1 //===--- amdgpu/src/rtl.cpp --------------------------------------- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // RTL for hsa machine 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <algorithm> 14 #include <assert.h> 15 #include <cstdio> 16 #include <cstdlib> 17 #include <cstring> 18 #include <functional> 19 #include <libelf.h> 20 #include <list> 21 #include <memory> 22 #include <mutex> 23 #include <shared_mutex> 24 #include <unordered_map> 25 #include <vector> 26 27 // Header from ATMI interface 28 #include "atmi_interop_hsa.h" 29 #include "atmi_runtime.h" 30 31 #include "internal.h" 32 33 #include "Debug.h" 34 #include "get_elf_mach_gfx_name.h" 35 #include "machine.h" 36 #include "omptargetplugin.h" 37 #include "print_tracing.h" 38 39 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 40 41 #ifndef TARGET_NAME 42 #error "Missing TARGET_NAME macro" 43 #endif 44 #define DEBUG_PREFIX "Target " GETNAME(TARGET_NAME) " RTL" 45 46 // hostrpc interface, FIXME: consider moving to its own include these are 47 // statically linked into amdgpu/plugin if present from hostrpc_services.a, 48 // linked as --whole-archive to override the weak symbols that are used to 49 // implement a fallback for toolchains that do not yet have a hostrpc library. 50 extern "C" { 51 unsigned long hostrpc_assign_buffer(hsa_agent_t agent, hsa_queue_t *this_Q, 52 uint32_t device_id); 53 hsa_status_t hostrpc_init(); 54 hsa_status_t hostrpc_terminate(); 55 56 __attribute__((weak)) hsa_status_t hostrpc_init() { return HSA_STATUS_SUCCESS; } 57 __attribute__((weak)) hsa_status_t hostrpc_terminate() { 58 return HSA_STATUS_SUCCESS; 59 } 60 __attribute__((weak)) unsigned long 61 hostrpc_assign_buffer(hsa_agent_t, hsa_queue_t *, uint32_t device_id) { 62 DP("Warning: Attempting to assign hostrpc to device %u, but hostrpc library " 63 "missing\n", 64 device_id); 65 return 0; 66 } 67 } 68 69 // Heuristic parameters used for kernel launch 70 // Number of teams per CU to allow scheduling flexibility 71 static const unsigned DefaultTeamsPerCU = 4; 72 73 int print_kernel_trace; 74 75 #ifdef OMPTARGET_DEBUG 76 #define check(msg, status) \ 77 if (status != HSA_STATUS_SUCCESS) { \ 78 DP(#msg " failed\n"); \ 79 } else { \ 80 DP(#msg " succeeded\n"); \ 81 } 82 #else 83 #define check(msg, status) \ 84 {} 85 #endif 86 87 #include "elf_common.h" 88 89 namespace core { 90 hsa_status_t RegisterModuleFromMemory( 91 std::map<std::string, atl_kernel_info_t> &KernelInfo, 92 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, void *, size_t, 93 hsa_agent_t agent, 94 hsa_status_t (*on_deserialized_data)(void *data, size_t size, 95 void *cb_state), 96 void *cb_state, std::vector<hsa_executable_t> &HSAExecutables); 97 } 98 99 namespace hsa { 100 template <typename C> hsa_status_t iterate_agents(C cb) { 101 auto L = [](hsa_agent_t agent, void *data) -> hsa_status_t { 102 C *unwrapped = static_cast<C *>(data); 103 return (*unwrapped)(agent); 104 }; 105 return hsa_iterate_agents(L, static_cast<void *>(&cb)); 106 } 107 108 template <typename C> 109 hsa_status_t amd_agent_iterate_memory_pools(hsa_agent_t Agent, C cb) { 110 auto L = [](hsa_amd_memory_pool_t MemoryPool, void *data) -> hsa_status_t { 111 C *unwrapped = static_cast<C *>(data); 112 return (*unwrapped)(MemoryPool); 113 }; 114 115 return hsa_amd_agent_iterate_memory_pools(Agent, L, static_cast<void *>(&cb)); 116 } 117 118 } // namespace hsa 119 120 /// Keep entries table per device 121 struct FuncOrGblEntryTy { 122 __tgt_target_table Table; 123 std::vector<__tgt_offload_entry> Entries; 124 }; 125 126 enum ExecutionModeType { 127 SPMD, // constructors, destructors, 128 // combined constructs (`teams distribute parallel for [simd]`) 129 GENERIC, // everything else 130 SPMD_GENERIC, // Generic kernel with SPMD execution 131 NONE 132 }; 133 134 struct KernelArgPool { 135 private: 136 static pthread_mutex_t mutex; 137 138 public: 139 uint32_t kernarg_segment_size; 140 void *kernarg_region = nullptr; 141 std::queue<int> free_kernarg_segments; 142 143 uint32_t kernarg_size_including_implicit() { 144 return kernarg_segment_size + sizeof(atmi_implicit_args_t); 145 } 146 147 ~KernelArgPool() { 148 if (kernarg_region) { 149 auto r = hsa_amd_memory_pool_free(kernarg_region); 150 if (r != HSA_STATUS_SUCCESS) { 151 DP("hsa_amd_memory_pool_free failed: %s\n", get_error_string(r)); 152 } 153 } 154 } 155 156 // Can't really copy or move a mutex 157 KernelArgPool() = default; 158 KernelArgPool(const KernelArgPool &) = delete; 159 KernelArgPool(KernelArgPool &&) = delete; 160 161 KernelArgPool(uint32_t kernarg_segment_size, 162 hsa_amd_memory_pool_t &memory_pool) 163 : kernarg_segment_size(kernarg_segment_size) { 164 165 // atmi uses one pool per kernel for all gpus, with a fixed upper size 166 // preserving that exact scheme here, including the queue<int> 167 168 hsa_status_t err = hsa_amd_memory_pool_allocate( 169 memory_pool, kernarg_size_including_implicit() * MAX_NUM_KERNELS, 0, 170 &kernarg_region); 171 172 if (err != HSA_STATUS_SUCCESS) { 173 DP("hsa_amd_memory_pool_allocate failed: %s\n", get_error_string(err)); 174 kernarg_region = nullptr; // paranoid 175 return; 176 } 177 178 err = core::allow_access_to_all_gpu_agents(kernarg_region); 179 if (err != HSA_STATUS_SUCCESS) { 180 DP("hsa allow_access_to_all_gpu_agents failed: %s\n", 181 get_error_string(err)); 182 auto r = hsa_amd_memory_pool_free(kernarg_region); 183 if (r != HSA_STATUS_SUCCESS) { 184 // if free failed, can't do anything more to resolve it 185 DP("hsa memory poll free failed: %s\n", get_error_string(err)); 186 } 187 kernarg_region = nullptr; 188 return; 189 } 190 191 for (int i = 0; i < MAX_NUM_KERNELS; i++) { 192 free_kernarg_segments.push(i); 193 } 194 } 195 196 void *allocate(uint64_t arg_num) { 197 assert((arg_num * sizeof(void *)) == kernarg_segment_size); 198 lock l(&mutex); 199 void *res = nullptr; 200 if (!free_kernarg_segments.empty()) { 201 202 int free_idx = free_kernarg_segments.front(); 203 res = static_cast<void *>(static_cast<char *>(kernarg_region) + 204 (free_idx * kernarg_size_including_implicit())); 205 assert(free_idx == pointer_to_index(res)); 206 free_kernarg_segments.pop(); 207 } 208 return res; 209 } 210 211 void deallocate(void *ptr) { 212 lock l(&mutex); 213 int idx = pointer_to_index(ptr); 214 free_kernarg_segments.push(idx); 215 } 216 217 private: 218 int pointer_to_index(void *ptr) { 219 ptrdiff_t bytes = 220 static_cast<char *>(ptr) - static_cast<char *>(kernarg_region); 221 assert(bytes >= 0); 222 assert(bytes % kernarg_size_including_implicit() == 0); 223 return bytes / kernarg_size_including_implicit(); 224 } 225 struct lock { 226 lock(pthread_mutex_t *m) : m(m) { pthread_mutex_lock(m); } 227 ~lock() { pthread_mutex_unlock(m); } 228 pthread_mutex_t *m; 229 }; 230 }; 231 pthread_mutex_t KernelArgPool::mutex = PTHREAD_MUTEX_INITIALIZER; 232 233 std::unordered_map<std::string /*kernel*/, std::unique_ptr<KernelArgPool>> 234 KernelArgPoolMap; 235 236 /// Use a single entity to encode a kernel and a set of flags 237 struct KernelTy { 238 // execution mode of kernel 239 // 0 - SPMD mode (without master warp) 240 // 1 - Generic mode (with master warp) 241 // 2 - SPMD mode execution with Generic mode semantics. 242 int8_t ExecutionMode; 243 int16_t ConstWGSize; 244 int32_t device_id; 245 void *CallStackAddr = nullptr; 246 const char *Name; 247 248 KernelTy(int8_t _ExecutionMode, int16_t _ConstWGSize, int32_t _device_id, 249 void *_CallStackAddr, const char *_Name, 250 uint32_t _kernarg_segment_size, 251 hsa_amd_memory_pool_t &KernArgMemoryPool) 252 : ExecutionMode(_ExecutionMode), ConstWGSize(_ConstWGSize), 253 device_id(_device_id), CallStackAddr(_CallStackAddr), Name(_Name) { 254 DP("Construct kernelinfo: ExecMode %d\n", ExecutionMode); 255 256 std::string N(_Name); 257 if (KernelArgPoolMap.find(N) == KernelArgPoolMap.end()) { 258 KernelArgPoolMap.insert( 259 std::make_pair(N, std::unique_ptr<KernelArgPool>(new KernelArgPool( 260 _kernarg_segment_size, KernArgMemoryPool)))); 261 } 262 } 263 }; 264 265 /// List that contains all the kernels. 266 /// FIXME: we may need this to be per device and per library. 267 std::list<KernelTy> KernelsList; 268 269 template <typename Callback> static hsa_status_t FindAgents(Callback CB) { 270 271 hsa_status_t err = 272 hsa::iterate_agents([&](hsa_agent_t agent) -> hsa_status_t { 273 hsa_device_type_t device_type; 274 // get_info fails iff HSA runtime not yet initialized 275 hsa_status_t err = 276 hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 277 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) 278 printf("rtl.cpp: err %d\n", err); 279 assert(err == HSA_STATUS_SUCCESS); 280 281 CB(device_type, agent); 282 return HSA_STATUS_SUCCESS; 283 }); 284 285 // iterate_agents fails iff HSA runtime not yet initialized 286 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) { 287 printf("rtl.cpp: err %d\n", err); 288 } 289 290 return err; 291 } 292 293 static void callbackQueue(hsa_status_t status, hsa_queue_t *source, 294 void *data) { 295 if (status != HSA_STATUS_SUCCESS) { 296 const char *status_string; 297 if (hsa_status_string(status, &status_string) != HSA_STATUS_SUCCESS) { 298 status_string = "unavailable"; 299 } 300 fprintf(stderr, "[%s:%d] GPU error in queue %p %d (%s)\n", __FILE__, 301 __LINE__, source, status, status_string); 302 abort(); 303 } 304 } 305 306 namespace core { 307 namespace { 308 void packet_store_release(uint32_t *packet, uint16_t header, uint16_t rest) { 309 __atomic_store_n(packet, header | (rest << 16), __ATOMIC_RELEASE); 310 } 311 312 uint16_t create_header() { 313 uint16_t header = HSA_PACKET_TYPE_KERNEL_DISPATCH << HSA_PACKET_HEADER_TYPE; 314 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE; 315 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE; 