1 //===----RTLs/hsa/src/rtl.cpp - Target RTLs Implementation -------- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // RTL for hsa machine 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <algorithm> 14 #include <assert.h> 15 #include <cstdio> 16 #include <cstdlib> 17 #include <cstring> 18 #include <dlfcn.h> 19 #include <elf.h> 20 #include <ffi.h> 21 #include <fstream> 22 #include <iostream> 23 #include <libelf.h> 24 #include <list> 25 #include <memory> 26 #include <mutex> 27 #include <shared_mutex> 28 #include <thread> 29 #include <unordered_map> 30 #include <vector> 31 32 // Header from ATMI interface 33 #include "atmi_interop_hsa.h" 34 #include "atmi_runtime.h" 35 36 #include "internal.h" 37 38 #include "Debug.h" 39 #include "get_elf_mach_gfx_name.h" 40 #include "omptargetplugin.h" 41 #include "print_tracing.h" 42 43 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 44 45 #ifndef TARGET_NAME 46 #define TARGET_NAME AMDHSA 47 #endif 48 #define DEBUG_PREFIX "Target " GETNAME(TARGET_NAME) " RTL" 49 50 // hostrpc interface, FIXME: consider moving to its own include these are 51 // statically linked into amdgpu/plugin if present from hostrpc_services.a, 52 // linked as --whole-archive to override the weak symbols that are used to 53 // implement a fallback for toolchains that do not yet have a hostrpc library. 54 extern "C" { 55 unsigned long hostrpc_assign_buffer(hsa_agent_t agent, hsa_queue_t *this_Q, 56 uint32_t device_id); 57 hsa_status_t hostrpc_init(); 58 hsa_status_t hostrpc_terminate(); 59 60 __attribute__((weak)) hsa_status_t hostrpc_init() { return HSA_STATUS_SUCCESS; } 61 __attribute__((weak)) hsa_status_t hostrpc_terminate() { 62 return HSA_STATUS_SUCCESS; 63 } 64 __attribute__((weak)) unsigned long 65 hostrpc_assign_buffer(hsa_agent_t, hsa_queue_t *, uint32_t device_id) { 66 DP("Warning: Attempting to assign hostrpc to device %u, but hostrpc library " 67 "missing\n", 68 device_id); 69 return 0; 70 } 71 } 72 73 int print_kernel_trace; 74 75 #ifdef OMPTARGET_DEBUG 76 #define check(msg, status) \ 77 if (status != HSA_STATUS_SUCCESS) { \ 78 DP(#msg " failed\n"); \ 79 } else { \ 80 DP(#msg " succeeded\n"); \ 81 } 82 #else 83 #define check(msg, status) \ 84 {} 85 #endif 86 87 #include "elf_common.h" 88 89 namespace core { 90 hsa_status_t RegisterModuleFromMemory( 91 std::map<std::string, atl_kernel_info_t> &KernelInfo, 92 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, void *, size_t, 93 atmi_place_t, 94 hsa_status_t (*on_deserialized_data)(void *data, size_t size, 95 void *cb_state), 96 void *cb_state, std::vector<hsa_executable_t> &HSAExecutables); 97 } 98 99 /// Keep entries table per device 100 struct FuncOrGblEntryTy { 101 __tgt_target_table Table; 102 std::vector<__tgt_offload_entry> Entries; 103 }; 104 105 enum ExecutionModeType { 106 SPMD, // constructors, destructors, 107 // combined constructs (`teams distribute parallel for [simd]`) 108 GENERIC, // everything else 109 NONE 110 }; 111 112 struct KernelArgPool { 113 private: 114 static pthread_mutex_t mutex; 115 116 public: 117 uint32_t kernarg_segment_size; 118 void *kernarg_region = nullptr; 119 std::queue<int> free_kernarg_segments; 120 121 uint32_t kernarg_size_including_implicit() { 122 return kernarg_segment_size + sizeof(atmi_implicit_args_t); 123 } 124 125 ~KernelArgPool() { 126 if (kernarg_region) { 127 auto r = hsa_amd_memory_pool_free(kernarg_region); 128 if (r != HSA_STATUS_SUCCESS) { 129 DP("hsa_amd_memory_pool_free failed: %s\n", get_error_string(r)); 130 } 131 } 132 } 133 134 // Can't really copy or move a mutex 135 KernelArgPool() = default; 136 KernelArgPool(const KernelArgPool &) = delete; 137 KernelArgPool(KernelArgPool &&) = delete; 138 139 KernelArgPool(uint32_t kernarg_segment_size) 140 : kernarg_segment_size(kernarg_segment_size) { 141 142 // atmi uses one pool per kernel for all gpus, with a fixed upper size 143 // preserving that exact scheme here, including the queue<int> 144 145 hsa_status_t err = hsa_amd_memory_pool_allocate( 146 atl_gpu_kernarg_pools[0], 147 kernarg_size_including_implicit() * MAX_NUM_KERNELS, 0, 148 &kernarg_region); 149 150 if (err != HSA_STATUS_SUCCESS) { 151 DP("hsa_amd_memory_pool_allocate failed: %s\n", get_error_string(err)); 152 kernarg_region = nullptr; // paranoid 153 return; 154 } 155 156 err = core::allow_access_to_all_gpu_agents(kernarg_region); 157 if (err != HSA_STATUS_SUCCESS) { 158 DP("hsa allow_access_to_all_gpu_agents failed: %s\n", 159 get_error_string(err)); 160 auto r = hsa_amd_memory_pool_free(kernarg_region); 161 if (r != HSA_STATUS_SUCCESS) { 162 // if free failed, can't do anything more to resolve it 163 DP("hsa memory poll free failed: %s\n", get_error_string(err)); 164 } 165 kernarg_region = nullptr; 166 return; 167 } 168 169 for (int i = 0; i < MAX_NUM_KERNELS; i++) { 170 free_kernarg_segments.push(i); 171 } 172 } 173 174 void *allocate(uint64_t arg_num) { 175 assert((arg_num * sizeof(void *)) == kernarg_segment_size); 176 lock l(&mutex); 177 void *res = nullptr; 178 if (!free_kernarg_segments.empty()) { 179 180 int free_idx = free_kernarg_segments.front(); 181 res = static_cast<void *>(static_cast<char *>(kernarg_region) + 182 (free_idx * kernarg_size_including_implicit())); 183 assert(free_idx == pointer_to_index(res)); 184 free_kernarg_segments.pop(); 185 } 186 return res; 187 } 188 189 void deallocate(void *ptr) { 190 lock l(&mutex); 191 int idx = pointer_to_index(ptr); 192 free_kernarg_segments.push(idx); 193 } 194 195 private: 196 int pointer_to_index(void *ptr) { 197 ptrdiff_t bytes = 198 static_cast<char *>(ptr) - static_cast<char *>(kernarg_region); 199 assert(bytes >= 0); 200 assert(bytes % kernarg_size_including_implicit() == 0); 201 return bytes / kernarg_size_including_implicit(); 202 } 203 struct lock { 204 lock(pthread_mutex_t *m) : m(m) { pthread_mutex_lock(m); } 205 ~lock() { pthread_mutex_unlock(m); } 206 pthread_mutex_t *m; 207 }; 208 }; 209 pthread_mutex_t KernelArgPool::mutex = PTHREAD_MUTEX_INITIALIZER; 210 211 std::unordered_map<std::string /*kernel*/, std::unique_ptr<KernelArgPool>> 212 KernelArgPoolMap; 213 214 /// Use a single entity to encode a kernel and a set of flags 215 struct KernelTy { 216 // execution mode of kernel 217 // 0 - SPMD mode (without master warp) 218 // 1 - Generic mode (with master warp) 219 int8_t ExecutionMode; 220 int16_t ConstWGSize; 221 int32_t device_id; 222 void *CallStackAddr = nullptr; 223 const char *Name; 224 225 KernelTy(int8_t _ExecutionMode, int16_t _ConstWGSize, int32_t _device_id, 226 void *_CallStackAddr, const char *_Name, 227 uint32_t _kernarg_segment_size) 228 : ExecutionMode(_ExecutionMode), ConstWGSize(_ConstWGSize), 229 device_id(_device_id), CallStackAddr(_CallStackAddr), Name(_Name) { 230 DP("Construct kernelinfo: ExecMode %d\n", ExecutionMode); 231 232 std::string N(_Name); 233 if (KernelArgPoolMap.find(N) == KernelArgPoolMap.end()) { 234 KernelArgPoolMap.insert( 235 std::make_pair(N, std::unique_ptr<KernelArgPool>( 236 new KernelArgPool(_kernarg_segment_size)))); 237 } 238 } 239 }; 240 241 /// List that contains all the kernels. 242 /// FIXME: we may need this to be per device and per library. 243 std::list<KernelTy> KernelsList; 244 245 // ATMI API to get gpu and gpu memory place 246 static atmi_place_t get_gpu_place(int device_id) { 247 return ATMI_PLACE_GPU(0, device_id); 248 } 249 250 static std::vector<hsa_agent_t> find_gpu_agents() { 251 std::vector<hsa_agent_t> res; 252 253 hsa_status_t err = hsa_iterate_agents( 254 [](hsa_agent_t agent, void *data) -> hsa_status_t { 255 std::vector<hsa_agent_t> *res = 256 static_cast<std::vector<hsa_agent_t> *>(data); 257 258 hsa_device_type_t device_type; 259 // get_info fails iff HSA runtime not yet initialized 260 hsa_status_t err = 261 hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 262 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) 263 printf("rtl.cpp: err %d\n", err); 264 assert(err == HSA_STATUS_SUCCESS); 265 266 if (device_type == HSA_DEVICE_TYPE_GPU) { 267 res->push_back(agent); 268 } 269 return HSA_STATUS_SUCCESS; 270 }, 271 &res); 272 273 // iterate_agents fails iff HSA runtime not yet initialized 274 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) 275 printf("rtl.cpp: err %d\n", err); 276 assert(err == HSA_STATUS_SUCCESS); 277 return res; 278 } 279 280 static void callbackQueue(hsa_status_t status, hsa_queue_t *source, 281 void *data) { 282 if (status != HSA_STATUS_SUCCESS) { 283 const char *status_string; 284 if (hsa_status_string(status, &status_string) != HSA_STATUS_SUCCESS) { 285 status_string = "unavailable"; 286 } 287 fprintf(stderr, "[%s:%d] GPU error in queue %p %d (%s)\n", __FILE__, 288 __LINE__, source, status, status_string); 289 