1 //===----RTLs/hsa/src/rtl.cpp - Target RTLs Implementation -------- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // RTL for hsa machine 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <algorithm> 14 #include <assert.h> 15 #include <cstdio> 16 #include <cstdlib> 17 #include <cstring> 18 #include <dlfcn.h> 19 #include <elf.h> 20 #include <ffi.h> 21 #include <fstream> 22 #include <iostream> 23 #include <libelf.h> 24 #include <list> 25 #include <memory> 26 #include <mutex> 27 #include <shared_mutex> 28 #include <thread> 29 #include <unordered_map> 30 #include <vector> 31 32 // Header from ATMI interface 33 #include "atmi_interop_hsa.h" 34 #include "atmi_runtime.h" 35 36 #include "internal.h" 37 38 #include "Debug.h" 39 #include "get_elf_mach_gfx_name.h" 40 #include "omptargetplugin.h" 41 #include "print_tracing.h" 42 43 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 44 45 #ifndef TARGET_NAME 46 #define TARGET_NAME AMDHSA 47 #endif 48 #define DEBUG_PREFIX "Target " GETNAME(TARGET_NAME) " RTL" 49 50 // hostrpc interface, FIXME: consider moving to its own include these are 51 // statically linked into amdgpu/plugin if present from hostrpc_services.a, 52 // linked as --whole-archive to override the weak symbols that are used to 53 // implement a fallback for toolchains that do not yet have a hostrpc library. 54 extern "C" { 55 unsigned long hostrpc_assign_buffer(hsa_agent_t agent, hsa_queue_t *this_Q, 56 uint32_t device_id); 57 hsa_status_t hostrpc_init(); 58 hsa_status_t hostrpc_terminate(); 59 60 __attribute__((weak)) hsa_status_t hostrpc_init() { return HSA_STATUS_SUCCESS; } 61 __attribute__((weak)) hsa_status_t hostrpc_terminate() { 62 return HSA_STATUS_SUCCESS; 63 } 64 __attribute__((weak)) unsigned long 65 hostrpc_assign_buffer(hsa_agent_t, hsa_queue_t *, uint32_t device_id) { 66 DP("Warning: Attempting to assign hostrpc to device %u, but hostrpc library " 67 "missing\n", 68 device_id); 69 return 0; 70 } 71 } 72 73 int print_kernel_trace; 74 75 #ifdef OMPTARGET_DEBUG 76 #define check(msg, status) \ 77 if (status != ATMI_STATUS_SUCCESS) { \ 78 DP(#msg " failed\n"); \ 79 } else { \ 80 DP(#msg " succeeded\n"); \ 81 } 82 #else 83 #define check(msg, status) \ 84 {} 85 #endif 86 87 #include "elf_common.h" 88 89 /// Keep entries table per device 90 struct FuncOrGblEntryTy { 91 __tgt_target_table Table; 92 std::vector<__tgt_offload_entry> Entries; 93 }; 94 95 enum ExecutionModeType { 96 SPMD, // constructors, destructors, 97 // combined constructs (`teams distribute parallel for [simd]`) 98 GENERIC, // everything else 99 NONE 100 }; 101 102 struct KernelArgPool { 103 private: 104 static pthread_mutex_t mutex; 105 106 public: 107 uint32_t kernarg_segment_size; 108 void *kernarg_region = nullptr; 109 std::queue<int> free_kernarg_segments; 110 111 uint32_t kernarg_size_including_implicit() { 112 return kernarg_segment_size + sizeof(atmi_implicit_args_t); 113 } 114 115 ~KernelArgPool() { 116 if (kernarg_region) { 117 auto r = hsa_amd_memory_pool_free(kernarg_region); 118 if (r != HSA_STATUS_SUCCESS) { 119 DP("hsa_amd_memory_pool_free failed: %s\n", get_error_string(r)); 120 } 121 } 122 } 123 124 // Can't really copy or move a mutex 125 KernelArgPool() = default; 126 KernelArgPool(const KernelArgPool &) = delete; 127 KernelArgPool(KernelArgPool &&) = delete; 128 129 KernelArgPool(uint32_t kernarg_segment_size) 130 : kernarg_segment_size(kernarg_segment_size) { 131 132 // atmi uses one pool per kernel for all gpus, with a fixed upper size 133 // preserving that exact scheme here, including the queue<int> 134 135 hsa_status_t err = hsa_amd_memory_pool_allocate( 136 atl_gpu_kernarg_pools[0], 137 kernarg_size_including_implicit() * MAX_NUM_KERNELS, 0, 138 &kernarg_region); 139 140 if (err != HSA_STATUS_SUCCESS) { 141 DP("hsa_amd_memory_pool_allocate failed: %s\n", get_error_string(err)); 142 kernarg_region = nullptr; // paranoid 143 return; 144 } 145 146 err = core::allow_access_to_all_gpu_agents(kernarg_region); 147 if (err != HSA_STATUS_SUCCESS) { 148 DP("hsa allow_access_to_all_gpu_agents failed: %s\n", 149 get_error_string(err)); 150 auto r = hsa_amd_memory_pool_free(kernarg_region); 151 if (r != HSA_STATUS_SUCCESS) { 152 // if free failed, can't do anything more to resolve it 153 DP("hsa memory poll free failed: %s\n", get_error_string(err)); 154 } 155 kernarg_region = nullptr; 156 return; 157 } 158 159 for (int i = 0; i < MAX_NUM_KERNELS; i++) { 160 free_kernarg_segments.push(i); 161 } 162 } 163 164 void *allocate(uint64_t arg_num) { 165 assert((arg_num * sizeof(void *)) == kernarg_segment_size); 166 lock l(&mutex); 167 void *res = nullptr; 168 if (!free_kernarg_segments.empty()) { 169 170 int free_idx = free_kernarg_segments.front(); 171 res = static_cast<void *>(static_cast<char *>(kernarg_region) + 172 (free_idx * kernarg_size_including_implicit())); 173 assert(free_idx == pointer_to_index(res)); 174 free_kernarg_segments.pop(); 175 } 176 return res; 177 } 178 179 void deallocate(void *ptr) { 180 lock l(&mutex); 181 int idx = pointer_to_index(ptr); 182 free_kernarg_segments.push(idx); 183 } 184 185 private: 186 int pointer_to_index(void *ptr) { 187 ptrdiff_t bytes = 188 static_cast<char *>(ptr) - static_cast<char *>(kernarg_region); 189 assert(bytes >= 0); 190 assert(bytes % kernarg_size_including_implicit() == 0); 191 return bytes / kernarg_size_including_implicit(); 192 } 193 struct lock { 194 lock(pthread_mutex_t *m) : m(m) { pthread_mutex_lock(m); } 195 ~lock() { pthread_mutex_unlock(m); } 196 pthread_mutex_t *m; 197 }; 198 }; 199 pthread_mutex_t KernelArgPool::mutex = PTHREAD_MUTEX_INITIALIZER; 200 201 std::unordered_map<std::string /*kernel*/, std::unique_ptr<KernelArgPool>> 202 KernelArgPoolMap; 203 204 /// Use a single entity to encode a kernel and a set of flags 205 struct KernelTy { 206 // execution mode of kernel 207 // 0 - SPMD mode (without master warp) 208 // 1 - Generic mode (with master warp) 209 int8_t ExecutionMode; 210 int16_t ConstWGSize; 211 int32_t device_id; 212 void *CallStackAddr = nullptr; 213 const char *Name; 214 215 KernelTy(int8_t _ExecutionMode, int16_t _ConstWGSize, int32_t _device_id, 216 void *_CallStackAddr, const char *_Name, 217 uint32_t _kernarg_segment_size) 218 : ExecutionMode(_ExecutionMode), ConstWGSize(_ConstWGSize), 219 device_id(_device_id), CallStackAddr(_CallStackAddr), Name(_Name) { 220 DP("Construct kernelinfo: ExecMode %d\n", ExecutionMode); 221 222 std::string N(_Name); 223 if (KernelArgPoolMap.find(N) == KernelArgPoolMap.end()) { 224 KernelArgPoolMap.insert( 225 std::make_pair(N, std::unique_ptr<KernelArgPool>( 226 new KernelArgPool(_kernarg_segment_size)))); 227 } 228 } 229 }; 230 231 /// List that contains all the kernels. 232 /// FIXME: we may need this to be per device and per library. 233 std::list<KernelTy> KernelsList; 234 235 // ATMI API to get gpu and gpu memory place 236 static atmi_place_t get_gpu_place(int device_id) { 237 return ATMI_PLACE_GPU(0, device_id); 238 } 239 static atmi_mem_place_t get_gpu_mem_place(int device_id) { 240 return ATMI_MEM_PLACE_GPU_MEM(0, device_id, 0); 241 } 242 243 static std::vector<hsa_agent_t> find_gpu_agents() { 244 std::vector<hsa_agent_t> res; 245 246 hsa_status_t err = hsa_iterate_agents( 247 [](hsa_agent_t agent, void *data) -> hsa_status_t { 248 std::vector<hsa_agent_t> *res = 249 static_cast<std::vector<hsa_agent_t> *>(data); 250 251 hsa_device_type_t device_type; 252 // get_info fails iff HSA runtime not yet initialized 253 hsa_status_t err = 254 hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 255 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) 256 printf("rtl.cpp: err %d\n", err); 257 assert(err == HSA_STATUS_SUCCESS); 258 259 if (device_type == HSA_DEVICE_TYPE_GPU) { 260 res->push_back(agent); 261 } 262 return HSA_STATUS_SUCCESS; 263 }, 264 &res); 265 266 // iterate_agents fails iff HSA runtime not yet initialized 267 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) 268 printf("rtl.cpp: err %d\n", err); 269 assert(err == HSA_STATUS_SUCCESS); 270 return res; 271 } 272 273 static void callbackQueue(hsa_status_t status, hsa_queue_t *source, 274 void *data) { 275 if (status != HSA_STATUS_SUCCESS) { 276 const char *status_string; 277 if (hsa_status_string(status, &status_string) != HSA_STATUS_SUCCESS) { 278 status_string = "unavailable"; 279 } 280 fprintf(stderr, "[%s:%d] GPU error in queue %p %d (%s)\n", __FILE__, 281 __LINE__, source, status, status_string); 282 abort(); 283 } 284 } 285 286 namespace core { 287 namespace { 288 void packet_store_release(uint32_t *packet, uint16_t header, uint16_t rest) { 289 __atomic_store_n(packet, header | (rest << 16), __ATOMIC_RELEASE); 290 } 291 292 uint16_t create_header() { 293 uint16_t header = HSA_PACKET_TYPE_KERNEL_DISPATCH << HSA_PACKET_HEADER_TYPE; 294 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE; 295 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE; 296 return header; 297 } 298 } // namespace 299 } // namespace core 300 301 /// Class containing all the device information 302 class RTLDeviceInfoTy { 303 std::vector<std::list<FuncOrGblEntryTy>> FuncGblEntries; 304 305 public: 306 // load binary populates symbol tables and mutates various global state 307 // run uses those symbol tables 308 std::shared_timed_mutex load_run_lock; 309 310 int NumberOfDevices; 311 312 // GPU devices 313 std::vector<hsa_agent_t> HSAAgents; 314 std::vector<hsa_queue_t *> HSAQueues; // one per gpu 315 316 // Device properties 317 std::vector<int> ComputeUnits; 318 std::vector<int> GroupsPerDevice; 319 std::vector<int> ThreadsPerGroup; 320 std::vector<int> WarpSize; 321 std::vector<std::string> GPUName; 322 323 // OpenMP properties 324 std::vector<int> NumTeams; 325 std::vector<int> NumThreads; 326 327 // OpenMP Environment properties 328 int EnvNumTeams; 329 int EnvTeamLimit; 330 int EnvMaxTeamsDefault; 331 332 // OpenMP Requires Flags 333 int64_t RequiresFlags; 334 335 // Resource pools 336 SignalPoolT FreeSignalPool; 337 338 bool hostcall_required = false; 339 340 std::vector<hsa_executable_t> HSAExecutables; 341 342 struct atmiFreePtrDeletor { 343 void operator()(void *p) { 344 atmi_free(p); // ignore failure to free 345 } 346 }; 347 348 // device_State shared across loaded binaries, error if inconsistent size 349 std::vector<std::pair<std::unique_ptr<void, atmiFreePtrDeletor>, uint64_t>> 350 deviceStateStore; 351 352 static const unsigned HardTeamLimit = 353 (1 << 16) - 1; // 64K needed to fit in uint16 354 static const int DefaultNumTeams = 128; 355 static const int Max_Teams = 356 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_Teams]; 357 static const int Warp_Size = 358 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; 359 static const int Max_WG_Size = 360 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_WG_Size]; 361 static const int Default_WG_Size = 362 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Default_WG_Size]; 363 364 using MemcpyFunc = atmi_status_t (*)(hsa_signal_t, void *, const void *, 365 size_t size, hsa_agent_t); 366 atmi_status_t freesignalpool_memcpy(void *dest, const void *src, size_t size, 367 MemcpyFunc Func, int32_t deviceId) { 368 hsa_agent_t agent = HSAAgents[deviceId]; 369 hsa_signal_t s = FreeSignalPool.pop(); 370 if (s.handle == 0) { 371 return ATMI_STATUS_ERROR; 372 } 373 atmi_status_t r = Func(s, dest, src, size, agent); 374 FreeSignalPool.push(s); 375 return r; 376 } 377 378 atmi_status_t freesignalpool_memcpy_d2h(void *dest, const void *src, 379 size_t size, int32_t deviceId) { 380 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_d2h, deviceId); 381 } 382 383 atmi_status_t freesignalpool_memcpy_h2d(void *dest, const void *src, 384 size_t size, int32_t deviceId) { 385 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_h2d, deviceId); 386 } 387 388 // Record entry point associated with device 389 void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) { 390 assert(device_id < (int32_t)FuncGblEntries.size() && 391 "Unexpected device id!"); 392 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 393 394 E.Entries.push_back(entry); 395 } 396 397 // Return true if the entry is associated with device 398 bool findOffloadEntry(int32_t device_id, void *addr) { 399 assert(device_id < (int32_t)FuncGblEntries.size() && 400 "Unexpected device id!"); 401 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 402 403 for (auto &it : E.Entries) { 404 if (it.addr == addr) 405 return true; 406 } 407 408 return false; 409 } 410 411 // Return the pointer to the target entries table 412 __tgt_target_table *getOffloadEntriesTable(int32_t device_id) { 413 assert(device_id < (int32_t)FuncGblEntries.size() && 414 "Unexpected device id!"); 415 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 416 417 int32_t size = E.Entries.size(); 418 419 // Table is empty 420 if (!size) 421 return 0; 422 423 __tgt_offload_entry *begin = &E.Entries[0]; 424 __tgt_offload_entry *end = &E.Entries[size - 1]; 425 426 // Update table info according to the entries and return the pointer 427 E.Table.EntriesBegin = begin; 428 E.Table.EntriesEnd = ++end; 429 430 return &E.Table; 431 } 432 433 // Clear entries table for a device 434 void clearOffloadEntriesTable(int device_id) { 435 assert(device_id < (int32_t)FuncGblEntries.size() && 436 "Unexpected device id!"); 437 FuncGblEntries[device_id].emplace_back(); 438 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 439 // KernelArgPoolMap.clear(); 440 E.Entries.clear(); 441 E.Table.EntriesBegin = E.Table.EntriesEnd = 0; 442 } 443 444 RTLDeviceInfoTy() { 445 // LIBOMPTARGET_KERNEL_TRACE provides a kernel launch trace to stderr 446 // anytime. You do not need a debug library build. 447 // 0 => no tracing 448 // 1 => tracing dispatch only 449 // >1 => verbosity increase 450 if (char *envStr = getenv("LIBOMPTARGET_KERNEL_TRACE")) 451 print_kernel_trace = atoi(envStr); 452 else 453 print_kernel_trace = 0; 454 455 DP("Start initializing HSA-ATMI\n"); 456 atmi_status_t err = atmi_init(); 457 if (err != ATMI_STATUS_SUCCESS) { 458 DP("Error when initializing HSA-ATMI\n"); 459 return; 460 } 461 // Init hostcall soon after initializing ATMI 462 hostrpc_init(); 463 464 HSAAgents = find_gpu_agents(); 465 NumberOfDevices = (int)HSAAgents.size(); 466 467 if (NumberOfDevices == 0) { 468 DP("There are no devices supporting HSA.\n"); 469 return; 470 } else { 471 DP("There are %d devices supporting HSA.\n", NumberOfDevices); 472 } 473 474 // Init the device info 475 HSAQueues.resize(NumberOfDevices); 476 FuncGblEntries.resize(NumberOfDevices); 477 ThreadsPerGroup.resize(NumberOfDevices); 478 ComputeUnits.resize(NumberOfDevices); 479 GPUName.resize(NumberOfDevices); 480 GroupsPerDevice.resize(NumberOfDevices); 481 WarpSize.resize(NumberOfDevices); 482 NumTeams.resize(NumberOfDevices); 483 NumThreads.resize(NumberOfDevices); 484 deviceStateStore.resize(NumberOfDevices); 485 486 for (int i = 0; i < NumberOfDevices; i++) { 487 HSAQueues[i] = nullptr; 488 } 489 490 for (int i = 0; i < NumberOfDevices; i++) { 491 uint32_t queue_size = 0; 492 { 493 hsa_status_t err = hsa_agent_get_info( 494 HSAAgents[i], HSA_AGENT_INFO_QUEUE_MAX_SIZE, &queue_size); 495 if (err != HSA_STATUS_SUCCESS) { 496 DP("HSA query QUEUE_MAX_SIZE failed for agent %d\n", i); 497 return; 498 } 499 if (queue_size > core::Runtime::getInstance().getMaxQueueSize()) { 500 queue_size = core::Runtime::getInstance().getMaxQueueSize(); 501 } 502 } 503 504 hsa_status_t rc = hsa_queue_create( 505 HSAAgents[i], queue_size, HSA_QUEUE_TYPE_MULTI, callbackQueue, NULL, 506 UINT32_MAX, UINT32_MAX, &HSAQueues[i]); 507 if (rc != HSA_STATUS_SUCCESS) { 508 DP("Failed to create HSA queue %d\n", i); 509 return; 510 } 511 512 deviceStateStore[i] = {nullptr, 0}; 513 } 514 515 for (int i = 0; i < NumberOfDevices; i++) { 516 ThreadsPerGroup[i] = RTLDeviceInfoTy::Default_WG_Size; 517 GroupsPerDevice[i] = RTLDeviceInfoTy::DefaultNumTeams; 518 ComputeUnits[i] = 1; 519 DP("Device %d: Initial groupsPerDevice %d & threadsPerGroup %d\n", i, 520 GroupsPerDevice[i], ThreadsPerGroup[i]); 521 } 522 523 // Get environment variables regarding teams 524 char *envStr = getenv("OMP_TEAM_LIMIT"); 525 if (envStr) { 526 // OMP_TEAM_LIMIT has been set 527 EnvTeamLimit = std::stoi(envStr); 528 DP("Parsed OMP_TEAM_LIMIT=%d\n", EnvTeamLimit); 529 } else { 530 EnvTeamLimit = -1; 531 } 532 envStr = getenv("OMP_NUM_TEAMS"); 533 if (envStr) { 534 // OMP_NUM_TEAMS has been set 535 EnvNumTeams = std::stoi(envStr); 536 DP("Parsed OMP_NUM_TEAMS=%d\n", EnvNumTeams); 537 } else { 538 EnvNumTeams = -1; 539 } 540 // Get environment variables regarding expMaxTeams 541 envStr = getenv("OMP_MAX_TEAMS_DEFAULT"); 542 if (envStr) { 543 EnvMaxTeamsDefault = std::stoi(envStr); 544 DP("Parsed OMP_MAX_TEAMS_DEFAULT=%d\n", EnvMaxTeamsDefault); 545 } else { 546 EnvMaxTeamsDefault = -1; 547 } 548 549 // Default state. 550 RequiresFlags = OMP_REQ_UNDEFINED; 551 } 552 553 ~RTLDeviceInfoTy() { 554 DP("Finalizing the HSA-ATMI DeviceInfo.