316 return header; 317 } 318 319 hsa_status_t addKernArgPool(hsa_amd_memory_pool_t MemoryPool, void *Data) { 320 std::vector<hsa_amd_memory_pool_t> *Result = 321 static_cast<std::vector<hsa_amd_memory_pool_t> *>(Data); 322 bool AllocAllowed = false; 323 hsa_status_t err = hsa_amd_memory_pool_get_info( 324 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED, 325 &AllocAllowed); 326 if (err != HSA_STATUS_SUCCESS) { 327 fprintf(stderr, "Alloc allowed in memory pool check failed: %s\n", 328 get_error_string(err)); 329 return err; 330 } 331 332 if (!AllocAllowed) { 333 // nothing needs to be done here. 334 return HSA_STATUS_SUCCESS; 335 } 336 337 uint32_t GlobalFlags = 0; 338 err = hsa_amd_memory_pool_get_info( 339 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 340 if (err != HSA_STATUS_SUCCESS) { 341 fprintf(stderr, "Get memory pool info failed: %s\n", get_error_string(err)); 342 return err; 343 } 344 345 size_t size = 0; 346 err = hsa_amd_memory_pool_get_info(MemoryPool, HSA_AMD_MEMORY_POOL_INFO_SIZE, 347 &size); 348 if (err != HSA_STATUS_SUCCESS) { 349 fprintf(stderr, "Get memory pool size failed: %s\n", get_error_string(err)); 350 return err; 351 } 352 353 if ((GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) && 354 (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_KERNARG_INIT) && 355 size > 0) { 356 Result->push_back(MemoryPool); 357 } 358 359 return HSA_STATUS_SUCCESS; 360 } 361 362 std::pair<hsa_status_t, bool> 363 isValidMemoryPool(hsa_amd_memory_pool_t MemoryPool) { 364 bool AllocAllowed = false; 365 hsa_status_t Err = hsa_amd_memory_pool_get_info( 366 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED, 367 &AllocAllowed); 368 if (Err != HSA_STATUS_SUCCESS) { 369 fprintf(stderr, "Alloc allowed in memory pool check failed: %s\n", 370 get_error_string(Err)); 371 return {Err, false}; 372 } 373 374 return {HSA_STATUS_SUCCESS, AllocAllowed}; 375 } 376 377 template <typename AccumulatorFunc> 378 hsa_status_t collectMemoryPools(const std::vector<hsa_agent_t> &Agents, 379 AccumulatorFunc Func) { 380 for (int DeviceId = 0; DeviceId < Agents.size(); DeviceId++) { 381 hsa_status_t Err = hsa::amd_agent_iterate_memory_pools( 382 Agents[DeviceId], [&](hsa_amd_memory_pool_t MemoryPool) { 383 hsa_status_t Err; 384 bool Valid = false; 385 std::tie(Err, Valid) = isValidMemoryPool(MemoryPool); 386 if (Err != HSA_STATUS_SUCCESS) { 387 return Err; 388 } 389 if (Valid) 390 Func(MemoryPool, DeviceId); 391 return HSA_STATUS_SUCCESS; 392 }); 393 394 if (Err != HSA_STATUS_SUCCESS) { 395 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 396 "Iterate all memory pools", get_error_string(Err)); 397 return Err; 398 } 399 } 400 401 return HSA_STATUS_SUCCESS; 402 } 403 404 std::pair<hsa_status_t, hsa_amd_memory_pool_t> 405 FindKernargPool(const std::vector<hsa_agent_t> &HSAAgents) { 406 std::vector<hsa_amd_memory_pool_t> KernArgPools; 407 for (const auto &Agent : HSAAgents) { 408 hsa_status_t err = HSA_STATUS_SUCCESS; 409 err = hsa_amd_agent_iterate_memory_pools( 410 Agent, addKernArgPool, static_cast<void *>(&KernArgPools)); 411 if (err != HSA_STATUS_SUCCESS) { 412 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 413 "Iterate all memory pools", get_error_string(err)); 414 return {err, hsa_amd_memory_pool_t{}}; 415 } 416 } 417 418 if (KernArgPools.empty()) { 419 fprintf(stderr, "Unable to find any valid kernarg pool\n"); 420 return {HSA_STATUS_ERROR, hsa_amd_memory_pool_t{}}; 421 } 422 423 return {HSA_STATUS_SUCCESS, KernArgPools[0]}; 424 } 425 426 } // namespace 427 } // namespace core 428 429 struct EnvironmentVariables { 430 int NumTeams; 431 int TeamLimit; 432 int TeamThreadLimit; 433 int MaxTeamsDefault; 434 }; 435 436 /// Class containing all the device information 437 class RTLDeviceInfoTy { 438 std::vector<std::list<FuncOrGblEntryTy>> FuncGblEntries; 439 bool HSAInitializeSucceeded = false; 440 441 public: 442 // load binary populates symbol tables and mutates various global state 443 // run uses those symbol tables 444 std::shared_timed_mutex load_run_lock; 445 446 int NumberOfDevices = 0; 447 448 // GPU devices 449 std::vector<hsa_agent_t> HSAAgents; 450 std::vector<hsa_queue_t *> HSAQueues; // one per gpu 451 452 // CPUs 453 std::vector<hsa_agent_t> CPUAgents; 454 455 // Device properties 456 std::vector<int> ComputeUnits; 457 std::vector<int> GroupsPerDevice; 458 std::vector<int> ThreadsPerGroup; 459 std::vector<int> WarpSize; 460 std::vector<std::string> GPUName; 461 462 // OpenMP properties 463 std::vector<int> NumTeams; 464 std::vector<int> NumThreads; 465 466 // OpenMP Environment properties 467 EnvironmentVariables Env; 468 469 // OpenMP Requires Flags 470 int64_t RequiresFlags; 471 472 // Resource pools 473 SignalPoolT FreeSignalPool; 474 475 bool hostcall_required = false; 476 477 std::vector<hsa_executable_t> HSAExecutables; 478 479 std::vector<std::map<std::string, atl_kernel_info_t>> KernelInfoTable; 480 std::vector<std::map<std::string, atl_symbol_info_t>> SymbolInfoTable; 481 482 hsa_amd_memory_pool_t KernArgPool; 483 484 // fine grained memory pool for host allocations 485 hsa_amd_memory_pool_t HostFineGrainedMemoryPool; 486 487 // fine and coarse-grained memory pools per offloading device 488 std::vector<hsa_amd_memory_pool_t> DeviceFineGrainedMemoryPools; 489 std::vector<hsa_amd_memory_pool_t> DeviceCoarseGrainedMemoryPools; 490 491 struct atmiFreePtrDeletor { 492 void operator()(void *p) { 493 core::Runtime::Memfree(p); // ignore failure to free 494 } 495 }; 496 497 // device_State shared across loaded binaries, error if inconsistent size 498 std::vector<std::pair<std::unique_ptr<void, atmiFreePtrDeletor>, uint64_t>> 499 deviceStateStore; 500 501 static const unsigned HardTeamLimit = 502 (1 << 16) - 1; // 64K needed to fit in uint16 503 static const int DefaultNumTeams = 128; 504 static const int Max_Teams = 505 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_Teams]; 506 static const int Warp_Size = 507 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; 508 static const int Max_WG_Size = 509 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_WG_Size]; 510 static const int Default_WG_Size = 511 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Default_WG_Size]; 512 513 using MemcpyFunc = hsa_status_t (*)(hsa_signal_t, void *, const void *, 514 size_t size, hsa_agent_t); 515 hsa_status_t freesignalpool_memcpy(void *dest, const void *src, size_t size, 516 MemcpyFunc Func, int32_t deviceId) { 517 hsa_agent_t agent = HSAAgents[deviceId]; 518 hsa_signal_t s = FreeSignalPool.pop(); 519 if (s.handle == 0) { 520 return HSA_STATUS_ERROR; 521 } 522 hsa_status_t r = Func(s, dest, src, size, agent); 523 FreeSignalPool.push(s); 524 return r; 525 } 526 527 hsa_status_t freesignalpool_memcpy_d2h(void *dest, const void *src, 528 size_t size, int32_t deviceId) { 529 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_d2h, deviceId); 530 } 531 532 hsa_status_t freesignalpool_memcpy_h2d(void *dest, const void *src, 533 size_t size, int32_t deviceId) { 534 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_h2d, deviceId); 535 } 536 537 // Record entry point associated with device 538 void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) { 539 assert(device_id < (int32_t)FuncGblEntries.size() && 540 "Unexpected device id!"); 541 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 542 543 E.Entries.push_back(entry); 544 } 545 546 // Return true if the entry is associated with device 547 bool findOffloadEntry(int32_t device_id, void *addr) { 548 assert(device_id < (int32_t)FuncGblEntries.size() && 549 "Unexpected device id!"); 550 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 551 552 for (auto &it : E.Entries) { 553 if (it.addr == addr) 554 return true; 555 } 556 557 return false; 558 } 559 560 // Return the pointer to the target entries table 561 __tgt_target_table *getOffloadEntriesTable(int32_t device_id) { 562 assert(device_id < (int32_t)FuncGblEntries.size() && 563 "Unexpected device id!"); 564 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 565 566 int32_t size = E.Entries.size(); 567 568 // Table is empty 569 if (!size) 570 return 0; 571 572 __tgt_offload_entry *begin = &E.Entries[0]; 573 __tgt_offload_entry *end = &E.Entries[size - 1]; 574 575 // Update table info according to the entries and return the pointer 576 E.Table.EntriesBegin = begin; 577 E.Table.EntriesEnd = ++end; 578 579 return &E.Table; 580 } 581 582 // Clear entries table for a device 583 void clearOffloadEntriesTable(int device_id) { 584 assert(device_id < (int32_t)FuncGblEntries.size() && 585 "Unexpected device id!"); 586 FuncGblEntries[device_id].emplace_back(); 587 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 588 // KernelArgPoolMap.clear(); 589 E.Entries.clear(); 590 E.Table.EntriesBegin = E.Table.EntriesEnd = 0; 591 } 592 593 hsa_status_t addDeviceMemoryPool(hsa_amd_memory_pool_t MemoryPool, 594 int DeviceId) { 595 assert(DeviceId < DeviceFineGrainedMemoryPools.size() && "Error here."); 596 uint32_t GlobalFlags = 0; 597 hsa_status_t Err = hsa_amd_memory_pool_get_info( 598 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 599 600 if (Err != HSA_STATUS_SUCCESS) { 601 return Err; 602 } 603 604 if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) { 605 DeviceFineGrainedMemoryPools[DeviceId] = MemoryPool; 606 } else if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_COARSE_GRAINED) { 607 DeviceCoarseGrainedMemoryPools[DeviceId] = MemoryPool; 608 } 609 610 return HSA_STATUS_SUCCESS; 611 } 612 613 hsa_status_t addHostMemoryPool(hsa_amd_memory_pool_t MemoryPool, 614 int DeviceId) { 615 uint32_t GlobalFlags = 0; 616 hsa_status_t Err = hsa_amd_memory_pool_get_info( 617 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 618 619 