1 //===----RTLs/hsa/src/rtl.cpp - Target RTLs Implementation -------- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // RTL for hsa machine
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include <algorithm>
14 #include <assert.h>
15 #include <cstdio>
16 #include <cstdlib>
17 #include <cstring>
18 #include <elf.h>
19 #include <fstream>
20 #include <functional>
21 #include <iostream>
22 #include <libelf.h>
23 #include <list>
24 #include <memory>
25 #include <mutex>
26 #include <shared_mutex>
27 #include <thread>
28 #include <unordered_map>
29 #include <vector>
30 
31 // Header from ATMI interface
32 #include "atmi_interop_hsa.h"
33 #include "atmi_runtime.h"
34 
35 #include "internal.h"
36 
37 #include "Debug.h"
38 #include "get_elf_mach_gfx_name.h"
39 #include "machine.h"
40 #include "omptargetplugin.h"
41 #include "print_tracing.h"
42 
43 #include "llvm/Frontend/OpenMP/OMPGridValues.h"
44 
45 #ifndef TARGET_NAME
46 #define TARGET_NAME AMDHSA
47 #endif
48 #define DEBUG_PREFIX "Target " GETNAME(TARGET_NAME) " RTL"
49 
50 // hostrpc interface, FIXME: consider moving to its own include these are
51 // statically linked into amdgpu/plugin if present from hostrpc_services.a,
52 // linked as --whole-archive to override the weak symbols that are used to
53 // implement a fallback for toolchains that do not yet have a hostrpc library.
54 extern "C" {
55 unsigned long hostrpc_assign_buffer(hsa_agent_t agent, hsa_queue_t *this_Q,
56                                     uint32_t device_id);
57 hsa_status_t hostrpc_init();
58 hsa_status_t hostrpc_terminate();
59 
60 __attribute__((weak)) hsa_status_t hostrpc_init() { return HSA_STATUS_SUCCESS; }
61 __attribute__((weak)) hsa_status_t hostrpc_terminate() {
62   return HSA_STATUS_SUCCESS;
63 }
64 __attribute__((weak)) unsigned long
65 hostrpc_assign_buffer(hsa_agent_t, hsa_queue_t *, uint32_t device_id) {
66   DP("Warning: Attempting to assign hostrpc to device %u, but hostrpc library "
67      "missing\n",
68      device_id);
69   return 0;
70 }
71 }
72 
73 // Heuristic parameters used for kernel launch
74 // Number of teams per CU to allow scheduling flexibility
75 static const unsigned DefaultTeamsPerCU = 4;
76 
77 int print_kernel_trace;
78 
79 #ifdef OMPTARGET_DEBUG
80 #define check(msg, status)                                                     \
81   if (status != HSA_STATUS_SUCCESS) {                                          \
82     DP(#msg " failed\n");                                                      \
83   } else {                                                                     \
84     DP(#msg " succeeded\n");                                                   \
85   }
86 #else
87 #define check(msg, status)                                                     \
88   {}
89 #endif
90 
91 #include "elf_common.h"
92 
93 namespace core {
94 hsa_status_t RegisterModuleFromMemory(
95     std::map<std::string, atl_kernel_info_t> &KernelInfo,
96     std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, void *, size_t,
97     hsa_agent_t agent,
98     hsa_status_t (*on_deserialized_data)(void *data, size_t size,
99                                          void *cb_state),
100     void *cb_state, std::vector<hsa_executable_t> &HSAExecutables);
101 }
102 
103 namespace hsa {
104 template <typename C> hsa_status_t iterate_agents(C cb) {
105   auto L = [](hsa_agent_t agent, void *data) -> hsa_status_t {
106     C *unwrapped = static_cast<C *>(data);
107     return (*unwrapped)(agent);
108   };
109   return hsa_iterate_agents(L, static_cast<void *>(&cb));
110 }
111 
112 template <typename C>
113 hsa_status_t amd_agent_iterate_memory_pools(hsa_agent_t Agent, C cb) {
114   auto L = [](hsa_amd_memory_pool_t MemoryPool, void *data) -> hsa_status_t {
115     C *unwrapped = static_cast<C *>(data);
116     return (*unwrapped)(MemoryPool);
117   };
118 
119   return hsa_amd_agent_iterate_memory_pools(Agent, L, static_cast<void *>(&cb));
120 }
121 
122 } // namespace hsa
123 
124 /// Keep entries table per device
125 struct FuncOrGblEntryTy {
126   __tgt_target_table Table;
127   std::vector<__tgt_offload_entry> Entries;
128 };
129 
130 enum ExecutionModeType {
131   SPMD,    // constructors, destructors,
132            // combined constructs (`teams distribute parallel for [simd]`)
133   GENERIC, // everything else
134   NONE
135 };
136 
137 struct KernelArgPool {
138 private:
139   static pthread_mutex_t mutex;
140 
141 public:
142   uint32_t kernarg_segment_size;
143   void *kernarg_region = nullptr;
144   std::queue<int> free_kernarg_segments;
145 
146   uint32_t kernarg_size_including_implicit() {
147     return kernarg_segment_size + sizeof(atmi_implicit_args_t);
148   }
149 
150   ~KernelArgPool() {
151     if (kernarg_region) {
152       auto r = hsa_amd_memory_pool_free(kernarg_region);
153       if (r != HSA_STATUS_SUCCESS) {
154         DP("hsa_amd_memory_pool_free failed: %s\n", get_error_string(r));
155       }
156     }
157   }
158 
159   // Can't really copy or move a mutex
160   KernelArgPool() = default;
161   KernelArgPool(const KernelArgPool &) = delete;
162   KernelArgPool(KernelArgPool &&) = delete;
163 
164   KernelArgPool(uint32_t kernarg_segment_size,
165                 hsa_amd_memory_pool_t &memory_pool)
166       : kernarg_segment_size(kernarg_segment_size) {
167 
168     // atmi uses one pool per kernel for all gpus, with a fixed upper size
169     // preserving that exact scheme here, including the queue<int>
170 
171     hsa_status_t err = hsa_amd_memory_pool_allocate(
172         memory_pool, kernarg_size_including_implicit() * MAX_NUM_KERNELS, 0,
173         &kernarg_region);
174 
175     if (err != HSA_STATUS_SUCCESS) {
176       DP("hsa_amd_memory_pool_allocate failed: %s\n", get_error_string(err));
177       kernarg_region = nullptr; // paranoid
178       return;
179     }
180 
181     err = core::allow_access_to_all_gpu_agents(kernarg_region);
182     if (err != HSA_STATUS_SUCCESS) {
183       DP("hsa allow_access_to_all_gpu_agents failed: %s\n",
184          get_error_string(err));
185       auto r = hsa_amd_memory_pool_free(kernarg_region);
186       if (r != HSA_STATUS_SUCCESS) {
187         // if free failed, can't do anything more to resolve it
188         DP("hsa memory poll free failed: %s\n", get_error_string(err));
189       }
190       kernarg_region = nullptr;
191       return;
192     }
193 
194     for (int i = 0; i < MAX_NUM_KERNELS; i++) {
195       free_kernarg_segments.push(i);
196     }
197   }
198 
199   void *allocate(uint64_t arg_num) {
200     assert((arg_num * sizeof(void *)) == kernarg_segment_size);
201     lock l(&mutex);
202     void *res = nullptr;
203     if (!free_kernarg_segments.empty()) {
204 
205       int free_idx = free_kernarg_segments.front();
206       res = static_cast<void *>(static_cast<char *>(kernarg_region) +
207                                 (free_idx * kernarg_size_including_implicit()));
208       assert(free_idx == pointer_to_index(res));
209       free_kernarg_segments.pop();
210     }
211     return res;
212   }
213 
214   void deallocate(void *ptr) {
215     lock l(&mutex);
216     int idx = pointer_to_index(ptr);
217     free_kernarg_segments.push(idx);
218   }
219 
220 private:
221   int pointer_to_index(void *ptr) {
222     ptrdiff_t bytes =
223         static_cast<char *>(ptr) - static_cast<char *>(kernarg_region);
224     assert(bytes >= 0);
225     assert(bytes % kernarg_size_including_implicit() == 0);
226     return bytes / kernarg_size_including_implicit();
227   }
228   struct lock {
229     lock(pthread_mutex_t *m) : m(m) { pthread_mutex_lock(m); }
230     ~lock() { pthread_mutex_unlock(m); }
231     pthread_mutex_t *m;
232   };
233 };
234 pthread_mutex_t KernelArgPool::mutex = PTHREAD_MUTEX_INITIALIZER;
235 
236 std::unordered_map<std::string /*kernel*/, std::unique_ptr<KernelArgPool>>
237     KernelArgPoolMap;
238 
239 /// Use a single entity to encode a kernel and a set of flags
240 struct KernelTy {
241   // execution mode of kernel
242   // 0 - SPMD mode (without master warp)
243   // 1 - Generic mode (with master warp)
244   int8_t ExecutionMode;
245   int16_t ConstWGSize;
246   int32_t device_id;
247   void *CallStackAddr = nullptr;
248   const char *Name;
249 
250   KernelTy(int8_t _ExecutionMode, int16_t _ConstWGSize, int32_t _device_id,
251            void *_CallStackAddr, const char *_Name,
252            uint32_t _kernarg_segment_size,
253            hsa_amd_memory_pool_t &KernArgMemoryPool)
254       : ExecutionMode(_ExecutionMode), ConstWGSize(_ConstWGSize),
255         device_id(_device_id), CallStackAddr(_CallStackAddr), Name(_Name) {
256     DP("Construct kernelinfo: ExecMode %d\n", ExecutionMode);
257 
258     std::string N(_Name);
259     if (KernelArgPoolMap.find(N) == KernelArgPoolMap.end()) {
260       KernelArgPoolMap.insert(
261           std::make_pair(N, std::unique_ptr<KernelArgPool>(new KernelArgPool(
262                                 _kernarg_segment_size, KernArgMemoryPool))));
263     }
264   }
265 };
266 
267 /// List that contains all the kernels.
268 /// FIXME: we may need this to be per device and per library.
269 std::list<KernelTy> KernelsList;
270 
271 template <typename Callback> static hsa_status_t FindAgents(Callback CB) {
272 
273   hsa_status_t err =
274       hsa::iterate_agents([&](hsa_agent_t agent) -> hsa_status_t {
275         hsa_device_type_t device_type;
276         // get_info fails iff HSA runtime not yet initialized
277         hsa_status_t err =
278             hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type);
279         if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS)
280           printf("rtl.cpp: err %d\n", err);
281         assert(err == HSA_STATUS_SUCCESS);
282 
283         CB(device_type, agent);
284         return HSA_STATUS_SUCCESS;
285       });
286 
287   // iterate_agents fails iff HSA runtime not yet initialized
288   if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) {
289     printf("rtl.cpp: err %d\n", err);
290   }
291 
292   return err;
293 }
294 
295 static void callbackQueue(hsa_status_t status, hsa_queue_t *source,
296                           void *data) {
297   if (status != HSA_STATUS_SUCCESS) {
298     const char *status_string;
299     if (hsa_status_string(status, &status_string) != HSA_STATUS_SUCCESS) {
300       status_string = "unavailable";
301     }
302     fprintf(stderr, "[%s:%d] GPU error in queue %p %d (%s)\n", __FILE__,
303             __LINE__, source, status, status_string);
304     abort();
305   }
306 }
307 
308 namespace core {
309 namespace {
310 void packet_store_release(uint32_t *packet, uint16_t header, uint16_t rest) {
311   __atomic_store_n(packet, header | (rest << 16), __ATOMIC_RELEASE);
312 }
313 
314 uint16_t create_header() {
315   uint16_t header = HSA_PACKET_TYPE_KERNEL_DISPATCH << HSA_PACKET_HEADER_TYPE;
316   header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE;
317   header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE;
318   return header;
319 }
320 
321 hsa_status_t addKernArgPool(hsa_amd_memory_pool_t MemoryPool, void *Data) {
322   std::vector<hsa_amd_memory_pool_t> *Result =
323       static_cast<std::vector<hsa_amd_memory_pool_t> *>(Data);
324   bool AllocAllowed = false;
325   hsa_status_t err = hsa_amd_memory_pool_get_info(
326       MemoryPool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED,
327       &AllocAllowed);
328   if (err != HSA_STATUS_SUCCESS) {
329     fprintf(stderr, "Alloc allowed in memory pool check failed: %s\n",
330             get_error_string(err));
331     return err;
332   }
333 
334   if (!AllocAllowed) {
335     // nothing needs to be done here.
