1 //===--- amdgpu/src/rtl.cpp --------------------------------------- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // RTL for hsa machine 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <algorithm> 14 #include <assert.h> 15 #include <cstdio> 16 #include <cstdlib> 17 #include <cstring> 18 #include <functional> 19 #include <libelf.h> 20 #include <list> 21 #include <memory> 22 #include <mutex> 23 #include <shared_mutex> 24 #include <unordered_map> 25 #include <vector> 26 27 #include "interop_hsa.h" 28 #include "impl_runtime.h" 29 30 #include "internal.h" 31 #include "rt.h" 32 33 #include "get_elf_mach_gfx_name.h" 34 #include "omptargetplugin.h" 35 #include "print_tracing.h" 36 37 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 38 39 40 // hostrpc interface, FIXME: consider moving to its own include these are 41 // statically linked into amdgpu/plugin if present from hostrpc_services.a, 42 // linked as --whole-archive to override the weak symbols that are used to 43 // implement a fallback for toolchains that do not yet have a hostrpc library. 44 extern "C" { 45 unsigned long hostrpc_assign_buffer(hsa_agent_t agent, hsa_queue_t *this_Q, 46 uint32_t device_id); 47 hsa_status_t hostrpc_init(); 48 hsa_status_t hostrpc_terminate(); 49 50 __attribute__((weak)) hsa_status_t hostrpc_init() { return HSA_STATUS_SUCCESS; } 51 __attribute__((weak)) hsa_status_t hostrpc_terminate() { 52 return HSA_STATUS_SUCCESS; 53 } 54 __attribute__((weak)) unsigned long 55 hostrpc_assign_buffer(hsa_agent_t, hsa_queue_t *, uint32_t device_id) { 56 DP("Warning: Attempting to assign hostrpc to device %u, but hostrpc library " 57 "missing\n", 58 device_id); 59 return 0; 60 } 61 } 62 63 // Heuristic parameters used for kernel launch 64 // Number of teams per CU to allow scheduling flexibility 65 static const unsigned DefaultTeamsPerCU = 4; 66 67 int print_kernel_trace; 68 69 #ifdef OMPTARGET_DEBUG 70 #define check(msg, status) \ 71 if (status != HSA_STATUS_SUCCESS) { \ 72 DP(#msg " failed\n"); \ 73 } else { \ 74 DP(#msg " succeeded\n"); \ 75 } 76 #else 77 #define check(msg, status) \ 78 {} 79 #endif 80 81 #include "elf_common.h" 82 83 namespace hsa { 84 template <typename C> hsa_status_t iterate_agents(C cb) { 85 auto L = [](hsa_agent_t agent, void *data) -> hsa_status_t { 86 C *unwrapped = static_cast<C *>(data); 87 return (*unwrapped)(agent); 88 }; 89 return hsa_iterate_agents(L, static_cast<void *>(&cb)); 90 } 91 92 template <typename C> 93 hsa_status_t amd_agent_iterate_memory_pools(hsa_agent_t Agent, C cb) { 94 auto L = [](hsa_amd_memory_pool_t MemoryPool, void *data) -> hsa_status_t { 95 C *unwrapped = static_cast<C *>(data); 96 return (*unwrapped)(MemoryPool); 97 }; 98 99 return hsa_amd_agent_iterate_memory_pools(Agent, L, static_cast<void *>(&cb)); 100 } 101 102 } // namespace hsa 103 104 /// Keep entries table per device 105 struct FuncOrGblEntryTy { 106 __tgt_target_table Table; 107 std::vector<__tgt_offload_entry> Entries; 108 }; 109 110 enum ExecutionModeType { 111 SPMD, // constructors, destructors, 112 // combined constructs (`teams distribute parallel for [simd]`) 113 GENERIC, // everything else 114 SPMD_GENERIC, // Generic kernel with SPMD execution 115 NONE 116 }; 117 118 struct KernelArgPool { 119 private: 120 static pthread_mutex_t mutex; 121 122 public: 123 uint32_t kernarg_segment_size; 124 void *kernarg_region = nullptr; 125 std::queue<int> free_kernarg_segments; 126 127 uint32_t kernarg_size_including_implicit() { 128 return kernarg_segment_size + sizeof(impl_implicit_args_t); 129 } 130 131 ~KernelArgPool() { 132 if (kernarg_region) { 133 auto r = hsa_amd_memory_pool_free(kernarg_region); 134 if (r != HSA_STATUS_SUCCESS) { 135 DP("hsa_amd_memory_pool_free failed: %s\n", get_error_string(r)); 136 } 137 } 138 } 139 140 // Can't really copy or move a mutex 141 KernelArgPool() = default; 142 KernelArgPool(const KernelArgPool &) = delete; 143 KernelArgPool(KernelArgPool &&) = delete; 144 145 KernelArgPool(uint32_t kernarg_segment_size, 146 hsa_amd_memory_pool_t &memory_pool) 147 : kernarg_segment_size(kernarg_segment_size) { 148 149 // impl uses one pool per kernel for all gpus, with a fixed upper size 150 // preserving that exact scheme here, including the queue<int> 151 152 hsa_status_t err = hsa_amd_memory_pool_allocate( 153 memory_pool, kernarg_size_including_implicit() * MAX_NUM_KERNELS, 0, 154 &kernarg_region); 155 156 if (err != HSA_STATUS_SUCCESS) { 157 DP("hsa_amd_memory_pool_allocate failed: %s\n", get_error_string(err)); 158 kernarg_region = nullptr; // paranoid 159 return; 160 } 161 162 err = core::allow_access_to_all_gpu_agents(kernarg_region); 163 if (err != HSA_STATUS_SUCCESS) { 164 DP("hsa allow_access_to_all_gpu_agents failed: %s\n", 165 get_error_string(err)); 166 auto r = hsa_amd_memory_pool_free(kernarg_region); 167 if (r != HSA_STATUS_SUCCESS) { 168 // if free failed, can't do anything more to resolve it 169 DP("hsa memory poll free failed: %s\n", get_error_string(err)); 170 } 171 kernarg_region = nullptr; 172 return; 173 } 174 175 for (int i = 0; i < MAX_NUM_KERNELS; i++) { 176 free_kernarg_segments.push(i); 177 } 178 } 179 180 void *allocate(uint64_t arg_num) { 181 assert((arg_num * sizeof(void *)) == kernarg_segment_size); 182 lock l(&mutex); 183 void *res = nullptr; 184 if (!free_kernarg_segments.empty()) { 185 186 int free_idx = free_kernarg_segments.front(); 187 res = static_cast<void *>(static_cast<char *>(kernarg_region) + 188 (free_idx * kernarg_size_including_implicit())); 189 assert(free_idx == pointer_to_index(res)); 190 free_kernarg_segments.pop(); 191 } 192 return res; 193 } 194 195 void deallocate(void *ptr) { 196 lock l(&mutex); 197 int idx = pointer_to_index(ptr); 198 free_kernarg_segments.push(idx); 199 } 200 201 private: 202 int pointer_to_index(void *ptr) { 203 ptrdiff_t bytes = 204 static_cast<char *>(ptr) - static_cast<char *>(kernarg_region); 205 assert(bytes >= 0); 206 assert(bytes % kernarg_size_including_implicit() == 0); 207 return bytes / kernarg_size_including_implicit(); 208 } 209 struct lock { 210 lock(pthread_mutex_t *m) : m(m) { pthread_mutex_lock(m); } 211 ~lock() { pthread_mutex_unlock(m); } 212 pthread_mutex_t *m; 213 }; 214 }; 215 pthread_mutex_t KernelArgPool::mutex = PTHREAD_MUTEX_INITIALIZER; 216 217 std::unordered_map<std::string /*kernel*/, std::unique_ptr<KernelArgPool>> 218 KernelArgPoolMap; 219 220 /// Use a single entity to encode a kernel and a set of flags 221 struct KernelTy { 222 // execution mode of kernel 223 // 0 - SPMD mode (without master warp) 224 // 1 - Generic mode (with master warp) 225 // 2 - SPMD mode execution with Generic mode semantics. 226 int8_t ExecutionMode; 227 int16_t ConstWGSize; 228 int32_t device_id; 229 void *CallStackAddr = nullptr; 230 const char *Name; 231 232 KernelTy(int8_t _ExecutionMode, int16_t _ConstWGSize, int32_t _device_id, 233 void *_CallStackAddr, const char *_Name, 234 uint32_t _kernarg_segment_size, 235 hsa_amd_memory_pool_t &KernArgMemoryPool) 236 : ExecutionMode(_ExecutionMode), ConstWGSize(_ConstWGSize), 237 device_id(_device_id), CallStackAddr(_CallStackAddr), Name(_Name) { 238 DP("Construct kernelinfo: ExecMode %d\n", ExecutionMode); 239 240 std::string N(_Name); 241 if (KernelArgPoolMap.find(N) == KernelArgPoolMap.end()) { 242 KernelArgPoolMap.insert( 243 std::make_pair(N, std::unique_ptr<KernelArgPool>(new KernelArgPool( 244 _kernarg_segment_size, KernArgMemoryPool)))); 245 } 246 } 247 }; 248 249 /// List that contains all the kernels. 250 /// FIXME: we may need this to be per device and per library. 251 std::list<KernelTy> KernelsList; 252 253 template <typename Callback> static hsa_status_t FindAgents(Callback CB) { 254 255 hsa_status_t err = 256 hsa::iterate_agents([&](hsa_agent_t agent) -> hsa_status_t { 257 hsa_device_type_t device_type; 258 // get_info fails iff HSA runtime not yet initialized 259 hsa_status_t err = 260 hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 261 262 if (err != HSA_STATUS_SUCCESS) { 263 if (print_kernel_trace > 0) 264 DP("rtl.cpp: err %s\n", get_error_string(err)); 265 266 return err; 267 } 268 269 CB(device_type, agent); 270 return HSA_STATUS_SUCCESS; 271 }); 272 273 // iterate_agents fails iff HSA runtime not yet initialized 274 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) { 275 DP("rtl.cpp: err %s\n", get_error_string(err)); 276 } 277 278 return err; 279 } 280 281 static void callbackQueue(hsa_status_t status, hsa_queue_t *source, 282 void *data) { 283 if (status != HSA_STATUS_SUCCESS) { 284 const char *status_string; 285 if (hsa_status_string(status, &status_string) != HSA_STATUS_SUCCESS) { 286 status_string = "unavailable"; 287 } 288 DP("[%s:%d] GPU error in queue %p %d (%s)\n", __FILE__, __LINE__, source, 289 status, status_string); 290 abort(); 291 } 292 } 293 294 namespace core { 295 namespace { 296 void packet_store_release(uint32_t *packet, uint16_t header, uint16_t rest) { 297 __atomic_store_n(packet, header | (rest << 16), __ATOMIC_RELEASE); 298 } 299 300 uint16_t create_header() { 301 uint16_t header = HSA_PACKET_TYPE_KERNEL_DISPATCH << HSA_PACKET_HEADER_TYPE; 302 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE; 303 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE; 304 return header; 305 } 306 307 hsa_status_t addKernArgPool(hsa_amd_memory_pool_t MemoryPool, void *Data) { 308 std::vector<hsa_amd_memory_pool_t> *Result = 309 static_cast<std::vector<hsa_amd_memory_pool_t> *>(Data); 310 bool AllocAllowed = false; 311 hsa_status_t err = hsa_amd_memory_pool_get_info( 312 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED, 313 &AllocAllowed); 314 if (err != HSA_STATUS_SUCCESS) { 315 DP("Alloc allowed in memory pool check failed: %s\n", 316 get_error_string(err)); 317 return err; 318 } 319 320 if (!AllocAllowed) { 321 // nothing needs to be done here. 322 return