if (Err != HSA_STATUS_SUCCESS) { 620 return Err; 621 } 622 623 uint32_t Size; 624 Err = hsa_amd_memory_pool_get_info(MemoryPool, 625 HSA_AMD_MEMORY_POOL_INFO_SIZE, &Size); 626 if (Err != HSA_STATUS_SUCCESS) { 627 return Err; 628 } 629 630 if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED && 631 Size > 0) { 632 HostFineGrainedMemoryPool = MemoryPool; 633 } 634 635 return HSA_STATUS_SUCCESS; 636 } 637 638 hsa_status_t setupMemoryPools() { 639 using namespace std::placeholders; 640 hsa_status_t Err; 641 Err = core::collectMemoryPools( 642 CPUAgents, std::bind(&RTLDeviceInfoTy::addHostMemoryPool, this, _1, _2)); 643 if (Err != HSA_STATUS_SUCCESS) { 644 fprintf(stderr, "HSA error in collecting memory pools for CPU: %s\n", 645 get_error_string(Err)); 646 return Err; 647 } 648 Err = core::collectMemoryPools( 649 HSAAgents, std::bind(&RTLDeviceInfoTy::addDeviceMemoryPool, this, _1, _2)); 650 if (Err != HSA_STATUS_SUCCESS) { 651 fprintf(stderr, 652 "HSA error in collecting memory pools for offload devices: %s\n", 653 get_error_string(Err)); 654 return Err; 655 } 656 return HSA_STATUS_SUCCESS; 657 } 658 659 hsa_amd_memory_pool_t getDeviceMemoryPool(int DeviceId) { 660 assert(DeviceId >= 0 && DeviceId < DeviceCoarseGrainedMemoryPools.size() && 661 "Invalid device Id"); 662 return DeviceCoarseGrainedMemoryPools[DeviceId]; 663 } 664 665 hsa_amd_memory_pool_t getHostMemoryPool() { 666 return HostFineGrainedMemoryPool; 667 } 668 669 static int readEnvElseMinusOne(const char *Env) { 670 const char *envStr = getenv(Env); 671 int res = -1; 672 if (envStr) { 673 res = std::stoi(envStr); 674 DP("Parsed %s=%d\n", Env, res); 675 } 676 return res; 677 } 678 679 RTLDeviceInfoTy() { 680 // LIBOMPTARGET_KERNEL_TRACE provides a kernel launch trace to stderr 681 // anytime. You do not need a debug library build. 682 // 0 => no tracing 683 // 1 => tracing dispatch only 684 // >1 => verbosity increase 685 if (char *envStr = getenv("LIBOMPTARGET_KERNEL_TRACE")) 686 print_kernel_trace = atoi(envStr); 687 else 688 print_kernel_trace = 0; 689 690 DP("Start initializing " GETNAME(TARGET_NAME) "\n"); 691 hsa_status_t err = core::atl_init_gpu_context(); 692 if (err == HSA_STATUS_SUCCESS) { 693 HSAInitializeSucceeded = true; 694 } else { 695 DP("Error when initializing " GETNAME(TARGET_NAME) "\n"); 696 return; 697 } 698 699 // Init hostcall soon after initializing ATMI 700 hostrpc_init(); 701 702 err = FindAgents([&](hsa_device_type_t DeviceType, hsa_agent_t Agent) { 703 if (DeviceType == HSA_DEVICE_TYPE_CPU) { 704 CPUAgents.push_back(Agent); 705 } else { 706 HSAAgents.push_back(Agent); 707 } 708 }); 709 if (err != HSA_STATUS_SUCCESS) 710 return; 711 712 NumberOfDevices = (int)HSAAgents.size(); 713 714 if (NumberOfDevices == 0) { 715 DP("There are no devices supporting HSA.\n"); 716 return; 717 } else { 718 DP("There are %d devices supporting HSA.\n", NumberOfDevices); 719 } 720 std::tie(err, KernArgPool) = core::FindKernargPool(CPUAgents); 721 if (err != HSA_STATUS_SUCCESS) { 722 DP("Error when reading memory pools\n"); 723 return; 724 } 725 726 // Init the device info 727 HSAQueues.resize(NumberOfDevices); 728 FuncGblEntries.resize(NumberOfDevices); 729 ThreadsPerGroup.resize(NumberOfDevices); 730 ComputeUnits.resize(NumberOfDevices); 731 GPUName.resize(NumberOfDevices); 732 GroupsPerDevice.resize(NumberOfDevices); 733 WarpSize.resize(NumberOfDevices); 734 NumTeams.resize(NumberOfDevices); 735 NumThreads.resize(NumberOfDevices); 736 deviceStateStore.resize(NumberOfDevices); 737 KernelInfoTable.resize(NumberOfDevices); 738 SymbolInfoTable.resize(NumberOfDevices); 739 DeviceCoarseGrainedMemoryPools.resize(NumberOfDevices); 740 DeviceFineGrainedMemoryPools.resize(NumberOfDevices); 741 742 err = setupMemoryPools(); 743 if (err != HSA_STATUS_SUCCESS) { 744 DP("Error when setting up memory pools"); 745 return; 746 } 747 748 for (int i = 0; i < NumberOfDevices; i++) { 749 HSAQueues[i] = nullptr; 750 } 751 752 for (int i = 0; i < NumberOfDevices; i++) { 753 uint32_t queue_size = 0; 754 { 755 hsa_status_t err = hsa_agent_get_info( 756 HSAAgents[i], HSA_AGENT_INFO_QUEUE_MAX_SIZE, &queue_size); 757 if (err != HSA_STATUS_SUCCESS) { 758 DP("HSA query QUEUE_MAX_SIZE failed for agent %d\n", i); 759 return; 760 } 761 if (queue_size > core::Runtime::getInstance().getMaxQueueSize()) { 762 queue_size = core::Runtime::getInstance().getMaxQueueSize(); 763 } 764 } 765 766 hsa_status_t rc = hsa_queue_create( 767 HSAAgents[i], queue_size, HSA_QUEUE_TYPE_MULTI, callbackQueue, NULL, 768 UINT32_MAX, UINT32_MAX, &HSAQueues[i]); 769 if (rc != HSA_STATUS_SUCCESS) { 770 DP("Failed to create HSA queue %d\n", i); 771 return; 772 } 773 774 deviceStateStore[i] = {nullptr, 0}; 775 } 776 777 for (int i = 0; i < NumberOfDevices; i++) { 778 ThreadsPerGroup[i] = RTLDeviceInfoTy::Default_WG_Size; 779 GroupsPerDevice[i] = RTLDeviceInfoTy::DefaultNumTeams; 780 ComputeUnits[i] = 1; 781 DP("Device %d: Initial groupsPerDevice %d & threadsPerGroup %d\n", i, 782 GroupsPerDevice[i], ThreadsPerGroup[i]); 783 } 784 785 // Get environment variables regarding teams 786 Env.TeamLimit = readEnvElseMinusOne("OMP_TEAM_LIMIT"); 787 Env.NumTeams = readEnvElseMinusOne("OMP_NUM_TEAMS"); 788 Env.MaxTeamsDefault = readEnvElseMinusOne("OMP_MAX_TEAMS_DEFAULT"); 789 Env.TeamThreadLimit = readEnvElseMinusOne("OMP_TEAMS_THREAD_LIMIT"); 790 791 // Default state. 792 RequiresFlags = OMP_REQ_UNDEFINED; 793 } 794 795 ~RTLDeviceInfoTy() { 796 DP("Finalizing the " GETNAME(TARGET_NAME) " DeviceInfo.\n"); 797 if (!HSAInitializeSucceeded) { 798 // Then none of these can have been set up and they can't be torn down 799 return; 800 } 801 // Run destructors on types that use HSA before 802 // atmi_finalize removes access to it 803 deviceStateStore.clear(); 804 KernelArgPoolMap.clear(); 805 // Terminate hostrpc before finalizing ATMI 806 hostrpc_terminate(); 807 808 hsa_status_t Err; 809 for (uint32_t I = 0; I < HSAExecutables.size(); I++) { 810 Err = hsa_executable_destroy(HSAExecutables[I]); 811 if (Err != HSA_STATUS_SUCCESS) { 812 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 813 "Destroying executable", get_error_string(Err)); 814 } 815 } 816 817 Err = hsa_shut_down(); 818 if (Err != HSA_STATUS_SUCCESS) { 819 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Shutting down HSA", 820 get_error_string(Err)); 821 } 822 } 823 }; 824 825 pthread_mutex_t SignalPoolT::mutex = PTHREAD_MUTEX_INITIALIZER; 826 827 // TODO: May need to drop the trailing to fields until deviceRTL is updated 828 struct omptarget_device_environmentTy { 829 int32_t debug_level; // gets value of envvar LIBOMPTARGET_DEVICE_RTL_DEBUG 830 // only useful for Debug build of deviceRTLs 831 int32_t num_devices; // gets number of active offload devices 832 int32_t device_num; // gets a value 0 to num_devices-1 833 }; 834 835 static RTLDeviceInfoTy DeviceInfo; 836 837 namespace { 838 839 int32_t dataRetrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size, 840 __tgt_async_info *AsyncInfo) { 841 assert(AsyncInfo && "AsyncInfo is nullptr"); 842 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 843 // Return success if we are not copying back to host from target. 844 if (!HstPtr) 845 return OFFLOAD_SUCCESS; 846 hsa_status_t err; 847 DP("Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 848 (long long unsigned)(Elf64_Addr)TgtPtr, 849 (long long unsigned)(Elf64_Addr)HstPtr); 850 851 err = DeviceInfo.freesignalpool_memcpy_d2h(HstPtr, TgtPtr, (size_t)Size, 852 DeviceId); 853 854 if (err != HSA_STATUS_SUCCESS) { 855 DP("Error when copying data from device to host. Pointers: " 856 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 857 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 858 return OFFLOAD_FAIL; 859 } 860 DP("DONE Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 861 (long long unsigned)(Elf64_Addr)TgtPtr, 862 (long long unsigned)(Elf64_Addr)HstPtr); 863 return OFFLOAD_SUCCESS; 864 } 865 866 int32_t dataSubmit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size, 867 __tgt_async_info *AsyncInfo) { 868 assert(AsyncInfo && "AsyncInfo is nullptr"); 869 hsa_status_t err; 870 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 871 // Return success if we are not doing host to target. 872 if (!HstPtr) 873 return OFFLOAD_SUCCESS; 874 875 DP("Submit data %ld bytes, (hst:%016llx) -> (tgt:%016llx).\n", Size, 876 (long long unsigned)(Elf64_Addr)HstPtr, 877 (long long unsigned)(Elf64_Addr)TgtPtr); 878 err = DeviceInfo.freesignalpool_memcpy_h2d(TgtPtr, HstPtr, (size_t)Size, 879 DeviceId); 880 if (err != HSA_STATUS_SUCCESS) { 881 DP("Error when copying data from host to device. Pointers: " 882 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 883 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 884 return OFFLOAD_FAIL; 885 } 886 return OFFLOAD_SUCCESS; 887 } 888 889 // Async. 890 // The implementation was written with cuda streams in mind. The semantics of 891 // that are to execute kernels on a queue in order of insertion. A synchronise 892 // call then makes writes visible between host and device. This means a series 893 // of N data_submit_async calls are expected to execute serially. HSA offers 894 // various options to run the data copies concurrently. This may require changes 895 // to libomptarget. 