336     return HSA_STATUS_SUCCESS;
337   }
338 
339   uint32_t GlobalFlags = 0;
340   err = hsa_amd_memory_pool_get_info(
341       MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags);
342   if (err != HSA_STATUS_SUCCESS) {
343     fprintf(stderr, "Get memory pool info failed: %s\n", get_error_string(err));
344     return err;
345   }
346 
347   size_t size = 0;
348   err = hsa_amd_memory_pool_get_info(MemoryPool, HSA_AMD_MEMORY_POOL_INFO_SIZE,
349                                      &size);
350   if (err != HSA_STATUS_SUCCESS) {
351     fprintf(stderr, "Get memory pool size failed: %s\n", get_error_string(err));
352     return err;
353   }
354 
355   if ((GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) &&
356       (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_KERNARG_INIT) &&
357       size > 0) {
358     Result->push_back(MemoryPool);
359   }
360 
361   return HSA_STATUS_SUCCESS;
362 }
363 
364 std::pair<hsa_status_t, bool>
365 isValidMemoryPool(hsa_amd_memory_pool_t MemoryPool) {
366   bool AllocAllowed = false;
367   hsa_status_t Err = hsa_amd_memory_pool_get_info(
368       MemoryPool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED,
369       &AllocAllowed);
370   if (Err != HSA_STATUS_SUCCESS) {
371     fprintf(stderr, "Alloc allowed in memory pool check failed: %s\n",
372             get_error_string(Err));
373     return {Err, false};
374   }
375 
376   return {HSA_STATUS_SUCCESS, AllocAllowed};
377 }
378 
379 template <typename AccumulatorFunc>
380 hsa_status_t collectMemoryPools(const std::vector<hsa_agent_t> &Agents,
381                                 AccumulatorFunc Func) {
382   for (int DeviceId = 0; DeviceId < Agents.size(); DeviceId++) {
383     hsa_status_t Err = hsa::amd_agent_iterate_memory_pools(
384         Agents[DeviceId], [&](hsa_amd_memory_pool_t MemoryPool) {
385           hsa_status_t Err;
386           bool Valid = false;
387           std::tie(Err, Valid) = isValidMemoryPool(MemoryPool);
388           if (Err != HSA_STATUS_SUCCESS) {
389             return Err;
390           }
391           if (Valid)
392             Func(MemoryPool, DeviceId);
393           return HSA_STATUS_SUCCESS;
394         });
395 
396     if (Err != HSA_STATUS_SUCCESS) {
397       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
398              "Iterate all memory pools", get_error_string(Err));
399       return Err;
400     }
401   }
402 
403   return HSA_STATUS_SUCCESS;
404 }
405 
406 std::pair<hsa_status_t, hsa_amd_memory_pool_t>
407 FindKernargPool(const std::vector<hsa_agent_t> &HSAAgents) {
408   std::vector<hsa_amd_memory_pool_t> KernArgPools;
409   for (const auto &Agent : HSAAgents) {
410     hsa_status_t err = HSA_STATUS_SUCCESS;
411     err = hsa_amd_agent_iterate_memory_pools(
412         Agent, addKernArgPool, static_cast<void *>(&KernArgPools));
413     if (err != HSA_STATUS_SUCCESS) {
414       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
415              "Iterate all memory pools", get_error_string(err));
416       return {err, hsa_amd_memory_pool_t{}};
417     }
418   }
419 
420   if (KernArgPools.empty()) {
421     fprintf(stderr, "Unable to find any valid kernarg pool\n");
422     return {HSA_STATUS_ERROR, hsa_amd_memory_pool_t{}};
423   }
424 
425   return {HSA_STATUS_SUCCESS, KernArgPools[0]};
426 }
427 
428 } // namespace
429 } // namespace core
430 
431 struct EnvironmentVariables {
432   int NumTeams;
433   int TeamLimit;
434   int TeamThreadLimit;
435   int MaxTeamsDefault;
436 };
437 
438 /// Class containing all the device information
439 class RTLDeviceInfoTy {
440   std::vector<std::list<FuncOrGblEntryTy>> FuncGblEntries;
441 
442 public:
443   // load binary populates symbol tables and mutates various global state
444   // run uses those symbol tables
445   std::shared_timed_mutex load_run_lock;
446 
447   int NumberOfDevices;
448 
449   // GPU devices
450   std::vector<hsa_agent_t> HSAAgents;
451   std::vector<hsa_queue_t *> HSAQueues; // one per gpu
452 
453   // CPUs
454   std::vector<hsa_agent_t> CPUAgents;
455 
456   // Device properties
457   std::vector<int> ComputeUnits;
458   std::vector<int> GroupsPerDevice;
459   std::vector<int> ThreadsPerGroup;
460   std::vector<int> WarpSize;
461   std::vector<std::string> GPUName;
462 
463   // OpenMP properties
464   std::vector<int> NumTeams;
465   std::vector<int> NumThreads;
466 
467   // OpenMP Environment properties
468   EnvironmentVariables Env;
469 
470   // OpenMP Requires Flags
471   int64_t RequiresFlags;
472 
473   // Resource pools
474   SignalPoolT FreeSignalPool;
475 
476   bool hostcall_required = false;
477 
478   std::vector<hsa_executable_t> HSAExecutables;
479 
480   std::vector<std::map<std::string, atl_kernel_info_t>> KernelInfoTable;
481   std::vector<std::map<std::string, atl_symbol_info_t>> SymbolInfoTable;
482 
483   hsa_amd_memory_pool_t KernArgPool;
484 
485   // fine grained memory pool for host allocations
486   hsa_amd_memory_pool_t HostFineGrainedMemoryPool;
487 
488   // fine and coarse-grained memory pools per offloading device
489   std::vector<hsa_amd_memory_pool_t> DeviceFineGrainedMemoryPools;
490   std::vector<hsa_amd_memory_pool_t> DeviceCoarseGrainedMemoryPools;
491 
492   struct atmiFreePtrDeletor {
493     void operator()(void *p) {
494       core::Runtime::Memfree(p); // ignore failure to free
495     }
496   };
497 
498   // device_State shared across loaded binaries, error if inconsistent size
499   std::vector<std::pair<std::unique_ptr<void, atmiFreePtrDeletor>, uint64_t>>
500       deviceStateStore;
501 
502   static const unsigned HardTeamLimit =
503       (1 << 16) - 1; // 64K needed to fit in uint16
504   static const int DefaultNumTeams = 128;
505   static const int Max_Teams =
506       llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_Teams];
507   static const int Warp_Size =
508       llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size];
509   static const int Max_WG_Size =
510       llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_WG_Size];
511   static const int Default_WG_Size =
512       llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Default_WG_Size];
513 
514   using MemcpyFunc = hsa_status_t (*)(hsa_signal_t, void *, const void *,
515                                       size_t size, hsa_agent_t);
516   hsa_status_t freesignalpool_memcpy(void *dest, const void *src, size_t size,
517                                      MemcpyFunc Func, int32_t deviceId) {
518     hsa_agent_t agent = HSAAgents[deviceId];
519     hsa_signal_t s = FreeSignalPool.pop();
520     if (s.handle == 0) {
521       return HSA_STATUS_ERROR;
522     }
523     hsa_status_t r = Func(s, dest, src, size, agent);
524     FreeSignalPool.push(s);
525     return r;
526   }
527 
528   hsa_status_t freesignalpool_memcpy_d2h(void *dest, const void *src,
529                                          size_t size, int32_t deviceId) {
530     return freesignalpool_memcpy(dest, src, size, atmi_memcpy_d2h, deviceId);
531   }
532 
533   hsa_status_t freesignalpool_memcpy_h2d(void *dest, const void *src,
534                                          size_t size, int32_t deviceId) {
535     return freesignalpool_memcpy(dest, src, size, atmi_memcpy_h2d, deviceId);
536   }
537 
538   // Record entry point associated with device
539   void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) {
540     assert(device_id < (int32_t)FuncGblEntries.size() &&
541            "Unexpected device id!");
542     FuncOrGblEntryTy &E = FuncGblEntries[device_id].back();
543 
544     E.Entries.push_back(entry);
545   }
546 
547   // Return true if the entry is associated with device
548   bool findOffloadEntry(int32_t device_id, void *addr) {
549     assert(device_id < (int32_t)FuncGblEntries.size() &&
550            "Unexpected device id!");
551     FuncOrGblEntryTy &E = FuncGblEntries[device_id].back();
552 
553     for (auto &it : E.Entries) {
554       if (it.addr == addr)
555         return true;
556     }
557 
558     return false;
559   }
560 
561   // Return the pointer to the target entries table
562   __tgt_target_table *getOffloadEntriesTable(int32_t device_id) {
563     assert(device_id < (int32_t)FuncGblEntries.size() &&
564            "Unexpected device id!");
565     FuncOrGblEntryTy &E = FuncGblEntries[device_id].back();
566 
567     int32_t size = E.Entries.size();
568 
569     // Table is empty
570     if (!size)
571       return 0;
572 
573     __tgt_offload_entry *begin = &E.Entries[0];
574     __tgt_offload_entry *end = &E.Entries[size - 1];
575 
576     // Update table info according to the entries and return the pointer
577     E.Table.EntriesBegin = begin;
578     E.Table.EntriesEnd = ++end;
579 
580     return &E.Table;
581   }
582 
583   // Clear entries table for a device
584   void clearOffloadEntriesTable(int device_id) {
585     assert(device_id < (int32_t)FuncGblEntries.size() &&
586            "Unexpected device id!");
587     FuncGblEntries[device_id].emplace_back();
588     FuncOrGblEntryTy &E = FuncGblEntries[device_id].back();
589     // KernelArgPoolMap.clear();
590     E.Entries.clear();
591     E.Table.EntriesBegin = E.Table.EntriesEnd = 0;
592   }
593 
594   hsa_status_t addDeviceMemoryPool(hsa_amd_memory_pool_t MemoryPool,
595                                    int DeviceId) {
596     assert(DeviceId < DeviceFineGrainedMemoryPools.size() && "Error here.");
597     uint32_t GlobalFlags = 0;
598     hsa_status_t Err = hsa_amd_memory_pool_get_info(
599         MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags);
600 
601     if (Err != HSA_STATUS_SUCCESS) {
602       return Err;
603     }
604 
605     if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) {
606       DeviceFineGrainedMemoryPools[DeviceId] = MemoryPool;
607     } else if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_COARSE_GRAINED) {
608       DeviceCoarseGrainedMemoryPools[DeviceId] = MemoryPool;
609     }
610 
611     return HSA_STATUS_SUCCESS;
612   }
613 
614   hsa_status_t addHostMemoryPool(hsa_amd_memory_pool_t MemoryPool,
615                                  int DeviceId) {
616     uint32_t GlobalFlags = 0;
617     hsa_status_t Err = hsa_amd_memory_pool_get_info(
618         MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags);
619 
620     if (Err != HSA_STATUS_SUCCESS) {
621       return Err;
622     }
623 
624     uint32_t Size;
625     Err = hsa_amd_memory_pool_get_info(MemoryPool,
626                                        HSA_AMD_MEMORY_POOL_INFO_SIZE, &Size);
627     if (Err != HSA_STATUS_SUCCESS) {
628       return Err;
629     }
630 
631     if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED &&
632         Size > 0) {
633       HostFineGrainedMemoryPool = MemoryPool;
634     }
635 
636     return HSA_STATUS_SUCCESS;
637   }
638 
639   hsa_status_t setupMemoryPools() {
640     using namespace std::placeholders;
641     hsa_status_t Err;
642     Err = core::collectMemoryPools(
643         CPUAgents, std::bind(&RTLDeviceInfoTy::addHostMemoryPool, this, _1, _2));
644     if (Err != HSA_STATUS_SUCCESS) {
645       fprintf(stderr, "HSA error in collecting memory pools for CPU: %s\n",
646               get_error_string(Err));
647       return Err;
648     }
649     Err = core::collectMemoryPools(
650         HSAAgents, std::bind(&RTLDeviceInfoTy::addDeviceMemoryPool, this, _1, _2));
651     if (Err != HSA_STATUS_SUCCESS) {
652       fprintf(stderr,
653               "HSA error in collecting memory pools for offload devices: %s\n",
654               get_error_string(Err));
655       return Err;
656     }
657     return HSA_STATUS_SUCCESS;
658   }
659 
660   hsa_amd_memory_pool_t getDeviceMemoryPool(int DeviceId) {
661     assert(DeviceId >= 0 && DeviceId < DeviceCoarseGrainedMemoryPools.size() &&
662            "Invalid device Id");
663     return DeviceCoarseGrainedMemoryPools[DeviceId];
664   }
665 
666   hsa_amd_memory_pool_t getHostMemoryPool() {
667     return HostFineGrainedMemoryPool;
668   }
669 
670   static int readEnvElseMinusOne(const char *Env) {
671     const char *envStr = getenv(Env);
672     int res = -1;
673     if (envStr) {
674       res = std::stoi(envStr);
675       DP("Parsed %s=%d\n", Env, res);
676     }
677     return res;
678   }
679 
680   RTLDeviceInfoTy() {
681     // LIBOMPTARGET_KERNEL_TRACE provides a kernel launch trace to stderr
682     // anytime. You do not need a debug library build.