abort(); 290 } 291 } 292 293 namespace core { 294 namespace { 295 void packet_store_release(uint32_t *packet, uint16_t header, uint16_t rest) { 296 __atomic_store_n(packet, header | (rest << 16), __ATOMIC_RELEASE); 297 } 298 299 uint16_t create_header() { 300 uint16_t header = HSA_PACKET_TYPE_KERNEL_DISPATCH << HSA_PACKET_HEADER_TYPE; 301 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE; 302 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE; 303 return header; 304 } 305 } // namespace 306 } // namespace core 307 308 /// Class containing all the device information 309 class RTLDeviceInfoTy { 310 std::vector<std::list<FuncOrGblEntryTy>> FuncGblEntries; 311 312 public: 313 // load binary populates symbol tables and mutates various global state 314 // run uses those symbol tables 315 std::shared_timed_mutex load_run_lock; 316 317 int NumberOfDevices; 318 319 // GPU devices 320 std::vector<hsa_agent_t> HSAAgents; 321 std::vector<hsa_queue_t *> HSAQueues; // one per gpu 322 323 // Device properties 324 std::vector<int> ComputeUnits; 325 std::vector<int> GroupsPerDevice; 326 std::vector<int> ThreadsPerGroup; 327 std::vector<int> WarpSize; 328 std::vector<std::string> GPUName; 329 330 // OpenMP properties 331 std::vector<int> NumTeams; 332 std::vector<int> NumThreads; 333 334 // OpenMP Environment properties 335 int EnvNumTeams; 336 int EnvTeamLimit; 337 int EnvMaxTeamsDefault; 338 339 // OpenMP Requires Flags 340 int64_t RequiresFlags; 341 342 // Resource pools 343 SignalPoolT FreeSignalPool; 344 345 bool hostcall_required = false; 346 347 std::vector<hsa_executable_t> HSAExecutables; 348 349 std::vector<std::map<std::string, atl_kernel_info_t>> KernelInfoTable; 350 std::vector<std::map<std::string, atl_symbol_info_t>> SymbolInfoTable; 351 352 struct atmiFreePtrDeletor { 353 void operator()(void *p) { 354 atmi_free(p); // ignore failure to free 355 } 356 }; 357 358 // device_State shared across loaded binaries, error if inconsistent size 359 std::vector<std::pair<std::unique_ptr<void, atmiFreePtrDeletor>, uint64_t>> 360 deviceStateStore; 361 362 static const unsigned HardTeamLimit = 363 (1 << 16) - 1; // 64K needed to fit in uint16 364 static const int DefaultNumTeams = 128; 365 static const int Max_Teams = 366 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_Teams]; 367 static const int Warp_Size = 368 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; 369 static const int Max_WG_Size = 370 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_WG_Size]; 371 static const int Default_WG_Size = 372 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Default_WG_Size]; 373 374 using MemcpyFunc = hsa_status_t (*)(hsa_signal_t, void *, const void *, 375 size_t size, hsa_agent_t); 376 hsa_status_t freesignalpool_memcpy(void *dest, const void *src, size_t size, 377 MemcpyFunc Func, int32_t deviceId) { 378 hsa_agent_t agent = HSAAgents[deviceId]; 379 hsa_signal_t s = FreeSignalPool.pop(); 380 if (s.handle == 0) { 381 return HSA_STATUS_ERROR; 382 } 383 hsa_status_t r = Func(s, dest, src, size, agent); 384 FreeSignalPool.push(s); 385 return r; 386 } 387 388 hsa_status_t freesignalpool_memcpy_d2h(void *dest, const void *src, 389 size_t size, int32_t deviceId) { 390 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_d2h, deviceId); 391 } 392 393 hsa_status_t freesignalpool_memcpy_h2d(void *dest, const void *src, 394 size_t size, int32_t deviceId) { 395 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_h2d, deviceId); 396 } 397 398 // Record entry point associated with device 399 void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) { 400 assert(device_id < (int32_t)FuncGblEntries.size() && 401 "Unexpected device id!"); 402 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 403 404 E.Entries.push_back(entry); 405 } 406 407 // Return true if the entry is associated with device 408 bool findOffloadEntry(int32_t device_id, void *addr) { 409 assert(device_id < (int32_t)FuncGblEntries.size() && 410 "Unexpected device id!"); 411 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 412 413 for (auto &it : E.Entries) { 414 if (it.addr == addr) 415 return true; 416 } 417 418 return false; 419 } 420 421 // Return the pointer to the target entries table 422 __tgt_target_table *getOffloadEntriesTable(int32_t device_id) { 423 assert(device_id < (int32_t)FuncGblEntries.size() && 424 "Unexpected device id!"); 425 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 426 427 int32_t size = E.Entries.size(); 428 429 // Table is empty 430 if (!size) 431 return 0; 432 433 __tgt_offload_entry *begin = &E.Entries[0]; 434 __tgt_offload_entry *end = &E.Entries[size - 1]; 435 436 // Update table info according to the entries and return the pointer 437 E.Table.EntriesBegin = begin; 438 E.Table.EntriesEnd = ++end; 439 440 return &E.Table; 441 } 442 443 // Clear entries table for a device 444 void clearOffloadEntriesTable(int device_id) { 445 assert(device_id < (int32_t)FuncGblEntries.size() && 446 "Unexpected device id!"); 447 FuncGblEntries[device_id].emplace_back(); 448 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 449 // KernelArgPoolMap.clear(); 450 E.Entries.clear(); 451 E.Table.EntriesBegin = E.Table.EntriesEnd = 0; 452 } 453 454 RTLDeviceInfoTy() { 455 // LIBOMPTARGET_KERNEL_TRACE provides a kernel launch trace to stderr 456 // anytime. You do not need a debug library build. 457 // 0 => no tracing 458 // 1 => tracing dispatch only 459 // >1 => verbosity increase 460 if (char *envStr = getenv("LIBOMPTARGET_KERNEL_TRACE")) 461 print_kernel_trace = atoi(envStr); 462 else 463 print_kernel_trace = 0; 464 465 DP("Start initializing HSA-ATMI\n"); 466 hsa_status_t err = core::atl_init_gpu_context(); 467 if (err != HSA_STATUS_SUCCESS) { 468 DP("Error when initializing HSA-ATMI\n"); 469 return; 470 } 471 472 // Init hostcall soon after initializing ATMI 473 hostrpc_init(); 474 475 HSAAgents = find_gpu_agents(); 476 NumberOfDevices = (int)HSAAgents.size(); 477 478 if (NumberOfDevices == 0) { 479 DP("There are no devices supporting HSA.\n"); 480 return; 481 } else { 482 DP("There are %d devices supporting HSA.\n", NumberOfDevices); 483 } 484 485 // Init the device info 486 HSAQueues.resize(NumberOfDevices); 487 FuncGblEntries.resize(NumberOfDevices); 488 ThreadsPerGroup.resize(NumberOfDevices); 489 ComputeUnits.resize(NumberOfDevices); 490 GPUName.resize(NumberOfDevices); 491 GroupsPerDevice.resize(NumberOfDevices); 492 WarpSize.resize(NumberOfDevices); 493 NumTeams.resize(NumberOfDevices); 494 NumThreads.resize(NumberOfDevices); 495 deviceStateStore.resize(NumberOfDevices); 496 KernelInfoTable.resize(NumberOfDevices); 497 SymbolInfoTable.resize(NumberOfDevices); 498 499 for (int i = 0; i < NumberOfDevices; i++) { 500 HSAQueues[i] = nullptr; 501 } 502 503 for (int i = 0; i < NumberOfDevices; i++) { 504 uint32_t queue_size = 0; 505 { 506 hsa_status_t err = hsa_agent_get_info( 507 HSAAgents[i], HSA_AGENT_INFO_QUEUE_MAX_SIZE, &queue_size); 508 if (err != HSA_STATUS_SUCCESS) { 509 DP("HSA query QUEUE_MAX_SIZE failed for agent %d\n", i); 510 return; 511 } 512 if (queue_size > core::Runtime::getInstance().getMaxQueueSize()) { 513 queue_size = core::Runtime::getInstance().getMaxQueueSize(); 514 } 515 } 516 517 hsa_status_t rc = hsa_queue_create( 518 HSAAgents[i], queue_size, HSA_QUEUE_TYPE_MULTI, callbackQueue, NULL, 519 UINT32_MAX, UINT32_MAX, &HSAQueues[i]); 520 if (rc != HSA_STATUS_SUCCESS) { 521 DP("Failed to create HSA queue %d\n", i); 522 return; 523 } 524 525 deviceStateStore[i] = {nullptr, 0}; 526 } 527 528 for (int i = 0; i < NumberOfDevices; i++) { 529 ThreadsPerGroup[i] = RTLDeviceInfoTy::Default_WG_Size; 530 GroupsPerDevice[i] = RTLDeviceInfoTy::DefaultNumTeams; 531 ComputeUnits[i] = 1; 532 DP("Device %d: Initial groupsPerDevice %d & threadsPerGroup %d\n", i, 533 GroupsPerDevice[i], ThreadsPerGroup[i]); 534 } 535 536 // Get environment variables regarding teams 537 char *envStr = getenv("OMP_TEAM_LIMIT"); 538 if (envStr) { 539 // OMP_TEAM_LIMIT has been set 540 EnvTeamLimit = std::stoi(envStr); 541 DP("Parsed OMP_TEAM_LIMIT=%d\n", EnvTeamLimit); 542 } else { 543 EnvTeamLimit = -1; 544 } 545 envStr = getenv("OMP_NUM_TEAMS"); 546 if (envStr) { 547 // OMP_NUM_TEAMS has been set 548 EnvNumTeams = std::stoi(envStr); 549 DP("Parsed OMP_NUM_TEAMS=%d\n", EnvNumTeams); 550 } else { 551 EnvNumTeams = -1; 552 } 553 // Get environment variables regarding expMaxTeams 554 envStr = getenv("OMP_MAX_TEAMS_DEFAULT"); 555 if (envStr) { 556 EnvMaxTeamsDefault = std::stoi(envStr); 557 DP("Parsed OMP_MAX_TEAMS_DEFAULT=%d\n", EnvMaxTeamsDefault); 558 } else { 559 EnvMaxTeamsDefault = -1; 560 } 561 562 // Default state. 