896 897 // __tgt_async_info* contains a void * Queue. Queue = 0 is used to indicate that 898 // there are no outstanding kernels that need to be synchronized. Any async call 899 // may be passed a Queue==0, at which point the cuda implementation will set it 900 // to non-null (see getStream). The cuda streams are per-device. Upstream may 901 // change this interface to explicitly initialize the AsyncInfo_pointer, but 902 // until then hsa lazily initializes it as well. 903 904 void initAsyncInfo(__tgt_async_info *AsyncInfo) { 905 // set non-null while using async calls, return to null to indicate completion 906 assert(AsyncInfo); 907 if (!AsyncInfo->Queue) { 908 AsyncInfo->Queue = reinterpret_cast<void *>(UINT64_MAX); 909 } 910 } 911 void finiAsyncInfo(__tgt_async_info *AsyncInfo) { 912 assert(AsyncInfo); 913 assert(AsyncInfo->Queue); 914 AsyncInfo->Queue = 0; 915 } 916 917 bool elf_machine_id_is_amdgcn(__tgt_device_image *image) { 918 const uint16_t amdgcnMachineID = 224; // EM_AMDGPU may not be in system elf.h 919 int32_t r = elf_check_machine(image, amdgcnMachineID); 920 if (!r) { 921 DP("Supported machine ID not found\n"); 922 } 923 return r; 924 } 925 926 uint32_t elf_e_flags(__tgt_device_image *image) { 927 char *img_begin = (char *)image->ImageStart; 928 size_t img_size = (char *)image->ImageEnd - img_begin; 929 930 Elf *e = elf_memory(img_begin, img_size); 931 if (!e) { 932 DP("Unable to get ELF handle: %s!\n", elf_errmsg(-1)); 933 return 0; 934 } 935 936 Elf64_Ehdr *eh64 = elf64_getehdr(e); 937 938 if (!eh64) { 939 DP("Unable to get machine ID from ELF file!\n"); 940 elf_end(e); 941 return 0; 942 } 943 944 uint32_t Flags = eh64->e_flags; 945 946 elf_end(e); 947 DP("ELF Flags: 0x%x\n", Flags); 948 return Flags; 949 } 950 } // namespace 951 952 int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) { 953 return elf_machine_id_is_amdgcn(image); 954 } 955 956 int __tgt_rtl_number_of_devices() { return DeviceInfo.NumberOfDevices; } 957 958 int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) { 959 DP("Init requires flags to %ld\n", RequiresFlags); 960 DeviceInfo.RequiresFlags = RequiresFlags; 961 return RequiresFlags; 962 } 963 964 namespace { 965 template <typename T> bool enforce_upper_bound(T *value, T upper) { 966 bool changed = *value > upper; 967 if (changed) { 968 *value = upper; 969 } 970 return changed; 971 } 972 } // namespace 973 974 int32_t __tgt_rtl_init_device(int device_id) { 975 hsa_status_t err; 976 977 // this is per device id init 978 DP("Initialize the device id: %d\n", device_id); 979 980 hsa_agent_t agent = DeviceInfo.HSAAgents[device_id]; 981 982 // Get number of Compute Unit 983 uint32_t compute_units = 0; 984 err = hsa_agent_get_info( 985 agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT, 986 &compute_units); 987 if (err != HSA_STATUS_SUCCESS) { 988 DeviceInfo.ComputeUnits[device_id] = 1; 989 DP("Error getting compute units : settiing to 1\n"); 990 } else { 991 DeviceInfo.ComputeUnits[device_id] = compute_units; 992 DP("Using %d compute unis per grid\n", DeviceInfo.ComputeUnits[device_id]); 993 } 994 995 char GetInfoName[64]; // 64 max size returned by get info 996 err = hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AGENT_INFO_NAME, 997 (void *)GetInfoName); 998 if (err) 999 DeviceInfo.GPUName[device_id] = "--unknown gpu--"; 1000 else { 1001 DeviceInfo.GPUName[device_id] = GetInfoName; 1002 } 1003 1004 if (print_kernel_trace & STARTUP_DETAILS) 1005 fprintf(stderr, "Device#%-2d CU's: %2d %s\n", device_id, 1006 DeviceInfo.ComputeUnits[device_id], 1007 DeviceInfo.GPUName[device_id].c_str()); 1008 1009 // Query attributes to determine number of threads/block and blocks/grid. 1010 uint16_t workgroup_max_dim[3]; 1011 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_DIM, 1012 &workgroup_max_dim); 1013 if (err != HSA_STATUS_SUCCESS) { 1014 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::DefaultNumTeams; 1015 DP("Error getting grid dims: num groups : %d\n", 1016 RTLDeviceInfoTy::DefaultNumTeams); 1017 } else if (workgroup_max_dim[0] <= RTLDeviceInfoTy::HardTeamLimit) { 1018 DeviceInfo.GroupsPerDevice[device_id] = workgroup_max_dim[0]; 1019 DP("Using %d ROCm blocks per grid\n", 1020 DeviceInfo.GroupsPerDevice[device_id]); 1021 } else { 1022 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::HardTeamLimit; 1023 DP("Max ROCm blocks per grid %d exceeds the hard team limit %d, capping " 1024 "at the hard limit\n", 1025 workgroup_max_dim[0], RTLDeviceInfoTy::HardTeamLimit); 1026 } 1027 1028 // Get thread limit 1029 hsa_dim3_t grid_max_dim; 1030 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &grid_max_dim); 1031 if (err == HSA_STATUS_SUCCESS) { 1032 DeviceInfo.ThreadsPerGroup[device_id] = 1033 reinterpret_cast<uint32_t *>(&grid_max_dim)[0] / 1034 DeviceInfo.GroupsPerDevice[device_id]; 1035 1036 if (DeviceInfo.ThreadsPerGroup[device_id] == 0) { 1037 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 1038 DP("Default thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 1039 } else if (enforce_upper_bound(&DeviceInfo.ThreadsPerGroup[device_id], 1040 RTLDeviceInfoTy::Max_WG_Size)) { 1041 DP("Capped thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 1042 } else { 1043 DP("Using ROCm Queried thread limit: %d\n", 1044 DeviceInfo.ThreadsPerGroup[device_id]); 1045 } 1046 } else { 1047 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 1048 DP("Error getting max block dimension, use default:%d \n", 1049 RTLDeviceInfoTy::Max_WG_Size); 1050 } 1051 1052 // Get wavefront size 1053 uint32_t wavefront_size = 0; 1054 err = 1055 hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size); 1056 if (err == HSA_STATUS_SUCCESS) { 1057 DP("Queried wavefront size: %d\n", wavefront_size); 1058 DeviceInfo.WarpSize[device_id] = wavefront_size; 1059 } else { 1060 DP("Default wavefront size: %d\n", 1061 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]); 1062 DeviceInfo.WarpSize[device_id] = 1063 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; 1064 } 1065 1066 // Adjust teams to the env variables 1067 1068 if (DeviceInfo.Env.TeamLimit > 0 && 1069 (enforce_upper_bound(&DeviceInfo.GroupsPerDevice[device_id], 1070 DeviceInfo.Env.TeamLimit))) { 1071 DP("Capping max groups per device to OMP_TEAM_LIMIT=%d\n", 1072 DeviceInfo.Env.TeamLimit); 1073 } 1074 1075 // Set default number of teams 1076 if (DeviceInfo.Env.NumTeams > 0) { 1077 DeviceInfo.NumTeams[device_id] = DeviceInfo.Env.NumTeams; 1078 DP("Default number of teams set according to environment %d\n", 1079 DeviceInfo.Env.NumTeams); 1080 } else { 1081 char *TeamsPerCUEnvStr = getenv("OMP_TARGET_TEAMS_PER_PROC"); 1082 int TeamsPerCU = DefaultTeamsPerCU; 1083 if (TeamsPerCUEnvStr) { 1084 TeamsPerCU = std::stoi(TeamsPerCUEnvStr); 1085 } 1086 1087 DeviceInfo.NumTeams[device_id] = 1088 TeamsPerCU * DeviceInfo.ComputeUnits[device_id]; 1089 DP("Default number of teams = %d * number of compute units %d\n", 1090 TeamsPerCU, DeviceInfo.ComputeUnits[device_id]); 1091 } 1092 1093 if (enforce_upper_bound(&DeviceInfo.NumTeams[device_id], 1094 DeviceInfo.GroupsPerDevice[device_id])) { 1095 DP("Default number of teams exceeds device limit, capping at %d\n", 1096 DeviceInfo.GroupsPerDevice[device_id]); 1097 } 1098 1099 // Adjust threads to the env variables 1100 if (DeviceInfo.Env.TeamThreadLimit > 0 && 1101 (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], 1102 DeviceInfo.Env.TeamThreadLimit))) { 1103 DP("Capping max number of threads to OMP_TEAMS_THREAD_LIMIT=%d\n", 1104 DeviceInfo.Env.TeamThreadLimit); 1105 } 1106 1107 // Set default number of threads 1108 DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::Default_WG_Size; 1109 DP("Default number of threads set according to library's default %d\n", 1110 RTLDeviceInfoTy::Default_WG_Size); 1111 if (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], 1112 DeviceInfo.ThreadsPerGroup[device_id])) { 1113 DP("Default number of threads exceeds device limit, capping at %d\n", 1114 DeviceInfo.ThreadsPerGroup[device_id]); 1115 } 1116 1117 DP("Device %d: default limit for groupsPerDevice %d & threadsPerGroup %d\n", 1118 device_id, DeviceInfo.GroupsPerDevice[device_id], 1119 DeviceInfo.ThreadsPerGroup[device_id]); 1120 1121 DP("Device %d: wavefront size %d, total threads %d x %d = %d\n", device_id, 1122 DeviceInfo.WarpSize[device_id], DeviceInfo.ThreadsPerGroup[device_id], 1123 DeviceInfo.GroupsPerDevice[device_id], 1124 DeviceInfo.GroupsPerDevice[device_id] * 1125 DeviceInfo.ThreadsPerGroup[device_id]); 1126 1127 return OFFLOAD_SUCCESS; 1128 } 1129 1130 namespace { 1131 Elf64_Shdr *find_only_SHT_HASH(Elf *elf) { 1132 size_t N; 1133 int rc = elf_getshdrnum(elf, &N); 1134 if (rc != 0) { 1135 return nullptr; 1136 } 1137 1138 Elf64_Shdr *result = nullptr; 1139 for (size_t i = 0; i < N; i++) { 1140 Elf_Scn *scn = elf_getscn(elf, i); 1141 if (scn) { 1142 Elf64_Shdr *shdr = elf64_getshdr(scn); 1143 if (shdr) { 1144 if (shdr->sh_type == SHT_HASH) { 1145 if (result == nullptr) { 1146 result = shdr; 1147 } else { 1148 // multiple SHT_HASH sections not handled 1149 return nullptr; 1150 } 1151 } 1152 } 1153 } 1154 } 1155 return result; 1156 } 1157 1158 const Elf64_Sym *elf_lookup(Elf *elf, char *base, Elf64_Shdr *section_hash, 1159 const char *symname) { 1160 1161 assert(section_hash); 1162 size_t section_symtab_index = section_hash->sh_link; 1163 Elf64_Shdr *section_symtab = 1164 elf64_getshdr(elf_getscn(elf, section_symtab_index)); 1165 size_t section_strtab_index = section_symtab->sh_link; 1166 1167 const Elf64_Sym *symtab = 1168 reinterpret_cast<const Elf64_Sym *>(base + section_symtab->sh_offset); 1169 1170 const uint32_t *hashtab = 1171 reinterpret_cast<const uint32_t *>(base + section_hash->sh_offset); 1172 1173 // Layout: 1174 // nbucket 1175 // nchain 1176 // bucket[nbucket] 1177 // chain[nchain] 1178 uint32_t nbucket = hashtab[0]; 1179 const uint32_t *bucket = &hashtab[2]; 1180 const uint32_t *chain = &hashtab[nbucket + 2]; 1181 1182 const size_t max = strlen(symname) + 1; 1183 const uint32_t hash = elf_hash(symname); 1184 for (uint32_t i = bucket[hash % nbucket]; i != 0; i = chain[i]) { 1185 char *n = elf_strptr(elf, section_strtab_index, symtab[i].st_name); 1186 if (strncmp(symname, n, max) == 0) { 1187 return &symtab[i]; 1188 } 1189 } 1190 1191 return