HSA_STATUS_SUCCESS; 323 } 324 325 uint32_t GlobalFlags = 0; 326 err = hsa_amd_memory_pool_get_info( 327 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 328 if (err != HSA_STATUS_SUCCESS) { 329 DP("Get memory pool info failed: %s\n", get_error_string(err)); 330 return err; 331 } 332 333 size_t size = 0; 334 err = hsa_amd_memory_pool_get_info(MemoryPool, HSA_AMD_MEMORY_POOL_INFO_SIZE, 335 &size); 336 if (err != HSA_STATUS_SUCCESS) { 337 DP("Get memory pool size failed: %s\n", get_error_string(err)); 338 return err; 339 } 340 341 if ((GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) && 342 (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_KERNARG_INIT) && 343 size > 0) { 344 Result->push_back(MemoryPool); 345 } 346 347 return HSA_STATUS_SUCCESS; 348 } 349 350 std::pair<hsa_status_t, bool> 351 isValidMemoryPool(hsa_amd_memory_pool_t MemoryPool) { 352 bool AllocAllowed = false; 353 hsa_status_t Err = hsa_amd_memory_pool_get_info( 354 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED, 355 &AllocAllowed); 356 if (Err != HSA_STATUS_SUCCESS) { 357 DP("Alloc allowed in memory pool check failed: %s\n", 358 get_error_string(Err)); 359 return {Err, false}; 360 } 361 362 return {HSA_STATUS_SUCCESS, AllocAllowed}; 363 } 364 365 template <typename AccumulatorFunc> 366 hsa_status_t collectMemoryPools(const std::vector<hsa_agent_t> &Agents, 367 AccumulatorFunc Func) { 368 for (int DeviceId = 0; DeviceId < Agents.size(); DeviceId++) { 369 hsa_status_t Err = hsa::amd_agent_iterate_memory_pools( 370 Agents[DeviceId], [&](hsa_amd_memory_pool_t MemoryPool) { 371 hsa_status_t Err; 372 bool Valid = false; 373 std::tie(Err, Valid) = isValidMemoryPool(MemoryPool); 374 if (Err != HSA_STATUS_SUCCESS) { 375 return Err; 376 } 377 if (Valid) 378 Func(MemoryPool, DeviceId); 379 return HSA_STATUS_SUCCESS; 380 }); 381 382 if (Err != HSA_STATUS_SUCCESS) { 383 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 384 "Iterate all memory pools", get_error_string(Err)); 385 return Err; 386 } 387 } 388 389 return HSA_STATUS_SUCCESS; 390 } 391 392 std::pair<hsa_status_t, hsa_amd_memory_pool_t> 393 FindKernargPool(const std::vector<hsa_agent_t> &HSAAgents) { 394 std::vector<hsa_amd_memory_pool_t> KernArgPools; 395 for (const auto &Agent : HSAAgents) { 396 hsa_status_t err = HSA_STATUS_SUCCESS; 397 err = hsa_amd_agent_iterate_memory_pools( 398 Agent, addKernArgPool, static_cast<void *>(&KernArgPools)); 399 if (err != HSA_STATUS_SUCCESS) { 400 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 401 "Iterate all memory pools", get_error_string(err)); 402 return {err, hsa_amd_memory_pool_t{}}; 403 } 404 } 405 406 if (KernArgPools.empty()) { 407 DP("Unable to find any valid kernarg pool\n"); 408 return {HSA_STATUS_ERROR, hsa_amd_memory_pool_t{}}; 409 } 410 411 return {HSA_STATUS_SUCCESS, KernArgPools[0]}; 412 } 413 414 } // namespace 415 } // namespace core 416 417 struct EnvironmentVariables { 418 int NumTeams; 419 int TeamLimit; 420 int TeamThreadLimit; 421 int MaxTeamsDefault; 422 }; 423 424 template <uint32_t wavesize> 425 static constexpr const llvm::omp::GV &getGridValue() { 426 return llvm::omp::getAMDGPUGridValues<wavesize>(); 427 } 428 429 struct HSALifetime { 430 // Wrapper around HSA used to ensure it is constructed before other types 431 // and destructed after, which means said other types can use raii for 432 // cleanup without risking running outside of the lifetime of HSA 433 const hsa_status_t S; 434 435 bool success() { return S == HSA_STATUS_SUCCESS; } 436 HSALifetime() : S(hsa_init()) {} 437 438 ~HSALifetime() { 439 if (S == HSA_STATUS_SUCCESS) { 440 hsa_status_t Err = hsa_shut_down(); 441 if (Err != HSA_STATUS_SUCCESS) { 442 // Can't call into HSA to get a string from the integer 443 DP("Shutting down HSA failed: %d\n", Err); 444 } 445 } 446 } 447 }; 448 449 /// Class containing all the device information 450 class RTLDeviceInfoTy { 451 HSALifetime HSA; // First field => constructed first and destructed last 452 std::vector<std::list<FuncOrGblEntryTy>> FuncGblEntries; 453 454 public: 455 // load binary populates symbol tables and mutates various global state 456 // run uses those symbol tables 457 std::shared_timed_mutex load_run_lock; 458 459 int NumberOfDevices = 0; 460 461 // GPU devices 462 std::vector<hsa_agent_t> HSAAgents; 463 std::vector<hsa_queue_t *> HSAQueues; // one per gpu 464 465 // CPUs 466 std::vector<hsa_agent_t> CPUAgents; 467 468 // Device properties 469 std::vector<int> ComputeUnits; 470 std::vector<int> GroupsPerDevice; 471 std::vector<int> ThreadsPerGroup; 472 std::vector<int> WarpSize; 473 std::vector<std::string> GPUName; 474 475 // OpenMP properties 476 std::vector<int> NumTeams; 477 std::vector<int> NumThreads; 478 479 // OpenMP Environment properties 480 EnvironmentVariables Env; 481 482 // OpenMP Requires Flags 483 int64_t RequiresFlags; 484 485 // Resource pools 486 SignalPoolT FreeSignalPool; 487 488 bool hostcall_required = false; 489 490 std::vector<hsa_executable_t> HSAExecutables; 491 492 std::vector<std::map<std::string, atl_kernel_info_t>> KernelInfoTable; 493 std::vector<std::map<std::string, atl_symbol_info_t>> SymbolInfoTable; 494 495 hsa_amd_memory_pool_t KernArgPool; 496 497 // fine grained memory pool for host allocations 498 hsa_amd_memory_pool_t HostFineGrainedMemoryPool; 499 500 // fine and coarse-grained memory pools per offloading device 501 std::vector<hsa_amd_memory_pool_t> DeviceFineGrainedMemoryPools; 502 std::vector<hsa_amd_memory_pool_t> DeviceCoarseGrainedMemoryPools; 503 504 struct implFreePtrDeletor { 505 void operator()(void *p) { 506 core::Runtime::Memfree(p); // ignore failure to free 507 } 508 }; 509 510 // device_State shared across loaded binaries, error if inconsistent size 511 std::vector<std::pair<std::unique_ptr<void, implFreePtrDeletor>, uint64_t>> 512 deviceStateStore; 513 514 static const unsigned HardTeamLimit = 515 (1 << 16) - 1; // 64K needed to fit in uint16 516 static const int DefaultNumTeams = 128; 517 518 // These need to be per-device since different devices can have different 519 // wave sizes, but are currently the same number for each so that refactor 520 // can be postponed. 521 static_assert(getGridValue<32>().GV_Max_Teams == 522 getGridValue<64>().GV_Max_Teams, 523 ""); 524 static const int Max_Teams = getGridValue<64>().GV_Max_Teams; 525 526 static_assert(getGridValue<32>().GV_Max_WG_Size == 527 getGridValue<64>().GV_Max_WG_Size, 528 ""); 529 static const int Max_WG_Size = getGridValue<64>().GV_Max_WG_Size; 530 531 static_assert(getGridValue<32>().GV_Default_WG_Size == 532 getGridValue<64>().GV_Default_WG_Size, 533 ""); 534 static const int Default_WG_Size = getGridValue<64>().GV_Default_WG_Size; 535 536 using MemcpyFunc = hsa_status_t (*)(hsa_signal_t, void *, const void *, 537 size_t size, hsa_agent_t, 538 hsa_amd_memory_pool_t); 539 hsa_status_t freesignalpool_memcpy(void *dest, const void *src, size_t size, 540 MemcpyFunc Func, int32_t deviceId) { 541 hsa_agent_t agent = HSAAgents[deviceId]; 542 hsa_signal_t s = FreeSignalPool.pop(); 543 if (s.handle == 0) { 544 return HSA_STATUS_ERROR; 545 } 546 hsa_status_t r = Func(s, dest, src, size, agent, HostFineGrainedMemoryPool); 547 FreeSignalPool.push(s); 548 return r; 549 } 550 551 hsa_status_t freesignalpool_memcpy_d2h(void *dest, const void *src, 552 size_t size, int32_t deviceId) { 553 return freesignalpool_memcpy(dest, src, size, impl_memcpy_d2h, deviceId); 554 } 555 556 hsa_status_t freesignalpool_memcpy_h2d(void *dest, const void *src, 557 size_t size, int32_t deviceId) { 558 return freesignalpool_memcpy(dest, src, size, impl_memcpy_h2d, deviceId); 559 } 560 561 // Record entry point associated with device 562 void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) { 563 assert(device_id < (int32_t)FuncGblEntries.size() && 564 "Unexpected device id!"); 565 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 566 567 E.Entries.push_back(entry); 568 } 569 570 // Return true if the entry is associated with device 571 bool findOffloadEntry(int32_t device_id, void *addr) { 572 assert(device_id < (int32_t)FuncGblEntries.size() && 573 "Unexpected device id!"); 574 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 575 576 for (auto &it : E.Entries) { 577 if (it.addr == addr) 578 return true; 579 } 580 581 return false; 582 } 583 584 // Return the pointer to the target entries table 585 __tgt_target_table *getOffloadEntriesTable(int32_t device_id) { 586 assert(device_id < (int32_t)FuncGblEntries.size() && 587 "Unexpected device id!"); 588 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 589 590 int32_t size = E.Entries.size(); 591 592 // Table is empty 593 if (!size) 594 return 0; 595 596 __tgt_offload_entry *begin = &E.Entries[0]; 597 __tgt_offload_entry *end = &E.Entries[size - 1]; 598 599 // Update table info according to the entries and return the pointer 600 E.Table.EntriesBegin = begin; 601 E.Table.EntriesEnd = ++end; 602 603 return &E.Table; 604 } 605 606 // Clear entries table for a device 607 void clearOffloadEntriesTable(int device_id) { 608 assert(device_id < (int32_t)FuncGblEntries.size() && 609 "Unexpected device id!"); 610 FuncGblEntries[device_id].emplace_back(); 611 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 612 // KernelArgPoolMap.clear(); 613 E.Entries.clear(); 614 E.Table.EntriesBegin = E.Table.EntriesEnd = 0; 615 } 616 617 hsa_status_t addDeviceMemoryPool(hsa_amd_memory_pool_t MemoryPool, 618 int DeviceId) { 619 assert(DeviceId < DeviceFineGrainedMemoryPools.size() && "Error here."); 620 uint32_t GlobalFlags = 0; 621 hsa_status_t Err = hsa_amd_memory_pool_get_info( 622 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 623 624 if (Err != HSA_STATUS_SUCCESS) { 625 return Err; 626 } 627 628 if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) { 629 