1 //===----RTLs/hsa/src/rtl.cpp - Target RTLs Implementation -------- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // RTL for hsa machine 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <algorithm> 14 #include <assert.h> 15 #include <cstdio> 16 #include <cstdlib> 17 #include <cstring> 18 #include <dlfcn.h> 19 #include <elf.h> 20 #include <ffi.h> 21 #include <fstream> 22 #include <iostream> 23 #include <libelf.h> 24 #include <list> 25 #include <memory> 26 #include <mutex> 27 #include <shared_mutex> 28 #include <thread> 29 #include <unordered_map> 30 #include <vector> 31 32 // Header from ATMI interface 33 #include "atmi_interop_hsa.h" 34 #include "atmi_runtime.h" 35 36 #include "internal.h" 37 38 #include "omptargetplugin.h" 39 40 // Get static gpu grid values from clang target-specific constants managed 41 // in the header file llvm/Frontend/OpenMP/OMPGridValues.h 42 // Copied verbatim to meet the requirement that libomptarget builds without 43 // a copy of llvm checked out nearby 44 namespace llvm { 45 namespace omp { 46 enum GVIDX { 47 /// The maximum number of workers in a kernel. 48 /// (THREAD_ABSOLUTE_LIMIT) - (GV_Warp_Size), might be issue for blockDim.z 49 GV_Threads, 50 /// The size reserved for data in a shared memory slot. 51 GV_Slot_Size, 52 /// The default value of maximum number of threads in a worker warp. 53 GV_Warp_Size, 54 /// Alternate warp size for some AMDGCN architectures. Same as GV_Warp_Size 55 /// for NVPTX. 56 GV_Warp_Size_32, 57 /// The number of bits required to represent the max number of threads in warp 58 GV_Warp_Size_Log2, 59 /// GV_Warp_Size * GV_Slot_Size, 60 GV_Warp_Slot_Size, 61 /// the maximum number of teams. 62 GV_Max_Teams, 63 /// Global Memory Alignment 64 GV_Mem_Align, 65 /// (~0u >> (GV_Warp_Size - GV_Warp_Size_Log2)) 66 GV_Warp_Size_Log2_Mask, 67 // An alternative to the heavy data sharing infrastructure that uses global 68 // memory is one that uses device __shared__ memory. The amount of such space 69 // (in bytes) reserved by the OpenMP runtime is noted here. 70 GV_SimpleBufferSize, 71 // The absolute maximum team size for a working group 72 GV_Max_WG_Size, 73 // The default maximum team size for a working group 74 GV_Default_WG_Size, 75 // This is GV_Max_WG_Size / GV_WarpSize. 32 for NVPTX and 16 for AMDGCN. 76 GV_Max_Warp_Number, 77 /// The slot size that should be reserved for a working warp. 78 /// (~0u >> (GV_Warp_Size - GV_Warp_Size_Log2)) 79 GV_Warp_Size_Log2_MaskL 80 }; 81 82 static constexpr unsigned AMDGPUGpuGridValues[] = { 83 448, // GV_Threads 84 256, // GV_Slot_Size 85 64, // GV_Warp_Size 86 32, // GV_Warp_Size_32 87 6, // GV_Warp_Size_Log2 88 64 * 256, // GV_Warp_Slot_Size 89 128, // GV_Max_Teams 90 256, // GV_Mem_Align 91 63, // GV_Warp_Size_Log2_Mask 92 896, // GV_SimpleBufferSize 93 1024, // GV_Max_WG_Size, 94 256, // GV_Defaut_WG_Size 95 1024 / 64, // GV_Max_WG_Size / GV_WarpSize 96 63 // GV_Warp_Size_Log2_MaskL 97 }; 98 } // namespace omp 99 } // namespace llvm 100 101 #ifndef TARGET_NAME 102 #define TARGET_NAME AMDHSA 103 #endif 104 105 int print_kernel_trace; 106 107 // Size of the target call stack struture 108 uint32_t TgtStackItemSize = 0; 109 110 #ifdef OMPTARGET_DEBUG 111 static int DebugLevel = 0; 112 113 #define GETNAME2(name) #name 114 #define GETNAME(name) GETNAME2(name) 115 #define DP(...) \ 116 do { \ 117 if (DebugLevel > 0) { \ 118 DEBUGP("Target " GETNAME(TARGET_NAME) " RTL", __VA_ARGS__); \ 119 } \ 120 } while (false) 121 #else // OMPTARGET_DEBUG 122 #define DP(...) \ 123 {} 124 #endif // OMPTARGET_DEBUG 125 126 #undef check // Drop definition from internal.h 127 #ifdef OMPTARGET_DEBUG 128 #define check(msg, status) \ 129 if (status != ATMI_STATUS_SUCCESS) { \ 130 /* fprintf(stderr, "[%s:%d] %s failed.\n", __FILE__, __LINE__, #msg);*/ \ 131 DP(#msg " failed\n"); \ 132 /*assert(0);*/ \ 133 } else { \ 134 /* fprintf(stderr, "[%s:%d] %s succeeded.\n", __FILE__, __LINE__, #msg); \ 135 */ \ 136 DP(#msg " succeeded\n"); \ 137 } 138 #else 139 #define check(msg, status) \ 140 {} 141 #endif 142 143 #include "../../common/elf_common.c" 144 145 static bool elf_machine_id_is_amdgcn(__tgt_device_image *image) { 146 const uint16_t amdgcnMachineID = 224; 147 int32_t r = elf_check_machine(image, amdgcnMachineID); 148 if (!r) { 149 DP("Supported machine ID not found\n"); 150 } 151 return r; 152 } 153 154 /// Keep entries table per device 155 struct FuncOrGblEntryTy { 156 __tgt_target_table Table; 157 std::vector<__tgt_offload_entry> Entries; 158 }; 159 160 enum ExecutionModeType { 161 SPMD, // constructors, destructors, 162 // combined constructs (`teams distribute parallel for [simd]`) 163 GENERIC, // everything else 164 NONE 165 }; 166 167 struct KernelArgPool { 168 private: 169 static pthread_mutex_t mutex; 170 171 public: 172 uint32_t kernarg_segment_size; 173 void *kernarg_region = nullptr; 174 std::queue<int> free_kernarg_segments; 175 176 uint32_t kernarg_size_including_implicit() { 177 return kernarg_segment_size + sizeof(atmi_implicit_args_t); 178 } 179 180 ~KernelArgPool() { 181 if (kernarg_region) { 182 auto r = hsa_amd_memory_pool_free(kernarg_region); 183 assert(r == HSA_STATUS_SUCCESS); 184 ErrorCheck(Memory pool free, r); 185 } 186 } 187 188 // Can't really copy or move a mutex 189 KernelArgPool() = default; 190 KernelArgPool(const KernelArgPool &) = delete; 191 KernelArgPool(KernelArgPool &&) = delete; 192 193 KernelArgPool(uint32_t kernarg_segment_size) 194 : kernarg_segment_size(kernarg_segment_size) { 195 196 // atmi uses one pool per kernel for all gpus, with a fixed upper size 197 // preserving that exact scheme here, including the queue<int> 198 { 199 hsa_status_t err = hsa_amd_memory_pool_allocate( 200 atl_gpu_kernarg_pools[0], 201 kernarg_size_including_implicit() * MAX_NUM_KERNELS, 0, 202 &kernarg_region); 203 ErrorCheck(Allocating memory for the executable-kernel, err); 204 core::allow_access_to_all_gpu_agents(kernarg_region); 205 206 for (int i = 0; i < MAX_NUM_KERNELS; i++) { 207 free_kernarg_segments.push(i); 208 } 209 } 210 } 211 212 void *allocate(uint64_t arg_num) { 213 assert((arg_num * sizeof(void *)) == kernarg_segment_size); 214 lock l(&mutex); 215 void *res = nullptr; 216 if (!free_kernarg_segments.empty()) { 217 218 int free_idx = free_kernarg_segments.front(); 219 res = static_cast<void *>(static_cast<char *>(kernarg_region) + 220 (free_idx * kernarg_size_including_implicit())); 221 assert(free_idx == pointer_to_index(res)); 222 free_kernarg_segments.pop(); 223 } 224 return res; 225 } 226 227 void deallocate(void *ptr) { 228 lock l(&mutex); 229 int idx = pointer_to_index(ptr); 230 free_kernarg_segments.push(idx); 231 } 232 233 private: 234 int pointer_to_index(void *ptr) { 235 ptrdiff_t bytes = 236 static_cast<char *>(ptr) - static_cast<char *>(kernarg_region); 237 assert(bytes >= 0); 238 assert(bytes % kernarg_size_including_implicit() == 0); 239 return bytes / kernarg_size_including_implicit(); 240 } 241 struct lock { 242 lock(pthread_mutex_t *m) : m(m) { pthread_mutex_lock(m); } 243 ~lock() { pthread_mutex_unlock(m); } 244 pthread_mutex_t *m; 245 }; 246 }; 247 pthread_mutex_t KernelArgPool::mutex = PTHREAD_MUTEX_INITIALIZER; 248 249 std::unordered_map<std::string /*kernel*/, std::unique_ptr<KernelArgPool>> 250 KernelArgPoolMap; 251 252 /// Use a single entity to encode a kernel and a set of flags 253 struct KernelTy { 254 // execution mode of kernel 255 // 0 - SPMD mode (without master warp) 256 // 1 - Generic mode (with master warp) 257 int8_t ExecutionMode; 258 int16_t ConstWGSize; 259 int8_t MaxParLevel; 260 int32_t device_id; 261 void *CallStackAddr; 262 const char *Name; 263 264 KernelTy(int8_t _ExecutionMode, int16_t _ConstWGSize, int8_t _MaxParLevel, 265 int32_t _device_id, void *_CallStackAddr, const char *_Name, 266 uint32_t _kernarg_segment_size) 267 : ExecutionMode(_ExecutionMode), ConstWGSize(_ConstWGSize), 268 MaxParLevel(_MaxParLevel), device_id(_device_id), 269 CallStackAddr(_CallStackAddr), Name(_Name) { 270 DP("Construct kernelinfo: ExecMode %d\n", ExecutionMode); 271 272 std::string N(_Name); 273 if (KernelArgPoolMap.find(N) == KernelArgPoolMap.end()) { 274 KernelArgPoolMap.insert( 275 std::make_pair(N, std::unique_ptr<KernelArgPool>( 276 new KernelArgPool(_kernarg_segment_size)))); 277 } 278 } 279 }; 280 281 /// List that contains all the kernels. 