563 RequiresFlags = OMP_REQ_UNDEFINED; 564 } 565 566 ~RTLDeviceInfoTy() { 567 DP("Finalizing the HSA-ATMI DeviceInfo.\n"); 568 // Run destructors on types that use HSA before 569 // atmi_finalize removes access to it 570 deviceStateStore.clear(); 571 KernelArgPoolMap.clear(); 572 // Terminate hostrpc before finalizing ATMI 573 hostrpc_terminate(); 574 575 hsa_status_t Err; 576 for (uint32_t I = 0; I < HSAExecutables.size(); I++) { 577 Err = hsa_executable_destroy(HSAExecutables[I]); 578 if (Err != HSA_STATUS_SUCCESS) { 579 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 580 "Destroying executable", get_error_string(Err)); 581 } 582 } 583 584 Err = hsa_shut_down(); 585 if (Err != HSA_STATUS_SUCCESS) { 586 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Shutting down HSA", 587 get_error_string(Err)); 588 } 589 } 590 }; 591 592 pthread_mutex_t SignalPoolT::mutex = PTHREAD_MUTEX_INITIALIZER; 593 594 // TODO: May need to drop the trailing to fields until deviceRTL is updated 595 struct omptarget_device_environmentTy { 596 int32_t debug_level; // gets value of envvar LIBOMPTARGET_DEVICE_RTL_DEBUG 597 // only useful for Debug build of deviceRTLs 598 int32_t num_devices; // gets number of active offload devices 599 int32_t device_num; // gets a value 0 to num_devices-1 600 }; 601 602 static RTLDeviceInfoTy DeviceInfo; 603 604 namespace { 605 606 int32_t dataRetrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size, 607 __tgt_async_info *AsyncInfo) { 608 assert(AsyncInfo && "AsyncInfo is nullptr"); 609 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 610 // Return success if we are not copying back to host from target. 611 if (!HstPtr) 612 return OFFLOAD_SUCCESS; 613 hsa_status_t err; 614 DP("Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 615 (long long unsigned)(Elf64_Addr)TgtPtr, 616 (long long unsigned)(Elf64_Addr)HstPtr); 617 618 err = DeviceInfo.freesignalpool_memcpy_d2h(HstPtr, TgtPtr, (size_t)Size, 619 DeviceId); 620 621 if (err != HSA_STATUS_SUCCESS) { 622 DP("Error when copying data from device to host. Pointers: " 623 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 624 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 625 return OFFLOAD_FAIL; 626 } 627 DP("DONE Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 628 (long long unsigned)(Elf64_Addr)TgtPtr, 629 (long long unsigned)(Elf64_Addr)HstPtr); 630 return OFFLOAD_SUCCESS; 631 } 632 633 int32_t dataSubmit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size, 634 __tgt_async_info *AsyncInfo) { 635 assert(AsyncInfo && "AsyncInfo is nullptr"); 636 hsa_status_t err; 637 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 638 // Return success if we are not doing host to target. 639 if (!HstPtr) 640 return OFFLOAD_SUCCESS; 641 642 DP("Submit data %ld bytes, (hst:%016llx) -> (tgt:%016llx).\n", Size, 643 (long long unsigned)(Elf64_Addr)HstPtr, 644 (long long unsigned)(Elf64_Addr)TgtPtr); 645 err = DeviceInfo.freesignalpool_memcpy_h2d(TgtPtr, HstPtr, (size_t)Size, 646 DeviceId); 647 if (err != HSA_STATUS_SUCCESS) { 648 DP("Error when copying data from host to device. Pointers: " 649 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 650 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 651 return OFFLOAD_FAIL; 652 } 653 return OFFLOAD_SUCCESS; 654 } 655 656 // Async. 657 // The implementation was written with cuda streams in mind. The semantics of 658 // that are to execute kernels on a queue in order of insertion. A synchronise 659 // call then makes writes visible between host and device. This means a series 660 // of N data_submit_async calls are expected to execute serially. HSA offers 661 // various options to run the data copies concurrently. This may require changes 662 // to libomptarget. 663 664 // __tgt_async_info* contains a void * Queue. Queue = 0 is used to indicate that 665 // there are no outstanding kernels that need to be synchronized. Any async call 666 // may be passed a Queue==0, at which point the cuda implementation will set it 667 // to non-null (see getStream). The cuda streams are per-device. Upstream may 668 // change this interface to explicitly initialize the AsyncInfo_pointer, but 669 // until then hsa lazily initializes it as well. 670 671 void initAsyncInfo(__tgt_async_info *AsyncInfo) { 672 // set non-null while using async calls, return to null to indicate completion 673 assert(AsyncInfo); 674 if (!AsyncInfo->Queue) { 675 AsyncInfo->Queue = reinterpret_cast<void *>(UINT64_MAX); 676 } 677 } 678 void finiAsyncInfo(__tgt_async_info *AsyncInfo) { 679 assert(AsyncInfo); 680 assert(AsyncInfo->Queue); 681 AsyncInfo->Queue = 0; 682 } 683 684 bool elf_machine_id_is_amdgcn(__tgt_device_image *image) { 685 const uint16_t amdgcnMachineID = 224; // EM_AMDGPU may not be in system elf.h 686 int32_t r = elf_check_machine(image, amdgcnMachineID); 687 if (!r) { 688 DP("Supported machine ID not found\n"); 689 } 690 return r; 691 } 692 693 uint32_t elf_e_flags(__tgt_device_image *image) { 694 char *img_begin = (char *)image->ImageStart; 695 size_t img_size = (char *)image->ImageEnd - img_begin; 696 697 Elf *e = elf_memory(img_begin, img_size); 698 if (!e) { 699 DP("Unable to get ELF handle: %s!\n", elf_errmsg(-1)); 700 return 0; 701 } 702 703 Elf64_Ehdr *eh64 = elf64_getehdr(e); 704 705 if (!eh64) { 706 DP("Unable to get machine ID from ELF file!\n"); 707 elf_end(e); 708 return 0; 709 } 710 711 uint32_t Flags = eh64->e_flags; 712 713 elf_end(e); 714 DP("ELF Flags: 0x%x\n", Flags); 715 return Flags; 716 } 717 } // namespace 718 719 int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) { 720 return elf_machine_id_is_amdgcn(image); 721 } 722 723 int __tgt_rtl_number_of_devices() { return DeviceInfo.NumberOfDevices; } 724 725 int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) { 726 DP("Init requires flags to %ld\n", RequiresFlags); 727 DeviceInfo.RequiresFlags = RequiresFlags; 728 return RequiresFlags; 729 } 730 731 namespace { 732 template <typename T> bool enforce_upper_bound(T *value, T upper) { 733 bool changed = *value > upper; 734 if (changed) { 735 *value = upper; 736 } 737 return changed; 738 } 739 } // namespace 740 741 int32_t __tgt_rtl_init_device(int device_id) { 742 hsa_status_t err; 743 744 // this is per device id init 745 DP("Initialize the device id: %d\n", device_id); 746 747 hsa_agent_t agent = DeviceInfo.HSAAgents[device_id]; 748 749 // Get number of Compute Unit 750 uint32_t compute_units = 0; 751 err = hsa_agent_get_info( 752 agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT, 753 &compute_units); 754 if (err != HSA_STATUS_SUCCESS) { 755 DeviceInfo.ComputeUnits[device_id] = 1; 756 DP("Error getting compute units : settiing to 1\n"); 757 } else { 758 DeviceInfo.ComputeUnits[device_id] = compute_units; 759 DP("Using %d compute unis per grid\n", DeviceInfo.ComputeUnits[device_id]); 760 } 761 762 char GetInfoName[64]; // 64 max size returned by get info 763 err = hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AGENT_INFO_NAME, 764 (void *)GetInfoName); 765 if (err) 766 DeviceInfo.GPUName[device_id] = "--unknown gpu--"; 767 else { 768 DeviceInfo.GPUName[device_id] = GetInfoName; 769 } 770 771 if (print_kernel_trace & STARTUP_DETAILS) 772 fprintf(stderr, "Device#%-2d CU's: %2d %s\n", device_id, 773 DeviceInfo.ComputeUnits[device_id], 774 DeviceInfo.GPUName[device_id].c_str()); 775 776 // Query attributes to determine number of threads/block and blocks/grid. 777 uint16_t workgroup_max_dim[3]; 778 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_DIM, 779 &workgroup_max_dim); 780 if (err != HSA_STATUS_SUCCESS) { 781 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::DefaultNumTeams; 782 DP("Error getting grid dims: num groups : %d\n", 783 RTLDeviceInfoTy::DefaultNumTeams); 784 } else if (workgroup_max_dim[0] <= RTLDeviceInfoTy::HardTeamLimit) { 785 DeviceInfo.GroupsPerDevice[device_id] = workgroup_max_dim[0]; 786 DP("Using %d ROCm blocks per grid\n", 787 DeviceInfo.GroupsPerDevice[device_id]); 788 } else { 789 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::HardTeamLimit; 790 DP("Max ROCm blocks per grid %d exceeds the hard team limit %d, capping " 791 "at the hard limit\n", 792 workgroup_max_dim[0], RTLDeviceInfoTy::HardTeamLimit); 793 } 794 795 // Get thread limit 796 hsa_dim3_t grid_max_dim; 797 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &grid_max_dim); 798 if (err == HSA_STATUS_SUCCESS) { 799 DeviceInfo.ThreadsPerGroup[device_id] = 800 reinterpret_cast<uint32_t *>(&grid_max_dim)[0] / 801 DeviceInfo.GroupsPerDevice[device_id]; 802 803 if (DeviceInfo.ThreadsPerGroup[device_id] == 0) { 804 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 805 DP("Default thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 806 } else if (enforce_upper_bound(&DeviceInfo.ThreadsPerGroup[device_id], 807 RTLDeviceInfoTy::Max_WG_Size)) { 808 DP("Capped thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 809 } else { 810 DP("Using ROCm Queried thread limit: %d\n", 811 DeviceInfo.ThreadsPerGroup[device_id]); 812 } 813 } else { 814 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 815 DP("Error getting max block dimension, use default:%d \n", 816 RTLDeviceInfoTy::Max_WG_Size); 817 } 818 819 // Get wavefront size 820 uint32_t wavefront_size = 0; 821 err = 822 hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size); 823 if (err == HSA_STATUS_SUCCESS) { 824 DP("Queried wavefront size: %d\n", wavefront_size); 825 DeviceInfo.WarpSize[device_id] = wavefront_size; 826 } else { 827 DP("Default wavefront size: %d\n", 828 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]); 829 DeviceInfo.WarpSize[device_id] = 830 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; 831 } 832 833 // Adjust teams to the env variables 834 835 if (DeviceInfo.EnvTeamLimit > 0 && 836 (enforce_upper_bound(&DeviceInfo.GroupsPerDevice[device_id], 837 DeviceInfo.EnvTeamLimit))) { 838 DP("Capping max groups per device to OMP_TEAM_LIMIT=%d\n", 839 DeviceInfo.EnvTeamLimit); 840 } 841 842 // Set default number of teams 843 if (DeviceInfo.EnvNumTeams > 0) { 844 DeviceInfo.NumTeams[device_id] = DeviceInfo.EnvNumTeams; 845 DP("Default number of teams set according to environment %d\n", 846 DeviceInfo.EnvNumTeams); 847 } else { 848 char *TeamsPerCUEnvStr = getenv("OMP_TARGET_TEAMS_PER_PROC"); 849 int TeamsPerCU = 1; // default number of teams per CU is 1 850 if (TeamsPerCUEnvStr) { 851 TeamsPerCU = std::stoi(TeamsPerCUEnvStr); 852 } 853 854 DeviceInfo.NumTeams[device_id] = 855 TeamsPerCU * DeviceInfo.ComputeUnits[device_id]; 856 DP("Default number of teams = %d * number of compute units %d\n", 857 TeamsPerCU, DeviceInfo.ComputeUnits[device_id]); 858 } 859 860 if (enforce_upper_bound(&DeviceInfo.NumTeams[device_id], 861 DeviceInfo.GroupsPerDevice[device_id])) { 862 DP("Default number of teams exceeds device limit, capping at %d\n", 863 DeviceInfo.GroupsPerDevice[device_id]); 864 } 865 866 // Set default number of threads 867 DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::Default_WG_Size; 868 DP("Default number of threads set according to library's default %d\n", 869 RTLDeviceInfoTy::Default_WG_Size); 870 if (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], 871 DeviceInfo.ThreadsPerGroup[device_id])) { 872 DP("Default number of threads exceeds device limit, capping at %d\n", 873 DeviceInfo.ThreadsPerGroup[device_id]); 874 } 875 876 DP("Device %d: default limit for groupsPerDevice %d & threadsPerGroup %d\n", 877 device_id, DeviceInfo.GroupsPerDevice[device_id], 878 DeviceInfo.ThreadsPerGroup[device_id]); 879 880 DP("Device %d: wavefront size %d, total threads %d x %d = %d\n", device_id, 881 DeviceInfo.WarpSize[device_id], DeviceInfo.ThreadsPerGroup[device_id], 882 DeviceInfo.GroupsPerDevice[device_id], 883 DeviceInfo.GroupsPerDevice[device_id] * 884 DeviceInfo.ThreadsPerGroup[device_id]); 885 886 return OFFLOAD_SUCCESS; 887 } 888 889 namespace { 890 Elf64_Shdr *find_only_SHT_HASH(Elf *elf) { 891 size_t N; 892 int rc = elf_getshdrnum(elf, &N); 893 if (rc != 0) { 894 return nullptr; 895 } 896 897 Elf64_Shdr *result = nullptr; 898 for (size_t i = 0; i < N; i++) { 899 Elf_Scn *scn = elf_getscn(elf, i); 900 if (scn) { 901 Elf64_Shdr *shdr = elf64_getshdr(scn); 902 if (shdr) { 903 if (shdr->sh_type == SHT_HASH) { 904 if (result == nullptr) { 905 result = shdr; 906 } else { 907 // multiple SHT_HASH sections not handled 908 return nullptr; 909 } 910 } 911 } 912 } 913 } 914 return result; 915 } 916 917 const Elf64_Sym *elf_lookup(Elf *elf, char *base, Elf64_Shdr *section_hash, 918 const char *symname) { 919 920 assert(section_hash); 921 size_t section_symtab_index = section_hash->sh_link; 922 Elf64_Shdr *section_symtab = 923 elf64_getshdr(elf_getscn(elf, section_symtab_index)); 924 size_t section_strtab_index = section_symtab->sh_link; 925 926 const Elf64_Sym *symtab = 927 reinterpret_cast<const Elf64_Sym *>(base + section_symtab->sh_offset); 928 929 const uint32_t *hashtab = 930 reinterpret_cast<const uint32_t *>(base + section_hash->sh_offset); 931 932 // Layout: 933 // nbucket 934 // nchain 935 // bucket[nbucket] 936 // chain[nchain] 937 uint32_t nbucket = hashtab[0]; 938 const uint32_t *bucket = &hashtab[2]; 939 const uint32_t *chain = &hashtab[nbucket + 2]; 940 941 const size_t max = strlen(symname) + 1; 942 const uint32_t hash = elf_hash(symname); 943 for (uint32_t i = bucket[hash % nbucket]; i != 0; i = chain[i]) { 944 char *n = elf_strptr(elf, section_strtab_index, symtab[i].st_name); 945 if (strncmp(symname, n, max) == 0) { 946 return &symtab[i]; 947 } 948 } 949 950 return nullptr; 951 } 952 953 typedef struct { 954 void *addr = nullptr; 955 uint32_t size = UINT32_MAX; 956 uint32_t sh_type = SHT_NULL; 957 } symbol_info; 958 959 int get_symbol_info_without_loading(Elf *elf, char *base, const char *symname, 960 symbol_info *res) { 961 if (elf_kind(elf) != ELF_K_ELF) { 962 return 1; 963 } 964 965 Elf64_Shdr *section_hash = find_only_SHT_HASH(elf); 966 if (!section_hash) { 967 return 1; 968 } 969 970 const Elf64_Sym *sym = elf_lookup(elf, base, section_hash, symname); 971 if (!sym) { 972 return 1; 973 } 974 975 if (sym->st_size > UINT32_MAX) { 976 return 1; 977 } 978 979 if (sym->st_shndx == SHN_UNDEF) { 980 return 1; 981 } 982 983 Elf_Scn *section = elf_getscn(elf, sym->st_shndx); 984 if (!section) { 985 return 1; 986 } 987 988 Elf64_Shdr *header = elf64_getshdr(section); 989 if (!header) { 990 return 1; 991 } 992 993 res->addr = sym->st_value + base; 994 res->size = static_cast<uint32_t>(sym->st_size); 995 res->sh_type = header->sh_type; 996 return 0; 997 } 998 999 int get_symbol_info_without_loading(char *base, size_t img_size, 1000 const char *symname, symbol_info *res) { 1001 Elf *elf = elf_memory(base, img_size); 1002 if (elf) { 1003 int rc = get_symbol_info_without_loading(elf, base, symname, res); 1004 elf_end(elf); 1005 return rc; 1006 } 1007 return 1; 1008 } 1009 1010 hsa_status_t interop_get_symbol_info(char *base, size_t img_size, 1011 const char *symname, void **var_addr, 1012 uint32_t *var_size) { 1013 symbol_info si; 1014 int rc = get_symbol_info_without_loading(base, img_size, symname, &si); 1015 if (rc == 0) { 1016 *var_addr = si.addr; 1017 *var_size = si.size; 1018 return HSA_STATUS_SUCCESS; 1019 } else { 1020 return HSA_STATUS_ERROR; 1021 } 1022 } 1023 1024 template <typename C> 1025 hsa_status_t module_register_from_memory_to_place( 1026 std::map<std::string, atl_kernel_info_t> &KernelInfoTable, 1027 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, 1028 void *module_bytes, size_t module_size, atmi_place_t place, C cb, 1029 std::vector<hsa_executable_t> &HSAExecutables) { 1030 auto L = [](void *data, size_t size, void *cb_state) -> hsa_status_t { 1031 C *unwrapped = static_cast<C *>(cb_state); 1032 return (*unwrapped)(data, size); 1033 }; 1034 return core::RegisterModuleFromMemory( 1035 KernelInfoTable, SymbolInfoTable, module_bytes, module_size, place, L, 1036 static_cast<void *>(&cb), HSAExecutables); 1037 } 1038 } // namespace 1039 1040 static uint64_t get_device_State_bytes(char *ImageStart, size_t img_size) { 1041 uint64_t device_State_bytes = 0; 1042 { 1043 // If this is the deviceRTL, get the state variable size 1044 symbol_info size_si; 1045 int rc = get_symbol_info_without_loading( 1046 ImageStart, img_size, "omptarget_nvptx_device_State_size", &size_si); 1047 1048 if (rc == 0) { 1049 if (size_si.size != sizeof(uint64_t)) { 1050 DP("Found device_State_size variable with wrong size\n"); 1051 return 0; 1052 } 1053 1054 // Read number of bytes directly from the elf 1055 memcpy(&device_State_bytes, size_si.addr, sizeof(uint64_t)); 1056 } 1057 } 1058 return device_State_bytes; 1059 } 1060 1061 static __tgt_target_table * 1062 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1063 1064 static __tgt_target_table * 1065 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1066 1067 __tgt_target_table *__tgt_rtl_load_binary(int32_t device_id, 1068 __tgt_device_image *image) { 1069 DeviceInfo.load_run_lock.lock(); 1070 __tgt_target_table *res = __tgt_rtl_load_binary_locked(device_id, image); 1071 DeviceInfo.load_run_lock.unlock(); 1072 return res; 1073 } 1074 1075 struct device_environment { 1076 // initialise an omptarget_device_environmentTy in the deviceRTL 1077 // patches around differences in the deviceRTL between trunk, aomp, 1078 // rocmcc. Over time these differences will tend to zero and this class 1079 // simplified. 