t err = atmi_interop_hsa_get_kernel_info( 1493 KernelInfoMap, device_id, e->name, 1494 HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE, 1495 &kernarg_segment_size); 1496 1497 // each arg is a void * in this openmp implementation 1498 uint32_t arg_num = kernarg_segment_size / sizeof(void *); 1499 std::vector<size_t> arg_sizes(arg_num); 1500 for (std::vector<size_t>::iterator it = arg_sizes.begin(); 1501 it != arg_sizes.end(); it++) { 1502 *it = sizeof(void *); 1503 } 1504 1505 // default value GENERIC (in case symbol is missing from cubin file) 1506 int8_t ExecModeVal = ExecutionModeType::GENERIC; 1507 1508 // get flat group size if present, else Default_WG_Size 1509 int16_t WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1510 1511 // get Kernel Descriptor if present. 1512 // Keep struct in sync wih getTgtAttributeStructQTy in CGOpenMPRuntime.cpp 1513 struct KernDescValType { 1514 uint16_t Version; 1515 uint16_t TSize; 1516 uint16_t WG_Size; 1517 uint8_t Mode; 1518 }; 1519 struct KernDescValType KernDescVal; 1520 std::string KernDescNameStr(e->name); 1521 KernDescNameStr += "_kern_desc"; 1522 const char *KernDescName = KernDescNameStr.c_str(); 1523 1524 void *KernDescPtr; 1525 uint32_t KernDescSize; 1526 void *CallStackAddr = nullptr; 1527 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1528 KernDescName, &KernDescPtr, &KernDescSize); 1529 1530 if (err == HSA_STATUS_SUCCESS) { 1531 if ((size_t)KernDescSize != sizeof(KernDescVal)) 1532 DP("Loading global computation properties '%s' - size mismatch (%u != " 1533 "%lu)\n", 1534 KernDescName, KernDescSize, sizeof(KernDescVal)); 1535 1536 memcpy(&KernDescVal, KernDescPtr, (size_t)KernDescSize); 1537 1538 // Check structure size against recorded size. 1539 if ((size_t)KernDescSize != KernDescVal.TSize) 1540 DP("KernDescVal size %lu does not match advertized size %d for '%s'\n", 1541 sizeof(KernDescVal), KernDescVal.TSize, KernDescName); 1542 1543 DP("After loading global for %s KernDesc \n", KernDescName); 1544 DP("KernDesc: Version: %d\n", KernDescVal.Version); 1545 DP("KernDesc: TSize: %d\n", KernDescVal.TSize); 1546 DP("KernDesc: WG_Size: %d\n", KernDescVal.WG_Size); 1547 DP("KernDesc: Mode: %d\n", KernDescVal.Mode); 1548 1549 // Get ExecMode 1550 ExecModeVal = KernDescVal.Mode; 1551 DP("ExecModeVal %d\n", ExecModeVal); 1552 if (KernDescVal.WG_Size == 0) { 1553 KernDescVal.WG_Size = RTLDeviceInfoTy::Default_WG_Size; 1554 DP("Setting KernDescVal.WG_Size to default %d\n", KernDescVal.WG_Size); 1555 } 1556 WGSizeVal = KernDescVal.WG_Size; 1557 DP("WGSizeVal %d\n", WGSizeVal); 1558 check("Loading KernDesc computation property", err); 1559 } else { 1560 DP("Warning: Loading KernDesc '%s' - symbol not found, ", KernDescName); 1561 1562 // Generic 1563 std::string ExecModeNameStr(e->name); 1564 ExecModeNameStr += "_exec_mode"; 1565 const char *ExecModeName = ExecModeNameStr.c_str(); 1566 1567 void *ExecModePtr; 1568 uint32_t varsize; 1569 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1570 ExecModeName, &ExecModePtr, &varsize); 1571 1572 if (err == HSA_STATUS_SUCCESS) { 1573 if ((size_t)varsize != sizeof(int8_t)) { 1574 DP("Loading global computation properties '%s' - size mismatch(%u != " 1575 "%lu)\n", 1576 ExecModeName, varsize, sizeof(int8_t)); 1577 return NULL; 1578 } 1579 1580 memcpy(&ExecModeVal, ExecModePtr, (size_t)varsize); 