683     //  0 => no tracing
684     //  1 => tracing dispatch only
685     // >1 => verbosity increase
686     if (char *envStr = getenv("LIBOMPTARGET_KERNEL_TRACE"))
687       print_kernel_trace = atoi(envStr);
688     else
689       print_kernel_trace = 0;
690 
691     DP("Start initializing HSA-ATMI\n");
692     hsa_status_t err = core::atl_init_gpu_context();
693     if (err != HSA_STATUS_SUCCESS) {
694       DP("Error when initializing HSA-ATMI\n");
695       return;
696     }
697 
698     // Init hostcall soon after initializing ATMI
699     hostrpc_init();
700 
701     err = FindAgents([&](hsa_device_type_t DeviceType, hsa_agent_t Agent) {
702       if (DeviceType == HSA_DEVICE_TYPE_CPU) {
703         CPUAgents.push_back(Agent);
704       } else {
705         HSAAgents.push_back(Agent);
706       }
707     });
708     if (err != HSA_STATUS_SUCCESS)
709       return;
710 
711     NumberOfDevices = (int)HSAAgents.size();
712 
713     if (NumberOfDevices == 0) {
714       DP("There are no devices supporting HSA.\n");
715       return;
716     } else {
717       DP("There are %d devices supporting HSA.\n", NumberOfDevices);
718     }
719     std::tie(err, KernArgPool) = core::FindKernargPool(CPUAgents);
720     if (err != HSA_STATUS_SUCCESS) {
721       DP("Error when reading memory pools\n");
722       return;
723     }
724 
725     // Init the device info
726     HSAQueues.resize(NumberOfDevices);
727     FuncGblEntries.resize(NumberOfDevices);
728     ThreadsPerGroup.resize(NumberOfDevices);
729     ComputeUnits.resize(NumberOfDevices);
730     GPUName.resize(NumberOfDevices);
731     GroupsPerDevice.resize(NumberOfDevices);
732     WarpSize.resize(NumberOfDevices);
733     NumTeams.resize(NumberOfDevices);
734     NumThreads.resize(NumberOfDevices);
735     deviceStateStore.resize(NumberOfDevices);
736     KernelInfoTable.resize(NumberOfDevices);
737     SymbolInfoTable.resize(NumberOfDevices);
738     DeviceCoarseGrainedMemoryPools.resize(NumberOfDevices);
739     DeviceFineGrainedMemoryPools.resize(NumberOfDevices);
740 
741     err = setupMemoryPools();
742     if (err != HSA_STATUS_SUCCESS) {
743       DP("Error when setting up memory pools");
744       return;
745     }
746 
747     for (int i = 0; i < NumberOfDevices; i++) {
748       HSAQueues[i] = nullptr;
749     }
750 
751     for (int i = 0; i < NumberOfDevices; i++) {
752       uint32_t queue_size = 0;
753       {
754         hsa_status_t err = hsa_agent_get_info(
755             HSAAgents[i], HSA_AGENT_INFO_QUEUE_MAX_SIZE, &queue_size);
756         if (err != HSA_STATUS_SUCCESS) {
757           DP("HSA query QUEUE_MAX_SIZE failed for agent %d\n", i);
758           return;
759         }
760         if (queue_size > core::Runtime::getInstance().getMaxQueueSize()) {
761           queue_size = core::Runtime::getInstance().getMaxQueueSize();
762         }
763       }
764 
765       hsa_status_t rc = hsa_queue_create(
766           HSAAgents[i], queue_size, HSA_QUEUE_TYPE_MULTI, callbackQueue, NULL,
767           UINT32_MAX, UINT32_MAX, &HSAQueues[i]);
768       if (rc != HSA_STATUS_SUCCESS) {
769         DP("Failed to create HSA queue %d\n", i);
770         return;
771       }
772 
773       deviceStateStore[i] = {nullptr, 0};
774     }
775 
776     for (int i = 0; i < NumberOfDevices; i++) {
777       ThreadsPerGroup[i] = RTLDeviceInfoTy::Default_WG_Size;
778       GroupsPerDevice[i] = RTLDeviceInfoTy::DefaultNumTeams;
779       ComputeUnits[i] = 1;
780       DP("Device %d: Initial groupsPerDevice %d & threadsPerGroup %d\n", i,
781          GroupsPerDevice[i], ThreadsPerGroup[i]);
782     }
783 
784     // Get environment variables regarding teams
785     Env.TeamLimit = readEnvElseMinusOne("OMP_TEAM_LIMIT");
786     Env.NumTeams = readEnvElseMinusOne("OMP_NUM_TEAMS");
787     Env.MaxTeamsDefault = readEnvElseMinusOne("OMP_MAX_TEAMS_DEFAULT");
788     Env.TeamThreadLimit = readEnvElseMinusOne("OMP_TEAMS_THREAD_LIMIT");
789 
790     // Default state.
791     RequiresFlags = OMP_REQ_UNDEFINED;
792   }
793 
794   ~RTLDeviceInfoTy() {
795     DP("Finalizing the HSA-ATMI DeviceInfo.\n");
796     // Run destructors on types that use HSA before
797     // atmi_finalize removes access to it
798     deviceStateStore.clear();
799     KernelArgPoolMap.clear();
800     // Terminate hostrpc before finalizing ATMI
801     hostrpc_terminate();
802 
803     hsa_status_t Err;
804     for (uint32_t I = 0; I < HSAExecutables.size(); I++) {
805       Err = hsa_executable_destroy(HSAExecutables[I]);
806       if (Err != HSA_STATUS_SUCCESS) {
807         DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
808            "Destroying executable", get_error_string(Err));
809       }
810     }
811 
812     Err = hsa_shut_down();
813     if (Err != HSA_STATUS_SUCCESS) {
814       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Shutting down HSA",
815              get_error_string(Err));
816     }
817   }
818 };
819 
820 pthread_mutex_t SignalPoolT::mutex = PTHREAD_MUTEX_INITIALIZER;
821 
822 // TODO: May need to drop the trailing to fields until deviceRTL is updated
823 struct omptarget_device_environmentTy {
824   int32_t debug_level; // gets value of envvar LIBOMPTARGET_DEVICE_RTL_DEBUG
825                        // only useful for Debug build of deviceRTLs
826   int32_t num_devices; // gets number of active offload devices
827   int32_t device_num;  // gets a value 0 to num_devices-1
828 };
829 
830 static RTLDeviceInfoTy DeviceInfo;
831 
832 namespace {
833 
834 int32_t dataRetrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size,
835                      __tgt_async_info *AsyncInfo) {
836   assert(AsyncInfo && "AsyncInfo is nullptr");
837   assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large");
838   // Return success if we are not copying back to host from target.
839   if (!HstPtr)
840     return OFFLOAD_SUCCESS;
841   hsa_status_t err;
842   DP("Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size,
843      (long long unsigned)(Elf64_Addr)TgtPtr,
844      (long long unsigned)(Elf64_Addr)HstPtr);
845 
846   err = DeviceInfo.freesignalpool_memcpy_d2h(HstPtr, TgtPtr, (size_t)Size,
847                                              DeviceId);
848 
849   if (err != HSA_STATUS_SUCCESS) {
850     DP("Error when copying data from device to host. Pointers: "
851        "host = 0x%016lx, device = 0x%016lx, size = %lld\n",
852        (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size);
853     return OFFLOAD_FAIL;
854   }
855   DP("DONE Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size,
856      (long long unsigned)(Elf64_Addr)TgtPtr,
857      (long long unsigned)(Elf64_Addr)HstPtr);
858   return OFFLOAD_SUCCESS;
859 }
860 
861 int32_t dataSubmit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size,
862                    __tgt_async_info *AsyncInfo) {
863   assert(AsyncInfo && "AsyncInfo is nullptr");
864   hsa_status_t err;
865   assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large");
866   // Return success if we are not doing host to target.
867   if (!HstPtr)
868     return OFFLOAD_SUCCESS;
869 
870   DP("Submit data %ld bytes, (hst:%016llx) -> (tgt:%016llx).\n", Size,
871      (long long unsigned)(Elf64_Addr)HstPtr,
872      (long long unsigned)(Elf64_Addr)TgtPtr);
873   err = DeviceInfo.freesignalpool_memcpy_h2d(TgtPtr, HstPtr, (size_t)Size,
874                                              DeviceId);
875   if (err != HSA_STATUS_SUCCESS) {
876     DP("Error when copying data from host to device. Pointers: "
877        "host = 0x%016lx, device = 0x%016lx, size = %lld\n",
878        (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size);
879     return OFFLOAD_FAIL;
880   }
881   return OFFLOAD_SUCCESS;
882 }
883 
884 // Async.
885 // The implementation was written with cuda streams in mind. The semantics of
886 // that are to execute kernels on a queue in order of insertion. A synchronise
887 // call then makes writes visible between host and device. This means a series
888 // of N data_submit_async calls are expected to execute serially. HSA offers
889 // various options to run the data copies concurrently. This may require changes
890 // to libomptarget.
891 
892 // __tgt_async_info* contains a void * Queue. Queue = 0 is used to indicate that
893 // there are no outstanding kernels that need to be synchronized. Any async call
894 // may be passed a Queue==0, at which point the cuda implementation will set it
895 // to non-null (see getStream). The cuda streams are per-device. Upstream may
896 // change this interface to explicitly initialize the AsyncInfo_pointer, but
897 // until then hsa lazily initializes it as well.