282 /// FIXME: we may need this to be per device and per library. 283 std::list<KernelTy> KernelsList; 284 285 // ATMI API to get gpu and gpu memory place 286 static atmi_place_t get_gpu_place(int device_id) { 287 return ATMI_PLACE_GPU(0, device_id); 288 } 289 static atmi_mem_place_t get_gpu_mem_place(int device_id) { 290 return ATMI_MEM_PLACE_GPU_MEM(0, device_id, 0); 291 } 292 293 static std::vector<hsa_agent_t> find_gpu_agents() { 294 std::vector<hsa_agent_t> res; 295 296 hsa_status_t err = hsa_iterate_agents( 297 [](hsa_agent_t agent, void *data) -> hsa_status_t { 298 std::vector<hsa_agent_t> *res = 299 static_cast<std::vector<hsa_agent_t> *>(data); 300 301 hsa_device_type_t device_type; 302 // get_info fails iff HSA runtime not yet initialized 303 hsa_status_t err = 304 hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 305 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) 306 printf("rtl.cpp: err %d\n", err); 307 assert(err == HSA_STATUS_SUCCESS); 308 309 if (device_type == HSA_DEVICE_TYPE_GPU) { 310 res->push_back(agent); 311 } 312 return HSA_STATUS_SUCCESS; 313 }, 314 &res); 315 316 // iterate_agents fails iff HSA runtime not yet initialized 317 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) 318 printf("rtl.cpp: err %d\n", err); 319 assert(err == HSA_STATUS_SUCCESS); 320 return res; 321 } 322 323 static void callbackQueue(hsa_status_t status, hsa_queue_t *source, 324 void *data) { 325 if (status != HSA_STATUS_SUCCESS) { 326 const char *status_string; 327 if (hsa_status_string(status, &status_string) != HSA_STATUS_SUCCESS) { 328 status_string = "unavailable"; 329 } 330 fprintf(stderr, "[%s:%d] GPU error in queue %p %d (%s)\n", __FILE__, 331 __LINE__, source, status, status_string); 332 abort(); 333 } 334 } 335 336 namespace core { 337 void packet_store_release(uint32_t *packet, uint16_t header, uint16_t rest) { 338 __atomic_store_n(packet, header | (rest << 16), __ATOMIC_RELEASE); 339 } 340 341 uint16_t create_header(hsa_packet_type_t type, int barrier, 342 atmi_task_fence_scope_t acq_fence, 343 atmi_task_fence_scope_t rel_fence) { 344 uint16_t header = type << HSA_PACKET_HEADER_TYPE; 345 header |= barrier << HSA_PACKET_HEADER_BARRIER; 346 header |= (hsa_fence_scope_t) static_cast<int>( 347 acq_fence << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE); 348 header |= (hsa_fence_scope_t) static_cast<int>( 349 rel_fence << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE); 350 return header; 351 } 352 } // namespace core 353 354 /// Class containing all the device information 355 class RTLDeviceInfoTy { 356 std::vector<std::list<FuncOrGblEntryTy>> FuncGblEntries; 357 358 public: 359 // load binary populates symbol tables and mutates various global state 360 // run uses those symbol tables 361 std::shared_timed_mutex load_run_lock; 362 363 int NumberOfDevices; 364 365 // GPU devices 366 std::vector<hsa_agent_t> HSAAgents; 367 std::vector<hsa_queue_t *> HSAQueues; // one per gpu 368 369 // Device properties 370 std::vector<int> ComputeUnits; 371 std::vector<int> GroupsPerDevice; 372 std::vector<int> ThreadsPerGroup; 373 std::vector<int> WarpSize; 374 375 // OpenMP properties 376 std::vector<int> NumTeams; 377 std::vector<int> NumThreads; 378 379 // OpenMP Environment properties 380 int EnvNumTeams; 381 int EnvTeamLimit; 382 int EnvMaxTeamsDefault; 383 384 // OpenMP Requires Flags 385 int64_t RequiresFlags; 386 387 // Resource pools 388 SignalPoolT FreeSignalPool; 389 390 struct atmiFreePtrDeletor { 391 void operator()(void *p) { 392 atmi_free(p); // ignore failure to free 393 } 394 }; 395 396 // device_State shared across loaded binaries, error if inconsistent size 397 std::vector<std::pair<std::unique_ptr<void, atmiFreePtrDeletor>, uint64_t>> 398 deviceStateStore; 399 400 static const int HardTeamLimit = 1 << 20; // 1 Meg 401 static const int DefaultNumTeams = 128; 402 static const int Max_Teams = 403 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_Teams]; 404 static const int Warp_Size = 405 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; 406 static const int Max_WG_Size = 407 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_WG_Size]; 408 static const int Default_WG_Size = 409 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Default_WG_Size]; 410 411 atmi_status_t freesignalpool_memcpy(void *dest, const void *src, 412 size_t size) { 413 hsa_signal_t s = FreeSignalPool.pop(); 414 if (s.handle == 0) { 415 return ATMI_STATUS_ERROR; 416 } 417 atmi_status_t r = atmi_memcpy(s, dest, src, size); 418 FreeSignalPool.push(s); 419 return r; 420 } 421 422 // Record entry point associated with device 423 void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) { 424 assert(device_id < (int32_t)FuncGblEntries.size() && 425 "Unexpected device id!"); 426 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 427 428 E.Entries.push_back(entry); 429 } 430 431 // Return true if the entry is associated with device 432 bool findOffloadEntry(int32_t device_id, void *addr) { 433 assert(device_id < (int32_t)FuncGblEntries.size() && 434 "Unexpected device id!"); 435 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 436 437 for (auto &it : E.Entries) { 438 if (it.addr == addr) 439 return true; 440 } 441 442 return false; 443 } 444 445 // Return the pointer to the target entries table 446 __tgt_target_table *getOffloadEntriesTable(int32_t device_id) { 447 assert(device_id < (int32_t)FuncGblEntries.size() && 448 "Unexpected device id!"); 449 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 450 451 int32_t size = E.Entries.size(); 452 453 // Table is empty 454 if (!size) 455 return 0; 456 457 __tgt_offload_entry *begin = &E.Entries[0]; 458 __tgt_offload_entry *end = &E.Entries[size - 1]; 459 460 // Update table info according to the entries and return the pointer 461 E.Table.EntriesBegin = begin; 462 E.Table.EntriesEnd = ++end; 463 464 return &E.Table; 465 } 466 467 // Clear entries table for a device 468 void clearOffloadEntriesTable(int device_id) { 469 assert(device_id < (int32_t)FuncGblEntries.size() && 470 "Unexpected device id!"); 471 FuncGblEntries[device_id].emplace_back(); 472 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 473 // KernelArgPoolMap.clear(); 474 E.Entries.clear(); 475 E.Table.EntriesBegin = E.Table.EntriesEnd = 0; 476 } 477 478 RTLDeviceInfoTy() { 479 #ifdef OMPTARGET_DEBUG 480 if (char *envStr = getenv("LIBOMPTARGET_DEBUG")) 481 DebugLevel = std::stoi(envStr); 482 #endif // OMPTARGET_DEBUG 483 484 // LIBOMPTARGET_KERNEL_TRACE provides a kernel launch trace to stderr 485 // anytime. You do not need a debug library build. 486 // 0 => no tracing 487 // 1 => tracing dispatch only 488 // >1 => verbosity increase 489 if (char *envStr = getenv("LIBOMPTARGET_KERNEL_TRACE")) 490 print_kernel_trace = atoi(envStr); 491 else 492 print_kernel_trace = 0; 493 494 DP("Start initializing HSA-ATMI\n"); 495 atmi_status_t err = atmi_init(); 496 if (err != ATMI_STATUS_SUCCESS) { 497 DP("Error when initializing HSA-ATMI\n"); 498 return; 499 } 500 501 HSAAgents = find_gpu_agents(); 502 NumberOfDevices = (int)HSAAgents.size(); 503 504 if (NumberOfDevices == 0) { 505 DP("There are no devices supporting HSA.\n"); 506 return; 507 } else { 508 DP("There are %d devices supporting HSA.