1581 1582 DP("After loading global for %s ExecMode = %d\n", ExecModeName, 1583 ExecModeVal); 1584 1585 if (ExecModeVal < 0 || ExecModeVal > 1) { 1586 DP("Error wrong exec_mode value specified in HSA code object file: " 1587 "%d\n", 1588 ExecModeVal); 1589 return NULL; 1590 } 1591 } else { 1592 DP("Loading global exec_mode '%s' - symbol missing, using default " 1593 "value " 1594 "GENERIC (1)\n", 1595 ExecModeName); 1596 } 1597 check("Loading computation property", err); 1598 1599 // Flat group size 1600 std::string WGSizeNameStr(e->name); 1601 WGSizeNameStr += "_wg_size"; 1602 const char *WGSizeName = WGSizeNameStr.c_str(); 1603 1604 void *WGSizePtr; 1605 uint32_t WGSize; 1606 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1607 WGSizeName, &WGSizePtr, &WGSize); 1608 1609 if (err == HSA_STATUS_SUCCESS) { 1610 if ((size_t)WGSize != sizeof(int16_t)) { 1611 DP("Loading global computation properties '%s' - size mismatch (%u " 1612 "!= " 1613 "%lu)\n", 1614 WGSizeName, WGSize, sizeof(int16_t)); 1615 return NULL; 1616 } 1617 1618 memcpy(&WGSizeVal, WGSizePtr, (size_t)WGSize); 1619 1620 DP("After loading global for %s WGSize = %d\n", WGSizeName, WGSizeVal); 1621 1622 if (WGSizeVal < RTLDeviceInfoTy::Default_WG_Size || 1623 WGSizeVal > RTLDeviceInfoTy::Max_WG_Size) { 1624 DP("Error wrong WGSize value specified in HSA code object file: " 1625 "%d\n", 1626 WGSizeVal); 1627 WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1628 } 1629 } else { 1630 DP("Warning: Loading WGSize '%s' - symbol not found, " 1631 "using default value %d\n", 1632 WGSizeName, WGSizeVal); 1633 } 1634 1635 check("Loading WGSize computation property", err); 1636 } 1637 1638 KernelsList.push_back(KernelTy(ExecModeVal, WGSizeVal, device_id, 1639 CallStackAddr, e->name, kernarg_segment_size, 1640 DeviceInfo.KernArgPool)); 1641 __tgt_offload_entry entry = *e; 1642 entry.addr = (void *)&KernelsList.back(); 1643 DeviceInfo.addOffloadEntry(device_id, entry); 1644 DP("Entry point %ld maps to %s\n", e - HostBegin, e->name); 1645 } 1646 1647 return DeviceInfo.getOffloadEntriesTable(device_id); 1648 } 1649 1650 void *__tgt_rtl_data_alloc(int device_id, int64_t size, void *, int32_t kind) { 1651 void *ptr = NULL; 1652 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1653 1654 if (kind != TARGET_ALLOC_DEFAULT) { 1655 REPORT("Invalid target data allocation kind or requested allocator not " 1656 "implemented yet\n"); 1657 return NULL; 1658 } 1659 1660 hsa_status_t err = core::Runtime::DeviceMalloc(&ptr, size, device_id); 1661 DP("Tgt alloc data %ld bytes, (tgt:%016llx).\n", size, 1662 (long long unsigned)(Elf64_Addr)ptr); 1663 ptr = (err == HSA_STATUS_SUCCESS) ? ptr : NULL; 1664 return ptr; 1665 } 1666 1667 int32_t __tgt_rtl_data_submit(int device_id, void *tgt_ptr, void *hst_ptr, 1668 int64_t size) { 1669 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1670 __tgt_async_info AsyncInfo; 1671 int32_t rc = dataSubmit(device_id, tgt_ptr, hst_ptr, size, &AsyncInfo); 1672 if (rc != OFFLOAD_SUCCESS) 1673 return OFFLOAD_FAIL; 1674 1675 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1676 } 1677 1678 int32_t __tgt_rtl_data_submit_async(int device_id, void *tgt_ptr, void *hst_ptr, 1679 int64_t size, __tgt_async_info *AsyncInfo) { 1680 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1681 if (AsyncInfo) { 