1 //===--- amdgpu/src/rtl.cpp --------------------------------------- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // RTL for AMD hsa machine 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <algorithm> 14 #include <assert.h> 15 #include <cstdio> 16 #include <cstdlib> 17 #include <cstring> 18 #include <functional> 19 #include <libelf.h> 20 #include <list> 21 #include <memory> 22 #include <mutex> 23 #include <shared_mutex> 24 #include <unordered_map> 25 #include <vector> 26 27 #include "interop_hsa.h" 28 #include "impl_runtime.h" 29 30 #include "internal.h" 31 #include "rt.h" 32 33 #include "DeviceEnvironment.h" 34 #include "get_elf_mach_gfx_name.h" 35 #include "omptargetplugin.h" 36 #include "print_tracing.h" 37 38 #include "llvm/Frontend/OpenMP/OMPConstants.h" 39 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 40 41 // hostrpc interface, FIXME: consider moving to its own include these are 42 // statically linked into amdgpu/plugin if present from hostrpc_services.a, 43 // linked as --whole-archive to override the weak symbols that are used to 44 // implement a fallback for toolchains that do not yet have a hostrpc library. 45 extern "C" { 46 uint64_t hostrpc_assign_buffer(hsa_agent_t agent, hsa_queue_t *this_Q, 47 uint32_t device_id); 48 hsa_status_t hostrpc_init(); 49 hsa_status_t hostrpc_terminate(); 50 51 __attribute__((weak)) hsa_status_t hostrpc_init() { return HSA_STATUS_SUCCESS; } 52 __attribute__((weak)) hsa_status_t hostrpc_terminate() { 53 return HSA_STATUS_SUCCESS; 54 } 55 __attribute__((weak)) uint64_t hostrpc_assign_buffer(hsa_agent_t, hsa_queue_t *, 56 uint32_t device_id) { 57 DP("Warning: Attempting to assign hostrpc to device %u, but hostrpc library " 58 "missing\n", 59 device_id); 60 return 0; 61 } 62 } 63 64 // Heuristic parameters used for kernel launch 65 // Number of teams per CU to allow scheduling flexibility 66 static const unsigned DefaultTeamsPerCU = 4; 67 68 int print_kernel_trace; 69 70 #ifdef OMPTARGET_DEBUG 71 #define check(msg, status) \ 72 if (status != HSA_STATUS_SUCCESS) { \ 73 DP(#msg " failed\n"); \ 74 } else { \ 75 DP(#msg " succeeded\n"); \ 76 } 77 #else 78 #define check(msg, status) \ 79 {} 80 #endif 81 82 #include "elf_common.h" 83 84 namespace hsa { 85 template <typename C> hsa_status_t iterate_agents(C cb) { 86 auto L = [](hsa_agent_t agent, void *data) -> hsa_status_t { 87 C *unwrapped = static_cast<C *>(data); 88 return (*unwrapped)(agent); 89 }; 90 return hsa_iterate_agents(L, static_cast<void *>(&cb)); 91 } 92 93 template <typename C> 94 hsa_status_t amd_agent_iterate_memory_pools(hsa_agent_t Agent, C cb) { 95 auto L = [](hsa_amd_memory_pool_t MemoryPool, void *data) -> hsa_status_t { 96 C *unwrapped = static_cast<C *>(data); 97 return (*unwrapped)(MemoryPool); 98 }; 99 100 return hsa_amd_agent_iterate_memory_pools(Agent, L, static_cast<void *>(&cb)); 101 } 102 103 } // namespace hsa 104 105 /// Keep entries table per device 106 struct FuncOrGblEntryTy { 107 __tgt_target_table Table; 108 std::vector<__tgt_offload_entry> Entries; 109 }; 110 111 struct KernelArgPool { 112 private: 113 static pthread_mutex_t mutex; 114 115 public: 116 uint32_t kernarg_segment_size; 117 void *kernarg_region = nullptr; 118 std::queue<int> free_kernarg_segments; 119 120 uint32_t kernarg_size_including_implicit() { 121 return kernarg_segment_size + sizeof(impl_implicit_args_t); 122 } 123 124 ~KernelArgPool() { 125 if (kernarg_region) { 126 auto r = hsa_amd_memory_pool_free(kernarg_region); 127 if (r != HSA_STATUS_SUCCESS) { 128 DP("hsa_amd_memory_pool_free failed: %s\n", get_error_string(r)); 129 } 130 } 131 } 132 133 // Can't really copy or move a mutex 134 KernelArgPool() = default; 135 KernelArgPool(const KernelArgPool &) = delete; 136 KernelArgPool(KernelArgPool &&) = delete; 137 138 KernelArgPool(uint32_t kernarg_segment_size, 139 hsa_amd_memory_pool_t &memory_pool) 140 : kernarg_segment_size(kernarg_segment_size) { 141 142 // impl uses one pool per kernel for all gpus, with a fixed upper size 143 // preserving that exact scheme here, including the queue<int> 144 145 hsa_status_t err = hsa_amd_memory_pool_allocate( 146 memory_pool, kernarg_size_including_implicit() * MAX_NUM_KERNELS, 0, 147 &kernarg_region); 148 149 if (err != HSA_STATUS_SUCCESS) { 150 DP("hsa_amd_memory_pool_allocate failed: %s\n", get_error_string(err)); 151 kernarg_region = nullptr; // paranoid 152 return; 153 } 154 155 err = core::allow_access_to_all_gpu_agents(kernarg_region); 156 if (err != HSA_STATUS_SUCCESS) { 157 DP("hsa allow_access_to_all_gpu_agents failed: %s\n", 158 get_error_string(err)); 159 auto r = hsa_amd_memory_pool_free(kernarg_region); 160 if (r != HSA_STATUS_SUCCESS) { 161 // if free failed, can't do anything more to resolve it 162 DP("hsa memory poll free failed: %s\n", get_error_string(err)); 163 } 164 kernarg_region = nullptr; 165 return; 166 } 167 168 for (int i = 0; i < MAX_NUM_KERNELS; i++) { 169 free_kernarg_segments.push(i); 170 } 171 } 172 173 void *allocate(uint64_t arg_num) { 174 assert((arg_num * sizeof(void *)) == kernarg_segment_size); 175 lock l(&mutex); 176 void *res = nullptr; 177 if (!free_kernarg_segments.empty()) { 178 179 int free_idx = free_kernarg_segments.front(); 180 res = static_cast<void *>(static_cast<char *>(kernarg_region) + 181 (free_idx * kernarg_size_including_implicit())); 182 assert(free_idx == pointer_to_index(res)); 183 free_kernarg_segments.pop(); 184 } 185 return res; 186 } 187 188 void deallocate(void *ptr) { 189 lock l(&mutex); 190 int idx = pointer_to_index(ptr); 191 free_kernarg_segments.push(idx); 192 } 193 194 private: 195 int pointer_to_index(void *ptr) { 196 ptrdiff_t bytes = 197 static_cast<char *>(ptr) - static_cast<char *>(kernarg_region); 198 assert(bytes >= 0); 199 assert(bytes % kernarg_size_including_implicit() == 0); 200 return bytes / kernarg_size_including_implicit(); 201 } 202 struct lock { 203 lock(pthread_mutex_t *m) : m(m) { pthread_mutex_lock(m); } 204 ~lock() { pthread_mutex_unlock(m); } 205 pthread_mutex_t *m; 206 }; 207 }; 208 pthread_mutex_t KernelArgPool::mutex = PTHREAD_MUTEX_INITIALIZER; 209 210 std::unordered_map<std::string /*kernel*/, std::unique_ptr<KernelArgPool>> 211 KernelArgPoolMap; 212 213 /// Use a single entity to encode a kernel and a set of flags 214 struct KernelTy { 215 llvm::omp::OMPTgtExecModeFlags ExecutionMode; 216 int16_t ConstWGSize; 217 int32_t device_id; 218 void *CallStackAddr = nullptr; 219 const char *Name; 220 221 KernelTy(llvm::omp::OMPTgtExecModeFlags _ExecutionMode, int16_t _ConstWGSize, 222 int32_t _device_id, void *_CallStackAddr, const char *_Name, 223 uint32_t _kernarg_segment_size, 224 hsa_amd_memory_pool_t &KernArgMemoryPool) 225 : ExecutionMode(_ExecutionMode), ConstWGSize(_ConstWGSize), 226 device_id(_device_id), CallStackAddr(_CallStackAddr), Name(_Name) { 227 DP("Construct kernelinfo: ExecMode %d\n", ExecutionMode); 228 229 std::string N(_Name); 230 if (KernelArgPoolMap.find(N) == KernelArgPoolMap.end()) { 231 KernelArgPoolMap.insert( 232 std::make_pair(N, std::unique_ptr<KernelArgPool>(new KernelArgPool( 233 _kernarg_segment_size, KernArgMemoryPool)))); 234 } 235 } 236 }; 237 238 /// List that contains all the kernels. 239 /// FIXME: we may need this to be per device and per library. 240 std::list<KernelTy> KernelsList; 241 242 template <typename Callback> static hsa_status_t FindAgents(Callback CB) { 243 244 hsa_status_t err = 245 hsa::iterate_agents([&](hsa_agent_t agent) -> hsa_status_t { 246 hsa_device_type_t device_type; 247 // get_info fails iff HSA runtime not yet initialized 248 hsa_status_t err = 249 hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 250 251 if (err != HSA_STATUS_SUCCESS) { 252 if (print_kernel_trace > 0) 253 DP("rtl.cpp: err %s\n", get_error_string(err)); 254 255 return err; 256 } 257 258 CB(device_type, agent); 259 return HSA_STATUS_SUCCESS; 260 }); 261 262 // iterate_agents fails iff HSA runtime not yet initialized 263 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) { 264 DP("rtl.cpp: err %s\n", get_error_string(err)); 265 } 266 267 return err; 268 } 269 270 static void callbackQueue(hsa_status_t status, hsa_queue_t *source, 271 void *data) { 272 if (status != HSA_STATUS_SUCCESS) { 273 const char *status_string; 274 if (hsa_status_string(status, &status_string) != HSA_STATUS_SUCCESS) { 275 status_string = "unavailable"; 276 } 277 DP("[%s:%d] GPU error in queue %p %d (%s)\n", __FILE__, __LINE__, source, 278 status, status_string); 279 abort(); 280 } 281 } 282 283 namespace core { 284 namespace { 285 void packet_store_release(uint32_t *packet, uint16_t header, uint16_t rest) { 286 __atomic_store_n(packet, header | (rest << 16), __ATOMIC_RELEASE); 287 } 288 289 uint16_t create_header() { 290 uint16_t header = HSA_PACKET_TYPE_KERNEL_DISPATCH << HSA_PACKET_HEADER_TYPE; 291 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE; 292 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE; 293 return header; 294 } 295 296 hsa_status_t isValidMemoryPool(hsa_amd_memory_pool_t MemoryPool) { 297 bool AllocAllowed = false; 298 hsa_status_t Err = hsa_amd_memory_pool_get_info( 299 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED, 300 &AllocAllowed); 301 if (Err != HSA_STATUS_SUCCESS) { 302 DP("Alloc allowed in memory pool check failed: %s\n", 303 get_error_string(Err)); 304 return Err; 305 } 306 307 size_t Size = 0; 308 Err = hsa_amd_memory_pool_get_info(MemoryPool, HSA_AMD_MEMORY_POOL_INFO_SIZE, 309 &Size); 310 if (Err != HSA_STATUS_SUCCESS) { 311 DP("Get memory pool size failed: %s\n", get_error_string(Err)); 312 return Err; 313 } 314 315 return (AllocAllowed && Size > 0) ? HSA_STATUS_SUCCESS : HSA_STATUS_ERROR; 316 } 317 318 hsa_status_t addMemoryPool(hsa_amd_memory_pool_t MemoryPool, void *Data) { 319 std::vector<hsa_amd_memory_pool_t> *Result = 320 static_cast<std::vector<hsa_amd_memory_pool_t> *>(Data); 321 322 hsa_status_t err; 323 if ((err = isValidMemoryPool(MemoryPool)) != HSA_STATUS_SUCCESS) { 324 return err; 325 } 