1080 // Symbol may be in .data or .bss, and may be missing fields: 1081 // - aomp has debug_level, num_devices, device_num 1082 // - trunk has debug_level 1083 // - under review in trunk is debug_level, device_num 1084 // - rocmcc matches aomp, patch to swap num_devices and device_num 1085 1086 // The symbol may also have been deadstripped because the device side 1087 // accessors were unused. 1088 1089 // If the symbol is in .data (aomp, rocm) it can be written directly. 1090 // If it is in .bss, we must wait for it to be allocated space on the 1091 // gpu (trunk) and initialize after loading. 1092 const char *sym() { return "omptarget_device_environment"; } 1093 1094 omptarget_device_environmentTy host_device_env; 1095 symbol_info si; 1096 bool valid = false; 1097 1098 __tgt_device_image *image; 1099 const size_t img_size; 1100 1101 device_environment(int device_id, int number_devices, 1102 __tgt_device_image *image, const size_t img_size) 1103 : image(image), img_size(img_size) { 1104 1105 host_device_env.num_devices = number_devices; 1106 host_device_env.device_num = device_id; 1107 host_device_env.debug_level = 0; 1108 #ifdef OMPTARGET_DEBUG 1109 if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) { 1110 host_device_env.debug_level = std::stoi(envStr); 1111 } 1112 #endif 1113 1114 int rc = get_symbol_info_without_loading((char *)image->ImageStart, 1115 img_size, sym(), &si); 1116 if (rc != 0) { 1117 DP("Finding global device environment '%s' - symbol missing.\n", sym()); 1118 return; 1119 } 1120 1121 if (si.size > sizeof(host_device_env)) { 1122 DP("Symbol '%s' has size %u, expected at most %zu.\n", sym(), si.size, 1123 sizeof(host_device_env)); 1124 return; 1125 } 1126 1127 valid = true; 1128 } 1129 1130 bool in_image() { return si.sh_type != SHT_NOBITS; } 1131 1132 hsa_status_t before_loading(void *data, size_t size) { 1133 if (valid) { 1134 if (in_image()) { 1135 DP("Setting global device environment before load (%u bytes)\n", 1136 si.size); 1137 uint64_t offset = (char *)si.addr - (char *)image->ImageStart; 1138 void *pos = (char *)data + offset; 1139 memcpy(pos, &host_device_env, si.size); 1140 } 1141 } 1142 return HSA_STATUS_SUCCESS; 1143 } 1144 1145 hsa_status_t after_loading() { 1146 if (valid) { 1147 if (!in_image()) { 1148 DP("Setting global device environment after load (%u bytes)\n", 1149 si.size); 1150 int device_id = host_device_env.device_num; 1151 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1152 void *state_ptr; 1153 uint32_t state_ptr_size; 1154 hsa_status_t err = atmi_interop_hsa_get_symbol_info( 1155 SymbolInfo, device_id, sym(), &state_ptr, &state_ptr_size); 1156 if (err != HSA_STATUS_SUCCESS) { 1157 DP("failed to find %s in loaded image\n", sym()); 1158 return err; 1159 } 1160 1161 if (state_ptr_size != si.size) { 1162 DP("Symbol had size %u before loading, %u after\n", state_ptr_size, 1163 si.size); 1164 return HSA_STATUS_ERROR; 1165 } 1166 1167 return DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &host_device_env, 1168 state_ptr_size, device_id); 1169 } 1170 } 1171 return HSA_STATUS_SUCCESS; 1172 } 1173 }; 1174 1175 static hsa_status_t atmi_calloc(void **ret_ptr, size_t size, int DeviceId) { 1176 uint64_t rounded = 4 * ((size + 3) / 4); 1177 void *ptr; 1178 hsa_status_t err = atmi_malloc(&ptr, rounded, DeviceId, ATMI_DEVTYPE_GPU); 1179 if (err != HSA_STATUS_SUCCESS) { 1180 return err; 1181 } 1182 1183 hsa_status_t rc = hsa_amd_memory_fill(ptr, 0, rounded / 4); 1184 if (rc != HSA_STATUS_SUCCESS) { 1185 fprintf(stderr, "zero fill device_state failed with %u\n", rc); 1186 atmi_free(ptr); 1187 return HSA_STATUS_ERROR; 1188 } 1189 1190 *ret_ptr = ptr; 1191 return HSA_STATUS_SUCCESS; 1192 } 1193 1194 static bool image_contains_symbol(void *data, size_t size, const char *sym) { 1195 symbol_info si; 1196 int rc = get_symbol_info_without_loading((char *)data, size, sym, &si); 1197 return (rc == 0) && (si.addr != nullptr); 1198 } 1199 1200 __tgt_target_table *__tgt_rtl_load_binary_locked(int32_t device_id, 1201 __tgt_device_image *image) { 1202 // This function loads the device image onto gpu[device_id] and does other 1203 // per-image initialization work. Specifically: 1204 // 1205 // - Initialize an omptarget_device_environmentTy instance embedded in the 1206 // image at the symbol "omptarget_device_environment" 1207 // Fields debug_level, device_num, num_devices. Used by the deviceRTL. 1208 // 1209 // - Allocate a large array per-gpu (could be moved to init_device) 1210 // - Read a uint64_t at symbol omptarget_nvptx_device_State_size 1211 // - Allocate at least that many bytes of gpu memory 1212 // - Zero initialize it 1213 // - Write the pointer to the symbol omptarget_nvptx_device_State 1214 // 1215 // - Pulls some per-kernel information together from various sources and 1216 // records it in the KernelsList for quicker access later 1217 // 1218 // The initialization can be done before or after loading the image onto the 1219 // gpu. This function presently does a mixture. Using the hsa api to get/set 1220 // the information is simpler to implement, in exchange for more complicated 1221 // runtime behaviour. E.g. launching a kernel or using dma to get eight bytes 1222 // back from the gpu vs a hashtable lookup on the host. 1223 1224 const size_t img_size = (char *)image->ImageEnd - (char *)image->ImageStart; 1225 1226 DeviceInfo.clearOffloadEntriesTable(device_id); 1227 1228 // We do not need to set the ELF version because the caller of this function 1229 // had to do that to decide the right runtime to use 1230 1231 if (!elf_machine_id_is_amdgcn(image)) { 1232 return NULL; 1233 } 1234 1235 { 1236 auto env = device_environment(device_id, DeviceInfo.NumberOfDevices, image, 1237 img_size); 1238 1239 auto &KernelInfo = DeviceInfo.KernelInfoTable[device_id]; 1240 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1241 hsa_status_t err = module_register_from_memory_to_place( 1242 KernelInfo, SymbolInfo, (void *)image->ImageStart, img_size, 1243 get_gpu_place(device_id), 1244 [&](void *data, size_t size) { 1245 if (image_contains_symbol(data, size, "needs_hostcall_buffer")) { 1246 __atomic_store_n(&DeviceInfo.hostcall_required, true, 1247 __ATOMIC_RELEASE); 1248 } 1249 return env.before_loading(data, size); 1250 }, 1251 DeviceInfo.HSAExecutables); 1252 1253 check("Module registering", err); 1254 if (err != HSA_STATUS_SUCCESS) { 1255 fprintf(stderr, 1256 "Possible gpu arch mismatch: device:%s, image:%s please check" 1257 " compiler flag: -march=<gpu>\n", 1258 DeviceInfo.GPUName[device_id].c_str(), 1259 get_elf_mach_gfx_name(elf_e_flags(image))); 1260 return NULL; 1261 } 1262 1263 err = env.after_loading(); 1264 if (err != HSA_STATUS_SUCCESS) { 1265 return NULL; 1266 } 1267 } 1268 1269 DP("ATMI module successfully loaded!\n"); 1270 1271 { 1272 // the device_State array is either large value in bss or a void* that 1273 // needs to be assigned to a pointer to an array of size device_state_bytes 1274 // If absent, it has been deadstripped and needs no setup. 1275 1276 void *state_ptr; 1277 uint32_t state_ptr_size; 1278 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 1279 hsa_status_t err = atmi_interop_hsa_get_symbol_info( 1280 SymbolInfoMap, device_id, "omptarget_nvptx_device_State", &state_ptr, 1281 &state_ptr_size); 1282 1283 if (err != HSA_STATUS_SUCCESS) { 1284 DP("No device_state symbol found, skipping initialization\n"); 1285 } else { 1286 if (state_ptr_size < sizeof(void *)) { 1287 DP("unexpected size of state_ptr %u != %zu\n", state_ptr_size, 1288 sizeof(void *)); 1289 return NULL; 1290 } 1291 1292 // if it's larger than a void*, assume it's a bss array and no further 1293 // initialization is required. Only try to set up a pointer for 1294 // sizeof(void*) 1295 if (state_ptr_size == sizeof(void *)) { 1296 uint64_t device_State_bytes = 1297 get_device_State_bytes((char *)image->ImageStart, img_size); 1298 if (device_State_bytes == 0) { 1299 DP("Can't initialize device_State, missing size information\n"); 1300 return NULL; 1301 } 1302 1303 auto &dss = DeviceInfo.deviceStateStore[device_id]; 1304 if (dss.first.get() == nullptr) { 1305 assert(dss.second == 0); 1306 void *ptr = NULL; 1307 hsa_status_t err = atmi_calloc(&ptr, device_State_bytes, device_id); 1308 if (err != HSA_STATUS_SUCCESS) { 1309 DP("Failed to allocate device_state array\n"); 1310 return NULL; 1311 } 1312 dss = { 1313 std::unique_ptr<void, RTLDeviceInfoTy::atmiFreePtrDeletor>{ptr}, 1314 device_State_bytes, 1315 }; 1316 } 1317 1318 void *ptr = dss.first.get(); 1319 if (device_State_bytes != dss.second) { 1320 DP("Inconsistent sizes of device_State unsupported\n"); 1321 return NULL; 1322 } 1323 1324 // write ptr to device memory so it can be used by later kernels 1325 err = DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &ptr, 1326 sizeof(void *), device_id); 1327 if (err != HSA_STATUS_SUCCESS) { 1328 DP("memcpy install of state_ptr failed\n"); 1329 return NULL; 1330 } 1331 } 1332 } 1333 } 1334 1335 // Here, we take advantage of the data that is appended after img_end to get 1336 // the symbols' name we need to load. This data consist of the host entries 1337 // begin and end as well as the target name (see the offloading linker script 1338 // creation in clang compiler). 