1682 initAsyncInfo(AsyncInfo); 1683 return dataSubmit(device_id, tgt_ptr, hst_ptr, size, AsyncInfo); 1684 } else { 1685 return __tgt_rtl_data_submit(device_id, tgt_ptr, hst_ptr, size); 1686 } 1687 } 1688 1689 int32_t __tgt_rtl_data_retrieve(int device_id, void *hst_ptr, void *tgt_ptr, 1690 int64_t size) { 1691 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1692 __tgt_async_info AsyncInfo; 1693 int32_t rc = dataRetrieve(device_id, hst_ptr, tgt_ptr, size, &AsyncInfo); 1694 if (rc != OFFLOAD_SUCCESS) 1695 return OFFLOAD_FAIL; 1696 1697 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1698 } 1699 1700 int32_t __tgt_rtl_data_retrieve_async(int device_id, void *hst_ptr, 1701 void *tgt_ptr, int64_t size, 1702 __tgt_async_info *AsyncInfo) { 1703 assert(AsyncInfo && "AsyncInfo is nullptr"); 1704 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1705 initAsyncInfo(AsyncInfo); 1706 return dataRetrieve(device_id, hst_ptr, tgt_ptr, size, AsyncInfo); 1707 } 1708 1709 int32_t __tgt_rtl_data_delete(int device_id, void *tgt_ptr) { 1710 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1711 hsa_status_t err; 1712 DP("Tgt free data (tgt:%016llx).\n", (long long unsigned)(Elf64_Addr)tgt_ptr); 1713 err = core::Runtime::Memfree(tgt_ptr); 1714 if (err != HSA_STATUS_SUCCESS) { 1715 DP("Error when freeing CUDA memory\n"); 1716 return OFFLOAD_FAIL; 1717 } 1718 return OFFLOAD_SUCCESS; 1719 } 1720 1721 // Determine launch values for threadsPerGroup and num_groups. 1722 // Outputs: treadsPerGroup, num_groups 1723 // Inputs: Max_Teams, Max_WG_Size, Warp_Size, ExecutionMode, 1724 // EnvTeamLimit, EnvNumTeams, num_teams, thread_limit, 1725 // loop_tripcount. 1726 void getLaunchVals(int &threadsPerGroup, int &num_groups, int ConstWGSize, 1727 int ExecutionMode, int EnvTeamLimit, int EnvNumTeams, 1728 int num_teams, int thread_limit, uint64_t loop_tripcount, 1729 int32_t device_id) { 1730 1731 int Max_Teams = DeviceInfo.EnvMaxTeamsDefault > 0 1732 ? DeviceInfo.EnvMaxTeamsDefault 1733 : DeviceInfo.NumTeams[device_id]; 1734 if (Max_Teams > DeviceInfo.HardTeamLimit) 1735 Max_Teams = DeviceInfo.HardTeamLimit; 1736 1737 if (print_kernel_trace & STARTUP_DETAILS) { 1738 fprintf(stderr, "RTLDeviceInfoTy::Max_Teams: %d\n", 1739 RTLDeviceInfoTy::Max_Teams); 1740 fprintf(stderr, "Max_Teams: %d\n", Max_Teams); 1741 fprintf(stderr, "RTLDeviceInfoTy::Warp_Size: %d\n", 1742 RTLDeviceInfoTy::Warp_Size); 1743 fprintf(stderr, "RTLDeviceInfoTy::Max_WG_Size: %d\n", 1744 RTLDeviceInfoTy::Max_WG_Size); 1745 fprintf(stderr, "RTLDeviceInfoTy::Default_WG_Size: %d\n", 1746 RTLDeviceInfoTy::Default_WG_Size); 1747 fprintf(stderr, "thread_limit: %d\n", thread_limit); 1748 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1749 fprintf(stderr, "ConstWGSize: %d\n", ConstWGSize); 1750 } 1751 // check for thread_limit() clause 1752 if (thread_limit > 0) { 1753 threadsPerGroup = thread_limit; 1754 DP("Setting threads per block to requested %d\n", thread_limit); 1755 if (ExecutionMode == GENERIC) { // Add master warp for GENERIC 1756 threadsPerGroup += RTLDeviceInfoTy::Warp_Size; 1757 DP("Adding master wavefront: +%d threads\n", RTLDeviceInfoTy::Warp_Size); 1758 } 1759 if (threadsPerGroup > RTLDeviceInfoTy::Max_WG_Size) { // limit to max 1760 threadsPerGroup = RTLDeviceInfoTy::Max_WG_Size; 1761 DP("Setting threads per block to