nullptr; 1192 } 1193 1194 struct symbol_info { 1195 void *addr = nullptr; 1196 uint32_t size = UINT32_MAX; 1197 uint32_t sh_type = SHT_NULL; 1198 }; 1199 1200 int get_symbol_info_without_loading(Elf *elf, char *base, const char *symname, 1201 symbol_info *res) { 1202 if (elf_kind(elf) != ELF_K_ELF) { 1203 return 1; 1204 } 1205 1206 Elf64_Shdr *section_hash = find_only_SHT_HASH(elf); 1207 if (!section_hash) { 1208 return 1; 1209 } 1210 1211 const Elf64_Sym *sym = elf_lookup(elf, base, section_hash, symname); 1212 if (!sym) { 1213 return 1; 1214 } 1215 1216 if (sym->st_size > UINT32_MAX) { 1217 return 1; 1218 } 1219 1220 if (sym->st_shndx == SHN_UNDEF) { 1221 return 1; 1222 } 1223 1224 Elf_Scn *section = elf_getscn(elf, sym->st_shndx); 1225 if (!section) { 1226 return 1; 1227 } 1228 1229 Elf64_Shdr *header = elf64_getshdr(section); 1230 if (!header) { 1231 return 1; 1232 } 1233 1234 res->addr = sym->st_value + base; 1235 res->size = static_cast<uint32_t>(sym->st_size); 1236 res->sh_type = header->sh_type; 1237 return 0; 1238 } 1239 1240 int get_symbol_info_without_loading(char *base, size_t img_size, 1241 const char *symname, symbol_info *res) { 1242 Elf *elf = elf_memory(base, img_size); 1243 if (elf) { 1244 int rc = get_symbol_info_without_loading(elf, base, symname, res); 1245 elf_end(elf); 1246 return rc; 1247 } 1248 return 1; 1249 } 1250 1251 hsa_status_t interop_get_symbol_info(char *base, size_t img_size, 1252 const char *symname, void **var_addr, 1253 uint32_t *var_size) { 1254 symbol_info si; 1255 int rc = get_symbol_info_without_loading(base, img_size, symname, &si); 1256 if (rc == 0) { 1257 *var_addr = si.addr; 1258 *var_size = si.size; 1259 return HSA_STATUS_SUCCESS; 1260 } else { 1261 return HSA_STATUS_ERROR; 1262 } 1263 } 1264 1265 template <typename C> 1266 hsa_status_t module_register_from_memory_to_place( 1267 std::map<std::string, atl_kernel_info_t> &KernelInfoTable, 1268 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, 1269 void *module_bytes, size_t module_size, int DeviceId, C cb, 1270 std::vector<hsa_executable_t> &HSAExecutables) { 1271 auto L = [](void *data, size_t size, void *cb_state) -> hsa_status_t { 1272 C *unwrapped = static_cast<C *>(cb_state); 1273 return (*unwrapped)(data, size); 1274 }; 1275 return core::RegisterModuleFromMemory( 1276 KernelInfoTable, SymbolInfoTable, module_bytes, module_size, 1277 DeviceInfo.HSAAgents[DeviceId], L, static_cast<void *>(&cb), 1278 HSAExecutables); 1279 } 1280 } // namespace 1281 1282 static uint64_t get_device_State_bytes(char *ImageStart, size_t img_size) { 1283 uint64_t device_State_bytes = 0; 1284 { 1285 // If this is the deviceRTL, get the state variable size 1286 symbol_info size_si; 1287 int rc = get_symbol_info_without_loading( 1288 ImageStart, img_size, "omptarget_nvptx_device_State_size", &size_si); 1289 1290 if (rc == 0) { 1291 if (size_si.size != sizeof(uint64_t)) { 1292 DP("Found device_State_size variable with wrong size\n"); 1293 return 0; 1294 } 1295 1296 // Read number of bytes directly from the elf 1297 memcpy(&device_State_bytes, size_si.addr, sizeof(uint64_t)); 1298 } 1299 } 1300 return device_State_bytes; 1301 } 1302 1303 static __tgt_target_table * 1304 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1305 1306 static __tgt_target_table * 1307 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1308 1309 __tgt_target_table *__tgt_rtl_load_binary(int32_t device_id, 1310 __tgt_device_image *image) { 1311 DeviceInfo.load_run_lock.lock(); 1312 __tgt_target_table *res = __tgt_rtl_load_binary_locked(device_id, image); 1313 DeviceInfo.load_run_lock.unlock(); 1314 return res; 1315 } 1316 1317 struct device_environment { 1318 // initialise an omptarget_device_environmentTy in the deviceRTL 1319 // patches around differences in the deviceRTL between trunk, aomp, 1320 // rocmcc. Over time these differences will tend to zero and this class 1321 // simplified. 1322 // Symbol may be in .data or .bss, and may be missing fields: 1323 // - aomp has debug_level, num_devices, device_num 1324 // - trunk has debug_level 1325 // - under review in trunk is debug_level, device_num 1326 // - rocmcc matches aomp, patch to swap num_devices and device_num 1327 1328 // The symbol may also have been deadstripped because the device side 1329 // accessors were unused. 1330 1331 // If the symbol is in .data (aomp, rocm) it can be written directly. 1332 // If it is in .bss, we must wait for it to be allocated space on the 1333 // gpu (trunk) and initialize after loading. 1334 const char *sym() { return "omptarget_device_environment"; } 1335 1336 omptarget_device_environmentTy host_device_env; 1337 symbol_info si; 1338 bool valid = false; 1339 1340 __tgt_device_image *image; 1341 const size_t img_size; 1342 1343 device_environment(int device_id, int number_devices, 1344 __tgt_device_image *image, const size_t img_size) 1345 : image(image), img_size(img_size) { 1346 1347 host_device_env.num_devices = number_devices; 1348 host_device_env.device_num = device_id; 1349 host_device_env.debug_level = 0; 1350 #ifdef OMPTARGET_DEBUG 1351 if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) { 1352 host_device_env.debug_level = std::stoi(envStr); 1353 } 1354 #endif 1355 1356 int rc = get_symbol_info_without_loading((char *)image->ImageStart, 1357 img_size, sym(), &si); 1358 if (rc != 0) { 1359 DP("Finding global device environment '%s' - symbol missing.\n", sym()); 1360 return; 1361 } 1362 1363 if (si.size > sizeof(host_device_env)) { 1364 DP("Symbol '%s' has size %u, expected at most %zu.\n", sym(), si.size, 1365 sizeof(host_device_env)); 1366 return; 1367 } 1368 1369 valid = true; 1370 } 1371 1372 bool in_image() { return si.sh_type != SHT_NOBITS; } 1373 1374 hsa_status_t before_loading(void *data, size_t size) { 1375 if (valid) { 1376 if (in_image()) { 1377 DP("Setting global device environment before load (%u bytes)\n", 1378 si.size); 1379 uint64_t offset = (char *)si.addr - (char *)image->ImageStart; 1380 void *pos = (char *)data + offset; 1381 memcpy(pos, &host_device_env, si.size); 1382 } 1383 } 1384 return HSA_STATUS_SUCCESS; 1385 } 1386 1387 hsa_status_t after_loading() { 1388 if (valid) { 1389 if (!in_image()) { 1390 DP("Setting global device environment after load (%u bytes)\n", 1391 si.size); 1392 int device_id = host_device_env.device_num; 1393 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1394 void *state_ptr; 1395 uint32_t state_ptr_size; 1396 hsa_status_t err = atmi_interop_hsa_get_symbol_info( 1397 SymbolInfo, device_id, sym(), &state_ptr, &state_ptr_size); 1398 if (err != HSA_STATUS_SUCCESS) { 1399 DP("failed to find %s in loaded image\n", sym()); 1400 return err; 1401 } 1402 1403 if (state_ptr_size != si.size) { 1404 DP("Symbol had size %u before loading, %u after\n", state_ptr_size, 1405 si.size); 1406 return HSA_STATUS_ERROR; 1407 } 1408 1409 return DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &host_device_env, 1410 state_ptr_size, device_id); 1411 } 1412 } 1413 return HSA_STATUS_SUCCESS; 1414 } 1415 }; 1416 1417 static hsa_status_t atmi_calloc(void **ret_ptr, size_t size, int DeviceId) { 1418 uint64_t rounded = 4 * ((size + 3) / 4); 1419 void *ptr; 1420 hsa_status_t err = core::Runtime::DeviceMalloc(&ptr, rounded, DeviceId); 1421 if (err != HSA_STATUS_SUCCESS) { 1422 return err; 1423 } 1424 1425 hsa_status_t rc = hsa_amd_memory_fill(ptr, 0, rounded / 4); 1426 if (rc != HSA_STATUS_SUCCESS) { 1427 fprintf(stderr, "zero fill device_state failed with %u\n", rc); 1428 core::Runtime::Memfree(ptr); 1429 return HSA_STATUS_ERROR; 1430 } 1431 1432 *ret_ptr = ptr; 1433 return HSA_STATUS_SUCCESS; 1434 } 1435 1436 static bool image_contains_symbol(void *data, size_t size, const char *sym) { 1437 symbol_info si; 1438 int rc = get_symbol_info_without_loading((char *)data, size, sym, &si); 1439 return (rc == 0) && (si.addr != nullptr); 1440 } 1441 1442 __tgt_target_table *__tgt_rtl_load_binary_locked(int32_t device_id, 1443 __tgt_device_image *image) { 1444 // This function loads the device image onto gpu[device_id] and does other 1445 // per-image initialization work. Specifically: 1446 // 1447 // - Initialize an omptarget_device_environmentTy instance embedded in the 1448 // image at the symbol "omptarget_device_environment" 1449 // Fields debug_level, device_num, num_devices. Used by the deviceRTL. 1450 // 1451 // - Allocate a large array per-gpu (could be moved to init_device) 1452 // - Read a uint64_t at symbol omptarget_nvptx_device_State_size 1453 // - Allocate at least that many bytes of gpu memory 1454 // - Zero initialize it 1455 // - Write the pointer to the symbol omptarget_nvptx_device_State 1456 // 1457 // - Pulls some per-kernel information together from various sources and 1458 // records it in the KernelsList for quicker access later 1459 // 1460 // The initialization can be done before or after loading the image onto the 1461 // gpu. This function presently does a mixture. Using the hsa api to get/set 1462 // the information is simpler to implement, in exchange for more complicated 1463 // runtime behaviour. E.g. launching a kernel or using dma to get eight bytes 1464 // back from the gpu vs a hashtable lookup on the host. 1465 1466 const size_t img_size = (char *)image->ImageEnd - (char *)image->ImageStart; 1467 1468 DeviceInfo.clearOffloadEntriesTable(device_id); 1469 1470 // We do not need to set the ELF version because the caller of this function 1471 // had to do that to decide the right runtime to use 1472 1473 if (!elf_machine_id_is_amdgcn(image)) { 1474 return NULL; 1475 } 1476 1477 { 1478 auto env = device_environment(device_id, DeviceInfo.NumberOfDevices, image, 1479 img_size); 1480 1481 auto &KernelInfo = DeviceInfo.KernelInfoTable[device_id]; 1482 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1483 hsa_status_t err = module_register_from_memory_to_place( 1484 KernelInfo, SymbolInfo, (void *)image->ImageStart, img_size, device_id, 1485 [&](void *data, size_t size) { 1486 if (image_contains_symbol(data, size, "needs_hostcall_buffer")) { 1487 __atomic_store_n(&DeviceInfo.hostcall_required, true, 1488 __ATOMIC_RELEASE); 1489 } 1490 return env.before_loading(data, size); 1491 }, 1492 DeviceInfo.HSAExecutables); 1493 1494 check("Module registering", err); 1495 if (err != HSA_STATUS_SUCCESS) { 1496 fprintf(stderr, 1497 "Possible gpu arch mismatch: device:%s, image:%s please check" 1498 " compiler flag: -march=<gpu>\n", 1499 DeviceInfo.GPUName[device_id].c_str(), 1500 get_elf_mach_gfx_name(elf_e_flags(image))); 1501 return NULL; 1502 } 1503 1504 err = env.after_loading(); 1505 if (err != HSA_STATUS_SUCCESS) { 1506 return NULL; 1507 } 1508 } 1509 1510 DP("ATMI module successfully loaded!