1339 1340 // Find the symbols in the module by name. The name can be obtain by 1341 // concatenating the host entry name with the target name 1342 1343 __tgt_offload_entry *HostBegin = image->EntriesBegin; 1344 __tgt_offload_entry *HostEnd = image->EntriesEnd; 1345 1346 for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) { 1347 1348 if (!e->addr) { 1349 // The host should have always something in the address to 1350 // uniquely identify the target region. 1351 fprintf(stderr, "Analyzing host entry '<null>' (size = %lld)...\n", 1352 (unsigned long long)e->size); 1353 return NULL; 1354 } 1355 1356 if (e->size) { 1357 __tgt_offload_entry entry = *e; 1358 1359 void *varptr; 1360 uint32_t varsize; 1361 1362 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 1363 hsa_status_t err = atmi_interop_hsa_get_symbol_info( 1364 SymbolInfoMap, device_id, e->name, &varptr, &varsize); 1365 1366 if (err != HSA_STATUS_SUCCESS) { 1367 // Inform the user what symbol prevented offloading 1368 DP("Loading global '%s' (Failed)\n", e->name); 1369 return NULL; 1370 } 1371 1372 if (varsize != e->size) { 1373 DP("Loading global '%s' - size mismatch (%u != %lu)\n", e->name, 1374 varsize, e->size); 1375 return NULL; 1376 } 1377 1378 DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n", 1379 DPxPTR(e - HostBegin), e->name, DPxPTR(varptr)); 1380 entry.addr = (void *)varptr; 1381 1382 DeviceInfo.addOffloadEntry(device_id, entry); 1383 1384 if (DeviceInfo.RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY && 1385 e->flags & OMP_DECLARE_TARGET_LINK) { 1386 // If unified memory is present any target link variables 1387 // can access host addresses directly. There is no longer a 1388 // need for device copies. 1389 err = DeviceInfo.freesignalpool_memcpy_h2d(varptr, e->addr, 1390 sizeof(void *), device_id); 1391 if (err != HSA_STATUS_SUCCESS) 1392 DP("Error when copying USM\n"); 1393 DP("Copy linked variable host address (" DPxMOD ")" 1394 "to device address (" DPxMOD ")\n", 1395 DPxPTR(*((void **)e->addr)), DPxPTR(varptr)); 1396 } 1397 1398 continue; 1399 } 1400 1401 DP("to find the kernel name: %s size: %lu\n", e->name, strlen(e->name)); 1402 1403 uint32_t kernarg_segment_size; 1404 auto &KernelInfoMap = DeviceInfo.KernelInfoTable[device_id]; 1405 hsa_status_t err = atmi_interop_hsa_get_kernel_info( 1406 KernelInfoMap, device_id, e->name, 1407 HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE, 1408 &kernarg_segment_size); 1409 1410 // each arg is a void * in this openmp implementation 1411 uint32_t arg_num = kernarg_segment_size / sizeof(void *); 1412 std::vector<size_t> arg_sizes(arg_num); 1413 for (std::vector<size_t>::iterator it = arg_sizes.begin(); 1414 it != arg_sizes.end(); it++) { 1415 *it = sizeof(void *); 1416 } 1417 1418 // default value GENERIC (in case symbol is missing from cubin file) 1419 int8_t ExecModeVal = ExecutionModeType::GENERIC; 1420 1421 // get flat group size if present, else Default_WG_Size 1422 int16_t WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1423 1424 // get Kernel Descriptor if present. 1425 // Keep struct in sync wih getTgtAttributeStructQTy in CGOpenMPRuntime.cpp 1426 struct KernDescValType { 1427 uint16_t Version; 1428 uint16_t TSize; 1429 uint16_t WG_Size; 1430 uint8_t Mode; 1431 }; 1432 struct KernDescValType KernDescVal; 1433 std::string KernDescNameStr(e->name); 1434 KernDescNameStr += "_kern_desc"; 1435 const char *KernDescName = KernDescNameStr.c_str(); 1436 1437 void *KernDescPtr; 1438 uint32_t KernDescSize; 1439 void *CallStackAddr = nullptr; 1440 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1441 KernDescName, &KernDescPtr, &KernDescSize); 1442 1443 if (err == HSA_STATUS_SUCCESS) { 1444 if ((size_t)KernDescSize != sizeof(KernDescVal)) 1445 DP("Loading global computation properties '%s' - size mismatch (%u != " 1446 "%lu)\n", 1447 KernDescName, KernDescSize, sizeof(KernDescVal)); 1448 1449 memcpy(&KernDescVal, KernDescPtr, (size_t)KernDescSize); 1450 1451 // Check structure size against recorded size. 1452 if ((size_t)KernDescSize != KernDescVal.TSize) 1453 DP("KernDescVal size %lu does not match advertized size %d for '%s'\n", 1454 sizeof(KernDescVal), KernDescVal.TSize, KernDescName); 1455 1456 DP("After loading global for %s KernDesc \n", KernDescName); 1457 DP("KernDesc: Version: %d\n", KernDescVal.Version); 1458 DP("KernDesc: TSize: %d\n", KernDescVal.TSize); 1459 DP("KernDesc: WG_Size: %d\n", KernDescVal.WG_Size); 1460 DP("KernDesc: Mode: %d\n", KernDescVal.Mode); 1461 1462 // Get ExecMode 1463 ExecModeVal = KernDescVal.Mode; 1464 DP("ExecModeVal %d\n", ExecModeVal); 1465 if (KernDescVal.WG_Size == 0) { 1466 KernDescVal.WG_Size = RTLDeviceInfoTy::Default_WG_Size; 1467 DP("Setting KernDescVal.WG_Size to default %d\n", KernDescVal.WG_Size); 1468 } 1469 WGSizeVal = KernDescVal.WG_Size; 1470 DP("WGSizeVal %d\n", WGSizeVal); 1471 check("Loading KernDesc computation property", err); 1472 } else { 1473 DP("Warning: Loading KernDesc '%s' - symbol not found, ", KernDescName); 1474 1475 // Generic 1476 std::string ExecModeNameStr(e->name); 1477 ExecModeNameStr += "_exec_mode"; 1478 const char *ExecModeName = ExecModeNameStr.c_str(); 1479 1480 void *ExecModePtr; 1481 uint32_t varsize; 1482 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1483 ExecModeName, &ExecModePtr, &varsize); 1484 1485 if (err == HSA_STATUS_SUCCESS) { 1486 if ((size_t)varsize != sizeof(int8_t)) { 1487 DP("Loading global computation properties '%s' - size mismatch(%u != " 1488 "%lu)\n", 1489 ExecModeName, varsize, sizeof(int8_t)); 1490 return NULL; 1491 } 1492 1493 memcpy(&ExecModeVal, ExecModePtr, (size_t)varsize); 1494 1495 DP("After loading global for %s ExecMode = %d\n", ExecModeName, 1496 ExecModeVal); 1497 1498 if (ExecModeVal < 0 || ExecModeVal > 1) { 1499 DP("Error wrong exec_mode value specified in HSA code object file: " 1500 "%d\n", 1501 ExecModeVal); 1502 return NULL; 1503 } 1504 } else { 1505 DP("Loading global exec_mode '%s' - symbol missing, using default " 1506 "value " 1507 "GENERIC (1)\n", 1508 ExecModeName); 1509 } 1510 check("Loading computation property", err); 1511 1512 // Flat group size 1513 std::string WGSizeNameStr(e->name); 1514 WGSizeNameStr += "_wg_size"; 1515 const char *WGSizeName = WGSizeNameStr.c_str(); 1516 1517 void *WGSizePtr; 1518 uint32_t WGSize; 1519 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1520 WGSizeName, &WGSizePtr, &WGSize); 1521 1522 if (err == HSA_STATUS_SUCCESS) { 1523 if ((size_t)WGSize != sizeof(int16_t)) { 1524 DP("Loading global computation properties '%s' - size mismatch (%u " 1525 "!= " 1526 "%lu)\n", 1527 WGSizeName, WGSize, sizeof(int16_t)); 1528 return NULL; 1529 } 1530 1531 memcpy(&WGSizeVal, WGSizePtr, (size_t)WGSize); 1532 1533 DP("After loading global for %s WGSize = %d\n", WGSizeName, WGSizeVal); 1534 1535 if (WGSizeVal < RTLDeviceInfoTy::Default_WG_Size || 1536 WGSizeVal > RTLDeviceInfoTy::Max_WG_Size) { 1537 DP("Error wrong WGSize value specified in HSA code object file: " 1538 "%d\n", 1539 WGSizeVal); 1540 WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1541 } 1542 } else { 1543 DP("Warning: Loading WGSize '%s' - symbol not found, " 1544 "using default value %d\n", 1545 WGSizeName, WGSizeVal); 1546 } 1547 1548 check("Loading WGSize computation property", err); 1549 } 1550 1551 KernelsList.push_back(KernelTy(ExecModeVal, WGSizeVal, device_id, 1552 CallStackAddr, e->name, 1553 kernarg_segment_size)); 1554 __tgt_offload_entry entry = *e; 1555 entry.addr = (void *)&KernelsList.back(); 1556 DeviceInfo.addOffloadEntry(device_id, entry); 1557 DP("Entry point %ld maps to %s\n", e - HostBegin, e->name); 1558 } 1559 1560 return DeviceInfo.getOffloadEntriesTable(device_id); 1561 } 1562 1563 void *__tgt_rtl_data_alloc(int device_id, int64_t size, void *, int32_t kind) { 1564 void *ptr = NULL; 1565 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1566 1567 if (kind != TARGET_ALLOC_DEFAULT) { 1568 REPORT("Invalid target data allocation kind or requested allocator not " 1569 "implemented yet\n"); 1570 return NULL; 1571 } 1572 1573 hsa_status_t err = atmi_malloc(&ptr, size, device_id, ATMI_DEVTYPE_GPU); 1574 DP("Tgt alloc data %ld bytes, (tgt:%016llx).