maximum %d\n", threadsPerGroup); 1762 } 1763 } 1764 // check flat_max_work_group_size attr here 1765 if (threadsPerGroup > ConstWGSize) { 1766 threadsPerGroup = ConstWGSize; 1767 DP("Reduced threadsPerGroup to flat-attr-group-size limit %d\n", 1768 threadsPerGroup); 1769 } 1770 if (print_kernel_trace & STARTUP_DETAILS) 1771 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1772 DP("Preparing %d threads\n", threadsPerGroup); 1773 1774 // Set default num_groups (teams) 1775 if (DeviceInfo.EnvTeamLimit > 0) 1776 num_groups = (Max_Teams < DeviceInfo.EnvTeamLimit) 1777 ? Max_Teams 1778 : DeviceInfo.EnvTeamLimit; 1779 else 1780 num_groups = Max_Teams; 1781 DP("Set default num of groups %d\n", num_groups); 1782 1783 if (print_kernel_trace & STARTUP_DETAILS) { 1784 fprintf(stderr, "num_groups: %d\n", num_groups); 1785 fprintf(stderr, "num_teams: %d\n", num_teams); 1786 } 1787 1788 // Reduce num_groups if threadsPerGroup exceeds RTLDeviceInfoTy::Max_WG_Size 1789 // This reduction is typical for default case (no thread_limit clause). 1790 // or when user goes crazy with num_teams clause. 1791 // FIXME: We cant distinguish between a constant or variable thread limit. 1792 // So we only handle constant thread_limits. 1793 if (threadsPerGroup > 1794 RTLDeviceInfoTy::Default_WG_Size) // 256 < threadsPerGroup <= 1024 1795 // Should we round threadsPerGroup up to nearest RTLDeviceInfoTy::Warp_Size 1796 // here? 1797 num_groups = (Max_Teams * RTLDeviceInfoTy::Max_WG_Size) / threadsPerGroup; 1798 1799 // check for num_teams() clause 1800 if (num_teams > 0) { 1801 num_groups = (num_teams < num_groups) ? num_teams : num_groups; 1802 } 1803 if (print_kernel_trace & STARTUP_DETAILS) { 1804 fprintf(stderr, "num_groups: %d\n", num_groups); 1805 fprintf(stderr, "DeviceInfo.EnvNumTeams %d\n", DeviceInfo.EnvNumTeams); 1806 fprintf(stderr, "DeviceInfo.EnvTeamLimit %d\n", DeviceInfo.EnvTeamLimit); 1807 } 1808 1809 if (DeviceInfo.EnvNumTeams > 0) { 1810 num_groups = (DeviceInfo.EnvNumTeams < num_groups) ? DeviceInfo.EnvNumTeams 1811 : num_groups; 1812 DP("Modifying teams based on EnvNumTeams %d\n", DeviceInfo.EnvNumTeams); 1813 } else if (DeviceInfo.EnvTeamLimit > 0) { 1814 num_groups = (DeviceInfo.EnvTeamLimit < num_groups) 1815 ? DeviceInfo.EnvTeamLimit 1816 : num_groups; 1817 DP("Modifying teams based on EnvTeamLimit%d\n", DeviceInfo.EnvTeamLimit); 1818 } else { 1819 if (num_teams <= 0) { 1820 if (loop_tripcount > 0) { 1821 if (ExecutionMode == SPMD) { 1822 // round up to the nearest integer 1823 num_groups = ((loop_tripcount - 1) / threadsPerGroup) + 1; 1824 } else { 1825 num_groups = loop_tripcount; 1826 } 1827 DP("Using %d teams due to loop trip count %" PRIu64 " and number of " 1828 "threads per block %d\n", 1829 num_groups, loop_tripcount, threadsPerGroup); 1830 } 1831 } else { 1832 num_groups = num_teams; 1833 } 1834 if (num_groups > Max_Teams) { 1835 num_groups = Max_Teams; 1836 if (print_kernel_trace & STARTUP_DETAILS) 1837 fprintf(stderr, "Limiting num_groups %d to Max_Teams %d \n", num_groups, 1838 Max_Teams); 1839 } 1840 if (num_groups > num_teams && num_teams > 0) { 1841 num_groups = num_teams; 1842 if (print_kernel_trace & STARTUP_DETAILS) 1843 fprintf(stderr, "Limiting num_groups %d to clause num_teams %d \n", 1844 num_groups, num_teams); 1845 } 1846 } 1847 1848 // num_teams clause always honored, no matter what, unless DEFAULT is active. 