326 327 Result->push_back(MemoryPool); 328 return HSA_STATUS_SUCCESS; 329 } 330 331 } // namespace 332 } // namespace core 333 334 struct EnvironmentVariables { 335 int NumTeams; 336 int TeamLimit; 337 int TeamThreadLimit; 338 int MaxTeamsDefault; 339 int DynamicMemSize; 340 }; 341 342 template <uint32_t wavesize> 343 static constexpr const llvm::omp::GV &getGridValue() { 344 return llvm::omp::getAMDGPUGridValues<wavesize>(); 345 } 346 347 struct HSALifetime { 348 // Wrapper around HSA used to ensure it is constructed before other types 349 // and destructed after, which means said other types can use raii for 350 // cleanup without risking running outside of the lifetime of HSA 351 const hsa_status_t S; 352 353 bool HSAInitSuccess() { return S == HSA_STATUS_SUCCESS; } 354 HSALifetime() : S(hsa_init()) {} 355 356 ~HSALifetime() { 357 if (S == HSA_STATUS_SUCCESS) { 358 hsa_status_t Err = hsa_shut_down(); 359 if (Err != HSA_STATUS_SUCCESS) { 360 // Can't call into HSA to get a string from the integer 361 DP("Shutting down HSA failed: %d\n", Err); 362 } 363 } 364 } 365 }; 366 367 // Handle scheduling of multiple hsa_queue's per device to 368 // multiple threads (one scheduler per device) 369 class HSAQueueScheduler { 370 public: 371 HSAQueueScheduler() : current(0) {} 372 373 HSAQueueScheduler(const HSAQueueScheduler &) = delete; 374 375 HSAQueueScheduler(HSAQueueScheduler &&q) { 376 current = q.current.load(); 377 for (uint8_t i = 0; i < NUM_QUEUES_PER_DEVICE; i++) { 378 HSAQueues[i] = q.HSAQueues[i]; 379 q.HSAQueues[i] = nullptr; 380 } 381 } 382 383 // \return false if any HSA queue creation fails 384 bool CreateQueues(hsa_agent_t HSAAgent, uint32_t queue_size) { 385 for (uint8_t i = 0; i < NUM_QUEUES_PER_DEVICE; i++) { 386 hsa_queue_t *Q = nullptr; 387 hsa_status_t rc = 388 hsa_queue_create(HSAAgent, queue_size, HSA_QUEUE_TYPE_MULTI, 389 callbackQueue, NULL, UINT32_MAX, UINT32_MAX, &Q); 390 if (rc != HSA_STATUS_SUCCESS) { 391 DP("Failed to create HSA queue %d\n", i); 392 return false; 393 } 394 HSAQueues[i] = Q; 395 } 396 return true; 397 } 398 399 ~HSAQueueScheduler() { 400 for (uint8_t i = 0; i < NUM_QUEUES_PER_DEVICE; i++) { 401 if (HSAQueues[i]) { 402 hsa_status_t err = hsa_queue_destroy(HSAQueues[i]); 403 if (err != HSA_STATUS_SUCCESS) 404 DP("Error destroying HSA queue"); 405 } 406 } 407 } 408 409 // \return next queue to use for device 410 hsa_queue_t *Next() { 411 return HSAQueues[(current.fetch_add(1, std::memory_order_relaxed)) % 412 NUM_QUEUES_PER_DEVICE]; 413 } 414 415 private: 416 // Number of queues per device 417 enum : uint8_t { NUM_QUEUES_PER_DEVICE = 4 }; 418 hsa_queue_t *HSAQueues[NUM_QUEUES_PER_DEVICE] = {}; 419 std::atomic<uint8_t> current; 420 }; 421 422 /// Class containing all the device information 423 class RTLDeviceInfoTy : HSALifetime { 424 std::vector<std::list<FuncOrGblEntryTy>> FuncGblEntries; 425 426 struct QueueDeleter { 427 void operator()(hsa_queue_t *Q) { 428 if (Q) { 429 hsa_status_t Err = hsa_queue_destroy(Q); 430 if (Err != HSA_STATUS_SUCCESS) { 431 DP("Error destroying hsa queue: %s\n", get_error_string(Err)); 432 } 433 } 434 } 435 }; 436 437 public: 438 bool ConstructionSucceeded = false; 439 440 // load binary populates symbol tables and mutates various global state 441 // run uses those symbol tables 442 std::shared_timed_mutex load_run_lock; 443 444 int NumberOfDevices = 0; 445 446 // GPU devices 447 std::vector<hsa_agent_t> HSAAgents; 448 std::vector<HSAQueueScheduler> HSAQueueSchedulers; // one per gpu 449 450 // CPUs 451 std::vector<hsa_agent_t> CPUAgents; 452 453 // Device properties 454 std::vector<int> ComputeUnits; 455 std::vector<int> GroupsPerDevice; 456 std::vector<int> ThreadsPerGroup; 457 std::vector<int> WarpSize; 458 std::vector<std::string> GPUName; 459 460 // OpenMP properties 461 std::vector<int> NumTeams; 462 std::vector<int> NumThreads; 463 464 // OpenMP Environment properties 465 EnvironmentVariables Env; 466 467 // OpenMP Requires Flags 468 int64_t RequiresFlags; 469 470 // Resource pools 471 SignalPoolT FreeSignalPool; 472 473 bool hostcall_required = false; 474 475 std::vector<hsa_executable_t> HSAExecutables; 476 477 std::vector<std::map<std::string, atl_kernel_info_t>> KernelInfoTable; 478 std::vector<std::map<std::string, atl_symbol_info_t>> SymbolInfoTable; 479 480 hsa_amd_memory_pool_t KernArgPool; 481 482 // fine grained memory pool for host allocations 483 hsa_amd_memory_pool_t HostFineGrainedMemoryPool; 484 485 // fine and coarse-grained memory pools per offloading device 486 std::vector<hsa_amd_memory_pool_t> DeviceFineGrainedMemoryPools; 487 std::vector<hsa_amd_memory_pool_t> DeviceCoarseGrainedMemoryPools; 488 489 struct implFreePtrDeletor { 490 void operator()(void *p) { 491 core::Runtime::Memfree(p); // ignore failure to free 492 } 493 }; 494 495 // device_State shared across loaded binaries, error if inconsistent size 496 std::vector<std::pair<std::unique_ptr<void, implFreePtrDeletor>, uint64_t>> 497 deviceStateStore; 498 499 static const unsigned HardTeamLimit = 500 (1 << 16) - 1; // 64K needed to fit in uint16 501 static const int DefaultNumTeams = 128; 502 503 // These need to be per-device since different devices can have different 504 // wave sizes, but are currently the same number for each so that refactor 505 // can be postponed. 506 static_assert(getGridValue<32>().GV_Max_Teams == 507 getGridValue<64>().GV_Max_Teams, 508 ""); 509 static const int Max_Teams = getGridValue<64>().GV_Max_Teams; 510 511 static_assert(getGridValue<32>().GV_Max_WG_Size == 512 getGridValue<64>().GV_Max_WG_Size, 513 ""); 514 static const int Max_WG_Size = getGridValue<64>().GV_Max_WG_Size; 515 516 static_assert(getGridValue<32>().GV_Default_WG_Size == 517 getGridValue<64>().GV_Default_WG_Size, 518 ""); 519 static const int Default_WG_Size = getGridValue<64>().GV_Default_WG_Size; 520 521 using MemcpyFunc = hsa_status_t (*)(hsa_signal_t, void *, void *, size_t size, 522 hsa_agent_t, hsa_amd_memory_pool_t); 523 hsa_status_t freesignalpool_memcpy(void *dest, void *src, size_t size, 524 MemcpyFunc Func, int32_t deviceId) { 525 hsa_agent_t agent = HSAAgents[deviceId]; 526 hsa_signal_t s = FreeSignalPool.pop(); 527 if (s.handle == 0) { 528 return HSA_STATUS_ERROR; 529 } 530 hsa_status_t r = Func(s, dest, src, size, agent, HostFineGrainedMemoryPool); 531 FreeSignalPool.push(s); 532 return r; 533 } 534 535 hsa_status_t freesignalpool_memcpy_d2h(void *dest, void *src, size_t size, 536 int32_t deviceId) { 537 return freesignalpool_memcpy(dest, src, size, impl_memcpy_d2h, deviceId); 538 } 539 540 hsa_status_t freesignalpool_memcpy_h2d(void *dest, void *src, size_t size, 541 int32_t deviceId) { 542 return freesignalpool_memcpy(dest, src, size, impl_memcpy_h2d, deviceId); 543 } 544 545 // Record entry point associated with device 546 void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) { 547 assert(device_id < (int32_t)FuncGblEntries.size() && 548 "Unexpected device id!"); 549 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 550 551 E.Entries.push_back(entry); 552 } 553 554 // Return true if the entry is associated with device 555 bool findOffloadEntry(int32_t device_id, void *addr) { 556 assert(device_id < (int32_t)FuncGblEntries.size() && 557 "Unexpected device id!"); 558 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 559 560 for (auto &it : E.Entries) { 561 if (it.addr == addr) 562 return true; 563 } 564 565 return false; 566 } 567 568 // Return the pointer to the target entries table 569 __tgt_target_table *getOffloadEntriesTable(int32_t device_id) { 570 assert(device_id < (int32_t)FuncGblEntries.size() && 571 "Unexpected device id!"); 572 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 573 574 int32_t size = E.Entries.size(); 575 576 // Table is empty 577 if (!size) 578 return 0; 579 580 __tgt_offload_entry *begin = &E.Entries[0]; 581 __tgt_offload_entry *end = &E.Entries[size - 1]; 582 583 // Update table info according to the entries and return the pointer 584 E.Table.EntriesBegin = begin; 585 E.Table.EntriesEnd = ++end; 586 587 return &E.Table; 588 } 589 590 // Clear entries table for a device 591 void clearOffloadEntriesTable(int device_id) { 592 assert(device_id < (int32_t)FuncGblEntries.size() && 593 "Unexpected device id!"); 594 FuncGblEntries[device_id].emplace_back(); 595 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 596 // KernelArgPoolMap.clear(); 597 E.Entries.clear(); 598 E.Table.EntriesBegin = E.Table.EntriesEnd = 0; 599 } 600 601 hsa_status_t addDeviceMemoryPool(hsa_amd_memory_pool_t MemoryPool, 602 int DeviceId) { 603 assert(DeviceId < DeviceFineGrainedMemoryPools.size() && "Error here."); 604 uint32_t GlobalFlags = 0; 605 hsa_status_t Err = hsa_amd_memory_pool_get_info( 606 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 607 608 if (Err != HSA_STATUS_SUCCESS) { 609 return Err; 610 } 611 612 if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) { 613 DeviceFineGrainedMemoryPools[DeviceId] = MemoryPool; 614 } else if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_COARSE_GRAINED) { 615 DeviceCoarseGrainedMemoryPools[DeviceId] = MemoryPool; 616 } 617 618 return HSA_STATUS_SUCCESS; 619 } 620 621 hsa_status_t setupDevicePools(const std::vector<hsa_agent_t> &Agents) { 622 for (int DeviceId = 0; DeviceId < Agents.size(); DeviceId++) { 623 hsa_status_t Err = hsa::amd_agent_iterate_memory_pools( 624 Agents[DeviceId], [&](hsa_amd_memory_pool_t MemoryPool) { 625 hsa_status_t ValidStatus = core::isValidMemoryPool(MemoryPool); 626 if (ValidStatus != HSA_STATUS_SUCCESS) { 627 DP("Alloc allowed in memory pool check failed: %s\n", 628 get_error_string(ValidStatus)); 629 return HSA_STATUS_SUCCESS; 630 } 631 return addDeviceMemoryPool(MemoryPool, DeviceId); 632 }); 633 634 if (Err != HSA_STATUS_SUCCESS) { 635 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 636 "Iterate all memory pools", get_error_string(Err)); 637 return Err; 638 } 639 } 640 return HSA_STATUS_SUCCESS; 641 } 642 643 hsa_status_t setupHostMemoryPools(std::vector<hsa_agent_t> &Agents) { 644 std::vector<hsa_amd_memory_pool_t> HostPools; 645 646 // collect all the "valid" pools for all the given agents. 