DeviceFineGrainedMemoryPools[DeviceId] = MemoryPool; 630 } else if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_COARSE_GRAINED) { 631 DeviceCoarseGrainedMemoryPools[DeviceId] = MemoryPool; 632 } 633 634 return HSA_STATUS_SUCCESS; 635 } 636 637 hsa_status_t addHostMemoryPool(hsa_amd_memory_pool_t MemoryPool, 638 int DeviceId) { 639 uint32_t GlobalFlags = 0; 640 hsa_status_t Err = hsa_amd_memory_pool_get_info( 641 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 642 643 if (Err != HSA_STATUS_SUCCESS) { 644 return Err; 645 } 646 647 uint32_t Size; 648 Err = hsa_amd_memory_pool_get_info(MemoryPool, 649 HSA_AMD_MEMORY_POOL_INFO_SIZE, &Size); 650 if (Err != HSA_STATUS_SUCCESS) { 651 return Err; 652 } 653 654 if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED && 655 Size > 0) { 656 HostFineGrainedMemoryPool = MemoryPool; 657 } 658 659 return HSA_STATUS_SUCCESS; 660 } 661 662 hsa_status_t setupMemoryPools() { 663 using namespace std::placeholders; 664 hsa_status_t Err; 665 Err = core::collectMemoryPools( 666 CPUAgents, std::bind(&RTLDeviceInfoTy::addHostMemoryPool, this, _1, _2)); 667 if (Err != HSA_STATUS_SUCCESS) { 668 DP("HSA error in collecting memory pools for CPU: %s\n", 669 get_error_string(Err)); 670 return Err; 671 } 672 Err = core::collectMemoryPools( 673 HSAAgents, std::bind(&RTLDeviceInfoTy::addDeviceMemoryPool, this, _1, _2)); 674 if (Err != HSA_STATUS_SUCCESS) { 675 DP("HSA error in collecting memory pools for offload devices: %s\n", 676 get_error_string(Err)); 677 return Err; 678 } 679 return HSA_STATUS_SUCCESS; 680 } 681 682 hsa_amd_memory_pool_t getDeviceMemoryPool(int DeviceId) { 683 assert(DeviceId >= 0 && DeviceId < DeviceCoarseGrainedMemoryPools.size() && 684 "Invalid device Id"); 685 return DeviceCoarseGrainedMemoryPools[DeviceId]; 686 } 687 688 hsa_amd_memory_pool_t getHostMemoryPool() { 689 return HostFineGrainedMemoryPool; 690 } 691 692 static int readEnvElseMinusOne(const char *Env) { 693 const char *envStr = getenv(Env); 694 int res = -1; 695 if (envStr) { 696 res = std::stoi(envStr); 697 DP("Parsed %s=%d\n", Env, res); 698 } 699 return res; 700 } 701 702 RTLDeviceInfoTy() { 703 DP("Start initializing " GETNAME(TARGET_NAME) "\n"); 704 705 // LIBOMPTARGET_KERNEL_TRACE provides a kernel launch trace to stderr 706 // anytime. You do not need a debug library build. 707 // 0 => no tracing 708 // 1 => tracing dispatch only 709 // >1 => verbosity increase 710 711 if (!HSA.success()) { 712 DP("Error when initializing HSA in " GETNAME(TARGET_NAME) "\n"); 713 return; 714 } 715 716 if (char *envStr = getenv("LIBOMPTARGET_KERNEL_TRACE")) 717 print_kernel_trace = atoi(envStr); 718 else 719 print_kernel_trace = 0; 720 721 hsa_status_t err = core::atl_init_gpu_context(); 722 if (err != HSA_STATUS_SUCCESS) { 723 DP("Error when initializing " GETNAME(TARGET_NAME) "\n"); 724 return; 725 } 726 727 // Init hostcall soon after initializing hsa 728 hostrpc_init(); 729 730 err = FindAgents([&](hsa_device_type_t DeviceType, hsa_agent_t Agent) { 731 if (DeviceType == HSA_DEVICE_TYPE_CPU) { 732 CPUAgents.push_back(Agent); 733 } else { 734 HSAAgents.push_back(Agent); 735 } 736 }); 737 if (err != HSA_STATUS_SUCCESS) 738 return; 739 740 NumberOfDevices = (int)HSAAgents.size(); 741 742 if (NumberOfDevices == 0) { 743 DP("There are no devices supporting HSA.\n"); 744 return; 745 } else { 746 DP("There are %d devices supporting HSA.\n", NumberOfDevices); 747 } 748 std::tie(err, KernArgPool) = core::FindKernargPool(CPUAgents); 749 if (err != HSA_STATUS_SUCCESS) { 750 DP("Error when reading memory pools\n"); 751 return; 752 } 753 754 // Init the device info 755 HSAQueues.resize(NumberOfDevices); 756 FuncGblEntries.resize(NumberOfDevices); 757 ThreadsPerGroup.resize(NumberOfDevices); 758 ComputeUnits.resize(NumberOfDevices); 759 GPUName.resize(NumberOfDevices); 760 GroupsPerDevice.resize(NumberOfDevices); 761 WarpSize.resize(NumberOfDevices); 762 NumTeams.resize(NumberOfDevices); 763 NumThreads.resize(NumberOfDevices); 764 deviceStateStore.resize(NumberOfDevices); 765 KernelInfoTable.resize(NumberOfDevices); 766 SymbolInfoTable.resize(NumberOfDevices); 767 DeviceCoarseGrainedMemoryPools.resize(NumberOfDevices); 768 DeviceFineGrainedMemoryPools.resize(NumberOfDevices); 769 770 err = setupMemoryPools(); 771 if (err != HSA_STATUS_SUCCESS) { 772 DP("Error when setting up memory pools"); 773 return; 774 } 775 776 for (int i = 0; i < NumberOfDevices; i++) { 777 HSAQueues[i] = nullptr; 778 } 779 780 for (int i = 0; i < NumberOfDevices; i++) { 781 uint32_t queue_size = 0; 782 { 783 hsa_status_t err = hsa_agent_get_info( 784 HSAAgents[i], HSA_AGENT_INFO_QUEUE_MAX_SIZE, &queue_size); 785 if (err != HSA_STATUS_SUCCESS) { 786 DP("HSA query QUEUE_MAX_SIZE failed for agent %d\n", i); 787 return; 788 } 789 enum { MaxQueueSize = 4096 }; 790 if (queue_size > MaxQueueSize) { 791 queue_size = MaxQueueSize; 792 } 793 } 794 795 hsa_status_t rc = hsa_queue_create( 796 HSAAgents[i], queue_size, HSA_QUEUE_TYPE_MULTI, callbackQueue, NULL, 797 UINT32_MAX, UINT32_MAX, &HSAQueues[i]); 798 if (rc != HSA_STATUS_SUCCESS) { 799 DP("Failed to create HSA queue %d\n", i); 800 return; 801 } 802 803 deviceStateStore[i] = {nullptr, 0}; 804 } 805 806 for (int i = 0; i < NumberOfDevices; i++) { 807 ThreadsPerGroup[i] = RTLDeviceInfoTy::Default_WG_Size; 808 GroupsPerDevice[i] = RTLDeviceInfoTy::DefaultNumTeams; 809 ComputeUnits[i] = 1; 810 DP("Device %d: Initial groupsPerDevice %d & threadsPerGroup %d\n", i, 811 GroupsPerDevice[i], ThreadsPerGroup[i]); 812 } 813 814 // Get environment variables regarding teams 815 Env.TeamLimit = readEnvElseMinusOne("OMP_TEAM_LIMIT"); 816 Env.NumTeams = readEnvElseMinusOne("OMP_NUM_TEAMS"); 817 Env.MaxTeamsDefault = readEnvElseMinusOne("OMP_MAX_TEAMS_DEFAULT"); 818 Env.TeamThreadLimit = readEnvElseMinusOne("OMP_TEAMS_THREAD_LIMIT"); 819 820 // Default state. 821 RequiresFlags = OMP_REQ_UNDEFINED; 822 } 823 824 ~RTLDeviceInfoTy() { 825 DP("Finalizing the " GETNAME(TARGET_NAME) " DeviceInfo.\n"); 826 if (!HSA.success()) { 827 // Then none of these can have been set up and they can't be torn down 828 return; 829 } 830 // Run destructors on types that use HSA before 831 // impl_finalize removes access to it 832 deviceStateStore.clear(); 833 KernelArgPoolMap.clear(); 834 // Terminate hostrpc before finalizing hsa 835 hostrpc_terminate(); 836 837 hsa_status_t Err; 838 for (uint32_t I = 0; I < HSAExecutables.size(); I++) { 839 Err = hsa_executable_destroy(HSAExecutables[I]); 840 if (Err != HSA_STATUS_SUCCESS) { 841 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 842 "Destroying executable", get_error_string(Err)); 843 } 844 } 845 } 846 }; 847 848 pthread_mutex_t SignalPoolT::mutex = PTHREAD_MUTEX_INITIALIZER; 849 850 // TODO: May need to drop the trailing to fields until deviceRTL is updated 851 struct omptarget_device_environmentTy { 852 int32_t debug_level; // gets value of envvar LIBOMPTARGET_DEVICE_RTL_DEBUG 853 // only useful for Debug build of deviceRTLs 854 int32_t num_devices; // gets number of active offload devices 855 int32_t device_num; // gets a value 0 to num_devices-1 856 }; 857 858 static RTLDeviceInfoTy DeviceInfo; 859 860 namespace { 861 862 int32_t dataRetrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size, 863 __tgt_async_info *AsyncInfo) { 864 assert(AsyncInfo && "AsyncInfo is nullptr"); 865 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 866 // Return success if we are not copying back to host from target. 867 if (!HstPtr) 868 return OFFLOAD_SUCCESS; 869 hsa_status_t err; 870 DP("Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 871 (long long unsigned)(Elf64_Addr)TgtPtr, 872 (long long unsigned)(Elf64_Addr)HstPtr); 873 874 err = DeviceInfo.freesignalpool_memcpy_d2h(HstPtr, TgtPtr, (size_t)Size, 875 DeviceId); 876 877 if (err != HSA_STATUS_SUCCESS) { 878 DP("Error when copying data from device to host. Pointers: " 879 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 880 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 881 return OFFLOAD_FAIL; 882 } 883 DP("DONE Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 884 (long long unsigned)(Elf64_Addr)TgtPtr, 885 (long long unsigned)(Elf64_Addr)HstPtr); 886 return OFFLOAD_SUCCESS; 887 } 888 889 int32_t dataSubmit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size, 890 __tgt_async_info *AsyncInfo) { 891 assert(AsyncInfo && "AsyncInfo is nullptr"); 892 hsa_status_t err; 893 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 894 // Return success if we are not doing host to target. 895 if (!HstPtr) 896 return OFFLOAD_SUCCESS; 897 898 DP("Submit data %ld bytes, (hst:%016llx) -> (tgt:%016llx).\n", Size, 899 (long long unsigned)(Elf64_Addr)HstPtr, 900 (long long unsigned)(Elf64_Addr)TgtPtr); 901 err = DeviceInfo.freesignalpool_memcpy_h2d(TgtPtr, HstPtr, (size_t)Size, 902 DeviceId); 903 if (err != HSA_STATUS_SUCCESS) { 904 DP("Error when copying data from host to device. Pointers: " 905 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 906 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 907 return OFFLOAD_FAIL; 908 } 909 return OFFLOAD_SUCCESS; 910 } 911 912 // Async. 913 // The implementation was written with cuda streams in mind. The semantics of 914 // that are to execute kernels on a queue in order of insertion. A synchronise 915 // call then makes writes visible between host and device. This means a series 916 // of N data_submit_async calls are expected to execute serially. HSA offers 917 // various options to run the data copies concurrently. This may require changes 918 // to libomptarget. 