1849 if (num_teams > 0) { 1850 num_groups = num_teams; 1851 // Cap num_groups to EnvMaxTeamsDefault if set. 1852 if (DeviceInfo.EnvMaxTeamsDefault > 0 && 1853 num_groups > DeviceInfo.EnvMaxTeamsDefault) 1854 num_groups = DeviceInfo.EnvMaxTeamsDefault; 1855 } 1856 if (print_kernel_trace & STARTUP_DETAILS) { 1857 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1858 fprintf(stderr, "num_groups: %d\n", num_groups); 1859 fprintf(stderr, "loop_tripcount: %ld\n", loop_tripcount); 1860 } 1861 DP("Final %d num_groups and %d threadsPerGroup\n", num_groups, 1862 threadsPerGroup); 1863 } 1864 1865 static uint64_t acquire_available_packet_id(hsa_queue_t *queue) { 1866 uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1); 1867 bool full = true; 1868 while (full) { 1869 full = 1870 packet_id >= (queue->size + hsa_queue_load_read_index_scacquire(queue)); 1871 } 1872 return packet_id; 1873 } 1874 1875 static int32_t __tgt_rtl_run_target_team_region_locked( 1876 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 1877 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 1878 int32_t thread_limit, uint64_t loop_tripcount); 1879 1880 int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr, 1881 void **tgt_args, 1882 ptrdiff_t *tgt_offsets, 1883 int32_t arg_num, int32_t num_teams, 1884 int32_t thread_limit, 1885 uint64_t loop_tripcount) { 1886 1887 DeviceInfo.load_run_lock.lock_shared(); 1888 int32_t res = __tgt_rtl_run_target_team_region_locked( 1889 device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, num_teams, 1890 thread_limit, loop_tripcount); 1891 1892 DeviceInfo.load_run_lock.unlock_shared(); 1893 return res; 1894 } 1895 1896 int32_t __tgt_rtl_run_target_team_region_locked( 1897 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 1898 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 1899 int32_t thread_limit, uint64_t loop_tripcount) { 1900 // Set the context we are using 1901 // update thread limit content in gpu memory if un-initialized or specified 1902 // from host 1903 1904 DP("Run target team region thread_limit %d\n", thread_limit); 1905 1906 // All args are references. 1907 std::vector<void *> args(arg_num); 1908 std::vector<void *> ptrs(arg_num); 1909 1910 DP("Arg_num: %d\n", arg_num); 1911 for (int32_t i = 0; i < arg_num; ++i) { 1912 ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]); 1913 args[i] = &ptrs[i]; 1914 DP("Offseted base: arg[%d]:" DPxMOD "\n", i, DPxPTR(ptrs[i])); 1915 } 1916 1917 KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr; 1918 1919 std::string kernel_name = std::string(KernelInfo->Name); 1920 auto &KernelInfoTable = DeviceInfo.KernelInfoTable; 1921 if (KernelInfoTable[device_id].find(kernel_name) == 1922 KernelInfoTable[device_id].end()) { 1923 DP("Kernel %s not found\n", kernel_name.c_str()); 1924 return OFFLOAD_FAIL; 1925 } 1926 1927 const atl_kernel_info_t KernelInfoEntry = 1928 KernelInfoTable[device_id][kernel_name]; 1929 const uint32_t group_segment_size = KernelInfoEntry.group_segment_size; 1930 const uint32_t sgpr_count = KernelInfoEntry.sgpr_count; 1931 const uint32_t vgpr_count = KernelInfoEntry.vgpr_count; 1932 const uint32_t sgpr_spill_count = KernelInfoEntry.sgpr_spill_count; 1933 const uint32_t vgpr_spill_count = KernelInfoEntry.vgpr_spill_count; 1934 1935 assert(arg_num == (int)KernelInfoEntry.num_args); 1936 1937 /* 1938 * Set limit based on ThreadsPerGroup and GroupsPerDevice 1939 */ 1940 int num_groups = 0; 1941 1942 int threadsPerGroup = RTLDeviceInfoTy::Default_WG_Size; 1943 1944 getLaunchVals(threadsPerGroup, num_groups, KernelInfo->ConstWGSize, 1945 KernelInfo->ExecutionMode, DeviceInfo.EnvTeamLimit, 1946 DeviceInfo.EnvNumTeams, 1947 num_teams, // From run_region arg 1948 thread_limit, // From run_region arg 1949 loop_tripcount, // From run_region arg 1950 KernelInfo->device_id); 1951 1952 if (print_kernel_trace >= LAUNCH) { 1953 // enum modes are SPMD, GENERIC, NONE 0,1,2 1954 // if doing rtl timing, print to stderr, unless stdout requested. 1955 bool traceToStdout = print_kernel_trace & (RTL_TO_STDOUT | RTL_TIMING); 1956 fprintf(traceToStdout ? stdout : stderr, 1957 "DEVID:%2d SGN:%1d ConstWGSize:%-4d args:%2d teamsXthrds:(%4dX%4d) " 1958 "reqd:(%4dX%4d) lds_usage:%uB sgpr_count:%u vgpr_count:%u " 1959 "sgpr_spill_count:%u vgpr_spill_count:%u tripcount:%lu n:%s\n", 1960 device_id, KernelInfo->ExecutionMode, KernelInfo->ConstWGSize, 1961 arg_num, num_groups, threadsPerGroup, num_teams, thread_limit, 1962 group_segment_size, sgpr_count, vgpr_count, sgpr_spill_count, 1963 vgpr_spill_count, loop_tripcount, KernelInfo->Name); 1964 } 1965 1966 // Run on the device. 1967 { 1968 hsa_queue_t *queue = DeviceInfo.HSAQueues[device_id]; 1969 if (!queue) { 1970 return OFFLOAD_FAIL; 1971 } 1972 uint64_t packet_id = acquire_available_packet_id(queue); 1973 1974 const uint32_t mask = queue->size - 1; // size is a power of 2 1975 hsa_kernel_dispatch_packet_t *packet = 1976 (hsa_kernel_dispatch_packet_t *)queue->base_address + 1977 (packet_id & mask); 1978 1979 // packet->header is written last 1980 packet->setup = UINT16_C(1) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS; 1981 packet->workgroup_size_x = threadsPerGroup; 1982 packet->workgroup_size_y = 1; 1983 packet->workgroup_size_z = 1; 1984 packet->reserved0 = 0; 1985 packet->grid_size_x = num_groups * threadsPerGroup; 1986 packet->grid_size_y = 1; 1987 packet->grid_size_z = 1; 1988 packet->private_segment_size = KernelInfoEntry.private_segment_size; 1989 packet->group_segment_size = KernelInfoEntry.group_segment_size; 1990 packet->kernel_object = KernelInfoEntry.kernel_object; 1991 packet->kernarg_address = 0; // use the block allocator 1992 packet->reserved2 = 0; // atmi writes id_ here 1993 packet->completion_signal = {0}; // may want a pool of signals 1994 1995 KernelArgPool *ArgPool = nullptr; 1996 { 1997 auto it = KernelArgPoolMap.find(std::string(KernelInfo->Name)); 1998 if (it != KernelArgPoolMap.end()) { 1999 ArgPool = (it->second).get(); 2000 } 2001 } 2002 if (!ArgPool) { 2003 DP("Warning: No ArgPool for %s on device %d\n", KernelInfo->Name, 2004 device_id); 2005 } 2006 { 2007 void *kernarg = nullptr; 2008 if (ArgPool) { 2009 assert(ArgPool->kernarg_segment_size == (arg_num * sizeof(void *))); 2010 kernarg = ArgPool->allocate(arg_num); 2011 } 2012 if (!kernarg) { 2013 DP("Allocate kernarg failed\n"); 2014 return OFFLOAD_FAIL; 2015 } 2016 2017 // Copy explicit arguments 2018 for (int i = 0; i < arg_num; i++) { 2019 memcpy((char *)kernarg + sizeof(void *) * i, args[i], sizeof(void *)); 2020 } 2021 2022 // Initialize implicit arguments. ATMI seems to leave most fields 2023 // uninitialized 