647 for (const auto &Agent : Agents) { 648 hsa_status_t Err = hsa_amd_agent_iterate_memory_pools( 649 Agent, core::addMemoryPool, static_cast<void *>(&HostPools)); 650 if (Err != HSA_STATUS_SUCCESS) { 651 DP("addMemoryPool returned %s, continuing\n", get_error_string(Err)); 652 } 653 } 654 655 // We need two fine-grained pools. 656 // 1. One with kernarg flag set for storing kernel arguments 657 // 2. Second for host allocations 658 bool FineGrainedMemoryPoolSet = false; 659 bool KernArgPoolSet = false; 660 for (const auto &MemoryPool : HostPools) { 661 hsa_status_t Err = HSA_STATUS_SUCCESS; 662 uint32_t GlobalFlags = 0; 663 Err = hsa_amd_memory_pool_get_info( 664 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 665 if (Err != HSA_STATUS_SUCCESS) { 666 DP("Get memory pool info failed: %s\n", get_error_string(Err)); 667 return Err; 668 } 669 670 if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) { 671 if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_KERNARG_INIT) { 672 KernArgPool = MemoryPool; 673 KernArgPoolSet = true; 674 } 675 HostFineGrainedMemoryPool = MemoryPool; 676 FineGrainedMemoryPoolSet = true; 677 } 678 } 679 680 if (FineGrainedMemoryPoolSet && KernArgPoolSet) 681 return HSA_STATUS_SUCCESS; 682 683 return HSA_STATUS_ERROR; 684 } 685 686 hsa_amd_memory_pool_t getDeviceMemoryPool(int DeviceId) { 687 assert(DeviceId >= 0 && DeviceId < DeviceCoarseGrainedMemoryPools.size() && 688 "Invalid device Id"); 689 return DeviceCoarseGrainedMemoryPools[DeviceId]; 690 } 691 692 hsa_amd_memory_pool_t getHostMemoryPool() { 693 return HostFineGrainedMemoryPool; 694 } 695 696 static int readEnv(const char *Env, int Default = -1) { 697 const char *envStr = getenv(Env); 698 int res = Default; 699 if (envStr) { 700 res = std::stoi(envStr); 701 DP("Parsed %s=%d\n", Env, res); 702 } 703 return res; 704 } 705 706 RTLDeviceInfoTy() { 707 DP("Start initializing " GETNAME(TARGET_NAME) "\n"); 708 709 // LIBOMPTARGET_KERNEL_TRACE provides a kernel launch trace to stderr 710 // anytime. You do not need a debug library build. 711 // 0 => no tracing 712 // 1 => tracing dispatch only 713 // >1 => verbosity increase 714 715 if (!HSAInitSuccess()) { 716 DP("Error when initializing HSA in " GETNAME(TARGET_NAME) "\n"); 717 return; 718 } 719 720 if (char *envStr = getenv("LIBOMPTARGET_KERNEL_TRACE")) 721 print_kernel_trace = atoi(envStr); 722 else 723 print_kernel_trace = 0; 724 725 hsa_status_t err = core::atl_init_gpu_context(); 726 if (err != HSA_STATUS_SUCCESS) { 727 DP("Error when initializing " GETNAME(TARGET_NAME) "\n"); 728 return; 729 } 730 731 // Init hostcall soon after initializing hsa 732 hostrpc_init(); 733 734 err = FindAgents([&](hsa_device_type_t DeviceType, hsa_agent_t Agent) { 735 if (DeviceType == HSA_DEVICE_TYPE_CPU) { 736 CPUAgents.push_back(Agent); 737 } else { 738 HSAAgents.push_back(Agent); 739 } 740 }); 741 if (err != HSA_STATUS_SUCCESS) 742 return; 743 744 NumberOfDevices = (int)HSAAgents.size(); 745 746 if (NumberOfDevices == 0) { 747 DP("There are no devices supporting HSA.\n"); 748 return; 749 } else { 750 DP("There are %d devices supporting HSA.\n", NumberOfDevices); 751 } 752 753 // Init the device info 754 HSAQueueSchedulers.reserve(NumberOfDevices); 755 FuncGblEntries.resize(NumberOfDevices); 756 ThreadsPerGroup.resize(NumberOfDevices); 757 ComputeUnits.resize(NumberOfDevices); 758 GPUName.resize(NumberOfDevices); 759 GroupsPerDevice.resize(NumberOfDevices); 760 WarpSize.resize(NumberOfDevices); 761 NumTeams.resize(NumberOfDevices); 762 NumThreads.resize(NumberOfDevices); 763 deviceStateStore.resize(NumberOfDevices); 764 KernelInfoTable.resize(NumberOfDevices); 765 SymbolInfoTable.resize(NumberOfDevices); 766 DeviceCoarseGrainedMemoryPools.resize(NumberOfDevices); 767 DeviceFineGrainedMemoryPools.resize(NumberOfDevices); 768 769 err = setupDevicePools(HSAAgents); 770 if (err != HSA_STATUS_SUCCESS) { 771 DP("Setup for Device Memory Pools failed\n"); 772 return; 773 } 774 775 err = setupHostMemoryPools(CPUAgents); 776 if (err != HSA_STATUS_SUCCESS) { 777 DP("Setup for Host Memory Pools failed\n"); 778 return; 779 } 780 781 for (int i = 0; i < NumberOfDevices; i++) { 782 uint32_t queue_size = 0; 783 { 784 hsa_status_t err = hsa_agent_get_info( 785 HSAAgents[i], HSA_AGENT_INFO_QUEUE_MAX_SIZE, &queue_size); 786 if (err != HSA_STATUS_SUCCESS) { 787 DP("HSA query QUEUE_MAX_SIZE failed for agent %d\n", i); 788 return; 789 } 790 enum { MaxQueueSize = 4096 }; 791 if (queue_size > MaxQueueSize) { 792 queue_size = MaxQueueSize; 793 } 794 } 795 796 { 797 HSAQueueScheduler QSched; 798 if (!QSched.CreateQueues(HSAAgents[i], queue_size)) 799 return; 800 HSAQueueSchedulers.emplace_back(std::move(QSched)); 801 } 802 803 deviceStateStore[i] = {nullptr, 0}; 804 } 805 806 for (int i = 0; i < NumberOfDevices; i++) { 807 ThreadsPerGroup[i] = RTLDeviceInfoTy::Default_WG_Size; 808 GroupsPerDevice[i] = RTLDeviceInfoTy::DefaultNumTeams; 809 ComputeUnits[i] = 1; 810 DP("Device %d: Initial groupsPerDevice %d & threadsPerGroup %d\n", i, 811 GroupsPerDevice[i], ThreadsPerGroup[i]); 812 } 813 814 // Get environment variables regarding teams 815 Env.TeamLimit = readEnv("OMP_TEAM_LIMIT"); 816 Env.NumTeams = readEnv("OMP_NUM_TEAMS"); 817 Env.MaxTeamsDefault = readEnv("OMP_MAX_TEAMS_DEFAULT"); 818 Env.TeamThreadLimit = readEnv("OMP_TEAMS_THREAD_LIMIT"); 819 Env.DynamicMemSize = readEnv("LIBOMPTARGET_SHARED_MEMORY_SIZE", 0); 820 821 // Default state. 822 RequiresFlags = OMP_REQ_UNDEFINED; 823 824 ConstructionSucceeded = true; 825 } 826 827 ~RTLDeviceInfoTy() { 828 DP("Finalizing the " GETNAME(TARGET_NAME) " DeviceInfo.\n"); 829 if (!HSAInitSuccess()) { 830 // Then none of these can have been set up and they can't be torn down 831 return; 832 } 833 // Run destructors on types that use HSA before 834 // impl_finalize removes access to it 835 deviceStateStore.clear(); 836 KernelArgPoolMap.clear(); 837 // Terminate hostrpc before finalizing hsa 838 hostrpc_terminate(); 839 840 hsa_status_t Err; 841 for (uint32_t I = 0; I < HSAExecutables.size(); I++) { 842 Err = hsa_executable_destroy(HSAExecutables[I]); 843 if (Err != HSA_STATUS_SUCCESS) { 844 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 845 "Destroying executable", get_error_string(Err)); 846 } 847 } 848 } 849 }; 850 851 pthread_mutex_t SignalPoolT::mutex = PTHREAD_MUTEX_INITIALIZER; 852 853 static RTLDeviceInfoTy DeviceInfo; 854 855 namespace { 856 857 int32_t dataRetrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size, 858 __tgt_async_info *AsyncInfo) { 859 assert(AsyncInfo && "AsyncInfo is nullptr"); 860 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 861 // Return success if we are not copying back to host from target. 862 if (!HstPtr) 863 return OFFLOAD_SUCCESS; 864 hsa_status_t err; 865 DP("Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 866 (long long unsigned)(Elf64_Addr)TgtPtr, 867 (long long unsigned)(Elf64_Addr)HstPtr); 868 869 err = DeviceInfo.freesignalpool_memcpy_d2h(HstPtr, TgtPtr, (size_t)Size, 870 DeviceId); 871 872 if (err != HSA_STATUS_SUCCESS) { 873 DP("Error when copying data from device to host. Pointers: " 874 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 875 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 876 return OFFLOAD_FAIL; 877 } 878 DP("DONE Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 879 (long long unsigned)(Elf64_Addr)TgtPtr, 880 (long long unsigned)(Elf64_Addr)HstPtr); 881 return OFFLOAD_SUCCESS; 882 } 883 884 int32_t dataSubmit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size, 885 __tgt_async_info *AsyncInfo) { 886 assert(AsyncInfo && "AsyncInfo is nullptr"); 887 hsa_status_t err; 888 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 889 // Return success if we are not doing host to target. 890 if (!HstPtr) 891 return OFFLOAD_SUCCESS; 892 893 DP("Submit data %ld bytes, (hst:%016llx) -> (tgt:%016llx).\n", Size, 894 (long long unsigned)(Elf64_Addr)HstPtr, 895 (long long unsigned)(Elf64_Addr)TgtPtr); 896 err = DeviceInfo.freesignalpool_memcpy_h2d(TgtPtr, HstPtr, (size_t)Size, 897 DeviceId); 898 if (err != HSA_STATUS_SUCCESS) { 899 DP("Error when copying data from host to device. Pointers: " 900 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 901 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 902 return OFFLOAD_FAIL; 903 } 904 return OFFLOAD_SUCCESS; 905 } 906 907 // Async. 908 // The implementation was written with cuda streams in mind. The semantics of 909 // that are to execute kernels on a queue in order of insertion. A synchronise 910 // call then makes writes visible between host and device. This means a series 911 // of N data_submit_async calls are expected to execute serially. HSA offers 912 // various options to run the data copies concurrently. This may require changes 913 // to libomptarget. 914 915 // __tgt_async_info* contains a void * Queue. Queue = 0 is used to indicate that 916 // there are no outstanding kernels that need to be synchronized. Any async call 917 // may be passed a Queue==0, at which point the cuda implementation will set it 918 // to non-null (see getStream). The cuda streams are per-device. Upstream may 919 // change this interface to explicitly initialize the AsyncInfo_pointer, but 920 // until then hsa lazily initializes it as well. 921 922 void initAsyncInfo(__tgt_async_info *AsyncInfo) { 923 // set non-null while using async calls, return to null to indicate completion 924 assert(AsyncInfo); 925 if (!AsyncInfo->Queue) { 926 AsyncInfo->Queue = reinterpret_cast<void *>(UINT64_MAX); 927 } 928 } 929 void finiAsyncInfo(__tgt_async_info *AsyncInfo) { 930 assert(AsyncInfo); 931 assert(AsyncInfo->Queue); 932 AsyncInfo->Queue = 0; 933 } 934 935 // Determine launch values for kernel. 