\n"); 555 // Run destructors on types that use HSA before 556 // atmi_finalize removes access to it 557 deviceStateStore.clear(); 558 KernelArgPoolMap.clear(); 559 // Terminate hostrpc before finalizing ATMI 560 hostrpc_terminate(); 561 562 for (uint32_t I = 0; I < HSAExecutables.size(); I++) { 563 hsa_status_t Err = hsa_executable_destroy(HSAExecutables[I]); 564 if (Err != HSA_STATUS_SUCCESS) { 565 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 566 "Destroying executable", get_error_string(Err)); 567 } 568 } 569 570 atmi_finalize(); 571 } 572 }; 573 574 pthread_mutex_t SignalPoolT::mutex = PTHREAD_MUTEX_INITIALIZER; 575 576 // TODO: May need to drop the trailing to fields until deviceRTL is updated 577 struct omptarget_device_environmentTy { 578 int32_t debug_level; // gets value of envvar LIBOMPTARGET_DEVICE_RTL_DEBUG 579 // only useful for Debug build of deviceRTLs 580 int32_t num_devices; // gets number of active offload devices 581 int32_t device_num; // gets a value 0 to num_devices-1 582 }; 583 584 static RTLDeviceInfoTy DeviceInfo; 585 586 namespace { 587 588 int32_t dataRetrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size, 589 __tgt_async_info *AsyncInfo) { 590 assert(AsyncInfo && "AsyncInfo is nullptr"); 591 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 592 // Return success if we are not copying back to host from target. 593 if (!HstPtr) 594 return OFFLOAD_SUCCESS; 595 atmi_status_t err; 596 DP("Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 597 (long long unsigned)(Elf64_Addr)TgtPtr, 598 (long long unsigned)(Elf64_Addr)HstPtr); 599 600 err = DeviceInfo.freesignalpool_memcpy_d2h(HstPtr, TgtPtr, (size_t)Size, 601 DeviceId); 602 603 if (err != ATMI_STATUS_SUCCESS) { 604 DP("Error when copying data from device to host. Pointers: " 605 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 606 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 607 return OFFLOAD_FAIL; 608 } 609 DP("DONE Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 610 (long long unsigned)(Elf64_Addr)TgtPtr, 611 (long long unsigned)(Elf64_Addr)HstPtr); 612 return OFFLOAD_SUCCESS; 613 } 614 615 int32_t dataSubmit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size, 616 __tgt_async_info *AsyncInfo) { 617 assert(AsyncInfo && "AsyncInfo is nullptr"); 618 atmi_status_t err; 619 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 620 // Return success if we are not doing host to target. 621 if (!HstPtr) 622 return OFFLOAD_SUCCESS; 623 624 DP("Submit data %ld bytes, (hst:%016llx) -> (tgt:%016llx).\n", Size, 625 (long long unsigned)(Elf64_Addr)HstPtr, 626 (long long unsigned)(Elf64_Addr)TgtPtr); 627 err = DeviceInfo.freesignalpool_memcpy_h2d(TgtPtr, HstPtr, (size_t)Size, 628 DeviceId); 629 if (err != ATMI_STATUS_SUCCESS) { 630 DP("Error when copying data from host to device. Pointers: " 631 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 632 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 633 return OFFLOAD_FAIL; 634 } 635 return OFFLOAD_SUCCESS; 636 } 637 638 // Async. 639 // The implementation was written with cuda streams in mind. The semantics of 640 // that are to execute kernels on a queue in order of insertion. A synchronise 641 // call then makes writes visible between host and device. This means a series 642 // of N data_submit_async calls are expected to execute serially. HSA offers 643 // various options to run the data copies concurrently. This may require changes 644 // to libomptarget. 645 646 // __tgt_async_info* contains a void * Queue. Queue = 0 is used to indicate that 647 // there are no outstanding kernels that need to be synchronized. Any async call 648 // may be passed a Queue==0, at which point the cuda implementation will set it 649 // to non-null (see getStream). The cuda streams are per-device. Upstream may 650 // change this interface to explicitly initialize the AsyncInfo_pointer, but 651 // until then hsa lazily initializes it as well. 652 653 void initAsyncInfo(__tgt_async_info *AsyncInfo) { 654 // set non-null while using async calls, return to null to indicate completion 655 assert(AsyncInfo); 656 if (!AsyncInfo->Queue) { 657 AsyncInfo->Queue = reinterpret_cast<void *>(UINT64_MAX); 658 } 659 } 660 void finiAsyncInfo(__tgt_async_info *AsyncInfo) { 661 assert(AsyncInfo); 662 assert(AsyncInfo->Queue); 663 AsyncInfo->Queue = 0; 664 } 665 666 bool elf_machine_id_is_amdgcn(__tgt_device_image *image) { 667 const uint16_t amdgcnMachineID = 224; // EM_AMDGPU may not be in system elf.h 668 int32_t r = elf_check_machine(image, amdgcnMachineID); 669 if (!r) { 670 DP("Supported machine ID not found\n"); 671 } 672 return r; 673 } 674 675 uint32_t elf_e_flags(__tgt_device_image *image) { 676 char *img_begin = (char *)image->ImageStart; 677 size_t img_size = (char *)image->ImageEnd - img_begin; 678 679 Elf *e = elf_memory(img_begin, img_size); 680 if (!e) { 681 DP("Unable to get ELF handle: %s!\n", elf_errmsg(-1)); 682 return 0; 683 } 684 685 Elf64_Ehdr *eh64 = elf64_getehdr(e); 686 687 if (!eh64) { 688 DP("Unable to get machine ID from ELF file!\n"); 689 elf_end(e); 690 return 0; 691 } 692 693 uint32_t Flags = eh64->e_flags; 694 695 elf_end(e); 696 DP("ELF Flags: 0x%x\n", Flags); 697 return Flags; 698 } 699 } // namespace 700 701 int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) { 702 return elf_machine_id_is_amdgcn(image); 703 } 704 705 int __tgt_rtl_number_of_devices() { return DeviceInfo.NumberOfDevices; } 706 707 int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) { 708 DP("Init requires flags to %ld\n", RequiresFlags); 709 DeviceInfo.RequiresFlags = RequiresFlags; 710 return RequiresFlags; 711 } 712 713 int32_t __tgt_rtl_init_device(int device_id) { 714 hsa_status_t err; 715 716 // this is per device id init 717 DP("Initialize the device id: %d\n", device_id); 718 719 hsa_agent_t agent = DeviceInfo.HSAAgents[device_id]; 720 721 // Get number of Compute Unit 722 uint32_t compute_units = 0; 723 err = hsa_agent_get_info( 724 agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT, 725 &compute_units); 726 if (err != HSA_STATUS_SUCCESS) { 727 DeviceInfo.ComputeUnits[device_id] = 1; 728 DP("Error getting compute units : settiing to 1\n"); 729 } else { 730 DeviceInfo.ComputeUnits[device_id] = compute_units; 731 DP("Using %d compute unis per grid\n", DeviceInfo.ComputeUnits[device_id]); 732 } 733 734 char GetInfoName[64]; // 64 max size returned by get info 735 err = hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AGENT_INFO_NAME, 736 (void *)GetInfoName); 737 if (err) 738 DeviceInfo.GPUName[device_id] = "--unknown gpu--"; 739 else { 740 DeviceInfo.GPUName[device_id] = GetInfoName; 741 } 742 743 if (print_kernel_trace & STARTUP_DETAILS) 744 fprintf(stderr, "Device#%-2d CU's: %2d %s\n", device_id, 745 DeviceInfo.ComputeUnits[device_id], 746 DeviceInfo.GPUName[device_id].c_str()); 747 748 // Query attributes to determine number of threads/block and blocks/grid. 749 uint16_t workgroup_max_dim[3]; 750 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_DIM, 751 &workgroup_max_dim); 752 if (err != HSA_STATUS_SUCCESS) { 753 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::DefaultNumTeams; 754 DP("Error getting grid dims: num groups : %d\n", 755 RTLDeviceInfoTy::DefaultNumTeams); 756 } else if (workgroup_max_dim[0] <= RTLDeviceInfoTy::HardTeamLimit) { 757 DeviceInfo.GroupsPerDevice[device_id] = workgroup_max_dim[0]; 758 DP("Using %d ROCm blocks per grid\n", 759 DeviceInfo.GroupsPerDevice[device_id]); 760 } else { 761 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::HardTeamLimit; 762 DP("Max ROCm blocks per grid %d exceeds the hard team limit %d, capping " 763 "at the hard limit\n", 764 workgroup_max_dim[0], RTLDeviceInfoTy::HardTeamLimit); 765 } 766 767 // Get thread limit 768 hsa_dim3_t grid_max_dim; 769 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &grid_max_dim); 770 if (err == HSA_STATUS_SUCCESS) { 771 DeviceInfo.ThreadsPerGroup[device_id] = 772 reinterpret_cast<uint32_t *>(&grid_max_dim)[0] / 773 DeviceInfo.GroupsPerDevice[device_id]; 774 if ((DeviceInfo.ThreadsPerGroup[device_id] > 775 RTLDeviceInfoTy::Max_WG_Size) || 776 DeviceInfo.ThreadsPerGroup[device_id] == 0) { 777 DP("Capped thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 778 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 779 } else { 780 DP("Using ROCm Queried thread limit: %d\n", 781 DeviceInfo.ThreadsPerGroup[device_id]); 782 } 783 } else { 784 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 785 DP("Error getting max block dimension, use default:%d \n", 786 RTLDeviceInfoTy::Max_WG_Size); 787 } 788 789 // Get wavefront size 790 uint32_t wavefront_size = 0; 