\n", NumberOfDevices); 509 } 510 511 // Init the device info 512 HSAQueues.resize(NumberOfDevices); 513 FuncGblEntries.resize(NumberOfDevices); 514 ThreadsPerGroup.resize(NumberOfDevices); 515 ComputeUnits.resize(NumberOfDevices); 516 GroupsPerDevice.resize(NumberOfDevices); 517 WarpSize.resize(NumberOfDevices); 518 NumTeams.resize(NumberOfDevices); 519 NumThreads.resize(NumberOfDevices); 520 deviceStateStore.resize(NumberOfDevices); 521 522 for (int i = 0; i < NumberOfDevices; i++) { 523 uint32_t queue_size = 0; 524 { 525 hsa_status_t err; 526 err = hsa_agent_get_info(HSAAgents[i], HSA_AGENT_INFO_QUEUE_MAX_SIZE, 527 &queue_size); 528 ErrorCheck(Querying the agent maximum queue size, err); 529 if (queue_size > core::Runtime::getInstance().getMaxQueueSize()) { 530 queue_size = core::Runtime::getInstance().getMaxQueueSize(); 531 } 532 } 533 534 hsa_status_t rc = hsa_queue_create( 535 HSAAgents[i], queue_size, HSA_QUEUE_TYPE_MULTI, callbackQueue, NULL, 536 UINT32_MAX, UINT32_MAX, &HSAQueues[i]); 537 if (rc != HSA_STATUS_SUCCESS) { 538 DP("Failed to create HSA queues\n"); 539 return; 540 } 541 542 deviceStateStore[i] = {nullptr, 0}; 543 } 544 545 for (int i = 0; i < NumberOfDevices; i++) { 546 ThreadsPerGroup[i] = RTLDeviceInfoTy::Default_WG_Size; 547 GroupsPerDevice[i] = RTLDeviceInfoTy::DefaultNumTeams; 548 ComputeUnits[i] = 1; 549 DP("Device %d: Initial groupsPerDevice %d & threadsPerGroup %d\n", i, 550 GroupsPerDevice[i], ThreadsPerGroup[i]); 551 } 552 553 // Get environment variables regarding teams 554 char *envStr = getenv("OMP_TEAM_LIMIT"); 555 if (envStr) { 556 // OMP_TEAM_LIMIT has been set 557 EnvTeamLimit = std::stoi(envStr); 558 DP("Parsed OMP_TEAM_LIMIT=%d\n", EnvTeamLimit); 559 } else { 560 EnvTeamLimit = -1; 561 } 562 envStr = getenv("OMP_NUM_TEAMS"); 563 if (envStr) { 564 // OMP_NUM_TEAMS has been set 565 EnvNumTeams = std::stoi(envStr); 566 DP("Parsed OMP_NUM_TEAMS=%d\n", EnvNumTeams); 567 } else { 568 EnvNumTeams = -1; 569 } 570 // Get environment variables regarding expMaxTeams 571 envStr = getenv("OMP_MAX_TEAMS_DEFAULT"); 572 if (envStr) { 573 EnvMaxTeamsDefault = std::stoi(envStr); 574 DP("Parsed OMP_MAX_TEAMS_DEFAULT=%d\n", EnvMaxTeamsDefault); 575 } else { 576 EnvMaxTeamsDefault = -1; 577 } 578 579 // Default state. 580 RequiresFlags = OMP_REQ_UNDEFINED; 581 } 582 583 ~RTLDeviceInfoTy() { 584 DP("Finalizing the HSA-ATMI DeviceInfo.\n"); 585 // Run destructors on types that use HSA before 586 // atmi_finalize removes access to it 587 deviceStateStore.clear(); 588 KernelArgPoolMap.clear(); 589 atmi_finalize(); 590 } 591 }; 592 593 pthread_mutex_t SignalPoolT::mutex = PTHREAD_MUTEX_INITIALIZER; 594 595 // TODO: May need to drop the trailing to fields until deviceRTL is updated 596 struct omptarget_device_environmentTy { 597 int32_t debug_level; // gets value of envvar LIBOMPTARGET_DEVICE_RTL_DEBUG 598 // only useful for Debug build of deviceRTLs 599 int32_t num_devices; // gets number of active offload devices 600 int32_t device_num; // gets a value 0 to num_devices-1 601 }; 602 603 static RTLDeviceInfoTy DeviceInfo; 604 605 namespace { 606 607 int32_t dataRetrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size, 608 __tgt_async_info *AsyncInfoPtr) { 609 assert(AsyncInfoPtr && "AsyncInfoPtr is nullptr"); 610 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 611 // Return success if we are not copying back to host from target. 612 if (!HstPtr) 613 return OFFLOAD_SUCCESS; 614 atmi_status_t err; 615 DP("Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 616 (long long unsigned)(Elf64_Addr)TgtPtr, 617 (long long unsigned)(Elf64_Addr)HstPtr); 618 619 err = DeviceInfo.freesignalpool_memcpy(HstPtr, TgtPtr, (size_t)Size); 620 621 if (err != ATMI_STATUS_SUCCESS) { 622 DP("Error when copying data from device to host. Pointers: " 623 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 624 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 625 return OFFLOAD_FAIL; 626 } 627 DP("DONE Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 628 (long long unsigned)(Elf64_Addr)TgtPtr, 629 (long long unsigned)(Elf64_Addr)HstPtr); 630 return OFFLOAD_SUCCESS; 631 } 632 633 int32_t dataSubmit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size, 634 __tgt_async_info *AsyncInfoPtr) { 635 assert(AsyncInfoPtr && "AsyncInfoPtr is nullptr"); 636 atmi_status_t err; 637 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 638 // Return success if we are not doing host to target. 639 if (!HstPtr) 640 return OFFLOAD_SUCCESS; 641 642 DP("Submit data %ld bytes, (hst:%016llx) -> (tgt:%016llx).\n", Size, 643 (long long unsigned)(Elf64_Addr)HstPtr, 644 (long long unsigned)(Elf64_Addr)TgtPtr); 645 err = DeviceInfo.freesignalpool_memcpy(TgtPtr, HstPtr, (size_t)Size); 646 if (err != ATMI_STATUS_SUCCESS) { 647 DP("Error when copying data from host to device. Pointers: " 648 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 649 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 650 return OFFLOAD_FAIL; 651 } 652 return OFFLOAD_SUCCESS; 653 } 654 655 // Async. 656 // The implementation was written with cuda streams in mind. The semantics of 657 // that are to execute kernels on a queue in order of insertion. A synchronise 658 // call then makes writes visible between host and device. This means a series 659 // of N data_submit_async calls are expected to execute serially. HSA offers 660 // various options to run the data copies concurrently. This may require changes 661 // to libomptarget. 662 663 // __tgt_async_info* contains a void * Queue. Queue = 0 is used to indicate that 664 // there are no outstanding kernels that need to be synchronized. Any async call 665 // may be passed a Queue==0, at which point the cuda implementation will set it 666 // to non-null (see getStream). The cuda streams are per-device. Upstream may 667 // change this interface to explicitly initialize the async_info_pointer, but 668 // until then hsa lazily initializes it as well. 669 670 void initAsyncInfoPtr(__tgt_async_info *async_info_ptr) { 671 // set non-null while using async calls, return to null to indicate completion 672 assert(async_info_ptr); 673 if (!async_info_ptr->Queue) { 674 async_info_ptr->Queue = reinterpret_cast<void *>(UINT64_MAX); 675 } 676 } 677 void finiAsyncInfoPtr(__tgt_async_info *async_info_ptr) { 678 assert(async_info_ptr); 679 assert(async_info_ptr->Queue); 680 async_info_ptr->Queue = 0; 681 } 682 } // namespace 683 684 int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) { 685 return elf_machine_id_is_amdgcn(image); 686 } 687 688 int __tgt_rtl_number_of_devices() { return DeviceInfo.NumberOfDevices; } 689 690 int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) { 691 DP("Init requires flags to %ld\n", RequiresFlags); 692 DeviceInfo.RequiresFlags = RequiresFlags; 693 return RequiresFlags; 694 } 695 696 int32_t __tgt_rtl_init_device(int device_id) { 697 hsa_status_t err; 698 699 // this is per device id init 700 DP("Initialize the device id: %d\n", device_id); 701 702 hsa_agent_t agent = DeviceInfo.HSAAgents[device_id]; 703 704 // Get number of Compute Unit 705 uint32_t compute_units = 0; 706 err = hsa_agent_get_info( 707 agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT, 708 &compute_units); 709 if (err != HSA_STATUS_SUCCESS) { 710 DeviceInfo.ComputeUnits[device_id] = 1; 711 DP("Error getting compute units : settiing to 1\n"); 712 } else { 713 DeviceInfo.ComputeUnits[device_id] = compute_units; 714 DP("Using %d compute unis per grid\n", DeviceInfo.ComputeUnits[device_id]); 715 } 716 if (print_kernel_trace > 1) 717 fprintf(stderr, "Device#%-2d CU's: %2d\n", device_id, 718 DeviceInfo.ComputeUnits[device_id]); 719 720 // Query attributes to determine number of threads/block and blocks/grid. 721 uint16_t workgroup_max_dim[3]; 722 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_DIM, 723 &workgroup_max_dim); 724 if (err != HSA_STATUS_SUCCESS) { 725 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::DefaultNumTeams; 726 DP("Error getting grid dims: num groups : %d\n", 727 RTLDeviceInfoTy::DefaultNumTeams); 728 } else if (workgroup_max_dim[0] <= RTLDeviceInfoTy::HardTeamLimit) { 729 DeviceInfo.GroupsPerDevice[device_id] = workgroup_max_dim[0]; 730 DP("Using %d ROCm blocks per grid\n", 731 DeviceInfo.GroupsPerDevice[device_id]); 732 } else { 