936 struct launchVals { 937 int WorkgroupSize; 938 int GridSize; 939 }; 940 launchVals getLaunchVals(int WarpSize, EnvironmentVariables Env, 941 int ConstWGSize, 942 llvm::omp::OMPTgtExecModeFlags ExecutionMode, 943 int num_teams, int thread_limit, 944 uint64_t loop_tripcount, int DeviceNumTeams) { 945 946 int threadsPerGroup = RTLDeviceInfoTy::Default_WG_Size; 947 int num_groups = 0; 948 949 int Max_Teams = 950 Env.MaxTeamsDefault > 0 ? Env.MaxTeamsDefault : DeviceNumTeams; 951 if (Max_Teams > RTLDeviceInfoTy::HardTeamLimit) 952 Max_Teams = RTLDeviceInfoTy::HardTeamLimit; 953 954 if (print_kernel_trace & STARTUP_DETAILS) { 955 DP("RTLDeviceInfoTy::Max_Teams: %d\n", RTLDeviceInfoTy::Max_Teams); 956 DP("Max_Teams: %d\n", Max_Teams); 957 DP("RTLDeviceInfoTy::Warp_Size: %d\n", WarpSize); 958 DP("RTLDeviceInfoTy::Max_WG_Size: %d\n", RTLDeviceInfoTy::Max_WG_Size); 959 DP("RTLDeviceInfoTy::Default_WG_Size: %d\n", 960 RTLDeviceInfoTy::Default_WG_Size); 961 DP("thread_limit: %d\n", thread_limit); 962 DP("threadsPerGroup: %d\n", threadsPerGroup); 963 DP("ConstWGSize: %d\n", ConstWGSize); 964 } 965 // check for thread_limit() clause 966 if (thread_limit > 0) { 967 threadsPerGroup = thread_limit; 968 DP("Setting threads per block to requested %d\n", thread_limit); 969 // Add master warp for GENERIC 970 if (ExecutionMode == 971 llvm::omp::OMPTgtExecModeFlags::OMP_TGT_EXEC_MODE_GENERIC) { 972 threadsPerGroup += WarpSize; 973 DP("Adding master wavefront: +%d threads\n", WarpSize); 974 } 975 if (threadsPerGroup > RTLDeviceInfoTy::Max_WG_Size) { // limit to max 976 threadsPerGroup = RTLDeviceInfoTy::Max_WG_Size; 977 DP("Setting threads per block to maximum %d\n", threadsPerGroup); 978 } 979 } 980 // check flat_max_work_group_size attr here 981 if (threadsPerGroup > ConstWGSize) { 982 threadsPerGroup = ConstWGSize; 983 DP("Reduced threadsPerGroup to flat-attr-group-size limit %d\n", 984 threadsPerGroup); 985 } 986 if (print_kernel_trace & STARTUP_DETAILS) 987 DP("threadsPerGroup: %d\n", threadsPerGroup); 988 DP("Preparing %d threads\n", threadsPerGroup); 989 990 // Set default num_groups (teams) 991 if (Env.TeamLimit > 0) 992 num_groups = (Max_Teams < Env.TeamLimit) ? Max_Teams : Env.TeamLimit; 993 else 994 num_groups = Max_Teams; 995 DP("Set default num of groups %d\n", num_groups); 996 997 if (print_kernel_trace & STARTUP_DETAILS) { 998 DP("num_groups: %d\n", num_groups); 999 DP("num_teams: %d\n", num_teams); 1000 } 1001 1002 // Reduce num_groups if threadsPerGroup exceeds RTLDeviceInfoTy::Max_WG_Size 1003 // This reduction is typical for default case (no thread_limit clause). 1004 // or when user goes crazy with num_teams clause. 1005 // FIXME: We cant distinguish between a constant or variable thread limit. 1006 // So we only handle constant thread_limits. 1007 if (threadsPerGroup > 1008 RTLDeviceInfoTy::Default_WG_Size) // 256 < threadsPerGroup <= 1024 1009 // Should we round threadsPerGroup up to nearest WarpSize 1010 // here? 1011 num_groups = (Max_Teams * RTLDeviceInfoTy::Max_WG_Size) / threadsPerGroup; 1012 1013 // check for num_teams() clause 1014 if (num_teams > 0) { 1015 num_groups = (num_teams < num_groups) ? num_teams : num_groups; 1016 } 1017 if (print_kernel_trace & STARTUP_DETAILS) { 1018 DP("num_groups: %d\n", num_groups); 1019 DP("Env.NumTeams %d\n", Env.NumTeams); 1020 DP("Env.TeamLimit %d\n", Env.TeamLimit); 1021 } 1022 1023 if (Env.NumTeams > 0) { 1024 num_groups = (Env.NumTeams < num_groups) ? Env.NumTeams : num_groups; 1025 DP("Modifying teams based on Env.NumTeams %d\n", Env.NumTeams); 1026 } else if (Env.TeamLimit > 0) { 1027 num_groups = (Env.TeamLimit < num_groups) ? Env.TeamLimit : num_groups; 1028 DP("Modifying teams based on Env.TeamLimit%d\n", Env.TeamLimit); 1029 } else { 1030 if (num_teams <= 0) { 1031 if (loop_tripcount > 0) { 1032 if (ExecutionMode == 1033 llvm::omp::OMPTgtExecModeFlags::OMP_TGT_EXEC_MODE_SPMD) { 1034 // round up to the nearest integer 1035 num_groups = ((loop_tripcount - 1) / threadsPerGroup) + 1; 1036 } else if (ExecutionMode == 1037 llvm::omp::OMPTgtExecModeFlags::OMP_TGT_EXEC_MODE_GENERIC) { 1038 num_groups = loop_tripcount; 1039 } else /* OMP_TGT_EXEC_MODE_GENERIC_SPMD */ { 1040 // This is a generic kernel that was transformed to use SPMD-mode 1041 // execution but uses Generic-mode semantics for scheduling. 1042 num_groups = loop_tripcount; 1043 } 1044 DP("Using %d teams due to loop trip count %" PRIu64 " and number of " 1045 "threads per block %d\n", 1046 num_groups, loop_tripcount, threadsPerGroup); 1047 } 1048 } else { 1049 num_groups = num_teams; 1050 } 1051 if (num_groups > Max_Teams) { 1052 num_groups = Max_Teams; 1053 if (print_kernel_trace & STARTUP_DETAILS) 1054 DP("Limiting num_groups %d to Max_Teams %d \n", num_groups, Max_Teams); 1055 } 1056 if (num_groups > num_teams && num_teams > 0) { 1057 num_groups = num_teams; 1058 if (print_kernel_trace & STARTUP_DETAILS) 1059 DP("Limiting num_groups %d to clause num_teams %d \n", num_groups, 1060 num_teams); 1061 } 1062 } 1063 1064 // num_teams clause always honored, no matter what, unless DEFAULT is active. 1065 if (num_teams > 0) { 1066 num_groups = num_teams; 1067 // Cap num_groups to EnvMaxTeamsDefault if set. 1068 if (Env.MaxTeamsDefault > 0 && num_groups > Env.MaxTeamsDefault) 1069 num_groups = Env.MaxTeamsDefault; 1070 } 1071 if (print_kernel_trace & STARTUP_DETAILS) { 1072 DP("threadsPerGroup: %d\n", threadsPerGroup); 1073 DP("num_groups: %d\n", num_groups); 1074 DP("loop_tripcount: %ld\n", loop_tripcount); 1075 } 1076 DP("Final %d num_groups and %d threadsPerGroup\n", num_groups, 1077 threadsPerGroup); 1078 1079 launchVals res; 1080 res.WorkgroupSize = threadsPerGroup; 1081 res.GridSize = threadsPerGroup * num_groups; 1082 return res; 1083 } 1084 1085 static uint64_t acquire_available_packet_id(hsa_queue_t *queue) { 1086 uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1); 1087 bool full = true; 1088 while (full) { 1089 full = 1090 packet_id >= (queue->size + hsa_queue_load_read_index_scacquire(queue)); 1091 } 1092 return packet_id; 1093 } 1094 1095 int32_t runRegionLocked(int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 1096 ptrdiff_t *tgt_offsets, int32_t arg_num, 1097 int32_t num_teams, int32_t thread_limit, 1098 uint64_t loop_tripcount) { 1099 // Set the context we are using 1100 // update thread limit content in gpu memory if un-initialized or specified 1101 // from host 1102 1103 DP("Run target team region thread_limit %d\n", thread_limit); 1104 1105 // All args are references. 1106 std::vector<void *> args(arg_num); 1107 std::vector<void *> ptrs(arg_num); 1108 1109 DP("Arg_num: %d\n", arg_num); 1110 for (int32_t i = 0; i < arg_num; ++i) { 1111 ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]); 1112 args[i] = &ptrs[i]; 1113 DP("Offseted base: arg[%d]:" DPxMOD "\n", i, DPxPTR(ptrs[i])); 1114 } 1115 1116 KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr; 1117 1118 std::string kernel_name = std::string(KernelInfo->Name); 1119 auto &KernelInfoTable = DeviceInfo.KernelInfoTable; 1120 if (KernelInfoTable[device_id].find(kernel_name) == 1121 KernelInfoTable[device_id].end()) { 1122 DP("Kernel %s not found\n", kernel_name.c_str()); 1123 return OFFLOAD_FAIL; 1124 } 1125 1126 const atl_kernel_info_t KernelInfoEntry = 1127 KernelInfoTable[device_id][kernel_name]; 1128 const uint32_t group_segment_size = 1129 KernelInfoEntry.group_segment_size + DeviceInfo.Env.DynamicMemSize; 1130 const uint32_t sgpr_count = KernelInfoEntry.sgpr_count; 1131 const uint32_t vgpr_count = KernelInfoEntry.vgpr_count; 1132 const uint32_t sgpr_spill_count = KernelInfoEntry.sgpr_spill_count; 1133 const uint32_t vgpr_spill_count = KernelInfoEntry.vgpr_spill_count; 1134 1135 assert(arg_num == (int)KernelInfoEntry.explicit_argument_count); 1136 1137 /* 1138 * Set limit based on ThreadsPerGroup and GroupsPerDevice 1139 */ 1140 launchVals LV = 1141 getLaunchVals(DeviceInfo.WarpSize[device_id], DeviceInfo.Env, 1142 KernelInfo->ConstWGSize, KernelInfo->ExecutionMode, 1143 num_teams, // From run_region arg 1144 thread_limit, // From run_region arg 1145 loop_tripcount, // From run_region arg 1146 DeviceInfo.NumTeams[KernelInfo->device_id]); 1147 const int GridSize = LV.GridSize; 1148 const int WorkgroupSize = LV.WorkgroupSize; 1149 1150 if (print_kernel_trace >= LAUNCH) { 1151 int num_groups = GridSize / WorkgroupSize; 1152 // enum modes are SPMD, GENERIC, NONE 0,1,2 1153 // if doing rtl timing, print to stderr, unless stdout requested. 1154 bool traceToStdout = print_kernel_trace & (RTL_TO_STDOUT | RTL_TIMING); 1155 fprintf(traceToStdout ? stdout : stderr, 1156 "DEVID:%2d SGN:%1d ConstWGSize:%-4d args:%2d teamsXthrds:(%4dX%4d) " 1157 "reqd:(%4dX%4d) lds_usage:%uB sgpr_count:%u vgpr_count:%u " 1158 "sgpr_spill_count:%u vgpr_spill_count:%u tripcount:%lu n:%s\n", 1159 device_id, KernelInfo->ExecutionMode, KernelInfo->ConstWGSize, 1160 arg_num, num_groups, WorkgroupSize, num_teams, thread_limit, 1161 group_segment_size, sgpr_count, vgpr_count, sgpr_spill_count, 1162 vgpr_spill_count, loop_tripcount, KernelInfo->Name); 1163 } 1164 1165 // Run on the device. 