\n"); 1511 1512 { 1513 // the device_State array is either large value in bss or a void* that 1514 // needs to be assigned to a pointer to an array of size device_state_bytes 1515 // If absent, it has been deadstripped and needs no setup. 1516 1517 void *state_ptr; 1518 uint32_t state_ptr_size; 1519 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 1520 hsa_status_t err = atmi_interop_hsa_get_symbol_info( 1521 SymbolInfoMap, device_id, "omptarget_nvptx_device_State", &state_ptr, 1522 &state_ptr_size); 1523 1524 if (err != HSA_STATUS_SUCCESS) { 1525 DP("No device_state symbol found, skipping initialization\n"); 1526 } else { 1527 if (state_ptr_size < sizeof(void *)) { 1528 DP("unexpected size of state_ptr %u != %zu\n", state_ptr_size, 1529 sizeof(void *)); 1530 return NULL; 1531 } 1532 1533 // if it's larger than a void*, assume it's a bss array and no further 1534 // initialization is required. Only try to set up a pointer for 1535 // sizeof(void*) 1536 if (state_ptr_size == sizeof(void *)) { 1537 uint64_t device_State_bytes = 1538 get_device_State_bytes((char *)image->ImageStart, img_size); 1539 if (device_State_bytes == 0) { 1540 DP("Can't initialize device_State, missing size information\n"); 1541 return NULL; 1542 } 1543 1544 auto &dss = DeviceInfo.deviceStateStore[device_id]; 1545 if (dss.first.get() == nullptr) { 1546 assert(dss.second == 0); 1547 void *ptr = NULL; 1548 hsa_status_t err = atmi_calloc(&ptr, device_State_bytes, device_id); 1549 if (err != HSA_STATUS_SUCCESS) { 1550 DP("Failed to allocate device_state array\n"); 1551 return NULL; 1552 } 1553 dss = { 1554 std::unique_ptr<void, RTLDeviceInfoTy::atmiFreePtrDeletor>{ptr}, 1555 device_State_bytes, 1556 }; 1557 } 1558 1559 void *ptr = dss.first.get(); 1560 if (device_State_bytes != dss.second) { 1561 DP("Inconsistent sizes of device_State unsupported\n"); 1562 return NULL; 1563 } 1564 1565 // write ptr to device memory so it can be used by later kernels 1566 err = DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &ptr, 1567 sizeof(void *), device_id); 1568 if (err != HSA_STATUS_SUCCESS) { 1569 DP("memcpy install of state_ptr failed\n"); 1570 return NULL; 1571 } 1572 } 1573 } 1574 } 1575 1576 // Here, we take advantage of the data that is appended after img_end to get 1577 // the symbols' name we need to load. This data consist of the host entries 1578 // begin and end as well as the target name (see the offloading linker script 1579 // creation in clang compiler). 1580 1581 // Find the symbols in the module by name. The name can be obtain by 1582 // concatenating the host entry name with the target name 1583 1584 __tgt_offload_entry *HostBegin = image->EntriesBegin; 1585 __tgt_offload_entry *HostEnd = image->EntriesEnd; 1586 1587 for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) { 1588 1589 if (!e->addr) { 1590 // The host should have always something in the address to 1591 // uniquely identify the target region. 1592 fprintf(stderr, "Analyzing host entry '<null>' (size = %lld)...\n", 1593 (unsigned long long)e->size); 1594 return NULL; 1595 } 1596 1597 if (e->size) { 1598 __tgt_offload_entry entry = *e; 1599 1600 void *varptr; 1601 uint32_t varsize; 1602 1603 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 1604 hsa_status_t err = atmi_interop_hsa_get_symbol_info( 1605 SymbolInfoMap, device_id, e->name, &varptr, &varsize); 1606 1607 if (err != HSA_STATUS_SUCCESS) { 1608 // Inform the user what symbol prevented offloading 1609 DP("Loading global '%s' (Failed)\n", e->name); 1610 return NULL; 1611 } 1612 1613 if (varsize != e->size) { 1614 DP("Loading global '%s' - size mismatch (%u != %lu)\n", e->name, 1615 varsize, e->size); 1616 return NULL; 1617 } 1618 1619 DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n", 1620 DPxPTR(e - HostBegin), e->name, DPxPTR(varptr)); 1621 entry.addr = (void *)varptr; 1622 1623 DeviceInfo.addOffloadEntry(device_id, entry); 1624 1625 if (DeviceInfo.RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY && 1626 e->flags & OMP_DECLARE_TARGET_LINK) { 1627 // If unified memory is present any target link variables 1628 // can access host addresses directly. There is no longer a 1629 // need for device copies. 1630 err = DeviceInfo.freesignalpool_memcpy_h2d(varptr, e->addr, 1631 sizeof(void *), device_id); 1632 if (err != HSA_STATUS_SUCCESS) 1633 DP("Error when copying USM\n"); 1634 DP("Copy linked variable host address (" DPxMOD ")" 1635 "to device address (" DPxMOD ")\n", 1636 DPxPTR(*((void **)e->addr)), DPxPTR(varptr)); 1637 } 1638 1639 continue; 1640 } 1641 1642 DP("to find the kernel name: %s size: %lu\n", e->name, strlen(e->name)); 1643 1644 uint32_t kernarg_segment_size; 1645 auto &KernelInfoMap = DeviceInfo.KernelInfoTable[device_id]; 1646 hsa_status_t err = atmi_interop_hsa_get_kernel_info( 1647 KernelInfoMap, device_id, e->name, 1648 HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE, 1649 &kernarg_segment_size); 1650 1651 // each arg is a void * in this openmp implementation 1652 uint32_t arg_num = kernarg_segment_size / sizeof(void *); 1653 std::vector<size_t> arg_sizes(arg_num); 1654 for (std::vector<size_t>::iterator it = arg_sizes.begin(); 1655 it != arg_sizes.end(); it++) { 1656 *it = sizeof(void *); 1657 } 1658 1659 // default value GENERIC (in case symbol is missing from cubin file) 1660 int8_t ExecModeVal = ExecutionModeType::GENERIC; 1661 1662 // get flat group size if present, else Default_WG_Size 1663 int16_t WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1664 1665 // get Kernel Descriptor if present. 1666 // Keep struct in sync wih getTgtAttributeStructQTy in CGOpenMPRuntime.cpp 1667 struct KernDescValType { 1668 uint16_t Version; 1669 uint16_t TSize; 1670 uint16_t WG_Size; 1671 uint8_t Mode; 1672 }; 1673 struct KernDescValType KernDescVal; 1674 std::string KernDescNameStr(e->name); 1675 KernDescNameStr += "_kern_desc"; 1676 const char *KernDescName = KernDescNameStr.c_str(); 1677 1678 void *KernDescPtr; 1679 uint32_t KernDescSize; 1680 void *CallStackAddr = nullptr; 1681 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1682 KernDescName, &KernDescPtr, &KernDescSize); 1683 1684 if (err == HSA_STATUS_SUCCESS) { 1685 if ((size_t)KernDescSize != sizeof(KernDescVal)) 1686 DP("Loading global computation properties '%s' - size mismatch (%u != " 1687 "%lu)\n", 1688 KernDescName, KernDescSize, sizeof(KernDescVal)); 1689 1690 memcpy(&KernDescVal, KernDescPtr, (size_t)KernDescSize); 1691 1692 // Check structure size against recorded size. 1693 if ((size_t)KernDescSize != KernDescVal.TSize) 1694 DP("KernDescVal size %lu does not match advertized size %d for '%s'\n", 1695 sizeof(KernDescVal), KernDescVal.TSize, KernDescName); 1696 1697 DP("After loading global for %s KernDesc \n", KernDescName); 1698 DP("KernDesc: Version: %d\n", KernDescVal.Version); 1699 DP("KernDesc: TSize: %d\n", KernDescVal.TSize); 1700 DP("KernDesc: WG_Size: %d\n", KernDescVal.WG_Size); 1701 DP("KernDesc: Mode: %d\n", KernDescVal.Mode); 1702 1703 // Get ExecMode 1704 ExecModeVal = KernDescVal.Mode; 1705 DP("ExecModeVal %d\n", ExecModeVal); 1706 if (KernDescVal.WG_Size == 0) { 1707 KernDescVal.WG_Size = RTLDeviceInfoTy::Default_WG_Size; 1708 DP("Setting KernDescVal.WG_Size to default %d\n", KernDescVal.WG_Size); 1709 } 1710 WGSizeVal = KernDescVal.WG_Size; 1711 DP("WGSizeVal %d\n", WGSizeVal); 1712 check("Loading KernDesc computation property", err); 1713 } else { 1714 DP("Warning: Loading KernDesc '%s' - symbol not found, ", KernDescName); 1715 1716 // Generic 1717 std::string ExecModeNameStr(e->name); 1718 ExecModeNameStr += "_exec_mode"; 1719 const char *ExecModeName = ExecModeNameStr.c_str(); 1720 1721 void *ExecModePtr; 1722 uint32_t varsize; 1723 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1724 ExecModeName, &ExecModePtr, &varsize); 1725 1726 if (err == HSA_STATUS_SUCCESS) { 1727 if ((size_t)varsize != sizeof(int8_t)) { 1728 DP("Loading global computation properties '%s' - size mismatch(%u != " 1729 "%lu)\n", 1730 ExecModeName, varsize, sizeof(int8_t)); 1731 return NULL; 1732 } 1733 1734 memcpy(&ExecModeVal, ExecModePtr, (size_t)varsize); 1735 1736 DP("After loading global for %s ExecMode = %d\n", ExecModeName, 1737 ExecModeVal); 1738 1739 if (ExecModeVal < 0 || ExecModeVal > 2) { 1740 DP("Error wrong exec_mode value specified in HSA code object file: " 1741 "%d\n", 1742 ExecModeVal); 1743 return NULL; 1744 } 1745 } else { 1746 DP("Loading global exec_mode '%s' - symbol missing, using default " 1747 "value " 1748 "GENERIC (1)\n", 1749 ExecModeName); 1750 } 1751 check("Loading computation property", err); 1752 1753 // Flat group size 1754 std::string WGSizeNameStr(e->name); 1755 WGSizeNameStr += "_wg_size"; 1756 const char *WGSizeName = WGSizeNameStr.c_str(); 1757 1758 void *WGSizePtr; 1759 uint32_t WGSize; 1760 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1761 WGSizeName, &WGSizePtr, &WGSize); 1762 1763 if (err == HSA_STATUS_SUCCESS) { 1764 if ((size_t)WGSize != sizeof(int16_t)) { 1765 DP("Loading global computation properties '%s' - size mismatch (%u " 1766 "!