733 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::HardTeamLimit; 734 DP("Max ROCm blocks per grid %d exceeds the hard team limit %d, capping " 735 "at the hard limit\n", 736 workgroup_max_dim[0], RTLDeviceInfoTy::HardTeamLimit); 737 } 738 739 // Get thread limit 740 hsa_dim3_t grid_max_dim; 741 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &grid_max_dim); 742 if (err == HSA_STATUS_SUCCESS) { 743 DeviceInfo.ThreadsPerGroup[device_id] = 744 reinterpret_cast<uint32_t *>(&grid_max_dim)[0] / 745 DeviceInfo.GroupsPerDevice[device_id]; 746 if ((DeviceInfo.ThreadsPerGroup[device_id] > 747 RTLDeviceInfoTy::Max_WG_Size) || 748 DeviceInfo.ThreadsPerGroup[device_id] == 0) { 749 DP("Capped thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 750 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 751 } else { 752 DP("Using ROCm Queried thread limit: %d\n", 753 DeviceInfo.ThreadsPerGroup[device_id]); 754 } 755 } else { 756 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 757 DP("Error getting max block dimension, use default:%d \n", 758 RTLDeviceInfoTy::Max_WG_Size); 759 } 760 761 // Get wavefront size 762 uint32_t wavefront_size = 0; 763 err = 764 hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size); 765 if (err == HSA_STATUS_SUCCESS) { 766 DP("Queried wavefront size: %d\n", wavefront_size); 767 DeviceInfo.WarpSize[device_id] = wavefront_size; 768 } else { 769 DP("Default wavefront size: %d\n", 770 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]); 771 DeviceInfo.WarpSize[device_id] = 772 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; 773 } 774 775 // Adjust teams to the env variables 776 if (DeviceInfo.EnvTeamLimit > 0 && 777 DeviceInfo.GroupsPerDevice[device_id] > DeviceInfo.EnvTeamLimit) { 778 DeviceInfo.GroupsPerDevice[device_id] = DeviceInfo.EnvTeamLimit; 779 DP("Capping max groups per device to OMP_TEAM_LIMIT=%d\n", 780 DeviceInfo.EnvTeamLimit); 781 } 782 783 // Set default number of teams 784 if (DeviceInfo.EnvNumTeams > 0) { 785 DeviceInfo.NumTeams[device_id] = DeviceInfo.EnvNumTeams; 786 DP("Default number of teams set according to environment %d\n", 787 DeviceInfo.EnvNumTeams); 788 } else { 789 DeviceInfo.NumTeams[device_id] = RTLDeviceInfoTy::DefaultNumTeams; 790 DP("Default number of teams set according to library's default %d\n", 791 RTLDeviceInfoTy::DefaultNumTeams); 792 } 793 794 if (DeviceInfo.NumTeams[device_id] > DeviceInfo.GroupsPerDevice[device_id]) { 795 DeviceInfo.NumTeams[device_id] = DeviceInfo.GroupsPerDevice[device_id]; 796 DP("Default number of teams exceeds device limit, capping at %d\n", 797 DeviceInfo.GroupsPerDevice[device_id]); 798 } 799 800 // Set default number of threads 801 DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::Default_WG_Size; 802 DP("Default number of threads set according to library's default %d\n", 803 RTLDeviceInfoTy::Default_WG_Size); 804 if (DeviceInfo.NumThreads[device_id] > 805 DeviceInfo.ThreadsPerGroup[device_id]) { 806 DeviceInfo.NumTeams[device_id] = DeviceInfo.ThreadsPerGroup[device_id]; 807 DP("Default number of threads exceeds device limit, capping at %d\n", 808 DeviceInfo.ThreadsPerGroup[device_id]); 809 } 810 811 DP("Device %d: default limit for groupsPerDevice %d & threadsPerGroup %d\n", 812 device_id, DeviceInfo.GroupsPerDevice[device_id], 813 DeviceInfo.ThreadsPerGroup[device_id]); 814 815 DP("Device %d: wavefront size %d, total threads %d x %d = %d\n", device_id, 816 DeviceInfo.WarpSize[device_id], DeviceInfo.ThreadsPerGroup[device_id], 817 DeviceInfo.GroupsPerDevice[device_id], 818 DeviceInfo.GroupsPerDevice[device_id] * 819 DeviceInfo.ThreadsPerGroup[device_id]); 820 821 return OFFLOAD_SUCCESS; 822 } 823 824 namespace { 825 Elf64_Shdr *find_only_SHT_HASH(Elf *elf) { 826 size_t N; 827 int rc = elf_getshdrnum(elf, &N); 828 if (rc != 0) { 829 return nullptr; 830 } 831 832 Elf64_Shdr *result = nullptr; 833 for (size_t i = 0; i < N; i++) { 834 Elf_Scn *scn = elf_getscn(elf, i); 835 if (scn) { 836 Elf64_Shdr *shdr = elf64_getshdr(scn); 837 if (shdr) { 838 if (shdr->sh_type == SHT_HASH) { 839 if (result == nullptr) { 840 result = shdr; 841 } else { 842 // multiple SHT_HASH sections not handled 843 return nullptr; 844 } 845 } 846 } 847 } 848 } 849 return result; 850 } 851 852 const Elf64_Sym *elf_lookup(Elf *elf, char *base, Elf64_Shdr *section_hash, 853 const char *symname) { 854 855 assert(section_hash); 856 size_t section_symtab_index = section_hash->sh_link; 857 Elf64_Shdr *section_symtab = 858 elf64_getshdr(elf_getscn(elf, section_symtab_index)); 859 size_t section_strtab_index = section_symtab->sh_link; 860 861 const Elf64_Sym *symtab = 862 reinterpret_cast<const Elf64_Sym *>(base + section_symtab->sh_offset); 863 864 const uint32_t *hashtab = 865 reinterpret_cast<const uint32_t *>(base + section_hash->sh_offset); 866 867 // Layout: 868 // nbucket 869 // nchain 870 // bucket[nbucket] 871 // chain[nchain] 872 uint32_t nbucket = hashtab[0]; 873 const uint32_t *bucket = &hashtab[2]; 874 const uint32_t *chain = &hashtab[nbucket + 2]; 875 876 const size_t max = strlen(symname) + 1; 877 const uint32_t hash = elf_hash(symname); 878 for (uint32_t i = bucket[hash % nbucket]; i != 0; i = chain[i]) { 879 char *n = elf_strptr(elf, section_strtab_index, symtab[i].st_name); 880 if (strncmp(symname, n, max) == 0) { 881 return &symtab[i]; 882 } 883 } 884 885 return nullptr; 886 } 887 888 typedef struct { 889 void *addr = nullptr; 890 uint32_t size = UINT32_MAX; 891 } symbol_info; 892 893 int get_symbol_info_without_loading(Elf *elf, char *base, const char *symname, 894 symbol_info *res) { 895 if (elf_kind(elf) != ELF_K_ELF) { 896 return 1; 897 } 898 899 Elf64_Shdr *section_hash = find_only_SHT_HASH(elf); 900 if (!section_hash) { 901 return 1; 902 } 903 904 const Elf64_Sym *sym = elf_lookup(elf, base, section_hash, symname); 905 if (!sym) { 906 return 1; 907 } 908 909 if (sym->st_size > UINT32_MAX) { 910 return 1; 911 } 912 913 res->size = static_cast<uint32_t>(sym->st_size); 914 res->addr = sym->st_value + base; 915 return 0; 916 } 917 918 int get_symbol_info_without_loading(char *base, size_t img_size, 919 const char *symname, symbol_info *res) { 920 Elf *elf = elf_memory(base, img_size); 921 if (elf) { 922 int rc = get_symbol_info_without_loading(elf, base, symname, res); 923 elf_end(elf); 924 return rc; 925 } 926 return 1; 927 } 928 929 atmi_status_t interop_get_symbol_info(char *base, size_t img_size, 930 const char *symname, void **var_addr, 931 uint32_t *var_size) { 932 symbol_info si; 933 int rc = get_symbol_info_without_loading(base, img_size, symname, &si); 934 if (rc == 0) { 935 *var_addr = si.addr; 936 *var_size = si.size; 937 return ATMI_STATUS_SUCCESS; 938 } else { 939 return ATMI_STATUS_ERROR; 940 } 941 } 942 943 template <typename C> 944 atmi_status_t module_register_from_memory_to_place(void *module_bytes, 945 size_t module_size, 946 atmi_place_t place, C cb) { 947 auto L = [](void *data, size_t size, void *cb_state) -> atmi_status_t { 948 C *unwrapped = static_cast<C *>(cb_state); 949 return (*unwrapped)(data, size); 950 }; 951 return atmi_module_register_from_memory_to_place( 952 module_bytes, module_size, place, L, static_cast<void *>(&cb)); 953 } 954 } // namespace 955 956 static uint64_t get_device_State_bytes(char *ImageStart, size_t img_size) { 957 uint64_t device_State_bytes = 0; 958 { 959 // If this is the deviceRTL, get the state variable size 960 symbol_info size_si; 961 int rc = get_symbol_info_without_loading( 962 ImageStart, img_size, "omptarget_nvptx_device_State_size", &size_si); 963 964 if (rc == 0) { 965 if (size_si.size != sizeof(uint64_t)) { 966 fprintf(stderr, 967 "Found device_State_size variable with wrong size, aborting\n"); 968 exit(1); 969 } 970 971 // Read number of bytes directly from the elf 972 memcpy(&device_State_bytes, size_si.addr, sizeof(uint64_t)); 973 } 974 } 975 return device_State_bytes; 976 } 977 978 static __tgt_target_table * 979 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 