791 err = 792 hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size); 793 if (err == HSA_STATUS_SUCCESS) { 794 DP("Queried wavefront size: %d\n", wavefront_size); 795 DeviceInfo.WarpSize[device_id] = wavefront_size; 796 } else { 797 DP("Default wavefront size: %d\n", 798 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]); 799 DeviceInfo.WarpSize[device_id] = 800 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; 801 } 802 803 // Adjust teams to the env variables 804 if (DeviceInfo.EnvTeamLimit > 0 && 805 DeviceInfo.GroupsPerDevice[device_id] > DeviceInfo.EnvTeamLimit) { 806 DeviceInfo.GroupsPerDevice[device_id] = DeviceInfo.EnvTeamLimit; 807 DP("Capping max groups per device to OMP_TEAM_LIMIT=%d\n", 808 DeviceInfo.EnvTeamLimit); 809 } 810 811 // Set default number of teams 812 if (DeviceInfo.EnvNumTeams > 0) { 813 DeviceInfo.NumTeams[device_id] = DeviceInfo.EnvNumTeams; 814 DP("Default number of teams set according to environment %d\n", 815 DeviceInfo.EnvNumTeams); 816 } else { 817 char *TeamsPerCUEnvStr = getenv("OMP_TARGET_TEAMS_PER_PROC"); 818 int TeamsPerCU = 1; // default number of teams per CU is 1 819 if (TeamsPerCUEnvStr) { 820 TeamsPerCU = std::stoi(TeamsPerCUEnvStr); 821 } 822 823 DeviceInfo.NumTeams[device_id] = 824 TeamsPerCU * DeviceInfo.ComputeUnits[device_id]; 825 DP("Default number of teams = %d * number of compute units %d\n", 826 TeamsPerCU, DeviceInfo.ComputeUnits[device_id]); 827 } 828 829 if (DeviceInfo.NumTeams[device_id] > DeviceInfo.GroupsPerDevice[device_id]) { 830 DeviceInfo.NumTeams[device_id] = DeviceInfo.GroupsPerDevice[device_id]; 831 DP("Default number of teams exceeds device limit, capping at %d\n", 832 DeviceInfo.GroupsPerDevice[device_id]); 833 } 834 835 // Set default number of threads 836 DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::Default_WG_Size; 837 DP("Default number of threads set according to library's default %d\n", 838 RTLDeviceInfoTy::Default_WG_Size); 839 if (DeviceInfo.NumThreads[device_id] > 840 DeviceInfo.ThreadsPerGroup[device_id]) { 841 DeviceInfo.NumThreads[device_id] = DeviceInfo.ThreadsPerGroup[device_id]; 842 DP("Default number of threads exceeds device limit, capping at %d\n", 843 DeviceInfo.ThreadsPerGroup[device_id]); 844 } 845 846 DP("Device %d: default limit for groupsPerDevice %d & threadsPerGroup %d\n", 847 device_id, DeviceInfo.GroupsPerDevice[device_id], 848 DeviceInfo.ThreadsPerGroup[device_id]); 849 850 DP("Device %d: wavefront size %d, total threads %d x %d = %d\n", device_id, 851 DeviceInfo.WarpSize[device_id], DeviceInfo.ThreadsPerGroup[device_id], 852 DeviceInfo.GroupsPerDevice[device_id], 853 DeviceInfo.GroupsPerDevice[device_id] * 854 DeviceInfo.ThreadsPerGroup[device_id]); 855 856 return OFFLOAD_SUCCESS; 857 } 858 859 namespace { 860 Elf64_Shdr *find_only_SHT_HASH(Elf *elf) { 861 size_t N; 862 int rc = elf_getshdrnum(elf, &N); 863 if (rc != 0) { 864 return nullptr; 865 } 866 867 Elf64_Shdr *result = nullptr; 868 for (size_t i = 0; i < N; i++) { 869 Elf_Scn *scn = elf_getscn(elf, i); 870 if (scn) { 871 Elf64_Shdr *shdr = elf64_getshdr(scn); 872 if (shdr) { 873 if (shdr->sh_type == SHT_HASH) { 874 if (result == nullptr) { 875 result = shdr; 876 } else { 877 // multiple SHT_HASH sections not handled 878 return nullptr; 879 } 880 } 881 } 882 } 883 } 884 return result; 885 } 886 887 const Elf64_Sym *elf_lookup(Elf *elf, char *base, Elf64_Shdr *section_hash, 888 const char *symname) { 889 890 assert(section_hash); 891 size_t section_symtab_index = section_hash->sh_link; 892 Elf64_Shdr *section_symtab = 893 elf64_getshdr(elf_getscn(elf, section_symtab_index)); 894 size_t section_strtab_index = section_symtab->sh_link; 895 896 const Elf64_Sym *symtab = 897 reinterpret_cast<const Elf64_Sym *>(base + section_symtab->sh_offset); 898 899 const uint32_t *hashtab = 900 reinterpret_cast<const uint32_t *>(base + section_hash->sh_offset); 901 902 // Layout: 903 // nbucket 904 // nchain 905 // bucket[nbucket] 906 // chain[nchain] 907 uint32_t nbucket = hashtab[0]; 908 const uint32_t *bucket = &hashtab[2]; 909 const uint32_t *chain = &hashtab[nbucket + 2]; 910 911 const size_t max = strlen(symname) + 1; 912 const uint32_t hash = elf_hash(symname); 913 for (uint32_t i = bucket[hash % nbucket]; i != 0; i = chain[i]) { 914 char *n = elf_strptr(elf, section_strtab_index, symtab[i].st_name); 915 if (strncmp(symname, n, max) == 0) { 916 return &symtab[i]; 917 } 918 } 919 920 return nullptr; 921 } 922 923 typedef struct { 924 void *addr = nullptr; 925 uint32_t size = UINT32_MAX; 926 uint32_t sh_type = SHT_NULL; 927 } symbol_info; 928 929 int get_symbol_info_without_loading(Elf *elf, char *base, const char *symname, 930 symbol_info *res) { 931 if (elf_kind(elf) != ELF_K_ELF) { 932 return 1; 933 } 934 935 Elf64_Shdr *section_hash = find_only_SHT_HASH(elf); 936 if (!section_hash) { 937 return 1; 938 } 939 940 const Elf64_Sym *sym = elf_lookup(elf, base, section_hash, symname); 941 if (!sym) { 942 return 1; 943 } 944 945 if (sym->st_size > UINT32_MAX) { 946 return 1; 947 } 948 949 if (sym->st_shndx == SHN_UNDEF) { 950 return 1; 951 } 952 953 Elf_Scn *section = elf_getscn(elf, sym->st_shndx); 954 if (!section) { 955 return 1; 956 } 957 958 Elf64_Shdr *header = elf64_getshdr(section); 959 if (!header) { 960 return 1; 961 } 962 963 res->addr = sym->st_value + base; 964 res->size = static_cast<uint32_t>(sym->st_size); 965 res->sh_type = header->sh_type; 966 return 0; 967 } 968 969 int get_symbol_info_without_loading(char *base, size_t img_size, 970 const char *symname, symbol_info *res) { 971 Elf *elf = elf_memory(base, img_size); 972 if (elf) { 973 int rc = get_symbol_info_without_loading(elf, base, symname, res); 974 elf_end(elf); 975 return rc; 976 } 977 return 1; 978 } 979 980 atmi_status_t interop_get_symbol_info(char *base, size_t img_size, 981 const char *symname, void **var_addr, 982 uint32_t *var_size) { 983 symbol_info si; 984 int rc = get_symbol_info_without_loading(base, img_size, symname, &si); 985 if (rc == 0) { 986 *var_addr = si.addr; 987 *var_size = si.size; 988 return ATMI_STATUS_SUCCESS; 989 } else { 990 return ATMI_STATUS_ERROR; 991 } 992 } 993 994 template <typename C> 995 atmi_status_t module_register_from_memory_to_place( 996 void *module_bytes, size_t module_size, atmi_place_t place, C cb, 997 std::vector<hsa_executable_t> &HSAExecutables) { 998 auto L = [](void *data, size_t size, void *cb_state) -> atmi_status_t { 999 C *unwrapped = static_cast<C *>(cb_state); 1000 return (*unwrapped)(data, size); 1001 }; 1002 return core::Runtime::RegisterModuleFromMemory( 1003 module_bytes, module_size, place, L, static_cast<void *>(&cb), 1004 HSAExecutables); 1005 } 1006 } // namespace 1007 1008 static uint64_t get_device_State_bytes(char *ImageStart, size_t img_size) { 1009 uint64_t device_State_bytes = 0; 1010 { 1011 // If this is the deviceRTL, get the state variable size 1012 symbol_info size_si; 1013 int rc = get_symbol_info_without_loading( 1014 ImageStart, img_size, "omptarget_nvptx_device_State_size", &size_si); 1015 1016 if (rc == 0) { 1017 if (size_si.size != sizeof(uint64_t)) { 1018 DP("Found device_State_size variable with wrong size\n"); 1019 return 0; 1020 } 1021 1022 // Read number of bytes directly from the elf 1023 memcpy(&device_State_bytes, size_si.addr, sizeof(uint64_t)); 1024 } 1025 } 1026 return device_State_bytes; 1027 } 1028 1029 static __tgt_target_table * 1030 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1031 1032 static __tgt_target_table * 1033 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1034 1035 __tgt_target_table *__tgt_rtl_load_binary(int32_t device_id, 1036 __tgt_device_image *image) { 1037 DeviceInfo.load_run_lock.lock(); 1038 __tgt_target_table *res = __tgt_rtl_load_binary_locked(device_id, image); 1039 DeviceInfo.load_run_lock.unlock(); 1040 return res; 1041 } 1042 1043 struct device_environment { 1044 // initialise an omptarget_device_environmentTy in the deviceRTL 1045 // patches around differences in the deviceRTL between trunk, aomp, 1046 // rocmcc. Over time these differences will tend to zero and this class 1047 // simplified. 1048 // Symbol may be in .data or .bss, and may be missing fields: 1049 // - aomp has debug_level, num_devices, device_num 1050 // - trunk has debug_level 1051 // - under review in trunk is debug_level, device_num 1052 // - rocmcc matches aomp, patch to swap num_devices and device_num 1053 1054 // The symbol may also have been deadstripped because the device side 1055 // accessors were unused. 