= " 1767 "%lu)\n", 1768 WGSizeName, WGSize, sizeof(int16_t)); 1769 return NULL; 1770 } 1771 1772 memcpy(&WGSizeVal, WGSizePtr, (size_t)WGSize); 1773 1774 DP("After loading global for %s WGSize = %d\n", WGSizeName, WGSizeVal); 1775 1776 if (WGSizeVal < RTLDeviceInfoTy::Default_WG_Size || 1777 WGSizeVal > RTLDeviceInfoTy::Max_WG_Size) { 1778 DP("Error wrong WGSize value specified in HSA code object file: " 1779 "%d\n", 1780 WGSizeVal); 1781 WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1782 } 1783 } else { 1784 DP("Warning: Loading WGSize '%s' - symbol not found, " 1785 "using default value %d\n", 1786 WGSizeName, WGSizeVal); 1787 } 1788 1789 check("Loading WGSize computation property", err); 1790 } 1791 1792 KernelsList.push_back(KernelTy(ExecModeVal, WGSizeVal, device_id, 1793 CallStackAddr, e->name, kernarg_segment_size, 1794 DeviceInfo.KernArgPool)); 1795 __tgt_offload_entry entry = *e; 1796 entry.addr = (void *)&KernelsList.back(); 1797 DeviceInfo.addOffloadEntry(device_id, entry); 1798 DP("Entry point %ld maps to %s\n", e - HostBegin, e->name); 1799 } 1800 1801 return DeviceInfo.getOffloadEntriesTable(device_id); 1802 } 1803 1804 void *__tgt_rtl_data_alloc(int device_id, int64_t size, void *, int32_t kind) { 1805 void *ptr = NULL; 1806 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1807 1808 if (kind != TARGET_ALLOC_DEFAULT) { 1809 REPORT("Invalid target data allocation kind or requested allocator not " 1810 "implemented yet\n"); 1811 return NULL; 1812 } 1813 1814 hsa_status_t err = core::Runtime::DeviceMalloc(&ptr, size, device_id); 1815 DP("Tgt alloc data %ld bytes, (tgt:%016llx).\n", size, 1816 (long long unsigned)(Elf64_Addr)ptr); 1817 ptr = (err == HSA_STATUS_SUCCESS) ? ptr : NULL; 1818 return ptr; 1819 } 1820 1821 int32_t __tgt_rtl_data_submit(int device_id, void *tgt_ptr, void *hst_ptr, 1822 int64_t size) { 1823 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1824 __tgt_async_info AsyncInfo; 1825 int32_t rc = dataSubmit(device_id, tgt_ptr, hst_ptr, size, &AsyncInfo); 1826 if (rc != OFFLOAD_SUCCESS) 1827 return OFFLOAD_FAIL; 1828 1829 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1830 } 1831 1832 int32_t __tgt_rtl_data_submit_async(int device_id, void *tgt_ptr, void *hst_ptr, 1833 int64_t size, __tgt_async_info *AsyncInfo) { 1834 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1835 if (AsyncInfo) { 1836 initAsyncInfo(AsyncInfo); 1837 return dataSubmit(device_id, tgt_ptr, hst_ptr, size, AsyncInfo); 1838 } else { 1839 return __tgt_rtl_data_submit(device_id, tgt_ptr, hst_ptr, size); 1840 } 1841 } 1842 1843 int32_t __tgt_rtl_data_retrieve(int device_id, void *hst_ptr, void *tgt_ptr, 1844 int64_t size) { 1845 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1846 __tgt_async_info AsyncInfo; 1847 int32_t rc = dataRetrieve(device_id, hst_ptr, tgt_ptr, size, &AsyncInfo); 1848 if (rc != OFFLOAD_SUCCESS) 1849 return OFFLOAD_FAIL; 1850 1851 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1852 } 1853 1854 int32_t __tgt_rtl_data_retrieve_async(int device_id, void *hst_ptr, 1855 void *tgt_ptr, int64_t size, 1856 __tgt_async_info *AsyncInfo) { 1857 assert(AsyncInfo && "AsyncInfo is nullptr"); 1858 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1859 initAsyncInfo(AsyncInfo); 1860 return dataRetrieve(device_id, hst_ptr, tgt_ptr, size, AsyncInfo); 1861 } 1862 1863 int32_t __tgt_rtl_data_delete(int device_id, void *tgt_ptr) { 1864 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1865 hsa_status_t err; 1866 DP("Tgt free data (tgt:%016llx).\n", (long long unsigned)(Elf64_Addr)tgt_ptr); 1867 err = core::Runtime::Memfree(tgt_ptr); 1868 if (err != HSA_STATUS_SUCCESS) { 1869 DP("Error when freeing CUDA memory\n"); 1870 return OFFLOAD_FAIL; 1871 } 1872 return OFFLOAD_SUCCESS; 1873 } 1874 1875 // Determine launch values for kernel. 1876 struct launchVals { 1877 int WorkgroupSize; 1878 int GridSize; 1879 }; 1880 launchVals getLaunchVals(EnvironmentVariables Env, int ConstWGSize, 1881 int ExecutionMode, int num_teams, int thread_limit, 1882 uint64_t loop_tripcount, int DeviceNumTeams) { 1883 1884 int threadsPerGroup = RTLDeviceInfoTy::Default_WG_Size; 1885 int num_groups = 0; 1886 1887 int Max_Teams = 1888 Env.MaxTeamsDefault > 0 ? Env.MaxTeamsDefault : DeviceNumTeams; 1889 if (Max_Teams > RTLDeviceInfoTy::HardTeamLimit) 1890 Max_Teams = RTLDeviceInfoTy::HardTeamLimit; 1891 1892 if (print_kernel_trace & STARTUP_DETAILS) { 1893 fprintf(stderr, "RTLDeviceInfoTy::Max_Teams: %d\n", 1894 RTLDeviceInfoTy::Max_Teams); 1895 fprintf(stderr, "Max_Teams: %d\n", Max_Teams); 1896 fprintf(stderr, "RTLDeviceInfoTy::Warp_Size: %d\n", 1897 RTLDeviceInfoTy::Warp_Size); 1898 fprintf(stderr, "RTLDeviceInfoTy::Max_WG_Size: %d\n", 1899 RTLDeviceInfoTy::Max_WG_Size); 1900 fprintf(stderr, "RTLDeviceInfoTy::Default_WG_Size: %d\n", 1901 RTLDeviceInfoTy::Default_WG_Size); 1902 fprintf(stderr, "thread_limit: %d\n", thread_limit); 1903 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1904 fprintf(stderr, "ConstWGSize: %d\n", ConstWGSize); 1905 } 1906 // check for thread_limit() clause 1907 if (thread_limit > 0) { 1908 threadsPerGroup = thread_limit; 1909 DP("Setting threads per block to requested %d\n", thread_limit); 1910 if (ExecutionMode == GENERIC) { // Add master warp for GENERIC 1911 threadsPerGroup += RTLDeviceInfoTy::Warp_Size; 1912 DP("Adding master wavefront: +%d threads\n", RTLDeviceInfoTy::Warp_Size); 1913 } 1914 if (threadsPerGroup > RTLDeviceInfoTy::Max_WG_Size) { // limit to max 1915 threadsPerGroup = RTLDeviceInfoTy::Max_WG_Size; 1916 DP("Setting threads per block to maximum %d\n", threadsPerGroup); 1917 } 1918 } 1919 // check flat_max_work_group_size attr here 1920 if (threadsPerGroup > ConstWGSize) { 1921 threadsPerGroup = ConstWGSize; 1922 DP("Reduced threadsPerGroup to flat-attr-group-size limit %d\n", 1923 threadsPerGroup); 1924 } 1925 if (print_kernel_trace & STARTUP_DETAILS) 1926 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1927 DP("Preparing %d threads\n", threadsPerGroup); 1928 1929 // Set default num_groups (teams) 1930 if (Env.TeamLimit > 0) 1931 num_groups = (Max_Teams < Env.TeamLimit) ? Max_Teams : Env.TeamLimit; 1932 else 1933 num_groups = Max_Teams; 1934 DP("Set default num of groups %d\n", num_groups); 1935 1936 if (print_kernel_trace & STARTUP_DETAILS) { 1937 fprintf(stderr, "num_groups: %d\n", num_groups); 1938 fprintf(stderr, "num_teams: %d\n", num_teams); 1939 } 1940 1941 // Reduce num_groups if threadsPerGroup exceeds RTLDeviceInfoTy::Max_WG_Size 1942 // This reduction is typical for default case (no thread_limit clause). 1943 // or when user goes crazy with num_teams clause. 1944 // FIXME: We cant distinguish between a constant or variable thread limit. 1945 // So we only handle constant thread_limits. 1946 if (threadsPerGroup > 1947 RTLDeviceInfoTy::Default_WG_Size) // 256 < threadsPerGroup <= 1024 1948 // Should we round threadsPerGroup up to nearest RTLDeviceInfoTy::Warp_Size 1949 // here? 1950 num_groups = (Max_Teams * RTLDeviceInfoTy::Max_WG_Size) / threadsPerGroup; 1951 1952 // check for num_teams() clause 1953 if (num_teams > 0) { 1954 num_groups = (num_teams < num_groups) ? num_teams : num_groups; 1955 } 1956 if (print_kernel_trace & STARTUP_DETAILS) { 1957 fprintf(stderr, "num_groups: %d\n", num_groups); 1958 fprintf(stderr, "Env.NumTeams %d\n", Env.NumTeams); 1959 fprintf(stderr, "Env.TeamLimit %d\n", Env.TeamLimit); 1960 } 1961 1962 if (Env.NumTeams > 0) { 1963 num_groups = (Env.NumTeams < num_groups) ? Env.NumTeams : num_groups; 1964 DP("Modifying teams based on Env.NumTeams %d\n", Env.NumTeams); 1965 } else if (Env.TeamLimit > 0) { 1966 num_groups = (Env.TeamLimit < num_groups) ? Env.TeamLimit : num_groups; 1967 DP("Modifying teams based on Env.TeamLimit%d\n", Env.TeamLimit); 1968 } else { 1969 if (num_teams <= 0) { 1970 if (loop_tripcount > 0) { 1971 if (ExecutionMode == SPMD) { 1972 // round up to the nearest integer 1973 num_groups = ((loop_tripcount - 1) / threadsPerGroup) + 1; 1974 } else if (ExecutionMode == GENERIC) { 1975 num_groups = loop_tripcount; 1976 } else /* ExecutionMode == SPMD_GENERIC */ { 1977 // This is a generic kernel that was transformed to use SPMD-mode 1978 // execution but uses Generic-mode semantics for scheduling. 1979 num_groups = loop_tripcount; 1980 } 1981 DP("Using %d teams due to loop trip count %" PRIu64 " and number of " 1982 "threads per block %d\n", 1983 num_groups, loop_tripcount, threadsPerGroup); 1984 } 1985 } else { 1986 num_groups = num_teams; 1987 } 1988 if (num_groups > Max_Teams) { 1989 num_groups = Max_Teams; 1990 if (print_kernel_trace & STARTUP_DETAILS) 1991 fprintf(stderr, "Limiting num_groups %d to Max_Teams %d \n", num_groups, 1992 Max_Teams); 1993 } 1994 if (num_groups > num_teams && num_teams > 0) { 1995 num_groups = num_teams; 1996 if (print_kernel_trace & STARTUP_DETAILS) 1997 fprintf(stderr, "Limiting num_groups %d to clause num_teams %d \n", 1998 num_groups, num_teams); 1999 } 2000 } 2001 2002 // num_teams clause always honored, no matter what, unless DEFAULT is active. 