898 
899 void initAsyncInfo(__tgt_async_info *AsyncInfo) {
900   // set non-null while using async calls, return to null to indicate completion
901   assert(AsyncInfo);
902   if (!AsyncInfo->Queue) {
903     AsyncInfo->Queue = reinterpret_cast<void *>(UINT64_MAX);
904   }
905 }
906 void finiAsyncInfo(__tgt_async_info *AsyncInfo) {
907   assert(AsyncInfo);
908   assert(AsyncInfo->Queue);
909   AsyncInfo->Queue = 0;
910 }
911 
912 bool elf_machine_id_is_amdgcn(__tgt_device_image *image) {
913   const uint16_t amdgcnMachineID = 224; // EM_AMDGPU may not be in system elf.h
914   int32_t r = elf_check_machine(image, amdgcnMachineID);
915   if (!r) {
916     DP("Supported machine ID not found\n");
917   }
918   return r;
919 }
920 
921 uint32_t elf_e_flags(__tgt_device_image *image) {
922   char *img_begin = (char *)image->ImageStart;
923   size_t img_size = (char *)image->ImageEnd - img_begin;
924 
925   Elf *e = elf_memory(img_begin, img_size);
926   if (!e) {
927     DP("Unable to get ELF handle: %s!\n", elf_errmsg(-1));
928     return 0;
929   }
930 
931   Elf64_Ehdr *eh64 = elf64_getehdr(e);
932 
933   if (!eh64) {
934     DP("Unable to get machine ID from ELF file!\n");
935     elf_end(e);
936     return 0;
937   }
938 
939   uint32_t Flags = eh64->e_flags;
940 
941   elf_end(e);
942   DP("ELF Flags: 0x%x\n", Flags);
943   return Flags;
944 }
945 } // namespace
946 
947 int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) {
948   return elf_machine_id_is_amdgcn(image);
949 }
950 
951 int __tgt_rtl_number_of_devices() { return DeviceInfo.NumberOfDevices; }
952 
953 int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) {
954   DP("Init requires flags to %ld\n", RequiresFlags);
955   DeviceInfo.RequiresFlags = RequiresFlags;
956   return RequiresFlags;
957 }
958 
959 namespace {
960 template <typename T> bool enforce_upper_bound(T *value, T upper) {
961   bool changed = *value > upper;
962   if (changed) {
963     *value = upper;
964   }
965   return changed;
966 }
967 } // namespace
968 
969 int32_t __tgt_rtl_init_device(int device_id) {
970   hsa_status_t err;
971 
972   // this is per device id init
973   DP("Initialize the device id: %d\n", device_id);
974 
975   hsa_agent_t agent = DeviceInfo.HSAAgents[device_id];
976 
977   // Get number of Compute Unit
978   uint32_t compute_units = 0;
979   err = hsa_agent_get_info(
980       agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT,
981       &compute_units);
982   if (err != HSA_STATUS_SUCCESS) {
983     DeviceInfo.ComputeUnits[device_id] = 1;
984     DP("Error getting compute units : settiing to 1\n");
985   } else {
986     DeviceInfo.ComputeUnits[device_id] = compute_units;
987     DP("Using %d compute unis per grid\n", DeviceInfo.ComputeUnits[device_id]);
988   }
989 
990   char GetInfoName[64]; // 64 max size returned by get info
991   err = hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AGENT_INFO_NAME,
992                            (void *)GetInfoName);
993   if (err)
994     DeviceInfo.GPUName[device_id] = "--unknown gpu--";
995   else {
996     DeviceInfo.GPUName[device_id] = GetInfoName;
997   }
998 
999   if (print_kernel_trace & STARTUP_DETAILS)
1000     fprintf(stderr, "Device#%-2d CU's: %2d %s\n", device_id,
1001             DeviceInfo.ComputeUnits[device_id],
1002             DeviceInfo.GPUName[device_id].c_str());
1003 
1004   // Query attributes to determine number of threads/block and blocks/grid.
1005   uint16_t workgroup_max_dim[3];
1006   err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_DIM,
1007                            &workgroup_max_dim);
1008   if (err != HSA_STATUS_SUCCESS) {
1009     DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::DefaultNumTeams;
1010     DP("Error getting grid dims: num groups : %d\n",
1011        RTLDeviceInfoTy::DefaultNumTeams);
1012   } else if (workgroup_max_dim[0] <= RTLDeviceInfoTy::HardTeamLimit) {
1013     DeviceInfo.GroupsPerDevice[device_id] = workgroup_max_dim[0];
1014     DP("Using %d ROCm blocks per grid\n",
1015        DeviceInfo.GroupsPerDevice[device_id]);
1016   } else {
1017     DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::HardTeamLimit;
1018     DP("Max ROCm blocks per grid %d exceeds the hard team limit %d, capping "
1019        "at the hard limit\n",
1020        workgroup_max_dim[0], RTLDeviceInfoTy::HardTeamLimit);
1021   }
1022 
1023   // Get thread limit
1024   hsa_dim3_t grid_max_dim;
1025   err = hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &grid_max_dim);
1026   if (err == HSA_STATUS_SUCCESS) {
1027     DeviceInfo.ThreadsPerGroup[device_id] =
1028         reinterpret_cast<uint32_t *>(&grid_max_dim)[0] /
1029         DeviceInfo.GroupsPerDevice[device_id];
1030 
1031     if (DeviceInfo.ThreadsPerGroup[device_id] == 0) {
1032       DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size;
1033       DP("Default thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size);
1034     } else if (enforce_upper_bound(&DeviceInfo.ThreadsPerGroup[device_id],
1035                                    RTLDeviceInfoTy::Max_WG_Size)) {
1036       DP("Capped thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size);
1037     } else {
1038       DP("Using ROCm Queried thread limit: %d\n",
1039          DeviceInfo.ThreadsPerGroup[device_id]);
1040     }
1041   } else {
1042     DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size;
1043     DP("Error getting max block dimension, use default:%d \n",
1044        RTLDeviceInfoTy::Max_WG_Size);
1045   }
1046 
1047   // Get wavefront size
1048   uint32_t wavefront_size = 0;
1049   err =
1050       hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size);
1051   if (err == HSA_STATUS_SUCCESS) {
1052     DP("Queried wavefront size: %d\n", wavefront_size);
1053     DeviceInfo.WarpSize[device_id] = wavefront_size;
1054   } else {
1055     DP("Default wavefront size: %d\n",
1056        llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]);
1057     DeviceInfo.WarpSize[device_id] =
1058         llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size];
1059   }
1060 
1061   // Adjust teams to the env variables
1062 
1063   if (DeviceInfo.Env.TeamLimit > 0 &&
1064       (enforce_upper_bound(&DeviceInfo.GroupsPerDevice[device_id],
1065                            DeviceInfo.Env.TeamLimit))) {
1066     DP("Capping max groups per device to OMP_TEAM_LIMIT=%d\n",
1067        DeviceInfo.Env.TeamLimit);
1068   }
1069 
1070   // Set default number of teams
1071   if (DeviceInfo.Env.NumTeams > 0) {
1072     DeviceInfo.NumTeams[device_id] = DeviceInfo.Env.NumTeams;
1073     DP("Default number of teams set according to environment %d\n",
1074        DeviceInfo.Env.NumTeams);
1075   } else {
1076     char *TeamsPerCUEnvStr = getenv("OMP_TARGET_TEAMS_PER_PROC");
1077     int TeamsPerCU = DefaultTeamsPerCU;
1078     if (TeamsPerCUEnvStr) {
1079       TeamsPerCU = std::stoi(TeamsPerCUEnvStr);
1080     }
1081 
1082     DeviceInfo.NumTeams[device_id] =
1083         TeamsPerCU * DeviceInfo.ComputeUnits[device_id];
1084     DP("Default number of teams = %d * number of compute units %d\n",
1085        TeamsPerCU, DeviceInfo.ComputeUnits[device_id]);
1086   }
1087 
1088   if (enforce_upper_bound(&DeviceInfo.NumTeams[device_id],
1089                           DeviceInfo.GroupsPerDevice[device_id])) {
1090     DP("Default number of teams exceeds device limit, capping at %d\n",
1091        DeviceInfo.GroupsPerDevice[device_id]);
1092   }
1093 
1094   // Adjust threads to the env variables
1095   if (DeviceInfo.Env.TeamThreadLimit > 0 &&
1096       (enforce_upper_bound(&DeviceInfo.NumThreads[device_id],
1097                            DeviceInfo.Env.TeamThreadLimit))) {
1098     DP("Capping max number of threads to OMP_TEAMS_THREAD_LIMIT=%d\n",
1099        DeviceInfo.Env.TeamThreadLimit);
1100   }
1101 
1102   // Set default number of threads
1103   DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::Default_WG_Size;
1104   DP("Default number of threads set according to library's default %d\n",
1105      RTLDeviceInfoTy::Default_WG_Size);
1106   if (enforce_upper_bound(&DeviceInfo.NumThreads[device_id],
1107                           DeviceInfo.ThreadsPerGroup[device_id])) {
1108     DP("Default number of threads exceeds device limit, capping at %d\n",
1109        DeviceInfo.ThreadsPerGroup[device_id]);
1110   }
1111 
1112   DP("Device %d: default limit for groupsPerDevice %d & threadsPerGroup %d\n",
1113      device_id, DeviceInfo.GroupsPerDevice[device_id],
1114      DeviceInfo.ThreadsPerGroup[device_id]);
1115 
1116   DP("Device %d: wavefront size %d, total threads %d x %d = %d\n", device_id,
1117      DeviceInfo.WarpSize[device_id], DeviceInfo.ThreadsPerGroup[device_id],
1118      DeviceInfo.GroupsPerDevice[device_id],
1119      DeviceInfo.GroupsPerDevice[device_id] *
1120          DeviceInfo.ThreadsPerGroup[device_id]);
1121 
1122   return OFFLOAD_SUCCESS;
1123 }
1124 
1125 namespace {
1126 Elf64_Shdr *find_only_SHT_HASH(Elf *elf) {
1127   size_t N;
1128   int rc = elf_getshdrnum(elf, &N);
1129   if (rc != 0) {
1130     return nullptr;
1131   }
1132 
1133   Elf64_Shdr *result = nullptr;
1134   for (size_t i = 0; i < N; i++) {
1135     Elf_Scn *scn = elf_getscn(elf, i);
1136     if (scn) {
1137       Elf64_Shdr *shdr = elf64_getshdr(scn);
1138       if (shdr) {
1139         if (shdr->sh_type == SHT_HASH) {
1140           if (result == nullptr) {
1141             result = shdr;
1142           } else {
1143             // multiple SHT_HASH sections not handled
1144             return nullptr;
1145           }
1146         }
1147       }
1148     }
1149   }
1150   return result;
1151 }
1152 
1153 const Elf64_Sym *elf_lookup(Elf *elf, char *base, Elf64_Shdr *section_hash,
1154                             const char *symname) {
1155 
1156   assert(section_hash);
1157   size_t section_symtab_index = section_hash->sh_link;
1158   Elf64_Shdr *section_symtab =
1159       elf64_getshdr(elf_getscn(elf, section_symtab_index));
1160   size_t section_strtab_index = section_symtab->sh_link;
1161 
1162   const Elf64_Sym *symtab =
1163       reinterpret_cast<const Elf64_Sym *>(base + section_symtab->sh_offset);
1164 
1165   const uint32_t *hashtab =
1166       reinterpret_cast<const uint32_t *>(base + section_hash->sh_offset);
1167 
1168   // Layout:
1169   // nbucket
1170   // nchain
1171   // bucket[nbucket]
1172   // chain[nchain]
1173   uint32_t nbucket = hashtab[0];
1174   const uint32_t *bucket = &hashtab[2];
1175   const uint32_t *chain = &hashtab[nbucket + 2];
1176 
1177   const size_t max = strlen(symname) + 1;
1178   const uint32_t hash = elf_hash(symname);
1179   for (uint32_t i = bucket[hash % nbucket]; i != 0; i = chain[i]) {
1180     char *n = elf_strptr(elf, section_strtab_index, symtab[i].st_name);
1181     if (strncmp(symname, n, max) == 0) {
1182       return &symtab[i];
1183     }
1184   }
1185 
1186   return nullptr;
1187 }
1188 
1189 struct symbol_info {
1190   void *addr = nullptr;
1191   uint32_t size = UINT32_MAX;
1192   uint32_t sh_type = SHT_NULL;
1193 };
1194 
1195 int get_symbol_info_without_loading(Elf *elf, char *base, const char *symname,
1196                                     symbol_info *res) {
1197   if (elf_kind(elf) != ELF_K_ELF) {
1198     return 1;
1199   }
1200 
1201   Elf64_Shdr *section_hash = find_only_SHT_HASH(elf);
1202   if (!section_hash) {
1203     return 1;
1204   }
1205 
1206   const Elf64_Sym *sym = elf_lookup(elf, base, section_hash, symname);
1207   if (!sym) {
1208     return 1;
1209   }
1210 
1211   if (sym->st_size > UINT32_MAX) {
1212     return 1;
1213   }
1214 
1215   if (sym->st_shndx == SHN_UNDEF) {