919 920 // __tgt_async_info* contains a void * Queue. Queue = 0 is used to indicate that 921 // there are no outstanding kernels that need to be synchronized. Any async call 922 // may be passed a Queue==0, at which point the cuda implementation will set it 923 // to non-null (see getStream). The cuda streams are per-device. Upstream may 924 // change this interface to explicitly initialize the AsyncInfo_pointer, but 925 // until then hsa lazily initializes it as well. 926 927 void initAsyncInfo(__tgt_async_info *AsyncInfo) { 928 // set non-null while using async calls, return to null to indicate completion 929 assert(AsyncInfo); 930 if (!AsyncInfo->Queue) { 931 AsyncInfo->Queue = reinterpret_cast<void *>(UINT64_MAX); 932 } 933 } 934 void finiAsyncInfo(__tgt_async_info *AsyncInfo) { 935 assert(AsyncInfo); 936 assert(AsyncInfo->Queue); 937 AsyncInfo->Queue = 0; 938 } 939 940 bool elf_machine_id_is_amdgcn(__tgt_device_image *image) { 941 const uint16_t amdgcnMachineID = 224; // EM_AMDGPU may not be in system elf.h 942 int32_t r = elf_check_machine(image, amdgcnMachineID); 943 if (!r) { 944 DP("Supported machine ID not found\n"); 945 } 946 return r; 947 } 948 949 uint32_t elf_e_flags(__tgt_device_image *image) { 950 char *img_begin = (char *)image->ImageStart; 951 size_t img_size = (char *)image->ImageEnd - img_begin; 952 953 Elf *e = elf_memory(img_begin, img_size); 954 if (!e) { 955 DP("Unable to get ELF handle: %s!\n", elf_errmsg(-1)); 956 return 0; 957 } 958 959 Elf64_Ehdr *eh64 = elf64_getehdr(e); 960 961 if (!eh64) { 962 DP("Unable to get machine ID from ELF file!\n"); 963 elf_end(e); 964 return 0; 965 } 966 967 uint32_t Flags = eh64->e_flags; 968 969 elf_end(e); 970 DP("ELF Flags: 0x%x\n", Flags); 971 return Flags; 972 } 973 } // namespace 974 975 int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) { 976 return elf_machine_id_is_amdgcn(image); 977 } 978 979 int __tgt_rtl_number_of_devices() { return DeviceInfo.NumberOfDevices; } 980 981 int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) { 982 DP("Init requires flags to %ld\n", RequiresFlags); 983 DeviceInfo.RequiresFlags = RequiresFlags; 984 return RequiresFlags; 985 } 986 987 namespace { 988 template <typename T> bool enforce_upper_bound(T *value, T upper) { 989 bool changed = *value > upper; 990 if (changed) { 991 *value = upper; 992 } 993 return changed; 994 } 995 } // namespace 996 997 int32_t __tgt_rtl_init_device(int device_id) { 998 hsa_status_t err; 999 1000 // this is per device id init 1001 DP("Initialize the device id: %d\n", device_id); 1002 1003 hsa_agent_t agent = DeviceInfo.HSAAgents[device_id]; 1004 1005 // Get number of Compute Unit 1006 uint32_t compute_units = 0; 1007 err = hsa_agent_get_info( 1008 agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT, 1009 &compute_units); 1010 if (err != HSA_STATUS_SUCCESS) { 1011 DeviceInfo.ComputeUnits[device_id] = 1; 1012 DP("Error getting compute units : settiing to 1\n"); 1013 } else { 1014 DeviceInfo.ComputeUnits[device_id] = compute_units; 1015 DP("Using %d compute unis per grid\n", DeviceInfo.ComputeUnits[device_id]); 1016 } 1017 1018 char GetInfoName[64]; // 64 max size returned by get info 1019 err = hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AGENT_INFO_NAME, 1020 (void *)GetInfoName); 1021 if (err) 1022 DeviceInfo.GPUName[device_id] = "--unknown gpu--"; 1023 else { 1024 DeviceInfo.GPUName[device_id] = GetInfoName; 1025 } 1026 1027 if (print_kernel_trace & STARTUP_DETAILS) 1028 DP("Device#%-2d CU's: %2d %s\n", device_id, 1029 DeviceInfo.ComputeUnits[device_id], 1030 DeviceInfo.GPUName[device_id].c_str()); 1031 1032 // Query attributes to determine number of threads/block and blocks/grid. 1033 uint16_t workgroup_max_dim[3]; 1034 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_DIM, 1035 &workgroup_max_dim); 1036 if (err != HSA_STATUS_SUCCESS) { 1037 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::DefaultNumTeams; 1038 DP("Error getting grid dims: num groups : %d\n", 1039 RTLDeviceInfoTy::DefaultNumTeams); 1040 } else if (workgroup_max_dim[0] <= RTLDeviceInfoTy::HardTeamLimit) { 1041 DeviceInfo.GroupsPerDevice[device_id] = workgroup_max_dim[0]; 1042 DP("Using %d ROCm blocks per grid\n", 1043 DeviceInfo.GroupsPerDevice[device_id]); 1044 } else { 1045 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::HardTeamLimit; 1046 DP("Max ROCm blocks per grid %d exceeds the hard team limit %d, capping " 1047 "at the hard limit\n", 1048 workgroup_max_dim[0], RTLDeviceInfoTy::HardTeamLimit); 1049 } 1050 1051 // Get thread limit 1052 hsa_dim3_t grid_max_dim; 1053 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &grid_max_dim); 1054 if (err == HSA_STATUS_SUCCESS) { 1055 DeviceInfo.ThreadsPerGroup[device_id] = 1056 reinterpret_cast<uint32_t *>(&grid_max_dim)[0] / 1057 DeviceInfo.GroupsPerDevice[device_id]; 1058 1059 if (DeviceInfo.ThreadsPerGroup[device_id] == 0) { 1060 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 1061 DP("Default thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 1062 } else if (enforce_upper_bound(&DeviceInfo.ThreadsPerGroup[device_id], 1063 RTLDeviceInfoTy::Max_WG_Size)) { 1064 DP("Capped thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 1065 } else { 1066 DP("Using ROCm Queried thread limit: %d\n", 1067 DeviceInfo.ThreadsPerGroup[device_id]); 1068 } 1069 } else { 1070 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 1071 DP("Error getting max block dimension, use default:%d \n", 1072 RTLDeviceInfoTy::Max_WG_Size); 1073 } 1074 1075 // Get wavefront size 1076 uint32_t wavefront_size = 0; 1077 err = 1078 hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size); 1079 if (err == HSA_STATUS_SUCCESS) { 1080 DP("Queried wavefront size: %d\n", wavefront_size); 1081 DeviceInfo.WarpSize[device_id] = wavefront_size; 1082 } else { 1083 // TODO: Burn the wavefront size into the code object 1084 DP("Warning: Unknown wavefront size, assuming 64\n"); 1085 DeviceInfo.WarpSize[device_id] = 64; 1086 } 1087 1088 // Adjust teams to the env variables 1089 1090 if (DeviceInfo.Env.TeamLimit > 0 && 1091 (enforce_upper_bound(&DeviceInfo.GroupsPerDevice[device_id], 1092 DeviceInfo.Env.TeamLimit))) { 1093 DP("Capping max groups per device to OMP_TEAM_LIMIT=%d\n", 1094 DeviceInfo.Env.TeamLimit); 1095 } 1096 1097 // Set default number of teams 1098 if (DeviceInfo.Env.NumTeams > 0) { 1099 DeviceInfo.NumTeams[device_id] = DeviceInfo.Env.NumTeams; 1100 DP("Default number of teams set according to environment %d\n", 1101 DeviceInfo.Env.NumTeams); 1102 } else { 1103 char *TeamsPerCUEnvStr = getenv("OMP_TARGET_TEAMS_PER_PROC"); 1104 int TeamsPerCU = DefaultTeamsPerCU; 1105 if (TeamsPerCUEnvStr) { 1106 TeamsPerCU = std::stoi(TeamsPerCUEnvStr); 1107 } 1108 1109 DeviceInfo.NumTeams[device_id] = 1110 TeamsPerCU * DeviceInfo.ComputeUnits[device_id]; 1111 DP("Default number of teams = %d * number of compute units %d\n", 1112 TeamsPerCU, DeviceInfo.ComputeUnits[device_id]); 1113 } 1114 1115 if (enforce_upper_bound(&DeviceInfo.NumTeams[device_id], 1116 DeviceInfo.GroupsPerDevice[device_id])) { 1117 DP("Default number of teams exceeds device limit, capping at %d\n", 1118 DeviceInfo.GroupsPerDevice[device_id]); 1119 } 1120 1121 // Adjust threads to the env variables 1122 if (DeviceInfo.Env.TeamThreadLimit > 0 && 1123 (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], 1124 DeviceInfo.Env.TeamThreadLimit))) { 1125 DP("Capping max number of threads to OMP_TEAMS_THREAD_LIMIT=%d\n", 1126 DeviceInfo.Env.TeamThreadLimit); 1127 } 1128 1129 // Set default number of threads 1130 DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::Default_WG_Size; 1131 DP("Default number of threads set according to library's default %d\n", 1132 RTLDeviceInfoTy::Default_WG_Size); 1133 if (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], 1134 DeviceInfo.ThreadsPerGroup[device_id])) { 1135 DP("Default number of threads exceeds device limit, capping at %d\n", 1136 DeviceInfo.ThreadsPerGroup[device_id]); 1137 } 1138 1139 DP("Device %d: default limit for groupsPerDevice %d & threadsPerGroup %d\n", 1140 device_id, DeviceInfo.GroupsPerDevice[device_id], 1141 DeviceInfo.ThreadsPerGroup[device_id]); 1142 1143 DP("Device %d: wavefront size %d, total threads %d x %d = %d\n", device_id, 1144 DeviceInfo.WarpSize[device_id], DeviceInfo.ThreadsPerGroup[device_id], 1145 DeviceInfo.GroupsPerDevice[device_id], 1146 DeviceInfo.GroupsPerDevice[device_id] * 1147 DeviceInfo.ThreadsPerGroup[device_id]); 1148 1149 return OFFLOAD_SUCCESS; 1150 } 1151 1152 namespace { 1153 Elf64_Shdr *find_only_SHT_HASH(Elf *elf) { 1154 size_t N; 1155 int rc = elf_getshdrnum(elf, &N); 1156 if (rc != 0) { 1157 return nullptr; 1158 } 1159 1160 Elf64_Shdr *result = nullptr; 1161 for (size_t i = 0; i < N; i++) { 1162 Elf_Scn *scn = elf_getscn(elf, i); 1163 if (scn) { 1164 Elf64_Shdr *shdr = elf64_getshdr(scn); 1165 if (shdr) { 1166 if (shdr->sh_type == SHT_HASH) { 1167 if (result == nullptr) { 1168 result = shdr; 1169 } else { 1170 // multiple SHT_HASH sections not handled 1171 return nullptr; 1172 } 1173 } 1174 } 1175 } 1176 } 1177 return result; 1178 } 1179 1180 const Elf64_Sym *elf_lookup(Elf *elf, char *base, Elf64_Shdr *section_hash, 1181 const char *symname) { 1182 1183 assert(section_hash); 1184 size_t section_symtab_index = section_hash->sh_link; 1185 Elf64_Shdr *section_symtab = 1186 elf64_getshdr(elf_getscn(elf, section_symtab_index)); 1187 size_t section_strtab_index = section_symtab->sh_link; 1188 1189 const Elf64_Sym *symtab = 1190 reinterpret_cast<const Elf64_Sym *>(base + section_symtab->sh_offset); 1191 1192 const uint32_t *hashtab = 1193 reinterpret_cast<const uint32_t *>(base + section_hash->sh_offset); 1194 1195 // Layout: 1196 // nbucket 1197 // nchain 1198 // bucket[nbucket] 1199 // chain[nchain] 1200 uint32_t nbucket = hashtab[0]; 1201 const uint32_t *bucket = &hashtab[2]; 1202 const uint32_t *chain = &hashtab[nbucket + 2]; 1203 1204 const size_t max = strlen(symname) + 1; 1205 const uint32_t hash = elf_hash(symname); 1206 for (uint32_t i = bucket[hash % nbucket]; i != 0; i = chain[i]) { 1207 char *n = elf_strptr(elf, section_strtab_index, symtab[i].st_name); 1208 if (strncmp(symname, n, max) == 0) { 1209 return &symtab[i]; 1210 } 1211 } 1212 1213 return nullptr; 1214 } 1215 1216 struct symbol_info { 1217 void *addr = nullptr; 1218 uint32_t size = UINT32_MAX; 1219 uint32_t sh_type = SHT_NULL; 1220 }; 1221 1222 int get_symbol_info_without_loading(Elf *elf, char *base, const char *symname, 1223 symbol_info *res) { 1224 if (elf_kind(elf) != ELF_K_ELF) { 1225 return 1; 1226 } 1227 1228 Elf64_Shdr *section_hash = find_only_SHT_HASH(elf); 1229 if (!section_hash) { 1230 return 1; 1231 } 1232 1233 const Elf64_Sym *sym = elf_lookup(elf, base, section_hash, symname); 1234 if (!sym) { 1235 return 1; 1236 } 1237 1238 if (sym->st_size > UINT32_MAX) { 1239 return 1; 1240 } 1241 1242 if (sym->st_shndx == SHN_UNDEF) { 1243 return 1; 1244 } 1245 1246 Elf_Scn *section = elf_getscn(elf, sym->st_shndx); 1247 if (!section) { 1248 return 1; 1249 } 1250 1251 Elf64_Shdr *header = elf64_getshdr(section); 1252 if (!header) { 1253 return 1; 1254 } 1255 1256 res->addr = sym->st_value + base; 1257 res->size = static_cast<uint32_t>(sym->st_size); 1258 res->sh_type = header->sh_type; 1259 return 0; 1260 } 1261 1262 int get_symbol_info_without_loading(char *base, size_t img_size, 1263 const char *symname, symbol_info *res) { 1264 Elf *elf = elf_memory(base, img_size); 1265 if (elf) { 1266 int rc = get_symbol_info_without_loading(elf, base, symname, res); 1267 elf_end(elf); 1268 return rc; 1269 } 1270 return 1; 1271 } 1272 1273 hsa_status_t interop_get_symbol_info(char *base, size_t img_size, 1274 const char *symname, void **var_addr, 1275 uint32_t *var_size) { 1276 symbol_info si; 1277 int rc = get_symbol_info_without_loading(base, img_size, symname, &si); 1278 if (rc == 0) { 1279 *var_addr = si.addr; 1280 *var_size = si.size; 1281 return HSA_STATUS_SUCCESS; 1282 } else { 1283 return HSA_STATUS_ERROR; 1284 } 1285 } 1286 1287 template <typename C> 1288 hsa_status_t module_register_from_memory_to_place( 1289 std::map<std::string, atl_kernel_info_t> &KernelInfoTable, 1290 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, 1291 void *module_bytes, size_t module_size, int DeviceId, C cb, 1292 std::vector<hsa_executable_t> &HSAExecutables) { 1293 auto L = [](void *data, size_t size, void *cb_state) -> hsa_status_t { 1294 C *unwrapped = static_cast<C *>(cb_state); 1295 return (*unwrapped)(data, size); 1296 }; 1297 return core::RegisterModuleFromMemory( 1298 KernelInfoTable, SymbolInfoTable, module_bytes, module_size, 1299 DeviceInfo.HSAAgents[DeviceId], L, static_cast<void *>(&cb), 1300 HSAExecutables); 1301 } 1302 } // namespace 1303 1304 static uint64_t get_device_State_bytes(char *ImageStart, size_t img_size) { 1305 uint64_t device_State_bytes = 0; 1306 { 1307 // If this is the deviceRTL, get the state variable size 1308 symbol_info size_si; 1309 int rc = get_symbol_info_without_loading( 1310 ImageStart, img_size, "omptarget_nvptx_device_State_size", &size_si); 1311 1312 if (rc == 0) { 1313 if (size_si.size != sizeof(uint64_t)) { 1314 DP("Found device_State_size variable with wrong size\n"); 1315 return 0; 1316 } 1317 1318 // Read number of bytes directly from the elf 1319 memcpy(&device_State_bytes, size_si.addr, sizeof(uint64_t)); 1320 } 1321 } 1322 return device_State_bytes; 1323 } 1324 1325 static __tgt_target_table * 1326 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1327 1328 static __tgt_target_table * 1329 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1330 1331 __tgt_target_table *__tgt_rtl_load_binary(int32_t device_id, 1332 __tgt_device_image *image) { 1333 DeviceInfo.load_run_lock.lock(); 1334 __tgt_target_table *res = __tgt_rtl_load_binary_locked(device_id, image); 1335 DeviceInfo.load_run_lock.unlock(); 1336 return res; 1337 } 1338 1339 struct device_environment { 1340 // initialise an omptarget_device_environmentTy in the deviceRTL 1341 // patches around differences in the deviceRTL between trunk, aomp, 1342 // rocmcc. Over time these differences will tend to zero and this class 1343 // simplified. 1344 // Symbol may be in .data or .bss, and may be missing fields: 1345 // - aomp has debug_level, num_devices, device_num 1346 // - trunk has debug_level 1347 // - under review in trunk is debug_level, device_num 1348 // - rocmcc matches aomp, patch to swap num_devices and device_num 1349 1350 // The symbol may also have been deadstripped because the device side 1351 // accessors were unused. 1352 1353 // If the symbol is in .data (aomp, rocm) it can be written directly. 1354 // If it is in .bss, we must wait for it to be allocated space on the 1355 // gpu (trunk) and initialize after loading. 1356 const char *sym() { return "omptarget_device_environment"; } 1357 1358 omptarget_device_environmentTy host_device_env; 1359 symbol_info si; 1360 bool valid = false; 1361 1362 __tgt_device_image *image; 1363 const size_t img_size; 1364 1365 device_environment(int device_id, int number_devices, 1366 __tgt_device_image *image, const size_t img_size) 1367 : image(image), img_size(img_size) { 1368 1369 host_device_env.num_devices = number_devices; 1370 host_device_env.device_num = device_id; 1371 host_device_env.debug_level = 0; 1372 #ifdef OMPTARGET_DEBUG 1373 if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) { 1374 host_device_env.debug_level = std::stoi(envStr); 1375 } 1376 #endif 1377 1378 int rc = get_symbol_info_without_loading((char *)image->ImageStart, 1379 img_size, sym(), &si); 1380 if (rc != 0) { 1381 DP("Finding global device environment '%s' - symbol missing.\n", sym()); 1382 return; 1383 } 1384 1385 if (si.size > sizeof(host_device_env)) { 1386 DP("Symbol '%s' has size %u, expected at most %zu.\n", sym(), si.size, 1387 sizeof(host_device_env)); 1388 return; 1389 } 1390 1391 valid = true; 1392 } 1393 1394 bool in_image() { return si.sh_type != SHT_NOBITS; } 1395 1396 hsa_status_t before_loading(void *data, size_t size) { 1397 if (valid) { 1398 if (in_image()) { 1399 DP("Setting global device environment before load (%u bytes)\n", 1400 si.size); 1401 uint64_t offset = (char *)si.addr - (char *)image->ImageStart; 1402 void *pos = (char *)data + offset; 1403 memcpy(pos, &host_device_env, si.size); 1404 } 1405 } 1406 return HSA_STATUS_SUCCESS; 1407 } 1408 1409 hsa_status_t after_loading() { 1410 if (valid) { 1411 if (!in_image()) { 1412 DP("Setting global device environment after load (%u bytes)\n", 1413 si.size); 1414 int device_id = host_device_env.device_num; 1415 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1416 void *state_ptr; 1417 uint32_t state_ptr_size; 1418 hsa_status_t err = interop_hsa_get_symbol_info( 1419 SymbolInfo, device_id, sym(), &state_ptr, &state_ptr_size); 1420 if (err != HSA_STATUS_SUCCESS) { 1421 DP("failed to find %s in loaded image\n", sym()); 1422 return err; 1423 } 1424 1425 if (state_ptr_size != si.size) { 1426 DP("Symbol had size %u before loading, %u after\n", state_ptr_size, 1427 si.size); 1428 return HSA_STATUS_ERROR; 1429 } 1430 1431 return DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &host_device_env, 1432 state_ptr_size, device_id); 1433 } 1434 } 1435 return HSA_STATUS_SUCCESS; 1436 } 1437 }; 1438 1439 static hsa_status_t impl_calloc(void **ret_ptr, size_t size, int DeviceId) { 1440 uint64_t rounded = 4 * ((size + 3) / 4); 1441 void *ptr; 1442 hsa_amd_memory_pool_t MemoryPool = DeviceInfo.getDeviceMemoryPool(DeviceId); 1443 hsa_status_t err = hsa_amd_memory_pool_allocate(MemoryPool, rounded, 0, &ptr); 1444 if (err != HSA_STATUS_SUCCESS) { 1445 return err; 1446 } 1447 1448 hsa_status_t rc = hsa_amd_memory_fill(ptr, 0, rounded / 4); 1449 if (rc != HSA_STATUS_SUCCESS) { 1450 DP("zero fill device_state failed with %u\n", rc); 1451 core::Runtime::Memfree(ptr); 1452 return HSA_STATUS_ERROR; 1453 } 1454 1455 *ret_ptr = ptr; 1456 return HSA_STATUS_SUCCESS; 1457 } 1458 1459 static bool image_contains_symbol(void *data, size_t size, const char *sym) { 1460 symbol_info si; 1461 int rc = get_symbol_info_without_loading((char *)data, size, sym, &si); 1462 return (rc == 0) && (si.addr != nullptr); 1463 } 1464 1465 __tgt_target_table *__tgt_rtl_load_binary_locked(int32_t device_id, 1466 __tgt_device_image *image) { 1467 // This function loads the device image onto gpu[device_id] and does other 1468 // per-image initialization work. Specifically: 1469 // 1470 // - Initialize an omptarget_device_environmentTy instance embedded in the 1471 // image at the symbol "omptarget_device_environment" 1472 // Fields debug_level, device_num, num_devices. Used by the deviceRTL. 