980 981 static __tgt_target_table * 982 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 983 984 __tgt_target_table *__tgt_rtl_load_binary(int32_t device_id, 985 __tgt_device_image *image) { 986 DeviceInfo.load_run_lock.lock(); 987 __tgt_target_table *res = __tgt_rtl_load_binary_locked(device_id, image); 988 DeviceInfo.load_run_lock.unlock(); 989 return res; 990 } 991 992 __tgt_target_table *__tgt_rtl_load_binary_locked(int32_t device_id, 993 __tgt_device_image *image) { 994 995 const size_t img_size = (char *)image->ImageEnd - (char *)image->ImageStart; 996 997 DeviceInfo.clearOffloadEntriesTable(device_id); 998 999 // We do not need to set the ELF version because the caller of this function 1000 // had to do that to decide the right runtime to use 1001 1002 if (!elf_machine_id_is_amdgcn(image)) { 1003 return NULL; 1004 } 1005 1006 omptarget_device_environmentTy host_device_env; 1007 host_device_env.num_devices = DeviceInfo.NumberOfDevices; 1008 host_device_env.device_num = device_id; 1009 host_device_env.debug_level = 0; 1010 #ifdef OMPTARGET_DEBUG 1011 if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) { 1012 host_device_env.debug_level = std::stoi(envStr); 1013 } 1014 #endif 1015 1016 auto on_deserialized_data = [&](void *data, size_t size) -> atmi_status_t { 1017 const char *device_env_Name = "omptarget_device_environment"; 1018 symbol_info si; 1019 int rc = get_symbol_info_without_loading((char *)image->ImageStart, 1020 img_size, device_env_Name, &si); 1021 if (rc != 0) { 1022 DP("Finding global device environment '%s' - symbol missing.\n", 1023 device_env_Name); 1024 // no need to return FAIL, consider this is a not a device debug build. 1025 return ATMI_STATUS_SUCCESS; 1026 } 1027 if (si.size != sizeof(host_device_env)) { 1028 return ATMI_STATUS_ERROR; 1029 } 1030 DP("Setting global device environment %lu bytes\n", si.size); 1031 uint64_t offset = (char *)si.addr - (char *)image->ImageStart; 1032 void *pos = (char *)data + offset; 1033 memcpy(pos, &host_device_env, sizeof(host_device_env)); 1034 return ATMI_STATUS_SUCCESS; 1035 }; 1036 1037 atmi_status_t err; 1038 { 1039 err = module_register_from_memory_to_place( 1040 (void *)image->ImageStart, img_size, get_gpu_place(device_id), 1041 on_deserialized_data); 1042 1043 check("Module registering", err); 1044 if (err != ATMI_STATUS_SUCCESS) { 1045 char GPUName[64] = "--unknown gpu--"; 1046 hsa_agent_t agent = DeviceInfo.HSAAgents[device_id]; 1047 (void)hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AGENT_INFO_NAME, 1048 (void *)GPUName); 1049 fprintf(stderr, 1050 "Possible gpu arch mismatch: %s, please check" 1051 " compiler: -march=<gpu> flag\n", 1052 GPUName); 1053 return NULL; 1054 } 1055 } 1056 1057 DP("ATMI module successfully loaded!\n"); 1058 1059 // Zero the pseudo-bss variable by calling into hsa 1060 // Do this post-load to handle got 1061 uint64_t device_State_bytes = 1062 get_device_State_bytes((char *)image->ImageStart, img_size); 1063 auto &dss = DeviceInfo.deviceStateStore[device_id]; 1064 if (device_State_bytes != 0) { 1065 1066 if (dss.first.get() == nullptr) { 1067 assert(dss.second == 0); 1068 void *ptr = NULL; 1069 atmi_status_t err = 1070 atmi_malloc(&ptr, device_State_bytes, get_gpu_mem_place(device_id)); 1071 if (err != ATMI_STATUS_SUCCESS) { 1072 fprintf(stderr, "Failed to allocate device_state array\n"); 1073 return NULL; 1074 } 1075 dss = {std::unique_ptr<void, RTLDeviceInfoTy::atmiFreePtrDeletor>{ptr}, 1076 device_State_bytes}; 1077 } 1078 1079 void *ptr = dss.first.get(); 1080 if (device_State_bytes != dss.second) { 1081 fprintf(stderr, "Inconsistent sizes of device_State unsupported\n"); 1082 exit(1); 1083 } 1084 1085 void *state_ptr; 1086 uint32_t state_ptr_size; 1087 err = atmi_interop_hsa_get_symbol_info(get_gpu_mem_place(device_id), 1088 "omptarget_nvptx_device_State", 1089 &state_ptr, &state_ptr_size); 1090 1091 if (err != ATMI_STATUS_SUCCESS) { 1092 fprintf(stderr, "failed to find device_state ptr\n"); 1093 return NULL; 1094 } 1095 if (state_ptr_size != sizeof(void *)) { 1096 fprintf(stderr, "unexpected size of state_ptr %u != %zu\n", 1097 state_ptr_size, sizeof(void *)); 1098 return NULL; 1099 } 1100 1101 // write ptr to device memory so it can be used by later kernels 1102 err = DeviceInfo.freesignalpool_memcpy(state_ptr, &ptr, sizeof(void *)); 1103 if (err != ATMI_STATUS_SUCCESS) { 1104 fprintf(stderr, "memcpy install of state_ptr failed\n"); 1105 return NULL; 1106 } 1107 1108 assert((device_State_bytes & 0x3) == 0); // known >= 4 byte aligned 1109 hsa_status_t rc = hsa_amd_memory_fill(ptr, 0, device_State_bytes / 4); 1110 if (rc != HSA_STATUS_SUCCESS) { 1111 fprintf(stderr, "zero fill device_state failed with %u\n", rc); 1112 return NULL; 1113 } 1114 } 1115 1116 // TODO: Check with Guansong to understand the below comment more thoroughly. 1117 // Here, we take advantage of the data that is appended after img_end to get 1118 // the symbols' name we need to load. This data consist of the host entries 1119 // begin and end as well as the target name (see the offloading linker script 1120 // creation in clang compiler). 1121 1122 // Find the symbols in the module by name. The name can be obtain by 1123 // concatenating the host entry name with the target name 1124 1125 __tgt_offload_entry *HostBegin = image->EntriesBegin; 1126 __tgt_offload_entry *HostEnd = image->EntriesEnd; 1127 1128 for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) { 1129 1130 if (!e->addr) { 1131 // The host should have always something in the address to 1132 // uniquely identify the target region. 1133 fprintf(stderr, "Analyzing host entry '<null>' (size = %lld)...\n", 1134 (unsigned long long)e->size); 1135 return NULL; 1136 } 1137 1138 if (e->size) { 1139 __tgt_offload_entry entry = *e; 1140 1141 void *varptr; 1142 uint32_t varsize; 1143 1144 err = atmi_interop_hsa_get_symbol_info(get_gpu_mem_place(device_id), 1145 e->name, &varptr, &varsize); 1146 1147 if (err != ATMI_STATUS_SUCCESS) { 1148 DP("Loading global '%s' (Failed)\n", e->name); 1149 // Inform the user what symbol prevented offloading 1150 fprintf(stderr, "Loading global '%s' (Failed)\n", e->name); 1151 return NULL; 1152 } 1153 1154 if (varsize != e->size) { 1155 DP("Loading global '%s' - size mismatch (%u != %lu)\n", e->name, 1156 varsize, e->size); 1157 return NULL; 1158 } 1159 1160 DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n", 1161 DPxPTR(e - HostBegin), e->name, DPxPTR(varptr)); 1162 entry.addr = (void *)varptr; 1163 1164 DeviceInfo.addOffloadEntry(device_id, entry); 1165 1166 if (DeviceInfo.RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY && 1167 e->flags & OMP_DECLARE_TARGET_LINK) { 1168 // If unified memory is present any target link variables 1169 // can access host addresses directly. There is no longer a 1170 // need for device copies. 1171 err = DeviceInfo.freesignalpool_memcpy(varptr, e->addr, sizeof(void *)); 1172 if (err != ATMI_STATUS_SUCCESS) 1173 DP("Error when copying USM\n"); 1174 DP("Copy linked variable host address (" DPxMOD ")" 1175 "to device address (" DPxMOD ")\n", 1176 DPxPTR(*((void **)e->addr)), DPxPTR(varptr)); 1177 } 1178 1179 continue; 1180 } 1181 1182 DP("to find the kernel name: %s size: %lu\n", e->name, strlen(e->name)); 1183 1184 atmi_mem_place_t place = get_gpu_mem_place(device_id); 1185 uint32_t kernarg_segment_size; 1186 err = atmi_interop_hsa_get_kernel_info( 1187 place, e->name, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE, 1188 &kernarg_segment_size); 1189 1190 // each arg is a void * in this openmp implementation 1191 uint32_t arg_num = kernarg_segment_size / sizeof(void *); 1192 std::vector<size_t> arg_sizes(arg_num); 1193 for (std::vector<size_t>::iterator it = arg_sizes.begin(); 1194 it != arg_sizes.end(); it++) { 1195 *it = sizeof(void *); 1196 } 1197 1198 // default value GENERIC (in case symbol is missing from cubin file) 1199 int8_t ExecModeVal = ExecutionModeType::GENERIC; 1200 1201 // get flat group size if present, else Default_WG_Size 1202 int16_t WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1203 1204 // Max parallel level 1205 int16_t MaxParLevVal = 0; 1206 1207 // get Kernel Descriptor if present. 