\n", size, 1575 (long long unsigned)(Elf64_Addr)ptr); 1576 ptr = (err == HSA_STATUS_SUCCESS) ? ptr : NULL; 1577 return ptr; 1578 } 1579 1580 int32_t __tgt_rtl_data_submit(int device_id, void *tgt_ptr, void *hst_ptr, 1581 int64_t size) { 1582 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1583 __tgt_async_info AsyncInfo; 1584 int32_t rc = dataSubmit(device_id, tgt_ptr, hst_ptr, size, &AsyncInfo); 1585 if (rc != OFFLOAD_SUCCESS) 1586 return OFFLOAD_FAIL; 1587 1588 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1589 } 1590 1591 int32_t __tgt_rtl_data_submit_async(int device_id, void *tgt_ptr, void *hst_ptr, 1592 int64_t size, __tgt_async_info *AsyncInfo) { 1593 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1594 if (AsyncInfo) { 1595 initAsyncInfo(AsyncInfo); 1596 return dataSubmit(device_id, tgt_ptr, hst_ptr, size, AsyncInfo); 1597 } else { 1598 return __tgt_rtl_data_submit(device_id, tgt_ptr, hst_ptr, size); 1599 } 1600 } 1601 1602 int32_t __tgt_rtl_data_retrieve(int device_id, void *hst_ptr, void *tgt_ptr, 1603 int64_t size) { 1604 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1605 __tgt_async_info AsyncInfo; 1606 int32_t rc = dataRetrieve(device_id, hst_ptr, tgt_ptr, size, &AsyncInfo); 1607 if (rc != OFFLOAD_SUCCESS) 1608 return OFFLOAD_FAIL; 1609 1610 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1611 } 1612 1613 int32_t __tgt_rtl_data_retrieve_async(int device_id, void *hst_ptr, 1614 void *tgt_ptr, int64_t size, 1615 __tgt_async_info *AsyncInfo) { 1616 assert(AsyncInfo && "AsyncInfo is nullptr"); 1617 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1618 initAsyncInfo(AsyncInfo); 1619 return dataRetrieve(device_id, hst_ptr, tgt_ptr, size, AsyncInfo); 1620 } 1621 1622 int32_t __tgt_rtl_data_delete(int device_id, void *tgt_ptr) { 1623 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1624 hsa_status_t err; 1625 DP("Tgt free data (tgt:%016llx).\n", (long long unsigned)(Elf64_Addr)tgt_ptr); 1626 err = atmi_free(tgt_ptr); 1627 if (err != HSA_STATUS_SUCCESS) { 1628 DP("Error when freeing CUDA memory\n"); 1629 return OFFLOAD_FAIL; 1630 } 1631 return OFFLOAD_SUCCESS; 1632 } 1633 1634 // Determine launch values for threadsPerGroup and num_groups. 1635 // Outputs: treadsPerGroup, num_groups 1636 // Inputs: Max_Teams, Max_WG_Size, Warp_Size, ExecutionMode, 1637 // EnvTeamLimit, EnvNumTeams, num_teams, thread_limit, 1638 // loop_tripcount. 1639 void getLaunchVals(int &threadsPerGroup, int &num_groups, int ConstWGSize, 1640 int ExecutionMode, int EnvTeamLimit, int EnvNumTeams, 1641 int num_teams, int thread_limit, uint64_t loop_tripcount, 1642 int32_t device_id) { 1643 1644 int Max_Teams = DeviceInfo.EnvMaxTeamsDefault > 0 1645 ? DeviceInfo.EnvMaxTeamsDefault 1646 : DeviceInfo.NumTeams[device_id]; 1647 if (Max_Teams > DeviceInfo.HardTeamLimit) 1648 Max_Teams = DeviceInfo.HardTeamLimit; 1649 1650 if (print_kernel_trace & STARTUP_DETAILS) { 1651 fprintf(stderr, "RTLDeviceInfoTy::Max_Teams: %d\n", 1652 RTLDeviceInfoTy::Max_Teams); 1653 fprintf(stderr, "Max_Teams: %d\n", Max_Teams); 1654 fprintf(stderr, "RTLDeviceInfoTy::Warp_Size: %d\n", 1655 RTLDeviceInfoTy::Warp_Size); 1656 fprintf(stderr, "RTLDeviceInfoTy::Max_WG_Size: %d\n", 1657 RTLDeviceInfoTy::Max_WG_Size); 1658 fprintf(stderr, "RTLDeviceInfoTy::Default_WG_Size: %d\n", 1659 RTLDeviceInfoTy::Default_WG_Size); 1660 fprintf(stderr, "thread_limit: %d\n", thread_limit); 1661 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1662 fprintf(stderr, "ConstWGSize: %d\n", ConstWGSize); 1663 } 1664 // check for thread_limit() clause 1665 if (thread_limit > 0) { 1666 threadsPerGroup = thread_limit; 1667 DP("Setting threads per block to requested %d\n", thread_limit); 1668 if (ExecutionMode == GENERIC) { // Add master warp for GENERIC 1669 threadsPerGroup += RTLDeviceInfoTy::Warp_Size; 1670 DP("Adding master wavefront: +%d threads\n", RTLDeviceInfoTy::Warp_Size); 1671 } 1672 if (threadsPerGroup > RTLDeviceInfoTy::Max_WG_Size) { // limit to max 1673 threadsPerGroup = RTLDeviceInfoTy::Max_WG_Size; 1674 DP("Setting threads per block to maximum %d\n", threadsPerGroup); 1675 } 1676 } 1677 // check flat_max_work_group_size attr here 1678 if (threadsPerGroup > ConstWGSize) { 1679 threadsPerGroup = ConstWGSize; 1680 DP("Reduced threadsPerGroup to flat-attr-group-size limit %d\n", 1681 threadsPerGroup); 1682 } 1683 if (print_kernel_trace & STARTUP_DETAILS) 1684 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1685 DP("Preparing %d threads\n", threadsPerGroup); 1686 1687 // Set default num_groups (teams) 1688 if (DeviceInfo.EnvTeamLimit > 0) 1689 num_groups = (Max_Teams < DeviceInfo.EnvTeamLimit) 1690 ? Max_Teams 1691 : DeviceInfo.EnvTeamLimit; 1692 else 1693 num_groups = Max_Teams; 1694 DP("Set default num of groups %d\n", num_groups); 1695 1696 if (print_kernel_trace & STARTUP_DETAILS) { 1697 fprintf(stderr, "num_groups: %d\n", num_groups); 1698 fprintf(stderr, "num_teams: %d\n", num_teams); 1699 } 1700 1701 // Reduce num_groups if threadsPerGroup exceeds RTLDeviceInfoTy::Max_WG_Size 1702 // This reduction is typical for default case (no thread_limit clause). 1703 // or when user goes crazy with num_teams clause. 1704 // FIXME: We cant distinguish between a constant or variable thread limit. 1705 // So we only handle constant thread_limits. 1706 if (threadsPerGroup > 1707 RTLDeviceInfoTy::Default_WG_Size) // 256 < threadsPerGroup <= 1024 1708 // Should we round threadsPerGroup up to nearest RTLDeviceInfoTy::Warp_Size 1709 // here? 1710 num_groups = (Max_Teams * RTLDeviceInfoTy::Max_WG_Size) / threadsPerGroup; 1711 1712 // check for num_teams() clause 1713 if (num_teams > 0) { 1714 num_groups = (num_teams < num_groups) ? num_teams : num_groups; 1715 } 1716 if (print_kernel_trace & STARTUP_DETAILS) { 1717 fprintf(stderr, "num_groups: %d\n", num_groups); 1718 fprintf(stderr, "DeviceInfo.EnvNumTeams %d\n", DeviceInfo.EnvNumTeams); 1719 fprintf(stderr, "DeviceInfo.EnvTeamLimit %d\n", DeviceInfo.EnvTeamLimit); 1720 } 1721 1722 if (DeviceInfo.EnvNumTeams > 0) { 1723 num_groups = (DeviceInfo.EnvNumTeams < num_groups) ? DeviceInfo.EnvNumTeams 1724 : num_groups; 1725 DP("Modifying teams based on EnvNumTeams %d\n", DeviceInfo.EnvNumTeams); 1726 } else if (DeviceInfo.EnvTeamLimit > 0) { 1727 num_groups = (DeviceInfo.EnvTeamLimit < num_groups) 1728 ? DeviceInfo.EnvTeamLimit 1729 : num_groups; 1730 DP("Modifying teams based on EnvTeamLimit%d\n", DeviceInfo.EnvTeamLimit); 1731 } else { 1732 if (num_teams <= 0) { 1733 if (loop_tripcount > 0) { 1734 if (ExecutionMode == SPMD) { 1735 // round up to the nearest integer 1736 num_groups = ((loop_tripcount - 1) / threadsPerGroup) + 1; 1737 } else { 1738 num_groups = loop_tripcount; 1739 } 1740 DP("Using %d teams due to loop trip count %" PRIu64 " and number of " 1741 "threads per block %d\n", 1742 num_groups, loop_tripcount, threadsPerGroup); 1743 } 1744 } else { 1745 num_groups = num_teams; 1746 } 1747 if (num_groups > Max_Teams) { 1748 num_groups = Max_Teams; 1749 if (print_kernel_trace & STARTUP_DETAILS) 1750 fprintf(stderr, "Limiting num_groups %d to Max_Teams %d \n", num_groups, 1751 Max_Teams); 1752 } 1753 if (num_groups > num_teams && num_teams > 0) { 1754 num_groups = num_teams; 1755 if (print_kernel_trace & STARTUP_DETAILS) 1756 fprintf(stderr, "Limiting num_groups %d to clause num_teams %d \n", 1757 num_groups, num_teams); 1758 } 1759 } 1760 1761 // num_teams clause always honored, no matter what, unless DEFAULT is active. 1762 if (num_teams > 0) { 1763 num_groups = num_teams; 1764 // Cap num_groups to EnvMaxTeamsDefault if set. 1765 if (DeviceInfo.EnvMaxTeamsDefault > 0 && 1766 num_groups > DeviceInfo.EnvMaxTeamsDefault) 1767 num_groups = DeviceInfo.EnvMaxTeamsDefault; 1768 } 1769 if (print_kernel_trace & STARTUP_DETAILS) { 1770 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1771 fprintf(stderr, "num_groups: %d\n", num_groups); 1772 fprintf(stderr, "loop_tripcount: %ld\n", loop_tripcount); 1773 } 1774 DP("Final %d num_groups and %d threadsPerGroup\n", num_groups, 1775 threadsPerGroup); 1776 } 1777 1778 static uint64_t acquire_available_packet_id(hsa_queue_t *queue) { 1779 uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1); 1780 bool full = true; 1781 while (full) { 1782 full = 1783 packet_id >= (queue->size + hsa_queue_load_read_index_scacquire(queue)); 1784 } 1785 return packet_id; 1786 } 1787 1788 static int32_t __tgt_rtl_run_target_team_region_locked( 1789 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 1790 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 1791 int32_t thread_limit, uint64_t loop_tripcount); 1792 1793 int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr, 1794 void **tgt_args, 1795 ptrdiff_t *tgt_offsets, 1796 int32_t arg_num, int32_t num_teams, 1797 int32_t thread_limit, 1798 uint64_t loop_tripcount) { 1799 1800 DeviceInfo.load_run_lock.lock_shared(); 1801 int32_t res = __tgt_rtl_run_target_team_region_locked( 1802 device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, num_teams, 1803 thread_limit, loop_tripcount); 1804 1805 DeviceInfo.load_run_lock.unlock_shared(); 1806 return res; 1807 } 1808 1809 int32_t __tgt_rtl_run_target_team_region_locked( 1810 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 1811 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 1812 int32_t thread_limit, uint64_t loop_tripcount) { 1813 // Set the context we are using 1814 // update thread limit content in gpu memory if un-initialized or specified 1815 // from host 1816 1817 DP("Run target team region thread_limit %d\n", thread_limit); 1818 1819 // All args are references. 