1473 // 1474 // - Allocate a large array per-gpu (could be moved to init_device) 1475 // - Read a uint64_t at symbol omptarget_nvptx_device_State_size 1476 // - Allocate at least that many bytes of gpu memory 1477 // - Zero initialize it 1478 // - Write the pointer to the symbol omptarget_nvptx_device_State 1479 // 1480 // - Pulls some per-kernel information together from various sources and 1481 // records it in the KernelsList for quicker access later 1482 // 1483 // The initialization can be done before or after loading the image onto the 1484 // gpu. This function presently does a mixture. Using the hsa api to get/set 1485 // the information is simpler to implement, in exchange for more complicated 1486 // runtime behaviour. E.g. launching a kernel or using dma to get eight bytes 1487 // back from the gpu vs a hashtable lookup on the host. 1488 1489 const size_t img_size = (char *)image->ImageEnd - (char *)image->ImageStart; 1490 1491 DeviceInfo.clearOffloadEntriesTable(device_id); 1492 1493 // We do not need to set the ELF version because the caller of this function 1494 // had to do that to decide the right runtime to use 1495 1496 if (!elf_machine_id_is_amdgcn(image)) { 1497 return NULL; 1498 } 1499 1500 { 1501 auto env = device_environment(device_id, DeviceInfo.NumberOfDevices, image, 1502 img_size); 1503 1504 auto &KernelInfo = DeviceInfo.KernelInfoTable[device_id]; 1505 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1506 hsa_status_t err = module_register_from_memory_to_place( 1507 KernelInfo, SymbolInfo, (void *)image->ImageStart, img_size, device_id, 1508 [&](void *data, size_t size) { 1509 if (image_contains_symbol(data, size, "needs_hostcall_buffer")) { 1510 __atomic_store_n(&DeviceInfo.hostcall_required, true, 1511 __ATOMIC_RELEASE); 1512 } 1513 return env.before_loading(data, size); 1514 }, 1515 DeviceInfo.HSAExecutables); 1516 1517 check("Module registering", err); 1518 if (err != HSA_STATUS_SUCCESS) { 1519 const char *DeviceName = DeviceInfo.GPUName[device_id].c_str(); 1520 const char *ElfName = get_elf_mach_gfx_name(elf_e_flags(image)); 1521 1522 if (strcmp(DeviceName, ElfName) != 0) { 1523 DP("Possible gpu arch mismatch: device:%s, image:%s please check" 1524 " compiler flag: -march=<gpu>\n", 1525 DeviceName, ElfName); 1526 } else { 1527 DP("Error loading image onto GPU: %s\n", get_error_string(err)); 1528 } 1529 1530 return NULL; 1531 } 1532 1533 err = env.after_loading(); 1534 if (err != HSA_STATUS_SUCCESS) { 1535 return NULL; 1536 } 1537 } 1538 1539 DP("AMDGPU module successfully loaded!\n"); 1540 1541 { 1542 // the device_State array is either large value in bss or a void* that 1543 // needs to be assigned to a pointer to an array of size device_state_bytes 1544 // If absent, it has been deadstripped and needs no setup. 1545 1546 void *state_ptr; 1547 uint32_t state_ptr_size; 1548 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 1549 hsa_status_t err = interop_hsa_get_symbol_info( 1550 SymbolInfoMap, device_id, "omptarget_nvptx_device_State", &state_ptr, 1551 &state_ptr_size); 1552 1553 if (err != HSA_STATUS_SUCCESS) { 1554 DP("No device_state symbol found, skipping initialization\n"); 1555 } else { 1556 if (state_ptr_size < sizeof(void *)) { 1557 DP("unexpected size of state_ptr %u != %zu\n", state_ptr_size, 1558 sizeof(void *)); 1559 return NULL; 1560 } 1561 1562 // if it's larger than a void*, assume it's a bss array and no further 1563 // initialization is required. Only try to set up a pointer for 1564 // sizeof(void*) 1565 if (state_ptr_size == sizeof(void *)) { 1566 uint64_t device_State_bytes = 1567 get_device_State_bytes((char *)image->ImageStart, img_size); 1568 if (device_State_bytes == 0) { 1569 DP("Can't initialize device_State, missing size information\n"); 1570 return NULL; 1571 } 1572 1573 auto &dss = DeviceInfo.deviceStateStore[device_id]; 1574 if (dss.first.get() == nullptr) { 1575 assert(dss.second == 0); 1576 void *ptr = NULL; 1577 hsa_status_t err = impl_calloc(&ptr, device_State_bytes, device_id); 1578 if (err != HSA_STATUS_SUCCESS) { 1579 DP("Failed to allocate device_state array\n"); 1580 return NULL; 1581 } 1582 dss = { 1583 std::unique_ptr<void, RTLDeviceInfoTy::implFreePtrDeletor>{ptr}, 1584 device_State_bytes, 1585 }; 1586 } 1587 1588 void *ptr = dss.first.get(); 1589 if (device_State_bytes != dss.second) { 1590 DP("Inconsistent sizes of device_State unsupported\n"); 1591 return NULL; 1592 } 1593 1594 // write ptr to device memory so it can be used by later kernels 1595 err = DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &ptr, 1596 sizeof(void *), device_id); 1597 if (err != HSA_STATUS_SUCCESS) { 1598 DP("memcpy install of state_ptr failed\n"); 1599 return NULL; 1600 } 1601 } 1602 } 1603 } 1604 1605 // Here, we take advantage of the data that is appended after img_end to get 1606 // the symbols' name we need to load. This data consist of the host entries 1607 // begin and end as well as the target name (see the offloading linker script 1608 // creation in clang compiler). 1609 1610 // Find the symbols in the module by name. The name can be obtain by 1611 // concatenating the host entry name with the target name 1612 1613 __tgt_offload_entry *HostBegin = image->EntriesBegin; 1614 __tgt_offload_entry *HostEnd = image->EntriesEnd; 1615 1616 for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) { 1617 1618 if (!e->addr) { 1619 // The host should have always something in the address to 1620 // uniquely identify the target region. 1621 DP("Analyzing host entry '<null>' (size = %lld)...\n", 1622 (unsigned long long)e->size); 1623 return NULL; 1624 } 1625 1626 if (e->size) { 1627 __tgt_offload_entry entry = *e; 1628 1629 void *varptr; 1630 uint32_t varsize; 1631 1632 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 1633 hsa_status_t err = interop_hsa_get_symbol_info( 1634 SymbolInfoMap, device_id, e->name, &varptr, &varsize); 1635 1636 if (err != HSA_STATUS_SUCCESS) { 1637 // Inform the user what symbol prevented offloading 1638 DP("Loading global '%s' (Failed)\n", e->name); 1639 return NULL; 1640 } 1641 1642 if (varsize != e->size) { 1643 DP("Loading global '%s' - size mismatch (%u != %lu)\n", e->name, 1644 varsize, e->size); 1645 return NULL; 1646 } 1647 1648 DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n", 1649 DPxPTR(e - HostBegin), e->name, DPxPTR(varptr)); 1650 entry.addr = (void *)varptr; 1651 1652 DeviceInfo.addOffloadEntry(device_id, entry); 1653 1654 if (DeviceInfo.RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY && 1655 e->flags & OMP_DECLARE_TARGET_LINK) { 1656 // If unified memory is present any target link variables 1657 // can access host addresses directly. There is no longer a 1658 // need for device copies. 1659 err = DeviceInfo.freesignalpool_memcpy_h2d(varptr, e->addr, 1660 sizeof(void *), device_id); 1661 if (err != HSA_STATUS_SUCCESS) 1662 DP("Error when copying USM\n"); 1663 DP("Copy linked variable host address (" DPxMOD ")" 1664 "to device address (" DPxMOD ")\n", 1665 DPxPTR(*((void **)e->addr)), DPxPTR(varptr)); 1666 } 1667 1668 continue; 1669 } 1670 1671 DP("to find the kernel name: %s size: %lu\n", e->name, strlen(e->name)); 1672 1673 uint32_t kernarg_segment_size; 1674 auto &KernelInfoMap = DeviceInfo.KernelInfoTable[device_id]; 1675 hsa_status_t err = interop_hsa_get_kernel_info( 1676 KernelInfoMap, device_id, e->name, 1677 HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE, 1678 &kernarg_segment_size); 1679 1680 // each arg is a void * in this openmp implementation 1681 uint32_t arg_num = kernarg_segment_size / sizeof(void *); 1682 std::vector<size_t> arg_sizes(arg_num); 1683 for (std::vector<size_t>::iterator it = arg_sizes.begin(); 1684 it != arg_sizes.end(); it++) { 1685 *it = sizeof(void *); 1686 } 1687 1688 // default value GENERIC (in case symbol is missing from cubin file) 1689 int8_t ExecModeVal = ExecutionModeType::GENERIC; 1690 1691 // get flat group size if present, else Default_WG_Size 1692 int16_t WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1693 1694 // get Kernel Descriptor if present. 1695 // Keep struct in sync wih getTgtAttributeStructQTy in CGOpenMPRuntime.cpp 1696 struct KernDescValType { 1697 uint16_t Version; 1698 uint16_t TSize; 1699 uint16_t WG_Size; 1700 uint8_t Mode; 1701 }; 1702 struct KernDescValType KernDescVal; 1703 std::string KernDescNameStr(e->name); 1704 KernDescNameStr += "_kern_desc"; 1705 const char *KernDescName = KernDescNameStr.c_str(); 1706 1707 void *KernDescPtr; 1708 uint32_t KernDescSize; 1709 void *CallStackAddr = nullptr; 1710 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1711 KernDescName, &KernDescPtr, &KernDescSize); 1712 1713 if (err == HSA_STATUS_SUCCESS) { 1714 if ((size_t)KernDescSize != sizeof(KernDescVal)) 1715 DP("Loading global computation properties '%s' - size mismatch (%u != " 1716 "%lu)\n", 1717 KernDescName, KernDescSize, sizeof(KernDescVal)); 1718 1719 memcpy(&KernDescVal, KernDescPtr, (size_t)KernDescSize); 1720 1721 // Check structure size against recorded size. 1722 if ((size_t)KernDescSize != KernDescVal.TSize) 1723 DP("KernDescVal size %lu does not match advertized size %d for '%s'\n", 1724 sizeof(KernDescVal), KernDescVal.TSize, KernDescName); 1725 1726 DP("After loading global for %s KernDesc \n", KernDescName); 1727 DP("KernDesc: Version: %d\n", KernDescVal.Version); 1728 DP("KernDesc: TSize: %d\n", KernDescVal.TSize); 1729 DP("KernDesc: WG_Size: %d\n", KernDescVal.WG_Size); 1730 DP("KernDesc: Mode: %d\n", KernDescVal.Mode); 1731 1732 // Get ExecMode 1733 ExecModeVal = KernDescVal.Mode; 1734 DP("ExecModeVal %d\n", ExecModeVal); 1735 if (KernDescVal.WG_Size == 0) { 1736 KernDescVal.WG_Size = RTLDeviceInfoTy::Default_WG_Size; 1737 DP("Setting KernDescVal.WG_Size to default %d\n", KernDescVal.WG_Size); 1738 } 1739 WGSizeVal = KernDescVal.WG_Size; 1740 DP("WGSizeVal %d\n", WGSizeVal); 1741 check("Loading KernDesc computation property", err); 1742 } else { 1743 DP("Warning: Loading KernDesc '%s' - symbol not found, ", KernDescName); 1744 1745 // Generic 1746 std::string ExecModeNameStr(e->name); 1747 ExecModeNameStr += "_exec_mode"; 1748 const char *ExecModeName = ExecModeNameStr.c_str(); 1749 1750 void *ExecModePtr; 1751 uint32_t varsize; 1752 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1753 ExecModeName, &ExecModePtr, &varsize); 1754 1755 if (err == HSA_STATUS_SUCCESS) { 1756 if ((size_t)varsize != sizeof(int8_t)) { 1757 DP("Loading global computation properties '%s' - size mismatch(%u != " 1758 "%lu)\n", 1759 ExecModeName, varsize, sizeof(int8_t)); 1760 return NULL; 1761 } 1762 1763 memcpy(&ExecModeVal, ExecModePtr, (size_t)varsize); 1764 1765 DP("After loading global for %s ExecMode = %d\n", ExecModeName, 1766 ExecModeVal); 1767 1768 if (ExecModeVal < 0 || ExecModeVal > 2) { 1769 DP("Error wrong exec_mode value specified in HSA code object file: " 1770 "%d\n", 1771 ExecModeVal); 1772 return NULL; 1773 } 1774 } else { 1775 DP("Loading global exec_mode '%s' - symbol missing, using default " 1776 "value " 1777 "GENERIC (1)\n", 1778 ExecModeName); 1779 } 1780 check("Loading computation property", err); 1781 1782 // Flat group size 1783 std::string WGSizeNameStr(e->name); 1784 WGSizeNameStr += "_wg_size"; 1785 const char *WGSizeName = WGSizeNameStr.c_str(); 1786 1787 void *WGSizePtr; 1788 uint32_t WGSize; 1789 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1790 WGSizeName, &WGSizePtr, &WGSize); 1791 1792 if (err == HSA_STATUS_SUCCESS) { 1793 if ((size_t)WGSize != sizeof(int16_t)) { 1794 DP("Loading global computation properties '%s' - size mismatch (%u " 1795 "!