1216     return 1;
1217   }
1218 
1219   Elf_Scn *section = elf_getscn(elf, sym->st_shndx);
1220   if (!section) {
1221     return 1;
1222   }
1223 
1224   Elf64_Shdr *header = elf64_getshdr(section);
1225   if (!header) {
1226     return 1;
1227   }
1228 
1229   res->addr = sym->st_value + base;
1230   res->size = static_cast<uint32_t>(sym->st_size);
1231   res->sh_type = header->sh_type;
1232   return 0;
1233 }
1234 
1235 int get_symbol_info_without_loading(char *base, size_t img_size,
1236                                     const char *symname, symbol_info *res) {
1237   Elf *elf = elf_memory(base, img_size);
1238   if (elf) {
1239     int rc = get_symbol_info_without_loading(elf, base, symname, res);
1240     elf_end(elf);
1241     return rc;
1242   }
1243   return 1;
1244 }
1245 
1246 hsa_status_t interop_get_symbol_info(char *base, size_t img_size,
1247                                      const char *symname, void **var_addr,
1248                                      uint32_t *var_size) {
1249   symbol_info si;
1250   int rc = get_symbol_info_without_loading(base, img_size, symname, &si);
1251   if (rc == 0) {
1252     *var_addr = si.addr;
1253     *var_size = si.size;
1254     return HSA_STATUS_SUCCESS;
1255   } else {
1256     return HSA_STATUS_ERROR;
1257   }
1258 }
1259 
1260 template <typename C>
1261 hsa_status_t module_register_from_memory_to_place(
1262     std::map<std::string, atl_kernel_info_t> &KernelInfoTable,
1263     std::map<std::string, atl_symbol_info_t> &SymbolInfoTable,
1264     void *module_bytes, size_t module_size, int DeviceId, C cb,
1265     std::vector<hsa_executable_t> &HSAExecutables) {
1266   auto L = [](void *data, size_t size, void *cb_state) -> hsa_status_t {
1267     C *unwrapped = static_cast<C *>(cb_state);
1268     return (*unwrapped)(data, size);
1269   };
1270   return core::RegisterModuleFromMemory(
1271       KernelInfoTable, SymbolInfoTable, module_bytes, module_size,
1272       DeviceInfo.HSAAgents[DeviceId], L, static_cast<void *>(&cb),
1273       HSAExecutables);
1274 }
1275 } // namespace
1276 
1277 static uint64_t get_device_State_bytes(char *ImageStart, size_t img_size) {
1278   uint64_t device_State_bytes = 0;
1279   {
1280     // If this is the deviceRTL, get the state variable size
1281     symbol_info size_si;
1282     int rc = get_symbol_info_without_loading(
1283         ImageStart, img_size, "omptarget_nvptx_device_State_size", &size_si);
1284 
1285     if (rc == 0) {
1286       if (size_si.size != sizeof(uint64_t)) {
1287         DP("Found device_State_size variable with wrong size\n");
1288         return 0;
1289       }
1290 
1291       // Read number of bytes directly from the elf
1292       memcpy(&device_State_bytes, size_si.addr, sizeof(uint64_t));
1293     }
1294   }
1295   return device_State_bytes;
1296 }
1297 
1298 static __tgt_target_table *
1299 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image);
1300 
1301 static __tgt_target_table *
1302 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image);
1303 
1304 __tgt_target_table *__tgt_rtl_load_binary(int32_t device_id,
1305                                           __tgt_device_image *image) {
1306   DeviceInfo.load_run_lock.lock();
1307   __tgt_target_table *res = __tgt_rtl_load_binary_locked(device_id, image);
1308   DeviceInfo.load_run_lock.unlock();
1309   return res;
1310 }
1311 
1312 struct device_environment {
1313   // initialise an omptarget_device_environmentTy in the deviceRTL
1314   // patches around differences in the deviceRTL between trunk, aomp,
1315   // rocmcc. Over time these differences will tend to zero and this class
1316   // simplified.
1317   // Symbol may be in .data or .bss, and may be missing fields:
1318   //  - aomp has debug_level, num_devices, device_num
1319   //  - trunk has debug_level
1320   //  - under review in trunk is debug_level, device_num
1321   //  - rocmcc matches aomp, patch to swap num_devices and device_num
1322 
1323   // The symbol may also have been deadstripped because the device side
1324   // accessors were unused.
1325 
1326   // If the symbol is in .data (aomp, rocm) it can be written directly.
1327   // If it is in .bss, we must wait for it to be allocated space on the
1328   // gpu (trunk) and initialize after loading.
1329   const char *sym() { return "omptarget_device_environment"; }
1330 
1331   omptarget_device_environmentTy host_device_env;
1332   symbol_info si;
1333   bool valid = false;
1334 
1335   __tgt_device_image *image;
1336   const size_t img_size;
1337 
1338   device_environment(int device_id, int number_devices,
1339                      __tgt_device_image *image, const size_t img_size)
1340       : image(image), img_size(img_size) {
1341 
1342     host_device_env.num_devices = number_devices;
1343     host_device_env.device_num = device_id;
1344     host_device_env.debug_level = 0;
1345 #ifdef OMPTARGET_DEBUG
1346     if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) {
1347       host_device_env.debug_level = std::stoi(envStr);
1348     }
1349 #endif
1350 
1351     int rc = get_symbol_info_without_loading((char *)image->ImageStart,
1352                                              img_size, sym(), &si);
1353     if (rc != 0) {
1354       DP("Finding global device environment '%s' - symbol missing.\n", sym());
1355       return;
1356     }
1357 
1358     if (si.size > sizeof(host_device_env)) {
1359       DP("Symbol '%s' has size %u, expected at most %zu.\n", sym(), si.size,
1360          sizeof(host_device_env));
1361       return;
1362     }
1363 
1364     valid = true;
1365   }
1366 
1367   bool in_image() { return si.sh_type != SHT_NOBITS; }
1368 
1369   hsa_status_t before_loading(void *data, size_t size) {
1370     if (valid) {
1371       if (in_image()) {
1372         DP("Setting global device environment before load (%u bytes)\n",
1373            si.size);
1374         uint64_t offset = (char *)si.addr - (char *)image->ImageStart;
1375         void *pos = (char *)data + offset;
1376         memcpy(pos, &host_device_env, si.size);
1377       }
1378     }
1379     return HSA_STATUS_SUCCESS;
1380   }
1381 
1382   hsa_status_t after_loading() {
1383     if (valid) {
1384       if (!in_image()) {
1385         DP("Setting global device environment after load (%u bytes)\n",
1386            si.size);
1387         int device_id = host_device_env.device_num;
1388         auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id];
1389         void *state_ptr;
1390         uint32_t state_ptr_size;
1391         hsa_status_t err = atmi_interop_hsa_get_symbol_info(
1392             SymbolInfo, device_id, sym(), &state_ptr, &state_ptr_size);
1393         if (err != HSA_STATUS_SUCCESS) {
1394           DP("failed to find %s in loaded image\n", sym());
1395           return err;
1396         }
1397 
1398         if (state_ptr_size != si.size) {
1399           DP("Symbol had size %u before loading, %u after\n", state_ptr_size,
1400              si.size);
1401           return HSA_STATUS_ERROR;
1402         }
1403 
1404         return DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &host_device_env,
1405                                                     state_ptr_size, device_id);
1406       }
1407     }
1408     return HSA_STATUS_SUCCESS;
1409   }
1410 };
1411 
1412 static hsa_status_t atmi_calloc(void **ret_ptr, size_t size, int DeviceId) {
1413   uint64_t rounded = 4 * ((size + 3) / 4);
1414   void *ptr;
1415   hsa_status_t err = core::Runtime::DeviceMalloc(&ptr, rounded, DeviceId);
1416   if (err != HSA_STATUS_SUCCESS) {
1417     return err;
1418   }
1419 
1420   hsa_status_t rc = hsa_amd_memory_fill(ptr, 0, rounded / 4);
1421   if (rc != HSA_STATUS_SUCCESS) {
1422     fprintf(stderr, "zero fill device_state failed with %u\n", rc);
1423     core::Runtime::Memfree(ptr);
1424     return HSA_STATUS_ERROR;
1425   }
1426 
1427   *ret_ptr = ptr;
1428   return HSA_STATUS_SUCCESS;
1429 }
1430 
1431 static bool image_contains_symbol(void *data, size_t size, const char *sym) {
1432   symbol_info si;
1433   int rc = get_symbol_info_without_loading((char *)data, size, sym, &si);
1434   return (rc == 0) && (si.addr != nullptr);
1435 }
1436 
1437 __tgt_target_table *__tgt_rtl_load_binary_locked(int32_t device_id,
1438                                                  __tgt_device_image *image) {
1439   // This function loads the device image onto gpu[device_id] and does other
1440   // per-image initialization work. Specifically:
1441   //
1442   // - Initialize an omptarget_device_environmentTy instance embedded in the
1443   //   image at the symbol "omptarget_device_environment"
1444   //   Fields debug_level, device_num, num_devices. Used by the deviceRTL.
1445   //
1446   // - Allocate a large array per-gpu (could be moved to init_device)
1447   //   - Read a uint64_t at symbol omptarget_nvptx_device_State_size
1448   //   - Allocate at least that many bytes of gpu memory
1449   //   - Zero initialize it
1450   //   - Write the pointer to the symbol omptarget_nvptx_device_State
1451   //
1452   // - Pulls some per-kernel information together from various sources and
1453   //   records it in the KernelsList for quicker access later
1454   //
1455   // The initialization can be done before or after loading the image onto the
1456   // gpu. This function presently does a mixture. Using the hsa api to get/set
1457   // the information is simpler to implement, in exchange for more complicated
1458   // runtime behaviour. E.g. launching a kernel or using dma to get eight bytes
1459   // back from the gpu vs a hashtable lookup on the host.
1460 
1461   const size_t img_size = (char *)image->ImageEnd - (char *)image->ImageStart;
1462 
1463   DeviceInfo.clearOffloadEntriesTable(device_id);
1464 
1465   // We do not need to set the ELF version because the caller of this function
1466   // had to do that to decide the right runtime to use
1467 
1468   if (!elf_machine_id_is_amdgcn(image)) {
1469     return NULL;
1470   }
1471 
1472   {
1473     auto env = device_environment(device_id, DeviceInfo.NumberOfDevices, image,
1474                                   img_size);
1475 
1476     auto &KernelInfo = DeviceInfo.KernelInfoTable[device_id];
1477     auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id];
1478     hsa_status_t err = module_register_from_memory_to_place(
1479         KernelInfo, SymbolInfo, (void *)image->ImageStart, img_size, device_id,
1480         [&](void *data, size_t size) {
1481           if (image_contains_symbol(data, size, "needs_hostcall_buffer")) {
1482             __atomic_store_n(&DeviceInfo.hostcall_required, true,
1483                              __ATOMIC_RELEASE);
1484           }
1485           return env.before_loading(data, size);
1486         },
1487         DeviceInfo.HSAExecutables);
1488 
1489     check("Module registering", err);
1490     if (err != HSA_STATUS_SUCCESS) {
1491       fprintf(stderr,
1492               "Possible gpu arch mismatch: device:%s, image:%s please check"
1493               " compiler flag: -march=<gpu>\n",
1494               DeviceInfo.GPUName[device_id].c_str(),
1495               get_elf_mach_gfx_name(elf_e_flags(image)));
1496       return NULL;
1497     }
1498 
1499     err = env.after_loading();
1500     if (err != HSA_STATUS_SUCCESS) {
1501       return NULL;
1502     }
1503   }
1504 
1505   DP("ATMI module successfully loaded!\n");
1506 
1507   {
1508     // the device_State array is either large value in bss or a void* that
1509     // needs to be assigned to a pointer to an array of size device_state_bytes
1510     // If absent, it has been deadstripped and needs no setup.