1056 1057 // If the symbol is in .data (aomp, rocm) it can be written directly. 1058 // If it is in .bss, we must wait for it to be allocated space on the 1059 // gpu (trunk) and initialize after loading. 1060 const char *sym() { return "omptarget_device_environment"; } 1061 1062 omptarget_device_environmentTy host_device_env; 1063 symbol_info si; 1064 bool valid = false; 1065 1066 __tgt_device_image *image; 1067 const size_t img_size; 1068 1069 device_environment(int device_id, int number_devices, 1070 __tgt_device_image *image, const size_t img_size) 1071 : image(image), img_size(img_size) { 1072 1073 host_device_env.num_devices = number_devices; 1074 host_device_env.device_num = device_id; 1075 host_device_env.debug_level = 0; 1076 #ifdef OMPTARGET_DEBUG 1077 if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) { 1078 host_device_env.debug_level = std::stoi(envStr); 1079 } 1080 #endif 1081 1082 int rc = get_symbol_info_without_loading((char *)image->ImageStart, 1083 img_size, sym(), &si); 1084 if (rc != 0) { 1085 DP("Finding global device environment '%s' - symbol missing.\n", sym()); 1086 return; 1087 } 1088 1089 if (si.size > sizeof(host_device_env)) { 1090 DP("Symbol '%s' has size %u, expected at most %zu.\n", sym(), si.size, 1091 sizeof(host_device_env)); 1092 return; 1093 } 1094 1095 valid = true; 1096 } 1097 1098 bool in_image() { return si.sh_type != SHT_NOBITS; } 1099 1100 atmi_status_t before_loading(void *data, size_t size) { 1101 if (valid) { 1102 if (in_image()) { 1103 DP("Setting global device environment before load (%u bytes)\n", 1104 si.size); 1105 uint64_t offset = (char *)si.addr - (char *)image->ImageStart; 1106 void *pos = (char *)data + offset; 1107 memcpy(pos, &host_device_env, si.size); 1108 } 1109 } 1110 return ATMI_STATUS_SUCCESS; 1111 } 1112 1113 atmi_status_t after_loading() { 1114 if (valid) { 1115 if (!in_image()) { 1116 DP("Setting global device environment after load (%u bytes)\n", 1117 si.size); 1118 int device_id = host_device_env.device_num; 1119 1120 void *state_ptr; 1121 uint32_t state_ptr_size; 1122 atmi_status_t err = atmi_interop_hsa_get_symbol_info( 1123 get_gpu_mem_place(device_id), sym(), &state_ptr, &state_ptr_size); 1124 if (err != ATMI_STATUS_SUCCESS) { 1125 DP("failed to find %s in loaded image\n", sym()); 1126 return err; 1127 } 1128 1129 if (state_ptr_size != si.size) { 1130 DP("Symbol had size %u before loading, %u after\n", state_ptr_size, 1131 si.size); 1132 return ATMI_STATUS_ERROR; 1133 } 1134 1135 return DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &host_device_env, 1136 state_ptr_size, device_id); 1137 } 1138 } 1139 return ATMI_STATUS_SUCCESS; 1140 } 1141 }; 1142 1143 static atmi_status_t atmi_calloc(void **ret_ptr, size_t size, 1144 atmi_mem_place_t place) { 1145 uint64_t rounded = 4 * ((size + 3) / 4); 1146 void *ptr; 1147 atmi_status_t err = atmi_malloc(&ptr, rounded, place); 1148 if (err != ATMI_STATUS_SUCCESS) { 1149 return err; 1150 } 1151 1152 hsa_status_t rc = hsa_amd_memory_fill(ptr, 0, rounded / 4); 1153 if (rc != HSA_STATUS_SUCCESS) { 1154 fprintf(stderr, "zero fill device_state failed with %u\n", rc); 1155 atmi_free(ptr); 1156 return ATMI_STATUS_ERROR; 1157 } 1158 1159 *ret_ptr = ptr; 1160 return ATMI_STATUS_SUCCESS; 1161 } 1162 1163 static bool image_contains_symbol(void *data, size_t size, const char *sym) { 1164 symbol_info si; 1165 int rc = get_symbol_info_without_loading((char *)data, size, sym, &si); 1166 return (rc == 0) && (si.addr != nullptr); 1167 } 1168 1169 __tgt_target_table *__tgt_rtl_load_binary_locked(int32_t device_id, 1170 __tgt_device_image *image) { 1171 // This function loads the device image onto gpu[device_id] and does other 1172 // per-image initialization work. Specifically: 1173 // 1174 // - Initialize an omptarget_device_environmentTy instance embedded in the 1175 // image at the symbol "omptarget_device_environment" 1176 // Fields debug_level, device_num, num_devices. Used by the deviceRTL. 1177 // 1178 // - Allocate a large array per-gpu (could be moved to init_device) 1179 // - Read a uint64_t at symbol omptarget_nvptx_device_State_size 1180 // - Allocate at least that many bytes of gpu memory 1181 // - Zero initialize it 1182 // - Write the pointer to the symbol omptarget_nvptx_device_State 1183 // 1184 // - Pulls some per-kernel information together from various sources and 1185 // records it in the KernelsList for quicker access later 1186 // 1187 // The initialization can be done before or after loading the image onto the 1188 // gpu. This function presently does a mixture. Using the hsa api to get/set 1189 // the information is simpler to implement, in exchange for more complicated 1190 // runtime behaviour. E.g. launching a kernel or using dma to get eight bytes 1191 // back from the gpu vs a hashtable lookup on the host. 1192 1193 const size_t img_size = (char *)image->ImageEnd - (char *)image->ImageStart; 1194 1195 DeviceInfo.clearOffloadEntriesTable(device_id); 1196 1197 // We do not need to set the ELF version because the caller of this function 1198 // had to do that to decide the right runtime to use 1199 1200 if (!elf_machine_id_is_amdgcn(image)) { 1201 return NULL; 1202 } 1203 1204 { 1205 auto env = device_environment(device_id, DeviceInfo.NumberOfDevices, image, 1206 img_size); 1207 1208 atmi_status_t err = module_register_from_memory_to_place( 1209 (void *)image->ImageStart, img_size, get_gpu_place(device_id), 1210 [&](void *data, size_t size) { 1211 if (image_contains_symbol(data, size, "needs_hostcall_buffer")) { 1212 __atomic_store_n(&DeviceInfo.hostcall_required, true, 1213 __ATOMIC_RELEASE); 1214 } 1215 return env.before_loading(data, size); 1216 }, 1217 DeviceInfo.HSAExecutables); 1218 1219 check("Module registering", err); 1220 if (err != ATMI_STATUS_SUCCESS) { 1221 fprintf(stderr, 1222 "Possible gpu arch mismatch: device:%s, image:%s please check" 1223 " compiler flag: -march=<gpu>\n", 1224 DeviceInfo.GPUName[device_id].c_str(), 1225 get_elf_mach_gfx_name(elf_e_flags(image))); 1226 return NULL; 1227 } 1228 1229 err = env.after_loading(); 1230 if (err != ATMI_STATUS_SUCCESS) { 1231 return NULL; 1232 } 1233 } 1234 1235 DP("ATMI module successfully loaded!\n"); 1236 1237 { 1238 // the device_State array is either large value in bss or a void* that 1239 // needs to be assigned to a pointer to an array of size device_state_bytes 1240 // If absent, it has been deadstripped and needs no setup. 1241 1242 void *state_ptr; 1243 uint32_t state_ptr_size; 1244 atmi_status_t err = atmi_interop_hsa_get_symbol_info( 1245 get_gpu_mem_place(device_id), "omptarget_nvptx_device_State", 1246 &state_ptr, &state_ptr_size); 1247 1248 if (err != ATMI_STATUS_SUCCESS) { 1249 DP("No device_state symbol found, skipping initialization\n"); 1250 } else { 1251 if (state_ptr_size < sizeof(void *)) { 1252 DP("unexpected size of state_ptr %u != %zu\n", state_ptr_size, 1253 sizeof(void *)); 1254 return NULL; 1255 } 1256 1257 // if it's larger than a void*, assume it's a bss array and no further 1258 // initialization is required. Only try to set up a pointer for 1259 // sizeof(void*) 1260 if (state_ptr_size == sizeof(void *)) { 1261 uint64_t device_State_bytes = 1262 get_device_State_bytes((char *)image->ImageStart, img_size); 1263 if (device_State_bytes == 0) { 1264 DP("Can't initialize device_State, missing size information\n"); 1265 return NULL; 1266 } 1267 1268 auto &dss = DeviceInfo.deviceStateStore[device_id]; 1269 if (dss.first.get() == nullptr) { 1270 assert(dss.second == 0); 1271 void *ptr = NULL; 1272 atmi_status_t err = atmi_calloc(&ptr, device_State_bytes, 1273 get_gpu_mem_place(device_id)); 1274 if (err != ATMI_STATUS_SUCCESS) { 1275 DP("Failed to allocate device_state array\n"); 1276 return NULL; 1277 } 1278 dss = { 1279 std::unique_ptr<void, RTLDeviceInfoTy::atmiFreePtrDeletor>{ptr}, 1280 device_State_bytes, 1281 }; 1282 } 1283 1284 void *ptr = dss.first.get(); 1285 if (device_State_bytes != dss.second) { 1286 DP("Inconsistent sizes of device_State unsupported\n"); 1287 return NULL; 1288 } 1289 1290 // write ptr to device memory so it can be used by later kernels 1291 err = DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &ptr, 1292 sizeof(void *), device_id); 1293 if (err != ATMI_STATUS_SUCCESS) { 1294 DP("memcpy install of state_ptr failed\n"); 1295 return NULL; 1296 } 1297 } 1298 } 1299 } 1300 1301 // Here, we take advantage of the data that is appended after img_end to get 1302 // the symbols' name we need to load. This data consist of the host entries 1303 // begin and end as well as the target name (see the offloading linker script 1304 // creation in clang compiler). 