1208 // Keep struct in sync wih getTgtAttributeStructQTy in CGOpenMPRuntime.cpp 1209 struct KernDescValType { 1210 uint16_t Version; 1211 uint16_t TSize; 1212 uint16_t WG_Size; 1213 uint8_t Mode; 1214 uint8_t HostServices; 1215 uint8_t MaxParallelLevel; 1216 }; 1217 struct KernDescValType KernDescVal; 1218 std::string KernDescNameStr(e->name); 1219 KernDescNameStr += "_kern_desc"; 1220 const char *KernDescName = KernDescNameStr.c_str(); 1221 1222 void *KernDescPtr; 1223 uint32_t KernDescSize; 1224 void *CallStackAddr; 1225 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1226 KernDescName, &KernDescPtr, &KernDescSize); 1227 1228 if (err == ATMI_STATUS_SUCCESS) { 1229 if ((size_t)KernDescSize != sizeof(KernDescVal)) 1230 DP("Loading global computation properties '%s' - size mismatch (%u != " 1231 "%lu)\n", 1232 KernDescName, KernDescSize, sizeof(KernDescVal)); 1233 1234 memcpy(&KernDescVal, KernDescPtr, (size_t)KernDescSize); 1235 1236 // Check structure size against recorded size. 1237 if ((size_t)KernDescSize != KernDescVal.TSize) 1238 DP("KernDescVal size %lu does not match advertized size %d for '%s'\n", 1239 sizeof(KernDescVal), KernDescVal.TSize, KernDescName); 1240 1241 DP("After loading global for %s KernDesc \n", KernDescName); 1242 DP("KernDesc: Version: %d\n", KernDescVal.Version); 1243 DP("KernDesc: TSize: %d\n", KernDescVal.TSize); 1244 DP("KernDesc: WG_Size: %d\n", KernDescVal.WG_Size); 1245 DP("KernDesc: Mode: %d\n", KernDescVal.Mode); 1246 DP("KernDesc: HostServices: %x\n", KernDescVal.HostServices); 1247 DP("KernDesc: MaxParallelLevel: %x\n", KernDescVal.MaxParallelLevel); 1248 1249 // gather location of callStack and size of struct 1250 MaxParLevVal = KernDescVal.MaxParallelLevel; 1251 if (MaxParLevVal > 0) { 1252 uint32_t varsize; 1253 const char *CsNam = "omptarget_nest_par_call_stack"; 1254 err = atmi_interop_hsa_get_symbol_info(place, CsNam, &CallStackAddr, 1255 &varsize); 1256 if (err != ATMI_STATUS_SUCCESS) { 1257 fprintf(stderr, "Addr of %s failed\n", CsNam); 1258 return NULL; 1259 } 1260 void *StructSizePtr; 1261 const char *SsNam = "omptarget_nest_par_call_struct_size"; 1262 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1263 SsNam, &StructSizePtr, &varsize); 1264 if ((err != ATMI_STATUS_SUCCESS) || 1265 (varsize != sizeof(TgtStackItemSize))) { 1266 fprintf(stderr, "Addr of %s failed\n", SsNam); 1267 return NULL; 1268 } 1269 memcpy(&TgtStackItemSize, StructSizePtr, sizeof(TgtStackItemSize)); 1270 DP("Size of our struct is %d\n", TgtStackItemSize); 1271 } 1272 1273 // Get ExecMode 1274 ExecModeVal = KernDescVal.Mode; 1275 DP("ExecModeVal %d\n", ExecModeVal); 1276 if (KernDescVal.WG_Size == 0) { 1277 KernDescVal.WG_Size = RTLDeviceInfoTy::Default_WG_Size; 1278 DP("Setting KernDescVal.WG_Size to default %d\n", KernDescVal.WG_Size); 1279 } 1280 WGSizeVal = KernDescVal.WG_Size; 1281 DP("WGSizeVal %d\n", WGSizeVal); 1282 check("Loading KernDesc computation property", err); 1283 } else { 1284 DP("Warning: Loading KernDesc '%s' - symbol not found, ", KernDescName); 1285 1286 // Generic 1287 std::string ExecModeNameStr(e->name); 1288 ExecModeNameStr += "_exec_mode"; 1289 const char *ExecModeName = ExecModeNameStr.c_str(); 1290 1291 void *ExecModePtr; 1292 uint32_t varsize; 1293 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1294 ExecModeName, &ExecModePtr, &varsize); 1295 1296 if (err == ATMI_STATUS_SUCCESS) { 1297 if ((size_t)varsize != sizeof(int8_t)) { 1298 DP("Loading global computation properties '%s' - size mismatch(%u != " 1299 "%lu)\n", 1300 ExecModeName, varsize, sizeof(int8_t)); 1301 return NULL; 1302 } 1303 1304 memcpy(&ExecModeVal, ExecModePtr, (size_t)varsize); 1305 1306 DP("After loading global for %s ExecMode = %d\n", ExecModeName, 1307 ExecModeVal); 1308 1309 if (ExecModeVal < 0 || ExecModeVal > 1) { 1310 DP("Error wrong exec_mode value specified in HSA code object file: " 1311 "%d\n", 1312 ExecModeVal); 1313 return NULL; 1314 } 1315 } else { 1316 DP("Loading global exec_mode '%s' - symbol missing, using default " 1317 "value " 1318 "GENERIC (1)\n", 1319 ExecModeName); 1320 } 1321 check("Loading computation property", err); 1322 1323 // Flat group size 1324 std::string WGSizeNameStr(e->name); 1325 WGSizeNameStr += "_wg_size"; 1326 const char *WGSizeName = WGSizeNameStr.c_str(); 1327 1328 void *WGSizePtr; 1329 uint32_t WGSize; 1330 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1331 WGSizeName, &WGSizePtr, &WGSize); 1332 1333 if (err == ATMI_STATUS_SUCCESS) { 1334 if ((size_t)WGSize != sizeof(int16_t)) { 1335 DP("Loading global computation properties '%s' - size mismatch (%u " 1336 "!= " 1337 "%lu)\n", 1338 WGSizeName, WGSize, sizeof(int16_t)); 1339 return NULL; 1340 } 1341 1342 memcpy(&WGSizeVal, WGSizePtr, (size_t)WGSize); 1343 1344 DP("After loading global for %s WGSize = %d\n", WGSizeName, WGSizeVal); 1345 1346 if (WGSizeVal < RTLDeviceInfoTy::Default_WG_Size || 1347 WGSizeVal > RTLDeviceInfoTy::Max_WG_Size) { 1348 DP("Error wrong WGSize value specified in HSA code object file: " 1349 "%d\n", 1350 WGSizeVal); 1351 WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1352 } 1353 } else { 1354 DP("Warning: Loading WGSize '%s' - symbol not found, " 1355 "using default value %d\n", 1356 WGSizeName, WGSizeVal); 1357 } 1358 1359 check("Loading WGSize computation property", err); 1360 } 1361 1362 KernelsList.push_back(KernelTy(ExecModeVal, WGSizeVal, MaxParLevVal, 1363 device_id, CallStackAddr, e->name, 1364 kernarg_segment_size)); 1365 __tgt_offload_entry entry = *e; 1366 entry.addr = (void *)&KernelsList.back(); 1367 DeviceInfo.addOffloadEntry(device_id, entry); 1368 DP("Entry point %ld maps to %s\n", e - HostBegin, e->name); 1369 } 1370 1371 return DeviceInfo.getOffloadEntriesTable(device_id); 1372 } 1373 1374 void *__tgt_rtl_data_alloc(int device_id, int64_t size, void *) { 1375 void *ptr = NULL; 1376 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1377 atmi_status_t err = atmi_malloc(&ptr, size, get_gpu_mem_place(device_id)); 1378 DP("Tgt alloc data %ld bytes, (tgt:%016llx).\n", size, 1379 (long long unsigned)(Elf64_Addr)ptr); 1380 ptr = (err == ATMI_STATUS_SUCCESS) ? ptr : NULL; 1381 return ptr; 1382 } 1383 1384 int32_t __tgt_rtl_data_submit(int device_id, void *tgt_ptr, void *hst_ptr, 1385 int64_t size) { 1386 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1387 __tgt_async_info async_info; 1388 int32_t rc = dataSubmit(device_id, tgt_ptr, hst_ptr, size, &async_info); 1389 if (rc != OFFLOAD_SUCCESS) 1390 return OFFLOAD_FAIL; 1391 1392 return __tgt_rtl_synchronize(device_id, &async_info); 1393 } 1394 1395 int32_t __tgt_rtl_data_submit_async(int device_id, void *tgt_ptr, void *hst_ptr, 1396 int64_t size, 1397 __tgt_async_info *async_info_ptr) { 1398 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1399 if (async_info_ptr) { 1400 initAsyncInfoPtr(async_info_ptr); 1401 return dataSubmit(device_id, tgt_ptr, hst_ptr, size, async_info_ptr); 1402 } else { 1403 return __tgt_rtl_data_submit(device_id, tgt_ptr, hst_ptr, size); 1404 } 1405 } 1406 1407 int32_t __tgt_rtl_data_retrieve(int device_id, void *hst_ptr, void *tgt_ptr, 1408 int64_t size) { 1409 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1410 __tgt_async_info async_info; 1411 int32_t rc = dataRetrieve(device_id, hst_ptr, tgt_ptr, size, &async_info); 1412 if (rc != OFFLOAD_SUCCESS) 1413 return OFFLOAD_FAIL; 1414 1415 return __tgt_rtl_synchronize(device_id, &async_info); 1416 } 1417 1418 int32_t __tgt_rtl_data_retrieve_async(int device_id, void *hst_ptr, 1419 void *tgt_ptr, int64_t size, 1420 __tgt_async_info *async_info_ptr) { 1421 assert(async_info_ptr && "async_info is nullptr"); 1422 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1423 initAsyncInfoPtr(async_info_ptr); 1424 return dataRetrieve(device_id, hst_ptr, tgt_ptr, size, async_info_ptr); 1425 } 1426 1427 int32_t __tgt_rtl_data_delete(int device_id, void *tgt_ptr) { 1428 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1429 atmi_status_t err; 1430 DP("Tgt free data (tgt:%016llx).