1511 
1512     void *state_ptr;
1513     uint32_t state_ptr_size;
1514     auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id];
1515     hsa_status_t err = atmi_interop_hsa_get_symbol_info(
1516         SymbolInfoMap, device_id, "omptarget_nvptx_device_State", &state_ptr,
1517         &state_ptr_size);
1518 
1519     if (err != HSA_STATUS_SUCCESS) {
1520       DP("No device_state symbol found, skipping initialization\n");
1521     } else {
1522       if (state_ptr_size < sizeof(void *)) {
1523         DP("unexpected size of state_ptr %u != %zu\n", state_ptr_size,
1524            sizeof(void *));
1525         return NULL;
1526       }
1527 
1528       // if it's larger than a void*, assume it's a bss array and no further
1529       // initialization is required. Only try to set up a pointer for
1530       // sizeof(void*)
1531       if (state_ptr_size == sizeof(void *)) {
1532         uint64_t device_State_bytes =
1533             get_device_State_bytes((char *)image->ImageStart, img_size);
1534         if (device_State_bytes == 0) {
1535           DP("Can't initialize device_State, missing size information\n");
1536           return NULL;
1537         }
1538 
1539         auto &dss = DeviceInfo.deviceStateStore[device_id];
1540         if (dss.first.get() == nullptr) {
1541           assert(dss.second == 0);
1542           void *ptr = NULL;
1543           hsa_status_t err = atmi_calloc(&ptr, device_State_bytes, device_id);
1544           if (err != HSA_STATUS_SUCCESS) {
1545             DP("Failed to allocate device_state array\n");
1546             return NULL;
1547           }
1548           dss = {
1549               std::unique_ptr<void, RTLDeviceInfoTy::atmiFreePtrDeletor>{ptr},
1550               device_State_bytes,
1551           };
1552         }
1553 
1554         void *ptr = dss.first.get();
1555         if (device_State_bytes != dss.second) {
1556           DP("Inconsistent sizes of device_State unsupported\n");
1557           return NULL;
1558         }
1559 
1560         // write ptr to device memory so it can be used by later kernels
1561         err = DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &ptr,
1562                                                    sizeof(void *), device_id);
1563         if (err != HSA_STATUS_SUCCESS) {
1564           DP("memcpy install of state_ptr failed\n");
1565           return NULL;
1566         }
1567       }
1568     }
1569   }
1570 
1571   // Here, we take advantage of the data that is appended after img_end to get
1572   // the symbols' name we need to load. This data consist of the host entries
1573   // begin and end as well as the target name (see the offloading linker script
1574   // creation in clang compiler).
1575 
1576   // Find the symbols in the module by name. The name can be obtain by
1577   // concatenating the host entry name with the target name
1578 
1579   __tgt_offload_entry *HostBegin = image->EntriesBegin;
1580   __tgt_offload_entry *HostEnd = image->EntriesEnd;
1581 
1582   for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) {
1583 
1584     if (!e->addr) {
1585       // The host should have always something in the address to
1586       // uniquely identify the target region.
1587       fprintf(stderr, "Analyzing host entry '<null>' (size = %lld)...\n",
1588               (unsigned long long)e->size);
1589       return NULL;
1590     }
1591 
1592     if (e->size) {
1593       __tgt_offload_entry entry = *e;
1594 
1595       void *varptr;
1596       uint32_t varsize;
1597 
1598       auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id];
1599       hsa_status_t err = atmi_interop_hsa_get_symbol_info(
1600           SymbolInfoMap, device_id, e->name, &varptr, &varsize);
1601 
1602       if (err != HSA_STATUS_SUCCESS) {
1603         // Inform the user what symbol prevented offloading
1604         DP("Loading global '%s' (Failed)\n", e->name);
1605         return NULL;
1606       }
1607 
1608       if (varsize != e->size) {
1609         DP("Loading global '%s' - size mismatch (%u != %lu)\n", e->name,
1610            varsize, e->size);
1611         return NULL;
1612       }
1613 
1614       DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n",
1615          DPxPTR(e - HostBegin), e->name, DPxPTR(varptr));
1616       entry.addr = (void *)varptr;
1617 
1618       DeviceInfo.addOffloadEntry(device_id, entry);
1619 
1620       if (DeviceInfo.RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY &&
1621           e->flags & OMP_DECLARE_TARGET_LINK) {
1622         // If unified memory is present any target link variables
1623         // can access host addresses directly. There is no longer a
1624         // need for device copies.
1625         err = DeviceInfo.freesignalpool_memcpy_h2d(varptr, e->addr,
1626                                                    sizeof(void *), device_id);
1627         if (err != HSA_STATUS_SUCCESS)
1628           DP("Error when copying USM\n");
1629         DP("Copy linked variable host address (" DPxMOD ")"
1630            "to device address (" DPxMOD ")\n",
1631            DPxPTR(*((void **)e->addr)), DPxPTR(varptr));
1632       }
1633 
1634       continue;
1635     }
1636 
1637     DP("to find the kernel name: %s size: %lu\n", e->name, strlen(e->name));
1638 
1639     uint32_t kernarg_segment_size;
1640     auto &KernelInfoMap = DeviceInfo.KernelInfoTable[device_id];
1641     hsa_status_t err = atmi_interop_hsa_get_kernel_info(
1642         KernelInfoMap, device_id, e->name,
1643         HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE,
1644         &kernarg_segment_size);
1645 
1646     // each arg is a void * in this openmp implementation
1647     uint32_t arg_num = kernarg_segment_size / sizeof(void *);
1648     std::vector<size_t> arg_sizes(arg_num);
1649     for (std::vector<size_t>::iterator it = arg_sizes.begin();
1650          it != arg_sizes.end(); it++) {
1651       *it = sizeof(void *);
1652     }
1653 
1654     // default value GENERIC (in case symbol is missing from cubin file)
1655     int8_t ExecModeVal = ExecutionModeType::GENERIC;
1656 
1657     // get flat group size if present, else Default_WG_Size
1658     int16_t WGSizeVal = RTLDeviceInfoTy::Default_WG_Size;
1659 
1660     // get Kernel Descriptor if present.
1661     // Keep struct in sync wih getTgtAttributeStructQTy in CGOpenMPRuntime.cpp
1662     struct KernDescValType {
1663       uint16_t Version;
1664       uint16_t TSize;
1665       uint16_t WG_Size;
1666       uint8_t Mode;
1667     };
1668     struct KernDescValType KernDescVal;
1669     std::string KernDescNameStr(e->name);
1670     KernDescNameStr += "_kern_desc";
1671     const char *KernDescName = KernDescNameStr.c_str();
1672 
1673     void *KernDescPtr;
1674     uint32_t KernDescSize;
1675     void *CallStackAddr = nullptr;
1676     err = interop_get_symbol_info((char *)image->ImageStart, img_size,
1677                                   KernDescName, &KernDescPtr, &KernDescSize);
1678 
1679     if (err == HSA_STATUS_SUCCESS) {
1680       if ((size_t)KernDescSize != sizeof(KernDescVal))
1681         DP("Loading global computation properties '%s' - size mismatch (%u != "
1682            "%lu)\n",
1683            KernDescName, KernDescSize, sizeof(KernDescVal));
1684 
1685       memcpy(&KernDescVal, KernDescPtr, (size_t)KernDescSize);
1686 
1687       // Check structure size against recorded size.
1688       if ((size_t)KernDescSize != KernDescVal.TSize)
1689         DP("KernDescVal size %lu does not match advertized size %d for '%s'\n",
1690            sizeof(KernDescVal), KernDescVal.TSize, KernDescName);
1691 
1692       DP("After loading global for %s KernDesc \n", KernDescName);
1693       DP("KernDesc: Version: %d\n", KernDescVal.Version);
1694       DP("KernDesc: TSize: %d\n", KernDescVal.TSize);
1695       DP("KernDesc: WG_Size: %d\n", KernDescVal.WG_Size);
1696       DP("KernDesc: Mode: %d\n", KernDescVal.Mode);
1697 
1698       // Get ExecMode
1699       ExecModeVal = KernDescVal.Mode;
1700       DP("ExecModeVal %d\n", ExecModeVal);
1701       if (KernDescVal.WG_Size == 0) {
1702         KernDescVal.WG_Size = RTLDeviceInfoTy::Default_WG_Size;
1703         DP("Setting KernDescVal.WG_Size to default %d\n", KernDescVal.WG_Size);
1704       }
1705       WGSizeVal = KernDescVal.WG_Size;
1706       DP("WGSizeVal %d\n", WGSizeVal);
1707       check("Loading KernDesc computation property", err);
1708     } else {
1709       DP("Warning: Loading KernDesc '%s' - symbol not found, ", KernDescName);
1710 
1711       // Generic
1712       std::string ExecModeNameStr(e->name);
1713       ExecModeNameStr += "_exec_mode";
1714       const char *ExecModeName = ExecModeNameStr.c_str();
1715 
1716       void *ExecModePtr;
1717       uint32_t varsize;
1718       err = interop_get_symbol_info((char *)image->ImageStart, img_size,
1719                                     ExecModeName, &ExecModePtr, &varsize);
1720 
1721       if (err == HSA_STATUS_SUCCESS) {
1722         if ((size_t)varsize != sizeof(int8_t)) {
1723           DP("Loading global computation properties '%s' - size mismatch(%u != "
1724              "%lu)\n",
1725              ExecModeName, varsize, sizeof(int8_t));
1726           return NULL;
1727         }
1728 
1729         memcpy(&ExecModeVal, ExecModePtr, (size_t)varsize);
1730 
1731         DP("After loading global for %s ExecMode = %d\n", ExecModeName,
1732            ExecModeVal);
1733 
1734         if (ExecModeVal < 0 || ExecModeVal > 1) {
1735           DP("Error wrong exec_mode value specified in HSA code object file: "
1736              "%d\n",
1737              ExecModeVal);
1738           return NULL;
1739         }
1740       } else {
1741         DP("Loading global exec_mode '%s' - symbol missing, using default "
1742            "value "
1743            "GENERIC (1)\n",
1744            ExecModeName);
1745       }
1746       check("Loading computation property", err);
1747 
1748       // Flat group size
1749       std::string WGSizeNameStr(e->name);
1750       WGSizeNameStr += "_wg_size";
1751       const char *WGSizeName = WGSizeNameStr.c_str();
1752 
1753       void *WGSizePtr;
1754       uint32_t WGSize;
1755       err = interop_get_symbol_info((char *)image->ImageStart, img_size,
1756                                     WGSizeName, &WGSizePtr, &WGSize);
1757 