1305 1306 // Find the symbols in the module by name. The name can be obtain by 1307 // concatenating the host entry name with the target name 1308 1309 __tgt_offload_entry *HostBegin = image->EntriesBegin; 1310 __tgt_offload_entry *HostEnd = image->EntriesEnd; 1311 1312 for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) { 1313 1314 if (!e->addr) { 1315 // The host should have always something in the address to 1316 // uniquely identify the target region. 1317 fprintf(stderr, "Analyzing host entry '<null>' (size = %lld)...\n", 1318 (unsigned long long)e->size); 1319 return NULL; 1320 } 1321 1322 if (e->size) { 1323 __tgt_offload_entry entry = *e; 1324 1325 void *varptr; 1326 uint32_t varsize; 1327 1328 atmi_status_t err = atmi_interop_hsa_get_symbol_info( 1329 get_gpu_mem_place(device_id), e->name, &varptr, &varsize); 1330 1331 if (err != ATMI_STATUS_SUCCESS) { 1332 // Inform the user what symbol prevented offloading 1333 DP("Loading global '%s' (Failed)\n", e->name); 1334 return NULL; 1335 } 1336 1337 if (varsize != e->size) { 1338 DP("Loading global '%s' - size mismatch (%u != %lu)\n", e->name, 1339 varsize, e->size); 1340 return NULL; 1341 } 1342 1343 DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n", 1344 DPxPTR(e - HostBegin), e->name, DPxPTR(varptr)); 1345 entry.addr = (void *)varptr; 1346 1347 DeviceInfo.addOffloadEntry(device_id, entry); 1348 1349 if (DeviceInfo.RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY && 1350 e->flags & OMP_DECLARE_TARGET_LINK) { 1351 // If unified memory is present any target link variables 1352 // can access host addresses directly. There is no longer a 1353 // need for device copies. 1354 err = DeviceInfo.freesignalpool_memcpy_h2d(varptr, e->addr, 1355 sizeof(void *), device_id); 1356 if (err != ATMI_STATUS_SUCCESS) 1357 DP("Error when copying USM\n"); 1358 DP("Copy linked variable host address (" DPxMOD ")" 1359 "to device address (" DPxMOD ")\n", 1360 DPxPTR(*((void **)e->addr)), DPxPTR(varptr)); 1361 } 1362 1363 continue; 1364 } 1365 1366 DP("to find the kernel name: %s size: %lu\n", e->name, strlen(e->name)); 1367 1368 atmi_mem_place_t place = get_gpu_mem_place(device_id); 1369 uint32_t kernarg_segment_size; 1370 atmi_status_t err = atmi_interop_hsa_get_kernel_info( 1371 place, e->name, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE, 1372 &kernarg_segment_size); 1373 1374 // each arg is a void * in this openmp implementation 1375 uint32_t arg_num = kernarg_segment_size / sizeof(void *); 1376 std::vector<size_t> arg_sizes(arg_num); 1377 for (std::vector<size_t>::iterator it = arg_sizes.begin(); 1378 it != arg_sizes.end(); it++) { 1379 *it = sizeof(void *); 1380 } 1381 1382 // default value GENERIC (in case symbol is missing from cubin file) 1383 int8_t ExecModeVal = ExecutionModeType::GENERIC; 1384 1385 // get flat group size if present, else Default_WG_Size 1386 int16_t WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1387 1388 // get Kernel Descriptor if present. 1389 // Keep struct in sync wih getTgtAttributeStructQTy in CGOpenMPRuntime.cpp 1390 struct KernDescValType { 1391 uint16_t Version; 1392 uint16_t TSize; 1393 uint16_t WG_Size; 1394 uint8_t Mode; 1395 }; 1396 struct KernDescValType KernDescVal; 1397 std::string KernDescNameStr(e->name); 1398 KernDescNameStr += "_kern_desc"; 1399 const char *KernDescName = KernDescNameStr.c_str(); 1400 1401 void *KernDescPtr; 1402 uint32_t KernDescSize; 1403 void *CallStackAddr = nullptr; 1404 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1405 KernDescName, &KernDescPtr, &KernDescSize); 1406 1407 if (err == ATMI_STATUS_SUCCESS) { 1408 if ((size_t)KernDescSize != sizeof(KernDescVal)) 1409 DP("Loading global computation properties '%s' - size mismatch (%u != " 1410 "%lu)\n", 1411 KernDescName, KernDescSize, sizeof(KernDescVal)); 1412 1413 memcpy(&KernDescVal, KernDescPtr, (size_t)KernDescSize); 1414 1415 // Check structure size against recorded size. 1416 if ((size_t)KernDescSize != KernDescVal.TSize) 1417 DP("KernDescVal size %lu does not match advertized size %d for '%s'\n", 1418 sizeof(KernDescVal), KernDescVal.TSize, KernDescName); 1419 1420 DP("After loading global for %s KernDesc \n", KernDescName); 1421 DP("KernDesc: Version: %d\n", KernDescVal.Version); 1422 DP("KernDesc: TSize: %d\n", KernDescVal.TSize); 1423 DP("KernDesc: WG_Size: %d\n", KernDescVal.WG_Size); 1424 DP("KernDesc: Mode: %d\n", KernDescVal.Mode); 1425 1426 // Get ExecMode 1427 ExecModeVal = KernDescVal.Mode; 1428 DP("ExecModeVal %d\n", ExecModeVal); 1429 if (KernDescVal.WG_Size == 0) { 1430 KernDescVal.WG_Size = RTLDeviceInfoTy::Default_WG_Size; 1431 DP("Setting KernDescVal.WG_Size to default %d\n", KernDescVal.WG_Size); 1432 } 1433 WGSizeVal = KernDescVal.WG_Size; 1434 DP("WGSizeVal %d\n", WGSizeVal); 1435 check("Loading KernDesc computation property", err); 1436 } else { 1437 DP("Warning: Loading KernDesc '%s' - symbol not found, ", KernDescName); 1438 1439 // Generic 1440 std::string ExecModeNameStr(e->name); 1441 ExecModeNameStr += "_exec_mode"; 1442 const char *ExecModeName = ExecModeNameStr.c_str(); 1443 1444 void *ExecModePtr; 1445 uint32_t varsize; 1446 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1447 ExecModeName, &ExecModePtr, &varsize); 1448 1449 if (err == ATMI_STATUS_SUCCESS) { 1450 if ((size_t)varsize != sizeof(int8_t)) { 1451 DP("Loading global computation properties '%s' - size mismatch(%u != " 1452 "%lu)\n", 1453 ExecModeName, varsize, sizeof(int8_t)); 1454 return NULL; 1455 } 1456 1457 memcpy(&ExecModeVal, ExecModePtr, (size_t)varsize); 1458 1459 DP("After loading global for %s ExecMode = %d\n", ExecModeName, 1460 ExecModeVal); 1461 1462 if (ExecModeVal < 0 || ExecModeVal > 1) { 1463 DP("Error wrong exec_mode value specified in HSA code object file: " 1464 "%d\n", 1465 ExecModeVal); 1466 return NULL; 1467 } 1468 } else { 1469 DP("Loading global exec_mode '%s' - symbol missing, using default " 1470 "value " 1471 "GENERIC (1)\n", 1472 ExecModeName); 1473 } 1474 check("Loading computation property", err); 1475 1476 // Flat group size 1477 std::string WGSizeNameStr(e->name); 1478 WGSizeNameStr += "_wg_size"; 1479 const char *WGSizeName = WGSizeNameStr.c_str(); 1480 1481 void *WGSizePtr; 1482 uint32_t WGSize; 1483 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1484 WGSizeName, &WGSizePtr, &WGSize); 1485 1486 if (err == ATMI_STATUS_SUCCESS) { 1487 if ((size_t)WGSize != sizeof(int16_t)) { 1488 DP("Loading global computation properties '%s' - size mismatch (%u " 1489 "!= " 1490 "%lu)\n", 1491 WGSizeName, WGSize, sizeof(int16_t)); 1492 return NULL; 1493 } 1494 1495 memcpy(&WGSizeVal, WGSizePtr, (size_t)WGSize); 1496 1497 DP("After loading global for %s WGSize = %d\n", WGSizeName, WGSizeVal); 1498 1499 if (WGSizeVal < RTLDeviceInfoTy::Default_WG_Size || 1500 WGSizeVal > RTLDeviceInfoTy::Max_WG_Size) { 1501 DP("Error wrong WGSize value specified in HSA code object file: " 1502 "%d\n", 1503 WGSizeVal); 1504 WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1505 } 1506 } else { 1507 DP("Warning: Loading WGSize '%s' - symbol not found, " 1508 "using default value %d\n", 1509 WGSizeName, WGSizeVal); 1510 } 1511 1512 check("Loading WGSize computation property", err); 1513 } 1514 1515 KernelsList.push_back(KernelTy(ExecModeVal, WGSizeVal, device_id, 1516 CallStackAddr, e->name, 1517 kernarg_segment_size)); 1518 __tgt_offload_entry entry = *e; 1519 entry.addr = (void *)&KernelsList.back(); 1520 DeviceInfo.addOffloadEntry(device_id, entry); 1521 DP("Entry point %ld maps to %s\n", e - HostBegin, e->name); 1522 } 1523 1524 return DeviceInfo.getOffloadEntriesTable(device_id); 1525 } 1526 1527 void *__tgt_rtl_data_alloc(int device_id, int64_t size, void *, int32_t kind) { 1528 void *ptr = NULL; 1529 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1530 1531 if (kind != TARGET_ALLOC_DEFAULT) { 1532 REPORT("Invalid target data allocation kind or requested allocator not " 1533 "implemented yet\n"); 1534 return NULL; 1535 } 1536 1537 atmi_status_t err = atmi_malloc(&ptr, size, get_gpu_mem_place(device_id)); 1538 DP("Tgt alloc data %ld bytes, (tgt:%016llx).