1166 { 1167 hsa_queue_t *queue = DeviceInfo.HSAQueueSchedulers[device_id].Next(); 1168 if (!queue) { 1169 return OFFLOAD_FAIL; 1170 } 1171 uint64_t packet_id = acquire_available_packet_id(queue); 1172 1173 const uint32_t mask = queue->size - 1; // size is a power of 2 1174 hsa_kernel_dispatch_packet_t *packet = 1175 (hsa_kernel_dispatch_packet_t *)queue->base_address + 1176 (packet_id & mask); 1177 1178 // packet->header is written last 1179 packet->setup = UINT16_C(1) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS; 1180 packet->workgroup_size_x = WorkgroupSize; 1181 packet->workgroup_size_y = 1; 1182 packet->workgroup_size_z = 1; 1183 packet->reserved0 = 0; 1184 packet->grid_size_x = GridSize; 1185 packet->grid_size_y = 1; 1186 packet->grid_size_z = 1; 1187 packet->private_segment_size = KernelInfoEntry.private_segment_size; 1188 packet->group_segment_size = group_segment_size; 1189 packet->kernel_object = KernelInfoEntry.kernel_object; 1190 packet->kernarg_address = 0; // use the block allocator 1191 packet->reserved2 = 0; // impl writes id_ here 1192 packet->completion_signal = {0}; // may want a pool of signals 1193 1194 KernelArgPool *ArgPool = nullptr; 1195 void *kernarg = nullptr; 1196 { 1197 auto it = KernelArgPoolMap.find(std::string(KernelInfo->Name)); 1198 if (it != KernelArgPoolMap.end()) { 1199 ArgPool = (it->second).get(); 1200 } 1201 } 1202 if (!ArgPool) { 1203 DP("Warning: No ArgPool for %s on device %d\n", KernelInfo->Name, 1204 device_id); 1205 } 1206 { 1207 if (ArgPool) { 1208 assert(ArgPool->kernarg_segment_size == (arg_num * sizeof(void *))); 1209 kernarg = ArgPool->allocate(arg_num); 1210 } 1211 if (!kernarg) { 1212 DP("Allocate kernarg failed\n"); 1213 return OFFLOAD_FAIL; 1214 } 1215 1216 // Copy explicit arguments 1217 for (int i = 0; i < arg_num; i++) { 1218 memcpy((char *)kernarg + sizeof(void *) * i, args[i], sizeof(void *)); 1219 } 1220 1221 // Initialize implicit arguments. TODO: Which of these can be dropped 1222 impl_implicit_args_t *impl_args = 1223 reinterpret_cast<impl_implicit_args_t *>( 1224 static_cast<char *>(kernarg) + ArgPool->kernarg_segment_size); 1225 memset(impl_args, 0, 1226 sizeof(impl_implicit_args_t)); // may not be necessary 1227 impl_args->offset_x = 0; 1228 impl_args->offset_y = 0; 1229 impl_args->offset_z = 0; 1230 1231 // assign a hostcall buffer for the selected Q 1232 if (__atomic_load_n(&DeviceInfo.hostcall_required, __ATOMIC_ACQUIRE)) { 1233 // hostrpc_assign_buffer is not thread safe, and this function is 1234 // under a multiple reader lock, not a writer lock. 1235 static pthread_mutex_t hostcall_init_lock = PTHREAD_MUTEX_INITIALIZER; 1236 pthread_mutex_lock(&hostcall_init_lock); 1237 uint64_t buffer = hostrpc_assign_buffer(DeviceInfo.HSAAgents[device_id], 1238 queue, device_id); 1239 pthread_mutex_unlock(&hostcall_init_lock); 1240 if (!buffer) { 1241 DP("hostrpc_assign_buffer failed, gpu would dereference null and " 1242 "error\n"); 1243 return OFFLOAD_FAIL; 1244 } 1245 1246 DP("Implicit argument count: %d\n", 1247 KernelInfoEntry.implicit_argument_count); 1248 if (KernelInfoEntry.implicit_argument_count >= 4) { 1249 // Initialise pointer for implicit_argument_count != 0 ABI 1250 // Guess that the right implicit argument is at offset 24 after 1251 // the explicit arguments. In the future, should be able to read 1252 // the offset from msgpack. Clang is not annotating it at present. 1253 uint64_t Offset = 1254 sizeof(void *) * (KernelInfoEntry.explicit_argument_count + 3); 1255 if ((Offset + 8) > ArgPool->kernarg_size_including_implicit()) { 1256 DP("Bad offset of hostcall: %lu, exceeds kernarg size w/ implicit " 1257 "args: %d\n", 1258 Offset + 8, ArgPool->kernarg_size_including_implicit()); 1259 } else { 1260 memcpy(static_cast<char *>(kernarg) + Offset, &buffer, 8); 1261 } 1262 } 1263 1264 // initialise pointer for implicit_argument_count == 0 ABI 1265 impl_args->hostcall_ptr = buffer; 1266 } 1267 1268 packet->kernarg_address = kernarg; 1269 } 1270 1271 hsa_signal_t s = DeviceInfo.FreeSignalPool.pop(); 1272 if (s.handle == 0) { 1273 DP("Failed to get signal instance\n"); 1274 return OFFLOAD_FAIL; 1275 } 1276 packet->completion_signal = s; 1277 hsa_signal_store_relaxed(packet->completion_signal, 1); 1278 1279 // Publish the packet indicating it is ready to be processed 1280 core::packet_store_release(reinterpret_cast<uint32_t *>(packet), 1281 core::create_header(), packet->setup); 1282 1283 // Since the packet is already published, its contents must not be 1284 // accessed any more 1285 hsa_signal_store_relaxed(queue->doorbell_signal, packet_id); 1286 1287 while (hsa_signal_wait_scacquire(s, HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX, 1288 HSA_WAIT_STATE_BLOCKED) != 0) 1289 ; 1290 1291 assert(ArgPool); 1292 ArgPool->deallocate(kernarg); 1293 DeviceInfo.FreeSignalPool.push(s); 1294 } 1295 1296 DP("Kernel completed\n"); 1297 return OFFLOAD_SUCCESS; 1298 } 1299 1300 bool elf_machine_id_is_amdgcn(__tgt_device_image *image) { 1301 const uint16_t amdgcnMachineID = 224; // EM_AMDGPU may not be in system elf.h 1302 int32_t r = elf_check_machine(image, amdgcnMachineID); 1303 if (!r) { 1304 DP("Supported machine ID not found\n"); 1305 } 1306 return r; 1307 } 1308 1309 uint32_t elf_e_flags(__tgt_device_image *image) { 1310 char *img_begin = (char *)image->ImageStart; 1311 size_t img_size = (char *)image->ImageEnd - img_begin; 1312 1313 Elf *e = elf_memory(img_begin, img_size); 1314 if (!e) { 1315 DP("Unable to get ELF handle: %s!\n", elf_errmsg(-1)); 1316 return 0; 1317 } 1318 1319 Elf64_Ehdr *eh64 = elf64_getehdr(e); 1320 1321 if (!eh64) { 1322 DP("Unable to get machine ID from ELF file!\n"); 1323 elf_end(e); 1324 return 0; 1325 } 1326 1327 uint32_t Flags = eh64->e_flags; 1328 1329 elf_end(e); 1330 DP("ELF Flags: 0x%x\n", Flags); 1331 return Flags; 1332 } 1333 1334 template <typename T> bool enforce_upper_bound(T *value, T upper) { 1335 bool changed = *value > upper; 1336 if (changed) { 1337 *value = upper; 1338 } 1339 return changed; 1340 } 1341 1342 Elf64_Shdr *find_only_SHT_HASH(Elf *elf) { 1343 size_t N; 1344 int rc = elf_getshdrnum(elf, &N); 1345 if (rc != 0) { 1346 return nullptr; 1347 } 1348 1349 Elf64_Shdr *result = nullptr; 1350 for (size_t i = 0; i < N; i++) { 1351 Elf_Scn *scn = elf_getscn(elf, i); 1352 if (scn) { 1353 Elf64_Shdr *shdr = elf64_getshdr(scn); 1354 if (shdr) { 1355 if (shdr->sh_type == SHT_HASH) { 1356 if (result == nullptr) { 1357 result = shdr; 1358 } else { 1359 // multiple SHT_HASH sections not handled 1360 return nullptr; 1361 } 1362 } 1363 } 1364 } 1365 } 1366 return result; 1367 } 1368 1369 const Elf64_Sym *elf_lookup(Elf *elf, char *base, Elf64_Shdr *section_hash, 1370 const char *symname) { 1371 1372 assert(section_hash); 1373 size_t section_symtab_index = section_hash->sh_link; 1374 Elf64_Shdr *section_symtab = 1375 elf64_getshdr(elf_getscn(elf, section_symtab_index)); 1376 size_t section_strtab_index = section_symtab->sh_link; 1377 1378 const Elf64_Sym *symtab = 1379 reinterpret_cast<const Elf64_Sym *>(base + section_symtab->sh_offset); 1380 1381 const uint32_t *hashtab = 1382 reinterpret_cast<const uint32_t *>(base + section_hash->sh_offset); 1383 1384 // Layout: 1385 // nbucket 1386 // nchain 1387 // bucket[nbucket] 1388 // chain[nchain] 1389 uint32_t nbucket = hashtab[0]; 1390 const uint32_t *bucket = &hashtab[2]; 1391 const uint32_t *chain = &hashtab[nbucket + 2]; 1392 1393 const size_t max = strlen(symname) + 1; 1394 const uint32_t hash = elf_hash(symname); 1395 for (uint32_t i = bucket[hash % nbucket]; i != 0; i = chain[i]) { 1396 char *n = elf_strptr(elf, section_strtab_index, symtab[i].st_name); 1397 if (strncmp(symname, n, max) == 0) { 1398 return &symtab[i]; 1399 } 1400 } 1401 1402 return nullptr; 1403 } 1404 1405 struct symbol_info { 1406 void *addr = nullptr; 1407 uint32_t size = UINT32_MAX; 1408 uint32_t sh_type = SHT_NULL; 1409 }; 1410 1411 int get_symbol_info_without_loading(Elf *elf, char *base, const char *symname, 1412 symbol_info *res) { 1413 if (elf_kind(elf) != ELF_K_ELF) { 1414 return 1; 1415 } 1416 1417 Elf64_Shdr *section_hash = find_only_SHT_HASH(elf); 1418 if (!section_hash) { 1419 return 1; 1420 } 1421 1422 const Elf64_Sym *sym = elf_lookup(elf, base, section_hash, symname); 1423 if (!sym) { 1424 return 1; 1425 } 1426 1427 if (sym->st_size > UINT32_MAX) { 1428 return 1; 1429 } 1430 1431 if (sym->st_shndx == SHN_UNDEF) { 1432 return 1; 1433 } 1434 1435 Elf_Scn *section = elf_getscn(elf, sym->st_shndx); 1436 if (!section) { 1437 return 1; 1438 } 1439 1440 Elf64_Shdr *header = elf64_getshdr(section); 1441 if (!header) { 1442 return 1; 1443 } 1444 1445 res->addr = sym->st_value + base; 1446 res->size = static_cast<uint32_t>(sym->st_size); 1447 res->sh_type = header->sh_type; 1448 return 0; 1449 } 1450 1451 int get_symbol_info_without_loading(char *base, size_t img_size, 1452 const char *symname, symbol_info *res) { 1453 Elf *elf = elf_memory(base, img_size); 1454 if (elf) { 1455 int rc = get_symbol_info_without_loading(elf, base, symname, res); 1456 elf_end(elf); 1457 return rc; 1458 } 1459 return 1; 1460 } 1461 1462 hsa_status_t interop_get_symbol_info(char *base, size_t img_size, 1463 const char *symname, void **var_addr, 1464 uint32_t *var_size) { 1465 symbol_info si; 1466 int rc = get_symbol_info_without_loading(base, img_size, symname, &si); 1467 if (rc == 0) { 1468 *var_addr = si.addr; 1469 *var_size = si.size; 1470 return HSA_STATUS_SUCCESS; 1471 } else { 1472 return HSA_STATUS_ERROR; 1473 } 1474 } 1475 1476 template <typename C> 1477 hsa_status_t module_register_from_memory_to_place( 1478 std::map<std::string, atl_kernel_info_t> &KernelInfoTable, 1479 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, 1480 void *module_bytes, size_t module_size, int DeviceId, C cb, 1481 std::vector<hsa_executable_t> &HSAExecutables) { 1482 auto L = [](void *data, size_t size, void *cb_state) -> hsa_status_t { 1483 C *unwrapped = static_cast<C *>(cb_state); 1484 return (*unwrapped)(data, size); 1485 }; 1486 return core::RegisterModuleFromMemory( 1487 KernelInfoTable, SymbolInfoTable, module_bytes, module_size, 1488 DeviceInfo.HSAAgents[DeviceId], L, static_cast<void *>(&cb), 1489 HSAExecutables); 1490 } 1491 1492 uint64_t get_device_State_bytes(char *ImageStart, size_t img_size) { 1493 uint64_t device_State_bytes = 0; 1494 { 1495 // If this is the deviceRTL, get the state variable size 1496 symbol_info size_si; 1497 int rc = get_symbol_info_without_loading( 1498 ImageStart, img_size, "omptarget_nvptx_device_State_size", &size_si); 1499 1500 if (rc == 0) { 1501 if (size_si.size != sizeof(uint64_t)) { 1502 DP("Found device_State_size variable with wrong size\n"); 1503 return 0; 1504 } 1505 1506 // Read number of bytes directly from the elf 1507 memcpy(&device_State_bytes, size_si.addr, sizeof(uint64_t)); 1508 } 1509 } 1510 return device_State_bytes; 1511 } 1512 1513 struct device_environment { 1514 // initialise an DeviceEnvironmentTy in the deviceRTL 1515 // patches around differences in the deviceRTL between trunk, aomp, 1516 // rocmcc. Over time these differences will tend to zero and this class 1517 // simplified. 