1758       if (err == HSA_STATUS_SUCCESS) {
1759         if ((size_t)WGSize != sizeof(int16_t)) {
1760           DP("Loading global computation properties '%s' - size mismatch (%u "
1761              "!= "
1762              "%lu)\n",
1763              WGSizeName, WGSize, sizeof(int16_t));
1764           return NULL;
1765         }
1766 
1767         memcpy(&WGSizeVal, WGSizePtr, (size_t)WGSize);
1768 
1769         DP("After loading global for %s WGSize = %d\n", WGSizeName, WGSizeVal);
1770 
1771         if (WGSizeVal < RTLDeviceInfoTy::Default_WG_Size ||
1772             WGSizeVal > RTLDeviceInfoTy::Max_WG_Size) {
1773           DP("Error wrong WGSize value specified in HSA code object file: "
1774              "%d\n",
1775              WGSizeVal);
1776           WGSizeVal = RTLDeviceInfoTy::Default_WG_Size;
1777         }
1778       } else {
1779         DP("Warning: Loading WGSize '%s' - symbol not found, "
1780            "using default value %d\n",
1781            WGSizeName, WGSizeVal);
1782       }
1783 
1784       check("Loading WGSize computation property", err);
1785     }
1786 
1787     KernelsList.push_back(KernelTy(ExecModeVal, WGSizeVal, device_id,
1788                                    CallStackAddr, e->name, kernarg_segment_size,
1789                                    DeviceInfo.KernArgPool));
1790     __tgt_offload_entry entry = *e;
1791     entry.addr = (void *)&KernelsList.back();
1792     DeviceInfo.addOffloadEntry(device_id, entry);
1793     DP("Entry point %ld maps to %s\n", e - HostBegin, e->name);
1794   }
1795 
1796   return DeviceInfo.getOffloadEntriesTable(device_id);
1797 }
1798 
1799 void *__tgt_rtl_data_alloc(int device_id, int64_t size, void *, int32_t kind) {
1800   void *ptr = NULL;
1801   assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large");
1802 
1803   if (kind != TARGET_ALLOC_DEFAULT) {
1804     REPORT("Invalid target data allocation kind or requested allocator not "
1805            "implemented yet\n");
1806     return NULL;
1807   }
1808 
1809   hsa_status_t err = core::Runtime::DeviceMalloc(&ptr, size, device_id);
1810   DP("Tgt alloc data %ld bytes, (tgt:%016llx).\n", size,
1811      (long long unsigned)(Elf64_Addr)ptr);
1812   ptr = (err == HSA_STATUS_SUCCESS) ? ptr : NULL;
1813   return ptr;
1814 }
1815 
1816 int32_t __tgt_rtl_data_submit(int device_id, void *tgt_ptr, void *hst_ptr,
1817                               int64_t size) {
1818   assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large");
1819   __tgt_async_info AsyncInfo;
1820   int32_t rc = dataSubmit(device_id, tgt_ptr, hst_ptr, size, &AsyncInfo);
1821   if (rc != OFFLOAD_SUCCESS)
1822     return OFFLOAD_FAIL;
1823 
1824   return __tgt_rtl_synchronize(device_id, &AsyncInfo);
1825 }
1826 
1827 int32_t __tgt_rtl_data_submit_async(int device_id, void *tgt_ptr, void *hst_ptr,
1828                                     int64_t size, __tgt_async_info *AsyncInfo) {
1829   assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large");
1830   if (AsyncInfo) {
1831     initAsyncInfo(AsyncInfo);
1832     return dataSubmit(device_id, tgt_ptr, hst_ptr, size, AsyncInfo);
1833   } else {
1834     return __tgt_rtl_data_submit(device_id, tgt_ptr, hst_ptr, size);
1835   }
1836 }
1837 
1838 int32_t __tgt_rtl_data_retrieve(int device_id, void *hst_ptr, void *tgt_ptr,
1839                                 int64_t size) {
1840   assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large");
1841   __tgt_async_info AsyncInfo;
1842   int32_t rc = dataRetrieve(device_id, hst_ptr, tgt_ptr, size, &AsyncInfo);
1843   if (rc != OFFLOAD_SUCCESS)
1844     return OFFLOAD_FAIL;
1845 
1846   return __tgt_rtl_synchronize(device_id, &AsyncInfo);
1847 }
1848 
1849 int32_t __tgt_rtl_data_retrieve_async(int device_id, void *hst_ptr,
1850                                       void *tgt_ptr, int64_t size,
1851                                       __tgt_async_info *AsyncInfo) {
1852   assert(AsyncInfo && "AsyncInfo is nullptr");
1853   assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large");
1854   initAsyncInfo(AsyncInfo);
1855   return dataRetrieve(device_id, hst_ptr, tgt_ptr, size, AsyncInfo);
1856 }
1857 
1858 int32_t __tgt_rtl_data_delete(int device_id, void *tgt_ptr) {
1859   assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large");
1860   hsa_status_t err;
1861   DP("Tgt free data (tgt:%016llx).\n", (long long unsigned)(Elf64_Addr)tgt_ptr);
1862   err = core::Runtime::Memfree(tgt_ptr);
1863   if (err != HSA_STATUS_SUCCESS) {
1864     DP("Error when freeing CUDA memory\n");
1865     return OFFLOAD_FAIL;
1866   }
1867   return OFFLOAD_SUCCESS;
1868 }
1869 
1870 // Determine launch values for kernel.
1871 struct launchVals {
1872   int WorkgroupSize;
1873   int GridSize;
1874 };
1875 launchVals getLaunchVals(EnvironmentVariables Env, int ConstWGSize,
1876                          int ExecutionMode, int num_teams, int thread_limit,
1877                          uint64_t loop_tripcount, int DeviceNumTeams) {
1878 
1879   int threadsPerGroup = RTLDeviceInfoTy::Default_WG_Size;
1880   int num_groups = 0;
1881 
1882   int Max_Teams =
1883       Env.MaxTeamsDefault > 0 ? Env.MaxTeamsDefault : DeviceNumTeams;
1884   if (Max_Teams > RTLDeviceInfoTy::HardTeamLimit)
1885     Max_Teams = RTLDeviceInfoTy::HardTeamLimit;
1886 
1887   if (print_kernel_trace & STARTUP_DETAILS) {
1888     fprintf(stderr, "RTLDeviceInfoTy::Max_Teams: %d\n",
1889             RTLDeviceInfoTy::Max_Teams);
1890     fprintf(stderr, "Max_Teams: %d\n", Max_Teams);
1891     fprintf(stderr, "RTLDeviceInfoTy::Warp_Size: %d\n",
1892             RTLDeviceInfoTy::Warp_Size);
1893     fprintf(stderr, "RTLDeviceInfoTy::Max_WG_Size: %d\n",
1894             RTLDeviceInfoTy::Max_WG_Size);
1895     fprintf(stderr, "RTLDeviceInfoTy::Default_WG_Size: %d\n",
1896             RTLDeviceInfoTy::Default_WG_Size);
1897     fprintf(stderr, "thread_limit: %d\n", thread_limit);
1898     fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup);
1899     fprintf(stderr, "ConstWGSize: %d\n", ConstWGSize);
1900   }
1901   // check for thread_limit() clause
1902   if (thread_limit > 0) {
1903     threadsPerGroup = thread_limit;
1904     DP("Setting threads per block to requested %d\n", thread_limit);
1905     if (ExecutionMode == GENERIC) { // Add master warp for GENERIC
1906       threadsPerGroup += RTLDeviceInfoTy::Warp_Size;
1907       DP("Adding master wavefront: +%d threads\n", RTLDeviceInfoTy::Warp_Size);
1908     }
1909     if (threadsPerGroup > RTLDeviceInfoTy::Max_WG_Size) { // limit to max
1910       threadsPerGroup = RTLDeviceInfoTy::Max_WG_Size;
1911       DP("Setting threads per block to maximum %d\n", threadsPerGroup);
1912     }
1913   }
1914   // check flat_max_work_group_size attr here
1915   if (threadsPerGroup > ConstWGSize) {
1916     threadsPerGroup = ConstWGSize;
1917     DP("Reduced threadsPerGroup to flat-attr-group-size limit %d\n",
1918        threadsPerGroup);
1919   }
1920   if (print_kernel_trace & STARTUP_DETAILS)
1921     fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup);
1922   DP("Preparing %d threads\n", threadsPerGroup);
1923 
1924   // Set default num_groups (teams)
1925   if (Env.TeamLimit > 0)
1926     num_groups = (Max_Teams < Env.TeamLimit) ? Max_Teams : Env.TeamLimit;
1927   else
1928     num_groups = Max_Teams;
1929   DP("Set default num of groups %d\n", num_groups);
1930 
1931   if (print_kernel_trace & STARTUP_DETAILS) {
1932     fprintf(stderr, "num_groups: %d\n", num_groups);
1933     fprintf(stderr, "num_teams: %d\n", num_teams);
1934   }
1935 
1936   // Reduce num_groups if threadsPerGroup exceeds RTLDeviceInfoTy::Max_WG_Size
1937   // This reduction is typical for default case (no thread_limit clause).
1938   // or when user goes crazy with num_teams clause.
1939   // FIXME: We cant distinguish between a constant or variable thread limit.
1940   // So we only handle constant thread_limits.
1941   if (threadsPerGroup >
1942       RTLDeviceInfoTy::Default_WG_Size) //  256 < threadsPerGroup <= 1024
1943     // Should we round threadsPerGroup up to nearest RTLDeviceInfoTy::Warp_Size
1944     // here?
1945     num_groups = (Max_Teams * RTLDeviceInfoTy::Max_WG_Size) / threadsPerGroup;
1946 
1947   // check for num_teams() clause
1948   if (num_teams > 0) {
1949     num_groups = (num_teams < num_groups) ? num_teams : num_groups;
1950   }
1951   if (print_kernel_trace & STARTUP_DETAILS) {
1952     fprintf(stderr, "num_groups: %d\n", num_groups);
1953     fprintf(stderr, "Env.NumTeams %d\n", Env.NumTeams);
1954     fprintf(stderr, "Env.TeamLimit %d\n", Env.TeamLimit);
1955   }
1956 
1957   if (Env.NumTeams > 0) {
1958     num_groups = (Env.NumTeams < num_groups) ? Env.NumTeams : num_groups;
1959     DP("Modifying teams based on Env.NumTeams %d\n", Env.NumTeams);
1960   } else if (Env.TeamLimit > 0) {
1961     num_groups = (Env.TeamLimit < num_groups) ? Env.TeamLimit : num_groups;
1962     DP("Modifying teams based on Env.TeamLimit%d\n", Env.TeamLimit);
1963   } else {
1964     if (num_teams <= 0) {
1965       if (loop_tripcount > 0) {
1966         if (ExecutionMode == SPMD) {
1967           // round up to the nearest integer
1968           num_groups = ((loop_tripcount - 1) / threadsPerGroup) + 1;
1969         } else {
1970           num_groups = loop_tripcount;
1971         }
1972         DP("Using %d teams due to loop trip count %" PRIu64 " and number of "
1973            "threads per block %d\n",
1974            num_groups, loop_tripcount, threadsPerGroup);
1975       }
1976     } else {
1977       num_groups = num_teams;
1978     }
1979     if (num_groups > Max_Teams) {
1980       num_groups = Max_Teams;
1981       if (print_kernel_trace & STARTUP_DETAILS)
1982         fprintf(stderr, "Limiting num_groups %d to Max_Teams %d \n", num_groups,
1983                 Max_Teams);
1984     }
1985     if (num_groups > num_teams && num_teams > 0) {
1986       num_groups = num_teams;
1987       if (print_kernel_trace & STARTUP_DETAILS)
1988         fprintf(stderr, "Limiting num_groups %d to clause num_teams %d \n",
1989                 num_groups, num_teams);
1990     }
1991   }
1992 
1993   // num_teams clause always honored, no matter what, unless DEFAULT is active.
1994   if (num_teams > 0) {
1995     num_groups = num_teams;
1996     // Cap num_groups to EnvMaxTeamsDefault if set.