1820 std::vector<void *> args(arg_num); 1821 std::vector<void *> ptrs(arg_num); 1822 1823 DP("Arg_num: %d\n", arg_num); 1824 for (int32_t i = 0; i < arg_num; ++i) { 1825 ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]); 1826 args[i] = &ptrs[i]; 1827 DP("Offseted base: arg[%d]:" DPxMOD "\n", i, DPxPTR(ptrs[i])); 1828 } 1829 1830 KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr; 1831 1832 std::string kernel_name = std::string(KernelInfo->Name); 1833 auto &KernelInfoTable = DeviceInfo.KernelInfoTable; 1834 if (KernelInfoTable[device_id].find(kernel_name) == 1835 KernelInfoTable[device_id].end()) { 1836 DP("Kernel %s not found\n", kernel_name.c_str()); 1837 return OFFLOAD_FAIL; 1838 } 1839 1840 const atl_kernel_info_t KernelInfoEntry = 1841 KernelInfoTable[device_id][kernel_name]; 1842 const uint32_t group_segment_size = KernelInfoEntry.group_segment_size; 1843 const uint32_t sgpr_count = KernelInfoEntry.sgpr_count; 1844 const uint32_t vgpr_count = KernelInfoEntry.vgpr_count; 1845 const uint32_t sgpr_spill_count = KernelInfoEntry.sgpr_spill_count; 1846 const uint32_t vgpr_spill_count = KernelInfoEntry.vgpr_spill_count; 1847 1848 assert(arg_num == (int)KernelInfoEntry.num_args); 1849 1850 /* 1851 * Set limit based on ThreadsPerGroup and GroupsPerDevice 1852 */ 1853 int num_groups = 0; 1854 1855 int threadsPerGroup = RTLDeviceInfoTy::Default_WG_Size; 1856 1857 getLaunchVals(threadsPerGroup, num_groups, KernelInfo->ConstWGSize, 1858 KernelInfo->ExecutionMode, DeviceInfo.EnvTeamLimit, 1859 DeviceInfo.EnvNumTeams, 1860 num_teams, // From run_region arg 1861 thread_limit, // From run_region arg 1862 loop_tripcount, // From run_region arg 1863 KernelInfo->device_id); 1864 1865 if (print_kernel_trace >= LAUNCH) { 1866 // enum modes are SPMD, GENERIC, NONE 0,1,2 1867 // if doing rtl timing, print to stderr, unless stdout requested. 1868 bool traceToStdout = print_kernel_trace & (RTL_TO_STDOUT | RTL_TIMING); 1869 fprintf(traceToStdout ? stdout : stderr, 1870 "DEVID:%2d SGN:%1d ConstWGSize:%-4d args:%2d teamsXthrds:(%4dX%4d) " 1871 "reqd:(%4dX%4d) lds_usage:%uB sgpr_count:%u vgpr_count:%u " 1872 "sgpr_spill_count:%u vgpr_spill_count:%u tripcount:%lu n:%s\n", 1873 device_id, KernelInfo->ExecutionMode, KernelInfo->ConstWGSize, 1874 arg_num, num_groups, threadsPerGroup, num_teams, thread_limit, 1875 group_segment_size, sgpr_count, vgpr_count, sgpr_spill_count, 1876 vgpr_spill_count, loop_tripcount, KernelInfo->Name); 1877 } 1878 1879 // Run on the device. 1880 { 1881 hsa_queue_t *queue = DeviceInfo.HSAQueues[device_id]; 1882 if (!queue) { 1883 return OFFLOAD_FAIL; 1884 } 1885 uint64_t packet_id = acquire_available_packet_id(queue); 1886 1887 const uint32_t mask = queue->size - 1; // size is a power of 2 1888 hsa_kernel_dispatch_packet_t *packet = 1889 (hsa_kernel_dispatch_packet_t *)queue->base_address + 1890 (packet_id & mask); 1891 1892 // packet->header is written last 1893 packet->setup = UINT16_C(1) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS; 1894 packet->workgroup_size_x = threadsPerGroup; 1895 packet->workgroup_size_y = 1; 1896 packet->workgroup_size_z = 1; 1897 packet->reserved0 = 0; 1898 packet->grid_size_x = num_groups * threadsPerGroup; 1899 packet->grid_size_y = 1; 1900 packet->grid_size_z = 1; 1901 packet->private_segment_size = KernelInfoEntry.private_segment_size; 1902 packet->group_segment_size = KernelInfoEntry.group_segment_size; 1903 packet->kernel_object = KernelInfoEntry.kernel_object; 1904 packet->kernarg_address = 0; // use the block allocator 1905 packet->reserved2 = 0; // atmi writes id_ here 1906 packet->completion_signal = {0}; // may want a pool of signals 1907 1908 KernelArgPool *ArgPool = nullptr; 1909 { 1910 auto it = KernelArgPoolMap.find(std::string(KernelInfo->Name)); 1911 if (it != KernelArgPoolMap.end()) { 1912 ArgPool = (it->second).get(); 1913 } 1914 } 1915 if (!ArgPool) { 1916 DP("Warning: No ArgPool for %s on device %d\n", KernelInfo->Name, 1917 device_id); 1918 } 1919 { 1920 void *kernarg = nullptr; 1921 if (ArgPool) { 1922 assert(ArgPool->kernarg_segment_size == (arg_num * sizeof(void *))); 1923 kernarg = ArgPool->allocate(arg_num); 1924 } 1925 if (!kernarg) { 1926 DP("Allocate kernarg failed\n"); 1927 return OFFLOAD_FAIL; 1928 } 1929 1930 // Copy explicit arguments 1931 for (int i = 0; i < arg_num; i++) { 1932 memcpy((char *)kernarg + sizeof(void *) * i, args[i], sizeof(void *)); 1933 } 1934 1935 // Initialize implicit arguments. ATMI seems to leave most fields 1936 // uninitialized 1937 atmi_implicit_args_t *impl_args = 1938 reinterpret_cast<atmi_implicit_args_t *>( 1939 static_cast<char *>(kernarg) + ArgPool->kernarg_segment_size); 1940 memset(impl_args, 0, 1941 sizeof(atmi_implicit_args_t)); // may not be necessary 1942 impl_args->offset_x = 0; 1943 impl_args->offset_y = 0; 1944 impl_args->offset_z = 0; 1945 1946 // assign a hostcall buffer for the selected Q 1947 if (__atomic_load_n(&DeviceInfo.hostcall_required, __ATOMIC_ACQUIRE)) { 1948 // hostrpc_assign_buffer is not thread safe, and this function is 1949 // under a multiple reader lock, not a writer lock. 1950 static pthread_mutex_t hostcall_init_lock = PTHREAD_MUTEX_INITIALIZER; 1951 pthread_mutex_lock(&hostcall_init_lock); 1952 impl_args->hostcall_ptr = hostrpc_assign_buffer( 1953 DeviceInfo.HSAAgents[device_id], queue, device_id); 1954 pthread_mutex_unlock(&hostcall_init_lock); 1955 if (!impl_args->hostcall_ptr) { 1956 DP("hostrpc_assign_buffer failed, gpu would dereference null and " 1957 "error\n"); 1958 return OFFLOAD_FAIL; 1959 } 1960 } 1961 1962 packet->kernarg_address = kernarg; 1963 } 1964 1965 { 1966 hsa_signal_t s = DeviceInfo.FreeSignalPool.pop(); 1967 if (s.handle == 0) { 1968 DP("Failed to get signal instance\n"); 1969 return OFFLOAD_FAIL; 1970 } 1971 packet->completion_signal = s; 1972 hsa_signal_store_relaxed(packet->completion_signal, 1); 1973 } 1974 1975 core::packet_store_release(reinterpret_cast<uint32_t *>(packet), 1976 core::create_header(), packet->setup); 1977 1978 hsa_signal_store_relaxed(queue->doorbell_signal, packet_id); 1979 1980 while (hsa_signal_wait_scacquire(packet->completion_signal, 1981 HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX, 1982 HSA_WAIT_STATE_BLOCKED) != 0) 1983 ; 1984 1985 assert(ArgPool); 1986 ArgPool->deallocate(packet->kernarg_address); 1987 DeviceInfo.FreeSignalPool.push(packet->completion_signal); 1988 } 1989 1990 DP("Kernel completed\n"); 1991 return OFFLOAD_SUCCESS; 1992 } 1993 1994 int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr, 1995 void **tgt_args, ptrdiff_t *tgt_offsets, 1996 int32_t arg_num) { 1997 // use one team and one thread 1998 // fix thread num 1999 int32_t team_num = 1; 2000 int32_t thread_limit = 0; // use default 2001 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 2002 tgt_offsets, arg_num, team_num, 2003 thread_limit, 0); 2004 } 2005 2006 int32_t __tgt_rtl_run_target_region_async(int32_t device_id, 2007 void *tgt_entry_ptr, void **tgt_args, 2008 ptrdiff_t *tgt_offsets, 2009 int32_t arg_num, 2010 __tgt_async_info *AsyncInfo) { 2011 assert(AsyncInfo && "AsyncInfo is nullptr"); 2012 initAsyncInfo(AsyncInfo); 2013 2014 // use one team and one thread 2015 // fix thread num 2016 int32_t team_num = 1; 2017 int32_t thread_limit = 0; // use default 2018 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 2019 tgt_offsets, arg_num, team_num, 2020 thread_limit, 0); 2021 } 2022 2023 int32_t __tgt_rtl_synchronize(int32_t device_id, __tgt_async_info *AsyncInfo) { 2024 assert(AsyncInfo && "AsyncInfo is nullptr"); 2025 2026 // Cuda asserts that AsyncInfo->Queue is non-null, but this invariant 2027 // is not ensured by devices.cpp for amdgcn 2028 // assert(AsyncInfo->Queue && "AsyncInfo->Queue is nullptr"); 2029 if (AsyncInfo->Queue) { 2030 finiAsyncInfo(AsyncInfo); 2031 } 2032 return OFFLOAD_SUCCESS; 2033 } 2034