2003 if (num_teams > 0) { 2004 num_groups = num_teams; 2005 // Cap num_groups to EnvMaxTeamsDefault if set. 2006 if (Env.MaxTeamsDefault > 0 && num_groups > Env.MaxTeamsDefault) 2007 num_groups = Env.MaxTeamsDefault; 2008 } 2009 if (print_kernel_trace & STARTUP_DETAILS) { 2010 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 2011 fprintf(stderr, "num_groups: %d\n", num_groups); 2012 fprintf(stderr, "loop_tripcount: %ld\n", loop_tripcount); 2013 } 2014 DP("Final %d num_groups and %d threadsPerGroup\n", num_groups, 2015 threadsPerGroup); 2016 2017 launchVals res; 2018 res.WorkgroupSize = threadsPerGroup; 2019 res.GridSize = threadsPerGroup * num_groups; 2020 return res; 2021 } 2022 2023 static uint64_t acquire_available_packet_id(hsa_queue_t *queue) { 2024 uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1); 2025 bool full = true; 2026 while (full) { 2027 full = 2028 packet_id >= (queue->size + hsa_queue_load_read_index_scacquire(queue)); 2029 } 2030 return packet_id; 2031 } 2032 2033 static int32_t __tgt_rtl_run_target_team_region_locked( 2034 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 2035 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 2036 int32_t thread_limit, uint64_t loop_tripcount); 2037 2038 int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr, 2039 void **tgt_args, 2040 ptrdiff_t *tgt_offsets, 2041 int32_t arg_num, int32_t num_teams, 2042 int32_t thread_limit, 2043 uint64_t loop_tripcount) { 2044 2045 DeviceInfo.load_run_lock.lock_shared(); 2046 int32_t res = __tgt_rtl_run_target_team_region_locked( 2047 device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, num_teams, 2048 thread_limit, loop_tripcount); 2049 2050 DeviceInfo.load_run_lock.unlock_shared(); 2051 return res; 2052 } 2053 2054 int32_t __tgt_rtl_run_target_team_region_locked( 2055 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 2056 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 2057 int32_t thread_limit, uint64_t loop_tripcount) { 2058 // Set the context we are using 2059 // update thread limit content in gpu memory if un-initialized or specified 2060 // from host 2061 2062 DP("Run target team region thread_limit %d\n", thread_limit); 2063 2064 // All args are references. 2065 std::vector<void *> args(arg_num); 2066 std::vector<void *> ptrs(arg_num); 2067 2068 DP("Arg_num: %d\n", arg_num); 2069 for (int32_t i = 0; i < arg_num; ++i) { 2070 ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]); 2071 args[i] = &ptrs[i]; 2072 DP("Offseted base: arg[%d]:" DPxMOD "\n", i, DPxPTR(ptrs[i])); 2073 } 2074 2075 KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr; 2076 2077 std::string kernel_name = std::string(KernelInfo->Name); 2078 auto &KernelInfoTable = DeviceInfo.KernelInfoTable; 2079 if (KernelInfoTable[device_id].find(kernel_name) == 2080 KernelInfoTable[device_id].end()) { 2081 DP("Kernel %s not found\n", kernel_name.c_str()); 2082 return OFFLOAD_FAIL; 2083 } 2084 2085 const atl_kernel_info_t KernelInfoEntry = 2086 KernelInfoTable[device_id][kernel_name]; 2087 const uint32_t group_segment_size = KernelInfoEntry.group_segment_size; 2088 const uint32_t sgpr_count = KernelInfoEntry.sgpr_count; 2089 const uint32_t vgpr_count = KernelInfoEntry.vgpr_count; 2090 const uint32_t sgpr_spill_count = KernelInfoEntry.sgpr_spill_count; 2091 const uint32_t vgpr_spill_count = KernelInfoEntry.vgpr_spill_count; 2092 2093 assert(arg_num == (int)KernelInfoEntry.num_args); 2094 2095 /* 2096 * Set limit based on ThreadsPerGroup and GroupsPerDevice 2097 */ 2098 launchVals LV = getLaunchVals(DeviceInfo.Env, KernelInfo->ConstWGSize, 2099 KernelInfo->ExecutionMode, 2100 num_teams, // From run_region arg 2101 thread_limit, // From run_region arg 2102 loop_tripcount, // From run_region arg 2103 DeviceInfo.NumTeams[KernelInfo->device_id]); 2104 const int GridSize = LV.GridSize; 2105 const int WorkgroupSize = LV.WorkgroupSize; 2106 2107 if (print_kernel_trace >= LAUNCH) { 2108 int num_groups = GridSize / WorkgroupSize; 2109 // enum modes are SPMD, GENERIC, NONE 0,1,2 2110 // if doing rtl timing, print to stderr, unless stdout requested. 2111 bool traceToStdout = print_kernel_trace & (RTL_TO_STDOUT | RTL_TIMING); 2112 fprintf(traceToStdout ? stdout : stderr, 2113 "DEVID:%2d SGN:%1d ConstWGSize:%-4d args:%2d teamsXthrds:(%4dX%4d) " 2114 "reqd:(%4dX%4d) lds_usage:%uB sgpr_count:%u vgpr_count:%u " 2115 "sgpr_spill_count:%u vgpr_spill_count:%u tripcount:%lu n:%s\n", 2116 device_id, KernelInfo->ExecutionMode, KernelInfo->ConstWGSize, 2117 arg_num, num_groups, WorkgroupSize, num_teams, thread_limit, 2118 group_segment_size, sgpr_count, vgpr_count, sgpr_spill_count, 2119 vgpr_spill_count, loop_tripcount, KernelInfo->Name); 2120 } 2121 2122 // Run on the device. 2123 { 2124 hsa_queue_t *queue = DeviceInfo.HSAQueues[device_id]; 2125 if (!queue) { 2126 return OFFLOAD_FAIL; 2127 } 2128 uint64_t packet_id = acquire_available_packet_id(queue); 2129 2130 const uint32_t mask = queue->size - 1; // size is a power of 2 2131 hsa_kernel_dispatch_packet_t *packet = 2132 (hsa_kernel_dispatch_packet_t *)queue->base_address + 2133 (packet_id & mask); 2134 2135 // packet->header is written last 2136 packet->setup = UINT16_C(1) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS; 2137 packet->workgroup_size_x = WorkgroupSize; 2138 packet->workgroup_size_y = 1; 2139 packet->workgroup_size_z = 1; 2140 packet->reserved0 = 0; 2141 packet->grid_size_x = GridSize; 2142 packet->grid_size_y = 1; 2143 packet->grid_size_z = 1; 2144 packet->private_segment_size = KernelInfoEntry.private_segment_size; 2145 packet->group_segment_size = KernelInfoEntry.group_segment_size; 2146 packet->kernel_object = KernelInfoEntry.kernel_object; 2147 packet->kernarg_address = 0; // use the block allocator 2148 packet->reserved2 = 0; // atmi writes id_ here 2149 packet->completion_signal = {0}; // may want a pool of signals 2150 2151 KernelArgPool *ArgPool = nullptr; 2152 { 2153 auto it = KernelArgPoolMap.find(std::string(KernelInfo->Name)); 2154 if (it != KernelArgPoolMap.end()) { 2155 ArgPool = (it->second).get(); 2156 } 2157 } 2158 if (!ArgPool) { 2159 DP("Warning: No ArgPool for %s on device %d\n", KernelInfo->Name, 2160 device_id); 2161 } 2162 { 2163 void *kernarg = nullptr; 2164 if (ArgPool) { 2165 assert(ArgPool->kernarg_segment_size == (arg_num * sizeof(void *))); 2166 kernarg = ArgPool->allocate(arg_num); 2167 } 2168 if (!kernarg) { 2169 DP("Allocate kernarg failed\n"); 2170 return OFFLOAD_FAIL; 2171 } 2172 2173 // Copy explicit arguments 2174 for (int i = 0; i < arg_num; i++) { 2175 memcpy((char *)kernarg + sizeof(void *) * i, args[i], sizeof(void *)); 2176 } 2177 2178 // Initialize implicit arguments. ATMI seems to leave most fields 2179 // uninitialized 2180 atmi_implicit_args_t *impl_args = 2181 reinterpret_cast<atmi_implicit_args_t *>( 2182 static_cast<char *>(kernarg) + ArgPool->kernarg_segment_size); 2183 memset(impl_args, 0, 2184 sizeof(atmi_implicit_args_t)); // may not be necessary 2185 impl_args->offset_x = 0; 2186 impl_args->offset_y = 0; 2187 impl_args->offset_z = 0; 2188 2189 // assign a hostcall buffer for the selected Q 2190 if (__atomic_load_n(&DeviceInfo.hostcall_required, __ATOMIC_ACQUIRE)) { 2191 // hostrpc_assign_buffer is not thread safe, and this function is 2192 // under a multiple reader lock, not a writer lock. 2193 static pthread_mutex_t hostcall_init_lock = PTHREAD_MUTEX_INITIALIZER; 2194 pthread_mutex_lock(&hostcall_init_lock); 2195 impl_args->hostcall_ptr = hostrpc_assign_buffer( 2196 DeviceInfo.HSAAgents[device_id], queue, device_id); 2197 pthread_mutex_unlock(&hostcall_init_lock); 2198 if (!impl_args->hostcall_ptr) { 2199 DP("hostrpc_assign_buffer failed, gpu would dereference null and " 2200 "error\n"); 2201 return OFFLOAD_FAIL; 2202 } 2203 } 2204 2205 packet->kernarg_address = kernarg; 2206 } 2207 2208 { 2209 hsa_signal_t s = DeviceInfo.FreeSignalPool.pop(); 2210 if (s.handle == 0) { 2211 DP("Failed to get signal instance\n"); 2212 return OFFLOAD_FAIL; 2213 } 2214 packet->completion_signal = s; 2215 hsa_signal_store_relaxed(packet->completion_signal, 1); 2216 } 2217 2218 core::packet_store_release(reinterpret_cast<uint32_t *>(packet), 2219 core::create_header(), packet->setup); 2220 2221 hsa_signal_store_relaxed(queue->doorbell_signal, packet_id); 2222 2223 while (hsa_signal_wait_scacquire(packet->completion_signal, 2224 HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX, 2225 HSA_WAIT_STATE_BLOCKED) != 0) 2226 ; 2227 2228 assert(ArgPool); 2229 ArgPool->deallocate(packet->kernarg_address); 2230 DeviceInfo.FreeSignalPool.push(packet->completion_signal); 2231 } 2232 2233 DP("Kernel completed\n"); 2234 return OFFLOAD_SUCCESS; 2235 } 2236 2237 int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr, 2238 void **tgt_args, ptrdiff_t *tgt_offsets, 2239 int32_t arg_num) { 2240 // use one team and one thread 2241 // fix thread num 2242 int32_t team_num = 1; 2243 int32_t thread_limit = 0; // use default 2244 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 2245 tgt_offsets, arg_num, team_num, 2246 thread_limit, 0); 2247 } 2248 2249 int32_t __tgt_rtl_run_target_region_async(int32_t device_id, 2250 void *tgt_entry_ptr, void **tgt_args, 2251 ptrdiff_t *tgt_offsets, 2252 int32_t arg_num, 2253 __tgt_async_info *AsyncInfo) { 2254 assert(AsyncInfo && "AsyncInfo is nullptr"); 2255 initAsyncInfo(AsyncInfo); 2256 2257 // use one team and one thread 2258 // fix thread num 2259 int32_t team_num = 1; 2260 int32_t thread_limit = 0; // use default 2261 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 2262 tgt_offsets, arg_num, team_num, 2263 thread_limit, 0); 2264 } 2265 2266 int32_t __tgt_rtl_synchronize(int32_t device_id, __tgt_async_info *AsyncInfo) { 2267 assert(AsyncInfo && "AsyncInfo is nullptr"); 2268 2269 // Cuda asserts that AsyncInfo->Queue is non-null, but this invariant 2270 // is not ensured by devices.cpp for amdgcn 2271 // assert(AsyncInfo->Queue && "AsyncInfo->Queue is nullptr"); 2272 if (AsyncInfo->Queue) { 2273 finiAsyncInfo(AsyncInfo); 2274 } 2275 return OFFLOAD_SUCCESS; 2276 } 2277 2278 namespace core { 2279 hsa_status_t allow_access_to_all_gpu_agents(void *ptr) { 2280 return hsa_amd_agents_allow_access(DeviceInfo.HSAAgents.size(), 2281 &DeviceInfo.HSAAgents[0], NULL, ptr); 2282 } 2283 2284 } // namespace core 2285