\n", (long long unsigned)(Elf64_Addr)tgt_ptr); 1431 err = atmi_free(tgt_ptr); 1432 if (err != ATMI_STATUS_SUCCESS) { 1433 DP("Error when freeing CUDA memory\n"); 1434 return OFFLOAD_FAIL; 1435 } 1436 return OFFLOAD_SUCCESS; 1437 } 1438 1439 // Determine launch values for threadsPerGroup and num_groups. 1440 // Outputs: treadsPerGroup, num_groups 1441 // Inputs: Max_Teams, Max_WG_Size, Warp_Size, ExecutionMode, 1442 // EnvTeamLimit, EnvNumTeams, num_teams, thread_limit, 1443 // loop_tripcount. 1444 void getLaunchVals(int &threadsPerGroup, int &num_groups, int ConstWGSize, 1445 int ExecutionMode, int EnvTeamLimit, int EnvNumTeams, 1446 int num_teams, int thread_limit, uint64_t loop_tripcount) { 1447 1448 int Max_Teams = DeviceInfo.EnvMaxTeamsDefault > 0 1449 ? DeviceInfo.EnvMaxTeamsDefault 1450 : DeviceInfo.Max_Teams; 1451 if (Max_Teams > DeviceInfo.HardTeamLimit) 1452 Max_Teams = DeviceInfo.HardTeamLimit; 1453 1454 if (print_kernel_trace > 1) { 1455 fprintf(stderr, "RTLDeviceInfoTy::Max_Teams: %d\n", 1456 RTLDeviceInfoTy::Max_Teams); 1457 fprintf(stderr, "Max_Teams: %d\n", Max_Teams); 1458 fprintf(stderr, "RTLDeviceInfoTy::Warp_Size: %d\n", 1459 RTLDeviceInfoTy::Warp_Size); 1460 fprintf(stderr, "RTLDeviceInfoTy::Max_WG_Size: %d\n", 1461 RTLDeviceInfoTy::Max_WG_Size); 1462 fprintf(stderr, "RTLDeviceInfoTy::Default_WG_Size: %d\n", 1463 RTLDeviceInfoTy::Default_WG_Size); 1464 fprintf(stderr, "thread_limit: %d\n", thread_limit); 1465 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1466 fprintf(stderr, "ConstWGSize: %d\n", ConstWGSize); 1467 } 1468 // check for thread_limit() clause 1469 if (thread_limit > 0) { 1470 threadsPerGroup = thread_limit; 1471 DP("Setting threads per block to requested %d\n", thread_limit); 1472 if (ExecutionMode == GENERIC) { // Add master warp for GENERIC 1473 threadsPerGroup += RTLDeviceInfoTy::Warp_Size; 1474 DP("Adding master wavefront: +%d threads\n", RTLDeviceInfoTy::Warp_Size); 1475 } 1476 if (threadsPerGroup > RTLDeviceInfoTy::Max_WG_Size) { // limit to max 1477 threadsPerGroup = RTLDeviceInfoTy::Max_WG_Size; 1478 DP("Setting threads per block to maximum %d\n", threadsPerGroup); 1479 } 1480 } 1481 // check flat_max_work_group_size attr here 1482 if (threadsPerGroup > ConstWGSize) { 1483 threadsPerGroup = ConstWGSize; 1484 DP("Reduced threadsPerGroup to flat-attr-group-size limit %d\n", 1485 threadsPerGroup); 1486 } 1487 if (print_kernel_trace > 1) 1488 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1489 DP("Preparing %d threads\n", threadsPerGroup); 1490 1491 // Set default num_groups (teams) 1492 if (DeviceInfo.EnvTeamLimit > 0) 1493 num_groups = (Max_Teams < DeviceInfo.EnvTeamLimit) 1494 ? Max_Teams 1495 : DeviceInfo.EnvTeamLimit; 1496 else 1497 num_groups = Max_Teams; 1498 DP("Set default num of groups %d\n", num_groups); 1499 1500 if (print_kernel_trace > 1) { 1501 fprintf(stderr, "num_groups: %d\n", num_groups); 1502 fprintf(stderr, "num_teams: %d\n", num_teams); 1503 } 1504 1505 // Reduce num_groups if threadsPerGroup exceeds RTLDeviceInfoTy::Max_WG_Size 1506 // This reduction is typical for default case (no thread_limit clause). 1507 // or when user goes crazy with num_teams clause. 1508 // FIXME: We cant distinguish between a constant or variable thread limit. 1509 // So we only handle constant thread_limits. 1510 if (threadsPerGroup > 1511 RTLDeviceInfoTy::Default_WG_Size) // 256 < threadsPerGroup <= 1024 1512 // Should we round threadsPerGroup up to nearest RTLDeviceInfoTy::Warp_Size 1513 // here? 1514 num_groups = (Max_Teams * RTLDeviceInfoTy::Max_WG_Size) / threadsPerGroup; 1515 1516 // check for num_teams() clause 1517 if (num_teams > 0) { 1518 num_groups = (num_teams < num_groups) ? num_teams : num_groups; 1519 } 1520 if (print_kernel_trace > 1) { 1521 fprintf(stderr, "num_groups: %d\n", num_groups); 1522 fprintf(stderr, "DeviceInfo.EnvNumTeams %d\n", DeviceInfo.EnvNumTeams); 1523 fprintf(stderr, "DeviceInfo.EnvTeamLimit %d\n", DeviceInfo.EnvTeamLimit); 1524 } 1525 1526 if (DeviceInfo.EnvNumTeams > 0) { 1527 num_groups = (DeviceInfo.EnvNumTeams < num_groups) ? DeviceInfo.EnvNumTeams 1528 : num_groups; 1529 DP("Modifying teams based on EnvNumTeams %d\n", DeviceInfo.EnvNumTeams); 1530 } else if (DeviceInfo.EnvTeamLimit > 0) { 1531 num_groups = (DeviceInfo.EnvTeamLimit < num_groups) 1532 ? DeviceInfo.EnvTeamLimit 1533 : num_groups; 1534 DP("Modifying teams based on EnvTeamLimit%d\n", DeviceInfo.EnvTeamLimit); 1535 } else { 1536 if (num_teams <= 0) { 1537 if (loop_tripcount > 0) { 1538 if (ExecutionMode == SPMD) { 1539 // round up to the nearest integer 1540 num_groups = ((loop_tripcount - 1) / threadsPerGroup) + 1; 1541 } else { 1542 num_groups = loop_tripcount; 1543 } 1544 DP("Using %d teams due to loop trip count %" PRIu64 " and number of " 1545 "threads per block %d\n", 1546 num_groups, loop_tripcount, threadsPerGroup); 1547 } 1548 } else { 1549 num_groups = num_teams; 1550 } 1551 if (num_groups > Max_Teams) { 1552 num_groups = Max_Teams; 1553 if (print_kernel_trace > 1) 1554 fprintf(stderr, "Limiting num_groups %d to Max_Teams %d \n", num_groups, 1555 Max_Teams); 1556 } 1557 if (num_groups > num_teams && num_teams > 0) { 1558 num_groups = num_teams; 1559 if (print_kernel_trace > 1) 1560 fprintf(stderr, "Limiting num_groups %d to clause num_teams %d \n", 1561 num_groups, num_teams); 1562 } 1563 } 1564 1565 // num_teams clause always honored, no matter what, unless DEFAULT is active. 1566 if (num_teams > 0) { 1567 num_groups = num_teams; 1568 // Cap num_groups to EnvMaxTeamsDefault if set. 1569 if (DeviceInfo.EnvMaxTeamsDefault > 0 && 1570 num_groups > DeviceInfo.EnvMaxTeamsDefault) 1571 num_groups = DeviceInfo.EnvMaxTeamsDefault; 1572 } 1573 if (print_kernel_trace > 1) { 1574 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1575 fprintf(stderr, "num_groups: %d\n", num_groups); 1576 fprintf(stderr, "loop_tripcount: %ld\n", loop_tripcount); 1577 } 1578 DP("Final %d num_groups and %d threadsPerGroup\n", num_groups, 1579 threadsPerGroup); 1580 } 1581 1582 static void *AllocateNestedParallelCallMemory(int MaxParLevel, int NumGroups, 1583 int ThreadsPerGroup, 1584 int device_id, 1585 void *CallStackAddr, int SPMD) { 1586 if (print_kernel_trace > 1) 1587 fprintf(stderr, "MaxParLevel %d SPMD %d NumGroups %d NumThrds %d\n", 1588 MaxParLevel, SPMD, NumGroups, ThreadsPerGroup); 1589 // Total memory needed is Teams * Threads * ParLevels 1590 size_t NestedMemSize = 1591 MaxParLevel * NumGroups * ThreadsPerGroup * TgtStackItemSize * 4; 1592 1593 if (print_kernel_trace > 1) 1594 fprintf(stderr, "NestedMemSize %ld \n", NestedMemSize); 1595 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1596 void *TgtPtr = NULL; 1597 atmi_status_t err = 1598 atmi_malloc(&TgtPtr, NestedMemSize, get_gpu_mem_place(device_id)); 1599 err = 1600 DeviceInfo.freesignalpool_memcpy(CallStackAddr, &TgtPtr, sizeof(void *)); 1601 if (print_kernel_trace > 2) 1602 fprintf(stderr, "CallSck %lx TgtPtr %lx *TgtPtr %lx \n", 1603 (long)CallStackAddr, (long)&TgtPtr, (long)TgtPtr); 1604 if (err != ATMI_STATUS_SUCCESS) { 1605 fprintf(stderr, "Mem not wrtten to target, err %d\n", err); 1606 } 1607 return TgtPtr; // we need to free this after kernel. 