\n", size, 1539 (long long unsigned)(Elf64_Addr)ptr); 1540 ptr = (err == ATMI_STATUS_SUCCESS) ? ptr : NULL; 1541 return ptr; 1542 } 1543 1544 int32_t __tgt_rtl_data_submit(int device_id, void *tgt_ptr, void *hst_ptr, 1545 int64_t size) { 1546 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1547 __tgt_async_info AsyncInfo; 1548 int32_t rc = dataSubmit(device_id, tgt_ptr, hst_ptr, size, &AsyncInfo); 1549 if (rc != OFFLOAD_SUCCESS) 1550 return OFFLOAD_FAIL; 1551 1552 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1553 } 1554 1555 int32_t __tgt_rtl_data_submit_async(int device_id, void *tgt_ptr, void *hst_ptr, 1556 int64_t size, __tgt_async_info *AsyncInfo) { 1557 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1558 if (AsyncInfo) { 1559 initAsyncInfo(AsyncInfo); 1560 return dataSubmit(device_id, tgt_ptr, hst_ptr, size, AsyncInfo); 1561 } else { 1562 return __tgt_rtl_data_submit(device_id, tgt_ptr, hst_ptr, size); 1563 } 1564 } 1565 1566 int32_t __tgt_rtl_data_retrieve(int device_id, void *hst_ptr, void *tgt_ptr, 1567 int64_t size) { 1568 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1569 __tgt_async_info AsyncInfo; 1570 int32_t rc = dataRetrieve(device_id, hst_ptr, tgt_ptr, size, &AsyncInfo); 1571 if (rc != OFFLOAD_SUCCESS) 1572 return OFFLOAD_FAIL; 1573 1574 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1575 } 1576 1577 int32_t __tgt_rtl_data_retrieve_async(int device_id, void *hst_ptr, 1578 void *tgt_ptr, int64_t size, 1579 __tgt_async_info *AsyncInfo) { 1580 assert(AsyncInfo && "AsyncInfo is nullptr"); 1581 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1582 initAsyncInfo(AsyncInfo); 1583 return dataRetrieve(device_id, hst_ptr, tgt_ptr, size, AsyncInfo); 1584 } 1585 1586 int32_t __tgt_rtl_data_delete(int device_id, void *tgt_ptr) { 1587 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1588 atmi_status_t err; 1589 DP("Tgt free data (tgt:%016llx).\n", (long long unsigned)(Elf64_Addr)tgt_ptr); 1590 err = atmi_free(tgt_ptr); 1591 if (err != ATMI_STATUS_SUCCESS) { 1592 DP("Error when freeing CUDA memory\n"); 1593 return OFFLOAD_FAIL; 1594 } 1595 return OFFLOAD_SUCCESS; 1596 } 1597 1598 // Determine launch values for threadsPerGroup and num_groups. 1599 // Outputs: treadsPerGroup, num_groups 1600 // Inputs: Max_Teams, Max_WG_Size, Warp_Size, ExecutionMode, 1601 // EnvTeamLimit, EnvNumTeams, num_teams, thread_limit, 1602 // loop_tripcount. 1603 void getLaunchVals(int &threadsPerGroup, int &num_groups, int ConstWGSize, 1604 int ExecutionMode, int EnvTeamLimit, int EnvNumTeams, 1605 int num_teams, int thread_limit, uint64_t loop_tripcount, 1606 int32_t device_id) { 1607 1608 int Max_Teams = DeviceInfo.EnvMaxTeamsDefault > 0 1609 ? DeviceInfo.EnvMaxTeamsDefault 1610 : DeviceInfo.NumTeams[device_id]; 1611 if (Max_Teams > DeviceInfo.HardTeamLimit) 1612 Max_Teams = DeviceInfo.HardTeamLimit; 1613 1614 if (print_kernel_trace & STARTUP_DETAILS) { 1615 fprintf(stderr, "RTLDeviceInfoTy::Max_Teams: %d\n", 1616 RTLDeviceInfoTy::Max_Teams); 1617 fprintf(stderr, "Max_Teams: %d\n", Max_Teams); 1618 fprintf(stderr, "RTLDeviceInfoTy::Warp_Size: %d\n", 1619 RTLDeviceInfoTy::Warp_Size); 1620 fprintf(stderr, "RTLDeviceInfoTy::Max_WG_Size: %d\n", 1621 RTLDeviceInfoTy::Max_WG_Size); 1622 fprintf(stderr, "RTLDeviceInfoTy::Default_WG_Size: %d\n", 1623 RTLDeviceInfoTy::Default_WG_Size); 1624 fprintf(stderr, "thread_limit: %d\n", thread_limit); 1625 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1626 fprintf(stderr, "ConstWGSize: %d\n", ConstWGSize); 1627 } 1628 // check for thread_limit() clause 1629 if (thread_limit > 0) { 1630 threadsPerGroup = thread_limit; 1631 DP("Setting threads per block to requested %d\n", thread_limit); 1632 if (ExecutionMode == GENERIC) { // Add master warp for GENERIC 1633 threadsPerGroup += RTLDeviceInfoTy::Warp_Size; 1634 DP("Adding master wavefront: +%d threads\n", RTLDeviceInfoTy::Warp_Size); 1635 } 1636 if (threadsPerGroup > RTLDeviceInfoTy::Max_WG_Size) { // limit to max 1637 threadsPerGroup = RTLDeviceInfoTy::Max_WG_Size; 1638 DP("Setting threads per block to maximum %d\n", threadsPerGroup); 1639 } 1640 } 1641 // check flat_max_work_group_size attr here 1642 if (threadsPerGroup > ConstWGSize) { 1643 threadsPerGroup = ConstWGSize; 1644 DP("Reduced threadsPerGroup to flat-attr-group-size limit %d\n", 1645 threadsPerGroup); 1646 } 1647 if (print_kernel_trace & STARTUP_DETAILS) 1648 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1649 DP("Preparing %d threads\n", threadsPerGroup); 1650 1651 // Set default num_groups (teams) 1652 if (DeviceInfo.EnvTeamLimit > 0) 1653 num_groups = (Max_Teams < DeviceInfo.EnvTeamLimit) 1654 ? Max_Teams 1655 : DeviceInfo.EnvTeamLimit; 1656 else 1657 num_groups = Max_Teams; 1658 DP("Set default num of groups %d\n", num_groups); 1659 1660 if (print_kernel_trace & STARTUP_DETAILS) { 1661 fprintf(stderr, "num_groups: %d\n", num_groups); 1662 fprintf(stderr, "num_teams: %d\n", num_teams); 1663 } 1664 1665 // Reduce num_groups if threadsPerGroup exceeds RTLDeviceInfoTy::Max_WG_Size 1666 // This reduction is typical for default case (no thread_limit clause). 1667 // or when user goes crazy with num_teams clause. 1668 // FIXME: We cant distinguish between a constant or variable thread limit. 1669 // So we only handle constant thread_limits. 1670 if (threadsPerGroup > 1671 RTLDeviceInfoTy::Default_WG_Size) // 256 < threadsPerGroup <= 1024 1672 // Should we round threadsPerGroup up to nearest RTLDeviceInfoTy::Warp_Size 1673 // here? 1674 num_groups = (Max_Teams * RTLDeviceInfoTy::Max_WG_Size) / threadsPerGroup; 1675 1676 // check for num_teams() clause 1677 if (num_teams > 0) { 1678 num_groups = (num_teams < num_groups) ? num_teams : num_groups; 1679 } 1680 if (print_kernel_trace & STARTUP_DETAILS) { 1681 fprintf(stderr, "num_groups: %d\n", num_groups); 1682 fprintf(stderr, "DeviceInfo.EnvNumTeams %d\n", DeviceInfo.EnvNumTeams); 1683 fprintf(stderr, "DeviceInfo.EnvTeamLimit %d\n", DeviceInfo.EnvTeamLimit); 1684 } 1685 1686 if (DeviceInfo.EnvNumTeams > 0) { 1687 num_groups = (DeviceInfo.EnvNumTeams < num_groups) ? DeviceInfo.EnvNumTeams 1688 : num_groups; 1689 DP("Modifying teams based on EnvNumTeams %d\n", DeviceInfo.EnvNumTeams); 1690 } else if (DeviceInfo.EnvTeamLimit > 0) { 1691 num_groups = (DeviceInfo.EnvTeamLimit < num_groups) 1692 ? DeviceInfo.EnvTeamLimit 1693 : num_groups; 1694 DP("Modifying teams based on EnvTeamLimit%d\n", DeviceInfo.EnvTeamLimit); 1695 } else { 1696 if (num_teams <= 0) { 1697 if (loop_tripcount > 0) { 1698 if (ExecutionMode == SPMD) { 1699 // round up to the nearest integer 1700 num_groups = ((loop_tripcount - 1) / threadsPerGroup) + 1; 1701 } else { 1702 num_groups = loop_tripcount; 1703 } 1704 DP("Using %d teams due to loop trip count %" PRIu64 " and number of " 1705 "threads per block %d\n", 1706 num_groups, loop_tripcount, threadsPerGroup); 1707 } 1708 } else { 1709 num_groups = num_teams; 1710 } 1711 if (num_groups > Max_Teams) { 1712 num_groups = Max_Teams; 1713 if (print_kernel_trace & STARTUP_DETAILS) 1714 fprintf(stderr, "Limiting num_groups %d to Max_Teams %d \n", num_groups, 1715 Max_Teams); 1716 } 1717 if (num_groups > num_teams && num_teams > 0) { 1718 num_groups = num_teams; 1719 if (print_kernel_trace & STARTUP_DETAILS) 1720 fprintf(stderr, "Limiting num_groups %d to clause num_teams %d \n", 1721 num_groups, num_teams); 1722 } 1723 } 1724 1725 // num_teams clause always honored, no matter what, unless DEFAULT is active. 1726 if (num_teams > 0) { 1727 num_groups = num_teams; 1728 // Cap num_groups to EnvMaxTeamsDefault if set. 1729 if (DeviceInfo.EnvMaxTeamsDefault > 0 && 1730 num_groups > DeviceInfo.EnvMaxTeamsDefault) 1731 num_groups = DeviceInfo.EnvMaxTeamsDefault; 1732 } 1733 if (print_kernel_trace & STARTUP_DETAILS) { 1734 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1735 fprintf(stderr, "num_groups: %d\n", num_groups); 1736 fprintf(stderr, "loop_tripcount: %ld\n", loop_tripcount); 1737 } 1738 DP("Final %d num_groups and %d threadsPerGroup\n", num_groups, 1739 threadsPerGroup); 1740 } 1741 1742 static uint64_t acquire_available_packet_id(hsa_queue_t *queue) { 1743 uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1); 1744 bool full = true; 1745 while (full) { 1746 full = 1747 packet_id >= (queue->size + hsa_queue_load_read_index_scacquire(queue)); 1748 } 1749 return packet_id; 1750 } 1751 1752 static int32_t __tgt_rtl_run_target_team_region_locked( 1753 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 1754 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 1755 int32_t thread_limit, uint64_t loop_tripcount); 1756 1757 int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr, 1758 void **tgt_args, 1759 ptrdiff_t *tgt_offsets, 1760 int32_t arg_num, int32_t num_teams, 1761 int32_t thread_limit, 1762 uint64_t loop_tripcount) { 1763 1764 DeviceInfo.load_run_lock.lock_shared(); 1765 int32_t res = __tgt_rtl_run_target_team_region_locked( 1766 device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, num_teams, 1767 thread_limit, loop_tripcount); 1768 1769 DeviceInfo.load_run_lock.unlock_shared(); 1770 return res; 1771 } 1772 1773 int32_t __tgt_rtl_run_target_team_region_locked( 1774 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 1775 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 1776 int32_t thread_limit, uint64_t loop_tripcount) { 1777 // Set the context we are using 1778 // update thread limit content in gpu memory if un-initialized or specified 1779 // from host 1780 1781 DP("Run target team region thread_limit %d\n", thread_limit); 1782 1783 // All args are references. 