1997     if (Env.MaxTeamsDefault > 0 && num_groups > Env.MaxTeamsDefault)
1998       num_groups = Env.MaxTeamsDefault;
1999   }
2000   if (print_kernel_trace & STARTUP_DETAILS) {
2001     fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup);
2002     fprintf(stderr, "num_groups: %d\n", num_groups);
2003     fprintf(stderr, "loop_tripcount: %ld\n", loop_tripcount);
2004   }
2005   DP("Final %d num_groups and %d threadsPerGroup\n", num_groups,
2006      threadsPerGroup);
2007 
2008   launchVals res;
2009   res.WorkgroupSize = threadsPerGroup;
2010   res.GridSize = threadsPerGroup * num_groups;
2011   return res;
2012 }
2013 
2014 static uint64_t acquire_available_packet_id(hsa_queue_t *queue) {
2015   uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1);
2016   bool full = true;
2017   while (full) {
2018     full =
2019         packet_id >= (queue->size + hsa_queue_load_read_index_scacquire(queue));
2020   }
2021   return packet_id;
2022 }
2023 
2024 static int32_t __tgt_rtl_run_target_team_region_locked(
2025     int32_t device_id, void *tgt_entry_ptr, void **tgt_args,
2026     ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams,
2027     int32_t thread_limit, uint64_t loop_tripcount);
2028 
2029 int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr,
2030                                          void **tgt_args,
2031                                          ptrdiff_t *tgt_offsets,
2032                                          int32_t arg_num, int32_t num_teams,
2033                                          int32_t thread_limit,
2034                                          uint64_t loop_tripcount) {
2035 
2036   DeviceInfo.load_run_lock.lock_shared();
2037   int32_t res = __tgt_rtl_run_target_team_region_locked(
2038       device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, num_teams,
2039       thread_limit, loop_tripcount);
2040 
2041   DeviceInfo.load_run_lock.unlock_shared();
2042   return res;
2043 }
2044 
2045 int32_t __tgt_rtl_run_target_team_region_locked(
2046     int32_t device_id, void *tgt_entry_ptr, void **tgt_args,
2047     ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams,
2048     int32_t thread_limit, uint64_t loop_tripcount) {
2049   // Set the context we are using
2050   // update thread limit content in gpu memory if un-initialized or specified
2051   // from host
2052 
2053   DP("Run target team region thread_limit %d\n", thread_limit);
2054 
2055   // All args are references.
2056   std::vector<void *> args(arg_num);
2057   std::vector<void *> ptrs(arg_num);
2058 
2059   DP("Arg_num: %d\n", arg_num);
2060   for (int32_t i = 0; i < arg_num; ++i) {
2061     ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]);
2062     args[i] = &ptrs[i];
2063     DP("Offseted base: arg[%d]:" DPxMOD "\n", i, DPxPTR(ptrs[i]));
2064   }
2065 
2066   KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr;
2067 
2068   std::string kernel_name = std::string(KernelInfo->Name);
2069   auto &KernelInfoTable = DeviceInfo.KernelInfoTable;
2070   if (KernelInfoTable[device_id].find(kernel_name) ==
2071       KernelInfoTable[device_id].end()) {
2072     DP("Kernel %s not found\n", kernel_name.c_str());
2073     return OFFLOAD_FAIL;
2074   }
2075 
2076   const atl_kernel_info_t KernelInfoEntry =
2077       KernelInfoTable[device_id][kernel_name];
2078   const uint32_t group_segment_size = KernelInfoEntry.group_segment_size;
2079   const uint32_t sgpr_count = KernelInfoEntry.sgpr_count;
2080   const uint32_t vgpr_count = KernelInfoEntry.vgpr_count;
2081   const uint32_t sgpr_spill_count = KernelInfoEntry.sgpr_spill_count;
2082   const uint32_t vgpr_spill_count = KernelInfoEntry.vgpr_spill_count;
2083 
2084   assert(arg_num == (int)KernelInfoEntry.num_args);
2085 
2086   /*
2087    * Set limit based on ThreadsPerGroup and GroupsPerDevice
2088    */
2089   launchVals LV = getLaunchVals(DeviceInfo.Env, KernelInfo->ConstWGSize,
2090                                 KernelInfo->ExecutionMode,
2091                                 num_teams,      // From run_region arg
2092                                 thread_limit,   // From run_region arg
2093                                 loop_tripcount, // From run_region arg
2094                                 DeviceInfo.NumTeams[KernelInfo->device_id]);
2095   const int GridSize = LV.GridSize;
2096   const int WorkgroupSize = LV.WorkgroupSize;
2097 
2098   if (print_kernel_trace >= LAUNCH) {
2099     int num_groups = GridSize / WorkgroupSize;
2100     // enum modes are SPMD, GENERIC, NONE 0,1,2
2101     // if doing rtl timing, print to stderr, unless stdout requested.
2102     bool traceToStdout = print_kernel_trace & (RTL_TO_STDOUT | RTL_TIMING);
2103     fprintf(traceToStdout ? stdout : stderr,
2104             "DEVID:%2d SGN:%1d ConstWGSize:%-4d args:%2d teamsXthrds:(%4dX%4d) "
2105             "reqd:(%4dX%4d) lds_usage:%uB sgpr_count:%u vgpr_count:%u "
2106             "sgpr_spill_count:%u vgpr_spill_count:%u tripcount:%lu n:%s\n",
2107             device_id, KernelInfo->ExecutionMode, KernelInfo->ConstWGSize,
2108             arg_num, num_groups, WorkgroupSize, num_teams, thread_limit,
2109             group_segment_size, sgpr_count, vgpr_count, sgpr_spill_count,
2110             vgpr_spill_count, loop_tripcount, KernelInfo->Name);
2111   }
2112 
2113   // Run on the device.
2114   {
2115     hsa_queue_t *queue = DeviceInfo.HSAQueues[device_id];
2116     if (!queue) {
2117       return OFFLOAD_FAIL;
2118     }
2119     uint64_t packet_id = acquire_available_packet_id(queue);
2120 
2121     const uint32_t mask = queue->size - 1; // size is a power of 2
2122     hsa_kernel_dispatch_packet_t *packet =
2123         (hsa_kernel_dispatch_packet_t *)queue->base_address +
2124         (packet_id & mask);
2125 
2126     // packet->header is written last
2127     packet->setup = UINT16_C(1) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS;
2128     packet->workgroup_size_x = WorkgroupSize;
2129     packet->workgroup_size_y = 1;
2130     packet->workgroup_size_z = 1;
2131     packet->reserved0 = 0;
2132     packet->grid_size_x = GridSize;
2133     packet->grid_size_y = 1;
2134     packet->grid_size_z = 1;
2135     packet->private_segment_size = KernelInfoEntry.private_segment_size;
2136     packet->group_segment_size = KernelInfoEntry.group_segment_size;
2137     packet->kernel_object = KernelInfoEntry.kernel_object;
2138     packet->kernarg_address = 0;     // use the block allocator
2139     packet->reserved2 = 0;           // atmi writes id_ here
2140     packet->completion_signal = {0}; // may want a pool of signals
2141 
2142     KernelArgPool *ArgPool = nullptr;
2143     {
2144       auto it = KernelArgPoolMap.find(std::string(KernelInfo->Name));
2145       if (it != KernelArgPoolMap.end()) {
2146         ArgPool = (it->second).get();
2147       }
2148     }
2149     if (!ArgPool) {
2150       DP("Warning: No ArgPool for %s on device %d\n", KernelInfo->Name,
2151          device_id);
2152     }
2153     {
2154       void *kernarg = nullptr;
2155       if (ArgPool) {
2156         assert(ArgPool->kernarg_segment_size == (arg_num * sizeof(void *)));
2157         kernarg = ArgPool->allocate(arg_num);
2158       }
2159       if (!kernarg) {
2160         DP("Allocate kernarg failed\n");
2161         return OFFLOAD_FAIL;
2162       }
2163 
2164       // Copy explicit arguments
2165       for (int i = 0; i < arg_num; i++) {
2166         memcpy((char *)kernarg + sizeof(void *) * i, args[i], sizeof(void *));
2167       }
2168 
2169       // Initialize implicit arguments. ATMI seems to leave most fields
2170       // uninitialized
2171       atmi_implicit_args_t *impl_args =
2172           reinterpret_cast<atmi_implicit_args_t *>(
2173               static_cast<char *>(kernarg) + ArgPool->kernarg_segment_size);
2174       memset(impl_args, 0,
2175              sizeof(atmi_implicit_args_t)); // may not be necessary
2176       impl_args->offset_x = 0;
2177       impl_args->offset_y = 0;
2178       impl_args->offset_z = 0;
2179 
2180       // assign a hostcall buffer for the selected Q
2181       if (__atomic_load_n(&DeviceInfo.hostcall_required, __ATOMIC_ACQUIRE)) {
2182         // hostrpc_assign_buffer is not thread safe, and this function is
2183         // under a multiple reader lock, not a writer lock.
2184         static pthread_mutex_t hostcall_init_lock = PTHREAD_MUTEX_INITIALIZER;
2185         pthread_mutex_lock(&hostcall_init_lock);
2186         impl_args->hostcall_ptr = hostrpc_assign_buffer(
2187             DeviceInfo.HSAAgents[device_id], queue, device_id);
2188         pthread_mutex_unlock(&hostcall_init_lock);
2189         if (!impl_args->hostcall_ptr) {
2190           DP("hostrpc_assign_buffer failed, gpu would dereference null and "
2191              "error\n");
2192           return OFFLOAD_FAIL;
2193         }
2194       }
2195 
2196       packet->kernarg_address = kernarg;
2197     }
2198 
2199     {
2200       hsa_signal_t s = DeviceInfo.FreeSignalPool.pop();
2201       if (s.handle == 0) {
2202         DP("Failed to get signal instance\n");
2203         return OFFLOAD_FAIL;
2204       }
2205       packet->completion_signal = s;
2206       hsa_signal_store_relaxed(packet->completion_signal, 1);
2207     }
2208 
2209     core::packet_store_release(reinterpret_cast<uint32_t *>(packet),
2210                                core::create_header(), packet->setup);
2211 
2212     hsa_signal_store_relaxed(queue->doorbell_signal, packet_id);
2213 
2214     while (hsa_signal_wait_scacquire(packet->completion_signal,
2215                                      HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX,
2216                                      HSA_WAIT_STATE_BLOCKED) != 0)
2217       ;
2218 
2219     assert(ArgPool);
2220     ArgPool->deallocate(packet->kernarg_address);
2221     DeviceInfo.FreeSignalPool.push(packet->completion_signal);
2222   }
2223 
2224   DP("Kernel completed\n");
2225   return OFFLOAD_SUCCESS;
2226 }
2227 
2228 int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr,
2229                                     void **tgt_args, ptrdiff_t *tgt_offsets,
2230                                     int32_t arg_num) {
2231   // use one team and one thread
2232   // fix thread num
2233   int32_t team_num = 1;
2234   int32_t thread_limit = 0; // use default
2235   return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args,
2236                                           tgt_offsets, arg_num, team_num,
2237                                           thread_limit, 0);
2238 }
2239 
2240 int32_t __tgt_rtl_run_target_region_async(int32_t device_id,
2241                                           void *tgt_entry_ptr, void **tgt_args,
2242                                           ptrdiff_t *tgt_offsets,
2243                                           int32_t arg_num,
2244                                           __tgt_async_info *AsyncInfo) {
2245   assert(AsyncInfo && "AsyncInfo is nullptr");
2246   initAsyncInfo(AsyncInfo);
2247 
2248   // use one team and one thread
2249   // fix thread num
2250   int32_t team_num = 1;
2251   int32_t thread_limit = 0; // use default
2252   return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args,
2253                                           tgt_offsets, arg_num, team_num,
2254                                           thread_limit, 0);
2255 }
2256 
2257 int32_t __tgt_rtl_synchronize(int32_t device_id, __tgt_async_info *AsyncInfo) {
2258   assert(AsyncInfo && "AsyncInfo is nullptr");
2259 
2260   // Cuda asserts that AsyncInfo->Queue is non-null, but this invariant
2261   // is not ensured by devices.cpp for amdgcn
2262   // assert(AsyncInfo->Queue && "AsyncInfo->Queue is nullptr");
2263   if (AsyncInfo->Queue) {
2264     finiAsyncInfo(AsyncInfo);
2265   }
2266   return OFFLOAD_SUCCESS;
2267 }
2268 
2269 namespace core {
2270 hsa_status_t allow_access_to_all_gpu_agents(void *ptr) {
2271   return hsa_amd_agents_allow_access(DeviceInfo.HSAAgents.size(),
2272                                      &DeviceInfo.HSAAgents[0], NULL, ptr);
2273 }
2274 
2275 } // namespace core
2276