= " 1796 "%lu)\n", 1797 WGSizeName, WGSize, sizeof(int16_t)); 1798 return NULL; 1799 } 1800 1801 memcpy(&WGSizeVal, WGSizePtr, (size_t)WGSize); 1802 1803 DP("After loading global for %s WGSize = %d\n", WGSizeName, WGSizeVal); 1804 1805 if (WGSizeVal < RTLDeviceInfoTy::Default_WG_Size || 1806 WGSizeVal > RTLDeviceInfoTy::Max_WG_Size) { 1807 DP("Error wrong WGSize value specified in HSA code object file: " 1808 "%d\n", 1809 WGSizeVal); 1810 WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1811 } 1812 } else { 1813 DP("Warning: Loading WGSize '%s' - symbol not found, " 1814 "using default value %d\n", 1815 WGSizeName, WGSizeVal); 1816 } 1817 1818 check("Loading WGSize computation property", err); 1819 } 1820 1821 KernelsList.push_back(KernelTy(ExecModeVal, WGSizeVal, device_id, 1822 CallStackAddr, e->name, kernarg_segment_size, 1823 DeviceInfo.KernArgPool)); 1824 __tgt_offload_entry entry = *e; 1825 entry.addr = (void *)&KernelsList.back(); 1826 DeviceInfo.addOffloadEntry(device_id, entry); 1827 DP("Entry point %ld maps to %s\n", e - HostBegin, e->name); 1828 } 1829 1830 return DeviceInfo.getOffloadEntriesTable(device_id); 1831 } 1832 1833 void *__tgt_rtl_data_alloc(int device_id, int64_t size, void *, int32_t kind) { 1834 void *ptr = NULL; 1835 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1836 1837 if (kind != TARGET_ALLOC_DEFAULT) { 1838 REPORT("Invalid target data allocation kind or requested allocator not " 1839 "implemented yet\n"); 1840 return NULL; 1841 } 1842 1843 hsa_amd_memory_pool_t MemoryPool = DeviceInfo.getDeviceMemoryPool(device_id); 1844 hsa_status_t err = hsa_amd_memory_pool_allocate(MemoryPool, size, 0, &ptr); 1845 DP("Tgt alloc data %ld bytes, (tgt:%016llx).\n", size, 1846 (long long unsigned)(Elf64_Addr)ptr); 1847 ptr = (err == HSA_STATUS_SUCCESS) ? ptr : NULL; 1848 return ptr; 1849 } 1850 1851 int32_t __tgt_rtl_data_submit(int device_id, void *tgt_ptr, void *hst_ptr, 1852 int64_t size) { 1853 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1854 __tgt_async_info AsyncInfo; 1855 int32_t rc = dataSubmit(device_id, tgt_ptr, hst_ptr, size, &AsyncInfo); 1856 if (rc != OFFLOAD_SUCCESS) 1857 return OFFLOAD_FAIL; 1858 1859 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1860 } 1861 1862 int32_t __tgt_rtl_data_submit_async(int device_id, void *tgt_ptr, void *hst_ptr, 1863 int64_t size, __tgt_async_info *AsyncInfo) { 1864 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1865 if (AsyncInfo) { 1866 initAsyncInfo(AsyncInfo); 1867 return dataSubmit(device_id, tgt_ptr, hst_ptr, size, AsyncInfo); 1868 } else { 1869 return __tgt_rtl_data_submit(device_id, tgt_ptr, hst_ptr, size); 1870 } 1871 } 1872 1873 int32_t __tgt_rtl_data_retrieve(int device_id, void *hst_ptr, void *tgt_ptr, 1874 int64_t size) { 1875 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1876 __tgt_async_info AsyncInfo; 1877 int32_t rc = dataRetrieve(device_id, hst_ptr, tgt_ptr, size, &AsyncInfo); 1878 if (rc != OFFLOAD_SUCCESS) 1879 return OFFLOAD_FAIL; 1880 1881 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1882 } 1883 1884 int32_t __tgt_rtl_data_retrieve_async(int device_id, void *hst_ptr, 1885 void *tgt_ptr, int64_t size, 1886 __tgt_async_info *AsyncInfo) { 1887 assert(AsyncInfo && "AsyncInfo is nullptr"); 1888 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1889 initAsyncInfo(AsyncInfo); 1890 return dataRetrieve(device_id, hst_ptr, tgt_ptr, size, AsyncInfo); 1891 } 1892 1893 int32_t __tgt_rtl_data_delete(int device_id, void *tgt_ptr) { 1894 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1895 hsa_status_t err; 1896 DP("Tgt free data (tgt:%016llx).\n", (long long unsigned)(Elf64_Addr)tgt_ptr); 1897 err = core::Runtime::Memfree(tgt_ptr); 1898 if (err != HSA_STATUS_SUCCESS) { 1899 DP("Error when freeing CUDA memory\n"); 1900 return OFFLOAD_FAIL; 1901 } 1902 return OFFLOAD_SUCCESS; 1903 } 1904 1905 // Determine launch values for kernel. 1906 struct launchVals { 1907 int WorkgroupSize; 1908 int GridSize; 1909 }; 1910 launchVals getLaunchVals(int WarpSize, EnvironmentVariables Env, 1911 int ConstWGSize, int ExecutionMode, int num_teams, 1912 int thread_limit, uint64_t loop_tripcount, 1913 int DeviceNumTeams) { 1914 1915 int threadsPerGroup = RTLDeviceInfoTy::Default_WG_Size; 1916 int num_groups = 0; 1917 1918 int Max_Teams = 1919 Env.MaxTeamsDefault > 0 ? Env.MaxTeamsDefault : DeviceNumTeams; 1920 if (Max_Teams > RTLDeviceInfoTy::HardTeamLimit) 1921 Max_Teams = RTLDeviceInfoTy::HardTeamLimit; 1922 1923 if (print_kernel_trace & STARTUP_DETAILS) { 1924 DP("RTLDeviceInfoTy::Max_Teams: %d\n", RTLDeviceInfoTy::Max_Teams); 1925 DP("Max_Teams: %d\n", Max_Teams); 1926 DP("RTLDeviceInfoTy::Warp_Size: %d\n", WarpSize); 1927 DP("RTLDeviceInfoTy::Max_WG_Size: %d\n", RTLDeviceInfoTy::Max_WG_Size); 1928 DP("RTLDeviceInfoTy::Default_WG_Size: %d\n", 1929 RTLDeviceInfoTy::Default_WG_Size); 1930 DP("thread_limit: %d\n", thread_limit); 1931 DP("threadsPerGroup: %d\n", threadsPerGroup); 1932 DP("ConstWGSize: %d\n", ConstWGSize); 1933 } 1934 // check for thread_limit() clause 1935 if (thread_limit > 0) { 1936 threadsPerGroup = thread_limit; 1937 DP("Setting threads per block to requested %d\n", thread_limit); 1938 if (ExecutionMode == GENERIC) { // Add master warp for GENERIC 1939 threadsPerGroup += WarpSize; 1940 DP("Adding master wavefront: +%d threads\n", WarpSize); 1941 } 1942 if (threadsPerGroup > RTLDeviceInfoTy::Max_WG_Size) { // limit to max 1943 threadsPerGroup = RTLDeviceInfoTy::Max_WG_Size; 1944 DP("Setting threads per block to maximum %d\n", threadsPerGroup); 1945 } 1946 } 1947 // check flat_max_work_group_size attr here 1948 if (threadsPerGroup > ConstWGSize) { 1949 threadsPerGroup = ConstWGSize; 1950 DP("Reduced threadsPerGroup to flat-attr-group-size limit %d\n", 1951 threadsPerGroup); 1952 } 1953 if (print_kernel_trace & STARTUP_DETAILS) 1954 DP("threadsPerGroup: %d\n", threadsPerGroup); 1955 DP("Preparing %d threads\n", threadsPerGroup); 1956 1957 // Set default num_groups (teams) 1958 if (Env.TeamLimit > 0) 1959 num_groups = (Max_Teams < Env.TeamLimit) ? Max_Teams : Env.TeamLimit; 1960 else 1961 num_groups = Max_Teams; 1962 DP("Set default num of groups %d\n", num_groups); 1963 1964 if (print_kernel_trace & STARTUP_DETAILS) { 1965 DP("num_groups: %d\n", num_groups); 1966 DP("num_teams: %d\n", num_teams); 1967 } 1968 1969 // Reduce num_groups if threadsPerGroup exceeds RTLDeviceInfoTy::Max_WG_Size 1970 // This reduction is typical for default case (no thread_limit clause). 1971 // or when user goes crazy with num_teams clause. 1972 // FIXME: We cant distinguish between a constant or variable thread limit. 1973 // So we only handle constant thread_limits. 1974 if (threadsPerGroup > 1975 RTLDeviceInfoTy::Default_WG_Size) // 256 < threadsPerGroup <= 1024 1976 // Should we round threadsPerGroup up to nearest WarpSize 1977 // here? 1978 num_groups = (Max_Teams * RTLDeviceInfoTy::Max_WG_Size) / threadsPerGroup; 1979 1980 // check for num_teams() clause 1981 if (num_teams > 0) { 1982 num_groups = (num_teams < num_groups) ? num_teams : num_groups; 1983 } 1984 if (print_kernel_trace & STARTUP_DETAILS) { 1985 DP("num_groups: %d\n", num_groups); 1986 DP("Env.NumTeams %d\n", Env.NumTeams); 1987 DP("Env.TeamLimit %d\n", Env.TeamLimit); 1988 } 1989 1990 if (Env.NumTeams > 0) { 1991 num_groups = (Env.NumTeams < num_groups) ? Env.NumTeams : num_groups; 1992 DP("Modifying teams based on Env.NumTeams %d\n", Env.NumTeams); 1993 } else if (Env.TeamLimit > 0) { 1994 num_groups = (Env.TeamLimit < num_groups) ? Env.TeamLimit : num_groups; 1995 DP("Modifying teams based on Env.TeamLimit%d\n", Env.TeamLimit); 1996 } else { 1997 if (num_teams <= 0) { 1998 if (loop_tripcount > 0) { 1999 if (ExecutionMode == SPMD) { 2000 // round up to the nearest integer 2001 num_groups = ((loop_tripcount - 1) / threadsPerGroup) + 1; 2002 } else if (ExecutionMode == GENERIC) { 2003 num_groups = loop_tripcount; 2004 } else /* ExecutionMode == SPMD_GENERIC */ { 2005 // This is a generic kernel that was transformed to use SPMD-mode 2006 // execution but uses Generic-mode semantics for scheduling. 2007 num_groups = loop_tripcount; 2008 } 2009 DP("Using %d teams due to loop trip count %" PRIu64 " and number of " 2010 "threads per block %d\n", 2011 num_groups, loop_tripcount, threadsPerGroup); 2012 } 2013 } else { 2014 num_groups = num_teams; 2015 } 2016 if (num_groups > Max_Teams) { 2017 num_groups = Max_Teams; 2018 if (print_kernel_trace & STARTUP_DETAILS) 2019 DP("Limiting num_groups %d to Max_Teams %d \n", num_groups, Max_Teams); 2020 } 2021 if (num_groups > num_teams && num_teams > 0) { 2022 num_groups = num_teams; 2023 if (print_kernel_trace & STARTUP_DETAILS) 2024 DP("Limiting num_groups %d to clause num_teams %d \n", num_groups, 2025 num_teams); 2026 } 2027 } 2028 2029 // num_teams clause always honored, no matter what, unless DEFAULT is active. 