1784 std::vector<void *> args(arg_num); 1785 std::vector<void *> ptrs(arg_num); 1786 1787 DP("Arg_num: %d\n", arg_num); 1788 for (int32_t i = 0; i < arg_num; ++i) { 1789 ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]); 1790 args[i] = &ptrs[i]; 1791 DP("Offseted base: arg[%d]:" DPxMOD "\n", i, DPxPTR(ptrs[i])); 1792 } 1793 1794 KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr; 1795 1796 std::string kernel_name = std::string(KernelInfo->Name); 1797 if (KernelInfoTable[device_id].find(kernel_name) == 1798 KernelInfoTable[device_id].end()) { 1799 DP("Kernel %s not found\n", kernel_name.c_str()); 1800 return OFFLOAD_FAIL; 1801 } 1802 1803 uint32_t group_segment_size; 1804 uint32_t sgpr_count, vgpr_count, sgpr_spill_count, vgpr_spill_count; 1805 1806 { 1807 auto it = KernelInfoTable[device_id][kernel_name]; 1808 group_segment_size = it.group_segment_size; 1809 sgpr_count = it.sgpr_count; 1810 vgpr_count = it.vgpr_count; 1811 sgpr_spill_count = it.sgpr_spill_count; 1812 vgpr_spill_count = it.vgpr_spill_count; 1813 } 1814 1815 /* 1816 * Set limit based on ThreadsPerGroup and GroupsPerDevice 1817 */ 1818 int num_groups = 0; 1819 1820 int threadsPerGroup = RTLDeviceInfoTy::Default_WG_Size; 1821 1822 getLaunchVals(threadsPerGroup, num_groups, KernelInfo->ConstWGSize, 1823 KernelInfo->ExecutionMode, DeviceInfo.EnvTeamLimit, 1824 DeviceInfo.EnvNumTeams, 1825 num_teams, // From run_region arg 1826 thread_limit, // From run_region arg 1827 loop_tripcount, // From run_region arg 1828 KernelInfo->device_id); 1829 1830 if (print_kernel_trace >= LAUNCH) { 1831 // enum modes are SPMD, GENERIC, NONE 0,1,2 1832 // if doing rtl timing, print to stderr, unless stdout requested. 1833 bool traceToStdout = print_kernel_trace & (RTL_TO_STDOUT | RTL_TIMING); 1834 fprintf(traceToStdout ? stdout : stderr, 1835 "DEVID:%2d SGN:%1d ConstWGSize:%-4d args:%2d teamsXthrds:(%4dX%4d) " 1836 "reqd:(%4dX%4d) lds_usage:%uB sgpr_count:%u vgpr_count:%u " 1837 "sgpr_spill_count:%u vgpr_spill_count:%u tripcount:%lu n:%s\n", 1838 device_id, KernelInfo->ExecutionMode, KernelInfo->ConstWGSize, 1839 arg_num, num_groups, threadsPerGroup, num_teams, thread_limit, 1840 group_segment_size, sgpr_count, vgpr_count, sgpr_spill_count, 1841 vgpr_spill_count, loop_tripcount, KernelInfo->Name); 1842 } 1843 1844 // Run on the device. 1845 { 1846 hsa_queue_t *queue = DeviceInfo.HSAQueues[device_id]; 1847 if (!queue) { 1848 return OFFLOAD_FAIL; 1849 } 1850 uint64_t packet_id = acquire_available_packet_id(queue); 1851 1852 const uint32_t mask = queue->size - 1; // size is a power of 2 1853 hsa_kernel_dispatch_packet_t *packet = 1854 (hsa_kernel_dispatch_packet_t *)queue->base_address + 1855 (packet_id & mask); 1856 1857 // packet->header is written last 1858 packet->setup = UINT16_C(1) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS; 1859 packet->workgroup_size_x = threadsPerGroup; 1860 packet->workgroup_size_y = 1; 1861 packet->workgroup_size_z = 1; 1862 packet->reserved0 = 0; 1863 packet->grid_size_x = num_groups * threadsPerGroup; 1864 packet->grid_size_y = 1; 1865 packet->grid_size_z = 1; 1866 packet->private_segment_size = 0; 1867 packet->group_segment_size = 0; 1868 packet->kernel_object = 0; 1869 packet->kernarg_address = 0; // use the block allocator 1870 packet->reserved2 = 0; // atmi writes id_ here 1871 packet->completion_signal = {0}; // may want a pool of signals 1872 1873 { 1874 auto it = KernelInfoTable[device_id][kernel_name]; 1875 packet->kernel_object = it.kernel_object; 1876 packet->private_segment_size = it.private_segment_size; 1877 packet->group_segment_size = it.group_segment_size; 1878 assert(arg_num == (int)it.num_args); 1879 } 1880 1881 KernelArgPool *ArgPool = nullptr; 1882 { 1883 auto it = KernelArgPoolMap.find(std::string(KernelInfo->Name)); 1884 if (it != KernelArgPoolMap.end()) { 1885 ArgPool = (it->second).get(); 1886 } 1887 } 1888 if (!ArgPool) { 1889 DP("Warning: No ArgPool for %s on device %d\n", KernelInfo->Name, 1890 device_id); 1891 } 1892 { 1893 void *kernarg = nullptr; 1894 if (ArgPool) { 1895 assert(ArgPool->kernarg_segment_size == (arg_num * sizeof(void *))); 1896 kernarg = ArgPool->allocate(arg_num); 1897 } 1898 if (!kernarg) { 1899 DP("Allocate kernarg failed\n"); 1900 return OFFLOAD_FAIL; 1901 } 1902 1903 // Copy explicit arguments 1904 for (int i = 0; i < arg_num; i++) { 1905 memcpy((char *)kernarg + sizeof(void *) * i, args[i], sizeof(void *)); 1906 } 1907 1908 // Initialize implicit arguments. ATMI seems to leave most fields 1909 // uninitialized 1910 atmi_implicit_args_t *impl_args = 1911 reinterpret_cast<atmi_implicit_args_t *>( 1912 static_cast<char *>(kernarg) + ArgPool->kernarg_segment_size); 1913 memset(impl_args, 0, 1914 sizeof(atmi_implicit_args_t)); // may not be necessary 1915 impl_args->offset_x = 0; 1916 impl_args->offset_y = 0; 1917 impl_args->offset_z = 0; 1918 1919 // assign a hostcall buffer for the selected Q 1920 if (__atomic_load_n(&DeviceInfo.hostcall_required, __ATOMIC_ACQUIRE)) { 1921 // hostrpc_assign_buffer is not thread safe, and this function is 1922 // under a multiple reader lock, not a writer lock. 1923 static pthread_mutex_t hostcall_init_lock = PTHREAD_MUTEX_INITIALIZER; 1924 pthread_mutex_lock(&hostcall_init_lock); 1925 impl_args->hostcall_ptr = hostrpc_assign_buffer( 1926 DeviceInfo.HSAAgents[device_id], queue, device_id); 1927 pthread_mutex_unlock(&hostcall_init_lock); 1928 if (!impl_args->hostcall_ptr) { 1929 DP("hostrpc_assign_buffer failed, gpu would dereference null and " 1930 "error\n"); 1931 return OFFLOAD_FAIL; 1932 } 1933 } 1934 1935 packet->kernarg_address = kernarg; 1936 } 1937 1938 { 1939 hsa_signal_t s = DeviceInfo.FreeSignalPool.pop(); 1940 if (s.handle == 0) { 1941 DP("Failed to get signal instance\n"); 1942 return OFFLOAD_FAIL; 1943 } 1944 packet->completion_signal = s; 1945 hsa_signal_store_relaxed(packet->completion_signal, 1); 1946 } 1947 1948 core::packet_store_release(reinterpret_cast<uint32_t *>(packet), 1949 core::create_header(), packet->setup); 1950 1951 hsa_signal_store_relaxed(queue->doorbell_signal, packet_id); 1952 1953 while (hsa_signal_wait_scacquire(packet->completion_signal, 1954 HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX, 1955 HSA_WAIT_STATE_BLOCKED) != 0) 1956 ; 1957 1958 assert(ArgPool); 1959 ArgPool->deallocate(packet->kernarg_address); 1960 DeviceInfo.FreeSignalPool.push(packet->completion_signal); 1961 } 1962 1963 DP("Kernel completed\n"); 1964 return OFFLOAD_SUCCESS; 1965 } 1966 1967 int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr, 1968 void **tgt_args, ptrdiff_t *tgt_offsets, 1969 int32_t arg_num) { 1970 // use one team and one thread 1971 // fix thread num 1972 int32_t team_num = 1; 1973 int32_t thread_limit = 0; // use default 1974 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 1975 tgt_offsets, arg_num, team_num, 1976 thread_limit, 0); 1977 } 1978 1979 int32_t __tgt_rtl_run_target_region_async(int32_t device_id, 1980 void *tgt_entry_ptr, void **tgt_args, 1981 ptrdiff_t *tgt_offsets, 1982 int32_t arg_num, 1983 __tgt_async_info *AsyncInfo) { 1984 assert(AsyncInfo && "AsyncInfo is nullptr"); 1985 initAsyncInfo(AsyncInfo); 1986 1987 // use one team and one thread 1988 // fix thread num 1989 int32_t team_num = 1; 1990 int32_t thread_limit = 0; // use default 1991 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 1992 tgt_offsets, arg_num, team_num, 1993 thread_limit, 0); 1994 } 1995 1996 int32_t __tgt_rtl_synchronize(int32_t device_id, __tgt_async_info *AsyncInfo) { 1997 assert(AsyncInfo && "AsyncInfo is nullptr"); 1998 1999 // Cuda asserts that AsyncInfo->Queue is non-null, but this invariant 2000 // is not ensured by devices.cpp for amdgcn 2001 // assert(AsyncInfo->Queue && "AsyncInfo->Queue is nullptr"); 2002 if (AsyncInfo->Queue) { 2003 finiAsyncInfo(AsyncInfo); 2004 } 2005 return OFFLOAD_SUCCESS; 2006 } 2007