1608 } 1609 1610 static uint64_t acquire_available_packet_id(hsa_queue_t *queue) { 1611 uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1); 1612 bool full = true; 1613 while (full) { 1614 full = 1615 packet_id >= (queue->size + hsa_queue_load_read_index_scacquire(queue)); 1616 } 1617 return packet_id; 1618 } 1619 1620 static int32_t __tgt_rtl_run_target_team_region_locked( 1621 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 1622 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 1623 int32_t thread_limit, uint64_t loop_tripcount); 1624 1625 int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr, 1626 void **tgt_args, 1627 ptrdiff_t *tgt_offsets, 1628 int32_t arg_num, int32_t num_teams, 1629 int32_t thread_limit, 1630 uint64_t loop_tripcount) { 1631 1632 DeviceInfo.load_run_lock.lock_shared(); 1633 int32_t res = __tgt_rtl_run_target_team_region_locked( 1634 device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, num_teams, 1635 thread_limit, loop_tripcount); 1636 1637 DeviceInfo.load_run_lock.unlock_shared(); 1638 return res; 1639 } 1640 1641 int32_t __tgt_rtl_run_target_team_region_locked( 1642 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 1643 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 1644 int32_t thread_limit, uint64_t loop_tripcount) { 1645 static pthread_mutex_t nested_parallel_mutex = PTHREAD_MUTEX_INITIALIZER; 1646 1647 // Set the context we are using 1648 // update thread limit content in gpu memory if un-initialized or specified 1649 // from host 1650 1651 DP("Run target team region thread_limit %d\n", thread_limit); 1652 1653 // All args are references. 1654 std::vector<void *> args(arg_num); 1655 std::vector<void *> ptrs(arg_num); 1656 1657 DP("Arg_num: %d\n", arg_num); 1658 for (int32_t i = 0; i < arg_num; ++i) { 1659 ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]); 1660 args[i] = &ptrs[i]; 1661 DP("Offseted base: arg[%d]:" DPxMOD "\n", i, DPxPTR(ptrs[i])); 1662 } 1663 1664 KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr; 1665 1666 /* 1667 * Set limit based on ThreadsPerGroup and GroupsPerDevice 1668 */ 1669 int num_groups = 0; 1670 1671 int threadsPerGroup = RTLDeviceInfoTy::Default_WG_Size; 1672 1673 getLaunchVals(threadsPerGroup, num_groups, KernelInfo->ConstWGSize, 1674 KernelInfo->ExecutionMode, DeviceInfo.EnvTeamLimit, 1675 DeviceInfo.EnvNumTeams, 1676 num_teams, // From run_region arg 1677 thread_limit, // From run_region arg 1678 loop_tripcount // From run_region arg 1679 ); 1680 1681 void *TgtCallStack = NULL; 1682 if (KernelInfo->MaxParLevel > 0) { 1683 pthread_mutex_lock(&nested_parallel_mutex); 1684 TgtCallStack = AllocateNestedParallelCallMemory( 1685 KernelInfo->MaxParLevel, num_groups, threadsPerGroup, 1686 KernelInfo->device_id, KernelInfo->CallStackAddr, 1687 KernelInfo->ExecutionMode); 1688 } 1689 if (print_kernel_trace > 0) 1690 // enum modes are SPMD, GENERIC, NONE 0,1,2 1691 fprintf(stderr, 1692 "DEVID:%2d SGN:%1d ConstWGSize:%-4d args:%2d teamsXthrds:(%4dX%4d) " 1693 "reqd:(%4dX%4d) n:%s\n", 1694 device_id, KernelInfo->ExecutionMode, KernelInfo->ConstWGSize, 1695 arg_num, num_groups, threadsPerGroup, num_teams, thread_limit, 1696 KernelInfo->Name); 1697 1698 // Run on the device. 1699 { 1700 hsa_queue_t *queue = DeviceInfo.HSAQueues[device_id]; 1701 uint64_t packet_id = acquire_available_packet_id(queue); 1702 1703 const uint32_t mask = queue->size - 1; // size is a power of 2 1704 hsa_kernel_dispatch_packet_t *packet = 1705 (hsa_kernel_dispatch_packet_t *)queue->base_address + 1706 (packet_id & mask); 1707 1708 // packet->header is written last 1709 packet->setup = UINT16_C(1) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS; 1710 packet->workgroup_size_x = threadsPerGroup; 1711 packet->workgroup_size_y = 1; 1712 packet->workgroup_size_z = 1; 1713 packet->reserved0 = 0; 1714 packet->grid_size_x = num_groups * threadsPerGroup; 1715 packet->grid_size_y = 1; 1716 packet->grid_size_z = 1; 1717 packet->private_segment_size = 0; 1718 packet->group_segment_size = 0; 1719 packet->kernel_object = 0; 1720 packet->kernarg_address = 0; // use the block allocator 1721 packet->reserved2 = 0; // atmi writes id_ here 1722 packet->completion_signal = {0}; // may want a pool of signals 1723 1724 std::string kernel_name = std::string(KernelInfo->Name); 1725 { 1726 assert(KernelInfoTable[device_id].find(kernel_name) != 1727 KernelInfoTable[device_id].end()); 1728 auto it = KernelInfoTable[device_id][kernel_name]; 1729 packet->kernel_object = it.kernel_object; 1730 packet->private_segment_size = it.private_segment_size; 1731 packet->group_segment_size = it.group_segment_size; 1732 assert(arg_num == (int)it.num_args); 1733 } 1734 1735 KernelArgPool *ArgPool = nullptr; 1736 { 1737 auto it = KernelArgPoolMap.find(std::string(KernelInfo->Name)); 1738 if (it != KernelArgPoolMap.end()) { 1739 ArgPool = (it->second).get(); 1740 } 1741 } 1742 if (!ArgPool) { 1743 fprintf(stderr, "Warning: No ArgPool for %s on device %d\n", 1744 KernelInfo->Name, device_id); 1745 } 1746 { 1747 void *kernarg = nullptr; 1748 if (ArgPool) { 1749 assert(ArgPool->kernarg_segment_size == (arg_num * sizeof(void *))); 1750 kernarg = ArgPool->allocate(arg_num); 1751 } 1752 if (!kernarg) { 1753 printf("Allocate kernarg failed\n"); 1754 exit(1); 1755 } 1756 1757 // Copy explicit arguments 1758 for (int i = 0; i < arg_num; i++) { 1759 memcpy((char *)kernarg + sizeof(void *) * i, args[i], sizeof(void *)); 1760 } 1761 1762 // Initialize implicit arguments. ATMI seems to leave most fields 1763 // uninitialized 1764 atmi_implicit_args_t *impl_args = 1765 reinterpret_cast<atmi_implicit_args_t *>( 1766 static_cast<char *>(kernarg) + ArgPool->kernarg_segment_size); 1767 memset(impl_args, 0, 1768 sizeof(atmi_implicit_args_t)); // may not be necessary 1769 impl_args->offset_x = 0; 1770 impl_args->offset_y = 0; 1771 impl_args->offset_z = 0; 1772 1773 packet->kernarg_address = kernarg; 1774 } 1775 1776 { 1777 hsa_signal_t s = DeviceInfo.FreeSignalPool.pop(); 1778 if (s.handle == 0) { 1779 printf("Failed to get signal instance\n"); 1780 exit(1); 1781 } 1782 packet->completion_signal = s; 1783 hsa_signal_store_relaxed(packet->completion_signal, 1); 1784 } 1785 1786 core::packet_store_release( 1787 reinterpret_cast<uint32_t *>(packet), 1788 core::create_header(HSA_PACKET_TYPE_KERNEL_DISPATCH, 0, 1789 ATMI_FENCE_SCOPE_SYSTEM, ATMI_FENCE_SCOPE_SYSTEM), 1790 packet->setup); 1791 1792 hsa_signal_store_relaxed(queue->doorbell_signal, packet_id); 1793 1794 while (hsa_signal_wait_scacquire(packet->completion_signal, 1795 HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX, 1796 HSA_WAIT_STATE_BLOCKED) != 0) 1797 ; 1798 1799 assert(ArgPool); 1800 ArgPool->deallocate(packet->kernarg_address); 1801 DeviceInfo.FreeSignalPool.push(packet->completion_signal); 1802 } 1803 1804 DP("Kernel completed\n"); 1805 // Free call stack for nested 1806 if (TgtCallStack) { 1807 pthread_mutex_unlock(&nested_parallel_mutex); 1808 atmi_free(TgtCallStack); 1809 } 1810 1811 return OFFLOAD_SUCCESS; 1812 } 1813 1814 int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr, 1815 void **tgt_args, ptrdiff_t *tgt_offsets, 1816 int32_t arg_num) { 1817 // use one team and one thread 1818 // fix thread num 1819 int32_t team_num = 1; 1820 int32_t thread_limit = 0; // use default 1821 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 1822 tgt_offsets, arg_num, team_num, 1823 thread_limit, 0); 1824 } 1825 1826 int32_t __tgt_rtl_run_target_region_async(int32_t device_id, 1827 void *tgt_entry_ptr, void **tgt_args, 1828 ptrdiff_t *tgt_offsets, 1829 int32_t arg_num, 1830 __tgt_async_info *async_info_ptr) { 1831 assert(async_info_ptr && "async_info is nullptr"); 1832 initAsyncInfoPtr(async_info_ptr); 1833 1834 // use one team and one thread 1835 // fix thread num 1836 int32_t team_num = 1; 1837 int32_t thread_limit = 0; // use default 1838 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 1839 tgt_offsets, arg_num, team_num, 1840 thread_limit, 0); 1841 } 1842 1843 int32_t __tgt_rtl_synchronize(int32_t device_id, 1844 __tgt_async_info *async_info_ptr) { 1845 assert(async_info_ptr && "async_info is nullptr"); 1846 1847 // Cuda asserts that async_info_ptr->Queue is non-null, but this invariant 1848 // is not ensured by devices.cpp for amdgcn 1849 // assert(async_info_ptr->Queue && "async_info_ptr->Queue is nullptr"); 1850 if (async_info_ptr->Queue) { 1851 finiAsyncInfoPtr(async_info_ptr); 1852 } 1853 return OFFLOAD_SUCCESS; 1854 } 1855