1518 // Symbol may be in .data or .bss, and may be missing fields, todo: 1519 // review aomp/trunk/rocm and simplify the following 1520 1521 // The symbol may also have been deadstripped because the device side 1522 // accessors were unused. 1523 1524 // If the symbol is in .data (aomp, rocm) it can be written directly. 1525 // If it is in .bss, we must wait for it to be allocated space on the 1526 // gpu (trunk) and initialize after loading. 1527 const char *sym() { return "omptarget_device_environment"; } 1528 1529 DeviceEnvironmentTy host_device_env; 1530 symbol_info si; 1531 bool valid = false; 1532 1533 __tgt_device_image *image; 1534 const size_t img_size; 1535 1536 device_environment(int device_id, int number_devices, int dynamic_mem_size, 1537 __tgt_device_image *image, const size_t img_size) 1538 : image(image), img_size(img_size) { 1539 1540 host_device_env.NumDevices = number_devices; 1541 host_device_env.DeviceNum = device_id; 1542 host_device_env.DebugKind = 0; 1543 host_device_env.DynamicMemSize = dynamic_mem_size; 1544 if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) { 1545 host_device_env.DebugKind = std::stoi(envStr); 1546 } 1547 1548 int rc = get_symbol_info_without_loading((char *)image->ImageStart, 1549 img_size, sym(), &si); 1550 if (rc != 0) { 1551 DP("Finding global device environment '%s' - symbol missing.\n", sym()); 1552 return; 1553 } 1554 1555 if (si.size > sizeof(host_device_env)) { 1556 DP("Symbol '%s' has size %u, expected at most %zu.\n", sym(), si.size, 1557 sizeof(host_device_env)); 1558 return; 1559 } 1560 1561 valid = true; 1562 } 1563 1564 bool in_image() { return si.sh_type != SHT_NOBITS; } 1565 1566 hsa_status_t before_loading(void *data, size_t size) { 1567 if (valid) { 1568 if (in_image()) { 1569 DP("Setting global device environment before load (%u bytes)\n", 1570 si.size); 1571 uint64_t offset = (char *)si.addr - (char *)image->ImageStart; 1572 void *pos = (char *)data + offset; 1573 memcpy(pos, &host_device_env, si.size); 1574 } 1575 } 1576 return HSA_STATUS_SUCCESS; 1577 } 1578 1579 hsa_status_t after_loading() { 1580 if (valid) { 1581 if (!in_image()) { 1582 DP("Setting global device environment after load (%u bytes)\n", 1583 si.size); 1584 int device_id = host_device_env.DeviceNum; 1585 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1586 void *state_ptr; 1587 uint32_t state_ptr_size; 1588 hsa_status_t err = interop_hsa_get_symbol_info( 1589 SymbolInfo, device_id, sym(), &state_ptr, &state_ptr_size); 1590 if (err != HSA_STATUS_SUCCESS) { 1591 DP("failed to find %s in loaded image\n", sym()); 1592 return err; 1593 } 1594 1595 if (state_ptr_size != si.size) { 1596 DP("Symbol had size %u before loading, %u after\n", state_ptr_size, 1597 si.size); 1598 return HSA_STATUS_ERROR; 1599 } 1600 1601 return DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &host_device_env, 1602 state_ptr_size, device_id); 1603 } 1604 } 1605 return HSA_STATUS_SUCCESS; 1606 } 1607 }; 1608 1609 hsa_status_t impl_calloc(void **ret_ptr, size_t size, int DeviceId) { 1610 uint64_t rounded = 4 * ((size + 3) / 4); 1611 void *ptr; 1612 hsa_amd_memory_pool_t MemoryPool = DeviceInfo.getDeviceMemoryPool(DeviceId); 1613 hsa_status_t err = hsa_amd_memory_pool_allocate(MemoryPool, rounded, 0, &ptr); 1614 if (err != HSA_STATUS_SUCCESS) { 1615 return err; 1616 } 1617 1618 hsa_status_t rc = hsa_amd_memory_fill(ptr, 0, rounded / 4); 1619 if (rc != HSA_STATUS_SUCCESS) { 1620 DP("zero fill device_state failed with %u\n", rc); 1621 core::Runtime::Memfree(ptr); 1622 return HSA_STATUS_ERROR; 1623 } 1624 1625 *ret_ptr = ptr; 1626 return HSA_STATUS_SUCCESS; 1627 } 1628 1629 bool image_contains_symbol(void *data, size_t size, const char *sym) { 1630 symbol_info si; 1631 int rc = get_symbol_info_without_loading((char *)data, size, sym, &si); 1632 return (rc == 0) && (si.addr != nullptr); 1633 } 1634 1635 } // namespace 1636 1637 namespace core { 1638 hsa_status_t allow_access_to_all_gpu_agents(void *ptr) { 1639 return hsa_amd_agents_allow_access(DeviceInfo.HSAAgents.size(), 1640 &DeviceInfo.HSAAgents[0], NULL, ptr); 1641 } 1642 } // namespace core 1643 1644 extern "C" { 1645 int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) { 1646 return elf_machine_id_is_amdgcn(image); 1647 } 1648 1649 int __tgt_rtl_number_of_devices() { 1650 // If the construction failed, no methods are safe to call 1651 if (DeviceInfo.ConstructionSucceeded) { 1652 return DeviceInfo.NumberOfDevices; 1653 } else { 1654 DP("AMDGPU plugin construction failed. Zero devices available\n"); 1655 return 0; 1656 } 1657 } 1658 1659 int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) { 1660 DP("Init requires flags to %ld\n", RequiresFlags); 1661 DeviceInfo.RequiresFlags = RequiresFlags; 1662 return RequiresFlags; 1663 } 1664 1665 int32_t __tgt_rtl_init_device(int device_id) { 1666 hsa_status_t err; 1667 1668 // this is per device id init 1669 DP("Initialize the device id: %d\n", device_id); 1670 1671 hsa_agent_t agent = DeviceInfo.HSAAgents[device_id]; 1672 1673 // Get number of Compute Unit 1674 uint32_t compute_units = 0; 1675 err = hsa_agent_get_info( 1676 agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT, 1677 &compute_units); 1678 if (err != HSA_STATUS_SUCCESS) { 1679 DeviceInfo.ComputeUnits[device_id] = 1; 1680 DP("Error getting compute units : settiing to 1\n"); 1681 } else { 1682 DeviceInfo.ComputeUnits[device_id] = compute_units; 1683 DP("Using %d compute unis per grid\n", DeviceInfo.ComputeUnits[device_id]); 1684 } 1685 1686 char GetInfoName[64]; // 64 max size returned by get info 1687 err = hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AGENT_INFO_NAME, 1688 (void *)GetInfoName); 1689 if (err) 1690 DeviceInfo.GPUName[device_id] = "--unknown gpu--"; 1691 else { 1692 DeviceInfo.GPUName[device_id] = GetInfoName; 1693 } 1694 1695 if (print_kernel_trace & STARTUP_DETAILS) 1696 DP("Device#%-2d CU's: %2d %s\n", device_id, 1697 DeviceInfo.ComputeUnits[device_id], 1698 DeviceInfo.GPUName[device_id].c_str()); 1699 1700 // Query attributes to determine number of threads/block and blocks/grid. 1701 uint16_t workgroup_max_dim[3]; 1702 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_DIM, 1703 &workgroup_max_dim); 1704 if (err != HSA_STATUS_SUCCESS) { 1705 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::DefaultNumTeams; 1706 DP("Error getting grid dims: num groups : %d\n", 1707 RTLDeviceInfoTy::DefaultNumTeams); 1708 } else if (workgroup_max_dim[0] <= RTLDeviceInfoTy::HardTeamLimit) { 1709 DeviceInfo.GroupsPerDevice[device_id] = workgroup_max_dim[0]; 1710 DP("Using %d ROCm blocks per grid\n", 1711 DeviceInfo.GroupsPerDevice[device_id]); 1712 } else { 1713 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::HardTeamLimit; 1714 DP("Max ROCm blocks per grid %d exceeds the hard team limit %d, capping " 1715 "at the hard limit\n", 1716 workgroup_max_dim[0], RTLDeviceInfoTy::HardTeamLimit); 1717 } 1718 1719 // Get thread limit 1720 hsa_dim3_t grid_max_dim; 1721 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &grid_max_dim); 1722 if (err == HSA_STATUS_SUCCESS) { 1723 DeviceInfo.ThreadsPerGroup[device_id] = 1724 reinterpret_cast<uint32_t *>(&grid_max_dim)[0] / 1725 DeviceInfo.GroupsPerDevice[device_id]; 1726 1727 if (DeviceInfo.ThreadsPerGroup[device_id] == 0) { 1728 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 1729 DP("Default thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 1730 } else if (enforce_upper_bound(&DeviceInfo.ThreadsPerGroup[device_id], 1731 RTLDeviceInfoTy::Max_WG_Size)) { 1732 DP("Capped thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 1733 } else { 1734 DP("Using ROCm Queried thread limit: %d\n", 1735 DeviceInfo.ThreadsPerGroup[device_id]); 1736 } 1737 } else { 1738 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 1739 DP("Error getting max block dimension, use default:%d \n", 1740 RTLDeviceInfoTy::Max_WG_Size); 1741 } 1742 1743 // Get wavefront size 1744 uint32_t wavefront_size = 0; 1745 err = 1746 hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size); 1747 if (err == HSA_STATUS_SUCCESS) { 1748 DP("Queried wavefront size: %d\n", wavefront_size); 1749 DeviceInfo.WarpSize[device_id] = wavefront_size; 1750 } else { 1751 // TODO: Burn the wavefront size into the code object 1752 DP("Warning: Unknown wavefront size, assuming 64\n"); 1753 DeviceInfo.WarpSize[device_id] = 64; 1754 } 1755 1756 // Adjust teams to the env variables 1757 1758 if (DeviceInfo.Env.TeamLimit > 0 && 1759 (enforce_upper_bound(&DeviceInfo.GroupsPerDevice[device_id], 1760 DeviceInfo.Env.TeamLimit))) { 1761 DP("Capping max groups per device to OMP_TEAM_LIMIT=%d\n", 1762 DeviceInfo.Env.TeamLimit); 1763 } 1764 1765 // Set default number of teams 1766 if (DeviceInfo.Env.NumTeams > 0) { 1767 DeviceInfo.NumTeams[device_id] = DeviceInfo.Env.NumTeams; 1768 DP("Default number of teams set according to environment %d\n", 1769 DeviceInfo.Env.NumTeams); 1770 } else { 1771 char *TeamsPerCUEnvStr = getenv("OMP_TARGET_TEAMS_PER_PROC"); 1772 int TeamsPerCU = DefaultTeamsPerCU; 1773 if (TeamsPerCUEnvStr) { 1774 TeamsPerCU = std::stoi(TeamsPerCUEnvStr); 1775 } 1776 1777 DeviceInfo.NumTeams[device_id] = 1778 TeamsPerCU * DeviceInfo.ComputeUnits[device_id]; 1779 DP("Default number of teams = %d * number of compute units %d\n", 1780 TeamsPerCU, DeviceInfo.ComputeUnits[device_id]); 1781 } 1782 1783 if (enforce_upper_bound(&DeviceInfo.NumTeams[device_id], 1784 DeviceInfo.GroupsPerDevice[device_id])) { 1785 DP("Default number of teams exceeds device limit, capping at %d\n", 1786 DeviceInfo.GroupsPerDevice[device_id]); 1787 } 1788 1789 // Adjust threads to the env variables 1790 if (DeviceInfo.Env.TeamThreadLimit > 0 && 1791 (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], 1792 