2024 atmi_implicit_args_t *impl_args = 2025 reinterpret_cast<atmi_implicit_args_t *>( 2026 static_cast<char *>(kernarg) + ArgPool->kernarg_segment_size); 2027 memset(impl_args, 0, 2028 sizeof(atmi_implicit_args_t)); // may not be necessary 2029 impl_args->offset_x = 0; 2030 impl_args->offset_y = 0; 2031 impl_args->offset_z = 0; 2032 2033 // assign a hostcall buffer for the selected Q 2034 if (__atomic_load_n(&DeviceInfo.hostcall_required, __ATOMIC_ACQUIRE)) { 2035 // hostrpc_assign_buffer is not thread safe, and this function is 2036 // under a multiple reader lock, not a writer lock. 2037 static pthread_mutex_t hostcall_init_lock = PTHREAD_MUTEX_INITIALIZER; 2038 pthread_mutex_lock(&hostcall_init_lock); 2039 impl_args->hostcall_ptr = hostrpc_assign_buffer( 2040 DeviceInfo.HSAAgents[device_id], queue, device_id); 2041 pthread_mutex_unlock(&hostcall_init_lock); 2042 if (!impl_args->hostcall_ptr) { 2043 DP("hostrpc_assign_buffer failed, gpu would dereference null and " 2044 "error\n"); 2045 return OFFLOAD_FAIL; 2046 } 2047 } 2048 2049 packet->kernarg_address = kernarg; 2050 } 2051 2052 { 2053 hsa_signal_t s = DeviceInfo.FreeSignalPool.pop(); 2054 if (s.handle == 0) { 2055 DP("Failed to get signal instance\n"); 2056 return OFFLOAD_FAIL; 2057 } 2058 packet->completion_signal = s; 2059 hsa_signal_store_relaxed(packet->completion_signal, 1); 2060 } 2061 2062 core::packet_store_release(reinterpret_cast<uint32_t *>(packet), 2063 core::create_header(), packet->setup); 2064 2065 hsa_signal_store_relaxed(queue->doorbell_signal, packet_id); 2066 2067 while (hsa_signal_wait_scacquire(packet->completion_signal, 2068 HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX, 2069 HSA_WAIT_STATE_BLOCKED) != 0) 2070 ; 2071 2072 assert(ArgPool); 2073 ArgPool->deallocate(packet->kernarg_address); 2074 DeviceInfo.FreeSignalPool.push(packet->completion_signal); 2075 } 2076 2077 DP("Kernel completed\n"); 2078 return OFFLOAD_SUCCESS; 2079 } 2080 2081 int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr, 2082 void **tgt_args, ptrdiff_t *tgt_offsets, 2083 int32_t arg_num) { 2084 // use one team and one thread 2085 // fix thread num 2086 int32_t team_num = 1; 2087 int32_t thread_limit = 0; // use default 2088 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 2089 tgt_offsets, arg_num, team_num, 2090 thread_limit, 0); 2091 } 2092 2093 int32_t __tgt_rtl_run_target_region_async(int32_t device_id, 2094 void *tgt_entry_ptr, void **tgt_args, 2095 ptrdiff_t *tgt_offsets, 2096 int32_t arg_num, 2097 __tgt_async_info *AsyncInfo) { 2098 assert(AsyncInfo && "AsyncInfo is nullptr"); 2099 initAsyncInfo(AsyncInfo); 2100 2101 // use one team and one thread 2102 // fix thread num 2103 int32_t team_num = 1; 2104 int32_t thread_limit = 0; // use default 2105 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 2106 tgt_offsets, arg_num, team_num, 2107 thread_limit, 0); 2108 } 2109 2110 int32_t __tgt_rtl_synchronize(int32_t device_id, __tgt_async_info *AsyncInfo) { 2111 assert(AsyncInfo && "AsyncInfo is nullptr"); 2112 2113 // Cuda asserts that AsyncInfo->Queue is non-null, but this invariant 2114 // is not ensured by devices.cpp for amdgcn 2115 // assert(AsyncInfo->Queue && "AsyncInfo->Queue is nullptr"); 2116 if (AsyncInfo->Queue) { 2117 finiAsyncInfo(AsyncInfo); 2118 } 2119 return OFFLOAD_SUCCESS; 2120 } 2121