2030 if (num_teams > 0) { 2031 num_groups = num_teams; 2032 // Cap num_groups to EnvMaxTeamsDefault if set. 2033 if (Env.MaxTeamsDefault > 0 && num_groups > Env.MaxTeamsDefault) 2034 num_groups = Env.MaxTeamsDefault; 2035 } 2036 if (print_kernel_trace & STARTUP_DETAILS) { 2037 DP("threadsPerGroup: %d\n", threadsPerGroup); 2038 DP("num_groups: %d\n", num_groups); 2039 DP("loop_tripcount: %ld\n", loop_tripcount); 2040 } 2041 DP("Final %d num_groups and %d threadsPerGroup\n", num_groups, 2042 threadsPerGroup); 2043 2044 launchVals res; 2045 res.WorkgroupSize = threadsPerGroup; 2046 res.GridSize = threadsPerGroup * num_groups; 2047 return res; 2048 } 2049 2050 static uint64_t acquire_available_packet_id(hsa_queue_t *queue) { 2051 uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1); 2052 bool full = true; 2053 while (full) { 2054 full = 2055 packet_id >= (queue->size + hsa_queue_load_read_index_scacquire(queue)); 2056 } 2057 return packet_id; 2058 } 2059 2060 static int32_t __tgt_rtl_run_target_team_region_locked( 2061 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 2062 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 2063 int32_t thread_limit, uint64_t loop_tripcount); 2064 2065 int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr, 2066 void **tgt_args, 2067 ptrdiff_t *tgt_offsets, 2068 int32_t arg_num, int32_t num_teams, 2069 int32_t thread_limit, 2070 uint64_t loop_tripcount) { 2071 2072 DeviceInfo.load_run_lock.lock_shared(); 2073 int32_t res = __tgt_rtl_run_target_team_region_locked( 2074 device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, num_teams, 2075 thread_limit, loop_tripcount); 2076 2077 DeviceInfo.load_run_lock.unlock_shared(); 2078 return res; 2079 } 2080 2081 int32_t __tgt_rtl_run_target_team_region_locked( 2082 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 2083 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 2084 int32_t thread_limit, uint64_t loop_tripcount) { 2085 // Set the context we are using 2086 // update thread limit content in gpu memory if un-initialized or specified 2087 // from host 2088 2089 DP("Run target team region thread_limit %d\n", thread_limit); 2090 2091 // All args are references. 2092 std::vector<void *> args(arg_num); 2093 std::vector<void *> ptrs(arg_num); 2094 2095 DP("Arg_num: %d\n", arg_num); 2096 for (int32_t i = 0; i < arg_num; ++i) { 2097 ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]); 2098 args[i] = &ptrs[i]; 2099 DP("Offseted base: arg[%d]:" DPxMOD "\n", i, DPxPTR(ptrs[i])); 2100 } 2101 2102 KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr; 2103 2104 std::string kernel_name = std::string(KernelInfo->Name); 2105 auto &KernelInfoTable = DeviceInfo.KernelInfoTable; 2106 if (KernelInfoTable[device_id].find(kernel_name) == 2107 KernelInfoTable[device_id].end()) { 2108 DP("Kernel %s not found\n", kernel_name.c_str()); 2109 return OFFLOAD_FAIL; 2110 } 2111 2112 const atl_kernel_info_t KernelInfoEntry = 2113 KernelInfoTable[device_id][kernel_name]; 2114 const uint32_t group_segment_size = KernelInfoEntry.group_segment_size; 2115 const uint32_t sgpr_count = KernelInfoEntry.sgpr_count; 2116 const uint32_t vgpr_count = KernelInfoEntry.vgpr_count; 2117 const uint32_t sgpr_spill_count = KernelInfoEntry.sgpr_spill_count; 2118 const uint32_t vgpr_spill_count = KernelInfoEntry.vgpr_spill_count; 2119 2120 assert(arg_num == (int)KernelInfoEntry.num_args); 2121 2122 /* 2123 * Set limit based on ThreadsPerGroup and GroupsPerDevice 2124 */ 2125 launchVals LV = 2126 getLaunchVals(DeviceInfo.WarpSize[device_id], DeviceInfo.Env, 2127 KernelInfo->ConstWGSize, KernelInfo->ExecutionMode, 2128 num_teams, // From run_region arg 2129 thread_limit, // From run_region arg 2130 loop_tripcount, // From run_region arg 2131 DeviceInfo.NumTeams[KernelInfo->device_id]); 2132 const int GridSize = LV.GridSize; 2133 const int WorkgroupSize = LV.WorkgroupSize; 2134 2135 if (print_kernel_trace >= LAUNCH) { 2136 int num_groups = GridSize / WorkgroupSize; 2137 // enum modes are SPMD, GENERIC, NONE 0,1,2 2138 // if doing rtl timing, print to stderr, unless stdout requested. 2139 bool traceToStdout = print_kernel_trace & (RTL_TO_STDOUT | RTL_TIMING); 2140 fprintf(traceToStdout ? stdout : stderr, 2141 "DEVID:%2d SGN:%1d ConstWGSize:%-4d args:%2d teamsXthrds:(%4dX%4d) " 2142 "reqd:(%4dX%4d) lds_usage:%uB sgpr_count:%u vgpr_count:%u " 2143 "sgpr_spill_count:%u vgpr_spill_count:%u tripcount:%lu n:%s\n", 2144 device_id, KernelInfo->ExecutionMode, KernelInfo->ConstWGSize, 2145 arg_num, num_groups, WorkgroupSize, num_teams, thread_limit, 2146 group_segment_size, sgpr_count, vgpr_count, sgpr_spill_count, 2147 vgpr_spill_count, loop_tripcount, KernelInfo->Name); 2148 } 2149 2150 // Run on the device. 2151 { 2152 hsa_queue_t *queue = DeviceInfo.HSAQueues[device_id]; 2153 if (!queue) { 2154 return OFFLOAD_FAIL; 2155 } 2156 uint64_t packet_id = acquire_available_packet_id(queue); 2157 2158 const uint32_t mask = queue->size - 1; // size is a power of 2 2159 hsa_kernel_dispatch_packet_t *packet = 2160 (hsa_kernel_dispatch_packet_t *)queue->base_address + 2161 (packet_id & mask); 2162 2163 // packet->header is written last 2164 packet->setup = UINT16_C(1) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS; 2165 packet->workgroup_size_x = WorkgroupSize; 2166 packet->workgroup_size_y = 1; 2167 packet->workgroup_size_z = 1; 2168 packet->reserved0 = 0; 2169 packet->grid_size_x = GridSize; 2170 packet->grid_size_y = 1; 2171 packet->grid_size_z = 1; 2172 packet->private_segment_size = KernelInfoEntry.private_segment_size; 2173 packet->group_segment_size = KernelInfoEntry.group_segment_size; 2174 packet->kernel_object = KernelInfoEntry.kernel_object; 2175 packet->kernarg_address = 0; // use the block allocator 2176 packet->reserved2 = 0; // impl writes id_ here 2177 packet->completion_signal = {0}; // may want a pool of signals 2178 2179 KernelArgPool *ArgPool = nullptr; 2180 { 2181 auto it = KernelArgPoolMap.find(std::string(KernelInfo->Name)); 2182 if (it != KernelArgPoolMap.end()) { 2183 ArgPool = (it->second).get(); 2184 } 2185 } 2186 if (!ArgPool) { 2187 DP("Warning: No ArgPool for %s on device %d\n", KernelInfo->Name, 2188 device_id); 2189 } 2190 { 2191 void *kernarg = nullptr; 2192 if (ArgPool) { 2193 assert(ArgPool->kernarg_segment_size == (arg_num * sizeof(void *))); 2194 kernarg = ArgPool->allocate(arg_num); 2195 } 2196 if (!kernarg) { 2197 DP("Allocate kernarg failed\n"); 2198 return OFFLOAD_FAIL; 2199 } 2200 2201 // Copy explicit arguments 2202 for (int i = 0; i < arg_num; i++) { 2203 memcpy((char *)kernarg + sizeof(void *) * i, args[i], sizeof(void *)); 2204 } 2205 2206 // Initialize implicit arguments. TODO: Which of these can be dropped 2207 impl_implicit_args_t *impl_args = 2208 reinterpret_cast<impl_implicit_args_t *>( 2209 static_cast<char *>(kernarg) + ArgPool->kernarg_segment_size); 2210 memset(impl_args, 0, 2211 sizeof(impl_implicit_args_t)); // may not be necessary 2212 impl_args->offset_x = 0; 2213 impl_args->offset_y = 0; 2214 impl_args->offset_z = 0; 2215 2216 // assign a hostcall buffer for the selected Q 2217 if (__atomic_load_n(&DeviceInfo.hostcall_required, __ATOMIC_ACQUIRE)) { 2218 // hostrpc_assign_buffer is not thread safe, and this function is 2219 // under a multiple reader lock, not a writer lock. 2220 static pthread_mutex_t hostcall_init_lock = PTHREAD_MUTEX_INITIALIZER; 2221 pthread_mutex_lock(&hostcall_init_lock); 2222 impl_args->hostcall_ptr = hostrpc_assign_buffer( 2223 DeviceInfo.HSAAgents[device_id], queue, device_id); 2224 pthread_mutex_unlock(&hostcall_init_lock); 2225 if (!impl_args->hostcall_ptr) { 2226 DP("hostrpc_assign_buffer failed, gpu would dereference null and " 2227 "error\n"); 2228 return OFFLOAD_FAIL; 2229 } 2230 } 2231 2232 packet->kernarg_address = kernarg; 2233 } 2234 2235 { 2236 hsa_signal_t s = DeviceInfo.FreeSignalPool.pop(); 2237 if (s.handle == 0) { 2238 DP("Failed to get signal instance\n"); 2239 return OFFLOAD_FAIL; 2240 } 2241 packet->completion_signal = s; 2242 hsa_signal_store_relaxed(packet->completion_signal, 1); 2243 } 2244 2245 core::packet_store_release(reinterpret_cast<uint32_t *>(packet), 2246 core::create_header(), packet->setup); 2247 2248 hsa_signal_store_relaxed(queue->doorbell_signal, packet_id); 2249 2250 while (hsa_signal_wait_scacquire(packet->completion_signal, 2251 HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX, 2252 HSA_WAIT_STATE_BLOCKED) != 0) 2253 ; 2254 2255 assert(ArgPool); 2256 ArgPool->deallocate(packet->kernarg_address); 2257 DeviceInfo.FreeSignalPool.push(packet->completion_signal); 2258 } 2259 2260 DP("Kernel completed\n"); 2261 return OFFLOAD_SUCCESS; 2262 } 2263 2264 int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr, 2265 void **tgt_args, ptrdiff_t *tgt_offsets, 2266 int32_t arg_num) { 2267 // use one team and one thread 2268 // fix thread num 2269 int32_t team_num = 1; 2270 int32_t thread_limit = 0; // use default 2271 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 2272 tgt_offsets, arg_num, team_num, 2273 thread_limit, 0); 2274 } 2275 2276 int32_t __tgt_rtl_run_target_region_async(int32_t device_id, 2277 void *tgt_entry_ptr, void **tgt_args, 2278 ptrdiff_t *tgt_offsets, 2279 int32_t arg_num, 2280 __tgt_async_info *AsyncInfo) { 2281 assert(AsyncInfo && "AsyncInfo is nullptr"); 2282 initAsyncInfo(AsyncInfo); 2283 2284 // use one team and one thread 2285 // fix thread num 2286 int32_t team_num = 1; 2287 int32_t thread_limit = 0; // use default 2288 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 2289 tgt_offsets, arg_num, team_num, 2290 thread_limit, 0); 2291 } 2292 2293 int32_t __tgt_rtl_synchronize(int32_t device_id, __tgt_async_info *AsyncInfo) { 2294 assert(AsyncInfo && "AsyncInfo is nullptr"); 2295 2296 // Cuda asserts that AsyncInfo->Queue is non-null, but this invariant 2297 // is not ensured by devices.cpp for amdgcn 2298 // assert(AsyncInfo->Queue && "AsyncInfo->Queue is nullptr"); 2299 if (AsyncInfo->Queue) { 2300 finiAsyncInfo(AsyncInfo); 2301 } 2302 return OFFLOAD_SUCCESS; 2303 } 2304 2305 namespace core { 2306 hsa_status_t allow_access_to_all_gpu_agents(void *ptr) { 2307 return hsa_amd_agents_allow_access(DeviceInfo.HSAAgents.size(), 2308 &DeviceInfo.HSAAgents[0], NULL, ptr); 2309 } 2310 2311 } // namespace core 2312