DeviceInfo.Env.TeamThreadLimit))) { 1793 DP("Capping max number of threads to OMP_TEAMS_THREAD_LIMIT=%d\n", 1794 DeviceInfo.Env.TeamThreadLimit); 1795 } 1796 1797 // Set default number of threads 1798 DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::Default_WG_Size; 1799 DP("Default number of threads set according to library's default %d\n", 1800 RTLDeviceInfoTy::Default_WG_Size); 1801 if (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], 1802 DeviceInfo.ThreadsPerGroup[device_id])) { 1803 DP("Default number of threads exceeds device limit, capping at %d\n", 1804 DeviceInfo.ThreadsPerGroup[device_id]); 1805 } 1806 1807 DP("Device %d: default limit for groupsPerDevice %d & threadsPerGroup %d\n", 1808 device_id, DeviceInfo.GroupsPerDevice[device_id], 1809 DeviceInfo.ThreadsPerGroup[device_id]); 1810 1811 DP("Device %d: wavefront size %d, total threads %d x %d = %d\n", device_id, 1812 DeviceInfo.WarpSize[device_id], DeviceInfo.ThreadsPerGroup[device_id], 1813 DeviceInfo.GroupsPerDevice[device_id], 1814 DeviceInfo.GroupsPerDevice[device_id] * 1815 DeviceInfo.ThreadsPerGroup[device_id]); 1816 1817 return OFFLOAD_SUCCESS; 1818 } 1819 1820 static __tgt_target_table * 1821 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1822 1823 __tgt_target_table *__tgt_rtl_load_binary(int32_t device_id, 1824 __tgt_device_image *image) { 1825 DeviceInfo.load_run_lock.lock(); 1826 __tgt_target_table *res = __tgt_rtl_load_binary_locked(device_id, image); 1827 DeviceInfo.load_run_lock.unlock(); 1828 return res; 1829 } 1830 1831 __tgt_target_table *__tgt_rtl_load_binary_locked(int32_t device_id, 1832 __tgt_device_image *image) { 1833 // This function loads the device image onto gpu[device_id] and does other 1834 // per-image initialization work. Specifically: 1835 // 1836 // - Initialize an DeviceEnvironmentTy instance embedded in the 1837 // image at the symbol "omptarget_device_environment" 1838 // Fields DebugKind, DeviceNum, NumDevices. Used by the deviceRTL. 1839 // 1840 // - Allocate a large array per-gpu (could be moved to init_device) 1841 // - Read a uint64_t at symbol omptarget_nvptx_device_State_size 1842 // - Allocate at least that many bytes of gpu memory 1843 // - Zero initialize it 1844 // - Write the pointer to the symbol omptarget_nvptx_device_State 1845 // 1846 // - Pulls some per-kernel information together from various sources and 1847 // records it in the KernelsList for quicker access later 1848 // 1849 // The initialization can be done before or after loading the image onto the 1850 // gpu. This function presently does a mixture. Using the hsa api to get/set 1851 // the information is simpler to implement, in exchange for more complicated 1852 // runtime behaviour. E.g. launching a kernel or using dma to get eight bytes 1853 // back from the gpu vs a hashtable lookup on the host. 1854 1855 const size_t img_size = (char *)image->ImageEnd - (char *)image->ImageStart; 1856 1857 DeviceInfo.clearOffloadEntriesTable(device_id); 1858 1859 // We do not need to set the ELF version because the caller of this function 1860 // had to do that to decide the right runtime to use 1861 1862 if (!elf_machine_id_is_amdgcn(image)) { 1863 return NULL; 1864 } 1865 1866 { 1867 auto env = 1868 device_environment(device_id, DeviceInfo.NumberOfDevices, 1869 DeviceInfo.Env.DynamicMemSize, image, img_size); 1870 1871 auto &KernelInfo = DeviceInfo.KernelInfoTable[device_id]; 1872 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1873 hsa_status_t err = module_register_from_memory_to_place( 1874 KernelInfo, SymbolInfo, (void *)image->ImageStart, img_size, device_id, 1875 [&](void *data, size_t size) { 1876 if (image_contains_symbol(data, size, "needs_hostcall_buffer")) { 1877 __atomic_store_n(&DeviceInfo.hostcall_required, true, 1878 __ATOMIC_RELEASE); 1879 } 1880 return env.before_loading(data, size); 1881 }, 1882 DeviceInfo.HSAExecutables); 1883 1884 check("Module registering", err); 1885 if (err != HSA_STATUS_SUCCESS) { 1886 const char *DeviceName = DeviceInfo.GPUName[device_id].c_str(); 1887 const char *ElfName = get_elf_mach_gfx_name(elf_e_flags(image)); 1888 1889 if (strcmp(DeviceName, ElfName) != 0) { 1890 DP("Possible gpu arch mismatch: device:%s, image:%s please check" 1891 " compiler flag: -march=<gpu>\n", 1892 DeviceName, ElfName); 1893 } else { 1894 DP("Error loading image onto GPU: %s\n", get_error_string(err)); 1895 } 1896 1897 return NULL; 1898 } 1899 1900 err = env.after_loading(); 1901 if (err != HSA_STATUS_SUCCESS) { 1902 return NULL; 1903 } 1904 } 1905 1906 DP("AMDGPU module successfully loaded!\n"); 1907 1908 { 1909 // the device_State array is either large value in bss or a void* that 1910 // needs to be assigned to a pointer to an array of size device_state_bytes 1911 // If absent, it has been deadstripped and needs no setup. 1912 1913 void *state_ptr; 1914 uint32_t state_ptr_size; 1915 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 1916 hsa_status_t err = interop_hsa_get_symbol_info( 1917 SymbolInfoMap, device_id, "omptarget_nvptx_device_State", &state_ptr, 1918 &state_ptr_size); 1919 1920 if (err != HSA_STATUS_SUCCESS) { 1921 DP("No device_state symbol found, skipping initialization\n"); 1922 } else { 1923 if (state_ptr_size < sizeof(void *)) { 1924 DP("unexpected size of state_ptr %u != %zu\n", state_ptr_size, 1925 sizeof(void *)); 1926 return NULL; 1927 } 1928 1929 // if it's larger than a void*, assume it's a bss array and no further 1930 // initialization is required. Only try to set up a pointer for 1931 // sizeof(void*) 1932 if (state_ptr_size == sizeof(void *)) { 1933 uint64_t device_State_bytes = 1934 get_device_State_bytes((char *)image->ImageStart, img_size); 1935 if (device_State_bytes == 0) { 1936 DP("Can't initialize device_State, missing size information\n"); 1937 return NULL; 1938 } 1939 1940 auto &dss = DeviceInfo.deviceStateStore[device_id]; 1941 if (dss.first.get() == nullptr) { 1942 assert(dss.second == 0); 1943 void *ptr = NULL; 1944 hsa_status_t err = impl_calloc(&ptr, device_State_bytes, device_id); 1945 if (err != HSA_STATUS_SUCCESS) { 1946 DP("Failed to allocate device_state array\n"); 1947 return NULL; 1948 } 1949 dss = { 1950 std::unique_ptr<void, RTLDeviceInfoTy::implFreePtrDeletor>{ptr}, 1951 device_State_bytes, 1952 }; 1953 } 1954 1955 void *ptr = dss.first.get(); 1956 if (device_State_bytes != dss.second) { 1957 DP("Inconsistent sizes of device_State unsupported\n"); 1958 return NULL; 1959 } 1960 1961 // write ptr to device memory so it can be used by later kernels 1962 err = DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &ptr, 1963 sizeof(void *), device_id); 1964 if (err != HSA_STATUS_SUCCESS) { 1965 DP("memcpy install of state_ptr failed\n"); 1966 return NULL; 1967 } 1968 } 1969 } 1970 } 1971 1972 // Here, we take advantage of the data that is appended after img_end to get 1973 // the symbols' name we need to load. This data consist of the host entries 1974 // begin and end as well as the target name (see the offloading linker script 1975 // creation in clang compiler). 1976 1977 // Find the symbols in the module by name. The name can be obtain by 1978 // concatenating the host entry name with the target name 1979 1980 __tgt_offload_entry *HostBegin = image->EntriesBegin; 1981 __tgt_offload_entry *HostEnd = image->EntriesEnd; 1982 1983 for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) { 1984 1985 if (!e->addr) { 1986 // The host should have always something in the address to 1987 // uniquely identify the target region. 1988 DP("Analyzing host entry '<null>' (size = %lld)...\n", 1989 (unsigned long long)e->size); 1990 return NULL; 1991 } 1992 1993 if (e->size) { 1994 __tgt_offload_entry entry = *e; 1995 1996 void *varptr; 1997 uint32_t varsize; 1998 1999 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 2000 hsa_status_t err = interop_hsa_get_symbol_info( 2001 SymbolInfoMap, device_id, e->name, &varptr, &varsize); 2002 2003 if (err != HSA_STATUS_SUCCESS) { 2004 // Inform the user what symbol prevented offloading 2005 DP("Loading global '%s' (Failed)\n", e->name); 2006 return NULL; 2007 } 2008 2009 if (varsize != e->size) { 2010 DP("Loading global '%s' - size mismatch (%u != %lu)\n", e->name, 2011 varsize, e->size); 2012 return NULL; 2013 } 2014 2015 DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n", 2016 DPxPTR(e - HostBegin), e->name, DPxPTR(varptr)); 2017 entry.addr = (void *)varptr; 2018 2019 DeviceInfo.addOffloadEntry(device_id, entry); 2020 2021 if (DeviceInfo.RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY && 2022 e->flags & OMP_DECLARE_TARGET_LINK) { 2023 // If unified memory is present any target link variables 2024 // can access host addresses directly. There is no longer a 2025 // need for device copies. 2026 err = DeviceInfo.freesignalpool_memcpy_h2d(varptr, e->addr, 2027 sizeof(void *), device_id); 2028 if (err != HSA_STATUS_SUCCESS) 2029 DP("Error when copying USM\n"); 2030 DP("Copy linked variable host address (" DPxMOD ")" 2031 "to device address (" DPxMOD ")\n", 2032 DPxPTR(*((void **)e->addr)), DPxPTR(varptr)); 2033 } 2034 2035 continue; 2036 } 2037 2038 DP("to find the kernel name: %s size: %lu\n", e->name, strlen(e->name)); 2039 2040 // errors in kernarg_segment_size previously treated as = 0 (or as undef) 2041 uint32_t kernarg_segment_size = 0; 2042 auto &KernelInfoMap = DeviceInfo.KernelInfoTable[device_id]; 2043 hsa_status_t err = HSA_STATUS_SUCCESS; 2044 if (!e->name) { 2045 err = HSA_STATUS_ERROR; 2046 } else { 2047 std::string kernelStr = std::string(e->name); 2048 auto It = KernelInfoMap.find(kernelStr); 2049 if (It != KernelInfoMap.end()) { 2050 atl_kernel_info_t info = It->second; 2051 kernarg_segment_size = info.kernel_segment_size; 2052 } else { 2053 err = HSA_STATUS_ERROR; 2054 } 2055 } 2056 2057 // default value GENERIC (in case symbol is missing from cubin file) 2058 llvm::omp::OMPTgtExecModeFlags ExecModeVal = 2059 llvm::omp::OMPTgtExecModeFlags::OMP_TGT_EXEC_MODE_GENERIC; 2060 2061 // get flat group size if present, else Default_WG_Size 2062 int16_t WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 2063 2064 // get Kernel Descriptor if present. 2065 // Keep struct in sync wih getTgtAttributeStructQTy in CGOpenMPRuntime.cpp 2066 struct KernDescValType { 2067 uint16_t Version; 2068 uint16_t TSize; 2069 uint16_t WG_Size; 2070 }; 2071 struct KernDescValType KernDescVal; 2072 std::string KernDescNameStr(e->name); 2073 KernDescNameStr += "_kern_desc"; 2074 const char *KernDescName = KernDescNameStr.c_str(); 2075 2076 void *KernDescPtr; 2077 uint32_t KernDescSize; 2078 void *CallStackAddr = nullptr; 2079 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 2080 KernDescName, &KernDescPtr, &KernDescSize); 2081 2082 if (err == HSA_STATUS_SUCCESS) { 2083 if ((size_t)KernDescSize != sizeof(KernDescVal)) 2084 DP("Loading global computation properties '%s' - size mismatch (%u != " 2085 "%lu)\n", 2086 KernDescName, KernDescSize, sizeof(KernDescVal)); 2087 2088 memcpy(&KernDescVal, KernDescPtr, (size_t)KernDescSize); 2089 2090 // Check structure size against recorded size. 2091 if ((size_t)KernDescSize != KernDescVal.TSize) 2092 DP("KernDescVal size %lu does not match advertized size %d for '%s'\n", 2093 sizeof(KernDescVal), KernDescVal.TSize, KernDescName); 2094 2095 DP("After loading global for %s KernDesc \n", KernDescName); 2096 DP("KernDesc: Version: %d\n", KernDescVal.Version); 2097 DP("KernDesc: TSize: %d\n", KernDescVal.TSize); 2098 DP("KernDesc: WG_Size: %d\n", KernDescVal.WG_Size); 2099 2100 if (KernDescVal.WG_Size == 0) { 2101 KernDescVal.WG_Size = RTLDeviceInfoTy::Default_WG_Size; 2102 DP("Setting KernDescVal.WG_Size to default %d\n", KernDescVal.WG_Size); 2103 } 2104 WGSizeVal = KernDescVal.WG_Size; 2105 DP("WGSizeVal %d\n", WGSizeVal); 2106 check("Loading KernDesc computation property", err); 2107 } else { 2108 DP("Warning: Loading KernDesc '%s' - symbol not found, ", KernDescName); 2109 2110 // Flat group size 2111 std::string WGSizeNameStr(e->name); 2112 WGSizeNameStr += "_wg_size"; 2113 const char *WGSizeName = WGSizeNameStr.c_str(); 2114 2115 void *WGSizePtr; 2116 uint32_t WGSize; 2117 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 2118 WGSizeName, &WGSizePtr, &WGSize); 2119 2120 if (err == HSA_STATUS_SUCCESS) { 2121 if ((size_t)WGSize != sizeof(int16_t)) { 2122 DP("Loading global computation properties '%s' - size mismatch (%u " 2123 "!= " 2124 "%lu)\n", 2125 WGSizeName, WGSize, sizeof(int16_t)); 2126 return NULL; 2127 } 2128 2129 memcpy(&WGSizeVal, WGSizePtr, (size_t)WGSize); 2130 2131 DP("After loading global for %s WGSize = %d\n", WGSizeName, WGSizeVal); 2132 2133 if (WGSizeVal < RTLDeviceInfoTy::Default_WG_Size || 2134 WGSizeVal > RTLDeviceInfoTy::Max_WG_Size) { 2135 DP("Error wrong WGSize value specified in HSA code object file: " 2136 "%d\n", 2137 WGSizeVal); 2138 WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 2139 } 2140 } else { 2141 DP("Warning: Loading WGSize '%s' - symbol not found, " 2142 "using default value %d\n", 2143 WGSizeName, WGSizeVal); 2144 } 2145 2146 check("Loading WGSize computation property", err); 2147 } 2148 2149 // Read execution mode from global in binary 2150 std::string ExecModeNameStr(e->name); 2151 ExecModeNameStr += "_exec_mode"; 2152 const char *ExecModeName = ExecModeNameStr.c_str(); 2153 2154 void *ExecModePtr; 2155 uint32_t varsize; 2156 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 2157 ExecModeName, &ExecModePtr, &varsize); 2158 2159 if (err == HSA_STATUS_SUCCESS) { 2160 if ((size_t)varsize != sizeof(llvm::omp::OMPTgtExecModeFlags)) { 2161 DP("Loading global computation properties '%s' - size mismatch(%u != " 2162 "%lu)\n", 2163 ExecModeName, varsize, sizeof(llvm::omp::OMPTgtExecModeFlags)); 2164 return NULL; 2165 } 2166 2167 memcpy(&ExecModeVal, ExecModePtr, (size_t)varsize); 2168 2169 DP("After loading global for %s ExecMode = %d\n", ExecModeName, 2170 ExecModeVal); 2171 2172 if (ExecModeVal < 0 || 2173 ExecModeVal > llvm::omp::OMP_TGT_EXEC_MODE_GENERIC_SPMD) { 2174 DP("Error wrong exec_mode value specified in HSA code object file: " 2175 "%d\n", 2176 ExecModeVal); 2177 return NULL; 2178 } 2179 } else { 2180 DP("Loading global exec_mode '%s' - symbol missing, using default " 2181 "value " 2182 "GENERIC (1)\n", 2183 ExecModeName); 2184 } 2185 check("Loading computation property", err); 2186 2187 KernelsList.push_back(KernelTy(ExecModeVal, WGSizeVal, device_id, 2188 CallStackAddr, e->name, kernarg_segment_size, 2189 DeviceInfo.KernArgPool)); 2190 __tgt_offload_entry entry = *e; 2191 entry.addr = (void *)&KernelsList.back(); 2192 DeviceInfo.addOffloadEntry(device_id, entry); 2193 DP("Entry point %ld maps to %s\n", e - HostBegin, e->name); 2194 } 2195 2196 return DeviceInfo.getOffloadEntriesTable(device_id); 2197 } 2198 2199 void *__tgt_rtl_data_alloc(int device_id, int64_t size, void *, int32_t kind) { 2200 void *ptr = NULL; 2201 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 2202 2203 if (kind != TARGET_ALLOC_DEFAULT) { 2204 REPORT("Invalid target data allocation kind or requested allocator not " 2205 "implemented yet\n"); 2206 return NULL; 2207 } 2208 2209 hsa_amd_memory_pool_t MemoryPool = DeviceInfo.getDeviceMemoryPool(device_id); 2210 hsa_status_t err = hsa_amd_memory_pool_allocate(MemoryPool, size, 0, &ptr); 2211 DP("Tgt alloc data %ld bytes, (tgt:%016llx).\n", size, 2212 (long long unsigned)(Elf64_Addr)ptr); 2213 ptr = (err == HSA_STATUS_SUCCESS) ? ptr : NULL; 2214 return ptr; 2215 } 2216 2217 int32_t __tgt_rtl_data_submit(int device_id, void *tgt_ptr, void *hst_ptr, 2218 int64_t size) { 2219 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 2220 __tgt_async_info AsyncInfo; 2221 int32_t rc = dataSubmit(device_id, tgt_ptr, hst_ptr, size, &AsyncInfo); 2222 if (rc != OFFLOAD_SUCCESS) 2223 return OFFLOAD_FAIL; 2224 2225 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 2226 } 2227 2228 int32_t __tgt_rtl_data_submit_async(int device_id, void *tgt_ptr, void *hst_ptr, 2229 int64_t size, __tgt_async_info *AsyncInfo) { 2230 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 2231 if (AsyncInfo) { 2232 initAsyncInfo(AsyncInfo); 2233 return dataSubmit(device_id, tgt_ptr, hst_ptr, size, AsyncInfo); 2234 } else { 2235 return __tgt_rtl_data_submit(device_id, tgt_ptr, hst_ptr, size); 2236 } 2237 } 2238 2239 int32_t __tgt_rtl_data_retrieve(int device_id, void *hst_ptr, void *tgt_ptr, 2240 int64_t size) { 2241 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 2242 __tgt_async_info AsyncInfo; 2243 int32_t rc = dataRetrieve(device_id, hst_ptr, tgt_ptr, size, &AsyncInfo); 2244 if (rc != OFFLOAD_SUCCESS) 2245 return OFFLOAD_FAIL; 2246 2247 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 2248 } 2249 2250 int32_t __tgt_rtl_data_retrieve_async(int device_id, void *hst_ptr, 2251 void *tgt_ptr, int64_t size, 2252 __tgt_async_info *AsyncInfo) { 2253 assert(AsyncInfo && "AsyncInfo is nullptr"); 2254 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 2255 initAsyncInfo(AsyncInfo); 2256 return dataRetrieve(device_id, hst_ptr, tgt_ptr, size, AsyncInfo); 2257 } 2258 2259 int32_t __tgt_rtl_data_delete(int device_id, void *tgt_ptr) { 2260 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 2261 hsa_status_t err; 2262 DP("Tgt free data (tgt:%016llx).\n", (long long unsigned)(Elf64_Addr)tgt_ptr); 2263 err = core::Runtime::Memfree(tgt_ptr); 2264 if (err != HSA_STATUS_SUCCESS) { 2265 DP("Error when freeing CUDA memory\n"); 2266 return OFFLOAD_FAIL; 2267 } 2268 return OFFLOAD_SUCCESS; 2269 } 2270 2271 int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr, 2272 void **tgt_args, 2273 ptrdiff_t *tgt_offsets, 2274 int32_t arg_num, int32_t num_teams, 2275 int32_t thread_limit, 2276 uint64_t loop_tripcount) { 2277 2278 DeviceInfo.load_run_lock.lock_shared(); 2279 int32_t res = 2280 runRegionLocked(device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, 2281 num_teams, thread_limit, loop_tripcount); 2282 2283 DeviceInfo.load_run_lock.unlock_shared(); 2284 return res; 2285 } 2286 2287 int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr, 2288 void **tgt_args, ptrdiff_t *tgt_offsets, 2289 int32_t arg_num) { 2290 // use one team and one thread 2291 // fix thread num 2292 int32_t team_num = 1; 2293 int32_t thread_limit = 0; // use default 2294 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 2295 tgt_offsets, arg_num, team_num, 2296 thread_limit, 0); 2297 } 2298 2299 int32_t __tgt_rtl_run_target_team_region_async( 2300 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 2301 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 2302 int32_t thread_limit, uint64_t loop_tripcount, 2303 __tgt_async_info *AsyncInfo) { 2304 assert(AsyncInfo && "AsyncInfo is nullptr"); 2305 initAsyncInfo(AsyncInfo); 2306 2307 DeviceInfo.load_run_lock.lock_shared(); 2308 int32_t res = 2309 runRegionLocked(device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, 2310 num_teams, thread_limit, loop_tripcount); 2311 2312 DeviceInfo.load_run_lock.unlock_shared(); 2313 return res; 2314 } 2315 2316 int32_t __tgt_rtl_run_target_region_async(int32_t device_id, 2317 void *tgt_entry_ptr, void **tgt_args, 2318 ptrdiff_t *tgt_offsets, 2319 int32_t arg_num, 2320 __tgt_async_info *AsyncInfo) { 2321 // use one team and one thread 2322 // fix thread num 2323 int32_t team_num = 1; 2324 int32_t thread_limit = 0; // use default 2325 return __tgt_rtl_run_target_team_region_async( 2326 device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, team_num, 2327 thread_limit, 0, AsyncInfo); 2328 } 2329 2330 int32_t __tgt_rtl_synchronize(int32_t device_id, __tgt_async_info *AsyncInfo) { 2331 assert(AsyncInfo && "AsyncInfo is nullptr"); 2332 2333 // Cuda asserts that AsyncInfo->Queue is non-null, but this invariant 2334 // is not ensured by devices.cpp for amdgcn 2335 // assert(AsyncInfo->Queue && "AsyncInfo->Queue is nullptr"); 2336 if (AsyncInfo->Queue) { 2337 finiAsyncInfo(AsyncInfo); 2338 } 2339 return OFFLOAD_SUCCESS; 2340 } 2341 } // extern "C" 2342